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AbstratSelf-organized, nano-sale strutures appear on solid surfaes under ionbeam irradiation with ion energies in the keV range. Within the last deade,surfae engineering by ion beam sputtering (IBS) has beome a very promisingandidate for bottom-up prodution tehniques of nano-devies. Morphologieslike ripples, and regular arrays of dots, pyramids and pits as well as ultra-smooth surfaes have been obtained on a wide variety of substrates, inludingimportant semiondutor materials like Si, Ge, GaAs and InP.In spite of many substantial improvements of experimental surfae strutur-ing by IBS, the physial mehanisms underlying the pattern formation are stillpoorly understood. In this work we use Kineti Monte Carlo (KMC) simula-tions and ontinuum theory to study the e�ets of the following mehanisms indetail: (i) the interplay of surfae erosion with di�erent surfae di�usion meh-anisms (Wolf-Villain, Hamiltonian, thermally ativated hopping via transitionstates, inluding barriers depending on both initial and �nal on�guration ina hop) and the rossover from erosion-driven to di�usion driven patterns, (ii)random orientational �utuations of ion trajetories within the beam, lead-ing to ion beam divergene, (iii) o-deposited, steady-state, (sub)-mono-layeroverages of the substrate with a seond atomi speies (�surfatant sputter-ing�) and (iv) multi-beam and rotated-beam (or rotated sample) setups. We�nd that all the four mehanisms under study may have a profound � andsometimes unexpeted � impat on the pattern formation. Di�erent di�usionmehanisms, whih all give rise to the same leading order terms in a on-tinuum desription lead to rather di�erent long-time behavior of patterns inKMC simulations. Orientational �utuations hange the bifuration senariosof pattern formation and surfatant sputtering may give rise to qualitativelynew e�ets like mesosopi or even marosopi patterns on top of nano-salepatterns, and the ordering of the surfatant on top of the strutured surfae.This ordering leads to a feedbak mehanism due to the modulation in sputter-ing yield aused by the surfatant. On the other hand, many of the promisingproposals onerning the usage of multi-beam and rotated beam setups ouldnot be on�rmed (in aordane with reent experiments), but we an outlinesome physial reasons for this failure, whih ould guide an improved usage ofthese tehniques.
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Chapter 1
Introdution
Rihard P. Feynman attrated the attention of sientists and engineers to theenormous apability of the nano-sale world for the �rst time. He gave aninsight to the great possibilities, provided by instruments, whih are designedand fabriated in the size of some nanometers in his talk at the annual meetingof the Amerian Physis soiety.1 During the last 50 years, numerous di�erenttehniques and methods to manipulate materials on nano-sales are presentedand nowadays a multitude of nano-devies are produed and available in themarkets (Maynard et al. 2006).Wide ranges of appliations are proposed by nano-strutures fabriated onsolid surfaes. Among all the available tehniques for the fabriation of suhstrutures, e.g. hemial lithography and atomi fore mirosopy (AFM) teh-niques, bottom-up self-organized patterning methods are of partiular interest,beause they bear the potential of heap, large-sale prodution. Ion-beamsputtering (IBS) was introdued by Navez et al. (1962) as a simple methodfor preparing wave-like patterns (ripples) of sub-mirometer length sales onthe surfae of solids. In this method, surfae bombardment by a beam of keVions at normal or oblique inidene drives the system towards self-organizedformation of nano-patterns. Later on, many experimental developments havebeen arried out to improve the quality of the patterns i.e. ripple alignmentand regularity. Meanwhile, by sputtering di�erent kinds of solids under di�er-ent onditions, new types of patterns have been disovered. The prodution of1Deember 29th 1959, California Institute of Tehnology (Calteh), �There's Plenty ofRoom at the Bottom�. 1



2 CHAPTER 1. INTRODUCTIONregular arrays of nanometer-sized olumns (dots) is one prominent example ofthis kind (Fasko et al. 1999). Reent reviews summarize the state of the artof surfae engineering by IBS (Frost et al. 2008).Although great improvement ahieved in experiments to produe varioushighly ordered patterns on a wide range of di�erent materials, a omprehen-sive understanding of the physial mehanisms underlying this self-organizedpattern formation is not yet available. The simplest quantitative theory ofIBS-indued pattern formation has been put forward in a seminal paper byBradley and Harper (1988). There, it is pointed out that IBS implies a generiurvature instability, whih roughens the surfae. The ombined ation of thisinstability and surfae di�usion leads to the appearane of ripples. This ontin-uum theory has been extended in many di�erent ways, but reent experimentsindiate that it does not ontain all the physial mehanisms, whih determineripple patterns on solid surfaes (Chan and Chason 2007).In this work we aim to address the IBS problem by analytial and ompu-tational methods. We develop and use a Kineti Monte Carlo (KMC) modelfor ion-beam erosion inspired by the kineti theory of Sigmund (1969). Wesimulate a simple ubi lattie, whih undergoes bombardment of ions withvariable energy and inidene angle. We try to give new insights into physi-al mehanisms of IBS-driven patterns as well as examine new possibilities toimprove and advane IBS experiments to ahieve more preise ontrol of thepattern formation proess.In the next hapter we give a review of reently developed experimentalmethods in addition to lassi IBS tehniques of ion-beam surfae ething.In Chapter 3 we introdue the analytial and numerial methods we useto study IBS, espeially our KMC model and its basi assumptions and theontinuum desription of IBS.It is the ommon belief that patterns under IBS form due to a ompetitionbetween surfae roughening (by erosion) and smoothing (by surfae di�usion).In the simple ontinuum desription of Bradley and Harper, these mehanismsenter in universal forms and are quanti�ed by three parameters, two for erosionand one for surfae di�usion. But does this exhaust the interplay of di�erentsurfae di�usion mehanisms with ion-beam erosion? This question will beaddressed in Chapter 4. There, we present our results obtained by implement-



3ing di�erent erosion and di�usion models and show how by tuning the rateof erosion and di�usion events di�erent types of instability leading to variouskind of patterns an be indued.In Chapter 5 we present results on IBS aompanied by the o-depositionof a seond atom speies onto the surfae. Controlled o-deposition of (sub-)mono-layer overages by o-sputtering of a nearby target has been introduedby Hofsäss and Zhang (2008), who alled it �surfatant sputtering�. Meanwhilethere are many indiations that highly ordered regular patterns, whih havebeen produed in experiments, have in fat involved o-deposition, whih wentunnotied. We show some e�ets indued by o-deposition of metalli atomson the surfae of a substrate like Silion. We demonstrate the possibilityof preparing nano-lusters by this method and ontrol them in a pattern ofripples.In Chapter 6 we study the e�ets indued by inluding exterior noise, orig-inated from �utuations of the diretions of ion trajetories within the beam.Our extended ontinuum model predits new transitions for pattern morpholo-gies whih di�er from the standard senario of Bradley and Harper. Our resultsobtained by KMC simulations are about the generi e�ets due to the ion-beamnoise in di�erent situations, e.g. normal and grazing inidene angle or in hightemperature regimes.There are a number of proposals, mostly based on qualitative reasoning, howto improve or modify pattern formation due to IBS by using multi-ion-beamsetups, sequential sputtering of the sample from di�erent diretions, or samplerotation. Chapter 7 ontains a detailed simulation study of these proposals.We ompare our results with reent experimental �ndings by Joe et al. (2008).Finally, in Chapter 8 we give a onlusion and disussion on all presentedresults and some outlooks for future work.



4 CHAPTER 1. INTRODUCTION



Chapter 2
Ion-beam sputtering experiments
Depending on the sputtering parameters e.g. �ux, energy, type and inideneangle of the ions, as well as substrate properties e.g. type and substrate tem-perature, a wide range of di�erent patterns might emerge via IBS. Seondaryfeatures, like beam-pro�le and rotation of sample may also hange the qualita-tive and quantitative harateristis of the patterns. Reent advaned methodsin IBS experiments that might produe more omplex textures on the surfaeof materials are based on setups omposed of doubled- or multi-beams, si-multaneously o-sputtering of metalli and non-metalli substrates (surfatantsputtering), and sputtering of pre-strutured templates. In the following se-tions of this hapter, we brie�y review the experimental ahievements of IBS.For more extended reviews see Valbusa et al. (2002), Frost et al. (2008) andMuñoz-Garía et al. (2009).
2.1 Patterns on amorphous substratesMost of the IBS experiments are performed on amorphous substrates e.g. glass,or substrates whih are amorphized under bombardment of keV ions e.g. Si,SiO2, GaSb, InP, et. Ripples and -more reently- dots are the main typesof patterns whih emerge on these types of substrates. Moreover, formationof holes and pits, the appearane of ultra-smooth surfaes and non-struturedrough surfaes are also reported as outomes of some IBS experiments. In thefollowing, the mentioned types of strutures are disussed in more detail.5



6 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTS2.1.1 RipplesA �rst experiment by Navez et al. (1962) was followed by a huge number ofexperiments, in whih wave-like ripple strutures were observed. The period-iity of ripples varies from tens to hundreds of nanometers and their lengthan exeed several mirometers. Some universal properties are observed inexperiments with very di�erent ion-beam and substrate parameters. Rippleorientation with respet to ion-beam diretion and the dependene of thisorientation on the inidene angle of the ion-beam with respet to the sur-fae normal θ, are important universal features, whih have been explained bytheory of Bradley and Harper (BH). In BH theory, di�erent erosion rates atdi�erent points on the surfae in relation to the loal urvatures is the maindestabilizing fator whih is shown to be su�ient to explain the formation ofripples and their orientation. A shemati drawing of BH theory is presentedin Fig. 2.1. The full desription of the theory is provided in setion 3.4.1.Other universal features, like the diretion of ripple on rystalline substrates,propagation and the oarsening of ripple patterns are not fully understoodwithin BH theory, but extensions of this theory lead to partial understandingof many features of the pattern formation (see setion 3.4).The quality of ripples, i.e. their regularity and alignment, improved tremen-dously within the last deade (ompare the strutures depited in Fig. 2.2 andFig. 2.4). However, so far, no omprehensive explanation on the onditionsand physial mehanisms, whih lead to the formation of suh �ultra-regular�patterns exists. Two main ideas that may explain this experimental suessare (i) �ne tuning of ion-beam pro�le and (ii) manipulations in the proess ofpattern formation by o-deposited metalli atoms. Both ideas are disussedextensively in this thesis in hapters 5 and 6 respetively.OrientationThe orientation of ripples is typially on�ned to be either parallel or per-pendiular to the projetion of the ion-beam diretion onto the surfae. Forsmall values of inidene angle θ, orientation is perpendiular to the ion-beam.By inreasing θ towards grazing inidene, at some ritial value θc, ripplesrotate by 90◦ and align in diretion parallel to the ion-beam. One exam-



2.1. PATTERNS ON AMORPHOUS SUBSTRATES 7
o

o’

Figure 2.1: Ions hit the surfae with normal inidene angle, impinge into the surfae, stopat some distane under the surfae and deposit their kineti energy. Sine the amount of thedeposited energy reahing the lateral points with positive or negative loal urvatures (O orO') is di�erent, assuming the erosion rate at surfae points is proportional to the reahingenergy, a faster erosion rate is expeted in valleys (point o'). This leads to ampli�ation ofthe initial surfae roughness (Bradley and Harper 1988).ple of the hange in orientation in the experiments on graphite samples byHabeniht et al. (1999) is shown in Fig. 2.2.PropagationIn some experiments (Habeniht et al. 2002; Alkemade 2006) by simultaneousreal time monitoring of pattern evolution, it is observed that ripples propagatealong the diretion of the ion-beam. Initial movements with veloity of 0.33nm s−1 are followed by deeleration and a dispersion in veloity for di�erentwavelength. At longer times, faster movements for ripples with shorter wave-length was reported. Ripple propagation is also predited by BH theory, butthe predited diretion of motion is apposite to the observed diretion.CoarseningThe oarsening of ripples, i.e. inrease in lateral size and spaing of rip-ples, has been observed in a large number of experiments. A growth ofwavelength, following a power law in the form of λ ∼ t0.5 is reported byHabeniht et al. (2002), whereas an exponential growth is found by Brown and Erlebaher (2005).
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Figure 2.2: Rotation of the ripples orientation by inreasing the inidene angle. Sanningtunneling mirosope (STM) miro-graphs (lateral size 1 µm) of 5 keV Xe+ eroded HOPGsurfaes. Fluene = 3×1017 ions/m2; inident angle θ (a) 30◦, (b) 60◦ and () 70◦. Arrowsindiate the ion-beam orientation. Adapted from Habeniht et al. (1999).In Fig. 2.3 an example of oarsening of ripples formed on fused silia is depited(Flamm et al. 2001). The oarsening an only be explained by onsidering thenon-linearities whih are absent in the BH model.OrderingIn some experiments, ripples show a tendeny to beome more aligned andordered. In many experiments the number of defets (misalignment or rossingbetween ripples) dereases with time. For example Ziberi et al. (2005) haveseen ordering and derease of defets in sputtering on Si by Kr+ ions (seeFig. 2.4). The order of ripples an be estimated by the ounting the numberof peaks in the Fourier spetrum of the surfae pro�le.2.1.2 DotsFormation of nano-dots is another phenomenon reported in several experi-ments. As the anisotropy indued by the diretion of the ion-beam is elimi-nated, either by rotating the sample (Frost et al. 2000) or by normal-inidenesputtering (Fasko et al. 1999), formation of dots is observed. However, dotformation under oblique inidene irradiation and also without sample rotationhas also been reported by Ziberi et al. (2006) on Ge. The dots are highly or-dered in size and have short-range ordering in plaement (see Fig. 2.5). In thementioned works, the dot patterns show hexagonal symmetry in lateral order-
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Figure 2.3: AFM image sequene, showing the evolution of fused silia surfae topographywith inreasing sputter time t at 2, 6, 10, and 60 min, respetively. The ion-beam parameters:800 eV Ar, �ux= 400 µA/m2 and θ = 60◦ . The lateral size of the images is 1 µm. Thewavelength of ripples inreases with time as λ ∼ tγ with γ = 0.15 ± 0.01. Adapted fromFlamm et al. (2001).
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Figure 2.4: Self-organized Si ripple patterns produed by 1200 eV Kr+ ion-beam erosion,
θ = 15◦, for di�erent ion �uenes: (a) 3.36 ×1017 ions/m2, (b) 2.24 ×1018 ions/m2 and ()1.34 ×1019 ions/m2 (a)-() 2 µm × 2 µm AFM images (the arrows give the ion-beam dire-tion). (d)-(f) Corresponding Fourier spetrum (image range ± 127.5 µm−1). The irle in() shows a defet in the AFM image. The number of defets dereases with time. Moreover,the angular width of the Fourier peak dereases with erosion time meaning the homogeneityand ordering (alignment) of ripples improves. Adapted from Ziberi et al. (2005).



2.1. PATTERNS ON AMORPHOUS SUBSTRATES 11ing, whereas some authors reported the formation of dot patterns with squaresymmetry (Frost et al. 2004; Ziberi et al. 2009). The oarsening behavior ofthe ripples is also observed for dots, although in the ase of dot patterns, anearly growth in wavelength saturates in longer times (Gago et al. 2001). Theformation of ordered dot patterns is not explained by BH theory.2.1.3 HolesThe so-alled �ellular strutures� or �holes� an be produed in experimentswith amorphous substrates. Fig. 2.6 shows data from Frost et al. (2004) inexperiments on Si surfae irradiated by 500 eV Ar+ with sample rotation. Theappearane of ellular strutures in the experiments with sample rotation anbe very sensitive to the rotation frequeny of the sample. We disuss this insetion 7.5.2.1.4 Smooth surfaesBesides its appliations for texturing the surfaes, IBS tehniques an also beused for surfae smoothing at mirosopi length sales and for the preparationof ultra-smooth surfaes. Conventionally, ontinuous rotation of the sampleor the ion-beam has been proposed to suppress ripple formation (Zalar 1985;Zalar 1986) in seondary ion mass spetrometry (SIMS) and Auger eletronspetrosopy (AES), where ripple formation would redue the depth pro�lingresolution. There are many reports on experiments with or without samplerotation, in whih the initial roughness of a the surfae is redued as thesputtering proess goes on (for two reent works see (Headrik and Zhou 2009)and (Frost et al. 2009)). In Fig. 2.7 (adapted from the latter work ) initialtopography of an InSb sample is ompared to snapshots after 10 and 120min sputtering by 500 eV N+ ions at normal inidene angle with ion urrentdensity 200 µA/m2.There is a lak of theory to explain the smoothing of surfaes by ion-beam tehniques. In low �ux and high temperature experiments, similari-ties to epitaxial layer-by-layer growth is laimed to exist in IBS experiments(Chan and Chason 2007). In medium and high �ux experiment, a down-hillurrent indued by the ollision asades initiated by the impinging ions an
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Figure 2.5: Sanning eletron mirosope (SEM) images of highly ordered ones on a(100) GaSb surfae show the temporal evolution of dot formation during ion sputtering.The nano-sale patterns are depited for di�erent ion �uenes (exposure times) of (A) 4
× 1017 ion/m2 (40 s), (B) 2 × 1018 ions/m2 (200 s), and (C) 4 × 1018 ions/m2 (400s). (D) The orresponding size distributions of the dot diameters are extrated from theimages. The dotted lines represent Gaussian �ts to the dot diameter histograms. Adaptedfrom Fasko et al. (1999).
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Figure 2.6: Silion surfae topographies after 20 min bombardment by 500 eV Ar+ ion-beam (sample rotation), �ux= 300 µA/m2, θ (a) 0◦ and (b) 75◦. Cellular strutures formin both ases. Adapted from Frost et al. (2004).suppress the destabilizing e�ets of BH theory. This will be disussed in moredetail in setion. 3.1. The rotation frequeny may have an important role inahieving the smoothed surfaes, similar to the formation of ellular strutures.This will be disussed in setion. 7.5 as well.2.2 Patterns on rystalline substratesThe above mentioned harateristis are not ommonly observed in experi-ments with metalli substrates. For example, ripples may form in normalinidene experiments or isotropi patterns in oblique inidene experimentsmay evolve without rotation . For a omprehensive olletion of experimentalresults on metalli substrate see Valbusa et al. (2002). The di�erent senar-ios of pattern formation on single rystalline metalli substrates are mainlydue to the di�erent energy barriers in onjuntion with the rystallographianisotropies in suh materials. On the other hand, Surfae di�usion is notisotropi in rystalline substrates and the Sigmund's theory of sputtering ne-glets e�ets like hanneling, whih are due to the regular anisotropi struture.Valbusa et al. de�ned a �di�usive� and an �erosive� regime, in whih the orien-tation of strutures are determined by the unit ell diretion or by the diretionof the ion-beam, respetively. The di�usion rate is mainly ontrolled by the
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Figure 2.7: Sequene of AFM images whih shows the progressive smoothing of a Sisurfae under 500 eV Ar+ ion-beam erosion, θ = 45◦, �ux = 300 µA/m2 (simultaneoussample rotation). (a) Initial surfae (pre-roughened by Ar+ erosion at 75◦ ion inidene),(b) after 10 min (orresponding to a total applied ion �uene of 1.1 × 1018 ions/m2) and() after 180 min (2.0 × 1019ions/m2). The rms roughness was redued from Rq = 2.25nm to Rq < 0.2 nm. Adapted from Frost et al. (2009).substrate temperature and the erosion rate an be tuned by the ion-beam pa-rameters. In Fig. 2.8, a transition from di�usive regime to erosive regime byinreasing the temperature at �xed ion-beam parameters is depited.The pyramid-like strutures formed in the di�usive regime are similar to thepatterns whih form in moleular beam epitaxy (MBE). Here, the di�ereneto MBE is that deposition of adatoms is replaed by reation of vaanies byerosion. The main destabilizing fator in both ases is the biased di�usion ofsurfae defets (adatoms or vaanies). Therefore, most of the basi featuresof patterns are similar in both MBE and IBS at high temperature and low�ux regime. In the erosive regime, however, the main underlying proess isthe BH instability and di�usion is not the leading fator in the pattern for-mation. Hene, the main harateristis of patterns in the erosive regime aresimilar to those observed in the experiments on amorphized semiondutors(see setion 4.2.4).2.3 Advaned patterning methodsIn the last few years, steps toward alternative omplex IBS experiments havebeen taken. Some of these advaned methods are surfatant sputtering, sput-
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Figure 2.8: The role of surfae temperature in the transition from the di�usive to theerosive sputtering regime for Ag(001). 1 keV Ne+ ions, θ = 70◦, �ux = 2.2 µA m2, t = 20min. The white arrow shows the ion-beam sattering plane. Image size 180 × 180 nm2 ; at
T = 400 K: 360 ×360 nm2. Adapted from Valbusa et al. (2002).



16 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTStering of alloys, sputtering of thin deposited �lms, sputtering with double ormultiple beams, sputtering of substrate previously strutured on mirometerlength sales, et. Apart from the pratial advantages, exploring this un-known area of ion-beam sputtering tehnology poses new physial questions,whih an be answered only by extending and developing the present theoret-ial models.2.3.1 Surfatant sputteringIn surfatant sputtering, ion-beam erosion is aompanied by deposition of aseond (�surfatant�) atomi speies (typially by o-sputtering a nearby metal-li target). Co-deposition is adjusted in a way that a steady state overage of(sub-) mono-layer thikness emerges.Surfatant sputtering has been introdued by Hofsäss and Zhang (2008) asa novel method with a wide range of ontrollable pattern formation senarios.The potentially wide spetrum of the appliations of surfatant sputtering hasnot yet been probed. One of the available examples, shown in Fig. 2.9, is anarrangement of nano-drops of Ag on rippled Si substrate.An important physial mehanism, whih in�uenes pattern formation isthat the presene of metalli atoms on the surfae of a substrate an onsider-ably hange the erosion rate of substrate atoms. Furthermore, the partiularform of surfae di�usion of metalli atoms and their tendeny to mix or demixwith the substrate an also a�et the pattern formation. More details arepresented in hapter 5.2.3.2 Compound beamsJoe et al. (2009) performed experiments applying multiple beams (partiularlydual-beams) and also sequential sputtering from di�erent diretions. The aimof these experiments was to produe strutures of superimposed ripples formedin di�erent diretions. Although in none of the ases a linear superpositionwas observed, the ase of dual-beams leads to square symmetri patterns (seeFig. 2.10). In the sequential sputtering of pre-strutured surfaes, the stepwiserotation of the sample by 90◦ led to a fast destrution of initially formedpatterns before the new generation of patterns has grown in the perpendiular



2.3. ADVANCED PATTERNING METHODS 17

Figure 2.9: SEM pitures of Si surfaes eroded with 5 keV Xe at θ = 70◦ and �uene3 × 1016 ion/m2 with Ag surfatants with di�erent overages (inreasing from left toright and top to bottom) of up to 1016 Ag atoms/m2. The ripple pattern and ripplewavelength for di�erent overages are strongly in�uened by the surfatants. Ag nano-partiles of size 10 nm or less an be seen on the tops of the �at ripple plateaus. Adaptedfrom Hofsäss and Zhang (2008).
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Figure 2.10: (a) Rippled Au(001) surfae sputtered in the erosive regime, (b) Surfaemorphology indued by sequentially sputtering of the pre-rippled Au(001) with 2 keV Ar+with �ux=0.31 ions/nm2s, �uene=84.8 ions/nm2 and θ = 72◦. The initial ripple pat-tern is heavily damaged suh that its order and mean oherene length are severely de-graded. () Nano-patterns formed by dual ion-beam sputtering with �ux=3.25 ions/nm2s,�uene=6350 ions/nm2 and θ = 73◦. Arrows indiate ion-beam projetion. Adapted fromJoe et al. (2009).diretion. More details are presented in setion 7.4.



Chapter 3
Methods
Pattern formation in IBS, an be studied theoretially at di�erent levels andtime-, energy- and length-sales with di�erent approahes. The omplete prob-lem of IBS overs length sale from atomi sizes to some mirometers and timesales over a range from ∼ 10−17 se (duration of the primary atom-ion olli-sions) to ∼ 10 min (typial pattern formation time sale). The same extensionexists also in the overed range of energies; The upper bound is the energy ofan impat, initiated with some keV ion and the lower bound is the energy in-volved in di�usion proess at room temperature, i.e. the meV range. To overthis wide range of sales, di�erent methods and approahes must be appliedand at di�erent sales di�erent approximations are neessary. A ombinationof all the approahes presents a multi-sale piture of the whole phenomenon.In this hapter we introdue the following theoretial models whih we applyto IBS:(i) Atomisti simulations based on binary ollision approximation(BCA): In this lass of simulations, one starts from single impats of ionson the surfae and follows asades of atomi ollisions, aiming to provide astatistis of sputtering e�ets aused by impinging ions. The typial length-sales onsidered in this approah range from some Å to some nm.(ii)Kineti theory: In this approah one studies the evolution of the phasespae density f(r,p, t) of displaed atoms (and of the ions) at position r andwith momentum p in the framework of Boltzmann's transport theory.(iii) Kineti Monte Carlo simulations: Many results of this thesis areobtained from this method. Usually, one starts from the results of kineti19



20 CHAPTER 3. METHODStheory, i.e. one uses a simple funtional form of the averaged energy depositedby a ollision asade for single ion impat to determine the erosion probabilityof surfae atoms. Di�usion proesses an easily be added in this approah.Simulating larger sales of some hundreds of nm an be studied by KMC.(iv) Continuum theory of surfae evolution: In the ontinuum modelof surfae evolution the height of surfae is onsidered as a ontinuous, singlevalued smooth funtion of plane oordinates h(x, y). In the most general form,the time evolution of h is desribed by a non-linear stohasti partial di�er-ential equation, the growth equation. In priniple the growth equation mayinlude all the underlying proesses whih lead to the surfae evolution andalso external noise by randomly shot ions. Here, length sales larger than thepenetration depth and atomisti sizes are onsidered and therefore small size�utuations are negleted. The main parts of ontinuum theories are erosionand surfae di�usion. Most of the theories in this framework are based on theSigmund's theory of sputtering and a thermally ativated di�usion model.3.1 Binary ollision approximationThe most mirosopi approah to pattern formation under IBS would bea full-�edged Moleular Dynamis (MD) simulation. However suh a simu-lation has to bridge the above-mentioned sales in time, spae and energy,whih is not possible at present. Nevertheless, the approah is used for sin-gle ion impats to study the defet generation and also the mass transportdue to displaed atoms. But an approximate version of MD, the binary ol-lision approximation (BCA), has beome a versatile tool in the study of ionsputtering phenomena, inluding pattern formation. The main idea of thismethod is to redue all interations to a series of binary ollisions betweenpairs of partiles. In between ollisions, the trajetory of the partiles arestraight-line segments traversed with onstant veloity, initiating from a ol-lision and ending at the next ollision. Changes in veloity and position af-ter eah ollision an be integrated numerially (Robinson and Torrens 1974;Robinson 1994). This approah is suessfully used to quantitatively alulatesputtering yields in the muh used and well established programs TRIM andSRIM. Koponen et al. (1997) have also used it to study the formation of rip-
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ρFigure 3.1: (a) Sample asade originating from an impat of a 5 keV Cu ion on a Curystal. The angle of inidene is 60◦. The ube shown, ats just as sale and has volume 2.65nm3. (b) Surfae density of mean energy of sputtered Cu atoms vs. distane ρ (measuredin units of a = 3.61 Å) from point of ion inidene. The solid line is the best �t to the data;
0.297(ρ2 − 0.392ρ) exp(−1.27ρ) and the dotted line, whih orresponds to a Gaussian �t, isobviously inadequate. Adapted from Feix et al. (2005).ples under IBS. Feix (2002) and Feix et al. (2005) have studied the sputteringof Cu rystals by means of BCA simulations to test some assumptions andapproximations used in less mirosopi approahes.3.1.1 Casade shapeFeix et al. (2005) onsidered an ensemble of 6000 impinging ions and alu-lated the averaged statistis of the indued ollision asades (see Fig. 3.1(a)). One of the main results is about the distribution of deposited energyby a single ion as this quantity underlies the ontinuum theory and the KMCapproah (see below). For normal inidene, the simulations show an energydistribution as depited in Fig. 3.1 (b), whih has a minimum near the positionwhere the ion penetrates the surfae, and deays exponentially with distane.This from deviates signi�antly from Gaussian shape entered at the loationof primary knok-on ollision, whih is used in the vast majority of ontinuumand KMC approahes, and was proposed by Sigmund (1969) on the basis ofan approximate treatment of the kineti theory.



22 CHAPTER 3. METHODS3.1.2 Defet generationApart from erosion of the substrate atoms by the energy transferred fromions, generation of surfae defets (adatoms and vaanies) is known to beanother e�et indued by ollision asades (Nordlund et al. 1998). Exitedatoms reahing the surfae with energies more than the surfae binding energy
Eb, will be sputtered o�, and leave a vaany, however a large fration ofpartiles have energies less than Eb. These atoms remain on the surfae andbeome adatoms. At high temperature, defets reombine and vanish rapidly,whereas at low temperature regime a large number of them remains for longertime (Floro et al. 1995). Feix (2002) found a distribution of the energy of thepartiles reahing the surfae ǫs, whih obeys a simple power low

p(ǫs) ≈
a

(b+ ǫs)γ
∼ ǫ−2

s (3.1)with a = 5.26, b = 5.03 and γ = 1.87 for 5 keV Cu ion hitting a Cu tar-get. The shape of the distribution is almost independent of the distane fromthe impat point up to a large distane (see Fig. 3.2). This �nding is in a-ordane with experimental observations and a simple theory of asades byFarmery and Thompson (1968).3.1.3 Down-hill urrentCarter and Vishnyakov (1996) observed that in o�-normal inidene (up to45◦) sputtering of Si with high energy (10-40 keV) Xe+ ions, sputtering ero-sion an indue smoothing. Using MD simulations Moseler et al. (2005) ex-plained the irradiation-indued smoothing on diamond-like arbon surfaes.They found a down-hill urrent of atoms along the beam-diretion indued bythe ions. This urrent may suppress the urvature dependent BH instability(setion 2.1.1), beause they transport atoms bak to the ripple valleys. Thedown-hill urrent is proportional to the surfae slope j ∝ −∇h. By substitu-tion of the urrent density into the ontinuity equation ∂h/∂t = −∇ · j, oneobtains a smoothing equation for the height �eld h, ∂h/∂t ∝ ∇2h.This down-hill urrent is also easily observed in BCA as demonstrated inFig. 3.3.
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Figure 3.2: Energy distribution extrated from 6000 independent 5 keV impating Cu ionsfor di�erent distanes from impat point (measured in units of a = 3.61 Å). The distributionis almost independent of r. Adapted from Feix (2002).
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3.2. KINETIC THEORY 253.2 Kineti theoryTo obtain statistis of the ollision asade and alulate the sputtering yielddepending on ion-target parameters, Sigmund (1969;1973) presented a solutionof a Boltzmann transport equation with assumption of random slowing downof ions in an in�nite medium. The main approximation in this approah is theneglet of interations between atoms, whih thus form a tree of non-interatingpartiles (referred to as the �ollision asade�). The most important results,whih underlie the approahes in subsequent sales are the following:(i) The erosion rate at eah surfae point is proportional to the powerbrought to this point via ollision asades.(ii) The distribution of ollision asades is alulated approximately. Sigmundfound that in some ases this form an be approximated by a simple Gaussian.(iii) The sattering events originated by the penetration of energeti ions,leading to sputtering our in a layer near to the surfae with very smallthikness. Most of the sputtered atoms belong to a thin surfae layer (∼5 Å).(iv) The energy distribution of ejeted partiles follows Fig. 3.1. This resultwas �rst obtained by an elementary argument on asades by Thompson (1968).These results then beame the main priniples of almost all later theoretialworks on IBS.3.3 Kineti Monte CarloAll the existing KMC simulationmodels of IBS (for examples see Chason et al. (2006),Stepanova and Dew (2006), and Hartmann et al. (2002)), are based upon theresults from the kineti theory, mentioned above and inlude two parts oferosion, upon Sigmund's theory and a surfae relaxation proess. A simu-lation run onsist of a sequene of single ion shots, a alulation of the de-posited energy at the urrent surfae for eah ion and random disrete hop-ping of surfae atoms orresponding to surfae di�usion. Most models (withthe exeption of the work by (Bartosz Liedke 2009)) desribe the surfae in theframework of a solid-on-solid (SOS) model, thus exluding overhangs, dropsand bulk vaanies. Furthermore, a re-deposition of sputtered partiles is nottaken into aount. In the following we desribe some details of the models,



26 CHAPTER 3. METHODSwhih was developed from Hartmann et al. (2002) to Hartmann et al. (2009)(HKGK model).The system onsist of a square latties of size L×L (with periodi boundaryonditions, if not stated otherwise) and the SOS surfae is desribed by aninteger-valued time-dependent height funtion h(x, y, t) on the lattie. In mostases, we start from a �at surfae, i.e. h(x, y, 0) = 0. The details of erosionand di�usion trials are as the following.3.3.1 ErosionAs mentioned above, the erosion proess is based on Sigmund's theory, i.e.the Sigmund formula Eq. 3.4 is applied for every single impinging ion. An ionstarts at a random position in a plane parallel to the plane of the initially �atsurfae (x − y plane), and follows a straight trajetory inlined at angle θ tothe normal of this plane. The ion penetrates into the solid through a length
a and releases its energy. Then we hek all the lateral atoms as the subjetfor sputtering suh that an atom at a position r = (x, y, h) is eroded withprobability proportional to E(r).We have put ǫ to be (2π)3/2σµ2, whih leads to sputtering yields Y ≃ 7.0,thus should be kept in mind when omparing simulation results to experimentaldata. Aording to the Bradley Harper theory, the ripple wavelength λ saleslike λ ∼ Y −1/2 so that lower yields lead to orrespondingly larger length sales.Throughout this work we use a set of parameters as default values if notstated otherwise. We �xed σ = 3, µ = 1.5 and a = 9.3 (in lattie onstant).3.3.2 Di�usionWe have implemented di�erent models to desribe the surfae motion of atoms.These range from simple, irreversible surfae relaxation to ativated hoppingover energy barriers, whih may depend both on initial and �nal state of themove and inlude Ehrlih-Shwoebel non-equilibrium kineti e�ets. We al-ways use �full� di�usion models, so one di�usion step refers to a omplete sweepof the lattie. In the following, we brie�y introdue the three basi types ofdi�usion models, whih we have used throughout our simulations. Details ofthe di�erent models and their e�ets on pattern formation are disussed in



3.3. KINETIC MONTE CARLO 27setion 4.2.(i) A simple, non-thermal, irreversible relaxation proess has been intro-dued by Wolf and Villain (1990). For eah olumn, it is tested one during asweep, whether the partile at the top of the olumn an inrease its oordina-tion number, i.e. its number of nearest neighbors, by hopping to a neighboringolumn. If this is the ase, the partile hops to that neighbor olumn where itobtains the highest oordination number (setion 4.2.1).(ii) A lass of thermal di�usion models is based upon a Hamiltonian H,whih ontrols the thermal roughening of a faet. Trial moves from site i to anearest neighbor site f (hi → hi−1, hf → hf−1) are aepted with probability
p(i → f) = [1 + exp(∆H/kBT ))]−1 where ∆H is the hange in Hamiltoniandue to the hop. (setion 4.2.2).(iii) The �Arrhenius� models are based on a kineti proedure and use hop-ping via transition states. For eah step, a move from initial (i) to �nal (f)on�guration is hosen randomly from a prede�ned list. Here we restrit movesto nearest neighbor hops from site i to site f . We would have to inlude moremoves, if we want to model material spei� di�usion proesses. The move isperformed with a probability proportional to an Arrhenius hopping rate

k = k0 exp
(

−E(i→ f)

kBT

) (3.2)Values of the energy barriers E(i→ f) have to be taken from experimental orsimulation data (setion 4.2.3).The onnetion between time in KMC models and real experiments is madeby omparing the attempt frequenies of di�erent events in KMC with orre-sponding kineti rates in the lab ondition. In our model there are two di�erenttime sales, (i) the time intervals between the shooting of two impinging ions
τi and (ii) the waiting time between di�usion sweeps τd. By tuning these twotime sales, a wide range of experimental onditions an be overed. Ourdefault values orrespond to a typial �ux of 0.75 (ion/atom seond) and atemperature of 350 K.



28 CHAPTER 3. METHODS3.4 Continuum theory3.4.1 Bradley-Harper modelBradley and Harper started from the results of kineti theory, that the normalveloity of the eroded surfae
∂h(x, y, t)

∂t

1
√

1 + (∇h)2
= −vn(x, y, t) (3.3)is proportional to the total energy transferred to the point (x, y, h(x, y)) by theollision asades. An arbitrary ion impinging the surfae at point P , omesto rest at point O′ after penetrating into the solid by a distane of a alongits trajetory. The deposited energy of the ion at any point O at the surfaeis a funtion of the distane vetor R = (X, Y, Z) between O and O′. Theaveraged energy deposition funtion is taken to be a Gaussian

E(R) =
1

(2π)3/2σµ2
exp(−X

2 + Y 2

2µ2
− Z2

2σ2
) (3.4)as proposed by Sigmund (1969). µ and σ are width of Gaussian funtionparallel and perpendiular to the beam trajetory. To alulate the erosionrate, all the ontributions from homogeneously impinging ions at inideneangle θ with respet to the normal of the surfae should be summed up;

vn(r) = Y Jion

∫

dr′ E(r − r′) n̂ · eθ (3.5)where Jioneθ is the ion �ux with
eθ =
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.
n̂ is the unit vetor normal to the surfae and Y is the sputter yield. Theintegral is taken over the surfae. The integral is evaluated in a gradientexpansion (i.e. in (∇h)n) and a small slope approximation whih starts withthe following terms:
∂h(x, y, t)

∂t
= −v0(θ) + v′0(θ)

∂h(x, y, t)

∂x
+ νx

∂2h(x, y, t)

∂x2
+ νy

∂2h(x, y, t)

∂y2
. (3.6)
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v0 is the average erosion veloity of a planar surfae. νx and νx are �e�etivesurfae tensions� in diretions parallel and perpendiular to the projeted di-retion of ion-beam onto the surfae. To solve the obtained growth equation,we let h(x, y, 0) = A exp[i(kxx+ kyy)]. The general solution of Eq. 3.6 for themode k = (kx, ky) takes on the from

hk(x, y, t) = −v0(θ)t+ A exp[i(kxx+ kyy − ωt) + Γt]. (3.7)substitution of the solutions leads to
ω = −v′0(θ)kx (3.8)and

Γ(kx, ky) = −νxk
2
x − νyk

2
y . (3.9)This means that an arbitrary mode k propagate along the orientation of thebeam (projeted onto the x − y surfae) with phase veloity −v′0 and alsogrows (deays) in amplitude with the rate Γ. The θ dependene of e�etivesurfae tensions results from the gradient expansion and one example is shownin Fig. 3.4 for the default parameters of our KMC simulation. For some valuesof θ, both νx and νy are negative, leading to positive growth rate Γ for allwavevetors. In experiments, it is observed that a spei� wavelength growsfaster than all others and forms periodi ripple-like strutures. A stabilizing,i.e. smoothing mehanism, whih is laking in Eq. 3.6 is surfae di�usion,whih gives rise to a term ∝ ∇4h (see setion 4.2). Adding this term resultsin linear evolution equation of Bradley-Harper theory,

∂h(x, y, t)

∂t
= −v0(θ)+v

′
0(θ)

∂h(x, y, t)

∂x
+νx

∂2h(x, y, t)

∂x2
+νy

∂2h(x, y, t)

∂y2
−B∇2∇2h(3.10)where B is the oe�ient of surfae di�usivity. Taking the di�usion mehanisminto aount hanges the growth rate into

Γ(kx, ky) = −vxk
2
x − vyk

2
y −B(k2

x + k2
y)

2. (3.11)Now for any value of θ (exept θ = 0 and θ = θc where νx = νy), Γ has a max-imum value for a single (k2
x, k

2
y). Sine the inluded di�usion term is isotropi,the maximum of Γ ours always for k whih is either in x or y diretion,i.e. k = (kmax

x , 0) or k(0, kmax
y ). The maximum lies in the diretion, for whih
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Figure 3.4: E�etive surfae tensions in two diretions, parallel and perpendiular to theion-beam diretion as a funtion of inidene angle θ for σ = 3 µ = 1.5 and a = 9.33.For 0 < θ < θc, νx,νy < 0 and |νx| > |νy|, therefore, the growth of instabilities with thewavevetors parallel to the beam diretion is faster and ripples perpendiular to the beamdiretion form. For θc < θ < θc′ , |νy| > |νx| and therefore ripples parallel to the ion-beamdiretion form. For θc′ < θ, νx beomes positive and perturbations with the wavevetor in xdiretion damp and again formation of the ripples parallel to the beam diretion expeted.the negative surfae tension has the larger negative value. This predits for awide range of materials and ion parameters, ripples with wavevetor alignedparallel to the projetion of ion-beam for θ < θc and ripples with wavevetorperpendiular to the ion-beam projetion for θ > θc. This predition has beenon�rmed in numerous experiments and makes the BH theory reliable for sur-fae texturing by ion-beam. The typial length sale of patterns predited bylinear theory of BH is
ℓ = (2π)

√

2B

|νm|
(3.12)where νm = min[νx, νy].3.4.2 Cuerno-Barabási non-linear modelCuerno and Barabási (1995) ontinued the small slope expansion and inludes



3.4. CONTINUUM THEORY 31non-linear orretions to the Eq. 3.3 They also took into aount the �shotnoise� i.e., the random arrival of ions to the surfae as a Gaussian white noise
η(x, y, t) with zero mean and variane proportional to the �ux. The growthequation then beomes
∂h(x, y, t)

∂t
= −v0(θ)+v

′
0(θ)

∂h

∂x
+νx

∂2h

∂x2
+νy

∂2h

∂y2
+
λx

2
(
∂h

∂x
)
2

+
λy

2
(
∂h

∂y
)
2

−B∇2(∇2h)+η.(3.13)This equation is an anisotropi version of the Kuramuto-Sivashinsky (KS)equation, whih is well known in pattern formation theories (Kuramoto and Tsuzuki 1976;Sivashinsky 1977).A rossover time tc is de�ned as the time in whih the nonlinear e�etsbeome dominant and the system leaves the validity region of the linear ap-proximation. From the linear equation, the amplitude of ripples at tc is
∼ exp(|νm|tc/ℓ2), whereas from ∂th ∼ λ(∇h)2 the amplitude is estimated inorder of ℓ2/λtc. Combining these two relations, the rossover time is

tc ∼ (
B

ν2
m

) ln(
|νm|
λ

). (3.14)Depending on the signs of νx, νy, λx and λy, di�erent morphologies areexpeted from non-linear theory. Typially for small values of θ where νxand νy are both negative, λx and λy are also negative. For short time sales(t ≪ tc), the same ripples as predited by BH form, but ripples get blurredand disappear gradually for long times (t≫ tc). The patterns show the typialKuramoto-Sivashinsky type of spatio-temporal haos. Inreasing the inideneangle, λx and λy obtain di�erent signs where νx and νy are still both negative.Park et al. (1999) have shown that two transitions our in this regime. Inearly stage of pattern formation, standard ripples from linear theory form;At the �rst transition, ripples disappear and the surfae beomes rough; Atthe seond transition, stable ripples with rotated orientation by an angle of
tan−1

√

−λx/λy form. The stability of these ripples an be understood as aonsequene of a non-linear anellation of modes. (Rost and Krug 1995).3.4.3 Makeev, Cuerno and Barabási modelMakeev et al. (2002) have ontinued the gradient expansion, inluding 4th or-
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D̂ = −Dxx

∂4h

∂x4
−Dyy

∂4h

∂y4
−Dxy

∂4h

∂x2∂y2
. (3.15)These terms resemble (anisotropi) a new type of surfae di�usion. They havebeen alled �erosion-indued di�usion�, although they does not desribe a realtransport proess (and may in fat lead to roughening as well as smoothing).We want to point out that tempting interpretation of these terms as ion-indued di�usion an be misleading, even if they at as smoothing mehanism.To this end, in the next setion, we study the linear stability analysis of theontinuum theory without making use of the gradient expansions.3.4.4 Non-loal linear stability analysisFor simpliity, we restrit our analysis to the ase of normal inidene (θ = 0).We start from Eq. 3.5 and onsider a broad lass of energy deposition funtionsof the form

E(x, y, z) = f(x, y) g(z) (3.16)so that
∂th(r1) = −Y Jion

∫

f(x1 − x, y1 − y) g(h(x1, y1) − h(x, y)) dx dy (3.17)
g(h(r) − h(r1)) = g(∆h) an be expanded around ∆h = 0; g(∆h) = g(0) +

g′(0)∆h the �rst term leads to a onstant erosion veloity. In the oordinatesystem moving with this veloity,
∂th(r1) = −Y Jion

∫

f(r − r1)g
′(0)(h(r) − h(r1)) dr

2. (3.18)By hanging the variables ξ = r− r1, we have
∂th(r1) = −Y Jion

∫

f(ξ)g′(0)(h(ξ + r1) − h(r1)) dξ
2. (3.19)We substitute h by the inverse Fourier transform of the height pro�les ĥ(q)

∂th(r1) =
−Y Jion

(2π)2

∫

f(ξ)g′(0)
∫

(eiq·(ξ+r1) − eiq·r1)ĥ(q) dq2 dξ2 (3.20)Now we Fourier transform the whole equation
∂t

∫

e−ik·r1h(r1) dr
2
1 =

−Y Jion

(2π)2
g′(0)

∫ ∫

e−ik·r1+iq·r1

∫

f(ξ) (eiqξ−1)ĥ(q) dξ2 dq2 dr2
1.(3.21)



3.5. DATA ANALYSIS 33Note that ∫ e−ik·r1+iq·r1 dr2
1 gives a delta funtion (2π)2δ2(k − q), so

∂tĥ(k) = −Y Jiong
′(0)

∫

f(ξ) (eikξ−1)ĥ(k) dξ2 = −Eg′(0)ĥ(k)(f̂(k)−f̂(k = 0)).(3.22)This equation leads to instability/stability, if the sign of real part of the pref-ator of ˆh(k)at the right-hand-side is negative/positive.For all funtions f(r) > 0, (f̂(k) − f̂(k = 0)) < 0.1 Therefore if g′(0) > 0all the modes will be unstable and roughening happens in all length-sales.Let us speialize to the Gaussian energy deposition funtion Eq.3.4 and put
f(x, y) =

1

2πµ2
exp

−x2
+y2

2µ2 . (3.23)Thus
f̂(k) = e−

k2µ2

2 (3.24)and
∂tĥ(k) = −JionY (e−

k2µ2

2 − 1)ĥ(k). (3.25)If we now apply a gradient expansion up to 4th order, we get
∂tĥ(k) = −JionY (−1

2
k2µ2 +

1

8
k4µ4 −O(k6))ĥ(k). (3.26)Note that the k4-term would lead to a stabilization of modes at short wave-length. This result, however, is spurious as all modes are unstable, if all termsof the gradient expansions are taken into aount.3.5 Data analysisWe use two main methods to analyze the data obtained from simulations,saling analysis of surfae roughness and power spetral density of the surfaepro�le. They are introdued and explained in the following.3.5.1 Saling analysisTo study the saling behavior of the growing surfae, we investigate the inter-fae �width� whih is a measure for the �roughness� of the interfae. We de�nethe width of a 2-d interfae disretized in L× L segments, at time t as1 We want to evaluate ∆ = (f(k) − f(k = 0)). By de�nition ∆ =

∫

exp(ikr)f(r) dr −
∫

exp(i0r)f(r) dr =
∫

exp(ikr)f(r) dr −
∫

f(r) dr. The real part of ∆, ℜ(∆) =
∫

r
cos(kr)f(r) dr −

∫

r
f(r) dr, is learly negative.
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w(L, t) =

√

√

√

√

√

1

L2

L
∑

i=1

L
∑

j=1

[h(i, j, t) − h̄(t)]2 (3.27)where h(i, j, t) is the height of segment (i, j) and h̄(t) is the average height ofinterfae at time t. Starting with a �at surfae, h(i, j, 0) = 0 for all i.For large lasses of growth models w(L, t) obeys a universal saling from
w(L, t) ∼ Lαf(

t

Lz
) (3.28)where the saling funtion f has the following shape

f(u) ∼ uβ : u≪ 1 f(u) = const : u ≫ 1. (3.29)
α, β and z are alled �roughness�, �growth� and �dynami� exponent. Theseexponents satisfy the saling law z = α/β. Based on the values of the salingexponents, surfae and interfae growth mehanisms are lassi�ed into di�erentuniversality lasses. For more detail see Barabási and Stanley (1995).3.5.2 Power spetral densityThe power spetral density (PSD) of a given 2-d surfae pro�le h(x, y) isde�ned as

S(qx, qy) = | 1√
2π

∫ ∞

−∞
h(x, y)e−i(qxx+qyy) dx dy|2 =

F(~q)F∗(~q)

2π
(3.30)where F is Fourier transform of the funtion h and F∗ is its omplex onjugate.The surfae width is alulated by integration of S

w2(t) =
1

2π

∫ ∞

0
qS(q, t) dq. (3.31)For any given linear growth equation, one an onsider plane wave solutionswith the wavevetor ~q = (qx, qy) satisfying a growth equation in the form of

∂h(~q, t)

∂t
= −h(~q, t)R(q) (3.32)where R(q) is the growth rate whih an be positive or negative leading toroughening or smoothing the surfae respetively. Eq. 3.32 an be easily solvedand the orresponding power spetral density funtion is
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(a) (b) q

S

t=1
t=40

Figure 3.5: (a) upper row : surfae pro�les with L = 512 after left : 1 ion/atom, right : 40ions/atom sputtering at θ = 50. lower row: orresponding 2-d Fourier transform of abovepro�les. (b) power spetral density (averaged over azimuthal angle) of surfae pro�les shownin (a). By inreasing the sputtering time, order of strutures inreases and the height of thepik in PSD grows as its width dereases.
S(~q, t) = S(~q, 0) exp(−2R(q)t) (3.33)where S(~q, 0) is the power spetral density of the surfae at t = 0.PSD an be measured by many optial sattering methods and also by di-ret Fourier transform of the surfae pro�le. Peaks in the PSD averaged overangles orrespond to the seletion of spei� wavelength. R an be estimatedby measuring the growth rate of peaks height. Periodi arrangement of peaksre�ets the periodiity of the surfae patterns. Moreover, the angular distribu-tion of the Fourier transform is related to the strutural anisotropies. Finally,the width of the PSD is a measure of the degree of order, i.e. the qualityof regular patterns. Examples of surfae pro�les, orresponding 2-d Fouriertransform and PSD are depited in Fig. 3.5.
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Chapter 4
Erosion and di�usion-drivenpatterns
Pattern formation in IBS is an outome of a ompetition between erosion andlateral di�usion. The kineti rates of these proesses are ontrolled by ionparameters (e.g. �ux and energy) and substrate parameters (e.g. di�usivityand temperature) respetively. In rystalline materials, two di�erent regimesof pattern formation are observed by hanging the erosion and di�usion on-ditions. In a high �ux and low temperature regime, erosion events are thedominant proesses driving the pattern formation, and di�usion ats only asto smooth the long wavelength �utuations. Therefore the emerging patternsare ripples oriented in the diretion determined by the ion-beam diretion,whih is ompatible with the preditions of the linear BH theory. In a low �uxand high temperature regime, di�usion is the dominant fator and thereforepatterns beyond the preditions of BH theory emerge. In this regime, depen-dent on the di�usion bias of the sample, and the rystallographi orientations,ripples appear whih are oriented by rystal anisotropies rather than by theion-beam diretion. Furthermore, other kinds of patterns, e.g. positive or neg-ative pyramids (pits) develop. In the KMC simulations, erosion and di�usionparameters are ontrolled by hanging the rate of ion impats and di�usionattempt frequeny. As a ontrol parameter, we onsider R = τi/τd, where τiis the time interval, in whih one ion per atom is shot into the surfae and τdis the waiting time between two di�usion sweeps applied to eah atom.We start this hapter with a brief review of simulation results obtained37



38 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSin the erosion-driven regime under varying parameters. Then we introduemodels of surfae di�usion and disuss the e�ets indued by ombining eahof them with erosion events in high �ux regime. Finally, we present resultsovering the rossover from the erosion-driven to the di�usion-driven regime.4.1 ErosionAording to the work of Sigmund as mentioned in setion 3.3, the spatialshape of ollision asades as well as the distribution of deposited energy byimpinging ions is approximated by a 3-d Gaussian funtion in almost all thetheoretial models (inluding omputer simulations). The distribution funtionis parametrized by its longitude and latitude expansions σ and µ, and is en-tralized at a point at the distane a (penetration depth) from the point of ionimpat on the surfae. Using BCA pakages (i.e. SRIM (Ziegeler et al. 1985)),it is possible to alulate σ and µ for every ombination of ion and substratetype. Systemati studies on the dependene of patterns on these parametersare presented by Yewande et al. (2006). The results an be summarized bya kineti phase diagram, showing di�erent morphologies (ripples, dots, holesand ellular strutures for di�erent values of σ and µ.With Gaussian-shaped ollision asades, pronouned ripples with waveve-tors oriented perpendiular to the projetion of the ion-beam onto the surfaeare not obtained in KMC. We demonstrate that this de�ieny an be removedby replaing the Gaussian shape by a shape of ollision asades obtained fromBCA simulations.4.1.1 Dependene of patterns on ion parametersBy systemati hanges in the values of σ and µ for an inidene angle of θ = 50◦,six di�erent types of qualitative behavior orresponding to six di�erent regionsin the (σ, µ) spae are observed. In Fig. 4.1, these six regions are indiatedfor t = 3 ions/atom, at whih almost all the surfae topographi features aredistint; the orresponding pro�les are shown in Fig. 4.2. The boundariesshown in this sketh do not represent abrupt transitions from one topographyto another and they hange with time.The following features distinguish the di�erent topographies in Fig. 4.2:
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00Figure 4.1: Kineti phase diagram (θ = 500, d = 6). Region I: rough surfae; II: holes; III:lear ripples oriented perpendiular to the ion-beam diretion; IV: short ripples (resultingfrom inreased µ); V: dots; VI: non-oriented strutures. The short arrows indiate theevolution of the boundaries between di�erent regions with respet to time. Hene, regionIII grows at the expense of region I, while region II desribes only a short transient.Region I: rough surfae (see Fig. 4.2(I)) whih, as time inreases, evolvesto a hole topography. The �sizes� of the holes grow and �nally oalese to aripple topography at long times.Region II: holes are prominent in this region (see Fig. 4.2(II)). Here the�number� of holes inreases with time, and again ripples are formed at longtimes, but at an earlier time than as region I (not shown as separate �gure).Region III: the ripple phase (Hartmann et al. 2002; Yewande et al. 2005).Here ripples form from earliest time. Thus, omparing regions I,II and III,there seem to be two di�erent proesses of ripple formation. Ripples an beformed quikly by evolving diretly from a slightly rough surfae, or an beformed slowly via the reation of holes, whih oalese to ripples on longertime sales. Note that in regions I and II, the resulting ripple wavelength issmaller than the size of the holes generated at smaller time, while in region IIIthe ripple wavelength is larger than the tiny holes.Region IV: onsists of a mixture of dots and short ripples, whih eventuallygive way to the dot �phase� (region V), as σ is inreased. Hene, this regionseems to �interpolate� between regions III and V.Region V: onsists of dots. These dots are formed on some ripple-like stru-
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(a)Figure 4.2: Pro�les for parameters hosen from eah topographi region in Fig. 4.1;
θ = 500, d = 6, t = 3.0. (I) σ = 1, µ = 0.5; (II) σ = 1, µ = 1.5; (III) σ = 3, µ = 1.5; (IV)
σ = 4, µ = 2.5; (V) σ = 5, µ = 5; (VI) σ = 0.5, µ = 5. The bar, on all pro�les, denotes theion-beam diretion.



4.2. DIFFUSION 41tures oriented parallel to the ion-beam diretion.Region VI: onsists of non-oriented strutures exhibiting a typial lengthsale, but only a slight orientation preferene parallel to the ion-beam.4.1.2 BCA model based erosionIn KMC simulations beyond inidene angles of θ ≈ 70◦ the ripples withwavevetors parallel to the ion-beam diretion vanish. In Fig. 4.3 () we seesimulation results obtained with a Gaussian shape of the ollision asades.Note that small ripple fragments remain, but the rotated ripples, whih areexpeted from linear BH theory and observed in experiments, do not appear.We have already notied in setion 3.1 that the shape of asade, whih isobtained from BCA simulations, di�ers signi�antly from a Gaussian. Theright panels of Fig. 4.3 ((b) and (d)) show simulations with this modi�edshape. Now the rotated ripples observed in experiments appear as pronounedstrutures.4.2 Di�usionAlthough the important role of surfae relaxation events in pattern formationby IBS is evident, it is not yet lear what is the most realisti model of atomidi�usion in the disrete SOS framework. There are di�erent proposals (mostlyarising from MBE studies), whih an partially explain the features observed inexperiments, but none of them have the apability to desribe atomi mobilityin general form. Measuring the growth exponents orresponding to eah modeland omparing them to the values obtained in MBE experiments is a way todetermine the relevant model to eah ondition of experiments. However,entanglement of di�usion and erosion makes onlusions more di�ult in thease of IBS. As mentioned in setion 3.3.2, we have implemented di�erentdi�usion models in our KMC simulations. In the following, some of well studieddi�usion models are introdued brie�y. We desribe them as disrete partilealgorithms as well as ontinuum equations for the evolution of the height pro�le
h(x, t).
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(a) (b)

() (d)Figure 4.3: Two sets of simulations based on Sigmund's energy distribution and Feix etal. for (a) and (b) θ = 50◦, () and (d) θ = 80◦. The left panels orrespond to Sigmund'sdistribution and the right panels to Feix et al. distribution. The evolved patterns arequalitatively the same for θ = 50◦, whereas for θ = 80◦ patterns emerged from Feix etal.'s distribution are more similar to the experimental results (one example is depited inFig. 2.10).



4.2. DIFFUSION 434.2.1 Irreversible modelsIn the irreversible models of di�usion, a partile stiks to a neighboring partileand keeps this position permanently. The irreversible attahments orrespondto models for low temperature regimes, where breaking the bonds is highlyunlikely due to the large binding energies.Family modelFamily (1986) has onsidered e�ets of surfae relaxation in saling behaviorof growing surfaes by the use of disrete models. By adding a very simple re-laxation proess to the random deposition of partiles to a (1+1)-d surfae, hereahed a new universality lass. In the Family model, every arriving partileon the surfae is allowed to relax to one of the nearest neighboring sites if ithas lower height than the initial target site. This proess leads to redution ofroughness and smoother growth of surfae as ompared to random depositiongrowth. The saling exponents (de�ned in setion 3.5.1) of the Family modelin 2-d are α = 0.48 ± 0.02 and β = 0.24 ± 0.01. Relaxation to farther neigh-boring sites, for example next nearest neighbors, does not hange these salingexponents. The Family model is shown to belong to Edwards-Wilkinson (EW)universality lass.Studying surfae �utuations in a settled granular material, Edwards and Wilkinson (1982)found the simple ontinuum equation to desribe the proess by whih a par-tile settles and omes to rest on the existing surfae of the paking. In EWdesription, the orresponding term in the growth equation of a randomlydriven surfae is D∇2h, where D is ating like a surfae tension oe�ientwhih smooths the height �utuations of the surfae. If this relaxing termis ombined with a random noise of adding partiles, the growth equationbeomes
∂h(x, t)

∂t
= D∇2h+ η(x, t). (4.1)Saling analysis of EW equation in d+1-dimension, leads to the followingvalues for saling exponents (Barabási and Stanley 1995)

α =
2 − d

2
, β =

2 − d

4
, z = 2 . (4.2)



44 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSWolf-Villain, Das Sarma-Tamborenea and Lai-Das Sarma modelsThe �rst models for non-equilibrium growth proesses at atomisti level in-luding lateral motion driven by the binding energetis were introdued byWolf and Villain (1990) and Das Sarma and Tamborenea (1991) independently.In both models (WV and DT), a deposited partile relaxes to the neighboringsites if it inreases the number of its in-plane neighbors, i.e. partiles move toinrease the number of their lateral bonds. In WV, there is preferene to max-imize the number of in-plane bindings, whereas in DT, hops to the sites withlarger (not neessarily largest) bindings are performed with equal probability.A more detailed version of DT was introdued by Lai and Das Sarma (1991)(LD), in whih the partiles landed onto a kink (i.e. in 1-d, the site with oneneighbor) are allowed to jump to a neighboring site with a smaller step height.In this proess, upward and downward movements are both aepted. Salingexponents, measured for these models are shown in Table 4.1.Another disrete model whih shows orrespondene to∇4 universality lassis the so alled �larger urvature model� (LC) introdued by Kim and Das Sarma (1994).In LC, a partile relaxes to one of its nearest neighbors x, where the urvatureof the surfae at this point h(x + 1) + h(x − 1) − 2h(x) is larger than at theoriginal site. The LC model is shown exatly to belong to ∇4 universalitylass.The ontinuity equation is a starting point to obtain a ontinuum desrip-tion for surfae di�usion driven by energetis of atomi bindings, whih impliesthat the number of partiles remains onstant during lateral motion
∂h(x, t)

∂t
= −∇ · j(x, t). (4.3)The surfae urrent density j is driven by the gradient of the hemial potential

µ(x, t), i.e.
j(x, t) ∝ −∇µ(x, t) (4.4)Sine the origin of hemial ativated transportation are binding energies ofneighboring atoms, and the number of neighbors of an atom loated at a pointis proportional to the urvature of surfae pro�le at that point, we �nd thatthe hemial potential in suh system is
µ(x, t) ∝ −∇2h(x, t). (4.5)



4.2. DIFFUSION 45Combining Eq. 4.3, 4.4 and 4.5, the ontinuum expression desribing surfaedi�usion reads like
∂h(x, t)

∂t
= −K∇4h, (4.6)where K is a di�usion rate (whih in the ase of thermally ativated di�usionsales with 1/kBT ). This orresponds to the ontinuum desription of LC. Ifthe di�usion proess is ombined with a random deposition of partiles, thegrowth equation of the surfae reads

∂h(x, t)

∂t
= −K∇4h+ η(x, t). (4.7)whih has the saling exponents (Barabási and Stanley 1995)

α =
4 − d

2
, β =

4 − d

8
, z = 4. . (4.8)Non-linear di�usive termsThe most relevant term in the sense of saling behavior, whih an be written asa gradient of a hemial potential, was introdued by Lai and Das Sarma (1991).It is given by ∇2(∇h)2 and orresponds to ontinuum desription of LD. Andwhen ombined with Eq. 4.7, we get

∂h(x, t)

∂t
= −K∇4h+ λ1∇2(∇h)2 + η(x, t), (4.9)where λ1 is another di�usion rate. Saling exponents alulated for the men-tioned growth equation are (Lai and Das Sarma 1991)

α =
4 − d

3
, β =

4 − d

8 + d
, z =

8 + d

3
. . (4.10)Many numerial works are done to determine the saling exponents of thementioned disrete models. A summary of the most well-known alulatedvalues for 2-d systems is given in Table 4.1.4.2.2 Hamiltonian modelsIn another lass of di�usion models alled �Hamiltonian models�, atomi hopsare assoiated with a hange in a HamiltonianH and aeptane of a hop is al-lowed aording to a Metropolis riterion (Siegert and Plishke 1992; Krug et al. 1993;Siegert and Plishke 1994). In this model, all the partiles at the top-most



46 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSTable 4.1: A summary of alulated values of the growth β and roughness αexponents for di�erent irreversible disrete di�usion models in (1+1)-d.
α β Ref.Family 0.48 ± 0.02 0.24 ± 0.01 (Family 1986)WV 1.4 ± 0.1 0.36 ± 0.072 (Wolf and Villain 1990)DT 1.47 ± 0.10 0.375 ± 0.005 (Das Sarma and Tamborenea 1991)LD 1.05 ± 0.10 0.340 ± 0.015 (Lai and Das Sarma 1991)LC 1.5 ± 0.1 0.375 ± 0.010 (Kim and Das Sarma 1994)layer are the subjet of di�usion. The di�using partile hops from site i to aneighboring site j with the normalized rate

wi→j = [1 + exp(
1

kBT
∆Hi→j)]

−1 (4.11)where ∆Hi→j is the hange in Hamiltonian due to the hop from site i to site
j. The Hamiltonian has the general form of an unrestrited SOS model

H =
1

2
J
∑

〈i,j〉

|hi − hj|n, (4.12)where 〈i, j〉 ounts for all the nearest neighbors, J is oupling onstant and nis a positive integer number. The Hamiltonian model is able to reproduesome signi�ant features of atomi transport mehanisms in a wide rangeof materials. For example, there is no energy ost for di�usion of a singleadatom or vaany on a �at surfae in the desribed model whih leads tothe same di�usivity for adatoms and vaanies on (001) faets. This featureis extensively reported for metalli surfaes (Chan and Chason 2007). Themodel is also able to simulate the so-alled �Shwoebel e�ets�, whih refersto the repulsion of di�using atoms from desending step edges and an ob-served up-hill urrent on stepped surfaes (for more details see setion 4.2.4).Siegert and Plishke (1994) showed that for n = 1, 2 and n > 2, the mentionedmodel indued negative, zero and positive Shwoebel e�ets respetively andin general, inreasing n leads to stronger Shwoebel e�ets.Another version of Hamiltonianmodels for di�usion is introdued by Stepanova et al. (2005),in whih the assoiated Hamiltonian is
H =

1

2
aγ(|κi + κj |), (4.13)



4.2. DIFFUSION 47where κ is the loal urvature, a is the inter-atomi distane and γ is the energyof one atomi bond. The mentioned Hamiltonian simulates the tendeny ofatoms to di�use to the positions with more neighbors.4.2.3 Thermally ativated modelsAnother suessful disrete model for surfae di�usion is known as �thermallyativated di�usion� models (for example see �milauer et al. (1993)), and isbased on an Arrhenius form of hopping rate
k(E, T ) = k0 exp(

−E
kBT

) (4.14)where k0 = 2kBT/hp is attempt frequeny of a surfae adatom (hp is Plankonstant). The energy barrier E is the average of the transition state of theorresponding hop. In KMC it is expressed by bond energies of the di�usingadatom. There are di�erent variants of expressing E by bond energies used inthe literature, whih we now introdue.Bond-breaking modelsIn these models, the energy barrier E onsist of the energy of all bonds of themoving atom at its initial position. As the energetis of in-plane bonds (Enn)is di�erent from the one between the atom and the substrate (Es), the totalbinding energy is
E = Es + nEnn (4.15)where n is the number of in-plane nearest neighbors. Some authors also takeontributions from the next-nearest-neighbor bonds into aount (Johnson et al. 1994;Tok et al. 2004). An extra Shwoebel barrier may also be added to the bindingenergies (for more detail see setion 4.2.4).Note that in most materials, energy barriers are not known preisely, andespeially in rystalline substrates, barriers against movements in di�erentdiretions are di�erent. The main drawbak of the bond-breaking models isthat they generally imply some features of atomi motions, whih are not inaordane with experiments or moleular dynamis simulations. For exampleit is frequently observed that adatoms aptured by a step-edge display fast



48 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSdi�usion along the step, but detahment from the step ours at a muh largerrate although the bond-breaking model would predit equal rates.Generally, all features, whih are due to the fat that the transition stateenergy an not entirely be expressed by the initial state of the hop, an not bealso desribed by bond-breaking models.Net-bond-breaking (Kawasaki-type) modelsA better and more realisti representation of E makes use of both the initialand the �nal state of a hop. For example one ould assume that E is omposedof a onstant term Es and an extra ativation energy ∆E = max[0, (ni−nf)Enn]given by the binding energy di�erene of initial (i) and �nal (f) states (or zero,if the di�erene is negative, i.e. if binding energy is gained by the hop).Note that now barriers to di�usion of an adatom and a vaany on a �atsurfae are equal and there is no ontribution from in-plane bonds to the barrieragainst di�usion along an step-edge.Attempt rate, absorption of substrate termIn our simulations we use Es = 0.75 eV and Enn = 0.18 eV. These values arewithin plausible bounds, but they do not aim at modeling a spei� mate-rial. Note that in a KMC simulation by these values, most of the attemptswould be rejeted for ommon experiment temperatures (0.04 · · ·0.1eV). How-ever, the attempt frequeny is rather high; for example k0 at room temper-ature is ∼ 1013 s−1. Performing so many attempts for eah atom is ab-solutely out of the power of the available mahines. So an alternative tospeed up the simulations is to resale the attempt frequeny k0 by a fator of
exp(−Es/kBT ). The resaled attempt frequeny k1 = 2kBT/hp exp(−Es/kBT )is strongly temperature-dependent. In Table. 4.2, values alulated for somegiven temperatures and Es = 0.75 eV are reported. Note that a slight inreaseof 0.05 eV in the value of Es (an example used by Chason et al. (2006)) leadsto a redution of one order of magnitude in the value of k1. In the urrentwork, resaled attempt frequeny of 750 s−1 is used as a default value, but asystemati investigation on the role of attempt frequeny in pattern formationin IBS is presented in setion 4.3.2 .



4.2. DIFFUSION 49Table 4.2: Attempt frequeny of atomi hops for the Arrhenius model of di�u-sion; for the �xed value of substrate binding energy Es = 0.75 eV and di�erentsubstrate temperatures. By slight hanges of temperatures, the attempt fre-queny hanges some orders of magnitude.
T (K) 300 350 400 500 600 700
k1 (s−1) 3 230 5.9 · 103 5.7 · 105 1.2 · 107 1.2 · 108TemperatureIn addition to the mentioned e�ets on hopping attempt frequeny induedby slight hanges of temperature, probability of aeptane of di�erent trans-port events, like detahments and inter-layer hops are also temperature de-pendent. To evaluate the role of temperature in the growth proess of asurfae, Tamborenea and Das Sarma (1993) performed simulations on 1+1-dimensional MBE with Es = 1eV and Enn = 0.3 eV for di�erent temperaturesand also di�erent ratios of deposition and di�usion rates. They observed threemain regimes in temperature: (i) low temperature regime, where the depositedpartiles are frozen, and no e�etive di�usion ours (growth exponents sim-ilar to ones for random deposition), (ii) an intermediate temperature regime,with an e�etive di�usion with growth exponents similar to what is preditedby linear theory in the form of ∇4, and (iii) a high temperature regime, inwhih di�usion smooths the surfae and the observed saling is similar to thatof EW. Similarly, three regimes has been de�ned in deposition experiments,based upon the ratio of di�usion and deposition rate. Inreasing the di�usionrate or dereasing the deposition rate is equivalent to an inrease in tempera-ture.4.2.4 Ehrlih-Shwoebel e�ets, pattern formation by dif-fusionDi�usion does not always �atten the surfae, there are some kinds of thermallyativated transport mehanisms whih also indue instabilities. This so-alledEhrlih-Shwoebel (ES) e�et is the outome of an e�etive repulsion from



50 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSdesending step edges. If an adatom di�using on a terrae reahes an asendingstep, it is most probable that it will stik to the step-edge and less likely todetah again. In ontrast, there is a barrier whih repulses the adatom if theadatom approahes a desending step. The repulsion indues an uphill urrentwhih inreases the slope of underlying strutures.Although there is no �rst priniple derivation of the urrent density jES of anES urrent, there are two phenomenologial models whih are used frequently,the �rst gives (Johnson et al. 1994)
j(∇h) ∝ (

ℓ2d∇h
1 + (ℓd∇h)2

) (4.16)and the seond one (Krug 1995)
j(∇h) ∝ (∇h)(1 − ζ(∇h)2). (4.17)

ℓd and ζ are alibrating parameters. Note that the seond form implies a re-versal of the urrent diretion (from uphill to downhill), whih is in aordanewhit experiments.To implement this e�et in disrete models of di�usion, one may either set
n > 2 in Hamiltonian models or add an extra barrier to hopping barriers inthermally ativated di�usion models as the following.

EES(i→ f) =



















EES if f is in plane with i andat the upper edge of a step
0 otherwiseIn this present work the Shwoebel barrier is set to ESB = 0.15 eV. Ashemati piture of the ES e�et is shown in Fig. 4.4 and a typial morphologyindued by ES e�ets in MBE depited in Fig. 4.5.4.2.5 Di�usion in ompound systems, lusteringTo assess the features of di�usion and lustering of a sub-mono-layer overageof (metalli) adatoms on �at and pre-rippled surfaes, we have performed KMCsimulations. These simulations will later be extended to inlude ion-beamerosion (in hapter 5), but here, we �rst fous on the patterns indued purelyby di�usion of Ag atoms with onstant overage of 30% of a mono-layer on
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Figure 4.4: Shemati piture of the ES e�et: a) a di�using adatom on a viinal surfaeis repelled from a step edge; b) orresponding lattie potential showing the ES barriers atstep edges. Adapted from Siegert (1995).

Figure 4.5: Top-view image of 65 × 65 nm2 Fe(001) sample showing the pyramid-likesurfae strutures after epitaxial growth. Adapted from Thürmer et al. (1995).



52 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSa Si surfae. The orresponding parameters for the di�usion of the metalliatoms are given by Es = 0.48 eV and Enn = 0.36 eV (no ES barrier). Theseparameters are taken from ab initio simulations for Ag atoms on Si substrate(Kong et al. 2003). In the simulation model, we kinetially forbid all moves,whih lead to atoms on top of Ag atoms (Ag atoms stay always in the topmostlayer and the height of Ag layer is restrited to 1 atom)Metalli lusters on �at templatesSimulations show that initially, randomly distributed metalli partiles at in-termediate and high temperatures form lusters whih oarsen in time. Toquantify the lustering, we onsider a 2-d array with the same area as thesurfae. We �ag every site of this array by �A� and �B� if the topmost atomin the orresponding loation in the surfae pro�le is a surfatant or substrateatom respetively. Now we ount the number of neighboring pairs, e.g. NA−Bis the number of A− B pairs. Now we de�ne the lustering oe�ient C as
C = (

NA−A +NB−B

NA−B
)(

2cAcB
c2A + c2B

) (4.18)where cB is the surfae overage of surfatants and cA = 1− cB. Note that, forrandom distribution of partiles Nα−β ∝ cαcβ and therefore C = 1, whereasfor very large system size, omplete segregation of partiles orresponds to
C = ∞ (beause NA−B inreases linearly with the system size, while NA−Aand NB−B inrease quadrati). In Fig. 4.6, C as a funtion of temperature fordi�erent simulation time is shown. For very low temperatures, no lusteringours even for long-time runs. In intermediate temperature, small size lustersform and grow in time slowly, whereas in high temperature regime an stronglustering is observed. The di�usivity of partiles is inreased by inreasingthe temperature and in the �xed simulation duration, the partiles have morehane to meet eah other and sine their binding energy is rather high, asthey attah, it is very unlikely to detah again.Metalli lusters on pre-sputtered templatesThe same simulations are now performed using a sinusoidally modulated sub-strate template. Examples of distribution of partiles at di�erent run timesand temperatures are depited in Fig. 4.7. Note the following features:



4.2. DIFFUSION 53

Figure 4.6: Clustering evolution of partiles on a �at template as a funtion of temperature.Di�erent olors orrespond to di�erent simulation times. By inreasing the temperature,partiles make larger lusters. In all ases the size of lusters tends to inrease, althoughthe inrease in low temperature is very slight. For the de�nition of c see the main text.
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Figure 4.7: Clustering of partiles on a sinusoidal template depending on temperature andtime. By inreasing the temperature, partiles make larger lusters. In all ases the size oflusters tends to inrease, although the inrease in low temperature is very slight. Largelusters formed in high temperature, loated mainly in the valleys and plateaus, althoughthere is a preferene for valleys in ompare to the plateaus.(i) Partiles aumulate in 1-d arrays (�nano-wires�) parallel to the align-ment of template ripples;(ii) The width of nano-wires reahes a maximum size proportional to thewavelength of template ripples at enough time sales(iii) Nanowires have the tendeny to form at valleys of templates, the nextpreferred loations are the hilltop ridges.All three features have been found in experiments (Ag on Si) by Oates et al. (2007).4.3 Erosion-Di�usion interplayIn this setion we fous on the study of morphologies emerging in KMC sim-ulations of IBS with di�erent di�usion mehanisms.



4.3. EROSION-DIFFUSION INTERPLAY 554.3.1 Dependene of patterns on di�usion in the erosiveregimeDi�usion is often onsidered as an unspei� smoothing mehanism in theerosive regime of IBS experiments on amorphous surfaes. In the ontinuumtheory, it is subsumed as a single term ∼ −B∇4h. In this subsetion we showthat �ontrary to this ommon belief� di�erent di�usion mehanisms, whihwould all end up in a −B∇4h term in the ontinuum limit do have profounde�ets on the morphology, espeially in the limit of long times, i.e. high �u-enes. Figs. 4.8 and 4.9 ompare the time evolution of sputtered surfaes underidential onditions of erosion but with di�erent di�usion models. Fig. 4.8 de-pits the evolution of surfae morphology with a Hamiltonian di�usion model(n = 2, T = 0.2J) and Fig. 4.9 shows orresponding results for a net-bond-breaking model. The short-time behavior of both models is very similar, aninitial roughening is followed by the formation of ripples. The di�erenes be-tween the two models arise after ∼ 10 ions/atom of sputtering. At that time,ripples produed in the ase of the net-bond-breaking model saturate in am-plitude and align more regularly, and the number of defets redues as timeproeeds, whereas the ripples produed by the Hamiltonian model start to getblurred and shorten in length.In Fig. 4.10 we ompare the morphologies of the four main types of di�usionmodels we have introdued (Wolf-Villain, Hamiltonian, bond-braking and net-bond-braking) at very long times.The irreversible Wolf-villain model (similar to a T = 0 surfae relaxation)produes an extremely ordered stable pattern of straight ripples (even at
t ∼ 104 ions/atom), whereas the patterns of the Hamiltonian and bond-breaking models loose long-ranged ripple order after a few hundred erodedmonolayers. But note that the net-bond-breaking model shows a defet-freeripple pattern after 400 ions/atom. Although the overall di�usivity of thenet-bond-breaking is approximately equal to that of the bond-breaking andthe Hamiltonian models, net-bond-breaking implies omparable di�usivity ofadatoms and vaanies (unlike the bond-breaking model) and is more sensitiveto the energetis of bonds than to surfae morphology, whih dominates theHamiltonian model.
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Figure 4.8: Surfae pro�le orresponding to Hamiltonian model of di�usion with n = 2 andsubstrate temperature T = 0.2Jk−1

B
and default values of the beam parameters (θ = 50◦).Starting from top to bottom and left to right, t = 0.5, 1.5, 4.0, 9.0, 14.0 and 22.0 ions/atom.The ion-beam diretion is indiated by the bar. Lateral size of the system L = 256. Afterinitial formation of ripples, they stabilize and then start to get blurred.
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Figure 4.9: Surfae pro�le orresponding to Arrhenius (net-bond-breaking) model of dif-fusion with substrate temperature T = 600 K, and default values of the beam parameters(θ = 50◦). Starting from top to bottom and left to right, t = 0.5, 1.5, 4.0, 8.0, 12.0 and18.0 ions/atom. The ion-beam diretion is indiated by the bar. Lateral size of the system
L = 256. Ripples form after ∼ 3 ions/atom and grow in lateral size and get more orderedwith time. The ripples amplitude saturates for longer times.
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Figure 4.10: Long time morphologies emerge from di�erent di�usion models (a) Wolf-Villain for t ≈ 104 ions/atom, extremely ordered patterns with tilted orientation in respetto the ion-beam orientation, (b) Hamiltonian with n = 2, for t = 300 ions/atom, ratio-nal ordered ripples whih blur in time gradually, () Arrhenius bond-breaking for t = 20ions/atom, rather short stable ripples with weak ordering and (d) Arrhenius net-bond-breaking for t = 400 ions/atom, very ordered ripples whit annihilation of defets by time.
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Figure 4.11: Morphologies (L = 64) emerging from di�erent di�usion onditions for θ = 0◦at t = 10 ions/atom. (a) no di�usion, (b) Arrhenius bond-breaking di�usion with defaultparameters, () Arrhenius net-bond-breaking di�usion with default parameters and (d) Ar-rhenius net-bond breaking di�usion with the enhaned attempt rate (see the main text).



60 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNS4.3.2 Crossover from erosive regime to di�usive regimeWe now turn to a disussion of the aessibility of the rossover between theerosive and the di�usive regime in KMC simulations. To estimate the onset ofthe rossover we adopt an argument from Villain and Pimpinelli (1994) aboutadatom island formation and stability in MBE, i.e. we simply assume thaterosion during IBS is equivalent to a �deposition of vaanies� at a harateris-ti rate F , whih is the ion �ux times the sputtering yield. The typial lengthsale of surfae strutures emerging from di�usion and deposition is given byVillain and Pimpinelli (1994)
ℓd ∼ (

D

F
)1/6, (4.19)where D is the di�usion oe�ient, whih in Arrhenius models is ∼ k1a

2.Requiring ℓd to be of the order of typial ripple wavelength produed by IBS (∼
10a in simulations), it implies k1 ∼ 106 s−1, whih is a fator of 103 higher thanthe default value we use. Enhaning the number of di�usion steps in betweentwo ions soon beomes a omputational bottlenek of KMC simulations.To hek if this enhaned rate is su�ient to produe �ngerprints of Shwoebele�ets, we performed simulation omposed of randomly adding and/or remov-ing partiles from an initially �at surfae. Fig 4.12 shows that pyramid-likestrutures emerged from this mentioned senario. Finally, we performed IBSsimulations using the enhaned di�usion rate for normal and oblique inidene.Fig. 4.11 (b) and () show the patterns emerging from normal inidene irradi-ation with bond-breaking and net-bond-breaking di�usion model. In Fig. 4.11(d) the di�usion rate of the net-bond-breaking model is enhaned by a fatorof 103. Only in this ase, pyramid strutures with edges oriented along <100>diretions �hallmark of ES urrent-indued strutures (see Fig. 4.12)� arereated. Under oblique inidene, the ripple orientation deviates from thediretion of the ion-beam projetion into the surfae and larger parts of theripples follow the rystallographi <110> diretions as shown in Fig. 4.13.Fig. 4.14 summarizes our simulation results on rossover of morphologiesbetween erosion and di�usion dominated strutures. In KMC models the on-netion to time sales of experiments is made via the inter-event intervalswhih are proportional to inverse rates. In a typial experiment, �uxes are ofthe order of 7.5×1015 ions m−2 s−1 whih orresponds to Φ ≃ 1 ion/(atom·s).



4.3. EROSION-DIFFUSION INTERPLAY 61For a system of size L × L, one di�usion step (one sweep over the wholelattie) is taken after ΦL2/k1 erosion steps (shooting one ion). The defaultvalues for a system with L = 128 lead to ratio of inidene interval to dif-fusion interval (R = τi/τd = 0.1), whih means one di�usion step is takenafter shooting 12 ions. We inreased this ratio up to 100, orresponding to
k1 = 1.2× 106 s−1. Snapshots of the evolving topographies for di�erent valuesof R are shown in Fig. 4.14. A wide variety of morphologies from ripples fol-lowing the ion-beam diretion to smooth surfaes (from layer-by-layer erosion)are overed. The harateristi oarsening of strutures reported in experi-ments (see setion 2.1.1) is observed for τi/τd = 1, 2 and 5. (2nd, 3rd and4th rows). A transition from ripples to pyramids ours on longer times for
τi/τd = 5, whereas pyramids form diretly from intermediate-time roughenedsurfaes for τi/τd = 10. For high di�usion, �utuations in height of surfae donot exeed more than ∼ 1 layer whih is ommonly observed in layer-by-layerregimes.The roughness of morphologies shown in Fig. 4.14 are alulated and shownin Fig. 4.15 emphasizing the strong suppression of erosion (BH) and di�usion(ES) type instabilities for high di�usion rates.
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Figure 4.12: Evolution of lusters formed by upper row: adatoms, middle row vaaniesand lower row: adatoms and vaanies together. The lateral size of the system L = 128. Theattempt frequeny is set to 106 s−1 whih orresponds to a redution of ∼ 10% in substratebond energy Es. Formation of ES indued patterns, i.e. pyramids, is evident.

Figure 4.13: Surfae pro�les of a system with L = 128 for θ = 50◦, φ = 0◦ at t = 3ions/atom and T = 0.01 eV. The bar indiates the azimuthal diretion of ion-beam. Left :Arrhenius di�usion with default parameters for bond breaking and ES barrier, right : sameas left, but with enhaned di�usion attempt rate.
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Figure 4.14: Surfae pro�les for di�erent R = τi/τd inreasing from up to down: 0.1, 1.0,2.0, 5.0, 10, 20, 50 and 100 evolving in time. snapshots from left to right at t =10, 20, 30,40 and 50. Temperature: T = 580 K.
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t

Figure 4.15: Corresponding roughness to the pro�les depited in Fig. 4.14. For smallvalues of R, the roughness inreases with time with smaller rate for larger R, wheres byinreasing the di�usion rate, after reahing a ertain value of R, roughening is suppressed.



Chapter 5
Surfatant Sputtering
Reently a novel sputter erosion tehnique has added further possibilitiesof �ne-tuning proessing onditions in many ways (Hofsäss and Zhang 2008;Hofsäss et al. 2009; Hofsäss and Zhang 2009). It prepares a sub-mono-layeroverage of the substrate surfae (A) with �surfatant atoms� (B), whih areonstantly re-deposited by o-sputtering of a nearby surfatant (ommonlymetalli) target (see Fig. 5.1). We all the o-deposited partiles surfatant(SURFae ACTive agENT) beause it has been observed that the depositedatoms at as ative agents to redue (or amplify) the sputtering yield of sub-strate atoms. The e�ets of surfatants are not limited to the modulation ofthe sputter yield. E�ets due to di�usion, lustering or mixing/demixing ofthe surfatants an be seen in di�erent experiments under di�erent ion-beamonditions and material ombinations. Depending on di�usion, mixing andalloying properties of surfatant and target atoms, the surfatant distributionmay either trend to form a homogeneously mixed A-B layer, or develop inho-mogeneous patterns by mehanisms like surfae segregation, island formation,lustering, di�usion instabilities or attahment to surfae defets. The ov-erage by a surfatant density signi�antly hanges the loal sputtering yieldof the substrate. In most ases the yield is redued, though in exeptionalases it may also be inreased (Berg et al. 1992). These loal hanges providea feed-bak mehanism between the pattern formation proesses of substrateand surfatant atoms. By hoosing appropriate surfatant-substrate ombi-nations, a variety of surfae patterns may be obtained in a ontrolled way.Furthermore, the surfatant distribution may itself beome a tehnologially65
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Metal

Substrate

Ions

Figure 5.1: Surfatant sputtering experimental setup; A metalli layer is loated besidethe main sample and ion-beam targets the sample and the metalli layer simultaneously.Therefore metalli atoms are eroded and re-deposited on the sample. By varying the angle
α the distribution of re-deposited metalli atoms an be tuned.useful, self-organized struture, e.g. emergene of ordered arrays of dots ornanowires. The deposition urrent of surfatants JB+ maintaining the averageoverage during sputter erosion, is tuned beyond the re-sputtering limit, sothat �lm growth of B is suppressed. This tehnique also allows to preparespatial pro�les of JB+, so that modi�ations of the yield from nanometer tomarosopi length sales an be ontrolled.We have set up both a Monte Carlo simulation model and a ontinuumtheory of surfatant sputtering. Here, we will only onsider the speial ase ofdemixing surfatant-substrate ombinations and assume that surfatant atomsare the topmost of the surfae provided by the substrate. In the following, wepresent the modeling of surfatants in our ontinuum theory and in KMC. Thenwe present results obtained for di�erent set of parameters, orresponding tothree senarios of pattern formation.5.1 ImplementationThe ontinuum and the KMC approah are related in the sense that both arebuilt upon the same basi physial mehanisms of erosion and surfae di�usion.The desription of erosion in both models are based on Sigmund's sputteringformula, and the ontinuum theory ontains a large length-sale desription ofthe surfae di�usion of substrate and surfatant as implemented in the KMCmodel. But let us emphasize that in our KMC model, surfatant partiles



5.1. IMPLEMENTATION 67form a overage (less that 100%) on the top most layer of the system and nointermixing with substrate or island formation with heights more than 1 mono-layer by surfatants is allowed. This restrition is not needed in ontinuumtheory.5.1.1 Continuum theoryThe ontinuum desription starts from the balane equation of mass withina sub-volume V of the A substrate and its surfae ∂V . The bulk density ρof the substrate is assumed to be onstant, the surfatant is haraterized bya varying surfae density σ. If we denote the erosion veloity (normal to thesurfae) by vn, the balane of substrate mass is expressed as ρvn = −JA−∇S ·jAwith erosion urrent JA and surfae di�usion urrent density jA. ∇S denotesthe surfae divergene. The balane equation for σ takes the form of
DSσ

dt
= −JB + Jrd · n −∇S · jB (5.1)Here, n denotes the outward normal unit vetor of the surfae. The transportderivative is given by Cermelli et al. (2005)

DSσ

dt
= ∂tσ + vnn · ∇σ − σvnκ, (5.2)It takes into aount all the temporal hanges of the surfae morphology. Here,

κ = ∇ · n denotes the mean urvature of the surfae.The model is ompleted by expressing the urrents and urrent densitiesin terms of the surfae geometry and the surfatant density. We take theexpressions for the erosion urrents in the absene of surfatants from the BHlinear and CB non-linear theories (see setion 3.4). In addition, we take intoaount modi�ations of the sputtering yields so that the erosion urrents ofsubstrate and surfatant, JA and JB, respetively, are given by
JA = J0YAgA(σ)(1 − νBH) (5.3)and
JB = J0YBgB(σ)(1 − νBH). (5.4)

J0 denotes the �ux of inident ions. YA and YB are the sputtering yields of thepure A and B system, respetively. We keep the �rst terms of the standard



68 CHAPTER 5. SURFACTANT SPUTTERINGgradient expansion of the yield modi�ation due to surfae morphology,
νBH = v′0 · ∇h+ νx
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. (5.5)The fators gA and gB are in the form of gA(σ) = max[1−λσ, 0] and gB(σ) = σto parametrize the hanges of sputtering yields due to small B overages. Thishoie is in aordane with the experimental �ndings of Hofsäss and Zhang (2008)for small surfatant densities. Note that the non-linearities in νBH may be keptup to any desired order, but we have to keep the full geometrial non-linearitiesin the transport derivatives, beause otherwise we would violate mass onser-vation during surfae di�usion.The surfae di�usion urrent densities jA and jB ontain near-equilibriumand non-equilibrium terms, whih are driven by the redution of surfae freeenergy and the external erosion and re-deposition �uxes respetively. Here, weonly take into aount simple ontributions arising from expansions in ∇h and
σ and a simple, phenomenologial expression for the non-equilibrium Ehrlih-Shwoebel (ES) urrent (see setion. 4.2.4), so that for the simplest ase ofisotropi (amorphous) samples

∇S jA ≈ K1(∇2)2 h+KA,ES∇2h
(

1 − ℓ2d(∇ h)2
) (5.6)and

∇S jB ≈ −∇(DB∇ σ) +KB,ESσ∇2h
(

1 − ℓ2d(∇ h)2
) (5.7)Continuum models, whih also onsider the time evolution of densities in asurfae layer have appeared in the literature, whih di�er in important as-pets from the present work. In the work of Shenoy et al. (2007), a bulkbinary alloy is onsidered, and in the work of Aste and Valbusa (2005) andCastro et al. (2005) a layer of adatoms of the target material is inluded. Bothpapers also di�er from the present work in the physial onepts, whih un-derlie the evolution equation of the surfae density.In the numerial solutions presented below, we have extended this sim-plest di�usion model in two ways: (i) we expliitly took into aount a ubianisotropy arising from eroding a (100) surfae. (ii) We let B atoms luster byputting DB ∝ max(1 − cσ, 0). This has been done to failitate omparisonswith our Monte Carlo simulations, whih naturally inlude these e�ets. The



5.1. IMPLEMENTATION 69system of non-linear partial di�erential equations, whih make up the ontin-uum model have been solved by a �nite element method. We used a linearimpliit Euler time stepping algorithm and C1 �nite elements on a triangulargrid. Similar solver has been set up for MBE by Burger (2006). We have im-plemented the algorithm using the free software FEM pakage FreeFEM++.15.1.2 KMC modelWe modi�ed our KMC model to inlude surfatant atoms and their e�ets onsputtering and di�usion of substrate atoms as the following. Eah surfae siteis oupied either by a substrate atom (A) or by a surfatant atom (B). Thesputtering probabilities for A and B atoms may be di�erent, but note thatonly surfae atoms are sputtered o�. Thus, a B atom at r suppresses the Asputter yield at this site ompletely. In addition, a B atom may also reduethe sputter yield of A atoms at a nearest neighbor site by a fator 1 − Λ ;
0 ≤ Λ ≤ 1. B atoms, whih are sputtered o� are immediately replaed viarandom re-deposition. The implemented di�usion model is the thermally a-tivated Arrhenius model with net-bound-breaking barriers (see setion 4.2.3).In priniple, binding energies between surfatant atoms EBB and substrateatoms EAA, and also the energy of inter-speies bindings EAB may be di�er-ent. The Ehrlih-Shwobel barrier is only for A atoms taken into aount. Weused the default values for bound energies of substrate atoms and vary EABfrom 0 · · ·EAA and EBB from EAA · · · 0.6 eV. We have studied B yields from
1 · · ·0.1 times the A yield. Temperature is set to T = 600K. In the followingsetions, di�erent sets of parameters, orresponding to di�erent experimentssetups are presented.Idential surfatantsHere, as the simplest ase, we present some results onsidering surfatants withthe same sputtering yield as substrate atoms and the same binding energiesfor all tree types of bindings. (Note that there is still a di�erene betweenB and A atoms arising from re-deposition of a B atom as it is sputtered andalso the inhibition of the jumps over B atoms.) In Fig. 5.2, pro�les sputtered1www.freefem.org
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Figure 5.2: Morphologies evolved after 3 ions/atom sputtering, with di�erent overage(from left to right and up to down: cs0.0 0.1 0.3 0.5 0.7 0.9 %) of surfatants B = A. Theripples blurred as the overage is inreased.for t = 3 ions/atom in di�erent overages of B atoms are depited. As theoverage inreases, the ripples get shorter in length and the typial wavelengthof the ripples slightly dereases (shown in Fig. 5.3). The later is expeted fromBH model where less di�usivity of partiles leads to smaller wavelength of thepatterns. We also alulated the roughness of surfae for di�erent overages(Fig. 5.4). Although the periodi BH patterns are annihilated by inreasingthe overage, the total roughness of the surfae inreases.5.2 Mesosopi height gradientAs mentioned above, an experiment setup as introdued in Fig. 5.1 produesan inhomogeneous spatial distribution of JB+, whih is lose to a onstantgradient so that it leads to a linearly dereasing overage of B. Here, we set
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Figure 5.3: The harateristi wavelength of patterns depited in Fig. 5.2 as a funtionof surfatant overage. The wavelength is measured in lattie onstant unit by using PSDmethod.

Figure 5.4: Roughness of surfae against overage with surfatant. diamonds : A=B, ir-les : Sputtering yield YB is 10YA and the A yield is suppressed by 0.25YA from every near-est neighbor B atom, squares : Clustering of B and demixing favored, EAA = 0.18, EAB =

0, EBB = 0.6. Surfae di�usion without ES barriers.
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(a) (b)Figure 5.5: Mesosopi height gradient by surfatant sputtering; (a) surfae pro�le after3 ions/atom sputtering with an inhomogeneous surfatant overage with average of 20 %.Other parameters are as in Fig. 5.4 (irles). (b) Mean of surfae height in diretion per-pendiular to ion-beam diretion. Conurrent to the formation of ripples, a global slop isalso indued along the sample length.a smaller sputtering yield of YB = 0.1YA for B atoms and the same di�usionbarriers for A and B. The average B-overage is 20% and it dereases linearlyalong x diretion. The maintained struture is shown in Fig. 5.5(a). Surpris-ingly, a slight overage of surfatants modi�es the ommon BH ripples withnanometer length-sales with a de�ned slope over mirometer length-sales(see Fig. 5.5(b)).5.3 Morphology modi�ationIn addition to the large sale modi�ations on standard BH ripples, presentedin the previous setion, surfatant sputtering is also a proper method to manip-ulate the pattern formation via IBS at the sale of the standard patterns, i.e.nanometers, and produe variations in patterns types. In the following, threedi�erent senarios for suh hanges in morphology of patterns are presented.5.3.1 Ultra-smooth surfaesAs demonstrated in Fig. 5.6, a strong suppression of the substrate sputter yielddue to surfatant overage may lead to very smooth surfaes, reminisent of



5.3. MORPHOLOGY MODIFICATION 73layer-by-layer erosion, instead of rippled topographies. The parameters usedhere are Λ = 0.25 in KMC and λ = 2 in ontinuum theory for a overage ofonly 20% of surfatants. The di�usion parameters are still the same for bothtypes. We started the numerial solution with an initially rough surfae andobserved a monotonous derease of surfae roughness.Using the KMC model, we studied the pro�les patterning for di�erent ov-erages of surfatants. For the �x sputtering time, a suppression of patternformation by inreasing the overage is observed (pro�les depited in Fig. 5.7).The surfae roughness for di�erent overages is shown in Fig. 5.4. Roughnessof the surfae dereases monotonially as the surfatant overage inreases.This ase has orrespondene to the experiments of o-sputtering of Au on Siby Hofsäss and Zhang (2008).5.3.2 Arrays of nano-lustersIn this part, the barriers have been hanged to failitate B-lustering and favordemixing (EAB = 0, EBB = 0.6)eV. The obtained pro�les and distribution ofB atoms are shown in Fig. 5.8. The strong lustering tendeny auses a highlysigni�ant redistribution of the surfatant B on the A surfae. The majorityof B atoms would be loated in valleys of the ripple topography if they weredistributed randomly (due to the morphology of the ripples). In Fig. 5.9, weshow the ratio of the number of B atoms to the number of randomly distributedatoms, whih onstitutes a statistial estimate of surfatant surfae density vs.height h measured from the lowest point on the surfae. Note that sputteringplus re-deposition of B=A atoms only leads to a minor inrease of density invalleys, whereas B atoms strongly prefer to assemble on rests of ripples ifthey luster and demix from substrate A atoms. In fat, one would expeta generi uphill urrent of any surfatant whih suppresses the yield, beauseit is sputtered preferably from valleys (Bradley-Harper mehanism) but re-deposited randomly. Thus, material is moved out of valleys. This behavior hasbeen observed in experiments of Hofsäss and Zhang (2008) using a Si substrateand Ag surfatant. An improved ontrol of this lustering ould open up a wayto e�iently fabriate regular arrays of quantum wires.Note that if the lustering of surfatants and also the redution of yieldaused by them are strong enough, the BH ripple forming fails and what on-
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Figure 5.6: Upper panels : BH-type ripples without surfatant, left : KMC simulation,right : Continuum theory. Lower panels : Strong suppression of sputter yield of substrateby surfatant leads to smooth surfaes, left : Λ = 0.25 in KMC, right : λ = 2 in ontinuumtheory. Here, the height sale is enhaned by a fator 100 with respet to the orrespondingupper panel.
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Figure 5.7: Morphologies evolved after 3 ions/atom sputtering with di�erent overages(from left to right and up to down: cs0.0 0.1 0.3 0.5 0.7 0.9 %) of surfatants. The parametersare as in Fig. 5.4 (irles). For high surfatant overages, pattern formation is suppressed.



76 CHAPTER 5. SURFACTANT SPUTTERINGtrols the evolution of surfae �utuations are the distribution and morphologyof surfatant lusters. This is disussed below.5.3.3 ES indued patternsThe third senario demonstrates how dot-like patterns due to Ehrlih-Shwoebeldi�usion an be generated by a surfatant. As depited in Fig. 5.10, withoutsurfatant, the growth of ripples is the dominant proess and typial Bradley-Harper ripples emerge even in the presene of Ehrlih-Shwoebel di�usion.Coverage with a surfatant tends to suppress the Bradley-Harper instabilityand Ehrlih-Shwoebel di�usion an beome the dominant, pattern-formingmehanism. Note that the ES-type dots an form an ordered array. Orderingis supported, if preliminary ripple strutures break up into dots. Ordered dotsare more learly visible in the ontinuum theory. The KMC dynamis has beenlimited to the erosion of 5 monolayers to keep it onsistent with the alibratedtime in the ontinuum theory, but the e�ets of noise are too strong to detetdot ordering in KMC within this time interval.
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Figure 5.8: Lower panels : Ripple pattern of a substrate with 0.4 mono-layer overage ofsurfatant with YA = YB and strong lustering after 5 ions per surfae atom, Left : KMCsimulation EAB = 0, EBB = 0.6 eV, Right panel : Continuum theory (c = 2). The diretionof the ion-beam is inlined by φ = 0.2 with respet to the x-axis. No Ehrlih-Shwoebele�ets are inluded. The bars mark idential regions in upper and lower panels, respetively.Upper panels : Corresponding distributions of surfatant.
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Figure 5.9: Statistial estimate of surfae density of surfatant vs. height. diamonds :substrate speies A = surfatant speies B, squares : surfatant B is lustering and demixingfrom A, similar to Ag on Si.
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Figure 5.10: Upper panels : ES di�usion of substrate and surfatant is hosen suh thatBH instability dominates. No suppression of substrate sputter yield by surfatant. Lowerpanels : Moderate suppression of substrate sputter yield by surfatant (Λ = 0.1 in KMC,
λ = 0.6 in ontinuum)tends to weaken the BH instability, so that ES di�usion an in�uenethe pattern formation. Left panels : KMC simulation, Right panels : Continuum theory.
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Chapter 6Beam-noise indued e�etsIn IBS, the randomness in the loation of impat points of single ions is thesoure of intrinsi noise in ething proess: �shot noise�. In addition to the shotnoise, other soures of external �utuations may be present in an IBS setup.One example of this type of noise soures is �utuation within the ion-beam.It is reported that optial properties of a beam like beam pro�le, whih is theangular distribution of trajetories of ions around the mean diretion of theion-beam, is important to maintain di�erent topographies with unexpetedfeatures and high regularity patterns (Ziberi et al. 2004; Ziberi et al. 2008).1Therefore we investigate the generi (non-material spei�) e�ets of suh ex-ternal noise in IBS, using ontinuum theory and KMC simulation.We lassify �utuations within the ion-beam into three types (see Fig. 6.1).(i) Homogeneous sub-beams: In this ase, the beam onsists of identialgroups of sub-beams originating from di�erent parts of the beam. In eahgroup, the diretion of sub-beams m has a distribution p(m). We assume that
p(m) is loalized around the average diretion 〈m〉 = m0. The erosion veloityat an arbitrary point at the surfae, indued by impinging ions, is the sum ofontributions from all sub-beams weighted with p(m).(ii) Temporally �utuating homogeneous beam: In this ase, trajetory ofall ions are parallel, but in a diretion whih hanges with time stohastially,with the average of 〈m(t)〉 = m0.1Very reently it beame lear that most of the reported e�ets are strongly materialspei� and dramati hanges of shape of patterns are due to interferene of o-deposited Featoms with the standard senarios of pattern formation. This kind of e�ets are extensivelydisussed in hapter 5. 81
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t

(i) (ii) (iii)Figure 6.1: Classi�ation of beam-noise in three types: (i) Homogeneous sub-beams whihare made up of idential sub-beams. Eah sub-beam ontains an ensemble of ions trajetorieswith diretion distribution of p(m). (ii) Temporally �utuating homogeneous beam whihinludes ions traveling parallel but in a diretion �utuating in time. (iii) Spatio-temporally�utuating beam, in whih the diretion of eah ion trajetory is taken from a stohasti (intime and position) �eld.(iii) Spatio-temporally �utuating beam: This is the most general situation,in whih every single ion takes its diretion from a stohasti homogeneous�eld of unit vetor m(x, y, t). m0, the ensemble average of m is onstant intime.For simpliity, we onsider spatial �utuations only in polar angle of ini-dene θ, i.e. �utuations in azimuthal angle are negleted here. We onsiderthree types of distributions:(a) a �at distribution entered at θ0 with the width of ∆θ,(b) a Gaussian distribution with the standard deviation of ∆θ from θ0, and() a Gamma distribution whih is �tted to the histograms of simulatedion-beam pro�les using the data from experiments by Ziberi et al. (2008) (seeFig 6.2).We also assume that in ases (ii) and (iii), orrelation times of θ are so smallthat we an apply the white noise limit, i.e. 〈δθ(r, t)δθ(r′, t′)〉 = C(|r−r′|)δ(t−
t′) (for ase (ii), C is just a positive onstant). We, furthermore, restrit ourmodel to hanges of δθ(r, t), whih are restrited to length sales larger thanthe shape parameters σ and µ of the energy deposition funtion, so that in the
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(a) (b)Figure 6.2: Simulated beam pro�les (a) beam pro�les simulated by Ziberi et al. (2008)for three di�erent aeleration voltage. (b) Gamma funtions �tted to the data of (a), andused as an input for KMC simulations.gradient expansion the leading order terms take on the form
∂h
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−K∇4h.(6.1)and ∇θ-terms an be negleted in ase (iii). We expand in δθ up to linearorder and obtain
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= −v0(θ0) − v′0(θ0)δθ + L̂0h+ δθL̂1h. (6.2)with L̂0 = v′0∂/∂x + νx∂

2/∂x2 + νy∂
2∂y2 − K∇4. Using tehniques of smallnoise expansion (Garia-Ojalvo and Sanho 1985) for multipliative noise, wenow derive losed equations for 〈h̃〉 = 〈h〉 − v0t from
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= L̂0〈h̃〉 + 〈δθL̂1h̃〉. (6.3)Note that the operator L̂1 = ∂L̂0/∂θ|θ=θ0
has the same form as L̂0, if theparameters v0, νx and νy are replaed by v′ = ∂v0/∂θ, ν ′x = ∂νx/∂θ and

ν ′y = ∂νy/∂θ respetively.6.1 Homogeneous sub-beamsIn this ase (i), we an diretly alulate the average of height 〈h̃〉 onsid-ering averages of independent Fourier mode solutions of Eq. 6.3 over θ, i.e.
〈h̃(k, t)〉 =
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h(k, 0).
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(a) (b)Figure 6.3: Homogeneous sub-beams; (a) The height of fastest growing mode for di�erentbeam-divergene width. Growth of the fastest mode is deelerated by inreasing the noise.(b) The wavenumber of the fastest growing mode for di�erent beam-divergene width. Aslight hange in the emerging wavelength is predited.For the Gaussian distribution (b), averaging exp(δθL1(k)t) shows that thegrowth law deviates dramatially from the exponential form of the non-�utuatingase and follows the form 〈h̃(kt)〉 ∝ exp(〈δθ2〉L1(k)2t2/2). This means thatwe are already out of the range of validity of linear approximation. For the�at distribution (a), again an exponential growth does not satisfy the growthequation. After a transient time, the growth takes on the form ∝ t−1 exp(rt).We have also performed numerial evaluations of ensemble averages. Fittingan exponential growth funtion to the averaged height 〈h̃〉, one an extrat ane�etive growth rate. These e�etive rates alulated for ase (a) are shown inFig. 6.3 (a). For small �utuation, the e�etive rate inreases slightly above itsoriginal value without any beam-noise. Inreasing the beam-divergene beyond
∆θ ≈ 12◦ redues the rate and slows down the formation of patterns. Thederease of rate beomes more obvious for divergenes larger than ∆θ ≈ 20◦.Another outome of beam-noise, shown in Fig. 6.3 (b) is a slight hange in thewavelength of the fastest growing mode.6.2 Temporally �utuating homogeneous beamsAs mentioned above, in the ase of temporally �utuating homogeneous beams,we assume that there is no orrelation in time in the stohasti time series of the



6.3. SPATIO-TEMPORALLY FLUCTUATING BEAMS 85diretion of beam. Using Novikov's theorem, the averaged �rst-order growthequation, ∂t〈 h̃〉 = L̂0〈h̃〉 + 〈δθL̂1 h̃〉 an be transferred into a losed equationfor 〈h̃〉.2 Details of alulations are presented in appendix A. This losed formreads
∂t 〈h̃〉 = (L̂0 + CL̂2

1) 〈h̃〉. (6.4)The arising terms an be interpreted as renormalization of the oe�ients in
L̂0, i.e. the averaged evolution equation an be written
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y )〈h̃〉 (6.5)with the renormalized oe�ients

v′R0 = v′0 (6.6)
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y = νy. (6.8)Sine C is positive, the homogeneous noise always redues the absolute valueof ν‖, leading to weaker instability in the parallel modes (here we ignore thethird and forth order derivatives form whih may lead to further stabilizingsor destabilizings). Thus, one may expet less pronouned pattern formationunder this ondition.6.3 Spatio-temporally �utuating beamsRenormalized oe�ients of Eq. 6.5 for the spatio-temporally �utuation beams,ase (iii), read
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y (6.11)These renormalized oe�ients are shown in Fig. 6.4 as funtions of θ. Thefuntional dependene of the e�etive surfae tensions on θ are ompletelyhanged by onsidering the noise e�ets. Thus, standard preditions of BH2For more details of Novikov's theorem see Novikov (1965).
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Figure 6.4: Renormalization of parameters νx(θ0) and νy(θ0) from Eq. 6.1 due to ase (iii)beam pro�le noise. The left upper and lower panel show the behavior for an ideal beam.upper panel: d/σ = d/µ = 1, lower panel: d/σ = d/µ = 2, the right panels show therenormalization e�ets, if ∂2
xC(0) = ∂2

yC(0) = 0.2. solid lines : νx, dashed lines : νy. Thelower urve orresponds to faster growth within linear theory. Note that the dependene ofthe dominant ripple orientation for ideal beams are hanged ompletely due to the noise.model for orientation of patterns an be violated by beam �utuations. Nev-ertheless, the experimental value of C and its derivatives are not known andtherefore a diret omparison to experiments is not possible.We also performed KMC simulations with a broad beam of ions to observegeneri e�ets of noise on pattern formation. Fig. 6.5 shows how surfaes underbombardment with beams pro�le (a) (see above) evolve. The main generiresult is a slowing down in the proess of pattern formation. Apart of that,the shape of morphologies and other features are not a�eted by the noise.In addition to this general situation, three spei� ases of normal inideneangle, inidene near to the ritial angle, and simulations with high di�usion



6.3. SPATIO-TEMPORALLY FLUCTUATING BEAMS 87

Figure 6.5: Time evolution of the surfaes whih are sputtered by an ion-beam with �atdistribution pro�le. Horizontal axis is time (ion/lateral atom) and vertial axis is the valueof width ∆θ in degrees. θ0=50◦, L = 256. A signi�ant delay indued by beam-noise isevident.rate are examined.6.3.1 Normal inidene angleFig. 6.6 ompares the resulted strutures in two ases of no divergene in thebeam and a diverging beam with pro�le type (b). The orresponding PSD isshown in Fig. 6.7. Here, the rough patterns without any typial length sale(no pronouned peak in struture fator; green line) turn to patterns with someharateristi length sale (blue line). We performed the same simulations withrotating samples and as it is observed (red line) the same length sale is presentin this situation as well.6.3.2 Grazing inidene angleAnother situation, in whih the width of beam pro�le may be ruial in pat-tern formation is sputtering at inidene angle lose to the ritial value θc.As mentioned in setion 3.4.1, inreasing the inidene angle we reah a pointwhere ripples rotate from diretion perpendiular to the projetion of the ion-
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Figure 6.6: Noise indued e�ets in normal-inidene sputtering; Surfae pro�les sputteredby (a) an ideal beam (no noise) and (b) a beam with Gaussian pro�le ∆θ = 32◦. By inludingnoise in the beams, patterns with smaller length sales emerge.

0 10 20 30 40 50 60
k

0

5e+07

1e+08

1,5e+08

2e+08

|S
|

Divergence - Not Rotating
Divergence - Rotating
No Divergence 

Figure 6.7: The modulus of struture fator of surfaes obtained from normal-inidenesputtering with non-zero ion-beam divergene (limiting ases with ∆φ = 0 and ∆φ = π)ompared to the ase of sputtering by an ideal beam. Presene of beam-divergene leads toa length sale seletion with the parameter set whih does not produe mono-size strutureswith an ideal beam.
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Figure 6.8: Simulation results for θ0 = 65◦(≈ θc), ∆θ = 0◦ (left panel) and 20◦ (rightpanel) at t=2 ions/atom. Narrow bars indiate the azimuthal alignment of ion-beam. Inlower panels orresponding surfae pro�le Fourier transforms are shown. The regularity ofparallel ripples enhaned by inluding the beam-noise.beam to the parallel diretion. A broad beam ontaining impinging ions withinidene angle slightly larger or smaller than θ0 may indue ompound pat-terns of ripples in both diretions. In Fig. 6.8, the e�et of noise on patternsemerged by sputtering at θ = 65◦ is demonstrated. Surprisingly, ripples per-pendiular to the ion-beam diretion are longer and more regular in preseneof beam-noise. The bakground struture parallel to the ion-beam diretion isalmost untouhed by inluding the noise.6.3.3 High di�usion rate regimeThe last examined ondition is sputtering with broad beam in high di�usionrate regime. We have hosen a partially enhaned di�usion attempt frequeny
k1 = 2.7 · 105 to bring the system to the edge of the region where Ehrlih-Shwoebel e�ets start to be dominant in pattern formation (see setion 4.3.2).
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Figure 6.9: Simulation results of sputtering by an ion-beam direted along the x-axis atan average angle of θ0 = 50◦ for t = 3 ions/atom.Left panel :ideal beam, Right panel : Beampro�le orresponding to the lowest panel of Fig. 6.2. The di�usion rate is enhaned by afator of 300 in ompare to default value. The presene of beam-noise favors the indutionof Ehrlih-Shwobel e�ets.We also took the beam pro�le () whih is very lose to what is present inexperiments. In Fig. 6.9, hanges in morphology indued by beam-noise isillustrated. The Ehrlih-Shwoebel e�ets (e.g. orienting regardless to beamdiretion) are enhaned by beam divergene.



Chapter 7
Rotating sample, dual-beam andsequential sputtering
To produe a larger variety of strutures and to improve their quality, moreomplex setups with multiple ion-beams, IBS on pre-strutured samples, androtating samples have been used, but few of them have been investigated indetail. In partiular, Carter (2004;2005;2006) has proposed the use of dual ion-beam sputtering (DIBS), Vogel and Linz (2007) proposed a four-beam setupand laimed that orresponding results may be obtained from a sequene ofpre-struturing and stepwise beam or sample rotation using a single ion-beam(sequential ion-beam sputtering or SIBS). Continuous rotation of the sam-ple or the ion-beam (referred to as RIBS, i.e. rotating IBS, in the follow-ing) has been proposed to suppress ripple formation by Zalar (1985;1986) (forexample in SIMS and AES, where ripple formation would redue the depthpro�ling resolution), but also to enhane the quality of isotropi strutures(Bradley 1996). Reently, Joe et al. (2009) onduted a systemati experi-mental study of DIBS and SIBS on Au(001). They onsidered two di�erention �uxes: a higher one, for whih the orientation of patterns is determinedby the ion-beam diretion (erosive regime), and a lower one, for whih surfaedi�usion beomes dominant in pattern formation proess (di�usive regime). Anumber of their �ndings are not in aordane with expetations derived fromthe onventional ontinuum framework. This motivated us to study DIBS,SIBS and RIBS setups with Monte Carlo (MC) simulation methods. Reentproposals by Vogel and Linz (2007) and Muñoz-Garía et al. (2009) are based91



92 CHAPTER 7. COMPOUND SPUTTERING SETUPSupon extensions of the standard ontinuum model (whih is formulated asan anisotropi and noisy Kuramoto-Sivashinsky equation). These extensionshave introdued new physial mehanisms, whih hange the senario of pat-tern formation of the standard model, but none of these mehanisms have beenon�rmed and tested independently beyond doubt.We present and disuss results obtained for the topographies, the shape andorientation of the ripples, the struture funtion and the evolution of rough-ness in di�erent setups. We ompare our �ndings to theoretial proposals,experimental results and to the standard linear ontinuum model.
7.1 Simulation setupThroughout this work, we will fous on the erosion-dominated regime, leav-ing more omplex interplays between erosion and di�usion in multi-beam androtating setups for further studies.Fig. 7.1 depits the geometries of setups we use in the simulations. ADIBS setup onsists of two ion-beam inidents from diretions desribed bypolar angles θ1 and θ2 and azimuthal angles φ1 and φ2 (see Fig. 7.1(a)). Asa simple speial ase, we will onsider opposing beams, i.e. θ1 = θ2 and
∆φ = φ1 − φ2 = 180◦. Crossed beams are studied for equal polar angles aswell as for the general ase of di�erent polar and azimuthal angles.SIBS setups are shown in Fig. 7.1(). In a �rst step, ripples are produedby a single ion beam. Then we hange the azimuthal angle of the ion-beamdiretion by some ∆φ and monitor the further evolution of surfae strutures.Finally, Fig. 7.1(b) shows the RIBS setup, whih is haraterized by a onstantangular veloity ω of the sample, whih we realize by a �xed sample andthe orresponding beam rotation. The evolution of strutures and surfaeroughness will be systematially studied as a funtion of ω.The rotation of sample during IBS is equivalent to a �xed sample and arotating ion-beam. Therefore rotation or any hange of azimuthal angles inlab oordinates is simulated by keeping the surfae �xed and rotating the ion-beam orrespondingly.
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(a) (b)
()Figure 7.1: Three di�erent IBS experiment setups. (a) dual ion-beam with �xed sample(DIBS). (b) ontinuously rotating sample with single ion-beam (RIBS). () sequentiallysputtering of pre-rippled surfaes after 90◦ rotation (SIBS).



94 CHAPTER 7. COMPOUND SPUTTERING SETUPS7.2 Opposed ion-beamsIt has been proposed by Carter (2005) that IBS with two diametrially opposedion-beams (same θ and a di�erene of 180◦ in φ) an lead to a anellation ofinstabilities indued by eah beam. Instead, he predited temporal osillationsof ripple amplitudes. Furthermore, ripple motion should be suppressed dueto the restoration of re�etion symmetry, whih would be broken by a singlebeam.Fig. 7.2(b) shows results of topographies obtained from MC simulations ofthis setup. We never observe the predited behavior, instead the growth ofstrutures resembles that obtained in a single beam setup, as an be seen fromomparing Figs. 7.2 (a) and (b). But ripples obtained from opposed beamsappear longer and more straight than those from single beams and the patternsontain less defets. Furthermore, the shape of ripples hanges signi�antlytowards more symmetri slopes. In Fig. 7.3, we show a quantitative analysisof ripple slope angles α1 and α2, whih are de�ned in the inset of the upperpanel. To measure the symmetry of the slopes, we onsider the asymmetryparameter
ǫ =

α2 − α1

α2 + α1

. (7.1)Histograms of this quantity are shown in Fig. 7.3 for single beam and opposedbeam setups. The average value of ǫ is ǭ ≈ −0.08 for single beams (indiatingthat the steeper slope is faing the beam), and ǭ ≈ 0.01 for opposed beams.We also heked that the skewness of the ǫ-distribution is redued by usingopposed beams. In onlusion, opposed ion-beams do not lead to a anellationof instabilities, but help to produe more symmetri ripples and patterns withless defets as ompared to a single ion-beam setup.7.3 Crossed ion-beamsSetups of multiple ion-beam inidents from di�erent diretions have been pro-posed by Carter (2004;2005). Vogel and Linz (2007) developed a ontinuumtheory for a setup with four beams all with the same polar angles of inideneand rossing with ∆φ = 90◦. Their theory is based on a damped Kuramoto-Sivashinsky equation and takes into aount terms up to fourth order in a



7.3. CROSSED ION-BEAMS 95

(a) (b)Figure 7.2: Rippled surfaes after 8 ions/atom of sputtering. (a) by a single ion-beam,(b) by two ion-beams opposed to eah other. Arrows indiate the diretion of ion-beams.

Figure 7.3: Distribution funtion of the asymmetry parameter ǫ (see main text) for theases of a single ion beam (upper panel) and two ion-beams opposed to eah other (lowerpanel).



96 CHAPTER 7. COMPOUND SPUTTERING SETUPSgradient expansion of the erosion term. They predit square patterns, whihan be stable in the long time regime under spei� onditions. Joe et al.(2008) performed experiments with two ion-beams with θ = 73◦ and ∆φ = 90◦on Au(001) . In the erosive regime, they �nd nano-dot patterns with squaresymmetry (albeit with a rather low degree of order), if the �uxes of the twobeams are preisely balaned. Otherwise, the strutures develop into modu-lated ripples.In the upper row of Fig. 7.4, we show simulation results for perfetly bal-aned ion-beams (beam (1) in Table 7.1). The middle row of Fig. 7.4 showsresults for ion-beams with di�erent intensities inident from the same polarangle (beams (2) and (3) in Table 7.1) and the lower row shows orrespondingresults for ion-beams of idential intensities, but inident from di�erent polarangles and with di�erent beam parameters (beams (1) and (4) in Table 7.1).In Table 7.1, ν‖ and ν⊥ denote the e�etive surfae tension oe�ients (par-allel and perpendiular to the beam projetion onto the x − y plane), whihappear as prefators of the seond spatial derivatives of the height �eld inlinear Bradley-Harper (BH) theory. They determine the topography depen-dent part of the erosion rate within linear BH theory for long wavelength(Bradley and Harper 1988).White arrows in Fig. 7.4 indiate the projetion of the ion-beams into the
x−y plane (thus they enlose ∆φ). The geometry is hosen suh that the x-axisalways is the bisetor of this angle. For balaned beams and 0 ≤ ∆φ < 90◦, weobserve ripples with a wavevetor parallel to the x-axis, for 90◦ < ∆φ < 180◦,the ripple wavevetor is parallel to the y-axis, but the ripple pattern showsmore defets. Exatly at ∆φ = 90◦, square patterns replae the ripples. Forunbalaned beams, we observe ripples in oblique diretions, whih we willdisuss below.The middle and lower row of Fig. 7.4 are given to emphasize that we didnot observe any di�erenes in pattern formation due to di�erent mehanismsof imbalane. The middle row orresponds to beams of di�erent intensities,haraterized by the ratio f = J</J> of the smaller ion �ux J< and the larger�ux J> (here f = 1/2). The ion �ux multiplies all terms in the gradient ex-pansion of the erosion rate. Other mehanisms to produe imbalaned erosionrates, whih we tried, lead to the same patterns, if they imply the same erosion



7.3. CROSSED ION-BEAMS 97rates of linear theory.Note that in our simulations both ν‖ and ν⊥ are negative, indiating thaterosion leads to growing height �utuations in both diretions within the linearBH theory. The linear theory of DIBS as outlined by Joe et al. (2009) indiatesthe appearane of growing rossed ripples for this situation, in aordanewith our simulation results. In the experiments by Joe et al. (2009), however,the system orresponds to ν‖ = 14.2 and ν⊥ = −0.9. This set of e�etivesurfae tensions would result in a stable �at surfae, in ontradition to theexperimental observations.Let us analyze our �ndings within the simple framework of linear BH theory,for whih ontributions of both beams to the erosion rate are simply added.Suppose beams 1 and 2 are haraterized by e�etive surfae tension oe�-ients ν(b)
A with b being 1 or 2 and A being ‖ and ⊥. Averages of these oe�-ients over the two beams are denoted by ν̄A = (ν

(1)
A +ν

(2)
A )/2 and we introdue

∆νA = (ν
(1)
A − ν

(2)
A ). Aording to linear theory, the growth of Fourier modes

|h(kx, ky, t)| ∝ exp(Γt) due to erosion is ontrolled by the (real) growth rate
Γ(kx, ky), whih is a quadrati form of the wavevetor, i.e. Γ = ktν̂k + O(k4)with a matrix ν̂ of e�etive surfae tensions. In the presene of isotropi surfaedi�usion, the diretion of the fastest growing mode is obtained by determin-ing the largest eigenvalue of ν̂ and the orresponding eigenvetor. ν̂ is easilyalulated. Its matrix elements take on the form

ν̂xx = 2(ν̄‖ + ν̄⊥) + (ν̄‖ − ν̄⊥) cos ∆φ (7.2)
ν̂yy = 2(ν̄‖ + ν̄⊥) − (ν̄‖ − ν̄⊥) cos ∆φ

ν̂xy = (∆ν‖ − ∆ν⊥) sin ∆φ,and ν̂yx = ν̂xy. For balaned beams, ∆νA vanishes and the matrix of surfaetension oe�ients beomes diagonal, indiating that ripples will only appearwith wavevetors either parallel to the x-axis or parallel to the y-axis. At
∆φ = 90◦, the rates in both diretions beome degenerate and square patternswill emerge, if they are stabilized by the nonlinear terms. As cos(∆φ+π/2) =

− cos ∆φ, it is obvious from Eq. 7.2 that the regime 90◦ < ∆φ < 180◦ an bemapped to 0 < ∆φ < 90◦ by interhanging x and y. This explains the mainfeatures of the upper row of Fig. 7.4.For unbalaned beams, the orientation of ripples will generally depend both



98 CHAPTER 7. COMPOUND SPUTTERING SETUPSTable 7.1: Beam parameters for the DIBS setup
θ a σ µ ν‖ ν⊥(1) 50◦ 9.3 3.0 1.5 -4.4 -0.86(2) 50◦ 9.3 3.0 1.5 -5.8 -1.1(3) 50◦ 9.3 3.0 1.5 -2.9 -0.57(4) 35◦ 7.3 3.0 1.5 -1.5 -0.81(5) 50◦ 3.8 2.2 1.5 -0.67 -0.53on ∆φ and the imbalanes in surfae tension oe�ients ∆ν‖,∆ν⊥, but for

∆φ = 90◦ the situation is simpler. The osine terms vanish, and the eigen-vetors e± ∝ (1,±1) of the simpler matrix beome independent of the rateimbalanes. Thus, the linear theory predits ripples with wavevetors inlinedby ψ = 45◦ or ψ = 135◦ with respet to the x-axis, i.e. parallel to one ofthe beams (from the eigenvalues it follows that the wavevetor is parallel tothe dominant beam), irrespetive of the amount or nature of the imbalane ingrowth rates, if ∆φ = 90◦. This result is in aordane with the experimental�ndings by Joe et al. (2009) as well as our simulations (see Fig. 7.4 (e) and(h)). The diretions ψ for other values of ∆φ are easily obtained, if the im-balane is known. In Fig. 7.4, we have indiated these diretions with dashedwhite lines. We �nd a satisfatory agreement of our simulation results withthis predition. Fig. 7.5 depits the predited deviations of the orientation ofripple wavevetors from the x-axis (i.e. the bisetor of the beam diretions) asa funtion of ∆φ for di�erent ratios f of �uxes of beams with the same beamparameters and the same angle of inidene. f = 1 orresponds to balanedbeams, whereas f = 0 orresponds to a single ion-beam. Values of f between0 and 1 smear out the step of the f = 1 and lead to a family of sigmoid urvesinterpolating smoothly between the limiting ases.In onlusion, our simulations show rossed ripple patterns for balaned,orthogonal beams as observed by Joe et al. (2009). For non-balaned or non-orthogonal beams, simple ripple patterns appear in diretions, whih are inaordane with linear ontinuum theory. These diretions are not hanged atlonger times, when the growth of the ripple amplitudes has saturated due tononlinearities.
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(a) (b) ()
(d) (e) (f)

(g) (h) (i)Figure 7.4: upper row : Rippled surfaes after 40 ions/atom sputtering by two balanedion-beams inident from θ = 50◦ and separated in azimuthal angle by (a)∆φ = 60◦, (b)
∆φ = 90◦ and () ∆φ = 120◦. middle row : same as (a)-() but for imbalaned ion-beams,whih di�er in intensity by a fator of 2 (f = 1/2) orresponding to beams (2) and (3)in Table 7.1. lower row : same as middle row, here the imbalane is generated by di�erentinident angles and beam parameters, (1) and (4) in Table 7.1. Arrows indiate the diretionsof ion-beams. In middle and lower row bigger arrows orrespond to the dominant ion-beam.Dashed lines indiate the diretions predited for the wavevetors of ripples by linear theory(see main text).
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Figure 7.5: Orientation of fastest growing mode for di�erent values of ∆φ. ψ denotes theangle of the ripple wavevetor with the x-axis. Di�erent lines orrespond to di�erent ratiosof ion �uxes f (see main text).
7.4 Sputtering of rippled surfaesSine the possibilities of simultaneous sputtering by multiple beams are oftenlimited in experiments, sequential sputtering by a single beam from di�erentdiretions seems to be a more promising setup. Vogel and Linz proposed SIBSas a general substitute for multi-beam sputtering (Vogel and Linz 2007). Notethat in SIBS setups, a preise balane between �uxes of multiple beams, whihmay be di�ult to ahieve in DIBS, an be adjusted by tuning the exposuretime in eah diretion.Joe et al. (2009) performed experiments on Au(001) using an ion-beam in-ident from θ = 72◦. In the erosive regime, ripples with wavevetors perpen-diular to the projetion of the beam diretion into the initial surfae plane(k⊥ modes) build up initially. After rotating the target by 90◦ (keeping θ�xed), they observe that the ripple pre-struture is very rapidly destroyed andnew ripples build up in the orrespondingly rotated diretion. But the au-thors ould never observe patterns orresponding to a superposition of twogenerations of ripples.



7.4. SPUTTERING OF RIPPLED SURFACES 101We have simulated SIBS with ion-beams inident from θ = 50◦ and a ro-tation step of ∆φ = 90◦ after 9 monolayers of erosion. Our parameters arehosen suh that k‖-mode ripples (i.e. wavevetor parallel to the beam dire-tion on the surfae) appear initially (see Fig. 7.6(a)). After the rotation step,a orrespondingly rotated ripple pattern builds up as shown in Fig. 7.6(). Inontrast to the experiment, we ould observe a superposition of ripples of bothorientations in a narrow time window, shortly after the rotation step (shown inFig. 7.6(b), at t = 10.8 ions/atom). The degree of order of these superimposedpatterns an be seen from the struture fator in Fig. 7.6(d).Let us disuss the surfae evolution following a rotation step. From linearBH theory we expet every Fourier mode h(k‖, k⊥) to grow or deay exponen-tially with a rate Γ(k‖, k⊥) = −ν‖k2
‖−ν⊥k2

⊥−B(k2
‖+k

2
⊥)2. Here, we have expli-itly inluded an isotropi surfae di�usion term proportional to B as a smooth-ing mehanism. Immediately before a rotation step, a rippled pattern has de-veloped, whih onsists of Fourier modes, entered around the fastest growingmode. Let us assume that this is a k‖ mode (orresponding to our simulations).Then its wavevetor is (k‖, k⊥) = (km, 0) with km = |ν‖|/(2B). A 90◦ rotationstep transforms this mode into (0, km), and the subsequent evolution startswith a orrespondingly rotated pre-struture. The growth rate Γ(0, km) of thedominant mode of the pre-struture, measured in units of the maximal growthrate Γ(km, 0) = ν2

‖/(4B), is given by r = Γ(0, km)/Γ(km, 0) = −(1 + 2ν⊥/|ν‖|).Note that it is independent of B. From this, we onlude that linear the-ory predits the following features of the evolution of patterns: (i) if ν⊥ > 0the rate r < −1, whih implies that the deay of the pre-struture (at leastthe mode (0, km)) appears faster than the growth of the fastest mode, i.e.
|Γ(0, km)| > Γ(km, 0), (ii) if ν⊥ < 0 but |ν⊥| < |ν‖|/2 then −1 < r < 0 sothat the deay of the (0, km) mode is slower than the growth of the fastestmode and (iii) if ν⊥ is negative and |ν⊥| > |ν‖|/2 then r > 0, i.e. linear theorypredits that the pre-strutured (0, km) mode will grow. A ompletely analo-gous disussion holds, when the initially formed ripples are made of k⊥ modes,i.e. when ν⊥ < 0 and ν⊥ < ν‖. We just have to interhange ‖ and ⊥ in theabove expressions. This is the situation whih is realized in the experimentby Joe et al. (2009). Furthermore, let us remark that the gradient expansionspresented by Makeev et al. (2002) always produes ν⊥ < 0, so that ase (i)



102 CHAPTER 7. COMPOUND SPUTTERING SETUPSof the above disussion will not show up, but it may be realized, if the initialripples are k⊥ modes.For the parameters of our simulation (ν⊥ = −0.86 and ν‖ = −4.4) the pre-struture should deay with r ≈ −0.81, i.e. slower than the growth of thenew ripples. This is roughly in aordane with our simulations, albeit onlyafter a lateny of ≈ 1 ion/atom during whih the amplitude of the old patternstays onstant ( see the upper inset of Fig. 7.7). From our data of the deayand the growth after this lateny we estimate r ≈ −0.80. This only leaves atime window of less than 1 ion/atom (rossover appears at ≈ 0.72 ions/atom),during whih a superposition of the pre-struture and the new struture anbe observed. For the experiments by Joe et al. (2009) r ≈ −17.8, i.e. thepre-struture deays extremely fast ompared to the growth of new ripples,and the orresponding time window of oexisting new and old ripples is muhsmaller, whih may explain why no superposition of ripple patterns has beenobserved.The rapid deay of the �nite amplitude pre-struture leads to a transientderease of roughness. We de�ne a strutural relaxation time T0 as the length ofthe interval from the rotation step through the transient derease of roughnessto the point, where roughness has retained its value immediately before therotation step. This time interval ontains all proesses neessary to rotatethe ripple pattern from the previous to the urrent rotation step. In our ase
T0 ≃ 2.5 ion/atom. We expet this timesale also to be a relevant rossoversale for rotating beams or samples, whih will indeed be on�rmed in the nextsetion.We also tried to test the predition (iii), i.e. a growth of the pre-strutureif |ν⊥| > |ν‖|/2. To this end we performed SIBS simulations with beam 5 ofTable 7.1, i.e ν‖ = −0.67 and ν⊥ = −0.53. Results are shown in the lowerinset of Fig. 7.7. As ν‖ and ν⊥ approah eah other, the ripples beomes moreand more blurred, so that it makes no sense to try to identify rossed ripplestrutures. But the pronouned dip in the roughness has vanished, indiatingthat there is at least no deay of any dominant, �nite amplitude part of thespetrum of (k‖, k⊥) modes. However, we ould not identify any growing modeswithin the spetrum of the pre-struture.
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(a) (b)

() (d)Figure 7.6: Snapshots of surfae pro�le during SIBS. At t = 9 ions/atom, a ∆φ = 90◦rotation step ours. Shots are at (a) t = 9 ions/atom, (b) t = 10.8 ions/atom (inset:zoomed in) and () t = 18 ions/atom. Arrows indiate the diretion of ion-beams. In panel(d) the struture fator |h(kx, ky)|2 of the pro�le of panel (b) is shown.
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Figure 7.7: Roughness evolution of surfae patterned by SIBS. The surfae is rotated by
90◦ at t = 9 ions/atom. The upper inset shows the temporal evolution of the maximum of thestruture fator Smax = max(|h(~k)|2) for wavevetors in ‖ and in⊥ diretion. The lower insetshows that there is no dip in roughness in the regime of surfae tension oe�ients, for whihlinear BH theory would predit a growth of the pre-struture (ν‖ = −0.67, ν⊥ = −0.53)



7.5. SPUTTERING OF CONTINUOUSLY ROTATING SAMPLE 1057.5 Sputtering of ontinuously rotating sampleSample rotation during IBS is applied for various reasons. One motivation isto ahieve suppression of pattern formation in SIMS and AES depth pro�ling(Zalar 1985;1986). There are numerous reports that RIBS an suppress surfaeroughening and enhane the resolution of depth pro�ling (see Carter (1998)and referenes therein). Although this method is frequently used, there arevery few systemati studies of the e�ets of di�erent parameters, in partiu-lar of the angular veloity of rotation (Tanemura et al. 1992). Previous dis-rete simulations ould not suessfully explain the observed strong suppres-sion of roughening (Koponen et al. 1997). Reently, IBS has beome a popularmethod for smooth ething of metalli surfaes (Reihel et al. 2007). Here too,sample rotation has been proposed as a pratial measure (Reihel et al. 2007)to prevent nano-sale roughening. A di�erent motivation to use RIBS is theontrol of pattern formation. As mentioned in hapter 2, Frost et al. havefound that o�-normal IBS with sample rotation may lead to formation ofhexagonal, lose paked dot patterns. This is attributed to a restoration ofaxial rotation symmetry with respet to the average surfae normal, whih isbroken by o�-normal inidene of a single ion-beam at �xed azimuthal angle.Dot formation in rotated, o�-normal IBS has been found in the framework ofontinuum theories (Bradley 1996; Frost 2002; Castro et al. 2005), assuminga �ux of inoming ions, whih is distributed evenly over all azimuthal angles.This assumption orresponds to the limit of high rotation frequenies. Dotsalso appear in MC simulations performed in the high rotation frequeny limitfor a wide range of parameters (Yewande et al. 2007).In the present work, we fous on the systemati dependene of height �u-tuations on the rotation frequeny, irrespetive of the random or determin-isti nature of these �utuations. Therefore, we will study the roughness
w = 〈(h−〈h〉)2〉, averaged over the sample and an ensemble of 40 realizations,as funtion of time and rotation frequeny ω. Reported rotation frequen-ies over a range from 0.1 to 15 rpm for di�erent �uxes and di�erent typesof ions and materials (Frost and Raushenbah 2003; Zalar 1985; Zalar 1986;Konarski and Hautala 1995; Cui et al. 2005). There is a preditions of thesaling of height with ω, whih, in Ref. Bradley and Cirlin (1996), is given in
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h(~k, t) ∝ exp(

(ν⊥ − ν‖)

4ω
k2 sin(2ωt)). (7.3)It is based on the original linear Bradley-Harper theory in rotating oordinatesystems. Furthermore, Cui et al. (2005) reported that ripples do not form forangular frequenies greater than 0.1 rpm (for a �ux of 3.5×1014 ions m−2 s−1of 300 eV Ar+ on GaN substrate).In setion 7.4, we have de�ned a harateristi response time T0(∆φ) of theIBS generated strutures to sudden hanges ∆φ of the beam diretion. Wepropose that this time sale is also of relevane for RIBS, as surfae struturesmight follow rotation frequenies muh smaller than ω0 = ∆φ/T0 adiabatially.On the other hand ω ≫ ω0 might orrespond to the high frequeny limit. Weperformed simulations with di�erent rotation frequenies varying in the range

0.05 · · ·50ω0, with ω0 ≃ 36◦ per eroded mono-layer taken from our SIBS sim-ulations. For low frequenies, ripples form and rotate in synhrony with thebeam diretion (see Fig. 7.8(d-f)). For high frequenies, (ω = ∞ is inluded asit orresponds to random azimuthal diretions of inoming ions hosen from a�at distribution), ellular strutures of growing size are observed (Fig. 7.8()).These �ndings are in agreement with preditions by Bradley (1996). A mixtureof short ripples and ellular strutures appears at intermediate ω (Fig. 7.8(b)).Somewhat surprisingly, the roughness of the surfae is not a monotonous fun-tion of rotation frequeny. In Fig. 7.9 roughness is shown as a funtion oftime for di�erent ω. For low (inluding ω = 0) and high frequenies, it growsmonotonially, approahing approximately equal growth rates beyond t ≈ 30,independent of ω. For intermediate ω, the roughness shows osillations (withfrequenies Ω ≈ 4ω), and its growth rate is strongly suppressed. For ω = 3.5ω0growth rate reahes a minimum. In Fig. 7.10 the roughness, averaged over aperiod T = 2π/ω, is shown against ω, for times up to t = 37 ions/atom . Forinreasing t, the minimum at ω ≃ 3.5ω0 beomes more and more pronouned.Thus our simulations predit an optimal rotation frequeny, if preparationsaim at smooth surfaes. This frequeny also marks the frequeny sale beyondwhih ripples do no longer appear. The very rapid rossover to non-ripplestrutures is in aordane with �ndings of Cui et al. (2005).To ompare our results with the predition of Eq. 7.3 about the salingof height with ω, we studied S = |h(~k, t)|2 for a �xed value of wavevetor
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(a) (b) ()
(d) (e) (f)Figure 7.8: Snapshots of surfae pro�le during RIBS (rotating IBS) at t = 40 ions/atom for(a) ω = 0 (b) ω = ω0 and () ω = 7.5ω0. By inreasing the rotation frequeny, a transition oftopographies from long parallel ripples to non-oriented ellular strutures is observed. Panels(d-f) shots at t = 36, 38 and 40 ions/atom for rotating sample with frequeny ω = 0.5ω0,where ripples form and follow the orientation of the beam relative to the surfae. Arrowsindiate the instant diretion of ion-beam.

Figure 7.9: Time evolution of surfae roughness during RIBS for di�erent rotation fre-quenies.
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Figure 7.10: Roughness against angular frequeny ω at di�erent times.

Figure 7.11: The logarithm of the osillation amplitude of struture fator for a given k,vs. logω. Inset: Time evolution of struture fator for a given k, for ω = 2ω0 displays theosillations. The amplitude of these osillations is shown in the main �gure.
~k. It grows rapidly and then osillates with frequeny 2ω around a saturationvalue with an ω-dependent amplitude c, as shown in the inset of Fig. 7.11. Theosillatory behavior with frequeny 2ω is also present in Eq. 7.3. The main partof the �gure depits the derease of the osillation amplitude with inreasing
ω in a double logarithmi plot. The �tted line has a slope of −1.05 ± 0.05,whih is very lose to the 1/ω behavior suggested by Eq. 7.3. Note, however,that this equation was derived from linear theory and has to be multipliedby an exponential growth fator, whereas our result applies to the non-linearsaturation regime. Due to the rapid initial growth, the regime of validity ofEq. 7.3 remained unobservable.
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Figure 7.12: Total amount of eroded material (integrated yield) after 40 ions/atom ofsputtering of rotating samples vs. rotation frequeny. The arrow is at ≃ 3.5ω0, the frequenywhih minimizes the total roughness.We also measured the total amount of eroded material, ∆M up to t = 40ions/atom for di�erent rotation frequenies. This integrated yield dereaseswith inreasing ω and displays a lear distintion between a low- and a high-frequeny regime in a semi-log plot, shown in Fig. 7.12. The interpolatedrossover frequeny between these regimes is very lose to ≃ 3.5ω0, the fre-queny, whih minimizes the total roughness (see Fig. 7.10). This is in a-ordane with our �ndings (see Fig. 7.7) that more pronouned rippled pre-strutures (developing at low rotation frequenies at an angle ωt) deay morerapidly (at t+ dt) than the smaller and less regular height �utuations, whihappear at higher rotation frequenies.
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Chapter 8ConlusionIn this work we have studied IBS-indued pattern formation on solid surfaesby kineti MC simulations and ontinuum theories. We have addressed fourquestions, whih onern basi physial mehanisms of the pattern formationseen in experiments, and have studied various proposals of tehniques to im-prove, simplify or modify the pattern formation by speial experimental setups.The basi questions we studied are1. Is the interplay of erosion and surfae di�usion omprehensivelydesribed by an isotropi Kuramoto-Sivashinsky equation or do dif-ferent mehanisms of di�usion (and/or erosion) lead to di�erent pat-tern senarios, even if they would give rise to the same ontinuumdesription?We have found evidene for the latter statement. Changing Sigmund's Gaus-sian energy deposition funtion to something, whih is loser to BCA results,produes di�erent (ripple) patterns for θ larger than ∼ 70◦. Changing betweendi�erent thermal di�usion mehanisms like Hamiltonian, bond-breaking or net-bond-breaking, whih all give rise to ∇4 term in ontinuum theory, hanges thelong-time behavior of ripple patterns. We have also systematially investigatedthe rossover from erosive to di�usive regime of pattern formation. In the dif-fusive regime, Ehrlih-Shwoebel barriers lead to new type of di�usion-drivenpatterns, but even there, the IBS pattern formation an not be ompletelyunderstood as a �deposition of vaanies�.Related publiation: 111



112 CHAPTER 8. CONCLUSION� Hartmann, Kree, and Yasseri 2009, Simulating disrete models of pat-tern formation by ion-beam sputtering, J. Phys., 21 224015.2. Is it possible that a few, sub-mono-layer overage of the surfaewith a seond (�surfatant�) atomi speies has a signi�ant in�ueneon pattern formation?We both extended our simulation model and presented a ontinuum modelto inlude the e�ets of o-deposited surfatant atoms on the proess of pat-tern formation. We demonstrated the possibility of induing a large sale(mirometer) height gradient along the sputtered sample by redeposition oferosion-suppressive metalli atoms. The standard ripples form and evolve ontop of this bakground large-sale struture. In KMC simulations as well asontinuum theory we observed formation of ordered arrays of surfatants fol-lowing the morphology of the rippled substrate. We show that a ombinationof lustering tendeny and yield suppression, leads to the aumulation of sur-fatant lusters in the valleys of the ripples. A stronger yield suppression leadsto stability of smooth surfaes and prohibits surfae roughening, whereas amedium-sized sputtering suppression of yield leads to emergene of Ehrlih-Shwoebel indued patterns.Related publiation:� Kree, Yasseri, and Hartmann 2009a, Surfatant Sputtering: Theory of anew method of surfae nano-struturing by ion beams, Nul. Ins. Meth.Phys. B, 267 1403.� Hartmann, Kree, and Yasseri 2009, Simulating disrete models of pat-tern formation by ion-beam sputtering, J. Phys., 21 224015.3. Do orientational �utuations of ion-beam trajetories (beam di-vergene) have e�ets on the pattern formation?We have set up and studied a ontinuum theory and a Monte Carlo modelof IBS inluding ion-beam pro�les. In both approahes we have found learindiations of a rather strong dependene of surfae patterns upon the speialtype of noise, whih is produed by non-trivial ion-beam pro�les, as has beenobserved in experiments (Ziberi et al. 2004; Ziberi et al. 2008). Whereas the



113ontinuum approah is most e�etive for small, Gaussian �utuations, whereit leads to a renormalization of oe�ients of the loal evolution equation ofthe average height pro�le, the Monte Carlo model is able to treat generi aswell as more realisti and material-spei� situations. As the pattern formingsenarios depend sensitively on beam parameters and di�usion, suh a model-ing is neessary, if one wishes to ompare theoretial and experimental resultsin more detail. Our KMC simulations show that in normal inidene anglesputtering, di�erent length sales an be seleted and grow by inluding orexluding the beam-noise. In grazing inidene angle, more regular ripplesemerge when the beam has a wide pro�le. In high temperature regimes, pres-ene of the beam-noise favors the Ehrlih-Shwoebel e�ets and hanges themorphology of patterns towards di�usion indued patterns.Related publiation:� Kree, Yasseri, and Hartmann 2009b, The in�uene of beam divergeneon ion-beam indued surfae patterns ,Nul. Ins. Meth. Phys. B, 2671407.4. Is it possible to improve, simplify or modify IBS-indued patternformation by multiple-beams or rotated-beam setups?We studied dual ion beam sputtering (DIBS), sequential ion beam sputtering(SIBS) and rotating ion beam sputtering (RIBS) by a kineti MC simulationtehnique, whih ombines erosion events due to single ions and surfae dif-fusion. For a DIBS setup with two diametrially opposed beams, we did noton�rm preditions by Carter (2005), but rather found non-moving rippleswith orientations as in a single ion beam setup. The ripples have a higherdegree of order and more symmetrial slopes as ompared to those reated bysingle beam sputtering. For DIBS setups with rossed ion-beams, we foundripple patterns for rossing angles ∆φ 6= 90◦ and square patterns for rossingof balaned beams at exatly right angle. The ripple orientations follow thepreditions from linear Bradley Harper theory. Any kind of beam-imbalaneleads to ripple patterns oriented aording to the dominant beam. This is inaordane with the experimental observation by Joe et al. (2009). For SIBSsetups, we found a very rapid destrution of the ripple pre-struture of theprevious rotation step, whih annot be explained by linear Bradley-Harper



114 CHAPTER 8. CONCLUSIONtheory. The �attening of the pre-struture leads to a transient derease in totalroughness. Only within a very short time window, the growing new genera-tion of ripples and the shrinking old ones lead to a superposed square pattern.Thus we ould not on�rm propositions to use SIBS as a universal substitutefor ompliated multi-beam setups. The rapid destrution of the pre-strutureis in aordane with �ndings of Joe et al. (2009). For RIBS setups we ob-served a non-monotoni dependene of roughness upon rotation frequeny. Ata frequeny sale set by the strutural relaxation time of prestrutures, whihan be observed in SIBS simulations, an inreasingly pronouned minimumof roughness ours with inreasing time. We found that the struture fatorat �xed wavevetor rapidly approahes stationary osillations around a sat-uration value with osillation amplitudes inversely proportional to frequeny.This behavior was also predited from linear theory, but seems to have a muhbroader range of validity.Related publiation:� Yasseri and Kree , A Monte Carlo study of surfae sputtering by dualand rotated ion beams, submitted to Nul. Ins. Meth. Phys. B.OutlookOur results show that the onsidered mehanisms have signi�ant in�ueneon the IBS-indued pattern formation, whih an be used to improve surfaeengineering. On the other hand, none of the mehanisms lead to patternsof a quality, uniformity and regularity as has been observed in some reentexperiments.In fat, two potentially important physial mehanisms have not been on-sidered in this work: elasti interations between surfae and substrate andredeposition of eroded atoms. The inlusion of these mehanisms requires sub-stantial extensions both of the KMC model and of the ontinuum theory, butseems neessary to make further progress in the ase of IBS-indued patternformation.



Appendix AImplementation of diretionalnoise in growth equationWe start from Eq. 6.3 with L̂0 and L̂1 given by
J0 = L̂0h̃ = v′0(θ0)

∂h̃(x, y, t)

∂x
+νx

∂2h̃(x, y, t)

∂x2
+νy

∂2h̃(x, y, t)

∂y2
−B∇2∇2h̃ (A.1)therefore,

J1 = L̂1h̃ = v′′0 (θ0)
∂h̃(x, y, t)

∂x
+ ν ′x

∂2h̃(x, y, t)

∂x2
+ ν ′y

∂2h̃(x, y, t)

∂y2
(A.2)Note that, for simpliity, we put h̃ → h in this appendix and prime indiate

∂/∂θ|θ=θ0
. The term δθv′0, whih appears in L̂1 is an additive noise and itsaverage is zero, therefore it does not ontribute to ∂t〈h〉 so we neglet it.We assume a Gaussian noise whih is white in time

〈δθ(r, t)δθ(r′, t′)〉 = C(|r − r′|)δ(t− t′) (A.3)We integrate over small time step ∆t

h(r, t+ ∆t) − h(r, t) = J0(t)∆t+
∫ t+∆t

t
δθ(r, t′)J1(t

′)dt′ (A.4)and look for ontributions to 〈∆h〉 = 〈h(r, t+ ∆t) − h(r, t)〉 of O(∆t). Thenwe divide by ∆t and take the limit ∆t → 0. Therefore we approximate the�rst term on the right hand side to O(∆t). It needs no further treatment.Consider the seond term in the right hand side A:
A =

∫ t+∆t

t
δθ(r, t′)J1(∇h(r, t′),∇2h(r, t′), ...)dt′. (A.5)115



116 APPENDIX A. DIRECTIONAL NOISETo extrat O(∆t)-term in the average we have to insert
h(r, t′) = h(r, t) + J0(t)(t− t′) +

∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′. (A.6)The negleted terms will be of higher order in ∆t after averaging, so theyneed not be taken into aount. The term ∝ J0(t) will also not ontributeto O(∆t) after averaging and is dropped from here on. So we have to use
h(r, t′) = h(r, t)+δh(t′) where δh(t′) =

∫ t′

t δθ(r, t′′)J1(t
′′)dt′′. We expand J1(t

′)in δh (only the linear term ontributes).
J1(∇h(r, t) + ∇δh(r, t),∇2h(r, t) + ∇2δh(r, t)) = J1(t) (A.7)

+
∂J1(t)

∂~∇h(r, t)
~∇δh(r, t) +

∂J1(t)

∂(∇2h(r, t))
∇2δh(r, t)and insert in the A above:

A =
∫ t+∆t

t
δθ(r, t′)[J1(t

′) +
∂J1(t

′)

∂~∇h(r, t′)
~∇δh(r, t) +

∂J1(t
′)

∂(∇2h(r, t′))
∇2δh(r, t′)]dt′(A.8)

J1(t
′) vanishes after averaging. So

A =
∫ t+∆t

t
δθ(r, t′){ ∂J1(t

′)

∂~∇h(r, t′)
.~∇
∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′ (A.9)
+

∂J1(t
′)

∂(∇2h(r, t′))
∇2

∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′}dt′Note that J1 depends on r and therefore ∇ and ∇2 at both on δθ and J1.Now we do the average. but before that note:(i) 〈δθ(t′)δθ(t′′)〉 = δ(t′ − t′′) gives a δ-funtion at the upper limit of theintegrals over t′′. From stohasti alulus (Wong and Zakai 1965) we knowthe orret interpretation for physial noise is
∫ t′

t
dt′′〈δθ(t′)δθ(t′′)〉 = lim

ǫ→0

1

2

∫ t′+ǫ

t
dt′′δ(t′ − t′′). (A.10)The fator of 1/2 omes from the ontributions of the �left half� of the regu-larized δ-funtion.(ii)~∇ and ∇2 give several terms. Consider

∫ t+∆t

t

∫ t′

t

∂J1(t
′)

∂~∇h(r, t′)
〈δθ(r, t′)~∇{δθ(r, t′′)〉J1(t

′′)dt′′ (A.11)



117whih equals to
∫ t+∆t

t

∫ t′+ǫ

t

∂J1(t
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∂~∇h(r, t′)
{〈δθ(r, t′)~∇rδθ(r, t

′′)〉J1(t
′′) + 〈δθ(t′)δθ(t′′)〉~∇J1(t

′′)}.(A.12)The �rst term:
lim
r′→r

~∇r〈δθ(r′)δθ(r) = lim
r′→r

~∇rC(|r − r′|)|r=0
1

2
δ(t− t′) (A.13)whih is

~∇rC(r)r=0
1

2
δ(t− t′) (A.14)and the seond term: 〈δθ(t′)δθ(t′′)〉 = (1/2)C(0)δ(t′ − t′′), Note that usually

C(0) is maximum of smooth C(r) so we neglet (∇C)(0). Thus we get
A =
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2
C(0)
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2
(∇2C)(0)J1). (A.15)This gives the averaged evolution equation as
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i C)(0)J1) (A.16)Here we have generalized to J(∇h, ∂2
x, ∂

2
y) beause we want to plug in theBradley-Harper model.Plugging of Bradley Harper theory
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