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1. Introduction

1.1. Equilibrium thermodynamics

Equilibrium thermodynamics is a branch of physics which evolved in the 18" and
19" centuries based on the work of D.Bernoulli, B. Thompson and J.Joule (Voéel,
@). It deals with the energy of systems, its transformation from heat to work and
vice versa. The field has been continuously developed since then and has proven
to be a useful tool for many applications in technical sciences, physics, chemistry,
biology and other disciplines.

Equilibrium thermodynamics predicts the behavior of physical systems only by
considering their macroscopic state functions (such as entropy, temperature, pressure
and volume). A system is said to be in equilibrium if there are no time-dependent
quantities in the system, such that very slow changes, as in quasistatic processes, are
considered a succession of equilibrium states.

However, as will be seen in the following section, many systems of interest are
not in equilibrium. Hence, in the 19t and 20" centuries, a new branch of thermo-
dynamics, called non-equilibrium thermodynamics, emerged. It aims at developing
tools that provide a description of processes beyond the scope of equilibrium ther-
modynamics.

1.2. Non-equilibrium thermodynamics

Non-equilibrium systems can be found in almost all scientific disciplines ranging
from chemistry (e. g. the Belousov-Zhabotinsky reaction in‘Belousov d 19 RQ,‘IQRI‘) and
Zhabotinsky @Qz]ﬁzoow), to quantum field theory (for example Rammer, @ﬂ) and
information theory (for example Andrews et al,, 2008‘). A thermodynamic system is
out of equilibrium if the system is time-dependent. This appears in systems which
are either open or dissipative. Due to the importance of mass or energy flux through
the system’s boundaries, it is not possible to apply the thermodynamic limit in this
case. Indeed, non-equilibrium systems are very commonly encountered, and are
familiar to the non-scientist as well as the scientist. This is visible, for instance,
in self-organised systems (Haken, @), like the formation of snow crystals or the
stripes on zebras, and all transport phenomena, like opening a window to air a room
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or placing a pot of water on the stove.

The formulation of the Boltzmann equation in m was the first major step in
non-equilibrium statistical physics (see also Brilliantov and Péschel, ‘2004). It de-
scribes the time evolution of the distribution function to find a particle with velocity
U at a position 4, and can be used to calculate material properties, like heat conduc-
tivity or viscosity. It is based on the assumption of molecular chaos, which states
that particle velocities are uncorrelated before collisions and can be described by
only considering two-particle interactions. Correlations between collisions can be
taken into account by solving the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)
hierarchy dBogoliubov, 1946; Bogoliubov and Gurov, ‘1947; Born and Green, ‘1946,’
Kirkwood, @_4@, @Aj; Yvo ,@35).

The next major advances in non-equilibrium statistical mechanics were the Ein-
stein kinetic theory of Brownian motion , @) and the Onsaéeﬂ reciprocal
relations @). In the 1950’s, Green and Kubo derived an expression for the lin-
ear transport coefficients and showed how they can be calculated from fluctuations
(Green, @54; \M, @51) for systems which are close to equilibrium. The most re-
cent major progress is the Gallavotti-Cohen fluctuation theorem dGallavottiJ, 2008),
which was first observed by Evans et al. 4Evans et al., 1993a%) and later proved
by Gallavotti and Cohen @95) for dynamic systems, and for Markov processes by
Kurchan, Lebowitz and Spohn (Kurchan, 1998; Lebowitz and Spoth, @Qd). The
fluctuation theorem is equivalent to the second law of thermodynamics when ap-
plied to macroscopic systems. In non-equilibrium thermodynamics it is convenient
to investigate steady states since the complexity of the physical situation is reduced
due to the absence of an explicit time dependence (Evans et al., . 1993b). Neverthe-
less, the understanding of non-equilibrium systems is far from being as complete
as for equilibrium systems. Many interesting systems lie far beyond the scope of
what is addressable with the concepts mentioned above. The present thesis aims to
contribute to the field of non-equilibrium statistical physics.

1.3. Granular matter

Granular matter is an accumulation of solid particles, where each particle is of
macroscopic size, starting with grains of a few microns and ranging up to ice floes
floating across the polar seas , ). Granular matter is ubiquitous in daily
life. After getting up, you find it as cereals on the breakfast table and as abrasive
particles in toothpaste. Later on in the office you are sitting at the computer, which
expends energy produced in a coal-burning power plant, and after work you return
to your home, which has an environmentally friendly woodchip-fired central heat-
ing. Finally, after eating rice with meatballs, potatoes, peas and carrots for dinner,
you nibble some snacks like peanuts or grapes before going to bed. During your
vacation you go to the beach where you build impressive sand sculptures out of the
wet sand. We are surrounded by granular materials all day long. And these were
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only examples where the granular character was still present in the final product.
Sand, for example, is used as a raw material in the production of concrete, glass,
porcelain or silicon. Therefore, it is not surprising that the processing of granular
materials and aggregates consumes about 10% of the total worldwide energy pro-
duction (Duran, 2000). Understanding of the dynamical behavior, of granular matter
or bulk solids, is thus not only of scientific, but also of economic interest.

Due to the large mass of individual grains®, the random motion of agitated gran-
ular particles corresponds to temperatures® of Giga- or even Terakelvin. Through
interactions between grains (like inelastic collisions between particles or rupturing
of capillary bridges between wet grains) this random motion is coupled to a heat
bath of the atomic degrees of freedom (of the particles or of the liquid of the cap-
illary bridges) which is at room temperature. The vast temperature difference, be-
tween particle motion and the heat bath, leads to a strong non-equilibrium situation.
Granular matter is thus one of the most widespread systems which exhibit non-
equilibrium behavior and, therefore, it is the system studied in this thesis.

1.4. Organization of the thesis

The scope of this work is to study wet granular matter under sinusoidal driving with
the help of numerical simulations. It is organized as follows. Following the introduc-
tory chapter 2, the methods used to model granular materials and different driving
mechanisms to allow a numerical study are briefly introduced. Two different sinu-
soidal driving mechanisms are used in this thesis, which are the natural counterpart
of each other. Former, sinusoidal shaking in the chapters[3 to 6, and latter, sinusoidal
shearing in the chapters|7|and 8|

The phase diagram as obtained by sinusoidal shaking is shown and analyzed in
great detail in chapter 3. The following chapters (4 to |6) each focus on a special
region of the phase diagram and study the emerging dynamics. In chapter 4, the
solid-fluid transition is studied in more detail and reveals surface melting. In chap-
ter [5, the lateral phase separation is studied and suggests interfacial energy in the
coexistence states. Finally in chapter|6, a phase separation in the vertical direction is
observed and its resemblance to the classical Leidenfrost effect is discussed.

Similarly for sinusoidal shearing, the different phase diagrams are presented in
chapter 7, followed by chapter 8, which studies the complex dynamics occuring in
the fluidized state. The thesis is summarized in chapter 9}

In the appendix|Ala derivation of an analytic expression for the velocity distribu-
tion in a wet granulate using a Laguerre polynomial expansion is shown. This is

1. Compared to the mass of a single molecule.

2. Temperature, Tg, (often called granular temperature) is defined as the kinetic energy of the random
motion of the granular particles. Ty := m((7%) — (3)2)/kpf4 dOgawa et al,, 1980) where m is the
average mass of an individual particle with velocity 7, kg = 1 is ‘Boltzmann’s constant’ and f; the
number of degrees of freedom.
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followed in appendix B by a numerical method which efficiently implements sinu-
soidally moving walls in event-driven simulations (cf.list of awards on page [225).
A list of publications to which the author of the present thesis contributed can be
found at the end of this document on page [217.



2. Methods

As in most non-equilibrium systemes, it is challenging in the case of granular matter
to obtain analytical results: much of the theoretical work in this field uses strong sim-
plifications like considering only one-dimensional systems (Zaburdaev et al., 2006;
Fingerle and Herminghaus, 2006; Zaburdaev and Herminghaus, @ﬂ) or very dilute
systems (Brilliantov and Poschel, M). Quantitative experiments can be expensive
or laborious and even then it can be difficult to attribute certain phenomena to the
properties of the physical system. Therefore, numerical simulations present an op-
portunity to gain insight into systems which elude analytical investigation at first
and give access to more information than experimental studies. Therefore, granular
matter out of equilibrium is studied in this thesis by means of numerical simulations.

Two different approaches a continuum and a discrete element method for modeling
granular matter in numerical studies are distinguished.

The continuum method only considers fields and not individual particles. It was
inspired by computational fluid dynamics for classical liquids, where the discrete
molecular structure is also disregarded. In the context of granular matter, this
method is sometimes called ‘Navier-Stokes granular hydrodynamics’ or ‘ideal gran-
ular hydrodynamics’ (Meerson et al., 2003; Khain and Meerson, 2003; Puglisi et al.,
2008).

The discrete element methods can be divided into different categories. Firstly, the
Monte Carlo method is a stochastic simulation method completely based on ran-
dom numbers and repeatedly predicts the physical behavior of a system (Allen and
Tildesley, @ﬁz; Poeschel and Schwager, 2004; Brilliantov et al., @z). Secondly, the
method of cellular automata, the particle positions are discretized such that parti-
cles are located at fixed sites as on a lattice. Exchange between sites is realized by
defining transition rates between neighboring sites. This method is used for exam-
ple in lattice gases dHardy et al., 1973; Frisch et al,, 1986‘). Thirdly, the simulation
method of granular dynamics, is mostly called molecular dynamics simulation in liter-
ature, due to its historical origins. In this thesis this historical name (Poeschel and
Schwager, @;) is also used. It is stressed that the notion ‘molecular’ is mislead-
ing in the context of granular matter, because the molecular degrees of freedom are
not considered at all. The molecular structure is rather reflected in a simple model
such that it is sufficient to consider the macroscopic structure of the particles. The
dynamics in this method are governed by Newton’s laws of motion, which are then
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solved numerically.

In this thesis solely discrete element simulations using the molecular dynamics
simulation method are performed and, wherever possible, compared with experi-
mental results.

In the remainder of this section the most important ingredients are mentioned to
model dry and wet granular matter in the framework of molecular dynamics simu-
lations, and two different simulation techniques which can physically be interpreted
as hard and soft particles are distinguished. The hard sphere method was originally
developed by Alder and Wainwright (1957, 1959) and the soft sphere method was
originally developed by Cundall and Strack 41070‘). For details on the realization of
these methods see ’P—oe}échel and Schwage} dzoo4l), Zhu et al.‘ (200%) and references
therein.

2.1. Newton’s laws of motion

The dynamics of granular particles, in molecular dynamics simulations, is fully gov-
erned by Newton’s laws of motion. In this thesis only the translational degrees of
freedom of the granular particles are considered. Disregarding the rotational de-
grees of freedom is admissible as long as there is no friction between particles. See
‘Poeschel and Schwageﬂ 42004), Zhu et al.‘ 42007) and ‘Brilliantov et al.‘ 42007) and
references therein for a discussion of tangential (frictional) forces.

In the following forces which occur while particles are in contact and those which
do not require a contact, i.e., act even over a distance are treated seperately. The
equation of motion for the translational motion of particle i, with mass m; then
reads

do;

LTI

Y+ Y Ep 4+ ES+ Y, (2.1)
j k

where v; is the translational velocity of particle i, 1_% are the contact forces asserted by

particle j on particle i, ff,;“ are the non-contact forces on particle i caused by particle
k or other components in the system (like a wall), I_:;-g = m;§ is the gravitational force
acting on particle i with the acceleration due to gravity § and ﬁldri" is the external
driving force which acts on particle i.

There are many different forces which can act on and impose a certain physi-
cal behavior on granular particles in different physical situations thu et al., 2007).
Examples of contact forces are the elastic or dissipative repulsive forces while non-
contact forces are capillary, electrostatic, or Van der Waals forces. These forces can
be used in different combinations resulting in a large number of possible models
for granular matter. In the following, solely the models for (dry and wet) granular
matter, which are used in this thesis or which are typically studied in the literature,
are presented.
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2.2. Dry granular matter

This thesis is restricted to particles of idealized shape which are circular disks (in
two-dimensional modeling) and spheres (in three-dimensions). This is not a serious
constraint, because particles of completely irregular shape can be approximated by
an accumulation of spherical particles (Bertrand et al., ‘200:). Therefore, it is suffi-
cient to have a model for the contact forces of spherical particles only. As mentioned
before, molecular degrees of freedom of individual particles are neglected in the sim-
ulation, but therefore a (preferably simple) model, which accounts for forces arising
through the molecular interaction when two particles collide, is needed. These forces
can be decomposed into two components. First, the elastic deformation of the parti-
cles which is responsible for the repulsion, and second, the dissipative energy loss,
which accounts for the energy transfer into the molecular degrees of freedom. Dif-
ferent types of models for colliding particles like the linear spring-dashpot model,
Walton and Braun’s model, the Hertz model or the hard core model have been pro-
posed (Zhu and Yu, 2006; Zhu et al,, ‘200,%; Poeschel and Schwageﬂ, ‘2004J) of which
different ones are used in this thesis.

The first one is the hard-core interaction force which assumes an infinite force if
the particles are overlapping. It reads

Re@={ o o S50 (22)

where { = R; + R; —r;; is the overlap between particles’ and r;; is the distance
between the particle centers. Due to the infinite force, this model represents ideal
hard particles. Inserting Eq. into the equation of motion, Eq. is directly
solvable analytically and the particle trajectories in-between collisions are obtained.
Thus, an event-driven algorithm to simulate this model can be used. For more detail
on the algorithm see AppendixBl and Poeschel and Schwageﬂ dmj). Because the
underlying differential equation is solvable analytically, this approach is preferred
whenever possible. For identical particles, the collision rules, for the exchange of the
momentum through a collision, read

>k k =

(Uz'j ) (2.3)

(@) (24)

YIST!

5{25?*—(1—1—8)

N QL

3 =0+ (1+e)

where v;); and v;‘G‘ is the velocity of particle i|j after and before the collision respec-

lj
tively, while 7" is the relative velocity between particles i and j before the collision.
At the time instant of the collision, the unit vector ¢ points from the center of particle

j to the center of particle i. In this model dissipation is introduced by a coefficient of

1. It is noted that ¢ is positive for overlapping particles.



8 2. Methods

restitution, ¢, which is defined as
e:1=—, (2.5)

where p; and py are the momenta before and after the collision respectively. This
coefficient depends in general on the impact Velocity, Vimp, as €(Vimp) ~ 1 — const. -
}I{; dSchwager and Poschel, Brilliantov and Péschel, 2001
and approaches ¢ ~ 1 for 1mpact velocities gomg to zero. For the simulations,
a constant (i.e.velocity independent) coefficient of restitution is used, because it
is almost constant in the range of impact velocities considered in this thesis. A

characteristic quantity in this model is the dissipated energy per collision, which is

AEgiss = Ei(1—€%), (2.6)

where E; is the kinetic energy before the collision. In Giese and Zippelius d%g@,
Gerl and Zippelius dl_gggj), Kuninaka and Hayakawa ({;()4) and Schwager (2007)
how the coefficient of restitution arises out of the molecular degrees of freedom of
the particles has been carefully studied.

If the soft sphere model is used? it is not always possible to solve Eq. (2.1) analyt-
ically. In this case, one has to rely on a time-driven integration method to solve the
equation of motion numerically. In the present study the Gear integration scheme is
used, which has proven to be successful for granular matter (Poeschel and Schwa-
ger, @d). Because the time-driven simulation method cannot deal with infinite
forces, the Hertz contact force is used instead which showed good agreement with
experiments dRamirez et al., ‘1999). It acts normally to the particle surface, and for
non-identical particles it reads

FHertZ(C) é{;n\/% <€2 + Adf > (27)

. Ri+R; . . . .
where Y, is the Young modulus, R = R}]/ is the effective radius of spheres i

and j with radii R; and R; respectively; v, is the Poisson ratio, ¢ is the overlap of
the two particles and A, is the dissipative constant. The first term in the formula
is the elastic repulsion, while the second term accounts for the dissipative damping.
In this model the particles interact through a finite overlap, which is interpreted as
slight particle deformation. Consequently, they are called soft particles.

2. The hard-core model should be used wherever possible, due to its precision and efficiency. The soft
sphere model is, however, preferred in very dense systems, when it becomes important to account
for a finite time two particles are in contact during a collision, or if there are additional non-contact
forces in the system which prevent analytical solvability of the equations of motion like for the
n-body problem.
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Dry granular matter34 is thoroughly studied in the literature d]aeger et al.,

1996;
‘Zhu et al. 200@, and references therein).

7

2.3. Wet granular matter

There are several, mostly cohesive, forces, like Van der Waals forces, electrostatic
forces, gravitational forces or capillary bridge forces, which can act between granular
particles even if they are not in contact. A comparison of the magnitude of these
different forces is shown in Fig.[2.1} It is obvious that the strongest inter-particle force
is the capillary bridge force and it therefore has a huge influence on the physical
behavior of granular matter. In contrast to powders or dry granular matter, only
a comparatively small amount of work has been devoted to wet granular matter
(Hornbaker et al., @gz; Bocquet et al., 2002; Nowak et al., 2005; Herminghaus, 2005,
and references therein) or (Scheel et al., M), thus the focus lies on wet granular
matter in this thesis.

7

In Fig.12.2 the formation process of a capillary bridge is schematically seen, which
forms between two identical spheres, wetted by a thin liquid film dKohonen et al.,
M), when they collide: The liquid accumulates around the contact point. The cap-
illary bridge exerts a certain attractive force, F, on the particles, which is caused by
the surface tension of the wetting liquid. If the particles separate again, the bridge
narrows and finally ruptures at a critical surface separation distance (sometimes also
called rupture distance), sqit. This force and its dependence on the surface separa-
tion, s, was experimentally measured in ‘Willett et al.‘ dzoo&). A typical outcome of
such a measurement is shown in Fig.[2.3. It can be observed that the force decreases
when the separation between particles increases and vanishes abruptly when the
capillary bridge ruptures at a certain surface separation. Since the two curves be-
long to two different volumes of the capillary bridge, it can be seen that the rupture
distance is a function of the capillary bridge volume.

3. When studying very small and fine particles, the cohesive Van der Waals force becomes increasingly
important when compared to the gravitational force and must be included in the model. This
physically represents powders. Powders like flour, dust and many pharmaceutical products can
form clumps due to this additional cohesive force dDhanarajan and Bandyopadhyay,‘2007). Even
if this model is not as thoroughly studied as the dry granular matter there is quite a body of work
in this field dDuranJ,‘zood;‘Garcia—Rojo et al.,‘2005).

4. The Van der Waals gas does not belong to the group of granular matter. Nevertheless it uses a
model for its molecular interaction very similar to the one discussed above for macroscopic grains.
Atoms are modeled in this framework as elastically colliding spheres with (in contrast to the ideal
gas) finite volume. In terms of the forces discussed above, this means that the particles are modeled
by a repulsive hard-core force while the collision itself is elastic (¢ = 1). Even if the physical system
is very different, from the numerical point of view, the Van der Waals gas can be viewed as the
most simple realization of a model using the same ingredients as those in granular matter research.
Therefore, it is not surprising that in granular materials there are also attempts in the literature to
find an equation of state ﬁFingerle and Herminghaus, ‘2008; ‘Herbst et al.‘, ‘2004J) reminiscent of the
Van der Waals equation, even though granular matter is not an equilibrium system.
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Fig. 2.1 The magnitude of several inter-particle forces. The calculations were based on the following
approximated equations and values: (i) capillary force for particles in contact (surface tension): Fg =
—27yR cos Gcﬁij with v = 72.8 X 10~2Nm~1 (water at 20°C), (i) Van der Waals force (molecular

dipole interaction): dew = with A = 6.5 x 1072 J, h = 1.65A, (iii) electrostatic force

_ Adp
247 1ij

(Coulomb force): F, = )ﬁij with &, = 1, and (iv) weight: F; = mg with

__Q (1 _ h

167tq0h? VR24+12
pg =3 X 103 kg/m—3. Graph reprinted from‘Rumpf {1962) and‘zhu et al.‘ {2007‘) with permission from
Elsevier.

The force, Fg, which is caused by the capillary bridge can be calculated analytically
for the simplest case of two identical, spherical particles being in contact. This was
first done as long ago as 1926 (Fisher, ‘1026‘). The capillary bridge force for particles
at contact, in lowest order approximation is

Fg = 2myR cos 6., (2.8)

where 7y is the surface tension of the liquid, R is the radius of the (identical) spheres
and 0. is the contact angle between the wetting liquid and the sphere (Princen, %;
‘Lian et al.,, ‘1993; Willett et al., 2000; Herminghauj, 2005; Butt and Kappl, 2009). For
finite separation distances between the particle surfaces the capillary bridge force is
well approximated by

7

Fp

F= 105 r2sa

(2.9)

with § := sy/R/V, where V is the volume of a single capillary bridge (Willett et al.,
). As mentioned before, the critical surface separation for the capillary bridge
to rupture depends on the volume of the capillary bridge. As derived in Willett et al.
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Fig. 2.2 Schematic process of capillary bridge formation between two spherical particles which are
covered by a thin liquid film. In a particle j is approaching a (which is assumed to be at rest) with
velocity vF* and where s is the surface separation. Particles collide in b and the liquid accumulates
(instantaneously, in the model used) around the contact point of the two particles and forms a capillary
bridge. Due to the collision the particles separate again, as seen in ¢, and the capillary bridge narrows
until it ruptures at a critical surface separation, s, as can be seen in d. Due to the hysteretic, attractive
force which is exerted by the capillary bridge, some energy is dissipated so that the velocity i after the
rupturing is smaller than before, i. e.v; < v]’f*.

@), a good approximation of this dependence, which is valid for small rupture
distances, is

Suit = <1 + 9C> (‘71/3 + 0.1‘72/3) , (2.10)

2

with the non-dimensionalized units §ujt = Serit/R and V = V/R3. In Fig.[2.4] snap-
shots of an experiment dArdekani and Rangel, 2008‘) are shown where the formation
and elongation of a capillary bridge can be seen. The rupture distance in these
snapshots is, however, much larger than the validity limit of Eq. (2.10), but rupture
distances in the present work are restricted to values which are small compared to
the average particle diameter.

Besides the capillary bridge force, F, and the critical surface separation, sqit, where
the capillary bridge ruptures, there is a third important quantity to characterize
the capillary bridge interaction. This is the amount of energy which is dissipated
through one complete cycle of the formation and rupture of a capillary bridge and
is called the capillary bridge energy Eg,. It reads

Scrit

Ep = /P(s)ds. (2.11)
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Fig. 2.3 Dependence of the capillary bridge force F on the surface separation s between a spherical
particle and a flat wall as deduced from an experiment (circles) or numerical solution (straight line) of
the Laplace-Young equation using perfect wetting (8. = 0). Graph reprinted from \Willett et al.‘ dZOOd)
with permission.

Fig. 2.4 Steel sphere (diameter 9.52 mm) collides with a wall coated with a viscoelastic liquid (1.5%
polyethylene-oxide in water). During the collision a capillary bridge forms between the particle and
the wall which can be elongated to a length much longer than the particle diameter. In the present
thesis, however, rupture distances are restricted to values which are small compared to the average
particle diameter. The time between subsequent snapshots is equal. Pictures are taken from the video
accompanying Ardekani and Ranqel‘ &2008).
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Data presented in Fig.[2.3|are based on experiments demonstrating on how the in-
teraction between grains is influenced by the presence of a capillary bridge exerting
a certain force. Although this force and its dependence on the distance between the
two particle surfaces has been studied carefully, it is not used in this in the present
thesis in full detail. In fact, two different models are used in this work, which are
both simplified versions of the real behavior.

The first model is the minimal capillary model dHerminghaus, 2005), where the cap-
illary bridge force, Fg, is assumed to be independent of the surface separation s.
This means that the capillary bridge force is a constant and therefore the capillary
bridge energy simply reads Ey, = FpSeit. This is shown in Fig.[2.5a, where also
the hysteretic formation process of the capillary bridge is shown for a one dimen-
sional collision, the red color denotes the existence of a capillary bridge. This model
is numerically solved, in two and three dimensions, with soft, elastically colliding
particles with capillary bridges using time-driven molecular dynamics simulations.
Also a pseudo-potential representation is given in the respective figure to enhance
the perceivability.

The second model, which is called thin-thread model, is inspired by the fact that
in some cases only the capillary bridge energy Ey, is important, irrespective of the
values Fp or Scit dFingerle et al,, ‘2008). It is specially designed such that it can be
simulated with an event-driven algorithm in any dimension and both elastic and
inelastic collisions between spheres are used. This model is sketched in Fig.2.5b.
The capillary bridge force is a delta distribution F = J(s — sgit), only acting at
the critical surface separation, such that the area under the distribution gives the
capillary bridge energy Ey. Here too, red indicates the existence of a capillary
bridge and it can be seen that there is no force acting for surface separations smaller
than the critical surface separation s.;, even though a capillary bridge exists. For
comparison with the minimal capillary model the mean acting force is calculated as
Fp = Eg/Scrit- In the pseudo-potential representation this model looks like a square
well potential.

As we will see in the next chapter, many physical aspects of the system do not
depend on the detailed functional form of the underlying force. Therefore, it is
justified to neglect the detailed dependence of the force on the surface separation, s.
This suggests a certain universality for the investigated phenomena.

2.4. Driving methods

Because the energy of the random motion is dissipated, it is necessary to provide
some driving to inject energy into the system in order to maintain the random mo-
tion of the granular particles. If the driving is switched off the particles will all come
to rest as was experimentally studied by‘Son etal, 42008).

There are (also in nature) different ways through which the driving of a granular
system can be realized. This can be done by injection of air (as in sand storms which
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Fig. 2.5 The capillary bridge force F as a function of the surface separation between two particles s
for the (a) minimal capillary model and (b) thin-thread model. Below each graph we find the pseudo-
potential of each force. Although the capillary bridge force is always a dissipative force field and, there-
fore, especially not conservative, it helps to imagine the acting forces by looking at a pseudo-potential,
¢p. The formation of the bridge is hysteretic in both cases (minimal capillary model as well as thin-
thread model) which means that a collision (s = 0) has to occur in order to form a capillary bridge.
The existence of the bridge is indicated by red. Approaching particles are visualized as dashed lines
while solid lines denote retracting particles. In the minimal capillary model a constant bridge force, Fg,
independent of s is assumed and the capillary bridge energy is given by Ecp, = FgSgrit. In the thin-thread
model a delta distributed force F = (5(5 — scm) acts only at s¢it. The area under the distribution is the
bridge energy Ecp. For better comparison with the minimal capillary model an average capillary bridge
force is defined as Fg = Ecp/Scrit- In the pseudo-potential representation the thin-thread model looks
like a square well potential.
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are caused by strong wind), as well as by horizontal or vertical vibrations which
occur during earthquakes or by exertion of shear forces causing landslides. Other
possibilities are the rotation of a mill, which is often used in industrial applications
or, in numerical simulations, by a white noise stochastic thermostat. In the following
the driving mechanisms, which are used in the present work, are introduced.

2.4.1. Free cooling

Free cooling is a driving technique which is mainly used in simulations or theo-
retical approaches dBrilliantov and Péschel, ‘2004J). Due to the absence of gravita-
tional forces, which is assumed in this method, it is not easy to perform this driving
method in experiments. Nevertheless, experiments for the free cooling of a quasi
two-dimensional granular gas have been conducted (MaaR et al., 2008).

Free cooling is different from most other driving mechanisms because the driving
is not provided constantly over time, but is reflected only in the initial conditions of
the system. This usually means that the particle motion at the beginning is random
and then slows down over time through dissipation in the system. This situation
is well studied in the literature for dry granular matter dGoldhirsch and Zanetti,
‘1993 Brilliantov and Poschel, ‘2004) and a first study for wet granular matter in
one dimension is also available (Zaburdaev et al., 2006; Fingerle and Herminghaus,
’;06‘). This driving mechanism is used to study the structures which emerge from
a three-dimensional simulation of wet spheres and analyze the structures by means
of the fractal dimension. The structures that emerge out of the three-dimensional
simulation of wet grains can be seen in Fig.2.6. The results can be found in detail
in Ulrich, Aspelmeier, Roeller, Fingerle, Herminghaus, and Zippeliu§ dzoogaj) and
‘Ulrich, Aspelmeier, Zippelius, Roeller, Fingerle, and Herminghaus dzoogb).

2

7

2.4.2. Random force

The simplest form of driving (especially interesting in analytical calculations solving
the Boltzmann equation) is a random force which is a stochastic thermostat using
white noise® (see e.g. Visco et al, ‘200;). This means that the different stochastic
forces, x, acting on the particles are temporally and spatially uncorrelated and can
be written

KEOXE () = 27:00p8j0(t— 1), (2.12)

where angular brackets denote the average over the noise source, ; is the strength
of the driving, i,j are different particles, «,f are cartesian components of the d-
dimensional space, t,t’ are two points in time and ¢ with an index is the Kronecker
delta, whereas the function §(+ — ) is the Dirac delta function.

5. This is used in a calculation in Appendix/A
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Fig. 2.6 Structures which evolve out of simulations of more than 2.5 x 10° spherical particles. The
collisions between particles are elastic, but the capillary bridge interaction using the thin-thread model
with an event-driven algorithm is dissipative. The particles are contained in a cubic box where each
edge has length Lyox/d = 600, where d is the diameter of the particles.

2.4.3. Shaking

Another driving mechanism to excite granular media is by vertical or horizontal vi-
bration. This mechanism is present in nature, e.g. during earthquakes, and is also
used in industrial applications to optimize the transport of granular matter by flu-
idization dWarr et al.,}1995; Duran, zood). In experimental studies this is a favorable
driving mechanism because it is relatively easy to use. The setup is placed on a rea-
sonably large loudspeaker and can then be vibrated with different driving functions
using a function generator. The most common driving function in experiments is
a sine with an amplitude A and angular frequency w. The one-dimensional time-
dependent position of the container wall then reads

fa(t) = Asin (wt). (2.13)

Even though it is possible to use other functions like a triangular motion or even
white noise as a driving function, the simulations in this work are designed to be
easily comparable with experiments and therefore a sinusoidal driving function is
used. In many theoretical and numerical works about granular material, approxima-
tions of the sinusoidal motion by polynomials of first or second order (McNamara
and Luding, Qgﬂ) can be found. The simplest form of shaking in event-driven
molecular dynamics simulations is a sawtooth like motion in the limit of infinite
frequency and zero amplitude, because the wall is stationary and only provides a
certain energy input upon each collision of a particle with the wall. Because it is still
an open question how the exact form of the driving function influences the dynam-
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ics of the system, sinusoidal shaking is used in this work in order not to lose the
comparability with experiments.

Sinusoidal shaking is a straightforward method in molecular dynamics simula-
tions (both time- and event-driven), however, in the context of this work, a method
was developed to improve the performance of the standard approach in the case
of the event-driven algorithm by more than one order of magnitude. A detailed
description of this method can be found in Appendix B.

To characterize the strength of a sinusoidal driving function, the amplitude and
oscillation frequency can be used. In this work, however, two different variables are
used. The first parameter is the maximum kinetic energy, E,, which a particle can
obtain from a single collision with the wall (which is the parameter S in
@)) and is defined as follows:

1
Ey = Emvfu, (2.14)
with the mass, m, of the particle and the maximum velocity of the wall, for an
arbitrary driving function f;(t),

dfd(t)> _ (2.15)

Uy = Mmax <dt

In the case of wet granular matter Eq. is used in a non-dimensionalized form

E* = —. (2.16)

The second paramter is the maximum acceleration which is normalized with respect
to the acceleration due to gravity ¢

max (dzérfz( t)>
r= (2.17)
8
For the sinusoidal driving function of Eq.
Lo Aw)?
pr— 2mAw) (2.18)
Eqy
2
r= Awr (2.19)
8

is obtained. Sinusoidal shaking is used in chapters |3 to/6/and thus is the dominant
driving mechanism used in this thesis. The period of the sinusoidal driving with
angular frequency w is given by Ty, = 271/ w.
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2.4.4. Shearing

The second driving mechanism presented here, which is used in chapters [7 and
8lis shearing. Even though both driving mechanisms (sinusoidal shaking as well
as sinusoidal shearing) exert a sinusoidally varying force to the system, the main
difference is that for shaking the driving force is uniform within the system but is
changing sinusoidally with time and requires the existence of a physical boundary,
for example a flat, elastically reflecting wall as used in this thesis. For shearing it is
the exact opposite: the shear force is uniform in time but is changing sinusoidally
with the spatial position within the system. Furthermore, the driving force is di-
rectly applied in the volume of the system and therefore does not require a physical
boundary. Shear forces can be found wherever two surfaces are in motion relative to
each other and are therefore present in many natural as well as industrial systems.
Studying shear forces in granular systems experimentally is done by constructing
two counter-rotating walls, which are covered by one layer of particles (see for ex-
ample, Liao and Hsiau, 2010, and references therein). In simulations, shear forces
can be applied to the system through a space-dependent external force field, F(x),
acting individually on each particle. Sometimes it is favorable to use periodic bound-
ary conditions in simulations. Therefore, the width of the system is doubled, where
the second half of the system is a mirrored copy of the initial system. As a linear
shear profile would be non-differentiable at the transition from positive to negative
slope, a cosine-shaped profile is used in this work which reads

Fs(x) = Fsmax cos(27tx/Ly) (2.20)

and can be seen in Fig.]2.7 dHoover, 1983; Schulz et al., 2003; |Schulz and Schulz,
2006; Rahbari et al,, 2009). The magnitude of the force varies along the x-direction
in the system of width Ly, where Fymax is the maximal possible force. The forces,
however, do not change along the other lateral direction y, where the system is
of length Ly. In order to be able to perfom event-driven simulations, the space-
dependent cosine-shaped shear force is discretized such that the same force is acting
in a certain region Ax, which is approximately of the order of the particle diameter®.
In the three-dimensional system a gravitational force is also present, which leads
to a sedimentation of the granular particles at the bottom and resembles a density
close to random close packing. The mean kinetic energy of the system parallel, E; |,
and perpendicular, E |, to the driving is used as an order parameter in this system,
indicated by the orange arrows in Fig.[2.7]

2

6. The calculation of the next collision time leads to a quadratic equation if the particles experience
the same shear force. If the particles, however, experience different shear forces it involves a quartic
equation which has to be solved. To solve this resulting quartic equations, the quartic solver by
Don Herbison-Evans is used 1Herbison—Evan§, ﬁggj) as it shows good numerical accuracy.
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E, maximum shear force Fymax

sinusoidal force field

Fig. 2.7 Sketch of the flat system of width L, and length Ly with periodic boundary condition in the two
lateral directions and a elastically reflecting top and bottom plate. The space-dependent cosine-shaped
force field is shown at the red plane indicated by the arrows. One position, where the maximum shear
force, Fsmax, is acting is marked. Additionally, a gravitational force § is acting downwards. The kinetic
energy parallel, E;;, and perpendicular, E |, to the driving shear force serve as the order parameters
(orange arrows).

2.5. Particle size distribution

One way of avoiding crystallization in a system of hard spheres (see e. g. Santen and
Krauth, 2001; Laird and Davidchack, 2005) is to use slightly polydisperse spheres,
i.e., spheres of different diameters. In this work, a uniform distribution of particle
diameters is used as in Santen and Krauth 42001). The probability density function
reads

ﬁ for dmin <d < dmax
max min

par(d) = (2.21)
0 otherwise,

where d is the actual particle diameter and dmin (dmax) is the minimal (maximal)
particle diameter of the sample. The variance of the uniform distribution are given
by ‘75 = (dmax - dmin>2/12-

Polydispersity, 0}, is defined in this work as the normalized width of the distribu-
tion and reads for the uniform distribution
Oi  dimax — dum
o, = 4 _ Ymax _mm’ (2.22)

d 2v/3d

where 05 is the variance of the particle size distribution of Eq. and d is the
average particle diameter. Choosing a certain polydispersity, 0, the maximum and
minimum diameter is given by diax/min = d(1 & \/§ap). It is noted that the particle
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diameter is a positive number such that from dpin > 0 it follows that the polydisper-
sity is limited to values 0, < 1/ V3.

Table 2.1/shows the particle size distributions, which were used in the experiments
shown in this thesis. In Fig.[2.8 the probability density functions of the two different
particle size distributions used in simulations is shown. The polydispersity in sim-
ulations is 0, = 0.06 (black) and ¢, = 0.02 (red), which is close to the experimental
values. Unless stated otherwise the polydispersity is ¢, = 0.06 in simulations.

Table 2.1 Properties of the particles (Whitehouse scientific) used in the experiments shown in this
thesis. The polydispersity is approximated as it contains the uncertainty of the sieving process.

catalogue number  sieve fraction mean diameter d polydispersity o},

GP1060 1.00-1.12mm 1.06 mm 0.03
GP1215 1.18-1.25mm 1.22mm 0.02
GP1500 1.40-1.60 mm 1.50 mm 0.05
15 T
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Fig. 2.8 Probability density functions of the two polydisperse particle size distributions, which are
used in the simulations of this thesis. The polydispersity of the two samples is ¢, = 0.06 (black) and
op = 0.02 (red).



3. Phase diagrams of wet granular
matter — sinusoidal shaking

Phase transitions in condensed matter under thermally equilibrated conditions are
by far the best understood examples of collective behavior and the probably most
prominent example is the Ising model dIsing, 1924J; ‘Onsager, 1944). The astonishing
fact that a solid melts at a precisely defined temperature, although the thermal en-
ergy is broadly distributed among the many degrees of freedom, can be completely
apprehended from the principle of free energy minimization. Furthermore, the role
of thermal fluctuations, which lead to the striking universality near critical points,
was cast into a closed theory by means of the renormalization group (Wilson and
Kogut, ‘1974J). Hence, the physics of phase transitions at thermal equilibrium has
matured into solid textbook knowledge (see, for instance, Yeomans, 1992).

Phase transitions far from equilibrium, on the contrary, are still far from being
understood on such a general basis, despite their ubiquity and striking similarity.
Well-known examples that are currently of great interest range from collective pat-
tern formation in systems of molecular and micron scale (Fox

et al., 2002; Chakrabarti et al,, ) to transitions in social behavior (Farkas, 2002;
Vollmer et al., 2006; Sumpter, 2006), besides granular matter. Many of the peculiar

features of granular matter can be traced down to the dissipative nature of its grain
scale dynamics. This gives rise to a wide variety of complex collective phenomena,
and identifies granular matter as an interesting candidate for the investigation of
physics far from thermal equilibrium. It has been proved useful to describe the col-
lective behavior of a large number of grains with notions borrowed from the physics
of equilibrium phase transitions. For instance, granular matter can behave like a
solid, a liquid, or a gas ﬁaeger et al., 1996; Duran, ‘200&), depending on the balance
between energy injection and dissipation. As a particularly well controlled way of
injecting energy, vertical vibration has been widely employed and explored in de-
tail (Melo et al., 1995; Losert et al., 199gb; Umbanhowar et al., 1996; Wildman and
Parker, 200ﬂ;‘Prevost etal., ‘ZOOAJ; Gotzendorfer et al., ‘200%‘;‘G6tzendorfer et al.‘, 2006a;
‘Aranson and Tsimring, 2006; Huang et al.‘, zood Reis et al., ‘2006,' Clerc et al., %,-
Reyes and Urbach, 2008; ‘Pacheco—Vézquez et al., 2000; ‘Luding, ‘200&). While ‘classi-
cal’ research on granular systems tried to avoid any side effects due to cohesion, the
dynamical behavior of wet granular matter has been attracting more and more inter-

<.
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est of physicists recently 4Bocquet etal, 2002]; Herminghauﬁ, 2005; Mitarai and Nori,
2006). The energy dissipation mechanism in wet granular matter is dramatically
different from that of dry granular matter. In wet granular matter, the formation of
capillary bridges between adjacent particles (Scheel et al., 2004, 2008) gives rise to a
well defined energy scale in the system, which is absent in dry granulates (Herming-
haus, ’;o5). Since the interest of physicists has only recently turned to wet granular
matter, its dynamical behavior is still much less well understood than that of its dry
counterpart dHerminghaus, 2005; Mitarai and NoriJ, 200&).

In the present chapter, the dynamics of wet granular matter under vertical agi-
tation in a closed container is analyzed by means of numerical simulations. Aside
from the solid-fluid transition, which is well known from dry granular systems, a
second transition is presented which leads to the formation of a gas phase. While
the solid-fluid transition is determined by the force acting on the sample as in the
dry systems, the fluid-gas transition was found to be driven by the scale of the in-
jected energy. Firstly, the phase diagram is presented using elastic collisions and
it is demonstrated that many of its features are quantitatively independent of the
details of the ‘microscopic’ interaction mediated by the capillary bridges. This may
be viewed as some kind of universality in its own right. Secondly, the question is
addressed how the phase transitions are affected by inelastic effects in the impact
between grains and how the various transition lines scale with system parameters. It
is tried to distinguish what properties can be seen as "universal’ (depending only on
intrinsic parameters) and which have to be considered as non-universal (i.e., depen-
dent on extrinsic parameters, like the volume of the container). Additionally, these
findings are compared to experiments.

3.1. Elastic collisions

3.1.1. Numerical setup

To study the phase diagram of wet granular matter, molecular dynamics type simu-
lations are performed in two and three dimensions with ideally circular or spherical,
frictionless disks or spheres, each with mass m = 1. The average particle diameter,
d, is chosen to be d = 1.0, while the polydispersity was 0, = 0.06 (cf. Sec.2.5). In or-
der to match the conditions of most experiments done on this topic (petri dish), the
particles are confined in a flat container using periodic boundary conditions in the
lateral directions, while the top and bottom elastically reflect particles. The attrac-
tive pairwise hysteretic interaction for capillary bridges in time-driven simulations
was modeled with the minimal capillary model and in event-driven simulations
with the thin-thread model (see Sec.2.3). The repulsion between particles is mod-
eled by a Hertz-potential in the time-driven simulation and a hard-core repulsion in
the event-driven simulation. A gravitational force with acceleration due to gravity,
g = 1, acting in the vertical direction is included in the simulations as well. The
liquid content per grain is assumed to be the same everywhere and furthermore
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instantaneous bridge formation is assumed as the particle surfaces touch. Energy
is injected into the container by vertical shaking with a sinusoidal driving function.
At the beginning of each simulation the particles are equally distributed within the
container on a regular lattice and heated to a granular temperature of T, /Es = 20.0,
which corresponds to a gas state.

3.1.2. Stationary states

Since a two-dimensional system with 1200 particles is simulated, different stationary
states are found for different driving parameters of the sinusoidal shaking. States
of lateral homogeneous areal-density appear in this system, which are considered
to be solid- (s), fluid- (f) and gas-like (g) as shown in Fig.3.1. Aside from these
homogeneous states, all three possible combinations of two coexisting phases can
be seen. This is a solid-fluid (sfc), solid-gas (sgc) and fluid-gas coexistence (fgc) and
can also be seen in Fig.3.1. To detect the state in which the system resides, order
parameters, which are defined and explained in appendix [3.A to this chapter, are
used.

In the main panel of Fig.3.2 the areal density as well as the granular tempera-
ture, T, = (Ekin), (‘Boltzmann constant’ kg = 1 and number of degrees of freedom
faf = 2) in units of the rupture energy, Ey,, for a fluid-gas coexistence are plotted as
a function of the lateral coordinate, on the same scale as the simulation box above.
The granular temperature is found to vary over two orders of magnitude. This
clearly demonstrates that the observed phenomenon is by no means akin to coexis-
tence between thermodynamic phases, but is an intrinsically non-equilibrium state.
The appearance of a cold dense phase in coexistence with a dilute hot phase com-
plies qualitatively with earlier results obtained with magnetically cohesive granular
beads dBlair and Kudrolli, 2002‘) or a thin vibrated granular layer of dry granular
spheres(Prevost et al., 2004J; Gotzendorfer et al., 2005; Pacheco-Vazquez et al., 2009).
Although that system does not exhibit a defined energy loss scale, as opposed to
the system studied here, the essential feature is similar: in the dense phase, where
the mean free path is small, the collision frequency is high. This gives rise to strong
dissipation, and hence to very effective cooling. The figure also shows a comparison
of the time- and event-driven simulation technique for otherwise identical system
and driving parameters (solid versus dashed line). Reasonable agreement can be
identified considering the fact that the latter is faster by more than a factor of hun-
dred. Deviations occur mainly where density is high; this is expected since at high
density, the thin thread model strongly underestimates cohesive effects (zero contact
force). It is noted that the different models also have some noticeable influence on
the interfacial density profile (Fig.3.2).
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Fig. 3.1 Two-dimensional time-driven molecular dynamics simulations of 1.2 - 103 wet granular spheres
using the minimal capillary model. Vertical sinusoidal shaking is performed and periodic boundary con-
ditions in the horizontal direction are used. Collisions between particles (and the wall) are assumed to
be perfectly elastic. Three different homogeneous phases solid, fluid and gas are observed. Depending
on the driving parameters, all possible combinations of states can be seen where two states coexist.
The colors of the particles are calculated according to their individual kinetic energy normalized by the
rupture energy. The particles are slightly polydisperse (¢, = 0.06) with a mean diameter d = 1. The
system is 9d x 4004 particle diameters large, the rupture distance, normalized by the particle diameter,
is s¢rit/d = 0.0711, the capillary bridge energy is E¢y, = 1.14 and the mass of one particle is m = 1.
The values of the driving for the different states are as follows: solid: I' = 30.0 and E* = 0.0022, fluid:
I' =30.0and E* = 0.86, gas: I = 30.0 and E* = 1.76, solid - fluid: I' = 1.6 and E* = 0.69, solid -
gas: ' =1.15and E* = 1.76 and fluid - gas: I' = 30.0 and E* = 1.27.
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Fig. 3.2 Box on top: snapshot of molecular dynamics type simulation of 1200 particles at parameters
where fluid-gas coexistence occurs. Blue grains have at least one capillary bridge, red grains have
none. Main panel: Plot of the granular temperature (solid red curve) and the number density (solid
black curve) obtained in time-driven MD simulations. The temperature varies laterally over two orders
of magnitude, being high in the gas, but very low within the fluid plug. The curves are also displayed for
event-driven simulations using the thin-thread model (dashed curves). Driving parameters are I’ = 15.0
and E* = 1.42 other system parameters are similar as those used in Fig.[3.1]

3.1.3. Elastic phase diagrams

The full phase diagram for a two-dimensional time-driven molecular dynamics sim-
ulation, which is obtained for variation of the amplitude A and frequency w of the
external driving, is presented in Fig.[3.3} It can be observed that for I" below unity,
the system behaves as a solid for all frequencies. This happens because under these
conditions, the gravitational force on the granular pile, as viewed in the rest frame
of the system, is always pointing downwards, although sinusoidally varying in mag-
nitude. As a consequence, the grains are never lifted from their support, and the
position of each grain within the sample remains fixed as if there was no thermal mo-
tion induced by the driving (Duran, @). This represents a solid condensed state.
As T is increased above unity by increasing the amplitude, A, the pile periodically
experiences a lifting force. For a dry granulate, this leads to fluidization at a certain
threshold, I, ~ 1.2 =: I. dry in experiments dDuranJ, ‘200&; ‘Kim et al., ‘2002J) showing
a dependence on the driving frequency and the layer depth. The fluidization itself
manifests by the onset of a mild movement of the grains, as it can be revealed by
direct visual inspection. As liquid is added to the granulate (this corresponds, in the
context of the minimal capillary model, to a non-zero attractive force with non-zero
rupture separation), I increases strongly. This corresponds to the dramatic differ-
ence in mechanical strength observed between a dry granulate, which flows almost
like a liquid, and the visco-plastic texture of a wet granulate ( Herminghaui ‘200%).
It was shown before that the increase in I, can be understood from the attractive
interaction due to the liquid capillary bridges forming between adjacent spheres
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dScheel et al., 2004; Herminghaus‘, ‘2005). In particular, the excess I' — I'y,y must be
merely large enough to overcome the forces exerted by these bridges by virtue of
the surface tension of the liquid. The transition from the solid to the fluid phase is
studied in more detail in chapter 4} Additionally, a transition from the fluid to the
gas phase is observed, which, at sufficiently high I', also shows a coexistence region.
The phase boundary is indicated by a dashed black line in Fig.[3.3. Above this line,
a dense fluidized phase can coexist with a dilute gas-like phase. The latter shows
up as a ‘gas bubble’; an example was shown in Fig. 3.1} The term ‘gas bubble” here
and through this thesis refers to the volume of the system in which a granular gas
is found.
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Fig. 3.3 Phase diagram of 1200 two-dimensional elastically colliding wet spheres using the time-
driven molecular dynamics simulation shown in the plane spanned by the driving frequency, w, and
the peak acceleration, I'. The dashed line indicates the transition from fluid- to the gas-like state or
the corresponding coexistence. The system parameters are the same as in the snapshots of Fig.[3.1]
To obtain the phase boundary in the two-dimensional phase diagram, a Delaunay triangulation of the
simulated data points is performed and the mid-points between two points, which belong to different
phases, is drawn as a white disk denoting the phase boundary. This can lead to a strange behavior that
more than one transition point is marked for a constant value of e.g. I" if there is no data point at this
respective value of I'. Such points were removed by hand if this significantly improves the clarity of the
presentation.

An obvious feature of Fig.[3.3)is that the data suggest the phase boundary between
the fluid state and the fluid-gas coexistence to be a straight line meeting the origin
of the diagram (dashed line). The quantity I'/w, which is proportional to the peak
velocity of the container walls, is constant along this line. This is interesting in
regard to earlier experiments using a different agitation scheme dGeromichalos etal,
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’;03‘). There, a pronounced transition, reminiscent of condensation from a gas into
a viscous fluid, occurred when the peak velocity of the container walls came below
a critical value, v.. This value was found to correspond to the kinetic energy a bead
must have in order to rupture the capillary bridge to a neighboring bead. It is given
by %v% = E4 , where m is the mass of the bead and Ey, « d?y\/w is the energy
needed to rupture a capillary bridge dHerminghaus, 2005; Willett et al., 2000; Pitois,
2000; Pitois et al., 2001; Lian et al., 1998; Mikami et al., 1998; Simons and Fairbrother,
2000), d is the mean diameter of the beads and w denotes the liquid content of the
sample, defined as the volume of the added liquid divided by the total volume of
all glass spheres. Following this view, the dimensionless variable ‘driving energy’,
E* = mv?,/2Ey, was introduced in Sec.2.4.3 as a control parameter. By varying the
driving amplitude, A, and driving frequency, w, the two parameters I" and E* can
be controlled independently.

It is enlightening to plot the observed transitions in the plane spanned by I" and
E* on log/linear scale to better reveal the details. The result is shown in Fig.[3.4(a).
The transition from the solid (gray) to the fluid phase (blue) or, at higher E*, from
a solid-gas coexistence (white) to the gas phase (orange) is represented by a more
or less horizontal line, indicating that this transition is independent of energy, but
driven by acceleration (I'). In contrast, the fluid phase is separated from the fluid-
gas coexistence region (white) by a vertical line, indicating a transition driven by
injected energy (E*), but independent of force. The fluid-gas coexistence region
is bounded by a second line located at larger driving energy, which indicates the
transition to a homogeneous gas-like state (orange). In this transition line, a bulge
is observed where the excitation amplitude A equals the rupture length s of the
capillary bridges (solid line).

In order to investigate whether the observed behavior is of appreciable univer-
sality, the interaction potential used in the simulations was varied. In Fig.[3.4(a),
the circles represent simulations assuming a constant capillary force upon retraction
(minimal capillary model), while the squares were obtained assuming a square-well
retraction potential (thin-thread model, only the phase boundaries are shown as
black squares with white edges). As the figure clearly shows, even these extreme
cases give almost identical results. The only significant difference is the position of
the solid to fluid phase boundary at small driving velocities, which is expected due
to the vanishing contact force for the thin-thread model. The other details found in
the phase transition lines do not seem to depend crucially on the interaction char-
acteristics. The only relevant ingredient of the latter is that they are dissipative in
the proposed hysteretic sense. A second phase diagram for larger capillary bridge
energy is shown in Fig.[3.4(b). It is visible that the appearance of the bulge in the
fluid-gas coexistence to gas phase boundary is indeed shifted along with the line,
where the driving amplitude A equals the rupture length 5.

The solid to fluid phase boundary in the phase diagrams of Fig.[3.4]does not end
in a critical point, which is impossible due to the symmetry breaking involved in
this phase transition.

/4
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Fig. 3.4 Two different phase diagrams from simulations with 1200 particles in two dimensions for
different capillary bridge energies as denoted in the respective figure caption, where Fg = mg is the
graviational force acting on a particle. The horizontal boundary of the solid phase is clearly obtained, as
well as the vertical fluid-gas boundaries. At the solid black curve the excitation amplitude A equals the
rupture length st of the capillary bridges. (a): The arrows at the top indicate the values of the respective
phase transition. Circles denote time-driven simulations using the minimal capillary model while squares
denote event-driven simulations using the thin-thread model. For the thin-thread model only the phase
boundaries are shown (black squares with white edges). The solid red line is a theoretical prediction for
the solid-fluid transition which is derived and explained in chapter/4. (b): Only the event-driven phase
diagram using the thin-thread model is shown.
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In Fig.[3.5, the fluid-gas coexistence region is replotted in the plane spanned by
the driving energy, 502, , and the capillary bridge energy, Eg,. They are rescaled as
Exin := mv2,/2Fssqit = v2,/28Serit and Eq, 1= Eqp / FeScrit, Tespectively, where Fy = mg
is the graviational force acting on a particle. Obviously, Ey, o Eg, for both transition
lines, supporting that this transition is exclusively governed by the bridge rupture
energy. The gravitational energy scale naturally separates out, in contrast to dry
granulates (Gotzendorfer et al., 2005).

Performing three-dimensional simulations® shows that the influence of the dimen-
sionality is significantly large. The transition line shifts from E* = 1.02 +0.02 in
two dimensions to E* = 2.08 &£ 0.05 in three dimensions, which is, within the mea-
surement error, a shift by a factor of two. This is reasonable because the number of
nearest neighbors is increasing from 6 in two dimensions to 12 in three dimensions
for monodisperse spheres. This is at the same time the maximum number of capil-
lary bridges which have to be broken to drive the particles into a gas phase. This
supports the view that this transition is exclusively governed by the bridge rupture
energy. It would be interesting to test if this scaling carries over to other dimensions
than two or three.

=
o

driving energy Eyin

0 2 4 6 8
capillary bridge energy Eg,

Fig. 3.5 Variation of the transition points with the surface tension, as obtained from simulations. The
transition energies scale precisely with E¢,. The slopes yield the critical (scaled) driving energies E* as
1.00 4 0.09 and 1.52 + 0.02, respectively (arrows in fig.[3.4{a)) The quantities were rescaled as follows
Ekin = %U%;/ngcrih Ecb = Ecb/FgScrit-

3.2. Theoretical description

It is now tried to understand these findings in a more general framework. From the
‘traditional” conditions invoked for the description of equilibrium phase transitions,
only the homogeneity of the lateral pressure carries over to driven steady states,
due to the required force balance at the phase boundaries. In contrast, the familiar
uniformity of temperature breaks down. In what follows, the mechanism by which

1. System parameters: 1.2 X 10° particles, box size 84 x 192.5d x 192.5d, syt /d = 0.0711, Eg, = 1.14.
Not shown in a graph.
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the symmetry in the formerly homogeneous system is broken, and how the system
finds its steady state within the broken symmetry is sought.

The power injected into the system from the oscillating walls, Py,j, must be bal-
anced at each lateral position within the sample by dissipation, Pgiss. Assuming
a certain velocity distribution for the grains, both quantities can be evaluated in a
straightforward way, such that the net power AP(T,) = Pgiss — Ppnj can be obtained
as a function of temperature dFingerle and Herminghaus, 2008). Clearly, in a dis-
sipative system like the one examined, the velocity distribution will deviate from
the “usual’ Gaussian (cf. Appendix |A), exhibiting non-Gaussian ‘tails” and broken
equipartition of energy (Brey and Ruiz—Monteroﬁzooq‘). However, these affect only
a small fraction of the particles (Rouyer and Menon, 2000) and are of minor impact
on the average collision frequency, which in turn determines the dissipation rate. In
order to compute the above-mentioned quantities, it thus appears sufficient to use a
Gaussian velocity distribution for the sake of simplicity.

Fig.3.6/shows the obtained result, displayed for three values of the driving energy,
E*. For E* < 0.67, only one stable (i.e. positive slope) zero is obtained, which
is at low temperature. It corresponds to a moderately dense state, which has just
enough free volume for the critical separation s to be exceeded frequently enough
to balance the injected power, Py,;. On the other hand, for E* > 2.22, again only one
stable zero exists, but this corresponds to a high temperature. It represents a dilute
phase, whose temperature is determined mainly by the balance of the energy uptake
from the motion of the boundaries with the dissipation due to the ‘wet” impacts with
them.
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Fig. 3.6 The net power, AP = Pyiss — Py, as a function of the granular temperature. AP is multiplied
by the granular temperature here in order to achieve a clear presentation of the data in a single graph.
Depending on the driving energy, E*, either one (gray) or two (black) stable zeros are obtained, corre-
sponding to a single phase or two-phase coexistence, respectively. The arrows denote the response of
the system to small fluctuations. Figure taken from &Finqerle et al.,2008).

At intermediate velocities (black curve in Fig.[3.6), two stable zeros (black circles)
are obtained, another for low and one for high temperature. This is to be identified
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with the fluid/gas coexistence observed in the simulations for intermediate veloci-
ties. Since this continuum theory does not take gravity into account, it is intrinsically
independent of the parameter I" used in Fig.[3.4, and thus corresponds to the verti-
cal lines in the phase diagram. The mean field model predicts the coexistence in the
stripe 0.67 < E* < 2.22 of the phase diagram, which compares quite favorably with
Fig.[3.5/for I' > 1 (where gravity is irrelevant) given the crudeness of the involved
assumptions.

3.3. Inelastic collisions and comparison with experiments

The assumption of elastic collisions between particles is a convenient way to perform
simulations and get first insight into the behavior of wet granular matter, because
it is possible to study the pure influence of the capillary bridges. However, elastic
collisions between particles are not very close to the behavior of real granular mat-
ter which always undergoes inelastic collisions. Therefore, inelastic collisions?, as
described in Sec.2.2, are incorporated in the simulation in order to obtain quantita-
tive agreement between simulations and experiments. The numerical results in this
section are obtained by event-driven molecular dynamics simulations using the thin-
thread model which showed almost perfect quantitative agreement in Fig.[3.4(a).

3.3.1. Experimental setup

Fig.[3.7is a sketch of the experimental setup. Glass spheres with diameters 1.06 mm,
1.22mm and 1.5 mm (Whitehouse scientific, GP1060, GP1215, GP1500) are used as
the granular sample (see Sec.[2.5). The glass beads were cleaned subsequently with
ethanol, acetone, and Millipore water, and dried in an oven before use. The glass
beads were placed into a flat cylindrical glass container, with a glass lid mounted on
a separate stand. The latter fits well enough into the container to prevent glass beads
from exiting, but enables free exchange of air, such that the gas pressure inside the
cell was kept at atmospheric pressure. The height of the glass bead fill, /1, was well
below the total height of the cell, H, which could be adjusted by vertically moving
the glass lid. A certain amount of wetting liquid was mixed into the sample before
the experiment. Water, which has a surface tension of v ~ 72mN/m, was mostly
used to wet the sample. Silicone oil (AK 5, Wacker; 7 ~ 21 mN/m), was also used
for comparison. Both liquids wet the glass surface well, with a contact angle below
10 degrees. The liquid content, W, is defined as the ratio between the volume of the
added wetting liquid and the total volume the sample occupies (i.e., the area of the
sample cell times the height of the granular pile, /). The container, which has a di-
ameter of 145 mm, was mounted on an electromagnetic shaker (Tira TV5880/LS). A
sinusoidal signal from a function generator is used to drive the shaker. The strength

2. The collisions between a particle and the wall is for simplicity still assumed to be elastic. This is
sometimes also used in literature (for example Grossman et al., ﬁggj)
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Fig. 3.7 Sketch of the experimental setup. Function generator, strobe light source and the high speed
camera are synchronized with each other so that the images are captured at a certain phase of each
vibration cycle. An example of a top view of the sample is shown in the inset photograph on the top
right.

of the vibration is measured by an accelerometer (Kistler 8702B1ooM1). The sample
is illuminated with a strobe light (Helio Strobe Beta A2) and viewed from top by a
high speed camera (PCO 1200s). The camera is externally triggered by the function
generator so that the image is captured at the same phase of each vibration cycle.
All measurements are taken after the added wetting liquid has been distributed ho-
mogeneously within the sample by shaking the sample at a low frequency f < 20Hz
and high acceleration I' ~ 10 for few minutes.

3.3.2. Results and discussions
3.3.2.1. Observations in experiments

As the frequency and amplitude of the drive are varied, a number of characteristic
changes in the appearance of the sample are observed. At low acceleration, the glass
beads follow the harmonic vertical motion of the container, but no site exchange
processes take place. This can be assessed most conveniently by the strobe light illu-
mination, which reveals a completely static sample in this case. As the acceleration
is increased, however, relative movements of the beads are observed, or even the
appearance of a ‘bubble’ of a particularly ‘hot” granular gas, surrounded by a ‘fluid’
(i.e., dense but mobile) phase.

The phase diagrams are measured by keeping the driving frequency, f, at a certain
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value and varying the peak vibration acceleration, I". The transition from the solid
(s) to the fluid (f) phase is determined experimentally by first completely fluidizing
the sample, followed by slowly decreasing I" until the particles stop moving which
is detected by direct visual inspection. This criterion turned out to be better defined
than just increasing I" and detect the start of movement of particles: This is assumed
to be due to the difficulty to initialize the system with reproducible packing geome-
try. The transition from the fluid phase to the fluid-gas coexistence (fgc) occurs at an
acceleration where a ‘gas bubble’ (see the top view image embedded in Fig{3.7) nu-
cleates. After nucleation, the (circular) granular ‘gas bubble’” grows spontaneously
to a certain size. As I is decreased again, the size of the gas bubble decreases
continuously to zero, which indicates that there is a significant hysteresis for this
transition. Within the hysteresis regime, the ‘gas bubble’ is unstable and fluctuates
strongly in size. These fluctuations make a precise determination of the point of
vanishing bubble size very difficult. Therefore, The f-fgc transition is rather defined
as the acceleration at which nucleation is observed. It is clear that the fluctuations
of the gas bubbles close to the phase boundary are worthy of further investigations.
The transition from the fluid-gas coexistence (fgc) to the gas (g) phase again takes
place at a well defined value of I', and leads to a completely homogeneous gaseous
state of the sample. The abbreviations s, f, sfc, sgc, fgc and g are henceforth used for
solid, fluid, solid-fluid coexistence, solid-gas coexistence, fluid-gas coexistence, and
gas phases, respectively.

3.3.2.2. Phase diagram: experiments vs. simulations

Fig.[3.8 shows the experimentally determined phase diagram in both I'-f and I'-E*
planes. The s-f boundary is located at I' ~ 1.9, only weakly dependent on the driv-
ing frequency, f. It therefore lies higher than the corresponding transition for dry
granular matter (I' ~ 1.2 (Duran, 2000; Kim et al., ‘2002J)). This increase represents
the enhanced mechanical stability of the granulate due to the network of capillary
bridges forming between the grains. The independence of the critical acceleration
upon the frequency of the driving underscores its physical significance. In fact,
since the acceleration is directly related to a force, this transition has been identified
as mainly ‘force driven’, which is supported by this experiment. In the fluid-gas co-
existence regime (fgc) (cf. photograph in Fig.[3.7), the size of the ‘gas bubble” grows
with the driving amplitude, while keeping its circular shape. During this growth,
the surrounding fluid phase is pushed aside, and the height of the granular fluid in-
creases until it reaches the top of the container. When the drive is increased further,
the size of the ‘gas bubble’ saturates, and the density difference between the gas and
fluid phase decreases until the sample finally enters a homogeneous gas phase. This
corresponds to approaching the boundary between the coexistence regime (fgc) and
the gaseous phase (g).

As shown in Fig. 3.8(b), the f-fgc transition occurs at a certain driving energy,
E*. This strongly suggests that this transition is linked to a certain characteristic
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Fig. 3.8 Phase diagram of water wetting glass spheres with diameter 4 = 1.5 mm and liquid content
W = 1% in driving acceleration I" - frequency f plane (a) and I” - driving energy (E*) plane (b). Filling
height of the sample is 55 % of the container height H = 6.6mm. Regions color coded by gray, blue,
white and orange correspond to solid (s), fluid (f), fluid-gas coexistence (fgc) and gas (g) phases. The
white unlabeled regions in the current and following plots are unexplored due to the limitation of the
apparatus. The solid black dot corresponds to the converging point of the f-fgc and fgc-g transition lines.
The white dashed line indicates A = d = 1.5mm, where A is the vibration amplitude. The experiment
was performed by K. Huang.

kinetic energy per particle-wall collision. As the simple mean-field model in Sec.3.2
predicts, the (fgc)-(g) boundary should be just parallel to the (f)-(fgc) boundary, at
slightly higher energy. This is clearly not the case: the observed structure of the
phase boundary is much more complex. Particularly prominent is the sharp back-
ward bend which occurs at I' ~ 25g =: I}.

A glance back at Fig. 3.8(a) shows that the f-fgc and fgc-g transition lines in the
phase diagram approach each other as the driving frequency decreases (Fig.[3.8(a)).
They seem to intersect at f. ~ 27 Hz and I. ~ 3.0. This point can be accurately
detected by varying both the driving frequency and acceleration. The driving fre-
quency, f, is continuously decreased, while the size of the gas bubble is kept maxi-
mal by varying I', until the gas bubble vanishes. The data points shown in Fig.[3.8
are averages of four measurements each, and the error bar is within the size of the
data points. In an attempt to rationalize this finding, it is noted that f. compares
favorably with a natural time scale t; of the system, which can be derived from
the attractive capillary force and the bead mass, m. Setting t, := \/m/7y, we have
fo = 1/(2mty) ~ 45Hz, which is not far from f.. This clearly must be investigated
in further detail.

It was shown in Sec.[3.1) using elastic collisions that the f-fgc transition occurs at
E* =1, where E* is the kinetic energy injected by one collision with the wall nor-
malized by the rupture energy Eg,. In the experimental phase diagram shown in
Fig/3.8(b), it can be observed that the fluid to fluid-gas coexistence (f-fgc) transition
occurs at E* ~ 2.5, which is significantly larger than unity, as obtained before in elas-
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tic simulations. This shift is interpreted as being due to the influence of inelasticity
in the collisions, frictional forces and dimensionality.

To support this view, in Fig.[3.9 the phase diagram is presented for slightly inelas-
tic collisions with a coefficient of restitution of ¢ = 0.96. All other system parameters
are identical to the one used in the phase diagram shown in Fig.[3.4(a). Comparing
these two phase diagrams (Fig.[3.4 vs. Fig.3.9) shows that the two mechanisms for
force and energy driven phase transitions, which appear as vertical and horizontal
line, are similarly obtained, but the f-fgc transition indeed occurs at E* ~ 1.84 £ 0.09
well above E* = 1.02 £ 0.02, which is in qualitative agreement with the experimental
findings. Performing three-dimensional simulations? shows that the transition line
shifts from Ex = 2.08 & 0.05 in the elastic case to Ex = 4.36 & 0.14 in the inelas-
tic case with a coefficient of restitution of ¢ = 0.96. This shift is, within the error
bars, almost by the same factor as in the two-dimensional case. The small remaining
difference can be understood in terms of number of layers, which was 3.0 in the
two-dimensional case and 3.24 in the three-dimensional case. This will be discussed
in more detail in Sec.[3.3.2.3.

The bulge which was observed in the phase boundary of the fluid-gas coexistence
and gas phase (in the phase diagram using elastic collisions) vanishes completely
and the phase boundary in the inelastic case is then given by a straight line. The
most significant difference between the phase diagrams of elastic and inelastic par-
ticle interactions is that a third coexistence region appears which must therefore be
caused by the inelasticity. In order to test if this new coexisting region is solely
induced by the inelastic collisions or by some interplay between the capillary inter-
action and the inelasticity, a simulation of dry granular matter is performed with the
same coefficient of restitution, e = 0.96, but no dissipation through capillary bridges,
Eg = 0. The resulting phase diagram of dry granular matter is shown in Fig.[3.10|
and indeed only this newly appeared coexistence region, which is present in the
phase diagram of inelastic wet granular matter in Fig. 3.9} is visible. Furthermore,
the solid black line in Fig.[3.170 indicates where the amplitude of the driving equals
one particle diameter and it can be seen that the coexistence occurs only if the am-
plitude of the driving is close to a critical driving amplitude, A.i;. The dependence
of Agit on the inelasticity, € is discussed in more detail in Sec.]3.3.2.4. This seems to
be a geometry-driven effect which is intimately connected to inelasticity. There were
several coexistence phenomena reported in different settings of dry granular matter
so far dEggersJ, ‘1999; Javier Brey et al., 2001; Wildman and Parkeﬂ, 2002; Prevost et al.,
‘200 1, Gotzendorfer et al., ‘200;; Pacheco-Véazquez et al.‘, ‘2000‘). However, in contrast
to the system reported in Eggers d;ggg); Javier Brey et al. dzool‘); ‘van der Weele et al.‘

2001), the coexistence in the present system appears completely without introduc-
ing a spatial inhomogeneity in the system and is stationary in contrast to Moon et al.
2001). Furthermore, the particles in the system studied in this chapter are polydis-

3. System parameters of the inelastic simulation: 1.2 x 10° particles, box size 94 x 192.5d x 192.5d, on
average 3.24 layers, 5., /d = 0.0711, Eg, = 1.14.
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Fig. 3.9 Phase diagram of 1200 two-dimensional granular disks with a coefficient of restitution ¢ = 0.96
for collisions between particles using the thin thread model. Other system parameters are identical
to the ones used in the phase diagram of Fig.[3.4(a). A third coexistence region is emerging by the
incorporation of inelastic collisions, which appears at a constant driving amplitude (black line, with A =
0.34d.

perse and are neither a binary mixture of particles nor monodisperse (Wildman and
Parker, 2002; Pacheco-Vazquez et al., zood) and the system is confined by a top lid
such that the system is not open in contrast to the one used in ‘thzendorfer et al.‘
dzoo:‘); ‘Pacheco—Vézquez et al] dzoo&). Last but not least, the coexistence does not in-
volve a solid phase or crystallized parts dPrevost et al.‘, ‘2004J; Gotzendorfer et al., 2005;
‘Pacheco-Vézquez et al., 2009). Therefore, it seems that the fluid-gas coexistence in
dry granular matter observed in this thesis is a phenomenon not reported in litera-
ture so far. However, this needs further investigation for a concluding identification
of the underlying mechanism.

As the inelasticity is increased to a coefficient of restitution of ¢ = 0.8, the phase
diagram is obtained, which is shown in Fig.3.11. It can be seen that both the usual
fluid-gas coexistence region and the fluid-gas coexistence region caused by the in-
elasticity increase their size in the phase diagram and therefore emerge in a larger
parameter range of the driving. Obviously, both coexistence regions start to merge,
suggesting a superposition of both mechanisms. The solid black line in Fig.[3.11)indi-
cates where the driving amplitude equals one particle diameter, which is in approxi-
mate quantitative agreement with the experiment shown in Fig.|3.8(b). Furthermore,
the position of the horizontal s-f transition line agrees quantitatively with experi-
ment. The solid-gas coexistence in this phase diagram is not presented because it is
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Fig. 3.10 Phase diagram of dry granular matter with Ec, = 0 and coefficient of restitution ¢ = 0.96.

Except for the height of the system, which is 18 - d, all other parameters are identical to the ones used for
1 2
the phase diagram in Fig. 3.9] The axis of the driving energy is normalized as E; = Zmng?;)

is the mass of one particle, g is the acceleration due to gravity and d is the mean particle diameter. The
solid black line denotes where the amplitude of the driving equals the mean diameter of the particles.

, where m

outside the range of simulated driving amplitudes*.

3.3.2.3. Scaling of the f-fgc transition

The variation of the positions of the transition lines, as different system parame-
ters are varied, is now investigated, in order to check the ideas put forward above.
Fig. 3.12 shows phase diagrams for different liquid content, W, and particle diam-
eter, d. As the liquid content and the particle diameter change the rupture energy
of capillary bridges, E, & R*>yy/W, varies. By choosing the rescaled driving energy,
E*, as the abscissa, the data for the f-fgc transition collapse on a single line within
experimental scattering. This indicates that this transition is indeed dominated by
the rupture energy alone.

Additionally, the surface tension, -, of the wetting liquid was varied since it is
connected to the capillary bridge force as Fp « 7yd. As shown in Fig.[3.13, phase
diagrams for different wetting liquid are investigated for d = 1 mm particles. Again,
approximate data collapse for the f-fgc transition is observed at high peak acceler-
ations I'. This confirms that the scaling with rupture energy of capillary bridges
in this region is appropriate and viscosity effects can be neglected in first order
approximation, which is in agreement with the results shown in Fig.[3.5 for elastic
simulations.

The influence of system dimensions on the observed phase transitions by varying
the sample height (k) and the container height (H), as shown in Fig(3.14, was also
investigated. While the fgc-g transition line shifts substantially to the right as H is in-
creased while / is kept constant, the f-fgc transition line remains almost unchanged.
In contrast, changing the sample height, /1, at constant H mainly affects the f-fgc tran-
sition, but not the fgc-g transition. It is concluded that, while the fgc-g transition
is determined by container size and should therefore be considered ‘non-universal’,

4. The value of the driving amplitude was limited in order to be able to use certain optimization
techniques to improve the speed of the simulation program.
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Fig. 3.11 Phase diagram using the thin-thread model and inelastic collisions with a coefficient of
restitution of e = 0.8. All other parameters are the same as used for Fig.[3.9] The fluid-gas coexistence
regions induced by the capillary interaction and the inelastic collision start to merge. The solid black line
states where the amplitude is equal to the diameter of one particle. In the inelastic case, the inflection
point of the granular temperature is used to detect the phase boundary. The temperature change along
the white line is shown in appendix[3.A.1.2]
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Fig. 3.12 Phase diagrams for water-wetted glass spheres at different liquid content W and particle
diameters d in the I'-E* plane, where E* is the driving energy rescaled by the rupture energy of cap-
illary bridges. Heights of the granular sample and the container are & = 3.6mm and H = 6.6mm
correspondingly. Experiment performed by Kai Huang.
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Fig. 3.13 Phase diagram of 1 mm glass spheres wetted by water and silicone oil in I'-E* plane. The
surface tension of water is more than three times that of silicone oil. Other parameters are: liquid
content W = 1%, h = 3mm and H = 9.1 mm. Dashed lines correspond to A = d, the gray dashed
line serves as a guide to the eye. Experiment performed by Kai Huang.

the f-fgc transition is mainly governed by the sample itself. Furthermore, it is ratio-
nalized qualitatively how the dependence of the f-fgc transition upon the height of
the sample comes about. As it is illustrated in Fig/3.15, the shift of the f-fgc transi-
tion line may be due to the increased number of collisions involved in the injected
energy’s travel from the container bottom (where it is injected) upwards through the
sample. If the average number of collisions required for the energy to reach the top
layer is 1., the effective energy which reaches the top layer is Eop = EianZ”f, where ¢
is the restitution coefficient of the collision between particles, and Ejy;, is the energy
injected through collisions between bottom layers of the sample and the container.
If the energy of the top layer exceeds the capillary bridge energy, Eip > Eqp, par-
ticles on top layers will be driven into a gaseous phase. For larger sample heights,
h, the dissipation of energy within the sample increases and therefore more energy
injection is needed to meet the criterion Ep, > Ej;. This may explain the shift of the
fluid-coexistence (f-fgc) transition line to a higher value at increased /.

To support this scaling, the critical driving energies obtained by simulations for
both energy driven phase boundaries, indicated by the arrows on top of Fig./3.11} are
shown in Fig.3.16(a) as a function of the coefficient of restitution, e. As shown for
the f-fgc transition in Fig.[3.16(b), the average number of particle collisions per wall
collision, ., is changing with e. It is reasonable to assume that each layer of particles
collides at least once per oscillation cycle of the driving with the layer above, such
that n, is expected to be larger than the number of intra-layer collisions, n;., which
is ny. = np, — 1 = 2 in the simulations shown in Fig.]3.16(a), where 7} is the number
of layers>. As seen in Fig.[3.16(b), the values of 7, are safely larger than n;. = 2 (red
line), but still in the same order of magnitude, which is a reasonable result consid-

5. The summand minus one is a result of the elastic collision with the bottom.
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Fig. 3.14 Phase diagram for different sample height /z and container height H for 1.5 mm glass spheres.
The samples are wetted by water with liquid content W = 1%. Experiments performed by Kai Huang.
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Fig. 3.15 A sketch showing how energy injection is transmitted upwards through collisions between
neighboring particles. & and H are height of the sample and the container correspondingly. Sketch
provided by Kai Huang.
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Fig. 3.16 (a) The critical driving energies (arrows on top of Fig.[3.11) for both energy driven phase
transitions (f-fgc in black and fgc-g in red) are shown as a function of the coefficient of restitution. The
points are connected with lines and serve as guide to the eyes. The inset shows again the simulation
results for the f-fgc transition (filled circles) and additionally Eq. (3.1) (solid line) which is obtained as
explained in the text. The theoretically predicted curve also shows the expected behavior that EZ;
goes to infinity as ¢ approaches zero. (b) The upper bound for the average number of collisions, 7., as
obtained by simulations (circles) is in a reasonable order of magnitude and safely larger than the number
of intra-layer collisions, nj. = n;, — 1 = 2,(red line), which is a lower bound for the system under study,
where np is the number of layers. The black line is a fit to the data with n.(e) = Aj exp(Az¢) + nic
leadingto A; = 7.3 X 10~3 and Ay = 6.95. For small coefficients of restitution 1. = nj. seems to be
a reasonable approximation.

ering the crudeness of the assumptions made. The black curve in Fig.[3.16(b), which
is a fit to the data, shows that the average number of particle collisions per wall
collision, 1., approaches the number of intra-layer collisions, n;, for low coefficients
of restitution.

The results for the scaling of the f-fgc phase boundary can be summarized in a
simple formula, which is valid in the whole range of simulations performed. The

critical driving energy, E¢, , for this transition is found to be
nin (D)
Ef—fgc(D/ eny) = 82”?(8"”) Eo, (3.1)

where D is the dimension of the system, e the coefficient of restitution, n;, the number
of particle layers, ng,(D) the Kissing number (which is 2, 6, 12, 24 in one, two,
three and four (Musin, 2008) dimensions respectively), Ej = 1/6 and n.(e,ny) =
Ajexp(Aze) + ny — 1 with the numerically obtained constants A; = 7.3 x 1072 and
Ay = 6.95.

3.3.2.4. Scaling of the fgc-g transition

The behavior of the fgc-g transitions is even more complex. This line consists of
two branches. The branch at large driving acceleration, I', is dominated by the
capillary bridge though shifted by inelastic collisions. The branch at lower driving
accelerations I', which is studied here, tends to follow the curve where the vibra-
tion amplitude equals a constant critical value, Ai;. The precise critical amplitude
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depends on the coefficient of restitution as well as the height of the container, as
mentioned above. This may be termed ‘non-universal” behavior. Turning back to
Fig.;3.13, it can be seen that the transition line between the fgc and g phases seems
to be dominated by geometric effects, as here the equality of A and d. Simulations
reveal in Fig.[3.17]that, as the coefficient of restitution is decreased, the critical ampli-
tude, Aqit, of the driving, at which the lower branch of the fgc-g transition occurs,
increases. For ¢ = 0.8, Ayt ~ d is obtained, which is the value obtained similarly in
the experiment shown in Fig.[3.13. This aspect needs further investigation.

| |
0.8 0.85 0.9 0.95 1
coeff. of restitution ¢

0 | |

Fig. 3.17 Critical amplitude of the driving, Acrit, where the lower branch of the fgc-g phase transition
sets in. (It is noted that I" is increasing by decreasing the amplitude.) The solid black line is a fit of
the phenomenological function Agit/d = —3.61(8 — 1) ~+ 0.24 while the red line is a fit resulting in
Acgit/d = —1.72(¢ — 1) 4 0.24. The intercept with the Acr-axis was chosen to be the mean of the
two independently obtained intercept values from a fit.

3.3.2.5. Narrower particle size distribution

Finally, the influence of a lower polydispersity to the phase diagram is studied. The
polydispersity of the particles, which safely prevented crystallization, was 0, = 0.06
and ¢, ~ 0.05 in simulations and experiments, respectively. To allow partial crys-
tallization in the granular sample, the polydispersity of the particles is reduced to
0p = 0.02 and 0, = 0.02 in simulations and experiments, respectively.

Fig.[3.18(a) is a snapshot of a three-dimensional simulation at driving parameters
E* =1.13 and I' = 100, which shows a solid-fluid coexistence, where a crystallized
solid (blue) is in coexistence with a fluid phase (orange). The color code is streched
to better reveal the difference such that orange or red indicates a fluid, where the
average kinetic energy is in the order of the capillary bridge energy. In the shadow
beneath the sample the crystallization is also visible. The snapshot in Fig./3.18(b)
shows a simulation at higher driving energy (E* = 1.35), which indicates, that the
size of the fluid region is increasing because larger parts of the crystallized gran-
ular matter can be melted. Similar behavior is obtained in experiments as shown
by Fig.3.19. The figure shows an average over 80 successive snapshots, which cor-
responds to a real time period of 0.53s. It can be seen that there exist immobile,
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crystalline-ordered particles of the solid phase as well as mobile, unordered parti-
cles (which appear fuzzy in the image) of the fluid phase.

The phase diagram, as obtained by experiments, is shown in Fig.[3.21} A region
is visible where the solid-fluid coexistence occurs. It is noted that the solid to solid-
fluid coexistence (s-sfc) boundary still is a horizontal line at I' ~ 2.0 and therefore
driven mainly by force, while the sfc-f transition is a vertical line and therefore is
dominated by the driving energy. The phase diagram shown in Fig.[3.20 is obtained
by simulations of a three-dimensional system. The solid-fluid coexistence region
is clearly visible. It can be seen that the s-sfc transition splits into two branches,
one which is, in accordance to the experiments, a horizontal line at I' ~ 1.65 =+ 0.05
and a second which is, at sufficiently high I' a vertical line at E* = 0.80 & 0.06.
The latter one is not accessible in the experiment due to limitation of the apparatus.
Also the lower branch of the s-f transition shows a small region where a sfc state
can be observed. The most prominent sfc-f transition is, in accordance with the
experiment, a vertical line at a critical driving energy E* = 1.35 %+ 0.08, which is
within the measurement error not far from the value E* = 0.88 £ 0.20 obtained in
the experiment.

Interestingly, the change of the polydispersity of the particles from o, = 0.06
to 0.02 in simulations did not noticeably change the f-fgc phase boundary. In the
experiment, the phase boundary similarly did not change significantly be seen by
comparing figures and Fig.3.8(b). The critical driving energy for this transition
to occur is E* = 4.36 + 0.14 in both cases. The sfc-f transition, however, significantly
depends on the polydispersity. At a polydispersity of 0.02 the system clearly shows a
solid-fluid coexistence and the transition occurs at E* = 1.35 4+ 0.08 as mentioned be-
fore. Increasing the polydispersity to 0.06 makes the solid-fluid coexistence invisible
and the corresponding s-f transition occurs already at E* = 1.06 & 0.07.

A solid-fluid coexistence is also obtained in thermally equilibrated systems of a
pure hard-core gas without any attractive forces 4Laird and Davidchack, 2005, and
references therein). In the equilibrium case there exists an interfacial energy between
the solid and fluid phase which can be understood in terms of the free energy aris-
ing from entropy. As the equilibrium hard sphere system does not have an intrinsic
energy scale, the solid-fluid transition only depends on density. Therefore, it is sur-
prising that the sfc-f phase transition in wet granular matter studied here occurs at a
certain driving energy. This indicates that this transition is again mainly determined
by the capillary bridge interaction.

3.3.2.6. Effect of inelasticity in dilute systems

As inelasticity was added to the two-dimensional simulations of wet granular matter,
a third coexistence region, as shown in Fig.3.9] appeared. Simulations of dry granu-
lar matter, where dissipation is caused only by inelastic collisions, also showed this
coexistence region. This demonstrates that it is caused by inelasticity (Fig.3.10). This
coexistence region seemed to occur at a critical driving amplitude which depends on
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Fig. 3.18 Snapshots of three-dimensional simulations at driving parameters I' = 100 and E* = 1.13
(a) or Ex = 1.35 (b). A solid-fluid coexistence is observed where crystallized solid parts (blue) coexist
with a fluid phase (red). The color code is stretched to better reveal the difference such that orange or
red indicates a fluid where the average kinetic energy is in the order of the capillary bridge energy. In
the shadow beneath the sample the crystallization is also visible. Due to the increased driving energy
in (b), a larger amount can be melted to the fluid phase compared to snapshot (a). The system contains
1.2 x 10° particles and the system dimensions are 9d x 192.5d x 192.5d. The polydispersity is op =
0.02 and the inelasticity is ¢ = 0.96. Other parameters are the same as in previous two-dimensional
simulations (cf. Fig.[3.9).
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Fig. 3.19 The image shows an average over 80 successive snapshots (corresponding to 0.53 s in real
time). Immobile, crystallized regions (solid phase) coexist with mobile granular particles (fluid phase).
Mobile particles look fuzzy in the image due to the averaging, while immobile particles are visible as
a hexagonal packing with bright spots from light reflection. The experiment is performed at a driving
frequency of f = 150 Hz and driving acceleration I" = 7.42. Experiment performed by Kai Huang.

the coefficient of restitution, as shown in Fig.3.17, However, this coexistence region
could not clearly be observed in the three-dimensional simulations of wet granu-
lar matter presented in the phase diagram in Fig.|3.20, suggesting that this could
possibly be an effect caused by dimensionality. In order to check this hypothesis,
three-dimensional simulations were performed with the spatial extension of the sys-
tem strongly reduced in one lateral dimension, to only L, = 9 particle diameters.
Ly is the system width in the second lateral direction with periodic boundary con-
ditions. (The number of particle layers was kept constant and all other parameters
are similar to the ones used in Fig.[3.10}) The phase diagram obtained by these sim-
ulations is shown in Fig.]3.22. As expected, the coexistence region is visible again,
but only in a parameter range much smaller than in the two-dimensional system,
cf. Fig.[3.170} This apparently supports the hypothesis of the effect being caused by
dimensionality. Therefore, more simulations were performed where the lateral sys-
tem size in the third dimension is doubled to 18d. To support the hypothesis that
the coexistence is caused by dimensionality, the expectation is that the parameter
range, in which the coexistence is visible, is reduced. This could not be assessed
if the data were presented in the same resolution as the phase diagram shown in
Fig.3.22. Therefore, only the minimum and maximum granular temperature, which
serves as an order parameter to detect coexisting phases at a peak driving accelera-
tion I' = 10.0 is shown in Fig/3.23} This is for a system with a lateral extension of
Ly = 9d (black lines) and Ly = 18d (red lines), where circles denote the maximum
and squares the minimum value. It can be seen that the range of parameters, in
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Fig. 3.20 Phase diagram of 1.2 x 10° spheres in three dimensions using the thin thread model, with
a coefficient of restitution ¢ = 0.96 for collisions between particles. The polydispersity is reduced to
0p = 0.02 such that the solid-fluid transition is accompanied by a solid-fluid coexistence. The dashed
black line is where the driving amplitude is equal to the critical rupture separation of the capillary bridges
A = sqit and seems to slightly influence the solid-fluid coexistence at low peak accelerations, I'. The
fluid-gas coexistence, which is presumably caused by the inelasticity of particle collisions, cannot be
observed in this phase diagram. Further simulations are shown in Sec.[3.3.2.6 in order to examine
the reason for its disappearance. The box dimensions are 94 x 192.5d x 192.5d, while other system
parameters are the same as in previous two-dimensional simulations (cf. Fig.[3.9).

100

peak acceleration I
S

solid-fluid coexistence

solid 1 1 1
5 10 15 20
driving energy E*

Fig. 3.21 Phase diagram for water-wetted glass spheres of diameter 1.2 mm (Whitehouse scientific
GP1215) with a polydispersity of about ¢, = 0.02 in the I'-E* plane. A finite region can be observed
where a solid-fluid coexistence emerges. The liquid content is W = 1% and the dashed line corre-
sponds to the curve, where the amplitude A = d. Experiment performed by Kai Huang.
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Fig. 3.22 Phase diagram of three-dimensional dry granular matter with Ec, = 0 and coefficient of
restitution & = 0.96. Except for the dimensionality and therefore the system width of L, = 9d in the
second lateral direction and an increased particle number of 2.16 x 10* particles being in the system,

all other parameters are identical to the ones used for the phase diagram in Fig.[3.10l The axis of
Lm(Aw)?
mgd
acceleration due to gravity and d is the mean particle diameter. The solid black line denotes where
the amplitude of the driving equals 1.28 times the mean diameter of the particles. It is visible that the
coexistence region is very narrow but is clearly detectable. It divides the gas-like region into two regimes

(A) and (B).

the driving energy is normalized as E; = , Where m is the mass of one particle, g is the

which the coexistence region appears, does not change (within the resolution of the
simulated points). This becomes especially visible in the inset, which is a zoom to
the coexistence region. Therefore, it can be concluded that this coexistence region is
not an artifact of the two-dimensional system, as previously assumed. A snapshot
of such a three-dimensional simulation of dry granular matter in a coexistence state
can be seen in Fig.[3.24.

It is noted that the absolute value of the difference between the maximum and
minimum areal density, Anarea, in a coexistence state strongly depends on the un-
derlying mechanism (inelasticity or capillary bridges) which causes the coexistence.
Comparing Fig.[3.31] (which shows Anae, for a coexistence which is purely caused
by the interaction of capillary bridges) with Fig.[3.25 (which shows A#n,e, for a co-
existence which is purely caused by inelastic collisions), it can be seen that the max-
imum value of An,rea Which is reached in these figures is max(Anarea) ~ 0.68 and
max(Aarea) ~ 0.29, respectively. Thus, the maximum density difference which is
reached in a coexistence state is much higher if it is caused by capillary bridges than
if it is caused by inelastic collisions °.

Another aspect detectable in Fig.3.23]is that for low driving energies E the granu-
lar temperature increases linearly with E; as predicted in the limit of high frequency
and vanishing amplitude for a non-moving wall, which only injects a certain amount
of energy per collision with the wall (Herbst et al. 2004J). Therefore, the approxima-

2

6. This phenomenon can also be observed in experiments of wet granular matter, where the two
coexistence regimes caused by capillarity and inelasticity therefore even could be distinguished
(Fuchs and Wallenhorst, 2008).
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Fig. 3.23 Minimum (squares) and maximum (circles) granular temperature Tg is shown as a function of
the driving energy E; for several three-dimensional simulations. The system differs in the system size
in the second lateral direction which is L, = 9d (black curves) and L, = 184 (red curves). The areal
density is also kept constant such that the system contains 2.16 x 10* (black) and 4.32 x 10* particles
(red). All other parameters are the same as in Fig.[3.22] It can be seen that the two different systems do
not show a significant difference. Especially the inset, which is a zoom to the coexistence region, clearly
demonstrates that, within in the range of simulated values, the size of the coexistence region does not
change. Therefore, it is concluded that it is not an effect of dimensionality. A coexistence in this graph
is characterized by a large difference between the minimum and maximum granular temperature in the
system, much larger than obtained by usual fluctuations. This also shows that the coexistence is not
a coexistence of two gas phases (in the notion of this thesis) but is a fluid-gas coexistence. Note the
logarithmic scaling of the temperature axis in the inset.

Fig. 3.24 Snapshot of a three-dimensional simulation of dry granular matter with a coefficient of restitu-
tion e = 0.96 for collisions between particles while wall collisions occur elastically. The system contains
4.32 x 10* spherical particles and the system size is 400d x 18d x 9d. The driving parameters are
I' =10.0 and E}; = 6.4. Polydispersity of the particles is 7 = 0.06.
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Fig. 3.25 The difference in the areal density, An4req, is plotted for the two-dimensional system shown
in Fig.[3.10] By comparing the data presented in Fig.[3.31 (which shows Angeq for a coexistence which
is purely caused by the interaction of capillary bridges) with the data in the present figure (which is a
simulation of dry granular matter only undergoing inelastic collisions), it can be seen that the difference
in the areal densities are more than a factor of two smaller than in the fluid-gas coexistence, which is
caused by the capillary bridges shown for a two-dimensional simulation of elastically colliding particles
in Fig.[3.31] This seems to be due to the lower density of the dense phase in the dry case compared to
the wet case, where capillary bridges impose attractive forces. The values are taken at I' = 10.0.

tion of a non-moving wall seems to be applicable also for the case of moving wall
in the regime (A) of low driving energies, E);. However, for larger driving energies,
E;, (where the driving amplitude is increasing, while at the same time the driving
frequency is decreasing (I" = const.)), a simple linear relation between the driving
energy and the mean granular temperature cannot be found. In fact it is observed in
Fig.[3.23 that above a critical driving energy the mean granular temperature is even
decreasing with increasing driving energy (regime (B)). This suggests the appear-
ance of a second mechanism of energy injection where it is not the kinetic energy of
the wall motion that determines the mean granular temperature but is mainly the
peak acceleration of the wall. This can be seen in the linear increase of the granular
temperature, Tg, with the peak acceleration, I', in regime (B) of Fig.3.27} Thus, the
difference in the regime (A) and (B), where in both cases a gas state can be found,
seems to be the mechanism of energy injection. Regime (A) is dominated by the ki-
netic energy of the wall motion whilst regime (B) is mostly” dominated by the peak
acceleration of the driving.

Therefore, the result shown in Fig.3.23 demonstrates the limitations of the non-
moving wall approximation. The breakdown of the linear relation T, o« E; and the
change in the energy injection mechanism seems to be crucial for the occurrence of
coexisting states, as these were only observed in the regime where the energy injec-
tion mechanism seems to change. This would also explain why this self-organized
phase separation in dry granular matter was not observed in previous numerical
studies using non-moving walls. As the effect of coexisting phases, which is pre-

7. The granular temperature in Fig.[3.23 in regime (B) is not constant even though I is constant. This
shows that the actual dependence is more complex and needs a higher order correction.
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sented here, seems to occur at a certain well-defined amplitude (cf.for example
Fig.;3.22), this supports the assumption that spatially moving walls are inevitable
for its occurrence. This underlines at the same time the importance of using real
moving walls also in event-driven simulations disregarding the higher implementa-
tion effort. An efficient implementation of sinusoidally moving walls is presented in
appendix B to this work.

The question which still remains open is the shrinking of the range of parameters
in which the coexistence could be observed when going from the two-dimensional
(Fig.[3.10) to the three-dimensional simulations (Fig.3.22) and the main parameter
which influences its occurrence. In Fig.3.26 the granular temperature of three-
dimensional simulations of two different systems are shown, where the dashed line
is the curve already shown above (red lines in Fig.3.23) and the solid line refers to
almost identical simulations except for the number of particles, which are reduced
to 2.16 x 10* particles. This means that only half the amount of particles were used
while the container dimensions are the same. Thus, the overall packing fraction was
reduced from ¢/¢Pmax = 0.118 (red) to ¢/Pmax = 0.059 (black), where ¢max = 0.74
is the maximum packing fraction in three dimensions. It is clearly visible that the
range of parameters in which the coexistence state can be observed is increasing
in size if the density is decreased. Therefore, it is concluded that one of the main
system parameters, which determines the visibility of the coexistence region is the
average particle number density in the system, as the coexistence region in the phase
diagram is increasing for dilute systems. This is basically supported by experiments
using wet granular matter which were presented Fig.3.14. There it can be seen
that the range of parameters in which the coexistence is observed is increasing by
decreasing the average particle number density (black or orange curve (high den-
sity) to the green curve (low density)) similar to what is observed in simulations of
dry granular matter. This suggests that the coexistence in experiments which ends
at a critical driving amplitude are caused or at least supported by inelasticity and
merged with the coexistence which is caused by the capillary interaction. It is fur-
ther noted that therefore also the critical amplitude at which the coexistence occurs
additionally depends on the average particle number density.

It is now confirmed by simulations and partially by experiments that the aver-
age particle number density is the main system parameter (ahead of the coeffi-
cient of restitution ¢, cf.Sec.3.3.2.4) which determines the size of the parameter
range in which the coexistence is visible. As the number of layers of particles in
the system was kept constant when going from two (Fig.3.10) to three dimensions
(Fig.[3.22), it is observed that the relative areal density ¢/¢max, (Where ¢max = 0.91
and ¢max = 0.74 in two and three dimensions respectively) even decreases from
¢/ Pmax = 0.144 in the two-dimensional phase diagram to ¢/¢max = 0.118 in the
three-dimensional phase diagram. This contradicts at first glance the previous find-
ings, as decreasing particle number density should lead to an increase of the param-
eter range in which the coexistence is visible. However, at the transition from two-
to three-dimensional simulations (cf. Fig.;3.10) with Fig.3.22) the parameter range in
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Fig. 3.26 Minimum (squares) and maximum (circles) granular temperature Tg is shown as a function of
the driving energy E; for two different systems. The red dashed line is the system shown in Fig.[3.23 (red
line). The solid black line is a similar system where only the number of particles is reduced by a factor of
two to 2.16 x 10% particles. The overall packing fraction thus was reduced from ¢/ Pmax = 0.118 (red)
to ¢/ Pmax = 0.059 (black), where ¢max = 0.74 is the maximum packing fraction in three dimensions.
It is clearly visible that the range of parameters in which the coexistence can be observed is decreasing
by increasing density. Therefore, it is concluded that the main system parameter is the areal density in
the system.

the three-dimensional phase diagram where the coexistence is observed is shrinking
— almost vanishing — even though the relative particle number density in the system
reduces. However, it can be seen in Fig.3.26/that the granular temperature in general
is higher in the system with lower density (black curves), which is reasonable as the
dissipation in a dilute granular gas is proportional to the areal density (Brilliantov
and Poschel, 2004). It seems that higher granular temperature leads to a larger re-
gion in which the coexistence can be observed. This would explain the decrease in
the range of parameters, where the coexistence can be observed going from two to
three dimensions, because the increase in dimensionality increases the number of
degrees of freedom. If the kinetic energy which is injected into the pile remains the
same, then the granular temperature in three dimensions reduces to 2/3 of the two-
dimensional value, which is approximately confirmed by simulations (not shown
here). These findings explain why the third coexistence region caused by inelastic-
ity was not observed in the phase diagram obtained by simulations of wet granular

matter in Fig.[3.20}

The results shown in this subsection demonstrate again the importance of using
moving walls in simulations in order to be comparable with experiments, because
this coexistence cannot be observed in the above mentioned limit of vanishing am-
plitudes of a non-moving wall. Furthermore, when studying phase diagrams of wet
granular matter it is desirable to suppress the effects caused by inelasticity. There-
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Fig. 3.27 Minimum (squares) and maximum (circles) granular temperature Ty is shown as a function
of the peak acceleration I" of the driving. The red line at low values of I' is of the form Ty o I' — 1.
This shows that the granular temperature in the regime (B) increases linearly with I" and suggests that
I" mainly determines the granular temperature as it seems that T, = 0 for I' < 1. Itis noted that the
guantities on both axes are dimensionless such that the proportionality constant between Tg and I" also
is dimensionless. For larger peak accelerations (regime (A)) the granular temperature is independent of
I' which is the regime where the granular temperature is determined by the kinetic energy of the driving
wall. The system shown here is identical to the dilute system used in Fig.[3.26 (black line). The data is
shown at constant driving energy E; = 4.5.

fore, these results suggest that this can be done by increasing the overall density
in the system as the coexistence regime caused by inelasticity then vanishes. This
knowledge is inevitable in order to successfully perform experiments either on dry
or wet granular matter. The task which remains to be done is to derive theoretically
an expression for the energy injection of a sinusoidally moving wall to an inelastic
system of particles. Balancing this with the corresponding dissipative term should
then show a stationary solution of a coexisting state. However, this is far beyond the
scope of the present thesis.

3.4. Summary and Outlook

It was shown by comparing experimental studies to simulations taking inelasticity
into account that the phase diagram of mechanically agitated wet granular matter
shows two universal phase transitions which depend only on few general intensive
system parameters. One is the solid-fluid transition which is mainly driven by the
applied force scale, which is represented here by the applied acceleration. The po-
sition of this transition line is directly given by the adhesive force acting between
adjacent grains. The second is the transition between a fluid phase and fluid-gas
coexistence, and is driven by the maximum kinetic energy. Its position is given by
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the energy which propagates from the bottom of the pile (where agitation occurs)
to the upper surface of the sample, where evaporation and thereby the transition to
coexistence is taking place. The relevant energy scale is the energy which is needed
to break a capillary bridge between two adjacent grains. Aside from these two tran-
sitions, which in the plane spanned by the acceleration and agitation energy are
represented by a horizontal and a vertical straight line, respectively, there are as well
a number of non-universal features, which mainly show up in the transition from
the fluid-gas coexistence to the gas phase. These depend notably on geometric re-
lations like the size of the container, dimensionality and are furthermore strongly
dependent on the inelasticity of the grains.

Significant parts of this chapter have been published in Fingerle, Roeller, Huang,
and Herminghaus M) and ‘Huang, Roeller, and Herminghaus ( 2000‘).

3.A. Order parameters

An order parameter is a physical quantity which is used to define in which phase a
system resides. It is zero in one phase and non-zero in the other phase. If the order
parameter is bounded it can be normalized to the standard interval [0,1] (Bergmann
and Schaefer, 1998, chap. 38). In a classical fluid dynamics equilibrium system for
example the density is used to distinguish the solid, liquid or gas phase from each
other. In the granular system, as showed in this section, order parameters are used
which are inspired by the granular structure or leant from order parameters known
from classical equilibrium systems.

The task of detecting the phase of the system can be subdivided into two parts.
First, the ability to distinguish homogeneous phases from each other and second,
the ability to detect inhomogeneous phases of two coexisting phases.

3.A.1. Discrimination of homogeneous phases

First the discrimination of the homogeneous phases solid, fluid and gas is explained,
which were found in the granular system as shown in sec.3.1.2.

3.A.1.1. Solid-fluid phase boundary

The solid phase is physically characterized by particles which are at rest and do not
move in their center of mass system. This gives rise to a short range order where
particles tend, whenever possible, to form hexagonal closed packings which then
persists, with all its defects, over time. Due to the technical details of simulating
granular particles, however, it is not possible that particles have zero velocity. There-
fore, solid in this thesis means that the velocity of the random motion of particles
is small compared to other energy scales in the system. This energy scale can be
for example the granular temperature in units of the capillary bridge energy (in the
case of wet granular matter). The fluid phase is characterized by a vivid movement
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of the particles and the short range order is only visible on very short timescales.
These different time scales on which the (short range) order exists is utilized for a
dynamic order parameter which is called frequency of location changes.

A Delaunay triangulation® for the positions of the particle centers is performed.
Then each Voronoi-cell accounts for the location of one particle and the whole trian-
gulation is therefore valid until one of the particles” centers moves out of its initially
calculated Voronoi cell®. This particle then changed its location, because it moved
into the Voronoi cell of another particle and the Delaunay triangulation is violated
and recalculated. The frequency of these site changes, or equivalently the frequency
of violations of the Delaunay triangulation is called frequency of location changes, fi.,
and serves as the order parameter to discriminate the solid and fluid phase. This,
however, is only used in the time-driven MD simulations. In the event-driven MD
simulation the granular temperature is still used. It is stressed that the frequency
of location changes is a dynamical order parameter which needs information about
the time evolution of the system and cannot be calculated out of a single snapshot
of the system.

In Fig.[3.28(a) the frequency of location changes is shown for the solid-fluid like
phase transition as obtained by changing the peak acceleration I' of the driving.
A hysteresis for increasing or decreasing peak acceleration is clearly observed and
therefore a subcritical bifurcation can be seen, which is reminiscent of a discontinu-
ous phase transition.

3.A.1.2. Fluid-gas phase boundary

To discriminate the fluid from the gas phase, simply the granular temperature, T,
is used, which is defined as

Ty :=m ((7%) — (5)?) /kgfa, (3.2)

&

normalized by the capillary bridge energy Eg,, where m is the average mass of an
individual particle with velocity @, kg = 1 is ‘Boltzmann’s constant’” and f; the
number of degrees of freedom.

In Fig.3.28(b) the normalized granular temperature is shown for the direct fluid-
gas like phase transition as obtained by changing the driving energy E*, which
clearly distinguishes the two phases.

In the case of inelastic collisions the order parameter is slightly modified, because
there is no jump in the granular temperature between the fluid and gas state as in
the elastic case. Therefore, the inflection point of the granular temperature, Ty/Eq,,
as shown in Fig.[3.29, determines the phase boundary in this case.

8. In this work the package Triangle (written by J. R. Shewchuk, University of California at Berkeley)
for calculating the Delaunay triangulation was used.

9. Not the initially calculated absolute positions are used to detect the violation, but only the initially
calculated distribution of Voronoi cells which move along with their particles forming the edges is
considered.
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(a) Frequency of location changes as the peak acceleration I" of the sinu-
soidal shaking is varied. A hysteresis is clearly obtained, which indicates
a subcritical bifurcation and is reminiscent of a discontinuous phase tran-
sition. The driving energy is E* = 0.63.
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(b) Normalized granular temperature as the driving energy E, of the si-
nusoidal shaking is varied. The jump in the order parameter indicates a
subcritical bifurcation and is reminiscent of a discontinuous phase transi-
tion, which is hysteretic. The peak acceleration of the driving is I' = 4.0

Fig. 3.28 Order parameters for the detection of phase boundaries between homogeneous phases (a)
solid-fluid and (b) fluid-gas in a time-driven MD simulation of 1200 two-dimensional, elastically colliding
spheres. Each inset shows the full phase diagram where the actual parameter scan is denoted, including
the direction of the scan (arrows). The system parameters are as follows: Width of the system is 400
particle diameters, the height is 9 particle diameters, s¢it/d = 0.0711, Ep, = 1.1374, average particle
diameter is 4.0 and the mass of each particle is m = 1.
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Fig. 3.29 In the case of inelastic collisions the order parameter for the direct transition from a homo-
geneous fluid to a homogeneous gas state is slightly modified, because there is no jump existing at the
transition point any longer. Due to the inelasticity, this phase transition is smeared out compared to the
case of elastic collisions and, therefore, the inflection point of the granular temperature, Tg/Ecb is used
as order parameter in these cases. It is plotted for I' = 2.7, which is indicated by the white line in the
phase diagram of Fig.[3.11]

3.A.1.3. Solid-gas phase boundary

The discrimination of solid and gas does not need an extra order parameter and can
be done with one of the two order parameters described above.

3.A.2. Discrimination of inhomogeneous phases

Inspired by classical theory of simple liquids, where the density has proven to be the
appropriate order parameter to detect coexisting phases (see, for instance 'Yeomans,
1992), some kind of density is also used as an order parameter to detect coexisting
phases. As wet granular matter is simulated, the distribution of capillary bridges
within the sample is considered, which is called the capillary bridge density, nq, (7).
Since stationary states are considered, it can be averaged over time. The order pa-
rameter is defined similarly as in classical theory as the difference of the capillary
bridge density in the two phases. Here, simply the global minimum and maximum
value within the system is used as the respective density in the dilute and dense
phase. It follows that the order parameter Ang, is defined as

Angy = max(ney (7)) — min(nep (7)), (33)

where 7 is the lateral position in the D-1 dimensional plane, which is projected along
the gravity-acting plane. This is shown in Fig.[3.30/for a two-dimensional simulation.

As more simulations are performed, Fig.;3.31/is obtained, which shows the order
parameter Ang, (black curve) for the transition of a homogeneous fluid to a homoge-
neous gas via a region of fluid-gas coexistence. The difference in the areal density
Anarea is, for comparison, also plotted in Fig.3.31|(red curve). It can clearly be seen'®

10. Which is misleadingly claimed differently in ﬁHager—Fingerle,‘zooz pp. 221).



3.A. Order parameters 57

T T T
Lo

o
e = 4
o - 4

o L 4
= - 1
2 0.1 -
[0) E E
© F ]
() [ i
(@]

& ]
—

£ 001 E

| | |
0.001 100 200 300 400

lateral position / particle diameter

o

Fig. 3.30 The time averaged capillary bridge density is shown here for a two-dimensional system
(which is displayed above the graph) as a function of the (onedimensional) lateral position. The differ-
ence in the capillary bridge density, Angyp, is used as order parameter to detect coexisting phases. It is
simply calculated as the difference between the maximum an minimum capillary bridge density and nor-
malized by the inverse square of the mean particle diameter, d. The driving parameters are I’ = 15.0
and E* = 1.42.

that the difference in the areal density increases even faster than the difference of the
bridge density in the coexisting phase. The reason why the bridge density neverthe-
less was preferred as order parameter is due to its feature of being closer to zero in
the gas phase. Only small fluctuations prevent the difference of the bridge density
to be exactly zero in the gas phase.

The steeper increase of the difference in the bridge density is also supported if the
critical exponents™ for both order parameters are calculated. The fit of the following
functions (indicated by dashed lines in Fig.[3.31)

Angp o (Efyeq — E)P (3.4)
Mharea o (Efyey — E)P? (3-5)
is calculated and leads with Efgc_g = 1.97 the critical exponents ; and B, to be
B1 = 0.37 (3.6)
B2 = 0.12. (37)
Relating the areal density to the capillary bridge density leads to

/B2 3
Ang, & Anfrleaﬁ R AN ey (3.8)
11. Critical exponents depend only on a small set of fundamental parameters, like the dimension of the
system and are therefore regarded to be universal (Yeomans, 1992, section 2.6.1) and also studied

in granular systems ( ).
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Assuming a linear relationship between Ararea and narea and similarly for ng, yields

Nep X ngrea' (39)

A naive assumption could be that the number of liquid bridges in a unit volume
increases quadratically with the number of particles. This is possible if the critical
rupture distance is large enough such that all particles can form capillary bridges
with all other particles in the unit volume. As the unit volumes are the same for ny,
and 7,rea this leads to an exponent of two which is reasonably close to the exponent
of three found in simulations. Admittedly, this is very crude, as it assumes a critical
rupture separation much larger than used in the simulations. Therefore, more work
is necessary to derive a more realistic theoretical expression.
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Fig. 3.31 The difference in the bridge density (black) is compared to the difference in the areal density
(red), which is used as order parameter to detect the coexisting phase, here between the fluid and gas
phase as the driving energy is varied. Simulations (circles) (same system as in Fig.[3.28) are performed
along the line which is indicated in the inset. Critical exponents (dashed lines) are detected and for the
difference in the bridge density 51 = 0.37 and the difference in the areal density 3, = 0.12 is obtained.
Nevertheless, the difference in the bridge density is used (even if the increase in the difference of the
areal density would be much steeper) as order parameter, because the fluctuations, which prevent it
from being zero, in the gas phase are much smaller. The peak acceleration of the driving is I’ = 15.0.



4. The solid-fluid phase transition and
surface melting

In the previous chapter, the phase diagram of wet granular matter was presented.
The present chapter is dedicated to examining the phase diagram obtained by nu-
merical simulation and to studying the solid-fluid phase transition in more detail. A
theoretical model is suggested which successfully describes the force-driven solid-
fluid transition and additionally predicts surface melting to occur at this transition.

4.1. Introduction

The solid- to fluid-like (s-f) phase transition in granular matter under vertical vibra-
tion is widely studied in the literature of mainly dry granular matter (Melo et al.,
‘1995; ‘]aeger et al., 1996; Duran, 2000; Kim et al., 2002; G6tzendorfer et al., 2005; Um-
banhowar and van Hecke, ’;; Huang et al.,, %; Reis et al., @; Clerc et al., 2008;
, ). Understanding the underlying principles which enforce the s-f transi-
tion is of great practical interest, for example, in industrial processes where granular
matter has to flow through pipes (Duran, m). Even in the context of earthquakes
the s-f transition plays a role.

It was found in dry granular matter that the s-f transition occurs at a peak ac-
celeration of the driving I' ~ 1.2 (Duran, m). In the previous chapter, the solid-
fluid transition in wet granular matter was in the previous chapter also found to be
driven by force, however, higher peak accelerations than in the dry case are neces-
sary due to the attractive capillary bridge forces which have to be overcome. In the
phase diagram obtained by time-driven molecular dynamics simulations presented
in Fig.[3.4(a), it is shown that the s-f transition is mainly driven by force but it will
be shown here, that the driving energy, E* seems to act as a second order correction.

4.2. Theoretical model

A model is constructed now (see , zooé) in order to understand the underly-
ing principles involved in the solid-fluid transition.
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To this end, a column of M granular particle layers h = 1,..,M is considered,
where § is the number of the respective layer starting with 1 = 1 directly above the
sinusoidally vibrating bottom wall. As the s-f phase transition is mainly driven by
the force of the vertical motion of the driving wall, it seems to be a reasonable initial
approximation to consider only the forces in the system which act in the vertical
direction (perpendicular to the driving wall) in order to obtain a rough prediction
for its behavior.

A capillary bridge imposes a capillary force, Fepillary, to the column, which is the
same everywhere. It simply reads

F capillary — F B (41)

where Fp is the usual capillary bridge force and is pointing downwards towards the
bottom wall. Acting in the same direction is the hydrostatic force, thdro, which is
caused by gravity. The gravitational force, which is imposed by the hth layer on its
subjacent layer, is given by

thdro(h) = (M —h+ 1)mg, (4.2)

where m is the mass of one particle and g is the acceleration due to gravity. (It
is noted that 1 = 1 is the lowest height-value which is allowed). Furthermore,
the isotropic force caused by the thermal motion of the particles is included. It is
approximated by considering the change of momentum per unit time and reads

Ftherm =vp (43)
_ 2<Ekin>
L (4-4)
_ fks Tg
- lm 7 (4'5)

where v = v/l is the mean collision frequency, I, is the mean free path, p = mv is
the momentum of a particle, v is its velocity, (Eyi,) is the mean kinetic energy of the
particles, f the number of degrees of freedom, kp = 1 the ‘Boltzmann constant” and
Ty = 2(Exin) /kpf is the definition of the granular temperature. The bottom wall is
sinusoidally vibrating, causing a force, F4,iy, Which reads

Fariy = MmAw? sin(wt), (4.6)

where A is the driving amplitude and w is the driving frequency. As the onset
of fluidization is studied here, it is reasonable to restrict the consideration to the
driving force which reduces the stability the most. This is the case if the driving
force is at its maximum value, which is pointing upwards away from the bottom
wall. The driving force now reduces to

max(Fyriy) = MmgT, (4.7)
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using the usual definition of the peak acceleration I' = Aw?/g. It can be seen that
there is no explicit time dependence in the model anymore, such that only stationary
quantities have to be considered.

It is now assumed that in a stationary state these four forces have to be balanced,
i.e. Feapillary + Fhydro (") = Fiherm + max(Fyriy), which leads to the equation

Fp fkpTy
—+1-h=—F+= r—1). .
e T el T M =1) (4.8)

The dynamics of the system crucially depends on the ratio I,,/sqit. As long as
I/ scrit < 11is fulfilled in the whole column no bridges are ruptured: hence there is
no dissipation and the granular temperature in the column may be assumed to be
the same everywhere. The mean free path then is obtained from Eq. and reads

_ fksTg 1

Lu(h) = . .
(h) mg Tt M) ki1 (4-9)

It can easily be seen that the mean free path increases monotonically as the height,
h, in the column is increased. This is physically reasonable because the hydro-
static force, which counteracts the constant thermal force, decreases with increasing
height.

As the mean free path reaches the order of the rupture distance, /,;,/Sqit = 1,
the temperature cannot be assumed to be constant in the bulk anymore because
dissipation occurs. Setting I,, = sqit and I = M in Eq. (4.8), it is found that as long

as I' < I'yy with
1 1 fkeTy
Iy =—|— | Fg— 1 .
M M (mg( B Sert +1, (4.10)

the mean free path is smaller than the critical rupture separation, /;; < 5qit, up to
the topmost layer, 1 = M. The total injected energy travels upwards through the
column without rupturing any capillary bridge such that there is no dissipation and
which leads to a thermal motion of particles. As soon as I' > Iy, Ly < Sqit is still
valid for layers h < h. with a critical height, ., which is

he(I) = M(14 Ty —T). (4.11)

Through the dissipation, which occurs in layers k& > h,, the temperature is reduced
until [, = sqit. I' by definition is a positive number so that from the condition
Iy > 0, follows that

1
Tg < fTB(ECb -+ mgscrit). (4.12)

It can be observed that I'y;, above which the topmost layer is fluidized, can even be
almost zero if the granular temperature of the granulate is high enough to lift the
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topmost particle by a distance of s against gravity and rupture the (topmost) capil-
lary bridge. The critical acceleration, I, at which complete fluidization is observed,
is obtained by setting & = 1 in Eq. (4.17). It then reads

1
Ie=1+Tm— 47 (4.13)

Using the condition I’y > 0 again, it is found that

Ic>1- % (4.14)
This is interesting because complete fluidization in this model can already occur at
peak accelerations I < 1, depending on the number of particle layers involved,
which seems counterintuitive at first glance. However, the necessary energy input
to compensate for dissipation is then provided by the kinetic energy of the particle
motion rather from the maximum peak acceleration. It can be seen in the following
that the granular temperature of the particles can be adjusted independently of the
parameter I'. The granular temperature of the first particle above the wall, h =1, is
directly determined by the average kinetic energy obtained through the elastic wall
collision. Therefore, it can be written as T, = %ii”}m = %}n, where E, ) is the time

dependent kinetic energy which a particle obtains by a wall collision, Ey;, = mv3,/2
is the maximum wall energy and v, = Aw is the maximum wall velocity. Using this
assumption, the critical peak acceleration for complete fluidization reads

FC_1+Mmg(1_E)I (415)

where E* is the usual driving energy defined as E* = Ey,/Eqg. Now it is directly
visible that I- < 1 is obtained for E* > 1 such that the maximum energy injected by
a wall collision is sufficient to rupture one capillary bridge.

4.3. Comparison with simulations

The theoretical model clearly predicts that interesting features will occur at the solid-
fluid transition, which will be compared to numerical simulations in this section.

4.3.1. Scaling of the solid-fluid transition line

The critical peak acceleration to obtain complete fluidization is predicted by Eq. (4.15).
This equation shall be studied, first, as a function of the capillary bridge energy
while keeping other parameters constant and, second, as a function of the driving
energy again with all other parameters constant. It will be compared to appropriate
simulations.
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4.3.1.1. Dependence on the capillary bridge force

In Fig.[4.1|the dependence of I on the normalized capillary bridge force, Fz/mg, as
obtained by simulations, is shown, where white filled circles indicate the transition
between the solid and the completely fluidized state. The number of particle layers
in the simulation is M ~ 3. A linear fit according to It = 1+ Fz(1 — E*)/3mg to
the data is shown as solid black line and E* = 0.38 # 0.02 is obtained, which is in
good agreement with the driving energies out of the interval 0.35 < E* < 0.44 used
in simulations. These simulations together with the theoretical model justify the
assumption that the solid-fluid transition is intrinsically dependent on the capillary
bridge force.

peak acceleration I

5 10 15 20
capillary bridge force Fg/mg

Fig. 4.1 The critical peak acceleration for complete fluidization, I'-, for the solid-fluid phase transition,
is shown as a function of the normalized capillary bridge force, Fg/mg. The simulations are performed
using the time-driven molecular dynamics simulation method. The solid black line is a fit to the data
with I = 14 Fp(1 — E*)/Bmg leading to E* = 0.38 4 0.02. This is in very good agreement with
the driving energy used in the simulations which lies in the interval 0.35 < E* < 0.44. The system
parameters are the same as in the phase diagram in Fig.[3.3] As before three particle layers are used.

4.3.1.2. Dependence on the driving energy

The red line in Fig.[3.4(a) is the critical peak acceleration I'- for complete fluidization
as obtained by Eq. (4.15), which is considered as a function of E* in this case. It has
to be compared to the white-filled circles in that figure which denote the solid-fluid
transition as obtained from time-driven simulations. The number of layers used in
simulations is M = 3 and the capillary bridge force is Fp/mg = 4.0. The solid
to fluid transition as a function of the driving energy, E*, as seen in time-driven
simulations, therefore is reasonably described by the model. However, deviations
from the predictions are visible at E* ~ 0.75 in this case, so higher order effects
seem to play a role. Even though densely packed particles do not perceive any
force in the event-driven model (black squares with white edges in Fig.3.4(a)) the
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simulations are approximately in the same order of magnitude (even if they seem to
be independent of E*) as predicted by the theoretical model.

As the theoretical model does not incorporate a lateral extension it cannot describe
the lateral coexistence of solid and gas. Nevertheless, it seems that the transition
from solid to the solid-gas coexistence (in the range of 0.8 < E* < 1.0) follows ap-
proximately the transition line predicted by the model. This suggests that above the
transition to the fluid state an other mechanism (which is not included in the model)
causes an instability preferring a solid-gas coexistence rather than a homogeneous
fluid state. This deserves further investigation.

4.3.2. Minimum value of the critical peak acceleration

When one starts to think about phase transitions in granular matter, one is likely to
be misled into thinking that the peak acceleration I has to be larger than one, such
that particles are able to be lift off from their support to start moving. The force
balance model derived in this chapter suggests a different behavior. In Fig.[4.2} a
phase diagram obtained by time-driven simulations is shown with the parameters
Fp/mg = 4 and sqit/d = 0.036. Note the linear scaling of the axes. It can be seen
that the solid to fluid transition in the simulation nicely agrees with the theoretical
prediction through Eq. (4.15) (red line). Furthermore, it is obvious that the solid to
solid-gas phase transition also occurs at peak accelerations smaller than one. The
white dashed line is the theoretical prediction according to Eq. (4.13), which denotes
the lowest possible value I'c for the transition to occur. This is in reasonable agree-
ment with the simulations because, as predicted, for I' < I only solid states are
observed. This was additionally confirmed by event-driven simulations. In order
to suppress the lateral inhomogeneity, this should be investigated in more detail in
a narrower system as it is likely that the solid-gas coexistence then remains a fluid
state.

4.3.3. Surface melting

Eq. (4.11) predicts surface melting to occur at the solid-fluid transition. Surface melt-
ing is visible in experiments with dry (Warr et al., 1995; Kim et al,, 2002; Gétzendor-
fer et al., 2006b) as well as wet granular matter (Huang 2009, priv. comm.). The order
parameter to detect the height-dependent fluidization is the diffusion constant and
was measured individually in each layer as shown in Fig.[4.3. The layers are defined
such that the number of particles is constant in each layer. The order parameter in
Fig.(4.3|clearly shows that the top-most layers (h = 6) fluidize first at the lowest peak
acceleration I successively followed by the layers below. The simulations are time-
driven simulations of six particle layers of three-dimensional, elastically colliding
wet granular spheres. In order to suppress lateral phase separation of the solid and
fluid phase, as was oberved for the three-dimensional phase diagram in Fig.[3.20, the
system is very narrow (only 7.5 particle diameters in each lateral direction). Fig.[4.4

2 ’
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Fig. 4.2 Phase diagram of a time driven simulation of 1200 two-dimensional particles arranged in
three layers. Note the linear scaling of the axes. The critical driving acceleration (red line) according to
Eq. (4.15) describes well the solid to fluid transition. The white dashed line is the prediction of Eq. (4.13)
for the minimum value of the critical peak acceleration to fluidize the granulate which also is nicely
satisfied. The parameters for the capillary interaction are Fg/mg = 4 and s¢it/d = 0.036. All other
parameters are the same as in the simulation shown in Fig.[3.4(a).

shows as a result the fluidization depth I; = h, — M (circles), which is the number
of fluidized layers at the surface, as obtained by simulations in Fig.[4.3 as a function
of the peak driving acceleration I'. It can clearly be seen that the simulation data
indeed shows surface melting at the solid-fluid transition as predicted by the theo-
retical model. However, the functional form given by Eq. (4.11) (red curve in Fig.[4.4)
deviates significantly from the numerical values. The black line is a fit to the data
of the form Is = lpIn (1/(1 — (I’ — I'nm) / (It — I'm))) leading to Iy = 1.27. It suggests
that the fluidization depth is diverges logarithmically at the point of complete flu-
idization. This, surprisingly, is reminiscent of the results obtained for a Landau-type
model of surface melting in equilibrium thermodynamics (Lipowsky, 1982; Frenken
et al., %; Pluis et al., 1990). It is noted in the current work that surface melting
was observed in this work only if the polydispersity o, was small enough to allow
for a crystallization of the solid phase. However, polydispersity was not changed
systematically to verify that surface melting vanishes with increasing polydispersity.
This has to be left for future work. Interestingly, the linear dependence of k. pre-
dicted by the model is indeed seen in experiments using dry granulates (Kim et al.,
2002, Fig. 4(b)). These aspects deserve further investigation.

4.4. Summary and Outlook

It was shown in this chapter that a simple model, which assumes the balance of
basic forces acting in wet granular matter, leads to a good qualitative agreement
with the simulations and thus nicely describes the solid-fluid transition. The critical
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Fig. 4.3 The diffusion coefficient, Dy, is shown as a function of the peak acceleration, I', and for
different heights, #, in simulations. The simulation is a time-driven simulation of 300 three-dimensionall
spheres forming M = 6 layers and are conducted at constant frequency. The system is very narrow
in order to prevent the lateral coexistence instability (system dimensions are 7.5d x 7.5d x 45d). The
parameters of the capillary interaction are Fg/mg = 1 and s¢it/d = 0.005. The diagram is out of
, @) were also more details on the order parameter can be found.

fluidization depth I,

0 0.5 1
peak acceleration (I' — I'ng) / (I'c — I'm)

Fig. 4.4 The fluidization depth [ = h. — M, which is the number of layers in which the gran-
ulate is fluidized, as a function of the normalized peak acceleration. Simulations (circles) reveal
surface melting which, however, cannot be quantitatively described by Eg. (red line I;(I') =
(M —1)(I' — I'y)/(I'c — I'yp) with Ty = 1.16 and Iz = 2.65). The black line is a fit of the form
Is =1lpIn(1/(1 — (I = I'y)/(I'c — I'p1))) leading to [y = 1.27. It suggests that the fluidization depth
diverges logarithmically at the point of complete fluidization. The system parameters of the simulation
are as in Fig.[4.3.
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mechanism for the solid-fluid transition as assumed in the model is the equality
of the mean free path between different layers of particle and the critical rupture
separation to rupture a capillary bridge and is supported by the simulation results. It
is therefore concluded that the solid-fluid transition is in first order force-driven but
the driving energy acts as a second-order correction by increasing the thermal energy
of the particles. This leads to the interesting result that complete fluidization also
can be obtained for peak accelerations lower than one. A lower limit, which depends
on the number of particle layers involved, is also provided. This is supported by
the simulations. The model also predicts surface melting which can similarly be
observed in simulations. The functional form which is predicted to be linear is not
found in simulations, instead a logarithmical divergence of the fluidization depth is
found. This is reminiscent of the results obtained for a Landau-type model of surface
in equilibrium thermodynamics (Lipowsky, 1982; Frenken et al., 1986; Pluis
). These findings help to understand the nature of the solid-fluid transition
and bear reasonable potential in improving industrial processes which deal with this
transition. Further work on this topic is desirable to predict also the functional form
of the fluidization depth of the surface melting.
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4. The solid-fluid phase transition and surface melting



5. Interfacial energy in wet granular
matter

Two different mechanisms inducing phase transitions (force- and energy-driven)
were distinguished in chapter [3 for wet granular matter. In the previous chapter
the solid-fluid transition, which is mainly force-driven, was investigated in detail.
In this and the following chapter, the coexistence of states occurring at the energy-
driven phase transition is the object of investigation. In the present chapter a flat and
wide system, as before, is used to study the lateral coexistence. The system will be
high and narrow in chapter 6, such that the coexistence state occurs in the vertical
direction.

After a short introduction, experiments and simulations are discussed which sug-
gest the presence of an interfacial energy in the coexistence region of wet granular
matter. The interfacial energy is the driving force to minimize the interfacial area.
Thus, in reminiscence of the two-dimensional Ising model, a shape transition will be
studied in wet granular matter which is suggested to be a phase-transition-like phe-
nomenon. This is followed by the estimation of the interfacial energy in simulations.

It will further be discussed if an effect similar to interfacial energy can also be
found in a two-dimensional system and in the solid-fluid coexistence in the three-
dimensional simulation. The chapter ends with a short discussion of anomalous
diffusion in wet granular matter.

5.1. Introduction

Interfacial energy, in liquids equivalently called surface tension, is a physical quan-
tity which is present in everyday life. Just imagine kids playing with soap bubbles
and observing the beauty of the emerging interference patterns (Isenberg, @). It
can be observed in fauna where small insects such as water striders are able to
move on the water surface, which resulted in the (more colloquial) name Jesus bugs
dGao and Jiang, 2004). Interfacial energy, however, does not only arise between
liquid-gas interfaces but is also present between solid-fluid interfaces and there-
fore plays a crucial role, for example, in nucleation processes and crystal growth
dTiller, 1991; Pimpinelli and Villain, 199@; Iveson et al., 2001, Hernandez-Guzman
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and Weeks, 2009). Furthermore, not only crystalline growth but "the growth of
anything" dPimpinelli and Villain, ‘1998) is influenced by interfacial energy and de-
scribed by the KPZ (Kardar, Parisi and Zhang)-equation (Kardar et al., 1986; Barabdsi
and Stanley, 1995; Pimpinelli and Villain, 1998; Kardar, 2007), which is a generaliza-
tion of the Burgers (Burgers, 1925) and Edwards-Wilkinson equation (Edwards and
Wilkinson, 1982; Hinrichsen, 2000); derived solely from physical and symmetry prin-
ciples. The basic idea of this equation is the deposition of discrete particles at the

surface, which is followed by a rearrangement along the surface. The interfacial
energy causes the particles to diffuse along the surface.

Interfacial energy is defined as the energy which is necessary to increase an inter-
face by unit area. Measuring it in a thermodynamically equilibrated system means
measuring the excess Gibbs free energy. Even in molecular dynamics simulations
this seems a challenging task and is still a topic of ongoing research (Hoyt et al.,
2001; Vink and Horbach, 2004; Vink et al., 2005; Laird and Davidchack, 2005; Nori-
zoe et al., 2010). Going to non-equilibrium systems, like granular matter, it becomes
even more difficult because it is unclear how interfacial energy should be defined
— lacking the concept of free energy , ). Nevertheless, granular matter is
studied in literature making use of the analogy to equilibrium systems by speaking
of ‘surface tension’ (Mehtaﬁ1993; Cheng et aﬂ, 200%, (2008‘). In the present work also
the term “interfacial energy’ is used although the author is aware of using it only as
an analogy to equilibrium systems.

5.2. Gas phase growth in fluid-gas coexistence

A fluid-gas coexistence region was observed at the fluid-gas phase boundary in the
phase diagrams presented in chapter 3} This transition seems to be determined by
the balance between the energy injected by the sinusoidal driving and the dissipation
by capillary bridges (cf. Sec.]3.2). Larger driving energies, E*, can lead to an increase
of the injected energy. Therefore, it should be possible to rupture more capillary
bridges. This suggests that the size of the gas bubble in the fluid-gas coexistence re-
gion can be expected to grow with increasing driving energy, E*. This behavior was
found in previous experimental work on this topic (Kai Huang, priv. comm.) and
will be presented here. This will be compared to two- and three-dimensional simula-
tions which show similar behavior. In three-dimensional simulations with periodic
boundary conditions, the increasing size of the gas bubble leads to three different
shapes of the coexisting phases. Whereof, due to symmetry arguments, only two dif-
ferent shapes have to be considered. The first is a drop shape of the minority phase
in the majority phase, for example a small gas bubble in an otherwise fluid system,
and the second is a strip state spanning through the system. The transition between
these two shapes will then be studied in analogy to a two-dimensional Ising model
4Neuhaus and Hager, 2003), where it represents a first order phase transition.
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5.2.1. Experiments

Snapshots of an experiment in top view are shown in Fig.[5.1} The details of the setup
were already given in Sec.3.3.1. In the present experiment the peak acceleration,
I', was varied in four discrete steps. The value of the peak acceleration is given
by the dashed line and is labeled on the right axis. For each value of the peak
acceleration, I', one snapshot which is shown at the bottom of the graph was taken.
The time when they were taken is indicated by the arrows in the figure. As the peak
acceleration is increased it can be seen in the snapshots at the bottom that the lateral
extension of the gas bubble increases. The area of the gas bubble is obtained by
image processing and is shown in each snapshot as red overlay. Additionally, the
blue circle indicates the size of the gas bubble if a circular shape is assumed. This
means that the area of the circle is the same as of the red overlay. The shape of the
gas bubble seems to be well approximated by a circular shape. This is only valid
as long the gas bubble does not come too close to the side walls of the petri dish.
Therefore, the system which is studied is limited to the green circles. The experiment
is stopped and repeated when the gas bubble crosses the green line. The area of the
gas bubble as obtained by experiments is plotted as a function of time in the main
panel of the figure (red circles, labels on the left). Soon after each increase of the peak
acceleration of the driving, I', the area of the gas bubble reaches a stationary value.
The stationary values are shown in Fig.[5.2(a) (green curve) and are normalized by
the total area under study. Thus, a, is the fraction of the whole system which
is occupied by a gas bubble. The height of the system, H = 6.6 mm, is constant
during the experiment and thus it seems reasonable to treat this situation as being
quasi two-dimensional. The fraction of the gas bubble, 4, is plotted as a function
of the normalized and rescaled driving energy E* = (E* — Efy, )/ (Ef ., — Efg )
Here Ef, is the critical driving energy for the f-fgc phase boundary (dashed white
line) and Eg, . similarly is the critical driving energy for the fgc-g phase boundary
(dotted white line) (cf. Sec.[3.1.2 for the definitions of the abbreviations). Only a few
data points are obtained close to the fgc-g phase boundary. This is because the
density difference (cf. Fig.[3.31) between the fluid and gas phase is decreasing close
to the fgc-g phase boundary and it becomes more difficult to distinguish the two
phases by image processing. The red and the black curves in Fig.[5.2(a) correspond
to other experiments, for example, with slightly different grain sizes as denoted in
the figure caption. For all experiments the filling height ¢ of the particles in the
container was kept constant at approximately /1y = 3.6 mm.

The initially expected increase of the gas bubble area a4, with increasing driving
energy is found in Fig.[5.2(a). This is valid for all three different experiments. At the
f-fgc transition the gas bubble area a, shows a discontinuous change which gives
rise to a hysteresis in the transition, which was also studied but is not presented
here. A question which remains open is the origin of the different shapes of the
results.
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Fig. 5.1 The peak acceleration, I" (dashed line, right vertical axis) is varied in four steps with time.
The snapshots clearly show a fluid-gas coexistence state. The increase of the gas bubble fraction for
increasing I is clearly visible. The size of the gas-like region is measured and plotted (red circles, left
vertical axis) and also shown as red filled overlay in each snapshot. The average particle diameter is
d = 1.5mm, the driving frequency is constant at f = 50 Hz and water is used as wetting fluid with a
fluid content of W = 2%. The experiments were performed by Kai Huang.

5.2.2. Simulations

Two- and three-dimensional simulations were performed in order to study the growth
of the gas bubble which was found in experiments. To allow for a comparison be-
tween simulations and experiments, the parameters in the simulations were chosen
such that they are close to the experimental values. Therefore, the granular par-
ticles undergo inelastic collisions with a coefficient of restitution of ¢ = 0.8. The
filling height of particles in the system is approximately three particle layers and the
height of the system is 9 and 8 particles in two and three dimensions, respectively.
This leads to a relative filling ratio (defined as the number of particle layers divided
by the height of the system) of 0.33 in two and 0.42 in three-dimensions. In the
experiment this value was 0.55 and thus indicates a significantly denser filling com-
pared to the simulations. Therefore, deviations between simulation and experiment
are expected. Other system parameters are noted in the caption of Fig.5.2(b).

The fraction of the system, a,, which is occupied with a gas bubble is plotted in
Fig.5.2(b) for the two-dimensional system. The solid black line is a fit to the data
of the form a, = 0.72(E*)P< with an exponent of B, = 0.32 + 0.02 indicating a con-
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Fig. 5.2 The area fraction of the total system which is occupied by the gas bubble, ag, is shown for an
experiment (a), a two-dimensional simulation (b) and a three-dimensional simulation (c). It is shown as
a function of the normalized driving energy E* = (E* — Ef¢.) / (Efsc.q — Efye)- The two-dimensional
simulations (b) reveal a continuous change at the f-fgc phase boundary (E* = 0). In contrast, a
discontinuous transition is obtained in the three-dimensional system, which is in qualitative agreement
with the (three-dimensional) experiments. The exponent in subfigure (b) is obtained from a fit (solid black
line) of the form a, = 0.72(]5"*)’30 as Bc = 0.32 £ 0.02. The insets in subfigure (c) show the shape of
the coexisting state in the top view of the three-dimensional system, where blue indicates the fluid and
orange the gas phase. Three different shapes can be distinguished: a circular-shape of the gas bubble
(1), a strip-shape (Il), and circular-shape of the fluid bubble (lll). They correspond to driving energies
as follows: E; = 0.02 (1), E; = 0.66 (1) and E;;; = 0.99 (Il). The dashed black lines in subfigure (c)
indicate the regions up to which the respective shape is theoretically favorable in the sense of minimal
interfacial area. The dash-dotted lines denote the boundary as obtained by simulations up to which
metastable shapes can be observe. It is discussed further in the text. The experiment was performed
(by Kai Huang) at constant frequency 50 Hz (black curve) and 100 Hz (red and green curve). The particle
diameters are 1 mm (black), 1.2 mm (red) and 1.5 mm (green) and the liquid content of the wetting liquid
in the container is W = 2%. The parameters used in the two-dimensional simulation are identical to
the one used in Fig.3.11. For the three-dimensional simulation 1.2 x 10° polydisperse particles with
polydispersity 0, = 0.06 are used, which are confined to a box of size 84 x 192.5d x 192.5d. The
critical rupture separation is s¢it/d = 0.0625, the bridge energy is Ecp /mgscic = 4.0, the coefficient
of restitution between particles is e = 0.8. The peak acceleration used in simulations is I" = 100.
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tinuous change of a, at the f-fgc transition’. A qualitative change of this functional
dependence is observed in the three-dimensional simulation and can be seen in
Fig.[5.2(c) (circles). Here, a discontinuous change of a, is found at the f-fgc transition,
which is in qualitative agreement with the experiment. However, no quantitative
agreement between simulations and experiment can be found. The experimental
values are in all cases lower than the corresponding values in the three-dimensional
simulation. This means that the gas bubble in the experiment is smaller than in
the simulations. A possible explanation for this could be the higher relative filling
height, which results in a higher mean particle density. It is well known that the dis-
sipation of kinetic energy in wet granular matter in the dense fluid regions is much
larger than in a dilute gas dHager—Fingerle, zooﬁ). At the same time the energy injec-
tion is large in the low density areas. If the mean particle density is now increased
this leads to a decrease of injected energy and to an increase of dissipated energy
and thus reduces the overall kinetic energy in the system and thus less particles
seem to be driven into a gas-like state. It is easily possible to study both, experi-
ments and simulations, at different filling heights such that this argument can easily
be checked.

After studying the size of the gas bubble the focus is now shifted to the resulting
shape of the coexisting phases. In the experiment, the shape of the bubble was
found to be approximately circular as long as it does not come into contact with
the wall. In two-dimensional simulations, the shape in the flat system is almost
trivial if, as done in the following, the influence of gravitational forces are neglected.
Then it can be approximated as a simple plug of varying size. Thus, the much more
interesting system is the three-dimensional system where three different shapes can
be identified in the simulations and which is studied here. The three small insets
in Fig.[5.2(c) schematically show these different final shapes of the coexisting phases,
where blue indicates the fluid and orange the gas-like region. The first one shows
a small gas bubble in an otherwise fluid system (I). The second one shows a strip
shape, where each phase spans through the whole system via the periodic boundary
conditions® (II). The third one shows two fluid droplets in an otherwise gaseous
system (III). This system was not yet in its final stationary state as there is usually
a single droplet configuration found. The different shapes correspond to different
driving energies as follows: Ef = 0.02, Ej; = 0.66 and Ej;; = 0.99. The colors of the
circles in (c) indicate the shapes which are found in the respective simulation (green
circles: I, black circles: II and yellow circles: III). For each of these three shapes the
corresponding snapshot of the system is displayed in Fig.[5.3.

1. Note that a, is largely independent of the peak acceleration of the driving, I', as was revealed
by two-dimensional simulations which are not shown here. Basically, it only depends on the
driving energy E*. This seems reasonable as it was assumed that the driving energy determines
the quantity of particles in the gas bubble.

2. The periodic boundary conditions in both lateral directions means that the particles move along
the surface of a torus. This geometry causes the strip shape to be stable. If the system, for example,
were on the surface of a sphere, then this strip shape would be an unstable shape.
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Fig. 5.3 Three snapshots of simulations are displayed which show the three different shapes of the
coexisting phases. A circular-shape of the gas bubble (1), strip-shape (Il) and circular-shape of the fluid
droplet (Ill). They correspond to the driving energies E/ = 0.02 (1), E;; = 0.66 (1) and Eji, = 0.99 (Il
The other system and driving parameters of the simulations are noted in the caption of Fig.[5.2.
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The thermodynamically preferred shape is determined by minimal total free en-
ergy. Based on that argument a simple theoretical model is reviewed here, which
was shown to predict a transition between a droplet and a strip shape in a coex-
istence region of the two-dimensional Ising model (Leung and Zia, 1990; Neuhaus
and Hager, 2003). In this system’s equilibrium state, the transition between the drop
to the strip shape was shown to be a first order phase transition. The theoretical
model involves, besides an isotropic surface tension, only geometrical arguments
for the switching between the drop and the strip shape. The method involves two
steps. First, the equilibrium shape of the coexisting phases is calculated based on
the minimization of free energy. It will depend only on the area fraction a, and
determines the transition point between the drop and the strip shape. The second
step is the calculation of the saddle point configuration. This determines the height
of the energy barrier which is involved in this first order phase transition. Because
the calculation involves the minimization of the free energy in the system it is not
directly applicable to the system of wet granular matter. Simply because there is
obviously nothing like a free energy known for the system of wet granular matter.
However, the calculation is based mainly on geometrical arguments of how to mini-
mize the interfacial area at the transition between the two states. These geometrical
arguments seem to bear reasonable potential to be applicable also at the transition
from the circular to the strip shape in wet granular matter.

The equilibrium shape which is obtained in such a system in thermal equilibrium
with periodic boundary conditions in both directions is either a circle or a strip shape.
At the transition point between these two shapes the interfacial length of the circle
has to be the same as for the strip shape. This immediately leads to the radius of the
droplet r = L/ 7t at this transition, where L = L, = L, is the lateral extension of the
square-based system. The relative area fraction of the system which is then occupied
by the droplet is given by a, = 1/7r and determines the transition point in-between
the two shapes. This is the first result and shall now be compared to the simulations.
Two different shapes occur in simulations which are reminiscent of a droplet shape.
This is shape (I), where a gas bubble appears in an otherwise fluid system and
the shape (III), where a fluid droplet appears in an otherwise gas-like system. For
the argument of minimizing the free energy only the shape and the length of the
interface are important. It particularly does not include any distinction of the two
phases which are in contact. Therefore, the shape (I) is equivalent to the shape (III)
in this argument such that these two situations can be assumed to be a droplet of
the minority phase which is immersed in the majority phase. Due to this symmetry
argument, the region where the strip shape is favored by energy minimization is
found to be in the interval 1/71 < ag < 1—1/7. These limits are given by the dashed
black lines in Fig.[5.2(c). There it can be seen that a gas bubble shape (1) is still found
in the region where the strip shape thermodynamically is already preferred. Thus,
the transition points as predicted by theory are in qualitative agreement with the
simulations but no quantitative agreement is found.

To further improve the agreement between the simulation and the theoretical pre-
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diction it is turned back to the second step of the theoretical argument in the equilib-
rium situation. As the transition between the circular and the strip shape was found
to be a first order phase transition, this gives rise to an energy barrier which has to
be overcome. Thus, for example, a metastable droplet shape is characterized by a
droplet radius which is larger than the critical radius, » > L/m. This immediately
brings to mind the question about the “saddle point” configuration. The ‘saddle point’
configuration is the geometric shape with the lowest interfacial length that can lead
without any further increase of the free energy to both: the transition to the drop
shape as well as to the strip shape. This is sketched in Fig.[5.4} The additional length
(compared to the equilibrium state) which is associated with this ‘saddle point” con-
tiguration determines the height of the energy barrier. It was conjectured in (Leung
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L
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Fig. 5.4 A droplet shape is sketched in () in a system of width and height L, while the strip shape
is shown in (Il). The saddle point configuration is shown in between the two images. The area of the
orange gas bubble shall be the same in all three sketches. The saddle point configuration is composed
of two lens-shaped arcs and minimizes the excess interfacial length for the given area. Being in the
saddle point configuration means that the interfacial area is reduced by both, going to a drop or strip
state.

and Zia, 1990) that the shape of the ‘saddle point’ configuration is a lens-shaped
‘pinched strip’. This led to the result that the percentile increase of the excess length
of the ‘saddle point” configuration is given by

1
EaaD/s —1=0.1346..., (51)

where dap /s is the non-dimensional interfacial length of the lens-shaped “pinched
strip” at the saddle point. This result was obtained by only assuming the geometrical
shape of the saddle point configuration and thus seems to bear reasonable potential
to be transferable to other systems as already discussed in dLeung and Zia, 1990).
In the simulations shown in Fig.[5.2(c), a drop shape (I) was observed in the regime
where the strip shape (Il) is already preferred by minimization of the interfacial
length. This seems to give rise to an excess length of the droplet compared to the
strip shape. This droplet can be considered to be reminiscent of a ‘metastable” state.
The maximum excess length which is obtained in the simulations will be estimated
below.

The transition from the droplet shape (I) to the strip shape (II) as found in sim-
ulations is marked by the dash-dotted line in Fig.[5.2(c). The transition occurs at
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a critical area of the gas bubble, ap,s ~ 0.413 £ 0.013, which is estimated as the
arithmetic mean of the value above and below the boundary. This is now assumed
to approximately determine the saddle point (neglecting for instance the influence
of possible fluctuations). Out of this area the excess length can be estimated by as-
suming a droplet of mean radius 7 = \/ap,s/ 7, where 7 = r/L is the normalized
radius. Then the excess length is obtained to be 1dap,s — 1 = \/Ttag — 1 and approx-
imately determines the percentile increase of the excess length of the ‘saddle point’
configuration. With the value for ap,s obtained above, this becomes

1
59ap/5 — 1 = 0.139 40018, (5.2)

This estimate compares nicely with the theoretical prediction for the equilibrium
model given by Eq.5.1. However, the good agreement of the numerical values
should be taken with great care. (If the analogy to the equilibrium system is taken
seriously then small fluctuations seemingly can trigger the transition between the
two states and the value for the excess length should decrease with increasing time).
Thus this result is considered to be a qualitative agreement. More important than
the apparent agreement of the numerical values, is that this result suggests the pres-
ence of a quantity similar to an ‘interfacial energy’ in this system of wet granular
matter. The corresponding value for the transition from regime (III) to (II) cannot be
obtained due to the large scattering of the data in that region. Therefore, symmetri-
cally the same value as was obtained for the transition from (I) to (II) is marked and
only serves as a guide to the eye.

One question immediately arises with regard to the data presented in Fig.[5.2(c).
Why do only the gas bubble shapes (I) appear as metastable states in region (II), but
no metastable strip states (II) appear in the region (I)? An possible explanation for
this is given by looking at the preparation of the initial state of the simulation. At the
beginning of each simulation, the particles are distributed on a regular lattice and
obey a Gaussian velocity distribution of mean granular temperature T, /Eqy, = 40.0.
No capillary bridges are present between the particles. Then, at the very beginning
of each simulation the particles are freely cooling for a short period of time. The time
evolution of the system which then follows can be seen in the snapshots shown in
Fig.5.5/ (which shows a simulation of elastically colliding particles). Thus, an initial
nucleus seems to form somewhere in the system and then expands to its stationary
size. This is qualitatively similar for the case of inelastically colliding particles, even
though the number of initial nuclei can be larger than one3. As all simulations seem
to start with a gas bubble which is expanding, this readily explains why in the tran-
sition from (I) to (II) only metastable droplet states are observed. At the same time
this assumption suggests a possible explanation for the deviations at the transition
from the strip (II) to the fluid drop shape (III). However, the data shows considerably

3. At driving energies close to E* = 0 a single nucleus is formed within the system. By successively
increasing E* the number in initial nuclei is growing.
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more noise* at the fgc-g transition, which makes it difficult to quantitatively examine
the behavior. Nevertheless, this suggests that simply by preparing the initial state in
a specific manner enables the study of the transition in the favored direction. The
comparison between simulations and experiments suggests a dependence of the size
of the gas bubble on the packing fraction of particles in the system. This can easily
be utilized to test the universality of the value provided for the percentile increase
of the excess length of the ‘saddle point” configuration in Eq. (5.2).

In the next section simulations are shown which try to estimate the value of the
effective “interfacial energy” which was suggested to be present.

5.3. Interfacial energy

In this section an experiment is shown which also suggests the presence of a quantity
like an interfacial energy in wet granular matter. It is followed by the estimation of
the interfacial energy in simulations, which is done by applying a sinusoidal force to
the strip state and measure the resulting deformation. The resulting gain in potential
energy of the deformation is assumed to be balanced by the loss of energy due to the
increased interfacial area. At the end of the section a dynamical method is presented
which attempts to estimate the mobility of the particles in the fluid phase.

5.3.1. Observation

Snapshots of an experiment are shown in Fig.|5.6|for different times. The system is a
flat petri dish which is viewed from above and contains water-wetted glass spheres.
In contrast to the experimental snapshots shown in the previous section, the driving
does not change with time, but is kept constant at the values given in the caption.
Two gas bubbles were formed initially in Fig.5.6(a) and start merging in Fig.5.6(b),
forming a cusp where the two gas bubbles start touching. This cusp is rounded in
Fig./5.6(c) until only a single, larger gas bubble remains in Fig. 5.6(d). This strongly
suggests the presence of an interfacial energy also in experiments.

5.3.2. Estimation of the interfacial energy in simulations

Several techniques can be thought of where the equilibrium formalism can be techni-
cally applied to the present system of wet granular matter. The two most promising
are, for example, the monitoring of interfacial fluctuations dHovt et al., 2001) and the

4. A short comment shall be made concerning the increasing noise which occurs in the data in
Fig.[5.2(c) at the fgc-f transition. It is partially caused by the difficulty to precisely detect the fluid
phase at this transition because the density difference between the fluid and the gas state decreases.
This can be seen, for example, by comparing the shadows of Fig.[5.3(IlI) with (II), where the den-
sity of the gas-like region in (III) is significantly higher compared to the one in (II). Additionally,
the interface has a certain width and the precise definition slightly influences the value which is
obtained for ag. The largest influence is expected where the density difference is small.
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Fig. 5.5 Snapshots which are taken equidistantly in time (starting at the top) of an event driven
molecular dynamics simulation of 1.1 - 10° wet spheres using the thin-thread model with perfectly
elastic collisions between particles. The gas bubble (top) expands until it reaches system size (mid-
dle) and the diamond shaped fluid phase (middle) forms a circular spot located at the system corner.
The particles are slightly polydisperse with 0, = 0.06 and mean diameter d = 1. The system is
10d x 175d x 175d particle diameters large, the rupture distance is s¢it/d = 0.07, the capillary bridge
energy is Ecp/mgscit = 3.5, the mass of one particle is m = 1 and the acceleration due to gravity is
g = 1. The particles were initially distributed homogeneously on a regular lattice within the system and
the mean granular temperature was Tg / Ecp = 20.0 with a gaussian velocity distribution.
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Fig. 5.6 Snapshots of an experiment with water-wetted glass spheres of diameter 1.06 mm confined
in a flat petri dish (9 mm) and viewed from above. Two gas bubbles are formed initially (a) and start
merging in snapshot (b) forming a cusp where the two gas bubbles touch. This cusp is rounded (c)
until only one gas bubble remains (d). This suggests a interfacial energy which is causing this rounding
process. The particles are filled up to a height of 3mm and the liquid content is W = 1%. The driving
frequency is 50 Hz and the peak acceleration is I' = 9.5. The snapshots are not taken equidistantly in
time. Experiment performed by Kai Huang.
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deformation of the strip shape with an applied shear force. The latter one shall be
applied here. A simple possibility for such a force, which has to be applied perpen-
dicular to the strip, is a force sinusoidally varying in space. The acceleration field of
this shear force, which was introduced in Sec.[2.4.4 is given by

a(X) = —asmax c0s(27TX), (5.3)

where dgmax is the maximum acceleration of the external shear force field and ¥ =
x/Ly is the normalized length. The deformation of the interface in the stationary
state is given by

fu(%) = Aqcos (271%), (5-4)

where f; = f},/ Ly is the normalized position of the interface and A; = A;/Ly is the
normalized deformation amplitude. For the slightly deformed interface f;(%) the
gain in potential energy is given by

1
Hy = p/diﬁ,(f)ad(f), (5.5)
0

where p = mN,/1 is the mass density, m the mass of one particle and N, is the
number of particles in the fluid phase. This gives for the interface described by

Eq.(5.4)
1 -
HV — ENstmaxAd/ (56)

where Fimax is the maximum of the applied force. In the stationary state this gain
in energy Hy, must be balanced by the loss in energy, H,, caused by the increase of
the interfacial area. Assuming a continuum model, H, is approximated for small-
curved, D — 1 dimensional surfaces in a D-dimensional system and interfacial en-

ergy o by
H, = a/delaz [«/1 + (V)2 — 1] ~ g/delx(th)z, (5.7)

where the integration limits are such that the whole interface is taken into account.
After short calculation the energy necessary to deform the interface in a three-
dimensional system is found to be

H, ~ anaﬁﬁ. (5.8)

The factor of two results from the two interfaces in the simulation (red lines in
Fig.5.7). In the stationary state, where the deformation amplitude, A, is constant,
there must be H, = Hy. This means that the gain in potential energy induced by
the sinusoidal shear force (Eq. (5.6)) has to be balanced by the increased interfacial



5.3. Interfacial energy 83

energy (Eq.(5.8)). If the deformation amplitude, A4, and the number of particles,
Ny, in the fluid phase are known for a given shear force, Fsmax, the interfacial energy
can finally be approximated as

(2 7T)2A d .

Using this approximation, the interfacial energy shall now be estimated in event-
driven simulations. The thin thread model is used to account for the capillary inter-
action while particle collisions occur perfectly elastic. The diagram in Fig.[5.7]shows
the (time-averaged) capillary bridge density as a grey shade, where white means
no bridges (gas state) and black means many bridges (fluid state). It is plotted
against the two lateral coordinates and averaged over the height of the system. The
cosine-shaped shear force is visualized above the diagram. A deformation of the
fluid phase is observed which follows the applied shear force. Thus, the resulting
deformation can be well approximated by a cosine-shaped function as indicated by
the red lines, which are fits to the interfaces and lead to a deformation amplitude of
Ag/Ly = 0.066. The simulation here is performed in a square base simulation box
with L = 192.5d. A snapshot of the system is shown in the inset of the figure.

In Fig. 5.8/ the time evolution of the deformation amplitude A; is shown for two
different shear forces, Fsmax. The initial state of the simulation is a system with a
strip state spanned straight through the system. The system which was used in the
simulation is in a stationary state before the shear forces are applied to it. It can be
seen that the deformation amplitude is increasing until it reaches a stationary state
and then only fluctuates around the stationary value. The deformation, Ay, is larger
if the shear force, Fsmax, is larger (red curve in Fig.5.8). It seems as if the potential
energy gained through the deformation can indeed be balanced by an interfacial
energy.

The resulting deformation amplitude, Ay, is plotted in Fig.[5.9 as function of the
applied shear force, Fsmax. Approximately, a linear dependence can be found, which
is expected according to Eq.(5.9) if the interfacial energy is constant for different
shear forces. The independence of the interfacial energy on the applied shear force
is is a striking result in itself. This suggests that the interfacial energy can be well
approximated with this simple approach reflected by Eq. (5.9), even though the sys-
tem under study is far from equilibrium. As the driving energy, £*, is increased,
the slopes of the curves in Fig.[5.9 are increasing, which means that the interfacial
energy is decreasing. It is found in simulations (Fig.[5.10] (left)) that the fraction of
particles which are in the fluid phase stays in good approximation constant, even
though the shape is changing through the different values of the applied shear force.
The number of particles in the fluid phase mainly depends on the driving energy,
E*, as it can be seen in in the figure on the right hand side, and decreases with
increasing driving energy.

Using the slope obtained in Fig.[5.9 and the number of particles in the fluid phase
as obtained in Fig.[5.10, the interfacial energy can now be estimated by using Eq. (5.9).
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Fig. 5.7 Capillary bridge density is shown as gray scale (dark: many bridges, white: no bridges)
in lateral spatial resolution (averaged in vertical direction and in over 50 snapshots in time). The red
curve is a cosine fit to the phase boundary which determines the deformation amplitude, Ad/Ly =
0.066, and shows that the deformation follows the applied shear force (shown above the diagram with
maximum shear force Fsmax). The inset shows a snapshot of the three-dimensional simulation of 1.2 %
10° elastically colliding particles confined in a box of dimensions 84 x 192.5d x 192.5d obeying periodic
boundary conditions. The driving parameters of the shaking are I' = 100.0 and E* = 2.14, while the
maximum shearing force is FsmaxLx/Eco = 1.04. The capillary bridge energy is Ecy,/mgscric = 4.0 at
a critical rupture separation of s¢it/d = 0.0625.
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Fig. 5.8 The time dependence of the deformation amplitude, A;/d, of the sinusoidally deformed fluid
strip is shown for different shearing forces. A stationary state is reached in both cases even though
larger shearing forces lead to larger deformations.
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Fig. 5.9 The deformation amplitude, A, as obtained by three-dimensional simulations of elastically
colliding spheres is plotted as a function of the maximum shearing force, Fsmax. It is normalized by the
length of the system, L., and the average number of particles in the fluid phase, <Np>. The approximate
linear behavior suggests that Eq. is a reasonable estimate of the energies involved in the transition
. The different slopes for different driving energies E* denote a dependence of the interfacial energy on
the driving energy. Simulation parameters are as denoted, and otherwise the same as in Fig.[5.7.
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Fig. 5.10 The fraction of particles which are in the fluid phase is shown as a function of the maximum
shear force, FsmaxLyx / Ecp, (left figure), where a slight increase can be observed for larger shear forces.
However, it is mainly dependent on the driving energy E* = (E* — E;ffgc)/(E%c_g - Ef’ffgc) (right figure).
The simulation parameters are as denoted or otherwise the same as in Fig.[5.7.
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The final result is shown in Fig.5.11(black) and shows the interfacial energy, o, as
a function of the driving energy, E*. The interfacial energy is normalized by the
surface tension of the wetting liquid v, because the capillary bridge force is well
approximated by Eq. as Fp ~ 7d in the case of complete wetting. It is obtained
that the interfacial energy, o, lies between 15% and 40% of the surface tension value
of the wetting liquid.
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Fig. 5.11 The interfacial energy, o, between a fluid and gas phase as obtained by three-dimensional
simulations (black) of elastically colliding hard spheres and theoretical estimation by Eqg. (5.10) (red)
is shown at different driving energies, E*, of the sinusoidal shaking. It is normalized by the surface
tension -y of the wetting liquid (cf. Eq. (2.8)), while the driving energy is normalized such that the fluid-

gas coexistence region is projected to the normal interval between zero and one by E* = (E* —

Eftge)/ (Efge.g — Efgge)- Simulation parameters as denoted and otherwise the same as in Fig.[5.7|

In the following a short estimate of the interfacial energy shall be given. Therefore,
the interfacial energy is estimated by the evaporation of a liquid droplet assuming
that the energy of evaporation is known. To this end the fluid particles are micro-
scopically assumed to be ordered on a regular three-dimensional lattice and attract-
ing each other. A sketch of this situation is shown for a two-dimensional lattice of
size L in Fig.[5.12. The average distance between the sites is assumed to be d. The
surface area which is now created by the evaporation of the fluid can be estimated
by cutting the lattice into its smallest pieces. Every cut which is made through the
three-dimensional lattice creates a surface area of 2L2. Four of these cuts are marked
as red lines in the sketch. For complete evaporation of the fluid, in each dimension
L/d of these cuts have to be made. Thus, the total surface area created by complete
evaporation is Ay = 6L3/d. For a given energy of evaporation, AH, the surface
tension then can finally be estimated as ¢ = AH/Aiyx. The energy to evaporate
all granular fluid particles is simply given by the number of capillary bridges in
the volume times the capillary bridge energy and thus reads AH = ny,LEg,. The
capillary bridge force Fg = E,/5qit is given by F ~ 7tdy, where 7 is the surface
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tension of the wetting liquid. The mean distance between particles is estimated as
d = 1/n'/3, where n is the particle number density. Finally the interfacial energy of
the wet granulate can be estimated by

o T 1\1/3
; ~ gncbdscrit <n> . (5.10)

In order to compare this result with the simulations, the capillary bridge density
and the particle number density of the fluid state are used as obained from the simu-
lations. The resulting interfacial energy for wet granular matter in the system under
study is plotted in Fig.[5.11(red) as a function of the normalized driving energy. This
simple estimate seems to be of the same order of magnitude as the values obtained in
simulations (black). Quantitative deviations seem reasonable as the packing of par-
ticles is not as regular as assumed by the simple estimate. A qualitative agreement
is found for the decrease of the interfacial energy with increasing driving energy.
In the simple estimate, it is caused by the decrease of the capillary bridge density
with increasing driving energy. Therefore, this strongly suggests that the interfacial
energy in this system of wet granular matter originates from the capillary bridges.

d

L

Fig. 5.12 Left: A sketch of a liquid droplet of size L. Each cut through the lattice creates additional
surfaces. The distance between the lattice sites is d.

The sinusoidal deformation of the interface which is obtained through the applied
shear force, immediately raises the question of what happens if the external force is
switched off. If there is an interfacial energy in the system the expectation is that the
strip dynamically relaxes back to its ‘equilibrium” shape. Equilibrium in this context
simply means the state with minimal interfacial area which is a strip shape with a
flat interface. This dynamical behavior is studied in the next section.

5.3.3. Estimation of particle mobility

The dynamical relaxation of a sinusoidally deformed interface is discussed in this
section. The expected result is an exponential decay of the deformation amplitude
with time. This will then be compared to the numerical simulations.
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The dynamical behavior of a fluid interface is governed by the minimization of the
interfacial area. The corresponding Langevin equation for a thin liquid film, where
gravitational forces are neglected, is

of (% <
P — oy o) + x50, 611

where 0 is the interfacial energy, j is the effective mobility of the fluid particles and
the noise x(x,t) has the correlations (x(x,t)x(x',t')) = 27s6(x — x")é(t —t'), where
7s is the strength of the noise. The units of o X j; are the same as for a diffusion
coefficient. For a derivation of how the interfacial energy in the Langevin equation
is connected with a diffusion-like term the reader is referred to ‘Kardaﬂ, 2007). The
Langevin equation is linear and solvable by Fourier transforms (Kardar, 2007). The
initial deformation of the interface is given by

fu(%,t =0) = Aycos (27%), (5.12)

where A;(t) = A4(t)/Ly is the normalized amplitude and A,, = A;(t = 0) is the
deformation at start. Eq. is solved for the average deformation amplitude by
averaging over several realizations and thus neglecting the noise. The time-evolution
of the average deformation amplitude with the initial conditions given by Eq. (5.12)
leads to

Ag(t) = Aoyexp (- @7 opyt) (5.13)

which is an exponential decay of the deformation amplitude with time. As it was
first shown in (Edwards and Wilkinson, ‘1()82) the Langevin equation displayed in
Eq.[5.11]is similarly valid for a coarse grained system. The exponential decay shall
now be studied in numerical simulations of the wet granular system.

When performing simulations, the initial configuration used is the final stationary
state obtained by the sinusoidal deformation of section[5.3.2} For the sake of compu-
tational efficiency, a different program was used where the sinusoidal shearing was
not implemented. This, however, led to the fact that the capillary bridges were not
included in the initialization. Thus at the beginning of each simulation, the capil-
lary bridges have to be formed by collisions. A typical outcome of such a relaxation
process is shown in the snapshots in Fig.5.13. The initially deformed strip (top)
decreased its deformation (middle) until it recovered a flat interface again (bottom).

Fig.[5.14/shows the time evolution of the deformation amplitude which is averaged
over 20 different simulations on a semi-logarithmic scale. The error bars denote
standard deviation. It can be seen that the deformation amplitude decays with time.
At the very beginning slight deviations from the exponential decay can be observed.
This is most likely caused by the absence of capillary bridges at the beginning of
each simulation. This is followed by a region where an exponential decay seems to
occur, as suggested by the solid straight lines, which are fits to the corresponding
curve. However this is less than a decade and thus is not sufficient to suggest an
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Fig. 5.13 Snapshots of a three-dimensional simulation which shows the relaxation of a deformed state
back into a strip state after switching off the external shear force. Time evolves from top to bottom.
The system contains 1.2 x 10° elastically colliding particles and its size is 84 x 192.5d x 192.5d. The
sinusoidal shaking is done at I' = 100, and E* = 0.72. Other simulation parameters are the same as

in Fig.[5.7|
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exponential decay. At the end of the simulation a stationary state with an almost
flat interface is reached. However, the interface undergoes fluctuations which are
of the order of a few particle diameters, but can also become larger. A snapshot
where such a fluctuation is visible at only one interface of the strip was presented in

Fig.[5.3(middle).
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Fig. 5.14 Elongation amplitude, A4, normalized by the particle diameter, d, is plotted versus time for
three different driving energies. The solid lines are exponential fits to the data and lie in a large range
of time within the error bars, which denote the standard deviation of the average over 20 individual
simulations at slightly different initial conditions. Simulation parameters are the same as in Fig.[5.7.

Using the fit to the exponential decay at the beginning of the simulation (lines in
Fig.[5.14), the effective mobility, us, of the particles which is associated with their
self-diffusion was estimated. The resulting effective mobility is shown in Fig.[5.15
and shows strong scattering, but nevertheless a trend for increasing mobility with
increasing driving energy can approximately be observed. The strong scattering
is not surprising in view of the small range of the data where the decay of the
amplitudes followed the exponential decay. The estimation of the mobility shall
therefore be considered as a first approximation of this quantity.

In this section, the interfacial energy of a fluid gas coexistence was estimated for
the simulations by deforming an initially flat interface. This was done by applying a
sinusoidal shear force to the system. Surprisingly, it was found that the deformation
amplitude seems to scale linearly with the maximum applied shear force, in accor-
dance with the prediction of a continuum model in equilibrium. This linear scaling
is a necessary condition that the method of mechanically deforming the interface can
lead to meaningful results in terms of the interfacial energy. The interfacial energy
as a function of the driving energy showed good qualitative agreement between the
simulation and a simple estimation based on the binding energy of the capillary
bridges. The estimate predicted a linear increase of the interfacial energy with the
critical rupture separation, which is a suitable topic for further numerical studies.
It seems particularly interesting and promising to compare the results obtained by
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Fig. 5.15 Effective mobility, Wy, as obtained by simulations, plotted against the normalized driving
energy, £*. The mobility is normalized by the surface tension 7 of the wetting liquid and the mean time
between collisions in the fluid phase, tcq, (estimated as feo = 1/71,}/3 \/Tg), where ny is the particle
number density and Tg the granular temperature.

simulations here with experiments which will be done on this subject in the future.

5.4. Coarsening dynamics

In the previous sections it was shown that an interfacial energy seems to be present
in three-dimensional, wet granular matter which shows a fluid-gas coexistence. In
the present section it will be studied if the existence of an interfacial energy is of
appreciable universality with respect to dimensionality and the phases being in
coexistence. Finally, the coarsening dynamics is examined in two different wet
granular systems which partially show similarities to equilibrium system. Coars-
ening is first studied in a two-dimensional system showing the fluid-gas coexistence,
where the coarsening will be in some parts reminiscent of the coalescence of fluid
droplets. In the second part of this section a solid-fluid coexistence is studied in the
three-dimensional system, where the coarsening is reminiscent of Ostwald ripening.
Due to the complex dynamical behavior in the two-dimensional case no conclusive
result can be given. In the case of the solid-fluid coexistence an interfacial energy is
suggested by the similarity to the Ostwald ripening.

It was J. W. Gibbs who first realized that the formation of small clusters in the su-
persaturated ambient phase, induced by small density fluctuations, is a prerequisite
for nucleation to occur. Thus, a certain energy barrier has to be overcome (which is
increasing with increasing interfacial energy) for the initial nucleus to persist (Gibbs,
1928; Kashchiev, 2000; Markov, ‘2002). After the formation of multiple nuclei and
fast growths of these nuclei into stable domains, the system quests to minimize the
total interfacial area between the domains of coexisting phases to reach an ener-
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getically more favorable state. This process is called coarsening because the largest
domains grow in size on expense of smaller ones. Several different coarsening mech-
anisms are known (Voorhees, 1992 Campbell et al., 2002; Bowker, 2002; Becker et al.,
2003; Rump, 2008) as for example the two main mechanisms coalescence and Ost-
wald ripening, where the latter is well described by the Gibbs-Thomson equation
(fOstwald, 1900; ‘Lifshitz and Slyozov, 1961 McDonaldJ, 1962; Voorhees, 1992, and
references therein).

; 2

7

5.4.1. Nucleation and coalescence

Indications were found in the previous section that the interfacial energy possibly
is caused by the capillary bridges. No evidence can be found why the simple the-
oretical estimate of the interfacial energy presented there cannot be applied to a
two-dimensional system. Thus, the coarsening dynamics of the two-dimensional,
wet granular system is studied. If a behavior reminiscent of an equilibrium system
was found, this could give indications that also in the two-dimensional system an in-
terfacial energy is present. At some stages a behavior is found which is reminiscent
of a coalescence process. However, on the long run the system shows much more
complex dynamical behavior which eludes of any simple description and thus the
presence of an interfacial energy could not be clearly shown.

The emerging coarsening dynamics in simulations is presented and described in
detail. Then a simple theoretical estimate on this topic is reviewed and its limits of
validity are discussed.

5.4.1.1. Observation

To study nucleation and coarsening processes in wet granular matter, event-driven
simulations of a two-dimensional system which is hundred times wider than in
the previous section are performed. The system contains 1.2 x 10° elastically collid-
ing disks which are interacting via the thin-thread model. At the beginning of the
simulation the particles are distributed in the system on a regular lattice and obey
a Gaussian velocity distribution with mean granular temperature T,/Ey = 20.0.
Other system parameters are the same as in Fig.3.2

A detailed description of what can be observed in the simulations shown in
Fig.|5.16 and will now be given. Fig.[5.16/shows the areal density (grey scale)
as a function of time (horizontal axis) and lateral position (vertical axis) on the top.
The areal density is normalized by the maximum packing fraction, ¢max, which is
measured during simulation in order to maximize the contrast of the resulting im-
age. At the bottom the diagram shows the mean granular temperature during the
simulation (red curve) as well as the fraction of the system, which is occupied by
the fluid droplets (black curve). For the simulation in Fig.[5.17]only the microscopic
distribution of initial particle velocities was different, all other system parameters
were the same. The figure shows the capillary bridge density (black: many bridges,
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white: no bridges) on a linear scale. At the bottom of the figure two magnifications
of regions of interest are shown, which reveal the details of the dynamics much
better.

Five different regimes are distinguished in Fig.5.16 and termed as follows: 1) The
nucleation regime in the intervall t < t; 2) the coalescence regime in the intervall
to < t < t1; 3) the reordering regime in the intervall t; < t < t;; 4) the re-nucleation
regime in the intervall {, < t < t3; 5) the final stationary regime in the intervall
t > ts.

The nucleation regime is dominated by precipitation of fluid nuclei out of the
initially homogeneous gas phase. This can be seen best in Fig.[5.17(1), where five
fluid droplets nucleate out of the initial gas phase. It seems as if there is a preferred
separation length of two adjacent fluid regions. To support this observation the
resulting probability density of the separation lengths in the system is shown in the
inset of Fig.5.16, indeed suggesting a maximum between 1004 and 200d.

The nucleation is followed by the coalescence regime. The fluid droplets seem
to start attracting each other and successively coalesce with adjacent ones to form
larger fluid droplets. It is best seen in the zoom into the region (1) in Fig.[5.17.
The attraction seems to result from a local decrease in pressure which possibly is
caused by the stronger dissipation at the fluid-gas interface (cf. Fig.|5.18). This causes
driving forces perpendicular to the driving wall>. The process of coalescence reduces
the interfacial area and seems to suggest the presence of an interfacial energy.

In the reordering regime it becomes visible that the system does not continuously
reduce its interfacial area. A phenomenon can be be observed where a gas bubble
is periodically arising within a fluid regime and therefore the interfacial area is
increasing. This is the situation which is highlighted in Fig.5.17(2). This periodic
arise of the bubble can be qualitatively understood. Dissipation mostly occurs in the
dense phase and especially at the interface, whilst energy injection occurs in the gas
phase. This implies a resulting net heat current from the hot gas to the cold fluid
drop, where the energy is dissipated. Since the number of interfaces is decreasing
through coalescence, the dissipation becomes less effective. As soon as the heat
current exceeds a critical value, i. e. transporting more energy than can be dissipated
locally, this leads somewhere inside the fluid drop to the emergence of a small gas
bubble. The creation of a new gas bubble increases the number of interfaces and a
larger portion of the heat current can be dissipated locally. The gas cools down and
condensates again. If the heat current is still not reduced, this process will repeat
periodically and eventually result in a complete evaporation of the fluid drops. If this
occurs all over the system, this leads to a drastic increase in granular temperature,
which can be seen at time t; in Fig.[5.16| At the same time the whole system seems

5. Lateral homogeneity of the pressure is regained in the stationary state. A first step towards a rough
theoretical description of the coalescence dynamics would be the inclusion of time-dependent lat-
eral pressure inhomogeneities in to the model shown in Sec.[3.2
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Fig. 5.16 The areal density (top) of a two-dimensional event-driven simulation of 1.2 x 10° elastic hard-
disks using the thin-thread model is shown as grayscale image as a function of the time and the lateral
position (averaged in the vertical direction) and normalized by the maximum packing fraction obtained
during the simulation, ¢max. The system is almost the same as used in Fig.[3.2] but hundred times
wider as previously (system dimensions: 94 x 40000d) and also using hundred times more particles.
The inset shows the probability density to find a certain separation length between two adjacent fluid
droplets at a time between ty and t;. The mean distance is found to be 157d. Below the figure the
mean granular temperature, Tg, is shown and also the fraction of the system, which is occupied by the
fluid droplets.
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Fig. 5.17 The bridge density of a similar simulation as in Fig./5.16 is shown again as a function of lateral
position and time (top). The regions marked by red rectangles and labeled as (1) and (2) are magnified
below the image. In magnification (1), an oscillatory occurrence of a gas bubble is visible, where a single
dense fluid drop periodically becomes divided by a gas phase growing inside the fluid droplet. Due to
the increased number of interfaces, the dissipation becomes more effective and cools down the system
again leading the two droplets to almost merge again. In magnification (2), the nucleation process is
clearly obtained. After nucleation there seems to be attraction between different fluid droplets, which
leads to successive coalescences of fluid droplets. The system and driving parameters are the same
as in Fig.[5.16lonly using a different random seed for the initial velocity distribution.
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to be in a gas state only showing lateral inhomogeneities in the areal density®.

Surprisingly?, in the re-nucleation regime a few fluid droplets start to nucleate
out of the spatially inhomogeneous gas phase and again start to reduce the global
interfacial area through coalescence again.

In the final stationary regime it seems as if all quantities that are shown in Fig.[5.16
are stationary with four fluid regions (of very different size) left. If there is interfacial
energy in the system it would be expected that the coalescence proceeds, although
very slowly, until only one fluid drop remains.

The dynamics emerging in the present system seem to be very complex and the
observations described above do not suggest an interfacial energy. This is because
the interfacial area is temorarily increasing in the reordering regime if there is a
gas bubble appearing within a fluid droplet. An interfacial energy in a system in
thermal equilibrium would lead to a monotonic decrease of the interfacial area with
time. This could clearly not be observed here.

A rough theoretical estimate shall be reviewed which was claimed to seemingly
capture the dynamics of this complex process, in what follows.

5.4.1.2. Discussion of existing models

A rough theoretical estimate on describing the coarsening process presented above
was suggested in dHager—Fingerle, 2007, section 10.7). However, the numerical data
presented there do not seem very convincing and thus the theoretical estimate shall
now be compared with the simulations presented in this thesis.

The estimate in dHager—Fingerle, 200%, section 10.7) assumes a temperature de-
pendent length scale in the system. Furthermore, this length scale is assumed to
scale linearly with the heat conductivity of the gas. This finally leads to the rela-
tion Ny o« Ly/ \/Tg which predicts the number of fluid droplets N¢ as a function
of granular temperature. The data presented in dHager—Fingerle‘, ‘200,%, section 10.7)
to support this scaling showed a pure gas state, Ny = 0, at time t; before the re-
nucleation sets in. The temperature of this gas state was shown to be approximately
T,/ Eq = 1000.0. How this is consistent with the theoretical prediction which states
that N =0 only occurs at T, — 0, was not clearly addressed. As it was claimed
that the “granular matter reaches its final state without violating the length scale”

6. The lateral inhomogeneities in the density and the small time and spatial resolution of the system
seems to lead to the artifact, that the fraction of the system which is occupied by the fluid drops is
not detected as being completely zero in Fig.5.16] and similarly leads to an overestimating of the
number of clusters in Fig.[5.19.

7. This effect was originally discovered in a ten times narrower system which resided in the pure gas
state for almost two days of clock time on a single computer. As computation time is a valuable
commodity and there were no expectations to find anything else than a pure gas state, the simu-
lation was planned to be canceled and new ones to be started before leaving the office that night.
Only by forgetting this, the author of the present work was amazed at finding a fluid drop again
in the system looking at it the next morning. It is remarked that the data of these simulations
were used in Fig. 10.18 and 10.19 of dHager—Fingerle‘, ‘200%) accidentally without citation, but fully
authorized.




5.4. Coarsening dynamics 97

| | |
0 100 200 300 400
lateral position/particle diameter

Fig. 5.18 The dissipated power, Pyiss, is shown in spatial resolution in a fluid-gas coexistence. As it is
the same system as in Fig.[3.2]the corresponding temperature and density profiles can be found there.
The box on top shows a snapshot of the two-dimensional system. It can be seen that the dissipation
reaches its highest value directly at the interface.

dHager-Fingerle, 200%, pp-233) this observation seems to falsify the theoretical pre-
diction. The theoretical estimate thus seems not to be sufficient to predict the dy-
namical behavior at the transition from the reordering to the re-nucleation regime.
This is not surprising as the ongoing dynamics at the re-nucleation transition is far
more complex than captured by the simple theoretical estimate. However, in the
following it will be examined if the theoretical estimate holds within the coalescence
regime, where the number of fluid droplets is also decreasing.

The number of fluid droplets as well as the granular temperature is easily accessi-
ble in the simulation and thus is shown in Fig.5.19(black circles) for the simulation
displayed in Fig.5.16. The red curve is a fit to the data according to Nf <1/ /T, and
reflects the theoretical prediction. It is in reasonable agreement with the numerical
data. Therefore, it seems that the theoretical estimate nicely predicts the increase in
granular temperature during the process of coalescence in the wet granular matter.
This finding also supports the result shown in dHager—Fingerle, 2007, Fig. 10.18) for
the coalescence regime. There it was shown that the relation Ny « 1/,/T, (as Ny is
an integer), predicts a discrete temperature spectrum.

In conclusion, it was shown that the theoretical estimate presented in (Hager-
Fingerle, @7, section 10.7) seems to predict the increase in granular temperature
which occurs along with the decrease in the number of fluid droplets. This leads
to a discrete temperature spectrum which implicitly is also confirmed. However, it
was also clearly shown that the estimate is not able to predict the transition across
different regimes in contrast to what was assumed in dHager—Fingerle, 2007, section

10.7).
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Fig. 5.19 The number of condensed phases, Ny, in the simulation shown in Fig.[5.16/is shown as
a function of the mean granular temperature, Tg. The red line is a fit to the data of the form Nf [
1/ /Tg/Ecb, which reflects the theoretical estimate presented in dHaqer-FinqerIeHZOO?, section 10.7)
and shows reasonable agreement in the initial coalescence regime.

5.4.2. Ostwald ripening

In the following, it will be shown that an interfacial energy seems to exist in a solid-
fluid coexistence of wet granular matter. To this end three-dimensional simulations
are performed which reveal a behavior reminiscent of Ostwald ripening which is
known from equilibrium systems. The similarity of the Ostwald ripening process
is supported by comparing the decrease in the number of crystallized domains ob-

tained by simulations to the predictions made by Lifshitz and Slyozoﬂ (1961). Their

agreement suggests an interfacial energy in wet granular matter because it is known
that Ostwald ripening is driven by interfacial energy in thermal equilibrium?®.
Event-driven simulations are performed in a three-dimensional, square-based sys-
tem of size L = 192.5d. Its height is 94 and thus can be viewed as a quasi two-
dimensional system. The capillary interaction is modeled based on the thin-thread
model and collisions between particles occur inelastically with a coefficient of restitu-
tion of ¢ = 0.96. Collisions between particles and the wall occur elastically. The par-
ticles are initially ordered on a regular lattice with a Gaussian velocity distribution
of mean granular temperature T,/Ey = 40.0. A snapshot of the system showing
a solid-fluid coexistence was presented in Fig.3.18. There it can be observed (es-
pecially in (b)) that multiple solid domains form within the system. The dynamical
behavior of these solid domains shall be studied in the following. To this end several

8. The interfacial energy of solids is a bit more subtle because solids can withstand shear forces.
Measuring the interfacial energy is then more difficult as simple methods as the one used above
(by deforming the interface) do not measure the interfacial energy alone (Shuttleworth, 1950; Sell
and Neumann, M).
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snapshots of the capillary bridge density which are averaged over the vertical direc-
tion are shown in Fig.[5.20, They were taken equidistantly in time. The system cools
down and resembles a homogeneous fluidized state at time f = 504 (first snapshot).
A few solid regions start to crystallize out of this fluid state reaching its maximum
number in the second snapshot at time f = 5128. Starting from here a coarsening
process sets in such that the number of crystallized domains is decreasing. This can
be seen, for example, for the domain marked by an arrow at time f = 9753, which
decreases in size in the following snapshots and vanishes completely in snapshot
six at time f = 23626. This domain did not come into contact with any other solid
domain, but remains spatially stationary throughout. Therefore, the granular par-
ticles have to be melted from the crystallized domain, diffuse through the ambient
fluid phase and precipitate again at a different crystallized domain. This bears strik-
ing similarity with the coarsening process which is known as Ostwald ripening. It
describes the reduction of interfacial area via a diffusive mass transport from areas
of high interfacial curvature to regions of lower interfacial curvature (Ostwald, %;
‘Lifshitz and Slyozov{, 1961; McDonald, 1962; Voorhees, 1992‘).

In the following the apparent similarity between the coarsening phenomenon ob-
served in simulations here and the Ostwald ripening will be examined. The first
quantitative theory which successfully predicted Ostwald ripening was in the sem-
inal work by ‘Lifshitz and Slyozov‘ d1961‘). One important assumption involved in
their derivation is the conservation of mass in each of the two phases. Their work
is known best for their prediction of the universal, self-similar particle size distri-
bution in the long time limit. Yet, several other predictions were made. This is,
for example, the prediction for the growth of the domain size, R, which was ob-
tained to scale as R(t) « /3. This relation can be used to obtain the scaling for the
number of domains, N;. It was given in the original work for a three-dimensional
system as N;(t) o« 1/t but is easily extended to a two-dimensional system where
Ny(t) o 1/t*/3 is obtained. This prediction shall be compared to the quasi two-
dimensional simulation of wet granular matter presented above.

First, the conservation of mass which is assumed in the original theory is exam-
ined. Assuming a constant mass density in the crystallized domain, this can be
tested in the simulation by measuring the total base area of the crystallized domain.
This is shown as the red curve in Fig.5.21} At the initial stage it shows the increase
due to the crystallization, but in the coarsening regime at times f > 10000 it is in
good approximation constant.

The number of crystallized domains, N, obtained by simulations is shown in
Fig.[5.2T (black circles). The solid black line in Fig.[5.21]is a fit to the data for times
f > 9000 of the form N « 1/t%/3. Tt can be seen that the data seems to resemble
the corresponding relation. In order to improve the result larger simulations are
needed for longer time-scales. This, however involves considerably more computa-
tional power and thus is left for future work. The agreement between the theoretical
estimate and the simulation thus suggests that the coarsening phenomenon under
study here indeed is reminiscent of Ostwald ripening. Thus it can be concluded that

4
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Fig. 5.20 Snapshots equidistant in time, f = t/Tqy, of the capillary bridge density are shown. The
first snapshot (top left) shows a fluidized state, where in the following snapshot solid phases start to
crystallize out of this fluid phase. The number of crystallized regions is decreasing with time, where
small drops are shrinking while larger ones grow. All drops remain spatially approximately constant and
are only shrinking or expanding. This is indicated, for example, at a small region marked by the arrow
which is completely melted three snapshots later. This suggests a diffusive mass transport from areas
of high interfacial curvature to regions of lower interfacial curvature reminiscent of the classical Ostwald
ripening process. The parameters of the simulation are the same as in Fig.[3.18/with I’ = 90.0 and
E* = 1.3 as driving parameters. The time lag between the snapshots is Af ~ 4624.
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the results presented here suggest the a quantity reminiscent of an interfacial energy
also in the solid-fluid coexistence of wet granular matter.
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Fig. 5.21 The red curve denotes the total area of the crystallized domains as obtained from the
simulation in Fig.[5.20] It is normalized by the total area of the system. At the initial stage a crystal-
lization process sets in and the solid domains are growing. At times t/Tqry > 10000 it approximately
remains constant in accordance to the assumptions made in\Lifshitz and SIVOZO\A dl%l‘). The number
of crystallized domains, N, (black circles) is similarly changing with time. The initial increase associ-
ated with the crystallization process and the decrease at t/ Ty, > 10000 again shows the Ostwald
ripening. The solid black line is a fit to the data of the form N, « (t/Tdri\,)’z/?’ which is the prediction
for Ostwald ripening in a two-dimensional system. A snapshot of the system under study can be seen
in Fig.[3.18 and is quasi two-dimensional. Thus the data points approximately agree with the prediction
in the Ostwald ripening regime ¢/ Tgry > 10000.

5.5. Anomalous diffusion in fluid-gas coexistence

In this section the anomalous diffusion of a fluid plug in wet granular matter will be
studied in a two-dimensional system. A conjecture is made that the super-diffusive
behavior which is found could possibly be caused by an interfacial energy.

The British botanist Robert Brown was not the first to observe Brownian mo-
tion. However, after he had published his observations dBrownJ, 1828, 11829), the
effect of erratically moving pollen on water, which is caused by a "molecular bom-
bardment" (Nelson, 1967), was named after him. It was Einstein (1905) and von
Smoluchowski 41906) who were finally able to derive the relation between the dif-
fusion coefficient and other thermodynamic quantities, such as temperature, which
is nowadays known as Einstein-Smoluchowski relation. After introducing stochastic
calculus, Brownian motion was modeled as a random walk described by a Wiener
process, which is now the standard stochastic process (Nelson, 1967; Karatzas and
Shreve, @g&). The Wiener process is also widely used in financial mathematics, such
as the Black-Scholes model (Black and Scholes, @L@J), which was awarded a Nobel
Prize in 1997.
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Real systems, however, often show anomalous diffusive behavior (Bouchaud and
Georges, 1990; Morita, 1996), which means that there is sub- as well as super-diffusive
behavior, where the mean squared displacement does not increase linearly in time,
but with an exponent smaller or larger than one. Anomalous diffusion can be ob-
served in a large variety of systems ranging for example from networks (Brockmann,
’;()3‘, and references therein), biological systems (see e. g. ‘Caspi et al., 2002), geologi-
cal systems (see e.g. Richardson, 1926; Cushman et al., 2009, and references therein)
or granular matter (D’Anna, 2003; Khan and Morris, 2005; Mayor et al., 2005; Dufty
and Brey, ‘2005‘).

’

5.5.1. Observation

Usually, when studying Brownian motion, a large intruder particle is immersed
in the system and the forces causing its motion are monitored. Here, instead of
using an intruder particle, the dense fluid phase itself serves as a "plug’ with larger
mass. As the system height is only 9 particle diameters, the plug is in a quasi one-
dimensional system which is anisotropic (cf. Fig.;3.2). Because the motion of this
condensed region becomes mostly visible on long time-scales, the simulations are
performed for a two-dimensional system of 1200 particles, but on up to 100-times
longer time-scales than typically used when studying stationary states. The capillary
bridge density, where black indicates many bridges (fluid) and white indicates no
bridges (gas) in Fig.[5.22; is used to visualize the motion of the condensed phase
with time within the system. The simulations in Fig.[5.22(a)-(c) have been performed
with the same parameters and only varying the random seed to obtain different
initial velocity distributions. It can be seen in (a)-(c) that there is no preferential
direction of the motion and the condensed phase is erratically moving. In Fig.[5.22(d)
the small range of subfigure (c) indicated by the vertical lines is shown. On short
time-scales small fluctuations can be observed but no macroscopic motion is visible.
Therefore, taking time-averages in the stationary state is possible, if the time-scales
on which the averaging takes place is small compared to the time-scales on which
the random motion appears.

The red and green line in Fig.[5.22(d) is the interface between the fluid and gas
phase. The arithmetic mean of these two lines accounts approximately for the mo-
tion of the center of mass and is plotted in Fig.5.23|for six different initial conditions.
As there is no friction between the particles and the top and bottom wall confining
the system, there is no damping mechanism which counteracts the lateral motion.
Clearly an erratic motion is visible, which is reminiscent of Brownian motion. The
width of the plug also undergoes some fluctuations with a standard deviation of
less than three particle diameters. This is less than one percent of the system width
and close to the resolution limit which is approximately one particle diameter and
therefore neglected here.
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Fig. 5.22 The capillary bridge density (gray scale) is shown for a two-dimensional simulation of 1200
particles in spatial resolution versus time. The time is normalized by the period of the sinusoidal driv-
ing Tgiv. The system and the driving parameters are the same as the one used in Fig.[3.2. Three
different random seeds were used in (a)-(c) to obtain slightly different velocity distributions as initial
conditions. The dense fluid phase is visible as dark gray area and no preferential direction of motion is
visible. Subfigure (d) shows a small range of the simulation shown in (c) as denoted by the vertical lines
and demonstrates that the macroscopic motion of the condensed phase is only visible on large time-
scales. The red and green line denote the boundaries between the fluid and gas phase as automatically
detected. The width of the system is L,, = 400d, while the height of the system is 9d, where d is the par-
ticle diameter. The driving parameters for the sinusoidal shaking are throughout this section I' = 15.0
and E* = 1.42. The rupture distance, normalized by the particle diameter, is s¢it/d = 0.0711, the
capillary bridge energy is E¢p/mgscrit = 4.0, the mass of one particle is m = 1, while acceleration due

to gravity is g = 1.
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Fig. 5.23 Lateral position of the center of mass of the condensed phase plotted versus normalized time
as above. Different colors indicate different random seeds for the initialization of the velocity distribution.
All parameters of the simulation are the same as given in Fig.5.22.

5.5.2. Results

It is necessary to calculate the mean squared displacement in order to justify the
similarity with Brownian motion. Therefore, the mean squared displacement oy, of
the center of mass position of the plug is calculated for 450 different simulations
and shown as a function of time in Fig.[5.24 (black curve). The simulations differed
in the sense, that every simulation used a different random seed to initialize the
gaussian velocity distribution with mean granular temperature T, /Ey, = 20.0. As
already pointed out, it can be see that the mean squared displacement vanishes
on short timescales. For larger times (f > 1000) the red curve is a fit to the data
of the form oy /L2 = Dy (t/Tysy)*", where the diffusion constant is obtained as
Dy ~ 1.6 x 1078 and the diffusivity exponent is obtained as ay, = 1.27 indicating
super-diffusive behavior. However the range where the data follows the fit is hardly
one decade. Thus the inset of Fig.[5.24 extends the simulated times by a factor of
three but is only calculated for 80 different simulations. The diffusion coefficient
here is obtained as D, = 4.1 x 1077 and the diffusivity exponent is ay, = 1.38,
reasonable close to the values obtained for the shorter simulation time.

Brownian motion is qualitatively predicted by a one-dimensional model which
conserves momentum and energy (von Smoluchowski, 1006‘). The motion of the in-
truder particle then comes from collisions with neighboring particles which collide
with the intruder at statistically distributed times and with statistically distributed
velocities. These fluctuations in the collisions lead to a random motion with growth
of the mean squared displacement of the intruder. In the coexisting state of wet
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Fig. 5.24 The time dependence of the mean squared displacement is plotted for 450 simulations
using different initial velocity distributions (black curve). The red curve is a fit to the data of the form
Ow /L2 = Dy(t/Tgi )™, where the diffusion constant is obtained as D, ~ 1.6 x 10~8 and the
diffusivity exponent is obtained as an = 1.27 showing super-diffusive behavior. The inset of Fig.[5.24
extends the simulated times by a factor of three but is only calculated for 80 different simulations. The
diffusion coefficient here is obtained as D, = 4.1 x 10~? and the diffusivity exponent increases is
any = 1.38 All parameters of the simulation are the same as given in Fig.[5.22.

granular matter studied here, this mechanism of momentum transfer is also simi-
larly present, as the particles collide elastically, although the dynamics is dissipative
in the long run. However, there is an additional mechanism induced by the capillary
interaction which influences the motion of the condensed phase in wet granular mat-
ter. Imagine a one-dimensional system, where a particle is colliding with the plug
and a capillary bridge is formed. If the kinetic energy of the particle is less than the
capillary bridge energy the capillary bridge cannot rupture afterwards. Thus, the
plug grows at its surface in the direction where the particle came from, and thus
shows surface growth. As the condensed plug has two interfaces with the surround-
ing gas phase and the size of the plug is stationary this will lead to a stochastic
motion of the plug. Thus the surface growth process is a second mechanism which
induces stochastic motion. Summing up these two mechanisms (momentum trans-
fer via collisions and surface growth) there has to be a non-trivial coupling the two
between in order to explain the deviation from the classical equilibrium diffusiv-
ity exponent, ar, = 1. The origin of this non-trivial coupling is not easily seen.
However, the non-linearity in the KPZ equation, which describes surface growth
processes also in non-equilibrium systems, indicates that this could possibly be a
reason. This is interesting in the perspective of recent findings, where “the weakly
asymmetric simple exclusion process approximation was used to establish that the
variance of the two-point function of the stationary KPZ equation asymptotically
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behaves as t4/3 dBalazs et al,, 2004)” dSasamoto and Spoth, 2010). This is close to
the exponent of &y = 1.38, which was found for wet granular matter on the longer
time-scales. If it turns out that this similarity is not just a pure coincidence, this
would be a particularly interesting result, because it would connect wet granular
matter as a realistic system to the KPZ equation for which analytical results can be
obtained.

A possibility is suggested how to support or easily falsify this conjecture. The
diffusivity exponent obtained for the KPZ equation is independent of the interfacial
energy. Thus, by changing the interfacial energy the conjecture can be falsified if
the exponent changes. If it stays constant it supports the conjecture. In the previous
section it could not be shown that something reminiscent of an interfacial energy
does exist in the two-dimensional system of wet granular matter. Thus this is still an
open question. In three dimensions something reminiscent of an interfacial energy
was clearly obtained and its change along with the driving energy was presented in
this chapter. However it was not shown that the anomalous diffusion can similarly
be obtained in such a three-dimensional system. At present, the second path seems
to be the more promising one and serves well for a future study.

In classical theory of Brownian motion the diffusion constant is independent of the
mass of the intruder particle dVOl’l Smoluchowski, Igod). As shown before, the size
of the fluid phase is subject to change if the driving energy, E*, is changed. Thus, the
mass of the plug is changing. Therefore, as the granular temperature slightly differs
for different driving energies, £*, the random motion could probably be studied as a
function of the granular temperature. This also serves well for further investigation.

It was shown in this section that the condensed phase in a two-dimensional sys-
tem of wet granular matter in a fluid-gas coexistence state undergoes macroscopic
motion which is erratic and therefore reminiscent of classical Brownian motion. The
diffusivity exponent, however, was found to be approximately a, = 1.38 on the
longest time-scales simulated and thus shows super-diffusive behavior.

5.6. Summary and Outlook

The size of the gas bubble emerging in a fluid-gas coexistence of three-dimensional
granular matter was studied and found to depend mainly on the driving energy.
This was in good qualitative agreement with experiments. In simulations, different
shapes of the fluid-gas coexistence were found: a circular shape of the minority
phase immersed in the majority phase and a strip shape. The strip shape is caused
by the periodic boundaries in two lateral directions. This situation is reminiscent
of a coexistence state found in the two-dimensional Ising model in thermal equilib-
rium, where the transition between the two shapes gives rise to a first order phase
transition and is driven by minimization of the interfacial energy. In the wet gran-
ular system circular shapes are observed which seem to show an excess interfacial
area compared to a corresponding strip state. Most striking however, is that this also
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suggests a quantity reminiscent of an interfacial energy in the fluid-gas coexistence
of wet granular matter.

The interfacial energy of a fluid-gas coexistence was estimated in simulations by
deforming an initially flat interface. This was done by applying a sinusoidal shear
force to the system. It was found that the deformation amplitude seems to scale
linearly with the maximum applied shear force, in accordance to the prediction of
a continuum model in equilibrium. This linear scaling is a necessary condition that
the method of mechanically deforming the interface can lead to meaningful results
in terms of the interfacial energy. The interfacial energy as a function of the driving
energy showed qualitative agreement between the simulation and a simple estima-
tion based on the binding energy of the capillary bridges. The estimate predicted a
linear increase of the interfacial energy with the critical rupture separation, which is
suitable for further numerical study.

An investigation was conducted to determine if an effect reminiscent of interfa-
cial energy can be found in a two-dimensional fluid-gas coexistence and a three-
dimensional solid-fluid coexistence of wet granular matter. The first case revealed
complex dynamical behavior which seems to be reminiscent of coalescence of fluid
droplets in certain regimes. The presence of an interfacial energy was not suggested
by the simulations. This is due to the increase in interfacial area in the reordering
regime by the formation of gas bubbles. This increase of the interfacial area is in clear
contradiction to what is expected for an interfacial energy driven effect in thermal
equilibrium. Nevertheless, the existence of an interfacial energy was not disproven.
No obvious reason can be thought of why the simple estimate of the interfacial en-
ergy, which worked reasonably well in the three-dimensional case, should no longer
hold in the two-dimensional case. The second case of the solid-fluid coexistence in
a three-dimensional system demonstrated behavior which was reminiscent of Ost-
wald ripening. This was supported by the scaling relation obtained for the reduction
of crystallized domains with time. As Ostwald ripening in thermal equilibrium sys-
tems is known to be driven by minimization of the interfacial area, this suggests that
a quantity like an interfacial energy is also present in the solid-fluid coexistence of
wet granular matter.

This chapter ended with a study of anomalous diffusion in a two-dimensional
fluid-gas coexistence regime. A super-diffusive behavior was suggested by the nu-
merical data.
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6. The granular Leidenfrost effect

A drop of water hovers above a surface if the surface is sufficiently hot. It forms a
Leidenfrost drop. This effect is also visible in simulations of wet grains if enough
layers of particles are stacked upon each other. A condensed plug of grains floating
on top of a dilute gas cushion is observed and, due to the compressibility of the gas,
the plug undergoes an oscillation. The oscillation is undamped, and its frequency
can be understood by modeling the gas as a Van der Waals gas, which takes excluded
volume effects into account. Additionally, a Rayleigh-Taylor instability is found if
the lateral system size exceeds a certain value. This effect is also contained in the
theoretical prediction.

6.1. Introduction

6.1.1. Classical Leidenfrost effect with water

The Leidenfrost effect is named after the German physician Johann Gottlob Leiden-
frost, who studied the behavior of water drops on a very hot steel plate in detail
and published his results in a treatise in 1756 dLeidenfrost, 175d). The first obser-
vation, however, dates back to 1732 by Herman Boerhaave. He observed that a
water drop placed on a steel plate at a temperature above 220 °C (for water) floats
around and lives much longer than one would expect. Such a drop does not boil but
shrinks soundlessly with time until it finally disappears. It can last for minutes for
a millimeter-sized drop until it is completely evaporated. The experimentally mea-
sured lifetime in a recent experiment (Walkeﬁ, ’;8%) is shown in Fig./6.1a. The water
at the bottom side of the drop immediately evaporates and forms a vapor cushion
on which the drop floats (cf. Fig./6.1b). The comparatively very small heat conductiv-
ity of the gas strongly suppresses heat conduction between the drop and the solid
plate. The drop slowly evaporates mostly due to heat radiation of the hot surface.
Leidenfrost measured a typical vapor layer thickness of only a tenth of a millimeter
between the solid plate and the drop by illuminating it with a candle from behind.
The Leidenfrost effect has been studied in much more detail in recent work (Walker,
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Fig. 6.1 a) Lifetime of a water drop placed on a hot surface as a function of the temperature of this
surface. At a critical temperature, the Leidenfrost point, the lifetime strongly increases. b) Cross section
of a water drop above the Leidenfrost temperature. The drop is hovering above the hot surface on a
vapor layer. Pictures taken from dWaIker, 1988).

‘1088; Biance et al.,

2003) and led to new applications in various fields®.

6.1.2. Leidenfrost effect in dry granular matter

We now look at more complex fluids like granular matter. In contrast to classical lig-
uids, granular particles are of macroscopic order. In order not to loose any of them,
the sample is therefore put into a closed container. In simulations the container can,

1. In the field of self-propelled droplets the almost frictionless movement of Leidenfrost drops was the
inspiration for a new approach. A device consisting of a metal plate with a periodic, asymmetric
sawtooth profiled surface with a height of the steps being 300 um and the length about 1 mm (Linke
et al., 2006). The plate is heated up to a temperature sufficient for inducing the Leidenfrost effect.
A drop which is placed on top of this surface immediately starts moving with comparatively large
speed perpendicular to the steps. The drop thereby climbs up the steep side of the step and slides
down the flat side which induces directed motion of the drop. This behavior could be observed
for various liquids with different boiling points (Linke et al.‘, (200&; ‘Quere and Ajdari, ‘200@). This
work attracted great attention also because this setting was suggested as an energy efficient cooling
device which uses the waste heat energy as energy source for driving the refrigerant. The most
severe challenge to this approach is that the heat conductivity between the surface which should
be cooled and the cooling fluid is strongly reduced due to the Leidenfrost effect, which makes
it intrinsically difficult to transfer heat to the refrigerant. This is why the Leidenfrost effect is
usually unfavorable in industrial cooling devices. Nevertheless, it is an interesting application of
the Leidenfrost effect.

Another application of the Leidenfrost effect is investigated in Elbahri et al. ﬁ2007) and Bain
). A droplet of water which is experiencing the Leidenfrost effect contains small nano-particles
of metal (silver or zinc oxide) and is hovering above a silicon surface. While the droplet sits on the
surface it deposits a small amount of solid material. As the droplet starts moving it leaves a trail, a
nanowire behind and therefore is a potentially useful technique in nanotechnology.
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and usually has, periodic boundary conditions. Due to the large mass of individual
granular particles, it is not sufficient to place the container onto a hot surface. This
would heat up the grains but would not accelerate the particles themselves, imply-
ing that the role of the hot surface, which in the classical setup with water is a heat
bath accelerating particles, is taken by a vertically vibrating container wall.

Strong shaking of dry grains under gravity leads to a granular gas where one
finds a monotonically decreasing density with increasing height which is reminis-
cent of the barometric formula. However, in the case of granular matter the solution
is not unique due to the energy dissipation , 1999). Moreover, if, at fixed
shaking strength, the number of particle layers is increased, a density inversion sets
in dHuan et al., 2004; Brey et al., 2001; Kudrolli et al., 199%; Lan and Rosat&, ‘1995,'
Poeschel and Schwager, ‘2004J; Taberlet et al., ‘2007; Eshuis et al., 2007). Therefore,
the density of particles is not decreasing with increasing distance from the bottom
container wall, but it is increasing and therefore the density in this state is lowest
directly at the bottom container wall. This phenomenon was observed in Molecular
Dynamics (MD) simulations and theoretically described in‘Meerson et al.‘ dzoo—?‘) and
Poeschel and Schwageﬂ 42004) for dry grains interacting through inelastic collisions.
A snapshot of such a simulation is shown in Fig./6.2| The first experiment which was
carried out in a quasi two-dimensional setup was presented by Eshuis et al. dzoo;).
In this work, the effect of the observed density inversion in granulates was called the
granular Leidenfrost effect for the very first time. The experiments were also accompa-
nied by a theory of granular hydrodynamics which reproduces the experimentally
observed density profiles. The difference to the earlier studied density inversion
(Meerson et al., 2003) is that they only speak of a Leidenfrost state if there is really
an observable phase separation into a dense solid phase (hexagonally packed for
monodisperse particles) hovering above a dilute gas phase. They also introduced an
order parameter for detecting the respective phase, based on the crystalline order. A
phase diagram for dry granular matter was presented in Eshuis et al. 42007). This
shows that the Leidenfrost effect can clearly be distinguished from a state where
only a bouncing bed or convection is present and can only be observed when the
filling height exceeds a critical number of about eight particle layers and the driving
energy of the wall is sufficiently large.

7

6.2. Leidenfrost effect in wet granular matter

In contrast to dry granular material, where the Leidenfrost effect is a well stud-
ied phenomenon, we investigate this effect in wet granular matter where we find
remarkable new features. Therefore, we perform MD type simulations with ide-
ally spherical, frictionless particles under gravity in two and three dimensions. In
the simulations the thin-thread model for the capillary interaction of the capillary
bridge as introduced in Sec.2.3]is used and, through the event-driven simulation
technique which can be applied here, collisions between spheres are modeled by a
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Fig. 6.2 Simulation of 10* two-dimensional, dry, inelastic particles (coefficient of restitution ¢ =
0.98815). The hexagonally closed packed solid plug is hovering above a gaseous region. Because
the monodisperse particles are confined in a container there are even some defect lines visible in the
crystallized part. The highlighted areas (white square boxes) are magnified on the right hand side of the
figure. Picture reprinted with permission from (Meerson et al.,|2003). Copyright (2003) by the American
Physical Society (dx.doi.org/10.1103/PhysRevLett.91.024301).

hard core potential. The collision itself is assumed to be elastic unless stated oth-
erwise. The grains are put into a container and shaken vertically with a sinusoidal
driving function. All simulations and results shown in this chapter are produced
with this simulation technique. We additionally performed few time-driven simula-
tions using the minimal capillary model (as introduced in Sec.2.3) to verify that the
observed effects are not an artifact of the interaction model for the capillary bridge.

If the driving is sufficiently strong (e.g.E* = 98.9 and I' = 60.0), we obtain in
the simulation a state as shown in Fig./6.3a. We observe a cold, solid plug hovering
on the hot, dilute gas which is analogous to the earlier described Leidenfrost phe-
nomenon. The color of each particle denotes its individual kinetic energy Ey;, on a
logarithmic scale (see inset) normalized with respect to the bridge energy Ey,, where
blue (red) means low (high) kinetic energy. It is noted that the kinetic energies vary
by five orders of magnitude within the sample. The snapshots were taken at differ-
ent times during the simulation. Obviously, the plug is not at rest but is moving
vertically. This behavior is examined in the next subsection.

6.3. Vertical plug oscillation

As seen in Fig.[6.3a, we observe a vertical movement of the dense plug hovering on
a hot gas. To examine this behavior in detail, we look at the areal density of the
sample. From the snapshots it is obvious that we can average over the horizontal
spatial dimensions to improve the quality of the data. This areal density, spatially
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Fig. 6.3 a Snapshots at different times of a three-dimensional simulation for 3 - 104 slightly polydisperse
particles showing the Leidenfrost state. Gravity ¢ is pointing downwards and the box has a square base
with each edge being 25 particle diameters in length, so the particles form 48 layers at rest. The box has
periodic boundary conditions in both directions perpendicular to gravity. The color indicates the kinetic
energy of each particle on a logarithmic scale. The shadow is generated digitally in order to account
for the areal density. b The Areal density ¢ (averaged over lateral dimensions) is shown as gray value
normalized with respect to the maximum packing fraction ¢max as shown by the scale bar (white means
no particles and black denotes the maximum density). It is shown as a function of the height / in the
system normalized with respect to the diameter d of one particle and the time £ which is normalized with
respect to the periodic time Ty, of the driving. The plug oscillation is clearly visible. The mean force
induced by the capillary bridge is Fep/ Fg = 4, where Fg is the gravitational force. The capillary bridge
ruptures at a surface separation of s¢rit/d = 0.0711. The parameters of the driving are E* = 98.9 and
I' =60.0.
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depending only on the height /i above the bottom plate, is shown in Fig.l6.3b as a
function of the time t as a grayscale image where white (black) means low (high)
density. It is normalized with respect to the maximum packing fraction ¢max which
is 0.74 in three dimensions, the height is normalized with respect to the diameter of
one particle d and the time is normalized with respect to the time period T4,y of the
driving function.

At the beginning of the simulation at t = 0 the particles are inserted close to the
bottom of the container and are regularly ordered on a simple cubic lattice. It can
be seen in Fig./6.3b that the Leidenfrost state very rapidly evolves out of this state.
Afterwards, a vertical oscillation of the plug is clearly visible which in the end of
the simulation becomes stationary with a constant amplitude and frequency. The
system was actually simulated more than five times longer than shown here.

Now we look at the density profile which we obtain out of Fig./6.3b for a constant
time. To improve statistics, we do an average of multiple measurements taken at
different times. We perform these measurements at a constant phase to both the
driving frequency and the plug oscillation frequency. In Fig.|6.4/the density profile is
shown for the top and bottom turning point of the plug oscillation, respectively. The
density in the plug is approximately 0.62, which is close to the packing fraction of
approximately 0.64 obtained by random close packing in three dimensions (Torquato
et al., 2000; Martin and Bordia, @). The phase boundary between the gas and
the solid plug can be clearly identified. This is in contrast to dry granular matter
where no pronounced phase boundary is visible. For comparison, Fig./6.5 shows the
density profile for dry granular matter.

If the driving energy of the oscillating wall is lowered to E* = 63.3, we still observe
the Leidenfrost effect, but the oscillation of the plug becomes more irregular. This is
illustrated in Fig./6.6, where we again see the height dependent areal density plotted
versus time. In the top part of the image we clearly observe that the amplitude of
the oscillation is modulated by an enveloping function with a much lower frequency
than the plug oscillation itself. In the bottom part of the figure, the same image is
shown again with lower contrast, so that individual particles become visible. We
observe that the modulation of the amplitude is accompanied by a dilute gas above
the plug, which is not present in the simulation of Fig.6.31 We can see that the
plug in Fig.l6.6 comes closer to the bottom during its oscillation and therefore the
reduction of heat conductivity becomes less effective and some particles at the top
obtain a higher kinetic energy as the particles in the bulk. This means that for even
lower driving energies E* the amount of gas above the dense plug is increasing, as
confirmed by simulations.

The Leidenfrost point is, in the classical setup with water, the temperature of the
hot surface at which the floating drop reaches its longest lifetime (Walker, @). Be-
cause the system in the granular setup is closed and particles cannot vanish, it is not
possible to measure a lifetime of the drop directly. Nevertheless, we can imagine
the system to be open, such that all particles are removed which run through the
periodic boundary conditions. The loss of particles is then mainly driven by the
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Fig. 6.4 Areal density plotted versus the height in the container. The plug oscillation is in its top (black)
and bottom (red) turning point, respectively. It is averaged over eight consecutive cross sections taken
out of Fig.[6.3b). The dense plug at the top reaches a density of about ¢ = 0.62, which is almost
random close packing. An interface between the two regions can easily be defined and therefore it is
justified to speak of a condensed plug hovering on a gas.
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Fig. 6.5 Density profile for dry granular matter predicted by hydrodynamics (solid lines) and simulated
in MD simulations (symbols) for different parameters. No clear boundary between the two phases is
visible. In fact it is a continuous increase of the areal density with height. For more information see
ﬁMeerson et al., 2003). Reprinted with permission from ﬁMeerson et al., 2003). Copyright (2003) by the
American Physical Society (dx.doi.org/10.1103/PhysRevLett.91.024301).
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Fig. 6.6 top: Areal density (gray value) plotted as a function of height and time. The Leidenfrost effect
as well as the vertical plug oscillation is visible. The amplitude of the vertical oscillation, however, is
modulated periodically. The system is simulated more than six times longer than shown in the graph,
and this modulation is present all over. bottom: Same image as above but with lower contrast, so
that the dilute gas above the plug becomes visible and even tracking of individual particles is possible.
The actual height of the box is higher than shown here, and no particle collided with the upper wall of
the simulation box. The dotted line (red) denotes the velocity of sound which is similar in the order of
magnitude to the mean speed of the granular gas above the plug {Chapman and Cowling, 197d, pp. 36).
The velocity of sound, vsoung, @s deduced from simulations is Usgung Td”" ~ 11.3. The simulation was
performed at driving parameters E* = 63.3 and I" = 60.0.
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granular gas (above and below the plug), because of its high kinetic energy. This
means, that the higher the kinetic energy of the gas and the larger its contact area
with the system borders (which show the periodic boundary conditions), the faster
the particles are removed from the system. Therefore, the longest lifetime, which
defines the Leidenfrost point we are searching for, is associated with the system
being in a state with no gas layer above and the smallest possible gas layer below
the plug. This situation reduces the contact area with the system borders and the
kinetic energy of the gas layer below the plug. The value of the driving energy E*,
at which this situation occurs, is the Leidenfrost point we were looking for. Further-
more, we can think of the maximum driving energy E*, in the granular setup, as the
‘temperature” of the wall and therefore can also regard this value as the analogue to
the Leidenfrost temperature. The Leidenfrost point, for the system described above,
is Efp = 92.4 4 6.5 for I' = 60.0.

6.4. Theoretical model

We now study the vertical oscillation of the plug and put forward a possible mecha-
nism for this phenomenon. We restrict ourselves to the case without any additional
gas above the plug.

6.4.1. Passive plug on gas layer

We first consider a solid plug of mass m which moves without friction in a tube
of cross section Ay above a cushion of ideal gas with height & and pressure p =
NkpT/Agh. This is shown in Fig[6.7. By N we denote the total number of particles
in the gas column, kg = 1 is ‘Boltzmann’s constant” and we assume for the moment
that the whole system is at temperature T, without any temperature gradient. The
equation of motion reads
2

mitél =pAg—mg = N];ZBT —mg (6.1)
where g is the acceleration due to gravity and t is time. Stationarity yields the
equilibrium height, iy = NkgT/mg. Small deviations from h shall be described by
h(t) = ho(1+¢€,(t)), with e, < 1. Inserting this into Eq. (6.1) leads to

dzsh g

F — —hf()sh (62)
for isothermal excursions, and to

d?ey, g

W — —K%Eh (6.3)

for adiabatic (i. e., sufficiently rapid) excursions from hy, where x = 5/3 is the adia-
batic index for three-dimensional, frictionless and elastic particles. In the isothermal
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and adiabatic case, the result is purely oscillatory, with frequency w, = \/g/ho and
wp = +/xg/hy, respectively. We restrict the discussion to the adiabatic case, which
appears appropriate for the ‘experimental” situation.

n
To f
p(t)  |n(h)
. | e
Ag

Fig. 6.7 Solid plug of mass m is hovering on an ideal gas cushion of height 1 with pressure p in a tube
of cross section Ag. Gravity g is pointing downwards. Additionally, in section[6.4.3]the temperature of
the bottom will be T; and the plug at temperature Ty with Ty < T7.

Because the particles in the granular gas do have a certain spatial extent, we can
also include this via the known Van der Waals equation p(Agh — Vex)* = const. with
Vex = 4N Vpeaq being the usual total excluded volume® of spherical particles with
volume Wpeaq. The correction of the pressure in the Van der Waals equation which is
due to attractive forces between particles is negligible in this case, because attractive
forces arise in the system solely through the capillary bridges and we have seen in
Fig.6.3/ that the kinetic energy of the particles in the gas is much larger than the
capillary bridge energy. The equation of motion in this case reads

d?e;, g Vex
P T2 (1 + V) €n (6.4)

with the oscillation frequency

8 Vex
= = (1 . .
wp \/Kho ( +Agho> (6.5)
In what follows, we will assume the oscillations of the plug as being fast com-
pared to the thermal exchange with the wall and the plug, such that the process
is adiabatic. It is worth noting that the oscillation frequency of the plug does not
depend explicitly on its mass3, neither in the isothermal or adiabatic case of an ideal

gas nor in the adiabatic case of a real gas which is corrected by the excluded volume
of spherical particles.

2. The factor four in the excluded volume results from the volume %7‘((21{)3 = 4 X 2V}eaq containing
two spheres with volume Vg = %nR3.

3. There is an implicit dependence of the oscillation frequency on the mass of the plug because the
height of the gas cushion depends on the mass of the plug hg(m).
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6.4.2. Plug on a gas layer with exchange of particles

We now assume that the plug consists only of the condensate of the gas below it and
therefore allow interaction between the plug and the gas, in contrast to the passive
plug discussed above. It is assumed that the plug and the gas are in equilibrium with
each other, such that there is a continuous exchange of particles between them. The
rate of exchange can be quantified by introducing an exchange frequency v, defined
as the inverse of the time it would take for the entire gas to condense at the bottom
of the plug if any escape from the plug was prevented (unity sticking coefficient).
In the dilute limit, the gas would condense ballistically on the plug surface. We
thus have vgjjute = ¢/hp in this case, where c is the typical velocity of the particles.
In the dense limit, the condensation of the gas would proceed diffusively, and we
obtain Vgense = D /K3, with the diffusivity D. Since D is given by the average particle
velocity times their mean free path, ¢;, this can be written as vgense = VdituteGp/ F0-

If the pressure under the plug deviates from its equilibrium value, there will be a
net flow between the plug and the gas, given by

dn _  po—p
T i o (6.6)

where n := N/A, and ng is the equilibrium gas density. If we write n(t) = ng(1 +
5(t)), it follows that

p(t) ~ nokBT

~ SR+ 01— ren () & po(L+E() —rer(). (67)
g 0

Inserting this into egs. and (6.6), we directly obtain

d0

Fri —v(d — key) (6.8)
0% w?
—atzh = %(5 — Kep). (6.9)

With the exponential ansatz 6(t) = dpexp(At) and ¢,(t) = epexp(At), this leads

RSINTy

to (A +v)d = vke, and (A% + w%)sh = %5. This combines to the characteristic
polynomial

(A241)(A+B)—B=A(A2+AB+1)=0 (6.10)
with the abbreviations A := A/w, and B := v/w,. Besides the trivial solution

at Ap = 0, which represents the steady state, we obtain the non-trivial solutions
through

2
Ay = B + <B> -1 (6.11)
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If the non-dimensional exchange frequency of particles between the plug and the
gas, B, is zero, we obtain Ay = =i which is an undamped oscillation. If B is
larger than zero, the solution A4 always has a negative real part, which indicates
damping and therefore leads always to a decay to the steady state. This occurs in
the range of 0 < B < 2, where the particle exchange frequency, v, is small compared
to the oscillation frequency of the plug, w;. For B > 2, which means faster particle
exchange, A+ is purely real and negative, such that we obtain an exponential decay
rate. The special case of B = 2 is the overdamped solution with A, = —1. Fig.6.8
shows the roots of Eq. (6.10) in the complex plane for B € [0,2]. The two complex
conjugate eigenvalues A+ correspond to the oscillating mode, with the negative real
part indicating a damped motion. As B increases and becomes equal to two, the
two complex conjugate solutions merge on the real axis at A+ = —1, which is the
overdamped motion.

5
>

Fig. 6.8 The roots of Eq. in the complex plane. Besides the trivial root at Ay = 0, the non-trivial
roots are lying on the unit circle. For B = 0 which is A+ = =i yields undamped oscillation while B = 2
leads to A+ = —1 which is the overdamped solution. A4 as marked in the figure is for B = 1 which is
a damped oscillation.

6.4.3. Plug on a gas layer with exchange of particles and a temperature gradient

Now we consider the case where the bottom of the gas is being heated to some
elevated temperature Ty > T,, while the plug is assumed to remain, in temporal
average, at a temperature (Tp) slightly below its evaporation temperature T, (Biance
et al.,12003‘). This is roughly the situation in the Leidenfrost effect. Cooling of the
plug is provided by evaporation of gas from the plug. In the conventional setting in-
volving standard liquids, this evaporation inevitably leads to shrinking of the liquid
drop as it hovers on the hot surface. With wet granular matter however, the energy
dissipation is intrinsic and can proceed forever in a closed system.

The heat current, j, through the gas cushion below the plug is determined from
the temperature gradient, (T} — Tp) /h =: AT /h, and the thermal conductivity of the

gas, ©. We thus have j = 94T ~ @h—AoT(l —¢e(t)). We assume that the heat current
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will be balanced by evaporative cooling. If /i increases (positive ¢},), the temperature
gradient is reduced, and there is less evaporation, because © is largely independent
of density in a gas. As a consequence, more gas will condense on the plug, and the
number of particles in the gas cushion is decreased. This can be quantified as

dn OAT

H— = ——— 6.

T Ty (6.12)
where H is the energy required for the evaporation of a single particle from the plug.
We now can write

99

3= v(ke, —6) — Ogy, (6.13)
with the abbreviation
OAT
0= nohoH' (6.14)

This leads to the modified characteristic polynomial

(A24+1)(A+B)—B+A=0 (6.15)
in which
OAT
A=—— .
Kwpi’lohoH (6 16)

represents the temperature gradient in dimensionless form. We see in Eq. (6.15) di-
rectly that the temperature gradient counteracts the damping. The system is in a
stationary state if the damping, through the exchange of particles, is balanced by the
driving, through the temperature gradient, which is the case at A = B. The oscil-
lation then becomes undamped, because A = =i is a root. We are now equipped
to understand the vertical oscillations observed in simulations of vertically agitated
wet granular matter. The oscillation frequency of the plug in this non-equilibrium
steady state is the same as obtained in Eq. (6.5) for the passive plug being in equi-
librium. In subsection we compare the theoretical oscillation frequency with
the oscillation frequency obtained in simulations. In these simulations, the lateral
extension of the system was very limited, such that the lateral coordinate could be
disregarded.

The theory, as presented here, accounts for elastically colliding wet granular par-
ticles. The energy of evaporation H, which is the energy that has to be spent in
order to overcome the attractive forces, is given by the capillary bridge energy and
is a constant. In dry granular matter, where there are no attractive forces between
particles, it is not obvious that there should be a energy of evaporation as a single
constant value. In fact, as mentioned before, it is not even obvious that there is a
clear interface between the plug and the gas cushion underneath. Therefore, one has
to use a more elaborate model in order to account for dry granular matter.
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6.4.4. The complete picture, with lateral gas exchange

The situation becomes more complex if we allow lateral variations of quantities like
the gas pressure or density. These must then be considered as functions of both time
and a lateral coordinate, x. We imagine the system sketched in Fig./6.7 as laterally
infinite, but we keep the idea of a finite thickness, &, of the drop (or puddle). The
lower surface of the drop is thought to undergo excursions given by h(x,t). We will
have to distinguish between excursions at small wavelengths as compared to /,, in
which case we can assume the upper surface to remain flat, and those with a large
wavelength, which will be directly followed by the upper surface which is then not
flat anymore. The main difference is that in the former case, the inertial mass of
the drop which participates in the motion is given by m(q) ~ p/g, where p is the
mass density of the plug and g is the wave number. In the latter case, however, the
mass is always equal to ph,. A suitable interpolation between these two cases is
m(q) = gtanhth.

Assuming linearity, we can consider spatially harmonic eigenmodes of the system,
with wave number 4. The equation of motion of this system can then be written as

9%e
m(q)ho 55" = po(6 — xep) + ho(pg — 107 (6.17)

The second term on the right hand side contains the usual dispersion of (upside
down) capillary waves, with 7 being the surface tension of the liquid the plug con-
sists of. It is noted that pg = ph,g since the total weight of the drop determines the
pressure under it. We consider the two important cases for large 4! > h, and small
wavelengths g~! < h,,. For large wavelengths 271!, we set m = ph,, and obtain

——t = P65 —xep) +wi(1— (g])*)ey (6.18)

with wy := /¢/hy, and | = \/7y/pg is the capillary length of the liquid. It is noted
that w%/ w3 = hy/hy < 1. For small wavelengths 2715~ !, we set m = p/q and find
that the right hand side of Eq. (6.18) is just multiplied by gh,. We will see below that
this case is of minor importance for the present study.

In the case of the density variation J, we introduce a lateral flow conductivity of
the gas layer as u := h3/121, where 7 is the viscosity of the gas (note that this holds
only if ghy < 1). This leads to an additional contribution to the local change of gas
density, as described by

05  *p  9?po(6 —Key)

FTARE Te R R FoR (6.19)
Invoking the harmonic ansatz again, we can write, in analogy with Eq. (6.13),
90 >
= (v+ BQ7)(xey, — 8) — Bey, (6.20)

5 =
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with B := poh3/1251? and Q := gl. Combining Egs. (6.18) and (6.20), we arrive at

2
Wp

(Az +wy — wi(1 - Q2)> (A+v+BQ%*) = —F ((v+pQ*)Kk—0). (6.21)

K

With the definitions Q? := wf, — w%(l —@Q?%), A := A/Q, and the redefinition of

B := (v+ BQ?)/(, we obtain the characteristic polynomial

<A2+1)(A+B)+w’2’<9—3>:0 (6.22)
02\ k0 ’

We see that the critical temperature gradient, 6., at which the oscillatory modes,
A4+ = £i, become unstable is given by

0. = kBQ = x(v+ BQ?). (6.23)

This directly shows that the most unstable mode is always the one at Q = 0, or at the
smallest possible Q in a system of finite extension. If the lateral system size (plug
diameter) is L, the most unstable mode will be at Q ~ 27//L.

More insight into the behavior of the roots of Eq. is gained if it is written as

AN+ AB+1)=C (6.24)

where C := aB — % (1 +a), with

xh h 1-Q?
1 — (1 + m) < -1 for I’TZ < X
N = 7}{]/[17 1 =~ (625)
_ 2
ho(1-Q2) ho(ihpQ ) >0 for Z—g < ﬁ

If C > 0 we find an instability which we identify as the Rayleigh-Taylor instability
dBiance et al.,, 2003) and we find the critical temperature gradient, fgr, for this to
occur

7

T 0. (6.26)
Eq. (6.26) is plotted in Fig./6.9|and since the setup is heated from below, 6 has to be
a positive number by definition, which is why only the positive half of the 6 axis
is shown. The solid red curves denote the critical temperature gradient, Ogr, while
the gray shaded areas denote the regions where the Rayleigh-Taylor instability can
occur. We have to distinguish the two cases « > 0 and & < —1, which exhibit
different physical behavior. Assuming a certain mode Q, they can be viewed as the
two different approximations %, /hg > 1 and h,/hy < 1, i.e. the approximation of
small and large height of the vapor cushion hy, respectively, compared to the height
of the plug h,,.

First we look at « > 0. For the root labeled Ay in Fig.6.8, we can safely neglect A2
and obtain Ag ~ C. For vanishing 6 (i.e., vanishing temperature gradient), we see

Orr =
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Fig. 6.9 Critical temperature gradient for appearance of the Rayleigh-Taylor instability Ort Eq. (6.26)
(red line) plotted versus «. The gray shaded areas denote the regions where the Rayleigh-Taylor insta-
bility occurs while 6. is the critical value for the oscillation instability to set in.

that since C = aB is positive, there is always an unstable mode at zero frequency.
Interestingly, this mode is stabilized as the temperature gradient is introduced, and
is no longer unstable if C < 0, i.e., if 6 > Orr. This is reached (long) before the
oscillatory instability discussed above sets in at 0.

Now we consider « < —1. For vanishing 0, we see that since C = aB is negative,
there is always a stable mode at zero frequency. This mode is destabilized as the
temperature gradient is introduced, and is no longer stable if & > Ogr. This occurs
in contrast to the previous case, after the oscillatory instability sets in at 6.

As we have seen, a Rayleigh-Taylor instability occurs for C > 0, which directly
led to Eq. (6.26). The equation, as written there, gives an intuitive picture about the
connection of both instabilities, the oscillatory instability and the Rayleigh-Taylor
instability. However, for the comparison with simulations this formulation is not
very convenient and we therefore rewrite Eq. (6.26) for a container of finite size and
the most unstable mode* as

ho(v = B) + /o —40, B0 + ho(B +v)?)
hol/ —hpf)

Le(hy) = V2nl (6.27)

with the critical parameter being the width of the container, L, instead of the tem-
perature gradient, Orr, and consider it as a function of the height of the plug, h,.
These are quantities which are more easily accessible in the simulation. If we restrict
ourselves to small values of /1, we can perform a series expansion of Eq. (6.27) and

4. Q=2nl/L



6.5. Comparison of theory and simulations 125

obtain

mtlo
ho(B+v)

which is used later for the comparison of simulation and theory.

What remains to be done is to estimate reasonable numbers for the constants
involved in the above calculations and to evaluate whether there is a range of pa-
rameters where the instability can be observed. In order to do this, we first see
that the heat conductivity of the gas can be written as the diffusivity D multiplied
by the specific heat. If we assume the gas to be ideal, we obtain ® = 3Dnokg/2hy.
According to Eq. (6.23), this simplifies to the most unstable mode at Q = 0 to

Le(hy) =27l + hy +O(h3) (6.28)

_ 2xH

AT, = =2
7 3kg

(6.29)
where H is the enthalpy of vaporization.

For a granular system, where we are in the regime of &« < —1, which is a large
vapor cushion compared to the height of the plug, Eq. (6.29) reads

10
AT, = ?ZbEcb (6.30)
where Z,, is the typical coordination number of particles at the plug interface, Eg, is
the energy required to rupture a capillary bridge and kg = 1.

Since enough energy has to be induced to the system to reach the liquid-gas co-
existence, we know beforehand that the temperature of the gas will be much larger
than Eg, dFingerle et al., ‘2008‘). Hence, the granular system is always in the regime
of the oscillatory instability, provided it is hot enough to exhibit a Leidenfrost phe-
nomenon with a sufficiently large vapor cushion. Furthermore, the Rayleigh-Taylor
instability should always be accessible by increasing the temperature gradient.

6.5. Comparison of theory and simulations

6.5.1. Plug oscillation frequency

We compare the theoretical prediction of the plug oscillation frequency w, of Eq. (6.5)
with the simulations. We therefore perform three-dimensional simulations with 3 x
10* elastic particles at I' = 60.0 for different driving energies E*. We measure the
height h; of the interface between the gas and the dense plug to obtain the average
height 1 of the gas layer and we measure the periodic time T), of the plug oscillation
to obtain the oscillation frequency w, = 271/ T). In Fig.6.10/an areal density function
is shown where we see a typical analysis. The red dots represent the position /i of
the phase boundary between the gas and the plug for which we assume a critical
density of ¢ = 0.51. Variations of this value (in a still reasonable range) do not
affect the result significantly. The green and blue dashes denote the detected times
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of the top and bottom turning points, respectively. They provide the period of the
plug oscillation. Since we do not have an analytical expression for the number of
particles in the gas phase, it is measured in the simulation by counting the number
of particles below hj.

200 ~ I | (,b/(,bmax ;

0.5

N

= 100
0

0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 ]
0 50 100 150
t/ Tdriv

Fig. 6.10 Typical example for the areal density (gray value) of a simulation plotted as a function of
height and time. The red points denote the height /1; of the interface between the plug and the gas,
which was detected by the software and the interface was assumed to be at a density of ¢ = 0.51. The
solid vertical dashes denote the time instant where a top (green) and bottom (blue) turning point was
detected, respectively. This data provides the period of the oscillation.

Now we plot the acquired data in Fig.l6.115 in non-dimensionalized form. The
open circles are simulations with different driving energies as denoted in the leg-
end. The solid black line is the theoretical prediction of Eq. (6.5) and we find good
agreement with the simulation.

For smaller driving energies E* we get — as discussed earlier — a state with some
additional gas above the plug which imposes some additional pressure on the plug.
Due to the increased force, the oscillation frequency is also increased (not shown
in the figure). The influence of inelastic collisions is shown in appendix [6.A| and
suggests that the plug oscillations are not observable in experiments for reasonable
values of the coefficient of restitution and driving energies.

6.5.2. Bubbling in wet granular matter

In the classical Leidenfrost setup with water, an instability was observed by Biance
et al. @) (cf. Fig.l6.12a), which was considered to be the Rayleigh-Taylor instabil-
ity. We observe a similar effect, reminiscent of bubbling, displayed in the subsequent
snapshots in Fig.[6.12b-d. An initial periodic perturbation of the interface between

5. It is worth noting, that the data used in Fig.[6.11]contains the entire simulation, including the state
in which the plug oscillation is not yet stationary. The stationary state is seen in the figure (due
to small fluctuations) as an accumulation of points, and is most apparent on the right end of the
green curve.
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Fig. 6.11 Comparison of the oscillation frequency depending on the normalized mean height h/d of
simulations (circles) with the theoretical prediction (solid curve) yields good agreement. The simulations
were performed in three dimensions with 3 X 10* particles, rupture distance of the capillary bridge
Serit/d = 0.0711, driving acceleration I' = 60.0 and different driving energies E* as denoted in the
legend.

the plug and the gas (b) grows and a gas bubble starts to be visible (c). This is most
perceptible in the shadow of the snapshots which account for the areal density. In
the last snapshot (d) the gas bubble increases and the cold plug is deformed into a
"bubble and spike"-like shape, which is typical for Rayleigh-Taylor instabilities (Ver-
don et al., 1982; Sharp 1983‘). We show a graph in (e), taken from Verdon et al. dlgSﬁ),
which shows the "bubble and spike" shape of the Rayleigh-Taylor instability in the
flow of an ideal fluid layer. This underlines the similarity between the emerging
structures in ideal fluids and wet granular matter.

To study the onset of the Rayleigh-Taylor instability in wet granular matter in more
detail, the simulations are compared with the theoretical model. The onset of the
Rayleigh-Taylor instability is described by Eq. (6.28), which is a convenient notation
for comparing it with simulations, and reads in lowest order approximation

7

L. =2l (6.31)

where L. is the critical width of the plug and [ is the capillary length.

The capillary length, I, is not directly accessible for wet granular matter. We
estimate it by using the equations which are valid for classical fluids, justified by
the similarity of the emerging structures. The thickness, /,, of a puddle of classical
liquid is calculated in de Gennes et al. dzooq) for simple fluids by balancing the
surface tension (2) with the hydrostatic force of the puddle (pghf, /2), both per unit
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length, and find
h, =21 (6.32)

The height of the liquid puddle, or in the case of granular matter, the height of the
plug, hy, is accessible in the simulation and therefore provides an estimate for the
capillary length.

We plug Eq. into Eq. (6.31) and find the critical width of the plug, L., where
the Rayleigh-Taylor instability occurs, to be

L. = 7thy. (6.33)

In order to investigate this behavior in wet granular matter, we performed several
simulations of a system with a square base area, where each edge is of length L..
We keep the filling height constant at 48 Layers and therefore change the number
of particles used (between 3 -10* and 5.3 x 10°). The variation of the parameter h,
is done by approaching the stationary state of the system, through increasing the
height of the vapor cushion iy which simultaneously reduces the height 1, of the
plug (cf.Fig.6.3b). As soon as bubbling is observed, we know the height , for
which L, is the critical width of the plug. The result of this analysis is displayed in
Fig.l6.13. The solid red line in this graph is the theoretical prediction of Eq. (6.33).
Looking at the original noisy data in Fig.6.13, this is in reasonable agreement.

6.6. Summary and Outlook

We find that the density inversion in wet granular matter bears striking qualitative
similarities to the Leidenfrost effect of common liquids. Hence, we denote it as
wet granular Leidenfrost effect. The reduction of heat conductivity does result in a
pronounced interface between the gas cushion and the condensed plug hovering on
it. The clear interface between the two phases is in contrast to dry granular matter.

The floating plug undergoes a smooth oscillation with a frequency not related to
the external driving frequency. In fact, we find the oscillation frequency of the plug
being well described by a theoretical model which yields the same oscillation fre-
quency as in the case of a passive plug hovering on a real gas which takes excluded
volume effects into account (cf. Eq. (6.5)) and shows good agreement (cf.Fig./6.11)
with simulations. In first order approximation the plug oscillation frequency only
depends on gravity and the mean height of the gas cushion.

Allowing for a lateral gas exchange in the model, we also predict a Rayleigh-
Taylor instability (cf.Fig./6.9) to occur, which is reminiscent of bubbling in water
dBiance etal, 2003‘). The predicted ratio of the length of the system divided by the
critical height of the plug is in first order approximation L./h, ~ 7t above which
the instability occurs. We find (cf. Fig./6.13) qualitative agreement of the simulations
with the theoretical predictions.
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Fig. 6.12 a Top view of large water puddles placed onto a hot surface and obeying the Leidenfrost
effect. Above a certain critical puddle size bubbles rise and burst at the surface. Depending on the size
of the puddles (note the scale bars) even multiple bubbles can rise simultaneously. Image reprinted with
permission from‘Biance et al.‘ (ZOO?J). Copyright 2003, American Institute of Physics. b-d Successive
Snapshots of a simulation of 3 x 10° wet granular particles show a rising gas bubble similar as in water.
Note the shadow, which accounts for the areal density, where the bubble is most apparent. The colors
represent the normalized kinetic energy per particle. The box is 1254 in width and 504 deep. The driving
parameters are: I’ = 60.0 and E* = 98.9. e Plot of the interfaces of the Rayleigh-Taylor instability in
layered flow of a finite ideal fluid layer as obtained by a two-dimensional numerical simulation. The
"bubble and spike" structure in this ideal fluid simulation is reminiscent of the structure evolving in wet
granular matter as can be seen in the shadow of snapshot d in this figure. The figure was reprinted from

Verdon et al.‘ {1982, Fig. 13). Copyright 1982, American Institute of Physics.
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Fig. 6.13 The critical width of the plug, L., is plotted against the critical height h,, where the plug
becomes unstable and shows the Rayleigh-Taylor instability. The circles are simulations of different
amounts of wet particles contained by a square based box with side lengths L.. Different driving param-
eters are used in this plot. The solid red line is the theoretical prediction of Eq. (6.33).

6.A. Inelasticity damps plug oscillation

If we additionally introduce slightly inelastic collisions with a constant coefficient
of restitution ¢ = 0.98 between particles and ¢ = 0.99 between particles and the
wall, we can observe that the oscillation of the plug is damped (cf.Fig./6.14] top).
Only for higher driving energies E* (cf.Fig./6.14 bottom), plug oscillations occur
again. The amplitude of the oscillation is, in contrast to the elastic case, not constant
but undergoes irregular fluctuations. The critical driving energy Ej ... necessary to
obtain oscillations is found to be ~ 2750 which can be seen in Fig. There, the
root mean square of the plug excursion, ¢, is plotted versus the driving energy E*.
To calculate this quantity, only the data in the stationary state of the simulation is
used (which is for example t/ Ty, > 267 for the simulation in Fig./6.14 top). For
driving energies smaller than Ej ... we obtain a non-zero value for ¢; __ because of
fluctuations in the data. Due to the comparatively large inelasticity of real systems,
it is extremely difficult to observe these oscillations in real experiments.
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Fig. 6.14 Areal density (gray value) plotted as a function of height and normalized time ¢/ Tqyiy. These
simulations are performed for slightly inelastic particles with a coefficient of restitution of ¢ = 0.98
between particles and ¢ = 0.99 for collisions between particles and the wall. The maximum acceleration
of the driving is I’ = 60.0. The driving energies are E* = 344.6 (top) and E* = 4395.4 (bottom),
respectively, while the rupture distance is sqit/d = 0.0711. top: The initially visible plug oscillation is
damped and vanishes. bottom: An oscillation of the plug appears again for higher driving energies of
the wall, however, it is not as stable as in the elastic case.

0.1

8 hrms

0.05

| ‘ \
0 5000 10000
E*

Fig. 6.15 Root mean square of the excursion ¢, plotted versus the driving energy E*. Circles denote
values obtained by simulations and the red curve is a fit of the form e, o (E* — E&oo)'/2 with

onset
Ed st &= 2750. The oscillation sets in at a critical driving energy Ejp et
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7. Phase diagrams of wet granular
matter — sinusoidal shearing

In the previous chapters of this thesis, energy was injected into the system via a verti-
cal sinusoidal motion of the system boundaries. The other main driving mechanism
which will be used in this, and the following chapter, is sinusoidal shearing. Even
though both driving mechanisms exert a sinusoidally varying force to the system,
there are significant differences. For sinusoidal shaking the driving force is uniform
within the system but changes sinusoidally with time, and requires the existence of
a physical boundary. For example, a flat, elastically reflecting wall as used in this
thesis. In contrast, for shearing the driving force is uniform in time but is changing
sinusoidally with the spatial position within the system. Furthermore, the driving
force is directly applied to the particles irrespective of the system boundaries.

The phase diagrams obtained for sinusoidal shearing are presented in this chapter.
They are obtained by numerical simulations of a three-dimensional granular system.
This is accompanied by a simple theoretical model which is capable of predicting the
solid and the fluidized state. In chapter 8 the emerging dynamics of the fluidized
state is studied more closely.

7.1. Introduction

Shear forces are omnipresent, as they can be found wherever two surfaces are in rel-
ative motion to each other and thus are present in many natural as well as industrial
systems. For example, the lubricating oil film inside the cylinders of an internal com-
bustion engine is (as any viscous liquid would be) subject to shear forces. The study
of these shear forces reducing the friction and wear by lubrication forms an entire
interdisciplinary scientific field called tribology dUrbakh et al., 2004J, and references
therein).

An interesting phenomenon observed in nature are landslides or mudslides. They
are, due to their destructiveness, a very important phenomenon which is related
to granular materials. They occur when additional shear forces, which cannot be
compensated by internal friction anymore, act on the surface of a hill. This can
possibly be caused by heavy rain, which is absorbed by the soil and results in a
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shear force due to a non-homogeneously distributed additional mass as a result of
the slow drainage of the water. Shear forces within granular matter also commonly
emerge in industrial processes where granular matter has to be handled. This is
the case, for example, in the mixing process of granulates using multiple counter-
rotating agitators.

Shear forces can be modeled in various forms. Experimentally studying shear
forces in granular systems can be done for instance by constructing two counter-
rotating walls dLiao and Hsiau, 2010, and references therein). In simulations, shear
forces are applied to the system for example through a space-dependent external
force field, F(x), acting individually on each particle. In simulations it is often fa-
vorable to use periodic boundary conditions. This can be done by using a triangular
shear profile, which is a combination of two linear shear profiles of the same slope
but different sign. This linear shear profile would be non-differentiable at the system
boundaries, so a cosine-shaped profile is used in this work. The shear force reads
Fs(x) = Fymaxcos(27tx/Ly), where Ly is the width of the system and is shown in
dHooveﬂ, 1983; Schulz et al., 2003; Schulz and Schulz zood; Rahbari et al.,
2009).

In the next section of this chapter a simple model is derived which captures the
basic features of the transition from a solid to a fluidized state in sheared wet gran-
ular matter. Afterwards, this theoretical model is compared to three-dimensional
event-driven simulations using the thin-thread model.

7 7 7 7

7.2. Fluidization point of sheared wet granular matter

In order to study the transition from a solid to a fluidized state in sheared wet
granular matter, a simple model is proposed in the spirit of section [4.2} There a
simple balance of forces acting in a one-dimensional column was readily able to
predict the solid-fluid transition induced through vertical shaking. The system is
reduced to its simplest geometry and only the force induced by the cosine-shaped
shear field and the capillary bridge shall be considered.

The simplest wet granular system conceivable is a one-dimensional chain of parti-
cles — connected by capillary bridges. The chain spans through the system of length
L, and the shear force is applied perpendicular to it. This is sketched in Fig.[7.1}
Here, the cosine-shaped shear force, F;(x), is shown at the top, which acts along
the vertical direction, y with a maximum force of Fymax. In the lower part of the
figure, a one dimensional chain of particles is displayed which shows a slight cosine-
shaped deformation with Amplitude A; in the vertical direction and resembles the
cosine shape of the shear force. The mass density, p;;, is considered to be approxi-
mately the mass of one particle per particle diameter, which is p,, = m/d, assuming
monodisperse particles of diameter 4 and of equal weight m. The capillary bridges
acting between the particles exert a force, Fg, which is assumed to be non-zero if the
particles are in contact. This is the case for instance in the minimal capillary model.
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Fig. 7.1 This is a sketch of the theoretical simplification. The cosine-shaped shear force which varies
in magnitude along the x direction is indicated at the top with a maximum force Fsmax. Below that, a
one dimensional chain of particles is shown, which is deformed with amplitude A; and resembles a
cosine shape. The particles are connected via capillary bridges which exert the capillary bridge force
Fg such that the particles are attracted and kept in contact. The strongest force in this chain acts on the
black particles and therefore the capillary bridges connected to these particles are the first ones which
will rupture. In contrast to that is the red particle which experiences the lowest force. The width of the
system in the horizontal direction is L.
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The stability of the chain is associated with the state of the wet granular material.
If the chain is stable and does not rupture under the applied shear force, this indi-
cates a solid state. If the chain however ruptures, this indicates a fluid state. The
chain is stable if the maximum force in the chain is smaller or equal to the capillary
bridge force.

The shape of the chain has to be known in order to be able to calculate the maxi-
mum force within the chain. The calculation of the shape is reminiscent of the calcu-
lation of the curve of a free-hanging chain in a uniform gravitational field. There the
resulting shape is called catenary and its derivation is a standard textbook example
for variational calculus. The main difference between the catenary situation and the
present system is the non-uniformity of the acceleration in the present system, which
is caused by the spatially varying shear force. The analogy to the catenary also di-
rectly indicates that the forces in the present model are not distributed uniformly
within the chain. The strongest forces act on the black particles in Fig.[7.1] which
are located at x = L,/4 and x = 3L, /4. This immediately shows that the capillary
bridges connected to the black particles are the first ones which will rupture if the
shear force becomes too large. Nevertheless, the solution is obtained by using the
Euler-Lagrange equation to minimize the Lagrangian. A Lagrange multiplier, A;, is
used to take the constraint into account that the length of the chain shall be constant.
The following calculation assumes vanishing granular temperature, T, — 0, such
that there is no kinetic but only potential energy within the chain. The potential
energy of the chain reads

1/4
LZ
Epot:Fsmaxgx / cos(ZNf)y\/@df, (7.1)
-1/4

where ¥ = x/Ly is the normalized position in the horizontal direction, (%) =
y(x)/Ly is the position of the chain in the vertical direction and 7' (%) = v’ is its
normalized derivative with respect to . The derivative does not change as both
spatial coordinates are normalized by the same length L,. The length of the chain is

1/4
lchain == Lx / \/ 1 + g’zdi. (72)
—1/4

Therefore, the variational derivative to minimize the Lagrangian reads

1/4
6 (Epot + Atlchain) = 6 / (cos(27m%)§ + Ar)y/1+§2dx | =0, (7.3)
—1/4

where § is the variational derivative, Epot = Epotd/ ngcpsmax the normalized potential
energy, A; = Ajd/ LyFsmax the normalized Lagrange multiplier and Iihain = lehain/ Lx
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the normalized length of the chain. This is solved by the Euler-Lagrange equation

d oG 090G
EGT]’_BTJ =0 (7.4)

with

G(7(%),§ (%)) = (§ cos(27%) + A1) /1 + 72 (7.5)

The Euler-Lagrange equation is solved numerically and the resulting shape of
the chain for A = 0.4 is shown in Fig.7.2| (black curve). Additionally, the function
7 = —Aj cos(27t%), with the normalized amplitude A; = A;/L, = 0.07384 is plotted
in Fig.[7.2 (red curve). The amplitude of the cosine-shaped curve was chosen such
that both curves have the same maximum value (at ¥ = 0). It can be seen that the
slightly thicker black curve is almost indistinguishable from the thinner red one. The
deviations of the cosine approximation from the numerically solved full problem is
shown as the relative error in the inset of the graph. It can be observed that the cosine
approximation never deviates more than 3% from the cosine-shaped function, which
indicates a reasonable agreement. Thus, the shape of the chain is approximated in
the following simply by a cosine-shaped function with an appropriate amplitude’.

Assuming the shape of the chain to be § = — A cos(271%) leads to the following
solutions for the potential energy and the length of the chain

Epor(A) = (a® = 1) Big (—a®) + (a* — 1) Eig (

2

1@2) Vida®
) V1+a? (7.6)

Tonain (A1) = i (—2?) 77

+ (ﬂ2 + 1) ElK (—az) + EIK (]_—'—512

with the abbreviation a = 27A; and where Eix and Eig is the complete elliptic
integral of the first and second kind, respectively. The solutions only depend on the
amplitude A;. The maximum force acting in the chain, F,in, can now be calculated
by

1

- dEpot /dlpain)

Fonan = — 0 h) 8

cha d Al < d Al (7 )
where Fi.in = Fenaind/ FsmaxLx is the normalized force within the chain. The max-

imum force in the chain can be evaluated using numerical values for the elliptic
integrals and is plotted in Fig. 7.3 as a function of the amplitude A; of the chain. The
result seems reasonable as it recovers the correct limits. For A; — 0 the force in the
chain goes to infinity, F., — 0, because the tension in the chain becomes infinite.

1. This assumption was already used in Sec.5.3|for the calculation of the interfacial energy and hereby
is additionally justified.
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Fig. 7.2 The thicker black line is a numerically obtained solution of the Euler-Lagrange equation
Eq. of the full problem and gives the resulting shape of the chain of particles in a continuum approx-
imation for A = 0.4. The thinner red line is the curve 7 = —A; cos(27%) with A= A;/Ly = 0.07384.
It can be observed that the two curves are almost indistinguishable and therefore in the inset the rela-
tive error, Afj/, of the cosine function is shown. It can be seen that there is indeed a deviation which,
however, is well below three percent. This justifies that a cosine approximation of the shape of the chain
can be used. The amplitude of the cosine function was chosen such that the two curves match at ¥ = 0
and it can be seen that the numerical solution goes a bit straighter from one extremum to the other than
the cosine.

For A; — oo the force in the chain also goes to infinity, Fiain — ©0, because the
length and therefore the mass of the chain becomes infinite. In between, there is an
optimal amplitude, Aopt = 0.1912, which leads to the lowest force Fomin = 0.2709
(dashed lines in Fig.[7.3) within the chain and therefore to the highest stability
against the applied shear force. The length of this chain, which spans the whole
system, is Iihain = 1.2970. If Eain < Fomin which is indicated as the blue shaded area
in Fig.[7.3} then there is no solution and thus no stable configuration of the chain
which can withstand the applied shear force. This is the fluidized state. In contrast,
if Fopain > Fomin, there is a comparatively large range of amplitudes, which lead to
stable chains in the system and thus lead to a solid state (gray shaded area). The
different stable chain lengths are shown in Fig.[7.3, where, assuming a certain fixed
value for Fuin (for example Fain = 0.5, dotted line), all chains are stable whose
amplitudes, A;, lie within the range denoted by the arrow. This is particularly in-
teresting if assessing the transferability of this theoretical approach to real granular
systems in two or three spatial dimensions. Due to the rearrangement of particles
and capillary bridges within sheared granular matter, the force chains which stabi-
lize the system undergo certain changes and fluctuations. However, due to the large
range of possible geometries of the force chains which lead to stable configurations,
this helps to stabilize the system against small fluctuations. Therefore, if the model
is realistic it should be possible to find a wide distribution of force chain amplitudes
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Fig. 7.3 The curve shows the normalized force Fonain = Fepaind/ FsmaxLx, Which acts on the black
particles in Fig.[7.1]and is shown as a function of the normalized amplitude of the chain, Al = A;/Ly
as obtained by Eq. (7.8). The two limits Al — 0 and Al — oo correctly lead to an infinite force, which
is caused by an infinite tension in the chain in the first case and an infinite mass of the chain in the
second case. An optimum chain amplitude, Aopt = 0.1912, where the force is minimal, Fcmin = 0.2709,
is obtained (dashed lines). The absence of a solution for Fcham < chm indicates the fluidized state
(blue shaded region), where the chain cannot find a stable configuration. Accordingly, the solid state is
obtained for Fchain > chin (gray shaded region). In this regime, assuming a fixed value for Fchain (for
example Fhain = 0.5, dotted line), all amplitudes in the range denoted by the arrow lead to a stable
configuration.

when inspecting granular materials in two or three dimensions.

The maximal force which the chain can withstand is given by the capillary bridge
force and reads F.,.in < Fg. A solid state is obtained if Fqain < Femin, Where Fomin is
the minimal force which is obtained at the optimal chain amplitude. This leads to
the final result

F smax L X < 1

Fp d ~ F‘cmin

~ 0.9229, (7.9)

which is the criterion to obtain a stable chain and thus a solid state. The model
assumes vanishing granular temperature and only is valid in this limit. Thus it is
intrinsically independent of the direction of the transition between the two phases
(solidification of fluidization).

7.3. Phase diagrams
The theoretical estimate as given by Eq.(7.9) for the transition from the solid to

the fluidized state shall now be compared to three-dimensional simulations of wet
granular matter using the thin-thread model. To this end, a flat system is used
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as shown in Fig.2.7, which contains elastically colliding, spherical particles. It is
known that polydisperse beads which are subject to small shearing forces show a
visible segregation according to their size (Schulz et al., ‘2002). Hence, monodisperse
spheres of diameter 4 = 1 are used in this and the next chapter in order to suppress
any additional dynamics arising from different particle sizes. The particles are also
of the same mass m = 1. Gravity is acting perpendicular to the shear force with
an acceleration due to gravity of ¢ = 1. This is not crucial for the appearance of
solid-fluid phase transitions in wet granular matter as they are present also in two-
dimensional systems without gravity dSChulz et al., 2003; RahbariJ, 2009), but it is
favorable as it creates a more or less well defined packing in the solid state. Since
all particles accumulate at the bottom it can be assumed that the packing density
initially before shearing is approximately random close packing with ¢, ~ 0.64.
The filling height is on average h¢/d = 5.0 in the solid state and, since the upper
wall is at height 7.5d, the packing fraction can go down at the transition from the
solid to the fluidized state. Jamming is prevented because the system can extend in
the vertical direction where it is only bounded by gravity (see, for example, Valverde
et al., 2004, and references therein).

The theoretical picture of a rupturing chain led to the first result that the capillary
bridges of the particles, which are located for example at position Ly /4 (black par-
ticles in Fig.[7.1), are the first ones to rupture if the applied shear force is slightly
above the critical value for stability. A snapshot of a simulation which leads to a flu-
idized state is shown in Fig.[7.4/and shows the initial stage directly after formation of
a shear band. In agreement with the theoretical picture, the shear band forms such
that the capillary bridges in the region around L, /4 and 3L, /4 are ruptured, while
in the other parts the network of capillary bridges remains intact. This supports the
basic idea behind the theoretical estimate.

To take the comparison further, the phase diagrams obtained by numerical simu-
lations are presented and the transitions are compared to the theoretical predictions
by Eq. (7.9). Individual phase diagrams are presented which arise from the variation
of each of the following control parameters. The critical rupture separation, Scit,
the width of the system, Ly, the capillary bridge force, Fg and the filling height of
particles in the system, hi;. The latter is estimated as the filling height in the solid
state assuming random close packing hy = H¢/ ¢rp, where ¢ is the average particle
density in the system. The theoretical prediction, which is given by Eq.(7.9), con-
tains only the parameters L, and Fg and thus is independent of st and Ly. Thus
the model is valid in the limit ¢t — 0 and at hy = 1.

Before discussing the results the exact method of how the parameters are varied
is explained. The variation of the critical rupture separation, s.i;, was done by
changing the capillary bridge energy, Eq,, while the capillary bridge force was kept
constant. The variation of the system width, L,, was done whilst keeping the aspect
ratio of the container constant at L, /L, = 2. At the same time the average particle
number density was kept constant at ¢ = 0.43 which means that the number of
particles is changing. The variation of the capillary bridge force, Fz, was done by
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Fig. 7.4 A snapshot of a three-dimensional simulation of 2.15 x 10° monodisperse, elastically colliding
wet granular spheres is shown, which is simulated using the thin-thread model. The flow is driven by
a cosine-shaped shear force field Fs(x), which is sketched on the figure. Similarly, as predicted by
the theoretical model, the capillary bridges in the region around L, /4 and 3L,/4 are the first ones
which rupture, whereas the other capillary bridges are still stable. This gives rise to the shear bands
which are observed in this snapshot. The capillary interaction is characterized by s¢it/d = 0.0625 and
Ech/mgseic = 6.0, with a filling height of hf/d = 8.8. The maximum shear force is FsmaxLy/Fpd =
2.5 such that Fsmax/ Fserit = 1.11, where Fsgit is the critical shear force for the transition to occur. The
color of each particle indicates its individual kinetic energy and the system is Ly = 100d in width, L, =
200d in length and H = 12.5d in height. The system starts in a fluidized state with homogeneously
distributed particles and a gaussian velocity distribution of mean granular temperature Tg / Ec, = 40.0.

changing the capillary bridge energy, Ey, while keeping sqit constant. The filling
height, hy, was varied by changing the number of particles in the system while
keeping the geometry of the simulation volume fixed.

All parameters which were constant during any of these simulations took the
values as following. The number of monodisperse particles with diameter d in the
system was 4.39 x 10%. Each particle was of mass m and collisions were elastic. The
particles experienced an acceleration due to gravity of ¢. The capillary interaction of
the thin-thread model was given by Ey, /mg5crit = 6.0, Scrit/d = 0.0625 and Fp/mg =
6.0. The system was of size L,/d = 60, L,/d = 120 with a height H/d = 7.5, which
lead to a filling height of hy/d = 5.0. The particles are initially homogeneously
distributed within the system with a Gaussian velocity distribution of mean granular
temperature T, /Eqy, = 40.0.

The resulting phase diagrams are shown in Fig.[7.5. The phase transition was de-
tected by the order parameter which is defined as the mean kinetic energy parallel
to the driving, E||. As briefly introduced in Sec.2.4.4, a significant non-zero value in-
dicates a fluidized state. The phase boundary is shown as red circles and calculated
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as mean value between the neighboring values, which belong to different states. The
red lines are fits to the phase boundary using an empirical fit function which best fits
the data with the result being noted below each phase diagram. The white dashed
lines in Fig.[7.5(a)-(c) indicate the transitions as predicted by the theoretical model
in Eq. (7.9). Now the phase diagrams are discussed individually.

The phase diagram for the variation of the critical rupture separation, s, is
shown in Fig.l7.5(a)l The linear fit to the phase boundary was chosen such that it
has the same intercept with the vertical axis as predicted by the model. The values
obtained for the phase boundary out of the simulations nicely fall on this curve.
This suggests that the force chain model is in good agreement with the simulations
in the limit st — 0. However, as all of the following simulations in the other
phase diagrams are performed at a critical rupture separation of s.i:/d = 0.0625,
no quantiative agreement can be expected any longer. In the following, a simple
argument indicates the mechanism by which the fluidization threshold becomes a
function of the critical rupture separation. A larger value of s.; enables each particle
to maintain more capillary bridges to neighboring particles. This was shown in
a simulation of freely cooling, two-dimensional granular matter in (Fingerle and
Herminghaus, \&08‘, Fig.9). At the same time an increase in the number of capillary
bridges per particle leads to an increases in the total binding energy per particle.
If the particle shall be driven into the fluidized state, more energy is necessary to
rupture all liquid bridges and thus more energy has to be injected by the driving.
This can, for example, be done with an increase of the maximum driving shear
force and thus suggests the increase in the fluidization threshold as observed in the
experiments. As the forces involved in the increase of the binding energy are not
aligned along a specific direction this is a purely energetic argument. Therefore, the
stability of the force chain seems not to be increased in an obvious manner. Ergo this
dependency of the fluidization threshold on the critical rupture separation cannot
be included into the force chain model, for example, simply via a larger effective
capillary bridge force.

The phase diagram for the variation of the width of the system, Ly, is shown in
Fig.|7.5(b) and shows very good qualitative agreement with the theoretical predic-
tion: it is constant. This is valid in the whole range of system sizes studied here.
Both, the simulation and the theory state that in the limit of very large system sizes,
Ly — oo, a fluidized state is found for any finite shear force, Fsmax. This is reasonable
as the mass of the chain then becomes infinite and thus cannot be balanced by a fi-
nite capillary bridge force anymore. It was confirmed in simulations (not presented
here) that the value of L,, with L, kept fixed, did not have a significant influence on
the fluidization transition.

The phase diagram obtained by the variation of the capillary bridge force, Fg,
is shown in Fig.7.5(c) and shows reasonable qualitative agreement with the the-
oretical prediction for large values of Fg. However, a qualitative different behav-
ior is found in the limit of vanishing capillary bridge forces. A short argument
shall be suggested why this deviation seems reasonable. To this end the resulting




7.3. Phase diagrams 143

fluidized fluidized

FsmaxLx/FBd
FsmaxLx /FBd

: 100 150 200 250
sCrlt/d Lx/d

(a) Phase boundary: scnth — 16. 3Scm +0.9229. (b) Phase boundary: scrlth —20.

fluidized

FsmaxLx/FBd

=

3

~

fluidized )
P

[

&

e

0 5 10 15 1 2 3
Fp/mg / d
(c) Phase boundary: SC"'L" =3. 7mg +14. (d) Boundary: S““L’ = 0 17(hg/d —1) +13

6 7

Fig. 7.5 Phase diagrams which show the phase boundary between the solid and the fluidized state
for different parameters. (a) critical rupture separation, Scit, (b) system width, L, (c) capillary bridge
force, Fg, and (d) the filling height hf estimated as the filling height in a solid state assuming random
close packing ¢rcp, =~ 0.64. Squares represent event-driven simulations using the thin-thread model
which showed either solid (black) or fluidized (blue) behavior. Red circles show the (normalized) critical
amplitude of the driving force, Fsqit, for which the transition was observed. The red line is obtained
as a fit with the result stated below each diagram. The white dashed lines in subfigure (a)-(c) denote
the results obtained from the theoretical model. Good agreement between simulations and theoretical
estimate is obtained for the first two phase diagrams shown in (a) and (b). A more detailed discussion,
the exact system parameters and the method for performing the simulations are given in the text.
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equation of the transition, as obtained by the fit, is written in the following form
FsaritLy/d = 3.7mg + 1.4Fp. This states that in the limit Fg — 0 still a finite shear
force is necessary to fluidize the particles. This seems to depend on the gravitational
force F, = mg acting on the particles. The transition from the solid to the fluidized
state certainly is associated with a decrease in local density. This results in a dilation
of the granular particles in the vertical direction. Thus the filling height of the system
increases by a small amount Ahy, which shall be estimated as follows. The potential
energy which is necessary to increase the filling height from h¢ to iy + Ahy is given
by Epot = hymgAhs/2. In the limit Fg — 0 it now is assumed that fluidization oc-
curs if the driving provides enough energy for the dilation to occur. The energy Ejy;
injected through the driving shear force for a small elongation ¢; = ¢ cos ¥ is given
by LyFriteo/2. It is difficult to suggest a reasonable estimation for the distance &.
The assumption that fluidization occurs if the driving provides enough energy for
the dilation to occur states that Einj = Epot and leads to FsitLy/d = h fAh rmg /dey.
The quotient Ahy /¢ is difficult to estimate®. By assuming it to be independent of /i
at least the following qualitative scaling should be obtained FyitLyx/d o hy/d. This
scaling relation shall be examined in the last phase diagram. As this argument again
is an energetic criterion it cannot be incorporated into the force chain model in an
obvious manner.

Finally, the phase diagram for the variation of the filling height, k¢, is shown in
Fig.|7.5(d)/in order to support the assumption made above that a certain gravitational
energy barrier has to be overcome for fluidization to occur. This leads to the expecta-
tion that in the limit Fg — 0 the critical fluidization scales as FyitLy/d < h ¢/d. This
means that the energy barrier created by the potential energy linearly increases with
the number of particle layers. By linear regression of the phase boundary obtained
in the present phase diagram to the limit Fg — 0 the scaling indeed is found in the
simulations. This supports the assumption that an potential energy barrier has to
be overcome in order to fluidize the wet granular matter in the limit of vanishing
capillary bridge forces.

7.4. Summary and Outlook

A simple theoretical model was developed in this chapter to describe the transition
from a solid to a fluidized state in sheared wet granular matter. The model con-
sists of a single one-dimensional chain of particles where the particles are connected
through capillary bridges. The chain is spanned through a system of width L, per-
pendicular to the applied shear force. The theoretical model, naturally connects the
stability of the one-dimensional chain with the transition from a solid to a fluidized
state.

It was shown that the capillary bridges which are located at the positions L, /4
and 3L,/4 experience the largest force within the chain and therefore are the first

2. The dilation can easily be measured in simulations and a first rough estimate revealed Ahy/d ~ 0.2.
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ones to rupture. This was in perfect agreement with the observation of shear bands
at the same position in simulations. Additionally, it was shown that the fluidization
threshold predicted by the model is in good qualitative agreement with the values
observed by simulations. This is true for the capillary bridge force, Fg, as well as
of the width of the system, L, and also the limit of sqi — 0. This is remarkable
because the thin-thread model, is known from chapter [4] to show deviations from
the minimal capillary model especially in the regime where the particle density is
high and contact forces become important.

The limitations of the theoretical approach were clearly addressed and discussed.
It was suggested that the functional dependence of the fluidization threshold on the
critical rupture separation seems to be caused by an increase of the binding energy
and thus cannot be captured in a purely force based model. The same is true for
a gravitational energy barrier, which was qualitatively shown to originate from the
potential energy of the particles.

It was shown in this chapter that some basic features of the complex dynamics
emerging at the fluidization transition in sinusoidally sheared granular matter can
be understood on the basis of a very simple one-dimensional model.
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7. Phase diagrams of wet granular matter — sinusoidal shearing



8. Unstable Kolmogorov flow in
granular matter

A solid and a fluidized state can be clearly distinguished in the phase diagram of
sheared wet granular matter, as shown in the previous chapter. For the fluidized
state, a snapshot was presented which showed the initial formation of a shear band
in agreement with the simple theoretical model. The emerging dynamics of this
fluidized state at later stages is studied in the present chapter, employing some stan-
dard tools known from nonlinear dynamics. While the dynamical states discussed
in the previous chapters were suggestive of phases in equilibrium thermodynam-
ics, here we will see the unfolding of enormous complexity, which eludes any such
simple description.

8.1. Introduction

The beginning of nonlinear dynamics (in popular science often simply called chaos
theory) is connected with well-known scientists such as H.Poincaré, J. Hadamard,
A.N.Kolmogorov and many others. One of the most popular ideas from this field,
which was widely recognized outside the scientific world also, was termed by E. Lorenz
as the ‘butterfly effectﬁRobert and Rosieﬂ, ‘2001) ; the sensitive dependence on initial
conditions. With an approximation of the Navier-Stokes equation he derived a set of
differential equations dLorenz 1963; Ruelle and Takensl, 1971; Tucker, 1999; Stewart,
‘200&) which have become a textbook example of a non-linear system.

One of the main outstanding problems in nonlinear dynamics is a detailed un-
derstanding of turbulence (Armbruster et al., ‘1006). In a classical approach to that
problem a simple unbounded periodic flow may be considered, which is caused by
a spatially varying and periodic but time-independent external forcing. This was
suggested by Kolmogorov and thus is commonly referred to as the Kolmogorov
flow (Platt et al., 1991; ‘Zhang and Frenkel, 1998). At small Reynolds numbers (ra-
tio of inertial forces to viscous forces (Platt et al., 1991)) the flow is laminar. For
Reynolds numbers larger than the critical Reynolds number the flow is known to
become linearly unstable, showing a stationary state including the formation of ed-
dies. This was first shown by Meshalkin and Sinai 41961). At even larger Reynolds
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numbers the inverse cascade appears in the turbulent flow, where energy is succes-
sively transferred to larger spatial scales dKraichnan, 196%; Green, 1974). Since then,
the Kolmogorov flow has been the source of a reasonable amount of interest in the
literature (see, for example, ‘Sh& ‘1087; ‘Dubrulle and PrischJ, ‘1001; ‘Gama et al,, ‘1001:
‘Arnold and Khesin, 1992; Legras and Villone, 2005; Perlekar and Pandit, 201&) (and
all articles citing ‘Meshalkin and SinaiJ, 1961‘). Kolmogorov flow is also accessible to
experiments, as was shown for example in a soap film (Burgess et al., @QQJ).

Numerical simulations of wet granular matter, that is driven by a Kolmogorov
flow are shown in this chapter. The typical cosine-shaped forcing of the Kolmogorov
flow was already studied in wet granular matter (see, for example, Schulz et al., 2003;
Schulz and Schulz, ‘2006), although with a different perspective compared to the
present study. Here an instability is reported which is in some aspects reminiscent
of the one in a classical fluid. With the help of the bifurcation diagram three dif-
ferent spatio-temporal patterns which emerge in the system are distinguished. This
is followed by studying the bifurcations itself and finally presenting some typical
Poincaré recurrence maps as obtained by simulations.

8.2. Bifurcation diagram

By means of molecular dynamics simulation the behavior of granular matter under
a shear force which varies sinusoidally in space is studied. This is schematically
shown in Fig.2.7, To this end, event-driven simulations of three-dimensional elas-
tic hard spheres are performed using the thin-thread model to mimic the effect of
capillary bridges.

A minimal driving force, Feuit, is required to overcome the attractive interaction
of the capillary bridges and fluidize the material. This was shown in the phase dia-
grams of Fig.[7.5/ As before, the shear force is acting in the y-direction of the system
and it is expected that the particles (in the fluidized regime) simply follow the ap-
plied shear force. However, as can be seen in Fig. 8.1/ the dynamics of the system
transfers significant parts of the motion from the y to the x direction. This is very
reminiscent of the classical Kolmogorov flow instability (see, for example, Burgess
et al., 1999). The flow perpendicular to the driving indicates the deviation from lam-
inar flow. Therefore it is suitable to use the kinetic energy, E,, which is involved
in this motion as an ‘order parameter’, to discriminate different flow regimes. E |
measures to some extent the chaotic activity of the system. For different amplitudes
of the driving shear force, Fymax, different flow regimes (blue shaded areas in Fig.[8.2
(a)) are observed. The circles in the diagram Fig./8.2(a) show respective minimum
and maximum values of E . For driving forces slightly larger than F. a state is
found which will be denoted as oscillatory state. As shown in Fig.[8.1(top) this is a
state where initially a shear band is formed, but which becomes periodically unsta-
ble leading to a swirl in the system. At F;  /Fsrit 2 1.9 the swirl state becomes
a stable stationary state. For even larger driving forces, s, /Fsxit 2 4.3, the swirls
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undergo periodic breathing-like size changes (Fig.l8.1 bottom). The time-evolution
of the kinetic energy E | is shown in Fig.[8.2(b) for the three different states: oscilla-
tory, stationary and breathing-like (from bottom to top). There it can be observed
that the oscillatory and the breathing-like state are qualitatively different: in the
breathing-like state the energy E | oscillates only around a stationary value while in
the oscillatory state E | periodically almost vanishes.

A 2 2 2

A
>

time

oscillatory state

Eian/ Eey
1 10

breathing state

Fig. 8.1 Snapshots illustrating the time evolution (top: oscillatory state; bottom: breathing state) of
2.15 - 10° elastically colliding, monodisperse, wet spheres confined in a box with periodic boundary con-
ditions in the two lateral directions. The system size is 100 particle diameters in width, 200 in length and
12.5 in height and the color of each particle indicates its kinetic energy. The flow is driven by a cosine-
shaped shear force sketched in the left-most images. The maximum driving force is Fsmax/ Fscrit = 1.26
(oscillatory) and Femax/ Fserit = 5.19 (breathing-like). A video which shows the oscillatory, breathing-
like as well as the stationary state can be viewed online under http://dx.doi.org/10.1063/1.
3202616.1.

The qualitative features of these flow patterns appear to be robust to changes of
system size and numerical implementation of the wet granulate. They have also
been observed for system sizes up to 1.72 - 10° particles, and in two-dimensional
Kolmogorov flows where capillary bridges are modeled based on the minimal capil-
lary model. The basic flow instability is even present in dry granular matter, where
particles interact solely by inelastic hard-core collisions, although the morphology
of the swirls strongly differs in that case due to the absence of attractive forces.

8.3. Phase space plots — Limit cycles

The kinetic energy E; of the particle motion perpendicular to the driving force
served as the ‘order parameter” indicating something like the chaotic activity of the
system. In contrast to that, the kinetic energy E|| of the particle motion parallel to
the driving force indicates the tendency to flow in the direction of the applied shear
force. Originally the system evolves in a 2DN,, dimensional phase space, where D is
the dimension and N, is the number of particles. For the system presented in Fig.[8.1
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Fig. 8.2 (a) Bifurcation diagram for different driving forces Fsmax Normalized by the critical driving force,
Fscrit, necessary to fluidize the material. The gray shading and the different shades of blue represent
solid material and different flow regimes respectively. (b) The time evolution of the kinetic energy of the
particle motion perpendicular to the driving force, E | , is shown for the three different states oscillatory
(black), stationary (red) and breathing-like (blue). The system size is 100 particle diameters in width,
200 in length and 12.5 in height and contains 2.15 - 10° monodisperse, wet spheres. The capillary
interaction is characterized by the capillary bridge energy Ec,/mgseic = 6.0 and a critical rupture
separation Syt /d = 0.0625.

this leads to a 1.29 x 10° dimensional phase space. In the present section the system
shall be studied in the phase space which is spanned by E|| and E and therefore is
only two-dimensional. The trajectories of the system in this phase space are shown
in Fig.[8.3. The different graphs are for different shearing amplitudes, Fimax, starting
slightly above Fy in the oscillatory regime with a limit cycle oscillating between
shear bands and swirls (a-e). The states (d) and (e), where E, is significantly non-
zero all the time, are states in which the shear band is never completely straight and
parallel to the driving but always shows a deformation in the direction perpendicu-
lar to the applied shear force. The phase space trajectory of a stationary state can be
seen in (f) and is simply a fixed point. The last two graphs (g,h) show the breathing-
like regime as a limit cycle oscillating around an unstable fixed point, where the size
of the voids (and similarly the swirls) in the system is periodically changing. Both
the transition from the oscillatory to the stationary regime as well as the transition
from the stationary to the breathing-like regime are clearly identified as supercriti-
cal Hopf bifurcations (Chen and Price, 1996; Chen et al., 2003; Kuznetsov, 2006, and
references therein).

2

If the driving force approaches Fsmax/ Fscrit — 1, a kink (indicated with an arrow)
becomes visible in the limit cycle of Fig.[8.3(a) and (b) which is not present for larger
driving amplitudes (c-e). In this limit, the origins of these graphs (which indicate a
solid state) still seem to be hyperbolic fixed points. Thus a qualitative change must
occur when the system goes from the fluidized to the solid state. In the solid state
the origin can no longer be a hyperbolic fixed point but must act as an attractor such
that the system ends up in the origin for different initial conditions of the system.
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Fig. 8.3 Phase space plots in the plane spanned by the kinetic energy of the particle motion parallel, EII’
and perpendicular, E | , to the driving. Limit Cycles are observed in the oscillatory (a-e) and breathing-
like (g,h) state while the stationary state is visible as a fixed point (f). The transition between the different
states is clearly identified as a supercritical Hopf bifurcation. For system parameters see Fig.[8.2.
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Fig. 8.4 Top: One cycle (solid line) for an oscillatory state (Fsmax/ Fserit = 1.18) in the phase space
is shown. The arrows denote the direction of increasing time. The red dots mark the positions at
which the snapshot as labeled is taken and is presented in subfigure (a) to (i). For each snapshot the
kinetic energy of the random particle motion, (Eyin), the kinetic energy parallel, EII’ and perpendicular,
E |, to the driving force is shown. The colors are chosen in each image to enhance the contrast, but
is unique among the different types of energy within a snapshot, where red denotes large and blue
low kinetic energy. The dashed line in the phase space plot denotes a constant total energy, it shows
that from (a) to (d) injection of energy dominates and from (d) to (i) dissipation dominates. For further
description refer to the text. The system parameters are given in the caption of Fig.[8.2. The maximum
kinetic energies are as follows: () Emax/Ecv = 4.3, (b) Emax/Ecv = 31.0, (¢) Emax/Ecv = 106.1,
(d) Emax/Ecb = 1781, (e) Emax/Ecb = 121.7, ® Emax/Ecb = 63.2, )] Emax/Ecb = 222, (h)
Emax/Eco = 11.3 and (i) Emax/ Eco = 3.5.
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For a better understanding of the dynamics® it is interesting to look at the energy
in the system in spatial resolution. In small subsets of the system, 1) the kinetic en-
ergy of the random particle motion, (Ey;,) = 3m ((7%) — (¥)?), 2) the kinetic energy
parallel, E||, and 3) the kinetic energy in the direction perpendicular to the driving,
E,, are monitored. The spatial extension of each subset is four particle diameters
in each lateral direction and ranges over the full height of the system. Thus each
subset contains on average approximately 170 particles and the whole system is di-
vided into 25 subsets in the x and 50 subsets in the y direction. This is shown in
Fig 8.4/ for an oscillatory state, where nine snapshots (a)-(i) are taken along one cy-
cle to illustrate the oscillation between the shear band and the swirl state. On top
of the snapshots the corresponding limit cycle is shown (solid curve) and the red
circles denote the point where the respective snapshot was taken. The maximum
shear force is Fsmax/Fserit = 1.18 and thus corresponds to the simulation shown in
Fig.[8.3(b). The color in the snapshots code the respective kinetic energy on a linear
scale, where blue is low and red is high kinetic energy. The color code is the same
for all three energies in a single snapshot, but changes along with the snapshot in
order to best reveal the details. The corresponding color scale is shown in (c) on top
of the snapshot.

In Fig. 8.4(a-c) the cycle starts with the formation of a shear band. It can be seen
in all three snapshots (in E)) that the shear band never becomes completely straight.
This causes a significant non-zero kinetic energy E |, which is visible in (a) or in
the phase space diagram on top of the snapshots. The increase of E|| from (a) to (c)
that is visible in the phase space diagram indicates that the shear bands are further
accelerated once formed and thus their velocity is increasing. This means that more
energy is injected into the system than can be dissipated. Energy is of course only
injected by the shear force in the direction parallel to the shear force, E||. The kinetic
energy in the other directions cannot be increased directly through the driving but
needs a coupling mechanism, such as particle collisions. No significant change can
be observed in the kinetic energy of the random motion (Ey;,) throughout the cycle.
Additionally, it can be seen that most of the kinetic energy is not in the random mo-
tion of the particles, (Eyi,), but in the directed flow either parallel or perpendicular
to the driving. The kinetic energy (Eyin) even seems to be small compared to the

1. The center of mass is subject to a random motion because the mean force acting in the system
depends on the distribution of particles. This can easily be envisaged if the system only contains
one particle, such that the center of mass moves along with this particle. Assuming zero particle
velocity initially the particle (as well as the center of mass) is accelerated to a certain direction par-
allel to the shear force. If the particle is additionally moving with a constant velocity perpendicular
to the driving (which cannot be changed by the shear force and such remains constant) then the
particle periodically changes its velocity. If many particles are in the system there will unavoidably
be a small but non-zero force acting on the center of mass leading to a fluctuation of its position.
This gives rise to a spurious diffusion in particle simulations of the Kolmogorov flow (as reported
in Mansour et al., ‘1999), which corrupts statistical properties of the flow. This spurious diffusion is
not relevant here, however, because the time-scale on which the fluctuations affect the macroscopic
motion are large compared to the time-scales simulated here.
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capillary bridge energy Eq,. This is a non-trivial observation: it means that the ran-
dom motion of the particles must be cooled more effectively by the capillary bridges
than the directed flow. A possible explanation for this could be as follows. The
energy dissipation through the capillary bridge occurs in the center of mass system
of the two particles which are connected via a liquid bridge. Hence, if the kinetic
energy in their motion relative to each other is larger than the capillary bridge en-
ergy, Eq,, the capillary bridge will rupture as soon as the surface separation reaches
the critical rupture distance sqit. This means that the velocity of the particles rela-
tive to each other determines if the capillary bridge can be ruptured. Assuming, for
example, a freely cooling, dilute granular gas with a Gaussian velocity distribution
(cf. appendix|A) of mean kinetic energy (Ey;,) without correlations between particle
velocities prior to their collision. Then the relative velocities can be assumed to be
distributed according to the same distribution. Thus the probability whether the
capillary bridge ruptures after the preceding collision or not can be calculated. In
4Ulrich et al.,2009a) it was shown that for a mean kinetic energy which is larger than
the capillary bridge energy it can be assumed that every collision leads to the rup-
turing of corresponding liquid bridge. This leads to dissipation of the kinetic energy
Eg in each collision. Turning back to the shearing scenario the situation changes
significantly. Even if E|| or E; show values larger than E, this does not mean that
the relative velocities of adjacent particles are large as well. This is because both
kinetic energies indicate a directed flow which itself is especially characterized by
small relative velocities of adjacent particles. This means that even if E| or E is
larger than Eg, not every particle collision will lead to a rupture of the correspond-
ing capillary bridge. Therefore, even if the kinetic energy E jorE; in the directed
flow is the same as the kinetic energy (Eyin) in the random motion, there will be
much less dissipation. This finding can be summarized as follows: As the energy
dissipation through capillary bridges occurs in the center of mass of the two par-
ticles, dissipation is more effective for random motion than for directed flow. The
capillary bridges therefore act as a selective mechanism which suppresses random
motion and supports the formation of directed flow.

Turning back to the limit cycle shown in Fig.[8.4/(d) to (i). Where the maximum
value of EH is reached it can be seen, that the deformation of the shear band increases
such that energy is transferred from E|| to E| . E reaches its maximum value in (g)
where it becomes comparable to E||. This can be seen from approximately similar
colors in the snapshots, which indicates that the swirl is now at its most pronounced.
The swirl may be difficult to see in these snapshots due to the loss of direction
information). The dashed line in the phase space plot on the top of the figure
denotes constant total energy, which is E|| + E; = const. Therefore it can be seen
that energy injection was dominating over dissipation in the regime from (a) to (d).
However, now in the regime from (d) to (i) the dissipation is strongly increasing and
dominating against energy injection, leading to a decrease in the total energy. In
snapshot (h) it can be seen that most energy is stored in E;. And finally in (i) the
bending of the shear band has almost vanished so that no more energy is transferred
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from E|| to E| but accumulates in E||. The cycle then starts again. It is noted that
the snapshots are not equidistant in time. In fact the energy injection from (a) to (d)
takes much longer than the stage of high dissipation from (d) to (i).

It seems that the main mechanism to support the oscillation between the shear
band and the swirl is the energy injection into the mode E;|, which then transfers
the energy into the mode E;. This seems to be accompanied by an increase in
dissipation until E; has decayed to very small values again.

8.4. Poincaré maps

The dynamics of a system can be well captured by means of a Poincaré recurrence
map (Marwan et al.ﬂzoo7; Robinson and Thiel, 2000‘!. A Poincaré section can be de-
fined for the present system (following the work by Loren @)) as the maximum
value of E| during each cycle. The Poincaré maps which result for different external
driving forces are shown in Fig. 8.5, where (a) to (f) show an oscillating, (g) a station-
ary and (h) a breathing-like state. The red lines are the bisecting lines. A fixed point
is found as the intersection between this bisecting line and the Poincaré recurrence
map. It is stable if the absolute value of the slope of the Poincaré map at the fixed
point is smaller or equal to one. The red point in each figure (indicated for example
in (c)) denotes the stable fixed point in which the system ends up. The system size,
that was used in these simulations was reduced to L,/d = 48 and L,/d = 96 and
contains 2.86 x 10* particles. The reduction of the system size is necessary since
many simulations of the same system with different initial conditions have to be per-
formed in order to obtain the Poincaré map. The corresponding phase space plots
are not shown here again, as they do not provide any additional insight.

The data points in the one-dimensional Poincaré maps fall on curves reminis-
cent of a unimodal map. For shearing forces well above the fluidization threshold,
Fswrit, the maps are reminiscent of a logistic map at small enough energies, as can
be seen in Fig.8.5(b) to (f). It is best seen for example in (c) in the range between
max(E, ),/Es = 1.5 and 3. Additionally, in (c) it can be seen that at the lowest
energies, max(E | ), /Eg, the value comes close to the bisecting line. If one extrap-
olates the Poincaré map to the bisecting line (blue line in (c)) another fixed point is
obtained (marked by an arrow). Because the slope of the Poincaré section at this
point seems to be larger than one this fixed point is unstable. The green line in (c)
is straight with slope negative one through the fixed point. It can be seen that the
Poincaré map seems to be very close to this value but due to the scattering cannot
be clearly justified. If the slope is slightly larger than one period doubling should
be visible. The limit cycle presented in Fig.[8.3(b) suggests that this indeed could
be the case. A larger system could possibly be studied in order to reduce the scat-
tering in the Poincaré maps. If the external driving is lowered and comes close to
the fluidization threshold the corresponding return map shown in (a) shows even
more scattering around the stable fixed point. This indicates increasingly complex
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dynamics when approaching the solid state. The appearance of the scattering does
seem reasonable, since a kink occurs in E I of the limit cycles as was indicated with
an arrow in Fig.8.3(a). This is most probably caused by the attraction of the solid
state attractor that superposes with the attractor of the oscillatory state. An effective
dynamics with more than two independent variables is then necessary to obtain a
faithful description. As a possible third parameter the potential energy of the par-
ticles is suggested here. This is because in simulations of the oscillatory state first
observations were made that it changes during a cycle.

The stationary state in the bifurcation diagram is reached in Fig.8.5(g), where the
Poincaré recurrence map simply appears to be uniform, so that any initial value
immediately ends up in the stationary state. The same is basically true for the
breathing-like state in Fig.$8.3(h). Additionally, two fixed points seem to appear at
the intersection of the red line and the numerically obtained Poincaré map. One
fixed point is clearly unstable as the slope of the Poincaré map is larger than one.
The second fixed point at the largest energies seems to be slightly attractive, but it is
not the final stable fixed point in which the system ends up.

The complex dynamics of the wet granular matter driven by a cosined-shaped
shear force seems to be determined by a Poincaré recurrence map. This is remarkable
since the phase space has been reduced from approximately 1.7 x 10° dimensions
to a two-dimensional phase space spanned by E| and E, . This also means that the
spreading of the limit cycles in their phase space which is visible in Fig.[8.3 is caused
not only by erratic fluctuations but also by deterministic chaotic motion.

8.5. Summary and Outlook

In this chapter simulations of wet granular matter driven by a cosine-shaped shear
force were presented. This is commonly known as Kolmogorov flow and was origi-
nally introduced as a simple model system to study flow instabilities in the Navier-
Stokes equation. In these simulations a rich set of dynamic instabilities could be
found with three different regimes clearly distinguishable. The first is an oscillatory
regime where the system oscillates between a shear band and a swirl state. This
is followed at larger driving forces by a stationary state resulting in the formation
of a dynamically stable pattern with swirls. Due to the attractive forces even voids
form in the center of the elliptic points. The third and last regime reported here
is called breathing-like regime, since the size of the voids periodically changes. By
presenting the limit cycles of these different states it was suggested that the transi-
tions between the different regimes are supercritical Hopf bifurcations in both cases.
The recurrence map was obtained for the Poincaré section defined as the maximum
kinetic energy of the particles perpendicular to the driving, E | ; this map showed
similarities with a logistic map in some ranges. This is remarkable as the original
high-dimensional phase space of the system was reduced to only two dimensions,
which is spanned by the kinetic energies parallel E;| and perpendicular E; to the
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driving force. First indications were shown of a possible period doubling scenario.
This deserves further investigation as it determines the route to more complex be-
havior.

The vanishing kinetic energy of the random motion in the oscillatory state sug-
gests that the capillary bridges act as a selective mechanism which suppresses ran-
dom motion and supports the formation of directed flow. Because the energy dis-
sipation through capillary bridges occurs in the center of mass of the two particles
linked by the bridge, arguments were given that dissipation occurs more effectively
for random motion than for directed flow.

As the instability of the flow has also been observed in two-dimensional as well
as dry Kolmogorov flow systems (both not presented here) it would be interesting
to explore whether it is possible to observe this instability also in experiments. The
stability analysis for the granular Kolmogorov flow system by using granular Navier-
Stokes hydrodynamics is left for future work.

Significant parts of this chapter have been published in Roeller, Vollmer, and Her-
minghaus 42009).
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Fig. 8.5 The Poincaré recurrence map as obtained by simulations (black circles) defined by the max-
imum of E | in each cycle. It is shown for the oscillatory regime (a)-(f), a stationary state (g) and a
breathing state (h). The red line is the bisecting line and the red circle shows the respective fixed point.
The system contains approximately 2.86 x 10* elastic hard spheres in a system of 48 particle diameters
in width, 96 particle diameters in length and 7.5 particle diameters in height. Other parameters are the
same as noted in the caption of Fig.[8.2.



9. Summary

Wet granular matter is a useful system for studing the dynamics which emerge in
systems far from thermal equilibrium. It is easily accessible by experiments as well
as simulations. With the help of time- as well as event-driven molecular dynamics
simulations, wet granular matter was studied in this thesis. The energy injection
which is necessary to drive the system out of thermal equilibrium was done by
two highly different sinusoidal driving mechanisms. The first one was sinusoidal
shaking and was used from chapter 3] to |6 whilst the second one was sinusoidal
shearing and was used in chapters 7 and [8. The interaction with the liquid in the
system was modeled by the minimal capillary model and the thin-thread model,
respectively. They account for the dissipation of energy such that the system can
reach a steady state.

In the first part of this thesis sinusoidal shaking was employed enabling the system
to reside in states which are very reminiscent of solids, fluids or gases known from
systems in thermal equilibrium. In the spirit of equilibrium thermodynamics phase
diagrams were obtained for two- as well as three-dimensional wet granular matter.
It was shown by simulations that agitated wet granular matter shows two universal
phase transitions which depend only on a few general intensive system parameters.

One is the solid-fluid transition which was shown to be mainly driven by the
applied driving force, whilst the driving energy acts as a second order correction.
A simple theoretical model which only assumes the balance of basic forces acting
in the system showed good qualitative agreement with simulations at small driv-
ing energies. The model assumes that the equality of the mean free path between
different layers of particles and the critical rupture separation to rupture a capillary
bridge determines the solid-fluid transition. Furthermore, it predicts surface melting
which was also observed in simulations. The second transition found in wet gran-
ular matter was between a fluid phase and the gas phase accompanied by a broad
coexistence region. It was driven by the maximum kinetic energy of the driving wall.
The transition occured if the maximum energy provided by a single collision with
the wall was sufficient to rupture one capillary bridge. Additionally, by reducing
the polydispersity, a solid-fluid transition was found, which was also determined by
a critical driving energy and accompanied by a solid-fluid coexistence.

The study of the size of the gas bubble which emerged in the fluid-gas coexistence
region revealed three different shapes: a circular gas bubble surrounded by fluid, a
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strip shape and a fluid droplet immersed in the gas phase. This situation reminded
of the transitions between similar shapes which emerge in a two-dimensional Ising
model. The transition between the two shapes in the equilibrium model gives rise
for a first order phase transition and is driven by the minimization of the interfacial
free energy. This similarity led to the suggestion of a quantity analogous to an
interfacial energy to be present in wet granular matter. The interfacial energy was
estimated in simulations by mechanically deforming the interface and was found to
be in qualitative agreement with a simple theoretical estimate. A further study of
the universality of the interfacial tension revealed a behavior in a three-dimensional
simulation of the solid-fluid coexistence, which is reminiscent of Ostwald ripening.
Ostwald ripening is know to be driven by the minimization of the interfacial free
energy. From the reminiscence of the two effects it was deduced that an interfacial
energy seemed to be present also in the case of the solid-fluid coexistence in the
three-dimensional system.

A coexistence does not only occur in the horizontal direction of the system but
can also occur in the vertical direction. This revealed a situation of density inversion
which is reminiscent of the Leidenfrost effect known from classical liquids. The ap-
parent reduction of heat conductivity results in a clear interface between the hot gas
and the cold condensed plug which hovers on top of the gas. The plug undergoes a
smooth oscillation with an oscillation frequency, which is well described by a simple
theoretical model. It is the same oscillation frequency as in the case of a passive
plug which hovers on top of the evaporated gas, where corrections due to excluded
volume effects are taken into account. If a lateral gas exchange is introduced into the
model, a Rayleigh-Taylor instability is predicted, this being reminiscent of bubbling
in the Leidenfrost scenario for water. This is also oberserved in simulations and is
in reasonable agreement with the theoretical prediction.

In the second part of this thesis, sinusoidal shearing was used to drive the wet
granular matter. Phase diagrams were presented which showed a solid and a flu-
idized state. A simple theoretical model was presented which connected the sta-
bility of a single one-dimensional chain of particles with the transition observed in
the simulations. Good qualitative agreement was found between the theoretical es-
timate and the simulation. The limitations of the theoretical model were discussed
and arguments on the origin of the deviations were given.

This was followed by a study of the rich and complex dynamics emerging in the
fluidized state in the sheared granular matter. In the wet granular matter a rich
set of dynamic instabilities was found and studied with the standard tools known
from non-linear dynamics. Three different regimes were found. The first one was
called osciallatory regime, where the shear band periodically becomes unstable re-
sulting in a swirl. At larger driving forces, a stationary state was found with a
stationary swirl which becomes unstable at even larger driving forces in the sense
that the voids undergo breathing-like size changes. Limit cycles were found in a
two-dimensional phase space, which revealed a Hopf bifurcation at the transitions
between the different regimes. Thus, the recurrence maps were presented.
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In summary, extensive numerical simulations were performed on wet granular
matter in this thesis. This was possible due to the remarkably simple model (the
minimal capillary model) which is used to describe the capillary interaction. A
derivation of this model (the thin thread model) allowed for a significant perfor-
mance increase when simulating. An amazingly rich set of dynamical behavior was
found for wet granular matter using different driving methods. In many cases very
simple models, which only incorporate little of the actual complexity of the problem,
were able to predict some of their features. In spite of their simplicity, in many cases
a good qualitative agreement between simulations and experiment is found.

Many phenomena were found in simulations which were reminiscent of behavior
which is known from classical fluids. Thus, it can be concluded that wet granular
matter is a complex fluid; complex, indeed is reminiscent of a fluid.
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A. Velocity distribution of a wet granular
gas

The velocity distribution of a granular gas is of great interest when calculating trans-
port coefficients like heat conductivity. For dry granular matter, velocity distribution
as well as transport coefficients are standard knowledge which are readily available
dlenkins and Richman, ‘1084; ‘Brev et al,, ‘1008‘; ‘Losert et al.‘, ‘mqoaJ; Brilliantov and
Poschel, ‘2004; Baskaran et al., ‘2008). We examine the velocity distribution of a wet
granular gas by means of kinetic theory in a stationary state.

A.1. The Boltzmann equation for a wet granular gas

A.1.1. Modeling a wet granular gas

The Minimal Capillary Model dHerminghaus 2005) is often used to model the in-
teraction between particles of wet granular matter in simulations and theory. This
model has been shown to be reasonably close to experiments (Willett et al,, ‘2000).
However, the formation and rupture of capillary bridges takes place at different spa-
tial positions, which gives rise to hysteresis in the acting forces. Thus, it is unfortu-
nately not possible to formulate a Boltzmann equation for such a system. Therefore,
we use a modified version of the minimal capillary model, but preserve its most
important feature, which is namely a constant loss of kinetic energy E, per rupture
event (Zaburdaev et al., ‘2006; ‘Fingerle et al.,, ‘2008). The capillary bridge is formed
during the (fully elastic) collision of two particles. It ruptures instantaneously if the
relative velocity 71, = U1 — U, of the two particles 1 and 2 is greater than the critical
rupture velocity vgit:

7

. 2Ep
U12 > Ogrit = mc ’ (A.1)

where m is the mass of each particle. If the relative velocity @1, is smaller than the
critical rupture velocity of the capillary bridge, the particles remain together.

We neglect the case where particles stick together by restricting our considerations
to a very dilute wet granular gas. Here dilute refers to a low packing fraction,
Zg3n, such that the particle volume is small compared to the volume of the gas and
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excluded volume effects do not have to be taken into account. Here ¢ is the particle
diameter and n the number density. Furthermore, we investigate the wet granular
gas in a regime where the temperature T, is much greater than the energy loss Eg,
per rupture event. The temperature in d dimensions is defined as the mean kinetic
energy of the random particle motion:

<;mV2> = ng (A.2)

with the local velocity V which is defined by
V(7)) = 6(7t) —ii(7 ), (A3)

where ¥ is the particle velocity with respect to the average velocity #. With these
two restrictions (n < % and Ty > %Ecb) we are able to justify our assumption that
every collision leads to a rupture of the created capillary bridge and we therefore
can disregard sticking of particles.

A.1.2. Collision rules

The assumptions made above allow to write down a collision rule which contains
both the collision, which is assumed to be elastic, and the energy loss due to the
ruptured capillary bridge.

Eix = Ej; — Eq,, (A.4)

where E}; and Ejp = %(512(_7')2 is the energy of the relative motion of particle 1 and
2 before and after the collision respectively. ¢ = & j; is the unit vector pointing
from the position of the center of particle 7, to the center of particle ry.

A straightforward calculation of the collision rule (A.4) leads to the following

collision laws for identical particles:

=01 — 5(77{;‘7) 5 (7750)? — 2Eq (A.5)
5 I
N (0750)%? — 2E, (A.6)
which are momentum-preserving. The notation with two asterisks means velocities
before the collision, while post-collisional velocities do not have any additional label.
To devise the Boltzmann equation, we need to account for reverse collisions, which
means that we calculate for a given post-collisional velocity the velocity of that par-
ticle right before the collision. This yields:

SRk s = 5. - =
U =05 (T120) — > (0120)? + 2Eq (A7)
Uy = Uy + 5(2)17_0') + > <0120'>2 + 2E . (A.8)
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We can consider equations (A.7) and (A.8) as transformation of coordinates 7}*, 73" —
U1, U2 with jacobian J:

o(T5,057F 1
a—ulﬁi) = ——— (A.9)
(0:6,5:0) L G
We additionally need
|(7130)7| 2Ey,
= —~L - XJ=—/14+ =, A.10
*= |Gt (00 ) (810

where the first factor is the ratio of the lengths of the collision cylinders for the
inverse and direct collisions (cf. Brilliantov and Poschel, 2004). We finally arrive at

the Boltzmann equation:

aatf(ﬁl,t) = I(ff) (A.11)

with the velocity distribution function f and the collision integral

1(f.f) =02 [ 48 [ do0(~512 x )[512 x F|(Uf (51" ) F(35'0) = F(ELf ().
(A.12)
A.1.3. A useful property of the collision integral

A feature of the collision integral which we will need below for further calculations
is

2
/d7714’(771)1(frf) = % / dd1dv,ddO(—0120)|0120 | f (T1,t) f (Ta,t) (A.13)
x[(T7) +9(T3) — ¢(T1) — ¢(T2)], (A.14)

where v; (i = 1,2) are the initial velocities and v} the velocities after the collision. A
proof of this relation can be found in Brilliantov and Péschel dzoo;ﬂ, chapter 6.4).

A.2. Velocity distribution expansion

In contrast to systems in thermodynamic equilibrium, the velocity distribution for
systems which are out of equilibrium are non-maxwellian. Furthermore, deviation
of the velocity distribution from a gaussian is a measure how far the system is
out of equilibrium dSpeCk and Seifert, ‘2004). Therefore, we calculate the first non-
trivial expansion coefficient which describes the deviation from a gaussian for a
homogeneous wet granular gas.
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A.2.1. Normalized velocity distribution

We consider the scaled form F(c) of the velocity distribution function where the time
dependence only occurs through the time-dependent average velocity vy (Esipov
and Poschel, @gj). That the velocity distribution function can be rescaled by the
average velocity became clear while considering a freely cooling granular gas which
is only slightly inelastic and therefore behaves at every point in time like a system
in equilibrium dEsipov and Poschel, ﬁggz).

F(&) = v§ (1) f(vot't), (A.15)

where ¢ = 7/vy(t) is the scaled velocity and vy is the thermal velocity which is
defined by the temperature

Ty(t) = Z8(1), (A.16)
which itself is defined by
2
gnTg(t) =/ dﬁ% £(5,0). (A17)

Due to the temporary local equilibrium argument above, we can expect the velocity
distribution to be close to a Maxwell distribution and therefore expand the scaled
velocity distribution F(¢) to a complete set of orthogonal functions {L,(x)}:

F(c) = ¢(E) 1+ 2 anLn(Cz)] p (A.18)
n=1
where the leading term
. 1 2
¢(C) = a2 € (A.19)

is a gaussian.

A.2.2. Laguerre polynomial expansion

A convenient choice for the orthogonal set of functions {L,(x)} are the Laguerre
polynomials
e*x~* d"

L (x) = (e 5x") = (” “‘) o, (A.20)

n!  dx" = \n—k) Kk

where & = d/2 — 1. In the context of kinetic theory they are often called Sonine
polynomials. The Laguerre polynomials up to order two for d dimensions read:

() =

e

R =N -

R s e i)



A.2. Velocity distribution expansion 169

The orthogonality relation reads

[ee]

/e’xx"‘L,(,f)(x)L,g“)(x)dx = (n —7: “)F(l + ) dnm, (A.21)
0

where I'(x) = fooo e t*~1dt is the usual I'-function and §,,, the Kronecker delta.

The inverse relation of (A.20) is

" m
xmzz<m—k

>m!L,((“) (x). (A.22)
k=0

We use Eq. (A.22) together with the orthogonality relation (A.21) and calculate mo-
ments of the velocity distribution function

(") = /C”F(E)dé’. (A.23)
We find for the zeroth moment
(&) = / F(&)de (A.24)
— 14 Y 4 / 4P (3)Lo ()L () (A.25)
n=1 o
= 1, (A.26)

where we expressed 1 by Ly(c?) and then used the orthogonality relation. We obtain
analogously for the second moment

() = /dE(i —Ll(c2)> % $(7) 1+§anLn(c2)]
d

= 5(1 —ay). (A.27)

Here we leave out the superscript & = d/2 — 1 in the notation of L}(x) for shorter
notation as we do below.

Now we can start to calculate the first coefficient a; of the normalized velocity
distribution function F(¢) defined by equation (A.18). The density of the kinetic
energy is

/ Ao 2 (31) = S opn / dec?F(e) = () 5 ofn. (A.28)

From the definition of temperature T, (A.17) and thermal velocity vy (A.16) we get

_m . d d m
/dvzvzf(v,t) = EnTg = EnEU% (A.29)
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and therefore can identify the second moment of the velocity distribution to be

d
() = > (A.30)
We set Eq. (A.30) equal to Eq. (A.27) and find
a; = 0. (A.31)

We restrict the approximation of the scaled velocity distribution in this chapter to
the first non-trivial coefficient of the Laguerre expansion, which is ay, so that the
scaled velocity distribution reduces to

F(©) = ¢(C) [1 + a2La(c?)] . (A.32)

The rest of this chapter is dedicated calculating a, using the Boltzmann equation as
it was done in Goldshtein and Shapiro‘ (1995), van Noije and Ernst (1998) and van
Noije d;gggj) for a dry granular gas.

A.2.3. Moments of the Boltzmann equation

We calculate the velocity distribution in a stationary state and therefore add some
driving, to inject energy, to the Boltzmann equation. We use the simplest form of
random forcing which is a stochastic thermostat using white noise. This means that
the different stochastic forces ¢ are temporal and spatial uncorrelated and we write

(EE(DE()) = 270up03j0(t — 1), (A33)

where angular brackets denote the average over the noise source, 7 is the strength
of the driving, i,j are different particles, «,f are cartesian components of the d-
dimensional space, t,t’ are two points in time and ¢ with an index is the Kronecker
delta whereas the function é( — t') is the Dirac delta function.
The Boltzmann equation changes in the driven stationary state with rescaled quan-
tities to
1 o> _
0= I(FF)+ Zgaazp(cl) (A34)
~——

driving

and the collision integral I(F,F) with rescaled quantities reads

I(F,F) = o? / dc / doO(—Ccip x 7)|c12 x T|(XF(c1",t)F(5"t) — F(C1,t)F(Ca,t)).

We take the n'" moment of the Boltzmann equation:

7l/dz o p@) = —/dE1 I I(E,F) (A.36)
3 g2 L '
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After integration by parts we obtain for the left hand side of equation (A.36):

7! - . 7l -2
v—g / dc; C¥@F(C1) = v—gn(d +n—2)(c""7). (A.37)

We define the right hand side of equation (A.36), which is the n™ moment of the
collision integral, as vy,:

vy = — / dé, M (F,F). (A.38)
Using the useful relation (A.14) we can write

(" +&" = — &

(A.39)

2
1
w=-2 / 1 ey 0 (—120) [E120 | F (@1, 1) F(Ent) % 5

To evaluate this expression, we need the rescaled collision rules:

[ R
=0 — E(Clz(f) — =1/ (C120)? — e (A.40)
e o O d /o o )
G =0+ E(Clz‘f) + EV (C120)% — e, (A.41)

where ¢} and cj is the velocity before and after the collision respectively and ey, =
2 X Eg,/ 03 is the dimensionless bridge energy. For the product F(cy,t)F(c,,t) we only
keep terms which are of linear order in as:

F(@t)F(Eat) = ¢(@)(22) (1+ a2 [La(c]) + La(c3)]) - (A.42)

For the second and fourth moment of the Boltzmann equation we find

N QU

l
13251(00) =1 (A.43)
%
ll d 2\ __
034( +2)(c”) = va. (A.44)
0

To find an expression for a, we have to solve

V.
2 —d42] (A.45)
V2

A.2.3.1. Second moment

To calculate the moment v, of the collision integral, we introduce the center of mass
velocity V and the relative velocity i/
G=V+ (A.46)

—

N
Il
<!
|

N“ =L N =)

(A.47)
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We divide V and i into parts which are parallel and perpendicular to the collision
vector 7, respectively:

i, =i— (id)d, u,=1uo (A.48)
V., =V - (Ve)#, V,=Vd. (A.49)

From the rescaled collision rules (A.40) and (A.41) we find the collision rules in
these new variables:

& = 1+}+ <Va—”%'2_€d’>?r (A.50)
&G = 1—}+ (VU+”%'2_‘C'“1’> 7. (A.51)
We can now calculate
P -d-g) = (A52)
and
Lo(c2) + Ly(c3) = <\72 + ff - (Vﬁ)2 —(d+2) (VZ + T) - d(djz). (A.53)

If we substitute equation (A.53) in (A.42) and the result (with the respective change
of variables) together with (A.52) in equation(A.39), we obtain

i2

—2v2- i
vy = b, / avais —*

4 i
Uy 2> 1/Ech

1+a <<V2+L72>2+ (Vﬁ)z—(d+2) <172+iz> +d(d4+2)>

Uy

X , (A54)

4

where (2 is the d-dimensional solid angle. This integral can be evaluated using the
variable substitution of (A.48) and (A.49) and we obtain

e*8cb/2n*%+%scb(l6 +ar((ey —2) — 1lew))

vy = (A.55)
32v2 % T (4)
A.2.3.2. Fourth moment
To evaluate the fourth moment of the collision integral, we first calculate
1—%4—*4—4—4_5cb3V212 €cb V2 ﬁi A6
E Cq +C2 —C — G ——7 U—‘i‘iug—?‘k J'+T ( 5)

=2V, <u(7 + \/ u% - 5cb> VJ_ﬁJ_ (A.57)
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which follows straightforward calculation. Analogous to the calculation of the sec-
ond moment, we find for the fourth moment

2
et
vy = —02 dvdi———
d 7-[d
UgZ+/Ech

0\ 2 2 —n
2y L Vi) — 2y ) L dd+2)
1+@<<V—k4>—+0m) (d+m<V—%4>+ i

€cb 2, 1o e oo 2 V. i
X | == (3Vy+-usg———+Vi+— | =2V, (ug+Juz —ewx | Vil

Uy

X

which we evaluate again in the same manner. However, because the solution is a bit
more lengthy than for 1, we do not give it explicitly here.
A.2.4. Result

We now have the explicit solutions for v» and v4. Therefore, equation (A.45) is
solvable with respect to a;. The full solution reads

o 16(8cb - 2)€cb
—128 +16d(8 + £ (54 €cp) ) + €cb (10 + £ (75 + (e — 4)ewp) ) + Zs

az = (A.59)
with Z; = 32(d — 1)eq, exp(ear/4)Ki (52) where K;(x) is the first order modified
Bessel function of the second kind.

Expanding equation (A.59) in powers of &y, for small values around zero we ob-
tain:

1 15(8d-5)
8(d—1) ®  1024(d—1)

ay = ZS%b + O(Scb)3 . (A.60)

This result can be used to calculate the Fourier law of heat conduction similar as
it was done for dry granulates (Deltour and Barrat, @91; Soto et al., @QQJ).
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B. Sinusoidal shaking in event-driven
simulations

Event driven algorithms are a powerful and efficient simulation method that can
be used to numerically study the behavior of particulate systems, such as granular
materials or powders. Its superior efficiency originates from only considering times,
where physically relevant events occur, as long as these times can be calculated an-
alytically. This, however, is only possible for pairs of trajectories whose relative dis-
tance can be expressed as a polynomial of order less than or equal to four. For more
complex trajectories, like a sinusoidal motion of a wall, the collision times have to
be calculated numerically, which dramatically reduces the efficiency. In this chapter
we present a tabulation method implemented in an event-driven algorithm, which
is able to efficiently handle the one-dimensional motion of a periodically moving
wall. While demonstrating this for a sinusoidally moving wall, we simplify the com-
parability of simulations with (usually sinusoidally driven) experiments. Because
granular materials or powders are systems which are easily accessible through both
experiments and simulations, our work enhances the growing field of statistical
physics far from equilibrium.

B.1. Introduction

Whether in nature as sand or coarse gravel, or in industrial processes and products
like mining, food processing, or the pharmaceutical industry, granular materials or
powders are omnipresent. Because these systems of particles are out of equilibrium,
the concepts and tools known from classical thermodynamics, like phase diagrams
or thermodynamic potentials, unfortunately do not universally apply in these cases.
Due to the multitude of individual particles, it is a challenge to predict the behavior
of such collective systems, and, for example, phase diagrams have to be extracted
laboriously for any non-equilibrium system. Thus, it is advantageous to develop
simulation techniques which allow a fast and efficient exploration of the desired
bulk behavior.

A suitable and efficient" algorithm is the event-driven molecular dynamics (EDMD)

1. with respect to the computing time per physical time
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dPoeschel and Schwageﬂ, 2004J) simulation. However, as pointed out in Miller and
Luding 42004), it has never become as popular as the less efficient time-driven molec-
ular dynamics (TDMD) (Poeschel and Schwager, 2004) simulation method. This
seems to be due to an often higher implementation effort combined with less flex-
ibility in EDMD. However, interesting implementations for EDMD were published
in recent years, which extend the range of application of this method. For exam-
ple, there are algorithms for parallelization (Miller and Luding, 2004J), the use of
non-spherical particles dDonev et al., 2005a l;), a priority queue with complexity
O(1) (E’m, 2007), the collision detection of moving spheres with unknown trajecto-
ries (Kim et al., 2005), and the use in a ball mill simulation (Reichardt and Wiechert,
). EDMD simulations are not exclusively used in the field of physics but are also
investigated in theoretical computer science in the context of Kinetic Data Structures
4Mehta and SahniJ, ‘2004).

In this chapter we discuss a tabulation scheme to efficiently simulate moving walls
of infinite mass, which are assumed to be flat. Its trajectories have to be mathemat-
ically smooth, periodic and finite. The motion of the wall itself is one-dimensional,
but can be coupled to a system of any dimension. We demonstrate our method with
a sinusoidally moving wall confining a system with circular (two-dimensional) or
spherical (three-dimensional) particles. Sinusoidally moving walls in EDMD simu-
lations were used already more than a decade ago dLuding et al., 1994a‘%), but are
still of interest dCarrillo et al, 2008‘). Due to the high implementation effort and the
loss of computational efficiency approximations by polynomials of the order two, or
even less, are used whenever possible (see e. g. ‘McNamara and Ludinﬂ,‘1998). Some-
times even the much slower TDMD simulation method is still used qu and O’Hern,
2005).

We increase the computational efficiency of simulating e.g.a sinusoidally mov-
ing wall in EDMD simulations to strengthen its usage even in cases where other
methods (approximation with polynomials or TDMD simulations) were used un-
til present. Yet, the shape of the driving function becomes important at the point
where one wants to compare simulations with experimental results: experiments
on wet granulates dScheel et al,, 2004J) have shown that the second derivative of the
driving function is significant for the nonlinear response of the sample.

B.2. The mathematical task

The basic idea of EDMD is first to determine the time where the next event occurs,
where events are particle-particle collisions or collisions with a wall. The positions
of the particles involved in these events are then easily computed in a second step of
the evolution along their trajectories for the previously calculated time period. The
velocities before the collision are calculated the same way and after applying the
collision laws in the final step we obtain the final velocities after the collision. These
three steps are then repeated.
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B.2.1. Calculation of the collision time
B.2.1.1. Particle-particle collision

To find the collision time At of two particles i and j we have to solve the equation
’fi(At) - f](At” = Ri + R]' (B.l)

with respect to time At, in which ¥;(At), Xj(At) are the trajectories and R;, R; the
radii of the particles.

As an example, we take particles moving in a homogeneous gravitational field
with gravity ¢ and trajectory

1
X;(At) = —5 AP + TiAt+ 5, (B.2)

where t is the common time basis and @; and s; is the initial particle velocity and
position respectively. Inserting this equation for the two particle trajectories X;(At)
and X;(At) in Eq. (B.1) leads to the following quadratic equation in time At:

(Z_ji — 5])2 X Atz -+ 2(17{ — 27])(§1 — §]) X At + (gl — §])2 — (Ri + R]')Z =0, (B3)

which can easily be solved and provides the desired collision time. The question if

there is a collision at all is equivalent to asking if this equation has a real solution
while the particles are approaching each other ;Brilliantov and Poschel, 2004).

B.2.1.2. Particle-wall collision

As stated in the introduction, we focus on components of trajectories with an arbi-
trary functional form. As an example we choose a wall oscillating around a mean
value Xy, with trajectory ¥ (At) = Asin(wAt) + Xy, where A is the shaking am-
plitude and w = 27t/ Ty, the angular frequency with period Tgyy. To calculate the
collision time of a particle with the wall, we have to solve

|X;(At) — X (At)| (B.4)

1 _ 2 = - =2 . —
—EgAt + U;At +8; — (A sin(wAt) + xwo) =R; (B.5)

with respect to time At. This is not possible analytically, and results in a lengthy
expression involving the fourth power of At. However, it is possible to simplify
the equation without loss of generality by simply choosing a convenient coordinate
system: First we choose one axis of the coordinate system to point in the same
direction as the amplitude vector of the wall motion. Therefore, the problem reduces
to a one-dimensional problem, where only the dimension perpendicular to the wall
is considered. Secondly, we place the origin of our coordinate system to the mean
position Xy, of the wall and therefore eliminate this constant. Last but not least, we
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define the axis to be positive on the side of the wall where the respective particle is
located. Together with the definition in Eq. (B.4) the absolute value is then redundant.
The problem is reduced to the following one-dimensional equation:

Srel(At) = x;(At) — xw (At) (B.6)

- <_; QAP 4+ VAt + 5 — Ri) — (Asin(wAt)) =0, (B.7)

where s, (At) is the relative distance between the particle surface x;(At) and the wall
which is located at xyy (At). This expression is of course still not analytically solvable
with respect to time At, but it is more convenient for the task of finding its roots.

B.2.2. Two reasonable choices for the frame of reference

There are two reasonable choices for the frame of reference in which the simulations
can be performed: Either being outside in the laboratory or being inside and mov-
ing with the oscillating wall. So far, we have implicitly performed the calculations
in the laboratory frame of reference and found Eq.(B.7) as the resulting equation
that has to be solved. Actually, Eq.(B.7) does not change when using the frame of
reference of the moving wall, only the contributions arise from the particle position
xi(At) = —389A02 + viAt +s; — R; — Asin(wAt) while xy (At) = 0. Aside from the
advantage of a stationary wall, the main disadvantage of the moving wall as the
frame of reference is due to performance issues. The computation of the particle
position x;(At) involves the evaluation of the sine function whenever propagating
a particle along its trajectory, which is necessary for every single event. Due to the
comparatively high computational effort of evaluating a sine or cosine function, this
choice significantly reduces the computational efficiency. This is the main reason
why we have chosen the laboratory as the frame of reference in our simulations.

B.3. A first algorithm

After finding the roots we will introduce the minimal ingredients to successfully
perform the EDMD simulation, and we will recognize at the end of this section that
we lose a lot of the EDMD efficiency, which we will subsequently enhance in Sec. B.4|

B.3.1. Back to the roots

Numerically finding the roots of a function f(t) is a standard problem in numerical
mathematics and can be found in every textbook on the subject, e.g.
). "Perhaps the most celebrated of all one-dimensional root-finding routines is
Newton's method, also called Newton-Raphson method" dPress et al., 1992).
Newton’s method extrapolates the functional value f(t;) of an initial guess for the
value of the root t; along its tangent line until it crosses zero. This crossing point #;

7
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is the initial value for the next iteration step. The Newton-Raphson formula

_ ., f)
tiy1 =t — L)’ (B.8)

therefore, involves both the function and its derivative, which have to be known for
any time t;. The derivative obviously has to be continuous and nonzero around the
true value of the root. The method derives mathematically from the Taylor series
expansion taking only linear terms into account, and thus is a good approximation
in the region around the true value of the root. However, outside that region, where
higher order terms dominate the result, this method leads to poor results. Another
problem of the method occurs when an initial guess is close to a local extremum,
where the derivative is close to zero and drives the value in the next iteration step
far away from the true one.

Nevertheless, this method is often used because of its good convergence behavior
close to the true value of the root, where every iteration step doubles the number of
correct digits. For numerical implementations a recipe exists (Press et al., ‘1002‘) for
combining Newton’s method with a bisection method to overcome its negative fea-
tures, but still profit (when possible) from its good convergence behavior. Therefore,
at each iteration step the values for t; are bounded to a certain interval around the
root. If Newton’s method drives the value t; out of this range, the bisection method
continues the search. In order for this combination to work successfully, one and
only one root can lie within this interval.

B.3.2. Search for unique bracketing bounds

The next step in successfully solving Eq. (B.7) with this safe root-finding method is to
find the bracketing bounds which uniquely clasp around the wanted root. Eq. (B.7) is
infinitely times differentiable and therefore has an infinite number of roots, however,
it is obvious that the next collision corresponds to the root that is closest in time,
which is the one with the smallest value of At. Unfortunately, two roots of (B.7)
can come arbitrarily close to what physically corresponds to ‘grazing shots’, which
hit the wall nearly tangentially. Because we have seen that one and only one root
must lie within the interval, we have to search for the suitable bounds for every
root individually and cannot use e.g.a default initialization, which works in any
(or at least most) cases. In fact, we additionally have to define a minimum interval
length tmin for which we are able to distinguish two individual roots. This also
defines the limit of resolving ‘grazing shots’. Because the transfer of momentum
by ‘grazing shots’ is extremely small, it is physically irrelevant to which extent they
can be resolved. The challenge is more a computational one, because one has to be
able to deal with particles overlapping with the wall. This is shown in more detail in
subsection|B.5.6/ The choice of i is therefore determined by the maximum overlap
one is able to handle.
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Finding the interval which contains the root means testing at At = n X tpin, where
n € {1,2,...} for a change of sign in the function s, (At) in (B.7). The interval con-
taining the root is [(n — 1)tmin,Mtmin] if a change of sign was detected at n. This
searching procedure is sketched schematically in Fig.B.1, where a shows a success-
ful run, whereas in part b for the same function no pair of brackets is found because
the time interval fni, was too big. This search is of linear complexity O(n) in the
number of intervals, or equivalently of complexity O(1/tmin) in the minimum time
resolution. The complexity unfortunately cannot be reduced with the use of other
search algorithms.

a b
f(t) f1)
] ]
( interval found no interval found
0 g t0 AN AN A
0 FH;: At 0 tmin

Fig. B.1 Schematic sketch of the search for bracketing bounds around the smallest root of a function
f(t) The length of one interval is tin Which is twice as large in b as in a. The sequence of intervals
are tested to see whether f(t) changes sign within the range, and are denoted by different gray levels.
In a the search was successful whereas in b the interval length was too big and no brackets could be
found.

With the knowledge of the appropriate interval we are able to successfully find
the accurate solution of (B.7). However, a drawback is that for trajectories, where the
particle does not hit the wall, n is unbounded and the algorithm does not terminate.
It is simply not possible to explicitly see in the function if there is at least one positive
real solution, which would correspond to a wall-collision in the future.

B.3.3. Assure termination of the algorithm

To assure that the algorithm terminates, even when there is no collision with the
wall, we have to find a criterion that defines a limit for the number of intervals n
which have to be tested for a change of sign in the relative distance (B.7). As we will
see, we are able to define a limit by requiring boundedness and periodicity of the
components’ trajectory.

B.3.3.1. The starting point

As mentioned earlier, we are searching the bracketing bounds around the root with
the smallest positive value. As a starting point for the search we use the present time
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of the particle, which defines the origin of the time axis. In a first step we are now
able to optimize the time where we have to start the search if the range of action of
the wall is bounded, meaning that the function of the wall trajectory is finite for all
times.

In Fig.[B.2 we see a space-time plot of the sinusoidal wall motion and particle @,
which collides on a parabolic trajectory with the wall, whereas particle ) does not.
In particular, note that the sign of the gravitational force is different for these two
trajectories. The gray area denotes the region behind the wall that is unreachable for
particles. The bold line I denotes the maximum amplitude and is located at x; = A,
the maximal range of action of the wall.

A necessary condition for a particle to collide with the wall is x < xy, so it has to
be below line I, in order to be able to hit the wall. It is straightforward to calculate
the time tg when the particle trajectory crosses line I, and we start searching the
bracketing bounds not before this condition is fulfilled. This is only relevant for
particles being located above line I at their present time. Therefore, it is possible to
reduce the number of intervals to find the bracketing bounds from g to 11, where ny
is the original number of intervals from the present time up to the collision whereas
n1 is the reduced number counted from the crossing of line I up to the collision (cf.
Fig.[B.2). For particles initially located below line I, nothing changes and we perform
the search right from their present time.

As the particle trajectory @) in Fig.B.2|clearly illustrates, there are still infinitely
many intervals to check if there is no collision with the wall. However, we can
demand our driving to be periodic with the periodic time Tg,. Once a particle is
then located below line I it has to collide with the wall until the end of the current
period, which is when the wall reaches its maximum amplitude again. Now we
can stop searching at the end of the current period, even if there will be no collision
with the wall. The number of intervals which we have to testis n = (Tqsiy — t£) / tmin,
where tf is the entry time into the range of action of the wall relative to the respective
period. In the worst case this leads to a maximum number of

T .
Nmax = —driv (B9)

tmin

intervals which have to be tested. For any fixed tnin this is a finite value, as required.

B.3.3.2. The exception

There is one remaining exception for the limit described above. When the particle is
starting below I, e.g. directly after a wall collision, and there is no collision within
the respective period, there will be nevertheless a wall collision in the case when
gravity points in the direction of the wall. This is sketched in Fig.B.3|

Fortunately it is possible to solve this issue with the method described above.
After realizing that there is no collision within the respective period, we calculate
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np X tmin

I

oqy

g
t5|/

0 Tdriv / 2 Tdriv

Fig. B.2 The bold line I denotes the maximum range of action of the sinusoidally moving wall in this
space-time plot. The gray area denotes the region behind the wall which is unreachable for the particles.
Once a particle trajectory crosses this line from above it has to collide with the wall within the respective
period like particle @ or it will never collide, like particle (2). This limits the number of intervals for
searching the bracketing bounds which is necessary for the algorithm to terminate in any case. Note
the different sign in the gravity g of the two particle trajectories in this sketch. This additionally improves
the efficiency due to reduction of ng to n; relevant intervals, because the search only starts when
entering the range of action of the wall at time {g measured relative to the respective period.

the time f; when the particle reenters the range of action of the wall and use this
time as a final starting point for searching the bracketing bounds as described above.
The number of intervals that are tested in this case is n = 1y + 1, where 1, is the
number of intervals until the end of the first period and 7, the remaining intervals
from reentry until collision. This leads to the worst case for the number of intervals

T
Nmax = 2 der’ (B.IO)

min

which is twice as large as in the usual case of Eq. (B.g) but still denotes an upper
limit.

lg n X tmin I
‘ : / | ny X tmin

o 4 bl o
—~
=

t + At

Fig. B.3 When a particle is located below line I, e.g. after a preceding wall collision, but there is no
wall collision within the respective period it is, however, possible that there is a wall collision at a later
time if gravity g points in the direction of the wall. We then use the time t; when the particle reenters the
range of action of the wall as a starting point for the final search of the bracketing bounds. The number
of intervals which are tested is then 11 + n5.
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Although the complexity of the search algorithm to find the bracketing bounds
was reduced and limited, it is still a search which has a linear complexity. This
method therefore is very expensive and we are losing a lot of the efficiency, which is
the main advantage of EDMD.

B.4. Improving the efficiency with look up tables

The main purpose of this task is to speed up the simple algorithm that was dis-
cussed in the previous section. Because the search of unique bracketing bounds
is very expensive, this is the critical point. We have already seen that finding one
bracketing bound cannot be further accelerated, so we can only reduce the number
of calculations by storing each result in a look up table. This, of course, only saves
computation time if we are able to reuse the stored values as often as possible. As
we shall explore in detail, this tabulation is not achieved in a trivial manner.

B.4.1. What to store in the table

We spend the most computational effort in finding the bracketing bounds for the
root, so this is a candidate to store in the table. However, we can go one step further.
Thus, instead of the brackets, we store the solution of Eq. @) in the table, which
physically is the time At when the wall collision takes place.

The solution At is calculated for a certain point on a trajectory, which naturally is
the origin of the coordinate system in which the time At is measured. However, if it
is possible to analytically calculate the time ¢, from any other point on the trajectory
to that origin, it is straightforward to calculate the time when the collision takes
place from that point. It simply is t, + At. Therefore, we only have to calculate and
store the solution for one point of each trajectory.

To define the points of the origin of At for different trajectories is reminiscent of
finding the starting point for searching the bracketing bounds in Sec.[B.3.3.1. Indeed,
we are using the line I from Fig.[B.2] which was the starting point for finding the
bracketing bound, also as the origin for the time At. Due to the periodicity of the
wall motion, it is sufficient only to consider trajectories within one period. The time
when the collision takes place is then the time tg,, respective to the current period
when the trajectory crosses the line I, plus the value At for that trajectory out of the
table (cf. Fig. B.4). However, not every trajectory intersects with line I and therefore,
we introduce a line II as can be seen in Fig.[B.4, which is located at x;; = —A and
defines the minimum value of the wall motion. It is used in the same way as the line
I.

The origin of At is equal to the starting point for searching the bracketing bound.
We therefore introduce a line 11, which indicates the beginning of the respective
period in which the particle collides with the wall. This is to limit the number
of intervals, according to Eq.(B.9) which is equivalent to limit the collision time
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0 < At < Tyriy-

As can be seen in Fig.B.4 the lines define a frame around one period of the wall
motion and we consequently refer to them, not as lines anymore, but as edges I, I1
and III. The intersection of the trajectories with these edges defines the base points
from which we measure Af, which is stored in the table.

I
tr, At /
111 —
@ .

0 Tain /2 \ Tarie
3 @ II

Fig. B.4 A frame with edges I, II and III around one period of the sinusoidal wall motion denotes
the points of origin for the time At up to the next wall collision for the different trajectories. Edge I is
located at the maximum x; = A and edge II at the minimum x;; = — A of the wall motion. Edge
III denotes the beginning of the respective period. This ensures that the collision time At fulfills the
condition 0 < At < Tgyry. This is necessary to define an upper limit for the number of intervals that
have to be tested as bracketing bounds.

If there is more than one real solution At for a given trajectory, we store all so-
lutions At which lie within the current period. This raises two questions: The first
question, which is answered in Sec.B.4.5, is why we need all these solutions and how
we are going to use them. The second question, which is answered in the following
subsection, is how to use trajectories as parameters for a table. This question arises
due to the fact that there are infinitely many different trajectories.

B.4.2. Trajectories as parameters of the table

To specify a certain trajectory, cf. Eq. (B.2), there are three independent parameters:
We have to choose the time basis t, the initial particle velocity v; and the initial
particle position s;.

Because every edge denotes either one spatial or temporal condition, there are
only two remaining free parameters to classify all possible trajectories. The first free
parameter is the one which completes (together with the condition of the edge) the
definition of a space-time point. The second parameter is, in all cases, the particle
velocity perpendicular to the wall at that space-time point. This means that for
edge I, with the spatial localization at x; = A, the first parameter is temporal and,
more precisely, the time tg, when the trajectory intersects with the edge relative to
the respective period. The second parameter is the velocity vg, at that base point.
For edge II it is quite similar. The spatial localization is x;; = —A and we need
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a temporal parameter to complete the definition of a point in space-time, which
is again the time fg,, when crossing the edge. The second parameter is again the
velocity vg,, at that point. This is shown in Fig.B.5a. The condition for the location
of edge I1I, however, is a temporal one since it is located at t = 0, which denotes the
beginning of the respective period. The first parameter characterizing the base point
on the edge is therefore the height hr at which the intersection takes place. And
of course, the second parameter for this edge is, as usual, the velocity vg,,, at that
space-time point. This is shown in Fig.B.5b.

With the help of these three edges we reduced the initial three-dimensional pa-
rameter space, which was necessary to fully classify all possible trajectories to three
two-dimensional ones. Therefore, we use a separate two-dimensional table for each
edge with the two parameters as described above.

Some trajectories occur in more than one table, so we can limit the edge I to
trajectories with vg < 0 and the edge II to vg > 0 in order to reduce redundancy.
Nevertheless, some entries occur several times and in these cases we choose the table
with the lowest value of At to minimize numerical errors. This leads to the sequence
I, I1, 111 of the edges in our example.

To tabulate the values it is now evident that we have to discretize the parameters
of the tables, as for any other standard tabulation. The values tg, and tg,, are finite
due to the periodicity of the wall motion, and / is finite because in Sec.B.3.3.1/ we
required the range of action of the wall to be finite. Therefore, the discretization
of these parameters is straightforward. However, the velocity vg at all edges is
unbounded, so it is neither reasonable nor possible to tabulate it directly on a linear
scale.

Tdriv 0 Tdriv / 2 Tdriv
®

Fig. B.5 a Trajectory D (@) is characterized by the time tg, (tg;;) when crossing the edge I (II) and
the velocity vg, (vg,,) perpendicular to the wall at that point. The time At until the next wall collision
takes place is stored in the look-up table. b Trajectory (3) is characterized by the height iz when crossing
edge 1 and the velocity vg,,, at that point and again time At is stored in the look-up table.
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B.4.3. The mapping of velocities

The velocities vg for all edges are unbounded, so the standard discretization method
of linearly distributing the table entries over the whole range of possible values
is certainly not applicable here. Nonetheless, it is possible to define a mapping
function f(vg) for the velocity and tabulate the mapped velocity f(vg) instead of vg.
A reasonable choice is to use relation (B.11) or (B.12)

VE

f(vg) o arctan - (B.11)

f(vg) o< tanh L, (B.12)

where the unbounded velocity vg is mapped to a finite interval. There are also other
possibilities such as relation (B.13) or (B.14)

f(vE) < log(vg) (B.13)
f(UE) & %/ (B14)

which is interesting because there is a higher resolution in the physically relevant
range of small velocities. However, in these cases the velocity still has to be bounded
with a minimum and a maximum cut-off velocity. The first derivatives of the map-
ping functions account for the density of table entries at the respective velocity and
therefore it is favorable to adjust the mapping function according to the respective
problem. In the present work we are using the logarithmic scaling of Eq. (B.13).

B.4.4. Extrapolation of table entries

As mentioned above, At is the value that is stored in the tables. Unfortunately it
does not depend continuously on the parameters tg, hg or vg (cf. Fig.[B.6), where a
small change (e. g. from tg to t}; of edge I) results in an unsteady change of At. The
usual technique of interpolating between neighboring table entries can therefore not
be applied here.

N /
A fe \4tE

—A
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Fig. B.6 The time At does not depend continuously on tg or vg. A small increase from tg to t%
results in a discontinuous jump in At. An interpolation between neighboring table entries is therefore
not possible.
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The technique of choice is to store not only the next collision time, but also the
partial derivatives with respect to the two parameters at the base point. Then we
can perform a linear extrapolation around the base point, which is, in contrast to
the interpolation, at least of reasonable quality as long as we are not extrapolating
across the discontinuity. For edge I and II the partial derivatives gTAEt and g% at

the respective base points are stored, while for edge II1 gTAEt and gUAEt are stored. To
calculate the partial derivative of At(P), where P is either tg, hg or vg, the implicit
derivative is used. Differentiation of

§rel(P) = Srel(At(P)/P) =0 (B.15)
with respect to P yields
o agrel(P) _ asrel(At(P)rP) aAt(P) + asrel(At(P)/P)

= = B.
0="%p At P P (B.16)
Hence, we have the familiar expression,
2AKP) _ G
aP - asrel (B17)
JAt

and we can calculate and store all of the required derivatives for each parameter and
each edge.

B.4.5. Selection of the appropriate root

Theoretically, there is no limit for the number of roots of Eq. @). However, due to
the limitation of the predicted time to 0 < At < Ty, We can find, at most, four roots
within that interval. This can easily be verified by differentiating the respective
expression. Only two of them are physically relevant, because the others would
correspond to a collision of the inner side of the particle with the backside of the
wall. This can be see in Fig.[B.7, where a trajectory with three roots is shown and
the intersection at point 2 would be unphysical. It is also visible in this sketch that
one single particle can never collide at point 3 with the wall, because it would have
already collided at point 1. However, if there is more than one particle it is possible
that a particle-particle collision, which takes place in the time between intersection
2 and 3, drives the particle to that trajectory with the collision at point 3. As stated
earlier, the wanted solution is still the one which is closest in time after the particles’
present time. Because we are using the edges of the frame around one period of the
wall motion as the origin, we have to store for each trajectory, if applicable, not only
one but both physical roots 1 and 3.

The time tmyin, which is the interval length during the search of the bracketing
bounds, denotes the resolution limit of two different roots. This means that it is
possible for a length of time ty, that the particle is located behind the wall. If
during this situation another particle collides with it, we are able to safely detect
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Fig. B.7 Typical trajectory with three points of intercept with the sinusoidal wall motion. Root 1 and 3
correspond to physically valid collisions with the wall, but the intersection at 2 is unphysical since this
would correspond to a collision of the interior of the particle with the back side of the wall. In order for a
particle to collide with the wall at point 3 a particle-particle collision between the time of points 2 and 3
would be necessary to drive the particle back into this trajectory.

this situation. This is important, because after the collision the root which is closest
in time would correspond to an unphysical collision. To solve this problem we
perform an instantaneous wall collision as soon as we detect this situation, in order
to regain the missed wall collision. Therefore, we also have to store both unphysical
roots in the table to be able to detect this situation. Through the tabulation of the
trajectories we project each particle’s motion to a discrete set of trajectories and due
to the finite resolution it is even more likely that this situation can occur.

As the times At of all four roots are stored in the table, we show a simple scheme
which is used to decide during runtime, on the basis of the particles” present time,
which root has to be used or if an instantaneous collision is inevitable. This can be
compressed into a single if-instruction:

if there is no physical root which is closest in time before th e particles’
actual time
take At out of next physical root
else
perform instantaneous wall collision

B.4.6. Precision and applicability

The method presented in this work to simulate components with trajectories of arbi-
trary functional form is mathematically not exact as EDMD simulations usually are,
but it is a numerical approximation with an additional tabulation of the values.

The precision of our method therefore increases with a decreasing periodic time.
Furthermore, the precision increases with a decreasing distance between the maxi-
mum and minimum value of the trajectory if the amount of storage space for the
tables is kept constant.

It is thus appropriate to choose a coordinate system which minimizes this distance
as shown. Assuming that a trajectory is always a steady function (which is quite
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reasonable for macroscopic systems), this equivalently minimizes the range of the
function. This method therefore is suitable to simulate components of the system
that have a periodic time much smaller than the total simulation time. Additionally,
the range of motion of the component has to be small compared to the overall system
size.

These restrictions are well fulfilled for an oscillating wall that is moving sinu-
soidally, in the parameter space that is also accessible by experiments. The precision
increases in this case with a smaller oscillation period and amplitude. The coordinate
system is chosen such that one axis points in the same direction as the amplitude
vector of the oscillating wall.

B.4.7. Initialization of the look up table

The initialization of the look up table can be done either successively, during the
run of the simulation, or an initialization process can prepend the simulation, and
initialize the whole table at once. The first procedure is preferred if every single
calculation is very time consuming and only few table entries will be used during
the simulation. The disadvantage is that every time the table is used it must be
checked if the entry is already calculated. The second method is better if the use of
the table entries is distributed as widely as possible. For our purpose it is preferable
to initialize the table at the beginning because the system is chaotic and therefore all
possible movements will occur during the simulation. During runtime we have only
to decide which table entry is the appropriate one.

B.5. Essential numerical improvements

In the previous section we have seen the essential concepts and methods that are
necessary for simulating components with trajectories of arbitrary functional form,
shown for a sinusoidally moving wall, with the help of look-up tables. In this sec-
tion we will additionally show some essential numerical enhancements in order to
couple this approximated dynamic of the wall collisions to the mathematically exact
calculation of particle-particle interactions in the bulk.

B.5.1. Particle positions

To calculate the next particle position in EDMD simulations the particle is evolved
along its trajectory for the time At. In the case of a collision with the wall, At is
determined with the help of the look up tables as described before and thus is
an approximated value. Therefore, it is probable that the particle will be situated
slightly, but more so than is caused by machine imprecision, off the wall. With a
higher table resolution we can improve the precision of At and thereby the accuracy
of positioning the particle, but we never rid ourselves of this inaccuracy. Instead,
we have to improve the agreement in the particle position between the propagation
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along the particle trajectory and along the trajectory out of the table for which the
collision time was calculated. We solve this discrepancy by considering the time At
in this case to be exact, but the position out of the propagation along the trajectory
as faulty. We know exactly the position of the wall at time At, thus, we can directly
set the particle position to this value.

B.5.2. Extra table after wall collisions

The possible positions where a particle can be situated inside the range of action of
the wall is infinite. This directly led to the main idea of tabulating trajectories and
using the edges of a frame around one period as the origin. However, at the moment
of the wall collision we know exactly the position of the respective particle and with
the previous subsection B.5.1| this is even ensured within machine precision.

We introduce an extra table where the origin of At is located directly on the wall.
Thereby, the precision of At is higher in these cases because we can avoid the back
and forth propagation of the particle, which is favorable because the forth propaga-
tion is on one of the discrete trajectories of the table. We remark that, in analogy
to the edges I, II and III introduced in Fig.B.4| the edge of this specialized table
looks like the cosine-shaped driving function. The origin thus is the intersection of a
particle trajectory with the wall trajectory. This table is always used for predictions
after wall collisions and its two parameters are tg, and vg, similar to edge I and II,
respectively, as introduced in section B.4.2|

B.5.3. Tabulation of the relative velocity

Not only the position but also the velocity v}, of the particle after the wall collision
has to be calculated. It is given by

vg’ = U + Urel (B.18)

with the velocity of the wall v, and the relative velocity of the particle with respect
to the wall v, where

Urel = Uy — VP (B.19)
with the velocity vp of the particle before the collision.

To perform a physically sensible wall collision, the relative velocity v, has to be
strictly larger than zero. Especially when the values of the wall velocity v, and the
particle velocity vp are very close to each other, the sign of Eq. (B.19) can be negative
when evaluated at the approximated time At. This is caused by the error which
results from the linear extrapolation of At. From the physical point of view these are
trajectories that run nearly parallel to the wall and gently touch it.

To prevent v, being smaller than zero we do not use Eq.(B.19) to calculate it.
Instead, we calculate v, as

_ 9srel (At(P),P)

Z7rel(P) = aAt(P) (B~20)
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and the partial derivatives of v, with respect to the parameter P by explicit differ-
entiation of Eq. (B.20), which leads to

az)rel(P) _ azsrel(At(P)/P) aAt(P) azsrel(At(P)IP)
aP aM(P? 9P ' aPoM(P) (B.21)

With the knowledge of v, and its partial derivatives, we are able to perform a linear
extrapolation in the same way as was done for the calculation of At. For convenience
we can store these values additionally in the look up table, because we are applying
the discretization scheme to calculate At also for v, now.

With this method it is possible to ensure that v, is larger than zero, because
this can be validated for any possible value out of the look up table, already at the
initialization process, as we will see in the next subsection.

B.5.4. Extrapolation across discontinuities

The discontinuous dependence of At upon the parameters tg, vg or tg, hg was the
reason why we introduced the partial derivative in section B.4.4|to extrapolate table
entries. A zoom into our look-up table of, e.g., edge I at such a discontinuity is
shown in Fig.[B.8, where the solid black line is the physical discontinuity, a square
represents one cell of the table, and the cross marks its midpoint. This is the point
whose physical properties are used for calculating the values At, v, and the re-
spective partial derivates of this cell. Within such a single cell the values At and
Urel are extrapolated with the respective partial derivatives. As is clearly seen for
the hatched cells of Fig.B.8, an extrapolation across the discontinuity can lead to
unphysical results.

In order to avoid these unphysical results at the initialization process of the hatched
cells we verify that the value out of this table entry fulfills — at any point within the
cell — the following physical conditions:

At >0 (B.22)

Urel > 0. (B.23)

It is sufficient to verify these two requirements are met at the four corners of each
cell. This results from the linear extrapolation, which makes both functions (B.22)
and (B.23) monotonic within one cell. Therefore, they take the maximum value at
the border of the respective cell. Taking both dimensions into account, the overall
maximum has to be located on one of the four corners. If one of these two conditions
is violated, we artificially change the derivatives slightly to sufficiently small values
in order to fulfill them again. In the simplest manner of initialization, the derivatives
are set to zero.
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Fig. B.8 Zoom into a look-up table at a discontinuity, where the solid black line is the physical discon-
tinuity, a square represents one entry of the table and the cross marks its midpoint used for calculation.
Within a cell, At and v, are extrapolated with the respective partial derivatives. This can lead to un-
physical results when extrapolating across the discontinuity. By slightly changing the partial derivatives,
the physical correctness of the extrapolated values is assured.

B.5.5. Assuring a consistent description between collision and escape

As discussed before, it is necessary but also favorable to limit the maximum pre-
dictable time At out of the table to values within one period only. In principle, it
would be possible to store the exceptions out of Sec.[B.3.3.2 directly in the table, but
due to a kind of leverage effect, the error of At would increase with larger At up to
a uselessness of the predicted time. Therefore, a second query with different initial
conditions ensures the accuracy of the result as seen before.

Furthermore, this method gives rise to another discontinuity where a particle,
initially located inside the range of action of the wall, either has a collision within
the respective period or it escapes by crossing the edge I from below. A trajectory
not leading to a collision within the respective period is represented in the table with
the value At = oo (cf. Fig.B.ga). We therefore have to ensure, for any cell where the
value At of its midpoint is oo (shaded cells in Fig.B.ga) that also at the corners of that
cell the escape condition of crossing edge I is fulfilled. This would otherwise lead to
an inconsistency where the table claims that the particle does not collide within the
respective period, but it would not be possible to calculate the time when it reenters
the range of action of the wall because physically it never left it. In these cases we
have to ensure

At < 0. (B.24)

For these cells therefore it is not the midpoint that defines the physical properties,
but rather one of the corners (circles in Fig.B.gb), for which condition is ful-
filled. The extrapolation scheme for these cells (hatched cells in Fig.[B.gb) would dif-
fer during runtime because the origin for the extrapolation is different. We therefore
extrapolate the value At from this shifted position, already during the initialization
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process, back to the usual midpoint which is then stored as usual.

a b
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Fig. B.9 Discretization (solid black line) of the physical discontinuity (dashed line) a before and b after
changing the reference point (circles in b) for the hatched cells.

B.5.6. Instantaneous events as protection against unphysical behavior

The most problematic case in any event-driven simulation is to avoid overlaps be-
tween two particles or between a particle and a wall. As soon as such an overlap
occurs, the solution of Eq. or (B.4) yields unphysical behavior. For two overlap-
ping particles this would result in a collision on the inner side of the particles. Once
overlapping, the overlap would, formally, be persistent so that they are entangled
forever and then could pass through each other. Overlaps, nevertheless, are hardly
avoidable due to roundoff errors. Precisely half of the results of Eq. (B.3) yield over-
lapping particles due to the finite number representation. The task therefore is not
to prevent overlaps but to handle them.

Unphysical collisions with the resulting entanglement can easily be prevented by
only accepting physical solutions which can be identified by the appropriate change
of sign in the respective equations. For particles in a homogeneous gravity field
e.g., it is even analytically possible to pick the right solution without any additional
calculation of the wrong solution or the derivative.

To prevent particles passing through each other requires, however, more effort.
The approach is to perform minimally invasive changes in the dynamics which are
sufficient to avoid unphysical behavior. Depending on the relative velocity of the
overlapping particles we act differently. If the particles become separated in the fu-
ture we do literally nothing, because the overlap will decrease and finally disappear.
If the particles are overlapping and approaching each other, then this situation leads
to an increase of the overlap. To prevent this, we perform an instantaneous elastic
collision. This means that we perform a collision at the current time for the two
respective particles with their present relative velocity (which is like pressing the
pause button for all other particles). Since the relative velocity is negative, the parti-
cles approach each other and there is a collision at their outer rims, but due to the
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overlap their radii are slightly decreased. Also a chain of overlapping particles can
be unleashed with this method because they perform consecutive instantaneous col-
lisions until the outmost particles are uncaged. Similarly, we can successfully handle
overlaps of particles with the wall where the overlap can be even larger because the
solution of Eq. (B.7) is only approximated. Therefore, grazing shots of particles with
the wall do not cause problems in the simulation.

B.6. Comparison of performance

B.6.1. Comparison of the simple algorithm with tabulation

To demonstrate the benefit of the tabulation method we compare it with the simple
algorithm described in Sec.B.3, which finds the root with a brute force method for
one calculation of the next collision time At. As mentioned before, the complexity of
the simple algorithm is linearly dependent on the number of intervals which resolve
one period of the driving function. This is confirmed directly by simulations (circles
in Fig.[B.10).

The average runtime for one calculation of the next wall collision event is plotted
in arbitrary units as a function of the number of intervals. The circles denote the
simulation, and the solid line is a linear fit through all simulation points. In contrast,
the runtime complexity of the tabulation method is independent of the number of
intervals and is shown as dashed line in the figure, with a constant mean value of
only 0.29 in these units. We clearly see that with the tabulation method the runtime
performance is superior by more than two orders of magnitude in comparison with a
brute force root-finding method with a reasonable resolution of the driving function.

B.6.2. Comparison of overall performance

In the previous subsection we saw an increase of the runtime performance by two
orders of magnitude for the calculation of a single wall collision event gained by the
use of the tabulation method. However, in a real simulation not all computational
effort is caused by collisions with a wall. Therefore, we now compare in a real
simulation the runtime performance of the tabulation method with a brute force
root-finding method. The system which is simulated here is the same as that was
used in dFingerle et al., 2008).

In Fig.B.11, we show the required computation time which is necessary for sim-
ulating a certain physical time for the brute force method (circles) and the efficient
tabulation method (squares) for different numbers of particles. We clearly see that
the runtime of the latter is decreased by approximately one order of magnitude. This
is quite striking and verifies that implementation of the tabulation method is worth
the effort. This increase in overall performance naturally depends on the geome-
try and other details of the simulation. For better comparison also the calculation
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Fig. B.10 The average calculation time with the brute force algorithm (circles) for one calculation of
the next wall collision event is measured in simulations. The solid line denotes a linear fit through these
values, which clearly shows the linear dependence on the number of intervals. The dashed line with a
constant value of 0.29 in the respective units shows the calculation time for the tabulation method which
is during runtime independent of the time resolution. A performance boost of more than two orders of
magnitude can be obtained for a reasonable number of intervals .

time of a TDMD simulation method is shown (diamonds), which of course is always
large when compared with the EDMD method independent of the choice of the
root-finding method.

B.7. Summary

A simple algorithm is presented to simulate flat walls in a system with periodic tra-
jectories in event-driven molecular dynamics simulations and the details are shown
for the example of a sinusoidally moving wall. It is based on a root finding method,
which is briefly reviewed in Sec.B.3.1. It is a combination of the Newton-Raphson
method and Bisection method as described in Press et al. 41992). The most expen-
sive task in this algorithm is to find a unique bracketing bound around the root,
which leads to a search algorithm with linear complexity in the inverse time resolu-
tion. Consequently, we introduced a tabulation scheme to store the solutions, which
are the times for the next collisions with the wall in order to improve the efficiency.
While the tabulation of functions is a standard method in computer science, we im-
plemented it in a nontrivial manner where every table entry represents a trajectory.
Each trajectory is uniquely characterized by a point in space-time on the trajectory
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Fig. B.11 The decrease in the calculation time from the brute force method (circles) to the tabulation
method (squares), which is shown for different numbers of particles, of about one order of magnitude
clearly demonstrates the high efficiency of the tabulation method. For comparison also the TDMD simu-
lation method is shown (diamonds). The simulated system is an isochore system of wet granular matter
{Fingerle et al., ZOOEﬂ), in which for larger numbers of particles the system temperature is decreasing
due to increased dissipation. The integration steps in TDMD then can be larger and the calculation
time even decreases with increasing number of particles, whereas the calculation time in EDMD still
increases due to the higher collision frequency.

and the velocity at that point. Therefore, we introduced a frame around one period
of the sinusoidally shaped trajectory in the space-time plot. An intersection of the
trajectory with an edge of the frame defines the origin for which the solution is
stored in the look-up table. A separate two-dimensional table for each edge is set up
with the first parameter completing the definition of the space-time point together
with the condition of the edge and the velocity at that point as second parameter.
We additionally show all of necessary methods needed to ensure the logical consis-
tency of the numerical computation in view of the inevitable finite table resolution.
Because the time for the next collision does not depend continuously on the two
parameters of the table, we also store the partial derivatives to perform a linear
extrapolation between different table entries. This can, however, still lead to un-
physical results when extrapolating across a discontinuity and therefore we adjust
the derivatives to fulfill Eq. (B.22) and (B.23) in order to avoid unphysical predictions.
To ensure the consistency of the predicted wall collision time and instantaneous wall
velocity, the relative velocity after the wall collision is tabulated in the same way.

The described tabulation method is a powerful instrument with very good perfor-
mance. The sinusoidal driving function becomes particularly important when com-
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paring simulations with experiments, because, due to mechanical limitations, most
of the experiments are performed with sinusoidal driving. This method has signifi-
cant potential to numerically study the behavior of particulate systems like granular
materials or powders, and thus advance the growing field of statistical physics far
from equilibrium. Interesting topics to study include fluidization transitions (Scheel
et al., 2004) or granular ratchets, where high performance of the simulation is re-
quired and sinusoidal shaking is desirable.
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Zusammenfassung in deutscher Sprache

Feuchte granulare Materie kann als ein niitzliches System dienen, um die Dynamik
zu untersuchen, die bei Systemen im thermischen Ungleichgewicht entsteht. Es ist
sowohl durch Experimente als auch durch Simulationen sehr leicht zugéanglich. In
der vorliegenden Dissertation wurde feuchte granulare Materie mit Hilfe von zeit-
als auch ereignisgetriebenen Molekulardynamik Simulationen untersucht. Dabei
wurde die Energiezufuhr, die nétig ist, um das System aus dem thermischen Gleich-
gewicht zu bringen, durch zwei hochst unterschiedliche sinusformige Antriebsme-
chanismen realisiert. Wihrend in den Kapiteln [3 bis |6/ das sinusférmige Schiit-
teln verwendet wurde, war in den Kapitel |7 und 18 das sinusférmige Scheren die
treibende Kraft. Die Wechselwirkungen mit der Fliissigkeit im System wurde durch
das Minimale Kapillar bzw. durch das Bindfadenmodell realisiert. Diese sorgen fiir
den Energieaustrag aus dem System, sodass das System einen stationdren Zustand
erreichen kann.

Im ersten Teil der vorliegenden Arbeit wurde sinusférmiges Schiitteln verwendet.
Dies ermdoglicht es dem System, sich in einem homogenen Zustand wiederzufinden
der sehr and die Phasen fest, fliissig und gasformig erinnert, die aus dem thermody-
namischen Gleichgewicht bekannt sind. In Anlehnung an die aus thermodynamis-
chen Gleichgewichtssystemen bekannten Phasendiagramme wurden in dieser Ar-
beit Phasendiagramme sowohl fiir zwei- als auch fiir dreidimensionale feuchte Gra-
nulate erstellt. Anhand von Simulationen konnte gezeigt werden, dass geschiitteltes
feuchtes Granulat zwei universelle Phaseniiberginge aufweist, die lediglich von
wenigen System-Parametern abhdngen. Einer dieser beiden Phaseniibergidnge ist der
fest-fliissig Ubergang, der, wie sich herausstellte, vor allem durch die Antriebkraft
hervorgerufen wurde, wobei die Antriebsenergie nur eine Korrektur zweiter Ord-
nung darstellt. Ein einfaches theoretisches Model, das nur das Gleichgewicht der
wesentlichen Krifte im System annimmt, zeigt eine gute qualitative Ubereinstim-
mung mit den Simulationen bei geringen Antriebsenergien. Das Model legt zu-
grunde, dass die mittlere freie Wegldnge zwischen den Schichten der Teilchen und
dem kritischen Abreilabstand, an dem die Kapillarbriicken reifen, den Ubergang
von fest zu fliissig bestimmt. Desweiteren prognostiziert das Model ein Oberfldchen-
schmelzen, das ebenfalls in Simulationen beobachtet werden konnte. Der zweite
Phaseniibergang im feuchten Granulat findet zwischen der fliissigen und der gas-
formigen Phase statt, der mit einem breiten Koexistenz Bereich einhergeht. Dieser
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Ubergang wird durch die maximale kinetische Energie der antreibenden Wand her-
vorgerufen und tritt ein sobald die maximale Energie, die durch einen einzigen
Zusammenstofs mit der Wand geliefert wird, ausreichend ist um eine der Kapi-
llarbriicken zu zerreiffen. Zudem wurde noch ein weiterer Ubergang zwischen
einer festen und einer fliissigen Phase gefunden der anscheinend durch die Re-
duzierung der Polydispersitit hervorgerufen wird. Dieser Ubergang ist ebenfalls ein
energiegetriebener Ubergang und wird von einer fest-fliissig Koexistenz begleitet.

Die Untersuchung der Grofle der Gasblase, die sich im fliissig-gas Koexistenzbere-
ich bildet, zeigte drei verschiedene Formen auf: eine runde Gasblase, umgeben von
Fliissigkeit; eine streifenféorminge Anordnung und ein fliissiger Tropfen umgeben
von einem Gas. Die Situation erinnert an die Ubergénge zwischen verschiedenen
Formen, die in einem zweidimensionalen Ising Modell beobachtet werden konnen.
Der Ubergang zwischen den beiden Formen ist dort ein Phaseniibergang erster Ord-
nung und wird durch die Minimierung der Grenzflichenenergie angetrieben. Diese
Ahnlichkeit zum Ising Modell fiihrte zu der Annahme, dass auch im feuchten Gran-
ulat eine Grofie dhnlich einer Grenzflichenenergie existieren konnte. Diese Gren-
zflachenenergie wurde in Simulationen durch die mechanische Deformierung der
Grenzfliche bestimmt, und gefunden, dass sie in guter qualitativer Ubereinstim-
mung mit einer einfachen Abschdtzungen war. Weitere Untersuchungen der Allge-
meingiiltigkeit dieser Grenzflichenspannung zeigten in den dreidimensionalen Sim-
ulationen der fest-fliissig Koexistenz ein Verhalten, das an die Ostwald-Reifung erin-
nert, welche bekanntermafien durch die Minimierung freien Grenzflichenengergie
angetrieben wird. Durch diese Ahnlichkeit der beiden beschriebenen Effekte wird
hier angenommen, dass die Grenzflichenenergie auch in der fest-fliissigen Koexis-
tenz im dreidimensionalen System auftritt.

Die Koexistenz kann nicht nur in horizontaler, sondern auch in vertikaler Rich-
tung auftauchen. Dies liefs eine Dichteinversion vermuten, die wiederum an den
Leidenfrost-Effekt, bekannt von klassischen Fliissigkeiten, erinnert. Die offensicht-
liche Reduzierung der Warmeleitfahigkeit resultiert in der klaren Grenzfldche zwis-
chen dem heifien Gas und dem kalten kondensierten Pfropfen, der oberhalb des
Gases schwebt. Der Pfropfen vollfiihrt eine gleichméfsige Oszillation, deren Fre-
quenz mit Hilfe eines einfachen theoretischen Models bestimmt werden kann. Es
handelt sich dabei um die gleiche Oszillationsfrequenz wie man sie im Fall eines
passiven Pfropfens erwarten wiirde, der iiber einem realen Gas schwebt, das um
das ausgeschlossene Volumen korrigiert wurde. Das Hinzufiigen eines lateralen
Teilchenaustauschs fiihrt zu einem Effekt der stark an eine Rayleigh-Taylor Instabil-
itdt erinnert. Dieses gesamte Szenario ist sehr dhnlich zum Leidenfrost Effekt den
man z.B.bei Wasser beobachtet. Dieser Zusammenhang wird auch in den Simula-
tionen beobachtet und gut durch das theoretische Modell vorhergesagt.

Im zweiten Teil der vorliegenden Arbeit wurde das Granulat sinusférmig geschert.
Wiederum wurden zuerst die Phasendiagramme gezeigt, die einen festen sowie
einen fluidisierten Zustand unterscheiden. Aufierdem wurde ein einfaches theoretis-
ches Model dargestellt, das die Stabilitdt einer eindimensionalen Kette von Teilchen
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mit dem in den Simulationen beobachteten Ubergang verkniipfte. Dabei konnte
eine gute qualitative Ubereinstimmung zwischen der theoretischen Berechnung und
der Simulation festgestellt werden. Die Grenzen des theoretischen Models wur-
den klar diskutiert und mogliche Griinde fiir Abweichungen aufgezeigt. Darauf
aufbauend folgte eine Studie der reichhaltigen und komplexen Dynamik, die im
fluidisierten Zustand auftritt. Es wurden dynamischen Instabilititen gefunden die
mit den Methoden der Nichtlinearen Dynamik untersucht wurden. Dabei wurden
drei verschiedene Zustinde entdeckt. Im ersten, osziallatorischen Bereich wird das
Scherband periodisch instabil und es bilden sich Wirbel im System. Bei grofieren
Antriebskrédften wurde ein Bereich entdeckt in dem diese Wirbel stationdr sind.
Dieser stationédre Zustand wird bei noch grofieren Antriebskraften instabil und zeigt
periodische Groflendnderungen der Locher die in diesem System enthalten sind. Die
Dynamik des Systems wurde auf einen zweidimensionalen Phasenraum reduziert
und die Grenzzyklen untersucht, die auf eine Hopfbifurkation beim Ubergang zwis-
chen den einzelnen Bereichen hindeuteten. Daraus wurde auch die Wiederkehrab-
bildung erstellt.

Zusammenfassend ldsst sich sagen, dass eine grofle Anzahl an Simulationen zu
feuchten Granulaten in der vorliegenden Arbeit durchgefiihrt wurden. Ermdoglicht
wurde dies vor allem durch das bemerkenswert einfache Model (das minimale Kap-
illarmodell), das zur Beschreibung der Kapillar-Wechselwirkungen genutzt wird.
Eine Abwandelung dieses Models (Bindfaden Modell) ermoglichte einen bedeuten-
den Anstieg der Leistung in der Simulation. Desweiteren wurde eine erstaunliche
Bandbreite von dynamischem Verhalten in den feuchten Granulaten entdeckt. In
vielen Fillen konnten einfach theoretische Modelle aufgestellt werden, die zwar
nur einen kleinen Teil der komplexen Problematik beriicksichtigt, aber dennoch
erstaunlich gute Vorhersagen treffen kann. Trotz der Einfachheit der verwendeten
Modelle konnten in vielen Fillen gute qualitative Ubereinstimmungen zwischen den
Simulationen und den Experimenten ausgemacht werden.

Viele Phinomene, die in den Simulationen zu feuchten Granulaten beobachtet
wurden, erinnerten stark an das bekannte Verhalten von klassischen Fluiden. Dadurch
wird die Aussage berechtigt, dass feuchte granulare Materie ein komplexes Fluid ist;
komplex zwar, aber dennoch ein Fluid.
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