
Symmetry Breaking and Pattern Selection

in Models of Visual Development

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten
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1. Introduction

Pattern formation is observed in abundance, including animal coat markings [1], convection

experiments [2–4], laser beams [5], and Faraday waves [6, 7]. Another prominent pattern

formation process is the ability of the brain to form spatial representations of sensory infor-

mation. Well known examples are the topographic representation of the body surface in the

somatosensory areas [8] and acoustic maps in the auditory area [9]. The diversity of such

patterns is not only fascinating to observe in nature but also to study using concepts from

physics. In this thesis we study the formation of sensory representations in the visual cortex.

Neurons in the primary visual cortex are selective to the complex structure of a natural scene,

including visual field position, contour orientation, ocular dominance, direction of motion, and

spatial frequency. In many mammals the preferred orientation of visual cortical neurons were

found to form a complex two dimensional pattern, called the orientation preference (OP)

map. Another important cortical organization structure is ocular dominance (OD) i.e. the

tendency to prefer visual input from one eye over the other. Response properties in these

maps are arranged in repetitive modules of a typical length called hypercolumns. OP and OD

maps exist in many species with very different living conditions including humans [10,11].

How do these cortical maps emerge during development? It seems plausible to believe that

evolution has designed the visual system of mammals such as to form a very efficient in-

ternal representation of the outside world. There is abundant evidence that neural activity

plays a role in organizing the connections among neurons during development. What is an

appropriate model for the development of visual cortical maps that captures the observed

phenomenology? If the refinement of cortical architecture follows an optimization strategy

this process can be interpreted as the convergence towards a ground state of some energy func-

tional. However, the energy functional the brain tries to minimize is unknown. Established

models, that propose a specific optimization principle, raise several questions which we dis-

cuss in the current thesis: Is there a model independent approach to analyze the simultaneous

development of cortical maps? What are the genuine ground states of such energy functionals

and how can they be calculated analytically? How do different optimization principles impact

on the predicted map structure and conversely what can be learned about the optimized en-

ergy from observation of map structures? Can the spatially irregular organization of cortical

functional maps be explained by frustration resulting from the joint optimization of multiple

maps?

The description of cortical map development on the level of individual neurons and synapses

is very complex considering their enormous number. For instance, there are on average about

105 neurons and 109 synapses in each mm3 of cortex [12]. Instead we can describe map
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1. Introduction

formation on a mesoscopic level. Here, relatively simple effective relations such as symme-

tries of the underlying system rule the map formation. Some plausible symmetries have been

proposed to hold for cortical maps which can help to specify the dynamics of cortical maps,

for instance the invariance under spatial translations and rotations or a global shift of ori-

entation preference. However, even if a model for cortical development results from simple

rules and assumptions its analytical tractability can be quite low. In the current thesis we

present a dynamical systems approach for analyzing cortical map development. We use a

perturbation method called weakly nonlinear analysis which is used in many analogous phys-

ical systems [2, 3, 6, 13, 14]. This method reduces the dimension of the system and leads to

amplitude equations as an approximate description of the dynamics near the pattern forming

instability. These amplitude equations are usually truncated at the leading order of the ex-

pansion. In most cases this yields already a good description of the underlying field dynamics

and allows for an analytical treatment of the dynamics.

The problem of pinwheel stability

It is important to find quantifiable criteria of equivalences between models of visual cortical

development and those maps actually found in the visual cortex. It turns out that the occur-

rence of so called pinwheels is such an appropriate measure. OP maps are characterized by

pinwheels, regions in which columns preferring all possible orientations are organized around

a common center in a radial fashion [15]. Pinwheels are initially generated in the visual cor-

tex at the time of eye opening and remain present during all stages of visual development.

Pinwheels occur numerously in the primary visual cortex. A recent study found that diverse

species exhibit a universal pinwheel density of about three pinwheels per hypercolumn [16].

However, the functional role of pinwheels remains unclear. Does the existence of pinwheels

influence visual processing? Near pinwheels neurons with dissimilar orientation preferences

are closely located. The existence of pinwheels thus might reduce the wiring length between

neurons and therefore improve information processing [17]. However, many theoretical models

of visual cortical development have failed to produce OP maps possessing stable pinwheels.

Simulations of various models have demonstrated that initially pinwheel rich states, gener-

ated by spontaneous symmetry breaking, can decay towards a pinwheel sparse pattern of

OP stripes, a process known as spontaneous pinwheel annihilation [17–20]. The question

of pinwheel stability in OP maps is thus an unsolved problem in theoretical neuroscience.

To solve this problem we need a mechanism that stabilizes pinwheels. There are currently

two hypotheses for the stabilization of pinwheels which will both be examined in this thesis.

According to the first hypothesis, pinwheels are stabilized by interactions among different

columnar systems. According to the second hypothesis, long-range intracortical interactions

can lead to pinwheel stabilization.

Stabilization by map interactions

One hypothesis for pinwheel stabilization is suggested by the observed spatial relationships

between different visual cortical maps. These relationships, such as the tendency of iso-

orientation lines to intersect OD borders perpendicularly or the tendency for pinwheels to

2



be located at OD extrema, have been proposed to reflect an optimization principle, e.g. a

compromise between stimulus coverage and continuity [21–24] or a wiring length minimiza-

tion [17, 25]. Hubel and Wiesel suggested in their ’Ice cube’ model a simple organization

structure of OD and OP maps [26]. They proposed that OD bands should intersect iso-

orientation bands at right angles such that a single hypercolumn would cover all possible

stimulus combinations. This model ignores the existence of pinwheels and the spatial disor-

der obvious in the patterns. Thereafter, the influence of OD segregation on OP maps has been

studied in a series of models [18, 20, 24, 27–38]. In many of these models it is expected that

the inter-map coupling preferentially locates pinwheels at OD extrema and prevents them

from being at OD borders. Pinwheels thus cannot cross OD borders, as it would increase

the energy of the system. Pinwheels are topological defects and therefore can annihilate only

in pairs. This mechanism thus may prevent pinwheels from annihilating each other and one

may expect that a strong OD segregation impedes pinwheel annihilation. In this thesis we

will show that this is not true for a general OD layout and that additional requirements such

as a broken left-right eye symmetry have to be fulfilled.

All these models rely on numerical simulations to study the time evolution of map develop-

ment. Although several numerical studies [18, 20] showed that the annihilation of pinwheels

is impeded due to OD segregation it remains unclear whether pinwheel annihilation is actu-

ally stopped and the remaining pinwheels in the pattern are stable or whether this is just a

transient state and a further pinwheel annihilation leads to a OP stripe pattern. Moreover,

a scenario which is not considered in existing map interaction models is the creation of pin-

wheels from a pinwheel free OP pattern. Such a scenario is possible if a pinwheel rich state

corresponds to the energetic ground state of the model. To lift these ambiguities it would be

highly desirable to have a model in which one can identify stationary, pinwheel rich states of

the dynamics and also mathematically demonstrate their stability.

Stabilization by long-range horizontal connections

The second hypothesis for pinwheel stabilization originates from the observed geometry of

cortical connectivity. Neurons in the visual cortex form extensive connections horizontal to

the cortical surface, linking different orientation columns over distances up to several mil-

limeters [39–48]. In a seminal study Wolf has shown that the inclusion of such long-range

horizontal connections into a dynamics of an OP map can lead to the stabilization of pin-

wheels [49, 50]. Moreover, with increasing spatial extend of these connections the predicted

OP layout becomes more irregular. Considering the geometric relationships between different

cortical maps we thus ask how the spatial irregularity of OP maps influences the layout of

co-evolving maps like that of OD. Several inter-species differences in the cortical map layout

have been reported. In particular, the OD layout ranges from a patchy arrangement observed

in cat visual cortex to a more stripe-like structure found in monkeys. Can map interactions

explain these layout differences? To answer this question an appropriate model should cap-

ture species variations in the basic parameters. In the current thesis we therefore investigate

how the observed differences in cortical map layout can occur by interactions among maps

3



1. Introduction

with different typical wavelengths.

Multistability and pattern selection

One aim of this thesis is to examine the diversity of potential patterns which are offered

by models for the development of OP maps. The OP dynamics including long-range inter-

actions leads to a solution class with a huge number of stationary solutions. Remarkably,

these solutions share the same stability and energy properties. Moreover, they substantially

vary in their quantitative properties such as the pinwheel density. Despite this variation, the

ensemble average over the different multistable solutions leads, for a large interaction range,

to a pinwheel density that equals the mathematical constant π in agreement with experimen-

tally obtained densities. Multistability and energetic degeneracy substantially simplifies the

analysis of the OP dynamics which in this case can be restricted to the analysis of a single sta-

tionary solution. An important question we want to answer in the current thesis is how robust

is this degeneracy and, if it is lifted, how to deal with those numerous solutions. We identify

two mechanisms that can lift the described degeneracy and thus lead to pattern selection

within this solution class. Multistability and energetic degeneracy originate from an assumed

symmetry of the OP dynamics, namely permutation symmetry. Given this symmetry, the

degeneracy is guaranteed when pattern formation takes place close to the pattern forming

instability, where leading order amplitude equations are sufficient to describe the dynamics.

We therefore study pattern formation in the presence and absence of permutation symmetry

as well as near and far from the pattern forming instability. Broken permutation symmetry

not only leads to a selection of solutions within the highly multistable solution class but also

extends the set of potential solution classes. In the current thesis we therefore introduce new

classes of solutions to the OP dynamics which not have been considered before and discuss

several questions that arise for these solutions: Does a new solution class contain biologically

plausible solutions which can become stable? If there are unrealistic solutions, how can their

stability be excluded? How sensitive are the new solutions and thus their pinwheel densities

to model details?

Outline of the thesis

This thesis is organized as follows. Chapter 2 gives a brief introduction of the biological

background. This is followed by Chapter 3 introducing pattern formation models for the

development of visual cortical maps. In particular, we consider a general model of interactions

between OP maps and another feature map where the inclusion of interaction terms is strictly

justified by symmetry considerations. In Chapter 4 we discuss four representative examples

of inter-map coupling energies and apply the general model to interactions between OP and

OD maps. In particular, we show that inter-map coupling is able to stabilize pinwheel rich

OP patterns which would disintegrate into pinwheel free stripe patterns in the uncoupled

case. We identify a criterion for the stability of pinwheel rich solutions, namely the existence

of a bias in the OD map towards the inputs from one eye. The resulting patterns have reg-

ular spatial layouts which we characterize in detail. To achieve an irregular spatial layout

we include non-local interaction terms into the dynamics of the OP map in Chapter 5. We

4



investigate the influence of the OP map on the layout of the co-evolving OD map. We show

that inter-map coupling can transform OD stripe patterns into a spatially irregular layout

which resembles the diverse OD layouts such as those of cat and macaque visual cortices.

The OP dynamics has a vast number of stable stationary solutions which are energetically

degenerate. This degeneracy is valid in the leading order of a perturbative expansion close

to the bifurcation point. In Chapter 6 we thus study pattern selection far from the bifur-

cation point. We derive higher order corrections to the amplitude equations and show that

the degeneracy is lifted and solutions with a relatively low pinwheel density are energetically

selected. We study another mechanism of pattern selection in Chapter 7. We generalize the

OP dynamics by breaking the permutation symmetry which leads to pattern selection already

at leading order. In addition to the dominant solution class in the permutation symmetric

case we identify an additional class which can become dominant in the symmetry broken case,

and which is rather insensitive to model details. Finally, we summarize the main results in

Chapter 8 and discuss its consequences and potential future directions.

A notation guide is provided on page 165.
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2. Biological Basics

To formulate appropriate mathematical models for visual cortical development it is important

to understand the basics of the neuronal anatomy and physiology. We thus briefly sketch the

main biological facts of the visual system which are essential for this work.

2.1. From the retina to the cortex

The visual pathway that conveys visual information from the retina to the visual cortex is

sketched in Fig. 2.1. The retina is the first processing stage of visual signals where light, en-

tering through the eye, is transformed into spike patterns. The retinal ganglion cells represent

the output of the retina. Their axons leave the retina and travel through the optic nerve to

the optic chiasm. Here, a partial crossing of the axons takes place. Each optic nerve branches

such that parts of the fibers target the contralateral Lateral Geniculate Nucleus (LGN) at the

side opposite to its origin, whereas the rest targets the ipsilateral LGN at the same side as the

eye of origin. From that stage on the optic nerves carry information from both eyes. The LGN

in the thalamus is the major target of the retinal ganglion cells and relays their information

to the primary visual cortex via the optic radiation. This segregation is maintained as the

axons enter the cortex. The cells of the LGN then project to their main target, the primary

visual cortex (V1) which is located at the occipital lobe of the neocortex. The primary visual

cortex, like the other parts of the cortex, is composed of a two-dimensional, slightly folded

sheet of neurons and connections between them. V1 of the left hemisphere thus receives input

from the right visual field of the ispilateral (left) as well as of the contralateral (right) eye

and vice versa. Beyond V1, visual information processing is passed to higher cortical areas,

such as the secondary visual cortex V2 or areas MT and IT.

2.2. Maps in the visual cortex

In the visual cortex, as in most areas of the cerebral cortex, information is processed in a 2-

dimensional array of functional modules, called cortical columns [52, 53]. Individual columns

are groups of neurons extending vertically throughout the entire cortical thickness that share

many functional properties. In a plane parallel to the cortical surface, neuronal selectivities

vary systematically, so that columns of similar functional properties form a systematically

organized 2-dimensional pattern, known as functional cortical maps. These patterns exhibit

a typical lateral spacing Λ which is in the range of 1 millimeter. The visual pathways are

organized in a highly topographic manner, neighboring locations in the visual field map onto

7



2. Biological Basics

Figure 2.1: A sketch of the human
visual pathway. Stimuli on the left side
of the field of view map on the temporal
retina of the right eye and the nasal retina
of the left eye. Visual information from
the retina is relayed via a thalamic nucleus
to the primary visual cortex at the
occipital pole of the brain, adapted
from [51].

neighboring locations in the cortex. This feature is called retinotopy and V1 is said to contain

a retinotopic map. Superimposed on the retinotopic map are maps of additional stimulus

features, as illustrated in Fig. 2.2.

2.2.1. Ocular dominance maps

V1 is the first stage in the visual pathway where individual neurons have access to information

from corresponding locations in both retinae. Many cells in the visual cortex are selective to

whether the input comes from the ipsilateral or the contralateral eye. This ocular dominance

(OD) is found to alternate regularly between groups of neurons giving rise to an OD map.

Experimentally ocular dominance maps can be visualized using radioactive tracers such as

[3H]-proline or 2-deoxyglucose and also by optical imaging of intrinsic signals. For the proline

labeling the injection into one eye via the axonal transport the tracer appears in the primary

visual cortex . In this way the tracer is enriched in the cells that are in connection with the

injected eye. The typical spatial layout of OD maps for cats and macaque monkeys is depicted

in Fig. 2.3. It is known that there is a bias of cortical response toward the contralateral eye at

an early stage of postnatal development. This bias has been observed in many different species

including ferrets [57], cats [58], monkeys [56], and mice [59]. While in young animals there

is a huge over-representation of the contralateral eye, this over-representation is reduced as

the animal matures. This bias might have evolutionary reasons. In lower vertebrates, such as

fish, that lack binocular vision, there is a total crossing of the afferents leading to a complete

contralateral representation. The early visual system of mammals thus might reflect this bias.

Ocular dominance maps can be described by a real valued two dimensional field o(x), where

8



2.2. Maps in the visual cortex

Figure 2.2: Maps in the visual
cortex. Schematic of maps of
spatial location (retinotopy),
orientation preference, ocular
dominance, and spatial frequency
over a patch of the primary
visual cortex. Neurons at the
cortical position marked in red
would be tuned to the particular
stimulus location, orientation,
ocular dominance, and spatial
frequency identified by the
dotted line leading from the red
spot. Neurons in the green spot
would be tuned to the different
set of values indicated by its
dotted line. The key gives color
codes identifying tunings for the
different features (from [54]).

o(x) < 0 indicates ipsilateral eye dominance and o(x) > 0 contralateral eye dominance of the

neuron located at position x. The magnitude indicates the strength of the eye-dominance.

2.2.2. Orientation preference maps

Neurons in the visual cortex are also selective to the orientation of a presented stimulus.

Orientation columns in the visual cortex are composed of neurons preferentially responding to

visual contours of a particular stimulus orientation. Experimentally, the pattern of orientation

preferences can be visualized using optical imaging methods. Optical imaging of intrinsic

signals is based on the fact that the optical properties differ in activated vs. less activated

parts of cortical tissue. This is utilized to record patterns of activity from light reflectance.

In a typical experiment, the activity patterns Ek(x) produced by stimulation with a grating

of orientation ϑk are recorded, see Fig. 2.4(A). Here x represents the location of a column

in the cortex. Using the activity patterns Ek(x), a field of complex numbers z(x) can be

constructed that completely describes the pattern of orientation columns. This complex field

is obtained by vector averaging activity patterns over the different stimuli i.e.

z(x) =
∑

k

e2ıϑkEk(x) . (2.1)

9



2. Biological Basics

(b)(a) (c)

(d)

Figure 2.3.: Comparison of the OD pattern for different species. (a) OD pattern in
V1 of a cat obtained by [3H] proline labeling (scale bar 10 mm), from [55], (b) OD pattern
in V1 of a macaque monkey obtained by cytochrome oxidase staining, from [56]. (c,d)
Display detail of (a,b).

The pattern of preferred stimulus orientation ϑ is then obtained by

ϑ(x) =
1

2
arg(z). (2.2)

The modulus |z(x)| is a measure of the selectivity at cortical location x. Typical examples of

activity patterns and the pattern of orientation preference derived from them are shown in

Fig. 2.4(A,B). Orientation preference maps are characterized by so called pinwheels, regions

in which columns preferring all possible orientations are organized around a common center in

a radial fashion. The centers of pinwheels are point discontinuities of the field ϑ(x) where the

mean orientation preference of nearby columns changes by 90 degrees, see Fig. 2.4(C,D). Pin-

wheels can be characterized by a topological charge q which indicates whether the orientation

preference increases clockwise or counterclockwise around the pinwheel center,

qi =
1

2π

∮

Ci

∇ϑ(x)ds , (2.3)

where Ci is a closed curve around a single pinwheel center at xi. Since ϑ is a cyclic variable

in the interval [0, π] and up to isolated points is a continuous function of x, qi can only have

values

qi =
n

2
, (2.4)

where n is an integer number [61]. If its absolute value |qi| = 1/2, each orientation is repre-

sented only once in the vicinity of a pinwheel center. In experiments, only pinwheels with a

topological charge of ±1/2 are observed, which correspond to simple zeros of the field z(x).

The existence of pinwheels has been confirmed in a large number of species and is therefore

10



2.2. Maps in the visual cortex

D

E

Figure 2.4.: Pattern of orientation columns (A-C) in the primary visual cortex of a
tree shrew visualized using optical imaging of intrinsic signals (from [39]). (A) Activity
patterns. The bars depict the orientation of the stimulus. Black areas indicate areas of the
cortex that were preferentially activated by the given stimulus. (B) Orientation preference
map obtained by vector summation of data obtained for each angle. (C) Typical structures
that can be found in orientation preference maps such as linear zones and pinwheels. (D)
OP map of cat visual cortex. Darker colors represent less selective responses. The square
region indicates the typical structure of pinwheels, scale bar 1mm (E) Pinwheel with single
cell resolution, scale bar 100 µm, from [60].

believed to be a general feature of orientation preference maps. Recent research has clarified

the microscopic structure of pinwheel centers, revealing that radial organization is layed down

with single cell precission [60], see Fig. 2.4(E).

Pinwheels in OP maps are abundant, several hundreds of pinwheels are found for instance in

the visual cortex of cats. The number of pinwheels per hypercolumn is thus a good quan-

titative measure to distinguish different OP maps. We define the pinwheel density ρ as the

mean number of pinwheels in a region of size Λ2. Several studies reported a considerable

interspecies variability in the pinwheel density [62–64]. Kaschube et al. [16] developed a novel

pinwheel analysis method that takes the spatial inhomogeneities in the column spacing Λ into

account. They found that the pinwheel density was statistically indistinguishable among all

three analyzed species (ρ = 3.12 tree shrew, ρ = 3.18 galago, ρ = 3.16 ferret) and is further

statistically indistinguishable from the mathematical constant π.

The exact set of V1 tuning properties differs for different species. As depicted in Fig. 2.2

in addition to orientation selectivity and ocular dominance neurons in the visual cortex can
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Figure 2.5: Long-range
horizontal connections extend
over several millimeter parallel to
the cortical surface (tree shrew,
superimposed on the OP map).
White crosses indicate the
location of cells that are injected
with the tracer biocytin. Black
symbols are the labeled axons,
(from [39]).

be selective to more stimulus features like the direction of motion [65, 66] or spatial fre-

quency [33,67,68].

2.3. Long-range connections

Besides a strong connectivity perpendicular to the cortical surface between neurons from

different layers within a column, neurons also form extensive connections horizontal to the

cortical surface. These connections extend over several millimeters parallel to the cortical sur-

face and are therefore called long-range horizontal connections. These connections allow the

cells to integrate visual information from outside their receptive fields. Figure 2.5 shows the

long-range connections found in tree shrew. The typical distance of long-range connections

is similar to the wavelength of the columnar patterns giving rise to the idea that these con-

nections are correlated with orientation selectivity. Indeed, the connections are clustered and

preferentially connect domains of similar orientation preference. This has been demonstrated

for different species in a variety of experiments [39–48]. The relations between long-range

connections and other visual cortical maps is less clear. In the primary visual cortex of cats,

long-range intrinsic connections extend between domains of left and right eye dominance with

equal probability [48, 69, 70], whereas in macaque monkeys intrinsic long-range connections

seem to have a preference for the same-eye target [71,72].

2.4. Geometric relationships

The different visual cortical maps coexist in the same piece of cortex. It is thus natural

to expect that there might exist relations between different maps. Indeed, the different

cortical maps are not independent of each other but exhibit definite geometric relationships.

Experimentally this has been shown in a variety of species [68, 73–75]. These experiments

show that iso-orientation lines intersect OD borders preferentially at right angles, see Fig. 2.6.
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2.5. Variation across different species

Figure 2.6.: (A) Geometric relationships between OD and OP maps in cat visual cortex.
Colored lines: Iso-orientation lines, black lines: OD borders. Gray denotes contralateral eye
dominance. (B) Enlarged detail from (A), (from [68]).

This tendency might be species dependent and more pronounced in primates than in cats and

less pronounced in ferrets. Further, it has been shown that there is a clear tendency for the

pinwheel centers to be at the OD extrema. Intuitively, these findings are consistent with

the concept of uniform coverage [23]. Uniform coverage means that rapid changes in one

feature component are correlated with slow changes in the other components. Orthogonal

relationships between columns thus have the advantage of allowing many combinations of

stimulus properties to be represented in a small cortical region. Apart from OP and OD maps,

such correlations have been found also in other visual cortical maps such as spatial frequency

maps [68]. This suggests that the geometric correlations reflect an universal organization

principle in the visual cortex. The presence of mutual dependence among multiple maps thus

could provide an important clue for understanding the development of visual information

representations.

2.5. Variation across different species

The existence of a specific columnar system is species dependent. Rodents have orientation

selective cells but lack OP maps [76]. Mice, rats and tree shrews also lack OD maps [77].

Even an inter-individual variability of the formation of OD columns has been observed [78].

The spatial layout of OP and OD maps, when observed, varies significantly between different

species. For instance the spatial layout of OD maps differs between cats and macaque mon-

keys, see Fig. 2.3. For cats the spatial organization of OD domains shows an isotropic patchy

structure. In the case of macaque monkeys the OD layout shows parallel bands with a clear

tendency of elongation perpendicular to the area boundary.

A second interspecies difference concerns the average wavelength Λ of the different columnar

systems. In cats, the average wavelength of iso-orientation domains is approximately equal to

that of OD columns ΛOP ≈ ΛOD, [55,64,79]. This relation is different for example in macaque

monkeys, where the average wavelength of iso-orientation domains is smaller than that of OD

columns, ΛOP ≈ 0.83ΛOD [56, 75]. But note that there is also a substantial variation across

different animals for a given species concerning the map layout and even whether there is

13



2. Biological Basics

a map at all [78]. Species differences could also arise from the shape of the primary visual

cortex, which is more elongated in the macaque monkey than in the cat [80]. An appropriate

model for the development of cortical maps should be capable of explaining such inter-species

differences.

2.6. Development of cortical maps

The structure of the visual cortex is set up very early in life. In normal development orien-

tation columns first form at about the time of eye opening which is at about post natal day

(PD) 10 in cats and PD 31 in ferrets [57,81,82]. What is guiding the development of cortical

maps? While many experiments suggest they are determined by neural activity, some indicate

that molecular cues might also be involved [83]. There are indications that an initial map can

be established without any visual information. For instance experiments in which animals

are reared in darkness show OP maps [42]. The large number of neurons and synapses in

the cortex, however, makes it unlikely to completely specify neural connectivity by genetic

information. Instead, there are numerous indications that the initial map is maintained and

refined through visual information. Evidence from this hypothesis comes from experiments

manipulating the sensory input to the cortex. Deprivation of visual input for instance by

lid-suture can cause the loss of orientation selectivity [42]. Kittens reared in a striped envi-

ronment show twice as much surface area to the experienced orientation as to the orthogonal

one [84]. Monocular deprivation leads to substantial changes in the OD map, for instance

inducing a bias of visual response the intact eye [85]. A striking example of self-organization

are experiments in which tadpoles are implanted a third eye which leads to a segregation

of alternating eye specific domains [86]. In another remarkable experiment supporting this

hypothesis the visual input was rewired to the auditory cortex in ferrets [87]. Projections

from the retina were experimentally redirected to the auditory pathway at a very early stage

of development. As a consequence, patterns of orientation preference have been recorded in

the area that normally would form the primary auditory cortex.

To conclude, after an initial phase in which the cortical circuitry is established follows a crit-

ical period of refinement through detailed sensory input. This period lasts for about three

month for instance in cats. Although during the critical period the cortex is most susceptible

to changes in the input, there are indications that map plasticity is maintained also in the

adult visual cortex [88].

Based on the current experimental data there is no statement on whether the development

of one map precedes the other. In ferrets optical imaging studies suggest that OP develops

slightly before OD [89]. In cats and macaques, however, experimental data have not defini-

tively established the precise ordering of OP and OD map development. In monkeys the

OD map emerges before birth [90] and the OP map is present very soon after birth [91, 92],

though it may emerge earlier. In cats, although it was originally thought that the OD map

emerges starting at about 3 weeks after birth [93], more recent optical imaging data suggests

that both OP and OD maps are present as early as 2 weeks after birth [58].
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In this chapter we introduce dynamical models for visual cortical development and describe

the basic concepts to deal with such models. The description of the development of visual

cortical maps on the level of individual neurons and synapses is very complex due to the large

number of degrees of freedom. Moreover, techniques such as dimension reduction models are

mathematically hardly tractable. Instead we describe this development by the time evolution

of order parameter fields. We consider a field model of an OP map, described by the field

z(x, t), and another feature map o(x, t) which is of the form

∂t z(x, t) = F [z(x, t), o(x, t)]

∂t o(x, t) = G[z(x, t), o(x, t)], (3.1)

where F [z, o] and G[z, o] are nonlinear operators. Although the field o(x, t) is mainly con-

sidered as the field of OD it can represent several other feature maps such as the map of

spatial frequency. Various biologically detailed models have been cast to this form [18,22,94].

The convergence of this dynamics towards an attractor is assumed to represent the process

of maturation and optimization of the cortical circuitry. Therefore we assume a variational

dynamics F [z, o] = − δE
δz , G[z, o] = − δE

δo . The system then relaxes towards the minima of

the energy E. In the following sections we specify this energy functional by symmetries and

qualitative properties of the underlying system.

3.1. A generalized Swift-Hohenberg model

Viewed from a dynamical systems perspective, the activity-dependent remodeling of the cor-

tical network described in Section 2.6 is a process of dynamical pattern formation. Visual

cortical maps emerge from an almost unselective homogeneous state. This scenario can be

described in terms of a supercritical bifurcation where the homogeneous state loses its sta-

bility and spatial modulations of some typical wavelength Λ start to grow. A well studied

model reproducing this behavior is of the Swift-Hohenberg type [4, 95]. Many other pattern

forming systems occurring in different physical, chemical, and biological contexts (see for in-

stance [2,3,6,13,14]) have been cast into a dynamics of this type. Its dynamics in case of the

OP map is of the form

∂t z(x, t) = L̂z(x, t)−N [z(x, t)] , (3.2)
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with the linear Swift-Hohenberg operator

L̂ = r −
(
k2c +∆

)2
, (3.3)

kc = 2π/Λ, and N [z(x, t)] a nonlinear operator. A nonlinearity we thoroughly analyze in this

thesis is given by

N [z, z, z] = (g − 1)|z(x)|2z(x) +
2− g

2πσ2

∫
d2y e−|x−y|2/2σ2

(
z(x)|z(y)|2 + 1

2
z(x)z(y)2

)
. (3.4)

The parameter g ∈ [0, 2] balances the influence of local or non-local interactions, while σ ≥ 0

is the width of the non-local interactions. For 1 < g ≤ 2 both local and non-local interaction

have a negative sign and thus stabilize the dynamics, whereas for 0 ≤ g ≤ 1 only the non-local

part stabilizes the dynamics.

In Fourier representation L̂ is diagonal with the spectrum

λ(k) = r −
(
k2c − k2

)2
. (3.5)

The spectrum exhibits a maximum at k = kc, see Fig. 3.1(a). For r < 0 all modes are damped

since λ(k) < 0, ∀k and only the homogeneous state z(x) = 0 is stable. This is no longer the

case for r > 0 when modes on the critical circle k = kc acquire a positive growth rate and

now start to grow, resulting in patterns with a typical wavelength Λ = 2π/kc.

While the linear part of the dynamics establishes a typical wavelength, the nonlinearity in

the dynamics leads to the selection of the final pattern. Snapshots of the time evolution of

Eq. (3.2) with the nonlinearity Eq. (3.4) are shown in Fig. 3.1(c). The dynamics is initialized

with a random OP map with low selectivity. The time is given in units of the intrinsic

timescale T = rt which is associated with the growth rate of Eq. (3.3). Several different

stages of the dynamics can be identified. The linear part forces modes on the critical circle

to grow with rate r while strongly suppressing modes off the critical circle, see Fig. 3.1(a).

The OP map becomes more and more ordered in this linear phase as a single wavelength is

selected. The total power of the field is given by

P (t) = 〈|z(x, t)|2〉x , (3.6)

where 〈〉x denotes the spatial average. The power reflects the different growth rates among

modes. The time evolution of the power is depicted in Fig. 3.1(b). Initially the power de-

creases slightly due to the suppression of modes outside the circle of positive growth rate.

At T ≈ 1 there is a rapid increase and then a saturation of the power. The amplitudes of

the Fourier modes reach their stationary values and P ∝ r. At this stage of the evolution

the influence of the nonlinear part is comparable to that of the linear part. Once the modes

saturated the phase of nonlinear competition between the active modes along with a reorga-

nization of the structure of the OP map starts. The competition between active modes leads
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Figure 3.1.: Swift-Hohenberg equation (a) Cross section through the spectrum λ(k) of
the Swift-Hohenberg operator Eq. (3.5), r = 0.1. (b) Time evolution of the Power Eq. (3.6).
(c) Snapshots of the time evolution of Eq. (3.2). Top panel: orientation preference, bottom
panel: power spectrum. Parameters: r = 0.1, g = 0.98, σ = 1.4Λ,Γ = 22, 128 × 128 mesh.

to pattern selection. The final pattern then consists of distinct modes in Fourier space. Once

the active modes are selected, a relaxation of their phases takes place. This will be discussed

in detail in Section 6.4.

Inter-map coupling can influence the time evolution on all stages of the development depend-

ing on whether this coupling affects only the nonlinear part or also the linear one. When

incorporating additional maps into the system we will in all cases rescale the dynamics by

the bifurcation parameter of the OP map i.e. T = rzt.

3.2. Inter-map coupling: A symmetry-based analysis

The pattern formation model described above is now extended by including the dynamics of

the real OD field o(x, t). The coupled Swift-Hohenberg equations are assumed to have the
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form given by

∂t z(x, t) = L̂z z(x, t)−N [z(x, t)] − δU

δz

∂t o(x, t) = L̂o o(x, t) − Ñ [o(x, t)] − δU

δo
+ γ , (3.7)

where L̂{o,z} = r{o,z}−
(
k2c,{o,z} +∆

)2
and γ a constant. To account for the species differences

in the wavelengths of the pattern we choose two typical wavelengths Λz = 2π/kc,z and Λo =

2π/kc,o. The dynamics of z(x, t) and o(x, t) is coupled by interaction terms which can be

derived from a coupling energy U .

As we use a phenomenological approach the inclusion and exclusion of various terms has to

be strictly justified. We do this by symmetry considerations. The constant γ breaks the

inversion symmetry o(x) = −o(x) of inputs from the ipsilateral (o(x) < 0) or contralateral

(o(x) > 0) eye. The inter-map coupling energy U is assumed to be invariant under this

inversion. The primary visual cortex shows no anatomical indication that there are any

prominent regions or directions parallel to the cortical layer [12]. Besides invariance under

translations T̂yz(x) = z(x−y) and rotations R̂φz(x) = z(R−1
φ x) of both maps we require that

the dynamics should be invariant under orientation shifts z(x) → eıϑz(x). Note, however, that

the proposed set of symmetries has been questioned raising the possibility that the orientation

shift symmetry is not a proper symmetry of OP map development [96]. A general coupling

energy term can be expressed by integral operators which can be written as a Volterra series

E =
∑

u=uo+uz

∫ uo∏

i=1

d2xi o(xi)

uo+uz/2∏

j=uo+1

d2xj z(xj)

u∏

k=uo+uz/2+1

d2xk z(xk)K(x1, . . . ,xu) , (3.8)

with an u-th. order integral kernel K. Inversion symmetry and orientation shift symmetry

require uo to be even and that the number of fields z equals the number of fields z. The

lowest order term, mediating an interaction between the fields o and z is therefore given by

u = 4, uo = 2 i.e.

E4 =

∫
d2x1d

2x2d
2x3d

2x4 o(x1)o(x2)z(x3)z(x4)K(x1,x2,x3,x4) . (3.9)

Next, we rewrite Eq. (3.9) as an integral over an energy density U . We use the invariance

under translations to introduce the new coordinates

xm = (1/4)
4∑

j

xi

y1 = x1 − xm

y2 = x2 − xm

y3 = x3 − xm . (3.10)
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This leads to

E4 =

∫
d2xm

∫
d2y1d

2y2d
2y3 o(y1 + xm)o(y2 + xm)z(y3 + xm)

z(xm −
3∑

i

(yi − xm))K(y1,y2,y3)

=

∫
d2xm U4(xm) . (3.11)

The kernel K can contain local and non-local contributions. Throughout this thesis the map

interactions we discuss are assumed to be local. Non-local terms are discussed in the case

of the uncoupled OP dynamics in Chapter 5 - 7. For local interactions the integral kernel is

independent of the locations yi. We expand both fields in a Taylor series around xm

z(xm + yi) = z(xm) +∇z(xm)yi + . . . , o(xm + yi) = o(xm) +∇o(xm)yi + . . . (3.12)

For a local energy density we can truncate this expansion at the first order in the derivatives.

The energy density can thus be written

U4(xm) =

∫
d2y1d

2y2d
2y3 (o(xm) +∇o(xm)y1) (o(xm) +∇o(xm)y2) (3.13)

(z(xm) +∇z(xm)y3)

(
z(xm)−∇z(xm)

∑

i

(yi − xm)

)
K(y1,y2,y3) .

Due to rotation symmetry this energy density should be invariant under a simultaneous

rotation of both fields. From all possible combinations of Eq. (3.13) only those are invariant

in which the gradients of the fields appear as scalar products. The energy density can thus

be written as

U4 = f(c1, c2, . . . , c8)

= f(o2, z2, zz, oz,∇o∇o,∇z∇z,∇z∇z,∇o∇z) , (3.14)

where we suppressed the argument xm. All combinations cj can also enter via their complex

conjugate. The general expression for U4 is therefore

U4 =
∑

i>j

l
(1)
ij cicj +

∑

i>j

l
(2)
ij cicj +

∑

i,j

l
(3)
ij cicj . (3.15)
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From all possible combinations we select those which are invariant under orientation shifts

and eye inversions. This leads to

U4 = l1o
4 + l2|z|4 + l3(∇o∇o)2 + l4|∇z∇z|2

+l5(∇z∇z)2 + l6(∇o∇o)o2 + l7(∇z∇z)|z|2

+l8(∇z∇z)z2 + l9(∇z∇z)z2

+l10(∇o∇z)oz + l11(∇o∇z)oz
+l12o

2|z|2 + l13|∇o∇z|2 + l14(∇z∇z)o2

+l15(∇o∇o)|z|2 + l16(∇z∇z)(∇o∇o) . (3.16)

The energy densities with prefactor l1 to l9 do not mediate a coupling between OD and OP

fields and can be absorbed into N [z] and Ñ [o]. The densities with prefactors l8 and l9 (also

with l10 and l11) are complex and can occur only together with l8 = l9 (l10 = l11) to be real.

But these energy densities are not bounded from below as their real and imaginary parts

can have arbitrary positive and negative values. The lowest order terms which are real and

positive definite are thus given by

U4 = l12o
2|z|2 + l13|∇o∇z|2 + l14o

2∇z∇z + l15∇o∇o|z|2 + l16 (∇z∇z) (∇o∇o) . (3.17)

In the following we will discuss how these coupling energies relates to the geometric rela-

tionships between OP and OD maps. In experimentally obtained maps iso-orientation lines

show the tendency to intersect the OD borders perpendicularly but only the second term in

Eq. (3.17) is expected to be sensitive to these intersection angles. In order to be sensitive to

intersection angles the energy is expected to contain terms of the form |∇o∇ϑ|. When we

decompose the complex field z(x) into the selectivity |z| and the preferred orientation ϑ we

get

U = l13 |∇z∇o|2 = l13 |z|2
(
|∇o∇ ln |z||2 + 4|∇o∇ϑ|2

)
. (3.18)

If the orientation selectivity is locally homogeneous, i.e. ∇ ln |z| ≈ 0, then the energy is

minimized if the direction of the iso-orientation lines (∇ϑ) is perpendicular to the OD borders.

Moreover, this energy term couples the OD pattern with the position of pinwheels. To see

this we decompose the field z into its real and imaginary part

U = l13
(
|∇o∇Rez|2 + |∇o∇Imz|2

)
. (3.19)

At pinwheel centers the zero contours of Re z and Im z cross. Since there ∇Re z and ∇Im z

are almost constant and not parallel the energy can be minimized only if |∇o| is small at the

pinwheel centers, i.e. the extrema or saddle-points of o(x).

The first term in Eq. (3.17),

U = l12 o
2|z|2 , (3.20)
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is also expected to favor pinwheels at OD extrema. Pinwheels are zeros of z and are thus

expected to reduce this energy term. They will reduce energy the most when |o| is maximal

which should repel pinwheels from OD borders, where o(x) is zero. So the expectation that

terms such as Eq. (3.18) and Eq. (3.20) and its higher order variants lead to a repulsion

of pinwheels from OD borders has some intuitive appeal. The third and the fourth term in

Eq. (3.17) are expected to lead to the opposite behavior. Near pinwheels where∇z is constant
the energy is minimized if o is zero i.e. at the OD borders. The last term in Eq. (3.17) is

expected to behave similar as the first one. At the pinwheel centers the energy is minimized

if ∇o is small i.e. at OD extrema. The next higher order energy terms are given by

U6 = o2|z|4 + |z|2o4 + o4∇z∇z + . . . (3.21)

Here the fields o(x) and z(x) enter with an unequal power. In the corresponding field equations

these interaction terms enter either in the linear part or in the cubic nonlinearity. We will

see in Section 4.4 and 5.4 that interaction terms that enter in the linear part of the dynamics

can lead to a suppression of the pattern and possibly to an instability of the pattern solution.

Therefore we consider also higher order interaction terms.

These higher order terms contain combinations of terms in Eq. (3.17) and are given by

U8 = o4|z|4 + |∇o∇z|4 + o4 (∇z∇z)2 + (∇o∇o)2 |z|4

+(∇z∇z)2 (∇o∇o)2 + o2|z|2|∇o∇z|2 + . . . (3.22)

In general, all coupling energies in U4, U6, and U8 can occur in the dynamics and we restrict to

those energies which are expected to reproduce the observed geometric relationships between

OP and OD maps. It is important to note that with this restriction we do not miss any

essential parts of the model. When using weakly nonlinear analysis the general form of the

near threshold dynamics is insensitive to the used type of coupling energy and we therefore

expect similar results also for the remaining coupling energies. In this thesis we discuss the

four representative examples of coupling energies

U = α o2|z|2 + β |∇z∇o|2 + τ o4|z|4 + ǫ |∇z∇o|4 . (3.23)

For this choice of energy the corresponding interaction terms are given by

− δU

δz
= Nα[o, o, z] +Nβ[o, o, z] +Nǫ[o, o, o, o, z, z, z ] +Nτ [o, o, o, o, z, z, z ]

= −αo2z + β∇ (a∇o) + ǫ 2∇
(
|a|2a∇o

)
− 2τ o4|z|2z,

−δU
δo

= Ñα[o, z, z] + Ñβ[o, z, z] + Ñǫ[o, o, o, z, z, z, z] + Ñτ [o, o, o, z, z, z, z]

= −αo|z|2 + β∇ (a∇z) + ǫ 2∇
(
|a|2a∇z

)
− 2τ o3|z|4 + c.c. (3.24)

with a = ∇z∇o and c.c. denotes the complex conjugate.
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3. Model Basics

3.3. Analytical and numerical methods

The equations 3.7 are nonlinear partial differential equations (or even integro-differential

equations) and thus finding analytical solutions is in general impossible. We therefore ap-

ply a perturbation method called weakly nonlinear analysis. The system exhibits a Turing

instability where the unselective state z(x) = 0 becomes unstable for r > 0 and modes on

the critical circle start to grow. Close to this bifurcation point the field |z(x)| is still small

and thus the nonlinearities in Eq. (3.7) are weak. The near-threshold dynamics is governed

by so called amplitude equations. Here, the dimensionality of the system is reduced by dis-

tinguishing between dynamically active modes, which are growing or neutrally stable, and

passive mode, which decay rapidly. The decomposition allows the near-threshold dynamics

to be determined purely in terms of the active modes. The passive modes are found to be

entirely dependent or ’slaved’ on the active modes. Amplitude equations can be determined

perturbatively, using the distance above threshold r as a small parameter in a multiple scale

analysis. The derivation of amplitude equations is detailed in Sections 4.2.2 and 4.3.

In the theory of pattern formation, systems close to threshold or far from threshold are known

to behave quite differently [4, 97]. The emergence of cortical structures may take place sub-

stantially far from criticality. For this reason, and to explore the limits of the perturbation

expansion, numerical simulations using relatively large values of the bifurcation parameter

are important. All results obtained from weakly nonlinear analysis presented in this thesis are

confirmed by solving the full field dynamics numerically. We use a fully implicit integrator

based on the Crank-Nicolson scheme and a Newton-Krylov solver. To converse the transla-

tion invariance of the patterns we use periodic boundary conditions on a mesh ranging from

128 × 128 up to 512 × 512 pixels. The aspect ratio Γ = L/Λ, with L the system size, ranges

from Γ = 17 up to Γ = 100. A brief description of the numerical integration scheme is given

in Appendix A.1.

3.4. Tracking and counting pinwheels

During the evolution of OD and OP maps we monitor the states from the initial time T = 0

to the final time T = Tf using about 150 time frames. To account for the various temporal

scales the dynamics encounters, the time frames are separated by exponentially increasing

time intervals. Pinwheel centers are identified as the crossing of the zero contour lines of the

real and imaginary parts of z(x). During time evolution we track all the pinwheel positions

and, as the pinwheels carry a topological charge, we divide the pinwheels according to their

charge. The distribution of pinwheel distances indicates the regularity and periodicity of the

maps. Therefore, we calculate the minimal distance between pinwheels, measured in units of

the column spacing Λ during time evolution. In simulations we use periodic boundary con-

ditions. We account for a ’wrap around’ effect by searching also for corresponding pinwheels

in periodically continued maps.

The rearrangement of OP maps leads to annihilation and creation of pinwheels in pairs. Be-
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3.4. Tracking and counting pinwheels

tween two time frames at Ti and Ti+1 we identified a pinwheel to move if two pinwheels differ

in position less than ∆x = 0.2Λ and carry the same topological charge. If no corresponding

pinwheel was found within ∆x it was considered as annihilated. If a pinwheel at Ti+1 could

not be assigned to one at Ti it was considered as created. We define the pinwheel creation

c(t) and annihilation a(t) rates per hypercolumn as

c(t) =
dNc

Λ2dt
, a(t) =

dNa

Λ2dt
, (3.25)

where Nc and Na are the numbers of created and annihilated pinwheels. Creation and anni-

hilation rates were confirmed by doubling the number of time frames.

To what extent are the pinwheels of the final pattern just rearrangements of pinwheels at some

given time T ? To answer this question for a given set of pinwheels at an initial time T = T ∗

we further calculate the fraction s(t) of those pinwheels surviving until time T . Finally, the

fraction of pinwheels present at time T ∗ that survive up to the final time T = Tf is given by

p(t).
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4. Pinwheel Stabilization by Inter-Map

Coupling

4.1. Introduction

In this chapter, we apply our general model for the coordinated development of OP and OD

maps to study whether inter-map coupling is able to stabilize pinwheels which would become

unstable in the weak coupling limit. In the previous chapter, we identified coupling energies

which can be expected to account for the geometric correlations between OD and OP maps

as observed in experiments. We study the impact these couplings actually have on the layout

of the OP map and its relation to the OD map. Because the contralateral eye dominates

during the initial formation of OD columns [57, 58], we systematically study the impact of

overall dominance by one eye on the dynamics of pinwheels. We show that for the low order

inter-map coupling energies there is for large inter-map coupling strength a suppression of the

OP pattern leading to a complete loss of orientation selectivity. In contrast, for the higher

order inter-map coupling energies, orientation selectivity is preserved for arbitrary strong

coupling. We identified a limit in which the map interactions become unidirectional and in

which we can neglect the backreaction onto the amplitudes of the OD map. This enables

us to comprehensively analyze the existence and stability of pinwheel free and pinwheel rich

OP maps in the coupled system. We identify a class of uniform solutions to the amplitude

equations that depends on a single parameter which is specific to the considered coupling

energy. These uniform solutions are pinwheel rich and have hexagonal spatial layout. In

addition we identify non-uniform, pinwheel rich solutions with rhombic spatial layout. We

calculate the stability properties and phase diagrams of these and additional pinwheel free

solutions as a function of inter-map coupling and contralateral eye dominance. It turns out

that pinwheel crystals can be stabilized above a critical degree of contralateral eye dominance.

We confirm these predictions by solving the full field dynamics numerically. In particular,

we show that an initially pinwheel free stripe pattern would evolve towards a pinwheel rich

solution by a pinwheel creation process. Finally, we extend our model with additional visual

cortical maps and assess the effects of detuning of OD and OP average wavelength.

The coupled dynamics of OP and OD maps we consider in this chapter is given by

∂t z(x, t) = L̂z z(x, t) − |z|2z − δU

δz

∂t o(x, t) = L̂o o(x, t)− o(x, t)3 − δU

δo
+ γ . (4.1)
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4. Pinwheel Stabilization by Inter-Map Coupling

Here L̂{o,z} = r{o,z} −
(
k2c +∆

)2
, Λ = 2π/kc. We break inversion symmetry explicitly with

the constant γ which leads for γ > 0 to an over-representation of the contralateral eye input.

The inter-map coupling energies U are given in Eq. (3.23). The dynamics can be derived from

an energy functional as

∂t z(x) = −δE[z, o]

δz(x)
, ∂t o(x) = −δE[z, o]

δo(x)
, (4.2)

with

E[z, o] = −
∫
d2x

(
z(x)L̂zz(x) +

1

2
o(x)L̂oo(x)−

1

2
|z(x)|4 − 1

4
o(x)4

)

−γo(x) +
∫
d2xU . (4.3)

In this model pinwheels are unstable in the weak coupling limit leading to systems of OP

stripes thus mimicking the behavior of competitive Hebbian models for OD or OP maps in

this situation [32].

4.2. The transition from OD stripes to OD blobs

We first study how the emerging OD map depends on the overall eye dominance. To this end

we map the uncoupled OD dynamics to a Swift-Hohenberg equation containing a quadratic

interaction term instead of a constant bias. This allows the use of weakly nonlinear analysis

to derive amplitude equations as an approximate description of the shifted OD dynamics

near the bifurcation point. We identify the stationary solutions and study their stability

properties. Finally, we derive expressions for the fraction of contralateral eye dominance for

the stable solutions.

4.2.1. Mapping to a dynamics with a quadratic nonlinearity

Here we describe how to map the Swift-Hohenberg equation

∂t o(x, t) = L̂ o(x, t)− o(x, t)3 + γ , (4.4)

to one with a quadratic interaction term. To eliminate the constant term we shift the field

by a constant amount o(x, t) = õ(x, t) + δ. This changes the linear and nonlinear terms as

L̂ o → L̂ õ−
(
k4c − ro

)
δ

o3 → −õ 3 + 3δõ 2 + 3δ2õ+ δ3 . (4.5)

We define the new parameters r̃o = ro − 3δ2 and γ̃ = −3δ. This leads to the new dynamics

∂t õ = r̃o õ−
(
k2c +∆

)2
õ+ γ̃õ 2 − õ 3 − δ3 −

(
k4c,o − ro

)
δ + γ . (4.6)
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4.2. The transition from OD stripes to OD blobs

The condition that the constant part is zero is thus given by

− δ3 −
(
k4c − ro

)
δ + γ = 0 . (4.7)

For ro < 1 the real solution to Eq. (4.7) is given by

δ =
21/3 (kc − ro)

β
− β

3 21/3
, (4.8)

with β =

(
−27γ +

√
108 (ro − kc)

3 + 729γ2
)1/3

. For small γ this formula is approximated

as

δ ≈ γ
1

k4c − ro
− γ3

1

(k4c − ro)4
+ 3γ5

1

(k4c − ro)7
+ . . . (4.9)

The uncoupled OD dynamics we consider in the following is therefore given by

∂t õ = r̃oõ−
(
k2c +∆

)2
õ+ γ̃õ 2 − õ 3 . (4.10)

This equation has been extensively studied in pattern formation literature [13].

4.2.2. Amplitude equations for OD patterns

We study Eq. (4.10) using weakly nonlinear analysis. This method leads to amplitude equation

as an approximate description of the full field dynamics near the bifurcation point r̃o = 0.

We summarize the derivation of the amplitude equations for the OD dynamics which is of the

form

∂t o(x, t) = L̂ o(x, t) +N2[o, o] −N3[o, o, o] , (4.11)

with the linear operator L̂ = ro −
(
k2c,o +∆

)2
. In this section we use for simplicity the

variables (o, ro, γ) instead of (õ, r̃o, γ̃). The derivation is performed for general quadratic

and cubic nonlinearities but is specified later according to Eq. (4.1) as N3[o, o, o] = o3 and

N2[o, o] = γ o2. For the calculations in the following, it is useful to separate ro from the linear

operator

L̂ = ro + L̂0 , (4.12)

therefore the largest eigenvalue of L̂0 is zero. The amplitude of the field o(x, t) is assumed

to be small near the onset ro = 0 and thus the nonlinearities are small. We therefore expand

both the field o(x, t) and the control parameter ro in powers of a small expansion parameter

µ as

o(x, t) = µ o1(x, t) + µ2o2(x, t) + µ3o3(x, t) + . . . , (4.13)

and

ro = µr1 + µ2r2 + µ3r3 + . . . (4.14)

27



4. Pinwheel Stabilization by Inter-Map Coupling

The dynamics at the critical point ro = 0 becomes arbitrarily slow since the intrinsic timescale

τ = r−1
o diverges at the critical point. To compensate we introduce a rescaled time scale T as

T = ro t, ∂t = ro ∂T . (4.15)

In order for all terms in Eq. (4.11) to be of the same order the quadratic interaction term N2

must be small. We therefore rescale N2 as
√
roN2. This preserves the nature of the bifurcation

compared to the case N2 = 0.

We insert the expansion Eq. (4.13) and Eq. (4.14) into the dynamics Eq. (4.11) and get

0 = µ L̂0o1

+ µ2
(
−L̂0o2 − r1∂T o1 + r1o1 +

√
µr1 + µ2r2 + . . . N2[o1, o1]

)

+ µ3
(
−L̂0o3 + r1 (o2 − ∂T o2) + r2 (o1 − ∂T o1)−N3[o1, o1, o1]

)

... (4.16)

We sort and collect all terms in order of their power in µ. The equation can be fulfilled for

µ > 0 only if each of these terms is zero. We therefore solve the equation order by order. In

the leading order we get the homogeneous equation

L̂0o1 = 0 . (4.17)

Thus o1 is an element of the kernel of L̂0. The kernel contains linear combinations of modes

with wavevector ~kj on the critical circle |~kj | = kc,o. At this level any of such wavevectors is

possible. We choose

o1 =

n∑

j

Bj(T )e
i~kj~x +

n∑

j

Bj(T )e
−i~kj~x , (4.18)

where the wavevectors are chosen to be equally spaced ~kj = kc,o (cos(jπ/n), sin(jπ/n)) and

the complex amplitudes Bj = Bjeıψj . The homogeneous equation leaves the amplitudes Bj

undetermined. These amplitudes are fixed by the higher order equations. Besides the leading

order homogeneous equation we get inhomogeneous equations of the form

L̂0om = Fm . (4.19)

To solve this inhomogeneous equation we apply a solvability condition known as the Fredholm

alternative theorem. Since the operator L̂0 is self-adjoint, L̂0 = L̂0 †, the equation is solvable

if and only if Fm is orthogonal to the kernel of L̂0 i.e.

〈Fm, õ〉 = 0, ∀ L̂0õ = 0 . (4.20)

The orthogonality to the kernel can be expressed by a projection operator P̂c onto the kernel

and the condition 〈F, õ〉 = 0 can be rewritten as P̂cF = 0.
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4.2. The transition from OD stripes to OD blobs

At second order we get

L̂0o2 = r1 (o1 − ∂T o1) . (4.21)

Applying the solvability condition Eq. (4.20) we see that this equation can be fulfilled only

for r1 = 0. At third order we get

L̂0o3 = r2 (o1 − ∂T o1) +N2[o1, o1]−N3[o1, o1, o1] . (4.22)

The parameter r2 sets the scale in which o1 is measured and we can set r2 = 1. We apply the

solvability condition and get

∂T o1 = o1 + P̂cN2[o1, o1]− P̂cN3[o1, o1, o1] . (4.23)

We insert our ansatz Eq. (4.18) which leads to the amplitude equations at third order

∂TBi = Bi + P̂i
∑

j,k

BjBke
−ı~ki~xN2[e

ı~kj~x, eı
~kk~x]− P̂i

∑

j,k

BjBkBle
−ı~ki~xN3[e

ı~kj~x, eı
~kk~x, eı

~kl~x] ,

(4.24)

where P̂i is the projection operator onto the subspace {eı~ki~x} of the kernel. P̂i picks out all

combinations of the modes which have their wavevector equal to ~ki. In our case the three

active modes form a so called triad resonance ~k1+~k2+~k3 = 0. The quadratic coupling terms

which are resonant to the mode B1 are therefore given by

B2B3e
−ı~k1~x

(
N2[e

−ı~k2~x, e−ı
~k3~x] +N2[e

−ı~k3~x, e−ı
~k2~x]

)
. (4.25)

Resonant contributions from the cubic nonlinearity result from terms of the form |Bj|2Bi.
Their coupling coefficients are given by

g̃ij = N3[e
ı~ki~x, eı

~kj~x, e−ı
~kj~x] +N3[e

ı~ki~x, e−ı
~kj~x, eı

~kj~x] +N3[e
ı~kj~x, eı

~ki~x, e−ı
~kj~x] +

N3[e
−ı~kj~x, eı

~ki~x, eı
~kj~x] +N3[e

ı~kj~x, e−ı
~kj~x, eı

~ki~x] +N3[e
−ı~kj~x, eı

~kj~x, eı
~ki~x] , (4.26)

and

g̃ii = N3[e
ı~ki~x, eı

~ki~x, e−ı
~ki~x] +N3[e

ı~ki~x, e−ı
~ki~x, eı

~ki~x] +N3[e
−ı~ki~x, eı

~ki~x, eı
~ki~x] . (4.27)

When specifying the nonlinearities Eq. (4.1) the coupling coefficients are given by g̃ij = 6, g̃ii =

3. Finally, the amplitude equations (here in the shifted variables (r̃o, γ̃) are given by

∂tB1 = r̃oB1 − 3|B1|2B1 − 6
(
|B2|2 + |B3|2

)
B1 + 2γ̃B2B3 , (4.28)

where we scaled back to the original time variable t. Equations for B2 and B3 are given by

cyclic permutation of the indices.
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Figure 4.1: Stationary amplitudes of
the OD dynamics. The course of Bst(γ)
Eq. (4.29) (blue), Bhex(γ) Eq. (4.30) (red),
and of δ(γ) Eq. (4.8) (green) for ro = 0.2.
The solutions are plotted in solid lines
within their stability ranges.

4.2.3. Stationary solutions

The amplitude equations (4.28) have three types of stationary solutions namely ocular dom-

inance stripes

ost(x) = 2Bst cos (x+ ψ) + δ, (4.29)

with Bst =
√
r̃/3, hexagons

ohex(x) = Bhex
3∑

j=1

eıψjeı
~kj~x + c.c.+ δ, (4.30)

with the resonance condition
∑3

j
~kj = 0 and Bhex = −γ̃/15+

√
(γ̃/15)2 + r̃/15. Finally, there

is a homogeneous solution with spatially constant eye dominance

oc(x) = δ. (4.31)

The spatial average of all solutions is 〈o(x)〉 = δ. The course of Bst, Bhex, and of δ(γ) is

shown in Fig. 4.1.

4.2.4. Linear stability analysis for OD patterns

We decompose the amplitude equations (4.28) into the real and imaginary parts. From the

imaginary part we get the phase equation

∂tψ1 = −2γ̃ sin (ψ1 + ψ2 + ψ3) , (4.32)

and equations for ψ2, ψ3 by cyclic permutation of the indices. The stationary phases are

given by ψ1 + ψ2 + ψ3 = {0, π}. The phase equation can be derived from the potential

V [ψ] = −2γ̃ cos(ψ1 + ψ2 + ψ3). We see that the solution ψ1 + ψ2 + ψ3 = 0 is stable for

γ̃ > 0(γ < 0) and the solution ψ1 + ψ2 + ψ3 = π is stable for γ̃ < 0(γ > 0).

We calculate the stability borders of the OD stripe, hexagon, and constant solution in the un-

coupled case. This treatment follows [13]. In case of stripes the three modes of the amplitude
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4.2. The transition from OD stripes to OD blobs

equations are perturbed as

B1 → Bst + b1 , B2 → b2 , B3 → b3, (4.33)

assuming small perturbations b1, b2, and b3. This leads to the linear equations ∂t~b =M~b with

the stability matrix

M =




r̃ − 9B2
st 0 0

0 r̃ − 6B2
st 2γ̃Bst

0 2γ̃Bst r̃ − 6B2
st


 . (4.34)

The corresponding eigenvalues are given by

λ =
(
−2r̃,−r̃ − 2

√
r̃/3γ̃,−r̃ + 2

√
r̃/3γ̃

)
. (4.35)

This leads to the two borders for the stripe stability

r̃ = 0, r̃ =
4

3
γ̃2 . (4.36)

In terms of the original variables ro, γ the borders are given by (0 < ro < 1)

γ∗3 =
(3− 2ro)

√
ro

33/2
, γ∗2 =

(15− 14ro)
√
ro

153/2
. (4.37)

To derive the stability borders for the hexagon solution ohex(x) we perturb the amplitudes as

B1 → Bhex + b1 , B2 → Bhex + b2 , B3 → Bhex + b3 . (4.38)

The stability matrix is then given by

M =




−21Bhex + r̃ −12B2
hex − 2Bhexγ̃ −12B2

hex − 2Bhexγ̃

−12B2
hex − 2Bhexγ̃ −21Bhex + r̃ −12B2

hex − 2Bhexγ̃

−12B2
hex − 2Bhexγ̃ −12B2

hex − 2Bhexγ̃ −21Bhex + r̃


 , (4.39)

and the corresponding eigenvalues are given by

λ =
(
−45B2

h + r̃ − 4Bhγ̃,−9B2
h + r̃ + 2Bhγ̃,−9B2

h + r̃ + 2Bhγ̃
)
. (4.40)

The stability borders for the hexagon solution are given by

r̃ = − 1

15
γ̃2, r̃ =

16

3
γ̃2 . (4.41)

In terms of the original variables we finally get

γ∗4 =
(12− 7ro)

√
ro
√
5

24
√
3

, γ∗ =
(51 − 50ro)

√
ro

513/2
. (4.42)

The phase diagram of this model is depicted in Fig. 4.2(a). It shows the stability borders

31



4. Pinwheel Stabilization by Inter-Map Coupling

0 0.05 0.1 0.15 0.2
γ

0

0.05

0.1

0.15

0.2
r o

γ∗
γ2

∗

γ3
∗

γ4
∗

0 1 2 3 4 5 6
 γ / γ∗

50

60

70

80

90

100

co
nt

ra
 f

ra
ct

io
n 

(%
)

ro = 0.01
ro = 0.05
ro = 0.1
ro = 0.15
ro = 0.2

(b)(a)

Figure 4.2.: The uncoupled OD dynamics. (a) Phase diagram of the OD model
Eq. (4.1). Dashed lines: stability border of hexagon solutions, solid line: stability border of
stripe solution, gray regions: stability region of constant solution (b) Percentage of neurons
dominated by the contralateral eye plotted for the three stationary solutions. Circles:
numerically obtained values, solid lines: Cst and Chex.

γ∗, γ∗2 , γ
∗
3 , and γ

∗
4 for the three solutions obtained by linear stability analysis. Without a bias

term the OD map is either constant, for ro < 0, or has a stripe layout, for ro > 0. For positive

ro and increasing bias term there are two transition regions, first a transition region from

stripes to hexagons and second a transition region from hexagons to the constant solution.

The spatial layout of the OD hexagons consists of hexagonal arrays of ipsilateral eye domi-

nance blobs in a sea of contralateral eye dominance, see Fig. 4.2(a).

4.2.5. Contralateral eye fraction

To compare the obtained solutions with physiological OD maps we next quantify the fraction

of neurons selective to the contralateral eye inputs. For stripe and hexagon solutions we thus

calculate the fraction of contralateral eye dominated territory Cst and Chex. In case of stripes

this is a purely one-dimensional problem. The zeros of the field are given by

ost(x) = 2Bst cos (x+ ψ) + δ = 0 , (4.43)

with the solution

x = arccos

( −δ
2Bst

)
. (4.44)

As the field has a periodicity of π the area fraction is given by

Cst = arccos

( −δ
2Bst

)
/π . (4.45)

In case of hexagons we observe that the territory of negative o(x) values is approximately a

circular area. We obtain the fraction of negative o(x) values by relating this area to the area
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4.3. Coupled amplitude equations

of the whole hexagonal lattice. In case of hexagons the field is given by

ohex(x) = 2Bhex
∑

j

cos
(
~kj~x+ ψj

)
+ δ . (4.46)

As an approximation we project the field onto the x-axis and choose for simplicity ψj = 0, ∀j.
The field has its maximum at the origin ohex(0, 0) = 6 + δ. The projection leads to

f(x) = 2Bhex (cosx+ 2cos(1/2)x) + δ . (4.47)

The zeros f(x1) = 0 are located at

x1 = 2arccos

(
1

2

(
−1 +

√

3 +
δ

Bhex

))
. (4.48)

The circular area of positive ohex(x) values is now given by Ac = πx21. The periodicity of the

hexagonal pattern is given by f(x2)δ=0 = min(f)δ=0 = −3. This leads to x2 = 4π/3. The

area of the hexagon is therefore given by Ahex = 3x22
√
3/2. The contra fraction is finally given

by

1−Chex ≈ Ac
Ahex

=

√
3

2π
arccos

(
1

2

(
−1 +

√

3 +
δ

Bhex

))2

. (4.49)

The course of the fractions Cst and Chex is shown in Fig. 4.2(b). At the border γ = γ∗,

where hexagons become stable Chex ≈ 65.4%. At the border γ = γ∗4 , where hexagons lose

stability Chex ≈ 95.2%. Both quantities are independent of ro. We confirmed our results

by direct numerical calculation of the fraction of positive ohex(x) pixel values. Deviations

from the result Eq. (4.49) are small. For γ/γ∗ ≈ 1 the zeros of Eq. (4.47) are not that well

approximated with a circular shape and the projection described above leads to the small

deviations which decrease with increasing bias γ.

4.3. Coupled amplitude equations

We next study the influence of the OD patterns on the dynamics of the OP map. To this end

we derive coupled amplitude equations for the fields z(x, t) and o(x, t). We expand both fields

in powers of the small expansion parameter µ. To account for the fact that one bifurcation

parameter field can be substantially smaller than the other we expand the fields as

o(x, t) = µo1(x, t) + µ2o2(x, t) + µ3o3(x, t) + . . .

z(x, t) = (κµ)z1(x, t) + (κµ)2z2(x, t) + (κµ)3z3(x, t) + . . . (4.50)
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We further expand both control parameters as

ro = µr̃1 + µ2r̃2 + µ3r̃3 + . . .

rz = (κµ)r1 + (κµ)2r2 + (κµ)3r3 + . . . (4.51)

We introduce a common slow timescale T = rzt and insert the expansions in Eq. (4.1) and

get

0 = µκL̂0z1

+µ2κ2
(
−L̂0z2 + r1z1 − r1∂T z1

)

+µ3κ3
(
−r2∂T z1 + r2z1 + r1z2 − r1∂T z2 − L̂0z3 −N3,u[z1, z1, z1]

)

+µ3κ (−αN3,c[z1, o1, o1])

...

+µ7κ7
(
−L̂0z7 + r2z5 + r4z3 + r6z1 + · · · −N3,u[z3, z1, z3] +N3,u[z5, z1, z1] + . . .

)

+µ7
(
−ακ5N3,c[z5, o1, o1]− κ3αN3,c[z3, o3, o1]− . . .

)

+µ7κ3 (−ǫN7,c[z1, z1, z1, o1, o1, o1, o1])

... (4.52)

and

0 = µL̂0o1

+µ2
(
−L̂0o2 + r̃1o1 − κr1∂T o1 +

√
µr̃1 + µ2r̃2 + . . .Ñ2,u[o1, o1]

)

+µ3
(
−κ2r2∂T o1 + r̃2o1 + r̃1o2 − κr1∂T o2 − L̂0o3 − Ñ3,u[o1, o1, o1]

)

+µ3
(
−κ2αÑ3,c[z1, z1, o1]

)

...

+µ7
(
−L̂0o7 + r̃2o5 + r̃4o3 + r̃6o1 + · · · − Ñ3,u[o3, o1, o1]− Ñ2,u[o1, o5]− . . .

)

+µ7
(
−κ5αÑ3,c[z5, o1, o1]− κ3αÑ3,c[z3, o3, o1]− . . .

)

+µ7κ4
(
−ǫÑ7,c[z1, z1, z1, z1, o1, o1, o1]

)

... (4.53)

with the nonlinearities Ñ2,u = o2, N3,u = |z|2z, Ñ3,u = o3, and N3,c, N7,c, Ñ3,c, Ñ7,c the

nonlinearities of the inter-map coupling energy Eq. (3.24).

We further scaled out the inter-map coupling strength α and ǫ. We consider amplitude

equations up to seventh order as this is the order where the nonlinearity of the higher order

coupling energy enters first. For Eq. (4.52) and Eq. (4.53) to vanish each individual order in
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4.3. Coupled amplitude equations

µ has to be zero. At linear order in µ we get the two homogeneous equations

L̂0z1 = 0 , L̂0o1 = 0 . (4.54)

Thus z1 and o1 are elements of the kernel of L̂0. The kernel contains linear combinations of

modes with a wavevector on the critical circle i.e.

z1(x, T ) =

n∑

j

(
A

(1)
j (T )eı

~kj~x +A
(1)
j− (T )e

−ı~kj~x
)

o1(x, T ) =

n∑

j

(
B

(1)
j (T )eı

~kj~x +B
(1)
j (T )e−ı

~kj~x
)
, (4.55)

with the complex amplitudes A
(1)
j = Aje

ıφj , B
(1)
j = Bjeıψj . To account for the hexagonal

layout of the OD pattern we choose n = 3. Since in cat visual cortex the typical wavelength for

OD and OP maps are approximately the same [55,79] i.e. kc,o = kc,z the Fourier components

of the emerging pattern are located on a common critical circle ~kj = ~k′j = (cosαj , sinαj) kc.

In Section 4.6.2 we study pattern formation when detuning OP and OD typical wavelength.

At second order in µ we get

L̂0z2 + r1z1 − r1∂T z1 = 0

L̂0o2 + r̃1o1 − κr1∂T o1 = 0 . (4.56)

As z1 and o1 are elements of the kernel r1 = r̃1 = 0. At third order, when applying the

solvability condition Eq. (4.20), we get

r2∂T z1 = r2z1 − P̂cN3,u[z1, z1, z1]−
α

κ2
P̂cN3,c[z1, o1, o1] (4.57)

κ2r2∂T o1 = r̃2o1 −
√
r̃2 P̂cÑ2,u[o1, o1]− P̂cÑ3,u[o1, o1, o1]− κ2αP̂cÑ3,c[z1, z1, o1] .

We insert the leading order fields Eq. (4.55) and obtain the amplitude equations

r2∂TA
(1)
i = r2A

(1)
i −

∑

j

gij |A(1)
j |2A(1)

i −
∑

j

fijA
(1)
j A

(1)
j−
A

(1)
i− − α

κ2

∑

j

hij |B(1)
j |2A(1)

i

κ2r2∂TB
(1)
i = r̃2B

(1)
i − 2

√
r̃2B

(1)
i+1B

(1)
i+2 −

∑

j

g̃ij |B(1)
j |2B(1)

i − ακ2
∑

j

hij |A(1)
j |2B(1)

i .

(4.58)

For simplicity we have written only the simplest coupling terms. Depending on the configura-

tion of active modes additional contributions may enter the amplitude equations. In addition

there are coupling terms which contain the constant δ, see Section 4.2.1. The coupling coef-
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4. Pinwheel Stabilization by Inter-Map Coupling

ficients are given by

gij = e−ı
~ki~x
(
N3,u[e

ı~ki~x, eı
~kj~x, e−ı

~kj~x] +N3,u[e
ı~kj~x, eı

~ki~x, e−ı
~kj~x]
)

gii = e−ı
~ki~xN3,u[e

ı~ki~x, eı
~ki~x, e−ı

~ki~x]

gij− = e−ı
~ki~x
(
N3,u[e

ı~ki~x, e−ı
~kj~x, eı

~kj~x] +N3,u[e
−ı~kj~x, eı

~ki~x, eı
~kj~x]
)

fij = e−ı
~ki~x
(
N3,u[e

ı~kj~x, e−ı
~kj~x, eı

~ki~x] +N3,u[e
−ı~kj~x, eı

~kj~x, eı
~ki~x]
)

fii =0

hij = e−ı
~ki~xN3,c[e

ı~ki~x, eı
~kj~x, e−ı

~kj~x]

hii = e−ı
~ki~xN3,c[e

ı~ki~x, eı
~ki~x, e−ı

~ki~x] , (4.59)

while the coupling coefficients g̃ij are given in Eq. (4.26). When we set r2 = 1/κ2 and r̃2 = 1

we get

∂TA
(1)
i =


1− α

∑

j

hij |B(1)
j |2


A

(1)
i − κ2

∑

j

(
gij |A(1)

j |2A(1)
i + fijA

(1)
j A

(1)
j−
A

(1)
i−

)

∂TB
(1)
i = B

(1)
i − 2B

(1)
i+1B

(1)
i+2 −

∑

j

g̃ij |B(1)
j |2B(1)

i − κ2α
∑

j

hij |A(1)
j |2B(1)

i . (4.60)

For κ → 0 the inter-map coupling term in the dynamics of the modes B(1) vanishes, leading

to the uncoupled OD dynamics. In the dynamics for the modes A(1) the uncoupled cubic

nonlinearities vanishes in this limit. Thus the dynamics is governed by the linear terms

only. Inter-map coupling thus influences the growth rate of the Fourier modes. For large

enough inter-map coupling strength α the growth rate becomes negative. In this case only

the homogeneous solution A
(1)
j = 0, ∀j is stable.

Alternatively, we can set r2 = r̃2 = 1 in Eq. (4.58), scale back to the fast time t, and rescale

the amplitudes as Ai =
√
rzA

(1)
i , Bi =

√
roB

(1)
i . This leads to the amplitude equations

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− − α

κ2
rz
ro

∑

j

hij |Bj|2Ai

κ2
ro
rz
∂tBi = roBi − 2Bi+1Bi+2 −

∑

j

g̃ij|Bj |2Bi − ακ2
ro
rz

∑

j

hij |Aj |2Bi . (4.61)

Since rz/ro = κ2 +
(
κ4r4 − κ2r̃4

)
µ2 + . . . we get at leading order

∂tAi =


rz − α

∑

j

hij |Bj|2

Ai −

∑

j

gij|Aj |2Ai −
∑

j

fijAjAj−Ai−

∂tBi = roBi − 2Bi+1Bi+2 −
∑

j

g̃ij |Bj |2Bi − α
∑

j

hij |Aj |2Bi . (4.62)
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4.3. Coupled amplitude equations

At higher order we obtain corrections to the uncoupled dynamics of z(x, t) and o(x, t). In

addition we get corrections to the third order coupling energy terms. Finally, at seventh order

enters the nonlinearity of the higher order coupling energy term. The amplitude equations

up to seventh order are thus derived from

κ3r2∂T z1 = κ3r2z1 − κ3P̂N3,u[z1, z1, z1]− καP̂N3,c[z1, o1, o1]

κ5r2∂T z3 = κ5r2z3 − · · · − κ5P̂N3,u[z1, z1, z3] (4.63)

κ7r2∂T z5 = κ7r2z5 − · · · − κ7P̂N3,u[z3, z1, z3]− ǫκ3P̂N7,c[z1, z1, z1, o1, o1, o1, o1] ,

and corresponding equations for the fields o1, o3, and o5. The field z1 is given in Eq. (4.55) and

its amplitudes A(1) and B(1) are determined at third order. The field z3 contains contributions

from modes off the critical circle z3,off , |~koff | 6= kc and on the critical circle i.e. z3 =

z3,off +
n∑
j

(
A

(3)
j (T )eı

~kj~x +A
(3)
j−

(T )e−ı
~kj~x
)
. Its amplitude A(3) are determined at fifth order.

The field z5 also contains contributions from modes off the critical circle z5,off and on the

critical circle i.e. z5 = z5,off +
n∑
j

(
A

(5)
j (T )eı

~kj~x +A
(5)
j−

(T )e−ı
~kj~x
)
. Its amplitude A(5) are

determined at seventh order. This leads to a series of amplitude equations

κ3r2∂TA
(1)
i = κ3r2A

(1)
i − κ3

∑

j

gij |A(1)
j |2A(1)

i − κ3
∑

j

fijA
(1)
j A

(1)
j−
A

(1)
i− − κα

∑

j

hijA
(1)
i |B(1)

j |2

κ5r2∂TA
(3)
i = κ5r2A

(3)
i − · · · − κ5

∑

j

gij |A(1)
j |2A(3)

i (4.64)

κ7r2∂TA
(5)
i = κ7r2A

(5)
i − · · · − κ7

∑

j

gij |A(3)
j |2A(1)

i − ǫκ3
∑

jlk

hijlk|A(1)|2|B(1)|2|B(1)|2A(1)
i ,

which are solved order by order. To derive amplitude equations at seventh order we use the

higher order coupling energies and neglect the low order coupling energies i.e. set α = 0.

The higher order corrections to the uncoupled part are proportional to κ5 and κ7 while the

inter-map coupling part is proportional to κ3. For κ≪ 1 we thus can neglect fifth and seventh

order corrections in the uncoupled dynamics.

We set r2 = r̃2 = 1 and rescale the amplitudes as A(1) = r
1/2
z A(1), A(3) = r

3/2
z A(3), A(5) =

r
5/2
z A(5), B(1) = r

1/2
o B(1), B(3) = r

3/2
o B(3), B(5) = r

5/2
o B(5) and rescale to the fast time. This

leads to

∂tA
(1)
i = rzA

(1)
i −

∑

j

gij |A(1)
j |2A(1)

i −
∑

j

fijA
(1)
j A

(1)
j−
A

(1)
i−

∂tA
(3)
i = rzA

(3)
i − · · · −

∑

j

gij |A(1)
j |2A(3)

i (4.65)

∂tA
(5)
i = rzA

(5)
i − · · · −

∑

j

gij |A(3)
j |2A(1)

i − ǫ
1

κ4

∑

jlk

hijlk|A(1)|2|B(1)|2|B(1)|2A(1)
i .
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4. Pinwheel Stabilization by Inter-Map Coupling

We can combine the amplitude equations up to seventh order by introducing the amplitudes

Aj = A
(1)
j +A

(3)
j +A

(5)
j and Bj = B

(1)
j +B

(3)
j +B

(5)
j . This leads to the amplitude equations

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai−

−ǫ r2z
r2oκ

4

∑

jlk

hijlk|Aj |2|B2
l ||Bk|2Ai . (4.66)

Since rz/ro = κ2 +
(
κ4r4 − κ2r̃4

)
µ2 + . . . we finally obtain

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai−

−ǫ
∑

jlk

hijlk|Aj |2|B2
l ||Bk|2Ai

∂tBi = roBi − 2Bi+1Bi+2 −
∑

j

g̃ij |Bj |2ABi

−ǫ
∑

jlk

hijlk|Bj |2|A2
l ||Ak|2Bi . (4.67)

In the following we use the amplitude equations (4.62) when considering the low order inter-

map coupling energies and the amplitude equations (4.67) when considering the higher order

inter-map coupling energies.

4.4. Inter-map coupling: Low order coupling terms

In the following we discuss the influence of the OD stripe Eq. (4.29), hexagon Eq. (4.30) and

constant Eq. (4.31) solutions on the OP map using the amplitude equations derived in the

previous section. A potential backreaction onto the dynamics of the OD map can be neglected

if the modes Aj of the OP map are much smaller than the modes Bj of the OD map. This can

be achieved if rz ≪ ro. We first give a brief description of the uncoupled OP solutions. Next,

we study the impact of the low order coupling energies in Eq. (3.23) on these solutions. We

demonstrate that these energies can lead to a complete suppression of orientation selectivity.

In the uncoupled case there are for rz > 0 two stable stationary solutions to the amplitude

equations Eq. (4.62), namely OP stripes

zst = Aeı(kx+φ), A =
√
rz , (4.68)

and OP rhombic solutions

zrh = A
2∑

j=1

(
eıkjx+φj + e−ıkjx+φj−

)
, (4.69)

with φ1+φ1− = φ0, φ2+φ2− = φ0+π, φ0 an arbitrary phase, and A =
√
rz/5 ≈ 0.447

√
rz. In

the uncoupled case the angle α = arccos ~k1 ~k2/k
2
c between the Fourier modes is arbitrary. The
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4.4. Inter-map coupling: Low order coupling terms

stripe solutions are pinwheel free while the pinwheel density for the rhombic solutions varies as

ρ = 4 sinα and thus 0 ≤ ρ ≤ 4. For the rhombic solutions pinwheels are located on a regular

lattice. We therefore refer to these and other pinwheel rich solutions which are spatially

periodic as pinwheel crystals (PWC). Without inter-map coupling, the potential of the two

solutions reads Vst = −1
2r

2
z < Vrh = −2

5r
2
z , thus the stripe solutions are always energetically

preferred compared to rhombic solutions. In the following we study three scenarios in which

inter-map coupling can lead to pinwheel stabilization. First, a deformation of the stripe

solution can lead to the creation of pinwheels in this solution. Second, inter-map coupling

could energetically prefer the (deformed) rhombic solutions compared to the stripe solutions.

Finally, inter-map coupling can lead to the stability of new PWC solutions.

For the low order interaction terms the amplitude equations are given by ∂tAi = −δV/δAi,
∂tBi = −δV/δBi with the potential

V = VA + VB +

3∑

j

αδ|Aj |2 +
3∑

j

αδ|Aj− |2

+2αδA1A2−B3 + 2αδA1A3−B2 + 2αδA1−A2B3 + 2αδA1−A3B2

+
∑

i,j

g
(1)
ij |Ai|2|Bj |2 +

∑

i 6=j

g
(2)
ij AiAjBiBj +

∑

i 6=j

g
(2)
ij Ai−Aj−BiBj

+
∑

i,j

g
(3)
ij AiAj−BiBj +

∑

i,j

g
(3)
ij AiAj−BiBj . (4.70)

The uncoupled contributions are given by

VA = −rz
3∑

j

|Aj |2 +
1

2

3∑

i,j

gij |Ai|2|Aj |2 +
1

2

3∑

i,j

fijAiAi−AjAj−

VB = −ro
3∑

j

|Bj|2 +
1

2

3∑

i,j

g̃ij |Bi|2|Bj |2 . (4.71)

The coupling coefficients read g
(1)
ij = 2α + 2β cos2(αij), g

(2)
ij = 2α + β

(
1 + cos2(αij)

)
, g

(3)
ij =

2α+β
(
1 + cos2(αij)

)
, g

(3)
ii = α+β, where αij is the angle between the wavevector ~ki and ~kj .

4.4.1. Product-type energy U = α o2|z|2

We start with the low order product-type coupling energy. Here, the constant δ(γ) enters

explicitly in the amplitude equations. We will see that this leads to a relatively complex phase

diagram.
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4. Pinwheel Stabilization by Inter-Map Coupling

Stationary solutions and their stability

In the case of OD stripes, Eq. (4.29), with B1 = Bst = B,B2 = B3 = 0 we get the following

amplitude equations

∂tA1 =
(
rz − αδ2 − 2α|B|2

)
A1 − αB2A1− + nct.

∂tA2 =
(
rz − αδ2 − 2α|B|2

)
A2 − 2αδA3−B + nct.

∂tA3 =
(
rz − αδ2 − 2α|B|2

)
A3 − 2αδA2−B + nct. (4.72)

where nct. refers to non inter-map coupling terms resulting from the potential VA, see

Eq. (4.70). The equations for the modes Ai− are given by interchanging Ai ↔ Ai− and

Bi ↔ Bi. The OP stripe solution in case of inter-map coupling is given by

z = A1e
ı(~k1~x+φ1) +A1−e

−ı(~k1~x+φ1− ) , (4.73)

with A1 = p3/2/(2
√
2B2α), A1− = p/

√
2, and

p = rz − 2B2α− αδ2 −
√

(rz − αδ2)(rz − α(4B2 + δ2)) and the phase relation

φ1 − φ1− = 2ψ1 + π. In the uncoupled case (α = 0) A1− = 0 and A1 =
√
rz. With increasing

inter-map coupling the amplitude A1− grows and the solutions are transformed, reducing the

representation of all but two preferred orientations. The course of this solution is shown in

Fig. 4.3(a) for different values of the bias γ. Both amplitudes collapse at α = rz/(4B
2 + δ2)

with

A1 = A1− =

√
rz − αB2 − αδ2

3
. (4.74)

This pattern solution finally becomes unstable at

αc = rz/(B
2 + δ2) = 3 rz/ro . (4.75)

This stability border is thus independent of the OD bias γ. Above this coupling strength only

the trivial solution Aj = 0, ∀j is stable.

In addition to the OP stripe patterns there exist rhombic OP solutions, see Fig. 4.3(b). These

rhombic solutions are pinwheel rich with a pinwheel density of ρ = 4 sinπ/3 ≈ 3.46 but are

energetically not preferred compared to the stripe solutions, see Fig. 4.3(e). The rhombic

solutions in the uncoupled case A1 = A1− = A2 = A2− , A3 = A3− = 0 are transformed by

inter-map coupling. The phase relations are given by

φ1 + φ1− = φ0

φ2 + φ2− = φ0 + π

φ3 + φ3− = φ0 + π

φ1 − φ1− = 2ψ1 . (4.76)
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4.4. Inter-map coupling: Low order coupling terms

Inter-map coupling reduces the amplitudes A2 and A2− . In addition, for nonzero bias γ, there

is an increase of the amplitudes A3 = A3− . The amplitudes A2 and A3 collapse. A further

suppression of these amplitudes leads to the OP stripe pattern.

In the case the OD map is a constant, Eq. (4.31), the amplitude equations simplify to

∂tAi =
(
rz − αδ2

)
Ai −

∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− . (4.77)

Thus inter-map coupling in this case only renormalizes the control parameter and the sta-

tionary solution is thus a stripe pattern with a inter-map coupling dependent reduction of

the amplitudes

Ai =
√
rz − αδ2 . (4.78)

Therefore at αc = rz/δ
2 the stripe pattern becomes unstable and the only stable solution is

the trivial one i.e. Ai = 0.

In the case of OD hexagons Bi = Beıψi , Eq. (4.30), the amplitude equations read

∂tAi =
(
rz − 6αB2 − αδ2

)
Ai − αB2

(
Ai−e

2ıψi + 2A(i+1)−e
ı(ψi+ψi+1) + 2A(i+2)−e

ı(ψi+ψi+2)
)

−2αB2
(
Ai+1e

ı(ψi−ψi+1) +Ai+2e
ı(ψi−ψi+2)

)

−2αδB
(
A(i+1)−e

−ıψi+2 +A(i+2)−e
−ıψi+1

)
+ nct. , (4.79)

where the indices are cyclic i.e. i + 3 = i. These amplitude equations have stripe-like so-

lutions as well as solutions with a rhombic layout. The amplitudes in the rhombic case

read A1 = A1− = A3 = A3− , A2 = A2− while the phase relations are given by φ =

(0, ϕ, 2ϕ,ϕ + 1, 2ϕ + 1) π. The phase ϕ depends on the inter-map coupling strength α.

In contrast to the case of OD stripes the amplitude equations have an additional type of PWC

solution which have uniform amplitudes, Aj = Aeıφi . The dynamics of their phases is given

by

∂t φi = 2A2
∑

j 6=i

sin
(
φi + φi− − φj − φj−

)

−B2α
∑

j 6=i

(
2 sin (φi − φj − ψi + ψj) + 2 sin

(
φi − φj− − ψi − ψj

))

−B2α sin (φi − φi− − 2ψi)

−2δαB
(
sin
(
φi − φ(i+1)− + ψi+2

)
+ sin

(
φi − φ(i+2)− + ψi+1

))
. (4.80)

When solving the amplitude equations numerically we observe that the phase relations vary

with the inter-map coupling strength for non-uniform solutions. But for the uniform solution

the phase relations are independent of the inter-map coupling strength. The phases of the

uniform solution are determined up to a free phase ϕ which results from the orientation shift

symmetry z → z eıϕ of Eq. (4.1). We therefore choose φ1 = ψ1. As an ansatz for the uniform
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4. Pinwheel Stabilization by Inter-Map Coupling

solutions we use

Aj = Aj− = A, j = 1, 2, 3

φj = ψj + (j − 1)2π/3 + ∆ δj,2

φj− = −ψj + (j − 1)2π/3 + ∆ (δj,1 + δj,3) , (4.81)

where δi,j is the Kronecker delta and ∆ constant parameter. Note, that z(x) cannot become

real since φj 6= −φj−. The equation for the uniform amplitudes is then given by

∂tA = rzA− 9A3 − 4αB2A− αδ2A+ABα (B − 2δ) cos∆ , (4.82)

while the phase dynamics reads

∂tφj = −Bα (B − 2δ) sin∆ . (4.83)

The stationarity condition is fulfilled for an arbitrary δ only if ∆ = 0 or ∆ = π. The

corresponding amplitudes are given by solving the stationarity condition for the real part and

read

A∆=0 =

√
rz − α (3B2 + 2Bδ + δ2)

9
, A∆=π =

√
rz − α (5B2 − 2Bδ + δ2)

9
. (4.84)

The stability of the ∆ = 0, π solutions depends on the coupling strength α and on the sign

of (B − 2δ). As the solution of B(γ) = 2δ(γ) is given by γ = γ∗ in the stability range of OD

hexagons there is only one possible stable uniform solution. The ∆ = π solution becomes

unstable at rz < α
(
5B2 − 2Bδ + δ2

)
. This stability border is in fact independent of the bias

γ and given by

αc = 3rz/ro . (4.85)

Thus the limit rz → 0 makes the uniform solution unstable for smaller and smaller coupling

strengths.

We calculate the stability properties of the uniform solution by linear stability analysis con-

sidering perturbations of the amplitudes Aj → A + aj , Aj− → A + aj− and of the phases

φj → φj + ϕj , φj− → φj− + ϕj− . This leads to a perturbation matrix M . Amplitude and

phase perturbations do not decouple. We calculate the eigenvalues of the perturbation M

matrix numerically.

Bifurcation diagram

The course of OP solutions when interacting with OD stripes is shown in Fig. 4.3(a,b). In

case of OP stripes inter-map coupling suppresses the amplitude A1 of the stripe pattern while

increasing the amplitude of the opposite mode A1− . This transformation reduces the repre-

sentation of all but two preferred orientations. When both amplitudes collapse the resulting

OP map is selective only to two orthogonal orientations namely ϑ = φ1 and ϑ = φ1 + π/2.
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4.4. Inter-map coupling: Low order coupling terms

We refer to these unrealistic solutions as orientation scotoma solutions. The phase relations

ensure that OD borders that run parallel to the OP stripes are located at the OP maxima

and minima i.e. in the center of the orientation scotoma stripes. With increasing inter-

map coupling, this orientation scotoma pattern is suppressed until finally all amplitudes are

zero and only the homogeneous solution is stable. In case of OP rhombs inter-map coupling

makes the rhombic pattern more stripe-like by reducing the amplitude A2 = A2− . The mode

A3 = A3− which is zero in the uncoupled case increases and finally collapses with the mode

A2. Increasing inter-map coupling more suppresses all but the two modes A1 = A−
1 , leading

again to the orientation scotoma stripe pattern.

The course of OP solutions when interacting with OD hexagons is shown in Fig. 4.3(c,d). OP

stripe solutions become above a critical inter-map coupling strength unstable against PWC

solutions. This critical coupling strength strongly depends on the OD bias. OP rhombic

solutions also become unstable against PWC but for a lower coupling strength than the OP

stripes. Thus there is at intermediate coupling strength a bistability between stripe-like solu-

tions and PWC solutions. The potential of the OP stripe and OP rhombic solutions is shown

in Fig. 4.3(e,f). Stripes are energetically preferred in the uncoupled case as well as for small

inter-map coupling strength for which they are stable.

To summarize, stripe solutions are deformed but no pinwheels are created for this solution.

The rhombic solutions are for low inter-map coupling energetically not preferred whereas for

intermediate inter-map coupling these solutions lose pinwheels and become stripe solutions.

Instead, additional pinwheel rich solutions with a crystal layout become stable for interme-

diate inter-map coupling. For large inter-map coupling orientation selectivity is completely

suppressed.
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4. Pinwheel Stabilization by Inter-Map Coupling
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Figure 4.3.: Stationary amplitudes with coupling energy U = α |z|2o2, ro = 0.2. Solid
(dashed) lines: stable (unstable) solutions to Eq. (4.72) (OD stripes) and Eq. (4.79) (OD
hexagons). (a,b) OD stripes, γ = 0 (blue), γ = γ∗ (green), γ = 1.4γ∗ (orange). (c,d) OD
hexagons, γ = 1.4γ∗ (blue), γ = 3γ∗ (red). (e) Potential for OP stripes (red) and OP
rhombs (blue) interacting with OD stripes, γ = 0. (f) Potential for OP stripes and OP
rhombs interacting with OD hexagons.
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4.4. Inter-map coupling: Low order coupling terms
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Figure 4.4.: Phase diagram with the coupling energy U = α o2|z|2, ro = 0.2, rz ≪ ro.
Vertical lines: stability range of OD stripes, hexagons, and constant solution. Green line:
transition to the orientation scotoma solution. Blue line: stability border for the ∆ = π
uniform solution. Orange line: stability line of stripe-like solutions. Red line: pattern
solutions become unstable, see Eq. (4.75) and Eq. (4.85). Gray region: No pattern solution
stable.

Phase diagram

The phase diagram for this coupling energy is shown in Fig. 4.4. The phase diagram contains

the stability borders of the uncoupled OD solutions γ∗, γ∗2 , γ
∗
3 , γ

∗
4 . They correspond to vertical

lines, as they are independent of the inter-map coupling in the limit rz ≪ ro. At γ = γ∗

hexagons become stable. Stripe solutions become unstable at γ = γ∗2 . At γ = γ∗3 the

homogeneous solution becomes stable while at γ = γ∗4 hexagons lose their stability. In the

units γ/γ∗ the borders γ∗2 , γ
∗
3 , γ

∗
4 vary slightly with ro , see Fig. 4.2, and are drawn here for

ro = 0.2. The inter-map coupling strength α is rescaled by rz and thus the stability borders

are independent of rz. In the region of stable OD stripes the OP stripes run parallel to the

OD stripes. With increasing inter-map coupling strength the orientation preference of all but

two orthogonal orientations is suppressed. In the region of stable OD hexagons stripe-like

OP solutions dominate for low inter-map coupling strength. Above a critical bias dependent

coupling strength the ∆ = π uniform solution becomes stable (blue line). There is a region of

bistability between stripe-like and uniform solutions until the stripe-like solutions lose their

stability (orange line). OP rhombic solutions lose their stability when the uniform solution

becomes stable. Thus there is no bistability between OP rhombs and OP uniform solutions.

As in the case of OD stripes the uniform solution becomes unstable at α = rz/(3B2). Also

in the case of OD hexagons the inter-map coupling leads to a transition towards the trivial

solution where there is no OP pattern at all. In case of the OD constant solution the OP
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4. Pinwheel Stabilization by Inter-Map Coupling

map is a stripe solution. Pinwheel rich solutions thus occur only in the region of stable OD

hexagons. In the following we discuss the properties of these solutions.

Pinwheel crystals

The uniform solution Eq. (4.81) with ∆ = π is illustrated in Fig. 4.5. For all stationary
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Figure 4.5.: Ipsi-center pinwheel crystal. (a) OP map, superimposed are the OD
borders (gray), 90% ipsilateral eye dominance (black), and 90% contralateral eye dominance
(white), ro = 0.2, γ = 3γ∗. Dashed lines mark the unit cell of the regular pattern. (b)
Distribution of preferred orientations.

solutions the positions of the pinwheels are fixed by the OD map and there are no translational

degrees of freedom. The unit cell (dashed line) contains 6 pinwheels which leads to a pinwheel

density of ρ = 6 cos π/6 ≈ 5.2. Two of them are located at OD maxima (contra center) while

one is located at an OD minimum (ipsi center). The remaining three pinwheels are located

at OD saddle-points. Therefore, all pinwheels are located where the gradient of the OD map

is zero. The pinwheel in the center of the OP hexagon is at the ipsilateral OD peak. Because

these pinwheels organize most of the map while the others essentially only match one OP

hexagon to its neighbors we refer to this pinwheel crystal as the Ipsi-center pinwheel crystal.

The iso-orientation lines intersect the OD borders (gray) exactly with a right angle. The

intersection angles are, within the stability range of OD hexagons, independent of the bias

γ. The remarkable property of perfect intersection angles cannot be deduced directly from

the coupling energy term. We expect that this is a property of the crystal structure that is

altered in spatially aperiodic OP maps. The solution is symmetric under a combined rotation

by 60◦ and an orientation shift by −60◦. The symmetry of the pattern is reflected by the

distribution of preferred orientations, see Fig. 4.5(b). Although the pattern is selective to all

orientations the six orientations ϑ+ nπ6 , n = 0, ..., 5 are slightly overrepresented.

To summarize, the low order product-type inter-map coupling leads in case of OD hexagons

to a transition from pinwheel free stripe solutions towards pinwheel crystals. The design of

the PWC is an example of an orientation hypercolumn dominated by one pinwheel. With

increasing inter-map coupling the crystal solution is suppressed until only the homogeneous
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4.4. Inter-map coupling: Low order coupling terms

solution is stable. In case of OD stripes or the constant solution the OP solutions are pinwheel

free stripe pattern.

4.4.2. Gradient-type energy U = β|∇o∇z|2

When using a gradient-type inter-map coupling energy the interaction terms are independent

of the OD shift δ. In this case the coupling strength can be rescaled as βB2 and is therefore

independent of the bias γ. The bias in this case only determines the stability of OD stripes,

hexagons or the constant solution.

Stationary solutions and their stability

A coupling to OD stripes is easy to analyze in the case of a gradient-type inter-map coupling.

The energetically preferred solutions are OP stripes with the direction perpendicular to the

OD stripes for which U = 0. This configuration corresponds to the Hubel and Wiesel Ice-cube

model [26].

In the case the OD map is a constant, Eq. (4.31), the gradient-type inter-map coupling leaves

the OP unaffected. The stationary states are therefore OP stripes with an arbitrary direction.

In the case of OD hexagons the amplitude equations read

∂tAi =
(
rz − 3βB2

)
Ai +

5

4
βB2

(
Ai+1e

ı(ψi−ψi+1) +Ai+2e
ı(ψi−ψi+2)

)

−βB2

(
Ai−e

2ıψi +
5

4
A(i+1)−e

ı(ψi+ψi+1) +
5

4
A(i+2)−e

ı(ψi+ψi+2)

)
+ nct. . (4.86)

Using Ai = Aie
ıφi we obtain the phase equations

Ai∂t φi =
∑

j 6=i

AjAj−Ai− sin
(
φi + φi− − φj − φj−

)

−B2β
∑

j 6=i

(
5

4
Aj sin (φi − φj − ψi + ψj) +

5

4
Aj− sin

(
φi − φj− − ψi − ψj

))

−B2βAi− sin (φi − φi− − 2ψi) . (4.87)

Besides stripe-like and rhombic solutions these amplitude equations have uniform solutions.

Again we find that the ansatz Eq. (4.81) can satisfy the stationarity condition. The phase

dynamics in this case reads

∂t φi = −1

4
B2β sin∆ . (4.88)

As in the case of the product-type inter-map coupling energy stationary solutions are ∆ = 0

and ∆ = π with the stationary amplitudes

A∆=0 =

√
rz − 3/2B2β

9
, A∆=π =

√
rz − 2B2β

9
. (4.89)

We study the stability properties of both stationary solutions by linear stability analysis where

amplitude and phase perturbations in general do not decouple. It turns out that the ∆ = π
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Figure 4.6: Stationary amplitudes
with U = β|∇z∇o|2 and OD hexagons.
Solid (dashed) lines: Stable (unstable)
solutions to Eq. (4.86). Transition from
OP stripes towards the uniform solution
(red), transition from OP rhombs towards
the uniform solution (blue).

solution is unstable for β > 0 while the ∆ = 0 solution becomes stable for β ≈ 0.05rz/B2.

The ∆ = 0 solution loses its stability above

βc B2 = 2rz/3 . (4.90)

From thereon only the homogeneous solution Aj = 0 is stable.

Bifurcation diagram

The course of the stationary amplitudes when interacting with OD hexagons is shown in

Fig. 4.6. The OP rhombic solution is almost unchanged by inter-map coupling but above a

critical coupling strength the rhombs decay into a stripe-like solution. The amplitude of the

OP stripe solution is suppressed by inter-map coupling and finally becomes unstable against

the ∆ = 0 uniform solution. Thus for large inter-map coupling only the uniform solution is

stable. A further increase in the inter-map coupling suppresses the amplitude of this uniform

solution until finally only the homogeneous solution is stable.

Phase diagram

The phase diagram of this coupling energy is shown in Fig. 4.7. We rescale the inter-map

coupling strength as βB2/rz, where B is the stationary amplitude of the OD hexagons. The

stability borders are therefore independent of the OD bias in the OD solutions. This simplifies

the analysis a lot since the OP solutions and their stability depend on γ only indirect via

the amplitudes B. In case of OD stripes or OD constant solution there is no pinwheel

crystallization. Instead the OP solutions are pinwheel free stripes. In case of OD hexagons

hexagonal pinwheel crystals become stable above β ≈ 0.05rz/B2 (blue line). Rhombic OP

patterns become unstable at βB4/rz ≈ 0.17 and decay into a stripe-like solution (green line).

At βB4/rz ≈ 0.36 these stripe-like solutions become unstable (orange line). Thus above

βB4/rz ≈ 0.36 the hexagonal PWC is the only stable solution. At βB2/rz = 2/3 the pattern

solution is unstable (red line).
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Figure 4.7.: Phase diagram with the coupling energy U = β|∇z∇o|2, rz ≪ ro.
Vertical black lines: stability range of OD stripes, hexagons, and constant solution. Blue
line: stability border for the ∆ = 0 uniform solution. Green line: rhombic solutions become
unstable. Orange line: stripe-like solutions become unstable. Red line: pattern solutions
become unstable, see Eq. (4.89). Gray region: No pattern solution stable.

Pinwheel crystals

The uniform solution Eq. (4.81), ∆ = 0 is illustrated in Fig. 4.8. This PWC contains only

three pinwheels per unit cell leading to a pinwheel density of ρ = 3cos π/6 ≈ 2.6. Two of

the three pinwheels are located at maxima of the OD map (contra peak) while the remaining

pinwheel is located at the minimum (ipsi peak) of the OD map. A remarkable property of

this solution is that the pinwheel located at the OD minimum, carries a topological charge

of 1 such that each orientation is represented twice around this pinwheel. Pinwheels of this

kind have not yet been observed in physiological OP maps. This kind of uniform solution

corresponds to the structural pinwheel model by Braitenberg [98]. We therefore refer to this

solution as the Braitenberg pinwheel crystal.

The iso-orientation lines are again perfectly perpendicular to OD borders and also independent

of the bias γ. The solution is symmetric under a combined rotation by 120◦ and an orientation

shift by −2π/3. Further it is symmetric under a rotation by 180◦. The pattern is selective

to all orientations but the distribution of represented orientations is not flat. The three

orientations ϑ+ nπ3 , n = 0, ..., 2 are overrepresented, see Fig. 4.8(b).

Overall this OP map is dominated by uniform regions around hyperbolic points. In contrast

to the ipsi center PWC all pinwheels in this OP map organize a roughly similar fraction of

the cortical surface.
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Figure 4.8.: The Braitenberg pinwheel crystal, ∆ = 0 uniform solution of Eq. (4.81).
(a) OP map, superimposed are the OD borders (gray), 90% ipsilateral eye dominance
(black), and 90% contralateral eye dominance (white), ro = 0.2, γ = 3γ∗. Dashed lines mark
the unit cell of the regular pattern. (b) Distribution of preferred orientations.

4.5. Inter-map coupling: Higher order coupling terms

In the last section we demonstrated that the low order coupling terms can lead to a complete

suppression of OP selectivity. As the coupling terms are effectively linear they not only influ-

ence pattern selection but also whether there is a pattern at all. In this section we therefore

study the impact of higher order coupling energies using the amplitude equations Eq. (4.67).

In this case the effective coupling is a cubic interaction term and complete selectivity sup-

pression is impossible. Moreover, we can identify the limit rz ≪ ro in which the backreaction

onto the OD map can be neglected. When using the higher order inter-map coupling terms

and assuming Bi = Beıψi the potential reads

V = VA + VB +

+ǫB4
3∑

ijlk

(
h
(1)
ijlkAjAlAkAi + h

(2)
ijlkAj−Al−Ak−Ai + h

(3)
ijlkAjAl−AkAi

+h
(4)
ijlkAj−Al−AkAi + h

(5)
ijlkAjAlAk−Ai + h

(6)
ijlkAjAl−Ak−Ai

+h̃
(1)
ijlkAj−Al−Ak−Ai− + h̃

(3)
ijlkAj−AlAk−Ai− + h̃

(4)
ijlkAjAlAk−Ai−

)
, (4.91)

where h̃
(1)
ijlk = h

(1)
ijlk;ψj→−ψj

, h̃
(3)
ijlk = h

(3)
ijlk;ψj→−ψj

,h̃
(4)
ijlk = h

(4)
ijlk;ψj→−ψj

. The amplitude equa-

tions can be derived from a potential given by

∂tAi = rz Ai −
3∑

j

gij |Aj |2Ai −
3∑

j 6=i

fijAjAj−Ai−

−B4
3∑

j,l,k

(
h
(1)
ijlkAjAlAk + h

(2)
ijlkAj−Al−Ak− + h

(3)
ijlkAjAl−Ak

+h
(4)
ijlkAj−Al−Ak + h

(5)
ijlkAjAlAk− + h

(6)
ijlkAjAl−Ak−

)
, (4.92)
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with gii = 1, gij = 2 and h
(u)
ijlk effective self-interaction coupling coefficients given in Appendix

A.2. We have not written terms containing the constant δ for simplicity. The phases ψj

are absorbed into the coupling coefficients. The dynamics for the modes Ai− is given by

interchanging Ai and Ai− . For negligible backreaction B = Bhex, B = Bst, or B = Bc. In the

following we identify classes of stationary solutions of the amplitude equations Eq. (4.92) and

provide their stability criteria for the two higher order pendants of the coupling energies.

4.5.1. Product-type energy U = τ o4|z|4

First, we study the higher order product-type inter-map coupling energy in Eq. (3.23). As for

the lower order version of this coupling energy the shift δ(γ) explicitly enters the amplitude

equations resulting in a rather complex phase diagram.

Stationary solutions and their stability

In the case of OD stripes the amplitude equations of OP modes read

∂tA1 = rzA1 −
∑

j

(
g
(1)
1j |Aj |2A1 + g

(2)
1j |Aj |2A1− + g

(3)
1j AjAj−A1− + g

(4)
1j AjAj−A1

)

−B4A2
1−A1 −

∑

u 6=v 6=w

AuAvAw

((
8δ3B + 24δB2B

)
δ~ku+~kv−~kw,0 (4.93)

+
(
8δ3B + 24δBB

2
)
δ~ku+~kv−~kw,2~k1 + 8δB3δ~ku+~kv−~kw,−2~k1

)

∂tA2 = rzA2 −
∑

j

(
g
(1)
2j |Aj |2A2 + g

(3)
2j AjAj−A2−

)

−g(2)ii A2A1−A1 − g(5)A2A1A1− − 1/2g
(2)
ii A

2
1−A2− − 1/2g(5)A2

1A2−

−
∑

u,v,w

AuAvAw

(
g(6)uv δ~ku+~kv−~kw,~k2 + g

(7)
ij δ~ku+~kv−~kw,~k1+~k2

+g
(8)
ij δ~ku+~kv−~kw,−~k1+~k2 + g

(9)
ij δ~ku+~kv−~kw,2~k1+~k2 + g

(10)
ij δ~ku+~kv−~kw,−2~k1+~k2

)
,

where δi,j denotes the Kronecker delta and g
(1)
ii = 1+δ4+12δ2|B|2+6|B|4, g(1)ij = 2g

(1)
ii , g

(2)
ii =

g
(2)
ij = 12δ2B2 + 8B3B, g

(3)
ij = 2 + 12|B|4 + 24δ2|B|2 + 2δ4, g

(3)
ii = 0, g

(4)
ij = 12δ2B2 + 8B3B,

g
(4)
ii = 0, g(5) = 12δ2B

2
+ 8BB

3
, g

(6)
uu = 6|B|4 + 6δ|B|2, g(6)uv = 2g

(6)
uu , g

(7)
uu = 4Bδ3 + 1BB

2
δ,

g
(7)
uv = 2g

(7)
uu , g

(8)
uu = 4Bδ3 + 1B2Bδ, g

(8)
uv = 2g

(8)
uu , g

(9)
uu = 6B

2
δ2, g

(9)
uv = 2g

(9)
uu , g

(10)
uu = 6B2δ2,

g
(10)
uv = 2g

(10)
uu . The equation for the modeA3 is given by interchanging A2 and A3 in Eq. (4.93).

The equations for the modes Ai− are given by interchanging Ai ↔ Ai− and Bi ↔ Bi.

In this case, at low inter-map coupling the OP stripes given by

z = A1e
ı(~k1~x+φ1) −A1−e

−ı(~k1~x+φ1−) , (4.94)

with φ1 − φ1− = 2ψ1 + π run parallel to the OD stripes. The course of these stripe solutions

is shown in Fig. 4.9(a).

At large inter-map coupling the attractor states of the OP map consist of a stripe pattern
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containing only two preferred orientations, namely ϑ = φ1 and ϑ = φ1+π/2. The zero contour

lines of the OD map are along the maximum amplitude of orientation preference minimizing

the energy term.

In addition there are rhombic solutions

z = A1e
ı(~k1~x+ψ1) +A1−e

−ı(~k1~x−ψ1+π) +A2e
ı(~k2~x+ψ1) +A2−e

−ı(~k2~x−ψ1) , (4.95)

which exist also in the uncoupled case, see Fig. 4.9(b). However, these rhombic solutions

are energetically not favored compared to stripe solutions, see Fig. 4.9(c). The inclusion of

the inter-map coupling makes these rhombic solution even more stripe-like. In case of a OD

constant solution the amplitude equations read

∂tAi = rzAi −
∑

j

gij |Aj |2Ai −
∑

j

fijAjAj−Ai− , (4.96)

with gii = 1+ δ4τ , gij = 2+ 2δ4τ and fij = 2+ 2δτ . Inter-map coupling thus only leads to a

renormalization of the uncoupled interaction terms. Stationary solutions are therefore stripes

with the amplitude

A =

√
rz

1 + δ4τ
. (4.97)

Next, we study the impact of OD hexagons on the dynamics of OP maps. In addition to

stripe-like and rhombic solutions we find uniform solutions. When solving the amplitude

equations numerically we have seen that the phase relations vary with the inter-map coupling

strength τ for non-uniform solutions. But for the uniform solution the phase relations are

independent of the inter-map coupling strength. When we use the ansatz Eq. (4.81) for

uniform solutions we get the stationarity condition

6A2B
[
4
(
−4B3 + 7B2δ −Bδ2 + δ3

)
+ B cos∆

(
13B2 − 8Bδ + 6δ2

)]
sin∆ = 0 . (4.98)

Four types of stationary solutions exist namely the ∆ = 0,∆ = π, which we already observed

in case of the low order energies, and the solutions

∆ = ± arccos

(
4(4B3 − 7B2δ + Bδ2 − δ3)

B(13B2 − 8Bδ + 6δ2)

)
, (4.99)

which depends on B and δ and thus on the bias γ. The course of Eq. (4.99) as a function of

γ is shown in Fig. 4.10(b). Linear stability analysis shows that for τ ≥ 0 the ∆ = 0 solution

is unstable. The stability region of the ∆ = π solution and the solution Eq. (4.99) is bias

dependent. The bias dependent solution Eq. (4.99) is stable for γ > γ∗ and γ < γc for which

∆ = π, see Fig. 4.10(b). For larger bias γ > γc only the d = π uniform solution is stable.
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Bifurcation diagram

The course of OP solutions when interacting with OD stripes is shown in Fig. 4.9(a,b). Similar

to the low order variant of this coupling energy the amplitude of the stripes pattern A1 is

suppressed while the amplitude of the opposite mode A1− grows. Finally both amplitudes

collapse, leading to a orientation scotoma solution. In contrast to the low order variant

this stripe pattern is stable for arbitrary large inter-map coupling. In case of OP rhombic

solutions inter-map coupling transforms this solution by reducing the amplitudes A2 = A2−

while increasing the amplitudes A3 = A3− . Without OD bias this solution is then transformed

into the orientation scotoma stripe pattern, similar to the low order variant of this energy.

In contrast to the low order energy, for non-zero bias the amplitudes A2 and A3 stay small

but non-zero. The course of OP solutions when interacting with OD hexagons is shown in

Fig. 4.9(c,d). For a small OD bias (γ = γ∗) OP rhombic solutions decay into OP stripe-like

patterns. These stripe-like patterns stay stable also for large-inter map coupling. In case of

a larger OD bias (γ = 3γ∗), both the OP stripe and the OP rhombic solutions decay into the

uniform solution. Thus for small bias there is a bistability between stripe-like and uniform

OP solutions while for larger OD bias the uniform solution is the only stable solution. The

potential of OP stripe and OP rhombic solutions is shown in Fig. 4.9(e,f). In the uncoupled

case as well as for small inter-map coupling strength OP stripe solutions are for all bias values

the energetic ground state. For large inter-map coupling and a small bias (γ ≈ γ∗) rhombic

solutions are unstable and the stripe-like solutions are energetically preferred compared to

PWC solutions. For larger bias, however, PWC solutions are the only stable solutions for

large inter-map coupling.
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Figure 4.9.: Stationary amplitudes with coupling energy U = τ |z|4o4. Solid (dashed)
lines: stable (unstable) solutions to Eq. (4.92). (a,b) OD stripes, γ = 0 (blue), γ = γ∗

(green), γ = 1.4γ∗ (red). (c,d) OD hexagons, γ = γ∗ (blue), γ = 3γ∗ (red). (e) Potential,
Eq. (4.91), of OP stripes and OP rhombs interacting with OD stripes. (f) Potential,
Eq. (4.91), of OP stripes, OP rhombs, and hPWC interacting with OD hexagons.
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Figure 4.10.: (a) Phase diagram with coupling energy U = τo4|z|4, ro = 0.2, rz ≪ ro.
Vertical black lines: stability range of OD stripes, hexagons, and constant solutions. Orange
dashed line: Stability border of orientation scotoma stripes. Green solid line: Stability
border of rhombic solutions. Red solid line: Stability border of PWC solutions, red dashed
line: γc, (b) Course of Eq. (4.99), dashed line: ∆ = π. (c) Stability border between
Eq. (4.99) solution and the ∆ = π solution as a function of ro (vertical red line in (a)).

Phase diagram

The stability properties of all stationary solutions are summarized in the phase diagram

Fig. 4.10. Compared to the gradient-type interaction energy we cannot scale out the de-

pendence on ro. The phase diagram is thus plotted for ro = 0.2. We rescale the inter-map

coupling strength as τB4 where B is the stationary amplitude of the OD hexagons. In the

regime of stable OD stripes there is a transition from OP stripes towards the orientation

scotoma stripe solution. In the regime of stable OD hexagons there is a transition from OP

stripes towards PWC solutions (red line). The stability border of PWC solutions is strongly

OD bias dependent and has a peak at γ ≈ 2γ∗. For small OD bias γ the uniform solution

Eq. (4.99) is stable. With increasing bias there is a smooth transition of this solution until

at γ = γc the d = π uniform solution becomes stable. In Fig. 4.10(c) the stability border γc

between the two types of uniform solutions is plotted as a function of ro. We observe that

there is only a small dependence on the control parameter and γc ≈ 2γ∗.

Pinwheel crystals

Figure 4.11 illustrates the uniform solution Eq. (4.99) for different values of the OD bias γ.

For small bias, the OP pattern has six pinwheels per unit cell. Two of them are located

at OD maxima while one is located at an OD minimum. The remaining three pinweels are

located near the border of OD. With increasing bias, these three pinwheels are pushed further

away from the OD border, being attracted to the OD maxima. With further increasing bias

55



4. Pinwheel Stabilization by Inter-Map Coupling

-π/2 -π/3 -π/6 0 π/6 π/3 π/2
ϑ

0

5

10

15

A
re

a 
de

ns
ity

γ = γ∗

γ = 1.3γ∗

γ = 1.6γ∗

-π/2 -π/3 -π/6 0 π/6 π/3 π/2
ϑ

0

5

10

15

A
re

a 
de

ns
ity

γ = 1.8γ∗

γ = 1.9 γ∗

γ = 2γ∗

0 0.1 0.2 0.3 0.4 0.5
α[π]

0

1

2

3

4

5

6

7

F
re

qu
en

cy

γ = γ∗

γ = 1.3γ∗

γ = 1.6γ∗

γ = 1.9γ∗

γ = 2γ∗

(a) (b) (c) (d)

(f) (g)(e)

Figure 4.11.: Bias dependent pinwheel crystals, Eq. (4.99) (a) γ = γ∗, (b) γ = 1.3 γ∗,
(c) γ = 1.6 γ∗, (d) γ = 2 γ∗. OP map, superimposed are the OD borders (gray), 90%
ipsilateral eye dominance (black), and 90% contralateral eye dominance (white), ro = 0.2.
Dashed lines mark the unit cell of the regular pattern. (e,f) Distribution of orientation
preference. (g) Intersection angles between iso-orientation lines and OD borders.

three wandering pinwheels merge with the one at the OD maximum building a single charge 1

pinwheel centered on a contra peak. The remaining two pinwheels are located at an ispi and

contra peak, respectively. Note, compared to the Braitenberg PWC of the ∆ = 0 uniform

solution the charge 1 pinwheel here is located at the contralateral OD peak. Finally, the

charge 1 pinwheels split up again into four pinwheels. With increasing bias the solution more

and more resembles the Ipsi-center PWC (∆ = π solution) which is stable also in the lower

order version of the coupling energy. Finally, at γ/γ∗ ≈ 2 the Ipsi-center PWC becomes stable

and fixed for γ > 2γ∗. The distribution of preferred orientations for different values of the

bias γ is shown in Fig. 4.11(e,f), reflecting the symmetry of each pattern. The distribution of

intersection angles is shown in Fig. 4.11(g). The calculation of intersection angles is detailed

in Section 5.8. Remarkably, all solutions show a tendency towards perpendicular intersection

angles. This tendency is more pronounced with increasing OD bias. At about γ/γ∗ ≈ 1.9

parallel intersection angles are completely absent and at γ/γ∗ ≈ 2 there are exclusively

perpendicular intersection angles.

4.5.2. Gradient-type energy U = ǫ |∇o∇z|4

Finally, we study the higher order version of the gradient-type inter-map coupling. The

interaction terms are independent of the OD shift δ. In this case the coupling strength can

be rescaled as βB4 and is therefore independent of the bias γ. The bias in this case only

determines the stability of OD stripes, hexagons or the constant solution.
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Stationary solutions and their stability

As for its lower order pendant a coupling to OD stripes is relatively easy to analyze. The

energetically preferred solutions are OP stripes with the direction perpendicular to the OD

stripes for which U = 0. In case the OD map is a constant Eq. (4.31) the gradient-type

inter-map coupling leaves the OP unaffected. The stationary states are therefore OP stripes

running in an arbitrary direction. In case of OD hexagons we study uniform modes Aj =

Aj− = A, Bj = B and ψ1 = ψ3 = 0, ψ2 = π. The imaginary part of Eq. (4.92) leads to

equations for the phases φj. We use the ansatz Eq. (4.81) which leads to the stationarity

condition

− 5 sin∆ + 13 cos∆ sin∆ = 0 . (4.100)

The solutions are ∆ = 0,∆ = π, and ∆ = ± arccos
(

5
13

)
≈ ±1.176 where the stationary

amplitude are given by

A =
√
rz/ (9 + ǫB4 (61.875 − 7.5 cos ∆ + 4.875 cos(2∆))) . (4.101)

In addition to these hexagonal pinwheel crystals there exist also non-uniform solutions. Be-

sides stripe-like solutions of z(x) with one dominant mode we find rhombic pinwheel crystals

Aj = Aj− = (A, a,A) with a ≪ A and distorted rhombic crystals Aj = (A1,A2,A3) , Aj− =

(A3,A2,A1).

We calculate the stability properties of the uniform solution by linear stability analysis con-

sidering perturbations of the amplitudes Aj → A + aj, Aj− → A + aj− and of the phases

φj → φj + ϕj , φj− → φj− + ϕj− . This leads to a perturbation matrix M . In general ampli-

tude and phase perturbations do not decouple. We therefore calculate the eigenvalues of the

perturbation M matrix numerically. It turns out that for this type of coupling energy only

the solution with ∆ = ± arccos
(

5
13

)
is stable.

Bifurcation diagram

For increasing inter-map coupling strength the amplitudes of the OP stripe and OP rhombic

solutions are shown in Fig. 4.12(a). In case of stable OD hexagons there is a transition from

rhombic pinwheel crystals (blue) towards distorted rhombic pinwheel crystals (green). The

distorted rhombic PWC then decay into the hexagonal PWC (red). In case of OP stripes

(black dashed lines) inter-map coupling leads to a slight suppression of the dominant mode

and a growth of the remaining modes. This growth saturates at small amplitudes and thus the

solution stays stripe-like. This stripe-like solution stays stable for arbitrary large inter-map

coupling. Therefore there is a bistability between hexagonal PWC solutions and stripe-like

solutions for large inter-map coupling.

The stability borders for the rhombic PWC and distorted rhombic PWC solutions were ob-

tained by calculating their bifurcation diagram numerically from the amplitude equations

Eq. (4.92). With increasing map coupling we observe a transition from a rhombic PWC (two

large amplitudes) to a distorted rhombic PWC (three different amplitudes) at ǫB4 ≈ 0.033
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Figure 4.12.: Stationary amplitudes with coupling energy U = ǫ |∇z∇o|4, (a) Solid
(dashed) lines: Stable (unstable) solutions of Eq. (4.92). Blue: rhombic PWC, green:
distorted rhombic PWC, red: hexagonal PWC. Black lines: stripe-like solutions. (b) OD
map, superimposed pinwheel positions for different coupling strengths, γ/γ∗ = 3. Dashed
lines: unit cell.

(blue dashed line in Fig. 4.13(a)), see also Fig. 4.12(a). The distorted rhombic PWC loses

its stability at ǫB4 ≈ 0.065 (blue solid line in Fig. 4.13(a)) and from thereon all amplitudes

are equal corresponding to the hexagonal PWC. There is a bistability between hexagonal

PWC, rhombic PWC, and stripe-like solutions. To calculate the inter-map coupling needed

for the hexagonal solution to become the energetic ground state we calculated the potential

Eq. (4.91) for the three solutions. In case of the uniform solution Eq. (4.81) the potential is

given by

V = −6A2rz − 3B2ro + 27A4 +
45

2
B4

+
1

16
A4B4ǫ (3210 − 456 cos∆ + 90 cos(2∆)) . (4.102)

The potential in case of the rhombic and stripe-like solutions is obtained by numerically

solving the amplitude equations when using initial conditions close to these solutions. Above

ǫB4 ≈ 0.12 the hexagonal PWC is energetically preferred compared to stripe-like solutions

(red dashed line in in Fig. 4.13(a)) and thus corresponds to the energetic ground state for

large inter-map coupling.

Phase diagram

We calculate the phase diagram of the coupled system in the limit rz ≪ ro, shown in Fig. 4.13.

The phase diagram contains the stability borders of the uncoupled OD solutions γ∗, γ∗2 , γ
∗
3 , γ

∗
4 .

They correspond to vertical lines, as they are independent of the inter-map coupling in the

limit rz ≪ ro. At γ = γ∗ hexagons become stable. Stripe solutions become unstable at

γ = γ∗2 . At γ = γ∗3 the homogeneous solution becomes stable while at γ = γ∗4 hexagons loose
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Figure 4.13.: Phase diagram with coupling energy U = ǫ |∇z∇o|4, for rz ≪ ro.
Vertical lines: stability range of OD hexagons, red solid line: stability border of hexagonal
PWC, blue solid line: stability border of rhombic PWC, blue dashed line: transition from
rhombic to distorted rhombic PWC. Dashed red line: hexagonal PWC corresponds to
ground state of energy.

their stability. In the units γ/γ∗ the borders γ∗2 , γ
∗
3 , γ

∗
4 vary slightly with ro , see Fig. 4.2,

and are drawn here for ro = 0.2. We rescale the inter-map coupling strength as ǫB4 where

B is the stationary amplitude of the OD hexagons. The stability borders of OP solutions

are therefore horizontal lines. For γ < γ∗ or for γ > γ∗4 pinwheel free orientation stripes

are dynamically selected. For γ∗ < γ < γ∗4 and above a critical effective coupling strength

ǫB4 ≈ 0.042 hexagonal PWC solutions are stable and become the energetic ground state of

Eq. (4.91) above ǫB4 ≈ 0.117. Below ǫB4 ≈ 0.065, rhombic PWC solutions are stable leading

to a bistability region between rhombic and hexagonal PWC solutions. We find in this region

that rhombic solutions transform into distorted rhombic solutions above an effective coupling

strength of ǫB4 ≈ 0.033.

Pinwheel crystals

First, we study the spatial layout of the rhombic solutions which is illustrated in Fig. 4.14.

The rhombic PWC solutions are symmetric under rotation by 180 degree. The rhombic

solution has 4 pinwheels per unit cell and its pinwheel density is thus ρ = 4 cos(π/6) ≈ 3.5.

One may expect that the energy term Eq. (3.23) favors pinwheels to co-localize with OD

extrema. In case of the rhombic layout there is only one pinwheel at an OD extremum

while the other three pinwheels are located at OD saddle-points which are also energetically

favorable positions with respect to U . The orientation selectivity |z(x)| for the rhombic PWC

is shown in Fig. 4.14(b). The pattern of selectivity is arranged in small patches of highly
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(a) (b)

Figure 4.14.: Rhombic pinwheel crystals. (a) OP map with superimposed OD borders
(gray), 90% ipsilateral eye dominance (black), and 90% contralateral eye dominance (white),
γ = 3γ∗, ro = 0.2. (b) Selectivity |z(x)|, white: high selectivity, black: low selectivity.

selective regions. Next, we study the hexagonal layout of the two stable uniform solutions

which is shown in Fig. 4.15. The ∆ = ± arccos(5/13) solutions have six pinwheels per unit

cell. Their pinwheel density is therefore ρ = 6cos π/6 ≈ 5.2. Three pinwheels of the same

topological charge are located at the extrema of the OD map. Two of these are located at

the OD maximum while one is located at the OD minimum. The remaining three pinwheels

are not at an OD extremum but near the OD border. The distance to the OD border

depends on the OD bias, see Fig. 4.15(d). For a small bias (γ ≈ γ∗) these three pinwheels

are close to the OD borders and with increasing bias the OD border moves away from the

pinwheels. The pinwheel in the center of the OP hexagon is at the contralateral OD peak.

Because these pinwheels organize most of the map while the others essentially only match one

OP hexagon to its neighbors we refer to this pinwheel crystal as the Contra-center pinwheel

crystal. Note, that some pinwheels are located at the vertices of the hexagonal pattern.

Pinwheels located between these vertices (on the edge) are not in the middle of this edge.

Solutions with ∆ = ± arccos(5/13) are therefore not symmetric under a rotation by 60 degree

but symmetric under a rotation by 120 degree. Therefore the solution ∆ = +arccos(5/13)

cannot be transformed into the solution ∆ = − arccos(5/13) by a rotation of the OD and

OP pattern by 180 degrees. This symmetry is also reflected by the distribution of preferred

orientations, see Fig. 4.15(f). Six orientations are slightly overrepresented. Compared to the

Ipsi-center PWC, which have a 60◦ symmetry, this distribution illustrates the 120◦ symmetry

of the pattern. Next, we study the transition from a rhombic PWC towards the Contra-center

PWC. We tracked the pinwheel positions for each value of the inter-map coupling strength,

see Fig. 4.12(b). In the regime where the distorted rhombic PWC is stable, three of the four

pinwheels of the rhombic PWC are moving either from an OD saddle-point to a position near

an OD border (pinwheel 1 and 3) or from an OD saddle-point to an OD extremum (pinwheel

4). One pinwheel (pinwheel 2) is fixed in space. At the transition to hexagonal PWC the

two additional pinwheels show up, one near an OD border (pinwheel 5) and one at an OD

extremum (pinwheel 6).

The distribution of intersection angles is continuous, see Fig. 4.15(c). Although there is a fixed

uniform solution with varying OD bias the distribution of intersection angles changes. The
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Figure 4.15.: Contra-center pinwheel crystals. (a,b) OP map, superimposed are the
OD borders (gray), 90% ipsilateral eye dominance (black), and 90% contralateral eye
dominance (white), ro = 0.2, γ = 3γ∗. (a) ∆ = arccos(5/13), (b) ∆ = − arccos(5/13). (c)
Distribution of orientation preference. (d) OP map with superimposed OD map for three
different values (γ = γ∗, γ = (γ∗4 − γ∗) /2 + γ∗, γ = γ∗4) of the OD bias. (e) Selectivity
|z(x)|, white: high selectivity, black: low selectivity. (f) Distribution of intersection angles.

reason for this is the bias dependent change in the OD borders, see Fig. 4.15(d). For all bias

values there is a tendency towards perpendicular intersection angles, although for low OD bias

there is an additional small peak at parallel intersection angles. The orientation selectivity

|z(x)| for the hexagonal PWC is shown in Fig. 4.15(e). The pattern shows hexagonal bands

of high selectivity.

To summarize, we discussed the impact of inter-map coupling on the layout of OP map using

four representative inter-map coupling energies. The results show that for substantial bias

towards one eye pinwheels are in fact stabilized and pinwheel rich solutions become energetic

ground states by inter-map coupling.

4.6. Numerical analysis of pinwheel crystallization

So far, we presented an analytical treatment of the map interaction model. We showed that

for higher order inter-map coupling energies we can neglect the backreaction onto the OD map

for sufficiently small ratio rz/ro. To test whether the presented solutions and their stability

ranges revealed for rz ≪ ro persist when the backreaction on the OD map is taken into

account we solve the full field dynamics Eq. (4.1) numerically. For details of the numerical

methods see Section 3.3 and Appendix A.1. Besides the influence of the backreaction the
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(a) (b) (c) (d)

Figure 4.16.: Pinwheel annihilation, preservation, and generation in numerical
simulations for different strengths of inter-map coupling and OD bias, ro = 0.2, rz = 0.02.
OP map with zero contours of OD map superimposed. (a) γ = 0, ǫ = 0 (b) γ = 0, ǫ = 2000
(c) and (d) γ = 0.15, ǫ = 2000. In all conditions: Tf = 104,Γ = 22, 128 × 128 mesh. Initial
conditions identical in (a) - (c).

full dynamical system receives additional corrections. There are higher order corrections to

the uncoupled amplitude equations which become important for a substantially large control

parameter rz, ro but which we neglected here. When solving the system numerically we expect

further corrections due to the spatial discretization of the dynamics.

Numerical simulations of the dynamics Eq. (4.1) with the higher order gradient-type coupling

energy Eq. (3.23) are shown in Fig. 4.16. The initial condition and the final states are

shown for different bias terms γ and inter-map couplings ǫ. We observe that for substantial

contralateral bias and above a critical coupling ǫ pinwheels are preserved from random initial

conditions or are generated if the initial condition is pinwheel free. Without a contralateral

bias the final states are pinwheel free stripe solutions irrespective of the strength of the inter-

map coupling.

4.6.1. Pinwheel kinetics

To study the process of pinwheel annihilation, preservation, and creation we calculate the

pinwheel density as well as various other pinwheel statistics, see Section 3.4, during time

evolution. Simulations for the time evolution of the pinwheel density are shown in Fig. 4.17.

In the uncoupled case (ǫ = 0) most of the patterns decay into a stripe solution and their

pinwheel density drops to a value near zero. At small coupling strengths (ǫ = 200) the pin-

wheel density converges either to zero (stripes), to values near 3.5 for the rhombic PWC, or

to approximately 5.2 for the contra-center PWC. At high map coupling (ǫ = 2000) pinwheel

free stripe patterns form neither from pinwheel rich nor from pinwheel free initial conditions.
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Figure 4.17.: Time evolution of the pinwheel density, rz = 0.05, ro = 0.25, γ = 0.15.
For each parameter set (a)-(c) simulations in blue started from an identical set of 20 initial
conditions. Red dashed line: ρ = 4cos(π/6) and ρ = 6cos(π/6). (a) ǫ = 0 (b) ǫ = 200 (c)
ǫ = 2000. (d) Normalized power of OP map, ǫ = 0 (red), ǫ = 200 (blue), and ǫ = 2000
(green). In green (c): OD and OP stripes as initial conditions. Parameters: 128× 128 mesh,
Γ = 22.

In this regime the dominant layout is the contra-center PWC. When starting from OD and

OP stripes, see Fig. 4.17(c) (green lines), the random orientation between the stripes first

evolves towards a perpendicular orientation (T ≈ 1). This leads to a transient increase in the

pinwheel density. At the time (T ≈ 10) where the OD stripes dissolve towards OD hexagons

hexagonal PWC solutions form and the pinwheel density reaches its final value.

Regions of hexagonal PWC layout can however be inter-digitated with long lived rhombic

PWC solutions and stripe domains. Figure 4.17(d) shows the time course of the normalized

power Pn(t) = 〈|z(x, t)dyn|2〉x/〈|z(x, t)th|2〉x, where 〈〉x denotes spatial average. The field zth

is obtained from solution of the amplitude equations Eq. (4.67) while zdyn is the field obtained

from the simulations. Starting from a small but nonzero power the amplitudes grow and sat-

urate after T ≈ 1. When the amplitudes are saturated the selection of the final pattern starts.

Quantitatively, we find that with backreaction the critical coupling strengths are slightly in-

creased compared to their values in the limit rz ≪ ro. The inclusion of the backreaction

is studied in detail in Chapter 5. Snapshots of the simulation leading to hexagonal PWC

solutions at three time frames are shown in Fig. 4.18. At T ≈ 0.8 a broad rearrangement of

the pattern takes place and we can identify different domains in the pattern.
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Figure 4.18.: Snapshots of the pinwheel crystallization process. Top panel: OP map,
bottom panel: selectivity |z(x)|. Left: T = 0.01, middle: T = 0.8, right: T = Tf = 104.
Parameters as in Fig. 4.17(c).

During time evolution we further calculated the minimal distance between the pinwheels d,

measured in units of the column spacing Λ. The distributions of distances for two simulations

leading to rhombic and hexagonal PWC solutions are shown in Fig. 4.19. We can iden-

tify three stage in the evolution of the pinwheel distances. At early stages of the evolution

(T ≈ 10−2) there is a continuous distribution starting approximately linearly from d = 0. At

the time where the amplitudes saturate (T ≈ 1) the distribution of pinwheels becomes very

inhomogeneous. Different domains with stripe-like, rhombic, or hexagonal patterns show up

(see also Fig. 4.21(c,d)) until finally the rhombic or hexagonal pattern takes over the whole

area.

As pinwheels carry a topological charge we can divide the distributions according to distances

between pinwheels of the same charge or according to distances between pinwheels of the op-

posite charge. In Fig. 4.20 we have a focus on pinwheel distances for the final states of the

dynamics. In case of the rhombic solutions there is only a single pinwheel to pinwheel distance

with d = 1/
√
3 ≈ 0.58Λ. In numerical simulations small variations in the amplitudes lead to a

slightly larger distance between pinwheels of equal charge than between pinwheels of opposite

charge. Therefore their distance distributions do not collapse exactly, see Fig. 4.20(a). In

case of the hexagonal PWC there are three peaks at d ≈ 0.28Λ, d ≈ 0.36Λ and d ≈ 0.56Λ

in the pinwheel distance distribution of arbitrary charge, see Fig. 4.20(b). These three peaks

all result from distances between pinwheels carrying the opposite charge while the distance

between pinwheels of the same charge shows two peaks at d ≈ 0.48Λ and d ≈ 0.64Λ in the

distribution. The origin of the peaks is illustrated in Fig. 4.20(c) and Fig. 4.20(d). We have

shown that inter-map coupling leads to a stabilization of pinwheels in the OP pattern. But

to what extent are the pinwheels in the crystalline OP maps rearrangements of pinwheels

of the initial OP pattern? To answer this question we calculated the pinwheel annihilation

and creation rate during time evolution. The pinwheel creation c(t) and annihilation a(t)

rates per hypercolumn are defined in Section 3.4. The time evolution of these rates, averaged
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4.6. Numerical analysis of pinwheel crystallization

Figure 4.19.: Distribution of nearest neighbor distances during development. (a-c)
rhombic PWC (d-f) hexagonal PWC. Distance to the next pinwheel of arbitrary (a,d),
opposite (b,e), and equal (c,f) topological charge. Parameters as in Fig. 4.17(b).

over 20 simulations leading to a hexagonal PWC, is shown in Fig. 4.21(a). We observe that

both rates are fairly equal throughout the development, with a slightly higher creation rate

in the later stage of development. During the initial stages of time evolution creation and

annihilation rates decay algebraically. At T ≈ 3 both rates deviate from this algebraic decay.

From thereon annihilation and creation rates increase, reflecting a broad rearrangement of

the pattern. After T ≈ 15 no pinwheels are created or annihilated anymore and the pinwheels

of the final pattern are present.

Pinwheels are created and annihilated until the crystal pattern is formed. How many pin-

wheels of the initial pattern are thus present in the final pattern? For a given set of pinwheels

at an initial time T = T ∗ we further calculate the fraction s(t) of those pinwheels surviving

until time T . The fraction of pinwheels present at time T ∗ that survive up to the final time

T = Tf is given by p(t). Both fractions are shown in Fig. 4.21(b) for T ∗ = 0.01 and in

Fig. 4.21(c) for T ∗ = 2, a time where the power P (t) has almost saturated, see Fig. 4.17(d).

We observe that about 20% of the initial pinwheels are preserved until the final time and

therefore most of the pinwheels of the crystal pattern are created during development. From

those pinwheels which are present when the power saturates about 65% are also present in

the final pattern.

4.6.2. Detuning OD and OP wavelengths

The previous analytical as well as numerical results show that OD stripes are not capable

of stabilizing pinwheels. In case of gradient-type inter-map couplings the OP map consists

of stripes which run perpendicular to the OD stripes, see Fig. 4.7 and Fig. 4.13(a). In case
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Figure 4.20.: Distribution of nearest neighbor distances for final states
(T = Tf = 104). (a) rhombic PWC, (b) hexagonal PWC with pinwheels of equal (red) and
opposite (blue) charge. (c) and (d) Illustration of occurring pinwheel distances. Pinwheels
are marked with star symbols according to their charge. Units are given in Λ. Parameters
as in Fig. 4.17(b).
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Figure 4.21.: Pinwheel annihilation and creation. (a) Creation (blue) and annihilation
(red) rates during time evolution. (b,c) Survival fraction (red) and fraction of preserved
pinwheels (blue) compared to the initial time T ∗ = 0.01 (b) and T ∗ = 2 (c). Parameters as
in Fig. 4.17(c).

of the product-type inter-map coupling high gradient regions of both maps avoid each other

by producing again OP stripes but now running in the same direction as the OD stripes,

see Fig. 4.3(a) and Fig. 4.9(a). In numerical simulations we also investigate the case of OD

stripes of larger wavelength than OP columns, as is the case in macaque monkeys [75]. In

case of a gradient-type inter-map coupling the OD bands are perpendicular to the OP bands

independent of the ratio Λo/Λz > 1, see Fig. 4.22(a-c). In case of the product-type inter-

map coupling if the ratio Λo/Λz > 1 orientation representation does not collapse, as seen

in Fig. 4.9(d-f). The system, however, again finds a way to put a zero contour of z along

the OD maximum which now is a fracture line, see Fig. 4.22. The angle between the active

OP and OD modes is given by α = arccos kc,o/kc,z. This leads to the resonance relation
~k1,z−~k2,z− 2~k1,o = 0, see Fig. 4.22(a). Interaction terms between OD and OP Fourier modes

thus arise through amplitude equations of the form

∂tA1 = rzA1 − |A1|2A1 − 2|A2|2A1 − 6τ |B|4
(
|A1|2A1 + 2|A2|2A1

)

−4τB3B
(
|A2|2A2 + 2|A1|2A2

)
− 4τB

3
BA2

1A2 − τB4A1A
2
2 , (4.103)

and a corresponding equation for the mode A2.

4.6.3. Higher feature dimensions

The inclusion of more feature dimensions into the dynamics can be performed in a similar

fashion as the geometric correlations between the maps seem to be universal [68]. To illustrate

this we used the higher order gradient-type inter-map coupling with three and four cortical

maps which are mutually coupled. Whereas in the case of two maps the coupling energy is

zero if the two stripe solutions are perpendicular to each other the interactions between more

maps potentially leads to a frustration as none of the individual coupling energies vanishes.

Using the gradient coupling energy

U = U1 + U2 + U3 = ǫ1 |∇z∇o1|4 + ǫ2 |∇z∇o2|4 + ǫ3 |∇o1∇o2|4 , (4.104)
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Figure 4.22.: Map interactions with different wavelengths. OD stripes interacting
with OP columns where Λo/Λz > 1, (a-c) U = ǫ|∇z∇o|4, (d-f) U = τo4|z|4. (a,d)
Illustration of active modes in Fourier space with kc,o < kc,z, α = arccos kc,o/kc,z. Final
patterns obtained from numerical simulations, (b,e) Λo/Λz = 1.3, (c,f) Λo/Λz = 2.
Parameters: τ = 2000, rz = 0.05, ro = 0.2, Tf = 5 · 104,Γz = 20, 256 × 256 mesh.

and no OD bias (γ = 0) we observe two types of stationary solutions, see Fig. 4.23. Here we

use equal coupling strengths ǫ1 = ǫ2 = ǫ3 = ǫ. In case all bifurcation parameters are equal

the OP map consists of stripes. Also the two real fields consist of stripes, both perpendicular

to the OP stripes i.e.

z(x) = Aeı
~k1~x

o1(x) = 2B1 cos(~k2~x)

o2(x) = 2B2 cos(~k2~x+ ψ) , ~k1 · ~k2 = 0 . (4.105)

The energy in this case is given by U1 = U2 = 0, U3 =
B4

1B
4
2π

16 (18 + 16 cos(2ψ) + cos(4ψ))

which is minimal for ψ = π/2, i.e. the energy is minimized by shifting one real field by half of

the typical wavelength. When the bifurcation parameter of the OP map is smaller than that

of the two real fields we obtain PWC patterns, see Fig. 4.23(b). The pinwheels are arranged

such that they are in the center of a square spanned by the two orthogonal real fields and the

resulting pinwheel density is ρ = 4. All intersection angles between iso-orientation lines and

borders of the real fields are perpendicular. When extending the system by another real field

we observe a similar behavior. Figure 4.23(c,d) shows the stationary states of a complex field

coupled to three real fields. In case of equal bifurcation parameters the stationary patterns are

OP stripes, perpendicular to the stripe and meandering real solutions. In case the bifurcation

parameter of the OP map is smaller than the other bifurcation parameters we again observe

pinwheel crystallization. Note, that in this case all pinwheels are located at the border of one

of the three real fields. To summarize, pinwheel crystallization is only observed if the OP is
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4.6. Numerical analysis of pinwheel crystallization

driven by the real field i.e. if the OP amplitudes are small. In all observed cases the patterns

are spatially periodic.
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(a)

(b)

(c)

(d)

Figure 4.23.: Map interactions in higher feature dimensions. (a,b) Map layout by
interactions between three columnar systems (z(x), o1(x), o2(x)). All maps are mutually
coupled. Superimposed on the OP map there are the borders of two real fields (black,
white). (a) rz = ro1 = ro2 = 0.1 (b) rz = 0.01, ro1 = ro2 = 0.1. (c,d) Interactions with four
columnar systems (z(x), o1(x), o2(x, t), o3(x, t)). (c) rz = ro1 = ro2 = ro3 = 0.1. (d)
rz = 0.01, ro1 = ro2 = ro3 = 0.1. Superimposed on the OP map there are the borders the of
three real fields (black, gray, white). Left panel: initial conditions, middle panel: T = 10,
right panel: T = Tf = 5 · 104. Parameters in all simulations: ǫ = 2000, γ = 0,Γ = 22,
128 × 128 mesh.
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4.7. Discussion

In this chapter we presented a first application of the general model Eq. (3.1) for the co-

ordinated development of different maps in the visual cortex. We demonstrated that OD

segregation can stabilize pinwheels even if they are intrinsically unstable in the uncoupled

dynamics of the OP map. We identified and analyzed the stability properties of solutions

forming a spatially regular layout with pinwheels arranged in a crystalline array. We calcu-

lated phase diagrams showing the stability of these pinwheel crystals in dependence on the

OD bias and the inter-map coupling strength.

Our results indicate that the overall dominance of one eye is important for the effectiveness

of this mechanism. In this case, OD domains form a system of hexagonal patches rather than

stripes enabling the capture and stabilization of pinwheels by inter-map coupling. Supporting

this notion, visual cortex around the time of early OP development is indeed dominated by

one eye and has a pronounced patchy layout of OD domains [56–58]. Further support for

the relevance of this picture comes from experiments in which the OD map was removed

artificially resulting in a significantly smoother OP map [33]. We identified three OD so-

lutions: stripes, hexagons, and a constant solution, which are stable depending on the OD

bias. All three patterns are found to resemble patterns observed in physiological OD maps.

Interestingly, all three types of patterns are found to coexist in the visual cortex of macaque

monkeys [56]. For such an OD map our model predicts a systematic variation of the pinwheel

density.

To the best of our knowledge we present for the first time an analytical solvable model for

the coordinated development of OP and OD maps. We use a dynamical systems approach

which allows for a perturbative expansion of the dynamics. Using weakly nonlinear analysis

we derived amplitude equations as an approximate description of the dynamics near the pat-

tern formation threshold. We identified fixed points and could study their stability properties

using different types of inter-map coupling energies. We found that for the low order ver-

sion of these energies a strong inter-map coupling can lead to OP map suppression, causing

the orientation selectivity of all neurons to vanish. In contrast, the higher order variants of

the coupling energies do not lead to map suppression but only influence pattern selection.

Moreover, we could identify a limit in which the inter-map coupling becomes unidirectional

enabling for the use of the uncoupled OD patterns. To confirm our results and to study the

impact of a finite backreaction on the OD map we solved the full field dynamics numerically.

In particular, we studied the dynamics of pinwheel crystallization. With the presented ana-

lytical approach we were able to show that pinwheel rich solutions correspond to the energetic

ground state of the system for large inter-map coupling. This is supported by the fact that

pinwheels can actually be created from an initial OP stripe pattern. Pinwheel creation as

a result of a pinwheel rich energetic ground state thus serves as a simple test for models of

OP development. There is currently only one other model that was shown to be capable of

generating pinwheels from pinwheel free initial conditions [49], which will be discussed in the

next chapter.
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We studied the impact of inter-map coupling on the geometric relationships between OP

and OD maps and showed that from observation of map structures one indeed can learn

about the optimized energy. From a symmetry-based analysis we identified a class of ener-

gies which reflect the experimentally observed geometric relationships between OD and OP

maps [68, 73–75]. We thus studied gradient-type as well as product-type coupling energies.

We identified a class of PWC solutions which become stable for large inter-map coupling.

This class depends on a single parameter which is specific to the used inter-map coupling

energy. This demonstrates that, although pinwheel stabilization is not restricted to a specific

choice of the interaction term, each analyzed phase diagram is specific to the coupling energy.

In the case of the product-type coupling energies the resulting phase diagrams are relatively

complex as stationary solutions and stability borders explicitly depend on the OD bias. In

contrast, for the gradient-type coupling energies the bias dependence can be absorbed into

the coupling strength and only selects the stationary OD pattern. This leads to a rather

simple phase diagram. We identified several biologically implausible OP patterns. In the case

of the product-type energies we found orientation scotoma solutions which are selective to

only two preferred orientations. In the case of the low order gradient-type energy we found

OP patterns containing pinwheels with a topological charge of 1 which have not yet been

observed in experiments. We further analyzed the stationary patterns with respect to in-

tersection angles and pinwheel positions. Remarkably, all analyzed PWC solutions show the

tendency for iso-orientation lines to intersect OD borders perpendicularly, even in the case

of the product-type energy which is not expected per se. However, for the low order versions

of the coupling energy the distribution of intersection angles is not continuous. Half of the

pinwheels in the analyzed PWC solutions are located at OD extrema, as expected from the

used coupling energies. Some pinwheels, however, are located at OD saddle-points. Remark-

ably, such correlations, which are expected from the gradient-type coupling energies, occur

also in the case of the product-type energies. However, correlations between pinwheels and

OD saddle-points have not yet been studied quantitatively in experiments.

From the analyzed phase diagrams we conclude that the higher order gradient-type coupling

energy best reflects the map layouts and their correlations in the visual cortex. As we will see

in the next chapter, a clear distinction between the energies with respect to the geometric re-

lationships can be made only when considering spatially aperiodic map layouts. We restricted

our analysis to four representative examples of coupling energies. The general structure of

the amplitude equations is universal and only the coupling coefficients change when changing

the coupling energy. We therefore expect that also for other coupling energies, respecting the

proposed set of symmetries, PWC solutions become stable for large inter-map coupling.

In this chapter we showed that the presented model offers a solution to the problem of pin-

wheel stability. To solve this problem, the influence of OD segregation on OP maps previously

had been studied in a series of models such as elastic net models [18, 27–31], self-organizing

map models [24, 32–35], spin-like Hamiltonian models [20], spectral filter models [37], corre-

lation based models [36], and evolving field models [38]. One should note, however, that the

previous models mentioned above are a numerical approach. Whether the obtained solutions
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are attractors or just transient states and the solutions further develop towards pinwheel free

solutions remains unclear. In particular, it is in principle conceivable that their solutions will

converge to crystalline arrangements in long simulations. Moreover, in many previous models

a continuous variation of the inter-map coupling strength is not possible which makes it hard

to disentangle the contribution of each map.

The presented model questions the widely held view that OD stripes are capable of stabilizing

pinwheels. Our analysis shows that OD stripes are indeed not able to stabilize pinwheels, a

result that appears to be independent of the specific type of map interaction. Several other

theoretical studies, using numerical simulations [18,38,99], indicate that a more banded OD

pattern leads to a less pinwheel rich OP map.

We presented a thorough characterization of the stable OP and OD patterns. However, the

pinwheel crystals we obtained in our model, although beautiful and easy to characterize,

in several aspects deviate from experimentally obtained maps. All PWC solutions have a

large pinwheel density of about 3.5 or even 5.2 pinwheels per Λ2. Densities obtained from

experiments, although broadly scattered, are in the range of 3 pinwheels per Λ2 [16]. In con-

trast to the large variability of map layouts in experimentally observed maps, the pinwheel

crystals show a regular and stereotyped structure. The reason for this might be neglected

biological constraints in our model such as realistic boundary conditions or biological noise

in the system. Another aspect is the developmental stage which is represented by the maps

of our model. PWC solutions represent attractor states and thus correspond to late stages

of development potentially only comparable to the late adult pattern. One might therefore

expect that during the development a further crystallization of the pattern, along with an

increase in the pinwheel density takes place. Pinwheel crystals have been previously reported

in several abstract [17,19] as well as feature based models [100]. Remarkably, when modeling

receptive field development with synaptic long-range connections the resulting OP map shows

a striking similarity to the hexagonal PWC presented in this chapter [101].

We showed that the presented framework can be generalized to include any additional colum-

nar system and thus is not restricted to interactions among OD and OP maps. A reason to

consider other visual cortical maps originates from the finding that the removal of the OD

map in experiments does not completely destabilize pinwheels [33]. Moreover, in tree shrews,

animals which lack OD columns, the OP maps contain pinwheels [39]. This might reflect the

influence of additional columnar systems like spatial frequency columns that are expected to

interact with the OP map in a similar fashion as OD columns [68]. To better account for the

non-crystalline layout of experimentally obtained maps we also extended the map interaction

model to higher dimensions. In numerical simulations we illustrated inter-map coupling with

three and four columnar systems. Although in this case pinwheel stabilization is possible even

without an OD bias, the resulting stationary OP patterns are either stripes or PWC solu-

tions. Higher feature dimensions are often treated with dimension reduction models [24,102].

A dependence of the number of feature maps on the stabilization of pinwheels was observed

for instance in a Kohonen model [100]. We did not consider an interaction with the retino-

topic map. Compared to other feature maps, the retinotopic map seems to be exceptional
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concerning the geometric relationships. It has been observed that the correlations between

OP and retinotopic map are such that high gradient regions do not avoid each other [103].

Such correlations cannot be easily treated with dimension reduction models, see [104]. Re-

markably, in our model we identified coupling terms that could account for an attraction of

high gradient regions. Such terms contain the gradient of only one field and can thus be

considered as a mixture of the gradient and the product-type energy.

Our analysis conclusively demonstrates that OD segregation can stabilize pinwheel crystals

even if they are intrinsically unstable in the uncoupled dynamics of the OP map, raising the

possibility that inter-map coupling is the mechanism of pinwheel stabilization in the visual

cortex. In the next chapter, we study an alternative hypothesis for the origin of pinwheel sta-

bilization. Neurons in the visual cortex form extensive connections horizontal to the cortical

surface linking different orientation columns [39–48]. It is possible to include these long-range

connections in our dynamics by adding non-local interaction terms. It has been shown [49,50]

that with increasing spatial extend of these interactions the layout of maps becomes more

irregular.
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Inter-Map Coupling

5.1. Introduction

We have seen in the previous chapter that map interactions can lead to a stabilization of

pinwheel rich OP patterns. The resulting OP maps, however, are pinwheel crystals and

thus spatially periodic. In this chapter we add a source of irregularity by studying a second

hypothesis of pinwheel stabilization. It has been demonstrated that the inclusion of long-range

interactions in the dynamics leads to stable pinwheel rich OP patterns [49, 50]. Compared

to the pinwheel crystals these solutions have a spatially irregular layout. In this chapter we

discuss the consequences of long-range interactions in the coupled model.

In particular, we show that the spatially irregular OP layout can be transferred onto the OD

map. Similar to the previous chapter we identify a limit in which the backreaction on the

dynamics of the OP map can be neglected. We identify an analytically tractable class of

stationary solutions and provide their stability criteria. When using identical wavelengths for

both maps we show that the OD pattern assumes a patchy layout which resembles the patterns

found in cats. For the stable solutions we quantify the geometric relationships showing, for

instance, that these relationships are specific to the used type of coupling energy. We further

study the impact of the backreaction on the OP map demonstrating that the pinwheel rich,

aperiodic solutions are preserved even for a considerable amount of backreaction. We give

a potential explanation of the OD layout differences in cats and macaque monkeys. When

introducing a detuning in the average wavelength between OP and OD maps as found in

macaque monkeys we show that the resulting OD layout is stripe-like rather than patchy,

resembling the OD layout found in monkeys.

The coupled dynamics of OD and OP maps we consider in this chapter is given by

∂t z(x, t) = L̂zz(x, t) −N3[z, z, z]−
δU

δz

∂t o(x, t) = L̂oo(x, t)− o(x, t)3 − δU

δo
. (5.1)

The cubic nonlinearity N3[z, z, z], introduced in Section 3.1, contains local and non-local

contributions given by

N3[z, z, z] = (g − 1)|z(x)|2z(x) +
2− g

2πσ2

∫
d2y e−|x−y|2/2σ2

(
z(x)|z(y)|2 + 1

2
z(x)z(y)2

)
. (5.2)
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The dynamics can be derived from the energy functional

E[z, o] = −
∫
d2x

(
z(x)L̂zz(x) +

1

2
o(x)L̂oo(x) +

1

2
(1− g)|z(x)|4 − 1

4
o(x)4

)

+
2− g

4πσ2

∫
d2x

∫
d2y

(
|z(x)|2|z(y)|2 + 1

2
z((y))2z2(x)

)
e−|x−y|2/(2σ2)

+

∫
d2xU . (5.3)

Non-local interactions are introduced only for the OP part of the dynamics. Experiments

suggest that long-range horizontal connections are sensitive to the preferred orientation of the

neurons which are interconnected while their correlations to OD is less clear, see Section 2.3.

Compared to the previous chapter the dynamics is invariant under the inversion symmetry

o(x) → −o(x) and the uncoupled OD attractors are thus stripes for ro > 0. As in the previous

chapter we study the four representative examples of coupling energies U given in Eq. (3.23).

5.2. Permutation symmetry

When we rewrite the nonlinearity Eq. (5.2) in the following form

N [u, v, w] = (g − 1)u(x)v(x)w(x)

+
2− g

4πσ2

∫
d2y e−|x−y|2/(2σ2)

(
u(x)v(y)w(y) +

v(x)w(y)u(y) +w(x)u(y)v(y)
)
, (5.4)

we see that the nonlinearity is invariant under a cyclic permutation of the fields i.e.

N [u, v, w] = N [v,w, u] . (5.5)

This permutation symmetry has far reaching consequences on the attractor states of the

dynamics. In the following we give a brief review of the uncoupled OP dynamics with permu-

tation symmetry. Consequences of the presence or absence of this symmetry are also discussed

in Chapter 6 and 7.

5.3. The uncoupled dynamics

Without inter-map coupling the dynamics for the OP map is studied in [49,50]. In this section

we briefly review the main results of this work. In case of the uncoupled dynamics we can use

the low order amplitude equations derived in Section 4.3. With the inclusion of the non-local

76



5.3. The uncoupled dynamics

interaction terms Eq. (5.2) the coupling coefficients, see Eq. (4.59), are given by

gij = g + (2− g)

(
e−

1
2
σ2(~ki−~kj)

2

+ e−
1
2
σ2(~ki+~kj)

2
)

gii = 1 +
1

2
(2− g)e−2σ2

fij = g + (2− g)

(
e−

1
2
σ2(~ki−~kj)

2

+ e−
1
2
σ2(~ki+~kj)

2
)

fii = 0 . (5.6)

If the directions of the wave vectors ~kj = (cosαj , sinαj) kc,z are represented by angles αj

then the coefficients gij and fij are functions only of the angle α = |αi − αj| between the

wavevectors ~ki and ~kj . The coefficients can be obtained from the continuous functions

g(α) = e−ı
~k0~x
(
N3[e

ı~k0~x, eıh(α)~x, e−ıh(α)~x] +N3[e
ıh(α)~x, eı

~k0~x, e−ıh(α)~x]
)

f(α) = e−ı
~k0~x
(
N3[e

ıh(α)~x, e−ıh(α)~x, eı
~k0~x] +N3[e

−ıh(α)~x, eıh(α)~x, eı
~k0~x]

)
, (5.7)

with ~k0 = (1, 0) kc,z and h(α) = (cosα, sinα) kc,z. The coefficients are obtained as gij =

g(|αi − αj |), gii = g(0)/2, gij− = g(|αi − αj + π|) and fij = f(|αi − αj |). In case of the

coupling coefficients Eq. (5.6) the coupling function is given by

g(α) = g + (2− g)
(
e−σ

2(1+cosα) + e−σ
2(1−cosα)

)

f(α) = g + (2− g)
(
e−σ

2(1−1 cosα) + e−σ
2(1+cosα)

)
. (5.8)

Whereas f(α) is π-periodic, g(α) is 2π-periodic in general. The permutation symmetry

Eq. (5.5), however, implies g(α + π) = g(α).

Close to the bifurcation point a large class of attractors to the uncoupled OP dynamics is

given by

z(x) =

nz∑

j

Aj e
ıφj eılj

~kj~x . (5.9)

The binary variable lj = ±1 determines whether the mode with wavevector ~kj or −~kj is

active. For this class of solutions opposite modes are suppressed i.e. Aj− = 0. Planforms of

this type are therefore called Essentially Complex Planforms (ECP). For an ECP the field

z(x) cannot become real and thus the OP map is selective to all possible stimulus orientations.

The phases of the active modes φj are arbitrary and independent of the mode configuration

lj. Due to permutation symmetry gij is a circulant matrix gij = g(j−i)mod n. Since
∑

j gij is

in this case independent of the index i the stationary solutions are uniform and given by

Ai = A =

√
rz∑
j gij

. (5.10)
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Figure 5.1.: Phase diagram of the uncoupled OP dynamics. (a) Essentially complex
planforms with different numbers nz = n = 1, 2, 3, 5, 15 of active modes. The diagrams to
the left of each pattern display the position of the wavevectors of active modes on the
critical circle. For n = 3, there are two patterns; for n = 5, there are four, and for n = 15,
there are 612 different patterns. (b) Phase diagram of the uncoupled case. Shown are the
regions where a essential complex planform with n modes has the minimum energy. If
non-local interactions are dominant (g < 1) and long-ranging (σ large compared to Λ),
quasiperiodic planforms are selected. Reproduced from [49].

For a given nz there are 2nz possible ECP configurations, however, many of which can be

transferred into each other by a rotation or reflection thus defining equivalence classes. The

actual number of distinct classes is smaller but nevertheless grows exponentially with nz.

Their phase diagram is shown for the two model parameters g and σ/Λ in Fig. 5.1(b). For

g > 1 only nz = 1 solutions are energetically preferred while for g < 1 and σ/Λ large

enough solutions with more modes nz > 1 are energetically preferred. The different ECP

solutions substantially vary in their pinwheel density. In the following we denote LDP as

the low pinwheel density planform given by lj = 1, ∀j and HDP as the high pinwheel density

planform given by lj = 1 for j even and lj = −1 for j odd. Note, the HDP configuration may

not be the one with the maximum pinwheel density but has a pinwheel density larger than

ρ = π. How the pinwheel density varies with the different planforms is detailed in Chapter 6.

The model has a vast number of multistable solutions. For a given nz there is a multistability

of different ECP solutions, see Fig. 5.1(a). As shown in [49,50] permutation symmetry ensures

that for a given nz all ECP solutions share the same energy and stability properties. Realistic

patterns are obtained for g < 1 and σ ≫ Λ, see Fig. 5.1(b). In the case of nz ≥ 4 the

corresponding OP map is a spatially quasiperiodic pattern becoming more and more irregular

with increasing nz. For intermediate and large nz these patterns resemble those obtained in

experiments.
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Without inter-map coupling the OD maps have a regular stripe layout given by

o(x) = 2

√
ro
3
cos
(
~k′1~x+ ψ

)
. (5.11)

This layout does not resemble the patchy layout observed in cats. Even the more stripe-like

layouts found in monkeys and humans where OD bands meander, occasionally branching and

terminating, are much more irregular than OD stripes.

In the following we study how inter-map coupling influences the layout of OD and OP maps.

In particular, we are interested in a limit in which we can neglect the backreaction on the

OP map. Besides a substantial simplification this limit allows us to use the uncoupled OP

attractors which, for large nz, resembles the OP layout found in physiological maps. We

mainly concentrate on planforms with nz ≥ 4 because in contrast to the last chapter these

solutions have a spatially irregular layout.

5.4. Low order coupling energies

In this section we study the impact of inter-map coupling on the layout of OD maps using

the low order inter-map coupling energy terms in Eq. (3.23). We show that, similar to the

case of PWC solutions, there is a suppression of OD leading to a completely unselective OD

map. Close to the bifurcation point rz = 0, ro = 0 stationary solutions to the dynamics

Eq. (5.1) are calculated using weakly nonlinear analysis. The general derivation of coupled

amplitude equations up to seventh order is given in Section 4.3. In contrast to the previous

chapter we want to neglect the backreaction onto the OP map and thus assume ro ≪ rz. The

Fourier components of the emerging pattern are located on the two critical circles with the

wavevectors ~kj = (cosαj, sinαj) kc,z and ~k′j = (cosαj + α, sinαj + α) kc,o. We expand both

fields in a sum of these active modes

z(x, t) =
nz∑

j

Aj(t)e
ılj~kj~x +

nz∑

j

Aj−(t)e
−ılj~kj~x

o(x, t) =

no∑

j

Bj(t)e
ı~k′j~x +

no∑

j

Bj(t)e
−ı~k′j~x , (5.12)

with the complex amplitudes Aj = Aje
ıφj and Bj = Bjeıψj .

To illustrate the suppression of the pattern, observed for the low order inter-map coupling

energies already in the last chapter, we consider the coupled amplitude equations in the case

of no = nz = 4. The dynamics for the OD amplitudes in this case is given by

∂tBi = roBi −
4∑

j

g̃ij |Bj|2Bi −
4∑

j

hij |Aj |2Bi −
4∑

j 6=i

h̃ijAiAjBj , (5.13)
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Figure 5.2.: Stationary OD amplitudes for low order coupling energies and n = 4
planforms, ro = 0.1. (a) U = αo2|z|2, stripe-like solutions, (b) U = β|∇o∇z|2, transition
towards a uniform solution. Insets: Sign of o(x).

with g̃ii = 3, g̃ij = 6, hij = 2α+2β cos ((i− j)π/4)2, h̃ij = 2α+β
(
1 + cos ((i− j)π/4)2

)
. We

set Aj = Aje
ıφj , Bj = Bjeıψj and split these equations into the amplitude and phase parts.

In case of uniform amplitudes Aj = A the dynamics of the OD amplitudes is given by

∂t Bi = ro Bi −
4∑

j

g̃ijB2
jBi −

4∑

j

A2Bjh(u)ij cos (φi − φj − ψi + ψj) , (5.14)

with h
(u)
ii =

∑
j hij = 8α + 4β, h

(u)
ij = h̃ij. Stationary amplitudes for the gradient and

product-type inter-map couplings are shown in Fig. 5.2. In case of the product-type coupling

we observe, for low inter-map coupling, a stripe-like OD pattern with one dominant mode

(B1), see Fig. 5.2(a). Increasing the inter-map coupling leads to a suppression of the domi-

nant modes while the remaining modes stay small and finally are also suppressed. Lastly at

αA2/ro ≈ 0.17 all modes are zero and only the trivial solution Bj = 0 is stable. In case of

the gradient-type inter-map coupling we observe a transition towards a uniform solution with

the phase relations ψj = jπ + φj . The amplitude for this uniform solution is given by

B =

√
ro −A2 (6α+ 2β)

21
. (5.15)

At βA2/ro ≈ 0.2 the uniform solution becomes stable. Increasing the inter-map coupling

further again leads to a suppression of the amplitude B. Finally, at βA2/ro = 0.5 the pattern

solution losses its stability and only the trivial solution is stable.

This section demonstrates that the low order inter-map coupling energies can lead to a com-

plete suppression of OD, similar to OP selectivity suppression discussed in Section 4.4. There

is thus no limit ro/rz → 0 in which we could neglect the backreaction onto the OP map.
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5.5. Higher order coupling energies

5.5. Higher order coupling energies

As the low order coupling energies not only affect pattern selection but also lead to a sup-

pression of the pattern solution we also discuss the higher order coupling energies. As seen

in Section 4.3, this leads to interaction terms which enter at seventh order in the amplitude

expansion. Here, we discuss two possible configurations of the OD and OP Fourier modes.

We first discuss the simplest case in which the wavevectors of the modes Aj are independent

of the wavevectors of the modes Bj . This configuration is illustrated in Fig. 5.3(a) by red

lines. The amplitude equations in this case are of the form

∂tAi = rzAi −
nz∑

j

gij |Aj |2Ai −
nz∑

j

fijAjAj−Ai−

−
no∑

u,v

nz∑

j

(
hijuv|Bu|2|Bv|2|Aj |2Ai + ηijuv|Bu|2|Bv|2AjAj−Ai−

)

∂tBi = roBi −
no∑

j

g̃ij |Bj |2Bi

−
nz∑

u,v

no∑

j

(
hijuv|Au|2|Av |2|Bj |2Bi + ηijuvAuAu−AvAv− |Bj |2Bi

)
. (5.16)

The coupling coefficients hijuv are given in Appendix A.3. Note, that the phases of the modes

Aj are unrelated to the phases of the modes Bj. In the limit ro ≪ rz the backreaction onto

the dynamics of Ai can be neglected and we get an effective cubic interaction term

∂tBi = roBi −
no∑

j

(g̃ij + hij) |Bj |2Bi, hij =

nz∑

u,v

(
hijuv|Au|2|Av|2 + ηijuvAuAu−AvAv−

)
.

(5.17)

In the following we show that the amplitude equations Eq. (5.17) do not lead to stable

and spatially irregular OD patterns when coupled to OP solutions with amplitudes given in

Eq. (5.10). In the case of Ai = A, Ai− = 0 and nz ≥ 3 the coupling coefficients are given by

hij =

{
ǫ kc,zkc,oA4 6

(
n2z − 3/4nz

)
+ τA4 6

(
2n2z − nz

)
i = j

ǫ kc,zkc,oA4 4
(
n2z − 3/4nz

)
(2 + cos 2αij) + τA412

(
2n2z − nz

)
i 6= j

(5.18)

This leads to the coupling function

h(α) = ǫ kc,zkc,oA4 4
(
n2z − 3/4nz

)
(2 + cos 2α) + τA412

(
2n2z − nz

)
, (5.19)

with hij = h(αi−αj), hii = h(0)/2. The shape of this coupling function is shown in Fig. 5.3(b).

In case of the gradient-type inter-map coupling the coupling function depends on the size of the

critical circles kc,o and kc,z. As not stated otherwise we assume in the following kc,o = kc,z = 1

which corresponds to the situation found in cats. A detuning of wavelength kc,o 6= kc,z will

be discussed in Section 5.9.3.
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Figure 5.3.: Configuration dependence of OD solutions. (a) Configuration of Fourier
modes, Red: nz = 4, no = 2, non-zero angle between the OP and OD modes. Blue:
nz = no = 4, superimposed OP and OD Fourier modes. (b) Coupling function, Eq. (5.19).
kc,z = kc,o = 1, ǫA4 = 1, τ = 0, nz = 4. Red line: h(0)/2. (c) Stationary OD amplitudes for
both configurations. Red dashed line: unstable solution.

The effective coupling matrix Gij = g̃ij + hij is a circulant matrix of dimension no. As the

eigenvalues of circulant matrices are given by ωl =
∑

j G0,j cos 2π
jl
no
, (see for instance [105])

the criterion for the stability of no > 1 solutions is given by Gij < Gii. For the stability of

no = 2 solutions this leads to ǫA4 > 3
2(n2

z−3/4nz)
+ 3τA4(4−8nz)

(3−4nz)
while no > 2 solutions are not

stable at all. In case of nz = 4, τ = 0 this leads to A4ǫ ≈ 0.12. When we take a potential

growth of modes at the position of the modes Aj into account we observe that the OD stripe

solution becomes unstable already at ǫA4 ≈ 0.07 where new modes Bi grow. This situation

is illustrated for nz = 4 in Fig. 5.3(c). This shows that the configuration depicted in blue in

Fig. 5.3(a) is the one which is preferred by inter-map coupling. We will see in the following

that this configuration can lead to a spatially irregular OD layout.

5.5.1. Phase equations

In the case of modes situated above another mode ki,z = ki,o additional contributions to the

amplitude equations appear. These new terms couple the phases φj, ψj of the two patterns.

These terms make the no < nz solutions unstable and we can set nz = no = n. The complete

OD dynamics is then given by

∂tBi = roBi −
n∑

j

(g̃ij + hij) |Bj|2Bi −
n∑

j,l,k

lijlkAiAjAlAkBlBkBj

−
n∑

j,l,k

λijlkAjAl|Ak|2BjBlBi −
n∑

j,l,k

ρijlkAiAl|Ak|2|Bj|2Bl , (5.20)

and similar terms for the dynamics of Ai and Ai− , see Chapter 4. The coupling coefficients

lijlk, λijlk, and ρijlk are given in Appendix A.3. Note, that for n = 3l, l = 1, 2, 3, . . . there are

additional contributions to the amplitude equations due to triad resonances. In the following

we focus on planforms where n is no multiple of three. We decompose Eq. (5.20) into the
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Figure 5.4.: Transition towards uniform solutions. (a)-(c) Stationary solutions of
Eq. (5.20) with the coupling energy U = τ |z|4o4, n = 4. (d) Stationary solutions with the
coupling energy U = ǫ|∇z∇o|4, n = 4. (e,f) Uniformity parameter, see Eq. (5.28).

amplitude

∂t Bi = roBi −
n∑

j

(
g̃ij + h̃ij

)
B2
jBi −

n∑

j,l,k

lijlkAiAjAlAkBlBkBj cos Ωijlk

−
n∑

j,l,k

λijlkAjAlA2
kBjBlBi cos Ωjl −

n∑

j,l,k

ρijlkAiAlA
2
kB

2
jBl cos Ωil , (5.21)

and phase dynamics

∂t ψi = −
n∑

j,l,k

lijlk
AiAjAlAkBlBkBj

Bi
sinΩijlk −

n∑

j,l,k

λijlkAjAlA2
kBjBl sinΩjl

−
n∑

j,l,k

ρijlkAiAlA2
k

B2
jBl
Bi

sinΩil , (5.22)

with Ωijlk = (φi + φj − φl − φk) − (ψi + ψj − ψl − ψk) and Ωij = Ωiljl. In the following we

identify classes of stationary solutions of the amplitude equations Eq. (5.20) and provide their

stability criteria.

5.6. Uniform solutions

In this section we identify an analytically tractable class of stationary solutions to the ampli-

tude equations (5.20). We characterize these solutions and study their stability properties.

First, we solve Eq. (5.20) numerically. The results in the case of an n = 4 planform are

depicted in Fig. 5.4. We observe that for both types of higher order inter-map coupling en-

ergies there is a transition towards a uniform solution Bj = Beıψj . For the gradient-type
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5. Shaping the Layout of OD Maps by Inter-Map Coupling

inter-map coupling the uniform solution is the only stable solution above ǫA4 ≈ 0.23. For the

product-type inter-map coupling we observe a multistability between the uniform solution,

stripe-like solutions and solutions with two dominant modes.

In the following we study uniform solutions for general n. An analytically tractable class of

solutions to Eq. (5.20) is given by

Aj = Aeıφj , j = 1, . . . , n

Aj− = A−e
ıφj− , φj− + φj = φ0

Bj = B eıψj , ψj = lj

(
j
2π∆

n
+ φj

)
,∆ = 0, . . . , n− 1 . (5.23)

In the uncoupled case φ0 is an arbitrary phase whereas in the coupled case the phase φ0

depends on the inter-map coupling strength. The phases ψj, however, are independent of the

inter-map coupling strength. They depend on the phases φj which couples the OP and OD

pattern such that they are invariant under a combined translation. The factor lj takes into

account the planform dependencies. For a given n there are thus several different uniform

solutions. As in the case of pinwheel crystals, Eq. (4.81), we identify a class of solutions

which depends on a single parameter ∆. For n ≥ 4, both the OP and the OD pattern have

a spatially irregular layout. As we are interested in the limit ro ≪ rz we assume that the

modes Aj and Aj− behave approximately as in the uncoupled case and set A− = 0. In this

case the amplitude of the OD map is given by

B∆ =

√
ro

3 + 6(n− 1) + hn + fn,∆
. (5.24)

The functions hn and fn,∆ are given by summation over all coupling terms in Eq. (5.20).

hn =

n∑

j

hij = ǫA4

(
8n3 − 12n2 +

9

2
n

)
+ τA4

(
24n3 − 24n2 + 6n

)
, (5.25)

and the summation over the coupling coefficients

fn,∆ = A4
∑n

j,l,k (lijlk cos Ωijlk + λijlk cos Ωjl + ρijlk cos Ωil) leads to

fn,∆ = −(56ǫ+ 96τ)n2 + (246ǫ+ 240τ)n − 396ǫ− 198τ + f̃n,∆ with

f̃n,∆ =





(55ǫ+ 120τ)n3 − (220ǫ + 312τ)n2 + (11674 ǫ+ 246τ)n ∆ = 0
17
2 ǫn

3 − 101
2 ǫn

2 + 865
8 ǫn ∆ = 1

−95
8 ǫn ∆ = n

2 − 1
3
2nǫ ∆ = 2

27
4 nǫ+ 6nτ ∆ = n/2

5
2nǫ ∆ = n− n+1

2

(5.26)

Uniform solutions with ∆ and (n − ∆) are identical in the sense that they have the same

stationary amplitudes B∆ = Bn−∆ and also share the same stability properties. Individual

realizations with the phases ψ∆(φj) and ψn−∆(φj), however, are not identical. The ECP
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(a) (b) (c) (d)

Figure 5.5.: Examples of uniform solutions, Eq. (5.27). OP map with superimposed OD
borders. (a) n = 4,∆ = 0 (LDP), (b) n = 4,∆ = 2 (LDP), (c) n = 7,∆ = 2 (LDP), (d)
n = 7,∆ = 2 (HDP).

solutions are degenerate in their phases φj thus geometric correlations between OD and OP

maps are obtained by averaging over the phases φj. When averaging over this ensemble the

geometric correlations are identical for Ψ∆(φj) and Ψn−∆(φj). Examples of uniform solutions

are shown in Fig. 5.5. In case of ∆ = 0 solutions φj = ψj and thus the OD contour lines are

identical with the iso-orientation lines, see Fig. 5.5(a). It turns out that the ∆ = 0 solutions

are stable only for ǫ < 0 (τ < 0) for which the corresponding coupling energy is negative and

potentially destabilizes the dynamics. For solutions with ∆ > 0, see Fig. 5.5(c-d), the phase

relations adjust the contour lines such that the iso-orientation lines tend to intersect the OD

border perpendicularly. A quantitative analysis of intersection angles and the distribution of

pinwheel positions will be provided in Section 5.8. In the limit ro ≪ rz the attractors of Aj

and Aj− are those of the uncoupled case i.e.

Aj = Aeıφj , Aj− = 0,

Bj = Beıψj , ψj = lj

(
j
2π∆

n
+ φj

)
, j = 0, . . . , n− 1 (5.27)

with A =
√
rz/
∑

j gij . In the following we study the stability properties of Eq. (5.27)

by linear stability analysis. The stability properties of solution Eq. (5.23) are determined

numerically.

5.6.1. Measures of uniformity

To discriminate uniform solutions from non-uniform ones we introduce the uniformity param-

eter

χ(B1, . . . , Bn) =

(∑n−1
j=0 |Bj |2

maxj |Bj|2
−
∣∣∣∣∣

∑n−1
j=0 |Bj |2e2ıαi

∑n−1
j=0 |Bj|2

∣∣∣∣∣

)
/n . (5.28)

This parameter ranges from χ = 0 for stripe solutions to χ = 1 for a uniform solution, see

Fig. 5.4(e,f). When studying amplitude equations χ is a suitable measure to identify uniform

solutions. In case of numerical simulations discrete Fourier modes are not always present

and the spectrum can smeared out for instance due to the presence of distinct domains.

As a second measure which does not rely on counting distinct Fourier modes we therefore

use the bandedness b of the OD pattern which was introduced in [79]. Based on a wavelet
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transformation the bandedness uses the orientation dependence of the wavelet coefficients,

see Appendix A.4. The bandedness therefore measures the anisotropy of the pattern. For a

stripe pattern bandedness is high while for an isotropic pattern such as uniform solutions or

random fields bandedness is low.

5.6.2. Stability properties

We study the stability properties of the stationary solutions Eq. (5.27) under perturbations

of phases and of the amplitudes

Bjeıψj ⇒ (B + bj) e
ı(ψj+ϕj). (5.29)

We setAj = A. For small phase perturbations we can expand the sine and cosine in Eq. (5.21),

Eq. (5.22) as sin [Ωijlk − ϕi − ϕj + ϕl + ϕk] ≈ sinΩijlk + cosΩijlk(−ϕi − ϕj + ϕl + ϕk) ,

cos [Ωijlk − ϕi − ϕj + ϕl + ϕk] ≈ cos Ωijlk−sinΩijlk(−ϕi−ϕj+ϕl+ϕk) . Using the stationarity
condition we thus obtain

∂t bi = ro bi −
∑

j

(
g̃ij + h̃ij

) (
2B2bj + B2bi

)

−
∑

jlk

lijlkB2 (bj + bl + bk) cos(Ωijlk)

−
∑

jlk

lijlkB3 sinΩijlk (ϕi + ϕj − ϕl − ϕk) , (5.30)

and

∂t ϕi =
∑

jlk

lijlkB2 cosΩijlk (ϕi + ϕj − ϕl − ϕk)

−
∑

jlk

lijlkB (bj + bl + bk) sinΩijlk . (5.31)

Not shown are contributions resulting from λ and ρ terms. In general phase and amplitude

perturbations do not decouple. We therefore combine both linear equations as

∂t vi =
2n∑

j

Mij vj , i = 1, . . . , 2n, M =

(
M1 M2

M3 M4

)
, (5.32)

with v = {b1, . . . , bn, ϕ1, . . . ϕn}. If amplitude and phase perturbations decouple the eigen-

values of the matrix M can be derived analytically since M1 and M4 are circulant matrices

Mij = m(j−i) mod n and thus their eigenvalues are given by

λ1,l =
∑

jM1,1j cos (2π(j − 1)(l − 1)/n) , l = 1, ...n . A decoupling of amplitude and phase

perturbations occurs only in the cases ∆ = n/2 or ∆ = 0. In the remaining cases the

eigenvalues are calculated numerically. In the following we discuss the stability properties

of all uniform solutions for a given number of active modes n. The exceptional case of OP
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Figure 5.6.: Phase diagram for n = 4. (a) Stability range of the n = 4, ∆ = 1 and ∆ = 2
uniform solutions. Insets: fixed OP map, superimposed OD borders according to Eq. (5.27).
(b) Phase diagram for n = 4, ro ≪ rz. The red line: stability border of the ∆ = 2 solution.
The light blue region indicates the stability of stripe-like solutions B = (B2,B1,B2,B3),
B1 ≫ B2,B3. The light red region indicates the stability region of the solution
B = (B1,B2,B1,B2). The dark gray region indicates the stability of the ∆ = 2 uniform
solution. The light gray region is a region of bistability between the uniform solution and
solutions with two dominant modes.

stripes (n = 1) leads to OD stripes with independent phase configurations. In case of the

gradient-type coupling energy both stripes are perpendicular as already observed in the pre-

vious chapter. In case of the product-type coupling energy the OD stripes run in an arbitrary

direction as orientation shift symmetry prevents a preference for a parallel configuration. In

case of n = 2 the ∆ = 1 solution is stable for ǫA4 + τA4 > 0.5. For n = 3, 6, 9, . . . there

are additional contributions to the amplitude equations due to triad resonances. In this case

the described uniform solutions do not exist. Instead we find stable non-uniform solutions

which can become very close to uniformity (χ > 0.9). The more interesting cases are given

for n ≥ 4 as the OP layout in this case is spatially irregular. Figure 5.6 shows the phase dia-

gram for the n = 4 solutions. The phase diagram is drawn in terms of the effective coupling

strength on the OD map ǫA4 and τA4. For ǫ > 0 and n = 4 a stable uniform solution is

the ∆ = 2 solution. Here the amplitude and phase perturbations do decouple. We therefore

get two independent stability borders. The one for the amplitude perturbation is given by

A4ǫ = 3−18A4τ
13 while the border for the phase perturbations is given by ǫ = 4

3τ . The stability

borders are indicated by red lines. The ∆ = 1 uniform solution is not stable for τ = 0.

However, it becomes stable above τA4 ≈ 2.2 (ǫ = 0). In case of n = 4 we identified two types

of non-uniform solutions namely stripe-like solutions B = (B2,B1,B2,B3), B1 ≫ B2,B3 and

solutions with two dominant amplitudes B = (B1,B2,B1,B2) with χ = 1
2 + 1

2
B2
2

B2
1
. In case of

the gradient-type inter-map coupling we find stable uniform solutions also for n = 5 (∆ = 2)

and n = 7 (∆ = 2, 3).

Figure 5.7 shows the phase diagram for the n = 8 solutions. Here, there are two stable

uniform solutions, the ∆ = 2 and ∆ = 3 solution. The ∆ = 3 solution has a larger sta-

bility range. The stability borders for the non-uniform solutions are obtained by solving
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Figure 5.7.: Phase diagram for n = 8. (a) Uniformity parameter Eq. (5.28), τ = 0, red:
solution with two dominant modes, blue: solution with four dominant modes, green: uniform
solution. (b) Phase diagram for n = 8, ro ≪ rz. The red lines indicate the stability line of
the ∆ = 2 and ∆ = 3 uniform solutions. Gray dashed line: stability border of stripe-like
solutions. Black dahsed line: stability border of solution with four dominant modes.

the amplitude equations (5.20) numerically. In case of n = 8 we identified three classes of

non-uniform solutions: Stripe-like solutions with one dominant mode, solutions with two dom-

inant modes B = (B1,B2,B1,B3,B1,B2,B1,B3) with B3 ≫ B1,B2 (χ = 1
4 +

1
4
B2
2

B2
3
+ 1

2
B2
1

B2
3
≈ 0.3),

and solutions with four dominant modes B = (B1,B2,B1,B2,B1,B2,B1,B2) with B1 > B2

(χ = 1
2 + 1

2
B2

2

B2
1
≈ 0.66). Stripe-like solutions which are stable for small ǫ loose their stability

above a critical inter-map coupling strength (gray dashed line). Above this line solutions with

two dominant modes are stable. Between the black dashed line and the red line solutions with

four dominant modes are stable. In contrast to n = 4, in the case of n = 8 uniform solutions

are not stable for ǫ = 0, τ ≥ 0. For large inter-map coupling strength there is a multistability

of the ∆ = 2 and ∆ = 3 uniform solutions as well as of the non-uniform solution with two

dominant modes. We therefore check which of these solutions corresponds to the ground state

of energy. To this end we calculate the potential

V [A,B] = −ro
∑

i

|Bi|2 − rz
∑

i

|Ai|2 +
1

2

∑

i,j

g̃ij|Bi|2|Bj|2 +
1

2

∑

i,j

gij |Ai|2|Aj |2

+
1

2

∑

i,j,l,k

hijlk|Aj |2|Al|2|Bk|2|Bi|2 +
1

2

∑

i,j,l,k

lijlkAiAjAkAlBiBjBkBl

+
1

2

∑

i,j,l,k

ρijlkAiAl|Ak|2|Bj |2BlBi +
1

2

∑

i,j,l,k

λijlkAjAl|Ak|2BjBl|Bi|2 .(5.33)

Since lijlk = llkij, λijlk = λiljk and ρijlk = ρljik the potential is real. It turns out that the

∆ = 3 uniform solution is for all ǫ > 0 energetically preferred compared to the ∆ = 2

solution and that the energy difference decreases with increasing coupling strength ǫ. The

non-uniform solution with two dominant modes, however, is energetically preferred compared

to the uniform solutions.

To summarize, we studied the stability properties of uniform solutions for a different number
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of active modes n. It turns out that within the class of uniform solutions different inter-map

coupling energies select different stable solutions. We discussed in detail the cases n = 4,

because it is the simplest ECP with a quasiperiodic pattern, and n = 8, because the OP

layout already resembles that of realistic OP maps. For n ≥ 7 there is a multistability

between different uniform solutions. In addition for n ≥ 7 there is a multistability between

uniform solutions and non-uniform solutions. In case of the product-type inter-map coupling

we found stable uniform solutions only for n = 2 and n = 4 whereas for higher n we found

stable non-uniform solutions which are in general more stripe-like than those found in case of

the gradient-type inter-map coupling.

5.7. Including the backreaction

For ro ≪ rz and higher order inter-map coupling terms we could neglect the influence of the

backreaction onto the OP map. How robust are the previous results against the influence of

a finite backreaction? In this section we show that uniform solutions become stable even for

a considerable amount of backreaction, although their stability borders are shifted towards

higher inter-map coupling strength.

For a finite ratio ro/rz we have to consider the complete coupled dynamics of the modes Bj, Aj

and Aj− . If we include this backreaction we see that solutions with Aj− = 0 are unstable but

the amplitudes of the opposite wavevectors are still small for small enough ro/rz. We solve

the coupled system of modes Eq. (5.16) numerically. The course of the amplitudes in case of

a n = 4 LDP is shown in Fig. 5.8. Note, the inter-map coupling is rescaled as ǫA4 where A
denotes the uncoupled amplitude of the OP map. For ro/rz = 0.1 the backreaction to the

OP map is still small and thus the amplitudes Aj and Aj− deviate only slightly from those

of the uncoupled case, see Fig. 5.8(a). At ǫA4 ≈ 0.3 there is a transition towards the ∆ = 2

uniform solution which is at a slightly higher coupling than in the case without backreaction

where ǫA4 = 3/13 ≈ 0.23. Remarkably, the ratio ro/rz can be increased even to ro/rz = 1,

see Fig. 5.8(b). Here, for small coupling ǫA4 the backreaction makes the n = 4 ECP solution

unstable and the OP map consists of stripes. Increasing inter-map coupling at some point,

ǫA4 ≈ 18, again leads to a transition towards the uniform solution. Without backreaction

the n = 4 uniform solution is the only stable solution above a critical inter-map coupling

strength. When the backreaction is taken into account we observe a bistability between

uniform and stripe solutions, even for large inter-map coupling. Moreover, the region of

bistability increases with increasing backreaction. Increasing the backreaction even more will

at some point make the uniform solution unstable. Figure 5.8(c) shows the gradual change

in the stability borders of an n = 4,∆ = 2 planform with increasing backreaction. Compared

to the situation without backreaction (black line) the backreaction shifts the critical map

coupling at which the ∆ = 2 uniform solution becomes stable towards higher values (red line).

We compared these results with stability borders obtained by solving the full field dynamics

numerically. Here we expect, apart from the influence of the backreaction, two main reasons

for deviations from the amplitude equations. First, higher order corrections to the amplitude
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Figure 5.8.: Backreaction on the OP map (a,b) Stationary amplitudes (a)
ro = 0.01, rz = 0.1, (b) ro = 0.1, rz = 0.1, dashed lines: A(ǫ = 0, g = 0.98, σ = 0.7Λ). Red:
Aj, orange: Aj− , blue: Bj . (c) Influence of the backreaction on the stability border of the
n = 4,∆ = 2, LDP uniform solution. Black line: critical inter-map coupling when changing
the ratio ro/rz , keeping rz = 0.25 fixed, no backreaction. Red line: with backreaction. The
results are compared with solutions of the full field dynamics Eq. (5.1). Color codes for the
uniformity parameter χ, see Eq. (5.28). Parameters:
g = 0.98, σ = 0.7Λ, Tf = 5 · 104,Γ = 36, mesh=256× 256.

equations which have to be considered for larger values of rz and ro, and second deviations

due to spatial discretization, see Appendix A.1. We observe a similar increase in the stability

border when increasing the backreaction. However, the transition towards uniform solution

becomes much smoother with larger backreaction. The borders are, as expected, slightly

above the borders obtained from amplitude equation but are still comparable. For ro/rz small

the transition towards the uniform solution is in good agreement with the predictions from

amplitude equations. For larger ro/rz the transition region increases. Starting from uniform

solutions as initial conditions we integrated this solutions until the final time Tf = 5 · 104/rz.
In case of the n = 4 uniform solutions the final pattern experiences only minor changes

and the uniformity parameter for the final state is χ ≈ 0.97. To summarize, although the

limit ro ≪ rz simplifies the analysis of the amplitude equations a transition towards spatially

irregular OD solutions is observed also for ro ≈ rz.

5.8. Geometric relationships

To what extent do the different inter-map coupling energies impact on the geometric rela-

tionships between OD and OP maps? To answer this question we study these geometric

relationships for different uniform solutions as well as for solutions obtained from solving the

full field dynamics numerically. Experiments show that iso-orientation lines tend to intersect

90



5.8. Geometric relationships

0 0.1 0.2 0.3 0.4 0.5
α[π]

0

1

2

3

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5
α[π]

0

1

2

3

F
re

q
u

e
n

cy
0 0.1 0.2 0.3 0.4 0.5

α[π]
0

1

2

3

F
re

q
u

e
n

cy

0 0.1 0.2 0.3 0.4 0.5
α[π]

0

1

2

3

F
re

q
u

e
n

cy

(a) (b)

(c) (d)

Figure 5.9.: Statistics of intersection angles for uniform solutions, Eq. (5.23). (a)
n = 4,∆ = 1, (b) n = 4,∆ = 2, (c) n = 8,∆ = 2, (d) n = 8,∆ = 3. Red lines: LDP, blue
lines: HDP, dashed lines: Intersection angles with random phases ψj .

the borders of OD at right angle. We therefore study the distribution of intersection angles

α(x) = cos−1

( ∇o(x) · ∇ϑ(x)
|∇o(x)||∇ϑ(x)|

)
, (5.34)

where x denotes the position of the OD zero-contour lines. A continuous expression for the

OP gradient is given by ∇ϑ = Im∇z/z. We emphasize those parts of the maps from which

the most significant information about the intersection angles can be obtained [73,75]. These

are the regions where the OP gradient is high and thus every intersection angle receives a

statistical weight according to |∇ϑ|. Examples of intersection angle distributions for uniform

solutions are shown in Fig. 5.9. In case of the uniform solution we synthesize N different

realizations with random phases φj. The phases ψj are calculated according to the formula

Eq. (5.23) (solid lines) and for comparison chosen random (dashed lines). The intersection

histogram is an average over these realizations. The number of realizations N is chosen such

that SD/
√
N < 0.1, where SD is the maximal standard deviation of intersection angles in

the region 0 ≥ α ≥ 0.2π. The afforded precision required between about 100 and 1000 real-

izations (Γ = 24, mesh=1024× 1024).

In case of the n = 4,∆ = 1 solution, see Fig. 5.9(a), which is stable in case of the product-type

coupling energy we obtain a bimodal distribution of intersection angles with peaks at α = 0

and α = π/2. In contrast, stationary solutions of the gradient-type coupling energy all show a

tendency towards perpendicular intersection angles. This bias is in general more pronounced

for LDP solutions (red lines) than for HDP solutions (blue lines). A reason for this might be

the higher anisotropy in the layout of LDP solutions. Also for small n, see Fig. 5.9(b), this
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Figure 5.10.: Distribution of pinwheel positions for uniform solutions, Eq. (5.23). (a)
n = 4,∆ = 1 LDP, (b) n = 4,∆ = 1 HDP, (c) n = 4,∆ = 2 LDP, (d) n = 4,∆ = 2 HDP,
(e) n = 8,∆ = 2 LDP, (f) n = 8,∆ = 2 HDP, (g) n = 8,∆ = 3 LDP, (h) n = 8,∆ = 3
HDP. Red line: Distribution with random phases ψj .

bias is more pronounced than for larger n, see Fig. 5.9(c,d). Note, the employed statistical

weight |∇ϑ| has only a small effect on the distribution of intersection angles which becomes

negligible for large n.

A second experimental observation is the tendency for pinwheels to be located in the center

regions of OD columns (extrema of OD). To quantify this property we divide the OD maps

into five regions. Region 1 corresponds to the 0-10 and 90-100 percentile (peak of the ipsilat-

eral and contralateral eye domains). Region 5 corresponds to the 40-50 and 50-60 percentile

(border regions of the OD map) and so on. In case of the uniform solutions we synthesize N

different realizations with random phases φj . The phases ψj are again calculated according

to the formula Eq. (5.23) and for comparison chosen random (red line). The histogram of

pinwheel positions is an average over these realizations. The number of realizations N is cho-

sen such that SD/
√
N < 0.5 where SD is the maximal standard deviation of the five regions.

The afforded precision required between about 300 and 2200 realizations or between 150000

and 630000 counted pinwheels, (Γ = 22, mesh=1024 × 1024). The distribution of pinwheel

positions for some uniform solutions are shown in Fig. 5.10. The red lines indicate the values

obtained if the pinwheel centers were distributed randomly. We observe that all stable n = 4

uniform solution show the tendency for pinwheels to be located at OD extrema. This ten-

dency is most pronounced in case of the n = 4,∆ = 1 uniform solution which is stable in case

of the product-type coupling energy, see Fig. 5.10(a,b) We expect that the density of pin-

wheels has an influence on the distribution of pinwheel positions. To check this we calculated

the pinwheel positions for planforms with different pinwheel densities (LDP,HDP). In case of

n = 4,∆ = 2 the pinwheels are preferentially located at the extrema and this preference is

higher for the HDP. For n = 8 the situation is similar although there are planforms where

the pinwheels positions are not preferentially at the extrema, see Fig. 5.10(f).

In case of the gradient-type inter-map coupling we systematically study the geometric rela-
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Figure 5.11.: Geometric relationships from final states of the full field dynamics.
(a) Intersection angles, solid lines: ǫ = 2000, τ = 0, dashed line: ǫ = 0, τ = 2000. (b)
Distribution of pinwheel positions (c) Mean bandedness of the OD patterns. Parameters:
g = 0.98, rz = 0.25, ro = 0.02, Tf = 105,Γ = 22, 128× 128 mesh.

tionships for final states of the full field dynamics, see Fig. 5.11. We vary the length of the

long-range interactions between σ = 0.6Λ and σ = 1.9Λ which corresponds to planforms with

between n = 2 and n = 9 active modes. For each value σ we averaged over n = 50 simulations

using band-pass filtered Gaussian random fields as initial conditions for both maps. We ob-

serve that in all cases there is a bias towards orthogonal intersection angles, see Fig. 5.11(a).

This bias is less pronounced for larger σ values. This observation is in line with the results

from uniform solutions where with increasing n the bias is less pronounced. Moreover, in

all cases there is a bias for pinwheels to be located near the center of OD, see Fig. 5.11(b).

Except for σ = 0.7Λ the distributions of pinwheel positions show a peak at the center region

of OD. In all cases the bandedness is rather low, see Fig. 5.11(c), and the corresponding OD

layout is patchy. We compare these results with simulations using the product-type inter-map

coupling, dashed lines in Fig. 5.11(a,b). Here, the distribution of intersection angles is almost

flat. However, more pinwheels are located in the center than in the border region.

5.9. Numerical analysis of the coupled dynamics

In this section we numerically analyze the coupled field dynamics. As in numerical simula-

tions there is a finite backreaction on the OP map we first study how the dynamics of the OP

map is influenced by inter-map coupling. We show that pinwheel annihilation is accelerated

in a regime where pinwheels are intrinsically unstable. We further show that even when con-

sidering a finite backreaction the properties of the uncoupled OP solutions are robust against

inter-map coupling. Next, we study the time evolution of the OD layout and demonstrate

that inter-map coupling indeed leads to patchy OD maps with a low bandedness. Finally, we

study a detuning of the OP and OD typical wavelength. We show that this detuning has an

impact on the OD layout and leads to a potential explanation for the species differences in

the OD layout.
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Figure 5.12.: Pinwheel annihilation without long-range interactions (g = 2). (a)
Pinwheel density with (ǫ = 10000, blue) and without (ǫ = 0, red) inter-map coupling for ten
initial conditions. (b) Pinwheel density for different bifurcation parameters ro. Each line
represents an average over the ten simulations. (c) Power of OP maps (solid lines) and OD
maps (dashed lines). Each lines represents the average over the ten simulations. Parameters
in all simulations: rz = 0.2, g = 2,Γ = 22, 128× 128 mesh.

5.9.1. Pinwheel kinetics

Here, we test the influence of inter-map coupling on various statistics of pinwheels. Tracking

of pinwheels is detailed in Section 3.4. In a regime where pinwheels are intrinsically unstable

the influence of the OD map can impede pinwheel annihilation when the OD map is spatially

irregular [18,99]. As discussed in the last chapter OD segregation with a patchy OD layout can

even stabilize pinwheel rich solutions. Here, we study how regular OD stripes influence the

pinwheel annihilation process. In the case of g = 2 the attractor for the OP map are stripes

and a pinwheel rich pattern decays since pinwheels are annihilated. Figure 5.12 shows the time

evolution of the pinwheel density in this situation. For each value of the bifurcation parameter

ro we started with an identical set of ten random initial conditions. Figure 5.12(b) shows the

average pinwheel density of these simulations. We observe that compared to the uncoupled

case the inter-map coupling accelerates the pinwheel annihilation process. Figure 5.12(c)

shows the time evolution of the power of OP and OD maps. Pinwheel annihilation starts

when the power of the OP map starts to rise which is later in case of inter-map coupling

compared to the uncoupled case. Intuitively, a stripe pattern of one map enforces the co-

evolving map to arrange in stripes such that both run perpendicular to each other. This

additional force can accelerate pinwheel annihilation. In these simulations we further identify

the limit in which the backreaction onto the OP map can be neglected. With decreasing

ratio ro/rz the time evolution of the pinwheel density more and more resembles that of the

uncoupled case (red lines in Fig. 5.12).

In the uncoupled case OP maps are pinwheel rich and show a universal pinwheel statistics [16].

In the following we check whether this pinwheel statistics is robust against a small influence

of the backreaction from the OD map. We therefore study the time evolution of the pinwheel
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densities as well as the distribution of nearest neighbor pinwheel distances. Figure 5.13 shows

the pinwheel statistics in the pinwheel preserving case. In the chosen parameter regime

pinwheels are preserved in the uncoupled case (red lines). We use N = 20 band-pass filtered

Gaussian random fields as initial conditions. Inter-map coupling is chosen such that the n = 8

uniform solutions are stable in the amplitude equations. In Figure 5.13(a-d) parameters are

chosen such that the backreaction onto the OP map is small. We observe hat the final OP

maps in case of inter-map coupling are very similar to those in the coupled case. Moreover

the pinwheel densities in both cases are very similar. In particular, the type of planform

is unaffected by inter-map coupling and also the absolute value and phase of the active

modes receive only small corrections. The mean pinwheel density of final states with and

without inter-map coupling is given by 〈ρ〉 ≈ 2.64. The distribution of nearest neighbor

pinwheel distances in the coupled and uncoupled case are almost identical at intermediate

times as well as at final times. In Fig. 5.13(e-h) we increased the backreaction onto the OP

map. Here, inter-map coupling leads to substantial changes in the final states compared to

the uncoupled dynamics. Inter-map coupling in some cases leads to a flip of active modes

such that different ECP solutions are realized. In one case inter-map coupling even leads

to complete pinwheel annihilation. The average pinwheel density at the final time drops

from 〈ρ〉 ≈ 2.64 to 〈ρ〉 ≈ 2.25. These changes are also reflected by distribution of nearest

neighbor pinwheel distances, see Fig. 5.13(g,h). Whereas at intermediate times the distance

distributions are almost identical for coupled and uncoupled situations, at final times there

are small deviations. For instance in case of inter-map coupling there are slightly more long

(d > 0.75Λ) inter-pinwheel distances.

To summarize, for small backreaction OP patterns with and without inter-map coupling are

very similar at all stages of development. Moreover, we observe no deviation from the universal

pinwheel statistics of the uncoupled dynamics [16]. For larger backreaction we observe small

deviations at final times such as flips of active modes which result in a reduction of the

pinwheel density.
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Figure 5.13.: Pinwheel preservation. (a,e) Pinwheel densities in the presence (blue) and
absence (red, ǫ = 0) of inter-map coupling. Inset: mean pinwheel density. (a-d) Small
backreaction: rz = 0.1, ro = 0.01, ǫ = 5000, (e-h) Larger backreaction:
rz = 0.1, ro = 0.05, ǫ = 22000. (b,f) Examples of final states with and without inter-map
coupling. (c,g) Nearest neighbor pinwheel distance of opposite (left), equal (middle), or
arbitrary charge (right), T = 300, (d,h) T = 105. Parameters for all simulations:
g = 0.98,Γ = 22, σ = 1.43Λ, 128 × 128 mesh.
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5.9. Numerical analysis of the coupled dynamics

5.9.2. Time evolution of the OD layout

We numerically study the time evolution of the OD layout under the influence of inter-

map coupling. During evolution we track the uniformity parameter χ, Eq. (5.28), and the

bandedness b of the OD pattern. Figure 5.14(a,b) shows the time evolution of N = 20

realizations of OD stripe patterns interacting with n = 4 (blue) or n = 8 (red) LDP patterns.

The backreaction onto the OP map is small, ro/rz = 0.08. In case of n = 4 there is a rapid

increase of χ at T ≈ 1 which saturates at χ close to 1. At about the same time the bandedness

decreases to b ≈ 0.05. The stationary solutions all belong to the n = 4,∆ = 2 uniform solution

class and we can identify the phase relations predicted in Eq. (5.23). In case of n = 8 the

uniformity parameter increases later, at about T ≈ 10, and the distribution of final χ values

is much broader ranging between χ ≈ 0.5 and χ ≈ 0.9. Note, that for some simulations

χ > 1 at T ≈ 100 which indicates that there are more than eight Fourier modes present in

the spectrum but which will afterwards decay. Stationary pattern consist of n = 8,∆ = 2

and n = 8,∆ = 3 uniform solutions as well as non-uniform solutions which can explain the

broader distribution of the uniformity parameter. Remarkably, the bandedness is as in the

case of n = 4 very small and close to b ≈ 0.05. In Fig. 5.14(c,d) the simulations are initialized

with random fields for the OD and OP map. Here, the bandedness is low already at the

initial stage of the time evolution. Without inter-map coupling (green lines) the bandedness

rapidly increases at T ≈ 10 and saturates at b ≈ 0.8 which corresponds to OD stripe solutions.

With inter-map coupling the final OP maps mainly consist of n = 8 Fig. 5.14(c) and n = 4

Fig. 5.14(d) ECP solutions. In case of n = 8 the distribution of the OD bandedness is much

more diverse compared to simulations with an OP planform as initial condition. In case of

n = 4 the bandedness stays small and reaches its final value b ≈ 0.05.

5.9.3. The OD layout of macaques: From patches to stripes

So far, we restricted ourselves to the case kc,z = kc,o, a condition that is fulfilled in cats [55,79].

In general a detuning of the two wavelengths is possible, a scenario we already studied in

Section 4.6.2. As the ratio kc,o/kc,z varies for different species, for instance in macaque

monkeys this ratio is kc,o/kc,z ≈ 0.8 [75], we study how this influences the OD layout. We

do not use weakly nonlinear analysis, applied in the case of kc,o = kc,z. The resonance

conditions are very sensitive to the exact ratio of the wavelengths. With different ratios of

the wavelengths, the modes of the patterns are coupled in a different manner. Therefore we

restrict ourselves to numerical simulations of the full field dynamics Eq. (5.1).

To reveal the structural changes the OD layout experiences we use a single OP map as initial

condition which corresponds to an attractor state in the uncoupled dynamics. The width σ

is chosen such that planforms with n = 8 active modes are the dominant solution. As initial

conditions for the OD map we use N = 10 random fields. The bifurcation parameters are

such that the backreaction onto the OP map is small. In case of the gradient-type inter-map

coupling the coupling strength depends on the wave number kc. A change in the critical

wavelength therefore also changes the effective coupling between the maps ǫ̃ = ǫkc,zkc,o,
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Figure 5.14.: Transition towards uniform solutions. (a,b) OD stripes as initial
conditions. (a) Time evolution of the uniformity parameter χ. Blue (red) σ = 0.71Λ
(σ = 1.43Λ) for which n = 4 (n = 8) planforms dominate. (b) Time evolution of the
bandedness b. (c,d) Random initial conditions. (c) Green: ǫ = 0, red: ǫ = 2000, σ = 1.43Λ
(d) ǫ = 2000, σ = 0.71Λ. Parameters in all simulations:
g = 0.98, ro = 0.02, rz = 0.25, ǫ = 2000,Γ = 44, 256 × 256 mesh. Insets: Sign of o(x).

see Eq. (5.18). When changing the wavelength ratio we keep this effective coupling fixed.

Figure 5.15 shows the bandedness of the stationary OD map as a function of the ratio kc,o/kc,z.

We observe that the transfer of spatial irregularity onto the OD pattern is robust against a

detuning of the typical wavelengths. There is no ratio for which b = 1, i.e. for there are

regular OD stripes. Instead b < 0.65 in all examined ratios and the stationary OD maps are

spatially irregular. For the ratio kc,z/kc,o = 1 the OD pattern has a low bandedness and the

pattern has a patchy layout similar to those of cats, see Fig. 2.3(a). The standard deviation

of the bandedness is rather low. Detuning this ratio in general increases the bandedness.

Moreover, the standard deviation of the bandedness increases. For the ratio kc,z/kc,o ≈ 0.82

the layout is much more stripe-like and comparable to the OD patterns of macaques, see

Fig. 2.3(b). Phase relations are important for the stability of patchy OD solutions. As the

two critical circles for kc,o 6= kc,z do not overlap we expect different or even absent phase

relations and therefore a more stripe-like layout. Increasing the inter-map coupling does not

change this result, see inset in Fig. 5.15(b). However, if we increase the bifurcation parameter

ro, see Fig. 5.15(b), it becomes more likely to obtain resonant combinations of active modes
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Figure 5.15.: Layout differences when detuning OD and OP wavelengths. (a)
Bandedness b for different ratios kc,o/kc,z. Red line: mean bandedness. Parameters for all
simulations: g = 0.98, σ = 1.43/Λ, rz = 0.25, ro = 0.02, ǫ = 2000/kc,o, Tf = 5 · 105,
mesh=128× 128. (b) Bandedness for the fixed ratio kc,o/kc,z = 18/22 ≈ 0.82 and varying ro
and ǫ (inset, ro = 0.02). Parameters: g = 0.98, σ = 1.43Λ, rz = 0.25. (c,d) Typical pattern
of OD and OP map for (c) kc,o/kc,z ≈ 0.82 or (d) kc,o/kc,z = 1.

which are located in a region with a positive growth rate.
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5.10. Discussion

In this chapter we studied a complementary realization of the general model Eq. (3.1). In par-

ticular, we demonstrated that the layout of OD maps can be influenced by inter-map coupling.

We showed that inter-map coupling leads to a transition from regular OD stripes towards a

spatially aperiodic OD pattern which resembles the patchy OD layout found in cat visual

cortex. Similar to the previous chapter we studied the coupled dynamics close to the pattern

formation threshold, using weakly nonlinear analysis to derive amplitude equations. As in

the previous chapter we identified a limit in which inter-map coupling becomes unidirectional

and further demonstrated that, when using the higher order inter-map coupling energies, we

could neglect the backreaction onto the OP map. Notably, this limit ro ≪ rz is opposite to

the limit applied in the previous chapter where rz ≪ ro. We have shown in this chapter that

the condition ro ≪ rz is not necessary for the stability of uniform solutions which can become

stable even for ro ≈ rz. However, this limit enables us to neglect the backreaction on the OP

map which substantially simplifies the analysis of map interactions. Moreover, we demon-

strated that the quantitative properties of the uncoupled OP solutions [16] are preserved for

small backreaction.

In this limit we analytically studied the existence and stability properties of uniform solutions,

spatially irregular solutions which resemble experimentally obtained OD and OP maps and

which can be considered as generalizations of the PWC solutions discussed in the previous

chapter. We further studied the changes in the stability properties due to the influence of

the backreaction on the OP map. We showed that a finite backreaction shifts the stability

borders but leaves the qualitative properties of the phase diagrams unaffected.

We gave a potential explanation for the OD layout differences observed in cat and monkey

visual cortex. These species show a striking dissimilarity in their OD layout which is patchy

in the case of cats, while more banded in the case of macaque monkeys. We showed that such

layout differences can be explained by differences in the average wavelength of the two pat-

terns. In contrast to cat visual cortex where both wavelengths are equal [55,79], in macaque

monkeys the OD map has a larger average wavelength than the OP map [56, 75]. We thus

detuned these wavelengths in the coupled Swift-Hohenberg equations. We showed that if the

wavelength of the OD map equals that of the OP map, the OD layout obtained by inter-map

coupling is patchy and resembles that found in cats. However, when the wavelength of the OD

map is larger than that of the OP map, as it was observed in macaque monkeys, the resulting

OD layout is more banded, resembling that of macaques. A similar connection between the

wavelength differences of both patterns and the OD layout has been drawn in [99]. Pattern

formation of such a form has been previously studied for instance in Faraday waves [6,7,106]

using a single order parameter field but two different critical wavelengths. The presented

scenario can be generalized to other species such as ferrets, in which the wavelength of the

OD map is smaller than that of the OP map [63,107].

In this chapter we showed that the analyzed inter-map coupling energies can lead to realistic

geometric relationships between OD and OP maps. We quantified the geometric relationships
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of the stable solutions obtained by amplitude equations as well as from solving the full field

dynamics numerically. The gradient-type coupling energy is sensitive to intersection angles

between iso-orientation lines and OD borders. This is also reflected by the resulting solutions

of the dynamics. In all cases we observe a tendency towards perpendicular intersection an-

gles. This tendency is more pronounced for LDP solutions, where the OP pattern is more

anisotropic, than for HDP solutions. With an increasing number of active modes the pattern

become more irregular and the bias for perpendicular angles is less pronounced. The observed

continuous distributions resemble those found in experiments [30,68,73,75,108–110]. In case

of the product-type coupling energy, however, the distribution of intersection angles clearly

differs from that of the gradient-type energy. For a low number of active modes we obtained

a second peak at a parallel angle whereas for higher numbers of active modes the distribution

becomes flat. In contrast to the previous chapter, for spatially irregular OP maps the used

coupling energies indeed have an impact on the distribution of intersection angles.

Next, we quantified the distribution of pinwheel positions with respect to OD. Experimen-

tally, the tendency for pinwheel centers to be located at OD centers has been reported and

quantified in a variety of experiments [36, 68, 73, 74, 108, 109, 111]. For most stable uniform

solutions we found a clear tendency for pinwheels to be located at OD extrema. However, we

also found solutions in which the distribution is flat. In the case of solutions of the full field

dynamics we observe in all cases a tendency for pinwheels to be at OD extrema. Differences

to results from amplitude equations might results from stable non-uniform solutions and from

modulations in the stationary amplitudes which appear far from threshold.

In some previous models the timing of map development is an important factor in determining

the resulting map layout [27, 112, 113]. If the OD map is coupled to an already established

system of OP columns the resulting OD layout is patchy. The distribution of intersection

angles has also been related to the developmental order of the maps where the distribution is

more biased if OP maps develop before OD maps [28]. However, as the precise developmental

order is still unknown and these models furthermore lead to pinwheel annihilation [18], we

did not include such an order in our model. In the previous chapter we demonstrated that

inter-map coupling can solve the problem of pinwheel stability. It has been found in several

studies [18, 20] that inter-map coupling slows down pinwheel annihilation. In contrast, we

found that in a regime where pinwheels are unstable, the process of pinwheel annihilation is

slightly accelerated by inter-map coupling.

In this chapter we presented a model leading to spatially irregular OP and OD maps. This has

been achieved by introducing non-local interactions to the coupled dynamics. These interac-

tion terms were motivated by the observed long-range horizontal connections which have been

found in a variety of species [39–48]. We introduced long-range interactions for the OP part

of the dynamics only. Whereas long-range connections are sensitive to orientation selectivity,

their relationship to OD is less clear. It has been shown that the inclusion of such terms can

lead to spatially aperiodic OP maps [49, 50]. An important property of the uncoupled OP

dynamics is the existence of a huge number of multistable solutions. Inter-map coupling can

transfer this multistability leading to numerous patchy OD patterns.
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Figure 5.16: Monocular
deprivation. Contra fraction,
see Section 4.2.5, of final states
with OD bias and long-range
interactions. Parameters:
rz = 0.25, ro = 0.04, g = 0.98,
σ = 1.43Λ, ǫ = 2000, Tf = 105,
Γ = 22, 128× 128 mesh.

In species that lack OP columns our model predicts regular OD stripes. It is hard to examine

such a scenario, as many species such as rodents that lack OP columns also show no OD

segregation [76]. One possibility to investigate OD columns without the influence of OP is

to artificially induce an OD map. This has been done experimentally in tadpoles [86, 114],

implanting a third eye, as well as in theoretical studies [115]. The resulting OD map in the

optic tectum of the tadpole is indeed banded, supporting our notion that without inter-map

coupling the OD map is a stripe pattern.

In this chapter we have not included an eye-inversion symmetry breaking term as in the

previous chapter. With the inclusion of such a bias we can study for instance the effect of

monocular deprivation on the patchy layout of OD maps. Final states of such simulations

are shown in Fig. 5.16. Shown is also the percentage of contralateral eye dominated territory,

see also Section 4.2.5. In the case of OD stripes and hexagons there is a gap in the realized

fraction of contralateral eye dominance, see Fig. 4.2(b). With the inclusion of long-range

interactions, however, we obtained a continuous distribution such that all possible fractions

of eye dominance can be realized.

To conclude, the approach presented in this chapter demonstrates that a realistic map layout

of diverse species such as cats and macaques can be obtained by inter-map coupling. In the

following chapters we investigate the consequences of the degeneracy of OP solutions and

discuss pattern selection when this degeneracy is lifted.
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6. Pattern Selection Far from Threshold

6.1. A preliminary remark

The inclusion of non-local interactions into the OP dynamics leads to stable, spatially aperi-

odic patterns which resemble physiological maps as demonstrated in the last chapter. This

dynamics, however, has a vast number of stationary solutions. The enormous complexity

of this model becomes apparent by the fact that the number of stationary solutions grows

exponentially with the number of active modes n. Nevertheless, this model is relatively easy

to handle due to the existence of permutation symmetry and the assumption that pattern

formation takes place close to threshold. Here, all solutions for a given n share the same

stability and energy properties and thus all solutions can be treated in a common fashion.

Multistability reflects the situation found in the visual cortex where different observed pat-

terns are never identical but only qualitatively similar. In this and the following chapter we

study mechanisms that can lift the energetic degeneracy. In this case every single solution

has to be treated individually. We thus present a comprehensive characterization of the large

class of stationary solutions. What do we expect if the described degeneracy is lifted? Every

single solution will receive its own stability borders and eventually the stationary amplitudes

and phases of the solutions itself become non-trivial and planform dependent. We further

expect an energetic selection of particular solutions. The energy landscape might change such

that the basin of attraction of particular solutions is increased. Even new classes of stationary

solutions can become relevant which were unimportant before. In the following chapters we

describe all of these phenomenons and in particular how they relate to the resulting pinwheel

densities. Moreover, we give a thorough characterization of the full richness of solution classes

of the OP dynamics.

If the presented model is very sensitive to the distance from threshold or to deviations from

permutation symmetry its tractability would be of limited value. In the following we show

that this is not the case and that the OP dynamics introduced in the previous chapter to a

large extend is insensitive to such model details.

6.2. Introduction

The previous chapters demonstrated that weakly nonlinear analysis is a powerful tool to

analytically examine the selection of patterns due to inter-map coupling. The amplitude

equations of the uncoupled OP dynamics, when truncated at leading order, show multistability

and energetic degeneracy of different planform solutions. The pinwheel density averaged over
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the different multistable solutions approaches ρ = π for large interaction width σ. However,

numerical simulations of the full field dynamics indicate that the energetic degeneracy is lifted

far from threshold. With increasing distance from threshold the average pinwheel density of

the stationary patterns decreases substantially below ρ = π. To characterize this distance

dependence we consider higher order corrections to the uncoupled OP amplitude equations.

We show that fifth order corrections lead to modulations in the stationary amplitudes which

in general decrease the pinwheel density of the corresponding planform solution. Moreover,

higher order corrections energetically select those planform solutions which have a relatively

low pinwheel density. These results thus can explain the observed decrease in the pinwheel

density. Higher order corrections not only affect the amplitudes of the Fourier modes. We

show that for certain planform configurations also the degeneracy of their phases is partly

lifted. Lifting the degeneracy of phases additionally lowers the corresponding potential leading

to an over-representation of these solutions in the phase diagram. We begin this chapter with

the derivation of amplitude equations beyond the leading order.

6.3. Amplitude equations - Higher order corrections

In this section we derive amplitude equations up to fifth order of the uncoupled OP dynamics

and demonstrate that these corrections lift the degeneracy of ECP solutions. We first consider

an OP dynamics with general cubic and quintic nonlinearities N3, N5 given by

∂t z(x, t) = L̂ z(x, t)−N3[z, z, z]−N5[z, z, z, z, z] , (6.1)

with L̂ = r −
(
k2c +∆

)2
= r − L̂0. This dynamics is then specified where N3 is given in

Eq. (3.4) and N5 = 0. The expansion up to third order is detailed in Section 4.3. We have

seen that due to orientation shift symmetry all even terms in the expansion vanish. Therefore

we expand the field in powers of µ =
√
r as

z = µz1 + µ3z3 + µ5z5 + . . . (6.2)

In addition, we introduce a slow timescale T = rt. We insert the expansion in the dynamics

Eq. (6.1) and get

0 = µ L̂0z1

+ µ3
(
−∂T z1 + z1 − L̂0z3 −N3[z1, z1, z1]

)

+ µ5
(
−∂T z3 + z3 − L̂0z5 −N3[z1, z1, z3]−N3[z1, z3, z1]−N3[z3, z1, z1]

−N5[z1, z1, z1, z1, z1])

... (6.3)
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Besides the leading order homogeneous equation L̂0z1 = 0 with the solution

z1 =

n−1∑

j=0

Aj(T )e
i~kj~x +

n−1∑

j=0

Aj−(T )e
−i~kj~x , (6.4)

we get, at subsequent orders of µ, inhomogeneous equations of the form

L̂0 zm = Fm = zm−1 − ∂T zm−1 −N3[z1, ..., zm−1]− . . . (6.5)

arise. At every order µ the inhomogeneous equation is solved in two steps. The nonlinear

terms involve combinations of the original Fourier modes Eq. (6.4). These combinations are

divided into two classes. For those modes that have their wavevector on the critical circle

we can apply the solvability condition. By satisfying the solvability condition all modes on

the critical circle are removed. In the second step the modes with wavevectors off the critical

circle ~ks, |~ks| 6= kc are considered. In this case we can invert the linear operator

(
L̂0
)−1

=
−1

(k2c +∆)2
. (6.6)

If we apply the operator
(
L̂0
)−1

to modes off the critical circle we obtain

(
L̂0
)−1

eı
~ks~x =

−1

(k2c − k2s)
2 e
ı~ks~x , (6.7)

and therefore equation Eq. (6.5) can be inverted leading to

zm =
(
L̂0
)−1

Fm = L̂−1 (−N3[z1, ..., zm−1]−N5[z1, ..., zm−1]) . (6.8)

Note, that the inverse operator
(
L̂0
)−1

is acting on nonresonant terms only. The third order

equation is given by

L̂0 z3 = −z1 + ∂T z1 +N3(z1, z1, z1) . (6.9)

The solvability condition leads to the following equation at order ǫ3

〈z̃| − z1 + ∂T z1 +N3(z1, z1, z1)〉 = 0; L̂0z̃ = 0 . (6.10)

We introduce the operator P̂c which projects onto the kernel of L̂0. This leads to

∂T z1 = z1 − P̂cN3[z1, z1, z1] . (6.11)

We insert the leading order solution Eq. (6.4) and get

∂T Ai = Ai + P̂i
∑

j,k,l

AjAkAle
−ı~ki~xN3[e

ı~kj~x, eı
~kk~x, e−ı

~kl~x] , (6.12)
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where P̂i is the projection operator onto the subspace {eı~ki~x} of the kernel . This leads to the

amplitude equations at leading order

∂tAi = rAi −
n∑

j

gij |Aj |2Ai −
n∑

j

fijAjAj−Ai− , (6.13)

where we scaled back to the original time variable t.

Following the expansion Eq. (6.3) and using Eq. (6.8) we get the third order field field as

z3 =
(
L̂0
)−1

N3(z1, z1, z1) +

n∑

j

Bje
ı~kj~x +

n∑

j

Bj−e
−ı~kj~x. (6.14)

For the general solution we also added a solution of the homogeneous equation i.e. modes Bj

and Bj− on the critical circle. The equation to be solved at fifth order is given by

L̂0 z5 = −z3 + ∂T z3 +N3(z1, z1, z3) +N3(z3, z1, z1) +N3(z1, z3, z1)

+N5(z1, z1, z1, z1, z1) .
(6.15)

Inserting Eq. (6.14) and Eq. (6.4) and applying the solvability condition leads to the following

amplitude equations

∂T Bi = Bi −
n∑

j

gij
(
|Aj |2Bi +AiAjBj +AiAjBj

)

−
n∑

j

fij
(
Ai−Aj−Bj +Ai−AjBj− +AjAj−Bi−

)

−
n∑

j,k

gijk|Aj |2|Ak|2Ai

−
n∑

j,k

f̃ijkAkAk−AjAj−Ai −
n∑

j,k

fijk|Ak|2AjAj−Ai− , (6.16)

and corresponding equations for the modes Bi− . The coupling coefficients of the third order

terms are given in Eq. (4.59) while the fifth order coupling terms terms are given in Appendix

A.5. We can insert the stationary solution for the leading order equation Eq. (6.13) into

Eq. (6.16). This leads to a linear equation for the fifth order correction Bi and Bi− . From

the leading order we already know that the amplitudes of the ECP solutions are uniform and

degenerate in their phases. Furthermore their opposite modes are suppressed and we can set

Ai = A, Ai− = 0. This leads to

∂T Bi = Bi −
∑

j

gijA2
(
Bi +Bj +Bj

)
−
∑

j,k

gijkA5

∂T Bi− = Bi− −
∑

j

gij− |A|2Bi− −A2
∑

j

fijBj− . (6.17)

106



6.3. Amplitude equations - Higher order corrections

Remarkably, the dynamics of the modes Bi− does not contain quintic interaction terms, as

is the case for the dynamics of the modes Bi. Using the third order stationarity condition(
1−

∑
j gijA

2
)
= 0 we obtain

∂tBi = −2
∑

j

gijA2Bj −
∑

j,k

gijkA
5

∂tBi− = −A2
∑

j

fijBj− . (6.18)

The stationarity condition results in an inhomogeneous and a homogeneous linear equation.

The homogeneous equation has the trivial solution Bi− = 0 which is the only unique solution.

Moreover, if the eigenvalues of fij are nonzero this is even the only solution. As fij is a

circulant matrix its eigenvalues can be calculated easily. For σ large the eigenvalues are given

by (n − 1)g/2 and −g/2. Therefore the modes Bi− receive no fifth order corrections. This

situation changes if we consider configurations of active modes that allow for triad resonances,

see Section 6.4.

We can combine the third and fifth order contributions by introducing Ãj = µAj + µ3Bj,

Ãj− = µAj− + µ3Bj− and collect all contributions up to µ5. After rescaling back to the fast

time variable and rewriting Ãi → Ai we get the fifth order amplitude equations

∂tAi = rAi −
n∑

j

gij |Aj |2Ai −
n∑

j

fijAj−AjAi− −
n∑

j,k

gijk|Aj |2|Ak|2Ai

−
n∑

j,k

fijk|Ak|2AjAj−Ai− −
n∑

j,k

f̃ijkAkAk−AjAj−Ai . (6.19)

The amplitude equations (6.19) equals Eq. (6.17) together with Eq. (6.13) up to a correction

of the order µ7. As for the third order amplitude equations, if opposite modes are suppressed

Aj− = 0 the amplitudes are degenerate in their phases. Again the coupling coefficients can be

expressed as an angle dependent function. At fifth order there are interactions between three

active modes and we thus define two angles α = |αi − αj| and β = |αi − αk|. The coupling
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6. Pattern Selection Far from Threshold

Figure 6.1.: Fifth order coupling function. (a) Illustration of interactions between three
modes that contribute to gijk. (b,c) Coupling function g(α, β), see Eq. (6.20), with
g = 0.9, σ = 0.4Λ. (d) Section through the coupling function g(α, β = 2π/3), red:
g = 0.9, σ = 0.4Λ, blue: g = 0.9, σ = 0.9Λ. The coupling function diverges at α, β = jπ and
α = β + jπ, j = 0, 1, . . . . (e) Coupling function g∗(α, β = 2π/3) with the linear operator set
to the identity, L̂0 = 1.

function therefore reads

g(α, β) = e−ı
~k0~x
(
N3[(L̂

0)−1N3[e
ı~k0~x, eıh(α)~x, e−ıh(β)~x], eıh(β)~x, e−ıh(α)~x]+

N3[(L̂
0)−1N3[e

ıh(α)~x, eık0~x, e−ıh(β)~x], eıh(β)~x, e−ıh(α)~x]+

N3[(L̂
0)−1N3[e

ık0~x, eıh(β)~x, e−ıh(α)~x], eıh(α)~x, e−ıh(β)~x]+

N3[(L̂
0)−1N3[e

ıh(β)~x, eık0~x, e−ıh(α)~x], eıh(α)~x, e−ıh(β)~x]+

N3[e
ıh(β)~x, (L̂0)−1N3[e

ık0~x, eıh(α)~x, e−ıh(β)~x], e−ıh(α)~x]+

N3[e
ıh(α)~x, (L̂0)−1N3[e

ık0~x, eıh(β)~x, e−ıh(α)~x], e−ıh(β)~x]+

N3[e
ıh(β)~x, (L̂0)−1N3[e

ıh(β)~x, eı
~ki~x, e−ıh(β)~x], e−ıh(α)~x]+

N3[e
ıh(α)~x, (L̂0)−1N3[e

ıh(β)~x, eık0~x, e−ıh(α)~x], e−ıh(β)~x]+

N3[e
ıh(α)~x, eıh(β)~x, (L̂0)−1N3[e

−ıh(α)~x, e−ıh(β)~x, eık0~x]]+

N3[e
ıh(β)~x, eıh(α)~x, (L̂0)−1N3[e

−ıh(β)~x, e−ıh(α)~x, eık0~x]]
)
+

N3[e
ıh(α)~x, eıh(β)~x, (L̂0)−1N3[e

−ıh(β)~x, e−ıh(α)~x, eık0~x]]+

N3[e
ıh(β)~x, eıh(α)~x, (L̂0)−1N3[e

−ıh(α)~x, e−ıh(β)~x, eık0~x]]
)
,

(6.20)

with k0 = (1, 0)kc and h(α) = (cosα, sinα) kc. Note, that g(α, β) = g(β, α). The coupling

coefficients are then obtained by gijk = g(|αi − αj |, |αi − αk|), gijj = 1
4g(|αi − αj |, |αi − αj|)

and giij =
1
2g(|αi − αj |, 0). The coupling function g(α, β) is plotted in Fig. 6.1. The function

g(α, β) is not bounded from below since singularities appear at α, β = jπ and α = β+ jπ, j =

0, 1, . . . . How is the multistability of ECP solutions affected by higher order corrections? The

third order coupling function g(α) is π-periodic due to permutation symmetry which leads to
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6.3. Amplitude equations - Higher order corrections

multistability. This property is not preserved at fifth order where g(α+π, β) 6= g(α, β) even for

permutation symmetric nonlinearities. From this property we can expect that multistability

of different planform solutions is lifted at fifth order. The reason for this is twofold. First,

contributions from (L̂0)−1 turn out to be planform dependent. This will be detailed in Section

6.8. Second, even if we omit those non-resonant terms, the resulting coupling function is also

not π-periodic. This is illustrated in Fig. 6.1(e) where we set the linear operator to the

identity L̂0 = 1 leading to the coupling function g∗(α, β) with g∗(α+ π, β) 6= g∗(α, β). Thus

the ECP degeneracy is lifted by the coupling function at fifth order.

In the following, we discuss the stationary solutions of Eq. (6.19) and their stability and

energy properties. Note, for some planform configurations there are additional contributions

to the amplitude equations which will be discussed in Section 6.4.

6.3.1. Examples: Stripes and squares

In case of stripes (n = 1) higher order corrections are absent (giii = 0) due to orientation

shift symmetry. Indeed, the third order solution z1 = A eı(kcx+φ) with

A2 =
r

g11
=

r

1 + 1
2(2− g)e−2k2cσ

2 , (6.21)

is already an exact solution of the full field dynamics Eq. (6.1).

In case of squares1 (n = 2), the amplitude equations up to fifth order are given by

∂tA1 = rA1 −
(
g11|A1|2 + g12|A2|2

)
A1 + g211|A1|2|A2|2A1 + g221|A2|4A1 , (6.22)

with

g211 =
1

8

(
g − 1 + (2− g)

1

2
e−2σ2 + (2− g)e−σ

2

)2

, (6.23)

and g221 = 1
2g211. The third order amplitudes receive a correction Eq. (6.17) given by

B1 = B2 =
(g211 + g221)A

5

r − 3A2(g11 + g12)
=

g5 r
√
r

2g23
√
g3
, (6.24)

with g3 = g11 + g12 and g5 = g211 + g221. The stationary solutions of the amplitude equations

Eq. (6.22) are

A1 = A2 = A =

√
g3
2g5

−
√
g25 − 4g5r

2g5
. (6.25)

A series expansion of this stationary solution leads to

A =
√
r/g3 + r3/2

g5
2g23

√
g3

+ r5/2
7g25

8g43
√
g3

+ . . . (6.26)

1The real part Re(z) of the n = 2 ECP solution has a square layout.
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6. Pattern Selection Far from Threshold

which agrees with Eq. (6.24) up to corrections of the order r5/2. As g5 is positive for all g

and σ the fifth order corrections increase the amplitudes of the n = 2 planforms.

6.4. Phase relations

In case of ECP solutions, for which Ai− = 0, the leading order amplitude equations are

degenerate in the phases of the active modes. The fifth order amplitude equations Eq. (6.19)

we derived for a general number of active modes are also degenerate in the phases in case of

ECP solutions. In the following, we discuss how this degeneracy can be lifted at fifth order

when special planform configurations are considered. We first show that triad resonances

can lead to a partial lifting of the phase degeneracy. Moreover, we show that due to these

resonances, solutions of the form Ai− = 0 no longer exist and thus fifth order corrections lead

to small but non-zero opposite modes.

6.4.1. Phase relations in essentially complex planforms

First, consider phase relations in planforms for which Ai− = 0. As it turns out that the

occurrence of phase equations is planform dependent we first consider the LDP solutions. If

the number of active modes is a multiple of three (n = 3l) triad resonances exist between the

active modes i.e.
~ki − ~ki+l + ~ki+2l = 0, l = 1, 2, . . . i = 1, . . . , l (6.27)

where the index i is assumed to be cyclic Ai+n = Ai. These triad resonances can lead

to additional contributions to the amplitude equations Eq. (6.19) which are then no more

degenerate in their phases. The number of occurring phase equations can be reduced by

symmetry. For instance, in systems with orientation shift symmetry the number of this

terms is reduced. For the simplest case l = 1 we get one triad resonance condition but

no additional contribution to the amplitude equations. All three phases are free due to

translational symmetry and orientation shift symmetry. Without orientation shift symmetry

there is the possibility to have a phase equation already for l = 1. For l ≥ 2 we get the

following additional contribution to the amplitude equations at fifth order

∂tAi = · · ·+
l∑

j 6=i

hijAjAj+lAj+2lAi+lAi+2l , (6.28)

where the dots stand for contributions already given in Eq. (6.19). Therefore we get l − 1

additional terms in the amplitude equations. For instance, in the case of n = 6 (l = 2) the

dynamics of the phase φ1 reads

A1∂tφ1 = hA2A3A4A5A6 sin (φ2 + φ3 + φ6 − φ5 − φ4 − φ1) , (6.29)
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6.4. Phase relations

with h > 0 and h = 2
(
18 +

√
3
)
(1− g)2 for σ large. We can define a combined phase as

Φ = φ1 + φ4 + φ5 − φ2 − φ3 − φ6 . (6.30)

Summing up all phase equations leads to

∂tΦ = −α sin(Φ) . (6.31)

The prefactor α depends on the amplitudes and the factor h. This phase equation can be

derived from the potential V [Φ] = −α cos(Φ). Stationary solutions are given by Φ∗ = 0 and

Φ∗ = π and the sign of α determines which of these solutions are stable. As h is positive for

0 < g < 1, σ > 0 the stationary phases are given by Φ∗ = 0.

In the case of the n = 9 (l = 3) LDP solution the dynamics of the phase φ1 is given by

A1∂tφ1 = hA2A4A8A7A2 sinΦ1 + h̃A3A4A9A7A6 sinΦ2 , (6.32)

with

Φ1 = φ1 + φ5 + φ7 − φ2 − φ4 − φ8

Φ2 = φ1 + φ6 + φ7 − φ3 − φ4 − φ9 . (6.33)

For σ large the prefactors are given by h ≈ 75.52 (1− g)2 and h̃ ≈ 27.38 (1− g)2. Stationary

solutions which are independent of the model parameters are given by Φ∗
1 = 0, π and Φ∗

2 = 0, π

with Φ∗
1 = Φ∗

2 = 0 the stable solutions. Note, if some of the wavevectors are flipped (lj = −1)

the number of resonance relations can be reduced. For instance, in the case of n = 6 the

planform with l = (1, 1, 1,−1, 1, 1) has no phase equations. In the case of n = 9 the planform

with l = (1, 1, 1, 1, 1,−1, 1, 1, 1) has only one phase equation for the modes j = 2, 3, 5, 6, 8, 9

while there are no phase equations for the modes j = 1, 4, 7.

Besides these triad resonances there can be higher resonances. Additional relations between

the wavevectors appear for n = 5l, n = 7l, . . . , l = 1, 2, . . . . These resonances, however, lead

to phase equations in the amplitude equations beyond the fifth order. Again, for l = 1 there

are no phase equations due to orientation shift symmetry. But for l ≥ 2 there are phase

equations at ninth order in the amplitude expansion for n = 5l or at thirteenth order for

n = 7l. For instance, an n = 15 planform at maximum has 4 phase equations at fifth order

and additional two phase equations at ninth order. Finally, for n = 2l, l = 1, 2, . . . there

are no triad or higher resonances and thus no phase equations at any order in the amplitude

equations.

6.4.2. The growth of opposite modes

In Section 6.3 we have seen that if opposite modes are suppressed at leading order they receive

no correction at fifth order for a general planform configuration. We will see in the following

that in case of triad resonances the ECP solutions are modified because the opposite modes
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Figure 6.2.: Growth of opposite modes due to triad resonances. Ratio between
modes Ai and opposite modes Ai− . (a) n = 3, LDP planform. Solid lines: ratio obtained
from solving amplitude equations, Eq. (6.19). Green: g = 0.7, σ = 0.41Λ, blue:
g = 0.8, σ = 0.43Λ, red g = 0.9, σ = 0.46Λ, orange: g = 0.98, σ = 0.53Λ. (b) n = 6, LDP
planform. Green g = 0.7, σ = 0.75Λ, blue: g = 0.8, σ = 0.78Λ, red: g = 0.9, σ = 0.85Λ,
orange: g = 0.98, σ = 1.0Λ. Dots: ratio obtained from solving the full field equations
Eq. (6.1) numerically. Parameters: Γ = 22, Tf = 104, 128 × 128 mesh.

are no longer suppressed in this case. At fifth order additional triad resonances appear for

n = 3l. Compared to the case Aj− = 0 the phases are restricted already for l = 1 as there

are now 6l phase degrees of freedom. These additional terms to Eq. (6.19) are given by

∂tAi− = · · ·+ h
(
A2

(i+1)−A
2
(i+2)−Ai +A2

(i+2)A
2
(i+1)Ai

)
+ h̃A(i+1)−A(i+1)A(i+2)A(i+2)−Ai ,

(6.34)

with Ai+n = Ai. Due to the second term solutions with Ai− = 0 do not exist. The inclusion

of opposite modes restricts the phases dynamics already at leading order, see Eq. (6.13).

Again the occurrence of such terms depends on the planform configuration. The n = 3

HDP solution has no such terms and thus the opposite modes are still suppressed at fifth

order. The ratio between modes Aj and opposite modes Aj− for an n = 3 and n = 6

LDP solution is shown in Fig. 6.2. With varying bifurcation parameter the ratio changes

as Aj−/Aj ∝ r3/2

r1/2+r3/2
= r/(1 + r). Both, the modes Aj and the opposite modes Aj− are

modulated in their amplitudes. We therefore calculate the ratio Aj−/Aj for each pair j of

mode-opposite mode configuration and plotted their maximum. Modulations within each set

{Aj} and {Aj−} occur due to higher order corrections and the spatial discretization but are

weak for the chosen parameters. The ratios obtained from solving the full field dynamics are

in good agreement with those obtained from amplitude equations. For large r or small g the

ratios of the full field dynamics are slightly higher.

6.4.3. Phase relations in numerical simulations

To confirm the existence of phase relations found in the higher order amplitude equations

and to check whether there are additional phase relations not predicted by the amplitude

equations we solved the full field dynamics Eq. (6.1) numerically. The dynamics of phases is
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6.4. Phase relations

determined in late stages of development and we therefore have to integrate over long times.

For such simulations the time evolution of phases of an n = 6 planform is shown in Fig. 6.3(a).

Using a LDP solution with a random phase configuration as initial condition we observe that

all the phases adjust at the same time, T ≈ 102. At the final time Tf = T ∗ = 105 we

shift one phase by a constant amount φi = φi + 1.4. The dynamics then evolves again until

T = T ∗ + 105. The perturbation at T = T ∗ leads to a readjustment of the phases indicating

that their stationary values are indeed not arbitrary. The stationary phases are Φ∗ = 0, see

Fig. 6.3(b), as predicted by amplitude equations. The time evolution of the phases for an

n = 9 LDP solution is shown in Fig. 6.3(c). In this case there are two terms in the phase

dynamics leading to the two stationary phases Φ1 = Φ2 = 0, see Eq. (6.33). The phases all

adjust at T ≈ 104. Note, that similar results are obtained for different shifts of the phase at

T = T ∗.

As mentioned before, not all planform configurations lead to phase equations. For instance,

the n = 6, l = (1, 1,−1, 1, 1, 1) planform is expected not to lead to phase restrictions. Indeed,

in numerical simulations the initially random phases are not altered during time evolution,

i.e. there is a degeneracy of the phases, see Fig. 6.3(e). We next studied the time evolution

of the phases for an n = 8 planform. Here, we do not expect any phase relations at any order

in the amplitude equations. The time evolution of their phases is shown in Fig. 6.3(f). When

studying phase equations we have to ensure a high spatial resolution of the critical circle. A

reason for this can be additional phase relations that appear due to the spatial discretization

of the pattern. Indeed the phase dynamics changes if we increase the spatial resolution of the

system by increasing the aspect ratio and system size. In Fig. 6.3(f) the initial phases remain

unchanged and a perturbation of one phase does not lead to a later adjustment of the phases.

To summarize, even considering higher order corrections to the amplitude equations, the

phase degeneracy is only partly lifted. Due to translation and orientation shift symmetry

three modes are left undetermined in all cases. From the remaining phases some of them are

fixed by amplitude equations at fifth or even higher order. Phase restrictions due to the triad

resonance are thus rare and most of the phases remain undetermined. The occurrence of

phase relations is furthermore planform dependent where their number is maximal for LDP

solutions.
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Figure 6.3.: Time evolution of the phases. The patterns evolves until stationary phases
are reached. At this time (T = T ∗) one phase (blue line) is shifted by a constant amount
and the dynamics evolves again. (a) n = 6, LDP solution. Parameters:
T ∗ = 105, g = 0.9, σ = 0.92Λ, r = 0.1,Γ = 22, 128 × 128 mesh. (b)
Φ = φ1 + φ4 + φ5 − φ2 − φ3 − φ6. (c) n = 9, LDP solution. Parameters:
T ∗ = 106, r = 0.1, g = 0.98, σ = 1.61Λ,Γ = 100, 512 × 512 mesh. (d) Φ1,Φ2, see Eq. (6.33).
(e) n = 6, l = (1, 1,−1, 1, 1, 1) planform. Parameters: T ∗ = 105, g = 0.9, σ = 0.92Λ,
r = 0.1,Γ = 22, 128 × 128 mesh. (f) n = 8, LDP solution. Parameters:
T ∗ = 106, r = 0.1, g = 0.98, σ = 1.43Λ,Γ = 80, 512 × 512 mesh.
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6.5. Stationary amplitudes

6.5. Stationary amplitudes

How do fifth order corrections affect the stationary amplitudes of ECP solutions? In leading

order amplitude equations permutation symmetry guarantees uniform amplitudes which can

be calculated analytically. Beyond the simple case n = 2 the stationary amplitudes of ECP

solutions at fifth order are in general no longer uniform. We thus calculate numerically

the stationary solutions of the higher order amplitude equations Eq. (6.19) with increasing

distance from threshold. Figure 6.4 shows the ratio of the fifth and third order amplitudes

for different numbers of active modes n. As the third order amplitudes A(3) ∝ √
r and

fifth order corrections scale as r3/2 the ratio increases linearly with r. In general, higher

order corrections shift most of the amplitudes of LDP solutions towards higher values. We

observe that the fifth order corrections are smaller in case of the HDP compared to the

LDP solutions. In symmetric HDP (n odd) configurations the stationary amplitudes are still

uniform due to symmetry, see black dashed lines in Fig. 6.4(a,c). In the remaining cases there

are modulations of the amplitudes. For instance, in case of n = 3 the mode at α = π/3 is

larger compared to the remaining two modes. This convex shape of amplitude modulations

is observed also for larger n. But note, although the convex shape is robust, the exact form

of amplitude modulations also depends on the parameter g. With an increasing number of

active modes the modulations in the amplitudes increase. The observed modulations of the

stationary amplitudes result in a slightly more anisotropic OP layout. We discuss in the

following section how this impacts the resulting pinwheel densities.
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Figure 6.4.: Stationary amplitudes at fifth order. Ratio of fifth order amplitudes A
Eq. (6.19) and third order amplitudes A(3) Eq. (6.13). (a,b) n = 3, σ = 0.5Λ, colored lines:
LDP, black dashed line: HDP. (c,d) n = 5, σ = 0.8Λ, colored lines: LDP, black dashed line:
HDP. (e,f) n = 8 LDP, σ = 1.23Λ. (g,h) n = 8 HDP, σ = 1.23Λ. Right panel:
Modulations of the amplitudes as a function of the angle α on the critical circle. Red:
r = 0.001, blue: r = 0.01, green: r = 0.05, orange: r = 0.1. In all conditions g = 0.9.
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6.6. Pinwheel densities - Near and far from threshold

In this section we discuss the pinwheel densities of ECP solutions near and far from threshold.

First, we discuss pinwheel densities close to threshold obtained from solutions of the leading

order amplitude equations. Next, we compare these densities with those obtained from solving

the full field dynamics numerically. We observe that, close to threshold, the obtained densities

agree with those of the amplitude equations whereas they deviate far from threshold. Finally,

we want to answer the question of whether higher order corrections which influence the

pinwheel densities of ECP solutions can explain this deviation far from threshold.

The stationary solutions to the amplitude equations derived from Eq. (6.1) are degenerate in

their phases. To calculate the pinwheel density for each planform solution we therefore need to

average an ensemble of realizations with random phase configurations. Different realizations

were collected (Γ = 22, mesh= 1024 × 1024) until sufficient precision of average pinwheel

densities was reached, measured by the standard error SD/
√
N where SD is the standard

deviation and N the number of realizations. For planforms with n ≤ 14 the required precision

is SD/
√
N < 0.03 while for n ≥ 15 the precision is SD/

√
N < 0.01. Different ECP solutions

vary substantially in their pinwheel density. This variation is illustrated in Fig. 6.5(a). For

intermediate and large n, pinwheel densities fall into a band which for large n is in the

range between ρ = 1.36 and ρ = 3.5. Whereas individual realizations of planforms show a

large variety in the pinwheel density, the ensemble average over all planforms with a given

number of active modes shows a robust selection of distinct pinwheel densities. The average

over the ensemble of planforms with a given n is obtained by randomly choosing φj and

lj = ±1. Fig. 6.5(b) shows the average density for 3 ≤ n ≤ 17. With increasing n the

average density approaches ρ = π from below. It has been shown that in the limit n→ ∞ the

average pinwheel density is ρ = π, and the variation in the density decreases such that almost

every single realization has a pinwheel density of ρ = π [16]. Taking a closer look at the

distribution of pinwheel densities we observe that the pinwheel density for a given planform

can be classified to some extent. The lowest pinwheel density is always given by the LDP.

Flipping Fourier modes in general increases the pinwheel density. To classify the different

planforms for a given number of active modes n we define the planform anisotropy

~ξ =
π

2kc n

n∑

j

lj~kj . (6.35)

For large n the modulus ξ = |~ξ| is bounded by 0 ≤ ξ ≤ 1. How the pinwheel density varies

with planform anisotropy is shown in Fig. 6.5(c). With increasing anisotropy the pinwheel

density decreases. In the large n limit the pinwheel density as a function of the anisotropy

can be calculated analytically [49] and is given by

ρ(ξ) =
√
π2 − 8ξ2 . (6.36)
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Figure 6.5.: Pinwheel densities near threshold. (a) Pinwheel density for ECP solutions.
The points mark the numerically determined densities. Each value represents an average
over the ensemble of phases φj. (b) Pinwheel densities averaged over different realizations
with random lj, dashed line: ρ = π. (c) Pinwheel density as a function of the planform
anisotropy ξ, dashed line: pinwheel density in the large n limit, see Eq. (6.36). Orange:
n = 3, red: n = 5, green: n = 8, blue: n = 10. (d) Pinwheel density as a function of the
number of flipped mode clusters κ. Solid line: average pinwheel density for fixed κ.

We further define a cluster of flipped modes as those modes ~ku, ~ku+1, . . . , ~kv , v ≥ u for which

lu = lu+1 = · · · = lv = −1 and lu−1 = lv+1 = 1. The number of such flipped mode clusters

is denoted by κ. The pinwheel densities as a function of κ are shown in Fig. 6.5(d). For a

given number of flipped mode clusters the corresponding planforms still vary in their pinwheel

density, but the mean pinwheel density of those planforms increases with κ, see Fig. 6.5(d).

How are the pinwheel densities modified for substantial distance from threshold? To answer

this question we calculated the pinwheel densities for transient as well as for final states of the

full field dynamics Eq. (6.1) and increasing distance from threshold r, see Fig. 6.6. We observe

that for intermediate times (T ≈ 300) the average pinwheel density is largely insensitive to

the model parameters r and σ. Even far from threshold the average pinwheel density is larger

than 〈ρ〉 = π and thus similar to densities obtained in the visual cortex. In contrast, at the

final time (T = 105) average pinwheel densities are very sensitive to the model parameters.

For small r, the average pinwheel density is close to ρ = 3. With increasing r, however,

the average pinwheel density is decreasing. Note, for intermediate n the average pinwheel

density of the ECP solutions at leading order is smaller than π, see Fig. 6.5(b). For r ≈ 0.05
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Figure 6.6.: Pinwheel densities for the full field dynamics Eq. (6.1). (a,b) Average
pinwheel densities. The numerical solutions are obtained at (a) T = 300, (b) T = 105,
starting from an identical set of N = 50 initial conditions. Green: σ = 0.9Λ, blue:
σ = 1.43Λ, red: σ = 1.7Λ, orange: σ = 2.0Λ. Dashed line: predicted value 〈ρ〉 = π from the
leading order amplitude equations and large n. (c,d) Standard deviation of the pinwheel
densities. Parameters: g = 0.98,Γ = 22, 128× 128 mesh.

all observed pinwheel densities are lower than ρ = 3. For larger values of the interaction

range σ i.e. for more active modes this deviation becomes stronger. We further observe that

the number of realized LDP solutions increases with increasing r. In the following we want

to reveal the influence of fifth order corrections on the pinwheel density of ECP solutions.

Fifth order corrections can change their pinwheel densities for several reasons. For each

planform, potential modulations of the corresponding stationary amplitudes will lead to a

change in the pinwheel density. In addition, contributions from modes off the critical circle

can alter the pinwheel density. Moreover, as we discuss in Section 6.4 phase restrictions

which can occur at higher order could also alter the pinwheel densities. Pinwheel densities

at higher order are calculated from the field z =
√
rz1 + r3/2z3, see Eq. (6.2), where the

third and fifth order fields are given by Eq. (6.4) and Eq. (6.14), respectively. The pinwheel

densities for stationary patterns at fifth order is shown in Fig. 6.7. The third order pinwheel

densities where the stationary amplitudes are uniform correspond to r = 0. We plot the

pinwheel densities for two parameter values, g = 0.98 with a weak influence of the fifth order

corrections and a lower value of g at which fifth order corrections are more pronounced. The

amount of pinwheel density reduction is planform dependent. For the symmetric planform

configurations (the HDP in case of n = 5 and the configuration l = (1, 1,−1,−1, 1, 1) in case
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Figure 6.7.: Pinwheel densities at fifth order. (a) n = 3 planforms g = 0.7, σ = 0.5Λ,
(b) n = 5 planforms, g = 0.7, σ = 0.7Λ (blue), g = 0.98, σ = 0.9Λ (red), (c) n = 6
planforms, g = 0.7, σ = 0.75Λ (blue), g = 0.98, σ = Λ (red), (d) n = 8 planforms,
g = 0.9, σ = 1.23Λ (blue), g = 0.98, σ = 1.4Λ (red). (e,f) Average over random planform
realizations. Pinwheel densities at r = 0 correspond to the third order result.

of n = 6) pinwheel densities are almost unchanged. Stationary amplitudes are still uniform

and pinwheel densities in such planforms can be changed only by contributions from modes

off the critical circle. In all remaining planforms the modulations in the amplitudes are such

that the pinwheel densities are decreased with increasing r. We calculate the average over

random planform realizations i.e. realizations with randomly chosen lj , see Fig. 6.7(e,f). The

average pinwheel density of the n = 5 planforms decreases from ρ ≈ 2.92 to ρ ≈ 2.91 for

g = 0.98 and to ρ ≈ 2.67 for g = 0.7. The average pinwheel density of the n = 6 planforms

decreases from ρ ≈ 3.06 to ρ ≈ 3.03 for g = 0.98 and to ρ ≈ 2.58 for g = 0.7. Finally, the

average pinwheel density of the n = 8 planforms decreases from ρ ≈ 3.09 to ρ ≈ 3.04 for

g = 0.98 and to ρ ≈ 2.8 for g = 0.9. If we compare the reduction in the average pinwheel

densities for g = 0.98 with those obtained from the full field dynamics, see Fig. 6.6, we observe

that higher order corrections to the ECP solutions alone cannot fully explain the observed

reduction in the pinwheel density. As we will see in the following, higher order corrections lift

the energetic degeneracy of planform solutions which exists at leading order. Thus at fifth

order there is a selection of certain planform solutions which can also change the pinwheel

density. We will discuss this pattern selection in the next section.

6.7. Lifting the planform degeneracy

We have seen in the previous section that higher order corrections to ECP solutions are not

sufficient to explain the amount of decrease in the pinwheel densities. We therefore study how
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6.7. Lifting the planform degeneracy

higher order corrections lift the degeneracy of the ECP solutions and whether an energetic

selection of certain planforms can lead to a more pronounced decrease in the pinwheel density.

The amplitude equations Eq. (6.19) can be derived from a potential which to fifth order takes

the form

V [A] = −r
n∑

i

|Ai|2 +
1

2

n∑

i,j

gij |Ai|2|Aj |2 +
1

2

n∑

i,j

fijAjAj−AiAi−

+
1

3

n∑

i,j,k

gijk|Ai|2|Aj |2|Ak|2

+
1

3

n∑

i,j,k

fijk|Ak|2AjAj−Ai−Ai +
1

3

n∑

i,j,k

f̃ijkAkAk−AjAj−AiAi . (6.37)

Note, that additional contributions to the potential can occur in case of triad resonances, see

Section 6.4. The potential is real valued because of the symmetries fij = fji and fijk = fjik.

At third order the potential V3 is degenerate in the different ECP solutions for a given

number of active modes [49,50], see also Fig. 5.1(b). Corrections beyond the third order lead

to a planform dependence of the potential. We already revealed one origin for the planform

dependence. Stationary amplitudes receive a planform dependent correction at fifth order

and are in general no longer uniform. Moreover, the coupling coefficients become planform

dependent at fifth order. Since fifth order corrections to the potential occur with a negative

sign, these corrections lead in general to a decrease of the potential for all planforms. We

calculate the potential of all ECP solutions for a given number of active modes n. The ratio

of the fifth V and third V3 order potential is shown in Fig. 6.8 with increasing distance from

threshold. As V3 ∝ r2 and V ∝ r2 + r3 the ratio increases linearly with r. We observe that

for all n the LDP solution (κ = 0 planforms, red lines) is energetically selected while the

HDP solution (maximal κ, blue lines) has the largest energy. If the parameter g is not too

small (here g = 0.9), the potential at fifth order can be clustered according to the number

of flipped modes clusters κ. The origin of this clustering is discussed in Section 6.8. The

potential difference increases with an increasing number of active modes n but is still small at

g = 0.9. This indicates that amplitude modulations and energetic selection of LDP solutions

cannot be the only reason for pinwheel density suppression far from threshold. We expect

that the selection of LDP solutions also substantially changes the basins of attraction.

Fifth order corrections also change the phase diagram of the leading order ECP solutions, see

Fig. 5.1(b). Figure 6.9 shows the influence of fifth order corrections on the phase diagram.

Shown are the regions where an n mode ECP has minimal energy. Whereas in the leading

order there is a degeneracy of planform solutions at fifth order we have to consider all possible

planforms for a given n. We thus calculate the potential Eq. (6.37) for all 93 ECP solutions

which exist up to n = 10. We observe that with increasing r, σ (or n) and decreasing g the

influence of the fifth order corrections increases. In general, we observe a shift of all borders

towards smaller σ values. Moreover, this shift depends on g and increases with decreasing

g. Thus for g near 1 the phase diagram resembles the phase diagram obtained at leading
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Figure 6.8.: Potential Eq. (6.37) at fifth order. (a) n = 4, σ = 0.6Λ, (b)
n = 5, σ = 0.8Λ, (c) n = 7, σ = 0.95Λ, (d) n = 8, σ = 1.3Λ. In all conditions: g = 0.9.

order. Compared to other planform solutions, the n = 3, n = 6, and n = 9 ECP solutions

(red) occupy a larger regime in which they are energetically preferred. We can explain this by

the occurrence of phase relations at fifth order for these planforms which reduce the energy

additionally, see Section 6.4. As already indicated by Fig. 6.8 we observe that in the whole

parameter region the LDP solution has always the lowest energy. Remarkably, there are

regions in the parameter space in which the potential for certain planform solutions is not

bounded from below (gray regions). Typically this happens for small g, large σ, and large r.

When the potential is unbounded the corresponding dynamics is unstable. We will discuss

this instability of the dynamics in Section 6.9.3. Due to this instability the phase diagram is

only valid either in a restricted (g, σ/Λ) parameter space or close to threshold.

6.8. The influence of non-resonant modes

The aim of this section is twofold. First, we want to disentangle the different contributions

to the fifth order potential and study how they lead to the observed planform dependence of

the potential. Second, we want to discuss how fifth order corrections depend on the model

parameters g and σ. This will lead to a proposed rescaled model in which the distance to

threshold becomes parameter dependent such that fifth order corrections can be neglected

throughout the phase diagram.

We start with investigating the influence of the model parameter g on fifth order corrections of

the potential which are of the form
∑

i,j,k |Ai|2|Aj |2|Ak|2gijk. Stationary amplitudes at third

order scale as A ≈
√
r/(1 + g(n− 1)) and fifth order corrections in general increase these
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amplitudes. In the following we assume Aj− ≈ 0 and small amplitude modulations Aj ≈ A.

The sum over all fifth order coupling coefficients scales for large σ as S =
∑

i,j,k gijk ∝ (g − 1)2.

Therefore fifth order contributions increase at least quadratically with g, and in the limit

g → 1 these corrections vanish. The relative energy change in the potential due to fifth order

corrections is shown in Fig. 6.10(a) for different values of g. We observe that for g close to

one, the potential is clustered according to the number of flipped modes clusters κ. This

clustering results from the clustering of the quantity S, see Fig. 6.10(c). For smaller values

of g, however, we observe deviations of the clustering which result from modulations in the

stationary amplitudes.

With an increasing number of active modes or with an increasing σ the influence of fifth order

corrections increase. How can an increase in n be captured by moving closer to threshold

i.e. reducing r? To answer this question we consider the distribution of modes off the

critical circle which contribute to the fifth order coupling coefficients. The coupling terms in

Eq. (6.19), see also Appendix A.5, are composed of contributions from the nonlinearity and

from the inverse linear operator (L̂0)−1 acting on the modes off the critical circle. We want

to reveal the influence of these modes on the energy levels for different ECP solutions. The

configuration non-resonant modes for three n = 5 ECP solutions is illustrated in Fig. 6.11.
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Figure 6.10.: Lifting of planform degeneracy for all n = 8 planforms. (a) Relative
energy change due to fifth order corrections as a function of the number of flipped modes,
(b) as a function of the planform anisotropy. Red: g = 0.98, σ = 1.4Λ, blue:
g = 0.9, σ = 1.23Λ, green: g = 0.8, σ = 1.14Λ, orange: g = 0.7, σ = 1.04Λ, in all cases
r = 0.1. (c) Sum over fifth order coupling coefficients. Red: g = 0.98, σ = 1.4Λ, red dashed:
g = 0.98, σ = 2.4Λ blue: g = 0.9, σ = 1.23Λ, green: g = 0.8, σ = 1.14Λ, orange:
g = 0.7, σ = 1.04Λ, in all conditions r = 0.1. (d) Contribution to (L̂0)−1 from modes off the
critical circle, Eq. (6.38).

Their configuration and thus their contribution to the potential is planform dependent. For

instance, in the case of the LDP solution the modes come closer to the critical circle, as for

the fully symmetric HDP solution. At fifth order there are n3− 2n2+n modes off the critical

circle but not all contribute equally. Due to the shape of (L̂0)−1, the closer the modes off

the critical circle come to the critical circle, the more they influence the couplings in the

amplitude equations. To study the influence of these modes on the coupling function gijk, we

mainly concentrate on those modes close to the critical circle which contribute most. We sort

the modes according to their distance to the critical circle ~k
(i)
s , i = 1, 2, ..., where the modes

~k
(1)
s are closest. Note, that the largest contributions to the amplitude equations result not
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6.8. The influence of non-resonant modes

Figure 6.11.: Distribution of modes off the critical circle contributing to the n = 5
amplitude equations at fifth order, kc = 1. (a) l = (1,−1, 1,−1, 1) (b) l = (1, 1, 1,−1, 1) (c)

l = (1, 1, 1, 1, 1). Active modes are marked in red. Near resonant modes k
(1)
s and k

(2)
s are

marked in green and orange, respectively.

from the modes closest to the critical circle, but from modes with |ks| < kc. We further define

Li =
∑

j

e−ı
~k
(i)
s,j~x(L̂0)−1eı

~k
(i)
s,j~x =

∑

j

−1
(
k2c − (~k

(i)
s,j)

2
)2

=
∑

j

Lj , (6.38)

where the sum is performed over all modes k
(i)
s with a fixed distance to the critical circle. We

calculate the contribution to the coupling function and thus to the potential that results from

these near resonant modes. For all n = 8 planform solutions we plot Li where we successively

included more and more modes off the critical circle, starting with the closest ones. This is

shown in Fig. 6.10(d). We observe that the clustering according to κ observed in the fifth

order potential is already present in the contributions from the near resonant modes.

Modes that have the largest coefficient from (L̂0)−1 are given by k
(1)
s = ki+ki−2 −ki−1 with

|k(1)
s | = |1− 2 cos

(π
n

)
| < kc, L1 =

−1

64
csc
( π
2n

)4
sec
(π
n

)2
. (6.39)

These modes are marked in orange in Fig. 6.11. L1 grows with n as n4 and their number is

given by n for a LDP. Therefore L1 grows with n as n5, see orange line in Fig. 6.12(b). The

second largest contribution to (L̂0)−1 results from modes with the minimal distance to the

critical circle k
(2)
s = 2ki − ki−1 with

|k(2)
s | =

√
5− 4 cos

(π
n

)
> kc, L2 =

−1

64
csc
( π
2n

)4
. (6.40)

These modes are marked in green in Fig. 6.11. L2 also grows with n as n4 and their number

is given by 2(n− 1)− 4κ. Thus L2 grows as n5, see green line in Fig. 6.12(b). The length of

the modes k
(1)
s and k

(2)
s with increasing number of active modes n is shown in Fig. 6.12(a).

Their contribution to the amplitude equations in terms of Li, see Eq. (6.38), is shown in
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Figure 6.12.: Near resonant modes. (a) Length of modes |~k(1)s | (orange) and |~k(2)s |
(green). (b) L1 (orange) and L2 (green), see Eq. (6.38). Contribution of all off circle modes∑

i Li (blue). Potential at third ((−V3)(1/5), black) and fifth ((−V )(1/5), red) order,
parameters: g = 0.9, n = 2πσ/Λ.

Fig. 6.12(b). Finally, the most distant modes are given by k
(d)
s = 2k1 − kn−1 with |k(d)s | = 3

and Ld = − 1
64 . We confirmed our analysis by calculating the third (black line) and fifth

order (red line) potential with an increasing number of active modes, see Fig. 6.12(b). Indeed

the potential at fifth order increases with n as n5. Note, when n is a multiple of three triad

resonance occur and the potential receives additional contributions. To compensate the fifth

order corrections we propose a rescaled model where the bifurcation parameter r has to be

model dependent i.e. r = r(σ/Λ, g). The dependence of the amplitudes A on the parameter

σ is negligible if the solution is not close to its stability borders. As A ∝ √
r + r3/2 and

the stability borders scale for large n as n ≈ 2πσ/Λ, the bifurcation parameter for a given

g should scale as (
√
r + r3/2)6(σ/Λ)5 = const. Furthermore, we revealed the dependence of

the potential on the number of flipped mode clusters κ. Contributions from the inverse linear

operator acting on modes off the critical circle are clustered according to κ, see Fig. 6.10(d).

If we take the contribution of the nonlinearity into account, see Fig. 6.10(c), this clustering

is preserved. The potential finally is clustered according to κ only for g close to 1. For

smaller g, modulations in the stationary amplitudes lift the approximate degeneracy in κ, see

Fig. 6.10(a).

6.9. Stability borders

In this section we want to answer the question of how much of the multistability of ECP

solutions is preserved far from threshold. We show that there are large regions in parameter

space in which multistability is preserved even far from threshold. Furthermore, we want to

answer the question of how the stability borders of the energetically preferred solutions relate

to those which have higher energies. In the following we thus study the stability properties

for ECP solutions of the amplitude equations (6.19). To do this we have to consider two types

of instabilities namely intrinsic and extrinsic stability.
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6.9. Stability borders

6.9.1. Intrinsic stability

A planform is intrinsically stable, if it does not become unstable because of the interaction

between active modes. Therefore, we check if an n mode planform solution disintegrates into

a solution with a lower number of active modes. Let Ai be the stationary solutions. For

Ai− = 0 there is a degeneracy in the phases and we can restrict the analysis to amplitude

perturbations. For a small perturbation ai around the stationary solution we write

Ai = Ai + ai . (6.41)

Inserting this ansatz into the amplitude equations Eq. (6.19) leads to the linear equation

∂t ai =
∑

j

Mij aj , (6.42)

with the matrix entries

Mij,i 6=j = −2gijAiAj − 2
∑

k

gikjA
2
kAjAi − 2

∑

k

gijkA
2
kAjAi

Mii = r − 2giiA
2
i −

∑

j

gijA
2
j

−2
∑

j

gijiA
2
iA

2
j − 2

∑

j

giijA
2
iA

2
j −

∑

j,k

gijkA
2
jA

2
k . (6.43)

Intrinsic stability is given if all eigenvalues of the matrix M are negative. At third order

the calculation of eigenvalues simplifies a lot due to permutation symmetry. In this case the

stability borders can be derived analytically [50]. At fifth order the stability borders are in

general planform dependent. In this case we calculate the eigenvalues of M numerically.

6.9.2. Extrinsic stability

Solutions are extrinsically stable if the growth of additional modes is suppressed. To test

whether the planform solution could decay into solutions with wavevectors other than the ~kj

we introduce a test mode T . Near the bifurcation point only test modes on the critical circle

have to be considered. For higher order amplitude equations, additional sources for instability

can result from test modes off the critical circle which we neglect. We look in the vicinity of

a stationary solution Aj and assume a small amplitude T ≈ 0. The third order field is thus

composed of the test and active modes

z1 = Teı
~kα~x +

n∑

j

Aje
ı~kj~x , (6.44)
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6. Pattern Selection Far from Threshold

with kα = (cosα, sinα)kc. We insert this ansatz into the third order equation Eq. (6.11). The

dynamics of the test mode is then given by

∂t T =


r −

n∑

j

g(α − αj)|Aj |2

T , (6.45)

where nonlinear contributions in T are neglected. For the solution T = 0 to be stable we

therefore obtain the condition


r −

n∑

j

g(α − αj)|Aj |2

 < 0, ∀α ∈ [0, 2π] (6.46)

Here we assumed that ~kα 6= ~kj,−~kj . In case of the uniform solution Aj = A we get the

condition

− g(0)/2 +

n∑

j

g(αj)−
n∑

j

g(α − αj) < 0 . (6.47)

As shown in [50] for the coupling function Eq. (5.8) the expression Eq. (6.47) takes its max-

imum value at the intermediate angles α = α∗
i = |αi − αi+1|/2. Therefore the extrinsic

instability first occurs for modes between two active modes. It is thus sufficient to consider

the intrinsic stability of the particular planform with 2n modes. Moreover, at third order all

α∗
i are equivalent. The stability criterion for test modes at α = α∗ receives corrections at

higher orders. To determine extrinsic stability up to fifth order we thus make the following

ansatz

z1 =

n∑

j

Aje
ı~kj~x + Teı

~kα~x

z3 = (L̂0)−1N3[z1, z1, z1] +

n∑

j

Bje
ı~kj~x + T ′eı

~kα~x + T ′′eı
~kβ~x . (6.48)

In this ansatz we also included a new test mode at a different angle β 6= α. We insert this

ansatz into the equation Eq. (6.15). The dynamics for the test mode T ′′ only reproduces the

third order condition Eq. (6.45). The dynamics for T ′ is given by

∂t T
′ = rT ′ −

n∑

j

g(α− αj)|Aj |2T ′ −
n∑

j

g(α − αj)BjAjT

−
n∑

j

g(α − αj)AjBjT −
n∑

i,j

g(α− αi, α − αj)|Ai|2|Aj |2T . (6.49)

We combine equation Eq. (6.49) and Eq. (6.45) by defining the new modes

Ãj = µAj + µ3Bj , T̃ = µT + µ3T ′ . (6.50)

128



6.9. Stability borders

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
σ/Λ

0.2

0.4

0.6

0.8

1

g

extrinsic

intrinsic

0.2 0.4 0.6 0.8 1 1.2
σ/Λ

0.2

0.4

0.6

0.8

1

g

intrinsic

extrinsic

0.2 0.4 0.6 0.8 1 1.2 1.4
σ/Λ

0.2

0.4

0.6

0.8

1

g

intrinsic

extrinsic

(a) (c)(b)

Figure 6.13.: Stability borders at third and fifth order, r = 0.1 (a) Borders of intrinsic
and extrinsic stability for both n = 3 planforms. Green lines: Third order stability borders,
blue lines: l = (1, 1, 1), red lines: l = (1− 1, 1). (b) Stability borders for n = 4 planforms.
Blue lines: l = (1, 1, 1, 1), red lines: l = (1,−1, 1, 1). (c) Stability borders for n = 5
planforms. Red lines: l = (1,−1, 1,−1, 1), blue lines: l = (1, 1, 1, 1, 1), indigo lines:
l = (1, 1,−1, 1, 1) orange lines: l = (1,−1, 1,−1, 1). Colored regions: amplitude equations of
the corresponding planform diverge. Star symbols: Extrinsic stability borders obtained by
solving the full field dynamics numerically. Parameters: Tf = 5 · 105,Γ = 40, 256× 256 mesh.

This leads to the stability condition at fifth order


r −

n∑

j

g(α − αj)|Ãj |2 −
n∑

i,j

g(α − αi, α− αj)|Ãi|2|Ãj |2

 < 0 . (6.51)

As for the leading order it is sufficient to test the intrinsic stability of a planform solution

with additional test modes placed at intermediate angles α∗. However, as the modes at α∗

and α∗ + π are not equivalent at fifth order we have to consider the system of 3n modes

Aj, Tα∗ , Tα∗+π.

Figure 6.13 shows the intrinsic and extrinsic stability borders of all n = 3, n = 4, and

n = 5 ECP solutions. When calculating the fifth order stability borders for the n = 3

LDP solution, see Fig. 6.13(a), we included the corresponding opposite modes Aj− , as they

are not suppressed at higher order. We observe that the intrinsic stability borders receive only

small modifications compared to the third order result. In contrast, near extrinsic stability

borders the influence of fifth order corrections is large, and thus the stability borders receive

a planform dependent shift towards smaller σ values. This shift increases with decreasing g

or increasing the number of active modes n. In general, planforms which are energetically

favored, such as the LDP solutions, receive a larger shift of their extrinsic stability border.

We confirmed the shift of the extrinsic stability borders by solving the full field dynamics

numerically. As a reference to the third order result we used simulations in which r = 0.01.

The resulting stability borders are marked with star symbols in Fig. 6.13. In line with the

results from amplitude equations, the extrinsic stability borders are shifted towards smaller σ

values. The deviations from the third order results are slightly larger in the full field dynamics

than expected from amplitude equations.
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6. Pattern Selection Far from Threshold

6.9.3. The question of convergence

From the stability analysis of the amplitude equations at leading order Eq. (6.13) follows that

the model is convergent for all g > 0 and σ > 0. Fifth order corrections, however, reveal a new

type of instability. These corrections enter with a positive sign to the amplitude equations

(6.19) due to the shape of the linear operator, see Eq. (6.6). As a result, the corresponding

potential can become unbounded and thus the amplitudes diverge. We already observed this

type of instability when calculating the phase diagram at fifth order, see Fig. 6.9. When

calculating intrinsic and extrinsic stability borders we observe that for small g and for σ

close to the extrinsic stability borders the amplitude equations diverge. Regions in which the

amplitude equations do not converge are colored in Fig. 6.13. The region where the amplitude

equations are not convergent is planform dependent. For instance, the n = 3 LDP solution

becomes divergent for small g values whereas the HDP solution, which is energetically not

preferred, is stable throughout the whole stability region of this solution. In general the LDP

solutions, which receive a larger correction at fifth order, have a larger regime of instability.

Remarkably, also for the full field dynamics Eq. (6.1) the convergence is not guaranteed

for all parameter values. For g < 1 the local and non-local parts of the nonlinearity enter

with a different sign into the dynamics. With decreasing g the importance of the non-local

interaction increases. Thus the field dynamics can diverge for small g and σ large. In Fig. 6.13

numerical simulations (star symbols) are thus convergent only if g is not too small. With

increasing distance from threshold the region of instability increases. Moreover, as in the case

of amplitude equations, the region of instability is planform dependent. HDP patterns as

initial conditions are in general more stable than LDP solutions. Although there is a striking

similarity between the divergence properties of fifth order amplitude equations and the full

field dynamics a detailed comparison is not possible as for large amplitudes higher and higher

order corrections to the amplitude equations need to be considered. Attempts to impede this

divergence have been done for instance by adding new damping terms such as a non-zero

quintic nonlinearity [116].

6.10. Discussion

In this chapter we discussed pattern selection by fifth order corrections to the amplitude

equations for the uncoupled OP dynamics. Although the leading order amplitude equations

give a very good description of the full field dynamics near threshold, higher order corrections

have to be considered when studying pattern formation far from threshold. Such correc-

tions are discussed in the literature, see for instance [117, 118], often in the case of a real

Swift-Hohenberg equation without long-range interactions where, in contrast to our model,

multistability is absent. Numerical simulations indicate that the energetic degeneracy of ECP

solutions is lifted far from threshold. Whereas the average pinwheel densities for intermediate

times is largely insensitive to an increase in the distance from threshold, pinwheel densities at

asymptotic times substantially decrease. In this chapter we could explain these observations

by incorporating fifth order corrections to the amplitude equations. To do this we disen-
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tangled the different contributions that can lead to a pinwheel density reduction far from

threshold.

First, higher order corrections can change the planform solutions and thus their pinwheel

densities for several reasons. Higher order corrections lead to modulations in the stationary

amplitudes which are thus in general not uniform anymore. In addition, higher order cor-

rections lead to contributions of modes outside of the critical circle. We showed that both

corrections can change the patterns for a given planform solution such that their pinwheel

density is slightly reduced. We demonstrated that this effect alone cannot fully explain the

reduction in the pinwheel density observed in the full field dynamics. Second, we showed that

higher order corrections energetically favor LDP solutions which could additionally reduce the

average pinwheel density. However, the energy difference between the LDP and the remaining

solutions is rather small. We thus expect additional changes in the energy landscape such

that the basin of attraction of LDP solutions is increased.

A feature of the leading order amplitude equations is that all phases of the Fourier modes are

left undetermined in the case of ECP solutions. We observe in numerical simulations that for

some planform configurations this degeneracy seems to be lifted. Indeed we showed that triad

resonances in n = 6, 9, 12, ... planforms can lead to additional contributions to the amplitude

equations which partially lift the degeneracy of the phases. In addition, we showed that due

to these triad resonances opposite modes are no longer suppressed in these planforms. Fi-

nally, triad resonances lower the potential of the corresponding ECP solution, which leads to

their over-representation in the phase diagram. Higher order corrections moreover change the

stability borders of the planform solutions which receive a planform dependent shift. Notably,

even for a substantial distance from threshold there are large regions in the phase diagram in

which multistability is preserved.

In addition, we identified a secondary instability. From the stability analysis of the amplitude

equations at leading order Eq. (6.13) follows that the model is in general convergent. How-

ever, the stability of the system with higher order terms Eq. (6.19) is not guaranteed. As it

turns out, for finite r, there is a large region in the (σ/Λ, g)-plane where the system is not

stable. Indeed also the full field dynamics is not convergent for large σ/Λ values and shows

the same planform dependence of this instability [116].

What does this chapter tells us about the practicability of the OP model used? Important

theoretical conclusions of the model are drawn in the large n (i.e. large σ) limit, for instance

that the average pinwheel density approaches ρ = π. By inspection of the distribution of

near resonant terms we showed that there is a strong σ dependence on the strength of higher

order corrections and thus on the instability of the dynamics. We thus propose a rescaled

model where the bifurcation parameter is itself model parameter dependent. Such a model is

assumed to have a uniform stability range and a well defined large σ limit.

It is hard to estimate the value of the bifurcation parameter in physiological maps. The power

spectrum of such maps is not composed of distinct Fourier modes but is rather smeared out

around the critical circle [55, 75, 79]. However, there are indirect estimations. If the forma-

tion of cortical maps takes place close to threshold, the predicted multistability should be
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6. Pattern Selection Far from Threshold

preserved to a large extent. Indeed experimental findings suggest the existence of multista-

bility. Perturbing the system by intracortical microstimulation leads to a substantial and

long-lasting reorganization of the OP map [88]. These experiments can be interpreted as a

switching between several different equilibrium states [16].
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7. Pattern Selection with Broken Permutation

Symmetry

In this chapter we investigate a second mechanism for pattern selection. The proposed per-

mutation symmetry Eq. (5.5) of the OP dynamics guarantees the instability of unrealistic

’orientation scotoma’ solutions and leads to the massive multistability of ECP solutions.

However, the biological basis of this symmetry is not clear. To provide a general theory

of OP map development with translation, rotation, and orientation-shift symmetry we break

permutation symmetry. We show that the way we break this symmetry still guarantees the in-

stability of orientation scotoma solutions. We further demonstrate that breaking permutation

symmetry can lead to realistic pinwheel densities even when considering pattern formation far

from threshold. Breaking permutation symmetry leads to modulations in the stationary am-

plitudes already at leading order. We show that these modulations in general can increase the

pinwheel density of the corresponding planform. Moreover, breaking permutation symmetry

partially lifts the multistability of ECP solutions and energetically selects certain solutions.

Because permutation symmetry leads to a strong mode-antimode competition, the ECP so-

lutions form the dominant class of solutions in this case. Other solutions, however, can exist

that may supersede the ECP solutions in case of broken permutation symmetry. In addition

to ECP solutions we identify and characterize two additional classes of stationary solutions.

One of these classes actually becomes relevant in case of broken permutation symmetry. In

particular, we demonstrate that solutions of this class can even become the energetic ground

state.

We start this chapter with a derivation of the permutation symmetric model Eq. (3.4) from

a coupled model for the OP map and a field describing the cortical connectivity. Next, we

illustrate the different ways to break the permutation symmetry.

7.1. Breaking the permutation symmetry

In Chapter 5 we introduced non-local interaction terms for the dynamics of the OP map.

In this section we show that these non-local terms are obtained by a coupled model for

the development of the OP map and long-range horizontal connections. This derivation

follows [119]. Next, we show how to break the permutation symmetry by introducing a

disbalance between the two non-local interaction terms. Consider the coupled dynamics

of the OP map and a field W (x,y) which describes the strength of long-range horizontal
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(b)(a)
Figure 7.1: Long-range
connections. Blue lines: zero
contours of Re(z) and Im(z),
darker regions correspond to
stronger long-range connectivity,
i.e. larger W (x,y). Red dot:
position y. (a) σx = 2Λ, σz = 1.5
(b) σx = 2Λ, σz = 0.5.

connections. The dynamics is assumed to be of the form

∂t z(x) = Fz[z] + FzW [z,W ]

τ ∂tW (x,y) = FWz[z,W ] , (7.1)

where x and y correspond to the position of two neurons in V1 and τ is the time scale on

which the connections develop. We assume that long-range connections have a typical width

σx. The simplest uncoupled dynamics for W is then given by

τ ∂tW (x,y) = −W (x,y) +
1

2πσ2x
e−|x−y|2/(2σ2x)e−|z(x)−z(y)|2/(2σ2z ) , (7.2)

with the stationary state

W (x,y) =
1

2πσ2x
e−|x−y|2/(2σ2x)e−|z(x)−z(y)|2/(2σ2z ) . (7.3)

With decreasing σz the long-range connections become more and more selective to the pre-

ferred orientation, see Fig. 7.1. The uncoupled dynamics of the OP map is given by

Fz[z] = L̂ z − gzz|z(x)|2z(x) . (7.4)

As we have seen in the previous chapters the stationary patterns of the uncoupled dynamics

are pinwheel free stripes. The coupling term is assumed to be of the form

FzW [z,W ] = gzW

∫
d2y (z(x) + βz(y))W (x,y) . (7.5)

Eq. (7.5) is a general linear coupling term between neurons at cortical position x and y. The

parameter β thus weights changes at position x according to the OP at position y. We will see

in the following that the special choice of β = −1 corresponds to the permutation symmetric

dynamics presented in Chapter 5. Experiments show that during the evolution of long-range

connections changes in the OP map are small. Therefore we can assume that the dynamics of

W (x,y) evolves for a static field z. We therefore can adiabatically eliminate W (x,y), leading

to an effective dynamics for the OP map. Near threshold z ≈ 0 and we can perform a series
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expansion of Eq. (7.5). The resulting effective linear part is given by

L̂eff = L̂ z(x) + gzW z(x)−
βgzW
2πσ2x

∫
d2y e−|x−y|2/(2σ2x)z(y) . (7.6)

The second term in L̂eff just rescales the bifurcation parameter r. The third term leads to

a modulation of the spectrum. This spectrum still has a maximum at a (shifted) critical

wavelength. For large σx this modulation is small and we can use this linear operator in the

same way we use the Swift-Hohenberg operator. The effective cubic part is given by

Neff [z, z, z] = −
(
gzW
2σ2z

+ gzz

)
|z(x)|2z(x)

gzW
4πσ2xσ

2
z

∫
d2ye−|x−y|2/(2σ2x)

(
(β − 1)z(x)|z(y)|2 + β z(x)z(y)2

(1− β)|z(x)|2z(y) − β|z(y)|2z(y) + z(x)2z(y)
)
. (7.7)

The coupling function resulting from this nonlinearity is given by

g(α) = 2gzz +
3gzW
2σ2z

− βgzW
2σ2z

− 2(1 − β)gzW
σ2z

e−(1/2)σ2xk
2
c

+
gzW
2σ2z

(
(1− β)e−σ

2
xk

2
c(1−cosα) − 2βe−σ

2
xk

2
c(1+cosα)

)
. (7.8)

Thus only two of the five non-local terms lead to an angle dependent coupling function. In

case of β = −1 and σx large we obtain the permutation symmetric model introduced in

Chapter 5. For β 6= −1 permutation symmetry is broken and g(α) 6= g(α+π). We adapt this

model by introducing a disbalance ǫ between the two non-local interaction terms. We further

introduce different widths for the two non-local terms σ1 and σ2. The cubic nonlinearity we

consider in the following therefore reads

N3[z, z, z] = (g − 1)|z(x)|2z(x) +
2− g

2πσ21

∫
d2y e−|x−y|2/2σ21 z(x)|z(y)|2 +

ǫ

2

2− g

2πσ22

∫
d2y e−|x−y|2/2σ22 z(x)z(y)2 . (7.9)
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Figure 7.2.: Coupling functions, Eq. (7.11) obtained from the nonlinearity Eq. (7.9).
(a,b) g(α), red: π-periodic coupling function for σ1 = σ2, ǫ = 1, green: σ2 = 0.5σ1, ǫ = 1,
blue: σ2 = 1.5σ1, ǫ = 1, orange: ǫ = 0. (a) g = 0.9, σ1 = 0.3Λ, (b) g = 0.9, σ1 = 0.5Λ. (c)
f(α), blue: ǫ = 1, σ1 = 0.5Λ, orange: ǫ = 0, g = 0.9, σ1 = σ2 = 0.5Λ.

For σ1 6= σ2 or ǫ 6= 1 permutation symmetry is broken. The corresponding coupling coefficients

are given by

gij = g + (2− g)

(
e−

1
2
σ21(~ki−~kj)

2

+ ǫ e−
1
2
σ22(~ki+~kj)

2
)

gii = 1 +
ǫ

2
(2− g)e−2σ22

gij− = g + (2− g)

(
e−

1
2
σ21(~ki+~kj)

2

+ ǫ e−
1
2
σ22(~ki−~kj)

2
)

gii− = 2 + (2− g)e−2σ21

fij = g(2 − ǫ) + 2(ǫ− 1) + (2− g)

(
e−

1
2
σ21(~ki−~kj)

2

+ e−
1
2
σ21(~ki+~kj)

2
)
. (7.10)

Note, that in the permutation symmetric case gij− = gij and 2gii = gii− .

As in the permutation symmetric case we define coupling functions which are given by

g(α) = g + (2− g)
(
e−σ

2
1(1−1 cosα) + ǫ e−σ

2
2(1+cosα)

)

f(α) = g(2 − ǫ) + 2(ǫ− 1) + (2− g)
(
e−σ

2
1(1−1 cosα) + e−σ

2
1(1+cosα)

)
. (7.11)

The coupling function f(α) is in general π-periodic. In case of ǫ = 1 it is further independent

of the permutation symmetry breaking. The coupling functions in case of ǫ = 0 are shown in

Fig. 7.2 (orange lines). The typical shape of g(α) and f(α) in the symmetric and symmetry

broken case is shown in Fig. 7.2. We first consider the extreme case of permutation symmetry

breaking which is given for ǫ = 0. Compared to the case ǫ = 1 there is only a single peak of

g(α) at α = 0 while near α = π the function is flat. Moreover, the function f(α) can become

negative for ǫ = 0, see Fig. 7.2(c). The loss of the second peak at α = π and a negative f(α)

have dramatic consequences for the stability of ECP solutions. We will show in Section 7.2

that this leads to stable orientation scotoma solutions. To avoid such unrealistic solutions we

therefore set ǫ = 1 in the following. For ǫ = 1 the coupling function g(α) has two peaks, at

α = 0 and α = π where f(α) > 0 for g > 0.
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7.2. The extended solution set

In the permutation symmetric case the ECP solution family is the only relevant class of solu-

tions as a strong mode-antimode competition leads to a strong energetic preference for ECP

solutions, see Fig. 5.1. If this mode-antimode competition is relaxed by breaking permutation

symmetry, other classes of solutions can become relevant. In this section we study two addi-

tional solution classes and show that one class indeed can become relevant in case of broken

permutation symmetry. Some of its solutions can even become the energetic ground state. In

the following we consider the leading order amplitude equations

∂tAi = rAi −
∑

j

gij|Aj |2Ai −
∑

j

fij AjAj−Ai− . (7.12)

We split the amplitudes into their absolute values and their phases Ai = Aie
ıφi which leads

to

∂tAi = rAi −
∑

j

gijA2
jAi −

∑

j

fijAjAj−Ai− cos (Φj − Φi)

∂t φi = −
∑

j

fij
AjAj−Ai−

Ai
sin (Φj − Φi) , (7.13)

with Φj = φj + φj−. In the following we discuss three classes of stationary solutions to

Eq. (7.12). First, for the ECP solutions we study the impact of permutation symmetry

breaking on these solutions. Next, we consider two solution classes in which the opposite

modes are non-zero.

7.2.1. Essentially complex planforms

In case of ECP solutions opposite modes vanish, Aj− = 0, and stationary solutions to the

amplitude equations Eq. (7.12) are given by

Ai =

√
r
∑

j

(g−1)ij , (7.14)

where g−1 is the inverse of the coupling matrix gij . In the permutation symmetric case the

matrix g is a circulant matrix, the stationary amplitudes are uniform, and Eq. (7.14) simplifies

to A =
√
r/
∑

j gij . In the permutation symmetry broken case the matrix gij is planform

dependent, as gij− 6= gij . Moreover, g is in general no longer a circulant matrix. Thus except

for symmetric planform configurations the stationary amplitudes are no longer uniform when

permutation symmetry is broken. The stationary amplitudes for certain ECP solutions are

displayed in Fig. 7.3, where we use the natural logarithm to describe the degree of permutation

symmetry breaking. Permutation symmetry is broken in both directions i.e. σ2 < σ1 and

σ2 > σ1. For symmetric planform configurations such as the n = 3 and n = 5 HDP solutions

the stationary solutions stay uniform (black dashed lines in Fig. 7.3(a,c)). For n = 8 there is
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no such symmetric planform configuration and thus no solution with uniform amplitudes. In

general, amplitude modulations are larger for LDP than for HDP solutions. With increasing

ratio σ2/σ1 the amplitudes become more and more modulated until a saturation occurs. The

shape of the amplitude modulations is shown in Fig. 7.3(b,d,f,h). When we compare these

modulations to those obtained from permutation symmetric amplitude equations at fifth

order, see Fig. 6.4, we observe that the shape of the modulations is reversed.
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Figure 7.3.: Stationary amplitudes. A amplitudes in the symmetry broken case
Eq. (7.14), A(s) amplitudes in the symmetric case. (a,b) n = 3, σ1 = 0.5Λ, colored lines:
LDP, black dashed lines: HDP, (c,d) n = 5, σ1 = 0.8Λ, colored lines: LDP, black dashed
lines: HDP, (e,f) n = 8, σ1 = 1.3Λ, LDP (g,h) n = 8, σ1 = 1.3Λ, HDP. Right panel:
Modulation of amplitudes as a function of the angle α on the critical circle, σ2 = 1.05σ1
(red), σ2 = 1.1σ1 (blue), σ2 = 1.3σ1 (green), σ2 = 1.5σ1 (orange). In all conditions
g = 0.98.
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7.2.2. Circular phase progression solutions

Next, we consider uniform solutions with Aj = Aj− = A. We will see in the following that

some uniform solutions can become stable in the permutation symmetric as well as in the

broken case. Moreover, in the symmetry broken case, one of these solutions can even become

the energetic ground state. In case of uniform amplitudes we can combine the equations for

the phases φj and φj− in Eq. (7.13) and get

∂tΦi = −2A2
∑

j

fij sin (Φj − Φi) . (7.15)

One set of stationary solutions to Eq. (7.15) is obtained by

Φ
(∆)
j =

2πj

n
∆+ 2φ0 , (7.16)

with ∆ an integer and φ0 an arbitrary phase. Due to the constant increment in the phase

we refer to these solutions as Circular Phase Progression (CPP) solutions. CPP states can

be considered as a generalization of the rhombic and hexagonal pinwheel crystals which we

encountered in Chapter 4. Their stationary amplitudes are given by

A(∆) =

√
r∑

j (gij + fij cos(Φi − Φj))
. (7.17)

Figure 7.4 illustrates the different CPP solutions. Note, as in the case of uniform solutions

discussed in Chapter 5, the solutions Φ(∆) and Φ(n−∆) are equivalent in the sense that they

have identical stationary amplitudes A(∆) = A(n−∆) and stability properties. Identical pin-

wheel densities are obtained when averaging the remaining free phases. The special case of

∆ = 0 corresponds to orientation scotoma solutions, as their OP map is selective only for the

two orthogonal orientations ϑ = φ0 and ϑ = φ0+π/2. These solutions are higher mode gener-

alizations of the orientation scotoma stripe solution discussed in Chapter 4. In particular, for

φ0 = 0 the solution is real. For ∆ > 0 all solutions are selective to all preferred orientations.

Their stability properties are discussed in Section 7.5. For n = 1, 2, 3 the OP map is spatially

periodic whereas for n > 3 the patterns become spatially irregular. All ∆ > 0 solutions are

highly isotropic.

If the CPP solution class should be relevant in models of visual cortical development the

stability of the ∆ = 0 solution should be excluded. To check this we linearize Eq. (7.15)

around Φj = 2φ0 + ϕj . This leads to

∂t ϕi = −2A2
∑

j

fij (ϕj − ϕi)

= 2A2
∑

j

Mij ϕj , (7.18)
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Figure 7.4.: CPP solutions. (a) All CPP solutions, Eq. (7.16), for a given n. The
diagrams to the left of each pattern display the position of the wavevectors of active modes
on the critical circle. (b,c) Average pinwheel densities for all CPP solutions with a given n.
Solutions that can become stable in the model Eq. (7.9) are marked in red.

with Mij = −fij + δij
∑

k fik. The matrix fij is a circulant matrix, independent of the

existence of permutation symmetry. The eigenvalues are thus given by

λl =
∑

j

M0j cos (2πjl/n)

=
∑

j

f0j −
∑

j

cos (2πjl/n) f0j . (7.19)

One eigenvalue is zero (λ0 = 0). If f0j > 0, ∀j the remaining eigenvalues are positive and thus

the ∆ = 0 solution unstable. However, if some entries of f0j become negative this solution

can become stable. Another criterion for the stability of the orientation scotoma solutions is

obtained from the dynamics of the amplitudes which in case of Eq. (7.16) is given by

∂tAi = rAi −
∑

j

gijA2
jAi −

∑

j

fijAjAj−Ai− . (7.20)
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7. Pattern Selection with Broken Permutation Symmetry

We study amplitude perturbations Ai = A+ ai with A2 = r/
∑

j(gij + fij). Their linearized

dynamics is given by

∂t ai = rai −A2
∑

j

gij (2aj + ai)−A2
∑

j

fij
(
aj + aj− + ai−

)

= −2A2
∑

j

gijaj −A2
∑

j

fij
(
aj + aj− + ai−

)
+A2

∑

j

fijai

= −2A2
∑

j

gijaj −A2
∑

j

(
fij + fij−

)
aj −A2 (ai− − ai)

∑

j

fij

= −A2
∑

j

Mijaj , (7.21)

with the stability matrix Mij = 2gij + fij + fij− +
(
δij− − δij

)∑
k fik. The stability matrix

is a circulant matrix. The solutions are unstable if there is an index j with Mij > Mii. This

can be shown with the use of the quadratic form Q =
∑

i,j aiMijaj. If all eigenvalues of the

symmetric matrix M are positive, then Q > 0 for arbitrary ai. However, if Mij > Mii for

one pair (i, j) of modes, then choosing ai = 1, aj = −1, and ak = 0 for k 6= i, j leads to

Q = Mii −Mij < 0. Thus if Mij > Mii the ∆ = 0 solution cannot be stable. In particular,

for the mode configuration (i, i−) this leads to

Mii− > Mii

gii− +
∑

k

fik > gii . (7.22)

The solution is thus already unstable if gii− > gii, i.e. g(π) > g(0)/2. In case of permutation

symmetry this condition is always fulfilled, as in this case g(α) = g(α + π). If we break

permutation symmetry the ∆ = 0 solutions in general can become stable. A simple model

showing this behavior is given by the extreme case of permutation symmetry breaking i.e.

where the second non-local interaction term in Eq. (7.9) is set to zero, ǫ = 0. In contrast, if

ǫ = 1 the criterion gii− > gii is fulfilled even if σ1 6= σ2 and thus the ∆ = 0 solutions are in

general unstable.

7.2.3. Binary phase planforms

Another set of solution families to Eq. (7.13) is obtained by requiring sin(Φi−Φj) = 0, ∀(i, j).
These stationary solutions thus have

Φ∗
j = 2φ0 +

1

2
(lj + 1) π , (7.23)

with lj = ±1. So there are 2n of these solutions. However, many of them can be transferred

into each other by rotations or reflections as it is the case for ECP solutions. We refer to

these solutions as the Binary Phase Planforms BPP. This family of solutions contains some

of the uniform solutions discussed before. For instance lj = (−1,−1,−1, ...,−1) and lj =

(1,−1, 1,−1, 1,−1, ...) are uniform solutions that are identical to the ∆ = 0 and ∆ = n/2 CPP
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7.2. The extended solution set

solutions. For the remaining solutions the stationary amplitudes are not uniform. However,

due to symmetry, the amplitude equations for Aj and Aj− are identical. The BPP solutions are

model dependent in the presence and absence of permutation symmetry and thus the pinwheel

density depends on the model parameters g, σ1, σ2. We solve Eq. (7.12) numerically. The

resulting stationary amplitudes and corresponding OP maps for BPP solutions are displayed

in Fig. 7.5. Stationary amplitudes are normalized by the amplitude of the ∆ = 0 uniform

solution A∆=0. To illustrate amplitude modulations consider the phase configuration li =

−1, i 6= u, i = 1, . . . , n and lu = 1 which is shown in blue in Fig. 7.5. The corresponding

amplitude equations read

∂tAi = rAi −
∑

j

gijA2
jAi −

∑

j 6=u

fijAjAj−Ai− + fiuAuAu−Ai−

∂tAu = rAu −
∑

j

gujA2
jAu +

∑

j 6=u

fujAjAj−Ai− . (7.24)

From these equations it becomes clear that the stationary amplitude Au is substantially larger

than the remaining amplitudes Aj if fij > 0, ∀i, j. This leads to a more stripe-like pattern

with a relatively low pinwheel density. The other BPP solutions, however, become more and

more isotropic the more phase relations with lj = 1 are included.
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Figure 7.5.: BPP solutions. Left panel: Configuration of active modes. Middle panel:
Stationary amplitudes, normalized by the corresponding real (l = {−1, ...,−1}) solution.
Right panel: OP map for all non-uniform solutions. Parameters:
g = 0.9, σ2 = σ1 = 0.5Λ (n = 3), 0.6Λ (n = 4), 0.7Λ (n = 5), 0.9Λ (n = 6).
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Figure 7.6.: ECP pinwheel densities with broken permutation symmetry. (a)
n = 3, σ1 = 0.6Λ, (b) n = 5, σ1 = 0.8Λ, (c) n = 6, σ1 = 0.95Λ, (d) n = 8, σ1 = 1.3Λ. Red
lines: HDP solutions. In all conditions g = 0.98. (e) Average over random planform
realizations, n = 3 (red), n = 5 (blue), n = 6 (green), n = 8 (orange).

7.3. Pinwheel densities with broken symmetry

In this section we study how breaking of permutation symmetry affects the pinwheel density

for the different ECP solutions. Furthermore, we study the pinwheel densities of the CPP

solutions which are independent of permutation symmetry. Modulations in the stationary

amplitudes can lead to a change in the pinwheel densities for the corresponding ECP plan-

forms. Figure 7.6 shows the pinwheel densities for all n = 3, 5, 6, and n = 8 ECP solutions

with varying strength of permutation symmetry breaking. HDP solutions are drawn in red.

For a fixed σ1 the range of σ2 is constrained by stability borders. Parameters g and σ1 are

chosen such that the corresponding n mode solution is intrinsically and extrinsically stable,

see Eq. (6.42) and Eq. (6.46). In case of n = 3 the OP map is a pinwheel crystal and the

pinwheel density thus cannot vary continuously. For the considered amplitude modulations

the n = 3 LDP solutions receives the pinwheel density stays constant at ρ = 2cos π/6. For

n > 3 the pinwheel density in general depends on permutation symmetry breaking, except for

planforms with uniform amplitudes. For σ2 < σ1 amplitude modulations in general lead to a

decrease in the pinwheel density. For small σ2 > σ1 there is a rapid increase in the pinwheel

density until at about σ2/σ1 = 1.3 the pinwheel density saturates. We calculate the aver-

age random planform realizations i.e. realizations with randomly chosen lj , see Fig. 7.6(e).

Compared to the permutation symmetric case, the average pinwheel density increases from

ρ ≈ 2.92 to ρ ≈ 3.3 for n = 5, from ρ ≈ 3.06 to ρ ≈ 3.33 for n = 6, and from ρ ≈ 3.09 to

ρ ≈ 3.27 for n = 8.

In case of the CPP solution class the pinwheel densities are insensitive to permutation sym-
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7. Pattern Selection with Broken Permutation Symmetry

metry breaking as their amplitudes are uniform in general. All CPP solutions with ∆ > 0

have a relatively large pinwheel density, see Fig. 7.4(b). For large n the ∆ = 1 solution has

the largest pinwheel density of ρ ≈ 3.7 whereas the ∆ > 1 solutions have a pinwheel density

close to ρ = π.

To summarize, if multistability and the degeneracy of planforms is still preserved with broken

permutation symmetry the average pinwheel density substantially increases. But we will see

in the next section that the degeneracy is lifted with broken permutation symmetry and that

pattern selection can influence the pinwheel density.

7.4. Lifting the planform degeneracy at leading order

Does the energetic preference for ECP solutions observed in case of permutation symmetry

hold also in case of broken symmetry? What kind of ECP solutions are selected by this sym-

metry breaking? To answer these questions we calculate the potential Eq. (6.37) at leading

order for the ECP and CPP solutions under the influence of permutation symmetry breaking.

The potential for the different ECP solutions is shown in Fig. 7.7 (blue lines). Parameters g

and σ1 are chosen such that the corresponding n mode solution is intrinsically and extrinsi-

cally stable, see Eq. (6.42) and Eq. (6.46). In the permutation symmetric case the potential

is degenerate in the different ECP solutions. With broken symmetry this degeneracy is lifted

and planforms are clustered according to their number of flipped mode clusters κ. For large

σ1 there is even a complete degeneracy of all planforms with a fixed κ. For σ2 > σ1 the HDP

solutions, where κ is maximal, are the ground state. The energy difference increases with

increasing σ2. In all cases there is a saturation of the energy difference for a large amount of

symmetry breaking. In case of σ2 < σ1 the LDP solutions (κ = 0) are energetically selected.

Next, we include the potential for the CPP solutions, see Fig. 7.7 (red lines). For every

number of active modes n we calculate the potential for all CPP solutions characterized by

the integer ∆. Not shown is the potential for the unstable ∆ = 0 solution which in all cases

has a substantially larger potential than that of the remaining CPP and ECP solutions. We

observe that the different CPP solutions are energetically not degenerate even in the permuta-

tion symmetric case. In case of permutation symmetry all CPP solutions have a substantially

larger potential than all the ECP solutions. When permutation symmetry is broken some

CPP solutions can have a lower potential than some of the ECP solutions, see Fig. 7.7(d,e).

This potential crossing occurs when σ1 is relatively small and thus the solutions are close

to the intrinsic stability border. We identify a single case in which a CPP solution actually

becomes the energetic ground state, see Fig. 7.7(a). For broken permutation symmetry the

n = 2,∆ = 1 CPP solution is energetically preferred to the n = 1 and n = 2 ECP solutions.

However, for n > 1 the HDP solutions always correspond to the energetic ground state.

Next, we calculate the phase diagram in case of permutation symmetry. Figure 7.8 shows

the regions in the (σ1/Λ, g)-plane in which certain planforms have minimal energy. We con-

sider all 448 ECP solutions which exist up to n = 13. In addition, we considered the stable

CPP solutions. Figure 7.8(a) corresponds to the permutation symmetric case which is also
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depicted in Fig. 5.1(b). We first study breaking permutation symmetry with σ2 > σ1. With

increasing σ2/σ1 the effective width of the non-local interactions becomes larger. Therefore,

with increasing permutation symmetry breaking there is a shift of all borders in the phase di-

agram into the left direction. With an increasing amount of permutation symmetry breaking

the planforms with an odd number of active modes occupy more and more area in the phase

diagram. Whereas in Fig. 7.8(a) all planforms for a given n are degenerate in their energy,

the breaking of permutation symmetry selects certain planforms. For n odd the selected

planforms are the fully symmetric planforms l = (1,−1, 1,−1, ...). For n = 4 the planform

l = (1,−1, 1, 1), for n = 6 the planform l = (1, 1,−1, 1,−1, 1) and for n = 8 the planform

l = (1, 1,−1, 1,−1, 1,−1, 1) is selected. Thus for a given number of active modes the planform

with the maximal number of flipped mode clusters κ is energetically selected. In the permu-

tation symmetric case CPP solutions never correspond to the energetic ground state. This

changes with broken permutation symmetry. With increasing σ2/σ1 the n = 2,∆ = 1 CPP

solution has a region (gray) in which it is the energetic ground state. Higher n CPP solutions

are nowhere the energetic ground state. Next, we study the change in the phase diagram for

σ2 < σ1, see Fig. 7.9. Here, with increasing symmetry breaking the effective width of the non-

local interaction decreases and we thus observe a shift of all stability borders towards higher

σ1 values. In contrast to the case σ2 > σ1 the even or odd solutions are not preferred over

one another. One exception is the n = 2 ECP solution, which for large symmetry breaking

is nowhere the energetic ground state. For the ECP solutions the LDP solutions are always

the energetic ground state. Further there is no parameter regime in which the CPP solutions

become the energetic ground state.

To summarize, when breaking permutation symmetry such that σ2 > σ1, the phase diagram

contains only solutions with isotropic mode configurations. When breaking permutation sym-

metry such that σ1 > σ2, only fully anisotropic mode configurations are present in the phase

diagram.

7.5. Stability borders

We calculate the change in stability properties due to permutation symmetry breaking for all

three solution classes using leading order amplitude equations. Intrinsic and extrinsic stability

borders are calculated with the use of Eq. (6.42) and Eq. (6.46). The change of the stability

borders for all n = 3, n = 4, and n = 5 ECP solutions is shown in Fig. 7.10. As we use the third

order amplitude equations, the stability borders are independent of the bifurcation parameter

r. In general we observe a shift of all stability borders towards smaller σ1 values. This change

of stability properties is in the symmetry broken case planform dependent. Planforms that

are energetically preferred also occupy the largest stability region. Thus in all cases the

HDP has the largest stability region. In case of strong symmetry breaking (σ2 = 1.5σ1, see

Fig. 7.10(c,f,i)) there are values for g in which some planform solution are not stable for any

σ1. In case of n = 3 (n = 4), the HDP solution is the only stable solution below g ≈ 0.55

(g ≈ 0.63). In case of n = 5 the LDP solution is not stable below g ≈ 0.51 while the
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l = (1,−1, 1, 1, 1) planform is not stable below g ≈ 0.45.

We confirmed the intrinsic and extrinsic stability borders by solving the full field dynamics

numerically using the stationary amplitudes as initial conditions. To reduce the influence of

higher order corrections which are present in the full field dynamics we use a small bifurcation

parameter r = 0.01 and strong permutation symmetry breaking σ2/σ1 = 1.5. The stability

borders obtained by solving the full field dynamics (star symbols in Fig. 7.10(c,f,i)) are in good

agreement with those obtained from amplitude equations. In particular, the LDP solutions

become unstable for small g.

148



7.5. Stability borders

-0.1 0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1.01

-1

-0.99

-0.98

V
 / 

|V
S
|

0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1.01

-1

-0.99

V
 / 

|V
S
|

-0.1 0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1.8

-1.6

-1.4

-1.2

-1

V
 /
 |V

S
|

n=2, ∆=1 CPP
n=1 ECP
n=2 ECP

-0.1 0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1

-0.995

-0.99

V
 / 

|V
S
|

0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1.01

-1

-0.99

V
 / 

|V
S
|

-0.1 0 0.1 0.2 0.3 0.4
log(σ2 / σ1)

-1.01

-1

-0.99

-0.98

V
 / 

|V
S
|

(c)

(a)

(e)

κ = 1

∆ = 1

∆ = 2

κ = 2

κ = 0

∆ = 2

∆ = 1

κ = 0

κ = 1
κ = 2
κ = 3

(f)

∆ = 1
∆ = 2
∆ = 3
∆ = 4

κ = 0
κ = 1
κ = 2
κ = 3

(d)

∆ = 1

∆ = 3

∆ = 2
κ = 0

κ = 1

κ = 2
κ = 3

∆ = 4

∆ = 3

n=4

n=7

n=8n=8

n=5

(b)

κ = 0

κ = 1

∆ = 1

∆ = 2

Figure 7.7.: Potential with broken permutation symmetry. Drawn is the potential V ,
normalized by the absolute value of permutation symmetric (σ2 = σ1) potential |Vs|. (a)
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all conditions g = 0.9.
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ECP solutions, gray region: n = 2,∆ = 1 CPP solution. (a) σ2/σ1 = 1, see also Fig. 5.1(b),
(b) σ2/σ1 = 1.1, (c) σ2/σ1 = 1.3, (d) σ2/σ1 = 1.5.
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Figure 7.10.: Stability borders of ECP solutions. Borders of intrinsic and extrinsic
stability, see Eq. (6.42) and Eq. (6.46). (a)-(c): n = 3 with l = (1, 1, 1) (red) and
l = (1,−1, 1) (blue). Green: permutation symmetric model. (d)-(f): n = 4 with
l = (1, 1, 1, 1) (red), l = (1, 0, 1, 1) (blue). (g)-(i): n = 5 with l = (1, 1, 1, 1, 1) (red),
l = (1,−1, 1, 1, 1) (violet), l = (1, 1,−1, 1, 1) (orange), and l = (1,−1, 1, 1,−1, 1) (blue).
(a,d,g) σ2/σ1 = 1.1, (b,e,h) σ2/σ1 = 1.3, (c,f,i) σ2/σ1 = 1.5. Star symbols: Stability
borders from the full field dynamics. Parameters: r = 0.01,Γ = 40, Tf = 5 · 104, 256 × 256
mesh.
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Figure 7.11.: Stability borders of CPP solutions. (a) σ2 = σ1, (b) σ2 = 1.5σ1. Light
blue region: n = 2,∆ = 1 solution stable, dark blue region: n = 4,∆ = 2 solution stable,
green lines: stability range of n = 5,∆ = 2 solution, red lines: stability range of
n = 6,∆ = 3 solution, white line: stability line of n = 2,∆ = 1 solution. Dashed (dotted)
orange line: Intrinsic stability border of n = 4 HDP (LDP) solution.

Next, we consider the stability properties of the CPP solutions for which ∆ > 0. In this case

we have to consider amplitude Aj = A + aj and phase Φj = Φ∗
j + ϕj perturbations which

do not necessarily decouple. We analyze the stability properties for all uniform solutions

which exist for a given number of active modes. The stability regions of the n = 2, ..., 6 CPP

solutions is shown in Fig. 7.11. The n = 2,∆ = 1 solution is stable for g > 1 or σ1 small.

For n = 3 it turns out that none of the uniform solutions are stable. For n ≥ 4 the shape of

the stability regions resemble those of the stability regions for the ECP solutions. For g > 1

and with increasing σ1/Λ higher n solutions become stable. Compared to the permutation

symmetric case the stability borders in case of broken symmetry (σ2 = 1.5σ1) are shifted

towards smaller σ1 values. In contrast to the ECP solutions there is no multistability of the

CPP solutions for a fixed n, even in the permutation symmetric case. Thus for a given n there

is at maximum one solution which can become stable. However, there can be a multistability

of CPP solutions with different n. For instance, the n = 4,∆ = 2 and the n = 5,∆ = 2

solutions have partly overlapping stability regions.

How do the stability borders of ECP and CPP solutions relate to each other? When we

compare the stability borders of the ECP and CPP solutions we observe that in the permu-

tation symmetric case the stability borders of the n mode CPP solutions coincide with the

intrinsic stability borders of the n mode ECP solution. This is illustrated in case of n = 4 in

Fig. 7.11(a). Therefore in the permutation symmetric case n mode ECP and CPP solutions

have no overlapping region of stability. In case of broken permutation symmetry the stability

borders of ECP and CPP do not coincide but the n modes CPP stability border is close to

the intrinsic border of the n modes HDP solutions, see Fig. 7.11(b).

As for the ECP and CPP solutions we study the stability properties of the BPP solutions in
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Figure 7.12.: Interplay between third and fifth order planform selection. Potential
V , Eq. (6.37), in the permutation symmetry broken case with increasing distance from
threshold for all n = 8 ECP solutions. (a) g = 0.98, (b) g = 0.96. In all conditions:
σ1 = 1.43Λ, σ2 = 1.5σ1.

the presence and absence of permutation symmetry. We calculate stationary amplitudes of

Eq. (7.12) and corresponding stability matrices numerically in the same parameter region as

we did for the ECP and CPP solutions. It turns out, however, that none of the non-uniform

solutions are stable for g > 0, σ1, σ2 > 0.

7.6. Including higher order corrections

To reveal the interplay between permutation symmetry breaking, affecting pattern selection

at third order, and fifth order corrections, discussed in Chapter 6, we compared the potential

Eq. (6.37) of the planforms with increasing influence of the fifth order corrections measured

in r, see Fig. 7.12. We observe that depending on the influence of fifth order corrections high

pinwheel density planforms or low pinwheel density planforms are selected. The influence

of fifth order corrections increases as (1 − g)2, thus HDP solutions are selected only for g

close to 1. For the chosen parameter values g = 0.98 and g = 0.96 the planforms can be

clustered according to their number of flipped modes clusters κ. For g = 0.98 the order of

planforms obtained at third order is preserved also far from threshold i.e. HDP solutions

are energetically preferred. The strong dependence on the parameter g becomes apparent we

calculate the potential for g = 0.96. Here, with increasing r, the ordering of the planforms

is reversed and for r > 0.1 the LDP solution is the energetic ground state. These results

show that even when considering higher order corrections there is a parameter regime close

to threshold in which the HDP solutions are energetically preferred.

7.7. Numerical analysis of pattern selection

We confirm the results obtained from weakly nonlinear analysis by solving the full field dy-

namics Eq. (6.1) with the nonlinearities Eq. (7.9) numerically. To reveal the interplay between

the influence of permutation symmetry breaking and of higher order corrections to the am-
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plitude equations we simulate the field dynamics close to threshold (r = 0.01) and further

away from threshold (r = 0.2). For a fixed set of N = 20 band-pass filtered Gaussian random

fields as initial conditions we calculated the time evolution of the pinwheel density in the

presence and absence of permutation symmetry. We break permutation symmetry in both

directions. When choosing σ2 = 1.5σ1 previous results from amplitude equations suggest that

HDP are energetically selected and the average pinwheel density should increase compared to

the permutation symmetric case. When choosing σ2 = 0.5σ1, LDP solutions are energetically

selected and thus the average pinwheel density should decrease. The results for simulations

close to threshold are shown in Fig. 7.13. The pinwheel density evolves in all three cases

(σ2 = σ1 red, σ2 = 1.5σ1 blue, σ2 = 0.5σ1 green) similar up to times T ≈ 1 and the average

pinwheel density is almost identical. At about T = 1 there is a rapid increase in the power,

see Fig. 7.13(d) until a saturation takes place at T ≈ 10 with P (Tf ) = nr/
∑

j gij . From

thereon the pinwheel densities in the symmetry broken case are slightly higher (σ2 > σ1) or

lower (σ2 < σ1) than in the symmetric case. Between T ≈ 102 and T ≈ 104 the final patterns

are selected. Whereas in the permutation symmetric case there is a rather broad distribution

of pinwheel densities between ρ ≈ 1.5 and ρ ≈ 3.5, permutation symmetry breaking selects

certain planform solutions and the distribution of pinwheel densities is more narrow, see

Fig. 7.13(c). The average pinwheel densities in the final states are 〈ρ〉 ≈ 3 in the permutation

symmetric case, 〈ρ〉 ≈ 3.35 for σ2 = 1.5σ1, and 〈ρ〉 ≈ 1.38 for σ2 = 0.5σ1, see Fig. 7.13(b).

Thus there is a small increase of the average pinwheel density for σ2 = 1.5σ1 and a larger

decrease for σ2 = 0.5σ1. In the permutation symmetric case the final pattern mainly consist

of n = 7 and n = 8 ECP solutions (σ1 = 1.4Λ). In contrast, in the case of σ2 = 1.5σ1,

the final patterns mainly consist of n = 9 and n = 10 HDP solutions. LDP solutions were

completely absent in this case. In case of σ2 = 0.5σ1, except a single simulation resulting

in a n = 5 planform with a very high pinwheel density of ρ ≈ 3.8, the final patterns mainly

consist of n = 5 LDP solutions. We further calculated the time dependent cross correlation

between the fields in the permutation symmetric and the symmetry broken case, i.e.

C(t) = Re

∫
z1(x, t) z2(x, t) d

2x /

(∫
|z1(x, t)|2 d2x

∫
|z2(x, t)|2 d2x

)
, (7.25)

where z1 and z2 are the OP maps in the permutation symmetric and symmetry broken case,

respectively. Correlations decrease as the power P is saturated, see Fig. 7.13(d). In case of

σ2 = 0.5σ1 the patterns are less correlated than in the case of σ2 = 1.5σ1. A reason for this

might be the fact that in case of σ2 = 0.5σ1 more active modes are flipped when permutation

symmetry is broken.

Next, we study pattern selection far from threshold, see Fig. 7.14. Here, the average pinwheel

density in the permutation symmetric case is smaller 〈ρ〉 ≈ 2.38 than it is close to threshold.

As discussed in the previous chapter we can explain this by higher order corrections to the

amplitude equations which select LDP solutions. The pinwheel density evolves similar in all

three cases until T ≈ 1. Between T ≈ 1 and T ≈ 10 the modes saturate and the power P (t) is

approximately at its final value. From thereon the pinwheel density in the symmetry broken
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7. Pattern Selection with Broken Permutation Symmetry

case is slightly higher/lower than that in the symmetric case. Between T ≈ 103 and T ≈ 104

the different planform solutions are selected. Again, breaking permutation symmetry leads to

a narrow distribution of final pinwheel densities, see Fig. 7.14(c) The final pinwheel densities

are 〈ρ〉 = 3.28 for σ2 = 1.5σ1, 〈ρ〉 = 2.38 for σ2 = σ1, and 〈ρ〉 = 1.12 for σ2 = 0.5σ1, see

Fig. 7.14(b). In these simulations low density planforms are absent for σ2 > σ1.
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Figure 7.13.: Time evolution of the pinwheel density near threshold. (a) Pinwheel
densities for 20 initial conditions. Red lines: Permutation symmetric model, blue lines: the
broken symmetry model Eq. (7.9) with σ2 = 1.5σ1, green lines: σ2 = 0.5σ1. (b) Mean
pinwheel densities in the symmetry broken and unbroken case. (c) Comparison of pinwheel
densities for the final states, Tf = 105. (d) Cross correlation between permutation
symmetric and symmetry broken (σ2 = 1.5σ1 blue, σ2 = 0.5σ1 green) maps. Inset: Time
evolution of the Power P (t). For all simulations: r = 0.01, g = 0.98, σ1 = 1.43Λ,Γ = 40,
256 × 256 mesh.
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Figure 7.14.: Time evolution of the pinwheel density far from threshold. (a)
Pinwheel densities for 20 initial conditions. Red lines: Permutation symmetric model, blue
lines: the broken symmetry model Eq. (7.9) with σ2 = 1.5σ1, green lines: σ2 = 0.5σ1. (b)
Mean pinwheel densities in the symmetry broken and unbroken case. (c) Comparison of
pinwheel densities for the final states, Tf = 105. (d) Cross correlation between permutation
symmetric and symmetry broken (σ2 = 1.5σ1 blue, σ2 = 0.5σ1 green) maps. Inset: Time
evolution of the Power P (t). For all simulations: r = 0.2, g = 0.98, σ1 = 1.43Λ,Γ = 40,
256× 256 mesh.
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Figure 7.15.: Raising pinwheel densities by pattern selection. (a,b) Change in
average pinwheel density due to permutation symmetry breaking, orange: σ1 = 0.54Λ, blue:
σ1 = 0.89Λ, red: σ1 = 1.43Λ, green: σ1 = 1.79Λ. Dashed line: ρ = π. (c,d) Standard
deviation of pinwheel densities. (a,c) Tf = 300, (b,d) Tf = 105. In all simulations:
g = 0.98, r = 0.2,Γ = 40, 256× 256 mesh.

Next, we study the gradual change in the pinwheel density with increasing amount of sym-

metry breaking. For a fixed set of 50 initial conditions we varied the amount of symmetry

breaking σ2/σ1, see Fig. 7.15. In the symmetric case the theoretical value for the pinwheel

density near threshold is ρ = π. Deviations from this value can be explained by higher order

corrections which increase with increasing σ, see also Fig. 6.6. For σ1 = 0.54Λ (orange line)

stationary solutions in the permutation symmetric case are n = 2 and n = 3 ECP solutions.

The resulting average pinwheel density is thus rather low (〈ρ〉 ≈ 2). With increasing permu-

tation symmetry breaking n = 3 HDP solutions show up more frequently and the pinwheel

density increases up to 〈ρ〉 ≈ 4.7. Increasing permutation symmetry breaking even more

n = 4 and n = 5 HDP solutions occur and the average pinwheel density decreases but is still

large. Note, that the set of stationary solutions contains some n = 4,∆ = 2 CPP solutions.

For very large symmetry breaking the n = 5 HDP solutions are most dominant and the aver-

age pinwheel density is about 〈ρ〉 ≈ 3.75. For small symmetry breaking the average pinwheel

density rapidly increases with increasing σ2/σ1 until a saturation of the pinwheel density is

achieved. A further increase of σ2/σ1 leads at some point to an extrinsic instability of the

current solution and to stable higher mode solutions. Figure 7.15(b) shows the standard

deviation s of the pinwheel densities. As the symmetry breaking selects certain planform
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solutions the standard deviation decreases with increasing σ2/σ1.

To summarize, the numerical simulations confirmed the predictions obtained from amplitude

equations that breaking permutation symmetry selects either low or high pinwheel density

planforms. The average pinwheel density, depending on the direction of symmetry breaking,

increases or decreases and the distribution of pinwheel densities becomes narrow. The results

demonstrate that even far from threshold solutions with a relatively large pinwheel density

can be selected.

7.8. Discussion

In this chapter we studied pattern selection by breaking the permutation symmetry of the

OP dynamics. Compared to rotation, translation, or orientation shift symmetry permutation

symmetry has no clear biological interpretation. In previous models for the development of

OP maps, like the elastic net model, the resulting cubic nonlinearities are in general not

permutation symmetric [119]. To compare with such models and to provide a general the-

ory of OP map development with translation, rotation and orientation shift symmetry we

considered permutation symmetry breaking. There are several ways to break permutation

symmetry in our model but we have shown that not all of them lead to biological meaning-

ful OP maps. We broke this symmetry introducing a disbalance between the two non-local

interaction terms, allowing for two typical length-scales for these interactions. Compared to

a Swift-Hohenberg equation with a real order parameter field, see for instance [4, 97, 120],

its complex pendant shows an enormous variety of stationary solutions. In the permutation

symmetric case the ECP class is the dominant solution class with a large number of multi-

stable solutions. Remarkably, the number of potential solutions becomes even larger in case

of broken permutation symmetry as additional solution classes can become important.

We first studied the impact of permutation symmetry breaking on ECP solutions. These

solutions are model independent in the case of permutation symmetry but become model

dependent in the symmetry broken case as their stationary amplitudes are modulated. We

demonstrated how such modulations can change the pinwheel density of the corresponding

ECP solution. Moreover, permutation symmetry breaking energetically selects certain ECP

solutions. We showed that, in contrast to the previous chapter, HDP solutions can be energet-

ically selected. Breaking permutation symmetry thus can lead to realistic pinwheel densities

even far from threshold. Moreover, breaking permutation symmetry affects the stability bor-

ders of ECP solutions. We showed that ECP solutions which are energetically preferred also

have the largest region of stability. However, even for strong permutation symmetry breaking

multistability is not completely lifted. A potential switching between different multistable

solutions, as indicated by experiments [16, 88], is therefore not in contradiction with broken

permutation symmetry.

Next, we considered CPP solutions for which each Fourier mode is accompanied by a mode in

the opposite direction. This solution class contains solutions which are selective to only two

preferred orientations, a type of solution that occurs in the real Swift-Hohenberg equations.
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We therefore showed that, although these orientation scotoma solutions can become stable for

a general permutation symmetry broken model, they are unstable in our model. CPP solu-

tions do not play a role in the case of permutation symmetry. In contrast, when permutation

symmetry is broken, solutions within this class can become the energetic ground state of the

model. The CPP solutions have uniform stationary amplitudes both in the presence and ab-

sence of permutation symmetry, and this solution class is thus model independent in general.

Finally, we considered BPP solutions for which stationary amplitudes are not uniform and

therefore model dependent in general. We showed, however, that this class of solutions is in

general unstable in our model. To summarize, we identified three main causes for a change in

the average pinwheel density compared to the permutation symmetric model: Modulations

in the ECP amplitudes, energetic selection of a particular ECP solution, and the occurrence

of the CPP solution class with comparable energies to the ECP solutions.

For a general theory of visual cortical development, all three classes of stationary solutions can

become important. As the CPP solution class is in general model independent and contains

solutions with a pinwheel density close to ρ = π it would be instructive to construct a model

in which these solutions are dominant. As we have seen in this chapter breaking permutation

symmetry can be a first step in this direction.
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In this thesis we studied pattern formation in models of visual cortical development. The de-

velopment of cortical maps has been conventionally treated with dimension reduction models

which, as a numerical approach, often fail to produce realistic maps. Instead of proposing

a specific optimization principle we presented a model independent approach to analyze the

simultaneous development of different visual cortical maps. In addition we could treat map

interactions analytically. The presented approach is largely based on symmetry principles.

Symmetries are an important aspect of numerous physical disciplines, they range from the

fundamental equations in particle physics which are governed by gauge symmetries up to

the large scales in astronomy governed by the space time symmetries of general relativity.

We demonstrated that also a complex system like the brain can be tackled with symmetry

principles and that the presence or absence of certain symmetries is crucial for the emergence

of realistic patterns.

In Chapter 4 we studied how OD segregation influences the layout of OP maps. This study

is the first to clearly demonstrate that inter-map coupling can lead to stabilization and even

generation of pinwheels in OP maps [121]. With the presented methods we were able to iden-

tify the genuine ground states of each analyzed model and our analytical approach allowed

for a thorough characterization of these states. The presented results question the widely

held view that OD stripes are able to stabilize pinwheels. We demonstrated that the impact

of OD stripes leads to pinwheel annihilation whereas a patchy OD layout can stabilize pin-

wheels, underlining the importance of the over-representation of one eye over the other. In

Chapter 5 we integrated long-range connections among cortical neurons into the dynamics

of OP maps. We showed that with the inclusion of such non-local interactions inter-map

coupling leads to a patchy and spatially irregular OD layout resembling the layout observed

in cat visual cortex. Moreover, we gave a potential explanation of inter-species differences

observed in the OD layout. A detuning of OD and OP average wavelengths, as observed for

instance in macaque monkeys, leads to a spatially irregular, although more stripe-like, OD

layout which resembles that found in the macaque visual cortex.

Our study suggests a hierarchy of cortical maps where one map dominates the others. The

most plausible models were identified as those in which the OP map dominates. We showed

that there is a limit in which we can neglect a backreaction of the co-evolving map onto the

OP map. We therefore studied in detail the uncoupled OP dynamics which has a remarkable

property: A huge variety of stationary solutions which sets this dynamics apart from the dy-

namics of a real order parameter field such as that of the OD map. The inclusion of non-local

interactions into the OP dynamics leads to a solution class with a vast number of multistable
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solutions which are energetically degenerate. Chapter 6 and Chapter 7 were devoted to the

question of how this degeneracy is lifted. We characterized the numerous solutions, studied

how the degeneracy can be lifted and how this impacts the stability borders and quantitative

properties of each solution. So far, analytical results were obtained by amplitude equations in

the leading order of a perturbative expansion near the bifurcation point. Here, the assumed

permutation symmetry of the nonlinear interaction terms guarantees multistability and en-

ergetic degeneracy. How far the emergence of cortical structures takes place from criticality,

however, is not clear from the experimental point of view. For this reason it is important to

study pattern formation also substantially far from threshold. We therefore derived higher

order corrections to amplitude equations of the uncoupled OP dynamics in Chapter 6. To

our knowledge our study is the first one to calculate such higher order corrections in a highly

multistable Swift-Hohenberg equation. We studied how these corrections alter the stationary

patterns and in particular their pinwheel densities. We showed that these corrections energet-

ically select solutions with a relatively low pinwheel density. In Chapter 7 we generalized the

OP dynamics by breaking the permutation symmetry of the nonlinear terms. This lifts the

degeneracy already at leading order. Moreover, with broken permutation symmetry the dom-

inant class of stationary solutions, the ECP solutions, is accompanied by additional solution

classes. From these new classes we identified stable solutions which have realistic pinwheel

densities and are relatively insensitive to the model details. Thus breaking permutation sym-

metry can lead by energetically selecting ECP solutions with a high pinwheel density and the

occurrence of additional solution classes to realistic patterns even far from threshold.

Routes for future investigations.

We demonstrated that inter-map coupling can lead to a crystallization of pinwheels into a

regular lattice. We expect to overcome this spatial regularity for instance by imposing real-

istic boundary conditions [116] or by introducing inhomogeneities such as spatial variations

in the typical wavelength [122]. To study such spatial variations in a perturbative approach,

so called envelope equations have to be considered [120]. Another interesting possibility to

study spatial inhomogeneities in the OP map results from the presented map interaction

models. In this scenario the co-evolving field does not represent a feature map but describes

an artificial border or disruption of OP, which can be induced also experimentally [123]. The

presented analytical approach enables us to analyze map interactions even in high feature

dimensions. We demonstrated that interactions among multiple maps can lead to frustra-

tion of different optimization constraints which can result in pinwheel crystallization. In

dimension reduction models spatially regular patterns seem to be a common feature [100]. In

contrast, the introduced analytical approach enables us to identify biological constraints such

as a bias towards certain stimuli that can lead to spatially irregular patterns even in high

feature dimensions. In the presented models OP maps at intermediate stages of development

are relatively insensitive to model details such as the distance to threshold. Maps at late

stages, however, are very susceptible to model details. From the experimental point of view

the intrinsic timescale in such models cannot precisely matched with the developmental stage
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of an animal. However, our results and predictions for pattern selection at late stages might

guide future experiments. In particular, they might guide chronic long-term recordings in

developing and adult animals which are experimentally very challenging. The description of

OP map development with the use of a complex Swift-Hohenberg equation turned out to be

very promising as it has numerous biologically plausible solutions. In particular, we demon-

strated that breaking permutation symmetry is a first step to study new solution classes and

introduced the CPP solutions which might in some models supersede the ECP solutions. The

complex Swift-Hohenberg equation applies to many physical systems such as traveling waves

in lasers [14] or the occurrence of defects in Rayleigh-Bénard convection [124]. The extended

solution set to this equation we presented in this thesis is thus not only interesting for models

of cortical map development.

The introduced models cover the basic design principles found in the visual cortex. Sym-

metries, the geometry of neuronal connectivity, and geometric inter-map relations framed a

general model of visual cortical development. By varying a few phenomenological parameters

we are able to study a wide range of phenomena found in visual cortical maps. In the end,

there is the hope that these fundamental principles found in the visual system will to some

degree trigger a better understanding of other parts of the brain.
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9. Notation guide

The following table is a quick-reference guide to the notation used in each chapter.

Nomenclature Meaning

Chapter 2

OD Ocular dominance

OP Orientation preference

o(x, t) Real order parameter field for OD map, see 2.2.1

z(x, t) Complex order parameter field, see 2.2.2

with ϑ = 1/2 arg z the preferred orientation, |z| the selectivity

ρ Pinwheel density (pinwheels per Λ2), see 2.2.2

Chapter 3

Λ = 2π/kc Typical wavelength, see 3.1

rz, ro Bifurcation parameter for OP, OD map, see 3.1

g Measures local vs. non-local interactions, see 3.1

σ Width of non-local interactions, see 3.1

U Inter-map coupling energy, see 3.2

Γ Aspect ratio, Γ = system size / Λ, see 3.3

γ OD bias, see 4.1

d Nearest neighbor pinwheel distance, see 3.4

c(t) Pinwheel creation rate, see 3.4

a(t) Pinwheel annihilation rate, see 3.4

s(t) Fraction of surviving pinwheels, see 3.4

p(t) Fraction of final pinwheels present in the pattern, see 3.4

Chapter 4

B = Beıψ Active modes and phases of OD map, see 4.2.2

A = Aeıφ Active modes and phases of OP map, see 4.3

PWC Pinwheel crystal

Chapter 5

ECP Essentially complex planform, see 5.3

lj = ±1, Selects active mode with ~kj or −~kj , see 5.3
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n Number of active modes, also no, nz, see 5.3

LDP Low pinwheel density planform, see 5.3

HDP High pinwheel density planform, see 5.3

∆ Classifies uniform solutions, see 4.4, 5.5, 7.2.2

χ Uniformity parameter of OD map, see 5.6.1

b Bandedness of OD map, see 5.6.1 and Appendix

α Intersection angle, see 5.8

Chapter 6

ξ Planform anisotropy, see 6.6

κ Number of flipped mode clusters, see 6.6

Chapter 7

CPP Circular phase progression planform, see 7.2.2

BPP Binary phase planform, see 7.2.3
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A. Appendix

A.1. Numerical integration method

In this appendix we briefly sketch the numerical integration scheme which was implemented

by D. Heide [116] and used in this thesis. As the Swift-Hohenberg equation is a stiff partial

differential equation we used a fully implicit integrator [125]. Such an integration scheme

avoids numerical instabilities and enables the use of increasing stepsizes when approaching

an attractor state. The equation

∂t z(x, t) = L̂z(x, t)−N [z(x, t)] , L̂ = r −
(
k2c +∆

)2
, (A-1)

is discretized in time. Using a Crank-Nicolson scheme, this differential equation is approxi-

mated by the nonlinear difference equation

zt+1 − zt
∆t

=

(
L̂zt+1 +N [zt+1]

)
+
(
L̂zt +N [zt]

)

2
. (A-2)

This equation is solved iteratively for zt+1 with the help of the Newton method which finds

the root of the function

G[zt+1] =

(
−L̂+

2

∆t

)
zt+1 −N [zt+1]−

((
L̂+

2

∆t

)
zt +N [zt]

)
. (A-3)

The field z(x) is discretized. For a grid with N meshpoints in x-direction and M meshpoints

in y-direction this leads to a M ×N dimensional state vector u. Discretization is performed

in Fourier space. The Newton iteration at step k is then given by

DG(uk)∆uk = −G(uk), uk+1 = uk +∆uk , (A-4)

with DG the Jacobian of G. Instead of calculating the matrix DG explicitly a matrix free

method is used, where the action of the matrix is approximated using finite differences. To

solve the linear system Ax = b with A = DG(uk), b = −G(uk) we used the Krylov subspace

method [125]. The Krylov subspace of dimensionality k is defined as

Kk(A,v1) = span{v1, Av1, A
2v1, . . . , A

k−1v1} . (A-5)

In the Generalized Minimum Residual (GMRES) algorithm the Krylov subspace is generated

by v1 = r0/|r0| with r0 = Ax0 − b, and x0 an initial guess, see [125]. After k iterations, the
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refined solution is given by

xk = x0 + Vky , (A-6)

where the matrix Vk = (v1, . . . ,vk) has the base vectors of the Krylov subspace as its columns.

The vector y is chosen by minimizing the residuum

‖b−Axk‖2 = ‖r0 −AVky‖2 !
= min , (A-7)

where ‖.‖2 denotes the Euclidean norm. For this procedure an orthonormal basis of the Krylov

subspace is generated with an Arnoldi process. With the use of the similarity transformation

AVk = Vk+1H̃k , (A-8)

where H̃k is an upper Hessenberg matrix, v1 = r0/|r0|, and the orthogonality of Vk, the

optimality condition Eq. (A-7) becomes

‖H̃ky − |b|e1‖2 !
= min , (A-9)

with e1 = (1, 0, . . . , 0) the first unit vector of dimension k + 1. For a y that minimizes this

norm the approximate solution is given by xk = x0 + Vky. To improve the convergence of

this iterative method preconditioning was used. A preconditioner M is multiplied to Ax = b

such that M−1A is close to unity. A preconditioner suitable for our model is the inverse of

the linear operator in Fourier space with a small shift 0 < ǫ≪ 1 in order to avoid singularities

i.e.

M =

(
ǫ+

(
k2 − k2c

)2
+

2

∆t

)−1

. (A-10)

The convergence of Newton’s method is only guaranteed from a starting point close enough

to a solution. In the integration scheme we use a line search method to ensure also a global

convergence [126]. Newton’s method Eq. (A-4) is thus modified as

uk+1 = uk + λ∆uk , (A-11)

where the function

f(uk) =
1

2
G(uk)G(uk), (A-12)

is iteratively minimized with respect to λ.

This integrator was implemented using the PetSc library [127]. As the dynamics converges

towards an attractor an adaptive stepsize control is very efficient. The employed adaptive

stepsize control was implemented as described in [128]. The described integration scheme

has been generalized for an arbitrary number of real or complex fields. The coupling terms

are treated as additional nonlinearities in N . As a common intrinsic timescale we choose

T = trz with rz the bifurcation parameter of the OP map. Due to the spatial discretization

not all points of the critical circle lie on the grid. Thus, the maximal growth rate on the

discretized circle is not exactly equal to r, the theoretical growth rate. In particular, some
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modes may be suppressed or even become unstable. Due to this we expect deviations from

analytical solutions we discussed in this thesis. To minimize such deviations the size of the

critical circle was chosen such that this disbalance between the active modes was minimized.

Periodic boundary conditions were applied to account for the translation invariance of the

spatial pattern.

A.2. Coupling coefficients I

Here we list the explicit form of the coupling coefficients l
(u)
ijlk of the coupled amplitude equa-

tions Eq. (4.92) used in Chapter 4. They have the symmetry h
(u)
ijlk = h

(u)
iljk, u = 1, 2, 4, 5.

h
(1)
iiii = 40.5 ǫ + 90 τ, h

(1)
iiij = (16.125 ǫ + 48 τ) eı(ψj−ψi),

h
(1)
ijjj = (16.125 ǫ + 48 τ) eı(ψi−ψj), h

(1)
iijj = 40.5 ǫ + 180 τ,

h
(1)
iiji = (32.25 ǫ + 96 τ) eı(ψi−ψj), h

(1)
ijji = (4.125 ǫ + 6 τ) eı2(ψi−ψj),

h
(1)
iijl = − (16.5 ǫ + 96 τ) eı(ψl−ψj), h

(1)
ijli = (7.5 ǫ + 24 τ) eı(2ψi−ψj−ψl),

h
(1)
ijll = (16.5 ǫ + 96 τ) eı(ψi−ψj), h

(1)
ijjl = (3.75 ǫ + 12 τ) eı(ψl+ψi−2ψj)

In terms containing also the opposite wavevectors Aj− triad resonances ~k1 − ~k2 + ~k3 = 0

appear. They lead to the phase relation ψ1 + ψ2 + ψ3 = π for the modes Bj and therefore

the coupling coefficients depend only on two of the three phases.

h
(2)
iiii = (19.25 ǫ + 34 τ) e2ıψi , h

(2)
ijjj = (15.75 ǫ + 60 τ) eı(ψi+ψj),

h
(2)
iiij = (3.5 ǫ+ 4 τ) eı(3ψi−ψj), h

(2)
iiji = (31.5 ǫ + 120 τ) eı(ψi+ψj),

h
(2)
ijji = (9.875 ǫ + 34 τ) eıψj , h

(2)
iijj = (19.75 ǫ + 68 τ) e2ıψi ,

h
(2)
iijl = − (7.25 ǫ + 32 τ) eı(3ψi+2ψj), h

(2)
ijli = (9 ǫ+ 120 τ) eıψi ,

h
(2)
ijll = (9 ǫ+ 120 τ) eı(ψi+ψj), h

(2)
ijjl = − (3.625 ǫ + 16 τ) eı(2ψi+3ψj)

h
(3)
iiii = (38.5 ǫ+ 68 τ) e2ıψi , h

(3)
ijjj = h

(3)
iiij = h

(3)
iiji = (31.5 ǫ + 120 τ) eı(ψi+ψj)

h
(3)
ijii = (7 ǫ+ 8 τ) eı(3ψi−ψj), h

(3)
iijj = (19.75 ǫ + 68 τ) e2ıψj ,

h
(3)
ijji = h

(3)
ijij = (19.75 ǫ + 68 τ) e2ıψi , h

(3)
iijl = − (9 ǫ+ 120 τ) eıψi ,

h
(3)
ijil = h

(3)
ijli = − (7.25 ǫ + 32 τ) eı(ψi−2ψj), h

(3)
ijll = (7.25 ǫ + 32 τ) e−ı(ψi+3ψj),

h
(3)
iljl = (9 ǫ+ 120 τ) eı(ψi+ψj), h

(3)
ijjl = − (9 ǫ+ 120 τ) e−ıψj
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h
(4)
iiii = (2 ǫ+ τ) e4ıψi , h

(4)
ijjj = (3.125 ǫ + 16 τ) eı(ψi+3ψj),

h
(4)
iiij = (3.125 ǫ + 16 τ) eı(3ψi+ψj), h

(4)
iiji = 2h

(4)
iiij ,

h
(4)
ijji = (5.125 ǫ + 34 τ) e2ı(ψi+ψj), h

(4)
iijj = 2h

(4)
ijji,

h
(4)
iijl = h

(4)
ijli = (9 ǫ− 120 τ) eıψi , h

(4)
ijll = (−9 ǫ+ 120 τ) e−ı(ψi+ψj),

h
(4)
ijjl = (4.5 ǫ − 60 τ) eıψj

h
(5)
iiii = (19.25 ǫ + 34 τ) e−2ıψi , h

(5)
ijjj = (3.5 ǫ+ 4 τ) eı(ψi−3ψj),

h
(5)
iiij = (15.75 ǫ + 60 τ) e−ı(ψi+ψj), h

(5)
iiji = 2h

(5)
iiij ,

h
(5)
ijji = (9.875 ǫ + 34 τ) e−2ıψj , h

(5)
iijj = 2h

(5)
ijji,

h
(5)
ijll = (7.25 ǫ + 32 τ) eı(3ψi+ψj), h

(5)
ijjl = − (3.625 ǫ + 16 τ) eı(2ψi−ψj),

h
(5)
iijl = h

(5)
ijli = − (9 ǫ+ 120 τ) eıψi

h
(6)
iiii = (2 ǫ+ 180 τ) eıψi , h

(6)
iiji = (32.25 ǫ + 96 τ) eı(−ψi+ψj),

h
(6)
ijjj = h

(6)
iiij = h

(6)
ijii = (32.25 ǫ + 96 τ) eı(ψi−ψj),

h
(6)
ijji = h

(6)
iijj = (40.5 ǫ + 180 τ) , h

(6)
ijij = (8.25 ǫ + 12 τ) e2ı(ψi−ψj),

h
(6)
ijil = − (7.5 ǫ+ 24 τ) eı3ψi , h

(6)
iljl = (7.5 ǫ+ 24 τ) e3ı(ψi+ψj),

h
(6)
ijll = (16.5 ǫ + 96 τ) eı(ψi−ψj), h

(6)
ijjl = − (16.5 ǫ + 96 τ) e−ı(2ψi+ψj)

h
(6)
iijl = h

(6)
ijli = − (16.5 ǫ + 96 τ) eı(ψi+2ψj)

A.3. Coupling coefficients II

Here we list the coupling coefficients for the amplitude equations Eq. (5.20). We define

pi,j = (i− j) 2π
n . The couplings terms defined in Eq. (5.17) are given by

hijlk = ǫ (16 + 8 cos pi,j + 12 cos pi,k

+12 cos pj,k + 12 cos pi,l + 8cos pk,l + 12 cos pj,l

+12 cos pi+j,l+k + 2cos pi+k,j+l + 2cos pi+l,j+k) + 48τ

hijll = ǫ (6 + 3 cos pi,j + 6cos pi,l

+6cos pj,l + 3cos pi+j,2l) + 12τ

hiijl = 2hljii

hiill = ǫ

(
9

2
+ 6 cos pi,l +

3

2
cos p2i,2l

)
+ 6τ
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The additional coupling terms that appear in Eq. (5.20) are given by

lijjj = 15ǫ+ 9 ǫ cos pi,j + 12τ, lijii = lijjj

liiji = 2lijjj, liiil = liili

liill = ǫ

(
27

4
+ 5 cos pi,l +

1

4
cos p2i,2l

)
+ 6 τ

lijll = ǫ

(
10 +

7

2
cos pi,j + 5cos pi,l + 5cos pj,l +

1

2
cos pi+j,2l

)
+ 12 τ

lijli = 4liljj, lijjl = lijlj

lijli = ljiil, liijl =
1

2
lijli

lijlk = ǫ (30 + 10 cos pi,j + 10 cos pi,k + 10 cos pj,k

+10 cos pi,l + 10 cos pj,l + 10 cos pk,l

+ 2cos pi+j,l+k + 2cos pi+k,j+l + 2cos pi+l,j+k) + 48τ

λiijj = ǫ

(
45

2
+ 24 cos pi,j +

3

2
cos p2i,2j

)
+ 24τ, λijij =

1

2
λiijj

λijll = ǫ

(
15 +

15

2
cos pi,j + 15 cos pi,l + 9cos pj,l +

3

2
cos pi+j,2l

)
+ 24τ

λiljl = λijll , λijil = λljii , λiijl = 2λljii

λijlk = ǫ (20 + 10 cos pi,j + 10 cos pj,k

+8cos pj,l + 20 cos pi,k + 10 cos pi,l

+10 cos pk,l + 3cos pi+j,l+k

+3cos pi+l,j+k + 2cos pi+k,j+l) + 48τ

ρijji = ǫ

(
45

2
+ 24 cos pi,j +

3

2
cos p2i,2j

)
+ 24τ

ρijll = ǫ

(
15 +

15

2
ǫ cos pi,j + 15 cos pj,l + 9cos pi,l +

3

2
cos pi+j,2l

)
+ 24τ

ρljil = ρijll

ρijlk = ǫ (20 + 10 cos pi,j + 8cos pi,l + 10pi,k

+10 cos pj,l + 20 cos pj,k

+10 cos pk,l + 3cos pi+j,l+k

+2cos pi+l,j+k + 3cos pi+k,j+l) + 48τ

A.4. Calculation of the bandedness

In this appendix we briefly sketch the derivation of the bandedness used in chapter 5. The

calculation of the bandedness is based on a wavelet transformation [79]. The transformation
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of the pattern I(y) is given by

Î(x, θ, l) =

∫
d2y I(y)Ψx,θ,l(y) , (A-13)

where the wavelet at position x, orientation θ, and scale l is given by

Ψx,θ,l(y) = l−1Ψ

(
Ω−1(θ)

y − x

l

)
, (A-14)

with the anisotropic Gaussian

Ψ(x) = exp

(
−1

2
xT

(
1 0

0 σ2y

)
x

)
eıkΨx, (A-15)

and the rotation matrix Ω(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. With the use of the wavelet coefficients

Î we first calculate the average wavelength Λ of the pattern. Here we use an isotropic wavelet

(σy = 1) with about seven lobes, kΨ = (7, 0). The orientation averaged modulus is given by

I =

∫ π

0

dθ

π
|Î(x, θ, l)| . (A-16)

The scale l that maximizes I is determined by l = argmax(I). The column spacing finally is

given by Λ(x) = lΛΨ with ΛΨ = 2π/|kΨ|. The mean column spacing is given by Λ = 〈Λ(x)〉x.
Next we calculate the bandedness of the pattern. For the degree of anisotropy we take σy = 1.5

and a wavelet with about two lobes, kΨ = (2, 0). The orientation dependence of the wavelet

coefficient is given by

s′(x) =

∫ π

0
dθ|Î(x, θ)|2e2ıθ/

∫ π

0
dθ|õ(x, θ)|2 . (A-17)

The local average of this quantity is given by

s(x) =

∫
d2x′s′(x′)K(x′ − x)/

∫
d2x′K(x′ − x) , (A-18)

with the kernel K(x) = 1
2πσ2

e−x2/2σ2 . The width is chosen as σ = 1.3〈Λ(x)〉x. The local

bandedness is given by the absolute value |s(x)| and the mean bandedness is given by the

spatial average b = 〈|s(x)|〉x.

A.5. Fifth order coupling coefficients

Here we list the coupling coefficients of the fifth order amplitude equations Eq. (6.16).

giii = 0

giii− = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~ki~x, eı

~ki~x], e−ı
~ki~x, e−ı

~ki~x
]
+
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N3

[
e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, eı

~ki~x, eı
~ki~x], e−ı

~ki~x
])

giij = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~ki~x, e−ı

~kj~x], eı
~kj~x, e−ı

~ki~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, eı
~ki~x, e−ı

~kj~x], e−ı
~ki~x
])

gii−i− = e−ı
~ki~xN3

[
e−ı

~ki~x, e−ı
~ki~x, (L̂0)−1N3[e

ı~ki~x, eı
~ki~x, eı

~ki~x]
]

gijj = e−ı
~ki~xN3

[
eı
~kj~x, eı

~kj~x, (L̂0)−1N3[e
−ı~kj~x, e−ı

~kj~x, eı
~ki~x]
]

gijj− = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, eı

~kj~x], e−ı
~kj~x, e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, eı

~kj~x], e−ı
~kj~x, e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, e−ı

~kj~x], eı
~kj~x, eı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, e−ı

~kj~x], eı
~kj~x, eı

~kj~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~ki~x, eı

~kj~x, eı
~kj~x], e−ı

~kj~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~ki~x, eı
~kj~x], e−ı

~kj~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, e−ı

~kj~x], eı
~kj~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, e−ı

~kj~x], eı
~kj~x
])

gii−j = e−ı
~ki~x
(
N3

[
e−ı

~ki~x, eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, eı

~ki~x]
]
+

N3

[
eı
~kj~x, e−ı

~ki~x, (L̂0)−1N3[e
−ı~kj~x, eı

~ki~x, eı
~ki~x]
]
+

N3

[
e−ı

~ki~x, eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, eı

~ki~x]
]
+

N3

[
eı
~kj~x, e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, e−ı

~kj~x, eı
~ki~x]
]
+

N3

[
e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, eı

~kj~x, eı
~ki~x], e−ı

~kj~x
]
+

N3

[
e−ı

~ki~x, (L̂0)−1N3[e
ı~kj~x, eı

~ki~x, eı
~ki~x], e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, eı

~ki~x], e−ı
~ki~x, e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, eı

~ki~x], e−ı
~ki~x, e−ı

~kj~x
])

gijk = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, e−ı

~kk~x], eı
~kk~x, e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, e−ı

~kk~x], eı
~kk~x, e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kk~x, e−ı

~kj~x], eı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kk~x, eı
~ki~x, e−ı

~kj~x], eı
~kj~x, e−ı

~kk~x
]
+
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N3

[
eı
~kk~x, (L̂0)−1N3[e

ı~ki~x, eı
~kj~x, e−ı

~kk~x], e−ı
~kj~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, eı
~kk~x, e−ı

~kj~x], e−ı
~kk~x
]
+

N3

[
eı
~kk~x, (L̂0)−1N3[e

ı~kj~x, eı
~ki~x, e−ı

~kk~x], e−ı
~kj~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~kk~x, eı
~ki~x, e−ı

~kj~x], e−ı
~kk~x
]
+

N3

[
eı
~kj~x, eı

~kk~x, (L̂0)−1N3[e
−ı~kj~x, e−ı

~kk~x, eı
~ki~x]
]
+

N3

[
eı
~kk~x, eı

~kj~x, (L̂0)−1N3[e
−ı~kk~x, e−ı

~kj~x, eı
~ki~x]
]
+

N3

[
eı
~kj~x, eı

~kk~x, (L̂0)−1N3[e
−ı~kk~x, e−ı

~kj~x, eı
~ki~x]
]
+

N3

[
eı
~kk~x, eı

~kj~x, (L̂0)−1N3[e
−ı~kj~x, e−ı

~kk~x, eı
~ki~x]
])

giij− = giij(~kj → −~kj), gij−j− = gijj(~kj → −~kj), gii−j− = gii−j(~kj → −~kj)

fiii = fiij = fiij− = 0

fijj = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~kj~x, eı

~ki~x], e−ı
~kj~x, e−ı

~kj~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~kj~x, eı
~ki~x], e−ı

~kj~x
]
+

N3

[
eı
~kj~x, eı

~kj~x, (L̂0)−1N3[e
ı~ki~x, e−ı

~kj~x, e−ı
~kj~x]
]
+

N3

[
eı
~kj~x, eı

~kj~x, (L̂0)−1N3[e
−ı~kj~x, eı

~ki~x, e−ı
~kj~x]
])

fiji− = e−ı
~ki~x
(
N3

[
e−ı

~ki~x, eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, eı
~ki~x, e−ı

~kj~x]
]

N3

[
eı
~kj~x, e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, eı

~ki~x, e−ı
~kj~x]
]
+

N3

[
e−ı

~ki~x, e−ı
~kj~x, (L̂0)−1N3[e

ı~ki~x, eı
~ki~x, eı

~kj~x]
]
+

N3

[
e−ı

~kj~x, e−ı
~ki~x, (L̂0)−1N3[e

ı~ki~x, eı
~ki~x, eı

~kj~x]
])

fiji = e−ı
~ki~x
(
N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, eı

~ki~x], e−ı
~kj~x, e−ı

~ki~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, eı

~ki~x], e−ı
~kj~x, e−ı

~ki~x
]
+

N3

[
(L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, eı

~ki~x], eı
~kj~x, e−ı

~ki~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, eı

~ki~x], eı
~kj~x, e−ı

~ki~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~ki~x, eı
~ki~x], e−ı

~ki~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~ki~x, eı

~kj~x, eı
~ki~x], e−ı

~ki~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, eı

~ki~x], e−ı
~ki~x
]
+
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N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, eı

~ki~x], e−ı
~ki~x
])

fijk = e−ı
~ki~x
(
N3

[
eı
~kk~x, eı

~kj~x, (L̂0)−1N3[e
−ı~kk~x, eı

~ki~x, e−ı
~kj~x]
]
+

N3

[
eı
~kj~x, eı

~kk~x, (L̂0)−1N3[e
−ı~kk~x, eı

~ki~x, e−ı
~kj~x]
]
+

N3

[
eı
~kk~x, eı

~kj~x, (L̂0)−1N3[e
ı~ki~x, e−ı

~kk~x, e−ı
~kj~x]
]
+

N3

[
eı
~kj~x, eı

~kk~x, (L̂0)−1N3[e
ı~ki~x, e−ı

~kk~x, e−ı
~kj~x]
]
+

N3

[
eı
~kk~x, e−ı

~kj~x, (L̂0)−1N3[e
−ı~kk~x, eı

~ki~x, eı
~kj~x]
]
+

N3

[
e−ı

~kj~x, eı
~kk~x, (L̂0)−1N3[e

−ı~kk~x, eı
~ki~x, eı

~kj~x]
]
+

N3

[
eı
~kk~x, e−ı

~kj~x, (L̂0)−1N3[e
ı~ki~x, e−ı

~kk~x, eı
~kj~x]
]
+

N3

[
e−ı

~kj~x, eı
~kk~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kk~x, eı

~kj~x]
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~kk~x, e−ı
~kj~x, eı

~ki~x], e−ı
~kk~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~kk~x, eı

~ki~x], e−ı
~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kk~x, eı

~kj~x, eı
~ki~x], e−ı

~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~kk~x, eı
~ki~x], e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kk~x, e−ı
~kj~x, eı

~ki~x], eı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

−ı~kj~x, eı
~kk~x, eı

~ki~x], eı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kk~x, eı
~kj~x, eı

~ki~x], e−ı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~kk~x, eı

~ki~x], e−ı
~kj~x, e−ı

~kk~x
])

fijj− = fijj(~kj → −~kj),

f̃iii = f̃ijj = f̃iji = 0

f̃iij = e−ı
~ki~x
(
N3

[
e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, eı

~ki~x, e−ı
~kj~x], eı

~kj~x
]
+

N3

[
e−ı

~ki~x, (L̂0)−1N3[e
ı~ki~x, eı

~ki~x, eı
~kj~x], e−ı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~ki~x, e−ı

~kj~x], e−ı
~ki~x, eı

~kj~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~ki~x, eı

~kj~x], e−ı
~ki~x, e−ı

~kj~x
])

f̃ijk = e−ı
~ki~x
(
N3

[
eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, eı

~kk~x], e−ı
~kk~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, eı

~kk~x], e−ı
~kk~x
]
+
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N3

[
eı
~kj~x, (L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, e−ı

~kk~x], eı
~kk~x
]
+

N3

[
eı
~kj~x, (L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, e−ı

~kk~x], eı
~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~ki~x, eı
~kk~x], e−ı

~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~ki~x, eı

~kj~x, eı
~kk~x], e−ı

~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~kj~x, eı

~ki~x, e−ı
~kk~x], eı

~kk~x
]
+

N3

[
e−ı

~kj~x, (L̂0)−1N3[e
ı~ki~x, eı

~kj~x, e−ı
~kk~x], eı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, eı

~kk~x], eı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, eı

~kk~x], eı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

−ı~kj~x, eı
~ki~x, e−ı

~kk~x], eı
~kj~x, eı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, e−ı
~kj~x, e−ı

~kk~x], eı
~kj~x, eı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, eı

~kk~x], e−ı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, eı

~kk~x], e−ı
~kj~x, e−ı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~kj~x, eı
~ki~x, e−ı

~kk~x], e−ı
~kj~x, eı

~kk~x
]
+

N3

[
(L̂0)−1N3[e

ı~ki~x, eı
~kj~x, e−ı

~kk~x], e−ı
~kj~x, eı

~kk~x
])
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[60] K. Ohki, S. Chung, P. Kara, M. Hübener, T. Bonhoeffer, and R. C. Reid, Highly ordered

arrangement of single neurons in orientation pinwheels, Nature 442(24), 925 (2006).

[61] N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys.

51(3) (1979).

[62] K. Obermayer and G. G. Blasdel, Singularities in Primate Orientation Maps, Neural

Computation 9, 555–575 (1997).

[63] S. C. Rao, L. J. Toth, and M. Sur, Optically imaged maps of orientation preference in

primary visual cortex of cats and ferrets, J. Comp. Neurol. 387, 358–370 (1997).

[64] T. Müller, M. Stetter, M. Hübener, F. Sengpiel, T. Bonhoeffer, I. Gödeke, B. Chap-
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[112] F. Hoffsümmer, F. Wolf, T. Geisel, S. Löwel, and K. E. Schmidt, Sequential bifurcation

of orientation– and ocular dominance maps, page 535, Paris, 1995, EC2 & Cie.

184



Bibliography
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