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1 Introduction
�ν αρχη ην o λoγoσ . . .

(Gospel of John)

The brain is complex and dynamic. The spatial and temporal scales of interest to the neuroscientist
range from the subcellular level of a few nanometers (membrane channels) to meters (neural
circuits) and from the microsecond range (kinetics of ion channels) to several decades (long-term
memory). Finding out how it functions is a formidable task, which first requires to arrive at
an understanding of its architecture and of its principal building blocks. A prominent and
well studied example of such a building block is the primary visual cortex (V1), the part of
the brain where electrical signals conveyed by the retinal ganglion cells of both eyes enter the
cerebral cortex [4]. Our picture of the type of information processing which occurs at this stage
in the brain is owed to the pioneering work of Hubel and Wiesel in the 1960s, which studied the
properties of visual cortical neurons by means of electrophysiological single cell recordings [5].
They found that neurons in the visual cortex can be activated by small, elongated stimuli. More
precisely, a given neuron would only then respond when the position of the stimulus and its
orientation angle matches its receptive field, i.e. its preferred position and preferred orientation.
Furthermore they showed, that the preferred positions and orientations of neighbouring neurons
tend to be similar and that they would gradually change when the electrode is progressively
moved along the cortical surface. How this mapping of space and orientation to the cortical
surface is organized over larger regions of the visual cortex, say on the scale of several mm2, could
at that time only be guessed since it had to be extrapolated from painstaking sessions of single
cell recordings (Fig. 1.1(a)). With the advent of optical imaging techniques in the late 1980s it
become possible to record the neural activity simultaneously over large regions of the visual cortex
[6, 7, 2] which confirmed previous results obtained from electrode recordings. Whereas space in
V1 is represented topographically in a faithful manner (see Chapter 2), preferred orientations
of visual cortical neurons were found to form a complex two dimensional pattern, called the
orientation preference map (Fig. 1.1(b)). At that time it became established, that the smooth
progression of preferred orientation is disrupted at point singularities, called pinwheels, which are
a characteristic feature of orientation maps [7, 8]. Nowadays, with two-photon calcium imaging
it is even possible to record simultaneously the activity and orientation preference of hundreds of
neurons with single cell resolution (Fig. 1.1(c)). How neurons in V1 become selective for a given
orientation and which factors determine whether and when these selectivities become part of an
orientation map, today still are open questions.
Experimental evidence suggests that the formation of orientation columns is a dynamical process
guided by neural activity and sensitive to visual experience. In normal development, orientation
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Figure 9. Reconstruction of the com- 
plete orientation map for a roughly 
2.5 x 3.5 mm area of cortex. Experi- 
mentally determined orientation values 
are shown in red. Asterisk marks a non- 
oriented response. Scale bar, 1 mm; an- 
terior is at bottom and medial is to the 
right. 

number of examples of regions containing a singularity, with a 
line of direction discontinuity extending outwards from it (Fig. 
14, b, c). Elsewhere it was possible to find areas within which 
orientation preference varied smoothly, divided into regions of 
opposed direction preference (Fig. 14~). In a few cases, lines of 
direction discontinuity could be reconstructed over an entire 
map of direction preference (Fig. 15). It was helpful, when doing 
this, to use the map of interpolated orientation preference to 
decide whether 2 points with direction selectivities that were, 
e.g., 90” apart were likely to be divided by a discontinuity or 
not. This would depend on whether orientation changed clock- 
wise or anticlockwise between the 2 points. Such reconstructions 
showed that the majority of singularities gave rise to a single 
line of discontinuity; these lines were usually curved and nor- 
mally failed to connect singularities by the shortest possible 

routes, although they usually connected singularities that were 
close together, if not nearest neighbors. There was no obvious 
tendency for the lines to run across the cortex in any particular 
direction or to run orthogonal to the boundaries of the iso- 
orientation domains. Nor was there any obvious preferred ori- 
entation at which the direction reversals would occur, the ori- 
entation often varying along the length of such lines. 

Discussion 

The map of orientation 
Our conclusions about the map of orientation preferences in 
area 18 can be summarized as follows: (1) Orientation changes 
continuously nearly everywhere, except for a number of point 
singularities, each of which is surrounded by a 180” cycle of 
orientation values; (2) orientation changes periodically, a com- 

azimuth–orientation function) derived from cells located in the
periphery of the pinwheel (more than 65mm from the centre; blue
points). Cells in the pinwheel centre (less than 65mm; red points)
follow the same curve (correlation coefficient r ¼ 0.98). Thus, cells in
the centre of the pinwheel are arranged according to the pattern seen
in the periphery.
We further examined the relationship between pinwheel centre

and periphery by quantifying three parameters: the orderliness of the
orientation map, the response strength, and the orientation tuning
width. First, we measured the angular deviation, which is the degree
to which individual cells deviated from the orderly pinwheel arrange-
ment, expressed in the azimuth–orientation function (black curve in
Fig. 3b) for each pinwheel. For cells close to the pinwheel centre, the
distribution of angular deviations was clearly biased towards zero
(Fig. 3c; median 98), although they were somewhat higher than in the
surround (Fig. 3d; median 58 (see also Supplementary Fig. S2);
however, if the deviation was measured as cortical displacement of
neurons, it was smaller at the centre (see Supplementary Fig. S3)).
The distribution in the centre was significantly different from the
random distribution obtained by shuffling the location of cells
(Fig. 3c, grey bars; P , 10210; Wilcoxon rank-sum test). Second,
the response amplitudes in the pinwheel centre (Fig. 3f; median 4.3%
fluorescence increase) were smaller than in the periphery (Fig. 3g;
5.8%, P , 10212; Wilcoxon rank-sum test). Finally, cells close to the
pinwheel centre were selective to orientation but had a slightly
broader tuning bandwidth (Fig. 3i; median 378) than cells in the
periphery (Fig. 3j; median 318; P , 1024; Wilcoxon rank-sum test).
The differences in tuning width were sufficiently robust that they
were observed independently in different subsets of the data (even
and odd trials, Supplementary Figs S4 and S5).
We found essentially the same relationship between the pinwheel

centre and periphery in all ten pinwheels studied. The pinwheel

centres were remarkably well organized: the median angular devia-
tion of the measured preferred orientation from the azimuth–
orientation function was small (less than 178), although consistently
larger than in the periphery (Fig. 3e). The median response strength
of the cells was always 17–41% smaller in the pinwheel centre than in
the periphery (Fig. 3h). Themedian bandwidth of orientation tuning
was consistently broader in the pinwheel centre than in the periphery,
but this difference was always small (less than 118; Fig. 3k).
The present study was performed with kittens at an age when

orientation maps are well established (postnatal days 28–35)15,16, but
still within the critical period. Our results are consistent with the idea
that tuning widthmight be slightly broader in the pinwheel centres of
kittens of this age, as has been suggested17. However, any quantitative
conclusions about the degree of orientation tuning must take several
technical issues into consideration. First, to minimize experiment
time, we sampled orientation coarsely (458) in most experiments.
When we sampled orientation more densely (22.58) in some experi-
ments, the apparent tuning width of the most selective cells became
considerably smaller (see Supplementary Figs S6 and S7), which
rather enlarged the difference in tuning width between centre and
periphery. Second, the smaller responses at the pinwheel centres
might result in apparently broader curves due to decreased signal-to-
noise ratios; indeed, the measured tuning width was inversely
correlated with response strength both near the centre and in the
periphery (Supplementary Fig. S8).
The smaller responses near the pinwheel centres than in the

periphery might also have contributed to the apparently higher
percentage of unresponsive cells in the centre (16.5%) than in the
periphery (5.8%). Alternatively, the unresponsive cells at the pin-
wheel centres might have been selective to some other stimulus
attributes. In a few experiments we tried square-wave gratings at a
range of spatial frequencies (0.07–1.0 cycles/degree) at a single

Figure 1 | Functional maps of orientation pinwheels. Pinwheels were
mapped at low resolution (a) and with single-cell resolution (b–e). a, An
orientation map obtained with intrinsic-signal optical imaging. In this
colour-coded map (polar map), hue is determined by the best orientation.
Darker colours, in pinwheel centres, represent less selective responses.
b, Two-photon calcium imaging. Approximately, the square region drawn in
a was imaged at 250mm below the pial surface. The top panel shows an
averaged image of cortical cells stained with the calcium indicator Oregon
Green 488 BAPTA-1 AM. The bottom four panels show single-condition
maps for four orientations of visual stimuli (DF/F, the percentage change in
fluorescence between stimulation period and blank; gaussian smoothed

by 1 mm). The scale bar (DF/F) applies only to the bottom four panels.
c, Cell-based orientation maps from nine different depths (130, 150, 170,
190, 210, 230, 250, 270 and 290mm, as indicated). Selective cells (1,034 out of
1,055 cells; P , 0.05, ANOVA across eight directions) are coloured
according to their preferred orientation. The cortical surface was tilted
(about 158), which was corrected for by shifting the images by 5.2 mm for
every 20 mm in depth (grey margins indicate this shift). The last panel shows
the overlay of images from all nine depths. d, e, Dye-loaded cells and
orientationmaps in pinwheels from two other animals. Scale bars, 1mm (a);
100mm (b–e).
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Figure 6. When the differential images in Figures 3 and 4 are combined according to the rules illustrated in Figure 2, they produce a field of 
output vectors, the two components of which in Polar coordinates (right-hand vectors in Fig. 2) correspond to orientation preference (2 X) and 
selectivity, which appear separately in a and b, for the images in Figure 3, and in c and d, for the images in Figure 4. The orientation preferences 
in a and c must be illustrated in color because they cycle continuously through 180”. Complimentary colors have been chosen to indicate orthogonal 
orientations: green and red indicate preferences for vertical and horizontal, while blue and yellow indicate preferences for left and right oblique. 
Values in b and dare indicated in gray, with lighter regions more selective (and responsive) than darker ones. As noted in the Results, light values 
are unambiguous-they indicate strongly responsive regions that were highly selective-while darker values might indicate regions that were 
nonresponsive as well as ones that were nonselective. Since many of the dark regions are aligned with ocular dominance centers, though, where 
responses to one or the other eye are pronounced, they would appear to indicate a lack of orientation selectivity since a lack of responsiveness can 
be ruled out. 

the darkest and lightest regions shift laterally as visual stimuli 
rotate. While this agrees with previous observations, that ori- 
entation preferences change linearly with distance (Hubel and 
Wiesel, 1974a), the actual organization of preferences is difficult 
to infer from any particular image because light and dark bands 
can arise from factors other than slabs of cells preferring the 
same orientation (Blasdel, 1992). 

The information needed to calculate orientation preferences 
and selectivities is nevertheless present in all images collectively, 
and can be calculated by estimating vertical/horizontal and left/ 

t 

right oblique components for each one and summing them sep- 
arately. The resulting vectors are then converted from Cartesian 
to Polar coordinates. The orientation preferences and selectiv- 
ities derived in this manner appear in Figure 6, a and b, for the 
images in Figure 3, in Figure 6, c and d, for the images in Figure 
4, and in Figure 7, a and b, for the images in Figure 5. As one 
can see, the patterns in Figures 6, a and c, and 7a are all re- 
markably similar, despite differences in magnification. The ac- 
curacy and repeatability of this analysis are discussed further at 
the end of Results, along with potential artifacts. 

Figure 5. Differential images of orientation achieved at high magnification with eight different pairs of orthogonal contours. The horizontal axis 
in each frame corresponds to 4.4 mm. As in Figures 3 and 4, all images were acquired with orthogonal pairs of contours moving bilaterally at 1.5”/ 
sec. Dark and light values in each frame reflect preferences for each of two orthogonal contours, which are indicated by dark and light bars in the 
lower right corner, and which are rotated by 22.5” in successive frames. Therefore, these images reflect response differences for p-90”, 22.5’112.5”, 
45”-135”, 67.5”-157.5”, 90”-0”, 112.5”-22.5”, 135”-45”, and 157.5O-67.53 

1""1""

c

Figure 1.1: Organization of orientation preference in the visual cortex, revealed by different techniques.
(a) Reconstruction of the orientation map for a roughly 2.5 x 2.5 mm area of the cortex of a cat.
Experimentally determined orientation values are shown in red. Asterisk marks a non-oriented response.
Scale bar, 1mm. (adapted from [1]). (b) Distribution of preferred orientations (left side: colorcode)
revealed by optical imaging of intrinsic signal in the primary visual cortex of a monkey. (adapted from
[2]). (c) Two photon calcium imaging reveals the preferred orientations of cells forming a pinwheel. Scale
bar, 100 µm. (adapted from [3])

columns first form at about the time of eye opening [9, 10, 11]. Comparison of this process to the
development under conditions of modified visual experience demonstrates that adequate visual
experience is essential for the complete maturation of orientation columns and that impaired
visual experience, as with experimentally closed eye-lids can suppress or impair the formation of
orientation columns [11]. Most intriguingly, when visual inputs are experimentally redirected to
drive what would normally become primary auditory cortex, orientation selective neurons and a
pattern of orientation columns even forms in this brain region that would normally not at all be
involved in the processing of visual information [12]. In particular the latter observation strongly
suggests that the capability to form a system of orientation columns is intrinsic to the learning
dynamics of the cerebral cortex given appropriate inputs. Taken together, these lines of evidence
mark the formation of orientation columns as a paradigmatic problem in the dynamics of cortical
development and plasticity.

Due to the large number of degrees of freedom of any realistic scale microscopic model of visual
cortical development, the description of the development of the pattern of orientation columns
by equations for the synaptic connections between individual nerve cells is very complicated. On
the order of 109 synaptic strengths would be required to realistically describe, for example, the
pattern of orientation preference within 1mm2 of visual cortical tissue. This complexity and the
presently very incomplete knowledge about the nature of realistic equations for the dynamics
of visual cortical development demand that theoretical analyses concentrate on aspects that
are relatively independent of the exact form of the equations and are representative for a large
class of models. An appropriate framework for this is provided by models in which the emerging
cortical architecture is described by order parameter fields and its development by a dynamics of
such fields [13, 14, 15, 16, 17, 18, 19].

By now a couple of such models exist, e.g. [20, 15, 21, 22]. In all of these studies the preferred
orientation θ of neurons at cortical location x is described by a director field z(x) and its dynamics
by

∂tz = F [z] (1.1)
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where F is some nonlinear functional of the field z(x), which is chosen to be symmetric under
certain operations acting on z. For example, since a director field is mapped to itself by orientation
shifts of 180◦, the dynamics F has to fulfill

SαF [z] = F [Sαz] (1.2)

for the special case α = π, where Sα is the operator which acts on the director field z(x) by
shifting all orientations by an angle α while keeping their positions fixed. If, however, Eq.(1.1)
applies for any value of α, then the dynamics (1.1) is said to be shift symmetric. All models in
the reference given before have this type of symmetry. What does it imply? It implies that a
given orientation map which is a solution of the dynamics (1.1) is “as good” as an orientation
shifted version of it. In comparison, let us consider the invariance of the Schroedinger equation
i∂tψ = Hψ under multiplications by a complex phase ψ → eiαψ. In quantum mechanics, both
states are considered as equivalent, since the phase is not an observable. However, one should
point out that for the system of orientation maps shift symmetry is not as natural as it is for
the Schroedinger equation, and should be rather considered as an additional assumption. The
reason for this is that neurons are selective for both, orientations and positions, which should
therefore be handled within a single coordinate frame. As a consequence, operations which
are acting on orientation and space in a coordinate way, so called “shift-twists” [23], are more
appropriate. Therefore it is of interest to identify and characterize models of the form (1.1),
which are symmetric under shift-twist, but not under orientation shifts, Eq. (1.2), and which
might lead to a better description of orientation map development in the brain.

The work presented in this thesis is devoted entirely to this task. We will discover that this
apparently simple observation leads to substantial but in a way subtle consequences for the type
of patterns expected to form in the brain. The organization of this thesis is as follows. In Chapter
2 we present the basics on orientation map development and set the mathematical framework,
in Chapter 3 we identify signatures of shift-twist symmetry in a model independent statistical
framework and develop tools which allow to extract and to quantify these signatures from brain
imaging data. In Chapter 4 we examine the general consequences of shift-twist symmetry on
pattern selection and apply these results to a concrete model dynamics for which shift symmetry
can be continuously broken. In Chapter 5 we apply the tools developed in the previous chapters
to a large dataset of tree shrew orientation maps. In order explain the new effects found in the
tree shrew dataset in Chapter 6 we examine a model in which pattern formation in the visual
cortex is driven by the statistics of natural scene stimuli. A summary of each chapter and a
discussion of the main results is given in Chapter 7.

3



1 Introduction
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2 Basics

2.1 Orientation Maps

In most areas of the cerebral cortex, information is processed in a 2-dimensional (2D) array of
functional modules called cortical columns [24, 25]. Individual columns are groups of neurons
extending vertically throughout the entire cortical thickness that share many functional properties.
Orientation columns in the visual cortex are composed of neurons preferentially responding to
visual contours of a particular stimulus orientation [5]. In a plane parallel to the cortical surface,
neuronal selectivities vary systematically, so that columns of similar functional properties form
highly organized 2D patterns, known as functional cortical maps. In the case of orientation
columns this kind of pattern is called the orientation preference map (Fig. 2.1(b)).

Experimentally, the pattern of orientation preferences can be visualized using optical imaging of
hemodynamic signals [26, 7]. In such an experiment, the activity patterns E(x|φj) produced by
stimulation with a grating of orientation φj are recorded. Here x represents the location of a
column in the cortex. Using the activity patterns E(x|φj), a field of complex numbers z(x) can
be constructed that completely describes the pattern of orientation columns,

z(x) =
�

j

e2iφjE(x|φj)

The pattern of orientation preferences θ(x) is then obtained from z(x) as follows,

θ(x) = 1
2 arg z(x).

A typical example of such activity patterns E(x|φj) and the patterns of orientation preferences
derived from them is shown in Fig. 2.1.

2.2 Orientation Map Development

How orientation selectivity develops in visual cortical neurons and which factors control whether
it organizes in orientation maps or not, still are open questions. Experimental studies on
the ferret brain have shown that orientation maps, which are spatially modulated structures,
emerge from an almost unselective, homogeneous state at around the time of eye opening [9, 28].
These modulations consolidate within a couple of days and reach adult levels after roughly two
weeks. In this aspect they resemble other pattern forming systems occurring in different physical
and biological contexts. For example, application of a thermal gradient to a thin fluid layer

5



2 Basics

Figure 1. Optical imaging of intrinsic signals in tree shrew visual cortex.A, Difference images obtained for four stimulus angles (0�, 45�, 90�, 135�, shown in inset
of each panel) from one animal. Black areas of each panel indicate areas of cortex that were preferentially activated by a given stimulus, and light gray areas
indicate areas that were active during presentation of the orthogonal angle. The dashed line in the 90� panel indicates the approximate location of the V1/V2

border. B, Orientation preference map obtained by vector summation of data obtained for each angle. Orientation preference of each location is color-coded

according to the key shown below. C, Common features of the orientation preference maps. Portions of the orientation preference map shown inB have been

enlarged to demonstrate that the orientation preference maps contained both linear zones (left) and pinwheel arrangements (right).

Bosking et al. • Specificity of Horizontal Connections in Striate Cortex J. Neurosci., March 15, 1997, 17(6):2112–2127 2115

Figure 2.1: Patterns of orientation columns in the primary visual cortex of a tree shrew visualized using
optical imaging of intrinsic signals (Figure adapted from [27]). Activity patterns resulting from stimulation
with oriented gratings of four different orientations (0◦, 45◦, 90◦, 135◦) are shown in (a). White bars
depict the orientation of the visual stimulus. Activated columns are labeled dark grey. The used stimuli
activate only columns in the primary visual cortex (V1). The pattern of orientation preferences calculated
from such activity patterns is shown in (b). The orientation preferences of the columns are color coded
as indicated by the bars. (c) The pattern commonly exhibits both linear zones (left) and pinwheel
arrangements (right).
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2.2 Orientation Map Development

leads to the formation of convection rolls, which organize in regular patterns, such as stripes
or hexagons [29, 30], a phenomenon called Rayleigh-Benard convection. Similar patterns are
observed in the Faraday experiment, in which a shallow horizontal layer of fluid is periodically
shaken up and down [31, 32]. In all of these cases the driving force, e.g. the size of the thermal
gradient or the amplitude of the shaking, has to exceed a certain critical value, in oder to
observe pattern formation. Below this value the homogeneous state is stable. Viewed from
a dynamical systems perspective, the remodeling of the cortical network described above is a
process of dynamical pattern formation. In this picture, spontaneous symmetry breaking in the
developmental dynamics of the cortical network underlies the emergence of cortical selectivities
such as orientation preference [33].

The particular scenario sketched above can be described in terms of a supercritical bifurcation
where the homogeneous state looses its stability and spatial modulations of some typical wave-
length Λ start to grow. A well studied model reproducing this type of behaviour is provided by
the Swift-Hohenberg (SH) equation,

∂tu(x) =
�
r − (k2

c + ∆)2
�
u(x)− u3(x) (2.1)

where u(x) denotes a real valued scalar field defined over x ∈ R2 and kc = 2π/Λ is the typical
wavenumber of the pattern. The homogeneous state u(x) = 0 is a stationary solution of (2.1),
however, its stability depends on the control parameter r. This can be seen by considering the
linear part of (2.1) which has the Fourier representation

∂tû(k) = λ(|k|)û(k) (2.2)

where the growth rate λ(k) of the Fourier modes eikx with |k| = k is given by

λ(k) = r − (k2
c − k2)2. (2.3)

As shown in Fig. 2.3 the profile of λ(k) exhibits a maximum at k = kc. For r < 0 all modes are
damped since λ(k) < 0 for all wavenumbers k and the homogeneous state is stable. This is not
longer the case for r > 0 when modes on the critical circle |k| = kc acquire a positive growth
rate and now start to grow, resulting in patterns with a typical wavelength Λ. After a transient
phase of exponential growth the dynamics of the pattern is slowed down by the nonlinearity
in (2.1) and eventually settles into an attractor which describes the final pattern. Usually, the
field u(x) represents the local value of some macroscopic order parameter of the system, such
as the average velocity of the particles, and thus typically implies a local averaging over the
microscopic degrees of freedom, such as individual particle velocities. As an effective model the
Swift-Hohenberg equation does not depend on microscopic details and thus can be applied to
a variety of different systems. In a pioneering study, published in 2005, Wolf devised a way to
describe orientation map development by a generalized Swift-Hohenberg equation, which was
extended in several important aspects in order to account for the patterns observed in the brain
[34, 22]. The main aspects of this theory are presented next.

The goal is to characterize the class of models which are intended to describe the dynamics of
the complex order parameter field z(x), representing the orientation map, and which are able to
predict irregular, aperiodic patterns as those found in the primary visual cortex. These models
are assumed to have the following general form
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2 Basics

26 and 29, showed no evidence for orientation-specific activity in

the primary visual cortex at these ages. In eight animals, it was
possible to perform four or more optical imaging sessions between

P31 and P55; data from these animals are reported in this paper.

Shorter data series that confirmed the conclusions drawn from

these eight animals were obtained in two additional ferrets be-

tween P32 and P40.

A complete set of orientation maps from one developing ani-
mal, ferret 1-3-3630, is shown in F igure 1. T he left side of this
figure shows the activity maps obtained in this animal in response
to four orientations of drifting square-wave gratings, and the right
side of the figure shows angle and polar maps. E ach row in the
figure illustrates the maps obtained at a given age during devel-
opment. In this and all subsequent figures, each map is presented

with caudal up, medial to the left. T he area of the images exhib-

iting orientation-specific activity corresponds to the exposed re-

gion of area 17. B lank areas where no activity maps can be seen

result from the skull, which remained intact behind the caudal
pole of cortex in the upper left corner of each image, or from

cortical areas rostral to the approximate location of the 17/18

border, which did not respond to the visual stimuli used in this
study. In the single-condition maps, areas of cortex that respond

to a given stimulus appear dark, whereas nonresponsive areas are
light. In the angle and polar maps, information from the four

single-condition maps is combined to show how orientation pref-

erence is arranged across the cortex, with each hue representing a
different preferred orientation; in polar maps, information about
the strength of orientation tuning is additionally encoded as color

brightness.

In ferret 1-3-3630, illustrated in F igure 1, little or no

orientation-specific activity is seen in the single-condition maps at
the earliest age of imaging, P31. By P33, iso-orientation domains
are clearly visible, at least in response to vertical and horizontal
stimuli. O rientation activity maps continue to become stronger

over time, reaching adult-like clarity by P42, the final recording
session in this animal. T his progression of development is also

shown in the polar maps for this animal, where the increasing
brightness of the color of the maps with age indicates an increase
in the strength of orientation tuning as the animal matures.

Single-condition orientation maps for a second animal, ferret
1-5-413, are shown in F igure 2. T he same general pattern of
development was seen in this animal, with early faint activity maps
at P36 developing into mature maps by P41. T he timing of
development in ferret 1-5-413 was quite different, however, with

Figure 2. C oncurrent development of all orientation maps. Single-condition orientation activity maps from a second ferret. In this animal, activity maps
for all orientations developed at the same rate. N ote that in this ferret the first orientation maps are visible at a substantially later time (P36) than in the
example shown in F igure 1. A ll conventions as in F igure 1.

6446 J. Neurosci., October 15, 1996, 16(20):6443–6453 Chapman et al. • Development of Orientation Maps in Ferret Visual Cortex

Normal patterns of activity have also been dis-

rupted by chronic electrical stimulation of the optic

nerve during development (Weliky and Katz, 1997).

This overrides intrinsic patterned neuronal activity

originating from the retina (Meister et al. 1991; Wong

and Oakley, 1996) by artificially increasing the cor-

relation between inputs to the cortex. The stimulation

protocol, which activated the visual pathway for 10%

of the time while leaving activity normal for 90% of

the time, radically reduced the orientation selectivity

of individual cells, while leaving the overall pattern of

orientation maps in the cortex intact (Weliky and

Katz, 1997).

Effects of Altered Visual Experience. It must have

been surprising to see that a newborn monkey without

any visual experience shows well-developed orienta-

tion selectivity (Hubel and Wiesel, 1974). This study

demonstrated that in the monkey, visual experience is

not needed for the initial development of orientation

selectivity. Indeed, later studies in cat (Blakemore and

Van Sluyters, 1975; Buisseret and Imbert, 1976) and

ferret (Chapman and Stryker, 1993) showed that even

during binocular visual deprivation some degree of

single-cell orientation selectivity does develop. Figure

3 demonstrates that ferrets binocularly deprived from

before the time of natural eye opening through the 8th

to 13th postnatal week showed significantly better

orientation tuning than immature animals. However,

these animals showed significantly poorer orientation

tuning than age-matched controls. In this study, no

short-term binocular deprivations were performed, so

Figure 2 Comparison of the development of orientation tuning assessed by optical imaging and

electrophysiology. Orientation tuning assessed electrophysiologically from single-unit recordings

compared with optical imaging of the development of orientation tuning. Optical imaging data from

Chapman et al. (1996) (crosses); single-unit data from Chapman and Stryker (1993) (diamonds).

The orientation selectivity index for electrophysiological data is calculated from the Fourier

transform of the orientation tuning histogram recorded for each neuron. It equals the amplitude of

the second harmonic component normalized by dividing by the sum of the DC level and the

amplitude of the second harmonic component and multiplying by 100. The orientation tuning for the

optical imaging data is the median length of the vectors in the polar maps. The solid curve indicates

the best-sigmoid-fit curve through electrophysiological data, while the dashed curve is the best-

sigmoid fit from the optical imaging data. The mean of the best-fit sigmoid for the electrophysio-

logical data is 4 days earlier (P33.4) than the mean for the optical imaging data (P37.4).

Orientation Preference in Mammalian Visual Cortex 21

a

b

Figure 2.2: Orientation map development in the ferret. (a) Patterns of orientation columns in the
primary visual cortex of a ferret at four different ages. Ages indicated in postnatal days on the left of the
rows. Each column of single-condition maps shows orientation maps recorded in response to a particular
orientation of a moving square-wave grating (0◦ = horizontal). Scale bar, 2mm. (From [9]). (b) Age
dependent orientation selectivity (pattern amplitude) in ferret visual cortex. (From [28]).
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2.2 Orientation Map Development
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Figure 2.3: The spectrum of the linear Swift-Hohenberg operator L = r − (k2
c + ∆)2 for different values

of r. For r = −.5, all modes are exponentially damped (blue), for r = 0, modes with wavenumber k = kc
become marginally unstable (red), for r = .5, the entire interval of modes with λ(k) > 0 is susceptible to
growth (yellow).

∂tz(x) = F [z] (2.4)
where F [z] is a nonlinear functional of z(x) which remains to be specified. A first step in this
direction can be made by considering the symmetries of the system which must be reflected
in the functional form of Eq.(2.4). Considered anatomically, the cortical tissue appears rather
homogeneous and isotropic [35]. It is thus very plausible to require that the dynamics of orientation
map development is symmetric, i.e. transforms equivariantly, with respect to translations

F [Taz] = TaF [z] with z(x)→ Ta z(x) := z(x + a) (2.5)

and the O(2) group consisting of coordinate rotations

F [Dφz] = DφF [z] with z(x)→ Dφ z(x) := z(Ω−1
φ x) (2.6)

and reflections
F [Pz] = PF [z] with z(x)→ P z(x) := z(x̄) (2.7)

where x̄ = (x1,−x2). The functional form of F [z] gets substantially further constrained if, in
addition, equivariance of Eq.(2.10) under the U(1) group generated by orientation shifts

z(x)→ Sθ z(x) := e2iθz(x) (2.8)

and the complex conjugation
z(x)→ Cz(x) := z̄(x). (2.9)
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2 Basics

is assumed, since for this case the operator F [z], written as a power series in the field, can
only depend of terms which involve odd powers of z. This kind of symmetry, simply called
shift symmetry in the following, implies that the spatial arrangement of iso-orientation domains
contains no information about the orientation preference of the columns. Finding out whether
this is really the case or not is the primary purpose of this thesis. For the time being, in [34, 22],
shift symmetry was simply added to the list of basic symmetry requirements for a candidate
model of orientation map formation.

As a straightforward generalization of the Swift-Hohenberg equation from the real to the complex
valued case it seems natural to study the following equation

∂tz(x) =
�
r − (k2

c + ∆)2
�
z(x)− |z(x)|2z(x) (2.10)

Unlike in the case of real values the dynamics (2.10) exhibits a nontrivial set of exact solutions,
which consist of plane waves

z(x) =
�
r − (k2

c − |k|2)2 eikx

with any wavevector k for which the growth rate λ(|k|) is positive. Unfortunately, this type of
solutions has a severe drawback: Although each orientation is represented to the same amount
in such a pattern, the patterns lack pinwheels, characteristic topological point defects around
which each orientation is represented once (see Fig.2.4(a)). Pinwheels can be classified according
to their topological charge

qi = 1
2π

�

Ci

ds∇θ(x)

where Ci is a closed curve around a single pinwheel center at xi. Since θ is a cyclic variable
within the interval [0,π] and a continuous function of x except at the pinwheel centers, qi can in
principle only have the values

qi = ±n2
where n ∈ N+ [36]. If its absolute value |qi| is 1/2, each orientation is represented exactly once
in the vicinity of a pinwheel center. In experiments only pinwheels with a topological charge of
±1/2 are observed, which are simple zeros of the field z(x). This organization has been confirmed
in a large number of species and is therefore believed to be a general feature of visual cortical
orientation maps. Indeed, as shown in [37], the model (2.10) and many similar models with
same symmetries and qualitative features are unable to explain the intricate patterns seen in
real maps, since any pattern, even if it contained plenty of pinwheels at the beginning, is poised
to evolve towards a solution with very low pinwheel density or no pinwheels at all.

2.3 The Wolf Model

In order to resolve this issue, Wolf proposed to extend the model (2.10) by introducing additional
nonlocal 3rd order terms, where the coupling between two distal points of the field z(x) and z(y)
is mediated by some interaction kernel K(y− x). For a Gaussian kernel the extended model is
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2.3 The Wolf Model

a b c

Figure 2.4: Examples of solutions predicted for different types of Swift-Hohenberg models. Top row:
Pattern of the orientation map, bottom row: Fourier modes of the pattern on top. (a) Plane waves, no
pinwheels. (b) Irregular, aperiodic pattern, which is blind to other than two orientations. (c) Essentially
complex planform.

given by the following integro-differential equation

∂tz(x) =
�
r − (k2

c + ∆)2
�
z(x)

� �� �
linear, local

+ (1− g)|z(x)|2z(x)
� �� �
nonlinear, local

(2.11)

−2− g
2πσ2

�
d2y(|z(y)|2z(x) + 1

2z(y)2z̄(x))e−|y−x|2/(2σ2)

� �� �
nonlinear, nonlocal

which depends on two additional parameters. The parameter σ ≥ 0 determines the range of the
nonlocal interaction, and g ∈ [0, 2] controls which type of nonlinearity stabilizes the dynamics.
For 1 < g ≤ 2 both, the local and the nonlocal part, have a negative prefactor and thus exert a
stabilizing effect, whereas for 0 ≤ g ≤ 1 this applies just for the nonlocal part. With regard to
other nonlinear model equations often encountered in physics, such as the nonlinear Schroedinger
equation, where all terms are local, the concept of nonlocal terms first appears unusual and
unfamiliar, however in the context of the brain it is actually very natural: In the visual cortex two
neurons which are linked by a single axonal connection can lie several millimeters apart. Examples
of connection profiles of V1 neurons in the tree shrew, obtained by local tracer injections, are
shown in Fig. 2.5. They have the following properties:

• Connections occur over several millimeters, or correspondingly, over many hypercolumns,
which typically are separated by the distance Λ. Thus, in the model (2.11) as a realistic
choice for σ one would expect the range σ/Λ� 1.

• They are patchy. In other words, groups of neurons with a similar orientation preference,
as for example 90◦ preferring neurons in Fig. 2.5(a), are more likely to be connected than
groups of neurons whose orientation preferences do not match. Very similar results are
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(greater than 500 �m from the injection site) is summarized for
four cases in Figure 6. For each case, the orientation tuning curve
based on multi-unit activity at the injection site is shown in Figure
6A, and the bouton tuning curve is shown in Figure 6B, plotted in
the same color. In each case, there is a striking correspondence
between the peak in the injection site tuning curve and the peak
in the bouton tuning curves. This relationship is even more ap-
parent when the bouton tuning curves are expressed in terms of
the difference between the orientation preference of the sites
contacted by labeled boutons and the peak of the orientation
tuning curve for multi-unit activity at the injection site. This is
done for all seven of our cases in Figure 6C, where the gray lines
represent individual cases and the black line represents the me-
dian for the group. Each of the bouton tuning curves is centered
on or near the preferred orientation of the injection site. By
summing the percentage of boutons found in the seven center bins
of the median curve, we determined that 57.6% of the boutons
contact sites with an orientation preference within �35� of the
preferred orientation of the injection site. For individual cases,
between 48.2 and 72.6% of the boutons met this restriction. This
percentage of boutons is significantly different from the percent-
age expected for an even distribution that would contain �5.56%

of the boutons in each of the 18 bins (dashed line in Fig. 6C),
resulting in 38.9% of the boutons found within �35� ( p � 0.02,
Wilcoxon signed rank test).

Axial specificity of horizontal connections
Before describing our analysis of axial specificity of horizontal
connections it is necessary to describe the organization of the map
of visual space in tree shrew V1. As illustrated in Figure 7A, the
tree shrew has a well developed striate cortex with a prominent
V1/V2 border that is clearly discerned in Nissl-stained sections.
An earlier physiological study by Kaas et al. (1972) demonstrated
that, as in other species, the V1/V2 border corresponds to the
representation of the vertical meridian in visual space. The hori-
zontal meridian, as well as other iso-elevation lines, intersects this
border at approximately right angles (Kaas, 1980).

To confirm the geometry of the map of visual space, we used
optical imaging with a stimulation paradigm similar to one devel-
oped by Campbell and Blasdel (1995). The technique uses differ-
ence imaging for spatial location with two gratings of the same
orientation to identify areas of cortex that respond preferentially
to stimulation of a particular line in visual space (see Methods for
details). Data obtained from one animal using this technique to

Figure 4. Bouton distributions shown over orientation preference maps for two cases. A, Bouton distribution after an injection into a site with a preferred
orientation of 80�, determined by recording through the same tip used to make the injection (same case as in Fig. 3). The white symbols indicate the
location of cells that took up the biocytin. Labeled boutons (black symbols) are found at sites with all orientation preferences near the injection site, but
preferentially at sites with the same orientation preference as the injection site at longer distances. B, Results from an experiment in which an injection
was made into a site with an orientation preference of 160� (case 9517). Color key and scale bar apply to both figures.

2118 J. Neurosci., March 15, 1997, 17(6):2112–2127 Bosking et al. • Specificity of Horizontal Connections in Striate Cortex

Figure 2.5: Lateral synaptic connections of orientation columns in the primary visual cortex of a tree
shrew. Preferred orientations are color coded as indicated by the bars. Black dots represent individual
output synapses of the neurons whose cell body positions are marked by white crosses. (From [27]).

found in other mammals with orientation maps, such as in the cat [38, 39, 40], ferret[41, 42]
or in the monkey [43, 44].

The nonlocal terms in Eq.(2.11) consist of two different types, |z(y)|2z(x) and z(y)2z̄(x), both
of which transform equivariantly with respect to orientation shifts. As shown in [37] both are
necessary in order to obtain realistic orientation maps. For example, just including the first type
of nonlocal nonlinearity leads to patterns as in Fig. 2.4(b), which develop orientation preferences
only for two angles which are orthogonal to each other, i.e. θ and θ + π/2, and thus are “blind”
to other orientations. For θ = 0 those patterns correspond to fields z(x) which are real valued.
In contrast, when both terms are included, the dynamics has quasiperiodic attractors which
resemble realistic patterns. This type of solutions can be written as a superposition of a finite
number of modes, also called planforms,

z(x) =
N−1�

j=0
Aje
ikjx (2.12)

with N = 2n wavevectors kj which are equidistantly distributed on the critical circle, i.e.
|kj | = kc(cos π

n
j, sin π

n
j). The stationary amplitudes of the solutions as well as their stability

can be calculated analytically from the system of amplitude equations which for (2.11) has the
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general form
Ȧj = rAj +

�

k

gjk|Ak|2Aj +
�

k

fjkAkAk−Āj− (2.13)

where Aj− denotes the amplitude of the mode with wavevector −kj . Amplitude equations are
universal, since the general form of Eq.(2.13) is dictated by the symmetries and the type of the
bifurcation, not by the details of the model, which enter only in the coupling matrices gjk and
fjk. Hence, knowing the appropriate symmetries of a system and the type of the bifurcation one
could also, in principle, directly write down the corresponding set of amplitude equations and
use them as a starting point for finding solutions. In Chapter 4 we will present in detail how the
particular expressions for the coupling matrices gjk and fjk are obtained from the nonlinearities
in (2.10) by a multiscale expansion of the dynamics. The family of solutions can be classified
according to their number n of active modes and is depicted in Fig. 2.6. The model has the
important feature that for a given wavevector kj either the mode Aj (to the wavevector kj) or
the mode Aj− (to the wavevector −kj) is zero. Hence, a particular solution can be written as a
particular planform with N = 2n modes,

z(x) =
n−1�

j=0
Aje
iljkjx, (2.14)

where the binary variables lj ∈ {−1,+1} determine which of the n modes −kj or kj are active.
These solutions are called essentially complex planforms since z(x) is, by construction, complex
valued. For a given n there are 2n possibilities, however, many of which can be transformed into
each other by rotations or reflections thus defining equivalence classes. The actual number of
distinct classes is smaller but nevertheless grows exponentially with n. The nonlinearity of the
Wolf model when written as a three argument operator

N3[z] = N3[z, z, z̄]
with
N3[u, v, w](x) = (1− g)u(x)v(x)w(x)

−2− g
4πσ2

�
d2y e−|y−x|2/(2σ2) [u(x)v(y)w(y) + v(x)w(y)u(y) + w(x)u(y)v(y)]

is symmetric under cyclic permutations N3[u, v, w] → N3[v, w, u]. As shown in [22] with this
permutation symmetry all of these isomers have the same energy and stability properties. Hence,
the model (2.10) exhibits a vast number of multistable solutions, which parallels the situation in
the visual cortex, where a multitude of qualitatively similar but not identical patterns is found.
As is visible from the phase diagram, where the stability regions of essentially complex planforms
for different n is plotted as a function of the parameters σ and g, realistic patterns are obtained
for g < 1 and long-range connections with range σ � Λ, which also corresponds to the situation
in the brain. We close this section with the remark that the dynamics (2.11) can be written as a
gradient descent

∂tz(x) = − δ

δz̄(x)E[z]

of the Lyapunov (or energy) functional

E[z] = −
�
d2x
�
z̄(x)

�
r − (k2

c + ∆)2
�
z(x) + (1− g)|z(x)|4

�
(2.15)

+2− g
4πσ2

�
d2x
�
d2y
�
|z(y)|2|z(x)|2 + 1

2z(y)2z̄2(x)
�
e−|y−x|2/(2σ2)
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a

b

2 Basics

Figure 2.4: Essentially complex plan-

forms with different numbers n =
1, 2, 3, 5, 15 of active modes: The pat-
terns of orientation preferences θ(x)
are shown. The diagrams to the left

of each pattern display the position of

the wavevectors of active modes on

the critical circle. For n = 3, there are
two patterns; for n = 5, there are four;
and for n = 15, there are 612 different
patterns.

distributed equidistantly on the upper half of the critical circle and binary values
l j = ±1 determining whether the mode with wave vector k j or with wavevector
−k j is active. These planforms cannot realize a real valued function and are called
essentially complex planforms (Fig. 2.4). For such planforms the third term in Eq.
(2.14) vanishes and the effective amplitude equations for the active modes reduce
to a system of Landau equations

Ȧi = rAi −!
j

gi j
��Aj

��2 Ai (2.19)

with stationary solutions (2.17) with amplitudes of equal modulus

|Ai| =
�

r
! j gi j

(2.20)

and an arbitrary phase φi independent of the mode configuration l j. If the dy-
namics is stabilized by long-range nonlocal interactions (g < 1, σ > Λ), large
n planforms are the only stable solutions. In this long-range regime, the order n
grows linearly with the interaction range 2πσ/Λ. For a given order n, different
planforms are degenerated in energy. This is a consequence of a fourth symmetry
of the nonlinear part (2.11) namely the permutation symmetry

N3(u, v, w) = N3(w, u, v) . (2.21)

This symmetry implies that the relevant stable solutions are essentially complex
planforms which in turn guarantees that all stimulus orientations are represented
in equal parts. The property of multistability is characteristic for this model class
and will play an important role in Chapter 7.

22

Figure 2.6: Solutions and phase diagram of the generalized Swift-Hohenberg model, Eq.(2.11). (a)
Examples of essentially complex planforms (n-ECPs) for different numbers of active modes n. The
diagrams to the left of each pattern display the position of the wavevectors of active modes on the critical
circle. For n = 3, 5 and 15 there are 2, 4 and 612 different equivalence classes of ECPs, respectively. (b)
Phase diagram of the model Eq.(2.11). The graph shows the region in the (g,σ/Λ)-plane in which n-ECPs
have minimal energy (n = 1− 25), n > 25 dots).
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2.4 Shift Symmetry Revisited

Equivariance of Eq.(2.11) under the operations (2.5)-(2.9), yields to invariance of the right hand
side of Eq.(2.15) and thus to symmetry of the energy functional under these operations.

2.4 Shift Symmetry Revisited

Is shift symmetry a good assumption? The remaining parts of this thesis are devoted to providing
a satisfactory answer to this question. Indeed, a number of well-known equations in physics,
such as the complex Ginzburg-Landau or the Schroedinger equation, just to mention a few,
are equivariant under global phase shifts, z(x) → eiφz(x). In particular, this is also the case
for the model (2.11), which apparently is a promising candidate for modeling orientation map
development. Nevertheless, there are reasons to believe that shift symmetry cannot be taken
for granted and why, as a consequence, this assumption has to be carefully reconsidered in the
context of models for orientation map development. These are discussed next.
A fundamental concern is raised by the fact that a map of visual space, the visuotopic map,
is superimposed onto the same part of the primary visual cortex where the orientation map
is found, see Fig. 2.7. In visual cortical neurons orientation selectivity always occurs together
with selectivity for stimulus location, such that for animals with orientation maps both systems
of maps coexist. Therefore it is in principle required to represent the preferred angles and
preferred locations within a single coordinate system. But this view has direct consequences
for the symmetries of our model. For instance it is not obvious that rotations of the preferred
locations (Dφ) can be considered independently from shifts in the preferred orientation (Sθ).
Instead, it seems much more appropriate to require symmetry under transformations where both
kinds of rotations are applied together, so called “shift-twists”[23]. The same is true for the
discrete operations, like reflections in space (P ) and in angle of preferred orientation (C). In
conclusion we argue that the list of symmetries given above, Eqns.(2.6)-(2.9), should be replaced
by the following set, which consists of shift-twist rotations

z(x)→ Rφz(x) := Sφ ◦Dφ z(x) (2.16)
= e2iφz(Ω−1

φ x)

and shift-twist reflections

z(x)→ CP z(x) := C ◦ P z(x) (2.17)
= z̄(x̄),

and forms a representation of the O(2) group of orthogonal transformation in two dimensions.
Together with the translations, Eq.(2.5), thereby we obtain a representation of the Euclidean
group E(2), which can be written as a semidirect product of 2d-translations and rotations, i.e.
E(2) = R2 �O(2). Only if, in addition, symmetry under U(1) orientation shifts is assumed we
are back to the symmetry group of the model (2.11), which is given by R2 ×O(2)× U(1) and is
isomorphic to E(2)× U(1). Clearly, such an additional U(1) shift symmetry implies that the
spatial arrangement of iso-orientation domains contains no information about the orientation
preference of the columns. This might or might not be true in the brain - in Chapter 5 we will
provide an answer to this question. In conclusion, whereas symmetry under E(2) shift-twist
seems a plausible assumption as it occurs in a natural way, symmetry under U(1) phase shifts is
not obvious and awaits further justification.
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ular axis in the visual field by simply rotating the appropriate

number of degrees from the V1/V2 border axis. For example,

Figure 7C depicts a 45� axis (black lines) and 135� axis ( gray lines)
as they would appear in both the right visual field and the left

visual cortex. Thus, the presence of a prominent V1/V2 border

and the lack of large distortions in the map of visual space greatly

facilitate the examination of axial specificity of horizontal connec-

tions in the tree shrew.

As described in other species, injections of biocytin into layer

2/3 resulted in a distribution of labeled terminals that was elon-

gated across the cortical surface. The axis of elongation was found

to vary from case to case and was systematically related to the

orientation preference of the injection site. This basic relationship

can be appreciated by examining the distribution of labeled ter-

minals compared to an outline of V1 as is done for four cases in

Figure 8. In each panel, the axis of elongation of the labeled

terminals can be compared to the V1/V2 border (vertical merid-

ian). As illustrated in Figure 8A, an injection into a site with a

preferred orientation near vertical resulted in a distribution of

labeled terminals that was elongated parallel to the V1/V2 bor-

der. In contrast, an injection into a site with a preferred orienta-

tion of near horizontal (Fig. 8C) resulted in a distribution that was

elongated perpendicular to the V1/V2 border. In each of the cases

that we examined, we found a similar relationship: layer 2/3

neurons give rise to horizontal connections that extend for longer

distances, and give rise to more boutons, along an axis of the

visual field map that corresponds to their preferred stimulus

orientation.

Quantification of the systematic relationship between the axis

of elongation of the terminal distributions and the preferred

stimulus orientation of the biocytin injection sites is illustrated in

Figures 9–11. The polar plots in Figure 9 illustrate the number of

labeled terminals found in successive 10� sectors surrounding an

injection site for the same four cases shown in Figure 8. In these

plots, the distance of each point from the center of the circle

indicates the relative number of boutons found in that 10� sector.

The 0� sector for each polar plot was assigned by drawing a line

through the center of the injection site orthogonal to the V1/V2

border. Sectors were then assigned in a clockwise manner, result-

ing in the 90� sector corresponding to an axis that is parallel to the

V1/V2 border. With this reference scheme, the distribution of

labeled terminals across the visual field map can be compared

directly to the preferred stimulus orientation recorded from the

units at the injection site (shown to the upper right of each plot).

In each case, the dominant axis of the terminal polar plot matches

the preferred stimulus orientation recorded from the site before

the injection.

Our sample of injection sites from 13 cases included a wide

range of preferred stimulus orientations, and for each orientation

we found a corresponding bias in the axial distribution of labeled

terminals. Figure 10A shows the terminal polar plots for all 13 of

our cases and illustrates that each injection resulted in a distribu-

tion with a distinct axial bias. The degree to which the variation

among cases in the axial alignment of terminal distributions is a

function of the preferred stimulus orientation of the injection site

is illustrated in Figure 10B. In this figure, the terminal polar plots

have been aligned by rotating them by an angle that corresponds

to the difference between the preferred stimulus orientation of the

injection site and horizontal (0�). For example, the bouton distri-

bution for a site with a preferred stimulus orientation of 22� was

rotated clockwise by 22�. Individual profiles are illustrated by the

gray curves and the black curve represents the median for all of

Figure 7. The map of visual space in tree shrew V1. A, Photomicrograph

of a Nissl-stained section of visual cortex. V1 stands out clearly as the

darkly stained region of the section. B, Topographic difference images for

four stimulus angles. The dark bands and light bands �0.5–1.0 mm wide in

each image reflect areas of cortex that were differentially activated by the

two grating patterns for that stimulus angle (see Materials and Methods

for details). The distance between a pair of dark or light bands corre-

sponds to 10� in the map of visual space. The 0� and 90� images represent

iso-elevation and iso-azimuth lines. C, Diagram of the right visual field and

left visual cortex of the tree shrew, modified from a figure by Kaas (1980).

Lines at 45� orientation (black line) and at 135� orientation ( gray line) are

shown as they would appear in the visual field and in the cortex.

2120 J. Neurosci., March 15, 1997, 17(6):2112–2127 Bosking et al. • Specificity of Horizontal Connections in Striate Cortex

b

a

Figure 2.7: Visuotopic organization of the tree shrew visual cortex. (a) Activity patterns elicited by
widely spaced stripes of four different orientations. (b) Azimuth-elevation coordinate system of the visual
field projected on the visual cortex, defining the visuotopic map. (From [27]).
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2.4 Shift Symmetry Revisited

the cases examined. On average, neurons in layer 2/3 give rise to
four times as many terminals along an axis that corresponds to
their preferred stimulus orientation (�35�) than along the orthog-
onal axis (�35�).

The axial bias in the distribution of connections is reflected not
only in the number of labeled terminals, but in the distance of the
labeled terminals from the injection site. Labeled boutons were
consistently found to extend greater distances from the injection
site along the axis of the visual field map that corresponds to their
preferred stimulus orientation. This feature of the bouton distri-
butions is illustrated for two cases in Figure 11, A and B, that plot
the number of boutons versus distance along either the preferred
or orthogonal axes. To further quantify this relationship we de-
termined the maximum distance along the preferred and orthog-
onal axes (�30�) at which a minimum density of 40 boutons /0.01
mm2 was exceeded for each case. For the case shown in Figure
11A, the maximum extension along the preferred axis was 3.73
mm and the maximum extension along the orthogonal axis was
0.96 mm. This information is shown for all 10 cases for which the
required data were available in Figure 11C. The maximum dis-
tance at which boutons were found along the preferred axis
(median 1.77 mm) was significantly different from the maximum

distance along the orthogonal axis (median 1.16 mm; p � 0.004,
Wilcoxon signed rank test).

DISCUSSION

The results of this study confirm the results of previous studies in
cats and monkeys showing that long-range horizontal connections
selectively link patches of neurons that have similar orientation
preferences (Gilbert and Wiesel, 1989; Blasdel et al., 1992; Mal-
ach et al., 1993). In addition, our results reveal a new feature of
long-range horizontal connections that has not been described
before: orientation-specific anisotropy. Horizontal connections in
the tree shrew extend for greater distances and distribute more
terminal boutons along an axis of the visual field map that corre-
sponds to the preferred orientation of the injection site. In the
next sections we relate these results to those of previous studies
and consider the implications of modular and axial specificity for
understanding the function of horizontal connections.

Modular specificity of local and long-distance

horizontal connections

Our results demonstrate that long-distance horizontal connec-
tions in V1 have a strong bias toward connecting regions with

Figure 8. Bouton distributions from four cases. The preferred orientation for each case is shown in the top right of each panel. The axis in cortex
corresponding to the preferred orientation is indicated by the gray rectangle underlying each distribution. Each point indicates an individual bouton. Note
the dense distribution of boutons found near the injection site and more patchy distribution found at longer distances. In each case, the distribution is
elongated along an axis that corresponds to the preferred orientation of the injection site.

Bosking et al. • Specificity of Horizontal Connections in Striate Cortex J. Neurosci., March 15, 1997, 17(6):2112–2127 2121

Figure 2.8: Patterns of lateral connections of four orientation columns with different preferred orientations.
Gray bars represent the axis of the preferred orientation projected onto cortical coordinates. (From [27]).

Another clear indication of shift-twist symmetry is provided by the anatomy of the long-range
connections in the visual cortex. In addition to the properties already mentioned before,
connections in the tree shrew exhibit another characteristic feature, termed axial specificity [27]:
• Long-range connections preferentially link neurons with co-oriented, coaxially aligned

receptive fields.
This has been demonstrated in experiments by Bosking et al. [27], shown in Fig. 2.8. Similar
has been found in [45, 44]. It has been suggested that axial specificity of long-range connections
contributes to mechanisms of visual perception such as grouping of collinear line segments [46, 27].
Shift-twist operations respect this particular connectivity rule, since they preserve collinear
arrangements of neurons. However, in general this is not the case for orientation shifts. In
conclusion, anatomical data provides clear indications that shift-twist symmetry has an important
role for understanding the design principles of the visual cortex (see also [23, 47]). At this point
several questions arise:
First, when considering modelling of orientation map development: How critically do the results
of the model (2.11) depend on the shift symmetry assumption? Would a similar model based
on shift-twist symmetry predict a similar type of solutions? These issues will form the topic of
Chapter 4.
Second, independent of any specific model, motivated by general symmetry considerations alone:
Can we tell, in principle, the difference between two sets of orientation maps, the first one being
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2 Basics

the outcome of a E(2) shift-twist symmetric, the second one being the outcome of an E(2)×U(1)
shift symmetric dynamics? Are there any differences in the predicted orientation map layout?
These questions will be discussed in Chapter 3.
Third, last but not least: Even if shift-twist symmetry seems a priori more appropriate to
underly orientation map development, it may turn out that shift symmetry is not at all a bad
assumption. Can we quantify the actual degree of shift symmetry breaking for a given optical
imaging dataset? Having identified possible signatures of shift and of shift-twist symmetry in
Chapter 3 we have the necessary tools to address this question in Chapter 5.

2.5 Towards a Shift-Twist Symmetric Swift-Hohenberg Model

At the end of this chapter we sketch how to generalize the model (2.11) in a way which respects
shift-twist symmetry and also accounts for the possibility that shift symmetry may be broken.
The model (2.11) is symmetric under shift-twists and also under orientation shifts, since the
energy functional Eq.(2.15) stays invariant under these transformations. Shift symmetry can be
broken by adding new terms to the energy functional, which, however have to fulfill general rules,
in order to guarantee invariance under shift-twists. For example, such a contribution which is
quadratic in the fields is provided by

δE[z] =
�
d2x
�
d2y z(x)K(|y− x|)e−4i arg(y−x)z(y) + c.c., (2.18)

where c.c. denotes the complex conjugation of the expression. The complex phase e−4i arg(y−x) is
necessary in order to balance the phase which arises from shift-twist rotations z(x)→ e2iφz(Ω−1

φ x),
i.e.

δE[Rφz] =
�
d2x
�
d2y e4iφz(Ω−φx)K(|y− x|)e−4i arg(y−x)z(Ω−φy) + c.c.

=
�
d2x
�
d2y e4iφz(x)K(|Ωφ(y− x)|)e−4i arg(Ωφ(y−x))z(y) + c.c.

=
�
d2x
�
d2y e4iφz(x)K(|y− x|)e−4i arg(y−x)e−4iφz(y) + c.c.

= δE[z]

In addition, invariance under shift-twist reflections z(x)→ z̄(x̄) requires a real valued convolution
kernel K(r) ∈ R, since only then

δE[CP z] =
�
d2x
�
d2y z̄(x̄)K(|ȳ− x̄|)e−4i arg(y−x)z̄(ȳ) + c.c.

=
�
d2x
�
d2y z̄(x)K(|y− x|)e+4i arg(y−x)z̄(y) + c.c.

=
�
d2x
�
d2y z(x)K̄(|y− x|)e−4i arg(y−x)z(y) + c.c.

= δE[z]

Just adding the simplest term, which is provided by (2.18), to the the energy functional of the
Wolf model, Eq. (2.15) yields the dynamics

∂tz(x) =
�
r − (k2

c + ∆)2
�
z(x) +

�
d2yK(|x− y|)e4i arg(y−x)z̄(y) +N3[z, z, z̄], (2.19)
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2.5 Towards a Shift-Twist Symmetric Swift-Hohenberg Model

where the expression N3[z, z, z̄] refers to the original third order nonlinearity of (2.11). Clearly,
for non-vanishing K(r) this dynamics is not equivariant under phase shifts z(x)→ e2iθz(x). We
will take this minimal extension of the model (2.11) as the basis of our discussion in Chapter 3
and Chapter 4.
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3 Shift-Twist Symmetry in Ensembles of
Orientation Maps

3.1 Overview

In this chapter we develop a theory of statistical ensembles of orientation preference maps (OPMs).
In trying to understand pattern formation in the visual cortex studying ensembles of OPMs is
important for at least three reasons: Firstly, because of the strong interindividual variability
of the layout of cortical columns theoretical predictions can never be compared to individual
observations but have to be compared to ensembles of patterns obtained from different brains
and their statistics. It is thus essential to achieve the clearest possible view of the theoretically
expected structure of such statistics and to have well characterized model ensembles that can
be used to optimize and validate quantitative analysis techniques. Secondly, as we will see
in Chapter 4 even deterministic models of pattern formation in the visual cortex can exhibit
excessively many degenerate ground states. Starting from random initial conditions such models
do not predict the formation of one particular pattern, but predict that patterns converge over
time to instances of an ensemble of patterns. Thus characterizing ensembles of maps is also
necessary in order to characterize the predictions of deterministic models. Finally, even if a
unique ground state exists, finite time transients towards this ground state can be characterized
with great generality using ensemble notions.

The chapter consists of three parts. In the first part we introduce Gaussian random fields and
study how shift symmetry breaking is affecting their statistics. Gaussian random fields are
defined by their 2-point correlation functions and exhibit a close resemblance to orientation
maps when the correlation functions are chosen to match those from the data. Furthermore,
they are likely to provide a good approximation for the emerging orientation map shortly after
spontaneous symmetry breaking [13]. First we derive the general forms of the 2-point correlation
functions for the E(2) × U(1) symmetric case. Then we show that shift symmetry breaking,
E(2) × U(1) → E(2), induces correlations among pairs of antiparallel Fourier modes, which
for higher symmetry were uncorrelated. The strength of this additional correlations can be
quantified by a correlation coefficient, which varies in the range [−1, 1] and thus provides a
suitable order parameter, which we call q, to define the degree of shift symmetry breaking. For
q = 0 shift symmetry is restored, for q = 1 and q = −1 it is maximally broken. Examples of
artificial orientation maps, generated for different values of q, show that shift symmetry breaking
induces a coupling of the orientation map to the visuotopic map. The coupling occurs in one of
two ways, depending on the sign of q: For q > 0 domains with a preference to horizontal and
vertical orientations tend to align with the horizontal and vertical directions of the visuotopic
map. Similarly, domains with a preference to left- and right-oblique orientations tend to organize
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

along diagonal directions of the visuotopic map. Exactly the opposite is observed for q < 0.
In the second part we study whether shift symmetry breaking affects the pinwheel density. The
pinwheel density is of particular interest to understand the mechanisms underlying map formation
since a scenario, in which orientation preferences arise through activity-dependent refinement of
initially unselective patterns of synaptic connections, implies a strict lower bound on the pinwheel
density at the initial stage of map formation [13]. Since this lower bound is set by the pinwheel
density of a Gaussian random field having the ’right’ symmetries of the microscopic dynamics it
is important to know whether the lower bound to the pinwheel density of Wolf and Geisel [13],
derived under the assumption of shift symmetry, is modified or not. We calculate the pinwheel
density for q �= 0 and find that its expectation value remains unaffected. As a consequence, the
predictions of [13] are also valid when the shift symmetry assumption is relaxed.
In the third part we develop a general theory for the joint statistics of pairs of oriented objects,
given that Euclidean symmetry E(2) holds. Primarily, we aim at describing the joint probability
distribution of orientation preferences at two separated locations for orientation maps. Neverthe-
less, our theory can be applied more generally to any planar assembly of oriented objects, e.g. to
oriented line segments in natural scenes, to nematic liquid crystals or to colonies of rod-shaped
bacteria.We calculate the pair cooccurence distribution of orientations in Gaussian random fields
for arbitrary correlation functions and arbitrary q. The theoretical predictions are compared to
numerical simulations for a specific set of model correlation functions.

3.2 Ensembles of Orientation Preference Maps

The layout of an orientation map z(x, t) at time t whose development is modeled by a dynamics
as in Eq.(2.19) will depend on the initial condition z(x, 0) at t = 0. As suggested by experimental
findings (cf. Chapter 2, [48, 9, 28]) the unselective initial state may be modeled by low amplitude
random fluctuations of the orientation preferences around the homogeneous state z(x) = 0. Since
a priori there is no reason to prefer one initial condition to another a natural approach is to
consider the ensemble Zt = {z(x, t)} of all possible orientation maps evolving from this set of
random initial conditions. Statistical properties of this ensemble are, in principle, determined by
a functional Pt[z], which assigns a statistical weight to each orientation map z(x) at time t. The
dynamics of the ensemble Zt is then reflected in the time dependence of the functional Pt.

3.3 Correlation Functions

At each particular point in time the statistical functional Pt[z] defines an ensemble of random
fields and thus contains all the information about the ensemble. An equivalent characterization
of this ensemble is provided by the complete set of n-point correlation functions (supposed they
exist) defined by

Cnm(x1,x2, . . . ,xm,xm+1, . . .xn; t) := �z(x1)z(x2) . . . z(xm)z̄(xm+1) . . . z̄(xn)�z∈Zt ,

where n ∈ N, m ≤ n and with the angular brackets representing the ensemble average (cf. for
example [49]). The form of these correlation functions is constrained by the symmetries of the
ensemble, which are transformations of the field z(x) which leave the functional Pt[z] and thus
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all correlation functions invariant. For Gaussian random fields, which we discuss in section 3.8,
the n-point functions can be expressed in terms of 1-point and 2-point correlation functions,
by a Wick decomposition [49] such that the knowledge of �z(x)�, �z̄(x)�, �z(x)z̄(y)�, �z(x)z(y)�
already provides a complete description of the ensemble. In the next section we give a motivation
why the Gaussian case is important.

3.4 Initial Maps have Gaussian Statistics

In this section we show that at the early stage, when the dynamics is dominated by the linear
terms, the ensemble of emerging orientation maps is expected to be Gaussian. We consider a
general class of models whose dynamics has the following form

∂tz(x) = F [z](x) + ξ(x, t) (3.1)

where F [z] denotes a nonlinear operator as discussed in Chapter 2 and ξ(x, t) is a random noise
term, which could, for example, represent fluctuating input. In the vicinity of the homogeneous
state z(x) = 0 the dynamics can be approximated by the first order terms

∂tz(x) ≈ (L1z)(x) + (L2z̄)(x) + ξ(x, t) (3.2)

where the linear operators L1 and L2 are defined by the functional derivatives L1 = (δF [z]/δz)
z=0

and L2 = (δF [z]/δz̄)
z=0. Due to translation invariance these operators are diagonal in the Fourier

representation and have a spectrum λ1(k) and λ2(k), respectively. With

z(x) = 1
2π

�
d2k a(k)eikx

the dynamics of the Fourier modes a(k) states

∂ta(k) = λ1(k)a(k) + λ2(k)ā(−k) + η(k, t) (3.3)
∂tā(−k) = λ1(k)ā(−k) + λ̄2(k)a(k) + η̄(−k, t)

where η(k) denotes the Fourier transform of the noise. As shown in Chapter 2, E(2) symmetry
of the dynamics (3.1) implies

λ1(k) = λ(k)

and
λ2(k) = |λ2(|k|)|e4i arg k,

which we can also write
λ2(k) = �(k)λ(k)e4i arg k,

where λ(k) and �(k) are real valued functions and k := |k|, such that

∂ta(k) = λ(k)[a(k) + �(k)e4i arg kā(−k)] + η(k, t) (3.4)
∂tā(−k) = λ(k)[ā(−k) + �(k)e−4i arg ka(k)] + η̄(−k, t)
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

The case � = 0 corresponds to the shift symmetric case. For � �= 0, i.e. for broken shift symmetry,
the antiparallel modes a(k) and a(−k) are coupled. A basis which diagonalizes the dynamics is
provided by the change of variables

b±(k) = 1
2
�
e−2i arg ka(k)± e2i arg kā(−k)

�
(3.5)

ζ±(k, t) = 1
2
�
e−2i arg kη(k, t)± e2i arg kη̄(−k, t)

�

In that new basis the dynamics states

∂tb±(k) = λ(k)[1± �(k)]b+(k) + ζ±(k, t) (3.6)

The solution of this differential equation is given by

b±(k, t) = Ĝ±(k, t)b±(k, 0) +
t�

0

dt�Ĝ±(k, t− t�)ζ±(k, t�). (3.7)

where
Ĝ±(k, t) = eλ(k)[1±�(k)]t

are the propagators of the homogeneous equations. The statistics of b±(k, t) at some finite time
t will depend on the statistics of the random initial state b±(k, 0) as well as on the statistics of
the noise ζ±(k, t). For simplicity we assume that ζ±(k, t) is described by some random process
for which the integral in Eq.(3.7) can be approximated by a sum

b±(k, t) ≈ Ĝ±(k, t)b±(k, 0) +
�

i

∆t Ĝ±(k, t− t�i)ζ±(k, t�i). (3.8)

We can invoke the central limit theorem if the following two conditions are fulfilled:
1. The distribution of b±(k, 0) and ζ(k, t) fulfills the Lindeberg criterion

lim
β→0

�

|w|>β

dw |w|2Pw(w) = 0, (3.9)

where w stands for b±(k, 0) or ζ±(k, t) and Pw(w) denotes the individual probability density
of those quantities.

2. The correlation time of the noise, τζ , is much smaller than the characteristic time scales of
Ĝ±,

τ± = 1/max(λ(k)[1± �(k)])
such that the sum in Eq.(3.8) consists of a large number of independent contributions.

The first condition is met if b±(k, 0) and ζ±(k, t) are bounded or have finite variance, which
is plausible since neural response always occurs within some physiological range. The second
assumption is also consistent with the biological findings, since orientation maps are observed to
develop on a time scale of several hours or days and that fluctuations induced by afferent activity
patterns exhibit correlation times of up to a few hundreds of milliseconds [34].
In conclusion, for a general class of models the statistics of b±(k, t) approaches a Gaussian
distribution at the initial stage of the dynamics. In particular, since linear transformations of
Gaussian random variables are again Gaussian, this also applies to a(k, t) and to z(x, t). For
times t ∼ τ± the ensemble Zt = {z(x, t)} thus constitutes a Gaussian random field ensemble.
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3.5 Gaussian Random Fields

3.5 Gaussian Random Fields

A Gaussian random field Z(x) is defined by the following property: For any positive integer n ∈ N
and arbitrary positions x1,x2, . . . ,xn the joint probability density of the n random variables
Z(x1), Z(x2), . . . , Z(xn) is given by a multivariate Gaussian distribution [50]. This means that
its first and second order moments, i.e. �Z(x)�, �Z(x)Z̄(y)� and �Z(x)Z(y)� already specify the
ensemble. One can show that any linear transformation of a Gaussian random field is again
Gaussian [50]. Gaussian random fields inherit the virtues of the Gaussian distribution and in
this chapter we will encounter many situations where statistical averages can be performed
analytically. Although one should distinguish the random field Z(x), which is a random variable,
from its individual realizations z(x), which are functions, we will simply denote both by the
same symbol z(x).
First we give the general definition of a Gaussian random field assuming symmetry under
E(2)× U(1) (shift symmetry). Then we show how this definition has to be modified when shift
symmetry is broken down to its E(2) subgroup (shift-twist symmetry).

Shift Symmetry (E(2)× U(1))

Here we calculate the general form of the first and second order moments of z(x), which are
required to be invariant under the E(2)× U(1) group of transformations discussed in Chapter 2.

Invariance under translations and shift-twists requires

�z(x)� = �z(0)� = e2iφ�z(Ω−φ0)� = e2iφ�z(0)� ∀φ ∈ [0, 2π]

and thus the vanishing of �z(x)� and �z̄(x)� for arbitrary positions x. Due to translation invariance,
the 2-point correlation functions �z(x)z̄(y)� and �z(x)z(y)� only depend on the difference vector
r = y− x and we define

C1(r) := �z(x)z̄(x + r)�
C2(r) := �z(x)z(x + r)�.

C1(r) is real valued due to translation and inversion symmetry, since

C1(r) = �z(x)z̄(x + r)� = �z(−x− r)z̄(−x)� = �z(x + r)z̄(x)� = C̄1(r). (3.10)

In addition, invariance under shift-twist rotations implies

C1(r) = �z(0)z̄(r)� = �z(Ω−φ0)z̄(Ω−φr)� = �z(0)z̄(Ω−φr)� = C1(Ω−φr)

which means that C1(r) is rotation symmetric and only depends on |r|.
Shift symmetry requires

C2(r) = �z(x)z(x + r)� = e4iφ�z(x)z(x + r)� = e4iφC2(r) ∀φ ∈ [0,π]

and thus the vanishing of C2(r).
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

Shift-Twist Symmetry (E(2))

What is the general form of the correlation function for broken shift symmetry? As we show
next, in this case C2(r) does not have to vanish. It is complex valued and can be written in the
general form

C2(r) = (r1 + i r2)4f(|r|) (3.11)
with some radially symmetric, real valued function f(|r|).
In the following we will need to take higher order derivatives of the random field and also of the
correlation functions at r = 0. In optical imaging one usually applies low pass filtering of the
single condition maps in order to remove the high frequency components due to the shot noise of
the camera signal. The resulting pattern of orientation preferences is smooth and has continuous
higher order derivatives. Hence this should also be the case for the random fields considered here.
It can be shown that a random field is continuously differentiable (in the mean square sense) up
to the n-th order if all m-th order derivatives (m ≤ 2n) of the 2-point correlation functions exist
and are continuous, and vice-versa [50]. In the following we simply assume that all derivatives
exist and are continuous.
We now give a proof of the statement above, Eq.(3.11). A series expansion of C1(r) and C2(r)
around the origin r = 0 reads

C1(r) =
∞�

m,n=0
amn rmr̄n

C2(r) =
∞�

m,n=0
bmn rmr̄n

with m, n ∈ N and amn, bmn ∈ C. Here we identified the vector r = (r1, r2) with the complex
number r = r1 + i r2 and performed an expansion in r and r̄, which is equivalent to the usual
expansion in r1 and r2, but has the advantage that spatial rotations r → Ωφr are simply
represented by a multiplication with a complex phase, r→ eiφr.
Under shift-twist rotations, z(x)→ e2iφz(Ω−φx), the correlation functions transform as follows:

C1(r) = �z(0)z̄(r)� → �z(0)z̄(Ω−φr)� = C1(Ω−φr)
C2(r) = �z(0)z(r)� → e4iφ�z(0)z(Ω−φr)� = e4iφC2(Ω−φr).

E(2) invariance thus requires

C1(r) != C1(e−φr)
C2(r) != e4iφC2(e−φr).

As the left sides of these equations do not depend on the angle φ we can average over all angles
and obtain

C1(r) =
�
amn rmr̄n 1

2π

2π�

0

dφeiφ(n−m) =
�
an (rr̄)n

C2(r) =
�
bmn rmr̄n 1

2π

2π�

0

dφeiφ(4+n−m) = (r1 + ir2)4� bn (rr̄)n
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3.6 Correlation Functions in Fourier Representation

from which one can read off that C1(r) is radially symmetric as it only depends on rr̄ = |r|2. As
shown in Eq.3.10, C1(r) is real, and therefore an ∈ R. Furthermore, symmetry under reflections ,
z(x)→ z̄(x̄), requires C2(r) = C̄2(r̄), such that bn ∈ R. All together we obtain

C2(r) = (r1 + i r2)4f(|r|) =
�
r41 − 6r21r22 + r42 + i 4r1r2(r21 − r22)

�
f(|r|) (3.12)

with a real, radially symmetric function f(|r|) =�∞n=0 bn (rr̄)n.

3.6 Correlation Functions in Fourier Representation

An equivalent definition of the Gaussian random field ensemble can be given in the Fourier
representation. The second order correlations of the Fourier modes a(k) = 1/2π

�
d2k z(x)e−ikx

are given by

�a(k)ā(k�)� = 1
(2π)2

�
d2x
�
d2x�e−ikxe−ik

�x��z(x)z̄(x�)�

= 1
(2π)2

�
d2x
�
d2x�e−ikxe−ik

�x��z(0)z̄(x� − x)�

= 1
(2π)2

�
d2x e−i(k�−k)x

�
d2x�eik�x��z(0)z̄(x�)�

= δ(k− k�)P1(k)

�a(k)a(k�)� = 1
(2π)2

�
d2x
�
d2x�e−ikxe−ik

�x��z(x)z(x�)�

= 1
(2π)2

�
d2x
�
d2x�e−ikxe−ik

�x��z(0)z(x� − x)�

= 1
(2π)2

�
d2x e−i(k+k�)x

�
d2x�e−ik�x��z(0)z(x�)�

= δ(k + k�)P2(k)

where P1(k) and P2(k) denote the Fourier transforms of C1(r) and C2(r). From these expressions
we see that, due to translation symmetry, almost all correlations vanish, except of �a(k)ā(k)�
and �a(k)a(−k)�.

Invariance under shift-twist rotations a(k)→ e2iφa(Ω−φk) and reflections a(k)→ ā(±k̄) implies
rotation invariant, real and positive valued P1(k), whereas P2(k) has to be of the general form

P2(k) = e4i arg kg(|k|) (3.13)

with arg k := arg(k1 + i k2) denoting the direction angle of the k-vector and g(|k|) ∈ R.

If, in addition, symmetry under orientation shifts a(k)→ e2iφa(k) is also assumed, P2(k) has to
vanish. We conclude that in general, when shift symmetry is broken, the anti-parallel modes
a(k) and a(−k) are correlated in a particular way described by P2(k) in Eq.(3.13).
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

3.7 The Degree of Shift-Symmetry Breaking

From the results of the previous section follows that the covariance matrix of (a(k), ā(k), a(−k), ā(−k)),
i.e.

C(k) =





�a(k)ā(k)� �a(k)a(k)� �a(k)ā(−k)� �a(k)a(−k)�
�ā(k)ā(k)� �ā(k)a(k)� �ā(k)ā(−k)� �ā(k)a(−k)�
�a(−k)ā(k)� �a(−k)a(k)� �a(−k)ā(−k)� �a(−k)a(−k)�
�ā(−k)ā(k)� �ā(−k)a(k)� �ā(−k)ā(−k)� �ā(−k)a(−k)�





reads

C(k) = δ(0) ·





P1(k) 0 0 P2(k)
0 P1(k) P̄2(k) 0
0 P2(k) P1(k) 0
P̄2(k) 0 0 P1(k)





It has the eigenvalues
λ±(k) = P1(k)± |P2(k)|,

each of which is twice degenerate. Since a covariance matrix is positive definite, P1(k) and P2(k)
must satisfy the inequality

|P2(k)| ≤ P1(k). (3.14)
Together with Eq.(3.13) it means that P2(k) can be written as

P2(k) = Q(k) e4i arg k P1(k), −1 ≤ Q(k) ≤ 1 (3.15)

We can quantify the degree of shift symmetry breaking by means of the index q

q := �Q(k)�

:=
��
dk P1(k)Q(k)

�
/
�
dk P1(k) (3.16)

which assumes its values in the range q ∈ [−1, 1]. For the shift symmetric case, P2(k) = 0, the
index q vanishes and a(k) and a(−k) are uncorrelated. For |P2(k)| = P1(k), where either q = 1
or q = −1 shift symmetry is maximally broken and a(k) and a(−k) are maximally correlated.
All together, the probability functional of the E(2) shift-twist symmetric Gaussian random field
ensemble has the form

Pa[a] = Na · e−Fa[a]

with

Fa[a] =
�
d2k 2a(k)ā(k)− [e4i arg kQ(k)a(k)a(−k) + c.c]

2P1(k)[1−Q2(k)] ,

or, in terms of the basis b±(k) introduced in Section 3.4 in which the covariance matrix is
diagonal,

Pb[b+, b−] = Nb · e−Fb[b+,b−] (3.17)
with

Fb[b+, b−] = 2
�
d2k b+(k)b̄+(k)
P1(k)[1 + q(k)] + b−(k)b̄−(k)

P1(k)[1− q(k)] ,

where Na and Nb denote appropriate normalization constants.

28



3.8 Model Correlation Functions

3.8 Model Correlation Functions

Now that we have specified the general functional form of the 2-point functions we will next
define a family of model correlation functions intended to fit the experimental data. Optical
imaging data reveals that the power spectrum P1(k) of orientation preference maps occupies
an annulus in the two dimensional k-plane with a typical wave number k0, which reflects the
fact that orientation preference maps are arranged in repetitive hypercolumns of typical spacing
Λ = 2π/k0 (c.f. [51] and references therein). The powerspectrum has a finite width, which can
vary from animal to animal and within different species (e.g. see Fig. 5.5(e) of Chapter 5).

As correlation functions of the model ensemble we introduce

P1(k) = A|k|βe−B|k|2 (3.18)
P2(k) = q e4i arg k P1(k)

where the constants A and B are given by

A = 2
Γ[1+β

2 ]

�
Γ[2+β

2 ]
Γ[1+β

2 ]

�1+β

B =
�

Γ[2+β
2 ]

Γ[1+β
2 ]

�2

This family of correlation functions depends on just two parameters, β and q, controlling the
powerspectral width and the degree of shift symmetry breaking, respectively. It has following
properties:

1. The radial part p(k) of P1(k) is normalized to 1,

∞�

0

dk p(k) = 1 (3.19)

2. The typical wavenumber k0 defined as

k0 :=
∞�

0

dk k p(k) (3.20)

is normalized to 1. For the typical wavelength Λ = 2π/k0 this implies Λ = 2π.

3. The degree of shift symmetry breaking is assumed to be constant over the entire range of
wavenumbers and spatial scales,

Q(k) = q.

For β = 1 the annulus of the powerspectrum is broad, for β →∞ it becomes arbitrarily narrow.
We only consider values β ≥ 1. Examples of P1(k) and P2(k) for different values of β are
displayed in Fig. 3.1 and 3.2.
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Figure 3.1: Powerspectral densities and spatial correlation functions of the model ensembles as defined
in Eq.(3.18) and (3.21), respectively. (a) Powerspectral densities for β = 1, 10, 100. (b-d) C1(r, 0) (gray
traces) and Re C2(r, 0) (green traces) for β = 1, 10, 100, respectively.
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Figure 3.2: Spatial organization of 2d model correlation functions for q = 1. (a, b) C1(r) and C2(r).
(c, d) Fourier representation: P1(k) and P2(k). Whereas P1(k) and C1(r) are real, P2(k) and C2(r) are
complex valued and have a characteristic cloverleaf shape (β = 10, q = 1). Colorbar applies to all plots.
P1 and P2 have been rescaled by the same factor such that the maximal value of P1 is 1. The case q = −1
(not shown) looks similar, with the only difference that the positive and negative phases in (b) and (d)
are exchanged. This follows from Eq.(3.18).
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

The correlation functions in spatial representation are given by

C1(r) = 1F1(2 + β
2 ; 1 ;− |r|

2

4B ) (3.21)

C2(r) = (r1 + i r2)4
1F1(6 + β

2 ; 5 ;− |r|
2

4B )AB−(6+β)/2/768

where 1F1 denotes the confluent hypergeometric function of the first kind (cf. Appendix 3.16 for
the calculation details). Note that these expressions match the general form discussed in Section
3.5.

3.9 Generating Individual Realizations

Next we show how to generate realizations of Gaussian random fields for a given set of correlation
functions P1(k) and P2(k) numerically. Fourier space is discretized such that the k-vectors are
located on a lattice. We use the decomposition of z(x) in terms of the basis functions b+(k) and
b−(k), Eq.(3.5),

z(x) = 1
2π
�

k
e2i arg k

�
(b+(k) + b−(k)) eikx +

�
b̄+(k)− b̄−(k)

�
e−ikx

�

and treat b+(k) ∈ C and b−(k) ∈ C as Gaussian random fields defined by the probability density
Eq.((3.17)). Thus, b+(k) and b−(k) are independently drawn from Gaussian distributions with
respective variances

σ2
±(k) = �b±(k)b̄±(k)� = P1(k)[1± q(k)].

3.10 Spatial Locking of Orientation Domains

Figures 3.3 and 3.4 show the consequences of shift symmetry breaking on the spatial organization
of orientation preference maps. They display realizations of Gaussian random fields for different
degrees of shift symmetry breaking. When shift symmetry is not broken (q = 0) the layout of
orientation domains preferring cardinal (0◦ and 90◦) orientations and oblique (45◦ and 135◦)
orientations, which are described by the real and imaginary parts of z(x), respectively, are
statistically independent and exhibit a patchy, irregular and statistically isotropic organization.
When shift symmetry is gradually broken (q = ±0.5, ±1) iso-orientation domains acquire a
band-like appearance and the orientation of the bands becomes spatially locked to specific cortical
axes. The sign of q matters, since

• for q > 0 cardinal domains are preferentially extending along the horizontal and vertical
axes, whereas oblique domains are preferentially extending along the two oblique axes.

• for q < 0 cardinal domains are preferentially extending along the oblique axes, whereas
oblique domains are preferentially extending along the horizontal and vertical axes.

This spatial locking of iso-orientation domains to specific directions of the visuotopic map becomes
more pronounced with increasing degree of symmetry breaking.
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Arg z Re z Im z

q=0

q=0.5

q=1

Figure 3.3: Examples of Gaussian random fields for positive degree of shift symmetry breaking. Shown
on the left is arg z(x), Re z(x) and Im z(x) of a random map for different values of shift symmetry
breaking q. Upper row: q = 0 (shift symmetric case), middle row: q = 0.5 , bottom row: q = 1 (shift
symmetry is maximally broken). For all cases β = 10. Right: Scheme of the underlying visuotopic map.
For simplicity, in the model visuotopic and cortical coordinates are identified.
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q=0

Re z Im zArg z

q=−0.5

q=−1

Figure 3.4: Examples of Gaussian random fields for negative degree of shift symmetry breaking. Same
realization as in Fig. 3.3, however drawn for q = 0 (shift symmetric case, upper row), q = −0.5 (middle
row), q = −1 (shift symmetry is maximally broken, bottom row).
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3.11 Pinwheel Densities

A few years ago, Geisel and Wolf demonstrated that the number of pinwheels generated early
in development exhibits a universal minimal value that depends only on general symmetry
properties of the cortical network. This result suggested that in species exhibiting a lower number
of pinwheels in the adult, pinwheels must move and annihilate in pairs during the refinement of
cortical circuitry [13]. Verification of this intriguing prediction would therefore provide striking
evidence for the activity-dependent generation of the basic visual cortical processing architecture.
In this section we revisit the problem of early pinwheel densities for Gaussian random fields with
arbitrary degree of shift symmetry breaking in order to analyze in how far symmetry breaking
influences pinwheel generation and affects the previously calculated lower bound.
Pinwheel centers are the zeros of the complex field

z(x) = R(x) + i I(x),

which means that at pinwheels the real and imaginary parts both vanish,

R(xpw) = 0, I(xpw) = 0.

The number N(A) of pinwheels in a given area A is therefore given by

N(A) =
�

A

d2x δ (R(x)) δ (I(x)) |J (x)| (3.22)

with the Jacobian
J (x) := ∂R(x)

∂x1

∂I(x)
∂x2

− ∂I(x)
∂x1

∂R(x)
∂x2

The Jacobian ensures that in the integral of Eq.(3.22) every pinwheel increments N(A) by one.
The expectation value of the number of pinwheels in the ensemble of Gaussian random fields is
then given by the ensemble average

�N(A)� =
��

A

d2x δ (R(x)) δ (I(x)) |J (x)|
�

(3.23)

from which follows that the average pinwheel density ρ(r) equals

ρ(x) = �δ (R(x)) δ (I(x)) |J (x)|� . (3.24)

Since we assume translation invariance of the ensemble this value must be the same for all x and
we drop the explicit dependence on x in the following, writing

ρ = �δ (R) δ (I) |J |� . (3.25)

In order to evaluate this expression it is sufficient to know the joint probability density of z
and ∇z. Since any linear functional of a Gaussian random variable is also Gaussian, it follows
that derivatives ∇z are normally distributed. For this reason p(R, I,∇R,∇I) is a multivariate
Gaussian of the form

p(ζ) = 1
(2π)3

√
detW

exp
�
−1

2vTW−1v
�

(3.26)

35



3 Shift-Twist Symmetry in Ensembles of Orientation Maps

with v = (R, I, ∂xR, ∂yR, ∂xI, ∂yI)T and symmetric covariance matrix W ,

W =





�R2� �RI� �R (∂xR)� �R (∂yR)� �R (∂xI)� �R (∂yI)�
· �I2� �I (∂xR)� �I (∂yR)� �I (∂xI)� �I (∂yI)�
· · �(∂xR)2� �(∂xR)(∂yR)� �(∂xR)(∂xI)� �(∂xR)(∂yI)�
· · · �(∂yR)2� �(∂yR)(∂xI)� �(∂yR)(∂yI)�
· · · · �(∂xI)2� �(∂xI)(∂yI)�
· · · · · �(∂yI)2�





(3.27)

where the matrix elements are expressible in terms of C1(r) and C2(r) as follows:

�R2� = 1/2 [C1(r) + Re C2(r)] r=0

�I2� = 1/2 [C1(r)− Re C2(r)] r=0

�RI� = 1/2 [Im C2(r)] r=0

The remaining matrix elements involving derivatives can be obtained from the previous expressions
by differentiation, e.g.

�R (∂jR)� = 1/2 ∂j [C1(r) + Re C2(r)]r=0
�(∂iR) (∂jR)� = −1/2 ∂i∂j [C1(r) + Re C2(r)]r=0

Note the occurrence of a minus sign in terms with two derivatives. It is important to realize
that due to the prefactor (r1 + i r2)4 occurring in the general formula for C2(r), Eq.(3.11), all
terms containing C2(r), ∂iC2(r), ∂i∂jC2(r) vanish when evaluated at r = 0. For that reason the
pinwheel density exclusively depends on the rotation and, by definition, shift invariant correlation
function C1(r) and thus is independent of C2(r). In particular, this means that the pinwheel
density is independent of the degree of shift symmetry breaking q. The covariance matrix W
thus states

W = 1
2





C1(0) 0 (∂xC1)(0) (∂yC1)(0) 0 0
· C1(0) 0 0 (∂xC1)(0) (∂yC1)(0)
· · −(∂xxC1)(0) −(∂xyC1)(0) 0 0
· · · −(∂yyC1)(0) 0 0
· · · · −(∂xxC1)(0) −(∂xyC1)(0)
. · · · · −(∂yyC1)(0)





(3.28)

Due to rotation symmetry also the terms (∂iC1)(0) and the mixed derivatives (∂i∂jC1)(0) (i �= j)
vanish, such that

W = diag(cz, cz, cg, cg, cg, cg)
where we used the abbreviation

cz = 1
2 C1(0), cg = −1

4 (∆C1)(0)

and the fact that (∂xxC1)(r) = (∂yyC1)(r) due to rotation invariance of C1(r). The joint
probability distribution p(ζ) thus reads

p(ζ) = 1
(2π)3czc2g

exp
�
− zz̄2cz

�
exp
�

−∇z∇z̄2cg

�

.
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Figure 3.5: Dimensionless pinwheel densities ρ̂ = ρΛ2 as a function of powerspectral width β for various
degree of shift symmetry breaking |q| = 0, 0.5, 1. Full Line: Analytical prediction, Data points: Numerical
simulations, from an average over N = 50 Gaussian random fields.

We can now perform the ensemble average, given by the integral

ρ =
�
dζ p(ζ) δ(R) δ(I) |J |

to obtain the pinwheel density ρ. The result of this calculation (see Appendix 3.17) yields

ρ = − ∆C1(0)
4πC1(0) (3.29)

3.12 Model Pinwheel Densities

Next we evaluate the analytical expression Eq.(3.29) for ensembles of Gaussian random fields
defined by the correlation functions Eq.(3.21). The calculation of the dimensionless, rescaled
pinwheel density ρ̂ = ρΛ2 yields

ρ̂ = π (2 + β)Γ[1+β
2 ]2

2Γ[2+β
2 ]2

.

This expression depends on the parameter β, controlling the powerspectral width, but is in-
dependent of q, the degree of shift symmetry breaking. A numerical check of this formula
was obtained from 50 realizations of random fields for several values of β ∈ [1, . . . 100] and for
three different values of q ∈ [0, 0.5, 1], confirming the prediction that pinwheel densities are
independent of q. The results are shown in Fig. 3.5. For β = 1 (broad powerspectrum) ρ̂ = 6
and for β →∞ (powerspectrum on circle) ρ̂→ π. Thus, the pinwheel density gets smaller for
decreasing powerspectral width (increasing β) and asymptotically approaches π from above.

3.13 Lower Bound on Pinwheel Densities

Next we prove analytically that pinwheel densities of Gaussian random fields have an expectation
value larger than π. Following the line of arguments given in [34] we switch into Fourier
representation. First, we express C1(0) and (∆C1)(0) as functionals of P1(k),
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C1(0) = 1
2π

�
d2kP1(k) (∆C1)(0) = − 1

2π

�
d2k |k|2P1(k)

The pinwheel density is then given by

ρ = 1
4π

�
d2k|k|2P1(k)�
d2kP1(k) . (3.30)

The exact form of the correlation function C1(r) or P1(k) at the beginning of orientation map
development is not known. In particular, it is to be expected that these functions vary from
species to species and from individual to individual. The following argument shows that Eq.(3.30)
implies a quantitative estimate of the pinwheel density. With the definition of k0 (c.f. Eq.(3.20))

k0 =
∞�

0

dk k p(k)

where p(k) denotes the radial part of P1(k), normalized to 1 (c.f. Eq.(3.19))

∞�

0

dk p(k) = 1

expression Eq.(3.30) equals

ρ = πΛ2

�∞
0 dk k

3p(k)
(
�∞

0 dk k p(k))3 .

Using Jensen’s inequality,
∞�

0

dk k3p(k) ≥ (
� ∞

0
dk k p(k))3

it follows that ρ can be written
ρ = πΛ2 (1 + α)

where α ≥ 0 is given by the functional

α = 3/k2
0

∞�

0

dk (k − k0)2p(k) + 1/k3
0

∞�

0

dk(k − k0)3 p(k)

from which follows that α = 0 when p(k) = δ(k − k0). Thus, Gaussian random patterns of
orientation preferences have a minimum lower bound on their pinwheel density,

ρmin = πΛ2 .

Due to the ergodicity of Gaussian random fields [50] this lower limit also applies to the pinwheel
density of individual realizations.
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3.14 Edge Statistics and Shift-Twist Symmetry

80 6.4 Wahrscheinlichkeitshistogramme

φθc

θd

r

Abbildung 6.3: Veranschaulichung der Wahrscheinlichkeitshistogramme f̈ur kortikale Orientierungskar-

ten. Berechnet werden die Wahrscheinlichkeiten bis zu einem Abstand von r = 3Λ.

6.4 Wahrscheinlichkeitshistogramme

In diesem Abschnitt wird abschließend eine, aus experimentell gemessenen Karten relativ leicht

zu bestimmende, Größe eingeführt. Es handelt sich dabei um eine charakteristische Wahrschein-

lichkeitsverteilung, deren genaue Form f̈ur die Attraktoren des vorgestellten Modells von Betrag

und Vorzeichen der jeweilgen ST-Parameter abḧangt. Folgende Wahrscheinlichkeitsdichte (PDF)

steht bei diesen Überlegungen im Vordergrund: Das Neuron am Ort x = 0 habe innerhalb ei-

ner Orientierungskarte die präferierte Orientierung θc. Das Neuron in der Entfernung r unter

dem Winkel φ bevorzugt die Orientierung θd. Die Orientierungen θd und θc werden als Zu-

fallsvariablen aufgefasst, und gesucht ist eine gemeinsame PDF Pr,φ(θc, θd) für jeden Abstand

r und jeden Winkel φ (siehe Abbildung 6.3). Eine solche Verteilung enthält Anteile aus Korre-

latoren aller Ordnungen, und es wird sich daher auch zeigen, wie die eben ermittelten Größen

im Zusammenspiel auftreten. In einem shift-symmetrischen Ensemble hängt die so definierte

Wahrscheinlichkeitsverteilung nur vom relativen Abstand der beiden Nervenzellen zueinander

und von der Differenz ihrer Orientierungspräferenzen ab, also PS
r,φ = PS

r (θd− θc). Dies folgt aus

der Tatsache, dass Orientierungskarten, die durch Symmetrietransformationen auseinander her-

vorgehen, äquivalente Lösungen des Systems sind, und somit statistisch gleich häufig auftreten.

Damit kommen phasengedrehte und räumlich gedrehte Verteilungen mit gleicher Wahrschein-

lichkeit vor, und PS
r,φ kann nur von unter diesen Transformationen invarianten Gr̈oßen wie θc−θd

abhängen.

Was geschieht nun, wenn das Ensemble nicht mehr shift-symmetrisch ist? Dann kann diese Funk-

tion nicht nur von der Winkeldifferenz der bevorzugten Orientierungen abhängen, sondern auch

mit der Lage der Neuronen zueinander variieren. Welche genaue Form diese Variation besitzt,

kann nur eine Analyse der Symmetrietransformation und ihrer Auswirkungen auf θc, θd und φ

zeigen, die hier nicht ausgeführt wird. Für eine gegebene feste Winkeldifferenz θd − θc lässt sich

eine Darstellung dieser Verteilungen im Ortsraum gewinnen, indem r und φ variiert werden.

Schnabel hat in seiner Doktorarbeit [47] solche Verteilungen für die Attraktoren mit linearer ST-

Kopplung sowie für gemessene Orientierungskarten untersucht. Dabei sind deutliche Anisotropi-

en in den Wahrscheinlichkeitsverteilungen aufgetreten, welche im Übrigen in einer interessanten

Relation zur Statistik natürlicher Bilder stehen (vgl. [82]), auf die hier aus Platzgr̈unden nicht

Figure 3.6: Scheme which illustrates the definition of the co-occurrence statistics Pr(θc, θd), the probability
that two groups of neurons separated by a vector r = r(cosφ, sinφ) have orientation preferences θc and
θd, respectively.

3.14 Edge Statistics and Shift-Twist Symmetry

In the remaining part of this chapter we discuss yet another statistics, the pair occurrence
statistics Pr(θc, θd), defined as the probability that two groups of neurons separated by a vector
r = r(cosφ, sinφ) have orientation preferences θc and θd, respectively (see Fig. 3.6). Beyond its
applicability to the analysis of orientation maps this statistics can also be computed for any
datasets which consist of planar arrangements of oriented entities, such as line segments in natural
scenes (c.f. [52] and Section 6.4) or nematic liquid crystals [53]. Often in such systems Euclidean
symmetry is a good approximation. Here we derive the general form of Pr(θc, θd) assuming that
Euclidean E(2) symmetry holds. Furthermore, we discuss how this statistics can be applied to
orientation maps in order to reveal signatures of shift symmetry breaking in the data. We find
that shift symmetry breaking leads to characteristic modulations of the probability histogram
which, in general, can be written as a sum of two components: (a) cloverleaf modulations with a
4-fold symmetry and (b) bipolar modulations with a 2-fold symmetry. Since these modulations
do not occur in the shift symmetric case their appearance can be used as signatures of shift
symmetry breaking.

Pair cooccurence statistics

Suppose we were given an ensemble of orientation maps and would like to test the hypothesis
that shift symmetry is broken in this dataset, say, to some - presumably small - degree which
we want to specify. How should we proceed? One possibility would be to calculate the second
order correlation functions, C1(r) and C2(r), and to test for any cloverleaf signature in C2(r)
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

Figure 3.7: When rotated by an angle α, a pair of orientations θc and θd separated by a distance r and
angle φ is mapped to (r,φ�, θ�c, θ�d) = (r,φ+ α, θc + α, θd + α).

by determining its q value, as described in Section 3.7. As an alternative, here we propose
to measure the pair cooccurrence statistics of orientation preferences, which we define as the
joint probability distribution of finding a pair of oriented elements, say, located at xc and xd,
with orientations θc and θd, respectively (see Fig. 3.6). For orientation maps θc and θd denote
the preferred orientations at two locations in the map, whereas for natural scenes they may
represent the orientations of local line segments in an image (see Fig. 6.2 in Chapter 6). Since
we assume translation symmetry of the ensemble this statistics only depends on the difference
vector r = xd − xc, which we will also denote by (r,φ), its representation in polar coordinates.
Accordingly, in the following we write Pr(θc, θd) or Pr,φ(θc, θd) for the joint probability density.
For orientation maps θc and θd are random variables and r and φ are parameters. For natural
scenes r and φ may also be conceived as random variables since for a given image there is not
necessarily a contour at every position.

Symmetries

Next we derive the general functional form of Pr,φ(θc, θd) assuming Euclidean E(2) symmetry.
Up to which point this assumption holds remains to be quantified, especially for ensembles of
natural images. For orientation maps it provides a valuable framework, as we will see in Chapter
5. The functional form Pr,φ(θc, θd) has to fulfill following requirements:

1. P (r,φ, θc, θd) is π-periodic in θc and θd since orientations are defined modulo π :

Pr,φ(θc, θd) = Pr,φ(θc + Zπ, θd + Zπ) (3.31)

2. Symmetry under (shift-twist) rotations requires that

Pr,φ(θc, θd) = Pr,φ+α(θc + α, θd + α) (3.32)

for any angle α, see Fig.3.7. Inversion symmetry is included as the particular case α = π.
3. Reflection symmetry (e.g. with respect to reflections at the x-axis) implies

Pr,φ(θc, θd) = Pr,−φ(−θc,−θd) (3.33)
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3.14 Edge Statistics and Shift-Twist Symmetry

4. When symmetry under inversions holds we also have

Pr,φ(θc, θd) = Pr,φ(θd, θc) (3.34)

A decomposition of Pr,φ(θc, θd) into its Fourier components with respect to the angular variables
φ, θc and θd reads

Pr,φ(θc, θd) =
�

µ,ν,κ∈Z
ãµνκ(r)ei(2µθc+2νθd+κφ)

with Fourier coefficients ãµνκ(r). This ansatz already respects requirement (1). If P is going to
fulfill conditions (2-4) then only a subset of coefficients don’t vanish:

For example, invariance under rotations requires

Pr,φ(θc, θd) = 1
2π

2π�

0

dαPr,φ+α(θc + α, θd + α)

= 1
2π

�

µ,ν,κ∈Z
ãµνκ(r)ei(2µθc+2νθd+κφ)

2π�

0

dαei(2µ+2ν+κ)α

=
�

µ,ν,κ

ãµνκ(r)ei(2µθc+2νθd+κφ)δ(2µ+ 2ν + κ)

such that ãµνκ(r) = aµν(r) δ(2µ + 2ν + κ). Thus, any rotation invariant Pr,φ(θc, θd) can be
written as

�

µ,ν∈Z
aµν(r)ei(2µθc+2νθd−2(µ+ν)φ)

with some appropriate set of coefficient functions aµν(r).
Similarly, reflection symmetry requires

aµν = aνµ

and
aµν = a−µ,−ν ,

respectively. Furthermore, since Pr,φ(θc, θd) ∈ R we have

aµν = ā−µ,−ν = āµν ,

such that
aµν ∈ R.

Therefore, the general form of P satisfying conditions (1-4) reads

Pr,φ(θc, θd) = 1
4
�

µ,ν∈Z
(aµν(r) + aνµ(r) + a−µ,−ν(r) + a−ν,−µ(r))ei(2µθc+2νθd−2(µ+ν)φ)

=
�

µ,ν∈Z
aµν(r) cos ((µ+ ν)(θc + θd − 2φ)) cos ((µ− ν)(θd − θc))
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

By means of the symmetries of aµν this expression further simplifies to

Pr,φ(θc, θd) =
�

m,n∈N
pmn(r) cos (m(θc + θd − 2φ)) cos(n(θd − θc)) (3.35)

with indices m,n ∈ N and

pmn =






a 1
2 (m+n), 12 (m−n) + a 1

2 (m−n), 12 (m+n)+
+a− 1

2 (m+n),− 1
2 (m−n) + a− 1

2 (m−n),− 1
2 (m+n) if m+ n is even

0 if m+ n is odd.

The matrix pmn thus has the structure

p00 0 p02 0 p04 . . .
0 p11 0 p13 0 . . .
p20 0 p22 0 p24 . . .
0 p31 0 p33 0 . . .
p40 0 p42 0 p44 . . .
...

...
...

...
...

The terms of Eq.(3.35) depend on θc and θd through the product of cos (m(θc + θd − 2φ)) and
cos(n(θd − θc)). Both terms are invariant under (shift-twist) rotations and the second term is
also invariant under orientation shifts, since it only depends on the angle difference

∆ = θd − θc (3.36)

Denoting the average angle as
Σ = 1

2 (θd + θc) (3.37)

we can express Pr,φ(θc, θd) in the set of new coordinates Σ and ∆,

P �r,φ(Σ,∆) := P r,φ(θc(Σ,∆), θd(Σ,∆)) · J

where J denotes the Jacobian of the coordinate transform

J = �∂(θc, θd)/∂(Σ,∆)� = 1.

By rotation symmetry
P �r,φ(Σ,∆) = P �r,0(Σ− φ,∆).

Thus, in the following it is sufficient to consider

P �r(Σ,∆) := P �r,0(Σ,∆) =
�

m,n∈N
pmn(r) cos (2mΣ) cos(n∆). (3.38)

The back transform is simply given by

Pr,φ(θc, θd) = P �r (Σ(θc, θd)− φ,∆(θc, θd)) . (3.39)

We can, without loss of generality, restrict the range to ∆ ∈ [−π/2,π/2) and Σ ∈ [0,π). Figure
3.8 explains this mapping in more detail.
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Figure 3.8: Illustration of the coordinate transform from (θc, θd) to (Σ,∆), Eq.(3.36) and (3.37) . (a) The
plot is periodic in θc and θd, arrows denote wrap around in the indicated directions which are necessary
in order to achieve Σ ∈ [0,π] and ∆ ∈ [−π/2,π/2]. (b) Configurations of θc and θd for each combination
of Σ and ∆. Collinear arrangements correspond to Σ = 0 mod 2π and ∆ = 0, parallel arrangements to
Σ = π/2 mod 2π and ∆ = 0.
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

Let us discuss how to measure Pr(Σ,∆), in practice, for a given orientation map z(x). First we
calculate the angle map θ(x) = 1

2 arg z(x). Then we consider every pair xc and xd in the map and
determine θc = θ(xc) and θd = θ(xd). We calculate its relative distance r = |xd−xc| and angle φ.
Every pair (r,φ, θc, θd) is then brought into a ’standard form’ (r�,φ�, θ�c, θ�d) = (r, 0, θc − φ, θd − φ)
by applying a rotation −φ. For this pair we determine the difference angle ∆ = θ�

d
− θ�c = θd − θc

and the average angle Σ = (θ�c + θ�
d
)/2 = (θc + θd − φ)/2 and increase the corresponding bin in

the histogram P �r(Σ,∆) by one. The resulting P �r(Σ,∆) is expected to approach the form (3.38)
for a sufficiently large dataset.
Now, given such a histogram P �r(Σ,∆) how can we decide whether shift symmetry is broken or
not? Using Bayes’ theorem, P �r(Σ,∆) can always be written as the product of two components,

P �r(Σ,∆) = P �r(Σ|∆)P �r(∆)

The marginal probability distribution of ∆,

P �r(∆) =
�
dΣP �r(Σ,∆)

and the conditional probability distribution of Σ for a given ∆,

P �r(Σ|∆) = P �r(Σ,∆)/P �r(∆).
By construction P �r(∆) is shift symmetric. In general, this does not apply for P �r(Σ|∆). For a
shift invariant ensemble P �r(Σ|∆) would be flat, i.e.

P �r(Σ|∆) = 1/π.
Thus, a departure of P �r(Σ|∆) from that constant value is a signature of shift symmetry breaking.
In conclusion, for our purpose it is more convenient to consider the conditional probability density
P �r(Σ|∆) than the entire distribution P �r(Σ,∆). It also has the advantage that we do not have
to cope with the singular behaviour of P �r(Σ,∆) for r → 0, which comes from the fact that for
continuous arrangements of edges, i.e. for orientation maps,

lim
r→0

(θd − θc) = 0

such that
lim
r→0
P �r(∆) = δ(∆)

Therefore, in the limit r → 0 we expect P �r(Σ,∆) to become singular,

lim
r→0
P �r(Σ,∆) = P �r(Σ|∆)δ(∆).

As shown above P �r(Σ|∆) can be decomposed as follows

P �r(Σ|∆) =
�

m,n∈N
cmn(r) cos (2mΣ) cos(n∆) (3.40)

with c00 = 1/π and cmn = 0 for odd numbers m + n. For even numbers m + n there are two
possibilities, (1) m and n are even, (2) m and n are odd. As we will see in Chapter (5) this
distinction is useful since it allows to decompose P �r(Σ|∆) into a direct sum

P �r(Σ|∆) = 1
π
⊕ P �(2)

r (Σ|∆)⊕ P �(4)
r (Σ|∆) (3.41)

where P �(4)
r refers to subset (1) and is called the cloverleaf component, whereas P �(2)

r refers to
subset (2) and is called the collinear component in the following.
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3.15 Predictions for Gaussian Random Fields

3.15 Predictions for Gaussian Random Fields

In this section we calculate the probability distribution Pr,φ(θd, θc) for Gaussian random fields
with arbitrary correlation functions and arbitrary degree of shift symmetry breaking. We then
derive a closed form expression for P �

r,φ(Σ,∆) as well as a useful approximation for P �r(Σ|∆).
We begin by calculating the probability density

Pr,φ(θc, θd) = �δ (arg z(0)− 2θc) δ (arg z(r)− 2θd)�

where the average is taken with respect to the joint probability density of v = (R(0), I(0), R(r), I(r)),

P(v) = 1
(2π)2

√
det M

exp
�
−1

2v C−1 v
�

With r = r (cosφ, sinφ) the covariance matrix C reads

1
2





C1(0) 0 C1(r) + |C2(r)| cos 4φ |C2(r)| sin 4φ
0 C1(0) |C2(r)| sin 4φ C1(r)− |C2(r)| cos 4φ

C1(r) + |C2(r)| cos 4φ |C2(r)| sin 4φ C1(0) 0
|C2(r)| sin 4φ C1(r)− |C2(r)| cos 4φ 0 C1(0)



 .

Its eigenvalues are
λ1...4 = 1

2 (C1(0)± C1(r)± |C2(r)|) ,

thus C is positive definite if C1(0) > |C1(r)|+ |C2(r)|. Furthermore,

det C =
�

i

λi = 1
16
�
(C1(0) + C1(r))2 − |C2(r)|2

� �
(C1(0)− C1(r))2 − |C2(r)|2

�

= C4
1 (0)
16
�
(1 + c1(r))2 − |c2(r)|2

� �
(1− c1(r))2 − |c2(r)|2

�

where we set

c1(r) = C1(r)/C1(0)
c2(r) = C2(r)/C1(0)

Positive definiteness of C requires

|c1(r)|+ |c2(r)| < 1

and is assumed for the following. We substitute

v = (s cos 2θc, s sin 2θc, t cos 2θd, t sin 2θd)
such that

Pr,φ(θc, θd) = 4
(2π)2

√
det C

∞�

0

ds

∞�

0

dt s t exp−1
2
�

ij

(C−1)ijvivj

= 4m3/2

π2

∞�

0

ds

∞�

0

dt s t exp
�
−a s2 − b t2 − 2c s t

�
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3 Shift-Twist Symmetry in Ensembles of Orientation Maps

with
m =

�
(1 + c1(r))2 − |c2(r)|2

� �
(1− c1(r))2 − |c2(r)|2

�

and

a = 1− c21(r) + 2c1(r)|c2(r)| cos(4(θc − φ))− |c2(r)|2

b = 1− c21(r) + 2c1(r)|c2(r)| cos(4(θd − φ))− |c2(r)|2

c = −c1(r)
�
1− c21(r) + |c2(r)|2

�
cos(2θc − 2θd)

+|c2(r)|
�
1 + c21(r)− |c2(r)|2

�
cos(2θc + 2θd − 4φ)

We integrate over s and t as follows

Pr,φ(θc, θd) = −2m3/2

π2
d

dc




∞�

0

ds

∞�

0

dt exp
�
−a s2 − b t2 − 2c s t

�




= −2m3/2

π2
d

dc




π − 2 arctan

�
c/
√
a b− c2

�

4
√
ab− c2





= m3/2

π2

�
1

(a b− c2) + c (2 arctan(c/
√
a b− c2)− π)

2(a b− c2)3/2

�

(3.42)

Since C is positive definite a, b > 0 and c2 ≤ a b. Assuming limr→∞ c1(r) = 0 and limr→∞ c2(r) =
0 one finds

lim
r→∞
Pr,φ(θc, θd) = 1

π2

which means that θc and θd become statistically independent for large separations r. From the
expression (3.42) P �

r,φ(Σ,∆) is obtained simply by the substitution θc = Σ−∆/2, θd = Σ + ∆/2.
For the marginal probability distribution of ∆ we find

P �r,φ(∆) =
π�

0

dΣP �r,φ(Σ,∆)

=
π�

0

dΣP �r(Σ− φ,∆)

= 1
2

2π�

0

dφP �r(Σ− φ,∆) (3.43)

from which we see that integration over Σ can be replaced by integration over the angle φ. Since
we could not solve this integral analytically we tried to approximate this distribution by simply
setting c2(r) ≡ 0 in the Eq.(3.42), which also yields a shift symmetric distribution since shift
symmetry breaking is mediated by the c2 terms. The result states

P �c2=0
r (∆) = 1− c21(r)

2π
�
1− c21(r) cos2(2∆)

�

×



1 + c1(r) cos(2∆)




π + 2 arctan

�
c1(r) cos(2∆)√

1−c21(r) cos2(2∆)

�

2
�

1− c21(r) cos2(2∆)







 . (3.44)
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Figure 3.9: Deviations of the approximate marginal density distribution P c2=0
r (∆), Eq.(3.44) from the

exact result Pr(∆), Eq.(3.43). Shown is the ratio between the two expressions as functions of ∆ (a) and r
(b), for β = 1, 10, 100. (b) displays the ranges of P c2=0

r (∆)/Pr(∆) for all values of ∆ as a function of r .
The observed deviations amount to maximally a few percent. Further details are given in the text.
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Figure 3.10: Edge co-occurrence statistics in the Gaussian ensemble predicted for different degrees
of shift-symmetry breaking. Upper row: q = −0.5, middle row: q = 0.0, lower row: q = 0.5. Shown
in each row are small regions from synthesized orientation maps (left) and the probability modulation
P(x,y)(θd|θc = 0) (obtained from Pr,φ(Σ|∆) in analogy to Eq.(3.39)) for three different values of ∆ = θd−θc
(right), ∆ = 0◦, 45◦, 90◦. Note, that the modulation of the probabilities exhibit a discrete 4-fold rotational
symmetry. As explained at the end of this section, Gaussian random fields, by construction, lack any kind
of 2-fold component, which, in principle, would also be consistent with Euclidean symmetry. White arrows
in the leftmost column serve as reference points in the map. Although at a first sight the overall layout of
the pattern appears to be preserved, shift symmetry breaking locally induces subtle rearrangements of
orientation domains (arrows).
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3.16 Appendix A

This approximation is compared to the exact result of Eq.(3.43), obtained by numerical inte-
gration, in Fig.3.9. We used the model correlation functions (3.8) for β = 1, 10, 100 and tested
different degrees of shift symmetry breaking, q = 0, 1/2, 1. Shown in Fig. 3.9(a) is the ratio
P �c2=0
r (∆)/P �r(∆) for the indicated values of β evaluated at two separations, r = 1/2Λ and r = 1Λ.

Fig. 3.9(b) depicts the same ratio, however as a function of r. The gray regions shows the range
of values obtained for all ∆ ∈ [−π/2,π/2]. The observed deviations amount to maximally a few
percent. This shows that Eq.(3.44) already provides a very good approximation to the exact
result of (3.43).

Finally we show that the collinear component P �(2)
r (Σ|∆) in (3.41) vanishes for Gaussian random

fields. This follows from the definition of the collinear component

P �(2)
r (Σ,∆) =

odd�

m,n∈N
pmn(r) cos (2mΣ) cos(n∆) (3.45)

where both, m and n, are odd numbers. It has the property

P �(2)
r (Σ,∆) = −P �(2)

r (Σ + π/2,∆). (3.46)

However, according to expression (3.42), P �r(Σ,∆) in the Gaussian case is periodic in Σ with
periodicity π/2 such that

P �r(Σ,∆) = P �r(Σ + π/2,∆).
in contrast to (3.46). From this follows that for broken shift symmetry Gaussian random fields
cannot have any type of collinear components and merely exhibit cloverleaf modulations in their
edge cooccurence statistics, as is apparent in Fig. 3.10.

3.16 Appendix A

In this appendix we calculate the inverse Fourier transform of P1(k) and P2(k).

P1(k) = A |k|βe−|k|2B P2(k) = q P1(k) e4i arg k

P1(k)→ C1(r)

C1(r) = 1
2π

�
d2k eik rA|k|βe−|k|2B = A2π

∞�

0

dk k1+βe−k
2B

2π�

0

dφ eikr cosφ

= A

∞�

0

dk k1+βe−k
2BJ0(kr) = 1

2 AB
− 2+β

2 Γ[2 + β
2 ] 1F1(2 + β

2 ; 1;− r2

4B ),

where we used formula (6.631) in [54],
∞�

0

dk kµ e−k
2BJν(kr) = rν Γ[ν+µ+1

2 ]
2ν+1B

1
2 (µ+ν+1)Γ[ν + 1]

1F1(ν + µ+ 1
2 ; ν + 1;− r

2

4B ), (3.47)
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with µ = 1 + β, ν = 0. From the definition of A and B follows

1
2 AB

− 2+β
2 Γ[2 + β

2 ] = 1,

such that we get

C1(r) = 1F1(2 + β
2 ; 1,− |r|

2

4B )

P2(k)→ C2(r)

C2(r) = q

2π

�
d2k eik re4i arg kA|k|βe−|k|2B = q A2π

∞�

0

dk k1+βe−k
2B

2π�

0

dφ eikr cos(φ−arg r)e4iφ

= q A

2π

∞�

0

dk k1+βe−k
2B

2π�

0

dφ eikr cosφe4i(φ+arg r).

Using the following expansion (see [55], paragraph 9.1.44 and 45, p.361)

eikr cosφ = J0(kr) + 2
∞�

n=1
in cos(nφ) Jn(kr),

we obtain

C2(r) = q A e4i arg r
∞�

0

dk k1+βe−k
2BJ4(kr) = q|r|4e4i arg rAB

−( 6+β
2 )Γ[6+β

2 ]
768 1F1(6 + β

2 ; 5;− r2

4B )

= q(r1 + ir2)4 AB
−( 6+β

2 )Γ[6+β
2 ]

768 1F1(6 + β
2 ; 5;− r2

4B )

where, again we made use of Eq.(3.47), this time with µ = 1 + β, ν = 4.

3.17 Appendix B: Pinwheel densities

We evaluate the integral
ρ =
�
dζ p(ζ) δ(R) δ(I) |J |

where
p(ζ) = 1

(2π)3czc2g
exp
�
− zz̄2cz

�
exp
�

−∇z∇z̄2cg

�

and ζ = (R, I, ∂xR, ∂yR, ∂xI, ∂yI)T . The integral over R and I collapses due to the delta
functions, such that we just have to perform the integral over ∇z. Using the abbreviation

Rx = ∂xR Ry = ∂yR Ix = ∂xI Iy = ∂yI
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the integral states

ρ = 1
(2π)3czc2g

�
dRxdRydIxdIy |RxIy −RyIx| exp(−

R2
x +R2

y + I2x + I2y
2cg

)

and can be easily evaluated after a coordinate transform to 4-dimensional spherical coordinates,

Rx = g cosφ cos θ1 Ry = g cosφ sin θ1 Ix = g sinφ cos θ2 Iy = g sinφ cos θ2

with
0 ≤ g ≤ ∞, 0 ≤ π ≤ π/2, 0 ≤ θ1, θ2 ≤ 2π

and volume element
dRxdRydIxdIy = 1/2g3 sin(2φ)dg dφ dθ1 dθ2.

The integral in this coordinates is

ρ =
∞�

0

dg
g5

32π3czc2g
exp(− g

2

2cg
)

2π�

0

dθ1

2π�

0

dθ2| sin(θ1 − θ2)|
π/2�

0

dφ sin(2φ)

=
∞�

0

dg
g5

16πczc2g
exp(− g

2

2cg
)

= 1
2π
cg
cz
.
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4 Shift-Twist Symmetry and Pattern Selection

4.1 Overview

In the previous chapter we analyzed the signatures that shift-twist symmetry is predicted to
leave on the statistics of Gaussian ensembles of orientation maps. Such ensembles are expected
to describe the spatial organization of early transient states in cortical development. Such
states however are not expected to persist as the developmental dynamics converges towards its
attractor states. What can we say about the final outcome of dynamical models of orientation
map development? An approach that has proved to be very powerful in pattern forming systems
near onset is weakly nonlinear analysis, a multiscale perturbation theory that can identify a
comprehensive set of solutions emerging from the unstable homogeneous fixed point and their
stability properties. Many results of weakly nonlinear analysis only depend on qualitative and
symmetry properties of the dynamics and are thus valid for an entire class of models. This aspect
is particularly important in complex biological systems where exact microscopic models are not
currently available and potentially will never be.

We use weakly nonlinear analysis to analyze the impact of Euclidean symmetry on pattern
selection and, in particular, to examine the question of whether stable pinwheel arrangements
exist and what their geometric organization is. We construct a generalized Swift-Hohenberg
model [30, 56] symmetric under the Euclidean group E(2) that allows to study the transition from
higher E(2)×U(1) to lower E(2) symmetry by changing a parameter that controls the strength of
shift symmetry breaking (SSB). We derive the general form of amplitude equations for stationary
planforms and find three classes of stationary solutions: stripe patterns without any pinwheels,
pinwheel crystals with pinwheels regularly arranged on a rhombic lattice, and quasi-periodic
patterns containing a large number of irregularly positioned pinwheels. We derive general stability
criteria for these solutions and establish the existence of a large set of energetically degenerate,
biologically realistic solutions. We calculate the phase diagram of all solutions depending on
the strength of SSB, the effective strength of nonlocal interactions, and the range of nonlocal
interactions. With increasing strength of SSB, pinwheel free patterns are progressively replaced
by pinwheel crystals in the phase diagram while both pinwheel free patterns and pinwheel crystals
remain stable. Phases of aperiodic pinwheel rich patterns remain basically unaffected. A critical
strength of SSB exists above which multistable aperiodic patterns collapse into a single aperiodic
state. We also characterize the impact of shift-twist symmetry on the spatial density of pinwheels
in aperiodic model solutions.
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4.2 Generalized Swift-Hohenberg Models

The spatial structure of an OPM can be represented by a complex field z(x) where x denotes
the 2D position of neurons in the visual cortex, θ(x) = arg (z(x)) /2 their preferred stimulus
orientation, and the modulus |z(x)| is a measure of their selectivity [15]. In this representation,
pinwheel centers are zeros of the field z(x). The simplest models for the formation of OPMs are
defined by a dynamics

∂tz(x, t) = F [z](x, t). (4.1)

where t denotes time and F [z] is a nonlinear operator. We assume that the dynamics is equivariant
under translation Tyz(x) = z(x + y), shift-twist rotation Rαz(x) = e2iαz(Ω−αx) with rotation
matrix Ωφ, and shift-twist reflection at the cortical (1, 0) axis CPz(x) = z̄(x̄), thus expressing
the fact that within cortical layers there are no special locations or directions [35]. In addition, if
interactions between OPM development and visuotopy are neglected it is also equivariant under
global shifts of orientation preference Sβz(x) = e2iβz(x) (shift symmetry). Shift-twist rotations
R, also called ’shift-twists’ in the following, thus consist of a composition of phase shifts S and
coordinate rotations D, i.e. Rα = S2α ◦Dα with Dαz(x) = z(Ω−αx).

We consider the general class of variational models [15, 57, 22] for which F [z] has the form

F [z] = (r + L0)z + �rMz̄ +N3[z]. (4.2)

Here L = r + L0 is a linear, translation invariant and self-adjoint operator, that accounts for a
finite wavelength instability at r = 0. N3 is a general, permutation and shift symmetric cubic
nonlinearity which stabilizes the dynamics. The second term involves a complex conjugation
Cz = z̄ and thus manifestly breaks shift symmetry when � �= 0. M is assumed to be linear,
translation invariant and bounded. Equivariance under rotations, [MC, Rα] = 0, requires

DαMD
−1
α = S−4αM (4.3)

and equivariance under parity [M, P ] = 0, where [·] denotes the commutator. Most of the results
derived subsequently will be generally valid for any model from this symmetry class.

As a concrete example we will also consider the specific model defined by the choices

L = r − (k2
c +∇2)2 (4.4)

N3[z] = (1− g)|z(x)|2z(x)− 2− g
2πσ2

�
d2y
�
|z(y)|2z(x) + 1

2z(y)2z̄(x)
�
e−|y−x|2/2σ2 (4.5)

M = (∂x + i∂y)4(∂xx + ∂yy)−2 (4.6)

which is the mathematically simplest representative of this model class. Here L is the Swift-
Hohenberg operator [56, 30] with critical wavenumber kc and instability parameter r. N3
is adopted from [22], where σ sets the range of the nonlocal interactions and g determines
whether the local (g > 1) or the nonlocal term (g < 1) stabilizes the dynamics. M is the
simplest differential operator which transforms according to Eq.(4.3). It is unitary with spectrum
e4i arg(k).
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4.3 Amplitude Equations

As discussed in the previous chapters, a linear stability analysis reveals that the unselective
state z(x) = 0 becomes unstable for r ≥ 0 and modes on the critical circle |k| = kc start to
grow. Directly after spontaneous symmetry breaking, when |z(x)| is still small compared to its
asymptotic value reached at t→∞, the nonlinearity N3[z] can be neglected and the dynamics
is controlled by the linear terms. As shown in Chapter 3 the emerging pattern can then be
approximated by a random superposition of modes and its statistics is expected to be Gaussian.
What can we tell about the dynamics at later times when the nonlinearities become important
and the modes start to compete? In particular, what can we say about the attractors? For small
values of the control parameter r � 1, i.e. in the weakly nonlinear regime, solutions to the full
dynamics can be approximated by planforms,

z(x) =
N−1�

j=0
Aje
ikjx, |kj | = kc,

consisting of a linear superposition of discrete modes on the critical circle. Thereby the full
dynamics Eq.(4.2) of the field z(x) is projected onto the finite dimensional subspace spanned
by the amplitudes Aj resulting in amplitude equations, a set of coupled nonlinear differential
equations describing the dynamics of the amplitudes Aj . Here we derive the amplitude equations
for the dynamics Eq.(4.2). In the subsequent sections we then perform a stability analysis of
their stationary solutions in order to identify sets of stable patterns. The perturbation theoretical
analysis presented follows the treatise of [58] and [34].

The spectrum of L0 is given by λ(k) = −(k2
c − k2)2 and attains its maximum at k = |kc|, where

it is zero. Therefore, modes on the critical circle reside in the kernel of the linear operator L0.
Since one is interested in the dynamics in a small neighbourhood above the bifurcation point
r = 0 one introduces a small parameter γ ≥ 0 and assumes that the solution z(x, t) and r can
both be expanded into a power series in γ,

r = r1γ + r2γ2 + r3γ3 + . . .
z(x, t) = z1(x, t)γ + z2(x, t)γ2 + z3(x, t)γ3 + . . . . (4.7)

In general this will be the case when the solution z(x, t) bifurcates from the homogeneous state
in a continuous way. Note that the intrinsic time scale τ = r−1 diverges at the bifurcation point,
which means that for r → 0 the dynamics of z(x, t) is becoming arbitrarily slow, a phenomenon
which is known as critical slowing down and which can be compensated by considering the
dynamics on a slow time scale,

T = r t.

Expressed in rescaled time units the dynamics Eq.(4.2) becomes

r
∂

∂T
z(x) = F [z(x)] (4.8)

and no longer exhibits any critical slowing down. We combine the ansatz (4.7) with the rescaled
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dynamics Eq.(4.8) and obtain

0 = L0z − r∂T z + rz + r�Mz̄ +N3[z]
= γ (L0z1) + γ2 (r1z1 + L0z2 − r1∂T z1 + r1�Mz̄1) + (4.9)

+γ3 (L0z3 + r1z2 + r2z1 − r1∂T z2 − r2∂T z1 + r1�Mz̄2 + r2�Mz̄1 +N3(z1, z1, z̄1)) +
+γ4 (L0z4 + r1z3 + r2z2 + r3z1 − r1∂T z3 − r2∂T z2 − r3∂T z1 + r1�Mz̄3 + r2�Mz̄2 + r3�Mz̄1 +

+N3(z2, z1, z̄1) +N3(z1, z2, z̄1) +N3(z1, z1, z̄3))
+γ5(L0z5 + . . . ) + . . .

Equation (4.9) can only be fulfilled when the terms inside the brackets vanish for every order in
γ. This implies conditions of the form

L0zi = r.h.s. (4.10)

where i denotes the order of the term and the right hand side only depends on zj with j < i.
The set of equations (4.10) can be solved in ascending order when the solvability conditions are
met, i.e. when the right hand side is orthogonal to the kernel of the adjoint operator L†0 . In our
case L0 is formally self-adjoint and the kernels of L†0 and L0 are identical. For the first order in
γ we have the condition

L0z1 = 0
which implies that z1(x, T ) ∈ kerL0. The kernel of L0 is spanned by all Fourier modes eikcx on
the critical circle (and by the secular terms kcx eikcx, which are unbounded and thus irrelevant
in our present context). The second order term yields to

L0z2 = r1(−z1 + ∂T z1 − �Mz̄1)

from which we conclude that r1 = 0, which is the only way to fulfill the compatibility condition,
since the term in the brackets resides in the kernel of L0. The compatibility condition applied to
the third order term

L0z3 = −r2z1 + r2∂T z1 − r2�Mz̄1 +N3(z1, z1, z̄1)

yields a dynamical equation for z1,

∂T z1 = z1 + �Mz̄1 − PcN3(z1, z1, z̄1) (4.11)

where we set r2 = 1 and Pc is the projection operator onto the kernel of L0. The planform ansatz

z1(x) =
2n−1�

j=0
Aj(T )eikjx,

which consists of a superposition on 2n modes kj = kc(cosαj , sinαj) on the critical circle,
where we require that to each mode also its antiparallel mode is in the set, in combination with
Eq.(4.11), yields a set of amplitude equations

Ȧj = Aj + �e4iαj Āj− +
�

k,l,m

AkAlĀme
−ikjxPjN3(eikkx, eiklx, e−ikmx) (4.12)
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where Pj denotes the projection onto the Fourier mode eikj and j− denotes the index of the
mode antiparallel to mode j with the corresponding wavevector kj− = −kj .

Next we show that many terms in the triple sum of Eq.(4.12) do not contribute due to symmetry.
As a result, the general form of the amplitude equations can be reduced to

Ȧj = Aj + �Āj−e4iαj −
2n−1�

k=0
gjk|Ak|2Aj −

2n−1�

k=0
fjkAkAk−Āj− (4.13)

with real valued and symmetric matrices gjk and fjk which determine the coupling and competition
between modes. They can be expressed in terms of angle-dependent interaction functions g(α)
and f(α), which are obtained from the nonlinearity N3[z] (cf.[58, 30, 22]).

Due to the projection operator Pj only terms N3(eikkx, eiklx, e−ikmx) are contributing in which
the wave vectors add up to kj , i.e.

kk + kl − km = kj .

Since all wave vectors have the same length this condition requires

kk = kj , kl = km

or
kk = km, kl = kj

or
kk = −kl := kl−, km = −kj := kj−

such that Eq.(4.12) becomes

Ȧj = Aj + �e4iαj Āj− +
�

k �=j
Aj |Ak|2e−ikjxPjN3(eikjx, eikkx, e−ikkx) +

+
�

k �=j
Aj |Ak|2e−ikjxPjN3(eikkx, eikjx, e−ikkx) +

+
�

k �=j,j−
Ak−AkĀj−e

−ikjxPjN3(e−ikkx, eikkx, eikjx)

+Aj |Aj |2e−ikjxPjN3(e−ikjx, eikjx, eikjx)

which can be brought into the form of Eq.(4.13) by setting

gjk = −
�
e−ikjxPjN3(eikjx, eikkx, e−ikkx) + e−ikjxPjN3(eikkx, eikjx, e−ikkx)

�

fjk = −1
2
�
e−ikjxPjN3(e−ikkx, eikkx, eikjx) + e−ikjxPjN3(eikkx, e−ikkx, eikjx)

�

for j �= k and

gjj = −e−ikjxPjN3(eikjx, eikjx, e−ikjx)
fjj = 0
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for the diagonal elements. For an isotropic system, which we assume here, the matrix elements
gjk and fjk only depend on the angle difference α = |αk − αj | of the Fourier modes kj =
kc(cosαj , sinαj). Therefore they can be expressed in terms of the continuous functions

g(α) = −
�
e−ik0xPN3(eik0x, eih(α)x, e−ih(α)x) + e−ik0xPN3(eih(α)x, eik0x, e−ih(α)x)

�
(4.14)

f(α) = −1
2
�
e−ik0xPN3(e−ih(α)x, eih(α)x, eik0x) + e−ik0xPN3(eih(α)x, e−ih(α)x, eik0x)

�

where k0 = kc(1, 0) and h(α) = kc(cosα, sinα). From the definition (4.14) follows that g(α) =
g(α+2π) and f(α) = f(α+π). However, for the particular nonlinearity considered here, Eq.(4.5),

g(α) = g(α+ π), (4.15)

which is due to the fact that N3[z] belongs to the class of permutation symmetric models satisfying
N3(zj , zk, zl) = N3(zl, zj , zk) (see[22]). The coupling coefficients are given by

gjk = (1− 1
2δjk)g(|αk − αj |) (4.16)

and
fjk = (1− δjk − δjk−)f(|αk − αj |). (4.17)

For the nonlinearity Eq.(4.5) one obtains

g(α) = g + (2− g)e(α) (4.18)

and

f(α) = 1
2g(α) (4.19)

with e(α) = 2 exp(−σ2k2
c ) cosh(σ2k2

c cosα).

The amplitude equations can be derived from the energy functional

E = −
2n−1�

j=0

�
AjĀj + �(AjAj−e−4iαj + ĀjĀj−e4iαj )

�
(4.20)

+1
2

2n−1�

j=0

2n−1�

k=0

�
gjk|Aj |2|Ak|2 + fjkAjAj−Āk−Āk

�

and written as a gradient descent

Ȧj = − δE
δĀj

In the following sections we identify classes of stationary solutions of the amplitude equations
(4.13) and determine their stability criteria.
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4.4 Stripe Patterns

The simplest solution to Eq.(4.13) is obtained for n = 1 and consists of plane waves with
wavevector k = kc(cosα, sinα). The corresponding amplitude equations describe the dynamics
of two modes, A0 and A0− with antiparallel wavevectors, k and −k,

Ȧ0 = A0 + �Ā0−e
4iα − 1

2g(0)|A0|2A0 − g(π)|A0−|2A0

= A0 + �Ā0−e
4iα − 1

2g(0)
�
|A0|2 − 2|A0−|2

�
A0

and

Ȧ0− = A0− + �Ā0e
4iα − 1

2g(0)
�
|A0−|2 − 2|A0|2

�
A0−

The stationary solution is given by

z(x) =






i e2iα
�

8(1 + |�|)
3g(0) sin(kx + φ) for � ≤ −1/2

e2iα
��

2(1 + 2�)
g(0) cos(kx + φ) + i

�
2(1− 2�)
g(0) sin(kx + φ)

�

for |�| ≤ 1/2

e2iα
�

8(1 + |�|)
3g(0) cos(kx + φ) for � ≥ 1/2

(4.21)

with arbitrary phase φ. Hence with SSB orientation angles are not equally represented. For � > 0
cortical area for orientations α and α+ π/2 is recruited at the expense of α+ π/4 and α+ 3π/4
(and vice versa for � < 0). Beyond a critical strength of SSB, here �∗ = 1/2, patterns only contain
two orientations, either α and α + π/2, for � > �∗ or α ± π/4 for � < −�∗. As illustrated in
Fig. 4.1(a) the preferentially represented orientations are determined by the direction of the wave
vector. SSB thus leads to a geometric coupling of position and orientation.
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Figure 4.1: �-dependence of plane wave and pinwheel crystal solutions. (a) Plane waves with wavevector
in horizontal (top) and oblique (bottom) direction for variable strength of SSB (� = 0, 0.35, 1) (b) rPWCs
of varying intersection angle α, π/4 ≤ α ≤ π/2. (c) Energy of solutions depends on � and on α. For
sufficiently large � rPWCs are energetically favored relative to plane waves. All energies are given in units
of the plane waves energy for corresponding �: dashed: (normalized) energy of plane waves, plain: energies
of rPWCs for α = π/4, π/3, π/2.

Since stripe patterns are a special case of solutions discussed in Section 4.6 we postpone their
stability analysis to there.

4.5 Pinwheel Crystals

For solutions containing pinwheels, this geometric coupling is of more subtle nature. The simplest
class of solutions containing pinwheels are rhombic pinwheel crystals (rPWCs), which exist for
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n = 2 and consist of two pairs of antiparallel modes which all have the same amplitude, i.e.

z(x) = A0e
ik0x +A1e

ik1x +A0−e
−ik0x +A1−e

−ik1x (4.22)

with
A0 = aeiµ0 , A1 = aeiµ1 , A0− = aeiν0 , A1− = aeiν1

and wavevectors
k0 = kc(cosα0, sinα0), k1 = kc(cosα1, sinα1)

We consider without loss of generality the case α0 = −α/2 and α1 = +α/2 (Fig.4.1(b)). As
shown in the Appendix 4.10 the stationary state depends on the angle sums

Σ0 := µ0 + ν0 and Σ1 := µ1 + ν1

and fulfills
Σ1 = −Σ0

and
a2 = 1 + � cos(Σ0 + 2α)

3g(0)/2 + 2g(α) + 2f(α) cos 2Σ0

The phase Σ0 is given by the solution branch to

0 = sin 2Σ0 + �[sin(Σ0 − 2α)− (2 + 3g00/g01) sin(Σ0 + 2α)],

which bifurcates from Σ0 = ±π/2 for � = 0. The general solution then reads

z(x) = 2a
�
eiΣ0/2 cos(k0x + ∆0/2) + e−iΣ0/2 sin(k1x + ∆1/2)

�

with arbitrary ∆0 and ∆1. The energy of rhombic pinwheel crystals is

ErPWC = −4a2(1 + |�| cos(Σ0 + 2α)) + 2a4/3g(0)/2 + 2g(α) + 2f(α) cos 2Σ0.

For the model Eqns.(4.4-4.6) the � and α dependence of the energy is shown in Fig.4.1(c).

4.6 Quasiperiodic Patterns

Because orientation maps in the brain lack crystalline order an important class of model solutions
are aperiodic functions of space. Interestingly, their dependence on SSB is qualitatively different
from the periodic solutions discussed above. A large set of quasiperiodic solutions originates
from the essentially complex planforms (ECP)

z(x) =
n−1�

j=0
Aje
iljkjx (4.23)

that solve Eq.(4.13) for � = 0 [37, 22]. Here, wave vectors kj = kc(cos π
N
j, sin π

N
j) (j =

0, . . . , n − 1) are distributed equidistantly on the upper half of the critical circle and binary
variables lj = ±1 determine whether the mode with wave vector kj or with wave vector −kj is
active (Fig. 4.2(a) left column). We study how these solutions to Eq.(4.13) change when shift
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4 Shift-Twist Symmetry and Pattern Selection

Figure 4.2: Solutions of the amplitude equations (Eq.4.13) with full, partially broken and completely
broken shift symmetry. (a) ECPs. Preferred orientations are color coded [see bars in (b)]. Arrangement
of active modes on the critical circle and corresponding OPMs. For n = 3 and 8 there are 2 and 15
different classes of ECPs, respectively. Complete (partial, no) suppression of opposite modes for full
(weakly broken, maximally broken) shift symmetry (left, middle, right column). (b) OPM in tree shrew
V1 (data: L.E.White, Duke Univ., USA). Arrows pinwheel centers. Scale bar 1 mm. (c) With increasing
degree of symmetry breaking � amplitudes of antiparallel modes A− grow and eventually (at � = �∗) reach
the same absolute value as active modes A+.
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symmetry is broken. First we give a brief, qualitative summary of the new effects. The details
and calculations are given in the subsequent sections.
Shift symmetry breaking manifests itself in a concerted growth of modes antiparallel to the set
of active modes. As a consequence, we find that ECPs generalize to

z(x) =
n−1�

j=0

�
A+
j
eiljkjx +A−

j
e−iljkjx

�
, (4.24)

where A+
j

refers to the set of active modes in (4.23) and A−
j

to the set of silent modes, which
start to grow for |�| > 0. (Fig. 4.2(a) middle column). The amplitudes |A−

j
| grow with increasing

strength of SSB |�| and eventually reach the same size as the active modes |A+
j
| (Fig. 4.2(a) right

column). For each n there exists a critical value �∗. When |�| < |�∗| stationary amplitudes fulfill
a− = |A−

j
| < |A+

j
| = a+, when |�| ≥ |�∗| the amplitude of antiparallel and active modes are equal,

a− = a+ (Fig.4.2(c)). Stationary phases φ±
j

= argA±
j

obey the condition

φ+
j

+ φ−
j

= 4 arg kj if � > 0

and
φ+
j

+ φ−
j

= 4 arg kj + π if � < 0
Interestingly, this particular phase relation is consistent with the result of the previous chapter, cf.
Eq.(3.15), since it implies that the correlation function P2(kj) = �a(kj)a(−kj)� of the solutions
have the form

P2(kj) = q P1(k)e4i arg kj

where the index q measures the degree of SSB. It can be defined as

q :=
�
j A

+
j
A−
j
e−i

4π
n j + c.c.

�
j

���A+
j

���
2

+
���A−j
���
2

and ranges in −1 ≤ q ≤ 1. From that definition also follows

q =
�
�/�∗ for |�| < �∗
sign � for |�| ≥ �∗

Thus we expect that for � �= 0 the solutions exhibit a spatial locking of the orientation map
to the coordinate system analogous to the coupling observed in Gaussian random fields for a
corresponding q = �/�∗, cf. Section 3.10. Indeed, the general solution can be written as a linear
superposition of even and odd basis functions,

z(x) = N
n−1�

j=0
[
�

1 + q zej (x,φj) +
�

1− q zoj (x,φj)] (4.25)

with ze
j
(x,φj) = ei 2πn j cos(ljkjx + φj) and zo

j
(x,φj) = iei 2πn j sin(ljkjx + φj), arbitrary phases φj

and an appropriate normalization constant N . Under reflections at an axis parallel to kj the
even functions ze

j
and odd functions zo

j
transform into ze

j
and −zo

j
, respectively. In that sense

ze
j

and zo
j

correspond to the even and odd eigenfunctions of the nullspace of L+ �MC (cf.[59]).
For � > 0 (� < 0) the even (odd) part dominates the solution which also explains the particular
locking of the iso-orientation domains to the coordinate system (the visuotopic map). For n = 1
(for which �∗ = 1/2) solution (4.25) corresponds to Eq.(4.21).
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4 Shift-Twist Symmetry and Pattern Selection

Stationary states

In this section we calculate the branch of stationary solutions of the amplitude equations

Ȧj = Aj + �Āj−e4i arg kj −
2n−1�

k=0
gjk|Ak|2Aj −

2n−1�

k=0
fjkAkAk−Āj−

which originates from the set of essentially complex planforms when shift symmetry is restored.
As described above the solution z(x) is assumed to consist of 2n modes,

z(x) =
n−1�

j=0

�
A+
j
eiljkjx +A−

j
e−iljkjx

�
, (4.26)

which are equidistantly distributed on the critical circle. The distinction into �+� and �−� modes
(which we also call ’active’ and ’silent’ in the following) is based on the condition that for �→ 0
a given essentially complex planform

z(x) =
n−1�

j=0
Aje
iljkjx (4.27)

is retrieved as the limit
A+
j
→ Aj , A−

j
→ 0.

In the following we assume that the interaction function g(α) is π-periodic. The dynamics of
active and silent modes is then given by

Ȧ+
j

= A+
j

+ �Ā−
j
e4i arg kj (4.28)

−A+
j

n−1�

k=0
gjk|A+

k
|2 −A+

j

n−1�

k=0
(1 + δjk)gjk|A−k |2 − 2Ā−

j

n−1�

k=0
fjkA

+
k
A−
k

Ȧ−
j

= A−
j

+ �Ā+
j
e4i arg kj

−A−
j

n−1�

k=0
gjk|A−k |

2 −A−
j

n−1�

k=0
(1 + δjk)gjk|A+

k
|2 − 2Ā+

j

n−1�

k=0
fjkA

+
k
A−
k
.

The n× n matrices gjk and fjk are defined as in Eqn.(4.16) and (4.17)

gjk = (1− 1
2δjk)g(|αk − αj |)

fjk = (1− δjk)f(|αk − αj |)

with regularly spaced αj = j π/n and j = 0, . . . n− 1. In particular,

gjj = g(0)/2
fjj = 0

The matrices gjk and fjk are symmetric and cyclic as their entries only depend on |k − j|.
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4.6 Quasiperiodic Patterns

In oder to diagonalize the linear part of the dynamics (4.28), we express A+
j

and A−
j

by a new
set of variables, B+

j
and B−

j
, obtained from a change of basis

B+
j

= 1
2(A+

j
e−i

2π
n j + Ā−

j
ei

2π
n j) (4.29)

B−
j

= 1
2(A+

j
e−i

2π
n j − Ā−

j
ei

2π
n j),

which has the inverse

A+
j

= ei
2π
n j(B+

j
+B−

j
) (4.30)

A−
j

= ei
2π
n j(B̄+

j
− B̄−

j
).

Expressed in terms of these new variables the system of equations Eq.(4.28) becomes

Ḃ±
j

= (1± �)B±
j
−B±

j

�

k

(2 + δjk)gjk(|B+
k
|2 + |B−

k
|2) +B∓

j
gjj(B+

j
B̄−
j

+ B̄+
j
B−
j

) (4.31)

∓2B±
j

�

k

fjk cos 4π
n

(k − j) (|B+
k
|2 − |B−

k
|2)∓ 2B∓

j

�

k

fjk cos 4π
n

(k − j) (B+
k
B̄−
k
− B̄+

k
B−
k

)

±2i B∓
j

�

k

fjk sin 4π
n

(k − j) (|B+
k
|2 − |B−

k
|2)± 2i B±

j

�

k

fjk sin 4π
n

(k − j) (B+
k
B̄−
k
− B̄+

k
B−
k

)

and has the energy functional

E = −2
n−1�

j=0

�
(|B+
j
|2 + |B−

j
|2) + �(|B+

j
|2 − |B−

j
|2)
�

+ g00
n−1�

j=0

�
(|B+
j
|2 + |B−

j
|2)2 − (B+

j
B̄−
j

+ B̄+
j
B−
j

)2
�

+2
n−1�

j=0

n−1�

k=0
(|B+
j
|2 + |B−

j
|2) gjk (|B+

k
|2 + |B−

k
|2) (4.32)

+2
n−1�

k,j=0
ei

4π
n (k−j)fjk(|B+

j
|2 − |B−

j
|2 + (B+

j
B̄−
j
− B̄+

j
B−
j

)) · (|B+
k
|2 − |B−

k
|2 − (B+

k
B̄−
k
− B̄+

k
B−
k

))

We write the complex quantities B±
j

as a product of real amplitude and phase,

B±
j

= B±
j
eiφ
±
j

and consider the dynamics of the amplitudes and phases separately. The dynamics of the
amplitudes B±

j
is given by

Ḃ±
j

= (1± �)B±
j
− B±

j

�

k

(2 + δjk)gjk[(B+
k

)2 + (B−
k

)2] + B±
j

(B∓
j

)2gjj(1 + cos 2(φ+
j
− φ−
j

))

∓2B±
j

�

k

fjk cos 4π
n

(k − j)[(B+
k

)2 − (B−
k

)2]

−4B∓
j

sin(φ+
j
− φ−
j

)
�

k

fjkB+
k
B−
k

cos 4π
n

(k − j) sin(φ+
k
− φ−
k

)

+2B∓
j

sin(φ+
j
− φ−
j

)
�

k

fjk[(B+
k

)2 − (B−
k

)2] sin 4π
n

(k − j)

∓4B±
j

�

k

fjkB+
k
B−
k

sin 4π
n

(k − j) sin(φ+
k
− φ−
k

), (4.33)
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4 Shift-Twist Symmetry and Pattern Selection

while the dynamics of the phases states

φ̇±
j

= ∓(B∓
j

)2 gjj sin 2(φ+
j
− φ−
j

)

∓4B∓
j

(B±
j

)−1 cos(φ+
j
− φ−
j

)
�

k

fjkB+
k
B−
k

cos 4π
N

(k − j) sin(φ+
k
− φ−
k

)

±2(B±
j

)−1B∓
j

cos(φ+
j
− φ−
j

)
�

k

fjk[(B+
k

)2 − (B−
k

)2] sin 4π
n

(k − j).

It only depends on Ωj = φ+
j
− φ−
j

and thus can be written

Ω̇j = −[(B+
j

)2 + (B−
j

)2] gjj sin 2Ωj

−4[(B+
j

)−1B−
j

+ (B−
j

)−1B+
j

)] cos Ωj
�

k

fjkB+
k
B−
k

cos 4π
n

(k − j) sin Ωk (4.34)

+2[(B+
j

)−1B−
j

+ (B−
j

)−1B+
j

)] cos Ωj
�

k

fjk[(B+
k

)2 − (B−
k

)2] sin 4π
n

(k − j). (4.35)

For the stationary states of the dynamics (4.31) we make the ansatz

B±j = B± ∀j ∈ {1, . . . , n} (4.36)

motivated by the fact that Eqns.(4.31) are invariant under permutations of the indices j, but not
under transpositions B±

j
→ B∓

j
. The dynamics of the phase is then given by

Ω̇j = −[(B+)2 + (B−)2] gjj sin 2Ωj

−
�
4[(B+)−1B− + (B−)−1B+)]B+B− cos Ωj

���

k

fjk cos 4π
n

(k − j) sin Ωk
�

+
�
2[(B+)−1B− + (B−)−1B+)][(B+)2 − (B−)2] cos Ωj

���

k

fjk sin 4π
n

(k − j)
�

(4.37)

where it is assumed that B± �= 0. The case where B+ or B− vanishes will be considered separately.
Due to reflection symmetry f(α) = f(−α), i.e. f(α) is a symmetric function. Hence,

n�

k=0
fjk sin 4π

n
(k − j) = 0

and the last term in Eq.(4.37) vanishes. Thus, the stationary phases fulfill either Ωj = 0 mod 2π
or Ωj = π mod 2π, respectively. As will become clear below we can restrict to the case Ωj = 0
∀j ∈ {1, . . . , n} since this is the only choice for which A−

j
→ 0 for �→ 0. The stationary state

has to be determined from the two equations

0 = (1± �)B± − B±
�

k

(2 + δjk)gjk[(B+)2 + (B−)2] + 2gjjB±(B∓)2

∓2B±
�

k

fjk cos 4π
n

(k − j)[(B+)2 − (B−)2] (4.38)
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4.6 Quasiperiodic Patterns

By means of the definition

Σ := (B+)2 + (B−)2 (4.39)
∆ := (B+)2 − (B−)2

the solution to Eq.(4.38) can be expressed as follows

Σ = 1
2�k gij

∆ = �

g00 + 2�k fjk cos 4π
n

(k − j)

or, after introducing a new quantity �∗

�∗(n) := g00 + 2�n−1
k=0 f0k cos 4π

n
k

2�n−1
k=0 g0k

(4.40)

it can be also written

Σ = 1
2�k gij

(4.41)

∆ = �

�∗(n)
Σ

As will become clear below, �∗(n) defines the critical strength of SSB. The size of �∗ depends on
the order of the planform, n, as well as on the model’s interaction functions g(α) and f(α). For
the model 4.5 its value is bounded by |�∗(n)| ≤ 1/2, since

|�∗| =
�����
g00 + 2�n−1

k=0 f0k cos 4π
n
k

2�n−1
k=0 g0k

����� =

���
�
n−1
k=0 g0k cos 4π

n
k
���

���2�n−1
k=0 g0k

���

≤

���
�
n−1
k=0 g0k

���

2
���
�
n−1
k=0 g0k

���
= 1

2

because f0k = 1
2g0k ∀k �= 0 (cf. Eq.(4.19)). For sufficiently large n the sums in (4.40) can be

replaced by integrals, yielding

�∗(∞) =
� 2π

0 dα f(α) cos(4α)
� 2π

0 dα g(α)

For our model defined by (4.18) we find

�∗(∞) = (2− g)
�
k2σ2 �24 + k4

cσ
4� I0(k2

cσ
2)− 8

�
6 + k4

cσ
4� I1(k2

cσ
2)
�

k6
cσ

6 �ek2
cσ

2g + 2(2− g) I0(k2
cσ

2)
� (4.42)

where Ij denotes the modified Bessel functions of the first kind. Fig.4.3(a) graphs �∗(∞) as
a function of σ/Λ for different values of g. For comparison in Fig.4.3(b-d) we also plot the
corresponding graphs of �∗(n) for different values of n. Notice that �∗(∞) ≥ 0 ∀g ∈ [0, 2], σ ∈ R+,
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Figure 4.3: Critical strength of shift symmetry breaking �∗(n, g,σ) for different model parameters. (a)
�∗(∞) for different values of g (g = 0, 0.5 1.0, 1.5) (b-d) �∗(∞) vs �∗(n) (b) g = 0, n = 5, 25, 50 (c)
g = 0.5, n = 5, 25, 50 (c) g = 1.0, n = 5, 25, 50. Further details are given in the text.
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4.6 Quasiperiodic Patterns

whereas �∗(n) also assumes negative values, especially towards small numbers n or σ � Λ. For
clarity, in the following we drop the argument of �∗(n), and simply write �∗.

For the stationary values of B+ and B− then follows

(B±)2 = 1
2(Σ±∆)

= 1
4�k gjk

�
1± �

�∗(n)

�

Since the right hand side has to be real and positive this solution only exists in the interval
� ≤ |�∗| (we assume gij > 0, ∀i, j).
An analogous treatment of the cases in which either B+ or B− vanishes yields the following
results: For B+ �= 0, B− = 0 the stationary amplitude B+ reads

(B+)2 = 1
2�k gjk

1 + �
1 + �∗

(4.43)

and for B− �= 0, B+ = 0 we find

(B−)2 = 1
2�k gjk

1− �
1 + �∗

(4.44)

Eqns. (4.43) and 4.44) provide solutions for � ∈ [−1,∞) and � ∈ (−∞, 1], respectively.

In summary, we have identified three types of stationary solutions

1.

B± =
�

1
4�k gjk

��
1± �
�∗

�
, φ+

j
− φ−
j

= 0 mod 2π, |�| ≤ |�∗| (4.45)

2.

B+ =
�

1
4�k gjk

�
2(1 + �)
1 + �∗

, B− = 0, φ+
j

arbitrary, � ≥ −1 (4.46)

3.

B− =
�

1
4�k gjk

�
2(1− �)
1 + �∗

, B+ = 0, φ−
j

arbitrary, � ≤ 1 (4.47)

How do the corresponding planforms (4.26) look like? In terms of the amplitudes A+ and A−
solution (4.45) becomes

|A±|2 = Σ±
�

Σ2 −∆2

= 1
2�k gjk

�
1±
�

1− (�/�∗)2
�

(4.48)

which, for � = 0, is identical to the solution reported in [22] since then

|A+| = 1
2

�
1
�
gjk
, |A−| = 0. (4.49)
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A series expansion of |A±| in � around � = 0 gives

|A+| =
�

1
�
k gjk

(1−O(�/�∗)2)

|A−| =
�

1
�
k gjk

(|�/�∗|+O(|�/�∗|)3)

from which we see that antiparallel modes A−
j

, which are completely suppressed for � = 0, start
to grow linearly with � (shown in Fig. 4.2(c)). At the same time active modes A+

j
become smaller,

such that the sum |A+
j
|2 + |A−

j
|2 stays constant. With increasing strength of SSB |�| amplitudes

|A+
j
| and |A−

j
| approach each other and eventually collapse to the same value for |�| = |�∗|.

This collapse persists for values of |�| beyond |�∗|, which follows from solutions (4.46) and (4.47).
For � ≥ |�∗| solution (4.46) corresponds to

|A±| = |B±| =
�

1
2�k gjk

1 + �
1 + �∗

, (4.50)

which at � = |�∗| gives the same solution as Eq.(4.48) if �∗ > 0. Similarly, For � ≤ |�∗| solution
(4.47) corresponds to

|A±| = |B±| =
�

1
2�k gjk

1− �
1 + �∗

, (4.51)

which at � = −|�∗| also yields the same solution as Eq.(4.48) if �∗ > 0.

For �∗ < 0 the same statements apply, one simply has to replace � by −�. The situation for �∗ > 0
is displayed in Fig.4.2(c). As indicated by the dotted line in Fig.4.2(c) both solutions (4.50) and
(4.51) coexist with solution (4.49) in the interval −|�∗| ≤ � ≤ |�∗|. However, we will show below,
that for �∗ > 0 solutions (4.50) and (4.51) are unstable in this interval, whereas solution (4.49) is
stable. For �∗ < 0 the situation is reversed (not shown in Fig. 4.2(c)). Shift symmetry breaking
not only leads to the growth of a given mode A−

j
, but also to a pairwise coupling of its phases to

the phase of A+
j

. This coupling occurs in one of two ways, depending on the signs of � and of �∗.
First we discuss the case where �∗ is positive.

For |�| ≤ �∗ where solution (4.45) applies, we find from Eqns. (4.30)

A+
j
A−
j

= ei
4π
n j(|B+

j
|2 − |B−

j
|2 +B−

j
B̄+
j
−B+

j
B̄−
j

) (4.52)

= ei
4π
n j
�
|B+
j
|2 − |B−

j
|2 − 2i|B−

j
||B+
j
| sin(φ+

j
− φ−
j

)
�
,

which due to φ+
j
− φ−
j

= 0 mod 2π leads to

|A+
j
|eiψ

+
j |A−

j
|eiψ

−
j = ei4 arg kj

�
|B+
j
|2 − |B−

j
|2
�
,

and thus to the conditions

ψ+
j

+ ψ−
j

=
�

4 arg kj for � > 0 and �∗ > 0
4 arg kj + π for � < 0 and �∗ > 0

(4.53)
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where ψ+
j

and ψ−
j

denote the phases of the complex amplitudes A+
j

and A−
j

. Thus the degree of
freedom for each pair of mode just consists of one arbitrarily chosen phase. Condition (4.53) also
applies for � > �∗ or � < −�∗, which follows from a substitution of the corresponding solutions,
(4.46) or (4.47), into (4.52). As mentioned above, when �∗ is negative solution (4.45) is unstable.
On the other hand solutions (4.46) (phase relation ψ+

j
+ψ−
j

= 4 arg kj) or (4.47) (phase relation
ψ+
j

+ψ−
j

= π+ 4 arg kj) are both stable and coexist in the interval |�| < −�∗. Beyond that range
only one solution is stable, i.e. solution (4.46) for � > 0 and solution (4.46) for � < 0. The result
of the stability analysis is summarized in Fig. 4.5 and will be discussed below. Since only the
case �∗ > 0 is relevant in the context of our study we assume positive valued �∗ in the following,
unless stated otherwise.

The Degree of Shift Symmetry Breaking

The coupling (4.53) of the phases ψ+
j

and ψ−
j

has direct impact on the functional form of the
correlation function P2(kj) = �a(kj)a(−kj)� which, for a solution, becomes

P2(kj) = �A+
j
A−
j
� = ei4 arg kj

�
|B+|2 − |B−|2

�
.

This matches the general form (3.13) derived for random fields of broken shift symmetry. In
particular,

P2(kj) =






0 for � = 0
ei4 arg kj |B+|2 for � ≥ �∗
−ei4 arg kj |B−|2 for � ≤ −�∗

One way to quantify the degree to which shift symmetry breaking affects essentially complex
planforms is therefore provided by the measure,

q :=
�
j

�
P2(kj)e−4 arg kj + P̄2(kj)e4 arg kj

�

�
j P1(kj)

= |B+|2 − |B−|2

|B+|2 + |B−|2 ,

which, by means of (4.39) and (4.41) can also be written

q = ∆/Σ =






−1 for � ≤ −�∗
�/�∗ for − �∗ ≤ � ≤ �∗
1 for � ≥ �∗

which shows that there is a linear relationship between the degree of symmetry breaking q and
the value of �. This definition is consistent with our previous definition of q in (3.15) and (3.16).
Since the effects of SSB on the pattern are maximal for |�| ≥ �∗ where the degree of SSB is either
q = 1 or q = −1, we say that the quantity �∗ defines the critical strength of shift symmetry
breaking.
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Explicit Solution

In summary, the solution for different values of � states

z(x) =
�

1
�
k gjk

·






�
2(1 + |�|)

1 + �∗

n−1�

j=0
zo
j
(x,φj) for � ≤ −�∗

n−1�

j=0

��
1 + q ze

j
(x,φj) +

�
1− q zo

j
(x,φj)

�
for − �∗ ≤ � ≤ �∗

�
2(1 + |�|)

1 + �∗

n−1�

j=0
ze
j
(x,φj) for � ≥ �∗

(4.54)

with

zoj (x,φj) := i e2i arg kj sin(φj + ljkjx)
zej (x,φj) := e2i arg kj cos(φj + ljkjx)

and arbitrary phases φj . The set of functions ze
j
(x,φj) and zo

j
(x,φj) span the kernel of L+ �MC,

respectively, and correspond to the two irreducible representations of reflections: Shift-twist
reflections in the axis parallel to kj , denoted by (CP )kj , leave ze

j
(x,φj), invariant,

(CP )kjz
e
j (x,φj) = zej (x,φj)

whereas
(CP )kjz

o
j (x,φj) = −zoj (x,φj).

We refer to ze
j

as the even and to zo
j

as the odd basis functions of the kernel of L+ �MC, see
Fig.4.4. The plane wave solution of Section 4.4 is a special case of Eq.(4.54) for n = 1 where
�∗ = 1/2.

4.7 Stability Analysis of Quasiperiodic Solutions

Next we discuss the stability of all three types of stationary states to intrinsic and extrinsic
perturbations.

Intrinsic Stability

First we consider stability to intrinsic perturbations. Small perturbations around any of the
stationary states

B±
j
→ B±

j
+ δB±

j
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a b

dc

q > 0 q < 0

q = 0

Re z Im z

Figure 4.4: Combinations of even and odd eigenfunctions of the kernel of L0 + �MC are the building
blocks of the planform solution Eq.(4.54). A general solution is given by a linear superposition of even
modes and odd modes, where (a) (lower row:) for q = �/�∗ > 0 (right) the even part dominates and for
for q = �/�∗ > 0 (left) the odd part dominates. Note how the phases of the even and odd eigenfunctions
(indicated by a colorcode for the phase or, in our context, orientation) depend on the wavevector’s direction
(the different rays), such that reflection at an axes parallel to the wavevector transforms the eigenfunction
to itself when the orientations run perpendicular and parallel to (left) or to the negative of itself when
the orientations run oblique to the axis defined by the wavevector (right). For q = 0 both parts are
equal and combine to form an essentially complex planform where one mode of each antiparallel pair of
modes vanishes (upper row). (b) Orientation preference maps. Black dots denote the Fourier power of the
solution, q as in (a). (c, d) Real and complex part of the solution. Note the coupling of iso-orientation
domains to the coordinate system similar to the situation in Fig. 3.3 and Fig. 3.4 for q �= 0.
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evolve according to the linearized dynamics of Eq.(4.31), i.e.

δḂ±
j

= (1± �)δB±
j

(4.55)

−δB±
j

�

k

(2 + δjk)gjk(|B+
k
|2 + |B−

k
|2)−B±

j

�

k

(2 + δjk)gjk(δB+
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k

+B+
k
δB̄+
k

)

−B±
j

�

k

(2 + δjk)gjk(δB−k B̄−k +B−
k
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k

)

+δB∓
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) +B∓
j
gjj(δB+
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) +B∓
j
gjj(δB̄+

j
B−
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+ B̄+
j
δB−
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∓2 δB±
j

�

k

fjk cos 4π
n

(k − j) (|B+
k
|2 − |B−

k
|2)∓ 2B±

j

�

k

fjk cos 4π
n

(k − j) (δB+
k
B̄+
k

+B+
k
δB̄+
k

)

±2B±
j

�

k

fjk cos 4π
n

(k − j) (δB−
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B̄−
k

+B−
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k
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fjk cos 4π
n
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j

�

k

fjk sin 4π
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+B−
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±2i δB±
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fjk sin 4π
n

(k − j) (B+
k
B̄−
k
− B̄+

k
B−
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)± 2i B±
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�

k

fjk sin 4π
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(k − j) (δB+
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j
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fjk sin 4π
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+ B̄+
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When considering the stability of solution 1 all amplitudes B+
k

and B−
k

have to be replaced by
the stationary solutions Eq.(4.45) such that

B+
j

= B+eiφj , B−
j

= B−eiφj .

For solutions 2 and 3, where Eqns.(4.46) and (4.47) apply, one type of amplitudes is zero, e.g.
B−
k

= 0, but the other type has the form

B+
j

= B+eiφj .

In both cases, the solutions have n continuous degrees of freedom since the phases φj are arbitrary.
Thus, in general, Eq.(4.55) depends on these phases. However, they can be absorbed in the
perturbations by setting

δB+
j
→ δB+

j
eiφj , δB̄+

j
→ δB̄+

j
e−iφj

δB−
j
→ δB−

j
eiφj , δB̄−

j
→ δB̄−

j
e−iφj
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such that all complex amplitudes in Eq.(4.55) are replaced by their absolute values. Eq.(4.55)
can be brought into following form





δReḂ+

δImḂ+

δReḂ−
δImḂ−



 =









1λ+

1λ+

1λ−
1λ−



 (4.56)

−2





aB+B+ sB+B− bB+B− −sB+B+

−sB+B− dB−B− sB−B− −dB+B−
bB+B− −sB−B− aB−B− sB+B−
sB+B+ −dB+B− −sB+B− dB+B+





� �� �
M̃









δReB+

δImB+

δReB−
δImB−





where B± = (B±0 , B±1 , . . . , B±n−1) and

λ± = (1± �)−
�

k

2gjk(B+2 + B−2)−
�

gjj + 2
�

k

fjk cos 4π
n

(k − j)
�

(B+2 − B−2)

ajk = (2 + δjk)gjk + 2fik cos 4π
n

(k − j)

bjk = (2− δjk)gjk − 2fik cos 4π
n

(k − j)

djk = δjkgjk + 2fik cos 4π
n

(k − j)

sjk = 2fjk sin 4π
n

(k − j)

Note that M̃ is symmetric since −s = sT , and therefore has real eigenvalues.

Solution 1

We recall that the first type of solution was defined by

B± =
�

1
4�k gjk

��
1± �
�∗

�
, φ+

j
− φ−
j

= 0 mod 2π, |�| ≤ |�∗|

where

�∗ = g00 + 2�n−1
k=0 f0k cos 4π

n
k

2�n−1
k=0 g0k

In particular, for this type of solutions we have

Σ := B+2 + B−2 = 1
2�k gij

∆ := B+2 − B−2 = �

g00 + 2�k fjk cos 4π
n

(k − j)
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such that
∆ = �/�∗Σ

Therefore,

λ± = (1± �)−
�

k

2gjk(B+2 + B−2)∓
�

gjj + 2
�

k

fjk cos 4π
n

(k − j)
�

(B+2 − B−2)

= (1± �)− Σ
�
�

k

2gjk ± �/�∗
�

gjj + 2
�

k

fjk cos 4π
n

(k − j)
��

= (1± �)− (1± �)
= 0.

We assume, without loss of generality, that Im B+
j

= 0 which implies Im B−
j

= 0. Phase shifts
of the solution are then mediated by perturbations of the form

B−δImB+ − B+δImB− = 0
δReB+ = 0
δReB− = 0

spanning a n-dimensional subspace belonging to the eigenvalue zero. In order to get rid of these
zero modes we just consider antisymmetric fluctuations δImB− = −(B−/B+)δImB+. The linear
dynamics (4.56) thus reduces to the 3n× 3n system of equations




δReḂ+

δImḂ+

δReḂ−



 = −2




aB+B+ 2sB+B− bB+B−
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which can be written as



δReḂ+

δImB+

δReḂ−



 = −2




1B+

1B−
1B−








a s b
sT d s
b sT a





� �� �
M




1B+

1(2B−)
1B−








δReB+

δImB+

δReB−





Therefore, since B± > 0, stability of the solution requires that M has positive eigenvalues, or
equivalently, since M is symmetric, that M is positive definite. In particular, this implies the
submatrix M � defined by

M � =
�
a s
sT d

�

(4.57)

to be positive definite. Next we propose two criteria which provide sufficient, although not
necessary, conditions for the instability of solution 1:

Proposition. The 3n× 3n matrix M is not positive definite if

�∗ ≤ 0

or if
gij ≥ g00

for any pair i �= j.
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Proof. Consider the vector v defined by v0 = v1 = · · · = vn−1 = 1, vn = vn+1 = · · · = v2n−1 = 0,
v2n = v2n+1 = · · · = v3n−1 = −1. Then

vTMv = 2
n�

j,k=1
(ajk − bjk)

= 4
�

jk

(δjkgjk + 2fjk cos 4π
n
k)

= 4n
�

k

(δ0kg0k + 2f0k cos 4π
n
k)

= 8n �∗
�

k

g0k

Since for the model considered here g0k > 0 it follows that vTMv ≤ 0 if �∗ ≤ 0.

In order to prove the second statement take the vector w defined as wi = w2n+i = 1, wj =
w2n+j = −1, wk = 0 ∀k /∈ {i, j, 2n+ i, 2n+ j}. Then

wTMw = 4(aii − aij) + 4(bii − bij)
= 16(g00 − gij)

and from gij ≥ g00 follows that M is not positive definite.

Solutions 2 and 3

For the second type of solutions we have two possibilities. Either

(B+)2 = 1
2�k gjk

1 + �
1 + �∗

, B− = 0, defined for � ≥ −1

or
(B−)2 = 1

2�k gjk
1− �
1 + �∗

, B+ = 0, defined for � ≤ 1

In the first case the values of λ± read

λ± = (1± �)−
�

k

2gjkB+2 ∓
�

gjj + 2
�

k

fjk cos 4π
n

(k − j)
�

B+2

= (1± �)(1 + �∗)− (1 + �)(1± �∗)
1 + �∗

or

λ+ = 0
λ− = −2(�− �∗)

1 + �∗
(4.58)

For the second case we find
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a

b

Figure 4.5: Bifurcation diagrams for positive (a) and negative values of �∗ (b). Shown is the normalized
difference between odd and even components. Dotted lines correspond to unstable, solid lines to stable
solutions.
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λ± = (1± �)−
�

k

2gjkB−2 ±
�

gjj + 2
�

k

fjk cos 4π
n

(k − j)
�

B−2

= (1± �)(1 + �∗)− (1− �)(1∓ �∗)
1 + �∗

or

λ+ = 2(�+ �∗)
1 + �∗

λ− = 0

The relevant equation of motions in the first case, obtained by setting δImB+ = 0 (in order to
eliminate the zeros modes due to the phase degeneracy) and B− = 0 in Eq.(4.56), state

�
δReḂ+

δImḂ−
�

=





�
. .
. 1λ−

�

− 2B+2
�
a sT

s d

�

� �� �
M �T





�
δReB+

δImB−
�

δReḂ− = 1λ−δReB−

If M � is positive definite, we conclude that the solution is stable if in Eq.(4.58) λ− < 0. This
is fulfilled when � > �∗. Similarly, the second case yields a stable solution when λ+ < 0, which
happens for � < −�∗. As noted previously M � is positive definite when type-1 solutions are
stable in � ≤ |�∗|. Thus, existence of stable type-1 solutions in � < |�∗| guarantees the stability of
solutions 2 and 3 for � ≥ �∗ and � ≤ −�∗, respectively, cf. Fig.(4.5)(a).
On the other hand, for �∗ < 0, where type-1 solutions are always unstable, solutions 2 and 3 are
nevertheless stable, provided that M � is positive definite. This implies bistability of solutions 2
and 3 in the interval �∗ ≤ � ≤ −�∗, cf. Fig.(4.5)(b).

Extrinsic Stability

A planform with n modes is extrinsically stable if it suppresses the growth of additional modes.
As shown in [22] modes which are most likely to grow occur at intermediate angles α = π

n
(Z + 1

2),
i.e. at half distance from the modes of the planform for which αj = π

n
j. It is therefore sufficient

to consider intrinsic stability of the particular planform with 2n modes

(B̃±0 , B̃±1 , . . . , B̃±2n−1) := (B±0 , 0, B±1 , 0, . . . , B±n−1, 0)

against fluctuations δB̃±2j := δB±
j

and δB̃±2j+1 := δZ±
j

, j = 0, 1, . . . , n − 1. Linearizing around
this state one sees that the dynamics of the fluctuations δB±

j
decouples from the dynamics of

δZ±
j

. Whereas the dynamics of δB±
j

is identical to Eq.(4.56), for δŻ±
j

one finds

δŻ±
j

=
�

(1± �)− 2
�
B+2 + B−2

��

k

g̃j,k ∓ 2
�
B+2 − B−2

��

k

f̃j,k cos 4π
n

(k − j − 1
2)
�

δZ±
j
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where

g̃j,k = g(|π
n

(k − j − 1
2 |)

f̃j,k = f(|π
n

(k − j − 1
2 |)

Assuming intrinsic stability of the solution (B±0 , B±1 , . . . , B±n−1), the criterion for extrinsic stability
becomes

(1± �)− 2
�
B+2 + B−2

��

k

g̃j,k ∓ 2
�
B+2 − B−2

��

k

f̃j,k cos 4π
n

(k − j − 1
2) < 0

or, since this expression does not explicitly depend on the index j,

(1± �)− 2
�
B+2 + B−2

��

k

g̃0,k ∓ 2
�
B+2 − B−2

��

k

f̃0,k cos 4π
n

(k − 1
2) < 0. (4.59)

In conclusion, stability of a solution under extrinsic perturbations requires that the solution is
intrinsically stable and that, in addition, condition (4.59) is fulfilled.

Energies

Consistent with the strong interindividual variability of orientation maps in the brain, the
dynamics Eq.(4.13) exhibits a potentially exceedingly high number of multistable solutions. The
energy of essentially complex planforms can be calculated from Eq.(4.32). For type 1 solutions

E(I)
n = − n

2�k g0k
(1 + �2/�∗), (4.60)

for solutions 2 and 3 the energy is given by

E(II)
n = − n

2�k g0k
(1 + �)2

1 + �∗
(4.61)

and
E(III)
n = − n

2�k g0k
(1− �)2

1 + �∗
, (4.62)

respectively and does not depend on the variables lj which identify a particular ECP. Due to
the growth of antiparallel modes with increasing |�| patterns for all different realizations lj with
phases φj := ljΦj + 1

4(1− sign(�))(1− lj)π (Φj arbitrary but fixed) eventually collapse in a single
state z(x) ∝�n−1

j=0 z
e/o

j
(x,φj) (Fig.4.2a).

4.8 Phase diagram

To answer how SSB affects pattern selection we calculated the phase diagram for the model
specified in Eqns.(4.4-4.6) for various values of �. To this end we calculated the energy of all
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solutions found above, that is plane wave solutions, rhombic pinwheel crystals and generalized
ECPs up to n = 25. For a dense mesh of parameter values in the (σ, g)-plane and fixed �. From
this comprehensive list of fixed point energies we obtained the energetic ground state of the
model in different regions of the (σ, g)-plane. Fig. 4.6 shows the configurations of ECPs and
rPWCs minimizing the energy. Plane waves are progressively replaced by rPWCs with increasing
SSB. Depending on the location in parameter space and on �, a particular angle α minimizes the
energy (c.f. Fig. 4.1c). Large n−ECPs are selected when the dynamics is stabilized by long-range
interactions (g < 1, σ > Λ). In this parameter regime plane waves and pinwheel crystals are
unstable. The degree of SSB q manifested in a given n−ECP attractor depends on � and on
the location in the phase diagram. Above a critical line defined by |�∗(n, g,σ)| = |�| antiparallel
modes are maximal and |q| = 1 (gray area), below that line |q| ≤ 1. Figs. 4.6 and 4.7 show the
high sensitivity of the dynamics to even small amounts of SSB, a substantial area in phase is
occupied by ECPs with |q| = 1 even for � = 0.02.

For the biologically most interesting quasi-periodic ECPs we also determined the regions in the
(σ, g)-plane for which a fixed n-ECP is dynamically stable. To this end we used the criteria for
extrinsic and intrinsic stability derived in Section 4.7 and calculated the corresponding stability
matrices. Our results (shown in Fig.4.7 for n = 20) reveal that the region of stability of an ECP
covers a much larger portion of the (σ, g)-plane than the range in which it is the ground state.
The overall shape and position of this stability region for large n was found to be insensitive to
the strength of shift symmetry breaking.

4.9 Pinwheel Densities

The main impact of shift symmetry breaking on aperiodic pattern solutions is the collapse of
multistability between different ECPs at the critical point �∗. The bifurcation analysis given above
established that this transition is continuous such that the different n-ECPs become gradually
more similar with increasing � until they are identical for � = �∗. It is thus an interesting question
how statistical properties of the spatially irregular pinwheel layouts change with �. To answer
this question we calculate the pinwheel densities of essentially complex planforms for arbitrary
degree of shift symmetry breaking. We consider the ensemble of solutions z(x),

z(x) =
�

2
n

n−1�

j=0
ei

2π
n j [
�

1 + q cos(ljkjx+φj) + i
�

1− q sin(ljkjx+φj)]

which is identical to the definition (4.54) up to the normalization factor, which we can freely
choose for later convenience, since a rescaling of z does not affect the pinwheel configuration.
Here, the phases φj are random variables, the n-tuple lj which identifies the active modes of
the planforms is held fixed and q denotes the degree of shift symmetry breaking. As shown in
Section 3.11 the pinwheel density can be calculated from the joint probability distribution of the
field and its gradient p(z,∇z). We set, without loss of generality, x = 0 and omit the argument
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Figure 4.6: Phase diagrams of the model, Eqns.(4.4-4.6), near criticality for variable SSB �. The
graph shows the regions of the g − σ/Λ plane in which n-ECPs and rPWCs have minimal energy
(n = 1− 25, n > 25 dots). Regions of maximally broken shift symmetry [� ≥ �∗(N, g,σ)] shaded in gray.
Regions where rPWCs prevail is shaded in blue, intensity level codes for the included angle α. (light blue:
π/4 ≤ α ≤ π/2 :dark blue)
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Figure 4.7: Stability regions of ECPs with n = 20 active modes. Depicted is the region in the g − σ/Λ
plane for which these planforms are a stable solution of the dynamics for � = 0, 0.02 and 0.2 and coexist
with planforms of nearby n, e.g. n− 1, n+ 1. Beyond that region the solution is unstable with respect
to intrinsic or extrinsic perturbations, i.e. growth of additional modes or decaying of active modes,
respectively. Inside of the region defined by the black lines the n = 20 solution minimizes the energy. For
� > 0 the q values range in [0, 1] as displayed by the green colorcode. Dashed yellow line denotes the
critical line � = �∗(N, g,σ), above which q = 1.

in the following, such that

z =
�

2
n

n−1�

j=0
ei

2π
n j [
�

1 + q cosφj + i
�

1− q sinφj ]

∇z =
�

2
n

n−1�

j=0
ei

2π
n jljkj [i

�
1− q cosφj −

�
1 + q sinφj ].

In the following we decompose z into its real and imaginary part, such that

z = R+ i I.

For large n the distribution p(z,∇z) can be approximated by a Gaussian

P (v) = 1
(2π)3

√
detW

exp
�
−1

2vTW−1v
�

(4.63)

where

v =(R, I, ∂xR, ∂yR, ∂xI, ∂yI)T

and W denotes the corresponding covariance matrix

Wij = �vivj�,
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the average being performed over the angles φj . First we evaluate the moments involving just
the fields, i.e.

�R2� = 2
n

n−1�

j=0

n−1�

k=0

���
1 + q cosφj cos 2π

n
j −
�

1− q sinφj sin 2π
n
j
�

×
��

1 + q cosφk cos 2π
n
k −
�

1− q sinφk sin 2π
n
k
��

= 1
n

n−1�

j=0

n−1�

k=0
(1 + q) cos 2π

n
j cos 2π

n
k δjk + (1− q)δjk sin 2π

n
j sin 2π

n
k

= 1
where we used

�cosφj cosφk� = 1
2δjk = �sinφj sinφk�

and
�cosφj sinφk� = 0.

Similarly, we obtain �I2� = 1 and �RI� = 0. For the moments which involve a single derivative
we obtain

�R∇R� = 0
�I∇I� = 0

and

�R∇I� =
�

1− q2 1
n

n−1�

j=0
kjlj

=
�

1− q2�χ
�I∇R� = −�R∇I�

which depend on the planform anisotropy,

�χ := 1
n

n−1�

j=0
ljkj ,

a measure for how anisotropically the active modes ljkj are distributed on the critical circle. The
modulus of �χ is small for an isotropic distribution of wavevectors ljkj . Without loss of generality
we can choose the coordinate system such that �χ = χ · (1, 0), which implies that �I ∂yR� and
�R ∂yI� vanish. An estimate for the upper bound on χ := |�χ| for a given n can be given by
considering the most anisotropic case, lj = 1 j = 0 . . . n − 1, which for q = 0 corresponds to
planforms where all active modes are distributed on a semicircle

χmaxn = 1
n

������

n−1�

j=0
kj

������

= kc
n

������

n−1�

j=0
ei
π
n j

������

= kc
n

����
2

1− eiπn

����
n→∞−→ 2/π kc.
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For kc = |k| = 1, which is assumed in the following, 0 ≤ χn ≤ 1 since χmaxn ≤ χmax1 = kc. Note,
however, that pinwheels only exist for n ≥ 2 modes, such that in our case of interest the values
of χn are actually bounded by

0 ≤ χn ≤ χmax2 =
�

1/2.

Finally, the nonvanishing moments with two derivatives are

�(∂xR)2� = 1
2 = �(∂yR)2� = �(∂xI)2� = �(∂yI)2�.

All together the covariance matrix reads

W =





1 . . .
�

1− q2χ .
. 1 −

�
1− q2χ . . .

. −
�

1− q2χ 1/2 . . .
. . . 1/2 . .�

1− q2χ . . . 1/2 .
. . . . . 1/2





The pinwheel density is obtained as described in 3.11 by calculating the expectation value of

ρ = �δ(z)|∂xR ∂yI − ∂yR ∂xI|�

with respect to the probability density P (v), Eq.(4.63). The average can be performed using
polar coordinates,

∂xR = r cos θ, ∂xI = r sin θ,

∂yR = s cosψ, ∂yI = s sinψ

and yields the result

ρ̂(χn) := ρ(χn)Λ2 = π
�

1− 2(1− q2)χ2
n (4.64)

where Λ = 2π/kc = 2π denotes the typical wavelength of the pattern.

Distribution of Planform Anisotropies

The energies of essentially complex planforms, however, do not depend on the planform anisotropy.
Since they are degenerate with respect to the n-tuple l = (l0, . . . ln−1), each of the 2n possible
sets occurs with the same likelihood. What can we say about the resulting distribution of �χ? In
the large n limit it can be approximated by a Gaussian distribution with mean zero, since

��χn� = 1
n

n−1�

j=0
�lj kj�

= 0
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4 Shift-Twist Symmetry and Pattern Selection

Figure 4.8: (a)-(c) Pinwheel densities for all realizations of ECPs with 3 ≤ n ≤ 17 and different degrees
of shift symmetry breaking �. (d) Pinwheel densities for n = 17 (dots) and for n→∞ in the Gaussian
approximation (gray region).
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and variance

σ2
n = ���χn − ��χn���2

= ���χn�2�

= 1
n2

n−1�

j,j�=0
�ljlj���kjkj��

= 1
n

As a consequence the modulus χn := ��χn� is distributed according to

Pχ(χn) = 2χn
σ2
n

e
−χ

2
n
σ2
n (4.65)

= 2nχn e−nχ
2
n (4.66)

Using Eq.(4.64) it is possible to express χn in terms of ρn

χn = 1
π

�
π2 − ρ2n

2(1− q2)

such that ����
dχn
dρn

���� =
ρn
π

(2(π2 − ρ2n)(1− q2))− 1
2

Together with Eq.(4.65) one obtains for the probability density of ρn

Pρ(ρn) = Pχ (χn(ρn))
����
dχn
dρn

����

= ρn
π2(1− q2)σ2

n

e
− π2−ρ2

n
2π2(1−q2)σ2

n

which has the mean value

�ρn� =
π�

0

dρnρnP (ρn)

= π −
π

3
2
�

1− q2e−
n

2(1−q2) Φi
��

n

2(1−q2)

�

√
2n

where Φi denotes the imaginary part of the error function. For the second moment we obtain

�ρ2n� =
π�

0

dρnρ
2
nP (ρn)

= π2 − π2 2(1− q2)(1− e−
n

2(1−q2) )
n

Furthermore, for large n (and also for |q|→ 1) the variance of ρn tends to zeros,

lim
n→∞

�
�ρ2n� − �ρn�2

�
= 0
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4 Shift-Twist Symmetry and Pattern Selection

since
lim
n→∞
�ρn� = π,

which means that values ρn are sharply peaked around π for sufficiently large n. Also, since

0 ≤ χn ≤
1
n
| 2
1− eiπn

| := χmaxn

and

lim
n→∞
χmaxn = 2

π

one obtains the following estimate for the range of observable pinwheel densities

π

�
1− 8
π2 (1− q2) ≤ lim

n→∞
ρn ≤ π.

This predicted range of pinwheel densities agrees well with densities numerically calculated from
ECPs. Figure 4.8 depicts that the range of pinwheel densities found for different planforms
continuously shrinks with increasing strength of shift symmetry breaking and collapses to a single
unique pinwheel density at � = �∗.

4.10 Appendix: Rhombic Pinwheel Crystals

The equations of motion of the four complex amplitudes read

Ȧ0 = A0 + �Ā0−e
−2iα −A0

�
g(0)
�
|A0|2/2 + |A0−|2

�
+ g(α)

�
|A1|2 + |A1−|2

��
− 2Ā0−f(α)A1A1−

Ȧ1 = A1 + �Ā1−e
2iα −A1

�
g(0)
�
|A1|2/2 + |A1−|2

�
+ g(α)

�
|A0|2 + |A0−|2

��
− 2Ā1−f(α)A0A0−

Ȧ0− = A0− + �Ā0e
−2iα −A0−

�
g(0)
�
|A0−|2/2 + |A0|2

�
+ g(α)

�
|A1|2 + |A1−|2

��
− 2Ā0f(α)A1A1−

Ȧ1− = A1 + �Ā1e
2iα −A1−

�
g(0)
�
|A1−|2/2 + |A1|2

�
+ g(α)

�
|A0|2 + |A0−|2

��
− 2Ā1f(α)A0A0−

With the ansatz (4.22) they can be written

ȧ+ iµ̇0a = a+ �ae−i(µ0+ν0+2α) − a3 (3g(0)/2 + 2g(α))− 2a3ei(µ1+ν1−µ0−ν0)f(α) (4.67)
ȧ+ iµ̇1a = a+ �ae−i(µ1+ν1−2α) − a3 (3g(0)/2 + 2g(α))− 2a3ei(µ0+ν0−µ1−ν1)f(α)
ȧ+ iν̇0a = a+ �ae−i(µ0+ν0+2α) − a3 (3g(0)/2 + 2g(α))− 2a3ei(µ1+ν1−µ0−ν0)f(α)
ȧ+ iν̇1a = a+ �ae−i(µ1+ν1−2α) − a3 (3g(0)/2 + 2g(α))− 2a3ei(µ0+ν0−µ1−ν1)f(α)

We introduce the abbreviation

Σ0 = µ0 + ν0, Σ1 = µ1 + ν1

∆0 = µ0 − ν0, ∆1 = µ1 − ν1
A decomposition of Eqns.4.67 into the real and imaginary part yields two distinct equations for
the amplitude

ȧ = a+ �a cos(Σ0 + 2α)− a3 (3g(0)/2 + 2g(α))− 2a3 cos(Σ1 − Σ0)f(α) (4.68)
ȧ = a+ �a cos(Σ1 − 2α)− a3 (3g(0)/2 + 2g(α))− 2a3 cos(Σ1 − Σ0)f(α)
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and the phase dynamics

Σ̇0 = −2� sin(Σ0 + 2α)− 4a2 sin(Σ1 − Σ0)f(α) (4.69)
Σ̇1 = −2� sin(Σ1 − 2α) + 4a2 sin(Σ1 − Σ0)f(α)
∆̇0 = 0
∆̇1 = 0

In order for (4.68) to yield a consistent set of equations the phase variables have to obey particular
relations which are discussed next.

Case 1: � = 0

For the case � = 0 we find from Eqns.(4.69)

d/dt (Σ1 − Σ0) = 8a2 sin(Σ1 − Σ0)f(α) (4.70)
d/dt (Σ1 + Σ0) = 0

which states that the sum Σ1 + Σ2 = µ0 + ν0 + µ1 + ν1 of all phases is constant and Σ1 = Σ0 + π
is a stable fixed-point. The stationary amplitude, obtained from Eq.(4.68) is

a2 = 1/ (3g(0)/2 + 2g(α)− 2f(α)) (4.71)

and the general solution then reads

z(x) = 2aeiΣ0/2 [cos(k0x + ∆0/2) + i cos(k1x + ∆1/2)]

or with a redefinition of ∆1 (since it can assume any value)

z(x) = 2aeiΣ0/2 [cos(k0x + ∆0/2) + i sin(k1x + ∆1/2)] (4.72)

Here the quantities Σ1,∆1,∆2 are arbitrary and z(x) is essentially complex, e.g. there is no
combination of Σ1,∆1,∆2 for which z(x) ∈ R ∀x.

Case 2: � �= 0

For � �= 0 consistency of Eqns.(4.69) requires Σ1− 2α = ±(Σ0 + 2α) + 2π Z. The phase dynamics
(4.69) then reads

Σ̇0 = −2� sin(Σ0 + 2α)− 4a2f(α) sin(2α± (Σ0 + 2α)− Σ0) (4.73)
Σ̇1 = ∓2� sin(Σ0 + 2α) + 4a2f(α) sin(2α± (Σ0 + 2α)− Σ0)

which, for ’+’ yields
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4 Shift-Twist Symmetry and Pattern Selection

Positive sign:

Σ̇0 = −2� sin(Σ0 + 2α)− 4a2f(α) sin(4α)
Σ̇0 = −2� sin(Σ0 + 2α) + 4a2f(α) sin(4α)

which is consistent only when sin(4α) = 0, i.e. when α = π/4 or α = π/2. In both cases the
dynamics of Σ0 states

Σ̇0 = −2� sin(Σ0 + 2α)

a) For α = π/4 we get

Σ̇0 = −2� cos Σ0

which is stable at Σ0 = π/2 sign �. In that case Σ1 = 4α+Σ0 +2π Z and the stationary amplitude
is given by the solution to

0 = a(1− |�|)− a3 (2g(α) + 3g(0)/2− 2f(α))

that is,
a2 = (1− |�|)/ (2g(α) + 3g(0)/2− 2f(α))

or
a2 = 1

2(g(0)/2 + g(α))
1− |�|
1 + �∗

with the general definition of �∗ for n = 2 and arbitrary angle α

�∗ = g(0)/2 + 2f(α) cos 4α
g(0) + 2g(α)

b) For α = π/2 we get

Σ̇0 = 2� sin Σ0

which is stable at Σ0 = π for � > 0 and at Σ0 = 0 for � < 0. The stationary amplitude is

0 = a+ � a cos(Σ0 + 2α)− a3 (2g(α) + 3g(0)/2 + 2f(α) cos(Σ0 − Σ1))
= a(1 + |�|)− a3 (2g(α) + 3g(0)/2 + 2f(α))

or
a2 = (1 + |�|)/ (2g(α) + 3g(0)/2 + 2f(α))

or
a2 = 1

2(g(0)/2 + g(α))
1 + |�|
1 + �∗
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Negative sign:

The more general case, however, which comes with a continuum of angles α, is obtained for the
’-’ sign in Eq.(4.73), for which Σ1 = −Σ0 mod 2π and

Σ̇0 = −2� sin(Σ0 + 2α) + 4a2f(α) sin(2Σ0)

Stationarity implies

a2 = � sin(Σ0 + 2α)
2f(α) sin(2Σ0)

On the other hand, Eq.(4.68) provides an additional equation for the stationary state

a2 = 1 + � cos(Σ0 + 2α)
2g(α) + 3g(0)/2 + 2f(α) cos(Σ0 − Σ1) (4.74)

Equating both expressions for a2 we obtain an implicit equation for Σ0

0 = sin(2Σ0) + �
�

sin(Σ0 − 2α)− (2 + 3g(0)
2g(α)) sin(Σ0 + 2α)

�
(4.75)

For � → 0 one finds Σ0 → 0,±π/2,±π among which only the solutions Σ0 = ±π/2 are stable
fixed-points of the phase dynamics. We will restrict our analysis to those two cases. It turns
out that energetically Σ0 = −π/2 is favored for � > 0, whereas Σ0 = π/2 is favored for � < 0.
In order to find solutions to Eq.4.75 for the general case � �= 0 we used a perturbation series
expansion in � or reverted to numerical methods.

The general solution then reads

z(x) = 2a
�
eiΣ0/2 cos(k0x + ∆0/2) + eiΣ1/2 cos(k1x + ∆1/2)

�

or, after replacing Σ1 = −Σ0 + 2π Z and a redefinition of the arbitrary phases ∆1 and ∆2

z(x) = 2a
�
eiΣ0/2 cos(k0x + ∆0/2) + e−iΣ0/2 sin(k1x + ∆1/2)

�
(4.76)

For small |�|� 1, where Σ0 ≈ −sign �π/2, the solution z(x) is essentially complex since

z(x) ≈ 2a ei(−sign �)π/4 (cos(k0x + ∆0/2) + i sin(k1x + ∆1/2)) ,

This corresponds to Eq.(4.71) for the case Σ0 = −sign �π/2, because in the limit � → 0 from
Eq.(4.74) we find

a2 = 1
2g(α) + 3g(0)/2 + 2f(α) cos(2Σ0) →

1
2g(α) + 3g(0)/2− 2f(α)

Stability analysis

In oder to show that the solutions Eq.(4.76) are linearly stable, one has to check the stability
under intrinsic and extrinsic perturbations.
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4 Shift-Twist Symmetry and Pattern Selection

a) Intrinsic perturbations arise within the set of active modes, i.e.

(A0, A1, A0−, A1−)→ (A0 + δA0, A1 + δA1, A0− + δA0−, A1− + δA1−)

around the stationary state which was defined by

A0 = a eiµ0 , A1 = a eiµ1 , A0− = a eiν0 , A1− = a eiν1

where Σ0 is the solution to Eq.(4.75) and a = (2g(α) + 3g(0)/2 + 2f(α) cos(2Σ0))−
1
2 . Since

Σ1 = −Σ0 we have
µ0 = 1

2(Σ0 + ∆0) ν0 = 1
2(Σ0 −∆0)

µ1 = 1
2(∆1 − Σ0) ν1 = −1

2(Σ0 + ∆1),

∆0 and ∆1 are arbitrary phases.

δȦ0 =
�
1− 2a2 (g(0) + 2g(α))

�
δA0 − a2

�
2f(α)ei(ν1−ν0) + g(α)ei(µ0−µ1)

�
δA1

−a2g(0)ei(µ0−ν0)δA0− − a2
�
g(α)ei(µ0−ν1) + 2f(α)ei(µ1−ν0)

�
δA1−

−a2g(0)/2e2iµ0δĀ0 − a2g(α)ei(µ1+µ0)δĀ1�
�e2iα − a2g(0)ei(µ0+ν0) − 2f(α)a2ei(µ1+ν1)

�
δĀ0− − a2g(α)ei(µ0+ν1)δĀ1− (4.77)

The corresponding equations for δȦ1, δȦ0−, δȦ1− are obtained from Eq.(4.77) by the replacements

δȦ1 : (µ0, µ1, ν0, ν1 ↔ µ1, µ0, ν1, ν0) and (A0, A1, A0−, A1− ↔ A1, A0, A1−, A0−)
δȦ0− : (µ0, µ1, ν0, ν1 ↔ ν0, ν1, µ0, µ1) and (A0, A1, A0−, A1− ↔ A0−, A1−, A0, A1)
δȦ1− : (µ0, µ1, ν0, ν1 ↔ ν1, ν0, µ1, µ0) and (A0, A1, A0−, A1− ↔ A1−, A0−, A1, A0)

The equations for δ ˙̄A0, δ
˙̄A1, δ

˙̄A0−, δ
˙̄A1− are obtained from the previous ones after complex

conjugation. Linear stability with respect to intrinsic perturbations is given when the resulting
8× 8 matrix only exhibits eigenvalues with negative real parts.

b) The stationary state is stable against extrinsic perturbations, when the growth of any additional
mode is suppressed. Assuming the test mode Beikx has a wavevector k = kc(cosβ, sin β). When
� �= 0 we also have to take into account the dynamics of the opposite mode B− to close the system
of equations. The linearized dynamics of B and B− in the vicinity of a stationary pinwheel
crystal solution (a, µ0, µ1, ν0, ν1) and B = 0 = B− hence reads

Ḃ = (B + �B̄−e4iβ − 2a2B (g(β + α/2) + g(β − α/2))
−2a2B̄−

�
f(β + α/2)ei(µ0+ν0) + f(β − α/2)ei(µ1+ν1)

�

Ḃ− = (B− + �B̄e4iβ − 2a2B− (g(β + α/2) + g(β − α/2))
−2a2B̄

�
f(β + α/2)ei(µ0+ν0) + f(β − α/2)ei(µ1+ν1)

�
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Ḃ
Ḃ−

˙̄B
˙̄B−




=





x · · y
· x y ·
· ȳ x ·
ȳ · · x









B
B−
B̄
B̄−





with

x = 1− 2a2 (g(β + α/2) + g(β − α/2))
y = �e4iβ − 2a2

�
f(β + α/2)ei(µ0+ν0) + f(β − α/2)ei(µ1+ν1)

�

The criterion for extrinsic stability thus states that the two degenerate eigenvalues λ± = x± |y|
have to be negative for all angles β.
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5 The Taming of the Shrew

Tree shrews have the highest brain
to body mass ratio of any animal,
even higher than humans.

(Wikipedia, Feb.2008)

5.1 Overview

The previous two chapters gave us an understanding of the impact that shift-twist symmetry is
predicted to have in models of visual cortical development. In Chapter 3, we found that shift-twist
symmetry is predicted to lead to a four-fold angular modulation of the two point statistics of
the pattern of preferred orientations and that these can be assessed by the correlation function
C2 and the orientation cooccurrence histogram. We analyzed the mathematical structure of
orientation cooccurence histograms and found that they can also exhibit a two-fold component
in general. Such a two-fold component, however, can only occur in a non-Gaussian ensemble.
In Chapter 4 we found that dynamical models of visual cortical pattern formation are highly
sensitive to broken shift symmetry and that already the presence of very weak terms consistent
with shift-twist symmetry are predicted to strongly impact on the statistics of the emerging
patterns.

It is thus time to ask whether the predicted signatures of shift-twist symmetry can be empirically
verified in the structure of actual visual cortical maps. Answering this question is the topic of
the current chapter. We will analyze a large dataset of orientation preference maps recorded in
the tree shrew visual cortex. From these data we will calculate the two correlation functions,
C1 and C2, and the orientation cooccurrence histogram P and quantify their four- and two-fold
angular dependence.

We find that there are statistically highly significant signatures of shift-twist symmetry in the
layout of the tree shrew maps:

1. Shift symmetry breaking in the brain is found to be of negative type.

2. We find clear deviations of the map statistics from Gaussianity indicated by a substantial
two-fold component of the orientation cooccurrence histogram.

3. The absolute strength of shift symmetry breaking appears to be relatively weak, such that
shift symmetric models can be considered a valuable approximation.

For all quantitaties estimated from the experimental data we provide confidence intervals and
significance values based on custom designed nonparametric permutation tests.
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Figure 5.1: (a) Tree shrew (tupaia glis) and (b) its brain (adapted from the brain collection, University
of Madison: www.brainmuseum.org).

5.2 Biological Background

The tree shrew is a small, highly visual mammal indigenous to Southeast Asia. Superficially it
displays similarities to the squirrel in its external appearance and behaviour (Fig. 5.1). However,
while squirrels are rodents, tree shrews are assigned to an order of their own, Scandentia, and are
more closely related to primates than rodents [60, 61, 62, 63, 64]. The visual system of the tree
shrew has been well studied, anatomically and electro-physiologically [65, 66, 67, 68, 60], and in
recent years ongoing research has added important new insights into the functional architecture
of its visual cortex by the use of optical imaging techniques and advanced tracing methods
[27, 69, 70, 71]. In the following we give a summary of basic facts relevant in the context of our
study.
Tree shrews have large, laterally oriented eyes and a binocular visual field of 60◦ [63, 65]. Their
primary visual cortex is located at the occipital poles of each brain hemisphere and can be
divided into a dorsal and a ventral part: The central, binocular portion of the contralateral
visual hemifield (≈ 0 − 30◦) is represented on the dorsal surface, whereas the remaining part
on the ventral surface represents the monocular portion of the contralateral visual hemifield
(≈ 30◦ − 150◦) and is driven by stimuli to the contralateral eye [65, 60]. Electro-physiological
recordings revealed sharp orientation tuning in neurons of layer 2/3 . The selectivities of neurons
for orientation and for visual stimulus position are topographically arranged in two cortical
maps, the orientation map and visuotopic map, both of which can been obtained using optical
imaging [27, 69, 70]. Depicted in Fig.2.1(a) are the cortical responses to whole field gratings of
four orientation (0◦, 45◦, 90◦, 135◦), which are combined into an orientation map in Fig.2.1(b).
The optical imaging signal undergoes a sharp transition along a line in rostro-medial direction,
which corresponds to the V1/V2 border as revealed by Nissl staining in [69]. The visuotopic
map was first imaged by Bosking et al. [27] (shown in Fig. 2.7(a)) which confirmed previous
electro-physiological recordings by Kaas et al. [65], indicating that the central visual field is
mapped onto the cortical surface in a relatively undistorted and isotropic manner. Note that
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parameter for the Gaussian fitting process, and any pixel in the position
preference map where the limits were exceeded was replaced by the
mean of the surrounding area. Again we used the minimum radius
possible to obtain the mean value, but in this case we required only 50
pixels for averaging. The final position preference map was smoothed
with a 7 ! 7 pixel mean filter.

Selectivity of labeled cell distributions. After alignment of the histolog-
ical sections to the optical imaging data, we quantified the orientation
selectivity of the labeled cell distributions by counting the number of
cells that were found over different regions of the orientation preference
map within 10 ! bins of orientation preference. For intrinsic cell distri-
butions we counted only the cells that were "500 "m from the injection
site. Cells that were located in V2 were excluded from the analysis.

RESULTS
Our results are grouped into four sections. In the first section, we
describe the map of visual space revealed by optical imaging and
compare this map to the map of orientation preference and the
histologically defined area 17/area 18 border. In the second sec-
tion, we present electrophysiological experiments that confirm the
existence of an ipsilateral visual field representation within V1.
Finally, in the third and fourth sections, we present the results of
experiments in which we combined optical imaging with injection
of fluorescent beads to assess visuotopic and modular specificity
of callosal connections.

Ipsilateral visual field representation revealed by
optical imaging
Optical imaging was performed directly through the thinned bone
over left and right visual cortex simultaneously. We obtained
robust patterns of differential activity related to orientation pref-
erence from a large region of the exposed cortex of both hemi-
spheres (Fig. 1A). We have previously described some of the
prominent features of the orientation preference map in the tree
shrew (Bosking et al., 1997). Interestingly, bilateral imaging of
orientation preference allowed us to determine that the pattern of
activity associated with a particular orientation was not identical,
or mirror symmetric, in the two hemispheres (Fig. 1A). In addi-
tion, the area of cortex that provided strong orientation difference
signals provided a convenient way to define the V1/V2 border in
our optical imaging experiments. In Nissl-stained sections of tree
shrew visual cortex, the area 17/18 border is clearly defined by an
abrupt change in staining intensity (Fig. 1B). This border corre-
sponds to the V1/V2 border defined by electrophysiology (Kaas et
al., 1972) and with the limits of the area of cortex providing strong
orientation difference signal in optical imaging experiments
(Fig. 1 A).

To investigate the map of visual space, we compared the
pattern of activity elicited by a single bar stimulus, placed in a
particular location, to the pattern of activity obtained during
presentation of a blank screen (see Materials and Methods for
details). This stimulus was selected because it was spatially re-
stricted in one dimension yet was still capable of driving strong
cortical activation. The activity elicited by this stimulus was
restricted to bands of cortex 1–2 mm in width that were elongated
approximately parallel to the V1/V2 border (Fig. 2B). The
strength of the signal within these bands was not uniform, and
comparison of the activation pattern within each band with ori-
entation difference maps from the same animal revealed that the
areas of more intense activation correspond to vertical iso-
orientation domains (Fig. 2, compare A, B; see Fig. 7A,B).

Presentation of the bar stimulus in the central regions of visual
space elicited bands of activity in both hemispheres. Because
there was very good agreement between the position of the
stimulus that elicited a symmetrical pattern of bilateral activation

Figure 2. Bilateral orientation difference signal and bilateral response to
a stimulus at the VM (animal TS9751). A, Bilateral orientation difference
signal. Dark areas of the image were preferentially activated by a vertical
grating (stimulus shown in inset), and white areas were preferentially
activated by a horizontal grating. B, Bilateral pattern of activity in
response to a bar stimulus (0.5° wide moved in a 2° wide window placed
at the VM, shown in inset). Dark areas of the image were strongly
activated by the bar stimulus as compared to a blank screen. The thin
black lines denote the V1/V2 border as defined by the orientation signal
shown in A. Note that the cortical representation of the VM is displaced
from the V1/V2 border in each hemisphere, implying the existence of a
representation of the ipsilateral visual field. Scale bar applies to A and B.
C, Multiunit receptive field plots for the two recording sites depicted in B.
The ipsilateral (dashed lines) and contralateral eye (thick lines) receptive
fields are overlapping at each location, indicating minimal misalignment
of the eyes. The receptive fields are located in the right (ipsilateral) visual
field, consistent with the optical imaging results.

Bosking et al. • Functional Specificity of Callosal Connections J. Neurosci., March 15, 2000, 20(6):2346–2359 2349

to ensure that a large portion of the surface vasculature over V1 was
captured in one section. The distribution of bead-labeled cells in the
cortex was plotted by hand using a camera lucida or with the assistance
of a computerized plotting system (Neurolucida; Microbrightfield,
Colchester, VT). Hand-plotted sections were scanned into a computer
for alignment with optical imaging data. After plotting of bead-labeled
sections, or in animals without bead injections, Nissl stains were per-
formed on the cortical sections.

Alignment of Nissl-stained tissue and bead-labeled cell distributions
with optical imaging data were performed using a modified version of the
public domain program NIH Image (original version developed at the
National Institutes of Health, available on the Internet at http:\rsb.info.
nih.gov/nih-image/; see Bosking et al., 1997 for details of modification).
Briefly, scanned images or text files containing data plotted with the
Neurolucida system were read into memory and aligned to the reference
image taken during the optical imaging phase of the experiment. Surface
and radial blood vessels were the primary landmarks used to align section
to section and to align sections to the reference image. For the experi-
ments presented in this report, we used alignment routines that allowed
not only global scaling, rotation, and translation of the camera lucida or
Neurolucida drawings, but also differential x-axis and y-axis scaling and
the capability to induce a defined amount of curvature to the drawing to
help correct for uneven flattening or shrinkage. These additions enabled
slightly more accurate alignments on plots that spanned large portions of
V1.

Analysis. Images obtained by optical imaging were 655 ! 480 pixels in
resolution, with "62 pixels/mm as a result of the lens combination used.
High-frequency noise was removed from orientation difference images by
using a mean filter kernel between 5 ! 5 and 10 ! 10 pixels in size.
Low-frequency noise in the orientation difference images was reduced by
convolving the image with a 50 ! 50 pixel mean filter kernel and
subtracting the result from the original image. Difference images were
normalized by dividing the deviation from the mean at each pixel by the
average absolute deviation across the entire image (Weliky et al., 1995).
Finally, vector summation of the difference images was done on a pixel by
pixel basis to create a color-coded orientation preference map (Bonhoef-
fer and Grinvald, 1991, 1993; Blasdel, 1992).

The only filtering applied to the imaging data for position specificity
shown in Figures 6 and 7 was a mean filter 5 ! 5 or 7 ! 7 pixels in size.

To help reduce vascular artifacts in the case presented in Figures 3 and
4, we used the reference image to create a mask indicating the location
of the major blood vessels in the imaging field of view. This mask was
used to selectively filter the raw data from each image in the position
series. The grayscale value for each pixel in the data images that was
located in the blood vessel mask was replaced by the mean of the
grayscale values of the surrounding pixels. To calculate the mean for each
pixel, we used the minimum area possible while requiring a minimum of
160 pixels that were not in the blood vessel mask. Grayscale values for
those pixels that were not in the mask were not changed during this
filtering. In the region of V1 that we imaged, this process altered only
17% of the pixel values. We then mean filtered each image using a 7 !
7 kernel and replaced each frame in the original position series of 17
frames with the average of that frame and the two adjacent frames to
obtain the series of 15 images that are displayed in Figure 3.

The position preference map shown in Figure 4 was obtained by
combining data from the 15 images shown in Figure 3. For each pixel, a
position tuning curve was constructed by obtaining the grayscale re-
sponse value for each position tested. Then a Gaussian curve was fit to
this data, and the location of the peak of the Gaussian was taken as the
preferred position for that site. The equation used for this process was:

Pixel value ! p1 " p2 ! e#$$x#p3%/p4%2

where p1, p2, p3, and p4 are parameters specifying the shape and location
of the Gaussian curve and x refers to the horizontal position of the
stimulus on the screen. The initial values for the parameters were
established from the minimum and maximum pixel values in the raw data
for that location as follows: p1 & minimum pixel value, p2 & maximum-
minimum pixel value, p3 & undetermined, and p4 & 2. Using these initial
values, the location of the peak ( p3) was allowed to vary in steps of 0.1,
and the location resulting in the smallest error was recorded. This value
for p3 and the values listed above for the other parameters were then fed
to an iterative algorithm that allowed all four parameters to vary. The
algorithm implemented was a version of the downhill simplex method
(Press, 1992). The final value of p3 after this iterative search was taken
as the preferred position of the site in question, and the position pref-
erence map is then a simple color coding of the position preference
across the sampled region of visual cortex. Limits were set for each

Figure 1. V1/V2 border defined by optical imaging and Nissl staining (animal TS9756). A, Bilateral pattern of orientation selectivity demonstrated by
optical imaging. The midline of the animal is in the center of the image, and rostral is toward the top of the page. The dashed lines indicate the portion
of the imaged area corresponding to V1 in each hemisphere. All optical imaging data for the remainder of the paper will be presented in this orientation.
Dark areas of V1 were strongly activated by a grating oriented at 45°; white areas were strongly activated by a grating oriented at 135°. Strong orientation
signal is visible throughout V1 on each side, but not in V2. The dashed line in right visual cortex indicating the location of the V1/V2 border was defined
by the Nissl-stained section shown in B. The dashed line in left visual cortex indicating the V1/V2 border was drawn directly from the orientation
difference image. B, Photomicrograph of a Nissl-stained tangential section through V1. This section was aligned to the optical imaging reference image
using techniques described in Materials and Methods and corresponds to the right side of the image shown in A. The darkly stained region of the image
corresponds to area 17, and the dashed line is placed at the border of the lightly stained and darkly stained regions. Scale bar applies to both figures.

2348 J. Neurosci., March 15, 2000, 20(6):2346–2359 Bosking et al. • Functional Specificity of Callosal Connections

!

Figure 5.2: (a) Relative orientation of V1/V2 border and the representation of the vertical meridian.
(A) Orientation column pattern in a pair of left and right hemispheres in tree shrew. Dotted straight
lines represent the V1/V2 borders. (B) Activity pattern elicited by a long bar aligned with the vertical
meridian. The angle is approximately 5◦. (adapted from [69].)

since only the dorsal part of the visual cortex is accessible to optical imaging the imaged region
only comprises the central, binocular part of the visual field. A subsequent study, again by
Bosking et al. [69], provided a refined picture: Simultaneous optical imaging of both hemispheres
allowed to delineate the representation of the lower part of the vertical meridian, which was
found to be tilted with respect to the V1/V2 border. It thus does not coincide with the V1/V2
border itself, as previously believed. Rather, this study revealed a compressed representation of
the ipsilateral visual field in the cortical area between the V1/V2 border and the representation
of the vertical meridian (see Fig. 5.2). A further study by Bosking et al. [70] confirmed that the
central visual field representation is essentially isotropic and provided the following estimates
of the cortical magnification factor: 206µm/◦ for the vertical and 174µm/◦ for the horizontal
direction. The ratios of vertical to horizontal magnification factor in two cases where both were
examined were 1.03 and 0.98. As a rule of thumb, roughly 5◦ of visual space are represented by
1mm of visual cortex.
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5 The Taming of the Shrew

5.3 Methods

In this study we analyze a large dataset of tree shrew orientation maps imaged in the Fitzpatrick
laboratory and gratefully provided by Len E. White (Duke University Medical Center, Durham,
USA). The dataset contains optical imaging data of 24 adult animals (tupaia belangeri): 21 left
hemispheres, 1 right hemisphere (TS111) and 2 double hemispheres (TS9762, TS9805) - in total
26 hemispheres. Details on the experimental setup and on the data acquisition are described in
[27] for the single hemisphere experiments and in [69] for the double hemisphere experiments.

Optical Imaging

Optical imaging of intrinsic signals was accomplished using an enhanced video acquisition system
(Optical Imaging Inc.) as described in [27, 69]. Images were acquired directly through the
thinned bone overlying the V1 area. The cortex was illuminated with orange (605nm) or red
light (700nm) and visualized with a tandem lens macroscope attached to a low noise video
camera. The stimuli consisted of moving, high-contrast rectangular wave gratings oriented at
0◦, 45◦, 90◦, or 135◦. The averaged response to each grating was subtracted from the averaged
response to the orthogonal grating to obtain difference images. Difference images were 655 × 480
pixel in resolution, with either 62 pixels (double hemispheres) or 75 pixels (single hemispheres)
per millimeter. Difference images were clipped to ±3 standard deviations from the median of
intensity distribution, then rescaled to fit into the range [0, 255], converted to 8 bit grayscale
images and exported in TIFF format [72].

Preprocessing

Region of Interest (ROI)

We defined a region of interest (ROI) for each hemisphere containing the imaged part of area V1,
excluding large bloodvessels.

Filtering

Overall drift components and long-wavelength fluctuations of signal intensity were removed by
high-pass filtering as follows: Both difference images D0◦−90◦(x) and D45◦−135◦(x) were combined
to a complex field

Z(x) = D0◦−90◦(x) + i D45◦−135◦(x),
the unfiltered polar map. Inside the ROI we then calculated a high-pass filtered image Zhp(x) =
Z(x)− Z �(x) by subtracting the local mean

Z �(x) = 1
W �(x)F

−1
�
K̃ �(k)Z̃(k)

�
,

where F denotes Fourier transform and

K̃ �(k) = 1
1 + e−(khp−|k|)/σhp
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is the Fermi-function which depends on the high-pass cutoff frequency khp and a parameter
controlling the steepness σhp. Normalization by the weight W �(x) =

�
ROI
d2yK �(x− y) accounts

for the boundary of the ROI. We used σhp = 0.05 khp and khp = 2π/λhp with λhp = 1.2mm,
approximately twice the typical spacing of orientation columns (see below).
Similarly, high-frequency noise was removed by means of the low pass filter

K̃(k) = 1
1 + e−(klp−|k|)/σlp

where σlp = 0.05 klp and klp = 2π/λlp with λlp = 0.2mm. The normalization is set to W (x) =�
ROI
d2yK(x− y) and we end up with the band-pass filtered polar map,

z(x) = 1
W (x)F

−1
�
K̃(k)Z̃hp(k)

�
.

For more details of this filtering technique and a thorough discussion on the advantages of using
a Fermi-function instead of the widely used Gaussian the reader is referred to [73].

Scaling

Before averaging over all maps it is useful to rescale individual maps in units of their intrinsic
lengthscale. This was achieved by appropriate spatial rescaling of each frame. Depicted in
Fig. 5.3(a) are the radial projections of the correlation function C1(r) for all individual cases (see
Chapter 3 for their definition and Section 5.4 for how they are obtained). They all exhibit a
stereotype shape sketched in Fig. 5.3(b) with a quadratic maximum at the origin. We define the
intrinsic lengthscale Λint as the location of the second peak. It provides a robust estimate for
the average separation of adjacent orientation columns and is straightforward to measure. The
values of Λint of all maps are depicted in Fig. 5.3(c) and fluctuate around a mean

Λ̄int = 650± 30µm

which is consistent with previous results on the mean wavelength [73]. Expressed in pixels, Λ̄int
corresponds to either 48.8 or 40.3 pixels, depending on the pixel/mm resolution used for the
particular experiment (see above). Each map was rescaled to achieve Λint = 50 pixel. Rescaling
was linear and isotropic and implemented by a resampling of all data points on a new grid using
spline interpolation. Correlation functions of the scaled ensemble are depicted in Fig. 5.3(d).
Such rescaling leads to an almost complete collapse of the individual correlation functions. The
shape of the correlation functions of individual maps are thus basically the same. This observation
supports the ’ensemble picture’ developed in Chapter 3.

Rotation and Flipping

For the purpose of our study it is essential to relate the orientation maps to the organization
of the visuotopic map in area V1. Since we want to analyze the relationship between preferred
orientation and space in the same coordinate system we first rotate each map in order to align
the V1/V2 parallel to the y-axis, paying attention that the caudal part, where the upper part of
the visual field is represented, points to the top (see Fig. 5.4(a)). Then we apply an additional
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5 The Taming of the Shrew

Figure 5.3: Correlation functions C1(r) and wavelengths of tree shrew orientation maps. (a) angular
average correlation functions C1(r) of the 26 brain hemispheres analyzed (r in mm units). (b) Illustration
of wavelength estimation from an individual correlation function (r in mm units). (c) Hemisphere to
hemisphere variability of the wavelength Λ (in mm units). (d) Correlation functions collapse after a
spatial rescaling of individual hemisphere which normalizes their wavelengths to Λ = 1. Here length is
given in units of the typical wavelength (of the individual maps).
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small rotation to account for the tilt angle αt between V1/V2 border and vertical meridian
(Fig. 5.4(b)). The same fixed value αt = 5◦ was used for all maps. This procedure is based on
our best estimate from the cases published in [69] and on the fact that shape and layout of area
V1 look stereotypical among different animals [72]. Finally, the aligned maps are mirror imaged
at the y-axis, such that left hemispheres are mapped onto the right visual hemifield and vice
versa (Fig. 5.4(c)).

5o

b

RVFLVF

c
flip

V2V1

LH

a

VM

HM

Figure 5.4: Rotation and Flipping of Orientation Maps. To superimpose the maps of visual space and
align the projected horizontal and vertical axes, maps (a) where rotated (b) and flipped at the vertical
axis (c). Details are given in the text.

Variance Normalization

In order to remove any overall bias with respect to cardinal or oblique orientations we normalize
the variances of the real and imaginary part of each map such that

�Re zRe z� = 1
2 = �Im z Im z�.

The results of the following analysis, however, remain essentially unaffected when recalculated
without such variance normalization.
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5.4 Results

Correlation functions

The correlation functions C1(r) and C2(r) were obtained as follows: First we calculated individual
correlation functions for each map zj ,

C1,j(r) = 1
A

�

ROI

d2x zj(x)z̄j(x + r)

C2,j(r) = 1
A

�

ROI

d2x zj(x)zj(x + r)

where A denotes the area of the particular ROI. Then we average over all N maps in the ensemble

C1(r) = 1
N

�

j

C1,j(r)

C2(r) = 1
N

�

j

C2,j(r).

Note that variance normalization implies C1(0) = 1. The resulting correlation functions and
their Fourier transforms P1(k) and P2(k) are shown in Fig. 5.5.

Let us first discuss C1(r) and the powerspectrum P1(k) (Fig. 5.5(a,e)). Both functions are
essentially isotropic and exhibit no spatial anisotropies in correlation lengths and wavelengths.
Their averaged radial parts, defined as

C1(r) = 1
2π

2π�

0

dφC1(r cosφ, r sinφ)

P1(k) = 1
2π

2π�

0

dφP1(k cosφ, k sinφ)

are plotted in Fig. 5.6(a,b), together with the 95% confidence interval (shaded region), which
was estimated using 105 bootstrap samples. Each bootstrap sample is obtained by recalculating
C1(r) and P1(r) for a pseudo ensemble based on

Cbs1,j = C1,Xj ,

where Xj ∈ {1, 2, . . . N} denotes a random number, which is randomly drawn from the set of
integers {1, 2, . . . N} with replacement.
In order to assess the statistical significance of C1(r) and P1(k), i.e. whether C1(r) and P1(k)
are significantly different from zero, we perform a permutation test consisting of recalculating
C1, however this time based on

Cperm1,j (r) = 1
V

�

ROI

d2x zj(x)z̄σ(j)(x + r),
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Figure 5.5: Spatial structure and two point correlations of orientation preference maps in the tree shrew
visual cortex. (a) Example of an orientation map (case TS9815). (b) Real and imaginary parts of the
orientation map shown in (a). (c-f) 2-d correlation functions C1(r), C2(r) and their Fourier transforms
P1(k) (the power spectral density) and P2(k). For (c) and (e) one unit corresponds to 1Λ, for (d) and (f)
to 2π/Λ.
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Figure 5.6: Monopole and quadrupole (’cloverleaf’) component of the correlation functions. (a and
b): Radial projections of the correlation function C1(r) and of the powerspectrum P1(k). (c and d):
Real parts of the quadrupole component of C2(r) and of P2(k). Axes r and k displayed in units of
typical wavelength Λint and typical wavenumber 2π/Λint, respectively. Green shaded regions: bootstrap
confidence interval. Blue shaded regions: 5% significance level.
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Figure 5.7: Imaginary parts of the quadrupole component of C2(r) and of P2(k). Same conventions as
in Fig.5.6(c) and (d).

where σ : {1, 2, . . . N} → {1, 2, . . . N} denotes a random permutation of the indices with the
additional requirement σ(j) �= j, ∀j ∈ {1, 2, . . . N}, since two maps zi and zj from different
hemispheres should are expected to be statistically independent and therefore uncorrelated. The
corresponding averaged radial parts, after ensemble averaging, are denoted by Cperm1 (r) and
P perm1 (r). Their distributions for 105 permutations are indicated by the gray shaded regions
marking the 95% confidence interval. We conclude that within the analyzed range (4 intrinsic
typical lengthscales) C1(r) and the powerspectrum P1(k) are highly significant (see below for
details of how we define significant regions in this context). In particular, P1(k) exhibits a uni-
modal peak at about one intrinsic wavenumber kint = 2π/Λint, where Λint denotes the intrinsic
wavelength, defined above.

The real and imaginary parts of C2(r) and P2(k) are shown in Fig. 5.5(d, f). Interestingly, they
both exhibit a cloverleaf modulation consistent with the case q < 0 discussed in Chapter 3.
How significant is this effect? Is there a way to estimate q? In order to quantify the effect we
represent C2(r) in polar coordinates (r,φ), project out the 4th Fourier component with respect
to φ = arg r,

C4
2 (r) := 1

2π

�
dφC2(r,φ)e−4iφ

and obtain the amplitude of the cloverleaf modulation, denoted by C4
2 (r). We proceed the same

way with P2(k) whose cloverleaf modulation is called P 4
2 (k). In general, these amplitudes are

complex valued. However, we remind the reader that the general form of C2(r) consistent with
the basic symmetry assumptions requires
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5 The Taming of the Shrew

C2(r) = f(r) e4i arg r with f(r) : R→ R.

The resulting cloverleaf modulation, say, of Re C2(r), is therefore tightly locked to the x- and
y-axis, along which it assumes its maximal (or minimal) values (see Fig. 3.2 in Chapter 3).
A complex valued f(r) would, in general, induce a rotation of the entire cloverleaf with the
consequence that its principal axes no longer match the x- and y-axis. Such a scenario, however, is
only conceivable for broken mirror symmetry. The same considerations apply to P2(k). Depicted
in Fig. 5.6(c,d) and Fig. 5.7(a,b) are the real and imaginary parts of C4

2(r) and P 4
2 (k) for the

tree shrew dataset. The 95% confidence intervals (shaded in green) are estimated using 105

random bootstrap samples (as described above). In order to assess the significance of the effect
we compute the distribution of C4

2 and P 4
2 of a corresponding shift symmetric ensemble, which is

obtained by replacing each map zj(x) in the ensemble by a phase shifted map

zj(x)→ eiφjzj(x),

where φj ∈ [0, 2π] denotes a random phase. From the original dataset this procedure creates an
artificial ensemble of maps, in which shift symmetry is restored. The distribution of cloverleaf
components for the shift symmetrized ensemble is shown in blue, demarkating the 95% confidence
interval for 105 randomized ensembles. Due to finite sample size (N = 26) it fluctuates about
its average value which, by symmetry, has to be zero. We are now in a position to identify the
significant part of the signal. As an example we consider Re C4

2(r) and define the significant
part of Re C4

2 (r) as the maximal interval [rmin, rmax] within the analyzed region of r for which
Re C4

2 (rmin) and Re C4
2 (rmax) lie outside of the 95% confidence interval of the shift symmetric

distribution. The locations of rmin and rmax are indicated by the dotted lines in Fig. 5.6(c). We
conclude that the oscillations observed in Re C4

2(r) are statistically significant in the domain
r ∈ [0.1, 2.46] · Λ and reveal a clear signature of shift symmetry breaking. Furthermore, since
Im C4

2(r) is not significantly different from zero, the observed cloverleaf structure is consistent
with the theoretical predictions of Chapter 3, derived under the assumption that rotation and
mirror symmetry both apply. In addition, the component C4

2 (r) behaves as ∼ r4 for small r (inset
of Fig. 5.6(c)) as predicted from our analysis of shift-twist symmetric ensembles, Eq.(3.4). The
statistical analysis of P (4)

2 (k) is performed in an analogous manner. Fig. 5.6(d) shows the real
and imaginary part of the average cloverleaf component of P2(k) together with their respective
confidence intervals (in green). The corresponding distribution from the shift symmetrized
ensemble is shown in blue, the dotted lines demarkate the statistical significant part. Whereas
Re P (4)

2 (k) is significantly different from zero, Im P (4)
2 (k) is not, in agreement with the theoretical

prediction. Again, a clear signature of broken shift symmetry.

Estimation of q values

A simple and convenient way to quantify the degree of shift symmetry breaking is given by the
order parameter q defined as

q = �Q(k)�k
where

Q(k) = Re P (4)
2 (k)/P1(k)
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Figure 5.8: Significance and strength of the two measures for shift symmetry breaking, q (a) and q∗
(b). Black lines: sample estimate. Green histogram: distribution of bootstrap samples. Blue histogram:
distribution of shift randomized samples.

and the brackets �·� denote the average with respect to the normalized weight P1(k)/
�∞

0 dkP1(k).
We find

q = −7.1± 2%
where the confidence interval for q is estimated from 105 bootstrap ensembles, which generates the
distribution shown in Fig. 5.8(a). The null hypothesis of full shift symmetry whose distribution
is computed from the shift-symmetrized ensemble (blue histogram), cannot explain the q value of
the tree shrew dataset and is rejected on the basis of a significance level p < 10−5. Unlike in our
model of Chapter 3, where for simplicity we proposed a constant value Q(k) = const = q one can
see in Fig. (5.6)(d) that ReP (4)

2 (k), and therefore Q(k), exhibits a sign flip at k0 ≈ 0.9 kint inside
the significant region. Although mostly negative it also gets positive for small wavenumbers
k < k0. The maximal effect, however, is expected to happen around the location k ≈ kmax
at which the powerspectrum P1(k) reaches its peak. Thus, as an alternative measure of shift
symmetry breaking we might as well consider

q∗ := Q(kmax)

As expected, the effect is stronger
q∗ = −13.3± 3%

and is again highly significant (p < 10−5), see Fig. 5.8(b).

Optimizing the tilt angle

Although great care was taken while determining the V1/V2 border (methods sections) we cannot
rule out that there might be a source of variability at that part of the preprocessing. Similarly,
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our best guess for the tilt angle, globally set to αt = 5◦, may turn out to be neither constant
across all animals, nor accurate enough. V1/V2 borders were assigned individually by visual
inspection of the optical imaging signal, before any statistical analysis. The question remains,
how an error of a few degrees, at that preprocessing stage would affect the q estimation later.
Consider a hypothetical ensemble of N orientation maps with a tight coupling to the visuotopic
map as discussed in Chapter 3, for which the V1/V2 angle and the tilt angle are exactly known.
After a proper alignment of the vertical meridian to the y-axis and measurement of the individual
correlation functions, C2,j(r) exhibits a cloverleaf modulation, whose principal axes are locked
to the x- and y-axis of the coordinate system. If, instead, some error occurred such that the
vertical meridian and y-axis are tilted relatively to each other, say by an angle µj , the axes of
the cloverleaf would also rotate by µj , as shown next: If, say, for the correctly aligned map

C2,j(r) =
�

ROI

d2y z(x)z(x+ y)

then for the misaligned map

Cµ2,j(r) =
�

Rµ(ROI)

d2x z (Ω−µx) z (Ω−µ(x + r))

=
�

ROI

d2x z(x)z (x + Ω−µr))

= C2,j(Ω−µr)

where j denotes the particular case in the ensemble. The same applies to the Fourier transform

Pµ2,j(k) = P2,j(Ω−µk).

Now, assuming
P2,j(k) = Qj(k) e4i arg k P1,j(k)

with Qj(k) ∈ R and Qj(k) ≤ 0 for the correctly aligned maps, then

P
µj

2,j(k) = e4iµjQj(k) e4i arg k P1,j(k)

for the misaligned ones. Since

|Re e4iµjQj(k)| ≤ |Re Qj(k)| for Qj(k) ∈ R

it is clear that any misalignment will yield to an underestimate of |q| or |q∗| and therefore dilute
the strength of the effect. How would our estimates of q and q∗ change if we could correct
for this hypothetical misalignment? We can find an upper bound for q and q∗ since we know
P (4)

2,j (k) of each map j: As shown in Fig. 5.7(b) P (4)
2,j (k) is complex, even though in general

|Im P (4)
2,j (k)|� |Re P (4)

2,j (k)|. Since q and q∗ are based on P (4)
2 (k) = 1

N

�
N

j=1 P
(4)
2,j (k) all P (4)

2,j (k)
should sum up coherently in order to yield a maximal effect. For q or q∗ that will be the case
when �P (4)

2,j (k)�k ∈ R or P (4)
2,j (kmax) ∈ R, respectively. Hence the corresponding optimal correction

angles can be obtained from

αj = arg�P (4)
2,j (k)�k or αj = argP (4)

2,j (kmax)
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Figure 5.9: Correction angles that maximize (a) the q and (b) the q∗ estimate obtained from each
hemisphere.
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Figure 5.10: Shift symmetry breaking, reassessed after optimizing the tilt angles. q (a) and q∗ (b). Black
lines: sample estimate. Green histogram: distribution of bootstrap samples. Blue histogram: distribution
of shift randomized samples.
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5 The Taming of the Shrew

as follows: A tilt µj applied to the j-th frame induces a phase shift αj → α�j = αj + 4µj . Real
values correspond to either α�

j
= 0 or α�

j
= π. In order to keep the correction angle as small as

possible µj is chosen

µj =
�
−1/4 αj : π/2 ≤ αj ≤ π/2
−1/4 (αj − π) : else

which restricts its range to µj ∈ [−π/8,π/8]. The distributions of correction angles optimizing q
and q∗ are shown in Fig. 5.9(a) and (b), respectively. Note that the majority of angles accumulates
within the range of ±7◦ .The optimized values for q and q∗ are

q = −8.3± 2% and q∗ = −15.1± 4%,

their distribution, inferred from a bootstrap of 105 samples, is shown in Fig.(5.10). We conclude
that perfect control over the tilt and V1/V2 angle may yield to a noticeable but not dramatic
increase of the observed effect by about 10− 15%.

Testing the q estimator

How reliable is our estimate of q? We use ensembles of Gaussian random fields (GRFs) in order
to address this question. The number and the size of random maps (the number of hypercolumns)
and the powerspectrum are chosen such as to approximate the tree shrew dataset. Each ensemble
consisted of 20 random maps (spatial extension of L = 13Λ and Λ = 50 pixel) drawn according to
the model of Chapter 3 for fixed control parameter β = 10 and variable degree of shift symmetry
breaking qGRF ∈ {−1.0,−0.9,−0.8, . . . , 1.0}. For each ensemble we then estimate q and q∗
as described above. Those estimates are compared to the actual values of qGRF in Fig. 5.11.
Errorbars demarkate the central 95% of the distribution for 105 bootstraps. We conclude that
both estimators work very well despite some systematic bias at large |qGRF | values of up to ∼ 8%.
For small values |qGRF | ≤ 0.2, however, the exact value lies within the confidence region of the
estimator.

Pair Cooccurence Histograms

In the previous subsection we presented strong evidence that the orientation map layout in tree
shrews is coupled to the visuotopic map as predicted by broken shift symmetry. The observed
coupling is consistent with the predicted effect derived in Chapter 3 from the basic Euclidean
symmetry assumption. The strength of the effect is relatively small but highly significant:
quantified by q and q∗ it ranges in the order of −10%. Moreover, it occurs with negative sign,
which predicts that domains coding for oblique orientations should have a tendency to arrange
parallel to the x- and y-axis, whereas cardinal domains should preferentially arrange along the
diagonals. Is this really the case? Given the magnitude of the effect it is clear that we need a
sensitive method to check this prediction.

It turns out that the pair co-occurrence statistics provides exactly the tool we need. The
histograms for ∆ = {0, π/8, π/4, 3π/8, π/2} of our tree shrew dataset are shown in Fig. 3.10(b-
f). A comparison to the theoretical histograms calculated for Gaussian random fields reveals

110



5.4 Results

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q

q
est

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q

q
est

a b

Figure 5.11: Validation of q estimator using surrogate data. Graphs of q-estimates (q in (a) and q∗ in
(b)) as a function of the model parameter q of the Gaussian random map ensemble. Blue: significance
boundary calculated from shift randomized maps.

interesting correspondence and discrepancy.

Let us first discuss the matching part. All histograms exhibit a cloverleaf modulation, which is
most visible in the last histogram (∆ = π/2). A comparison with the Gaussian case Fig.3.10
reveals that the 4-fold modulation is consistent with negative q, confirming our expectation.
Indeed, from the first histogram one can read of that 0◦ iso-orientation domains are more likely
to extend along the diagonals rather than along the cardinal directions. This also means that
domains for oblique orientations run preferentially along the horizontal and vertical directions,
rather than along the diagonal.

However, contrary to the Gaussian case, the modulation cannot be explained by the cloverleaf
alone. In fact it appears that superposed on top of it there is an additional 2-fold modulation
which distinguishes collinear from parallel arrangements. This can be seen best for ∆ = 0 and
separations r ≤ 1Λint, where collinear arrangements encounter more suppression than parallel
ones. This is an interesting departure from the Gaussian case, where, for negative q, both ar-
rangements are suppressed to the same degree. This asymmetry is also apparent in the remaining
histograms, however it becomes attenuated for larger ∆ and vanishes for ∆ = π/2. The principal
axis of this 2-fold modulation rotates with angle ∆/2, which is also the case for the symmetry
axes of the cloverleaf modulation (black lines).

Can we disentangle the 4-fold (’cloverleaf’) from the 2-fold (’collinear’) part and quantify their
respective contribution to the overall modulation? The general form of Pr,φ(Σ|∆) derived in
Chapter 3 states

Pr,φ(Σ|∆) =
�

m,n∈N
cmn(r) cos(2m(Σ− φ)) cos(n∆)
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Figure 5.12: Spatial structure of orientation cooccurrence histograms of tree shrew orientation maps.
(a) Example of a tree shrew orientation map, scale bar corresponds to one typical wavelength Λ. (b-f)
Orientation cooccurrence histograms for five difference angles (see bars below each plot). (g) Cloverleaf
projection of C2 with significance borders (blue) and confidence intervals (green). Inset: log-log plot of
initial rise as compared to ∼ r4 (dotted line). (h-i) Cloverleaf and collinear modulation of the orientation
cooccurrence histogram. Confidence intervals and significance borders as in (g).
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with c00 = 1/π and cmn = 0 for odd m+ n. Here we argue that the cloverleaf part is given by

P (4)
r,φ (Σ|∆) =

�

m,n∈2N
cmn(r) cos(2m(Σ− φ)) cos(n∆)

whereas the 2-fold modulation is provided by

P (2)
r,φ (Σ|∆) =

�

m,n∈2N+1
cmn(r) cos(2m(Σ− φ)) cos(n∆).

This can be seen in Fig. 3.8(b), where collinear and parallel arrangements are displayed in the
row ∆ = 0 at positions Σ− φ = 0 mod π and Σ− φ = π/2 mod π, respectively. For m ∈ 2N

cos 2m(Σ− φ) cos(n∆) = cos 2m(Σ− φ+ Z · π/2) cos(n∆)

such that the corresponding modulation affects collinear and parallel arrangements equally. Hence
P (4)
r,φ is invariant under discrete shifts

φ→ φ+ Z · π/2,

which explains the 4-fold or cloverleaf structure. In contrast, for m ∈ 2N+1 collinear and parallel
arrangements are modulated in opposite ways since

cos 2m(Σ− φ) cos(n∆) = − cos 2m(Σ− φ+ Z · π/2) cos(n∆).

Correspondingly, P (2)
r,φ lacks π/2 symmetry but is symmetric under

φ→ φ+ Z · π

with explains its basic 2-fold structure.

Quantification

As a simple way to quantify the 2-fold and 4-fold modulation in the tree shrew pair cooccurence
histogram we consider the approximation

Pr,φ(Σ|∆) ≈ 1
π

+ c11(r) cos(Σ− φ) cos ∆ + c20(r) cos(2Σ− 2φ)

and compute the coefficients c11(r) and c02(r), which are depicted in Fig. 5.12(h, i). On a scale
of Λint both components exhibit oscillations in r which are progressively damped towards larger
separations. The collinear suppression peaks at approximately -6% for r ≈ 0.7Λ for the cloverleaf
and at approximately -8% for r ≈ 0.3Λ for the collinear part. Both modulations thus are of
negative type. The 95% confidence interval (shown in green) is calculated from 105 bootstrap
ensembles. The statistical significance of these oscillations is assessed by comparison with the shift
randomized ensemble, as described above (shown in blue). Dotted lines indicate the interval where
oscillations are considered to be significantly different from zero. Furthermore, the course of c02(r)
closely follows the oscillation of C(4)

2 (r), the cloverleaf component of the correlation function C2(r).

113



5 The Taming of the Shrew

Shift-Twist Randomization

The 2-fold modulation in the pair occurrence histograms is remarkable for several reasons.
First, it reveals the non-Gaussian aspect of the map statistics. Therefore, in order to arrive at a
comprehensive description of the map statistics higher order correlations of z(x) cannot be ignored.

Suppose we could remove all nontrivial higher order correlations in the tree shrew dataset, while
keeping the second order statistics unchanged: How would the pair occurrence histograms look
like? Following the argument above any 2-fold modulation should then have disappeared since
the new map ensemble would have Gaussian statistics. Can we confirm this? A simple method
to randomize the tree shrew dataset in that particular way is given next:

1. For each preprocessed polar map zj(x) we compute the Fourier transform aj(k).
2. For each pair of antiparallel modes (aj(k), aj(−k)) the complex amplitudes are multiplied

by a random complex phase,

aj(k) → aj(k)eiφ(k)

aj(−k) → aj(−k)e−iφ(k).

This randomizes the amplitudes but leaves P1,j(k) = |aj(k)|2 and P2,j(k) = aj(k)aj(−k)
invariant.

3. The randomized map is then obtained by the inverse Fourier transform aj(k)→ zj(x).
The pair occurrence statistics for such a shift-twist randomized ensemble is shown in Fig. 5.13. It
reveals a clear 4-fold modulation but no indication of a 2-fold modulation. This is confirmed by
computing the components c1,1(r) and c2,0(r). Whereas c2,0(r) appears unaltered, c1,0(r) is not
significantly different from zero (dotted lines refer to the significant region of the original tree
shrew dataset).
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Figure 5.13: Shift-twist randomization extinguishes the collinear modulation of the orientation cooccur-
rence histogram but leaves the four-fold components of C2 and P2 largely unaffected. All panels depict
results from shift-twist randomized data, conventions as in Fig. 5.12.
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6 Learning Contour Correlations
Si non e vero, e ben trovato.

(Italian Saying)

6.1 Overview

This chapter answers the main questions revealed by comparing the theoretical predictions of
Chapters 3 and 4 and the empirical observations of Chapter 5. In Chapters 3 and 4 we studied
the consequences of shift-twist symmetry on the orientation map layout when shift symmetry is
broken. It turned out that shift symmetry breaking occurs in one of two possible ways, depending
on the sign of q and �, which are introduced as phenomenological parameters and yet remain
unspecified at that stage of analysis. In Chapter 5 we have shown that the signatures of shift-twist
symmetry in the tree shrew dataset are consistent with a negative sign of q which suggests
� < 0. In addition, the cooccurrence statistics of preferred orientations was found to exhibit a
2-fold component that cannot be reproduced in a Gaussian map ensemble and is also absent
from the ground states of the abstract model studied in Chapter 4. Finally, the overall degree
of shift-symmetry breaking was found to be low, although dynamical models (Chapter 4) are
predicted to be highly sensitive to relatively weak symmetry breaking terms. Why is the strength
of shift symmetry breaking so low? What is the origin of the two-fold component? Why is shift
symmetry breaking of negative type?
To answer these questions we here examine a model in which pattern formation in the visual
cortex is driven by the statistics of natural scene stimuli. We study map formation within
the framework of the elastic network model [17, 19], a simple model for the activity dependent
development of orientation preference. In its original form the elastic net describes how a sequence
of afferent activity patterns elicited by a sequence of randomly oriented, isolated point stimuli
leads to the formation of visuotopic and orientation preference maps via a competitive Hebbian
learning rule. We propose a generalization of the elastic net for a much broader class of stimuli,
e.g. spatially extended contours. This allows to examine how the higher order statistics of
visual scenes affects map formation. In natural images pairs of edges exhibit a strong tendency
to occur in collinear arrangements [52]. To model this we define a simple stimulus ensemble
which consists of pairs of oriented edges and exhibits a variable degree of collinearity κ. The
dynamics of the order parameter field z(x), averaged over this stimulus ensemble, yields an
effective dynamics of the form of Eq.(2.4), which still depends on the stimulus statistics, although
implicitly through the correlation functions of the stimulus ensemble. A linear stability analysis
reveals the characteristic time and length scales of the emerging pattern and, moreover, yields an
analytic expression for �. It turns out that the sign of � depends on the statistics of the stimulus
ensemble. In particular, we find that in a collinear world � < 0. We check this prediction by
numerical integration of the model dynamics for appropriately chosen parameter sets. Signatures
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6 Learning Contour Correlations

of shift-twist symmetry are found in the correlation functions and the pair occurrence histogram.
Intriguingly we also observe a 2-fold non-Gaussian contribution like in the tree shrew dataset.
We conclude that the shift symmetry breaking of the type and strength observed in tree shrew
orientation maps can be induced and explained by the fact that shift symmetry is broken in the
statistics of natural images.

6.2 The Elastic Net

The elastic net [17, 19] models how sequences of afferent activity patterns representing visual
stimuli lead to the formation of visuotopic and orientation preference maps via a competitive
Hebbian learning rule. A stimulus S is described by two parameters: r ∈ R2, its position in
visuotopic coordinates and s = |s|e2iθ, the orientation θ and orientation selectivity |s|, to which it
drives the activated neurons. The pattern of orientation preferences is represented by a complex
field z(x) : R2 → C. An additional field R(x) : R2 → R2 describes the receptive field center
positions of the neurons at cortical location x ∈ R2. The elicited cortical activity E(x|S; z,R)
depends on the state of the fields and of the actual stimulus. The fields are updated according to
following modification rule [34]

δz(x) = � [ (s− z(x))E(x|S; z,R) + η∆z(x) ]
δR(x) = � [ (r−R(x))E(x|S; z,R) + η∆R(x) ] (6.1)

where the learning rate � > 0 determines the size of a single update and η > 0 controls the
strength of the lateral coupling mediated by the Laplace operator, which drives neighbouring
neurons to develop similar feature selectivities. The modification by a single stimulus S = (r, s)
is proportional to the cortical activation

E(x|S; z,R) = e−(|r−R(x)|2+|s−z(x)|2)/2σ2

�
d2x� e−(|r−R(x�)|2−|s−z(x�)|2)/2σ2

which is normalized �
d2x E(x|S; z,R) = 1

This normalization induces competition (also called “soft competition” [19]) between remote
cortical sites since the total amount of activation distributed among the activated sites is kept
fixed. According to that rule neurons are activated when the distance between their selectivities
and the stimulus is smaller than σ. Therefore, σ can be interpreted as the size of the receptive
field. On the other hand σ controls the size of the coactivated domains and thus the scale of
the emerging pattern. Averaged over a statistically stationary sequence of random stimuli, the
dynamics of Eq.(6.1) can be written [34]

∂tz(x) = �(s− z(x))E(x|S; z,R) + η∆z(x)�S
∂tR(x) = �(r−R(x))E(x|S; z,R) + η∆R(x)�S (6.2)

where the average is taken with respect to a stimulus ensemble S. For simplicity it is assumed
that stimulus positions r are homogeneously distributed over the visual field and that s ∈ C
occurs at random locations on a circle |s| = s0 such that each stimulus orientation has the same
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probability [17]. In the following analysis we also consider more general distributions p(s) = p(|s|).
Once the stimulus ensemble is fixed the dynamics (6.2) only depends on the two parameters σ
and η.

The homogeneous state z0(x) = 0, R0(x) = x is a stationary state of the dynamics (6.2). A
linear stability analysis reveals whether small fluctuations around this state are damped or,
in contrary, are amplified and eventually lead to the formation of orientation columns. The
linearized dynamics of z(x) in the vicinity of the homogeneous state is given by

∂tz(x) =
�
�|s|2�
2σ2 − 1

�

z(x)− �|s|
2�

8πσ4

�
d2y e−|x−y|2/4σ2

z(y) + η∆z(x) (6.3)

It uncouples from the dynamics of the visuotopic map R(x) and depends on the stimulus variance
�|s|2� =

�
d2s |s|2p(|s|) [13]. Furthermore, it is equivariant under rotations and phase shifts of

z(x). The Fourier modes a(k) = 1
2π
�
d2x z(x)e−ikx evolve according to

∂ta(k) = λ(k) a(k) (6.4)

where
λ(k) =

�

−1 + �|s|
2�

2σ2 (1− e−σ2k2)
�

− η k2 (6.5)

denotes the growth rate of modes with |k| = k. For the following we assume �|s|2� = 2, which can
always be achieved by a proper rescaling of the cortical space. Then λ(k) has a single maximum
at

k∗ = 1
σ

�
− ln η (6.6)

provided that η ≤ 1, cf. Fig.6.1(a). This mode will grow if

0 < λ(k∗) = −1 + 1/σ2(1− η) + η/σ2 ln η

which is fulfilled for σ < σ∗ with
σ∗ =

�
1− η + η ln η (6.7)

The typical wavelength Λ of the emerging pattern expected at the bifurcation onset is given by

Λ = 2π/k∗ = 2πσ/
�
− ln η

and scales linearly with σ.

In conclusion, the linear stability analysis of the elastic net reveals that a stream of random
oriented point stimuli is sufficient to induce a finite wavelength instability of the unselective state
z(x) = 0 in the parameter regime η < 1 and σ < σ∗(η), cf. Fig. 6.1(b).

6.3 Generalization of the Elastic Net

The approach of Durbin and Mitchison, due to its simplicity and intuitive appeal, has become
very popular as a framework for modelling the development and interaction of cortical maps in
the visual cortex [16, 74, 75].
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Figure 6.1: a) The homogeneous solution z = 0 is linearly stable when fluctuations at all spatial
frequencies k are damped. This is the case when the growth rate λ(k) < 0 (light gray, σ = 1.1σ∗). At the
point σ = σ∗ (gray line) the system becomes marginally unstable against fluctuations with k = kcrit, the
critical wavenumber, (gray dot) where λ(kcrit) = 0. For σ < σ∗ a band of spatial frequencies grouped
around the critical wavenumber starts to grow (black line, σ = .9σ∗). For all cases η = 1/4. b) The
critical size of the coactivated domain σ∗ depends on the lateral coupling strength η (black line). Inside
the region σ < σ∗(η) a pattern develops, outside of this region only the homogeneous state is stable (as
illustrated by the insets).

However, one might wonder whether the stimulus ensemble used in those studies - sequences of
isolated, oriented point stimuli, one stimulus at each time step - is not an oversimplified picture
of the visual input to cortical neurons since it ignores the fact (discussed in the next section) that
oriented edges in natural images often are part of a common contour and thus do not occur in
isolation. Certainly the symmetry of Eq.(6.3) under orientation shifts is questionable in principle
and the most obvious factor that will break this symmetry is the occurrence of oriented contours
in typical visual scenes.

Here we generalize the elastic net in a way which allows to use contours, as extracted from a
set of natural images, to train the network. Depending on the spatial resolution applied for the
analysis of a visual scene, oriented entities appear to be primarily 1-dimensional, e.g. lines and
curves, but also 2-dimensional, e.g. oriented textures, or 0-dimensional, e.g. isolated oriented
points. We propose to describe such a scene by a complex contour field

S(r) =
N0�

j=1
χ(0)
j

(r) s(0)
j

(r) +
N1�

k=1
χ(1)
k

(r) s(1)
k

(r) +
N2�

l=1
χ(2)
l

(r) s(2)
l

(r)

where χ(0)(r) denotes a point density, χ(1)(r) a line density and χ(2)(r) is a regular 2-d density.
The indices j, k and l count the individual 0-, 1- and 2-dimensional objects in the scene. The
fields s(r) denote the orientation preference to which cortical neurons are driven by this part of
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the stimulus. For example, a collection of N oriented point stimuli can be described by

S(0)(r) =
N�

j=1
δ(r− rj) e2iθj

where rj denotes the location and θj the orientation of the j-th edge. For a curve C : [t0, t1]→ R2

we would have a contribution

S(1)(r) =




t1�

t0

dt �C�(t)� δ (r− C(t))


 e2iθ(r)

where θ(r) corresponds to the angle formed by the tangent vector of the curve at r ∈ C. Finally,
for oriented textures defined over a domain T ⊂ R2

S(2)(r) = χ(r)s(r)

where χ(r) is given by the characteristic function of the texture,

χ(r) =
�

1 r ∈ T
0 elsewhere

and s(r) is a function s :T ⊂ R2→ C.

We generalize the dynamics as follows

∂tz(x) =
��
d2r (S(r)− z(x)) E(x, r)

�

S(r)∈S
− η∆z(x)

∂tR(r) =
��
d2r (rχ(r)−R(r)) E(x, r)

�

S(r)∈S
− η∆R(x) (6.8)

with

E(x, r) = e−(|R(r)−x|2+|s(r)−z(x)|2)/2σ2

�
d2r�χ(r�)

�
d2x� e−(|R(r�)−x�|2−|s(r�)−z(x�)|2)/2σ2 .

The dynamics (6.8) is a gradient descent and has the Lyapunov functional

F = −2σ2�ln
�
d2r�χ(r�)

�
d2x�e−(|R(r�)−x�|2+|s(r�)−z(x�)|2)/2σ2�+η

�
d2x�
�
|∇z(x�)|2 + |∇R(x�)|2

�
.
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6.4 The Statistics of Natural Images

measure of the statistics of pairs of segments by calculating the
correlation (weighting the cooccurrences of segments by their
energy).

C!"x, "y, !, "#

#
1
N !

n # 1

N " " En!x, y, !#En!x $ "x, y $ "y, "#dxdy,

where N is the total number of images and the integral is over
each of the images of the ensemble. We were interested in
measuring long-range correlations so we studied values of "x,
"y $ {%256, 256}. The correlation matrix has dimensions
512 & 512 & 16 & 16 and each point results from averaging
4,000 integrals over a 1,536 & 1,024 domain. To simplify the
computations, for the general case, we decided to store at each
pixel, for every image, the maximum energy value E(!max) and
its corresponding orientation !max. An energy threshold ET
was arbitrarily set to match the visual perception of edges in

a few images. Pixels in an image were considered ‘‘oriented’’
if E(!max) % ET, and ‘‘nonoriented’’ otherwise. This unique
threshold value was applied to all images in the ensemble.
Thus, for each image, we extracted a binary field En

bin(x, y) $
{0, 1} and an orientation field Angn(x, y) $ {1, . . . , 16}. From
this binary field we can construct a histogram of cooccur-
rences: how many times an element at position (x, y) was
considered oriented with orientation ! and at position (x ' "x,
y ' "y) a segment was considered oriented with orientation ".
Thus, formally, the histogram is obtained as C, taking as the
Energy function En(x, y, !) $ 1 if ! $ Angn(x, y) and En

bin(x, y) $
1; En(x, y) $ 0 in any other case. The computation is reduced
to counting the cooccurrences in the histogram H("x, "y, !, ")
with "x $ {%256, 256}, "y $ {%256, 256}, !, " $ (0, &#16,
2&#16, . . . , &). From the histogram we obtained a measure of
statistical dependence. Although choosing the threshold fol-
lowed computational reasons, cortical neurons perform a
thresholding operation and, thus, the measure of linear cor-
relation (weighting cooccurrences by their energy) is not
necessarily a more accurate measure of statistical dependence.
The histogram was used for all of the data shown in Figs. 2
A–C, 3, 4, and 5. For Fig. 2D, for the particular case of collinear
interactions, we computed the full linear cross-correlation.
This computation is considerably easier because it is done for
fixed values of orientation and direction in space. The two

Fig. 1. An example of the filtering process we applied to an image. (a)
The original image. (b) The image after processing with local-oriented
filters (66). The maximal orientation was calculated at each point. The
image was converted to binary by considering char ‘‘oriented’’ only the
pixels that, after being filtered at their maximal orientation, exceeded a
given threshold. In the figure, the maximal orientation is shown by using
a color code.

Fig. 2. Scaling behaviors for different geometrical configurations. (A) The
number of cooccurrences between two segments in the relative positions
within the line that the orientation of the first segment spans is shown for
different orientations of the second segment. This measure was averaged
over all possible orientations of the first segment. The collinear configu-
ration is the most typical case and displays a scale invariant behavior as
indicated by the linear relationship in the log–log plot. (B) The strength of
the correlation and the degree to which it can be approximated to a power
law are more pronounced for the particular case in which the reference line
segment is vertical. (C) The same measure when the two segments are at a
line 90° apart from the orientation of the first segment. In all three cases,
black corresponds to iso-orientation, red to 22.5° with respect to the first
segment, green to 45°, blue to 67.5°, and yellow to 90°. (D) Full crosscor-
relation as a function of distance for Laplacian filtering (red circles),
oriented filters in the collinear vertical direction (black circles), and for both
cases after shuffling the images. The Laplacian filtered image is decorre-
lated, as can be seen from the fact that it shows the same structure as its
shuffled version (cyan circles). Collinear configuration shows long-range
correlations, which follow a power law of exponent 0.6 (blue line, y $ x%0.6)
and are not present when the image is shuffled (green circles).
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measures shown (Laplacian correlation and collinear correla-
tion) were obtained according to the formulas:

C!r" ! !
x,y

!
#x2 " #y2 ! r2

ELap!x, y"ELap!x " #x, y " #y"

# "!
x,y

ELap!x, y"#2

,

for Laplacian filtering, and

C!r" ! !
x,y

E!x, y, 0"E!x " r, y, 0" # "!
x,y

E!x, y, 0"#2

,

for collinear oriented filtering.
A quantitative signature of scale invariance is given by a

function of the form C $ r%a (power law) where C is the
correlation, r the distance, and a constant. If the scale is changed
r3 $r $ r& the function changes as C(r) $ $%ar%a $ kC(r&) where
k is a constant. A power law is easily identified as a linear plot
in the log–log graph, which is clear from the relation log(C) $
%alog(r).

The axis of maximal correlation (Fig. 5b) was calculated as
follows. For each pair of orientations (%, &), a measure of
cooccurrence was calculated integrating across 16 different lines
of angles of values (0, '$128, 2'$128, . . . , ') over distances of
[%40, 40] of the center of the histogram. Thus, for an angle (
and orientations (%, &) the measure of cooccurrence is:
P%, &(() $ 'i $ %40

40 H(cos(( ) * i, sin(() * i, %, &). We then
calculated the direction of maximal correlation (max(%, &) and
grouped all angles with common relative orientation % % & $ ).
We had 16 different values for each ) and from these 16 different
values we calculated the mean P((, *) $ ( (max(&, & ) *) * &

and the standard error. To calculate the mean energy as a
function of relative orientation (Fig. 3) we integrated the
histogram in spatial coordinates for each pair of orientations in
space, and, as before, the different pairs where grouped accord-
ing to their relative difference in orientation to calculate a mean
value and a standard deviation, E%, & $ +x $ %100

100 +y $ %100
100 H(x, y,

%, &)dxdy and E(%) $ ,E*, * ) %-*. The code was parallelized by

using MPI libraries and run over a small Beowulf cluster of Linux
workstations.

In general, horizontal and vertical directions had better sta-
tistics because there are more horizontal or vertical segments
than oblique in the images; these special orientations are also the
most prone to artifacts from aliasing, staircasing, and the en-
semble choice. Because we are interested in this study in the
correlations as a function of relative distance and orientations,
all of the quantitative measurements were performed by aver-
aging overall orientations. However, the results shown still held
true for each individual orientation.

Results
All 4,000 images used in this study were black and white, 1,536 .
1,024 pixels in size, and 12 bits in depth. We used a set of filters
to obtain a measure of orientation at each pixel of every image
of the database (23). The filters were 7 . 7 pixels in size and thus
provided a local measure of orientation. The output of the filter
was high at pixels where contrast changed abruptly in a particular
direction, typically by the presence of line segments or edges, but
also corners, junctions, or other singularities (Fig. 1). If the
output of the filters were statistically independent, then we
would expect a flat correlation as a function of (#x, #y, %, &). In

Fig. 3. The number of cooccurring pairs of segments as a function of their
relative difference in orientation () $ & % %). These values were obtained after
integrating the histogram of cooccurrences in space for different angular
configurations. Each point in the graph ()) corresponds to the average and the
standard deviation of the 16 different configurations obtained by choosing
one of the 16 possible values for the first orientation (%) and then setting & $
(% ) ))(modulo16).

Fig. 4. Plot of the spatial dependence of the histogram of cooccurring pairs
for different geometrical configurations. (a) The probability of finding a pair
of iso-oriented segments as a function of their relative position; a pair of
segments at relative orientation of 22.5° (b), 45° (c), 67.5° (d), or 90° (e). ( f)
Cocircularity solution for a particular example of two segments. The solutions
to the problem of cocircularity are two orthogonal lines, whose main have
values (& ) %)$2 or (& ) % ) ')$2. For the example given, % (red segment) $
20°, & (blue segment) $ 40°, and the two solutions (green lines) are 30° and
120° (all angles from the vertical axis).
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Figure 6.2: Statistics of natural scenes. (a) Natural scene. (b) contour-filtered scene (colors code
orientation as indicated by the bars below). (c-g) Cooccurrence histograms for orientations shown below
the graphs (left: central orientation θc, right: distal orientation θd ). As suggested by the colorcode high
probabilities are shown in red, low probabilities in blue. The range of values was not provided in absolute
numbers and in fact differs considerably across subplots [76]. (adapted from [52]).

Orientations in natural images are spatially correlated due to the fact that they are often part
of a common contour. In recent years efforts have been made to characterize and to quantify
their statistics [77, 52, 78, 79, 80, 81]. Here we briefly summarize the main result of Sigman
et al. [52] who computed the pair occurrence statistics of oriented edges for a large dataset of
natural images. Each picture (e.g. Fig. 6.2(a)) was first processed with a set of spatially localized
oriented filters in order to determine the local orientation and orientation energy (defined as the
maximum overlap of the local image patch with filters of any orientation) at each pixel r. In
our notation these quantities would correspond to θ(r) and |s(r)|, respectively. Depending on
their orientation energy and on an appropriately chosen threshold, sth ∈ R, pixels were then
divided into two groups, ’oriented pixels’ (|s(r)| ≥ sth) and ’non-oriented pixels’ (|s(r)| < sth).
In our notation this binary classification would correspond to the characteristic function χ(r)
of that particular image. The set of ’oriented pixels’ obtained by this procedure is displayed
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6.4 The Statistics of Natural Images

in Fig. 6.2(b), a colorcode is used to depict the orientations θ(x). The space dependence of
the probability of finding pairs of line segments with a relative orientation of 0◦, 22.5◦, 45◦,
67.5◦ and 90◦ is shown in Fig. 6.2(c-g). It is not uniform and exhibits a strong bias for collinear
arrangements (Fig. 6.2(c)). As the relative difference in orientation between the two segments
increases, two effects were observed: the main lobe of the histogram (which in the iso-oriented
case extends in the collinear direction) rotates and shortens, and a second lobe appears at 90◦
from the first (Fig.6.2(c-g)). This effect progressed smoothly until the relative orientation of the
two segments was 90◦, where the two lobes were arranged in a symmetrical configuration.

It is interesting to compare these findings with the cooccurence histograms for orientation maps
(cf. Chapters 3 and 5). The two principal axes discussed there exactly match the symmetry
axes of the lobes in [52], with respect to their locations and also to the way they rotate when
∆ = θd − θc increases. This should not come as a surprise: Although the overall shapes of the
joint probability densities have little in common, e.g. oscillatory behaviour in r (the relative
separation of the two locations) and cloverleaf modulations for OPMs vs. algebraic decay and
strong collinear component for natural images [52], their symmetry properties have to be the
same. This is a consequence of the general form of the pair occurrence histogram P(r,φ)(θc, θd),
Eq.(3.40), which also applies to the distribution of edges in natural images when the basic
symmetry assumptions of Section 3.14 are fulfilled.

Accordingly, we expect that a decomposition of the pair occurrence histogram P(r,φ)(θc, θd) of
natural images into its direct summands

P(r,φ) = 1
π
⊕ P (2)

(r,φ) ⊕ P
(4)
(r,φ)

(cf. Eq.(3.41)) exhibits a strong 2-fold contribution, due to the predominant collinear bias, and a
4-fold component, which Sigman et al. attributed to shapes with closed contours, e.g. circles or
ellipses. Indeed, the authors of [52] observe that the contribution from cocircular segments of
a given ∆ (i.e. edges lying on a common circular contour) to the histogram will have a 4-fold
symmetry and rotate with ∆/2. However, our analysis in Chapter 3 showed that this property is
a general consequence of Euclidean symmetry and will occur whether contour ensembles contain
circular closed shapes or not. An example for such an ensemble without closed contours is shown
in Fig. 6.3(c).
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6 Learning Contour Correlations

a

b

c

β

β

Figure 6.3: Curves with (a) curvilinear and also (c) cocircular contributions. (b) represents a limiting
case. It suffices to investigate the intersection angles β of the normals at neighbouring turning points.
If 0 ≤ β ≤ π/2 then subsequent pairs of edges on the curve do not contribute to cocircular statistics,
whereas for π/2 < β ≤ π they do.

6.5 Driving Hebbian Learning with Pairs of Contour Elements

Could the statistics of natural images, in particular its predominant feature, collinearity of line
segments, possibly have an effect on the orientation map layout? Since is not possible to address
this question using the elastic net in its original formulation by Durbin and Mitchison we will
use the generalized model, Eq.(6.8), in combination with an adequate stimulus ensemble, as our
starting point. As a simple stimulus ensemble one could for example consider random curves,
or a discretized version of such, consisting of N ≥ 2 oriented line segments. It is already very
interesting to study the simplest case, N = 2, as shown in the following.
We consider an ensemble of pair stimuli, consisting of two line segments of orientation s1 and s2
at variable locations r1 and r2. A single realization thus can be written as

S(r) = s1δ(r− r1) + s2δ(r− r2).
Assuming that stimuli occurring at different times are statistically independent, the sequence of
stimuli can be modeled by a stationary spatiotemporal point process, defined by a stimulus rate
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6.5 Driving Hebbian Learning with Pairs of Contour Elements

p(r1, r2, s1, s2) which, due to translation invariance and spatial homogeneity, can be written as a
product

p(r1, r2, s1, s2) = pd(r2 − r1) ps(s1, s2|r2 − r1)

with the normalizations �
d2r pd(r) = 1

and �
d2s1

�
d2s2 ps(s1, s2|r) = 1.

Now that we have defined the ensemble for a general stimulus rate we can perform ensemble
averages and calculate some of its basic statistics.
For the average stimulus density (in a unit time interval) we obtain

ρ(x) = �
2�

j=1
δ(x− rj)� =

�
d2r1

�
d2r2 pd(r2 − r1)

2�

j=1
δ(x− rj) = 2,

i.e. per unit of time and unit of square length we will expect, on average, two line segments (that
is, one stimulus pair).
For the correlation functions we obtain

C1(y− x) = 1
2�S(x)S̄(y)� = 1

2�
�

j,k

sj s̄kδ(x− rj)δ(y− rk)�

= 1
2�
�

j

sj s̄jδ(x− rj)δ(y− x)�+ 1
2�
�

j,k �=j
sj s̄kδ(x− rj)δ(y− rk)�

= �|s|2�δ(y− x) + c1(y− x) (6.9)

and

C2(y− x) = 1
2�S(x)S(y)� = 1

2�
�

j,k

sjskδ(x− rj)δ(y− rk)�

= 1
2�
�

j

sjsjδ(x− rj)δ(y− rj)�+
1
2�
�

j,k �=j
sjskδ(x− rj)δ(y− rk)�

= �s2�δ(y− x) + c2(y− x) (6.10)

where we split off the singular part and denote the regular part by

c1(r) = �s1s̄2δ(x− rj)δ(x + r− rk)�

= pd(r)
�
d2s1

�
d2s2 (s1s̄2) ps(s1, s2|r2 − r1 = r)

c2(r) = �s1s2δ(x− rj)δ(x + r− rk)�

= pd(r)
�
d2s1

�
d2s2 (s1s2) ps(s1, s2|r2 − r1 = r)

To start to understand the effects of the visual world’s two point statistics on orientation map
development, studying the case N = 2 is sufficient, since one could, in principle, measure
p(r1, r2, s1, s2) for natural images and then use it in our model. Let us now discuss the dynamics.
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6 Learning Contour Correlations

For the stimulus ensemble S defined above the averaged dynamics has the form

∂tz(x) = �(s1 − z(x))E1(x) + (s2 − z(x))E2(x)�S + η∆z(x)
∂tR(x) = �(r1 −R(x))E1(x) + (r2 −R(x))E2(x)�S + η∆R(x) (6.11)

where we define

Ej(x) = e−(|rj−R(x)|2+|s(rj)−z(x)|2)/2σ2

�2
k=1
�
d2x� e−(|rk−R(x�)|2−|s(rk)−z(x�)|2)/2σ2 .

Again, the homogeneous unselective pattern z0(x) = 0, R0(x) = x is a stationary state. The
linearized dynamics of z decouples from the dynamics of R in the vicinity of the homogeneous
state and has the form

∂tz(x) =
�
d2y
��
δF [z(x)]
δz(y)

�

(z0,R0)
z(y) +

�
δF [z(x)]
δz̄(y)

�

(z0,R0)
z̄(y)
�

(6.12)

where

F [z] = �(s(r1)− z(x))E1(x)�+ �(s(r2)− z(x))E2(x)�+ η∆z(x).

First, we calculate the first part
�
δF [z(x)]
δz(y)

�

(z0,R0)
= −δ(x− y)

� 2�

j=1
Ej(x)

�

(z0,R0)

+
� 2�

j=1
sj
δEj(x)
δz(y)

�

(z0,R0)

+ η∆δ(x− y)

and then the second part
�
δF [z(x)]
δz̄(y)

�

(z0,R0)
=
� 2�

j=1
sj
δEj(x)
δz̄(y)

�

(z0,R0)

.

The terms appearing in the first expression are

� 2�

j=1
Ej(x)

�

(z0,R0)

=
��2

j=1 e
−(|x−rj |2+|sj |2)/2σ2

2πσ2�2
k=1 e

−|sk|2/2σ2

�

= 1

and

� 2�

j=1
sj
δEj(x)
δz(y)

�

(z0,R0)

=
��2

j=1 |sj |2e−|x−rj |2/2σ2
e−|sj |

2/2σ2

4πσ4�2
k=1 e

−|sk|2/2σ2

�

δ(x− y)

−
��2

j,k=1 sj s̄k e
−(|x−rj |2+|y−rk|2)/2σ2

e−(|sj |2+|sk|2)/2σ2

8π2σ6(�2
k=1 e

−|sk|2/2σ2)2

�

(6.13)
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6.5 Driving Hebbian Learning with Pairs of Contour Elements

In order to keep the calculation clear we make the simplifying assumption that stimuli sk all
have the same absolute value (“orientation energy”), |sk| = |s|, and just differ in their phases.
Since we assume that there is no bias for any orientation (which is a consequence of the
shift-twist symmetry of the stimulus ensemble) the marginal distribution reads

ps(sk) =
�
d2sj p(sk, sj) = 1

2πsδ(|sk|− |s|).

Furthermore,
�|sk|2� = |s|2.

The expression then simplifies to
� 2�

j=1
sj
δEj(x)
δz(y)

�

(z0,R0)

= �|s|
2�

2σ2 δ(x− y)− �|s|
2�

16πσ4 e
−|x−y|2/4σ2 − �s1s̄2 e

−(|x−r1|2+|y−r2|2)/2σ2�
16π2σ6

and we finally obtain
�
δF [z(x)]
δz(y)

�

(z0,R0)
= δ(x− y)

�
�|s|2�
2σ2 − 1

�

− �|s|
2�

16πσ4 e
−|x−y|2/4σ2 (6.14)

− 1
16π2σ6

�
d2r1d

2r2 c1(r2 − r1) e−(|x−r1|2+|y−r2|2)/2σ2 + η∆δ(x− y)

or, expressed in terms of C1 (cf. Eq.(6.9)),
�
δF [z(x)]
δz(y)

�

(z0,R0)
= δ(x− y)

�
�|s|2�
2σ2 − 1

�

− 1
16π2σ6

�
d2r1d

2r2C1(r2 − r1) e−(|x−r1|2+|y−r2|2)/2σ2 + η∆δ(x− y).

A comparison with Eq.(6.3) shows that the linearized dynamics for N = 2, Eq.(6.12), reduces to
the case N = 1 in the limit c1(r2 − r1)→ �|s|2�δ(r2 − r1), when Pd(r)→ δ(r). If C1(r) is
rotation invariant, which we assume here, then the first part of the linearization is equivariant
under rotations and phase shifts.

Let us now calculate the second term, which is obtained by linearization with respect to z̄:

�
δF [z(x)]
δz̄(y)

�

(z0,R0)
=
� 2�

j=1
sj
δEj(x)
δz̄(y)

�

(z0,R0)

.

Going through the same steps as before, most of the terms vanish due to �s2� = 0 and we are left
with a single remaining term

�
δF [z(x)]
δz̄(y)

�

(z0,R0)
= −

��2
j,k sjsk e

−(|y−rk|2+|x−rj |2)/2σ2
e−|s|

2/σ2

32π2σ6e−|s|2/σ2

�

(6.15)

= − 1
16π2σ6

�
d2r1d

2r2c2(r2 − r1) e−(|y−r2|2+|x−r1|2)/2σ2
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6 Learning Contour Correlations

All together, up to linear order we find

∂tz(x) =
�
�|s|2�
2σ2 − 1

�

z(x)− �|s|
2�

16πσ4

�
d2y e−|x−y|2/4σ2

z(y)− η∆z(x)

− 1
16π2σ6

�
d2y
�
d2r1d

2r2 c1(r1 − r2) e−(|x−r1|2+|y−r2|2)/2σ2
z(y)

− 1
16π2σ6

�
d2y
�
d2r1d

2r2 c2(r1 − r2) e−(|x−r1|2+|y−r2|2)/2σ2
z̄(y) (6.16)

or in k-space, after a Fourier transform,

∂ta(k) =
�

−1 + �|s|
2�

2σ2 (1− e
−σ2|k|2

2 )− 2π p1(k)e
−σ2|k|2

4σ2 − η|k|2
�

a(k)

−2π p2(k)e
−σ2|k|2

4σ2 ā(−k), (6.17)

where p1(k) and p2(k) denote the Fourier transforms c1(r) and c2(r). Again, for p1(k) →
�|s|2�/(2π) and p2(k)→ 0 (which corresponds to the limit c1(r)→ �|s|2�δ(r), c2(r)→ �s2�δ(r) = 0
discussed above) we obtain the same result for λ(k) as in the case N = 1, Eq.(6.5). Note that
the terms in Eqns.(6.16) and (6.17) which occur with a negative sign originate from taking the
derivative of the normalization term in the denominator of the activities Ej (cf. Eqns.(6.13) and
(6.15)) as required by the chain rule, except of the term involving the Laplacian. We will come
back to this point later.

6.6 A Collinear Stimulus Ensemble

As a specific example we propose a simple stimulus ensemble consisting of random pairs of
oriented stimuli with an adjustable degree of collinearity κ, 0 ≤ κ ≤ 1. For simplicity the
spatial distance between both stimuli is drawn from a Gaussian distribution with zero mean and
standard deviation d ≥ 0. The stimulus distribution states

p(r1, r2, s1, s2) = 1
2πd2 e

−|r1−r2|/2d2
� 1

(2πs)2 (1− κ) δ(|s1|− |s|)δ(|s2|− |s|) +

+ κ δ(s1 − |s| e2i arg(r2−r1))δ(s1 − s2)
�

(6.18)

and is chosen such that for κ = 0 the orientations of both stimuli in the pair are uncorrelated,
whereas for κ = 1 they are strictly collinear.
For the spatial density of stimuli we obtain

ρ(x) = �
2�

j=1
δ(x− rj)�

=
�
d2r1d

2r2d
2s1d

2s2 p(r1, r2, s1, s2)
2�

j=1
δ(x− rj)

= 2 · ((1− κ) + κ)
= 2
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6.6 A Collinear Stimulus Ensemble

For the nonsingular part of the correlation functions we find

c1(r) = �s1s̄2 δ(x− r1)δ(x + r− r2)� (6.19)

=
�
d2s1d

2s2 p(x,x + r, s1, s2) s1s̄2

= κ �|s|2�
2πd2 e

−|r|2/2d2

which is rotation symmetric and

c2(r) = �s1s2 δ(x− r1)δ(x + r− r2)� (6.20)

=
�
d2s1d

2s2 p(x,x + r, s1, s2) s1s2

= κ �|s|2�
2πd2 e

−|r|2/2d2
e4i arg r

such that
c2(r) = e4i arg rc1(r). (6.21)

Their Fourier transforms are given by

p1(k) = 1
2π

�
d2rκ�|s|

2�
2πd2 e

−|r|2/2d2
eikr (6.22)

= κ �|s|2�
2π e−

1
2 |k|2d2

and

p2(k) = 1
2π

�
d2rκ�|s|

2�
2πd2 e

−r2/2d2
e4i arg reikr (6.23)

=
κ �|s|2�

�
4|k|2d2 − 24 + e− 1

2 |k|2d2(24 + 8|k|2d2 + |k|4d4)
�

2π|k|4d4 e4i arg k
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Figure 6.5: Monopole and quadrupole (’cloverleaf’) parts of the correlation functions. (a): Radial
projection of the correlation function c1(r), which is identical to the projection of cloverleaf part of c2(r)
due to Eq.(6.21). (b): Radial projection of p1(k) (full line) and cloverleaf part of p2(k) (dotted line).
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Figure 6.4: Regular part of the 2D-correlation functions c1(r) and c2(r) and their Fourier transforms
p1(k) and p2(k) for the example stimulus ensemble defined in Eq.(6.18) for the parameter set (d = 1,
κ = 1).
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6.6 A Collinear Stimulus Ensemble

An example of the regular correlation functions c1(r), c2(r) and their Fourier transforms p1(k),
p2(k) is depicted in Fig. 6.4 for the parameter set d = 1,κ = 1. The real and complex parts of c2
and p2 reveal a cloverleaf modulation which only vanishes when the degree of collinearity κ = 0.
Their 0-th and 4-th angular Fourier components, c(0)

1 (r), c(4)
2 (r) and p(0)

1 (k), p(4)
2 (k) (see Chapter

3 for their definition) are shown in Fig. 6.5. Note that the apparent fact that |p(4)
2 (k)| ≤ p(0)

1 (k) is
not fulfilled is not a contradiction to our previous statement, |P2(k)| ≤ |P1(k)| (cf. Eq. (3.14)),
since P1(k) = p1(k) + �|s|2�/(2π) and hence is shifted by a positive constant. The collinear
stimulus ensemble thus exhibits a clear signature of shift-twist symmetry, quantified by the order
parameter

q(|k|) = P2(k) e−4i arg k/P1(|k|)

κ

1 + κ

�
4|k|2d2 − 24 + e− 1

2 |k|2d2(24 + 8|k|2d2 + |k|4d4)
�

|k|4d4 e− 1
2 |k|2d2

which scales as κ/(1 +κ) with the degree of collinearity κ. Note that q(k) assumes positive values
for all wave numbers k in the possible range of values 0 ≤ κ ≤ 1, d ≥ 0. We expect this also to
be the case for natural images. However, shift symmetry breaking as we observed it in the tree
shrew dataset occurs with a negative q. Can we understand this sign flip in the statistics within
our simple model?

Using Eqns.(6.22) and (6.23) in Eq.(6.17) one obtains for the linearized dynamics

∂ta(k) =
�

−1 + �|s|
2�

2σ2

�

1− e
−σ2|k|2(1 + κe− 1

2 |k|2d2)
2

�

− η|k|2
�

a(k) (6.24)

−
κ �|s|2�e−σ2|k|2

�
4|k|2d2 − 24 + e− 1

2 |k|2d2(24 + 8|k|2d2 + |k|4d4)
�

4σ2|k|4d4 e4i arg kā(−k)

As already noted the dynamics of the original elastic net is retrieved in the limit d→ 0, κ = 1
(cf. Eq.(6.5)). We use the normalization �|s|2� = 2. In analogy to Eq.(6.5) we define λd,κ(k) as
the prefactor of a(k),

λd,κ(k) = −1 + 1
σ2 −

e−σ
2k2(1 + κe− 1

2k
2d2)

2σ2 − ηk2 (6.25)

For general (d,κ) the maximum of λd,κ(k) is reached at k = kmax which is defined by the solution
of

− ln 2η = σ2k2 − ln(1 + κ(1 + d
2

2σ2 )e− 1
2k

2d2)

and can be obtained numerically. For fixed σ

λd,κ(k) ≥ λ0,1(k)

where λ0,1(k) equals the linear growth rate of the original elastic net, Eq.(6.5). Also, kmax(d,κ)
quickly approaches the asymptotic value

kmax∞ = 1
σ

�
− ln 2η
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Figure 6.6: (a,b) The critical value σ∗ depends on the parameters of the stimulus ensemble, d and κ.
(c,d) The critical wavelength of the pattern at σ = σ∗ depends on the parameters of the stimulus ensemble,
d and κ. In all plots η = 1/4.
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Figure 6.7: Illustration of the spectrum of the shift symmetric and the shift symmetry breaking linear
terms, λ(k) and µ(k) in Eq.(6.26) and (6.27). Note that µ(k)→ 0 for k → 0 and k →∞.

in the limit d→∞ or κ→ 0. Similarly, the critical value σ∗ (the value of σ at which a pattern
starts to grow) now depends also on d and κ (cf. Fig. 6.6).

Let us consider the question raised above, whether our model is able to explain the sign flip in
the correlation functions. Eq.(6.24) can be rewritten as

∂ta(k) = λ(k)a(k)− e4i arg kµ(k)ā(−k)

with

λ(k) = −1 + �|s|
2�

2σ2

�

1− e
−σ2|k|2(1 + κe− 1

2 |k|2d2)
2

�

− η|k|2 (6.26)

µ(k) =
κ �|s|2�e−σ2|k|2

�
4|k|2d2 − 24 + e− 1

2 |k|2d2(24 + 8|k|2d2 + |k|4d4)
�

4σ2|k|4d4 (6.27)

The linearized dynamics of the fastest growing modes with |k| = kmax(d,κ) then, after a proper
rescaling of the fields, can be written

∂ta(k)||k|=kmax =
�
a(k)− µ(k)

λ(k) e
4i arg kā(−k)

�

k=kmax
(6.28)

After setting
� = µ(kmax)/λ(kmax)

we see that Eq.(6.28) is formally equivalent to the linear part of the amplitude equations for
planforms in presence of shift-twist symmetry, Eq.(4.13), and identical up to the negative sign
before the � term, which originates in the normalization term in the activity rule. We now
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6 Learning Contour Correlations

understand that this minus sign induces a sign flip in the statistics: the analysis of the pattern
selection in Chapter 4 suggests that the emerging orientation maps will form odd solutions, if
the stimulus statistics is even, as is the case of a collinear stimulus ensemble. These results also
indicate which factors can influence the absolute strength of shift-symmetry breaking in the
spatial map structure. As expected, � grows linearly with κ, thus a visual world with stronger
collinearity is in general expected to lead to a higher degree of shift symmetry breaking. However,
it also depends on d, the spatial scaled of contour correlations and on η, the strength of lateral
coupling. As shown in Fig.6.8, � in general decays to zero for d/Λmax � 1 and also in the shift
symmetric limit d → 0. In between it assumes a maximum near d = Λmax/2. This maximal
value (and the size of � for arbitrary d) is strongly dependent on the lateral coupling strength η
and the degree of collinearity κ.
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Figure 6.8: Strength of the shift symmetry breaking linear term in the generalized elastic network model.
(a) � depends on the spatial scale of contour correlations and goes to 0 for large d. (different curves:
η = 1/40, 1/10, 1/4 , fixed κ = 1). (b) The maximum value of � strongly depends on η (κ = 1, fixed ).
In particular, � can be made arbitrarily small, even for maximal collinearity κ = 1, in the limit of weak
lateral coupling η → 0. (c, d) same as (a, b) but for κ = 0.2, 0.5, 1 and fixed η = 1/4.
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There are, thus, several scenarios in which weak degrees of shift symmetry breaking are expected.
Firstly, if the degree of collinearity in visual scenes was relatively low. However even if the degree
of collinearity was high, � can also assume low values, if either lateral coupling strength is low or
the range of contour correlations is large, or if a combination of these conditions applies. The
simulations reported in the following demonstrate that in fact orientation maps with low degree
of shift symmetry breaking can be formed even if κ is relatively large.

6.7 Numerical Simulations

In this section we present a numerical method to integrate the dynamics Eq.(6.11). For the
initial part of the dynamics, t ∼ τ := 1/λ, we expect to see the results that are in line with the
linearized dynamics examined in the previous section. For larger times, t� τ , where the full
nonlinearity has to be taken into account, it will be interesting to compare the patterns with the
planform attractors of the generalized Swift-Hohenberg equation (Chapter 4).
The dynamics Eq.(6.11) has the form

∂tz(x) = N [z(·)] + η∆z(x) (6.29)

and can be split into a nonlinear integral operator N [z(·)] and a linear differential operator
η∆z(x). The latter part of the dynamics therefore consists of the diffusion equation,

∂tz(x) = η∆z(x)

which can be exactly integrated in the Fourier representation,

a(k, t+ δt) = a(k, t)e−η|k|2δt

where δt denotes the size of the time step. Numerically this integration scheme is exact and
stable for arbitrary δt. We can use this fact by splitting the integration of Eq.(6.29) in two steps,
consisting of an explicit integration of the nonlinear part, by the application of an Adams-Bashford
step,

δN(x, t+ δt) = δt2 (3N [z(·, t)−N [z(·, t− δt)])

and a subsequent exact integration of the diffusion part in Fourier representation,

a(k, t+ δt) =
�
δN̂(k, t+ δt) + a(k, t)

�
e−η|k|

2δt

The resulting integration scheme

z(x, t)→ δN(x, t+ δt)→ δN̂(k, t+ δt)→ a(k, t+ δt)→ z(x, t+ δt)

consists of two Fourier transforms, one explicit and one spectral step.
The field z(x) was discretized on a quadratic lattice with 100 × 100 grid points representing
an area of size [0, L] × [0, L]. The integration time step δt was either set to a fraction of the
intrinsic time scale, δti = τ/10, or to a fraction of the characteristic time scale for the decay of
the pattern under the influence of the diffusion term, δtd = 1

20(ηk2
max)−1. If δti > δtd then δtd

was used, otherwise δti.
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η = 1/40, d = 0

d = 1
2 Λmax

η = 1/4, d = 0

d = 1
2 Λmax

t = 2τc t = 10τc t = 1450τc

t = 2τc t = 10τc t = 180τc

Figure 6.9: Simulations of the generalized elastic network model with full shift-symmetry (d = 0) and
with broken shift symmetry d �= 0. Simulations were performed with low (η = 1/40, upper two rows)
and high strength of the lateral coupling (η = 1/4, lower two rows). Times are specified in units of the
intrinsic timescale τc. For all cases the degree of collinearity is set to κ = 1.
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Figure 6.10: Spatial correlation structure of orientation maps (at t = 10τc) for strong lateral coupling
(η = 1/4). (a) d = 0, shift symmetric case. First row: map of preferred orientations (left), difference
maps for horizontal/vertical (middle) and left/right oblique (right) orientations. Second row: 2D-Fourier
transforms P1(k) and P2(k) of correlation functions C1(r) and C2(r) of the pattern. (b), d = 1/2Λmax,
shift symmetry is broken. conventions as in (a).
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Calculation of the nonlinear term

N [z(·)] = �(s1 − z(x))E1(x) + (s2 − z(x))E2(x)�S

requires an average over the stimulus ensemble S with respect to the stimulus density defined in
Eq.(6.18), which was approximated by an average over a large number of random pair stimuli.
The number of stimuli presented in each time step δt was chosen to match the criterion

std(N [z(·)]) ≤ 1
4 lim
t→∞

1
L2

�
d2x |z(x, t)|

in order to control the noise level of the nonlinear term. For the specified system size 4 · 104

samples in each time step turned out to be a sufficiently large number. Periodic boundary
conditions were used in every respect, including the evaluation of the distance |r2 − r1| of two
random stimuli and of the distance |r− x| between the receptive field center x of a cortical unit
and a stimulus at r. Initial conditions were set to be random white noise of a small amplitude,
|z(x, t = 0)|� |z(x, t→∞)|. Different seeds of the random number generator where chosen for
different realizations. The system size L was set to L = 11 · Λ, where Λ = 2π/kmax is the typical
wavelength of the fastest growing mode and σ = 0.9 ·σ∗. The quantities, kmax and σ∗ which both
depend on κ and d, were calculated for each parameter set (d,κ) before the simulation in order
to adjust the values L and σ. Time was measured in units of the intrinsic time scale τ := 1/λd,κ,
which also depends on (d,κ).

6.8 Results

Figure 6.10(b) shows that a cloverleaf signature becomes visible in early patterns (t = 10τc)
obtained from a numerical simulations, shown in Fig.6.9, when the predicted � value assumes
large values, compared to Fig. 6.10(a), where � = 0 since d = 0, which corresponds to the shift-
symmetric case. Interestingly, the signature which results from the collinear stimulus ensemble is
of the negative type. This is also confirmed in the orientation co-occurrence statistics, Fig. 6.11
and Fig. 6.12, which were obtained for to different values of η. For a weak lateral coupling,
η = 1/40, Fig. 6.11(h,i), we observe both, a 4-fold and a 2-fold component very similar to the
ones in the tree shrew dataset, Fig. 5.12(h,i). Both signatures are of the negative type and fairly
weak. For strong coupling, η = 1/4, 6.12(h,i), again, both components are of the negative type.
However, whereas the 2-fold component is comparable in size to the case for weak coupling,
the 4-fold component has become much stronger and dominates the orientation co-occurrence
histogram Fig.6.12(a-f). For longer times of the simulations t � 10τc, Fig. 6.9, we observe
that pinwheels annihilate and patterns develop into stripes (when the stimulus ensemble has
no collinear component and is shift symmetric, d = 0) or into rhombic pinwheel crystals, when
symmetry breaking is expected to be relatively strong, see Fig. 6.9 (bottom row). In any case, for
asymptotically long times we find that patterns become too regular to explain realistic, aperiodic
and pinwheel reach patterns. Presumably this is due to the lack of any type of long range
interactions which are required by the model discussed in Chapter 4. It would be interesting
to examine whether more complex, space filling stimuli could potentially induce such type of
interactions.
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Figure 6.11: Cooccurrence statistics of preferred orientations in the generalized elastic net model for
weak lateral coupling η = 1/40 and ( d = 1/2 Λmax, t = 10τc). All panels as in Fig. 5.12. Note the
quantitative and qualitative similarity with the experimental results.
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Figure 6.12: Cooccurrence statistics of preferred orientations in the generalized elastic net model for
strong lateral coupling η = 1/4 and ( d = 1/2 Λmax, t = 10τc). All panels as in Fig. 5.12. In comparison
to the case shown in Fig. 6.11 the size of the cloverleaf component of the cooccurence histogram (h)
has increased by almost one order of magnitude, whereas the size of the collinear component (i) remains
similar.
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7 Summary and Discussion
Let me end on a more cheerful note.
The miracle of the appropriateness
of the language of mathematics for
the formulation of the laws of
physics is a wonderful gift which we
neither understand nor deserve. We
should be grateful for it and hope
that it will remain valid in future
research and that it will extend, for
better or for worse, to our pleasure,
even though perhaps also to our
bafflement, to wide branches of
learning.

(Eugene Wigner (1960))

In this thesis, we have studied the impact of shift-twist symmetry and shift symmetry breaking
on the dynamics and outcome of pattern formation during visual cortical development. We have
examined theoretically and through the analysis of experimental data obtained from the tree
shrew visual cortex how shift-twist symmetry impacts on the layout of orientation preference
columns, a system of visual processing modules that emerges in the visual cortex at about the
time of eye opening and that is believed to form through dynamical self-organization driven by
neuronal activity and visual experience.
In Chapter 3 we identified the predicted signatures of shift-twist symmetry in statistical ensembles
of orientation preference maps, which are accessible to experimental testing. This analysis revealed
that shift-twist symmetry manifests itself in the appearance of a second nontrivial correlation
function C2 with a four-fold angular symmetry and a characteristic cloverleaf shape. We defined
an order parameter q which quantifies the degree of broken shift symmetry, and can assume
positive and negative values in the range from −1 to 1. We find that shift symmetry breaking
induces a coupling of the orientation map to the visuotopic map. For q > 0 domains in the
orientation map which are selective for cardinal orientations (0◦ and 90◦) tend to organize along
the horizontal and vertical axes of the visuotopic map, whereas oblique domains tend to organize
along the two oblique axes. For q < 0 the opposite is found, i.e. cardinal domains organize
along the two oblique axes, oblique domains along the horizontal and vertical axes. This effect
becomes more pronounced with increasing |q|. We introduced an analytically tractable family of
Gaussian ensembles and showed that their pinwheel densities are insensitive to the degree of
broken shift-symmetry. We conclude that the strict lower bound on the pinwheel density at the
initial stage of map formation, derived by Wolf and Geisel [13] under the assumption of shift
symmetry does not change when the shift symmetry assumption is relaxed. We also examined
the general mathematical structure of orientation cooccurrence histograms and showed that
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they are, in general, predicted to exhibit both a 2-fold and 4-fold angular symmetry, although
Gaussian ensembles cannot express a 2-fold component.

In Chapter 4 we examined the impact of shift-twist symmetry on dynamical models of orientation
map development. To this end we derived the general form of amplitude equations for a cellular
instability with shift-twist symmetric linear part and calculated their stationary solutions and
stability. Shift symmetry breaking was mediated by introducing a novel term, linear in z, weighted
by factor �, that controls the strength of symmetry breaking. We found that such models are
highly sensitive to the presence of terms imposed by shift-twist symmetry. We characterized
the impact of shift symmetry breaking on the different pattern phases and found that it differs
qualitatively for periodic and aperiodic patterns. With increasing shift symmetry breaking,
phases of pinwheel free stripe patterns are gradually replaced by rhombic pinwheel crystals.
Phases of irregular aperiodic, pinwheel rich patterns are basically robust with respect to shift
symmetry breaking. For such patterns shift symmetry breaking above a critical level �∗ leads
to a collapse of the massive multistability of different solutions that is found for low degrees of
symmetry breaking. Up to this critical level, models exhibiting E(2) and E(2)× U(1) symmetry
seem to be topologically conjugate to one another. Statistical measures of shift symmetry
breaking, as those developed in Chapter 3, are predicted to be highly sensitive reporters of the
presence of even weak symmetry breaking terms in this regime. For � �= 0 solution planforms
exhibit shift symmetry breaking, much in the way encountered in the Gaussian ensembles, which
can be quantified by q. For quasiperiodic attractors of dynamical models we find q = �/�∗. The
Swift-Hohenberg model of Euclidean symmetry considered here predicts that aperiodic pinwheel
rich patterns resembling the architecture of the primary visual cortex are only stable when
long-range interactions dominate pattern selection, confirming previous predictions of a model of
higher E(2)× U(1) symmetry [37].

In Chapter 5 we analyzed a large dataset of orientation preference maps from the tree shrew
visual cortex for the predicted signatures of shift-twist symmetry. For all quantitaties estimated
from the experimental data we provide confidence intervals and significance values based on
custom designed nonparametric permutation tests. We found that there are statistically highly
significant signatures of shift-twist symmetry in the layout of the tree shrew maps. We calculated
the correlation function of the map ensemble and extracted the degree of shift symmetry breaking
from the cloverleaf component of C2, which amounts to approximately q ≈ −10 %. Hence shift
symmetry breaking in the tree shrew visual cortex is of negative type and appears to be relatively
weak. Furthermore, we find clear deviations of the map statistics from Gaussianity indicated
by a substantial two-fold component of the orientation cooccurrence histogram, which is always
absent in Gaussian ensembles. This two-fold component which also occurs with a negative sign
indicates that within a radius of one typical wavelength Λ around a given site with a given
orientation preference less cortical area is recruited to detect collinear contour arrangements but
more cortical area is recruited to detect parallel arrangements. This finding stands in apparent
contrast to (1) the statistics of oriented edges in natural scenes, which exhibit a strong bias for
collinear arrangements [52] as well as to (2) the axial specificity of long range connections in the
tree shrew visual cortex, which, over distances typically larger that Λ, are much more likely to
link collinear sites rather than parallel ones [27].

To explain these findings, in Chapter 6, we studied a biologically motivated model in which
pattern formation is driven by pairs of contour stimuli mimicking the statistics of natural scene
stimuli. We study map formation within the framework of the elastic network model [17, 19], a
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simple model for the activity dependent development of orientation preference. In its original
form the elastic net describes how a sequence of afferent activity patterns elicited by a sequence
of randomly oriented, isolated point stimuli leads to the formation of visuotopic and orientation
preference maps via a competitive Hebbian learning rule. We propose a generalization of the
elastic net for a much broader class of stimuli, e.g. spatially extended contours. This allows
to examine how the higher order statistics of visual scenes affect map formation. In natural
images pairs of edges exhibit a strong tendency to occur in collinear arrangements [52]. To model
this we define a simple stimulus ensemble which consists of pairs of oriented edges and exhibits
a variable degree of collinearity κ. The dynamics of the order parameter field z(x), averaged
over this stimulus ensemble, yields an effective dynamics of the form studied in 4, which still
depends on the stimulus statistics, although implicitly through the correlation functions of the
stimulus ensemble. A linear stability analysis reveals the characteristic time and length scales
of the emerging pattern and, moreover, yields an analytic expression for �. It turns out that
the sign of � depends on the statistics of the stimulus ensemble. In particular, we find that in a
collinear world � < 0. We check this prediction by numerical integration of the model dynamics
for appropriately chosen parameter sets. Signatures of shift-twist symmetry are found in the
correlation functions and the pair occurrence histogram. Intriguingly we also observe a 2-fold
non-Gaussian contribution like in the tree shrew dataset.We conclude that the shift symmetry
breaking of the type and strength observed in tree shrew orientation maps can be induced by the
fact that shift symmetry is broken in the statistics of natural images.

Our study is not the first one to point to the fundamental role of Euclidean symmetry in the
architecture of the visual cortex and to question how it might affect the structure of orientation
maps. Several papers have been published on this subject within the last few years, by Bressloff
et al. [23, 82, 47, 83], Thomas and Cowan [59], Lee and Kardar [57] and Mayer et al. [84, 85].
In the following we shortly discuss how these contributions relate to the results of this thesis.

Bressloff et al. of [23] were the ones who introduced the term “shift-twist” symmetry to the
neuroscience community and showed how group theoretical concepts of quite abstract nature
could be applied to explain certain types of visual hallucination patterns experienced when
taking drugs. Guided by the insight that the rules of lateral connectivity in the brain are only
respected when rotations of the orientations map are applied together with rotations of the
visutopy they developed a dynamical model for the neural activity patterns in the visual cortex
by assuming that the orientation map, which defines the arrangement of the neurons, already
exists and has a crystalline order. By a linear stability analysis they predicted and classified
the activity patterns, that would spontaneously form, once the drug amount exceeds a critical
threshold. The class of solutions was restricted to periodic patterns. It turned out that shift-twist
symmetry is necessary in order to explain a certain type of hallucination pattern, which would
otherwise not occur. Whereas in [23] (periodic) orientation maps are a priori assumed, in later
papers Bressloff et al. also consider the development of orientation maps, again in a shift-twist
symmetric framework. However, the type of pattern is again restricted to periodic solutions
(stripes, rhombic pinwheel crystals, hexagons), and the apparent irregularities of realistic patterns
are rather attributed to disorder [47]. At the end of his latest paper [83] Bressloff mentions that
shift twist symmetry predicts a coupling of the orientation map to the visuotopic map, however,
he draws this conclusion within the context of a linear stability analysis, and no attempt is made
to actually calculate or to further specify the attractors with the nonlinearity.

The study of Thomas et al. [59], in a similar spirit as Bressloff’s, aims at developing a theory
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for small systematic variations of the visuotopic map, whose progression on a large scale is
assumed regular and undistorted, and predicts that these variations in the visuotopic map are
related to systematic variations of the orientation preference map. In particular it predicts a
correlation between the gradient of the orientation map and the Jacobian of retinotopic map.
This study is motivated by a report of Das and Gilbert [86] who claim to see such systematic
variations co-occurring in both maps on a length scale of 50µm. Thomas et al. examine the
coupled dynamics of variations z and δR over preexisting maps and determine the modes which
first become unstable. Depending on the parameters the resulting orientation map is predicted
to consist exclusively of even or of odd eigenfunctions. They do, however not consider linear
combination of both. In terms of our results this compares to the regime where symmetry is
maximally broken, either �/�∗ > 1 or �/�∗ < −1, for which we also find that the solution is
described either by a superposition of exclusively even or odd modes. However, the interesting
regime, |�|/�∗ � 1 is not addressed in Thomas et al.’s theory, neither in Bressloff’s. Also, similar
to the work of Bressloff et al. this analysis is restricted to patterns which are regular, having the
periodicity of a rhombic or hexagonal lattice, and thus is unable to address the issue of higher
order planforms, which result in much more realistic patterns, which are irregular and aperiodic.

In their paper from 2003 Lee and Kardar use a model similar to a Swift-Hohenberg equation
(2.10) for modelling orientation map development. A local, stabilizing nonlinearity is assumed.
The authors are aware of the fact that such a local nonlinearity, will eventually result in stripe
patterns without pinwheels as a consequence of pinwheel annihilation. Their intention in this
paper is to demonstrate that shift-twist symmetry contributes a stabilizing factor for pinwheels
and thus explains why pinwheel configurations are stable. Retinotopy is assumed to be fixed, like
in our case and shift symmetry breaking is achieved by introducing a linear convolution term.
However, the way their kernel transforms under spatial rotations, implies a 2-fold symmetry, not
a 4-fold symmetry like in our case, and thus describes the situation of a vector field v which
transforms into −v when rotated by 180◦ and not into itself as the field of orientations z does.
Due to this reason their results differ from ours in many respects. Lee and Kardar attempted to
determine a lower bound on the defect density, but failed to obtain a closed form solution for
general degree of shift symmetry breaking. Nevertheless, they derive expressions for the limiting
cases of zero and maximal degree of shift symmetry breaking, and find that the results differ. In
conclusion, for vector fields the defect density depends on the degree of shift symmetry breaking,
unlike in the case of orientation maps, where we found that the pinwheel density remains the
same. This is not surprising, since for vector fields v(x) the general form of C2(r) = �v(0)v(r)�
reads C2(x, y) = (x + iy)2f(|x2 + y2|). Second order derivatives of C2(r) when evaluated at
r = 0 now generally do not vanish, therefore the covariance matrix in Eq.(3.28) will explicitly
depend on f(0). Lee and Kardar performed numerical simulations of the dynamical equation
(for one single fixed value of shift symmetry breaking, though) to determine the attractor of
the dynamics and found that the shift symmetric dynamics exhibits plane wave solutions (as
expected), whereas shift symmetry breaking typically results in ’pinwheel crystals’. From this
observation they conclude that pinwheels are stabilized by shift-twist symmetry. Apparently
these ’pinwheel crystals’ consist of two pairs of modes whose wavevectors are orthogonal to each
other. As we have shown in Chapter (4) pinwheel crystals are indeed expected to occur in a large
region of parameter space for sufficiently strong symmetry breaking, where they progressively
invade regions where stripes are found. However, our theory predicts that in general they should
form intersection angles of 45◦ (and not 90◦). This apparent discrepancy can be traced back
to the same cause mentioned before. We found that pinwheel crystals are energetically favored
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to stripe patterns once a certain strength of symmetry breaking is reached (Fig.4.1), although
they might still be coexisting with stripes. In this sense, the statement of Lee and Kardar agrees
with our result. However, our conclusions are striking different. Compared to real orientation
maps the pinwheel density of pinwheel crystals is too small and the patterns are too regular. We
claim that shift symmetry breaking on its own cannot account for the patterns observed in the
brain and that an alternative mechanism is needed in order to explain realistic patterns, such as
provided by the specific type of long-range interactions discussed in Chapter 4 and 2.

Another system in which pinwheel crystals are observed, however, this time with the predicted
crossing angle of 45◦, was studied by Mayer et al. and reported in [84, 85]. But again, also this
type of model is unable to predict realistic, irregular and aperiodic patterns of orientation maps.

To summarize, we find that all studies on the possible effects of shift-twist symmetry on orientation
map development in the brain, which have been performed so far, yield an incomplete description
of the situation in the brain, since these findings are restricted to the analysis of periodic solutions,
i.e. stripes, pinwheel crystals or pinwheel hexagons.

This thesis is the first to analyze the consequences of shift-twist symmetry and of shift symmetry
breaking on the pattern selection and pinwheel stability for a realistic type of aperiodic solutions.
In particular, we find that in the region of phase space where aperiodic solutions occur pinwheel
production is insensitive to shift symmetry breaking, opposed to the result of Lee and Kardar.
Whereas all previous studies addressed the limiting case of maximally broken shift symmetry,
we analyze the entire range from the full shift symmetric to the full shift-twist symmetric case.
We don’t find an all or nothing phenomenon in our models, but instead, observe a continuous
transition and reorganization of the phases as a function of the parameter �/�∗ controlling the
degree of shift symmetry breaking.

Our study is the first one to clearly demonstrate shift symmetry breaking in experimental
observations. In fact, our findings stresses the gradual nature of the effect, since shift symmetry
breaking in the tree shrew visual cortex turns out to be relatively weak. Our results reveals a
non-Gaussian statistics of orientation preference maps and a coupling to the visuotopic map of
the negative type. These are main features that theoretical studies have to explain and that are
not predicted by the generic approaches used in our theoretical studies in Chapters 3 and 4 or
by any of the previously published theoretical works.

The results of the final chapter show that the effects above can be explained by models that take
natural scene statistics and cortical activity patterns into account. All of the non-anticipated
phenomena observed in the tree shrew dataset, i.e. negative type coupling and non-Gaussian
statistics of orientation maps, revealed by a non-vanishing 2-fold component in the pair co-
occurrence statistics, naturally emerge when map development is considered to occur as the
result of competitive Hebbian learning in the primary visual cortex which is induced by afferent
cortical activity patterns elicited by naturally occurring visual scenes. Our analysis shows that
the characteristic features of such scenes, collinearity of their constituting contour elements, as
well as their symmetry under Euclidean transformations exerts a net effect on the dynamics of
the orientation maps which leads to a shift symmetry breaking in the linear terms exactly of the
type a priori postulated in Chapters 2-4. We can also provide an explanation for the observation
that the signatures of shift-twist symmetry in the brain are of the negative type, which at first
appears contra-intuitive, since the statistics of contour elements of the visual world is of positive
type. We find that this sign flip occurs as a consequence of the competition between neurons in

145
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the visual cortex, which is introduced by the competitive Hebbian scenario. Interestingly, this
sign flip has the consequence that less cortical space is devoted to the coding of combinations of
features which occur with a higher than average probability. This can be best seen by comparing
Fig.5.12(b) to Fig.6.2(c). The high degree of collinearity in natural images contrast with the
reduced probability of collinear arrangements in the orientation preference maps. Why spend
cortical resources to code for the obvious? It would be an interesting question to find out whether
an interpretation of our findings in terms of redundancy reduction[87] could be useful.

The particular type of shift-twist symmetry induced coupling of the orientation map to the
visuotopic map presented here and the predictions that this coupling is controlled by the statistics
of natural scenes is novel in the field. Contrary to the situation found for other pairs of neural
selectivities, such as orientation preference and ocular dominance, or orientation preference
and direction selectivity, where clear evidence for correlations between both systems of maps
exists, the situation is, until now, unclear for orientation preference and visuotopy, and the
results in literature do conflict. Whereas Das and Gilbert claim to see systematic variations in
and correlations between the local rates of change of both, orientation selectivity and spatial
selectivity in the cat on a scale of 50− 100µm[86] (this result inspired Thomas et al. to their
analysis [59]) a subsequent study of Buzas et al. [88], also performed in the cat visual cortex,
found no evidence of such type of correlations in the receptive field scatter and OPM scatter.
But also see [89, 90, 70]. Anyway, this type of correlation, which was motivated from early days
simulations of the elastic net [17] predicts correlations in the rate of change (which is a scalar
and local quantity) of the orientation preference and visuotopic map. Our results suggest that it
might be useful to reassess this and similar data with respect to nonlocal correlations, which also
takes relative positions of cortical sites and relative orientation preferences into account. In any
case our findings clearly report that correlations of the orientation to the visuotopic map on a
scale of 500− 1000µm do exist. These particular correlations are consistent with the predictions
from shift symmetry and yield clear evidence that shift symmetry is weakly broken in the visual
cortex. Orientation map and visuotopic map are thus not independent.

Given the complexity of the neural substrate and the number of compromising factors which
one faces when analyzing data from the living brain it is amazing that at the end of the day
a structure in the dataset appears which can be understood in terms of a simple symmetry
principle. Symmetries have a long story of success in physics and point to some order which is
deeply rooted in the fundamental equations of our world. That they turn out to be a useful
concept for understanding an organisational aspect of the neural system, points at the essential
role attributed to self-organisation in the developing brain.
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