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Abstract

Mesoscopic systems are prone to substantial fluctuations that typically can not
be neglected or avoided. The understanding of the origin and the consequences
of these fluctuations (e.g. for transport measurements) is thus a fundamental part
of the theory of mesoscopic systems. We will encounter scale-free fluctuations in
different kinds of complex nonlinear systems in this thesis, which consists of two
main parts. The first part deals with Bose-Einstein condensates (BECs) in leaking
optical lattices. Experimentalists have achieved an extraordinary level of control
over BECs in optical traps in the past decade, which allows for the investigation
of complex solid state phenomena and the emerging field of atomtronics’ promises
a new generation of nanoscale devices. It is therefore both of fundamental and
technological importance to understand the dynamics and transport properties of
BECs in optical lattices. We study the outgoing atomic flux of BECs loaded in a
one dimensional optical lattice with leaking edges, using a mean field description
provided by the discrete nonlinear Schrédinger equation with nonlinearity A. We
find that for a nonlinearity larger than a threshold A > A, the dynamics evolves into
a population of discrete breathers, preventing the atoms from reaching the leaking
boundaries. We show that collisions of other lattice excitations with the outermost
discrete breathers result in avalanches, i.e. jumps of size J in the outgoing atomic
flux, which follow a scale-free distribution P(J) ~ 1/J* characterizing systems at
a phase transition. Our results are also relevant in a variety of other contexts,
e.g. coupled nonlinear optical waveguides.

In the second part, fractal fluctuations in two different complex systems are
studied. Firstly, conductance fluctuations in mesoscopic systems (such as quan-
tum dots) are considered, which are a sensitive probe of electron dynamics and
chaotic phenomena. Using the standard map as a paradigmatic model, we show
that classical transport through chaotic Hamiltonian systems in general produces
fractal conductance curves. This might explain unexpected results of experiments
in semiconductor quantum dots where a dependence of the fractal dimension on
the coherence length was observed. Furthermore, we predict fractal fluctuations
in the conductance of low-dimensional Hamiltonian systems with purely chaotic
phase space.

Secondly, we investigate temporal (fractal) fluctuations of human music rhythms
compared with an exact pattern, e.g. given by a metronome. We show that the
temporal fluctuations in simple as well as in more complex music rhythms are
generic in the sense, that Gaussian 1/f” noise is produced, no matter whether
the rhythmic task is accomplished with hands, feet, the voice or a combination of
these. Professional audio editing software includes a so-called ’humanizing’ feature,
which adds deviations &, to a given audio sequence, where &, is white noise. We
demonstrate that 1/f humanized music that we created is rated significantly better
by listeners than conventionally humanized sequences.



Kurzfassung

Mesoskopische Systeme unterliegen substanziellen Fluktuationen, die typischer-
weise nicht vernachléssigt oder vermieden werden kénnen. Das Versténdnis des Ur-
sprungs und der Folgen dieser Fluktuationen (z.B. fiir Transportmessungen) ist
daher ein fundamentaler Teil der Theorie mesoskopischer Systeme. In dieser Ar-
beit, welche aus zwei Teilen besteht, werden uns skalenfreie Fluktuationen in ver-
schiedenen komplexen nichtlinearen Systemen begegnen. Der erste Teil handelt von
Bose-Einstein Kondensaten (BECs) in undichten optischen Gittern. Experimenta-
toren haben in der letzten Dekade einen aukerordentlichen Grad an Kontrolle iiber
BECs in optischen Fallen erreicht, was die Untersuchung von komplexen Festkor-
perphdnomenen ermdoglicht und das aufkommende Feld ’Atomtronics’ verspricht
eine neue Generation von Nanobausteinen. Es ist daher sowohl von fundamentaler
als auch von technologischer Bedeutung die Dynamik und die Transporteigenschaf-
ten von BECs in optischen Gittern zu verstehen. Wir untersuchen den Fluss von
Atomen eines BECs aus einem eindimensionalen optischen Gitter mit undichtem
Rand und benutzen eine Molekularfeld-Néherung gegeben durch die diskrete nicht-
lineare Schrodingergleichung mit Nichtlinearitdt A. Wir beobachten, dass bei einer
Nichtlinearitdt groffer als ein Schwellenwert A > A, die Dynamik zur Entstehung
von diskreten Solitonen fiihrt, welche die Atome davon abhalten, den undichten
Rand zu erreichen. Wir zeigen, dass Kollisionen von anderen Gitteranregungen mit
den dufersten diskreten Solitonen zu Lawinen fiihren, d.h. Spriinge der Grofe J in
dem Fluss von Atomen, die einer skalenfreien Verteilung P(J) ~ 1/J¢ folgen, was
Systeme an einem Phasentiibergang charakterisiert. Unsere Ergebnisse sind auch
relevant in diversen anderen Kontexten, z.B. gekoppelte nichtlineare optische Wel-
lenleiter.

Im zweiten Teil befassen wir uns mit fraktalen Fluktuationen in zwei verschie-
denen komplexen Systemen. Zunéchst werden Leitwertfluktuationen in mesosko-
pischen Systemen (wie zum Beispiel Quantenpunkte) betrachtet, die eine sensible
Sonde fiir die Dynamik von Elektronen und chaotische Phénomene sind. Mittels
der Standardabbildung als paradigmatisches Modell der Dynamik im gemischten
Phasenraum wird gezeigt, dass der klassische Transport durch Hamiltonsche Syste-
me ganz allgemein fraktale Leitwertkurven hervorbringt. Dies konnte unerwartete
Ergebnisse von Experimenten mit Halbleiter-Quantenpunkten erklaren, bei denen
eine Abhéngigkeit der fraktalen Dimension von der Kohérenzldnge beobachtet wur-
de. Dartiber hinaus sagen wir fraktale Fluktuationen in dem Leitwert niedrigdimen-
sionaler Hamiltonscher Systeme mit rein chaotischem Phasenraum vorher.

Zweitens betrachten wir zeitliche (fraktale) Fluktuationen von menschlichen
Musikrhythmen verglichen mit einem exakten Muster, z.B. gegeben durch ein Me-
tronom. Es wird gezeigt, dass zeitliche Fluktuationen in einfachen und in komplexe-
ren Musikrhythmen generisch sind, in dem Sinne, dass Gaufsches 1/f” Rauschen
produziert wird, ganz gleich ob eine rhythmische Aufgabe mit Hénden, Fiiften,
der Stimme oder einer Kombination dieser ausgefiihrt wird. Professionelle Audio-
Bearbeitungssoftware beinhaltet ein sogenanntes "Humanizing’-Werkzeug, welches
Abweichungen &, zu einer gegebenen Audiosequenz hinzufiigt, wobei &, weisses
Rauschen ist. Wir zeigen, dass von uns kreierte 1/ f-humanisierte Musik signifikant
besser von Zuhorern bewertet wird als konventionell humanisierte Sequenzen.
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Chapter 1

Introduction

The scientific and technological advances of the last decades have lead to the fab-
rication of two different kinds of mesoscopic systems. On the one hand, in a
scale-down approach, electrical and optical devices are shrunk to a degree where
intrinsic length scales of the material, such as the mean free path or the coherence
length, become comparable with the system size. Thus the actual shape of the
conductor or the individual positions of impurities gain important roles and the
encounter of classical nonlinear dynamics and interference effects lead to complex
quantum dynamics. On the other hand in a scale-up approach microscopic units
are assembled to form larger and more complex entities as in the growing field of
molecular electronics, allowing to technologically use the phenomena of complex
quantum dynamics.

A special type of this scaled up systems are Bose-Einstein condensates in optical
traps and lattices, as they combine the acuteness of atomic systems with the flexi-
bility and formability of solid state systems opening the new field of “atomtronics”.

All those mesoscopic systems have in common that either by their fabrication
process or/and by their envisioned future function in some kind of circuitry, they are
fundamentally coupled to the environment, so they have to be considered as open
systems. This led to a recent enhanced interest in the theory of open (quantum)
systems and complex scattering.

Transport through these open systems is due to their mesoscopic nature prone
to substantial fluctuations that can not be neglected or avoided and whose un-
derstanding is thus a fundamental part of the theory of complex systems. In this
work, we will encounter scale-free fluctuations in different kinds of complex non-
linear systems.

In Chap. [3] we will see how nonlinear localization leads to scale-free fluctuations
in BECs in optical lattices in the framework of the discrete nonlinear Schrédinger
equation (DNLS). We point out that although our focus is given to atomic BECs,
our results are also relevant in a large variety of contexts (whenever the DNLS is
adequate), most prominently in the light conduction in coupled nonlinear optical
waveguides [1H5].

Experimentalists have achieved an extraordinary level of control over BECs in
optical traps in the past decade, which allows for the investigation of complex solid
state phenomena [6H13] and the emerging field of atomtronics promises a new gen-
eration of nanoscale devices. It is therefore both of fundamental and technological
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importance to understand the dynamics and transport properties of BECs in op-
tical lattices. Here, we will show that if the optical lattice is opened at the ends,
the statistics of the outgoing flux provides valuable and crucial information about
the internal dynamics of the system.

We will study the decay of an atomic BEC population N(7) from the leaking
boundaries of an optical lattice using a mean field description provided by the
DNLS. The DNLS, which will be described in detail in Sec. [3.2] is a lattice equation
that contains a nonlinear term with prefactor A.

An exciting feature appearing in the framework of nonlinear lattices is the
existence of spatially localized, time-periodic and stable (or at least long-lived)
excitations, termed discrete breathers (DBs), which emerge due to the nonlinearity
and discreteness of the system. In the DNLS with boundary dissipation, we will
see that the internal systems dynamics evolves into generic initial conditions of DB
states for a nonlinearity larger than a threshold A > A,, preventing the atoms from
reaching the leaking boundaries.

We show that collisions of other lattice excitations (e.g. “moving breathers”,
see Sec. with the outermost DBs result in bursts of the outflux of sizes .V,
i.e. steps in N(7), which we call avalanches as for a whole range of A-values they
follow a scale-free distribution, characterizing systems at a phase transition. We
will see how the scale-free behavior reflects the complexity and the hierarchical
structure of the underlying classical mixed phase space by reducing the system to
few degrees of freedom yielding the closed nonlinear trimer.

Furthermore, in this framework, we will investigate the collision process of a
stationary DB with a lattice excitation both analytically and numerically, which
is work that was started during a research visit at Boston University from May-
September 2008.

While in Chap. |3| the transport properties of bosons in leaking optical lattices
are described, in the first section of Chap. 4] we will consider fermions and discuss
the electronic transport in open solid state mesoscopic systems. In these quantum
systems (such as quantum dots, nanowires etc.) fluctuations of the conductance,
are a sensitive probe of electron dynamics and chaotic phenomena. A prominent
feature of electronic transport in mesoscopic systems is that the conductance as a
function of an external parameter, e.g. a gate voltage or a magnetic field, shows
reproducible fluctuations caused by quantum interference [14HI6].

A prediction from semiclassical theory that inspired a number of both theoreti-
cal and experimental works in the fields of mesoscopic systems and quantum chaos
was that in chaotic systems with a mixed phase space these fluctuations would
result in fractal conductance curves [I7, [I8], i.e. when zooming into smaller and
smaller scales of changes of e.g. the magnetic field, the conductance curve remains
“rough” in a self-affine way. Such fractal conductance fluctuations (FCF) have since
been confirmed in gold nanowires and in mesoscopic semiconductor quantum dots
in various experiments [19-23]. In addition, FCF have more recently been predicted
to occur in strongly dynamically localized [24] and in diffusive systems [25].

We will explain, that the conductance of purely classical (i.e. incoherent) low-
dimensional Hamiltonian systems very fundamentally exhibits fractal fluctuations,
as long as transport is at least partially conducted by chaotic dynamics and that
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the fractal dimension is governed by fundamental properties of chaotic dynamics.
Thus mixed phase space systems and fully chaotic systems alike generally show
fractal conductance fluctuations. This might explain the unexpected dependence
of the fractal dimension of the conductance curves on the (quantum) phase breaking
length observed in experiments on semiconductor quantum dots.

A completely different system where fractal fluctuations are found are music
rhythms played by humans (Sec. [£.2). While in the case of FCF, we are interested
in the structures on finer and finer scales, here the long-time correlations lead to the
fractal nature of the fluctuations. Still, the idea of investigating human rhythms
emerged from studying FCF.

Music performed by humans will always exhibit a certain amount of fluctuations
compared with e.g. the steady beat of a metronome. It has been shown in the 1970s
that loudness and pitch fluctuations in music exhibit 1/f” noise. Compositions in
which the frequency and duration of each note were determined by 1/f° noise
sources sounded much more pleasing to listeners than those comprising white noise
sources |26, 27].

We will show that the temporal fluctuations in simple as well as in more complex
music rhythms are generic in the sense, that Gaussian 1/f” noise is produced, no
matter if the rhythmic task is accomplished with hands, feet, a combination of
these or the voice.

Moreover, we will be led to an application by asking the question: Does the
rhythmic structure of a piece of music sound better, when it is as exact as possible
or are long-range correlations more favorable? Professional contemporary audio
editing software include a so called ’humanizing’ feature, which adds deviations &,
to a given audio sequence, where &, is white noise. Hence, there exists a desire to
let machine generated or modified music sound more natural. We created music
that was humanized either with Gaussian 1/f” noise or white noise. To further
investigate the perception of natural deviations in human music rhythms with
more complex and realistic music pieces, an interdisciplinary diploma thesis in

Psychology was initiated (Sec. [4.2.4.3)).

The outline of the main part of the thesis is the following. In Chap. [2| some
fundamental aspects of mesoscopic systems will be briefly reviewed. In Chap. [3]
we will analyze Bose-Einstein condensates in leaking optical lattices described by
the DNLS yielding avalanches of ultracold atoms [28]. We will see that collisions
of DBs with other lattice excitations lead to the observed avalanches. The collision
process will be investigated analytically in the nonlinear trimer [29]. In the next
chapter, in Sec. [4.1] we consider fractal conductance fluctuations of classical origin
in mesoscopic systems [30]. Finally, in Sec. we are dealing with generic long-
range correlations in human rhythmic drumming |31, 32].



Chapter 2

Fundamentals

2.1 Mesoscopic Systems and Fluctuations

In this section we will introduce the notion of mesoscopic systems, see e.g. [33] for a
detailed review. Much of solid state theory and statistical physics is concerned with
the properties of macroscopic systems. These are often considered while using the
thermodynamic limit, i.e. the systems volume and particle number tend to infinity
while their fraction remains constant. It is a convenient mathematical tool for
obtaining bulk properties. Typically, the system approaches the macroscopic limit
once its size is much larger than relevant characteristic length scales, which are

e the coherence length, which is the distance a particle travels before its initial
phase is destroyed,

e the de Broglie wavelength, which is related to the kinetic energy of the par-
ticle,

e the mean free path, which is the distance that a particle travels before the
initial momentum is destroyed.

On the other hand, in the microscopic limit, we encounter systems such as single
atoms, where the laws of quantum mechanics govern the dynamics. Microscopic
systems are identical systems and the properties are exactly reproducible (e.g. the
transitions between energetic states in a hydrogen atom).

A mesoscopic system is a system in the intermediate size range between mi-
croscopic and macroscopic. Mecoc (mesos) from ancient Greek means "middle",
the word mesoscopic was coined by Van Kampen in 1981. The size range of a
mesoscopic system depends on the relevant characteristic length scales (correlation
length, wavelength and mean free path), which vary widely from one material to
another and are also strongly affected by temperature, magnetic field etc. For this
reason, mesoscopic transport phenomena have been observed in conductors having
a wide range of dimensions from a few nanometers to hundreds of micrometers.

Statistical fluctuations of certain properties (e.g. the positions of impurities
in semiconductor heterostructures) play an important role in mesoscopic systems
yielding to the notion that two mesoscopic samples are not identical though they
may belong to an ensemble which is describable in a statistical manner. The interest

13



14 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Progressive Miniaturization of electronic components. The length scale
reached by technology has dropped steadily from the millimeter scale of the early 1950s
to the present-day atomic scale. The representative devices, from left to right, are: the
first transistor, a quantum-dot turnstile, a copper ’quantum corral’, a carbon-nanotube
transistor, and the latest — a one-atom point contact. [34]

in studying mesoscopic systems is not only in order to understand the macroscopic
limit and how it is achieved, by, say, building up larger and larger clusters to go
from the single molecule to the bulk, but a variety of novel phenomena were found
in the last decades that are intrinsic to mesoscopic systems. An example of a
novel phenomenon are fractal conductance fluctuations which we will encounter in
Sec. Progressive miniaturization e.g. of semiconductor devices leads to the fact,
that mesoscopic phenomena become more and more important in contemporary
nanotechnology (see Fig. . Many of the usual rules (such as Ohm’s law and the
rules for addition of resistances) are different and much more complicated.

A mesoscopic system is, in practice, always, at least weakly, coupled to a much
larger system, via phonons, many-body interactions etc. Sometimes such a cou-
pling can be controlled. Ideally, one would like to interpolate between open and
closed systems by varying some coupling strength. In Chap. [3] we will analyze
Bose-Einstein condensates in optical lattices described (in the mean-field limit)
by the discrete nonlinear Schrédinger equation, where the coupling to the outside
is realized by a complex dissipative term, which can be varied numerically and
realized experimentally. This enables, besides possible technological applications,
fundamental tests of quantum mechanics and statistical physics.

2.2 Transport and Diffusion in Phase Space

In the theory of transport in dynamical systems, the phase space volume flux plays
an important role. Given a volume V' in phase space with surface §V. The volume
of the trajectories leaving the volume V' per time unit is the flux out of V. For
Hamiltonian systems the ingoing flux equals the outgoing flux. For dynamical
systems discrete in time, the flux is calculated such that one iteration of the map
relates to one time unit. Starting an ensemble of N trajectories in a volume V'
and calculating the staying probability P = N(t)/N, i.e. the relative number of
trajectories remaining inside the volume at a time ¢, then for a fully chaotic system

P(t) oc exp(—1),
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Figure 2.2: The Poincaré map P is a mapping from a n — 1 dimensional surface of section
S to itself, obtained by following trajectories from one intersection with S to the next. If
x* is a fixed point of P, i.e. P(x*) = z*, then it is a closed orbit for the n-dimensional
system & = f(x). [38]

with rate «. In contrast, in a system with a mixed phase space, consisting of
regular islands embedded in the chaotic sea, the staying probability P(t) decays
algebraically

P(t) oct™

with exponent . The algebraic behavior has its origin in the stickiness of trajec-
tories in the vicinity of the regular islands (tori), see e.g. [35]. Chaotic trajectories
in the vicinity of the islands can get caught for long times in a scale-free manner
in the hierarchy of cantori. Every island is encircled by cantori, which are partial
barriers in phase space that the orbit can penetrate. The deeper the orbit enters
into the hierarchy of nested cantori, the longer it remains trapped, before it can
leave the chaotic sea [35H37].

A very useful tool to investigate dynamical systems, especially when consid-
ering transport and diffusion in phase space, is the Poincaré map. Consider an
n-dimensional system & = f(x). Choose an n — 1 dimensional surface of section S,
also referred to as Poincaré section, such, that S is transverse to the flow in phase
space, i.e. all trajectories starting on S flow through it, not parallel to it (Fig. .
Let x € S be the kth intersection, then the Poincaré map is defined by

Le+1 = P(l’k) .

The Poincaré section is the generalization of a stroboscopic view of the dynamics
in n dimensions, and is most illustrative for n = 3 as a surface of section S can
then be plotted in the 2-dimensional plane. When the mathematical formulation
of a complex high dimensional system can be reduced to an appropriate set of
a small number of relevant variables or degrees of freedom, the Poincaré map
can give valuable information about the dynamics of the system. A great variety
of area-preserving chaotic maps are investigated thoroughly in literature [35]. A
paradigmatic model for mixed and chaotic phase space dynamics is the standard
map which we will describe in the following.

2.2.1 Standard Map

The Standard map (also known as the kicked rotator) was introduced by Chirikov
in the 1970s [39] and is an area-preserving chaotic map for two canonical dynamical
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Figure 2.3: The KAM route to chaos generated with the standard map. (a) For relatively
small nonlinearity (K = 0.55) many horizontally oriented KAM tori can be seen. (b)
Mixed phase space (K = 3.5) with islands embedded in the chaotic sea. The enlargements
demonstrate the hierarchical structure and immense complexity of a mixed phase space.
(c) Fully chaotic phase space (K = 8). Shown is a single trajectory iterated for 50000
time steps that explores the whole phase space area.

variables, e.g. momentum and angle (p,0 ). It is defined by the equations:

Pn+1 = DPn Tt K sin en
9n+1 = Op+ Pr+1 (2'1)

Due to the periodicity of sin#, the dynamics can be considered on a cylinder (by
taking € mod 2) or on a torus (by taking both 6, p mod 27). The map is generated
by the time dependent Hamiltonian

2 o
H(p,0,t) = % + Keos S 8(t — nT), (2.2)

n=0
where for simplicity we will set the period of the kicks T" = 1. The dynamics is given
by a sequence of free propagations interleaved with periodic kicks. The standard
map goes through the whole KAM route to chaos in dependence of the nonlinearity
parameter K [40]: From integrable (K = 0) via a mixed phase space to fully chaotic
(K 2 7). In Fig. we are iterating a number of different initial conditions for a
long time. If the initial condition is on an invariant quasiperiodic torus, it traces
out the closed curve corresponding to the torus. If the initial condition yields a
chaotic orbit, then it will wander throughout an area densely filling that area. We
see that for a relatively small perturbation K = 0.55, there are many KAM tori
running horizontally from 6 = 0 to 6 = 27 (Fig. [2.3h). These tori are those that
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originate from the nonresonant tori of the unperturbed system (K = 0) and have
survived the perturbation (see the KAM theorem e.g. described in [35]). We also see
tori that are created by the perturbation and nested around elliptic periodic orbits
originating from the resonant tori. In Fig. the standard map for K = 3.5 is
shown, which exhibits a hierarchical mixed phase space consisting of regular islands
embedded in the chaotic sea. Fig. depicts a fully chaotic phase space explored
by a single trajectory (K =8).

Is it possible to describe aspects of the dynamics of complex (experimental)
systems with such a simple map? The Hamiltonian Eq. itself describes the
motion of a simple mechanical system called a kicked rotator. This is made by a
stick that is free of the gravitational force, which can rotate frictionless in a plane
around an axis located in one of its tips, and which is periodically kicked on the
other tip. The variables 6, and p, respectively determine the angular position
of the stick and its angular momentum after the n-th kick (see e.g. [4I] for an
experimental realization of the kicked rotator in atom optics).

However, much more crucial for our investigations will be, that the standard
map contains the important characteristics to capture the main properties of a
conservative system of two degrees of freedom. As such, the map can by viewed
as directly corresponding to the Poincaré map at the boundary of e.g. a chaotic
ballistic cavity, connecting it conceptually with experimental systems and making
it a paradigmatic model for chaotic and mixed phase space dynamics.

We will encounter the standard map twice in this thesis: First, in Sec.
we shall see how Hamiltonian chaotic dynamics leads to fractal fluctuations in
the conductance, as long as transport is at least partially conducted by chaotic
dynamics. The underlying transport mechanism will be uncovered by analyzing an
‘open’ standard map (i.e. with absorbing boundaries). Second, in Chap. |3| we will
relate a power law distribution of avalanches of BECs in optical lattices to a power
law distribution of island sizes in a hierarchical mixed phase space. To this end,
we will investigate the distribution of island sizes in the standard map indicating
a power law as a generic feature of low-dimensional systems with a hierarchical
mixed phase space.

2.3 Fractal Analysis

Both real and computer-simulated experiments in diverse systems in many fields of
physics (and related sciences) often show characteristic structures or fluctuations.
As these random structures can provide valuable information about the dynamical
system under investigation, a statistical description and understanding of these
structures is crucial.

Some random structures can be statistically rescaled by a self-affine transfor-
mation. In brief, a self-affine fractal can be described in general terms as having
different scaling properties in different directions. In this thesis, fractal structures
will appear twice, namely in: 1. fractal conductance fluctuations in mesoscopic
systems and 2. fluctuations in human music rhythms.

A common quantity occurring in all the methods that will be discussed in the
following is the Hurst exponent. Given a single-valued curve f(x) of a function
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Figure 2.4: The construction of a simple, single-valued deterministic self-affine fractal
curve. (a) The generator consists of four line segments of equal length. (b-c) In the
second and third stage, each of the four line segments has been replaced by a replica of
the generator. The horizontal length is increased by a factor of 4 (i.e. s, = 4™), while
the height is increased by a factor of 2 (i.e. s, = 2"). In the asymptotic limit, the fractal
curve f(z) can be scaled onto itself by s, = sfI with Hurst exponent H = 1/2. Figure
taken from [42].

f R — R that is generated by a self-similar construction process, where n denotes
the generation index (see Fig. for an illustrative example). A self-affine curve
f(z) can be scaled onto itself by changing the horizontal length scale by a factor of
s; = a™ while the vertical length is rescaled by a factor of s, = b™, so that s, = s,
where H = logpa is the Hurst exponent. The fractal dimension is related to the
Hurst exponent by

D=2-H. (2.3)

In physics and related sciences, when fluctuations are found, typically the generator
or the construction process in not known. Hence, the self-similar properties of the
the fluctuations obtained are investigated in a statistical manner, for which a variety
of methods exists. In the following, we will overview several methods which are
used to analyze fractal properties of fluctuations. For a detailed description see
e.g. [42], a comparison of the methods is drawn in [43] [44].

2.3.1 Comparison of Different Methods

Box-Counting One of the most prominent approaches of fractal analysis is the
box-counting method. We will treat the 1 + 1-dimensional case, generalization
to higher dimensional manifolds is straightforward. Let N(s) be the number of
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squares needed to cover the graph G € R x R of a function f : R — R, where s
is the length of one side of a square. If N(s) behaves like a power law for small
enough s, the box-counting dimension D, is defined as

In N(s)

Dbox = il_r)l’(l) —W . (24)

However, when applying the box-counting method numerically, caution has to be
taken: Tests with fractal curves, where the Hurst exponent is known analytically
(e.g. fractional Brownian motion or the Weierstrass-Mandelbrot series) show that
the box-counting estimates are by far not the best and that other methods prove
to be much more reliable [43]. In contrast, the box counting is very useful in
the analytical estimation of the fractal dimensionality of n-dimensional structures,
notably when the generator or the underlying construction rule that leads to the
structure is known. We will apply the box counting method analytically to a
sequence of random transmission lobes in Sec. [£.1.5.3] For numerical estimates of
the fractal dimension of conductance curves in Sec. however, more suitable and
reliable methods will be used as described in the following.

Variation Method and “Meakin Method” Given a mapping f : R — R. The
variation method, described in [43], is based on the calculation of the maximum
variation v(zg, s) in a curve f(x) within a distance s of a point zg:

v(zo, s) = [sup f(z) —inf f(2)]jzg—z|<s - (2.5)

The “variation” V (s, f) of f(z) is defined as
Vs, f) :/ v(xg, $)dxg (2.6)

0
and the Hurst exponent is given by
1
H = 1im V) (2.7)
s—0 In(s)

A similar method is proposed by Meakin [42] which consists simply of the height
difference correlation function. A name was not found in literature, hence it will
be called the “Meakin method” in this thesis. The idea behind the method origi-
nates in the observation, that in many important cases, a random self-affine frac-
tal can be viewed of consisting of fluctuations about a straight reference line, in
this case given by the constant mean value. In this perspective, the Hurst expo-
nent characterizes the relationship between the height differences of pairs of points
(x1, f(x1), T2, f(x2)) of f(z) with respect to that reference line. For a self-affine
curve we find

< |f(ZL‘1) - f<1'2)| >|x1—x2|=8 ~ SH . (28)
We tested both methods using the Weierstrass-Mandelbrot series and fractional
Gaussian noise, where the Hurst exponent is known analytically. Both methods
have shown to be a much more reliable tool than e.g. the box-counting method
to numerically determine the fractal dimension of a graph G € R x R and can be

implemented very efficiently. We will use these methods to estimate the fractal
dimension of conductance curves (Sec. {4.1)).
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Detrended Fluctuation Analysis (DFA) The method of detrended fluctua-
tion analysis, proposed in [45], has proven useful in revealing the extent of long-
range correlations in time series. Similar to the Meakin method, fluctuations over
a reference line are measured. However, in contrast to the Meakin method, the
reference line is given by the local trend, i.e. the data is divided into boxes and
detrended locally. More specifically, DFA involves a detrending of the data in the
boxes using a polynomial of degree m, e.g. for linear and quadratic detrending the
method is referred to as DFA1 and DFA2 respectively. We will describe DFA1,
extension to DFA2, DFA3 etc. is straightforward.

Given a time series f(t) of total length N to be analyzed. First, the time series
is integrated yielding

y(k) = f(1).
t=1
The integrated time series is divided into boxes of equal length, s. In each box,
a least squares line ys(k) is fitted to the data (representing the linear trend in
that box), see Fig. [4.20] Next, we detrend the integrated time series, y(k), by
subtracting the local trend, ys(k), in each box. The root-mean-square fluctuation
of this detrended time series is calculated by

F() =< y(k) = 5s(k) >= | 5 > (k) = (k) (2.9

This computation is repeated over the time scales (box sizes) of interest to char-
acterize the relationship between the average fluctuation F(s), and the box size s.
A linear relationship on a log-log plot indicates the presence of power law (frac-
tal) scaling F'(s) ~ s* with scaling exponent . For fractional Gaussian noise the
exponent « is equal to the Hurst exponent o« = H, while for fractional Brownian
motion « = H —1. We will use DFA to analyze error time series of rhythmic music
sequences played by humans in Sec. 4.2

2.4 Discrete Breathers

An important and exciting feature appearing in the frame of nonlinear lattices
are discrete breathers (DBs), which we will encounter in Chap. [3 The following
working definition is taken from [46] (see as well [47) 48] for an overview):

"Discrete breathers (DB) or intrinsic localized modes are spatially localized,
time-periodic, stable (or at least long-lived) excitations in spatially extended per-
fectly periodic discrete systems.”

The phenomenon of localization of, e.g. energy or particles is well known in solid
state physics. Typical examples are the localized vibrational phonon modes around
impurities or defects in crystals and Anderson localization of electrons in disordered
media. Localization is usually perceived as arising from external disorder, e.g. in
the case of Anderson localization, that breaks the discrete translational invariance
of a perfect crystal lattice. In contrast, in the late 1980s it was found that intrinsic
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Figure 2.5: Illustration of DFA 1 (linear detrending). (a) A time series B(i), here consist-
ing of 1000 interbeat intervals of the human heartbeat. (b) Illustration of the detrending
of the integrated time series y(k) = Zle(B(i) — Buaye), where B(i) is the interbeat in-
terval shown in (a). The vertical dotted lines divide the axis of abscissae into boxes of
size s = 100. The solid straight line segments represent the local (here: linear) trend

estimated in each box. Figure taken from [45].

localized modes (also called discrete breathers) are, in fact, typical excitations in
perfectly periodic but sufficiently nonlinear systems [48-51]. DBs were observed
in a variety of systems, such as Josephson-junction arrays[52|, micromechanical
systems [53], photonic crystals [54], nonlinear waveguide arrays [55], o helix of a
protein [56] and spins in antiferromagnetic solids [57].

Let us shortly review the history of DBs. It reaches back to the famous E. Fermi,
J. Pasta and S. Ulam, who conducted in 1953 the following numerical experiment
later known as the FPU problem: Imagine a perfectly periodic vibrating string,
where the equations of motion include a nonlinear term. One of the equations they
investigated was

T; = ($i+1 — Ti—1 — 2%‘) + C((ﬂfiﬂ - ﬂfi)Q - (l"z - ﬂfi—l)z) ) (2-10)

where z; denotes the displacement of the i-th point from its original position and ¢
is the coefficient in the nonlinear (quadratic) force between neighboring mass points
and ¢ = 1...64. They found that the behavior of the system was quite different
from what intuition had led them to expect. The expectation was that after many
iterations, the system would exhibit thermalization, an ergodic behavior in which
the influence of the initial modes of vibration fade and the system becomes more
or less random with all modes excited more or less equally. Instead, the system
exhibits an oscillatory (“breathing-like”) behavior [59]:

"The results show very little, if any, tendency toward equipartition of enerqgy
among the degrees of freedom.”
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Figure 2.6: (left) Frequency versus wavenumber plane shows the spectrum of linear os-
cillations and two isolated frequencies wy outside the linear spectrum corresponding to
discrete breathers [46]. The red circles indicate the amplitudes (e.g. particle displace-
ments) for the DB solution. (right) The discrete nonlinear Schrédinger equation (see
Sec. rigorously exhibits discrete breathers [58].

This (at first sight) puzzling computer experiment leads to the question: How can
localization arise in a perfectly periodic lattice and what makes a DB stable? Linear
excitations — be they electrons or phonons — moving through a solid will experience
a periodic energy potential, which implies by the Bloch theorem the existence of
"forbidden’ and ’allowed’ bands of frequency and velocity for their motion. Linear
excitations can propagate through the solid only in the allowed bands which have
a highest and a lowest frequency. The situation is different for nonlinear excita-
tions. As can be seen from the simple one dimensional pendulum, the frequency is
independent of the amplitude when linearizing the equations of motion, but does
depend on the amplitude in the nonlinear (high amplitude) regime. If a large am-
plitude (and hence nonlinear) excitation is created — a possible candidate for a
discrete breather — it’s frequency can lie outside the allowed band of linear excita-
tions (see Fig. [2.6). The highest frequency of the allowed band is determined by
the degree of discreteness of the lattice: The larger the lattice constant, the smaller
the highest frequency of the linear band. If all harmonics of the DB frequency lie
outside (above) the allowed band, then the DB cannot couple to linear excitations
and is therefore stable against decaying into them. To summarize, a DB is a local-
ized oscillatory excitation that is stabilized against decay by the discreteness of a
nonlinear periodic lattice. The stability of DBs in BECs will play a crucial role in

Chap. 3|

A quantity related to DBs is the Peierls-Nabarro barrier, which is given by the
energy difference |E,. — Fp|, where E. and E, are the energies for a DB centered at
a lattice site or between two lattice sites [60} 61], see Fig. 2.7]
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Figure 2.7: Peierls-Nabarro barrier: Energy difference between the states where a DB is
centered at a lattice site (left) or between two lattice sites (right) [60].

Finally, we end this chapter with a note on the nomenclature adopted from [62].
In literature one encounters terms such as polarons, discrete solitons, discrete
breathers, self-trapped state, intrinsic localized modes etc., that are used many
times interchangeably (which reflects that several historical paths lead to the dis-
covery of the same phenomenon) and in ways that may lead to confusion. For
simplicity, throughout this work, the term discrete breather will be used.



Chapter 3

Avalanches of BECs in Optical
Lattices

One of the most fascinating experimental achievements of the last decade was un-
ambiguously the realization of Bose-Einstein Condensation (BEC) of ultra-cold
atoms in optical lattices (OLs) [6 63-66]. Experimentalists have achieved an ex-
traordinary level of control over BECs in optical traps in the past decade, which
allows for the investigation of complex solid state phenomena [6HI3] and the emerg-
ing field of “atomtronics” promises a new generation of nanoscale devices such as
an atom laser. The atom laser, a bright, coherent matter wave derived from a
Bose-Einstein condensate holds great promise for precision measurement and for
fundamental tests of quantum mechanics. It is therefore both of fundamental and
technological importance to understand the dynamics and transport properties of
BECs in OLs. We ask the following question: What are the transport properties
of BECs in leaking optical lattices and can we understand the statistics of the
outgoing flux of ultracold bosons?

We study the decay of an atomic BEC population N(7) from the leaking bound-
aries of an optical lattice using a mean field description provided by the discrete
nonlinear Schrodinger equation (DNLS). The DNLS, described in detail in Sec. [3.2]
is a lattice equation that contains a nonlinearity A. An exciting feature appearing
in nonlinear lattices is the existence of discrete breathers (DBs), which are spa-
tially localized, time-periodic and stable (or at least long-lived) excitations. DBs
emerge due to the nonlinearity and discreteness of the system (Historically, the
Fermi-Pasta-Ulam problem lead to the discovery of discrete breathers in the 1950s,
see Sec. for an introduction). DBs were observed in various experimental se-
tups [3), 52, B5], 67-74] while their existence and stability were studied thoroughly
during the last decade [46, 48, 49, 51, [7T5H79)]. It was shown that they act as virtual
bottlenecks which slow down the relaxation processes in generic nonlinear lattices
[51), 78-81]. Further works [82H86] established the fact that absorbing boundaries
can take generic initial conditions towards DBs.

In the DNLS with dissipation at the ends of the lattice, we find that the dynam-
ics evolves into the population of discrete breathers for a nonlinearity larger than
a threshold A > A, preventing the atoms from reaching the leaking boundaries.
We show that collisions of other lattice excitations (e.g. a moving breather, see
Sec. with the outermost DBs result in avalanches, i.e. steps in N(7), which for

24
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a whole range of A—values follow a scale-free distribution [28]
P(J=0N)~1/J%

characterizing systems at a phase transition. We will see that the scale-free behavior
of P(J) reflects the complexity and the hierarchical structure of the underlying
classical mixed phase space of the trimer. A theoretical analysis of the mixed
phase space of the system indicates that 1 < o < 3 in agreement with our numerical
findings.

We propose an order parameter to describe the observed phase transition.
Though we do have clear numerical evidence concerning the phase transition, an
understanding of the phase transition together with an analytical expression for A,
is still an open and fascinating question and work in progress [87]. The collision
process of a stationary breather with a moving breather is analyzed analytically
and numerically in a reduced system consisting of 3 lattice sites, called the non-
linear trimer [29] (by means of the local ansatz [49] described in Sec. [B.6]). We
point out that although our focus is given to atomic BECs, our results are also
relevant in a large variety of contexts (whenever the DNLS is adequate), most
prominently being the light emittance from coupled nonlinear optical waveguides
[1H5, B4l B3], [74], [88HI2], see Sec. for more details on discrete breathers in optical
waveguide arrays.

3.1 Experimental Setup

We consider the statistics of emitted ultracold atoms from an OL with leakage at
the edges. Typically, ultracold atoms are stored in magnetic dipole traps, that
make use of the interaction between an induced dipole moment in an atom and
an external electric field provided by a laser. A periodic potential can then be
formed by overlapping two counter-propagating laser beams as shown in Fig. [3.1]
The magnetic field gives rise to a harmonic trapping potential which confines the
condensate in an array of tightly confining 1D potential tubes, for our purposes
with its long axis oriented perpendicular to the gravitational force. Along the 1D
tubes, a periodic potential can be created (again with two counter-propagating
laser beams) leading to a 1D optical lattice (Fig. [3.2h). The depths of the optical
potential, i.e. the tunneling amplitude between the lattice sites, can be varied by
changing the intensity of the laser light.

The leakage can be realized experimentally by applying two separate continuous
microwave fields or Raman lasers at the edges of the sample to locally spin-flip
the atoms inside the BEC to an untrapped state [58] 86l 93] 94]H The spin-
flipped atoms do not experience the magnetic trapping potential, and hence they
are released through gravity at the ends of the OL ( Fig. [3.2b). An experimental
realization of a continuous output of atoms is shown in Fig. 3.3, where a field with
frequency v induces transitions from the magnetically trapped |F =2, mp =2 >
state to the untrapped |F' =2, mp =0> state via the |FF'=2, mp =1> state. Here,

!Spatially localized microwave fields focused below the wavelength can be obtained at the tip
of tapered waveguides.
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F' denotes the total angular momentum and mpg is the magnetic quantum number.
The resonance condition reads 3up|B(r)| = hv, where pup is the Bohr magneton.
An experimental realization of the time-resolved counting of the released atoms
is shown in Fig. [94]. Thus, an accurate monitoring of the decay process of
the atomic population can be utilized to probe the dynamical properties of BECs
inside an optical lattice.

Figure 3.1: a) Optical lattice potentials formed by superimposing two orthogonal standing
waves [66]. b) For a 2D optical lattice, the atoms are confined to an array of tightly
confining 1D potential tubes (in this picture of 15 um length and 60 nm width). The
picture is taken from www.quantumoptics.ethz.ch.

/' PREAAY -n;i.\ "b;‘lu"'
BEC

Output
Output

Figure 3.2: a) Illustration (taken from [66]) of BECs loaded in an optical lattice. The
standing-wave interference pattern creates a periodic potential in which the atoms move
by tunnel coupling between the individual wells. b) Schematic realization of leakage at
the two edges of the lattice using continuous microwave or Raman lasers to spin-flip atoms
that reach the edges to a untrapped state (Figure taken from [86]). Thus, the atoms at
the edges do not experience the magnetic trapping and hence are released through gravity.
The released atoms are then measured at the detectors.
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Figure 3.3: a) Experimental realization of a continuous atom laser output (figure taken
from [93]): A collimated atomic beam is derived from a Bose-Einstein condensate over a
15 ms period of continuous output coupling. A fraction of condensed atoms has remained
in the magnetically trapped |F'=2, mp =2> and |F =2, mp =1 > state. b) Report
of an experiment that enables counting of single atoms of an atom laser taken from [94].
A schematic of the experimental setup is shown, where a continuous atom laser beam is
released from a BEC. After dropping a macroscopic distance of 36 mm, the atoms enter
an optical cavity where single atoms in the beam are detected.

3.2 Discrete Nonlinear Schrodinger Equation

The simplest model that captures the dynamics of a dilute gas of bosonic atoms in
a deep OL, with chemical potential small compared to the vibrational level spacing,
is the Bose-Hubbard Hamiltonian. A few essential points will be mentioned here,
see e.g. [95] for a detailed review.

In the case of weak interatomic interactions (superfluid limit) or a large number
of atoms per well (so that the total number of atoms N ~ O(10% — 10%) is much
bigger than the number of wells M), a further simplification is available since
the BECs dynamics admits a semiclassical (mean-field) description. The resulting
semiclassical Hamiltonian that describes the dynamics is

M T M—-1
H =D WUl + i) = 5 D (lbnss + cc) (3.1)
n=1 n=1

where n = 1,..., M is the index of the lattice site, |1/, (t)|> = N,(t) is the mean
number of bosons at site n, U = 4nh*a,V.g/m describes the interaction between
two atoms at a single site (Vg is the effective mode volume of each site, m is
the atomic mass, and ay is the s-wave atomic scattering length), i, is the on-site
chemical potential, and 7' is the tunneling amplitude. The “wavefunctions”

Yn(t) = An(t)e_w"(t) (3.2)

with amplitudes A, (¢) and phases ¢,(t) can be used as conjugate variables with
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respect to the Hamiltonian ¢H leading to a set of canonical equations

Z_awn ~ OH
ot o
oY OH
L= = 3.3
"ot Db (3:3)
which upon evaluation yields the Discrete Nonlinear Schrédinger Equation (DNLS)
SO0 MWnl? o — glber s =1 M (34)

Here, A\ = 2U/T is the nonlinearity and 7 = T't is the normalized time.

The DNLS can be applied to a remarkably large variety of systems, examples
include Davydov’s model for energy transport in biomolecules, or the theory of
local modes of small molecules [96] and within nonlinear optics it is a model of
coupled nonlinear waveguides [I]. In particular this mathematical model describes
(in the mean-field limit) the dynamics of a BEC in a leaking OL of size M [97].
We will treat the repulsive case explicitly (A > 0), however, the attractive case can
be obtained via the staggering transformation ,, — (—1")1, [48]. To simulate the
output coupling of atoms at the boundaries of our 1D lattice, we supplement the
standard DNLS with local dissipation terms at the two edges of the lattice [58] 86].
The resulting equation reads:

O
or
where v is the dissipation rate and we defined an initial effective (rescaled) inter-

atomic interaction per site

1 .
A’wn’l@bn - 5[1%4 + wn+1] - Zﬁywn[(sn,l + 5n,M]; n= 17 ey M: (35)

A= Xp, (3.6)

with p = N(t = 0)/M being the initial average density of atoms in the OL, so that
for different lattice sizes M, we maintain the same local dynamics by keeping A
constant. In Eq. we have set p,, = 0Vn, i.e. static disorder will not be treated
in the following. The time ¢, the interatomic interaction A, and the atom emission
probability v describing atomic losses from the boundary of the OL are measured
in units of the tunneling rate 7. In an experimental setup, 1" can be adjusted by
the intensity of the standing laser wave field and the on-site interaction U depends
on the confining potential perpendicular to the tube in which the atoms move.
Thus, the nonlinearity A can be varied experimentally.

3.2.1 Estimating the Leakage Term

In order to be able to compare with experiments, especially with BECs in leaking
OLs, the dissipation rate v will be estimated within a mean-field approximation
[86]. Here, we consider the case of two output-coupler fields interacting with the
atoms at the first and last lattice wells only. We can describe the output coupling
through an external reservoir formed by an infinite number of states [86]. For
optical input-output theory and in proposed atom laser theories that result in Born-
Markov master equations, typically (k) = const. is chosen (broadband coupling)
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[98], where the function (k) describes the shape of the (output) coupling in k space.
For a broadband output coupling x the Born-Markov approximation leading to an
exponentially decaying atomic density inside the BEC should satisfy [9§]

3/2 A
L =1 (3.7)

w2V 2m
where w is the 1D trapping frequency and m is the atomic mass. And on the other
hand, the characteristic decay time is given by

1 2wh  R/T
tp = — = / , (3.8)
TR m y

leading to
_ wK*Vhm
Y= —T e .
Eq. shows the proportionality between the dissipation rate v and the square
of the coupling strength s and gives (together with Eq. a condition on the

magnitude of the dissipation rate v in order for the Born-Markov approximation
to be valid:

(3.9)

hw
— 1. 1
T > (3.10)

Using typical parameter values of experiments of BECs in optical lattices, which
are h/T ~ 6 x 107* and w ~ 80 kHz [7], the above condition is fulfilled up to
v = 0.5. The results for the leaking system reported below are for a dissipation
rate of v = 0.2. Nevertheless, we have checked that the qualitative behavior is the
same for other values of v < 0.5. For larger values of v, non-Markovian terms have
to be included in the description [99].

3.3 Survival Probability: Avalanches

Let us now study the decay and the statistical properties of the total atomic pop-
ulation inside the OL (also referred to as survival probability or total norm)

M

NI = ) = L Wl (3.11)

where we normalized the wave functions such that
N(t=0)=1. (3.12)
Its time derivative —%@ is equal to the outgoing atomic flux. In our numerical

experiments we have used initial conditions with randomly distributed phases for
the wavefunctions i, = A, exp(—i¢,), while N, (7 = 0) was taken to be almost
constant with only small random fluctuations across the OL. The initial states
were first “thermalized” during a conservative (i.e. y=0) transient period of, typi-
cally, 7=>500. Only after this transient is completed, the dissipation at the lattice
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boundaries is switched on, leading to a progressive loss of atoms. The dynami-
cal evolution is done through numerical integration by the Runge-Kutta-Fehlberg
method with an accuracy such that for the largest system studied (M = 4096)
deviations of N (7) from unity in a closed system (v = 0) were less than 10~ for
the total time range studied (¢ < 30000).
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Figure 3.4: Representative realizations of atomic population decay exhibiting avalanches
with jump size J. Shown is the survival probability N(7) for various initial conditions.
In the encircled region a single avalanche is marked.

In Fig. [3.4] we show the temporal evolution of N(7) for various initial conditions
for A = 1 (see also [58, 86]). A striking feature is the appearance of jumps,
indicating an avalanche-like behavior where a sudden burst of density (e.g. mass,
number of atoms or energy) occurs. Our target is to analyze the distribution P(.J)
of these jumps J for an ensemble of initial conditions and thus we have to analyze
a considerable number of trajectories. To this end, we have defined the burst by
a threshold D* in the derivative D(1) = |dN(7)/dr]| as shown in Fig. In all
cases studied, we had at least 10* trajectories at fixed parameters for statistical
processing. We have found that for a whole range of A values the avalanches follow
a scale-free distribution,

PJ)~J“ (3.13)
as demonstrated in Fig.|3.6 To understand the origin of the scale-free distribution
P(J), we will examine the dynamics of the atomic population N, (7) = |1, (7)]?

inside the lattice in the next chapter.

3.4 Dynamics of BECs

In this section we investigate the dynamics of the atomic density of BECs inside
the optical lattice. We will see that a complex interplay between discrete breathers
and other lattice excitations is directly linked to the formation of avalanches.

In Fig. 3.7, we show the density plots that capture the dynamics of the leaking
system (i.e. v # 0) for some representative values of the rescaled nonlinearity
A. The color represents the normalized (with respect to the original population)
atomic population N, (7) = |1, (7)|* at each site. For small nonlinearity strengths
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Figure 3.5: Definition of a jump in the total atomic population N (7). Whenever D(7) =
|dN (7)/dr| rises above D* we register a burst until it drops again below the threshold.
In most of our calculations we have used D* ~ 10~°. However, we have checked that our
numerical results for the distribution P(J) are stable for other choices of the threshold
and for different sampling intervals of the N(7) time-series.
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Figure 3.6: Distribution of avalanches P(J) for various system sizes M and interatomic
interaction strengths A = 0.5 and A = 1. In the former case we observe a convergence to
a power law distribution P(J) ~ J~% as the lattice size M increases, while in the latter
case the asymptotic distribution has already been reached for M = 512. A least square
fit yields o = 1.86 £ 0.04 in agreement with the bounds 1 < a < 3 (see text). Inset:
Power law distribution of norms P(x = |¢,|?) ~ x~# for A = 1. The best least square fit
indicates that 3 = 1.9+ 0.05 =~ a. We set v = 0.2 in all cases.

A < Ay = 0.15 (Fig. ), the system behaves as in the linear regime, i.e. the
density is distributed uniformly across the whole lattice. In the opposite limit of
A > A, (Fig.[3.7e) we observed the formation of the order of M discrete breathers.
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Figure 3.7: The right figure shows the evolution of the atomic population for a lattice
of size M = 128, dissipation rate v = 0.2 and various interatomic interaction strengths
A: (a) A < Ay where no DBs are formed and the density is distributed uniformly across
the whole lattice while for (b) A > A, the first breather appears. At (c) A = O(1)> Ay
stationary breathers co-exist with moving breathers, corresponding to the critical regime
where scale-free avalanches are created. For higher A (c)-(e), one observes an increase
in the number of breathers (multibreather regime) and changes in the stability of the
breathers. For strong nonlinearity, for e.g. (e) A = 16, the number of breathers is of

the order of M. The left figure shows a zoom-in view of the profile of a breather in (c)
centered at site 29 at time 7 ~ 600 x 30.
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The most interesting dynamics emerges for interatomic interaction strengths in
a range of criticality

AL < A< Ay, (3.14)

where we find multibreather states with a scale-free distribution of single site norms
N,. The inset of Figure [3.6] shows the distribution P(z = N,,) for two different
system sizes. It displays an inverse power law

P(r = N,) ~z ", (3.15)

with a value § = 1.9 & 0.05 given by a best least square fit. The cutoff for small
N,, seen in Fig. can be shifted to arbitrarily small values for larger OLs. In
our numerics with system sizes up to M = 4096 we found the upper and lower
bounds Ay 2 2 and Ap < 0.5, with strong indication that in the limit M — oo
the lower bound approaches Ay. (The role of the critical interaction strength A, is
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investigated in the Sec. ) This power law behavior is a signature of the existence
of self-organized critical states [I00]. In contrast, for A < Ay we find exponential
distributions of the site-norms.

We will see in the following that the size J of the observed avalanches is pro-
portional to the site-norms N,, of the critical states. Therefore, one expects that
Pn, (z) and P(J) follow the same asymptotic distribution. Indeed, the best least
square fit to our numerical data gives exponents

ar 186~ 3. (3.16)

For smaller values of A the distribution P(J) shows clear deviations from the
power law. For increasing M, however, these deviations become smaller as shown
in Fig. for A = 0.5, indicating A, — A, in the thermodynamic limit M — oo.
In Fig. [3.7(c-e) one can see that for the case of A > 1.0, the two outer-most
breathers act as barriers which trap the atoms in the bulk of the lattice, preventing
them from leaking out towards the absorbing boundaries and slowing down the
relaxation process. Thus, DBs are observed to act as dynamical barriers, insulating
the leaking boundaries from the central core. It is clear that the appearance of a
power law distribution in Eq. is associated with the existence of DBs.

3.5 Order Parameter

Since we are interested in the effects of DBs on the relaxation process of the DNLS
(Eq. 3.5), we introduce a localization parameter PR which is a measure of the
relative number of sites that are still occupied by the remaining atoms in the
leaking OL. It is defined as

NG
PR(T) = <Mzn \wn<7>\4> (3.17)

where (- --) indicates an average over different initial conditions. For v=0, Eq.
gives the standard participation ratio. Accordingly, the more evenly the atoms
spread over the lattice, the closer PR is to a constant of O(1) while a concentration
of the whole atomic density in a single site yields PR = 1/M. The PR approaches
two limiting values that can be calculated analytically (see Appendix [A]): (a) For
U=A =0 (linear regime), the norms N,, are exponentially distributed, leading to
PR =1/2. The case where PR =1/2 corresponds to the situation where there is
no DB. (b) For A — oo (strong nonlinear regime), the wells are uncoupled and the
norms uniformly distributed leading to PR=5/9. This is due to the formation of
discrete breathers, where the number of DBs is of the order of the total number
of lattice sites M (multibreather regime). For =0, the transition between these
limiting cases is smooth (Fig. [3.8).

In the open system (7 > 0) the quantity PR = PR(t) is of course time de-
pendent. After an initial drop, however, it rapidly approaches a constant value
PRs indicating a quasi-steady state (Fig. . In the following we study PRy as
a function of the interaction strength A. Instead of a smooth transition between
the two extremes, as in the closed system, we observe a sharp drop of PRg at a
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Figure 3.8: The localization parameter PRg vs. A=AN (7=0)/M is shown. For the closed
system a smooth transition between the limits 1/2 and 5/9, which are given analytically,
takes place. However, for the open system a sharp drop in PRg is observed, indicating a
phase transition (see text).

critical interaction strength of A, ~ 0.15 as shown in Fig. [3.8] resembling a phase
transition. Our numerics indicate that this transition indeed becomes a step func-
tion in the limit M — oo. At A, the order parameter PRg drops down to its
lowest possible value (1/M) corresponding to a single occupied site, i.e. the final
state consists of one single DB. We remark that for A < A,, the atomic population
N(7) decays smoothly to zero, following the same qualitative behavior as for the
A=0.

As we can see from Fig. [3.8 the transition between the linear regime and the
case where one DB is created becomes sharper in the thermodynamic limit. This
indicates the existence of a phase transition. We have confirmed that the above
behavior of the PR remains qualitatively the same for various values of v ranging
from 0.01 to 1. For A > 1, we recover the strong nonlinearity limit where many
breathers are found. However, we do not investigate the nature of the transition
(e.g. if a similar ‘sharp’ transition takes place) in the strong nonlinear limit.

3.5.1 Nature of the Phase Transition

To understand the nature of the transition at A, it is important to realize that if
a breather solution exists for some value of A, it exists for all A’s > 0 (for large
enough M). This can easily be seen by noting that a DB is not directly coupled to
the leaking edges, thus we can assume v = 0 and then appropriately scale Eq. 3.5
Therefore breather solutions in particular do exist for A < A as well. For every
nonlinearity A, however, there exists a lower bound for the norm carried by the DBs
(that is well approximated by ﬁ) For the dynamics to end in a single breather
state the intermediate thermalized state therefore has to provide a fluctuation large
enough to create this breather, and at the same time all other fluctuations have
to be small enough not to destabilize the breather again. While a full (analytical)
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Figure 3.9: (a) For several values of A, the participation ratio PR(t) is shown, which
converges to a steady state value PRg. (b) Time evolution of the participation ratio for
an open system with M = 2048, A = 0.06 and dissipation rate v = 0.2. After an initial
drop from 0.5 to approx. 0.48, the curve fluctuates slightly around a steady state value
PRg, which is stable for very long times (as long as our simulations ran). The size of the
initial drop is supposed to depend on the dissipation rate . In the left figure the initial
drop exists as well, but cannot be resolved due to the large scale of the ordinate.

understanding of this process is subject of present research [77, 10I] and work in
progress [87|, our numerical evidence on the existence and nature of this phase
transition is very clear.

3.6 An Avalanche Event

Let us study in more detail the dynamics that lead to the creation of an avalanche
in the critical range of A;, < A < Ay (where a power law distribution of avalanches
is seen in the flux of atoms out of the optical trap). One such event is depicted in
Fig. A moving breather (MB), coming from the bulk of the lattice, collides
with the outermost stationary DB. Note that although MBs can survive for very
long time, strictly speaking they are not stationary solutions of the DNLS. As a
result of the collision, the DB is shifted inwards by one site while at the same
time a fraction of the atomic density of the MB is transmitted through the DB.
Eventually this particle density will reach the leaking edge of the OL and decay in
a form of an avalanche. Other lattice excitations (e.g. thermal noise) could as well
take the role of acting as perturbation to the DB.

To investigate theoretically the collision process that involves the DB, we will
make use of a general concept called the local ansatz [49, 102]. The DB solutions
in the DNLS are very well localized and the most basic and important breathers
occupy only three sites. Within the local ansatz thus only the central site and the
two neighboring sites of a DB are considered, allowing us to turn a high dimensional
dynamical problem involving M sites, into a reduced problem with three degrees of
freedom (non-linear trimer). A detailed analysis of the reduced problem [49, [102],
shows that (i) the discrete breather corresponds to a trajectory in the phase space of
the full system which is practically embedded on a two-dimensional torus manifold,
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Figure 3.10: Snapshot of an avalanche event. On the left subpanel, we are plotting 7
vs N(7) whereas on the right we are reporting a representative collision event between
the outermost stationary DB and a moving DB (the color indicates the atomic density
N, (7)). The moving breather of atomic density NP'* enters the monitored region from
the right and collides with the stationary breather. During the collision, the stationary
breather gets destabilized and is shifted inwards while part of the moving DB ’tunnels’
through the stationary breather and travels towards the edge of the lattice. The arrival
of the transmitted density at the edge is registered in the atomic population N(7) as an
avalanche event (see left subpanel). Note that for illustration, a representative avalanche
event in N (7) is encircled in Fig. 3.4

thus being quasiperiodic in time; (ii) the DB can be reproduced within a reduced
(M = 3) system, called the nonlinear trimer.

3.7 Origin of the Scale-free Avalanches

Equipped with an understanding of an avalanche event, we now develop a physical
understanding on the origin of a power law distribution of the jumps through an
analysis of phase space structure of the reduced system: the nonlinear trimer [28].

3.7.1 Poincaré Section of the Trimer

In Fig. |3.11] we show a representative Poincaré section of the reduced system
for interaction strength A ~ 1. The phase space consists of two components:
islands of regular motion (tori) embedded in a chaotic sea. Trajectories inside
the islands correspond to DBs, provided that their frequency is outside the linear
spectrum. In contrast, chaotic trajectories have continuous Fourier spectra, parts
of which overlap with the linear spectrum of the infinite lattice [49]. Note that a
representative Poincaré section of the nonlinear trimer including disorder (i.e. the
on-site chemical potential p, is not constant in Eq. exhibits as well a mixed
phase space [103].
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Figure 3.11: A Poincaré section of the phase space of the nonlinear trimer at A ~ 1.0.
Shown is N2 vs (¢3 — ¢2)/m where ¢’s are the angles in Eq. The Poincaré section at
A =~ 1.0 corresponds to the plane ¢1 = ¢3 and ¢ > ¢po of the energy surface. It clearly
shows a hierarchical mixed phase space structure with islands of regular motion (tori)
embedded in a sea of chaotic trajectories.

Figure 3.12: Illustration of the arguments leading to Eq. The figure shows an island
in a background of chaotic sea. Black ellipses correspond to regular orbits in an island,
where s is the maximum diameter of the island. The blue ellipse is an example of a
regular trajectory of a particle on the island, which corresponds to the case of a DB in
our system. The destabilization of a stationary DB by a perturbation (e.g. a thermal
fluctuation or a moving breather) with density NPt = N? rt g possible only if the DB
can be pushed out from the regular orbit across the island towards the chaotic sea. The
particle’s motion then becomes chaotic, allowing for a continuous Fourier spectra and
thus for dramatic increase of frequency overlap with the phonon band.
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Figure 3.13: A destabilization process of a DB hosted by a closed trimer. We report
the outgoing atomic population N§** ~ N°“ (associated with an avalanche event — see
Fig. measured at site 3 versus the incoming atomic population NP hosted by
site 1. We find that atomic population tunnels through the DB only if Nfert > 0.25,
corresponding to the minimal excitation needed to trigger the destabilization of the DB.
Some of the density tunnels through the second site and reaches the third site. We register
the maximum density on the third site as N§*%* and obtain NJ** oc N**"*. Analytical
expressions for the minimal excitation necessary to destabilize the DB and an upper
bound for the transmitted particle density N3"** are calculated in Sec. and in [29).

The basic idea to explain the origin of the scale-free avalanches is the follow-
ing: As long as the DB is stable, it acts as a barrier which prevents atoms from
reaching the leaking boundary. Thus, a necessary condition for an avalanche event
is the destabilization of the DB. As explained above, this can be caused by a lat-
tice excitation (e.g. a moving breather) with particle density NP*"* greater than a
thresholdﬂ Due to the collision process, the regular or quasiperiodic orbit corre-
sponding to the stationary breather can be pushed out of the island towards the
chaotic sea, see illustration in Fig. [3.12] In other words, in order to destabilize
a DB, one needs a perturbation that is at least of the order of the linear size s
(e.g. the maximum diameter) of the island which represents a DB. At the same

time a portion

J ~ NJ'% oc NP o s (3.18)

is transmitted through the DB (Fig. [3.13). Therefore, this destabilization process
lets a fraction Nj"** ~ N of the perturbation tunnel through (see Fig. which
reaches the leakage at the edge of the lattice, triggering an avalanche. Hence, the
task to understand the origin of the power law distribution of jumps P(J) translates
into the study of the distribution of island sizes P(s).

2Strictly speaking, this is valid only for a fixed relative phase between the DB and the moving
breather as the destabilization holds for the total energy, as explained in Sec. and in [29].
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Figure 3.14: Hlustration of the simple hierarchical model. This sketch shows the example
of n = 3. The 0-th level main island has diameter sy and is surrounded by n = 3 sub-
islands of size s1, in a background of chaotic sea. Due to self-similarity, if we zoom into
one of the sub-islands, we would recover the self-similar structure of the islands but now
with the main island being in the k£ = 1 level with s; diameter, surrounded by another
n = 3 sub-subislands with diameter ss.

3.7.2 A Simple Hierarchical Model

The above analysis in the frame of the local ansatz, allows us to turn the problem
of the analysis of P(J) to the analysis of the distribution of island sizes P(s) of the
reduced system with M = 3 in the A-regime where the phase space is mixed. That
enables us to determine analytical lower and upper boundaries for a by considering
a heuristic model that mimics the hierarchical (‘island-over island’) structure of a
typical mixed phase space in d dimensions. Beforehand, it should be said that we
don’t aim to consider a simple hierarchical model for high dimensional mixed phase
spaces in general, but for dimension d = 2. However, from a mathematical point
of view, our simple heuristic model works in any dimension.

We assume in the heuristic model that at each hierarchy level £ > 0 a main
island of linear size sj_; exists with a number n; of sub-islands (see Fig. for
illustration). As a measure of the linear size s of an island, e.g. the maximum
diameter can be taken. At the k—th hierarchy level, the fraction of sizes of the
main island to sub-island is fj, = Sg,—;l Then s(k) reads

S0

s(k) = Hle 7 (3.19)
and the total number of islands up to level k is given by
k
pk) =] ni- (3.20)
i=1

Setting so = 1 and making the additional simplifications f; = f and ni = n for
each hierarchy level, we obtain
sp=f" (3.21)
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while the total number of islands py reads

Pr = an =n". (3.22)

i=1
Hence, with k = —In s/ In f from Eq. the distribution of island sizes yields
P(S) _ nk(s) — n—lnS/lnf — g @ : (323>

with exponent o = Inn/In f.
Furthermore, analytical bounds for o can be obtained, as the two following
limiting cases have to be fulfilled:

1. The total number of islands Njguna(s) must diverge for s — 0 due to the
self-similar structure of the phase space, which leads to a lower bound for «.

2. The total d-dimensional phase space volume V,(s) has to be finite, resulting
in an upper bound for a.

Thus, for the total number of islands

Smazx

Nisland(s) = / p(Sl)dsl = S_OH_I - S_OH_I (324)

max

S

we require that limg g Nigana(s) = oo yielding o > 1. Secondly, for the total phase
space volume Vy(s) to be finite, the integral

Smax

Vd(S) — / (sl)dp(s')ds' _ Sfa+1+d _ Sfa+1+d (325)

max

S

needs to converge in the limit s — 0. This requirement leads to an upper bound
a < 1+ d. Hence, the bounds for the power law exponent o read 1 < o < 1+ d,
where d is the dimension of the phase space.

To summarize, for a 2-dimensional mixed phase space our simple hierarchical
model yields the analytical restrictions for the power law exponent « of the distri-
bution of island sizes

l<a<3, (3.26)

in excellent agreement with our numerical findings (Eq. [3.16)).

3.7.3 Test with Standard Map

The power law distribution Eq. is surmised to be a generic feature of dynamical
systems with a hierarchical mixed phase space in 2D, of which the Poincaré section
of the trimer is an example. To get further confidence on our heuristic modeling,
we aim to check numerically whether the sizes of islands of a typical Hamiltonian
mixed phase space system are really well approximated by a power law distribution.
To our knowledge the distribution of island sizes in a mixed phase space has not
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Figure 3.15: Numerical estimation of the distribution of island sizes in a mixed phase space
of the standard map for kicking strength K = 3.5. We plot f(s,Cp)/s* = (Din.out(s) —
Cp)/s%, which is a measure of the circumference of the islands vs. their width s. Clearly a
power law distribution over more than three orders of magnitude is found, with exponent
a = 1.4. The red rectangle in the inset marks the mixed phase space region under
investigation (see Fig. for consecutive enlargements).

yet been analyzed in literature, which at first came as a surprise. However, when
considering the complexity and the hierarchical structure of a typical mixed phase
space — see Fig. for consecutive enlargements of a typical mixed phase space
— it becomes clear, that calculating the distribution of island sizes is a challenge
of its own, as for convincing evidence of the existence of a power law distribution,
several orders of magnitudes of island sizes have to be resolved.

We will numerically approximate the distribution of island sizes in a paradig-
matic model of mixed phase space dynamics: the standard map (see Sec. for
an introduction). We used kicking strength K = 3.5 for our analysis, hence, for
illustration, we chose the same value of K in Fig.[2.3p. The idea for the numerical
approach will be sketched here, while the details are given in appendix [B]

We consider a region R (see inset of Fig. in the mixed phase space of the
standard map containing an island (with its daughter islands) originating from a
period 1 resonanceEl. We start two trajectories at random initial conditions r and
r +s within R separated by a distance s = |s|. We follow the trajectories up to
time 7" and proclaim a trajectory to be inside an island if it has not left the region
R after a time T' (which will become more and more accurate with increasing 7).
The quantity we are going to study is pinout(s), which is the probability that the first
trajectory is inside an island and the second is not. This probes the circumferences
of the islands with less and less error (as the size of an island is overestimated with
this method) with increasing 7.

Assuming a power law distribution of island sizes with exponent «, we find that
Din.out(s) can be written as (see Appendix

3For a period N resonance, we could do the same with the N-th iteration of the map.
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pin,out(S) - C’0 + C'15"2_0[ (327)

with constants Cy and C;. The constant Cj is estimated by

o(Co) = min(o(C)), (3.28)

where o(C') is the standard deviation resulting from a linear fit on a double loga-
rithmic scale of the function

f(S, C) = pin,out<5) - C7 (329)

and I C R is an appropriate interval. We checked that Cy changes smoothly with
the iteration time 7" of the standard map.

Figure shows the numerical results for pj, ou(s) for different maximal it-
eration times 7. As T increases, the curves fit better and better the form of
Eq. Thus, for the standard map with K = 3.5, we have estimated a power
law distribution of island sizes with an exponent o = 1.4.

In conclusion, our approximation to the distribution of island sizes clearly ex-
hibits a power-law distribution over more than three orders of magnitude thus
confirming the validity of Eq. Hence, our results provide numerical evidence
that the power law scaling is a generic feature of a typical mixed phase space.

3.8 Nonlinear Trimer

The destabilization of a DB due to a collision with a lattice excitation accompanied
by a shift of the DB (typically by one site) towards the perturbation which we saw
in Fig. [3.10] has been observed in the past in various discrete nonlinear systems
[28, 58, [61) [86l, 104]. Clearly, the stability of DBs with respect to perturbations
[611, [75], 105, 106] plays an important role during the collision process. We saw
numerically, that beyond a certain threshold the DB can get destabilized while a
fraction of the (atomic) density of the lattice excitation tunnels through the DB

(Fig. B13).

In this Section, let us consider a discrete breather (DB) centered in the middle
of a nonlinear trimer. We will analytically calculate the total energy threshold
of the nonlinear trimer in order to enable a perturbation at site 1 to trigger the
destabilization of a DB centered at site 2 [29]. Furthermore, we will determine an
upper boundary for the maximum (atomic) density that is transmitted through the
DB in the course of the collision.
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3.8.1 Equations of Motion

Our starting point are the equations of motion of the nonlinear trimer. The DNLS

with M = 3 lattice sites reads (see Eq.

D = AP — 20
iObs = Aol*ehs — %Wl +13)
s = A5 — %% ; (3.30)

where the wave functions are normalized such that the total atomic population
reads N = 3™ |4,|> = 1. The normalization condition corresponds to Eq. ,
however, here we are dealing with a closed system where the total norm N is
conserved. In order to find exact DB solutions in Eq. for the symmetric case
11 = 13, we make the ansatz

Un(t) = Ape™ (3.31)

with Amplitude A,, and frequency w (the latter which is the same for all three sites).
This ansatz together with the conservation of norm yields the set of equations

1
— wA1 = /\A:I) — 5142

—U)AQ = )\Ag—Al
1 = 247+ 43, (3.32)

The equations below will be written in terms of the nonlinearity A = 2U/T. Note
that the equations can be easily rewritten in terms of the effective interatomic
interaction per site A = A\/3 (see Eq. , e.g. to apply the results to extended
lattices.

3.8.2 Asymptotic Solutions

What are the symmetric (¢; = 1)3) DB solutions for a given nonlinearity A7 First,
we calculate the norm N, = A2 at the central site from Egs. which yields

V2(2N; — 1)
VNo(1 = Ny)(3N, — 1)

For A < 5.04 only one symmetric breather solution exists, while for A > 5.04 there
are several solutions (see Fig.|3.16)). To gain further insight into the nature of the
symmetric breather solutions in the trimer, we will revisit Eqs. [3.32] which we turn
into a quartic equation

A(N,) = (3.33)

A
at + E:ﬁ) — V2 z—-1=0, (3.34)

where
sig(x)

V1+a2

Ay = cos(arctan(z)) = (3.35)
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Figure 3.16: DB solutions for the symmetric case ¥1 = 3. The repulsive case is treated
explicitly (A > 0), however, Eq. and the equations below hold as well for the attractive
case (as explained in Sec. . We see that for nonlinearity A > 5.04 three symmetric
breather solutions exist with [12|> > 0, where the solution for large norm at the central
site is termed a bright breather, see Eq. @

Expansion of the exact real solutions of Eq. in A for the limiting case A — 0
yields

5

A
= 14— — N4+
1 +4\/§ 61 + O(X\”)
A 5
= —14+—"——4+=XN1+00Y. 3.36
T +4\/§+64 + O(\) (3.36)

At XA = 0 the solution ) = (1hy, V2, 103) reads 2/7?901@2) = (1/2,%+1/4/2,1/2). Expan-

sion around the limit A — oo leads to four real solutions

T = —%%—ﬁ%—i—(’)@\g’)

Ty = —%)\ + 2@% + 14\/5%+0(x5)

xy = —V2-— 2%% - 15\9/5%+O(/\‘3)

v o= VI— 2\3@% + 15\9/5%+(9(>\‘3) | (3.37)

For infinite )\ the solutions read

v, = (0,1,0)
15?;2) - (\/m707 \/1/_2>
1/7?;3,954) = (1/\/57:!:1/\@, 1/\/5) , (3.38)

where the solution 1;@1) is called a bright breather, 1;@2) is called a dark breather

(due to lack of norm at the central site) and 1;(13@4) are phase-wise and antiphase-
wise time-periodic localized solutions. In the following, the fixpoint corresponding
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Figure 3.17: (a) PN energy landscape (lower part) (b) PN shell and (c) Contour plot
of (a). The three minima of the lower bound to the dynamics correspond to the bright
breather solutions at the three sites. All plots are shown for nonlinearity A = 3.

to the bright breather @Z(zl) = (A]" AJ™ AI™) will be analyzed with respect to
perturbations.

3.8.3 Peierls-Nabarro Energy Landscape

We define the Peierls-Nabarro energy landscape as follows: It is obtained for a
given configuration of amplitudes A,,, by extremizing H with respect to the phase

differences d¢;; = ¢; — ¢;. where ¢, = A, exp(idy,):

I _ s . U o
Hpn—ggi?( H) ; Hy, rg};};{( H), (3.39)

where Hzlm and Hj, are the lower and upper part of the PN landscape. The phase
differences extremizing the Hamiltonian

H— %(A‘ll + A5+ A3) — (A1 Ay cos(gy — ¢) + Az Az cos(gy — ¢3)) (3.40)

are d¢12 = dpa3 = (0, 7). The PN energy landscape reads

A
H = —E(Aéll + A5+ A3) F (A1 + Ag) Ay (3.41)
which is, due to conservation of norm (A2 = 1 — A? — A2), a function of two

amplitudes. In Fig. the PN landscape is visualized for A\ = 3. It exhibits
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Figure 3.18: Dynamics on the PN landscape. (a, ¢, d) A contour plot of the lower PN
energy landscape Hfm is shown for total energy Fiot > Eips = —1.311, i.e. above the
rim. A projection of the orbit for times t = 0...35 onto the A1—Aj3 plane is over-plotted
(black curve), where the arrows mark the position at time ¢ = 0. The input values for
the initial condition defined by Eq. are given in the figures. In all cases the DB is
destabilized and the largest part of the norm migrates to site 1. We see that the PN
energy landscape clearly restricts the dynamics in all cases. (a, b) The dynamics for
a total energy just above the rim (Ey; = —1.310) and corresponding amplitudes A;(t)
are shown. (c) Dynamics for larger total energy Eix = —1.282. (d) For the same
total energy E; = —1.310 as is (a) but a different initial phase difference J, the same
qualitative behavior is found.

three minima corresponding to the bright breather solutions which are separated
by saddle points (called rim’ in the following) located for A — oo at A; = /1/2
for i = 1,3. The energy threshold Fj,., at the rim (obtained from Eq. [3.40) reads

1
Ejprs = =+ =+ —+0(17?). (3.42)

In order to investigate whether and in which way the PN landscape influences
the dynamics of a perturbed fixpoint solution and the transfer of norm through the
DB to the other side, we will look at two quantities in the A;—As plane (plotted
on top of each other in Fig. [3.18(a,c,d)): First, the projection of an orbit onto the
A;—As plane of a perturbed DB and second, the contour plot of the PN landscape
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Figure 3.19: Maximum norm A3 that is transferred from site 1 to site 3 while the DB
centered at site 2 migrates to site 1 as a function of the total energy FE. In all cases we
set the initial phase difference d¢pa3 = m and A = 3. Note that with A = 3 (i.e. A = 1)
we reside in the critical regime where scale-free avalanches are found (see Eq. . The
vertical dashed line indicates the destabilization threshold Ejp,.s (e.g. a threshold for
targeted energy transfer, see Sec. .

Hém, both at a given total energy Etot We choose the following initial condition:

Ot =0) = (— (A" 4 §,4)ee. Ay, —Al™) | (3.43)

where Ay = (1 — [¢1|? — |3]?)'/% is given by the conservation of norm. With
Eq. the PN landscape H]lm is determined by the two parameters d4 and d4. In
all cases we set A = 3, which leads to the destabilization threshold Ej,,, = —1.311
according to Eq. [3.42]

Fig. [3.18 shows that the PN energy landscape rigorously restricts the orbits
while the rim governs the destabilization process. Note that the larger F,,, the
larger is the size of the “bubble” (with the term bubble we denote the accessible
region of the PN landscape for A; > 1/4/2). In the limit A — oo the DB in the
center of the trimer gets destabilized for A; > 1/ V2. An upper limit to the norm
that is transmitted to site 3 is given by maxz(Asz) 4,51/,5, Which is the maximum
value of Aj inside the bubble. As we see from Fig. @d, the migration of the
DB followed by transfer of norm through the barrier is observed as well for other
initial phase differences (shown is d¢12 = 7/2). Moreover, we have checked that
the mechanism itself is widely independent of the choice of parameters, i.e. it is
found for a whole range of A\, d¢15 and Fyy.

In Fig. , the maximum Norm A2 that is transmitted through the DB as
a function of the total energy is shown for three initial phase differences d¢15 =
0, A, m 2. The dashed vertical line at Fy,; = Eyps = —1.311 marks the total
energy at the rim and is identified with the destabilization threshold of the DB.

4The upper PN landscape Hy,, may affect the dynamics as well, however, in terms of the
destabilization process it is sufficient to focus on the lower part Hzlm.
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The maximum norm at side 3 is closely below the approximated upper bounds
determined by the maximum possible value of As inside the bubble of Hllm, where
the dashed-dotted curve results from an analytical calculation in the limit for very
large A and the solid curve is a numerical calculation. Thus, we found an upper
bound to the norm transferred through the DB.

To summarize, the threshold and the tunneling process during the collision of a
DB with a lattice excitation (e.g. a moving breather) was described analytically by
defining the 2-dimensional Peierls-Nabarro energy landscape. The PN landscape
restricts the dynamics of the trimer and the accessible region of the phase space.
This restriction of the dynamics becomes very pronounced at the destabilization
threshold, which is identified with a rim in the PN landscapel’| The effect is de-
scribed in a broad range of the nonlinearity A of the system and for any phase

difference d¢15 between the DB and the MB.

3.9 Possible Applications

The investigation of an individual avalanche in Fig. triggered our analysis of
the collision process of a DB and a moving breather. We observed a threshold
for the total energy below which a DB acts as a dynamical barrier (a reflecting
'wall’) while above the threshold the MB can destabilize the DB and part of the
(atomic) density of the MB tunnels through the DB. This process could lead to
several applications.

One possible application refers to atom lasers, in particular the findings may
lead to interesting applications for blocking and filtering atom beams. It could be
a powerful tool for controlling the transmission of matter waves in interferometry
and quantum information processes [106].

In a similar way, our findings can be related to the field of optics, as the DNLS is
capable of describing wave motion in nonlinear optical waveguide arrays (where con-
trolled boundary leakage can be achieved with suitable mirrors [2]). Note that the
longitudinal space dimension of the waveguides plays the role of the time variable in
the DNLS. Discrete breathers in such two-dimensional networks were investigated
in the past years both theoretically and experimentally [1H3, 54, [55, [74, [88-92]
and can exhibit a rich variety of functional operations such as blocking, routing or
logic functions [4, B] (see Fig. [3.20). Experimental evidence of the destabilization
process of the stationary DB (described above) should be observable in nonlinear
waveguide arrays and might lead to functional operations such as filtering optical
beams.

Another field of conceivable applications refers to the analysis of the destabi-
lization of a DB in the reduced system: The nonlinear trimer. Applications could
be possible in terms of a molecular trimer, in particular in biophysics. “If 'dis-
crete breathers’ is the answer, what is the question?” This is the title of an article
written by G. P. Tsironis [62] giving an overview on how DBs could play a role in
biophysics. Let us consider a DB as a bundle of highly (exponentially) localized en-

SFurthermore, it can be shown [29] that the destabilization threshold during the collision of the
two breathers can be linked to the Peierls-Nabarro barrier of a single DB (The Peierls-Nabarro
barrier is described in Sec. and e.g. in [60, 61]).
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Figure 3.20: Scheme of possible dynamics of discrete (moving) breathers in nonlinear
waveguide arrays that shows all-optical routing of on input signal beam to a specific
output position [5]. The signal input beam (red) crosses the array with virtually no
diffraction. A control beam (blue) at about the second harmonic wavelength is used to
produce a third diffractionless output beam.

ergy for a moment, then it is conceivable that a DB could indeed mediate so called
targeted energy transfer (TET) [107] — an example for TET could be the trans-
port of energy obtained by the hydrolysis of ATP from a donor site D through
a macromolecule (e.g. a motor protein) to an acceptor site A with virtually no
dissipation. In the framework of the DNLS, Kopidakis et al. investigated TET be-
tween discrete breathers of two weakly coupled random nonlinear systems. These
systems could represent two independent molecules, two linked parts of the same
folded macromolecule etc. In a real physical or biological system the D-A pair may
be interacting with additional degrees of freedom. Under appropriate conditions,
irreversible targeting occurs with almost complete energy transfer. Hence, the
thresholded transfer of energy through a discrete breather that has been described
in this chapter could possibly play a role as well in molecular systems, e.g. in the
field of biophysics or biomolecular engineering. However, Tsironis concludes:

”...we see that breathers could in principle act as able energy managers in
biomolecules; the real question of course is whether nature is actually using their
services.”

3.10 Conclusions

In conclusion, we have studied the dynamics of BECs in a leaking optical lattice in
the framework of the DNLS. In particular, we have observed scale-free avalanches
in the decay of the atomic population, and showed that the avalanche events are
related to the existence of DBs inside the OL. We provided an explanation of these
events using the scenario of a collision process involving a stationary DB and a
lattice excitation (e.g. a moving breather) where a threshold of the total energy
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exists, beyond which the DB gets destabilized. The fact that for a certain range
of (a rescaled) nonlinearity A ~ O(1) a power law distribution P(J) ~ J~ ¢ of
avalanches is found, suggests the existence of a phase transition in the system.
To this end, we proposed an order parameter PR which measures the relative
number of sites that are occupied by DBs. We have linked the observed power law
distribution of jumps to the hierarchical structure of a mixed phase space shown by
the reduced system — the closed nonlinear trimer. Furthermore, a thorough analysis
of the PN energy landscape of the closed trimer yields an analytical expression of
the minimal excitation necessary to destabilize the DB.

Outlook To better understand the nature of the observed phase transition (at
nonlinearity A = A;), it would be of high interest to find an (analytical) expression
for A, as described in Sec. The transition is related to the formation of DBs
in the discrete nonlinear system and is subject of recent research [77, [101] and work
in progress [87].

Secondly, it would be very interesting to analyze the nonlinear trimer with
dissipation (at the ends) with respect to the observed mechanism of destabilization
of a DB followed by a transfer of atoms/energy through the DB. For the closed
(i.e. non-dissipative) trimer, the analysis can be found in Sec. When dissipation
is included in the analysis, a link to experimental systems (molecular trimer) might
be possible. A promising approach could be the Holstein model (see e.g. [I] for a
detailed description of the Holstein model).

Another system of interest consists of three nonlinear sites (allowing for the
destabilization and shift of the DB) embedded in a linear chain (see as well [106]) to
enable the investigation of collisions of DBs with lattice excitations and to compare
with the results on the stability of DBs in the nonlinear trimer.



Chapter 4

Fractal Fluctuations

4.1 Mesoscopic Conductance Fluctuations

While in Chap. |3| the transport properties of bosons in leaking optical lattices
are described, here we focus on electronic transport in open mesoscopic systems.
In mesoscopic systems conductance fluctuations are a sensitive probe of electron
dynamics and chaotic phenomena. A prominent feature of electronic transport in
mesoscopic systems is that the conductance as a function of an external parameter,
e.g. a gate voltage or a magnetic field, shows reproducible fluctuations caused by
quantum interference [I4HI6]. Typical examples of a chaotic mesoscopic system in
which these universal conductance fluctuations were predicted and measured, are
quantum billiards (Fig. [15]. See Sec. for an overview.

A prediction from semiclassical theory that inspired a number of both theoreti-
cal and experimental works in the fields of mesoscopic systems and quantum chaos
was that in chaotic systems with a mixed phase space these fluctuations would
result in fractal conductance curves (as described in Sec. [17, 18]. Such frac-
tal conductance fluctuations (FCF) have since been confirmed in gold nanowires
and in mesoscopic semiconductor quantum dots in various experiments [19-23]. In
addition, FCF have more recently been predicted to occur in strongly dynamically
localized [24] and in diffusive systems [25].

Motivated by puzzling experimental results showing a dependence of the frac-
tal dimension on the coherence length, we studied the classical limit of transport

1 pm

Figure 4.1: Electron micrograph of a ballistic semiconductor quantum dot resembling a
stadium billiard with 1 pgm bar to show the scale. The picture is taken from ref. [15].
Transport measurements by Marcus et. al. exhibit universal conductance fluctuations as
a function of an applied perpendicular magnetic field (for moderate fields smaller than
37) [15].

ol
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Figure 4.2 (a) Scheme of a 2DEG (figure taken from materi-

alscience.uoregon.edu/taylor/science/taylor lab.html). (b) Illustration of an electron
billiard. The illustration shows some analogy to a macroscopic billiard, however, it does
not account for quantum effects.

through quantum dots also finding fractal fluctuations. This chapter will show, that
the conductance of purely classical (i.e. incoherent) low-dimensional Hamiltonian
systems very fundamentally exhibits fractal fluctuations, as long as transport is at
least partially conducted by chaotic dynamics. The fractal dimension is determined
analytically and it will be demonstrated, that the fractal dimension is governed by
fundamental properties of chaotic dynamics. In addition, we predict that FCF are
not only observable in systems with a mixed phase space but in purely chaotic
systems [30]. Note that in this chapter, in order to determine the fractal dimension
of the graph of a function 7'(k), we used the variation method (and double checked
with the Meakin method), i.e., we calculated N(Ak) = V(Ak, T(k))/(Ak)?, where
N(Ak) o< (Ak)~P for a fractal curve of dimension D, as described in Sec. [2.3]

4.1.1 Electron Billiards

What is a mesoscopic electron billiard? Imagine a two-dimensional electron gas
(2DEG) in a semiconductor heterostructure, where electrons can flow freely in a
plane, as shown in Fig. £.2l When a negative voltage is applied to a metallic
gate on top of the heterostructure, a depletion area forms inside the 2DEG from
which the electrons are repelled. By choice of the geometry of the metallic gates,
a quantum dot (we will call it a cavity) can be designed in the plane of the 2DEG.
Two or more small channels connect the cavity to outside leads in order to enable
conductance measurements. Typically, the size of the mesoscopic cavity is around
1 um. If a single particle picture is valid (e.g. the electron correlation can be
neglected) and if disorder or impurities are absent, then the transport is ballistic.
Furthermore, if the cavity boundaries are clean and steep enough such that the
electrons can be considered to reflect specularly from the “walls”, the cavity is
called a mesoscopic billiard, in analogy to macroscopic billiards. In contrast to
macroscopic electronic transport, where Ohm’s law is valid, quantum effects come
into play, see [I08| for an introduction. An important and well understood example
is that the conductance through a mesoscopic ballistic cavity forming a chaotic
billiard shows reproducible universal fluctuations as an external parameter, e.g. a
magnetic field applied perpendicular to the plane of the 2DEG, is varied [15].
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4.1.2 Universal Conductance Fluctuations

Universal conductance fluctuations (UCF), which initially were studied in disor-
dered mesoscopic conductors, are reproducible fluctuations of the conductance (as
a function of an external parameter such as the magnetic field or the energy) on
the order of 2e?/h and are a quantum effect. The size of the fluctuations is inde-
pendent of specific system parameters or the average conductance, see Fig. [£.3] for
an example. Where do UCF emerge from? In a disordered mesoscopic conductor
— which is smaller than the phase coherence length of the charge carriers but large
compared to the average impurity spacing — the transmission is the result of the
interference of many different, multiply-scattered and complicated paths through
the system. As these paths are typically very long compared to the wave length
of the charge carriers, the accumulated phase 6 along the paths changes basically
randomly when an external parameter such as the energy or the magnetic field is
varied. This results in a random interference pattern, i.e. reproducible fluctuations
in the conductance of a universal magnitude on the order of 2¢2/h. For a review see
[33] or [109]. The role of disorder in providing a distribution of random phases can
as well be taken by chaos. Thus, ballistic mesoscopic cavities like quantum dots in
high mobility two-dimensional electron gases that form chaotic billiards show the
same universal fluctuations [15, [110) [I11]. While for disordered media the shape
of the conductor is typically not relevant, it plays an important role for billiards.
Assuming chaotic dynamics in the billiard, characterized by an exponential decay
of the classical staying probability P(t) o< exp(—~t), semiclassical arguments lead
to UCF [112]. The classical decay rate is reflected in the autocorrelation function

C(AE) =< g(E)g(FE + AFE) >
and leads to a Lorentzian for small AE:
C(0)
L+ (25
The Lorentzian shape was found experimentally in chaotic billiards [110]. In

Fig. 4.4 UCF are shown, which we generated numerically by means of a Lorentzian
C(AE). Note that the conductance curve is smooth on small scales.

C(AE) = (4.1)

i

Conductance [e?/h]

Magnetic field (T)

Figure 4.3: Measurement of UCF on a gold nanowire in the late 1980s at temperature
T ~ 0.04 K (figure adapted from [I4]). The fluctuations were reproducible after days of
measurement.
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Figure 4.4: UCF, which are generated numerically by means of the autocorrelation
function C(AEFE) from Eq. as a function of an external parameter (e.g. the en-
ergy or a magnetic field) are shown. The conductance was calculated according to
g(AE) = F[\/S(f)exp(if)], where uniformly distributed random phases 6 were added
to the power spectral density S(f) (which is the Fourier transform S(f) = F(C(AE))
according to the Wiener-Khinchin-Theorem). Adding random phases # imitates the ba-
sically random changes of the accumulated phases along the multiply scattered paths
through the system. The enlargement shows that the conductance curve becomes smooth
on small scales.

4.1.3 Fractal Fluctuations: Semiclassics

We have seen that the conductance through a mesoscopic cavity as a function of
an external parameter (e.g. a gate voltage or a magnetic field) shows reproducible
fluctuations caused by quantum interference. In the following, we will give a short
overview into the semiclassical theory [17], that predicts fractal conductance fluc-
tuations in chaotic systems where the underlying phase space is mixed. Note that
in an experiment, chaotic systems typically exhibit a mixed phase space e.g. due
to the influence of the magnetic field or due to a soft-wall potential (in contrast to
ideally specularly reflecting hard walls).

Where does the fractality emerge from? If the average of the phase gain 0
accumulated on the different paths traversing the system exists, the conductance
curves are smooth on parameter scales that correspond to a change of the average
phase gain on the order of and smaller than the wave length of the carriers as we
have seen in Fig.[£.4] In systems with mixed phase space, where chaotic and regular
motion coexist, the phase gain of trajectories traversing the system, however, is
typically algebraically distributed

P(#) < 677 | where v <2 (4.2)

and no average phase gain exists (neglecting the finiteness of the coherence length
and assuming the semiclassical limit h.;y — 0; The transition to the quantum
mechanical regime, i.e. the role of the finite f.ss, is discussed in [I§]). Therefore,
the conductance curve of such a system fluctuates on all parameter scales and forms
a fractal. Ketzmerick has shown, that under these conditions the conductance curve
possesses the statistical properties of fractional Brownian motion [I7]. The fractal
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Figure 4.5: (a) A typical hierarchical mixed phase space structure of a 2D chaotic system
and (b) FCF are shown. The figure is taken from ref [I7]. The Poincaré surface in (a)
shows for the example of an antidot array the intersections of one chaotic and 6 regular
trajectories with the (y = 0, v, > 0) plane [I13]. The conductance fluctuations shown in
(b) are described by fractional Brownian motion (D = 1.4).

Resistance (ki2)

008 0 0.04
Magnetic fleld B (T)

Figure 4.6: Resistance (i.e. inverse conductance) versus magnetic field for the open sta-
dium billiard at a gate voltage of 21.9 V and at 50 mK. The 2DEG was 95 nm below the
surface. Fluctuations of the resistance on both large and small scales can be seen. The
inset shows a scanning electron micrographs of a device similar to the one that was used.

Schematically, a single classical trajectory through the stadium is drawn. The figure is
adapted from A. Sachrajda et. al. [19].
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dimension D is connected to the exponent ~ of the algebraic distribution of phase
gains by
D=2- % (4.3)

Due to the algebraic distribution of the phase gain P(6), the autocorrelation func-
tion exhibits a cusp

C(AE) = C(0) — (AE)?, (4.4)

in contrast to the Lorentzian shape of the correlation function for UCF where the
corresponding conductance curve becomes smooth on small parameter scales. The
semiclassical argument leading to the cusp was confirmed experimentally in a one-
dimensional periodic array of potential wells [I14]. An alternative to reasoning with
the average phase gain is to discuss the staying probability [17]. In a mixed phase
space, the staying probability P(t) decays algebraically (with the same exponent
v as for the distribution of the average phase gain) as chaotic trajectories in the
vicinity of the islands can get caught for long times in a scale-free manner in the
hierarchy of cantori [36, 37, 115] — see Sec. for an introduction. (We already
encountered the self-similar hierarchy of islands in a mixed phase space in Sec. [3.7]
where we investigate the stability of discrete breathers consisting of BECs in optical
lattices.)

An example of experimental evidence for the fractal behavior of the conduc-
tance is shown in Fig. [£.6] In that work the conductance through a stadium bil-
liard with lithographic radius of 1.1 ym was measured as a function of an external
magnetic field perpendicular to the plane of the billiard. The cavity was defined
using metallic gates on a high mobility AlGaAs/GaAs wafer. The high mobility
material provides the required long phase coherence length. The device leads were
made especially wide (0.7 pm) in order to allow most trajectories to rapidly exit
the stadium, with the exception of those trajectories which were trapped near the
hierarchical phase space structure at the boundary between regular and chaotic
motion. This feature and the high mobility made this a suitable device for the
observation of fractal conductance fluctuations and explains, why in earlier exper-
iments on conductance fluctuations in ballistic microcavities [I5] no fractals were
seen.

4.1.4 Experiments Beyond Semiclassics

Due to the quantum nature of the FCF it came as a surprise when recent exper-
iments indicated that decoherence does not necessarily destroy the fractal nature
of the conductance curve but may only change its fractal dimension [116, T17].
Namely it was found that with decreasing coherence length the scaling region over
which the fractal was observed did not shrink — as would be expected from the
semiclassical arguments —, but that the fractal dimension changed. The results of
the experiment can be seen in Fig. .71 A decrease in temperature enlarges the
electron phase coherence length and is therefore expected to induce more quantum
mechanical conduction. In addition, a decrease in cavity size should increase the
influence of coherent transport processes.

In other words, from bottom to top in Fig. the transport is expected to be
more and more classical. However, still the conductance curve retains its fractality,
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Figure 4.7: Schematics (not to scale) of the gate patterns (top row) together with the
equivalent scanning electron micrographs (second row from top) for several billiards. Bot-
tom: Magnetoconductance fluctuations measured for billiards e, f, and g (see trace labels).
Billiards e, f, and g have mean free path 4.4 um and the same geometry as b but are
different sizes. All billiard openings are 0.2 um wide. The traces are offset vertically
for clarity. From top to bottom the temperature is decreasing for the first four curves
(4.2 K, 1.4 K, 0.48 K, 0.03 K) at constant cavity size 1.0 um?, while for the lower three
curves at constant temperature (0.03 K) the cavity size decreases from top to bottom
(1.0 pm?, 0.36 um?, 0.16 wm?). The last number in the right-hand brackets indicates the
box-counting dimension D. Figure taken from [I16].

though the fractal dimension decreases. This finding is quantified in (right),
which shows that with decreasing quantum lifetime of states the fractal dimension
of the curves decreases as well, however, a change of the fractal scaling range
(e.g. between the point DB2 and DB3 in Fig. [£.§(left)) was not observed. These
experiments seem to partly contradict the semiclassical theory of fractal scaling
and inspired our investigations shown in the next chapter.

4.1.5 Fractal Fluctuations: Classical Origin
4.1.5.1 Numerical Evidence

As a starting point of our investigations and to connect it to the experiments
we numerically study the classical conductance through a rectangle (hard-wall)
and a stadium billiard (soft-wall) as a function of a perpendicular magnetic field
as shown in Fig. . (Throughout this chapter, we will study the transmission,
which, in accordance with the Landauer theory of conductance, is proportional
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Figure 4.8: (left) Box-counting analysis of magnetoconductance curves. The data (solid
line) follow a straight line (dashed line) between the magnetic field scales DB2 and DB3
while the gradient of the line gives the fractal dimension of the curve under investigation.
The insets (a) and (b) are derivative plots of the data and (c) shows the individual data
points (for clarity only every tenth point is plotted). (right) Lifetime of quantum states
7, (lower curve) and fractal dimension (upper curve) as a function of the temperature.
The figures are taken from ref. [116].

to the conductance, see e.g. [108].) Note that not only the phase space of the
stadium but also of the rectangle billiard is mixed in the presence of a perpendicular
magnetic field. In both cases, fractal analysis clearly reveals the fractal nature of
the conductance curves. As the simulation is purely classical, the fractal scaling
cannot be caused by interference effects.

4.1.5.2 Model: Open Standard Map

So what is the underlying mechanism for the fractality of the conductance curve
and how can we understand its dimension? To study this mechanism in detail we
will, because of its numerical and conceptual advantages, analyze the transport in
Chirikov’s standard map [39, 118 119] (see Sec.[2.2.1). This paradigmatic system
shows all the richness of Hamiltonian chaos. And since — as will become apparent
below — our theory relies only on very fundamental properties of chaotic systems,
it is a natural choice as a model system. The standard map is defined by

0 = 6+

/

p = p+ Ksind

with momentum p, angle # and the 'nonlinearity parameter’ K, which drives the
dynamics from fully integrable (K = 0) to fully chaotic (K 2 8). In between the
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Figure 4.9: Classical Conductance ¢g(B) through a stadium (left, geometry as in ref. [19])
and square billiard (right, geometry as in ref. [I16]) versus magnetic field B. Both fluc-
tuating conductance curves are fractals, as is shown in the insets by the result of the
box-counting analysis (see text). Their respective dimensions are D =~ 1.28 for the sta-
dium and D = 1.25 for the square billiard.

phase space is mixed. The standard map can be interpreted as the Poincaré surface
of an autonomous conservative system of two degrees of freedom. As such the map
can by viewed to directly correspond to the Poincaré map at the boundary of a
chaotic ballistic cavity, connecting it conceptually with the experimental system.
We introduce absorbing boundary conditions (see e.g. ref. [120]), i.e. when p exceeds
(drops below) a maximum (minimum) threshold value, the particle is transmitted
(reflected) and leaves the cavity. As can be seen right from the definition of the
standard map, the envelope of the entryset (which is the phase space projection of
the injection lead) is simply half a period of a sine function times K.

A trajectory entering the system eventually contributes either to the total transmis-
sion or reflection, and we mark the corresponding point in the entryset by a color
code (transmission: red, reflection: blue) as shown in Fig. [£.10] Chaotic dynamics,
through its fundamental property of stretching and folding in phase space, leads to
a lobe structure (see Fig. (bottom)), which is typical for chaotic systems and
not special to the standard map. The lobe structure is translated into transmis-
sion by summing up the intersections of the transmission lobes along a horizontal
line, see Fig. [A.11] A lobe of thickness w gives rise to a maximum contribution
AT o w® with 8 = 0.5. Variation of the external parameter K = 7.55 leads to
a fractal transmission curve T'(K) with D ~ 1.25. Note that with K = 7.55 we
reside in a regime near to the first fundamental accelerator mode which terminates
at K = 7.45. However, trajectories in tiny accelerator mode islands which still
might exist, exit the phase space region quickly, and do not affect the long-time
survival statistics, thus making the system effectively fully chaotic.

An analysis of the distribution of the widths w of lobes exhibits a power law

n(w) oc w™?. (4.5)
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Figure 4.10: Tllustration of the absorbing boundaries (green horizontals), the transmission
and reflection areas of the standard map and the phase space projection of the injection
lead (entryset). The entryset is shown after two iterations of the standard map.

In the next chapter, we will analytically relate the power law exponent of lobe
widths to the fractal dimension of the conductance curves.

4.1.5.3 Analytics: Fractal Dimension

How does the fractal dimension depend on the power law distribution of lobe-widths
and the curvature of the lobes? To this aim, we study a random sequence of curve
segments mimicking the intersection of consecutive lobes of widths w, distributed
algebraically with exponent o and curved like w”. We define X; := Z;‘:1 w; and

TX)=(-1)'(X -X,)’ © Xi<X<Xi. (4.6)

An example of this curve of “random lobes” with a = 1.9 and 3 = % is shown in
Fig. [4.12] (top). The box-counting analysis clearly reveals a fractal structure.

We further simplify the problem by replacing the lobes by a sequence of stripes
of widths x with power law distribution n(x) o z®. Dispensing with the sign of

the fluctuation, the transmission reads
T(X)=(Xin— X))+ Xi<X <X, (4.7)

This yields histogrammatic transmission curves 7(X) like the bottom curve of
Fig.[4.12] As shown in the inset, the fractal dimension of the resulting transmission
curve remains unchanged compared to the corresponding calculation with random
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Figure 4.11: How lobes translate into fluctuations: In the lower row the entryset of the
standard map with absorbing boundary conditions at £37 for K = 7.5 and K = 7.6
resp. can be seen. The three pictures in the center row show the magnification of the
central sections of the entryset for three different values of K = 7.5, 7.55 and 7.6. The
transmission T'(K) for K = 7.5...7.6 is shown in the top left picture. Note that a small
change in K shifts the lobes vertically, but conserves the overall phase space structure, and
that the largest fluctuations are caused by intersection with the apex of lobes. Starting
from K = 7.5, a large transmission lobe is cut by the horizontal line (see text), i.e. the
transmission increases with K. In the same way, e.g. the fluctuations of T'(K) near
K = 7.55 can be understood. The box-counting analysis reveals a fractal structure (top
right).
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Figure 4.12: Transmission T'(X) for lobes (red upper curve, shifted along the y-axis for
clarity) and stripes (black lower curve) for one and the same random distribution with
a=1.9, 8 =0.5. The inset shows the box-counting analysis for the upper (red triangles)
and lower transmission curve (black squares). The regression line is drawn for the upper
curve, whose fractal dimension is 1.41.

lobes within the precision of the box-counting analysis. Thus, the measured fractal
dimension of the curve does not change when considering stripes instead of lobes
and also when neglecting the sign of each contribution, confirming the intuition,
that the fractal dimension depends only on the relative scaling, i.e. a and 3, but
not on the detailed form of the curve sections.

For these curves like the bottom one of Fig. |4.12| with @ — 3 > 1, we can give
an analytical expression for the fractal dimension and then estimate the fractal
dimension of the transmission curve in the standard map. We apply the box-
counting method, which we therefore review shortly (see Sec. and ref. [42]
for a more detailed introduction). In this approach the fractal curve lying in a
n—dimensional space is covered by a n—dimensional grid. Let the grid consist of
boxes of length scale s. The box-counting dimension is then given by

D = — 1im 28N

li o (4.8)

where N(s) is the number of non-empty boxes. For our problem, we divide N(s)
into three contributions N (s) = n, + ny +n., as schematically drawn in Fig. .
The number n, of vertically placed boxes (see mark (a)) covering contributions
from stripes of widths x > s, reads

1 o0
na(s) g/ p(x)rldr oc s~ (4.9)

Secondly, the number ny;, of horizontally placed boxes covering horizontal con-
tributions of stripes of widths larger than s, see Fig. 4.13A(b), is given by

np(s) = 1/Oop(yc):cd:c < é/ooop(x)xdx. (4.10)

S
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Figure 4.13: A. Schematic transmission according to Fig. (bottom), covered with
boxes of size s. There are three contributions marked (a-c). B. Total number N;,(w) =
L% n(w')dw" of lobes (for the open standard map with |p| < 47) of width larger than
w on a double logarithmic scale. The four curves show estimates for increasing res-
olution Wy, = 1077 (pink)...1078(black). The curves clearly approach a power law
corresponding to n(w) oc w™!?. The insets show the transmission curve T'(K) for values
K =8.0...8.1 calculated from 2 x 10'3 trajectories and its fractal dimension.
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Figure 4.14: Fractal dimension of transmission curves based on random lobes according
to Eq. In the legend, « is given, while § varies from 0.1,0.2,...,0.6, e.g. the three
data points around D = 1.4 correspond to (a,3) = (1.7,0.3), (1.6,0.2) and (1.5,0.1). For
D 2 1.2 the data points lie on plateaus confirming the analytical relation D = a— 3. The
same results within the accuracy of the fractal analysis are obtained when calculating the
transmission according to Eq. [f.7] The error bars in the figure are an estimate and are
of total size 0.025.

Hence ny scales like s™' and can be neglected in comparison to n, because of

a— (> 1. Finally, we determine an upper estimate for the number n,. of vertically
placed boxes covering the contribution from stripes of widths < s. The total
length of these widths is L(s) = [, p(z)xdz, therefor L(s)/s boxes are needed to
cover the length. Inflating all heights of the stripes x < s to the maximum possible
size s”, see Fig. [4.13A(c), we find

L B
ne(s) < Ls) &7 o 57, (4.11)
s s
For s <1 thus the dominant terms is n,(s). With Eq. 1.8 N(s) gives rise to the
box-counting dimension

log s—*8

D=—-lim——
s—0 logs

=a—0. (4.12)

A numerical calculation of the fractal dimension of transmission curves based on
random lobes for various pairs of (a,3) shows good agreement with the analytical
result for « — § 2 1.2, as can be seen in Fig. [4.14}

To connect the analytical result with the calculations of the transmission of
the open standard map, we numerically estimate the distribution of lobe-widths
in the entryset as shown in Fig. for K = 8, where we obtain a ~ 1.9.
Together with 3 = 1/2, corresponding to first order Taylor expansion of the cosine
function, Eq. predicts a fractal dimension D ~ 1.4. Direct analysis of the
transmission curve (see insets of Fig. 4.13B) yields a fractal dimension D =~ 1.39,
in good agreement with the expected value.
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4.1.5.4 Origin of the Power Law

How can a power law distribution of lobe widths emerge in a fully chaotic open
system? Rather one might have expected to find an exponential distribution of
lobes in a fully chaotic system. To see why the distribution is algebraic, however, let
us examine the simplest case of an open chaotic area preserving map the dynamics
of which is governed by a single, positive homogeneous Lyapunov exponent A. In
each iteration phase space structures are stretched in one direction by exp(\),
shrunk by exp(—\) in the other and then folded back. The entryset of the open
system is thus stretched into lobes of decaying width w(t;) o exp(—At;). The
phase space volume flux out of the system decays exponentially as it is typical for
a fully chaotic phase space, i.e. T'(t;) ox exp(—t;/7), with (mean) dwelltime 7. The
area I'(¢;)At is the fraction of the exitset that leaves the system at time ¢;. With
ti(w) o< —In(w)/A the number of lobes of width w in the exitset is

F(ti(zj))At . %exp(ln)fj_u)

This suggests that the power law distribution of lobe widths is a generic property
even for fully chaotic systems. A quantitative expression for the exponent, however,
is not as easy to derive, as e.g. the Lyapunov exponent for the standard map is
not homogeneous. Note that we showed the argument for the exitset and not for
the entryset for the sake of clarity. A corresponding relation for the algebraic
distribution of lobe widths in the entryset can be derived easily by studying the
time-reversed map, which again is a chaotic map with the same properties.

) = le‘rfl_

N(w)

4.1.6 Conclusions

We have shown that the conductance of purely classical (i.e. incoherent) low-
dimensional Hamiltonian systems very fundamentally exhibits fractal fluctuations,
as long as transport is at least partially conducted by chaotic dynamics. Thus
mixed phase space systems and fully chaotic systems alike generally show FCEF.
More specifically, we have shown that transport through chaotic systems due to
the typical lobe structure of the phase space in general produces fractal conductance
curves, where the fractal dimension reflects the algebraic distribution of widths of
lobes P(w) ~ w~* in the exit- /entryset. We showed analytically that under these
conditions the fractal dimension reads D = o — 1/2.

To connect with the semiclassical picture of FCF, note that an implicit assump-
tion of the semiclassical theory is that the classical dynamics remains unchanged
as the external parameter is varied and thus only phase changes are relevant. In
many experimental setups, however, the external parameter is changed consider-
ably, leading to very noticeable changes in the classical dynamics. Moreover, we
have shown that the classical chaotic dynamics itself already leads to fractal con-
ductance curves! From this follows that even on very small parameter scales the
fluctuations due to changes in the classical dynamics are important. In contrast
to the semiclassical effect the size of the fluctuations is not universal but depends
on specific system parameters. Due to the fractal nature of the classical conduc-
tance, however, there is no parameter scale that separates coherent and incoherent
fluctuations.
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In conclusion we are led to the following scenario: In general the conductance
curve of low-dimensional Hamiltonian systems is a superposition of two fractals —
one originating in interference which is suppressed by decoherence to reveal the
fractal fluctuations reflecting the changes in the classical phase space structure.
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4.2 Long-range Correlations in Music Rhythms

A completely different system where fractal fluctuations are found, is musical
rhythm played by humans. While in the case of fractal conductance fluctuations,
we are interested in the structures on smaller and smaller scales, here the long-
time correlations lead to the fractal nature of the fluctuations. Still, the idea of
investigating human rhythms emerged from studying FCF.

Music rhythms performed by humans will always exhibit a certain amount of
fluctuation compared with an exact rhythm (e.g. given by the steady beat of a
metronome). We refer to these fluctuations as temporal deviations which denote
the occurrence of individual sounds slightly before or after the exact point in time
(see Eq. . It is believed that the task of synchronizing the movement of one’s
finger to a periodic environmental signal (finger tapping) shows deviations from the
signal which exhibit long-range correlations (1/f’-type) [121H124]. But musicians
do not restrict themselves to finger tapping. Are long-range correlations (LRC) in
complex music rhythms played by humans generic?

Long-range correlations (1/f”-type) are ubiquitously found in various scientific
disciplines, examples include DNA sequences [125], condensed matter [126], 127],
econophysics [128|, human coordination [129, [130], astronomy [131], [132], neuro-
physics (see e.g. [133, [134] and references therein), etc. General concepts [36], 100,
135] aim at explaining the omnipresence of 1/f# noise in nature.

Specifically, one encounters 1/f? noise in heartbeat intervals [45, T36-138] and
in loudness and in pitch fluctuations in music and speech [20, 27, 139]. The pitch
fluctuations were measured by the rate of zero crossings of the audio signal, which,
in terms of music, approximately follows the melody. 1/f? noise in both loudness
and pitch fluctuations was used for stochastic composition which was judged by
most listeners to be more pleasing than that obtained using white noise or 1/ f?
noise [26, 27].

In this section, we show that the temporal fluctuations in simple as well as in
more complex music rhythms are generic in the sense that Gaussian 1/f7 noise is
produced, no matter if the task is accomplished with a finger, a hand, a stick, a
foot, a combination of these or the voice [31]. The exponent /3, however, depends
on the individual and on the specific task. We found a variety of exponents in the
range 0.2 < 3 < 1.3. In other words, we are dealing with fractional Gaussian noise
in the time domain of human music rhythms, which is of stochastic nature and,
in contrast to conductance fluctuations in mesoscopic systems, not reproducible.
The fluctuations that we focus on comprise of generic (natural) deviations from a
given rhythmic pattern — in contrast to intentional accentuations. Accentuation
facilitates the interpretation of a music piece and thus plays an important role;
however, this is not treated here.

The fact that long-memory processes arise in a broad variety of complex rhyth-
mic tasks suggests that a common basic neurophysical mechanism accounts for
generic creation of human rhythms. It is most likely that 1/f” noise in music
rhythms is not generated in the course of the movement of a limb but due to a
neuronal network that is responsible for perception and estimation of time. See
[140-142] for an overview on neurophysical modeling of rhythmic timing and esti-
mation of time intervals in the millisecond regime. We will briefly review an idea
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Figure 4.15: Schematic plot of a rhythmic music sequence (e.g. a drum sequence) and a
metronome, only pertaining to the temporal occurrence of sounds. The drum sequence
with beats at times S, is compared to the metronome M,, yielding errors e, = .S, — M,,.

based on a simple stochastic model [I143] which generates pulse trains exhibiting
1/f” noise in Sec. [4.2.3|

Moreover, in Sec. [£.2.4) we are led to an application of our findings by addressing
the following question: Does the rhythmic structure of a piece of music sound
better when it is as exact as possible or are 'natural’ deviations (comprising long-
range correlations) in music rhythms more favorable? Professional audio software
applications include a so called "humanizing’ feature, which adds deviations e,, (also
referred to as errors, see Eq. to a given audio sequence. Hence, there exists
a desire to generate or modify music on a machine that sounds more natural. We
analyzed the humanize tool of such contemporary software applications and found
that e.g. for the program 'Pro Tools]it consists of Gaussian white noise. So how
does a music piece humanized with Gaussian 1/f? noise sound? We show with
simple computer-generated drum rhythms, that the 1/f” humanized music (with
(3 =~ 1) was rated significantly better by professional musicians from the Gottingen
Symphonic Orchestra than the conventional humanized sequences comprising a
Gaussian white noise error source with the same standard deviation. However, the
simple drum rhythms used in the experiments sound rather artificial and the exact
rhythm was preferred over the humanized versions.

For more realistic experiments on the influence of LRC in music rhythms on
the perception of humans, a music piece (more specifically a pop song) was cre-
ated, recorded and humanized in cooperation with Cubeaudio recording studio
(Gottingen). Experiments with test subjects were carried out in the course of an
interdisciplinary diploma thesis in psychology [32] (see Sec. [£.2.4.3). Applications
are possible in humanizing music sequences with Gaussian 1/f” noise, e.g. in the

field of electronic music or in post-production of real recordings, where a patent in
the EU and the USA was applied for (Sec. |4.2.4.4)).

4.2.1 Error Time Series

In this section, we will make the basic definitions needed and give an illustrative
example of the error time series originating from a recording of human rhythmic
drumming.

IPro Tools is widely used by professionals throughout the audio industries worldwide for
recording and editing in music production, film scoring, post production etc.
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Figure 4.16: Recording beats on a drum. A subject, here a professional drummer, is
playing on a drum. The sounds are recorded with a microphone at sampling rate 44.1
khz. Photo taken from www.hippocritz.com by courtesy of Agbenyega Attiogbe.

A simple way to define the deviations of human drumming from a rhythmic
reference pattern is to take a metronome as a reference (see Fig. . Given a
‘metronome’ M, = My+nT, where T" denotes the time interval between metronome
clicks and n = 0,1,2... is an integer. And given a (recorded) rhythmic music
sequence with sounds (also referred to as beats) at times .S, then the error time
series is defined as

en =S, — M, (4.13)

where e, < T'Vn. A sound is given by the audio signal A(t) (e.g. the voltage input
to a loudspeaker) and as such is extended in time. We define the occurrence of a
sound at time S,, by

A(S,) = max(A(t)), (4.14)

which is well-defined in particular in drum recordings (Fig. due to the compact
shape of a drum sound A(t): The envelope of A(t) rises to a maximum value (“attack
phase”) and then decays quickly (“decay phase”) [I44]. Thus, if the drum sounds
are well separated, a unique maximum A(S,) can be found. In contemporary
audio editing software, typically the onset of a beat is detected [144] [145], which
is very useful when beats overlap or when dealing with distorted sequences. In
Sec. [£:2.4.2] we will use onset detection to find the temporal occurrences of sounds
for humanizing music sequences.

The definition Eq. can be easily generalized to considering deviations of
a sequence from a complex rhythmic pattern instead of from a metronome. The
time between two successive sounds 7; = ;.1 — S; (also called interbeat intervals)
is connected to the timing errors by

Ti :T+6i+1—€i. (415)

In the following let us define the terms 1/f” noise and long-range correlations.
Given a discrete stochastic process x(t), customarily, one speaks of 1/f” noise,
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when

S(f)=|F@®))? o< f” and 0 <3< 2, (4.16)

where F denotes the Fourier transform. Note that there are as well definitions
where 0 < 3 < 1, see e.g. [146]. In literature, both notations 1/f and 1/f”
noise are found for the same entity. For simplicity, from now on we will drop the
exponent and speak of 1/f noise meaning 1/f? noise with 0 < 8 < 2. For 8 = 0
the time series x(t) is uncorrelated (white noise), while for § = 2 it corresponds to
Brownian motion (integrated white noise). In addition, when the z(¢) are Gaussian
distributed, it is called Gaussian 1/ f noise (also referred to as fractional Gaussian
noise).

A (discrete) long-memory process is defined as a stochastic process where the
autocorrelation function C'(k) =< x(t)x(t+k) > corresponding to a time series x ()
decays to zero so slowly that it is not summable (in the discrete case) [121), [146]:
> Clk) = o0, (4.17)

k=0
which holds, if
Ck) x k™ and 0 <y <1, (4.18)

also referred to as long-range correlations (LRC). Finally, for 0 < v < 1, Eqgs. [4.16
and [£.17 are connected by the Wiener Khinchin theorem

S(f) = F(Ck)) (4.19)

where S(f) oc f77! for a long-memory processes.

A simple example of a recording and its processing is shown in Figs. and
Here, the given task was to follow the clicks of a metronome given over
headphones with a hand on a drum at 180 beats per minute (bpm). The output is
recorded with a microphone. A comparison of \S,, with the metronome (Eq.
leads to the error time series e,. As we see from Fig. {.17p, e, fluctuates around
a mean of —16.4 ms. In other words, the negative value means that the subject
anticipates the next metronome click.

In Fig. the power spectral density S(f) = |F(e,)|* of our example is
shown. The frequency range under consideration is fiin < f < fuyquist/2, Where
Jryquist = 0.5 sec™! is the Nyquist frequency (i.e. half the sampling frequency of the
error time series). The corresponding time window reads T, < T < Tjnaz, Where
Tonin = (fayquist/2) "1 60/180 = 1.3 sec and T}, = 333 sec. A least squares fit of the
PSD in the considered frequency range indicates that S(f) can be approximated
by a power law

S(f)oc [’ (4.20)

with exponent 3 ~ 1.2. However, to closely investigate the long-range behavior of
the time series, we used several methods described in Sec.

4.2.2 Data Set & Analysis

The data set analyzed in Fig. [4.21] consists of the recorded output of several rhyth-
mic tasks performed by humans, which can be divided into three subsets Sgrym, Ssing
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Figure 4.17: (a) The drummer in Fig. was recorded in tapping with the hand on
the drumhead of a drum according to the clicks of a metronome, that were given over
headphones. Shown is a section of the recorded amplitudes (e.g. the voltage input signal
to a loudspeaker) over the beat index n. A beat-finder detects the temporal occurrence of
the beats (green lines), here given by the maximum of the amplitudes. The metronome
(red dashed lines) has 180 bpm, i.e. two consecutive clicks are separated by 1/3 sec.
(b) Corresponding error time series of the recording. The errors eggy to esgg depicted
in Fig. are marked with red squares. Note that values e, < 0 indicate that the
sounds occur earlier than the metronome click. Inset: The pdf of the time series is well
approximated by a Gaussian distribution in agreement with a previous analysis of finger
tapping data [I2I]. The Gaussian distribution in this example has mean —16.4 ms and
standard deviation 15.6 ms.
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Figure 4.18: Power spectral density (PSD) of the time series in Fig. Note that
this figure serves only as an illustration — for clear statistical estimates several methods
from time series analysis are applied in Sec. The PSD indicates 1/f% noise at low
frequencies in the range foin < f < 0.25 = fhyquist/2 with § = 1.2. Note that the
logarithmic transform does not preserve the structure in the variance of the estimates
at each frequency. Estimates at frequencies with high amplitudes have lower relative
variances than the relative variances at frequencies with low amplitudes. Since in 1/f
noise, low frequency is associated with high amplitudes, this produces the triangular
structure, where the bottom part of the envelope descends more steeply than the top
part. An averaged PSD of the same time series analyzed here is shown in Fig. .19
(second curve from top).

and Sy,p. All subsets have in common that a human was given metronome clicks
over headphones. To address the task that was recorded, leading to an error time
series e, we annotate each error time series with a task index Z, which denotes
the specific task explained in the following (e.g. Z = (1, 2) corresponds to tasks 1
and 2 in Fig. 4.21)).

The subset Sgum consists of drum recordings provided by a recording studidﬂ
and of recordings that we made. During professional drum recordings in a studio,
a drummer is sitting in front of a drum set and uses both arms and the feet to
generate a complex music rhythm that, typically, is part of a piece of music. The
feet are used for operating pedals connected to bass drum and hi-hat (Fig. [4.23)).
During a studio recording it is customary, that the drummer hears metronome
clicks over headphones while playing. We make use of this fact to analyze the error
time series of professional drumming data. Given the speed of the song, usually
measured in beats per minute (BPM), a comparison of the drum recordings with
the metronome can be drawn. In detail, the subset Sg..,, comprises error time
series eZ obtained from several recordings of different tasks Z = (1 — 7):

o c\?: Studio data of 2 drummers belonging to different music bands playing

different patterns at 190 bpm and 132 bpm. The drum sequences analyzed
each are part of a music song.

o 27 Short rhythmic pattern at 124 bpm. The pattern (given in 4/4 bars)

2Cubeaudio Recording Studio, Géttingen, Germany
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contains quarter and eighth notes, is of 2 bars length and is repeated contin-
uously by the drummer.

o 07 Tapping with a drum stick on a drum according to the clicks of the

metronome at 124 bpm.

More specifically, el originate from the same recording, but the time series el is

obtained by comparison with a 248 bpm metre (thus focusing on the deviations in
the eighth notes), while eg) is obtained by comparing the beats with respect to the
metronome at 124 bpm. In e’ the off-beats are analyzed (i.e. by comparison with
a metronome at 124 bpm that is shifted by 7'/2). To summarize, the complexity of
the rhythmic patterns in the subset Sy, decreases from 67(11’2) over 651375) to 67(16’7).
At the one end there are real drum recordings that are part of popular music songs,
while at the other end a link to finger tapping analyzed in literature [121H124] is
made.

Secondly, the subset Sy, consists of 4 recordings (Z = (8 — 11)) of short
rhythmic sounds of the voice according to a metronome at 124 bpm. We chose short
phonemes (such as ['dee’]) to obtain well-peaked amplitudes of the beats. However,
the fact that long-range correlations are found is expected to be independent of the
phoneme that is articulated.

Finally, the subset Sy, comprises of tapping experiments (Z = (12—27)) similar
to what can be found in literature, but to connect with the subset Sy, we recorded
tapping with a finger or a hand on the drumhead of a drum. We recorded tapping
at two different metres for each test subject: 124 bpm (even task index) and 180
bpm (odd task index)l—ﬂ. We discarded the first 50 beats to eliminate transients.
When a deviation is larger than 100 ms, than that beat is called a ’glitch’ and is
omitted, which happened in less than 5 out of 1000 cases for the recordings in Sgiyg
and Syqp and does not appear to affect the long term behavior we seek to quantify.
Test subjects in &y, and S,y Were of mean age 33 £ 9 yrs.

We used several methods to analyze the correlation properties of the data,
namely the periodogram (also referred to as PSD), detrended fluctuations analy-
sis (DFA), and the maximum likelihood estimation (MLE [I47], details are given
below). See Sec. for a short introduction to fractal analysis.

For the estimate via the periodogram, a least square fit of the power spectral
density S(f) = |F(e,)|? is made on a double logarithmic scale[[] As the variance of
the PSD is large (at high frequencies), an average of the PSD is taken (Fig. [4.19).
For the averaging, the time series is divided into boxes of length L, and in each
box the arithmetic average is taken. We used L = 5 and checked that moderate
averaging L < 10 does not notably alter the resulting exponent.

The second method, DFA, is applied directly in the time domain, see Sec.
and [45], [149] for details. The integrated time series is divided into boxes of equal
length s. DFA involves a detrending of the data in the boxes using a polynomial
of degree k. Then the sum F(s) of the fluctuations over the trend is calculated.

30nly exception are tasks 14 and 15 which both are recordings at 124 bpm.

4A comparison of the linear regression with a band integrated regression, where the points in
the power spectrum are equidistant, shows that the linear regression leads to more reliable results
[14]].
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b)

Figure 4.19: Examples of the averaged PSD of different error time series of the data set.
The red straight lines are least square fits in the regime frin < f < fayquist/2, thus
indicating a long-range behavior of the correlations. (a) Analysis of different complex
drum sequences. The upper two curves originate from the analysis of drum sequences of
two different songs provided by a recording studio. For the lower two curves we made
recordings of a drummer continuously repeating a drum pattern. (b) Examples from the
PSD of Sging and Syqp. The upper two curves show the PSD for tapping on a drum for two
different professional drummers. The lower two curves show the analysis of recordings of
short rhythmic sounds of the voice according to a metronome. Subjects were a professional
drummer and a professional a-capella singer.

Again, a linear relationship on a log-log plot indicates the presence of power law
(fractal) scaling F'(s) ~ s®. The scaling exponent « is related to the PSD exponent
3 by [146]

B=2a—1. (4.21)

In case of fractional Gaussian noise @ = H is the Hurst exponent. We calculated
the DFA exponents using DFA2, which means quadratic detrending (k = 2), see
Fig. Similar results were obtained with linear detrending (DFA1).

Once it is statistically established by means of PSD and DFA that the spectral
density S(f) is well-approximated by a power law, we use the MLE to estimate the
exponent # and determine confidence intervals. The MLE is applied to S(f) in the
same frequency range as for the PSD method (i.e. fiin < f < fruyquist/2 = 0.25).

Results

As can be seen in the examples in Figs. and (task index for top to bottom
curves are Z = (2,1,3,5) and Z = (22,21,8,10) in Fig. and Fig. ) the
time series exhibit long-range correlations. We find Gaussian 1/f noise for the
whole data set; see Fig. where the exponents [ with corresponding confidence
intervals are collected. We emphasize that the exponent (3 of the Gaussian 1/ f noise
is not universal and varies in our data set between 0.2 < # < 1.3. Note that the ex-
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box size s

Figure 4.20: Examples of detrended fluctuation analysis (DFA2) for the same error time
series analyzed in [1.19p, i.e. the lower two curves correspond to recordings of short rhyth-
mic sounds of the voice, while the upper two curves originate from tapping on a drum.
Clearly, a fractal scaling F'(s) ~ s is found for box sizes in the range 6 < s < N/4, where
N is the total length of the time series. To compare with the exponents 3 calculated in
Fig. , the PSD exponents 3 = 2a — 1 are given as well.
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Figure 4.21: Results of the time series analysis of the whole data set obtained from
different rhythmic tasks. The tasks correspond to (complex) drum sequences (Z = (1-7)),
rhythmic vocal sounds (Z = (8 — 11)) and to tapping with a finger or hand on the
drumhead of a drum (Z = (12 — 27)) . All sequences recorded lead to error time series
that exhibit Gaussian 1/f noise. The exponents [ obtained by the different methods
PSD, DFA2 and MLE are compared and show overall good agreement. The confidence
intervals are provided by the MLE. The two tasks in-between two neighboring vertical
dashed lines are recordings of the same test subject at different metronome tempi (124
bpm and 180 bpm respectively), e.g. tasks 20 and 21 are recordings of the same individual.
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ponent varies as well within recordings of different tasks made by the same person.
For example for the tasks Z = (8,20,21) the same person was recorded (who is a
professional drummer), where the different MLE exponents 5(Z) = (0.4,0.7,1.1)
are obtained.

The tasks in the whole data set are quite diverse and the data set is not large
enough to significantly detect task-dependent differences. However, our focus will
be on generic long-range correlations in music rhythms that appear in all tasks and
with every subject that we recorded (as long as the subject was able to follow the
rhythm).

Is the exponent related to the music expertise of the person recorded? In the
subsets Sying and Sy, We recorded musicians and non-musicians with different mu-
sical experience ranging from laypersons to professionals, where the music expertise
was estimated by a self-evaluation. In the subset Sy, the subjects recorded are
drummers, i.e. experienced in playing the drums. A clear dependence between f3
and the music expertise was not found in the data set. A prerequisite for LRC is
that the person is able to follow the rhythm. Long-range correlations vanish, if the
individual loses the rhythm too often and reenters with help of the metronome —
we speculate that this resets the memory of the internal mechanism (some kind of
“dynamical clock”; see Sec. responsible for the rhythmic timing.

Another considerable quantity is the standard deviation of the error time series
(the average for the whole data set is ¢ = 21 ms). The lowest standard devi-
ations were found for musicians, however a musician does not necessarily intend
to minimize the standard deviation. We surmise that the more a person tries to
synchronize with the external metronome, which can reduce the standard devia-
tion in case of trained drummers to o < 10 ms, the lower the exponent 3. This
suggests that some sense of rhythmic timing is crucial for LRC, where the degree of
the correlation shrinks with increasing external influence. In the limit, where the
test subject is triggered completely externally (as in reaction time experiments),
no LRC are found [122].

We are led to the following conjecture: When a musician is strongly triggered
externally (by a metronome or another music sequence) and synchronizes highly
with the external signal, the degree of long-range correlations in the corresponding
error time series is smaller than in the case when the musician is ’free floating’,
i.e. triggered mostly internally.

4.2.3 Modeling Rhythmic Drumming

It seems most likely that 1/ f noise in music rhythms is not generated in the course
of the movement of a limb but due to a neuronal network that is responsible for
perception and estimation of time. An overview on neurophysical modeling of
rhythmic timing and estimation of time intervals in the millisecond regime is found
in [T40H142, 150]. As described in [140], modeling an internal clock that could
account for timing in the millisecond regime has been a challenge for decades, see
e.g. [124] I51] for recent approaches. The millisecond regime is defined in [140]
as being above 10 ms and below 500 to 1000 ms. Since experienced drummers
achieve standard deviations of below 10 ms, we alter the time scale of interest for
our purposes to 5 < 7 < 500 ms. The human reaction time lies within that regime:
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Figure 4.22: Dynamics of a single neuron model which exhibits long range correlated (1/f
type) pulse trains [143]. The model is based on an integrate-and-fire mechanism consisting
of two variables: A linearly increasing potential V' (¢) and a threshold C(t) which evolves
according to a random walk with diffusion constant D and reflecting boundaries. When
the potential V() exceeds the threshold, a spike is generated and V() is reset. However,
the interspike intervals can be approximated by a 1 dimensional map with multiplicative
noise (Eq. , which does not show long range correlations in the 7.

For the tasks where subjects depress the space bar on a computer keyboard as
rapidly as possible after the presentation of an optical stimulus the reaction time
has mean ~ 100 ms [122].

A simple stochastic model for which it can be shown analytically to generate
spike trains exhibiting 1/f noise is presented by Davidsen and Schuster [143]. The
essential ingredient of the integrate-and-fire model is a fluctuating threshold which
performs a Brownian motion. Whenever an increasing potential V(¢) hits the
threshold, V(¢) is reset to the origin and a pulse is emitted (Fig. 4.22). If V(¢)
increases linearly in time, the interspike intervals (ISI) 75 can be approximated by
a random walk with multiplicative noise [143]:

Tht1 = Tk + V D73 &k (4.22)

where &, denotes the white noise source and D is the diffusion constant. However,
there are drawbacks when relating Eq. [4.22]to the interbeat intervals Eq. [£.15] The
PSD of the above-mentioned spike trains (which can be idealized to a sequence of
zeros and ones, where a 1 indicates the occurrence of a spike) reveals a long-
memory process. In contrast, it can be shown that a time series 7, (Eq. does
not exhibit long-range correlations. A second problem is, that for the random walk
with multiplicative noise, the ISI distribution function P(7) is proportional to 77!
[143], while the pdf of the interbeat intervals in human rhythmic drumming is well
approximated by a Gaussian distribution.

In order to develop some further aspects of Davidsen’s and Schuster’s model,
several approaches are possible. One approach is to adaptively change the gradient
a of the linearly rising potential of the neuron, trying to keep a mean ISI 7. This
introduces a second parameter a where the ISI 7, depend on a. Another idea is
related to synchronization, or simply to coincidence. For our purposes, consider N
neurons described by the single neuron model (Fig. [4.22)) which are connected to
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one neuron 4, which integrates the incoming spikes of the N neurons and which
sends an action potential, if the following condition is fulfilled: M out of N presy-
naptic neurons fire in the same time window. Note that it was shown in purely
random networks, that synchronous spiking activity of subgroups can persist and
propagate if the non-additive nature of dendritic input integration has been re-
cently uncovered experimentally is taken into account [152]. We surmise that the
condition (i.e. the requirement of coincidence of M /N spikes) for neuron A to spike
alters the distribution of the ISI such that it is different from a power law and may
approximate a Gaussian. However, the modeling is still work in progress.

4.2.4 Humanizing Music Sequences

As shown in Sec. , we found 1/ f noise in the error time series of music rhythms
played by humans. In this section, we will consider an application arising from the
question, which effect long-range correlations have on the perception of humans.

Computer-generated music, such as an artificial drum sequence, has no difficulty
in always keeping the exact beat, since synthesizers and computers are equipped
with precise timing mechanisms. But computer-generated music is often recogniz-
able just for this perfection. The idea to artificially add small fluctuations to music
sequences is realized in the so-called ’humanizing’ feature, which is implemented
in contemporary audio software applications. More precisely, humanizing is the
procedure of adding an error time series e,, (Eq. to a given audio sequence.
We analyzed the humanize feature which leads to error time series consisting of
Gaussian white noise for the program 'Pro Tools’ (Version HD 7.4) and of uniform
white noise for ‘Nuendo 3’. Pro Tools is widely used by professionals throughout
the audio industries worldwide for recording and editing in music production, film
scoring, post production etc. In terms of humanizing music, we are led to the
question:

e How does a piece of music humanized with Gaussian 1/f noise sound in
comparison to a piece of music that is either conventionally humanized or
exact?

e Are the differences audible to humans?
To investigate these questions, different pieces of music were created and played
to test subjects as described in the next sections. For each piece of music three
versions were generated which differ only by their error time series e, (Eq. 4.13)):
1. Version E (‘exact’): e, = 0Vn.
2. Version C (‘correlated’): C.(7) =< e, €nyr >= 7177 with exponent 3 ~ 1
(thus exhibiting long-range correlations). Also referred to as the Gaussian

1/f humanized version.

3. Version W ("white’): e, = &, where &, is Gaussian white noise. Also referred
to as the Gaussian white noise humanized version.
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Figure 4.23: Scheme of a drum set with bass drum (4), snare drum (5) and hi-hat (6).
Samples of bass drum, snare and hi-hat were used to generate humanized drum rhythms.

All other properties of the versions (such as the pitch and loudness fluctuations
which do affect the auditory impression [20, 27, [139]) are identical. To compare
the versions E, C and W, we choose the same standard deviations oo = oy of the
error time series and mean < eg >=< eqc >=< ey >= 0.

The outline of the following sections is as follows. In Sec. [£.2.4.1] the generation
of simple humanized drum rhythms is described and we report the rating of the
different versions by test subjects. The creation of a much more complex humanized
piece of music is explained in Sec. [£.2.4.2] The rating of the piece of music by test
persons is subject of an interdisciplinary diploma thesis in psychology (Sec. .
Finally, in Sec. [4.2.4.4) a patent for humanizing music sequences is described.

4.2.4.1 Drum Rhythms

We generated simple drum rhythms on the computer, where each drum rhythm
consists of 3 different audio samples (bass drum, snare drum, hi-hat — see Fig. 4.23))
that are set according to a rhythmic pattern. An audio sample of e.g. a bass drum
is a recording of a single bass drum sound. The exact sequence is then humanized
to generate versions C and W by adding a 1/f or white noise error time series (see
Fig. 4.24). Though this is a first demonstration of 1/f humanizing of electronic
music, the minimalist way of the generating the music rhythms with only 3 samples
makes the rhythmic pieces sound quite monotonous and artificial. Furthermore the
music sequences do not contain any variation in timbre of the beats, in loudness or
pitch.

For statistical tests, the different versions E, C and W of the drum sequences,
each in mono quality and of ~ 30 sec length, were played in random order (there
are subtleties, see Appendix to 16 professional musicians from the Gottingen
Symphonic Orchestra (GSO). The test subjects completed a questionnaire, the
main questions are shown in Fig. For the experiments with the GSO we used
a standard deviation oo = ow = 10 ms. Audio examples (no. 1, 2 and 3) of the
versions E, C and W with oo = oy = 15 ms are found as supplementary material
to the electronic version of this thesis. To make the differences between the versions
more audible, the standard deviation in the audio examples is higher than in the
experiments. Still, 0 = 15 ms is within the lower range of ¢ measured for music
laypersons while finger tapping on a drum (with a finger or a hand). We used a
x>2-test with significance level py = 0.05, see Appendix [C| for details. The outcome
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Figure 4.24: How (1/f) humanizing works. Shown is a section of an exact drum sequence
(lower curve) with 153.6 bpm at 4/4 bars and a humanized sequence (upper curve). The
length of one quarter note is 0.4 sec. The lower and upper sequences correspond to the
first ~ 1.5 sec of audio examples no. 1 and 2 respectively. For 1/f humanizing the upper
sequence, to each individual sound at time S,, an error e, is added, where e,, is computer-
generated Gaussian 1/f noise with 3 &~ 1. The vertical dashed lines mark the positions
S,, of the sounds.

1) Are the two samples different?
yes O O no

2) If you marked "yes" with a cross: Which sample do you like better?

A0O0OB

Consider the sample which you like better. How does it sound in
comparison to the other sample (please make exactly one cross)?

O more pIECiSE

0 more natural

Figure 4.25: The main questions of the questionnaire given to musicians from the Gottin-
gen Symphonic Orchestra. We did not analyze the third question (which version sounds
more natural / more precise), as all versions sound rather artificial, due to the minimalist
construction of the drum rhythms with 3 samples.
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Figure 4.26: “Which version sounds better?” Experiments with 16 musicians from the
Gottingen Symphonic orchestra rating the 1/f humanized version C the white noise
humanized version W and the exact version E. Two versions were played after one another
(in random order), 10 comparisons were made by each test subject. Version C was rated
significantly better than version W (p = 0.02, x? = 5.3) with 83 % vote. A preference
was given to the exact version, compared to both the versions C (p = 0.002, x% = 9.3)
and W (p = 0.002, x? = 9.3).

of the experiment with the GSO is the following (Fig. 4.26)):

e The 1/f humanized versions are rated significantly better than the (conven-
tional) white noise humanized versions (p = 0.02, x? = 5.3).

e The exact version was rated best (p = 0.002, x* = 9.3).

One reason why the exact version is preferred may be due to the artificial character
of the rhythmic sequences. Thus, deviations are perceived as failures by the test
subjects. The fluctuations in the rhythmic structure might be rated differently
when more complex artificial music or music originating from real recordings (that
include as well fluctuations in timbre and loudness) is humanized. Though the
exact version was rated best, a comment of one of the test subjects from the GSO
summarizes our idea of a perceived lack of human touch nicely:

Some samples were so "overprecise’, too reqular by intention — that does not sound
natural.

4.2.4.2 Creating Humanized Music

In order to compare the version C, W and E in a more realistic way, a pop song
called “Fveryday, everynight” was created, recorded and humanized in collaboration
with Cubeaudio recording studio (Goéttingen). The song has 125 bpm, approx. 4
mins length and a steady beat in the eighth notes. Hence, the song consists of ~
1000 beats in the eighth notes. Instrumentation was chosen such that the sequences
can be humanized easily, meaning that the sounds occurring at times S,, should be
rather compact and well separated from each other.

The song, available in stereo quality, consists of a total of ~ 100 sequences including
several sequences for the drum set (as the output of each part of the drum set,
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e.g. the bass drum, was recorded individually), guitar, bass, vocals and, to a small
part, software instruments. Except for the software instruments, the sequences are
recordings of professional musicians, where each musician is recorded separately. In
the next step, the individual sequences are humanized and finally mixed together.
The program "Pro Tools” was used for onset detection [144] [145] of the beats and
for mixing the song. Note that the complexity of the song (consisting of mostly
real recordings of several instruments, and including fluctuations of loudness and
pitch in ~ 100 sequences) is much higher than that of the single drum sequences
generated with the computer as described in Sec.

We did not humanize the vocals, which cover the fluctuations of the other
instruments to a certain degree. The vocals are identical in all three versions E,
C and W. To generate version W, we did not use the white noise humanize tool
implemented in Pro Tools, but we added the white noise error time series manually
to have control over the realizations and the standard deviation.

The version C was humanized with 1/f” noise, where § ~ 1. The standard
deviations of the versions C and W is ¢ = 15 ms, which is a trade-off between
having significant results (for large o) and a regular (natural) sound (for small o).
The Gaussian was cut at 20, i.e. realizations larger than 20 were omitted in the
time series, in order to exclude single rare events that might influence or dominate
the judgment of listeners.

Still, there is a main drawback, that give the song an artificial touch. We
humanized all ~ 100 sequences with one and the same error time series (1/f or
white noise) ] This leads to collective shifts (or delays) in the time domain, which
is not natural, as all instruments come in too early or too late at a given time in
exactly the same manner.

4.2.4.3 Perception of Humanized Music

How does a piece of music humanized with Gaussian 1/f noise sound in compar-
ison to a piece of music that is either white noise humanized or exact? The aim
of the interdisciplinary diploma thesis in psychology that we initiated was to ana-
lyze the perception of natural fluctuations in music rhythms using the humanized
song “Everyday, everynight”. The thesis is written by Anneke Fredebohm at the
University of Gottingen (Dept. of Cognitive and Decision Sciences). More specifi-
cally, a comparison of the two versions C and E is drawn, where audio examples of
length ~ 30 sec were played in random order (there are subtleties, see [32] for the
experimental design) to 57 listeners who are mostly part of non-professional choirs
in Gottingen. There was no information given in advance to the subjects, in which
way the versions differ. The differences between the three versions E and C are
very small and, moreover, they are covered by the vocals. It can be shown using a
x2-test that [32]

e the test subjects could significantly hear the difference between the versions
E and C (p = 0.015),

5The reason why we used the same time series for humanizing all sequences is because 1/f
humanizing is not yet implemented in contemporary audio software applications and thus had to
be done manually and double-checked afterwards.
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e there was no preference found when comparing versions E and C.

Note that there is a distinct difference to the simple and artificial drum rhythms
analyzed in Sec. [£.2.4.1] where a clear preference for the exact version was observed.
Hence the rating of the 1/f humanized piece of music (as compared to the exact
sequence) was much better than in the case of the less complex drum sequences.
The versions, that the test subjects were listening to are found in audio example
no. 4: First, the version C and after a 5 sec break the exact version E is played.

A comparison of the versions C and W is current work in progress (see audio
example no. 5, which consists of the version W, a 5 sec break and the version C).
We expect a preference of version C over version W, which would mean that in
agreement with the previous study described in Sec. [£.2.4.1] rhythms containing
LRC are preferred over those containing white noise error time series.

Surprisingly, as stated above, the version containing LRC was not rated better
than the exact version. There are several reasons, which could account for that.
First, the standard deviation of o = 15 ms is too large for a popular song (espe-
cially if the listeners are experienced musicians). Second, all sequences were (as
mentioned above) humanized according the same realization of the error time se-
ries, leading to unnatural collective shifts of all instruments (except for the vocals).
And third, it is probably a matter of individual taste and may depend on the music
genre [139], whether a song or parts of the sequences within should be as exact as
possible of whether natural deviations are tolerated and favored. The complete
1/f humanized song with reduced standard deviation ¢ = 7.5 ms, corresponding
to quite precisely playing musicians, is attached to the electronic version of this
thesis (audio example no. 6).

We made a first step towards the realization of 1/f humanizing of music se-
quences. To what extent 1/ f humanizing will be useful for audio engineers remains
to be seen in practice when it is applied in a more sophisticated way to sequences
in music pieces.

4.2.4.4 Patent

The Max Planck Society applied for patents in the EU and the USA for humaniz-
ing music sequences with error time series consisting of 1/f noise. The title of the
application reads: “Method and Device for Humanizing Music Sequences” (EU ap-
plication no: 07117541.8 (Sept. 2007), US application no: 12/236,708 (Sept. 2008)).
A short extract of the application, that was filed in collaboration with Max-Planck-
Innovation, is given below.

“The present invention relates to a method and a device for humanizing music
sequences. In particular, it relates to humanizing drum sequences. Large parts
of existing music are characterized by a sequence of stressed and unstressed beats
(often called "strong" and "weak"). Beats divide the time axis of a piece of music
or a musical sequence by impulses or pulses. The beat is intimately tied to the
meter of the music as it designates that level of the meter that is particularly
important, e.g. for the perceived tempo of the music. A well-known instrument
for determining the beat of a musical sequence is a metronome. A metronome is
any device that produces a regulated audible and/or visual pulse, usually used to



84 CHAPTER 4. FRACTAL FLUCTUATIONS

establish a steady beat, or tempo, measured in beats per minute for the performance
of musical compositions. Ideally, the pulses are equidistant. However, humans
performing music will never exactly match the beat given by a metronome. Instead,
music performed by humans will always exhibit a certain amount of fluctuations
compared with the steady beat of a metronome.

Machine-generated music on the other hand, such as an artificial drum sequence,
has no difficulty in always keeping the exact beat, as synthesizers and computers are
equipped with ultra precise clocking mechanisms. But machine-generated music, an
artificial drum sequence in particular, is often recognizable just for this perfection
and frequently devalued by audiences due to a perceived lack of human touch.
The same holds true for music performed by humans which is recorded and then
undergoes some kind of analog or digital editing. Postprocessing is a standard
procedure in contemporary music production, e.g. for the purpose of enhancing
human performed music having shortcomings due to a lack of performing skills or
inadequate instruments, etc. Here also, even music originally performed by humans
may acquire an undesired artificial touch.

Therefore, there exists a desire to generate or modify music on a machine that
sounds more natural. It is therefore an object of the present invention to provide
a method and a device for generating or modifying music sequences having a more
human touch. Preliminary results of empirical experiments carried out by the
inventors strongly indicate that a rhythm comprising a natural random fluctuation
as generated according to the invention sounds much better or more natural to
people than the same rhythm comprising a fluctuation due to Gaussian or uniformly
distributed white noise with the same standard deviation.”

4.2.5 Conclusions

When a human plays a music rhythm on an instrument, inherently there are devi-
ations in the time domain from the exact rhythm. We showed that music rhythms
performed by humans generically exhibit long-range correlations in the deviations
from an exact rhythmic pattern. The deviations are generic in the sense, that the
corresponding time series can be described by Gaussian 1/f” noise, no matter if the
music rthythm is made with a finger, a hand, a stick, a foot, a combination of these
or the voice. The exponent ( is not universal and depends on the task and the
subject. Moreover we investigated the influence of long-range correlations in music
rhythms on the perception of humans. We showed that music when it is humanized
with Gaussian 1/f” noise is rated significantly better by listeners than the same
sequences humanized with Gaussian white noise. We expect that in principle, after
subtraction of accentuation, rhythmic long-range correlations exist when humans
play on many different kinds of instruments, examples include musicians singing or
playing the guitar or the piano.

Outlook It would be interesting to further develop a neurophysical model that
accounts for time estimation on the time scale of milliseconds, where a starting
point could be Davidsen’s and Schuster’s model [143]. Another open question is,
in which way the correlation properties of the error time series change when two
(or more) musicians play together. A simplified problem is, how the temporal
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correlations in a music rhythm played by a human are influenced by a metronome,
which contains fluctuations around the exact metre.



Chapter 5

Conclusions and Outlook

In conclusion we have studied transport phenomena, scale-free properties and frac-
tal fluctuations in different complex dynamical systems. This thesis was presented
in two main parts.

In the first part (Chap. , we have studied the dynamics of BECs in leaking
optical lattices in the framework of the DNLS. We investigated the flux of ultracold
atoms out of the optical trap and hence analyzed the survival probability N(7)
which decays in sudden jumps J = 0N for a certain range of the nonlinearity
A. We found that these jumps, also referred to as avalanches, follow a scale-free
distribution

P(J =6N) ~ 1/J°.

The avalanche events are accompanied by the formation of discrete breathers inside
the optical lattice for a nonlinearity A > A,. Our numerical findings indicate the
existence of a phase transition at A,. To this end, we proposed an order parameter
which measures the relative number of sites that are occupied by the BEC. We
have linked the observed power law distribution of jumps to the distribution of
island sizes in the mixed phase space of the reduced system: the closed nonlinear
trimer. Using the standard map as a paradigmatic model for mixed phase space
dynamics, we provided evidence that a power law distribution of island sizes is a
generic feature of the mixed phase space. In a simple model that imitates the self-
similar hierarchical structure of the mixed phase space we found analytical bounds
for the exponent yielding 1 < a < 3 in agreement with our numerical findings.
We explained the avalanche events using the scenario of a collision process
involving a stationary DB and a lattice excitation (e.g. a moving breather) where
a threshold exists, beyond which the DB gets destabilized. The destabilization of a
DB due to the collision leads to a shift of the DB towards the perturbation. During
the migration process, a fraction of the (atomic) density of the excitation "tunnels’
through the DB leaving the system as an avalanche. We showed that there exists a
total energy threshold in the trimer, in order to enable a perturbation at site, say,
1 to trigger the destabilization of the DB at site 2. The destabilization threshold is
described analytically by considering the dynamically accessible region of the phase
space and linked to the Peierls-Nabarro barrier of a single DB. Furthermore, an
upper boundary for the (atomic) density that tunnels through the DB to site 3 is
given analytically. The existence of the destabilization threshold could be used as
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a tool for controlling the transmission of coherent atomic beams in interferometry
and quantum information processes.

The DNLS can be applied to a variety of physical systems, a prominent exam-
ple are coupled nonlinear optical waveguide arrays. In this context, avalanches of
BECs translate into the scale-free statistics of light emittance from waveguide ar-
rays. Discrete breathers in such two-dimensional networks were investigated in the
past years both theoretically and experimentally and can exhibit a rich variety of
functional operations such as blocking, routing or logic functions [4, [5]. Experimen-
tal evidence of the destabilization process of the stationary DB is expected to be
observable in nonlinear waveguide arrays and might lead to functional operations
such as filtering optical beams.

In the second part (Sec. we analyzed the ballistic flux of electrons through
mesoscopic systems such as quantum dots, nanowires and electron billiards. Moti-
vated by unexpected experimental findings on fractal conductance fluctuations in
electron billiards, where the fractal dimension changed with the coherence length,
we simulated purely classically the conductance through electron billiards with dif-
ferent geometries and found clear numerical evidence for FCF of classical origin.
We have shown using standard map, that transport through chaotic Hamiltonian
systems in general produces fractal conductance curves, where the fractal dimen-
sion reflects the distribution of lobe widths P(w) ~ w™ in the entry- /exitset which
is the phase space projection of the leads attached to the conductor. We empha-
size, that chaotic dynamics, through its fundamental property of stretching and
folding in phase space, leads to such a lobe structure, which is typical for chaotic
systems and not special to the standard map. An analytical estimation of the
fractal dimension yields D = a — 1/2.

To investigate the origin of the power law distribution of the lobe widths, we
examined the simplest case of an open chaotic area preserving map the dynamics
of which is governed by a single, positive homogeneous Lyapunov exponent A\. We
showed that under these conditions the number of lobes of width w in the entryset

reads
1

P(w) o wx
with mean dwelltime 7. This suggests that the power law distribution of lobe
widths is a generic property even for fully chaotic systems.

It is known that the semiclassical theory leads to fractal conductance curves
due to interference of the numerous electron paths. To connect our results with the
semiclassical picture of FCF, note that an implicit assumption of the semiclassical
theory is that the classical dynamics remains unchanged as the external parameter
is varied and thus only phase changes are relevant. Here it was shown that the clas-
sical chaotic dynamics itself already leads to fractal conductance curves, i.e. even
changes of the classical dynamics on arbitrary small scales lead to fluctuations of
the conductance. Due to the fractal nature of the classical conductance, there is
no parameter scale that separates coherent and incoherent fluctuations.

In conclusion we are led to the following scenario: In general the conductance
curve of low-dimensional Hamiltonian systems is a superposition of two fractals —
one originating in interference which is suppressed by decoherence to reveal the



88 CHAPTER 5. CONCLUSIONS AND OUTLOOK

fractal fluctuations reflecting the classical phase space structure. This might ex-
plain the unexpected results of experiments in semiconductor quantum dots where
a dependence of the fractal dimension on the coherence length was observed. Fur-
thermore, we predict fractal fluctuations in the conductance of low-dimensional
Hamiltonian systems with a purely chaotic phase space.

In Sec. [4.2) we considered temporal fluctuations in music rhythms played by
humans yielding long-range correlations. We showed by analyzing a set of differ-
ent rhythmic tasks, that the temporal fluctuations in simple as well as in more
complex music rthythms generically exhibit Gaussian 1/f” noise. A range of expo-
nents 0.2 < 3< 1.3, depending on the individual and the task recorded, was found.
The fact that long-memory processes arise in a broad variety of complex rhythmic
tasks strongly supports the hypothesis, that a common basic neurophysical mech-
anism accounts for interval timing in the millisecond regime (see [140, 141] for an
overview). We shortly reviewed an idea based on a simple stochastic model [143]
that generates spike trains exhibiting long-range correlations (1/f°-type), which is
work in progress.

Using humanized music, we showed that the 1/f° humanized versions (with
[ =~ 1) were rated significantly better by listeners than the conventional human-
ized sequences comprising a Gaussian white noise error source. Applications are
possible in humanizing music sequences with Gaussian 1/f? noise, e.g. in the field
of electronic music or in post-production of real recordings. To this end, a patent
in the EU and the USA was filed by the Max Planck Society, termed “Method and
device for humanizing music sequences”.

As an outlook on future works on the DNLS with leaking boundaries (“avalanches
of BECs”), it would be fascinating to see the experimental verification of the pre-
dicted avalanche statistics. Second, even though we do have clear numerical evi-
dence for the phase transition, which is related to the formation of DBs in the open
discrete nonlinear system, the origin of the phase transition together with an ana-
lytical expression for A, is still an open and fascinating question (see |28, [77), TOT])
and work in progress [87].

As far as the study on the closed nonlinear trimer and the observed mecha-
nism of destabilization of a DB is concerned (Sec. [3.8), a natural next step is the
analysis of the nonlinear trimer including dissipation. This may provide a better
description of the transfer of atoms/energy through the DB and a link the results
to experimental systems (e.g. a molecular trimer) might be possible. A promising
theoretical approach could be the Holstein model. Another system of interest con-
sists of three nonlinear sites embedded in a linear chain (see as well [106]) to enable
investigations of collisions of DBs with linear lattice excitations.

On the outlook on FCF, it would be of high interest to study the transition from
the semiclassical to the classical limit where experimentally a smooth change of the
fractal dimension was observed. So far, rigorous theoretical descriptions exist only
for the two limiting cases, i.e. in the classical case (analyzed as part of this thesis)
and in the semiclassical limit [17), 19].

We hope that we contributed a small part in solving the puzzles emerging from
scale-free fluctuations in complex systems.



Appendix A

Limiting Cases of the Participation
Ratio

We will calculate the participation ratio (Eq. [3.17))
[N(7)]? >
PR(T) = <
=S, T

(which is a measure of the relative number of sites occupied by atoms in the leaking
OL) for the closed system (i.e. v = 0) in the two limiting cases A > 1 and A = 0.

(a) A > 1.

In the strong nonlinearity regime, there are O(M) number of DBs and each site
is effectively decoupled from other sites, so each site will retain the same density
for all time. Since the initial condition is such that the distribution of density at
each site follows a uniform distribution, at other times, one expects the density to
follows a uniform distribution, i.e. P(¢,) = % where we assume that the 1,’s are
drawn from a uniform distribution and y runs from —b to +b. Therefore,

M
Z Wn|4 =M < Wn’4 > M < |¢n|4 >, (A'l)

In the second step, we assume that taking an average over all sites is approximately
the same as taking an average over all possible v,,’s.
Let us turn the right-hand side of the above equation into an integral

4 ’ 4 Mb!
M <ol 5= [ Pwdw) = 25 (A2)
b
The normalization condition for the number of particles reads
2 2 2 2 Mb?
lenr =M < [vn]* >pm M < |9 >y= M wP Jdp = —— =1 (A.3)
which leads to b = 1/3/M. Thus, we obtain
M2b4 9

M MRS A4
Z | |* ~ =5 (A4)

89



90 APPENDIX A. LIMITING CASES OF THE PARTICIPATION RATIO

and the participation ratio is 5/9.

(b) A = 0.

In the linear regime (A = 0), we found that the distribution of atomic density
follows an exponential distribution, corresponding to the fact that in a linear lattice
it is exponentially less likely to find higher excitations. The normalization condition
of the probability function fol P(z)dx =1 yields

P(z) = Me M7, (A.5)

|2. The normalization condition for the total number of atoms reads

where x = |,

M 1
Z [Ynl> = M < [th,]? > M < 1 >,= M/ zP(x)dr =1 (A.6)
0

n=1

To determine PR
M 1
S alt m M <t >y = M? / 22 P(2)da
n=1 0
1
= M2/ w*Me M dy
0
1
= —M26M+2(M/ xP(x)dx)
0

= —M?*e M2,

where we used Eq. in the last step. Hence, in the thermodynamic limit we
have

M
. 4
Jim n§:1 |thn|® =2, (A.7)

leading to PR = %



Appendix B

Distribution of Islands (Mixed
Phase Space)

Here, we aim to verify the hypothesis that the sizes of islands of a typical Hamil-
tonian mixed phase space system follow a power-law distribution. This is done
through numerical estimation of the distribution of island sizes in the standard
map (in the mixed phase space regime).

We consider a region R (see rectangular region in Fig. in the phase space
of the standard map containing an island (with its daughter islands) originating
from a period 1 resonance[[] We start two trajectories at random initial conditions
r and r + s within R separated by a distance s = |s|. We follow the trajectories
up to time T and proclaim a trajectory to be inside an island if it has not left the
region R, with less and less error with increasing 7. Eventually, we want to take
the limit of T"— oo. The quantity we are going to study is

Pin,out(s) = Probability that the first trajectory is inside an island
and the second is not.

This probes the circumferences of the islands and will help us to determine the
distribution of island sizes. Let p;(R) be the island size distribution that we are
interested in, A; the total area of islands in R and A the total area of R. The
probability of an arbitrarily chosen point to lie inside an island is P(in) = A;/A,
where A; = [ p;(R)mR* dR. The probability for a point known to be regular to lie
inside an island of linear dimension R (e.g. maximum diameter) is given by

pr(R) T R?

P(RJin) = "0

(B.1)
Now let us start with a point ro that is inside an island of size R (see Fig. [B.1j).
It contributes to P(R|in) with P(ro, R|in) = p;(R)/A;. What is the probability
Py out(s, R) that a point inside a neighborhood of radius s around 7y lies outside
the island, given that r( lies inside an island of size R? In the following, we consider
the two limiting cases R > s and R < s.

1.) Case R > s. If we approximate the island boundary by a straight line, the red
shared area indicated in Fig. [B.Ib is the area that we are interested in. Thus, for

'For a period N resonance, we could do the same with the N-th iteration of the map.
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R

a) b

N’

c)

Figure B.1: Sketches for the two cases R > s and R < s

a fixed 7y in an island of size R, the fraction of area in its s-neighborhood that is
outside the island is approximated by

2 [PV/s? —alda’ ifrg e Q (B.2)

1
P(s,out|rg, R) = 2 { olse.

o

The only non-zero contributions come from the ry’s inside an island and are near
the island boundary, i.e. 7o € ().We can thus write

Pin,out(sa R) = / P('f’o, R|1D) P(S, 0ut|r0R)d2r0
Island
— 2 2
Ts2 s
2rR s s
— 2 1?2
s

p[<R> 4R

A[ 52

1
<7r32 — 22/ 82 — 22 — 25% arctan L) dx

s2 — 2

I
o\m .
e~ |

p[(R) 4R 83 4
——=—Rpi(R)s (for R : B.3
s — S Rn()s (o > 9 (B.3)
2.) In the case R < s, we have (see Fig. )
ns? — wR?
—.

P(s,out|rg, R) =
s



And thus

Pin,out(sa R) = / P(7007 R’ln) P(57 OUt‘TUR)dQTO

Island
R s> — R?

plf(l ) X —5— X d*ry
1

Island

mR?

P pr(R) (1 — R2/32) (for R < s).

(B.5)

In the numerics, we look at points on the perimeter of the s-neighborhood, thus we
have the contributions from all island sizes, hence

R’!YLQZ‘

d
pin,out(s) = %Pin,out(sa R) dR. (B6)
0
Substituting

y SoRpi(R) ifs <R
_Pinou R = b ) B7
a5 me(s F) {2’;—1?;),(1%)5% ifs> R o

and splitting the integral (thereby approximating the integral by its two limiting
cases), we obtain

S

27 R* 1 fimaz
pin,out(s) —/ A[ p](R);dR—l—/

0

ERPI(R)dR. (B.8)

We further assume that p;(R) = § R~*(with a < 3), where « is the exponent

which we will measure numerically in the mixed phase space of the standard map.
Hence, the probability piy out(s) reads

s R77LU“'L'
QWB 41— 45 -«
pin,out(s) = A[83 R dR + 3_141 / R dR
0 s
27T5 8570( 4ﬁ 2—a 2—a
Ars3 55—« * 3A;(2 — ) e = 5]

(B.9)

and can thus be written in the form p;, oui(s) = Co + C1s*~* as stated in Eq. [3.27]
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Appendix C

(Questionnaire and Lyrics

Report on questionnaire

This questionnaire aims at investigating how certain types of rhythmic drum se-
quences are rated by humans. There are three different versions of drum sequences
under investigation, which differ only by their error time series Eq. [4.13] The error
time series are of the three types:

1. Version E (‘exact’): e, = 0Vn.
2. Version C (‘correlated’), comprising Gaussian 1/ f noise with exponent (§ =~ 1.
3. Version W (*white’): e,, = &,, where &, is Gaussian white noise.

To compare the versions E, C and W, we choose the same standard deviations
oc = oy of the error time series and mean < e >=< ec >=< ey >= 0. In
the experiment 16 test subjects from the Gottingen Symphonic Orchestra (GSO)
of mean age 36.5 4+ 12.3 participated. The experiment consists of two parts A and
B, defined by sequences with error time series with either 04 = 6 ms or og = 10
ms. In the following, the y? method is used. The level of significance is p = 0.05.
The main results are:

e The test subjects from the GSO could distinguish, if two sequences are dif-
ferent or the same for both cases ¢ = 6 ms and for ¢ = 10 ms, if compared
to a random choice with 50% probability.

e For 0 = 10 ms the version E was rated significantly better than both C and
W. The version C was rated better than W. For ¢ = 6 ms the version E was
rated significantly better than W. By comparing the versions E-C and C-W
no preference was found.

We used the following questionnaire design. The whole experiment consists of 5
pairs of sequences in part A (o = 6ms) and another 5 pairs of sequences in part
B (0 = 10ms). In each part, there are two pairs of identical and three pairs of
different sequences. The computer-generated rhythms in the two parts A and B
are different. Two sequences (also referred to as samples) were played to the test
subjects, to whom it was told that they shall evaluate drum samples and that the
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order of samples is random, which means that one or more pairs of samples may as
well be identical. Then, there were two main questions given to the test subjects.

1. Are the two samples different?
2. Which sample do you like better?

In order to eliminate unwanted effects (e.g. that the first sample of a pair may
in average be rated better than the second or vice versa), the samples were ar-
ranged using specific symmetries. Therefore, the test subjects were divided into
four groups. Given a random order (a;,b;), i = 1...5, of integer pairs in group 1,
then the order for the other groups is as follows. Samples in group 2 are reversely
ordered, in group 3 the order of each pair is switched and group 4 consists of re-
versely ordered switched pairs of samples, leading to pairs (bs_;, as_;), (b;, a;) and
(as_;, bs_;) respectively.

Analysis of hypotheses. Null hypothesis 1: “The decision, if two samples are
the same or not, was by chance (with probability 0.5).” The null hypothesis 1
is rejected for both o4 = 6 ms and o = 10 ms. For samples with o4 there
were Ny = 79 answers given, thereof 53 correct (67%), significance ps = 0.002,
x* = 9.23, and for samples with op: Np = 79 answers, thereof 50 correct (63%),
pr = 0.02, x* = 5.58.

Null hypothesis 2: “The samples sound equally good.” For samples with o4 = 10
ms the results are given in Fig. [£.26] For versions with o = 6 ms the results of
the experiments are

e Comparison E-W: There were 10 answers given, thereof 10 in favor of version
E, significance p = 0.002, x* = 10.0. Null hypothesis 2 is rejected (i.e. E was
rated better than W).

e Comparison C-W and E-C: The null hypothesis 2 can not be rejected, i.e. no
significant preference was found.

It seems like the auditory threshold for the task of qualitatively differentiating
between versions that vary in the time domain is reached with difficulty level 04 = 6
ms. It is evident that humans are able to differ between signals of much shorter
time difference, if the signals are played at the same time. However, the versions in
this experiment were played one after another and not on top of each other, which,
of course, makes the task of differencing for test subjects more difficult.

Lyrics

In the following we will provide additional information and the lyrics for the 1/f
humanized song, that was generated in the course of this thesis. The song is
of length 4:05 min and courtesy of Max Planck Institute for Dynamics and Self-
Organization. The term chaos theory entered the second line of the lyrics shown

in Fig. [C.]]
e Title: Everyday, Everynight
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APPENDIX C. QUESTIONNAIRE AND LYRICS

1. (Verse 1)

One day you came and made me see
my chaos got no theory

but love - you can't explain

| didn't know what | would miss

but then you gave me your first kiss

| feel -- | go insane

5. (Bridge)

You light my way

day by day

and when you stay

you'll take my breath away

2. (Bridge)

You light my way

day by day

and when you stay

you'll take my breath away

6. (Chorus)

Every day - | want you by my side

and every day - just me and you

every night - You are my shining light
and every night - my dreams come true

3. (Chorus)

Every day

| want you by my side
and every day

just me and you

7. (,C-part”)

When the world is cold outside

you give me love and hold me tight
you'll be right there in every way
every day

4. (Verse 2)

You came closer, it was physical
this attraction is not logical

but love - will find a way

| wanna see you look at me
cause this will be my memory
when we are old and grey

8. (Chorus)

Figure C.1: Lyrics for the song “Everyday, everynight”.

e Lyrics: Nadine Zacharias

e Music and mixing: Cubeaudio Recording Studio




Appendix D

Audio Examples

Supplementary material: CD with audio examples of humanized music piecesE].
For each piece of music three version were generated, that differ only in the rhythmic

structure (see Sec. [4.2)):

e E — exact version,
e C — 1/f humanized version,
e W — white noise humanized version.

Examples (1-3) are simple computer-generated drum rhythms of approx. 30 sec
length each.

Audio example 1: Version E

Audio example 2: Version C

Audio example 3: Version W
Examples (4-6) are samples of the humanized pop song “Everyday, everynight”
created and recorded in collaboration with Cubeadio recording studio.

Audio example 4: Version C, 5 sec pause, version F

Audio example 5: Versions W, 5 sec pause, version C

Audio example 6: Version C (complete song, 4:05 min)
Standard deviation used for humanizing is ¢ = 15 ms for examples (1-5) and
o = 7.5 ms for example 6.

IElectronic version of this thesis: Audio files are attached.
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List of Abbreviations

BEC - Bose-Einstein condensation (also: Bose-Einstein condensate)
DB - Discrete breather

DFA - Detrended fluctuation analysis

DNLS - Discrete nonlinear Schrodinger equation

FCF - Fractal conductance fluctuations

LRC - Long-range correlations

MB - Moving breather

MLE - Maximum likelihood estimation

OL - Optical lattice

UCF - Universal conductance fluctuations
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