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Abstract

The measurement of line broadening in cool stars is, in general, a difficult task. In order to detect
slow rotation or weak magnetic fields, an accuracy of 1 km s−1 is needed. In this regime, the
broadening from convective motion becomes important. Molecular FeH provides a large number
of sharp and isolated absorption lines that can be used to measure the afore mentioned quantities
with high accuracy.

I present an investigation of the velocity fields in early to late M-type star hydrodynamic
models, and I simulate their influence on FeH molecular line shapes. The M star model parameters
range between log g of 3.0 − 5.0 and effective temperatures from 2500 K to 4000 K. These
results can then be applied on a large sample of FeH lines in order to use their full potential in
characterising the atmospheres of cool stars.

My aim is to investigate the Teff - and log g-dependence of the velocity fields and express them
in terms of micro- and macro-turbulent velocities in the one dimensional sense. I present a direct
comparison between 3D hydrodynamical velocity fields and 1D turbulent velocities. The velocity
fields strongly affect the line shapes of FeH, and it is one of the goals to give a rough estimate
of the log g and Teff parameter range in which 3D spectral synthesis is necessary and where 1D
synthesis suffices. I distinguish between the velocity-broadening from convective motion and the
rotational- or Zeeman-broadening in M-type stars which is planned to be measured. For the
latter, FeH lines are an important indicator. I also provide an FeH atlas for M-type stars in the
spectral region from 986 nm to 1077 nm (Wing-Ford band). This atlas can be used to identify
and characterise FeH lines in spectra of cool stars in the investigated region, where most of their
flux is emitted. I also show how this large number of lines can be used to determine effective
temperatures and detect magnetically sensitive lines.

In order to calculate M-star structure models, I employ the 3D radiative-hydrodynamics
(RHD) code CO

5
BOLD. The spectral synthesis in these models is performed with the line synthesis

code LINFOR3D. The 3D velocity fields are described in terms of Gaussian standard deviations
and are projected onto the line of sight to include geometrical and limb-darkening effects. The
micro- and macro-turbulent velocities are determined with the “curve of growth” method and
the convolution with a Gaussian velocity profile, respectively. To characterize the log g and Teff

dependence of FeH lines, the equivalent widths, line widths, and line depths are examined.

In order to create the FeH atlas, the FeH lines were identified in a CRIRES spectra of the
magnetically inactive, slowly rotating, M5.5 dwarf GJ1002. I calculated model spectra for the
selected spectral region with theoretical FeH line data in order to compare them with the ob-
servations. In general, this line list agrees with the observed data, but several individual lines
differ significantly in position or in line strength. After the identification of as many FeH lines as
possible, I corrected the line data for position and line strength to provide an accurate atlas of
FeH absorption lines. For all lines, I used a Voigt function to obtain their positions and equiva-
lent widths. The identification with theoretical lines was done by hand. For confirmation of the
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identified lines, I used statistical methods, cross-correlation techniques, and line intensities. The
line intensities can be used to determine effective temperatures of the stars, either by using the
whole set of lines or only line ratios.

The velocity fields in M-stars strongly depend on log g and Teff . They become stronger with
decreasing log g and increasing Teff . The projected velocities from the 3D models agree within
∼ 100 m s−1 with the 1D micro- and macro-turbulent velocities. Correspondingly, the FeH line
quantities systematically depend on log g and Teff .

In the CRIRES spectrum of GJ1002, I was able to identify FeH lines from the (0, 0), (1, 0),
(1, 1), (2, 1), (2, 2), (3, 2), and (4, 3) vibrational bands and correct the positions of some lines. The
deviations between theoretical and observed positions follow a normal distribution approximately
around zero. In order to empirically correct the line strengths, I determined Teff , instrumental
broadening (rotational broadening) and a van der Waals enhancement factor for the FeH lines
in GJ1002. I also give the scaling factors for the Einstein A values to correct the line strengths.
With the identified lines, I derived rotational temperatures from the line intensities for GJ1002.
I was also able to use a pair of FeH lines to determine effective temperatures in a set of CES
spectra of M dwarfs. From synthetic spectra with these determined temperatures it was possible
to derive the stellar parameters surface gravity and metallicity.

I conclude that the influence of hydrodynamic velocity fields on line shapes of M-type stars
can well be reproduced with 1D broadening methods. FeH lines turn out to provide a means to
measure log g and Teff in M-type stars. Since different FeH lines all behave in a similar manner,
they provide an ideal measure for rotational and magnetic broadening.

I also conclude that FeH lines can be used for a wide variety of applications in astrophysics.
With the identified lines it is possible, for example, to characterize magnetically sensitive or very
temperature sensitive lines, which can be used to investigate the atmospheres of M-type stars.
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Every Man and Every Woman is a Star 1
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Chapter 1

Introduction

Most of our knowledge about stars comes from spectroscopic investigation of atomic or molecular
lines. In Sun-like and hotter stars, the strength and shape of atomic spectral lines provides
information on atmospheric structure, velocity fields, rotation, magnetic fields, etc. Measuring
the effects of velocity fields on the shape of spectral lines requires a spectral resolving power
between R ∼ 10, 000 (∆v = 30 kms−1) for rapid stellar rotation, R ≥ 30, 000 (∆v = 10 km s−1)
for slower rotation and high turbulent velocities, and resolution on the order of R ∼ 100, 000 for
the analysis of Zeeman splitting and line shape variations due to slow convective motion.

In slowly rotating Sun-like stars, usually a large number of relatively isolated spectral lines
are available for the investigation of Doppler broadened spectral lines. These lines are embedded
in a clearly visible continuum allowing a detailed analysis of individual lines at high precision. At
cooler temperatures, the number of atomic lines increases so that more and more lines become
blended, rendering the investigation of individual lines more difficult.

At temperatures around 4000 K, molecular lines, predominantly VO and TiO, start to become
important. At optical wavelengths, molecular bands in general consist of many lines that are
blended so that the absorption mainly appears as an absorption band; individual molecular lines
are difficult to identify. At temperatures in the M type star regime (4000 K and less), atomic
lines start to vanish because atoms are mainly neutral and higher ionization levels are weakly
populated. Only alkali lines that are strongly affected by pressure broadening appear. Thus,
the detailed spectroscopic investigation of velocity fields in M dwarfs is very difficult at optical
wavelengths and one has to go in the near infra red, where M-type stars become brightest and a
lot of molecular bands provide a large number of narrow and well isolated lines.

1.1 M-type Stars

The spectral class of M-type stars is characterized by the appearance of TiO bands in early M
stars and of VO bands in late M stars, since TiO bands become saturated (Bessell, 1991). An
illustrative overview is given in Kirkpatrick et al. (1991), who also introduced a calibration based
on the relative strengths of spectral features in the range 630 nm – 900 nm and the overall spectral
slope across these wavelengths. Bessell (1991) used color-color diagrams in the range of the TiO
and VO bands to define a classification of M dwarfs. From those color-color diagrams, which can
be translated into Hertzsprung-Russel diagrams, it is possible to derive effective temperatures of
these stars. M star effective temperatures range from ∼ 4 000 K for early M stars down to 2 500 K
for late M stars. With the knowledge of the distance of the star, it is possible to interfere radii
from effective temperatures and measured luminosities. A more approximately way, but easier is
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to match black bodies to the spectral energy distribution of the stars. The obtained radii of M
dwarfs, range from ∼ 0.6R⊙ for early M dwarfs, to ∼ 0.1R⊙ for late ones. The masses of M stars
are very difficult to obtain and only a few are known so far. Most of them were derived from their
motion in a binary system and range from ∼ 0.6M⊙ for early M stars, to less then ∼ 0.1M⊙ for
late M stars. The latter value almost approaches the hydrogen burning limit and these stars are
close to the brown dwarf regime (Reid & Hawley, 2005).

The mass range that defines M-type stars is also the range in which a substantial transition in
atmospheric structure takes place. The early M dwarfs exhibit a partly convective atmosphere and
become fully convective towards later type stars (Kippenhahn & Weigert, 1990). The transition
approximately takes place around spectral type M4 (but it also depends on the evolutionary
stage of the star). It is interesting how this change of stellar structure affects other quantities like
(differential) rotation or activity. The latter one becomes very significant towards late M dwarfs.
Where only 0.8 % of M0 dwarfs show Hα emission (which is an indicator for magnetic activity),
more than 70 % of the M8 dwarfs show signs of magnetic activity (Reid & Hawley, 2005). The
connection between rotation and activity in these cool stars has been investigated by several
authors in the last years (e.g. Basri et al., 1996; Simon, 2001; Messina et al., 2001).

The rotation-activity connections shows, that activity saturates at large rotational veloci-
ties. The saturation velocities depend on the spectral type: it is about 30 km s−1 for G-type
stars, and only about 5 kms−1 for M dwarfs (Reiners, 2007). For such slow rotational velocities,
the distinction between different broadening mechanisms, like magnetic-, pressure-, Doppler-, or
turbulent-broadening, becomes difficult. Due to this, a set of narrow and well isolated spectral
features is needed.

Because M-type stars emit the bulk of their flux at infrared wavelengths redward of 1µm,
observation of high SNR spectra is in principle easier in the infrared. Furthermore, M type
stars exhibit a number of molecular absorption bands in the infrared, for example FeH . In
these bands, the individual lines are relatively well separated and provide a good tracer of stellar
velocity fields. The lines are intrinsically much narrower than atomic lines in sun-like stars because
Doppler broadening, due to the temperature related motion of the atoms and molecules, is much
reduced because of their higher masses. The latter fact is also the reason for a reduced pressure
broadening, since the impact of the perturbers is smaller on molecules. Thus, the lines can be
used for the whole arsenal of line profile analysis that has been applied successfully to Sun-like
stars over the last decades.

1.2 Molecular FeH Absorption

The FeH molecule provides a particularly large number of strong and well isolated lines in the
z-band (∼ 990–1080 nm). It is the main opacity contributor in this region for late-type dwarf
stars, and can be used for high-precision spectroscopy. FeH provides numerous unblended lines
that are sufficiently narrow to measure small broadening effects or variations in the line position.

Wing & Ford (1969) first discovered the molecular band around 991 nm in the spectra of the
cool dwarf Wolf 359. This band was also found in S-type stars (Wing, 1972) and was identified
as the (0, 0) vibrational band of the FeH molecule by Nordh et al. (1977). An extensive analysis
was carried out by Phillips et al. (1987). They identified seven vibrational bands of the 4∆ −4

∆ electronic transition of the FeH molecule and provided tables with molecular constants and
quantum numbers. An important theoretical work, partly based on the previous one, was carried
out by Dulick et al. (2003). They computed a line list for the F 4∆ −X4∆ electronic transition
and provided extensive tables of molecular data with quantum numbers and line intensities.
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FeH absorption bands have also been detected in the J- and H-band with medium resolution
spectra (Cushing et al., 2003). In the H-band the E4Π − A4Π electronic transition is visible
(Hargreaves et al., 2010). That FeH can be used to determine effective temperatures was shown,
for example, by Schiavon et al. (1997) and will be shown also in this work. Its potential to measure
magnetic field strengths was demonstrated by Reiners & Basri (2006, 2007). Theoretical work on
the magnetic sensitivity of FeH was published by Afram et al. (2007, 2008).

Examples of analyses using FeH lines are the investigation of the rotation activity-connection
in field M-dwarfs, which requires the measurement of rotational line broadening with an ac-
curacy of 1 km s−1 (Reiners, 2007). Another example is the measurement of magnetic fields
comparing Zeeman broadening in magnetically sensitive and insensitive absorption lines (see
e.g. Reiners & Basri, 2006). A precise analysis of FeH lines, however, is only possible if the
underlying velocity fields in the M dwarf atmospheres are thoroughly understood, a point also
investigated in this work.

1.3 Goals of this Work

This dissertation is basically theoretical work, since most of the investigations and results are
based on theoretical atmosphere models and synthetic line formation.

Because M-type stars have convective atmospheres, this must be included in any modelling.
This is most realistically done in terms of Radiative Hydrodynamics (RHD), which is the title
and the content of the next chapter in which a rough overview of the basic equations of hydrody-
namics and radiative transfer is given. The equations of hydrodynamics describe the motion of a
fluid, those of radiative transfer, a radiative field and its interactions with the surroundings. Both
have to be coupled in the case of a moving, radiating fluid. These equations are the background
of atmosphere or line formation codes, which will be described in the chapter Atmosphere and

Line Formation Codes. That will be in particular the CO
5
BOLD code, which simulates small

boxes of atmospheres (solar and stellar) in three dimensions. It is able to describe convective
motions purely from the interaction of voxels (volume pixels) with each other inside the model
cube. The results from these simulations can be compared to one dimensional atmospheres which
are also described in this chapter. For the generation of model spectra, I used codes which can
compute line formation in one and three dimensional atmospheres, depending on the application.

Since the main focus in this work will be on the FeH molecular lines as a tool to explore M
star atmospheres, I also give an overview of the theoretical description of diatomic molecules.
The chapter Spectroscopy of Diatomic Molecules contains the basic ideas and equations of
rotational, vibrational, and electronic spectroscopy. In general these are combined into rovibronic
transitions, which is also the case for FeH . In the chapter The FeH Molecule, I describe and
derive necessary quantities to compute spectra of it.

With these tools at hand, it is possible to approach the first goal of this work, which is
the investigation of the Velocity fields in M-type stars. In this chapter, a set of 3D M star
atmosphere models are investigated. The models vary in effective temperature and surface gravity
in order to span a wide range of stellar parameters. The atmospheric structure of these models
is described as well as the resulting velocity fields. The velocity field from the RHD models
is then compared with the spectroscopic quantities micro- and macro-turbulent velocities. The
latter describes the broadening by convective motion. It will be the question if the use of micro-
and macro-turbulent velocities in one dimensional atmospheres resample the effect of the three
dimensional velocity fields on line shapes.
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The second goal is to study the effect of different stellar parameters and the related veloc-
ity fields on FeH lines and is investigated in the chapter Teff- and log g-dependence of FeH
molecular lines. The line quantities of interest are the equivalent width, line width, and line
depth. To be not dependent on a certain line, a set of ten lines with different quantum numbers
have been chosen.

After the characterisation of a set of FeH lines, the third goal is the identification of as
much as possible FeH lines in high resolution spectra of GJ1002. GJ1002 is a M5.5 dwarf and
exhibits a very weak magnetic field and very slow rotation. This makes it an ideal target to
compare synthetic FeH spectra to the observations. The investigated region range from 990 nm
to 1076.6 nm. With the identified lines, an atlas of this region with a corrected theoretical line
list has been created, all described in the chapter Line by Line Identification of FeH in the

z-band.
The fourth and last goal of this work was to apply the identified FeH lines to derive sev-

eral stellar parameters. In the chapter Temperature Estimations using FeH, I show how line
intensities of a large number of FeH lines can be used to explore the temperature of M dwarf atmo-
spheres. As an alternative, the line ratios of FeH line pairs can also be used to determine effective
temperatures of M dwarfs. Using results from the latter method, I compute M dwarf spectra and
compare them with observations in order to determine surface gravities and metallicities of the
stars.

The FeH lines can also be applied to determine magnetic fields in M stars. Because some FeH
lines are sensitive to Zeeman splitting and others not, one can use the insensitive lines to match
the stellar parameters and the sensitive lines to determine the magnetic field strength. In the
chapter Magnetically Sensitive FeH lines: An Outlook, I will show how to detect sensitive
lines and investigate their dependence on rotational quantum number and Ω. Finally I compute
spectra including the effect of magnetic fields and compare the results with the observations.



Chapter 2

Radiative Hydrodynamics

In this chapter I introduce the basic concepts of radiative hydrodynamics applied to stellar atmo-
spheres. One can consider the gaseous atmosphere of a star as a radiating fluid. The motion of
this fluid is described by equations of hydrodynamics, and its radiation by equations of radiative
transfer. Both sets of equations have to be coupled to account for the exchange of energy in form
of heat, momentum and radiation.

2.1 Hydrodynamics

In order to describe the simplified basic equations of hydrodynamics, I will follow Mihalas (1999).

2.1.1 Reference Frames

For the motion of the fluid, a description in two different frames of reference is possible:

1. The Eulerian description, in which the flow is viewed from a fixed laboratory frame. Here,
any property α of the fluid can be considered as a function of position x and time t,

α = α(x, t). (2.1)

Variations in space and time are then given by the derivatives (∂/∂xi) and (∂/∂t), respec-
tively.

2. In the Lagrangian description, one studies the time variations of any quantity of a particular
fluid parcel, while following its motion. These variations of the properties with time are
described by the fluid-frame time derivative (D/Dt).

Both reference frames are connected via

Dα

Dt
=

∂α

∂t
+ (v · ∇)α. (2.2)

2.1.2 Equation of Continuity

If one considers a material volume element in the Lagrangian description, then it is composed,
by definition, always of the same number of particles. Hence, the mass which is contained within
the volume Υ , must be the same for any time. That can be expressed by

D

Dt

∫

Υ

ρdV ≡ 0. (2.3)
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I.e. the mass of this element is conserved. Applying Reynolds transport theorem, one finds that
∫

Υ

[

Dρ

Dt
+ ρ(∇ · v)

]

dV = 0, (2.4)

and since the material volume can be regarded as arbitrary, the integral will only vanish if the
integrand vanishes and hence,

Dρ

Dt
+ ρ(∇ · v) = 0. (2.5)

This is the equation of continuity in the Lagrangian frame. Using equation (2.2) gives the result
in the Eulerian description,

∂ρ

∂t
+∇(ρv) = 0. (2.6)

If the flow would be independent of time (steady flow), then

∇(ρv) = 0. (2.7)

2.1.3 Equation of Momentum

If one considers a material volume Υ , which is fully surrounded by the fluid, i.e. all surfaces lies
entirely within the fluid, then all momenta generated by forces which act on the surfaces, have to
be conserved (conservation of linear momentum). From this follows, that the change of the total
momentum with time, has to equal the total force acting on the material element. This can be
expressed as,

D

Dt

∫

Υ

ρvdV =

∫

Υ

fdV +

∫

Σ

tdS. (2.8)

The integral over the volume accounts for body forces f like gravity, and the integral over a surface
Σ accounts for surface forces t like pressure. After some algebra one derives Cauchy’s equation
of motion,

ρ(Dv/Dt) = f +∇ ·T. (2.9)

No special assumptions about the physical mechanism producing the stress are made in deriving
this equation. Due to this, it is more general than Euler’s equation of motion which will be derived
in the following. T in equation (2.9) is a second rank tensor, calls the stress tensor. It reduces
to the pressure gradient −∇p in case of an “ideal fluid”. That means that no viscous forces (e.g.
friction) are present in the fluid. However these viscous forces are very important in computing
stellar atmospheres, but for the sake of simplicity they will be not regarded in deriving these
equations of hydrodynamics. But one should keep in mind that these forces have to considered
in realistic simulations. In the case of a radiating fluid, the pressure consists of both, gas- and
radiation pressure. The latter is in most cases small in late-type stars, but becomes significant
towards hotter stars or AGB stars. In the latter, the strong winds are driven by radiation pressure.
For the ideal fluid one obtains Euler’s equation of motion,

ρ(Dv/Dt) = f −∇p, (2.10)

which is the conservation of momentum in the Lagrangian frame. In the Eulerian frame equa-
tion (2.10) becomes,

∂ρv

∂t
+ ρ(v · ∇)v +∇p− f = 0. (2.11)
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Hydrostatic Equilibrium

If one considers a static medium, where v = 0 and also the acceleration a = 0, equation (2.10)
becomes,

∇p = f . (2.12)

That means, that the pressure stratification is determined by the acting body force, which is in
general the gravitation f = −ρg. g is the acceleration vector pointing in a certain direction. In
an homogeneous plane parallel atmosphere g = (0, 0,−g) and hence equation (2.12) becomes

dp/dz = −ρg. (2.13)

The solution of equation (2.13) for an isothermal atmosphere is,

p = p0e
−(z−z0)/H ,

(2.14)

or if one solves for the density,

ρ = ρ0e
−(z−z0)/H . (2.15)

The pressure scale height,

H = −p
dz

dp
= − dz

d ln p
, (2.16)

was introduced in equation (2.15). It describes the length scale over which the pressure changes
locally, and is on the order of ∼ 100 km in the Sun’s atmosphere and can be a few thousand
kilometers in early-type stars, or a few tens of kilometers in late-type stars.

2.1.4 Equation of total Energy

The conservation of energy can be built up from the First Law of thermodynamics, which states:

The rate at which the energy E of a material element increases, must equal the rate at which
heat Q is delivered to that element and the work W which is done against its surrounding,

dE = dQ + dW. (2.17)

In the context of hydrodynamics it goes beyond thermodynamics, and includes also gravitational
and kinetic energy. It can be written as,

D

Dt

∫

Υ

ρ(e +
1

2
v2)dV =

∫

Υ

f · vdV +

∫

Σ

t · vdS −
∫

Σ

q·dS. (2.18)

The left hand side term is the rate of change of the internal energy e plus kinetic energy of the
material element. The first two terms on the right hand side represent the work which is done
by external body forces and fluid stresses, respectively. The last term accounts for the rate of
energy loss out of the fluid element which is caused by direct transport mechanisms like radiation.
This is a heating rate Qrad, described by the divergence of the flux, which is negative since it is
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directed outwards through the surface and the heat is lost from the volume element. After some
algebra, equation (2.18) becomes for an ideal fluid,

ρ
D(ǫik)

Dt
+∇ · (pv) + Qrad = f · v. (2.19)

This is the total energy equation in a Lagrangian description, where ǫik stands for the sum of
internal and kinetic energy. In the Eulerian description equation (2.19) becomes,

∂(ρǫik)

∂t
+∇ · [(ρǫik + p)v] + f · v −Qrad = 0. (2.20)

The derived equation accounts only for pure radiative hydrodynamics. If magnetic fields are also
present, one has to include the magnetic energy. These situations can be described by equations
of magneto-hydrodynamics (MHD) which is not treated in this work.

2.2 Radiative Transfer

The behaviour of a radiating medium can be described by a set of radiation terms and a description
for the transport of the radiation. I will give an overview of the different quantities following the
book of Gray (2008).

2.2.1 Specific Intensity

The specific intensity is one of the most basic quantities describing the radiation from a surface
element. For a volume, filled with radiating gas, the specific intensity of a small area ∆A is
defined as,

Iν = lim
∆Eν

cos θ ∆A ∆ω ∆t ∆ν

=
dEν

cos θ dA dω dt dν
. (2.21)

In the limes, the finite quantities become infinitesimally small. In equation (2.21), dω is the solid
angle, cos θ is the projection angle for the area dA, dt is the integrated time, and dν defines the
frequency range [ν, ν + dν]. dEν is the amount of energy emitted from the surface element.

2.2.2 Mean Intensity

The first moment of the intensity is defined as the mean intensity Jν . It is the average over the
angular direction,

Jν =
1

4π

∮

Iνdω. (2.22)

The integration is performed over the whole unit sphere, with the considered point as center. The
factor 4π results from the average.
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2.2.3 Flux

The flux is the measure of the net energy flow across an area dA, over time dt, and spectral range
dν in the unit sphere cos θ dω. Integration of dEν over the whole unit sphere yields the total net
energy that is needed to describe the same radiation in terms of the specific intensity.

Fν =

∮

dEν

dA dt dν
. (2.23)

The flux is related with the intensity via,

Fν =

∮

Iν cos θ dω. (2.24)

In general the flux is a three dimensional vector, but in the case of plane-parallel geometry, which
is used in the following, it is reduced to one dimension.

2.2.4 Radiative Pressure

The second moment of the intensity is defined as the integral

Kν =
1

4π

∮

Iν cos2 θ dω. (2.25)

This quantity Kν can be identified with the pressure of the radiation. One considers the momen-
tum which is transported by the photons to a solid wall per unit time and area.

dPν =
1

c

dEν cos θ

dt dA
, (2.26)

and this can also be related with the intensity through,

dPν =
Iν

c
cos2 θ dν dω. (2.27)

The total radiation pressure is then given by the integration of direction and frequency, which
relates it with the second moment Kν .

PR =
4π

c

∞
∫

o

Kν dν. (2.28)

In the three dimensional case, the radiation pressure would be a second rank tensor.

2.2.5 Optical Depth

If radiation passes trough a layer of non- or only weakly radiating material, then the beam of
intensity will be weakened by this layer. The amount of radiation dIν which is absorbed on a
path length dx, can be described with,

dIν = −κν ρ Iνdx. (2.29)

ρ is the density in mass per unit volume and κν is the important absorption coefficient, with units
of area per mass. In the absorption coefficient, two physical processes are considered:
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i) true absorption, where an absorber (atom, molecule) is excited by the energy of the photon,
which is consequently destroyed, and
ii) scattering, where the photon’s direction and / or energy is changed and hence removed from
the original radiation beam.
Since radiation is always confronted with a product of density and absorption coefficient over
a path length L, the very useful concept of the optical depth τν is appropriate to describe the
absorption processes.

τν =

L
∫

0

κν ρ dx, (2.30)

where τν is a unitless quantity. With the optical depth, equation (2.29) becomes,

dIν = −Iν dτν , (2.31)

and has the solution

Iν = I0
ν e−τν . (2.32)

The latter is a common extinction law with I0
ν as the original intensity which will be weakened

on its way through the material. It is obvious that, if τν ≪ 1, then radiation can easily and one
speaks of an optically thin layer. If τν ≫ 1, then almost all radiation is absorbed and the layer is
referred to as being optically thick.

2.2.6 Source Function

In the case of a radiating layer, the intensity will be enhanced by a certain amount which is given
by,

dIν = jνρ dx. (2.33)

Here, jν is the emission coefficient with units of erg/(s rad2Hz g). Again, two physical processes
contribute two the emission coefficient:
i) real emission, where a photon is created, and
ii) photons which were scattered in the considered direction.

Because, the ratio of emission and absorption has the same unit as the intensity, it can be can
thought of as the intensity emitted in a hot gas at some point. This ratio is also known as the
source function and is defined as,

Sν = jν/κν . (2.34)

There are two extreme cases where the source function can be computed easily:
i) pure isotropic scattering where

Sν = Jν , (2.35)

and
ii) pure absorption (which leads to the case of strict LTE in the next section), where the source
function can be identified with the Planck function,

Sν =
2hν3

c2

1

ehν/kT − 1
. (2.36)

In this case, the source function Sν of the Black Body radiation is often denoted as Bν .
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2.2.7 Stefan-Boltzmann Law

It is very convenient and useful to regard parts of stellar atmospheres as a radiating black body.
One assumes that a thin layer is isotropic and isothermal and in thermal equilibrium with in-
coming and outgoing radiation of its surroundings. This approximation is called ”Local Thermo-
dynamic Equilibrium” (LTE) and is a powerful assumption simplifying when considering stellar
atmospheres. One can imagine an atmosphere constructed of several thin layers which are all
for themselves in local thermodynamic equilibrium. For the physical description it is helpful to
introduce the concept of Einstein Coefficients.

Consider the spontaneous emission in a two level atom between upper and lower level (u and
l respectively) which is separated by the transition energy h/nu and assume the emission to be
isotropic. In such a system, the probability that the atom emit a photon with energy hν within
a time dt is Auldtdω, with Aul as the Einstein coefficient for spontaneous emission. The rate of
emission of Nu excited atoms is then,

dNu

dt
= −AulNu. (2.37)

If a radiation field is present, emission by an excited atom can also be induced by this field. This
process depends up on the intensity, so the probability is BulIνdt. The rate of this stimulated
emission is given by,

dNu

dt
= −BulIνNu. (2.38)

Here, Bul is the Einstein coefficient for stimulated emission. The probability for absorption is
defined in the same way and is BluIνdt with Blu as the Einstein coefficient for absorption. The
rate is,

dNu

dt
= BluIνNl, (2.39)

with Nl as the number of atoms in the lower state.
If the system is in thermal equilibrium, the rates of population and depopulation of the excited

state by absorption and emission respectively must balance each other (detailed balance). Thus,

NlBluIν = AulNu + BulIνNu. (2.40)

The upper and lower levels of an atom are populated following the Boltzmann law,

Nu

Nl
=

gu

gl
e−hν/kT , (2.41)

and the radiation through a thin atmospheric layer in LTE can be described by equation (2.40).
Solving equation (2.40) for Iν and use equation (2.41) gives

Iν =
Aul

(gl/gu)Bluehν/kT −Bul
. (2.42)

This expression must become the expression for the Rayleigh-Jeans approximation for small ν
(I = 2kTν2

c2
) and this is only possible if

Bul =
gl

gu
Blu and Aul =

2hν3

c2
Bul, (2.43)
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where gu and gl are upper and lower statistical weights, respectively. With the use of equa-
tion (2.43), equation (2.42) becomes,

Iν =
2hν3

c2

1

ehν/kT − 1
. (2.44)

In order to derive the flux, one integrates equation (2.24) with equation (2.44) over frequency.

F =

∞
∫

0

Fν dν =
2π2k4

15h3c2
T 4 = σT 4, (2.45)

where σ is the Stefan-Boltzmann radiation constant. With equation (2.45), the radiative pressure
PR becomes,

PR =
4σ

3c
T 4. (2.46)

2.2.8 Radiative Transfer Equation

The net amount of radiation through a layer in plane parallel geometry with path length ds is
given by the sum of absorption and emission,

dIν = −κν ρ Iν ds + jν ρ ds. (2.47)

This can be written under the use of the optical depth and the definition of the source function
as,

dIν

dτν
= −Iν + Sν . (2.48)

If the beam is considered under a certain angle θ, then equation (2.48) becomes

µ
dIν

dτν
= −Iν + Sν , (2.49)

with µ = cos θ and τ measured in vertical direction. The solution of this differential equation
of radiative transfer can be split in an outward directed part with intensity Iout

ν and an inward
directed parts with intensity Iin

ν ,

Iν(τν) = Iout
ν (τν) + Iin

ν (τν)

=

∞
∫

τν

Sν(τν)e
−(τν−tν)/µ dtν/µ

−
τν
∫

0

Sν(τν)e
−(τν−tν)/µ dtν/µ. (2.50)

In LTE, the source function Sν is given by the Planck function Bν . In the case of the stellar
surface, equation (2.50) becomes,

Iin
ν (0) = 0

Iout
ν (0) =

∞
∫

0

Sν(τν)e
−(τν−tν)/µ dtν/µ. (2.51)
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2.2.9 Radiative Equilibrium

Radiative equilibrium can express the conservation of energy (but is not essentially needed to
conserve the energy). It states, that inside a stellar atmosphere no sinks or sources where energy
is lost or generated are present. That means, that the divergence of the flux must be zero
everywhere in the photosphere. In plane parallel geometry, the divergence condition is,

d

dx
F (x) = 0 or F (x) = F0. (2.52)

That means that the total flux F0 must be independent of depth, which is the first condition
for radiative equilibrium. If also convective energy transport, in form of convective flux Φ(x), is
included, then the total flux is given by,

F (x) = Φ(x) +

∞
∫

0

Fν(x) dν. (2.53)

Another condition for radiative equilibrium stems from the transfer equation (2.49) in the form
of,

µ
dIν

dx
= κν ρ Iν − κν ρ Sν . (2.54)

Integration over solid angle and frequency also expressions for flux and mean intensity give,

Qrad = − d

dx

∞
∫

0

Fν(x) dν = −4π ρ

∞
∫

0

κν (Jν − Sν) dν. (2.55)

This describes the radiative heating rate Qrad, which is zero in the case of radiative equilibrium.
Qrad is very important in the treatment of radiation hydrodynamics, since there the condition
of radiative equilibrium is not fulfilled and Qrad enters the total energy conservation (see Sec-
tion 2.1.4).

2.3 Equation of State

In order to close the system of equations for radiation hydrodynamics, one needs relations between
the pressure P , temperature T , and density ρ. They are given by the thermodynamical properties
of the matter in form of an equation of state. A simple approximation is to describe the stellar
matter as a combination of an ideal gas and radiation. In this approximation, the specific inner
energy and the pressure can be described with,

P =
R

µ
ρ T +

4σ

3c
T 4 (2.56)

e =
3

2

R

µ
T +

4σ

c ρ
T 4 + Eion. (2.57)

R is the ideal gas constant and µ the mean molecular weight, which depends on the ionisation state
of the matter. Eion also includes the influence of ionisation and recombination of the different
elements. µ and Eion can be determined under the assumption of statistical equilibrium with the
Saha-Boltzmann equation.
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2.4 Convection

As remarked in section 2.2.9, convection can play a significant role in energy transport. Solar-type
stars exhibit a convectively unstable envelope and become fully convective towards late spectral
types (around M3 to M4 or masses < 0.25M⊙). For a better understanding under what conditions
convection sets in, one can assume a hydrostatic atmosphere. I will briefly explain the convective
mechanism following Kippenhahn (1990) and Gray (2008).

Convection sets in if the temperature gradient is not lowered sufficiently enough by radiative
energy transport, i.e. diffusion. In this case, a rising volume element can poss an excess of heat in
comparison to its surroundings. This element can transport the energy outwards, if it is optically
thick to prevent radiative energy loss to the surroundings.

The convective flux Φ can be described by

Φ = ρCpv∆T, (2.58)

where ρ is the density of the volume element, Cp is the specific heat at constant pressure, v is the
upward velocity, and ∆T is the temperature difference between the element and its surroundings.

For convection, three main conditions are required to occur: a gravitational field; horizontal
density fluctuations; and roughly hydrostatic conditions. A density fluctuation can be achieved if
a mass element is for some reason hotter than its surroundings. In this case, this element expands
and the difference of pressure inside the mass element and the surroundings will equalize with
the local velocity of sound cS , which is usually faster than other motions of the element. Due
to this, one can describe this as an adiabatic expansion. This means that the density decreases
with increasing volume and the element starts to rise upwards due to the force of buoyancy. The
question is now, if the density will be stay lower while the element passes higher, less dense,
layers, or in other words if the stratification is convectively stable or not. It will be unstable
if the density of the element decreases as rapidly (or even faster) as the average density of its
surroundings. That can be expressed by,

1

Γ1
=

(

d log ρ

d log p

)

e

>

(

d log ρ

d log p

)

s

. (2.59)

Here, Γ1 = d log p
d log ρ |S=const. is the first adiabatic exponent and e and s indicate the mass element

and its surrounding, respectively and capital S is the entropy which must be constant. With
an equation of state ρ = ρ(p, T, µ), where µ is the molecular weight, dependent on the chemical
composition, one can express equation (2.59) as

∇ > ∇e +
φ

δ
∇µ. (2.60)

Here the definitions,

∇ :=
d log T

d log p
|s,µ, ∇e :=

d log T

d log p
|e,µ, ∇µ :=

d log µ

d log p
|s,T (2.61)

and,

δ :=
d log ρ

d log T
|p,µ, φ :=

d log ρ

d log µ
|p,T , (2.62)
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are used. The subscripts indicate where the derivative with respect to pressure is taken and which
quantity is kept constant. In the adiabatic case, ∇e = ∇ad. If the energy is exclusively trans-
ported by radiation, then the actual temperature gradient ∇ is equal to the radiative temperature
gradient ∇rad. In this case, the stratification becomes unstable if

∇rad > ∇ad +
φ

δ
∇µ. (2.63)

This is known as the Ledoux criterion. The Schwarzschild criterion is obtained if the chemical
composition is homogeneous over the convective region ∇µ = 0. Then

∇rad > ∇ad, (2.64)

if the stratification is unstable. Since convection mixes the chemical stratification, ∇µ becomes
zero after some time convection sets in. A more general expression for the stability criterion is
derived using the entropy S. It is stable if

dS

dr
> 0, (2.65)

and unstable otherwise.
The energy transport by convection can be described in 1D atmosphere models by the use

of the Mixing-Length-Theory, derived by Böhm-Vitense (1958). In 3D modeling of stellar atmo-
spheres, convection results in a natural way from the equations of radiation-hydrodynamics.
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Chapter 3

Atmosphere and Line Formation
Codes

3.1 CO
5
BOLD Atmosphere Code

CO
5
BOLD is the abbreviation for “COnservative COde for the COmputation of COmpressible COn-

vection in a BOx of L Dimensions with L=2,3” (Freytag et al., 2008). It can be used to model
solar and stellar surface convection. In solar-like stars, a CO

5
BOLD model represents the 3D flow

geometry and its temporal evolution in a small (relative to the star’s radius) Cartesian domain
at the stellar surface (“box in a star” set-up). The spatial size of the domain is chosen to be
sufficient to include the dominant convective scales, i.e. the computational box is large enough to
include a number of granular cells at any instant in time. A CO

5
BOLD model provides a statistical

realization of the convective flow. In the following work, I usually average over five flow fields
taken at different instances in time (“snapshots”) to improve the statistics.

CO
5
BOLD solves the coupled non-linear time-dependent equations of compressible hydrody-

namics coupled to the radiative transfer equation in an external gravitational field in 3 spatial
dimensions. As set of independent quantities are chosen the mass density ρ, the three spatial
velocities vx, vy, and vz, and the internal energy ǫi. With these quantities, the 3D hydrodynamics
equations, including source terms due to gravity, are the mass conservation equation

∂ρ

∂t
+

∂ρvx

∂x
+

∂ρvy

∂y
+

∂ρvz

∂z
= 0, (3.1)

the momentum equation

∂

∂t





ρvx

ρvy

ρvz



+
∂

∂x





ρvxvx + P
ρvyvx

ρvzvx



+
∂

∂y





ρvxvy

ρvyvy + P
ρvzvy



+
∂

∂z





ρvxvz

ρvyvz

ρvzvz + P



 =





ρgx

ρgy

ρgz



 ,(3.2)

and the energy equation which includes the radiative heating term Qrad

∂ρǫik

∂t
+

∂(ρǫik + P )vx

∂x
+

∂(ρǫik + P )vy

∂y
+

∂(ρǫik + P )vz

∂z
= ρ(gxvx + gyvy + gzvz) + Qrad. (3.3)

ǫik denotes the sum of specific internal and kinetic energy. The gas pressure P is related to
the density ρ and internal energy ǫi via a (tabulated) equation of state P = P (ρ, ǫi). For the
local models used here the gravity field is given by the constant vector ~g = (0, 0,−g). (CO5

BOLD
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uses the convention that the vertical axis points upwards.) The radiative heating term Qrad

is obtained from the solution of the non-local frequency-dependent radiative transfer equation.
The frequency dependence of the radiation field is captured by considering a small number of
representative wavelength bands (“opacity binning”, see Ludwig et al., 2002, 2006). The resulting
3D radiative-hydrodynamic (RHD) models treat convection from basic physical principles and
avoid approximations like mixing-length theory.

3.2 MARCS and PHOENIX Atmospheres

MARCS
1 (Gustafsson et al., 2008) and PHOENIX

2 (Hauschildt & Baron, 1999) are both numerical
codes, which compute static, self consistent, one dimensional stellar atmospheres in plane parallel
or spherical geometry. Both use the opacity sampling method in which the opacity for each
wavelength is computed individually. Both include line data for a large number of known atomic
species and available molecules. They are able to compute atmospheres of early type stars down to
late type stars for a variety of surface gravities (from dwarfs to giants). MARCS model atmospheres
reach down to 2500 K, the PHOENIX models go even lower in the region where dust formation
becomes significant which can be handled. PHOENIX also describes atmospheres of extra solar
giant planets.

The MARCS atmosphere models are available for download on the MARCS homepage (see footnote
above) and the Phoenix models can be downloaded for example from the PHOENIX web simulater
homepage 3 (NextGen, AMES-Cond, and AMES-Dusty models, BT... .).

3.3 Line Formation Code LINFOR3D

LINFOR3D4 is a line formation code, which is in principle based on Baschek et al. (1966) but is
strongly revised to match up to date theory. It is able to perform the spectral synthesis on the
3 dimensional CO5

BOLD models in local thermodynamic equilibrium. It calculates the specific
intensity for a given number of horizontal positions, under a given number of solid angles. This
is then integrated to compute the flux. It takes also the velocity of each voxel (volume pixel)
into account and determines the resulting frequency shift. In this way, the spectral line will be
broadened by the actual velocity field in the hydrodynamical model and no additional assumptions
like the spectroscopic quantities micro- and macro-turbulence velocities are needed.

The code is also be able to perform line synthesis on 1 dimensional reference model atmo-
spheres. These can be averaged 3D models (which will be called 〈3D〉-models, see Sect. 6.1.1
for a detailed description), or 1D models like MARCS or Phoenix atmospheres. This gives the
opportunity to investigate the influence of three dimensional effects using comparisons between
spectral line synthesis performed on 1D and 3D atmosphere models.

The LINFOR3D code can automatically compute the equivalent width of a spectral line,

Wλ =

λ2
∫

λ1

(

Fc − Fλ

Fc

)

dλ, (3.4)

1http://marcs.astro.uu.se/
2http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
3http://phoenix.ens-lyon.fr/simulator/index.faces
4see http://www.aip.de/~mst/Linfor3D/linfor_3D_manual.pdf

http://marcs.astro.uu.se/
http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
http://phoenix.ens-lyon.fr/simulator/index.faces
http://www.aip.de/~mst/Linfor3D/linfor_3D_manual.pdf
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where Fc is the continuum flux, and Fλ the flux of the line in the range of [λ1, λ2]. The latter
should in principle extent over the whole region where the contribution of the whole absorption is
not zero. One can also generate a sequence of 〈3D〉-lines with varying micro-turbulence velocities
and produce a curve of growth (described in more detail in Sect. 6.2.3), which is helpful to
determine micro-turbulence velocities in the 3D models or to derive abundance corrections due
to hydrodynamical velocity fields.

In order to investigate the height of formation for the synthesized lines, LINFOR3D computes
contribution functions after the description of Magain (1986). They are very helpful in order to
decide if the formation region of the line is fully covered from integration of intensity over the
atmospheric model and to decide in which region the maximal line contribution stems from. In
general the code performs the line synthesis over a region ranging from log10 τmax = 2 up to
log10 τmin = −6 but these borders can be adjusted if necessary.

LINFOR3D is able to perform single line calculation, as well as multi line calculations. In
the latter case, the total line opacity for each wavelength point is calculated. In this way, the
code accounts for line blends. As input data, one needs a linefile, which includes values for the
species, lower level energy, wavelength, oscillator strength (log gf), and van der Waals broadening
constant. Optionally one can use also values for Stark and natural broadening which otherwise
will be calculated internally.

3.4 Line Formation Code SYNTH3 (SYNMAST)

The SYNTH3
5 (Kochukhov, 2007) code is a very fast spectrum synthesis code, designed for plane-

parallel one dimensional stellar atmospheres ranging from early B- to late M-type stars. The
input atmospheres have to be in “krz” format, which is equal to the ”mod” format by Kurucz. As
input data for the code, one has to use the VALD6 line list format. The SYNMAST code is basically
the SYNTH3 code, but is also able to compute Zeeman splitting for spectral lines.

5http://www.astro.uu.se/~oleg/files/synth3/synth3.pdf
6http://vald.astro.univie.ac.at/~vald/php/vald.php

http://www.astro.uu.se/~oleg/files/synth3/synth3.pdf
http://vald.astro.univie.ac.at/~vald/php/vald.php
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Chapter 4

Spectroscopy of Diatomic Molecules

In order to treat the spectra of molecules, it is necessary to solve the Hamiltonian for the system of
participating atoms and electrons. Since this is impossible in fully analytical form, the usage of the
Born-Oppenheimer-Approximation is of great advantage. Within this approximation, one is able
to describe the observed spectra in a satisfying way. The ’trick’ is to separates the electronic and
nuclear motion in the center of mass system. Then, one computes first the electron configuration
for a fixed positions in the center of mass system of the participating atoms of the molecule, and
then one can calculate the motion of the nuclei, which are rotation and vibration. I will give a
basic picture of the theoretical background which is needed to understand the observed spectra.
For this I will us the descriptions of Fliessbach (2000) and Bernath (2005).

4.1 General Treatment of Diatomic Molecules

The Hamiltonian of a diatomic molecule in the center of mass system is given by

H =
2
∑

k=1

−~
2

2Mk
∆k +

Z2e2

|R1 −R2|
+ Hel, (4.1)

where ∆k is the Laplace operator, Rk is the position of both nuclei, Mk their mass, e is the
elementary charge and Z is the valence number. Hel is the Hamiltonian of the electrons, which
is, in general,

Hel =

N
∑

ν=1

−~
2

2me
∆ν +

N
∑

ν=2

ν−1
∑

µ=1

e2

|rν − rµ|
−

N
∑

ν=1

2
∑

k=1

Ze2

|rν −Rk|
, (4.2)

with N number of electrons and rν as their position. To solve H one uses a product of wave
functions

Ψ(r1, ..., rN ,R1,R2) = ΨK(R1,R2) · Ψel,Rk
(r1, ..., r2). (4.3)

What is left now, is a wave function for the electrons Ψel,Rk
for fixed coordinates of the nuclei and a

wave function for the nuclei ΨK , which can be further factorized into vibrational Ψv and rotational
Ψr contributions. This yields the total energy of the molecule is the sum of the contributions from
the electrons, vibrations and rotation.

Etotal = Eel + Ev + Er. (4.4)
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The excitation energies for the different transitions are about ∼ 0.01 eV for rotational transitions,
∼ 0.1 eV for vibrational transitions, and ∼ 3 eV for electronic transitions. The next step is to
construct a Hamiltonian from which one can determine the energies for the different transitions.

One uses equation (4.1) with Ψ so that

HΨ = HΨKΨel,Rk
=

(

2
∑

k=1

−~
2

2Mk
∆k +

Z2e2

|R1 −R2|
+ Eel(R)

)

ΨKΨel,Rk
, (4.5)

where it was implicitly used, that

HelΨel,Rk
(r1, ..., r2) = Eel(R)Ψel,Rk

(r1, ..., r2). (4.6)

Then HΨ = EΨ is reduced to HKΨK = EΨK and one can write HK in coordinates of the relative
motion and center of mass system,

R = R1 −R2, Rcm =
R1 + R2

2
, (4.7)

as

HK = − ~
2

2Mcm
∆Rcm −

~
2

2µ
∆R +

Z2e2

R
+ Eel(R). (4.8)

The reduced mass µ = M1+M2

2 is introduced as well as the total mass Mcm = M1 +M2. Since HK

commutes with the operator Pcm = −i~∇cm of the center of mass momentum, a wave function
ΨK as an Eigenfunction of Pcm can be found. This can again be factorized in a part for the
relative motion and one for the translative motion in the center of mass system.

ΨK = exp(iK ·Rcm)Φrel(R) = ΦcmΦrel, (4.9)

with K as the wave vector. Now, HKΨK = EΨK is reduced to H ′KΦrel = E′Φrel with

H ′K = − ~
2

2µ
∆R +

Z2e2

R
+ Eel(R)− Eel(∞) = − ~

2

2µ
∆R + V (R). (4.10)

The zero point energy is shifted using E′ = E− ~
2K2/2Mcm−Eel(∞), to include the translation

energy in this term. The contribution from the electrons and the coulomb forces from the repulsing
nuclei are combined into the potential V (R). This potential depends on the solution of the
electron system and is different for each electronic transition. H ′K also commutes with the angular
momentum operator l = r x p which makes it convenient to express the angular part of Φrel in
the spherical harmonics YLM (θ, φ),

ΨK = ΦcmΦL(R)YLM (θ, φ). (4.11)

The Laplace operator ∆ can be expressed in spherical coordinates which introduces the angular
momentum operator in spherical coordinates for which the Eigenvalues of the spherical harmonics
are well known. This leads to,

H ′K = − ~
2

2µ

(

∂2

∂R2
+

2

R

∂

∂R

)

+
~

2L(L + 1)

2µR2
+ V (R). (4.12)
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The potential V (R) can be approximated with a Taylor series to second order,

V (R) =
Z2e2

R
+ Eel(R)− Eel(∞) ≈ V (R0) +

µω2

2
(R−R0)

2, (4.13)

where ω is dependent on the electronic transition. The zero order term is the energy for the
electrons at R0 and the second term is the potential for the harmonic oscillator. This approx-
imation is valid for small deviations from the equilibrium position, but breaks down for larger
deviations. A more realistic potential is for example the Morse potential which is described in
more detail in section 4.3.1. A comparison between both is shown in Fig. 4.1. If a radial function

Figure 4.1: Comparison between Morse and harmonic oscillator potential.

U(R) = RΦL(R) is used, then
(

∂2

∂R2
+

2

R

∂

∂R

)

ΦL(R) =

(

∂2

∂R2
+

2

R

∂

∂R

)

U(R)

R
=

U ′′(R)

R
(4.14)

and the Hamiltonian looks like

H ′K = − ~
2

2µ

d2

dR2
+

µω2

2
(R−R0)

2 +
~

2L(L + 1)

2µR2
0

+ V (R0) (4.15)

Now equation (4.15) can be applied on equation (4.11) and ΦL(R) the Hermitian polynomials are
used, which are the solution for the harmonic oscillator. The energy E′ will be

E′ = Eel + ~ω

(

n +
1

2

)

+ BeL(L + 1) (4.16)
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with Be = ~2

2µR2
0

as the rotational constant. This is the energy for a molecular system which

vibrates and rotates for a specific electronic transition. In the following sections, I will describe
the energy levels in more detail.
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4.2 Rotational Spectroscopy

4.2.1 Selection Rules

In equation (4.16), the energy F (J) for the rotating molecule is given by

F (J) = BJ(J + 1) + ν0, (4.17)

where J is used instead of L for the rotational quantum number and ν0 is added for sum of
vibrational and electronic energy. I will now follow Bernath (2005) and determine the intensities
for the pure rotational transitions which are dependent on the selection rules for the transitions.
This is governed by the transition dipole moment

M =

∫

Y ∗J ′M ′µYJ ′′M ′′dτ = 〈J ′M ′|µ|J ′′M ′′〉, (4.18)

with dτ = sin θdθdφ The spherical harmonics for a linear molecule can be written as

YJM (θ, φ) = ΘJM (θ)eiMφ/
√

2π. (4.19)

For a diatomic molecule, the dipole moment is oriented along the internuclear axis, and one can
express its components in laboratory axis system as

µ = µxê1 + µyê2 + µz ê3 = µ0(sin θ cos φê1 + sin θ sin φê2 + cos θê3). (4.20)

If one also uses the relationships cos φ = (eiφ + e−iφ) and sinφ = (eiφ − e−iφ) and the recursion
formula for the Legendre polynomials in the spherical harmonics, then

(2l + 1)zPm
l (z) = (l + m)Pm

l−1(z) + (l −m + 1)Pm
l+1(z), (4.21)

where z = cos θ, then ΘJM = NPm
l cos θ. Inserting in equation (4.18) and solving gives the

selection rules

∆M = 0,±1 (4.22)

∆J = ±1. (4.23)

From equation (4.20) one can see that if µ0 = 0, no transition is allowed, i.e. symmetric molecules
have no pure rotational transitions. If additional vibrational or electronic transitions are present,
then ∆J = 0,±1 (except for J = 0). The rotational transitions with ∆J = −1 are called R-
branch, with ∆J = 0 Q-branch, and ∆J = 1 are called P-branch. The transition frequencies for
the three cases of rotational transitions, which take place on a vibrational or electronic transition
with frequency ν0, look in case of absorption like

ν(R) = F (J ′)− F (J ′′) = ν0 + 2B′ + (3B′ −B′′)J + (B′ −B′′)J2 (4.24)

ν(Q) = F (J ′)− F (J ′′) = ν0 + (B′ −B′′)J + (B′ −B′′)J2 (4.25)

ν(P ) = F (J ′)− F (J ′′) = ν0 − (B′ + B′′)J + (B′ −B′′)J2 (4.26)

The upper states are indicated by primes (J ′) and the lower states with double primes (J ′′). Cus-
tomarily, one writes the upper state first since the convention stems from emission spectroscopy.
One can see in equation (4.25), that only for transition between vibrational states or electronic
states, a Q-branch appears. For pure rotationally transitions, the transition energy of the Q-
branch is zero. It would also be a transition into an identical state, which is forbidden due to
Pauli’s exclusion principle. For pure rotational transitions (B′′ = B′) and the P- and R-branches
show equally spaced transitions with distances of 2B′.
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4.2.2 Intensities

The intensity of a rotational transition for a spectral molecular absorption line is determined by
the transition dipole moment and the population difference between the two levels (or ratio using
the Boltzmann relation below). The latter is given by Boltzmann statistics. The transition dipole
moment, which enters the Einstein A coefficient, is given by the solution of equation (4.18) for
all three spatial directions

|M|2J ′′+1←J ′′,M =
∑

M ′

M2
x + M2

y + M2
z = µ2

0(J
′′ + 1). (4.27)

This is the solution for absorption, but it is the same expression in the case of emission. The
Einstein A values then becomes,

A =
16π3ν3µ2

0(J
′′ + 1)

3ǫ0hc3(2J ′ + 1)
, (4.28)

which can be translated to the absorption cross section

σ =
2π2νµ2

0(J
′′ + 1)

3ǫ0hc(2J ′′ + 1)
. (4.29)

The intensity is then described in a simple way by Beer’s law, where stimulated emission is
included

I = I0e
−σ

“

N0−N1
2J′′+1

2J′+1

”

l
= I0e

−αl. (4.30)

The absorption coefficient α was introduced. One can replace N0 and N1 by the total concentra-
tion N using the Boltzmann relation for N1

N1

N0
=

2J ′ + 1

2J ′′ + 1
e−hν10/kT , (4.31)

with ν10 as the transition frequency between the upper and lower state. For N0, a relationship
from statistical thermodynamics is used.

N0 =
N(2J ′′ + 1)e−E0/kT

qrot
, (4.32)

where E0 is the lower level energy, given by equation (4.17) and qrot is the rotational partition
function. In cases where also vibrational or electronic transitions are present, the partition func-
tion becomes q = qelqvibqrot and also the statistical weights of vibrational and electronic states
have to be included in equation (4.32). For a given temperature T , α becomes

α =
2π2νµ2

0(J
′′ + 1)Ne−E0/kT

3ǫ0hcqrot

(

1− e−hν/kT
)

. (4.33)

An example for rotational branches is plotted in Fig. 4.2 using equation (4.24) and (4.26) for line
positions and equation (4.33) for intensity.
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Figure 4.2: Rotational intensities of the P- and R-branches.

4.2.3 Non-Rigid Rotation

In the previous sections, the assumption of rigid rotation of the molecule was used. That means
that the nuclei do not change their distance while they are rotating. But due to this rotation, a
centrifugal force appears and the distance between the nuclei changes, since the bond is not rigid.
For diatomic molecules, it is possible to describe the influence of the rotation, by stretching of the
bond from re to rc, which are the internuclear separations at equilibrium and under the action of
centrifugal force, respectively. The centrifugal force (Herzberg, 1950)

Fc =
µv2

r
= µω2r =

J2

µr3
(4.34)

is compensated by the Hook’s law restoring force in the bond

Fr = k(re − rc). (4.35)

The potential energy of the distorted rotator is

E =
J2

2µr2
+

1

2
k(rc − re)

2. (4.36)

Substituting (rc − re) in equation (4.36) by equating equation (4.34) and equation (4.35), gives

E =
~

2

2µr2
e

J(J + 1)− ~
4

2µ2r6
e

(J(J + 1))2, (4.37)
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where the quantum mechanical expression for J was inserted and the equilibrium distance re was
used. This potential energy results for the energy levels of the distorted rotator in

F (J) = BJ(J + 1)−D(J(J + 1))2, (4.38)

with D = 4B3
e

ω2
e

.

As indicated before, the rotational constant also depends on the vibrational and electronic
state. That is because the molecule spends more time at larger separation distances r, where the
potential is flatter. That means, that the average internuclear distance 〈r〉 increases with v and
B decreases

Bv =
~

2

2µ
〈 1

r2
〉. (4.39)

The dependence from the vibrational levels is parametrized by

Bv = Be − αe(v +
1

2
) + γe(v +

1

2
)2 + · · · (4.40)

and

Dv = De + βe(v +
1

2
) + · · · . (4.41)

So, equation (4.38) becomes

F (J) = BvJ(J + 1)−Dv(J(J + 1))2. (4.42)
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4.3 Vibrational Spectroscopy

4.3.1 The Anharmonic Oscillator

From equation (4.16) one can see that the energy for the harmonic oscillator is

Ev = ~ω(v +
1

2
). (4.43)

The vibrational quantum number v is used instead of n, and ω =
√

k
µ . The approximation of the

harmonic oscillator is only valid for small v, because for larger v the internuclear distance changes
and the bond is stretched and contracted more strongly. In order to describe these states one
assumes an anharmonic oscillator which can be described adding a cubic term to the harmonic
oscillator potential

V (r) = k(r − re)
2 + g(r − re)

3. (4.44)

One can add higher terms for more accuracy. The same result is obtained if the Taylor series
used in equation (4.13) is expanded to higher order terms. In this way also the constants are
determined by the derivations of the potential at the equilibrium position re. Another popular
choice for the potential is the Morse potential

V (r) = D(1− e−β(r−re))2. (4.45)

The Morse potential is able to approach the dissociation limit V (r) = D as r→∞ (see Fig. 4.3).
At this limit the bond breaks and the molecule is separated in its constituents. For molecules in
the ground state, this results always in neutral atoms. With the approximation of the anharmonic
oscillator, the energy levels of the vibrational states become

G(v) = ωe(v +
1

2
)− ωexe((v +

1

2
))2. (4.46)

The energy states for the vibrating rotator then become using equation (4.40), (4.41), and (4.42),

E(cm−1) = ωe(v +
1

2
)− ωexe((v +

1

2
))2 + BeJ(J + 1)−De(J(J + 1))2 − αe(v +

1

2
)J(J + 1) + · · · .(4.47)

With the Morse potential, it is possible to solve the Schrödinger equation analytically and one
can obtain analytical expressions for the constants in equation (4.47),

ωe = β

(

Dh · 102

2π2cµ

)1/2

(4.48)

ωexe =
hβ2 · 102

8π2µc
(4.49)

Be =
h · 102

8π2µr2
ec

(4.50)

De =
4B3

e

ω2
e

(4.51)

αe =
6(ωexeB

3
e )1/2

ωe
− 6B2

e

ωe
. (4.52)

The spectroscopic constants which were used here are given in cm−1, because it is custom in
molecular spectroscopy, but the physical constants are given in SI units.
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Figure 4.3: Morse potential with energy levels.

4.3.2 Selection Rules

In order to describe the line intensities, selection rules are required as seen before for the rotational
transitions. Again, the intensity of a vibrational transition is determined by the transition dipole
moment integral,

M =

∫

Ψ ′∗vibµ(r)Ψ ′′vibdr. (4.53)

Expansion of the transition dipole moment in a Taylor series about r = re gives,

µ = µe +
dµ

dr
|re(r − re) +

1

2

d2µ

dr2
|re(r − re)

2 + · · · , (4.54)

so that

M = µe

∫

Ψ ′∗vibΨ
′′
vibdr +

dµ

dr
|re

∫

Ψ ′∗vib(r − re)Ψ
′′
vibdr + · · · . (4.55)

Since vibrational wave functions for the same potential are orthogonal to each other, the first term
in equation (4.55) vanishes. The dominant contribution for the intensities of most infrared fun-
damental transitions stems from the second term in equation (4.55). It depends on the derivative
of the dipole transition moment at the equilibrium distance. The intensity is then proportional
in first order to the square of the second term in equation (4.55),

I ∝ |Mv′,v′′ |2 ∝ |
dµ

dr
|2re

. (4.56)
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In this approximation, it is assumed that the electrical dipole moment function is a linear function
of r in the region close to r = re. In contrast to equation (4.29), where the intensity depends on
µ2

0 for rotational transitions, the intensity for vibrational transitions depends not only on µ, but
also on the distance between the atoms. Again, if a molecule has no dipole moment, no transitions
are allowed in first order.

The intensity of a vibrational transition also depends on the value of

〈v′|x|v′′〉 =
∫

Ψ ′∗vib(r − re)Ψ
′′
vibdr, (4.57)

where x = r − re. In the case of the harmonic oscillator, one can use the Hermitian polynomials
as valid wave functions in equation (4.57). For the Hermitian polynomials, there is the recursive
relationship

2xHn(x) = Hn+1(x) + 2nHn−1(x). (4.58)

Employing this in equation (4.57), one obtains the result

〈v′|x|v′′〉 =
(

~

2mω

)1/2

(
√

v + 1δv′,v+1 +
√

vδv′,v−1), (4.59)

where the allowed transitions are those with

∆v = ±1, (4.60)

because v′ = v + 1 or v − 1 in the Kronecker δ. With the use of wave functions for the anhar-
monic oscillator, which are given by an expansion of the harmonic wave functions Ψi,HO as linear
combinations

Ψvib =
∑

ciΨi,HO, (4.61)

transitions with

∆v = ±2,±3, ... , (4.62)

are also only allowed. The intensities of these so called overtones decrease strongly with increasing
∆v by factors of 10 or 20 per one unit in ∆v. If one does not truncate the expansion of the
transition dipole moment in equation (4.54) after the first order and allows higher order terms,
also vibrational transitions with ∆v = ±2,±3, ... also become allowed. The contribution of both,
mechanical anharmonicity and electrical anharmonicity, results in observable overtones. Later, it
will be seen, that if electronic transitions are present, also vibrational transitions with ∆v = 0
become allowed.

Nomenclature

There are specific names for the different vibrational transitions. Transitions from the ground
state to the first state v = 1← 0 is called the fundamental, from the ground state to second state
v = 2 ← 0 is called the first overtone or second harmonic and so on. Transitions which occur
not from the ground state are called hot bands, because they increase in intensity with increasing
temperature. Transitions with the same ∆v are called a sequence e.g. the (0, 1), (1, 2), (2, 3)
bands form the ∆v = −1 sequence. If a series of bands occur all from the same level, like (3, 1),
(2, 1), (1, 1), (0, 1), then it is called a progression.
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4.3.3 Intensities

In order to calculate the intensities of the lines in a vibrational transition, one has again to compute
the transition dipole moment. This is given by the line strength factor SJ ′J” and consists of both,
transition dipole moment from rotation and vibration,

SJ ′J ′′ =
∑

M ′

∑

M ′′|〈Ψv′J ′M ′ |µ|Ψv′′J ′′M ′′ |2 = |Mv′v′′ |2 · S∆J
J ′′ · F (m). (4.63)

|Mv′v′′ |2 is the vibrational part, S∆J
J ′′ is the rotational part, given by a Hönl-London factor,

and F (m) is a correction term, called a Herman-Wallis factor. |Mv′v′′ |2 can be calculated from
equation (4.53) - (4.59) and the Hönl-London factors will be described later. SJ ′J ′′ can then be
used in the absorption cross section

σ =
2π2νSJ ′J ′′

3ǫ0hc(2J ′′ + 1)
, (4.64)

which enters the absorption coefficient

α =
σ(2J ′′ + 1)

qrot,vib
e−E0/kT

(

1− e−hν/kT
)

N. (4.65)

Then Beer’s absorption law becomes,

I = I0e
−αl. (4.66)
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4.4 Electronic Spectroscopy

In order to describe the electronic states, one can start with equation (4.6)

HelΨel,Rk
(r1, ..., r2) = Eel(R)Ψel,Rk

(r1, ..., r2), (4.67)

where the electron Hamiltonian is given by equation (4.2)

Hel =
N
∑

ν=1

−~
2

2me
∆ν +

N
∑

ν=2

ν−1
∑

µ=1

e2

|rν − rµ|
−

N
∑

ν=1

2
∑

k=1

Ze2

|rν −Rk|
. (4.68)

For the solution of equation (4.67), it is assumed that Ψel consists of molecular orbitals (MOs)
where each MO is a linear combination of atomic orbitals. In the molecular system, the atomic
orbitals of the involved atoms are not spherically symmetric anymore, due to the distortion from
the other atoms in the molecule. That means that each electron with orbital angular momentum
l starts to precess about the internuclear axis. This means, that l is no longer a good quantum
number, but the projection of l̂ onto the internuclear axis, ml, is still useful. When the circulation
of the electron around the internuclear axis is left- or right-handed, the sign of ml is positive or
negative, but that does not change the energy of the electronic state, and hence it is degenerate.

λ = |ml| = 0, 1, 2, ..., l. (4.69)

Labeling of the Molecular Electronic States

ml can have the values of l, therefore the labeling of the different orbitals for molecules can
be analogous to the labeling of atomic orbitals and is given in Table 4.1 The electronic states

Table 4.1

Atomic Orbital l Molecular Orbital λ

s sσ
p pσ, pπ
d dσ, dπ, dδ
f fσ, fπ, fδ, fφ

of diatomic molecules are also labeled in analogy to the atomic states with 2S+1ΛΩ instead of
2S+1LJ . In the atomic case, L is the total orbital angular momentum, S is the total electron
spin, and J = S + L is the total angular momentum. In the molecular case, the projection of the
orbital angular momentum along the internuclear axis is Λ =

∑

λi and can take the values:

Λ = 0 1 2 3 4 ...

Σ Π ∆ Φ Γ ... . (4.70)

The capital Greek letters, are used for the multi-electron molecular, parallel to the atomic case,
where S, P, D, F, ..., are used. S is also the total electron spin whose projection onto the
internuclear axis is labeled with Σ = S, S − 1, ...,−S. Ω = Λ + Σ is the projection of the total
angular momentum in the molecular case onto the internuclear axis, The total angular momentum
J itself is the vectorsum of orbital L, spin S, and rotational R angular momenta, J = L+S+R.
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There is an additional labeling to the electronic states in diatomic molecules, which gives the
excitation state. X is for the ground state, and in order of increasing energies, A, B, C and so on,
except X are for the excited states of the same multiplicity (2S + 1) as the ground state. If the
multiplicity is different from the ground state, then the states are labeled with lowercase letters
a, b, c and so on.

4.4.1 Selection Rules

The different electronic states are again governed by selection rules, which are based on the
allowed transitions for the described quantum numbers. The most common selection rules are:

1. ∆Λ = 0,±1. That means, that e.g. the transitions between Σ −Σ, Π −Σ, Σ −Π, ..., are
allowed.

2. ∆S = 0. This rule is more or less empirical, since the transition with ∆S 6= 0 are very
weak for molecules which consists only of light atoms. For molecules with heavy atoms, the
spin-orbit coupling increases and the change of multiplicity become more strongly allowed.

3. ∆Σ = 0. This relation holds only for Hund’s case (a) coupling scheme, which will described
later.

4. ∆Ω = 0,±1. In the case of Hund’s case (a), ∆Ω = ∆Λ and the selection rule for Λ is
applied.

5. + ↔ + and − ↔ −. This symmetry selection rule applies only to ∆Λ = 0 transitions and
is a consequence of the µz transition dipole moment having Σ+ symmetry. It states that
only transitions between symmetric or anti-symmetric wave functions are allowed.

6. g ↔ u. This selection rule is only valid for homonuclear molecules and states that only
transitions between grade and ungrade parity are allowed.

With these selection rules, one is able to determine the possible electronic transitions, where then
the vibrational and rotational transitions can take place.

4.4.2 Vibronic Transitions

The spectral distribution of a molecule is built up on the electronic transition on which the
vibrational transitions take place which are made up of rotational lines. That means that one
finds for a specific electronic transition a vibrational band structure, and in these various bands,
one can find the rotational line structure.

The positions of the vibrational bands, can be determined using equation (4.46) and adding
∆Te = Eupper−Elower, which is the separation between the potential minima of the two electronic
states.

E(cm−1) = ∆Te + ω′e(v
′ +

1

2
)− ωex

′
e((v

′ +
1

2
))2 + · · · − ω′′e (v′′ +

1

2
)− ωex

′′
e ((v

′′ +
1

2
))2 + · · · .(4.71)

In this case, also vibronic transitions with ∆v = 0 are allowed, since the upper and lower electronic
states are different.

In principle all possible vibrational transitions are now allowed, but their intensities in a certain
electronic transition are governed by the strength of the electronic transition itself, the population
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of the vibrational transition, and the Franck-Condon factor, which describes the squared overlap
integral of the two vibrational wave functions. The latter results from the Franck-Condon prin-
ciple. In the classical description, it can be explained by the idea, that the electronic transitions
occur very quickly (∼ 10−15 s), and in this short time, the nuclei have no time to move, which
means, that vibration, rotation, and translation are ”frozen”. In a plot with two electronic states,
with the potential location on the x-axis and the energy on y-axis, the electronic transition occurs
’vertically’ (see Fig. 4.4). If one adds the quantizised vibrational levels in this plot and assume

Figure 4.4: Visualisation of the Franck-Condon principle.

that the vibrating molecule spents more time at the turning points for transitions with v > 0,
then it is assumed that the transitions with equal potential positions are strong, since the overlap
of their wave functions is large.

The transition dipole moment for the electronic transition is given by

Re =

∫

Ψ ′eµΨ ′′e dre, (4.72)

with µ as the dipole moment and the integration is over the electronic coordinates re. In case of
a vibronic transition, the transition dipole moment Rev is given by

Rev =

∫

Ψ ′evµΨ ′′evdre, (4.73)

and the vibronic wave function Ψev can be factorized into ΨeΨv. The transition dipole moment
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then becomes

Rev =

∫

Ψ ′eµΨ ′′e dre

∫

Ψ ′evµΨ ′′evdrv = Re

∫

Ψ ′vµΨ ′′v drv = Re〈v′|v′′〉. (4.74)

The intensity of the vibronic transition is proportional to the square of the transition dipole
moment, which then is

Ie′v′e′′v′′ ∝ |Re|2qv′−v′′ , (4.75)

where qv′−v′′ = |〈v′|v′′〉|2 is the Franck-Condon factor.

4.4.3 Rovibronic Transitions

For the rotational transitions in the vibronic system (rovibronic transitions) are in case of ∆Ω = 0
(singlet-singlet transitions) only three types possible:

1. ∆Λ = 0, Λ′′ = Λ′ = 0. In this case, only R- and P-branches are possible.

2. ∆Λ = ±1. Strong Q-branches are present, but also strong P- and R-branches.

3. ∆Λ = 0, Λ′′ = Λ′ 6= 0. These transitions are characterized by weak Q-branches, but strong
P- and R-branches.

The occurrence of a Q-branch is dependent on the difference between the rotational constants for
the upper and lower level. This difference is in general very small in pure vibrational transitions,
but can be large for different electronic states, since the bonding between the nuclei can be very
different in these states.

Reconsider equation (4.24)-(4.26),

ν(R) = F (J ′)− F (J ′′) = ν0 + 2B′ + (3B′ −B′′)J ′′ + (B′ −B′′)J ′′2 (4.76)

ν(Q) = F (J ′)− F (J ′′) = ν0 + (B′ −B′′)J ′′ + (B′ −B′′)J ′′2 (4.77)

ν(P ) = F (J ′)− F (J ′′) = ν0 − (B′ + B′′)J ′′ + (B′ −B′′)J ′′2, (4.78)

which shows that for large difference between B′ and B′′ the quadratic term in J ′′ becomes
significant. The spacing between the rotational lines for B′ < B′′ will increase for the P-branch as
J ′′ increases, but the spacing for the R-branch will decrease with increasing J ′′. In the latter case
there will also be a turning point, where the R-branch change its direction in line positions. In this
case a band head is formed, since at this turning point, the R-branch lines overlap and are very
dense distributed. Such a band head is called red degraded since it turns to longer wavelengths.
If B′ > B′′, then the band head will be in the P-branch and it is called blue degraded since it
turns to shorter wavelengths. An example for a progression of rovibronic transitions is plotted in
Fig. 4.5. In this figure, ∆B = 0.2 and the R-branch is red degraded.

4.4.4 Rovibronic Intensities

The Einstein A value, which determines the intensities of the rovibronic lines is given by:

A =
16π3ν3

3ǫ0hc3(2J ′ + 1)
qv′−v′′ |Re|2S∆J

J ′′ , (4.79)
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Figure 4.5: Fundamental sequence of vibrational bands.

where µ2
0(2J

′′ + 1) from equation (4.28) was substituted with qv′−v′′ |Re|2S∆J
J ′′ /(2J ′′ + 1). S∆J

J ′′ is
the term for the rotational line strength which is in the case of rovibronic transitions given by the
Hönl-London factors which describes the relative intensities of rotational lines. For Hund’s case
(a) and ∆Σ = 0 the Hönl-London factors for ∆Λ = 0 are given by:

SR
J ′′ =

(J ′′ + 1 + Λ)(J ′′ + 1− Λ)

J ′′ + 1

SQ
J ′′ =

(2J ′′ + 1)Λ2

J ′′(J ′′ + 1)

SP
J ′′ =

(J ′′ + Λ)(J ′′ − Λ)

J ′′
(4.80)

Hund’s Cases

There are different Hund’s cases, which gives rules for describing the coupling between the total
angular momentum J and the total electron spin S in the separate atoms. This is important since
the rotation and vibration of the molecule takes place simultaneously with the electronic motions.
In general the interaction between vibration and electronic motion is already taken into account,
since the approximation of the anharmonic oscillator potential includes it. What is left is the
interaction between the rotation and electronic motion. The interaction is described in terms of
Hönl-London factors, which are computed in the appropriate Hund’s case. Only in the case when
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S = Λ = 0, which describes a 1Σ state, the angular momentum of nuclear rotation is identical
with the total angular momentum J and it can be treated as simple rotator (see Chapter 4.2). In
all other cases, one needs a special description. There are two limiting cases which will be briefly
described in the following:

Hund’s case (a) coupling describes the case, where the electric field of a molecule is so strong,
that the interaction between the individual rotational levels Ji and spins Si can be disregarded
because it is very weak. Due to this assumption, the angular momentum Ω = Λ + Σ is well
defined and a ’good’ quantum number.

Hund’s case (b) coupling describes the case where Λ = 0 and S 6= 0, that means that the spin
vector S is not coupled to the internuclear axis, and hence Ω is not well defined anymore. In light
molecules, even if Λ 6= 0, S is only be weakly or not coupled to the internuclear axis.

There are also Hund’s case (c), (d), and (e) coupling schemes, which will not be described
here. It can also be that the coupling is between one of these cases, or changes from one to
another case with changing J , in this case the description is more complicated and can be treated
numerically or asymptotically.



Chapter 5

The FeH Molecule

Wing & Ford (1969) were the first to detect a broad molecular absorption band around 991 nm in
late M dwarfs. This band was later found in S stars (Wing, 1972) and in sun spots. Nordh et al.
(1977) identified the Wing-Ford band as the 0 − 0 band of an FeH electronic transition. The
FeH molecule is well suited for the measurements mentioned in the introduction because of its
intrinsically narrow and well isolated spectral lines. These lines are also an ideal tracer of line
broadening in M-stars due to convection or very slow rotation (Reiners, 2007).

In this chapter I will describe the basic properties of the FeH molecule. Since it is so far only
rarely described in the literature, it was necessary to derive some more properties from the basic
molecular data, to make it feasible for the use in stellar spectral line formation synthesis.

5.1 Molecular Data

The FeH molecule consists of the atomic elements hydrogen (H) and iron (Fe). They have an
atomic mass of 1.0079 u and 55.8450 u, respectively (Mortimer, 2001). Hence the molecular mass
of FeH is 56.8529 u, which is 9.4404243 · 10−26 kg. The reduced mass µ = mH ·mF e

mH+mF e
is 0.990032 u

or 1.6439478 · 10−27 kg.

The FeH molecules separates in its constituents at a dissociation energy D = 1.598 eV
(Dulick et al., 2003). The ionisation energy could not found in the literature, and hence had
to be calculated.

5.1.1 Ionisation Energy of FeH

In order to obtain the ionisation energy of FeH, it is assumed that there is a correlation be-
tween dissociation energy and ionisation energy due to the description which was given by
Sauval & Tatum (1984), which, in the case for FeH, is

D(FeH ) + EIon.(Fe) = D(FeH +) + EIon.(FeH ). (5.1)

If there is a correlation for hydride, this could be visible in an “Ionisation Energy - Dissociation
Energy”-diagram (Fig.5.1). For hydride’s the influence of the hydrogen atom is similar in the
molecules, and the ionisation energy EIon of atoms becomes lower with higher periods in the
period diagram, and higher towards a noble gas configuration. If one also neglects the dissociation
energy D of the ionized hydrides, then a direct correlation between D and EIon for the molecules
can be expected. In this Fig.5.1 EIon. and D for a large number of hydride (Wilkinson, 1963)
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Figure 5.1: Ionisation energy as a function of dissociation energy for a sample of
molecules. Red crosses are for hydride, labeled with names and atomic number. Blue
asterisk are for oxides, and green × are for other molecules.

is plotted. It is clear that there is a linear dependence of EIon. on D which can be used to
determine EIon.. For FeH a linear fit through the hydride (red symbols in Fig.5.1) was made, in
order to obtain an ionisation energy for FeH of approximately 6 eV . However, there are two sorts
of hydride, which can be fitted separately. I assume that these two groups consists of different
kinds of bounding which results in different ionisation energies. I also tried to fit the oxides
(blue symbols in Fig.5.1) in a similar way, but there is no clear correlation visible. Also some
other molecules (green symbols in Fig.5.1) show no correlation between ionisation energy and
dissociation energy.

A theoretical computation of EIon. for FeH was done by Bernath 2008 (private communication)
also from the ionisation-potential of Fe and the dissociation energies of FeH + and FeH which
yields 7.3 eV. This value is also included in Fig. 5.1 and for the dissociation energy of FeH, it is
between the two groups of hydride. So it is still not clear to which group FeH belongs, and I
will use in the following the empirically obtained value of EIon. = 6eV. Since this value is only
required for the computation of the pressure broadening of FeH lines, which will turn out is rather
insensitive to this parameter, the possible error which is introduced is negligible.
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5.1.2 Partition Function of FeH

The partition function of a molecule is needed in order to derive the dissociative equilibrium
constant. This describes the relative fraction of the participating atoms to the resulting molecule
dependent from the surrounding temperature.

In order to compute the partition function Q for FeH a combination of the tabulated partition
function in Dulick et al. (2003) and an analytically determined one from Eq.1 in Sauval & Tatum
(1984) is used (in collaboration with Matthias Steffen 2007).

Q = exp

[

hc

kT

(

1

2
ωe −

1

4
ωexe

)]

∑

e

∑

v

gekT

σhc

[

Be − αe

(

v +
1

2

)]−1

× exp

{

− hc

kT

[

ωe

(

v +
1

2

)

− ωexe

(

v +
1

2

)2

+ Te

]}

. (5.2)

In this equation, σ is a symmetry factor, which is unity for heteronuclear (which is the case for
FeH ), and two for homonuclear molecules. ge is the statistical weight of the electron and it is
2S +1 for Σ states and 2(2S +1) for others. The other molecular constants used in equation (5.2)
are taken from Table 9 and 10 in Dulick et al. (2003). In Fig. 5.2, the partition functions for
the summation of energy levels and analytical ones from Dulick et al. (2003) are plotted together
with the one derived from equation (5.2). The one from the summation of energy levels is much
lower for high temperatures than the analytic one and my own. This will be important for the
concentration of FeH in M-type stars.
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Figure 5.2: Partition function for the
FeH molecule from different descriptions
against temperature.
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The equilibrium constant K for FeH is given by (e.g. Tatum, 1966),

pHpFe

pFeH
= K(T ) =

(

2πµkT

h2

) 3
2

kT
QHQFe

QFeH
e−D/kT . (5.3)

QH and QFe are the partition function for hydrogen and iron, respectively. K can be converted
to a concentration C of FeH relative to the number of hydrogen and iron atoms.

K(T ) =
pHpFe

pFeH
=

nHnFe

nFeH
kT, (5.4)
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and hence,

C(T ) = kT/K(T ). (5.5)

With the partition function from the summation of energy levels, the concentration of the FeH
molecule would be underestimated. In Fig. 5.3 the concentration for my partition function is
plotted and for comparison, the one used by Schiavon et al. (1997). The latter ones returns lower
FeH number for high temperatures, which would result in weaker band strength.

5.2 Van der Waals Broadening

Since the FeH molecular lines become significant towards low effective temperatures in dwarfs, the
influence of pressure broadening becomes important. The common way to describe the interaction
of two different neutral perturbers is the van der Waals broadening ∆ν = C6

r6 . ∆ν is the frequency
shift which results, and r is the relative distance between the perturbers. C6 is the interaction

constant. The van der Waals broadening produces a Lorentzian shape
(

g(ν) = γ
(γ/2)2+(2π)2ν2

)

in

the line profiles, ’van der Waals wings’. The full-width half maximum is given by

γ = 17C
2/5
6 v3/5NP . (5.6)

C6 can be calculated by the hydrogenic approximation from Unsöld (1955). This is of course not
the best way to describe the perturbation of a molecule from other particles, but there are no
detailed calculations for FeH in the literature, so far. Schweitzer et al. (1996) provide a sophisti-
cated description for the van der Waals broadening in M dwarfs, including the polarizability and
the concentration of the most significant perturbers.

C0
6 =

αP

αH
1.01× 10−32(Z + 1)2 ×

[

E2
H

(EIon − El)2
− E2

H

(EIon − Eu)2

]

cm6s−1. (5.7)

EH = 13.6 eV is the ionisation energy of hydrogen, EIon = 6 eV that of FeH, Eu and El are the
upper and lower energy levels respectively, αP the polarizability of the perturbers, αH that of
hydrogen, and Z is the charge of the absorber. The total van der Waals broadening constant is
then the sum over the individual ones for the different perturbers

γtot =
∑

i

γi. (5.8)

In equation (5.7), the ionisation energy of FeH enters the van der Waals broadening and
introduces an uncertainty. In order to roughly estimate the error, in Fig. 5.4 the dependence of
γtot from EIon is shown (upper panel). I also compute an FeH line with different γtot for different
EIon and measure the FWHM . This is plotted in the lower panel of Fig. 5.4. From this figure
it is visible that the difference in the line profile is on the order of 25 ms−1.

5.3 Appearance of FeH in Stellar Spectra

FeH molecular lines seem to appear over a wide range in the infrared. There are detections of
FeH band system in the z-, J-, and H-band filter regions. A great overview is given in the paper
from Cushing et al. (2003) and the dependence of these FeH bands on effective temperature is
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Figure 5.4: Van der Waals broadening constant (upper panel) and FWHM (lower panel)
for an arbitrary FeH line as a function of ionisation energy.

nicely shown in Cushing et al. (2005). In the z-, and J-band, the FeH features are produced by the
F 4∆−X 4∆ electronic transition and in the H-band by the E 4Π−A 4Π electronic transition. The
latter transition is theoretically described by Balfour et al. (2004) and Hargreaves et al. (2010).
Due to the significant differences in upper and lower B values, FeH shows band structures with
band heads due to inversion of the P- and R-branches. Also the Q-branches are nicely visible. I
will go in more detail in the later sections of this work.
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Chapter 6

Velocity Fields in M-type Stars

In order to investigate the atmospheric structure with focus on the velocity fields present, I used
3D-CO5

BOLD structure models which serve as an input for the line formation program LINFOR3D.
Turbulence is included in a natural way using hydrodynamics, so that I am able to investigate the
modeled spectral lines for effects from micro- and macro-turbulent velocities in the classical sense
and their influence on the line shapes. The comparison with 1D-models gives a rough estimate of
the necessity of using 3D-models in the spectral domain of cool stars. In this chapter, I investigate
the velocity fields in the models and their dependence on log g and Teff . Most of the content in
this chapter is already published in Wende et al. (2009).

6.1 3D Model Atmospheres

6.1.1 CO
5
BOLD Atmosphere Grid

In order to analyze the influence of velocity fields in M-stars on FeH lines, I construct a set of
CO

5
BOLD-models with Teff = 2500 K – 4000 K and log g = 3.0−5.0 [cgs]. Table 6.1 gives the model

parameters. In the Teff -sequence, I simulated main sequence stars and varied the surface gravity
slightly with increasing effective temperature. For the log g-sequence, I computed models with
different log g values aiming at the same effective temperature of 3300 K but the models settle to
slightly higher or lower Teff values. Because the effective temperature can only be adjusted via the
inflowing entropy, I decided not to adjust these resulting effective temperatures, because slight
differences in Teff do not change the line profiles significantly. I accepted the Teff deviations to
avoid the large computational effort which would be necessary to adjust the models to a common
effective temperature. However, corrections to the line shape related quantities such as equivalent
width (see Section 7.2) are applied.

The opacities used in the CO
5
BOLD model calculations originate from the PHOENIX stellar at-

mosphere package (Hauschildt & Baron, 1999) assuming a solar chemical composition according
to Asplund et al. (2005). The opacity tables were computed after Ferguson et al. (2005) and
Freytag et al. (2009) and are particularly well-suited for this investigation since they are adapted
to very cool stellar atmospheres. The raw data consist of opacities sampled at 62,890 wavelength
points for a grid of temperatures and gas pressures. In order to represent the wavelength depen-
dence of the radiation field in the CO5

BOLD models, the opacities are re-sampled into six wavelength
groups using the opacity binning method (Nordlund, 1982; Ludwig, 1992; Ludwig et al., 1994).
In this approach, the frequencies that reach monochromatic optical depth unity within a certain
depth range of the model atmosphere are grouped into one frequency bin on the basis of their opac-
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ities. For each investigated atmospheric parameter combination, the sorting of the wavelengths
into groups is performed according the run of monochromatic optical depth in a corresponding
PHOENIX 1D model atmosphere. The thresholds for the sorting are chosen in logarithmic Rosse-
land optical depth as {+∞, 0.0,−1.0,−2.0,−3.0,−4.5,−∞}. In each group a switching is done
from a Rosseland average in the optically thick regime to a Planck average in the optically thin
regime, except for the group representing the highest opacities, where the Rosseland average is
used throughout. In this last bin, which describes the optically thick regions, only the Rosseland
average is used because the radiative transfer is local and can be described as a diffusive process
(Vögler et al., 2004). Despite this, the Rosseland opacity is much smaller than the Planck opacity
which keeps the radiative time scale large.

The horizontal size of the models provide sufficient space to allow the development of a small
number (10–20) of convective cells. Their number has to be large enough to avoid box-size
dependent effects, but also small enough that there is a sufficient number of grid points available
to resolve each individual cell. The size of the convective cells scales roughly inverse proportionally
to the surface gravity. Accordingly, the horizontal size of the computational box is set to larger
sizes towards lower log g values. The horizontal size of the model with Teff = 3275 K is just
large enough to fulfill the criteria of the minimal number of 10 convective cells (see Fig. 6.1),
and it was seen in test simulations that the results will not change with a larger model (in
horizontal size). Therefore I will use this well evolved model as well. The vertical dimension
is set to embed the optically thin photosphere, and a number of pressure scale heights of the
sub-photospheric layers below. The depth of the models is kept rather small to avoid problems
due to numerical instabilities analogous to the ones encountered and discussed in previous works
on the hydrodynamics of M-type stellar atmospheres (Ludwig et al., 2002, 2006; Freytag et al.,
2010).

For the comparison with 1D models, the 3D-model are spatially averaged over surfaces of equal
Rosseland optical depth at selected instants in time. I call this sequence of 1D structures the 〈3D〉-
model. Following the procedure of Steffen et al. (1995), the fourth moment of the temperature
and the first moment of the gas pressure is averaged, in order to preserve the radiative properties
of the 3D-model as far as possible. The 3D velocity information is ignored in the 〈3D〉-model and
replaced by a micro- and macro-turbulent velocity. By construction, the 〈3D〉-model has the same
thermal profile as the 3D-model, but evidently without the horizontal inhomogeneities related to
the convective granulation pattern. I will call the spectral lines synthesized from 〈3D〉-models
“〈3D〉-lines”.

6.1.2 Atmosphere Structures

The temperature stratification shown in Fig.6.2 (top left) of the models with changing Teff is very
similar for all models in the region below log τ ∼ 1. They reach their Teff around τ ∼ 2/3
and continue to decrease to higher atmospheric layers. Above log τ ∼ 1, the temperature of
the two hottest models increases more strongly than in the cooler cases. Since the models are
almost adiabatic in the deeper layers (see below), the temperature gradient follows the adiabatic
gradient, which is given by the equation of state and is steeper in hotter models due to the
inefficient H2 molecule formation. This increase of temperature is also very similar to the lower
log g models shown on the right side of Fig.6.2. These models also show a temperature gradient
which becomes steeper towards deeper atmospheric layers and with decreasing surface gravity,
again due to a steeper adiabatic gradient. All models reach an almost equal effective temperature
at τ ∼ 2/3 and their temperature stratification does not differ strongly towards smaller optical



6.2 Velocity Fields in the CO
5
BOLD-Models 47

Table 6.1: Overview of different model quantities for models at constant Teff and dif-
ferent log g (upper part) and at constant log g and different Teff (lower part).

Model code Size(x,y,z) [km] Grid points (nx,ny,nz) Hp [km]a z-size [Hp] Teff [K] log g [cgs]

d3t33g30mm00w1 85000 x 85000 x 58350 180 x 180 x 150 2821 20.7 3240 3.0
d3t33g35mm00w1 28000 x 28000 x 11500 180 x 180 x 150 826 13.9 3270 3.5
d3t33g40mm00w1 7750 x 7750 x 1850 150 x 150 x 150 250 7.4 3315 4.0
d3t33g50mm00w1 300 x 300 x 260 180 x 180 x 150 18 14.5 3275 5.0

d3t40g45mm00n01 4700 x 4700 x 1150 140 x 140 x 141 109 10.6 4000 4.5
d3t38g49mm00w1 1900 x 1900 x 420 140 x 140 x 150 36 11.7 3820 4.9
d3t35g50mm00w1 1070 x 1070 x 290 180 x 180 x 150 20 14.5 3380 5.0
d3t28g50mm00w1 370 x 370 x 270 250 x 250 x 140 13 20.8 2800 5.0
d3t25g50mm00w1 240 x 240 x 170 250 x 250 x 120 12 14.2 2575 5.0
a at τ = 1

depth.

The entropy stratification for models with varying Teff (mid left in Fig.6.2) shows a similar
behavior for all models. It is adiabatic (dS/dτ = 0) in layers below log τ ∼ 1 and has a
superadiabatic region (dS/dτ > 0) between log τ ∼ 1 and ∼ −1 that moves slightly towards
smaller optical depth for hotter models. In these regions, with dS/dτ ≥ 0, the models are
convectively unstable and become convectively stable in the outer parts of the atmosphere where
dS/dτ < 0. In the models with changing log g (mid right in Fig.6.2), one can see that the entropy
behaves almost as in the Teff case. At lower surface gravities, the superadiabatic region is more
significant. In higher layers, the models become convectively stable except for the model with
log g = 4.0 [cgs] which shows a second decrease of entropy in the outer layers. To understand
this behavior, one has to investigate the adiabatic gradient of this region which is very small and
changes very little along the upper atmosphere. This is due to the equation of state used in the
models and can be seen in Fig.16 of Ludwig et al. (2006) (model H4 in this figure equates to our
log g = 4.0 model). This figure shows that the upper atmosphere lies in a plane of small and
constant adiabatic gradient. Due to this, the model becomes convectively unstable again in the
upper layers. This is probably the reason for the, higher velocities in this model, in comparison
to other models.

In the left bottom panel of Fig.6.2, the horizontal and vertical rms-velocities are plotted for
models with different Teff . Both velocity components increase with increasing Teff . The maxima
of the vertical velocity moves to slightly deeper layers with higher temperatures and the maxima
of the horizontal velocity stays almost at the same optical depth. One can see a qualitatively
similar dependence in the log g model sequence in the right bottom plot in Fig.6.2. Only the
model with log g = 4.0 [cgs] shows peculiar behavior in the upper atmospheric layers, which is
probably related to the entropy stratification in this model. The velocity fields in the models will
be described in more detail and with a slightly different method in the next section.

6.2 Velocity Fields in the CO
5
BOLD-Models

Before the investigation of the effect of velocity fields on spectral lines, it is useful to analyze
the velocity fields in the models themselves and this will be done in a description relative to the
broadening of spectral lines. Spectral lines are broadened by velocity fields where the wavelength
of absorption or emission of a particle is shifted due to its motion in the gas. Here one is
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mostly concerned with the macroscopic, hydrodynamic motion but one should has in mind that
thermal motion also constitutes a significant contribution. If each voxel in the RHD model cube is
considered to form its own spectral line, the whole line consists of a (weighted) sum of single lines.
The velocity distribution might be represented by a histogram of the velocities of the voxels which
gives us the velocity dispersion. It is tried to describe the velocity fields in that sense instead of
using the rms-velocities shown in Fig.6.2. In the CO

5
BOLD-models, a velocity vector is assigned

to each voxel and consists of the velocities in the x-, y-, and z-direction. I will investigate the
vertical and horizontal component of the velocity dispersion in the models and the total velocity

dispersion σtot =
√

σ2
x + σ2

y + σ2
z . In order to describe the height-dependent velocity dispersion,

I applied a binning method, i.e. I plot all velocity components of a certain horizontal plane of

Figure 6.1: Horizontal cross-section
around τ ∼ 1 of vertical velocity com-
ponents. The models are located at log g
values of 3.0, 3.5, 4.0, and 5.0 [cgs] (from
upper left corner to lower right, respec-
tively).

Figure 6.2: From top to bottom, the
temperature, entropy, vertical, and hor-
izontal velocity are plotted as a function
of optical depth. The column on the left
side shows models with different Teff and
constant log g, on the right side the mod-
els are at a constant Teff with varying
log g. The rise of horizontal velocity in
the log g = 4.0 [cgs] model in the deeper
atmospheric layers is due to interpola-
tion from the z- to τ -scale.
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Figure 6.3: Histogram of the velocity distribution in the vertical direction. The nor-
malized number of points is plotted against the vertical velocity in m/s (solid line). The
Gaussian (dashed line) fits the velocity distribution and determined an FWHM value
(dashed-dotted line), which is related to σ with FWHM = 2

√
ln 2 · σ. The underlying

model is located at Teff = 2800 K and log g = 5 [cgs].

equal optical depth τ in the CO
5
BOLD cube in a histogram with a bin size of 25 ms−1.

I fit the histogram velocity distribution with a Gaussian normal distribution function G =
exp (−(x

σ )2) and take the standard deviation σ as a measure for the velocity dispersion σ in the
models (see Fig. 6.3) (The relation between the Gaussian standard deviation σ and the standard
deviation σrms of the mean velocity is σ =

√
2·σrms). This is done for the σx, σy, and σz component

of the velocity vector for each horizontal plane from τmin to τmax, which are the highest and the
deepest point, in each model atmosphere. In this way I obtained the height-dependent velocity
dispersion σx,y,z(τ). I average over five model snapshots for a better statistical significance. In

Figs. 6.4 and 6.5, the velocity dispersions for the horizontal components σH =
√

σ2
x + σ2

y and

vertical component σz are plotted against optical depth (black solid and dotted lines). In the
latter figures, I identify the maxima around log τ = −1 of the velocity dispersions as the region
where the up-flowing motion spreads out in the horizontal direction and starts to fall back to
deeper layers. I will call this point the “convective turn-over point”. In a horizontal 2D cross-
section of the vertical velocities, somewhat below this area, the up-flowing granulation patterns
are clearly visible (see Fig.6.1 for models with different log g or Ludwig et al. (2006)). In a vertical
2D cross-section one can see the behavior of the up-streaming material (Fig. 6.6 shows an example
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Figure 6.4: Upper panel: Radial (σz) and horizontal (σH) components of the velocity
dispersion plotted against the optical depth on a logarithmic scale. Bottom panel: The
contribution functions (CF) of an FeHline at a wavelength of 9956.72 . Equivalent width
Wλ (solid) and the depression at the line center (dashed) of the line are plotted as a
function of optical depth on a logarithmic scale. The models (from left to right) are
located at Teff of 2800 K, 3380 K, 3820 K and 4000 K and a log g value of 5.0, except the
one with Teff = 3820 K (log g = 4.9), and the one with Teff = 4000 K (log g = 4.5)
[cgs].

Figure 6.5: Upper panel: Radial (σz) and horizontal (σH) components of the velocity
dispersion plotted against the optical depth on a logarithmic scale. Bottom panel: The
contribution functions (CF) of an FeHline at a wavelength of 9956.72 . Equivalent width
Wλ (solid) and the depression at the line center (dashed) of the line are plotted as a
function of optical depth on a logarithmic scale. The models are located at log g values
from left to right of 5.0 (Teff = 3275 K), 4.0 (Teff = 3315 K), 3.5 (Teff = 3270 K) and
3.0 (Teff = 3240 K) [cgs].
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Figure 6.6: 2D cross-section in x-z direction of the x-z velocity in a model with
log g = 5.0 [cgs] and Teff = 2800 K. Overplotted are x-z velocity vectors. The di-
rection of the material flow is indicated by the velocity vectors.

for a model with Teff = 2800 K). The material starts moving upwards almost coherently and before
reaching higher layers (around z = 200 km in Fig. 6.6) of the atmosphere, the vertical velocity
dispersion σz becomes maximal. After that point, the material spreads out in horizontal directions
and starts falling again. At this point, the dispersion of horizontal velocities σH becomes maximal
(the convective turn-over point).

In Fig.6.5 one can see at lower surface gravities that the maxima of the horizontal velocity
dispersion are not centered around a specified optical depth any longer; it spreads out in the
vertical direction and spans the widest range at log g = 3.0 [cgs]. The pressure stratification
changes, and the convective turn-over point moves to lower gas-pressure (not shown here) but stays
at almost constant optical depth between log τ = 0 and log τ = −2. With varying temperature,
the position of the convective turn-over point stays at almost constant optical depth.

6.2.1 Reduction of the 3D Velocity Fields

Commonly, micro- and macro-turbulence derived from spectroscopy are interpreted as being as-
sociated with actual velocity fields present in the stellar atmosphere. In the simulations, no
oscillations are induced externally but small oscillations are generated in the simulations itself.
The velocity amplitudes of these oscillations reach a maximum of 10% of the convective veloc-
ities and have no significant influence on the macro-turbulent velocity. I would also not expect
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Figure 6.7: The weighted projected
and unprojected velocity dispersions of
the horizontal and vertical component
for models with different Teff . The
models are located at Teff values of
2575 K, 2800 K, 3275 K, 3380 K, 3820 K
and 4000 K and a log g value of 5.0,
except the one with Teff = 3820 K
(log g = 4.9), and the one with
Teff = 4000 K (log g = 4.5) [cgs].

Figure 6.8: The weighted projected
and unprojected velocity dispersions
of the horizontal and vertical compo-
nent for models with different log g.
The models are located at Teff around
3300K and different log g values of 3.0
(Teff = 3240 K), 3.5 (Teff = 3270 K),
4.0 (Teff = 3315 K) and 5.0
(Teff = 3275 K) [cgs].

global oscillations for these objects, except for young stars with solar masses lower than 0.1 MJ

induced by D-burning (Palla & Baraffe, 2005). In the following, I try to make the connection
between micro- and macro-turbulence and actual hydrodynamical velocity fields by considering
the velocity dispersion determined directly from the hydrodynamical model data, and comparing
it with the micro- and macro-turbulence derived from synthesized spectral lines (see Sect. 6.2.3).
This connection is algebraically not simple, and I only apply a simple model to translate the
hydrodynamical velocities into turbulent velocities relevant to spectroscopy.

Geometrical Projection

To compare the hydrodynamical velocity dispersion in 3D-CO5
BOLD models with the spectroscopic

quantity micro- and macro-turbulent velocities, I assume a simple geometrical model and try to
resample the broadening of absorption lines. An intensity beam “sees” the velocity field under
a certain angle and the spectral line is broadened by the projection of these velocities. In this
sense I project the geometrical velocity components on a line of sight under a certain angle and
integrate over all angles in a half sphere. I also take a linear limb-darkening law into account. I
assume a velocity function f(v) in velocity space and an intensity line profile

I(v) = V (v) · I0
c · L(θ), (6.1)

where V (v) is a line profile function, I0
c the continuum intensity at the center of the disk and

L(θ) the limb-darkening law. The integrated flux of the intensity line profile broadened by the
velocity function is then given by their convolution and disk integration, i.e.

F =

∮

f(v) ∗ I(v) cos θ dω, (6.2)
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Figure 6.9: Projection factors (vertical solid line and horizontal dotted line) as a func-
tion of the limb darkening coefficient ǫ.

with dω = sin θ dθ dφ, φ ∈ [0, 2π], θ ∈ [0, π/2]. If I assume that V (v) does not vary with different
positions on the disk, it can be factored out (Gray, 2008) and

F = V (v) ∗ I0
c ·W (v), (6.3)

with

W (v) =

∮

f(v) · L(θ) cos θ dω. (6.4)

With Eq. 6.4 one is left with a flux-like expression for the velocity function. The dispersion of
the velocity function is given by

σ2 = 〈f(v)2〉 − 〈f(v)〉2 (6.5)

and one can write for the projected velocity dispersion Σ:

Σ2 =
1

N

∫ 2π

0

∫ π/2

0
(〈( ~f(v)~e)2〉 − 〈 ~f(v)~e〉2) · L(θ) cos θ dω (6.6)
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where ~f(v) =





fx(v)
fy(v)
fz(v)



 is the velocity vector containing all velocities in a model cube, ~e =





cos φ sin θ
sin φ sin θ

cos θ



 is the basis vector in spherical coordinates, and L(θ) = 1 − ǫ + ǫ · cos(θ) a

linear limb-darkening law with the limb-darkening coefficient ǫ. N is a normalization factor N =
∫ 2π
0 dφ

∫ π/2
0 L(θ) cos θ sin θ dθ = π(1 − ǫ

3 ). I included the limb-darkening in the normalization
because, opposite to the flux, the velocity dispersion for an isotropic velocity field has to be
conserved. The average is taken over the velocities and does not affect the angle dependent parts.
One has to integrate:

〈(~f~e)2〉 − 〈~f~e〉2 = (〈f2
x〉 − 〈fx〉2) cos φ2 sin θ2 +

(〈f2
y 〉 − 〈fy〉2) sin φ2 sin θ2 + (〈f2

z 〉 − 〈fz〉2) cos θ2 +

2(〈fxfy〉 − 〈fx〉〈fy〉) cos φ sin φ sin θ2 +

2(〈fxfz〉 − 〈fx〉〈fz〉) cos φ sin θ cos θ +

2(〈fyfz〉 − 〈fy〉〈fz〉) sin φ sin θ cos θ. (6.7)

If one wants to compute the average of this quantity, the mean and the squared mean of the quan-
tities are needed, but not the combinations of the velocity components, because these products
vanish in the integration over the half sphere due to their angle-dependent coefficients. After the
integration of Eq.6.6, Σ2 becomes

Σ2 =
(〈f2

x〉 − 〈fx〉2 + 〈f2
y 〉 − 〈fy〉2)(7ǫ− 15)

20(ǫ − 3)
+

(〈f2
z 〉 − 〈fz〉2)(6ǫ− 30)

20(ǫ− 3)
. (6.8)

One can see, that for an isotropic velocity field fx(v) = fy(v) = fz(v) = f(v) follows that
Σ2 = σ2〈f(v)2〉 − 〈f(v)〉2 and does not depend on ǫ or the geometrical projection any longer.
Setting ǫ = 0, it then follows from Eq. 6.8 that Σ2

x,y = 1
4σ2

x,y and Σ2
z = 1

2σ2
z due to geometrical

effects.
The projection factors for the vertical

(

6ǫ−30
20(ǫ−3)

)

and horizontal
(

7ǫ−15
20(ǫ−3)

)

component are

plotted as a function of the limb-darkening coefficient ǫ in Fig. 6.9. They vary only about 5%
from no darkening to a full darkened disk. The reduction for the vertical velocity is about 30%
and for the horizontal components 50%.

For completeness, one can obtain in a similar way the mean velocities in three spatial directions
〈fx,y,z(v)〉 which are given by

〈fx,y,z(v)〉projected =
1

N

∫ 2π

0

∫ π/2

0
〈 ~fx,y,z(v)~e〉 · L(θ) cos θ dω. (6.9)

The horizontal velocities vanish due to projection but there is still a vertical component which is
reduced to geometrical and limb-darkening effects.

〈fx(v)〉projected = 〈fy(v)〉projected = 0,

〈fz(v)〉projected =
(ǫ− 4)

2(ǫ− 3)
〈fz(v)〉. (6.10)
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When interpreting the comparisons shown below, the very approximate nature of this model
should be kept in mind. In this model, I include the geometric projection of the components of
σx,y,z to the line of sight of the observer. One also has to consider the effect of limb-darkening of
the stellar disk. For each velocity dispersion component, I calculate the projection factor which
includes both geometrical projection and limb-darkening effects. I take a limb-darkening coeffi-
cient of 0.4 which follows from the continuum from the angle dependent line synthesis performed
in LINFOR3D. These simulations suggest that a linear limb-darkening law with a limb-darkening
coefficient of 0.4 is suited to describe the brightness variation. The projected velocity dispersions
are also plotted in Figs. 6.4 and 6.5 (red solid and dotted lines). The reducing effect of this pro-
jection factor is stronger in the horizontal components than in the vertical because the projected
area at the limb of the stellar disk, where σH reaches its maximum value, is much smaller than
in the center where σz has its maximum value. The influence of limb-darkening is not strong
and the dependence of the projection factor from the limb-darkening coefficient is only small (see
Fig. 6.9).

Weighted Velocities

To investigate the influence of broadening from the projected and unprojected velocity dispersion
on spectral lines, I use contribution functions for the equivalent width Wλ and the depression at
the line center of an FeH line at 9956.7 (Magain, 1986). The line gains its Wλ and depression
in the region between log τ = 1.0 and log τ = −4.0, i.e. that is the region of main continuum
absorption caused by FeH molecules. The maximum is roughly centered around log τ = −1.0
and moves to slightly lower optical depth with lower temperatures (at the lowest Teff of 2575 K,
the maximum is centered around log τ = −2.0) or higher surface gravities. The contribution
function of Wλ ranges over the region of the convection zone and reflects its influence on the line
shape. Due to the latter fact, FeH lines are a good means to explore the convective regions in
M-dwarfs. In order to measure the velocities in the region where the lines originate, I compute
the mean of the (projected) velocities weighted by the contribution function of Wλ.

σweighted =

∑−6
τ=2 στ · CFτ
∑−6

τ=2 CFτ

. (6.11)

The horizontal and vertical components of these weighted velocity dispersions are plotted in
Figs. 6.7 and 6.8. One can see an increase of σH,z with increasing effective temperature or
decreasing surface gravity. One can see again that the projected horizontal velocity dispersions
are significantly smaller than the unprojected ones due to the reasons mentioned above. The
difference in the vertical component is much smaller. The velocity dispersions for the vertical
component range from a few hundred m/s for cool, high gravity models to ∼ 1 km s−1 for hot
or low gravity models. The horizontal component range from ∼ 500 m s−1 for cool, high gravity
models to ∼ 2 km s−1 for hot or low gravity models. I compare the total projected velocity

dispersion σtot =
√

σ2
H + σ2

z in Sec. 3.2 with micro- and macro-turbulent velocities in the classical
sense.

The strong increase of the velocity dispersions in the atmospheres to higher layers (Figs. 6.4
and 6.5) which some models show is related to convective overshoot into formally stable layers.
These velocities are generated by waves excited by stochastic fluid motion and by advective motion
(Ludwig et al., 2002, and references therein). However, it will not affect the spectral lines, because
the lines are generated in the region between an optical depth of log τ = 1.0 and log τ = −4.0.
The lines in the model with Teff = 2575 K are an exception, they are formed in the outermost
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Table 6.2: Displacement ∆vFlux and ∆vIntensity in m/s of the position of an FeH line
from the rest wavelength in models with different Teff (left side) and different log g (right
side).

Teff ∆vFlux [m/s] ∆vintensity [m/s] vad [m/s] log g ∆vFlux [m/s] ∆vintensity [m/s] vad [m/s]

2800 0 2 3750 3.0 −56 −25 6100
3275 −1 3 4000 3.5 −47 −36 5500
3380 −2 2 4850 4.0 −16 −7 5400
3820 −1 −5 6000 5.0 −1 3 4500
4000 −44 −28 7000

layers of the model and it is not possible to compute the full range of formation of these lines,
because the atmosphere is not extended enough. One has to keep this in mind when regarding
the line dependent results of this model later in this chapter.

6.2.2 Radial Velocity Shifts

Due to the fact that in convective motion the up-flowing area is larger, because it is hotter and less
dense than the down-flowing one, one expects a net shift of the velocity distribution to positive
velocities. That means the net amount of up-flowing area with hotter temperature, i.e. more flux
in comparison to the down-flowing area, results in a blue shift in the rest wavelength position of
a spectral line (see e.g. Dravins, 1982).

To see how the area of up-flowing material affects the rest wavelength position of a spectral line,
ten FeH lines are computed (described in Sect. 4) in 3D models to measure the displacement of the

line positions. In order to determine the center of the line, I used the weighted mean C =
P

F ·v
P

F

which accounts for the asymmetric line shape. (To use the weighted mean is appropriate here
since there is no noise in the computed data.) The line shifts of the flux and the intensity are
given in Table 6.2. A negative value stands for a blue shift, and a positive for a red shift. The
values for each model are the mean of five temporal snapshots. The absolute displacement of
the flux and intensity in the log g series reflects the dependence of the velocity fields on surface
gravity, but for the Teff series a connection is barely visible (see Figs. 6.7 and 6.8). This could
be due to the small geometrical size of the atmospheres in the Teff series (see Table 6.1). Only
the the one with Teff = 4000 K shows a significant line shift and in this model the atmosphere is
1150 km high due to the slightly smaller log g value of 4.5 [cgs]. At this point I will not continue
with a deeper analysis of this topic.

Since only five snapshots are used, one is dealing with statistics of small numbers and hence
a large scatter in the results. This scatter σshift is in general one order lower than the shift of
the line and the integrated jitter of the line, which is important for radial-velocity measurements,
scales as σjitter = σshift√

N
, where N is the number of snapshots. Since in a star N is of the order of

106, the jitter will be of the order of mms−1.

I did not further investigate the effect of granulation patterns on the line profiles but, as it
will be seen below, the lines are almost Gaussian and show no direct evidence for significant
granulation effects.



6.2 Velocity Fields in the CO
5
BOLD-Models 57

6.2.3 Micro- and Macro-Turbulent Velocities

Due to the large amount of CPU time required to compute 3D RHD models and spectral lines
in these models, I study the necessity of 3D models in the range of M-stars. My goal is to
compare the broadening effects of the 3D velocity fields on the shape of spectral lines with the
broadening in terms of the classical micro- and macro-turbulence profiles (see e.g. Gray, 1977,
2008). The latter description is commonly used in 1D atmosphere models like ATLAS9 (Kurucz,
1970) or PHOENIX and related line formation codes. If the difference between 1D and 3D velocity
broadening is small, the usage of fast 1D atmosphere codes to simulate M-stars for comparison
with observations, e.g. to determine rotational- or Zeeman-broadening, would be an advantage.

If the size of a turbulent element is small compared to unit optical depth, one is in the regime
of micro-turbulence. The micro-turbulent velocities might differ strongly from one position to
another and have a statistical nature. The broadening effect on spectral lines can be described
with a Gaussian which enters the line absorption coefficient (Gray, 2008). It can be treated
similarly to the thermal Doppler broadening. The effect on the shapes of saturated lines is an
enhancement of line wings due to the fact that at higher velocities the absorption cross section
increases and as a consequence the equivalent width (Wλ) of the line is increased.

If the size of a turbulent element is large compared to unit optical depth (or of the same size),
one is in the regime of macro-turbulence. This can be treated similarly to rotational broadening as
a global broadening of spectral lines. The effect is an increase of the line width but the equivalent
width remains constant.

As it was seen before, the velocity fields in M-stars are not very strong in comparison to the
sound speed (see Table6.2) and one could expect that their influence on line shapes does not
deviate strongly from Gaussian broadening.

I compared line broadening with the radial-tangential profile from Gray (1975) and a simple
Gaussian profile and found that the latter is a good approximation with an accuracy high enough
for determination of rotational- or Zeeman-broadening. Hence, in this investigation I will assume
Gaussian broadening profiles. That means, that we can assume a height-independent isotropic
velocity distribution for micro- and macro-turbulent velocities. This is a very convenient way
to simulate the velocity fields. One would expect that the anisotropic nature and the height
dependence of the hydrodynamical velocity fields have a significant influence on line shapes, so
it is remarkable that their influence on spectral lines can be described with high accuracy in this
way (at least in the investigated M-type stars). In Fig. 6.10, a few examples of 〈3D〉-FeH spectral
lines are plotted, which were computed with a given micro-turbulent velocity (determined below)
and then convolved with a Gaussian broadening profile with a given macro-turbulent velocity.
The broadened 〈3D〉-FeH lines fit the 3D-FeH lines very well. The difference in the 1D and

3D centroid (C =
P

F ·v
P

F ) is of the order of m/s for small velocity fields up to 30 − 40 ms−1 for

strong velocity fields in hot M star models or with low log g. The error in flux is less than 1%
(see Fig. 6.10); this corresponds to an uncertainty in velocity, for example rotational velocity, of
less than 150 m s−1 depending on the position on the line. It is also visible in Fig.6.10 that at
low effective temperature, effects from velocity broadening are not visible in comparison with an
unbroadened 〈3D〉-line in which the van de Waals broadening is dominant. At higher effective
temperatures, the difference between broadened and unbroadened 〈3D〉-lines is clearly visible. I
found that in the range of M-type stars, 1D spectral synthesis of FeH-lines using micro- and
macro-turbulent velocities in the classical description is sufficient to include the effects of the
velocity fields. In the following I will determine the velocities needed.
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Figure 6.10: FeH lines for models with Teff = 2800 K, log g = 5.0 [cgs] (top) and
Teff = 3820 K, log g = 4.9 [cgs] (bottom). The upper panels show the 3D-line (dots)
and the 〈3D〉convolved-line (solid line) broadened by a Gaussian profile. For comparison
a 〈3D〉-line which was not broadened by any velocities (dashed line) is plotted. In the
lower panels the 3D-〈3D〉convolved residuals are plotted. One can see the asymmetry which
stems from the line shifts due to convective motion. Note the different y-axis scale.

Determination of Micro- and Macro-Turbulent Velocities

Investigation of the micro-turbulent velocities was done with the curve of growth (CoG) method
(e.g., Gray, 2008). We artificially increase the line strength of an absorption-line (increase the
log gf value), which in turn increases the saturation of the line and its influence on the micro-
turbulent velocity, which results in an enhancement of Wλ. In order to determine micro-turbulent-
velocities, I use Fe I- and FeHlines produced in 〈3D〉-models with different micro-turbulent veloc-
ities (there are no differences in micro-turbulent velocities between either type of line), i.e. for
each log gf -value we compute a 〈3D〉-line with micro-turbulent velocities between 0 km s−1 and
1 kms−1 in 0.125 kms−1 steps. In this way CoGs for 9 different micro-turbulent velocities are
obtained. I compare the equivalent widths in the CoGs with the ones computed in the 3D-models
and selected the velocity of the CoG which fits the 3D CoG best in the sense of χ2-residuals. Since

Figure 6.11: Micro-turbulent velocities as a function of log τ for different Teff (left) and
different log g (right).
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Figure 6.12: Macro- (solid) and micro-
(dotted) turbulent velocities and the
sum of both (long dashed line) as a func-
tion of Teff . The data points are fitted by
a second order polynomial and the sum
of micro- and macro-turbulent velocities
is given by the sum of the fits. For com-
parison, velocities from Bean et al. and
the total projected weighted 3D veloc-
ity dispersions are plotted, too (short
dashed line). The models are located
at Teff values of 2800 K, 3275 K, 3380 K,
3820 K and 4000 K and a log g value of
5.0, except the one with Teff = 3820 K
(log g = 4.9), and the one with
Teff = 4000 K (log g = 4.5) [cgs].

Figure 6.13: Macro- (solid) and micro-
(dotted) turbulent velocities and the
sum of both (long dashed line) as a
function of log g. The data points
are fitted by a second order poly-
nomial and the sum of micro- and
macro-turbulent velocities is given by
the sum of the fits. For comparison,
the total projected weighted 3D veloc-
ity dispersion is plotted (short dashed
line). The models are located at Teff

around 3300 K and different log g val-
ues of 3.0 (Teff = 3240 K), 3.5
(Teff = 3270 K), 4.0 (Teff = 3315 K)
and 5.0 (Teff = 3275 K) [cgs].

strong (saturated) lines tend to be formed in the upper atmosphere, and weak (unsaturated) lines
in deeper layers of the atmosphere, log gf and the height of formation are related. I fit a micro-
turbulent velocity to each log gf point of the 3D CoG, and convert the log gf value into a mean
optical depth τ , using again contribution functions (see equation (6.11) with τ instead of σ). In
this way, a height-dependent micro-turbulent velocity structure was obtained (see Fig.6.11). One
can see that both, log g and Teffsequence, show decreasing velocities towards outer layers. This
behavior seems to coincidate more with the vertical hydrodynamical velocity field than with the
horizontal field (see Figs. 6.4 and 6.5). However, one has to be careful, since the optical depth
is a weighted mean over the range of formation. The influence from micro-turbulent motion is
more significant in the line core than in the line wings, which are formed in deeper layers than
the core. Hence, in order to investigate the region of significant influence from micro-turbulent
motion, one has to shift the derived mean optical depth towards higher atmospheric layers.

The macro-turbulent velocities are determined by computing a 〈3D〉-model FeH line (at λ =
9956.7 ) including the micro-turbulent velocities. This line is then broadened with a Gaussian
profile and different velocities until it matches the 3D-model line.

The dependence of the micro- (ξ) and macro- (ζ) turbulent velocities on surface gravity and
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effective temperature is plotted in Figs. 6.12 and 6.13. The macro-turbulent velocities in both
cases show a quadratic dependence, and can be fitted with a second order polynomial. The micro-
turbulent velocities could be fitted by a linear function or a second order polynomial. I decided
to use the second order polynomial, too.

Micro- and macro-turbulence velocities both show a similar dependence on surface gravity and
effective temperature, which implies that there is a direct connection between both. A comparison
of the macro (ζ)- and micro (ξ)-turbulent velocities with the sum of both (

√

ζ2 + ξ2) and the
total projected weighted velocity dispersion σtot (see Sec. 3) is also shown in Figs. 6.12 and 6.13.
The total projected weighted velocity dispersion (see Sec.3) is very similar to the macro-turbulent
velocities and in most cases smaller than the sum of micro- and macro-turbulent velocity. It is
possible, with this simple description of the total projected weighted velocity, to describe the
broadening influence of the hydrodynamical velocity fields on spectral lines in comparison with
the classical micro- and macro-turbulent description.

In order to obtain a good estimate of the line profile in 1D spectral line synthesis, knowledge of
the micro- and macro-turbulent velocities is very important. Otherwise one could underestimate
the equivalent width or the line width and hence obtain a wrong line depth.

I compare the determined micro- and macro-turbulent velocities to observational results from
(Bean et al., 2006a,b) and (Bean, 2007). The determined values of the macro-turbulent velocities
are roughly of the same order. The higher macro-turbulent velocities from Bean et al. possibly
contain rotational broadening, but the Bean et al. micro-turbulent velocities are roughly a factor
of two or three higher than the determined ones. These velocities were obtained from observed
spectra by the authors of the afore mentioned papers using spectral fitting procedures. They used
PHOENIX atmosphere models and the stellar analysis code MOOG (Sneden, 1973). One has to keep in
mind that the empirical determination of micro-turbulence may also suffer from systematic errors.
For most of the lines that Bean and collaborators employ (line data from Barklem et al. (2000)),
the van de Waals damping constant is available. However, if not, then Unsöld’s hydrogenic
approximation is applied to calculate the value, and different authors use significantly different
enhancement factors, changing its value. This illustrates the level of uncertainty inherent to this
approach. For instance, Schweitzer et al. (1996) used an enhance factor of 5.3 (for the resulting γ6

values) for their Fe I lines, while Bean et al. prefer 2.5 for Ti I lines (Bean, 2007). To investigate
the detailed influence of van de Waals broadening on determination of micro-turbulence velocities
is very interesting, but is beyond the scope of this paper. Uncertainties in the damping constant
may introduce significant systematic biases in the resulting value of spectroscopically micro- and
macro-turbulence which could easily be overestimated.

As mentioned above and illustrated in Fig. 6.12, the prediction of the micro-turbulence grossly
underestimates the micro-turbulence values measured by Bean et al.. This might hint at deficits in
the hydrodynamical modeling and one cannot exclude the possibility that a process is missing in
the 3D models leading to a substantially higher micro-turbulence. But due to the argumentation
above and a comparison with the solar micro- and macro-turbulence, one can argue that the Bean
et al. values for the micro-turbulence are too high. However, before being able to draw definite
conclusions, the observational basis has to be enlarged.



Chapter 7

Teff- and log g-Dependence of FeH
Molecular Lines

In this chapter I study the dependence of FeH molecular lines on Teff and log g in the 3D- and
〈3D〉-models. Again, the intention is to identify multi-D effects which might hamper the use of the
FeH line diagnostics in standard 1D analyses. For this purpose, I compute the 〈3D〉-lines with no
micro- and macro-turbulence velocity. With this method one can study the FeH lines without any
velocity effects and can, through direct comparison between 3D- and 〈3D〉-lines, clearly identify
velocity-induced effects. The results can also be found in Wende et al. (2009).

7.1 An Ensemble of 3D- and 〈3D〉-FeH Lines

I investigate ten FeH lines between 9950 Å and 9990 Å chosen from Reiners & Basri (2006) (see
Table 7.1). We choose lines from different branches (Br), orbital angular momentum ω, and
rotational quantum number J . The wavelengths in Table 7.1 are given in vacuum and El is
the lower transition energy. While not directly relevant in the present context, because not the
effects of magnetic fields are studied, it is noted that five lines are magnetically sensitive and five
insensitive. The line synthesis were performed for fixed abundances with the CO5

BOLD atmosphere
models listed in Table 6.1. The spectral resolution is R ≈ 2 · 106 (≡ 5 · 10−3 Å) corresponding
to a Doppler velocity of v ≈ 150 m s−1 at the wavelength of the considered lines (∼ 9950 ).
Figures 7.1 and 7.2 illustrate the strong influence of surface gravity and effective temperature
on the line shape for the 3D-models. In Fig. 7.1, one can see that for both 〈3D〉- and 3D-lines,
the line depth, line width and equivalent width Wλ decrease strongly with increasing effective
temperature. The decrease of Wλ is due to stronger dissociation of the FeH molecules at higher
temperatures, i.e the number of FeH molecule absorbers decreases. Differences in the line shape
between 3D- and 〈3D〉-lines with changing temperature are barely visible. At higher Teff values,
the influence of broadening on the 3D lines due to velocity fields is slightly visible and not covered
by thermal and van de Waals broadening any longer. At cooler temperatures, the velocity fields
decrease and the differences between the 〈3D〉- and 3D-line shapes vanish. The van de Waals
broadening is larger then the thermal broadening or that from the small velocity fields in the
RHD models. In the model with Teff = 2800 K, the lines start to become saturated. The FeH
lines in the z-band at effective temperatures below ∼ 2600 K become too saturated and too
broad for investigations of quantities like magnetic field strength or rotational broadening below
10 km s−1.
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The differences between 3D- and 〈3D〉-line shapes of the log g-series in Fig. 7.2 is more obvi-
ous than in the Teff case. The differences in line depth and line width become significant with
decreasing log g. The lines in the 3D-models are significantly broadened due to the velocity fields
in the RHD models, hence the line width is larger and the line depth lower. As it was seen in
Sect.6.2, these velocity fields increase with decreasing log g and could be described in the 1D case
in terms of macro- and micro-turbulent velocities.

The 〈3D〉-lines become slightly shallower and narrower towards smaller log g. The equivalent
width of the lines decreases with decreasing log g due to decreasing pressure and hence decreasing
concentration of of FeH molecules. Also the van de Waals broadening loses its influence at lower
pressures and the line width decreases. In all models the same chemical compositions is used,
hence the concentration of Fe and H stays the same. The creation of FeH also depends on the
number of H2-molecules, which becomes larger towards lower temperatures and will be important
in cool models.

The slightly different effective temperatures in the models with different log g (see Table 6.1)
affect the line depths as well. If the effective temperatures were the same in the log g-models, one
would expect a monotonic behavior with decreasing line strength for decreasing surface gravity in
the 〈3D〉-lines. However, because the model with log g = 3.0 is cooler, the line depth is deeper
than that of the one with log g = 3.5. In the following analysis, I will correct the FWHM, Wλ,
and the line depth of the lines in models with different log g for their slightly different effective
temperatures.

The ten FeH lines all behave in the same way as the presented ones. I do not see any effect of
different excitation potentials or log gf values on the line shapes that cannot be explained by their
different height of formation. Thus, one can expect that an extraordinary interaction between
these quantities and effective temperature or surface gravity can be excluded. I will quantify this
preliminary result in the next section.

Table 7.1: Several quantities of the investigated FeH lines (Reiners & Basri, 2006).

λrest [Å] log gf El [eV] Br. J Ω magn. sen.

9953.08 -0.809 0.156 R 10.5 1.5 weak
9954.00 -2.046 0.199 P 16.5 2.5-3.5 strong
9956.72 -0.484 0.375 R 22.5 3.5 strong
9957.32 -0.731 0.194 R 12.5 1.5 weak
9973.80 -0.730 0.196 R 12.5 1.5 weak
9974.46 -1.164 0.108 R 4.5 0.5 weak
9978.22 -1.190 0.030 Q 2.5 2.5 strong
9979.14 -1.411 0.093 R 2.5 0.5 strong
9981.46 -1.006 0.130 R 6.5 0.5 weak
9982.60 -1.322 0.035 Q 3.5 2.5 strong

7.2 FeH Line Shapes

To quantify the visual results of Fig. 7.1 and Fig. 7.2, I measured Wλ, the FWHM, and the line
depth of the ten investigated FeHlines (see Table 7.1). The 3D- and 〈3D〉-lines are compared with
each other to study the effects of the velocity fields in the 3D models and to explore the behavior
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Figure 7.1: FeH lines with constant
log g and varying Teff . Pairs of 3D-
and 〈3D〉-lines are shifted by a con-
stant for better visibility. The mod-
els are located at Teff values of 2800 K,
3275 K, 3380 K, 3820 K and 4000 K and
a log g value of 5.0, except the one with
Teff = 3820 K (log g = 4.9), and the
one with Teff = 4000 K (log g = 4.5)
[cgs].

Figure 7.2: FeH lines wit constant Teff

and varying log g. Pairs of 3D- and 〈3D〉-
lines are shifted by a constant for bet-
ter visibility. The models are located
at a Teff around 3300K and different
log g values of 3.0 (Teff = 3240 K), 3.5
(Teff = 3270 K), 4.0 (Teff = 3315 K)
and 5.0 (Teff = 3275 K) [cgs]. The large
differences between 3D- and 〈3D〉-lines
stem from the hydrodynamical velocity
fields in the 3D models.

of the FeH without broadening effects from the hydrodynamical motion. These quantities are
plotted in Fig. 7.3 and Fig. 7.4.

As mentioned above, one has to correct the line quantities in models with changing log g for
their slightly different Teff . In Figs. 7.1 and 7.3 one can see how the investigated quantities depend
on Teff . I determined spline fits ℘ for the three quantities of each line. For these fitting functions
℘ all five different effective temperatures were taken into account. In order to correct the line

quantities to a reference temperature of Teff
Ref. = 3275 K, a correction factor γ =

℘quant.(Teff
Ref.

)

℘quant.(Teff .)

was used and was multiplied with the quantity for the log g-model. This gives the value of the
quantity for a log g-model which would have Teff = 3275 K.

7.2.1 Equivalent Width Wλ

In the Teff -series, Wλ (see Fig. 7.3 upper panel) decreases with increasing Teff . At higher Teff the
number of FeH molecules decreases due to dissociation and hence Wλ. This can be seen in the
3D lines as well as in the 〈3D〉-lines. At Teff = 2800 K, the influence of van de Waals broadening
in the 3D- and 〈3D〉-lines becomes clearly visible in the line profile due to saturation of the FeH
lines. The ten different FeH lines all behave in a similar manner. The only difference is the
absolute value of Wλ, which depends on the log gf -value and the excitation potential El of each
line.

In the log g-series, the Wλ (see Fig. 7.4 upper panel) increases with increasing log g. The
change in concentration of FeH with lower log g, which results in smaller Wλ, depends on the
changing pressure and density stratification. The difference between 3D- and 〈3D〉-lines at small
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Figure 7.3: Wλ (top), FWHM (mid-
dle) and the line depth (bottom) of
ten FeHlines (see Table 7.1) on mod-
els with different Teff . Squares are the
data points for the 〈3D〉-models and di-
amonds for the 3D-models. Wλ and
FWHM are on a logarithmic ordinate
for better visibility. The data points
of each line were connected with fitting
functions (see text) to guide the eye.
Plotted are the quantities of the 3D-
models (black solid lines) and the 〈3D〉-
models (gray dotted lines). The mod-
els are located at Teff values of 2800 K,
3275 K, 3380 K, 3820 K and 4000 K and
a log g value of 5.0, except the one with
Teff = 3820 K (log g = 4.9), and the
one with Teff = 4000 K (log g = 4.5)
[cgs].

Figure 7.4: Wλ (top), FWHM (mid-
dle) and line depth (bottom) of ten FeH-
lines (see Table 7.1) on models with dif-
ferent log g. Squares are the data points
for the 〈3D〉-models and diamonds for
the 3D-models. The data points of each
line were connected with fitting func-
tions (see text) to guide the eye. The
quantities of the 3D-models (black solid
lines) and the 〈3D〉-models (gray dotted
lines) are shown. All quantities are cor-
rected to a Teff of 3275 K.

log g-values stems from the broadening by micro-turbulent velocities and vanishes at higher log g
values. This time the FeH lines are only mildly saturated, but the velocity fields in the RHD
models (see Sec.3) are strong enough to affect the Wλ as well. As in the Teff -series, the ten
different lines show no significant variations in their behavior. They only vary in the amount of
Wλ due to different log gf -values.

Abundance Correction

Since the differences in Wλ are very small, one can expect that the 3D correction to the FeH
abundance is very small too. I derive abundance corrections from a comparison between 3D and
〈3D〉 curve of growths for each set of lines on the different model atmospheres. The results are
plotted in Fig. 7.5. In this case the correction to the different Teff of the log g models is not applied.
The 3D-〈3D〉 abundance correction is between −0.001 dex for the coolest high log g model and
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Figure 7.5: 3D – 〈3D〉 corrections to FeH abundances derived from different FeH lines
with varying quantities, see Table 7.1. Upper panel: The models are located at a Teff

around 3300K and different log g values of 3.0 (Teff = 3240 K), 3.5 (Teff = 3270 K),
4.0 (Teff = 3315 K) and 5.0 (Teff = 3275 K) [cgs]. Lower panel: The models are
located at Teff values of 2800 K, 3275 K, 3380 K, 3820 K and 4000 K and a log g value of
5.0, except the one with Teff = 3820 K (log g = 4.9), and the one with Teff = 4000 K
(log g = 4.5) [cgs].

−0.07 dex for the log g = 3.0 model. In all cases the abundance correction is negative which mean
that the 3D lines appear stronger due to the enhanced opacity which becomes larger due to the
micro-turbulent velocity.

7.2.2 FWHM

The dependence of the line width (measured as the width of the line at their half maximum
(FWHM)) on Teff is shown in the middle panel of Fig. 7.3. At low Teff , one can see that the FWHM
of the 3D- and 〈3D〉- FeH lines decreases with increasing Teff . The van de Waals broadening loses
influence and also the dissociation of FeH molecules leads to smaller and narrower lines. After Teff

around 3380 K, the FWHM of the 3D lines reaches a flat minimum and starts to become larger
again at higher Teff . This rise in the line width is probably related to the rising velocity fields in
the RHD models, since thermal broadening takes place in both 3D- and 〈3D〉-lines and the latter
still decrease. The rise of the velocity in the models with a Teff of 3380 K and 4000 K could also be
due to the slightly lower surface gravity in these models, but I think that the main influence stems
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from the higher temperatures. The 〈3D〉-lines decrease monotonically with increasing Teff and
reflects, the behavior of Wλ. The difference in FWHM between 3D- and 〈3D〉-lines is very small
at Teff = 2800 K and increases with increasing Teff to ∼ 0.8 kms−1 at the highest Teff . It was seen
in Sect. 6.2.2 that this can be explained with the micro- and macro-turbulence description. The
offset between the FWHM of the ten lines is due to their different log gf -values i.e. large log gf -
values results in large FWHM. But since one is interested in broadening by the velocity fields,
one has to take into account that lines with small log gf -values, i.e. weak lines, formed deeper
in the atmosphere where the convective motions are stronger. These lines are more broadened
by the hydrodynamical velocity fields and hence more widened. One can see in Fig. 7.3 that the
difference in FWHM between the ten 3D lines becomes smaller to high Teff . This is also valid
for the lines in the log g-series where the difference in FWHM between the ten 3D lines becomes
smaller at small log g-values.

In the log g-series, the dependence of FWHM (Fig. 7.4 middle panel) is very different for 3D-
and 〈3D〉-lines. In the 3D case, the FWHM stays almost constant with decreasing surface gravity
between log g of 5.0 and 4.0 for most lines. This is due to the smaller amount of van de Waals
broadening, which loses its influence due to lower pressure in models with smaller surface gravity.
This is compared with the broadening due to the rising velocity fields. With log g smaller than 4.0,
the width starts to increase for all lines. This increase of line width in the 3D case is a consequence
of the hydrodynamic velocity fields which increase strongly with decreasing log g. In the 〈3D〉
case, without the velocity fields, the FWHM decreases with decreasing surface gravity and reflects
the behavior of the Wλ. The difference between 3D- and 〈3D〉-lines reaches its maximal value at
log g = 3.0 [cgs] and is around 1.3 km s−1. This is of the order of the velocity fields in the RHD
models (see Fig. 6.8). One could fit 1D spectral synthesis FeH lines to observed ones (with known
Teff) with the micro- and macro-turbulence description (see Sec. 3.2) and it will be possible with
the obtained velocities to determine a surface gravity with the help of Fig. 6.13.

I did not see any significantly different behavior between the ten FeH lines in the Teff -series
or in the log g-series.

7.2.3 Line Depth

In the bottom panel of Fig. 7.3 one can see the dependence of the line depth on Teff . The line
depth increases with decreasing Teff , and almost all FeH lines, except the one with the lowest
log gf values, are saturated at Teff = 2800 K. The difference in line depth between 3D and 〈3D〉-
lines change in the Teff -interval. At high Teff , the line depth of the 〈3D〉-lines is deeper than that
of the 3D lines. At Teff = 2800 K, this difference almost vanishes. This behavior is due to the
saturation of the FeH lines at low Teff because both the 3D- and 〈3D〉-lines reach their maximal
depth. The decrease of the line depth with increasing Teff is due to the dissociation of the FeH
molecules at higher temperatures.

The line depth of the log g-series is shown in the bottom panel of Fig. 7.4. At low log g,
the line depths of the 3D and 〈3D〉-lines increase almost linearly with increasing log g. The 3D
lines increase with a strong slope and the 〈3D〉-lines with a weaker slope. The difference in
line depth between 3D- and 〈3D〉-models is maximal at log g = 3.0 [cgs] and vanishes almost at
log g = 5.0 [cgs]. It is consistent with the velocity fields present in the atmospheres of the RHD
models broadening the lines and lower the line strength of the 3D lines. The 〈3D〉-lines reflect
the decreasing number of FeH molecules with decreasing log g due to the lower pressures.

With these results, which imply that FeH lines are a valuable tool to measure stellar param-
eters, I will investigate a larger sample of lines in the next chapter.



Chapter 8

Line by Line Identification of FeH in
the z-band

Since FeH provides a very large number of usable lines in the near infrared, where M type stars
reach their maximum in emitted flux, it will be very helpful to provide an atlas of identified lines
in this region. In order to do this, I will use high resolution spectra with good signal to noise
from CRIRES1 observations of an M 5.5 dwarf. The methods and results which will be described
in the following are also published in Wende et al. (2010). The final atlas and line list can be
found in the online material of the afore mentioned publication or here 2, and are described in
more detail in the appendix.

8.1 Data

8.1.1 CRIRES Spectra of GJ1002

The observational data are CRIRES spectra of the inactive M 5.5 dwarf GJ1002 (see Fig. 8.1).
The M dwarf has an assumed effective temperature of 3150 K (from the spectral type), and it
is a very slow rotator (v sin i < 3 km s−1, Reiners & Basri, 2007). There is also very low Hα

and X-ray activity from which one can assume that the magnetic field strength is relatively low.
Owing to the weak magnetic field and slow rotation, GJ1002 is an ideal target for identification of
molecular FeH lines. The lines are only slightly broadened by the different possible mechanisms in
contrast to observations in sun spots where FeH lines are always influenced by a strong magnetic
field.

CRIRES observations of GJ1002 were conducted in service mode during several nights in July
2007. The entrance slit width was set to 0.2′′, hence, the nominal resolving power was R ∼ 100 000.
Four frames with an integration time of five minutes were taken in an ABBA-nod pattern for each
of the nine wavelength settings covering the region between 986 – 1077 nm, leaving only one larger
gap at 991.15 – 992.45 nm and two smaller gaps at 997.15 – 997.50 nm and 1057.15 – 1057.65 nm.

Data reduction made use of the ESOREX pipeline for CRIRES. Science frames and flat-
field frames were corrected for non-linearity and 1D spectra were extracted from the individual
flatfielded and sky subtracted frames with an optimum extraction algorithm. The wavelength
solution is based at first order on the Th-Ar calibration frames provided by ESO. Due to the slit

1Data were taken at ESO Telescopes under the program 79.D-0357(A)
2http://www.astro.physik.uni-goettingen.de/~sewende/

http://www.astro.physik.uni-goettingen.de/~sewende/
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Figure 8.1: Top: FeH Wing-Ford
band, observed (black) and computed
(red). Bottom: a magnification of the
spectrum above.

Figure 8.2: FeH vibrational bands
separated by their vibrational quantum
numbers. See color version for more de-
tails.

curvature, spectra taken in B-nodding positions are shifted in wavelength with respect to spectra
taken in A-nodding positions. This was corrected for by mapping all 1D spectra to the spectrum
of the first A-nod position.

The individual CRIRES wavelength settings provide a considerable degree of spectral overlap
and up to eight individual spectra were combined into one final spectrum at each wavelength.
While merging the individual settings, small mismatches in the wavelength solutions as well as
imperfections in the individual spectra (detector cosmetics, ghost contamination) were corrected.
The final spectrum was normalized to a pseudo-continuum level of unity and finally shifted to
match the McMath FTS spectrum of solar umbra (Wallace et al., 1998). The error in the wave-
length calibration should be smaller than 0.75 km s−1.

The SNR at the continuum level of most parts of the final spectrum is found to exceed 200.
The high signal-to-noise ratio and high spectral resolution of the CRIRES data allows one to
identify FeH lines with high accuracy.
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8.1.2 Theoretical FeH Molecular Data and Line Synthesis

The theoretical data which was used to identify the FeH lines is taken from Dulick et al. (2003).
They provide tables of quantum numbers and energies3. In particular, they provide the vibrational
assignment of the upper and lower states vu and vl, respectively, the projection of the total orbital
angular momentum on to the internuclear axis for the upper and lower state, Ωu and Ωl, and the
rotational quantum numberJl for the lower state. Furthermore the transition branch (P, Q, R),
the parity, the wavenumber in cm−1, the lower state energy of the transition El and the Einstein
A value are given.

From this information it is possible to estimate log10 gf -values through (Bernath, 2005)

glf =
ǫ0mec

3

2πe2ν2
Agu, (8.1)

with gl = 2Jl + 1 and gu = 2Ju + 1 as the lower and upper statistical weights of the transition
and ν = c/λ as the transition frequency. All quantities are in SI units.

The van der Waals broadening is determined following Schweitzer et al. (1996), which is basi-
cally Unsöld’s hydrogenic approximation. For the ionization energy needed in this approximation
I used an empirically determined value of 6 eV, which was deduced from comparison with other
diatomic molecules (Wende et al., 2009, or see chapter 5). Although this is not the theoreti-
cal value, which is slightly higher, I used this one because its influence on the van der Waals
broadening is not significant.

The molecular partition function for FeH, QFeH , which is needed for the concentration of
FeH, is computed after Sauval & Tatum (1984) with molecular data taken from Tables 9 and 10
of Dulick et al. (2003). Equation 8.2 is given in a polynomial expression of a fit to the partition
function which is valid between 1000 K and 8000 K.

QFeH =

4
∑

i=0

aiT
i, (8.2)

where T is the temperature in K and













a0

a1

a2

a3

a4













=













−4.9795007e + 02
6.5460944e − 01
3.4171590e − 04
2.7602574e − 07
1.0462656e − 11













, (8.3)

are the coefficients of the polynomial. For the creation of FeH, i.e. the concentration that is
governed by the Saha-Boltzmann Eq., I assume Fe + H → FeH. With this partition function and
the data from Dulick et al. (2003) we can use a simple description for the absorbance (described in
Sect. 8.2.4 in this paper in more detail) to compute FeH spectra with a simple reversing layer model
and separate the lines into vibrational bands in the observed wavelength region (see Fig. 8.2).
From this figure one can expect that there will be two sequences of vibrational transitions, namely
the sequence with ∆v = 0, which are the (0, 0), (1, 1), and (2, 2) vibrational transitions, and the
sequence with ∆v = 1, which are the (1, 0), (2, 1), (3, 2), and (4, 3) transitions. I note that this
method does not take into account (among many other things) the atmospheric structure or the

3See http://bernath.uwaterloo.ca/FeH

http://bernath.uwaterloo.ca/FeH
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chemical composition of the star. It gives only a rough estimate of the relative strengths of the
FeH bands.

The full synthetic line formation for the comparison and identification of the observed FeH
lines is done with the line formation code SYNTH3 (Kochukhov, 2007). This code is able to compute
large spectral regions with all FeH lines taken from our line list (see Fig. 8.1). I used only lines
with log10 gf > −7 because I assume that other lines have no significant influence. By computing
all the lines in a certain region at once, it is accounted for blends, but also all lines of the
region were computed individually to measure their equivalent width Wλ with the LINFOR3D code
(based on Baschek et al., 1966). For the input model atmospheres I used MARCS (Gustafsson et al.,
2008) with solar composition (Grevesse et al., 2007). These models are well suited for these cool
temperatures in low-mass stars, because they make use of up-to-date atomic and molecular data
and reach to effective temperatures of 2500 K. I used the plane-parallel LTE models where the
convection is treated in the mixing-length approximation. In the computation of these model
atmospheres, the microturbulence parameter was set to zero. However, in the computations of
the actual spectra, I assumed microturbulence parameters according to the results of Wende et al.
(2009). I do not expect any significant influence because they are on the order of a few hundred
m s−1. I neglect the broadening from macro-turbulent motion, which would be hardly visible in
the observed spectra.

8.2 Methods

I began with the investigation of the observed spectrum, for which I determined the position
of the spectral lines and decide whether a line feature is a blend or not. Then I measured the
equivalent width Wλ of the lines with a Voigt-fit procedure described below.

I compared the line positions found in the CRIRES data to theoretical ones and identified
them with FeH lines. In order to confirm an identification, I used statistical means: (i) the method
of coincidence, and a cross-correlation technique producing coincidence curves; and (ii) a method
which takes the intensity into account. In this latter method I will compare the theoretical line
strength S (Hönl-London factor) with the observed Wλ following Schadee (1964). I also use a
description for the absorbance of spectral lines to correct theoretical line intensities given in terms
of the Einstein A values. For this I will compare the observed and computed spectra with each
other and obtain a scaling factor for the Einstein A values. The final result is a corrected line
list that reproduces the observed stellar spectrum as well as the line positions in sunspot spectra
from Wallace et al. (1999). The line intensities are hard to confirm in the solar case, because
many FeH lines are strongly split by magnetic fields.

8.2.1 Voigt Fit

In order to measure Wλ in the observed spectra I used a ‘multi-Voigt fit’ procedure (based on
IDL curvefit function). This is defined as

F =
∑

N
i=0Ai ·

H(ui, ai)

max(H(ui, ai))
, (8.4)

where A is the amplitude describing the depth of the line,

u =
λ− λ0

σ
, (8.5)
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with σ as Gaussian (or Doppler) width,

a =
γ

4π

λ0
2

c

1

σ
, (8.6)

which will be called the Voigt constant throughout in this paper, γ is the radiation damping
constant, and H(u, a) is the Hjerting function (Gray, 2008, and references therein). I successively
fitted the whole spectrum within bins of 7 Å . The first and the last 1 Å were cut off after the
fit to avoid boundary effects, and I used only line profiles whose centers are inside the 5 Å bin.
For the Voigt profiles inside a bin, I assumed a constant a-value for the Lorentz part and a fixed
Gaussian width, but changes in these two parameters from one wavelength bin to another are
allowed because the FeH lines tend to become narrower towards longer wavelengths. This is
probably because a and σ were used only as fit parameters, and the FeH lines start to saturate
at the band head, but become weaker towards longer wavelengths. Hence, the width of the line
profile, which is a combination of a and σ, decreases with decreasing saturation and consequently
both parameters decrease. The wavelength dependence of the Doppler width affects the width
of the lines as well, but it is negligible and goes in opposite direction (for example, σ = 0.1 Å at
λ = 10000 Å would change to σ = 0.105 Å at λ = 10500 Å ).

With this fit procedure, I obtained the parameters (position, depth (amplitude), Voigt con-
stant, and σ), needed for the individual Voigt line-profiles to fit the observed spectrum. In Fig. 8.3
I show an example of how the fit (red) reduced the observed spectrum (black) into single-line pro-
files (bottom panel).

The convergence criterion is the minimization of the residual flux between observation and
fit (O − C). The iteration is stopped if the maximal error of the fit is lower than three times
the standard deviation of the error or if the standard deviation of the error does not change
significantly between two iterations. From these Voigt profiles, Wλ can easily be computed by
integrating over the single-line profiles. The fit is also able to find and separate possible blends.
For this, I assume that the blended components differ in position by at least 0.1 Å .

The measured Wλ will be assigned to the associated theoretical lines. This means that if an
observed line can be identified with exactly one theoretical line, Wλ is fully assigned to this one
theoretical line. However, in most cases the theory predicts more than one line for an observed
line position because of numerous overlapping vibrational bands in the same wavelength region
and from many closely-spaced line pairs, which only differ in parity. Then Wλ will be distributed
to all predicted theoretical lines at this position. This is done with the ratio Ri of theoretical
equivalent widths theoW i

λ, which is obtained from the individual theoretical line profiles:

Ri =
theoW i

λ
∑

i∈B
theoW i

λ

, (8.7)

with B as the set of blended components. There is of course the chance that FeH is not the
only contributor to the observed blend. To avoid this uncertainty, we additionally used the line
intensities in a method described below.

8.2.2 Method of Coincidence

To confirm the identification of a molecular band, or a sub-band, the ‘method of coincidence’ were
used, which was first introduced by Russell & Bowen (1929). It gives the number of lines C in a
spectral range that will be found by chance if one uses a set of randomly generated line-positions
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Figure 8.3: Upper panel: Part of the
observed spectrum of GJ1002 with mul-
tiple Voigt fit. Lower panel: the single
Voigt functions which were returned by
the fit.

Figure 8.4: Relative number of ab-
sorbers with (dashed line), and with-
out (solid line) constant number of FeH
molecules over different atmospheric lay-
ers.

and compares them with observed ones. Fundamental probability calculations lead to

C = M [1− exp (−2xw)], (8.8)

where M is the number of lines in a particular region, x is the tolerated deviation in position, and
w is the line density (average number of spectral lines in the investigated region). This means that
C/M = prandom gives the probability of finding with a randomly chosen line position a random
coincidence. If one identifies N out of M lines in the observations, then the probability of finding
an identification is N/M = pidentified. The ratio N/C describes how likely it is to find a line by
random coincidence per identified line. Hence, the number of actually identified lines N should
exceed the number of C of purely random coincidences. If this is the case, then one can assume
that the lines are probably identified in the observed spectra.

8.2.3 Theoretical Line Strength

For the identification of molecular lines it is also useful to take the intensities of the lines into
account. To compare the theoretical line strength S with the observed equivalent width Wλ, we
follow Schadee (1964). For weak lines (mildly saturated) Wλ is proportional to the wavelength
λ0, the oscillator strength f , and Ni, the number of absorbers (Gray, 2008):

Wλ ∝ λ2
0fNi, (8.9)

and

f ∝ gu

gl
λ2

0A, (8.10)

with Ni as the number of absorbers given by the Boltzmann distribution

Ni ∝ gle
(−hc

kT
E0), (8.11)
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where E0 is the lower-state energy level in cm−1. To derive the final form, I use Eqs. 8.10 and
8.11 together with Eq. 8.9 and the expression for the Einstein A value

A =
Avu,vl

S

gu
. (8.12)

Here Avu,vl
is the Einstein A for a specific vibrational transition and constant for the vibrational

band. The resulting equation is

log10
Wλ

Sλ4
0

= C − hc

kT
E0 log10 e, (8.13)

which is the relation from Schadee (1964) with E0 replacing BJl(Jl + 1). Possible stimulated
emission can be neglected for this analysis because there is only a small population in the excited
state. If one plots log10 Wλ/Sλ4

0 against Eo, a straight line should be found, which then suggests
the correct identification of the lines in the FeH molecular band. Equation 8.13 accounts for
different branches as well as for different Ω. This is because S on the left side of Eq. 8.13 is
computed for all branches (P, Q, R) and Ω values.

The S values that I will use in the analysis are computed for the intermediate Hund’s case
and are determined from the Einstein A values given by Dulick et al. (2003).

I point out that it is implicitly assumed in Eq. 8.11 that the total number of FeH molecules N is
constant for all lines. This assumption is only valid if one considers a small isothermal atmospheric
layer. However, because a spectral line forms over several layers, this assumption is not exactly
valid. If one furthermore considers a set of lines with a wide range in gf and E0 values, one expects
that these lines form at different heights. Thus, the number of FeH molecules is not constant
anymore: strong spectral lines are assumed to be formed in higher atmospheric layers, and weak
lines in deeper layers. Hence, deviations from a straight line in the [log10 Wλ/S,E0] diagram for
lines with very low and very high J are expected. If one assumes more FeH molecules in deeper
layers, larger equivalent widths for these lines can be expected owing to higher density. For a
qualitative description, I assume the total number of FeH molecules to be inversely proportional
to the equivalent width, which reflects the heights of formation for weak and strong lines.

N(z) = N · αW β
λ . (8.14)

α and β are free parameters and here chosen as 1.25 and −0.25, respectively. I plot the right hand
side of Eq. 8.13 for the constant and variable molecule number in Fig. 8.4. Still, the situation
is much more complicated, and I use synthetic line formation to investigate this behavior in the
results section.

Following Schadee (1964), one can now use the [log10 Wλ/S,E0] diagram to classify the iden-
tified FeH lines into one of the following classes:

1. P - the line is present, and its Wλ agrees well with the straight line of the diagram.

2. Pb - the line is present, but its Wλ is too large, i.e. the log10 Wλ/S value lies above the
straight line of the diagram. This could imply that the line is blended by another element
(or that its computed line strength is too weak).

3. R - the line strength is presumably reduced by perturbations. That means that the computed
line strength is too great and the data point lies below the line.



74 8. Line by Line Identification of FeH in the z-band

4. Q - the line was identified, but its identification can not be verified, because only lines with
∆Ω = 0 were investigated in this plot.

Eventually, it should be possible to derive the excitation temperature for the rotational transitions
T in Eq. 8.13 from the slope of a linear fit in the [log10 Wλ/S,E0] diagram. Yet one has to be
careful. Wöhl (1970) reports that the obtained rotational temperature from this method crucially
relies on the data points which are included in the linear fit and also on the degree of accuracy
in measuring Wλ. I also experienced the same difficulties.

8.2.4 Line Strength Correction

In some cases Wλ and line depths of the observed FeH lines do not match the computed ones
from the line list. In general, I observe that the differences increase towards longer wavelengths
and computed lines become stronger than observed ones. The strength of the lines are mainly
determined by the lower state energies E0 and the Einstein A values. I will correct only the
Einstein A values, because a set of high-resolution spectra in the z-band for different temperatures
would be required to correct E0. To correct the Einstein A value, I use the formula from Bernath
(2005) for the absorbance in a modified form where the Einstein A values enter the expression

− ln

(

I

I0

)

x

=
(2Ju + 1)Ax

8πν̄2q
e−Ex

0 /kT (1− e−hν/kT )GNl, (8.15)

where ν̄ is the frequency of a molecular in cm−1, N is the number of molecular absorbers per
cubic cm in the energy state (population density), q is the partition function, l is the length, e.g.
for an atmospheric layer, and G is a line profile function, e.g. a Voigt function. If I compare the
observed spectra with the computed one (produced with the SYNTH3 code) and assume that both
atmospheres have the same structure, then Ax and Ex

0 are the only variables that account for
differences in the spectra (x stands for either the computed or observed spectra). I also assume
Ex

0 as constant and write

− ln
(

I
I0

)

obs

− ln
(

I
I0

)

comp

=
Aobs

Acomp
. (8.16)

This shows that the correction for the Einstein A value is merely a linear scaling with the ratio
of the intensities

Aobs =
− ln

(

I
I0

)

obs

− ln
(

I
I0

)

comp

Acomp = sAcomp. (8.17)

I introduced the scaling factor s for the ratio of both intensities. If I use that A = Avu,vl
S/(2Ju+1)

(Dulick et al., 2003), then

s =
Aobs

vu,vl

Acomp
vu,vl

Sobs

Scomp
, (8.18)

where S is the Hönl-London factor. If the theoretical S values are wrong, one could perhaps
detect it using Eq. 8.13 or perhaps in a possible dependence of the scaling factors on Jl.
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Table 8.1: Identified atomic lines

Ion Position[ ] El log gf Ion Position[ ] El log gf Ion Position[ ] El log gf

’Cr1’ 9903.6226 2.987 -2.131 ’Fe1’ 10116.787 2.759 -3.705 ’Ti1’ 10399.651 0.848 -1.623
’Ti1’ 9930.0728 1.879 -1.580 ’Ti1’ 10123.668 2.175 -1.722 ’Cr1’ 10419.476 3.013 -1.806
’Ti1’ 9944.1036 2.160 -1.821 ’Ti1’ 10148.300 3.148 -0.910 ’Fe1’ 10425.885 2.692 -3.627
’Ti1’ 9951.7317 2.154 -1.778 ’Fe1’ 10148.342 4.796 -0.177 ’Ti1’ 10462.915 2.256 -2.054
’Cr1’ 9951.7997 3.556 -1.129 ’Fe1’ 10157.947 2.176 -4.225 ’Fe1’ 10472.522 3.884 -1.187
’Ti1’ 9967.4679 1.053 -4.108 ’Fe1’ 10170.256 2.198 -4.114 ’Cr1’ 10489.119 3.011 -0.972
’Ti1’ 10000.700 1.873 -1.840 ’Ti1’ 10173.274 1.443 -3.465 ’Ti1’ 10498.990 0.836 -1.739
’Ti1’ 10005.828 2.160 -1.124 ’Fe1’ 10197.900 2.728 -3.589 ’Cr1’ 10512.887 3.013 -1.558
’Ti1’ 10008.403 1.067 -3.626 ’Ca1’ 10201.981 4.680 -0.369 ’Fe1’ 10535.121 3.929 -1.482
’Ti1’ 10014.490 2.154 -1.284 ’Ca1’ 10205.743 4.681 -0.199 ’Cr1’ 10552.983 3.011 -1.976
’Sc1’ 10027.787 1.865 -1.286 ’Ca1’ 10205.803 4.681 -1.102 ’Ti1’ 10554.648 1.887 -2.607
’Ti1’ 10037.242 1.460 -2.227 ’Ca1’ 10211.457 4.681 -0.039 ’Fe1’ 10580.037 3.301 -3.137
’Ti1’ 10051.581 1.443 -2.205 ’Ca1’ 10211.561 4.681 -1.102 ’Ti1’ 10587.533 0.826 -1.866
’Sc1’ 10060.261 1.851 -1.479 ’Fe1’ 10221.204 3.071 -2.760 ’Ti1’ 10610.624 0.848 -2.761
’Fe1’ 10060.397 5.033 -1.231 ’Fe1’ 10268.031 2.223 -4.533 ’Fe1’ 10619.630 3.267 -3.128
’Ti1’ 10060.485 2.175 -0.894 ’Ca1’ 10291.397 4.624 -0.265 ’Cr1’ 10650.558 3.011 -1.613
’Ti1’ 10062.662 1.430 -2.351 ’Fe1’ 10343.720 2.198 -3.574 ’Ti1’ 10664.544 0.818 -2.007
’Fe1’ 10067.804 4.835 -0.288 ’Ca1’ 10346.655 2.933 -0.408 ’Cr1’ 10670.437 3.013 -1.489
’Ti1’ 10069.273 2.160 -1.750 ’Fe1’ 10350.802 5.393 -0.548 ’Cr1’ 10675.063 3.013 -1.374
’Ti1’ 10077.885 1.067 -4.065 ’Fe1’ 10381.844 2.223 -4.145 ’Ti1’ 10679.972 0.836 -2.592
’Cr1’ 10083.115 3.556 -1.307 ’Ti1’ 10393.591 1.502 -2.595 ’Fe1’ 10728.124 3.640 -2.763
’Fe1’ 10084.158 2.424 -4.544 ’Cr1’ 10394.793 3.010 -2.006 ’Ti1’ 10729.329 0.813 -2.156
’Cr1’ 10114.770 3.013 -2.073 ’Fe1’ 10398.645 2.176 -3.390 ’Ca1’ 10729.654 4.430 -1.841

8.3 Results

8.3.1 Atomic Line Identification and Unidentified Lines

Because atomic lines are present in the wavelength region of the observed spectra of GJ1002, I use
the VALD 4 (Kupka et al., 1999; Piskunov et al., 1995) database to include the available atomic
line data in this calculations. I give a list of atomic lines present at Teff = 3100 K in Table 8.1.
I included lines deeper than 2% below the continuum in the computed spectra. I did not try to
correct the atomic line positions or line strengths and took the data as provided by VALD.

After I identified the atomic lines and FeH lines, there were still unidentified lines that seemed
to belong to neither FeH nor to a known atomic line. I give a list of these lines for which the line
depth is deeper than 10% below the continuum (Table 8.2). Our opinion is that most of these
lines belong to FeH, but I was unable to identify them with confidence.

4http://vald.astro.univie.ac.at

http://vald.astro.univie.ac.at
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Table 8.2: List of unidentified lines deeper then 0.9.

λvac [Å ] Depth λvac [Å ] Depth λvac [Å ] Depth λvac [Å ] Depth λvac [Å ] Depth λvac [Å ] Depth λvac [Å ] Depth
9904.46 0.88 10084.8 0.90 10235.9 0.84 10344.9 0.86 10424.9 0.79 10547.5 0.80 10644.2 0.84
9909.42 0.87 10095.7 0.86 10238.5 0.73 10346.0 0.76 10427.8 0.89 10548.2 0.85 10645.7 0.84
9927.74 0.79 10098.8 0.89 10242.9 0.89 10347.3 0.82 10438.8 0.87 10548.7 0.89 10655.3 0.80
9930.70 0.81 10107.3 0.85 10246.4 0.81 10347.5 0.87 10440.0 0.85 10550.8 0.88 10660.2 0.79
9931.26 0.87 10107.6 0.86 10247.3 0.74 10347.7 0.87 10442.0 0.80 10555.8 0.90 10660.7 0.87
9932.82 0.88 10108.7 0.89 10247.3 0.74 10351.3 0.89 10443.2 0.84 10559.0 0.89 10665.1 0.84
9932.94 0.88 10116.9 0.65 10248.4 0.84 10354.4 0.79 10443.6 0.89 10563.5 0.82 10665.6 0.71
9938.22 0.88 10140.2 0.89 10255.4 0.84 10357.5 0.89 10444.6 0.90 10563.8 0.67 10666.9 0.87
9978.82 0.89 10141.5 0.73 10260.6 0.88 10358.5 0.74 10444.8 0.81 10565.8 0.82 10669.6 0.88
9983.94 0.90 10144.5 0.66 10261.0 0.88 10361.5 0.86 10444.9 0.90 10567.1 0.83 10671.3 0.90
9984.94 0.90 10164.4 0.89 10266.4 0.81 10363.3 0.89 10446.7 0.88 10568.8 0.90 10671.6 0.71
9985.22 0.90 10167.5 0.84 10267.3 0.79 10367.9 0.87 10449.3 0.88 10571.1 0.89 10673.3 0.88
9993.22 0.72 10171.2 0.89 10274.1 0.74 10369.1 0.88 10463.2 0.81 10577.5 0.90 10674.7 0.83
9993.82 0.77 10174.1 0.89 10280.7 0.87 10378.0 0.83 10463.9 0.84 10580.6 0.85 10675.5 0.81
9994.14 0.87 10177.2 0.90 10281.0 0.77 10381.0 0.88 10464.3 0.77 10582.8 0.80 10681.4 0.90
9997.30 0.88 10187.0 0.81 10286.1 0.89 10382.0 0.90 10464.9 0.90 10586.5 0.87 10697.2 0.89
9999.94 0.77 10188.6 0.67 10287.4 0.82 10382.7 0.78 10477.6 0.75 10586.9 0.75 10697.3 0.88
10005.3 0.89 10193.7 0.83 10297.2 0.80 10383.8 0.85 10479.6 0.86 10588.5 0.90 10711.9 0.81
10015.0 0.81 10197.2 0.87 10298.0 0.88 10383.9 0.85 10490.9 0.83 10589.6 0.89 10712.3 0.86
10021.2 0.88 10200.1 0.89 10303.5 0.88 10385.7 0.89 10493.9 0.87 10593.8 0.84 10713.0 0.74
10023.7 0.87 10202.9 0.90 10309.6 0.86 10387.8 0.86 10499.5 0.83 10594.3 0.76 10716.6 0.85
10027.7 0.89 10203.0 0.90 10310.6 0.84 10392.2 0.87 10499.6 0.83 10600.7 0.87 10724.6 0.77
10029.3 0.86 10209.1 0.86 10312.2 0.75 10396.0 0.73 10500.2 0.75 10601.8 0.89 10725.3 0.81
10031.8 0.70 10211.1 0.70 10312.5 0.89 10398.4 0.89 10500.9 0.87 10602.9 0.88 10726.4 0.86
10035.9 0.83 10214.5 0.79 10314.7 0.84 10399.2 0.87 10514.7 0.84 10604.0 0.89 10734.7 0.85
10041.9 0.90 10215.8 0.77 10319.3 0.90 10400.2 0.82 10515.1 0.88 10605.3 0.90 10739.2 0.90
10048.2 0.82 10217.8 0.89 10319.5 0.85 10400.5 0.88 10515.5 0.79 10605.5 0.88 10740.5 0.82
10051.1 0.86 10219.5 0.86 10320.6 0.86 10402.8 0.83 10516.6 0.89 10609.5 0.87 10744.1 0.86
10066.5 0.88 10219.9 0.87 10322.2 0.88 10406.5 0.89 10519.3 0.88 10609.6 0.88 10745.3 0.84
10068.7 0.79 10220.0 0.88 10322.8 0.75 10406.8 0.81 10519.7 0.89 10612.7 0.77 10748.7 0.90
10073.9 0.58 10223.9 0.85 10327.8 0.89 10408.4 0.87 10532.9 0.86 10613.1 0.82 10749.4 0.88
10074.5 0.89 10225.8 0.77 10327.9 0.87 10409.3 0.75 10535.5 0.89 10614.0 0.81 10752.1 0.90
10075.9 0.90 10226.7 0.76 10328.3 0.78 10410.1 0.81 10536.2 0.86 10626.7 0.82 10753.7 0.90
10078.5 0.86 10227.7 0.88 10332.7 0.88 10415.7 0.89 10539.5 0.83 10629.9 0.88 10754.7 0.79
10080.6 0.75 10229.4 0.89 10338.9 0.64 10417.8 0.88 10543.1 0.87 10634.8 0.89 10755.8 0.90
10083.8 0.72 10230.5 0.73 10340.0 0.89 10422.5 0.90 10546.1 0.86 10638.3 0.80 10759.4 0.89
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8.3.2 FeH Line Identification

The results from the Voigt fit were used to assign the individual Voigt profiles from the observed
lines to the individual theoretical FeH lines. I did this by hand, and defined a line as identified if
the position of the observed line agreed within 0.1 Å to the theoretical predicted position. If the
offset is larger than 0.1 Å , I identified a line feature if the characteristic shape was similar in the
observations and computations (e.g. the line at 999.55 nm or 999.8 nm in Fig. 8.5). In Fig. 8.5, and
also in the full FeH atlas, I labeled all identified lines with their quantum numbers, i.e. vibrational
assignment (vu, vl), branch (P, Q, R), lower-state rotational quantum number J , Ω, and in the
case of blends, with their contribution to the blend. I did this for the observed wavelength region,
and the complete plot is available in the online material of Wende et al. (2010) or here 5. In
Fig. 8.6 a histogram of the residuals between the computed line positions and the observed ones
is shown. There is no obvious systematic behavior of the scatter with wavelength (see inset in
Fig. 8.6). The scatter follows a normal distribution centered at ∆λ = 0.02 Å corresponding to
0.67 km s−1. This mean value is beyond our spectral resolution, and in general all residuals smaller
than 0.75 km s−1(∼ 0.025 Å ) are not significant because they are also smaller than the accuracy
of the wavelength calibration. From the investigation of the line positions, it can be seen that the
fraction of lines for which the residuals are smaller than a certain range are distributed as shown
in the right inlay of Fig. 8.6. This plot shows that ∼ 80 % of the line features could be identified

5http://www.astro.physik.uni-goettingen.de/~sewende/

Figure 8.5: Observed spectrum of GJ1002 (black) and computed one (red) labeled with
quantum numbers.

http://www.astro.physik.uni-goettingen.de/~sewende/
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Figure 8.6: Histogram of the residu-
als between computed line positions and
observed ones. In the upper left cor-
ner, the residuals are plotted against
wavelength. In the upper right cor-
ner, the fraction of lines with residuals
lower than a certain value are plotted.
The left dashed line represents the ac-
curacy of the wavelength solution which
is 0.025 Å, the right one the detection
boundary of 0.1 Å .

Figure 8.7: Histogram of predicted and
identified FeH lines in the GJ1002 spec-
trum.

by their positions, which do not deviate by more than 0.1Å from the predictions. Where the
residuals are larger than 0.025 Å the uncertainties in the molecular constants which were used to
compute the FeH line list are responsible for these deviations.

For this analysis I used only lines with Wλ > 2mÅ, which approximately describes a line
with 2 % relative flux and a FWHM of 0.1 Å. I ignored lines with smaller contributions because
their intensities are similar to the noise level. However, only 167 lines out of 1359 have equivalent
widths less than 2 mÅ.

Vibrational Bands

From Fig. 8.2 I expect that the dominant vibrational bands are (0, 0) and (1, 1) from the ∆v = 0
sequence, and (3, 2) and (4, 3) from the ∆v = 1 sequence. In Fig. 8.7 a histogram with the
number of identified lines for each vibrational band is presented, which shows that the expected
vibrational bands are present. Also the number of possible lines from theory with Wλ > 2 mÅ in
the observed wavelength region is shown. This number is based on line-by-line computation of
Wλ. In this histogram the bars in the foreground take into account only the lines identified by
their positions.

Coincidence-by-Chance Method

For the lines with residuals smaller than 0.1 Å I computed the coincidence-by-chance factor C
from Eq. 8.8. In Table 8.3 the values of C, w, N , and M are given for all identified bands. For the
(0, 0) and (1, 1) transition, the number of identified lines N exceeds the number of coincidences
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Table 8.3: Results from the coincidence method for lines with Wλ > 2mÅ .

Band Wavelength [Å ] C w [#/Å ] N (M)

(0, 0) 9900 − 10762 360 3.73 489 (658)
(1, 0) 9901 − 10759 52 3.74 25 (99)
(1, 1) 9941 − 10759 208 3.71 251 (388)
(2, 1) 9931 − 10706 68 3.76 45 (131)
(2, 2) 10480 − 10764 65 3.81 26 (123)
(3, 2) 9910 − 10764 79 3.78 52 (150)
(4, 3) 9905 − 10673 119 3.75 68 (226)

by chance C, which is a clear indication that these bands are present in the investigated region.
For the other bands the situation is not as clear and I will confirm them with more investigations.

Cross-Correlation Method

I used cross-correlation techniques to investigate the agreement between the theoretical line list
and the observed spectra. As a reference and a test, I cross-correlated a computed spectrum from
this theoretical line list, which is broadened by an instrumental profile with a resolving power of
70 000, with the original line list (e.g. Fawzy, 1995; Fawzy et al., 1998). To be specific, I varied
the theoretical positions with steps of ∆σ = 0.0125 Å in a range of 0.375 Å and measured the
relative intensity at the different positions weighted with Wλ of the line and integrate over all
lines. I then normalized the results with the number of lines in the line list. I did this for all lines
in the vibrational bands that are found in the M-dwarf spectra (see Fig. 8.8). If a vibrational
band is present, a peak around zero appears above the noise produced by random coincidences
with other lines.

I produced three different curves. For the first one, I used all possible lines from the original
line list for comparison with the observed stellar spectrum (solid line in Fig. 8.8). For the second
curve I computed a reference curve by cross-correlating the original line list with a synthetic
spectrum computed from it (dashed line in Fig. 8.8). This case produces the maximum possible
correlation. A third curve is produced with the corrected line list containing only identified FeH
lines which I compared with the observed stellar spectrum (dotted line in Fig. 8.8).

As expected, for the synthetic spectrum with the theoretical line list (dashed line), all bands
show clear peaks above the noise. For the observed spectrum (solid line) and original line list,
the (0, 0) and (1, 1) vibrational bands show clear peaks above the noise, which agrees with the
coincidences by chance values in Table 8.3. After improving the FeH line list (dotted line),
all bands show peaks above the noise similar to the peaks obtained in the reference case from
cross-correlating the theoretical line list with the computed spectra. The original theoretical line
positions for the (1, 0), (2, 1), (2, 2), (3, 2), and (4, 3) bands are not accurate enough to show
significant peaks in the cross correlation. To confirm the identifications, I also used the line
strength in the next section.

Line Intensity Method

I used the method described in Sec.8.2 to test if the tentatively identified observed FeH lines
can be identified with the theoretical ones. I plot log10 Wλ/Sλ4

0 against E0 (see Eq. 8.13) for the
identified vibrational bands, branches, and Ω, with an appropriate estimated error (see Fig. 8.9).
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Figure 8.8: Cross-correlation curves for different vibrational bands.
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Figure 8.9: Logarithm of observed equivalent width and theoretical line strength against
lower level energies. In each plot, a linear fit to the data is shown. Different colors of the
data points belong to different Ω values. Dots represent lines which are identified within
0.1 Å, and diamonds lines which differ more than 0.1 Å from the theoretical position. The
dotted lines represent the three σ scatter around the fit.
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Figure 8.10: Logarithm of the com-
puted equivalent width and theoretical
line strength against lower level energies
for the (0, 0) band. In each plot a lin-
ear fit to the data is shown. Different
colors of the data points belong to dif-
ferent Ω values. Dots represent lines
which are identified within 0.1 Å, and
diamonds lines which differ more than
0.1 Å from the theoretical position.

Figure 8.11: log10 τmean and Wλ are
plotted as a function of lower state en-
ergy for computed FeH lines from the
(0, 0) band for the three branches.

In almost all cases a linear correlation is visible. In some cases where lines with small J
are present, a deviation from the straight line can be seen. This deviation is expected because
of the different formation heights for the FeH lines. I calculated model plots with synthetic
lines, which reproduce this behavior in detail (Fig. 8.10). The computations are very similar to
the observations, which supports the assumption of different heights of formation. To test this
assumption, I computed the contribution function for the FeH lines (Magain, 1986) and used
them to determine a weighted mean of the continuum optical depth, τmean. The latter describes
a representative atmospheric line formation depth. In Fig. 8.11, I plot Wλ and τmean against E0

for each branch from the (0, 0) band. These plots show clearly that the P- and R-lines with low
and very high E0 originate in deeper layers than the lines with medium E0. It was also seen that
the lines with low and high E0 are the ones with small Wλ, because the Hönl-London factors
for P- and R-lines are proportional to Jl and hence the lines become stronger for high Jl, but
they also decrease for high Jl due to their increasing E0s. Hence, there is a maximum in Wλ for
medium Jl. For Q-branch lines the situation is different. The Hönl-London factors decrease with
increasing Jl and hence the line strength monotonically decreases with Jl. In this case, the lines
with low E0 are the lines with the largest Wλ, and accordingly these lines are formed in higher
layers and the Q-branch shows the opposite behavior to the P- and R-branches in the log10

Wλ

Sλ4
0

plot.

I can conclude that in deeper layers, where weak lines are formed, the equivalent width is
enhanced by the larger number of FeH molecules that contribute to the absorption (see Fig. 8.12).
The molecule number increases towards deeper layers because of the higher overall density even
though the concentration of FeH molecules relative to Fe and H decreases. Towards higher
temperatures in deeper layers or in hotter stars, the number of FeH molecules would decrease
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Figure 8.12: The number of FeH molecules as a function of optical depth in the region
where the FeH absorption lines are formed.

again due to the ionisation of Fe, which is then no longer available for the formation of the
molecule. In this case, this behavior results in a deviation from a straight line in Fig. 8.9

With this knowledge, one can use the line strength to confirm the identification of FeH . In
Fig. 8.9, clearest correlations are found for the (0, 0) and (1, 1) bands, which also have the largest
number of lines, but also for the P-branch of the (1, 0) and (2, 1) transitions and the R-branch of
the (2, 2) transition. The (3, 2) and (4, 3) transitions also show linear correlations but with a larger
scatter. This result is a strong indication that all the identified bands are present in the observed
spectra. Although the Q-branches of the (0, 0) and (1, 1) bands show no clear linear dependence
for large E0, I expect them to be present and correctly identified, because they show the expected
downward trend for low energies. The scatter towards higher energies is much larger than in the
other branches, and there are only a few measurements. The slope seems to be positive, but one
could expect it to be negative if more data points were available.

I fitted the data points linearly for lines with Jl > 7 (to avoid the region where the influence
of variable FeH number is too strong) and used the difference of the data points from the fit as a
measure for the confidence of an identified line. A line is classified as “P” if the difference between
log10

Wλ

Sλ4
0

and the linear fit is smaller than three times the standard deviation σ of the scatter

around the fit. But I assume that lines with J ≤ 7 are also present, because they exactly show
the expected behavior. It is classified as “Pb” if the deviation is greater than σ and the data point
is above the linear fit, and as “R” if it is below.
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Table 8.4: FeH molecular data of the identified lines. The columns are described in more detail in the appendix.

λobs λtheo vl vu Ωl Ωu Jl Ju B A sA El ∆λ blend class comment

9900.4846 9900.4902 0 0 3.5 3.5 17.5 18.5 3 470924.44 0.8309 0.225 0.0056 1.000 P
9901.1049 9901.1175 0 0 3.5 3.5 14.5 15.5 3 462792.47 1.0695 0.154 0.0126 1.000 P
9901.4704 9901.4116 0 1 3.5 3.5 32.5 31.5 1 133973.65 0.3378 0.794 -0.0588 1.000 P
9903.9631 9903.9809 0 0 3.5 3.5 18.5 19.5 3 472886.88 1.1484 0.252 0.0178 0.998 P
9904.9843 9904.9913 0 0 3.5 3.5 13.5 14.5 3 458947.25 1.4267 0.134 0.0070 1.000 P
9905.8556 9905.8940 0 0 3.5 3.5 15.5 16.5 3 466010.13 1.1121 0.177 0.0384 0.969 P
9905.8556 9905.8940 3 4 3.5 3.5 5.5 4.5 1 93477.74 1.1121 0.649 0.0384 0.026 P
9905.8556 9905.8940 3 4 3.5 3.5 5.5 4.5 1 93477.74 1.1121 0.649 0.0384 0.026 P
9906.2993 9906.3258 0 0 3.5 3.5 14.5 15.5 3 462784.17 1.2660 0.155 0.0265 1.000 P
9906.6069 9906.6202 0 0 3.5 2.5 13.5 12.5 1 16687.29 2.8524 0.134 0.0133 1.000 Q
9907.7184 9907.7489 0 0 3.5 3.5 16.5 17.5 3 468735.58 0.8068 0.201 0.0305 1.000 P
9908.8070 9908.8092 0 0 2.5 2.5 10.5 11.5 3 459216.45 1.7090 0.116 0.0022 0.479 P
9908.8070 9908.8387 0 0 3.5 3.5 13.5 14.5 3 458903.98 1.7090 0.134 0.0317 0.521 P
9909.0854 9909.1136 0 0 2.5 2.5 9.5 10.5 3 453849.43 1.5113 0.100 0.0282 0.975 P
9909.7148 9909.7519 0 0 2.5 2.5 11.5 12.5 3 463304.45 1.1935 0.134 0.0371 0.996 P
9909.9442 9909.9778 0 0 3.5 3.5 18.5 19.5 3 473102.19 0.7455 0.253 0.0336 1.000 P
9910.5238 9910.4688 0 0 3.5 3.5 12.5 13.5 3 454224.51 1.3628 0.115 -0.0550 0.466 P
9910.5238 9910.5376 2 3 2.5 2.5 20.5 19.5 1 169779.53 1.3628 0.776 0.0138 0.053 P
9910.5238 9910.5769 0 0 2.5 2.5 8.5 9.5 3 446648.26 1.3628 0.086 0.0531 0.408 R class 6= sA

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
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It is classified as “Q” if the line could not be investigated because, I only investigated lines with
∆Ω = 0. I give a list of all identified lines with quantum numbers and corrected wavelength in
Table 8.4. This list is explained in more detail in the appendix and available in its full length in
the online material of Wende et al. (2010) or here 6.

8.3.3 Corrections to the Line Strengths

If one wishes to use Eq. 8.17 to correct for the differences in line depth, one have to match the
stellar parameters as closely as possible. These parameters are basically effective temperature,
surface gravity, and chemical composition, as well as van der Waals-broadening constants, whose
influence becomes significant at these low temperatures. The van der Waals broadening was
computed with Unsöld’s hydrogenic approximation, and an enhancement factor was used to model
the line wings correctly. Because no enhancement factor is reported for FeH, I needed to determine
one. For M-type stars, an assumed surface gravity of log g = 5.0 is standard and the chemical
composition is usually assumed as solar. To match the strong Ti lines in the 10 300–10 700 Å region
as well as the FeH lines, we increased the iron abundance from 7.41 to the Grevesse & Anders
(1989) value of 7.63. I used this scaling as a parameter and do not claim this to be the actual iron
abundance of GJ1002. The free parameters for GJ1002 are now Teff , the van der Waals-broadening
enhancement factor (which I call from now on βvdW ), and the instrumental resolving power, which
I used as a fitting parameter to account for possible additional rotational broadening. These three
parameters are strongly correlated. I created χ2 maps to determine the most likely combination
that best matches the observed spectra.

χ2 Maps

For the comparison between observation and computation I chose a region where the original line
list fits best, the lines are strongest and consequently the influence of van der Waals broadening
is largest. I selected the first 100 Å from the (0, 0) band head at 9900 Å . For the computations I
used the new line list with corrected positions and also included the identified atomic lines. To
create the χ2 maps for the three combinations of parameters, I searched for the minimum for each
parameter (light cross in left plots in Fig. 8.13) and used this value to construct the χ2 map for
the other two parameters. The χ2 maps (right hand side in Fig. 8.13) yield a consistent picture
of the parameter combinations for the spectra of GJ1002.

Since the signal to noise is almost constant in the used region, I excluded it and scaled the

residuals between observation O and computation C with the observed value χ2 =
∑ (O−C)2

O .

The most likely parameters for effective temperature, resolving power, and βvdW are 3100 K,
70 000 and 1.75, respectively. It is obvious, however, that the χ2 curves show regions with broad
minima which would allow for variations in the derived parameters.

Because the observed spectra are supposed to have a resolving power of 100 000, the difference
to the determined resolving power stems probably from rotation, which is measured to be lower
than 3 km s−1, but not necessarily zero. The difference in resolving power results in v sin i ≈ 1.3 km
s−1 at a wavelength of 10 000 Å .

An independent constraint for the instrumental resolving power and effective temperature
is given by the Ti lines, which are strong and distributed over a wide wavelength range in the
spectra. The computation of these lines with the parameters and broadening constants given
by VALD fits the observations within 5% for the line depth. This gives us confidence that the

6http://www.astro.physik.uni-goettingen.de/~sewende/

http://www.astro.physik.uni-goettingen.de/~sewende/
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Figure 8.13: Left: Minima in χ2 plots for the resolving power, Teff , and βvdW (from
top to bottom). Right:χ2 maps for the three parameter combinations, βvdW − Teff , βvdW

− resolving power, and resolving power − Teff (from top to bottom). The χ2 maps are
computed for the minimum value of the leftover parameter on the left hand side.
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Figure 8.14: Observed spectrum of
GJ1002 (black) and computed one be-
fore A correction (red) and after A
correction (green) labeled with quan-
tum numbers (both with corrected po-
sitions).

Figure 8.15: Scaling factor for the Ein-
stein A values against rotational quan-
tum number for the (0, 0) and (1, 1)
bands. The plot is truncated at Jl = 35
for better visibility.

decreasing line depth of the FeH lines with increasing wavelength is a real feature and not due to
normalization effects.

Einstein A Values

To correct for the Einstein A values I used computed spectra, which already have corrected line
positions. I iteratively adjusted the Einstein A values because for saturated lines the first scaling
is not sufficient. The scaling factors for each line are listed in Table 8.4, and an example for the
corrected computed spectra is shown in Fig. 8.14. To estimate an error, I assumed an accuracy
of 1% for the observed line depth, which results in an error of ∼ 3% for the scaling factors. If I
furthermore assume that the line depth is modified by an unknown blended feature by, e.g., 5%,
an error of ∼ 16% follows. The accuracy of the Einstein A scaling is also influenced by the van
der Waals-enhancement factor βvdW . A change of ±1 gives a mean difference of ∼ 5% in the
scaling constants, but can be up to 30% for individual lines, due to the logarithmic ratio of the
intensities (see e.g. Eq. 8.17).

I obtained a good fit to the data with the scaled Einstein A values even for some lines that
were calculated to be very weak. Yet this results in some cases in unrealistic log gf values, and I
assume that these weak lines are blended with unknown components. The scaling of line blends
is a difficult problem because it results in equal scaling factors for lines with completely different
quantum numbers. To avoid this problem one could determine scaling factors for each branch,
but I chose the simpler scheme of scaling each line. I use Eq. 8.17 and plot s for the Einstein A
values against Jl to search for a possible rotational dependence (Fig. 8.15). I plot only scaling
factors for the (0, 0) and (1, 1) bands, because these are the bands with the largest number of
lines, and I used only lines which contribute more than 99 % to a blended line feature to avoid
contributions from incorrectly scaled lines.

Two groups of scaling factors were found. One group describes a strong enhancement of the
line depths (‘positive’ scaling factors) and the other only a small enhancement for low Jl and a
reduction towards lines with high Jl (‘negative’ scaling factors). I divide these two groups by a
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dashed line in Fig. 8.15. For the ∆Ω = 0 transitions of the (0, 0) and (1, 1) bands I include linear
fits to the data in Fig. 8.15 to indicate the slope.

The group of positive scaling factors is strongly dominated by ∆Ω ± 1 transitions (diamonds
and rectangles), while the group of negative scaling factors consists of only ∆Ω = 0 transitions
(circles). The latter scaling factors for (0, 0) and (1, 1) bands (black and red circles, open for P-
branches and filled for R-branches) show an almost linear behavior with Jl and become stronger
towards higher Jl. The positive scaling factors also show two linear groups, which originate from
the (1, 1) band (red rectangles) and from the (0, 0) band (black diamonds and rectangles). These
scaling factors describe a strong enhancement of the lines for low Jl and become smaller towards
high Jl. All groups of scaling factors have a similar negative slope, and are only shifted by a
constant factor to higher or lower scaling factors.

The distribution of other bands and lines that contribute less than 99 % to a blended feature
gives only a larger scatter to the data points, but does not change the basic trend of the scaling
factors. I conclude that the Jl dependence in the scaling factors likely indicates shortcomings
in the calculated Hönl-London factors. In particular, satellite branches with ∆Ω ± 1 are much
stronger than expected for Hund’s case (a). In other words, the two 4∆ electronic states are
heavily mixed with other electronic states and the simple Hund’s case (a) behavior anticipated
for isolated electronic states with relatively large spin-orbit splittings is not found.



Chapter 9

Temperature Estimations Using FeH

The determination of effective temperatures in cool stars is, in general, a difficult task. I will
present two different approaches of using FeH molecular lines to measure the effective temperature
in M dwarfs.

9.1 Rotational Temperatures as a Measure of Atmospheric Tem-
peratures

A rotational temperature Trot can be obtained from the slope m of the linear fit in the [log10 Wλ/S,E0]
diagram (Fig. 8.9) using Eq. 8.13 described in the above section. Trot can then be calculated
from

Trot =
hc

mk
log10 e. (9.1)

For the fit to the data, only lines with Jl > 7 are used, to avoid the significant influence from
a varying absorber number, and neglected lines with a line depth greater than 0.5 to avoid
saturation effects. Owing to the large errors of the slope of the linear fit in Fig. 8.9, only rotational
temperatures with moderately small one-sigma errors are considered (see Fig. 9.1). Systematically
lower temperatures are found for the P-branches in comparison to the R-branches, which is
consistent with different heights of formation for most of the lines in a branch (Fig. 8.11).

If one computes the weighted mean of the rotational temperatures (grey solid line in Fig. 9.1)
using the 1σ-error (grey dashed-line in Fig. 9.1), one obtains T rot ≈ 3200± 100 K . This is in the
middle of the expected temperature range for this spectral type (3000 K–3300 K; dashed-dotted
lines in Fig. 9.1) and is close to the estimated value of ∼ 3100 K. The main contribution to T rot

stems from the P- and R-branches of the (0, 0) transition due to their small uncertainties. The

weighted mean of the P- and R-branches are T
P
rot ≈ 2600 ± 150 K and T

R
rot ≈ 3750 ± 150 K,

respectively.
It should be pointed out, that the temperature obtained, even for a single branch in a band,

is an average over the individual excitation temperatures for each line. The resulting tempera-
ture crucially depends on the selection of the lines that are used: if one uses lines with similar
equivalent widths and lower energy levels, then one could obtain temperatures for certain regions
in the atmosphere. However, for this method a large number of lines is required; otherwise the
uncertainties become too large.

I conclude that in order to use the method of rotational temperatures, a large number of well
measured lines are required to minimize the error in the slope. Finally, the rotational temperature
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Figure 9.1: Rotational temperatures derived from the slope of the linear fits in Fig. 8.9.
The error bars indicate the one sigma level. The dotted lines give the expected upper
and lower effective temperatures for a 5.5 M-dwarf. The grey solid line is the weighted
mean of the rotational temperatures with its one sigma error (dashed-line).

can only be expected to match the effective temperature if the lines form in a region around optical
depth unity.

9.2 Deriving Effective Temperatures with the Line Ratio Method

9.2.1 Basic Idea

Using line ratios is a well-known method in atomic spectroscopy to derive excitation temperatures
of spectral lines which can then be translated into effective temperatures. In equation (4.65),
one can see that the absorption coefficient, and hence the intensity (see equation (4.66)), is
temperature dependent due to population statistics. For two absorption lines from the same
species (in this case from the FeH molecule), the logarithmic ratio of line intensities is given by,

ln

(

I1

I2

)

=
α1l1
α2l2

=

(

S1l1N1

S2l2N2

)

e
1

kT
(E2−E1). (9.2)

In this relation, Si is the line strength defined in section 4.4.4 which is constant for each line.
Ni and li are the total number of FeH molecules and the path length through the atmosphere,
respectively. Both are different for lines with different lower level energy Ei, since they originate
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Figure 9.2: Upper panel: Computed
spectra for a sequence of effective tem-
peratures (from 2500 K–4000 K in steps
of 100 K). The lines which are used for
the line ratios are indicated by verti-
cal dotts. Lower panel: Line ratios as
a function of effective temperature for
MARCS (black) and PHOENIX (red) atmo-
spheres.

Figure 9.3: Line ratio as a function of
effective temperature for different values
of resolving power.

in different heights of formation (see section 8.3.2). This is mainly determined by the atmospheric
structure, which, for given surface gravity and chemical composition, is governed by the effective
temperature. Hence, the expression in brackets on the right hand side of equation (9.2) can be
written as

R(Teff ) =

(

S1l1N1

S2l2N2

)

. (9.3)

Showing that the ratio of two molecular absorption lines is, in first order, only dependent on
effective temperature and can be used to measure it. The dominant change in the line ratio with
changing excitation temperature is governed by the lower level energy difference ∆E = E2 − E1

in the exponential function of equation (9.2), and becomes larger with increasing ∆E.
In order to demonstrate the dependence of line ratio on effective temperature, a pair of lines

with ∆E = 0.05 eV was chosen and the line ratio for a sequence of effective temperatures was
computed (see upper panel Fig. 9.2, the position of the lines used for the line ratio is marked by
vertical dotted lines). These lines were chosen, since they are

• almost at the same position, in order to minimize continuum normalization effects,

• sufficient strong, even for high effective temperatures, and

• not strongly blended by neighboring lines.

The ratios of both lines for different Teff are plotted in the lower panel of Fig. 9.2 for a set of
MARCS and PHOENIX model atmospheres. They differ by an almost constant offset of about 0.05.
This systematic offset can be translated into effective temperature and is of the order of 100 K.
This difference results from slightly different atmospheric structures in both atmosphere species,
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Figure 9.4: Ti-FeH pair for different effective temperatures and different metallicity
(upper panel from left to right). Ti-FeH pair for different surface gravities and different
metallicity (bottom panel from left to right)

i.e. different temperature stratification. In the following, the results from both atmosphere species
will be investigated simultaneously.

The dependence of the line ratio from Teff is also influenced by the resolution of the spectra. In
Fig. 9.3, the line ratios are plotted for different values of resolving power R from 30 000–210 000 in
steps of ∆R = 20000. This shows, that it is important to know the resolution of the investigated
spectra, in order to obtain the right Teff from the line ratio. Also rotational broadening has the
same effect, but is not treated in this work.

9.2.2 First Results

A first test for this method is done with a set of high quality CES1 spectra. The spectral range
sample is from M0 – M5.5 dwarfs (see Table 9.1), though only appropriately, since FeH in the
z-band tends to saturate for later type stars. The central intensity of the chosen line pair was
measured by fitting a simple Voigt profile since noise made it difficult to determine the real center
of the line. Then, the ratio were plotted against spectral type (see upper right inlay of Figs. 9.5
and 9.6). A linear trend is visible, even though for early M dwarfs the scatter becomes large.
The determined ratios were then associated with an effective temperature, obtained from the line
ratio computations shown in Fig. 9.2 (see lower left inlay of Figs. 9.5 and 9.6). In this step, the

1 Data were taken at ESO Telescopes under the program 076.D-0092(A)
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Figure 9.5: Effective temperatures de-
termined from line ratios as a function of
spectral type for a set of M dwarf CES
spectra. In this plot, the MARCS atmo-
spheres were used. In the upper right
inlay, the line ratios are plotted against
spectra type. In the lower left inlay, the
line ratios are plotted against effective
temperature.

Figure 9.6: Same as Fig. 9.5, but
PHOENIX atmospheres were used.

resolution of the spectra were taken into account. An estimate of the error could be derived from
the error of the Voigt profiles. Finally, the effective temperatures obtained were plotted against
spectral type in Figs. 9.5 and 9.6. Again, the scatter for early M type stars become large, but this
could be due to wrong spectral classifications of these stars. In general there is an uncertainty of
about ±1–2 spectral types.

Table 9.1: Derived stellar parameters. log g and metallicity are from the PHOENIX

models for the set of M dwarfs in Figs. 9.7 ans 9.8. Reference temperatures are from
Casagrande et al. (2008).

Name Spectral Type Teff
PHOENIX [K] Teff

MARCS [K] log g [cgs] Fe/H Teff
Ref [K]

Gl205 M1.0 3562 ± 54 3709 ± 57 4.5 0.0 3520 ± 170
Gl701 M1.0 3425 ± 84 3543 ± 86 4.5 0.3 3557
Gl229 M1.0/M2.0 3506 ± 54 3645 ± 57 4.5 0.3 –
Gl382 M1.5 3318 ± 49 3422 ± 51 4.5 0.3 –
Gl514 M1.5 3230 ± 79 3329 ± 82 4.0 0.0 3242 ± 160
Gl526 M1.5 3488 ± 94 3624 ± 98 4.5 0.3 3636 ± 163
Gl393 M2.0 3427 ± 94 3545 ± 98 5.0 0.3 –
Gl752A M2.5 3438 ± 93 3561 ± 96 5.0 0.3 3368 ± 137
Gl273 M3.5 3182 ± 44 3280 ± 45 4.5 0.0 –
Gl628 M3.5 3050 ± 90 3148 ± 93 4.5 0.3 –
Gl876 M4.0 3077 ± 88 3176 ± 91 5.0 0.3 –
Gl406 M5.5 3059 ± 85 3156 ± 87 5.5 0.0 2900
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The derived effective temperatures were used to create spectra on PHOENIX and MARCS at-
mosphere models. In order to match the observed CES spectra best, the surface gravity and
metallicity were adjusted. There were two criteria which should be fulfilled:

1. the FeH lines should fit in depth and width as well as possible; and

2. the shape of a Ti line at ∼ 9930 Å and their neighboring FeH line at 9930.2 Å should be
resampled as well as possible.

The latter condition turned out to be a very good indicator of surface gravity. The characteristic
shape is very sensitive to log g, due to the much more strong dependence on surface gravity of
the Ti line intensity, in comparison to the FeH line intensity. An example for three different Teff

is shown in the upper panel of Fig. 9.4. In the lower panel of Fig. 9.4, it is also visible that the
shape of the Ti-FeH line pair varies only weakly with changing scaling of metallicity. Due to this,
the way to fit the CES spectra with model spectra is the following:

1. choose a model spectra with Teff obtained from the line ratio (since the atmosphere grids
are available in 100 K steps, the temperature close to the line ratio temperature was chosen,
within the errors);

2. adjust log g until it matches the characteristic shape of the Ti-FeH pair;

3. ”fine tune” by changing the metallicity in order to fit the line depths as well as possible.

For all spectra except that of Gl406, which is strong Zeeman broadened, good results could be
obtained (see Figs. 9.7 and 9.8). Adopting the effective temperatures from line ratio, one is able
to measure log g and the chemical composition. The derived values are listed in Table 9.1. Com-
parisons with effective temperatures from Casagrande et al. (2008) show, that the temperatures
derived with the line ratio method agree in general with those from Casagrande et al. (2008) (see
Table 9.1).

In order to use this method in a more advanced way, one needs well resolved, high signal-to-
noise spectra. There are other better suited line pairs redwards of 1 µm, which are not shown
here. In order to use them, and determine line ratios of several line pairs, one needs spectra
which extend towards longer wavelengths and access to model atmospheres matching the derived
temperatures.
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Figure 9.7: Spectra produced on PHOENIX (red) and MARCS atmospheres for the afore
determined effective temperature in comparison with CES observations (black).
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Figure 9.8: Spectra produced on PHOENIX (red) and MARCS atmospheres for the afore
determined effective temperature in comparison with CES observations (black).



Chapter 10

Magnetically Sensitive FeH Lines:
An Outlook

That FeH can be used to measure magnetic field strengths was demonstrated by Reiners & Basri
(2006, 2007). Theoretical work on the magnetic sensitivity of FeH was published by Berdyugina & Solanki
(2002); Berdyugina et al. (2003); Afram et al. (2007, 2008). This chapter should give a short out-
look over the magnetically sensitive FeH lines in the range redwards of 1µ m.

10.1 Identification of Sensitive Lines

When comparing FeH spectra of an M dwarf with a known strong magnetic field and spectra of an
M dwarf with only weak magnetic activity and similar spectral type (i.e. effective temperature),
one notices that certain lines of the magnetically active star are broader than their counterparts
in the inactive star. This could, of course, be due to different rotation velocities, but since only
some lines are affected, the broadening probably stems from the Zeeman effect which also takes
place in molecular lines (Berdyugina & Solanki, 2002; Berdyugina et al., 2003). Reiners & Basri
(2006, 2007) used this effect to determine magnetic field strengths in a sample of M type dwarfs.
To make stars with different effective temperatures comparable, they used a scaling procedure
which is inspired by scaling optical depth:

S(λ) = 1− C(1−A(λ)α). (10.1)

In this expression, S(λ) is the resulting scaled spectrum, A(λ) the normalized spectrum which
will be scaled, α the optical depth scaling factor, which is applied to the overall spectral range,
and C is a constant controlling the maximum of absorption due to saturation. To determine the
magnetic field strength, they linearly interpolate between a zero field template star and one with
known magnetic field. The zero field template star is the M dwarf GJ1002 which was already
investigated in this work. For GJ1224 (M 4.5 dwarf), they determined a magnetic field strength
of ∼ 2.7 ± 0.1 kG.

I also obtained high-resolution CRIRES1 spectra for this star over the whole z-range and used
it to detect more magnetically sensitive FeH lines redwards of 1µ m. For this task, I used the
optical depth scaling with α = 1.24 for GJ1224 and compared it with the spectra of GJ1002 (both
have v sin i ≤ 3 km−1). Two exemplary spectral bins are shown in Fig. 10.1. It is obvious that
some lines are strongly split and others not at all. The unsplit lines were used to scale GJ1224

1Data were taken at ESO Telescopes under the program 83.D-0124(A)
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Figure 10.1: Comparison between GJ1224 (red unscaled and blue scaled) and GJ1002
(black). Strong magnetic sensitive lines are highlighted with green, mildly sensitive lines
with yellow, and insensitive lines with grey.

Figure 10.2: Comparison between computed spectra with (2 kG radial field) and with-
out magnetic field. Strong magnetic sensitive lines are highlighted with green and insen-
sitive lines with grey.

to the effective temperature of GJ1002. I will quantify the identification by fitting Gaussian line
profiles to the spectra and compare line depths and line widths in Sect. 10.3

10.2 Theoretical Zeeman Splitting

The theoretical description of the Zeeman effect in FeH molecular lines is still a challenging
task, since the Born-Oppenheimer Approximation is no longer useful for determining effective
Lande g factors. Also, the rovibronic transitions of FeH are mostly in intermediate Hund’s
case, and the description of the Zeeman splitting must also treated in this intermediate case
(Berdyugina & Solanki, 2002; Berdyugina et al., 2003). Not all lines can be described in this
case, which make an empirical ansatz necessary (Afram et al., 2007, 2008). A semi-analytical
description was presented by Shulyak et al. (2010), who found, that the intermediate case is, in
general, a good approximation for the following cases:

1. Ωl = 0.5
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2. Ωl or u ≤ 2.5 and 3Y > J(J + 1) for P and Q branches

3. Ωl and u = 2.5 and 5Y > J(J + 1) for the R branch

Here, Y = |Av/Bv | is the ratio of the spin-orbit coupling and rotational constants. For all
other cases, a good approximation is the assumption of Hund’s case (a) for the upper level and
Hund’s case (b) for the lower level. I adopted this description and use a code from Leroy (2004)
(modified by D. Shulyak, priv. communication) to determine Landé factors which describe the
strength of the splitting. These factors can be used in the SYNMAST code to generate spectra
including effects from Zeeman splitting. In Fig. 10.2, the spectral regions from Fig. 10.1 are
shown for a computed spectra with zero magnetic field and one with a pure radial 2 kG field. The
observed and computed spectra look similar, but the computed splitting is very different from the
observed one for some lines. These shortcomings could be related to the inadequate theoretical
description of the Zeeman splitting as well as to possible horizontal components in the geometry
of the magnetic field. Fig. 10.2 also shows the possibility, that the line depth could be enhanced
due to the split components. That means, that it is necessary to investigate the line width as
well as the line depth to detect magnetically sensitive lines.

10.3 Comparison Between Computations and Observations

In order to quantify the identification of magnetically sensitive lines, I used a Gaussian fit to the
FeH line profiles to measure their depths and widths. This was done for the magnetically broad-
ened spectra as well as for the non magnetic ones. The ratio of the standard deviations σ can
be used to investigate if a line is broadened by the magnetic field. The ratio |1 − Imag/Inonmag|
can be used to characterise the amount of variation in the line depth. Both quantities are plotted
in Figs. 10.3 and 10.4 for the observations and computations as a function of rotational quan-
tum number J . The ratios are separated by Ω since the Landé factor strongly depends on it
(Berdyugina & Solanki, 2002). The Landé factor is also a function of J and different for rota-
tional branches. Due to this, the P, Q, and R branches are indicated by different colors. One
can see that there is no obvious dependence on J , which would be expected if the splitting were
pure Hund’s case (a) or (b). The computed spectra almost reproduce the observations, which
could be regarded as a sign that the ansatz described above is a good approximation. In these
figures, the average ratio is also shown as a function of Ω: the magnetic influence is clear visible
stronger for lines with high Ω, in agreement with theory. Again, the results from observations
and computations are very similar and differ only in the absolute values. This discrepancy could
be due to noise in the observations.

I conclude that the potential of FeH lines for measuring magnetic fields is very high. Em-
pirically, it is already possible to use them, but the results depend on well-chosen and accurate
template spectra with known parameters. The theoretical approach is promising, but has to be
investigated further to describe the Zeeman splitting more correctly.
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Figure 10.3: Ratio between the widths of the FeH lines in the magnetic and non
magnetic case as a function of rotational quantum number J . Left plot shows the results
from the observations, right plot from the computations. The lower panels shows the
average ratio for each Ω.

Figure 10.4: Ratio between the depths of the FeH lines in the magnetic and non
magnetic case as a function of rotational quantum number J . Left plot shows the results
from the observations, right plot from the computations. The lower panels shows the
average ratio for each Ω.



Chapter 11

Summary and Conclusion

I have investigated a set of M-star models with Teff = 2500 K - 4000 K and log g = 3.0 – 5.0
[cgs] using the 3D hydrodynamic radiative transfer code CO

5
BOLD. The horizontal and vertical

velocity fields in the 3D models were described with a binning method. The convective turn-
over point is clearly visible in the atmospheric velocity dispersion structure. To investigate the
influence of these velocity fields on spectral line shapes, a treatment of geometrical projection
and limb-darkening effects was applied. With the use of contribution functions, only those parts
in the atmosphere where the lines were formed were taken into account. The resulting velocity
dispersions range from 400 – 100 m s−1 with decreasing log g and with increasing Teff from 200 –
1400 m s−1. These values agree well with velocities deduced from line shapes. The hydrodynamical
velocity fields of the 3D models were also expressed in terms of the classical micro- and macro-
turbulent velocities. With this description and the obtained micro- and macro-turbulent velocities,
it is possible to reproduce 3D spectral lines in 1D atmosphere models very accurately, hence time
consuming 3D treatment of FeH molecular lines in the regime of cool stars is not necessary for
line profile analysis. A comparison of these velocities with a set of velocities determined from
observations with spectral fitting methods showed that the macro-turbulent velocities agree, but
the micro-turbulent velocities are a factor of two or three smaller than the ones determined from
observations.

A line shift due to the larger up-flowing area in the convection zone was investigated. It is of
the order of a few m/s up to 50 m s−1 for a very low gravity model. The time dependent jitter in
line positions is only about m/s and would be reduced to mm s−1 in a real star, due to the high
number of contributing elements.

In order to use FeH molecular lines for investigations of spectroscopic/physical properties in
cool stars (e.g. Zeeman- or rotational broadening), I explored the behavior of a set of lines for
variations in log g and Teff . Ten FeH lines between 9950Å and 9990Å were investigated on the
RHD models with the spectral synthesis code LINFOR3D. FeH lines react to different effective
temperatures, as expected, due to the change in chemical composition and pressure. The lines
also showed a weak dependence on surface gravity due to changing densities and pressure. The
broadening from velocity fields in the 3D models of the log g series is very strong, but for the
Teff series the broadening from velocity fields is almost covered by van der Waals broadening.
The difference in line width for hot models is up to 0.5 kms−1 and for low gravity models around
1 kms−1. This means that one has to include correct micro- and macro-turbulent velocities for
small surface gravities or hot Teff in 1D spectral synthesis. Due to the fact that the FWHM log g
dependence of FeH lines goes in the opposite direction as the log g dependence of the velocity
fields, the FeH lines become a good way to measure surface gravities in cool stars: the velocity
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fields scale with log g and it should be easily possible to detect them.

FeH lines with different quantum numbers do not show significant differences for both log g-
and Teff -series. This means that the broadening of the lines does not depend on J , Ω, or the
branch. Furthermore, lines with weak magnetic sensitivity behave just like lines with strong
magnetic sensitivity: all lines are broadened in the same way by thermal and hydrodynamical
motion. Only the transition probability expressed in the log gf value influences the behavior of
the lines. The line with the lowest gf -values did not saturate at low Teff , but in general they are
similar to the other FeH lines.

It is possible to treat the FeH molecular lines with different quantum numbers as homogeneous
in the absence of magnetic fields. This allows one to use FeH lines to measure magnetic field
strengths. Hence I conclude that these lines also are an appropriate means for measuring magnetic
field strengths in M-type stars.

Investigations in the z-band region of the M5.5 dwarf GJ1002 with high-resolution CRIRES
spectra were done to identify as many FeH lines as possible. This is the region where the (0, 0)
vibrational band of FeH is present (‘Wing-Ford band’). I was able to identify the (0, 0), (1, 0),
(1, 1), (2, 1), (2, 2), (3, 2), and (4, 3) bands. For confirmation of the band assignment, the methods
of coincidence, cross-correlation, and line intensities were used.

For the identified lines, empirical corrections to the theoretical line positions were applied.
The deviations between observed and computed positions are Gaussian-distributed around zero.
For small deviations (< 0.025 Å ), this could be due to uncertainties in the wavelength calibration
of the observed spectra and in other cases due to uncertainties in the molecular constants which
were used to generate the line list. The method of coincidence confirms the presence of the (0, 0)
and (1, 1) bands, but for the other bands cross-correlation techniques were needed to show their
presence. Again the (0, 0) and (1, 1) bands show clear peaks in the cross-correlation function even
with an uncorrected line list, but for the other bands it was necessary to use corrections to the
line list to confirm them. I also used line intensity information by plotting the ratio Wλ/Sλ4

0

against E0, which shows a linear behavior if the band is present in the spectra. With this method
I could confirm the presence of all other bands, although not uniquely for the Q-branches.

Corrections to the line strengths in the FeH line list were done by scaling the Einstein A values,
as some of these lines show large discrepancies compared to the observations. For this purpose, it
was necessary to derive the instrumental broadening (which included the rotational broadening),
effective temperature, and an enhancement factor for the van der Waals-broadening constants.
The instrumental resolving power for the spectra of GJ1002 was derived to be R = 70000, which
is equivalent to a rotational broadening with v sin(i) ∼ 1.3 km s−1. I also derived an effective
temperature of Teff = 3100 K, and a van der Waals-enhancement constant of 1.75. The scaling
factors of the Einstein A values show an almost linear dependence on Jl, which indicates that
there is likely a problem in the calculation of the Hönl-London factors.

With the improved identification of FeH lines, it is now possible to characterize the FeH lines
in the z-band region (e.g. magnetically sensitive and insensitive lines, temperature sensitivities of
individual lines). The improved line list will aid in the identification and simulation of FeH lines
in spectra of cool stars.

From the slope of the line in [Wλ/Sλ4
0, E0] plots, it was possible to derive excitation tempera-

tures for rotational transitions, which could be identified with the effective temperature of the star
if the lines are formed in the photosphere. I showed that this method is very uncertain because
the error in the slope is high. The derived temperatures for the individual vibrational transitions
range from ∼ 2500 K to ∼ 5500 K for GJ1002, but the weighted mean T rot ≈ 3200 ± 100 K is
very close to the expected temperature of an M 5.5 dwarf. However, the large error bars and
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differences between P- and R-branch temperatures suggests that this agreement may be more of
a coincidence than a physical result.

Better results were obtained from the usage of line pair ratios. These ratios depend strongly on
the effective temperature of the star and were relatively easy to measure in a set of CES M dwarf
spectra. These ratios were compared with computed line ratios for various effective temperatures
to estimate the effective temperature of the observed object. These temperatures were then used
to compute model spectra for comparison with the observations, e.g. in order to derive surface
gravity and metallicities.

I have identified magnetically sensitive FeH lines in the spectra of the M4.5 dwarf GJ1224,
which is magnetically active. The FeH lines were investigated for their possible dependence
on rotational quantum number, which was not found, but a strong dependence on Ω could be
confirmed. Thus, FeH lines with high Ω (2.5 and 3.5) tend to be highly magnetically sensitive
whereas lines with low Ω are, in general, insensitive. I also computed the FeH lines including
effects from magnetic fields and compared the results with the observations. In general the
computations resemble the observations, but looking at individual line profiles shows that there
are still unexplained discrepancies.

Finally, I conclude that molecular FeH lines hold a great potential in exploring atmospheres of
cool stars. In the z-range, where these stars are brightest, they are very numerous, strong enough,
sufficient narrow, and, in enough cases, well isolated. One can use them to measure broadening
from e.g. rotation, turbulent motion, Doppler motion, or Zeeman splitting and also to determine
the stellar parameters surface gravity, effective temperature, and metallicity. Since all FeH lines
depends on the same number of molecules, line ratios are independent of chemical composition,
which is poorly known in cool stars. The large number of suitable lines improves accuracies and
would make FeH also a great tool to measure Doppler shifts caused by stellar companions or
extrasolar planets.

The science with FeH has just begun, and will probably be even more valuable in the future.
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Böhm-Vitense, E. (1958) Über die Wasserstoffkonvektionszone in Sternen verschiedener Ef-
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Appendix

FeH Data

Table 8.4 contains the observed wavelength λobs, which is obtained with the Voigt fit, and the
theoretical wavelength λtheo from the list of Dulick et al. (2003). The wavelengths are in vacuum.
I also give the quantum numbers of the lines and the Einstein A values with their scaling factors
sA. The lower-level energy El is given in eV. The difference in position ∆λ = λtheo − λobs is
also printed in the table. If the line is a blended line, then its contribution to the blend is given
as the fraction normalized to one. If the line is not blended, its blend value is one. Then, the
classification of the line as defined in Sect. 8.2.3 is given. I add a comment if the line is blended
by an atomic feature, or if the classification of the line did not agree with the scaling factor of
the Einstein A values.

Explanation of the FeH Atlas

I plotted the whole spectrum in bins of 1 nm from 990 nm to 1076.6 nm. Shown are the observed
spectrum of GJ1002 (black), the computed spectrum with corrected positions (red), the computed
spectrum with corrected positions and scaled Einstein A values (green). I also labeled all lines
with Wλ ≥ 2 mÅ with quantum numbers for the vibrational transition, the branch, the lower J ,
the upper and lower Ω, and in the last position, their blend fraction. The blend fraction is unity
if a line is not blended. Also labeled is the position of atomic lines with the element name below
the spectrum.
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tige Arbeit in der Erziehung unseres Sohnes Marin von Berg.
Meiner Mutter, Marion Peterwitz, danke ich für ihre Liebe und Wärme, die mir immer wieder
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Zu guter Letzt möchte ich all meinen Grosseltern danken, die mittlerweile alle diese Welt verlassen
haben. Sie waren immer eine großartige Inspiration und Stütze auf meinen Wegen.



Curriculum Vitae

Dipl.-Phys. Sebastian Wende
Am Feuerschanzengraben 1
37083 Göttingen

Geburtstag: 09.06.1980
Geburtsort: Osterode/Harz
Staatsangehörigkeit: Deutsch

09/2007 – 10/2010 Promotionsstipendiat (Universität Göttingen)
09.08.2007 Diplom Physik (Universität Göttingen)

21.10.2005 Vordiplom Physik (Universität Göttingen)

10/2002 – 08/2007 Physikstudium (Universität Göttingen)

14.06.2002 allgemeine Hochschulreife

08/2000 – 06/2002 BBS I Arnoldi-Schule Göttingen

09/1999 – 08/2000 Zivildienst in Osterode

08/1998 – 07/1999 BBS I Osterode

08/1993 – 07/1998 Tillman-Riemenschneider Gymnasium Osterode

08/1991 – 07/1993 Orientierungsstufe Röddenberg Osterode
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