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Abstract

This thesis presents a self-referential dynamical systems approach to adaptive robot control.
The central idea consists of the maintenance of behavioral activity in a robot, according to
the principle of Homeokinesis, which represents a dynamical counterpart to Homeostasis.
An algorithm is described that is able to generate behavioral competencies specific to the
robotic device and its environment. The underlying objective function, from which concrete
learning rules for the controller parameters are derived, will be defined. This function does
not rely on the specific realization of the robotic body nor the environment, but rather leads
to environment related behaviors. Moreover the properties of the parameter dynamics are
studied.

In experiments with various robots the emergence of sensorimotor coordination under
homeokinetic control is shown and the applicability and properties of the approach are dis-
cussed. As a paradigmatic toy example we consider a one-dimensional hit-and-return task
where the proposed controller out-performs a static controller with the same initial param-
eters. Crawling and jumping motions of a snake-like robot or a whole-body motion of the
active as well as passive elements of an under-actuated robot are shown. Such modes of
behavior are possible by exploiting the physical properties of the robotic device. Long-term
experiments demonstrate that the parameter dynamics of the control system continues to ex-
plore the parameter space in accordance with the theoretical predictions. Also the activity
of the system does not decrease for longer periods of time, even in an environment crowded
with other active robots. Furthermore, the ability of the homeokinetic system to integrate
and disintegrate, respectively, attached and removed sensors is shown and it is demonstrated
that, if multiple sensors are available, those which show a more reliable response to the motor
actions are predominantly integrated into the control loop.

Extensions to the homeokinetic controller, including a long-term memory and second-
order learning, are presented. The long-term memory enables the system to adapt to different
situations without relearning the internal parameters. Using second order learning the behav-
ior of the homeokinetic system can be shaped, based on observations of previous behaviors
and additional exteroceptive sensory information. This can be done either to advance the
adaptation that is implied by the objective function or to fulfill an externally specified task.

The homeokinetic approach is also applied to the control of myoelectric hand prosthe-
ses, thereby realizing a new method to adapt the controller of a myoelectric prosthesis to
the individual situation of an amputee during an interaction between patient and prosthesis.
This interaction period is intended on the one hand to automatically select patient-specific
features of the myoelectric signal and on the other hand to improve the signals provided by
the amputee through training. The selected features are shown to be effective in the control
of the prosthesis.
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Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit einem selbstreferentiellen Ansatz aus dem Be-
reich der dynamischen Systeme zur adaptiven Steuerung von Robotern. Die zentrale Idee des
Ansatzes besteht dabei in der Aufrechterhaltung aktiver Verhaltensformen, was ihn zu einem
dynamischen Pendant der Homeostase macht und zu dem Namen Homeokinese fiihrte. Ein
Algorithmus wird vorgestellt, mit Hilfe dessen korper- und umweltangepalte Verhalten gener-
iert werden konnen. Die zugrundeliegende objektive Funktion ist dabei nicht auf einen
speziellen Roboter oder eine vorgegebene Umwelt angewiesen. Weiterhin wird die Parame-
terdynamik des Systems diskutiert.

In Experimenten mit verschiedenartigen Robotern werden die Anwendbarkeit und die Eigen-
schaften des Ansatzes untersucht. Als paradigmatisches Beispiel dient ein eindimension-
aler Roboter zwischen zwei Winden. In dieser Situation konnen mit einer homeokinetis-
chen Steuerung deutlich ldngere Strecken zuriickgelegt werden, als mit einem statischen
Kontroller. In weiteren Experimenten werden koordinierte Bewegungen, wie Kriech- und
Springbewegungen eines schlangenartigen Roboters oder Bewegungen aller aktiven und pas-
siven Korperteile eines unteraktuierten Roboters, generiert. Solche Bewegungsmoden zeigen
die Emergenz von sensomotorischer Koordination durch homeokinetische Steuerung und
werden durch die Ausnutzung der physikalischen Eigenschaften der Roboter moglich. In
Langzeitexperimenten zeigt sich im Einklang mit der Theorie, dal die Parameterdynamiken
des Steuerungssystems den Paramterraum fortlaufend explorieren. Die Roboter sind sogar
in iberfiillten Umgebungen hochstens kurzzeitig inaktiv. Neu angeschlossene oder entfernte
Sensoren werden in die sensomotorische Schleife integriert beziehungsweise desintegriert,
wobei Sensoren, die zuverldssiger auf Motoraktionen reagieren, bevorzugt werden.
Erweiterungen der homeokinetischen Steuerung durch ein Langzeitgedédchtnis und Lernen
zweiter Ordnung werden vorgestellt. Das Langzeitgedéchtnis erlaubt dem System sich an
verschiedene Situationen anzupassen, ohne die internen Paprameter umlernen zu miissen.
Durch Lernen zweiter Ordnung in einer hoheren Kontrollschicht werden bestimmte Aspekte
der generierten Verhalten reprisentiert und unter Verwendung von zusitzlichen exterozep-
tiven Sensoren das System in geeigneter Weise beeinflusst. So kann die Parameteradaption
entsprechend der objektiven Funktion beschleunigt oder eine von auBlen vorgegebene Auf-
gabe erfiillt werden.

SchlieBlich wird eine neue Methode zur Anpassung von Prothesensteuerungen an die indi-
viduelle Situation eines Amputierten in einer Interaktionsphase zwischen Patient und Prothese
vorgestellt. In der Interaktionsphase sollen zum einen die patientenspezifischen Merkmale
des myoelektrischen Signals selektiert und zum anderen die vom Patienten bereitgestellten
Signale durch Training verbessert werden. Die gewidhlten Merkmale konnen effektiv zur
Steuerung der Prothese verwendet werden.
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Chapter 1

Introduction

1.1 History of Robots

Long before robots were created, science fiction authors thought and wrote about them. The
term robot was introduced in a play by the Czech writer Karel Capek:

The word ROBOT was first used in Karel Capek’s play RUR (Rossum’s Univer-
sal Robots). The word robot was invented by éapek’s brother Josef. It is derived
from the Czech noun robota - labour, so a robot is somebody or something that
exercises labour. (Zunt, 2007)

In this play, premiering in Prague in 1921 and first performed in New York in 1922, automatic
human-like machines are built to work in production halls.

But even before the term robot existed people tried to build machines with human like
appearance or abilities called automata. According to recent findings, the history of the
automata goes back to the ancient-greece in the 1st century AD (Sharkey, 2007) or at least
to Leonardo da Vinci in 1497 (Rosheim, 1996).

Nowadays the majority of robots can be found in manufacturing halls as described by
Sebastian Thrun:

At present, most robots operate in industrial settings where they perform tasks
such as assembly and transportation. Equipped with minimal sensing and com-
puting, robots are slaved to perform the same repetitive task over and over again.
(Thrun, 2004)

These machines are usually not man-like, they have a rather practical appearance (see fig-
ure 1.1) and their control is just complex enough to accomplish the given task, but not to
cope with environmental changes e.g. in the setup of the workplace. Therefore, many of the
industry robots are surrounded by a cage to keep the predetermined environment constant in
the vicinity of the robot and to protect the human workers.
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(a) (b)

Figure 1.1: Industrial robots. (a) A typical robot for welding or handling which can be
found in many production halls (Wikimedia Commons, 2008) and (b) autonomous robots for
transporting containers on a loading deck (picture from Bellin (2008)).

1.2 Future Robots

For the future development it is beneficial to increase the complexity of the control structures
in order to allow the robots to adapt to different environments, situations, or body properties.
This way robots will become able to assist people in everyday life. For this task it is also
advantageous to have a more man-like appearance which will allow the robots to share our
places and manipulate the same things we do. In the future most robots will then probably
look like the prototypes in figure 1.2.

The increased complexity of the body on the one hand and the unconstrained number
of possible environments make the development of appropriate controllers difficult. (So for
example changing from flat linoleum to a fluffy carpet will result in a decrease of the speed of
a two wheeled robot. Hence, it will need more time to reach a target and the controller has to
somehow deal with this.) Furthermore, changes in the body properties of the robot can lead
to different outcomes when applying the same motor commands. All these uncertainties can
only be faced when the controller is able to make decisions autonomously, without human
intervention. Thus, the ability of a robot to autonomously adapt to new situations and/or
body properties is an important aim in the development of future robots (see for example
Lenser (2005); Salomon (1996); Torras (1995)). Or as stated by Carme Torras:

At the risk of oversimplification, let me state that the Achilles heel of current
robots is their lack of adaptivity, at all levels. (Torras, 2002)

In this work we will focus on the ability of control structures to adapt to the body and
the environment. To achieve this ability there are various ways, out of which the three most
prominent ones will be shortly discussed in section 1.4, after defining the kind of robots we
want to use in the investigations in this thesis.
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(b)

Figure 1.2: Prototypes of possible future robots designed to assist in everyday life. (a)
Humanoid and wheel driven “partner robots* developed by the Toyota Motor Corporation
(2007). (b) Shoppingrobot developed at the Ilmenau University of Technology (Neuroinfor-
matics and Cognitive Robotics Lab, 2007; Béhme et al., 2006).

1.3 Defining Autonomous Robots

Before considering the development of controllers, we want to take a more precise look at
the term robot. Throughout this work we will consider autonomous robots. Two fundamental
requirements for autonomous agents in general, where an agent is an entity who is capable
of action, are:

(1) Autonomous agents structure their behavior on the basis of sensory infor-
mation that they themselves acquire.

(2) Such autonomy goes beyond the sensor-driven nature of control systems
in that it is flexible. Minimally this means that an agent may change its

behavior qualitatively under the influence of sensory information.
(Schoner et al., 1995)

This means we will consider robots which are able to change their behavior on their own,
without human intervention. Hence, such systems need controllers which are able to make
decisions on their own:

The ultimate purpose of any autonomous robot design is to develop systems
capable of self-governing in complex and unpredictable environments. (Goschin
et al., 2007)

We will discuss three prominent approaches to autonomous robot control in the following
section.
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1.4 Developing Controllers for Autonomous Robots

1.4.1 Knowledge Based Artificial Intelligence

According to the knowledge based approach to artificial intelligence designers try to list all
situations the robot can experience and define rules for adequate reactions of the robot. In
general this is done with expert knowledge in order to reproduce the performance of one or
more human experts in a specific problem domain. This expert knowledge is then used to
make inferences and arrive at specific conclusions for a given question (see Liao (2005) for an
overview of expert systems). To do so in the robotic domain the designers have to think of all
possible situations during the robot’s lifetime already in the design process of the controller.
And this must be reconsidered for each change in the body properties of the robot, since the
same control command can result in different outcomes, depending on the body properties
of the robot. With increasing complexity of the robotic device and the environment, the
probability to cover all possible situations is drastically reduced. Furthermore, the definition
of a situation is difficult, it can not be described by the use of abstract symbols as we do in
our language, since these can not be interpreted by the robot in the context of the real world,
as tellingly sketched in figure 1.3 (left). This is the so-called symbol grounding problem as
pointed out by Harnad (1990).

Avoid(O1)
Begin

Avoid
obstacle O
-

&7
13

End

Figure 1.3: The difference between design (left) and self-organization (right) (Bessiere et al.,
1994). While in design it is not clear if the robot interprets the abstract symbols used by the
designer correct (symbol grounding problem), in self-organization processes it is not easy to
analyze the solution found by the robot.

1.4.2 Reinforcement Learning

Based on reinforcement learning, behaviors of robotic systems can be adapted using (numer-
ical) rewards.

An reinforcement learning agent learns from the consequences of its actions,
rather than from being explicitly taught and it selects its actions on basis of its
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past experiences (exploitation) and also by new choices (exploration), which is
essentially trial and error learning. (Woergoetter and Porr, 2008)

Desired behaviors are favored by positive reinforcement signals, or rewards, whereas un-
wanted behaviors yield a negative reward/punishment. The controller seeks to learn to select
actions that maximize the accumulated reward over time. (For an overview of the principle
see Sutton (1992), Kaelbling et al. (1996), Sutton and Barto (1998).) Using reinforcement
learning interesting projects could be realized in recent years like a stand-up behavior of a
three-link, two-joint robot (Morimoto and Doyab, 2001), the control of an autonomous heli-
copter (Bagnell and Schneider, 2001) and the dynamic balance of a biped robot using fuzzy
reinforcement learning agents (Zhou and Meng, 2003). The downside of this approach is the
distribution of the rewards. There is still a designer required to set up the rewards for the
specific task and domain in which the robot should learn.

1.4.3 Evolutionary Robotics

Evolutionary robotics (Nolfi and Floreano, 2000; Cliff et al., 1993) is the attempt to develop
robots through a process inspired by the natural evolution. An initial population of robot
controllers is randomly generated and each of them is allowed to let the robot interact with
the environment. The performance of each individual on specific tasks is evaluated. Accord-
ing to the performance, the controllers are allowed to reproduce by copying their genotypes
with additional changes due to genetic operations, like mutation or crossover. So a next gen-
eration of controllers is generated, can interact with the environment, and will be evaluated
afterwards. This process is repeated until an individual is able to fulfill the performance
criterion. Using this technique interesting achievements such as a flying, or to be more pre-
cise flapping, ornithopter-like robot (Augustsson et al., 2002) and a homing behavior for a
Khepera robot (Floreano and Mondada, 1996) could be realized. Komosinski (2000) real-
ized autonomy of design and construction using evolution in a ‘limited universe’ physical
simulation, where controller as well as the robotic body, consisting of bars and actuators, are
evolved in order to generate locomotion. Similar work was presented by Lipson and Pollack
(2000), where the fittest individuals (defined by their locomotive ability) were physically
built using rapid manufacturing technology and reproduced the behaviors of their virtual ori-
gin. Maze exploration behaviors in a real and a simulated colony of robots were studied
by Nelson et al. (2004). They used rather complex controller networks (multiple hidden
layers, time-delayed and recurrent connections) which were evolved to respond to temporal
information in order to overcome the inherent perceptual aliasing associated with the simple
binary tactile sensors used. However there is also a downside of this approach:

From an engineering perspective, the most serious problem is the amount of time
needed to conduct an evolutionary process on physical robots. From a scientific
perspective, the most important challenge is the identification of methods of
encoding information into the genotype that are suitable to produce incremental
and open-ended evolutionary processes (Nolfi and Floreano, 2002).

A further difficulty is the design of the fitness function required for evaluating the perfor-
mance of each individual. This still has to be done by the experimenter and is significant for
the success of the evolutionary process.
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1.44 Summary

All mentioned approaches have in common that information about the system and the envi-
ronment is required to define the reactions of the robot, the rewards or the fitness function and
genotype. Furthermore, all approaches end with a stable, non-adaptive system. Either the
rules are set by the designer or the controller parameters are adapted by reinforcement learn-
ing or artificial evolution. However, as soon as the robot is in service no further adaptation
takes place.

In this work we try to point out a different approach to robot control which will be
introduced in section 1.6. Beforehand the dynamical systems approach to robot control,
which is a basis for homeokinetic control, will be shortly presented.

1.5 Robots as Dynamical Systems

According to Meiss (2007) a dynamical system (see also e.g. Ott (1993), Strogatz (2001)) is
a rule for the time evolution on a state space:

A dynamical system consists of an abstract phase space or state space, whose
coordinates describe the state at any instant; and a dynamical rule that specifies
the immediate future of all state variables, given only the present values of those
same state variables. (Meiss, 2007)

Examples include mathematical models that describe the swinging of a clock pendulum, the
flow of water in a pipe or the spreading of epidemics. In this thesis we will describe the robot
in interaction with the environment as a dynamical system. The parameters of the latter will
then define the behavior of the robot.

According to the homeokinetic paradigm we will set up a self-regulation of the param-
eters, without a task, goal, or reference value given from outside, and this way obtain a
self-organizing controller for autonomous robots. Activity in this system will be generated
by noise amplification and symmetry breaking. Even though we will consider rather simple
control architectures complex behaviors will arise, based on the interplay between state and
parameter dynamics of the system.

1.6 Introducing the Homeokinetic Approach

The concept of homeokinesis was developed by Ralf Der. He first proposed a system for
the adaptation of controllers of autonomous robots in a self-organized way, where the robot
still needs a drive for activity given from outside (Der et al., 1999), (Der, 2001). In 2002
homeokinesis was proposed in the present form, where the drive for activity also emerges
from the general principle (Der and Liebscher, 2002).

The basic idea of homeokinesis is to provide a way for the adaptation of a controller of a
robotic system, which is based entirely on information which is available to the agent itself
and does not require a specific environment or robotic body. Nethertheless the controller
is expected to generate a rich reservoir of behaviors specific to the robotic device and the
environment it is located in. Since the objective function for the adaptation of the controller
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parameters is based on internal available information, behavioral competencies will be ac-
quired by self-exploration and interaction with the environment without an external specified
goal or task. Hence, as sketched in figure 1.3 (right), the behaviors of the robot are not known
beforehand, but they will be explorative, incorporate the properties of the robotic body and
depend on the environment the robot is exposed to.

Since the homeokinetic approach, which will be presented here, is based on artificial
neural networks (for more information on artificial neural networks see Rojas (1996), Zell
(1997) or Haykin (1998)) and fast synaptic plasticity ((Citri and Malenka, 2008), (Zucker
and Regehr, 2002)) the robotic systems are models for the behavioral neuroscience, which
seeks to understand the neural basis of natural animal behavior:

Such computational models have two purposes: they form the basis for bio-
logically inspired approaches to the design of robot control, while at the same
time they yield some insight into the behavior of the brain mechanisms they
present. (Bekey and Goldberg, 1993)

In this case we will see that a small fully connected network with fast synaptic plasticity is
able to generate rather complex behaviors of robotic devices.

However, these systems, based on the dynamical systems approach to robot control, are
also interesting on their own from a dynamical systems point of view due to their rich prop-
erties and complex behaviors. These behaviors are generated by self-organization and sym-
metry breaking due to noise amplification in a rather simple control architecture. The com-
plexity arises from the interplay between the state and parameter dynamics of the systems.

We view homeokinesis as the dynamical pendant of homeostasis (Cannon, 1939). Like
the latter it derives behavior from an entirely internal perspective. So the behavior can be
seen as a kind of by-product of satisfying the internal needs of the agent. We give this
general idea a constructive formulation in the following way. We suppose that the agent
is equipped with an adaptive model of its behavior. A learning signal for both the model
and the controller is derived from the misfit between the real behavior of the agent in the
world and that predicted by the model (for the significant details see section 2.3.3). In this
way, a learning signal for the adaptation of the behavior is derived from a purely internal
perspective. Given the constructive formulation above, we will need to define an objective
function for the adaptation of the controller and world model parameters corresponding to
this idea.

However, since controller and world model start from scratch, that is with small random
parameters, the approach faces the so-called cognitive bootstrapping problem, also known
as the learning paradox formulated by Fodor (1980) and discussed for example by Bereiter
(1985), Steffe (1991), von Glasersfeld (1998). The problem arises from the concomitant
learning of controller and world model. On the one hand the controller needs a feasible
model to exploit the properties of the device under control. On the other hand the model has
to be provided with necessary information about the behavior of the body which requires
controller actions making this information available. The proposed principle will give a
solution to this problem.

Since the source of the rich behaviors shown by the robots is the parameter adaptation
by means of fast synaptic plasticity, the system will (and has to) adapt to changes of the
environment or body for the whole lifetime. However, as soon as a specific task or goal
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should be achieved or a behavior kept, the system has to be shaped. This brings us to the
stability-plasticity-dilemma (Grossberg, 1987), faced by all learning systems: A balance be-
tween stability and plasticity is required to solve the trade-off between the stability required
to retain information and the plasticity required for adaptation. However, in this work we are
going to approach the dilemma from the adaptive side.

The self-organization process is thought to be a first step in the development of a robot
(maybe comparable to newborn vertebrates). It yields to set up the connection between
body and controller, and the generation of movements which are appropriate to the specific
body without detailed information about the body required. Later on, in an extension of the
algorithm or by introducing higher layers in the control structure (like for example in the
subsumption architecture proposed by Brooks (1986b)) the emerged behaviors can be used
for the execution of specific tasks. The benefit of this way, via the self-organized acquisition
of simple behaviors, is to reduce the design effort required to program robots, especially
when robots with many degrees of freedom are used in a dynamic environment.

Depending on the realization of this higher order control system this meets the idea of
developmental or epigenetic robotics, which tries to understand and model the role of devel-
opment in the emergence of increasingly complex cognitive structures in interaction with the
environment. (For an overview of this field of research see Asada et al. (2001), Berthouze
and Metta (2005), Zlatev and Balkenius (2001).)

1.7 Embodiment, Situatedness and Homeokinesis

Since the mid-1980’s the term “embodiment” is paid growing attention in the artificial intelli-
gence and cognitive science communities. Brooks (1986a) proposed that system-environment
interactions of embodied agents leads to the emergence of intelligence. In this context an em-
bodied agent is a physical device in the real world equipped with sensors and actuators as
to interact with his environment. This was opposed to the basic approach of the artificial in-
telligence that aimed at understanding intelligence as information processing, meaning that
computer programs can have cognitive abilities, if the designers are able to write appropriate
programs. A popular example that is often cited in this context is Searle’s Chinese Room
(see Searle (1980), e.g. in Rapaport (1986)), showing that understanding means not only
to process information but instead to have causal connections between the external world
and the internal symbols representing it. This failure of the classical artificial intelligence is
discussed by Brooks (1991). In Summary, the idea of embodiment is to use the possibilities
of interaction with the environment to allow and simplify the creation of intelligence. An
example of the usage of body environment interaction is McGeer’s passive walker (McGeer,
1990), where a purely mechanical system without any actors or sensors walks down a slope
in a natural looking way only driven by gravity. When comparing this gait to actual humanoid
robots where a lot of engineering and computational effort is used to achieve a human-like
walking, the benefit of embodiment is indisputable. Hence, different groups equip passive
walkers with sensors and actuators to develop robust walking on flat terrain, up small slopes
and in the future maybe even over rough terrain, for example see Tedrake et al. (2004), Asano
et al. (2000), Asano et al. (2001). Pfeifer and Scheier (1999) proposed situatedness as a con-
dition for intelligent agents. This means that intelligent agents have to adapt themselves to
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their specific actual environment, finding their ecological niche. The opposite will be indus-
trial robots at assembly lines, which are usually put in specific environments with nearly no
perturbations.

In this context homeokinesis is a controller paradigm for embodied autonomous robots,
since it is based on the interaction with the environment via sensors and actuators. Further-
more, robots following the homeokinetic principle are situated in the sense that they adapt
their behavior according to the current environmental situation.

1.8 Simulated Versus Real Robots

In this thesis many experiments were conducted in a physically realistic simulation envi-
ronment (see section 3.1) because of the higher flexibility offered and the lower manpower
required when compared to developing and testing robots in the real world:

Although it is confirmed that control systems developed in simulation will not
yield the same good results in reality, simulation allows for much faster test-
ing of new ideas and it can at least provide a starting point for developing real
controllers. (Goschin et al., 2007)

The latter point is seen as less important in the work at hand since we are considering systems
which are adaptive to environment and body, and hence expect these systems to also be able
to adapt to the real world. This expectation was confirmed by experiments with real robots
in our group (see section 4.1, figure 3.34 or Der et al. (2000)).

1.9 Thesis Outline

In this chapter we gave an overview of robotic systems nowadays and in the future. The
aim of this work is to present a new self-referential dynamical systems approach to adaptive
robot control, able to generate behavioral competencies specific to the used robotic device
and the environment the robot is located in.

The sensorimotor loop in which these systems work, together with a formal specification,
will be introduced in the following chapter. Furthermore, the objective function will be
defined and concrete learning rules for the parameters of the controller derived. Additionally
the properties of the parameter dynamics will be discussed.

After the theoretical considerations chapter 3 deals with the application of the Home-
okinetic principle to different robotic artefacts. In section 3.2 a homeokinetic and a static
controller are compared. The environment exploration of a two-wheeled robot is studied in
section 3.3. The behaviors generated by a five degree of freedom snake-like robot are investi-
gated in section 3.4. An example for the emergence of sensorimotor coordination is given in
section 3.5. Here an under-actuated many degree of freedom robotic device is shown to gen-
erate a whole-body motion of all, active as well as passive parts of the body. In section 3.6
the presented results are discussed.

Chapter 4 proposes attempts to extend the so far studied homeokinetic system. A long-
term memory is introduced in section 4.1. Together with additional sensory information
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it allows the system to adapt to different situations without relearning the parameters. In
section 4.2 homeokinesis is extended by second order learning. The behaviors generated by
the homeokinetic system are observed from a higher control layer. Together with further
(exteroceptive) sensory information the behavior of the system can be shaped to better meet
the requirements of the objective function or fulfill an externally specified task.

The homeokinetic approach will be applied to the control of myoelectric hand prosthe-
sis in chapter 5. Here it is used as a new method to adapt the controller of a myoelectric
prosthesis to the individual needs of an amputee during the interaction between patient and
prosthesis. This training phase is intended on the one hand to select the most appropriate
features of the myoelectric signal for that specific amputee and on the other hand to improve
the signals provided by the amputee through training. Later on the selected features can be
used for the control of the prosthesis.

In chapter 6 the results of this work are summarized and final considerations and remarks
on future work are given.
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Chapter 2

The Homeokinetic Principle

2.1 Introduction

The homeokinetic principle is a general principle which drives robots to develop body- and
environment-related behaviors. It is based on measures which are available to the agent
itself. There is no external instance in this approach specifying which kinds of behaviors are
favorable. Hence there is no desired behavior, reference value or goal. The only requirements
to be fulfilled by the system are that it should be active and able to predict the results of its
actions in terms of its sensor values.

In this chapter the homeokinetic approach will be explained in detail, starting with the
introduction of the basic terms closed-loop control (section 2.1.1) and sensorimotor loop
(section 2.1.2). Based on this, the concrete realization of the system used here can be spec-
ified (section 2.2). Furthermore the properties inherent in such systems are investigated to
convey an understanding of the effects of the different system parameters. Now we are faced
with the very interesting question of how to adapt these parameters in a self-referential fash-
ion in order to achieve active, body- and environment-related behaviors (section 2.3). The
resulting properties of the proposed system, equipped with the parameter dynamics, are stud-
ied in section 2.4 for the elementary case. These systems are already very intersting as we
will see. However we have also investigated the case where several sensors are available in
the loop, which leads to the results presented in section 2.5. Section 2.6 will conclude this
chapter with a discussion of the described principle.

2.1.1 Closed-loop control

Regarding the question of using feedback, control theory gives at least two possibilities to
control a system, namely open loop and closed-loop control (for detailed descriptions see
for example Leigh (2004), Warwick (1996) or Giinther (1997)). Open loop control is char-
acterized by the lack of a direct connection between the output and controller of a system
(see figure 2.1(a)). The reference (or desired) value r is fed into the controller C', which
generates an input signal u for the device under control P. The output y of the system is
not further observed. Large differences between the desired output and the real output can
occur because of the lack of sensitivity to the states and possible perturbances of the system
under control. Closed-loop control is realized by introducing feedback, whereby the output
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y is measured by a sensor and subtracted from the reference value r (see figure 2.1(b)). The
error e = r — g is fed in the controller which tries to minimize it by giving appropriate inputs
to the device under control. The used feedback gives the opportunity to react to actual and
possibly unpredictable situations of the system. Hence for any kind of a real system with
environmental influences feedback is required to achieve a useful control of the system in
unforeseen situations.

- - Q- K-l
.

(a) (b)

Figure 2.1: Open versus closed loop. (a) Simple open-loop control. No feedback from the
system output y to the controller C' is used in order to realize the reference value r. (b) Simple
feedback loop. The output of the system y is fed back to the reference value r, through a
measurement performed by a sensor. The controller C then uses the ditference between the
reference and the output, the error e, to adjust the inputs u to the system under control P in
order to realize the reference value r. The environmental influence, or disturbance acting on
the system under control is not explicitly shown here.

2.1.2 Sensorimotor Loop

The term sensorimotor loop highlights the tight relationship between sensory input and motor
output in a feedback loop. Already in 1948 Norbert Wiener pointed out the importance of
feedback for biological agents (Wiener, 1961):

We thus see that for effective action on the outer world it is not only essential
that we possess good effectors, but that the performance of these effectors be
properly monitored back to the central nervous system, ... to produce a properly
proportioned output to the effectors.

Figure 2.2 shows a more biologically inspired view on feedback systems as in control theory
(figure 2.1(b)). The sensorimotor loop describes the information flow in an agent-world-
interaction scenario. The agent can be a living being or an autonomous robot which is
controlled in a closed loop paradigm. Information from the surrounding world and/or the
body is gathered by sensors, and processed in a control unit. The resulting motor command
is executed by the agents actuators, which leads to a new situation in the world and thus
new sensor values. These new sensor values are again processed by the controller and result
in new motor commands to be executed. This loop is repeated until the end of the agent’s
lifetime.

In recent research in the field of neuroscience, feedback in the sensorimotor loop is stud-
ied, for example in the mice or rat vibrissa system (Ferezou et al., 2007; Mitchinson et al.,
2007; Nguyen and Kleinfeld, 2005). This was motivation to further study realizations of sen-
sorimotor loops in the robotics. Ahissar and Kleinfeld (2003) give some examples of motor
control by closed loops and the following concluding remarks:
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Figure 2.2: The sensorimotor loop, showing motor command generation (top), state transition
(right) and sensory feedback generation (left). Center, internal representation of these stages
within the central nervous system. (Wolpert and Ghahramani, 2000).

It is possible that closed-loop computation and plasticity are two of the most
critical features which make brains so efficient. Achieving an understanding
of the interplay between closed-loop computations and plasticity is a further
challenge.

This is exactly the point of interest in this thesis where we will investigate closed loop control
systems which show a high level of plasticity.

2.2 Closed-Loop Control in the Sensorimotor Loop

The homeokinetic approach realizes closed-loop control in a sensorimotor loop without an
external given reference value. The adaptation of the controller parameters is based on mea-
sures which are completely internal to the robot. As a result we have a truly autonomous
robot, with self-organized generation of behavior. The following section will give a formal
specification of the concrete realization of the sensorimotor loop. The properties of this real-
ization are discussed in section 2.2.2 using an elementary sensorimotor loop as an example.
In section 2.2.3 the dynamics of the sensorimotor loop in the closed form is derived for the
case of multiple sensors. Section 2.2.4 discusses delays between the generation of the motor
commands and the corresponding response in the sensor values. The composed controller
aggregating the controller and an internal model is defined in section 2.3.3.1.

2.2.1 Formal Specification of the Sensorimotor Loop

In the formal sense a robot is an input-output system which at instances of time ¢t = 0,1, 2, ...
receives inputs z; € I and produces outputs i, € O. The input space [ is the space of input
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values (sensor values) and the output space O corresponds to the actions of the robot. These
actions are motor commands like the target wheel velocity of the robot or the forces exerted
on the joints of some robotic limb.

Closed-loop control means that the controller of the robot is given by a function K : [ —
O mapping the sensor values x to the motor values y

yr = K(xy). 2.1)

This mapping will be realized by an artificial neural network with leaky integrator neurons
under the rate coding paradigm.

The change of the sensor values depends on the actions undertaken by the robot. Hence
we can introduce a simple function F' : O — [ mapping the actions of the robot to the
new sensor values. For generality this mapping could be complemented with sensory and/or
further context information in order to increase its predictive abilities. However we are free
to keep it at this stage and be aware of the fact that it is restrained here. Using the mapping,
the sensor values can be written as

T = Fye) + &, (2.2)

where &; accounts for the effects not covered by F'. So the mapping F : O — I from motor
commands to new sensor values in the world can be written as

A

F(y) = F(y) + &-

With these notions we can write the dynamics of the sensorimotor loop in the closed
form:
Tepr = (@) + &, (2.3)
where
Y(xy) = F(K(24))- (2.4)

The function v can be visualized as a time series predictor for the time series of the sensor
value x. Figure 2.3 shows a sketch of the described sensorimotor loop.

In order to discuss the peculiarities of this realization of a sensorimotor loop we will now
study a simple system with velocity control of a wheeled robot.

2.2.2 An Elementary Sensorimotor Loop

Let us consider a closed-loop velocity control of a robot with the sensorimotor loop closed
via the wheels alone. For the sake of simplicity we consider the one-dimensional case with
z,y € R!, i.e. the robot can move only along a straight line. So the controller K consists of
a single leaky-integrator neuron under the rate coding paradigm ((Hopfield, 1984); see figure
2.4 for a sketch of the example of the sensorimotor loop).

2.2.2.1 Dynamics of the Loop

In the elementary sensorimotor loop the controller from equation 2.1 is

K (x) =g(z), (2.5)
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Controller K(x)

time
=t+1

t

World F(y)
v — X1

Figure 2.3: Sketch of a sensorimotor loop showing the repeated mapping K from sensor
values z; to motor commands y; realized by the controller and the mapping F' from motor
commands y; to new sensor values ;11 happening in the world. (The model F' used for the
internal prediction of new sensor values is not drawn here.)

N

Xt+1

t+1

t

Figure 2.4: Sketch of a simple example of a sensory motor loop. The sensor value x; (mea-
sured wheel velocity) is fed into the neuron weighted with the synaptic strength c. A threshold
h is also provided. The neuron output y, is the desired wheel velocity for both of the wheels.
The true (realized) wheel velocity is read back by the wheel counter and used as new sensor
value x4 in the next time step.
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with z being the membrane potential of the controller neuron. The output function of the
neuron is g(z) = tanh(z), because in any real system actuators have an upper and a lower
limit, which is reflected in the controller by the hyperbolic tangent, setting these limits to £1.
In cases with different actuator limits, an adequate factor can be introduced. The membrane
potential z of the controller neuron is updated in the time step ¢...¢ + 1 as

TAzy = —24 + cxyq + b, (2.6)

with the controller parameters synaptic strength ¢ € R! and bias (or adaptive threshold)
h € R!. The bias is always considered explicitly because its role is more like an additional
internal state of the neuron. The input to the neuron is the true wheel velocity = as measured
by the wheel counter. The update is carried out when the new sensor value x;,, arrives. The
output of the neuron

Yy = tanh (z;) 2.7

is the target wheel velocity of the robot. Figure 2.5 shows a sketch of the neuron model used.

Figure 2.5: Sketch of neuron model used, with input x, synaptic strength c, bias h and
output y. The leaky-integrator neuron under rate coding paradigm has a dot product activation
function and the output function is the hyperbolic tangent.

The mapping F' in equation 2.2 is just linear

F (yt) = QY-

So the true wheel velocity x;., as read back by the wheel counter may be assumed to

T = ayy + &, (2.8)

where the parameter a € R! accounts for a (unknown) hardware constant (the response

strength of the channel) and £ € R! incorporates all effects due to slip, friction, discretization
. . . . . !
noise and so on which make the true velocity deviate from the model assumption z; 1 = ay;.

The constant a can be learned by minimizing the error

E = (z1 — ayt)2 (2.9)

for samples (x;41, ;) obtained on-line in each time step t = 0,1, .. ..
Using equation 2.6, 2.7 and 2.8 we can write the closed dynamical system as

TAz = —z + catanh (z;) + h + ¢&, (2.10)

describing the time evolution of the membrane potential of the controller neuron. Together
with equation 2.7 this dynamics completely defines the behavior of the robot and will be
used in the following section to discuss the stationary states of the system.
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2.2.2.2 Stationary States of the System as Solution of the Fixed Point Equation

To get an idea about the properties of the dynamical system (equation 2.10), we want to
investigate its stationary states in the ideal case (§ = 0) by way of the graphical solution of
the fixed point equation. In a first step we neglect the bias (h = 0), while in a second step
we discuss the influence of / in detail.

Stationary States of the System Without Bias

For stationary states of the system the update of the membrane potential z is zero, meaning
equation 2.6 changes to
2t = CTt11 (2.11)

and with equation 2.7 and 2.8 we get the fixed point condition of the system

z; = catanh(z;), (2.12)
or with the feedback strength in the loop R = ca

z; = Rtanh(z). (2.13)

The graphical solution of the fixed point equation can easily be obtained and is shown in
figure 2.6. For values of I? smaller than one there is one stable fixed point at z* = 0. With

Zt Zt

R tanh(z) R tanh(z)

Z: q Z:

() (b)

Figure 2.6: Graphical solution of the fixed point equation. (a) With a response strength
R < 1 there is one point of intersection between z; and R tanh(z;) and hence one fixed point
at z* = 0. (b) With a response strength R > 1 two new fixed points at z* = +q appear and
the fixed point at zero gets unstable.

increasing R this fixed point becomes unstable and two new fixed points with opposite signs
at z* = £q appear. A plot of the stationary states of the system as a function of the feedback
strength shows a Pitchfork bifurcation (see figure 2.7).

For the robotic application this means that with a feedback strength less than the critical
value of R = 1 the robot will stall, while with a value above 1 the robot will move either
forward or backward. The direction of motion is determined by symmetry breaking at the
bifurcation point where the two stable branches with z # 0 branch off. If an assumed
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controller is to generate activity, then the value of the feedback strength must be tuned to
values above the critical value. Since R = ca and the response factor a is a hardware
constant of the system, the synaptic strength ¢ must be adapted adequately.

Z A

1 R
Figure 2.7: The stationary states of the system as a function of the feedback strength R show
a pitchfork bifurcation for increasing values of R. The bifurcation point is at R = 1.

Stationary States of the System Including Bias

For stationary states of the system the update of the membrane potential z is zero, meaning
equation 2.6 changes to
Zt = CT41 + h (214)

and with equation 2.7 and 2.8 we get the fixed point condition of the system

z; = catanh(z;) + h, (2.15)
or with the feedback strength in the loop R = ca

2 = Rtanh(z;) + h. (2.16)

The graphical solution of the fixed point equation is shown in figures 2.8 and 2.9. For
values of the feedback strength R smaller than 1 and bias h # 0 the fixed point at z* = 0
is shifted with the sign of the fixed point defined by the sign of A (see figure 2.8). Hence
by increasing the absolute value of the bias, while R < 1, an open loop control is realized,
neglecting the sensory feedback. Since we are interested in closing the sensorimotor loop
and utilizing the sensory feedback this case has no further relevance.

We consider now the graphical solution of the fixed point equation for the case of the
feedback strength R > 1. For absolute values of the bias A smaller than the critical value A,
the fixed points are slightly shifted as sketched in figure 2.9(a). When h > h. and R > 1
only one stable fixed point z* with positive sign remains. After decreasing the bias until
h < —h. one stable fixed point with negative sign remains, see figure 2.9(b). Plotting the
stationary states of the system as a function of the feedback strength for |h| > h. shows that
the pitchfork disconnects and there is now a globally stable, a locally stable and a locally
instable branch (see figure 2.10).
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R tanh(z)+h; R<I

Figure 2.8: Graphical solution of the fixed point equation considering the bias h, with a
feedback strength R < 1. With increasing absolute value of the bias h the fixed point at
z* = 0 is shifted, with the sign of the fixed point defined by the sign of h.

R tanh(z)+h 7, (O<h<h. R tanh(z)+h i Z, _he<h
h=0 . — h=0
g h<-h.

(a) b)

Figure 2.9: Graphical solution of the fixed point equation considering the bias h, with a
feedback strength R > 1. (a) For |h| < h, the two stable fixed points remain and are slightly
shifted. (b) For |h| > h. only one stable fixed point remains. If h < —h,. the fixed point has
a negative sign, if h > h. the fixed point has a positive sign.
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Z A Z A
R R
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Figure 2.10: The stationary states of the system including bias h as a function of the feedback
strength R show a globally stable, a locally stable and a locally instable branch. For values
(a) h > h, the states of the stable branch have positive sign, while for values (b) h < —h,
they have negative sign.

For the robotic application this means that by modulating the bias h, the actual behavior
of the system can be controlled. Since for values —h. < h < h, there is a region of
bistability, this will be hysteretic control as illustrated in section 2.2.2.4. Keeping |h| > h.
for R > 1 realizes again open loop control neglecting the sensory feedback. Hence an
assumed closed-loop controller could utilize the possibility to change the actual behavior by
temporarily increasing |h| above h., but should not keep the bias fixed in this regime.

2.2.2.3 Representation of the Dynamics as Gradient Descent

The concrete behavior of the system acting in the sensorimotor loop obviously depends es-
sentially on the values of the synaptic strength ¢ and the bias h. The essential features of this
dynamics are illustrated best by using an alternative view of the dynamics of equation 2.10
obtained by considering the update of the membrane potential z as a gradient descent on a
potential V'

TAzZ = —%V(zt) + c&. 2.17)
Using
% In(cosh(z)) = tanh(z) (2.18)
we find that )
V(z) = —RIn(cosh(z)) + % — hz, (2.19)

again with R = ca being the feedback strength in the sensorimotor loop. As usual, the
gradient dynamics of equation 2.17 may be visualized by that of a sphere sliding down on
the walls of a vessel filled with a viscous fluid, see figure 2.11. In our case we may use the
small z approximation tanh z ~ z — % to get the more simple expression

1 1
V(z) = 5(1 — R)2* + ER24 — hz (2.20)
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for the potential.

Vi(z) V(z)
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Figure 2.11: The state dynamics of the sensorimotor loop can be considered as a gradient
descent on the potential V' (z), assuming the bias h = 0 here. Maxima of the potential
correspond to unstable fixed points, minima to stable ones. The figure shows the potential
with (a) R < 1 and (b) R > 1 where it is a double well potential with two stable and one
instable fixed point. Each sphere represents a fixed point of the system.

The fixed points of the system acting in the sensorimotor loop correspond to the extrema
of the potential, the stable fixed points being at the minima of the potential. In figure 2.11(a)
the potential is plotted for R < 1 where the fixed point at z* = 0 is indicated by the sphere.
With increasing 12 we have a pitchfork bifurcation at ? = 1, and for R > 1 we get a bistable
system, i.e. we have one instable fixed point at z* = 0 and two stable fixed points at

.[3(R— 1)

*::l:
z R s

(2.21)
as indicated by the spheres in the double well potential in figure 2.11(b). The deviation of
this approximate value from that for the exact potential in equation 2.19 is a only few percent
in the pertinent region 1 < R < 1.3 (see below).

The gradient dynamics will be used to illustrate the properties of the presented closed-
loop control described in the next section.

2.2.2.4 Properties of the Closed-Loop Control
The Noise-Amplification Effect

As described above, the target wheel velocity of the robot y = tanh(z) is not given by some
external description but is adjusting itself as a result of the dynamics of equation 2.10. In
particular if R > 1 we may initialize the robot with any starting velocity and after some time
its velocity will approach one of the two possible fixed point values, i.e. the robot will move
either forward or backward with constant velocity. Which of the fixed points is realized
depends on the starting value and possibly the noise. Even if the robot is inactive in the
beginning, sensory noise will be amplified and bring the robot into motion.
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One of the benefits of this closed-loop control system (under the assumption R > 1, h
being 0) consists in the following. When colliding with an obstacle the wheels are blocked,
so that x = 0 and z decays. If there is some (small) additional noise in the dynamics of the
membrane potential z it will fluctuate around zero. These fluctuations can be amplified if
they are of the right sign, i.e. if the robot is moving away from the obstacle. Hence after
a short time the robot is found to move away from the obstacle, compare figure 2.12 and
figure 2.13, the latter showing the result of an experiment with a real Khepera robot. (Details
of the robot can be found in Mondada et al. (1994).) We may say that in this elementary
sense the robot is able to survive.

Figure 2.12: The state dynamics as gradient descent on the potential V' (z) after a collision
with an obstacle. The robot was moving forward, i.e. the state was at the right hand side
(z > 0) minimum of the double well potential. The impenetrable object corresponds to an
infinitely steep rise in the potential so that the state is bound to move to the left hand minimum
and the robot starts moving backward.

This holds also true for values of the bias h # 0 as long as both of the stable fixed points
exist (|h| < h.). As soon as only one stable fixed point remains (|h| > h,.) the robot will
get stuck at the wall, because the direction of motion is determined by the bias alone, as
explained in the next paragraph.

The Hysteresis Effect

In the case of finite bias h the fixed points and hence the velocity of the robot are obtained
from

z; = Rtanh (z) + h,

so that they also depend on the value of A and there is a hysteresis effect with respect to the
change of h for the case that & > 1. The hysteresis effect results from the fact that there is
aregion —h. < h < h. of bistability. Outside we have only a single fixed point which has
the same sign as h. When moving the value of / from outside into the region of bistability
the fixed point realized depends on which side of the outer region one is coming from, see
figure 2.14 for details.

If in an assumed controller the bias would be fixed with || > h. we would obtain an
open loop control, not able to react to environmental influences. Since we are interested in
an active system showing environment-related behavior this should be avoided.
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Figure 2.13: Neuron output y of the closed loop control system (with feedback strength
R > 1) before and after a collision with an obstacle obtained from an experiment with a
real Khepera robot. The robot is equipped with a one-dimensional controller, hence it is only
able to drive forward and backward. Above the neuron output curve the corresponding fixed
points of the system are represented by a sphere on the potential V' (z). Before the collision
the system is in the fixed point with positive sign (robot drives forward). During step 1185
to 1215 the robot is kept at the unstable fixed point z = 0. Around step 1215 the robot starts
moving backward because of the noise-amplification effect.

A plot of the state variable in dependence of the bias / as well as the feedback strength R
shows a Hopf-bifurcation, see figure 2.15. With R < 1 there is only one fixed point z* = 0,
but with R > 1 we see the hysteresis effect in the (z, h) space which is the larger the larger
R. From this diagram we can read the requirement R > 1 for activity in the system (z # 0)
and the possibility to direct it by the hysteresis effect of A.
2.2.2.5 Quasi-Equilibrium

In many cases of practical interest one may assume that the dynamics of the membrane
potential z is fast compared to the changes in the sensor values, so that Az is small in
equation 2.6 and we may approximately write

2y = cxy + h, (2.22)

so that the controller output y is a direct function of the sensor values. Under this assumption
we get a closed update rule for the sensor values as

Ti41 = ¢($t) + &, (2.23)

where the time series predictor for the sensor values is

U(xy) = ag(cxy +h).
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Figure 2.14: The hysteresis cycle. The diagrams show the stages of one hysteresis cycle
starting from h = 0 (diagram (1)) with the state at z > 0 as represented by the sphere.
Decreasing h leads to a deepening of the left minimum, while the right minimum becomes
flatter, but the state remains at the minimum at z > 0, see diagram (2). If h = —h. both
the maximum at z = 0 and the right minimum disappear so that the system shifts to the left
minimum of the potential (3). Increasing h until h = 0 brings us back to the initial situation
with the difference that the system changed to the fixed point with negative sign, cf. diagram
(4,5). The diagrams (6) and (7) show the switching from the minima at z < 0 to the minima
at z > 0 by increasing h. By decreasing h until h = 0 the hysteresis cycle is finished (see

diagram (8,9)).
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Figure 2.15: The state and parameter dynamics of the system for adiabatic changes show a
Hopf-biturcation. With R < 1 there is only one fixed point z* = 0, but with R > 1 we see
the hysteresis effect in the (z, h) space which is the larger the larger R.

By the same token we may also write
zep1 = cag (2¢) + b+ c&;.

We will work with these approximations below.

2.2.3 Sensorimotor Loop with Several Sensors

In the more general case a controller neuron should be able to possess several sensory chan-
nels as depicted in figure 2.16. The sensor values x € R™*!, with n being the number of

I\h
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X :/an

n

Figure 2.16: Sketch of the used neuron model with multiple inputs z;, synaptic strength c;,
bias h and output y. The leaky integrator neuron has a dot product activation function and the
output function is the hyperbolic tangent.

sensors, may now depend in a more general form on the motor command . In the following
we stipulate as in the one-channel case simple proportionality, i.e. we write the sensorimotor
loop as

Tigpr = aye + &, 1=1...n,

where n is the number of sensors, or using vector notation
Tip1 = ayr + &, (2.24)
where the deterministic part may be considered as the mapping

F(x, ye) = ays. (2.25)
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The parameters a € R™*! are again learned online using any form of supervised learning,
where the samples (7,1, ;) can be obtained online in each time step. The vector £ € R™*!
is considered as “noise” describing with each element the misfit between predicted and true
sensor value. The controller is now

K(x:) = g(2)

with g(z) = tanh(z) being the output function of the neuron. The update rule for the
membrane potential z considering n sensors is

TAz = —z; + Zcixi,t +h

i=1

or in vector notation
TAz=—z+clz,+h

with ¢ € R™*! being the vector of synaptic strength of the controller neuron, and with the
threshold h still a scalar. Using equation 2.24 and y; = tanh(z;) as before we can write the
closed loop dynamical system as

TAz = —z; + Rtanh(z;) + h + £, (2.26)
where R

n
R = E C;ay;
=1

is the overall feedback strength in the sensorimotor loop. The fixed points of the system
(assuming &; = 0 for all channels) are given by the solution of

z; = Rtanh (z;) + h.
Under the quasi-equilibrium assumption (section 2.2.2.5) we get the loop dynamics as

Tip1 = (l’t> + &t (2.27)

where now x € R" and

¢i (xt) = a;49 (Z CiTi ¢t + h) .

i=1

2.2.4 Systems with Delay

Delays between the generation of the motor command and the corresponding response in the
sensor values were not considered so far. Nevertheless, in practice there is always a finite
delay time which can be larger than one time step. Together with Naglaa Hamed the question
of delay in the considered system was investigated.

A first possibility is that the physical reaction time of the device under control is larger
than one time step and there is no further delay time until the corresponding response to
the executed motor command arrives at the sensors. A simple way to deal with this is to
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introduce additional sensors which realize different delay times. The response strength a; of
the sensor with the required delay time will be the largest. As will be explained in section
2.5.2 the synaptic strength ¢; will be the largest (as compared to the other c¢;, j # 7) and
sensor ¢ the most contributing one. Hence the system is able to select the adequate delay
time, given the proposed setup.

Another possibility is that a system is able to physically react in a shorter time than the
delay between the generation of the motor command and the corresponding response in the
sensor values. In this case the amplification of noise events with different sign in successive
time steps can drive the system into an oscillatory mode of behavior, where it strives for
different fixed points in each time step. Assuming, for example, a signal propagation time of
m = 2 time steps. Supposing the robot is able to realize a motor command in one time step,
we obtain two independent dynamical systems

Tt = P(Tt—m)
Tpp1 = PY(Ty—me1), Wwith t=0,2,46,...

which are free to go to different fixed points. If this happens the systems comes into an oscil-
latory mode, switching between these fixed points in every time step. For active autonomous
robots such a behavior is not desired. Imagine, for example, a wheeled robot inverting the
target wheel velocity in each time step. It will show a tremor-like behavior and will not be
able to explore the properties of body and environment. To overcome this we simply average
the sensor values over a time window

=
Ty = N Z Lt—i
=0
and use this averaged sensor values as input to the controller

ye = K(T).

In most practical applications N = 2 to 4 works fine (if required at all). For a detailed
analysis of the oscillatory mode see the section systems with delay in Hamed (2007).

2.3 The Principle of Parameter Regulation

After discussing the properties of the closed-loop control in the sensorimotor loop and the
effects of the parameters within this framework, we are interested in a regulation scheme
for these parameters based entirely on intrinsic principles (section 2.3.3). Beforehand other
approaches using the dynamical systems approach for robot control will be mentioned in
the next section and the common approach to adaptive systems will be formulated in sec-
tion 2.3.2.

2.3.1 The Dynamical Systems Approach to Robot Control

The time discrete stochastic dynamic system equation 2.27 is a mathematical description of
the sensorimotor dynamics. Our approach is based on the dynamical systems formulation



28 2 The Homeokinetic Principle

(see e.g. Ott (1993), Strogatz (2001)) and tends to adapt the controller so that the robot
behavior which is the manifestation of the dynamical system has the desired properties.
Using the dynamical system as a substrate for the robot behavior has been considered by
several authors in varying contexts and with varying success. Related to our subject is the
work by Jun Tani (Tani, 2004; Tani and Ito, 2003) and of people around Gregor Schoner,
(G. Schoner and Engels, 1995; Steinhage, 1997; Hock et al., 2003). An elaborate behavior-
based design system has been developed in the context of dual dynamics. The system has a
layered structure of behavioral subsystems realized by ordinary differential equations, each
layer having its own time constant. Interactions between the subsystems are realized by
specific interaction and “bifurcation-inducing” mechanisms which have to be designed by
hand, cf. Bredenfeld et al. (2001).

The authors quoted have mainly tried to design dynamical systems such that they realize
prescribed tasks, the smooth navigation through a cluttered environment being a prominent
example. The main difference to the work presented here is that we design an objective
for the self-regulation of the dynamical system without a concrete task given from outside.
The behaviors emerging are therefore contingent, but the interesting point is that in the in-
terplay between activity (through destabilization of the sensorimotor dynamics) and staying
nevertheless predictable is the route towards the emergence of environment related behavior.

2.3.2 The Adaptive Systems Approach

The state dynamics of the system depends on the parameters ¢ and h of the controller K.
Changing these parameters changes the systems behavior. A system is adaptive if there is an
objective function F, measuring the distance from the current to a desired behavior, which
is used for the regulation of the parameters. This might be as abstract as measuring the
survival properties of the system. One realization of the adaptation is a parameter dynamics
as gradient flow

Ay = —eSc(xy,¢p)
Aht = —8Sh (.Tt, ht) s
where 5 9
- _F — —E
Se de ' Sh oh’

so that we have the combined dynamics

Tip1 = (xt, Ct, ht) + &
Cry1 = ¢ — S (x4, ¢4)
ht+1 = ht —eS (.I't, ht) .

The problem of learning in robotics consists of finding the objective function F for the
generation of a desired behavior. In the usual approach to adaptive systems the function F
is provided from outside and is to be designed such that the system establishes the desired
reference to the environment. We will consider a self-referential system, i.e. a system for
which the objective function is derived from the dynamics of the system itself.
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2.3.3 Defining the Objective Function

As already mentioned the homeokinetic principle is intended to generate self-organizing
systems which are active and able to predict the results of their actions in terms of the sensor
values. This predictive ability requires explicitly the inclusion of an internal model in the
sensorimotor loop. Given this requirement there are many different paradigms to define a
self-referential system. We want to start with probably the most simple ansatz, maximizing
the predictability of the internal world model, but before the composed controller comprising
controller and internal model will be introduced.

2.3.3.1 The Composed Controller

The internal model, realizing the predictive abilities of the robot, is seen as part of the con-
troller. Therefore the controller can be considered as a composed controller consisting of
a control and a model unit, as sketched in figure 2.17. The control unit requires sensory

sensory input

composed controller

control commands

Figure 2.17: Sketch of the composed controller consisting of a control and a model unit. The
connections between sensory input/control commands and model unit are plotted as dashed
lines, because it depends on the concrete realization of the model which of these values are
used.

input and generates the control command. The model unit can access sensory input and/or
control commands, depending on the concrete realization of the model (see the following
paragraphs). Throughout this thesis the term model refers to the model unit and controller to
the control unit of the composed controller.

2.3.3.2 Using a Predictive Internal Model: Homeostasis

We are considering now the mapping F' (see equation 2.2) of the motor value y; to the
predicted sensor value xi‘frl for the next time step

ziy = F(y) (2.28)

as the internal model or model unit of the composed controller. The norm of the modeling
error & = x4 — fﬁp which accounts for the difference between the true sensor value x
and the predicted sensor value ", is then used as objective function

E =&l =¢&¢ (2.29)
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for the adaptation of the model and the controller parameters. A sketch of the control ar-
chitecture in the sensorimotor loop is shown in figure 2.18. The parameters are adapted by
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L

Figure 2.18: Sensorimotor loop with a predictive world model (M) and indicated learning
scheme. The modeling error £, defined as the difference between the measured and predicted
sensor values at time step t + 1, is used for the adaptation of world model and controller. The
world is represented as box labeled with W.

gradient descend on F (compare section 2.3.2)

oE

Ap = —€pa—p,

(2.30)

where p is any of the parameters (controller and world model) on which the loop function 1)
depends and ¢, is an adaptation rate. Assuming a linear world model

xﬁl = F(y:) = ay
and together with equations 2.7 and 2.22 we find
x| = atanh(cz; + h).

Following equation 2.30 we obtain the update rules for the synaptic strength ¢, the bias / and
the model parameter a:

Ac; = eatanh'(z)x;y
Ah; = ep&atanh’(z)
Aai = Eagtyt

By gradient descent on £/, distracting influences in the sensorimotor loop are prevented by
damping the noise in the in the sensorimotor loop. This is done by not utilizing the sensor
values.

In a robotic application this setup leads to a situation where the system is stabilized in a
state with motor command zero, allowing the best prediction of future sensor values. Hence
the most favored behavior of systems following this attempt is the “do nothing” behavior.
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We can consider the error function resulting from the predictive model as a realization
of the homeostasis principle, introduced by Cannon (1939). It tries to explain the behavior
of a system, especially living organisms, as a kind of regulation scheme. There are thought
to be several intern variables of the agent that have to be kept in a certain range, such as
temperature, blood-pressure or energy (food). If one of these variables leaves its range the
organism tries to bring the value back to its set value through specific actions, which in turn
can cause other variables to change.

It can be shown, that this regulation scheme works well and keeps the variable in a
certain region around the reference value. The problem with this attempt is how to obtain
the reference value when creating a new system. This question can hardly be answered in a
general and domain-invariant manner.

In the case of equation 2.29 the reference value, which should be realized by the system,
is the sensor value x; ;. The problem in generating an active behavior of an autonomous
robot becomes obvious. If the robot is in a situation where the sensor values are zero, these
sensor values are used as reference value and hence the system has no drive to change the
situation. If the robot is started with sensor values different from zero, the objective function
leads to a stabilization of these values, but as soon as the sensor values change heavily due
to noise effects, collisions or something else happening in the world, the reference value of
the system is changed. Since changes like friction or collisions which decrease the sensor
values are more likely, these systems will come to the “do nothing” behavior. Imagine, for
example, a wheel-driven robot bumping into a wall. The wheel velocity will jump to zero.
Since the sensory input x is the reference value in the homeostatic regime the robot will not
recover and stay at the wall indefinitely.

We have seen that it is possible to generate a predictive behavior of an autonomous robot
using an internal predictive model of the future sensor values. The problem is, that this is not
an active behavior. Of course it is possible to achieve active behavior by setting the reference
value from outside. But then we lose autonomy and self-organization because the system is
guided from outside.

To overcome this problem with the given modules of the architecture, namely the internal
world model and the controller, we can build a different setup by using the internal model as
a retrospective one.

2.3.3.3 Using a Retrospective Internal Model: Homeokinesis

The following principle was proposed by Ralf Der under the name of homeokinesis, as a
dynamical pendant to Homeostasis. Preliminary work on this approach, where an external
drive for activity is required, can be found in Der et al. (1999); Der and Pantzer (1999); Der
(2000, 2001). The present form, where the drive for activity also emerges from the self-
organization paradigm, was proposed in Der and Liebscher (2002); Der (2003). Here the
internal model or model unit is a retrospective model. Hence the model is a function mapping
the future sensor values z;; to the controller output y,;. Such a model can be learned with
a backed up motor command from the previous time step. The predicted previous motor
command is then propagated back through the controller to result in a reconstructed sensor
value 2%, as depicted in the sketch in figure 2.19. Consequently applying the loop function
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Figure 2.19: Sensorimotor loop with a retrospective world model (M) and indicated learn-
ing scheme. The input shift v, measuring the difference between the old sensor value and
the reconstructed sensor value at time step t, is used for the adaptation of world model and
controller. The world is represented as box labeled with W.

1) to the reconstructed sensor value, we will obtain the measured sensor value at time ¢ + 1.

Tt+1 = 1/}(%?)-

Since v is not always invertible, ¥ can not be exactly calculated in all cases. This can be
overcome by a regularization, as described later.

When employing the retrospective model we can formulate the input shift v as the differ-
ence between the reconstructed and true sensor values at time step ¢

v = xf — T (2.31)
With this notion we can define our objective function
E = |jv? (2.32)

measuring the deviation between the current and the reconstructed sensor values. This devi-
ation arises by propagating x; through the controller and world, and then propagate it back
through model and controller (see figure 2.19). Thus £ is the error arising in a time loop and
is therefore referred to as the time-loop error, as introduced by Ralf Der (Der and Liebscher,
2002). In equation 2.32 we use the Euclidean norm

loell* = v .
Recalling the sensorimotor dynamics from equation 2.27 we can write
T = (@) + & = ¢ (27), (2.33)

which can be rewritten as
Y(ay) +& = (2 +vp) (2.34)

If v is small we may use Taylor expansion to write

U (x4 v) = () + L () vy, (2.35)
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where the Jacobian matrix L is defined as

0

=
’ Oxjy

L i ().

Using equation 2.35 in equation 2.34 we find

V¢ = L_l (:Et) St

and obtaining v means now “only” to find the inverse of the matrix L provided the latter
exists. Equation 2.32 may now be written

B =17,

respectively
E= (L) (L7'%). (2.36)

Hence the objective function only depends on the Jacobian of the system and the modeling
error ¢ of the predictive model. Since L is based on the response strength a as obtained from
the predictive model, the calculation of the objective function £ requires only the (forward)
loop function (). So when realizing such a system we can use the predictive model F' for
the calculation of the objective function based on the retrospective model.

The explicit expression in equation 2.36 displays the main properties of the gradient flow
in the parameter space induced by the gradient descent on . On the one hand £ will be
small if the vector & = x;.1 — ¢ (x;) is small, i.e. if the robot behaves in a predictable
way. On the other hand the Jacobian matrix determines the local stability of the dynamical
system defined by ¢). With L in the denominator of £ the gradient descent will destabilize
the sensorimotor dynamics. This way small changes, such as sensory noise, will be amplified
and lead to larger changes in the loop. Hence different behaviors will be actively generated
within the sensorimotor loop, although an unlimited increase of sensor values and motor
commands is confined by the nonlinearities in the system.

From these simple arguments it can already be anticipated that bestowing the sensorimo-
tor dynamics with a gradient flow in parameter space driven by £ will produce a system with
very rich properties.

2.4 Parameter Dynamics in the Elementary Sensorimotor
Loop

In this section the parameter dynamics for the case of a simple loop with one sensor and
one actuator will be derived and the properties of the dynamical system under the presented
objective function E will be discussed.
In the elementary sensorimotor loop already introduced in section 2.2.2 we have z € R!
and F (x4, y:) = ay, so that
¥ (w) = ag (=)

with z; = cx; + h. The Jacobian is

L =4 (v) = Ry (2)
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with R = ca being the feedback strength in the sensorimotor loop. The error £ boils down
to

E = 5—’? 2.37)
72" .
The derivative is written as
oF B 2E oL 2 OY(xy)
op  "Lop L? op '’

where p € {c, h}. We assume here that £ = 0 so that the ¢ term does not contribute to the
parameter dynamics in the average over the noise. Using L > 0 (see below) and ¢ = —2¢g¢’
in the case ¢ (z) = tanh (z) together with Rg (z) = z — h at the fixed point we obtain

Ac = pa —2uxy (z — h) (2.38)
Ah = _QM (zt - h) )

where
p=2cE/R

(R will be seen to be positive below) is a modified update (learning) rate, and ¢’ = tanh’ (z) =
1 — tanh® (z). We will see below that the system goes into a limit cycle in the =, h space.
Averaging over a period and using that the amplitude of A is much smaller than that of 2z we
may simplify the parameter dynamics further to

Ac = pa — 2puxyzy (2.39)
Ah = —2uz.

The parameter dynamics is to be used concomitantly with the z dynamics so that the
parameters c and h in equations 2.6 or 2.10 are now time-dependent. As we will see below,
the time scale for the change of & in particular is on the level of the behavior so that in other
words the behavior is essentially controlled by the dynamics of h. This is different from
the usual paradigm of learning where we have a learning and a performance phase or where
there is a separation of time scales for learning and behaving.

The dynamics for the synaptic strength ¢ (equation 2.39) consists of a driving and an
anti-Hebbian term. The latter is given by the product of the input into the synapse times
the membrane potential of the neuron, both quantities being felt directly at the synapse.
Neurophysiological evidence for synaptic modifications based on Hebb’s postulate (Hebb,
1949) (as a form of long-term potentiation) was found in the 1980s, as discussed in detail in
the review articles (Brown et al., 1990), (Bi and Poo, 2001). The driving term pa is given
by the response strength a of the sensor x to the output y of the controller. This term can
also be obtained empirically by modulating the neuron output with a periodic perturbation
and filtering this signal from the sensor values. Hence we may say that the learning rule is a
purely local one. This holds also true for the update rule of the bias h.

In the following the most interesting properties observed when using the parameter dy-
namics equation 2.39 with different kinds of robots will be discussed for the case of the
elementary sensorimotor loop.
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2.4.1 The Generation of Activity

Let us consider the case with bias h = 0 first. The update rule for the synaptic strength c
(equation 2.39) consists of the driving term pa and the anti-Hebbian term —2ux;2;. In order
to discuss the effects of the two terms we assume that we start the system with the feedback
strength in the sensorimotor loop 0 < R < 1 (the tabula rasa condition). Since R = ca
the synaptic strength c of the controller is also very small so that the membrane potential z
fluctuates around zero. With y = g(z) = tanh(z) the motor command also fluctuates around
zero. Hence a robot will at most make some small movements, if it moves at all. With z ~ 0
the anti-Hebbian term is negligible and the driving term is seen to increase the value of R
since AR = A(ca) = pa?, see figure 2.20. Once a supercritical value of the feedback
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Figure 2.20: The increase of the feedback strength R due to the learning procedure, obtained
from an experiment with a simulated Khepera robot using the Khepera Simulator (Michel,
1995) . Initially the rise is very steep due to the fact that L is in the denominator. If R is
above the critical value the target wheel velocity (motor command y) increases with the sign
(direction of motion) determined by the noise amplification effect.

strength is reached (R > 1), noise amplification (see section 2.2.2.4) takes place. Hence
small sensor values are amplified in the loop. Thus sensory noise is sufficient to generate
activity and the velocity will increase exponentially so that the robot starts to move. The
direction of the robot (sign of the velocity) is arising from a spontaneous breaking of the
xr — —x symmetry inherent in the complete (i.e. parameter and state) dynamics.

Thus the driving term leads to activity in the system (generate motor commands y # 0)
by increasing the feedback strength in the loop and consequently destabilizing the system
(minimize %).

2.4.2 Requiring Predictability

As described above the driving term leads to an increase in the feedback strength R of the
sensorimotor loop when the system is not active (y ~ 0). An equally important point is that
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the feedback strength does not increase unbounded, otherwise, if small changes in the sensor
values would lead to huge changes in the motor commands, the behaviors of the system will
be hardly predictable. This is realized by the anti-Hebbian term in the update rule which
decreases the feedback strength to a slightly supercritical value, as soon as there is activity
in the system (y > 0). With |y| > 0 the anti-Hebbian term becomes considerable and the
increase of c is stopped if a = 2z is reached, i.e. if 1 = 2ztanhz or 1 = 2Ry? which
happens at R ~ 1.2 corresponding to y ~ £0.65. If R was already larger when the robot
started to act, ¢ will be decreased until R ~ 1.2. Note that R is the feedback strength in the
sensorimotor loop so that we observe a self-regulation of the system to a feedback strength
which is slightly supercritical.

An interesting interplay between the driving and the anti-Hebbian term is observed if
the robot hits an obstacle. We have seen in section 2.2.2.4 that with R fixed the robot will
invert the velocity after some time. In the present case this is accompanied by an increase
in the feedback strength R due to the fact that with = 0 only the driving term is active
in the parameter dynamics. Increasing R means increasing the noise amplification. Hence
small sensory noise events showing away from the obstacle will be amplified. Furthermore,
as soon as the robot moves away from the obstacle (|y| > 0) the feedback strength decreases
due to the anti-Hebbian term in the update rule (see figure 2.21 for details).
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Figure 2.21: Time course of the synaptic strength c (a) during a wall contact of the wheeled
robot as indicated by the infrared sensors (c). c and hence the feedback strength is seen
to increase during the contact and to decrease again (due to the anti-Hebbian term in the
parameter dynamics) when the robot is moving away form the obstacle. The increase in the
feedback strength increases the noise amplification and by this the escape probability (see
motor command y (b)). The data is obtained from an experiment with a simulated Khepera
robot using the Khepera Simulator.
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2.4.3 The Frequency Effect

With A # 0 there is a hysteresis effect with respect to the change of h as discussed in
section 2.2.2.4. Equation 2.39 shows that the change of i always aims at destabilizing the
actual fixed point of the system (Ah ~ —z). Hence the system executes the hysteresis cycle
shown in figure 2.14. But the system does not exactly reach the fixed points because of the
rapid change of h (as compared to the other parameters). Thus the shape in figure 2.15 is
washed out and it is easily seen that a smooth limit cycle behavior is obtained. The value
of c is seen to slightly oscillate with twice the i frequency, but in the average the feedback
strength is self-regulating again to the slightly supercritical value of R ~ 1.2 (cf. figure 2.22).
We may consider the transition to the limit cycle as a self-induced Hopf-bifurcation in the
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Figure 2.22: The increase and self-regulation of the feedback strength R (a) due to the learn-
ing procedure, obtained from an experiment with a simulated Khepera robot using the Khep-
era Simulator. c and therefore R is oscillating with twice the frequency of h (c) which is
determined by the strength of the noise £2. The phase shift between h and y (b) is a conse-
quence of the hysteresis effect. The Hopf-biturcation takes place at about step 400.

(x, h) space where the value of ¢ is self-regulating to the regime slightly above the bifurcation
point, as described above.

The frequency of the limit cycle oscillation is modulated by the strength of the noise £2,
which we call the frequency effect. With varying noise strength the robot will execute an
irregular searching behavior, i.e. the robot will move forward for some time then reverse
velocity and move backwards and so on. The most interesting property however is observed
when the robot collides with some obstacle so that the wheels get blocked. Then &2 in
equation 2.38 is very large so that, in addition to the increase of the feedback strength by the
driving term, the rate of change of / largely increases and the robot will almost immediately
reverse its velocity (see figure 2.23).

From the elementary case we want to step to the next section, discussing the general
properties of the approach when more sensors are used.
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Figure 2.23: Time course of the response-strength R (a) and bias h (c) during wall contact
as indicated by the infrared sensor (b). When the wheels get blocked the model error £2 is
very large so that the rate of change of h largely increases and the target wheel velocity y (d)
is nearly immediately reversed. The data is obtained from an experiment with a simulated
Khepera robot using the Khepera Simulator.

2.5 Parameter Dynamics Using Several Sensors

For most applications controller neurons should be able to process information from several
sensors in order to generate the motor command. Therefore we investigate the case of a single
controller neuron with multiple sensory channels in order to find the parameter dynamics and
properties of the homeokinetic approach in this case.

In the sensorimotor loop with n sensory channels as presented in section 2.2.3 we have
r € R™*! and the internal model F(z;,y;) = ay; with the parameters a € R™*!, The loop
dynamics under the quasi equilibrium assumption is

Ty = Y(x) + &,

where
V() = ag(z).

The membrane potential z is the weighted sum of the sensory inputs plus bias i
2y = Z Cily g + h.
i=1

0
v 0y
The principle needs some customizing since the input shift v, required for the objective
function (equation 2.32) is not uniquely defined. Formally this is seen by the fact that L is

Hence the Jacobian L is
L

Vi (x) = aicig’ (z) - (2.40)



2.5 Parameter Dynamics Using Several Sensors 39

not invertible. We may remove the ambiguity by making an assumption on the direction of
v. In the following we stipulate that v is in the direction of the response strength a given by
the internal model. The reason behind this is that the inputs x should be produced by the
deterministic part of the sensorimotor dynamics. Hence x is proportional to a apart from the
noise. Using the approximation §; = Lv, the error function used so far is

E = [lvo|* = [L7'&]”

minimizing the input shift v. Considering the projection of £ on «a as the relevant property of
the noise we obtain our new objective function as

E = [lull?,

where
Jue||* = A€ cos @],

¢ is the angle between the vectors £ and a, and
A =4 (z)R.

For more details on the derivation of the objective function see appendix A.
Following the lines of section 2.4 we obtain the following rules for the dynamics of the
parameters

Ac; = pa; — 2z ¢ — YHUC (2.41)
Ah = =2z,

where ;1 = 2eu?/R and 7 (which is small) was introduced in order to produce a (weak)
decay of the weights. This is necessary in order to dampen that part of the initial conditions
which is orthogonal to a. We again find that the change of ¢; is given by a driving together
with an anti-Hebbian term and that the change of the bias is counteracting the membrane
potential (Ah ~ —z).

The discussion of the effects of the terms in the update rule for the multi-channel case
will mainly focus on the difference to the mostly similar case with a single sensor, which
was discussed in detail in section 2.4. Furthermore, experiments for the single and multi-
dimensional case which exemplify the properties of the approach in applications to robotic
devices will be shown in chapter 3.

2.5.1 The Generation of Activity

In order to analyze the parameter dynamics we start with an initialization of the synaptic
strength ¢ such that the feedback strength is 0 < R < 1. Then the motor command y is
fluctuating around zero and the damping term —2puzx; is very small since the membrane
potential z is very small. Hence the driving term in the learning dynamics dominates and
produces Ac; = pa; so that A (c;a;) = pa? and hence AR = pa?. Obviously the overall
feedback strength R increases with channels of higher response strength |a;| being favored.
Once R exceeds the critical value R. = 1, activity in the system can be generated by ampli-
fication of sensory noise.
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2.5.2 Requiring Predictability

If the system is active the sensor values z; and the membrane potential z become considerable
and hence the anti-Hebbian term of equation 2.41 comes into play. The parameter dynamics
becomes stationary (neglecting the bias h here) if

ve; = (1 — 2Ryt2) a;

or

- ! __ @ (2.42)
/a4 2yF oy + 227, '
so that
C; = Q. (2.43)

Obviously the ¢; reach values so that all sensors are integrated into the sensorimotor loop
according to their response strength a; as obtained from the internal model equation 2.25.
Thus sensors showing a response to the motor commands are integrated in the sensorimotor
loop with a synaptic strength |c;| > 0. Non-responding sensors are barely integrated with
C; =~ 0.

The value of « is obtained as

1 R

0= —-=—.
7+2$%+1 a?

Using the fixed point equation in the form y, = tanh (Ry,) together with equation 2.42 we

get
Yt
=tanh | ———— | .
. <v/ a? + 2y3>

The position of the fixed point is seen to depend smoothly on the value of ~/a? for not too
large . For instance the fixed point is at y = 0.58 and R = 1.15if 7/a? = 0.2 which is only
slightly lower as compared to y = 0.65 and 2 = 1.19 corresponding to v — 0 and also to
the one-channel case.

2.5.3 The Frequency Effect

When including the threshold (/) dynamics a limit cycle behavior is again obtained. The
increase of the number of sensory channels has no effect on the update rule of the threshold
and hence the properties described in section 2.4.3 remain valid in the average over (at least)
one period for the multi-channel case.

2.6 Discussion

We have presented a control paradigm for autonomous robots based entirely on information
available to the agent itself. No domain-specific information is required to set up such a
system. The resulting parameter dynamics is seen to generate activity in the system and
show an explorative behavior which stays sensitive to the environment.
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It should be noted that these properties are not the performance of the trained neuron
but instead result from the interplay of state and parameter dynamics, i.e. the concomitant
effects of equations 2.6 and 2.38/2.41, so there is no separation between a learning and a
performance phase or between the timescales of learning and behavior. Hence we obtain
systems with closed-loop control and plasticity. Therewith we are approaching the challenge
for achieving more understanding of the brain stated by Ahissar and Kleinfeld (2003) (and
mentioned in section 2.1.2).

In the case of several sensors it is important to point out that the system is self-regulating
into the limit cycle oscillations, independent of the number of channels and the values
of the response strength a; in the channels. Sensors which respond to the executed mo-
tor commands are integrated in the control loop according to equation 2.43. So the sys-
tem is able to close the sensorimotor loop without a (previous) knowledge of the inter-
connection between sensors and motors. Furthermore, since the feedback strength is self-
regulating to a slightly supercritical value activity is generated in the loop. Hence the ir-
regular, environment-sensitive explorative behavior is reproduced also in the case of many
channels where each channel is related to a single sensor.

In the presented realization of the homeokinetic principle there is a limitation introduced.
So in my work only a simple (in most cases linear) internal model is used, which constrains
the prediction ability and hence the ability of the system to adapt to complex situations.
This way only a linear response of the sensors is taken into account which favors the use
of proprioceptive sensors inside the loop. Nevertheless it is amazing how self-referential
systems equipped with a parameter dynamics following the proposed principle can generate
activity independent of their concrete physical realization and show body-and environment-
related behavior.

Control for robotic devices with multiple degrees of freedom can be easily realized by
introducing as many controller neurons as actuators are available. While trying to reduce the
computational effort when using such systems it turns out that a rather crude approximation
of the updates of the synaptic strength and the threshold is still appropriate and sufficiently
fast so that a real time behavior of large systems can be achieved.

The next chapter will describe in detail experiments with real and physically realistic
simulated robots under homeokinetic control, differing in shape, sensor modalities, actuators
and the number of available degrees of freedom.
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Chapter 3

Applying the Homeokinetic Principle to
Autonomous Robots

This chapter is intended to show the application of the proposed algorithm for the self-
organizing control to different kinds of simulated and real autonomous robots.

In the first section, the framework will be introduced, which was used for the physically
realistic simulation of autonomous robots, the [pzrobots software package. Section 3.2 points
out the main differences between homeokinetic and static control of an autonomous robot.
The explorative character of the behaviors generated by the proposed control algorithm will
be investigated in section 3.3. Furthermore, the frequency effect introduced in the previous
chapter will be analyzed for the case of the simulated two-wheeled robot. A more mechani-
cally complex robotic device and its behaviors generated under homeokinetic control will be
described in section 3.4. The final experiment in this chapter (section 3.5) shows a promi-
nent example of the emergence of sensorimotor coordination under homeokinetic control. A
discussion of the results presented in this chapter will take place in section 3.6

3.1 The Ipzrobots Software Package

The Ipzrobots software package' is a framework for simplifying experiments with simu-
lated and real robotic hardware. For example, the possibilities to observe controller or robot
parameters online and log them into a file were build in as well as the option to change pa-
rameters online. The development of the Ipzrobots software package was initiated by Georg
Martius and the author. Further contributions were made by Ralf Der, René Liebscher, Mar-
cel Kretschmann, Dominic Schneider, Claus Stadler and Frank Giittler.

We decided to conduct experiments in a physically realistic simulation for several rea-
sons. One reason is that there is much more flexibility. We are able to run experiments
with many different kinds of robots and with many different (or identical) robots at the same
time. Due to the financial efforts and manpower needed, this would not be possible with
real robotic hardware. Another point is that the simulations can run much faster than real-
time, which gives us the possibility to run more experiments in a given time. Furthermore
we can make a variety of changes in the environmental settings, some of which can be hard

IThe Ipzrobots software package can be downloaded at (Martius et al., 2008).
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Figure 3.1: Screenshots of different simulations realized with the Ipzrobots software package.

to achieve in reality, such as decreasing the gravity. Screenshots of different simulations
realized with the Ipzrobots software package are shown in figure 3.1.

3.1.1 Modules of the Software Package

The Ipzrobots software package is modularly organized and consists of three main parts
which will be shortly described in the following. For detailed information visit or download
the online documentation at Martius et al. (2008).

e The selforg package® comprises our controllers for self-organized behavior together
with a small framework to ease their use.

e The guilogger® is an application for observing parameters or simulation data in gen-
eral, online as well as offline.

e The 3D robot simulator ode_robots?* is used for experiments in virtual reality.

3.1.1.1 The selforg Package

Different kinds of controllers as well as the controllers for the self-organization of behav-
ior developed in our group are integrated in the selforg package. Furthermore, different
wirings exist which provide the functionality of wires in real robotic hardware, namely con-
necting sensors and motors with the control structure. Additionally, the wirings allow for
simple preprocessing, like the smoothing of sensor values or the adding of additional sensors
which could for example provide a derivative of an existing sensor. The wirings are real-
ized independently of the controller and hence can be used in combination with any of the
controllers. The usage of the object-oriented programming approach allows extensions by

2The selforg Package is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5
License (CC License, 2008) for non-commercial use only.

3The guilogger and the ode_robots simulator are released under the GNU General Public License (GNU
GPL, 2008) as free software.
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new controllers or wirings which can easily be plugged in and used in an already existing
experimental setup. The controllers can be used in experiments with real as well as with sim-
ulated hardware. This simplifies the transfer between simulated robots and their real existing
counterparts.

3.1.1.2 The guilogger

The guilogger application simplifies the task of observing the experimental parameters, in-
cluding controller and robot parameters, during (online modus) and after the experiment,
when inspecting the data offline (offline modus). It is based on the gnuplot tool (Merritt
et al., 2008) and allows multiple gnuplot windows (showing a diagram of the parameters
over time) where the parameters to be shown can be switched on or off in the main window.
A configuration file stores the selected parameters of the plot for the next experimental run.
In the simulation environment the data is transferred via pipe to the guilogger. In the offline
modus the data is directly read from file.

3.1.1.3 The Three-Dimensional Robot Simulator ode_robots

ode_robots is a three-dimensional physically realistic simulation environment. It is based
on two libraries, one for the physics simulation and one for the visualization. The former
is the Open Dynamics Engine (ODE), an open source, high performance library for sim-
ulating rigid body dynamics, developed by Russell Smith (Smith, 2008). ODE is a stable
and platform independent library with an C/C++ application programming interface. It has
advanced joint types and integrated collision detection with friction. It is used in many com-
puter games, 3D authoring and simulation tools. For visualization we use the Open Scene
Graph library, which is an open source 3D graphics toolkit for the development of high per-
formance graphics applications (Osfield et al., 2008). Written entirely in Standard C++ and
OpenGL it runs on a variety of platforms.

We created many robots, with different shapes, sensory modalities and actuators, and
environmental setups including different obstacles. Further tools simplify the creation of new
objects or robots and ease the experiments, like the possibility to change robot, controller or
simulation parameters online or to record a movie of the experiment.

3.2 Homeokinetic Versus Static Controller

3.2.1 Goal

In this first experimental section the properties of the homeokinetic control should be com-
pared with that of a static controller, where the controller parameters do not change over time.
Furthermore the importance of the initial conditions for the behavior of the system should
be investigated. A one-dimensional controller (equation 2.5) with the parameters synaptic
strength ¢ and bias h is considered for these investigations.
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3.2.2 Setup

For both controllers the initial value of the bias A is varied in steps of 0.1 from —0.5 to 0.5,
the synaptic strength c in steps of 0.1 from —1.5 to 1.5. In the case of the static controller
these values are fixed until the end of the experiment. For the homeokinetic controller the
parameter regulation as described in section 2.3 was applied. The parameter a of the world
model required by the homeokinetic controller is initialized with small random values in the
range [—0.01...0.01] and updated by supervised learning in oder to minimize the prediction
error (equation 2.9), where the samples (x;,1, y;) are obtained online in each timestep.

The device under control is a simulated one-dimensional robot in the Ipzrobots software
package (see section 3.1), which is placed between two walls as depicted in figure 3.2. The
sensor value is the measured wheel velocity. The robot is not equipped with bumpers or
proximity sensors. Hence the only possibility to detect a collision is via the measured wheel
velocity, due to the blocked wheels. The motor command is the desired wheel velocity of
the robot. The distance to each wall is 7.6 length units. Hence the robot can only drive 7.6
length units until its hits a wall. Then the robot has to invert the velocity to be able to further
drive.

Figure 3.2: For the simulation of a one-dimensional robot a two-dimensional simulated
robot was used, were both wheels get the same motorcommand and the sensorvalue is the
mean of the two measured wheel velocities. Hence the robot is able to drive only forward and
backward. The robot is placed in the center between two walls, as indicated by the two bars.

3.2.3 Results

For every parameter configuration ten experiments were conducted, each lasting five min-
utes. In each time step the distance (absolute value) travelled by the robot was measured and
summed up at the end of the experiment.

3.2.3.1 Static Controller

For the static controller the diagram in figure 3.3 shows the mean travelled distance over ten
experiments. In a small region for values of |h| < 0.2 and the synaptic strength ¢ > 1 the
mean travelled distance reaches values of more than 200 length units. Hence the robot was
able to cross the region between the walls up to 15 times. This is caused by the fact that
with ¢ > 1 and the response strength approximately 1 as given by the system, the overall
feedback strength R in the loop is supercritical. Hence sensory noise can be amplified and
leads to activity (motor command y # 0) of the system in the beginning of the experiment.
Furthermore, the system will invert the velocity after a collision with the wall due to the
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Figure 3.3: Mean distance travelled by a simulated one-dimensional robot over ten experi-
ments for each of the 300 different parameter settings of the static controller. The value of
the bias h was varied in steps of 0.1 from —0.5..0.5, the synaptic strength c in steps of 0.1
from —1.5..1.5. Each experiment lasts 5 minutes of simulated realtime. Only for a small
amount of the initial parameter setting the static controller is able to generate movements,
which do not end at the first wall contact with a travelled distance of about 7.6 length units.
The standard deviation of the travelled distances is circa 30% of the mean travelled distance
for all parameter settings.

noise-amplification effect as described in section 2.2.2.4. For values of ¢ < 1 and hence
R < 1 this effect does not take place and the system stays inactive.

For values of the bias h larger than a critical value h. only one stable fixed point of
the system remains, as described under the hysteresis effect (section 2.2.2.4). Based on h
the system will generate a motor command y # 0 and drive either forward or backward,
depending on the sign of h. When colliding with a wall it becomes obvious that this is a
realization of an open loop control. Since the motor command only depends on % and the
sensor values are ignored, it will not change after the collision. This way the system gets
stuck at the first collision with a wall which happens after a travelled distance of about 7.6
length units. Only for & = 0 (and still R < 1) the system does not move at all.

3.2.3.2 Homeokinetic Controller

For the homeokinetic control, the mean travelled distance for the different initial settings
of the parameters is shown in the diagram in figure 3.4. The initialization of the synaptic
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| parameter | mean | standard deviation |

c 1.3110 0.0333
h 0.0028 0.0684
a 0.9694 0.0566
R 1.2709 0.0322

Table 3.1: Mean value and standard deviation of the parameters of the homeokinetic con-
troller for all experiments with an initial value of ¢ > 0. The mean feedback strength R is
seen to be slightly supercritical, representing an active system. The mean value of the bias is
very small, since it is only used for switching between the fixed points in dependence of the
modeling error, but averages to zero in the mean.

strength with ¢ = 0 would lead to a singularity of the objective function (equation 2.37).
Thus ¢ was initialized with small random values in the range [—0.01...0.01] instead of 0.
The parameter of the world model was initialized with small random values in the range
[—0.01...0.01] and learned online to minimize the prediction error of the internal model.

For initial values of ¢ > 0 and independent on the initial value of h, the system showed
a mean travelled distance of around 400 length units. Under this broad range of starting
conditions the homeokinetic control is able to travel approximately twice as far as the static
controller under the best conditions in the previously presented experiments. Considering
the properties of the parameter dynamics in section 2.4 we already know that the synaptic
strength will be increased to a value slightly above 1 (assuming the response strength a ~ 1).
Hence the feedback strength in the loop R will be supercritical and activity (motor command
y # 0) will be generated by amplification of sensory noise. The value of the bias h is kept
small most of the time, but will cause a change between the fixed points of the systems if the
modeling error is large. Hence the robot is able to change the direction of motion very fast
after a collision and is this way able to travel nearly twice as far as with a static controller.

When c is initialized with a negative value the travelled distance is very small, so that the
robot does not reach a wall. This is caused by the fact that with ¢ < 0 and a (as a hardware
constant) being learned to a positive value, the feedback strength in the loop R and hence
the Jacobian L of the system are negative. This means the robot tries to invert the target
wheel velocity in each time step and is not able to move away. This can not be overcome by
the system, since the objective function £ ~ % has a singularity at ¢ = 0. So in general
we should take care to initialize the systems so that the eigenvalues of the Jacobian are not
negative.

The mean value of the synaptic strength c, the bias A and the response strength a in the last
time step of all experiments with an initial value of ¢ > 0 are shown in table 3.1. In agreement
with the theory we find a slightly supercritical mean feedback strength of # = 1.27 and a
bias which is very small in the mean but allows to rapidly switch between the fixed points if
the modeling error is large, e.g. when hitting a wall. This way the robot equipped with the
homeokinetic control spent less time at the wall and is therefore able to cover larger distances
than the robot with the static controller.
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Figure 3.4: Mean distance travelled by a simulated one-dimensional robot over ten experi-
ments for different initial conditions with a homeokinetic controller. The initial value of the
bias h was varied in steps of 0.1 from —0.5..0.5, the synaptic strength c in steps of 0.1 from
—1.5..1.5. Each experiments lasts 5 minutes of simulated realtime. For initial values of the
synaptic strength ¢ > 0 the homeokinetic controller is able to drive a distance of more than
400 length units, which is nearly twice as much as the maximum distance with a static con-
troller. For ¢ < 0 (and a > 0 as given by the realization of the system) the feedback strength
in the loop is negative. Hence the robot tries to invert the target wheel velocity in each time
step and is not able to reach the wall. The standard deviation of the travelled distance is nearly
50% of the mean value if ¢ < 0.01 and below 20% otherwise.

3.2.4 Summary

In this first and simple experiment we have shown that the initial conditions for the proposed
control system are less important, except for the requirement that the eigenvalues of the
Jacobian must not be negative.

The parameter dynamics is found to reproduce in the mean, the expected slightly super-
critical feedback strength which generates activity in the system due to noise amplification.
Furthermore the bias is small in the mean, but allows due to the frequency effect a rapid
change of the actual fixed point, and hence of the actual behavior, after a collision with the
wall (see section 2.4). Equipped with this parameter dynamics the system is able to travel
nearly twice as far as the static controller with the best parameter setup in the same time.
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3.3 Environment Exploration with a Simulated Two Wheeled
Robot

3.3.1 Goal

We will consider now the closed-loop control problem for the velocity of a simulated two
wheeled robot to investigate the activity and explorative character of the system. Furthermore
the role of the modeling error for the transitions between different behaviors will be analyzed.
In a second experiment with a group of robots it will be studied if the active and explorative
character of the system remains in the case of heavy perturbations.

3.3.2 Setup

A first group of experiments was conducted with a robot with length 1, which is placed in
a circular arena with diameter 13 length units (see figure 3.5). The Ipzrobots package (see
section 3.1) was used for the physical simulation of the robotic hardware.

Figure 3.5: Experiments are performed with a simulated two-wheeled robot in a circular
arena. The robot is equipped with wheel counters. The length of the robotic body is 1 and the
diameter of the arena is 13 length units.

The actual velocity of the wheels of the robot is measured by wheel counters, i.e. by
proprioceptive sensors. Hence the vector of sensor values is * = (14, VQ)T with 4 and 1,
being the wheel velocities of the left and right wheel, respectively. The robot is equipped
with two motors controlling the wheels independently. The vector of motor commands is
y = (y1, yg)T, with y; being the target velocity of wheel 7. The homeokinetic controller is
given as a function K : R? — R? mapping the sensor values z; at time step ¢ to the motor
commands y; at the same time step.

ye = K ()

So the controller for this robot consists only of two neurons, each is connected to the two
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Figure 3.6: Experimental setup with 25 simulated robots with length 2.5 in a square arena.

sensory inputs. Parameters of the controller are therefore the synaptic strength ¢;; with i =
1..2, 7 = 1..2 and the two bias values hq, ho.

The internal model F is a linear mapping F' : R? — R? of the motor commands y; to the
new sensor values x;; of the next timestep, with &; being the modeling error.

T = F(ye) + &

This mapping is realized by the parameters a;; with ¢ = 1..2, j = 1..2, weighting the model
inputs. The parameters of controller and world model are initialized with small random
values, it is only checked, that the eigenvalues of the Jacobian L of the loop function 1) have
positive values (compare section 3.2.3). Different experimental runs were conducted lasting
one hour and twenty-four hours of simulated realtime, each ten times.

A second group of experiments was conducted with two-wheeled robots with a longer
body. The length of the robot is then 2.5 length units. The longer body makes the envi-
ronment exploration more difficult, it especially increases the possibility to get stuck when
a lot of these robots are used in one arena. In the experiment we used 25 robots inside a
square arena with a side length of 14.5 length units (see 3.6). All robots are controlled by the
homeokinetic approach. Sensors, actuators and controller are as described above. With these
experiments we want to investigate the robustness of the proposed algorithm in case of heavy
perturbations by other active agents, by a comparison with an experiment with only a single
robot in the same arena. The experiments lasted twenty-four hours of simulated realtime and
were conducted ten times.

3.3.3 Results
3.3.3.1 Single Robot

A trajectory of the robot in an experiment lasting one hour of simulated real time is plotted
in figure 3.7. The figure shows curved and straight paths, and areas of on-site rotation rep-
resenting the possible behaviors of the robot: straight driving, curved driving, and rotation
on the place. By visual judgment of the figure it can be seen that most of the area inside the
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Figure 3.7: Trajectory of the robot in a one-hour experiment in a circular arena using home-
okinetic control. The robot’s trajectory has covered most areas of the arena. Due to the
frequency effect the robot spent more time at the walls than in the inner obstacle-free areas.

arena is already covered. In the inner part of the arena one can see that movements persist for
longer periods, hence larger distances are covered here. Near the walls of the arena there are
accumulations of robot positions, because the behavior changed more often and only small
areas are covered with one and the same movement. This effect is caused by the frequency
effect (section 2.4.3) which changes the actual behavior depending upon the modeling error
¢ of the internal model. When moving in the inner part of the arena, the behaviors are rather
predictable, the modeling error is small and hence the behaviors are kept for quite some time.
When colliding with a wall the modeling error is large and the behavior changes rapidly (see
figure 3.8 for a detailed plot of a part of the robots trajectory and the modeling error near the
wall). Since the robot can not, with only having wheel counters as sensors, infer which be-
havior leads away from the wall, it just tries different behaviors until it can escape. Thereby
the robot spends a relatively long time at the wall. This way the world model is provided with
further information to possibly improve the predicting abilities in this region of space. How-
ever, due to the limitations introduced by the linear world model used here it is not possible
to improve prediction at the wall without reducing the prediction quality in free space.
Figure 3.9 shows the mean absolute value of the modeling error £ for different distances
between the robot and the center of the circular arena for the long run (an one-hour and
a twenty-four-hours experiment), clearly stating that the area near the wall causes larger
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Figure 3.8: A part of a robot’s trajectory (center of the robot) and the absolute value of the
modeling error near the wall, selected from an one-hour experiment. It can be seen that the
robot smoothly changes its behavior in the inner obstacle-free part of the arena, beginning at
position (2.5, 4). After finishing the turn the robot drives straight on to the wall, and keeps this
motion until it hits the wall. The robot then rapidly changes the behavior until a behavior is
found which leads away from the wall. The fast change of the behavior near the wall is caused
by the large modeling error in collision situations. Due to the frequency effect (section 2.4.3)
and as the case may be the effect of the driving term in the update rule (section 2.4.1), the
behavior of the system changes. The absolute value of the modeling error £ at the respective
positions is plotted above the trajectory of the robot. It clearly shows larger modeling errors
in collision situations than in free space.

modeling errors as compared to the other locations in this setup. The internal drive of the
robot to explore these areas is reflected by the increased probability of staying near the wall,
as shown by the histograms of the robot’s distance from the center of the arena for a one-hour
as well as for a twenty-four-hours experiment, see figure 3.10.

To get an idea about the explorative character of the homeokinetic control the circular
arena was divided in 10 000 parts (places), each with an area of about 0.01 square length
units. Figure 3.11(a) shows the number of visited places over time. Already after three hours
the center of the robot (from which the trajectory was recorded) had visited nearly all places.

In figure 3.11(b) the traveled distance of the robot is shown for the one-hour and the
twenty-four-hours experiment. Regions of inactivity, characterized by a slope of zero, are
essentially absent. This shows that the homeokinetic principle generates autonomous self-
organizing systems which are active without a reference value, desired behavior or goal given
from outside.

The parameter dynamics (equation 2.41) which runs concomitantly with the state dy-
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Figure 3.9: Mean absolute value of the modeling error £ for different distances between robot
position and center of spherical circular arena. A distance value of zero means the robot is in
the center of the arena, a value of 6.5 means hitting the wall. As it turns out the mean absolute
modeling error in the inner part of the arena is around 0.03 while near the wall it is around
0.06. This holds true for averaging over (a) one hour and (b) over one day (twenty-four hours)
simulated real time.
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Figure 3.10: Histogram of the robot’s distance from the center of the circular arena nor-
malized by the respective areas for (a) an one-hour and (b) a twenty-four-hours experiment.
It shows that in short and long term experiments the probability for the robot to stay in the
inner region of the arena is smaller than to stay somewhere near the wall. This is caused by
the frequency effect, which changes behaviors more rapidly when the modeling error is high,
e.g. in collision situations. Therefore the robot is not able to cover large distances and the
probability to stay near the wall is increased. In the inner region of the arena the modeling
error is smaller, hence behaviors remain for quite some time and the robot is able to cover
larger distances.
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Figure 3.11: (a) Number of visited places over time (only the first visit of a place is counted)
during an experiment lasting twenty-four hours of simulated realtime. The circular arena was
divided in 10000 parts (places) each comprising about 0.01 square length units. After three
hours nearly all of the places were visited by (the center of) the robot. (b) Log-log plot of
the cumulative distance traveled by the robot over time using the homeokinetic controller.
The monotony of the cumulative distance indicates that the robot is active during the whole
time of the experiment. This holds true for the one-hour as well as for longer, e.g. a one-day
(twenty-four hours) experiment. For longer times the cumulative distance is a linear function
of the time.

namics (equation 2.26), is seen to work as intended in the presented system. During the
experiments all parameters stayed at values expected from theory (section 2.5). The driving
term in the learning rule leads to an increase of the controller parameters c and hence gener-
ates activity in the system. The anti-Hebbian term on the other hand, dampens the increase
of the controller parameters, and thereby establishes slightly supercritical feedback strength
with mean values of approximately 1.14 in the sensorimotor loop, as can be obtained from
table 3.2, showing the mean values and standard deviations of the controller and world model
parameters during the twenty-four-hours experiment. The cross-channel response strength
(a]0, 1], a[1,0]) is nearly zero while for a[0,0] and a[1, 1] it is around one as one would
expect from a system showing different behaviors, thereby counteracting deprivation of the
world model. Der and Martius (2006) showed that the approach explicitly avoids deprivation
by producing purposive actions in a natural way. The controller parameters c[0, 0] and ¢[1, 1]
show mean values of 1.14, realizing a slightly supercritical feedback strength. The contri-
bution of the synaptic strength for the cross-channels can be neglected in the mean, but the
values of the standard deviation indicate that the system tries to integrate these sensors, and
would do so if they would show predictable (in terms of the internal model) responses. The
mean values of the biases are very small. Hence the bias values are used to change the actual
behavior of the system, via the frequency effect but on average balance to zero.
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| parameter | mean | standard deviation || parameter | mean | standard deviation |

c[0,0] [ 1.1438 0.0485 a[0,0] | 1.0008 0.0146
c[0,1] | 0.0069 0.1523 al0,1] | -0.0053 0.0172
c[1,0] | -0.0115 0.1515 a[1,0] | -0.0029 0.0173
1,1 | 1.1461 0.0508 a[1,1] | 1.0012 0.0155
h[o] | -0.0016 0.0576 R[0] | 1.1462 0.0505
h[1] | -0.0012 0.0571 R[] | 1.1489 0.0513

Table 3.2: Mean value and standard deviation of the controller and the model parameters,
and the feedback strength in the loop R of a twenty-four-hours experiment. The parameter
dynamics realize in the mean slightly supercritical feedback strength, which indicate activity
in the system. The mean values of the biases are seen to be very small, since the biases
are only used to switch between the different behaviors of the system in dependence of the
modeling error.

3.3.3.2 Group of Robots

For the experiments with 25 simulated robots, pictures of the experimental run are shown in
figure 3.12. As can be obtained from the images the arena is rather crowded, so the robots
do not have much free space to explore without hitting one another. That is the reason why
the cumulative distance travelled by the robot is lower than compared to a single robot in the
same arena without obstacles (see figure 3.13). However, there are no regions of inactivity
(slope = 0) showing that the robots do not get stuck and are still exploring the arena even
though the exploration takes more time in the crowded arena (see figure 3.14). Hence the
behaviors of the robots which were exposed to a lot of perturbations in the crowded arena
show the same active and explorative character than the single robot. The mean feedback
strength over ten twenty-four-hours experiments is seen to be slightly supercritical (see ta-
ble 3.3). The diagonal elements of the synaptic strength c are seen to be larger as compared
to table 3.2, since they are compensating the smaller response strength [0, 0] and a[1, 1].
The smaller mean values of a[0,0] and a[1, 1], and the larger mean values of a[1,0] and
al0, 1], are the result of the “disturbed” samples (x;,1, y; used for model learning, which do
not show the proper relation between motor commands and sensor values, as in the case of
the single robot. The larger standard deviation of the biases compared to table 3.2 indicates
that the bias was more often used to change the actual behavior, but also shows a very small
mean value. For videos of this experiment see Der et al. (2008).

3.3.4 Summary

We have presented an experiment with the homeokinetic principle controlling a realistically
simulated two-wheeled robot in a circular obstacle-free arena. The robot was active during
the whole experiment lasting for one or twenty-four hours of simulation time. The presented
diagrams show that it covered the whole area of the arena without longer periods of inactivity.
Different behaviors of the robot appeared and the transition between these behaviors is shown
to depend on the modeling error via the frequency effect, as described in section 2.4.3. The
driving (confer section 2.4.1) and the anti-Hebbian term (section 2.4.2) in the update rule led
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Figure 3.12: Pictures of 25 robots during a twenty-four-hours experiment. (a) After a few
steps the order of the initial setup disappears. (b) After half an hour of simulation. Even
though the robots build clusters they do not get stuck. The clusters disentangle after a while
and new clusters appear at other places.

| parameter | mean | standard deviation || parameter | mean | standard deviation |
[0, 0] 13727 0.1824 al0,0] | 0.7622 0.1503
¢[0, 1] 10.1258 0.4973 al0,1 | 0.0901 0.1078
¢[1,0] -0.0833 0.4809 al1,0] | 0.0882 0.1074
¢[1,1] 13686 0.1961 all,1] | 0.7640 0.1482
h[0] 20.0012 0.1267 R0] | 1.0372 0.1665
1] | -7.5110e-04 0.126 R[] | 1.0425 0.1561

Table 3.3: Mean value and standard deviation of the controller and the model parameters,
and of the feedback strength in the loop R of the ten twenty-four-hours experiments. The pa-
rameter dynamics realizes in the mean a slightly lower but still supercritical feedback strength
than in the obstacle free arena (compare table 3.2). The high number of perturbations by the
obstacles is reflected in the lower response of the sensors to the motor commands (a[0, 0] and
a[l, 1] smaller). Therfore the synaptic strength c|[0, 0] and c[1, 1] are larger to keep the feed-
back strength supercritical. The mean values of the biases are seen to be very small, since the
biases are only used to switch between the different behaviors of the system in dependence
of the modeling error. That this happens more often in the overcrowded than in the free arena

is seen in the higher values of the standard deviations of h as compared to table 3.2.
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Figure 3.13: Cumulative distances traveled by the robot over time using the homeokinetic
controller. The monotony of the cumulative distances indicates that the robot is active during

the whole time of the experiment.

This holds true for (a) a single robot in the arena as

well as (b) the central robot (in the initial position) in the arena with 24 other robots. Both
experiments lasted twenty-four hours of simulated realtime and were conducted ten times.

4
N 1L —

(]

number of places visited

number of places visited

2.5

D 2 4 6 8 10 12 14 16 18 20 22 24

hours

(a)

0 2 4 6 8

10 12 14 16 18 20 22 24
hours

(b)

Figure 3.14: Number of visited places over time during 10 experiments, each lasting twenty-
four hours of simulated realtime, for (a) a single robot in the arena, (b) the central of 25
robots (regarding the initial position) in the arena. The square arena was divided in 22500
parts (places) each comprising about 0.01 square length units. The robot is able to explore a
wide range of the arena under heavy perturbations by the other robots (b) even though not as
many places were visited as in the case of the single robot (a).
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to desirable parameter values as shown in table 3.2.

In an experimental setup with a lot of robots and hence dynamic obstacles and heavy
perturbations, the presented algorithm shows its robustness by the robot exploring the envi-
ronment while not getting stuck in the crowds.

3.4 Simulated Snakelike Robot

3.4.1 Goal

In this experimental section a robot with more degrees of freedom will be equipped with
a homeokinetic controller. This way it can be tested if the realization of the homeoki-
netic paradigm is able to deal with more complex systems and show different body- and
environment-related behaviors, which are active as well as explorative.

3.4.2 Setup

We study a snakelike robot (results are published in Der et al. (2006)), again simulated in
the Ipzrobots simulation package (see section 3.1). The structure of the robot is sketched in
figure 3.15. It consists of beam segments connected by hinge joints. In the experiment a
robot consisting of six beams, each of them with a length of 1 length unit, was used.

a

Q

Figure 3.15: A sketch of a snake with two joints. Sensor values sent to the controller are the
angular velocities of the joints, the controller outputs are the desired angular velocities.

The vector of sensor values & = (1, To, T3, 24, 75)" consists of the measured angular
velocities of the five hinge joints. The robot is equipped with five motors controlling the
motion of the hinge joints independently. The motor values y = (y1, Yo, Y3, Ys, Ys)_ specify
the target angular velocity of the hinge joints. The homeokinetic controller is given as a
function K : R — R® mapping the sensor values z; at time step ¢ to the motor commands
1y, at the same time step.

Yy = K(z)
So the controller for this robot consists of five neurons, each having five inputs. Parameters
of the controller are therefore the synaptic strength ¢;; with 7 = 1..5,j = 1..5 and five bias
values hy, .., hs.

The model F is a linear mapping F' : R5 — R® of the motor commands y; to the new
sensor values ;1 of the next timestep, with £ being the vector of modeling errors.

T = F(y) +§
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This mapping is realized by the parameters a;; with ¢ = 1..5, j = 1..5, weighting the model
inputs.

We initialize the matrix a of model parameters as a diagonal matrix with the a;; chosen
such that the response of the joints is already coarsely modelled. The matrix c of controller
parameters is also chosen diagonal but with very small random values for the ¢;; (eigenvalues
of the Jacobian L of the loop function 7 are checked to be positive, see section 3.2.3) so that
in the beginning the joints execute fluctuating motions only. Hence the system starts with 5
decoupled feedback loops due to this diagonal initialization. Each experiment starts with the
robot in a compact pose as depicted in the screenshot in figure 3.16(a).

3.4.3 Results

The homeokinetic control of the snake-like robot generates many different forms of be-
haviors, some of them reminding the observer of different crawling motions of biological
agents or call up the impression of purposeful movements like a jumping behavior, see fig-
ures 3.16(b), 3.16(c).

() (b) (©)

Figure 3.16: Screenshots of snakes on a plane. (a) Shows a snake in the initial position. (b)
Crawling and (c) jumping behavior of the snake-like robot as observed during the experi-
ments.

As already known from the theoretical chapter (chapter 2), all behaviors are emerging
from the interaction of the parameter and state dynamics of the system. The development of
the model and controller parameters associated with the neuron controlling joint 1 is shown
in figure 3.17 for the initial phase of the experiment. The diagram 3.17(a) shows at the
left-hand side the unit matrix initialization of the model parameters. In the initial phase this
relation is preserved by the learning dynamics because sensor 1 shows the best correlation
with the motorcommands for joint 1. Diagram 3.17(b) shows a plot of the synaptic strength
and the threshold of the neuron generating the motorcomand for joint 1 in the initial phase
of the experiment. The diagonal element c;; of the synaptic strength is initialized with a
very small random value but the learning dynamics rapidly increases the value due to the
the driving term as described in section 2.4.1. The parameter dynamics rapidly increases all
the diagonal elements of c so that the feedback strength in each of the loops increases. This
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Figure 3.17: Development of the parameters a;1 and c1; associated with the neuron control-
ling joint 1 in the initial phase of an experiment. (a): The world model matrix a is initialized
as the unit matrix reflecting the independence of the joints. The learning dynamics preserves
this in the initial phase. (b): The diagonal elements c;; are initialized with very small random
values and increase until the supercritical feedback strength is reached and the system starts
to move (at about time 500). The development of the nondiagonal elements reflects the inte-
gration of contributions of the other segments. However, the self coupling c;; is seen to stay
dominant (top line).

increase stops if a supercritical feedback strength of the loop is reached and activity in the
robotic device is generated.

In this regime the nondiagonal elements of the matrix of synaptic strength are also seen
to develop and integrate the contributions of other sensors, so that the dynamics of the joints
are coupled. This is caused by the fact that the reactions of the joints to the applied forces are
correlated due to collision, inertia, and friction effects, as reflected in the increasing model
parameters of these channels on the right-hand side of diagram 3.17(a). However the self-
coupling remains dominant since the response strength (model parameter a) in this channel
is dominant.

Figure 3.18 shows the development of the model and controller parameters of joint 2 and
3 during a longer period of the experiment. All parameters change during the whole time
of the experiment, thereby making up the different behaviors exhibited by the agent. The
controller parameters (3.18(b) and 3.18(d)) are substantially changing over time but stay in a
certain range, so that the controller neurons remain in a sensitive working regime. This is the
result of the two counteracting terms in the update rule: the driving term, which generates
the activity in the system by increasing the controller parameters c (section 2.4.1), and the
anti-Hebbian term, which demands predictive behaviors of the system by realizing a slightly
supercritical feedback strength in the sensorimotor loop (section 2.4.2).

The model parameters a;; describing the observed angular velocity at joint 7 as the re-
sponse of the motor action applied to joint j are shown in the diagrams 3.18(a) and 3.18(c).
In the diagram 3.18(a) we see that the response strength of the self-coupling stays dominant,
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Figure 3.18: Controller and model parameters for joints 2 (top row) and 3 (bottom row)
during time step 150 000 to 200000. (every 100th value plotted). Left: Model parameters;
Right: Controller parameters; In accordance with the sensitization paradigm, the controller
parameters are substantially changing over time but stay in a certain range, so that the neu-
rons remain in a sensitive working regime. The model parameters a;; describe the observed
angular velocity at joint i as the response of the motor action applied to joint j. One would ex-
pect a diagonal matrix a (only self-couplings show a large response strength), however some
non-diagonal elements are non-zero, reflecting the correlations between different joints, for
instance a[0][3] in the lower left diagram.
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Figure 3.19: Motion of a snakelike robot with 5 joints (6 segments with length 1) during
the experiment. Left: Position of the snakes center projected on the plane over 165 000 time
steps with starting point at (-3,0). Right: Altitudes of the centres of the highest (max) and the
lowest (min) segment from time step 60 000 to 65 000. Segments laying completely on the
ground have an altitude of 0.1, standing upright have an altitude of 0.5. One can see that the
snake sits up and even jumps so that it exceeds the altitude of 0.5 with the lowest segment.

as expected for independently controlled joints. However, some non-diagonal elements (rep-
resenting the cross-channel response strength) are non-zero, reflecting the coherence in the
motion of the joints, for instance a3 in diagram 3.18(c).

The emerging dynamics of the robotic system is quite complex and rather difficult to
analyse. Here we want to indicate the degree of organization of the motion by measuring the
motion of the center of the snake projected on the plane, see figure 3.19(a). It can be observed
that in the beginning the center is more or less stationary (in a time average picture), but after
some time the snake covers increasingly larger regions of space. Apart from that, the altitudes
of the snake segments also provide information about the type of behavior. For analytical
purposes we consider the center of the highest and lowest segment over time. The difference
between both can be interpreted as a measure for the current posture. Jumping behavior is
characterized by an altitude > 0.5 of the lowest segment. As shown in figure 3.19(b) the
snake sits up frequently and occasionally performs jumps. The height of an element laying
completely on the ground is 0.1, as indicated by the dotted line in the diagram. Most of the
time the lowest segment is above that height, reflecting the active motion of all segments
of the body. Note, that even on long time scales qualitative changes in the parameters are
observed (figure 3.18), indicating a rich behavior diversity. This is also seen directly when
watching the snake over a long time. For videos see Der et al. (2008).

3.44 Summary

In this section an experiment with a five degree of freedom snake-like robot controlled by
the homeokinetic principle was presented. The parameter dynamics generated activity in
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the robotic device by increasing the feedback strength in the sensorimotor loop (due to the
driving term in the update rule) as depicted by the diagrams of the parameters in the initial
phase of the experiment. It was shown that the development of the parameters goes on
during the whole experiment, reflecting the response strength of the sensors in the current
environmental situation and thereby generating a rich behavioral diversity. These different
behaviors, some of which call up the impression of crawling and jumping motions, lead to
an exploration of the environment as well as a generation of behavioral primitives adequate
for the robotic device used.

3.5 Emerging Sensorimotor Coordination

3.5.1 Introduction

The following experiment investigates the question of the emergence of sensorimotor coor-
dination in complex robotic systems (as partly presented in Der et al. (2005)). The presented
approach to self-organization will be applied to a simulated robot with two active and many
passive degrees of freedom (which will be described in detail in section 3.5.2.1).

The robot is underactuated in the sense that its actuators are not powerful enough to set
the device (especially the passive parts of the body) in motion if the physical properties of
the body are neglected. Thus a whole-body motion can only be excited by exploiting the
physical properties of the body.

Hence a controller not provided with information about the physics of the body from
outside has to become sensitive to the sensor values (which of course show the effects of the
body properties) in order to generate active behaviors of the whole body.

The controller used here is a realization of the homeokinetic principle as introduced in
section 2.3. Due to the same number of actuators and sensors it is identical to the one ap-
plied to the two wheeled robot, where each of the wheels is controlled independently (see
section 3.3). The internal model and the controller will be randomly initialized. The only
body specific parameters ~ are used for the scaling of the sensor and motor values to the
appropriate ranges before entering or after leaving the controller (see paragraph 3.5.2.2). No
further knowledge about the complex physical behavior of the robotic body is available to
the controller. The generation of a whole-body motion in the described system by such a
controller would then be a prominent example of the emergence of sensorimotor coordina-
tion.

Considering the mentioned problems immanent in the setup of the experiment, it is well
suited to investigate the parameter dynamics of the introduced control approach, namely
the effects of the driving (see section 2.4.1) and the anti-Hebbian term (see section 2.4.2),
the frequency effect (see section 2.4.3) and in general the ability of the algorithm to generate
active behavior in a device attached to the controller. But this setup also shows the limitations
in the present realization of the approach which is basically seen in the restriction of the
complexity of internal model (see section 2.2.1).

In the following section the mechanical configuration of the robot and the setup of the
controller will be described before having a closer look at the experimental run.
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3.5.2 Setup
3.5.2.1 Mechanical Configuration of the Robot

The robotic device considered here is a snake-like artifact called skidding snake. It is simu-
lated in the Ipzrobots software package (see section 3.1).

The skidding snake consists of 10 spheres. The head element (red sphere) is connected
to a tail of 9 spheres which are connected to each other by a link (frictionless ball-and-socket
joint) so that each of the spheres can rotate passively like in a string of beads (see figure
3.20(b)).

The red sphere is the actuated head of the skidding snake to which a force vector

(%)

is applied. The force vector is parallel to the ground (lying in the plane). All other parts of
the body are passive. The forces available are not enough to enable the head element to pull
the tail. Hence the robot is underactuated in the sense that it can generate movements of all
(active as well as passive) body parts only by exploiting the properties of the body. In the
concrete case a whole-body motion can only be generated if rolling lateral motions are used.

The robotic device provides feedback from two exteroceptive sensors. This is the velocity
vector of the head element in the plane with

Wy
w— ( - ) | (3.2)

The components of force vector f and velocity vector w are aligned to the x— and y— axis
of the global coordinate system, see figure 3.20(b).

The coefficient of friction of the spheres on the ground is set to 4 = 0.3. Thisis a
reasonable value if compared to 1+ = 0.01 for skis on snow or ;¢ = 0.5 for two hands rubbing
together. In this constellation of friction and maximal force available the head element is not
able to pull the tail. Hence a collective motion essentially requires the passive spheres to roll.

In the real world such a robotic device could be realized by substituting the head element
with an omnidrive robot and concatenating the passive spheres of the tail to it. For more
information on omnidrive robots see the work of Rojas (2005), Rojas and Forster (2006),
Kuppuswamy et al. (2006), Wilson et al. (2001).

3.5.2.2 Controller

The controller consists of a control and a model unit, as explained in section 2.3.3.1. The
control unit is a neural network which is self-regulating according to the general paradigm
(section 2.5). The network consists of two leaky-integrator neurons. Hence the network
provides a two dimensional output vector according to the requirements of the robotic device.
The model unit is also realized as a neural network consisting of 2 neurons (identity output
function, no thresholds), using the control unit output y to predict the sensor values z of the
next timestep.
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Figure 3.20: (a) Mechanical construction of the skidding snake. Ball-and-socket joints be-
tween the spheres are drawn. Arrows indicate the possible rotations: in every direction at the
joint and around the axis between joints. (b) Sketch of skidding snake in the global coordi-
nate system. After execution of a time step in which a force vector f was applied to the head
element the velocity vector w is read back as feedback of the system. The components of the
force vector f and the velocity vector w are aligned with the axis of the global coordinate
system.

As sensory input x to the controller the velocity vector w of the head element in the plane

18 used:
o T . Wy
x—(%)—/ﬁm<wy) 3.3)

The velocity values are scaled with k;, to the range (—1, 1) before entering the network.
This scaling is necessary to allow the adjustment of the ratio of the synaptic strengths of
the controller neurons according to the ratio of the response strength in the channels, espe-
cially when using different sensory modalities. Furthermore it allows easier handling when
employing diverse robotic hardware.

The output vector y determines the force vector f applied to the head element of the

“skidding snake” with
f T ) < Y1 )
= = Kouty = Kou , 34
f ( £, tY t n (3.4)

where £, 1s a constant of proportionality. Since the network consists of neurons with a
hyperbolic tangent activation function, the output of the network is in the range [—1, 1]. To
exploit the available forces in the range [—3, 3] this scaling is required.

3.5.2.3 Experimental Setup

During the experiments the “skidding snake” is placed on the ground of a simulated world
without borders or obstacles. Hence there are no perturbations by the environment.
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In the experiments the model and controller parameters are randomly initialized in the
range [—0.1, 0.1], the eigenvalues of the Jacobian L of the loop function ¢ are checked to be
positive (see section 3.2.3).

With such an initialization the system is set far below the bifurcation point of the Hopf
bifurcation (figure 2.15), since the feedback strength R; = Z;:O cija;; with 7 = 0,1 in each
of the two channels is much smaller than the critical value 1.

3.5.3 Results

The description of the experimental run is divided into three paragraphs, one for each of the
three phases shown in the course of the experiment (compare figure 3.21). The first paragraph
will describe how the controller with the tabula rasa initialization adapts to the environment
and to the body in which it is embedded. The controller has no prior knowledge about the
body or its properties, only the number of sensors and motors is known. The second and
third paragraphs describe the emergence and decay of a whole-body motion.
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Figure 3.21: Power spectra of the sensor value x; (measured velocity) during the exper-
iment. Each column represents the lower frequency part of the discrete Fourier transform
of a 5 second sliding window of the sensor values. Every 0.1 seconds a power spectrum is
plotted. Bright pixels correspond to low energy and dark to high energy in the correspond-
ing frequency band. High energy in a certain frequency band means that changes between
positive and negative velocity in the sensor/motor value occur at about that frequency. The
energy is normalized by the maximal energy in the power spectrum. In the beginning of the
experiment (phase 1) no favorite frequency of behavior can be identified in the system. The
start of the rotational mode of behavior is indicated by the appearance of the dark line show-
ing the frequency of rotation (around step 165000). During the rotational mode (phase 2) this
frequency stays almost constant. The energy of the frequency of rotation is much larger as
compared to the frequency components before this motion sets in. Hence the diagram shows
only bright dots before and after the rotational mode. In phase 3 the frequency of rotation
decreases, indicating the end of the rotational mode of behavior. Around step 480000 the
dominating frequency disappears. Now only small lateral random motions occur. The fre-
quency components of these motion are very small as compared to the frequency of rotation
during the skidding behavior.
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3.5.3.1 Adaptation to body and world

In the beginning of the experiment the controller and internal model parameters are randomly
initialized in the range [—0.1,0.1] (see figure 3.22). Hence the feedback strength in each of
the two channels has a maximal possible value of 0.02 (R; = c;pap; + ci1a14, see left hand
side of figure 3.23(b)). This leads to a strong suppression in the sensorimotor loop.

Since the “skidding snake” is placed on the ground without any initial motion or force
applied, the sensor values are zero except for some sensor noise (see left hand side of fig-
ure 3.24(a)). Consequently a correlation between the sensor and motor values is missing.
This is reflected in the the model parameters a which stay around their initial values, see left
part in diagram in figure 3.22(a).
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Figure 3.22: Model and controller parameters (without threshold h) from the beginning of
the experiment until the skidding snake enters the rotational mode of behavior (step 0 to
160000). A logarithmic time axis is used to provide a detailed view of the parameters in the
very beginning of the experiment. (a) The model parameters in-channel (ayg, a11) and cross-
channel (a19, ag1) response strength show only weak correlations between sensor and motor
values, while in-channel correlations are stronger. (b) The synaptic strengths of the neurons
controlling the output y are seen to increase (due to driving term in the update rule) in order to
generate activity in the system. The diagonal elements of c show a steeper rise since channels
with higher response strength (|a;;|) are favored.

In this situation the parameter dynamics comes into play. The small values of x and 2
cause a domination of the driving term pa; in Ac;; (compare equation 2.41, section 2.5.1).
This leads to an increase of the matrix elements of c, with channels of higher response
strength (|a;;|) being favored, according to equation 2.43. Figure 3.22(b) shows the devel-
opment of the controller parameters in the beginning of the experiment (the first 200000
steps).

This increase of the synaptic weights leads to increasing motor values and small move-
ments of the head element, but only weak reactions of the passive tail. Hence the maximal
amplitudes of the sensor values stay around an absolute values of 0.1. Figure 3.24 shows the
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Figure 3.23: Biases (adaptive thresholds) and feedback strength R of the controller neurons
from the beginning of the experiment until the skidding snake enters the rotational mode of
behavior (step 0 to 160000). The thresholds (a) oscillate around zero and show increased
values only around step 140 when also a steep rise in the synaptic strength occurs. The
system is seen to increase the feedback strength (b) in both loops to supercritical values. In
this regime it is possible to generate activity and hence motions by noise amplification.
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Figure 3.24: Sensor and motor values of channel 1 from the beginning of the experiment until
the skidding snake enters the rotational mode of behavior (step 0 to 160000). A logarithmic
x-axis is used to provide a detailed view of the values in the very beginning of the experiment.
(a) The sensor value x1 is mainly determined by the sensor noise and fluctuates around zero.
(b) The motor value y; shows an increasing amplitude. This is caused by the driving term
in the update rule of the controller parameters and will lead to the excitation of a rotational
mode of behavior.
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small sensor values compared to the increasing motor values for one of the channels.

Beginning around step 200 the model parameters in figure 3.22(a) show that the correla-
tion between motor and corresponding sensor (the in-channel response strength, represented
by the diagonal elements of matrix a) is slightly stronger than between a motor and the sen-
sor of the other motor (the cross-channel response strength, represented by the non-diagonal
elements of matrix a). But in general the values remain small, reflecting the fact that mainly
the noise of the sensor values is amplified and the body shows only weak reactions to these
random signals, seen as a swaying of the body.

The peaks in the amplitude of bias h; around time step 140 (compare figure 3.23(a))
indicate a large modeling error probably caused by the underactuatedness of the system.
Since the modeling error also has an effect on the learning rate of the synaptic strength, cy;
and c;; show a rapid change around step 140.

A frequency plot of the sensor value x; is shown in figure 3.21 but no favorite frequency
of behavior can be identified in the first phase of the experiment.

The feedback strength R in each of the channels is seen to increase and reach super
critical values in the right part of figure 3.23(b), as expected from the driving term in the
update rule.

3.5.3.2 The rotational mode of behavior

With the feedback strength (respectively the synaptic strength) and hence the sensitivity in-
creasing more and more the controller starts to respond to the swaying of the body. Around
step 165000 the controller manages to amplify these swayings. Thereby a rolling motion of
all, active and passive, elements of the body is generated. This motion is characterized by a
rotation of all spheres around their axis (connection between the joints), where the first half
of the spheres rotate in the opposite direction than the other half. Hence a collective rota-
tional mode of behavior of the underactuated many degree of freedom robotic device was
excited by the skidding motion. While the whole snake rotates around its center, it becomes
stiff like a stick due to centrifugal forces and gyro effects.

rotation of snake around its center

rotation of sphere )
center of rotation

Figure 3.25: The rotational mode of behavior is characterized by a rotation of all spheres
around their axis (connection between the joints), where the first half of the spheres rotate in
the opposite direction than the other half. Hence the whole snake rotates around its center, at
which point it becomes stiff like a stick.
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Figure 3.26: Parameter values during the rotational mode of behavior (steps 160000 to
230000). (a) Model parameters in-channel (diagonal elements of a) and cross-channel (non-
diagonal elements of a) response strength. With the onset of the rotation around step 165000
the model parameters increase rapidly, representing the fact that the sensors now give a rea-
sonable response to the motor commands. Later on the in-channel response strength is seen
to increase while the cross-channel response strength decreases. (b) The synaptic strength
of the controller neurons. Due to the increased response strength after the emergence of the
rotational behavior the anti-Hebbian term of the learning rule (equation 2.41) comes into play
and the strength of the synaptic weights is reduced. So the system regulates itself back to
a slightly supercritical response strength. The relation between diagonal and non-diagonal
elements of c is determined by the proportionality to the internal model (see section 2.5.2).

The emergence of the rotational mode of behavior generates a large modeling error due to
the different response of the body (and hence the sensors) to the motor commands as before.
This can be seen in the peaks of the threshold amplitudes (figure 3.27(a)).

The behavior is self-supporting since the emerging collective motions respond to the
controller in a much more systematic way. This can be seen in the model parameters (figure
3.26(a), beginning with step 165000) which quickly adapt to the new situation since the
systematic part in the generated behavior can now be modeled.

Due to the large increase of the model parameters the feedback strength also increases
largely around step 165000, as depicted in figure 3.27(b). Through the large sensor values
x (figure 3.28 shows the envelopes of the sensor and motor values) and hence large mem-
brane potentials z the anti-Hebbian term in equation 2.41 comes into play and the synaptic
strengths decrease very fast, see left part of figure 3.26(b). Thereby the slightly supercritical
feedback strength is re-established as can be obtained from figure 3.27(b), beginning around
step 166000. The feedback strength is seen to remain slightly supercritical during the whole
mode of rotational behavior.

In the course of time the non-diagonal elements of a decrease while the diagonal elements
further increase. This reflects the assumption that there is basically a correlation in and not
across the channels, as one would expect for independent channels.
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Figure 3.27: Biases (adaptive thresholds) and feedback strength of the control unit during
the rotational mode of behavior (steps 160000 to 230000). Except around step 165000 the
thresholds (a) oscillate with small amplitudes around zero. Due to the emergence of the
rotational behavior around step 165000 the sensor values immediately reach large amplitudes
which can not be predicted by the model. The resulting model error leads to large values of
h since the amount of change of the thresholds is proportional to the modeling error. While
the rotational mode of behavior sets in, the feedback strengths (b) increase rapidly. Due to
the nonlinearity in the system an unlimited increase of the motor values is confined. The anti-
Hebbian term of the update rule (see section 2.4.2) regulates the feedback strengths down
to a slightly super-critical value. This value is retained during the whole mode of rotational
behavior.

According to the proportionality between model parameter and synaptic strength of a
channel (equation 2.43) the non-diagonal elements of c also decrease, (see figure 3.26(b)).

Despite of this changes in ¢ and a, the feedback strength in each channel is seen to stay
at a slightly supercritical value around 1.1, as can be obtained from the right hand side of
figure 3.27(b).

The diagram in figure 3.29 show the sensory and motor space, where transitions to tem-
porary stable limit cycles represent the rotational mode of the skidding snake.

Figure 3.21 shows the power spectrum of the sensor value z; during the experiment. It
can clearly be seen that around time step 1650000 a main frequency appears which is the
frequency of rotation of the skidding snake. After a short time of increase the frequency of
rotation stays almost constant.

3.5.3.3 The end of the rotational mode of behavior

As described above the controller was able to generate motions of all elements of the skid-
ding snake which is seen at first as meandering and eventually leads to a rotational mode of
the body. In this rotational mode each of the spheres is rapidly rotating. Due to the mass
of the spheres this results in strong inertia which keeps the snake in motion. However these
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Figure 3.28: Envelopes of the sensor and motor values of (a) channel zero and (b) channel
one during the rotational mode of behavior (steps 160000 to 230000). The figures show the
envelope of the signal, since due to the fast oscillations also in a signal plot only the envelopes
are identifiable. In the left part of the figures the emergence of the rotational mode of behavior
can be seen. The sensor values x increase since the body shows a reasonable response to the
motor commands. This leads to a situation of higher activity in the sensorimotor loop. The
algorithm reacts by reducing the synaptic strengths of the controller neurons and consequently
the motor values decrease. During the rotational mode the amplitude of the sensor and motor
values remains almost constant at 0.8.
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Figure 3.29: Motor space (blue line) and sensor space (green line) show the temporary stable
rotational mode of the skidding snake (1000 time steps plotted).
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Figure 3.30: Controller and model parameters at the end of the rotational behavior (timestep
230000 to the end of the experiment). (a) Inertia effects, which can not be modeled by the
system used here, lead to an incorrect model where the cross-channel response strength is
large and the in-channel response strength goes to zero. (b) According to the proportion-
ality between the synaptic strength c and the model parameters a the diagonal elements of
¢ go to zero while the non-diagonal elements increase. Hence the sensor value of a channel
mainly determines the output of the other channel. The so generated motor commands disturb
the rotational mode of behavior which ends around step 480000. Later on the small model
parameters represent the missing correlation between sensor and motor values. The increas-
ing strength of the non-diagonal controller elements shows the intention of the approach to
regenerate activity in the sensorimotor loop.

innertia effects can not be predicted by the simple (linear) internal model. Starting from
around step 280000 the model learns a strong correlation across the channels, while the di-
agonal elements of the model matrix a (which represent the in-channel correlations) decrease
(see figure 3.30(a)). Since the algorithm maintains the proportionality between model and
controller parameter of a channel, the controller parameters show a similar behavior in figure
3.30(b). This change of the controller parameters leads to different motor commands which
do not support the rotational mode of the body any more and even disturb it. The diagrams
in figure 3.32 show a decrease in the amplitude of the sensor values and the frequency of the
oscillation decreases as depicted in figure 3.21.

The amplitudes of the motor values stay constant while this occurs (see figure 3.32). The
model has to adapt to this situation and hence all model parameters a decrease. The diagonal
elements go to zero, but the non-diagonal elements stay stronger. At about step 480000 the
rotational mode of behavior ends and the passive parts of the robot stop movement. The
sensor values are in the range from —0.1 to 0.1 as before the skidding mode of behavior. The
feedback strength breaks down to sub-critical values (figure 3.31(b)).

The thresholds ~ show a normal behavior, as depicted in figure 3.31(a).

Due to the driving term in the update rule the controller weights increase, so that a super-
critical feedback strength can be re-established in order to regenerate a more active behavior
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Figure 3.31: Thresholds and feedback strength at the end of the rotational mode of behavior
(timestep 230000 to the end of the experiment). The thresholds fluctuate at all times around
zero. The only noticeable differences are somewhat smaller amplitudes when the skidding
mode of behavior ends. During the decrease of the sensor values until step 480000 the feed-
back strength (b) is seen to stay super-critical. A breakdown of the feedback strength is
observed when the skidding behavior ends. However, due to driving term in the update rule
(see section 2.4.1) R increases again and reaches super-critical values, although it strongly
oscillates and is effected by the noise of the sensor values.

of the system. However, since the model keeps the non-diagonal elements of a larger than
the diagonal ones (right hand side of figure 3.30(a)), the controller parameters also keep this
ratio, see right hand side of figure 3.30(b). This leads to a behavior where a large sensor value
in one channel generates a large activity in the other channel. Furthermore the activity is
inverted in channel zero since cy; 1s negative. So if activity will be generated it is suppressed
two time steps later*. Usually the homeokinetic control would be able to generate further
active behaviors. Due to the complexity restriction of the model in this realization of the
homeokinetic principle the system is not able reenter a rotational mode of behavior.

3.5.4 Summary

In the presented experiment we have shown that a controller based on the homeokinetic
principle is able to generate whole-body motions of all, active as well as passive elements of
the underactuated snakelike robot. This is seen at first as meandering and eventually leads

4 If we assume a positive sensor value x((t) ~ +1 the large positive cross-channel weight leads to a positive
motor command in the other channel y; (t) & c10x0(t) = +1. Defined by the physics of the system we obtain
a positive sensor value in this channel z;(t + 1) ~ +1. The large negative synaptic strength of the cross-
channels leads to an inversion of of the activity yo(¢t + 1) & co121(t + 1) ~ —1, which generates a negative
sensor values in the next timestep xo(t + 2) ~ —1. This negative sensor value now leads to a motor command
with the opposite sign as in time step ¢: y1 (¢ + 2) & ¢10z0(t + 2) =~ —1 and for this reason motions that were
possibly generated in step ¢ are suppressed in step ¢ + 2.
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Figure 3.32: Envelopes of sensor and motor values of (a) channel zero and (b) channel one
at the end of the skidding behavior (timestep 230000 to the end of the experiment). The left
hand side of the diagrams shows a decrease of the sensor values xq and x1, indicating the
end of the rotational mode of behavior. Around step 480000 the sensor values are mainly
determined by the sensor noise. The motor values yg and y; oscillate with constant maximal
amplitude until the end of the skidding behavior, followed by a short breakdown. The driving
term in the update rule then leads to an increase of the synaptic strength (in this experiment
the non-diagonal elements of the controller matrix c increase). Hence the feedback strengths
and controller outputs increase at which point the latter reach larger amplitudes than during
the skidding behavior. However, due to the actual constellation of the controller parameters
(caused by the incorrect internal model) the controller is not able to excite a second phase of
hurling behavior (with the realization used here!).

to a rotational mode where the body becomes stiff like a stick due to the centrifugal force
of the rapidly rotating spheres of the body, (see video Der et al. (2008)). The generation of
such a mode of behavior is only possible by exploiting the physical properties of the device.
Since these properties are not known to the controller this is an example for the emergence
of sensorimotor coordination.

The complexity restriction of the world model (section 2.2.1) is seen as the cause for the
incorrect internal representation and hence the inability of the system to initialize a second
phase of rotational behavior. However in experiments with different environmental influ-
ences (walls, other agents, see figure 3.33) the snakes are seen to reenter the rotational mode
of behavior if their rotation was stopped by a collision, before the internal model learned an
incorrect representation (see video Der et al. (2008)).

So even with the restricted internal model the algorithm was able to show the emer-
gence of sensorimotor coordination by generating a whole-body motion in the underactuated
snakelike robot.
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Figure 3.33: Pictures of skidding snakes. (a) Initial position in an experiment with three
skidding snakes. (b) Close view. (c) In the run. Two snakes in rotational mode where the
bodies become stiff like sticks due to the gyro effects of the rapidly rotating spheres of the
body. The third is in z-shape with the tail passively swaying around. (d) A group of interacting
self-organized creatures controlled by the presented approach (except the three passive balls).
The systems try different modes of behavior (including the rotational mode of the skidding
snake) even under these heavy perturbations. (See also the videos Der et al. (2008).)
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3.6 Discussion

In this experimental chapter we have demonstrated that the homeokinetic principle, as for-
mulated mathematically in the objective function £ (confer equations 2.32 and 2.36) in ap-
plications to completely different agents, yields in each case to an environment-related active
behavior. The emerging behaviors are dictated by the body of the agent.

In the first experiment (section 3.2) we have shown that the parameter dynamics of the
homeokinetic controller (equation 2.39) leads to parameter values which would also gen-
erate active behaviors in a static controller. However, the proposed algorithm shows faster
reactions to environmental influences and hence was able to travel nearly twice as far as the
static controller with the best parameter setup in the same time. Furthermore, it was shown
that the initial conditions are less important, except for the requirement that the eigenvalues
of the Jacobian have to be positive.

The experiment with a two wheeled simulated robot (section 3.3) pointed out the explo-
rative character of the homeokinetic control. A further interesting property shown is that
the parameter dynamics never gets stuck in the saturation regions of the neurons or that the
activity of the agents decreases for a longer time. The correlation between a large modeling
error and a change of the actual behavior of the system (as a result of equation 2.41) was de-
scribed in detail and found to be the key in generating rich sets of behaviors. These provide
the internal model with information about body and environmental properties which can be
used to improve the prediction ability.

The control of a simulated five degree of freedom snakelike robot was presented in sec-
tion 3.4. In this complex device various coordinated behaviors were generated which led to
an exploration of the environment as well as the body properties. Some of these modes of
behavioral organization remind the observer of motions of biological agents like the crawl-
ing or jumping behavior. Thus mechanically completely different devices like the thus far
considered wheeled robots can be controlled by the proposed paradigm at which point the
resulting behaviors depend on both the body and the environment.

The last presented experiment (section 3.5) was an example of the generation of body re-
lated behaviors by homeokinetic control. The specific properties of the device under control
could be exploited to generate a behavioral mode of whole-body rotation, where all, active
as well as passive, parts of the robot are involved. The complexity restriction of the internal
model in the presented realization of the homeokinetic principle caused an incorrect internal
representation and hence the inability of the system to reenter new behavioral modes. This
shows a point of extension for future realizations. However even with the restricted model
the controller was able to show the emergence of sensorimotor coordination in this complex
robotic system.

In the robotic applications presented in this chapter, exploration takes place in the action
space as well as in the one, two, or three-dimensional environment. However exploration
of the environment does not only mean passing each location over time, but the approach
furthermore prefers to explore regions which cause problems in modeling. So large errors
of the world model led the system to gather more information about that area, which can be
used to improve modeling. Such a mechanism, where by coordinating sensory and motor
processes organisms can select favorable sensory patterns and thus enhance their ability to
achieve their adaptive goals (Nolfi and Marocco, 2002), is referred to as active perception.
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Biological evidence is found for example by Dill et al. (1993) and Franceschini (1997),
where the visual systems of flies were investigated.

To give an impression of the diversity of robots controlled following the homeokinetic
approach and show that we do not only rely on simulated devices, figure 3.34 depicts three
of the real robots used in our group.

Figure 3.34: Micro.adam (left) is a circular robotic device designed by the artist Julius Popp
(Popp, 2008) and equipped with a control following the homeokinetic paradigm. The rocking
robot (center) was assembled by Georg Martius (see Der et al. (2006)). The Pioneer robot
(MobileRobots Inc, 2008) (right) is also used for tests of the homeokinetic approach.

At the present step the behaviors, although related to the specific bodies and environ-
ments, are without goal. What we achieve so far is the concomitant learning of both explo-
rative behaviors together with their forward model from scratch. This bootstrapping task is
solved under the proposed paradigm in a more or less natural way, invoking phenomena like
noise amplification and spontaneous symmetry breaking.
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Chapter 4

Extending Homeokinetic Control

The homeokinetic controller (section 2.3) generates simple reactive behaviors that are inter-
esting because of their flexibility, as we have seen in the experiments presented in the pre-
vious chapter. We are now going to modify the controller such that, in addition, prospective
information can be exploited in order to allow the controller to adapt to different situations or
generate preventive actions. This information may be available from more complex sensors
and predictors, and is referred to as context information, the corresponding sensors as context
sensors. We propose to interpret such information in terms of the low-level control which
may be advantageous if no background information can be referred to for the interpretation
of the high-level information.

4.1 Long-Term Memory

In this section the homeokinetic controller will be extended with an additional long-term
memory, provided with context information (as presented in Der et al. (2004)). This mem-
ory allows the controller to adapt to different situations without relearning the parameters,
supposed that context information qualifying the current situation is available. We will con-
sider this extension for the case of sensors showing fast switching activity and characteristics,
which thus can be integrated in the sensorimotor loop.

Control realized on the basis of the homeokinetic principle is achieved in tight sensor
motor coupling, denoting that all sensors responding to the motor activities are automati-
cally integrated into the generation of the motor command. In the theoretical considerations
in chapter 2 was assumed that the sensor response is essentially proportional to the veloc-
ity of the robot. This is not the case for a proximity sensor. In this case one could use a
preprocessing and consider the change of the sensor value between time steps. However,
the problem is that this sensor characteristics (the proportionality between wheel velocity
and sensor value) is valid only if the sensor is “on”, i.e. the obstacle is within the range of
the sensor. Otherwise the response of the sensor is zero, even if the robot moves. Figure
4.1 shows as an example a wheeled robot with a sensor measuring the wheel velocity and a
proximity (infrared) sensor in two different situations. On the left side, in a free space situa-
tion, the wheel sensor shows a larger response strength than the infrared sensor and therefore
obtains a larger synaptic strength, as indicated by the thickness of the arrows from the robots
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sensors to the controller. The right side depicts a “close to collision” situation where the
infrared sensor response is larger than that of the wheel sensor. Hence the controller has to
adapt to the different situations as fast as the switching occurs in order to make use of the
sensors and react properly. Similar problems arise when new sensors are installed for some
time or sensors temporarily break down.

y ‘l' y ‘l'

Controller Controller
T theell XIR N theel XIR

Figure 4.1: Sensorimotor loop closed over wheel and infrared sensor of a wheeled robot. If
the response factor a of the wheel sensor is larger, the synaptic strength of the input from this
sensor is greater than from the infrared sensor, as represented by the thickness of the arrows
from robot sensors to the controller (left). If in a “close to collision” situation the infrared
sensor shows a greater response than the wheel sensor, the synaptic strength corresponding
to the infrared sensor will be larger (right).

Before starting the experiments let us discuss the parameter dynamics for the case of sev-
eral channels (equation 2.41), which in principle may cope well with the situation. Assume
a new sensor k is switched on and the value of the coupling is ¢, = 0. In the beginning we
have Acy, = pay, (1 — 2Ry?) since the damping term —yucpay in this channel is negligible
as compared to the other channels, because of the small value of c;. Obviously the only
channel-specific term in this equation is the response strength a; of the channel, which of
course has to be adapted to the new situation by continuous model learning. So due to the
driving and the anti-Hebbian term in the update rule (see section 2.5.1) ¢, will adapt until
cr = aay is reached (equation 2.43). In the concrete case c; will rise and thereby integrate
the new sensor in the sensorimotor loop.

Concomitantly the couplings of the other sensors and hence the value of « is readjusted
so that the global balance is reestablished. Hence a newly switched on sensor is automatically
integrated into the sensorimotor loop, according to its response strength. The switched-off
situation is dealt with in the same fashion.

The problem however is that the processes of readjusting the coupling vector ¢ takes
some time. In practical applications (see below) the switching on and off of sensors may
take place in very short time intervals. It is therefore not of interest to relearn the couplings
but instead to have a kind of long-term memory where the couplings are stored and read out
appropriately. This is possible either on the basis of direct information on the state of the
sensors or on context information which is able to qualify the sensor situation. We will study
the latter case in the following.

Setup

The experiments have been chosen to show in a simple case that the derived learning rules
generate an explorative behavior of the robot which is highly sensitive to the reactions from
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the environment. This means that it will move more or less tentatively as long as the pre-
dictive ability is insufficient, i.e. the modeling error is large (the model parameters a; are
still erroneous) and with increasing predictive ability a more and more explorative behavior
will originate, while staying sensitive to the environment. Furthermore, we want to inves-
tigate the situation of switching sensor activities. For the experiments a Khepera robot is
used, which is placed in a moveable box which on its hand is confined in a larger area with
fixed walls as borders, see figure 4.2. Details of the robot were described by Mondada et al.
(1994).

Figure 4.2: Khepera robot inside a moveable box which is situated in a larger box with fixed
walls.

The Basic System

In the experiments two sensors are used, one measuring the velocity of the wheels 1 = v
and a pseudo-infrared sensor. The output p of the pseudo-infrared sensor is proportional to
the target velocity y of the robot so that it can be used immediately as sensory input x5.
The pseudo-sensor is introduced to retain the simple case of linear dependencies to ease
understanding, while showing the properties of the approach. The pseudo-sensor is triggered
by the physical infrared sensors with outputs 7; (the moveable box is large enough to contain
both on and off regions of the pseudo-infrared sensor)

b > 0, const “4.1)

) 7
Py = byi—1 : Max;_7T¢i > Tmin
= . 7
0 max; o ei < T'mins

so that the sensor p is active as long as there is at least one infrared sensor with an activity
larger then the threshold 7,,,;,, else the value of this sensor will be zero. Thus we have the
case of a fast switching sensor.

The controller of the robot consists of a single neuron with the update rule for the mem-
brane potential as given in equation 2.39. Its output y € [—1,1] is the forward velocity
of the robot. Due to the very fast switching of the sensor values some precautions against
divergencies are conducted. Each update is pushed through a squashing function

1
Ac « ntanh <—Ac) ,
Ui

which introduces a maximum step width given by 7.
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Finally, the model parameters a; and a, are learned on-line by gradient descending the
model error equation 2.9. However, in the model the measured wheel velocity depends
linearly on the controller output - that is the model is appropriate only if the robot moves
without problems. When colliding with the wall the model is not valid any longer and the
learning should be switched off. This is achieved by multiplying the learning rate by a kind
of reliance factor which is chosen as

fj = €xp (—55]2)

for channel j where sz = (4415 — ajyt)2 is the error of the model in this channel.

The Extension by a Long-Term Memory for the Parameters

For many robotic applications the problem of switching sensor activity plays an important
role. In particular, the pseudo-infrared sensor p; can switch frequently between p; = 0 and
p: = by, (see equation 4.1) according to the robot’s position in the moveable box (figure 4.2).
So good predictions are obtained only if the model parameter is switched according to the
situation.

The sensor situation depends on the output of the physical infrared sensors 7; which can
be transformed in a context m,; with the values

m 1 maxzzo Tti > Tmin
t =
0 max_q7re; < T

To solve this problem we train a neural network (with the context m; as input) to set the
value of the model parameter a, » according to the context. The learning signals are directly
given by gradient descending the model error.

Moreover, different model parameters a; produce different synaptic weights (see the dis-
cussion above). Therefore the controller parameters are also represented by a neural network
(with the context m as input), except for the bias h which is changing rapidly all the time
(compared with the other parameters) and therefore does not need to be memorized. The
long-term memory is adapted according to the parameter changes of the homeokinetic con-
troller. The architecture used is shown in figure 4.3. With the incorporation of this long-term
memory the controller is able to handle very fast switching sensors.

Results

In the experiments the parameters of long-term memory and controller are initialized with
small random values (the eigenvalues of the Jacobian L of the loop function ¢ are checked
to be positive, see section 3.2.3). The model parameter for the wheel channel a;(t) was
conveniently initialized by hand (figure 4.4(b)). The initial value of the model parameter for
the pseudo-infrared channel ay(t) was set to zero and the learning of the model parameter
was disabled for the first 1000 steps (figure 4.4(c)). As a result the model error is large
(figure 4.4(d)) if the pseudo-infrared sensor is active which leads to an almost immediate
change of the value of the bias h (figure 4.5(a)) so that the robot changes its direction of
motion. The effect is that the robot avoids collisions with the walls of the moveable box it is
enclosed in and hence makes only small movements (figure 4.4(a)).
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t+1
-
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Figure 4.3: System architecture used in the experiment. The homeokinetic controller is sup-
plemented with a long-term memory using the context information to recall the appropri-
ate controller and world model parameters for the current situation. The long-term memory
learns this parameters by observing the parameter changes of the homeokinetic controller.

When after step 1000 learning of the long-term memory takes place the model parameter
as(t) becomes more and more adapted (jumping between a; = 0 and ay = b, cf. Figure 4.4
(c)) which decreases the model error. Hence when approaching the wall of the moveable box
the relearning of h (figure 4.5 (a)) does not take place and the robot starts pushing the box
around.

Eventually when the robot reaches the wall of the arena (wheels get blocked) the model
error is large so that the rapid relearning of the bias & and hence the velocity reversal takes
place at this collision event. In this way the robot now explores the full region of the arena
(see figure 4.4 (a)) by exploiting context information and long-term memory .

Approximately with step 4400 the learning of the model parameter a, is disabled from
outside and its value is set to zero again. This leads to a large model error and fast relearning
of h when the pseudo-infrared sensor is active. Hence the robot moves only in a short range
of his environment like in the beginning of the experiment, so one can see that if the model for
some reason is not able to make good predictions any more the robot returns to its uncertain
behavior.

As for the controller parameters we observe that at the beginning and the end of the
experiment the pseudo-infrared channel is not included in the sensorimotor loop (c; ~ 0,
figure 4.5(b)) because a, is set to zero. Hence the sensorimotor loop is closed only over the
wheels with ¢; ~ 5 (figure 4.5 (c¢)) and with a; ~ 0.23, leading to a feedback strength of
R~ 1.1 (a~21.7).

In the middle part the pseudo-infrared sensor is included in the sensorimotor loop, but
only when it is active. Then the model parameter a; ~ 1 leads to the increase of the ap-
propriate weight until ¢ ~ 1. The readjusted factor & ~ 1 can also be seen in the wheel
channel (c; ~ 0.2, a; =~ 0.23) so that R is around 1.1 again. When the pseudo-infrared
sensor is not active the parameters should be ay; ~ ¢y =~ 0 and c¢; ~ 5. This is not the case
(co = 1, c1 = 3.3) so the feedback strength is smaller than 1 for a short time. The cause is
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Figure 4.4: The path traveled by the robot (with odometry error). For the first 1000 the steps
model learning was disabled so that the robot moves only very cautiously not pushing the
moveable box. Then model learning is allowed and with increasingly predictive ability the
robot starts moving the box and later explores the full range of the arena while moving the box
around. In the end learning was disabled (with as set to 0) again so that the cautious behavior
reappears. Model parameter a; of the wheel channel is already learned at the beginning of the
experiment. Model parameter as unlearned at the beginning, then learning to jump between
0 and 1 depending on the activity of the infrared sensors and reset to zero at the end. The
difference between predicted and measured pseudo-infrared sensor values (§; & — 1 plotted

for visibility) gets smaller when the model learns to predict (middle) and rises with resetting
the model parameter a2 to zero.

seen in the very fast switching of the pseudo sensor together with the timescale of z which
is comparable to the activity time of the sensor. Hence 2 can not reach the fixed point value,
so the theoretically derived values can not exactly be realized.

This experiment shows the uncertain, tentative behavior (changing direction of motion
very often) of the robot in areas the model can not predict properly, the “brave” behavior
(covering large areas, which are predictable for the model) and the change between these
two behaviors through the exploitation of context information and long term memory. In
doing so the robot stays sensitive to the reactions of the environment and additionally the
switching sensor is integrated in the sensorimotor loop, as long as it is active.

Summary

In the presented experiment we could show that the homeokinetic approach is able to deal
with the integration of newly attached sensors or removed/damaged ones. The same holds
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Figure 4.5: The bias h (shitfted for visibility to h — 1), the weights for the pseudo-infrared
input co and the wheel input ¢y of the homeokinetic neuron used as controller. The input
weights converge to different values depending on the value of the model parameter for the
pseudo-infrared channel. The frequency of the changes of the bias h and therefore the time
the robot travels in one direction depends on the model error.

true for sensors switching between an on and an off state. As soon as this switching happens
very frequently a long-term memory is required to allow the controller to adapt fast enough
to the new situation. In the presented case the additional memory for the parameters of
controller and world model, provided with context information, allowed the system to cope
with fast switching sensors.

In the experiment was also demonstrated that in the case of multiple sensors those which
show a reasonable response to the motor actions are predominantly integrated in the sensori-
motor loop. Furthermore we were able to show how sensitive the robot reacts to situations it
can not properly predict. In this example the Khepera robot did not push the small moveable
box it was located in as long as it did not properly predict the change of the proximity sensors
when approaching a wall (as can be seen in the video Der et al. (2008)).

4.2 Second-Order Learning

In the following a different kind of extension than the long-term memory described in the pre-
vious section will be introduced. We combine the homeokinetic controller with an additional
learning mechanism (as presented in Hesse et al. (2007)) which brings about the avoidance
of situations that are hardly predictable by the internal model. For this purpose, a mechanism
is required that is able to predict the (large) modeling error in such situations. Here we in-
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Figure 4.6: Sketch of the extended control structure. A Hebbian layer affects the homeoki-
netic controller (now encapsulated in the homeokinetic layer) by the predicted modeling error
¢ which complements the low-level time-loop error.

troduced the prediction ( of the error of the state estimation which is provided by a different
input channel. This additional error will be associated with the low-level learning process
by an additional Hebbian layer (confer figure 4.6). The error function (equation 2.36), min-
imized by the homeokinetic control layer, is extended by the predicted modeling error ¢
which can be represented by

E=(L7E+Q) (L7(€+0), (42)

where the vectors & and ¢ have the same number of elements, which is equal to the number
of sensors of the homeokinetic layer. In addition to the minimization of the state estimation
error £, the robot minimizes the prediction ( of the state estimation error. ( is defined to be
small when context information is unavailable, such that in these cases the actual behavior is
produced by the low-level controller. Otherwise the behavior will be changed such that the
large modeling error ( is reduced. The extended objective function (equation 4.2) applies
only in the update rule of the threshold A, because we are interested in an extension of
the frequency effect (section 2.4.3) but want to maintain the the effects of the driving (see
section 2.4.1) and the anti-Hebbian term (section 2.4.2) of the update rule.

The Hebbian layer is realized by a leaky integrator neuron with a linear output function
for each of the sensor values z, i.e. for each x; the homeokinetic layer provides a predicted
sensor value Z; and a specific modeling error &;, the Hebbian layer provides the predicted
modeling error . All context information x° is used as input to each neuron of the Hebbian
layer and weighted by the synaptic strength w;; according to

G=Y wya§, i=1.n, (4.3)
j=1

with m being the number of context sensors available to the Hebbian layer and n the number
of sensors available to the homeokinetic layer. The update rule for the synaptic weights is

v

where ¢ is a learning rate and §;z§ realizes Hebbian learning between the modeling error §; of
the homeokinetic layer and the input z] of the Hebbian layer. The update rule will produce a
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positive synaptic strength w; if §; is mostly positive by the time 2 > 0. A negative w;;will
be produced if mostly & < 0 when z§ > 0. A regularization term (1 — wy;) is added, which
restrains the weights from unlimited increase. Nevertheless, a sensory input of 1 weighted
with a synaptic strength of nearly 1 would result in a predicted modeling error of about 1,
which can realize an immediate change of the actual behavior as intended. By adding the (via
the Hebbian layer) predicted modeling error to the actual modeling error, the homeokinetic
controller can thus avoid situations which lack low-level predictability.

4.2.1 Obstacle Avoidance for a Wheeled Robot

As a first example we consider a two-wheeled robot, where the low-level controller receives
the measured wheel velocities as input. In addition, infrared sensors are available as context
Sensors.

The modeling error describes differences between predicted and measured wheel veloc-
ities. The predicted modeling error is used to modulate the homeokinetic layer in order to
change the actual behavior before arriving at situations with a large modeling error, which
refers to collision situations in the example.

In the experiments we will show that an obstacle avoidance behavior of a two-wheeled
robot equipped with infrared sensors can be obtained, solely based on the intrinsic properties
of the system. The effectiveness of the obstacle avoidance is not perfect since the system
tries occasionally to also explore the regions near the boundaries. Nevertheless, the time the
robot spends near obstacles will be drastically reduced.

4.2.1.1 Setup

The initial setup of the experiments consists of a simulated two-wheeled robot with infrared
sensors, placed in a circular arena with diameter of 14 length units (see figure 4.7). For the
simulations the Ipzrobots software package (section 3.1) was used.

The Hebbian layer is provided with proximity information from eight infrared sensors
with a sensor range of three length units. In order to suppress small noisy activity in the
infrared sensors, only sensor values larger than 0.15 are considered. The synaptic strengths
w;; of the Hebbian layer are initialized with zeros. The parameters of the homeokinetic
layer are initialized with small random values, the eigenvalues of the Jacobian L of the loop
function v are checked to be positive (see section 3.2.3).

4.2.1.2 Results

In a first experiment only the homeokinetic layer was used. Experiment 2 was done us-
ing the extended controller. Each experiment runs for one hour simulated real time in the
Ipzrobots simulation package. To obtain some information about the long-term stability a
third experiment was conducted that lasted 24 hours.

The trajectory of the robot in the first two experiments is plotted in figure 4.8. The
positions of the robot concentrate increasingly on the inner obstacle-free region when using
the Hebbian control layer as compared to pure homeokinetic control. The histogram of the
robot’s distance from the center of the arena illustrates the effect of the learning scheme (see
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Figure 4.7: Experiments are performed with a two-wheeled robot in a circular arena. The
difference to the setup presented in figure 3.2 is that the robot here is equipped with wheel
counters and eight infrared sensors. The black lines indicate the IR sensor orientation and
range. The sensor range is 3 and the diameter of the arena is 14 length units.

figure 4.9). During the first part of the experiment (top row) the Hebbian layer started to
adapt but shows hardly any effect on the robot’s behavior yet. Hence the histograms show
similar distributions. The bottom row of figure 4.9 shows histograms of the robot’s position
during a later part of the experiment where the influence of the Hebbian control layer is
dominant. Without access to the Hebbian layer the robot’s probability of staying near the
wall is approximately three times higher than being at any other distance from the center
(confer figure 4.9 (bottom left)). This is caused by the fact that in the central obstacle-free
region of the arena behaviors are more stable due to the small modeling error and hence
larger distances covered by the robot, whereas in the region near the wall behaviors change
more often due to a larger modeling error and the robot is not able to cover large distances.
Therefore, the robot’s probability to stay near the wall is higher. When enabling the Hebbian
layer the robot’s probability of being near the wall is drastically reduced, and the highest
probability is now shifted towards the center of the arena (see figure 4.9 (bottom right)).

The predicted modeling error of the Hebbian layer leads to a change of the actual robot
behavior before the collision region is reached. Since the selection of the following behavior
is not constrained the robot can still reach the collision area, but with much less probability.
This can be interpreted as a flexibility of the system which continues to explore the collision
area.

The usage of the predicted modeling error in the homeokinetic layer leads to pre-collision
changes of the robot’s behavior rather than to the trivial solution where the robot stops some-
where in the central region of the arena. In figure 4.10 the traveled distance of the robot
with and without usage of the Hebbian layer is shown. Regions of inactivity are essentially
absent. Also, the total traveled distance is not reduced by incorporating the Hebbian layer.

In the long-term experiments the parameter dynamics works as in the pure homeokinetic
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Figure 4.8: Trajectory of the robot using pure homeokinetic control (left, also depicted in
figure 3.7) and the extended controller (right). An increasing concentration of the robot’s
positions in the inner obstacle-free part of the circular arena can be identified when using the
Hebbian control layer, as compared to pure homeokinetic control.

system, and realizes a slightly supercritical feedback strength as expected from theory (see
section 2.5.2). The comparison of table 4.1 and table 3.2 shows no remarkable differences,
except for the standard deviation of the bias i, which increased by a factor of nearly 4. This
shows that the frequency effect, which is responsible for the rate of change of the bias (see
section 2.4.3), is now more active, as intended by this setup.

The weights of the Hebbian layer during the 24 hour experiments show that the learned
correlations are indeed based on the behavior of the robot (confer figure 4.11). The two front
infrared sensors are included with a negative sign. Note that, if the wheel counters indicate
forward motion by x > 0, then the predicted velocity will typically also be positive & > 0.
Near a wall the front infrared sensor will be active, but after collision the velocity sensor will
yield x = 0, while the prediction is still & > 0. Hence, £ will be negative. So by converging

(a) (b)
| parameter | mean | standard deviation | | parameter | mean | standard deviation |

c[0,0] | 1.2130 0.0921 a[0,0] | 0.9728 0.0311
cf0,1] | 0.0132 0.1478 al0,1] | -0.0044 0.0191
c[1,0] | 0.0024 0.1615 a[1,0] | -0.0040 0.0216
c[1,1] | 1.2301 0.1097 a[l,1] | 0.9636 0.0377
h[0] | -0.0090 0.2073
h[1] | 0.0027 0.2247

Table 4.1: Mean value and standard deviation of (a) the controller and (b) the model parame-
ters of a twenty four hour experiment.
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Figure 4.9: Histogram of the robot’s distance from the center normalized by the respective
areas for pure homeokinetic control (left column) and the extended controller (right column)
of the first 15 minutes (top row) and last 15 minutes (bottom row) of the experiments with
a total time of 1 hour. In the initial phase the Hebbian layer is not yet functional and both
controllers show comparable results. In the later part of the experiment (bottom row) the
mean occupancy has shifted away from the wall towards the center of the arena in the case of
the extended controller.

to negative weights for the front infrared sensors the Hebbian layer extracts this correlation
and is able to predict a negative future modeling error (. The same holds true for the rear
infrared sensors with inverted sign for weights and modeling error. For the sideward sensors
the correlations are not significant.

4.2.1.3 Summary

In this experimental proof of principle we could show that combining the homeokinetic
controller with a second order learning mechanism based on Hebbian learning can shape
the behavior of the agent under control, while keeping the properties of the self-organizing
system. In the concrete realization a collision avoidance behavior could be realized, based
on the minimization of the predicted error of the state estimation.

If the effect of the additional error term is inverted the robot will move only in the vicinity
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Figure 4.10: Cumulative distance traveled by the robot over time using pure homeokinetic
control and the extended controller. The traveled distances in the two experiments are com-
parable, indicating that the Hebbian layer did not reduce the activity of the robot. This holds
true for (a) the one hour as well as for (b) the twenty four hour experiment.

O I
@—_—_

=0.5

@—:—

=(.5

@—:!::—

=(.5
-0.5

KN ——
KN —_

Figure 4.11: Histogram of the weights of the Hebbian layer contributing to (; for a long-term
experiment (24 hours simulated real time) with extended controller. Bright color corresponds
to many, dark color to zero (or only a few) counts in that interval. The labels on the left show
the locations of the infrared sensors, the arrow indicates the forward direction. Front and
rear sensor weights have negative and positive sign, respectively, indicating the ability of the
Hebbian layer to correctly extract the correlations between modeling error £ and IR sensor
activity.
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of the wall. In this way the robot increases its opportunity to adjust its internal parameters
such that it is able to move freely near walls. The robot’s preference for wall in this modified
scheme suggests it as a model for a foraging rat, confer e.g. the work of Tamosiunaite et al.
(2008). We will study the modified principle in a more complex hardware set-up in the
following section.

4.2.2 Gripping in a Human-Hand Model

The proposed combination of second-order learning and homeokinetic control should now
be further investigated in application to a more complex robotic device — a simulated human
hand model. Besides the question of the transferability of the presented principle to different
devices, it should be investigated whether the behavior of the system can also be shaped in a
different way than to avoid situations lacking low-level predictability.

4.2.2.1 Setup

For the following experiment a model of a human hand with 5 degrees of freedom was
programmed in the [pzrobots software package (section 3.1) (see figure 4.12). All joints

Figure 4.12: Simulation of a human hand with multiple degrees of freedom. The hand is
equipped with motion sensors at all joints and infrared sensors at the finger tips. It is operated
in a fully exploratory mode with or without a manipulated object.

are controlled by bidirectional motors that mimic the interplay between flexor and extensor
muscles. The effect of a motor action is measured by motion sensors, which serve as input to
the low-level homeokinetic controller. Each finger is controlled by an individual controller
such that interactions between the fingers are possible only via the environment. If no object
is present for manipulation the fingers become quickly engaged in vivid movements which
can be interpreted as an exploration of the dynamical range. In the presence of an object the
modeling errors increase considerably when the fingers touch the object, because this is not
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predicted by the internal model. Context information about objects in the hand is provided
by infrared sensors in the finger tips.

In this experiment we exploit the directionality extracted by the Hebbian layer (see fig-
ure 4.11) by directly adding the output of the higher layer to the update of the threshold / in
equation 2.39. This allows a targeted change of the behavior of the system in contrast to the
setup described in the previous section.

Like in the previous experiment the synaptic strengths w;; of the Hebbian layer are initial-
ized with zeros. The parameters of the homeokinetic layer are initialized with small random
values (the eigenvalues of the Jacobian L of the loop function ¢ are checked to be positive,
see section 3.2.3).

4.2.2.2 Results

Applying the combined controller to the simulated hand leads to the generation of vivid
motions of all fingers, as long as there is no object in the hand. After adding an object for
manipulation and giving the Hebbian layer some time to adapt, the fingers will flinch when
arriving close to the surface of the object but remain active otherwise like in the free case.

By changing the sign of the contribution of the higher layer to the bias update we can
shape the behavior of the system in order to show a gripping reflex. Hence as soon as the
Hebbian layer is adapted and the context sensors indicate the presence of an object in the
hand, the fingers will grip the object. Figure 4.12 shows a picture of the simulated hand
holding a bar of simulated wood.

Details of the adaptation process for one synaptic strength of the Hebbian layer are shown
in figure 4.13. Only when the modeling error and context sensor have values different from
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Figure 4.13: Adaptation of the synaptic strength of the Hebbian layer accounting for the mid-
dle finger and the attached infrared sensor during the experiment. According to equation 4.4
the change of a weight is defined by the corresponding modeling error £ and context sensor
x¢ (in this case the infrared sensor). If both values are considerable a change of the weight is
triggered.
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zero an adaptation of the corresponding Hebbian weight will take place. Remember that
the infrared sensor activity is considered zero as long as it is smaller than 0.15 to suppress
sensory noise. Hence the Hebbian weight in figure 4.13 does not change when the infrared
sensor value is around zero.

The results of the adaptation of the Hebbian layer are shown in figure 4.14. At the
beginning the motor commands (lower diagram) indicate vivid movements of the fingers
while an object is present. Hence the infrared sensors change between full and no activity.
As the prediction ability of the Hebbian layer increases over time, it starts to dominate. Thus
the gripping behavior is preferred, as indicated by the positive motor commands (closing
the hand) and infrared sensor activities around 1 (fingertips touch the object). When the
object is removed the infrared sensors are inactive and the motor commands show the vivid
movements of the fingers again. If the object reappears the fingers will immediately grip it,
since the Hebbian layer is already learned (right hand side of figure 4.14).

4.2.2.3 Summary

We could show that even in this more complex hardware setup the combination of homeoki-
netic control and second-order learning, realized by a Hebbian layer, leads in a first instance
to a behavior where areas with a large modeling error are avoided. This was be achieved
by interpreting only information of the low-level control, namely the modeling error already
calculated in the homeokinetic layer.

When providing a further internal mechanism or giving a goal from outside the behavior
can also be shaped differently. This was shown in the presented experiment by the generation
of a gripping reflex in the simulated hand model (see videos Der et al. (2008)).

4.3 Discussion

In the first experiment (section 4.1) the question of sensor integration was investigated. The
experiments showed that the homeokinetic control is able to integrate online newly attached
sensors as well as to no longer consider removed or damaged ones. Thus the system exhibits
a lifelong plasticity and is able to adapt to the actual situation. The additional long-term
memory provided with context information enabled the system to adapt to different situa-
tions without relearning of the parameters. Thus also sensor showing fast switching activity
and characteristics can be integrated in the sensorimotor loop. The basic behaviors shown
by realistically simulated hardware agents in section 4.2 are obtained from the interplay of
the mildly destabilizing homeokinetic controller with the environment, which is constrained
by the prediction quality achieved by an internal model. In unforeseen situations, i.e. “ob-
stacles”, parameter changes are triggered which are time-consuming and may even cause
unlearning of previously acquired behaviors. The proposed second-order learning schemes
are coping with such situations in different ways: Either the robot is controlled so as to avoid
these situation, which generates an interpretation of additional sensory inputs in terms of
the low-level affordances, or the robot is guided towards these situations in order to further
improve its prediction quality. The decision which mode of operation of the second-order
learning is to be activated is to be taken depending on the quality of the internal model, such
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Figure 4.14: The finger movements that are initiated by the self-organizing controller soon
converge to a grip of the object (high infrared sensor activity) with only small deviation of
single fingers from the surface. When the object is removed, the exploratory movements
restart. If the object is present again the fingers will immediately grip it since the Hebbian
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that increasing prediction quality should favor the explorative mode, while unsurmountable
errors should lead to a preference of the avoidance behavior. The explorative character of the
low-level self-organizing controller is retained in both cases and the robot still occasionally
explores risky regions and is hence able to adapt to slow changes in the environment. The
work also shows parallels to the early motor development in biology, confer e.g. the work of
Kuniyoshi and Sangawa (2006), and provides a scheme for the formation of reflexes based
on an approach to the self-organization of autonomous behavior.



99

Chapter 5

Self-Organization for the Control of
Myoelectric Prostheses

5.1 Introduction

Since a long time prosthetic devices have brought back a new quality of life to people which
for some reason lost a limb. Since the seventies of the last century myoelectric control espe-
cially for the upper limb has enormously increased the capabilities of prosthetic devices. In
myoelectric control signals from the muscles of the residual limb, which have no use any-
more due to the loss of the limb, are recorded by electrodes placed on the skin above the
muscles. By contracting these muscles the amputee can thus send a control signal to the
prosthetic device. In this chapter we will focus on forearm prosthesis with myoelectric con-
trol. The decoding of the muscle signals is a challenging problem, since in the forearm there
are a lot of muscles next to and on top of each other (see figure 5.1(a)). Additionally they
can move against each other. This anatomic fact complicates the mapping from measured
signals to muscle activity (Farina et al., 2004). That is why so far amputees have to train
special movements with their (imaginary) limb, which are known to give reliable results in

(@) (b)

Figure 5.1: (a) Cross section of a human forearm showing the complexity of the anatomical
structure (Lippert, 1995). (b) Wrist flexion and wrist extension of a healthy hand (Willburger,
2007). These motions are commonly used as control commands for prosthetic devices.
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most cases. Wrist flexion and extension, as shown in figure 5.1(b), are commonly used to
control the two directions of a one degree of freedom device proportional to the extent of the
muscle contraction. Usually the hand aperture is controlled in such prostheses.

According to Sears and Shaperman (1998) the majority of patients prefers the use of an
additional wrist rotator over a single motor setup. Controller of prosthesis with more than
one degree of freedom nowadays available to amputees are realized as state machines. This
means the device can be in different states where one and the same muscle contraction leads
to different movements depending on the current state. Hence the patient has to keep the
actual state of the device always in mind in order to be able to correctly control it. The tran-
sition between different states is realized by a co-contraction of flexor and extensor muscle.
This works in practice but the patients have to accustom to this movement. Furthermore it
is time consuming, so complex movements of different degrees of freedom can only be ex-
ecuted in a serial order. Figure 5.2 depicts a state machine for a prosthetic device with two
degrees of freedom: the abilities to rotate the wrist and to control the aperture of the hand
(open/close the hand).

Wrist Rotation

Co-Contraction Co-Contraction

Hand Aperture

Figure 5.2: State machine for a two degree of freedom prosthetic device. Each of the two
rectangles represents the control of one degree of freedom of the device. State transitions are
triggered by co-contractions as indicated by the arrows.

For the use of prosthetic devices it would be beneficial if more than one degree of freedom
could be controlled by extracting different features from the surface electromyographical
signal instead of using state machines. This becomes more and more important when robotic
and also prosthetic devices with many degrees of freedom will be available (figure 5.3). The
control of such actuators should be realized in a proportional manner, where the velocity
and grip force of the prosthesis are controlled proportional to the strength of the muscle
activation, as preferred by amputees according to a study by Sears and Shaperman (1991).

In recent years approaches using multi layer perceptrons and/or support vector machines
to differentiate between more control signals were tested, leading to an increased number of
motion commands and the abolition of the co-contraction and different states of the device.
Hence the usability of prostheses was considerably increased. One necessity of this methods
is the execution of prespecified motions by the amputee. The muscle activity of these motions
is recorded in order to train a classifier. When later using the prosthetic device the patient
has to try to generate the same motions, since these are required to control the prosthesis (see
for example Eriksson et al. (1998); Karlik et al. (2003); Willburger (2007)).

Inspired by this topic a mechanism allowing the adaptation of the motion commands
according to the abilities of the patient in an automated manner, based on the homeokinetic
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(a) Hand open. (b) Palmar grip. (c) Lateral grip.

Figure 5.3: Different types of grip: Future prosthetic hands will be able to perform different
types of grip similar to those sketched here. Conventional control schemes are not suitable.
Advanced control schemes are required. (Willburger, 2007).

approach (as presented in chapter 2) was investigated, as will be explained in the following
section.

5.2 Self-Organization in Prostheses Control

The goal of applying the self-organization approach (section 2) to prosthesis control is
twofold. On the one hand we want to come up with an individual set of surface electromyo-
graphical signal features which allows patients to control the prosthetic device. On the other
hand we want to increase the capabilities of the patient to produce discriminable signals. The
field of application is seen in a training period, previous to the use in everyday life. In this
period the patient-specific set of features is to be found in an interaction process between
patient and prosthesis. Since the homeokinetic controller generates already a little activity
of the prosthesis, patients, especially patients with weak signals (for example due to degen-
erated forearm muscles), get the impression to be able to bring the device into motion and
could thus be encouraged to work with the system for longer periods. Thereby the required
muscles will be strengthened, and the signal quality and the controllability are expected to
be improved.

The control loop in this case will include two learning systems, namely the controller and
the subject (or patient), compare figure 5.4. Motor commands of the controller are passed
to the prosthesis. The movements of the latter can be visually observed by the subject.
The reactions of the subject, measured via the surface electromyographic signal, are used as
input to the self-organizing controller and build the basis for the generation of the next motor
command.

In the beginning of the training period the prosthesis will start movements even if only
noise is applied to the sensors, based on the driving term in the update rule (as described in
section 2.4.1). This marks the beginning of the interactive process. During the interaction the
patient tries to support the movements shown by the prosthesis with motions he prefers and is
able to generate. If after some minutes the prosthesis does not react to this movements, other
movements have to be tried. The controller on the other hand will detect motion signals
which are useful to control the prosthetic device (as described in section 2.5 and further
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Figure 5.4: Sketch of the control loop for a prosthetic device with self-organizing controller.
Motor commands generated by the controller actuate the prosthetic device. This can be ob-
served by the subject via visual feedback. The surface electromyographic signal (sSEMG)
measuring the muscle activity of the subject is used as input signal of the controller, on which
new motor commands are based.

investigated in section 4.1). These control commands are not prespecified and therefore
allow an adaptation to the individual patient.

The control realized by the self-organization approach is proportional if the features pro-
vided as input to the controller are proportional. Since the motor commands are generated
as a linear combination of the sensory inputs (the nonlinearity only confines the absolute
value of the motor commands) the controller keeps the proportionality, provided the latter
existed in the inputs. In a possible further processing step the motor commands could also
be discretized to use them in binary mode, or to weight them with the overall muscle activity
obtained, for example, from different features.

5.3 Equipment

The experimental setup consisted of special electrodes, an analog-to-digital converter, a per-
sonal computer and software, as described in the following.

5.3.1 Electrodes

Horst Willburger (Otto Bock Healthcare Austria) developed and provided the electrodes used
in this work. Such an electrode consists of four contact surfaces attached to a carrier, as
depicted in figure 5.5.

Since these electrodes do not carry ground contacts, ground connection was established
with a separate electrode. Three voltage signals U; were calculated by building the difference
between the potentials P; of neighboring contacts:

U =PF — P withi=1.3 S.D

With this setup a surface electromyographical signal with 3 channels could be provided from
each electrode. On the electrode the signals were amplified by a factor of 10 and before
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Figure 5.5: Sketch of a used surface electrode with four contacts. A differential surface
electromyographical signal pick-up was used, providing three channels U; . .. Us.

entering the analog-to-digital converter they were again amplified by a factor of 100 on a
special circuit board.

One electrode was placed at the flexor digitorum superficialis and a second one at the ex-
tensor digitorum (forearm). Hence the recorded surface electromyographical signal consists
of six parallel channels, which are then processed by the analog-to-digital converter.

5.3.2 Analog-to-Digital Converter

In the experiments a DAQCard-6036E analog-to-digital converter from National Instruments
(2008a) was used. The sampling rate was chosen to be 3000 samples per second. From the
analog-to-digital converter the recorded digital data were delivered to the LabVIEW software
for further processing.

5.3.3 LabVIEW

In the presented experiments LabVIEW (National Instruments, 2008b), a graphical program-
ming framework for signal processing, control applications and the interaction with mea-
surement hardware, contains the main functionality consisting of the preprocessing of the
acquired data, the feature extraction and the controller. As first processing step a high pass
filter with 10 Hz cut of frequency and a band-stop filter (to filter out any noise from the 50 Hz
power line) were applied to the signals. Further details of the feature extraction can be found
in the setup section of the respective experiment.

When using a real prosthetic device to be controlled by the presented approach this could
be done by sending the control signals via a digital-to-analog converter to this device. In
the current setup the motor commands were send via the pipe mechanism! to a simulation
software, which will be described in the next paragraph.

!'In software engineering, a pipe connects different data processing entities, so that the output of one element
is the input of the other. Usually some amount of buffer is provided between the elements.
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5.3.4 Hand Prosthesis Simulation

Due to the need for a visual feedback a three-dimensional physics simulation of a hand pros-
thesis was created using the Open Dynamics Engine (Smith, 2008). Forces and torques can
be applied to any body and motors are available. Figure 5.6 shows a screenshot of the hand
model with sixteen degrees of freedom. In the simulation all degrees of freedom can be

Figure 5.6: Screenshot of the three-dimensional hand simulation based on the Open Dynam-
ics Engine. Sixteen degrees of freedom are independent and simultaneously controllable in
this hand model. To match current prostheses the degrees of freedom are coupled to result in
a device with two degrees of freedom. One for wrist rotation and one for the hand aperture.

independent and simultaneously controlled. To fit the properties of current hand prosthesis
the degrees of freedom were coupled to result in two independent and simultaneously con-
trollable degrees of freedom. One degree of freedom is used for open and closing the hand
while the other is used for rotating the wrist clock- or counterclockwise.

5.4 Illustrative Example

5.4.1 Goal

In this experimental setup we will investigate the possibility of a self-organized control of
a myoelectric hand prostheses with one degree of freedom. We are not focusing on the
optimization of the myoelectric signal generation nor the extraction of features from these
signals. Our interest is to find out if it is possible to equip a myoelectric prosthesis with a
self-organizing controller, in order to select those features of the myoelectric signal which
allow the subject to control the prosthetic device. This selection process is done in interaction
of subject and prosthesis in a training period, previous to the use of the prosthetic device.
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5.4.2 Setup

In the following experiment six signals were used as input to the self-organizing controller.
Four signals were extracted from the six available surface electromyographical signals. Sig-
nal s; is the difference between the root mean square values of two voltage signals U; and
U, (see section 5.3) obtained above the antagonistic muscles:

S1 = RMS(Ul) — RMS(U4),

where the root mean square value for a collection U of N values {uy, ug, ..., uy} is

RMS(U) = (5.2)

N was chosen to be 512. With a sampling rate of the analog-to-digital converter of 3000
samples per second, roughly six values are calculated per second. Signals s, to s4 are the
differences between the root mean square values of two voltage signals within the same
electrode:

So = RMS(Ul) — RMS(UQ)
S3 = RMS(UQ) - RMS(Ug)

In order to simulate unusable channels the two remaining signals s; and sg contain white
noise and are therefore hardly predictable by the internal model. Hence these signals should
not be used for the control of the prosthetic device (according to section 2.5). The sensor
values of the homeokinetic control are x = s = (s1, So, 83, 4, S5, S¢)~ . The motor command
y generated by the homeokinetic controller is directly used for the control of the prosthetic
device.

5.4.3 Results

The presented experimental run, conducted with a healthy subject, lasted seven minutes.
The learning of the controller parameters was stopped when the patient reported the feeling
of being able to control the prosthetic device. This happens when features are selected by
the controller which allow the subject to control the prosthesis. Then a test was conducted,
where the task of the subject is to move the prosthesis according to a given reference signal.

Figure 5.7 shows the input signals = and the motor command y generated by the con-
troller during the experimental run. It can be obtained by visual inspection xz; gives the
strongest response to the movements initiated by the subject. The generated motor com-
mand is very noisy in the beginning, but subsequently it gets more similar to x; due to the
adaptation of the controller parameters, as explained below.

The model parameters during the experimental run are shown in figure 5.8(a). Since the
sensor value z; (see figure 5.7) gives the strongest response to the subjects movements the
model parameter a; shows the largest absolute values of the model parameters. The other
sensor values do not depend that strongly on the motor command y.
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Figure 5.7: Inputs x to and motor command y generated by the self-organizing controller
during the experiment. The inputs x| to x4 were obtained by subtracting the root mean square
values of the electromyographical signals. The inputs x5 and g are noise signals, which do
not depend on the muscle activity of the subject. The generated motor command y is in the
initial part very noisy, since the inputs x5 and x¢ are relatively strong weighted by the synaptic
strength ¢ (compare figure 5.8(b)). Later on the inputs obtained from the electromyographical
signals (z1 to x4) are weighted stronger and the motor command becomes more similar to
x1. After around 360 seconds the subject reported the ability of being able to control the
prosthesis. At this point learning was disabled for the test (see figure 5.9(b)).

After fluctuations and different constellations of the controller parameters the synaptic
strength ¢; is dominating (figure 5.8(b)), according to the parameter of the internal model
and the proportionality between c¢; and a; (see equation 2.43). The contribution of the other
sensor values to the generation of the motor command are negelectable. With this parameter
setting the subject gets the impression of being able to control the prosthetic device. Hence
the adaptation of the controller parameters was stopped, in order to run the test with this set
of controller parameters and hence selected features.

The feedback strength in the loop, as obtained by model and controller parameters is
seen to increase in the course of time and reach slightly supercritical values (figure 5.9(a)),
as expected from the homeokinetic controller (see section 2.4).

The reference signal and motor command during the test of the adapted controller and
hence the selected input signals is shown in figure 5.9(b). A combined visual and acous-
tic stimuli was used to indicate the desired movements of the prosthetic device the subject
should realize. This stimuli is plotted in the diagram as reference signal . The plot of the
motor command shows that the patient was able to generate the desired sequence of input
signals and hence the desired motions.

The solution found in this setup is not surprising. The input signal s; was the most
promising signal provided and is also used in nowadays prosthetic devices. The interesting
point, however, is that this solution was found. The self-organizing controller, in interaction



5.4 Illustrative Example

107

o SO0 o f ‘; Ll
—0.2 " " " " 7L " . " "
0 100 200 300 400 0 100 200 300 400
time [sec] time [sec]
(a) (b)

Figure 5.8: Parameters of (a) the internal model and (b) the controller. It can easily be
seen that the model parameter a; has the largest absolute value. This denotes that the motor
command y provides useful information about the input signal ;. The latter can also be
seen in figure 5.7, where x1 shows the strongest response to the motions executed by the
subject. In the initial part of the experiment the controller parameters change continuously,
showing many different constellations. From about 300 seconds on the synaptic strength c; is
dominating, reflecting the values of the model parameters. After approximately 360 seconds
the subject reported the ability to control the prosthetic device, hence the adaptation of the
parameters of model and controller was disabled.
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Figure 5.9: The course of (a) the feedback strength R in the loop during the experiment and
(b) the reference signal r and control command y during the test after successful training.
The feedback strength increases from the small initial value and reaches supercritical values
after circa 300 seconds. After approximately 360 seconds the adaptation of the parameters of
the self-organizing controller was disabled for the test depicted in (b), resulting in a constant
feedback strength. In the test the reference signal r represents the stimuli presented to the
subject, indicating the desired movements of the prosthetic device he should initiate. The
motor command is the signal generated by the controller based on the muscle activity of the

subject. The subject succeeded in generating the desired sequence of motions of the prosthetic
device.
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with the subject, was able to select this signal for the control of the prosthetic device from a
set of given signals, without further information provided.

5.5 Controlling a Prosthesis

5.5.1 Goal

In this second experiment the self-organizing controller, provided with features of elec-
tromyographic signals as inputs, is used to control a two-dimensional prosthetic device.
Assumed as above that the selection of prevalent features of the surface electromyographic
signal we used is suitable for this task, we focused on the question if it is possible to equip
a myoelectric prosthesis with a self-organizing controller, in order to select those features
of the myoelectric signal which allow the subject to control a two-dimensional prosthetic
device. The adaptation of the controller is done in interaction of subject and prosthesis in
a training period, previous to the use of the prosthetic device. The idea is that later on a
controller for the everyday use of the prosthesis can utilize the selected features to control
the prosthetic device.

5.5.2 Setup

In the following experimental setup five signals extracted from the recorded electromyo-
graphic signal were used as input to the self-organizing controller. The first four signals
are obtained by simply superposing adjacent voltage signals U. This superposition scheme
proposed by Willburger (2007) requires little computational effort and exploits information
about the motor unit action potential propagation, which varies with different motions. Mo-
tor unit action potentials are generated when a motor neuron stimulates the connected muscle
fibers at the neuromuscular junction (see figure 5.10), from where the action potential trav-
els to the tendons (where the muscle is fixed to the bone). According to Willburger (2007)
the superposition scheme performs similar or even superior to time domain and frequency
domain features in the proposed system, which was supported by the tests we conducted
previous to choosing the setup for this experiment.

The processing steps to calculate the superposition feature are depicted in figure 5.11,
and read
_ RMS(U; + U;) — RMS(U; — Uj)

Ji= RMS(U; + U;) + RMS(U; — U;)’

where j = 141, except for 7 = 3 and = = 6 where the first voltage signal of the corresponding
electrode is used (7 = 1 or 4 respectively).

The first two signals used as inputs to the self-organizing controller are one of the super-
position features of each electrode:

51:f5
82:f1
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Figure 5.10: Muscle, motor unit and the neuromuscular junction at the transition from the
axon to the muscle fibers, exemplified at the upper arm. (Boron and Boulpaep, 2003).

The input signals two and three contain differences of the signals from the two electrodes:

s3=fo— fs
s4= f3—fs

The last signal is similar to the one used in the previous section
S3 — RMS(UQ) — RMS(U5)

Hence, the sensor values are © = s = ($1, So, S3, S4, 55)T. The motor command y =
(y1,92)" generated by the homeokinetic controller is directly used for the control of the
two-dimensional prosthetic device.

5.5.3 Results

The following experiment was conducted with a healthy subject and lasted about one hour.
The subject had seven trials from about the same length before, where the two degrees of
freedom could not be independently controlled. Hence, in the current setup several hours
of interaction are required to eventually be able to control the prosthesis. Another point to
mention is, that subjects have problems to remember the specific hand position leading to
one of the movements of the prosthesis, since small deviations of the finger position can
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Figure 5.11: Superposition scheme outlining the processing steps to calculate the superposi-
tion feature for the voltage signals U; to Us of electrode one.

lead to different inputs for the self-organizing controller. This is caused by the fact that the
superposition features are very sensitive. On the one hand this allows to provide distinct
information to control the prosthetic device, on the other hand it can be to sensitive for
remembering the hand position for a specific motor command.

The adaptation of controller and model parameters during the experiment is shown in
figure 5.12. The internal model, which tries to adapt to the mapping from motor commands
to the features, does not show a dominating channel like in the previous experiment. Rather
all model parameters show considerable absolute values. This means that all sensors depend
on the motor command. Reflecting the model structure all sensors will be included in the
generation of the motor command, as depicted in figure 5.12(b) (compare section 2.5). The
adaptation of controller and internal world model was disabled, when the subject reported
the feeling of being able to control the prosthetic device, which happend after about half an
hour.

The feedback strength in the loop developed to positive values, even so Ry was subcritical
when the learning was disabled (figure 5.13(b)). The input features during the interaction
period of subject and prosthetic device are shown in figure 5.13(a). By visual inspection no
favorable feature can be identified.

The test of the ability to control the prosthetic device with the selected input features was
conducted after the interaction period, when learning was disabled. In this test, the subject is
instructed to generate movements of the prosthetic device as indicated by visual and acoustic
stimuli. Figure 5.14(a) shows the five features of the surface electromyographic signal during
the corresponding motions. The motor commands generated by the homeokinetic controller
based on these inputs and the reference signal r indicating the movements the subject should
generate are depicted in figure 5.14(b). Three different combinations of the two motor com-
mands x; and x5 were generated by the subject, plotted as three distinct parts in the diagram.
The first part shows movements where the motor command ¥, oscillates between positive and
negative values while the motor command ¥, stays at positive values. This means the wrist
of the prosthesis rotates inwards (pronation) and outwards (supination) while it is open. The
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Figure 5.12: Parameters of (a) the internal model and (b) controller. The adaptation of the
model parameters shows no favorable input feature, since all absolute values of the parameters
are in about the same range. This is also the case for the controller parameters, where a
combination of input signal is used to generate the control command for the two degrees of
freedom rather than one channel is exclusively selected. After 1700 seconds (= 28 minutes)
the adaptation of the homeokinetic controller was disabled, since the subject reported the
feeling of being able to control the prosthesis.

second part shows an oscillation of both motor commands, with opposing sign. This corre-
sponds to a supination with simultaneously opening of the hand alternating with a pronation
with simultaneously closing of the hand. The third part shows motor command 5 oscillating
between positive and negative values while y; stays positive. In this case the hand opens and
closes while the wrist rotates inwards.

This experiment shows that during an interaction period of a subject and a prosthesis
equipped with a self-organizing controller input signals are automatically selected, which
allow the subject to control the two degrees of freedom of the prosthetic device.

5.6 Summary

For the one and the two-dimensional case it was possible for the subject to control the pros-
thetic device with the features selected by the self-organizing control in the interaction pe-
riod.

In the one-dimensional case the homeokinetic controller selected the root mean square
feature for control of the prosthetic device. With this feature the subject was able to control
the prosthesis according to a given reference signal. This feature is also used in nowadays
prosthetic devices. Hence the solution found is not surprising. But that the self-organizing
controller, in interaction with the subject, was able to select this signal from a set of given
signals, without further information provided, is remarkable.

In the two-dimensional case a combination of the provided features was selected and
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Figure 5.13: (a) Features of the surface electromyographic signal used as inputs to the con-
troller and (b) the feedback strength in the loop during the interaction of patient and prosthe-
sis. All input signals show activity during the interaction period. A single, promising feature
can not be identified. The feedback strengths go to positive values, R, reaches supercritical
values.

allowed the subject to control wrist rotation and hand aperture of the prosthetic device ac-
cording to the reference signal. A difficulty was observed based on the sensitivity of the
used feature. Small changes of finger positions resulted in different inputs to the controller
and hence different motor commands. This made it sometimes problematic for subjects to
remember the correct hand positions for the motor commands.

5.7 Discussion

In the presented experiments we have shown that it is possible to select input signals for the
control of a prosthetic device in an interaction period of a subject and a prosthesis equipped
with a self-organizing controller.

An interesting point is, that the input features are not selected according to the signals
the subject provides in the beginning, when in the usual scheme the signals are recorded
and a classifier is learned with these signals. Here the subject is encouraged to interact with
the device, thereby generating different movements and input features. Due to this training
period the subject may provide better input signals to be used later on.

During the experiments it was observed that the used superposition features are very
sensitive to small changes of the finger positions, which made it sometimes problematic for
subjects to remember the correct hand positions for the motor commands. Nethertheless the
self-organizing controller found the sensitive patterns indicating the possibility to control
even more degrees of freedom. For future work the use of larger electrode arrays or ring
electrodes, perhaps incorporating different features, is expected to ease and improve the
possibilities of the feature selection, since more input channels and hence more information
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Figure 5.14: (a) Sensors values and (b) motor commands of the homeokinetic controller
during the controllability test. In the test the subject was able to control the two degrees of
freedom independently. In the first part of the diagram vy, oscillates between positive and
negative values as indicated by the reference signals, while ys stays at positive values. In the
second part both motor commands change sign, but keep opposite sign. The third part shows
an oscillation of yo while y, stays at positive values.

about the muscle activity can be exploited.

If the self-organizing controller is provided with more input signals the adaptation of the
parameters will require more computational effort. Serializing the parameter updates, for
example update only the parameters corresponding to one sensor in a time step, can reduce
the computational effort. However, since the calculations during the interaction period are
executed on a personal computer and not on the prosthesis itself, no computational problems
are expected.

In general, if several degrees of freedom are available it is possible, that some actuators
focus on the same input provided to the controller, since there is no direct feedback from
actuators to sensors, as for example in robotic applications. Hence some actuators can select
the same input features, resulting in coupled degrees of freedom. For future work, especially
when more than two degrees of freedom should be controlled, an additional competitive
learning scheme (see for example the work of Rumelhart and Zipser (1985)) applied to the
internal model, not allowing similar couplings for different actuators, is expected to solve
this.

The time required for generating a motor command is determined by the effort required
to calculate the feature values used as input to the homeokinetic controller. The controller
requires basically only one matrix multiplication of the controller parameters with the input
values to generate the motor command. Hence also faster processing setups than the one
used here are possible, depending on the effort required for the feature extraction.

With the results achieved so far we could show that the selection of appropriate input
channels by interaction of a self-organizing controller and a human is a feasible approach.
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The idea is not limited to prosthesis control. Other areas of application where input fea-
tures for the control of actuated devices or for interaction with electronic media have to be
selected are imaginable, for example surface electromyographic signal or electroencephalo-
gram based control of robotic actuators or game consoles.
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Chapter 6

Conclusion and Outlook

In this thesis a realization of the homeokinetic approach to self-organized acquisition of be-
havior in autonomous robotic systems, proposed by Ralf Der (Der and Liebscher, 2002; Der,
2003), was introduced and analyzed with respect to different questions in various experi-
ments. Extensions to the homeokinetic controller, allowing to adapt to different situations
and to shape the generated behaviors, as well as an application to the control of myoelectric
prostheses were investigated.

Homeokinesis follows the dynamical systems approach. Based on the mathematical de-
scription of the sensorimotor dynamics, the controller parameters can be adapted with ref-
erence to an objective function, which in case of the homeokinetic controller is completely
internal to the robot. Since this objective function is the error arising in a time loop it is
called time-loop error.

In chapter 2 we showed that homeokinesis can be used to derive concrete learning rules
even though it is a general domain-invariant principle, hence not depending on the concrete
realization of the robot nor the environment. If the controller of an autonomous robot is
equipped with these rules the robot develops domain-related behaviors. Without relying
on prior knowledge about the robotic body or the environment, body- and environment-
related behaviors will be generated in the sensorimotor loop in a self-organized way. As
known from physics, self-organization results from the compromise between a driving force
which amplifies fluctuations and a regulating force which tries to constrain the system. In
the homeokinetic paradigm the interplay between regulating and destabilizing force has its
counterpart in the two terms of the objective function. On the one hand the system tries
to increase the predictive ability of an internal model, which aims for smooth behaviors.
On the other hand it tries to increase the Jacobian of the system which will destabilize the
sensorimotor dynamics. Hence small changes in the sensor values will be amplified and lead
to activity of the system and to the generation of different behaviors over time, while the
requirement for predictability keeps the system back from chaotic actions.

The body- and environment-related behaviors shown in this work arise in a self-organized
fashion, as a result of the interplay of state and parameter dynamics in the proposed sys-
tem. Since the concomitant learning of controller and the internal model starts from scratch
homeokinesis shows a way to face the cognitive bootstrapping problem (see section 1.6).
This problem arises because on the one hand the controller needs a feasible model to exploit
the properties of the device under control. On the other hand the model has to be provided
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with necessary information about the behavior of the body which requires controller actions
making this information available.

Considering the update rule of the homeokinetic controller we find the following three
effects: (1) The generation of activity (section 2.4.1) in the sensorimotor loop by increasing
the synaptic strength of the controller neurons and hence the feedback strength in the loop.
Eventual sensory noise is enough to bring the system into motion due to the noise ampli-
fication effect. (ii) The requirement for predictability (section 2.4.2) prevents an unlimited
increase of the synaptic strength of the controller neurons and realizes a slightly supercritical
feed-back strength in the sensorimotor loop as soon as a system is active. Thus the systems
generate behaviors at the borderline between predictable but inactive and active but unpre-
dictable/chaotic behaviors. (iii) The frequency effect (section 2.4.3) as the third component
in the update rule is responsible for the change between different behaviors by switching
between the fixed points of the system. Thereby the time span of a specific behavior depends
on the strength of the modeling error.

In hardly predictable situations (e.g. the two-wheeled robot near the wall, section 3.3)
the frequency effect causes frequent changes of behavior. Hence the system is provided with
a lot of information resulting from different behaviors in order to improve the predictive
abilities in this situation. On the other hand behaviors which are well predictable (e.g. in the
obstacle free part) are kept for longer time. Hence, these regions are swiftly crossed. Thus
the homeokinetic control realizes active perception (Nolfi and Marocco, 2002).

In chapter 3 it was shown that in experiments with various robotic devices the homeoki-
netic principle, after solving the bootstrapping problem, generates environment- and body-
related, active behaviors. In section 3.2 the proposed system with its parameter dynamics
outperforms a static controller (with the parameters being in the same range) in a one dimen-
sional hit-and-return task.

In the long-run experiments in section 3.3 it was shown that the parameter dynamics
did not get stuck in the saturation region of the neurons and realizes the theoretically ex-
pected values. Also the activity of the agents does not decrease for a longer time, even in an
environment crowded with other active agents.

Furthermore, the generation of coordinated behaviors is interesting in complex robotic
devices. The experiments in section 3.4 showed the generation of crawling and jumping
behaviors of a snake-like artifact. A differently realized snake-like robot was considered in
section 3.5. In these experiments a whole-body motion of all, active as well as passive, ele-
ments of the under-actuated robot was generated by the homeokinetic control. Such modes
of behavior are only possible by exploiting the physical properties of the robotic device,
which are not known to the controller. Hence these experiments show the emergence of
sensorimotor coordination under homeokinetic control.

In chapter 4 we presented extensions to the homeokinetic controller by a long-term mem-
ory and second-order learning, which allow to adapt to different situations or to shape the
generated behaviors with respect to internally or externally available signals. The long-term
memory (section 4.1) enabled the system to adapt to different situations without relearning
the internal parameters. Instead parameter configurations for these situations were stored
and recalled in similar situations, as qualified by context information. Furthermore the abil-
ity of the homeokinetic system to deal with the integration and disintegration of newly at-
tached/removed sensors was shown for the case of a Khepera robot and it was demonstrated
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that, if multiple sensors are available, those which show a reasonable response to the motor
actions are predominantly integrated into the control loop. For the second order learning
a higher control layer equipped with Hebbian learning was introduced and provided with
context information (section 4.2). This way the behavior of the agent under control was
shaped following internal available signals or an external specified goal, while the properties
of the homeokinetic system could be retained. These results are especially interesting in the
framework of developmental/epigenetic robotics (see for example the work of Berthouze and
Metta (2005), Zlatev and Balkenius (2001)) to allow the robot to further “develop” to more
complex behaviors or achieving of tasks by building on the primitive behaviors generated by
the homeokinetic principle.

In chapter 5 the proposed approach to self-organized control of autonomous robots was
applied to the control of myoelectric hand prostheses, where in a training period an am-
putee interacts with the prosthesis. In doing so he provides input signals to the homeokinetic
controller via features calculated from the activities of the remaining muscles, measured with
skin electrodes. The homeokinetic controller on the other hand controls the (simulated) pros-
thesis on the basis of this input signals and thus generates visual feedback for the amputee.
Due to the property of the self-organizing controller to predominantly integrate sensors into
the control loop which show a reasonable response to the motor actions, user-specific input
features were selected in the interaction between subject and prosthesis. The self-organizing
controller thus allows the selection of user-specific input features from a set of given features,
which can later on be used in the everyday control of the prosthesis. The interaction period
also encourages amputees to train the remaining muscles and hence improve the provided
signals.

It is interesting to compare the presented results with related efforts from artificial evo-
lution. From the point of view of dynamical complexity the robots presented in chapter 3
are close to creatures of the Framstick world (Komosinski, 2000, 2005) or also with some of
Karl Sims’ creatures (Sims, 1994). The main difference is seen in the fact that the latter have
been evolved for a specific behavior and the creatures can perform only correctly if situated
in an appropriate environment. To the contrary the behaviors displayed by robots controlled
by the homeokinetic principle adapt to the environment they are situated in.

Another example close to the work at hand is Kuniyoshi et al. (2003) which aims at the
emergence of higher cognitive abilities from the physical dynamics of the robotic system
and its sensorimotor interaction with the world. The parallel is at the level of motor learning
where the authors demonstrate the need to acquire a set of explorative behaviors from scratch.
This is exactly the task solved by the homeokinetic system.

In the work presented here only a linear internal model was used, which clearly restricts
the predictive ability. This way only a linear response of the sensors is taken into account
which favors the use of proprioceptive sensors inside the sensorimotor loop. For future work
it would be a main point to extend the abilities of the model and hence allow an adaptation
to complex situations and a better inclusion of different sensor modalities.

It would also be interesting to build more complex internal models in a higher control
layer which are additionally provided with context information. Such a model, which is
assumed to generate a good predictive ability of the whole system in many situations, may
later on be used for reflections or to solve tasks or achieve goals provided from outside. The
slow feature analysis especially (Berkes and Wiskott, 2005; Franzius et al., 2007a,b) could
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be used to develop navigational support, similar to complex cells in the primary visual cortex
and place cells in the hippocampal areas respectively (Thompson and Best, 1989; Brun et al.,
2002), in a self-organized way. This would yield another advance in self-organized robot
development.
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Appendix A

Derivation of the Objective Function for
Several Sensors

In the case of several channels the proposed principle needs some customizing since the
input shift v, required for the objective function, equation 2.32, is not uniquely defined. We
may remove the ambiguity by making an assumption on the direction of v, so we stipulate
that v is in the direction of the response strength a given by the internal model with v; = ua
(a = HZ_II; a* = a”a = 1). The reason behind this is that the inputs « should be produced by
the deterministic part of the sensorimotor dynamics. Using the approximation & = Lv; we
get
& =wla

and since the Jacobian L = ¢'(z;)ac’ <Lij = %wi (x) = aicjg’(zt)> we get

& = wg (z)acta

1
Ta

= wg (2¢)ac Tal

Since the response strength R = c¢’'a(= Y, ¢;a;) we can write

, 1
& = g (Zt)aRm
With a = ﬁ the right hand side changes to
& = aug' (2) R
To consider only the projection of £ on @ both sides are multiplied with a”
a'é = aaug ()R
With a”¢; = ||&]| cos ¢ and a’a = 1 we get

[€¢]| cos ¢ = utg’(zt)R
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The objective function for the case of several sensors is now
_ 2
E = u]]

where

&l coso
J(z)R

Uy
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