
Branched Flow and Caustics in
Two-Dimensional Random Potentials

and Magnetic Fields

Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Jakob Johannes Metzger

aus Bonn

Göttingen 2010



D7
Referent: Prof. Dr. T. Geisel
Korreferent: Prof. Dr. M. Timme
Tag der mündlichen Prüfung: 16.04.2010



Abstract
Branched flow is a universal phenomenon of two-dimensional wave or particle flows which
propagate through a weak random potential. Its origin is the formation of caustics, which
are locations where the flow is focused by the cumulative effect of weak random forces
acting along the flowpath. Branched flow has been observed on length scales spanning
at least twelve orders of magnitude and in a variety of systems. For example, it has been
studied in semiconductor microdevices, has been argued to be the mechanism underly-
ing the formation of giant freak sea waves and has been predicted for the propagation
of sound through the ocean on scales of several thousands of kilometers. A thorough
understanding of the mechanism dictating how a random potential can cause such dra-
stic effects such as branching is therefore important in many areas of physics, and is
interesting to experimentalists and theoreticians alike.

In this thesis, we contribute to the theory of branched flow in the following ways. First,
we consider the statistics of caustics along particle trajectories in a random potential
with an additional deterministic focusing mechanism, a constant magnetic field. By
extending existing theories and with detailed numerical simulations we can study the
interplay between random focusing by the disorder potential and deterministic focusing
by the magnetic field.

We then apply our theory to data from a magnetic focusing experiment in a semicon-
ductor microstructure. We can reproduce the results of the experiments numerically and
show them to be a result of random and deterministic focusing. Our results have im-
portant consequences for the conductance properties of semiconductor microstructures.

In the second part of the thesis, we consider the statistics of branches transverse to
the flow, since this, although not as directly analytically and numerically accessible, is
a quantity which can be measured more easily in an experiment. For the first time,
we obtain statistics of the number of branches valid for all distances from a source,
analytically and numerically. Also for the first time, we analyze the effect of different
correlation functions and find an analytic expression for the universal curve describing
the number of branches, which is valid for a wide range of correlation functions and
parameters of the random potential.



Kurzfassung
Branched flow (“verästelter Fluss”) ist ein universelles Phänomen zweidimensionaler
Teilchen- und Wellenflüsse, die durch ein schwaches, korreliertes Zufallspotential pro-
pagieren. Ihm liegt die Entstehung von Kaustiken zugrunde, an denen die Flussdichte
besonders hoch ist. Die Flussverästelung ist auf Längenskalen, die sich auf mehr als zwölf
Größenordnungen erstrecken, und in einer Vielzahl verschiedener Systeme beobachtet
worden. Sie wurde unter anderem in Halbleiter-Mikrostrukturen untersucht, als Ursache
für Riesenwellen (Monsterwellen) beschrieben und für die Propagation von Schallwellen
durch den Ozean auf Skalen von tausenden von Kilometern vorhergesagt. Eine genaues
Verständnis des Mechanismus, durch den ein schwaches Zufallspotential solch drastische
Wirkung haben kann, ist daher in vielen Bereichen der Physik und für Experimentatoren
ebenso wie für Theoretiker von großer Bedeutung.

In der vorliegenden Arbeit wird auf folgende Art und Weise zum theoretischen Ver-
ständnis der Flussverästelung beigetragen: Zuerst wird die Statistik von Kaustiken in
einem Zufallspotential mit einem zusätzlichen deterministischen Fokussierungsmecha-
nismus, einem konstanten Magnetfeld, betrachtet. Durch das Erweitern existierender
Theorien und anhand detaillierter numerischer Simulationen kann das Zusammenspiel
von zufälliger Fokussierung durch das Unordnungspotential und deterministischer Fo-
kussierung durch das Magnetfeld untersucht werden.

Im folgenden werden die gewonnenen theoretischen Erkenntnisse zur Erklärung von
Daten eines Experiments zur magnetischen Fokussierung in Halbleiter-Mikrostrukturen
angewandt. Die experimentellen Daten können durch numerische Simulationen reprodu-
ziert werden. Es wird gezeigt, dass die Daten die Auswirkungen von deterministischer
und zufälliger Fokussierung zeigen. Dieses Ergebnis hat wichtige Konsequenzen für die
Transporteigenschaften von Halbleiter-Mikrostrukturen.

Im zweiten Teil der Arbeit wird die Statistik von Flussästen senkrecht zur Flussrich-
tung behandelt, da diese Größe, wenngleich numerisch und analytisch schwerer zugäng-
lich, experimentell leichter zu messen ist. Erstmals wird die Statistik von Ästen, gültig
für aller Entfernungen zur Quelle, analytisch und numerisch bestimmt. Ebenfalls zum
ersten Mal wird der Einfluss unterschiedlicher Korrelationsfunktionen untersucht. Ein
analytischer, universeller Ausdruck wird hergeleitet, der die Anzahl der Äste in Zufalls-
potentialen mit einer Vielzahl unterschiedlicher Korrelationsfunktionen und Parametern
beschreibt.
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1 Introduction

Caustics appear abundantly in nature, and can be observed on almost all scales, from
the microscopic to the macroscopic. Caustics are regions where a particle or wave flow
is focused. They are therefore often the cause of extreme events and hence of special
interest. Focused light, for example, is used in countless optical devices and supposedly
was already employed by Archimedes, whose mirror construction was reported to have
been powerful enough to ignite hostile ships [1]. In the ocean, underwater islands or
other large-scale effects can focus water waves on the ocean surface and create huge freak
waves [2–9]. Focused sound waves created by a plane crossing the sound barrier result in
the sonic boom [10], a mechanism which is also used in particle physics, where Cherenkov
light emitted from very fast particles is used to measure the particles’ velocity [11,12].

The theory of focusing has also been important in understanding natural phenomena,
one of the most famous examples being Descartes’ theory of the rainbow [13], and has
sparked mathematical developments such as the Airy functions [14], which were first
used to describe the intensity profile across a focal line.

The mathematical description of caustics has received considerable attention for at
least two reasons. First, a focus is rarely just a point focus, which is in fact unstable
and non-generic. Rather, caustics form intricate shapes and appear as lines and surfaces
with complex topology. Secondly, they are, in the most elementary treatments (such as
classical and standard semi-classical theories), singularities of a wave or particle flow, i.e.
the flow density diverges at caustics, which complicates their mathematical treatment.
Only in the 1970s and 80s, with the application of catastrophe theory to caustics, was
it possible to classify the singularities rigorously and thereby to describe the different
shapes which caustics take [15–20]. However, only few quantitative results have emerged
from this approach [21,22].

Focusing can not only take place in a specifically designed setup, but can also hap-
pen randomly. When particles or waves travel through a medium with small, random
but correlated inhomogeneities, they can collectively focus the flow. In this way, even
minute perturbations can quickly lead to drastic effects - a clear hint that the equations
describing this phenomenon are nonlinear. There are many examples of this random
focusing: The twinkling of starlight which propagates through the slightly inhomoge-
neous atmosphere [23–27] or light in an optical fibre focused by small perturbations [28],
freak waves in the ocean which can even appear in calm seas and without an additional
focusing mechanism such as an underwater island but just by small fluctuations in the
wave velocity [29–37], the focusing of sound waves in the ocean because of the fluc-
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1 Introduction

Figure 1.1: Flow from a point source through a random, correlated potential. Regions
of high flow density are colored in dark gray.

tuating water density [38–44], and the random focusing of electrons in semiconductor
devices because of a random disorder potential created by donor atoms [45–47], which
can drastically alter the transport properties of such devices. Random caustics have also
been described as a mechanism for the activation of rainshowers [48], and have recently
been observed in microwave cavities [49]. A numerical simulation of a flow from a point
source travelling through a random, correlated potential is shown in fig. 1.1. Branches
of high intensity are clearly visible.

Although the fundamental and technological importance of understanding caustics in
systems with random fluctuations is apparent, many questions in this field remain open.
In this thesis, we, on the one hand, attempt to answer some of the fundamental, yet
elusive questions in the theory of caustics in random media, and on the other hand apply
the theory to the analysis of experimental data, showing the direct relevance of our the-
ory. Since focusing is fundamentally a classical effect which is only softened and blurred
in a corresponding wave system, we will deal almost exclusively with classical, conser-
vative Hamiltonian systems. In addition, only two-dimensional systems are considered,
as they allow an analytical treatment where, in many cases, the corresponding higher
dimensional equations would not. Also, because of the complexity of the geometry of
caustics in higher dimensions, it is much more complicated to observe them experimen-
tally in more than two dimensions, which is reflected in the fact that many important
examples of the appearance of caustics, such as most of the ones mentioned above, occur
in systems which to a good degree of accuracy can be approximated as two-dimensional.
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The caustics then usually appear as pairs of lines resembling branches, which gives rise
to the term branched flow. The thesis is set out in the following way:

In the first chapter, we describe fundamental concepts and tools needed for the analysis
of caustics in random media. Here, we also further clarify the meaning of the term
branched flow. However, it is not just a review of existing results, but already applies
the concepts introduced to a toy model in order to provide some intuition and prepare
the grounds for the following chapters.

In chapter two, we study the statistics of caustics along trajectories. We extend
existing theories to allow for the calculation of caustic statistics of charged particles in
a random potential, where in addition a constant magnetic field is applied. Since the
magnetic field is by itself a focusing mechanism, we can study the interplay between
this deterministic focusing and the random focusing by the disorder potential. We also
perform numerical simulations for a wide range of random potentials to test existing
results and to confirm our analytical results.

In chapter three, data from a magnetic focusing experiment in a semiconductor mi-
crodevice is analyzed. The theory developed in the previous chapter can be applied in
order to understand where branching can take place and how it affects the experimental
results. Together with detailed simulations of the experiment, we can explain the data
as a results of magnetic and random focusing. Our results have important consequences
for the conductance properties of semiconductor microdevices.

Chapter four shifts to a more technical delineation of the stability of the particle tra-
jectories and how this can be used as an alternative approach to obtain caustic statistics
to the one described in the second chapter. Not only simple caustics are treated, but a
general method for finding caustics of higher order is devised using the example of the
cusp. Stochastic equations for the quantities involved are derived, solved and compared
to numerical simulations.

The final chapter describes the transition of caustic statistics along a trajectory to
statistics in a fixed reference frame, i.e. the transition from a Lagrangian to an Eulerian
view. Here, results from other chapters are combined in order to derive an approximate
analytical expression for the number of branches per unit distance transverse to the
flow and a certain distance away from the source, which is in excellent agreement with
numerical simulations. We show that there exists a universal curve describing this
quantity, valid for a wide range of random potentials.
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2 Fundamentals of caustics and
branched flow

In this chapter, fundamental concepts and ideas which will be used throughout this
thesis will be introduced. We begin by describing the theoretical framework which we
will be working in and state some basic facts about the Hamilton-Jacobi-equation which
are important for the theory of caustics and branched flow. We then study caustics
in terms of Lagrangian manifolds, which provide an intuitive way of understanding the
phase space geometry at caustics. Following this, we turn to a description of the density
or intensity of the Hamiltonian flow in order to show that at caustics, the intensity
of the flow diverges classically. This thesis is about transport through random media.
Therefore, we also include a brief description of how the random potentials used in
this thesis are modeled. This leads us to the meaning of the term branched flow in
relation to caustics and random potentials, from where we move on to considering the
structural stability and the geometry of caustics which will be done in the context of
catastrophe theory. Following this, we introduce the stability matrix, which will be
important throughout this thesis, and which provides a different approach to studying
caustics. Finally, we construct the simplest possible model of cusp formation (without
a random potential) in order to illustrate the quantities and concepts introduced in this
chapter.

From a mathematical point of view, caustics appear ubiquitously in nonlinear partial
differential equations (PDEs). In this thesis, they will be studied in the context of
Hamiltonian flows, at the heart of which is the Hamilton-Jacobi-Equation (HJE) [16,
50–52],

∂

∂t
S (t, ~x) +H

(
t, ~x,

∂S

∂~x

)
= 0 (2.1)

where in the usual notation S is the classical action, H the Hamiltonian, ~x the position
vector and t the time. We will deal exclusively with Hamiltonians of the form

H

(
t, ~x,

∂S

∂~x

)
= 1

2

(
∂S

∂~x

)2

+ V (~x) (2.2)

and thus will be considering conservative systems with non-interacting particles with
mass equal to unity. The potential V (~x) will be a smooth, random function of the posi-
tion. Since the HJE is a non-linear, first-order equation, it allows an analysis using the
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2 Fundamentals of caustics and branched flow

method of characteristics [53–55]. The characteristics of the HJE are the familiar tra-
jectories which obey Newton’s law. In any non-trivial Hamiltonian system, trajectories
cross in finite time in position space, leading to a multivalued solution of the HJE. If
the transition to a multivalued solution occurs smoothly, a caustic or focus forms. We
begin the chapter by building a geometrical intuition using Lagrangian manifolds.

2.1 Lagrangian manifolds and caustics

2.1.1 Heuristic definition

Consider an action function S(~x) and its associated momentum vector field

~p(~x) =
∂S(~x)

∂~x
(2.3)

with initial condition ~p0(~x0), and a swarm or bundle of particles which are described
by their position and momenta. Then in phase space, because eq. (2.3) represents n
independent constraints on the 2n variables (~x, ~p), the bundle of particles is forced onto
an n-dimensional surface. This surface is the Lagrangian manifold (LM), L. It is the
graph of the function ~p(~x), i.e. the set of points in phase space of the form (~x, ~p(~x)) [56].
The surface thus created satisfies some differential constraints because of its derivation
from a scalar in eq. (2.3). For example, it is immediately obvious that the momentum
field ~p(~x) is curl-free, i.e.

∂

∂xj
pi(x) =

∂

∂xj

∂S

∂xi
=

∂

∂xi

∂S

∂xj
=

∂

∂xi
pj(x) i, j = 1, . . . , n. (2.4)

For a more precise definition, which also holds when the derivative of the action does
not exist, see [56].

2.1.2 Caustics, Lagrangian manifolds, curvature of the action
function

Since the LM is n-dimensional, one can impose n new coordinates on it, (h1, ..., hn).
They label each point on L uniquely, and ~x and ~p on L can be given as ~x(~h) and
~p(~h). As long as ~x(~h) is invertible, we can always write ~p(~x) = ~p(~h(~x)). If, however,
one approaches a point on L at which the determinant of the Jacobian det(dxi/dhj)
vanishes, this is no longer possible, and the matrix

∂pi
∂xj

=
∂pi
∂hk

∂hk
∂xj

(2.5)

will “behave badly” (in 1-d it will diverge because ∂p/∂h cannot be zero at the same
time, in higher dimensions the exact behaviour also depends on ∂pi/∂hk) [56, 57]. The
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2.1 Lagrangian manifolds and caustics

set of points where ∂xj/∂hk vanishes is called the singular set, and the projection of this
set onto configuration space are the places where caustics occur.

The formation of a caustic is illustrated for simplicity in a quasi-2D model. Here, the
force in the first spatial coordinate, x, is ignored, and therefore is proportional to time
(we choose it to be equal to t w.l.o.g., we also call the second spatial coordinate y). In
terms of the Lagrangian manifold, this means that a cut through the two-dimensional
manifold at constant x corresponds to the Lagrangian manifold of the quasi-2D system
at time t = x. For illustration purposes, we choose a plane wave initial condition, which
is defined by xs(0) = 0, ys(0) = s, px,s(0) = p0, py,s(0) = 0, where s is a parameter along
the LM, and px and py denote the horizontal and vertical momentum, respectively. As
px,s(t) = p0 = const. and xs(t) = p0 t is independent of s, the manifold representing the
bundle can be characterized at any time t by a line in the y−py or y−vy plane (vy is the
velocity in the y-direction). In fig. 2.1 an initially plane wave travels through a potential
(green and white, the quasi-2D approximation means that the force in the x direction is
ignored) and develops a pair of caustics between t4 and t5. Here, the density (gray) is
high, while in phase space (lower panel) the caustics can be identified as turning points
of the Lagrangian manifold, marked in purple. At the turning point, two rays coalesce,
and from here on the momentum and the action are multivalued.

Figure 2.1: Plane wave flow (grey) and projections of LM onto configuration space
(colored). Below the LM in phase space, with purple dots indicating turning points
(caustics).

If one relaxes the quasi-2D condition, the turning points can also be observed in
configuration space, as illustrated in fig. 2.2 with a point source initial condition in a
full 2D potential.
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2 Fundamentals of caustics and branched flow

Figure 2.2: Point source with LM projections (colored). Turning points indicate caustic
locations.

The location of the caustics can also be given as a condition on the curvature of the
action S. The elements of the curvature matrix are given by

uij =
∂2S

∂xi∂xj
=
∂pi
∂xj

(2.6)

which is, of course, eq. (2.5). The eigenvalues of this matrix, λi, are the principle
curvatures of the action [58,59]. When one of the eigenvalues becomes infinite, a caustic
is reached. This idea will be the basis of chapter 3, where equations for the curvature
uij and its eigenvalues λi will be derived.

2.1.3 Intensity along trajectories

We now analyze the density that the rays carry and show that it becomes infinite at
caustics. Consider again a ray bundle which is defined by the initial conditions xs(0) =
0, ys(0) = s, px,s(0) = p0, py,s(0) = 0 (plane wave initial condition). We derive the
density generated by the ray bundle at a point ~rs(t) = (xs(t), ys(t)) along the path of
the trajectory with parameter s.
We start by taking a small initial area (~p0∆t) × ~δ0 where ~δ0 is along the initial La-

grangian manifold in position space, and δ0 its length. This area carries a weight of
ρ0 (~p0∆t) × ~δ0 = ρ0p0∆t δ0, where ρ0 is the initial (uniform) density. The density at
(t, ~x) is therefore given by

ρ(t, ~x) =
∑
traj

ρ0p0∆t δ0∣∣∣(~p(t)∆t)× ~δ(t, ~x)
∣∣∣ =

∑
traj

ρ0 p0∣∣~p(t)× ∂~x
∂s′

∣∣ ∂s′
∂s

(2.7)

where the sum is over all trajectories which cross the point (t, ~x) and s′ now parametrizes
the manifold at time t. For the quasi-2D case, where x = t, p0 = 1 and the spatial
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2.1 Lagrangian manifolds and caustics

Figure 2.3: Densities ρ for the flow in fig. 2.1. Lower two panels are the corresponding
LMs. At the turning points, the density becomes classically infinite. At the center of the
branch, there is an approximately three-fold increase of the density because the region
is covered three times with the LM (there are always three trajectories at every point).

variable is y, this becomes
ρquasi−2D =

∑
traj

ρ0

∂y
∂s′

∂s′

∂s

(2.8)

from which two different contributions to the density can be observed. The first is the
projection of the manifold onto real space, ∂y/∂s′, which, when it is zero, is responsible
for the caustics. The second is the stretching of the manifold along the direction of its
parametrization, ∂s′/∂s, which gives an additional multiplicative change in the density.
We can also write this expression in terms of the curvature defined in eq. (2.6) as follows.
Since

δs′ =
√
δy2 + δp2

y = δy

√
1 + (∂py/∂y)2 = δy

√
1 + u2

we can write eq. (2.8) as

ρquasi−2D =
∑
traj

ρ0

∂y
∂s′

∂s′

∂s

=
∑
traj

ρ0
∂s

∂s′

√
1 + u2. (2.9)

In fig. 2.3, the densities t4 and t7 from fig. 2.1 are plotted with their respective LM.

2.1.4 Intensities at caustics

Since the shape of the manifold directly at the caustic can be calculated, the density
close to it can be inferred from this approximately. We will use the quasi-2D model for
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2 Fundamentals of caustics and branched flow

simplicity.
At a fold caustic (see sec. 2.4 for exact definition), the line in y − py space has one

turning point, which means that the lowest term in the Taylor expansion is therefore
y = p2

y or py = ±y1/2. At a cusp, two turning points coalesce, which means a relation of
the form y = p3

y. From eq. (2.9), we can then calculate that the density transverse to a
fold scales like

ρ fold ∝

√
1 +

(
∂py
∂y

)2

fold
=

√
1 +

1

4y
≈ 1

2
y−1/2

and across a cusp like

ρ cusp ∝

√
1 +

(
∂py
∂y

)2

cusp
=

√
1 +

1

9y4/3
≈ 1

3
y−2/3 (2.10)

to first order.

2.2 Model of the random potential
In this thesis, we consider flow through random media or potentials. The model used for
the random medium is a 2D stationary Gaussian random field with a correlation function
which has one spatial length scale but is arbitrary otherwise, as long as it fulfills the
usual conditions for a correlation function. It must be twice differentiable at the origin
(otherwise leading to a fractal potential without a well-defined length scale) and its
Fourier transform (FT) must be positive definite (since by the Wiener–Khinchin theorem
the FT of the autocorrelation is the power-spectrum which is positive definite) [60, 61].
We will see in the following chapters, that we will additionally require the correlation
function to be up to six times differentiable at the origin, in order to obtain analytics
results on the statistics of random caustics. The correlation function is then given by

c(~x) = 〈V (~x′)V (~x′ + ~x)〉 = ε2 fc(~x, `c) (2.11)

where fc fulfills the above-mentioned criteria but is otherwise an arbitrary function of
the correlation length `c, and ε is the standard deviation of the Gaussian point process
at any ~x, i.e. the strength of the random potential. The potential is constructed by
convoluting the correlation function with a random phase field. After taking the Fourier
transform of the correlation function, the square root of the Fourier components is taken,
which are then multiplied by phases 2π φ(x) with φ(x) distributed uniformly between
[0, 1), and then transformed back to real space:

V (~x) = FT −1
[√
FT [c(~x)] e2πiφ(~x)

]
where FT denotes the Fourier transform. This yields a Gaussian random field V (~x)
because of the central limit theorem (the Fourier transform here is a sum of independent
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2.3 Branched flow and random caustics

(a)

0 0.2 0.4 0.6 0.8 1

(b)

Figure 2.4: (a) A random potential with a Gaussian correlation function. The orange
plane corresponds to the energy of the particles, E. (b) An initially plane flow develops
caustics, caused by a random potential (colored). The potential used here is the same
as in (a). Below we show a histogram of the values of the random potential used above
with the same color code. The potential is clearly very weak compared to the energy of
the flow (here normalized to one).

random variables because of φ(~x)). A picture of a potential generated in this manner is
shown in fig. 2.4a.

Numerically, the potential is calculated on a grid and points in between are inter-
polated using 2D splines (code developed in [62]). It should be emphasized that the
random potentials used throughout this thesis are weak compared to the energy of the
particles that constitute the flow. This is illustrated in fig. 2.4b, where a flow is shown
together with a histogram of the random potentials underlying the flow. Also indicated
is the energy of the particles, which we denote by E.

2.3 Branched flow and random caustics

The term branched flow is employed when caustics are caused by a weak, correlated,
random potential and form lines, which, possibly washed out by quantum or other wave
effects and observed from some distance, resemble branches of a tree. A branch is
always bounded by two caustics and has an increased density at its core, compared to
its surroundings, as shown in fig. 2.3. An example of this is the electron flow in a two-
dimensional electron gas, such as seen in [45], from which we take fig. 2.5. Since in this
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2 Fundamentals of caustics and branched flow

Figure 2.5: Scanning probe microscopy image of a branched flow in a two-dimensional
electron gas (from [45]). Electrons flow out of a point contact on the left. Branches,
resulting from a weak potential that deflects the flow, are clearly visible.

thesis we consider flow through weak, correlated disorder potentials, the caustics will
always take the shape of branches.

2.4 Catastrophes and branched flow

We have seen that caustics are singularities of the ray density, and that they occur where
the action S(~x) becomes multivalued. Catastrophe theory can explain the shapes the
caustics take as follows:

The multivalued S(~x) is embedded into a function φ(~s, ~x) such that

∂φ/∂si = 0 (2.12)

is the condition for the trajectories, which is represented by a (possibly infinite) set of
si [16, 20]. For example, one can think of the trajectory being split up into many small
pieces, with each piece being described by two of the i variables si. In our case, we have
a smooth random potential deflecting a particle at every instant. We would therefore
require a continuous set of si.
In catastrophe theory, φ is called a generating function, since the trajectories can

be derived from the gradient map eq. (2.12). When two trajectories coalesce, not only
eq. (2.12) is fulfilled, but φ is also stationary to higher order, i.e. (2.12) becomes singular,
and the caustics are equivalent to singularities of a gradient map. Catastrophe theory
can now determine the stability of these singularities, which are the catastrophes. For
this, each separate branch of the action is equipped with an index µ, such that Sµ(~x) is
now unique, and

Sµ = φ (sµ(~x), ~x)

are the actions of the branches. The si are called state variables, the ~x and all other
possible parameters are termed control parameters, denoted by C = (C1, C2, ...). The
catastrophes can now be classified according to their codimension K, which is the number
of control parameters C minus the dimensionality of the catastrophe, as is done below.
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2.5 Monodromy and its connection to caustics and intensities

Figure 2.6: The possible stable catastrophes in a two-dimensional random potential,
the fold and the cusp unfolding into two folds. The latter case is the one encountered
generically in a random potential.

Most importantly, the catastrophes with codimension less than seven have been shown
to be structurally stable, i.e. they retain their form under perturbations. More precisely,
the perturbed action S ′ is related to the original S by a diffeomorphism of C, and
the generating function φ can be cast into standard form, a characteristic polynomial
[16,18,20,63].

In the 2D, stationary branched flows studied in this thesis there are two control pa-
rameters. These are the spatial coordinates of the observer, x and y. The possible
(stable) catastrophes which appear in this thesis are therefore the cusp (codimension
2 − 0 = 2) and the fold (codimension 2 − 1 = 1). The cusps are said to organize the
folds, which means that every pair of folds has a cusp at their common origin. Fold and
cusp are illustrated in fig. 2.6.

For illustratory and pedagogical purposes we have built a catastrophe machine, the
details of which can be found in appendix A.

2.5 Monodromy and its connection to caustics and
intensities

The monodromy or stability matrix M is an important concept in the study of dynamical
systems. It describes how a small volume of phase space is changed over time and will
be studied in more detail in chapter 5. For this introduction, we content ourselves with
giving the two-dimensional form

δx(t)
δy(t)
δpx(t)
δpy(t)

 = M(t)


δx(0)
δy(0)
δpx(0)
δpy(0)

 , M(0) = 1
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2 Fundamentals of caustics and branched flow

with obvious extension to other dimensions [42, 64, 65]. The time evolution of M(t) is
given by

Ṁ(t) =

(
0 1

−1 0

)(
∂2H

∂γi∂γj

)
= K(t) M(t)

where γi is a phase space variable. The monodromy matrix can be used to classify the
motion as stable or unstable and is linked to the Lyapunov exponent (see chap. 5).

The monodromy matrix can also be used to find caustics and to calculate flow densities
by observing that the small piece of manifold ~δ from (2.7) is equal to the projection onto
position space of the time-transported piece ~δ0 of the initial manifold in phase space,
i.e. ~δ(t) = Ppos. space

(
M(t)~δ0

)
, where P is the projection operator to position space.

Then the flow density is

ρ(t, ~x) =
∑
traj

ρ0p0∆t δ0

|(~p∆t)× δ(t, ~x)|
=
∑
traj

ρ0 p0 δ0∣∣∣~p×Ppos. space
(
M~δ0

)∣∣∣
where the sum is over all trajectories at (t, ~x). The condition for the density to diverge
is then the condition for a caustic, i.e.

~p×Ppos. space
(
M~δ0

)
= (−py, px, 0, 0)T M~δ0 = 0.

In chapter 5 this will be studied in more detail for several initial conditions, and the
concept of the stability matrix itself will be extended.

2.6 Toy model of branch formation
As discussed above, the only stable caustic structure in a 2D random medium is the
cusp with two fold lines. We construct a simple toy model which allows us to study all
the concepts mentioned above analytically.

2.6.1 Model

We use the simplest model, a pseudo-2D cusp in a zero potential which is determined
just by its initial conditions (in particular, the initial angle or velocity). This is similar
in spirit to a model used in [66], although both the equations and the aims are different.
The initial condition for the density is a plane wave of constant density. A Liouville

density approach is used to propagate the initial conditions across the cusp. Since inside
a cusp, the action function will be (at least) three-valued, we choose the simplest initial
condition which allows us to solve “only” a cubic equation (and not a quartic or higher
order equation). The equation of motion and the initial conditions we choose are

y = fx(y0) = y0 + p(y0)x

p(y0) = − b y0

1 + a2y2
0

.
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Figure 2.7: Simple model which produces a cusp from which two fold caustics emerge
(a = 1). The caustics (red) are the envelopes of the trajectories (black lines), and appear
where the discriminant ∆ = 0.

We will need, for a given position (x, y), to be able to determine the initial y0 and
therefore need to invert the equations above to get y0(x, y). Now the particular form of
p(y0) becomes apparent, since attempting to solve for y0 yields

y3
0 − y y2

0 +
(
−b/a2x+ a−2

)
y0 − a−2y = 0 (2.13)

which is cubic in y0 as desired. For our purposes, we can set b = 1 and retain all
important features.

From the discriminant ∆ one can infer whether there is one or three distinct real roots
to the equation. It is given by [53]

∆ = 4a−2y4−y2
(
−x a−1 + a−2

)
+4
(
−x a−1 + a−2

)3−18 y2a−2
(
−x a−1 + a−2

)
+27a−4 y2.

For ∆ < 0 there exist three real roots, whereas for ∆ > 0 there is one real root. The
border of this region, where the action function goes from being single valued to three-
valued is just the cusp which is implicitly given by the equation ∆ = 0 (fig. 2.7).

2.6.2 General expression for the flow density

In order to obtain an expression for the flow density we propagate the initial density
ρ0 = ρ(0, y) = const. to some later value using the Frobenius-Perron operator [67,68]

ρ(x, y) =

ˆ
dy0 δ (y − fx(y0)) ρ0(y) =

∑
y0=f−x(y)

ρ0(y)∣∣∣ ∂y∂y0 ∣∣∣ (2.14)
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2 Fundamentals of caustics and branched flow

where the Jacobian in the denominator is evaluated at y0, which is why we need solutions
to (2.13). Setting the constant ρ0 to unity, we can now give the density as

ρ(x, y) =



|J−1(y1)| if ∆(x, y) > 0

∞ if ∆(x, y) = 0

3∑
i=1

|J−1(yi)| if ∆(x, y) < 0

(2.15)

where the Jacobian is given by

J(x, y0) = 1− 1− a2 y2
0

(1 + a2 y2
0)
a x (2.16)

and the three roots of y0 (of which y1 is always real) are

y1 = −β/3− 21/3 (−β2 + 3γ)

ν
+

ν

3 21/3

y2 = −β/3 + (1 + i
√

3)
(−β2 + 3γ)

3 22/3ν
− (1− i

√
3)

ν

6 · 21/3

y3 = −β/3 + (1− i
√

3)
(−β2 + 3γ)

3 22/3ν
− (1 + i

√
3)

ν

6 · 21/3

with ω, ν introduced to make the equations compact and β, γ, δ as the coefficients of the
cubic equation (2.13):

ω =
√

4β3δ + 27δ2 − 18βδγ − β2γ2 + 4γ3

ν =
(
−2β3 − 27δ + 9βγ + 3

√
3ω
)1/3

β = y

γ = −a−1x+ a−2

δ = a−2y.

Because of symmetry, the cusp begins at y = 0 and ∆(x, 0) = 0 from which it follows
for the x-value of the cusp

xcusp
(y=0)
= a−1.

2.6.3 Density at cusp along y

We would now like to derive an expression for the density directly at the cusp point and
compare its scaling behaviour with the one predicted in eq. (2.10). At the cusp, the
expression for the Jacobian (2.15) becomes
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2.6 Toy model of branch formation

J(a, y0(y)) = 1− 1− a2 y2
1

(1 + a2 y2
1)
.

Taylor expanding at the cusp in the y - direction gives

ρ(x = 1/a, y) = 1/6 + 1
2
y−2/3 +O(y2/3)

which scales as y−2/3 to first order, just as predicted in sec. 2.1.4.

2.6.4 Monodromy

In the pseudo-2D case x = t, and for this simple model with V = 0 the equations for
the monodromy become

M(0) = 1

Ṁ(t) = K M =

(
0 −∂2V

∂y2

1 0

)
M =

(
0 0
1 0

)
M =

(
0 0

m11(t) m12(t)

)
⇒M(t) =

(
1 0
t 1

)
.

This can be used to propagate the initial manifold (δp denotes the momentum in y-
direction, and the prime a derivative with respect to y0):(

δy
δp

)
=

(
t δp0 + δy0

δp0

)
=

(
t p′0(y0) + 1
p′0(y0)

)
δy0

p′0(y0) =
−b(1 + a2y2

0) + 2ba2y2
0

(1 + a2y2
0)

2 =
−b (1− a2y2

0)

(1 + a2y2
0)

2 .

The density contributed by a single trajectory is, from eq. (2.14), simply the inverse of
the matrix element m11, ρ(x, y) = (δy/δy0)−1

δy/δy0 = x p′0(y0) + 1 = x p′0(y0(y)) + 1 =
−bx (1− a2y2

0)

(1 + a2y2
0)

2 + 1.

This is consistent with (2.15) and (2.16), and completes our analytical treatment of the
toy model.

A plot for the density is shown in fig. 2.8. Also displayed are several vertical cuts
through the density shortly before the cusp begins (in red), at the cusp (lighter red) and
equidistantly after the cusps.

23



2 Fundamentals of caustics and branched flow

0 0.04-0.04
y

ρ(
y)

 (a
rb

. u
ni

ts
)

10
0

20
0

0

x

y

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Figure 2.8: Density ρ(x, y) and cuts through ρ(x, y) at several constant values of x.

2.7 Conclusion
In this chapter, we have introduced the basic ingredients of this thesis. We have shown
that caustics are singularities of the classical flow, and have analyzed their phase-space
geometry using Lagrangian manifolds. This has also allowed us to calculate how the
intensity scales across different types of caustics. These types can be classified using
catastrophe theory, and we have shown that in a random potential the caustics gener-
ically appear as pairs of lines (or folds in the language of catastrophe theory), which
emerge from a cusp. The appearance of these structures in a random potential is called
branched flow. We have also shown how to calculate the location of caustics using the
stability matrix and have applied all the concepts to a toy model of branch formation.
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3 Lagrangian caustic statistics in
magnetic fields

In the previous chapter, we have seen that even a very weak random potential quickly
focuses a flow from an ordered source, and that these random foci appear as branches
of high intensity. We have interpreted this in terms of Lagrangian manifolds associated
with the flow, which stretch and fold, thereby creating caustics at random locations.
The locations of the caustics are related to the characteristics of the underlying disorder
potential. Therefore, by observing caustics, one can infer from this information about
the random potential, and when the characteristics of the random potential are known,
one can predict the statistics of the caustics. In this chapter, we therefore study the
statistics of the random caustics in terms of the parameters of the random potential.

First, we review some of the results on the statistics of caustics and test them nu-
merically. We then ask a further question: How does a random potential influence a
deterministic focusing device? This is important since in any experiment which employs
a focusing device there are small perturbations, leading themselves to random focusing.
We study this by adding a constant magnetic field to our equations. The magnetic field
focuses charged particles and allows us to study the interplay between this deterministic
focusing and the random focusing of the disorder potential. Our theory will be applied
to a transverse magnetic focusing experiment in semiconductor microstructures in the
next chapter.

We begin our detailed analysis of the statistics of caustics by using a Lagrangian
approach which has been widely used in the literature. It consists of changing the
equations derived from the Hamilton-Jacobi-Equation (HJE) to ordinary differential
equations along the characteristics of the HJE, which are the trajectories. This method
is very useful, since it will allow us to analyze an equation which will serve to identify
the caustics along a trajectory within the framework of ordinary stochastic differential
equations (OSDE). This means that we can use the well-established tools of OSDEs such
as the Fokker-Planck equation. Since in the derivation of the Fokker-Planck equation, it
is assumed that the stochasticity enters as white noise in the time domain, we need to
make an approximation which will be used in all the analytical calculations in this thesis:
In a weak random potential, the particles move in their main propagation direction very
quickly. This direction is identified with time (quasi-2D approach) and since the particles
move across the potential quickly in this direction, it is assumed that it appears as an
almost uncorrelated series of random numbers. The assumption is therefore that the
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3 Lagrangian caustic statistics in magnetic fields

correlation function in time is just the delta function, and that the characteristics of the
random potential appear in the prefactor of the delta function, which will depend on
the parameters of the random potential.

With this in mind, we begin this chapter by deriving an equation for the curvature of
the action from the HJE and its corresponding FPE, as was introduced in the previous
chapter, sec. 2.1. From this, we perform a first passage time calculation to obtain
statistics of the location of caustics. We then introduce a magnetic field as a different
focusing mechanism. We also derive detailed initial conditions for the elements of the
curvature matrix. As in the remainder of the thesis, we will focus on the two most
important initial conditions, the point source and the plane wave. However, the method
used to derive them can in principle be applied to different initial conditions as well.

3.1 Derivation of the curvature equation

Consider again the HJE (2.1) in the form

∂

∂t
S(t, ~x) + 1

2

(
∂S

∂~x

)2

+ V (~x) = 0.

Taking two derivatives with respect to the components xi and xj, one obtains (summa-
tion convention implied)(

∂

∂t
+ ~p(t, ~x)~∇

)
uij(t, ~x) + uik(t, ~x)ukj(t, ~x) +

∂2

∂xi∂xj
V (t, ~x) = 0 (3.1)

where uij = ∂S/∂xi∂xj is the curvature of the action, as introduced in sec. 2.1. Note
that when one introduces characteristics, d~x/dt = ~p, this is just the velocity field, and
the term in brackets on the left-hand side in eq. (3.1) is just the convective derivative,
which allows to switch from the partial derivatives to total derivatives and therefore
from an Eulerian to a Lagrangian framework [69, 70]. So in the Lagrangian view, i.e.
along the characteristics, (3.1) becomes

d

dt
uij(t) + uik(t)ukj(t) +

∂2

∂xi∂xj
V (t, ~x) = 0 (3.2)

or in quasi-2D [71–74]

d

dt
u(t) + u2(t) +

∂2

∂y2
V (t, y(t)) = 0 (3.3)

where we now call the spatial coordinate y, since the time t will play, in a quasi-2D
model, the role of the spatial coordinate x.
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3.2 Derivation of the Fokker-Planck equation

3.2 Derivation of the Fokker-Planck equation
In order to derive a FPE for the probability density of the curvature, we approximate
the random potential as seen by the particle in the x or t-direction as white noise, since
it moves fast in this direction compared to the transverse one. We therefore write eq.
(3.3) as

du(t)

dt
= −u2(t)− D

2
Γ(t) (3.4)

where Γ(t) is a random function with correlation function

c(t, t′) = 〈Γ(t)Γ(t′)〉 = δ(t− t′)

and D is chosen in order to keep the integral of the correlation function constant. This
will be discussed in more detail when considering related stochastic equations in chap.
5. D is given by [72,73,75]

D =

ˆ ∞
−∞

∂4

∂y4
c(x, y)

∣∣∣∣
y=0

dx. (3.5)

and we can now proceed to derive the drift and diffusion constants of the FPE. From
eqs. (B.6) from appendix B, we obtain

D(1) = −u2

D(2) = D/2

such that the FPE (eq. (B.4)) is given by

∂

∂t
P (u, t) =

[
∂

∂u
u2 +

∂2

∂u2

D

2

]
P (u, t) (3.6)

We proceed by calculating the mean time to the first caustic, based on eq. (3.6).

3.3 First caustic theory
When is the first caustic encountered, i.e. when does the solution to eq. (3.6) become
infinite for the first time? This requires solving eq. (3.6) with appropriate boundary con-
ditions, which can be phrased in terms of a standard mean first passage time calculation
(e.g. [76–78]):

First, we need to analyze what happens at the boundaries of u = ±∞. It is instructive
to look at the curvature equation without the random potential first. Setting D = 0 in
eq. (3.4), we can solve the equation by separation of variables to yield

u(t) = (t+ 1/u0)−1
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Figure 3.1: Test of the results of eqs. (3.10) for a Gaussian random potential and for
a range of parameters of the random potential, ε and `c. The average is taken over 50
realizations of the random potential, with 1000 trajectories simulated in each realization.
The simulations match the theory well.

from which we observe that if u0 is negative, u(t) will approach −∞ in the finite time
t = −1/u0, from which it will reemerge with +∞. A positive curvature will simply tend
to flatten out over time (u→ 0). A random potential can make the process diffuse from
a positive curvature to a negative one, from where it will quickly approach a caustic [75].
We can now set up the boundary condition for the mean first passage problem of how
long it takes to reach a caustic for the first time. In order to obtain the probability of this
happening, we ask the inverse question: What is the probability of not having a singular
point until t, at which u→ −∞. For this, we classify the boundary u = −∞ as an exit
boundary and u =∞ as an entrance boundary in the terminology of Feller [78,79]. This
requires the boundary conditions

P (u, t|u0)→ 0 for u→ −∞ (3.7)
J(u, t)→ 0 for u→ +∞ (3.8)

where J(u, t) is the probability flow (cf. appendix B), which for eq. (3.6) is given by

J(u, t) =

[
u2 − ∂

∂u

D

2

]
P (u, t).

What is now the probability of no singularity appearing until t and the process stopping
there? Assuming that P (u, t|u0) satisfies the boundary conditions above, this is given
by

G(t|u0, t0) =

ˆ +∞

−∞
duP (u, t|u0)
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3.3 First caustic theory

and the probability of a focus appearing at t is the 1−G. The probability density of this
happening, pf , is given by

pf (t|u0) = − ∂

∂t

ˆ ∞
−∞

duP (u, t|u0)

which itself satisfies the backward FPE (cf. appendix B):

∂

∂t
pf = −u2

0

∂

∂u0

pf +
∂2

∂u2
0

pf lim
t→0,t→∞

pf = 0. (3.9)

The average time during which u0 goes to u→ −∞ is called tc and is given by

〈tc(u0)〉 =

ˆ ∞
0

dt t pf (t|u0).

To get an equation for 〈tc(u0)〉, we multiply (3.9) by t and integrate. The right hand
side does not contain derivatives w.r.t. t and is trivial. The left hand side gives

ˆ ∞
0

dt t
∂

∂t
pf (t|u0) = t pf (t|u0)

∣∣∞
0
−
ˆ ∞

0

dt pf (t|u0) = 0− 1 = −1

and therefore the whole equation becomes

−1 = −u2
0

d

du0

〈tc(u0)〉+
d2

du0

〈tc(u0)〉, lim
u0→−∞

〈tc(u0)〉 = 0, lim
u0→∞

〈tc(u0)〉 = finite.

This equation can be integrated twice as follows (see also [80]): Consider u0 = x and
y = d(〈tc(u0)〉/du0, then we first solve

1
2
y′ = x2y − 1,

which is a first-order, linear (in y) equation with the solution

y = Ce2x3/3 − e2x3/3

ˆ
e−2x3/3dx.

We set C = 0 because we want y to remain finite as x→∞. We now integrate y to get
〈tc(u0)〉 and transform back to our original problem to obtain

〈tc(u0)〉 =
2

D

ˆ u0

−∞
e2ε3/3D

ˆ ∞
ε

e−2η3/3Ddηdε.

This can the be evaluated at ∞ or 0 to give a numerical value for the mean distance to
reach the first focus from a point source or a plane wave source, respectively. It is given
by [73,75]

〈tc(∞)〉 = 6.27D−1/3 and 〈tc(0)〉 = 4.18D−1/3. (3.10)

29



3 Lagrangian caustic statistics in magnetic fields

Figure 3.2: Flow emerging from a point source in a constant magnetic field pointing
into the plane. The cyclotron orbits are enveloped by a circular caustic (red).

The results of eqs. (3.10) have not been tested numerically in detail. Rather, fully
two-dimensional simulations confirming the validity of the quasi-2D approach have only
been performed for special cases [72]. We therefore test the results of eqs. (3.10) for
several correlation functions and a range of parameters of the random potential. The
details of how the two-dimensional simulations are performed are given in sec. 3.6. We
present some of the results of the simulations in fig. 3.1, and conclude that the quasi-2D
approach is valid for a wide range of parameters of the random potential.

3.4 Magnetic focusing

We have seen how a random potential can focus trajectories and would now like to
introduce a second, deterministic focusing mechanism. An important example is the
deterministic focusing of charged particles by a constant magnetic field, which is called
magnetic focusing, and which will play an important role in the experiment in the next
chapter.

A constant magnetic field, pointing into the two-dimensional plane causes charged
particles to move along cyclotron orbits, whose radius is inversely proportional to the
magnetic field B:

r =
mv

q B

where we use units in which m = q = v = 1. When the particles emerge from a point
source, they form a circular caustic with twice the cyclotron radius, which envelopes the
cyclotron orbits and which is the basic mechanism of magnetic focusing. We illustrate
a flow from a point source in a constant magnetic field in fig. 3.2.
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3.5 First caustics in a magnetic field

Figure 3.3: Particle flow from a point source for zero magnetic field and two increasing
magnetic field strengths. Caustic locations are indicated in red.

3.5 First caustics in a magnetic field
We are now prepared to combine both focusing mechanisms, the random potential and
the magnetic field. Three examples (for no magnetic field, and for two magnetic field
strengths) are shown in fig. 3.3. Branching as well as the typical bending of the flow due
to the magnetic field leading to magnetic focusing can be observed.

Including the magnetic field complicates the problem since we can now no longer
identify one spatial direction with time and use the quasi-2D approximation as before.
The solution to this problem is to find another variable which we can use to parametrize
our equations. This is achieved by using polar coordinates {r, ϕ} and by identifying
the angular variable ϕ with the time t. We can then look at small deviations from the
circular motion of the particles, just as we looked at small lateral deviations from a
straight line before. We again derive a curvature equation and perform a mean first
passage time calculation.

The HJE in polar coordinates is

∂tS +
1

2
(∂rS)2 +

1

2

1

r2
(∂ϕS)2 + V (r, ϕ) = 0.

The angular frequency of the charged particles is given by ϕ̇ = v/r = ω = q B/m which
is just B in our units. The momentum conjugate to ϕ, pϕ, is given by pϕ = r2 ϕ̇ = r2B.
Therefore, our new HJE, in which we can identify t with ϕ, is given by

∂tS +
1

2
(∂rS)2 +

1

2
r2B2 + V (r(t)) = 0.

Taking two derivatives with respect to r and evaluating the equation for the curva-
ture u = ∂rrS along the characteristics, we obtain the following form of the curvature
equation:

d

dt
u+ u2 +B2 + ∂rrV (r) = 0.

We can now again derive a FPE equation. It is given by
∂

∂t
p(t, u) =

∂

∂u

(
u2 +B2

)
p(t, u) +

D

2

∂2

∂u2
p(u, t)
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3 Lagrangian caustic statistics in magnetic fields

with D still given by eq. (3.5). We derive from this, following the steps outlined above,
the mean time to the first caustic starting from an initial curvature u0 which is given by

〈tc(u0)〉 =
2

D

ˆ u0

−∞
e2/D(ε3/3+εB2)

ˆ ∞
ε

e−2/D(η3/3+ηB2)dη dε.

The expression can be simplified using the following transformation, which turns the
variable integral limit of the second integral into a constant one:

ε =
1√
2

(ε′ − η′)

η =
1√
2

(ε′ + η′) .

We then obtain

〈tc(u0)〉 =
2

D

ˆ u0

−∞
dη′
ˆ ∞
−∞

dε′ e
√

2/(3D)(6η′B2+3η′ε′2+η′)

from which the Gaussian integral in ε′ can now be performed. For the case of a point
source (u0 =∞), we can give an explicit expression in terms of Airy functions,

〈tc(∞)〉 = π2

(
2

D

)1/3
Ai

[
−
(

2

D

)2/3

B2

]2

+ Bi

[
−
(

2

D

)2/3

B2

]2
 (3.11)

where Ai and Bi are the Airy functions of the first and second kind, respectively [81].
We confirm that our results give the expected values in the two limiting cases of no

magnetic field and of no potential. The expression for the mean time until a caustic is
reached from a point source in the limit as B → 0 is given by

〈tc(∞)〉 = π221/3
(
Ai [0]2 + Bi [0]2

)
D−1/3 = 6.27D−1/3

which reproduces the familiar result from eq. (3.10). For the case of the random po-
tential disappearing, i.e. D → 0, we calculate the limit by using approximations of the
Airy functions for large negative values of their arguments from [81], and by using the
shorthand α = (2/D)1/3:

lim
D→0
〈tc(∞)〉 = lim

α→∞
π2α

(
sin
[

2
3
(αB)4/3 + π

4

]2
+ cos

[
2
3
(αB)4/3 + π

4

]2)
/ (παB)

= π/B

which is the expected result, since without the random potential, a particle has to travel
half a circle of radius 1/B to reach a caustic.
We plot our solution, eq. (3.11), for different magnetic fields and varying parameters

ε and `c of the correlation function of the random potential in fig. 3.4, and compare it to
numerical simulations. The simulations are again fully two-dimensional in order to test
the validity of the quasi-2D approach used for the analytical solution, and we observe
that they coincide with the analytical prediction.
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3.5 First caustics in a magnetic field
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Figure 3.4: Scaling of the mean time (or distance) of the first caustic along a trajectory
as a function of the two parameters of the random potential and for different values of the
magnetic field. For very weak potentials (small ε or large `c), the focal time approaches
that of the deterministic magnetic focusing. Numerical values obtained from a fully
two-dimensional simulation (see sec. 3.6 for details) match the theoretical results well.

33



3 Lagrangian caustic statistics in magnetic fields

3.5.1 Higher moments

Until now, we have only calculated the mean time to a caustic. Here, we also describe a
method to calculate the higher moments of the caustic distribution. We demonstrate the
method by calculating the second moment, however, all other moments can in principle
be calculated (up to an integral) by the same method. By choosing an appropriate coor-
dinate system, the limits of the integrals, which now depend on the integration variables,
can be transformed to constant values, making a numerical integration possible. The
second moment is given by [76,78]

〈tc(u0)2〉 = 8

ˆ u0

−∞
dα e2/3(α3+3αB)

ˆ ∞
α

dβ e−2/3(β3+3βB)

×
ˆ β

−∞
dε e2/3(ε3+3εB)

ˆ ∞
ε

dη e−2/3(η3+3ηB).

We can eliminate the variable integration limits recursively using the transformation

T =

(
1 0
1 1

)
(note that the Jacobian of the transformation is still unity) such that the old variables
are related to the new ones as(

ε
η

)
= T

(
ε′

η′

)
,

(
β
ε′

)
= T

(
β′

ε′′

)
,

(
α
β′

)
= T

(
α′

β′′

)
and so

α = α′

β = β′ = α′ + β′′

ε = ε′ = β′ + ε′′ = α′ + β′′ + ε′′

η = η′ + ε′ = η′ + α′ + β′′ + ε′′

〈tc(u0)2〉 = 8

ˆ u0

−∞
dα′
ˆ ∞

0

dβ′′
ˆ 0

−∞
dε′′
ˆ ∞

0

dη′

× e2/3(α′3−(α′+β′′)3+(α′+β′′+ε′′)3−(α′+β′′+ε′′+η′)3−3B(β′′+η′))

which can now be integrated numerically, e.g. using a Monte Carlo method.

3.6 2D equations and numerics for the curvature
equation

We have studied the statistics of random caustics analytically in a quasi-2D model in
order to describe a two-dimensional system with one-dimensional equations. To test
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3.6 2D equations and numerics for the curvature equation

the validity of this approximation, we perform extensive numerical simulations in two
dimensions, which allow us to obtain statistics on the location of caustics. This requires
setting up the two-dimensional equations for the curvature with their associated ini-
tial conditions. We will first perform the calculations without the magnetic field, and
introduce it into the 2D equations in sec. 3.7.

Since the curvature matrix U with elements uij is symmetric, we can always diago-
nalize it using a rotation matrix R. In two dimensions, this gives

RTU R =

(
cos θ sin θ
− sin θ cos θ

)(
u11 u12

u21 u22

)(
cos θ − sin θ
sin θ cos θ

)
=

(
λ1 0
0 λ2

)
= Λ.

(3.12)
The eigenvalues λ1,2 are the two principal curvatures of the action. When one of the
eigenvalues becomes infinite (its inverse goes through zero), the trajectory has touched
a caustic. Numerically, we simulate the equations for λ1, λ2 and the diagonalization pa-
rameter θ, which are then solved together with the equations of motion of the trajectory.
The differential equations for these can be derived by taking the derivative of eq. (3.12)
and inserting eq. (3.2). We also define Fij = ∂2V/(∂xi∂xj) and obtain [73]

d

dt
λ1 = −λ2

1 + F11 cos2 θ + F22 sin2 θ + F12 sin 2θ

d

dt
λ2 = −λ2

2 + F22 cos2 θ + F11 sin2 θ − F12 sin 2θ

d

dt
θ =

1

λ1 − λ2

[(F22 − F11) sin 2θ + F12 cos 2θ] . (3.13)

3.6.1 Initial Conditions

In order to study the curvature equation and its statistics numerically, we need to supply
it with initial conditions. The two most important ones are the plane wave and the point
source initial condition. Together with requiring all trajectories to have the same total
energy, one can uniquely determine the initial curvature matrix.

3.6.1.1 Plane Wave

We first derive an equation for the plane wave initial condition, i.e. the matrix elements
uij(0) = u0

ij. We assume two trajectories very close to each other, with phase space
coordinates

y′′ = y′ +
1

2
Fy(∆t)

2

x′′ = x′ + p′x∆t

p′′x = p′x + Fx∆t

p′′y = p′y + Fy∆t
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3 Lagrangian caustic statistics in magnetic fields

Figure 3.5: Geometry of the plane wave initial condition with a slightly displaced ray
at y′. Together with the condition that both rays must have the same energy the initial
conditions for the curvature matrix can be derived.

where the primed and unprimed quantities are illustrated in fig. 3.5. We introduce the
notation y′− y = ∆y = 1

2
Fy(∆t)

2 and x′′− x = ∆x = p′x∆t. Also p′2x − p2
x = Fy∆y, such

that
∆x = p′x∆t =

√
2Fy∆y + p2

x ∆t

u0
12 =

∆px
∆y

=
p′x − px

∆y
=

√
p2
x + 2Fy∆y − px

∆y
≈
px + Fy∆y

px
− px

∆y
=
Fy
px

u0
21 = u0

12 =
∆py
∆x

=
p′′y − py

∆x
=

Fy∆x

px

∆x
=
Fy
px

u0
11 =

∆px
∆x

=
p′′x − px

∆x
=
px + Fx∆t− px

∆x
=
Fx∆t

∆x
=
Fx
px

and u0
22 = 0 by definition of the plane wave. So the initial conditions for the elements

of the curvature equation are

u0
ij =

(
Fx

px

Fy

px
Fy

px
0

)
(3.14)

which can be diagonalized by RTU R = Λ.
A special case is Fx = 0. In this case, the matrix is diagonalized using an angle of

θ = π/4 and yields

Λ =

(
Fy

px
0

0 −Fy

px

)
Otherwise the diagonalization is more general and the angle is given by

θ = tan−1

(
1

2
(−α±

√
α2 + 4)

)
(3.15)
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where α = (u0
11 − u0

22) /u0
12 =

u0
11

u0
12

= F 0
x

F 0
y
, while the eigenvalues are

λ0
1 = u0

11 cos2 θ + u0
12 sin 2θ

λ0
2 = u0

11 sin2 θ − u0
12 sin 2θ.

3.6.1.2 Point Source

For the point source, we go to polar coordinates, establish the matrix ũij, and transform
it back to uij. In the new polar coordinate system (r, ϕ),

ũ0
ij =

(
Fr

pr

Fϕ

pr
Fϕ

pr
0

)
(3.16)

and we can transform the individual components back using the chain rule:

∂S

∂x
=

∂S

∂r

∂r

∂x
+
∂S

∂ϕ

∂ϕ

∂x

u0
11 =

∂2S

∂x2
=

∂2S

∂r2

(
∂r

∂x

)2

+ 2
∂2S

∂r∂ϕ

∂ϕ

∂x

∂r

∂x
+
∂2S

∂ϕ2

(
∂ϕ

∂x

)2

+
∂S

∂r

∂2r

∂x2
+
∂S

∂ϕ

∂2ϕ

∂x2
.

The last term vanishes because pϕ = ∂S/∂ϕ = 0. u0
12 andu0

22 are calculated analogously,
the result being

u0
11 = ũ11 cos2 ϕ− ũ12

sin 2ϕ

r
+ pr

sin2 ϕ

r
+
pϕ
r2

sin 2ϕ

u0
12 =

ũ11

2
sin 2ϕ+ ũ12

cos 2ϕ

r
− pr

sin 2ϕ

2r
− pϕ
r2

cos 2ϕ

u0
22 = ũ11 sin2 ϕ+ ũ12

sin 2ϕ

r
+ pr

cos2 ϕ

r
+
pϕ
r2

sin 2ϕ.

The matrix u0
ij is now diagonalized by a rotation with angle θ as given by eq. (3.15). We

first calculate

α =
u0

11 − u0
22

u12

=
−2ũ0

12 sin 2ϕ− pr cos 2ϕ+ r ũ0
11 cos 2ϕ

ũ0
12 cos 2ϕ− pr

2
sin 2ϕ+ r ũ0

11 sin 2ϕ

and then perform the limit r → 0, which yields the initial condition:

lim
r→0

α =
−2ũ0

12 sin 2ϕ− pr cos 2ϕ

ũ0
12 cos 2ϕ− pr

2
sin 2ϕ

and also ũ0
12 = Fϕ

pr
with pr being some nonzero number proportional to the square root of

the energy (minus the potential) at the source. Fϕ, however, is the torque and therefore
proportional to r and so vanishes at r = 0. Then the limit can be evaluated as

lim
r→0

α =
2

tan 2ϕ
.
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3 Lagrangian caustic statistics in magnetic fields

Inserting this into eq. (3.15) yields
θ = ϕ.

So in order to diagonalize the coordinate system we have to rotate the system in the
direction the trajectory is moving. A corresponding calculation shows that the initial
eigenvalues λ0

1,2 are (assuming pϕ = 0 and r → 0)

λ0
1 = ũ0

11 =
Fr
pr

= Fx cos θ + Fy sin θ

λ0
2 =

pr
r

=∞.

3.6.2 Inverse equations

Inverse equations are needed when there is a caustic, since one of the eigenvalues ex-
plodes. Before this happens, the relevant equation is inverted and the solution moving
through a zero then indicates the appearance of a caustic. In particular, the inverse
equation for λ2 has to be used initially for the point source, since this is nothing but a
caustic. The inverse equations are:

d

dt
κ1 = 1− κ2

1

(
F11 cos2 θ + F22 sin2 θ + F12 sin 2θ

)
d

dt
κ2 = 1− κ2

2

(
F11 sin2 θ + F22 cos2 θ − F12 sin 2θ

)
.

3.7 Curvature equation with magnetic field
We now assume charged particles and extend the equations to include a magnetic field
perpendicular to the two-dimensional plane in which the particles are moving. We
change the curvature equation and include a vector potential with components Ai (i.e.
~p → (~p − q ~A), pi → (pi − qAi), with charge q = 1) to obtain (summation convention
implied)

d

dt
uij(t) + uik(t)ukj(t) + (∂jAk∂iAk)− ∂jAkuki − ∂iAkukj − ∂ijAk (∂kS − Ak)

+
∂2

∂xi∂xj
V (t, ~x) = 0.

We again look for the diagonalized Λ such that

RTuR = Λ (3.17)

with the rotation matrix
R =

(
cos θ − sin θ
sin θ cos θ

)
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and differentiate eq. (3.17) giving

(
d

dt
DT

)
uD + DT

(
d

dt
u

)
D + DTu

(
d

dt
D

)
=

d

dt
Λ. (3.18)

The new terms result from the middle term in eq. (3.18), in particular, from the modified(
d
dt

u
)
. This is given by

d

dt
ulm = −ulmuim − CmiCli + Cmiuli + Cliumi

where we have introduced the notation ∂iAk = Cik. We treat the new terms involving
the matrix Cij separately, using the Landau gauge ~A = (−y B, 0, 0):

−DT
jlCmiCliDmk = −DT

j2 (C21)2D2k = −B2D2jD2k

DT
jlCmiuliDmk = ΛjlD

T
liCmiDmk = −B [Λj1D11D2k + Λj2D12D2k]

DT
jlCliuimDmk = DT

jlCliDimΛmk = −B [Λ1kD11D2j + Λ2kD12D2j] (3.19)

The modifications for the equation for {λ1, λ2, θ} are obtained by setting {(j = k =
1), (j = k = 2), (j = 1, k = 2)} and then adding the three terms from eq. (3.19):

λ1 : −B
[
B sin2 θ + λ1 sin 2θ

]
λ2 : −B

[
B cos2 θ − λ2 sin 2θ

]
θ : −B

[
B

2
sin 2θ +

(
λ1 cos2 θ − λ2 sin2 θ

)]
.

The final result for the differential equations for {λ1, λ2, θ} is then

d

dt
λ1 = −λ2

1 + F11 cos2 θ + F22 sin2 θ + F12 sin 2θ −B2 sin2 θ −Bλ1 sin 2θ

d

dt
λ2 = −λ2

2 + F22 cos2 θ + F11 sin2 θ − F12 sin 2θ −B2 cos2 θ +Bλ2 sin 2θ

d

dt
θ =

1

λ1 − λ2

(3.20)[
(F22 − F11) sin 2θ + F12 cos 2θ − B2

2
sin 2θ −B

(
λ1 cos2 θ − λ2 sin2 θ

)]
.
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3.7.1 Initial Conditions

With a magnetic field we need to alter our definition of the force (assuming no movement
in the z-direction):

H =
1

2
(pi − Ai)2 + V =

1

2
(px +B y)2 +

1

2
p2
y + V (3.21)

Fx = ṗx = −∂H
∂x

= −∂V
∂x

Fy = ṗy = −∂H
∂y

= −∂V
∂y
−B (px +B y) = −∂V

∂y
−B vx

where vx is the velocity in the x-direction. Note that because of the choice ~A =
(−B y, 0, 0), only the force in the y direction is modified. So the new uij with which
one calculates {λ1, λ2, θ} is the same as 3.14 and 3.16 except with Fy from 3.21 and vi
instead of pi.

3.8 Full first caustic distribution
Up to now, we have only been concerned with the mean time to the first caustic, i.e. the
first moment of the caustic distribution function Pc(t). An expression for the probabil-
ity to reach the first caustic Pfc(t) was derived from an equivalent formulation of the
curvature equation by White and co-workers [71, 72, 75, 82]. In our formulation of the
problem, their approximate solution of Pfc(t) for the case of an initially plane source is
given by

Pfc(t) =
(
α2(2πD)−1/2t−5/2 + CFD

1/3
)
e−λ1D1/3t−α4/(6Dt3) (3.22)

where D was defined in eq. (3.5) and α ≈ 1.854, λ1 ≈ 0.281, CF ≈ 0.314. Eq. (3.22)
approximates well the probability to reach the first caustic. However, we will also need
the probability to reach any caustic. This is accomplished by observing that every
caustic, at least for the formulation in terms of the curvature equation, acts like a point
source. Therefore, after the first caustic has been reached, the probability to reach a
further caustic quickly settles to a constant, which is the inverse of the average time to
the first caustic from a point source. This asymptote was already given in [75]. Here, we
use it to construct a combined solution for Pc(t), the probability to reach any caustic.
We note that this is not a probability distribution in the usual sense because it is not
normalizable. It is given by

Pc(t) =

{(
α2(2πD)−1/2t−5/2 + CFD

1/3
)
e−λ1D1/3t−α4/(6Dt3) if t ≤ t1

1/
(
6.27D−1/3

)
if t > t1

(3.23)

where t1 is the value at which 1/
(
6.27D−1/3

)
is larger than the other expression, but

only after the latter has peaked. We define

t0 = 6.27D−1/3 (3.24)
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Figure 3.6: Pc(t) analytic quasi 2D solution (black) and 2D numerical simulation for
ε = 8% of the particles’ energy and `c = 0.1 (Gaussian correlation function).

since this is the mean time between two foci. It is emphasized, however, that this
definition, which will become important in chapter 6, differs from the usual one as
in [83] by a prefactor, which depends on the type of correlation function used.

We perform numerical simulations of the full two-dimensional problem and compare
it to the quasi-2D analytics (eq. (3.23)) in fig. 3.6. The numerical Pc is slightly under-
estimated at the peak and overestimated due to our simple construction of Pc(t). Apart
from this, we obtain excellent agreement. We find that this holds true for a wide range
of parameters and correlation functions. We also note curves for different parameters
and correlation functions collapse onto one universal curve if the time axis is rescaled
by t0. This idea will be reused and extended in chapter 6 to calculate the density of
branches transverse to the flow.

3.9 Conclusion

In this chapter, we have analyzed caustic statistics in a random potential along trajec-
tories. We have tested existing results using detailed two-dimensional simulations, and
have found that the simulations match well the theoretical predictions for a wide range
of parameters and different correlation functions. We extended the theory to include as
a second, deterministic focusing mechanism a constant magnetic field. We have shown
how the two focusing processes compete in causing caustics, and we have again confirmed
the validity of the quasi-2D theory using fully two-dimensional numerical simulations.
We have described in detail how to perform the numerical simulations. This chapter also
naturally leads to the next, which is an analysis of a magnetic focusing experiment in
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3 Lagrangian caustic statistics in magnetic fields

which both the magnetic field and a random potential play important roles. In addition
to this, we have given an expression for the first caustic distribution valid for all times,
which will be needed in chapter 6.
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In the previous chapter, we have studied the interplay of focusing of charged particles
by a magnetic field and focusing by a random potential. The results obtained there
will be applied to experimental data from a magnetic focusing experiment in this chap-
ter. Magnetic focusing of charged particles has been widely used to study fundamental
transport properties of semiconductor microstructures, in particular in two-dimensional
electron gases (2DEGs) [84–90]. In these systems, electrons are confined in one spatial
direction, but move almost freely in the other two dimensions, which means that their
mean free path is much greater than the system size. The motion of the electrons is
therefore ballistic, and can be described classically.

When studying transport in a 2DEG, quantum point contacts (QPCs) are usually
used as emitters and receivers of the electrons. A QPC is a narrow constriction (with
a width of the order of the Fermi wavelength of the electrons) in the electrostatic walls
which define the geometry of the system. In an experiment, there are typically sev-
eral point contacts, to which leads are attached. Electrons can flow into or out of the
system through the contacts, and the charge transport through the system is treated
as a scattering process within the Landauer-Büttiker formalism [91–93], which relates
the conductance to the transmittance of the system. Magnetic focusing experiments are
typically three or four-terminal devices. The resistance between the emitter and the
receiver is obtained by dividing the voltage measured across these two contacts by the
current which flows between the emitter and an additional contact. The resistance thus
obtained translates directly into the transmission of electrons from the emitter to the
receiver.

When a perpendicular magnetic field is applied, this can focus the electron flow as
described in the previous chapter. When the magnetic field is such that it focuses the
flow at the receiver, a lot of electrons will be transmitted from emitter to receiver, and
therefore a large resistance will be measured.

In the standard magnetic focusing geometry the emitter and the collector are arranged
along a line, which is also called transverse magnetic focusing (TMF). In this geometry,
which is illustrated in fig. 4.1a, focusing occurs when a multiple of the cyclotron diameter
of the electrons matches the distance between the two QPCs. At the corresponding
values of the magnetic field, a circular caustic with twice the diameter of the cyclotron
diameter is located at the receiver, which will appear as a focusing peak in the resistance.
These peaks are observed at multiples of B0, which is the magnetic field at which the
cyclotron diameter of the electrons is equal to the distance between emitter and receiver.
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Figure 4.1: (a) Transverse magnetic focusing (TMF): Electrons flowing out of a quan-
tum point contact are focused at the emitter at multiples of B0, which is the magnetic
field forcing centrally emitted particles on a half-circle between emitter and collector
(trajectory 1 in blue). The next focusing occurs at 2B0 (trajectory 2 in red). (b)
Magnetic focusing in a corner device. The focusing structure is more complicated, for
example there is an additional focusing at

√
2B0, which is plotted here.

In contrast to TMF, the experiment analyzed here was performed in a corner-shaped
geometry depicted in fig. 4.1b. This geometry complicates the experiment in several
ways, but also allows new insight into ballistic transport in semiconductor microstruc-
tures. For example, there is a focusing of the electron flow at a non-integer value of the
magnetic field. Also, we will find that some peaks in the new device are more sensitive
to random focusing by a disorder potential and that, even though the mean free path
of the electrons is much larger than the system size, a strong influence of branching on
the conductance properties of the device can be observed.

The chapter is organized in the following way: First, the experimental setup will be
described and the experimental results will be presented. This is followed by a detailed
analysis of the geometry and its effects on the measurements. We then consider the role
of branching by a random potential and use the results from the previous chapter to
show that the experimental data is a result of the focusing by the magnetic field, the
focusing by a random potential, and the peculiarities of the geometry used here. The
results obtained in collaboration with our experimental colleagues (D. Maryenko and J.
Smet, MPI for Solid State Research, Stuttgart) are being prepared for publication [94].

4.1 Experimental setup and results
The experiment is performed on a modulation doped GaAs/AlGaAs heterostructure in
which the 2DEG is located 150 nm underneath the crystal surface. Two types of devices
are studied. One with a normal, sharp corner (type I), and the other with a chamfered
corner (type II). The two types are shown in the inset of fig. 4.2 a and c, respectively. The
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4.1 Experimental setup and results

Figure 4.2: Experimental data. (a) Resistance curves for different magnetic fields show
peaks at multiples of B0 in a type I geometry. The peaks are very distinct, and clearly
exhibit splitting, here in the third peak. Curves in different colors are for different values
of the resistance across the QPC. The inset shows a picture of the experimental setup,
together with some important trajectories (see text for details). (b) Detailed view of
the first peak from (a). A small peak at a value of approximately

√
2B0 is observed for

weak resistances across the QPC (see sec. 4.3 for details) (c) Experimental data for type
II geometry. Here, the first peak splits up. The peaks at even multiples of B0 are larger
due to the chamfered corner.

electron density n is n = 2.5×1011 cm−2 and n = 2.2×1011 cm−2 for the type I and type
II devices, respectively. The wall length from each QPC to the corner is a = 3µm. The
2DEG exhibits an electron mean free path of 45µm, one order of magnitude larger than
the ballistic electron trajectories relevant for these studies. Transport measurements in
a perpendicular magnetic field are carried out at 1.4K. The value of B0 is given by
B0 = ~

√
2πn/ea, where e is the electron charge.

A part of the experimental data is shown in fig. 4.2, together with images of the
experimental setup in the insets, for the curves obtained here. It is observed that the
experiment reproduces very clean peaks at regular intervals, just as is to be expected from
a magnetic focusing experiment. However, several peaks show interesting substructure
such as double-peaks. In particular, the first peak, which is attributed to trajectory 1 in
the inset, is seen to split into two in several experiments conducted on different pieces of
the heterostructure. In order to understand the experimental resistance curves, we first
analyze the geometry and its influence on the peak structure.
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4 Application: Magnetic Focusing

Figure 4.3: (a) Simulation of the particle flow (gray) in the corner devices of type I at
B = B0. Flow transmitted to the collector is additionally colored in red. The expected
peak in the transmission at this value of B is only due to the collimation of the beam
by the QPC, and not due to focusing. (b) Flow at B = 2B0 in type II corner. The flow
is focused both at the corner and at the receiver.

4.2 Device geometry and its implications
The corner device is different to the standard TMF experiment in several ways. Whereas
in TMF, trajectories can be given explicitly in such a simple form that the caustics can
be derived from it analytically [87], the trajectories in the corner geometry cannot be
given in a simple way and the caustic structure is complicated. Most of our arguments
therefore rely on detailed simulations of the corner device. Nevertheless, some important
differences to TMF can be derived before studying the numerical results.

First of all, we note that the focusing occurs at different magnetic fields than naively
expected. In particular, the peaks corresponding to the trajectories with odd numbers
and therefore to odd multiples of B0 in the insets of fig. 4.2 cannot be due to magnetic
focusing because, as shown in the previous chapter, they focus after having traversed half
a circle and not a quarter circle. Only the trajectories at even multiples of B0 focus at the
receiver, since these always hit the walls after traversing half a circle and can therefore
be considered as being re-emitted from the wall as from a point contact (in the sense
that a point source is nothing but a caustic, cf. chapter 3). Only for magnetic fields
corresponding to the even trajectories should magnetic focusing be expected. What,
however, are then the peaks corresponding to odd multiples of B0? Let us look at two
illustrations of the system for magnetic fields corresponding to trajectories 1 and 2, i.e.
to magnetic fields B0 and 2B0.

A simulation of this case is shown in fig. 4.3, the gray scale indicates the particle
density, while the flow that actually reaches the receiver is additionally colored in red.
We observe that for B = 2B0, (fig. 4.3b), the transmitted flow is focused at the corner
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4.2 Device geometry and its implications

Figure 4.4: Illustration of the focusing geometry. Drawing an imaginary line between
the QPCs, we observe that for values of B =

√
2B0, corresponding to the blue trajectory

(in comparison to the standard trajectories at integer multiples of B0), the corner device
acts like in the transverse magnetic focusing, although the caustic reaching the collector
at this magnetic field is suppressed the more the beam is collimated.

and at the receiving QPC, as described above. One can clearly observe the focused beam
to be diverging initially and then to recombine at the corner and the receiver, forming
a caustic at these points. In contrast to this, the red flow in fig. 4.3a does not focus at
the receiver. An increased density at this magnetic field can only be attributed to the
collimation of the beam by the emitter, which causes most of the flow to have momentum
mostly in the direction away from the QPC. These trajectories reach the collector at odd
multiples of B0 even though there is no focusing at this point. Because of this, we call
peaks at odd multiples of B0 collimation peaks, in contrast to the usual focusing peaks
at even multiples of B0. Before discussing the collimation of the QPC in sec. 4.3, we
note several consequences of the above discussion. First, we show that between B0 and
2B0 there is a possibility for the electrons to focus as illustrated in fig. 4.4. If we draw an
imaginary line from emitter to receiver, we see that we recover the TMF geometry, with
the distance between the QPCs as

√
2a, and a corresponding focusing magnetic field of√

2B0, with the difference that electrons which focus at this magnetic field are emitted
primarily in a direction tilted by π/4 compared to the main perpendicular direction. The
stronger the collimation of the emitter, the more this focusing peak can be suppressed.
This explains why in the data we can see a small peak at

√
2B0 (cf. fig. 4.2b) for small

values of the resistance across the QPC, which determines the collimation of the QPC
(see also sec. 4.3).

We also note a further difference to TMF. There exist orbits which are emitted per-
pendicularly but not received perpendicularly. They are also expected to show up in the
transmission. We illustrate several orbits which are emitted perpendicularly in fig. 4.5.
Calculating the magnetic fields at which the additional orbits are expected is a simple
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Figure 4.5: Perpendicularly emitted trajectories in a sharp-cornered device for different
magnetic fields. The magnetic field is given in units of B0 and the distance in units of
a. The quantities s and h which are used to determine additional orbits are drawn for
the trajectory at B = 2.4B0. Orbits not colored in yellow are at multiples of B0, and
at the first two additional magnetic fields calculated in the text (approximately 2.4 and
4.6, see eq. (4.1)).

geometrical exercise: Assume the electrons to reflect specularly p times at one wall, and
to have a distance of s to the corner at the last bounce. The distance from the corner
to the first reflection point at the second wall is termed h (see fig. 4.5), and therefore
h = 1− 2 p r with r the cyclotron radius. Also,

s =

√
r2 − (r − h)2 =

√
r2 − (r + 2 r p)2

and we want s = 1/(2p+1) in order to find a trajectory which is emitted perpendicularly.
Solving this for r gives

r =
1 + 2 p+ 2 p2

2 p+ 6 p2 + 4 p3

and so the first two additional orbits are

B = 12/5B0, p = 1

B = 60/13B0, p = 2. (4.1)
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Figure 4.6: Saddle potential in the QPC. Parameters as given in appendix D, and
g0 = 0.3 for (a) and g0 = 0.6 for (b), which corresponds to approximately 0.4 and 0.8 of
the particles’ energy, EF . The red contour line denotes the value of EF .

4.3 Simulation of the system with quantum point
contacts and soft walls

The electrons move through the system almost freely, until they encounter the system
boundaries, which consists of electrostatic walls from which the electrons reflect specu-
larly. In an experiment, however, the electrostatic potential does not change abruptly
from zero to a large value. Instead, the walls appear soft to the electrons. This is
particularly important at the QPC: Because the walls are so close to each other at this
point, we assume that the electrostatic potential does not drop to zero at the center
of the opening, but that there is a saddle potential inside the QPC [89, 95]. Including
a saddle potential in the QPC also allows us to simulate different gate voltages at the
QPC, which is used as an experimental parameter, and which can be used to control
the collimation of the beam. We also assume that there is a lead attached to QPC from
which electrons emerge with a cosine velocity distribution (see appendix C for details).

The precise definition of the model walls and QPCs is given in appendix D, together
with the values of the parameters used for the simulations. We have checked numerically
that our results do not depend strongly on the particular model we have chosen for the
walls nor on the exact choice of parameters. We stress, however, the importance of the
saddle since it allows us to simulate different collimation strengths of the QPC. Pictures
of the QPC used in the simulations with two different saddle potential strengths are
given in fig. 4.6. The potential energy is given as a percentage of the particles’ energy,
which in this chapter is denoted by EF , the Fermi energy.
We can now examine the results of the transport simulations for different magnetic

fields and for different saddle point potentials. The simulations are shown in fig. 4.7. All
features discussed above manifest themselves in the simulations. A stronger saddle point
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4 Application: Magnetic Focusing

Figure 4.7: Simulated transmission curves for different saddle potentials (saddle illus-
trated in the inset). All features discussed in the previous sections, such as a caustic
peak at

√
2B0 which disappears for strong collimations of the beam and additional peaks

at 2.4B0 and 4.6B0, can be observed.

potential causes a stronger collimation of the beam. This results in sharper peaks, as seen
in the experiment. We also observe the predicted additional peaks at about 2.4B0 and
4.6B0, as well as the small caustic peak at

√
2B0. As predicted, this peak is suppressed

for stronger collimation, which means that the collimation peak at B0 appears stronger.
The collimation also, together with the soft walls, shifts the additional peak at 2.4B0

towards the peak at 3B0. We note that the focusing structure is complicated even in
the idealized, clean case, and in particular depends strongly on the collimation of the
beam. Since experimentally strong collimation peaks are observed, we will from now on
assume a saddle potential of 0.8EF .

4.4 Quantum correction
We briefly discuss the error we make in assuming classical propagation as opposed to
quantum mechanical propagation when we deal with the location of caustics. This
depends on the wavelength of the electrons which we consider, i.e. the Fermi wavelength
associated with the Fermi energy. The Fermi energy is given by ~2k2

2m
= ne

DOS2D
= ne

π~2

m

where ne is the electron density, k the Fermi wave vector, and DOS2D is the density of
states in two dimensions [96]. From the above calculation it follows that k2 = 2πne and
that the Fermi wavelength is given by

λF =
2π

k
=

√
2π

ne
.
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4.5 Adding a random potential

In the experiment, ne ≈ 2 × 1011cm−2 = 2 × 1015m−2, and therefore λF ≈ 56nm.
This is very small compared to the dimensions of the system, from which we conclude
that quantum effects do not play an important role in the experiment. Additionally,
we also check the expected quantum mechanical deviation of the first caustic from the
classical calculation. The first caustic occurs, as shown in sec. 4.2, when trajectories
have radius r = a/

√
2. The radius of the caustic is twice this radius, ρ = 2r =

√
2a.

For a circular caustic, one can show that the highest intensity of the caustic is shifted
quantum-mechanically from the classical position by [52]

xshift = 1.02
( ρ

2k2

)1/3

= 1.02

(
3
√

2

2× (1.12× 102)2

)1/3

≈ 0.0564µm

which is negligible and justifies our classical assumption.

4.5 Adding a random potential

A real 2DEG is never free from impurities. This is reflected in a finite mean free path
(MFP) of the electrons. The experimentally measured value for the MFP is λmfp =
45µm, i.e. much larger than the system size (a = 3µm). Experimentally, the MFP is
determined by measuring the Hall resistance and the resistivity at zero magnetic field [97]
of the unstructured sample, i.e. before the walls have been have been put in place. The
main contribution to the measured MFP are the impurities of the semiconductor, which
strongly scatter the electrons, and other bulk properties of the sample such as charged
crystal defects and quantum corrections. The MFP is therefore also an approximate
measure of the average distance between impurities. Since this is larger by an order of
magnitude than the system size, there is normally no impurity in the region of system
where transport takes place. We conclude from this that the real MFP inside the system
is only a result of the small-angle scattering of the electrons by the disorder potentials
created by the randomly distributed donor atoms, which create a random potential whose
correlation function is approximately Gaussian [45]. As our model disorder potential,
we therefore use a Gaussian correlated random potential which has a MFP which is
one order of magnitude larger than the experimental one. The statistics of the random
potential is not easily accessible experimentally. We therefore need to make realistic
assumptions of the parameters. Specifically, we choose ε = 2%EF and `c = 180nm,
however, our results do not depend on this particular choice.

Even though the MFP is much greater than the system size, we see branching in the
simulations on scales comparable to the system size. This is confirmed by the results
derived in the previous chapter, where we calculated mean times to the first caustics in
a random potential with a magnetic field. We plot again our scaling results from the
previous chapter, this time with the parameters used for the simulations indicated (fig.
4.8).
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Figure 4.8: Scaling of the first caustic with the parameters of the random potential for
different magnetic fields, derived in chapter 3. Here, we indicate with dotted vertical lines
the parameters used for the simulation of the experiment, ε = 2 %EF and `c = 180nm.
It can be observed that for these parameters, the random potential already has the effect
of reducing the time to the first caustic from the expected case with only the magnetic
field.

We observe that for these parameters, the random potential already has the effect of
reducing the time to the first caustic from the expected case with only the magnetic field.
We therefore expect branching to have a significant effect on the transport properties
of our focusing device. This is most easily seen by adding a random potential to the
simulations depicted in fig. 4.3, which is shown in fig. 4.9, with the plots from fig. 4.3 as
insets.

We also find that the branching can have severe effects on the collimation peaks,
enhancing, suppressing or altering them in other ways, while the focusing peaks are
more robust to the disorder. This can be seen by looking at the two cases in fig. 4.9.
Our interpretation is the following: The trajectories contributing to the collimation peak
form a narrow bundle in phase space. If branching occurs, it is likely to influence the
whole trajectory bundle. On the other hand, the trajectory bundle that is focused at a
focusing peak has a broader structure in phase space (in position space this can be seen
by the trajectory bundle opening between the QPCs and the walls), therefore there will
always be some trajectories which focus at the collector, and the disorder only has a small
effect on the focusing peak. Our analysis is confirmed by looking at several realizations
of the random potential and the focusing curves that result from it, which is shown in
fig. 4.10. We note that, depending on our realization, we can enhance, suppress or split
the collimation peaks at odd multiples of B0. The focusing peaks at even multiples are
more robust to the disorder. We compare some of the simulated curves to experimental
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Figure 4.9: Simulations depicted in fig. 4.3 with an added random potential with pa-
rameters ε = 2 %EF and `c = 180nm. Insets show the original plots from fig. 4.3
(without random potential) as insets. (a) Caustics (indicated by arrows) form, here en-
hancing the collimation peak at B0. (b) Although the random potential causes focusing,
the magnetic focusing at 2B0 is more robust to the effect of the random potential.

results in the next section.

4.6 Comparison of experimental and simulated data

We have shown that a random disorder, even though it is very weak, can strongly
influence the transmission properties of the corner device. Since this is a statistical effect,
it would be natural to try to obtain statistical quantities and compare these. However,
the ensemble size is limited strongly in the experiment (it was performed with about ten
different samples). We can therefore only compare realizations and show that we can
qualitatively reproduce the experimental results. There are several features which are
consistently reproduced in the simulations as well as the data: Most importantly, there
is a probability for the collimation peaks at odd multiples of B0 to split or show other
substructure, while this effect is absent for the focusing peaks at even multiples of B0.
This effect can only be attributed to the random potential. Additional features such as
the peak at

√
2B0 and the additional focusing orbits are also observed in the experiment

and the simulation, and can be enhanced or suppressed by the random potential. As an
example, we compare two curves from fig. 4.2 with results from simulations in fig. 4.11.

We additionally check that our results are not a consequence of the potential having
a strong influence on the particles when they are slowing down at the QPC saddle
potential by cutting out the random potential in this region. The result is shown in
fig. 4.12. It shows that the random potential around the QPC is not important for the
resulting transmission curve, but rather that the effects on the peak structure are due
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Figure 4.10: Simulated transmission curves for four different realizations of the random
potential, blue and red curves obtained in a geometry with a chamfered corner and
therefore with enhanced even peaks. The even peaks are robust against the disorder,
while the odd peaks are strongly influenced by branching.
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Figure 4.11: Comparison of experimental and simulated resistance curves for two ex-
periments and two realizations of the random potential . The features of the experiment
can qualitatively be reproduced.
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Figure 4.12: Comparison of a transmission curve with and without the random poten-
tial removed around the QPCs. The difference between the curves is negligibly small.

to the collective scattering of the potential, which is characteristic of branching.

4.7 Conclusion
In this chapter, we have applied methods and results derived in the previous chapter to
a magnetic focusing experiment. A simulation of the geometry, including soft walls and
a detailed model of the quantum point contact, already reveals several details seen in the
experimental data. For a full understanding of the different appearances of the odd order
peaks one needs to understand the difference between collimation and focusing peaks
and, crucially, include a random potential in the simulations. This potential, although
very weak, causes branching on scales comparable to the system size, which in turn can
strongly influence the collimation peaks. All details of the experimental transmission
curves have thus been reproduced in the simulations. Our findings show that a very
weak random potential can strongly affect the DC conductance properties of very clean
semiconductor microdevices, which has to be taken into account in the planning and
fabrication of such devices.
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5 Measures of stability and their
relation to fold and cusp caustics

We have seen that the caustic statistics calculated in chapter 3 have provided useful
information about when to expect branching to occur in a random potential and a
magnetic field, and we have used that knowledge in explaining experimental data in
the previous chapter. Ultimately, however, we would like to move away from the La-
grangian description of the previous chapters to predictions which are more accessible
to experiments, such as the density of caustics transverse to the direction of the flow.
This will be achieved in the final chapter, however, some preliminary work is required.
In particular, we will need to treat cusp caustics in more detail, since they are at the
origin of every branch. As cusps are second-order singularities of the flow, we will need
more information than is available in the curvature equation of chapter 3. We therefore
begin this chapter with a detailed account of the monodromy matrix, which takes into
consideration the linearized surroundings of a trajectory, in order to then introduce an
extended stability tensor, which will allow us to identify the locations of cusps. This
will also be the basis for our numerical simulations in 2D. For analytical results, we
again use the quasi-2D approximation. We derive equations for the entries of the mon-
odromy matrix and the extended stability tensor in quasi-2D and study moments of
their distribution analytically and numerically. In doing so, we take a closer look at the
approximations needed for a quasi-2D treatment in terms of Fokker-Planck equations,
as already mentioned in chapter 3. In addition to this, we show how to reconcile the
approach of finding caustics using the monodromy matrix with the approach using a
curvature equation, as described in chapter 3.

The monodromy or stability matrix M plays an important role in the theory of dy-
namical systems and the study of chaos and quantum chaos. It describes the linearized
phase space neighbourhood of a trajectory and is usually introduced when dealing with
closed systems (e.g. [65, 98, 99]) where it is used to classify the stability of periodic or-
bits. It is also linked to the density of a flow, and therefore elements of it appear in the
semiclassical (or Van Vleck) propagator [68]. Several other properties of the stability
matrix are important in the study of dynamical systems, such as, most prominently,
their eigenvalues (whose logarithms are the Lyapunov exponents in the limit of time
going to infinity [100]). The definition of the stability matrix, however, is not limited to
closed systems. Examples of successful applications to open systems include [41,42].

Caustics consist of points where trajectories which are initially separated by a small
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phase space distance coalesce in position space. As was shown in chapter 2, the flow
density diverges at these points, and the monodromy matrix can be used to locate them.
We begin this chapter by showing how to perform this calculation for different initial
conditions (the plane wave and point source initial conditions in 2D).

5.1 Time evolution and initial conditions of the
stability matrix

In general, the monodromy matrix M with components mij maps an initial phase space
vector δx(0) with components δxi(0) onto a later one at time t, δx(t), such that

δxi(0) =
∑
j

mij δxj(t).

The elements of M, mij are therefore given by

mij(t) = ∂xi(t)/∂xj(0).

Clearly, M(0) = 1 for all initial conditions of the Lagrangian manifold. The time
evolution of M(t) is given by [64,65,101]

Ṁ(t) = K(t) M(t) =

(
0 1

−1 0

)(
∂2H

∂xi∂xj

)
M(t) (5.1)

where H is again the Hamiltonian. In case of Hamiltonians with terms including mul-
tiplication of position and momenta coordinates, the expression for K changes, but the
expression here is sufficient for our Hamiltonian (eq. (2.2)).

5.1.1 Initial conditions

We now want to find the location of caustics using the results from chapter 2 where we
derived the caustic condition

~p×Ppos. space (M d0) = (−py, px, 0, 0)T M ~d0 = 0. (5.2)

With the time evolution of the monodromy given by eq. (5.1), we still require an expres-
sion for the initial displacement in phase space, ~d0.
We again consider our two standard initial conditions in 2D, the plane wave and the

point source. By fixing the total energy E of the trajectories, conditions on all initial
phase space displacements δx0

i = δxi(0) can be derived.
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5.1 Time evolution and initial conditions of the stability matrix

5.1.1.1 Plane Wave

The definition for the plane wave initial condition is δpy = 0, δx = 0, and together
with the initial condition for the constant energy shell H = E this yields the desired
conditions in the following way:

1
2

(
p0
x + δp0

x

)2
+ 1

2

(
p0
y

)2
+ V (x0, y0 + δy0)

≈ 1
2
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+ p0

xδp
0
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(
p0
y

)2
+ V (x0, y0).

Therefore, the dependence of δp0
x on δy0 is given by

δp0
x = −Vy(x

0, y0)

p0
x

δy0 ≡ α δy0.

Acting on the initial displacement vector ~d0, this becomes

M ~d0 = M


δx0

δy0

δp0
x

δp0
y

 = M
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0
δy0

α δy0

0

 = δy0


m12 +m13α
m22 +m23α
m32 +m33α
m42 +m43α

 .

From eq. (5.2), this gives the caustic condition

(−py, px, 0, 0)T M ~d0 = −py (m12 +m13α) + px (m22 +m23α) = 0. (5.3)

5.1.1.2 Point Source

For the point source, the derivation is analogous, but this time with conditions δx =
0, δy = 0, together with H = E. Therefore,(

p0
x + δp0

x

)2
+
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y + δp0
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(
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)0
+ 2

(
p0
xδp

0
x + p0

yδp
0
y

)
⇒ δp0

x = −
p0
y

p0
x

δp0
y ≡ β δp0
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M~d0 = M
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δx0

δy0

δp0
x

δp0
y

 = M
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0
0

β δp0
y

δp0
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y


m13β +m14

m23β +m24

m33β +m34

m43β +m44


and the caustic condition is

(−py, px, 0, 0)T M ~d0 = −py (m13β +m14) + px (m23β +m24) = 0. (5.4)
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5.2 Cusps and the extended stability tensor
Cusps are singular points of second order. This means that at a cusp, two lower order
singularities (the folds) meet. Whereas at a fold, two trajectories coalesce, at a cusps,
three trajectories coalesce. Inside the cusp, three initial conditions are mapped to one
point in coordinate space, which causes an increased density in the cusp bounded by
two folds. This is the reason why a branch does not only carry a lot of intensity at its
borders, but there is also a density increase inside, as was shown in sec. 2.1.3.

For the plane wave initial condition in quasi-2D, the condition for a cusp is easily
understood. It occurs at points where not only the first derivative ∂y/∂y0 is zero, but
where the second one vanishes as well, i.e. ∂2y/∂y2

0 = 0. This is the point where the
Lagrangian manifold folds over and two turning-points are generated. These turning
points coalesce initially, forming a singularity of second order which is the cusp.

For the multi-dimensional case, the situation is slightly more complicated and will be
analyzed below. First, we introduce a generalization of the quasi-2D cusp condition,
the extended stability tensor N. The stability matrix provides information about the
neighbourhood of the trajectory by linearizing the equations around the trajectory. The
extended stability tensor takes into account the next order term, which is the higher
derivative with respect to the initial conditions at t = 0. Its components are defined by

nijk :=
∂2xi(t)

∂xj(0)∂xk(0)
.

5.2.1 Time evolution and initial conditions of the extended
stability tensor

The differential equations for the extended stability tensor are derived for the compo-
nents as follows:

ṅijk =
∂

∂t

(
∂2xi(t)

∂xj(0)∂xk(0)

)
=

∂

∂xj(0)

(
∂

∂t

∂xi(t)

∂xk(0)

)
=

∂

∂xj(0)
ṁik

=
∂

∂xj(0)

∑
b

∂xb(t)

∂xk(0)

∂ẋi(t)

∂xb(t)

=
∑
b

[
∂2xb(t)

∂xj(0)∂xk(0)

∂ẋi(t)

∂xb(t)
+mbk

∂

∂xj(0)

∂ẋi(t)

∂xb(t)

]

=
∑
b

[
nbjk

∂ẋi(t)

∂xb(t)
+mbk

∑
a

∂xa(t)

∂xj(0)

∂

∂xa(t)

∂ẋi(t)

∂xb(t)

]

=
∑
b

[
nbjk

∂ẋi(t)

∂xb(t)
+
∑
a

mbkmaj
∂

∂xa(t)

∂ẋi(t)

∂xb(t)

]
(5.5)
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5.2 Cusps and the extended stability tensor

which for two dimensions can be given as

ṅijk =
∑
b

nbjk


0 0 1 0
0 0 0 1
−Vxx −Vxy 0 0
−Vxy −Vyy 0 0


ib

+
∑
a,b

majmbk
∂

∂xa(t)


0 0 1 0
0 0 0 1
−Vxx −Vxy 0 0
−Vxy −Vyy 0 0


ib

and the initial conditions for nijk(t) are simply nijk(0) = 0, because N is nothing but a
derivative in several directions of the monodromy which is the unit matrix initially.

5.2.2 Locating cusps using the extended stability tensor

We have shown above how to obtain a condition for finding a first order caustic along a
trajectory, involving the particles’ momenta and entries of the monodromy matrix, i.e.
the condition ~p⊥M ~d0 = 0.
At a cusp, the first order caustic condition must be fulfilled, together with a higher

order condition. It is crucial to note, however, that in more than one dimension, there is
a non-trivial direction associated with every caustic and that the second order singularity
condition has to be fulfilled with respect to this direction. This will become clear when
looking at the 2D case, which we do next, and which can then be easily extended to
higher dimensions.
In general, a trajectory defines a map from the initial conditions and the time traveled

to the final position, e.g. for the plane wave initial condition in 2D this is denoted by
T : (y0, t) → (x, y). This is single valued initially, but soon becomes singular (non-
invertible), when several initial condition are mapped to the same place (T goes from
being bijective to surjective). The locations where the map is singular are just the
caustics, and the map is singular when the Jacobian determinant J vanishes. An explicit
expression for J is given by

J = det (DT ) =

∣∣∣∣∣ ∂x
∂t

∂x
∂y0

∂y
∂t

∂y
∂y0

∣∣∣∣∣ =
∂x

∂t

∂y

∂y0

− ∂y

∂t

∂x

∂y0

(5.6)

= px

(
m22 +

∂y

∂p0
x

∂p0
x

∂y0

)
− py

(
m12 +

∂x

∂p0
x

∂p0
x

∂y0

)
= px (m22 +m23α)− py (m12 +m13α)

which means that we have exactly recovered eq. (5.3). In addition, we can now identify
the “direction” of the caustic. Since T is singular at a caustic, it must have (at least)
one vanishing eigenvalue. The eigenvector associated with this points in the direction
we are looking for. To check whether we also are at a cusp, we must therefore take a
derivative in the direction of the eigenvector ~e (with components e1 and e2) which is
associated with the zero eigenvalue:

∂

∂~e
det (DT ) =

∂J

∂t
e1 +

∂J

∂y0

e2. (5.7)
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5 Measures of stability and their relation to fold and cusp caustics

Figure 5.1: Two-dimensional simulation of a flow with plane wave initial condition.
Cusp locations (red dots) are calculated using eq. (5.7).

A cusp is reached if both the caustic condition is fulfilled and (5.7) is zero. For complete-
ness, we here give the expression for the direction of the eigenvector which is associated
with the null eigenvalue for the plane wave (at least for relatively short times, where
x ≈ t, later, the other eigenvalue could be the one that vanishes):

~e =

([
+px −m22 −

√
p2
x + 4m12py − 2pxm22 +m2

22

]
/2py, 1

)

The other quantities in eq. (5.7) are

∂J

∂t
= −Vx (m22 +m23α) + px (m42 +m43α +m23αt)

+ Vy (m12 +m13α)− py (m32 +m33α +m13αt)

∂J

∂y0

= px (n222 + n223α +m23αy0) +m32 (m22 +m23α)

− py (n122 + n123α +m13αy0)−m42 (m12 +m13α)

where now several elements of the stability tensor nijk have been included. Fig. 5.1
shows the results of a simulation in which eq. (5.7) is used to determine the locations of
the cusps.
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5.3 Analytic results and the quasi-2D approximation

5.3 Analytic results and the quasi-2D approximation

In order to obtain analytical results for M and N in a random potential, we again reduce
our system to the quasi-2D case, where time plays the role of the x-coordinate. We begin
by rewriting the differential equations as first order stochastic differential equations, in
order to allow a statistical treatment using Fokker-Planck equations later.

5.3.1 Monodromy matrix in quasi-2D

In quasi-2D, we are left with one spatial coordinate, y. The equations describing the
mapping of an initial phase space displacement to a later time and the time evolution
of the elements of the monodromy matrix derived from eq. (5.1) in 2D are given by

(
δy
δp

)
= M

(
δy0

δp0

)
=

(
∂yt

∂y0

∂yt

∂p0
∂pt

∂y0

∂pt

∂p0

)(
δy0

δp0

)
Ṁ = K M =

(
0 1

−∂yyV 0

)(
m11 m12

m21 m22

)
=

(
m21 m22

−∂yyV m11 −∂yyV m12

)
and from the individual equations we can derive a second order equation for m11 =
∂y/∂y0:

ṁ11 = m21

ṁ21 = −∂yyV m11

m̈11 = −∂yyV m11

m̈11(t) + ∂yyV (t, y)m11(t) = 0. (5.8)

5.3.2 Second-order stability tensor in quasi-2D

The quasi-2D equivalent of eq. (5.5) is

ṅijk =
∂

∂t

(
∂2xi(t)

∂xj(0)∂xk(0)

)
=

∂

∂xj(0)

(
∂

∂t

∂xi(t)

∂xk(0)

)
=

∂

∂xj(0)
ṁik

=

[∑
b

nbjk
∂

∂xb(t)
+
∑
a,b

majmbk
∂2

∂xa(t) ∂xb(t)

](
∂xi(t)

∂t

)
[∑

b

nbjk +
∑
a,b

majmbk
∂

∂xa(t)

](
0 1

−∂yyV 0

)
ib
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5 Measures of stability and their relation to fold and cusp caustics

and the time evolution of n111 is now given by

ṅ111 = n211

ṅ211 = −n111 ∂yyV −m2
11∂yyyV

⇒ n̈111 = −n111 ∂yyV −m2
11∂yyyV. (5.9)

Note that we can also derive this directly from the equation for the first entry of mon-
odromy matrix (5.8) as follows:

∂

∂y0

[m̈11(t) + ∂yyV (t, y)m11(t)] = 0

n̈111 + ∂yyV (t, y)n111 + ∂y0 (∂yyV (t, y)) m11 = 0

n̈111 + ∂yyV (t, y)n111 +

(
∂p

∂y0

∂p +
∂y

∂y0

∂y

)
(∂yyV (t, y)) m11 = 0

n̈111 + ∂yyV (t, y)n111 +
∂p

∂y0

∂p (∂yyV (t, y))︸ ︷︷ ︸
=0

m11 + ∂yyyV (t, y)m2
11 = 0

which is the same as eq. (5.9).

5.3.3 Derivation of the Fokker-Planck equation

We have seen that N depends on M. Therefore, we will write a set of first-order coupled
differential equations for the elements of the vector ~a(t) = (m(t), ṁ(t), n(t), ṅ(t)), where
we have shortened the notation m ≡ m11and n ≡ n111:

ȧ1(t) = a2(t), a1(0) = 1

ȧ2(t) = −∂yyV (t, y) a1(t), a2(0) = 0

ȧ3(t) = a4(t), a3(0) = 0

ȧ4(t) = −∂yyV (t, y) a3(t)− ∂yyyV (t, y) a2
1(t), a4(0) = 0. (5.10)

The initial conditions have been included in accordance with sections 5.1 and 5.2. In
order to obtain a FPE, we must first assume again that the particles move fast in the
t-direction (which is assumed to be equal to x in the quasi-2D approach), and that
the random potential appears to them as white noise in this direction. We write the
equations (5.10) as

ȧ1(t) = a2(t), a1(0) = 1

ȧ2(t) = σ1Γ1(t) a1(t), a2(0) = 0

ȧ3(t) = a4(t), a3(0) = 0

ȧ4(t) = σ1Γ1(t) a3(t) + σ2Γ2(t) a2
1(t), a4(0) = 0 (5.11)
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5.3 Analytic results and the quasi-2D approximation

with
〈Γi(t)Γj(t′)〉 = 2δij δ(t− t′).

The constants σ1 and σ2 are determined using the following argument: Although we
assume delta-correlated noise in the t-direction, we want to retain the characteristics
of the random potential in the transverse y-direction. This is achieved by keeping the
integral over the correlation function constant, since this is related to the normalization
of the potential, as discussed in [74, 75, 77, 102–104]. We illustrate this in the general
one-dimensional case first. Assume a correlation function c(x − x′) which we want to
approximate as white noise,

c(x− x′)→ δ(x− x′),

but which also conserves the integral of the correlation function. This is achieved by
allowing

c(x− x′)→ δ(x− x′)
ˆ ∞
−∞

dx′′ c(x′′) (5.12)

since then the integral of the right side of expression (5.12) is then simply

ˆ ∞
−∞

dx δ(x)

ˆ ∞
−∞

dx′′ c(x′′) =

ˆ ∞
−∞

dx c(x)

just as the integral of the left side of expression (5.12). For our random potential, this
means that if we assume a transition to white noise (where we assume a Gaussian random
field, allowing us to move the derivatives [61]) as

〈∂yyV (x, y)∂y′y′V (x′, y′)〉 = ∂yy∂y′y′c(x− x′, y − y′)→ δ(x− x′) 2σ2
1

then the coefficient σ1 in eq. (5.11) must now be given as an integral over the derivatives
of the correlation function as

σ2
1 = 1

2

ˆ ∞
−∞

dx
∂4c(x, y)

∂y4

∣∣∣∣
y=0

.

This idea was already employed in chapter 3, and we can now see that the D defined in
eq. (3.5) is related to σ1 by σ1 = D/

√
2. In a similar way, the constant σ2 can be shown

to be

σ2
2 = −1

2

ˆ ∞
−∞

dx
∂6c(x, y)

∂y6

∣∣∣∣
y=0

.

In order to give an expression for the FPE, we must now derive drift and diffusion
coefficients for eqs. (5.11). By comparison with eqs. (B.6) from appendix B, we obtain
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5 Measures of stability and their relation to fold and cusp caustics

for the drift coefficients

D
(1)
1 = a2

D
(1)
3 = a4

D
(2)
22 = σ2

1 a
2
1

D
(2)
24 = σ1σ2 a1a3

D
(2)
42 = D

(2)
24

D
(2)
44 = σ2

1 a
2
3 + σ2

2 a
4
1

and all others are zero. Therefore, the FPE is given by

∂tP (~a, t|~a′, t′) =
[
−a2∂a1 − a4∂a3 + σ2

1a
2
1∂a2a2 + 2σ2

1a1a3∂
2
a2a4

+∂2
a4a4

(
σ2

2a
4
1 + σ2

1a
2
3

)]
P (~a, t|~a′, t′). (5.13)

We note that we use Stratonovich calculus, since this is a more natural choice when the
white noise term is only an approximation of a correlation function with a certain width,
as is the case here. Since the equations (5.11) are non-linear, so is eq. (5.13). It cannot
be solved in general, so we turn to calculating moments of the elements of ~a(t).

5.3.4 Moments of the distribution of the monodromy and the
extended stability tensor

In general, calculating moments from non-linear stochastic equations results in a recur-
sive, non-closed set of ordinary differential equations for the moments. In our case, the
equations are only weakly coupled (the equations for m and ṁ do not couple to n and
ṅ, but only the other way round), which is just enough to obtain closed equations for
the moments. First, it is noted that all equations are symmetric around their average,
and that therefore the odd moments are zero. We thus begin with the differential equa-
tions for the second moments of m and ṁ and denote by ki the second moments of the
elements of ~a and their various combinations. Thus,

k̇1 = ˙〈a2
1〉 = −

ˆ
d~a a2

1a2∂1P = 2 〈a1a2〉 = 2k2

k̇2 = ˙〈a1a2〉 = −
ˆ
d~a a2

2a1∂1P =
〈
a2

2

〉
= k3

k̇3 = ˙〈a2
2〉 = σ2

1

ˆ
d~a a2

1a
2
2∂22P = 2σ2

1

〈
a2

1

〉
= 2σ2

1k1

where the integrals are over all possible values from −∞ to ∞ and are carried out
using partial integration. We have obtain a closed set of equations which are linear in
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5.3 Analytic results and the quasi-2D approximation

{k1, k2, k3} and which can easily be solved with initial conditions k1(0) = 1, k2(0) =
k3(0) = 0. The result for the second moment of m is

k1 =
〈
m2(t)

〉
= 1

3

(
exp[(2σ1)2/3t] + 2 exp[−(σ1/

√
2)2/3t] cos(

√
3(σ1/

√
2)2/3t

)
(5.14)

which is precisely the result obtained in [41], although obtained through a different
method, as we describe at the end of this section. The equations for the second moments
of n and ṅ are more complicated and involve the fourth moments of m. However, since
this is in turn not coupled to n, again a closed set of equations can be obtained:

k̇4 = ˙〈a2
3〉 = 2 〈a3a4〉 = 2k5

k̇5 = ˙〈a3a4〉 =
〈
a2

4

〉
= k6

k̇6 = ˙〈a2
4〉 = 2σ2

2

〈
a4

1

〉
+ 2σ2

1

〈
a2

3

〉
= 2σ2

2k7 + 2σ2
1k4

k̇7 = ˙〈a4
1〉 = 4

〈
a3

1a2

〉
= 4k8

k̇8 = ˙〈a3
1a2〉 = 3

〈
a2

1a
2
2

〉
= 3k9

k̇9 = ˙〈a2
1a

2
2〉 = 2

〈
a1a

3
2

〉
+ 2σ2

1

〈
a4

1

〉
= 2k10 + 2σ2

1k7

k̇10 = ˙〈a1a3
2〉 =

〈
a4

2

〉
+ 6σ2

1

〈
a3

1a2

〉
= k11 + 6σ2

1k8

k̇11 = ˙〈a4
2〉 = 12σ2

1

〈
a2

1a
2
2

〉
= 12σ2

1k9.

The initial conditions for these ki are k7 = 1, k4(0) = k5(0) = k6(0) = k8(0) = k9(0) =
k10(0) = k11(0) = 0. Again, the equations are closed and linear in ki and can be solved.
Here, we give the result for the second moment of n, since this will be needed in the
following chapter:

k4 =
〈
n2(t)

〉
=

σ2
2

210σ2
1

(
98e−(σ1/

√
2)2/3t cos(

√
3(σ1/

√
2)2/3t) + 49e(2σ1)2/3t + e211/3(2σ1)2/3t

+2e−(21/2)1/3σ
2/3
1 t cos((7 35/2/2)1/3 σ

2/3
1 t)− 150

)
. (5.15)

The analytical results are compared to numerical simulations in fig. 5.2. We obtain very
good agreement with simulations, although the results are only exact in the limit ε→ 0.
An example for the expressions for σ1 and σ2 for the Gaussian correlated random

potential are given by

σ2
1 = 6

√
πε2`−3

c

σ2
2 = 60

√
πε2`−5

c = 10σ2
1 `
−2
c .

We stress, however, that our results are valid for other correlation functions as well, as
will be shown in the following chapter. In particular, not only the values for σ1 and
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Figure 5.2: Second moments of m and n for ε = 0.02, `c = 0.1. Analytics (black) match
well the numerical data (blue for 〈m2〉, green for 〈n2〉).

σ2 differ for different correlation functions, but their ratio can also be different. For
example, the ratio σ2/σ1 is

√
10/`c for the Gaussian correlation function and

√
45/`c

for a power-law correlation function c(r) = (1 + r2/`2
c)
−4. The ratio appears in the

expression for the second moment of n, eq. (5.15), and will become important in the
next chapter.

We also note that our analysis is not limited to the second moments. Indeed, for the
calculation of the second moments of n and ṅ, the fourth moments of m have already
been used, and similarly higher moments could be obtained for all quantities. Since
we will only need second moments in the next chapter, we refrain from giving higher
moments here.

Finally, we compare the result for the first entry of the monodromy matrix to the
results in the literature [41, 42]. There, for long times a scaling of 〈a2

1〉 ∼ 1
3

exp (2ν ′t)
was derived which, for the Gaussian correlated field, gives an exponent in front of t of
the form

2ν ′ = 2
(
3
√
π
)1/3

ε2/3/`c. (5.16)

When following our derivation, we obtain a long-term scaling of (cf. eq. (5.14))〈
a2

1

〉
∼ 1

3
exp

(
(2σ1)2/3 t

)
which, assuming a Gaussian correlation function c(x, y) = ε2 e−(x2+y2)/`2c , gives an expo-
nent of

(2σ1)2/3 =
(
24
√
πε2`−3

c

)1/3
= 2

(
3
√
π
)1/3

ε2/3/`c

which is exactly the same as eq. (5.16).
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5.4 Connection to curvature equation

We have given two seemingly unrelated approaches to obtaining an equation for the
location of caustics. On the one hand, the curvature equation (cf. chap. 3), which
is a first order, non-linear stochastic differential equation with additive noise (i.e. the
random potential), and on the other hand, a second order linear stochastic differential
equation with multiplicative noise for the first component of the monodromy matrix,
m11, as derived in this chapter. A relation between m11 and the curvature u can easily
be derived in the quasi-2D case:

u =
∂p

∂x
=
∂ẋ

∂x
=
∂x0

∂x

∂ẋ

∂x0

=
ṁ11

m11

=
m21

m11

which implies that u→∞ is equivalent to m11 → 0, which both signal the appearance
of a caustic. This can also be shown in terms of the equations governing the evolution
of u and m11 in the following way:
We start with the equation for m11 (eq. (5.8)) and convert it into an equation with

additive noise, taking into account that we assume the potential to be δ-correlated in
the time direction, i.e. a Wiener process W . We first change notation to the the usual
differential notation for stochastic equations, m11 ≡ x1, ṁ11 ≡ x2 and we use σ ≡ σ1

from sec. 5.3.3 to obtain

dx1 = x2 dt

dx2 = σ x1 dW.

We now seek a way to make the noise non-multiplicative. As opposed to the rest of
the thesis, we here use Ito calculus, as the additional terms compared to Stratonovich
calculus will be chosen to vanish anyway, which will make this result general for both
choices. In general, if we have two functions f1(x1, x2,W ), f2(x1, x2,W ) we get from
Ito’s Lemma [105]

df1 = ∂1f1dx1 + ∂2f1dx2 + 1
2
∂11f1dx

2
1 + 1

2
∂22f1dx

2
2 + ∂12f1dx1dx2

= ∂1f1dx1 + ∂2f1dx2 +O
(
dt2
)

+ 1
2
∂22f1dx

2
2 +O (dtdW )

⇒ df1 = ∂1f1x2dt+ ∂2f1σ x1dW + 1
2
∂22f1σ

2x2
1dt

=
(
∂1f1x2 + 1

2
∂22f1σ

2x2
1

)
dt+ ∂2f1σ x1dW (5.17)

and similarly for f2

df2 =
(
∂1f2x2 + 1

2
∂22f2σ

2x2
1

)
dt+ ∂2f2σ x1dW. (5.18)

We now impose ∂2f2 = c
x1

and ∂2f1 = 0, since this will cause the term with dW in f1 to
vanish and in f2 to not contain a term in x1 or x2, i.e. it will make the noise additive. We
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therefore have f1 = b(x1) and f2 = x2
c
x1

and we are now at the point where Stratonovich
calculus would give the same results. Plugging f1 and f2 into (5.17) and (5.18) we obtain

df1 = b′(x1)x2dt

df2 =

(
−cx2

x2
1

)
x2dt+ c σ dW

where the prime denotes the derivative. So f2 = cx2

x1
, and we also choose f1(x1) =

b(x1) = b1x1 + b2. Then x2 = f2x1/c = f2(f1−b2)
cb1

df1 = b1x2dt =
f2 (f1 − b2)

c
dt

df2 = −cx
2
2

x2
1

dt+ c σ dW = −1

c
f 2

2dt+ c σ dW

and we can put c = 1. We have now achieved our aim: We have decoupled f2 from f1

and turned it into an equation with additive noise. The price to pay is that the equation
is now non-linear. We note that when f2 →∞, x1 → 0, which is just the condition for a
caustic. This means that we have fully recovered the curvature equation if we interpret
f2 as u, i.e.

du = −u2dt+ σ dW

which is eq. (3.3) in the form used by White et al. [72].

5.5 Conclusion
This chapter has been devoted to analysing the stability of trajectories in a random
potential, and how this is related to caustics. We have given a detailed account of
how to find caustics using the stability matrix for different initial conditions. We have
also introduced a second-order stability tensor which gives information on higher-order
stability properties of trajectories. The stability tensor appears naturally in the study
of cusps, and therefore, implicitly, in the statistics of branches which will be the subject
of the next chapter. The statistics of the elements of the stability matrix and the
stability tensor have been studied analytically using a quasi-2D approach. Although the
equations for the elements of the stability tensor are nonlinear, we have succeeded in
calculating moments of their distribution. All results have been confirmed numerically
using quasi-2D and fully 2D simulation (some of which are non-trivial, for example, for
the 2D for the simulations of the extended stability tensor one needs to simultaneously
solve 60 coupled differential equations). Finally, we have shown how to reconcile the
approach of this chapter with the approach using the curvature equation from chapter
3.
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6 Universal Branch Statistics

In previous chapters, the theoretical effort was concentrated on Lagrangian statistics
of caustics, stability matrix elements, and other quantities along a trajectory. This is
also the approach taken in a large part of the literature. It is a very valuable method
since it allows us to study ordinary stochastic differential equations instead of partial
ones. Nevertheless, most of the quantities which we can observe are measured in a fixed
coordinate system and not in the constantly changing one of the trajectories. In addition
to this, for most systems we consider the classical trajectories to be only approximations
to the actual wave-like systems.

It was demonstrated in previous chapters that in cases where we were able to identify
the time taken along a trajectory with a spatial coordinate, we subsequently were able
to draw some conclusions about observable quantities, for example, about the mean time
and therefore the mean approximate distance to a caustic. This was possible because of
the particles moving in this direction almost freely. However, once we venture into the
direction transverse to the main direction of the flow, the motion is only governed by the
random potential, and there is no Lagrangian quantity which can easily be attributed
to an Eulerian (i.e. fixed-frame) quantity.

This chapter will be devoted to obtaining Eulerian caustic statistics, which arise nat-
urally when one asks one of the most elementary questions that comes to mind when
analyzing branched flow: How many caustics, on average, can be observed per unit
transversal distance as a function of the distance from the source? The problem is illus-
trated in fig. 6.1, together with a cut through the flow density, which could be measured
in an experiment and from which the number of branches can be extracted.

The question of how many caustics can be observed at a distance was answered for
the much simpler case of initially randomly distorted trajectories, which then travel in
straight lines through a constant potential by Berry and Upstill [20]. We briefly review
this analysis and confirm it numerically. We then answer the question for a plane wave
initial condition and an extended random medium. In doing so, we combine several
results from the literature and results obtained in previous chapters to, in the end,
arrive at a universal caustic distribution. As in the previous chapter, we also take into
account different correlation functions. All of the analytical calculations will be done
using the quasi-2D approach, but we will compare with full 2D numerics as well. The
results are published in [106]

71



6 Universal Branch Statistics

Figure 6.1: Flow density in a random potential. We want obtain the number of caustics
(red dots) along the red line at some distance from the source perpendicular to the flow.
To the right, the density across this line is shown. Branches show up clearly as bounded
by two caustics, with increased density at the core, as was explained in chapter 2.

6.1 Counting caustics, counting branches

First, we give a general expression which will allow us to calculate the number of caustics
at distance t per unit distance in the transverse direction. It is given by

Ncaustic(t) = lim
L→∞

1

L

〈ˆ L

0

dy0 δ (γ(t, y0))

∣∣∣∣∂γ(t, y0)

∂y0

∣∣∣∣〉 . (6.1)

where γ(t) is zero when a branch is encountered while integrating over y0 and where the
average is over realizations of the statistical quantities involved (either initial conditions
as in sec. 6.2, or over random potentials as in sec. 6.4. We note that the Jacobian
appearing in the expression ensures that every caustic is counted with the same weight,
such that Ncaustic actually increases by one whenever a caustic is encountered along the
integration path.

6.2 Random initial condition without random
potential

Consider a slightly deformed initial plane wave, with f(y) describing the deviation from
the plane wave f(y) = 0 and assuming that f is random with a given correlation function.
Then the number of fold lines (fold caustics) at time t (or at a distance x) Nf (t) per
unit distance in the (transverse) y direction is given by [20]
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6.3 Counting branches numerically

Nf (t) = lim
L→∞

1

L

〈ˆ L

0

dy0 δ (1− t fyy) |t fyyy|
〉

(6.2)

where the quantity inside the delta function is just the condition for the caustic, and
|t fyyy| is the Jacobian, as explained for eq. (6.1). Since one can show fyy and fyyy to be
statistically independent, the equation simplifies to

Nf (t) = 〈δ (1− t fyy)〉〈|t fyyy|〉.

In chapter 3 we have calculated the probability to reach a caustic along a trajectory,
Pc(t). It will be useful to formulate the equation for Nf (t) in terms of Pc(t). We perform
the calculation for this simple case for illustration purposes, since the same method will
be used later for the problem including the random potential. Denoting fyy = u one
obtains

Pc(t) = 〈δ (t− 1/u)〉 =

ˆ
du δ (t− 1/u) P (u) =

∑
i

P (ui)∣∣∣∂(t−1/u)
∂u
|u=1/t

∣∣∣ =
P (1/t)

t2

and

〈δ (1− ut)〉 =

ˆ
du δ (1− ut) P (u) =

ˆ
du

1

t
δ (1/t− u) P (u) =

P (1/t)

t
= Pc(t) t

(6.3)
so

Nf (t) = Pc t〈|t fyyy|〉 =
F3

πF2

exp
[(
−2t2F 2

2

)−1
]

with Fi =

[〈(
dif
dxi

)2
〉]1/2

(see [20] for details).

We first turn to the numeric calculation of Nf in order to confirm the results from [20]
and then compare them to the case of a continuous random potential, which will be
treated in sec. 6.4.

6.3 Counting branches numerically
In order to verify our analytical results, we will need accurate numerical simulations
of the number of branches at a given distance. However, all our numerical methods
developed in the previous chapters are Lagrangian methods and determine the statistics
of caustics along a trajectory, but not the transverse caustic density. One possibility
would be to use an Eulerian integration method [107–109], however, this amounts to
solving the HJE in addition to an equation for the caustics and is computationally
expensive. Therefore, we develop two simpler methods based on our Lagrangian caustic
location code.
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6 Universal Branch Statistics

6.3.1 Direct trajectory method

The first method consists of following one trajectory with initial condition y0 until a
caustic is reached, saving this point (tc, yc), and then going to a trajectory with a slightly
different initial condition, y′0. This trajectory is also integrated until its first caustic, and
the position of the second caustic (t′c, y′c) is compared to the first one. In general, the
caustic location will have moved by a small amount, which means that it belongs to the
same fold line and does not need to be counted again (unless a new bin in the t direction
has been reached).

However, when the caustic locations of two initially adjacent trajectories differs by
a significant amount, a different sheet of the action function has been reached, and
therefore also a new fold line. It is also possible that the caustic locations differ by
only a small amount, but that a cusp has been passed, and that for this reason a new
fold line has been found. Therefore, N is also tracked. When n111 passes through zero
in quasi-2D, or when eq. (5.7) is zero in 2D (cf. sec. 5.2), a cusp has been passed. To
find caustics after a caustic has already been passed (we avoid calling them second-order
caustic so as not to confuse them with higher-order singularity caustics), the trajectories
are simply tracked up to their second caustic, and caustics following these are treated
similarly.

6.3.2 Manifold tracking method

A more efficient method is to track a trajectory not until a caustic but up to a fixed
time t′ (or a position in 2D), then tracking an adjacent trajectory up to the same time
and to compare the values of m11 (or the equivalent expression in 2D). In this way, the
manifold and the value m11 on it is obtained for the time t′. The number of times that
m11 crosses zero gives the number of fold lines. This method can easily be implemented
with a variable step size in the initial conditions: Whenever the values of m11 of adjacent
points on the manifold differ by more than a threshold value, a new trajectory closer to
the original one is calculated, thereby refining the resolution of the manifold.

6.3.3 Comparison of numerics and analytics for simple case 6.2

We use as an example, ρ(y) = 〈f(y′)f(y′ + y)〉 = a2e−y
2/b2 , so F2 = 2

√
3 a
b2

and F3 =

2
√

30 a
b3
, and

Nf (t) =

√
10 exp [−b4/ (24 a2 t2)]

b π

which is depicted, together with the numerics in fig. 6.2. The analytical solution accu-
rately models the numerical values.
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Figure 6.2: Number of fold lines for randomly distorted initial conditions (a = 0.02, b =
0.1) analytically (solid line) and numerically (red stars).

6.4 Universal branch distribution

We now turn to the statistics of branches in an extended random medium. As we have
shown in sec. 2.4, a branch is a region of high intensity bounded by two caustics. Since
experimentally one is more interested in the number of branches, we will proceed by
always dividing the number of caustics by two, which is, to a very good approximation,
the number of branches Nb. This is only an approximation, because of the appearance
of cusp clusters: In some places, an even number of additional cusps forms close to an
existing one. However, these additional cusps do not form their own extended branches,
but experimentally would be identified as part of the original cusp which they belong to
(see [20] for a more detailed discussion).

6.4.1 Counting branches, first approximations

First of all, we again shorten the notation to m11 ≡ m and n111 ≡ n since these are the
only components of the stability matrix and tensor which will be needed. The condition
for a caustic is m = 0, which means that the mean number of branches per unit distance
at time t is given by

Nb(t) = 1
2

lim
L→∞

1
L

〈ˆ L

0

dy δ (m)

〉
or, transforming from y to y0 as in eq. (6.1), by

Nb(t) = 1
2

lim
L→∞

1
L

〈ˆ L

0

dy0 δ (m) |∂y0m|
〉

= 1
2

lim
L→∞

1
L

〈ˆ L

0

dy0 δ (m) |n|
〉

where the brackets denote an average over the ensemble of random potentials. Similar
to eq. (6.3), it is useful to transform the δ-function to Pc(t) = 〈δ(t− tc)〉 along the
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Figure 6.3: Illustration of approximations used for short-time asymptotic of Nc(t): (a)
Comparison of Pc(t) (analytics: black line, numerics: green dots) and 〈δ(t − tc)/ |ṁ|〉
(red dots) multiplied by a constant for ε = 0.02, `c = 0.1 (200 realizations of the random
potential). For t small compared to the peak of Pc(t), we observe that approximately
〈δ(t−tc)/ |ṁ|〉 ∝ Pc(t). (b) Analytical (black) and numerical (red) expression for

√
〈n2〉,

together with 〈|n|〉 (green, again multiplied by a constant). This shows that for small t,
〈|n|〉 ∝

√
〈n2〉 approximately.

trajectory, since we can then use the results of chapter 3, where Pc(t) was calculated.
This is realized by

δ (m(t)) = δ(t− tc)/ |ṁ|
with tc such that m(tc) = 0. Therefore, assuming as a first approximation that Pc is
independent of m and n, one can write

Nf (t) = Pc(t) 〈|n(t)/ṁ(t)|〉 .

However, it seems impossible to obtain closed equations for the second moment of n/m.
For the average of the absolute value of n/m this seems even more formidable, so some
further approximations have to be made. We will construct short and long-time asymp-
totic solutions for Nb(t), where short and long here refers to the natural time-scale of
the system, which is the average time between caustics defined as (cf. eq. (3.24))

t0 = 6.27 (2σ1)−1/3 . (6.4)

6.4.2 Short-term asymptotics

For the short time limit, we assume that 〈|ṁ(tc)|〉 ∝ 1/t0 at caustics and that 〈|n(t)|〉
is statistically independent and approximately proportional to

√
〈n(t)2〉. Both these
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6.4 Universal branch distribution

approximations are confirmed numerically, see fig. 6.3. We can then write

Nb(t) ≈ c1 t0 Pc(t)
√
〈n2(t)〉 t� t0. (6.5)

We note that n(t) has units of inverse length because of the prefactor σ2/σ1 of eq.
(5.15), which is proportional to 1/`c. It also encodes the dependence on different types
of correlation functions, since it varies for different functional forms of the correlation
function. The universal constant c1 is determined numerically to be c1 ≈ 0.033.

6.4.3 Long-term asymptotics

For the long term asymptotics, we assume m and n to be statistically independent
and their absolute value, like their even moments, to be growing exponentially. Since
Pc ≈ const. for large t, the exponent λ of |n/ṁ| must be equal to the one obtained
in [83, 110, 111]. We assume a similar scaling with σ2/σ1 as in the short time solution,
and therefore give the long time asymptotics of the number of branches as

Nb(t) ≈ c2 (σ2/σ1) t0 Pc(t) e
λ(t/t0) t� t0, (6.6)

with λ ≈ 2.87, which differs from the value used in [83,110,111] because of our definition
of t0 (eq. (3.24)). This means that our result is also valid for non-Gaussian correlation
functions. We numerically determine the universal constant c2 ≈ 0.040.

6.4.4 Combined solution

Since both approximations overestimate Nb in the regions where they are not applicable,
we can construct a compound solution by always choosing the one that gives a lower
value. The result is then given by

Nb(t) =

{
f1(t) if f1(t) ≤ f2(t)

f2(t) if f1(t) > f2(t)

f1(t) = c1 t0 Pc(t)
√
〈n2(t)〉

f2(t) = c2 (σ2/σ1) t0 Pc(t) e
λ(t/t0). (6.7)

From this equation, it is clear that rescaling the number of branches with σ2/σ1 and the
time with t0, the resulting curve is universal in the sense that it is independent of the
parameters of the random potential and independent of the particular functional form
of the correlation function.

6.4.5 Numerical confirmation

We perform extensive numerical simulations to confirm our theory, using a range of
values for the parameters ε and `c and using correlation functions of Gaussian type as
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c(|r|) = c(r) σ2
1 ε
−2`3

c σ2
2/σ

2
1 `

2
c

ε2 exp (−r2/`2
c) 6

√
π 10

ε2 sech (r/`c) 9.1876 10.2319

(1 + r2/`2
c)
−α

12
√
π Γ(α + 3/2)/Γ(α) 15 + 10α

Table 6.1: Different values of σ1 and σ2/σ1 for different correlation functions c(r),
with Γ(x) denoting the Gamma-function [81]. Since the values for σ1 and σ2 of the
exponentially decaying correlation function ε2 sech (r/`c) cannot be given analytically,
we give the numerical approximation in this case.
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Figure 6.4: Short- and long-term asymptotics as well as compound solution of Nc(t),
numerical data for ε = 4% of the particle energy and with `c = 0.1.

well as correlation functions with exponential and with different power law decays. We
note that the correlation functions have to be six times differentiable at the origin in
order for σ2 to exist. The corresponding values for σ1 and σ2/σ1 are given in table 6.1.

We now compare the approximations (6.5) and (6.6), the compound solution (6.7)
and numerical data from one set of parameters of the random potential in fig. 6.4 for
a potential with a Gaussian correlation function. We also show simulations for the
different correlation functions mentioned above, and different sets of the parameters of
the random potential, ε and `c, in fig. 6.5a. We note in particular that curves with
approximately the same t0 such as the one with ε = 0.08, `c = 0.1, and the one with
ε = 0.04, `c = 0.06 for the Gaussian correlation function, appear very different, although
they scale with the same exponent for large t. In fig. 6.5b, we plot the same curves again,
but rescale t with t0, and Nb(t) with σ2/σ1, since we have predicted the resulting curve to
be universal (cf. eq. (6.7)). All numerical curves collapse onto our theoretical prediction.
Also included is data from a fully two-dimensional simulation (in contrast to the quasi-
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Figure 6.5: (a) Nb(t) for different sets of parameters of the random potential (ε in % of
the total energy), different correlation functions, and with a fully two-dimensional sim-
ulation (2D). The type of correlation function is indicated by roman numbers: Gaussian
(I), exponential (II) and power-law with exponents α = 1, 2, 3, 4 (III, IV, V, VI) (see
table 6.1 for details). (b) Same curves as in (a), but t scaled by t0 and Nb(t) by σ2/σ1,
together with analytical prediction (solid black line).

2D simulation), which fits the quasi-2D simulation and the theoretical prediction equally
well. We also note the interesting shape of the universal curve. It has two inflection
points, and therefore rises quickly when the first caustics become likely, but then only
increases by a small amount until it reaches the purely exponential growth.

6.5 Conclusion

In this chapter, we have given an analytic expression for the number of branches that
a flow develops in a random potential for all distances from the source by construction
and combination of two asymptotic solutions, making use of the results obtained on the
stability tensor in the previous chapter. We have shown that, by correct scaling, there is
one universal curve for the number of branches. The time axis has to be scaled with t0,
which depends on the parameters and the functional form of the correlation function. In
a similar way, the scaling in Nb(t) depends non-trivially on integrals of the correlation
function via σ2/σ1. We have demonstrated that from a measurement of the branches as
a function of distance the type of correlation function cannot be inferred. However, with
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a given correlation function, not only a product of ε and `c (the strength and the length-
scale of the random potential) can be obtained, but they can be determined individually
and uniquely. Our results therefore offer fundamental insight into the way different
random potentials affect transport in random media in the regime where branched flow
can be observed.
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7 Conclusion and Outlook

In this thesis, caustics and branched flows in random media have been studied. We have
introduced methods and derived results which are applicable to a wide array of fields
and beyond the examples treated here.

The results obtained can be roughly cast in two parts: In the first part (chapters 3
and 4) the emphasis was on the statistics of random caustics along trajectories under the
influence of an additional magnetic field and the application of the theory to data from
an experiment, while in the second part (chapters 5 and 6) we developed and successfully
used methods to obtain statistics on the branch density perpendicular to a flow.

In chapter 3 we reviewed existing analytical quasi-2D results obtained by deriving
equations for the curvature of the action. We tested the validity of the results using fully
two-dimensional simulations for a range of random potentials. We then derived equations
for the probability distribution of the action curvature in the case of charged particles
propagating through a random medium under the influence of a constant perpendicular
magnetic field. Since this magnetic field causes focusing by itself, we were able to study
the interplay between the random focusing of the disorder potential and the deterministic
focusing of the magnetic field. Analytical results were obtained for the moments of the
probability distribution of the mean time to a caustic as a function of the initial curvature
of the Lagrangian manifold. The results were confirmed with numerical simulations. Our
results are important because a real focusing device is never free from small perturbations
such as a disorder potential. With our results, we can analyze to what extent focusing
will be determined by the deterministic mechanism in contrast to the random one.

The theory developed in chapter 3 was used in chapter 4 to analyze data from a
magnetic focusing experiment in a semiconductor microdevice. The geometry of the
device in the shape of a corner adds several interesting effects compared to the more
usual transverse magnetic focusing experiments. Most importantly, resistance peaks are
observed because of focusing at even multiples of a reference magnetic field B0, and
because of the collimation of the beam at odd multiples of B0. We argue that the colli-
mation peaks are prone to being focused by a random potential even when the mean free
path of the electrons is at least an order of magnitude larger than the system size. We
can confirm this quantitatively using the theory of chapter 3 and additionally perform
detailed simulations of the electron flow inside the device. We have been able to con-
sistently reproduce the experimental results. Our findings have important consequences
for the fabrication of ballistic semiconductor devices, since we have shown that even in
very clean devices branching can strongly affect their conductance properties.
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The aim of chapters 5 and 6 was to answer the long-standing question in the theory
of branched flow of how many branches appear per unit length perpendicular to the
flow depending on the parameters and the type of correlation function governing the
random potential. This statistics is intimately connected with the statistics of cusp
points, which is the reason for deriving a detailed theory of second-order singularities
of a flow in chapter 5. This has required the derivation of an extension of the stability
matrix, the extended stability tensor. We subsequently derived Fokker-Planck equations
for the elements of the stability matrix and the extended stability tensor in the quasi-2D
approximation, and from this established and solved equations for their second moments.
Not only the parameters, but also the functional form of the correlation function enters
in the expression for the moments. All results were again confirmed by quasi-2D and
fully 2D simulations.

Equipped with the results from chapters 3 and 5, we could now study the transverse
distribution of branches by breaking up the general expression for this quantity into
smaller parts. This has implied using approximations for the short and long-term ex-
pressions for the branch density, but has allowed its expression in terms of quantities
obtained in chapters 3 and 5. Our results have again been confirmed with numerical
simulations using random potentials with different correlation functions and parame-
ters. The results are important for the following reasons: For the first time, a universal
curve valid for a wide range of correlation functions and parameters and valid for all
distances from the source has been derived. From this, one can predict quantitatively
where branching occurs when the statistics of the random potential is known, or one
can extract the statistics of the random potential from a measurement of the number of
branches as a function of the distance from the source. Often, such as in semiconductor
microdevices, it is not possible to measure the random potential directly. Our results
therefore provide a novel way of obtaining the statistics of a disorder potential. Further-
more, they allow a comparison of random potentials with different types of correlation
functions in terms of their effect on the branching.

As an outlook, we propose several promising continuations of the research performed
in this thesis. In chapter 3, we calculated Lagrangian caustic statistics when a constant
magnetic field additionally focuses trajectories. One could extend the formalism in order
to treat a variable magnetic field, or a different focusing mechanism altogether, such
as a lens. This would imply finding a suitable coordinate system in which a quasi-2D
treatment is a good approximation of the real system. Once this is found, the calculation
would proceed analogously to our derivation.

In chapter 4 we analyzed and simulated transport through a magnetic focusing device,
and identified two different types of peaks, the focusing and the collimation peak. We
propose to study their relationship further by construction of focusing devices with
different angles of the corner. This would leave the collimation peak in place, but change
the position of the caustic peaks. Also, one could study the temporal distribution of the
particles transmitted, which would allow for a further experimental verification of our
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theory. We would expect the focused particles to have a broader distribution than the
ones resulting from the collimation of the beam.

A natural extension of the results of chapters 5 and 6 would be to consider different
initial conditions, in particular the point source, which has already been analyzed in
terms of its statistics along trajectories in chapter 5.

In addition to the extensions discussed above, we propose several further directions in
which to advance the theory of branched flow. The first is to consider the shape of the fold
lines. In some respects, a fold line behaves like a trajectory itself, governed implicitly by
the equations of motion of the trajectories which touch the fold line. With this in mind,
one could study the statistical behaviour of such a “fold trajectory”, for example moments
of its deviation from its initial point, and even its “velocity” distribution. Although this
is a demanding problem analytically and numerically, it would yield further quantities
measurable in an experiment.

We have checked the validity of the results for a wide range of correlation functions and
parameters of the random potential. However, we have restricted ourselves to random
potentials with a single length-scale. While this is a very good approximation in many
systems, there are situations in which more realistic models are known, such as for the
velocity distribution in the ocean. To our knowledge, there exists no work on branched
flow in potentials with several length scales. It would be interesting to construct such a
model and to analyze to what extent this can be mapped to a model with one length-
scale.

In addition to this, it would be interesting to extend our results to three dimensions
in order to treat cases which cannot be approximated as two-dimensional. This could,
for example, include caustics in seismic waves.

A further extension to the theory would be the inclusion of nonlinear effects in the
corresponding wave equations. An example of this are Bose-Einstein-condensates, which
can be described by the nonlinear Gross–Pitaevskii equation.

With this thesis, we hope to have provided a good starting-point for these further
investigations and to have obtained results which will be useful to experimentalists and
theoreticians in the many areas in which branched flow occurs.
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A Building a catastrophe machine

The main concepts of catastrophe theory can be illustrated by building a simple machine,
for which all quantities can be calculated analytically. Several such machines have been
devised in the past, of which we here use the Zeeman catastrophe machine [19,112–114].
The machine consists of a wheel (with as little friction as possible) with a pin in it, to
which two elastic bands are attached. One of these is attached to a rod which can be
moved freely in the plane. The other is fixed some distance away. The angle of the
wheel θ is interpreted as the state variable, while the ~r = (x, y) location of the rod is
used as the two control parameters. As in the theory of branched flow (sec. 2.4), we
then have two stable catastrophes, the fold and the cusp. These are the bifurcation set
of the problem, since when moving across them with the control parameters, the state
variable changes non-continuously. This is the same situation as in branched flow, where
moving across a caustic, one jumps to a different trajectory and thus a different state
variable. The location of the catastrophes can be found as the envelopes of the contours
of θ = const. which we do in fig. A.1 (the formulae can be found in [113]).

x

y

−1 −0.5 0 0.5 11

1.5

2

2.5

3

Figure A.1: Contours of θ = const. the envelopes of which constitute the catastrophe
set.
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A Building a catastrophe machine

Figure A.2: Picture of the catastrophe machine.

The machine is constructed from acrylic glass with copper studs and a ball bearing to
make the wheel as frictionless as possible. The catastrophe set with the correct units is
photocopied onto a foil, which is attached to the machine. A picture of the experiment
is shown in fig. A.2.
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B The Fokker-Planck Equation

We describe how to arrive at a Fokker-Planck equation (FPE) from a general stochastic
differential equation, as given for example in [78,115,116]. We consider a dynamic system
ξ(t) (for simplicity we begin with a scalar instead of vector quantity and generalize later):

ξ̇(t) = h(ξ, t) + g(ξ, t) Γ(t) (B.1)

where h(ξ, t) and g(ξ, t) are deterministic and Γ(t) is Gaussian random function with
correlation function

c(t, t′) = 〈Γ(t)Γ(t′)〉 = 2 δ(t− t′) (B.2)

and zero mean. We want to calculate the probability density P (x, t) given the initial
probability density P (x0, t0) and eq. B.1. We know that

P (x, t+ τ) =

ˆ
T (x, t+ τ |x′, t)P (x′, t) dx′ (B.3)

where T (x, t+τ |x′, t) is the transition probability from (x′, t) to a later time and different
position (x, t + τ), with τ > 0. The integral sums over all possibilities to get to x,
therefore eq. (B.3) is an expression of the conservation of probability. In order to get
a differential equation for P , we Taylor expand the integrand of eq. (B.3) in the small
quantity ∆x = x− x′ by writing

T (x, t+ τ |x′, t)P (x′, t) = T (x+ ∆x−∆x, t+ τ |x−∆x, t)P (x−∆x, t)

=
∞∑
0

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t).

We insert this in eq. (B.3) and obtain

P (x, t+ τ) =

ˆ ∞∑
0

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t) dx′

which can be written in terms of the moments Mn (n ≥ 1)

Mn(x′, t, τ) = 〈[ξ(t+ τ)− ξ(t)]n〉|ξ(t)=x′ =

ˆ
(x− x′)n T (x, t+ τ |x′, t) dx.
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B The Fokker-Planck Equation

We obtain for

P (x, t+ τ)− P (x, t)

τ
=

1

τ

ˆ ∞∑
1

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t) dx′

=
1

τ

∞∑
1

(−1)n

n!

∂n

∂xn
Mn(x, t, τ)P (x, t) dx′.

The moments themselves are now Taylor expanded to first order, since these are the
only ones needed in the limit τ → 0:

Mn(x, t, τ)/n! = D(n)(x, t) τ +O(τ 2),

from which we now obtain

∂P (x, t)

∂t
= lim

τ→0

P (x, t+ τ)− P (x, t)

τ
=
∞∑
1

(−1)n
∂n

∂xn
D(n)(x, t)P (x, t) dx′.

For delta-correlated Γ(t) (as in eq. (B.2)), the moments with n > 2 vanish, and we are
left with

∂P (x, t)

∂t
=

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
P (x, t) (B.4)

which is the Fokker-Planck equation. We also give the multi-dimensional case, for the
transition probability P (x, t|x0, t0), which equally obeys the FPE with initial condition

P (x, t0|x0, t0) = δ(x− x0).

We assume a vector equation with components

ξ̇i(t) = hi(~ξ, t) + gij(~ξ, t) ~Γj(t)

with the multidimensional noise

〈Γi(t)Γj(t′)〉 = 2 δijδ(t− t′)

and zero mean. It is given by (summation convention implied)

∂P (~x, t|~x0, t0)

∂t
=

[
− ∂

∂xi
D

(1)
i (~x, t) +

∂2

∂xi ∂xj
D

(2)
ij (~x, t)

]
P (~x, t|~x0, t0) (B.5)

with the drift and diffusion coefficients given by

D
(1)
i (~x, t) = hi(~x, t) + gkj(~x, t) ∂xk gij(~x, t)

D
(2)
ij (~x, t) = gik(~x, t)gjk(~x, t). (B.6)
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We note that the FPE can also be written as a conservation equation for a probability
current. For the one-dimensional case we rewrite eq. (B.4) as

∂P

∂t
+
∂J

∂x
= 0 (B.7)

with the probability current J .

J =

[
D(1)(x, t)− ∂

∂x
D(2)(x, t)

]
P (x, t) (B.8)

Finally, we note that there is an equivalent backward equation to the forward FPE given
here. In the forward FPE, initial conditions for the probability density at time t0 are
given, and the FPE describes the time evolution for this density for t ≥ t0. In some cases,
most notably mean first passage time calculations, one wants to fix the final conditions
and leave the initial conditions unspecified. One can then write down a FPE for the
reverse time evolution valid for t0 ≤ t (where t is the final time). The backward FPE
for the transitional probability P (~x, t|~x0, t0) is given by

∂P (~x, t|~x0, t0)

∂t0
=

[
−D(1)

i (~x0, t0)
∂

∂x0
i

+D
(2)
ij (~x0, t0)

∂2

∂x0
i ∂x

0
j

]
P (~x, t|~x0, t0) (B.9)

with final condition
P (x, t|x0, t) = δ(x− x0).
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C Distribution incident on QPC

We assume that there is a lead attached to the emitting QPC which guides the electrons
to the QPC. What is a reasonable assumption for the distribution of the number of
particles (or the intensity) for some angle α, i.e. I(α), inside lead? This is needed as
initial condition when simulating a complex geometry such as the QPC.

Since we want to simulate a bath at the end of the lead, we assume that all directions
are equally present. To calculate the resulting angular distribution in the lead, we look
at a small, straight area in the lead as illustrated in fig C.1.

Figure C.1: trajectory in a small area in a straight lead

Since all particles have the same energy, they also have the same velocity. The con-
tribution of one electron to the current density inside the small area C ×D is therefore
proportional to the length of the trajectory inside the area. This total length is given
by L C

∆x
. So the contribution to the density of one single particle to the current density

in this area is given by

∆ρ = L
C

∆x
=

L C

L cos(α)
=

C

cos(α)
.

For a particle at angle α to contribute equally to the current density, one has to mul-
tiply its contribution to the density by cos(α) such that ∆ρ = const. When simulating
trajectories emerging from a lead, this means that one has to start trajectories with a
cosine distribution in order to simulate a constant flux through the lead.
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D Model potential at walls and QPCs
of corner device

We construct a simple model of the soft walls and a model of the QPC which describes
the potential of the QPC as a function of x and y. For the walls we use a quadratic
equation with parameter ω

Vsw(x, y) =

{
g(x) if x < x0

0 if x > x0

with
g(x, x0) =

1

2
w2(x− x0)2.

The QPC without a saddle point potential is modeled by the function (see below for the
additional saddle point equations)

VQPC(x, y) =

{
f(x, y, α, h) if y < x0

0 if y > x0
(D.1)

with

f(x, y, α, h) =
1

2

{
tanh

(
α(x− 1− h(y)

2
)

)
+ tanh

(
α(1− h(y)

2
− x)

)}
+ 1 (D.2)

where the parameter α describes the steepness of the potential at the edges of the QPC.
The function h(y) describes the opening of the potential of the QPC into the system.
We choose it to be quadratic here, such that h(y) = h0 + β y2. To get one side of the
potential, we multiply Vsw(x, y)× VQPC(y, x) in order to get

Vcombinedx(x, y) =

{
g(x, x0) f(x, y, α, h) if x < x0

0 if x > x0

The complete potential is then a superposition of the combined x and y potentials.

V (x, y) =


g(x, x0) f(y, x, α, h) + g(y, x0) f(x, y, α, h) if x < x0 ∧ y < x0

g(y, x0) f(x, y, α, h) if x > x0 ∧ y < x0

g(x, x0) f(y, x, α, h) if x < x0 ∧ y > x0

0 if y > x0 ∧ y > x0
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D Model potential at walls and QPCs of corner device

The force is given by F = −∇V . We give the force in the x-direction as an example:

Fx =



1
2
g(x, x0) (u−(x, y, α, β, h0) β x+ u+(x, y, α, β, h0) β x)

+1
2
g(y, x0) (u−(y, x, α, β, h0) + u+(y, x, α, β, h0))

+w2 (x− x0)
(
1 + 1

2
(v−(x, y, α, β, h0) + v+(x, y, α, β, h0))

) √
2
w
−x>0∧

√
2
w
−y>0

1
2
g(y, x0) (u−(y, x, α, β.h0)− u+(y, x, α, β.h0))

√
2
w
−x≤0∧

√
2
w
−y≥0

1
4
w2
(
x−

√
2
w

)2

(u−(x, y, α, β, h0) β x+ u+(x, y, α, β, h0) β x)

+w2
(
x−

√
2
w

) (
1 + 1

2
(v−(x, y, α, β, h0) + v+(x, y, α, β, h0))

) √
2
w
−x≥0∧

√
2
w
−y≤0

with

u−(x, y, α, β, h0) = −α sech2

(
α

(
1

2

(
−βx2 − h0

)
− y + 1

))
u+(x, y, α, β, h0) = −α sech2

(
α

(
1

2

(
−βx2 − h0

)
+ y − 1

))
v−(x, y, α, β, h0) = tanh

(
α

(
1

2

(
−βx2 − h0

)
− y + 1

))
v+(x, y, α, β, h0) = tanh

(
α

(
1

2

(
−βx2 − h0

)
+ y − 1

))
In order to model the saddle points inside the QPC, instead of the prefactor of 1/2 in

front of the hyperbolic tangent in eq. (D.2), we now use 1
2
−g0 e

−(x−x0)2/s with parameters
g0 and s. This will be 1/2 for most of the time except for the region between the QPCs.
The walls of the chamfered corner are modeled in the exactly the same way as the other
walls.

The numerical values of the parameters used for the final results of the simulations are
α = ω = 80, β = −2.7, s = 0.001. The values the initial opening of the QPC, h0 = .22 is
known from the experiment. The saddle point parameters g0 = 0.8 is used, except for
the section comparing the different saddle strengths.
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