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Abstract

Self-organized, nano-scale structures appear on solid surfaces under ion
beam irradiation with ion energies in the keV range. Within the last decade,
surface engineering by ion beam sputtering (IBS) has become a very promising
candidate for bottom-up production techniques of nano-devices. Morphologies
like ripples, and regular arrays of dots, pyramids and pits as well as ultra-
smooth surfaces have been obtained on a wide variety of substrates, including
important semiconductor materials like Si, Ge, GaAs and InP.

In spite of many substantial improvements of experimental surface structur-
ing by IBS, the physical mechanisms underlying the pattern formation are still
poorly understood. In this work we use Kinetic Monte Carlo (KMC) simula-
tions and continuum theory to study the effects of the following mechanisms in
detail: (i) the interplay of surface erosion with different surface diffusion mech-
anisms (Wolf-Villain, Hamiltonian, thermally activated hopping via transition
states, including barriers depending on both initial and final configuration in
a hop) and the crossover from erosion-driven to diffusion driven patterns, (ii)
random orientational fluctuations of ion trajectories within the beam, lead-
ing to ion beam divergence, (iii) co-deposited, steady-state, (sub)-mono-layer
coverages of the substrate with a second atomic species (“surfactant sputter-
ing”) and (iv) multi-beam and rotated-beam (or rotated sample) setups. We
find that all the four mechanisms under study may have a profound — and
sometimes unexpected — impact on the pattern formation. Different diffusion
mechanisms, which all give rise to the same leading order terms in a con-
tinuum description lead to rather different long-time behavior of patterns in
KMC simulations. Orientational fluctuations change the bifurcation scenarios
of pattern formation and surfactant sputtering may give rise to qualitatively
new effects like mesoscopic or even macroscopic patterns on top of nano-scale
patterns, and the ordering of the surfactant on top of the structured surface.
This ordering leads to a feedback mechanism due to the modulation in sputter-
ing yield caused by the surfactant. On the other hand, many of the promising
proposals concerning the usage of multi-beam and rotated beam setups could
not be confirmed (in accordance with recent experiments), but we can outline
some physical reasons for this failure, which could guide an improved usage of

these techniques.
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Chapter 1
Introduction

Richard P. attracted the attention of scientists and engineers to the
enormous capability of the nano-scale world for the first time. He gave an
insight to the great possibilities, provided by instruments, which are designed
and fabricated in the size of some nanometers in his talk at the annual meeting
of the American Physics societyEI During the last 50 years, numerous different
techniques and methods to manipulate materials on nano-scales are presented

and nowadays a multitude of nano-devices are produced and available in the
markets (Maynard et al. 2006)).

Wide ranges of applications are proposed by nano-structures fabricated on
solid surfaces. Among all the available techniques for the fabrication of such
structures, e.g. chemical lithography and atomic force microscopy (AFM) tech-
niques, bottom-up self-organized patterning methods are of particular interest,

because they bear the potential of cheap, large-scale production. Ion-beam

sputtering (IBS) was introduced by Navez et al. (1962) as a simple method

for preparing wave-like patterns (ripples) of sub-micrometer length scales on
the surface of solids. In this method, surface bombardment by a beam of keV
ions at normal or oblique incidence drives the system towards self-organized
formation of nano-patterns. Later on, many experimental developments have
been carried out to improve the quality of the patterns i.e. ripple alignment
and regularity. Meanwhile, by sputtering different kinds of solids under differ-

ent conditions, new types of patterns have been discovered. The production of

!December 29th 1959, California Institute of Technology (Caltech), “There’s Plenty of
Room at the Bottom”.
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regular arrays of nanometer-sized columns (dots) is one prominent example of
this kind (Facsko et al. 1999). Recent reviews summarize the state of the art
of surface engineering by IBS (Erost et al. 2008]).

Although great improvement achieved in experiments to produce various

highly ordered patterns on a wide range of different materials, a comprehen-
sive understanding of the physical mechanisms underlying this self-organized
pattern formation is not yet available. The simplest quantitative theory of

IBS-induced pattern formation has been put forward in a seminal paper by

Bradley and Harper (1988)). There, it is pointed out that IBS implies a generic

curvature instability, which roughens the surface. The combined action of this
instability and surface diffusion leads to the appearance of ripples. This contin-
uum theory has been extended in many different ways, but recent experiments
indicate that it does not contain all the physical mechanisms, which determine

ripple patterns on solid surfaces (Chan and Chason 2007).

In this work we aim to address the IBS problem by analytical and compu-
tational methods. We develop and use a Kinetic Monte Carlo (KMC) model

for ion-beam erosion inspired by the kinetic theory of [Sigmund (1969). We

simulate a simple cubic lattice, which undergoes bombardment of ions with
variable energy and incidence angle. We try to give new insights into physi-
cal mechanisms of IBS-driven patterns as well as examine new possibilities to
improve and advance IBS experiments to achieve more precise control of the

pattern formation process.

In the next chapter we give a review of recently developed experimental

methods in addition to classic IBS techniques of ion-beam surface etching.

In Chapter 3 we introduce the analytical and numerical methods we use
to study IBS, especially our KMC model and its basic assumptions and the

continuum description of IBS.

It is the common belief that patterns under IBS form due to a competition
between surface roughening (by erosion) and smoothing (by surface diffusion).
In the simple continuum description of Bradley and Harper, these mechanisms
enter in universal forms and are quantified by three parameters, two for erosion
and one for surface diffusion. But does this exhaust the interplay of different
surface diffusion mechanisms with ion-beam erosion? This question will be

addressed in Chapter 4. There, we present our results obtained by implement-



ing different erosion and diffusion models and show how by tuning the rate
of erosion and diffusion events different types of instability leading to various
kind of patterns can be induced.

In Chapter 5 we present results on IBS accompanied by the co-deposition
of a second atom species onto the surface. Controlled co-deposition of (sub-)

mono-layer coverages by co-sputtering of a nearby target has been introduced

by Hofsiss and Zhang (2008), who called it “surfactant sputtering”. Meanwhile

there are many indications that highly ordered regular patterns, which have
been produced in experiments, have in fact involved co-deposition, which went
unnoticed. We show some effects induced by co-deposition of metallic atoms
on the surface of a substrate like Silicon. We demonstrate the possibility
of preparing nano-clusters by this method and control them in a pattern of
ripples.

In Chapter 6 we study the effects induced by including exterior noise, orig-
inated from fluctuations of the directions of ion trajectories within the beam.
Our extended continuum model predicts new transitions for pattern morpholo-
gies which differ from the standard scenario of Bradley and Harper. Our results
obtained by KMC simulations are about the generic effects due to the ion-beam
noise in different situations, e.g. normal and grazing incidence angle or in high
temperature regimes.

There are a number of proposals, mostly based on qualitative reasoning, how
to improve or modify pattern formation due to IBS by using multi-ion-beam
setups, sequential sputtering of the sample from different directions, or sample

rotation. Chapter 7 contains a detailed simulation study of these proposals.

We compare our results with recent experimental findings by |Joe et al. (2008)).

Finally, in Chapter 8 we give a conclusion and discussion on all presented

results and some outlooks for future work.
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Chapter 2
Ion-beam sputtering experiments

Depending on the sputtering parameters e.g. flux, energy, type and incidence
angle of the ions, as well as substrate properties e.g. type and substrate tem-
perature, a wide range of different patterns might emerge via IBS. Secondary
features, like beam-profile and rotation of sample may also change the qualita-
tive and quantitative characteristics of the patterns. Recent advanced methods
in IBS experiments that might produce more complex textures on the surface
of materials are based on setups composed of doubled- or multi-beams, si-
multaneously co-sputtering of metallic and non-metallic substrates (surfactant
sputtering), and sputtering of pre-structured templates. In the following sec-
tions of this chapter, we briefly review the experimental achievements of IBS.
For more extended reviews see [Valbusa et al. (2002), [Frost et al. (2008) and
Munoz-Garcia et al. (2009).

2.1 Patterns on amorphous substrates

Most of the IBS experiments are performed on amorphous substrates e.g. glass,
or substrates which are amorphized under bombardment of keV ions e.g. Si,
SiOs, GaSh, InP, etc. Ripples and -more recently- dots are the main types
of patterns which emerge on these types of substrates. Moreover, formation
of holes and pits, the appearance of ultra-smooth surfaces and non-structured
rough surfaces are also reported as outcomes of some IBS experiments. In the

following, the mentioned types of structures are discussed in more detail.
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2.1.1 Ripples

A first experiment by Navez et al. (1962) was followed by a huge number of

experiments, in which wave-like ripple structures were observed. The period-
icity of ripples varies from tens to hundreds of nanometers and their length
can exceed several micrometers. Some universal properties are observed in
experiments with very different ion-beam and substrate parameters. Ripple
orientation with respect to ion-beam direction and the dependence of this
orientation on the incidence angle of the ion-beam with respect to the sur-
face normal 0, are important universal features, which have been explained by
theory of Bradley and Harper (BH). In BH theory, different erosion rates at
different points on the surface in relation to the local curvatures is the main
destabilizing factor which is shown to be sufficient to explain the formation of
ripples and their orientation. A schematic drawing of BH theory is presented
in Fig. 2.1l The full description of the theory is provided in section [B.4.1]
Other universal features, like the direction of ripple on crystalline substrates,
propagation and the coarsening of ripple patterns are not fully understood
within BH theory, but extensions of this theory lead to partial understanding
of many features of the pattern formation (see section B.4]).

The quality of ripples, i.e. their regularity and alignment, improved tremen-
dously within the last decade (compare the structures depicted in Fig. and
Fig. 24). However, so far, no comprehensive explanation on the conditions
and physical mechanisms, which lead to the formation of such “ultra-regular”
patterns exists. Two main ideas that may explain this experimental success
are (i) fine tuning of ion-beam profile and (ii) manipulations in the process of
pattern formation by co-deposited metallic atoms. Both ideas are discussed

extensively in this thesis in chapters bl and [6] respectively.

Orientation

The orientation of ripples is typically confined to be either parallel or per-
pendicular to the projection of the ion-beam direction onto the surface. For
small values of incidence angle 6, orientation is perpendicular to the ion-beam.
By increasing 6 towards grazing incidence, at some critical value 6., ripples

rotate by 90° and align in direction parallel to the ion-beam. One exam-
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Figure 2.1: Tons hit the surface with normal incidence angle, impinge into the surface, stop
at some distance under the surface and deposit their kinetic energy. Since the amount of the
deposited energy reaching the lateral points with positive or negative local curvatures (O or
O’) is different, assuming the erosion rate at surface points is proportional to the reaching

energy, a faster erosion rate is expected in valleys (point 0’). This leads to amplification of

the initial surface roughness (Bradley and Harper 1988).

ple of the change in orientation in the experiments on graphite samples by
‘Habenicht et al. (1999) is shown in Fig.

Propagation

In some experiments (Habenicht et al. 2002; [Alkemade 2006) by simultaneous
real time monitoring of pattern evolution, it is observed that ripples propagate
along the direction of the ion-beam. Initial movements with velocity of 0.33

L are followed by deceleration and a dispersion in velocity for different

nm s
wavelength. At longer times, faster movements for ripples with shorter wave-
length was reported. Ripple propagation is also predicted by BH theory, but

the predicted direction of motion is apposite to the observed direction.

Coarsening

The coarsening of ripples, i.e. increase in lateral size and spacing of rip-
ples, has been observed in a large number of experiments. A growth of

wavelength, following a power law in the form of A ~ t% is reported by

Habenicht et al. (2002)), whereas an exponential growth is found by Brown and Erlebacher (200
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Figure 2.2: Rotation of the ripples orientation by increasing the incidence angle. Scanning

tunneling microscope (STM) micro-graphs (lateral size 1 ym) of 5 keV Xe™ eroded HOPG

surfaces. Fluence = 3 x 1017 ions/cm?; incident angle 6 (a) 30°, (b) 60° and (c) 70°. Arrows

indicate the ion-beam orientation. Adapted from [Habenicht et al. (1999).

In Fig. an example of coarsening of ripples formed on fused silica is depicted

(Flamm_ et _al. 2001). The coarsening can only be explained by considering the
non-linearities which are absent in the BH model.

Ordering

In some experiments, ripples show a tendency to become more aligned and

ordered. In many experiments the number of defects (misalignment or crossing

between ripples) decreases with time. For example |Ziberi et al. (2005 have

seen ordering and decrease of defects in sputtering on Si by Kr' ions (see
Fig. 24). The order of ripples can be estimated by the counting the number

of peaks in the Fourier spectrum of the surface profile.

2.1.2 Dots

Formation of nano-dots is another phenomenon reported in several experi-
ments. As the anisotropy induced by the direction of the ion-beam is elimi-
nated, either by rotating the sample (Erost et al. 2000) or by normal-incidence
sputtering (Facsko et al. 1999), formation of dots is observed. However, dot
formation under oblique incidence irradiation and also without sample rotation
has also been reported by |Ziberi et al. (2006) on Ge. The dots are highly or-

dered in size and have short-range ordering in placement (see Fig. 25]). In the

mentioned works, the dot patterns show hexagonal symmetry in lateral order-
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Figure 2.3: AFM image sequence, showing the evolution of fused silica surface topography
with increasing sputter time ¢ at 2, 6, 10, and 60 min, respectively. The ion-beam parameters:
800 eV Ar, flux— 400 uA/cm? and 6 = 60° . The lateral size of the images is 1 ym. The
wavelength of ripples increases with time as A ~ t7 with v = 0.15 + 0.01. Adapted from

|[Flamm et al. (2001).
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Figure 2.4: Self-organized Si ripple patterns produced by 1200 eV Kr* ion-beam erosion,
0 = 15°, for different ion fluences: (a) 3.36 x 1017 ions/cm?, (b) 2.24 x10'® ions/cm? and (c)
1.34 x10' ions/cm? (a)-(c) 2 pm x 2 um AFM images (the arrows give the ion-beam direc-
tion). (d)-(f) Corresponding Fourier spectrum (image range + 127.5 um~!). The circle in
(c) shows a defect in the AFM image. The number of defects decreases with time. Moreover,

the angular width of the Fourier peak decreases with erosion time meaning the homogeneity

and ordering (alignment) of ripples improves. Adapted from [Ziberi et al. (2005).
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ing, whereas some authors reported the formation of dot patterns with square

symmetry (Erost et al. 2004 [Ziberi et al. 2009). The coarsening behavior of

the ripples is also observed for dots, although in the case of dot patterns, an

early growth in wavelength saturates in longer times (Gago et al. 2001)). The

formation of ordered dot patterns is not explained by BH theory.

2.1.3 Holes

The so-called “cellular structures” or “holes” can be produced in experiments
with amorphous substrates. Fig. shows data from [Frost et al. (2004) in

experiments on Si surface irradiated by 500 eV Ar™ with sample rotation. The
appearance of cellular structures in the experiments with sample rotation can
be very sensitive to the rotation frequency of the sample. We discuss this in
section [0l

2.1.4 Smooth surfaces

Besides its applications for texturing the surfaces, IBS techniques can also be
used for surface smoothing at microscopic length scales and for the preparation
of ultra-smooth surfaces. Conventionally, continuous rotation of the sample
or the ion-beam has been proposed to suppress ripple formation (Zalar 1985}
in secondary ion mass spectrometry (SIMS) and Auger electron
spectroscopy (AES), where ripple formation would reduce the depth profiling
resolution. There are many reports on experiments with or without sample

rotation, in which the initial roughness of a the surface is reduced as the

sputtering process goes on (for two recent works see (Headrick and Zhou 2

and (Frost et al. 2009)). In Fig. 27 (adapted from the latter work ) initial
topography of an InSb sample is compared to snapshots after 10 and 120

min sputtering by 500 eV N ions at normal incidence angle with ion current
density 200 pA /cm?.

There is a lack of theory to explain the smoothing of surfaces by ion-
beam techniques. In low flux and high temperature experiments, similari-

ties to epitaxial layer-by-layer growth is claimed to exist in IBS experiments

(Chan and Chason 2007). In medium and high flux experiment, a down-hill

current induced by the collision cascades initiated by the impinging ions can



12 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTS

500 nm

30 40 50 60
500 nm dot diameter [nm]

Figure 2.5: Scanning electron microscope (SEM) images of highly ordered cones on a
(100) GaSb surface show the temporal evolution of dot formation during ion sputtering.
The nano-scale patterns are depicted for different ion fluences (exposure times) of (A) 4
x 1017 ion/cm? (40 s), (B) 2 x 10'® ions/cm? (200 s), and (C) 4 x 10'® ions/cm? (400
s). (D) The corresponding size distributions of the dot diameters are extracted from the

images. The dotted lines represent Gaussian fits to the dot diameter histograms. Adapted

from [Facsko et al. (1999).
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Figure 2.6: Silicon surface topographies after 20 min bombardment by 500 €V Ar* ion-

beam (sample rotation), flux= 300 pA/cm?, 0 (a) 0° and (b) 75°. Cellular structures form

in both cases. Adapted from [Frost et al. (2004).

suppress the destabilizing effects of BH theory. This will be discussed in more
detail in section. Bl The rotation frequency may have an important role in
achieving the smoothed surfaces, similar to the formation of cellular structures.
This will be discussed in section. as well.

2.2 Patterns on crystalline substrates

The above mentioned characteristics are not commonly observed in experi-
ments with metallic substrates. For example, ripples may form in normal
incidence experiments or isotropic patterns in oblique incidence experiments

may evolve without rotation . For a comprehensive collection of experimental

results on metallic substrate see [Valbusa et al. (2002). The different scenar-

ios of pattern formation on single crystalline metallic substrates are mainly
due to the different energy barriers in conjunction with the crystallographic
anisotropies in such materials. On the other hand, Surface diffusion is not
isotropic in crystalline substrates and the Sigmund’s theory of sputtering ne-
glects effects like channeling, which are due to the regular anisotropic structure.
Valbusa. et _alldefined a “diffusive” and an “erosive” regime, in which the orien-

tation of structures are determined by the unit cell direction or by the direction

of the ion-beam, respectively. The diffusion rate is mainly controlled by the



14 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTS

15 nm

0 nm

Figure 2.7: Sequence of AFM images which shows the progressive smoothing of a Si
surface under 500 eV ArT ion-beam erosion, 6 = 45°, flux = 300 pA/cm? (simultaneous
sample rotation). (a) Initial surface (pre-roughened by Ar* erosion at 75° ion incidence),
(b) after 10 min (corresponding to a total applied ion fluence of 1.1 x 108 ions/cm?) and

(c) after 180 min (2.0 x 10'ions/cm?). The rms roughness was reduced from R, = 2.25

nm to Ry < 0.2 nm. Adapted from [Frost et al. (2009).

substrate temperature and the erosion rate can be tuned by the ion-beam pa-
rameters. In Fig. 2.8 a transition from diffusive regime to erosive regime by
increasing the temperature at fixed ion-beam parameters is depicted.

The pyramid-like structures formed in the diffusive regime are similar to the
patterns which form in molecular beam epitaxy (MBE). Here, the difference
to MBE is that deposition of adatoms is replaced by creation of vacancies by
erosion. The main destabilizing factor in both cases is the biased diffusion of
surface defects (adatoms or vacancies). Therefore, most of the basic features
of patterns are similar in both MBE and IBS at high temperature and low
flux regime. In the erosive regime, however, the main underlying process is
the BH instability and diffusion is not the leading factor in the pattern for-
mation. Hence, the main characteristics of patterns in the erosive regime are

similar to those observed in the experiments on amorphized semiconductors

(see section [L.2.7]).

2.3 Advanced patterning methods

In the last few years, steps toward alternative complex IBS experiments have

been taken. Some of these advanced methods are surfactant sputtering, sput-
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Figure 2.8: The role of surface temperature in the transition from the diffusive to the
erosive sputtering regime for Ag(001). 1 keV Ne™ ions, § = 70°, flux = 2.2 yA cm?, t = 20

min. The white arrow shows the ion-beam scattering plane. Image size 180 x 180 nm? ; at

T = 400 K: 360 x360 nm?. Adapted from [Valbusa et al. (2002).
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tering of alloys, sputtering of thin deposited films, sputtering with double or
multiple beams, sputtering of substrate previously structured on micrometer
length scales, etc. Apart from the practical advantages, exploring this un-
known area of ion-beam sputtering technology poses new physical questions,
which can be answered only by extending and developing the present theoret-

ical models.

2.3.1 Surfactant sputtering

In surfactant sputtering, ion-beam erosion is accompanied by deposition of a
second (“surfactant”) atomic species (typically by co-sputtering a nearby metal-
lic target). Co-deposition is adjusted in a way that a steady state coverage of

(sub-) mono-layer thickness emerges.

Surfactant sputtering has been introduced by [Hofséss and Zhang (2008) as

a novel method with a wide range of controllable pattern formation scenarios.
The potentially wide spectrum of the applications of surfactant sputtering has
not yet been probed. One of the available examples, shown in Fig. 2.9] is an
arrangement of nano-drops of Ag on rippled Si substrate.

An important physical mechanism, which influences pattern formation is
that the presence of metallic atoms on the surface of a substrate can consider-
ably change the erosion rate of substrate atoms. Furthermore, the particular
form of surface diffusion of metallic atoms and their tendency to mix or demix
with the substrate can also affect the pattern formation. More details are

presented in chapter [l

2.3.2 Compound beams

Joe et al. (2009) performed experiments applying multiple beams (particularly

dual-beams) and also sequential sputtering from different directions. The aim
of these experiments was to produce structures of superimposed ripples formed
in different directions. Although in none of the cases a linear superposition
was observed, the case of dual-beams leads to square symmetric patterns (see
Fig.2T0)). In the sequential sputtering of pre-structured surfaces, the stepwise
rotation of the sample by 90° led to a fast destruction of initially formed

patterns before the new generation of patterns has grown in the perpendicular
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Figure 2.9: SEM pictures of Si surfaces eroded with 5 keV Xe at § = 70° and fluence
3 x 10' ion/cm? with Ag surfactants with different coverages (increasing from left to
right and top to bottom) of up to 10! Ag atoms/cm?. The ripple pattern and ripple
wavelength for different coverages are strongly influenced by the surfactants. Ag nano-

particles of size 10 nm or less can be seen on the tops of the flat ripple plateaus. Adapted

from [Hofséss and Zhang (2008).
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Figure 2.10: (a) Rippled Au(001) surface sputtered in the erosive regime, (b) Surface

morphology induced by sequentially sputtering of the pre-rippled Au(001) with 2 keV Ar™
with flux—=0.31 ions/nm?s, fluence—84.8 ions/nm? and # = 72°. The initial ripple pat-
tern is heavily damaged such that its order and mean coherence length are severely de-
graded. (c) Nano-patterns formed by dual ion-beam sputtering with flux=3.25 ions/nm?s,

fluence—6350 ions/nm? and 6 = 73°. Arrows indicate ion-beam projection. Adapted from

Toe ot al. (2009).

direction. More details are presented in section [[.4l



Chapter 3

Methods

Pattern formation in IBS, can be studied theoretically at different levels and
time-, energy- and length-scales with different approaches. The complete prob-
lem of IBS covers length scale from atomic sizes to some micrometers and time
scales cover a range from ~ 107!7 sec (duration of the primary atom-ion colli-
sions) to ~ 10 min (typical pattern formation time scale). The same extension
exists also in the covered range of energies; The upper bound is the energy of
an impact, initiated with some keV ion and the lower bound is the energy in-
volved in diffusion process at room temperature, i.e. the meV range. To cover
this wide range of scales, different methods and approaches must be applied
and at different scales different approximations are necessary. A combination
of all the approaches presents a multi-scale picture of the whole phenomenon.
In this chapter we introduce the following theoretical models which we apply
to IBS:

(i) Atomistic simulations based on binary collision approximation
(BCA): In this class of simulations, one starts from single impacts of ions
on the surface and follows cascades of atomic collisions, aiming to provide a
statistics of sputtering effects caused by impinging ions. The typical length-
scales considered in this approach range from some A to some nm.

(i) Kinetic theory: In this approach one studies the evolution of the phase
space density f(r,p,t) of displaced atoms (and of the ions) at position r and
with momentum p in the framework of Boltzmann’s transport theory.

(iii) Kinetic Monte Carlo simulations: Many results of this thesis are

obtained from this method. Usually, one starts from the results of kinetic

19
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theory, i.e. one uses a simple functional form of the averaged energy deposited
by a collision cascade for single ion impact to determine the erosion probability
of surface atoms. Diffusion processes can easily be added in this approach.
Simulating larger scales of some hundreds of nm can be studied by KMC.
(iv) Continuum theory of surface evolution: In the continuum model
of surface evolution the height of surface is considered as a continuous, single
valued smooth function of plane coordinates h(z,y). In the most general form,
the time evolution of A is described by a non-linear stochastic partial differ-
ential equation, the growth equation. In principle the growth equation may
include all the underlying processes which lead to the surface evolution and
also external noise by randomly shot ions. Here, length scales larger than the
penetration depth and atomistic sizes are considered and therefore small size
fluctuations are neglected. The main parts of continuum theories are erosion
and surface diffusion. Most of the theories in this framework are based on the

Sigmund’s theory of sputtering and a thermally activated diffusion model.

3.1 Binary collision approximation

The most microscopic approach to pattern formation under IBS would be
a full-fledged Molecular Dynamics (MD) simulation. However such a simu-
lation has to bridge the above-mentioned scales in time, space and energy,
which is not possible at present. Nevertheless, the approach is used for sin-
gle ion impacts to study the defect generation and also the mass transport
due to displaced atoms. But an approximate version of MD, the binary col-
lision approximation (BCA), has become a versatile tool in the study of ion
sputtering phenomena, including pattern formation. The main idea of this
method is to reduce all interactions to a series of binary collisions between
pairs of particles. In between collisions, the trajectory of the particles are
straight-line segments traversed with constant velocity, initiating from a col-
lision and ending at the next collision. Changes in velocity and position af-
ter each collision can be integrated numerically (Robinson and Torrens 1974}
Robinson 1994)). This approach is successfully used to quantitatively calculate
sputtering yields in the much used and well established programs TRIM and
SRIM. Koponen et al. (1997) have also used it to study the formation of rip-
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(a)
Figure 3.1: (a) Sample cascade originating from an impact of a 5 keV Cu ion on a Cu
crystal. The angle of incidence is 60°. The cube shown, acts just as scale and has volume 2.65
nm?. (b) Surface density of mean energy of sputtered Cu atoms vs. distance p (measured

in units of a = 3.61 A) from point of ion incidence. The solid line is the best fit to the data;
0.297(p? — 0.392p) exp(—1.27p) and the dotted line, which corresponds to a Gaussian fit, is

obviously inadequate. Adapted from [Feix et al. (2005)).

ples under IBS. [Feix (2002) and Feix et al. (2005) have studied the sputtering

of Cu crystals by means of BCA simulations to test some assumptions and

approximations used in less microscopic approaches.

3.1.1 Cascade shape

[Feix et al. (2005) considered an ensemble of 6000 impinging ions and calcu-

lated the averaged statistics of the induced collision cascades (see Fig. Bl
(a)). One of the main results is about the distribution of deposited energy
by a single ion as this quantity underlies the continuum theory and the KMC
approach (see below). For normal incidence, the simulations show an energy
distribution as depicted in Fig. Bl (b), which has a minimum near the position
where the ion penetrates the surface, and decays exponentially with distance.
This from deviates significantly from Gaussian shape centered at the location

of primary knock-on collision, which is used in the vast majority of continuum

and KMC approaches, and was proposed by [Sigmund (1969) on the basis of

an approximate treatment of the kinetic theory.
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3.1.2 Defect generation

Apart from erosion of the substrate atoms by the energy transferred from
ions, generation of surface defects (adatoms and vacancies) is known to be
another effect induced by collision cascades (Nordlun . 1998)). Excited

atoms reaching the surface with energies more than the surface binding energy

E,, will be sputtered off, and leave a vacancy, however a large fraction of
particles have energies less than Ej,. These atoms remain on the surface and
become adatoms. At high temperature, defects recombine and vanish rapidly,
whereas at low temperature regime a large number of them remains for longer
time (Eloro et al. 1995)). [Feix (2002) found a distribution of the energy of the

particles reaching the surface €5, which obeys a simple power low

a 2

ples) = m ~ € (3.1)

with a = 5.26, b = 5.03 and v = 1.87 for 5 keV Cu ion hitting a Cu tar-
get. The shape of the distribution is almost independent of the distance from
the impact point up to a large distance (see Fig. B.2)). This finding is in ac-

cordance with experimental observations and a simple theory of cascades by
Farmery and Thompson (1968)).

3.1.3 Down-hill current

(Carter and Vishnyakov (1996) observed that in off-normal incidence (up to

45°) sputtering of Si with high energy (10-40 keV) Xe' ions, sputtering ero-

sion can induce smoothing. Using MD simulations Moseler et al. (2005) ex-

plained the irradiation-induced smoothing on diamond-like carbon surfaces.
They found a down-hill current of atoms along the beam-direction induced by
the ions. This current may suppress the curvature dependent BH instability
(section [ZT]T]), because they transport atoms back to the ripple valleys. The
down-hill current is proportional to the surface slope j o« —Vh. By substitu-
tion of the current density into the continuity equation 0h/0t = —V - j, one
obtains a smoothing equation for the height field h, dh/0t oc V2h.

This down-hill current is also easily observed in BCA as demonstrated in

Fig. B3l
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Figure 3.2: Energy distribution extracted from 6000 independent 5 keV impacting Cu ions

for different distances from impact point (measured in units of a = 3.61 A). The distribution

is almost independent of r. Adapted from [Feix (2002).



24 CHAPTER 3. METHODS

12 b

10 b

y [a]
o

12 + 4

12 10 -8 -6 -4 -2 0 2 4 6 8 10 12
x [a]

Figure 3.3: Spatial distribution of ejected Cu atoms emerging from 6000 independent
trials of hitting the (x,y) crystal surface (oriented in (100) direction) with a single 5 keV
Cu ion at oblique incidence. Distances are measured in units of a = 3.61 A. Adapted from

Feix (2002).
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3.2 Kinetic theory

To obtain statistics of the collision cascade and calculate the sputtering yield
depending on ion-target parameters, Sigmund (1969;1973) presented a solution
of a Boltzmann transport equation with assumption of random slowing down
of ions in an infinite medium. The main approximation in this approach is the
neglect of interactions between atoms, which thus form a tree of non-interacting
particles (referred to as the “collision cascade”). The most important results,
which underlie the approaches in subsequent scales are the following:

(i) The erosion rate at each surface point is proportional to the power
brought to this point via collision cascades.

(ii) The distribution of collision cascades is calculated approximately.
found that in some cases this form can be approximated by a simple Gaussian.

(iii) The scattering events originated by the penetration of energetic ions,
leading to sputtering occur in a layer near to the surface with very small
thickness. Most of the sputtered atoms belong to a thin surface layer (~5 A).

(iv) The energy distribution of ejected particles follows Fig. Bl This result

was first obtained by an elementary argument on cascades by Thompson (1968).

These results then became the main principles of almost all later theoretical
works on IBS.

3.3 Kinetic Monte Carlo

All the existing KMC simulation models of IBS (for examples see|Chason et al. (2006,
Stepanova and Dew (2006]), and [Hartmann et al. (2002)), are based upon the

results from the kinetic theory, mentioned above and include two parts of
erosion, upon Sigmund’s theory and a surface relaxation process. A simu-
lation run consist of a sequence of single ion shots, a calculation of the de-
posited energy at the current surface for each ion and random discrete hop-
ping of surface atoms corresponding to surface diffusion. Most models (with

the exception of the work by (Bartosz Liedke 2009)) describe the surface in the
framework of a solid-on-solid (SOS) model, thus excluding overhangs, drops

and bulk vacancies. Furthermore, a re-deposition of sputtered particles is not

taken into account. In the following we describe some details of the models,
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which was developed from [Hartmann et al. (2002) to [Hartmann et al. (2009)
(HKGK model).

The system consist of a square lattices of size L x L (with periodic boundary

conditions, if not stated otherwise) and the SOS surface is described by an
integer-valued time-dependent height function h(z, y,t) on the lattice. In most
cases, we start from a flat surface, i.e. h(x,y,0) = 0. The details of erosion

and diffusion trials are as the following.

3.3.1 Erosion

As mentioned above, the erosion process is based on Sigmund’s theory, i.e.
the Sigmund formula Eq. B4l is applied for every single impinging ion. An ion
starts at a random position in a plane parallel to the plane of the initially flat
surface (x — y plane), and follows a straight trajectory inclined at angle 0 to
the normal of this plane. The ion penetrates into the solid through a length
a and releases its energy. Then we check all the lateral atoms as the subject
for sputtering such that an atom at a position r = (x,y,h) is eroded with
probability proportional to E(r).

We have put € to be (27)%20u2, which leads to sputtering yields Y ~ 7.0,
thus should be kept in mind when comparing simulation results to experimental
data. According to the Bradley Harper theory, the ripple wavelength A scales
like A ~ Y ~1/2 50 that lower yields lead to correspondingly larger length scales.

Throughout this work we use a set of parameters as default values if not

stated otherwise. We fixed o = 3, u = 1.5 and a = 9.3 (in lattice constant).

3.3.2 Diffusion

We have implemented different models to describe the surface motion of atoms.
These range from simple, irreversible surface relaxation to activated hopping
over energy barriers, which may depend both on initial and final state of the
move and include Ehrlich-Schwoebel non-equilibrium kinetic effects. We al-
ways use "full diffusion models, so one diffusion step refers to a complete sweep
of the lattice. In the following, we briefly introduce the three basic types of
diffusion models, which we have used throughout our simulations. Details of

the different models and their effects on pattern formation are discussed in
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section 4.2

(i) A simple, non-thermal, irreversible relaxation process has been intro-
duced by [Wolf and Villain (1990). For each column, it is tested once during a

sweep, whether the particle at the top of the column can increase its coordina-
tion number, i.e. its number of nearest neighbors, by hopping to a neighboring
column. If this is the case, the particle hops to that neighbor column where it
obtains the highest coordination number (section E2.]).

(ii) A class of thermal diffusion models is based upon a Hamiltonian H,
which controls the thermal roughening of a facet. Trial moves from site ¢ to a
nearest neighbor site f (h; — h;—1, hy — hy—1) are accepted with probability
p(i — f) = [1 + exp(AH/kgT))]~! where AH is the change in Hamiltonian
due to the hop. (section L2.2]).

(iii) The “Arrhenius” models are based on a kinetic procedure and use hop-
ping via transition states. For each step, a move from initial (¢) to final (f)
configuration is chosen randomly from a predefined list. Here we restrict moves
to nearest neighbor hops from site ¢ to site f. We would have to include more
moves, if we want to model material specific diffusion processes. The move is

performed with a probability proportional to an Arrhenius hopping rate

k= kg eXp<—%> (3.2)

Values of the energy barriers E(i — f) have to be taken from experimental or
simulation data (section EL2.3]).

The connection between time in KMC models and real experiments is made
by comparing the attempt frequencies of different events in KMC with corre-
sponding kinetic rates in the lab condition. In our model there are two different
time scales, (i) the time intervals between the shooting of two impinging ions
7; and (ii) the waiting time between diffusion sweeps 74. By tuning these two
time scales, a wide range of experimental conditions can be covered. Our
default values correspond to a typical flux of 0.75 (ion/atom second) and a

temperature of 350 K.
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3.4 Continuum theory

3.4.1 Bradley-Harper model

Bradley and Harper started from the results of kinetic theory, that the normal
velocity of the eroded surface
Oh(x,y,t) 1
ot 1+ (Vh)

= v (2, y, 1) (3.3)

[\

is proportional to the total energy transferred to the point (z,y, h(z,y)) by the
collision cascades. An arbitrary ion impinging the surface at point P, comes
to rest at point O’ after penetrating into the solid by a distance of a along
its trajectory. The deposited energy of the ion at any point O at the surface
is a function of the distance vector R = (X,Y, Z) between O and O'. The
averaged energy deposition function is taken to be a Gaussian

1 X24+y?2 72

ER) = (27)3/20 142 exp(= 2442 202

) (3-4)

as proposed by |Sigmund (1969). p and o are width of Gaussian function

parallel and perpendicular to the beam trajectory. To calculate the erosion
rate, all the contributions from homogeneously impinging ions at incidence

angle # with respect to the normal of the surface should be summed up;

v (r) = YJion/dr’E(r —r')i- ey (3.5)
where J;,,€p is the ion flux with
sin(0)
€y — O
cos(0)

n is the unit vector normal to the surface and Y is the sputter yield. The
integral is taken over the surface. The integral is evaluated in a gradient
expansion (i.e. in (Vh)™) and a small slope approximation which starts with

the following terms:

Oh(z,y,1)

- Oh(@,y,t) Phizy,t)  Phiz,y,t)

= —vg(0) + vy () 9 Uy 52 Uy oy

. (3.6)
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vp is the average erosion velocity of a planar surface. v, and v, are “effective
surface tensions” in directions parallel and perpendicular to the projected di-
rection of ion-beam onto the surface. To solve the obtained growth equation,
we let h(z,y,0) = Aexpli(k,x + k,y)]. The general solution of Eq. B0l for the
mode k = (k,, k,) takes on the from

h(z,y,t) = —vo(0)t + Aexpli(k,x + kyy — wt) + I't]. (3.7)
substitution of the solutions leads to
w = —uv,(0)k, (3.8)

and
U(ka, ky) = —vok? — vk (3.9)

This means that an arbitrary mode k propagate along the orientation of the
beam (projected onto the x — y surface) with phase velocity —vj and also
grows (decays) in amplitude with the rate I. The 6 dependence of effective
surface tensions results from the gradient expansion and one example is shown
in Fig. B4l for the default parameters of our KMC simulation. For some values
of 0, both v, and v, are negative, leading to positive growth rate I' for all
wavevectors. In experiments, it is observed that a specific wavelength grows
faster than all others and forms periodic ripple-like structures. A stabilizing,
i.e. smoothing mechanism, which is lacking in Eq. is surface diffusion,
which gives rise to a term oc V*h (see section [2)). Adding this term results
in linear evolution equation of Bradley-Harper theory,

Oh(z,y,t)

3 Oh(@y,t)  Fhlz.yt) = OPhizy,i)

-B 2 Zh
ox Ve o2 Yy 0y2 ViV

(3.10)

where B is the coefficient of surface diffusivity. Taking the diffusion mechanism

= —vo(0)+v5(0)

into account changes the growth rate into
U(ko, ky) = —vk2 — v k2 — B(k2 + k2)*. (3.11)

Now for any value of 0 (except § = 0 and 6 = 6, where v, = 1), I" has a max-
imum value for a single (k2, k7). Since the included diffusion term is isotropic,
the maximum of I'" occurs always for k which is either in x or y direction,

i.e. k= (k7*,0) or k(0, k). The maximum lies in the direction, for which
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Figure 3.4: Effective surface tensions in two directions, parallel and perpendicular to the
ion-beam direction as a function of incidence angle 6 for ¢ = 3 4 = 1.5 and a = 9.33.
For 0 < 0 < 0., vy, < 0 and |v,| > |vy], therefore, the growth of instabilities with the
wavevectors parallel to the beam direction is faster and ripples perpendicular to the beam
direction form. For 6. < 6 < 6., |vy| > |v;| and therefore ripples parallel to the ion-beam
direction form. For 6. < 0, v, becomes positive and perturbations with the wavevector in x

direction damp and again formation of the ripples parallel to the beam direction expected.

the negative surface tension has the larger negative value. This predicts for a
wide range of materials and ion parameters, ripples with wavevector aligned
parallel to the projection of ion-beam for # < 6. and ripples with wavevector
perpendicular to the ion-beam projection for # > .. This prediction has been
confirmed in numerous experiments and makes the BH theory reliable for sur-
face texturing by ion-beam. The typical length scale of patterns predicted by
linear theory of BH is

(= (27) | — (3.12)

where v, = min[v,, v,

3.4.2 Cuerno-Barabasi non-linear model

\Cuerno and Barabasi (1995) continued the small slope expansion and includes
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non-linear corrections to the Eq. They also took into account the "shot
noise“ i.e., the random arrival of ions to the surface as a Gaussian white noise
n(z,y,t) with zero mean and variance proportional to the flux. The growth
equation then becomes

Oh(x,y,t) Oh  0*h  O*h N, Oh* N\, Oh’

_ / “he v A YTty 2 2
(3.13)

This equation is an anisotropic version of the Kuramuto-Sivashinsky (KS)

equation, which is well known in pattern formation theories (Kuramoto and Tsuzuki 1976
\Sivashinsky 1977)).

A crossover time t. is defined as the time in which the nonlinear effects
become dominant and the system leaves the validity region of the linear ap-
proximation. From the linear equation, the amplitude of ripples at ¢, is
~ exp(|vm|te/?), whereas from O;h ~ A(Vh)? the amplitude is estimated in
order of £2/\t.. Combining these two relations, the crossover time is

te ~ (=) (=), (3.14)

V2

Depending on the signs of v,, v, A\, and J\,, different morphologies are
expected from non-linear theory. Typically for small values of 6§ where v,
and v, are both negative, A\, and A, are also negative. For short time scales
(t < t.), the same ripples as predicted by BH form, but ripples get blurred
and disappear gradually for long times (¢ > t.). The patterns show the typical
Kuramoto-Sivashinsky type of spatio-temporal chaos. Increasing the incidence

angle, A, and A\, obtain different signs where v, and v, are still both negative.

Park et al. (1999) have shown that two transitions occur in this regime. In

early stage of pattern formation, standard ripples from linear theory form:;
At the first transition, ripples disappear and the surface becomes rough; At
the second transition, stable ripples with rotated orientation by an angle of
tan~' /=X, /), form. The stability of these ripples can be understood as a

consequence of a non-linear cancellation of modes. (Rost and Krug 1995).

3.4.3 Makeev, Cuerno and Barabasi model

Makeev et al. (2002) have continued the gradient expansion, including 4th or-
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der derivatives.
@ *h *h

b=-p,2"%_p " _p, 2"
oxt oyt Y 0x20y2

(3.15)

These terms resemble (anisotropic) a new type of surface diffusion. They have
been called "erosion-induced diffusion®, although they does not describe a real
transport process (and may in fact lead to roughening as well as smoothing).
We want to point out that tempting interpretation of these terms as ion-
induced diffusion can be misleading, even if they act as smoothing mechanism.
To this end, in the next section, we study the linear stability analysis of the

continuum theory without making use of the gradient expansions.

3.4.4 Non-local linear stability analysis

For simplicity, we restrict our analysis to the case of normal incidence (6 = 0).
We start from Eq. and consider a broad class of energy deposition functions

of the form
E(z,y,2) = f(z,y) 9(2) (3.16)
so that
Oph(rq) = —YJion/f(fﬁ —x,y1 —Yy) g(h(z1,91) — h(z,y)) dx dy (3.17)

g(h(r) — h(ry)) = g(Ah) can be expanded around Ah = 0; g(Ah) = g(0) +
g'(0)Ah the first term leads to a constant erosion velocity. In the coordinate

system moving with this velocity,
Bh(r1) = —Y Jion / Fr —11)g' (0)(h(r) — h(r1)) dr?. (3.18)

By changing the variables £ = r — ry, we have
O(r:) = =Y Jion [ F(€)gO)(A(E +11) = h(x)) dg®. (3.19)

We substitute h by the inverse Fourier transform of the height profiles iz(q)

(

Now we Fourier transform the whole equation

Tt 0) [ [ e [ (6 (1)) deagtint
(3.21)

Oh(r) =

o [ 1000 [ i@ agag (320

(

) / eI () dr? =
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Note that [e~&T1+iaT1 dp-2 oives a delta function (27)20%(k — q), so

0h(k) = =Y Jiong'(0) /f(é*) (€™ —1)h(k) d&* = =E4'(0)h(k)(f(k)—f (k = 0)).
(3.22)
This equation leads to instability/stability, if the sign of real part of the pref-

~

actor of h(k)at the right-hand-side is negative/positive.

~ ~

For all functions f(r) > 0, (f(k) — f(k =0)) < OEI Therefore if ¢’'(0) > 0
all the modes will be unstable and roughening happens in all length-scales.
Let us specialize to the Gaussian energy deposition function EqB.4] and put

1 22442

flz,y) = i exp 2% . (3.23)
Thus
flk) =e 2" (3.24)
and
Oh(K) = —JignY (™2~ — 1)h(K). (3.25)

If we now apply a gradient expansion up to 4th order, we get
. 1 1 .
oh(k) = —JionY(—ng/f + ék‘*/f — O(K%))h(k). (3.26)

Note that the k*term would lead to a stabilization of modes at short wave-
length. This result, however, is spurious as all modes are unstable, if all terms

of the gradient expansions are taken into account.

3.5 Data analysis

We use two main methods to analyze the data obtained from simulations,
scaling analysis of surface roughness and power spectral density of the surface

profile. They are introduced and explained in the following.

3.5.1 Scaling analysis

To study the scaling behavior of the growing surface, we investigate the inter-
face “width” which is a measure for the “roughness” of the interface. We define

the width of a 2-d interface discretized in L x L segments, at time ¢ as

! We want to evaluate A = (f(k) — f(k = 0)). By definition A = [exp(ikr)f(r)dr —
[exp(iOr)f(r)dr = [exp(ikr)f(r)dr — [ f(r)dr. The real part of A, R(A) =
[ cos(kr)f(r)dr — [ f(r)dr, is clearly negative.
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w(L 1) = Lizz (i, 4) — h(t)]2 (3.27)

where h(i, j,t) is the height of segment (4,7) and h(t) is the average height of
interface at time ¢. Starting with a flat surface, h(i, 7,0) = 0 for all 7.

For large classes of growth models w(L,t) obeys a universal scaling from
t
w(lt) ~ L f(+) (3.28)
where the scaling function f has the following shape

flu)~u?u<1 f(u) = const : u>> 1. (3.29)

a, 3 and z are called “roughness”, “growth” and “dynamic” exponent. These

exponents satisfy the scaling law z = /3. Based on the values of the scaling

exponents, surface and interface growth mechanisms are classified into different

universality classes. For more detail see Barabasi and Stanley (1995)).

3.5.2 Power spectral density

The power spectral density (PSD) of a given 2-d surface profile h(z,y) is
defined as

Jeritasrtan) g gy2 = ZDTD 540,

1 00
Slaeray) =1 = [ _h -

where F is Fourier transform of the function h and F* is its complex conjugate.

The surface width is calculated by integration of S

wi(t) = — [ asta.t)da (3.31)

21 Jo

For any given linear growth equation, one can consider plane wave solutions

with the wavevector ¢’ = (g, g,) satisfying a growth equation in the form of

Oh(q,t)
ot

= —h(q, 1) R(q) (3.32)

where R(q) is the growth rate which can be positive or negative leading to
roughening or smoothing the surface respectively. Eq.[3.32 can be easily solved

and the corresponding power spectral density function is
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Figure 3.5: (a) upper row: surface profiles with L = 512 after left: 1 ion/atom, right: 40
ions/atom sputtering at 6 = 50. lower row: corresponding 2-d Fourier transform of above
profiles. (b) power spectral density (averaged over azimuthal angle) of surface profiles shown
in (a). By increasing the sputtering time, order of structures increases and the height of the

pick in PSD grows as its width decreases.

S(@.1) = S(d.0) exp(—2R(q)t) (3.33)

where S(q,0) is the power spectral density of the surface at ¢t = 0.

PSD can be measured by many optical scattering methods and also by di-
rect Fourier transform of the surface profile. Peaks in the PSD averaged over
angles correspond to the selection of specific wavelength. R can be estimated
by measuring the growth rate of peaks height. Periodic arrangement of peaks
reflects the periodicity of the surface patterns. Moreover, the angular distribu-
tion of the Fourier transform is related to the structural anisotropies. Finally,
the width of the PSD is a measure of the degree of order, i.e. the quality
of regular patterns. Examples of surface profiles, corresponding 2-d Fourier
transform and PSD are depicted in Fig.
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Chapter 4

Erosion and diffusion-driven

patterns

Pattern formation in IBS is an outcome of a competition between erosion and
lateral diffusion. The kinetic rates of these processes are controlled by ion
parameters (e.g. flux and energy) and substrate parameters (e.g. diffusivity
and temperature) respectively. In crystalline materials, two different regimes
of pattern formation are observed by changing the erosion and diffusion con-
ditions. In a high flux and low temperature regime, erosion events are the
dominant processes driving the pattern formation, and diffusion acts only as
to smooth the long wavelength fluctuations. Therefore the emerging patterns
are ripples oriented in the direction determined by the ion-beam direction,
which is compatible with the predictions of the linear BH theory. In a low flux
and high temperature regime, diffusion is the dominant factor and therefore
patterns beyond the predictions of BH theory emerge. In this regime, depen-
dent on the diffusion bias of the sample, and the crystallographic orientations,
ripples appear which are oriented by crystal anisotropies rather than by the
ion-beam direction. Furthermore, other kinds of patterns, e.g. positive or neg-
ative pyramids (pits) develop. In the KMC simulations, erosion and diffusion
parameters are controlled by changing the rate of ion impacts and diffusion
attempt frequency. As a control parameter, we consider R = 7;/74, where 7;
is the time interval, in which one ion per atom is shot into the surface and 74

is the waiting time between two diffusion sweeps applied to each atom.

We start this chapter with a brief review of simulation results obtained

37
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in the erosion-driven regime under varying parameters. Then we introduce
models of surface diffusion and discuss the effects induced by combining each
of them with erosion events in high flux regime. Finally, we present results

covering the crossover from the erosion-driven to the diffusion-driven regime.

4.1 FErosion

According to the work of as mentioned in section B3 the spatial
shape of collision cascades as well as the distribution of deposited energy by
impinging ions is approximated by a 3-d Gaussian function in almost all the
theoretical models (including computer simulations). The distribution function
is parametrized by its longitude and latitude expansions ¢ and p, and is cen-
tralized at a point at the distance a (penetration depth) from the point of ion
impact on the surface. Using BCA packages (i.e. SRIM (Ziegeler et al. 1985)),

it is possible to calculate o and pu for every combination of ion and substrate

type. Systematic studies on the dependence of patterns on these parameters

are presented by [Yewande et al. (2006). The results can be summarized by

a kinetic phase diagram, showing different morphologies (ripples, dots, holes
and cellular structures for different values of ¢ and pu.

With Gaussian-shaped collision cascades, pronounced ripples with wavevec-
tors oriented perpendicular to the projection of the ion-beam onto the surface
are not obtained in KMC. We demonstrate that this deficiency can be removed
by replacing the Gaussian shape by a shape of collision cascades obtained from

BCA simulations.

4.1.1 Dependence of patterns on ion parameters

By systematic changes in the values of o and p for an incidence angle of § = 50°,
six different types of qualitative behavior corresponding to six different regions
in the (o, ) space are observed. In Fig. ] these six regions are indicated
for t = 3 ions/atom, at which almost all the surface topographic features are
distinct; the corresponding profiles are shown in Fig. The boundaries
shown in this sketch do not represent abrupt transitions from one topography
to another and they change with time.

The following features distinguish the different topographies in Fig. [4.2}
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Figure 4.1: Kinetic phase diagram (6 = 50°, d = 6). Region I: rough surface; II: holes; III:
clear ripples oriented perpendicular to the ion-beam direction; IV: short ripples (resulting
from increased p); V: dots; VI: non-oriented structures. The short arrows indicate the
evolution of the boundaries between different regions with respect to time. Hence, region

ITT grows at the expense of region I, while region II describes only a short transient.

Region I: rough surface (see Fig. L2(I)) which, as time increases, evolves
to a hole topography. The “sizes” of the holes grow and finally coalesce to a
ripple topography at long times.

Region II: holes are prominent in this region (see Fig. L2(II)). Here the
“number” of holes increases with time, and again ripples are formed at long
times, but at an earlier time than as region I (not shown as separate figure).

Region III: the ripple phase (Hartmann et al. 2002 [Yewande et al. 2005)).

Here ripples form from earliest time. Thus, comparing regions I,II and III,

there seem to be two different processes of ripple formation. Ripples can be
formed quickly by evolving directly from a slightly rough surface, or can be
formed slowly via the creation of holes, which coalesce to ripples on longer
time scales. Note that in regions I and II, the resulting ripple wavelength is
smaller than the size of the holes generated at smaller time, while in region I1I
the ripple wavelength is larger than the tiny holes.

Region TV: consists of a mixture of dots and short ripples, which eventually
give way to the dot “phase” (region V), as o is increased. Hence, this region
seems to “interpolate” between regions III and V.

Region V: consists of dots. These dots are formed on some ripple-like struc-
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\Y%

Figure 4.2: Profiles for parameters chosen from each topographic region in Fig. EI}
0=50d=6,t=30. I)o=1,u=05; (1) o =1, p=1.5; (IIl) 0 = 3, u = 1.5; (IV)
c=4, 4=25;(V)oc=5, u=25; (VI) 0 = 0.5, u = 5. The bar, on all profiles, denotes the

ion-beam direction.
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tures oriented parallel to the ion-beam direction.

Region VI: consists of non-oriented structures exhibiting a typical length

scale, but only a slight orientation preference parallel to the ion-beam.

4.1.2 BCA model based erosion

In KMC simulations beyond incidence angles of § ~ 70° the ripples with
wavevectors parallel to the ion-beam direction vanish. In Fig. (c) we see
simulation results obtained with a Gaussian shape of the collision cascades.
Note that small ripple fragments remain, but the rotated ripples, which are
expected from linear BH theory and observed in experiments, do not appear.
We have already noticed in section B.J] that the shape of cascade, which is
obtained from BCA simulations, differs significantly from a Gaussian. The
right panels of Fig. ((b) and (d)) show simulations with this modified
shape. Now the rotated ripples observed in experiments appear as pronounced

structures.

4.2 Diffusion

Although the important role of surface relaxation events in pattern formation
by IBS is evident, it is not yet clear what is the most realistic model of atomic
diffusion in the discrete SOS framework. There are different proposals (mostly
arising from MBE studies), which can partially explain the features observed in
experiments, but none of them have the capability to describe atomic mobility
in general form. Measuring the growth exponents corresponding to each model
and comparing them to the values obtained in MBE experiments is a way to
determine the relevant model to each condition of experiments. However,
entanglement of diffusion and erosion makes conclusions more difficult in the
case of IBS. As mentioned in section B.3.2] we have implemented different
diffusion models in our KMC simulations. In the following, some of well studied
diffusion models are introduced briefly. We describe them as discrete particle
algorithms as well as continuum equations for the evolution of the height profile
h(x,t).
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Figure 4.3: Two sets of simulations based on Sigmund’s energy distribution and Feix et

al. for (a) and (b) 8 = 50°, (c) and (d) @ = 80°. The left panels correspond to Sigmund’s
distribution and the right panels to Feix et al. distribution. The evolved patterns are
qualitatively the same for § = 50°, whereas for § = 80° patterns emerged from Feix et

al.’s distribution are more similar to the experimental results (one example is depicted in

Fig. 2Z10).
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4.2.1 Irreversible models

In the irreversible models of diffusion, a particle sticks to a neighboring particle
and keeps this position permanently. The irreversible attachments correspond
to models for low temperature regimes, where breaking the bonds is highly

unlikely due to the large binding energies.

Family model

Family (1986) has considered effects of surface relaxation in scaling behavior
of growing surfaces by the use of discrete models. By adding a very simple re-

laxation process to the random deposition of particles to a (1-+1)-d surface, he
reached a new universality class. In the Family model, every arriving particle
on the surface is allowed to relax to one of the nearest neighboring sites if it
has lower height than the initial target site. This process leads to reduction of
roughness and smoother growth of surface as compared to random deposition
growth. The scaling exponents (defined in section B5]) of the Family model
in 2-d are « = 0.48 £ 0.02 and 3 = 0.24 + 0.01. Relaxation to farther neigh-
boring sites, for example next nearest neighbors, does not change these scaling
exponents. The Family model is shown to belong to Edwards-Wilkinson (EW)

universality class.

Studying surface fluctuations in a settled granular material, Edwards and Wilkinson (1982)

found the simple continuum equation to describe the process by which a par-
ticle settles and comes to rest on the existing surface of the packing. In EW
description, the corresponding term in the growth equation of a randomly
driven surface is DV?h, where D is acting like a surface tension coefficient
which smooths the height fluctuations of the surface. If this relaxing term
is combined with a random noise of adding particles, the growth equation

becomes

Oh(x,t)
ot

Scaling analysis of EW equation in d-+1-dimension, leads to the following

= DV?h + n(x,1). (4.1)

values for scaling exponents (Barabasi and Stanley 1995)

o= —-, f=—-, z2=2 . (4.2)
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Wolf-Villain, Das Sarma-Tamborenea and Lai-Das Sarma models

The first models for non-equilibrium growth processes at atomistic level in-
cluding lateral motion driven by the binding energetics were introduced by
‘Wolf and Villain (1990)) and [Das Sarma and Tamborenea (1991)) independently.
In both models (WV and DT), a deposited particle relaxes to the neighboring

sites if it increases the number of its in-plane neighbors, i.e. particles move to
increase the number of their lateral bonds. In WV, there is preference to max-
imize the number of in-plane bindings, whereas in DT, hops to the sites with

larger (not necessarily largest) bindings are performed with equal probability.

A more detailed version of DT was introduced by Lai and Das Sarma (1991))
(LD), in which the particles landed onto a kink (i.e. in 1-d, the site with one

neighbor) are allowed to jump to a neighboring site with a smaller step height.
In this process, upward and downward movements are both accepted. Scaling
exponents, measured for these models are shown in Table

Another discrete model which shows correspondence to V# universality class

is the so called “larger curvature model” (LC) introduced by Kim and Das Sarma (1994)).

In LC, a particle relaxes to one of its nearest neighbors x, where the curvature
of the surface at this point h(x + 1) + h(x — 1) — 2h(x) is larger than at the
original site. The LC model is shown exactly to belong to V* universality
class.

The continuity equation is a starting point to obtain a continuum descrip-
tion for surface diffusion driven by energetics of atomic bindings, which implies

that the number of particles remains constant during lateral motion

ng;’ 2 = -V -jx,t). (4.3)

The surface current density j is driven by the gradient of the chemical potential
p(x,t), ie.

§(x,1)  —V(x,t) (4.4)
Since the origin of chemical activated transportation are binding energies of
neighboring atoms, and the number of neighbors of an atom located at a point

is proportional to the curvature of surface profile at that point, we find that

the chemical potential in such system is

p(x,t) oc —=V2h(x,1). (4.5)
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Combining Eq. 3], B4 and A3 the continuum expression describing surface

diffusion reads like

Oh(x,t)
ot

where K is a diffusion rate (which in the case of thermally activated diffusion

= —KV*h, (4.6)

scales with 1/kgT’). This corresponds to the continuum description of LC. If
the diffusion process is combined with a random deposition of particles, the
growth equation of the surface reads

Oh(x, 1)
ot

= —KV*%h +n(x,t). (4.7)

which has the scaling exponents (Barabasi and Stanley 1995])

4-d

o = 2 ) ﬁ

4-d

5 z=4. . (4.8)

Non-linear diffusive terms

The most relevant term in the sense of scaling behavior, which can be written as

a gradient of a chemical potential, was introduced by|Lai and Das Sarma (1991).

It is given by V?(Vh)? and corresponds to continuum description of LD. And
when combined with Eq. L7 we get

Oh(x, t)
ot

= —KV'h+ M VA(Vh)* +1(x, 1), (4.9)

where \; is another diffusion rate. Scaling exponents calculated for the men-

tioned growth equation are (Lai and Das Sarma 1991))

Q_4—d 5_4—d z_8+d
-3 8+d’ -3

(4.10)

Many numerical works are done to determine the scaling exponents of the
mentioned discrete models. A summary of the most well-known calculated

values for 2-d systems is given in Table 11

4.2.2 Hamiltonian models

In another class of diffusion models called “Hamiltonian models”, atomic hops

are associated with a change in a Hamiltonian H and acceptance of a hop is al-

lowed according to a Metropolis criterion (Siegert and Plischke 1992 |Krug et al. 1993;
Siegert and Plischke 1994). In this model, all the particles at the top-most
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Table 4.1: A summary of calculated values of the growth § and roughness «

exponents for different irreversible discrete diffusion models in (1+1)-d.

Q@ 154 Ref.
Family | 0.48 £0.02 | 0.24 +0.01 (Family 1086)
WV 1.44+0.1 | 0.36£0.072 (Wolf and Villain 1990)

DT | 1.4740.10 | 0.37540.005 | (D rma. and Tamborenea 1991))
LD | 1.05£0.10 | 0.340 £ 0.015 (Laiand Das Sarma 1991))
LC 1.5+£0.1 | 0.375£0.010 (Kim_and Das Sarma 1994))

layer are the subject of diffusion. The diffusing particle hops from site 7 to a
neighboring site 7 with the normalized rate
1
wiﬂj = [1 —+ eXp(—AHiﬂj)]il (411)
kgT
where AH,_.; is the change in Hamiltonian due to the hop from site ¢ to site

j. The Hamiltonian has the general form of an unrestricted SOS model

1
H = 5JZ|hi—hj|”, (4.12)
o)

where (i, j) counts for all the nearest neighbors, J is coupling constant and n
is a positive integer number. The Hamiltonian model is able to reproduce
some significant features of atomic transport mechanisms in a wide range
of materials. For example, there is no energy cost for diffusion of a single
adatom or vacancy on a flat surface in the described model which leads to
the same diffusivity for adatoms and vacancies on (001) facets. This feature
is extensively reported for metallic surfaces (Chan and Chason 2007). The

model is also able to simulate the so-called “Schwoebel effects”, which refers

to the repulsion of diffusing atoms from descending step edges and an ob-
served up-hill current on stepped surfaces (for more details see section [L2:7)).
Siegert and Plischke (1994) showed that for n = 1,2 and n > 2, the mentioned

model induced negative, zero and positive Schwoebel effects respectively and

in general, increasing n leads to stronger Schwoebel effects.

Another version of Hamiltonian models for diffusion is introduced by |Stepanova et al. (2005)),

in which the associated Hamiltonian is

1
H: 5&’)/(|/<Li+/€j|), (413)
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where £ is the local curvature, a is the inter-atomic distance and -y is the energy
of one atomic bond. The mentioned Hamiltonian simulates the tendency of

atoms to diffuse to the positions with more neighbors.

4.2.3 Thermally activated models

Another successful discrete model for surface diffusion is known as “thermally

activated diffusion” models (for example see [Smilauer et al. (1993)), and is

based on an Arrhenius form of hopping rate

k(E,T) = kyexp( (4.14)

T
where ko = 2kgT/h, is attempt frequency of a surface adatom (h, is Planck
constant). The energy barrier E is the average of the transition state of the
corresponding hop. In KMC it is expressed by bond energies of the diffusing
adatom. There are different variants of expressing E by bond energies used in

the literature, which we now introduce.

Bond-breaking models

In these models, the energy barrier E consist of the energy of all bonds of the
moving atom at its initial position. As the energetics of in-plane bonds (E,,)
is different from the one between the atom and the substrate (E;), the total

binding energy is

E =E,+nEm (4.15)

where n is the number of in-plane nearest neighbors. Some authors also take
contributions from the next-nearest-neighbor bonds into account (Johnson et al. 1994}
[ok et al. 2004). An extra Schwoebel barrier may also be added to the binding

energies (for more detail see section E.2.4)).

Note that in most materials, energy barriers are not known precisely, and
especially in crystalline substrates, barriers against movements in different
directions are different. The main drawback of the bond-breaking models is
that they generally imply some features of atomic motions, which are not in
accordance with experiments or molecular dynamics simulations. For example

it is frequently observed that adatoms captured by a step-edge display fast
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diffusion along the step, but detachment from the step occurs at a much larger
rate although the bond-breaking model would predict equal rates.

Generally, all features, which are due to the fact that the transition state
energy can not entirely be expressed by the initial state of the hop, can not be

also described by bond-breaking models.

Net-bond-breaking (Kawasaki-type) models

A better and more realistic representation of E makes use of both the initial
and the final state of a hop. For example one could assume that F is composed
of a constant term Eg and an extra activation energy AE = max/[0, (n; —ng)E,,]
given by the binding energy difference of initial (7) and final ( f) states (or zero,
if the difference is negative, i.e. if binding energy is gained by the hop).

Note that now barriers to diffusion of an adatom and a vacancy on a flat
surface are equal and there is no contribution from in-plane bonds to the barrier

against diffusion along an step-edge.

Attempt rate, absorption of substrate term

In our simulations we use £y = 0.75 eV and E,, = 0.18 eV. These values are
within plausible bounds, but they do not aim at modeling a specific mate-
rial. Note that in a KMC simulation by these values, most of the attempts
would be rejected for common experiment temperatures (0.04 - - -0.1eV). How-
ever, the attempt frequency is rather high; for example ky at room temper-
ature is ~ 10" s7!. Performing so many attempts for each atom is ab-
solutely out of the power of the available machines. So an alternative to
speed up the simulations is to rescale the attempt frequency kqy by a factor of
exp(—FEs/kgT). The rescaled attempt frequency ky = 2kgT/h, exp(—Es/kgT)
is strongly temperature-dependent. In Table. [£2] values calculated for some
given temperatures and E; = 0.75 eV are reported. Note that a slight increase
of 0.05 eV in the value of Fy (an example used by |Chason et al. (2006)) leads

to a reduction of one order of magnitude in the value of k. In the current
1

work, rescaled attempt frequency of 750 s~ is used as a default value, but a
systematic investigation on the role of attempt frequency in pattern formation

in IBS is presented in section [4.3.2] .
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Table 4.2: Attempt frequency of atomic hops for the Arrhenius model of diffu-
sion; for the fixed value of substrate binding energy Es = 0.75 eV and different
substrate temperatures. By slight changes of temperatures, the attempt fre-

quency changes some orders of magnitude.

T(K) | 300 | 350 400 500 600 700
Ky (s71) | 3 [2301]5.9-10%|5.7-10° | 1.2-107 | 1.2 - 108

Temperature

In addition to the mentioned effects on hopping attempt frequency induced
by slight changes of temperature, probability of acceptance of different trans-
port events, like detachments and inter-layer hops are also temperature de-

pendent. To evaluate the role of temperature in the growth process of a

surface, Tamborenea and Das Sarma (1993) performed simulations on 1-+1-

dimensional MBE with Eg = 1eV and E,, = 0.3 eV for different temperatures

and also different ratios of deposition and diffusion rates. They observed three
main regimes in temperature: (i) low temperature regime, where the deposited
particles are frozen, and no effective diffusion occurs (growth exponents sim-
ilar to ones for random deposition), (ii) an intermediate temperature regime,
with an effective diffusion with growth exponents similar to what is predicted
by linear theory in the form of V4, and (iii) a high temperature regime, in
which diffusion smooths the surface and the observed scaling is similar to that
of EW. Similarly, three regimes has been defined in deposition experiments,
based upon the ratio of diffusion and deposition rate. Increasing the diffusion
rate or decreasing the deposition rate is equivalent to an increase in tempera-

ture.

4.2.4 Ehrlich-Schwoebel effects, pattern formation by dif-
fusion
Diffusion does not always flatten the surface, there are some kinds of thermally

activated transport mechanisms which also induce instabilities. This so-called

Ehrlich-Schwoebel (ES) effect is the outcome of an effective repulsion from
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descending step edges. If an adatom diffusing on a terrace reaches an ascending
step, it is most probable that it will stick to the step-edge and less likely to
detach again. In contrast, there is a barrier which repulses the adatom if the
adatom approaches a descending step. The repulsion induces an uphill current
which increases the slope of underlying structures.

Although there is no first principle derivation of the current density jgg of an
ES current, there are two phenomenological models which are used frequently,

the first gives (Johnson et al. 1994])

2Vh
J(Vh) o (W) (4.16)
and the second one (Krug 1995))
j(Vh) oc (VR)(1 —¢(Vh)?). (4.17)

{4 and ( are calibrating parameters. Note that the second form implies a re-
versal of the current direction (from uphill to downhill), which is in accordance
whit experiments.

To implement this effect in discrete models of diffusion, one may either set
n > 2 in Hamiltonian models or add an extra barrier to hopping barriers in

thermally activated diffusion models as the following.

Frs if f is in plane with i and
Frs(i — f) = at the upper edge of a step

0 otherwise

In this present work the Schwoebel barrier is set to Esg = 0.15 eV. A
schematic picture of the ES effect is shown in Fig. and a typical morphology
induced by ES effects in MBE depicted in Fig. L35l

4.2.5 Diffusion in compound systems, clustering

To assess the features of diffusion and clustering of a sub-mono-layer coverage
of (metallic) adatoms on flat and pre-rippled surfaces, we have performed KMC
simulations. These simulations will later be extended to include ion-beam
erosion (in chapter [l), but here, we first focus on the patterns induced purely

by diffusion of Ag atoms with constant coverage of 30% of a mono-layer on
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b EWWW/W/W\/\NW )

Figure 4.4: Schematic picture of the ES effect: a) a diffusing adatom on a vicinal surface
is repelled from a step edge; b) corresponding lattice potential showing the ES barriers at

step edges. Adapted from Siegert (1995).

Figure 4.5: Top-view image of 65 x 65 nm? Fe(001) sample showing the pyramid-like

surface structures after epitaxial growth. Adapted from [Thiirmer et al. (1995).
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a Si surface. The corresponding parameters for the diffusion of the metallic
atoms are given by Ey = 0.48 eV and E,, = 0.36 eV (no ES barrier). These

parameters are taken from ab initio simulations for Ag atoms on Si substrate

(Kong et al. 2003)). In the simulation model, we kinetically forbid all moves,

which lead to atoms on top of Ag atoms (Ag atoms stay always in the topmost

layer and the height of Ag layer is restricted to 1 atom)

Metallic clusters on flat templates

Simulations show that initially, randomly distributed metallic particles at in-
termediate and high temperatures form clusters which coarsen in time. To
quantify the clustering, we consider a 2-d array with the same area as the
surface. We flag every site of this array by “A” and “B” if the topmost atom
in the corresponding location in the surface profile is a surfactant or substrate
atom respectively. Now we count the number of neighboring pairs, e.g. Ns_pg
is the number of A — B pairs. Now we define the clustering coefficient C' as
Na_a+ Np_p,, 2cacp
Na_p A+

O = ) (4.18)

where cp is the surface coverage of surfactants and ¢4 = 1 —cg. Note that, for
random distribution of particles N,_g o< c,c3 and therefore C' = 1, whereas
for very large system size, complete segregation of particles corresponds to
C' = oo (because Ny_p increases linearly with the system size, while Ny 4
and Np_p increase quadratic). In Fig. 6] C' as a function of temperature for
different simulation time is shown. For very low temperatures, no clustering
occurs even for long-time runs. In intermediate temperature, small size clusters
form and grow in time slowly, whereas in high temperature regime an strong
clustering is observed. The diffusivity of particles is increased by increasing
the temperature and in the fixed simulation duration, the particles have more
chance to meet each other and since their binding energy is rather high, as

they attach, it is very unlikely to detach again.

Metallic clusters on pre-sputtered templates

The same simulations are now performed using a sinusoidally modulated sub-
strate template. Examples of distribution of particles at different run times

and temperatures are depicted in Fig. Note the following features:
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Figure 4.6: Clustering evolution of particles on a flat template as a function of temperature.
Different colors correspond to different simulation times. By increasing the temperature,
particles make larger clusters. In all cases the size of clusters tends to increase, although

the increase in low temperature is very slight. For the definition of ¢ see the main text.
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Figure 4.7: Clustering of particles on a sinusoidal template depending on temperature and
time. By increasing the temperature, particles make larger clusters. In all cases the size of
clusters tends to increase, although the increase in low temperature is very slight. Large
clusters formed in high temperature, located mainly in the valleys and plateaus, although

there is a preference for valleys in compare to the plateaus.

(i) Particles accumulate in 1-d arrays (“nano-wires”) parallel to the align-
ment of template ripples;

(ii) The width of nano-wires reaches a maximum size proportional to the
wavelength of template ripples at enough time scales

(iii) Nanowires have the tendency to form at valleys of templates, the next

preferred locations are the hilltop ridges.

All three features have been found in experiments (Ag on Si) by|Oates et al. (2007)).

4.3 Erosion-Diffusion interplay

In this section we focus on the study of morphologies emerging in KMC sim-

ulations of IBS with different diffusion mechanisms.
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4.3.1 Dependence of patterns on diffusion in the erosive

regime

Diffusion is often considered as an unspecific smoothing mechanism in the
erosive regime of IBS experiments on amorphous surfaces. In the continuum
theory, it is subsumed as a single term ~ —BV*h. In this subsection we show
that —contrary to this common belief— different diffusion mechanisms, which
would all end up in a —BV*h term in the continuum limit do have profound
effects on the morphology, especially in the limit of long times, i.e. high flu-
ences. Figs.[d.8and .9 compare the time evolution of sputtered surfaces under
identical conditions of erosion but with different diffusion models. Fig. L8] de-
picts the evolution of surface morphology with a Hamiltonian diffusion model
(n =2, T = 0.2J) and Fig. shows corresponding results for a net-bond-
breaking model. The short-time behavior of both models is very similar, an
initial roughening is followed by the formation of ripples. The differences be-
tween the two models arise after ~ 10 ions/atom of sputtering. At that time,
ripples produced in the case of the net-bond-breaking model saturate in am-
plitude and align more regularly, and the number of defects reduces as time
proceeds, whereas the ripples produced by the Hamiltonian model start to get

blurred and shorten in length.

In Fig. I0we compare the morphologies of the four main types of diffusion
models we have introduced (Wolf-Villain, Hamiltonian, bond-braking and net-

bond-braking) at very long times.

The irreversible Wolf-villain model (similar to a 7" = 0 surface relaxation)
produces an extremely ordered stable pattern of straight ripples (even at
t ~ 10 ions/atom), whereas the patterns of the Hamiltonian and bond-
breaking models loose long-ranged ripple order after a few hundred eroded
monolayers. But note that the net-bond-breaking model shows a defect-free
ripple pattern after 400 ions/atom. Although the overall diffusivity of the
net-bond-breaking is approximately equal to that of the bond-breaking and
the Hamiltonian models, net-bond-breaking implies comparable diffusivity of
adatoms and vacancies (unlike the bond-breaking model) and is more sensitive
to the energetics of bonds than to surface morphology, which dominates the

Hamiltonian model.
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Figure 4.8: Surface profile corresponding to Hamiltonian model of diffusion with n = 2 and
substrate temperature T = 0.2Jkg" and default values of the beam parameters (6 = 50°).
Starting from top to bottom and left to right, ¢ = 0.5, 1.5, 4.0, 9.0, 14.0 and 22.0 ions/atom.
The ion-beam direction is indicated by the bar. Lateral size of the system L = 256. After

initial formation of ripples, they stabilize and then start to get blurred.
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Figure 4.9: Surface profile corresponding to Arrhenius (net-bond-breaking) model of dif-

fusion with substrate temperature T' = 600 K, and default values of the beam parameters
(0 = 50°). Starting from top to bottom and left to right, ¢ = 0.5, 1.5, 4.0, 8.0, 12.0 and
18.0 ions/atom. The ion-beam direction is indicated by the bar. Lateral size of the system
L = 256. Ripples form after ~ 3 ions/atom and grow in lateral size and get more ordered

with time. The ripples amplitude saturates for longer times.
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Figure 4.10: Long time morphologies emerge from different diffusion models (a) Wolf-
Villain for ¢t ~ 10* ions/atom, extremely ordered patterns with tilted orientation in respect
to the ion-beam orientation, (b) Hamiltonian with n = 2, for ¢ = 300 ions/atom, ratio-
nal ordered ripples which blur in time gradually, (¢) Arrhenius bond-breaking for ¢ = 20
ions/atom, rather short stable ripples with weak ordering and (d) Arrhenius net-bond-

breaking for ¢ = 400 ions/atom, very ordered ripples whit annihilation of defects by time.
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Figure 4.11: Morphologies (L = 64) emerging from different diffusion conditions for § = 0°
at ¢ = 10 ions/atom. (a) no diffusion, (b) Arrhenius bond-breaking diffusion with default
parameters, (¢) Arrhenius net-bond-breaking diffusion with default parameters and (d) Ar-

rhenius net-bond breaking diffusion with the enhanced attempt rate (see the main text).
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4.3.2 Crossover from erosive regime to diffusive regime

We now turn to a discussion of the accessibility of the crossover between the

erosive and the diffusive regime in KMC simulations. To estimate the onset of

the crossover we adopt an argument from [Villain and Pimpinelli (1994) about

adatom island formation and stability in MBE, i.e. we simply assume that
erosion during IBS is equivalent to a “deposition of vacancies” at a characteris-
tic rate F', which is the ion flux times the sputtering yield. The typical length
scale of surface structures emerging from diffusion and deposition is given by
\Villain and Pimpinelli (1994))

D
lg ~ (f)l/ﬁ, (4.19)
where D is the diffusion coefficient, which in Arrhenius models is ~ kja?.
Requiring ¢, to be of the order of typical ripple wavelength produced by IBS (~
10a in simulations), it implies k1 ~ 10% 71, which is a factor of 10% higher than
the default value we use. Enhancing the number of diffusion steps in between
two ions soon becomes a computational bottleneck of KMC simulations.

To check if this enhanced rate is sufficient to produce fingerprints of Schwoebel
effects, we performed simulation composed of randomly adding and /or remov-
ing particles from an initially flat surface. Fig shows that pyramid-like
structures emerged from this mentioned scenario. Finally, we performed IBS
simulations using the enhanced diffusion rate for normal and oblique incidence.
Fig.LTT] (b) and (c) show the patterns emerging from normal incidence irradi-
ation with bond-breaking and net-bond-breaking diffusion model. In Fig.
(d) the diffusion rate of the net-bond-breaking model is enhanced by a factor
of 10%. Only in this case, pyramid structures with edges oriented along <100
directions —hallmark of ES current-induced structures (see Fig. L12)— are
created. Under oblique incidence, the ripple orientation deviates from the
direction of the ion-beam projection into the surface and larger parts of the
ripples follow the crystallographic <110> directions as shown in Fig. LT3

Fig. summarizes our simulation results on crossover of morphologies
between erosion and diffusion dominated structures. In KMC models the con-
nection to time scales of experiments is made via the inter-event intervals
which are proportional to inverse rates. In a typical experiment, fluxes are of

2

the order of 7.5 x 10'® ions em ™2 s~! which corresponds to ® ~ 1 ion/(atom-s).
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For a system of size L x L, one diffusion step (one sweep over the whole
lattice) is taken after ®L?/k; erosion steps (shooting one ion). The default
values for a system with L = 128 lead to ratio of incidence interval to dif-
fusion interval (R = 7;/74 = 0.1), which means one diffusion step is taken
after shooting 12 ions. We increased this ratio up to 100, corresponding to
k1 = 1.2 x 10% s71. Snapshots of the evolving topographies for different values
of R are shown in Fig. A wide variety of morphologies from ripples fol-
lowing the ion-beam direction to smooth surfaces (from layer-by-layer erosion)
are covered. The characteristic coarsening of structures reported in experi-
ments (see section ZI1.T)) is observed for 7;/7; = 1,2 and 5. (2nd, 3rd and
4th rows). A transition from ripples to pyramids occurs on longer times for
7;/74 = 5, whereas pyramids form directly from intermediate-time roughened
surfaces for 7;/74 = 10. For high diffusion, fluctuations in height of surface do
not exceed more than ~ 1 layer which is commonly observed in layer-by-layer
regimes.

The roughness of morphologies shown in Fig. are calculated and shown
in Fig. emphasizing the strong suppression of erosion (BH) and diffusion
(ES) type instabilities for high diffusion rates.
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[

Figure 4.12: Evolution of clusters formed by upper row: adatoms, middle row vacancies
and lower row: adatoms and vacancies together. The lateral size of the system L = 128. The
attempt frequency is set to 106 s~ which corresponds to a reduction of ~ 10% in substrate

bond energy Fs. Formation of ES induced patterns, i.e. pyramids, is evident.

Figure 4.13: Surface profiles of a system with L = 128 for § = 50°, ¢ = 0° at t = 3
ions/atom and T = 0.01 eV. The bar indicates the azimuthal direction of ion-beam. Left:
Arrhenius diffusion with default parameters for bond breaking and ES barrier, right: same

as left, but with enhanced diffusion attempt rate.
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Figure 4.14: Surface profiles for different R = 7; /7,4 increasing from up to down: 0.1, 1.0,
2.0, 5.0, 10, 20, 50 and 100 evolving in time. snapshots from left to right at ¢ =10, 20, 30,
40 and 50. Temperature: T = 580 K.



64 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNS

60

50

40

W 30

20

10

10

Figure 4.15: Corresponding roughness to the profiles depicted in Fig. 14 For small
values of R, the roughness increases with time with smaller rate for larger R, wheres by

increasing the diffusion rate, after reaching a certain value of R, roughening is suppressed.



Chapter 5
Surfactant Sputtering

Recently a novel sputter erosion technique has added further possibilities

of fine-tuning processing conditions in many ways (Hofsass and Zhang 2008;

[Hofséss et al. 2009; [Hofsdss and Zhang 2009). It prepares a sub-mono-layer
coverage of the substrate surface (A) with “surfactant atoms” (B), which are

constantly re-deposited by co-sputtering of a nearby surfactant (commonly
metallic) target (see Fig. 5.I)). We call the co-deposited particles surfactant
(SURFace ACTive agENT) because it has been observed that the deposited
atoms act as active agents to reduce (or amplify) the sputtering yield of sub-
strate atoms. The effects of surfactants are not limited to the modulation of
the sputter yield. Effects due to diffusion, clustering or mixing/demixing of
the surfactants can be seen in different experiments under different ion-beam
conditions and material combinations. Depending on diffusion, mixing and
alloying properties of surfactant and target atoms, the surfactant distribution
may either trend to form a homogeneously mixed A-B layer, or develop inho-
mogeneous patterns by mechanisms like surface segregation, island formation,
clustering, diffusion instabilities or attachment to surface defects. The cov-
erage by a surfactant density significantly changes the local sputtering yield

of the substrate. In most cases the yield is reduced, though in exceptional

cases it may also be increased (Berg et al. 1992). These local changes provide

a feed-back mechanism between the pattern formation processes of substrate
and surfactant atoms. By choosing appropriate surfactant-substrate combi-
nations, a variety of surface patterns may be obtained in a controlled way.

Furthermore, the surfactant distribution may itself become a technologically

65
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Figure 5.1: Surfactant sputtering experimental setup; A metallic layer is located beside

the main sample and ion-beam targets the sample and the metallic layer simultaneously.
Therefore metallic atoms are eroded and re-deposited on the sample. By varying the angle

« the distribution of re-deposited metallic atoms can be tuned.

useful, self-organized structure, e.g. emergence of ordered arrays of dots or
nanowires. The deposition current of surfactants Jg, maintaining the average
coverage during sputter erosion, is tuned beyond the re-sputtering limit, so
that film growth of B is suppressed. This technique also allows to prepare
spatial profiles of Jg, so that modifications of the yield from nanometer to
macroscopic length scales can be controlled.

We have set up both a Monte Carlo simulation model and a continuum
theory of surfactant sputtering. Here, we will only consider the special case of
demixing surfactant-substrate combinations and assume that surfactant atoms
are the topmost of the surface provided by the substrate. In the following, we
present the modeling of surfactants in our continuum theory and in KMC. Then
we present results obtained for different set of parameters, corresponding to

three scenarios of pattern formation.

5.1 Implementation

The continuum and the KMC approach are related in the sense that both are
built upon the same basic physical mechanisms of erosion and surface diffusion.
The description of erosion in both models are based on Sigmund’s sputtering
formula, and the continuum theory contains a large length-scale description of
the surface diffusion of substrate and surfactant as implemented in the KMC

model. But let us emphasize that in our KMC model, surfactant particles
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form a coverage (less that 100%) on the top most layer of the system and no
intermixing with substrate or island formation with heights more than 1 mono-
layer by surfactants is allowed. This restriction is not needed in continuum

theory.

5.1.1 Continuum theory

The continuum description starts from the balance equation of mass within
a sub-volume V' of the A substrate and its surface dV. The bulk density p
of the substrate is assumed to be constant, the surfactant is characterized by
a varying surface density o. If we denote the erosion velocity (normal to the
surface) by v, the balance of substrate mass is expressed as pv,, = —Ja—Vg-ja
with erosion current J, and surface diffusion current density ja. Vg denotes

the surface divergence. The balance equation for o takes the form of

D
dita:—JB+er-n—Vg-jB (51)

Here, n denotes the outward normal unit vector of the surface. The transport

derivative is given by (Cermelli et al. (2005))

% = 0y0 +v,n - Vo — ov,k, (5.2)
It takes into account all the temporal changes of the surface morphology. Here,
k = V - n denotes the mean curvature of the surface.

The model is completed by expressing the currents and current densities
in terms of the surface geometry and the surfactant density. We take the
expressions for the erosion currents in the absence of surfactants from the BH
linear and CB non-linear theories (see section 34)). In addition, we take into
account modifications of the sputtering yields so that the erosion currents of

substrate and surfactant, J4 and Jg, respectively, are given by

Ja = JoYaga(o)(1 — vsn) (5.3)
and
JB - J()YBgB(O')<1 — VBH)- (54)

Jo denotes the flux of incident ions. Y4 and Yp are the sputtering yields of the
pure A and B system, respectively. We keep the first terms of the standard
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gradient expansion of the yield modification due to surface morphology,

, 2h  9h A, (0h\ A, (0n)

The factors g4 and gp are in the form of g4(0) = max[1—\o,0] and gg(c) = o

to parametrize the changes of sputtering yields due to small B coverages. This

choice is in accordance with the experimental findings of Hofséss and Zhang (2008))

for small surfactant densities. Note that the non-linearities in vy may be kept
up to any desired order, but we have to keep the full geometrical non-linearities
in the transport derivatives, because otherwise we would violate mass conser-
vation during surface diffusion.

The surface diffusion current densities jo and jg contain near-equilibrium
and non-equilibrium terms, which are driven by the reduction of surface free
energy and the external erosion and re-deposition fluxes respectively. Here, we
only take into account simple contributions arising from expansions in Vh and
o and a simple, phenomenological expression for the non-equilibrium Ehrlich-
Schwoebel (ES) current (see section. .2.4]), so that for the simplest case of

isotropic (amorphous) samples
Vsiam Ki(V3)?*h+ KapsV?h (1 - (3(V h)?) (5.6)

and

Vsis ~ —V(DpV o) + Kp psoV2h (1 - (5(V h)?) (5.7)

Continuum models, which also consider the time evolution of densities in a

surface layer have appeared in the literature, which differ in important as-

pects from the present work. In the work of |Shenoy et al. (2007), a bulk

binary alloy is considered, and in the work of |Aste and Valbusa (2005)) and

(Castro et al. (2005)) a layer of adatoms of the target material is included. Both

papers also differ from the present work in the physical concepts, which un-
derlie the evolution equation of the surface density.

In the numerical solutions presented below, we have extended this sim-
plest diffusion model in two ways: (i) we explicitly took into account a cubic
anisotropy arising from eroding a (100) surface. (ii) We let B atoms cluster by
putting Dp o« max(1l — co, 0). This has been done to facilitate comparisons

with our Monte Carlo simulations, which naturally include these effects. The
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system of non-linear partial differential equations, which make up the contin-
uum model have been solved by a finite element method. We used a linear
implicit Euler time stepping algorithm and C! finite elements on a triangular

grid. Similar solver has been set up for MBE by [Burger (2006). We have im-
plemented the algorithm using the free software FEM package FreeFEM+ -+

5.1.2 KMC model

We modified our KMC model to include surfactant atoms and their effects on
sputtering and diffusion of substrate atoms as the following. Each surface site
is occupied either by a substrate atom (A) or by a surfactant atom (B). The
sputtering probabilities for A and B atoms may be different, but note that
only surface atoms are sputtered off. Thus, a B atom at r suppresses the A
sputter yield at this site completely. In addition, a B atom may also reduce
the sputter yield of A atoms at a nearest neighbor site by a factor 1 — A ;
0 < A < 1. B atoms, which are sputtered off are immediately replaced via
random re-deposition. The implemented diffusion model is the thermally ac-
tivated Arrhenius model with net-bound-breaking barriers (see section L2.3)).
In principle, binding energies between surfactant atoms Epp and substrate
atoms F 44, and also the energy of inter-species bindings E 45 may be differ-
ent. The Ehrlich-Schwobel barrier is only for A atoms taken into account. We
used the default values for bound energies of substrate atoms and vary Esp
from O0--- EF44 and Egp from Ea4---0.6 V. We have studied B yields from
1---0.1 times the A yield. Temperature is set to 7" = 600K . In the following
sections, different sets of parameters, corresponding to different experiments

setups are presented.

Identical surfactants

Here, as the simplest case, we present some results considering surfactants with
the same sputtering yield as substrate atoms and the same binding energies
for all tree types of bindings. (Note that there is still a difference between
B and A atoms arising from re-deposition of a B atom as it is sputtered and

also the inhibition of the jumps over B atoms.) In Fig. 52 profiles sputtered

lwww.freefem.org
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Figure 5.2: Morphologies evolved after 3 ions/atom sputtering, with different coverage
(from left to right and up to down: ¢50.0 0.1 0.3 0.5 0.7 0.9 %) of surfactants B = A. The

ripples blurred as the coverage is increased.

for ¢ = 3 ions/atom in different coverages of B atoms are depicted. As the
coverage increases, the ripples get shorter in length and the typical wavelength
of the ripples slightly decreases (shown in Fig.[53). The later is expected from
BH model where less diffusivity of particles leads to smaller wavelength of the
patterns. We also calculated the roughness of surface for different coverages
(Fig. B4). Although the periodic BH patterns are annihilated by increasing

the coverage, the total roughness of the surface increases.

5.2 Mesoscopic height gradient

As mentioned above, an experiment setup as introduced in Fig. 5.1l produces
an inhomogeneous spatial distribution of Jg,, which is close to a constant

gradient so that it leads to a linearly decreasing coverage of B. Here, we set
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Figure 5.3: The characteristic wavelength of patterns depicted in Fig. as a function
of surfactant coverage. The wavelength is measured in lattice constant unit by using PSD

method.
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Figure 5.4: Roughness of surface against coverage with surfactant. diamonds: A=B, cir-
cles: Sputtering yield Yp is 10Y, and the A yield is suppressed by 0.25Y4 from every near-
est neighbor B atom, squares: Clustering of B and demixing favored, Ex4 = 0.18, Eap =

0, Egp = 0.6. Surface diffusion without ES barriers.
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(b) 0 100 200 X 300 400 500

Figure 5.5: Mesoscopic height gradient by surfactant sputtering; (a) surface profile after
3 ions/atom sputtering with an inhomogeneous surfactant coverage with average of 20 %.
Other parameters are as in Fig. 5.4 (circles). (b) Mean of surface height in direction per-
pendicular to ion-beam direction. Concurrent to the formation of ripples, a global slop is

also induced along the sample length.

a smaller sputtering yield of Yz = 0.1Y, for B atoms and the same diffusion
barriers for A and B. The average B-coverage is 20% and it decreases linearly
along = direction. The maintained structure is shown in Fig. E5(a). Surpris-
ingly, a slight coverage of surfactants modifies the common BH ripples with
nanometer length-scales with a defined slope over micrometer length-scales
(see Fig. B3(b)).

5.3 Morphology modification

In addition to the large scale modifications on standard BH ripples, presented
in the previous section, surfactant sputtering is also a proper method to manip-
ulate the pattern formation via IBS at the scale of the standard patterns, i.e.
nanometers, and produce variations in patterns types. In the following, three

different scenarios for such changes in morphology of patterns are presented.

5.3.1 Ultra-smooth surfaces

As demonstrated in Fig.[5.0] a strong suppression of the substrate sputter yield

due to surfactant coverage may lead to very smooth surfaces, reminiscent of
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layer-by-layer erosion, instead of rippled topographies. The parameters used
here are A = 0.25 in KMC and A = 2 in continuum theory for a coverage of
only 20% of surfactants. The diffusion parameters are still the same for both
types. We started the numerical solution with an initially rough surface and
observed a monotonous decrease of surface roughness.

Using the KMC model, we studied the profiles patterning for different cov-
erages of surfactants. For the fix sputtering time, a suppression of pattern
formation by increasing the coverage is observed (profiles depicted in Fig.[5.7).
The surface roughness for different coverages is shown in Fig. 5.4l Roughness
of the surface decreases monotonically as the surfactant coverage increases.
This case has correspondence to the experiments of co-sputtering of Au on Si
by [Hofsédss and Zhang (2008).

5.3.2 Arrays of nano-clusters

In this part, the barriers have been changed to facilitate B-clustering and favor
demixing (F4p = 0, Egp = 0.6)eV. The obtained profiles and distribution of
B atoms are shown in Fig.[5.8l The strong clustering tendency causes a highly
significant redistribution of the surfactant B on the A surface. The majority
of B atoms would be located in valleys of the ripple topography if they were
distributed randomly (due to the morphology of the ripples). In Fig. 5.0 we
show the ratio of the number of B atoms to the number of randomly distributed
atoms, which constitutes a statistical estimate of surfactant surface density vs.
height h measured from the lowest point on the surface. Note that sputtering
plus re-deposition of B=A atoms only leads to a minor increase of density in
valleys, whereas B atoms strongly prefer to assemble on crests of ripples if
they cluster and demix from substrate A atoms. In fact, one would expect
a generic uphill current of any surfactant which suppresses the yield, because
it is sputtered preferably from valleys (Bradley-Harper mechanism) but re-

deposited randomly. Thus, material is moved out of valleys. This behavior has

been observed in experiments of [Hofséss and Zhang (2008) using a Si substrate

and Ag surfactant. An improved control of this clustering could open up a way
to efficiently fabricate regular arrays of quantum wires.
Note that if the clustering of surfactants and also the reduction of yield

caused by them are strong enough, the BH ripple forming fails and what con-
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Figure 5.6: Upper panels: BH-type ripples without surfactant, left: KMC simulation,

right: Continuum theory. Lower panels: Strong suppression of sputter yield of substrate
by surfactant leads to smooth surfaces, left: A = 0.25 in KMC, right: A = 2 in continuum
theory. Here, the height scale is enhanced by a factor 100 with respect to the corresponding

upper panel.
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Figure 5.7: Morphologies evolved after 3 ions/atom sputtering with different coverages
(from left to right and up to down: ¢50.0 0.1 0.3 0.5 0.7 0.9 %) of surfactants. The parameters

are as in Fig. 5.4 (circles). For high surfactant coverages, pattern formation is suppressed.
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trols the evolution of surface fluctuations are the distribution and morphology

of surfactant clusters. This is discussed below.

5.3.3 ES induced patterns

The third scenario demonstrates how dot-like patterns due to Ehrlich-Schwoebel
diffusion can be generated by a surfactant. As depicted in Fig. B.I0, without
surfactant, the growth of ripples is the dominant process and typical Bradley-
Harper ripples emerge even in the presence of Ehrlich-Schwoebel diffusion.
Coverage with a surfactant tends to suppress the Bradley-Harper instability
and Ehrlich-Schwoebel diffusion can become the dominant, pattern-forming
mechanism. Note that the ES-type dots can form an ordered array. Ordering
is supported, if preliminary ripple structures break up into dots. Ordered dots
are more clearly visible in the continuum theory. The KMC dynamics has been
limited to the erosion of 5 monolayers to keep it consistent with the calibrated
time in the continuum theory, but the effects of noise are too strong to detect

dot ordering in KMC within this time interval.
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Figure 5.8: Lower panels: Ripple pattern of a substrate with 0.4 mono-layer coverage of

surfactant with Y4 = Y3 and strong clustering after 5 ions per surface atom, Left: KMC
simulation Fap = 0, Egp = 0.6 €V, Right panel: Continuum theory (¢ = 2). The direction
of the ion-beam is inclined by ¢ = 0.2 with respect to the x-axis. No Ehrlich-Schwoebel
effects are included. The bars mark identical regions in upper and lower panels, respectively.

Upper panels: Corresponding distributions of surfactant.
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Figure 5.9: Statistical estimate of surface density of surfactant vs. height. diamonds:
substrate species A = surfactant species B, squares: surfactant B is clustering and demixing

from A, similar to Ag on Si.
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Figure 5.10: Upper panels: ES diffusion of substrate and surfactant is chosen such that

BH instability dominates. No suppression of substrate sputter yield by surfactant. Lower
panels: Moderate suppression of substrate sputter yield by surfactant (A = 0.1 in KMC,
A = 0.6 in continuum)tends to weaken the BH instability, so that ES diffusion can influence

the pattern formation. Left panels: KMC simulation, Right panels: Continuum theory.
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Chapter 6
Beam-noise induced effects

In IBS, the randomness in the location of impact points of single ions is the
source of intrinsic noise in etching process: “shot noise”. In addition to the shot
noise, other sources of external fluctuations may be present in an IBS setup.
One example of this type of noise sources is fluctuation within the ion-beam.
It is reported that optical properties of a beam like beam profile, which is the
angular distribution of trajectories of ions around the mean direction of the
ion-beam, is important to maintain different topographies with unexpected
features and high regularity patterns (Ziberi et al. 2004} Ziberi et al. 2!!!!8)E|

Therefore we investigate the generic (non-material specific) effects of such ex-

ternal noise in IBS, using continuum theory and KMC simulation.

We classify fluctuations within the ion-beam into three types (see Fig. 6.1]).

(i) Homogeneous sub-beams: In this case, the beam consists of identical
groups of sub-beams originating from different parts of the beam. In each
group, the direction of sub-beams m has a distribution p(m). We assume that
p(m) is localized around the average direction (m) = mg. The erosion velocity
at an arbitrary point at the surface, induced by impinging ions, is the sum of
contributions from all sub-beams weighted with p(m).

(ii) Temporally fluctuating homogeneous beam: In this case, trajectory of
all ions are parallel, but in a direction which changes with time stochastically,

with the average of (m(t)) = mg.

Very recently it became clear that most of the reported effects are strongly material
specific and dramatic changes of shape of patterns are due to interference of co-deposited Fe
atoms with the standard scenarios of pattern formation. This kind of effects are extensively

discussed in chapter Bl
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Figure 6.1: Classification of beam-noise in three types: (i) Homogeneous sub-beams which
are made up of identical sub-beams. Each sub-beam contains an ensemble of ions trajectories
with direction distribution of p(m). (ii) Temporally fluctuating homogeneous beam which
includes ions traveling parallel but in a direction fluctuating in time. (iii) Spatio-temporally
fluctuating beam, in which the direction of each ion trajectory is taken from a stochastic (in

time and position) field.

(iii) Spatio-temporally fluctuating beam: This is the most general situation,
in which every single ion takes its direction from a stochastic homogeneous
field of unit vector m(z,y,t). mg, the ensemble average of m is constant in
time.

For simplicity, we consider spatial fluctuations only in polar angle of inci-
dence 6, i.e. fluctuations in azimuthal angle are neglected here. We consider
three types of distributions:

(a) a flat distribution centered at 6y with the width of Af,

(b) a Gaussian distribution with the standard deviation of A# from 6y, and

(c) a Gamma distribution which is fitted to the histograms of simulated

ion-beam profiles using the data from experiments by Ziberi et al. (2008)) (see

Fig[6.2).
We also assume that in cases (ii) and (iii), correlation times of ¢ are so small
that we can apply the white noise limit, i.e. (d6(r,t)60(r’,t')) = C(|r—r'|)o(t—

t') (for case (ii), C' is just a positive constant). We, furthermore, restrict our
model to changes of 06(r,t), which are restricted to length scales larger than

the shape parameters o and p of the energy deposition function, so that in the
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Figure 6.2: Simulated beam profiles (a) beam profiles simulated by [Ziberi et al. (2008)

for three different acceleration voltage. (b) Gamma functions fitted to the data of (a), and

used as an input for KMC simulations.

gradient expansion the leading order terms take on the form

oh , oh 0?h O*h A
5 —vo(6(r, 1)) + v (6(r, t))ﬁ_x + VI(H(I‘,t))@ +1v,(0(r,t)) 5 — KV*h.

0y?
(6.1)
and V0-terms can be neglected in case (iii). We expand in 66 up to linear

order and obtain

h ~ A
aa_t — —up(60) — v (60)50 + Loh + 6011k, (6.2)

with Ly = v)d/dz + 1,0°/0x* + 1v,0%0y> — KV*. Using techniques of small

noise expansion (Garcia-Ojalvo and Sancho 1985)) for multiplicative noise, we

now derive closed equations for (h) = (h) — vot from

ohy . -
= = Loth) + (69 L1h. (6.3)

Note that the operator L; = 8ﬁ0/60|9:90 has the same form as Lo, if the
parameters vy, v, and v, are replaced by v = Juvy/00, v, = Ov, /00 and

v, = Ov, /00 respectively.

6.1 Homogeneous sub-beams

In this case (i), we can directly calculate the average of height (h) consid-
ering averages of independent Fourier mode solutions of Eq. over 0, i.e.
(h(k, 1)) = (eFEI) h(k,0).



84 CHAPTER 6. BEAM-NOISE INDUCED EFFECTS

“ * * * .
m o oo g
1,009 5 - 258 | - |
5
g . o = .
2,56 i
1,0085+ =
O
2,54 - |
*
MO 20 30 40 0 10 20 30
(a) A6 (b) A®

Figure 6.3: Homogeneous sub-beams; (a) The height of fastest growing mode for different,
beam-divergence width. Growth of the fastest mode is decelerated by increasing the noise.
(b) The wavenumber of the fastest growing mode for different beam-divergence width. A

slight change in the emerging wavelength is predicted.

For the Gaussian distribution (b), averaging exp(dfL;(k)t) shows that the

growth law deviates dramatically from the exponential form of the non-fluctuating

case and follows the form (h(kt)) o< exp((d6%)L;(k)*¢t?/2). This means that
we are already out of the range of validity of linear approximation. For the
flat distribution (a), again an exponential growth does not satisfy the growth
equation. After a transient time, the growth takes on the form oc t~!exp(rt).

We have also performed numerical evaluations of ensemble averages. Fitting
an exponential growth function to the averaged height (iz), one can extract an
effective growth rate. These effective rates calculated for case (a) are shown in
Fig. (a). For small fluctuation, the effective rate increases slightly above its
original value without any beam-noise. Increasing the beam-divergence beyond
Af =~ 12° reduces the rate and slows down the formation of patterns. The
decrease of rate becomes more obvious for divergences larger than Af ~ 20°.
Another outcome of beam-noise, shown in Fig. (b) is a slight change in the

wavelength of the fastest growing mode.

6.2 Temporally fluctuating homogeneous beams

As mentioned above, in the case of temporally fluctuating homogeneous beams,

we assume that there is no correlation in time in the stochastic time series of the
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direction of beam. Using Novikov’s theorem, the averaged first-order growth
equation, 8,(h) = Lo(h) 4+ (60Ly h) can be transferred into a closed equation

for (h)H Details of calculations are presented in appendix[Al This closed form

reads
Oy (h) = (Lo + CL?) (h). (6.4)

The arising terms can be interpreted as renormalization of the coefficients in

ﬁo, i.e. the averaged evolution equation can be written

(8yh) = ([Lo 4 00 Ly h) = Lo(w®, a®, al)(h) (6.5)

) xT ) i

with the renormalized coefficients

vl = (6.6)
vl = v, + Cv)? (6.7)
vl =, (6.8)

Since C' is positive, the homogeneous noise always reduces the absolute value
of v, leading to weaker instability in the parallel modes (here we ignore the
third and forth order derivatives form which may lead to further stabilizings
or destabilizings). Thus, one may expect less pronounced pattern formation

under this condition.

6.3 Spatio-temporally fluctuating beams

Renormalized coefficients of Eq. 6.5l for the spatio-temporally fluctuation beams,

case (iii), read
2

R (6.9)
" C
v =u, + 7(1/; + v, )V, + 51}6'2 (6.10)
2
1/5 = vy, + 7(1/; +v,), (6.11)

These renormalized coefficients are shown in Fig. as functions of #. The
functional dependence of the effective surface tensions on # are completely

changed by considering the noise effects. Thus, standard predictions of BH

2For more details of Novikov’s theorem see [Novikov (1965).
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Figure 6.4: Renormalization of parameters v, (6y) and v, (6y) from Eq.[Bddue to case (iii)
beam profile noise. The left upper and lower panel show the behavior for an ideal beam.
upper panel: d/o = d/u = 1, lower panel: d/oc = d/u = 2, the right panels show the
renormalization effects, if 92C(0) = 02C(0) = 0.2. solid lines: v,, dashed lines: v,. The
lower curve corresponds to faster growth within linear theory. Note that the dependence of

the dominant ripple orientation for ideal beams are changed completely due to the noise.

model for orientation of patterns can be violated by beam fluctuations. Nev-
ertheless, the experimental value of C' and its derivatives are not known and
therefore a direct comparison to experiments is not possible.

We also performed KMC simulations with a broad beam of ions to observe
generic effects of noise on pattern formation. Fig.[G.0shows how surfaces under
bombardment with beams profile (a) (see above) evolve. The main generic
result is a slowing down in the process of pattern formation. Apart of that,
the shape of morphologies and other features are not affected by the noise.
In addition to this general situation, three specific cases of normal incidence

angle, incidence near to the critical angle, and simulations with high diffusion
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Figure 6.5: Time evolution of the surfaces which are sputtered by an ion-beam with flat
distribution profile. Horizontal axis is time (ion/lateral atom) and vertical axis is the value
of width A0 in degrees. 6y=50°, L = 256. A significant delay induced by beam-noise is

evident.

rate are examined.

6.3.1 Normal incidence angle

Fig. compares the resulted structures in two cases of no divergence in the
beam and a diverging beam with profile type (b). The corresponding PSD is
shown in Fig. [6.71 Here, the rough patterns without any typical length scale
(no pronounced peak in structure factor; green line) turn to patterns with some
characteristic length scale (blue line). We performed the same simulations with
rotating samples and as it is observed (red line) the same length scale is present

in this situation as well.

6.3.2 Grazing incidence angle

Another situation, in which the width of beam profile may be crucial in pat-
tern formation is sputtering at incidence angle close to the critical value 6.,.
As mentioned in section B.4.T] increasing the incidence angle we reach a point

where ripples rotate from direction perpendicular to the projection of the ion-
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Figure 6.6: Noise induced effects in normal-incidence sputtering; Surface profiles sputtered
by (a) an ideal beam (no noise) and (b) a beam with Gaussian profile Af = 32°. By including

noise in the beams, patterns with smaller length scales emerge.
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Figure 6.7: The modulus of structure factor of surfaces obtained from normal-incidence
sputtering with non-zero ion-beam divergence (limiting cases with A¢ = 0 and A¢ = 7)
compared to the case of sputtering by an ideal beam. Presence of beam-divergence leads to
a length scale selection with the parameter set which does not produce mono-size structures

with an ideal beam.
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Figure 6.8: Simulation results for p = 65°(~ 6.), A0 = 0° (left panel) and 20° (right
panel) at t=2 ions/atom. Narrow bars indicate the azimuthal alignment of ion-beam. In
lower panels corresponding surface profile Fourier transforms are shown. The regularity of

parallel ripples enhanced by including the beam-noise.

beam to the parallel direction. A broad beam containing impinging ions with
incidence angle slightly larger or smaller than 6y may induce compound pat-
terns of ripples in both directions. In Fig. [6.8] the effect of noise on patterns
emerged by sputtering at # = 65° is demonstrated. Surprisingly, ripples per-
pendicular to the ion-beam direction are longer and more regular in presence
of beam-noise. The background structure parallel to the ion-beam direction is

almost untouched by including the noise.

6.3.3 High diffusion rate regime

The last examined condition is sputtering with broad beam in high diffusion
rate regime. We have chosen a partially enhanced diffusion attempt frequency
ki = 2.7 -10° to bring the system to the edge of the region where Ehrlich-

Schwoebel effects start to be dominant in pattern formation (see section [L.3.2]).
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Figure 6.9: Simulation results of sputtering by an ion-beam directed along the x-axis at
an average angle of 6y = 50° for ¢t = 3 ions/atom.Left panel:ideal beam, Right panel: Beam
profile corresponding to the lowest panel of Fig. The diffusion rate is enhanced by a
factor of 300 in compare to default value. The presence of beam-noise favors the induction

of Ehrlich-Schwobel effects.

We also took the beam profile (¢) which is very close to what is present in
experiments. In Fig. [6.9] changes in morphology induced by beam-noise is
illustrated. The Ehrlich-Schwoebel effects (e.g. orienting regardless to beam

direction) are enhanced by beam divergence.



Chapter 7

Rotating sample, dual-beam and

sequential sputtering

To produce a larger variety of structures and to improve their quality, more
complex setups with multiple ion-beams, IBS on pre-structured samples, and
rotating samples have been used, but few of them have been investigated in
detail. In particular, (2004;2005;2006) has proposed the use of dual ion-
beam sputtering (DIBS), |Vogel and Linz (2007) proposed a four-beam setup

and claimed that corresponding results may be obtained from a sequence of
pre-structuring and stepwise beam or sample rotation using a single ion-beam
(sequential ion-beam sputtering or SIBS). Continuous rotation of the sam-
ple or the ion-beam (referred to as RIBS, i.e. rotating IBS, in the follow-
ing) has been proposed to suppress ripple formation by [Zalarl (1985;1986) (for
example in SIMS and AES, where ripple formation would reduce the depth
profiling resolution), but also to enhance the quality of isotropic structures
(Bradley 1996). Recently, [Joe et al. (2009) conducted a systematic experi-
mental study of DIBS and SIBS on Au(001). They considered two different

ion fluxes: a higher one, for which the orientation of patterns is determined

by the ion-beam direction (erosive regime), and a lower one, for which surface
diffusion becomes dominant in pattern formation process (diffusive regime). A
number of their findings are not in accordance with expectations derived from
the conventional continuum framework. This motivated us to study DIBS,
SIBS and RIBS setups with Monte Carlo (MC) simulation methods. Recent
proposals by [Vogel and Linz (2007) and [Munoz-Garcia et al. (2009)) are based

91
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upon extensions of the standard continuum model (which is formulated as
an anisotropic and noisy Kuramoto-Sivashinsky equation). These extensions
have introduced new physical mechanisms, which change the scenario of pat-
tern formation of the standard model, but none of these mechanisms have been

confirmed and tested independently beyond doubt.

We present and discuss results obtained for the topographies, the shape and
orientation of the ripples, the structure function and the evolution of rough-
ness in different setups. We compare our findings to theoretical proposals,

experimental results and to the standard linear continuum model.

7.1 Simulation setup

Throughout this work, we will focus on the erosion-dominated regime, leav-
ing more complex interplays between erosion and diffusion in multi-beam and

rotating setups for further studies.

Fig. [Tl depicts the geometries of setups we use in the simulations. A
DIBS setup consists of two ion-beam incidents from directions described by
polar angles #; and #y and azimuthal angles ¢; and ¢» (see Fig. [[I(a)). As
a simple special case, we will consider opposing beams, i.e. #; = 0 and
A¢p = ¢1 — ¢ = 180°. Crossed beams are studied for equal polar angles as

well as for the general case of different polar and azimuthal angles.

SIBS setups are shown in Fig. [[Il(c). In a first step, ripples are produced
by a single ion beam. Then we change the azimuthal angle of the ion-beam
direction by some A¢ and monitor the further evolution of surface structures.
Finally, Fig.[ZTi(b) shows the RIBS setup, which is characterized by a constant
angular velocity w of the sample, which we realize by a fixed sample and
the corresponding beam rotation. The evolution of structures and surface

roughness will be systematically studied as a function of w.

The rotation of sample during IBS is equivalent to a fixed sample and a
rotating ion-beam. Therefore rotation or any change of azimuthal angles in
lab coordinates is simulated by keeping the surface fixed and rotating the ion-

beam correspondingly.
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(c)

Figure 7.1: Three different IBS experiment setups. (a) dual ion-beam with fixed sample
(DIBS). (b) continuously rotating sample with single ion-beam (RIBS). (c) sequentially
sputtering of pre-rippled surfaces after 90° rotation (SIBS).
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7.2 Opposed ion-beams

It has been proposed by [Carter| (2005) that IBS with two diametrically opposed
ion-beams (same 6 and a difference of 180° in ¢) can lead to a cancellation of
instabilities induced by each beam. Instead, he predicted temporal oscillations
of ripple amplitudes. Furthermore, ripple motion should be suppressed due
to the restoration of reflection symmetry, which would be broken by a single
beam.

Fig. [[2(b) shows results of topographies obtained from MC simulations of
this setup. We never observe the predicted behavior, instead the growth of
structures resembles that obtained in a single beam setup, as can be seen from
comparing Figs. (a) and (b). But ripples obtained from opposed beams
appear longer and more straight than those from single beams and the patterns
contain less defects. Furthermore, the shape of ripples changes significantly
towards more symmetric slopes. In Fig. [[.3] we show a quantitative analysis
of ripple slope angles oy and as, which are defined in the inset of the upper
panel. To measure the symmetry of the slopes, we consider the asymmetry

parameter
Qo —

Qg + oy

(7.1)

€ =

Histograms of this quantity are shown in Fig.[Z3] for single beam and opposed
beam setups. The average value of € is € & —0.08 for single beams (indicating
that the steeper slope is facing the beam), and € &~ 0.01 for opposed beams.
We also checked that the skewness of the e-distribution is reduced by using
opposed beams. In conclusion, opposed ion-beams do not lead to a cancellation
of instabilities, but help to produce more symmetric ripples and patterns with

less defects as compared to a single ion-beam setup.

7.3 Crossed ion-beams

Setups of multiple ion-beam incidents from different directions have been pro-
posed by (2004;2005). [Vogel and Linz (2007) developed a continuum

theory for a setup with four beams all with the same polar angles of incidence

and crossing with A¢ = 90°. Their theory is based on a damped Kuramoto-

Sivashinsky equation and takes into account terms up to fourth order in a
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Figure 7.2: Rippled surfaces after 8 ions/atom of sputtering. (a) by a single ion-beam,

(b) by two ion-beams opposed to each other. Arrows indicate the direction of ion-beams.
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Figure 7.3: Distribution function of the asymmetry parameter ¢ (see main text) for the
cases of a single ion beam (upper panel) and two ion-beams opposed to each other (lower

panel).
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gradient expansion of the erosion term. They predict square patterns, which
can be stable in the long time regime under specific conditions. Joe et al.
(2008) performed experiments with two ion-beams with § = 73° and A¢ = 90°
on Au(001) . In the erosive regime, they find nano-dot patterns with square
symmetry (albeit with a rather low degree of order), if the fluxes of the two
beams are precisely balanced. Otherwise, the structures develop into modu-

lated ripples.

In the upper row of Fig. [[ 4], we show simulation results for perfectly bal-
anced ion-beams (beam (1) in Table [L1]). The middle row of Fig. shows
results for ion-beams with different intensities incident from the same polar
angle (beams (2) and (3) in Table[]) and the lower row shows corresponding
results for ion-beams of identical intensities, but incident from different polar
angles and with different beam parameters (beams (1) and (4) in Table [Z.]).
In Table [T} v and v, denote the effective surface tension coefficients (par-
allel and perpendicular to the beam projection onto the z — y plane), which
appear as prefactors of the second spatial derivatives of the height field in
linear Bradley-Harper (BH) theory. They determine the topography depen-
dent part of the erosion rate within linear BH theory for long wavelength
(Bradley and Harper 1988]).

White arrows in Fig. [[4] indicate the projection of the ion-beams into the
x—y plane (thus they enclose A¢). The geometry is chosen such that the x-axis
always is the bisector of this angle. For balanced beams and 0 < A¢ < 90°, we
observe ripples with a wavevector parallel to the x-axis, for 90° < A¢ < 180°,
the ripple wavevector is parallel to the y-axis, but the ripple pattern shows
more defects. Exactly at A¢ = 90°, square patterns replace the ripples. For
unbalanced beams, we observe ripples in oblique directions, which we will

discuss below.

The middle and lower row of Fig. [[4] are given to emphasize that we did
not observe any differences in pattern formation due to different mechanisms
of imbalance. The middle row corresponds to beams of different intensities,
characterized by the ratio f = J_/J= of the smaller ion flux J_ and the larger
flux J. (here f = 1/2). The ion flux multiplies all terms in the gradient ex-
pansion of the erosion rate. Other mechanisms to produce imbalanced erosion

rates, which we tried, lead to the same patterns, if they imply the same erosion
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rates of linear theory.
Note that in our simulations both vy and v, are negative, indicating that
erosion leads to growing height fluctuations in both directions within the linear

BH theory. The linear theory of DIBS as outlined by|Joe et al. (2009) indicates

the appearance of growing crossed ripples for this situation, in accordance

with our simulation results. In the experiments by [Joe et al. (2009), however,

the system corresponds to v = 14.2 and v; = —0.9. This set of effective
surface tensions would result in a stable flat surface, in contradiction to the
experimental observations.

Let us analyze our findings within the simple framework of linear BH theory,
for which contributions of both beams to the erosion rate are simply added.
Suppose beams 1 and 2 are characterized by effective surface tension coeffi-
cients z/g’) with b being 1 or 2 and A being || and L. Averages of these coeffi-
cients over the two beams are denoted by v4 = (ug) +uf))/2 and we introduce
Avy = (V) — ). According to linear theory, the growth of Fourier modes
|h(ky, ky, t)| o< exp(I't) due to erosion is controlled by the (real) growth rate
['(ky, k,), which is a quadratic form of the wavevector, i.e. I' = k'Dk + O(k?)
with a matrix v of effective surface tensions. In the presence of isotropic surface
diffusion, the direction of the fastest growing mode is obtained by determin-
ing the largest eigenvalue of 7 and the corresponding eigenvector. 1 is easily

calculated. Its matrix elements take on the form

Vpw = 2(17” +0)+ (17” — 1) cos A (7.2)
Uyy = 2(17” + 7L) — (l/” — Dl) cos A¢p
ﬁzy = <—V|| - —I/J_) sin A(b,

and 7, = U,. For balanced beams, Av, vanishes and the matrix of surface
tension coefficients becomes diagonal, indicating that ripples will only appear
with wavevectors either parallel to the x-axis or parallel to the y-axis. At
A¢ = 90°, the rates in both directions become degenerate and square patterns
will emerge, if they are stabilized by the nonlinear terms. As cos(A¢p+7/2) =
—cos Ao, it is obvious from Eq. that the regime 90° < A¢ < 180° can be
mapped to 0 < A¢ < 90° by interchanging x and y. This explains the main
features of the upper row of Fig. [[4l

For unbalanced beams, the orientation of ripples will generally depend both
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Table 7.1: Beam parameters for the DIBS setup
0 a o U Y| vy

(1) 50° 9.3 3.0 15 -44 -0.86

(2) 50° 93 3.0 15 -58 -1.1

(3) 50° 9.3 3.0 1.5 -29 -0.57

(4)

(5)

35° 73 3.0 15 -1.5 -0.81
50° 3.8 22 1.5 -0.67 -0.53

on A¢ and the imbalances in surface tension coefficients Ay, Avy, but for
A¢ = 90° the situation is simpler. The cosine terms vanish, and the eigen-
vectors ex o< (1,41) of the simpler matrix become independent of the rate
imbalances. Thus, the linear theory predicts ripples with wavevectors inclined
by ¢ = 45° or ¢ = 135° with respect to the x-axis, i.e. parallel to one of
the beams (from the eigenvalues it follows that the wavevector is parallel to
the dominant beam), irrespective of the amount or nature of the imbalance in
growth rates, if A¢ = 90°. This result is in accordance with the experimental
findings by |Joe et al. (2009) as well as our simulations (see Fig. (e) and
(h)). The directions ¢ for other values of A¢ are easily obtained, if the im-

balance is known. In Fig. [[.4] we have indicated these directions with dashed

white lines. We find a satisfactory agreement of our simulation results with
this prediction. Fig. depicts the predicted deviations of the orientation of
ripple wavevectors from the x-axis (i.e. the bisector of the beam directions) as
a function of A¢ for different ratios f of fluxes of beams with the same beam
parameters and the same angle of incidence. f = 1 corresponds to balanced
beams, whereas f = 0 corresponds to a single ion-beam. Values of f between
0 and 1 smear out the step of the f = 1 and lead to a family of sigmoid curves
interpolating smoothly between the limiting cases.

In conclusion, our simulations show crossed ripple patterns for balanced,

orthogonal beams as observed by |Joe et al. (2009). For non-balanced or non-

orthogonal beams, simple ripple patterns appear in directions, which are in
accordance with linear continuum theory. These directions are not changed at
longer times, when the growth of the ripple amplitudes has saturated due to

nonlinearities.
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Figure 7.4: upper row: Rippled surfaces after 40 ions/atom sputtering by two balanced
ion-beams incident from 6 = 50° and separated in azimuthal angle by (a)A¢ = 60°, (b)
A¢p =90° and (c) A¢ = 120°. middle row: same as (a)-(c) but for imbalanced ion-beams,
which differ in intensity by a factor of 2 (f = 1/2) corresponding to beams (2) and (3)
in Table [l lower row: same as middle row, here the imbalance is generated by different
incident angles and beam parameters, (1) and (4) in Table[ZIl Arrows indicate the directions
of ion-beams. In middle and lower row bigger arrows correspond to the dominant ion-beam.
Dashed lines indicate the directions predicted for the wavevectors of ripples by linear theory

(see main text).
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Figure 7.5: Orientation of fastest growing mode for different values of A¢. ¢ denotes the
angle of the ripple wavevector with the x-axis. Different lines correspond to different ratios

of ion fluxes f (see main text).

7.4 Sputtering of rippled surfaces

Since the possibilities of simultaneous sputtering by multiple beams are often
limited in experiments, sequential sputtering by a single beam from different

directions seems to be a more promising setup. Vogel and Linz proposed SIBS

as a general substitute for multi-beam sputtering (Vogel and Linz 2007). Note

that in SIBS setups, a precise balance between fluxes of multiple beams, which
may be difficult to achieve in DIBS, can be adjusted by tuning the exposure

time in each direction.

Joe et al. (2009) performed experiments on Au(001) using an ion-beam in-

cident from € = 72°. In the erosive regime, ripples with wavevectors perpen-
dicular to the projection of the beam direction into the initial surface plane
(k1 modes) build up initially. After rotating the target by 90° (keeping 6
fixed), they observe that the ripple pre-structure is very rapidly destroyed and
new ripples build up in the correspondingly rotated direction. But the au-
thors could never observe patterns corresponding to a superposition of two

generations of ripples.
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We have simulated SIBS with ion-beams incident from # = 50° and a ro-
tation step of A¢ = 90° after 9 monolayers of erosion. Our parameters are
chosen such that Aj-mode ripples (i.e. wavevector parallel to the beam direc-
tion on the surface) appear initially (see Fig. [[6la)). After the rotation step,
a correspondingly rotated ripple pattern builds up as shown in Fig. [[6l(c). In
contrast to the experiment, we could observe a superposition of ripples of both
orientations in a narrow time window, shortly after the rotation step (shown in
Fig.[T6(b), at t = 10.8 ions/atom). The degree of order of these superimposed
patterns can be seen from the structure factor in Fig. [.6/(d).

Let us discuss the surface evolution following a rotation step. From linear
BH theory we expect every Fourier mode h(kj, k1) to grow or decay exponen-
tially with a rate T'(ky, k1) = —vkf —v k] —B(kf+k7)?. Here, we have explic-
itly included an isotropic surface diffusion term proportional to B as a smooth-
ing mechanism. Immediately before a rotation step, a rippled pattern has de-
veloped, which consists of Fourier modes, centered around the fastest growing
mode. Let us assume that this is a k& mode (corresponding to our simulations).
Then its wavevector is (k, k1) = (kp,0) with k,, = |vy|/(2B). A 90° rotation
step transforms this mode into (0, k,,), and the subsequent evolution starts
with a correspondingly rotated pre-structure. The growth rate I'(0, k,,,) of the
dominant mode of the pre-structure, measured in units of the maximal growth
rate T'(kp,, 0) = vf/(4B), is given by 7 = ['(0, ky) /T (km, 0) = —(1 42w, /|y ).
Note that it is independent of B. From this, we conclude that linear the-
ory predicts the following features of the evolution of patterns: (i) if v, > 0
the rate r < —1, which implies that the decay of the pre-structure (at least
the mode (0, k,,)) appears faster than the growth of the fastest mode, i.e.
IT(0, k)| > T'(km,0), (ii) if v, < 0 but |v | < |v|/2 then =1 < r < 0 so
that the decay of the (0,k,,) mode is slower than the growth of the fastest
mode and (iii) if v, is negative and |v| | > |v|/2 then r > 0, i.e. linear theory
predicts that the pre-structured (0, k,,) mode will grow. A completely analo-
gous discussion holds, when the initially formed ripples are made of £; modes,
i.e. when v, < 0 and v, < v). We just have to interchange || and L in the

above expressions. This is the situation which is realized in the experiment

by |[Joe et al. (2009). Furthermore, let us remark that the gradient expansions

presented by Makeev et al. (2002) always produces v, < 0, so that case (i)




102 CHAPTER 7. COMPOUND SPUTTERING SETUPS

of the above discussion will not show up, but it may be realized, if the initial

ripples are k|, modes.

For the parameters of our simulation (v, = —0.86 and v = —4.4) the pre-
structure should decay with » ~ —0.81, i.e. slower than the growth of the
new ripples. This is roughly in accordance with our simulations, albeit only
after a latency of ~ 1 ion/atom during which the amplitude of the old pattern
stays constant ( see the upper inset of Fig. [[[7)). From our data of the decay
and the growth after this latency we estimate r ~ —0.80. This only leaves a
time window of less than 1 ion/atom (crossover appears at & (.72 ions/atom),
during which a superposition of the pre-structure and the new structure can
be observed. For the experiments by Joe et al. (2009) r ~ —17.8, i.e. the

pre-structure decays extremely fast compared to the growth of new ripples,
and the corresponding time window of coexisting new and old ripples is much
smaller, which may explain why no superposition of ripple patterns has been

observed.

The rapid decay of the finite amplitude pre-structure leads to a transient
decrease of roughness. We define a structural relaxation time 7j as the length of
the interval from the rotation step through the transient decrease of roughness
to the point, where roughness has retained its value immediately before the
rotation step. This time interval contains all processes necessary to rotate
the ripple pattern from the previous to the current rotation step. In our case
Ty ~ 2.5 ion/atom. We expect this timescale also to be a relevant crossover
scale for rotating beams or samples, which will indeed be confirmed in the next

section.

We also tried to test the prediction (iii), i.e. a growth of the pre-structure
if |vi| > |y|/2. To this end we performed SIBS simulations with beam 5 of
Table [T i.e vy = —0.67 and v, = —0.53. Results are shown in the lower
inset of Fig.[L.71 As vy and v, approach each other, the ripples becomes more
and more blurred, so that it makes no sense to try to identify crossed ripple
structures. But the pronounced dip in the roughness has vanished, indicating
that there is at least no decay of any dominant, finite amplitude part of the
spectrum of (%, k, ) modes. However, we could not identify any growing modes

within the spectrum of the pre-structure.
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Figure 7.6: Snapshots of surface profile during SIBS. At ¢t = 9 ions/atom, a A¢ = 90°
rotation step occurs. Shots are at (a) ¢ = 9 ions/atom, (b) ¢ = 10.8 ions/atom (inset:
zoomed in) and (c) ¢t = 18 ions/atom. Arrows indicate the direction of ion-beams. In panel

(d) the structure factor |h(k,, k,)|* of the profile of panel (b) is shown.
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Figure 7.7: Roughness evolution of surface patterned by SIBS. The surface is rotated by
90° at t = 9 ions/atom. The upper inset shows the temporal evolution of the maximum of the
structure factor Spae = max(|h(k)|?) for wavevectorsin || and in L direction. The lower inset
shows that there is no dip in roughness in the regime of surface tension coefficients, for which

linear BH theory would predict a growth of the pre-structure (v = —0.67,v, = —0.53)
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7.5 Sputtering of continuously rotating sample

Sample rotation during IBS is applied for various reasons. One motivation is
to achieve suppression of pattern formation in SIMS and AES depth profiling
(Zalarl 1985;1986). There are numerous reports that RIBS can suppress surface
roughening and enhance the resolution of depth profiling (see
and references therein). Although this method is frequently used, there are
very few systematic studies of the effects of different parameters, in particu-

lar of the angular velocity of rotation (Tanemura et al. 1992). Previous dis-

crete simulations could not successfully explain the observed strong suppres-

sion of roughening (Koponen et al. 1997)). Recently, IBS has become a popular
method for smooth etching of metallic surfaces (Reichel et al. 2007). Here too,

sample rotation has been proposed as a practical measure (Reichel et al. 2007])
to prevent nano-scale roughening. A different motivation to use RIBS is the

control of pattern formation. As mentioned in chapter 2 Frost et al. have
found that off-normal IBS with sample rotation may lead to formation of
hexagonal, close packed dot patterns. This is attributed to a restoration of
axial rotation symmetry with respect to the average surface normal, which is
broken by off-normal incidence of a single ion-beam at fixed azimuthal angle.
Dot formation in rotated, off-normal IBS has been found in the framework of
continuum theories (Bradley 1996; [EFrost 2002; |Castro et al. 2005), assuming

a flux of incoming ions, which is distributed evenly over all azimuthal angles.

This assumption corresponds to the limit of high rotation frequencies. Dots

also appear in MC simulations performed in the high rotation frequency limit
for a wide range of parameters (Yewande et al. 2007]).

In the present work, we focus on the systematic dependence of height fluc-

tuations on the rotation frequency, irrespective of the random or determin-
istic nature of these fluctuations. Therefore, we will study the roughness
w = ((h—(h))?), averaged over the sample and an ensemble of 40 realizations,
as function of time and rotation frequency w. Reported rotation frequen-
cies cover a range from 0.1 to 15 rpm for different fluxes and different types
of ions and materials (Frost and Rauschenbach 2003} [Zalar 1985} [Zalar 1986:
Konarski and Hautala 1995} [Cui et al. 2005)). There is a predictions of the
scaling of height with w, which, in Ref. Bradley and Cirlin (1996)), is given in
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the form

h(k,t) o exp(%

It is based on the original linear Bradley-Harper theory in rotating coordinate

k? sin(2wt)). (7.3)

systems. Furthermore, Cui et al. (2005) reported that ripples do not form for
angular frequencies greater than 0.1 rpm (for a flux of 3.5 x 10* ions cm=2 57!
of 300 eV Ar" on GaN substrate).

In section [[Z4], we have defined a characteristic response time To(Ag) of the
IBS generated structures to sudden changes A¢ of the beam direction. We
propose that this time scale is also of relevance for RIBS, as surface structures
might follow rotation frequencies much smaller than wy = A¢/T; adiabatically.
On the other hand w > wy might correspond to the high frequency limit. We
performed simulations with different rotation frequencies varying in the range
0.05- - - 50 wg, with wy =~ 36° per eroded mono-layer taken from our SIBS sim-
ulations. For low frequencies, ripples form and rotate in synchrony with the
beam direction (see Fig. [[.8(d-f)). For high frequencies, (w = oo is included as

it corresponds to random azimuthal directions of incoming ions chosen from a

flat distribution), cellular structures of growing size are observed (Fig. [Z.8(c)).

These findings are in agreement with predictions by Bradley (1996). A mixture

of short ripples and cellular structures appears at intermediate w (Fig. [Z.8|(b)).
Somewhat surprisingly, the roughness of the surface is not a monotonous func-
tion of rotation frequency. In Fig. roughness is shown as a function of
time for different w. For low (including w = 0) and high frequencies, it grows
monotonically, approaching approximately equal growth rates beyond ¢ ~ 30,
independent of w. For intermediate w, the roughness shows oscillations (with
frequencies Q2 ~ 4w), and its growth rate is strongly suppressed. For w = 3.5 wy
growth rate reaches a minimum. In Fig. the roughness, averaged over a
period T' = 27 /w, is shown against w, for times up to ¢t = 37 ions/atom . For
increasing t, the minimum at w ~ 3.5 wy becomes more and more pronounced.
Thus our simulations predict an optimal rotation frequency, if preparations
aim at smooth surfaces. This frequency also marks the frequency scale beyond

which ripples do no longer appear. The very rapid crossover to non-ripple

structures is in accordance with findings of |Cui et al. (2005)).

To compare our results with the prediction of Eq. about the scaling

of height with w, we studied S = |h(k,t)[? for a fixed value of wavevector
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Figure 7.8: Snapshots of surface profile during RIBS (rotating IBS) at ¢ = 40 ions/atom for
(a) w =0 (b) w = wp and (¢) w = 7.5wp. By increasing the rotation frequency, a transition of
topographies from long parallel ripples to non-oriented cellular structures is observed. Panels
(d-f) shots at t = 36,38 and 40 ions/atom for rotating sample with frequency w = 0.5wp,
where ripples form and follow the orientation of the beam relative to the surface. Arrows

indicate the instant direction of ion-beam.
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Figure 7.9: Time evolution of surface roughness during RIBS for different rotation fre-

quencies.
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Figure 7.11: The logarithm of the oscillation amplitude of structure factor for a given k,
vs. logw. Inset: Time evolution of structure factor for a given k, for w = 2wq displays the

oscillations. The amplitude of these oscillations is shown in the main figure.

k. Tt grows rapidly and then oscillates with frequency 2w around a saturation
value with an w-dependent amplitude ¢, as shown in the inset of Fig.[.11l The
oscillatory behavior with frequency 2w is also present in Eq.[Z.3. The main part
of the figure depicts the decrease of the oscillation amplitude with increasing
w in a double logarithmic plot. The fitted line has a slope of —1.05 £ 0.05,
which is very close to the 1/w behavior suggested by Eq. [[3l Note, however,
that this equation was derived from linear theory and has to be multiplied
by an exponential growth factor, whereas our result applies to the non-linear
saturation regime. Due to the rapid initial growth, the regime of validity of

Eq. [[.3 remained unobservable.
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Figure 7.12: Total amount of eroded material (integrated yield) after 40 ions/atom of
sputtering of rotating samples vs. rotation frequency. The arrow is at =~ 3.5wq, the frequency

which minimizes the total roughness.

We also measured the total amount of eroded material, AM up to t = 40
ions/atom for different rotation frequencies. This integrated yield decreases
with increasing w and displays a clear distinction between a low- and a high-
frequency regime in a semi-log plot, shown in Fig. The interpolated
crossover frequency between these regimes is very close to ~ 3.5wq, the fre-
quency, which minimizes the total roughness (see Fig. [[I0). This is in ac-
cordance with our findings (see Fig. [ 7)) that more pronounced rippled pre-
structures (developing at low rotation frequencies at an angle wt) decay more
rapidly (at ¢ + dt) than the smaller and less regular height fluctuations, which

appear at higher rotation frequencies.
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Chapter 8
Conclusion

In this work we have studied IBS-induced pattern formation on solid surfaces
by kinetic MC simulations and continuum theories. We have addressed four
questions, which concern basic physical mechanisms of the pattern formation
seen in experiments, and have studied various proposals of techniques to im-
prove, simplify or modify the pattern formation by special experimental setups.

The basic questions we studied are

1. Is the interplay of erosion and surface diffusion comprehensively
described by an isotropic Kuramoto-Sivashinsky equation or do dif-
ferent mechanisms of diffusion (and/or erosion) lead to different pat-
tern scenarios, even if they would give rise to the same continuum

description?

We have found evidence for the latter statement. Changing Sigmund’s Gaus-
sian energy deposition function to something, which is closer to BCA results,
produces different (ripple) patterns for 6 larger than ~ 70°. Changing between
different thermal diffusion mechanisms like Hamiltonian, bond-breaking or net-
bond-breaking, which all give rise to V* term in continuum theory, changes the
long-time behavior of ripple patterns. We have also systematically investigated
the crossover from erosive to diffusive regime of pattern formation. In the dif-
fusive regime, Ehrlich-Schwoebel barriers lead to new type of diffusion-driven
patterns, but even there, the IBS pattern formation can not be completely
understood as a “deposition of vacancies”.

Related publication:

111
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e [Hartmann, Kree, and Yasseri 2009, Simulating discrete models of pat-

tern formation by ion-beam sputtering, J. Phys., 21 224015.

2. Is it possible that a few, sub-mono-layer coverage of the surface
with a second (“surfactant”) atomic species has a significant influence

on pattern formation?

We both extended our simulation model and presented a continuum model
to include the effects of co-deposited surfactant atoms on the process of pat-
tern formation. We demonstrated the possibility of inducing a large scale
(micrometer) height gradient along the sputtered sample by redeposition of
erosion-suppressive metallic atoms. The standard ripples form and evolve on
top of this background large-scale structure. In KMC simulations as well as
continuum theory we observed formation of ordered arrays of surfactants fol-
lowing the morphology of the rippled substrate. We show that a combination
of clustering tendency and yield suppression, leads to the accumulation of sur-
factant clusters in the valleys of the ripples. A stronger yield suppression leads
to stability of smooth surfaces and prohibits surface roughening, whereas a
medium-sized sputtering suppression of yield leads to emergence of Ehrlich-
Schwoebel induced patterns.

Related publication:

e [Kree, Yasseri, and Hartmann 2009al, Surfactant Sputtering: Theory of a

new method of surface nano-structuring by ion beams, Nucl. Ins. Meth.
Phys. B, 267 1403.

e Hartmann, Kree, and Yasseri 2009, Simulating discrete models of pat-

tern formation by ion-beam sputtering, J. Phys., 21 224015.

3. Do orientational fluctuations of ion-beam trajectories (beam di-

vergence) have effects on the pattern formation?

We have set up and studied a continuum theory and a Monte Carlo model
of IBS including ion-beam profiles. In both approaches we have found clear
indications of a rather strong dependence of surface patterns upon the special

type of noise, which is produced by non-trivial ion-beam profiles, as has been

observed in experiments (Ziberi et al. 2004; Ziberi et al. 2008). Whereas the
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continuum approach is most effective for small, Gaussian fluctuations, where
it leads to a renormalization of coefficients of the local evolution equation of
the average height profile, the Monte Carlo model is able to treat generic as
well as more realistic and material-specific situations. As the pattern forming
scenarios depend sensitively on beam parameters and diffusion, such a model-
ing is necessary, if one wishes to compare theoretical and experimental results
in more detail. Our KMC simulations show that in normal incidence angle
sputtering, different length scales can be selected and grow by including or
excluding the beam-noise. In grazing incidence angle, more regular ripples
emerge when the beam has a wide profile. In high temperature regimes, pres-
ence of the beam-noise favors the Ehrlich-Schwoebel effects and changes the
morphology of patterns towards diffusion induced patterns.

Related publication:

e [Kree, Yasseri, and Hartmann 2009b, The influence of beam divergence

on ion-beam induced surface patterns ,Nucl. Ins. Meth. Phys. B, 267
1407.

4. Is it possible to improve, simplify or modify IBS-induced pattern

formation by multiple-beams or rotated-beam setups?

We studied dual ion beam sputtering (DIBS), sequential ion beam sputtering
(SIBS) and rotating ion beam sputtering (RIBS) by a kinetic MC simulation
technique, which combines erosion events due to single ions and surface dif-
fusion. For a DIBS setup with two diametrically opposed beams, we did not
confirm predictions by , but rather found non-moving ripples
with orientations as in a single ion beam setup. The ripples have a higher
degree of order and more symmetrical slopes as compared to those created by
single beam sputtering. For DIBS setups with crossed ion-beams, we found
ripple patterns for crossing angles A¢ # 90° and square patterns for crossing
of balanced beams at exactly right angle. The ripple orientations follow the
predictions from linear Bradley Harper theory. Any kind of beam-imbalance

leads to ripple patterns oriented according to the dominant beam. This is in

accordance with the experimental observation by |Joe et al. (2009). For SIBS

setups, we found a very rapid destruction of the ripple pre-structure of the

previous rotation step, which cannot be explained by linear Bradley-Harper
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theory. The flattening of the pre-structure leads to a transient decrease in total
roughness. Only within a very short time window, the growing new genera-
tion of ripples and the shrinking old ones lead to a superposed square pattern.
Thus we could not confirm propositions to use SIBS as a universal substitute

for complicated multi-beam setups. The rapid destruction of the pre-structure

is in accordance with findings of |Joe et al. (2009). For RIBS setups we ob-

served a non-monotonic dependence of roughness upon rotation frequency. At
a frequency scale set by the structural relaxation time of prestructures, which
can be observed in SIBS simulations, an increasingly pronounced minimum
of roughness occurs with increasing time. We found that the structure factor
at fixed wavevector rapidly approaches stationary oscillations around a sat-
uration value with oscillation amplitudes inversely proportional to frequency.
This behavior was also predicted from linear theory, but seems to have a much
broader range of validity.

Related publication:

e [Yasseri and Kreel A Monte Carlo study of surface sputtering by dual
and rotated ion beams, submitted to Nucl. Ins. Meth. Phys. B.

Outlook

Our results show that the considered mechanisms have significant influence
on the IBS-induced pattern formation, which can be used to improve surface
engineering. On the other hand, none of the mechanisms lead to patterns
of a quality, uniformity and regularity as has been observed in some recent
experiments.

In fact, two potentially important physical mechanisms have not been con-
sidered in this work: elastic interactions between surface and substrate and
redeposition of eroded atoms. The inclusion of these mechanisms requires sub-
stantial extensions both of the KMC model and of the continuum theory, but
seems necessary to make further progress in the case of IBS-induced pattern

formation.
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Implementation of directional

noise in growth equation

We start from Eq. with Lo and L, given by

Oh(x,y,t) &*h(x,y,t) Ph(z,y,1)
ox e 0x? y oy?

Jo = Loh = v))(6,) —BV*V?h (A1)

therefore,

Oh(x,y,t) N , 2h(z,y,t) N , 0%h(z,y, 1)

Jl = f/lil = ’Ug(eo) O v, O Vy ayQ

(A.2)

Note that, for simplicity, we put 2 — h in this appendix and prime indicate
9/90)g—g,- The term 66v}, which appears in L; is an additive noise and its
average is zero, therefore it does not contribute to d;(h) so we neglect it.

We assume a Gaussian noise which is white in time
(60(r, )60(r', ")) = C(|r —1'|)o(t — 1) (A.3)
We integrate over small time step At
t+At
hr,t + Ab) — h(r, 1) = Jo(t) Al + / 30(r, ) (YAl (A.4)
t

and look for contributions to (Ah) = (h(r,t + At) — h(r,t)) of O(At). Then
we divide by At and take the limit At — 0. Therefore we approximate the

first term on the right hand side to O(At). It needs no further treatment.
Consider the second term in the right hand side A:

_ /”At )1, (Vh(x, '), V2h(r, ¢, ..)d" (A.5)
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To extract O(At)-term in the average we have to insert
t/
h(r,t") = h(r,t) + Jo(t)(t —t')+ [ 60(x,t")J (¢")dt". (A.6)
t

The neglected terms will be of higher order in At after averaging, so they
need not be taken into account. The term o Jy(t) will also not contribute
to O(At) after averaging and is dropped from here on. So we have to use
h(r,t') = h(r,t)+0h(t') where Sh(t') = [ 66(x,t")J (t")dt". We expand J;(¢')

in 6h (only the linear term contributes).

Ji(Vh(r,t) + V6h(r,t), V2h(r,t) + V25h(r,t)) = Ji(t) (A.7)
&]1( ) 0J1(t) 5
Fenwn T gy e

and insert in the A above:

t+At N !
A= /t 80(x, [ (') + fﬂvah(r,t) + 8J1—(t>v25h(r, t"))dt’

Vh(r,t) O(V2h(r, "))
(A.8)
J1(t') vanishes after averaging. So
At / 0y (t/) S " A
A= (r, ' {—=—"—V [ 60(r,t")Ji(t")dt A9
T O e v R AR (A.9)
aJ1(t)

t/
2 1 " " /
T /t 50(r, ") Ty (¢")dt" ydt

Note that .J; depends on r and therefore V and V? act both on 60 and J;.
Now we do the average. but before that note:
(i) (00(t")o0(t")) = o(t' —t") gives a d-function at the upper limit of the

integrals over t”. From stochastic calculus (Wong and Zakai 1965) we know

the correct interpretation for physical noise is

t/ t' e
[ v e o) = tim LI awsw — 1), (A.10)
t

e—0 t

The factor of 1/2 comes from the contributions of the “left half” of the regu-
larized J-function.

(ii)V and V2 give several terms. Consider

t+At ot/ ajl t' =
r,t"YV{60(x, t")) J, (t")dt" A1l
//m 0(x, 1) V{80(x, ) 1 (1) (A1)
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which equals to

LHAt tie aJl t/ N " " / I\ "
[ STy LB TeB0(e, ) A" + (5060 ) ()

(A.12)
The first term:
. > 1
lim V. (66(r')060(r) = lim V,.C(|r — r’|)|r:0§5(t — ") (A.13)
which is .
ﬁC(r)r:Oia(t — ) (A.14)

and the second term: (50(t")50(t")) = (1/2)C(0)5(t' — "), Note that usually
C(0) is maximum of smooth C(r) so we neglect (VC)(0). Thus we get

B aJ, - AN . AL,
=5 Ao o VI gy (5 COV2 I+ (VIO 0. (A15)

This gives the averaged evolution equation as

oh) _
% Jo+ ——

C()@J1 S 2 6J1 0(0) s 1,

Here we have generalized to J(Vh, 8:%,8;) because we want to plug in the

Bradley-Harper model.

Plugging of Bradley Harper theory
0.J1 o 0.5

and 0.J 0.J
1 o 1 o
o ) (A.18)
therefore
9(h) c) , ,,C(0) (0C)(0) 11 C(0) (0;C)(0)
T = J0+TvoaxJ1+l/x(TﬁiJ1 9 )+I/ ( 9 8§J1+ Y 9
(A.19)
Now we look for the terms oc d,h, d,h, 92h and 9} h.
@vgaﬂl = CO) o+ 00 (A.20)
2 2
8:%—0;0) V= 89662'(0) VL02 + v, 001 h + % C;( ) vivy Oph (A.21)
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(0 22Cc(0) , ., . 92C(0)
65%1/&]1 =Y vy [vh 07 + V021 h + 5

v, 0o Oyh. (A.22)
The terms <292J; and @6&]1 are of O(9?). Thus:

W) i)+ +

8:%0(0) / //+a§C(0) ’on
ot

5 Val 5 v, vy|0zh
2 92C(0
+ve + Li(@y;y; 4+ 4L~ ( )y;y;]ﬁih

2C(0 92C(0
i+ 8OO, BCO)

v,V 00h (A.23)

Since we take an isotropic correlation function: 9;C' = 02C' = C", so

C//
vt = ) + 7(1/; + v, vy (A.24)
" C
vl =u, + 7(1/; + v, )V, + 51}6'2 (A.25)

I
vl =y, + 7(1/; +v,), (A.26)
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