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Abstra
tSelf-organized, nano-s
ale stru
tures appear on solid surfa
es under ionbeam irradiation with ion energies in the keV range. Within the last de
ade,surfa
e engineering by ion beam sputtering (IBS) has be
ome a very promising
andidate for bottom-up produ
tion te
hniques of nano-devi
es. Morphologieslike ripples, and regular arrays of dots, pyramids and pits as well as ultra-smooth surfa
es have been obtained on a wide variety of substrates, in
ludingimportant semi
ondu
tor materials like Si, Ge, GaAs and InP.In spite of many substantial improvements of experimental surfa
e stru
tur-ing by IBS, the physi
al me
hanisms underlying the pattern formation are stillpoorly understood. In this work we use Kineti
 Monte Carlo (KMC) simula-tions and 
ontinuum theory to study the e�e
ts of the following me
hanisms indetail: (i) the interplay of surfa
e erosion with di�erent surfa
e di�usion me
h-anisms (Wolf-Villain, Hamiltonian, thermally a
tivated hopping via transitionstates, in
luding barriers depending on both initial and �nal 
on�guration ina hop) and the 
rossover from erosion-driven to di�usion driven patterns, (ii)random orientational �u
tuations of ion traje
tories within the beam, lead-ing to ion beam divergen
e, (iii) 
o-deposited, steady-state, (sub)-mono-layer
overages of the substrate with a se
ond atomi
 spe
ies (�surfa
tant sputter-ing�) and (iv) multi-beam and rotated-beam (or rotated sample) setups. We�nd that all the four me
hanisms under study may have a profound � andsometimes unexpe
ted � impa
t on the pattern formation. Di�erent di�usionme
hanisms, whi
h all give rise to the same leading order terms in a 
on-tinuum des
ription lead to rather di�erent long-time behavior of patterns inKMC simulations. Orientational �u
tuations 
hange the bifur
ation s
enariosof pattern formation and surfa
tant sputtering may give rise to qualitativelynew e�e
ts like mesos
opi
 or even ma
ros
opi
 patterns on top of nano-s
alepatterns, and the ordering of the surfa
tant on top of the stru
tured surfa
e.This ordering leads to a feedba
k me
hanism due to the modulation in sputter-ing yield 
aused by the surfa
tant. On the other hand, many of the promisingproposals 
on
erning the usage of multi-beam and rotated beam setups 
ouldnot be 
on�rmed (in a

ordan
e with re
ent experiments), but we 
an outlinesome physi
al reasons for this failure, whi
h 
ould guide an improved usage ofthese te
hniques.
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Chapter 1
Introdu
tion
Ri
hard P. Feynman attra
ted the attention of s
ientists and engineers to theenormous 
apability of the nano-s
ale world for the �rst time. He gave aninsight to the great possibilities, provided by instruments, whi
h are designedand fabri
ated in the size of some nanometers in his talk at the annual meetingof the Ameri
an Physi
s so
iety.1 During the last 50 years, numerous di�erentte
hniques and methods to manipulate materials on nano-s
ales are presentedand nowadays a multitude of nano-devi
es are produ
ed and available in themarkets (Maynard et al. 2006).Wide ranges of appli
ations are proposed by nano-stru
tures fabri
ated onsolid surfa
es. Among all the available te
hniques for the fabri
ation of su
hstru
tures, e.g. 
hemi
al lithography and atomi
 for
e mi
ros
opy (AFM) te
h-niques, bottom-up self-organized patterning methods are of parti
ular interest,be
ause they bear the potential of 
heap, large-s
ale produ
tion. Ion-beamsputtering (IBS) was introdu
ed by Navez et al. (1962) as a simple methodfor preparing wave-like patterns (ripples) of sub-mi
rometer length s
ales onthe surfa
e of solids. In this method, surfa
e bombardment by a beam of keVions at normal or oblique in
iden
e drives the system towards self-organizedformation of nano-patterns. Later on, many experimental developments havebeen 
arried out to improve the quality of the patterns i.e. ripple alignmentand regularity. Meanwhile, by sputtering di�erent kinds of solids under di�er-ent 
onditions, new types of patterns have been dis
overed. The produ
tion of1De
ember 29th 1959, California Institute of Te
hnology (Calte
h), �There's Plenty ofRoom at the Bottom�. 1



2 CHAPTER 1. INTRODUCTIONregular arrays of nanometer-sized 
olumns (dots) is one prominent example ofthis kind (Fa
sko et al. 1999). Re
ent reviews summarize the state of the artof surfa
e engineering by IBS (Frost et al. 2008).Although great improvement a
hieved in experiments to produ
e varioushighly ordered patterns on a wide range of di�erent materials, a 
omprehen-sive understanding of the physi
al me
hanisms underlying this self-organizedpattern formation is not yet available. The simplest quantitative theory ofIBS-indu
ed pattern formation has been put forward in a seminal paper byBradley and Harper (1988). There, it is pointed out that IBS implies a generi

urvature instability, whi
h roughens the surfa
e. The 
ombined a
tion of thisinstability and surfa
e di�usion leads to the appearan
e of ripples. This 
ontin-uum theory has been extended in many di�erent ways, but re
ent experimentsindi
ate that it does not 
ontain all the physi
al me
hanisms, whi
h determineripple patterns on solid surfa
es (Chan and Chason 2007).In this work we aim to address the IBS problem by analyti
al and 
ompu-tational methods. We develop and use a Kineti
 Monte Carlo (KMC) modelfor ion-beam erosion inspired by the kineti
 theory of Sigmund (1969). Wesimulate a simple 
ubi
 latti
e, whi
h undergoes bombardment of ions withvariable energy and in
iden
e angle. We try to give new insights into physi-
al me
hanisms of IBS-driven patterns as well as examine new possibilities toimprove and advan
e IBS experiments to a
hieve more pre
ise 
ontrol of thepattern formation pro
ess.In the next 
hapter we give a review of re
ently developed experimentalmethods in addition to 
lassi
 IBS te
hniques of ion-beam surfa
e et
hing.In Chapter 3 we introdu
e the analyti
al and numeri
al methods we useto study IBS, espe
ially our KMC model and its basi
 assumptions and the
ontinuum des
ription of IBS.It is the 
ommon belief that patterns under IBS form due to a 
ompetitionbetween surfa
e roughening (by erosion) and smoothing (by surfa
e di�usion).In the simple 
ontinuum des
ription of Bradley and Harper, these me
hanismsenter in universal forms and are quanti�ed by three parameters, two for erosionand one for surfa
e di�usion. But does this exhaust the interplay of di�erentsurfa
e di�usion me
hanisms with ion-beam erosion? This question will beaddressed in Chapter 4. There, we present our results obtained by implement-



3ing di�erent erosion and di�usion models and show how by tuning the rateof erosion and di�usion events di�erent types of instability leading to variouskind of patterns 
an be indu
ed.In Chapter 5 we present results on IBS a

ompanied by the 
o-depositionof a se
ond atom spe
ies onto the surfa
e. Controlled 
o-deposition of (sub-)mono-layer 
overages by 
o-sputtering of a nearby target has been introdu
edby Hofsäss and Zhang (2008), who 
alled it �surfa
tant sputtering�. Meanwhilethere are many indi
ations that highly ordered regular patterns, whi
h havebeen produ
ed in experiments, have in fa
t involved 
o-deposition, whi
h wentunnoti
ed. We show some e�e
ts indu
ed by 
o-deposition of metalli
 atomson the surfa
e of a substrate like Sili
on. We demonstrate the possibilityof preparing nano-
lusters by this method and 
ontrol them in a pattern ofripples.In Chapter 6 we study the e�e
ts indu
ed by in
luding exterior noise, orig-inated from �u
tuations of the dire
tions of ion traje
tories within the beam.Our extended 
ontinuum model predi
ts new transitions for pattern morpholo-gies whi
h di�er from the standard s
enario of Bradley and Harper. Our resultsobtained by KMC simulations are about the generi
 e�e
ts due to the ion-beamnoise in di�erent situations, e.g. normal and grazing in
iden
e angle or in hightemperature regimes.There are a number of proposals, mostly based on qualitative reasoning, howto improve or modify pattern formation due to IBS by using multi-ion-beamsetups, sequential sputtering of the sample from di�erent dire
tions, or samplerotation. Chapter 7 
ontains a detailed simulation study of these proposals.We 
ompare our results with re
ent experimental �ndings by Joe et al. (2008).Finally, in Chapter 8 we give a 
on
lusion and dis
ussion on all presentedresults and some outlooks for future work.



4 CHAPTER 1. INTRODUCTION



Chapter 2
Ion-beam sputtering experiments
Depending on the sputtering parameters e.g. �ux, energy, type and in
iden
eangle of the ions, as well as substrate properties e.g. type and substrate tem-perature, a wide range of di�erent patterns might emerge via IBS. Se
ondaryfeatures, like beam-pro�le and rotation of sample may also 
hange the qualita-tive and quantitative 
hara
teristi
s of the patterns. Re
ent advan
ed methodsin IBS experiments that might produ
e more 
omplex textures on the surfa
eof materials are based on setups 
omposed of doubled- or multi-beams, si-multaneously 
o-sputtering of metalli
 and non-metalli
 substrates (surfa
tantsputtering), and sputtering of pre-stru
tured templates. In the following se
-tions of this 
hapter, we brie�y review the experimental a
hievements of IBS.For more extended reviews see Valbusa et al. (2002), Frost et al. (2008) andMuñoz-Gar
ía et al. (2009).
2.1 Patterns on amorphous substratesMost of the IBS experiments are performed on amorphous substrates e.g. glass,or substrates whi
h are amorphized under bombardment of keV ions e.g. Si,SiO2, GaSb, InP, et
. Ripples and -more re
ently- dots are the main typesof patterns whi
h emerge on these types of substrates. Moreover, formationof holes and pits, the appearan
e of ultra-smooth surfa
es and non-stru
turedrough surfa
es are also reported as out
omes of some IBS experiments. In thefollowing, the mentioned types of stru
tures are dis
ussed in more detail.5



6 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTS2.1.1 RipplesA �rst experiment by Navez et al. (1962) was followed by a huge number ofexperiments, in whi
h wave-like ripple stru
tures were observed. The period-i
ity of ripples varies from tens to hundreds of nanometers and their length
an ex
eed several mi
rometers. Some universal properties are observed inexperiments with very di�erent ion-beam and substrate parameters. Rippleorientation with respe
t to ion-beam dire
tion and the dependen
e of thisorientation on the in
iden
e angle of the ion-beam with respe
t to the sur-fa
e normal θ, are important universal features, whi
h have been explained bytheory of Bradley and Harper (BH). In BH theory, di�erent erosion rates atdi�erent points on the surfa
e in relation to the lo
al 
urvatures is the maindestabilizing fa
tor whi
h is shown to be su�
ient to explain the formation ofripples and their orientation. A s
hemati
 drawing of BH theory is presentedin Fig. 2.1. The full des
ription of the theory is provided in se
tion 3.4.1.Other universal features, like the dire
tion of ripple on 
rystalline substrates,propagation and the 
oarsening of ripple patterns are not fully understoodwithin BH theory, but extensions of this theory lead to partial understandingof many features of the pattern formation (see se
tion 3.4).The quality of ripples, i.e. their regularity and alignment, improved tremen-dously within the last de
ade (
ompare the stru
tures depi
ted in Fig. 2.2 andFig. 2.4). However, so far, no 
omprehensive explanation on the 
onditionsand physi
al me
hanisms, whi
h lead to the formation of su
h �ultra-regular�patterns exists. Two main ideas that may explain this experimental su

essare (i) �ne tuning of ion-beam pro�le and (ii) manipulations in the pro
ess ofpattern formation by 
o-deposited metalli
 atoms. Both ideas are dis
ussedextensively in this thesis in 
hapters 5 and 6 respe
tively.OrientationThe orientation of ripples is typi
ally 
on�ned to be either parallel or per-pendi
ular to the proje
tion of the ion-beam dire
tion onto the surfa
e. Forsmall values of in
iden
e angle θ, orientation is perpendi
ular to the ion-beam.By in
reasing θ towards grazing in
iden
e, at some 
riti
al value θc, ripplesrotate by 90◦ and align in dire
tion parallel to the ion-beam. One exam-
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o

o’

Figure 2.1: Ions hit the surfa
e with normal in
iden
e angle, impinge into the surfa
e, stopat some distan
e under the surfa
e and deposit their kineti
 energy. Sin
e the amount of thedeposited energy rea
hing the lateral points with positive or negative lo
al 
urvatures (O orO') is di�erent, assuming the erosion rate at surfa
e points is proportional to the rea
hingenergy, a faster erosion rate is expe
ted in valleys (point o'). This leads to ampli�
ation ofthe initial surfa
e roughness (Bradley and Harper 1988).ple of the 
hange in orientation in the experiments on graphite samples byHabeni
ht et al. (1999) is shown in Fig. 2.2.PropagationIn some experiments (Habeni
ht et al. 2002; Alkemade 2006) by simultaneousreal time monitoring of pattern evolution, it is observed that ripples propagatealong the dire
tion of the ion-beam. Initial movements with velo
ity of 0.33nm s−1 are followed by de
eleration and a dispersion in velo
ity for di�erentwavelength. At longer times, faster movements for ripples with shorter wave-length was reported. Ripple propagation is also predi
ted by BH theory, butthe predi
ted dire
tion of motion is apposite to the observed dire
tion.CoarseningThe 
oarsening of ripples, i.e. in
rease in lateral size and spa
ing of rip-ples, has been observed in a large number of experiments. A growth ofwavelength, following a power law in the form of λ ∼ t0.5 is reported byHabeni
ht et al. (2002), whereas an exponential growth is found by Brown and Erleba
her (2005).
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Figure 2.2: Rotation of the ripples orientation by in
reasing the in
iden
e angle. S
anningtunneling mi
ros
ope (STM) mi
ro-graphs (lateral size 1 µm) of 5 keV Xe+ eroded HOPGsurfa
es. Fluen
e = 3×1017 ions/
m2; in
ident angle θ (a) 30◦, (b) 60◦ and (
) 70◦. Arrowsindi
ate the ion-beam orientation. Adapted from Habeni
ht et al. (1999).In Fig. 2.3 an example of 
oarsening of ripples formed on fused sili
a is depi
ted(Flamm et al. 2001). The 
oarsening 
an only be explained by 
onsidering thenon-linearities whi
h are absent in the BH model.OrderingIn some experiments, ripples show a tenden
y to be
ome more aligned andordered. In many experiments the number of defe
ts (misalignment or 
rossingbetween ripples) de
reases with time. For example Ziberi et al. (2005) haveseen ordering and de
rease of defe
ts in sputtering on Si by Kr+ ions (seeFig. 2.4). The order of ripples 
an be estimated by the 
ounting the numberof peaks in the Fourier spe
trum of the surfa
e pro�le.2.1.2 DotsFormation of nano-dots is another phenomenon reported in several experi-ments. As the anisotropy indu
ed by the dire
tion of the ion-beam is elimi-nated, either by rotating the sample (Frost et al. 2000) or by normal-in
iden
esputtering (Fa
sko et al. 1999), formation of dots is observed. However, dotformation under oblique in
iden
e irradiation and also without sample rotationhas also been reported by Ziberi et al. (2006) on Ge. The dots are highly or-dered in size and have short-range ordering in pla
ement (see Fig. 2.5). In thementioned works, the dot patterns show hexagonal symmetry in lateral order-
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Figure 2.3: AFM image sequen
e, showing the evolution of fused sili
a surfa
e topographywith in
reasing sputter time t at 2, 6, 10, and 60 min, respe
tively. The ion-beam parameters:800 eV Ar, �ux= 400 µA/
m2 and θ = 60◦ . The lateral size of the images is 1 µm. Thewavelength of ripples in
reases with time as λ ∼ tγ with γ = 0.15 ± 0.01. Adapted fromFlamm et al. (2001).
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Figure 2.4: Self-organized Si ripple patterns produ
ed by 1200 eV Kr+ ion-beam erosion,
θ = 15◦, for di�erent ion �uen
es: (a) 3.36 ×1017 ions/
m2, (b) 2.24 ×1018 ions/
m2 and (
)1.34 ×1019 ions/
m2 (a)-(
) 2 µm × 2 µm AFM images (the arrows give the ion-beam dire
-tion). (d)-(f) Corresponding Fourier spe
trum (image range ± 127.5 µm−1). The 
ir
le in(
) shows a defe
t in the AFM image. The number of defe
ts de
reases with time. Moreover,the angular width of the Fourier peak de
reases with erosion time meaning the homogeneityand ordering (alignment) of ripples improves. Adapted from Ziberi et al. (2005).



2.1. PATTERNS ON AMORPHOUS SUBSTRATES 11ing, whereas some authors reported the formation of dot patterns with squaresymmetry (Frost et al. 2004; Ziberi et al. 2009). The 
oarsening behavior ofthe ripples is also observed for dots, although in the 
ase of dot patterns, anearly growth in wavelength saturates in longer times (Gago et al. 2001). Theformation of ordered dot patterns is not explained by BH theory.2.1.3 HolesThe so-
alled �
ellular stru
tures� or �holes� 
an be produ
ed in experimentswith amorphous substrates. Fig. 2.6 shows data from Frost et al. (2004) inexperiments on Si surfa
e irradiated by 500 eV Ar+ with sample rotation. Theappearan
e of 
ellular stru
tures in the experiments with sample rotation 
anbe very sensitive to the rotation frequen
y of the sample. We dis
uss this inse
tion 7.5.2.1.4 Smooth surfa
esBesides its appli
ations for texturing the surfa
es, IBS te
hniques 
an also beused for surfa
e smoothing at mi
ros
opi
 length s
ales and for the preparationof ultra-smooth surfa
es. Conventionally, 
ontinuous rotation of the sampleor the ion-beam has been proposed to suppress ripple formation (Zalar 1985;Zalar 1986) in se
ondary ion mass spe
trometry (SIMS) and Auger ele
tronspe
tros
opy (AES), where ripple formation would redu
e the depth pro�lingresolution. There are many reports on experiments with or without samplerotation, in whi
h the initial roughness of a the surfa
e is redu
ed as thesputtering pro
ess goes on (for two re
ent works see (Headri
k and Zhou 2009)and (Frost et al. 2009)). In Fig. 2.7 (adapted from the latter work ) initialtopography of an InSb sample is 
ompared to snapshots after 10 and 120min sputtering by 500 eV N+ ions at normal in
iden
e angle with ion 
urrentdensity 200 µA/
m2.There is a la
k of theory to explain the smoothing of surfa
es by ion-beam te
hniques. In low �ux and high temperature experiments, similari-ties to epitaxial layer-by-layer growth is 
laimed to exist in IBS experiments(Chan and Chason 2007). In medium and high �ux experiment, a down-hill
urrent indu
ed by the 
ollision 
as
ades initiated by the impinging ions 
an
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Figure 2.5: S
anning ele
tron mi
ros
ope (SEM) images of highly ordered 
ones on a(100) GaSb surfa
e show the temporal evolution of dot formation during ion sputtering.The nano-s
ale patterns are depi
ted for di�erent ion �uen
es (exposure times) of (A) 4
× 1017 ion/
m2 (40 s), (B) 2 × 1018 ions/
m2 (200 s), and (C) 4 × 1018 ions/
m2 (400s). (D) The 
orresponding size distributions of the dot diameters are extra
ted from theimages. The dotted lines represent Gaussian �ts to the dot diameter histograms. Adaptedfrom Fa
sko et al. (1999).
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Figure 2.6: Sili
on surfa
e topographies after 20 min bombardment by 500 eV Ar+ ion-beam (sample rotation), �ux= 300 µA/
m2, θ (a) 0◦ and (b) 75◦. Cellular stru
tures formin both 
ases. Adapted from Frost et al. (2004).suppress the destabilizing e�e
ts of BH theory. This will be dis
ussed in moredetail in se
tion. 3.1. The rotation frequen
y may have an important role ina
hieving the smoothed surfa
es, similar to the formation of 
ellular stru
tures.This will be dis
ussed in se
tion. 7.5 as well.2.2 Patterns on 
rystalline substratesThe above mentioned 
hara
teristi
s are not 
ommonly observed in experi-ments with metalli
 substrates. For example, ripples may form in normalin
iden
e experiments or isotropi
 patterns in oblique in
iden
e experimentsmay evolve without rotation . For a 
omprehensive 
olle
tion of experimentalresults on metalli
 substrate see Valbusa et al. (2002). The di�erent s
enar-ios of pattern formation on single 
rystalline metalli
 substrates are mainlydue to the di�erent energy barriers in 
onjun
tion with the 
rystallographi
anisotropies in su
h materials. On the other hand, Surfa
e di�usion is notisotropi
 in 
rystalline substrates and the Sigmund's theory of sputtering ne-gle
ts e�e
ts like 
hanneling, whi
h are due to the regular anisotropi
 stru
ture.Valbusa et al. de�ned a �di�usive� and an �erosive� regime, in whi
h the orien-tation of stru
tures are determined by the unit 
ell dire
tion or by the dire
tionof the ion-beam, respe
tively. The di�usion rate is mainly 
ontrolled by the
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Figure 2.7: Sequen
e of AFM images whi
h shows the progressive smoothing of a Sisurfa
e under 500 eV Ar+ ion-beam erosion, θ = 45◦, �ux = 300 µA/
m2 (simultaneoussample rotation). (a) Initial surfa
e (pre-roughened by Ar+ erosion at 75◦ ion in
iden
e),(b) after 10 min (
orresponding to a total applied ion �uen
e of 1.1 × 1018 ions/
m2) and(
) after 180 min (2.0 × 1019ions/
m2). The rms roughness was redu
ed from Rq = 2.25nm to Rq < 0.2 nm. Adapted from Frost et al. (2009).substrate temperature and the erosion rate 
an be tuned by the ion-beam pa-rameters. In Fig. 2.8, a transition from di�usive regime to erosive regime byin
reasing the temperature at �xed ion-beam parameters is depi
ted.The pyramid-like stru
tures formed in the di�usive regime are similar to thepatterns whi
h form in mole
ular beam epitaxy (MBE). Here, the di�eren
eto MBE is that deposition of adatoms is repla
ed by 
reation of va
an
ies byerosion. The main destabilizing fa
tor in both 
ases is the biased di�usion ofsurfa
e defe
ts (adatoms or va
an
ies). Therefore, most of the basi
 featuresof patterns are similar in both MBE and IBS at high temperature and low�ux regime. In the erosive regime, however, the main underlying pro
ess isthe BH instability and di�usion is not the leading fa
tor in the pattern for-mation. Hen
e, the main 
hara
teristi
s of patterns in the erosive regime aresimilar to those observed in the experiments on amorphized semi
ondu
tors(see se
tion 4.2.4).2.3 Advan
ed patterning methodsIn the last few years, steps toward alternative 
omplex IBS experiments havebeen taken. Some of these advan
ed methods are surfa
tant sputtering, sput-
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Figure 2.8: The role of surfa
e temperature in the transition from the di�usive to theerosive sputtering regime for Ag(001). 1 keV Ne+ ions, θ = 70◦, �ux = 2.2 µA 
m2, t = 20min. The white arrow shows the ion-beam s
attering plane. Image size 180 × 180 nm2 ; at
T = 400 K: 360 ×360 nm2. Adapted from Valbusa et al. (2002).



16 CHAPTER 2. ION-BEAM SPUTTERING EXPERIMENTStering of alloys, sputtering of thin deposited �lms, sputtering with double ormultiple beams, sputtering of substrate previously stru
tured on mi
rometerlength s
ales, et
. Apart from the pra
ti
al advantages, exploring this un-known area of ion-beam sputtering te
hnology poses new physi
al questions,whi
h 
an be answered only by extending and developing the present theoret-i
al models.2.3.1 Surfa
tant sputteringIn surfa
tant sputtering, ion-beam erosion is a

ompanied by deposition of ase
ond (�surfa
tant�) atomi
 spe
ies (typi
ally by 
o-sputtering a nearby metal-li
 target). Co-deposition is adjusted in a way that a steady state 
overage of(sub-) mono-layer thi
kness emerges.Surfa
tant sputtering has been introdu
ed by Hofsäss and Zhang (2008) asa novel method with a wide range of 
ontrollable pattern formation s
enarios.The potentially wide spe
trum of the appli
ations of surfa
tant sputtering hasnot yet been probed. One of the available examples, shown in Fig. 2.9, is anarrangement of nano-drops of Ag on rippled Si substrate.An important physi
al me
hanism, whi
h in�uen
es pattern formation isthat the presen
e of metalli
 atoms on the surfa
e of a substrate 
an 
onsider-ably 
hange the erosion rate of substrate atoms. Furthermore, the parti
ularform of surfa
e di�usion of metalli
 atoms and their tenden
y to mix or demixwith the substrate 
an also a�e
t the pattern formation. More details arepresented in 
hapter 5.2.3.2 Compound beamsJoe et al. (2009) performed experiments applying multiple beams (parti
ularlydual-beams) and also sequential sputtering from di�erent dire
tions. The aimof these experiments was to produ
e stru
tures of superimposed ripples formedin di�erent dire
tions. Although in none of the 
ases a linear superpositionwas observed, the 
ase of dual-beams leads to square symmetri
 patterns (seeFig. 2.10). In the sequential sputtering of pre-stru
tured surfa
es, the stepwiserotation of the sample by 90◦ led to a fast destru
tion of initially formedpatterns before the new generation of patterns has grown in the perpendi
ular
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Figure 2.9: SEM pi
tures of Si surfa
es eroded with 5 keV Xe at θ = 70◦ and �uen
e3 × 1016 ion/
m2 with Ag surfa
tants with di�erent 
overages (in
reasing from left toright and top to bottom) of up to 1016 Ag atoms/
m2. The ripple pattern and ripplewavelength for di�erent 
overages are strongly in�uen
ed by the surfa
tants. Ag nano-parti
les of size 10 nm or less 
an be seen on the tops of the �at ripple plateaus. Adaptedfrom Hofsäss and Zhang (2008).
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Figure 2.10: (a) Rippled Au(001) surfa
e sputtered in the erosive regime, (b) Surfa
emorphology indu
ed by sequentially sputtering of the pre-rippled Au(001) with 2 keV Ar+with �ux=0.31 ions/nm2s, �uen
e=84.8 ions/nm2 and θ = 72◦. The initial ripple pat-tern is heavily damaged su
h that its order and mean 
oheren
e length are severely de-graded. (
) Nano-patterns formed by dual ion-beam sputtering with �ux=3.25 ions/nm2s,�uen
e=6350 ions/nm2 and θ = 73◦. Arrows indi
ate ion-beam proje
tion. Adapted fromJoe et al. (2009).dire
tion. More details are presented in se
tion 7.4.



Chapter 3
Methods
Pattern formation in IBS, 
an be studied theoreti
ally at di�erent levels andtime-, energy- and length-s
ales with di�erent approa
hes. The 
omplete prob-lem of IBS 
overs length s
ale from atomi
 sizes to some mi
rometers and times
ales 
over a range from ∼ 10−17 se
 (duration of the primary atom-ion 
olli-sions) to ∼ 10 min (typi
al pattern formation time s
ale). The same extensionexists also in the 
overed range of energies; The upper bound is the energy ofan impa
t, initiated with some keV ion and the lower bound is the energy in-volved in di�usion pro
ess at room temperature, i.e. the meV range. To 
overthis wide range of s
ales, di�erent methods and approa
hes must be appliedand at di�erent s
ales di�erent approximations are ne
essary. A 
ombinationof all the approa
hes presents a multi-s
ale pi
ture of the whole phenomenon.In this 
hapter we introdu
e the following theoreti
al models whi
h we applyto IBS:(i) Atomisti
 simulations based on binary 
ollision approximation(BCA): In this 
lass of simulations, one starts from single impa
ts of ionson the surfa
e and follows 
as
ades of atomi
 
ollisions, aiming to provide astatisti
s of sputtering e�e
ts 
aused by impinging ions. The typi
al length-s
ales 
onsidered in this approa
h range from some Å to some nm.(ii)Kineti
 theory: In this approa
h one studies the evolution of the phasespa
e density f(r,p, t) of displa
ed atoms (and of the ions) at position r andwith momentum p in the framework of Boltzmann's transport theory.(iii) Kineti
 Monte Carlo simulations: Many results of this thesis areobtained from this method. Usually, one starts from the results of kineti
19



20 CHAPTER 3. METHODStheory, i.e. one uses a simple fun
tional form of the averaged energy depositedby a 
ollision 
as
ade for single ion impa
t to determine the erosion probabilityof surfa
e atoms. Di�usion pro
esses 
an easily be added in this approa
h.Simulating larger s
ales of some hundreds of nm 
an be studied by KMC.(iv) Continuum theory of surfa
e evolution: In the 
ontinuum modelof surfa
e evolution the height of surfa
e is 
onsidered as a 
ontinuous, singlevalued smooth fun
tion of plane 
oordinates h(x, y). In the most general form,the time evolution of h is des
ribed by a non-linear sto
hasti
 partial di�er-ential equation, the growth equation. In prin
iple the growth equation mayin
lude all the underlying pro
esses whi
h lead to the surfa
e evolution andalso external noise by randomly shot ions. Here, length s
ales larger than thepenetration depth and atomisti
 sizes are 
onsidered and therefore small size�u
tuations are negle
ted. The main parts of 
ontinuum theories are erosionand surfa
e di�usion. Most of the theories in this framework are based on theSigmund's theory of sputtering and a thermally a
tivated di�usion model.3.1 Binary 
ollision approximationThe most mi
ros
opi
 approa
h to pattern formation under IBS would bea full-�edged Mole
ular Dynami
s (MD) simulation. However su
h a simu-lation has to bridge the above-mentioned s
ales in time, spa
e and energy,whi
h is not possible at present. Nevertheless, the approa
h is used for sin-gle ion impa
ts to study the defe
t generation and also the mass transportdue to displa
ed atoms. But an approximate version of MD, the binary 
ol-lision approximation (BCA), has be
ome a versatile tool in the study of ionsputtering phenomena, in
luding pattern formation. The main idea of thismethod is to redu
e all intera
tions to a series of binary 
ollisions betweenpairs of parti
les. In between 
ollisions, the traje
tory of the parti
les arestraight-line segments traversed with 
onstant velo
ity, initiating from a 
ol-lision and ending at the next 
ollision. Changes in velo
ity and position af-ter ea
h 
ollision 
an be integrated numeri
ally (Robinson and Torrens 1974;Robinson 1994). This approa
h is su

essfully used to quantitatively 
al
ulatesputtering yields in the mu
h used and well established programs TRIM andSRIM. Koponen et al. (1997) have also used it to study the formation of rip-
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ρFigure 3.1: (a) Sample 
as
ade originating from an impa
t of a 5 keV Cu ion on a Cu
rystal. The angle of in
iden
e is 60◦. The 
ube shown, a
ts just as s
ale and has volume 2.65nm3. (b) Surfa
e density of mean energy of sputtered Cu atoms vs. distan
e ρ (measuredin units of a = 3.61 Å) from point of ion in
iden
e. The solid line is the best �t to the data;
0.297(ρ2 − 0.392ρ) exp(−1.27ρ) and the dotted line, whi
h 
orresponds to a Gaussian �t, isobviously inadequate. Adapted from Feix et al. (2005).ples under IBS. Feix (2002) and Feix et al. (2005) have studied the sputteringof Cu 
rystals by means of BCA simulations to test some assumptions andapproximations used in less mi
ros
opi
 approa
hes.3.1.1 Cas
ade shapeFeix et al. (2005) 
onsidered an ensemble of 6000 impinging ions and 
al
u-lated the averaged statisti
s of the indu
ed 
ollision 
as
ades (see Fig. 3.1(a)). One of the main results is about the distribution of deposited energyby a single ion as this quantity underlies the 
ontinuum theory and the KMCapproa
h (see below). For normal in
iden
e, the simulations show an energydistribution as depi
ted in Fig. 3.1 (b), whi
h has a minimum near the positionwhere the ion penetrates the surfa
e, and de
ays exponentially with distan
e.This from deviates signi�
antly from Gaussian shape 
entered at the lo
ationof primary kno
k-on 
ollision, whi
h is used in the vast majority of 
ontinuumand KMC approa
hes, and was proposed by Sigmund (1969) on the basis ofan approximate treatment of the kineti
 theory.



22 CHAPTER 3. METHODS3.1.2 Defe
t generationApart from erosion of the substrate atoms by the energy transferred fromions, generation of surfa
e defe
ts (adatoms and va
an
ies) is known to beanother e�e
t indu
ed by 
ollision 
as
ades (Nordlund et al. 1998). Ex
itedatoms rea
hing the surfa
e with energies more than the surfa
e binding energy
Eb, will be sputtered o�, and leave a va
an
y, however a large fra
tion ofparti
les have energies less than Eb. These atoms remain on the surfa
e andbe
ome adatoms. At high temperature, defe
ts re
ombine and vanish rapidly,whereas at low temperature regime a large number of them remains for longertime (Floro et al. 1995). Feix (2002) found a distribution of the energy of theparti
les rea
hing the surfa
e ǫs, whi
h obeys a simple power low

p(ǫs) ≈
a

(b+ ǫs)γ
∼ ǫ−2

s (3.1)with a = 5.26, b = 5.03 and γ = 1.87 for 5 keV Cu ion hitting a Cu tar-get. The shape of the distribution is almost independent of the distan
e fromthe impa
t point up to a large distan
e (see Fig. 3.2). This �nding is in a
-
ordan
e with experimental observations and a simple theory of 
as
ades byFarmery and Thompson (1968).3.1.3 Down-hill 
urrentCarter and Vishnyakov (1996) observed that in o�-normal in
iden
e (up to45◦) sputtering of Si with high energy (10-40 keV) Xe+ ions, sputtering ero-sion 
an indu
e smoothing. Using MD simulations Moseler et al. (2005) ex-plained the irradiation-indu
ed smoothing on diamond-like 
arbon surfa
es.They found a down-hill 
urrent of atoms along the beam-dire
tion indu
ed bythe ions. This 
urrent may suppress the 
urvature dependent BH instability(se
tion 2.1.1), be
ause they transport atoms ba
k to the ripple valleys. Thedown-hill 
urrent is proportional to the surfa
e slope j ∝ −∇h. By substitu-tion of the 
urrent density into the 
ontinuity equation ∂h/∂t = −∇ · j, oneobtains a smoothing equation for the height �eld h, ∂h/∂t ∝ ∇2h.This down-hill 
urrent is also easily observed in BCA as demonstrated inFig. 3.3.
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Figure 3.2: Energy distribution extra
ted from 6000 independent 5 keV impa
ting Cu ionsfor di�erent distan
es from impa
t point (measured in units of a = 3.61 Å). The distributionis almost independent of r. Adapted from Feix (2002).
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 theoryTo obtain statisti
s of the 
ollision 
as
ade and 
al
ulate the sputtering yielddepending on ion-target parameters, Sigmund (1969;1973) presented a solutionof a Boltzmann transport equation with assumption of random slowing downof ions in an in�nite medium. The main approximation in this approa
h is thenegle
t of intera
tions between atoms, whi
h thus form a tree of non-intera
tingparti
les (referred to as the �
ollision 
as
ade�). The most important results,whi
h underlie the approa
hes in subsequent s
ales are the following:(i) The erosion rate at ea
h surfa
e point is proportional to the powerbrought to this point via 
ollision 
as
ades.(ii) The distribution of 
ollision 
as
ades is 
al
ulated approximately. Sigmundfound that in some 
ases this form 
an be approximated by a simple Gaussian.(iii) The s
attering events originated by the penetration of energeti
 ions,leading to sputtering o

ur in a layer near to the surfa
e with very smallthi
kness. Most of the sputtered atoms belong to a thin surfa
e layer (∼5 Å).(iv) The energy distribution of eje
ted parti
les follows Fig. 3.1. This resultwas �rst obtained by an elementary argument on 
as
ades by Thompson (1968).These results then be
ame the main prin
iples of almost all later theoreti
alworks on IBS.3.3 Kineti
 Monte CarloAll the existing KMC simulationmodels of IBS (for examples see Chason et al. (2006),Stepanova and Dew (2006), and Hartmann et al. (2002)), are based upon theresults from the kineti
 theory, mentioned above and in
lude two parts oferosion, upon Sigmund's theory and a surfa
e relaxation pro
ess. A simu-lation run 
onsist of a sequen
e of single ion shots, a 
al
ulation of the de-posited energy at the 
urrent surfa
e for ea
h ion and random dis
rete hop-ping of surfa
e atoms 
orresponding to surfa
e di�usion. Most models (withthe ex
eption of the work by (Bartosz Liedke 2009)) des
ribe the surfa
e in theframework of a solid-on-solid (SOS) model, thus ex
luding overhangs, dropsand bulk va
an
ies. Furthermore, a re-deposition of sputtered parti
les is nottaken into a

ount. In the following we des
ribe some details of the models,
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h was developed from Hartmann et al. (2002) to Hartmann et al. (2009)(HKGK model).The system 
onsist of a square latti
es of size L×L (with periodi
 boundary
onditions, if not stated otherwise) and the SOS surfa
e is des
ribed by aninteger-valued time-dependent height fun
tion h(x, y, t) on the latti
e. In most
ases, we start from a �at surfa
e, i.e. h(x, y, 0) = 0. The details of erosionand di�usion trials are as the following.3.3.1 ErosionAs mentioned above, the erosion pro
ess is based on Sigmund's theory, i.e.the Sigmund formula Eq. 3.4 is applied for every single impinging ion. An ionstarts at a random position in a plane parallel to the plane of the initially �atsurfa
e (x − y plane), and follows a straight traje
tory in
lined at angle θ tothe normal of this plane. The ion penetrates into the solid through a length
a and releases its energy. Then we 
he
k all the lateral atoms as the subje
tfor sputtering su
h that an atom at a position r = (x, y, h) is eroded withprobability proportional to E(r).We have put ǫ to be (2π)3/2σµ2, whi
h leads to sputtering yields Y ≃ 7.0,thus should be kept in mind when 
omparing simulation results to experimentaldata. A

ording to the Bradley Harper theory, the ripple wavelength λ s
aleslike λ ∼ Y −1/2 so that lower yields lead to 
orrespondingly larger length s
ales.Throughout this work we use a set of parameters as default values if notstated otherwise. We �xed σ = 3, µ = 1.5 and a = 9.3 (in latti
e 
onstant).3.3.2 Di�usionWe have implemented di�erent models to des
ribe the surfa
e motion of atoms.These range from simple, irreversible surfa
e relaxation to a
tivated hoppingover energy barriers, whi
h may depend both on initial and �nal state of themove and in
lude Ehrli
h-S
hwoebel non-equilibrium kineti
 e�e
ts. We al-ways use �full� di�usion models, so one di�usion step refers to a 
omplete sweepof the latti
e. In the following, we brie�y introdu
e the three basi
 types ofdi�usion models, whi
h we have used throughout our simulations. Details ofthe di�erent models and their e�e
ts on pattern formation are dis
ussed in
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tion 4.2.(i) A simple, non-thermal, irreversible relaxation pro
ess has been intro-du
ed by Wolf and Villain (1990). For ea
h 
olumn, it is tested on
e during asweep, whether the parti
le at the top of the 
olumn 
an in
rease its 
oordina-tion number, i.e. its number of nearest neighbors, by hopping to a neighboring
olumn. If this is the 
ase, the parti
le hops to that neighbor 
olumn where itobtains the highest 
oordination number (se
tion 4.2.1).(ii) A 
lass of thermal di�usion models is based upon a Hamiltonian H,whi
h 
ontrols the thermal roughening of a fa
et. Trial moves from site i to anearest neighbor site f (hi → hi−1, hf → hf−1) are a

epted with probability
p(i → f) = [1 + exp(∆H/kBT ))]−1 where ∆H is the 
hange in Hamiltoniandue to the hop. (se
tion 4.2.2).(iii) The �Arrhenius� models are based on a kineti
 pro
edure and use hop-ping via transition states. For ea
h step, a move from initial (i) to �nal (f)
on�guration is 
hosen randomly from a prede�ned list. Here we restri
t movesto nearest neighbor hops from site i to site f . We would have to in
lude moremoves, if we want to model material spe
i�
 di�usion pro
esses. The move isperformed with a probability proportional to an Arrhenius hopping rate

k = k0 exp
(

−E(i→ f)

kBT

) (3.2)Values of the energy barriers E(i→ f) have to be taken from experimental orsimulation data (se
tion 4.2.3).The 
onne
tion between time in KMC models and real experiments is madeby 
omparing the attempt frequen
ies of di�erent events in KMC with 
orre-sponding kineti
 rates in the lab 
ondition. In our model there are two di�erenttime s
ales, (i) the time intervals between the shooting of two impinging ions
τi and (ii) the waiting time between di�usion sweeps τd. By tuning these twotime s
ales, a wide range of experimental 
onditions 
an be 
overed. Ourdefault values 
orrespond to a typi
al �ux of 0.75 (ion/atom se
ond) and atemperature of 350 K.



28 CHAPTER 3. METHODS3.4 Continuum theory3.4.1 Bradley-Harper modelBradley and Harper started from the results of kineti
 theory, that the normalvelo
ity of the eroded surfa
e
∂h(x, y, t)

∂t

1
√

1 + (∇h)2
= −vn(x, y, t) (3.3)is proportional to the total energy transferred to the point (x, y, h(x, y)) by the
ollision 
as
ades. An arbitrary ion impinging the surfa
e at point P , 
omesto rest at point O′ after penetrating into the solid by a distan
e of a alongits traje
tory. The deposited energy of the ion at any point O at the surfa
eis a fun
tion of the distan
e ve
tor R = (X, Y, Z) between O and O′. Theaveraged energy deposition fun
tion is taken to be a Gaussian

E(R) =
1

(2π)3/2σµ2
exp(−X

2 + Y 2

2µ2
− Z2

2σ2
) (3.4)as proposed by Sigmund (1969). µ and σ are width of Gaussian fun
tionparallel and perpendi
ular to the beam traje
tory. To 
al
ulate the erosionrate, all the 
ontributions from homogeneously impinging ions at in
iden
eangle θ with respe
t to the normal of the surfa
e should be summed up;

vn(r) = Y Jion

∫

dr′ E(r − r′) n̂ · eθ (3.5)where Jioneθ is the ion �ux with
eθ =











sin(θ)

0

cos(θ)









.
n̂ is the unit ve
tor normal to the surfa
e and Y is the sputter yield. Theintegral is taken over the surfa
e. The integral is evaluated in a gradientexpansion (i.e. in (∇h)n) and a small slope approximation whi
h starts withthe following terms:
∂h(x, y, t)

∂t
= −v0(θ) + v′0(θ)

∂h(x, y, t)

∂x
+ νx

∂2h(x, y, t)

∂x2
+ νy

∂2h(x, y, t)

∂y2
. (3.6)



3.4. CONTINUUM THEORY 29
v0 is the average erosion velo
ity of a planar surfa
e. νx and νx are �e�e
tivesurfa
e tensions� in dire
tions parallel and perpendi
ular to the proje
ted di-re
tion of ion-beam onto the surfa
e. To solve the obtained growth equation,we let h(x, y, 0) = A exp[i(kxx+ kyy)]. The general solution of Eq. 3.6 for themode k = (kx, ky) takes on the from

hk(x, y, t) = −v0(θ)t+ A exp[i(kxx+ kyy − ωt) + Γt]. (3.7)substitution of the solutions leads to
ω = −v′0(θ)kx (3.8)and

Γ(kx, ky) = −νxk
2
x − νyk

2
y . (3.9)This means that an arbitrary mode k propagate along the orientation of thebeam (proje
ted onto the x − y surfa
e) with phase velo
ity −v′0 and alsogrows (de
ays) in amplitude with the rate Γ. The θ dependen
e of e�e
tivesurfa
e tensions results from the gradient expansion and one example is shownin Fig. 3.4 for the default parameters of our KMC simulation. For some valuesof θ, both νx and νy are negative, leading to positive growth rate Γ for allwaveve
tors. In experiments, it is observed that a spe
i�
 wavelength growsfaster than all others and forms periodi
 ripple-like stru
tures. A stabilizing,i.e. smoothing me
hanism, whi
h is la
king in Eq. 3.6 is surfa
e di�usion,whi
h gives rise to a term ∝ ∇4h (see se
tion 4.2). Adding this term resultsin linear evolution equation of Bradley-Harper theory,

∂h(x, y, t)

∂t
= −v0(θ)+v

′
0(θ)

∂h(x, y, t)

∂x
+νx

∂2h(x, y, t)

∂x2
+νy

∂2h(x, y, t)

∂y2
−B∇2∇2h(3.10)where B is the 
oe�
ient of surfa
e di�usivity. Taking the di�usion me
hanisminto a

ount 
hanges the growth rate into

Γ(kx, ky) = −vxk
2
x − vyk

2
y −B(k2

x + k2
y)

2. (3.11)Now for any value of θ (ex
ept θ = 0 and θ = θc where νx = νy), Γ has a max-imum value for a single (k2
x, k

2
y). Sin
e the in
luded di�usion term is isotropi
,the maximum of Γ o

urs always for k whi
h is either in x or y dire
tion,i.e. k = (kmax

x , 0) or k(0, kmax
y ). The maximum lies in the dire
tion, for whi
h
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Figure 3.4: E�e
tive surfa
e tensions in two dire
tions, parallel and perpendi
ular to theion-beam dire
tion as a fun
tion of in
iden
e angle θ for σ = 3 µ = 1.5 and a = 9.33.For 0 < θ < θc, νx,νy < 0 and |νx| > |νy|, therefore, the growth of instabilities with thewaveve
tors parallel to the beam dire
tion is faster and ripples perpendi
ular to the beamdire
tion form. For θc < θ < θc′ , |νy| > |νx| and therefore ripples parallel to the ion-beamdire
tion form. For θc′ < θ, νx be
omes positive and perturbations with the waveve
tor in xdire
tion damp and again formation of the ripples parallel to the beam dire
tion expe
ted.the negative surfa
e tension has the larger negative value. This predi
ts for awide range of materials and ion parameters, ripples with waveve
tor alignedparallel to the proje
tion of ion-beam for θ < θc and ripples with waveve
torperpendi
ular to the ion-beam proje
tion for θ > θc. This predi
tion has been
on�rmed in numerous experiments and makes the BH theory reliable for sur-fa
e texturing by ion-beam. The typi
al length s
ale of patterns predi
ted bylinear theory of BH is
ℓ = (2π)

√

2B

|νm|
(3.12)where νm = min[νx, νy].3.4.2 Cuerno-Barabási non-linear modelCuerno and Barabási (1995) 
ontinued the small slope expansion and in
ludes
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orre
tions to the Eq. 3.3 They also took into a

ount the �shotnoise� i.e., the random arrival of ions to the surfa
e as a Gaussian white noise
η(x, y, t) with zero mean and varian
e proportional to the �ux. The growthequation then be
omes
∂h(x, y, t)

∂t
= −v0(θ)+v

′
0(θ)

∂h

∂x
+νx

∂2h

∂x2
+νy

∂2h

∂y2
+
λx

2
(
∂h

∂x
)
2

+
λy

2
(
∂h

∂y
)
2

−B∇2(∇2h)+η.(3.13)This equation is an anisotropi
 version of the Kuramuto-Sivashinsky (KS)equation, whi
h is well known in pattern formation theories (Kuramoto and Tsuzuki 1976;Sivashinsky 1977).A 
rossover time tc is de�ned as the time in whi
h the nonlinear e�e
tsbe
ome dominant and the system leaves the validity region of the linear ap-proximation. From the linear equation, the amplitude of ripples at tc is
∼ exp(|νm|tc/ℓ2), whereas from ∂th ∼ λ(∇h)2 the amplitude is estimated inorder of ℓ2/λtc. Combining these two relations, the 
rossover time is

tc ∼ (
B

ν2
m

) ln(
|νm|
λ

). (3.14)Depending on the signs of νx, νy, λx and λy, di�erent morphologies areexpe
ted from non-linear theory. Typi
ally for small values of θ where νxand νy are both negative, λx and λy are also negative. For short time s
ales(t ≪ tc), the same ripples as predi
ted by BH form, but ripples get blurredand disappear gradually for long times (t≫ tc). The patterns show the typi
alKuramoto-Sivashinsky type of spatio-temporal 
haos. In
reasing the in
iden
eangle, λx and λy obtain di�erent signs where νx and νy are still both negative.Park et al. (1999) have shown that two transitions o

ur in this regime. Inearly stage of pattern formation, standard ripples from linear theory form;At the �rst transition, ripples disappear and the surfa
e be
omes rough; Atthe se
ond transition, stable ripples with rotated orientation by an angle of
tan−1

√

−λx/λy form. The stability of these ripples 
an be understood as a
onsequen
e of a non-linear 
an
ellation of modes. (Rost and Krug 1995).3.4.3 Makeev, Cuerno and Barabási modelMakeev et al. (2002) have 
ontinued the gradient expansion, in
luding 4th or-
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D̂ = −Dxx

∂4h

∂x4
−Dyy

∂4h

∂y4
−Dxy

∂4h

∂x2∂y2
. (3.15)These terms resemble (anisotropi
) a new type of surfa
e di�usion. They havebeen 
alled �erosion-indu
ed di�usion�, although they does not des
ribe a realtransport pro
ess (and may in fa
t lead to roughening as well as smoothing).We want to point out that tempting interpretation of these terms as ion-indu
ed di�usion 
an be misleading, even if they a
t as smoothing me
hanism.To this end, in the next se
tion, we study the linear stability analysis of the
ontinuum theory without making use of the gradient expansions.3.4.4 Non-lo
al linear stability analysisFor simpli
ity, we restri
t our analysis to the 
ase of normal in
iden
e (θ = 0).We start from Eq. 3.5 and 
onsider a broad 
lass of energy deposition fun
tionsof the form

E(x, y, z) = f(x, y) g(z) (3.16)so that
∂th(r1) = −Y Jion

∫

f(x1 − x, y1 − y) g(h(x1, y1) − h(x, y)) dx dy (3.17)
g(h(r) − h(r1)) = g(∆h) 
an be expanded around ∆h = 0; g(∆h) = g(0) +

g′(0)∆h the �rst term leads to a 
onstant erosion velo
ity. In the 
oordinatesystem moving with this velo
ity,
∂th(r1) = −Y Jion

∫

f(r − r1)g
′(0)(h(r) − h(r1)) dr

2. (3.18)By 
hanging the variables ξ = r− r1, we have
∂th(r1) = −Y Jion

∫

f(ξ)g′(0)(h(ξ + r1) − h(r1)) dξ
2. (3.19)We substitute h by the inverse Fourier transform of the height pro�les ĥ(q)

∂th(r1) =
−Y Jion

(2π)2

∫

f(ξ)g′(0)
∫

(eiq·(ξ+r1) − eiq·r1)ĥ(q) dq2 dξ2 (3.20)Now we Fourier transform the whole equation
∂t

∫

e−ik·r1h(r1) dr
2
1 =

−Y Jion

(2π)2
g′(0)

∫ ∫

e−ik·r1+iq·r1

∫

f(ξ) (eiqξ−1)ĥ(q) dξ2 dq2 dr2
1.(3.21)



3.5. DATA ANALYSIS 33Note that ∫ e−ik·r1+iq·r1 dr2
1 gives a delta fun
tion (2π)2δ2(k − q), so

∂tĥ(k) = −Y Jiong
′(0)

∫

f(ξ) (eikξ−1)ĥ(k) dξ2 = −Eg′(0)ĥ(k)(f̂(k)−f̂(k = 0)).(3.22)This equation leads to instability/stability, if the sign of real part of the pref-a
tor of ˆh(k)at the right-hand-side is negative/positive.For all fun
tions f(r) > 0, (f̂(k) − f̂(k = 0)) < 0.1 Therefore if g′(0) > 0all the modes will be unstable and roughening happens in all length-s
ales.Let us spe
ialize to the Gaussian energy deposition fun
tion Eq.3.4 and put
f(x, y) =

1

2πµ2
exp

−x2
+y2

2µ2 . (3.23)Thus
f̂(k) = e−

k2µ2

2 (3.24)and
∂tĥ(k) = −JionY (e−

k2µ2

2 − 1)ĥ(k). (3.25)If we now apply a gradient expansion up to 4th order, we get
∂tĥ(k) = −JionY (−1

2
k2µ2 +

1

8
k4µ4 −O(k6))ĥ(k). (3.26)Note that the k4-term would lead to a stabilization of modes at short wave-length. This result, however, is spurious as all modes are unstable, if all termsof the gradient expansions are taken into a

ount.3.5 Data analysisWe use two main methods to analyze the data obtained from simulations,s
aling analysis of surfa
e roughness and power spe
tral density of the surfa
epro�le. They are introdu
ed and explained in the following.3.5.1 S
aling analysisTo study the s
aling behavior of the growing surfa
e, we investigate the inter-fa
e �width� whi
h is a measure for the �roughness� of the interfa
e. We de�nethe width of a 2-d interfa
e dis
retized in L× L segments, at time t as1 We want to evaluate ∆ = (f(k) − f(k = 0)). By de�nition ∆ =

∫

exp(ikr)f(r) dr −
∫

exp(i0r)f(r) dr =
∫

exp(ikr)f(r) dr −
∫

f(r) dr. The real part of ∆, ℜ(∆) =
∫

r
cos(kr)f(r) dr −

∫

r
f(r) dr, is 
learly negative.
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w(L, t) =

√

√

√

√

√

1

L2

L
∑

i=1

L
∑

j=1

[h(i, j, t) − h̄(t)]2 (3.27)where h(i, j, t) is the height of segment (i, j) and h̄(t) is the average height ofinterfa
e at time t. Starting with a �at surfa
e, h(i, j, 0) = 0 for all i.For large 
lasses of growth models w(L, t) obeys a universal s
aling from
w(L, t) ∼ Lαf(

t

Lz
) (3.28)where the s
aling fun
tion f has the following shape

f(u) ∼ uβ : u≪ 1 f(u) = const : u ≫ 1. (3.29)
α, β and z are 
alled �roughness�, �growth� and �dynami
� exponent. Theseexponents satisfy the s
aling law z = α/β. Based on the values of the s
alingexponents, surfa
e and interfa
e growth me
hanisms are 
lassi�ed into di�erentuniversality 
lasses. For more detail see Barabási and Stanley (1995).3.5.2 Power spe
tral densityThe power spe
tral density (PSD) of a given 2-d surfa
e pro�le h(x, y) isde�ned as

S(qx, qy) = | 1√
2π

∫ ∞

−∞
h(x, y)e−i(qxx+qyy) dx dy|2 =

F(~q)F∗(~q)

2π
(3.30)where F is Fourier transform of the fun
tion h and F∗ is its 
omplex 
onjugate.The surfa
e width is 
al
ulated by integration of S

w2(t) =
1

2π

∫ ∞

0
qS(q, t) dq. (3.31)For any given linear growth equation, one 
an 
onsider plane wave solutionswith the waveve
tor ~q = (qx, qy) satisfying a growth equation in the form of

∂h(~q, t)

∂t
= −h(~q, t)R(q) (3.32)where R(q) is the growth rate whi
h 
an be positive or negative leading toroughening or smoothing the surfa
e respe
tively. Eq. 3.32 
an be easily solvedand the 
orresponding power spe
tral density fun
tion is



3.5. DATA ANALYSIS 35

(a) (b) q

S

t=1
t=40

Figure 3.5: (a) upper row : surfa
e pro�les with L = 512 after left : 1 ion/atom, right : 40ions/atom sputtering at θ = 50. lower row: 
orresponding 2-d Fourier transform of abovepro�les. (b) power spe
tral density (averaged over azimuthal angle) of surfa
e pro�les shownin (a). By in
reasing the sputtering time, order of stru
tures in
reases and the height of thepi
k in PSD grows as its width de
reases.
S(~q, t) = S(~q, 0) exp(−2R(q)t) (3.33)where S(~q, 0) is the power spe
tral density of the surfa
e at t = 0.PSD 
an be measured by many opti
al s
attering methods and also by di-re
t Fourier transform of the surfa
e pro�le. Peaks in the PSD averaged overangles 
orrespond to the sele
tion of spe
i�
 wavelength. R 
an be estimatedby measuring the growth rate of peaks height. Periodi
 arrangement of peaksre�e
ts the periodi
ity of the surfa
e patterns. Moreover, the angular distribu-tion of the Fourier transform is related to the stru
tural anisotropies. Finally,the width of the PSD is a measure of the degree of order, i.e. the qualityof regular patterns. Examples of surfa
e pro�les, 
orresponding 2-d Fouriertransform and PSD are depi
ted in Fig. 3.5.
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Chapter 4
Erosion and di�usion-drivenpatterns
Pattern formation in IBS is an out
ome of a 
ompetition between erosion andlateral di�usion. The kineti
 rates of these pro
esses are 
ontrolled by ionparameters (e.g. �ux and energy) and substrate parameters (e.g. di�usivityand temperature) respe
tively. In 
rystalline materials, two di�erent regimesof pattern formation are observed by 
hanging the erosion and di�usion 
on-ditions. In a high �ux and low temperature regime, erosion events are thedominant pro
esses driving the pattern formation, and di�usion a
ts only asto smooth the long wavelength �u
tuations. Therefore the emerging patternsare ripples oriented in the dire
tion determined by the ion-beam dire
tion,whi
h is 
ompatible with the predi
tions of the linear BH theory. In a low �uxand high temperature regime, di�usion is the dominant fa
tor and thereforepatterns beyond the predi
tions of BH theory emerge. In this regime, depen-dent on the di�usion bias of the sample, and the 
rystallographi
 orientations,ripples appear whi
h are oriented by 
rystal anisotropies rather than by theion-beam dire
tion. Furthermore, other kinds of patterns, e.g. positive or neg-ative pyramids (pits) develop. In the KMC simulations, erosion and di�usionparameters are 
ontrolled by 
hanging the rate of ion impa
ts and di�usionattempt frequen
y. As a 
ontrol parameter, we 
onsider R = τi/τd, where τiis the time interval, in whi
h one ion per atom is shot into the surfa
e and τdis the waiting time between two di�usion sweeps applied to ea
h atom.We start this 
hapter with a brief review of simulation results obtained37



38 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSin the erosion-driven regime under varying parameters. Then we introdu
emodels of surfa
e di�usion and dis
uss the e�e
ts indu
ed by 
ombining ea
hof them with erosion events in high �ux regime. Finally, we present results
overing the 
rossover from the erosion-driven to the di�usion-driven regime.4.1 ErosionA

ording to the work of Sigmund as mentioned in se
tion 3.3, the spatialshape of 
ollision 
as
ades as well as the distribution of deposited energy byimpinging ions is approximated by a 3-d Gaussian fun
tion in almost all thetheoreti
al models (in
luding 
omputer simulations). The distribution fun
tionis parametrized by its longitude and latitude expansions σ and µ, and is 
en-tralized at a point at the distan
e a (penetration depth) from the point of ionimpa
t on the surfa
e. Using BCA pa
kages (i.e. SRIM (Ziegeler et al. 1985)),it is possible to 
al
ulate σ and µ for every 
ombination of ion and substratetype. Systemati
 studies on the dependen
e of patterns on these parametersare presented by Yewande et al. (2006). The results 
an be summarized bya kineti
 phase diagram, showing di�erent morphologies (ripples, dots, holesand 
ellular stru
tures for di�erent values of σ and µ.With Gaussian-shaped 
ollision 
as
ades, pronoun
ed ripples with waveve
-tors oriented perpendi
ular to the proje
tion of the ion-beam onto the surfa
eare not obtained in KMC. We demonstrate that this de�
ien
y 
an be removedby repla
ing the Gaussian shape by a shape of 
ollision 
as
ades obtained fromBCA simulations.4.1.1 Dependen
e of patterns on ion parametersBy systemati
 
hanges in the values of σ and µ for an in
iden
e angle of θ = 50◦,six di�erent types of qualitative behavior 
orresponding to six di�erent regionsin the (σ, µ) spa
e are observed. In Fig. 4.1, these six regions are indi
atedfor t = 3 ions/atom, at whi
h almost all the surfa
e topographi
 features aredistin
t; the 
orresponding pro�les are shown in Fig. 4.2. The boundariesshown in this sket
h do not represent abrupt transitions from one topographyto another and they 
hange with time.The following features distinguish the di�erent topographies in Fig. 4.2:
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(a) III
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σ
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2 4

IV

II

I

V

00Figure 4.1: Kineti
 phase diagram (θ = 500, d = 6). Region I: rough surfa
e; II: holes; III:
lear ripples oriented perpendi
ular to the ion-beam dire
tion; IV: short ripples (resultingfrom in
reased µ); V: dots; VI: non-oriented stru
tures. The short arrows indi
ate theevolution of the boundaries between di�erent regions with respe
t to time. Hen
e, regionIII grows at the expense of region I, while region II des
ribes only a short transient.Region I: rough surfa
e (see Fig. 4.2(I)) whi
h, as time in
reases, evolvesto a hole topography. The �sizes� of the holes grow and �nally 
oales
e to aripple topography at long times.Region II: holes are prominent in this region (see Fig. 4.2(II)). Here the�number� of holes in
reases with time, and again ripples are formed at longtimes, but at an earlier time than as region I (not shown as separate �gure).Region III: the ripple phase (Hartmann et al. 2002; Yewande et al. 2005).Here ripples form from earliest time. Thus, 
omparing regions I,II and III,there seem to be two di�erent pro
esses of ripple formation. Ripples 
an beformed qui
kly by evolving dire
tly from a slightly rough surfa
e, or 
an beformed slowly via the 
reation of holes, whi
h 
oales
e to ripples on longertime s
ales. Note that in regions I and II, the resulting ripple wavelength issmaller than the size of the holes generated at smaller time, while in region IIIthe ripple wavelength is larger than the tiny holes.Region IV: 
onsists of a mixture of dots and short ripples, whi
h eventuallygive way to the dot �phase� (region V), as σ is in
reased. Hen
e, this regionseems to �interpolate� between regions III and V.Region V: 
onsists of dots. These dots are formed on some ripple-like stru
-
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(a)Figure 4.2: Pro�les for parameters 
hosen from ea
h topographi
 region in Fig. 4.1;
θ = 500, d = 6, t = 3.0. (I) σ = 1, µ = 0.5; (II) σ = 1, µ = 1.5; (III) σ = 3, µ = 1.5; (IV)
σ = 4, µ = 2.5; (V) σ = 5, µ = 5; (VI) σ = 0.5, µ = 5. The bar, on all pro�les, denotes theion-beam dire
tion.



4.2. DIFFUSION 41tures oriented parallel to the ion-beam dire
tion.Region VI: 
onsists of non-oriented stru
tures exhibiting a typi
al lengths
ale, but only a slight orientation preferen
e parallel to the ion-beam.4.1.2 BCA model based erosionIn KMC simulations beyond in
iden
e angles of θ ≈ 70◦ the ripples withwaveve
tors parallel to the ion-beam dire
tion vanish. In Fig. 4.3 (
) we seesimulation results obtained with a Gaussian shape of the 
ollision 
as
ades.Note that small ripple fragments remain, but the rotated ripples, whi
h areexpe
ted from linear BH theory and observed in experiments, do not appear.We have already noti
ed in se
tion 3.1 that the shape of 
as
ade, whi
h isobtained from BCA simulations, di�ers signi�
antly from a Gaussian. Theright panels of Fig. 4.3 ((b) and (d)) show simulations with this modi�edshape. Now the rotated ripples observed in experiments appear as pronoun
edstru
tures.4.2 Di�usionAlthough the important role of surfa
e relaxation events in pattern formationby IBS is evident, it is not yet 
lear what is the most realisti
 model of atomi
di�usion in the dis
rete SOS framework. There are di�erent proposals (mostlyarising from MBE studies), whi
h 
an partially explain the features observed inexperiments, but none of them have the 
apability to des
ribe atomi
 mobilityin general form. Measuring the growth exponents 
orresponding to ea
h modeland 
omparing them to the values obtained in MBE experiments is a way todetermine the relevant model to ea
h 
ondition of experiments. However,entanglement of di�usion and erosion makes 
on
lusions more di�
ult in the
ase of IBS. As mentioned in se
tion 3.3.2, we have implemented di�erentdi�usion models in our KMC simulations. In the following, some of well studieddi�usion models are introdu
ed brie�y. We des
ribe them as dis
rete parti
lealgorithms as well as 
ontinuum equations for the evolution of the height pro�le
h(x, t).
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(a) (b)

(
) (d)Figure 4.3: Two sets of simulations based on Sigmund's energy distribution and Feix etal. for (a) and (b) θ = 50◦, (
) and (d) θ = 80◦. The left panels 
orrespond to Sigmund'sdistribution and the right panels to Feix et al. distribution. The evolved patterns arequalitatively the same for θ = 50◦, whereas for θ = 80◦ patterns emerged from Feix etal.'s distribution are more similar to the experimental results (one example is depi
ted inFig. 2.10).



4.2. DIFFUSION 434.2.1 Irreversible modelsIn the irreversible models of di�usion, a parti
le sti
ks to a neighboring parti
leand keeps this position permanently. The irreversible atta
hments 
orrespondto models for low temperature regimes, where breaking the bonds is highlyunlikely due to the large binding energies.Family modelFamily (1986) has 
onsidered e�e
ts of surfa
e relaxation in s
aling behaviorof growing surfa
es by the use of dis
rete models. By adding a very simple re-laxation pro
ess to the random deposition of parti
les to a (1+1)-d surfa
e, herea
hed a new universality 
lass. In the Family model, every arriving parti
leon the surfa
e is allowed to relax to one of the nearest neighboring sites if ithas lower height than the initial target site. This pro
ess leads to redu
tion ofroughness and smoother growth of surfa
e as 
ompared to random depositiongrowth. The s
aling exponents (de�ned in se
tion 3.5.1) of the Family modelin 2-d are α = 0.48 ± 0.02 and β = 0.24 ± 0.01. Relaxation to farther neigh-boring sites, for example next nearest neighbors, does not 
hange these s
alingexponents. The Family model is shown to belong to Edwards-Wilkinson (EW)universality 
lass.Studying surfa
e �u
tuations in a settled granular material, Edwards and Wilkinson (1982)found the simple 
ontinuum equation to des
ribe the pro
ess by whi
h a par-ti
le settles and 
omes to rest on the existing surfa
e of the pa
king. In EWdes
ription, the 
orresponding term in the growth equation of a randomlydriven surfa
e is D∇2h, where D is a
ting like a surfa
e tension 
oe�
ientwhi
h smooths the height �u
tuations of the surfa
e. If this relaxing termis 
ombined with a random noise of adding parti
les, the growth equationbe
omes
∂h(x, t)

∂t
= D∇2h+ η(x, t). (4.1)S
aling analysis of EW equation in d+1-dimension, leads to the followingvalues for s
aling exponents (Barabási and Stanley 1995)

α =
2 − d

2
, β =

2 − d

4
, z = 2 . (4.2)



44 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSWolf-Villain, Das Sarma-Tamborenea and Lai-Das Sarma modelsThe �rst models for non-equilibrium growth pro
esses at atomisti
 level in-
luding lateral motion driven by the binding energeti
s were introdu
ed byWolf and Villain (1990) and Das Sarma and Tamborenea (1991) independently.In both models (WV and DT), a deposited parti
le relaxes to the neighboringsites if it in
reases the number of its in-plane neighbors, i.e. parti
les move toin
rease the number of their lateral bonds. In WV, there is preferen
e to max-imize the number of in-plane bindings, whereas in DT, hops to the sites withlarger (not ne
essarily largest) bindings are performed with equal probability.A more detailed version of DT was introdu
ed by Lai and Das Sarma (1991)(LD), in whi
h the parti
les landed onto a kink (i.e. in 1-d, the site with oneneighbor) are allowed to jump to a neighboring site with a smaller step height.In this pro
ess, upward and downward movements are both a

epted. S
alingexponents, measured for these models are shown in Table 4.1.Another dis
rete model whi
h shows 
orresponden
e to∇4 universality 
lassis the so 
alled �larger 
urvature model� (LC) introdu
ed by Kim and Das Sarma (1994).In LC, a parti
le relaxes to one of its nearest neighbors x, where the 
urvatureof the surfa
e at this point h(x + 1) + h(x − 1) − 2h(x) is larger than at theoriginal site. The LC model is shown exa
tly to belong to ∇4 universality
lass.The 
ontinuity equation is a starting point to obtain a 
ontinuum des
rip-tion for surfa
e di�usion driven by energeti
s of atomi
 bindings, whi
h impliesthat the number of parti
les remains 
onstant during lateral motion
∂h(x, t)

∂t
= −∇ · j(x, t). (4.3)The surfa
e 
urrent density j is driven by the gradient of the 
hemi
al potential

µ(x, t), i.e.
j(x, t) ∝ −∇µ(x, t) (4.4)Sin
e the origin of 
hemi
al a
tivated transportation are binding energies ofneighboring atoms, and the number of neighbors of an atom lo
ated at a pointis proportional to the 
urvature of surfa
e pro�le at that point, we �nd thatthe 
hemi
al potential in su
h system is
µ(x, t) ∝ −∇2h(x, t). (4.5)



4.2. DIFFUSION 45Combining Eq. 4.3, 4.4 and 4.5, the 
ontinuum expression des
ribing surfa
edi�usion reads like
∂h(x, t)

∂t
= −K∇4h, (4.6)where K is a di�usion rate (whi
h in the 
ase of thermally a
tivated di�usions
ales with 1/kBT ). This 
orresponds to the 
ontinuum des
ription of LC. Ifthe di�usion pro
ess is 
ombined with a random deposition of parti
les, thegrowth equation of the surfa
e reads

∂h(x, t)

∂t
= −K∇4h+ η(x, t). (4.7)whi
h has the s
aling exponents (Barabási and Stanley 1995)

α =
4 − d

2
, β =

4 − d

8
, z = 4. . (4.8)Non-linear di�usive termsThe most relevant term in the sense of s
aling behavior, whi
h 
an be written asa gradient of a 
hemi
al potential, was introdu
ed by Lai and Das Sarma (1991).It is given by ∇2(∇h)2 and 
orresponds to 
ontinuum des
ription of LD. Andwhen 
ombined with Eq. 4.7, we get

∂h(x, t)

∂t
= −K∇4h+ λ1∇2(∇h)2 + η(x, t), (4.9)where λ1 is another di�usion rate. S
aling exponents 
al
ulated for the men-tioned growth equation are (Lai and Das Sarma 1991)

α =
4 − d

3
, β =

4 − d

8 + d
, z =

8 + d

3
. . (4.10)Many numeri
al works are done to determine the s
aling exponents of thementioned dis
rete models. A summary of the most well-known 
al
ulatedvalues for 2-d systems is given in Table 4.1.4.2.2 Hamiltonian modelsIn another 
lass of di�usion models 
alled �Hamiltonian models�, atomi
 hopsare asso
iated with a 
hange in a HamiltonianH and a

eptan
e of a hop is al-lowed a

ording to a Metropolis 
riterion (Siegert and Plis
hke 1992; Krug et al. 1993;Siegert and Plis
hke 1994). In this model, all the parti
les at the top-most



46 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNSTable 4.1: A summary of 
al
ulated values of the growth β and roughness αexponents for di�erent irreversible dis
rete di�usion models in (1+1)-d.
α β Ref.Family 0.48 ± 0.02 0.24 ± 0.01 (Family 1986)WV 1.4 ± 0.1 0.36 ± 0.072 (Wolf and Villain 1990)DT 1.47 ± 0.10 0.375 ± 0.005 (Das Sarma and Tamborenea 1991)LD 1.05 ± 0.10 0.340 ± 0.015 (Lai and Das Sarma 1991)LC 1.5 ± 0.1 0.375 ± 0.010 (Kim and Das Sarma 1994)layer are the subje
t of di�usion. The di�using parti
le hops from site i to aneighboring site j with the normalized rate

wi→j = [1 + exp(
1

kBT
∆Hi→j)]

−1 (4.11)where ∆Hi→j is the 
hange in Hamiltonian due to the hop from site i to site
j. The Hamiltonian has the general form of an unrestri
ted SOS model

H =
1

2
J
∑

〈i,j〉

|hi − hj|n, (4.12)where 〈i, j〉 
ounts for all the nearest neighbors, J is 
oupling 
onstant and nis a positive integer number. The Hamiltonian model is able to reprodu
esome signi�
ant features of atomi
 transport me
hanisms in a wide rangeof materials. For example, there is no energy 
ost for di�usion of a singleadatom or va
an
y on a �at surfa
e in the des
ribed model whi
h leads tothe same di�usivity for adatoms and va
an
ies on (001) fa
ets. This featureis extensively reported for metalli
 surfa
es (Chan and Chason 2007). Themodel is also able to simulate the so-
alled �S
hwoebel e�e
ts�, whi
h refersto the repulsion of di�using atoms from des
ending step edges and an ob-served up-hill 
urrent on stepped surfa
es (for more details see se
tion 4.2.4).Siegert and Plis
hke (1994) showed that for n = 1, 2 and n > 2, the mentionedmodel indu
ed negative, zero and positive S
hwoebel e�e
ts respe
tively andin general, in
reasing n leads to stronger S
hwoebel e�e
ts.Another version of Hamiltonianmodels for di�usion is introdu
ed by Stepanova et al. (2005),in whi
h the asso
iated Hamiltonian is
H =

1

2
aγ(|κi + κj |), (4.13)
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al 
urvature, a is the inter-atomi
 distan
e and γ is the energyof one atomi
 bond. The mentioned Hamiltonian simulates the tenden
y ofatoms to di�use to the positions with more neighbors.4.2.3 Thermally a
tivated modelsAnother su

essful dis
rete model for surfa
e di�usion is known as �thermallya
tivated di�usion� models (for example see �milauer et al. (1993)), and isbased on an Arrhenius form of hopping rate
k(E, T ) = k0 exp(

−E
kBT

) (4.14)where k0 = 2kBT/hp is attempt frequen
y of a surfa
e adatom (hp is Plan
k
onstant). The energy barrier E is the average of the transition state of the
orresponding hop. In KMC it is expressed by bond energies of the di�usingadatom. There are di�erent variants of expressing E by bond energies used inthe literature, whi
h we now introdu
e.Bond-breaking modelsIn these models, the energy barrier E 
onsist of the energy of all bonds of themoving atom at its initial position. As the energeti
s of in-plane bonds (Enn)is di�erent from the one between the atom and the substrate (Es), the totalbinding energy is
E = Es + nEnn (4.15)where n is the number of in-plane nearest neighbors. Some authors also take
ontributions from the next-nearest-neighbor bonds into a

ount (Johnson et al. 1994;Tok et al. 2004). An extra S
hwoebel barrier may also be added to the bindingenergies (for more detail see se
tion 4.2.4).Note that in most materials, energy barriers are not known pre
isely, andespe
ially in 
rystalline substrates, barriers against movements in di�erentdire
tions are di�erent. The main drawba
k of the bond-breaking models isthat they generally imply some features of atomi
 motions, whi
h are not ina

ordan
e with experiments or mole
ular dynami
s simulations. For exampleit is frequently observed that adatoms 
aptured by a step-edge display fast
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hment from the step o

urs at a mu
h largerrate although the bond-breaking model would predi
t equal rates.Generally, all features, whi
h are due to the fa
t that the transition stateenergy 
an not entirely be expressed by the initial state of the hop, 
an not bealso des
ribed by bond-breaking models.Net-bond-breaking (Kawasaki-type) modelsA better and more realisti
 representation of E makes use of both the initialand the �nal state of a hop. For example one 
ould assume that E is 
omposedof a 
onstant term Es and an extra a
tivation energy ∆E = max[0, (ni−nf)Enn]given by the binding energy di�eren
e of initial (i) and �nal (f) states (or zero,if the di�eren
e is negative, i.e. if binding energy is gained by the hop).Note that now barriers to di�usion of an adatom and a va
an
y on a �atsurfa
e are equal and there is no 
ontribution from in-plane bonds to the barrieragainst di�usion along an step-edge.Attempt rate, absorption of substrate termIn our simulations we use Es = 0.75 eV and Enn = 0.18 eV. These values arewithin plausible bounds, but they do not aim at modeling a spe
i�
 mate-rial. Note that in a KMC simulation by these values, most of the attemptswould be reje
ted for 
ommon experiment temperatures (0.04 · · ·0.1eV). How-ever, the attempt frequen
y is rather high; for example k0 at room temper-ature is ∼ 1013 s−1. Performing so many attempts for ea
h atom is ab-solutely out of the power of the available ma
hines. So an alternative tospeed up the simulations is to res
ale the attempt frequen
y k0 by a fa
tor of
exp(−Es/kBT ). The res
aled attempt frequen
y k1 = 2kBT/hp exp(−Es/kBT )is strongly temperature-dependent. In Table. 4.2, values 
al
ulated for somegiven temperatures and Es = 0.75 eV are reported. Note that a slight in
reaseof 0.05 eV in the value of Es (an example used by Chason et al. (2006)) leadsto a redu
tion of one order of magnitude in the value of k1. In the 
urrentwork, res
aled attempt frequen
y of 750 s−1 is used as a default value, but asystemati
 investigation on the role of attempt frequen
y in pattern formationin IBS is presented in se
tion 4.3.2 .



4.2. DIFFUSION 49Table 4.2: Attempt frequen
y of atomi
 hops for the Arrhenius model of di�u-sion; for the �xed value of substrate binding energy Es = 0.75 eV and di�erentsubstrate temperatures. By slight 
hanges of temperatures, the attempt fre-quen
y 
hanges some orders of magnitude.
T (K) 300 350 400 500 600 700
k1 (s−1) 3 230 5.9 · 103 5.7 · 105 1.2 · 107 1.2 · 108TemperatureIn addition to the mentioned e�e
ts on hopping attempt frequen
y indu
edby slight 
hanges of temperature, probability of a

eptan
e of di�erent trans-port events, like deta
hments and inter-layer hops are also temperature de-pendent. To evaluate the role of temperature in the growth pro
ess of asurfa
e, Tamborenea and Das Sarma (1993) performed simulations on 1+1-dimensional MBE with Es = 1eV and Enn = 0.3 eV for di�erent temperaturesand also di�erent ratios of deposition and di�usion rates. They observed threemain regimes in temperature: (i) low temperature regime, where the depositedparti
les are frozen, and no e�e
tive di�usion o

urs (growth exponents sim-ilar to ones for random deposition), (ii) an intermediate temperature regime,with an e�e
tive di�usion with growth exponents similar to what is predi
tedby linear theory in the form of ∇4, and (iii) a high temperature regime, inwhi
h di�usion smooths the surfa
e and the observed s
aling is similar to thatof EW. Similarly, three regimes has been de�ned in deposition experiments,based upon the ratio of di�usion and deposition rate. In
reasing the di�usionrate or de
reasing the deposition rate is equivalent to an in
rease in tempera-ture.4.2.4 Ehrli
h-S
hwoebel e�e
ts, pattern formation by dif-fusionDi�usion does not always �atten the surfa
e, there are some kinds of thermallya
tivated transport me
hanisms whi
h also indu
e instabilities. This so-
alledEhrli
h-S
hwoebel (ES) e�e
t is the out
ome of an e�e
tive repulsion from
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ending step edges. If an adatom di�using on a terra
e rea
hes an as
endingstep, it is most probable that it will sti
k to the step-edge and less likely todeta
h again. In 
ontrast, there is a barrier whi
h repulses the adatom if theadatom approa
hes a des
ending step. The repulsion indu
es an uphill 
urrentwhi
h in
reases the slope of underlying stru
tures.Although there is no �rst prin
iple derivation of the 
urrent density jES of anES 
urrent, there are two phenomenologi
al models whi
h are used frequently,the �rst gives (Johnson et al. 1994)
j(∇h) ∝ (

ℓ2d∇h
1 + (ℓd∇h)2

) (4.16)and the se
ond one (Krug 1995)
j(∇h) ∝ (∇h)(1 − ζ(∇h)2). (4.17)

ℓd and ζ are 
alibrating parameters. Note that the se
ond form implies a re-versal of the 
urrent dire
tion (from uphill to downhill), whi
h is in a

ordan
ewhit experiments.To implement this e�e
t in dis
rete models of di�usion, one may either set
n > 2 in Hamiltonian models or add an extra barrier to hopping barriers inthermally a
tivated di�usion models as the following.

EES(i→ f) =



















EES if f is in plane with i andat the upper edge of a step
0 otherwiseIn this present work the S
hwoebel barrier is set to ESB = 0.15 eV. As
hemati
 pi
ture of the ES e�e
t is shown in Fig. 4.4 and a typi
al morphologyindu
ed by ES e�e
ts in MBE depi
ted in Fig. 4.5.4.2.5 Di�usion in 
ompound systems, 
lusteringTo assess the features of di�usion and 
lustering of a sub-mono-layer 
overageof (metalli
) adatoms on �at and pre-rippled surfa
es, we have performed KMCsimulations. These simulations will later be extended to in
lude ion-beamerosion (in 
hapter 5), but here, we �rst fo
us on the patterns indu
ed purelyby di�usion of Ag atoms with 
onstant 
overage of 30% of a mono-layer on
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Figure 4.4: S
hemati
 pi
ture of the ES e�e
t: a) a di�using adatom on a vi
inal surfa
eis repelled from a step edge; b) 
orresponding latti
e potential showing the ES barriers atstep edges. Adapted from Siegert (1995).

Figure 4.5: Top-view image of 65 × 65 nm2 Fe(001) sample showing the pyramid-likesurfa
e stru
tures after epitaxial growth. Adapted from Thürmer et al. (1995).
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e. The 
orresponding parameters for the di�usion of the metalli
atoms are given by Es = 0.48 eV and Enn = 0.36 eV (no ES barrier). Theseparameters are taken from ab initio simulations for Ag atoms on Si substrate(Kong et al. 2003). In the simulation model, we kineti
ally forbid all moves,whi
h lead to atoms on top of Ag atoms (Ag atoms stay always in the topmostlayer and the height of Ag layer is restri
ted to 1 atom)Metalli
 
lusters on �at templatesSimulations show that initially, randomly distributed metalli
 parti
les at in-termediate and high temperatures form 
lusters whi
h 
oarsen in time. Toquantify the 
lustering, we 
onsider a 2-d array with the same area as thesurfa
e. We �ag every site of this array by �A� and �B� if the topmost atomin the 
orresponding lo
ation in the surfa
e pro�le is a surfa
tant or substrateatom respe
tively. Now we 
ount the number of neighboring pairs, e.g. NA−Bis the number of A− B pairs. Now we de�ne the 
lustering 
oe�
ient C as
C = (

NA−A +NB−B

NA−B
)(

2cAcB
c2A + c2B

) (4.18)where cB is the surfa
e 
overage of surfa
tants and cA = 1− cB. Note that, forrandom distribution of parti
les Nα−β ∝ cαcβ and therefore C = 1, whereasfor very large system size, 
omplete segregation of parti
les 
orresponds to
C = ∞ (be
ause NA−B in
reases linearly with the system size, while NA−Aand NB−B in
rease quadrati
). In Fig. 4.6, C as a fun
tion of temperature fordi�erent simulation time is shown. For very low temperatures, no 
lusteringo

urs even for long-time runs. In intermediate temperature, small size 
lustersform and grow in time slowly, whereas in high temperature regime an strong
lustering is observed. The di�usivity of parti
les is in
reased by in
reasingthe temperature and in the �xed simulation duration, the parti
les have more
han
e to meet ea
h other and sin
e their binding energy is rather high, asthey atta
h, it is very unlikely to deta
h again.Metalli
 
lusters on pre-sputtered templatesThe same simulations are now performed using a sinusoidally modulated sub-strate template. Examples of distribution of parti
les at di�erent run timesand temperatures are depi
ted in Fig. 4.7. Note the following features:
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Figure 4.6: Clustering evolution of parti
les on a �at template as a fun
tion of temperature.Di�erent 
olors 
orrespond to di�erent simulation times. By in
reasing the temperature,parti
les make larger 
lusters. In all 
ases the size of 
lusters tends to in
rease, althoughthe in
rease in low temperature is very slight. For the de�nition of c see the main text.
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Figure 4.7: Clustering of parti
les on a sinusoidal template depending on temperature andtime. By in
reasing the temperature, parti
les make larger 
lusters. In all 
ases the size of
lusters tends to in
rease, although the in
rease in low temperature is very slight. Large
lusters formed in high temperature, lo
ated mainly in the valleys and plateaus, althoughthere is a preferen
e for valleys in 
ompare to the plateaus.(i) Parti
les a

umulate in 1-d arrays (�nano-wires�) parallel to the align-ment of template ripples;(ii) The width of nano-wires rea
hes a maximum size proportional to thewavelength of template ripples at enough time s
ales(iii) Nanowires have the tenden
y to form at valleys of templates, the nextpreferred lo
ations are the hilltop ridges.All three features have been found in experiments (Ag on Si) by Oates et al. (2007).4.3 Erosion-Di�usion interplayIn this se
tion we fo
us on the study of morphologies emerging in KMC sim-ulations of IBS with di�erent di�usion me
hanisms.



4.3. EROSION-DIFFUSION INTERPLAY 554.3.1 Dependen
e of patterns on di�usion in the erosiveregimeDi�usion is often 
onsidered as an unspe
i�
 smoothing me
hanism in theerosive regime of IBS experiments on amorphous surfa
es. In the 
ontinuumtheory, it is subsumed as a single term ∼ −B∇4h. In this subse
tion we showthat �
ontrary to this 
ommon belief� di�erent di�usion me
hanisms, whi
hwould all end up in a −B∇4h term in the 
ontinuum limit do have profounde�e
ts on the morphology, espe
ially in the limit of long times, i.e. high �u-en
es. Figs. 4.8 and 4.9 
ompare the time evolution of sputtered surfa
es underidenti
al 
onditions of erosion but with di�erent di�usion models. Fig. 4.8 de-pi
ts the evolution of surfa
e morphology with a Hamiltonian di�usion model(n = 2, T = 0.2J) and Fig. 4.9 shows 
orresponding results for a net-bond-breaking model. The short-time behavior of both models is very similar, aninitial roughening is followed by the formation of ripples. The di�eren
es be-tween the two models arise after ∼ 10 ions/atom of sputtering. At that time,ripples produ
ed in the 
ase of the net-bond-breaking model saturate in am-plitude and align more regularly, and the number of defe
ts redu
es as timepro
eeds, whereas the ripples produ
ed by the Hamiltonian model start to getblurred and shorten in length.In Fig. 4.10 we 
ompare the morphologies of the four main types of di�usionmodels we have introdu
ed (Wolf-Villain, Hamiltonian, bond-braking and net-bond-braking) at very long times.The irreversible Wolf-villain model (similar to a T = 0 surfa
e relaxation)produ
es an extremely ordered stable pattern of straight ripples (even at
t ∼ 104 ions/atom), whereas the patterns of the Hamiltonian and bond-breaking models loose long-ranged ripple order after a few hundred erodedmonolayers. But note that the net-bond-breaking model shows a defe
t-freeripple pattern after 400 ions/atom. Although the overall di�usivity of thenet-bond-breaking is approximately equal to that of the bond-breaking andthe Hamiltonian models, net-bond-breaking implies 
omparable di�usivity ofadatoms and va
an
ies (unlike the bond-breaking model) and is more sensitiveto the energeti
s of bonds than to surfa
e morphology, whi
h dominates theHamiltonian model.
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Figure 4.8: Surfa
e pro�le 
orresponding to Hamiltonian model of di�usion with n = 2 andsubstrate temperature T = 0.2Jk−1

B
and default values of the beam parameters (θ = 50◦).Starting from top to bottom and left to right, t = 0.5, 1.5, 4.0, 9.0, 14.0 and 22.0 ions/atom.The ion-beam dire
tion is indi
ated by the bar. Lateral size of the system L = 256. Afterinitial formation of ripples, they stabilize and then start to get blurred.
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Figure 4.9: Surfa
e pro�le 
orresponding to Arrhenius (net-bond-breaking) model of dif-fusion with substrate temperature T = 600 K, and default values of the beam parameters(θ = 50◦). Starting from top to bottom and left to right, t = 0.5, 1.5, 4.0, 8.0, 12.0 and18.0 ions/atom. The ion-beam dire
tion is indi
ated by the bar. Lateral size of the system
L = 256. Ripples form after ∼ 3 ions/atom and grow in lateral size and get more orderedwith time. The ripples amplitude saturates for longer times.
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Figure 4.10: Long time morphologies emerge from di�erent di�usion models (a) Wolf-Villain for t ≈ 104 ions/atom, extremely ordered patterns with tilted orientation in respe
tto the ion-beam orientation, (b) Hamiltonian with n = 2, for t = 300 ions/atom, ratio-nal ordered ripples whi
h blur in time gradually, (
) Arrhenius bond-breaking for t = 20ions/atom, rather short stable ripples with weak ordering and (d) Arrhenius net-bond-breaking for t = 400 ions/atom, very ordered ripples whit annihilation of defe
ts by time.
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Figure 4.11: Morphologies (L = 64) emerging from di�erent di�usion 
onditions for θ = 0◦at t = 10 ions/atom. (a) no di�usion, (b) Arrhenius bond-breaking di�usion with defaultparameters, (
) Arrhenius net-bond-breaking di�usion with default parameters and (d) Ar-rhenius net-bond breaking di�usion with the enhan
ed attempt rate (see the main text).



60 CHAPTER 4. EROSION AND DIFFUSION-DRIVEN PATTERNS4.3.2 Crossover from erosive regime to di�usive regimeWe now turn to a dis
ussion of the a

essibility of the 
rossover between theerosive and the di�usive regime in KMC simulations. To estimate the onset ofthe 
rossover we adopt an argument from Villain and Pimpinelli (1994) aboutadatom island formation and stability in MBE, i.e. we simply assume thaterosion during IBS is equivalent to a �deposition of va
an
ies� at a 
hara
teris-ti
 rate F , whi
h is the ion �ux times the sputtering yield. The typi
al lengths
ale of surfa
e stru
tures emerging from di�usion and deposition is given byVillain and Pimpinelli (1994)
ℓd ∼ (

D

F
)1/6, (4.19)where D is the di�usion 
oe�
ient, whi
h in Arrhenius models is ∼ k1a

2.Requiring ℓd to be of the order of typi
al ripple wavelength produ
ed by IBS (∼
10a in simulations), it implies k1 ∼ 106 s−1, whi
h is a fa
tor of 103 higher thanthe default value we use. Enhan
ing the number of di�usion steps in betweentwo ions soon be
omes a 
omputational bottlene
k of KMC simulations.To 
he
k if this enhan
ed rate is su�
ient to produ
e �ngerprints of S
hwoebele�e
ts, we performed simulation 
omposed of randomly adding and/or remov-ing parti
les from an initially �at surfa
e. Fig 4.12 shows that pyramid-likestru
tures emerged from this mentioned s
enario. Finally, we performed IBSsimulations using the enhan
ed di�usion rate for normal and oblique in
iden
e.Fig. 4.11 (b) and (
) show the patterns emerging from normal in
iden
e irradi-ation with bond-breaking and net-bond-breaking di�usion model. In Fig. 4.11(d) the di�usion rate of the net-bond-breaking model is enhan
ed by a fa
torof 103. Only in this 
ase, pyramid stru
tures with edges oriented along <100>dire
tions �hallmark of ES 
urrent-indu
ed stru
tures (see Fig. 4.12)� are
reated. Under oblique in
iden
e, the ripple orientation deviates from thedire
tion of the ion-beam proje
tion into the surfa
e and larger parts of theripples follow the 
rystallographi
 <110> dire
tions as shown in Fig. 4.13.Fig. 4.14 summarizes our simulation results on 
rossover of morphologiesbetween erosion and di�usion dominated stru
tures. In KMC models the 
on-ne
tion to time s
ales of experiments is made via the inter-event intervalswhi
h are proportional to inverse rates. In a typi
al experiment, �uxes are ofthe order of 7.5×1015 ions 
m−2 s−1 whi
h 
orresponds to Φ ≃ 1 ion/(atom·s).



4.3. EROSION-DIFFUSION INTERPLAY 61For a system of size L × L, one di�usion step (one sweep over the wholelatti
e) is taken after ΦL2/k1 erosion steps (shooting one ion). The defaultvalues for a system with L = 128 lead to ratio of in
iden
e interval to dif-fusion interval (R = τi/τd = 0.1), whi
h means one di�usion step is takenafter shooting 12 ions. We in
reased this ratio up to 100, 
orresponding to
k1 = 1.2× 106 s−1. Snapshots of the evolving topographies for di�erent valuesof R are shown in Fig. 4.14. A wide variety of morphologies from ripples fol-lowing the ion-beam dire
tion to smooth surfa
es (from layer-by-layer erosion)are 
overed. The 
hara
teristi
 
oarsening of stru
tures reported in experi-ments (see se
tion 2.1.1) is observed for τi/τd = 1, 2 and 5. (2nd, 3rd and4th rows). A transition from ripples to pyramids o

urs on longer times for
τi/τd = 5, whereas pyramids form dire
tly from intermediate-time roughenedsurfa
es for τi/τd = 10. For high di�usion, �u
tuations in height of surfa
e donot ex
eed more than ∼ 1 layer whi
h is 
ommonly observed in layer-by-layerregimes.The roughness of morphologies shown in Fig. 4.14 are 
al
ulated and shownin Fig. 4.15 emphasizing the strong suppression of erosion (BH) and di�usion(ES) type instabilities for high di�usion rates.
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Figure 4.12: Evolution of 
lusters formed by upper row: adatoms, middle row va
an
iesand lower row: adatoms and va
an
ies together. The lateral size of the system L = 128. Theattempt frequen
y is set to 106 s−1 whi
h 
orresponds to a redu
tion of ∼ 10% in substratebond energy Es. Formation of ES indu
ed patterns, i.e. pyramids, is evident.

Figure 4.13: Surfa
e pro�les of a system with L = 128 for θ = 50◦, φ = 0◦ at t = 3ions/atom and T = 0.01 eV. The bar indi
ates the azimuthal dire
tion of ion-beam. Left :Arrhenius di�usion with default parameters for bond breaking and ES barrier, right : sameas left, but with enhan
ed di�usion attempt rate.
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Figure 4.14: Surfa
e pro�les for di�erent R = τi/τd in
reasing from up to down: 0.1, 1.0,2.0, 5.0, 10, 20, 50 and 100 evolving in time. snapshots from left to right at t =10, 20, 30,40 and 50. Temperature: T = 580 K.
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t

Figure 4.15: Corresponding roughness to the pro�les depi
ted in Fig. 4.14. For smallvalues of R, the roughness in
reases with time with smaller rate for larger R, wheres byin
reasing the di�usion rate, after rea
hing a 
ertain value of R, roughening is suppressed.



Chapter 5
Surfa
tant Sputtering
Re
ently a novel sputter erosion te
hnique has added further possibilitiesof �ne-tuning pro
essing 
onditions in many ways (Hofsäss and Zhang 2008;Hofsäss et al. 2009; Hofsäss and Zhang 2009). It prepares a sub-mono-layer
overage of the substrate surfa
e (A) with �surfa
tant atoms� (B), whi
h are
onstantly re-deposited by 
o-sputtering of a nearby surfa
tant (
ommonlymetalli
) target (see Fig. 5.1). We 
all the 
o-deposited parti
les surfa
tant(SURFa
e ACTive agENT) be
ause it has been observed that the depositedatoms a
t as a
tive agents to redu
e (or amplify) the sputtering yield of sub-strate atoms. The e�e
ts of surfa
tants are not limited to the modulation ofthe sputter yield. E�e
ts due to di�usion, 
lustering or mixing/demixing ofthe surfa
tants 
an be seen in di�erent experiments under di�erent ion-beam
onditions and material 
ombinations. Depending on di�usion, mixing andalloying properties of surfa
tant and target atoms, the surfa
tant distributionmay either trend to form a homogeneously mixed A-B layer, or develop inho-mogeneous patterns by me
hanisms like surfa
e segregation, island formation,
lustering, di�usion instabilities or atta
hment to surfa
e defe
ts. The 
ov-erage by a surfa
tant density signi�
antly 
hanges the lo
al sputtering yieldof the substrate. In most 
ases the yield is redu
ed, though in ex
eptional
ases it may also be in
reased (Berg et al. 1992). These lo
al 
hanges providea feed-ba
k me
hanism between the pattern formation pro
esses of substrateand surfa
tant atoms. By 
hoosing appropriate surfa
tant-substrate 
ombi-nations, a variety of surfa
e patterns may be obtained in a 
ontrolled way.Furthermore, the surfa
tant distribution may itself be
ome a te
hnologi
ally65
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Metal

Substrate

Ions

Figure 5.1: Surfa
tant sputtering experimental setup; A metalli
 layer is lo
ated besidethe main sample and ion-beam targets the sample and the metalli
 layer simultaneously.Therefore metalli
 atoms are eroded and re-deposited on the sample. By varying the angle
α the distribution of re-deposited metalli
 atoms 
an be tuned.useful, self-organized stru
ture, e.g. emergen
e of ordered arrays of dots ornanowires. The deposition 
urrent of surfa
tants JB+ maintaining the average
overage during sputter erosion, is tuned beyond the re-sputtering limit, sothat �lm growth of B is suppressed. This te
hnique also allows to preparespatial pro�les of JB+, so that modi�
ations of the yield from nanometer toma
ros
opi
 length s
ales 
an be 
ontrolled.We have set up both a Monte Carlo simulation model and a 
ontinuumtheory of surfa
tant sputtering. Here, we will only 
onsider the spe
ial 
ase ofdemixing surfa
tant-substrate 
ombinations and assume that surfa
tant atomsare the topmost of the surfa
e provided by the substrate. In the following, wepresent the modeling of surfa
tants in our 
ontinuum theory and in KMC. Thenwe present results obtained for di�erent set of parameters, 
orresponding tothree s
enarios of pattern formation.5.1 ImplementationThe 
ontinuum and the KMC approa
h are related in the sense that both arebuilt upon the same basi
 physi
al me
hanisms of erosion and surfa
e di�usion.The des
ription of erosion in both models are based on Sigmund's sputteringformula, and the 
ontinuum theory 
ontains a large length-s
ale des
ription ofthe surfa
e di�usion of substrate and surfa
tant as implemented in the KMCmodel. But let us emphasize that in our KMC model, surfa
tant parti
les
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overage (less that 100%) on the top most layer of the system and nointermixing with substrate or island formation with heights more than 1 mono-layer by surfa
tants is allowed. This restri
tion is not needed in 
ontinuumtheory.5.1.1 Continuum theoryThe 
ontinuum des
ription starts from the balan
e equation of mass withina sub-volume V of the A substrate and its surfa
e ∂V . The bulk density ρof the substrate is assumed to be 
onstant, the surfa
tant is 
hara
terized bya varying surfa
e density σ. If we denote the erosion velo
ity (normal to thesurfa
e) by vn, the balan
e of substrate mass is expressed as ρvn = −JA−∇S ·jAwith erosion 
urrent JA and surfa
e di�usion 
urrent density jA. ∇S denotesthe surfa
e divergen
e. The balan
e equation for σ takes the form of
DSσ

dt
= −JB + Jrd · n −∇S · jB (5.1)Here, n denotes the outward normal unit ve
tor of the surfa
e. The transportderivative is given by Cermelli et al. (2005)

DSσ

dt
= ∂tσ + vnn · ∇σ − σvnκ, (5.2)It takes into a

ount all the temporal 
hanges of the surfa
e morphology. Here,

κ = ∇ · n denotes the mean 
urvature of the surfa
e.The model is 
ompleted by expressing the 
urrents and 
urrent densitiesin terms of the surfa
e geometry and the surfa
tant density. We take theexpressions for the erosion 
urrents in the absen
e of surfa
tants from the BHlinear and CB non-linear theories (see se
tion 3.4). In addition, we take intoa

ount modi�
ations of the sputtering yields so that the erosion 
urrents ofsubstrate and surfa
tant, JA and JB, respe
tively, are given by
JA = J0YAgA(σ)(1 − νBH) (5.3)and
JB = J0YBgB(σ)(1 − νBH). (5.4)

J0 denotes the �ux of in
ident ions. YA and YB are the sputtering yields of thepure A and B system, respe
tively. We keep the �rst terms of the standard



68 CHAPTER 5. SURFACTANT SPUTTERINGgradient expansion of the yield modi�
ation due to surfa
e morphology,
νBH = v′0 · ∇h+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
+
λx

2

(

∂h

∂x

)2

+
λy

2

(

∂h

∂y

)2

. (5.5)The fa
tors gA and gB are in the form of gA(σ) = max[1−λσ, 0] and gB(σ) = σto parametrize the 
hanges of sputtering yields due to small B 
overages. This
hoi
e is in a

ordan
e with the experimental �ndings of Hofsäss and Zhang (2008)for small surfa
tant densities. Note that the non-linearities in νBH may be keptup to any desired order, but we have to keep the full geometri
al non-linearitiesin the transport derivatives, be
ause otherwise we would violate mass 
onser-vation during surfa
e di�usion.The surfa
e di�usion 
urrent densities jA and jB 
ontain near-equilibriumand non-equilibrium terms, whi
h are driven by the redu
tion of surfa
e freeenergy and the external erosion and re-deposition �uxes respe
tively. Here, weonly take into a

ount simple 
ontributions arising from expansions in ∇h and
σ and a simple, phenomenologi
al expression for the non-equilibrium Ehrli
h-S
hwoebel (ES) 
urrent (see se
tion. 4.2.4), so that for the simplest 
ase ofisotropi
 (amorphous) samples

∇S jA ≈ K1(∇2)2 h+KA,ES∇2h
(

1 − ℓ2d(∇ h)2
) (5.6)and

∇S jB ≈ −∇(DB∇ σ) +KB,ESσ∇2h
(

1 − ℓ2d(∇ h)2
) (5.7)Continuum models, whi
h also 
onsider the time evolution of densities in asurfa
e layer have appeared in the literature, whi
h di�er in important as-pe
ts from the present work. In the work of Shenoy et al. (2007), a bulkbinary alloy is 
onsidered, and in the work of Aste and Valbusa (2005) andCastro et al. (2005) a layer of adatoms of the target material is in
luded. Bothpapers also di�er from the present work in the physi
al 
on
epts, whi
h un-derlie the evolution equation of the surfa
e density.In the numeri
al solutions presented below, we have extended this sim-plest di�usion model in two ways: (i) we expli
itly took into a

ount a 
ubi
anisotropy arising from eroding a (100) surfa
e. (ii) We let B atoms 
luster byputting DB ∝ max(1 − cσ, 0). This has been done to fa
ilitate 
omparisonswith our Monte Carlo simulations, whi
h naturally in
lude these e�e
ts. The



5.1. IMPLEMENTATION 69system of non-linear partial di�erential equations, whi
h make up the 
ontin-uum model have been solved by a �nite element method. We used a linearimpli
it Euler time stepping algorithm and C1 �nite elements on a triangulargrid. Similar solver has been set up for MBE by Burger (2006). We have im-plemented the algorithm using the free software FEM pa
kage FreeFEM++.15.1.2 KMC modelWe modi�ed our KMC model to in
lude surfa
tant atoms and their e�e
ts onsputtering and di�usion of substrate atoms as the following. Ea
h surfa
e siteis o

upied either by a substrate atom (A) or by a surfa
tant atom (B). Thesputtering probabilities for A and B atoms may be di�erent, but note thatonly surfa
e atoms are sputtered o�. Thus, a B atom at r suppresses the Asputter yield at this site 
ompletely. In addition, a B atom may also redu
ethe sputter yield of A atoms at a nearest neighbor site by a fa
tor 1 − Λ ;
0 ≤ Λ ≤ 1. B atoms, whi
h are sputtered o� are immediately repla
ed viarandom re-deposition. The implemented di�usion model is the thermally a
-tivated Arrhenius model with net-bound-breaking barriers (see se
tion 4.2.3).In prin
iple, binding energies between surfa
tant atoms EBB and substrateatoms EAA, and also the energy of inter-spe
ies bindings EAB may be di�er-ent. The Ehrli
h-S
hwobel barrier is only for A atoms taken into a

ount. Weused the default values for bound energies of substrate atoms and vary EABfrom 0 · · ·EAA and EBB from EAA · · · 0.6 eV. We have studied B yields from
1 · · ·0.1 times the A yield. Temperature is set to T = 600K. In the followingse
tions, di�erent sets of parameters, 
orresponding to di�erent experimentssetups are presented.Identi
al surfa
tantsHere, as the simplest 
ase, we present some results 
onsidering surfa
tants withthe same sputtering yield as substrate atoms and the same binding energiesfor all tree types of bindings. (Note that there is still a di�eren
e betweenB and A atoms arising from re-deposition of a B atom as it is sputtered andalso the inhibition of the jumps over B atoms.) In Fig. 5.2, pro�les sputtered1www.freefem.org
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Figure 5.2: Morphologies evolved after 3 ions/atom sputtering, with di�erent 
overage(from left to right and up to down: cs0.0 0.1 0.3 0.5 0.7 0.9 %) of surfa
tants B = A. Theripples blurred as the 
overage is in
reased.for t = 3 ions/atom in di�erent 
overages of B atoms are depi
ted. As the
overage in
reases, the ripples get shorter in length and the typi
al wavelengthof the ripples slightly de
reases (shown in Fig. 5.3). The later is expe
ted fromBH model where less di�usivity of parti
les leads to smaller wavelength of thepatterns. We also 
al
ulated the roughness of surfa
e for di�erent 
overages(Fig. 5.4). Although the periodi
 BH patterns are annihilated by in
reasingthe 
overage, the total roughness of the surfa
e in
reases.5.2 Mesos
opi
 height gradientAs mentioned above, an experiment setup as introdu
ed in Fig. 5.1 produ
esan inhomogeneous spatial distribution of JB+, whi
h is 
lose to a 
onstantgradient so that it leads to a linearly de
reasing 
overage of B. Here, we set
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Figure 5.3: The 
hara
teristi
 wavelength of patterns depi
ted in Fig. 5.2 as a fun
tionof surfa
tant 
overage. The wavelength is measured in latti
e 
onstant unit by using PSDmethod.

Figure 5.4: Roughness of surfa
e against 
overage with surfa
tant. diamonds : A=B, 
ir-
les : Sputtering yield YB is 10YA and the A yield is suppressed by 0.25YA from every near-est neighbor B atom, squares : Clustering of B and demixing favored, EAA = 0.18, EAB =

0, EBB = 0.6. Surfa
e di�usion without ES barriers.
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(a) (b)Figure 5.5: Mesos
opi
 height gradient by surfa
tant sputtering; (a) surfa
e pro�le after3 ions/atom sputtering with an inhomogeneous surfa
tant 
overage with average of 20 %.Other parameters are as in Fig. 5.4 (
ir
les). (b) Mean of surfa
e height in dire
tion per-pendi
ular to ion-beam dire
tion. Con
urrent to the formation of ripples, a global slop isalso indu
ed along the sample length.a smaller sputtering yield of YB = 0.1YA for B atoms and the same di�usionbarriers for A and B. The average B-
overage is 20% and it de
reases linearlyalong x dire
tion. The maintained stru
ture is shown in Fig. 5.5(a). Surpris-ingly, a slight 
overage of surfa
tants modi�es the 
ommon BH ripples withnanometer length-s
ales with a de�ned slope over mi
rometer length-s
ales(see Fig. 5.5(b)).5.3 Morphology modi�
ationIn addition to the large s
ale modi�
ations on standard BH ripples, presentedin the previous se
tion, surfa
tant sputtering is also a proper method to manip-ulate the pattern formation via IBS at the s
ale of the standard patterns, i.e.nanometers, and produ
e variations in patterns types. In the following, threedi�erent s
enarios for su
h 
hanges in morphology of patterns are presented.5.3.1 Ultra-smooth surfa
esAs demonstrated in Fig. 5.6, a strong suppression of the substrate sputter yielddue to surfa
tant 
overage may lead to very smooth surfa
es, reminis
ent of



5.3. MORPHOLOGY MODIFICATION 73layer-by-layer erosion, instead of rippled topographies. The parameters usedhere are Λ = 0.25 in KMC and λ = 2 in 
ontinuum theory for a 
overage ofonly 20% of surfa
tants. The di�usion parameters are still the same for bothtypes. We started the numeri
al solution with an initially rough surfa
e andobserved a monotonous de
rease of surfa
e roughness.Using the KMC model, we studied the pro�les patterning for di�erent 
ov-erages of surfa
tants. For the �x sputtering time, a suppression of patternformation by in
reasing the 
overage is observed (pro�les depi
ted in Fig. 5.7).The surfa
e roughness for di�erent 
overages is shown in Fig. 5.4. Roughnessof the surfa
e de
reases monotoni
ally as the surfa
tant 
overage in
reases.This 
ase has 
orresponden
e to the experiments of 
o-sputtering of Au on Siby Hofsäss and Zhang (2008).5.3.2 Arrays of nano-
lustersIn this part, the barriers have been 
hanged to fa
ilitate B-
lustering and favordemixing (EAB = 0, EBB = 0.6)eV. The obtained pro�les and distribution ofB atoms are shown in Fig. 5.8. The strong 
lustering tenden
y 
auses a highlysigni�
ant redistribution of the surfa
tant B on the A surfa
e. The majorityof B atoms would be lo
ated in valleys of the ripple topography if they weredistributed randomly (due to the morphology of the ripples). In Fig. 5.9, weshow the ratio of the number of B atoms to the number of randomly distributedatoms, whi
h 
onstitutes a statisti
al estimate of surfa
tant surfa
e density vs.height h measured from the lowest point on the surfa
e. Note that sputteringplus re-deposition of B=A atoms only leads to a minor in
rease of density invalleys, whereas B atoms strongly prefer to assemble on 
rests of ripples ifthey 
luster and demix from substrate A atoms. In fa
t, one would expe
ta generi
 uphill 
urrent of any surfa
tant whi
h suppresses the yield, be
auseit is sputtered preferably from valleys (Bradley-Harper me
hanism) but re-deposited randomly. Thus, material is moved out of valleys. This behavior hasbeen observed in experiments of Hofsäss and Zhang (2008) using a Si substrateand Ag surfa
tant. An improved 
ontrol of this 
lustering 
ould open up a wayto e�
iently fabri
ate regular arrays of quantum wires.Note that if the 
lustering of surfa
tants and also the redu
tion of yield
aused by them are strong enough, the BH ripple forming fails and what 
on-
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Figure 5.6: Upper panels : BH-type ripples without surfa
tant, left : KMC simulation,right : Continuum theory. Lower panels : Strong suppression of sputter yield of substrateby surfa
tant leads to smooth surfa
es, left : Λ = 0.25 in KMC, right : λ = 2 in 
ontinuumtheory. Here, the height s
ale is enhan
ed by a fa
tor 100 with respe
t to the 
orrespondingupper panel.
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Figure 5.7: Morphologies evolved after 3 ions/atom sputtering with di�erent 
overages(from left to right and up to down: cs0.0 0.1 0.3 0.5 0.7 0.9 %) of surfa
tants. The parametersare as in Fig. 5.4 (
ir
les). For high surfa
tant 
overages, pattern formation is suppressed.



76 CHAPTER 5. SURFACTANT SPUTTERINGtrols the evolution of surfa
e �u
tuations are the distribution and morphologyof surfa
tant 
lusters. This is dis
ussed below.5.3.3 ES indu
ed patternsThe third s
enario demonstrates how dot-like patterns due to Ehrli
h-S
hwoebeldi�usion 
an be generated by a surfa
tant. As depi
ted in Fig. 5.10, withoutsurfa
tant, the growth of ripples is the dominant pro
ess and typi
al Bradley-Harper ripples emerge even in the presen
e of Ehrli
h-S
hwoebel di�usion.Coverage with a surfa
tant tends to suppress the Bradley-Harper instabilityand Ehrli
h-S
hwoebel di�usion 
an be
ome the dominant, pattern-formingme
hanism. Note that the ES-type dots 
an form an ordered array. Orderingis supported, if preliminary ripple stru
tures break up into dots. Ordered dotsare more 
learly visible in the 
ontinuum theory. The KMC dynami
s has beenlimited to the erosion of 5 monolayers to keep it 
onsistent with the 
alibratedtime in the 
ontinuum theory, but the e�e
ts of noise are too strong to dete
tdot ordering in KMC within this time interval.
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Figure 5.8: Lower panels : Ripple pattern of a substrate with 0.4 mono-layer 
overage ofsurfa
tant with YA = YB and strong 
lustering after 5 ions per surfa
e atom, Left : KMCsimulation EAB = 0, EBB = 0.6 eV, Right panel : Continuum theory (c = 2). The dire
tionof the ion-beam is in
lined by φ = 0.2 with respe
t to the x-axis. No Ehrli
h-S
hwoebele�e
ts are in
luded. The bars mark identi
al regions in upper and lower panels, respe
tively.Upper panels : Corresponding distributions of surfa
tant.
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Figure 5.9: Statisti
al estimate of surfa
e density of surfa
tant vs. height. diamonds :substrate spe
ies A = surfa
tant spe
ies B, squares : surfa
tant B is 
lustering and demixingfrom A, similar to Ag on Si.
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Figure 5.10: Upper panels : ES di�usion of substrate and surfa
tant is 
hosen su
h thatBH instability dominates. No suppression of substrate sputter yield by surfa
tant. Lowerpanels : Moderate suppression of substrate sputter yield by surfa
tant (Λ = 0.1 in KMC,
λ = 0.6 in 
ontinuum)tends to weaken the BH instability, so that ES di�usion 
an in�uen
ethe pattern formation. Left panels : KMC simulation, Right panels : Continuum theory.
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Chapter 6Beam-noise indu
ed e�e
tsIn IBS, the randomness in the lo
ation of impa
t points of single ions is thesour
e of intrinsi
 noise in et
hing pro
ess: �shot noise�. In addition to the shotnoise, other sour
es of external �u
tuations may be present in an IBS setup.One example of this type of noise sour
es is �u
tuation within the ion-beam.It is reported that opti
al properties of a beam like beam pro�le, whi
h is theangular distribution of traje
tories of ions around the mean dire
tion of theion-beam, is important to maintain di�erent topographies with unexpe
tedfeatures and high regularity patterns (Ziberi et al. 2004; Ziberi et al. 2008).1Therefore we investigate the generi
 (non-material spe
i�
) e�e
ts of su
h ex-ternal noise in IBS, using 
ontinuum theory and KMC simulation.We 
lassify �u
tuations within the ion-beam into three types (see Fig. 6.1).(i) Homogeneous sub-beams: In this 
ase, the beam 
onsists of identi
algroups of sub-beams originating from di�erent parts of the beam. In ea
hgroup, the dire
tion of sub-beams m has a distribution p(m). We assume that
p(m) is lo
alized around the average dire
tion 〈m〉 = m0. The erosion velo
ityat an arbitrary point at the surfa
e, indu
ed by impinging ions, is the sum of
ontributions from all sub-beams weighted with p(m).(ii) Temporally �u
tuating homogeneous beam: In this 
ase, traje
tory ofall ions are parallel, but in a dire
tion whi
h 
hanges with time sto
hasti
ally,with the average of 〈m(t)〉 = m0.1Very re
ently it be
ame 
lear that most of the reported e�e
ts are strongly materialspe
i�
 and dramati
 
hanges of shape of patterns are due to interferen
e of 
o-deposited Featoms with the standard s
enarios of pattern formation. This kind of e�e
ts are extensivelydis
ussed in 
hapter 5. 81
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t

(i) (ii) (iii)Figure 6.1: Classi�
ation of beam-noise in three types: (i) Homogeneous sub-beams whi
hare made up of identi
al sub-beams. Ea
h sub-beam 
ontains an ensemble of ions traje
torieswith dire
tion distribution of p(m). (ii) Temporally �u
tuating homogeneous beam whi
hin
ludes ions traveling parallel but in a dire
tion �u
tuating in time. (iii) Spatio-temporally�u
tuating beam, in whi
h the dire
tion of ea
h ion traje
tory is taken from a sto
hasti
 (intime and position) �eld.(iii) Spatio-temporally �u
tuating beam: This is the most general situation,in whi
h every single ion takes its dire
tion from a sto
hasti
 homogeneous�eld of unit ve
tor m(x, y, t). m0, the ensemble average of m is 
onstant intime.For simpli
ity, we 
onsider spatial �u
tuations only in polar angle of in
i-den
e θ, i.e. �u
tuations in azimuthal angle are negle
ted here. We 
onsiderthree types of distributions:(a) a �at distribution 
entered at θ0 with the width of ∆θ,(b) a Gaussian distribution with the standard deviation of ∆θ from θ0, and(
) a Gamma distribution whi
h is �tted to the histograms of simulatedion-beam pro�les using the data from experiments by Ziberi et al. (2008) (seeFig 6.2).We also assume that in 
ases (ii) and (iii), 
orrelation times of θ are so smallthat we 
an apply the white noise limit, i.e. 〈δθ(r, t)δθ(r′, t′)〉 = C(|r−r′|)δ(t−
t′) (for 
ase (ii), C is just a positive 
onstant). We, furthermore, restri
t ourmodel to 
hanges of δθ(r, t), whi
h are restri
ted to length s
ales larger thanthe shape parameters σ and µ of the energy deposition fun
tion, so that in the
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(a) (b)Figure 6.2: Simulated beam pro�les (a) beam pro�les simulated by Ziberi et al. (2008)for three di�erent a

eleration voltage. (b) Gamma fun
tions �tted to the data of (a), andused as an input for KMC simulations.gradient expansion the leading order terms take on the form
∂h

∂t
= −v0(θ(r, t)) + v′0(θ(r, t))

∂h

∂x
+ νx(θ(r, t))

∂2h

∂x2
+ νy(θ(r, t))

∂2h

∂y2
−K∇4h.(6.1)and ∇θ-terms 
an be negle
ted in 
ase (iii). We expand in δθ up to linearorder and obtain

∂h

∂t
= −v0(θ0) − v′0(θ0)δθ + L̂0h+ δθL̂1h. (6.2)with L̂0 = v′0∂/∂x + νx∂

2/∂x2 + νy∂
2∂y2 − K∇4. Using te
hniques of smallnoise expansion (Gar
ia-Ojalvo and San
ho 1985) for multipli
ative noise, wenow derive 
losed equations for 〈h̃〉 = 〈h〉 − v0t from

∂〈h̃〉
∂t

= L̂0〈h̃〉 + 〈δθL̂1h̃〉. (6.3)Note that the operator L̂1 = ∂L̂0/∂θ|θ=θ0
has the same form as L̂0, if theparameters v0, νx and νy are repla
ed by v′ = ∂v0/∂θ, ν ′x = ∂νx/∂θ and

ν ′y = ∂νy/∂θ respe
tively.6.1 Homogeneous sub-beamsIn this 
ase (i), we 
an dire
tly 
al
ulate the average of height 〈h̃〉 
onsid-ering averages of independent Fourier mode solutions of Eq. 6.3 over θ, i.e.
〈h̃(k, t)〉 =

〈

eL̂(k,θ)t
〉

h(k, 0).
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(a) (b)Figure 6.3: Homogeneous sub-beams; (a) The height of fastest growing mode for di�erentbeam-divergen
e width. Growth of the fastest mode is de
elerated by in
reasing the noise.(b) The wavenumber of the fastest growing mode for di�erent beam-divergen
e width. Aslight 
hange in the emerging wavelength is predi
ted.For the Gaussian distribution (b), averaging exp(δθL1(k)t) shows that thegrowth law deviates dramati
ally from the exponential form of the non-�u
tuating
ase and follows the form 〈h̃(kt)〉 ∝ exp(〈δθ2〉L1(k)2t2/2). This means thatwe are already out of the range of validity of linear approximation. For the�at distribution (a), again an exponential growth does not satisfy the growthequation. After a transient time, the growth takes on the form ∝ t−1 exp(rt).We have also performed numeri
al evaluations of ensemble averages. Fittingan exponential growth fun
tion to the averaged height 〈h̃〉, one 
an extra
t ane�e
tive growth rate. These e�e
tive rates 
al
ulated for 
ase (a) are shown inFig. 6.3 (a). For small �u
tuation, the e�e
tive rate in
reases slightly above itsoriginal value without any beam-noise. In
reasing the beam-divergen
e beyond
∆θ ≈ 12◦ redu
es the rate and slows down the formation of patterns. Thede
rease of rate be
omes more obvious for divergen
es larger than ∆θ ≈ 20◦.Another out
ome of beam-noise, shown in Fig. 6.3 (b) is a slight 
hange in thewavelength of the fastest growing mode.6.2 Temporally �u
tuating homogeneous beamsAs mentioned above, in the 
ase of temporally �u
tuating homogeneous beams,we assume that there is no 
orrelation in time in the sto
hasti
 time series of the
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tion of beam. Using Novikov's theorem, the averaged �rst-order growthequation, ∂t〈 h̃〉 = L̂0〈h̃〉 + 〈δθL̂1 h̃〉 
an be transferred into a 
losed equationfor 〈h̃〉.2 Details of 
al
ulations are presented in appendix A. This 
losed formreads
∂t 〈h̃〉 = (L̂0 + CL̂2

1) 〈h̃〉. (6.4)The arising terms 
an be interpreted as renormalization of the 
oe�
ients in
L̂0, i.e. the averaged evolution equation 
an be written

〈∂th〉 = 〈[L̂0 + δθL1] h̃〉 = L̂0(w
R, aR

x , a
R
y )〈h̃〉 (6.5)with the renormalized 
oe�
ients

v′R0 = v′0 (6.6)
νR

x = νx + C v′′20 (6.7)
νR

y = νy. (6.8)Sin
e C is positive, the homogeneous noise always redu
es the absolute valueof ν‖, leading to weaker instability in the parallel modes (here we ignore thethird and forth order derivatives form whi
h may lead to further stabilizingsor destabilizings). Thus, one may expe
t less pronoun
ed pattern formationunder this 
ondition.6.3 Spatio-temporally �u
tuating beamsRenormalized 
oe�
ients of Eq. 6.5 for the spatio-temporally �u
tuation beams,
ase (iii), read
v′R0 = v′0 +

C ′′

2
(ν ′x + ν ′y)v

′′
0 (6.9)

νR
x = νx +

C ′′

2
(ν ′x + ν ′y)ν

′
x +

C

2
v′′20 (6.10)

νR
y = νy +

C ′′

2
(ν ′x + ν ′y)ν

′
y (6.11)These renormalized 
oe�
ients are shown in Fig. 6.4 as fun
tions of θ. Thefun
tional dependen
e of the e�e
tive surfa
e tensions on θ are 
ompletely
hanged by 
onsidering the noise e�e
ts. Thus, standard predi
tions of BH2For more details of Novikov's theorem see Novikov (1965).
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Figure 6.4: Renormalization of parameters νx(θ0) and νy(θ0) from Eq. 6.1 due to 
ase (iii)beam pro�le noise. The left upper and lower panel show the behavior for an ideal beam.upper panel: d/σ = d/µ = 1, lower panel: d/σ = d/µ = 2, the right panels show therenormalization e�e
ts, if ∂2
xC(0) = ∂2

yC(0) = 0.2. solid lines : νx, dashed lines : νy. Thelower 
urve 
orresponds to faster growth within linear theory. Note that the dependen
e ofthe dominant ripple orientation for ideal beams are 
hanged 
ompletely due to the noise.model for orientation of patterns 
an be violated by beam �u
tuations. Nev-ertheless, the experimental value of C and its derivatives are not known andtherefore a dire
t 
omparison to experiments is not possible.We also performed KMC simulations with a broad beam of ions to observegeneri
 e�e
ts of noise on pattern formation. Fig. 6.5 shows how surfa
es underbombardment with beams pro�le (a) (see above) evolve. The main generi
result is a slowing down in the pro
ess of pattern formation. Apart of that,the shape of morphologies and other features are not a�e
ted by the noise.In addition to this general situation, three spe
i�
 
ases of normal in
iden
eangle, in
iden
e near to the 
riti
al angle, and simulations with high di�usion
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Figure 6.5: Time evolution of the surfa
es whi
h are sputtered by an ion-beam with �atdistribution pro�le. Horizontal axis is time (ion/lateral atom) and verti
al axis is the valueof width ∆θ in degrees. θ0=50◦, L = 256. A signi�
ant delay indu
ed by beam-noise isevident.rate are examined.6.3.1 Normal in
iden
e angleFig. 6.6 
ompares the resulted stru
tures in two 
ases of no divergen
e in thebeam and a diverging beam with pro�le type (b). The 
orresponding PSD isshown in Fig. 6.7. Here, the rough patterns without any typi
al length s
ale(no pronoun
ed peak in stru
ture fa
tor; green line) turn to patterns with some
hara
teristi
 length s
ale (blue line). We performed the same simulations withrotating samples and as it is observed (red line) the same length s
ale is presentin this situation as well.6.3.2 Grazing in
iden
e angleAnother situation, in whi
h the width of beam pro�le may be 
ru
ial in pat-tern formation is sputtering at in
iden
e angle 
lose to the 
riti
al value θc.As mentioned in se
tion 3.4.1, in
reasing the in
iden
e angle we rea
h a pointwhere ripples rotate from dire
tion perpendi
ular to the proje
tion of the ion-
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Figure 6.6: Noise indu
ed e�e
ts in normal-in
iden
e sputtering; Surfa
e pro�les sputteredby (a) an ideal beam (no noise) and (b) a beam with Gaussian pro�le ∆θ = 32◦. By in
ludingnoise in the beams, patterns with smaller length s
ales emerge.
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Figure 6.7: The modulus of stru
ture fa
tor of surfa
es obtained from normal-in
iden
esputtering with non-zero ion-beam divergen
e (limiting 
ases with ∆φ = 0 and ∆φ = π)
ompared to the 
ase of sputtering by an ideal beam. Presen
e of beam-divergen
e leads toa length s
ale sele
tion with the parameter set whi
h does not produ
e mono-size stru
tureswith an ideal beam.



6.3. SPATIO-TEMPORALLY FLUCTUATING BEAMS 89

Figure 6.8: Simulation results for θ0 = 65◦(≈ θc), ∆θ = 0◦ (left panel) and 20◦ (rightpanel) at t=2 ions/atom. Narrow bars indi
ate the azimuthal alignment of ion-beam. Inlower panels 
orresponding surfa
e pro�le Fourier transforms are shown. The regularity ofparallel ripples enhan
ed by in
luding the beam-noise.beam to the parallel dire
tion. A broad beam 
ontaining impinging ions within
iden
e angle slightly larger or smaller than θ0 may indu
e 
ompound pat-terns of ripples in both dire
tions. In Fig. 6.8, the e�e
t of noise on patternsemerged by sputtering at θ = 65◦ is demonstrated. Surprisingly, ripples per-pendi
ular to the ion-beam dire
tion are longer and more regular in presen
eof beam-noise. The ba
kground stru
ture parallel to the ion-beam dire
tion isalmost untou
hed by in
luding the noise.6.3.3 High di�usion rate regimeThe last examined 
ondition is sputtering with broad beam in high di�usionrate regime. We have 
hosen a partially enhan
ed di�usion attempt frequen
y
k1 = 2.7 · 105 to bring the system to the edge of the region where Ehrli
h-S
hwoebel e�e
ts start to be dominant in pattern formation (see se
tion 4.3.2).
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Figure 6.9: Simulation results of sputtering by an ion-beam dire
ted along the x-axis atan average angle of θ0 = 50◦ for t = 3 ions/atom.Left panel :ideal beam, Right panel : Beampro�le 
orresponding to the lowest panel of Fig. 6.2. The di�usion rate is enhan
ed by afa
tor of 300 in 
ompare to default value. The presen
e of beam-noise favors the indu
tionof Ehrli
h-S
hwobel e�e
ts.We also took the beam pro�le (
) whi
h is very 
lose to what is present inexperiments. In Fig. 6.9, 
hanges in morphology indu
ed by beam-noise isillustrated. The Ehrli
h-S
hwoebel e�e
ts (e.g. orienting regardless to beamdire
tion) are enhan
ed by beam divergen
e.



Chapter 7
Rotating sample, dual-beam andsequential sputtering
To produ
e a larger variety of stru
tures and to improve their quality, more
omplex setups with multiple ion-beams, IBS on pre-stru
tured samples, androtating samples have been used, but few of them have been investigated indetail. In parti
ular, Carter (2004;2005;2006) has proposed the use of dual ion-beam sputtering (DIBS), Vogel and Linz (2007) proposed a four-beam setupand 
laimed that 
orresponding results may be obtained from a sequen
e ofpre-stru
turing and stepwise beam or sample rotation using a single ion-beam(sequential ion-beam sputtering or SIBS). Continuous rotation of the sam-ple or the ion-beam (referred to as RIBS, i.e. rotating IBS, in the follow-ing) has been proposed to suppress ripple formation by Zalar (1985;1986) (forexample in SIMS and AES, where ripple formation would redu
e the depthpro�ling resolution), but also to enhan
e the quality of isotropi
 stru
tures(Bradley 1996). Re
ently, Joe et al. (2009) 
ondu
ted a systemati
 experi-mental study of DIBS and SIBS on Au(001). They 
onsidered two di�erention �uxes: a higher one, for whi
h the orientation of patterns is determinedby the ion-beam dire
tion (erosive regime), and a lower one, for whi
h surfa
edi�usion be
omes dominant in pattern formation pro
ess (di�usive regime). Anumber of their �ndings are not in a

ordan
e with expe
tations derived fromthe 
onventional 
ontinuum framework. This motivated us to study DIBS,SIBS and RIBS setups with Monte Carlo (MC) simulation methods. Re
entproposals by Vogel and Linz (2007) and Muñoz-Gar
ía et al. (2009) are based91



92 CHAPTER 7. COMPOUND SPUTTERING SETUPSupon extensions of the standard 
ontinuum model (whi
h is formulated asan anisotropi
 and noisy Kuramoto-Sivashinsky equation). These extensionshave introdu
ed new physi
al me
hanisms, whi
h 
hange the s
enario of pat-tern formation of the standard model, but none of these me
hanisms have been
on�rmed and tested independently beyond doubt.We present and dis
uss results obtained for the topographies, the shape andorientation of the ripples, the stru
ture fun
tion and the evolution of rough-ness in di�erent setups. We 
ompare our �ndings to theoreti
al proposals,experimental results and to the standard linear 
ontinuum model.
7.1 Simulation setupThroughout this work, we will fo
us on the erosion-dominated regime, leav-ing more 
omplex interplays between erosion and di�usion in multi-beam androtating setups for further studies.Fig. 7.1 depi
ts the geometries of setups we use in the simulations. ADIBS setup 
onsists of two ion-beam in
idents from dire
tions des
ribed bypolar angles θ1 and θ2 and azimuthal angles φ1 and φ2 (see Fig. 7.1(a)). Asa simple spe
ial 
ase, we will 
onsider opposing beams, i.e. θ1 = θ2 and
∆φ = φ1 − φ2 = 180◦. Crossed beams are studied for equal polar angles aswell as for the general 
ase of di�erent polar and azimuthal angles.SIBS setups are shown in Fig. 7.1(
). In a �rst step, ripples are produ
edby a single ion beam. Then we 
hange the azimuthal angle of the ion-beamdire
tion by some ∆φ and monitor the further evolution of surfa
e stru
tures.Finally, Fig. 7.1(b) shows the RIBS setup, whi
h is 
hara
terized by a 
onstantangular velo
ity ω of the sample, whi
h we realize by a �xed sample andthe 
orresponding beam rotation. The evolution of stru
tures and surfa
eroughness will be systemati
ally studied as a fun
tion of ω.The rotation of sample during IBS is equivalent to a �xed sample and arotating ion-beam. Therefore rotation or any 
hange of azimuthal angles inlab 
oordinates is simulated by keeping the surfa
e �xed and rotating the ion-beam 
orrespondingly.
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(a) (b)
(
)Figure 7.1: Three di�erent IBS experiment setups. (a) dual ion-beam with �xed sample(DIBS). (b) 
ontinuously rotating sample with single ion-beam (RIBS). (
) sequentiallysputtering of pre-rippled surfa
es after 90◦ rotation (SIBS).



94 CHAPTER 7. COMPOUND SPUTTERING SETUPS7.2 Opposed ion-beamsIt has been proposed by Carter (2005) that IBS with two diametri
ally opposedion-beams (same θ and a di�eren
e of 180◦ in φ) 
an lead to a 
an
ellation ofinstabilities indu
ed by ea
h beam. Instead, he predi
ted temporal os
illationsof ripple amplitudes. Furthermore, ripple motion should be suppressed dueto the restoration of re�e
tion symmetry, whi
h would be broken by a singlebeam.Fig. 7.2(b) shows results of topographies obtained from MC simulations ofthis setup. We never observe the predi
ted behavior, instead the growth ofstru
tures resembles that obtained in a single beam setup, as 
an be seen from
omparing Figs. 7.2 (a) and (b). But ripples obtained from opposed beamsappear longer and more straight than those from single beams and the patterns
ontain less defe
ts. Furthermore, the shape of ripples 
hanges signi�
antlytowards more symmetri
 slopes. In Fig. 7.3, we show a quantitative analysisof ripple slope angles α1 and α2, whi
h are de�ned in the inset of the upperpanel. To measure the symmetry of the slopes, we 
onsider the asymmetryparameter
ǫ =

α2 − α1

α2 + α1

. (7.1)Histograms of this quantity are shown in Fig. 7.3 for single beam and opposedbeam setups. The average value of ǫ is ǭ ≈ −0.08 for single beams (indi
atingthat the steeper slope is fa
ing the beam), and ǭ ≈ 0.01 for opposed beams.We also 
he
ked that the skewness of the ǫ-distribution is redu
ed by usingopposed beams. In 
on
lusion, opposed ion-beams do not lead to a 
an
ellationof instabilities, but help to produ
e more symmetri
 ripples and patterns withless defe
ts as 
ompared to a single ion-beam setup.7.3 Crossed ion-beamsSetups of multiple ion-beam in
idents from di�erent dire
tions have been pro-posed by Carter (2004;2005). Vogel and Linz (2007) developed a 
ontinuumtheory for a setup with four beams all with the same polar angles of in
iden
eand 
rossing with ∆φ = 90◦. Their theory is based on a damped Kuramoto-Sivashinsky equation and takes into a

ount terms up to fourth order in a
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(a) (b)Figure 7.2: Rippled surfa
es after 8 ions/atom of sputtering. (a) by a single ion-beam,(b) by two ion-beams opposed to ea
h other. Arrows indi
ate the dire
tion of ion-beams.

Figure 7.3: Distribution fun
tion of the asymmetry parameter ǫ (see main text) for the
ases of a single ion beam (upper panel) and two ion-beams opposed to ea
h other (lowerpanel).



96 CHAPTER 7. COMPOUND SPUTTERING SETUPSgradient expansion of the erosion term. They predi
t square patterns, whi
h
an be stable in the long time regime under spe
i�
 
onditions. Joe et al.(2008) performed experiments with two ion-beams with θ = 73◦ and ∆φ = 90◦on Au(001) . In the erosive regime, they �nd nano-dot patterns with squaresymmetry (albeit with a rather low degree of order), if the �uxes of the twobeams are pre
isely balan
ed. Otherwise, the stru
tures develop into modu-lated ripples.In the upper row of Fig. 7.4, we show simulation results for perfe
tly bal-an
ed ion-beams (beam (1) in Table 7.1). The middle row of Fig. 7.4 showsresults for ion-beams with di�erent intensities in
ident from the same polarangle (beams (2) and (3) in Table 7.1) and the lower row shows 
orrespondingresults for ion-beams of identi
al intensities, but in
ident from di�erent polarangles and with di�erent beam parameters (beams (1) and (4) in Table 7.1).In Table 7.1, ν‖ and ν⊥ denote the e�e
tive surfa
e tension 
oe�
ients (par-allel and perpendi
ular to the beam proje
tion onto the x − y plane), whi
happear as prefa
tors of the se
ond spatial derivatives of the height �eld inlinear Bradley-Harper (BH) theory. They determine the topography depen-dent part of the erosion rate within linear BH theory for long wavelength(Bradley and Harper 1988).White arrows in Fig. 7.4 indi
ate the proje
tion of the ion-beams into the
x−y plane (thus they en
lose ∆φ). The geometry is 
hosen su
h that the x-axisalways is the bise
tor of this angle. For balan
ed beams and 0 ≤ ∆φ < 90◦, weobserve ripples with a waveve
tor parallel to the x-axis, for 90◦ < ∆φ < 180◦,the ripple waveve
tor is parallel to the y-axis, but the ripple pattern showsmore defe
ts. Exa
tly at ∆φ = 90◦, square patterns repla
e the ripples. Forunbalan
ed beams, we observe ripples in oblique dire
tions, whi
h we willdis
uss below.The middle and lower row of Fig. 7.4 are given to emphasize that we didnot observe any di�eren
es in pattern formation due to di�erent me
hanismsof imbalan
e. The middle row 
orresponds to beams of di�erent intensities,
hara
terized by the ratio f = J</J> of the smaller ion �ux J< and the larger�ux J> (here f = 1/2). The ion �ux multiplies all terms in the gradient ex-pansion of the erosion rate. Other me
hanisms to produ
e imbalan
ed erosionrates, whi
h we tried, lead to the same patterns, if they imply the same erosion



7.3. CROSSED ION-BEAMS 97rates of linear theory.Note that in our simulations both ν‖ and ν⊥ are negative, indi
ating thaterosion leads to growing height �u
tuations in both dire
tions within the linearBH theory. The linear theory of DIBS as outlined by Joe et al. (2009) indi
atesthe appearan
e of growing 
rossed ripples for this situation, in a

ordan
ewith our simulation results. In the experiments by Joe et al. (2009), however,the system 
orresponds to ν‖ = 14.2 and ν⊥ = −0.9. This set of e�e
tivesurfa
e tensions would result in a stable �at surfa
e, in 
ontradi
tion to theexperimental observations.Let us analyze our �ndings within the simple framework of linear BH theory,for whi
h 
ontributions of both beams to the erosion rate are simply added.Suppose beams 1 and 2 are 
hara
terized by e�e
tive surfa
e tension 
oe�-
ients ν(b)
A with b being 1 or 2 and A being ‖ and ⊥. Averages of these 
oe�-
ients over the two beams are denoted by ν̄A = (ν

(1)
A +ν

(2)
A )/2 and we introdu
e

∆νA = (ν
(1)
A − ν

(2)
A ). A

ording to linear theory, the growth of Fourier modes

|h(kx, ky, t)| ∝ exp(Γt) due to erosion is 
ontrolled by the (real) growth rate
Γ(kx, ky), whi
h is a quadrati
 form of the waveve
tor, i.e. Γ = ktν̂k + O(k4)with a matrix ν̂ of e�e
tive surfa
e tensions. In the presen
e of isotropi
 surfa
edi�usion, the dire
tion of the fastest growing mode is obtained by determin-ing the largest eigenvalue of ν̂ and the 
orresponding eigenve
tor. ν̂ is easily
al
ulated. Its matrix elements take on the form

ν̂xx = 2(ν̄‖ + ν̄⊥) + (ν̄‖ − ν̄⊥) cos ∆φ (7.2)
ν̂yy = 2(ν̄‖ + ν̄⊥) − (ν̄‖ − ν̄⊥) cos ∆φ

ν̂xy = (∆ν‖ − ∆ν⊥) sin ∆φ,and ν̂yx = ν̂xy. For balan
ed beams, ∆νA vanishes and the matrix of surfa
etension 
oe�
ients be
omes diagonal, indi
ating that ripples will only appearwith waveve
tors either parallel to the x-axis or parallel to the y-axis. At
∆φ = 90◦, the rates in both dire
tions be
ome degenerate and square patternswill emerge, if they are stabilized by the nonlinear terms. As cos(∆φ+π/2) =

− cos ∆φ, it is obvious from Eq. 7.2 that the regime 90◦ < ∆φ < 180◦ 
an bemapped to 0 < ∆φ < 90◦ by inter
hanging x and y. This explains the mainfeatures of the upper row of Fig. 7.4.For unbalan
ed beams, the orientation of ripples will generally depend both



98 CHAPTER 7. COMPOUND SPUTTERING SETUPSTable 7.1: Beam parameters for the DIBS setup
θ a σ µ ν‖ ν⊥(1) 50◦ 9.3 3.0 1.5 -4.4 -0.86(2) 50◦ 9.3 3.0 1.5 -5.8 -1.1(3) 50◦ 9.3 3.0 1.5 -2.9 -0.57(4) 35◦ 7.3 3.0 1.5 -1.5 -0.81(5) 50◦ 3.8 2.2 1.5 -0.67 -0.53on ∆φ and the imbalan
es in surfa
e tension 
oe�
ients ∆ν‖,∆ν⊥, but for

∆φ = 90◦ the situation is simpler. The 
osine terms vanish, and the eigen-ve
tors e± ∝ (1,±1) of the simpler matrix be
ome independent of the rateimbalan
es. Thus, the linear theory predi
ts ripples with waveve
tors in
linedby ψ = 45◦ or ψ = 135◦ with respe
t to the x-axis, i.e. parallel to one ofthe beams (from the eigenvalues it follows that the waveve
tor is parallel tothe dominant beam), irrespe
tive of the amount or nature of the imbalan
e ingrowth rates, if ∆φ = 90◦. This result is in a

ordan
e with the experimental�ndings by Joe et al. (2009) as well as our simulations (see Fig. 7.4 (e) and(h)). The dire
tions ψ for other values of ∆φ are easily obtained, if the im-balan
e is known. In Fig. 7.4, we have indi
ated these dire
tions with dashedwhite lines. We �nd a satisfa
tory agreement of our simulation results withthis predi
tion. Fig. 7.5 depi
ts the predi
ted deviations of the orientation ofripple waveve
tors from the x-axis (i.e. the bise
tor of the beam dire
tions) asa fun
tion of ∆φ for di�erent ratios f of �uxes of beams with the same beamparameters and the same angle of in
iden
e. f = 1 
orresponds to balan
edbeams, whereas f = 0 
orresponds to a single ion-beam. Values of f between0 and 1 smear out the step of the f = 1 and lead to a family of sigmoid 
urvesinterpolating smoothly between the limiting 
ases.In 
on
lusion, our simulations show 
rossed ripple patterns for balan
ed,orthogonal beams as observed by Joe et al. (2009). For non-balan
ed or non-orthogonal beams, simple ripple patterns appear in dire
tions, whi
h are ina

ordan
e with linear 
ontinuum theory. These dire
tions are not 
hanged atlonger times, when the growth of the ripple amplitudes has saturated due tononlinearities.
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(a) (b) (
)
(d) (e) (f)

(g) (h) (i)Figure 7.4: upper row : Rippled surfa
es after 40 ions/atom sputtering by two balan
edion-beams in
ident from θ = 50◦ and separated in azimuthal angle by (a)∆φ = 60◦, (b)
∆φ = 90◦ and (
) ∆φ = 120◦. middle row : same as (a)-(
) but for imbalan
ed ion-beams,whi
h di�er in intensity by a fa
tor of 2 (f = 1/2) 
orresponding to beams (2) and (3)in Table 7.1. lower row : same as middle row, here the imbalan
e is generated by di�erentin
ident angles and beam parameters, (1) and (4) in Table 7.1. Arrows indi
ate the dire
tionsof ion-beams. In middle and lower row bigger arrows 
orrespond to the dominant ion-beam.Dashed lines indi
ate the dire
tions predi
ted for the waveve
tors of ripples by linear theory(see main text).
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Figure 7.5: Orientation of fastest growing mode for di�erent values of ∆φ. ψ denotes theangle of the ripple waveve
tor with the x-axis. Di�erent lines 
orrespond to di�erent ratiosof ion �uxes f (see main text).
7.4 Sputtering of rippled surfa
esSin
e the possibilities of simultaneous sputtering by multiple beams are oftenlimited in experiments, sequential sputtering by a single beam from di�erentdire
tions seems to be a more promising setup. Vogel and Linz proposed SIBSas a general substitute for multi-beam sputtering (Vogel and Linz 2007). Notethat in SIBS setups, a pre
ise balan
e between �uxes of multiple beams, whi
hmay be di�
ult to a
hieve in DIBS, 
an be adjusted by tuning the exposuretime in ea
h dire
tion.Joe et al. (2009) performed experiments on Au(001) using an ion-beam in-
ident from θ = 72◦. In the erosive regime, ripples with waveve
tors perpen-di
ular to the proje
tion of the beam dire
tion into the initial surfa
e plane(k⊥ modes) build up initially. After rotating the target by 90◦ (keeping θ�xed), they observe that the ripple pre-stru
ture is very rapidly destroyed andnew ripples build up in the 
orrespondingly rotated dire
tion. But the au-thors 
ould never observe patterns 
orresponding to a superposition of twogenerations of ripples.



7.4. SPUTTERING OF RIPPLED SURFACES 101We have simulated SIBS with ion-beams in
ident from θ = 50◦ and a ro-tation step of ∆φ = 90◦ after 9 monolayers of erosion. Our parameters are
hosen su
h that k‖-mode ripples (i.e. waveve
tor parallel to the beam dire
-tion on the surfa
e) appear initially (see Fig. 7.6(a)). After the rotation step,a 
orrespondingly rotated ripple pattern builds up as shown in Fig. 7.6(
). In
ontrast to the experiment, we 
ould observe a superposition of ripples of bothorientations in a narrow time window, shortly after the rotation step (shown inFig. 7.6(b), at t = 10.8 ions/atom). The degree of order of these superimposedpatterns 
an be seen from the stru
ture fa
tor in Fig. 7.6(d).Let us dis
uss the surfa
e evolution following a rotation step. From linearBH theory we expe
t every Fourier mode h(k‖, k⊥) to grow or de
ay exponen-tially with a rate Γ(k‖, k⊥) = −ν‖k2
‖−ν⊥k2

⊥−B(k2
‖+k

2
⊥)2. Here, we have expli
-itly in
luded an isotropi
 surfa
e di�usion term proportional to B as a smooth-ing me
hanism. Immediately before a rotation step, a rippled pattern has de-veloped, whi
h 
onsists of Fourier modes, 
entered around the fastest growingmode. Let us assume that this is a k‖ mode (
orresponding to our simulations).Then its waveve
tor is (k‖, k⊥) = (km, 0) with km = |ν‖|/(2B). A 90◦ rotationstep transforms this mode into (0, km), and the subsequent evolution startswith a 
orrespondingly rotated pre-stru
ture. The growth rate Γ(0, km) of thedominant mode of the pre-stru
ture, measured in units of the maximal growthrate Γ(km, 0) = ν2

‖/(4B), is given by r = Γ(0, km)/Γ(km, 0) = −(1 + 2ν⊥/|ν‖|).Note that it is independent of B. From this, we 
on
lude that linear the-ory predi
ts the following features of the evolution of patterns: (i) if ν⊥ > 0the rate r < −1, whi
h implies that the de
ay of the pre-stru
ture (at leastthe mode (0, km)) appears faster than the growth of the fastest mode, i.e.
|Γ(0, km)| > Γ(km, 0), (ii) if ν⊥ < 0 but |ν⊥| < |ν‖|/2 then −1 < r < 0 sothat the de
ay of the (0, km) mode is slower than the growth of the fastestmode and (iii) if ν⊥ is negative and |ν⊥| > |ν‖|/2 then r > 0, i.e. linear theorypredi
ts that the pre-stru
tured (0, km) mode will grow. A 
ompletely analo-gous dis
ussion holds, when the initially formed ripples are made of k⊥ modes,i.e. when ν⊥ < 0 and ν⊥ < ν‖. We just have to inter
hange ‖ and ⊥ in theabove expressions. This is the situation whi
h is realized in the experimentby Joe et al. (2009). Furthermore, let us remark that the gradient expansionspresented by Makeev et al. (2002) always produ
es ν⊥ < 0, so that 
ase (i)
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ussion will not show up, but it may be realized, if the initialripples are k⊥ modes.For the parameters of our simulation (ν⊥ = −0.86 and ν‖ = −4.4) the pre-stru
ture should de
ay with r ≈ −0.81, i.e. slower than the growth of thenew ripples. This is roughly in a

ordan
e with our simulations, albeit onlyafter a laten
y of ≈ 1 ion/atom during whi
h the amplitude of the old patternstays 
onstant ( see the upper inset of Fig. 7.7). From our data of the de
ayand the growth after this laten
y we estimate r ≈ −0.80. This only leaves atime window of less than 1 ion/atom (
rossover appears at ≈ 0.72 ions/atom),during whi
h a superposition of the pre-stru
ture and the new stru
ture 
anbe observed. For the experiments by Joe et al. (2009) r ≈ −17.8, i.e. thepre-stru
ture de
ays extremely fast 
ompared to the growth of new ripples,and the 
orresponding time window of 
oexisting new and old ripples is mu
hsmaller, whi
h may explain why no superposition of ripple patterns has beenobserved.The rapid de
ay of the �nite amplitude pre-stru
ture leads to a transientde
rease of roughness. We de�ne a stru
tural relaxation time T0 as the length ofthe interval from the rotation step through the transient de
rease of roughnessto the point, where roughness has retained its value immediately before therotation step. This time interval 
ontains all pro
esses ne
essary to rotatethe ripple pattern from the previous to the 
urrent rotation step. In our 
ase
T0 ≃ 2.5 ion/atom. We expe
t this times
ale also to be a relevant 
rossovers
ale for rotating beams or samples, whi
h will indeed be 
on�rmed in the nextse
tion.We also tried to test the predi
tion (iii), i.e. a growth of the pre-stru
tureif |ν⊥| > |ν‖|/2. To this end we performed SIBS simulations with beam 5 ofTable 7.1, i.e ν‖ = −0.67 and ν⊥ = −0.53. Results are shown in the lowerinset of Fig. 7.7. As ν‖ and ν⊥ approa
h ea
h other, the ripples be
omes moreand more blurred, so that it makes no sense to try to identify 
rossed ripplestru
tures. But the pronoun
ed dip in the roughness has vanished, indi
atingthat there is at least no de
ay of any dominant, �nite amplitude part of thespe
trum of (k‖, k⊥) modes. However, we 
ould not identify any growing modeswithin the spe
trum of the pre-stru
ture.
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(a) (b)

(
) (d)Figure 7.6: Snapshots of surfa
e pro�le during SIBS. At t = 9 ions/atom, a ∆φ = 90◦rotation step o

urs. Shots are at (a) t = 9 ions/atom, (b) t = 10.8 ions/atom (inset:zoomed in) and (
) t = 18 ions/atom. Arrows indi
ate the dire
tion of ion-beams. In panel(d) the stru
ture fa
tor |h(kx, ky)|2 of the pro�le of panel (b) is shown.
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Figure 7.7: Roughness evolution of surfa
e patterned by SIBS. The surfa
e is rotated by
90◦ at t = 9 ions/atom. The upper inset shows the temporal evolution of the maximum of thestru
ture fa
tor Smax = max(|h(~k)|2) for waveve
tors in ‖ and in⊥ dire
tion. The lower insetshows that there is no dip in roughness in the regime of surfa
e tension 
oe�
ients, for whi
hlinear BH theory would predi
t a growth of the pre-stru
ture (ν‖ = −0.67, ν⊥ = −0.53)



7.5. SPUTTERING OF CONTINUOUSLY ROTATING SAMPLE 1057.5 Sputtering of 
ontinuously rotating sampleSample rotation during IBS is applied for various reasons. One motivation isto a
hieve suppression of pattern formation in SIMS and AES depth pro�ling(Zalar 1985;1986). There are numerous reports that RIBS 
an suppress surfa
eroughening and enhan
e the resolution of depth pro�ling (see Carter (1998)and referen
es therein). Although this method is frequently used, there arevery few systemati
 studies of the e�e
ts of di�erent parameters, in parti
u-lar of the angular velo
ity of rotation (Tanemura et al. 1992). Previous dis-
rete simulations 
ould not su

essfully explain the observed strong suppres-sion of roughening (Koponen et al. 1997). Re
ently, IBS has be
ome a popularmethod for smooth et
hing of metalli
 surfa
es (Rei
hel et al. 2007). Here too,sample rotation has been proposed as a pra
ti
al measure (Rei
hel et al. 2007)to prevent nano-s
ale roughening. A di�erent motivation to use RIBS is the
ontrol of pattern formation. As mentioned in 
hapter 2, Frost et al. havefound that o�-normal IBS with sample rotation may lead to formation ofhexagonal, 
lose pa
ked dot patterns. This is attributed to a restoration ofaxial rotation symmetry with respe
t to the average surfa
e normal, whi
h isbroken by o�-normal in
iden
e of a single ion-beam at �xed azimuthal angle.Dot formation in rotated, o�-normal IBS has been found in the framework of
ontinuum theories (Bradley 1996; Frost 2002; Castro et al. 2005), assuminga �ux of in
oming ions, whi
h is distributed evenly over all azimuthal angles.This assumption 
orresponds to the limit of high rotation frequen
ies. Dotsalso appear in MC simulations performed in the high rotation frequen
y limitfor a wide range of parameters (Yewande et al. 2007).In the present work, we fo
us on the systemati
 dependen
e of height �u
-tuations on the rotation frequen
y, irrespe
tive of the random or determin-isti
 nature of these �u
tuations. Therefore, we will study the roughness
w = 〈(h−〈h〉)2〉, averaged over the sample and an ensemble of 40 realizations,as fun
tion of time and rotation frequen
y ω. Reported rotation frequen-
ies 
over a range from 0.1 to 15 rpm for di�erent �uxes and di�erent typesof ions and materials (Frost and Raus
henba
h 2003; Zalar 1985; Zalar 1986;Konarski and Hautala 1995; Cui et al. 2005). There is a predi
tions of thes
aling of height with ω, whi
h, in Ref. Bradley and Cirlin (1996), is given in
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h(~k, t) ∝ exp(

(ν⊥ − ν‖)

4ω
k2 sin(2ωt)). (7.3)It is based on the original linear Bradley-Harper theory in rotating 
oordinatesystems. Furthermore, Cui et al. (2005) reported that ripples do not form forangular frequen
ies greater than 0.1 rpm (for a �ux of 3.5×1014 ions 
m−2 s−1of 300 eV Ar+ on GaN substrate).In se
tion 7.4, we have de�ned a 
hara
teristi
 response time T0(∆φ) of theIBS generated stru
tures to sudden 
hanges ∆φ of the beam dire
tion. Wepropose that this time s
ale is also of relevan
e for RIBS, as surfa
e stru
turesmight follow rotation frequen
ies mu
h smaller than ω0 = ∆φ/T0 adiabati
ally.On the other hand ω ≫ ω0 might 
orrespond to the high frequen
y limit. Weperformed simulations with di�erent rotation frequen
ies varying in the range

0.05 · · ·50ω0, with ω0 ≃ 36◦ per eroded mono-layer taken from our SIBS sim-ulations. For low frequen
ies, ripples form and rotate in syn
hrony with thebeam dire
tion (see Fig. 7.8(d-f)). For high frequen
ies, (ω = ∞ is in
luded asit 
orresponds to random azimuthal dire
tions of in
oming ions 
hosen from a�at distribution), 
ellular stru
tures of growing size are observed (Fig. 7.8(
)).These �ndings are in agreement with predi
tions by Bradley (1996). A mixtureof short ripples and 
ellular stru
tures appears at intermediate ω (Fig. 7.8(b)).Somewhat surprisingly, the roughness of the surfa
e is not a monotonous fun
-tion of rotation frequen
y. In Fig. 7.9 roughness is shown as a fun
tion oftime for di�erent ω. For low (in
luding ω = 0) and high frequen
ies, it growsmonotoni
ally, approa
hing approximately equal growth rates beyond t ≈ 30,independent of ω. For intermediate ω, the roughness shows os
illations (withfrequen
ies Ω ≈ 4ω), and its growth rate is strongly suppressed. For ω = 3.5ω0growth rate rea
hes a minimum. In Fig. 7.10 the roughness, averaged over aperiod T = 2π/ω, is shown against ω, for times up to t = 37 ions/atom . Forin
reasing t, the minimum at ω ≃ 3.5ω0 be
omes more and more pronoun
ed.Thus our simulations predi
t an optimal rotation frequen
y, if preparationsaim at smooth surfa
es. This frequen
y also marks the frequen
y s
ale beyondwhi
h ripples do no longer appear. The very rapid 
rossover to non-ripplestru
tures is in a

ordan
e with �ndings of Cui et al. (2005).To 
ompare our results with the predi
tion of Eq. 7.3 about the s
alingof height with ω, we studied S = |h(~k, t)|2 for a �xed value of waveve
tor
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(a) (b) (
)
(d) (e) (f)Figure 7.8: Snapshots of surfa
e pro�le during RIBS (rotating IBS) at t = 40 ions/atom for(a) ω = 0 (b) ω = ω0 and (
) ω = 7.5ω0. By in
reasing the rotation frequen
y, a transition oftopographies from long parallel ripples to non-oriented 
ellular stru
tures is observed. Panels(d-f) shots at t = 36, 38 and 40 ions/atom for rotating sample with frequen
y ω = 0.5ω0,where ripples form and follow the orientation of the beam relative to the surfa
e. Arrowsindi
ate the instant dire
tion of ion-beam.

Figure 7.9: Time evolution of surfa
e roughness during RIBS for di�erent rotation fre-quen
ies.
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Figure 7.10: Roughness against angular frequen
y ω at di�erent times.

Figure 7.11: The logarithm of the os
illation amplitude of stru
ture fa
tor for a given k,vs. logω. Inset: Time evolution of stru
ture fa
tor for a given k, for ω = 2ω0 displays theos
illations. The amplitude of these os
illations is shown in the main �gure.
~k. It grows rapidly and then os
illates with frequen
y 2ω around a saturationvalue with an ω-dependent amplitude c, as shown in the inset of Fig. 7.11. Theos
illatory behavior with frequen
y 2ω is also present in Eq. 7.3. The main partof the �gure depi
ts the de
rease of the os
illation amplitude with in
reasing
ω in a double logarithmi
 plot. The �tted line has a slope of −1.05 ± 0.05,whi
h is very 
lose to the 1/ω behavior suggested by Eq. 7.3. Note, however,that this equation was derived from linear theory and has to be multipliedby an exponential growth fa
tor, whereas our result applies to the non-linearsaturation regime. Due to the rapid initial growth, the regime of validity ofEq. 7.3 remained unobservable.
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Figure 7.12: Total amount of eroded material (integrated yield) after 40 ions/atom ofsputtering of rotating samples vs. rotation frequen
y. The arrow is at ≃ 3.5ω0, the frequen
ywhi
h minimizes the total roughness.We also measured the total amount of eroded material, ∆M up to t = 40ions/atom for di�erent rotation frequen
ies. This integrated yield de
reaseswith in
reasing ω and displays a 
lear distin
tion between a low- and a high-frequen
y regime in a semi-log plot, shown in Fig. 7.12. The interpolated
rossover frequen
y between these regimes is very 
lose to ≃ 3.5ω0, the fre-quen
y, whi
h minimizes the total roughness (see Fig. 7.10). This is in a
-
ordan
e with our �ndings (see Fig. 7.7) that more pronoun
ed rippled pre-stru
tures (developing at low rotation frequen
ies at an angle ωt) de
ay morerapidly (at t+ dt) than the smaller and less regular height �u
tuations, whi
happear at higher rotation frequen
ies.
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Chapter 8Con
lusionIn this work we have studied IBS-indu
ed pattern formation on solid surfa
esby kineti
 MC simulations and 
ontinuum theories. We have addressed fourquestions, whi
h 
on
ern basi
 physi
al me
hanisms of the pattern formationseen in experiments, and have studied various proposals of te
hniques to im-prove, simplify or modify the pattern formation by spe
ial experimental setups.The basi
 questions we studied are1. Is the interplay of erosion and surfa
e di�usion 
omprehensivelydes
ribed by an isotropi
 Kuramoto-Sivashinsky equation or do dif-ferent me
hanisms of di�usion (and/or erosion) lead to di�erent pat-tern s
enarios, even if they would give rise to the same 
ontinuumdes
ription?We have found eviden
e for the latter statement. Changing Sigmund's Gaus-sian energy deposition fun
tion to something, whi
h is 
loser to BCA results,produ
es di�erent (ripple) patterns for θ larger than ∼ 70◦. Changing betweendi�erent thermal di�usion me
hanisms like Hamiltonian, bond-breaking or net-bond-breaking, whi
h all give rise to ∇4 term in 
ontinuum theory, 
hanges thelong-time behavior of ripple patterns. We have also systemati
ally investigatedthe 
rossover from erosive to di�usive regime of pattern formation. In the dif-fusive regime, Ehrli
h-S
hwoebel barriers lead to new type of di�usion-drivenpatterns, but even there, the IBS pattern formation 
an not be 
ompletelyunderstood as a �deposition of va
an
ies�.Related publi
ation: 111



112 CHAPTER 8. CONCLUSION� Hartmann, Kree, and Yasseri 2009, Simulating dis
rete models of pat-tern formation by ion-beam sputtering, J. Phys., 21 224015.2. Is it possible that a few, sub-mono-layer 
overage of the surfa
ewith a se
ond (�surfa
tant�) atomi
 spe
ies has a signi�
ant in�uen
eon pattern formation?We both extended our simulation model and presented a 
ontinuum modelto in
lude the e�e
ts of 
o-deposited surfa
tant atoms on the pro
ess of pat-tern formation. We demonstrated the possibility of indu
ing a large s
ale(mi
rometer) height gradient along the sputtered sample by redeposition oferosion-suppressive metalli
 atoms. The standard ripples form and evolve ontop of this ba
kground large-s
ale stru
ture. In KMC simulations as well as
ontinuum theory we observed formation of ordered arrays of surfa
tants fol-lowing the morphology of the rippled substrate. We show that a 
ombinationof 
lustering tenden
y and yield suppression, leads to the a

umulation of sur-fa
tant 
lusters in the valleys of the ripples. A stronger yield suppression leadsto stability of smooth surfa
es and prohibits surfa
e roughening, whereas amedium-sized sputtering suppression of yield leads to emergen
e of Ehrli
h-S
hwoebel indu
ed patterns.Related publi
ation:� Kree, Yasseri, and Hartmann 2009a, Surfa
tant Sputtering: Theory of anew method of surfa
e nano-stru
turing by ion beams, Nu
l. Ins. Meth.Phys. B, 267 1403.� Hartmann, Kree, and Yasseri 2009, Simulating dis
rete models of pat-tern formation by ion-beam sputtering, J. Phys., 21 224015.3. Do orientational �u
tuations of ion-beam traje
tories (beam di-vergen
e) have e�e
ts on the pattern formation?We have set up and studied a 
ontinuum theory and a Monte Carlo modelof IBS in
luding ion-beam pro�les. In both approa
hes we have found 
learindi
ations of a rather strong dependen
e of surfa
e patterns upon the spe
ialtype of noise, whi
h is produ
ed by non-trivial ion-beam pro�les, as has beenobserved in experiments (Ziberi et al. 2004; Ziberi et al. 2008). Whereas the
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ontinuum approa
h is most e�e
tive for small, Gaussian �u
tuations, whereit leads to a renormalization of 
oe�
ients of the lo
al evolution equation ofthe average height pro�le, the Monte Carlo model is able to treat generi
 aswell as more realisti
 and material-spe
i�
 situations. As the pattern formings
enarios depend sensitively on beam parameters and di�usion, su
h a model-ing is ne
essary, if one wishes to 
ompare theoreti
al and experimental resultsin more detail. Our KMC simulations show that in normal in
iden
e anglesputtering, di�erent length s
ales 
an be sele
ted and grow by in
luding orex
luding the beam-noise. In grazing in
iden
e angle, more regular ripplesemerge when the beam has a wide pro�le. In high temperature regimes, pres-en
e of the beam-noise favors the Ehrli
h-S
hwoebel e�e
ts and 
hanges themorphology of patterns towards di�usion indu
ed patterns.Related publi
ation:� Kree, Yasseri, and Hartmann 2009b, The in�uen
e of beam divergen
eon ion-beam indu
ed surfa
e patterns ,Nu
l. Ins. Meth. Phys. B, 2671407.4. Is it possible to improve, simplify or modify IBS-indu
ed patternformation by multiple-beams or rotated-beam setups?We studied dual ion beam sputtering (DIBS), sequential ion beam sputtering(SIBS) and rotating ion beam sputtering (RIBS) by a kineti
 MC simulationte
hnique, whi
h 
ombines erosion events due to single ions and surfa
e dif-fusion. For a DIBS setup with two diametri
ally opposed beams, we did not
on�rm predi
tions by Carter (2005), but rather found non-moving rippleswith orientations as in a single ion beam setup. The ripples have a higherdegree of order and more symmetri
al slopes as 
ompared to those 
reated bysingle beam sputtering. For DIBS setups with 
rossed ion-beams, we foundripple patterns for 
rossing angles ∆φ 6= 90◦ and square patterns for 
rossingof balan
ed beams at exa
tly right angle. The ripple orientations follow thepredi
tions from linear Bradley Harper theory. Any kind of beam-imbalan
eleads to ripple patterns oriented a

ording to the dominant beam. This is ina

ordan
e with the experimental observation by Joe et al. (2009). For SIBSsetups, we found a very rapid destru
tion of the ripple pre-stru
ture of theprevious rotation step, whi
h 
annot be explained by linear Bradley-Harper



114 CHAPTER 8. CONCLUSIONtheory. The �attening of the pre-stru
ture leads to a transient de
rease in totalroughness. Only within a very short time window, the growing new genera-tion of ripples and the shrinking old ones lead to a superposed square pattern.Thus we 
ould not 
on�rm propositions to use SIBS as a universal substitutefor 
ompli
ated multi-beam setups. The rapid destru
tion of the pre-stru
tureis in a

ordan
e with �ndings of Joe et al. (2009). For RIBS setups we ob-served a non-monotoni
 dependen
e of roughness upon rotation frequen
y. Ata frequen
y s
ale set by the stru
tural relaxation time of prestru
tures, whi
h
an be observed in SIBS simulations, an in
reasingly pronoun
ed minimumof roughness o

urs with in
reasing time. We found that the stru
ture fa
torat �xed waveve
tor rapidly approa
hes stationary os
illations around a sat-uration value with os
illation amplitudes inversely proportional to frequen
y.This behavior was also predi
ted from linear theory, but seems to have a mu
hbroader range of validity.Related publi
ation:� Yasseri and Kree , A Monte Carlo study of surfa
e sputtering by dualand rotated ion beams, submitted to Nu
l. Ins. Meth. Phys. B.OutlookOur results show that the 
onsidered me
hanisms have signi�
ant in�uen
eon the IBS-indu
ed pattern formation, whi
h 
an be used to improve surfa
eengineering. On the other hand, none of the me
hanisms lead to patternsof a quality, uniformity and regularity as has been observed in some re
entexperiments.In fa
t, two potentially important physi
al me
hanisms have not been 
on-sidered in this work: elasti
 intera
tions between surfa
e and substrate andredeposition of eroded atoms. The in
lusion of these me
hanisms requires sub-stantial extensions both of the KMC model and of the 
ontinuum theory, butseems ne
essary to make further progress in the 
ase of IBS-indu
ed patternformation.



Appendix AImplementation of dire
tionalnoise in growth equationWe start from Eq. 6.3 with L̂0 and L̂1 given by
J0 = L̂0h̃ = v′0(θ0)

∂h̃(x, y, t)

∂x
+νx

∂2h̃(x, y, t)

∂x2
+νy

∂2h̃(x, y, t)

∂y2
−B∇2∇2h̃ (A.1)therefore,

J1 = L̂1h̃ = v′′0 (θ0)
∂h̃(x, y, t)

∂x
+ ν ′x

∂2h̃(x, y, t)

∂x2
+ ν ′y

∂2h̃(x, y, t)

∂y2
(A.2)Note that, for simpli
ity, we put h̃ → h in this appendix and prime indi
ate

∂/∂θ|θ=θ0
. The term δθv′0, whi
h appears in L̂1 is an additive noise and itsaverage is zero, therefore it does not 
ontribute to ∂t〈h〉 so we negle
t it.We assume a Gaussian noise whi
h is white in time

〈δθ(r, t)δθ(r′, t′)〉 = C(|r − r′|)δ(t− t′) (A.3)We integrate over small time step ∆t

h(r, t+ ∆t) − h(r, t) = J0(t)∆t+
∫ t+∆t

t
δθ(r, t′)J1(t

′)dt′ (A.4)and look for 
ontributions to 〈∆h〉 = 〈h(r, t+ ∆t) − h(r, t)〉 of O(∆t). Thenwe divide by ∆t and take the limit ∆t → 0. Therefore we approximate the�rst term on the right hand side to O(∆t). It needs no further treatment.Consider the se
ond term in the right hand side A:
A =

∫ t+∆t

t
δθ(r, t′)J1(∇h(r, t′),∇2h(r, t′), ...)dt′. (A.5)115
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t O(∆t)-term in the average we have to insert
h(r, t′) = h(r, t) + J0(t)(t− t′) +

∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′. (A.6)The negle
ted terms will be of higher order in ∆t after averaging, so theyneed not be taken into a

ount. The term ∝ J0(t) will also not 
ontributeto O(∆t) after averaging and is dropped from here on. So we have to use
h(r, t′) = h(r, t)+δh(t′) where δh(t′) =

∫ t′

t δθ(r, t′′)J1(t
′′)dt′′. We expand J1(t

′)in δh (only the linear term 
ontributes).
J1(∇h(r, t) + ∇δh(r, t),∇2h(r, t) + ∇2δh(r, t)) = J1(t) (A.7)

+
∂J1(t)

∂~∇h(r, t)
~∇δh(r, t) +

∂J1(t)

∂(∇2h(r, t))
∇2δh(r, t)and insert in the A above:

A =
∫ t+∆t

t
δθ(r, t′)[J1(t

′) +
∂J1(t

′)

∂~∇h(r, t′)
~∇δh(r, t) +

∂J1(t
′)

∂(∇2h(r, t′))
∇2δh(r, t′)]dt′(A.8)

J1(t
′) vanishes after averaging. So

A =
∫ t+∆t

t
δθ(r, t′){ ∂J1(t

′)

∂~∇h(r, t′)
.~∇
∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′ (A.9)
+

∂J1(t
′)

∂(∇2h(r, t′))
∇2

∫ t′

t
δθ(r, t′′)J1(t

′′)dt′′}dt′Note that J1 depends on r and therefore ∇ and ∇2 a
t both on δθ and J1.Now we do the average. but before that note:(i) 〈δθ(t′)δθ(t′′)〉 = δ(t′ − t′′) gives a δ-fun
tion at the upper limit of theintegrals over t′′. From sto
hasti
 
al
ulus (Wong and Zakai 1965) we knowthe 
orre
t interpretation for physi
al noise is
∫ t′

t
dt′′〈δθ(t′)δθ(t′′)〉 = lim

ǫ→0

1

2

∫ t′+ǫ

t
dt′′δ(t′ − t′′). (A.10)The fa
tor of 1/2 
omes from the 
ontributions of the �left half� of the regu-larized δ-fun
tion.(ii)~∇ and ∇2 give several terms. Consider

∫ t+∆t

t

∫ t′

t

∂J1(t
′)

∂~∇h(r, t′)
〈δθ(r, t′)~∇{δθ(r, t′′)〉J1(t

′′)dt′′ (A.11)



117whi
h equals to
∫ t+∆t

t

∫ t′+ǫ

t

∂J1(t
′)

∂~∇h(r, t′)
{〈δθ(r, t′)~∇rδθ(r, t

′′)〉J1(t
′′) + 〈δθ(t′)δθ(t′′)〉~∇J1(t

′′)}.(A.12)The �rst term:
lim
r′→r

~∇r〈δθ(r′)δθ(r) = lim
r′→r

~∇rC(|r − r′|)|r=0
1

2
δ(t− t′) (A.13)whi
h is

~∇rC(r)r=0
1

2
δ(t− t′) (A.14)and the se
ond term: 〈δθ(t′)δθ(t′′)〉 = (1/2)C(0)δ(t′ − t′′), Note that usually

C(0) is maximum of smooth C(r) so we negle
t (∇C)(0). Thus we get
A =

∆t

2
C(0)

∂J1

∂~∇h
.~∇J1 +

∂J1

∂(∇2h)
(
∆t

2
C(0)∇2J1 +

∆t

2
(∇2C)(0)J1). (A.15)This gives the averaged evolution equation as

∂〈h〉
∂t

= J0 +
C(0)

2

∂J1

∂~∇h
.~∇J1 +

2
∑

i=1

∂J1

∂(∂2
i h)

(
C(0)

2
∂2

i J1 +
1

2
(∂2

i C)(0)J1) (A.16)Here we have generalized to J(∇h, ∂2
x, ∂

2
y) be
ause we want to plug in theBradley-Harper model.Plugging of Bradley Harper theory

∂J1

∂(∂x)h
= v′′,

∂J1

∂(∂y)h
= 0 (A.17)and

∂J1

∂(∂2
x)h

= ν ′x,
∂J1

∂(∂2
yh)

= ν ′y (A.18)therefore
∂〈h〉
∂

= J0+
C(0)

2
v′′0∂xJ1+ν

′
x(
C(0)

2
∂2

xJ1+
(∂2

xC)(0)J1

2
)+ν ′y(

C(0)

2
∂2

yJ1+
(∂2

yC)(0)J1

2
)(A.19)Now we look for the terms ∝ ∂xh, ∂yh, ∂

2
xh and ∂2

yh.
C(0)

2
v′′0∂xJ1 =

C(0)

2
v′′0∂xh + O(∂3) (A.20)

∂2
x

C(0)

2
ν ′xJ1 =

∂2
xC(0)

2
ν ′x[ν

′
x∂

2
x + ν ′y∂

2
y ]h +

∂2
xC(0)

2
ν ′xv

′′
0∂xh. (A.21)
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∂2

y

C(0)

2
ν ′yJ1 =

∂2
yC(0)

2
ν ′x[ν

′
y∂

2
x + ν ′y∂

2
y ]h+

∂2
yC(0)

2
ν ′yv

′′
0∂yh. (A.22)The terms C(0)

2
∂2

xJ1 and C(0)
2
∂2

yJ1 are of O(∂3). Thus:
〈h〉
∂t

= −v(θ0) + [v′0 +
∂2

xC(0)

2
ν ′xv

′′
0 +

∂2
yC(0)

2
ν ′yv

′′
0 ]∂xh

+[νx +
∂2

xC(0)

2
ν ′xν

′
x +

∂2
yC(0)

2
ν ′yν

′
x]∂

2
xh

+[νy +
∂2

xC(0)

2
ν ′xν

′
y +

∂2
yC(0)

2
ν ′yν

′
y]∂

2
yh (A.23)Sin
e we take an isotropi
 
orrelation fun
tion: ∂2

xC = ∂2
yC = C ′′, so

v′R0 = v′0 +
C ′′

2
(ν ′x + ν ′y)v

′′
0 (A.24)

νR
x = νx +

C ′′

2
(ν ′x + ν ′y)ν

′
x +

C

2
v′′20 (A.25)

νR
y = νy +

C ′′

2
(ν ′x + ν ′y)ν

′
y (A.26)
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