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Chapter 1

Introduction

Let us consider a large system, made up of many identical interconnected building
blocks, so that close-by building blocks are preferably connected. Then, one may
raise a number of questions, for example, under which conditions it is possible to go
from one side of the system all the way to the other side, only using the connections
(or equivalently that a “percolating” or “macroscopic” cluster is present). Or one
may ask, what the structure of the clusters is, which the connections give rise to, for
example how large the cluster are and whether or not they have a fractal structure.

These types of problems are known under the term percolation theory and despite
their seemingly abstract and simple concepts, they are highly relevant for many
problems in physics and for a wide range of applications in every day’s life. An
example would be the spreading of forest fires: will a fire – starting at one tree –
eventually span the whole forest, or will it be extinguished quickly only burning
down a few trees? For this case, we imagine that our “building blocks” are the
trees in the forest and we define them as connected if they are close enough so that
a burning tree would ignite the other one. Then, the cluster sizes of this system
will provide indications what the typical extent of the fire will be, and the presence
of a macroscopic cluster gives information whether or not the fire may span the
whole system. Further examples include filtering of fluids or gases through porous
materials, e.g. movement of petroleum through fractured rock, the flow of electrical
current through a random resistor network, or the spreading of diseases in a social
network.

Another physically important example, treated in this thesis, is polymerization,
where chemical bonds connect atoms or molecules and can thereby create large net-
works of macromolecules. To achieve this, one may start with a system of polymer
chains (typically chains of connected carbon atoms) in a solvent and add a cer-
tain amount of cross-linkers (typically sulfur). Thereupon, one observes that the
cross-links interconnect the chains, whereby larger and larger aggregates are formed.
When the concentration of the cross-links exceeds a critical value, one can find an
aggregate that spans the whole system. In this process the system undergoes a tran-
sition from a liquid (sol) to an amorphous solid (gel) phase, the so called “gelation
transition”. Materials created in this way (like for example rubber) have interesting
properties in terms of flexibility and toughness. It is important to note they have no
lattice structure, in comparison to metals; instead they are amorphous because the
aggregation mechanism always involves some randomness, and consequently they
are translationally and rotationally invariant on a macroscopic scale.



2 CHAPTER 1. INTRODUCTION

The formation, structure and properties of aggregates created by random con-
nections, and in particular the above-mentioned gelation transition are the topic of
this thesis. In chapter 2 we will discuss cross-linked Brownian particles and
particularly their elastic properties. When the cross-link density is large enough,
such that a macroscopic cluster is present, the system exhibits a finite resistance
to shear deformations. This mechanical resistance is quantified by the shear modu-
lus, the focus of this chapter. We extend previous results, which were restricted to
systems close to the gelation transition, to highly cross-linked gels.

In chapter 3 we investigate cross-linked directed polymers, where the poly-
mer chains are aligned along a preferential direction. This anisotropic system is a
simple model for describing polymers, highly stretched along one direction, or al-
ternatively polymers in a nematic field. As cross-links are added to this system, we
observe a gelation transition and investigate properties of the system close to that
transition. Focussing on the distribution of localization lengths, we describe the
extent of fluctuations of the chains about their mean positions. As we will see, the
anisotropy of the system gives rise to a dependence of these structural properties
on the distance from the boundaries in the preferred direction.

In chapter 4 we determine the microscopic structure of spider-silk, where small
crystallites are interconnected by a network of chains. This composition of the
material gives rise to outstanding mechanical properties, in particular the toughness
and extensibility. We develop a statistical model for the crystallites; from that,
the scattering function can be computed and be compared to experimental results,
enabling us to determine structural, as well as statistical parameters of the system.
We also investigate the role of coherent scattering from different crystallites and the
importance of a background scattering density between crystallites.

And in chapter 5 we study the aggregation of wet granular particles. Here,
the particles conjoin and develop clusters, because they are covered by a thin liquid
film and may form “liquid bridges” between each other if the films touch each
other and merge. These bonds induce an attractive and hysteretic interaction such
that each bond rupture dissipates a fixed amount of energy. The system shows an
interesting cooling behavior different from dry granulates, and a transition from fast
cooling to a clustering state as soon as the particles’ kinetic energy is not sufficient
to break the bonds anymore. As time proceeds, the clusters form larger and larger
aggregates, which grow in a self-similar fashion. For all finite densities a percolation
transition is observed, with a macroscopic cluster that is fractal on small length
scales and compact on large length scales.

A number of technical points have been deferred to the appendices. In particular,
the symbols and variables used in each chapter and a short remark on the notation
can be found in Appendix F.
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Chapter 2

Highly Cross-Linked Brownian

Particles
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2.1 Introduction

Randomly cross-linked networks of molecules undergo a transition from a fluid to
an amorphous solid state, as the number of cross-links is increased. By adding
more and more permanent cross-links to the system, molecular clusters are grad-
ually joined and in this process grow to larger and larger objects. Thereby the
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system undergoes a transition from the sol phase, a complex fluid characterized by
molecular clusters of various but finite sizes, to the gel phase, an amorphous solid
where the constituents of the system have joined to at least one macroscopic (system
spanning) cluster yielding a non-zero resistance to shear deformations. This sol-gel
transition or gelation transition has been studied in recent years [Deam & Edwards,
1976; Ball & Edwards, 1980; Goldbart et al., 1996; Panyukov & Rabin, 1996], and
the structure as well as the elasticity [Mukhopadhyay et al., 2004; Goldbart et al.,
2004] has been investigated. However, almost all theoretical studies have focussed
on the near-critical region, where the analysis simplifies due to the existence of a
small parameter – the distance to the transition point or, equivalently, the order
parameter. In contrast, the highly cross-linked regime has hardly been investigated
[Broderix et al., 2002], yet it is particularly interesting in the application of random
network models to glasses [Zallen, 1983].

Here we consider a particularly simple network which is built from spherical
particles, connected by harmonic springs. This allows us to access the highly cross-
linked regime and compute the shear modulus for arbitrary cross-link concentra-
tions. It is found that the shear modulus is independent of all microscopic length
scales of the model, such as the spring constant and the length scale that char-
acterizes the localization of particles in the amorphous solid state. Instead, the
shear modulus is completely determined by the particle density and the density of
cross-links.

We approach the problem using equilibrium thermodynamics. The average over
all cross-link configurations – the so called disorder average – is done with the help
of the replica theory. Furthermore, to simplify the notation, energies are measured
in units of kBT .

The chapter is organized as follows: In Sec. 2.2 the model of randomly cross-
linked particles and its interactions are presented and in Sec. 2.3 the disorder average
is defined. In Sec. 2.4 we establish a field theory of the presented model and find
a suitable order parameter. In Sec. 2.5 we have a short general look at Goldstone
fluctuations, which are necessary to establish an Ansatz for the order parameter,
done in Sec. 2.6. In Sec. 2.7 we apply this Ansatz to the field theory, and establish the
connection of the result to the actual disorder-averaged free energy of the system
in Sec. 2.8. The final results are presented in Sec. 2.9, and we will conclude in
Sec. 2.10.

2.2 Model: Randomly Cross-Linked Particles

We consider a system of N identical particles at positions r1, ..., rN in a D-
dimensional volume V . Permanent cross-links connect M randomly chosen pair
of particles, such that a particular cross-link realization C is specified by a list of
M pairs of monomers C = {(i1, j1), ..., (iM , jM )} (see Fig. 2.1). The cross-links are
modeled by harmonic springs, so that the Hamiltonian for the cross-link interaction
becomes:
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a»

( , )
e ei j ÎR R C

ei
R

ej
R

iR

Figure 2.1: Illustration of the randomly cross-linked particle model. Particles (•) are
permanently connected via Hookian springs (\/\/\/\/\/\), which have a typical cross-link
distance of a. Double bonds are also possible, as a pair of particles can in principle
be connected twice. The cross-link configuration defines clusters of different sizes,
but unconnected particles are possible as well.

HXlink =
1

2a2

M∑

e=1

(rie − rje)
2 . (2.1)

Here, the parameter a can be interpreted as the typical length of a cross-link. One
can see this by calculating the typical distance between two cross-linked particles
r1, r2 without further interactions:

〈
(r1 − r2)2

〉
=

∫
dr1 dr2 (r1 − r2)2 exp

(
− (r1−r2)2

2a2

)

∫
dr1 dr2 exp

(
− (r1−r2)2

2a2

) . (2.2)

We substitute r := r1 − r2 and perform one of the integrals, which cancels in
numerator and denominator. Then we are left with:

〈
(r1 − r2)2

〉
=

∫
dr r2 exp

(
− r2

2a2

)

∫
dr exp

(
− r2

2a2

) . (2.3)

These are two Gaussian integrals which can easily be calculated:

〈
(r1 − r2)2

〉
=

(2πa2)D/2 ·Da2

(2πa2)D/2
= Da2 . (2.4)

Furthermore, a repulsive excluded-volume interaction is introduced, which acts
between all pairs of particles:

Hev =
λ

2

N∑

i,j=1

U(ri − rj) . (2.5)
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This interaction is necessary to prevent the system from collapsing. Its strength
λ has to be large enough to overcome the attractive interaction produced by the
cross-links, and the function U(x) has to fall off fast enough (at the end of Sec. 2.4.3
we will see, what that means specifically). Since λ already scales the strength of
the interaction we take the freedom to require

∫
V U(x) dx = 1.

The overall Hamiltonian is HC = HC({rj}) = HXlink + Hev. The index C will
remain as a reminder on variables that depend on the quenched disorder C specifying
the configuration of cross-links. All thermodynamic properties, including the elastic
ones, can be obtained from the partition function

ZC =
∫

Dr1 · · ·DrN e−HC({rj}) . (2.6)

Here we use the measure Drj := drj/V to make sure that ZC is dimensionless.
This model became known as the randomly (cross-)linked particle (RLP)

model, and is a very simple model for amorphous solids. As we see in the illustration
2.1 it can produce highly branched “molecule chains”. It is capable of predicting
structural and mechanical properties [Broderix et al., 2002; Mao et al., 2007] and
has been investigated with and without the use of replica technique. As we will
see in Sec. 2.4.5, in the vicinity of the gelation transition, the model falls into the
universality class of randomly cross-linked media.

2.3 Disorder Average

The average over all cross-link configurations C is called the disorder average and
denoted by [ · ]. The disorder average of a quantity AC is calculated by:

[AC
]

=
∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

AC · P (C) (2.7)

For the cross-link distribution P (C), we use the Deam-Edwards distribution [Deam
& Edwards, 1976]:

PDE(C) =
1
Z1

1
M !

(
µ2

2Nφ

)M

ZC (2.8)

with φ =
aD(2π)D/2

V
,

and with a normalization constant Z1. On first glance it seems to be counter-
intuitive that the probability for a cross-link configuration C is proportional to the
corresponding partition function ZC , but this characteristic is a very clever trick to
make sure only particles close to each other get connected. In this regard, let us
have a look at a cross-link configuration C; by writing the partition function (2.6)
slightly differently, one can express the probability for this configuration as

PDE(C) ∝
〈

e−
1

2a2

∑M
e=1(rie − rje)2

〉

Hev

,
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where 〈 · 〉Hev is averaging with the statistical weight of the excluded volume interac-
tion. In this form, one can see that configurations for which the distances |rie − rje |
are small have a high probability, while configurations that would involve some long
cross-links have a low probability. For a detailed discussion of the Deam-Edwards
distribution, see the work by Goldbart et al. [1996]; Broderix et al. [2002].

The parameter µ2 determines the probability for a cross-link to be formed, and
therefore controls the sol-gel transition. As we will see in Sec. 2.9.1, the average
cross-link density is given by [M ]/N = µ2/2 and the standard deviation, relative to
the mean, vanishes in the thermodynamic limit. Thus, µ2 = 2[M ]/N is the average
coordination number , i.e. the average number of particles to which a certain particle
is connected.

2.4 Replica Calculation of the Free Energy

2.4.1 Disorder-Averaged Free Energy and Introduction of Replicas

From this model, we now would like to calculate the free energy, in order to access
mechanical and structural properties. However, we are not interested in a specific
cross-link configuration (and we cannot choose the cross-link configuration for 1023

particles by hand anyway), but only in typical properties of the system. Therefore
we have to calculate the disorder-averaged free energy

[FC ] = −[lnZC ] . (2.9)

In general it is very difficult to perform the disorder average, Eq. (2.7), of a
logarithm. A successful way to perform the sum nevertheless is the replica trick:
Instead of averaging the logarithm itself, we take advantage of a representation of
the logarithm:

− [FC ] = [lnZC ] =
[
lim
n→0

Zn
C − 1
n

]
= lim

n→0

[Zn
C ]− 1
n

, (2.10)

and thus we try to calculate

[Zn
C ] =

1
Z1

∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

1
M !

(
µ2

2Nφ

)M

ZC · Zn
C . (2.11)

At first, let’s have a look at the rightmost part of Eq. (2.11). At least for integer
n, ZC · Zn

C can be written as a product
∏n

α=0 ZC . By doing that, we introduce
n+1 copies of the system with identical cross-link configuration (one of
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the copies, which we call the zeroth, stems from the Deam-Edwards distribution):

ZC · Zn
C =

n∏

α=0

∫ (∏N
j=1Dr(α)

j

)
e−HC({r(α)

j })

=
∫ (∏N

j=1

∏n
α=0Dr(α)

j

)
exp

(
− 1

2a2

M∑

e=1

n∑

α=0

(r(α)
ie
− r(α)

je
)2 −

n∑

α=0

Hev({r(α)
j })

)

=
∫ (∏N

j=1 Dr̂j
)

exp

(
− 1

2a2

M∑

e=1

(r̂ie − r̂je)
2 −H(n+1)

ev

)
, (2.12)

with H
(n+1)
ev :=

∑n
α=0Hev({r(α)

j }). Here we introduced the n+1 times replicated
(and hence D(n+1)-dimensional) vectors

r̂j := (r(0)
j , ..., r(n)

j ) . (2.13)

This introduction of n+1 replicas of the system1 is the main characteristic of replica
theory and the reason for its name. One should keep in mind that the disorder
is the same in all replicas; in particular M and ie, je do not have replica indices
(α). Assuming ergodicity, a possible way to imagine this replicated system is to
see the particle conformations {r(0)

j }, {r(1)
j }, ..., {r(n)

j } as instances of the system
taken at different times, with very long time differences in between. In this picture,
the particle conformation in the zeroth replica, {r(0)

j }, corresponds to the particle
conformation during cross-linking.

As we see in Appendix B.1.1, the sum over M in Eq. (2.11) can be performed
and [Zn

C ] can be written as:

[Zn
C ] =

Zn+1

Z1
(2.14a)

where Zn+1 =
∫ (∏N

j=1 Dr̂j
)

exp
(−Nf̃n+1{r̂j}

)
(2.14b)

with the “replica free energy”

f̃n+1{r̂j} = − µ2

2φN2

N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)
+

λ

2N

n∑

α=0

N∑

i,j=1

U(r(α)
i − r(α)

j ) ,

(2.14c)

which incorporates the degrees of freedom of the system, the replicated particle po-
sitions {r̂1, ..., r̂N}. That means, the disorder-averaged [Zn

C ] for a D-dimensional
system can be expressed as a partition function Zn+1 that involves D(n+1)-
dimensional vectors but does not involve a disorder average anymore. We will refer
to Zn+1 as the “replica partition function”.

Z1 was originally introduced as a mere normalization constant in Eq. (2.8);
knowing that limn→0[Zn

C ] = 1, we can confirm in Eq. (2.14a) that the notation for
Z1 is chosen consistently.

1or possibly only n replicas, if the cross-link distribution is not the Deam-Edwards distribution
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Figure 2.2: Exemplary illustration of a snapshot of the model as in Fig. 2.1, which
only contains localized particles. Additionally, the density plot behind the snapshot
illustrates, how the thermally averaged density as defined in Eq. (2.15) might look
like.

2.4.2 Introduction of the Replicated Density Fields

Later we want to introduce a field theory, so sooner or later we have to think about
a suitable order parameter. A crucial requirement is that it can distinguish between
the liquid and the amorphous solid state. A first idea would be the thermally
averaged density

%
(α)
C (x) :=

1
N

N∑

j=1

〈
δ(x− r(α)

j )
〉

HC
. (2.15)

In the liquid phase, when no macroscopic cluster is present, any particle – even if it
is part of a small cluster of connected particles – has equal probability to be found
anywhere in the sample; hence this order parameter would simply be a constant.
In the gel phase, on the other hand, a macroscopic cluster is present, which is a
cluster that contains an infinite number of particles as N →∞. A particle of that
cluster can not pass through the entire system, because cross-linking to the cluster
will restrict its movement to fluctuations around a mean position (as illustrated in
Fig. 2.2). Hence we will refer to such a particle as a “localized particle”.

The emerging density fluctuations may be utilized to distinguish the gel from
the sol phase for a given cross-link configuration C. However, quantities we are
interested in, should not be restricted to a certain cross-link configuration, but
should be disorder averaged. And when averaging over all cross-link configurations,
the macroscopic cluster can be embedded anywhere in the sample and hence the
probability to find a particle at any place in the sample should be the same – as in
the liquid phase.

To overcome this problem, we take advantage of the fact that the cross-link
configuration is the same for all replicas and hence the position of a localized particle
should be correlated among the replicas: In the context of gelation, the crucial
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Figure 2.3: For one spatial dimension, the replicated density O(x(1), x(2)), the prob-
ability to find a particle at x(1) in replica 1 and at x(2) in replica 2, is illustrated;
white means high values. The red line is the angle bisector x(1) = x(2). (a) Exam-
ple with two localized particles fluctuating around the mean positions R1 = 2 and
R2 = 7. The blue arrow (↔) represents the localization length. (b) For the disor-
der average, we have to integrate the mean positions over the system size. Thus,
O(x(1), x(2)) becomes a rectilinear ridge along the axis x(1) = x(2).

question is, whether or not |r(α)
j −r(β)

j |, with α 6= β, stays finite for a certain fraction
of particles. With that in mind, we define the replica density:

O(x̂) :=
1
N

N∑

j=1

δ(x̂− r̂j) =
1
N

N∑

j=1

δ(x(0) − r(0)
j ) · · · δ(x(n) − r(n)

j ) , (2.16)

which is the joint probability to find a particle at x(0) in replica 0, and the same
particle at x(1) in replica 1,... and at x(n) in replica n. A thermally averaged example
of O(x̂), is illustrated in Fig. 2.3a for the case of one spatial dimension and two
replicas: A localized particle which is found at position x in one replica, will have a
higher probability to be close to that position also in other replicas. The extent of
the particle fluctuations, which we call localization length, is also constituted by
the length scale of these correlations.

As before, after performing the disorder average, the mean positions have equal
probability to be anywhere in the sample; however, a particle of the macroscopic
cluster still has a high probability to be found at close-by positions among the
different replicas. This situation is illustrated in Fig. 2.3b, again for one dimension
and two replicas: Due to translational invariance, the disorder-averaged replicated
density does not depend on the mean position xcm = (x(1) + x(2))/2, but only on
the difference (x(1) − x(2))/2 between the replicas. That latter dependence still
represents the extent of the particle fluctuations ξ. In Sec. 2.6 we are going to find
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an Ansatz for the replicated density field and mathematically formulate the aspects
introduced here.

For completeness, we also define the replicated density in Fourier space:

O(q̂) :=
1
N

N∑

j=1

exp(iq̂r̂j) , (2.17a)

O(α)(q) :=
1
N

N∑

j=1

exp(iqr(α)
j ) = O(0, ...,0,q

↑
α

,0, ...,0) . (2.17b)

The first definition is the full Fourier transform of Eq. (2.16) and contains correla-
tions between replicas. The latter definition is the ordinary Fourier density of the
particle configuration of a given replica α.

2.4.3 Free Energy of the Replicated Density Field

Now we can go back to Eq. (2.14c) and express the replica free energy in terms of the
density fields as introduced in the last section. The calculation is straightforward
and done in Appendix B.1.2:

f̃n+1{r̂j} = f0 − φnµ
2

2

∑

q̂ 6=0̂

|O(q̂)|2∆(q̂) +
n0λ

2

n∑

α=0

∑

q6=0

|O(α)(q)|2 U(q) (2.18)

with the mean particle density n0 = N/V and the simplifying definitions

f0 := −φnµ
2

2
+ (n+1)

λn0

2
(2.19)

∆(q̂) := exp
(
− q̂

2a2

2

)
(2.20)

The last term of Eq. (2.18) solely comes from the excluded volume interaction. On
account of this interaction, density fluctuations cost energy in the same manner in
each replica.

In the middle term, the sum also goes over q̂-vectors whose components may
involve different replicas; hence it comprises the correlations discussed in the previ-
ous section. However, at this point it is difficult to see what the immediate effect of
this term is. To get a better understanding and to enable further calculations, we
introduce different sets of q̂-vectors:

We define the one replica sector (1RS) as the set of q̂-vectors with exactly
one of the n+1 components non-zero:

1RS =
{
q̂ 6= 0̂ | q̂ = (0, ...,0,q(α),0, ...,0) with 0 ≤ α ≤ n

}
. (2.21)

Complementary, the higher replica sector (HRS) is the set of q̂-vectors with at
least two replica entries non-zero, and therefore all (non-zero) q̂-vectors which are
not in the 1RS:

HRS =
{
q̂ 6= 0̂ | q̂ /∈ 1RS

}
, (2.22)
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and for the sake of completeness the zero replica sector (0RS) only contains q̂ = 0̂:

0RS = {0̂} (2.23)

With these definitions, Eq. (2.18) becomes:

f̃n+1{r̂j} = f0 − φnµ
2

2

∑

q̂∈HRS

|O(q̂)|2∆(q̂) +
1
2

∑

q̂∈1RS

|O(q̂)|2λ̃(q̂) (2.24a)

with λ̃(q̂) := n0λU(q̂)− φnµ2∆(q̂) . (2.24b)

The interpretation of λ̃(q̂) is straightforward: In the 1RS (which accounts for density
fluctuations) the repulsive excluded volume interaction counteracts the attractive
cross-links, see (2.24b). Density fluctuations of wavelength q̂ cost the more energy,
the higher λ̃(q̂) is. As mentioned in the beginning, the strength of excluded volume
interaction λ has to be large enough to ensure λ̃(q̂) > 0 for all q̂ ∈ 1RS to overcome
the attractive cross-link interaction;2 otherwise density fluctuations O(q̂) of the
corresponding wavelength q̂ will be energetically favored and the system will become
unstable.

2.4.4 Introduction of a Field Theory and Decoupling

It is important to keep in mind that the replicated density O(q̂) is just a simplifying
notation. No coarse graining or simplification has been made and in particular,
the degrees of freedom of the replica free energy in Eq. (2.24) are still the particle
positions {r̂j}. Here we will convert the formalism into a field theory, i.e. degrees
of freedom shall be constituted by a fluctuating density field, rather than by the
particle positions.

In the current state, Eq. (2.24a), the density only appears as a quadratic form.
If we somehow could make it linear, i.e. f{r̂j} ∝

∑
q̂ a(q̂)O(q̂), the partition function

would decouple with respect to the particles:

∫ (∏N
j=1 Dr̂j

)
exp

(
−

∑
q̂
a(q̂)

∑
j
eiq̂r̂j

)
=

(∫
Dr̂ exp

(
−

∑
q̂
a(q̂)eiq̂r̂

))N

(2.25)

A way to linearize the quadratic form is the so called Hubbard-Stratonovich
transformation. The basic idea is that the linear term of a Gaussian integral
becomes quadratic after performing the integral:

exp
(
k2

) ∝
∫ ∞

−∞
dx exp

(−x2 + kx
)
. (2.26)

The cost for this linearization is the introduction of the integral over a new variable,
in this case x. We can make this transformation for each q̂-value3 and obtain the

2that requires that U(q̂) does not fall off faster than ∆(q̂) = exp(−a2q̂2/2) for |q̂| → ∞.
3and we have to take into account the correct prefactors and that O(q̂) is complex
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following result (see Appendix B.2.1 for the calculation):

Zn+1 = exp
(−Nf0

) ∫
DΩexp

(−Nfn+1{Ω}
)

(2.27a)

with the replica free energy , dependent on the field Ω

fn+1{Ω} =
φnµ2

2

∑

q̂∈HRS

∆(q̂)|Ω(q̂)|2 +
1
2

∑

q̂∈1RS

λ̃(q̂)|Ω(q̂)|2 − ln z , (2.27b)

with an effective one-particle partition function

z =
∫

Dr̂ exp

(
φnµ2

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂ + i
∑

q̂∈1RS

λ̃(q̂)Ω(q̂)e−iq̂r̂

)
, (2.27c)

and a constant contribution f0 as in Eq. (2.19). The field Ω(q̂) runs through every
possible configuration, via the newly introduced integral in Eq. (2.27a), with the
measure DΩ ∝ ∏

q̂ dΩ(q̂). The interpretation of the field Ω(q̂) is the same as the
original density O(q̂), since the difference between them vanishes in the thermody-
namic limit (as seen in Appendix B.2.2). Specifically Ω(q̂) = O(q̂) for q̂ ∈ HRS and
Ω(q̂) = iO(q̂) for q̂ ∈ 1RS. Furthermore, as anticipated in Eq. (2.25), the integral
over all particle positions is reduced to a single integral over one “effective” particle
in Eq. (2.27c).

This is an important stage of the calculation, because so far no approximation
has been made. In this work we are not interested in density fluctuations which
would be caused by a finite bulk modulus. Therefore, we now take the limit of
infinitely strong excluded volume interaction, λ → ∞ and thus λ̃(q̂) → ∞, to
prevent any density fluctuations, i.e. Ω(q̂∈1RS) = 0. The resulting replica free
energy then has a simple form, which only involves the higher replica sector:

fn+1{Ω} =
φnµ2

2

∑

q̂∈HRS

∆(q̂)|Ω(q̂)|2 − ln z , (2.28a)

with z =
∫

Dr̂ exp

(
φnµ2

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂

)
(2.28b)

2.4.5 Universality and Connection to Other Models

For many systems in statistical mechanics it is possible to establish a Landau-Wilson
free energy, which depends on a coarse-grained order parameter. A famous example
is the Ising model with the order parameter being the coarse-grained magnetization
[Goldenfeld, 1992, Chapter 5]. If this order parameter vanishes as a phase transition
is approached, one often expands the Landau-Wilson free energy to lowest necessary
order.
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As discussed before in Sec. 2.4.2, the replicated density Ω(q̂) is an order param-
eter that can distinguish between the solid and liquid phase. In the liquid phase
Ω(q̂ 6= 0̂) = 0, and close to the transition in the gel phase, we may suspect Ω(q̂ 6= 0̂)
to be small, since most of the particles are delocalized and do not give rise to corre-
lations between replicas. Hence we can establish a Ginzburg-Landau like expansion
of our model. This expansion of fn+1{Ω}, Eq. (2.28), can easily be done (see Ap-
pendix B.3). To lowest necessary order in Ω and q̂ (q̂ corresponding to gradients in
real-space representation), the replica free energy is:

fn+1{Ω} =
∑

q̂∈HRS

(
−Aε+

B

2
q̂2

)
|Ω(q̂)|2

− C
∑

q̂1,q̂2,q̂3∈HRS

Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4,Ω3q̂2,Ω2q̂4) (2.29)

with

ε = µ2 − 1, A =
µ2

2
, B =

(
µ4 − µ2

2

)
a2, C =

µ6

6
. (2.30)

In this simple form (2.29), one can already understand some basic properties of the
system: the sol-gel transition happens when the parameter ε = µ2 − 1 changes
sign: For ε < 0, Ω(q̂) = 0 is a stable solution, since the prefactor of the quadratic
term is positive and any small deviation from this solution costs more energy. For
ε & 0, this solution becomes unstable and small deviations from Ω(q̂) = 0 are
energetically favorable, whereby the cubic term is necessary to stabilize the new
solution. The gradient term (∝ q̂2|Ω(q̂)|2) is the lowest order that involves spatial
dependencies; close to the transition, the relevant length scales of the system (like
the above-mentioned localization length) typically diverge. Hence Ω(q̂) should be
very small for large |q̂|, which justifies neglecting higher orders of q̂ close to the
transition.

Eq. (2.29) is a universal free energy of an incompressible random system close
to the sol-gel transition: This form can also be obtained by pure symmetry con-
siderations and can be used as a phenomenological starting point for the replica
free energy [Peng et al., 1998]. With the randomly cross-linked particle model one
has a very simple microscopic model that can reproduce this phenomenological free
energy and can provide values for the constants A, B and C. Other models, like
cross-linked semiflexible chains, also reproduce Eq. (2.29) with different values for
A, B and C [Goldbart et al., 2004; Mukhopadhyay et al., 2004]. Later we will per-
form this expansion to infinite order to see how this model behaves far from the
gelation transition.

2.5 Goldstone Fluctuations in General

In the next section, we will see that the saddle point solution for Ω(q̂) has a continu-
ous symmetry; specifically that means that there is a whole family of saddle-point
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solutions, which are parameterized by homogeneous translations of the entire sys-
tem between the replicas. We want to establish an Ansatz for the order parameter,
which allows small long-wavelength and low-energy fluctuations (so called Gold-
stone fluctuations) around the saddle point.

Before getting to this Ansatz, it is helpful to have a rough understanding of
Goldstone fluctuations in general (see also e.g. [Goldenfeld, 1992, chapter 11] or
[Goldstone et al., 1962]). In this regard, let us first consider these Goldstone modes
for an easier model, the so called XY -model: In that model, two-dimensional spins
si of unit length can rotate in a plane and reside on a D-dimension lattice (where
D can be different from 2); they interact such that neighboring spins (“< >”)
preferably align:

H({si}) = −J
∑

<i,j>

si · sj = −J
∑

<i,j>

cos(θi − θj) , (2.31)

where θi is the angle of spin i with respect to an arbitrary axis. J > 0 is the strength
of the interaction or can be interpreted as the inverse temperature. One can easily
see that in the ground state, all spins point in the same direction.

The important feature for us is that the system has a continuous symmetry,
i.e. all spins can continuously be rotated at the same time without energy cost. Or
in other words, the transformation θi → θi + φ for all i and arbitrary φ leaves the
Hamiltonian (2.31) invariant.

For D > 2, spontaneous symmetry breaking occurs when reducing the
temperature below a critical value Tc [Goldenfeld, 1992]. In that case, the sys-
tem chooses a direction, along which all spins preferably align, yielding a non-zero
magnetization m = 1

N

∑N
i=1 si 6= 0 (see Fig. 2.4, left). On account of the above-

mentioned continuous symmetry of the Hamiltonian, this direction can be rotated
without energy cost (for example by applying an infinitesimal field).

What about the case that the axis of magnetization is slowly varying in space
(Fig. 2.4, right)? Reasoning by continuity, one might expect that the energy associ-
ated with these long-wavelength fluctuations of the angle of the spins have low
energy cost. Indeed one finds that in the long-wavelength limit, the cost of these
fluctuations vanishes with the wave vector k like O(k2).

These long-wavelength and low-energy modes associated with a continuous sym-
metry are the Goldstone modes. They are a general phenomenon described by
Goldstone’s theorem, which states that in the presence of a spontaneously broken
continuous symmetry there are long-wavelength excitations, whose energy vanishes
continuously in the limit k → 0.

2.6 Ansatz for the Order Parameter

In Sec. 2.4 we calculated the disorder-averaged free energy [FC ] = −[lnZC ] =
− limn→0(Zn+1 − Z1)/(nZ1) with help of the replica technique. The replica parti-
tion function Zn+1 ∝

∫ DΩ e−Nfn+1{Ω} is represented as a functional integral over
the order-parameter field Ω.
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Figure 2.4: Illustration of the XY -model. Only one spatial dimension of the lattice
is shown and spins are depicted as red arrows (→). Left: A rotation of all spins by a
certain angle is an exact symmetry of the Hamiltonian (2.31) and has no energy cost.
Right: If the rotation is slowly varying in space, i.e. a long-wavelength fluctuation,
the energy is arbitrarily low.

As seen in Appendix B.2.2, in the thermodynamic limit this order parameter
equals the replicated density O(q̂) already addressed in Sec. 2.4.2. The real-space
representation of the order parameter

Ω(x̂) =
1
N

N∑

i=1

δ(x(0) − r(0)
i ) · · · δ(x(n) − r(n)

i ) (2.32)

quantifies the probability of finding a particle at position x(0) in replica 0, at x(1)

in replica 1, etc.
In previous work, Castillo et al. [1994] have shown that the saddle-point so-

lution for the order parameter, obtained by setting δfn+1{Ω}/δΩ = 0, has the
following simple form4:

Ω̄sp(x̂) =
1−Q

V n+1
+
Q

V

∫

V
dy

∫ ∞

0

dξ2 P(ξ2)
(2πξ2)D(n+1)/2

exp

(
−

n∑

α=0

(x(α) − y)2

2ξ2

)
, (2.33)

with self-consistent equations forQ and P(ξ2) given in [Castillo et al., 1994; Broderix
et al., 2002]. This form has a very intuitive interpretation, since the following
premises, applied to Eq. (2.32), also reproduce (2.33): A fraction of monomers
(1 − Q) is delocalized and can be found anywhere in the sample with equal prob-
ability. The remaining fraction Q is the “infinite” cluster, in which each parti-
cle i performs Gaussian fluctuations about a replica-independent mean position yi

with localization length ξi. (The situation is qualitatively depicted in Fig. 2.3a in
Sec. 2.4.2.) The mean positions yi are randomly distributed (Fig. 2.3b), and the
localization lengths ξ follow the distribution P(ξ2).

4Castillo et al. [1994] use a slightly different model of cross-linked chains, which belongs to the

same universality class as the presented model. The saddle-point value obtained for our model is

the same.
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2.6.1 Spontaneously Broken Translational Invariance

The effective replicated Hamiltonian is invariant under uniform translations of all
particles, separately in each replica, see e.g. Eq. (2.14c), since the particle posi-
tions only appear in terms of the form (r(α)

i − r(α)
j ); i.e., the transformation

r(α)
i → r(α)

i + u(α) (2.34)

is an exact symmetry of the Hamiltonian.5

Now, let us have a look at the saddle point solution (2.33): In the amorphous
solid phase, Q > 0, this symmetry is spontaneously broken, and the transformation
(2.34), in general, yields a different order parameter; the only symmetries remaining
are common displacements of all replicas, i.e., r(α)

i → r(α)
i + u, reflecting the

macroscopic translational invariance of the amorphous solid phase. (For a detailed
discussion see [Goldbart et al., 2004; Mukhopadhyay et al., 2004].) Consequently,
there is a whole family of order parameters which are all related by replica-
dependent, spatially uniform translations. All of them give rise to the same
free energy and the system will “spontaneously” choose one of them. To distinguish
common and relative displacements of the replicas, it is helpful to split up the
D(n+1)-dimensional hatted vectors x̂ into D-dimensional longitudinal ones

x‖ =
1√
n+1

n∑

α=0

x(α) , (2.35)

and Dn-dimensional transverse ones

x⊥ = x̂− 1√
n+1

(x‖, ...,x‖) . (2.36)

Properties of this division into ‖- and ⊥-vectors can be found in Appendix A. A
very useful relation to keep in mind is

x̂ · ŷ = x‖ · y‖ + x⊥ · y⊥ . (2.37)

When considering a parallel-vector like x‖, one should keep in mind that it is
not exactly the center of mass xcm = 1

n+1

∑
α x(α) of its replica components, but

x‖ =
√
n+1xcm. Only this definition enables the simple relation (2.37). As a conse-

quence, ‖-vectors reside in a different volume V‖ := V (n+1)D/2, rather than V . For
consistency, we also define a parallel-vector R‖ :=

√
n+1R for any non-replicated

vector R.
With the help of these definitions we can parameterize the manifold of symmetry-

related saddle points by u⊥:

Ω̄u⊥(x̂) =
1−Q

V n+1
+
Q

V‖

∫ ∞

0

dξ2 P(ξ2)
(2πξ2)Dn/2

exp
(
−(x⊥ − u⊥)2

2ξ2

)
, (2.38)

5The effective replicated Hamiltonian is also invariant under uniform rotations, separately in

each replica. However the spontaneous breaking of this symmetry does not give rise to Goldstone

modes and is not discussed further here.
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(a) (b)

xH1L

xH2L

x⊥
xÈÈ

Ξ0

xH1L

xH2L

x⊥
xÈÈ

Figure 2.5: Ansatz for the order parameter Ω(x(1), x(2)) in real space for two replicas
in one dimension, as Fig. 2.3. To simplify, we have assumed a fixed localization
length ξ0 in this figure. Ω(x(1), x(2)) is the probability of finding a particle at position
x(1) in replica 1 and at x(2) in replica 2. For the rotated coordinate system x‖ =
(x(2) + x(1))/

√
2 and x⊥ = (x(2) − x(1))/2. In (a) the displacement vector u⊥ ≡ 0,

and in (b) u⊥ = sinx‖. (Note, however, that for physical systems typically ξ ¿
wavelength of u⊥.)

where u⊥ = 0̂ yields Eq. (2.33). The situation is illustrated in Fig. 2.5a, where
the order parameter is shown for two replicas in one space-dimension. The order
parameter does not depend on x‖, so that it is represented by a rectilinear ridge
having its maximum height along the axis x⊥ = 0̂ and having width ξ. The family
of symmetry-related solutions is generated by rigidly translating the ridge to a new
position: x⊥ = u⊥. (The delocalized particles contribute only an unimportant
constant background (1−Q)/V n+1, which has been ignored in the figure.)

2.6.2 Goldstone Fluctuations and Ansatz for Ω

Now, we want to establish an Ansatz for the order parameter that allows for
special fluctuations around the saddle point. These fluctuations are low-energy
and long-wavelength excitations (i.e. Goldstone modes) and are constructed by par-
ticle displacements u⊥(x‖) that depend on the position in the sample [Mukhopad-
hyay et al., 2004; Goldbart et al., 2004]. These local deformations may be generated
by thermal fluctuations in the system. The Ansatz developed in this section was
already briefly presented in [Ulrich et al., 2006].

For the more general Ansatz, we make the same basic premises that reproduced
the saddle point solution (2.33): The fraction (1 − Q) of particles is delocalized,
and a particle j of the remaining fraction Q (the gel fraction) performs Gaussian
fluctuations around a mean position R(α)

j . Now, however, these mean positions
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depend on the replica and may be shifted by a spatially dependent value u(α)
⊥ (x‖)

from one another between the replicas, such that R(α)
j = Rj + u(α)

⊥ (Rj‖). Hence
the probability to find particle j at position x in replica α is
〈
δ(x− r(α)

j )
〉

= (2.39)

=





1
(2πξ2j )D/2

exp

(
−

(
x− (Rj +u(α)

⊥ (Rj‖))
)2

2ξ2j

)
if particle j localized (loc.)

1/V if particle j delocalized (deloc.)

and thus, for all replicas, the joint probability density to find a particle at x(0) in
replica (0), at x(1) in replica (1), etc. is

〈
δ(x̂− r̂j)

〉
=





1
(2πξ2j )D(n+1)/2

exp

(
−(x̂− R̂j)2

2ξ2j

)
if j loc.

V −(n+1) if j deloc.

(2.40)

with R̂j =
(
R(0)

j , ...,R(n)
j

)
=

(
Rj + u(0)

⊥ (Rj‖), ...,Rj + u(n)
⊥ (Rj‖)

)
. The Fourier

transform of this distribution is given by:
〈
exp(iq̂r̂j)

〉
= (2.41)

=
∫

dx̂ exp(iq̂x̂)
〈
δ(x̂− r̂j)

〉
=





exp

(
− q̂

2ξ2j
2

+ iq̂R̂j

)
if j loc.

δq̂,0̂ if j deloc.

Hence, we get for the averaged order parameter:

〈
Ω(q̂)

〉
=

1
N

N∑

j=1

〈
exp(iq̂r̂j)

〉
(2.42)

=
1
N

∑

j loc.

exp

(
− q̂

2ξ2j
2

+ i
n∑

α=0

q(α)
(
Rj + u(α)

⊥ (Rj‖)
))

+
1
½½N
·½½N(1−Q)δq̂,0̂

Now, to incorporate the disorder average, we assume a uniform distribution of the
undeformed mean positions Rj . We also define the distribution for the localization
lengths

P(ξ2) =
1
QN

∑

j loc.

δ(ξ2 − ξ2j ) (2.43)

and get:

Ω̄u(q̂)− (1−Q)δq̂,0̂

=
1
N

∑

j loc.

exp
(
− q̂

2ξ2j
2

) ∫
dRj

V
exp

(
i

n∑

α=0

q(α)
(
Rj + u(α)

⊥ (Rj‖)
))

=
Q

V‖

∫ ∞

0
dξ2 P(ξ2) exp

(
− q̂

2ξ2

2

)∫
dx‖ exp

(
iq‖x‖ + iq⊥u⊥(x‖)

)
(2.44)
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which can be written in a simple way:

Ω̄u(q̂) = (1−Q)δq̂,0̂ +Qω(q̂)
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)
(2.45a)

with ω(q̂) =
∫ ∞

0
dξ2 P(ξ2) exp

(
− q̂

2ξ2

2

)
(2.45b)

and with the dimensionless measure Dx‖ = dx‖/V‖. In real space this result trans-
forms into

Ω̄u(x̂) =
1−Q

V n+1
+ Q

∫ ∞

0

dξ2 P(ξ2)
(2πξ2)D(n+1)/2

×
∫

Dy‖ exp

(
−(y‖ − x‖)2 + (x⊥ − u⊥(y‖))2

2ξ2

)
. (2.46)

This form is illustrated in Fig. 2.5b: Unlike the homogeneous translations in
Eq. (2.38) and Fig. 2.5a, the ridge is not translated rigidly, but deformed by the
position-dependent vector u⊥(x‖). These excitations do cost energy; only in the
long-wavelength limit do we expect the energy of the excitation to vanish with an
inverse power of the wavelength.

We only consider pure shear deformations, and hence require that
| det(δτν + ∂τu

(α,ν)
⊥ )| = 1. This constraint is consistent with taking the excluded

volume interaction to be large, which makes the system incompressible. For small
deformations, the constraint simplifies to ∂νu

(α,ν)
⊥ = 0.

It is important to note that the deformations in the Ansatz, Eq. (2.45), represent
small fluctuations around the saddle-point solution (2.33). As we see in
Appendix B.4, in the limit of small deformations u⊥ and long wavelengths (i.e.
small q̂), the Ansatz can be expressed as

Ω̄u(q̂) = Ω̄sp(q̂) + δΩu(q̂) , (2.47)

with a small δΩu(q̂) = O(q⊥u⊥). Consequently, for u⊥(x‖) ≡ 0̂, the Ansatz repro-
duces the saddle-point solution (2.33) (here in Fourier representation):

Ω̄u≡0(q̂) ≡ Ω̄sp(q̂) = (1−Q)δq̂,0̂ +Qω(q̂) δq‖,0 . (2.48)

2.6.3 Physical Shear Deformations

Here we examine what the physical meaning of the shear deformation field u⊥(x‖) is.
Let us first assume, there is a particle at position x in the unsheared state (u⊥ = 0̂,
see Fig. 2.6, left). If there is a non-zero u⊥(x‖), this particle will be moved to the

position x + u(0)
⊥ (x‖) in the zeroth replica. In this replica cross-linking takes place,
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Figure 2.6: Descriptive illustration of the deformation vector u⊥(x‖). Left: In the
unsheared state, there is a particle at position x. Center: In the zeroth replica the
deformation causes the particle to be at the position x+u(0)

⊥ (x‖). It will preferably
be cross-linked to particles close to that position. Right: In replicas α = 1, ..., n,
that particle is moved to x + u(α)

⊥ (x‖), but still cross-linked to particles that were
close in replica (0).

hence this particle will preferably be cross-linked to particles close to that position
(Fig. 2.6, center). The measurement is performed in replicas α = 1, ..., n, in which
the particle is moved to the position x + u(α)

⊥ (x‖) (Fig. 2.6, right). However, the
physically relevant deformation is the displacement of this particle relative to the
state during cross-linking, u(α)

phys(x‖) = u(α)
⊥ (x‖) − u(0)

⊥ (x‖). Hence it is useful to
introduce the physical deformation field

u(α)
phys(x‖) := u(α)

⊥ (x‖)− u(0)
⊥ (x‖) , α = 0, ..., n (2.49)

which has n non-zero components and contains the same information as u⊥(x‖).
One can obtain a useful relation between the two fields:

n∑

α=0

(
∂u

(α,ν)
⊥

∂x
(τ)
‖

)2

=
n∑

α=1

(
∂u

(α,ν)
phys

∂x
(τ)
‖

)2

− 1
n+1

(
n∑

α=1

∂u
(α,ν)
phys

∂x
(τ)
‖

)2

, (2.50)

which can easily be proved by plugging in the definition of u(α)
phys(x‖), Eq. (2.49). In

the above equation ν, τ = 1, ..., D are spatial indices. We note that the sum of the
last term is of the form

(∑n
α=1 ...

)2 = O(n2) and therefore we can write in the limit
n→ 0:

n∑

α=0

(
∂u

(α,ν)
⊥

∂x
(τ)
‖

)2

=
n∑

α=1

(
∂u

(α,ν)
phys

∂x
(τ)
‖

)2

+O(n2) (2.51)

2.7 Replica Free Energy with Shear Deformations

Now we will insert the Ansatz (2.45) into the general expression (2.28) for the free
energy and thereby allow for physically motivated fluctuations (namely the local
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shear displacements u⊥(x‖)) around the saddle point:

Zn+1

exp
(−Nf0

) =
∫
DΩexp

(−Nfn+1{Ω}
) ≈

∫
Du exp

(−Nfn+1{Ω̄u}
)

(2.52)

The integral
∫ Du goes over all possibilities of the local shear field, separately in all

replicas.
In this approach, we will only consider small, long-wavelength distortions, so

that it is sufficient to keep u⊥ only to the lowest order, (∂u⊥/∂x‖)2. Higher orders
in u⊥ and higher-order derivatives will be neglected. The calculation is somewhat
intricate and can be found in Appendix B.5. The result for the replica free energy
can be written in a very concise way as:

Nfn+1{Ω̄u} = Nf sp
n+1 +

G

2

∫
dx‖

n∑

α=0

D∑

τ,ν=1

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) , (2.53a)

where the first term, f sp
n+1, is the saddle-point value of fn+1{Ω}:

f sp
n+1 = n

{
D

2

(
exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)

+
µ2Q2

2
Ξ2,a2/2 − exp(−µ2Q)

∞∑

r=2

(µ2Q)r

r!
Ξr,a2

}
,

(2.53b)

and the second term describes the cost of fluctuations (i.e. shear deformations)
around the saddle point, with the shear modulus

G =
(

exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)
n0 . (2.53c)

For the saddle-point value Eq. (2.53b), Ξr,a2 is a simplifying definition that depends
on the microscopic parameters of the system:

Ξr,a2 :=
∫

dξ21P(ξ21) · · ·dξ2rP(ξ2r ) ln




(
V

(2π)D/2

)r−1
(∏r

γ=1(a
2 + ξ2γ)−1

∑r
γ=1(a2 + ξ2γ)−1

)D/2

 .

(2.54a)

In the thermodynamic limit, when V 1/D À ξ, a, the dependence on ξ and a vanishes,
and Ξr,a2 reduces to (see Eq. (B.101) in Appendix B.5.6):

Ξr,a2 = (r − 1) lnN +O(N0) . (2.54b)

One has to keep in mind, however, that for some purposes the full form (2.54a) is
needed, for example, for determining the distribution of localization lengths P(ξ2)
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as e.g. in [Goldbart et al., 1996, Sec. VI C]. For all our purposes, however, the simple
Eq. (2.54b) is sufficient. We plug it into Eq. (2.53b) and use (B.93) for the sum
over r. With that, f sp

n+1 becomes very simple:

f sp
n+1 = n

(
exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)(

¢
¢¢
D

2
− lnN +O(N0)

)
(2.55)

It is noteworthy that this saddle point solution of the free energy per particle f sp
n+1

is not intensive, but proportional to lnN . This point has already been discussed in
[Goldbart et al., 1996]: it is most probably coming from the fact that for a given
cross-link configuration C, certain particles are indistinguishable (e.g. if particles 1,
2 and 3 are connected as a triangle, all three of those particles can be interchanged
yielding the same configuration). Therefore, if we insist on an intensive free energy,
we have to normalize the partition function by a prefactor taking into account this
indistinguishability. However, until now, this could not be done for this or similar
models and does not matter if one considers ∂f/∂Q = 0.

2.8 Returning to the Disorder-Averaged Free Energy

In the last section, we found the replica free energy fn+1{Ω̄u} and its dependence
on the shear deformations u⊥(x‖), see Eqs. (2.53). Here we want to establish the
connection to the “real” disorder-averaged free energy [FC ]. With Eqs. (2.14a) and
(2.10), we can relate the replicated partition function Zn+1 to the disorder-averaged
free energy:

−[FC ] = lim
n→0

[Zn
C ]− 1
n

= lim
n→0

Zn+1/Z1 − 1
n

=
1
Z1

lim
n→0

Zn+1 −Z1

n

=
1
Z1

lim
n→0

∂Zn+1

∂n
= lim

n→0

∂lnZn+1

∂n
(2.56)

and hence:

[FC ] = − lim
n→0

∂

∂n
lnZn+1 . (2.57)

Applying this relation to Zn+1 from Eqs. (2.52) and (2.53a), we find:

[FC ] = N lim
n→0

∂

∂n

(
f0 + f sp

n+1

)

+ lim
n→0

∂

∂n
ln

∫
Du exp


−G

2

∑
α

∑
ν,τ

∫
dx‖

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

 . (2.58)

The only degrees of freedom left are constituted by the displacement field u⊥(x‖).
However, u⊥ contains the mathematically unpleasant constraint that the sum over
all replica components has to be zero. With Eq. (2.51), we can relate u⊥ to the



24 CHAPTER 2. HIGHLY CROSS-LINKED BROWNIAN PARTICLES

physical shear deformation ûphys and write the integral
∫ Du as an integral over the

n components of ûphys:

[FC ]−N lim
n→0

∂(f0 + f sp
n+1)

∂n

= − lim
n→0

∂

∂n
ln





∫ (
n∏

α=1

Du(α)
phys

)
exp


−G

2

n∑

α=1

∑
ν,τ

∫
dx‖

(
∂u

(α,ν)
phys (x‖)

∂x
(τ)
‖

)2







= − lim
n→0

∂

∂n
ln








∫
Duphys exp


−G

2

∑
ν,τ

∫
dx‖

(
∂u

(ν)
phys(x‖)

∂x
(τ)
‖

)2







n 
 .

(2.59)

We can get n-th power of the curly bracket out of the logarithm, and obtain:

[FC ] = N lim
n→0

∂(f0 + f sp
n+1)

∂n
− lnZel (2.60a)

with Zel =
∫
Duphys exp


−G

2

∑
ν,τ

∫
dx

(
∂u

(ν)
phys(x)

∂x(τ)

)2

 (2.60b)

Hereby, Zel is the partition function of the energy contribution of an incompressible
medium [Landau & Lifshitz, 1965]. It does not involve replicas anymore, and thus
we can confirm that G indeed plays the role of the shear modulus. It is analyzed in
more detail in Sec. 2.9.3.

We can see in Eq. (2.60a) that, in addition to the elastic contribution, the linear
order in n of the saddle point solution f sp

n+1 adds to the disorder-averaged free energy
per particle.

2.9 Results

2.9.1 Average Cross-Link Density and Higher Moments

Given the Deam-Edwards distribution Eq. (2.8), it is possible to calculate expec-
tation values of the form [M(M − 1) · · · (M − J + 1)] with the total number of
cross-links M in the system and the disorder average [ · ]. In Appendix B.6.1 we
find that

[M(M − 1) · · · (M − J + 1)] =
(
µ2N

2

)J

. (2.61)

Of particular importance is of course the case J = 1 and J = 2, from which the first
two moments can be calculated. For those two cases, the above equation yields:

[M ] =
µ2N

2
(2.62a)

[M(M − 1)] =
(
µ2N

2

)2

. (2.62b)
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Thus for any choice of µ2, the cross-link density is:

[M ]
N

=
µ2

2
(2.63)

and with two particles involved in every cross-link, the parameter µ2 = 2[M ]/N is
the average coordination number.

The fluctuations of the number of cross-links are calculated from Eqs. (2.62)
with

∆M2 := [M2]− [M ]2 = [M(M − 1)] + [M ]− [M ]2

=
(
µ2N

2

)2

+
µ2N

2
−

(
µ2N

2

)2

=
µ2N

2
, (2.64)

and hence

∆M =
√

[M2]− [M ]2 =
√
µ2N/2 . (2.65)

As one can easily see, for any finite µ2, the fluctuations ∆M/[M ] relative to the
mean number of cross-links vanish like N−1/2.

In principle, all moments can be calculated very easily using the formula (2.61).
Indeed, it turns out that all moments are equal to those of the Poisson distribution
with parameter µ2N/2. [Broderix et al., 2002, sec. 3.1] also found a convergence
of the cross-link distribution towards a Poisson distribution for the randomly cross-
linked particle model with a slightly different cross-link distribution, without the use
of the replica technique. Instead of the parameter µ2, in that work the probability
for a certain cross-link is solely determined by the typical cross-linking length.

2.9.2 Gel Fraction

In order to obtain a relation for the gel fraction Q, we need to find the minimum of
the free energy with respect to Q. Therefore, we calculate

∂

∂Q

∂f sp
n+1

∂n
= − (−µ2 exp(−µ2Q) + µ2 − µ2Q

)
lnN

!=0 , (2.66)

which becomes an implicit equation for Q:

1−Q = e−µ2Q (2.67)

This equation is well known and has been derived in many contexts like random
graph percolation, random nets and theory of epidemics [Solomonoff & Rapoport,
1951; Landau, 1952; Erdős & Rényi, 1960, 1961], as well as similar gelling systems
[Broderix et al., 2002; Goldbart et al., 1996; Castillo et al., 1994].
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Figure 2.7: Fraction of localized particles Q, depending on the average coordination
number. The infinite cluster forms at the critical value µ2

c = 1. The full line is the
exact solution of Eq. (2.67) and the dashed line the approximation (2.69).

Given that the relation for the gel fraction (2.67) is already well known, we will
only briefly discuss it here: It has a trivial solution Q = 0, which is stable for µ2 ≤ 1
and unstable for µ2 > 1. At µ2 = µ2

c = 1, there is a second order transition to a gel
state Q > 0, as for µ2 > 1 a further, nontrivial stable solution emerges. This is the
sol-gel transition, already briefly mentioned in Sec. 2.4.5.

In Fig. 2.7, the stable branch of the gel fraction Q is plotted versus the cross-link
density. At a critical value µ2

c = 1, one can see the transition from a sol phase, with
all particles delocalized (Q = 0), to a gel phase, where certain particles are localized
(Q > 0).

Close to that transition, Eq. (2.67) can be expanded for µ2 ≈ 1, Q ¿ 1 [Peng
et al., 1998; Goldbart et al., 2004; Mukhopadhyay et al., 2004]:

1−Q = 1− µ2Q+
1
2
µ4Q2 +O(Q3)

−1 = −µ2 +
1
2
µ4Q+O(Q2)

Q = 2(µ2 − 1) +O(
Q2

)
(2.68)

And with ε = µ2 − 1, the distance from the critical point:

Q = 2ε+O(ε2) (2.69)

In this work we are interested in the behavior for arbitrary µ2. In this regard, we
rewrite Eq. (2.67) as:

1 = (1−Q)eµ2Q

−µ2e−µ2
= µ2(Q− 1)eµ2(Q−1) . (2.70)
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This form can be written in terms of the Lambert function W (x), which is the
solution of the equation x = W (x)eW (x), see [Corless et al., 1996], and thus we get:

µ2(Q− 1) = W (−µ2e−µ2
)

Q = 1 +
W (−µ2e−µ2

)
µ2

. (2.71)

With the help of the expansion of the Lambert function,

W (−x) = −
∞∑

k=1

kk−1

k!
xk for |x| < 1

e
, (2.72)

we get

Q = 1− e−µ2
∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k for all µ2 > 1 . (2.73)

2.9.3 Shear Modulus

In Eq. (2.60), we identified the shear modulus G. Restoring units of energy, it
becomes:

G =
(

exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)
n0 kBT (2.74)

As one would expect, it vanishes in the liquid phase (µ2 < 1, Q = 0). In the solid
phase (µ2 > 1), it increases linearly with particle density n0 and depends only on
the cross-link density, given the gel fraction Q = Q(µ2) (derived in the previous
section 2.9.2).

Close to the gel transition µ2 & 1, the shear modulus can be expanded for
small Q:

G =
(

1− µ2Q+
(µ2Q)2

2!
− (µ2Q)3

3!
+ µ2Q− 1− µ2Q2

2

)
n0 kBT +O(Q4)

=
(
µ2(µ2 − 1)Q2

2
− µ6Q3

6

)
n0 kBT +O(Q4) , (2.75)

and with Eq. (2.69), we can write the shear modulus in terms of ε = µ2 − 1, resulting
in a power-law behavior (see Fig. 2.8a):

G =
2
3
n0 kBT ε

3 +O(ε4) . (2.76)

In the highly cross-linked regime, we can also write the shear modulus as a power
series. To this end, we start from Eq. (2.74) again and use the (exact) relation (2.67)
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Figure 2.8: Shear modulus G divided by the particle density n0 and kBT , depending
on the average coordination number µ2. The solid line shows the exact expression
(2.74), the dashed lines are the approximations valid (a) close to the sol-gel transi-
tion, Eq. (2.76), and (b) for highly connected systems, Eq. (2.79).

to get rid of the exponential:

G

n0kBT
= (1−Q) + µ2Q− 1− µ2Q2

2

=
µ2

2
− 1 + (1−Q)− µ2

2
(1−Q)2 . (2.77)

The expansion for (1 − Q) is already given in Eq. (2.73). In Appendix B.6.2, we
find an expression for the square of this infinite sum, (1−Q)2, with which we easily
obtain a relation for (1 − Q) − µ2

2 (1 − Q)2, see Eq. (B.118). With that, the shear
modulus Eq. (2.77) can be written in a series in µ2e−µ2

,

G

n0kBT
=
µ2

2
− 1 + e−µ2

∞∑

k=0

(k + 1)k−2

k!
(µ2e−µ2

)k , (2.78)

which can be used to compute G for all µ2 > 1. In the highly cross-linked regime
µ2 À 1, G is approximated by (see Fig. 2.8b):

G =
1
2
n0 kBT (µ2 − 2) +O(e−µ2

) . (2.79)

The scaling G ∼ ε3 close to the critical point has been derived previously
[Castillo & Goldbart, 1998; Mukhopadhyay et al., 2004; Goldbart et al., 2004]; the
critical exponent is a result of mean field theory and expected to be modified by
interacting fluctuations below D = 6 [Peng & Goldbart, 2000]. In the highly cross-
linked limit, fluctuations are presumably weak so that our result is expected to hold
even beyond the Gaussian expansion around mean field theory. The result we get is
reminiscent of the classical theory of rubber elasticity, G = nskBT , with the density
of strands ns being replaced by the density of cross-links: 1

2µ
2n0 = [M ]/V .
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In order to compare the calculated shear modulus with experimental results,
note that, if the cross-link length is small compared to the particle size, it is unlikely
for one monomer in D = 3 (D = 2) dimensions to be connected to more than 12
(6) other monomers. Therefore, average coordination numbers µ2 > 12 (> 6) are
inaccessible in these systems. Only if long tethers can form, reaching further than
the nearest neighbor, higher average coordination numbers µ2 are possible.

2.10 Conclusions

We have determined the shear modulus G of a randomly cross-linked system. It only
depends on the particle density n0 = N/V and the average coordination number
µ2. Interestingly, neither the distribution of localization lengths P(ξ2), defined in
Eq. (2.43), nor the typical cross-link length a influence the macroscopic behavior of
the material. This result is consistent with the observation that the shear modulus
determines the response of the system to a shear deformation on the longest scales:
The wavelength of the shear deformation has to be larger than all microscopic
length scales. Furthermore, one observes that G ∝ kBT , i.e. the shear elasticity is
purely entropic. This is a consequence of our simple model with entropic springs
to account for the cross-links. In more complex systems, e.g. covalently bonded
random networks, one expects to find additional energetic contributions to G in the
highly cross-linked regime. In any case, the bulk modulus should depend on the
strength of the excluded-volume interaction, and hence it is not expected to be as
universal as the shear modulus.

It is also noteworthy that the shear modulus does not depend on the spatial
dimension D, apart from the fact that the maximal coordination numbers depend
on dimensionality and determine the physical range of µ2. Again, this could be
expected, because we only consider a Gaussian expansion around the saddle point;
interactions between fluctuations will most likely cause a dependence on dimension-
ality.
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Chapter 3

Cross-Linked Directed Polymers
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3.1 Introduction

In the previous chapter we investigated a system of cross-linked molecular networks.
Neither the particles nor the cross-linking gave rise to a preferred direction, hence
on a macroscopic scale, the system was isotropic. In many cases, however, the
experimental setup induces a preferred direction of the polymer chains, like
e.g. for so called polymer brushes, where strands are mounted perpendicular to a
bottom plate, or DNA strands which are highly stretched along one direction. For
polymer chains in a nematic solvent or nematic polymers [Kamien et al., 1992],
the alignment and hence the emergence of a preferred direction can also be due
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to spontaneous symmetry breaking, whereby the chains align in an arbitrary but
uniform direction, when e.g. the temperature is decreased below a critical value.
Hence, the field of directed polymers has become an active area of research during
the last twenty years.

This problem of directed chains is also relevant for the behavior of type-II super-
conductors [Kamien et al., 1992; Marchetti & Nelson, 1993]. A magnetic field, larger
than a critical value Hc1, penetrates the superconductor in form of flux lines, which
are preferably aligned along the field and each of which is carrying one quantum
of magnetic flux. Due to their mutual repulsion, these flux lines can form various
lattice or glassy structures in the transverse plane. In this respect, the flux lines are
similar to directed polymer chains with excluded volume interaction.

Recently, there has been an increasing interest in cross-linked polymer brushes
with promising applications. This is due to the fact that cross-linking can influence
chemical and mechanical stability, permeability and swelling characteristics of the
polymer brushes [Huang et al., 2001; Loveless et al., 2006]. For example Ionov
et al. [2004] investigated binary polymer brushes, consisting of both hydrophobic
and hydrophilic chains; they managed to cross-link the hydrophobic components in
the extended or collapsed state, depending on the position of the sample; thereby
they could locally, on a µm-scale, tailor the properties of the material. On the
other hand, amphiphilic block copolymers (i.e. polymer chains with one hydrophobic
and one hydrophilic end) in an aqueous solution are known to form structures like
micelles, lipid bilayers, or liposomes, whose interior comprises brush-like structures.
For micelles Iijima et al. [1999] and Xu et al. [2004] also found that cross-linking
can be used to achieve stabilization. Stable micelles are of great importance for
pharmaceutical applications, since they can be utilized as carriers for targeted drug
delivery.

In this chapter we investigate a simple model of flexible cross-linked directed
polymers, embedded between two parallel surfaces (see Fig. 3.1). The polymer
chains are modeled as functions r(z), which are preferably aligned along the distin-
guished direction z. This preferential alignment may be interpreted as a mechanical
stretching of the chains along the z-direction, or as the interaction with a nematic
field. We will study the effect of permanent cross-links on this simple structure and
observe a gelation transition as the cross-links concentration is increased above a
critical value, similar to the RLP model.

In the following section 3.2, we will discuss the behavior of one single polymer
chain. The full model, comprising a large ensemble of these chains, is introduced in
Sec. 3.3. In Sec. 3.4 we develop a Landau-Wilson free energy, with the replicated
density being the order parameter. In Sec. 3.5 an Ansatz for the order parameter is
developed, which is shown to solve the saddle-point equation in Sec. 3.6; the sol-gel
transition, a consequence of the saddle-point equation, is investigated there (see
Sec. 3.6.2). The distribution for the localization lengths is derived in Sec. 3.7, and
we will conclude in Sec. 3.8.
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z

1r 2r

Figure 3.1: Illustration of the cross-linked directed polymer model. The polymers
are depicted as blue lines ( o ). They are preferably aligned along the z-axis and are
randomly cross-linked (\/\/\/\/\). We will refer to the directions perpendicular to the
axis of alignment as the transverse or in-plane direction (here r1 and r2).

3.2 Properties of a Single Chain

Before starting with the system of cross-linked directed polymers, it is illustrative to
investigate the behavior of one single polymer chain. Such a chain is modeled as aD-
dimensional vector r(z) that depends on an additional dimension, the system height
z. We will have a look at fluctuations of a fully uncrosslinked chain (Sec. 3.2.1) as
well as a chain clamped to a certain point in space (Sec. 3.2.2).

3.2.1 Radius of Gyration of an Uncrosslinked Chain

Consider a single free polymer chain r(z) only subject to the alignment interaction

Halign,1 =
σ

2

∫ L

0
dz ṙ2(z) , (3.1)

which penalizes deviations from the alignment along the z-axis. Throughout this
chapter about directed polymers, the index 1 on any Hamiltonian specifies that it is
acting only on one chain, to avoid confusion with Hamiltonians acting on the whole
system of N chains, investigated later. The probability for a conformation r(z) is
given by the Boltzmann weight e−Halign,1 . Here we want to calculate the average
extension of this chain in r-direction, or in other words, its transverse radius of
gyration:

R2
g :=

〈
1

2L2

∫ L

0
dz1dz2

(
r(z1)− r(z2)

)2
〉

Halign,1

. (3.2)

The average 〈 · 〉Halign,1
is represented by a functional integral over all chain confor-

mations. For an arbitrary observable A,

〈A〉
Halign,1

=
∫
Dr(z) A e−Halign,1 . (3.3)
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The measure Dr(z) of all functional integrals in this thesis is normalized such that
∫
Dr(z) e−Halign,1 = 1 (3.4)

That is why Eq. (3.3) does not need a normalization. In Appendix C.1.1, we solve
Eq. (3.2) by a discretization of the functional integral and get for the radius of
gyration:

R2
g =

D

6
L

2σ
(3.5)

We will see that the quantity

`2 :=
L

2σ
∝ R2

g (3.6)

will be of great importance in the full system of cross-linked polymer chains, which
we investigate later.

3.2.2 Properties of a Polymer Clamped in Space

As a next step we calculate the properties of a single polymer chain which is clamped
to a fixed point (0, zc) in space, see Fig. 3.2, left. Hence the chain r(z) is subject to
the following two interactions H1 = Halign,1 +Hclamp,1 with:

Halign,1 =
σ

2

∫ L

0
dz ṙ2(z) (3.7)

Hclamp,1 =
1

2a2

(
r(zc)− 0

)2 (3.8)

To investigate properties of this simple system, we introduce the partition function
with an auxiliary field b:

Z =
∫
Dr(z) exp

(−H1 + b · r(z0)
)
, (3.9)

so that we can easily compute the mean fluctuations of the chain at height z0:

∇2
b lnZ = ∇b

(∇bZ

Z

)
=
∇2

bZ

Z
− (∇bZ)2

Z2
=

〈
r2(z0)

〉− 〈r(z0)〉2 =: ∆r2(z0) .

(3.10)

The functional integral in Eq. (3.9) can be solved by a discretization, similar to one
in the previous section. In Appendix C.1.2 we find:

lnZ =
b2

2

( |zc − z0|
σ

+ a2

)
+ ln

(
(2πa2)D/2

A

)
. (3.11)
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Figure 3.2: Left: Illustration of the clamped polymer chain. The polymer ( o ) is
clamped (\/\/\/\/\/\) to the z-axis at a certain height zc. Center: Plot of the size of
the fluctuations ∆r2(s), see Eq. (3.12), exemplarily for the case a2 = 0.2, sc =
0.7. Right: Disorder-averaged fluctuations [∆r2(s)] ∝ s2 + (1 − s)2, according to
Eq. (3.14) for the case a2 = 0.

With that result we can apply Eq. (3.10) to get the fluctuations of the chain (for
simplification we change z0 to z):

∆r2(z) = D ·
( |zc − z|

σ
+ a2

)
= D ·

(
L

σ
|sc − s|+ a2

)
. (3.12)

On the right hand side of the above equation, we introduced the normalized system
height s = z/L. This result is illustrated in Fig. 3.2, center. As one can see, the
extent of the fluctuations increases linearly, as we move away from the “clamping
height” zc. At the clamping height itself, z = zc, fluctuations are still present due
to the finite cross-link strength 1/a2.

In the full system, the chains will be cross-linked to each other at random heights.
Similarly, we may define a disorder average [ · ] for this simple system as the
uniform distribution of all clamping heights zc (resp. sc), so that the disorder-
averaged fluctuations may be interpreted as the average of many (non-interacting)
chains clamped to random points on the z-axis:

[
∆r2(s)

]
:=

∫ 1

0
dsc ∆r2(s) = D

(
L

σ

∫ 1

0
dsc|sc − s|+ a2

)

= D

(
L

σ
· s

2 + (1− s)2

2
+ a2

)
. (3.13)

Using the radius of gyration `2 = L/(2σ) from the previous section 3.2.1 we get:

[
∆r2(s)

]

D
= `2

(
s2 + (1− s)2

)
+ a2 , (3.14)
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Figure 3.3: The polymer chains are modeled as functions ri(z). Thus, at every
height z, a chain can only appear once (as on the left) and cannot turn around in
z direction (as on the right).

which is illustrated in Fig. 3.2 on the right side. It might be surprising that in
spite of the homogeneous distribution of clamping points, the fluctuations are not
uniform along the z-axis. This behavior arises from the fact that the chain has
open ends, which can move around freely. We will see a similar behavior also for
the cross-linked polymers and discuss it more extensively in Sec. 3.7.2.

3.3 Full Model: Cross-Linked Directed Polymers

In the rest of this chapter, we consider a system of N identical chains. As in
the previous section, the positions of these chains are modeled as D-dimensional
functions r1(z), ..., rN (z) which depend on the “height” z in the system, see Fig. 3.3,
left chain. Thus, the dimensionality of the system is D+1. This way of modeling
distinguishes the z-direction such that the chains cannot “turn around” and go back
in that direction as the chain on the right hand side in Fig. 3.3.

The chains reside in a volume V = L·A, where L is the total height in z-direction
and A is the area (or hyper-area) of the system in the other D spatial dimensions.
Most important is, of course, the case D = 2 for a three-dimensional system. The
thermodynamic limit is taken such that N,A → ∞ with a constant chain density
n0 = N/A. However, we keep the L-dependence, since the free ends of the chain
may cause a z-dependence of the structural and mechanical properties that provides
interesting physics. It is interesting to note about this model that the limit L→ 0
(a thin D-dimensional “slice”) is reproduces the D-dimensional RLP model.

3.3.1 Interactions

The chains are subject to the following interactions:
The cross-link interaction permanently connects a pair of chains (ie and je)

at a fixed height (ze ∈ [0, L]), which is the same for both constituents (see left
side of Fig. 3.4). As in the randomly cross-linked particle model, the M cross-
links are modeled as Hookian springs. Thus, for a given cross-link configuration
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Figure 3.4: Illustration of the interactions between the directed polymers ( o ). Left:
A cross-link (\/\/\/\/\/\) permanently connects chains ie and je at height ze. Center:
Through the excluded volume interaction, chains which come too close are repelled
from each other. Right: The alignment interaction straightens the chains along the
z axis by penalizing high derivatives ṙi(z).

C := {(ie, je, ze)}M
e=1, the cross-link Hamiltonian is:

HXlink =
1

2a2

M∑

e=1

(
rie(ze)− rje(ze)

)2
, (3.15)

where a is the typical cross-linking length.
As in the RLP model, a repulsive excluded-volume interaction is intro-

duced, to prevent the system from collapsing. Here, it acts between all pairs of
chains and along the whole length of them (see Fig. 3.4, center):

Hev =
λ

2

N∑

i,j=1

∫ L

0
dz U

(
ri(z)− rj(z)

)
, (3.16)

with a short ranged U(x) subject to the restriction
∫
A U(x) dx = 1.

Furthermore, we add an alignment interaction, which straightens the chains
along the z-axis by penalizing high values of the derivatives ṙi(z) (Fig. 3.4, right):

Halign =
σ

2

N∑

i=1

∫ L

0
dz ṙ2

i (z) (3.17)

In Sec. 3.2, we have already seen the effect of this interaction on a single chain.
From a physical point of view, this interaction can be interpreted as a means to

penalize stretching of the chains: While the unperturbed length, i.e. the length of a
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Figure 3.5: Discretization of a polymer chain into segments Z = 1, 2, ..., ZL. The
length of one chain segment ∆l depends on the length of the segment in z-direction
(∆z) and in transverse direction (∆r).

chain with r(z) ≡ 0, equals the system height L, any fluctuation r(z) 6= 0 stretches
the chain such that the arc length Larc becomes larger than L: Discretizing the chain
into ZL segments of height ∆z = L/ZL (see Fig. 3.5), we get for its arc length:

Larc =
ZL∑

Z=1

∆lZ =
ZL∑

Z=1

√
∆z2 + ∆r2

Z =
ZL∑

Z=1

∆z

√
1 +

∆r2
Z

∆z2

∆z→0=
∫ L

0

√
1 + ṙ2(z) dz = L+

1
2

∫ L

0
ṙ2(z) dz +O(ṙ4) . (3.18)

Thus, to lowest order in ṙ(z), the alignment Hamiltonian (3.17) comprises the excess
length Larc − L = 1

2

∫ L
0 ṙ2(z) dz, of all chains. This discretization of a chain into

small segments Z = 1, 2, ..., ZL will appear frequently throughout the investigation
of this model and is a useful way to visualize and calculate functional integrals.

A more sophisticated approach [Marko & Siggia, 1995] shows that this Hamil-
tonian is also obtained for a worm-like chain (a model of semiflexible and in-
extensible chains), if it is strongly stretched along the z-axis by applying an
external force f to the ends of the chain. With our notation the energy of this
stretched worm-like chain can be written as E = 1

2

∫ Larc

0 dl
(
Ar̈2(l) + f ṙ2(l)

)
, where

A is the persistence length. If the force on the chain ends f is strong enough, the
bending contribution can be neglected. Changing the integral over the arc length∫ Larc

0 dl to an integral over the stretching direction
∫ L
0 dz we get a transformation

factor dl/dz =
√

1 + ṙ2(z) = 1 + O(ṙ2). Thus this strongly stretched worm-like
chain reproduces to lowest order the alignment Hamiltonian (3.17) with σ playing
the role of f .

Another physical realization of Eq. (3.17) is that of worm-like chains inter-
acting with a strong nematic field, in the limit of vanishing persistence length
of the chains [Kamien et al., 1992]. In this context, σ controls the coupling of a
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(homogeneous) nematic matrix to the local polymer direction. Different from the
interpretation of stretched chains, polymers in a nematic field would in general be
allowed to make hairpin turns, since the nematic field is typically symmetric under
flipping the direction of the director field n → −n; the energy of a hairpin is es-
timated to be Eh ≈

√
σκ (with the bending stiffness κ) [de Gennes, 1982; Nelson,

2002]. In this context it is important to note that our model is an approximation,
since such hairpins cannot be modeled by a function r(z). However, since we are
interested in the limit in which coupling strength σ is dominating further terms,
hairpins are energetically unfavorable and can savely be neglected if σ À κ−1 is
ensured.

The alignment interaction (3.17) is also necessary from a mathematical point of
view, because there is no other interaction that makes sure that the chains are con-
tinuous in z-direction. Without the alignment interaction, every slice in z-direction
could be treated independently and system would decouple.

The alignment interaction has the convenient form of a sum over all individual
chains,

Halign =
N∑

j=1

Halign,1{rj} , (3.19)

which, as we will see, is easy to handle in the calculation. It is even possible,
without impeding the calculation, to add further interactions of that form. Beyond
the alignment interaction, further possible terms proposed in Appendix C.2.

The total Hamiltonian is HC = HXlink +Hev +Halign. For the partition function,
we have to use functional integrals over all possible conformations of all chains

ZC =
∫
Dr1(z) · · · DrN (z) e−HC . (3.20)

The functional integral
∫ Dr(z) was already briefly mentioned in Sec. 3.2. For a

quantity A({r(z)}) that depends on the chain conformation, it is represented by a
discretization as in Fig. 3.5:

∫
Dr(z)A({r(z)}) =

∫
dr1 · · ·drZL

A({rZ}ZL
Z=1

)

∫
dr1 · · ·drZL

exp

(
−σ

2

ZL−1∑

Z=1

(rZ+1 − rZ)2

∆z2

) . (3.21)

The normalization constant in the denominator prevents divergences for ZL → ∞
and is such that

∫ Dr(z) e−Halign,1{r(z)} = 1.

3.3.2 Disorder Average

As in the RLP model, we use the Deam-Edwards distribution as cross-link distri-
bution (see Sec. 2.3). In addition to taking into account all possible cross-links by
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summing over all possible pairs of chains, we also have to integrate over all possible
cross-link heights ze:

[AC
]

=
∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

1
LM

∫ L

0
dz1 · · · dzM AC · PDE(C) (3.22a)

with PDE(C) =
1
Z1

· (µ̃2)M

M !
ZC (3.22b)

where µ̃2 =
µ2

2Nφ
and φ =

(2πa2)D/2

A
. (3.22c)

And the normalization constant Z1 is such that [1] = 1.
The average cross-link density is given by [M ]/N = µ2/2, as in the RLP model;

the calculation of [M ] is deferred to Appendix C.7, as it is very similar to the RLP
model (Secs. 2.9.1 and B.6.1).

3.4 Replica Calculation of the Free Energy

3.4.1 Disorder-Averaged Free Energy: First Steps

We are interested in the disorder-averaged free energy and, again, use the replica
trick to handle the average over the logarithm:

[FC ] = −[lnZC ] = −
[
lim
n→0

Zn
C − 1
n

]
= − lim

n→0

[Zn
C ]− 1
n

. (3.23)

The disorder-averaged Zn
C is calculated by applying Eq. (3.22), which leads to the

introduction of n+1 replicas:

[
Zn
C
]

=
1
Z1

∞∑

M=0

(µ̃2)M

M !

N∑

i1,...,iM ,
j1,...,jM=1

1
LM

∫ L

0
dz1 · · · dzM ZC · Zn

C (3.24)

=
1
Z1

∞∑

M=0

(µ̃2/L)M

M !

N∑

i1,...,iM ,
j1,...,jM=1

∫ L

0
dz1 · · · dzM




∫
Dr1(z) · · · DrN (z) e−Hev{rj}−Halign{rj} exp

(
−

M∑

e=1

(
rie(ze)− rje(ze)

)2

2a2

)


n+1

=
1
Z1

∞∑

M=0

(µ̃2/L)M

M !

N∑

i1,...,iM ,
j1,...,jM=1

∫ L

0
dz1 · · · dzM

∫
Dr̂1(z) · · · Dr̂N (z) e−H

(n+1)
ev {r̂j}−H

(n+1)
align {r̂j}

M∏

e=1

exp

(
−

(
r̂ie(ze)− r̂je(ze)

)2

2a2

)
.
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Here we implemented the (n+1)-times replicated hatted vectors r̂j(z) =(
r(0)
j (z), ..., r(n)

j (z)
)
, which is the “launch” of the replica theory. Different from

the calculation of the RLP model, these vectors are functions of z. The replicated
Hamiltonians are:

H(n+1)
ev {r̂j} =

n∑

α=0

Hev{r(α)
j } (3.25)

H
(n+1)
align {r̂j} =

n∑

α=0

Halign{r(α)
j } (3.26)

The sum over M in Eq. (3.24) can be performed, as shown in Appendix C.3.1. We
obtain a result similar to Eqs. (2.14) for the RLP model:

[Zn
C ] =

Zn+1

Z1
, (3.27a)

with Zn+1 =
∫ (∏N

j=1Dr̂j(z)
)

exp
(−Nf̃n+1{r̂j}

)
(3.27b)

and f̃n+1{r̂j} = − µ̃2

LN

N∑

i,j=1

∫ L

0
dz exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)
+
H

(n+1)
ev

N
+
H

(n+1)
align

N

(3.27c)

where Zn+1 is the replica partition function and f̃n+1{r̂j} is the replica free
energy. At this point, it is interesting to note that, while the chains r̂j(z) are n+1
replicated vectors, z is not replicated. This is because the integration over z was
originally part of the disorder average (like the sum

∑
i,j), see Eq. (3.24), while the

integration over the chain positions
∫ Dr̂j(z) comes from the (replicated) partition

function.
As in Eq. (2.57) for the RLP model, Zn+1 is related to the disorder-averaged

free energy by:

−[FC ] = [lnZC ] = lim
n→0

∂

∂n
lnZn+1 . (3.28)

3.4.2 Introduction of the Replicated Density Field

As for the RLP model, it is useful to define a replicated density field, which can
characterize the state of the system and easily distinguish between sol and gel phase.
Now, it additionally depends on the height z:

real space: O(x̂, z) :=
1
N

N∑

j=1

δ
(
x̂− r̂j(z)

)
, (3.29a)

Fourier space: O(q̂, z) :=
1
N

N∑

j=1

exp
(
iq̂r̂j(z)

)
. (3.29b)
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For a slice at a given system height z, the replicated density O(x̂, z) gives the
probability to find a particle at x(0) in replica (0), at x(1) in replica (1),... and at x(n)

in replica (n). Hence it can answer the critical question, whether |r(α)
j (z)− r(β)

j (z)|
remains finite for different replicas α and β, i.e. whether or not the chain segment
of polymer j at height z is localized; and if so, it can give information about the
extent ξ of the localization.

This localization of the polymer chains occurs when the cross-link structure
gives rise to a macroscopic cluster: if a chain is part of that macroscopic cluster,
it will be hindered from traversing the whole system1; hence the replicated density
(3.29) is capable of detecting the emergence of a macroscopic cluster and therefore
distinguish between sol and gel phase.

As for the RLP model, we distinguish between the one replica sector (1RS),
the set of q̂-vectors with exactly one of the n+1 replica components non-zero, and
the higher replica sector (HRS), the set of q̂-vectors with at least two non-zero
components; see Sec. 2.4.3. For q̂ ∈ 1RS, Eq. (3.29b) is the simple Fourier density
of the respective replica, and therefore describes density fluctuations at height z:

O
(
(0, ...,0,q(α),0, ...,0), z

)
=

1
N

N∑

j=1

exp
(
iq(α)r(α)

j (z)
)
. (3.30)

In Appendix C.3.2, we see how we can rewrite the replica free energy (3.27c) in
terms of the density field (3.29b):

f̃n+1{r̂j} = − φn µ
2

2L

∫ L

0
dz

∑

q̂∈HRS

|O(q̂, z)|2∆(q̂) +
1
2

∫ L

0
dz

∑

q̂∈1RS

|O(q̂, z)|2λ̃(q̂)

+ f0 +
H

(n+1)
align {r̂j}
N

(3.31a)

where we defined the mean chain density n0 = N/A as the number of chains per
(hyper-)area and:

f0 = −φnµ
2

2
+ (n+1)

λn0L

2
, (3.31b)

∆(q̂) = exp
(
− q̂

2a2

2

)
, (3.31c)

λ̃(q̂) = λn0U(q̂)− φnµ
2

L
∆(q̂) . (3.31d)

As we can see in Eq. (3.31a), λ̃(q̂) controls the fluctuations of the unreplicated
density in the 1RS, and as in the RLP model, it has to be positive to make sure the

1If chain ie is clamped to the macroscopic cluster at height ze, one might ask the question, if its

chain segment at a height z0 far from the “clamping point” is still localized. However, as long as

the transverse radius of gyration of the chain is much less than the transverse extent of the system,

i.e. ` =
p

L/(2σ) ¿ A1/D (*), a chain localized at height ze should be localized at any other height

z0. If the thermodynamic limit is taken such that L ∝ A1/D or L < A1/D, (*) is fulfilled.
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system does not collapse. In Eq. (3.31d) it is interesting to see that the strength
of the excluded volume interaction is counteracted by the cross-link density per
height, µ2/L, not by the cross-link density µ2 alone as in the RLP model. That
means that the cross-link density µ2 has to scale linearly with the system height L,
if we want to keep the system properties the same, in particular to compensate a
fixed excluded volume interaction. This makes sense intuitively, since the excluded
volume interaction acts on the polymers along the whole height of the system, see
Eq. (3.16), whereas the cross-link interaction only acts at the given points ze, see
Eq. (3.15).

3.4.3 Introduction of a Field Theory and Decoupling

The expression (3.31a) has the disadvantage that the density O(q̂, z) in the upper
line appears in a quadratic form. As we did for the RLP model (in Sec. 2.4.4/Ap-
pendix B.2), we want to linearize those two terms with the help of the Hubbard-
Stratonovich transformation. Since O(q̂, z) ∝ ∑

j eiq̂r̂j(z), this has the great
advantage that those two terms can be written as a single sum over all particles;
then in the partition function (3.27b) the integral

∫ Dr̂1(z) · · · Dr̂N (z) decouples
with respect to the particles j = 1, ..., N , which drastically simplifies the calcula-
tion. The drawback of the linearization is that we have to introduce the integration
over a new field Ω(q̂, z), whose expectation value, however, is the same as O(q̂, z).

As we see in Appendix C.3.3, we obtain for the replica partition function:

Zn+1 = exp
(−Nf0

) ∫
DΩexp

(−Nfn+1{Ω}
)

(3.32a)

with a replica free energy, dependent on the field Ω(q̂, z):

fn+1{Ω} = φn µ
2

2L

∫ L

0
dz

∑

q̂∈HRS

|Ω(q̂, z)|2∆(q̂) +
1
2

∫ L

0
dz

∑

q̂∈1RS

|Ω(q̂, z)|2λ̃(q̂)− ln z ,

(3.32b)
with an effective one-particle partition function:

z =
∫
Dr̂(z) exp

(
φnµ

2

L

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z)

+ i
∫ L

0
dz

∑

q̂∈1RS

λ̃(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
align,1{r̂(z)}

)
, (3.32c)

and the constant contribution f0 as before (see Eq. (3.31b)).
This form can be used as a starting point for answering many questions arising

from this system, like the density-density correlation function, the response of the
system to a tilt field, the dependence of the bulk modulus on λ, the shear modulus,
etc. It is important to note that no approximation has been made so far.

In this thesis, we will focus on the gelation transition of this system and the
localization length of the chains. We take the limit of infinitely strong excluded
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volume interaction by taking the limit λ→∞ and hence λ̃(q̂) →∞. This prevents
fluctuations of the density in the one replica sector and simplifies the equation:

fn+1{Ω} = φn µ
2

2L

∫ L

0
dz

∑

q̂∈HRS

|Ω(q̂, z)|2∆(q̂)− ln z ,

z =
∫
Dr̂(z) exp

(
φnµ

2

L

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
align,1{r̂(z)}

)

(3.33)

3.4.4 Saddle Point Equation

In the RLP model, we plugged in an Anstaz for the order parameter into the replica
free energy, in order to calculate quantities like the energy cost of shear deforma-
tions. Here, we are interested in the localization of the chains. Therefore, we set up
the saddle point equation for the order parameter and plug in a physically motivated
Ansatz similar to the one employed in Sec. 2.6. We will see that the Ansatz consis-
tently solves the saddle point equation, yielding an equation for the distribution of
localization lengths.

The saddle point equation can be retrieved from deriving fn+1{Ω}, Eq. (3.33),
with respect to Ω: 2

0
!=
δfn+1{Ω}
δΩ(q̂0, z0)

= φnµ
2

L
Ω(−q̂0, z0)∆(q̂0)−

〈
φnµ

2

L
∆(q̂0)e−iq̂0r̂(z0)

〉

z

, (3.34)

which simplifies to a very plausible form:

Ω(−q̂0, z0) =
〈
e−iq̂0r̂(z0)

〉
z
=:

I(q̂0, z0)
I(0̂, 0)

(3.35)

Here 〈 〉z represents averaging with the statistical weight of the one-particle partition
function z (see Eq. (3.33)), and I(q̂0, z0) is defined accordingly:

I(q̂0, z0) =
∫
Dr̂(z) e−iq̂0r̂(z0) exp

(
φnµ

2

L

∫ L

0
dz

∑′

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
align,1{r̂(z)}

)
.

(3.36)

2Strictly speaking, one has to take into account that Ω is complex and take both derivatives

δfn+1{Ω}/δReΩ = δfn+1{Ω}/δImΩ = 0. By setting Ω(q̂, z) = ReΩ(q̂, z)+i ImΩ(q̂, z) in Eq. (3.33),

one can easily see that this yields the same result.
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The primed sum is defined by:

∑′

q̂∈HRS

(...) := Q+
∑

q̂∈HRS

(...) (3.37)

The additional Q seems unnecessary, since it does not depend on r̂(z) and hence
cancels out in numerator and denominator of Eq. (3.35); however it will simplify
further calculations.

As next step, we want to develop an Ansatz for the order parameter Ω(q̂, z) and
then show that it solves the saddle-point equation (3.35).

3.5 Ansatz for the Order Parameter

Here we try to develop an Ansatz for the order parameter

〈
Ω(q̂, z)

〉
fn+1

=
1
N

〈
N∑

j=1

exp
(
iq̂r̂j(z)

)
〉

fn+1

(3.38)

The assumptions we make are similar to the assumptions that Castillo et al. [1994]
made to solve the saddle-point equations for an isotropic system, which were already
mentioned in Sec. 2.6. For our system, the assumptions are:

1. A fraction Q of chains is localized (“loc.”). If chain j is part of that fraction,
its chain segment r(α)

j (z) at height z in replica α performs Gaussian fluctua-
tions around a fixed mean position Rj(z), which is independent of the replica
(see Fig. 3.6). The width of this distribution is the localization length ξj ,
which follows a distribution P(ξ2, z) that may depend on the height z.

2. To account for the disorder average, the mean positions Rj(z) are randomly
placed with equal probability throughout the system.

3. The remaining fraction 1 − Q is delocalized (“deloc.”) and therefore has
equal probability to be found anywhere in the system.

It is important to note that these assumptions will not give rise to correlations
in z-direction. This is sufficient for our case, because we only need these as-
sumptions for calculating the expectation value 〈Ω(q̂, z)〉, for which every slice is
treated independently. If, however, we needed correlators like 〈Ω(q̂, z)Ω(−q̂, z′)〉 ∝∑N

i,j=1

〈
exp

(
iq̂(r̂i(z)− r̂j(z′))

)〉
, we would need to include further assumptions, e.g.

the joint probability distribution for mean positions Rj(z) and Rj(z′) with at dif-
ferent heights z and z′.

To set up the Ansatz for the order parameter, we first incorporate the Gaussian
fluctuations of a chain segment around a mean position: The joint probability den-
sity to find chain segment j at position x(0) in replica 0, at x(1) in replica 1, etc.
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Figure 3.6: Transverse cut through the system, showing one polymer chain j. The
probability distribution that the chain segment is at position x (depicted as grayscale
values) is a Gaussian distribution of width ξj(z) and mean position Rj(z).

is

〈
δ
(
x̂− r̂j(z)

)〉
=





1
(
2πξ2j (z)

)D(n+1)/2
exp

(
−

(
x̂− R̂j(z)

)2

2ξ2j (z)

)
if j loc.

A−(n+1) if j deloc.

(3.39)

where the mean position is the same in all replicas: R̂j =
(
Rj , ...,Rj

)
. Its Fourier

transform is given by:

〈
exp

(
iq̂r̂j(z)

)〉
= (3.40)

=
∫

dx̂ exp(iq̂x̂)
〈
δ
(
x̂− r̂j(z)

)〉
=





exp

(
− q̂

2ξ2j (z)
2

+ iq̂R̂j(z)

)
if j loc.

δq̂,0̂ if j deloc.

Hence, we get for the order parameter:

〈
Ω(q̂, z)

〉
=

1
N

N∑

j=1

〈
exp

(
iq̂r̂j(z)

)〉

=
1
N

∑

j loc.

exp

(
− q̂

2ξ2j (z)
2

+ iq̂R̂j(z)

)
+

1
½½N
·½½N(1−Q)δq̂,0̂ (3.41)

Now, to account for the disorder average, we assume an even distribution of the
mean positions Rj(z). We also embed the distribution for the localization lengths,
which may depend on the height z:

P(ξ2, z) =
1
QN

∑

j loc.

δ
(
ξ2 − ξ2j (z)

)
. (3.42)
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So our Ansatz for the order parameter, denoted as Ω̄, becomes:

Ω̄(q̂, z)− (1−Q)δq̂,0̂

=
1
N

∑

j loc.

exp

(
− q̂

2ξ2j (z)
2

) ∫
dRj(z)
A

exp

(
i

n∑

α=0

q(α)Rj(z)

)

= Qδq‖,0

∫ ∞

0
dξ2 P(ξ2, z) exp

(
− q̂

2ξ2

2

)
(3.43)

and hence:

Ω̄(q̂, z) = (1−Q)δq̂,0̂ +Qδq‖,0

∫

ξ2,z
exp

(
− q̂

2ξ2

2

)
(3.44)

where we defined:
∫

ξ2,z
:=

∫ ∞

0
dξ2 P(ξ2, z) (3.45)

3.6 The Saddle-Point Equation with Ansatz for Ω

Now we plug in the Ansatz (3.44) into the saddle point equation (3.35) and get:

(1−Q)δq̂0,0̂ +Qδq0‖,0

∫

ξ2,z0

exp
(
− q̂

2
0ξ

2

2

)
=
I(q̂0, z0)
I(0̂, 0)

. (3.46)

When plugging the Ansatz into I(q̂0, z0), Eq. (3.36), we note that the primed sum
can be turned into a sum over all q̂:

∑′

q̂∈HRS

∆(q̂)Ω̄(q̂, z)e−iq̂r̂(z) = Q
∑

q̂

∆(q̂)e−iq̂r̂(z)δq‖,0

∫

ξ2,z
exp

(
− q̂

2ξ2

2

)
, (3.47)

because

1. for q̂ ∈ 1RS, the Ansatz Ω̄(q̂, z) = 0 due to the constraint δq‖,0, and

2. the additional Q of the primed sum (see Def. (3.37)) on the left hand side and
the term for q̂ = 0̂ on the right hand side cancel out.

Furthermore, looking at the definition of ∆(q̂), Eq. (3.31c), we can simplify the
calculation by absorbing the cross-linking length a into the localization length ξ:

∆(q̂) exp
(
− q̂

2ξ2

2

)
= exp

(
− q̂

2a2

2

)
exp

(
− q̂

2ξ2

2

)
= exp

(
− q̂

2ξ̃2

2

)
(3.48)

with ξ̃2 ≡ ξ2 + a2 (3.49)
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Therefore:

I(q̂0, z0) =
∫
Dr̂(z) e−iq̂0r̂(z0)

× exp

(
φnµ

2Q

L

∫ L

0
dz

∑

q̂

e−iq̂r̂(z)δq‖,0

∫

ξ2,z
exp

(
− q̂

2ξ̃2

2

)
−H

(n+1)
align,1{r̂(z)}

)

(3.50)

3.6.1 Expansion to second order in Q

The functional integral I(q̂0, z0), Eq. (3.50), can be calculated to second order in
Q, as seen in Appendix C.4. Plugging the result for I(q̂0, z0) back into the saddle
point equation (3.46) yields:

Q
(
1 + µ2Q

) ∫

ξ2,s0

exp
(
−q

2
0⊥ξ

2

2

)

= µ2Q

∫ 1

0
ds1

∫

ξ2
1 ,s1

exp
(
−q

2
0⊥
2

(
2`2|s0 − s1|+ a2 + ξ21

))

+
(µ2Q)2

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp

(
q20⊥
2

{ (
`2g(s)− a2 − ξ22

)2
ξ21 + ξ22 + 2a2 + 2`2|s1 − s2|

− 2`2|s0 − s2| − a2 − ξ22

})

+O(Q3) . (3.51)

Here, we introduced a few simplifying definitions: The dimensionless system height
is defined as

sγ :=
zγ
L
∈ [0, 1] for γ = 0, 1, 2 . (3.52)

Accordingly the integral ∫

ξ2,s
:=

∫ ∞

0
dξ2 P(ξ2, s) , (3.53)

where P(ξ2, s) depends on the dimensionless height s, but apart from that it is the
same as P(ξ2, z). Moreover:

g(s) ≡ g(s0, s1, s2) := |s0 − s1| − |s0 − s2| − |s1 − s2| (3.54)

And in addition, the dependence on L and σ can be absorbed into

`2 :=
L

2σ
, (3.55)

where ` is the transverse radius of gyration of an uncrosslinked polymer chain (see
Sec. 3.2.1).

Eq. (3.51) is correct for arbitrary q⊥0 and s0. However the case q⊥0 = 0̂ was
excluded, which trivially yields 1 = 1, as can already be seen in the basic saddle
point equation (3.35).
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3.6.2 Sol-Gel Transition

Eq. (3.51) in the limit q20⊥ → 0 yields the well known relation for the gel-fraction
Q. (See Sec. 2.9.2, and [Castillo et al., 1994; Goldbart et al., 1996; Broderix et al.,
2002].) Here we restrict ourselves to the neighborhood of the sol-gel transition:

Q(1 + µ2Q) = µ2Q+
µ4Q2

2
+O(Q3) (3.56)

This equation has a trivial solution Q = 0, the sol phase, known to be stable for
µ2 < 1. For Q > 0, we can divide by Q to get:

Q = 2(µ2 − 1) +O(Q2) , (3.57)

which goes to zero when approaching the sol-gel transition, µ2 ↓ 1. Defining ε =
µ2 − 1, the distance from the transition point, and noting that Q = O(ε), as seen
in the above equation, we can write:

Q = 2ε+O(ε2) , (3.58)

which is the same form as for the RLP model (see Eq. (2.69)).

3.7 The Equation for the Localization Length

In this section we transform the saddle point equation (3.51) into an integro-
differential equation for the distribution of localization lengths. The basic steps
are presented here, while the actual calculation, being a bit intricate and draggy, is
deferred to Appendix C.5.

3.7.1 Normalization of Length Scales

As we can see in Eq. (3.51), there are three length scales in our system: ξ, ` and
a. We can simplify the equations by measuring all lengths in units of `, i.e.

dividing all lengths by ` and multiplying all q̂-vectors with `. Hence, we define:

ξ2` := ξ2/`2 (3.59a)

a2
` := a2/`2 (3.59b)

q20`⊥ := `2q20⊥ (3.59c)

With this scaling there is no explicit dependence on ` in the saddle point equation
anymore. See e.g. Eq. (C.62).

As studies of different randomly cross-linked systems have shown before, the
localization length diverges as we approach the sol-gel transition from the gel side
[Broderix et al., 2002; Goldbart et al., 1996; Peng et al., 1998; Castillo et al., 1994].
Hence, as a next step, we normalize the localization length with ε, the distance from
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the critical point, which was introduced in Sec. 3.6.2. Thereby, we introduce the
new variable, the normalized inverse and squared localization length

θ :=
f

εξ2`
=

f`2

(µ2 − 1) ξ2
, (3.60a)

with f =
2
3

+
a2

`2
(3.60b)

and define the corresponding distribution π(θ, s) for θ such that:

dξ2 P(ξ2, s) = dθ π(θ, s) (3.60c)

As we will see, θ remains of order O(1), when we approach the transition point.3

Similar approaches have already been used successfully by the four above-mentioned
studies to account for the diverging localization length. In our system, however, we
have two relevant length scales besides the localization length, which is accounted for
by the (dimensionless) factor f . The particular choice (3.60b) for f seems arbitrary,
but will yield a parameter free equation for the mean distribution of θ.

3.7.2 Result for the Distribution of Localization Lengths

With the definitions and concepts of the previous section, we transform the saddle
point equation (3.51) into an integro-differential equation for the distribution π(θ, s).
The calculation, done in Appendix C.5, yields

(
1 + 2ε

)
π(θ, s)

= (1 + ε)
∫ 1

0
ds1 π(θ, s1) +

ε

f

∫ 1

0
ds1 ∂θ

(
θ2π(θ, s1)

){
2|s− s1|+ a2

`

}

+ε
∫ 1

0
ds1ds2

∫ θ

0
dθ1 π(θ1, s1)π(θ − θ1, s2) +O(ε2) .

(3.61)

This equation for π(θ, s) is still difficult to handle, since it involves two variables,
the normalized inverse localization length θ and the normalized height s. To get a
better understanding of the equation, it is useful to define

π̄(θ) =
∫ 1

0
ds π(θ, s) , (3.62)

3Alternatively we could define ξ̂2 ∼ εξ2, which is also of the order O(1). However, defining the

reciprocal, Eq. (3.60a), turns out to yield a simpler differential equation in the end.
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the mean value of the distribution with respect to s. Using that definition and by
sorting Eq. (3.61) in orders of ε, we get:

π(θ, s)− π̄(θ)

= ε

(
−2π(θ, s) + π̄(θ) +

1
f

∫ 1

0
ds1 ∂θ

(
θ2π(θ, s1)

){
2|s− s1|+ a2

`

}

+
∫ θ

0
dθ1 π̄(θ1)π̄(θ − θ1)

)
+O(ε2) . (3.63)

This equation states that the deviation of the distribution from its mean value is of
the order ε. Hence it is suggestive to define δπ(θ, s) with:

π(θ, s) ≡ π̄(θ) + ε δπ(θ, s) , (3.64a)

with
∫ 1

0
ds δπ(θ, s) = 0 , (3.64b)

and we are able to calculate both parts, π̄(θ) and δπ(θ, s), separately to lowest order
in ε:

Therefore we first plug this definition into the right hand side of Eq. (3.63).
Since these expressions are already of order ε, we can just replace π(θ, s) by π̄(θ),
because the corrections are of the order O(ε2):

ε δπ(θ, s)

= ε

(
−π̄(θ) +

1
f

∫ 1

0
ds1 ∂θ

(
θ2π̄(θ)

){
2|s− s1|+ a2

`

}
+

∫ θ

0
dθ1 π̄(θ1)π̄(θ − θ1)

)

+O(ε2) . (3.65)

Now it is possible to perform the integration over s1 in the second term on the right
hand side

∫ 1

0
ds1|s− s1| = s2 + (1− s)2

2
. (3.66)

Furthermore we plug in f = 2
3 + a2

` , see Eq. (3.60b), and divide by ε:

δπ(θ, s) =

= −π̄(θ) +
s2 + (1− s)2 + a2

`

2/3 + a2
`

∂θ

(
θ2π̄(θ)

)
+

∫ θ

0
dθ1 π̄(θ1)π̄(θ − θ1) +O(ε)

(3.67)

This equation can be used to obtain the form of the deviation δπ(θ, s) form the
mean distribution, once we know the mean distribution π̄(θ). In order to get the
equation for π̄(θ), we integrate both sides over s, use

∫ 1

0
ds

(
s2 + (1− s)2

)
=

2
3

(3.68)
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for the second term and get:

0 = −π̄(θ) + ∂θ

(
θ2π̄(θ)

)
+

∫ θ

0
dθ1 π̄(θ1)π̄(θ − θ1) +O(ε) , (3.69)

and hence:

(1− 2θ)π̄(θ) = θ2π̄′(θ) +
∫ θ

0
dθ1 π̄(θ1)π̄(θ − θ1) +O(ε) . (3.70)

Comparing Eqs. (3.67) and (3.69), we can simplify the equation for the deviation
from the mean value:

δπ(θ, s) =
(
s2 + (1− s)2 + a2

`

2/3 + a2
`

− 1
)
∂θ

(
θ2π̄(θ)

)
+O(ε) , (3.71)

and hence:

δπ(θ, s) = w(s) ∂θ

(
θ2π̄(θ)

)
+O(ε) ,

with w(s) =
s2 + (1− s)2 − 2/3

a2/`2 + 2/3
.

(3.72)

Here we have to keep in mind that the actual localization lengths are related to θ
by

ξ2` =
f

εθ
=

2
3 + a2

`

(µ2 − 1)θ
(3.73)

as defined in Eqs. (3.60), and with Eq. (3.59a):

ξ2 =
2
3`

2 + a2

(µ2 − 1)θ
(3.74)

The result for π̄(θ) from Eq. (3.70) can be computed numerically: This is done
by discretizing π̄(θ) into points π̄j = π̄(j ·∆θ) with j = 0, ..., jmax and solving the
resulting set of (polynomial) equations. The constraint

∑jmax

j=0 ∆θ · π̄j = 1 has to
be taken into account. The result for π̄(θ) obtained by this procedure is plotted in
Fig. 3.7.

Indeed Eq. (3.70) for the (normalized and inverse) localization length is well
known4: It is also found and investigated for isotropic polymer systems [Broderix
et al., 2002; Goldbart et al., 1996].

Here, however, the system is not isotropic, but has the preferred z-direction.
Since the ends of the chains are loose, the behavior at the top and bottom boundaries

4Different ways of normalization of the localization lengths may yield different prefactors for the

terms of Eq. (3.70), however, they can always be reconciled with Eq. (3.70)
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Figure 3.7: Mean probability distribution π̄(θ) of the normalized inverse localization
length θ. The curve was obtained by solving the integro-differential equation (3.70)
numerically.

is different from the bulk. This difference can be understood in the following way: A
chain segment far from the boundaries has a certain probability to have a cross-link
above or below. However, if this segment is close to, let’s say, the top boundary, the
probability for a cross-link to be above is lower. Consequently, since close to the
boundary the chains have fewer nearby cross-links, one would expect an increased
localization length. This behavior is indeed seen in Fig. 3.8, where the deviation
δπ(θ, s), obtained from Eq. (3.72), is plotted vs. θ and the system height s. One can
see that, indeed, close to the boundaries s ≈ 0 and s ≈ 1, smaller θ and hence larger
localization lengths ξ are favored. On the other hand, inside the bulk s ≈ 1/2, the
opposite is true.

The strength of this inhomogeneity is controlled by the ratio of the two internal
length scales a2

` = a2/`2. When taking the limit `2 = L/(2σ) → 0, i.e. considering
thin slices (L → 0) or well aligned parallel chains (σ → ∞), the presented (D+1)-
dimensional system becomes effectively D-dimensional and isotropic. This can also
be seen in Eq. (3.72): For `2 → 0, the prefactor w(s) → 0 and hence the deviations
of the localization length from its mean value vanish. In this case, the relevant
length scale for the localization length is a, see Eq. (3.74):

ξ2 =
a2

(µ2 − 1)θ
⇒ ξ ∝ a√

µ2 − 1
. (3.75)

The other and more relevant case is the limit of large system heights L→∞. In
this case the relevant length scale for the localization length is the radius of gyration
`2 = L/(2σ) of the chains (perpendicular to the z-axis); the cross-linking length a

becomes unimportant:

ξ2 =
2
3

`2

(µ2 − 1)θ
⇒ ξ ∝

√
L√

µ2 − 1
. (3.76)
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Figure 3.8: Deviation δπ(θ, s) of the probability distribution of θ from its mean
value, as defined in Eq. (3.64a). The plot was obtained by applying the data from
Fig. 3.7 to Eq. (3.72). For different ratios a2

` = a2/`2, δπ(θ, s) can be rescaled simply
resulting in different color bars.

One can also see that larger system heights L yield larger localization lengths, since,
due to a larger radius of gyration ` ∝ √

L, the chains can span a larger region in
the sample. Also the deviation δπ(θ, s) is most dominant in this large-L regime (see
Eq. (3.72) and compare color bars of Fig. 3.8).

As a last thing, it is instructive to see how the typical localization length is
affected by the deviation δπ(θ, s). For that we will need the first two moments of
the mean distribution π̄(θ):

θ =
∫ ∞

0
dθ θ π̄(θ) and θ2 =

∫ ∞

0
dθ θ2 π̄(θ) . (3.77)

With that we can easily calculate the average inverse localization length:

θtyp(s) :=
∫ ∞

0
dθ θ π(θ, s) =

∫ ∞

0
dθ θ π̄(θ) + ε

∫ ∞

0
dθ θ δπ(θ, s) =

Eq. (3.72)
= θ + εw(s)

∫ ∞

0
dθ θ ∂θ

(
θ2π̄(θ)

)
+O(ε2) =

= θ + εw(s)
(
θ · θ2π̄(θ)

∣∣∣
∞

0
−

∫ ∞

0
dθ θ2π̄(θ)

)
+O(ε2) . (3.78)

As stated by Castillo et al. [1994], the mean distribution π̄(θ), coming from
Eq. (3.70), should fall off exponentially for θ →∞. Hence we can omit the boundary
term θ3π̄(θ)|∞0 and get:

θtyp(s) = θ − ε θ2w(s) +O(ε2) . (3.79)
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And hence, the typical localization length becomes:

ξ2typ(s) :=
f`2

εθtyp(s)
=

2
3`

2 + a2

εθ

(
1 + εw(s)

θ2

θ

)
+O(ε) . (3.80)

On the right hand side of this equation, the prefactor (2
3`

2 + a2)/ε sets the length
scale for the localization length, which diverges in the limit ε → 0. (θ is just
a dimensionless number of order 1.) In the parentheses, the dominant term “1”
does not incorporate spatial dependencies, yielding similar behavior as for isotropic
systems. Relative to this term, the s-dependent second term provides corrections of
order ε. Hence these anisotropic corrections are of the same order as 2

3`
2 + a2 and

do not diverge or vanish in the limit ε→ 0.
Furthermore we have to note that the definition of the typical localization length

ξ2typ(s) is, for simplification, just the inverse of θtyp(s), and thus it is not exactly the
the mean of the distribution P(ξ2, s).

3.8 Conclusions

In this chapter we investigated a system of cross-linked directed polymer chains in a
(D+1)-dimensional volume L ·A, where L is the height in z-direction, along which
the chains are preferably aligned, and A is the base area.

The chains are subject to an alignment interaction, which penalizes tilting of
the chains with respect to the z-axis. The strength σ of this interaction may be
interpreted as the force f with which a worm-like chain is stretched along the z-
axis, or as the coupling strength of the polymers to a spatially uniform nematic
matrix. This interaction constitutes the typical extension of an uncrosslinked chain
perpendicular to the z-axis, ` =

√
L/(2σ).

The cross-linking interaction permanently connects random pairs of chains at
a fixed height, with a cross-link density determined by the parameter µ2. This
interaction introduces a second length scale, the typical cross-link length a.

The system exhibits a continuous phase transition – the sol-gel transition – as
the cross-link concentration is increased beyond the critical value µ2

c = 1. This
transition is characterized by the gel-fraction Q, which vanishes like Q ∝ (µ2 − µ2

c)
as the transition point is approached from the gel phase µ2 ↓µ2

c . Thereby the typical
localization length diverges as ξtyp ∝ (µ2−µ2

c)
−1/2. The relevant length scale is the

transverse extension ` =
√
L/(2σ) of the chains, given that `À a.

The distribution of localization lengths varies throughout the height z of the
system: Close to the boundaries z ≈ 0 and z ≈ L, larger localization lengths
are favored. This is due to the fact the ends of the chains are loose and hence, the
probability that a given chain segment has nearby cross-links is lower if this segment
is close to a boundary.

As an outlook, it would be interesting to calculate mechanical properties of
the system like it was done for the randomly cross-linked particle model. Since



56 CHAPTER 3. CROSS-LINKED DIRECTED POLYMERS

the system is not isotropic, the shear modulus, describing the energy cost of a
density conserving deformation of the type ∇ru(r, z), is expected to differ from
the tilt modulus, accounting for deformations like ∂zu(r, z). The latter is expected
to remain non-zero in the liquid phase (even in the totally uncrosslinked phase),
because of the energy cost of tilting due to the alignment interaction. Also the bulk
modulus, describing the energy cost of density fluctuations, would be interesting to
calculate; this could be done by incorporating a pressure field to the Hamiltonian
Halign (as proposed in Eq. (C.14)) and investigate the response of the system to
pressure fluctuations.

Another matter would be to evaluate the saddle-point equation (3.46) to higher
or even infinite order, as it was possible for the RLP model in Chapter 2. It would be
interesting to see how stronger cross-linking affects the inhomogeneity of the local-
ization lengths close to the boundaries, and if higher orders of the mean distribution
π̄(θ) are in accordance with corresponding isotropic models.

An extension to the model would be to incorporate cross-link at different heights
ze and z′e. This would be relevant, since recent developments suggest that the tilt
modulus is not influenced by cross-links which are fixed at the same height on both
chains, as in the presented model. [Ulrich et al., 2010]

Another modification is the introduction of so called “slip-links”: Thereby the
quenched cross-link configuration only specifies which pairs of chains are connected.
The height of the cross-link ze, however, is not quenched but may move along the
chains, as they fluctuate around. These slip-links can be seen as a means to account
for fixed entanglements of the chains. In this respect, an entanglement can move
along a pair of chains, but these chains cannot be disentangled.
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Chapter 4

Structure of Spider Silk

Modeled as a Random Network
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4.1 Introduction

Spider silk has long been widely known, but has only recently received great appre-
ciation from the scientific community for its outstanding material properties [Grubb
& Jelinski, 1997; Fossey & Kaplan, 1999]. In general, a spider is capable of pro-
ducing a variety of different types of silk fibers; scientific interest here has focused
on the so-called dragline fibers, fibers known for their high strength. Orb web
spiders produce them essentially from only two proteins and use them to build their
net’s frame and radii, and also to support their own body weight after an intentional
fall during escape from attack. Evolution has optimized dragline fibers for tensile



58 CHAPTER 4. STRUCTURE OF SPIDER SILK

strength (i.e. the stress at which the material breaks), extensibility and tenacy
(i.e. the energy per volume dissipated before the material breaks, a.k.a. toughness).
Dragline silk can support large strains and has a tensile strength comparable to
steel or Kevlar. Regarding tenacy, values of 160 MJ/m3 have been reported [Ka-
plan et al., 1994; Gosline et al., 1999], e.g. for different Nephila species, on which
most studies have been carried out.

An understanding of the structural origins of these mechanical properties is of
fundamental interest, and may at the same time serve the development of biomimetic
material design [Huemmerich et al., 2004; Scheibel, 2004] using recombinant and
synthetic approaches [Huemmerich et al., 2006; Foo et al., 2006; Rammensee et al.,
2006]. As for other biomaterials, the correlation between structure and the me-
chanical properties can only be clarified by advanced structural characterization
accompanied by numerical modeling. To this end, not only the mechanical proper-
ties [Vollrath & Porter, 2006; Zbilut et al., 2006] resulting from the structure, but
also the structure itself has to be modeled to interpret the experimental data. Such
efforts have in the past led to a quantitative understanding of many biomaterials
like bone, tendons and wood [Roschger et al., 2001; Puxkandl et al., 2002].

As deduced from X-ray scattering [Warwicker, 1960; Kaplan et al., 1994; Grubb
& Jelinski, 1997] and NMR experiments [van Beek et al., 2002], spider silks are char-
acterized by a seemingly simple design (see Fig. 4.1): The alanine-rich segments of
the fibroin polypeptide chains fold into β-sheet nano-crystallites (similar to poly-
L-alanine crystals), which are embedded in an amorphous network of chains,
containing predominately glycine. In this polymer network, the crystalline compo-
nent makes up an estimated 20% - 30% of the total volume, and may be considered
as cross-links, interconnecting several different chains.

Figure 4.1: Schematic illustration of dragline silk. β-sheets, mainly composed of
polyalanine, are embedded in the amorphous matrix, an amorphous network of
chains.

The detailed investigation of the structure is complicated, at least on the single
fiber level, by the relatively small diameters in the range of 1 - 10µm, depending on
the species. Using highly brilliant microfocused synchrotron radiation, diffraction
patterns can be obtained not only on thick samples of fiber bundles, but also on a
single fiber [Riekel et al., 1999a,b, 2000; Riekel & Vollrath, 2001; Riekel et al., 2004;
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Sapede et al., 2005]. Single fiber diffraction has been used under simultaneous con-
trolled mechanical load, in order to investigate changes of the molecular structure
with increasing strain up to failure [Glǐsović et al., 2008]. Single fiber diffraction,
where possible, is much better suited to correlate the structure to controlled me-
chanical load, since the strain distribution in bundles is intrinsically inhomogeneous,
and the majority of load may be taken up by a small minority of fibers.

While progress of the experimental diffraction studies has been evident, the
analysis of the data still relies on the classical classification and indexing scheme
introduced by Warwicker. According to Warwicker, the β-sheet crystallites of the
dragline of Nephila fall into the so-called system 3 of a nearly orthorhombic unit cell
[Marsh et al., 1955a; Warwicker, 1960] with lattice constants 10.6 Å×9.44 Å×6.95 Å
[Warwicker, 1960]. To fix the coordinate system, they define the x-axis to be in the
direction of the amino acid side chains connecting different β-sheets , while the y-
axis denotes the direction along the hydrogen bonds of the β-sheets. Finally, the
z-axis corresponds to the axis along the covalent peptide bonds (main chain). The
main chain is preferably aligned along the fiber axis (for an illustration, see top
panel of Fig. 4.8 on page 71). Note that while we follow this common convention,
other notations and choices of axes are also used in literature.

While helpful, the indexing scheme does not give information regarding the
exact structure of the unit cell, whether the β-pleated sheets are composed
of parallel or antiparallel strands, or how the two-dimensional sheets are
arranged to stacks. To this end, not only peak positions but the entire rather broad
intensity distribution has to be analyzed. To interpret the scattering image, it is
essential to know whether correlations between different crystallites are important,
or whether the measured data can be accounted for by the scattering of single
crystallites averaged over fluctuating orientations. It is also not clear, if correlations
between translational and rotational degrees of freedom are important. Finally, the
powder averaging taking into account the fiber symmetry experimental mosaicity
(orientational distribution) must be quantitatively taken into account.

In this chapter a scattering model based on kinematic scattering theory
is developed and the numerically calculated scattering intensity is compared with the
experimental wide angle scattering distribution measured from aligned
silk fibers. The numerical calculations allow for a quantitative comparison to the
experimental data and yield both structural and statistical parameters.

Note that the small size of crystallites, leading to correspondingly broad reflec-
tions and a generally rather low number of external peaks, exclude a standard crys-
tallographic approach. The presented model is based on a quite general approach,
independently allowing for correlations between center-of-mass positions (transla-
tions) and varying crystallite orientations (rotations). The structural parameters
concern the crystal structure, in particular the atomic positions in the unit cell,
and the crystallite size. The statistical parameters relate to the orientational dis-
tribution of the crystallite symmetry axis with respect to the fiber axis and the
correlations between crystallites.

This chapter is organized as follows: In Sec. 4.2 the basic model is introduced
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with parameters for the crystallite size, lattice constants and statistical parameters
for the crystallites’ position and orientation. Subsequently, in Sec. 4.3 we compute
the scattering function for this model. Sec. 4.4 specifies the different atomic configu-
rations which are conceivable for polyalanine. The main results and the comparison
of calculated and measured intensities are presented in Sec. 4.5, before conclusion
in Sec. 4.6. Most of the presented results can also be found in [Ulrich et al., 2008].

4.2 Model

In this section we develop a simple model of spider silk which allows us to compute
the scattering function

G(q) =
〈∣∣∣

∑
j
fj exp(iqrj)

∣∣∣
2
〉

(4.1)

as measured in X-ray scattering experiments. The atomic positions are denoted by
rj and the atomic form factors by fj . The modeling proceeds on three different
levels:

1) On the largest length scales, spider silk is modeled as an ensemble of crys-
tallites embedded in an amorphous matrix and preferentially oriented along
the fiber axis.

2) Each crystallite is composed of parallel or antiparallel β-sheets.

3) Each unit cell contains a given number of amino acids, whose arrangements
have been classified by Warwicker [1960]. In Fig. 4.2 (right) we see an illus-
tration of Bombyx mori by Geis [Zubay, 1998].

In the following we shall build up a model, starting with the smallest scales
and working up to the whole system. Subsequently, we will compare the calculated
scattering functions with experimental data. Thereby, we are able to determine the
arrangement of atoms in the unit cell which optimizes the agreement between model
and experiment.

4.2.1 Unit Cell

One unit cell of a crystallite is described as a set of atoms at positions rk relative
to the center of the unit cell, where k = 1, 2, ...,K runs through the atoms of the
unit cell (see Fig. 4.2, left panel, for a schematic drawing). Each atom is assigned a
form factor fk specifying the scattering strength of the respective atom type.

4.2.2 Crystallite

A crystallite is composed of M = MxMyMz unit cells, replicated Mx, My and
Mz times along the primitive vectors ax, ay and az respectively. The unit cells
in a crystallite are numbered by a vector index m = (mx,my,mz), where mν =
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Figure 4.2: Left: Schematic view of the unit cell. Atom k is located at position rk

and the atom type is specified by the form factor fk of the atom. For simplification
schematic illustrations are in 2D, if possible, even though the model refers to three
space dimensions, D = 3. Right: A possible configuration inside the unit cell
(illustration adapted from [Zubay, 1998]).

1, 2, ...,Mν for ν = x, y, z. Hence the center of mass of unit cell m has position
vector

s̃m = mxax +myay +mzaz . (4.2)

In fact, it is more convenient to measure all distances with respect to the center of
the whole crystallite

scm =
(Mx + 1)ax + (My + 1)ay + (Mz + 1)az

2
, (4.3)

so that sm = s̃m − scm denotes the position of unit cell m relative to the center
of the respective crystallite (see Fig. 4.3). The position of atom k in unit cell m
relative to the center of the crystallite is

rm,k = sm + rk . (4.4)
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Figure 4.3: Schematic view of the crystallite. The vector sm points from the center
of the crystallite to the unit cell m. From there, rk points to atom k.
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Figure 4.4: The whole system is composed of crystallites at positions R(j). They
can be rotated by rotation matrices D(j).

4.2.3 Ensemble of Crystallites

The whole system is composed of N such crystallites at positions R(j) with j =
1, 2, ..., N (see Fig. 4.4). The crystallites are not perfectly aligned with the fiber axis,
but their orientations fluctuate. The orientation of a single crystallite is specified
by three Euler angles φ(j), θ(j), ψ(j) (see right panel of Fig. 4.5). Here the z-axis
is the fiber axis and θ denotes the angle between the z-direction of the crystallites
(direction of the covalent bonds) and the fiber axis. The atomic positions of the
rotated crystallite are obtained from the configuration which is perfectly aligned
with the z-axis, by applying a rotation matrix D(j) (see left panel of Fig. 4.5):

r(j)
m,k = R(j) +D(j)rm,k . (4.5)

In the experiment, the scattering intensity is obtained for a large system con-
sisting of many crystallites. Hence, it is reasonable to assume that the scattering
function is self-averaging and therefore can be averaged over the positions and orien-
tations of the crystallites. Angular brackets 〈 〉 denote the average of an observable
A over crystallite positions R(j) and orientations D(j):

〈A〉 =
∫ N∏

j=1

(
dR(j) DD(j)

)
Ppos(R(1), ...,R(N)) A . (4.6)

Here, the crystallite positions follow the distribution function
Ppos(R(1), ...,R(N)), which in general includes correlations. In contrast, the
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fibre axis

θ

-axis
z
a

ψ

ϕ

Figure 4.5: Left: The position of atom k in unit cell m of the rotated crystallite is
obtained by applying the rotation matrix Drm,k to the position vector in the aligned
configuration. Right: Illustration of Euler angles in 3D. The angle θ specifies the
deviation of the crystallite’s az-axis from the fiber axis of the strand. φ is the
rotation of the crystallite about its own az-axis, and ψ is the rotation of the az-axis
about the fiber axis (after the θ-rotation).

orientation of each crystallite is assumed to be independent of the others. The
average over all orientations

DD(j) = dφ(j)dθ(j)dψ(j) sin θ(j) Pangle(φ(j), θ(j), ψ(j)) (4.7)

involves the angular distribution function Pangle(φ, θ, ψ), which is the same for
each crystallite. In the simplest model we assume a Gaussian distribution for the
deviations of the crystallite axis from the fiber axis Pangle(φ, θ, ψ) ∝ exp(−θ2/θ2

0),
while all values of φ and ψ between 0 and 2π are equally likely.

4.2.4 Continuous Background

The space between the crystallites is filled with water molecules and strands con-
necting the crystallites, i.e. the amorphous matrix. In the scope of this work, we
are not interested in the details of its structure and thus we model it as a contin-
uous background density %0, chosen to match the average scattering density of the
crystallite (see Fig. 4.6): %0 =

∑K
k=1 fk/Vuc. Here Vuc is the volume of the unit cell.

There is no background intensity inside the crystallite, achieved in our model by
cutting out a spherical cavity V (r) around each atom r = r(j)

m,k. For simplicity we
assume a Gaussian cavity

V (r) =
f̄

(2πξ2)3/2
exp

(
− r2

2ξ2

)
, (4.8)
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Figure 4.6: Illustration of the continuous background, modeling the amorphous ma-
trix. Outside the crystallites it has a homogeneous scattering density %0, matching
the mean scattering density of the crystallites. In this illustration ξ is 0.45 of the
mean nearest-neighbor distance.

and choose the amplitude such that the average density inside the crystallites is
zero:

0 =
∫

crystallite
dr

(
%0 −

M∑

m=1

K∑

k=1

V (r− rm,k)

)
, (4.9)

where the sum over the vector index
∑M

m=1 means
∑Mx

mx=1

∑My

my=1

∑Mz
mz=1.

Using the assumption (4.9), f̄ becomes simply the average form factor,

f̄ =
1
K

K∑

k=1

fk , (4.10)

as can be easily verified. The typical size of the cavity ξ has to be comparable to
the nearest-neighbor distance to make sure that there is no “background” inside the
crystallites. Models both with and without continuous background are compared in
Appendix E.1.

This completes the specification of our model. We now proceed to compute the
scattering function as predicted by the model.

4.3 Scattering Function

Given the atomic positions r(j)
m,k, the background density %(r) and the statistics of

the crystallites’ orientations and positions, we calculate the scattering function:

G(q) =

〈∣∣∣∣∣
N∑

j=1

M∑

m=1

K∑

k=1

fk exp(iqr(j)
m,k) +

∫
dr %(r) exp(iqr)

∣∣∣∣∣
2〉

. (4.11)
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Here, %(r) is the background intensity whose Fourier transform reads as:

∫
dr %(r) exp(iqr) =

∫
dr exp(iqr)


%0 − f̄

N∑

j=1

M∑

m=1

K∑

k=1

V (r− r(j)
m,k)




= %0V δq,0 − Ṽ (q)
N∑

j=1

M∑

m=1

K∑

k=1

exp(iqr(j)
m,k) , (4.12)

with Ṽ (q) being the Fourier transform of the cavity V (r). The uniform density %0,
giving rise to a contribution proportional to δq,0, does not contain information about
the structure of the system. Furthermore, the central beam has to be gated out in
the analysis of the experimental data. Hence, we neglect the uniform contribution
and obtain for the scattering intensity (4.11)

G(q) =

〈∣∣∣∣∣
N∑

j=1

M∑

m=1

K∑

k=1

(
fk − Ṽ (q)

)

︸ ︷︷ ︸
Fk(q)

exp(iq · r(j)
m,k)

∣∣∣∣∣
2〉

. (4.13)

The cavities give rise to effective form factors Fk(q) = fk− Ṽ (q) accounting for the
scattering of the atoms themselves, fk, and the cavities surrounding them, Ṽ (q).
Note that, if we want to switch off the background f̄ → 0, we return to the original
form factors Fk(q) → fk.

Inserting the average 〈 〉 and multiplying out the magnitude squared in (4.13)
yields:

G(q) =
∫ N∏

j=1

(
dR(j)DD(j)

)
Ppos(R(1), ...,R(N)) (4.14)

×
N∑

j,j′=1

exp
(
iq(R(j) −R(j′))

)

×
M∑

m,m′=1

K∑

k,k′=1

Fk(q)F ∗k′(q) exp
(
iq(D(j)rm,k −D(j′)rm′,k′)

)
.

Note that the double sum over the crystallites j and j′ also applies to the rotation
matrices D(j) and D(j′) in the last line. We now split the scattering function into
two terms G(q) = G1(q)+G2(q): the first, G1(q), includes only the terms j = j′ of
that sum and thus incorporates scattering of the same crystallite, but not scattering
from different crystallites. The second, G2(q), includes only the terms with j 6= j′,
taking into account coherent scattering of two different crystallites.

4.3.1 Incoherent Part G1(q)

We first consider the case j = j′ of the sum, i.e. the contribution to the scattering
function which is incoherent with respect to different crystallites. Here, the term
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exp(iq(R(j)−R(j′))) gives 1, and therefore the integral over the crystallite positions
R(j) can be performed and trivially gives 1 due to the normalization of the spatial
distribution Ppos(R(1), ...,R(N)). Furthermore, for each summand j all integrations
over the orientations D(1), ..., D(N), except D(j), can be performed and also yield 1.
Therefore, the N terms with j = j′ simplify to:

G1(q) = N

∫
DD

M∑

m,m′=1

K∑

k,k′=1

Fk(q)F ∗k′(q) exp
(
iq(Drm,k −Drm′,k′)

)

= N

∫
DD

∣∣∣∣∣
M∑

m=1

P∑

p=1

Fk(q) exp
(
i(DTq) · rm,k

)
∣∣∣∣∣
2

= N

∫
DD ∣∣A(DTq)

∣∣2 , (4.15)

where DT is the transpose of the matrix D and

A(q) :=
M∑
m

K∑

k=1

Fk(q) exp(iq · rm,k) (4.16)

is the unaveraged scattering amplitude of a single unrotated crystallite. Hence, the
interpretation of the incoherent part G1(q) is straightforward: each crystallite con-
tributes independently and each with a given orientation. The orientation can be
absorbed into the scattering vector q → DTq, so that the contributions of two crys-
tallites with different orientations are related by a rotation of the scattering vector.
In the macroscopic limit, we are allowed to average over all possible orientations
and get a sum of N identical terms.

4.3.2 Coherent Part G2(q)

We now consider the contribution to the scattering intensity from different crys-
tallites, i.e. the case j 6= j′ in Eq. (4.14). In analogy to the above calculation, all
integrations over the orientations D(1), ..., D(N) can be performed except for D(j)

and D(j′):

G2(q) =
∫

dR(1) · · · dR(N) Ppos(R(1), ...,R(N)) (4.17)

×
∑

j 6=j′
exp

(
iq(R(j) −R(j′))

)

×
∫
DD DD′

M∑

m,m′=1

K∑

k,k′=1

Fk(q)F ∗k′(q) exp
(
iq(Drm,k −D′rm′,k′)

)
,
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where we have used that the angular distribution is the same for all crystallites. We
introduce the structure factor of the crystallite positions:

S(q) =
1
N

〈
N∑

j,j′=1

exp
(
iq(R(j) −R(j′))

)〉

= 1 +
1
N

∫
dR(1) · · ·dR(N) Ppos(R(1), ...,R(N))

×
∑

j 6=j′
exp

(
iq(R(j) −R(j′))

)
(4.18)

and observe that the two upper lines in (4.17) are just N (S(q)− 1). This simplifies
G2(q) to:

G2(q) = N (S(q)− 1)

∣∣∣∣∣
∫
DD

M∑

m=1

K∑

k=1

Fk(q) exp
(
i(DTq) · rm,k

)
∣∣∣∣∣

2

= N (S(q)− 1)
∣∣∣∣
∫
DDA(DTq)

∣∣∣∣
2

(4.19)

Again the interpretation is straightforward: for coherent scattering the ampli-
tudes of individual crystallites with different orientations add up, as expressed by∫ DDA(DTq). Spatial correlations of the centers of the crystallites are accounted
for by the structure function S(q).

The total scattering function

G(q)
N

=
∫
DD ∣∣A(DTq)

∣∣2 + (S(q)− 1)
∣∣∣∣
∫
DDA(DTq)

∣∣∣∣
2

(4.20)

is reduced to the scattering amplitude of a single crystallite A(q), which we compute
next. Note that if the angular spread of the crystallites can be neglected, in other
words all crystallites are approximately aligned, then the above expression reduces
to G(q) = NS(q) |A(q)|2, as would be expected.

If there is thermal motion of the atoms around their equilibrium positions due
to finite temperature, the intensity of the scattering function G(q) is weakened for
larger q-values [e.g. Willis & Pryor, 1975]. The resulting scattering function has to
be multiplied with the Debye-Waller factor

GDW (q) = G(q) · exp(−q2〈u2〉) , (4.21)

where 〈u2〉 is the mean square displacement of the atoms in any direction.

4.3.3 Scattering Amplitude of a Single Crystallite

The calculation of the scattering amplitude of a single crystallite A(q) (defined
in Eq. (4.16)) follows standard procedures. We substitute the atomic positions of
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Figure 4.7: Chemical structure (left) and conformation (right) of a polyalanine
strand. Two alanines are shown. The CH3 group is characteristic for the alanine
amino acid and is bound to the so called Cα atom. The arrow indicates the direction
C → Cα → N along the backbone.

Sec. 4.2.2 and note that the sums over mx, my and mz are geometric progressions
which can easily be performed. As seen in Appendix E.3, the scattering amplitude
becomes:

A(q) = LMx(qax)LMy(qay)LMz(qaz)
K∑

k=1

Fk(q) exp(iqrk) . (4.22)

Here LMν (qaν) = sin(qaνMν/2)
sin(qaν/2) is the well-known Laue function, which has an ex-

treme value when its argument qaν is a multiple of 2π. If Mν is finite, the peak has
a finite width and gets wider with a decreasing number of repetitions Mν .

It is noteworthy that the extremum of the magnitude of the scattering amplitude
A(q) may be shifted to a slightly different position, if the form factor of the unit cell∑K

k=1 Fk(q) exp(iqrk) has a non-vanishing gradient at that position. In this case,
the resultant peak may be shifted by a value of the order of its peak width. Conse-
quently, care has to be taken when determining lattice constants from experimental
peak positions.

4.4 Atomic Configuration of the Unit Cell

The computation of the scattering function G(q) requires the atomic configuration
{rk}K

k=1 of the unit cell, which we discuss next.

4.4.1 Unshifted Unit Cells

It is known that the crystallites are composed of polyalanine strands [see Arnott
et al., 1967; Grubb & Jelinski, 1997]. In Fig. 4.7 two alanine amino acids of this
strand are shown. Its conformation, shown on the right, is well established and
was modeled with Yasara [Meling, 2006]. There are two constraints for the strand:
firstly, the subsequent alanines in the strand must have the same orientation so
that the strand does not have a “twist” and can produce periodic structures. And
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secondly, the distance between adjacent alanines has to match the size of the unit
cell. These two constraints allow for a unique choice of the two degrees of freedom,
namely the Ramachandran angles [Ramakrishnan & Ramachandran, 1965] Φ and
Ψ, which are the dihedral angles for the bonds Cα-N and Cα-C, respectively.

Many of the described polyalanine strands placed side by side form a stable
crystalline configuration, the β-pleated-sheet . We assume an orthorhombic unit
cell1, consisting of four alanine strands, as illustrated in Fig. 4.8. Thus one unit cell
contains 8 alanine amino acids. Furthermore, we define the spatial directions in the
usual way [e.g. Warwicker, 1960]:

x: Direction of the CH3-groups and Van-der-Waals interactions between sheets
lying upon each other.

y: Direction of the hydrogen bonds between the O-atom of one strand and the
H-atom of the neighboring strand.

z: Direction of the covalent bonds along the backbone.

Accordingly, ax, ay and az are the principal vectors pointing in these directions and
ax, ay, az their magnitudes. Note furthermore that due to symmetry the distance
between the strands has to be ax/2 in the x-direction and ay/2 in the y-direction.

In general, one has to distinguish between the parallel and antiparallel struc-
ture. In the parallel structure, the direction of the atom sequence C → Cα → N in
the strand’s backbone is the same for all strands (left side of Fig. 4.8). For the an-
tiparallel structure this direction alternates along the y-axis (right side of Fig. 4.8).
Both will be considered in the following analysis.

1Note that the assumption of an orthorhombic unit cell is restrictive. In a more general approach

one can give up this assumption and use a smaller unit cell, allowing for different shifts. However,

the best fit to the data is obtained for a shift which can also be achieved with an orthorhombic

unit cell. For the sake of clarity, we stick to the established unit cell notations and indexing of the

reflexes here.
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Figure 4.8: Illustration of one unit cell, containing four neighboring polyalanine
strands. Top: Configuration of the atoms. Center: Schematic view displaying only
the backbone atoms. The white arrows illustrate two possible adjustments of the
structure, which are to be optimized to match the experimental scattering image.
Bottom: Simplified schematic view along the backbone axis az, where ¯ indicates an
arrow pointing towards the reader and ⊗ pointing away from the reader. Here, the
unit cell is shown as a gray rectangle. In each case, a parallel structure is shown on
the left side, and an antiparallel structure on the right side. The illustration shows
an unshifted configuration, which means: the Cα atoms of neighboring strands are
aligned and have no shift in z-direction (indicated by the dashed line in the middle
right image). Additionally, the strands are exactly aligned in the x- and y-direction.
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4.4.2 Possible Shifts inside the Unit Cell

The scattering intensity is not only sensitive to the conformation of the polyalanine
strands, but also to the distance and orientation of different strands relative to each
other. Besides the question of parallel or antiparallel structure, the four strands
can also be shifted with respect to each other. In principle there are four ways to
displace them (see Fig. 4.8):

� Shifting strands 1 and 2 in the y-direction by a value ∆y12. This displacement
is performed in Fig. 4.9.

� Shifting strands 1 and 2 in the z-direction by a value ∆z12. Because of the
CH3-groups extending into the layers above and below (as seen in Fig. 4.8,
top panel), a displacement like this is only possible if those two strands have a
shift in the y-direction of ∆y12 ≈ ±ay/4 as well. In this case, the CH3-groups
can pass each other without overlapping.

� Shifting strands 2 and 4 in the z-direction by a value ∆z24. This shift was
originally suggested by Arnott et al. [1967].

� Shifting strands 2 and 4 in the x-direction. However this displacement would
have a high energy cost, because it would break the hydrogen bonds between
the H- and O-atoms of neighboring strands. Since, moreover, no reasonable
result could be achieved performing such shifts, it will not be included in the
discussion any further.

Note that shifting strands 1 and 2 in the x-direction, or strands 2 and 4 in the
y-direction, is associated with resizing the unit cell in the x- or y-direction, respec-
tively.
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Figure 4.9: Illustration of the unit cell, as at the bottom of Fig. 4.8, but with the
conducted shift ∆y12 = ay/4 of strands 1 and 2 the in y-direction.

4.4.3 Variations between Crystallites

For real systems, the composition of the crystallite is certainly not fixed but may
vary from crystallite to crystallite. These variations can easily be included into
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our model by introducing a probability distribution P ({rm,k}) for the crystallite
configuration {rm,k}, with the normalization

∑
{rm,k} P ({rm,k}) = 1. Note that the

probability distribution may be chosen such that the crystallite size (Mx,My,Mz) is
variable and also that the unit cells may have different types and different numbers
of atoms. The calculation is performed completely analogously to the orientational
distribution. The scattering function becomes

G(q)
N

=
∑

{rm,k}
P ({rm,k})

∫
DD ∣∣A(DTq)

∣∣2 (4.23)

+ (S(q)− 1)

∣∣∣∣∣∣
∑

{rm,k}
P ({rm,k})

∫
DDA(DTq)

∣∣∣∣∣∣

2

.

Later (Sec. 4.5.2), we investigate the effect of variable crystallite sizes as well
as the influence of small fractions of glycine inside the crystallites. The effect
of the coherent scattering term on the bottom line of Eq. (4.23) is analyzed in
Appendix E.2.

4.5 Results

4.5.1 Experimental Scattering Function

Two types of samples have been investigated: fiber bundles and single fiber prepa-
rations. Single fibers demand a highly collimated and brilliant beam, but are better
defined in orientation and are amenable to simultaneous strain-stress measurements.

An oriented bundle of major ampullate silk (MAS) of Nephila Clavipes was
measured at the D4 bending magnet of HASYLAB/DESY in Hamburg. The fibers
were reeled on a steel holder and oriented horizontally in the beam. The number
of threads was estimated at 400-600. Photon energy was set to E = 10.9 keV
by a Ge(111) crystal monochromator, located behind a mirror to suppress higher
harmonics. Data was collected by a CCD X-ray camera (SMART Apax, AXS
Bruker). Illumination was triggered by a fast shutter. The momentum transfer was
calibrated by a standard (corrundum) and raw data was corrected by an empty
image (background subtracted).

The single fiber experiments were performed at the microfocus beamline ID13
at ESRF, Grenoble [Riekel & Davies, 2005]. A 12.7 keV X-ray beam was focused
with a pair of short focal length Kirkpatrick Baez mirrors [Kirkpatrick & Baez,
1948] to a 7 µm spot on the sample. This focusing scheme provides a sufficient flux
density (6.8·1015 cps/mm2) to obtain diffraction patterns from single dragline fibers.
The single fiber diffraction patterns were recorded with a CCD detector positioned
131mm behind the sample (Mar 165 detector, Mar USA, Evanston, IL). One of the
beamline’s custom-made lead beamstops (approx. 300µm diameter) was used to
block the intense primary beam. The raw data was treated as follows: (i) both the
image and the background (empty beam) were corrected by dark current, and (ii)
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the background was subtracted from the image. The peaks which are significantly
broadened by the small crystallite size (see below) can then be indexed by the
orthorhombic lattice described above.

Typical scattering distributions for both types of sample preparations are shown
in Fig. 4.10, as a function of parallel and vertical momentum transfer. More details
on experimental procedures and on the sample preparation by forced silking can be
found in [Glǐsović & Salditt, 2007; Glǐsović et al., 2008].

4.5.2 Scattering Function from the Model

It is our aim to determine those crystallites’ parameters which best match the
experimental result. The free parameters of our model are the three shifts ∆y12,
∆z12 and ∆z24, the unit cell dimensions ax, ay and az, the crystallite size in the
three directions Mx, My and Mz, as well as θ0, the tilting angle of the crystallites
away from the fiber axis.

These parameters affect the scattering intensity in different ways, allowing us
to at least partially separate the effects of different parameters. The crystallite
size (Mx,My,Mz) determines the peak widths, whereas the length of the principal
vectors ax, ay and az determine the peak position. (We have to keep in mind,
however, that the peak position can differ from the extremal values of the Laue
functions, as explained in Sec. 4.3.3.) The shifts ∆y12, ∆z12 and ∆z24, as described
in Sec. (4.4.2), affect the relative peak intensities via the form factors of the unit cell∑K

k=1 Fk(q) exp(iqrk). Finally, the parameter θ0 is responsible for the peak widths
in the azimuthal direction on the scattering image.

From Eq. (4.22) it is clear that the z-components of the atom positions {rk}K
k=1

are irrelevant for the scattering amplitude A(q) in the xy-plane, i.e. for a zero z-
component of q. Therefore, parameters affecting only the z-components – especially
the mentioned shifts in the z-direction – will not influence the intensity profile
of G(q) in the xy-plane.2 Analogously, the scattering profile in the z-direction
is independent of parameters influencing the x- and y-directions. Consequently,
the sections of the scattering profile along and perpendicular to the fiber axis can
separately be matched to subsets of the parameters. The intensity profile off the z-
and xy-axes, taking into account all dimensions of the crystallite, can be seen as a
consistency check for the found parameters.

The experimental scattering data clearly reveal a (002) peak, Fig. 4.10. This
peak is allowed by symmetry; however, it is extremely weak in the antiparallel
structure suggested by Marsh et al. [1955b] and shown in Fig. 4.11. The reason is
that the electron density within the unit cell projected along the z-axis is almost
uniform, varying by approximately 10%. We therefore consider two alternative

2In principle there can be an influence because of the θ-tilt of the crystallites with respect to the

fiber axis (see Sec. 4.2.3 and Fig. 4.5). However, the scattering amplitude A(q) shows a discrete

peak structure and, for small θ-rotations, the out-of-plane reflections (which are influenced by the

z-components) are too far away from the xy-plane to have an impact on the in-plane intensity

profile.
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mechanisms generalizing the classical model (Marsh et al.) of the antiparallel unit
cell. By both mechanisms, the intensity of the (002) peak will increase in agreement
with the experiment:
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Figure 4.10: Scattering images of spider silk. The experimental scattering image of
spider silk from Nephila clavipes is shown, both for bundle measurements (left) and
single fiber diffraction (right). The fiber axis runs vertically. At the top of the figure
the color-bar shows scattering intensities, which are normalized by the intensity of
the (120) peak. By courtesy of Tim Salditt.

a) the shift of strands 2 and 4 in the z-direction, i.e. a non-zero ∆z24-shift or

b) structural disorder affecting the almost uniform electron density.

We first discuss case a). The uniform electron density is disturbed by a shift ∆z24 6=
0. The intensity of the (002) reflection grows accordingly with an increasing shift
∆z24. Adjusting the ∆z24-shift yields results consistent with experiments. Table
4.1 shows the results for the parameters of the model, obtained from optimizing the
agreement between the calculated scattering function and the experimental one. For
comparison the set of parameters for both the parallel and the antiparallel structure
are presented. On the basis of the experimental data, one can not discriminate
between the parallel and the antiparallel structure.

The scattering intensities, as calculated with these values, are shown in Fig. 4.12.
The crystallites are randomly rotated about the fiber axis so that on average the
system is invariant under rotations around the fiber axis. Consequently, the scat-
tering image also has rotational symmetry about the z-axis and the qx- and qy-axis
are indistinguishable and denoted by qxy. A section along the qxy-axis is shown in
Fig. 4.13, top panel. The mismatch for q-values slightly larger than the (120) peak
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presented calculation Warwicker Marsh et al. Arnott et al.
[1954] [1955b] [1967]

structure of Nephila clavipes Bombyx mori Tussah Silk poly-L-alanine
alignment parallel anti-parallel anti-parallel anti-parallel anti-parallel

ax 10.0 Å 10.0 Å 10.6 Å 10.6 Å 10.535 Å
ay 9.3 Å 9.3 Å 9.44 Å 9.44 Å 9.468 Å
az 6.95 Å 6.95 Å 6.95 Å 6.95 Å 6.89 Å
Mx 1.5 (∗) 1.5 (∗) - - -
My 5 5 - - -
Mz 9 9 - - -
∆y12 ay/4 ay/4 0 ay/4 ±ay/4 (∗∗)

∆z12 0 0 0 0 0
∆z24 0 −az/6 0 0 −az/10
θ0 7.5◦ 7.5◦ - - -
〈u2〉 0.1 Å2 0.1 Å2 - - -

Table 4.1: Summary of parameters. The left two columns show the best match
between experimental and calculated scattering functions. For az = 6.95 Å, the
resulting Ramachandran angles are Φ = −139.0◦ and Ψ = 136.9◦. 〈u2〉 was used
for the Debye-Waller factor in Eq. (4.21). The three right columns compare our
obtained parameters with the literature.
(∗) Note that each unit cell contains two layers of alanine-strands in x-direction.
Therefore Mx = 1.5 corresponds to three layers of β-sheets in a single crystallite.
(∗∗) Statistical model: A layer is shifted by a value +ay/4 or −ay/4 with respect to
the previous layer, where + and − are equally likely.

is plausible, because in this region the amorphous matrix contributes noticeably to
the experimental scattering intensity, but has been neglected in the model. The
oscillations of the calculated scattering image for low q-values are side maxima,
which are suppressed by fluctuations in the crystallite sizes (see Sec. 4.4.3). The
corresponding scattering intensities are shown in Fig. 4.13, and the full scattering
image is in Fig. E.2 (left) in Appendix E.2 (page 189). Clearly, the side maxima
have been flattened out.

We now discuss an alternative mechanism to generate a stronger (002) peak by
introduction of disorder into the amino acid composition of the unit cell (case b).
Polyalanine as a model for the crystallites in spider silk is an over-simplification,
since the amino acid sequence hardly allows for a pure polyalanine crystallite. In-
stead, we expect that other residues must be incorporated into the crystallite even
if energetically less favorable to compromise the given sequence. In particular, it is
highly likely that glycine amino acids are also embedded in the crystallites [Marsh
et al., 1955a]. This can be easily implemented by replacing randomly selected ala-
nine amino acids of the crystallites with glycine (see Sec. 4.4.3). It is found that the
intensity of the (002) peak increases with the fraction of substituted alanines. In
Fig. 4.11 we compare the original Marsh-structure (without glycine) to a structure
with the same parameters, but with alanine randomly replaced with glycine with a
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probability pgl = 0.375. The random substitution has clearly produced an intensity
of the (002) peak comparable to the experiment.
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Figure 4.11: Calculated scattering images of the structure proposed by Marsh et al.
[1955b]. The unit cell size is (ax, ay, az) = (10.6, 9.44, 6.95)Å, and we used the
crystallite size (Mx,My,Mz) = (1.5, 6, 9). Left: The crystallites are made purely of
alanine amino acids. Right: The crystallites’ alanine amino acids are replaced with
glycine with a probability pgl = 0.375.
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Figure 4.12: Scattering images, as calculated from Eq. (4.20), for the parallel struc-
ture on the left side and the antiparallel structure on the right side.
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Figure 4.13: Top: Comparison of a section of the experimental (•) and the calculated
scattering intensity (—–¥ parallel, – –̈ antiparallel). Sections of the profiles in Fig. 4.12
along the qxy-axis, i.e. the scattering profile perpendicular to the fiber axis, are
shown. Bottom: As top, but with a Gaussian distribution (rounded to integers) of
the crystallite sizes Mx, My and Mz. The widths are ∆Mx = 2, ∆My = 0.75 and
∆Mz = 3 respectively.
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4.6 Conclusions

We have developed a microscopic model of the structure of spider silk. The
main ingredients of the model are the following:

a) many small crystallites are distributed randomly in an amorphous matrix,

b) the orientation of the crystallites fluctuate with a preferential alignment along
the fiber axis,

c) each crystallite is composed typically of 5× 2× 9 unit cells,

d) each unit cell contains four alanine strands shifted with respect to each other.
Disorder can be generated by randomly replacing alanine with glycine.

We have computed the scattering intensity of our model and compared it to
wide angle X-ray scattering data of spider silk from Nephila clavipes. Possi-
ble inter-crystallite correlations are unimportant given the measured orien-
tational distribution. In other words, even if significant center-of-mass correlations
between crystallites were present, the orientational distribution would suppress in-
terference effects, with the exception of the (002) peak, which is least sensitive to
orientational disorder. The contribution of coherent scattering is discussed in detail
in Appendix E.2.

A homogeneous electron density background is a necessary feature of the
scattering model. Calculation of the crystal structure factor in vacuum does not
only lead to an incorrect overall scaling prefactor (which is important if absolute
scattering intensities are measured), but also leads to a scattering intensity distri-
bution with artifacts at small and intermediate momentum transfer.

The comparison between model and data fixes the parameters of the unit cell and
the crystallite for the two possible cases, the parallel and the antiparallel structure,
respectively, as shown in Table 4.1. The two models with parallel and antiparallel
alignment of the alanine strands yield comparable agreement with the experimental
data. Furthermore a more refined model, where alanine is randomly replaced with
glycine, gives reasonable results. Hence we cannot rule out one of these structures.

Our model is similar to the model of the poly-L-alanine of Arnott et al. [1967].
Their model does incorporate a ∆z24-shift. However, our structure shows a better
agreement with the experimentally measured scattering function using a value of
∆z24 = −az/6.

While we have concentrated here on the wide angle scattering reflecting the crys-
talline structure on the molecular scale, the same model can be used for small angle
scattering to analyze the short range order between crystallites in the presence of
orientational and positional fluctuations. In particular, the model can describe the
entire range of momentum transfer and the transition from wide angle scattering
(WAXS) to small angle scattering (SAXS). Note that WAXS is usually described
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only in the single object approximation, neglecting inter-particle correlations. Con-
trarily, SAXS is mostly described in continuum models without crystalline parame-
ters. Here, both are treated by the same approach, which is a significant advantage
for systems where the length scales are not decoupled.
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Chapter 5

Aggregation and Gelation in

Wet Granular Materials
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5.1 Introduction

Granular materials are systems of macroscopic particles, which are typically char-
acterized by two properties: They interact only on contact and their interactions
are dissipative. In spite of their simple interaction, they are of high importance for
both science and for industry: On the one hand, because granular systems yield a
broad range of interesting nonequilibrium phenomena [Brilliantov & Pöschel, 2004;
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Kudrolli, 2004; Umbanhowar et al., 1996] and have been considered as model sys-
tems for structure formation on various length scales, including the formation of
planetesimals from interstellar dust and the formation of planets and stars from
accretion disks [Blum et al., 2000; Bridges et al., 1984]. And on the other hand,
storage and handling of bulk solids is among the most significant tasks in indus-
trial technology and still poses a large number of unsolved problems [Jaeger et al.,
1996; Duran, 2000]; in addition granular materials are the second-most manipulated
material by mankind (the first one being water) [de Gennes, 1999].

Most studies discuss dry granular systems, where the dissipative contact
interaction consists in the loss of a certain fraction of the kinetic energy in every
impact [Duran, 2000; Brilliantov & Pöschel, 2004, and references therein]. Adding
a small amount of liquid to the granular system changes its properties dramatically:
while dry sand can flow through one’s fingers similarly to a liquid, wet sand has
properties of a plastic solid, even suitable to build structures like sand castles. This
difference in the macroscopic behavior is reflected in the corresponding difference in
particle interactions [Herminghaus, 2005]:

Wet granular particles are covered by a thin liquid film. When two wet
particles come into contact, the films merge and a capillary bridge is formed, exerting
an attractive force on the particles. As the particles separate from each other again,
the bridge stays intact up to a critical distance dc. At this point the bridge ruptures
[Willett et al., 2000]. Integrating this attractive force over the separation of the
particles up to dc yields the amount of energy which is dissipated in each bond
rupture process.

This dissipative mechanism is an essential difference between wet and dry gran-
ular systems: The collisions of dry granulates are purely repulsive and characterized
by the coefficient of restitution ε, which specifies which fraction of the kinetic energy
is dissipated. Wet granular particles, however, are characterized by a hysteretic at-
tractive interaction giving rise to a fixed amount of energy, which is dissipated in
each rupture.

This existence of a well defined energy scale, which is absent in dry materials,
is the essential microscopic ingredient not only of wet granulates but also of cohesive
gases. In fact the liquid bridge can be thought of as a particular realization of a more
general cohesive force. A particularly important aspect of free cooling in cohesive
gases is the aggregation process which sets in, when the kinetic energy falls
below the bond breaking energy. Wet granular systems may provide a realization
of various aggregation models and so-called sticky gases [Carnevale et al., 1990],
where particles move diffusively or ballistically until they collide and get stuck to
an aggregate which is thereby growing. Such models have attracted a lot of interest
[Liang & Kadanoff, 1985; Jiang & Leyvraz, 1993, 1994; Carnevale et al., 1990; Alves
& Ferreira, 2006; van Dongen & Ernst, 1985; Westbrook et al., 2004; Jullien & Kolb,
1984; Trizac & Krapivsky, 2003; Trizac & Hansen, 1995], due to a wide range of
applications ranging from the formation of dust filaments, snowflakes and clouds to
the size distribution and impact probability of planetesimals in accretion disks.

Kinetic properties of granular gases have been discussed mainly for dry materials.
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In particular, free cooling has been studied extensively [Ben-Naim et al., 1999; Nie
et al., 2002; Baldassarri et al., 2002; Krapivsky & Ben-Naim, 2002], and it was
shown that the dissipative interactions are responsible for many novel phenomena,
unexpected from the kinetic theory of molecular gases: The particles’ velocities
are not distributed according to a Maxwell-Boltzmann distribution [Goldshtein &
Shapiro, 1995], equipartition does not hold [Huthmann & Zippelius, 1997; Garzo
& Dufty, 1999; Losert et al., 1999], a spatially homogeneous state is generically
unstable [Goldhirsch & Zanetti, 1993; Goldhirsch et al., 1993; McNamara, 1993],
and linear and angular motion are correlated [Brilliantov et al., 2007].

Much less is known about wet granular media, which have been addressed only
recently [Thornton et al., 1996; Lian et al., 1998; Huang et al., 2005; Herminghaus,
2005; Zaburdaev et al., 2006; Fingerle & Herminghaus, 2006, 2008; Fingerle et al.,
2008], focussing on nonequilibrium phase transitions [Fingerle et al., 2008], the
equation of state [Fingerle & Herminghaus, 2008], agglomeration [Ennis et al., 1991;
Thornton et al., 1996; Lian et al., 1998], shear flow [Huang et al., 2005], and cooling
in one dimension [Zaburdaev et al., 2006; Fingerle & Herminghaus, 2006].

Structure formation in wet granulates during free cooling is the focus of this
chapter, which is organized as follows: In Sec. 5.2 the model is introduced, and
the decay of the average kinetic energy is discussed in Sec. 5.3. Aggregation is
investigated in Sec. 5.4, before we conclude in Sec. 5.5. A short summary of the
presented results has appeared in [Ulrich et al., 2009b] and an even shorter one in
[Ulrich et al., 2009a].

5.2 Models

We are interested in the zero-gravity free cooling dynamics of wet granular gases.
We assume the particles to be covered by a thin liquid film, as it is the case if
the liquid completely wets the particle material [Israelachvili, 1992]. The particles
move freely, until these surface films come into contact. The liquid then rapidly
accumulates around the contact due to the interfacial forces. A capillary bridge
forms at the contact, exerting an attractive force on the grains due to its negative
Laplace pressure. This liquid bridge is stretched but stays intact (or even continues
to grow) as the particles move apart. The attractive force thus remains until a
certain critical separation sc is reached, where the liquid neck becomes unstable
and ruptures. As mentioned above, the hysteretic formation and rupture of the
bridge gives rise to a characteristic loss of energy, ∆E, which depends upon the
thickness of the liquid film wetting the grains.

In order to design a suitable model, we briefly discuss the nature of this process.
The formation of capillary bridges is quite fast in real systems. Between typical
grains of one millimeter diameter it takes less than a millisecond [Herminghaus,
2005, Sec. II D]. It is clear, however, that this formation cannot in general be
considered instantaneous if the velocity of the impacting grains vi is large. If the
time scale of the impact process, which may be written as sc/vi, is of the same order
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or even smaller than the time of capillary bridge formation, the accumulated liquid
volume of the bridge, and hence ∆E, will be smaller than for slow impacts. However,
this will not greatly affect the main features of the wet system, in particular as to
its characteristic difference from the dry granulate. In order to see that, we compare
the effective restitution coefficient of the dry and of the wet system. This is shown in
Fig. 5.1, where the restitution coefficient for the dry system is shown as the dotted
curve. It tends to be mildly depending on impact energy [Brilliantov & Pöschel,
2004], Ei, with a negative slope throughout. The effective restitution coefficient of
the wet system, εeff =

√
1−∆E/Ei, is shown as the solid curve, assuming constant

∆E. In strong contrast to the dry system, it has a zero at ∆E/Ei = 1 and a
markedly positive slope. This illustrates the dramatic difference between these two
systems. The dashed line qualitatively accounts for the effect of finite formation
time of the capillary bridge. Since εeff must stay below one, the qualitative picture
concerning the comparison of dry and wet granular gases remains unchanged.

Figure 5.1: Restitution coefficients for dry (dotted) and wet (solid and dashed)
granular systems, plotted vs. the impact energy in units of the wet energy loss, ∆E.
The main feature in the wet case is the zero at Ei = ∆E, which is unchanged if
the finite formation time for capillary bridges is taken into account (dashed curve).
The horizontal line ε = 1 corresponds to the limit of fully elastic spheres.

Our system consists of N identical and spherical particles with diameter d and
massm in a three-dimensional cubic volume V = L3. They are at positions r1, ..., rN

and have the velocities v1, ...,vN . The particles have a hard-core interaction, such
that two particles are reflected elastically, if their centers of mass reach the hard-core
distance, which is the particle diameter d.

To account for the liquid film, a liquid bridge is allowed to form between a pair of
particles if they come close enough (“close enough” is specified later). When these
particles are moving apart and their distance exceeds the bond breaking distance dc,
the liquid bridge will break and a fixed amount of kinetic energy ∆E is dissipated;
in that process, momentum is conserved and the relative velocity vrel changes to v′rel
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Figure 5.2: Illustration of the thin film model and thick film model. In the thick film
model, the liquid bridge forms, as soon as the bond breaking distances dc overlap.
The same initial configuration in the thin film model does not create a liquid bridge,
since the hard cores of the particles do not touch. Thus, the particles just pass by.

according to
µ

2
v′2rel =

µ

2
v2
rel −∆E (5.1)

with the reduced mass µ = m/2. If, however, the relative kinetic energy is smaller
than ∆E, the particles are elastically reflected towards each other. In this case the
two particles oscillate between d and dc, until a collision with a third particle or a
wall supplies enough energy to break the liquid bridge.

The effect of the capillary force, which is present in reality for distances up to
dc, is thus solely modeled by the energy loss which occurs at the distance dc. This
has been shown before to be a very good approximation [Fingerle et al., 2008], and
enables event-driven simulations as discussed below. For the formation of the liquid
bridge, we distinguish between two models:

In the thick film model , a liquid bridge forms as soon as particles come closer
than the critical bond breaking distance dc. This model assumes that the outer
diameter of the liquid film is dc and its shape stays spherical and is not deformed
by the particles.

In the thin film model , the liquid bridge forms when the particles touch, i.e.

the distance of their centers is equal to d. This model assumes that the liquid
film covering the particles is infinitesimally thin and the capillary bridges form a
thin liquid neck, which breaks off at the critical distance dc. Raw data for this
model was provided by courtesy of the Max Planck Institute for Dynamics and
Self-Organization.

As it will turn out, the differences in most of the results are only minute. The
two models are illustrated in Fig. 5.2. Note that in the limit dc → d the difference
between the two models vanishes, since in a collision the bond breaking distance
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and hard core distance are always passed concurrently. For the sake of clarity, in
all graphs throughout this chapter data points displayed as filled symbols (like •)
represent the thick film model and open symbols (like ◦) the thin film model.

In general there is some energy being transferred to the atomic degrees of freedom
of wet grains as well. We are going to neglect this dissipation mechanism for our
simple model, because it is usually small as compared to the energy loss due to the
breaking of capillary bridges, especially if the granular temperature is small. It is
evident, however, that such a dissipation mechanism can easily be incorporated in
the simulations, replacing the elastic reflection by incomplete normal restitution.
We restrict ourselves here to perfectly smooth particles, such that translational and
rotational motion are decoupled. Furthermore, we investigate free cooling only, so
no gravity is present, and no energy is injected into the system.

The particular way of accounting for the liquid film used in these models makes
it possible to use an event-driven simulation scheme. The possible events are the
reflection of the particles at the hard core distance d and the crossing of the bond-
breaking distance dc, at which the bond-breaking energy ∆E is dissipated. Fingerle
et al. [2008] have previously compared event-driven simulations of the wet system
with full molecular dynamics simulations, integrating the equation of motion; they
found good quantitative agreement in the results of both methods, justifying the
event-driven approach chosen exclusively for the present study.

We use dimensionless units such that ∆E = 1, particle mass m = 1 and particle
diameter d = 4. The bond-breaking distance is chosen as dc = 1.07d, unless noted
otherwise, and volume fraction, φ = πd3/6 · N/V , is varied from φ ≈ 0.06% up
to 15.6%. We use periodic boundary conditions in the x- and y-direction and hard
walls in z-direction. The hard walls are completely elastic and do not exert capillary
interactions with the particles.

5.3 Cooling Dynamics

The central quantity in this section is the granular temperature T , defined via

3
2
T =

1
N

N∑

i=1

mv2
i

2
. (5.2)

We will investigate its decay in time from a given initial value T0 À ∆E; in all the
simulations T0 = 45∆E was chosen.

Simple arguments can be used to derive an analytical form of the temperature
decay. Therefore we first need the collision frequency fcoll, which is defined as
the average number of collisions per time for a given particle. Since each collision
involves two particles, fcoll · N · ∆t adds up to twice the number of collisions in
the whole system during the short time interval ∆t. In each collision a capillary
bridge ruptures with probability Pbb, giving rise to dissipation of a fixed amount
of energy, the bond-breaking energy ∆E. Hence, during this time the total kinetic
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energy decreases by

∆Ekin = ∆E · Nfcoll∆t
2

· Pbb . (5.3)

Dividing by N and ∆t yields, in the limit ∆t→ 0, a rate equation for the temper-
ature:

3
2

dT
dt

= −1
2
· fcoll ·∆E · Pbb . (5.4)

5.3.1 Early Stage of Cooling

In the early stage of cooling, the average kinetic energy per particle is much larger
than the bond breaking energy, so that Pbb ≈ 1 and almost every collision gives rise
to dissipation by ∆E. For a dilute gas, the collision frequency

fcoll = 4g(d)σn

√
T

πm
(5.5)

is well established [e.g. Brilliantov & Pöschel, 2004], with the particle density
n = N/V and the pair correlation function at contact g(d), for which we use the
Carnahan-Starling approximation [Carnahan & Starling, 1969], g(d) = (2−φ)

2(1−φ)3
. The

two models differ only in the scattering cross section σ (see Fig. 5.2), which is given
by σ = d2π in the thin film model and σ = d2

cπ in the thick film model.
Applying Eq. (5.5) and Pbb = 1 to Eq. (5.4), gives rise to the following simple

equation:
dT
dt

= −4
3
g(d)σn

√
T

πm
∆E ∝ −

√
T , (5.6)

which is solved by T (t) ∼ (t − t0)2. Inserting the prefactors and setting the initial
value T (0) = T0, we obtain, similar to Haff’s law [Haff, 1983], an analytical form of
the decay of the temperature:

T (t) =
{
T0 (1− t/t0)2 for t ≤ t0
0 for t > t0

(5.7a)

with a characteristic time scale

t0 =
3
√
πmT0

2g(d)σn∆E
. (5.7b)

Note that, in this simplified model, the assumption that every collision causes an
energy loss ∆E gives rise to a time-scale t0 after which all energy is dissipated.
Even though this assumption does not hold for all times in the simulation (since the
bonds do not break anymore if the relative kinetic energy is too small), the timescale



88 CHAPTER 5. AGGREGATION IN WET GRANULATES

t0 has a clear physical relevance. It sets the time after which the temperature is
comparable to the bond-breaking energy ∆E and after which persistent clusters will
form.

Now, let us have a look at the evolution of the granular temperature T from the
simulation and compare it to (5.7): In Fig. 5.3 the temperature of the thick film
model is shown for different volume fractions. One can see that the agreement be-
tween theory and simulation is quite good up to t0, when the assumption contained
in Eq. (5.4) that every collision causes an energy loss ∆E breaks down.
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Figure 5.3: Decay of the granular temperature T for volume fractions (from left
to right) φ = 15.6%, 7.81%, 3.90%, 1.95%, 0.98%, 0.49%, 0.24%, 0.12%, 0.061%; the
number of particles N = 262144 is fixed; comparison of theory (full line) and
simulation (•). Inset: T versus scaled time t/t0.

In the simplified cooling law (5.7a), the volume fraction only enters into t0.
Hence we can try to superimpose the data by scaling time with t0. As can be seen
in the inset of Fig. 5.3, the data obey the expected scaling well, except for the
long time limit, which has different asymptotic behavior and is treated in the next
section, Sec. 5.3.2.

In Fig. 5.4, the temperature evolution of the thick and thin film model is com-
pared. The difference of the two models is solely due to different scattering cross-
sections, entering in t0, Eq. (5.7b). Again, we observe good agreement of the sim-
plified theory and the simulation up to the time t0. In the inset the time is rescaled
with t0.
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Figure 5.4: Decay of the granular temperature T for the thick film model (•) and
the thin film model (◦) and for volume fractions φ = 1.95% (red) and φ = 0.24%
(black). The inset shows T versus scaled time t/t0.

In Fig. 5.5, we investigate how the the bond breaking distance dc influences
the cooling behavior. As mentioned above, this will influence the scattering cross
section σ = d2

cπ for the thick film model and according to Eq. (5.7b), and t0 should
increase when decreasing dc. This behavior can indeed be observed on the left side
of Fig. 5.5, which shows the data for the thick film model.
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Figure 5.5: Decay of the granular temperature T for volume fraction φ = 1.95%
and N = 262144 particles. The bond breaking distances are dc = 1.07d (black),
dc = 1.035d (brown) and dc = 1.01d (red). The left graph shows data for the thick
film model, the right graph for the thin film model.

For the thin film model, the scattering cross section σ = d2π depends only on the
hard core diameter d of the particles. Hence varying dc should not influence the time
t0. This can be seen on the right hand side of Fig. 5.5, where the different curves of
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the thin film model coincide well, until the time t0 is passed and aggregation starts.
Surprisingly one can see that in the aggregated state t > t0 a smaller bond

breaking distance dc slightly expedites the cooling process, for both models. This
is probably because a smaller dc increases the collision frequency of the particles
inside clusters.

5.3.2 Late Stage of Cooling

In the late stage of aggregation, when the system is strongly aggregated, it becomes
very unlikely that a capillary bridge ruptures and hence we observe a very slow time
evolution of our system. The slow decrease of the temperature can be understood
with simple arguments. Therefore we start with Eq. (5.4),

3
2

dT
dt

= −1
2
fcoll ∆E Pbb , (5.8)

as in the previous section, but omit the assumption Pbb ≈ 1. The probability Pbb

to break a bond is given by the probability to find a kinetic energy larger than ∆E:

Pbb =
∫

dv θ(mv2/2−∆E)w(v) , (5.9)

where w(v) is the velocity distribution. As we will see in Sec. 5.3.3, in the clustered
state it is reasonable to approximate it by a Maxwellian

w(v) =
(

m

2πT (t)

)3/2

exp
(
− mv2

2T (t)

)
. (5.10)

As it is usually done for spherical symmetrical integrals like (5.9), we can inte-
grate out the angular variables, yielding a factor of 4πv2, and then consider the
dependence of the absolute value v = |v|:

Pbb = 4π
(

m

2πT (t)

)3/2 ∫ ∞
√

2∆E/m
dv v2 exp

(
− mv2

2T (t)

)

=

√
4∆E
πT

exp
(
−∆E

T

)
+ erfc

(√
∆E
T

)
. (5.11)

We are interested in the asymptotic limit T (t)/∆E → 0. Looking up the asymptotic
expansion of the complementary error function [e.g. Stegun & Abramowitz, 1954,
Ch. 7],

erfc(x) =
exp(−x2)
x
√
π

(
1 +O(x−2)

)
for x→∞ , (5.12)

we realize that the contribution of the erfc(...)-term only makes a lower order con-
tribution in the limit T/∆E → 0 and hence:

Pbb =

√
4∆E
πT

exp
(
−∆E

T

)
·
(

1 +O
(
T

∆E

))
. (5.13)
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The collision frequency fcoll is not known for the clustered state, but it should
be proportional to T 1/2: Increasing all particle velocities for a given system by a
factor of two must also increase the collision frequency by a factor of two:

fcoll = γ T 1/2 . (5.14)

Roughly speaking, the prefactor γ contains information about how large the local
density around a given particle is, i.e. how many close-by particles a given particles
has to collide with. Hence, γ will clearly be higher in the clustered state than
in the homogeneous state. By assuming that γ is not time dependent itself, we
assume that the internal structure within the clusters does not change significantly
as t→∞ (while the cluster is still allowed to change its overall shape). This seems
to be a good assumption in the highly clustered state, however, it certainly can not
correctly describe the transition state, where particles conglomerate around a given
particle and the local density changes drastically1.

With that, the rate equation (5.8) becomes:

dT
dt

= −∆E
3
γT 1/2

√
4∆E
πT

exp
(
−∆E

T

)
·
(

1 +O
(
T

∆E

))

1
∆E

dT
dt

= −ν exp
(
−∆E

T

)
·
(

1 +O
(
T

∆E

))
, (5.15)

where we defined ν = 2
3
√

π
· γ∆E1/2, which has the dimension of a frequency2. To

solve this equation, it is useful to introduce the dimensionless inverse temperature:

x :=
∆E
T

. (5.16)

With that, Eq. (5.15) becomes:

d(x−1)
dt

= − 1
x2

dx
dt

= −ν e−x · (1 +O(x−1)
)

⇒ dx
dt

= ν x2e−x · (1 +O(x−1)
)
. (5.17)

This differential equation can be solved by separation of variables:
∫

dx x−2ex · (1 +O(x−1)
)

= ν

∫
dt . (5.18)

The integration of the right hand side is trivial. For the left hand side we find by
repeated partial integration that:

∫
dx x−2ex = x−2ex +O(

x−3ex
)
, (5.19)

and
∫

dx x−3ex = x−3ex +O(
x−4ex

)
. (5.20)

1Indeed, attempts to describe the temperature evolution in the transition state with this for-

malism failed.
2comparing it to Eq. (5.14) indicates, it is roughly the collision frequency, when T = ∆E.
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Hence Eq. (5.18) becomes:

x−2ex · (1 +O(x−1)
)

= νt+ c , (5.21)

where c is an integration constant, which has to be chosen to match the initial
condition. Figuratively speaking, we can use c to shift the solution x(t) along
the time axis back and forth and thereby run through the set of solutions of the
differential equation (5.17). However, we have to keep in mind that this equation is
derived in the limit x = ∆E/T À 1; therefore this initial condition has to be set in
the low temperature regime, as well, and cannot be chosen as T (0) = T0 À ∆E as
in the previous section.

In order to see how the temperature evolves asymptotically in the limit t→∞,
we need to invert Eq. (5.21), which is done in Appendix D.2:

x(t) = ln t̃+ 2 ln ln t̃+
4 ln ln t̃

ln t̃
+O

(
1

ln t̃

)
, (5.22)

with t̃ = νt + c. If we turn back to the actual temperature and resubstitute
T (t)/∆E = x−1(t), we get in highest possible order from Eq. (5.22):

T (t)
∆E

=
1

ln t̃+ 2 ln ln t̃+ 4 ln ln t̃
ln t̃

+O
(

1
(ln t̃)3

)
(5.23a)

and lower orders

T (t)
∆E

=
1

ln t̃+ 2 ln ln t̃
+O

(
ln ln t̃
(ln t̃)3

)
(5.23b)

=
1

ln t̃
+O

(
ln ln t̃
(ln t̃)2

)
. (5.23c)

If furthermore νt À c we can also neglect c. This is because the terms ln(νt + c)
and ln ln(νt+c) produce corrections of at least O( c

νt), which one can easily confirm.
Hence we find for the leading order in t:

T (t)
∆E

=
1

ln νt
+O

(
ln ln νt
ln νt

)
. (5.23d)

This result shows that the temperature exhibits a very slow, logarithmic time decay
for t→∞, induced by the very low probability to break a bond, Eq. (5.13); this is
in strong contrast to the algebraic time decay observed for granular systems with
coefficient of restitution ε < 1 [Brilliantov & Pöschel, 2004].

The different orders of the approximations (5.23) as well as the numeric solution
of the original differential equation (5.8) are shown in Fig. 5.6 and compared to the
simulation data. The unknown prefactor γ, or equivalently ν, is a fit parameter. As
one can see, in the limit t → ∞, all curves show the same asymptotic behavior, as
expected. Approaching the transition time t → t0, the lowest order approximation
(5.23d) clearly deviates first, while already the second lowest order shows (5.23b)
roughly the same conformance as the higher orders.
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Figure 5.6: Asymptotic temperature evolution for a system with φ = 3.9% and
N = 262144. The data points show the simulation data, while the lines show
analytical forms with different orders of precision: The red line is the lowest order
approximation (5.23c), the green line the second lowest (5.23b) and the blue line
the third lowest (5.23a). The dashed lines are numerical solutions of Eq. (5.8) with
Pbb given by Eq. (5.11) (red) and its first order approximation Eq. (5.13) (green).

In Fig. 5.7, the second order solution (5.23b) is compared to the simulation data
for different volume fractions, showing good agreement. One can see that for all
densities, the temperature approaches a universal curve as t → ∞. Considering
the logarithmic decay Eq. (5.23c), this is not surprising: Even if two systems have
different values for ν, let’s say ν1 and ν2, then in the limit t→∞

Tν2(t)
∆E

=
1

ln ν2t
=

1
ln ν1t+ ln ν2/ν1

=
1

ln ν1t
+O(

(ln ν1t)−2
)

=
Tν1(t)
∆E

+O(
(ln ν1t)−2

)
. (5.24)

Hence, the difference between the curves vanishes.
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Figure 5.7: Asymptotic time dependence of the temperature for volume fractions
(from left to right) φ = 15.6%, 7.81%, 3.90%, 1.95%, 0.98%, 0.49%, 0.24%, 0.12%,
0.061%. The number of particles is N = 262144, except for the third curve (¥),
which has N = 8192 particles and is therefore somewhat noisy, but shows about two
more decades in time; data (dots) in comparison to the analytical results, Eq. (5.23b)
(lines)
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5.3.3 Velocity Distribution

In this section we have a look at the velocity distribution w(v), which is the prob-
ability for a particle to have the velocity v. Fundamental for molecular gases is
the Maxwell distribution; however, for dissipative systems, it is well known that
deviations from the Maxwellian occur. This is found in experimental work as well
as simulations and for free cooling as well as driven systems. However, the actual
shape of the velocity distribution is still under discussion. In most studies the highly
energetic particles are overpopulated, resulting in so called “high energy tails”.

Esipov & Pöschel [1997]; Brey et al. [1999]; Huthmann et al. [2000] find that
the velocity distribution for undriven dry systems decays exponentially w(v) ∝
exp(−Av) in the high velocity limit. For a uniformly heated system, van Noije &
Ernst [1998] find that a stretched exponential w(v) ∝ exp(−Av3/2) is a solution to
the homogeneous Enskog-Boltzmann equation in arbitrary dimension in the high
velocity limit. Ben-Naim & Machta [2005]; Ben-Naim et al. [2005] additionally find
stationary states with algebraic tails w(v) ∝ v−σ, with a homogeneous model using
a very general collision kernel. In a two-dimensional system, Goldhirsch et al. [1993]
find that the velocity distribution deviates from the classical Maxwell-Boltzmann
distribution as the clustering instability3 sets in.

Zaburdaev et al. [2006] studied a one-dimensional wet granular system (mean-
ing a model with well defined bond breaking energy) in the limit of vanishing bond
breaking distance dc → d. It seems that the velocity distribution, initially set as
Maxwellian, evolves towards an exponential profile, once the particles start to clus-
ter. In that study, however, if the kinetic energy of a pair of particles is not sufficient
to break a bond, all relative kinetic energy is dissipated and their relative motion
is not considered anymore. Thus, clusters have no internal degrees of freedom and
therefore, for late times, different results should be expected in our system.

In this regard, the question arises, how for the presented system the fixed bond-
breaking energy and the clustering of the particles, starting at the transition time
t0, influences the velocity distribution. Fig. 5.8 shows the typical behavior of the
velocity distribution. Given the anisotropic boundary conditions, we compare the
velocity distributions in the direction of the periodic boundary conditions, w(vx) =∫

dvydvz w(v) (left), and the hard walls, w(vz) =
∫

dvxdvy w(v) (right).
In the early stage of cooling, when t ¿ t0, the velocity distribution is well

described by a Maxwellian. At the shown time in the top panel t ≈ 0.01t0, each
particle has had on average three collisions. In the transition regime, where t ≈ t0
and T ≈ ∆E, deviations from the Maxwellian distribution occur, characterized by a
pronounced peak in the center and by high energy tails, as in most other dissipative
systems. Interestingly, in the clustering regime t À t0, the velocity distribution
returns to a Maxwellian, again. Note also that w(vx) and w(vz) coincide during the
investigated simulation time, which means that w(v) remains isotropic.

3This so called clustering instability is excessively studied and produces spatial inhomogeneities

of typical size L0 ∝ (1− ε2)1/2, given that the system size is large enough (L > L0) and the system

is given enough time to evolve.
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Figure 5.8: Velocity distributions w(vx) and w(vz) for times t ≈ 0.01t0 in the free
cooling regime (top), t ≈ t0 in the transition state (center) and t ≈ 40t0 in the
highly clustered state (bottom). The corresponding temperatures are T/∆E = 44
(top), 0.59 (center) and 0.063 (bottom). The data points show the distribution for a
system with N = 1048576 particles and φ = 1.96% and the solid lines are Maxwell
distributions for the corresponding temperature at the given system time.
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In order to characterize the deviations from a Gaussian profile, one typically uses
the kurtosis, defined as the ratio of the fourth moment and the variance squared
[see Balanda & MacGillivray, 1988; Chissom, 1970]:

β2 =
〈v4〉
〈v2〉2 . (5.25)

For a Gaussian distribution, one obtains β2 = 3; thus deviations from 3 quantify
deviations from the Gaussian distribution, in particular β2 > 3 typically corresponds
to over-populated tails and peaked centers (so called leptokurtic distributions) and
β2 < 3 vice versa (platykurtic distributions). For an exponential profile e−|v|/v0 , the
kurtosis is β2 = 6.

In our three dimensional case, every spatial dimension yields a separate value
for the kurtosis. To see to what extent the anisotropy of the system plays a role,
we keep the three separate values:

β2,ν =
〈v4

ν〉
〈v2

ν〉2
for ν = x, y, z . (5.26)

The time evolution of the kurtosis for x- and z-dimension for the system in Fig. 5.8
is shown in Fig. 5.9. One observes a sharp peak with β2 > 3 around the time t0,
when clustering sets is, while the rest of the evolution has the Gaussian-like value
of β2 ≈ 3. The differences between x- and z-direction are marginal.
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Figure 5.9: Time evolution of the kurtosis β2 for the system of Fig. 5.8. Red boxes
(¥) show β2,x, blue stars (F) show β2,z.

The intriguing fact that the velocity distribution returns to a Maxwell distribu-
tion can be understood with the help of results of the previous section 5.3.2, where
we found that bond breaking events become extremely rare in the long time limit,
Pbb ∝ exp(−∆E/T ); consequently most collisions are elastic and the system can
equilibrate.
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One might consider the behavior of the particles in a cluster, which reside in
“cages” determined by the gap between the hard core distance and bond breaking
distance, reminiscent of glassy dynamics. Indeed, a similar model of so called “sticky
hard spheres” [Baxter, 1968], where hard spheres additionally have a very short
ranged attractive (but not hysteretic) square well potential, is commonly used to
study glassy structures. Unlike a glass, however, it is clear that in the presented
system, the rearrangements of particles do cost energy, because breakage of bonds
is hysteretic; thus the long time dynamics is expected to differ from glassy systems.

Fig. 5.10 compares the time evolution of the kurtosis of different volume fractions
φ. One can see that the value of the kurtosis around t = t0 increases when going
to more and more dilute systems. Since a kurtosis value of 3 is no guarantee for
a Gaussian distribution, it was checked that every system indeed approaches a
Maxwellian for large times and this is fulfilled very well.
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Figure 5.10: Time evolution of the kurtosis β2,x in x-direction for systems with
N = 262144 particles and volume fractions (from bottom to top) φ = 15.6%,
7.81%, 3.90%, 1.95%, 0.98%, 0.49%, 0.24%, 0.12%, 0.061%. (same color coding as
in Fig. 5.3)

5.3.4 Partitioning of the Energy into Translational, Rotational and
Internal Degrees of Freedom

After the time t0 has passed, stable clusters emerge. For the definition of a cluster,
we define particles as neighbors, if a bridge is formed and the relative kinetic energy
is not sufficient to break it. This makes sure that particles which are just “passing
by”, are not considered neighbors. A cluster is a set of particles connected through
this neighbor-relationship. We refer to the number of particles a cluster contains as
the cluster mass m. One should keep in mind that clusters defined in this way are
not truly stable. Particles belonging to the cluster are occasionally kicked out, if
hit by a very energetic particle.
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For a more detailed understanding of the system, we investigate the cooling
dynamics on the cluster level, and determine how energy is partitioned among the
degrees of freedom. We split the total temperature T into three constituents, the
translational temperature defined via the center-of-mass velocities of the clusters,
the rotational temperature defined via the angular momenta of the clusters, and
the internal temperature describing the relative movement of the particles inside a
cluster. These three temperatures are defined as follows.

Our definition of neighborhood relations gives rise to ncl distinct clusters num-
bered by i = 1, ..., ncl. We denote by Ni the i-th cluster with mi particles. Its center
of mass position and velocity are given by:

Ri =
1
mi

∑

ν∈Ni

rν and Vi =
1
mi

∑

ν∈Ni

vν . (5.27)

Note that single particles with mi = 1 are also considered as clusters.
The center of mass movement of each cluster has ftrans,i = 3 translational degrees

of freedom, so that the total number of translational degrees of freedom of these
clusters is simply 3ncl. Homogeneous cluster translations are thus characterized by
the translational temperature

Ttrans :=
2

3ncl

ncl∑

i=1

mi

2
V2

i . (5.28)

Analogously, the rotational temperature describes the energy in homogeneous
cluster rotations. The angular momentum, Li, of cluster i is given in terms of the
relative particle positions r̃i,ν = rν −Ri and velocities ṽi,ν = vν −Vi

Li =
∑

ν∈Ni

r̃i,ν × ṽi,ν . (5.29)

The rotational energy of cluster Ni with mi > 2 is thus given by

Erot,i =
1
2
Li I¯̄

−1
i Li , (5.30)

where the moment of inertia tensor I
¯̄i is defined in the usual way4. The case mi = 2,

requires special treatment, since the inertia tensor is singular. The rotational energy
of a dimer can be easily calculated to Erot,i = ∆v2

i⊥/4, where ∆vi⊥ denotes the
relative velocity perpendicular to the axis of the dimer. The rotational temperature
is thus

Trot :=
2∑ncl

i=1 frot,i

ncl∑

i=1

Erot,i , (5.31)

with frot,i = 2 for dimers and frot,i = 3 for larger clusters.
All the left-over kinetic energy Eint describes the relative movement of particles

inside a cluster and contributes to the internal temperature. Each cluster has a
4Ii,µν =

P
j∈Ni

m (δµνr
2
j − rj,µrj,ν).
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Figure 5.11: Top: Division of the total 3N degrees of freedom into the translational,
rotational and internal parts, dependent on time. Bottom: Evolution of the total
(•), translational (N), rotational (¥), and internal (¨) granular temperatures. Data
for N = 262144 particles and volume fraction φ = 1.95% (left) and φ = 0.12%
(right) are shown; the behavior is qualitatively the same for all investigated system
sizes. The horizontal line at 2/3 corresponds to the bond breaking energy.

total of 3mi degrees of freedom, so that the remaining number for internal degrees
of freedom is fint,i = 3mi − ftrans,i − frot,i. The internal temperature Tint is:

Tint :=
2∑ncl

i=1 fint,i

ncl∑

i=1

Eint,i . (5.32)

Fig. 5.11 (top) shows how the total of 3N degrees of freedom divide up into
translational, rotational, and internal degrees of freedom. The corresponding tem-
peratures are shown in the lower half of the figure. As one might expect, for t¿ t0
almost all degrees of freedom are translational, since most clusters are just single
particles, and Ttrans ≈ T . Keeping in mind that two particles are only defined
as neighbors if their relative velocity is not sufficient to break the bond, only sta-
ble clusters (mostly dimers) enter the internal and rotational temperatures, and
therefore Trot, Tint <

2
3∆E = 2

3 for t/t0 < 1. 5

In the transitional regime t ≈ t0, when the number of intermediate size clusters
increases, the rotational degrees of freedom become important. Larger objects can
have higher rotational energies without rupture6, therefore the growing clusters

5The factor 2
3

is due to the relation 2
3
Ēkin = T between temperature and energy.

6Roughly speaking, the maximum rotational energy Erot,max of a cluster with radius r and mass

M is Erot,max ∼ Mr2ω2, where the maximum rotational frequency ω is limited by the centrifugal
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obtain energy from caught particles, and thus Trot increases until reaching the value
of Ttrans. After that, the energy of the incoming lumps is not sufficient to increase
Trot any further.

In contrast to the homogeneous cluster rotations, the internal degrees of freedom
which have higher energies than ∆E will in most cases result in a bond rupture,
independent of the cluster size. Therefore, Tint decreases monotonically. At late
times t À t0, large clusters have formed, thus almost all degrees of freedom are
internal and T ≈ Tint.

5.4 Aggregation

When the average kinetic energy per particle is comparable to the bond breaking
energy, t ≈ t0, the system starts to form aggregates, which seem to grow in a
self-similar process. In the following we are going to analyze these aggregates and
compare them to cluster-cluster aggregation models [Jullien & Botet, 1987]. As time
proceeds, larger and larger clusters are formed. A spanning or percolating cluster
is observed for all finite densities (provided the system size L is large enough), and
ultimately all particles and clusters have merged into a single cluster.

Figure 5.12: Snapshot of the system with volume fraction φ = 0.48% and N =
262 144 particles taken at time t ≈ 12t0; the largest cluster (gray) contains 22% of
the particles. Particles of the same cluster have the same color shade.

force F ∼ Mω2r. This yields Erot,max ∼ r. In our case the bond breaking energy ∆E is related to

the maximum force F on the particles by ∆E ∼ F · (dc − d), with the freely movable distance of a

particle (dc − d).
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Figure 5.13: Same as Fig. 5.12 for t ≈ 52t0; the largest cluster contains 99% of the
particles.

Figs. 5.12 and 5.13 show snapshots of a system at t = 12t0 and t = 52t0 with
small volume fraction, φ = 0.48%. At the smaller time the system is not yet
percolating, even though rather large clusters have already formed, the largest one
(in gray) contains 22% of all particles. The second snapshot, taken at a much longer
time, shows a spanning cluster. At such large times the average kinetic energy is
much smaller than the bond breaking energy (T ≈ 0.06∆E), so that bonds almost
never break up. The cluster shown is already well beyond the critical time for
percolation with 99% of the particles in the cluster.

Fig. 5.14 shows the evolution of the cluster mass distribution Nm(t), which
is the number of clusters containing m particles at time t. One can clearly see
that after some time, t ≈ 2.5t0, which depends on volume fraction, the largest
cluster emerges from the rest of the distribution. For all volume fractions a gelation
transition was observed at the percolation time tc > t0. The critical behavior of
the gelation transition is still controversial. Since aggregation is a nonequilibrium
process, there is a priori no reason that it should be in the same universality class
as the corresponding equilibrium percolation transition. Yet there is some evidence
in favor of this conjecture. Gimel et al. [1995] observe a cross-over from self-similar
growth at small times and volume fractions – called the flocculation regime – to
the percolation regime around tc. In the latter they observe critical exponents7 as
in standard percolation theory. Kolb & Herrmann [1985] on the other hand obtain
values for the fractal dimension of the percolating cluster, distinct from percolation

7like fractal dimension, or scaling of the mean cluster mass with the distance from the critical

concentration
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theory as well as from flocculation theory. Both studies refer to diffusion limited
cluster-cluster aggregation.
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Figure 5.14: Histogram of the cluster mass distribution dependent on time, for vol-
ume fraction φ = 3.9% and N = 262144. The number of clusters at the respective
time and size is color coded on a logarithmic scale so that the single largest cluster
is visible. At t ≈ 2.5t0 one can see the large cluster emerging, clearly distinguishable
from the rest of the distribution.

Here we do not analyze the gelation transition in detail, however, work along
these lines is in progress. Instead we investigate two regimes in detail in the follow-
ing:

a) The self-similar growth process, or flocculation regime, which is present
for small times and volume fractions.

b) The properties of the final cluster which emerges, when (almost) all par-
ticles have aggregated to form one large cluster.

5.4.1 Self-Similar Growth

5.4.1.1 Fractal Dimension of the Aggregates

A central quantity of aggregation models is the fractal dimension of the aggregates.
It is usually determined from the radius of gyration as a function of cluster mass.
We consider a cluster of m particles with positions (r1, ..., rm) and define its radius
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of gyration by [see e.g. Stanley & Ostrowsky, 1986]

r2g(m) =
1
m

m∑

i=1

(ri − r̄)2 with r̄ =
1
m

m∑

i=1

ri . (5.33)

If the clusters are fractal we expect a scaling relation for large m of the form

rg ∼ m1/Df , (5.34)

which yields the fractal dimensionDf. This method is commonly used in aggregation
models, where particles move diffusively, ballistically, or are interacting and stick to
the aggregate once they touch it [Jullien & Kolb, 1984; Meakin, 1991; Westbrook
et al., 2004; Alves & Ferreira, 2006].

Fig. 5.15 shows the radius of gyration for a system of 262144 particles at volume
fraction φ = 1.95%. Several snapshots of the ensemble of growing clusters have been
taken at times t0 < t < tc with the percolation time tc, when a spanning cluster is
first observed. The data scale well according to Eq. (5.34), some scatter is observed
for the largest masses, corresponding to times close to the percolation transition.
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Figure 5.15: Radius of gyration as a function of cluster size for a system of 262144
particles at volume fraction φ = 1.95%; different colors/shades correspond to sim-
ulation times between t0 (yellow) and 4t0 < tc (black)); The slope of the solid line
corresponds to Df = 2. Inset: fractal dimension as a function of time, extracted
from the slope of the curves in the main figure.

In contrast to aggregation models, where the clusters are static and do not break
up, we occasionally do observe the breaking of bonds. In addition there are internal
deformations of the clusters during growth, so that the fractal dimension could
depend on time. Therefore the relation between m and rg(m) is checked for many
instances of time and the resulting fractal dimension is shown as a function of time
in the inset of Fig. 5.15. As can be seen from the Figure, there is no systematic
dependence on time, and the fractal dimension is close to Df = 2.
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5.4.1.2 Cluster Mass Distribution

All information about the connectivity of the clusters is contained in the cluster
mass distribution Nm(t), the number of clusters of size m at time t. Fig. 5.16 shows
Nm(t) for a system with φ = 1.96% and N = 1048576. The time interval has been
chosen such that t0 < t < 2t0 < tc ≈ 4t0 (for this volume fraction). In this time
interval the mean cluster mass increases roughly by a factor of 30.
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Figure 5.16: The cluster mass distribution Nm(t). The different graphs represent
different times, which are increasing from top to bottom (left side of the graph).
The inset shows how the mean cluster mass increases during the investigated time
period, where the colors correspond to the times of the main plot.

It has been suggested [e.g. Meakin, 1991] that for aggregating systems the mass
distribution evolves towards a self-preserving scaling form, independent of the initial
distribution:

Nm(t) = m−θf
(
m/m̄(t)

)
, (5.35)

where the time dependence is only contained in the mean cluster mass

m̄(t) =
∑∞

m=1m
2Nm(t)∑∞

m=1mNm(t)
. (5.36)

This scaling form has been applied successfully to various aggregating systems [Vic-
sek & Family, 1984; Botet & Jullien, 1984; Jiang & Leyvraz, 1993, 1994; van Dongen
& Ernst, 1985; Meakin, 1991; Trizac & Hansen, 1995], involving fractal as well as
non-fractal objects. Mass conservation requires θ = 2 [Meakin, 1991].

In Fig. 5.17 the scaling function f(m/m̄) = Nm(t)m2 is plotted for the same
data sets as in Fig. 5.16. We expect scaling to hold only in the aggregation regime,
i.e. for times not too close to tc, where the system gels (see next Sec. 5.4.1.3); that
is why we restrict ourselves to times t0 < t < 2t0. Also the data points for m = 1
have been left out, i.e. clusters consisting of single particles. As can be seen from
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Fig. 5.17 the data scale very well. Deviations occur only for times close to the
percolation transition (not shown here), where they should be expected.
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Figure 5.17: Rescaled cluster mass distribution f(m/m̄) = Nm(t) · m2 from
Eq. (5.35) versus the normalized cluster mass m/m̄. The color coding as in Fig. 5.16
is used.

5.4.1.3 Number of Clusters and Mean Cluster Mass

Another characteristic of a realization of clusters is simply the total number of
clusters ncl(t) =

∑∞
m=1Nm(t), which decreases as aggregation proceeds. As long as

the system is in the scaling regime (i.e. relation (5.35) is fulfilled), the mean cluster
mass, m̄(t) and the number of clusters are simply related: m̄(t) ∼ n−1

cl . However,
as mentioned above, the scaling relation (5.35) only holds in the aggregation regime
and is expected to break down as the percolation transition is approached. At that
point, m̄ should diverge due to the formation of a spanning cluster. On the other
hand, there is still a large number of smaller clusters coexisting with the macroscopic
cluster, so that ncl/N remains finite at the percolation transition.

The aggregation of particles to larger objects has been investigated for various
ballistic aggregation models [Family & Vicsek, 1985; Carnevale et al., 1990; Jiang &
Leyvraz, 1994; Trizac & Krapivsky, 2003], where spherical particles of mass m = 1
and diameter d = d0 move ballistically, until two of them collide to form clusters
irreversibly. In a particularly simple model, one assumes that two colliding particles
form one larger spherical particle with conserved momentum and a mass m equal
to the sum of the two particles masses, so that m is always equal to the number of
initial particles contained in a given cluster. For spatial dimension D, the diameter
increases like d = m1/Dd0, assuming the particles to be compact spheres which con-
serve volume when merging. For this model, a mean field theory [Jiang & Leyvraz,
1994] and simple scaling arguments [Carnevale et al., 1990; Trizac & Krapivsky,
2003] yield the dependence of the expected average mass m̄ on time like m̄ ∼ tξ
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with an exponent ξ = 2D/(D + 2) (assuming t0 = 0).
Since the aggregating clusters in our system are not compact, but fractal objects

with fractal dimension Df, the assumption for the diameter d ∼ m1/D does not hold
and must be changed to d ∼ m1/Df . With this assumption, we follow the scaling
arguments of Trizac & Krapivsky [2003], and find the scaling relation between m̄

and t.
We assume that the number of clusters per volume, ncl, is reduced by one when-

ever two clusters collide:
dncl

dt
∼ −fcoll · ncl . (5.37)

The collision frequency [Brilliantov & Pöschel, 2004] is approximately given by
fcoll ∼ dD−1nclv with d ∝ rg the linear dimension of the cluster and v its typi-
cal velocity. The average momentum should scale as p ∼ m1/2 [Trizac & Krapivsky,
2003], and therefore

v = p/m ∼ m−1/2 ∼ n
1/2
cl . (5.38)

Plugging in all these scaling relations as well as m ∼ rDf
g , one obtains:

dncl

dt
∼ −n2

cl · v · dD−1 ∼ −n5/2−(D−1)/Df

cl , (5.39)

which is solved by
ncl ∼ (t− t∗)−2Df/(3Df−2D+2) , (5.40)

where the integration constant t∗ is the onset of cluster growth. In our context
t∗ ≈ t0.8 This implies the following growth law for the mean cluster mass in the
scaling regime:

m̄ ∼ (t− t∗)ξ with ξ =
2Df

3Df − 2D + 2
, (5.41)

which generalizes the result for compact objects, ξ = 2D/(D + 2) with D = Df to
fractal ones with D 6= Df.

Fig. 5.18 shows how the number of clusters decreases over time as larger and
larger aggregates form for t > t0. The inset of Fig. 5.18 investigates the scaling
behavior (5.40), with the origin of the time axis shifted to the transition point t∗.
One can see that the slope of ξ = 2, obtained from (5.41) for D = 3 and Df = 2 is
in good agreement with the simulation.

5.4.2 Properties of the Asymptotic Cluster

The largest cluster – well beyond the percolation transition for most volume frac-
tions – will be the main focus of this section. In particular we determine its fractal
dimensions and local structure. For the fractal dimension, there are various defini-
tions, which in general may yield different results and three of which are presented.
Particularly illuminative is the box counting algorithm: simple considerations make
a prediction about a cross-over length scale at which the cluster structure changes
from fractal to compact behavior, which is indeed observed in the simulation data.

8As one can see in the main plot of Fig. 5.18, the actual onset of cluster growth is not exactly

at t0, but a little bit earlier.
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Figure 5.18: Evolution of the mean cluster mass. Labeling and parameters as in
Fig. 5.3. For the inset, the origin of the time-axis has been shifted to the transition
point t∗ to investigate the scaling relation ncl ∼ (t−t∗)−ξ. The solid line has a slope
of −2.

5.4.2.1 Fractal Dimension from Radius of Gyration

One way to determine the fractal dimension is the radius of gyration, as was done
in Sec. 5.4.1.1 for aggregates. Here, however, we only have one large cluster and
have to find a way to obtain the function rg(m) as a function of cluster size m. This
is implemented in following way: Starting from a random particle of the cluster,
we mark all particles that can be reached through i or less neighbor-to-neighbor
steps (see Fig. 5.19). Thus, for every i, we get a partial cluster with m(i) particles
and radius of gyration rg(i), which yields the scaling relation rg ∼ m1/Df and the
fractal dimension Df. For good statistics, this procedure is repeated 100 times (each
with a different initial particle) and the obtained values of rg are averaged. Note
furthermore that the procedure takes care that no particle is marked a second time,
in order to make sure that one does not go through the cluster several times because
of the periodic boundary conditions.

Fig. 5.20 shows the results of this procedure for the radius of gyration rg as a
function of m for different densities. For high volume fractions we are well beyond
the percolation transition and hence expect Df = 3 on the largest length scales of
the cluster. This is clearly seen in Fig. 5.20, e.g. for φ = 15.6% and 103 < m < 105.
On smaller length scales, however, we find a fractal dimension Df ≈ 2. For smaller
volume fractions, the cross-over to Df = 3 happens at larger masses and hence the
fractal behavior extends to larger scales. In the following section we will see, why
there must be a cross-over from fractal to compact behavior and how the volume
fraction determines the cross-over point.
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Figure 5.19: Illustration of the procedure to obtain partial clusters. The initial par-
ticle is marked in pure green. The number of neighbor-to-neighbor steps i necessary
to reach another particle is indicated by the color shade of the particles: Larger
i corresponds to a gradual shift towards red. The outermost particles (fully red)
correspond to i = 36 steps.
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Figure 5.20: Radius of gyration dependent on the mass of the partial cluster at
simulation time t ≈ 27t0. The particle number is fixed N = 262144 and the volume
fractions are (from bottom to top) φ = 15.6%, 7.81%, 3.90%, 1.95%, 0.98%, 0.49%.
The lines along the data points are the respective fits. The outer solid lines have
slopes 1/2 (top) and 1/3 (bottom) corresponding to fractal dimensions of 2 and 3,
respectively.
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5.4.2.2 Fractal Dimension from Box Counting Algorithm

To further investigate the fractal dimension of the largest cluster at intermediate
length scales, we use the box counting algorithm [Grassberger, 1983; Hentschel &
Procaccia, 1983]. The system is divided into sub-boxes of edge length Lbox. Then
each box which contains or hits at least one particle is marked. In this way, we find
the number of boxes Nbox necessary to cover the whole cluster. This number should
scale with Lbox like

Nbox ∼ L−Df
box , (5.42)

with the Hausdorff dimension Df.
On length scales much smaller than the particle diameter, Lbox ¿ d, the system

obviously behaves three-dimensionally. In this regime, the number of filled boxes
Nbox is just the volume fraction φ times the total number of boxes Nbox,tot =
L3/L3

box, therefore:

Nbox =
φL3

L3
box

. (5.43)

Since our system is finite and contains a system-spanning cluster, the scaling
behavior on large length scales Lbox ≈ L should also be three dimensional. On this
length scale, almost all the boxes should be filled, so that

Nbox =
L3

L3
box

. (5.44)

In particular, the relation must include the point (Lbox, Nbox) = (L, 1), since a box
of the system size includes all particles and will certainly be marked.

Only in the regime between these two limiting cases is it possible to observe the
fractal dimension with the box-counting method. A schematic plot is given on the
left side of Fig. 5.21, where the number Nbox of boxes containing particles is plotted
against the edge length Lbox of a box. Comparing (5.43) and (5.44) shows that
the interesting range is proportional to |log φ |, which only depends on the volume
fraction, but not on the particular choice of the system size.

For numerical reasons, it is very tedious to observe the expected slope of −3 for
small Lbox, because of the vast amount of boxes to account for. Since this regime
is not relevant anyway, it has only been investigated exemplarily and is reached
for Lbox . 0.03d (see right side of Fig. 5.21). For all other runs we simplify the
algorithm and only use the centers of the particles, i.e. a box is only marked, if a
particle center is inside. With this definition the number of boxes needed to cover
the system for small box sizes Lbox . d is just the particle number N , resulting in
a horizontal line on the left side of the graph (dotted line in Fig. 5.21), instead of
the slope −3.

Fig. 5.22 (top) shows the outcome of the box-counting algorithm, at a time
t ≈ 27t0, where roughly all particles are inside the largest cluster. It yields the
relation between the box size Lbox and the number of boxes of that size, needed to
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Figure 5.21: Left: Schematic double logarithmic plot of the box size Lbox versus
the number of boxes Nbox of that size needed to cover the cluster. The negative
slope is the fractal dimension. We expect three scaling regions: For small and large
Lbox, the system should behave three dimensionally, and the region in between
yields the non-trivial fractal dimension. If only the particle centers are considered,
the algorithm simply counts the number of particles in the cluster for Lbox . d

resulting in a horizontal line (dotted line). Right: Exemplary application of the
box counting algorithm, considering the extent of the spheres. Only a small system
(N = 32768 particles and φ = 1.95%) was used and on small length scales, only
fractions of the system were investigated and the resulting data was rescaled: the
different colors of the data points correspond to cubic sections of the whole system
with edge length L/30, L/24, L/8, L/4, and L (whole system). The solid lines are
fits to the data points on the largest and smallest length scales. As proposed, their
vertical distance of 1.67 roughly equals | log10 φ | = 1.71.

cover the cluster. The slope of that curve is the negative fractal dimension. The
result for different system sizes, but with the same volume fraction are presented.
As proposed, for all system sizes, there is a cross-over point Lco, at which the slope
changes. On length scales between d and Lco, the fractal dimension is roughly 2
(the fits yield values between 1.92 and 2.03). Above Lco the fractal dimension has
a trivial value of about 3 (fit values between 2.95 and 3.00), which means that on
these large length scales all the boxes are filled and is therefore an indication that
the cluster is system-spanning.

In the lower half of Fig. 5.22 we see the number of boxes normalized by the
cluster mass. The data collapse well onto a single curve, obviously with the same
slopes. Here one can see very well that for systems with the same volume fraction,
the slopes as well as the cross-over point do not depend on the absolute system size.

Results of the box counting algorithm for different densities are presented in
Fig. 5.23 (top). Only densities for which a spanning cluster has developed are
included. The slopes of −2 and −3 in the two scaling regions are not affected by
the volume fraction φ, but the size of the non-trivial region (with Df ≈ 2) is seen
to increase significantly as the density decreases. Even for the lowest density, the
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Figure 5.22: Top: Nbox versus Lbox at time t ≈ 27t0 and volume fraction φ = 1.95%
for the box counting algorithm; particle number is varied from bottom to top,
according to N = 32768, 65536, 131072, 262144, 524288, 1048576. The straight
lines are fits to the data to the left and right of the cross-over point Lco ≈ 25d,
which is also a fitting parameter and shown as a star (?). Bottom: As top, but Nbox

normalized by cluster mass; the solid lines have slopes −2 (left) and −3 (right); the
vertical dashed line represents the particle size.

size of the scaling region is less than 2 decades, which makes it difficult to extract
precise values for the fractal dimension. For the three most dense systems, the
scaling region is less than one decade. As discussed earlier, this is an intrinsic
feature of the “high” density systems, which can not be resolved by taking larger
systems (N,L → ∞ with constant φ). As the bottom panel of Fig. 5.23 shows, we
can collapse all data on a single curve by rescaling Nbox with φ−2 and Lbox with φ
in agreement with the dependence of the cross-over length on |log φ |.
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Figure 5.23: Top: Result of the box counting algorithm, as in Fig. 5.22 at t ≈ 45t0;
the particle number is fixed N = 262144 and the volume fraction varies from left
to right according to φ = 15.6%, 7.81%, 3.90%, 1.95%, 0.98%, 0.49%; the lines along
the data points are the respective fits; the outer lines have slope −2 (upper line)
and −3 (lower line). Bottom: As top, but with rescaled axes.
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5.4.2.3 Pair Correlation Function and Correlation Dimension

A fundamental quantity for granular (or atomic) systems is the pair correlation
function g(r) which specifies the probability that the centers of two particles are
separated by a vector r [Hansen & McDonald, 1986]:

g(r) =
1
n

〈
1
N

∑

i 6=j

δ(ri − rj − r)

〉
. (5.45)

Since the interactions of the particles do not give rise to anisotropies, one typically
only considers the radial component, i.e. the radial distribution function (RDF)
g(r); specifically, it is the average of g(r) over all directions of r but with fixed |r| = r,
and describes how the particle density varies as a function of the distance from a
given particle. Due to the normalization with the particle density n, g(r) → 1 for
r À d, if there are no long range correlations. Furthermore, since hard spheres
cannot overlap, obviously g(r) = 0 for r < d.

In between these two limits, g(r) can give information about the structure of
the system. If e.g. there is short range order and close-by particles arrange in
small lattice structures, g(r) shows peaks at distances corresponding to a few next
neighbor steps of the respective lattice.

In Fig. 5.24 the radial distribution function is shown for a system with N ≈ 106

and φ = 1.96% at different times. For details on the computation of g(r), see
Appendix D.3. As a consistency check, we confirm that the simulation data for the
(equilibrated) start configuration (Fig. 5.24(a): t = 0) agrees with the well known
Percus-Yevick solution for hard spheres [Boon & Yip, 1991], an approximation for
g(r) that is presumably excellent for low volume fractions.

For t ≈ 3/fcoll, Fig. 5.24(b), each particle had on average three collisions, and
the temperature T ≈ 44∆E is still much higher than ∆E. However, one can already
see the effect of the attractive bonds, since g(r) has significantly increased beyond
1 between d and dc. This observation has also been made for similar systems with
hard core repulsion, but energy conserving square-well potential: For this system,
Dawson et al. [2000] also find a g(r) much larger than 1 for d < r < dc, with
discontinuous jumps at d and dc.

During the cooling regime, as long as T À ∆E, this graph remains qualitatively
the same, with an increasing area under the curve between d and dc. As the transi-
tion to the clustering regime is approached (Fig. 5.24(c), t ≈ t0 and T ≈ ∆E) and
larger stable clusters emerge, peaks arise in g(r) also for r > dc, corresponding to
second and further next neighbor distances in the clusters.
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(a) t = 0

(b) t ≈ 3/fcoll (c) t ≈ t0

(d) t ≈ tc (e) t = tmax

Figure 5.24: Radial distribution function g(r) for a system with N = 1 048 576
particles and volume fraction φ = 1.96%. In (a), the equilibrated start configuration
is shown and compared to the Percus-Yevick solution (blue) for g(r). In (b), t ≈
3/fcoll and the temperature T/∆E ≈ 44 À 1. In (c), data is shown for t ≈ t0, the
transition point between cooling and clustering regime, with T/∆E ≈ 1. In (d),
t ≈ tc, i.e. a percolating cluster has emerged for the first time. And in (e), the latest
simulated time is shown, in which the largest cluster contains 99.6% of all particles.
In (a)-(c), all particles are considered; in (d) and (e) data for all particles (green)
and for the percolating cluster only (blue) are superimposed, but they are virtually
identical in the shown region of small r. The vertical red lines in (b)-(e) show the
hard core distance d, the bond breaking distance dc, and the second nearest neighbor
distance dHCP of a hexagonal close packed structure. The dashed horizontal gray
line in all plots corresponds to g(r) = 1.
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In Fig. 5.24(d), g(r) is shown at the percolation time tc ≈ 4t0, at which a system-
spanning cluster has developed. Here one can see very well that the correlations
extend further than the next-neighbor distance. The first peak for r > dc appears at
the second nearest neighbor distance of the hexagonal closed packed lattice dHCP =
1
2

√
3 · d+dc

2 ; 9 the further peaks appear in accordance with other lattice distances.
For the green and blue curve, respectively, all particles and only particles of the
percolating cluster are considered; however, there seems to be no difference in the
shown “short range” structure (r ≤ 3d), as the two curves are almost identical.

Fig. 5.24(e) shows g(r) at the latest simulated time (t ≈ 40t0), again considering
all particles (green) and only the percolating cluster (blue), which now contains
99.6% of all particles. One can see that the area under the curve between d and dc

has marginally increased, but other than that there are no significant differences to
(d), suggesting that the characteristics of the local structure has not significantly
changed on the small length scales (dc < r ≤ 3d), even though the simulation time
has increased by a factor of 10 and extensive restructuring of the cluster has taken
place.

On length scales much larger than the particle diameter, the RDF can give in-
formation about the dimensionality of the respective structure. Let us, for example,
consider a planar object embedded in a three dimensional system, and have a look
at some point on this object. A volume element at distance r from this point is less
and less likely to contain a part of that object, as r is increased; this is because,
the surface of a sphere grows with its radius r like r2, but the intersection of that
sphere with the planar object only like r; hence g(r) should fall of like r

r2 = 1
r . In

this regard, one defines the so called correlation dimension (which we also denote
Df) [Grassberger, 1983; Rottereau et al., 2004] for fractal objects by

g(r) ∝ rDf−D for r À d . (5.46)

As we already noted before, for a structure with homogeneous density (i.e. Df = D),
we get g(r) → 1 in the limit of large r.

Fig. 5.25 shows the decay of g(r) in the large r regime for the final cluster of the
same system as above. Consistent with the fractal behavior with previous definitions
of the fractal dimension (Secs. 5.4.2.1 and 5.4.2.2), there appears to be a cross-over
at about r ≈ 20d from the fractal behavior on smaller length scales to a compact
behavior on larger length scales. Due to the oscillations of g(r) up to about r = 5d
and the large cross-over region, the regime with well-defined slope only covers half
a decade, which makes the precise identification of Df impossible. Nevertheless this
regime appears to be consistent with a fractal dimension of Df = 2 (blue line), the
result of the box-counting and the radius-of-gyration method.

Beyond the cross-over point, we expect the structure to be compact, which would
result in a horizontal progression of g(r). However, due to the finite system size, g(r)
is eventually cut off, hence the cross-over to a horizontal line cannot be observed
well. As we found in Sec. 5.4.2.2, the size of the fractal regime is proportional to

9 We assumed that the lattice constant is the mean between d and dc.
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Figure 5.25: Radial distribution function g(r) for the same system as in Fig. 5.24,
however, in the regime r À d. The blue line has a slope of −1 corresponding to a
correlation dimension Df = 2. The system size is L = 304d. The inset shows data
of the final cluster for a system with higher density φ = 7.8% and N = 2 097 152
particles.

|log φ | and hence should decrease as the density φ is increased. Thus, the inset of
Fig. 5.25 shows data for a denser system with φ = 7.8% and N ≈ 2 · 106, where the
cross-over to compact behavior can be observed well.
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5.4.2.4 Coordination Number

Given the definition of a neighborhood relation (two particles are neighbors if they
have built a bridge and their kinetic energy is not sufficient to break it), we can
extract the average number of neighbors of a particle, i.e. the average coordination
number. A good understanding of the development of the system can be obtained
from the evolution of the coordination numbers. This is shown for the thick film
model in Fig. 5.26. Here the clustering transition can be seen very well: Initially

10-2 0.1 1 10 102

time t�t0

1

10

102

103

104

105

#
of

pa
rt

ic
le

s
w

ith
co

or
d.

nu
m

be
r

z

12
11
10
9
8
7
6
5
4
3
2
1
0
z=

Figure 5.26: Time evolution of the coordination numbers, considering all particles.
The data points show the number of particles with coordination number z, where
different colors correspond to different z, as indicated by the legend on the right.
The system has N = 262144 particles, volume fraction φ = 1.95%, and bond
breaking distance dc = 1.07d.

mostly single particles are found, as the dominant coordination number is z = 0.
Only a small fraction appears as dimers (z = 1) and larger aggregates are negligible.
At the transition t = t0, larger coordination numbers z = 2, 3, 4, ... increase sharply,
one after another, indicating that larger aggregates are forming. After this sharp
increase at the transition point, a coordination number of about z ≈ 6 is most
prevailing. As time proceeds smaller coordination numbers slowly diminish, and
larger ones slowly continue to increase.

Let us now have a closer look at the nature of the asymptotic cluster: Fig. 5.27
(top) shows histograms for the coordination number in the percolating cluster for
the thick film model with two different bond-breaking distances. As one would
expect, these distributions are rather broad with coordination numbers between
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one and twelve10. The smaller bond-breaking distance (left) gives rise to a more
asymmetric distribution with more weight for smaller coordination numbers. The
bottom panel of Fig. 5.27 shows the typical histogram of coordination numbers for
the thin film model. As we can see, the dependence on dc is weaker for the thin film
model and the asymmetry for small dc is less pronounced.
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Figure 5.27: Top: Histogram of the coordination number of the asymptotic cluster
for two different bond breaking distances dc = 1.01d (left) and dc = 1.07d (right);
both plots show data from the thick film model with N = 262144 and φ = 1.95%.
Bottom: As top, but for the thin film model.

More comprehensible than the full histogram is the average coordination num-
ber of the largest cluster, whose time evolution is shown in Fig. 5.28 for different
bond-breaking distances dc. After a strong increase at the time t0, the average coor-
dination number continues to grow slowly. This slow increase is strongly suppressed
in the thin film model (right) as compared to the thick film model (left). Within
the thin film model the slow growth with time is further suppressed for decreasing
bond-breaking distance dc.

As one can see in Figs. 5.27, 5.28, the coordination number becomes smaller
for smaller dc. This is reasonable, because the particles can more easily collect
neighbors for higher dc. As dc → d the average coordination number of the thin
film model approaches 6, which is the isostatic value. This is demonstrated in

10Very rarely, a coordination number of z = 13 is observed for dc = 1.07d, however not in the

presented system.
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Figure 5.28: Time evolution of the average coordination number z̄ of particles in
the largest cluster (N = 262144 and φ = 1.95%); the critical break-off distances
are dc = 1.07d, 1.035d and 1.01d from top to bottom; thick film model (left) in
comparison to thin film model (right).

Fig. 5.29, where we plot the asymptotic coordination number as a function of dc.
Here the asymptotic value is taken, when T < 0.06∆E for the first time.
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Figure 5.29: Influence of the bond-breaking distance dc on the final value of the
average coordination number z̄ for the thin film model. φ = 0.24% and N = 10 648.

Naively one might expect that the increase of the coordination number with
larger dc is caused by a compactification and therefore accompanied by an increase
of the fractal dimension. However, as can be seen in Fig. 5.30, there is no significant
influence of dc on the development of the fractal dimension. Thus, we conclude
that this compactification is mostly occurring on the single particle length scale
and therefore increasing the average coordination number, but not influencing the
structure on larger length scales.11

11Note that there is also a very slight increase of the fractal dimension and therefore also a very

slow compactification on larger length scales. However these effects are much less pronounced than

the change of the coordination number.



5.4. AGGREGATION 121

1 2 5 10 20 50 100
t�t0

1.

1.5

2.

fr
ac

ta
ld

im
en

si
on

1 2 5 10 20 50 100
t�t0

Figure 5.30: Time evolution of the fractal dimension Df of the largest cluster. Sys-
tem and colors as in Fig. 5.28.
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5.4.2.5 Inertia Tensor and Spatial Extension

Throughout this section 5.4.2 we repeatedly observe a fractal dimension of Df ≈ 2
for the asymptotic cluster; this raises the question, whether or not the cluster largely
consists of planar topologies. To gain quantitative information about the shape of
an object, it is useful to compute its moment of inertia tensor [see e.g. Landau
& Lifshitz, 1976] and look at its eigenvalues, the principal moments of inertia
I1 ≤ I2 ≤ I3. The latter quantify the mass distribution perpendicular to the
respective principal axes e1, e2, e3, as they obey the equation:

I1 =
∫
%(r) (r22 + r23) dr , (5.47)

and equivalent equations for I2, I3. Here r =
∑3

ν=1 rνeν is the distance from the
center of mass in the coordinate system of the principal axes and %(r) the density
at that point.

The principal moments of inertia can easily be related to a more intuitively
comprehensible quantity, the spatial extensions ∆rν along the three principal axes:

∆r2ν :=
∫
%(r) r2ν dr∫
%(r) dr

for ν = 1, 2, 3 . (5.48)

While the denominator is simply the mass of the object, the numerator can be
expressed in terms of the principal moments; e.g. for ν = 1:

−I1 + I2 + I3
2

=
∫
%(r)

−(r22 + r23) + (r21 + r23) + (r21 + r22)
2

dr

=
∫
%(r) r21 dr . (5.49)

The reason for not calculating Eq. (5.48) directly, but using the detour via the prin-
cipal moments of inertia, is that a priori the principal axes are not known. Note
furthermore that from these spatial extensions one can trivially obtain the radius
of gyration r2g =

∑3
ν=1 ∆r2ν , as one can easily see in the definition (5.48). The

choice of the principal axes is always such that ∆r1≥∆r2≥∆r3. For spherical sym-
metric objects obviously ∆r1 =∆r2 =∆r3; for plate-like, or so-called oblate objects
∆r1≈∆r2À∆r3, and for rod-like, or prolate objects ∆r1À∆r2≈∆r3.

In order to obtain information about the structure on a wide range of length
scales, we analyze partial clusters deduced from the largest cluster, as done in
Sec. 5.4.2.1: starting from a random initial particle of the cluster, we define all
particles that can be reached by i or less neighbor-to-neighbor steps as partial clus-
ter N (i) (see Fig. 5.19). The spatial extensions ∆r1,2,3 of N (i) are calculated for
different values of i and the data are averaged over several initial particles.12 The
result is shown in Fig. 5.31. As one can see, the structures are clearly not spher-

12For simplicity only the particle centers are considered for the calculation of the inertia tensor.

As we can easily convince ourselves in Eq. (5.49), due to the Huygens-Steiner theorem, accounting

for the extension of the individual particles would just lead to a constant shift of ∆r2
1,2,3 → ∆r2

1,2,3+
1
2
Isphere with the moment of inertia of a single sphere Isphere = 1

10
d2.
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Figure 5.31: Spatial extension of partial clusters N (i) along the principal axes. The
blue curve shows the largest component ∆r1, the green curve the second largest ∆r2,
and the red curve the smallest ∆r3. The inset shows data for the same procedure,
for which, however, the particle positions are not obtained from the simulation, but
randomly placed into the system.

ically symmetric, as the spatial extensions in the principal directions are different
for all shown length scales. However, also the assumption that the cluster involves
planar structures cannot be supported, since that would imply ∆r1≈∆r2À∆r3 at
least on some intermediate length scales. Indeed, we observe the most general case
∆r1 6≈∆r2 6≈∆r3 throughout the investigated range.

5.5 Conclusions

We have analyzed a simple model of a wet granulate allowing for large scale event
driven simulations. A central feature of wet granulates is the existence of an energy
scale ∆E associated with the rupture of a capillary bridge between two grains. This
energy scale has important consequences not only for the phase diagram [Fingerle
et al., 2008] but also for the free cooling dynamics investigated in this paper. The
most important feature is a well defined transition at a time t0, when the kinetic
energy T of the particles becomes equal to ∆E.

For t < t0 the particles are energetic enough to supply the bond breaking energy
∆E, so that very few collisions result in bound pairs and most particles are unbound.
Cooling is very effective in this regime, but drastically different from a dry granulate.
Whereas in dry granulates the dissipated energy is proportional to the energy of the
colliding particles, in wet granulates the dissipated energy is ∆E, independent of
the energy of the colliding particles so that Ṫ ∝ √

T . Consequently Haff’s law does
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not hold and is replaced by T (t) = T (0)(1 − t/t0)2 for t < t0. The simulations are
in very good agreement with this cooling law for t < t0.

For t > t0, the kinetic energy of the particles is too small to provide the bond
breaking energy, so that larger and larger clusters form. We call this regime the
aggregation regime and analyze the properties of the aggregates. For not too long
times and sufficiently small volume fractions, we observe flocculation characterized
by nonoverlapping, weakly interacting clusters. The fractal dimension of the ag-
gregates is Df ≈ 2. The cluster mass distribution follows a simple scaling form,
Nm(t) ∝ m−2f

(
m/m̄(t)

)
, which has been applied successfully to different aggrega-

tion models before. The increase of the typical cluster size m̄(t) can be understood
by a simple scaling analysis: Assuming that clusters irreversibly stick together when
they hit upon each other and that their radius r grows with the number of particles
m like rDf ∝ m, yields a cluster growth m̄ ∝ t2Df/(3Df−2D+2). This scaling relation
shows good agreement with the simulation for fractal dimension Df = 2.

At larger times, a spanning cluster forms, and a gelation transition is observed
for all finite volume fractions. At the gelation transition a spanning cluster coexists
with many small ones, whereas at very long times almost all particles are connected
to one large cluster. On the largest length scales the final cluster is no longer a fractal
but compact, as one would expect for a spanning cluster in the percolating phase.
On smaller length scales, however, we still find fractal structures with Df ≈ 2. The
range where a nontrivial fractal dimension can be observed increases with decreasing
density as |log φ |.

Even on the longest time-scales, the temperature continues to decay. In this
regime the limiting process is the breaking of a bond. The probability for this process
becomes exponentially small Pbb ∝

√
∆E/T e−∆E/T as the temperature goes to

zero. Hence the cooling law for high temperatures is replaced by Ṫ ∝ e−∆E/T ,
yielding a slow (logarithmic) temperature decay, which is in very good agreement
with the data.

Several extensions of the presented work might be interesting. So far we have
completely neglected all inelasticities except for the bond rupture. One expects the
collisions at the hard core to be dissipative as they are in dry granular media. In the
simplest model these could be described by normal restitution. Furthermore, real
wet grains experience frictional forces, coupling translational and rotational motion
of the grains [Brilliantov et al., 2007]. However, the author is not aware of any such
studies for wet granulates at the present time. In the context of gelation it would
be interesting to see, if and how a finite shear modulus emerges in the system, as
the percolation transition is passed.



Appendix A

Properties of ⊥- and ‖-vectors

The properties of ⊥- and ‖-vectors discussed here apply to the calculations in chap-
ters 2 and 3. For any given replicated vector x̂ =

(
x(0), ...,x(n)

)T
, define:

x‖ :=
∑n

α=0 x(α)

√
n+1

(A.1)

and

x⊥ :=




x(0)

...
x(n)


− 1

n+1




∑n
α=0 x(α)

...∑n
α=0 x(α)


 = x̂− x‖ ⊗ ε̂√

n+1
(A.2)

with ε̂ = (1, ..., 1)T . Then these vectors have the following properties:

� The mean of all components of x⊥ is x(0)
⊥ + ...+ x(n)

⊥ = 0

� Therefore (x‖ ⊗ ε̂) · x⊥ = 0

� x̂ · ŷ = x‖ · y‖ + x⊥ · y⊥

When integrating over a function f(x̂) = f(x‖, x⊥), we might ask the the question
how to change integration variables

∫

V n

f(x̂)dx̂→
∫

V n

f(x‖, x⊥)dx‖dx⊥ , (A.3)

whereby

dx̂ = dx(0) · · ·dx(n) and

dx⊥ = dx(0)
⊥ · · ·dx(n)

⊥ δ(x(0)
⊥ + ...+ x(n)

⊥ )

= dx(1)
⊥ · · ·dx(n)

⊥ . (A.4)

We already noted that the mean component of x⊥ must be zero, therefore it is
sufficient to integrate over only n of the n+1 components, or use the δ-function to
satisfy this constraint. For the variable transformation (A.3), we now successively
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change the individual variables:

dx‖dx
(1)
⊥ dx(2)

⊥ · · · dx(n)
⊥

=
∣∣∣∣
∂x‖
∂x(0)

∣∣∣∣
x

(1),...,(n)
⊥

dx(0)dx(1)
⊥ dx(2)

⊥ · · ·dx(n)
⊥

=
∣∣∣∣
∂x‖
∂x(0)

∣∣∣∣
x

(1),...,(n)
⊥

∣∣∣∣∣
∂x(1)

⊥
∂x(1)

∣∣∣∣∣
x(0),x

(2),...,(n)
⊥

dx(0)dx(1)dx(2)
⊥ · · ·dx(n)

⊥

...

=
∣∣∣∣
∂x‖
∂x(0)

∣∣∣∣
x

(1),...,(n)
⊥

∣∣∣∣∣
∂x(1)

⊥
∂x(1)

∣∣∣∣∣
x(0),x

(2),...,(n)
⊥

· · ·
∣∣∣∣∣
∂x(n)

⊥
∂x(n)

∣∣∣∣∣
x(0),...,(n−1)

dx(0)dx(1)dx(2) · · ·dx(n)

(A.5)

In each transformation the determinant of the Jacobian matrix for (e.g. |∂x
(n)
⊥

∂x(n) |) has
to be evaluated keeping the variables constant, which are currently not transformed
(denoted by | · |x(0),...,(n−1)). With the definition (A.1) and (A.2) one can easily
confirm that ∣∣∣∣

∂x‖
∂x(0)

∣∣∣∣
x

(1),...,(n)
⊥

= (n+1)D/2 , (A.6)

and for 1 ≤ j ≤ n:
∣∣∣∣∣
∂x(j)

⊥
∂x(j)

∣∣∣∣∣
x(0),...,(j−1),x

(j+1),...,(n)
⊥

=
(

j

j + 1

)D

. (A.7)

Therefore we get:

∣∣∣∣
∂x‖
∂x(0)

∣∣∣∣
x

(1),...,(n)
⊥

∣∣∣∣∣
∂x(1)

⊥
∂x(1)

∣∣∣∣∣
x(0),x

(2),...,(n)
⊥

· · ·
∣∣∣∣∣
∂x(n)

⊥
∂x(n)

∣∣∣∣∣
x(0),...,(n−1)

=

= (n+1)D/2

(
1
2

)D (
2
3

)D

· · ·
(

n

n+1

)D

= (n+1)D/2

(
1

n+1

)D

= (n+1)−D/2 (A.8)

Hence the transformation can be written as:
∫

V n

f(x̂)dx̂ = (n+1)D/2

∫

V n

f(x‖, x⊥)dx‖dx⊥ , (A.9)
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B.1 Calculation of the Replica Free Energy

B.1.1 Emergence of the Replica Free Energy

Here we plug Eq. (2.12) into Eq. (2.11) and define µ̃2 := µ2

2Nφ to get:

[Zn
C ] =

1
Z1

∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

(µ̃2)M

M !
(B.1)

×
∫ (∏N

j=1 Dr̂j
)

exp

(
− 1

2a2

M∑

e=1

(r̂ie − r̂je)
2 −H(n+1)

ev

)

A part of this expression can be simplified:

∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

(µ̃2)M

M !
exp

(
− 1

2a2

M∑

e=1

(r̂ie − r̂je)
2

)

=
∞∑

M=0

(µ̃2)M

M !

N∑

i1,...,iM ,
j1,...,jM=1

M∏

e=1

exp
(
− 1

2a2
(r̂ie − r̂je)

2

)

=
∞∑

M=0

(µ̃2)M

M !




N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)


M

= exp


µ̃2

N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)
 (B.2)

Hence Eq. (B.1) becomes:

[Zn] =
1
Z1

∫ (∏N
j=1 Dr̂j

)
exp


µ̃2

N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)
−H(n+1)

ev




=:
Zn+1

Z1
(B.3)

where

Zn+1 =
∫ (∏N

j=1 Dr̂j
)

exp
(−Nf̃n+1{r̂j}

)
(B.4a)

and f̃n+1{r̂j} = − µ̃
2

N

N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)
+
H

(n+1)
ev

N
(B.4b)
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B.1.2 Introduction of the Replicated Density Field

In terms of the replicated density field O(x̂) = 1
N

∑N
j=1 δ(x̂− r̂j), Eq. (2.16), we can

rewrite the cross-linking term of Eq. (2.14c)/(B.4b):

N∑

i,j=1

exp
(
−(r̂i − r̂j)2

2a2

)

=
N∑

i,j=1

∫
dx̂ dŷ δ(x̂− r̂i)δ(ŷ − r̂j) exp

(
−(x̂− ŷ)2

2a2

)

= N2

∫
dx̂dŷ O(x̂)O(ŷ) exp

(
−(x̂− ŷ)2

2a2

)
(B.5)

The Fourier transform of the Gaussian is
∫

dx̂ exp(−iq̂x̂) exp
(
− x̂2

2a2

)
= (2πa2)D(n+1)/2 exp

(
− q̂

2a2

2

)
, (B.6)

and thus we can use Parseval’s identity to transform the whole term (B.5) into
Fourier space:

N2

∫
dx̂dŷ O(x̂)O(ŷ) exp

(
−(x̂− ŷ)2

2a2

)

= N2 (2πa2)D(n+1)/2

V n+1

∑

q̂

O(q̂)O(−q̂) exp
(
− q̂

2a2

2

)

= N2φn+1
∑

q̂

|O(q̂)|2∆(q̂) , (B.7)

with

∆(q̂) := exp
(
− q̂

2a2

2

)
(B.8)

Analogously we can rewrite the excluded volume Hamiltonian in terms of the repli-
cated density field:

H(n+1)
ev =

λ

2

n∑

α=0

N∑

i,j=1

U(r(α)
i − r(α)

j )

=
λ

2

n∑

α=0

N∑

i,j=1

∫
dx dy δ(x− r(α)

i )δ(y − r(α)
j )U(x− y)

=
λN2

2

n∑

α=0

∫
dx dy O(α)(x)O(α)(y)U(x− y)

=
λN2

2V

n∑

α=0

∑
q

|O(α)(q)|2 U(q) (B.9)
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Now, we can plug Eqs. (B.7) and (B.9) back into Eq. (2.14c) and get:

f̃n+1{r̂j} = −φnµ
2

2

∑

q̂

|O(q̂)|2∆(q̂) +
λn0

2

n∑

α=0

∑
q

|O(α)(q)|2 U(q) , (B.10)

with the mean particle density n0 = N/V .
The sums in Eq. (B.10) include q̂ = 0̂ and q = 0. Those terms are mere

constants, since O(0̂) = O(α)(0) = 1. To make that clearer in the main calculation,
it is useful to exclude those terms from the sums and rewrite Eq. (B.10) as

f̃n+1{r̂j} =

=:f0︷ ︸︸ ︷
− φnµ

2

2
+ (n+1)

λn0

2

− φnµ
2

2

∑

q̂ 6=0̂

|O(q̂)|2∆(q̂) +
n0λ

2

n∑

α=0

∑

q6=0

|O(α)(q)|2 U(q) (B.11)

B.2 Hubbard-Stratonovich Transformation

B.2.1 Applying the Hubbard-Stratonovich Transformation

The Hubbard-Stratonovich transformation is used to linearize a quadratic term
in an exponential, whereby one has to put up with the integration over a new
variable. In its basic form, the Hubbard-Stratonovich transformation is nothing
more than a complex Gaussian integral:

exp
(
c|w|2) =

c

π

∫

C
dz exp

(−c|z|2 + 2cRe(zw∗)
)
, (B.12a)

exp
(−c|w|2) =

c

π

∫

C
dz exp

(−c|z|2 + 2icRe(zw∗)
)
. (B.12b)

Here, c > 0 and real, and w∗ is the complex conjugate of w. Furthermore dz =
d(Re z) d(Im z), i.e. one has to integrate twice.

Now we want to apply this relation to Eq. (2.24a), with w = O(q̂) successively
for all q̂. Looking at the definition of the density O(q̂), Eq. (2.17a), we see that
it fulfills the relation O(−q̂) = O∗(q̂), and hence O(q̂) and O(−q̂) are not indepen-
dent variables. In particular |O(q̂)|2 = |O(−q̂)|2. That means, we automatically
transform the |O(q̂)|2-term along with the corresponding |O(−q̂)|2-term.

To account for that particularity, it is useful to restrict the sums of Eq. (2.24a) to
a half-space with q̂·ê > 0 with ê = (e, ..., e) for arbitrary e 6= 0. Thereby we combine
the terms for q̂ and −q̂ in the sum and furthermore use ∆(q̂) + ∆(−q̂) = 2∆(q̂) and
λ̃(q̂) + λ̃(−q̂) = 2λ̃(q̂) (this is true, because all interactions are symmetric). Thus



B.2. HUBBARD-STRATONOVICH TRANSFORMATION 131

we can write the replica partition function (2.14c), with the free energy (2.24a), as:

Zn+1

exp(−Nf0)
(B.13)

=
∫ (∏N

j=1 Dr̂j
)

exp

(
Nφnµ2

∑

q̂∈HRS
q̂·ê>0

|O(q̂)|2∆(q̂)−N
∑

q̂∈1RS
q̂·ê>0

|O(q̂)|2 λ̃(q̂)

)
.

Now we apply the Hubbard-Stratonovich transformation (B.12) with w = O(q̂).
For any q̂ ∈ HRS, q̂ · ê > 0 we use (B.12a) and set c = Nφnµ2∆(q̂):

exp
(
Nφnµ2|O(q̂)|2∆(q̂)

)
(B.14a)

=
∫
Nφnµ2∆(q̂) dΩ(q̂)

π
exp

(
−Nφnµ2∆(q̂)|Ω(q̂)|2 + 2Nφnµ2∆(q̂)Re

(
Ω(q̂)O(−q̂))

)

and for q̂ ∈ 1RS, q̂ · ê > 0 , we use (B.12b) with c = Nλ̃(q̂):

exp
(
−N |O(q̂)|2 λ̃(q̂)

)
(B.14b)

=
∫
Nλ̃(q̂) dΩ(q̂)

π
exp

(
−N |Ω(q̂)|2 λ̃(q̂) + 2iNλ̃(q̂)Re

(
Ω(q̂)O(−q̂))

)
,

With those two relations, Eq. (B.13) becomes:

Zn+1

exp(−Nf0)
=

∫
DΩexp

(
−Nφnµ2

∑

q̂∈HRS
q̂·ê>0

|Ω(q̂)|2∆(q̂)−N
∑

q̂∈1RS
q̂·ê>0

|Ω(q̂)|2 λ̃(q̂)

)

×
∫ (∏N

j=1 Dr̂j
)

exp

(
2Nφnµ2

∑

q̂∈HRS
q̂·ê>0

∆(q̂) Re
(
Ω(q̂)O(−q̂))

− 2iN
∑

q̂∈1RS
q̂·ê>0

λ̃(q̂)Re
(
Ω(q̂)O(−q̂))

)
,

(B.15)

where we introduced the measure

DΩ =
∏

q̂∈1RS
q̂·ê>0

Nλ̃(q̂) dΩ(q̂)
π

·
∏

q̂∈HRS
q̂·ê>0

Nφnµ2∆(q̂) dΩ(q̂)
π

. (B.16)

Now we abolish the constraint q̂ · ê > 0 in the sums. To this end, we define the field
Ω(q̂) also for q̂ · ê < 0 by

Ω(−q̂) = Ω∗(q̂) . (B.17)
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We also plug in the definition of O(q̂), Eq. (2.17a), and get:

Zn+1

exp(−Nf0)
=

∫
DΩexp

(
−N φnµ2

2

∑

q̂∈HRS

|Ω(q̂)|2∆(q̂)− N

2

∑

q̂∈1RS

|Ω(q̂)|2 λ̃(q̂)

)

×
∫ (

N∏
j=1

Dr̂j

)
exp

(
φnµ2

N∑

j=1

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂j + i
N∑

j=1

∑

q̂∈1RS

λ̃(q̂)Ω(q̂)e−iq̂r̂j

)

(B.18)

At this point, we can see that the Hubbard-Stratonovich transformation pays off:
Now, the density

∑N
j=1 e−iq̂r̂j appears linearly in the exponential and we can rewrite

the difficult integral
∫ (∏N

j=1 Dr̂j
)

in the last line of Eq. (B.18) in the following way:

Zn+1

exp(−Nf0)
=

∫
DΩ exp

(
−N φnµ2

2

∑

q̂∈HRS

∆(q̂)|Ω(q̂)|2 − N

2

∑

q̂∈1RS

λ̃(q̂)|Ω(q̂)|2
)

×



∫
Dr̂ exp

(
φnµ2

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂ + i
∑

q̂∈1RS

λ̃(q̂)Ω(q̂)e−iq̂r̂

)

︸ ︷︷ ︸
=: z




N

.

(B.19)

And this form can be written in a very descriptive way as:

Zn+1 = exp
(−Nf0

) ∫
DΩexp

(−Nfn+1{Ω}
)

(B.20a)

with the replica free energy

fn+1{Ω} =
φnµ2

2

∑

q̂∈HRS

∆(q̂)|Ω(q̂)|2 +
1
2

∑

q̂∈1RS

λ̃(q̂)|Ω(q̂)|2 − 1
½½N

ln z½N , (B.20b)

and an effective one-particle partition function

z =
∫

Dr̂ exp

(
φnµ2

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂ + i
∑

q̂∈1RS

λ̃(q̂)Ω(q̂)e−iq̂r̂

)
. (B.20c)

B.2.2 Meaning of the Order Parameter Ω(q̂)

In the basic form of the Hubbard-Stratonovich transformation with plus sign,
Eq. (B.12a), one can calculate how the two variables w and z are connected. To see
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this, we have a look at the expectation value:

〈|w − z|2〉
+

:=

∫
dz |w − z|2 exp

(−c|z|2 + 2cRe(zw∗)
)

∫
dz exp

(−c|z|2 + 2cRe(zw∗)
)

=

∫
dz |w − z|2 exp

(−c|z|2 + 2cRe(zw∗)
)

π

c
exp

(
c|w|2)

=
c

π

∫
dz |w − z|2 exp

(−c|w − z|2) (B.21)

where we used |w − z|2 = |z|2 + |w|2 − 2Re(zw∗). Then:

〈|w − z|2〉
+

=
c

π

(
− ∂

∂c

) ∫
dz exp

(−c|w − z|2) = − c
π

∂

∂c

π

c

=
1
c

(B.22)

Using this relation for the transformation (B.14a), we get with c ∝ N :
〈|O(q̂)− Ω(q̂)|2〉

Ω(q̂)
∝ 1
N

for all q̂ ∈ HRS , (B.23)

for an arbitrary particle configuration {r̂j}. The angled brackets 〈 · 〉Ω(q̂) mean av-
eraging over all Ω(q̂) with the statistical weight as in Eq. (B.14a). If we additionally
average Eq. (B.23) over all particle configurations {r̂j}, in analogy to the step from
Eq. (B.14) to Eq. (B.15), we immediately get:

〈|O(q̂)− Ω(q̂)|2〉
fn+1

∝ 1
N

for all q̂ ∈ HRS , (B.24)

where 〈 · 〉fn+1 is now averaging with respect to the replica free energy fn+1{Ω} (be-
fore reducing the integral

∫
dr̂1 · · · dr̂N to an integral over one particle). This result

is very convenient: It means that the difference between O(q̂) and Ω(q̂) vanishes in
the thermodynamic limit and hence, both can studied equivalently.

For q̂ ∈ 1RS we used the Hubbard-Stratonovich transformation with minus sign,
Eq. (B.12b). For that case one can show an analogous relation:

〈|iw − z|2〉− :=

∫
dz |iw − z|2 exp

(−c|z|2 + 2icRe(zw∗)
)

∫
dz exp

(−c|z|2 + 2icRe(zw∗)
) =

1
c
. (B.25)

We apply this relation to the transformation (B.14b) and get:

〈|iO(q̂)− Ω(q̂)|2〉
fn+1

∝ 1
N

for all q̂ ∈ 1RS , (B.26)

which means that in the 1RS, Ω(q̂) and iO(q̂) are the same in the thermodynamic
limit.
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B.3 Expansion of the replica free energy to 3rd Order

in Ω

Here, we want to expand the replica free energy, Eq. (2.28), to the lowest necessary
order, which is O(Ω3). As one can easily see, the expansion of z, Eq. (2.28b), yields

z =
∫

Dr̂

(
1 + φnµ2

∑

q̂∈HRS

∆(q̂)Ω(q̂)e−iq̂r̂

+
1
2!
φ2nµ4

∑

q̂1,q̂2∈HRS

∆(q̂1)∆(q̂2)Ω(q̂1)Ω(q̂2)e−i(q̂1+q̂2)r̂

+
1
3!
φ3nµ6

∑

q̂1,q̂2,q̂3∈HRS

∆(q̂1)∆(q̂2)∆(q̂3)Ω(q̂1)Ω(q̂2)Ω(q̂3)e−i(q̂1+q̂2+q̂3)r̂

)

= 1 +
φ2nµ4

2!

∑

q̂1,q̂2∈HRS

∆(q̂1)∆(q̂2)Ω(q̂1)Ω(q̂2)δq̂1+q̂2,0̂

+
φ3nµ6

3!

∑

q̂1,q̂2,q̂3∈HRS

∆(q̂1)∆(q̂2)∆(q̂3)Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4) ,

(B.27)

and with the expansion ∆(q̂) = exp(−a2q̂2/2) = 1− a2q̂2/2 +O(q̂4), we get:

ln z =
φ2nµ4

2

∑

q̂∈HRS

(
1− 2a2q̂2

2

)
Ω(q̂)Ω(−q̂)

+
φ3nµ6

6

∑

q̂1,q̂2,q̂3∈HRS

Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4,Ω3q̂2,Ω2q̂4) . (B.28)

With Eq. (2.28) the complete replica free energy becomes:

fn+1{Ω} =
φnµ2

2

∑

q̂∈HRS

(
1− a2q̂2

2

)
|Ω(q̂)|2 − φ2nµ4

2

∑

q̂∈HRS

(
1− a2q̂2

)
Ω(q̂)Ω(−q̂)

− φ3nµ6

6

∑

q̂1,q̂2,q̂3∈HRS

Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4,Ω3q̂2,Ω2q̂4)

(B.29)

and in the limit n→ 0:

fn+1{Ω} =
1
2

∑

q̂∈HRS

(
µ2 − µ4 +

(
µ4 − µ2

2

)
a2q̂2

)
|Ω(q̂)|2

− µ6
∑

q̂1,q̂2,q̂3∈HRS

Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4,Ω3q̂2,Ω2q̂4) , (B.30)
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or

fn+1{Ω} =
∑

q̂∈HRS

(
−Aε+

B

2
q̂2

)
|Ω(q̂)|2

− C
∑

q̂1,q̂2,q̂3∈HRS

Ω(q̂1)Ω(q̂2)Ω(q̂3)δq̂1+q̂2+q̂3,0̂ +O(Ω4,Ω3q̂2,Ω2q̂4)
(B.31)

with

ε = µ2 − 1, A =
µ2

2
, B =

(
µ4 − µ2

2

)
a2, C =

µ6

6
. (B.32)

A discussion of the universal free energy, Eq. (B.31), is found in Sec. 2.4.5.

B.4 Fluctuations around the Saddle-Point Solution

In Sec. 2.6.2, we derived an Ansatz for the order parameter, Eqs. (2.45):

Ω̄u(q̂) = (1−Q)δq̂,0̂ +Qω(q̂)
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)
(B.33)

Let us have a look at the integral over x‖ of the gel part (marked in blue). Without
deformations, u⊥(x‖) ≡ 0̂, it can be performed and yields a δ-function. For this
case, the Ansatz reproduces the saddle point solution:

Ω̄u≡0(q̂) = (1−Q)δq̂,0̂ +Qω(q̂) δq‖,0 = Ω̄sp(q̂) (B.34)

where Ω̄sp(q̂) is the Fourier representation of Eq. (2.33).
In the limit of small deformations u⊥ and long wavelengths, i.e. small q̂, we can

expand the exponential to the lowest order in q⊥u⊥:
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)

=
∫

Dx‖ exp
(
iq‖x‖

) (
1 + iq⊥u⊥(x‖)

)

= δq‖,0 + iq⊥u⊥(q‖) , (B.35)

with the Fourier transform u⊥(q‖) of u⊥(x‖). That means, we can write the Ansatz
(B.33) as:

Ω̄u(q̂) = Ω̄sp(q̂) + δΩu(q̂) (B.36a)

with δΩu(q̂) = O(q⊥u⊥) , (B.36b)

as one can see by comparing Eqs. (B.34) and (B.33), with (B.35) inserted.
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B.5 Replica Free Energy with Shear Deformations

In this section we will insert the Ansatz (2.45)

Ω̄u(q̂) = (1−Q)δq̂,0̂ +Qω(q̂)
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)
(B.37a)

with ω(q̂) =
∫ ∞

0
dξ2 P(ξ2) exp

(
− q̂

2ξ2

2

)
(B.37b)

into the general expression (2.28) for the replica free energy. We will only con-
sider small, long-wavelength deformations and keep u⊥ only to the lowest order,
(∂u⊥/∂x‖)2.

B.5.1 Preparing the Replica Free Energy for the Ansatz

The derived Ansatz for the order parameter (B.37) suggests to define a slightly
altered version of the order parameter

Ω′(q̂) := Ω(q̂)− (1−Q)δq̂,0̂ (B.38)

so that the Ansatz for this version of the order parameter,

Ω̄′u(q̂) = Q ω(q̂)
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)
, (B.39)

does not involve a δ-function and hence becomes easier to handle when summing
over q̂.

When inserting the Ansatz Ω̄u into the general replica free energy fn+1{Ω},
Eq. (2.28), we note that fn+1{Ω} only involves sums over the higher replica sector
(which do not include q̂ = 0̂), so we can just swap Ω̄u(q̂) with Ω̄′u(q̂):

fn+1{Ω̄u} =
φnµ2

2

∑

q̂∈HRS

∆(q̂)|Ω̄′u(q̂)|2 − ln z , (B.40a)

with z =
∫

Dr̂ exp

(
φnµ2

∑

q̂∈HRS

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

)
(B.40b)

To simplify further calculations, we include the 1RS in the sums. We do not need
correction terms, since volume conserving deformations keep a constant density and
yield Ω̄′u(q̂) = 0 for q̂ ∈ 1RS, as we show in Appendix B.7. Furthermore, we also
include q̂ = 0̂ in the sums and subtract the generated terms (involving Ω̄′u(0̂) = Q)
again. With that we can omit the unpleasant constraint q̂ ∈ HRS and sum over
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all q̂:

fn+1{Ω̄u} = −φ
nµ2

2
Q2 +

φnµ2

2

∑

q̂

∆(q̂)|Ω̄′u(q̂)|2 − ln z , (B.41a)

z = exp
(−φnµ2Q

) ∫
Dr̂ exp

(
φnµ2

∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

)
(B.41b)

B.5.2 Expansion of the one-particle partition function z

Now we expand the exponential in the integral of the one-particle partition function
z:

z

exp(−φnµ2Q)
=

∫
Dr̂ exp

(
φnµ2

∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

)

=
∫

Dr̂
∞∑

r=0

1
r!

{
φnµ2

∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

}r

=
∞∑

r=0

(φnµ2)r

r!

∫
Dr̂

{ ∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

}r

=
∞∑

r=0

(φnµ2)r

r!
Ar (B.42)

with

Ar :=
∫

V n+1

Dr̂

{ ∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂

}r

. (B.43)

which we now try to calculate.

B.5.3 Insertion of the Order Parameter in z

The term A0 is very easy:

A0 =
∫

V n+1

Dr̂
{
...

}0
= 1 (B.44)

For A1 we note that
∫

Dr̂ e−iq̂r̂ = δq̂,0̂ and thus:

A1 =
∫

Dr̂
∑

q̂

∆(q̂)Ω̄′u(q̂)e−iq̂r̂ = ∆(0̂)Ω̄′u(0̂) = Q (B.45)

Now, let us consider the “difficult” case r ≥ 2 and plug in the Ansatz (B.39):

Ar =
Qr

V r(n+1)Dr/2

∫
Dr̂

{∑

q̂

∫
dx‖

∫ ∞

0
dξ2P(ξ2)

exp
(
−a

2q̂2

2

)
exp

(
−ξ

2q̂2

2

)
exp

(
i
(
q‖x‖ + q⊥u⊥(x‖)

)− iq̂r̂
)}r

(B.46)
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Let us have a closer look at the sum
∑

q̂ in the first line: It runs over elements
q̂ = 2π

L · n̂ with n̂ ∈ ZD(n+1) and L = V 1/D being the linear dimension of the system.
In the thermodynamic limit L→∞ the discrete values of this sum move closer and
closer and the sum approaches a Riemann integral

∑

q̂

(...) −→
(
L

2π

)D(n+1) ∫
dq̂ (...) (B.47)

To simplify the notation we also define a D(n+1)-dimensional hatted function v̂(x‖)
such that

v‖(x‖) = x‖ and v⊥(x‖) = u⊥(x‖) (B.48)

so that
q‖x‖ + q⊥u⊥(x‖) = q̂ v̂(x‖) , (B.49)

and with that we get:

Ar =
Qr

V r(n+1)Dr/2

V r(n+1)

(2π)Dr(n+1)

∫
Dr̂

{∫
dq̂

∫
dx‖

∫ ∞

0
dξ2P(ξ2) exp

(
−(a2 + ξ2)q̂2

2

)
exp

(
iq̂v̂(x‖)− iq̂r̂

)}r

(B.50)

The integral over q̂ is a simple Gaussian integral, which we perform:

Ar

/(
QrV rn

(2π)Dr(n+1)(n+1)Dr/2

)
=

=
∫

Dr̂

{∫
dx‖

∫ ∞

0
dξ2P(ξ2)

(
2π

a2 + ξ2

)D(n+1)/2

exp

(
−(v̂(x‖)− r̂)2

2(a2 + ξ2)

)}r

(B.51)

Now we expand the r-th power:

Ar

/(
QrV rn

(2π)Dr(n+1)(n+1)Dr/2

)
=

=
∫ ∞

0
dξ21P(ξ21) · · ·dξ2rP(ξ2r )

∫

V
Dr̂

∫
dx‖1 · · ·dx‖r

r∏

γ=1

{(
2π

a2 + ξ2γ

)D(n+1)/2

exp

(
−(v̂(x‖γ)− r̂)2

2(a2 + ξ2γ)

)}
(B.52)

To simplify the notation we furthermore define
∫

ξ2
1 ,...,ξ2

r

:=
∫ ∞

0
dξ21P(ξ21) · · ·dξ2rP(ξ2r ) (B.53)

Cγ :=
1

a2 + ξ2γ
and C :=

r∑

γ=1

Cγ (B.54)
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With that, Eq. (B.52) becomes:

Ar

/(
QrV rn

(2π)Dr(n+1)(n+1)Dr/2

)
=

∫

ξ2
1 ,...,ξ2

r

(∏r

γ=1
(2πCγ)D(n+1)/2

)

×
∫

dx‖1 · · ·dx‖r
∫

Dr̂ exp

(
−

r∑

γ=1

Cγ

2
(
v̂(x‖γ)− r̂

)2

)
(B.55)

Now we try to perform the integral over r̂ and remember that Dr̂ = dr̂/V n+1:

∫
Dr̂ exp

(
−

r∑

γ=1

Cγ

2
(
v̂(x‖γ)− r̂

)2

)

=
∫

Dr̂ exp

(
−

r∑

γ=1

Cγ

2
(
v̂2(x‖γ)− 2r̂v̂(x‖γ) + r̂2

)
)

= exp

(
−

r∑

γ=1

Cγ

2
v̂2(x‖γ)

) ∫
Dr̂ exp

(
−C

2
r̂2 + r̂

r∑

γ=1

Cγ v̂(x‖γ)

)

= exp

(
−

r∑

γ=1

Cγ

2
v̂2(x‖γ)

)
1

V n+1

(
2π
C

)D(n+1)/2

exp


 1

2C

(
r∑

γ=1

Cγ v̂(x‖γ)

)2



=
1

V n+1

(
2π
C

)D(n+1)/2

exp


− 1

2C



C

r∑

γ=1

Cγ v̂
2(x‖γ)−

(
r∑

γ=1

Cγ v̂(x‖γ)

)2







(B.56)

Have a look at the term in the curly brackets { }:

C
r∑

γ=1

Cγ v̂
2(x‖γ)−

(
r∑

γ=1

Cγ v̂(x‖γ)

)2

=
r∑

γ,δ=1

CγCδ v̂
2(x‖γ)−

r∑

γ,δ=1

CγCδ v̂(x‖γ)v̂(x‖δ)

=
r∑

γ,δ=1

CγCδ v̂(x‖γ)
(
v̂(x‖γ)− v̂(x‖δ)

)

=
∑

γ<δ

CγCδ

(
v̂(x‖γ)− v̂(x‖δ)

)(
v̂(x‖γ)− v̂(x‖δ)

)

=
∑

γ<δ

CγCδ

(
v̂(x‖γ)− v̂(x‖δ)

)2

=
∑

γ<δ

CγCδ

((
u⊥(x‖γ)− u⊥(x‖δ)

)2 +
(
x‖γ − x‖δ

)2
)

(B.57)



140 APPENDIX B. CALCULATIONS FOR THE RLP MODEL

Hence Eq. (B.56) becomes:

∫
Dr̂ exp

(
−

r∑

γ=1

Cγ

2
(
v̂(x‖γ) + r̂

)2

)
=

1
V n+1

(
2π
C

)D(n+1)/2

× exp


− 1

2C





∑

γ<δ

CγCδ

((
u⊥(x‖γ)− u⊥(x‖δ)

)2 +
(
x‖γ − x‖δ

)2
)





 (B.58)

and we can plug that in Eq. (B.55) to get:

Ar

/(
QrV rn

(2π)Dr(n+1)(n+1)Dr/2

1
V n+1

)

=
∫

ξ2
1 ,...,ξ2

r

(∏r

γ=1
(2πCγ)D(n+1)/2

) (
2π
C

)D(n+1)/2

×
∫

dx‖1 · · ·dx‖r exp


− 1

2C

∑

γ<δ

CγCδ

(
x‖γ − x‖δ

)2




× exp


− 1

2C

∑

γ<δ

CγCδ

(
u⊥(x‖γ)− u⊥(x‖δ)

)2


 (B.59)

In the last line one can see, as one would expect, that strong deformations, meaning
a high

(
u⊥(x‖γ)−u⊥(x‖δ)

)2, will have a high energy cost; unless x‖γ and x‖δ are far
away from each other, then the contribution will be suppressed by the exponential
in the second last line and the magnitude of

(
u⊥(x‖γ)−u⊥(x‖δ)

)2 does not matter.
As already mentioned, we are only interested in the lowest order of the defor-

mation, O(∂2u2
⊥), and in this spirit we make an expansion in u⊥:

u⊥(x‖γ)− u⊥(x‖δ)

= u⊥(x‖γ)−

u⊥(x‖γ) +

D∑

τ=1

∂u⊥(x‖γ)

∂x
(τ)
‖γ

(x(τ)
‖δ − x

(τ)
‖γ )


 +O(∂2u⊥)

=
D∑

τ=1

∂u⊥(x‖γ)

∂x
(τ)
‖γ

(x(τ)
‖γ − x

(τ)
‖δ ) +O(∂2u⊥) (B.60)

where x(τ)
‖γ is the τ -th spatial component of x‖γ . We furthermore define u(α,ν)

⊥ (x‖γ)
as the ν-th spatial component in replica α of u⊥(x‖γ) and obtain:

(
u⊥(x‖γ)− u⊥(x‖δ)

)2

=
∑
α,ν

∑
τ,σ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(τ)
‖γ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(σ)
‖γ

(x(τ)
‖γ − x

(τ)
‖δ )(x(σ)

‖γ − x
(σ)
‖δ ) +O(∂4u2

⊥)

(B.61)
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and therefore:

exp


− 1

2C

∑

γ<δ

CγCδ

(
u⊥(x‖γ)− u⊥(x‖δ)

)2




= 1− 1
2C

∑

γ<δ

CγCδ

∑
α,ν

∑
τ,σ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(τ)
‖γ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(σ)
‖γ

(x(τ)
‖γ − x

(τ)
‖δ )(x(σ)

‖γ − x
(σ)
‖δ )

+O(∂4u2
⊥) . (B.62)

With the expanded u⊥ and omitting the O(∂4u2
⊥), Eq. (B.59) becomes:

Ar

/(
QrV (r−1)n−1

(2π)Dr(n+1)(n+1)Dr/2
(2π)Dr(n+1)/2+D(n+1)/2

)

=
∫

ξ2
1 ,...,ξ2

r

(∏r

γ=1
Cγ

)D(n+1)/2 1
CD(n+1)/2

×
∫

dx‖1 · · ·dx‖r exp


− 1

2C

∑

γ<δ

CγCδ

(
x‖γ − x‖δ

)2




×

1− 1

2C

∑

γ<δ

CγCδ

∑
α,ν

∑
τ,σ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(τ)
‖γ

∂u
(α,ν)
⊥ (x‖γ)

∂x
(σ)
‖γ

(x(τ)
‖γ − x

(τ)
‖δ )(x(σ)

‖γ − x
(σ)
‖δ )




(B.63)

When we look at the last two lines, we realize that the expression is symmetric with
respect to interchanging any two γ and δ. Therefore, after performing the integral∫

dx‖1 · · ·dx‖r, each summand of the sum
∑

γ<δ in the last line will have the same
result. Since there are r(r−1)/2 ways to choose 1 ≤ γ < δ ≤ r, we can replace the
sum by r(r−1)/2 and take γ = r, δ = 1:

Ar

/(
QrV (r−1)n−1

(2π)D(r−1)(n+1)/2(n+1)Dr/2

)
=

∫

ξ2
1 ,...,ξ2

r

(∏r
γ=1Cγ

C

)D(n+1)/2

×
∫

dx‖1 · · ·dx‖r exp


− 1

2C

∑

γ<δ

CγCδ

(
x‖γ − x‖δ

)2




×

1− r(r−1)

2
CrC1

2C

∑
α,ν

∑
τ,σ

∂u
(α,ν)
⊥ (x‖r)

∂x
(τ)
‖r

∂u
(α,ν)
⊥ (x‖r)

∂x
(σ)
‖r

(x(τ)
‖r − x

(τ)
‖1 )(x(σ)

‖r − x
(σ)
‖1 )




(B.64)

It is clear that we will not be able to perform the integral over x‖r, because we do

not know the actual form of u(α,ν)
⊥ (x‖r) at this point. However, for x‖1, ...,x‖(r−1) we

can try to perform the integral. Let us first make the substitution y‖γ = x‖γ − x‖r
for γ < r and make the simplifying definition

Uτσ(x‖r) :=
r(r−1)

2
CrC1

2C

∑
α,ν

∂u
(α,ν)
⊥ (x‖r)

∂x
(τ)
‖r

∂u
(α,ν)
⊥ (x‖r)

∂x
(σ)
‖r

. (B.65)
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Hence we get:

Ar

/(
QrV (r−1)n−1

(2π)D(r−1)(n+1)/2(n+1)Dr/2

)

=
∫

ξ2
1 ,...,ξ2

r

(∏r
γ=1Cγ

C

)D(n+1)/2 ∫
dx‖r Br(x‖r) (B.66a)

with

Br(x‖r) =
∫

dy‖1 · · ·y‖(r−1) exp


− 1

2C

( ∑

γ<δ<r

CγCδ

(
y‖γ − y‖δ

)2 +
∑
γ<r

CγCr y2
‖γ

)


×
(

1−
∑
τ,σ

Uτσ(x‖r) y
(τ)
‖1 y

(σ)
‖1

)
. (B.66b)

which we try to calculate now. Let us have a look at the sum
∑

τ,σ in the last line.
For τ 6= σ, integration over y‖1 yields zero due to point symmetry of the integrand.

To perform the integral over y‖1, ...,y‖(r−1), we can write the sums in the expo-
nential such that it takes the form of a well known Gaussian integral:

T =
∑

γ<δ<r

CγCδ

(
y‖γ − y‖δ

)2 +
∑
γ<r

CγCr y2
‖γ

=
∑

γ<δ<r

CγCδ y2
‖γ − 2

∑

γ<δ<r

CγCδ y‖γy‖δ +
∑

γ<δ<r

CγCδ y2
‖δ +

∑
γ<r

CγCr y2
‖γ

(B.67)

The first and third term can be combined to one sum over γ 6= δ. The second sum
can also be changed to a sum over γ 6= δ, eliminating the factor of 2:

T =
∑

γ 6=δ
γ,δ<r

CγCδ y2
‖γ −

∑

γ 6=δ
γ,δ<r

CγCδ y‖γy‖δ + Cr

∑
γ<r

Cγ y2
‖γ (B.68)

We can also include the term γ = δ in the first and second sum. Since they make
the same contribution in both sums, with opposite sign, they cancel out exactly.

T =
∑

γ,δ<r

CγCδ y2
‖γ −

∑

γ,δ<r

CγCδ y‖γy‖δ + Cr

∑
γ<r

Cγ y2
‖γ

= (C − Cr)
∑
γ<r

Cγ y2
‖γ −

∑

γ,δ<r

CγCδ y‖γy‖δ + Cr

∑
γ<r

Cγ y2
‖γ

= C
∑
γ<r

Cγ y2
‖γ −

∑

γ,δ<r

CγCδ y‖γy‖δ (B.69)
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Hence we can write Eq. (B.66b) as:

Br(x‖r) =
∫

dy‖1 · · ·y‖(r−1) exp


−

∑

γ,δ<r

Mγδ y‖γy‖δ




(
1−

D∑

τ=1

Uττ (x‖r) (y(τ)
‖1 )2

)

(B.70a)

with a Matrix Mγδ =
δγδCCγ − CγCδ

2C
= δγδ

Cγ

2
− CγCδ

2C
(B.70b)

To perform the integral, we introduce a D-dimensional vector b‖ = (b(1)
‖ , ..., b

(D)
‖ )T

coupling to y‖1 and rewrite that expression as:

Br(x‖r) = lim
b‖→0


1−

D∑

τ=1

Uττ (x‖r)

(
∂

∂b
(τ)
‖

)2



∫
dy‖1 · · ·y‖(r−1) exp


−

∑

γ,δ<r

Mγδ y‖γy‖δ + b‖y‖1


 (B.71)

Now, the Gaussian in the second line can easily be calculated:

∫
dy‖1 · · ·dy‖(r−1) exp


−

∑

γ,δ<r

Mγδ y‖γy‖δ + b‖y‖1




=
πD(r−1)/2

(detM)D/2
exp

(
1
4
b2
‖M

−1
11

)
, (B.72)

with the determinant detM and inverse M−1 of the matrix M (and M−1
11 being the

entry at position (1, 1) of M−1). With that, Eq. (B.71) becomes:

Br(x‖r) =
πD(r−1)/2

(detM)D/2
lim

b‖→0


1−

D∑

τ=1

Uττ (x‖r)

(
∂

∂b
(τ)
‖

)2

 exp

(
1
4
b2
‖M

−1
11

)

=
πD(r−1)/2

(detM)D/2
lim

b‖→0


1−

D∑

τ=1

Uττ (x‖r)
∂

∂b
(τ)
‖

2
4
b
(τ)
‖ M−1

11 exp
(

1
4
b2
‖M

−1
11

)


=
πD(r−1)/2

(detM)D/2

(
1− M−1

11

2

D∑

τ=1

Uττ (x‖r)

)
(B.73)

To calculate the determinant and inverse of M , we take advantage of its form
M = A + xyT (i.e. Mγδ = Aγδ + xγ yδ) with a “simple” matrix A, and use the
relations [Brookes, 2009]:

det(A+ xyT ) = det(A)(1 + yTA−1x) , (B.74a)

(A+ xyT )−1 = A−1 − A−1xyTA−1

1 + yTA−1x
. (B.74b)
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In our case, we choose:

Aγδ = δγδ
Cγ

2
, (B.75a)

xγ = −Cγ

2C
and yδ = Cδ , (B.75b)

with 1 ≤ γ, δ ≤ r − 1. Applying relation (B.74a), we easily find:

detM =
C1 · · ·Cr−1

2r−1


1 +

r−1∑

γ=1

−Cγ

2C
2
Cγ

Cγ




=
C1 · · ·Cr−1

2r−1

(
1− 1

C
(C − Cr)

)
=

1
2r−1C

r∏

γ=1

Cγ (B.76a)

And by applying (B.74b) one gets (after a similar calculation, which is left to the
eager reader(s)):

M−1
γδ =

2δγδ

Cγ
− 2
Cr

and hence M−1
11 =

2(C1 + Cr)
C1Cr

(B.76b)

Now we can plug these two results (B.76) into Eq. (B.73) and get the result for
Br(x‖r):

Br(x‖r) =
πD(r−1)/2

(detM)D/2

(
1− M−1

11

2

D∑

τ=1

Uττ (x‖r)

)

= πD(r−1)/2

(∏r
γ=1Cγ

2r−1C

)−D/2 (
1− C1 + Cr

C1Cr

D∑

τ=1

Uττ (x‖r)

)
(B.77)

To get Ar, we can now plug this result for Br(x‖r) back into Eq. (B.66a):

Ar

/(
QrV (r−1)n−1

(2π)D(r−1)(n+1)/2(n+1)Dr/2
(2π)D(r−1)/2

)

=
∫

ξ2
1 ,...,ξ2

r

(∏r
γ=1Cγ

C

)D(n+1)/2 −D/2 ∫
dx‖r

(
1− C1 + Cr

C1Cr

D∑

τ=1

Uττ (x‖r)

)

(B.78)

To simplify the notation, we can change the integration variable x‖r to just x‖ and
insert the definition of Uττ (x‖), see Eq. (B.65):

Ar

/(
QrV (r−1)n−1

(2π)D(r−1)n/2(n+1)Dr/2

)
=

∫

ξ2
1 ,...,ξ2

r

(∏r
γ=1Cγ

C

)Dn/2

×
∫

dx‖


1− C1 + Cr

»»»C1Cr
· r(r−1)

»»»CrC1

4C

∑
τ

∑
α,ν

∂u
(α,ν)
⊥ (x‖)

∂x
(τ)
‖

∂u
(α,ν)
⊥ (x‖)

∂x
(τ)
‖




(B.79)
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After canceling C1Cr, we realize that we can arbitrarily swap C1 and Cr in the last
line with any other Cγ , because the rest of the expression is symmetric with respect
to Cγ . So we can even change C1 → (C1 + ... + Cr)/r = C/r and also Cr → C/r.
Doing that, we get:

Ar

/(
QrV (r−1)n−1

(2π)D(r−1)n/2(n+1)Dr/2

)
=

∫

ξ2
1 ,...,ξ2

r

(∏r
γ=1Cγ

C

)Dn/2

×
∫

dx‖


1− 2C

r
· r(r−1)

1
4C

∑
τ

∑
α,ν

∂u
(α,ν)
⊥ (x‖)

∂x
(τ)
‖

∂u
(α,ν)
⊥ (x‖)

∂x
(τ)
‖


 . (B.80)

Finally we plug in definitions (B.53) and (B.54) and end up with the result for Ar

(but keep in mind that it is exact only to lowest order in the displacement field u⊥
and its derivative):

Ar = Qr 1
(n+1)D(r−1)/2

(
V

(2π)D/2

)(r−1)n

×
∫ ∞

0
dξ21P(ξ21) · · ·dξ2rP(ξ2r )

(∏r
γ=1

1
a2+ξ2

γ∑r
γ=1

1
a2+ξ2

γ

)Dn/2

×

1− r−1

2

∫
Dx‖

∑
α

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2



(B.81)

with Dx‖ =
dx‖

V (n+1)D/2
. (B.82)

B.5.4 Insertion of the Order Parameter in fn+1{Ω}
In the previous section we calculated the one-particle partition function z, using
Ansatz (B.39) for the order parameter. To get the full replica free energy, we still
have to insert the Ansatz into the first part of Eq. (B.41a):

fn+1{Ω̄′u} = −φ
nµ2Q2

2
+
φnµ2

2

∑

q̂∈HRS∨{0̂}
∆(q̂)|Ω̄′u(q̂)|2

︸ ︷︷ ︸
=:S2

− ln z . (B.83)

For the cross-link term ∆(q̂) we note that

∆(q̂) = exp
(
− q̂

2a2

2

)
= exp

(
− q̂

2a2/2 + (−q̂)2a2/2
2

)
= ∆a2/2(q̂)∆a2/2(−q̂) .

(B.84)
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where the symbol ∆a2/2(q̂) is the same as the original ∆(q̂), only with cross-link
strength a2 → a2/2. Thus we can rewrite the sum

S2 =
∑

q̂∈HRS∨{0̂}
∆(q̂)|Ω̄′u(q̂)|2 =

∑

q̂∈HRS∨{0̂}
∆a2/2(q̂)∆a2/2(−q̂) Ω̄′u(q̂)Ω̄′u(−q̂)

=
∑

q̂1,q̂2∈
HRS∨{0̂}

δq̂1+q̂2,0̂∆a2/2(q̂1)∆a2/2(q̂2) Ω̄′u(q̂1) Ω̄′u(q̂2)

=
∫

Dr̂
∑

q̂1,q̂2∈
HRS∨{0̂}

e−i(q̂1+q̂2)r̂∆a2/2(q̂1)∆a2/2(q̂2) Ω̄′u(q̂1) Ω̄′u(q̂2)

=
∫

Dr̂





∑

q̂∈HRS∨{0̂}
∆a2/2(q̂) Ω̄′u(q̂) e−iq̂r̂





2

. (B.85)

Comparing that expression to Eq. (B.43), we note that S2 has the same form as A2

with a2 → a2/2. Therefore, using the result for A2, Eq. (B.81), we can immediately
write down the solution:

S2 =
Q2

(n+1)D/2

(
V

(2π)D/2

)n ∫ ∞

0
dξ21P(ξ21) dξ22P(ξ22)

( 1
a2/2+ξ2

1
· 1

a2/2+ξ2
2

1
a2/2+ξ2

1
+ 1

a2/2+ξ2
2

)Dn/2

×

1− 1

2

∫
Dx‖

∑
α

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

 .

(B.86)

B.5.5 Recomposing the Replica Free Energy

We now recompose the expanded replica free energy fn+1{Ω̄u} from the different
components we calculated throughout the section B.5: In terms of S2 and Ar, it is
given by Eqs. (B.83) and (B.42):

fn+1{Ω̄u} = −φ
nµ2Q2

2
+
φnµ2

2
S2 − ln z . (B.87a)

z = exp(−φnµ2Q)
∞∑

r=0

(φnµ2)r

r!
Ar (B.87b)

Since we want to take the limit n→ 0, as seen in Eq. (2.10), we only keep the various
parts up to linear order in n and omit higher orders. Therefore it is necessary to
keep in mind that the sum

∑n
α=0(∂u

(α,ν)
⊥ (x‖)/∂x

(τ)
‖ )2 is already of the order O(n),

see Eq. (2.51). We furthermore need:

(n+1)−D(r−1)/2 = 1− n
D(r − 1)

2
+O(n2) (B.88)

An = 1 + n lnA+O(n2) (B.89)
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With that, we get for r ≥ 2:
Ar

Qr
=

{
1− n

D(r − 1)
2

}

×
∫

ξ2
1 ,...,ξ2

r



1 + n ln




(
V

(2π)D/2

)r−1 (∏r
γ=1Cγ

C

)D/2







×


1− r−1

2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2


 +O(n2)

= 1− n
D(r − 1)

2
+ n

∫

ξ2
1 ,...,ξ2

r

ln




(
V

(2π)D/2

)r−1 (∏r
γ=1Cγ

C

)D/2



︸ ︷︷ ︸
=: Ξr,a2

− r−1
2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) (B.90)

With that expression (for r ≥ 2) and A0 = 1, A1 = Q, we can calculate z:
z

exp(−φnµ2Q)
=

= 1 + φnµ2Q+
∞∑

r=2

(φnµ2Q)r

r!
Ar

Qr

=
∞∑

r=0

(φnµ2Q)r

r!
+ n ·

∞∑

r=2

(φnµ2Q)r

r!

(
−D(r − 1)

2
+ Ξr,a2

)

−
∞∑

r=2

(φnµ2Q)r

r!
· r−1

2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) . (B.91)

To perform the sum over r, we need the relations:
∞∑

r=0

(φnµ2Q)r

r!
= exp(φnµ2Q) (B.92)

∞∑

r=2

(φnµ2Q)r

r!
(r − 1) = 1 +

∞∑

r=0

(φnµ2)r

r!
(r − 1)

Eq. (D.2)
= 1 + (φnµ2Q− 1) exp(φnµ2Q) (B.93)

and get:

z = 1 + n

(
−D

2

(
exp(−¡¡φ

nµ2Q) +¡¡φ
nµ2Q− 1

)
+ exp(−¡¡φ

nµ2Q)
∞∑

r=2

(½½φnµ2Q)r

r!
Ξr,a2

)

− exp(−½½φ
nµ2Q) +½½φ

nµ2Q− 1
2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) ,

(B.94)
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whereby the crossed-out terms are omitted, since they make contributions of at
least quadratic order in n. In terms of expansion in n, z has the simple form
z = 1 + n · const. + O(n2). Hence the logarithm can easily be taken and is ln z =
n · const. +O(n2) = z− 1 +O(n2)

ln z = n

(
−D

2

(
exp(−µ2Q) + µ2Q− 1

)
+ exp(−µ2Q)

∞∑

r=2

(µ2Q)r

r!
Ξr,a2

)

− exp(−µ2Q) + µ2Q− 1
2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) , (B.95)

Analogously, we perform the expansion of S2 up to linear order in n. Remembering
that S2 equals A2 with a2 → a2/2, we can use Eq. (B.90) to write down the result
immediately:

S2

Q2
= 1 + n

(
−D

2
+ Ξ2,a2/2

)

− 1
2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) (B.96)

Now, we are able to write down the result for the replica free energy, according to
Eq. (B.87a):

fn+1{Ω̄u} = − φnµ2Q2

2
+
φnµ2Q2

2

+ n½½φ
nµ2Q2

2

(
−D

2
+ Ξ2,a2/2

)
−½½φ

nµ2Q2

2
· 1
2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

− n

(
−D

2

(
exp(−µ2Q) + µ2Q− 1

)
+ exp(−µ2Q)

∞∑

r=2

(µ2Q)r

r!
Ξr,a2

)

+
exp(−µ2Q) + µ2Q− 1

2

∫
Dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) (B.97)

The fact the the two constant terms in the first line cancel out is no coincidence:
As already seen in Eq. (2.28), limn→0 fn+1{Ω} must be zero, because the sum over
the higher replica sector does not contain any elements, since the constraint that at
least two components are non-zero cannot be fulfilled, if there is only one component.
Thus, there cannot be a constant term and the first terms must be at least linear
in n.

The above result can be written in a very concise way as:

fn+1{Ω̄u} = f sp
n+1 +

1
N
· G

2

∫
dx‖

n∑

α=0

∑
τ,ν

(
∂u

(α,ν)
⊥ (x‖)

∂x
(τ)
‖

)2

+O(n2) , (B.98a)
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whereby the first term, f sp
n+1, is the saddle-point value of fn+1{Ω}:

f sp
n+1 = n

{
D

2

(
exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)

+
µ2Q2

2
Ξ2,a2/2 − exp(−µ2Q)

∞∑

r=2

(µ2Q)r

r!
Ξr,a2

}
,

(B.98b)

and the second term describes the cost of fluctuations (i.e. shear deformations)
around the saddle point, with the shear modulus

G =
(

exp(−µ2Q) + µ2Q− 1− µ2Q2

2

)
n0 . (B.98c)

B.5.6 Analysis of the quantity Ξr,a2

In this section we have to look at the term Ξr,a2 that was defined in Eq. (B.90) and
still appears in the saddle point value of the replica free energy Eq. (B.98b).

Ξr,a2 :=
∫

ξ2
1 ,...,ξ2

r

ln




(
V

(2π)D/2

)r−1
(∏r

γ=1(a
2 + ξ2γ)−1

∑r
γ=1(a2 + ξ2γ)−1

)D/2



=
∫

ξ2
1 ,...,ξ2

r

ln




(
N

(2π)D/2

)r−1




∏r
γ=1

n
2/D
0

a2+ξ2
γ

∑r
γ=1

n
2/D
0

a2+ξ2
γ




D/2



= (r − 1) lnN − D(r − 1)
2

ln(2π)

+
D

2

r∑

γ=1

∫

ξ2
1 ,...,ξ2

r

ln

(
n

2/D
0

a2 + ξ2γ

)
− D

2

∫

ξ2
1 ,...,ξ2

r

ln




r∑

γ=1

n
2/D
0

a2 + ξ2γ




= (r − 1) lnN − D(r − 1)
2

ln(2π)

+
Dr

2

∫

ξ2

ln

(
n

2/D
0

a2 + ξ2

)
− D

2

∫

ξ2
1 ,...,ξ2

r

ln




r∑

γ=1

n
2/D
0

a2 + ξ2γ


 (B.99)

Having the thermodynamic limit in mind, we assume that all internal length scales
are small compared to the system size:

V 1/D À ξ, a ⇐⇒ N À n0ξ
D, n0a

D (B.100)

In this limit, only the first term of Ξr,a2 in Eq. (B.99) remains:

Ξr,a2 = (r − 1) lnN +O(N0) . (B.101)



150 APPENDIX B. CALCULATIONS FOR THE RLP MODEL

B.6 Auxiliary Calculations for the Results Section

B.6.1 Distribution of the Number of Cross-Links

Here we are interested in the distribution of the number M of cross-links in the
system, and in particular its mean. It is possible to calculate expectation values of
the form [M(M − 1) · · · (M − J + 1)] =: MJ using the Deam-Edwards distribution
Eq. (2.8) for the disorder average [ · ]. In doing so, we recall the simplifying definition
µ̃2 = µ2/

(
2n0a

D(2π)D/2
)
:

MJ = [M(M − 1) · · · (M − J + 1)] = (B.102)

=
1
Z1

∞∑

M=0

N∑

i1,...,iM ,
j1,...,jM=1

(µ̃2)M

M !
Z({ie, je}M

e=1) ·M(M − 1) · · · (M − J + 1)

The summands for M = 0, 1, ..., J−1 obviously yield zero and can be excluded from
the first sum. For M ≥ J , we can write:

M(M − 1) · · · (M − J + 1) =
M !

(M − J)!
, (B.103)

and therefore:

MJ =
1
Z1

∞∑

M=J

N∑

i1,...,iM ,
j1,...,jM=1

(µ̃2)M

©©M !
©©M !

(M − J)!
Z({ie, je}M

e=1) (B.104)

Now we start the sum at M = 0 again, whereby all occurrences of M shift to M+J :

MJ =
1
Z1

∞∑

M=0

N∑

i1,...,iM+J ,
j1,...,jM+J=1

(µ̃2)M+J

(M + J − J)!
Z({ie, je}M+J

e=1 ) (B.105)

Now we write out the partition function explicitly:

MJ =
1
Z1

∫
DΓ e−Hev({rj})

∞∑

M=0

N∑

i1,...,iM+J ,
j1,...,jM+J=1

(µ̃2)M+J

M !
exp

(
− 1

2a2

M+J∑

e=1

(rie − rje)
2

)

(B.106)
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where
∫

DΓ denotes integration over all particle positions
∫ ∏N

j=1 Drj . This form
can be written in a much more convenient way:

MJ =
1
Z1

∫
DΓ e−Hev({rj})

∞∑

M=0

1
M !


µ̃2

N∑

i,j=1

exp
(
− 1

2a2
(ri − rj)2

)


M+J

=
1
Z1

∫
DΓ e−Hev({rj})


µ̃2

N∑

i,j=1

exp
(
−(ri − rj)2

2a2

)


J

× exp


µ̃2

N∑

i,j=1

exp
(
−(ri − rj)2

2a2

)


=
(µ̃2)J

Z1

(
∂

∂µ̃2

)J ∫
DΓe−Hev({rj}) exp


µ̃2

N∑

i,j=1

exp
(
−(ri − rj)2

2a2

)
 (B.107)

The integral in the last line is exactly limn→0Zn+1 = Z1, as we can confirm with
Eq. (2.14):

MJ =
(µ̃2)J

Z1

(
∂

∂µ̃2

)J

Z1 , (B.108)

and since µ̃2 is proportional to µ2:

MJ =
(µ2)J

Z1

(
∂

∂µ2

)J

Z1 (B.109)

Calculating Z1 is very easy: We know that limn→0 fn+1{Ω} = 0, because it involves
only sums over the higher replica sector (see Eq. (2.28)), confirmed by the result
(2.53) in Sec. 2.7. Therefore we just need to look at Eq. (2.27a), in the limit n→ 0:

Z1 = exp
(−Nf0

)× 1 (B.110)

with f0 given in Eq. (2.19):

Z1 = exp
(
−N

(
−µ

2

2
+
λn0

2

))
= exp

(
Nµ2

2
− Nλn0

2

)
(B.111)

It is noteworthy that the limit of very large λ seems to be an issue here. However,
since Z1 is both in the numerator and the denominator in Eq. (B.109), the depen-
dence on λ will cancel out and the limit λ → ∞ is possible. Now we can take the
derivative:

(
∂

∂µ2

)J

Z1 =
(
N

2

)J

Z1 , (B.112)

and with Eq. (B.109) we get:

MJ =
[
M(M − 1) · · · (M − J + 1)

]
=

(
µ2N

2

)J

(B.113)

This result finds further use in Sec. 2.9.1.
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B.6.2 Shear modulus

In Sec. 2.9.3 we wrote the shear modulus as:

G

n0kBT
=
µ2

2
− 1 + (1−Q)− µ2

2
(1−Q)2 . (B.114)

We want to find a power series for that expression, for large cross-link densities µ2.
Therefore we need the expansion of (1−Q) and (1−Q)2. An expression for (1−Q)
is given in Eq. (2.73):

(1−Q) = e−µ2
∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k (B.115)

For (1 − Q)2, we use Eq. (B.128) derived in Appendix B.6.3 for the square of the
sum:

(1−Q)2 = e−2µ2

( ∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k

)2

= e−2µ2
∞∑

k=0

2(k + 2)k−1

k!
(µ2e−µ2

)k (B.116)

With that we can calculate

(1−Q)− µ2

2
(1−Q)2 =

= e−µ2
∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k − µ2e−2µ2

¢2

∞∑

k=0

¢2(k + 2)k−1

k!
(µ2e−µ2

)k

= e−µ2

( ∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k −
∞∑

k=0

(k + 2)k−1

k!
(µ2e−µ2

)k+1

)

= e−µ2

( ∞∑

k=0

(k + 1)k−1

k!
(µ2e−µ2

)k −
∞∑

k=1

k(k + 1)k−2

k!
(µ2e−µ2

)k

)

= e−µ2
∞∑

k=0

(k + 1)k−1 − k(k + 1)k−2

k!
(µ2e−µ2

)k

= e−µ2
∞∑

k=0

(k + 1)k−2(¶k + 1−¶k)
k!

(µ2e−µ2
)k (B.117)

And hence:

(1−Q)− µ2

2
(1−Q)2 = e−µ2

∞∑

k=0

(k + 1)k−2

k!
(µ2e−µ2

)k (B.118)

In Sec. 2.9.3, we plug this expression into Eq. (2.77) to obtain the expansion of the
shear modulus G for µ2 À 1, far from the sol-gel transition.
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B.6.3 Square of the expansion for (1−Q)

The goal is to calculate the square of a series of the form:

W̃ (x) :=
∞∑

k=0

(k + 1)k−1

k!
xk . (B.119)

This function W̃ (x) is related to the Lambert W function by W̃ (x) = −W (−x)/x.
To find the square of W̃ (x), we use the relation

( ∞∑

k=0

akx
k

)2

=
∞∑

k=0

∞∑

k′=0

akx
kak′x

k′ =
∞∑

k=0

bkx
k (B.120a)

with bk =
k∑

l=0

alak−l . (B.120b)

In our case:

ak =
(k + 1)k−1

k!
(B.121)

and therefore

bk =
k∑

l=0

(l + 1)l−1

l!
(k − l + 1)k−l−1

(k − l)!

=
1
k!

k∑

l=0

(
k

l

)
(l + 1)l−1(k − l + 1)k−l−1 (B.122)

The calculation of bk is a little bit tedious, but not difficult. Let us first consider
the following relation [Knuth, 1973, p. 56]:

(x+ y)r = x
r∑

l=0

(
r

l

)
(x− lz)l−1(y + lz)r−l for r ≥ 0, x 6= 0 (B.123)

We choose z = −1, x = 1, y = k+1 and r = k, k−1 to get:

(k + 2)k =
k∑

l=0

(
k

l

)
(1 + l)l−1(k − l + 1)k−l (B.124)

(k + 2)k−1 =
k−1∑

l=0

(
k − 1
l

)
(1 + l)l−1(k − l + 1)k−l−1 . (B.125)

With the help of the two above equations, we can calculate:

2(k + 2)k−1

= (k + 2)k−1(k + 2− k)

= (k + 2)k − k(k + 2)k−1
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=
k∑

l=0

(
k!

l! (k − l)!
(1 + l)l−1(k − l + 1)k−l

)

− k
k−1∑

l=0

(
(k − 1)!

l! (k − l − 1)!
(1 + l)l−1(k − l + 1)k−l−1

)

=
k−1∑

l=0

(
k!

l! (k − l)!
(1 + l)l−1(k − l + 1)k−l − k!

l! (k − l − 1)!
(1 + l)l−1(k − l + 1)k−l−1

)

+ (1 + k)k−1

=
k−1∑

l=0

({
k!

l! (k − l)!
(1 + l)l−1(k − l + 1)k−l−1

} {
k − l + 1− (k − l)

})
+ (1 + k)k−1

=
k−1∑

l=0

(
k!

l! (k − l)!
(1 + l)l−1(k − l + 1)k−l−1

)
+ (1 + k)k−1

=
k∑

l=0

(
k

l

)
(1 + l)l−1(k − l + 1)k−l−1 (B.126)

Comparing that relation with bk in Eq. (B.122), we can write down

bk =
2(k + 2)k−1

k!
. (B.127)

Putting bk into Eq. (B.120b), we get the desired result:

W̃ 2(x) =

( ∞∑

k=0

(k + 1)k−1

k!
xk

)2

=
∞∑

k=0

2(k + 2)k−1

k!
xk (B.128)

B.7 The Order Parameter in the One Replica Sector

In Sec. 2.6.2 we derived an Ansatz for the order parameter Ω(q̂) that allows shear
fluctuations around the saddle point, see Eq. (2.45):

Ω̄u(q̂) = (1−Q)δq̂,0̂ +Qω(q̂)
∫

Dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)
(B.129a)

with ω(q̂) =
∫ ∞

0
dξ2 P(ξ2) exp

(
− q̂

2ξ2

2

)
. (B.129b)

For q̂ ∈ 1RS, this order parameter describes simple density fluctuations in the re-
spective replica. Hence, if u⊥(x‖) describes (volume conserving) shear deformations,
one would expect Ω(q̂) to vanish. Here, we show that this is indeed the case. For
q̂ = (0, ...,0,q

↑
α

,0, ...,0), we obtain:
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q‖ =
1√
n+1

q (B.130a)

q⊥ = q̂ − 1
n+1




q
...
q


 (B.130b)

Hence, we can write Eq. (B.129b) in terms of q:
∫

dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)

=
∫

dx‖ exp


 iqx‖√

n+1
+ iqu(α)

⊥ (x‖)−
©©©©©©©©©

iq
n+1

n∑

β=0

u(β)
⊥ (x‖)


 (B.131)

The last term vanishes, because by definition, the sum over the components of a
⊥-vector is zero,

∑n
β=0 u(β)

⊥ (x‖) = 0. Now we can introduce the new integration
variable

x′‖ := x‖ +
√
n+1u(α)

⊥ (x‖) (B.132a)

det

(
∂x′‖
∂x‖

)
= det

(
1+

√
n+1

∂u(α)
⊥ (x‖)
∂x‖

)
, (B.132b)

with which Eq. (B.131) becomes:
∫

dx‖ exp
(
iq‖x‖ + iq⊥u⊥(x‖)

)

=
∫

dx′‖ exp

(
iqx′‖√
n+1

) ∣∣∣∣∣det

(
1+

√
n+1

∂u(α)
⊥ (x‖)
∂x‖

)∣∣∣∣∣ (B.133)

The prefactor
√
n+1 in the determinant is just coming from the difference between

the usual vector x and the parallel-vector x‖ =
√
n+1 x. We only allow incom-

pressible deformations (see Sec. 2.6.2), for which

det

(
1+

√
n+1

∂u(α)
⊥ (x‖)
∂x‖

)
= det

(
1+

∂u(α)
⊥ (x‖)
∂x

)
≡ 1 (B.134)

and hence: ∫
dx‖ exp

(
iq‖x‖ + iq⊥u⊥(x‖)

)

=
∫

dx′‖ exp
(
iq‖x′‖

)
= V‖δq‖,0 (B.135)

Therefore, for incompressible deformations and q̂-vectors in the 1RS (which are
non-zero), the order parameter becomes:

Ω̄u(q̂) = (1−Q) δq̂,0̂ +Qδq‖,0 = 0 , (B.136)

as we already anticipated.
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C.1 Calculations for a Single Chain

C.1.1 The Uncrosslinked Chain

In Sec. 3.2.1 we defined the radius of gyration of an uncrosslinked polymer chain as

R2
g =

〈
1

2L2

∫
dz1dz2

(
r(z1)− r(z2)

)2
〉

Halign,1

=
1

2L2

∫
Dr(z) exp

(
−σ

2

∫
dz ṙ2(z)

)∫
dz1dz2

(
r(z1)− r(z2)

)2 (C.1)
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We discretize the functional integral into ZL points, such that the function r(z) is
represented by ZL discrete vectors r1, ..., rZL

. With the normalization (3.4) of the
functional integral we get:

R2
g =

1
2Z2

L

∫
dr1 · · · drZL

exp

(
−σ ·∆z

2

ZL−1∑

Z=1

(rZ+1 − rZ)2

∆z2

)
ZL∑

Z1,Z2=1

(rZ1 − rZ2)
2

∫
dr1 · · · drZL

exp

(
−σ ·∆z

2

ZL−1∑

Z=1

(rZ+1 − rZ)2

∆z2

)

(C.2)

Now, instead of integrating over all positions of the chain segments rZ , we can
integrate over the position of the bottom end of the chain r1 and over the position
differences tZ := rZ − rZ−1 for Z = 2, ..., ZL:

R2
g =

1
Z2

L

∫
dr1dt2 · · ·dtZL

exp

(
− σ

2∆z

ZL−1∑

Z=1

t2
Z+1

) ∑

Z1<Z2

(
Z2∑

Z=Z1+1

tZ

)2

∫
dr1dt2 · · · dtZL

exp

(
− σ

2∆z

ZL−1∑

Z=1

t2
Z+1

)

=
1
Z2

L

∑

Z1<Z2

∫
dtZ1+1 · · · dtZ2 exp

(
− σ

2∆z

Z2∑

Z=Z1+1

t2
Z

)(
Z2∑

Z=Z1+1

t2
Z +

½
½

½
½

½
½

½Z2∑

Z,Z′=Z1+1
Z 6=Z′

tZtZ′

)

∫
dtZ1+1 · · · dtZ2 exp

(
− σ

2∆z

Z2∑

Z=Z1+1

t2
Z

)

=
1
Z2

L

∑

Z1<Z2

(
2π ·∆z
σ

)Z2−Z1 ∆z ·D(Z2 − Z1)
2σ(

2π ·∆z
σ

)Z2−Z1

=
D∆z
2Z2

Lσ

∑

Z1<Z2

(Z2 − Z1)

=
D∆z
2Z2

Lσ

(
1
6
(Z2

L − 1)ZL

)
large ZL=

D∆z
2Z2

Lσ

(
Z3

L

6

)
=
D

2
ZL ·∆z

6σ
, (C.3)

and since ∆z = L/ZL we get:

R2
g =

D

6
L

2σ
(C.4)
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C.1.2 The Polymer Clamped in Space

Let us have a closer look at the partition function. As in the previous section 3.2.1,
we discretize the functional integral into integrals over the chain segments:

Z =
∫
Dr(z) exp

(
−σ

2

∫
dz ṙ2(z)− 1

2a2
r2(z1) + br(z0)

)

=

∫
dr1 · · ·drZL

exp

(
−σ ·∆z

2

ZL−1∑

Z=1

(rZ+1 − rZ)2

∆z2
− r2

Z1

2a2
+ brZ0

)

∫
dr1 · · ·drZL

exp

(
−σ ·∆z

2

ZL−1∑

Z=1

(rZ+1 − rZ)2

∆z2

) (C.5)

The denominator is easy to compute:

∫
dr1dt2 · · ·dtZL

exp

(
− σ

2∆z

ZL−1∑

Z=1

t2
Z+1

)
= A

(
2π∆z
σ

)D(ZL−1)/2

. (C.6)

For the numerator we keep the integration variable rZ1 and define tZ = rZ+1 − rZ

for 1 ≤ Z ≤ ZL − 1. This change of variables yields the following substitution
scheme for rZ :

...

rZ1−2 = rZ1 − tZ1−1 − tZ1−2

rZ1−1 = rZ1 − tZ1−1

rZ1 = rZ1

rZ1+1 = rZ1 + tZ1

rZ1+2 = rZ1 + tZ1 + tZ1+1

...

Now we apply this scheme to the numerator of Eq. (C.5) and first consider the case
Z0 > Z1:

Z =
1
A

(
2π∆z
σ

)−D(ZL−1)/2 ∫
dt1 · · ·dtZ1−1drZ1dtZ1 · · ·dtZL−1

exp

(
− σ

2∆z

ZL−1∑

Z=1

t2
Z −

r2
Z1

2a2
+ b(rZ1 + tZ1 + ...+ tZ0−1)

)

=
1
A

(
2π∆z
σ

)−D(ZL−1)/2

×
(

2π∆z
σ

)D(ZL−1)/2

(2πa2)D/2 exp
(

∆z
2σ

b2 · (Z0 − Z1) +
b2a2

2

)

=
(2πa2)D/2

A
exp

(
b2

2σ
∆z(Z0 − Z1) +

b2a2

2

)
(C.7)
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Analogously we get for Z0 < Z1:

Z =
(2πa2)D/2

A
exp

(
b2

2σ
∆z(Z1 − Z0) +

b2a2

2

)
, (C.8)

and thus we get in general:

Z =
(2πa2)D/2

A
exp

(
b2

2

( |z1 − z0|
σ

+ a2

))
, (C.9)

where we re-substituted zi = Zi∆z for i = 1, 2. For the logarithm of Z we get:

lnZ =
b2

2

( |z1 − z0|
σ

+ a2

)
+ ln

(
(2πa2)D/2

A

)
. (C.10)

C.2 Examples of Single Chain Interactions

As mentioned in Sec. 3.3.1 on page 39, it is possible to replace the alignment inter-
action Halign by a more general interaction which also can be written as a sum over
individual chains:

HΣ =
N∑

j=1

HΣ,1{rj} =
N∑

j=1

(
Halign,1{rj}+HX,1{rj}+ ...

)
. (C.11)

The only requirement is that HΣ,1{rj} only depends on the conformation rj(z)
of chain j. With the total Hamiltonian HC = HXlink + Hev + HΣ, the effective
one-particle partition function z, Eq. (3.32c), is simply replaced by:

z =
∫
Dr̂(z) exp

(
φnµ

2

L

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z)

+ i
∫ L

0
dz

∑

q̂∈1RS

λ̃(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
Σ,1 {r̂(z)}

)
, (C.12)

with H
(n+1)
Σ,1 {r̂(z)} =

∑n
α=0HΣ,1{r(α)

j }. The other parts of Eq. (3.32) remain as
they are. Beyond the alignment interaction, these interactions

∑
j HX,1{rj} may

include:

� A tilt field h(z), creating a force on the chains:

Htilt =
N∑

j=1

∫ L

0
dz h(z) · ṙj(z) (C.13)

For this Hamiltonian, a constant h(z) = h corresponds to a linear shear force,
since h(z) couples to the tilt ṙj(z) of the chains.
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� A pressure field Π(q, z) that couples to the Fourier density:

HΠ =
∑
q

∫ L

0
dzΠ(q, z)

N∑

j=1

e−iqrj(z) , (C.14)

such that
δHΠ

δΠ(q, z)
=

N∑

j=1

e−iqrj(z) (C.15a)

and
δ2HΠ

δΠ(q, z1) δΠ(−q, z2)
=

N∑

i,j=1

e−iq(ri(z1)−rj(z2)) . (C.15b)

With this field, we would be able to calculate density-density correlations.

� A “clamping interaction”, that clamps the ends of the chains, rj(0) and rj(L),
to certain points at the bottom and top (the boundaries in z-direction) of the
system:

Hclamp =
1

2b20

N∑

j=1

(
rj(0)− r0,j

)2 +
1

2b2L

N∑

j=1

(
rj(L)− rL,j

)2 (C.16)

Here b0 and bL are the clamping strengths at the bottom (z = 0) and the top
(z = L) of the system. The clamping points r0,j and rL,j could be included
in the disorder, C =

({(ie, je, ze)}M
e=1, {(r0,j , rL,j)}N

j=1

)
, such that their distri-

bution is chosen by the Deam-Edwards distribution. For polymer brushes,
which are typically mounted with one end onto a plate, this additional inter-
action with only one clamping term (i.e. b0 finite and bL → ∞) would be an
appropriate choice.

� A bending stiffness which penalizes bending, i.e. high values of the second
derivative of the chains:

Hbend =
κ

2

N∑

j=1

∫ L

0
dz r̈2

j (z) (C.17)

It is notable that, only this straightening interaction can produce a non-zero
persistence length. Without this interaction, the slopes of a given chain at two
different points z1 and z2 are fully uncorrelated, no matter how close those
points are.
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C.3 Calculations for the Disorder-Averaged Free En-

ergy

C.3.1 Introduction of Replicas

In Eq. 3.24, we calculated the important quantity:

[
Zn
C
]

=
1
Z1

∞∑

M=0

(µ̃2/L)M

M !

N∑

i1,...,iM ,
j1,...,jM=1

∫ L

0
dz1 · · · dzM

∫
Dr̂1(z) · · · Dr̂N (z) e−H

(n+1)
ev {r̂j}−H

(n+1)
align {r̂j}

M∏

e=1

exp

(
−

(
r̂ie(ze)− r̂je(ze)

)2

2a2

)
.

Here, we perform the sum over M . For simplification, we define:

DΓ := Dr̂1(z) · · · Dr̂N (z) (C.18)

and write the product over e as a power:

[Zn
C ] =

1
Z1

∞∑

M=0

(µ̃2/L)M

M !

∫
DΓ e−H

(n+1)
ev {r̂j}−H

(n+1)
align {r̂j}




N∑

i,j=1

∫ L

0
dz exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)


M

=
1
Z1

∫
DΓ e−H

(n+1)
ev {r̂j}−H

(n+1)
align {r̂j}

exp


 µ̃2

L

N∑

i,j=1

∫ L

0
dz exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)


=:
Zn+1

Z1
. (C.19)

Here, the replica partition function Zn+1 has been defined:

Zn+1 =
∫
DΓ exp

(−Nf̃n+1{r̂j}
)

with (C.20a)

with the replica free energy f̃n+1{r̂j}:

f̃n+1{r̂j} =
H

(n+1)
ev {r̂j}
N

+
H

(n+1)
align {r̂j}
N

− µ̃2

LN

N∑

i,j=1

∫ L

0
dz exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)

(C.20b)
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C.3.2 Introduction of the Replicated Density Field

In Sec. 3.4.2, we introduced the replicated density field, Eqs. (3.29). Here we rewrite
the replica free energy (3.27c),

f̃n+1{r̂j} = − µ̃2

LN

N∑

i,j=1

∫ L

0
dz exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)

+
λ

2N

n∑

α=0

N∑

i,j=1

∫ L

0
dz U

(
r(α)
i (z)− r(α)

j (z)
)

+
H

(n+1)
align

N
, (C.21)

in terms of that field. In exactly the same manner as in Eqs. (B.5-B.7), we can
rewrite the cross-linking term as:

N∑

i,j=1

exp

(
−

(
r̂i(z)− r̂j(z)

)2

2a2

)
= φn+1N2

∑

q̂

|O(q̂, z)|2∆(q̂) , (C.22)

with

∆(q̂) = exp
(
− q̂

2a2

2

)
. (C.23)

For the second (excluded volume) term in Eq. (C.21), we first define the density
field for each replica separately:

O(α)(x, z) =
1
N

N∑

j=1

δ
(
x− r(α)

j (z)
)
, (C.24a)

O(α)(q, z) =
1
N

N∑

j=1

exp
(
iqr(α)

j (z)
)
. (C.24b)

With that, also the excluded volume Hamiltonian can be rewritten in analogy to
the RLP model, see Eq. (B.9), we just have to add the integral over z:

n∑

α=0

N∑

i,j=1

∫ L

0
dz U

(
r(α)
i (z)− r(α)

j (z)
)

=
N2

A

n∑

α=0

∑

q(α)

∫ L

0
dz |O(α)(q(α), z)|2 U(q(α)) . (C.25)

With that and by plugging in µ̃2

LN = µ2

2LN2φ
(see Eq. (3.22c)), we can write the

replica free energy, Eq. (C.21), as:

f̃n+1{r̂j} = − φn µ
2

2L

∫ L

0
dz

∑

q̂

|O(q̂, z)|2∆(q̂)

+
λn0

2

∫ L

0
dz

n∑

α=0

∑

q(α)

|O(α)(q(α), z)|2 U(q(α)) +
H

(n+1)
align {r̂j}
N

, (C.26)
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where we defined the mean chain density

n0 =
N

A
(C.27)

as number of chains per (hyper-)area.

We now separate the two terms involving fields in Eq. (C.26) into one replica
sector (1RS), the set of replicated q̂-vectors with exactly one of the n+1 components
non-zero, and higher replica sector (HRS), the set of replicated q̂-vectors with at
least two non-zero components, as introduced in Sec. 2.4.3. This will allow us to
perform the Hubbard-Stratonovich transformation later.

f̃n+1{r̂j} =

=:f0︷ ︸︸ ︷
−φnµ

2

2
+ (n+1)

λn0L

2
−φn µ

2

2L

∫ L

0
dz

∑

q̂∈HRS

|O(q̂, z)|2∆(q̂)

+
1
2

∫ L

0
dz

∑

q̂∈1RS

(
λn0U(q̂)− φnµ

2

L
∆(q̂)

)

︸ ︷︷ ︸
=:λ̃(q̂)

|O(q̂, z)|2 +
H

(n+1)
align {r̂j}
N

(C.28)

For the terms involving q̂ = 0̂, which are neither part of the 1RS, nor of the HRS,
we used O(q̂ = 0̂) = 1, ∆(q̂ = 0̂) = 1 and U(q = 0) = 1.

C.3.3 The Hubbard-Stratonovich Transformation

Here we want to apply the Hubbard-Stratonovich transformation to the replica
free energy Eq. (3.31a) to linearize it with respect to the field O(q̂, z). The ap-
propriate variable for the transformation is O(q̂, z), similar to the RLP model.
A transformation with respect to

∫
dzO(q̂, z), similar to what has been done in

[Goldbart et al., 1996, Chapter V], would require a different structure, a form like∫
dz1dz2 O(q̂, z1)O(−q̂, z2) in the replica free energy. Hence, we apply Eqs. (B.12)

successively for all combinations of q̂ and z.

Before performing the transformation, it is important to note that the replica
density obeys the relation O(−q̂, z) = O∗(q̂, z) for any height z, see definition
(3.29b), in particular |O(q̂, z)|2 = |O(−q̂, z)|2; hence, for any q̂, we automatically
transform the |O(q̂, z)|2-term along the |O(−q̂, z)|2-term. In order to carry out the
Hubbard-Stratonovich transformation, we restrict the sums over q̂ to a half-space
with q̂ · ê > 0 with ê = (e, ..., e) for arbitrary e 6= 0 (as it was done in Sec. B.2.1
for the RLP model). The terms for q̂ and −q̂ yield the same contribution, since
∆(q̂) = ∆(−q̂) and λ̃(q̂) = λ̃(−q̂).
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With that we get for replica partition function Zn+1, Eq. (3.27b):

Zn+1

exp(−Nf0)
=

∫ (∏N
j=1Dr̂j(z)

)

exp

(
Nφnµ

2

L

∫ L

0
dz

∑

q̂∈HRS
q̂·ê>0

|O(q̂, z)|2∆(q̂)−N

∫ L

0
dz

∑

q̂∈1RS
q̂·ê>0

|O(q̂, z)|2λ̃(q̂)−H
(n+1)
align

)

(C.29)

Now we apply the Hubbard-Stratonovich transformation with w = O(q̂, z): For any
q̂ ∈ 1RS, q̂ · ê > 0 and any z ∈ [0, L] we use Eq. (B.12b) with c = Nλ̃(q̂):

exp
(
−N |O(q̂, z)|2 λ̃(q̂)

)
(C.30)

=
∫
Nλ̃(q̂) dΩ(q̂, z)

π
exp

(
−N |Ω(q̂, z)|2 λ̃(q̂) + 2iNλ̃(q̂) Re

(
Ω(q̂, z)O(−q̂, z))

)

and for q̂ ∈ HRS, q̂ · ê > 0 and z ∈ [0, L] we use Eq. (B.12a) with c = Nφn µ2

L ∆(q̂):

exp
(
Nφnµ

2

L
|O(q̂, z)|2∆(q̂)

)
=

∫
Nφnµ2∆(q̂) dΩ(q̂, z)

πL
(C.31)

exp
(
−Nφnµ

2

L
∆(q̂)|Ω(q̂, z)|2 + 2Nφnµ

2

L
∆(q̂)Re

(
Ω(q̂, z)O(− ˆq, z)

))

With that Eq. (C.29) becomes:

Zn+1

exp(−Nf0)
=

∫
DΩexp

(
−Nφnµ

2

L

∫ L

0
dz

∑

q̂∈HRS
q̂·ê>0

|Ω(q̂, z)|2∆(q̂)−N

∫ L

0
dz

∑

q̂∈1RS
q̂·ê>0

|Ω(q̂, z)|2λ̃(q̂)

)

×
∫ (∏N

j=1Dr̂j(z)
)

exp

(
2Nφnµ

2

L

∫ L

0
dz

∑

q̂∈HRS
q̂·ê>0

∆(q̂)Re
(
Ω(q̂, z)O(−q̂, z))

+ 2iN
∫ L

0
dz

∑

q̂∈1RS
q̂·ê>0

λ̃(q̂)Re
(
Ω(q̂, z)O(−q̂, z))−H

(n+1)
align ({r̂j})

)
,

(C.32)

where we introduced the measure

DΩ =
∏
z

( ∏

q̂∈1RS
q̂·ê>0

Nλ̃(q̂) dΩ(q̂, z)
π

·
∏

q̂∈HRS
q̂·ê>0

Nφnµ2∆(q̂) dΩ(q̂, z)
πL

)
. (C.33)

Here, the product over z has to be carried out in the spirit of the discretization of
the z-direction into ZL segments, as seen in Sec. 3.3 and Fig. 3.5. It implies that
we have to integrate over Ω(q̂, z) for all q̂ and at every height z.
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Now we abolish the constraint q̂ · ê > 0 in the sums. Therefore define the field
Ω(q̂, z) also for q̂ · ê < 0 by

Ω(−q̂, z) = Ω∗(q̂, z) . (C.34)

and plug in the definition of O(q̂, z), Eq. (3.29b). Furthermore we recall that H(n+1)
align

acts on all chains in the same way (see Eqs. (3.17), (3.19)):

H
(n+1)
align =

N∑

j=1

H
(n+1)
align,1{r̂j} (C.35)

Hence the partition function (C.32) becomes:

Zn+1

exp(−Nf0)
=

∫
DΩexp

(
−Nφn µ

2

2L

∫ L

0
dz

∑

q̂∈HRS

|Ω(q̂, z)|2∆(q̂)− N

2

∫ L

0
dz

∑

q̂∈1RS

|Ω(q̂, z)|2λ̃(q̂)

)

×
∫ (

N∏
j=1

Dr̂j(z)
)

exp

(
φnµ

2

L

N∑

j=1

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂j(z)

+ i
N∑

j=1

∫ L

0
dz

∑

q̂∈1RS

λ̃(q̂)Ω(q̂, z)e−iq̂r̂j(z) −
N∑

j=1

H
(n+1)
align,1{r̂j(z)}

)

(C.36)

As in the RLP model before (see Sec. 2.4.4 and B.2.1), the expression is now linear
in the density and therefore only generates “linear” sums

∑
j over all particles. We

also see, why the term H
(n+1)
align was so easy to take along and did not require a

Hubbard-Stratonovich transformation: it is already linear in the sum
∑

j . Now, the
sums in the exponential and the difficult integral over all chains can be written as
a power:

Zn+1

exp(−Nf0)
=

∫
DΩexp

(
−Nφn µ

2

2L

∫ L

0
dz

∑

q̂∈HRS

|Ω(q̂, z)|2∆(q̂)− N

2

∫ L

0
dz

∑

q̂∈1RS

|Ω(q̂, z)|2λ̃(q̂)

)

×




∫
Dr̂(z) exp

(
φnµ

2

L

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z)

+i
∫ L

0
dz

∑

q̂∈1RS

λ̃(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
align,1{r̂(z)}

)



N

(C.37)

And that form can be written in a simplified way:

Zn+1 = exp
(−Nf0

) ∫
DΩexp

(−Nfn+1{Ω}
)

(C.38a)
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with the replica free energy

fn+1{Ω} = φn µ
2

2L

∫ L

0
dz

∑

q̂∈HRS

|Ω(q̂, z)|2∆(q̂) +
1
2

∫ L

0
dz

∑

q̂∈1RS

|Ω(q̂, z)|2λ̃(q̂)− ln z ,

(C.38b)
and an effective one-particle partition function

z =
∫
Dr̂(z) exp

(
φnµ

2

L

∫ L

0
dz

∑

q̂∈HRS

∆(q̂)Ω(q̂, z)e−iq̂r̂(z)

+ i
∫ L

0
dz

∑

q̂∈1RS

λ̃(q̂)Ω(q̂, z)e−iq̂r̂(z) −H
(n+1)
align,1{r̂(z)}

)
(C.38c)

C.4 The Saddle-Point Equation with Ansatz

C.4.1 Expansion in Q to Infinite Order

Here we calculate the term I(q̂0, z0), Eq. (3.50). With the single chain alignment
interaction:

H
(n+1)
align,1{r̂(z)} ≡

σ

2

∫ L

0
dz ˙̂r2(z) , (C.39)

we get:

I(q̂0, z0) =
∫
Dr̂(z) e−iq̂0r̂(z0) (C.40)

× exp

(
φnµ

2Q

L

∫ L

0
dz

∑

q̂

e−iq̂r̂(z)δq‖,0

∫

ξ2,z
exp

(
− q̂

2ξ̃2

2

)
− σ

2

∫ L

0
dz ˙̂r2(z)

)
.

To proceed in the calculation, we would like to perform the functional integral over
all chain positions r̂(z). Therefore we expand the integrand of I(q̂0, z0), Eq. (C.40),
in powers of Q:

I(q̂0, z0) =
∫
Dr̂(z) e−iq̂0r̂(z0) exp

(
−σ

2

∫ L

0
dz ˙̂r2(z)

)

×
(

1 +
∞∑

r=1

(φnµ2Q)r

r!

{
1
L

∫ L

0
dz

∑

q̂

e−iq̂r̂(z)δq‖,0

∫

ξ2,z
exp

(
− q̂

2ξ̃2

2

)}r )

=
∫
Dr̂(z) e−iq̂0r̂(z0) exp

(
−σ

2

∫ L

0
dz ˙̂r2(z)

)

×
(

1 +
∞∑

r=1

(φnµ2Q)r

r! Lr

∫ L

0
dz1 · · ·dzr

∑

q̂1,...,q̂r

δq1‖,0 · · · δqr‖,0 e−i(q̂1r̂(z1)+···+q̂r r̂(zr))

×
∫

ξ2
1 ,z1

· · ·
∫

ξ2
r ,zr

exp
(
− q̂

2
1 ξ̃

2
1 + ...+ q̂2r ξ̃

2
r

2

))
(C.41)
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All r̂(z)-dependent terms, which are needed to perform the functional integral, are
marked in blue. This integral is calculated in Appendix C.6 and the result is given
by Eq. (C.88):

∫
Dr̂(z) e−i(q̂0r̂(z0)+q̂1r̂(z1)+...+q̂r r̂(zr)) exp

(
−σ

2

∫ L

0
dz ˙̂r2(z)

)

= δq̂0+q̂1+...+q̂r,0̂ exp


 1

2σ

∑

0≤γ<δ≤r

q̂γ q̂δ|zγ − zδ|

 , (C.42)

and therefore:

I(q̂0, z0) = δq̂0,0̂ +
∞∑

r=1

(φnµ2Q)r

r! Lr

∫ L

0
dz1 · · · dzr

∑

q̂1,...,q̂r

δq1‖,0 · · · δqr‖,0 δq̂0+q̂1+...+q̂r,0̂

× exp


 1

2σ

∑

0≤γ<δ≤r

q̂γ q̂δ|zγ − zδ|



∫

ξ2
1 ,z1

· · ·
∫

ξ2
r ,zr

exp
(
− q̂

2
1 ξ̃

2
1 + ...+ q̂2r ξ̃

2
r

2

)

(C.43)

For this expression it is important to keep in mind that the sum
∑

0≤γ<δ≤r in the
first exponential also involves the external variables q̂0 and z0. We also see at this
point that it is useful to normalize the height z by L to make it a dimensionless
variable

sγ :=
zγ
L
∈ [0, 1] and hence dsγ =

dzγ
L

(C.44)

for γ = 0, ..., r in all orders. As already mentioned in Sec. 3.2.1 it is useful to define

`2 :=
L

2σ
, (C.45)

which essentially is the radius of gyration of the chain, projected along the z-axis.
With that we get:

1
2σ
q̂γ q̂δ|zγ − zδ| = L

2σ
q̂γ q̂δ|sγ − sδ| = `2q̂γ q̂δ|sγ − sδ| (C.46)

Therefore:

I(q̂0, s0) =

= δq̂0,0̂ +
∞∑

r=1

(φnµ2Q)r

r!

∫ 1

0
ds1 · · ·dsr

∑

q̂1,...,q̂r

δq1‖,0 · · · δqr‖,0 δq̂0+q̂1+...+q̂r,0̂

× exp

(
`2

∑

0≤γ<δ≤r

q̂γ q̂δ|sγ − sδ|
)∫

ξ2
1 ,s1

· · ·
∫

ξ2
r ,sr

exp
(
−1

2

r∑

γ=1

q̂2γ ξ̃
2
γ

)
.

(C.47)
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Here we needed to define the integral
∫

ξ2,s
:=

∫ ∞

0
dξ2 P(ξ2, s) , (C.48)

where P(ξ2, s) depends on the dimensionless height s, but apart from that it is the
same as P(ξ2, z). Furthermore, as we can see in Eq. (C.47), the only L-dependence
remains in the prefactor `2 in the first exponential.

C.4.2 Expansion to Second Order in Q

Up to this point it was easy to keep I(q̂0, s0) up to infinite order in Q. In order
to proceed in the calculation, we keep the expansion up to second order (thereby
restricting the system to being close to the sol-gel transition) and separate the
different orders:

I(q̂0, s0) = δq̂0,0̂ +

+ φnµ2Q

∫ 1

0
ds1

∑

q̂1

δq1‖,0 δq̂0+q̂1,0̂ exp
(
`2q̂0q̂1|s0 − s1|

) ∫

ξ2
1 ,s1

exp
(
− q̂

2
1 ξ̃

2
1

2

)

+
(φnµ2Q)2

2

∫ 1

0
ds1ds2

∑

q̂1,q̂2

δq1‖,0δq2‖,0 δq̂0+q̂1+q̂2,0̂

× exp
(
`2

(
q̂0q̂1|s0 − s1|+ q̂0q̂2|s0 − s2|+ q̂1q̂2|s1 − s2|

))

×
∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp
(
− q̂

2
1 ξ̃

2
1 + q̂22 ξ̃

2
2

2

)

+O(Q3) . (C.49)

In the first order term, the sum over q̂1 is easy to perform thanks to the δq̂0+q̂1,0̂-
constraint:

I1 :=
∑

q̂1

δq1‖,0 δq̂0+q̂1,0̂ exp
(
`2q̂0q̂1|s0 − s1|

)
exp

(
− q̂

2
1 ξ̃

2
1

2

)
(C.50)

= δq0‖,0 exp
(
−`2q̂20|s0 − s1| − q̂20 ξ̃

2
1

2

)
= δq0‖,0 exp

(
−q

2
0⊥
2

(
2`2|s0 − s1|+ ξ̃21

))

In the last line we used the fact that q̂0 = q0⊥, since q0‖ = 0.
In the second order term, the situation is a little bit more difficult. First get rid

of q̂2 in the same manner:

I2 :=
∑

q̂1,q̂2

δq1‖,0δq2‖,0 δq̂0+q̂1+q̂2,0̂

× exp
(
`2

(
q̂0q̂1|s0 − s1|+ q̂0q̂2|s0 − s2|+ q̂1q̂2|s1 − s2|

))
exp

(
− q̂

2
1 ξ̃

2
1 + q̂22 ξ̃

2
2

2

)

=
∑

q̂1

δq0‖,0δq1‖,0
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× exp
(
`2

(
q̂0q̂1|s0 − s1| − q̂0(q̂0 + q̂1)|s0 − s2| − q̂1(q̂0 + q̂1)|s1 − s2|

))

× exp
(
− q̂

2
1 ξ̃

2
1 + (q̂0 + q̂1)2ξ̃22

2

)

= δq0‖,0 exp
(
−q̂20`2|s0 − s2| − q̂20 ξ̃

2
2

2

) ∑

q̂1

δq1‖,0 exp

(
−q̂21

(
`2|s1 − s2|+ ξ̃21 + ξ̃22

2

))

× exp
(
q̂0q̂1

(
`2

(|s0 − s1| − |s0 − s2| − |s1 − s2|
)− ξ̃22

))
(C.51)

Now let us look at the sum
∑

q̂1
: it runs over elements q̂1 = 2π

A1/D n̂ with n̂ ∈ ZD(n+1).
As already noted in Sec. B.5.3 on page 138, it approaches a Riemann sum in the
thermodynamic limit A→∞. There we changed

∑

q̂1

(...) −→ An+1

(2π)D(n+1)

∫
dq̂(...) . (C.52)

Here, we additionally have to deal with the δq1‖,0-constraint. To include it into the
transformation, we can write it as an integral over an exponential. For any function
A(q̂):

∑

q̂

δq‖,0A(q̂) =
1
A

∫

A
dx

∑

q̂

A(q̂) ei(q(0)+...+q(n))x

−→ 1
A

An+1

(2π)D(n+1)

∫

RD

dx
∫

dq̂A(q̂) ei(q(0)+...+q(n))x

=
An

(2π)Dn

∫
dq̂ δ(q(0) + ...+ q(n)) A(q̂) =

An

(2π)Dn

∫
dq⊥A(q⊥) (C.53)

Applying this relation to the sum over q̂1 in Eq. (C.51), we just have to deal with
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a simple Gaussian integral:

I2 = δq0‖,0 exp
(
−q̂20`2|s0 − s2| − q̂20 ξ̃

2
2

2

)

× An

(2π)Dn

∫
dq1⊥ exp

(
−q21⊥

(
`2|s1 − s2|+ ξ̃21 + ξ̃22

2

))

× exp
(
q0⊥q1⊥

(
`2

(|s0 − s1| − |s0 − s2| − |s1 − s2|
)− ξ̃22

))

= δq0‖,0 exp
(
−q̂20`2|s0 − s2| − q̂20 ξ̃

2
2

2

)
An

(2π)Dn

(
2π

ξ̃21 + ξ̃22 + 2`2|s1 − s2|

)Dn/2

× exp



q20⊥

(
`2

(|s0 − s1| − |s0 − s2| − |s1 − s2|
)− ξ̃22

)2

2
(
ξ̃21 + ξ̃22 + 2`2|s1 − s2|

)




= δq0‖,0


 A

(2π)D

(
2π

ξ̃21 + ξ̃22 + 2`2|s1 − s2|

)D/2



n

× exp

(
q20⊥
2

{ (
`2g(s)− ξ̃22

)2
ξ̃21 + ξ̃22 + 2`2|s1 − s2|

− 2`2|s0 − s2| − ξ̃22

})
, (C.54)

where we made the simplifying definition:

g(s) ≡ g(s0, s1, s2) := |s0 − s1| − |s0 − s2| − |s1 − s2| (C.55)

Now we can recompose I(q̂0, s0), Eq. (C.49), using the expressions (C.50) and (C.54).
We also neglect all terms of the form (...)n = 1 + O(n), and hence only keep the
lowest order in n:

I(q̂0, s0) = δq̂0,0̂ + δq0‖,0 µ
2Q

∫ 1

0
ds1

∫

ξ2
1 ,s1

exp
(
−q

2
0⊥
2

(
2`2|s0 − s1|+ ξ̃21

))

+ δq0‖,0
(µ2Q)2

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp

(
q20⊥
2

{ (
`2g(s)− ξ̃22

)2
ξ̃21 + ξ̃22 + 2`2|s1 − s2|

− 2`2|s0 − s2| − ξ̃22

})
+O(Q3) (C.56)

and with that:

I(0̂, 0) = 1 + µ2Q

∫ 1

0
ds1

∫

ξ2
1 ,s1

1 +
(µ2Q)2

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

1 +O(Q3)

= 1 + µ2Q+
(µ2Q)2

2
+O(Q3) (C.57)

Now we can plug these two results for I(q̂0, s0) and I(0̂, 0) back into the original
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saddle point equation (3.46):

(
(1−Q)δq̂0,0̂ +Qδq0‖,0

∫

ξ2,s0

exp
(
− q̂

2
0ξ

2

2

))(
1 + µ2Q+

(µ2Q)2

2

)

= δq̂0,0̂ + δq0‖,0 µ
2Q

∫ 1

0
ds1

∫

ξ2
1 ,s1

exp
(
−q

2
0⊥
2

(
2`2|s0 − s1|+ ξ̃21

))

+ δq0‖,0
(µ2Q)2

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp

(
q20⊥
2

{ (
`2g(s)− ξ̃22

)2
ξ̃21 + ξ̃22 + 2`2|s1 − s2|

− 2`2|s0 − s2| − ξ̃22

})
+O(Q3) . (C.58)

This equation must be valid for any choice of q̂0 and s0. Let us look at different
cases:

For q̂0 = 0̂, we get the trivial relation

(1−Q) +Q = 1

1 = 1 (C.59)

as one can already see at the saddle point equation (3.46). For q̂0 6= 0̂ and q0‖ 6= 0,
all terms in Eq. (C.58) vanish due to the δ-constraints and we also get the trivial
result 0 = 0.

Hence, from here, we restrict ourselves to the more interesting case q̂0 6= 0̂ and
q0‖ = 0. Furthermore, to be consistent with the terms on the left hand side, we
also insert the substitution ξ̃2 = ξ2 + a2 (see Eq. (3.49)) on the left hand side of
Eq. (C.58), again:

Q

∫

ξ2,s0

exp
(
−q

2
0⊥ξ

2

2

) (
1 + µ2Q+

½
½

½½(µ2Q)2

2

)

= µ2Q

∫ 1

0
ds1

∫

ξ2
1 ,s1

exp
(
−q

2
0⊥
2

(
2`2|s0 − s1|+ a2 + ξ21

))

+
(µ2Q)2

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp

(
q20⊥
2

{ (
`2g(s)− a2 − ξ22

)2
ξ21 + ξ22 + 2a2 + 2`2|s1 − s2|

− 2`2|s0 − s2| − a2 − ξ22

})

+O(Q3) . (C.60)

The canceled term in the first line is of the order Q3 and thus can be neglected.
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C.5 Obtaining the Equation for the Localization Length

C.5.1 Normalization of Length Scales

As anticipated in Sec. 3.7.1, we can simplify the saddle point equation by measuring
all lengths in units of `, i.e. define:

ξ2` := ξ2/`2 (C.61a)

a2
` := a2/`2 (C.61b)

q20`⊥ := `2q20⊥ (C.61c)

With the new variables, Eq. (3.51) does not exhibit an explicit dependence on `:

(
1 + µ2Q

)∫

ξ2,s0

exp
(
−q

2
0`⊥ξ

2
`

2

)

= µ2

∫ 1

0
ds1

∫

ξ2
1 ,s1

exp
(
−q

2
0`⊥
2

(
2|s0 − s1|+ a2

` + ξ21`

))

+
µ4Q

2

∫ 1

0
ds1ds2

∫

ξ2
1 ,s1

∫

ξ2
2 ,s2

exp

(
q20`⊥
2

{ (
g(s)− a2

` − ξ22`

)2
ξ21` + ξ22` + 2a2

` + 2|s1 − s2|
− 2|s0 − s2| − a2

` − ξ22`

})

+O(Q2) . (C.62)

Now we normalize the localization length with ε and therefore, introduce the
new variable

θ :=
f

εξ2`
=

f`2

(µ2 − 1) ξ2
⇐⇒ ξ2` =

f

εθ
, (C.63a)

with f =
2
3

+ a2
` =

2
3

+
a2

`2
(C.63b)

which – as we will see – remains of the order O(1), when we approach the transition
point. Since the localization lengths are very large, we also normalize q20`⊥ with ε,
so that we have to deal with variables of the order O(1). Hence we define:

t :=
fq20`⊥

2ε
⇐⇒ q20`⊥

2
=
tε

f
(C.64)
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With that Eq. (C.62) becomes:

(
1 + µ2Q

) ∫

θ,s0

exp
(
− t
θ

)

= µ2

∫ 1

0
ds1

∫

θ1,s1

exp
(
−t

{
1
θ1

+
2ε
f
|s0 − s1|+ ε

f
a2

`

})

+
µ4Q

2

∫ 1

0
ds1ds2

∫

θ1,s1

∫

θ2,s2

exp

(
t

f

{ (
εg(s)− εa2

` − fθ−1
2

)2
fθ−1

1 + fθ−1
2 + 2εa2

` + 2ε|s1 − s2|
− 2ε|s0 − s2| − εa2

` − fθ−1
2

})

+O(Q2) . (C.65)

Here we also turned the probability density P(ξ2, s) for ξ2 into the probability
density π(θ, s) for θ:

∫

ξ2,s
=

∫ ∞

0
dξ2 P(ξ2, s) −→

∫

θ,s
=

∫ ∞

0
dθ π(θ, s) . (C.66)

with dξ2 P(ξ2, s) = dθ π(θ, s)

Now, we can sort the saddle point equation (C.65) in orders of ε, and have to keep
in mind that Q = O(ε), as found in Eq. (3.58).

For the three exponentials, we can expand all expressions which are of the order
O(ε): In doing so, we note that the last term on the right hand side of Eq. (C.65)
has a prefactor Q and thus already is of the order O(ε). Hence, we only need to
expand the exponential up to zeroth order, i.e. neglect all terms of the order O(ε):

(
1 + µ2Q

)∫

θ,s0

exp
(
− t
θ

)
(C.67)

= µ2

∫ 1

0
ds1

∫

θ1,s1

exp
(
− t

θ1

)(
1− t

{
2ε
f
|s0 − s1|+ ε

f
a2

`

})

+
µ4Q

2

∫ 1

0
ds1ds2

∫

θ1,s1

∫

θ2,s2

exp

(
t

f

{ (
fθ−1

2

)2
fθ−1

1 + fθ−1
2

− fθ−1
2

})
+O(ε2) .

Here, the argument of the last exponential can be simplified:

t

f

{ (
fθ−1

2

)2
fθ−1

1 + fθ−1
2

− fθ−1
2

}
= t

{
(θ−1

2 )2

θ−1
1 + θ−1

2

− θ−1
2

}
= t©©©©(θ−1

2 )2 − θ−1
2 θ−1

1 −©©©©(θ−1
2 )2

θ−1
1 + θ−1

2

= −t 1
θ1 + θ2

. (C.68)
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With that the saddle point equation (C.67) becomes:

(
1 + µ2Q

)∫

θ1,s0

exp
(
− t

θ1

)

= µ2

∫ 1

0
ds1

∫

θ1,s1

exp
(
− t

θ1

)(
1− 2t

ε

f

{
|s0 − s1|+ 1

2a
2
`

})

+
µ4Q

2

∫ 1

0
ds1ds2

∫

θ1,s1

∫

θ2,s2

exp
(
− t

θ1 + θ2

)
+O(ε2) . (C.69)

C.5.2 Laplace-Transformation of the Saddle Point Equation

Eq. (C.69) could in principle be used to determine the distribution π(θ). When
calculating the actual shape of this distribution, however, is much more convenient,
if it has the form of a differential (or integro-differential) equation, and does not
involve an external variable t. Therefore, as a next step, we try to convert the
three exponential functions to delta functions with the respective θ as argument.
This is done by a Laplace transformation: We multiply the whole equation with
sin(at) exp(t θ−1), integrate over t and take the limit a → 0. Then we can use the
following relations, which are valid for any Θ > 0:

lim
a→0

∫ ∞

0
dt sin(at) exp

(
t

θ

)
exp

(
− t

Θ

)
= lim

a→0

a

a2 +
(
Θ−1 − θ−1

)2

= δ(Θ−1 − θ−1) (C.70a)

and

− lim
a→0

∫ ∞

0
dt t · sin(at) exp

(
t

θ

)
exp

(
− t

Θ

)

= lim
a→0

∂

∂Θ−1

∫ ∞

0
dt sin(at) exp

(
t

θ

)
exp

(
− t

Θ

)

= lim
a→0

∂

∂Θ−1

a

a2 +
(
Θ−1 − θ−1

)2

= δ′(Θ−1 − θ−1) (C.70b)

Now, we apply those two relations to Eq. (C.69). In doing so, Θ = θ1 in the first
two terms, and Θ = θ1 + θ2 in the last term:

(
1 + µ2Q

)∫ ∞

0
dθ1 π(θ1, s0) δ(θ−1

1 − θ−1)

= µ2

∫ 1

0
ds1

∫ ∞

0
dθ1 π(θ1, s1)

(
δ(θ−1

1 − θ−1) +
2ε
f
δ′(θ−1

1 − θ−1)
{
|s0 − s1|+ 1

2a
2
`

})

+
µ4Q

2

∫ 1

0
ds1ds2

∫ ∞

0
dθ1 π(θ1, s1)

∫ ∞

0
dθ2 π(θ2, s2) δ

(
(θ1 + θ2)−1 − θ−1

)

+O(ε2) . (C.71)
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Now we want to integrate over θ1 in the first two terms and over θ2 in the last term
(marked in blue). Therefore we need to use the following relations for δ-functions:

∫
dθ1 π(θ1) δ

(
g(θ1)

)
=

∑
ν

π(θ1ν)
|g′(θ1ν)| (C.72a)

∫
dθ1 π(θ1) δ′

(
g(θ1)

)
=

∑
ν

π(θ1ν)g′′(θ1ν)− π′(θ1ν)g′(θ1ν)
|g′(θ1ν)|3 , (C.72b)

where θ1ν are the roots and g′(θ1ν) and g′′(θ1ν) the derivatives of the function g(θ1),
which we now find for the presented case:

� In the first two terms:

g(θ1) = θ−1
1 − θ−1 !=0

⇒ root: θ1,0 = θ

derivatives: g′(θ1) = −θ−2
1

g′′(θ1) = 2θ−3
1 (C.73a)

� In the last term:

g(θ2) = (θ1 + θ2)−1 − θ−1 !=0

⇔ θ
!= θ1 + θ2

⇒ root:
{
θ2,0 = θ − θ1 for θ ≥ θ1
no root for θ < θ1

derivative: g′(θ2) = −(θ1 + θ2)−2, g′(θ2,0) = −θ−2 (C.73b)

We plug Eqs. (C.72) with the found root and derivatives (C.73) back into the saddle
point equation (C.71):

(
1 + µ2Q

)π(θ, s0)
| − θ−2|

= µ2

∫ 1

0
ds1

(
π(θ, s1)
| − θ−2| +

2ε
f

π(θ, s1) · 2θ−3 + ∂θπ(θ, s1) · θ−2

| − θ−2|3
{
|s0 − s1|+ 1

2a
2
`

})

+
µ4Q

2

∫ 1

0
ds1ds2

∫ ∞

0
dθ1 π(θ1, s1)

π(θ − θ1, s2)
| − θ−2| +O(ε2) , (C.74)

where ∂θπ(θ, s1) is the derivative of π(θ, s1) with respect to θ. We now multiply this
equation with θ−2 on both sides, plug in µ2 = 1+ ε and Q = 2ε+O(ε2), Eq. (3.58),
and get:

(
1 + 2ε

)
π(θ, s0)

=
(
1 + ε

) ∫ 1

0
ds1

(
π(θ, s1) +

2ε
f

(
2θπ(θ, s1) + θ2∂θπ(θ, s1)

){
|s0 − s1|+ 1

2a
2
`

})

+ ε

∫ 1

0
ds1ds2

∫ ∞

0
dθ1 π(θ1, s1)π(θ − θ1, s2) +O(ε2) , (C.75)
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and by substituting s0 → s:

(
1 + 2ε

)
π(θ, s)

= (1 + ε)
∫ 1

0
ds1 π(θ, s1) +

ε

f

∫ 1

0
ds1 ∂θ

(
θ2π(θ, s1)

){
2|s− s1|+ a2

`

}

+ε
∫ 1

0
ds1ds2

∫ θ

0
dθ1 π(θ1, s1)π(θ − θ1, s2) +O(ε2) .

(C.76)

In Sec. 3.7 we examine this integro-differential equation and display the actual shape
of π(θ, s).

C.6 Calculation of a Correlator

Throughout chapter 3 about cross-linked directed polymers we need expressions of
the form:

〈
exp

(
i
∑J

j=1
q̂j r̂(zj)

)〉Halign+Htilt

n+1

=
∫
Dr̂(z) e−H

(n+1)
align,1−H

(n+1)
tilt,1 exp

(
i

J∑

j=1

q̂j r̂(zj)

)
=

∫
dr̂1 · · ·dr̂ZL

exp


i

J∑

j=1

q̂j r̂Zj −
σ∆z

2

ZL∑

Z=2

(r̂Z − r̂Z−1)2

∆z2
−∆z

ZL∑

Z=2

ĥZ(r̂Z − r̂Z−1)
∆z




∫
dr̂1 · · ·dr̂ZL

exp

(
−σ∆z

2

ZL∑

Z=2

(r̂Z − r̂Z−1)2

∆z2

)

(C.77)

First, let us look at the denominator: we can keep r̂1, but make the substitution
t̂Z = r̂Z − r̂Z−1 for Z = 2, ..., ZL, and write:

D =
∫

dr̂1 · · ·dr̂ZL
exp

(
−σ∆z

2

ZL∑

Z=2

(r̂Z − r̂Z−1)2

∆z2

)

=
∫

dr̂1dt̂2 · · ·dt̂ZL
exp

(
−σ∆z

2

ZL∑

Z=2

t̂2Z
∆z2

)

= An+1

(∫
dt̂ exp

(
− σ

2∆z
t̂2

))ZL−1

= An+1

(
2π∆z
σ

)D(n+1)(ZL−1)

(C.78)
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In the numerator we make the same substitution and get:

N =
∫

dr̂1 · · · dr̂ZL
exp


i

J∑

j=1

q̂j r̂Zj −
σ∆z

2

ZL∑

Z=2

(r̂Z − r̂Z−1)2

∆z2
−∆z

ZL∑

Z=2

ĥZ(r̂Z − r̂Z−1)
∆z




=
∫

dr̂1dt̂2 · · ·dt̂ZL
exp


i

J∑

j=1

q̂j(r̂1 + t̂2 + ...+ t̂Zj )−
σ

2∆z

ZL∑

Z=2

t̂2Z −
ZL∑

Z=2

ĥZ t̂Z




=
∫

dr̂1 exp

(
ir̂1

J∑

j=1

q̂j

)

×
∫

dt̂2 · · ·dt̂ZL
exp


i

J∑

j=1

q̂j(t̂2 + ...+ t̂Zj )−
σ

2∆z

ZL∑

Z=2

t̂2Z −
ZL∑

Z=2

ĥZ t̂Z


 (C.79)

In the last two lines, the integral over r̂1 can easily performed, yielding
An+1δq̂1+...+q̂J ,0̂. For the integral over t̂2, ..., t̂ZL

, we make the definition:

ĥ′Z := ĥZ − i
J∑

j=1

q̂jθZj ,Z (C.80)

with θZj ,Z =
{

1 if Zj ≥ Z

0 if Zj < Z
(C.81)

With that the numerator N can be simplified:

N = An+1δq̂1+...+q̂J ,0̂

∫
dt̂2 · · ·dt̂ZL

exp

(
− σ

2∆z

ZL∑

Z=2

t̂2Z −
ZL∑

Z=2

ĥ′Z t̂Z

)

= An+1δq̂1+...+q̂J ,0̂

ZL∏

Z=2

{(
2π∆z
σ

)D(n+1)

exp

(
ĥ′2Z

4σ/(2∆z)

)}

= An+1δq̂1+...+q̂J ,0̂

(
2π∆z
σ

)D(n+1)(ZL−1)

exp

(
∆z
2σ

ZL∑

Z=2

ĥ′2Z

)
(C.82)
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With that expression for the numerator and (C.78) for the denominator, we get for
the original expression (C.77)

〈
exp

(
i
∑J

j=1
q̂j r̂(zj)

)〉Halign+Htilt

n+1

=

An+1δq̂1+...+q̂J ,0̂

(
2π∆z
σ

)D(n+1)(ZL−1)

exp

(
∆z
2σ

ZL∑

Z=2

ĥ′2Z

)

An+1

(
2π∆z
σ

)D(n+1)(ZL−1)

= δq̂1+...+q̂J ,0̂ exp

(
∆z
2σ

ZL∑

Z=2

ĥ′2Z

)

= δq̂1+...+q̂J ,0̂ exp


∆z

2σ

ZL∑

Z=2

(
ĥZ − i

J∑

j=1

q̂jθZj ,Z

)2

 (C.83)

Changing back to the Riemann-integral by taking ∆z = L/ZL → 0 we get:

〈
exp

(
i
∑J

j=1
q̂j r̂(zj)

)〉Halign+Htilt

n+1

= δq̂1+...+q̂J ,0̂ exp


 1

2σ

∫ L

0
dz

(
ĥ(z)− i

J∑

j=1

q̂jθ(zj − z)

)2

 (C.84)

The integral in the exponential can be simplified further. Therefore we will need
the following expression (under the restriction q̂1 + ...+ q̂J = 0̂):

∫ L

0
dz

(
J∑

j=1

q̂jθ(zj − z)

)2

=
∫ L

0
dz

(
J∑

j=1

q̂2j θ(zj − z) +
∑

j 6=k

q̂j q̂kθ(zj − z)θ(zk − z)

)

=
∫ L

0
dz

(
−

∑

j 6=k

q̂j q̂kθ(zj − z) +
∑

j 6=k

q̂j q̂kθ(zj − z)θ(zk − z)

)

=
∫ L

0
dz

(
−

∑

j 6=k

q̂j q̂kθ(zj − z)
(
1− θ(zk − z)

)
)

= −
∑

j<k

q̂j q̂k|zj − zk| (C.85)
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Despite the minus-sign, this expression is always ≥ 0, as it can be seen in the first
line. With that expression we can calculate the integral in expression (C.84):

∫ L

0
dz

(
ĥ(z)− i

J∑

j=1

q̂jθ(zj − z)

)2

=
∫ L

0
dz ĥ2(z)− 2i

J∑

j=1

q̂j

∫ L

0
dz ĥ(z)θ(zj − z)−

∫ L

0
dz

(
J∑

j=1

q̂jθ(zj − z)

)2

= LH2 − 2i
J∑

j=1

q̂jĤ(zj) +
∑

j<k

q̂j q̂k|zj − zk| , (C.86a)

where

Ĥ(z) :=
∫ z

0
dz′ ĥ(z′) and H2 :=

1
L

∫ L

0
dz ĥ2(z) (C.86b)

Now, we plug that form back into Eq. (C.84) and get the result:

〈
exp

(
i
∑J

j=1
q̂j r̂(zj)

)〉Halign+Htilt

n+1

= δq̂1+...+q̂J ,0̂ exp


 1

2σ

(
LH2 − 2i

J∑

j=1

q̂jĤ(zj) +
∑

j<k

q̂j q̂k|zj − zk|
)



(C.87)

without the tilting interaction, i.e. ĥ(z) ≡ 0̂, the result simplifies to:

〈
exp

(
i
∑J

j=1
q̂j r̂(zj)

)〉Halign

n+1

= δq̂1+...+q̂J ,0̂ exp

(
1
2σ

∑

j<k

q̂j q̂k|zj − zk|
)

(C.88)

C.7 The Average Cross-Link Density

Now we calculate the disorder-averaged number of cross-links [M ] and its vari-
ance for the directed polymer model. We calculate expectation values of the
form [M(M − 1) · · · (M − J + 1)] =: MJ , in analogy to the RLP model, Sec. 2.9.1.
The difference is that the disorder average, defined in Eq. (3.22), additionally in-
volves the integrals over the cross-link heights ze. For simplification we define
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DΓ = Dr1(z) · · · DrN (z) and get:

MJ =
1
Z1

∞∑

M=0

N∑

i1,...,iM=1
j1,...,jM=1

(µ̃2)M

M !LM

∫ L

0
dz1 · · · dzM Z(C) ·M(M − 1) · · · (M − J + 1)

=
1
Z1

∞∑

M=J

N∑

i1,...,iM=1
j1,...,jM=1

(µ̃2/L)M

©©M !
©©M !

(M − J)!

∫ L

0
dz1 · · · dzM Z({ie, je, ze}M

e=1)

=
1
Z1

∞∑

M=0

N∑

i1,...,iM+J=1
j1,...,jM+J=1

(µ̃2/L)M+J

(M + J − J)!

∫ L

0
dz1 · · ·dzM+J Z({ie, je, ze}M+J

e=1 )

=
1
Z1

∫
DΓ e−Hev−Halign

∞∑

M=0

N∑

i1,...,iM+J=1
j1,...,jM+J=1

(µ̃2/L)M+J

M !

∫ L

0
dz1 · · ·dzM+J exp

(
− 1

2a2

M+J∑

e=1

(
rie(ze)− rje(ze)

)2

)

=
1
Z1

∫
DΓ e−Hev−Halign

∞∑

M=0

1
M !

×

 µ̃2

L

N∑

i,j=1

∫ L

0
dz exp

(
− 1

2a2

(
ri(z)− rj(z)

)2
)


M+J

=
(µ̃2)J

Z1

(
∂

∂µ̃2

)J ∫
DΓ e−Hev−Halign

× exp


 µ̃2

L

N∑

i,j=1

∫ L

0
dz exp

(
− 1

2a2

(
ri(z)− rj(z)

)2
)

 .

(C.89)

As we can see, the expression after the partial derivative is limn→0Zn+1 = Z1.
Hence we get an analogous result to Eq. (B.109):

MJ =
(µ2)J

Z1

(
∂

∂µ2

)J

Z1 . (C.90)

The general form of Zn+1 is given in Eq. (3.32a):

Zn+1 = exp
(−Nf0

) ∫
DΩexp

(−Nfn+1{Ω}
)

(C.91)

Thereby the contribution f0, given in Eq. (3.31b), becomes in the limit n→ 0:

f0
n→0= −µ

2

2
+
λn0L

2
. (C.92)
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The term fn+1 is given in Eq. (3.33); in the limit n → 0 the sums over the HRS
vanishes:

f1{Ω} = lim
n→0

fn+1{Ω} = 0− ln z with z =
∫
Dr̂(z) exp

(
−H(n+1)

align,1{r̂(z)}
)

(C.93)

The Hamiltonian H(n+1)
align,1{r̂(z)} should not depend on the parameter µ2. Therefore

f1{Ω} is a constant when deriving with respect to µ2. With these expressions
Eq. (C.91) becomes in the limit n→ 0:

Z1 = exp
(
Nµ2

2
+
NLλn0

2
+ const.

)
. (C.94)

This form together with Eq. (C.90) yields the same result for the expectation values
MJ as for the RLP model, Eq. (2.61):

MJ = [M(M − 1) · · · (M − J + 1)] =
(
µ2N

2

)J

. (C.95)

In particular, the mean cross-link density and the standard deviation are given by:

[M ]
N

=
µ2

2
,

∆M =
√

[M2]− [M ]2 =

√
µ2N

2
,

(C.96)

so that ∆M/[M ] ∝ N−1/2.
It is noteworthy that for these results we did not use any expressions which are

only valid close to the sol-gel transition, so Eq. (C.96) holds for arbitrary µ2. If,
however, density fluctuations were allowed during cross-linking, contributions from
the one replica sector of fn+1{Ω} in Eq. (3.32b) may change the average cross-link
density.



Appendix D

Expressions for the Wet

Granulates

D.1 Infinite Sums similar to the Exponential Function

∞∑

r=0

xr

r!
r =

∞∑

r=1

xr

r!
r = x

∞∑

r=1

xr−1

(r − 1)!
= x

∞∑

r=0

xr

r!
= xex (D.1)

∞∑

r=0

xr

r!
(r − 1) =

∞∑

r=0

xr

r!
r −

∞∑

r=0

xr

r!
= xex − ex = (x− 1)ex (D.2)

D.2 Inverting the Equation x−2ex = t

In section 5.3.2, we derived an equation for the evolution of the inverse dimensionless
temperature x:

x−2ex
(
1 +O(x−1)

)
= t , (D.3)

in the asymptotic limit x, t → ∞. Here we solve this equation for x. We proceed
in analogy to the inversion of a similar equation discussed in [de Bruijn, 1958,
Chapter 2.4]. First, we take the logarithm on both sides of Eq. (D.3):

−2 lnx+ x+ ln
(
1 +O(x−1)

)
= ln t

−2 lnx+ x+O(x−1) = τ , (D.4)

with τ := ln t. Now, we transform this equation to

x

(
1− 2

lnx
x

+O(x−2)
)

= τ , (D.5)

which yields two statements:

1) lim
τ→∞

∣∣∣∣
x−1

τ−1

∣∣∣∣ = 1 <∞ ⇒ x−1 = O(τ−1) and (D.6a)

2) lim
τ→∞

∣∣∣∣
lnx
ln τ

∣∣∣∣ = 1 <∞ ⇒ lnx = O(ln τ) (D.6b)
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Therefore in Eq. (D.4) we can replace O(τ−1) by O(x−1) using Eq. (D.6a),

x = τ + 2 lnx+O(τ−1) . (D.7)

Furthermore we can plug the statement (D.6b) in the main equation (D.7) and
successively obtain higher and higher orders of the solution x(t):

� Step 1: (D.6b) in (D.7)

x = τ +O(ln τ) +»»»»O(τ−1) = τ
(
1 +O( ln τ

τ )
)

(D.8a)

lnx = ln τ +O(
ln τ
τ

)
(D.8b)

� Step 2: (D.8b) in (D.7)

x = τ + 2 ln τ +O(
ln τ
τ

)
+»»»»O(τ−1)

= τ
(
1 + 2 ln τ

τ

) (
1 +O(

ln τ
τ(τ+2 ln τ)

))
(D.9a)

lnx = ln τ + ln
(
1 + 2 ln τ

τ

)
+O(

ln τ
τ(τ+2 ln τ)

)

= ln τ +
2 ln τ
τ

− 1
2

(
2 ln τ
τ

)2

+
©©©©©
O

(
ln τ
τ

)3

+O
(

ln τ
τ2

)
(D.9b)

� Step 3: (D.9b) in (D.7)

x = τ + 2 ln τ +
4 ln τ
τ

−
½

½
½

½
½(

2 ln τ
τ

)2

+
©©©©©
O

(
ln τ
τ2

)
+O(τ−1) (D.10)

Now, it would be possible to find an expression for lnx and plug it into Eq. (D.7),
again. However that would yield additional terms of an order higher than O(τ−1),
and thus could be absorbed by O(τ−1) in Eq. (D.7). Hence, the result

x(t) = ln t+ 2 ln ln t+
4 ln ln t

ln t
+O

(
1

ln t

)
(D.11)

is the highest order for x(t) that the original equation (D.3) can yield.

D.3 Computation of the radial distribution function

g(r)

In Sec. 5.4.2.3 we consider the radial distribution function, which is the radial com-
ponent of Eq. (5.45). Here, some details for the computation for a particle configu-
ration {r1, ..., rN} are given.

To compute g(r) for small values of r (i.e. r ≤ r∗ = 6.4d), the algorithm chooses
one particle p1 ∈ {r1, ..., rN} and records the distance of all particles p2 closer than
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r∗. Repeating this procedure for all particles p1 ∈ {r1, ..., rN} yields the histogram
of distances between pairs of particles, from which g(r) can easily be computed by
dividing with 4πr2.

For increasing r, the number of pairs with distance r increases rapidly and
hence not all pairs of particles can be considered anymore; Therefore, for r > r∗,
the algorithm chooses the particles p1 and p2 at random, with a distance of at
least r∗; in repeating this procedure for about 109 initial particles p1, the algorithm
approximates the particle-distance histogram in a Monte-Carlo like fashion.

Two remarks have to be made about the system-boundaries: (i) For a pair of
particles p1 and p2, only the closest distance compatible with the periodic boundary
conditions (in x- and y-direction) is considered. (ii) If particle p1 is close to a hard
wall (in z-direction), then the probability to find a close-by particle is lower. Hence,
whenever g(r) is shown up to a distance r = rmax, then particle p1 is chosen at least
rmax away from the hard wall, in order to avoid the influence of the boundary.
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Appendix E

Further Results from the Spider

Silk Model

Contents

E.1 Effect of the Continuous Background . . . . . . . . . . . . . 187

E.2 Relevance of the Coherent Part of the Scattering Function 187

E.3 Simplification of the Scattering Amplitude A(q) . . . . . . . 188

E.1 Effect of the Continuous Background

In this section we explain why it is necessary to include the continuous background
between the crystallites, introduced in section 4.2.4.

Without the background, the system has vast, unphysical density fluctuations
on the length scale of the crystallite distances, resulting in a large scattering func-
tion G(q) for small q-values. As already explained in section 4.2.4, these density
fluctuations are unphysical because the space between the crystallites is filled with
the amorphous matrix and water molecules. Fig. E.1 shows the scattering profiles
in xy-direction with and without the continuous background. As expected, the sys-
tem without the background shows a large increase of the scattering function for
small q-values. The continuous background, however, acts as a low-pass filter on
the scattering density and therefore annihilates the large intensities for small q.

E.2 Relevance of the Coherent Part of the Scattering

Function

Here we discuss the influence of the coherent part of the scattering function of
Eq. (4.20). Fig. E.2 shows a comparison of the incoherent part

G1(q) =
∫
DD ∣∣A(DTq)

∣∣2 , (E.1)

which is used to calculate the scattering function throughout chapter 4, and the
contribution

G′2(q) :=
∣∣∣∣
∫
DDA(DTq)

∣∣∣∣
2

(E.2)
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Figure E.1: Scattering function in xy-direction with (¤) and without (¥) the contin-
uous background. Without background, density fluctuations on large length scales
cause an increase of the scattering function for small q-values.

of the coherent part, G2(q) = (S(q)− 1)
∣∣∫ DDA(DTq)

∣∣2.
Neglecting the coherent part is plausible for two reasons. Firstly, because the

contribution of G′2(q) is small compared to the incoherent part G1(q), as seen in
the figure. And secondly, the length scale for the distances between the crystallites
is much larger than atom length scales investigated here. On the length scales we
are interested in, we expect S(q) ≈ 1, assuming that the crystallite positions have
no long range order. Therefore, the prefactor (S(q)− 1) additionally reduces the
contribution of the coherent term.

The (002) peak is special for the coherent scattering term G′2(q). All peaks
except for the (002) peak have a very small contribution in G′2(q) because of the
white average of the crystallites’ rotations about the fiber axis. This makes coherent
scattering from different crystallites very unlikely, no matter how the crystallites are
arranged in space. Since there is a preferential alignment of the crystallites in the
z-direction, however, contributions of coherent scattering from different crystallites
(which are contained in the term G′2(q)) are not completely destroyed; therefore,
if the crystallites’ distance in the z-direction is a multiple of the unit cell size az,
causing a large contribution in the prefactor (S(q)− 1) at the position of the (002)
peaks, a contribution of G2(q) will be present.

E.3 Simplification of the Scattering Amplitude A(q)

As defined in Eq. (4.16), the scattering amplitude of a single crystallite is given by

A(q) =
M∑

m=1

K∑

k=1

Fk(q) exp(iq · rm,k) . (E.3)
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Figure E.2: Left: Calculated scattering images as in Fig. 4.12, but for a Gaussian
distribution (rounded to integers) of the crystallite sizes Mx, My and Mz. The
widths are ∆Mx = 2, ∆My = 0.75 and ∆Mz = 3 respectively. Right: correlated
part G′2(q) of the scattering function Eq. (4.20) in comparison to the uncorrelated
part on the left.

The sums over the unit cells m = (mx,my,mz) are:

A(q) =
Mx∑

mx=1

My∑

my=1

Mz∑

mz=1

K∑

k=1

Fk(q) exp
(
iq(mxax +myay +mzaz − scm + rk)

)

=
Mx∑

mx=1

exp(iqaxmx)
My∑

my=1

exp(iqaymy)
Mz∑

mz=1

exp(iqazmz)

× exp
(
−iq · (Mx+1)ax+(My+1)ay+(Mz+1)az

2

) K∑

k=1

Fk(q) exp(iqrk) . (E.4)

For each ν = x, y, z the sum over mν is a geometric progression

Mν∑

mν=1

exp(iqaνmν) =
exp

(
iqaν(Mν +1)

)− exp
(
iqaν

)

exp
(
iqaν

)− 1
, (E.5)

and hence

Mν∑

mν=1

exp(iqaνmν) exp
(
−iq · (Mν +1)aν

2

)

=
exp

(
iqaν(Mν +1)

)− exp
(
iqaν

)

exp
(
iqaν

)− 1
exp

(−iqaν(Mν +2)/2
)

exp(−iqaν/2)
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=
exp

(
iqaνMν/2

)− exp
(−iqaνMν/2

)

exp
(
iqaν/2

)− exp
(−iqaν/2

)

=
sin

(
iqaνMν/2

)

sin
(
iqaν/2

) . (E.6)

With that, Eq. (E.4) becomes:

A(q) = LMx(qax)LMy(qay)LMz(qaz)
K∑

k=1

Fk(q) exp(iqrk) , (E.7)

where LMν (qaν) = sin(qaνMν/2)
sin(qaν/2) is the Laue function. The result (E.7) is used in

Sec. 4.3.3.
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Used Symbols and Notation
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F.1 Notation

A few matters concerning the notation are addressed here. The following remarks
apply to the whole thesis, in the attempt to allow for a simple notation, but still
dispel possible confusion:

For volume integrals with a D-dimensional variable x, the simplified notation∫
V dx... or

∫
dx... is used, instead of

∫
V dDx... which can appear quite overloaded

as soon as expressions become more complicated. Confusion with line integrals, like∫
F(x) dx :=

∫
F

(
x(t)

) · x′(t) dt, is not given, because they do not appear in this
work. Fourier and real functions have the same name; e.g. U(q) is the Fourier
transform of the potential U(r) in chapters 2 and 3. The type of the argument –
real-space variable r with units of length, or Fourier-space variable q with units of
inverse length – determines what function is meant. To describe the asymptotic
behavior of a function, the Landau symbol O is used. And the imaginary unit
is always a roman “ i ” to avoid confusion with a variable “i ”.

In the following, the used symbols and variables for the main chapters of this
thesis can be found. For most symbols, also a reference to its introduction or
definition is listed. “Temporary symbols”, however, which are only used near their
definition, are not quoted in order to keep the list short and clear.
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F.2 Symbols for the Randomly Cross-Linked Particle

Model

[ · ] disorder average, see Sec. 2.3 and Eq. (2.7)∫
ξ2
1 ,...,ξ2

r
=

∫∞
0 dξ21P(ξ21) · · ·dξ2rP(ξ2r ), introduced in Eq. (B.53)

‖,⊥ used for the separation of replicated D(n+1)-dimensional vectors into
“common” and “relative” components; see Eqs. (2.35)-(2.37)

0RS zero replica sector, 0RS = {0̂}, see Sec. 2.4.3
1RS one replica sector, set of q̂-values with exactly one replica component

non-zero: 1RS = {q̂ 6= 0̂ | q̂ = (0, ...,0,q(α),0, ...,0) with 0 ≤ α ≤ n},
see Sec. 2.4.3

a typical cross-link distance (mostly appearing as a2)
A arbitrary and unspecified quantity, used to define general expressions

like a thermal average
α specifying the replica and appearing as index (α); α ∈ {0, ..., n}
Cγ = (a2 + ξ2γ)−1 defined in Eq. (B.54)
C =

∑r
γ=1Cγ defined in Eq. (B.54)

C cross-link configuration, representing the M pairs of connected parti-
cles: C = {ie, je}M

e=1

D spatial dimension
Dr = dr/V dimensionless measure, introduced in the partition function

Eq. (2.6)
Dx‖ = dx‖/V‖ dimensionless measure for ‖-vectors, residing in the volume

V‖
Dr̂ = dr̂/V n+1 dimensionless measure for “hatted” vectors
DΩ measure for the integration over the fluctuating field Ω;

DΩ ∝ ∏
q̂ dΩ(q̂), see Eq. (B.16)

∆(q̂) = exp(−q̂2a2/2), introduced in Eq. (2.20)
ε distance from the critical cross-link concentration, ε = µ2 − 1
f0 = −φn µ2

2 + (n+1)λn0
2 , see Eq. (2.19)

f̃n+1{r̂j} defined such that Zn+1 =
∫

(
∏

j dr̂j) exp
(−Nf̃n+1{r̂j}

)
, see Eq. (2.14)

fn+1{Ω} defined such that Zn+1 = e−Nf0
∫ DΩexp

(−Nfn+1{Ω}
)
, see Eqs. (2.27)

FC = − lnZC , free energy (all energies in units of kBT )
φ = (2π)D/2 · aD/V

G shear modulus; see Eqs. (2.53) and Sec. 2.9.3
HC = HXlink +Hev

Hev excluded volume Hamiltonian, Hev({rj}) = λ
2

∑N
i,j=1 U(ri − rj)

H
(n+1)
ev =

∑n
α=0Hev({r(α)

j }), replicated excluded-volume interaction
HXlink cross-link Hamiltonian, HXlink = 1

2a2

∑M
e=1(rie − rje)2, see Eq. (2.1)

HRS higher replica sector, all q̂-vectors with at least two non-zero entries:
HRS = {q̂ | q̂ 6= 0̂ ∨ q̂ /∈ 1RS}, see Sec. 2.4.3

λ strength of the excluded-volume interaction, see Hev

λ̃(q̂) = n0λU(q̂)− φnµ2∆(q̂), introduced in Eq. (2.24b).
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M number of cross-links
µ2 parameter of the Deam-Edwards distribution, see Eq. (2.7); found to

be the average coordination number of the particles, see Sec. 2.9.1
µ̃2 = V

2NaD
µ2

(2π)D/2 = µ2

2Nφ

N number of particles
n number of replicas
n0 = N/V , particle density
O(x̂) = 1

N

∑N
j=1 δ(x̂− r̂j), replicated real-space density; see Eq. (2.16)

O(q̂) = 1
N

∑N
j=1 exp(iq̂r̂j), replicated Fourier-space density; see Eq. (2.17a)

Ω(q̂) order parameter of the theory, see e.g. Eq. (2.27b); in the thermody-
namic limit equal to O(q̂)

Ω̄sp saddle-point solution for the order parameter; see Eqs. (2.33) and (2.48)
Ω̄u(q̂) Ansatz for the order parameter with displacement field u⊥(x‖), see

Eq. (2.45)
P (C) probability for the cross-link configuration C; see Sec. 2.3
P(ξ2) distribution of localization lengths; see Eq. (2.43)
-π π/(2π) = 1/2; simplifying notation
Q gel fraction, i.e. the fraction of particles in the macroscopic cluster;

introduction in Sec. 2.6 and discussion in Sec. 2.9.2
u⊥(x‖) spatially dependent deformation field; see Sec. 2.6.2
u(α)

phys(x‖) physically relevant deformation field (relative to the state during cross-
linking); see Sec. 2.6.3

U(r) potential for the excluded-volume interaction Hev

U(q) Fourier transform of the potential U(r) for the excluded-volume inter-
action Hev

U(q̂) = U(q(α)) for q̂ = (0, ...,0,q(α),0, ...,0) ∈ 1RS
rj position of particle j
V D-dimensional volume of the system
V‖ = V (n+1)D/2; rescaled volume of the system for ‖-vectors, which are

scaled by a factor of
√
n+1, compared to normal vectors; see Sec. 2.6.1

ξ localization length, quantifying the extent of the fluctuations of a lo-
calized particle; see Sec. 2.6

Ξr,a2 =
∫

ξ2
1 ,...,ξ2

r

ln




(
V

(2π)D/2

)r−1
(∏r

γ=1(a
2 + ξ2γ)−1

∑r
γ=1(a2 + ξ2γ)−1

)D/2



ZC partition function, depending on the cross-link configuration C
Zn+1 Made such that [Zn

C ] = Zn+1/Z1, actual form given in Eq. (2.14c)
z effective one-particle partition function, see Eq. (2.27c)
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F.3 Symbols for the Cross-Linked Directed Polymers

[ · ] disorder average, see Sec. 3.3.2 and Eq. (3.22)∫
ξ2,z =

∫∞
0 dξ2 P(ξ2, z), introduced in Eq. (3.45)

‖,⊥ used for the separation of replicated D(n+1)-dimensional vectors into
“common” and “relative” components; see Appendix A∑′

q̂∈HRS

∑′
q̂∈HRS

(...) := Q+
∑

q̂∈HRS(...); simplifying definition, see Eq. (3.37)

0RS zero replica sector, 0RS = {0̂}, see Sec. 3.4.2
1RS one replica sector, set of q̂-values with exactly one replica component

non-zero: 1RS = {q̂ 6= 0̂ | q̂ = (0, ...,0,q(α),0, ...,0) with 0 ≤ α ≤ n},
see Sec. 3.4.2

a typical cross-linking length in the transverse plane; see HXlink and
Eq. (3.15)

a2
` = a2/`2, defined in Eq. (3.59b)
A D-dimensional (hyper-)area of the system in the transverse plane; see

Sec. 3.3
A arbitrary and unspecified quantity, used to define general expressions

like a thermal average
α specifying the replica and appearing as index (α); α ∈ {0, ..., n}
C cross-link configuration, representing the M pairs of chains connected

at height ze; C := {(ie, je, ze)}M
e=1; see Sec. 3.3

Dr(z) measure for the functional integral over all possible conformations of a
chain r(z); see Eq. (3.21)

∆(q̂) = exp
(−q̂2a2/2

)
, introduced in Eq. (3.31c)

ε distance from the critical cross-link concentration, ε = µ2 − 1
f 2

3 + a2

`2
, see Eq. (3.60b)

f0 = −φn µ2

2 + (n+1)λn0L
2 ; see Eq. (3.31b)

f̃n+1{r̂j} defined such that Zn+1 =
∫ (∏N

j=1Dr̂j(z)
)

exp
(−Nf̃n+1{r̂j}

)
;

see Eq. (3.27)
fn+1{Ω} defined such that Zn+1 = e−Nf0

∫ DΩexp
(−Nfn+1{Ω}

)
, see Eqs. (3.32)

φ = (2π)D/2 · aD/A

Halign = σ
2

∑N
j=1

∫ L
0 dz ṙ2

j (z); alignment interaction of the whole system; de-
fined in Eq. (3.17); note that Halign =

∑N
j=1Halign,1{rj};

Halign,1 = σ
2

∫ L
0 dz ṙ2(z); alignment interaction of a single chain r(z); see

Sec. 3.2.1
H

(n+1)
align replicated alignment interaction; H(n+1)

align {r̂j} =
∑n

α=0Halign{r(α)
j }

Hev = λ
2

∑N
i,j=1

∫ L
0 dz U

(
ri(z)−rj(z)

)
; excluded volume interaction, defined

in Eq. (3.16)
H

(n+1)
ev replicated excluded volume interaction; H(n+1)

ev {r̂j} =
∑n

α=0Hev{r(α)
j }

HXlink = 1
2a2

∑M
e=1

(
rie(ze)− rje(ze)

)2, defined in Eq. (3.15)
HRS higher replica sector, all q̂-vectors with at least two non-zero entries:
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HRS = {q̂ | q̂ 6= 0̂ ∨ q̂ /∈ 1RS}, see Sec. 3.4.2
I(q̂0, z0) simplifying definition, actual form given in Eq. (3.36)
L height of the system in the direction of preferred alignment; see Sec. 3.3
`2 := L/(2σ) ∝ R2

g; simplifying definition, see Sec. 3.2.1 and Eq. (3.6)
λ strength of the excluded-volume interaction, see Hev and def. (3.16)
λ̃(q̂) = λn0U(q̂)− φn µ2

L ∆(q̂), introduced in Eq. (3.31d)
M number of cross-links
µ2 parameter of the Deam-Edwards distribution, see Eq. (3.22); found to

be the average coordination number of the chains; see Appendix C.7
µ̃2 = µ2

2Nφ = A
2NaD

µ2

(2π)D/2

n number of replicas
N number of chains
O(x̂, z) = 1

N

∑N
j=1 δ(x̂− r̂j(z)), replicated real-space density; see Eq. (3.29a)

O(q̂, z) = 1
N

∑N
j=1 exp(iq̂r̂j(z)), replicated Fourier density; see Eq. (3.29b)

Ω(q̂, z) order parameter of the theory, see e.g. Eq. (3.32); in the thermodynamic
limit equal to O(q̂, z)

Ω̄(q̂, z) Ansatz for the order parameter Ω(q̂, z), shown to solve the saddle-point
equation; actual form given in Eq. (3.44)

P (C) probability for the cross-link configuration C; see Sec. 3.3.2
P(ξ2, z) distribution of localization lengths at a given height z; see Eq. (3.42)
P(ξ2, s) distribution of localization lengths at normalized height s = z/L; see

Eq. (3.53)
π(θ, s) distribution for θ at normalized system height s = z/L; see Eq. (3.60c)
π̄(θ) distribution for θ, averaged over the system height; see Eq. (3.62)
δπ(θ, s) deviation of π(θ, s) from the mean value π̄(θ), normalized with ε; see

Eq. (3.64)
q20`⊥ = `2q20⊥, defined in Eq. (3.59c)
Q gel fraction, i.e. the fraction of chains in the macroscopic cluster; intro-

duction in Sec. 3.5 and discussion in Sec. 3.6.2
Rg transverse radius of gyration of an uncrosslinked chain;

R2
g = D

6
L
2σ , see Sec. 3.2.1

θ = f/(εξ2` ); normalized inverse and squared localization length, see
Sec. 3.7.1 and Eq. (3.60a)

U(r) potential for the excluded-volume interaction Hev

U(q) Fourier transform of the potential U(r) for the excluded-volume inter-
action Hev

U(q̂) = U(q(α)) for q̂ = (0, ...,0,q(α),0, ...,0) ∈ 1RS
ξ localization length, quantifying the extent of the fluctuations of a lo-

calized chain segment; see Sec. 3.5
ξ̃2 = ξ2 + a2, defined in Eq. (3.49)
ξ2` = ξ2/`2, defined in Eq. (3.59a)
ZC partition function, depending on the cross-link configuration C, intro-

duced in Eq. (3.20)
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Zn+1 Made such that [Zn
C ] = Zn+1/Z1, actual form given in Eq. (3.27)

z effective one-particle partition function, see Eq. (3.32c)
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F.4 Symbols for the Spider Silk Model

〈 〉 average over crystallite positions R(j) and orientations D(j); see
Sec. 4.2.3 and Eq. (4.6)∑M

m=1 =
∑Mx

mx=1

∑My

my=1

∑Mz
mz=1, simplifying notation

ax,y,z primitive vectors of the crystallite, see Sec. 4.2.2
ax,y,z magnitudes of the primitive vectors ax, ay and az

A(q) scattering amplitude of a single crystallite; defined in Eq. (4.16), treated
in Sec. 4.3.3

Cα for the alanine amino acid, the C-atom to which the CH3 group is
bound

∆y12 amount of the shift of strands 1 and 2 (see Fig. 4.8) in y-direction
∆z12 amount of the shift of strands 1 and 2 (see Fig. 4.8) in z-direction
∆z24 amount of the shift of strands 2 and 4 (see Fig. 4.8) in z-direction
D(j) rotation matrix specifying orientation of crystallite j; comprised by the

Euler angles φ(j), θ(j), ψ(j); see Sec. 4.2.3 and Fig. 4.5
DD measure for the integration over the orientation matrix D, see Sec. 4.2.3

and Eq. (4.7)
fk form factor of atom k ∈ {1, ...,K}, see Sec. 4.2.1
f̄ amplitude of the cavities V (r), see Sec. 4.2.4 and Eq. (4.8)
Fk(q) = fk− Ṽ (q), effective form factor of atom k; see Eq. (4.12) and Sec. 4.3
G(q) scattering function, general definition in Eq. (4.1), applied to our model

in Eq. (4.11)
G1(q) incoherent contribution of the scattering function G(q), accounting for

scattering from a single crystallite; treated in Sec. 4.3.1
G2(q) coherent contribution of the scattering function G(q), accounting for

scattering from different crystallites; treated in Sec. 4.3.2
K number of atoms in one unit cell
m = (mx,my,mz); vector index specifying a unit cell inside a crystallite,

see Sec. 4.2.2
Mx,y,z number of repetitions of the unit cell in x-, y- and z-direction, respec-

tively, in order to build one crystallite; see Sec. 4.2.2
N number of crystallites
Ppos Ppos(R(1), ...,R(N)) is the (correlated) distribution function for the

crystallite positions R(1), ...,R(N); introduced in Sec. 4.2.3
Pangle Pangle(φ, θ, ψ) is the probability to find a crystallite orientation specified

by the Euler angles φ, θ, ψ; see Sec. 4.2.3 and Fig. 4.5
φ(j)

ψ(j)

}
see D(j)

qxy component of the wave vector q in x- or y-direction; the two directions
are indistinguishable due to rotational symmetry of the system about
the z-axis

R(j) position of crystallite j
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rk position of atom k ∈ {1, ...,K} relative to the center of the unit cell
rm,k position of atom k of unit cell m, relative to the center of the crystallite;

see Eq. (4.4) and Sec. 4.2.2
r(j)
m,k position of atom k of unit cell m of crystallite j; see Eq. (4.5) and

Sec. 4.2.3
%0 scattering strength of the continuous background between the crystal-

lites, see Sec. 4.2.4
sm vector pointing from the center of an unrotated crystallite to the center

of unit cell m = (mx,my,mz), see Sec. 4.2.2
θ(j) Euler angle specifying the tilt of crystallite j from the fiber axis, see

D(j)

θ0 width of the distribution for the tilting angle θ of the crystallites from
the fiber axis; see Sec. 4.2.3

〈u2〉 mean square displacement of the atoms in any direction, to account for
the Debye-Waller factor; see Eq. (4.21)

V volume of the system
V (r) shape of the cavity of the “continuous background” around the

atoms that prevents background scattering inside the crystallites; see
Sec. 4.2.4 and Eq. (4.8)

Ṽ (q) Fourier transform of the cavity V (r)
ξ width of the cavities V (r)
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F.5 Symbols for the Wet Granular System

β2 kurtosis, quantifying deviations from a Gaussian velocity profile; see
Eqs. (5.25)-(5.26)

d particle diameter
dc bond breaking distance, dc = 1.07d unless noted otherwise
D spatial dimension
Df fractal dimension of a cluster
∆E bond breaking energy, i.e. energy needed for one bond rupture
fcoll collision frequency
g(r) pair correlation function, see Sec. 5.4.2.3 and Eq. (5.45)
g(r) radial distribution function, spherical symmetric part of g(r)
γ proportionality factor between collision frequency and temperature in

the clustered state, defined in Eq. (5.14)
L linear dimension of the system
Lbox edge length of the boxes for the box counting algorithm, see Sec. 5.4.2.2
Lco cross-over length from fractal to compact behavior of the asymptotic

cluster, see Sec. 5.4.2
m mass of a particle or a cluster of particles
m̄(t) mean cluster mass, defined in Eq. (5.36)
n = N/V , particle density
ncl number of clusters, see Sec. 5.4.1.3
N number of particles
Nbox number of boxes of edge length Lbox needed to cover the cluster, see

Sec. 5.4.2.2
Nm(t) cluster mass distribution, i.e. number of clusters with m particles at

time t; see Sec. 5.4.1.2
Ni the i-th of a total of ncl clusters, used in Sec. 5.3.4
N (i) partial cluster of the asymptotic cluster, containing all particles that

can be reached with i or less neighbor-to-neighbor steps, starting from
a random particle, see Sec. 5.4.2.5

ν = 2
3
√

π
· γ∆E1/2, see discussion around Eq. (5.15)

Pbb probability for a bond rupture, i.e. probability that the kin. energy is
large enough to break a bond

φ = N
V · π

6d
3, volume fraction

rj position of particle j
rg radius of gyration of a cluster, see Eq. (5.33)
σ scattering cross section for a pair of particles
t time
t̃ = νt+ c, simplifying definition; see discussion around Eq. (5.22)
t0 transition time from free cooling to aggregation, see Eqs. (5.7)
T granular temperature, see Sec. 5.3 and Eq. (5.2)
T0 initial value of the temperature; for all simulations T0 = 45∆E
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vj velocity of particle j
V = L3; volume of the system
w(v) velocity distribution, see Sec. 5.3.3
z coordination number, i.e. number of neighbors of a particle
z̄ average coordination number
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