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Chapter 1

Introduction

1.1 Functional Architecture of the Mammalian Cere-

bral Cortex

The cerebral cortex is a key structure of our brain that plays an important role
in cognitive functions such as perception, attention, thought and language. In
the functional modules of cerebral cortex, so called cortical columns, neurons
are arranged in a slab of tissue extending perpendicular to the cortical surface.
Neurons within a column usually share similar functional properties. In a corti-
cal layer parallel to the surface, neuronal selectivities vary systematically. Such
two-dimensional(2D) patterns of functional maps have been discovered in many
cortical areas, e.g ., a map of our body surface found in somatosensory cortex, a
map of sound frequency in the primary auditory cortex and a retinotopic map
together with other functional maps in the primary visual cortex.

For our understanding of brain mappings, visual maps provide especially good
examples not only because the in vivo cortical activities can be recorded along
with precise control of visual stimuli, but also due to the rich patterns of multiple
features they encode. Neurons in the primary visual cortex are selective to the
complex structure of a natural scene, including visual field position, contour
orientation, direction of motion, spatial frequency, and binocular visual cues such
as ocular dominance. Most primates and carnivores show a highly organized
spatial pattern of preferred stimulus features across the visual cortex (Hubel &
Wiesel, 1962; Frostig et al., 1990; Hubel, 1995; Weliky et al., 1996; Ohki et al.,
2005). The spatial complexity of these visual maps challenges the theory of map
formation to coordinate between different feature maps in one cortical area.
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1.2 Orientation Preference Maps

Orientation columns are among the most thoroughly investigated patterns of cor-
tical functional architecture (Blasdel & Salama, 1986; Bosking et al., 1997; Bon-
hoeffer & Grinvald, 1991; Crair et al., 1997a,b; Hübener et al., 1997; Kaschube
et al., 2000; Kaschube, 2005; Löwel et al., 1987, 1998; Mooser et al., 2004; Müller
et al., 2000; Ohki et al., 2006). Figure 1.1A shows a typical example of an ori-
entation preference map (OPM) observed in the primary visual cortex of cat.
The OPM is smooth almost everywhere in the sense that neighboring neurons
normally prefer similar orientations. The continuous change of orientation selec-
tivity is disrupted at local regions with a radial arrangement of iso-orientation
domains around a common center. Such regions have been termed ‘pinwheels’ and
are ubiquitous structural elements of the orientation map. Applying two-photon
calcium imaging in vivo, a recent study (Ohki et al., 2006) has visualized that
pinwheel centers are highly ordered down to the level of single cells (Figure 1.1B).

BA

1 mm

0.1 mm

Figure 1.1: Spatial pattern of the OPMs (A) The map was recorded by op-
tical imaging in a 7 mm × 4 mm area of cat V1. Top: Cortical activity patterns
respond to four stimulus angles ( 0°, 45°, 90°, 135°, shown in inset of each panel)
from one animal. Black areas of each panel indicate areas of cortex that were
preferentially activated by a given stimulus, and light gray areas indicate areas
that were active during presentation of the orthogonal angle. Bottom: OPM ob-
tained by vector summation of data obtained for each angle. The colors represent
different orientation preferences. Data provided by Dr. Kisvarday (University of
Bochum). (B) Microstructure of orientation pinwheels. Top: OPM from optical
imaging, recorded in area 18 of cat visual cortex. The square region indicates
the typical structure of pinwheels. Bottom: Two-photon calcium imaging demon-
strated the same pinwheel center with single cell resolution. Figure modified from
Ohki et al. (2006).
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In the striate cortex of an adult cat, several hundreds of pinwheels connected
by iso-orientation lines form a roughly repetitive pattern. The column spacing Λ
measures the average distance of adjacent iso-orientation domains, which is in the
range of 1 mm. A hypercolumn of size Λ×Λ can be considered as an information
processing unit, which represents all kinds of orientations at a given visual field
position.

1.3 Development and Plasticity of OPMs

How do such cortical maps emerge during development? The neural network
involved in one cortical hypercolumn is extremely large. On average 100,000
neurons and a billion synapses are packed into 1 mm3 of cortex. This enormous
number of neurons and connections makes it unlikely to completely specify neural
connectivity patterns prenatally on the genetic level.

It has been a long-standing hypothesis that cortical maps emerge through a
self-organizing process, which is to some extent driven by sensory experience. One
of the most fascinating evidences in favor of this hypothesis comes from the cortex
of so called rewired animals (Sharma et al., 2000). In ferrets, thalamocortical
projections from the retina were experimentally redirected to drive the auditory
pathway at a very early stage of development (see Figure 1.2). As a consequence
similar patterns of OPMs have been recorded in the area that would normally
be the primary auditory cortex. This finding indicates a general capability of
pattern formation in the cerebral cortex to generate a sensory representation as
found in V1 when merely given appropriate inputs.

To which extent visual experience might shape the development of OPMs in
the normal cortex is yet to be uncovered. It seems that the appearance of crude
patterns in V1 of primates at birth and in cats at the time of natural eye opening
does not require structured visual experience (for a review see Sur & Leamey
(2001)). However, patterns of spontaneous activity have been recorded in the
developing dorsal lateral geniculate nucleus (LGN) that may play an important
role in the initial establishment of the cortical patterns. (Weliky & Katz, 1999).

Moreover, visual inputs are essential in the next stage for the maintenance
of the map dynamics. Long term deprivation of visual experience by binocular
suture can cause a loss of orientation selectivity and degradation of the visual
cortical maps (Crair et al., 1998). In addition, an influence of restricted visual
experience has been reported in kittens reared in a striped environment consisting
of one single orientation. Here the experienced orientation is over-represented in
the cortical area up to twice compared to the orthogonal orientation (Sengpiel
et al., 1999).

Taken together, these observations suggest that OPMs are subject to dynam-
ical changes and susceptible to the visual experience.
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A

C D

B

f fg g

Figure 1.2: OPM in rewired ferret auditory cortex (A) In normal ani-
mals, the retina projects to the primary visual cortex via the lateral geniculate
nucleus (LGN) and superior colliculus (blue pathway). The medial geniculate
nucleus (MGN) innervating the primary auditory cortex receives most of its sub-
cortical afferents from the ipsilateral inferior colliculus (red line) and from the
contralateral inferior colliculus (red dashed line). (B) In rewired animals, exten-
sive neonatal deafferentation of the MGN induces the retino-MGN projections to
innervate the primary auditory cortex. This effect can be obtained by destroying
the inferior colliculus unilaterally along with a lesion of the superior colliculus
which carries inputs from the contralateral inferior colliculus. (C, D) Orien-
tation maps in normal V1 and ‘rewired A1’; scale bar: 1 mm. (a-d) Cortical
activity patterns evoked by vertical, left oblique, horizontal and right oblique
grating stimuli, respectively. (f) Composite map of orientation preference. Color
bar, key for representing orientations. (g) Map of orientation vector magnitude.
Dark regions indicate low magnitude. Modified from Sharma et al. (2000); Sur
& Leamey (2001).
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1.4 How to Model Map Development

1.4.1 Modeling the Collective Dynamics of Cortical Plas-

ticity

Cortical maps reflect computations operating in relatively large scale networks.
As revealed by single-orientation maps (Figure 1.3A), cortical neurons are active
in local groups, called co-activated cortical domains (CCDs) in the following.
Each domain is composed of tens of thousands of neurons. These neurons not only
receive feed forward inputs but also extensive synaptic input from intra-cortical
connections. Such connections are predominantly found in domains with similar
orientation preference (Figure 1.3B). Hence the competitive forms of Hebbian
learning (Hebb, 1949) of synaptic plasticity (‘Neurons that fire together wire to-
gether’) are often used to model cortical map development. One of the paradigm
models for the activity-dependent map formation is Kohonen’s self-organizing
feature map model.

The Kohonen model describes the development of cortical maps on a meso-
scopic level (Kohonen, 1982, 1993; Obermayer et al., 1990, 1992). The cortical
network is described by formal units representing hundreds of neurons. Neurons
within each unit share a common profile of selectivity such that competitive Heb-
bian learning is performed on the level of these units. This mesoscopic level of
description improves the computational efficiency of simulating large scale net-
works. Numerical simulations of this model have shown that orientation prefer-
ence maps can develop from an initial unselective state (Obermayer et al., 1990;
Swindale, 2000, 2004).

1.4.2 Pattern Formation as a Phase Transition

How does a spatial pattern emerge from an initial homogenous state and how
should this process be characterized? Pattern formation as spontaneous symme-
try breaking has been studied in many physical systems undergoing e.g. liquid-gas
transitions or a ferromagnetic phase transition (Manneville, 1990; Cross & Ho-
henberg, 1993). In these systems, a new organization emerges at a critical value
of certain control parameters like the critical temperature.

A collective behavior mimicking phase transitions is expected in visual map
development given that the cortical activity patterns are strongly shaped by intra-
cortical interactions (Ritter & Schulten, 1988; Miller et al., 1989; Obermayer
et al., 1992; Wolf et al., 2000). The pattern formation of OPMs is controlled by
the size σ of co-activated cortical domains (CCDs). If the CCDs are extremely
large so that the entire cortex is co-active, no segregation of OPMs can occur. A
previous theoretical study (Wolf et al., 2000) suggested that the transition from
such a homogenous state to the spontaneous formation of a map is not gradual
but occurs at a discrete instability point with a critical size σ∗ of CCDs. At this
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Figure 1.3: OPMs and cortical function in different spatial scales (A) The
single condition maps for vertical (upper panel), for horizontal orientation (middle
panel) and the composite OPM (bottom panel) recorded in ferret V1. Maps taken
from Sharma et al. (2000). (B) The horizontal connections in two maps of tree
shrew striate cortex. White dots: Biocytin taken up by cells at injection site;
Black dots: Labeled boutons found in the neighborhood of injection site and in
the domains of similar orientation preference. Taken from Bosking et al. (1997).
(C) The highly ordered orientation preference of cells near a pinwheel center
recorded in cat V2 by two-photon microscopy and tuning curves of individual
neurons. Taken from Ohki et al. (2006).
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point of instability, a small deviation of σ (less than 1% ) dramatically change the
behavior of the system. If we consider the synaptic connections of neurons in a
locally co-activated group, one percent of difference in the interaction range is not
expected to affect the properties of individual neurons significantly. The phase
transition that leads to the emergence of orientation selectivity is thus one of the
collective behaviors that can hardly be anticipated from the study of cellular and
subcellular processes.

In the theory of pattern formation, systems close to threshold or far from
threshold are known to behave quite differently (Cross & Hohenberg, 1993). Close
to threshold systems deal with small deviations from a stationary homogeneous
state, which breaks down at the instability point with a certain growth rate of
the emerging pattern. Systems far from threshold lie in so-called highly nonlinear
regimes. Their temporal evolution involves extensive pattern rearrangement to
match different parts of the system. However, little attention has been dedicated
to distinguishing such different dynamical regimes in modeling map development.

Previous studies often chose a small size σ of co-activated cortical domains
(CCDs), about one order of magnitude lower than the pattern wavelength (Good-
hill & Cimponeriu, 2000; Swindale, 2000, 2004; Yu et al., 2005; Farley et al., 2007).
In some of these studies (e.g., Swindale (2004); Goodhill & Cimponeriu (2000)),
the size σ of co-activated cortical domains (CCDs) was continually reduced in
simulations to facilitate map convergence, a process referred to as annealing.

What is the realistic size of CCDs in the activity patterns of OPMs? As
illustrated in Figure 1.3A, the size of co-activated domains in single condition
maps is similar to that of the iso-orientation domains in the OPM, a value of the
same order of magnitude as the pattern wavelength. An independent measure to
estimate the value of σ is based on the tuning width of individual neurons (Fig-
ure 1.3C), which covers an orientation difference of about 90°. In other words,
half of each hypercolumn is activated by a single orientation given the smooth-
ness of the map. These observations thus question the use of very small sized
CCDs in simulations. They demand to carefully characterize the dynamics of
developmental models in particular in the regime of larger CCD sizes.

Our work aims to provide a quantitative study on the cortical map devel-
opment in different dynamical regimes with respect to the critical threshold of
pattern formation. For this purpose, we first performed a stability analysis around
the homogeneous state to reveal the critical point of pattern formation and the
growth rate of the emerging pattern.

1.4.3 Time Scales of Map Development

Spatially extended dynamical systems often exhibit processes occurring on various
time scales. This fact reflects that in a spatially extended system, subsystems
separated by a large spectrum of distances need to coordinate their behavior,
which proceeds on larger time scales for more distant subsystems. Are such
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long time scales important for map development in the visual cortex? Taking
the primary visual cortex of a cat as an example, selective activity patterns are
established within a few days between the second and the third postnatal week,
which is followed by a critical period of map plasticity and refinement lasting for
three months in kittens (for a review see Sur & Leamey (2001)). The minimum
duration of strong plasticity is thus at least one or two orders of magnitude larger
than the initial period needed for establishment of a first map.

Numerical simulations have shown the structure of visual maps developed
in an activity-dependent process of synaptic plasticity (Durbin & Mitchison,
1990; Ferster & Miller, 2000; Miller, 1992, 1994; Ferster & Miller, 2000; Carreira-
Perpiñán et al., 2005; Swindale, 2000, 2004; Yu et al., 2005; Farley et al., 2007).
However, most of these studies have treated the emerging pattern as a static
layout with little concern on the time scales relevant for cortical development.

To appropriately resolve the temporal dynamics in a developmental model,
we analytically derived the intrinsic time scale of the emergence of a first map.
Each step of synaptic learning was then performed on a much smaller time scale
compared with this intrinsic time scale of map development and the dynamics of
the entire system was tracked in simulations for a period much longer than the
intrinsic time scale.

1.5 The Problem of Pinwheel Stability

Modeling the dynamics of OPMs is central for understanding the pattern of pin-
wheels in the map. On the microscopic level, a recent study using two-photon
calcium imaging (Ohki et al., 2006) has revealed a highly ordered arrangement
of neurons at pinwheel centers. A pinwheel is not a functional defect with un-
responsive neurons but rather consist of neurons selective for all different orien-
tations (Figure 1.3C:a). Orientation tuning curves of individual neurons in the
pinwheel center showed similar response strength and tuning width compared to
those in the iso-orientation domain (Figure 1.3C:b-e).

It is important to note that such pinwheels do not invariably occur in models
of cortical map development. Simulations of various models have shown that
an initially pinwheel-rich state can decay towards a pinwheel-sparse pattern of
orientation stripes, a process known as spontaneous pinwheel annihilation (Wolf
& Geisel, 1998; Koulakov & Chklovskii, 2001; Lee et al., 2003; Cho & Kim, 2004).

To illustrate this problem, we performed a simulation of the Kohonen model
applying the parameters used in Farley et al. (2007) but presenting the system
with a 20-fold number of stimuli (30 million versus 1.5 million) compared to the
original study. As shown in Figure 1.4, the dynamics of the OPM appeared
to be unstable, where the pinwheel numbers reduced continually as more and
more stimuli were presented to train the model cortex (Figure 1.4B). Simultane-
ously, the column spacing increased over time so that the size of iso-orientation
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domains expanded (Figure 1.4C). Multiplication of these two measures yields a
dimensionless quantity, the scaled pinwheel density ρΛ2, which represents the av-
erage number of pinwheels in one hypercolumn (Figure 1.4D). None of the spatial
characteristics of the OPM had become stationary (Figure 1.4 B-D, dashed line)
for the results reported in the study by Farley et al. (2007). Intriguingly, Farley
et al. (2007) did not mention and appeared unaware of this dramatic dynamical
rearrangement.

Λ
/p

ix
el

pw
n ρΛ

2

30,000,0001,500,000300,00050,000
#stimuli

A

DCB

Nstimuli NstimuliNstimuli

Figure 1.4: Map dynamics in one simulation of the Kohonen model (A)
The patterns of OPMs evolved in one simulation as the number of presented
stimuli increases. (B) The number of pinwheels decreased during the simulation.
(C) Increase of the average column spacing. (D) The scaled pinwheel density ρΛ2

decreased to a value much lower than 2. Dash lines: the stage of the simulation
at the same amount of stimuli presented in Farley et al. (2007).

One possible explanation for the persistence of pinwheels in the visual cortex
might be that, after the initial establishment of an early pinwheel-rich pattern,
the dynamical development of OPMs is terminated as the ‘critical period’ comes
to an end which is about the first couple of months after birth (Katz & Crowley,
2002). However, there is no direct evidence of molecules or genes that terminate
this dynamical process. In contrast, a stimulus induced non-local reorganization
of the maps has been reported even in adult cats (Godde et al., 2002). This
indicates that map plasticity is maintained in the adult. Even if OPM plasticity
is restricted to the critical period, this period lasts many months and peaks only
four weeks after an OPM is initially established (Sur & Leamey, 2001). As the
initial establishment of an OPM requires only a period of a few days (Chapman
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et al., 1996), realistic simulations of map development should cover time scales
much longer than that needed for the initial map formation.

Two Hypotheses

From a theoretical perspective, two hypotheses have been proposed to solve the
problem of pinwheel stability. (1) Pinwheels are stabilized by interactions of
different features under the constraint of coverage optimization (Wolf & Geisel,
1998). (2) The spatial layout of OPM is shaped by intrinsic processes such as
long-range intracortical interactions (Wolf, 2005).

The first hypothesis is based on the observed spatial relationships between
different feature maps in the visual cortex (Crair et al., 1997b,a; Hübener et al.,
1997; Löwel et al., 1998; Müller et al., 2000). Previous studies revealed a tendency
for pinwheel center singularities of OPMs to lie in the center regions of the ocular
dominance columns(ODCs), and for iso-orientation bands to cross ocular domi-
nance borders at right angles (Figure 1.5). A general framework of dimension

reduction (Durbin & Mitchison, 1990) has been proposed for understanding
cortical mappings that preserve neighborhood relations in the feature space. To
avoid functionally ‘blind spots’ in the visual field, the concept of coverage uni-
formity constrains the maps to fill the input space with near-uniform density
while maintaining continuity. This leads to maps where rapid changes in one
feature component are correlated with slow changes in other components. Nu-
merical studies further suggested that strong ocular dominance segregation can
slow down the process of pinwheel annihilation in developmental models (Wolf &
Geisel, 1998).

However, recent quantitative studies (Kaschube, 2005; Kaschube et al., 2006)
found a universal pinwheel density in adult animals of several species despite
substantially different organizations of ocular dominance columns. This appears
inconsistent with theoretical prediction that suggested a correlation between the
numbers of pinwheels per hypercolumn and the degree of ocular dominance seg-
regation in different species (for discussion see Wolf & Geisel (1998)). This raises
the question whether the OPMs are stabilized by interaction with other maps,
or whether the ubiquitous pinwheel structure is selected by a universal pattern
forming process independent of the number of mapped features.

1.6 An Overview of my Work

The objective of this project is to develop a methodology for analysis and simu-
lations of cortical dynamics from the perspective of nonlinear dynamical systems
and applying this method to comprehensively study the problem of pinwheel
stability in models of interacting columnar patterns. The model behavior was
characterized in different dynamical regimes, for various system sizes, feature
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Figure 1.5: Segregated ODCs and OPM in strabismic cat V1 (A,B) Ac-
tivity patterns for the left(A) and right eye (B) are complementary. Regions
highly activated by left eye (dark regions in A, outlined in white) are only weakly
activated by the right eye (light grey regions in B). (C) Orientation preference
map obtained in the same area. (D) Superposition of the angle map and the out-
lined borders of adjacent ocular dominance columns (white contours in A). (E)
Histograms of intersection angles between iso-orientation and ocular dominance
columns in the same animal. Note that intersection angles between 75 and 90 are
most abundant in the original data. (F) Data from shifted maps: iso-orientation
contours of one animal superimposed with the ocular dominance borders of an-
other animal. Note in addition that the histograms are always flat after shifting
the maps (Data not shown here). Modified from Löwel et al. (1998).
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space dimensionalities, and visual stimulus distributions.
The phase transition to spontaneous pattern formation of visual maps was

characterized by a stability analysis of the Kohonen model. The bifurcation
diagrams were obtained numerically by varying the control parameter σ, which
corresponds to the size of co-activated cortical domains. Large scale simulations
were then performed in different dynamical regimes identified from the bifurcation
diagrams.

In simulations the model cortex was initialized with an unselective state and
was trained by random stimuli drawn from Gaussian distributions. We first con-
sidered the development of orientation preference interacting only with retino-
topy. The dynamics of OPMs was found to rely on the size of the system. In
small systems of one hypercolumn, a checkerboard pattern consisting of four
pinwheels was always maintained. However, in the larger systems the initially
pinwheel-rich patterns were typically unstable. The kinetics of pinwheel anni-
hilation was quantified by the average numbers of pinwheels per hypercolumn,
which decayed below 2 in various parameter regimes.

In simulations of high-dimensional feature space models, more feature dimen-
sions were included to test whether pinwheel annihilation could be stopped as
suggested by the dimension reduction framework. Intriguingly, only two active
feature dimensions were represented close to the bifurcation threshold. The other
feature dimensions were suppressed and became represented only beyond a sec-
ondary bifurcation point. Beyond this secondary bifurcation point, the generated
patterns of different feature maps were either pinwheel-free stripes or a repetitive
checkerboard pattern of pinwheel crystals.

To establish the robustness of this behavior we further compared simula-
tions performed with different stimulus statistics. Similar results were found for
spherical uniform distributions and for products of angular variables with circu-
lar uniform distributions. We conclude that the dynamics of OPMs is generally
unstable in current developmental models of interacting columnar systems.

The first part of this thesis is organized as follows: In Chapter 2, we first
describe the model of Kohonen’s self-organizing feature mapping. Then we re-
address the question of pattern formation by a linear stability analysis (Wolf
et al., 2000) and derive the initial growth rate and the maximum unstable wave-
length (related to the column spacing) of the emerging pattern. Based on this
mathematical analysis, we designed a precisely controlled numerical method in
Chapter 3. In Chapter 4, we study the dynamics of OPM interacting only with
a retinotopic map. More feature dimensions are included in Chapter 5 to track
the development of OPMs coupled to other feature maps. Finally, simulation re-
sults with stimuli of non-Gaussian distributions are described in Chapter 6. We
discuss the main findings of our study in Chapter 7.



Chapter 2

Analysis of the Kohonen Model

2.1 Model Description

The cortical surface is modeled as a two-dimensional layer which is divided into
units of functional modules with common response properties. Each unit has
an associated receptive field, which defines how it responds to different visual
stimuli. Properties of receptive fields at the cortical location x are characterized
by a feature vector w(x), whose components denote the preference for certain
stimulus features.

In the following, we will use a two-component vector p = (px, py) to indicate
the position of the receptive field centers in the visual space. We choose another
two-component vector z = (z1, z2) to represent the orientation selectivity, with
the angle of the vector φ(z) specifying the preferred orientation θ = φ/2 and the
length of the vector |z| indicating the corresponding tuning strength. The order
parameter z(x) as a function of cortical position x, describes the spatial pattern
of orientation preferences. These properties are encoded by a four-dimensional
feature vector

w(x) = (px, py, z1, z2) = (p, z) , (2.1)

which can be simply extended for more features like ocular dominance and fre-
quency selectivity, etc..

The feature properties of a stimulus are described by a vector v of the same
dimensionality as w(x), with the corresponding components

v = (rx, ry, s1, s2) = (r, s) . (2.2)

After each presentation of the stimulus vector v, the cortical activity pattern
e(x) as described below induces a modification of cortical receptive fields δw(x),
which is driven towards the stimulus pattern

δw(x) ∝ [(v − w(x)) e(x)] . (2.3)
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Eq.(2.3) can be derived from Hebbian dynamics of synaptic connections refined by
correlated pre- and post-synaptic activity, and non-Hebbian terms which ensure
that a measure of total synaptic strength is conserved (Löwel & Wolf, 1999; Wolf
et al., 2000).

To enforce a continuous cortical mapping such that neighboring cortical columns
have similar selectivities, co-activated cortical domains (CCDs) are assumed to
dominate the cortical activity pattern e(x). In response to an individual stim-
ulus, the excitation of cortical neurons spreads locally within a CCD, which is
simply taken as a stereotyped activity blob

e(x) =
1

2π
exp

(
−|x − x∗|2

2σ2

)
, (2.4)

where x∗ is the position of the most activated neuron and σ measures the size
of the CCD. For simplicity, we assume that afferent stimuli determine only the
center location x∗ of the CCD but not its shape and size. A competitive learning
rule is used, choosing the winner position x∗ with the feature vector w(x) closest
to the current input v:

|v − w(x∗)| ≤ |v −w(x)| (for all x). (2.5)

Note that Eq.(2.4) is adopted from Kohonen’s algorithm; however, other learn-
ing rules could easily be incorporated to update the receptive fields of CCDs, and
the concrete forms of excitation pattern are not expected to affect the key feature
of the activity dependent mechanism.

To study the dynamics of OPMs, we rewrite Eq.(2.3) decomposing orientation
preference z(x) from the feature vector w(x) and s from the stimulus vector v:

δz(x) ∝ [(s− z(x)) e(x)]. (2.6)

If modifications induced by individual stimuli are small enough in the sense
that presenting a single input stimulus should not globally disturb the present
spatial pattern, z(x) changes slowly through the cumulative effect of a large
number of activity events. Its temporal evolution dynamics is then described by
a deterministic equation:

∂

∂t
z(x) = 〈(s− z(x))e(x)〉 (2.7)

where t denotes time and 〈 〉 represents the average over an ensemble of afferent
activity patterns. Cortical activity e(x) takes the form of Eq.(2.4) with the winner
position

x∗ = arg min
(
|s− z(x)|2 + |r − p(x)|2

)
(2.8)

such that the closest distance between the stimulus vector and the receptive field
feature vector is found at cortical position x∗.
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The dynamics of z(x) defined by Eqs.(2.4), (2.7) and (2.8) has a homogenous
stationary solution z0(x). If we assume the stimulus ensemble has no bias to
any orientation, the homogeneous state is unselective with respect to different
orientations:

z0(x) = 〈s〉 = (0, 0) (2.9)

2.2 Linear Stability Analysis

To understand the condition for the generation of an orientation preference map
and to determine the initial rate of pattern growth, we explored whether the
stationary state (z0(x) = 0) was stable or not in the learning process defined
above. When the homogeneous solution loses stability, orientation selectivity will
emerge spontaneously. Following Wolf’s work on the dynamics of cortical pattern
formation (Wolf & Geisel, 1998; Wolf et al., 2000), we used linear stability analysis
to investigate the dynamics of OPM starting from an unselective homogenous
state.

From Section 2.1 the dynamics of OPM z(x) can be summarized as





∂

∂t
z(x) = 〈(s− z(x))e(x)〉 ,

e(x) =
1

2π
exp

(
−|x − x∗|2

2σ2

)
,

x∗ = arg min
(
|s− z(x)|2 + |r − x|2

)
,

(2.10)

where σ measures the size of a co-activated cortical domain (CCD) and 〈 〉 rep-
resents the temporal average over an ensemble of afferent activity patterns.

Without loss of generality, the retinotopic map p(x) is rescaled to share a
common coordinate system with cortical position x. At the first step, we assume
that initially there exists an isotopic topological organization which would not be
disrupted by the emergence of the orientation map

p(x) = x . (2.11)

To determine the local stability, we linearize the dynamics of z(x) around
z0(x). Because the resulting linear equation must be translation invariant in the
cortical layer, its eigenfunctions are plane waves. It is therefore sufficient to study
the stability of the model in one spatial dimension

∂

∂t
z(x) =

1

2π

〈(
s − z(x)

)
exp

(
−|x − x∗|2

2σ2

)〉

=
1

2π

∫
ds drP (s)

(
s − z(x)

)
exp

(
−|x − x∗|2

2σ2

)
, (2.12)
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where x∗ = x∗(r, s, z(·)) is the center of the activated domain.

To eliminate the implicit dependence of the activity center x∗ on the stimulus
parameters r, s and z(x),we perform a coordinate transform, and represent r and
s with new variables u and v.

x

(r,s)

θ

θ

v

u

z(x)

Figure 2.1: Coordinate transform The stimulus parameters r and s are rep-

resented by new variables u and v, where v = min
(√

|s− z(x)|2 + |r − x|2
)

re-evaluates the smallest Euclidean distance between the stimulus vector and all
feature vectors, while u = x∗ is the corresponding winner position

From Figure 2.1 we rewrite r, s as

r(u, v) = u + v sin θ = u − vzx(u)√
z2

x(u) + 1
, (2.13)

s(u, v) = z(u) + p cos θ = z(u) +
v√

z2
x(u) + 1

. (2.14)

To know the corresponding Jacobian

J = det

(
ru rv

su sv

)
,

we first compute the partial derivatives:

ru = 1 − vz′′

∆
+

vz′2z′′

∆3
, rv = −z′

∆
,

su = z′ − vz′′z′

∆3
, sv =

1

∆
,

where z′ = zx(u), z′′ = zxx(u), ∆ =
√

zx(u)2 + 1.
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By substituting the partial derivatives, performing a Taylor expansion in z(x)
and neglecting the higher order terms of z′ and z′′, we obtain

J = rysp − rpsy =
√

z′2 + 1 − pz′′

1 + z′2

≃ 1 + z′ − pz′′ = 1 + zx(u) − pzxx(u).

The dynamics close to the homogeneous stationary state z0(x) can therefore be
written as

∂

∂t
z(x) =

1

2π

∫
du dvP̂ (u, v)J

(
v, zx(u), zxx(u)

)(
s(u, v) − z(x)

)

× exp

(
−|x − u|2

2σ2

)
. (2.15)

Since we are interested in the dynamics near the fixed point, i.e. zx(u) ≪ 1, we
linearize the coordinate transform

r(u, v) = u − vzx(u)√
z2

x(u) + 1
≃ u − vzx(u) ,

s(u, v) = z(u) +
u√

z2
x(u) + 1

≃ z(u) + v .

The probability density function of the stimulus set can be represented with new
variables:

P̂ (u, v) := P
(
u − vzx(u), z(u) + v

)
.

We then perform a Taylor expansion and neglect the higher order terms of
z(u), zx(v)

P̂ (u, v) ≃ P (u, v)− Pr(u, v)vzx(u) + Ps(u, v)z(u).

Because of translation symmetry, P (s, r) is independent of the position P (s, r) =
P (s), hence the second term should vanish:

P̂ (u, v) ≃ P (u, v) + Ps(u, v)z(v).

The right hand side of the integro-differential Eq.(2.15) can then be linearized by
linearizing the integrand

P̂ (u, v)J
(
v, zx(u), zxx(u)

)(
s(u, v)− z(x)

)

=
(
P (u, v) + Ps(u, v)z(u)

)(
1 + zx(u) − vzxx(u)

)(
z(u) + v − z(x)

)
,

= P (u, v)
(
z(u) − z(x)

)
− P (u, v)v2zxx(u) + Ps(u, v)vz.

After performing the v integration in Eq.(2.15) we obtain

∂

∂t
z(x) =

1

2π

∫
du exp

(
−|x − u|2

2σ2

)(
−z(x) − 〈v2〉zxx(u)

)

= − σ√
2π

z(x) − 〈v2〉
2π

∫
du exp

(
−|x − u|2

2σ2

)
zxx(u). (2.16)
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The growth rates of z(x) are given by the Fourier transform of Eq.(2.16) as the
eigenvalues of the rhs operator:

λ(k) =
σ√
2π

(
−1 + σ2

sk
2 exp

(
−k2σ2

2

))
. (2.17)

The spectrum (Figure 2.2) has a single maximum at wavenumber

kmax =

√
2

σ
(2.18)

and is positive when

σ < σ∗ =

√
2〈v2〉

e
. (2.19)

The corresponding maximum unstable wavelength

Λmax =
2π

kmax
=

√
2πσ (2.20)

with the fastest growth rate will initially dominate the emerging pattern, and is
called the critical wavelength in the following.

Next we consider the development of z(x) coupled to changes of the retinotopic
map, the resulting linearized dynamics may in principle contain an additional first
order term of δz(x) :

∂

∂t
δz(x) = L̂zδz(x) + L̂pδp(x) . (2.21)

Imagine that we inverse the coordinate of the retinotopic map δp(x) → −δp(x).
This leaves invariant the uniform distribution of afferent stimuli on retinal posi-
tion. Based on the orthogonal assumption between different feature directions,
the dynamics of δz(x) should remain unchanged:

∂

∂t
δz(x) = L̂zδz(x) − L̂pδp(x) . (2.22)

From Eq.(2.21), (2.22), we thus know that

L̂p = 0 . (2.23)

Thus, in the linear regime, changes of the retinotopic map do not affect the
dynamics of the orientation map. The existence of a critical size σ∗ of coacti-
vated cortical domain calculated above can be applied to more general cases with
coupled retinotopic dynamics.
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k/2π

(k)λ

Figure 2.2: Representative spectra of pattern growth rates λ(k) for 〈p2〉 =
0.01 and σ = 1.05σ∗, σ∗, 0.95σ∗ from bottom to top. For σ smaller than σ∗, the
largest growth rate is positive and hence leads to instability of the homogeneous
state and the spontaneous emergence of a finite wavelength pattern.
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Chapter 3

Numerical Methods

3.1 Simulation Procedure

The two-dimensional model cortex as previously described, was represented on
an N ×N square grid indexed by (i, j) with 0 ≤ i, j ≤ N − 1. To achieve a good
approximation of the spatially continuous pattern, the density of grid points was
chosen to include at least 10 pixels per column spacing. In the primary visual
cortex of a cat, the typical spacing of iso-orientation domains is roughly 1 mm; the
corresponding spatial resolution is thus equivalent to 100 µm. Periodic boundary
conditions were applied to avoid edge effects and to conserve the translation
invariance of the spatial pattern.

The receptive field of each grid point consisting of two retinal dimensions plus
n additional feature dimensions (2D+nD), is given by wi,j = (x, y, z1, z2, ..., zn).
Initially, a roughly ordered retinotopic map was assumed to be present, with
xi,j = iL/(N − 1)+ ξx and yi,j = jL/(N − 1)+ ξy , where ξx and ξy are Gaussian
random numbers with a mean of zero and a standard deviation of 0.005. L
measures the linear extent of the retinal region mapped onto the cortex, which
was normalized to 1 in our simulation. All the other feature values z1, z2, ..., and
zn were initialized as zero.

Stimuli defined by a vector vi,j = (xs, ys, s1, s2, ..., sn) were chosen at random
according to a predefined density in the feature space: retinal position values xs

and ys were distributed uniformly in the interval [0, L]. The values of s1, s2, ...,
and sn were either independently drawn from the same Gaussian distribution
with the mean of zero and the standard deviation of σs or from a non-Gaussian
stimulus distributions as discussed in more details in Chapter 6. For maps of
spherical feature space, the stimulus values were uniformly distributed on the
n−dimensional sphere of radius

√
2σs. For maps of multiple circular variables,

the values of s1, s2, ..., and sn were grouped into n/2 pairs and each pair was
uniformly distributed on a circle of radius

√
2σs.

At each step one random stimulus was presented, whereas the cortical recep-
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tive fields changed by an amount

δw(x) = ε(v − w(x)) e(x) , (3.1)

where ε is the ‘learning’ rate factor that defines the size of an integration time
step δt = ε . To choose ε appropriately, this time step must be compared to the
intrinsic time scale τ of the dynamics that is the inverse of the fastest growth
rate λmax with which the emerging pattern grows exponentially

τ =
1

λmax

. (3.2)

The maximum eigenvalue λmax was obtained from the linear stability analysis
around the initial homogenous state (see Section 2.2). The total amount of
stimuli presented for a period of τ is then given by τ/ε.

Simulations were performed repeatedly by seeding the random number gen-
erator to obtain different stimulus sets. Time was measured in the units of τ .
It is important to note that, in order to answer the question whether the pin-
wheels generated in the initial symmetry breaking phase are stable or not, one
must integrate the dynamics of Eq.(3.1) over a time period much longer than the
intrinsic time scale τ .

3.2 Choosing the Learning Rate

For the result of such a stochastic updating to approximate the deterministic
dynamics in Eqs 2.10, we chose the learning rate factor ε to fulfill two statistical
requirements within a time interval of τ . First, every patch on the cortical layer
has to be activated by a sufficient number of stimuli. Second, a sufficient number
of stimuli should be drawn from each voxel of the feature space to estimate the
input vector statistics.

Since input vectors have equal variances σ2
s in all the n-dimensions of the

feature space, we partitioned the relevant volume of the feature space Vtotal =
(2σs)

n into voxels of size Vvoxel = (σsǫs)
n, where ǫs is the spatial resolution in

the feature space. If we further assumed the temporal average of the afferent
activity patterns had a uniform distribution across the cortical layer, the number
of stimuli from a typical voxel in the feature domain to activate each cortical
hypercolumn is

Ns =
τ

εΓ2

(ǫs

2

)n

, (3.3)

where the aspect ratio of the system

Γ =
L

Λmax
(3.4)

measures the system size of the cortical domain in the scale of its characteristic
column spacing Λmax.
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To resolve the overall structure of the input vector distribution in the feature
space, we required ǫs = 0.2, Ns = 100. According to Eq.(3.5), the learning rate
ε has to be reduced when increasing the aspect ratio Γ of the cortical domain or
the dimensionality n of the feature space according to

ε =
τ

NsΓ2

(ǫs

2

)n

(3.5)

in order to maintain the same noise level.

3.3 Principal Component Analysis

Principal component analysis (PCA) was used to characterize the representation
of high dimensional feature spaces. Based on linear transformation, PCA chooses
a coordinate system for a data set such that the greatest variance by any pro-
jection of the data set comes to lie on the first axis (so called the first principal
component), the second greatest variance on the second axis, and so on. By such
a statistical approach, we identified dimensions in the simulated receptive field
features that contribute most to its variance.

We first computed the covariance of different feature components averaged
over the entire cortex. The covariance matrix A is a n × n matrix given by
Aij = 〈zizj〉. The method of singular value decomposition was applied to evaluate
the eigenvalues of A:

A = BMBT (3.6)

where M = diag(m1, m2, ..., mn) yields the variances of the data under the coor-
dinate transform z′ = BTz.

3.4 Rotation of the Feature Coordinate System

To avoid the computer round-off error accumulating on the main axes which
might cause breaking of the symmetry, orthogonal transformations were applied
during the simulation shown in Figure 5.1D to choose different coordinate systems
for computation. The feature vector was multiplied by an arbitrary orthogonal
matrix and its inverse before and after every hundred step of numerical integra-
tion, respectively, such that the lengths of feature vectors and the angles between
vectors were preserved.

3.5 Map Analysis

Color Code

We used a standard linear scaled color code of 16 colors to visualize orientation
maps. Due to the symmetry assumption, all different orientations are expected
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to be equally represented on the model cortex. The map dynamics remains
unaffected by shift of orientations. Hence in principle the color code of individual
maps can be shifted by an arbitrary angle yielding an equivalent solution.

Pinwheel Finding

The preferred orientation was deduced from the vector field z(x) according to
θ = 1

2
arctan(z1/z2). Pinwheels were identified as the crossing points between the

contour lines defined by z1 = 0 and z2 = 0. The number of pinwheels npw and
the location of pinwheels were calculated using code developed by Wolf (Löwel
et al., 1998).

Topological Charge

The topological charge q is a topologically conserved quantity for continuously
changing maps. In the case of OPMs, it is defined as the change of prefered
orientation integrated along a closed circle C:

q =
1

2π

∮

C

▽θ(x)ds. (3.7)

Since θ(x) is a continuous function of x up to the isolated singular points of pin-
wheels, the topological charge of pinwheel-free regions is 0. Around a pinwheel
center, the change of prefered orientations sums up to π, which yields a topolog-
ical charge of ±1/2. Thus there are only two types of pinwheels in the model,
around which either the orientation preference increases clockwise (q = −1/2) or
counterclockwise (q = 1/2). Higher topological charges of q = ±1,±3/2, ... are
unstable under small perturbations (called structurally unstable in mathematical
terms) and have never been observed in experiments.

If the dynamics of OPMs is continuous over time, the total topological charge
QA of a given bounded area A is conserved. Since the map contains pinwheels
with q = ±1/2, only two possible mechanisms can alter the number of pinwheels
in a given area A: either generation of two pinwheels showing opposite charges,
or annihilation of two pinwheels with opposite charges.

Nearest Neighbor Distance

In some of the maps, we calculated the distance h of each pinwheel to its nearest
neighbours. We first computed the distance between each other from the location
of pinwheels. Next, for each pinwheel, we found the closest distance to another
pinwheel, either with the same sign of charge (h+) or with opposite sign of charge
(h−). The distances h taking the smaller of the two distances, measures the closest
distances among all neighbors, regardless of topological charges. Distributions of
h+, h−, and h indicate the regularity and periodicity of the maps.
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Column Spacing and Pinwheel Density Estimation

The typical column spacing Λ can be obtained by calculating the average wave
number based on the Fourier transform:

Λ = 2π/k, (3.8)

k =

∫
dkkP (k)/

∫
dkP (k), (3.9)

where P (k) =| z̃(k) |2 is the power spectral density of z(x).
Pinwheel density was measured as the numbers of pinwheels per hypercolumn.

Hence, pinwheel density is weighted by the size of maps in units of Λ2. The scaled
pinwheel density is then given by

ρ̂ = npwΛ2/L2. (3.10)
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Chapter 4

Dynamics of OPMs in 2D Models

In this chapter we study the development of OPMs based on the numerical meth-
ods described in the previous chapter. The linear stability analysis in Chapter 2
predicts that maps develop from an initial unselective state only if the size of
co-activated cortical domains is below a critical value σ∗ = σs

√
2/e.

In the following we first study this critical dependance of pattern formation
in simulations varying the value of σ. The bifurcation diagram is obtained by
plotting the average orientation tuning strength versus σ. Further simulations are
performed to characterize different parameter regimes identified in the bifurcation
diagram. The temporal dynamics of OPMs is found dependent on the size of
stimulus set. Moreover, different behaviors are observed in different dynamical
regimes and in systems of different sizes. At the end we quantify the kinetics of
pinwheel annihilation in different systems.

4.1 Spontaneous Map Formation

In order to reveal the critical point for map formation, we fixed the stimulus
variance σs = 0.133 and performed simulations with different values of σ. From
the theoretical prediction, the pattern should spontaneously emerge at σ∗ =
σs

√
2/e = 0.114.

Figure 4.1 shows two simulation examples. Given a larger value of σ = 0.2
(Figure 4.1A, upper panel) the OPM has no repetitive structure and the pattern
changes abruptly and globally after presentation of each stimulus. In contrast,
the map generated with a value of σ = 0.1 (Figure 4.1, lower panel) seems more
stable and the pattern resembles features of an experimentally observed map.

For a quantitative comparison, we plotted the temporal evolution of the aver-
age tuning strength of these two maps in Figure 4.1B, which shows a significant
degree of orientation selectivity with σ = 0.1 but only small fluctuation with
σ = 0.2.

We also tracked the changes of orientation selectivity at an arbitrarily chosen
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position on the map (Figure 4.1A, open circles), plotted in Figure 4.1C. In the
simulation with σ = 0.2, the cortical unit had no consistently preferred orienta-
tion but rather jumped between all different orientations. In contrast to that,
a specific orientation (around 130 degree in this example) was selected in the
simulation with σ = 0.1.
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Figure 4.1: Emergence of orientation preference. (A) Examples of angle
maps generated by simulations with σs = 0.133, σ = 0.2 (upper panel), and
σ = 0.1 (lower panel), at integration time t = 200. (B) Orientation tuning
strengths averaged over the entire grid are plotted against time. The dotted
curve is from the simulation with σ = 0.2 while the solid curve is from the
simulation with σ = 0.1. The vertical dashed line indicates the time when maps
in (A) are recorded. (C) At an arbitrarily selected position indicated with open
circles on the angle maps, the changes of preferred orientations are represented
by the dash line for σ = 0.2 and the solid line for σ = 0.1. Time is measured in
units of simulation steps multiplied by the learning rate t = ε · i.

In order to construct a bifurcation diagram, we computed the changes of the
average tuning strength in simulations with different values of σ. Figure 4.2A
shows that near the threshold σ∗ = 0.114, the strength of orientation selectivity
abruptly decreases with increasing values of σ. We plot the plateau values of the
average tuning strength versus σ in Figure 4.2B. The tuning strength reduces to
about zero at σ = 0.115, which precisely agrees with the theoretical prediction of
σ∗ = 0.114.
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To reveal the qualitatively different behaviors above and below the critical
point, we performed further simulations with smaller learning steps ε to reduce
the noise level in the simulations. The amplitude of orientation tuning for σ <
0.115 remained unaffected; with larger values of σ it decreased proportional to ε,
which is characteristic of fluctuations around a stable homogenous state.
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Figure 4.2: The tuning strength of OPMs varies with size of CCDs (A)
Orientation tuning strengths that averaged over the entire grid are plotted against
the simulation time. From top to bottom: σ = 0.075, 0.085, 0.095, 0.105, 0.115.;
σs = 0.133. (B) The plateau values of the average tuning strength are plotted
against the values of σ between 0.05 and 0.12. The crosses, open diamonds and
triangles indicate simulations with different learning rates, ε = 0.01, 0.001, 0.0001,
respectively. Time is measured in units of simulation steps multiplied by the
learning rate t = ε · i.

Most of our subsequent simulations were performed with σ = 0.9σ∗ or σ =
0.667σ∗. These two choices represented systems close to, or far from the symmetry
breaking threshold, respectively.

4.2 Maps ‘Frozen’ by a Small Set of Stimuli

In cortical development the initially established circuitry is believed to require a
progressive refinement that goes on for a couple of months to reach full maturity.
Visual input plays an instructive role during this period (for reviews see Sur &
Leamey (2001) and White & Fitzpatrick (2007)). Motivated by this observation,
we studied map dynamics on a time scale much longer than the intrinsic time
scale for map formation.

For reasons of computational efficiency, a small set of fixed stimuli has often
been used to train the network by competitive Hebbian rules (Durbin & Mitchi-
son, 1990; Goodhill & Cimponeriu, 2000). In these studies, a fixed set of stimuli
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were drawn only once and used repeatedly for the entire simulation. Such pro-
cedure might not adequately represent the biological activity-dependent process.
Indeed in our simulation, the temporal evolution of map dynamics was found to
be heavily influenced by the size of stimulus set.

Figure 4.3A shows a simulation initialized with a pinwheel-rich pattern. When
trained with a small stimulus set, the map dynamics stopped evolution after
t ≈ 100 τ such that several pinwheels were preserved in the system. However,this
pattern was unstable when using a larger stimulus set.

We started from the same initial condition as in Figure 4.3A but instead
presented the network with randomly generated stimuli (Figure 4.3B). Pinwheels
vanished quite fast with only orientation stripes left.

Figure 4.3C compares the kinetics of both simulations. The scaled pinwheel
density dropped to zero with random stimuli but remained above 3 with a fixed
set of stimuli. We used the analog of a physical term ‘quenched disorder’ here to
describe such a phenomenon that maps were ‘frozen’ by presenting the same set
of stimuli repeatedly.

We further analyzed the effect of quenched disorder by varying the size of
the stimulus set. As shown in Figure 4.2, initialized with the same pinwheel-
rich pattern, the orientation maps underwent a learning process in which the
characteristic structure of pinwheels was gradually lost. The process of pinwheel
annihilation could be stopped if no new stimulus was recruited.

We conclude that presenting a small set of stimuli is insufficient to represent the
entire feature space of random inputs and qualitatively changes the nature of the
emerging map. It causes freezing of the map, stopping its temporal dynamics. In
such simulations, the density of pinwheels in the frozen pattern depends strongly
on the size of the stimulus set. Only few pinwheels are preserved when presenting
a stimulus set resembling the complexity and richness of visual environment.

4.3 Pinwheel Dynamics Depends on System Size

The size of the system Γ, called aspect ratio, is measured by the number of
repetitive units in the initial established pattern:

Γ =
L

Λmax
=

L√
2πσ

In this section we simulated systems of different size by changing the value of
σ which determines the most unstable wavelength Λ =

√
2πσ (see Section 2.2

for detailed calculation). The parameters of σ and σs were chosen to conserve
their ratio fixing the parameter regime in the bifurcation diagram (Figure 4.2B).
Spatial patterns at the initial stage of map formation were compared with those
at later stages in systems of various sizes.
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Figure 4.3: Maps ‘frozen’ by a small set of stimuli (A) The development
of an orientation map (σ = 0.667σ∗) initialized with a pinwheel-rich pattern. A
fixed set of 1000 stimuli was presented repeatedly to train the system. (B) The
initial condition was the same as in (A). Trained with non-repeating random
stimuli, the pattern became unstable and stripes took over pinwheels. (C)The
changes of scaled pinwheel density; the dashed line shows the process with a fixed
stimulus set, while the solid line shows the process with random stimuli.
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Figure 4.4: Dynamics vary with the size of the presented stimulus set.
Kinetics of pinwheel annihilation (σ = 0.9σ∗) for different sizes of stimulus set,
starting from the same initial condition. From top to bottom, the system was
trained with 103, 104, and 105 stimuli; the scaled pinwheel density dropped below
1.0 when more random stimuli were presented. Insets show the initial OPM (left
column) and the map configurations at the end of each simulation (right column).
The map appears more stripelike for a larger number of stimuli.
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4.3.1 Dynamics in Small Systems

We first investigated the dynamics of systems with a size of one single column
spacing (L = 1Λmax), i.e., only one hypercolumn represented in the model cortex.

The OPMs in these simulations resembled simple and regular checkerboard-
type patterns, as shown in Figure 4.5A. Maps generated in different simulations
showed quantitatively similar patterns, which could be superimposed by transla-
tion, rotation, and orientation shift of different maps.

In simulations such patterns converged quite fast to a steady state, with hardly
any change on the spatial layout after t > 10τ . Figure 4.5B plots the growth of
the average amplitude of the feature vectors. With σ = 0.667σ∗, the system was
far away from the bifurcation point, resulting in a pattern with larger amplitude
(Figure 4.5B, upper trace). The system close to the critical point (σ = 0.9σ∗)
showed a smaller magnitude of orientation tuning averaged over the map (Fig-
ure 4.5B, lower trace) as expected from the bifurcation diagram (Figure 4.2).

In both parameter regimes, the pattern of four-pinwheel configuration was
very stable in every simulation, with the scaled pinwheel density ρΛ2 at a constant
value of 4 (Figure 4.5C).

ρΛ2

σ = 0.667 σ

t /τ

t /τ

A

σ = 0.9 σ

*

*

B

C

am
pl

itu
de

Figure 4.5: Dynamics in small systems (L = 1Λmax, 2+2D feature space)
(A) Typical examples of OPMs obtained with different values of σ. (B) The
amplitude of each feature component averaged over the whole grid are plotted
against the intrinsic time. The upper trace is from a simulation with σ = 0.667σ∗,
whereas the lower trace is from one with σ = 0.9σ∗. (C) The scaled pinwheel
densities are plotted against the intrinsic time, with a constant value of 4 observed
in both simulations.
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4.3.2 Dynamics in Large Systems

Instead of a single orientation hypercolumn, the area V1 contains much more
repetitive units. In other words, the dynamics of OPMs in the visual cortex re-
sembles the behavior of a large system. Intriguingly, more complex patterns with
a progressively longer period of dynamical evolution were observed in simulations
of systems from L = 1Λmax to L = 5Λmax.

We have shown above that for L = 1Λmax, the checkerboard pattern consisting
of four pinwheels was fairly stable. However, we observed different behaviors of
long-term rearrangement in larger systems (Figure 4.6). For all system sizes we
investigated (σ = 0.9σ∗, 0.667σ∗, and 0.3σ∗), the initial pinwheel configurations
were typically unstable, with orientation stripes taking over almost all pinwheel
components. The number of pinwheels generally decreased in long term simula-
tion.

Figure 4.6 shows typical maps at early and late stages generated in different
regimes of the bifurcation diagram for different system sizes. Close to the thresh-
old (σ = 0.9σ∗), the initial growth rate of map formation is small, resulting in a
large intrinsic time scale τ . In this regime the map dynamics converged fast to
a checkerboard pattern in the small system of L = 1Λmax and a stripe pattern
in the larger systems. The ‘final’ patterns of stripes seemed rather stable after
the first 50 τ . The time scale for map convergence was substantially longer for
systems far from threshold. In these simulations we had to follow hundreds of
intrinsic time scales in order to track the pattern rearrangement after the initial
map establishment.

Another general behavior of the map dynamics is a reduction of the number of
repetitive units. In systems far from threshold (σ ≪ σ∗), the spectrum of positive
eigenvalues is broader then near threshold (see Figure 2.2). This apparently
enables a process called domain coarsening (Figure 4.6C). The significant domain
coarsening in systems of sizes L = 2 ∼ 3Λmax might be influenced by the periodic
boundary condition. However, the phenomenon of domain coarsening was also
found in simulations with fixed boundary condition (see Figure 1.4), which seemed
unlikely to be an artifact of the boundary effect.

To understand why the system size can induce qualitative different behaviors, it
is instructive to consider a mechanical analog. Imagine there are four balls of
different colors in a box (Figure 4.7). If the average spacing between two balls is
smaller than the radius of an individual ball, it is impossible to move a ball from
one side to another. Thus, the relative positions of each ball will not change. Now
let’s consider four repetitions of such units in the box, although the spacing and
the radius of each ball remain the same, we can easily move one ball to another
side and reorganize the system. It is not surprising that dynamical change and
pattern reorganization are feasible in larger systems.
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Figure 4.6: System size dependence of OPM dynamics (2D+2D) (A)
σ = 0.9σ∗; (B) σ = 0.667σ∗; (C) σ = 0.3σ∗. The upper row shows representative
patterns at t = 10τ for L = 1Λmax, 2Λmax, 3Λmax, and 5Λmax, respectively. The
bottom row shows results from the same simulation but at (A) t = 50τ , (B)
t = 200τ and (C) t = 1000τ .
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A
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Figure 4.7: Mechanical analog: the system size effect (A) No reorganization
can happen in the small box which is tightly packed by four balls of different
colors. (B) In a big box consisting of four repetitive units as in (A), one can
easily move the balls to get a new pattern of different colors.

4.4 The Kinetics of Pinwheel Annihilation

We quantified the kinetics of pinwheel annihilation in the Kohonen model (Fig-
ure 4.8) by the number of pinwheels npw, the average column spacing Λ, and the
scaled pinwheel density ρΛ2 (for a description of methods see Chapter 3).

In simulations, we observed generations of pinwheels from the initially ho-
mogenous state, which was followed by a second phase of pinwheel annihilation
with a dramatic reduction of pinwheel numbers (Figure 4.8A,B). The first phase
of pattern growth was rather fast in systems far from threshold (σ = 0.667σ∗)
such that only the second phase is visible in Figure 4.8B. The size of a hypercol-
umn is measured by the average column spacing Λ of the pattern (Figure 4.8C,D),
while the scaled pinwheel density ρΛ2 is a dimensionless quantity that measures
the average number of pinwheels in an area of size Λ2 (Figure 4.8E,F). Except
for L = 1Λmax, in which the scaled density was always 4, the other systems with
more than one column spacing gradually lost pinwheels and the final pinwheel
densities were generally below 2.

In addition, there seems to be a limit curve in the plot of the scaled densities.
The kinetics for L = 4Λmax and for L = 5Λmax became indistinguishable in
Figure 4.8. This indicates that systems of size 4Λmax or 5Λmax are presumably
representative of the larger system behavior.
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Figure 4.8: The Kinetics of pinwheel annihilation for σ = 0.9σ∗ (left
column) and σ = 0.667σ∗ (right column) (A,B) Pinwheel numbers counted
over the entire model cortex. (C,D) The average column spacing and (E,F) the
scaled pinwheel density. Each trace shows the average value for three different
initializations of the random stimulus generator. Numbers on the trace indicate
the aspect ratio (L/Λmax) of the systems. Time is measured in units of τ , the
intrinsic timescale of the initial symmetry breaking.
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4.5 Summary

In this chapter we first demonstrated the spontaneous map formation in simula-
tions at a critical point of σ, whose value is in consistence with the theoretical
prediction. A bifurcation diagram was constructed such that the subsequent
simulations could be performed close to or far away from the critical bifurcation
point. We simulated the map dynamics over durations much longer than the
intrinsic time scale of initial pattern formation. Presenting only a small set of
fixed stimuli was found to stop the temporal evolution of OPMs. Then we char-
acterized the model behavior in systems of different sizes. Small systems of one
hypercolumn (L = 1Λmax) exhibited a stable checkerboard pattern containing
four pinwheels. However, the map dynamics became unstable when we increased
the system size from L = 1Λmax to L = 5Λmax. In the large systems, pinwheels
collided and annihilated with each other. Throughout the parameter regimes we
investigated (σ = 0.9σ∗, 0.667σ∗, and 0.3σ∗), the initial pinwheel-rich patterns
were replaced by orientation stripes in long term simulations.

Simulation time was measured in units of the intrinsic time scale τ of pat-
tern formation. The dynamics of systems closed to the critical bifurcation point
were comparatively faster than those far below the critical threshold. Generally,
substantial pattern reorganization took place during a period on the order of
10 τ .

The kinetics of pinwheel was quantified by the pinwheel density, which mea-
sures the average numbers of pinwheel per hypercolumn. The scaled pinwheel
density remained 4 in small systems (L = 1Λmax) but decayed to a value below
2 in all larger systems. As a comparison, a statistical quantification of OPMs in
different species such as tree shrew, ferret and galago has recently suggested that
the pinwheel density is around 3.14 per hypercolumn (Kaschube, 2005; Kaschube
et al., 2006). Our results demonstrated that such a pinwheel-rich pattern is largely
unstable in mappings of orientation preference to model cortex by competitive
Hebbian learning.



Chapter 5

Map Dynamics with Higher

Dimensional Feature Spaces

So far, the models only mapped retinotopy and orientation (2D+2D) to the visual
cortex. However, at a given visual field location, all possible features of orien-
tations, spatial frequencies, and binocular visual cues should be represented in
the corresponding cortical area. Effectively, the constraint of coverage uniformity
might partition the entire cortex to small areas in which pinwheel dynamics might
be stabilized as in the Γ = 1 systems discussed above. For example, pinwheels
have often been observed in the center regions of the ocular dominance columns
(Crair et al., 1997b; Hübener et al., 1997).

In this chapter, we thus include more feature dimensions in the model to test
the hypothesis that interactions of different feature maps will stabilize pinwheel
patterns in OPMs. The resulting feature space consists of two retinal dimensions
plus n feature dimensions (2D+nD). For simplicity, we assumed an isotropic
distribution of visual stimuli in the n-dimensional feature space and constructed
orientation preference maps from combinations of every two feature dimensions
(for methods see Chapter 3).

5.1 Dimension Suppression Close to Symmetry-

breaking Threshold

To our surprise, dimension suppression was observed in simulations close to the
critical point of pattern formation (σ = 0.9σ∗) such that only two feature dimen-
sions emerged at the symmetry breaking threshold; the other feature dimensions
were suppressed until a secondary bifurcation point.

First, we added one more feature dimension to the system, to consider the
mapping from 2D+3D feature space (e.g., two dimensions for retinotopy, two
dimensions for orientation, and one additional dimension for ocular dominance).

Close to the symmetry breaking threshold (σ = 0.9σ∗), only two feature
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Figure 5.1: Dimension suppression in small systems (2D+3D feature
space) σ = 0.9σ∗, L = 1Λmax. (A) OPMs generated with combination of ev-
ery two feature components. (B) The amplitude for three feature dimensions
averaged over the entire model cortex. (C) The average amplitude for the three
principle components obtained by PCA.

dimensions were virtually active in simulations. We observed spontaneous sep-
aration of the three feature dimensions to the first two with larger amplitudes
(Figure 5.1B, upper two traces) and another one with a smaller amplitude (Fig-
ure 5.1B, lower two traces).

The patterns of OPMs shown in Figure 5.1A were generated by mapping
of the half angle of a 2D feature vector to its corresponding cortical location
θ(x) = 0.5arg(zi+izj). Only the combination of the two feature components zi and
zj with largest amplitude showed a stable pattern of four pinwheels (Figure 5.1A,
left panel). In other combinations, the resulting orientation maps exhibit abrupt
transitions from a square patch of one orientation to another patch of orthogonal
orientation (Figure 5.1A, middle and right panels). Our interpretation is that
the map degenerates to one axis in these regions with positive or negative values
corresponding to two orthogonal orientations.

To rule out the possibility that the breaking of rotational symmetry is due
to the computer round-off error accumulating on the main axes, we performed
simulations with the same parameters, but rotated the coordinate system every
τ/2. Principle component analysis (PCA) of the data showed a clear separation
of represented and suppressed feature space dimensions (Figure 5.1C), which
suggested the tendency for the distribution of the feature vectors to collapse onto
a 2D submanifold of the high-dimensional feature space.

Next, we systematically changed the bifurcation parameter σ to explore the
dynamics of a high dimensional feature maps. In principle, we can use the same
method as that presented in Figure 4.2 to obtain the bifurcation diagram. For
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Figure 5.2: Bifurcation diagrams (Gaussian distributions) The stimulus
variance σs = 0.25 whereas the size of co-activated cortical domains varied sub-
sequently in one simulation. The amplitude of the principal component measures
the greatest variance by any projection of the data set; when the values are sig-
nificantly above 0, it indicate pattern emergence in the feature space. (A) Maps
from 2D+1D feature space; (B) Maps from 2D+2D feature space (C) Maps from
2D+3D feature space; (D) Maps from 2D+4D feature space. The first two di-
mensions for the retinotopy; the amplitudes of additional feature dimensions are
plotted here.
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computational efficiency, we performed one simulation with a fixed value of stim-
ulus variance σs = 0.25 while reducing the size of CCDs by 0.001 after each
intrinsic time scale of 1τ . The bifurcation diagrams shown in Figure 5.2 plot at
each time point the largest variance of the feature vector distribution as revealed
by PCA. In each panel, different feature spaces of different dimensionalities are
mapped to the model cortex, increasingly from 2D+1D to 2D+4D. As predicted
by the linear stability analysis, the pattern spontaneously emerged at the first
bifurcation point, around the value of σ∗ = 0.215, irrespective of feature spaces
dimensionality. For feature space dimension larger than two, a secondary bifur-
cation was observed at σ∗∗ = 0.180. A value of σ∗∗ < σ < σ∗ resulted in only
two active feature dimensions. All other feature dimensions were suppressed and
only started to grow if we further decreased the value of σ below the secondary
bifurcation point σ∗∗.

Map Dynamics in the Dimension Suppression Regime

Figure 5.3 shows representative patterns of orientation maps with σ = 0.9σ∗

generated with 2D+2D, 2D+3D and 2D+4D feature spaces respectively. Maps
at early stages of initial pattern establishment are compared with those at later
stages. In these simulations, pinwheel structures were again unstable for all
combinations of different feature components. The final pattern was typically a
mixture of stripes and square patches. There are only two colors dominating the
regions of a square patch alternatively, which implies that one feature dimension
is suppressed locally. Orientation stripes represent regions in which both feature
dimensions are active.

5.2 Pinwheel Annihilation for Low Dimensional

Feature Spaces

Due to dimension suppression close to the symmetry breaking threshold (for σ∗∗ <
σ < σ∗), the model maps failed to encode more than two feature dimensions. The
behavior is thus expected to be similar to the 2D case as previously described.
Hence we are more interested in the parameter regimes far from the symmetry
breaking threshold where all the feature dimensions are active. In the following
we show simulations of the systems one-third below the threshold (σ = 0.667σ∗ <
σ∗∗).

In the model cortex mapping from 2D+3D feature space, different combi-
nations of feature components generate similar patterns of OPMs at the initial
phase of pattern growth (Figure 5.4A, upper row). Yet, all the maps lost pinwheel
singularities in long term simulation (Figure 5.4A, bottom row). The number of
pinwheels reduces to less than one third at t < 200τ (Figure 5.4B), a time scale
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Figure 5.3: Example maps of different feature dimensions (σ = 0.9σ∗)
The orientation preference maps generated at an early stage (t = 10τ) contained
a large number of pinwheels. The rearrangement of each map removed most of
the pinwheels at t = 50τ . Qualitatively similar patterns were observed for (A)
the 2D+2D model, (B) the 2D+3D model and (C) the 2D+4D model.
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Figure 5.4: Pinwheel dynamics(2D+3D feature space, σ = 0.667σ∗) (A)
Maps generated in systems of L = 1Λmax, 2Λmax, 3Λmax and L = 5Λmax, at t = 10τ
(upper row) and t = 1000τ (bottom row). (B) The number of pinwheels averaged
over three maps. (C) The scaled pinwheel density averaged over three maps.
Numbers indicate aspect ratio of the system.
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of pinwheel annihilation comparable to the simulations of uncoupled OPMs (Fig-
ure 4.8). However, the scaled pinwheel density plotted in Figure 5.4C decays
less strongly, which might be due to more prominent domain coarsening with a
broader spectrum of positive eigenvalues. The increasing column spacing coun-
teracts the reduction of pinwheel numbers in the measure of pinwheel density per
hypercolumn. Above all, the scaled density falls below two, which suggests the
development of OPMs coupled to one additional feature (e.g., ocular dominance)
cannot maintain a large number of pinwheels in the Kohonen model.

5.3 Pinwheel Crystallization for High Dimensional

Feature Spaces

Intriguingly, while mapping from 2D+4D feature space, four feature dimensions
spontaneously fall into two pairs. The final pattern can be described as two plane
waves in the four-dimensional feature space. Figure 5.5A shows the six patterns
generated in the system of size L = 4Λmax. Combinations within a pair generate
maps of stripes, whereas inter-pair combinations produce patterns of pinwheel
crystals. In the former case, the dynamics of OPMs undergoes a continual process
of pinwheel annihilation until almost all the singularities vanish; however, in the
latter case, the initial drop-down of pinwheel numbers stopped and was followed
by a regeneration and stabilization of pinwheel crystals (Figure 5.5B). The scaled
density reaches either zero or a value close to 4 (Figure 5.5C).

Similar behaviors were found in different sizes of systems (Figure 5.3). In
contrast to the large variability of map layouts in experimentally observed OPMs,
the pinwheel crystals show a regular structure with a constant wavelength in
different sub-regions of the map. In systems larger than 3Λ× 3Λ, we found that
patterns of stripes and pinwheel crystals intermingle in one map.

We tested whether the separation of feature dimensions and the formation of
pinwheel crystals resulted from mappings of an even dimensional feature space
(Figure 5.5) compared with an odd dimensionality in 2D+3D models (Figure 5.4).
They turned out to be a general property of high dimensional feature spaces of
n > 3. Figure 5.3 plots maps generated in mappings of 2D+5D feature spaces.
The initial pinwheel-rich patterns are replaced by either stripes or crystals in
different combinations of feature dimensions.

5.4 Summary

In the mappings of a high-dimensional feature space model, we found that close
to the critical point of pattern formation, only two feature dimensions grew from
the initially unselective state whereas the additional feature dimensions were sup-
pressed. The model behaved as if there was only two relevant feature dimensions,
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Figure 5.5: Pinwheel dynamics (2D+4D, σ = 0.667σ∗, L = 4Λmax) (A)The
six patterns of OPMs generated by each pair of feature dimensions. The top row
depicts maps generated at t = 10τ ; The bottom row shows the pattern of each
map at t = 1000τ . (B) The number of pinwheels plotted in time. (C) The scaled
pinwheel density. Dashed line: individual maps; solid line: the average of three
maps. Time is weighted by the intrinsic timescale τ .
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Figure 5.6: Pinwheel crystallization (2D+4D feature space, σ = 0.667σ∗)
The upper row shows the maps generated at t = 10τ for L = 1Λmax, 2Λmax, 3Λmax,
and 4Λmax, respectively. The bottom row shows the patterns from the correspond-
ing simulations as the first row, but at t = 1000τ .
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Figure 5.7: Pinwheel Crystallization (2D+5D feature space, σ = 0.667σ∗)
The upper row shows the maps generated at t = 10τ for 3Λmax. The bottom row
shows the corresponding patterns from the same simulations, but at t = 2000τ .
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and thus showed an unstable pinwheel dynamics as the 2D systems irrespective
of the feature space dimensionality. When we further reduce the size σ of co-
activated cortical domains, a sequence of bifurcations occur such that more and
more feature dimensions become active.

In this regime far from threshold, we observed pinwheel annihilation in lower
dimensional feature spaces and pinwheel crystallization in higher dimensional
feature spaces. The results revealed the development of OPMs as a dynamical
process where different feature dimensions select either pinwheel-free stripes or
pinwheel crystals in the final patterns. Both of them do not resemble the observed
patterns of OPMs in the visual cortex.



Chapter 6

Map Dynamics with Non-Gaussian

Stimulus Distributions

Since the model cortex updates the feature values of its receptive field based on
the Hebbian plasticity of input-output correlations, another factor that needs to
be considered is the type of stimulus distribution. Besides Gaussian statistics, we
thus used two other types of stimulus distribution which are naturally associated
with different feature spaces.

For the model with a spherical feature space, we picked stimuli from uni-
form distribution on a n-dimensional sphere of radius

√
2σs. To distinguish from

the Gaussian feature space, we used Sn to specify the feature space on an n-
dimensional sphere, so that S2 represented a 2D sphere in a 3D space whereas
S3 indicated a 3D sphere in a 4D space.

Another model with toroidal feature space comprised products of circular
variables (such as orientation and direction). The values of feature vectors were
grouped into n/2 pairs; each pair was used to define an angular variable indicating
the preferred orientation, which was distributed uniformly on the circle of radius√

2σs. We denote this feature space as S1 × S1 × ... × S1 where one circle S1

represents one circular variable.

6.1 Models with a Spherical Feature Space

In models with a spherical feature space, we assumed that the feature vector of
each stimulus had identical length; only its orientation in the feature space should
determine the activated winner position in the cortex.

Figure 6.1 plots the amplitudes of individual feature components while de-
creasing the size σ of the co-activated cortical domains subsequently in one simu-
lation . The bifurcation diagrams are quantitatively similar to those from 2D+3D
and 2D+4D models with Gaussian distributed stimuli (Figure 5.2C,D). When
decreasing the size σ of coactivated domains, patterns emerged at the first bifur-
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cation point σ∗ = 0.215. There were however only two active feature dimensions
until the secondary bifurcation point σ∗∗ = 0.180 was reached.

Linear stability analysis around the homogenous state has deduced the first
symmetry breaking threshold σ∗ =

√
2/e σs (see Chapter 2), irrespective of

the feature space dimensionality and the type of stimulus distribution. When
comparing simulations of the spherical feature space model with those of the
Gaussian feature space model, it seemed that the second bifurcation point σ∗∗

was also invariant to the details of the stimulus distribution in the feature space.
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Figure 6.1: Bifurcation diagrams for the spherical model (A) Stimuli were
drawn from the uniform distribution on S2. The amplitudes of three individual
feature components plotted against the size σ of CCDs. (B) Stimuli were drawn
from uniform distribution on S3. The amplitudes of four individual feature com-
ponents plotted against the size σ of CCDs.

The dynamics of orientation maps in the model with spherical feature space
was studied in different regimes of the bifurcation diagram. The unstable pin-
wheel dynamics were qualitatively similar compared to those in the Gaussian
feature spaces (see Chapter 4)

In Figure 6.2, we show a simulation of the S2 model with σ = 0.667σ∗ far
from the threshold so that all feature dimensions were active. Few pinwheels were
preserved in the long term. The number of pinwheels dropped to one third of the
initial value at t < 100τ (Figure 6.2B). The process of pinwheel annihilation was
faster than with Gaussian distributed stimuli. The domain coarsening was more
prominent in the sense that the average column spacing increased significantly in
time. Hence, we observed less decrease of the scaled pinwheel density ρΛ2 in the
S2 feature space model.
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Figure 6.2: Pinwheel dynamics in model of S2 feature space, σ = 0.667σ∗

(A) Representative orientation preference maps at early and late stages of one
simulation. The top row depicts three maps generated at t = 10τ ; The bottom
row shows the pattern of each map at t = 200τ . (B) The number of pinwheels
over simulation time. (C) The scaled pinwheel density. Time is measured in the
unit of the intrinsic timescale τ . Dashed line: individual maps; solid line: the
average of three maps.
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6.2 Models with a Toroidal Feature Space

Figure 6.3 plots the bifurcation diagrams for the toroidal model. The behavior
was similar to that of former models with other stimulus distributions, with the
first bifurcation point around σ∗ = 0.215. The value of the secondary bifurcation
point varied with the feature space dimensionalities (see Figure 6.3).
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Figure 6.3: Bifurcation diagrams for the toroidal models The feature space
comprises products of circular variables. Stimuli were drawn from the uniform
distribution on each circle. The amplitudes of individual feature components
are plotted against the size σ of CCDs. The corresponding number of feature
components is 2, 4, 6, 8 in (A),(B),(C),(D), respectively.

The orientation preference maps generated in the S1×S1 with arbitrary com-
binations of two feature dimensions are depicted in Figure 6.4. Close to the
symmetry breaking threshold (σ = 0.9σ∗), only two feature dimensions were ac-
tive. The obtained patterns of OPMs were similar to those from mappings of
Gaussian feature spaces. Pinwheels annihilated with each other even faster com-
pared to Gaussian stimulus distributions. In later stages, the maps exhibited
regions with large patches of one dominant orientation. The regions representing
all orientations had a stripe-like organization of orientation domains. Although
the feature values of the stimuli were set in two pairs, the final patterns of orienta-
tion stripes could also emerge from inter-pair combinations (Figure 6.4A, bottom
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panel), which suggested that the model might not treat the circular variable of
two components as one parameter of the vector angles.
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Figure 6.4: Maps generated form S1×S1 feature space (A) The orientation
maps generated with σ = 0.9σ∗. (B) The orientation maps generated with σ =
0.667σ∗. The top panel is from simulation at an early stage (t = 10τ). The
rearrangement of each map at t = 500τ is shown in the bottom panel.

Figure 6.4B plots the patterns of OPMs in one simulation with σ = 0.667σ∗.
The maps evolved to a pattern of either stripes or pinwheel crystals. The behavior
was qualitatively similar to 2D+nD Gaussian feature space models with n ≥ 4.

As a conclusion, neither in spherical feature space models or in toroidal feature
space models any qualitative difference have been found in our simulations.
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Chapter 7

Discussion and Conclusion of Part I

Our study has revealed a multitude of dynamical phenomena and parameter
dependencies in models of visual cortex development. These phenomena were
previously overlooked although the models of feature mapping have been studied
for more than 20 years (Kohonen, 1982, 1993; Obermayer et al., 1990; Ritter,
1990). In our work these phenomena became apparent by using a newly intro-
duced quantitatively controlled method for simulating stimulus driven models of
cortical development. Here we developed and presented this method that enables
a partially analytical treatment and relatively convenient long-term simulations
of the competitive Hebbian learning models. Nevertheless this method can and
should be used generally.

Methodology of modeling the developmental dy-

namics

In the study of a canonical developmental model for visual map formation pre-
sented above, we established a quantitatively controlled method for analysis and
simulation of spatiotemporal dynamics, using key concepts of nonlinear dynam-
ical systems theory. Our recipe for the analysis and simulation of a cortical
developmental model can be summarized in the following steps:

1. Analyze the critical behavior at phase transitions to reveal the bifurcation
threshold and the basic temporal and spatial scales of spontaneously sym-
metry breaking.

2. Systematically explore the dependence of pattern layouts on the system size
so that system sizes can be chosen that are representative of large aspect
ratio and weak confinement.

3. Perform numerical simulations in different dynamical regimes measuring
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simulation time in units of the intrinsic timescale such that long term sta-
bility can be accessed.

Each of the steps is reviewed below from our study of map formation and pin-
wheel dynamics in the Kohonen model. The mesoscopic level of description in
the Kohonen model simplifies our problem, however, the type of phenomena we
found are expected to be present fairly generally. Our method can be applied
irrespective of model complexity and analytical tractability, especially with in-
creased computing power and when dealing with a large complex spatio-temporal
dynamics.

1. Critical behavior at the phase transition

In a dynamical system pattern formation was first analyzed close to the pattern
formation threshold. Linear stability analysis of the Kohonen model (Chapter 2)
revealed the pattern formation as a phase transition at a critical value of the co-
activated cortical size σ = σ∗. The growth rate of the emerging patten (Eq. 2.20)
defined an intrinsic time scale of the dynamics.

We worked out a methodology in order to quantitatively control simulations
of models of different size, feature spaces of different dimensions, and different
dynamical regimes. In order to approximate the deterministic dynamics from
stochastic updating in the model, we chose the learning rate factor ǫ and the
number of stimuli Nstim such that a constant low noise level was maintained. We
found that ǫ and Nstim per se did not tell whether a simulation is to be considered
to be long or short, noisy or deterministic. It turned out that these parameters
had to be chosen according to the size of the system, the dimensionality of the
feature spaces and the intrinsic timescale of the dynamics.

Often enough in a complicated dynamical system the critical threshold of
pattern formation and the linear growth rate may not be derived analytically. In
this case one can still apply this procedure by varying the control parameter in
simulations and obtaining the threshold of phase transition and the time scale of
intrinsic dynamics numerically as a basis for parameter choice and appropriate
simulation time.

2. Effects due to different system sizes

Our simulations revealed that qualitatively different functional maps emerge in
systems of different sizes. For small systems as L = 1Λmax, the layout of OPMs is
quite regular with one simple stable pinwheel configuration. In all the other cases
for L ≥ 2Λmax, initially irregular and pinwheel-rich spatial patterns only occur
transiently. Either pinwheel annihilation or pinwheel crystallization occurred at
the later stage. These observations show that the cortical network as a whole
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behaves in a way that is strongly influenced by factors beyond the properties of
individual neurons.

To estimate the realistic systems size in the process of the cortical map devel-
opment, we take an example of the striate cortex of Macaque Monkey. The size
of system is measured by the aspect ratio Γ such that

Γ2 = Π/Λ2, (7.1)

where Π measures the area of the monkey striate cortex, which is about 1000 mm2,
and Λ is the typical spacing of OPM recorded in area V1 of monkey, around
0.68 mm (Obermayer & Blasdel, 1997). The calculated value of Γ is about 50.

In general it is computationally very demanding to solve the dynamics of such
a large system with acceptable spatial resolution. Hence it was our strategy to
first characterize behaviors of different-size systems and then work with a large
enough system size so that it was sufficient to reveal the key features representing
systems of realistic size.

In simulations we found strong confinement of map dynamics in a small system
of Γ = 1. Models of one hypercolumn have been studied before for the cortical
network dynamics (see e.g. Hansel & Sompolinsky (1996)). However, from our
result such small systems appear not large enough to model the dynamics of map
layout. Qualitatively different behaviors of pattern rearrangement were observed
for Γ ≥ 2. Our simulations revealed no qualitatively different behaviors in systems
of Γ = 4 and Γ = 5, with similar kinetics of pinwheel annihilation in the low
dimensional feature space models (Figure 4.8 E, F). These results show that
a system size of Γ = 4 or Γ = 5 is sufficient to reveal the phenomena and
dynamical instability and rearrangement in the Kohonen model, which would be
computationally very demanding to be resolved in a system of realistically large
size.

3. Qualitatively different regimes of the map dynamics

Using this method, we performed a systematic study of the map dynamics in the
Kohonen model. We found the model behaviors depended on the feature space
dimensionality and the distance of the system from threshold.

In simulations with feature space dimension n ≤ 3, the number of pinwheels
was dramatically reduced by a dynamical process called pinwheel annihilation.
Domain coarsening of spatial patterns was found to be more pronounced in sys-
tems far from threshold. The scaled pinwheel density measuring the abundance
of pinwheels per hypercolumn decayed below 2 in all tested parameter regimes.

Dimension suppression was observed in systems close to threshold. In this
regime only two feature dimensions were represented in the model cortex. The
model always behaved as low dimensional mapping exhibiting stripe-like patterns
resulting from pinwheel annihilation.
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In feature space models of dimensionality n ≥ 4, pinwheel crystallization was
observed such that an initially pinwheel-rich aperiodic pattern was replaced by
either stripes or crystals in different combinations of feature dimensions.

Pinwheel crystals in the developmental model

In simulations of systems far from threshold mapping a high dimensional fea-
ture space, we generally observed formation of regular ‘checkerboard’ patterns of
pinwheel crystals. Pinwheel crystals have been previously reported in abstract
models of OPMs aiming to minimize the wiring length (Koulakov & Chklovskii,
2001) or to fulfill specific symmetry assumptions (Lee et al., 2003). Since such
repetitive patterns have never been observed before in biologically plausible de-
velopmental models based on synaptic plasticity, many researchers in the field
suspected that the regularity of pinwheel crystals is due to an oversimplifica-
tion of these abstract ‘physical’ models. Our finding of pinwheel crystals in the
Kohonen model solves this discrepancy and reveals that pinwheel crystallization
represents a general property of stimulus driven models of Hebbian plasticity.

The significance of pinwheel annihilation and pin-

wheel crystallization

Pinwheel annihilation (PWA) and pinwheel crystallization (PWC) appear to be
dynamical phenomena robustly predicted by competitive Hebbian models of map
development. So far neither of these has been observed in experiments. What
are the implications of our finding for experimental studies of visual cortical
dynamics? In principle there are three alternative interpretations of our results.

First, it is important to note that PWA and PWC are dynamical processes
that take long time in map development. If they occur in the brain, it will require
tracing maps in individual animals for weeks and months or potentially longer to
demonstrate them in experiments. So far no such studies have been published.
It is also interesting to note that most of the reported maps were recorded in
juvenile animals due to technical reasons. It is conceivable that maps only exhibit
signatures of PWC in the fully mature brain. From this perspective, our results
raise the urgency of chronic long-term imaging in developing and mature animals.

Second, there might be unknown biological mechanisms that stop the rear-
rangement of OPMs early in development potentially before the end of the critical
period. It is however more plausible to imagine molecular cues that set up an
initially crude pattern of cortical maps, whereas the further maturation and re-
finement of the maps involves an activity dependent process driven by sensory
experience. The function of this stimuli-driven process of pattern refinement
becomes ambiguous if an internal signal would be needed to stop this process.
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Finally, some essential ingredient might be missing in the considered model
of feature mapping. A phenomenological model based on an abstract order pa-
rameter field (Wolf, 2005) has recently been used to examine conditions for the
stabilization of aperiodic patterns. This model converges towards multi-stable
attractors when pinwheels are stabilized by long-range interactions. More bio-
logically plausible implementations of this type of model are required to further
explore this possibility.

Dimension suppression versus dimension reduction

One of the most surprising results in our study was the dimension suppression
observed in systems close to the critical point, where the model cortex only
encoded two features of the visual stimuli, no matter how many dimensions were
present in the feature space. A new bifurcation point σ∗∗ was found in our
simulations of high dimensional feature space models such that additional feature
dimensions were suppressed until the size of co-activated cortical domains was
below the secondary bifurcation σ < σ∗∗.

Thus how far the dynamics is away from the critical point determines how
many independent maps are encoded in the cortex. If the system lies in the
dimension suppression regime (σ∗∗ < σ < σ∗), only two feature dimensions are
active, which contradicts a core assumption of the dimension reduction frame-
work. The model cortex does not equally represent all conceivable combinations
of stimulus features, regardless of the fully symmetric stimulus distribution in the
feature spaces that has been used.

From this perspective it is intriguing that a recent experimental study has
questioned the conventional view that visual cortical activity pattern consists of
a superposition of different feature maps in one cortical area (Basole et al., 2003).
The authors argued that the observed intersection of different maps was biased
by the use of grating stimuli, in which the examined range of motion and spatial
frequency is limited to those varying along an axis orthogonal to the grating’s
orientation. Applying texture stimuli of different bar lengths, motion directions
and speeds, they found that stimuli of the same orientation can elicit responses of
different neural populations and the same neural populations can be activated by
multiple combination of orientation, length, motion direction and speed. Rather
than overlapping multiple maps of different features, an alternative framework of
stimulus energy model was proposed to describe the cortical activity as a single
map of spatiotemporal energy (Basole et al., 2003; Mante & Carandini, 2005).

Our results show that dynamical models of cortical development naturally
exhibit a regime where such a functional architecture with a reduced number of
stimulus feature dimensions is predicted to form.
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Conclusion

The Kohonen model has been used in many studies to explain the formation of
topographic maps such as the tonotopic map, the retinotopic map and the func-
tional maps like ODCs and OPMs (Erwin et al., 1992a,b; Graepel & Obermayer,
1999; Kohonen, 1982; Mitchison & Swindale, 1999; Swindale, 2000, 2004). It is
considered representative for a large class of competitive Hebbian models for the
development of orientation columns in the visual cortex.

In this thesis, we characterized the dynamics of OPMs using a newly devel-
oped quantitative controlled numerical methodology. We studied 2D+2D model
behaviors varying system sizes and quantified pinwheel dynamics and stability.
If only orientation preference and retinotopy were mapped on the cortex, the ini-
tially emerging OPMs are generally unstable due to a process known as pinwheel
annihilation.

Our results correct previous simulation studies that followed an ad hoc method-
ology. In one set of such simulations (e.g., Swindale (2004); Goodhill & Cim-
poneriu (2000)), the size σ of co-activated cortical domains was reduced as the
map developed. Since more co-activated domains were recruited, it would require
very long simulation time (Eq.(3.5)) to track the dynamics. As σ tends to zero,
this approach leads not to a final convergence of the model but an artificial ter-
mination of map dynamics. Other studies restricted the dynamics of the system
by using a small set of fixed stimuli repeated over and over to train the network
(Durbin & Mitchison, 1990; Goodhill & Cimponeriu, 2000). We demonstrated
here that the resulting ‘frozen’ patterns of OPMs become unstable when more
random stimuli are presented.

A previous study proposed that interactions with ODCs or other maps may
stabilize pinwheels (Wolf & Geisel, 1998). Our study comprehensively investi-
gated this hypothesis by including more feature dimensions in the model and
systematically examining their impact. Close to threshold, dimension suppres-
sion was observed in simulations so that the system behaved similarly to a system
with a 2D feature space exhibiting unstable pinwheel dynamics. Pinwheel crystal-
lization was observed in systems far from threshold. Similar results were observed
for Gaussian distributions, for spherical uniform distributions, and for products
of circular uniform distributions.

We conclude that nonlinear dynamical systems theory provides a quantita-
tive method to study the developmental behaviors of cortical models. Using this
newly developed method we systematically simulated the dynamical processes of
competitive Hebbian learning in map formation. The processes were character-
ized by the kinetics of pinwheel annihilation and the phenomena of dimension
suppression and pinwheel crystallization in different dynamical regimes. These
new phenomena appeared to be robust in the developmental models but have not
yet been discovered in experimental recordings. To test the model prediction of
pinwheel crystallization will require chronic long-term imaging in developing and
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adult animals. Alternatively, if pinwheels show no indication of crystallization in
animals, further theoretical studies are required to uncover the important missing
feature in competitive Hebbian models of cortical development.
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Chapter 8

Introduction

8.1 Action Potential Dynamics in Phase Plots

To study the function of central nervous system, it is vital to concentrate not
only on its functional architecture of cortical columns but also on the properties
of its constituents, that allow for a plethora of cognitive functions. A key problem
in modeling the behavior of individual neurons is to identify their input-output
function translating synaptic inputs into spike trains by the action potential (AP)
generator under in vivo-like conditions of operation. Biophysically detailed mod-
els have a large number of parameters that are often manually tuned to fit some
set of experimental data, which might be neither unique nor effective in predict-
ing a neuron’s behaviors. One simplified but remarkably informative approach is
provided by phase plots of action potentials.

As shown in Figure 8.1, a phase plot is derived from the voltage-time record
of spikes such that the time derivative of the voltage (dV/dt) is displayed as a
function of the voltage. An action potential is represented by a loop in phase
plots. The threshold potential for the AP onset can be immediately read out
from the phase plot as the voltage with a sudden increase of dV/dt.

In vivo cortical neurons are bombarded by ten thousands of synaptic inputs
every second but fire APs only very infrequently (Greenberg et al., 2008). To
examine the rules by which cortical neurons turn fluctuating inputs into a precise
pattern of outgoing spikes, various groups have used phase plots obtained from
intracellular voltage recordings (Naundorf et al., 2005b; Volgushev et al., 2008;
Jolivet et al., 2008). These studies indicated that there is no simple procedure to
predict the timing of the outgoing APs from the subthreshold responses preceding
the spikes. For instance, Naundorf et al. (2006) showed that there apparently
is no unique threshold potential for APs in visual cortical neurons observed in

vivo. Badel et al. (2008) used phase plots to fit simple neuron models to similar
intracellular recordings. They showed that models matching the key features of
phase plots are currently the best models for predicting the precise spike sequences
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Figure 8.1: Dynamics of action potential initiation in neocortical neu-
rons and in a Hodgkin-Huxley type model. (a), Action potential measured
in a cat’s visual cortical neuron in vivo. The arrow shows the characteristic kink
at action potential onset. (b), Phase plots (dV/dt versus V) of the action po-
tential from (a). Inset shows the initial phase of the action potential. (c, d),
Action potential from a cat’s visual cortical slice in vitro at 20 ◦C. (e, f), Action
potential from a Hodgkin-Huxley-type model. Figure taken from Naundorf et al.
(2006)
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of cortical neurons for in vivo-like inputs.

8.2 Population Coding

Cognitive functions such as visual attention require fast, reliable processing of
stimuli (Thorpe et al., 1996; Hopfield, 1995; Steinmetz et al., 2000), e.g.. to recog-
nize a natural image the human visual system requires less than 150 ms (Thorpe
et al., 1996). On the other hand, individual neurons in the visual cortex are
silent most of the time and fire only a few APs per second under many condi-
tions (Greenberg et al., 2008).

In order to follow fast changing stimuli containing temporal frequencies much
higher than the firing rate of a single neuron, it requires coordinated activity
of a large population of neurons. The population activity revealed by the lo-
cal field potentials recorded in the cerebral cortex in fact exhibits much faster
rhythms than the firing frequency of individual neurons (Buzsáki & Draguhn,
2004). Whereas a single neuron may not fire in each cycle, the instantaneous
firing rate averaged over an neuronal ensemble sustains a pattern of fast oscilla-
tion. To understand such a collective behavior of cortical activity, it is crucial to
study the spike generation mechanism of individual neurons in the presence of
time-varying inputs and background synaptic noise. Only if a neuron can time
its spikes with sufficient temporal precision can it participate in a fast population
rate coding.

Recent experimental evidence has revealed that cortical neurons in vitro re-
liably transmit a noisy sinusoidal input up to a frequency of 200 Hz (Köndgen
et al., 2008). In contrast, responses were found to be much slower in conduc-
tance based (CB) models compared to the cortical neurons’ response (Fourcaud-
Trocmé et al., 2003; Naundorf et al., 2005b). Such a discrepancy calls for deep
examination of the spike generation mechanism in biophysical neuron models.

8.3 Fast Onset Dynamics of AP Initiation

What is the intrinsic property of a single neuron that endows a population of
cortical neurons with the ability to follow high frequency input? Previous theo-
retical studies have suggested that the properties of single neuron AP generation
determine the response speed of a neuron ensemble to fast changing stimuli, with
a fast onset of the spikes leading to a more reliable response to high frequency
inputs (Fourcaud-Trocmé et al., 2003; Naundorf et al., 2005a, 2006).

Such a rapid rate of rise at the onset of somatic APs (Figure 8.1) has been
indeed observed in in vitro and in vivo recordings of cortical neurons (Naundorf
et al., 2006; Volgushev et al., 2008). The dynamics of AP initiation is charac-
terized by an abrupt onset in phase plots, which significantly deviated from the



76 Introduction

behavior of canonical Hodgkin-Huxley-type models.
The biological processes leading to a fast onset of action potentials measured

at the soma (an experimentally more accessible region compared to axon) have
been a topic of heated debate in recent theoretical and experimental study (Naun-
dorf et al., 2006; Volgushev et al., 2008; Kole et al., 2008; Yu et al., 2008). Naun-
dorf et al. (2006) proposed one possible mechanism to induce a rapid rate of rise
at spike onset as cooperative gating of sodium channels, which are presumed to
act independently in Hodgkin-Huxley-type models. The mechanism of channel
cooperativity is first implemented in biophysical models for AP generation in
our study. We further explore the firing patterns of these models in response to
time-varying noisy inputs.

8.4 AP Initiation and Back-Propagation in Multi-

Compartment Models

Neurophysiologists however have raised strong criticisms against the use of phase
plots to study action potential dynamics (McCormick et al., 2007; Bean, 2007).
This criticism concerns the assumption that dV/dt derived from somatic recording
can be effectively used as a proxy of membrane current in such studies. This sim-
plifying assumption may be violated in real neurons, which are spatially extended
systems that are more accurately described using multi-compartment models cou-
pled by lateral currents. If these lateral currents were overwhelmingly strong,
examination of phase plots from the somatic recording could be misleading.

A model of multi-compartment Hodgkin-Huxley-type neurons has been re-
cently published to support the ‘lateral current’ hypothesis (Yu et al., 2008).
The authors claimed that a spike initiated at the axon initial segment (AIS)
rises as smoothly as described by the Hodgkin-Huxley-model; due to spatial in-
homogeneity and the large lateral current supplied by the axonal spike, the AP
back-propagating into soma resulted in a rapid rising phase.

Whether or not this is the case however is a quantitative rather than a qual-
itative question. It critically depends on the exact amount and the timing of
lateral currents in real neurons, a question that requires exact knowledge of the
dependence of lateral currents on a neurons’s morphology and physiological pa-
rameters. To address this problem systematically, we performed extensive simu-
lations of multi-compartment models and critically examine to what extent key
properties of phase plots are affected by lateral currents.

8.5 An Overview of my Work

The main purpose of this study is to investigate the phase plot dynamics of action
potentials in different conductance-based models, and moreover, to explore the
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spike generation mechanism of cortical neurons with fast response properties.
The second part of this thesis is organized as follows:

We first describe the Wang-Buzsaki model and other Hodgkin-Huxley-type
models for cortical AP generation in Chapter 9. We further introduce the Ornstein-
Uhlenbeck stochastic process used to mimic cortical synaptic noise. The neuron’s
response function to noisy inputs is characterized by both subthreshold MP fluc-
tuation and superthreshold firing patterns of a population.

In Chapter 10, we construct a cooperative Wang-Buzsaki (‘cWB’) model that
implements the mechanism of channel cooperativity. We characterize the AP
dynamics and coding properties in this model with variable coupling strength of
cooperative channels.

The phase plot dynamics of the somatic APs are first studied in a multi-
compartment neuron model with back propagation of antidromic APs (Chap-
ter 11). Using this simplified model, we ask how the AP waveforms, in particular
the onset dynamics in the phase plots, are influenced by the neuron morphology
such as soma geometry and propagation distance from the AP initiation site to
the soma.

In Chapter 12, we further address the questions of AP initiation sites and
somatic AP waveforms using more realistic neuron models with inhomogeneous
physiological properties across the soma, axon and dendrite. Then we explore the
frequency coding properties of different multi-compartment models characterized
by different onset dynamics of somatic APs in the phase plots.

The main results of our study are discussed in Chapter 13.
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Chapter 9

Basics of Dynamic Response in

Conductance Based Models

This chapter first introduces the Wang-Buzsaki model for AP generation in cor-
tical neurons. The background synaptic noise is mimicked by injecting the model
with a stochastic Ornstein-Uhlenbeck current. We characterize the properties of
neuronal response to noisy inputs by both the subthreshold MP fluctuation and
the superthreshold frequency modulation of spikes.

9.1 Computational Models

9.1.1 Wang-Buzsaki Models of AP Generation

We use the Wang-Buzsaki model as a representative of conductance-based (CB)
models in most of our study. This model, first introduced by Wang & Buzsáki
(1996), follows the original formalism of Hodgkin-Huxley equations (Hodgkin
& Huxley, 1952), where the AP generator consists of voltage-dependent Na+and
K+currents. The Wang-Buzsaki model makes a simplification that Na+channels
response to a voltage step with instantaneous activation. This model exhibiting
type I excitability has been explored in a line of theoretical studies on the dy-
namical firing properties of cortical neurons (Wang & Buzsáki, 1996; Hansel &
Mato, 2003; Fourcaud-Trocmé & Brunel, 2005; Naundorf et al., 2005b).

The dynamics of the membrane potential V (t) is governed by the current
balance equation:

CM
dV

dt
= −INa − IK − IL + Iapp, (9.1)

where CM is the membrane capacitance, INa and IK are ionic currents from
voltage-gated sodium and potassium channels, IL are ionic currents from an un-
specific leak conductance, and Iapp are the applied currents from the electrode.

The ionic currents are calculated from Ohm’s law, where the conductance is a
product of the maximum conductance and the opening probability of individual
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channels:

INa = ḡNam
3h(V − ENa),

Ik = ḡKn4(V − EK),

IL = gL(V − EL), (9.2)

and ENa, EK and EL are reversal potential of the corresponding ion channels. The
fast activation of Na+channels is assumed to be instantaneous such that m can
be substituted by its steady-state function m∞. The dynamical equation for the
gating variables h and n is represented by

τx
dx

dt
= x∞ − x, (9.3)

where x = h, n. The steady state value x∞ and time constant τx are given by

x∞ =
α

α + β
,

τx =
1

α + β
, (9.4)

where α and β represent forward and backward reaction rates, respectively. They
are assumed to be exclusively dependent on the local membrane potential, which
are explicitly specified as functions of V (see table 9.1).

Another type of widely used models for AP generation in cortical neurons is
the Mainen-Sejnowski model (Mainen et al., 1995; Mainen & Sejnowski, 1996).
The model equations are similar as those in Wang-Buzsaki model except that the
K+channel opening has only one instead of four subunit gates. In addition, the
gating variable m for Na+channel activation follows Eq 9.3 with a finite activation
time constant.

All the voltage-dependent functions describing channel kinetics and physio-
logical parameters are summarized in Table 9.1 and Table 9.2 in the appendix to
this chapter.

9.1.2 Modeling Background Noise in the Cortex

In the cerebral cortex neurons are embedded in a large network with numerous
connections of excitatory and inhibitory synapses. The background noise from
spontaneous cortical activity can be characterized by Gaussian statistics (Fig-
ure 9.1) and by an autocorrelation function exponentially decaying with time
constant τI . Such intense network activity in awake animals is supposed to cause
a remarkable membrane potential fluctuation and to alter the neuronal response
property as compared to the resting states induced by TTX or anesthesia (Des-
texhe & Paré, 1999; Steriade, 2001; Greenberg et al., 2008).
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Figure 9.1: The total synaptic inputs from a presynaptic neuronal pop-
ulation of increasing size. The figure shows a model simulation of a generic
neuron that receives independent inputs from the intra-cortical network through
identical AMPA synapses (τI = 10 ms). Numbers of synaptic connections are in-
dicated on the left column, while each of the presynaptic neurons spontaneously
fires at a rate as low as 5 Hz. The post-synaptic currents approach a Gaussian
distribution by the central-limit theorem for more than 100 synapses. (Adapted
from Giugliano et al. (2006))
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Recently there have been several studies using computer-synthesized noisy
current Isyn(t) to mimic the in vivo synaptic input, which was then injected
through current-clamp to the soma in slice preparation (Rauch et al., 2003; Sil-
berberg et al., 2004; Köndgen et al., 2008). This procedure allows one to study
the capability of cortical neurons to track time varying signals and the impact of
the background noise on the neuronal response property.

Following a classical approach in the theory of stochastic system (Gardiner,
1994), the background noise Isyn(t) is modeled as statistically stationary input
generated from an Ornstein-Uhlenbeck process:

τI İsyn = −Isyn + A′ ξt (9.5)

where ξt is a random variable drawn at every time step from a Gaussian distri-
bution with a mean of zero, called white noise. By intergrating the deterministic
part of Eq. 9.5,

Isyn(t + ∆t) = Isyn(t) exp(−∆t/τI) + A ξt.

The variance of the variable Isyn(t) is given by

〈I2
syn〉 =

〈
[Isyn(t) exp(−∆t/τI) + A ξt]

2〉 = σ2
I ,

〈I2
syn〉 = 〈I2

syn〉 exp(−2∆t/τI) + 2A〈Isyn · ξt〉 exp(−∆t/τI) + A2〈ξ2
t 〉.

Since Isyn and ξt are independent variables their correlation 〈Isyn · ξt〉 = 0. The
prefactor A can be adjusted by setting the variance of Isyn(t) as σI :

A = σI

√
1 − exp(−2∆t/τI).

After applying the Taylor expansion and neglecting the higher order terms, Isyn(t)
defined in Eq. 9.5 can be obtained by time discrete iteration scheme:

Isyn(t + ∆t) = Isyn(t)(1 − ∆t/τI) + σI

√
1 − exp(−2∆t/τI)ξt. (9.6)

9.2 Subthreshold Response to Noisy Inputs

Direct Solutions of the Linear Dynamics

We first study the subthreshold fluctuation of membrane potential, where voltage
dependent -Na+and -K+channels are not yet active, hence the original Hodgkin-
Huxley-type equations can be reduced to a linear model of a leak conductance
gL, an injected constant current I0, and a synaptic current Isyn(t):

c
dV

dt
= −gLV + I0 + σIIsyn(t), (9.7)
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where c is the membrane capacitance.
The synaptic current is modeled as an Ornstein-Uhlenbeck process:

dIsyn

dt
= −Isyn

τI
+ ξ(t),

where τI is the decay time constant and ξ(t) is a Gaussian random variable.
Hence the temporal correlation of the synaptic current is described by

C(τ) = exp(−|τ |
τI

).

The solution to Eq.(9.7) can be written as

V (t) = V0 exp(− t

τM
) +

1

c

∫ t

0

dt′(I0 + σIIsyn(t
′)) exp

t′ − t

τM
. (9.8)

The temporal average of V (t) is given by

〈V (t)〉 = (V0 −
I0

gL
) exp(− t

τM
) +

I0

gL
. (9.9)

The initial state of V(t) is forgotten if t ≫ τM so that the mean of V(t) is
determined by the constant input 〈V (t)〉 = I0/gL. The variance of MP fluctuation
is given by σ2

V = 〈(V (t) − 〈V (t)〉)2〉, where

V (t) − 〈V (t)〉 =
σI

c

∫ t

0

dt′Isyn(t
′) exp(

t′ − t

τM
).

σ2
V =

σ2
I

c2

〈∫ t

0

Isyn(t
′) exp

(
t′ − t

τM

)
dt′
∫ t

0

Isyn(t
′′) exp

(
t′′ − t

τM

)
dt′′
〉

,

=
σ2

I

c2

∫ t

0

∫ t

0

exp

(
t′ + t′′ − 2t

τM

)
〈Isyn(t

′)Isyn(t
′′)〉dt′dt′′,

=
2σ2

I

c2

∫ t

0

dt′
∫ t′

0

exp

(
t′ + t′′ − 2t

τM

)
exp

(−(t′ − t′′)

τI

)
,

=
2σ2

I

c2

∫ t

0

dt′
∫ t′

0

exp

(
− 2t

τM
+

(
1

τM
− 1

τI

)
t′ +

(
1

τM
+

1

τI

)
t′′
)

dt′′,

=
2σ2

I

c2
· τMτI

τM + τI

(
τM

2
− τM

2
exp

(
− 2t

τM

)

− τMτI

τI − τM

[
exp

(
−τM + τI

τMτI

t

)
− exp

(
− 2t

τM

)])
.

The stationary solution is computed by taking the limit:

t → ∞, σ2
V → σ2

I

c2
· τ 2

MτI

τM + τI

. (9.10)
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Correlation Function in Terms of Impulse Response

More generally, in a linear stationary system, the response to any input I(t) is
given by the convolution of the input and the impulse response:

V (t) =

∫ ∞

−∞

G(t − t′)I(t′)dt′, (9.11)

where G = V (t) is the impulse response to I(t) = δ(t).
The auto-correlation function of V (t) can be written as:

Cv(τ) = 〈V (0)V (τ)〉,

=

∫ ∞

−∞

∫ ∞

−∞

G(0 − t′)G(τ − t′′)〈I(t′)I(t′′)〉dt′dt′′,

=

∫ ∞

−∞

∫ ∞

−∞

G(0 − t′)G(τ − t′′)CI(t
′ − t′′)dt′dt′′.

Now we introduce new variables s and r:

s = t′ + t′′, r = t′ − t′′,

t′ =
1

2
(s + r), t′′ =

1

2
(s − r).

dtdt′′ =

∣∣∣∣∣

∂t′

∂s
∂t′

∂r

∂t′′

∂s
∂t′′

∂r

∣∣∣∣∣ dsdr =

∣∣∣∣∣

1
2

1
2

1
2

−1
2

∣∣∣∣∣ dsdr = −1

2
dsdr.

Cv(τ) = −1

2

∫ ∞

−∞

∫ ∞

−∞

G(−1

2
(s + r))G(τ − 1

2
(s − r))CI(r)dsdr.

If we define

G(2)(τ, r) = −1

2

∫ ∞

−∞

G(−1

2
(s + r))G(τ − 1

2
(s − r))ds,

and use t′′ instead of s:

t′′ =
1

2
(s − r), dt′′ =

1

2
ds,

s = r + 2t′′, s + r = 2r + 2t′′.

Then

G(2)(τ, r) = −1

2

∫ ∞

−∞

G(−1

2
(s − r))G(τ − 1

2
(s + r))ds,

= −
∫ ∞

−∞

G(−r − t′′)G(τ − t′′)dt′′,

=

∫ ∞

−∞

G(t)G(τ + r + t)dt.
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The resulting correlation function is:

Cv(τ) =

∫ ∞

−∞

G(2)(τ + t)CI(t)dt, (9.12)

where

G(2)(τ + t) =

∫ ∞

−∞

G(t′)G(τ + t + t′)dt′. (9.13)

Subthreshold Response to Ornstein-Uhlenbeck Currents

The response function G(t) to an impulse δ(t) is derived from the linear equation:

cV̇ = −gLV + δ(t),

where we assume V (t < 0) = 0 and integrate both sides over a small interval
(−ε, ε) around zero:

∫ ε

−ε

cV̇ dt = −gL

∫ ε

−ε

V (t)dt +

∫ ε

−ε

δ(t)dt,

c∆V = o(ε) + 1,

∆V =
1

c
.

Thus the impulse response can be written as:

G(t) =
θ(t)

c
exp

(
− t

τM

)
. (9.14)

G(2)(∆) =

∫ ∞

−∞

G(t′)G(∆ + t′)dt′,

=
1

c2

∫ ∞

−∞

θ(t′)θ(∆ + t′) exp

(
−2t′ + ∆

τM

)
, (9.15)

where ∆ = τ + t.
We rewrite Eq.9.15 for ∆ > 0:

G(2)(∆) =
1

c2

∫ ∞

0

exp

(
−2t′ + ∆

τM

)
=

τM

2c2
exp

(
− ∆

τM

)
,

and for ∆ < 0,

G(2)(∆) =
1

c2

∫ ∞

−∆

exp

(
−2t′ + ∆

τM

)
=

τM

2c2
exp

(
∆

τM

)
.
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The correlation function for an input of Ornstein-Uhlenbeck current is given by

CI(t) = σ2
I exp

(
−|t|

τI

)
.

From Eq.9.12 the correlation function of the output MP

Cv(τ) =

∫ ∞

−∞

G(2)(τ + t)CI(t)dt,

=
σ2

IτM

2C2

∫ ∞

−∞

exp

(−|τ + t|
τM

)
exp

(
−|t|

τI

)
dt.

When τ > 0,

Cv(τ) =
σ2

I τM

2c2
·
[∫ ∞

0

exp

(−τ − t

τM

)
exp

(−t

τI

)
dt

+

∫ 0

−τ

exp

(−τ − t

τM

)
exp

(
t

τI

)
dt +

∫ −τ

−∞

exp

(
τ + t

τM

)
exp

(
t

τI

)
dt

]
,

=
σ2

I τM

2c2
· τMτI




exp
(

−τ
τM

)
+ exp

(
−τ
τI

)

τM + τI
+

exp
(

−τ
τM

)
− exp

(
−τ
τI

)

τM − τI


 .

When τ < 0,

Cv(τ) =
σ2

I τM

2c2
· τMτI


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Taken together, the result can be written as:

Cv(τ) =
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

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
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(9.16)
The variance of MP at stationary state is obtained by taking τ = 0:

σ2
V =

σ2
I τ

2
MτI

c2(τM + τI)
. (9.17)

9.3 Firing-rate Response to Noisy Inputs

9.3.1 Stationary Response Function

Neurons fire action potentials (APs) when the membrane potential fluctuation is
above a certain threshold level, which is probably the most fundamental function
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of neurons. The electric pulses of APs are actively regenerated while traveling
along the axon for long distance communication. Action potential can often be
considered as an ‘all-or-none’ event in the sense that not its concrete waveform
but the firing frequency is sensitive to the strength of stimuli. In other words,
sensory inputs are transformed into spike trains of different rates.

In this context a model neuron’s response function is characterized by the
function of firing rate given the amplitude of the injected currents called the f -I
curve. Moreover, in the presence of noisy synaptic input Isyn(t) with a variance
σI and a temporal correlation τI (Eq.9.6), the firing rate is a function of the mean
current level I0, and of σI and τI .
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Figure 9.2: MP fluctuation and mean firing rates. (A) The contour lines
of σV = 3 mV (blue solid line) and σV = 5 mV (red dashed line) on the τI − σI

plane given by the analytical solution in Eq. 9.17. (B) The coutour lines of firing
rate f = 10 Hz in simulations varying σI and I0 simultaneously. See text for the
detailed procedure of adjusting the input currents.

For our model to represent the stationary state behaviors of cortical neu-
rons, we chose the input parameters of σI and τI according to the subthreshold
membrane potential fluctuation recorded in cortical neurons (Figure 9.3.1). In
simulations we first chose τI according to the temporal correlation of MP fluctua-
tions (Lampl et al., 1999). Next, σI was determined from the analytical solutions
obtained in Section 9.2 by setting the variance of the subthreshold membrane
potential to σV ≃ 3 − 5 mV (Azouz & Gray, 1999).

Finally, in order to keep the dynamics of our system in a low firing rate
regime, we adjusted the constant current level I0 to obtain a stationary firing
rate of 10 Hz in all simulations.
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9.3.2 Frequency Dependence of the Population Response

One way to test a neuron’s capability of tracking fast-changing stimuli is by
measuring its response to temporally oscillatory inputs of different frequencies
(Fourcaud-Trocmé & Brunel, 2005; Naundorf et al., 2005b; Köndgen et al., 2008).
Following these pioneering works, we revisit the frequency modulation function
of the Wang-Buzsaki model in this section, to aid later comparison to cooperative
gating models (Chapter 10) and to multi-compartment models (Chapter 12), and
to the response functions recorded in cortical neurons (Köndgen et al., 2008).

The model neuron received an input consisting of constant current I0, a sinu-
soidal input with a frequency of f and a magnitude of I1, and a synaptic noisy
input Isyn(t) of zero mean as discussed in Section 9.1.2:

I(t) = I0 + I1 sin 2πft + Isyn(t)

Figure 9.3 showed two simulation examples of neuronal responses to inputs
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Figure 9.3: Neuronal response to noisy sinusoidal inputs (A,B) The in-
jected currents (in blue) superimposed with a sinusoidal component (in red) of
different frequencies, f = 10 Hz and f = 200 Hz. (C,D) The voltage traces in three
trials with different realizations of noisy synaptic inputs. (E,F) The instanta-
neous population firing rate estimated by the peristimulus time histogram(PSTH)
across thousands of trials. It shows a much stronger modulation at input fre-
quency of f = 10 Hz compared to that of f = 200 Hz.

modulated at f = 10 Hz and at f = 200 Hz. Although the mean firing rate of
individual neurons remained constant at ν0 = 10 Hz, a large population of neurons
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was capable of tracking the input frequency up to 200 Hz, albeit a strong damping
of the modulation magnitude compared to 10 Hz frequency modulation.
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Figure 9.4: Frequency modulation of population firing rate (A) Modula-
tion strength (ν1/ν0) decayed with input frequency larger than 10 Hz in sim-
ulations of Wang-Buzsaki model. (B) Frequency response measured in cortical
pyramidal neurons in response to sinusoidal noisy inputs (Adapted from Köndgen
et al. (2008)). black: weak noise regime; red: strong noise regime. Dashed lines
indicate the input frequency of 10 Hz for a better comparison.

The strength of the oscillatory response ν1 depends on the input frequency.
As shown in Figure 9.3.2, the response amplitude of Wang-Buzsaki model started
to attenuate when the input frequency was above 10 Hz, which is the mean firing
rate of individual neurons. This should be compared to the cut-off frequency
(about 200 Hz) of cortical neurons (Köndgen et al., 2008), which is much higher
than that predicted by the model simulations.
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9.3.3 Fast Response Properties with Fast AP Onset?

Previous studies have suggested that the fast onset of AP generation would make
the population response to transient signals faster (Fourcaud-Trocmé et al., 2003;
Fourcaud-Trocmé & Brunel, 2005; Naundorf et al., 2005a, 2006). In the following
example we illustrate this idea by introducing an additional fast Na+channel
components to the standard Wang-Buzsaki model and comparing the response
speed of a neuronal population to a step change in the noisy input.
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Figure 9.5: Fast response speed with fast AP onset (A) Activation curves
of three models. blue: WB model with activation variable m3

WB = m3
∞; Green:

A faster channel component with mfast = 1/(1 + exp(−V + 40)/2) was added
into the WB model such that m1 = 0.8 m3

WB + 0.2 mfast (green); Red: m2 =
0.8 m3

WB + 0.2 mfast. (B) Phase plot of the three models. ḡNa = 300 pS/µm2.
Faster channel kinetics result in larger peaks at V̇ . (C) Instantaneous population
firing rates in response to a current step of the noisy input.

Figure 9.5A depicts the activation curves of the three models with different
combinations of fast components and Wang-Buzsaki Na+currents. When the
activation curves became steeper, the resulting action potentials exhibited faster
onset with larger peak V̇ , which can be visualized by the phase plots shown
in Figure 9.5B. We injected noisy currents into the three model neurons and
computed the instantaneous firing rates. At time t = 400 ms a step function was
applied to the constant current level of the noisy inputs. Figure 9.5C indicates
that the model with faster AP onset dynamics responded faster to the transient
signal.
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What is the physiological mechanism missing in the conventional conductance
based models that makes them deviate from the fast response properties of real
cortical neurons? Cooperative activation of Na+channels has been proposed by
Naundorf et al. (2006) as a plausible mechanism for the fast onset dynamics of
AP initiation and thus the fast response. In the next chapter we will construct
the conductance based models with adjustable degree of channel cooperativity
to examine the resulting AP waveforms and the corresponding impact on coding
properties.
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Appendix: Channel Kinetics of CB models

In this thesis I explore two conductance based (CB) models of Hodgkin-Huxley type:
the Wang-Buzsaki model (W-B, m3

∞h − n4), and the Mainen-Sejnowski model
(M-S, m3h−n). The equations of channel kinetics for both models are described
in Table 9.1. The physiological parameters are summarized in Table 9.2.

Table 9.1: Hodgkin-Huxleytype Models

Model Name Wang-Buzsaki (m3
∞h − n4) Mainen-Sejnowski (m3h − n)

Na+channel
αm = 0.1(V +35)

1−exp[−0.1(V +35)]
αm = 0.182(V +35)

1−exp[−(V +35)/9]

βm = 4 exp −(V +60)
18

βm = −0.124(V +35)
1−exp[−(V +35)/9]

αh = 0.35 exp −(V +58)
20

αh = 0.024(V +50)
1−exp[−(V +50)/5]

βh = 5
1+exp(−0.1(V +28))

βh = −0.0091(V +75)
1−exp[−(V +75)/5]

m ≡ m∞: instantaneous h∞ = 1
1+exp[6.2(V +65)]

K+channel
αn = 0.05(V +34)

1−exp(−0.1(V +34))
αn = 0.02(V −20)

1−exp[−(V −20)/9]

βn = 0.625 exp −(V +44)
80

βn = −0.002(V −20)
1−exp[−(V −20)/9]

Table 9.2: Physiological Parameters

Parameter symbol Value Unit
Membrane capacitance Cm 10 fF/µm

Axial resistivity rL 1 MΩ · µm

Reversal potential
EL -65 mV

ENa 55 mV

EK -90 mV

Channel density
gL 1 pS/µm2

ḡNa 350 pS/µm2

ḡK 150 pS/µm2



Chapter 10

Dynamic Response in Models with

Cooperative Channel Gating

10.1 Introduction

Voltage sensitive ion channels underly the information processing capabilities
of nerve cells (Koch & Segev, 1998; Dayan & Abbott, 2001; Hille, 2001). Ion
channels are integral membrane proteins which depending on conformation can
pass ionic currents and thus induce dynamic changes in transmembrane potentials
(Hille, 2001). Neural and muscle cells use voltage sensitive ion channels as the
fundamental nonlinear elements for electrical signaling. In these cells pulse-like
electrical signals called action potentials (APs) are induced by an avalanche-like
opening of channels.

Biophysical models for AP generation almost universally assume that indi-
vidual channels open and close statistically independently and are coupled only
through the transmembrane voltage. However, biological ion channels for a va-
riety of physiologically important ions have been found capable of cooperative
gating when clustered (Schindler, 1984; Saito et al., 1988; Undrovinas et al.,
1992; Marx et al., 1998; Molina et al., 2006). In cooperative gating the states of
individual channels are not independent but coordinated such that the opening of
one channel increases the opening probability of neighboring channels. Examples
of cooperative gating have been found in Na+channels (Undrovinas et al., 1992),
K+channels (Molina et al., 2006), Ca2+channels (Marx et al., 1998) and in neuro-
transmitter receptors (Schindler, 1984). Fig. 10.1 shows the structure of clustered
Na+and Ca2+channels from electron microscopy. Intriguingly, patch recordings
of such channels exhibit synchronized openings of double or triple channels.

Cooperative gating of ion channels has been proposed to represent a general
capability of proteins to undergo so called ‘conformational spread’ (Bray & Duke,
2004). Recently cooperative gating of Na+channels has been hypothesized to
underly the observed rapid onset of APs in cortical neurons and to strongly
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influence the coding properties of cortical neurons (Naundorf et al., 2006).

100 nm 50 nm

(a)

(d)

4 pA500 ms100 ms
5 pA

(c)

(b)

Figure 10.1: Channel clustering and cooperative gating in Na+(a,b) and
Ca2+channels (c,d). (a) Freeze-fracture electron microscopy reveals clustering
of membrane particles in cardiac myocytes after ischaemia (Post et al., 1985).
(b) Inside-out patch recordings of such cells showing simultaneous openings of
pairs and triples of sodium channels (Undrovinas et al., 1992). (c) Transmission
EM shows a dense crystalline array of RyR Ca2+release channels in sarcoplasmic
reticulum membrane (Saito et al., 1988). (d) Current traces through pairs and
tripples of such channels exhibiting synchonized opening and closing (Marx et al.,
1998). Dotted lines in (b, d) indicate single channel current steps.

Here we examine the dynamical and functional consequences of channel co-
operativity in a conductance based model of neuronal AP generation in which
a fraction p of sodium channels exhibit cooperative gating. The model is con-
structed such that the strength of inter-channel coupling is quantified in voltage
units and can be continuously varied between statistical independence and strong
cooperativity.

We examine activation kinetics and AP waveforms predicted by the model
for the entire range of cooperative channel fractions and coupling strengths. For
strong cooperativity AP onsets become very rapid and for a small fraction of
strongly cooperative channels APs exhibit a pronounced biphasic waveform often
observed in nerve cells of the central nervous system (Eccles et al., 1958; Bean,
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2007). We point out that in this regime the AP onset is triggered by simulta-
neous opening of the cooperative channel fraction. We calculate the threshold
for this synchronized opening and show that it depends on the fraction of non-
inactivated sodium channels. While increasing cooperativity lowers the threshold,
the amount of threshold variability resulting from time varying levels of channel
inactivation is largely insensitive to the strength of cooperativity.

To assess the functional impact of sodium channel cooperativity we character-
ize the ability of the neuronal firing rate to follow high frequency fluctuation in
input current. Our results demonstrate that strongly cooperative sodium chan-
nel gating can boost the spike encoding of rapidly varying signals even if they
represent only a small fraction of all sodium channels.

10.2 AP Generator with Channel Cooperativity

Modeling Cooperative Gating of Sodium Channels

To model cooperative gating of Na+channels, we assume that a channel in the
cooperative population is coupled to K neighboring channels such that the open-
ing of each neighbor increases the probability of the channel to open. Using an
activation variable m(t) this is most simply realized by a kinetics of m as

τm(V )ṁJ(t) = m∞

(
V (t) + KJ

(
mJ(t)

)x
h
)
− mJ(t). (10.1)

Here m∞(V ) is the steady state activation curve of individual channels, τm(V )
is the activation time constant, h is the available fraction, (mJ(t))xh is the open
probability so that Kh(mJ (t))x is the expected number of open neighbors. J is a
coupling constant in units of mV that measures the strength of coupling by the
voltage shift that would increase the open probability of an isolated channel by
the same amount. Eq. (10.1) represents the mean field approximation of cooper-
ative channel gating among a coupled population in which opening of individual
channels is modeled as a Makov process (Naundorf et al., 2006). In the limit of
J = 0, Eq. (10.1) reduces to the classical case of independent channel activation.

We used this approach to examine the predicted signature of channel coop-
erativity on the activation of a voltage clamped population of sodium channels.
Assuming a fixed available fraction H0 = 1, very short activation time constant
τm(V ) and a Bolzmannian single gate activation curve

m∞(V ) =

[
1 + exp

(
−

V − V 1

2

kA

)]−1

. (10.2)

The fraction of open channels mJ
∞(V ) after a voltage step called the collective

activation curve satisfies the self-consistent equation

mJ
∞(V ) = m∞

(
V + KJ

(
mJ(t)

)x
H0

)
. (10.3)
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For the following analysis we take x = 1 as suggested by recent in vitro record-
ings of Na+currents in cortical neurons (Baranauskas & Martina, 2006), where
the activation time course was best fitted by a linear rising mono-exponential
function.

The Critical Coupling Strength

The steady state solution of mJ
∞ is obtained from the intersection points of the

two curves y = m and y = f(m), where f(m) is defined as

f(m) =
1

1 + exp[−(V + λm − V 1

2
)/kA]

with λ = H0KJ . Figure 10.2 shows how the curve of y = f(m) changes as
the parameters λ and V increase. It becomes steeper with increasing effective
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Figure 10.2: The steady state values of mJ
∞ as intersection points of the two

curves y = m and y = f(m). (A) The curve of f(m) is steeper as the coupling
strength λ increases. (B) The curve of f(m) is shifted to the left as V increases.

coupling strength λ. When λ is very small, there is only one intersection point at
a small value of m0 close to 0. When λ is very large, the intersection point shifts
to a value close to 1. In a critical range of λ∗, there exist three intersection points
at certain ranges of voltages. By increasing V , the curve of f(m) is shifted from
right to left, thus a jump occurs from a small value of the fixed point m0 ≃ 0 to
a larger value near 1. At this transition point, the two curves of y = f(m) and
y = m intersect tangentially. The critical value of λ∗ is thus obtained by solving
the system

{
F (m0) = m0 + m0A exp(−λm0) − 1 = 0,

Ḟ (m0) = 1 + A exp(−λm0) − m0Aλ exp(−λm0) = 0,
(10.4)



10.2 AP Generator with Channel Cooperativity 97

where

A = exp(−
V − V 1

2

kA

), λ =
KJH0

kA

.

The solutions of m0 are obtained from

1 − λm0 + λm2
0 = 0,

which has real roots only if ∆ = λ2 − 4λ ≥ 0. The value of λ must be positive,
hence λ ≥ 4. The corresponding coupling strength has to satisfy

J ≥ 4kA

KH0
(10.5)

to allow for a finite jump in collective activation curve.

The Voltage Threshold

Close to the transition point, the function of f(m) can be approximated as an
exponential expression of m:

f(m) =
exp[(V + λm − V 1

2
)/kA]

1 + exp[(V + λm − V 1

2
)/kA]

≃ exp[(V + λm − V 1

2
)/kA].

The critical value of V ∗ is then obtained by solving the system

{
G(m0) = m0 − A exp(λm0) = 0,

Ġ(m0) = 1 − Aλ exp(λm0),
(10.6)

where

A = exp

(
V − V 1

2

kA

)
, λ =

KJH0

kA
.

The solutions of m0 and A for a given λ are

m0 =
1

λ
, A =

1

λ exp(1)

and the corresponding threshold potential is

V ∗ = −kA(ln λ + 1) + V 1

2
. (10.7)
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Figure 10.3: Dynamics of cooperative gating with varying degrees of coupling
strength λ (kA = 4, V1/2 = −35 mV). (a) Collective activation curves for increas-
ing strength of channel coupling. (b-d) Simulated open probability in response
to a voltage-clamp protocol shown above the traces in (b). Currents are depicted
for channel cooperativity smaller than, equal to, or greater than the critical value
λ∗ = 4.
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The Collective Activation Curve

The shape of the collective activation curve obtained for different coupling con-
stants depends only on the effective coupling strength λ = KJH0/kA and is
shown in Fig. 10.3a for different values of λ. For low values of λ its slope in-
creases with increasing λ and at the critical effective coupling strength of λ∗ = 4
it develops a discontinuity at the threshold voltage V ∗. For stronger coupling the
threshold moves to more negative potentials and the collective activation curve
approaches a step function such that almost all channels are closed below V ∗ and
almost all open above V ∗.

This behavior was also apparent in simulated voltage clamp experiments, in
which Eq. (10.1) was numerically solved assuming τm(V ) = φ/(αm(V ) + βm(V ))
with the activation and deactivation rates functions and the kinetics of sodium
channel inactivation as in the Wang-Buzsaki model (Wang & Buzsáki, 1996)
and φ = 0.1 to achieve a peak activation time constant of 50 µs as suggested by
recent measurements of cortical sodium currents (Baranauskas & Martina, 2006).
In these simulations sodium channel opening above the critical coupling became
basically an all or none event. Similar behavior was found for x = 3 (data not
shown).

Conductance Based Models with Channel Cooperativity

To assess the impact of sodium channel cooperativity on AP dynamics and encod-
ing we included a fraction p of cooperative sodium channels in a well characterized
Hodgkin-Huxley-type neuron model (Wang & Buzsáki, 1996; Fourcaud-Trocmé
et al., 2003). In this cooperative WB model (cWB), the current balance equation
reads as

CV̇ (t) = gL(VL − V (t)) + ḡKn4(t)(EK − V (t)) + Iext(t)

+ ḡNa

[
p
(
mJ(t)

)x
hJ (t) + (1 − p) m′3

∞h′(t)
]
(VNa − V (t)), (10.8)

and the activation variable of the cooperative sodium channel fraction is given
by Eq. (10.1). The inactivation curve of the cooperative channels hJ

∞ has the
same amount of voltage shift hJ

∞(V ) = h′
∞(V + H0KJmJ (V )) and τhJ (V ) =

τh′

∞
(V + H0KJmJ (V )) as the activation kinetics. All kinetic equations for the

other gating variables are as in Chapter 9 (Wang & Buzsáki, 1996).

10.3 AP Waveforms and Onset Dynamics

Onset Rapidness and Bi-phasic APs in Phase Plots

In this model, action potential waveforms as assessed by graphs of V̇ vs. V (phase
plots) were very sensitive to the fraction of cooperative channels and the coupling
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strength (Fig. 10.4). In general the rapidness of AP onsets strongly increased with
coupling strength. For a large fraction of cooperative channels this resulted in
monophasic APs of rapid onset. For a small fraction of cooperative channels
the AP waveform was typically biphasic (Fig. 10.4, Lower left panel). In both
regimes AP onset was essentially determined by the activation of the cooperative
fraction. Moreover, for a low fraction of strongly cooperative channels, the model
reproduces the bi-phasic action potential dynamics frequently observed in neurons
of the mammalian central nerves system.
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Figure 10.4: Channel activation and AP dynamics with small and large fractions
of cooperative sodium channels. Upper panels: voltage dependence of total frac-
tion of activated sodium channels; lower panels: phase plots of action potential
generated by model Eq. (10.8). Blue: KJ = 20 mV. Red: KJ = 320 mV.

This behavior appears insensitive to detailed properties of model. For in-
stance we found a similar dependence when we constructed the kinetics of the
cooperative sodium channel fraction from m∞(V ) of the WB model instead of
the Bolzmannian Eq. (10.2) and when we used an exponent x = 3 that leads
to a delayed activation of sodium channels. For this model, Fig. 10.5 shows the
phase diagram of the AP waveforms. The onset dynamics of APs is quantified
by the slope of the phase plot at the characteristic points of AP initiation. The
onset rapidness increases monotonically with increasing coupling strength. With
weak inter-channel coupling (KJ < 200 mV) APs exhibit a gradual rising phase
(inset panel, left); with strong coupling (KJ > 400 mV) among a large fraction
of channels APs show a steep rising phase (inset panel, top right); strong cou-
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pling among a small fraction of channels induces biphasic APs with a fast initial
phase of cooperative activation followed by a slow rising phase of non-cooperative
channel activation (inset panel, bottom right).

The phase diagram in Fig. 10.5 also indicates that a tight coupling between co-
operative channels would be required to quantitatively reproduce experimentally
observed AP waveforms. APs of cortical neurons under physiological conditions
exhibit an onset rapidness of at least 20/ms. The total coupling strength KJ
needed to obtain such a rapid onset in our model is on the order of 400 mV or
more. Assuming for instance that each channel is coupled to roughly 10 neighbors
this would imply that opening of a single neighboring channel is equivalent to a
voltage shift by 40 mV. It is expected that such a strong inter-channel coupling
would lead to highly synchronized gating such that the coupled clusters of chan-
nels behave as one effective functional unit. It is intriguing that all direct reports
of coupled activation of ion channels have described exactly this type of highly
synchronized channel opening and closing (Undrovinas et al., 1992; Molina et al.,
2006; Marx et al., 1998; Schindler, 1984).

Figure 10.5: Phase diagram of the AP waveforms. white contour: bounder line
between the monophasic and the biphasic APs (see insets); color code: onset
rapidness measured as the phase slope at (a) dV/dt = 25 V/s and at (b) the
maximum second derivative d2V/dt2.

Threshold Variability is Insensitive to the Coupling Strength

In the presence of strong channel cooperativity, APs are initiated at the discon-
tinuous jump of mJ

∞(V ). As previously described in Eq. (10.7), the corresponding
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voltage threshold is given by

V ∗ ≃ −kA log (H0) − kA log (KJ/kA) − kA + V 1

2
. (10.9)

This relation implies that the threshold variability caused by different levels of H0

is not affected by the coupling strength KJ . We injected noisy synaptic currents
to the model defined by Eq. (1-4) with different coupling strengthes. The phase
plots of APs exhibit fast onset with strong inter-channel cooperativity and slow
onset with weak coupling, whereas the threshold variability is largely unaffected
(Fig. 10.6). In contrast, it has been shown in Naundorf et al. (2006) that the onset
rapidness and threshold variability, as two characteristic features observed in APs
of cortical neurons, are antagonistic in Hodgkin-Huxley-type models. Instead,
our models of a cooperative AP generator illustrated a mechanism of fast onsets
highly independent of threshold variability, as predicted by Naundorf et al. (2006).
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Figure 10.6: Threshold variability is insensitive to the strength of channel cou-
pling. The model contains two populations of cooperative and non-cooperative
Na+channels as those in Fig. 10.4. APs are generated by injection of the noisy
synaptic current modeled as an Ornstein-Uhlenbeck process. (a) Phase plots of
two models with KJ = 100 mV (blue trace) and KJ = 400 mV (red trace);
p = 10%. (b) The standard deviation of the voltage threshold σVth

varies only
slightly with increasing coupling strength KJ from 0 to 500 mV(upper panel);
the onset rapidness of APs increases monotonically with KJ (lower panel); inset:
σVth

as a flat function of onset rapidness.

10.4 Impact on Dynamic Response Properties

What are the coding properties of AP generators with cooperative channel gating?
Following the approach introduced in the previous chapter, we characterized the
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firing rate dynamics in response to noisy oscillatory inputs of different frequencies.
A time dependent current

I(t) = I0 + I1 cos(2πft) + σIIsyn(t)

was injected with the background synaptic noise Isyn(t) generated from a stochas-
tic Ornstein-Uhlenbeck process

τcİsyn = −Isyn +
√

1 − exp(−2∆t/τc) ξt,

where ξt is a Gaussian random variable. In linear response regime the instanta-
neous firing rate could be well approximated by

ν(t) = ν0 + ν1 cos(2πft + φ(f)).

In simulations ν0 was set to 10 Hz by adjusting the constant current level I0.
We graphed the modulation of the instantaneous firing rate against the input
frequency.

As shown in Fig. 10.7, the high frequency modulation improves substantially
with cooperative channel gating. The modulation amplitude at input frequency
f > 200 Hz is almost one order of magnitude larger than that in the uncoupled
model. For high frequencies the modulation gain decays roughly exponentially,
which deviates somewhat from the power law behaviors previously reported for
conventional conductance-based models (Knight, 1972a,b; Brunel et al., 2001;
Fourcaud-Trocmé et al., 2003; Naundorf et al., 2005a; Badel et al., 2008). In
contrast, with all channels statistically independent, even a 10-fold increase of
Na+channel density had no effects on the high frequency coding properties of the
model although the peak rate of rise of APs was strongly increased. This result
shows that a minor fraction of channels with cooperative gating can strongly
affect the encoding properties of a neuronal AP generator.

10.5 Summary and Discussion

In summary, our analysis characterizes a new class of models for AP genera-
tion with cooperative channel gating. The AP waveforms of cortical neurons are
known to exhibit fast onset dynamics and sometimes two distinct components
in phase plots. In the past, this biphasic waveform was interpreted as lateral
current caused by antidromic AP invasion from AIS to the soma (Eccles et al.,
1958; Bean, 2007; Yu et al., 2008). Our study raises an alternative interpretation
and suggests the possibility that the first phase is induced by activation of the
cooperative channel fraction. Our results directly demonstrate that cooperativity
even in a small fraction can strongly affect high frequency encoding. Intriguingly
several recent studies suggest that cortical neurons can faithfully encode fluc-
tuating inputs above 100 Hz (Silberberg et al., 2004; Köndgen et al., 2008). As
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channel cooperativity has been directly observed in a wide variety of biological ion
channels, it is an attractive hypothesis that it may contribute to high frequency
sensitivity observed in these experiments.

So far direct evidence for channel cooperativity in cortical neurons is still
missing. What is the potential mechanism of the strong coupling between co-
operatively gated channels? First, there might be mechanical contact between
channels through membrane associated proteins such as spectrin and ankyrin,
whose conformational change would enforce a synchronized opening of neighbor-
ing channels. Second, the channels might interact through the local electric field
where excess charges are brought in by opening of neighboring channels. Third,
the voltage sensor of Na+channels not only detect the transmembrane electrical
field. They also generate a field that may align the sensors of neighboring ion
channels. Fourth, there might be Na+sensors remarkably sensitive to the influx of
Na+ions. Finally, bilayer-mediated elastic forces has been proposed to drive con-
formational changes of transmembrane proteins cluster into cooperative groups
(Ursell et al., 2007). Our study calls for the more detailed biophysical studies to
uncover the mechanism behind strong inter-channel coupling.

On the other hand, an alternative mechanism for the fast somatic AP onset
has been proposed by (Yu et al., 2008), where they reported a smooth AP onset
at axon initial segment (AIS) but a steep onset at soma, which was hypothesized
to be caused by antidromic AP invasion from AIS to the soma. However, the use
of axonal bleb recording was highly likely to destroy a tight coupling of channels
if it exists in the neuronal membrane (Naundorf et al., 2007). In the following
chapters, we will shift from point-neuron models to multi-compartmental models,
to study the AP initiation and propagation in spatially extended neuron models
and the coding properties of such models.
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Chapter 11

AP Propagation and Neuron

Geometry

11.1 Introduction

In the previous chapter, we have studied the impact of cooperative gating of
sodium channels on the dynamics and coding properties of neuronal action po-
tentials. The cWB model with strong channel cooperativity is capable of re-
producing the biphasic AP waveforms and the fast onset dynamics observed in
cortical neurons. However, the observed shape of somatic APs in the cortex
may be biased by antidromic AP invasion of the soma, as has been proposed by
McCormick et al. (2007) and Yu et al. (2008). These authors claim that spike
initiated at the axon initial segment(AIS) rises as smoothly as described by the
Hodgkin-Huxley-type model; due to spatial inhomogeneity and the large lateral
current supplied by the axonal spike, the AP back-propagating into soma results
in a rapid rising phase. If this so-called ‘lateral current hypothesis’ is true, the
fast AP onset at soma accompanied by a slow rise at the initiation site would
not be expected lead to the ability of neuronal population to follow fast signal
reliably.

Although there have been extensive studies on AP propagation in the litera-
ture (Hodgkin & Huxley, 1952; Jack et al., 1975; Rall, 1977; Meeks et al., 2005;
Grill et al., 2007), they mainly focus on the reliability and velocity of propaga-
tion. The concrete waveforms of APs have received little attention except that
in an early work by Goldstein & Rall (1974) in which it was stated that the peak
height of APs are reduced by flare of cable diameter.

We thus re-address the question: how is AP waveform, especially its onset
rapidness, changed by propagation and by neuron geometry and in particular by
the influence of a thin axon on a large soma? Before we discuss and implement the
detailed physiological parameters and sometimes contradicting recordings of the
neuronal channel distribution and electrophysiological properties, we first study
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the propagating AP in a geometric model with homogenous channel properties.

11.2 Methods

11.2.1 Spatiotemporal Dynamics

The spatial-temporal dynamics of signal propagtion in a neuron is mathematically
described by the cable equation (for classical text books see Jack et al. (1975);
Rall (1977); Dayan & Abbott (2001))

cm
∂V

∂t
=

a

2rL

∂2V

∂x2
− im + ie (11.1)

for a segment of cable of radius a and intracellular resistivity rL. The electrode
current ie and the membrane current im are expressed as currents per unit area
of membrane. By convention the inward membrane currents have negative sign.

Since the kinetics of voltage-gated channels and synaptic conductances of-
ten induce a highly nonlinear behavior, they are neglected at the first step of
analysis. One can make a linear approximation near the resting potential of the
neuron, where the membrane current im is replaced by product of the membrane
potential and the leak conductance gLV . A convenient expression is obtained by
multiplying both sides of the equation by rm = 1/gL:

τM
∂V

∂t
= λ2 ∂2V

∂x2
− V + rmie. (11.2)

This expression shows that the membrane time constant τM = rmcm sets a scale
of the temporal dynamics and a length constant λ scales the spatial diffusion of
the membrane potential

λ =

√
arm

2rL
, (11.3)

Time constants in a spatially extended neuron

The membrane time constant τM sets the time scale of subthreshold membrane
potential (MP) variation. The MP in an iso-potential patch of membrane re-
sponses to a current step by an exponential growth towards the steady state
value:

V (t) = V∞(1 − exp−t/τM ) (11.4)

However, a different rule of time evolution has been found in neurons with spa-
tially extended structure, as suggested by the solution of the linear cable equation
(Jack et al. (1975), first solved by Hodgkin & Rushton (1946)). In response to a
current step, the voltage change in an infinite cable at the site of current injection
is governed by

V (t) = V∞ × erf(
√

t/τM ) (11.5)
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The different time windows in the response of a infinite cable and a point neuron
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Figure 11.1: Voltage dynamics in a infinite cable and in a point neuron.
In response to a current step at t= 0, the MP at the current injection site of an
infinite cable rises faster to its steady state value (Eq. 11.5) than the exponential
growth in an iso-potential patch of membrane (Eq. 11.4). Voltage is normalized
to its steady state value and time is measured in units of membrane time constant
τM .

is depicted in Figure 11.1. Intuitively, the model of point neuron is equivalent to
an iso-potential system of a uniform structure with constant current injection at
every location. The same total amount of current caused a faster voltage rise at
the injection site of the cable. In a realistic system of a finite cable, its temporal
dynamics is then dependent on the spatial extension of the system.

Length constant in modeling neuron morphology

In a passive cable the changes of membrane potentials induced by a localized
current injection decay back to zero over a distance of the same order as the
electrotonic length constant λ.

From Eq. 11.3 the value of λ is determined by the neuron’s morphology (the
radius a) and its physiological properties such as membrane resistance rm and
the intracellular resistivity rL. An experimental estimation yield a value of λ ≃
400 µm in cortical neurons (Shu et al., 2006).

The length constant λ sets a spatial scale for modeling of neuronal morphology.
For example, a neurite much longer than λ represents the behavior of an infinite
cable whereas early terminations of axon and dendrite are expected to influence
the voltage response at the soma.
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To track the spatial-temporal dynamics in simulations, the spatial resolution
should be much smaller than the length constant λ, especially in simulations of
a soma with varying geometry and of the transition zone of two adjancent parts
with different physiological properties.

11.2.2 Model Neuron Geometry

In the following, the soma geometry is modeled as a sphere or an ellipsoid with
a long and narrow axon going through one of the main axis of the ellipsoid (Fig-
ure 11.2). In this simplified model, the expansion of the soma from a homogenous
cable can be quantitatively controlled, as described by the soma size factor α,
which measures the expansion ratio with respect to the length of the soma, such
that the α value of zero indicates a homogenous cylinder, the value of one stands
for a spherical soma and other values between zero and two represent ellipsoids.

α Ie

L

axonapical dendrite

Soma

’endbleb’

µm

soma

0LL+20 L+1mm

Figure 11.2: Morphology of the geometric model The distance from current
injection site at axon to soma is measured by L, ranging from 0 to 2 mm. The
soma size factor α ranges between 0 and 2. α = 0: cylinder; α = 1: sphere; α = 2:
ellipsoid. The Na+channel density ḡNa is assumed to be constant across the entire
neuron, which was adjusted between 300 to 3000 pS/µm2 in simulations.

The AP propagation within the neuron is modeled by the cable equation
(Eq.11.1, for the discrete dynamical equations see Dayan & Abbott (2001)),
where the membrane current im consists of leak current, voltage-gated Na+and
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K+currents. The channel kinetics and physiological parameters are described by
the Wang-Buzsaki model.

To account for the effect of propagation and spatial geometry per se, the
electrical properties of the entire neuron were set to be uniform, as summarized
in Table 9.2 of Chapter 9. Other conductance-based neuron models are discussed
later. Detailed descriptions of different model kinetics can be found in Appendix
of Chapter 9.

To study the lateral current invasion from the axon into the soma, we in-
duced antidromic APs at the end of the axon (modeled as an ‘active bleb’ in
Figure 11.2). The propagating AP waveforms were studied in simulations sys-
tematically varying the distance from the injection site to the soma (L, ranging
from 0 to 2 mm), the soma size factor (α, ranging from 0 to 2), and the sodium
channel density (ḡNa, ranging from 300 to 3000 pS/µm2).

11.2.3 Computational Methods

The model neuron (Figure 11.2) consists of the axonal endbleb, the distal axon
(10 µm of segment length; 1 µm in diameter), the proximal axon(1 µm of seg-
ment length; 1 µm in diameter; 20 segments), the soma region(1 µm of segment
length, 10 segments), the proximal dendrite (1 µm of segment length; 1 µm in
diameter; 10 segments), and the distal dendrite (20 µm of segment length; 1 µm
in diameter; 50 segments). The number of the axonal segments ranging from one
single compartment to 209 compartments, was adjusted according to the axon
length L .

The geometry of the soma was modeled as an ellipse along the axonal axis.
The soma diameter was obtained from the elliptic equation:

x2

a2
+

y2

b2
= 1, (11.6)

where a denotes the half length along the axonal axis and b = αLs/2 is the half
length in the perpendicular direction, which is controlled by the parameter α. If
we denote Ls as the length of the soma and ra as the radius of the axon, then
the soma meets the axon at the point with coordinates (Ls/2, ra). By plugging
the coordinates into Eq. 11.6, we get a2 as a function of b:

a2 =
Ls · b2

b2 − ra
. (11.7)

Taken together, at any coordinate x of the point in the soma region, the corre-
sponding y coordinate on the ellipse can be found by the formula:

y2 = b2 − x2(b2 − r2
a)

L2
s

. (11.8)
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A good spatial discretization was achieved by cone approximation instead
of cylinder approximation of each compartment so that different discretization
degrees would not change the overall structure of the neuron geometry.

Antidromic action potentials were triggered in simulations by constant current
injection at the end of the axon. The current level was adjusted to get a constant
firing rate of 10 Hzunder different parameter choices.

Simulations were performed using a C++ program and all the figures were
generated by user-specified Matlab functions. The dynamics of the system was
solved by an implicit backward Euler method with a time step of 10 µs, which
corresponds to a sampling frequency of 100 kiloHz.

11.3 Simulation Results

Figure 11.3 shows two examples of the propagating wave patterns. The AP wave-
forms at the initiation site were broader with smaller amplitudes. By propaga-
tion they became narrower and steeper until an invariant waveform was reached.
Accordingly, on the phase plane representation (Figure 11.3 A2, B2), the limit
cycles of the dynamics at subsequent locations expands until a linear phase is
approached, which is corresponding to the exponential growth of the membrane
potentials.

For comparison with the experimental recordings, we determined the point of
AP onset at which the MP rate of change dV/dt reached a value of 10 mV/ms.
Figure 11.3 A3 and Figure 11.3 B3 plot the onset latency against the propagation
distance. The reciprocal of the slope on the latency-distance plot gives an estima-
tion of the propagation velocity, which is about 0.6 m/s with gNa = 300 pS/µm-2,
and 1.0 m/s with gNa = 1200 pS/µm-2.

The onset rapidness was measured by the slope of the phase plot V̇ − V at
the point of AP onset V̇ = 10 ms-1. While propagating away from the initi-
ation site, the onset rapidness showed an 8-fold increase with low Na+channel
density (Figure 11.3 A4) and a 20-fold increase with high Na+channel density
(Figure 11.3 B4). However, if the soma was close to the initiation site (red cir-
cle, L = 50 µm), the AP onset rapidness was as low as 3 ms-1. The effect of
propagation became prominent only after a certain distance, in the order of one
electrotonic length (λ ≃ 400 µm).

To clarify the dependence on the various geometric and physiological param-
eters, we performed extensive simulations with the model varying distance L,
soma size α and the maximum Na+conductance ḡNa. For each simulation we
computed the onset rapidness of the somatic AP, and plotted it in Figure 11.4
with respect to the three parameters.

The propagating APs exhibited a transition from the initial slow onset to a
rapid onset (Figure 11.4 A). As the Na+channel density increased, the transition
point was shifted closer to the AP initiation site, while the value of onset rapidness
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Figure 11.3: Two simulation examples in the geometric model (A) L =
50 µm, α = 1, ḡNa = 300 pS/µm2. (B) L = 50 µm, α = 1, ḡNa = 1200 pS/µm2.
(A1, B1) APs evoked at different locations are superimposed in time. Green trace:
current injection site at the axon end; Red trace: soma; Blue: dendrite. (A2,
B2) Phase plane representation: the rates of change of the membrane potential
are computed for each location. (A3, B3) The AP onset latency plotted over
distance. The point of AP onset is defined as dV/dt = 10 V/s. (A4, B4) The
onset rapidness of APs at different locations.
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The effects of soma size vary at different ranges of propagation distance.
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saturated at a higher plateau. This resulted from the increase of the MP rate
of change with higher channel density. However, when the soma site was close
to the AP initiation site (L < 50 µm), which appearers to be the case in most
cortical neurons for orthodromic spikes (Kole et al., 2007; Meeks & Mennerick,
2007; Palmer & Stuart, 2006), the onset rapidness was insensitive to the increase
of Na+channel density (Figure 11.4C, green traces).

We found different effects of increasing the soma size on the AP waveforms. If
the soma was close to the initiation site (L < 50 µm), the expansion of the soma
resulted in a larger current load, hence slowing down the propagating AP (Fig-
ure 11.4 D1); the effect was neglectable if the soma is far from the initiation site
(Figure 11.4 D3); in the transition regime (L is between 100 and 250 µm ), with
high Na+channel density, the somatic current source outweighed the local current
load, thus increasing the soma size speeded up AP onset (Figure 11.4 D2).
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Figure 11.5: Phase diagrams of somatic AP onset rapidness. Parameter
regimes with (A) gNa+ = 350 pS/µm2; (B) α = 1; (C) L = 50 µm; (D)
L = 1 mm. The color codes for onset rapidness the somatic AP, which is measured
by the slope of phase plot at the point of AP onset.

This parameter dependence is illustrated by phase diagrams shown in Fig-
ure 11.5. Applying a peak Na+conductance of 350 pS/µm2 as in the original
Wang-Buzsaki model (Figure 11.5 A), the AP onset rapidness attained the value
of 20 ms-1 after propagating for more than one electrotonic length (λ ≃ 400 µm).
Even faster onset can only be induced by higher Na+channel densities. However,
regions close to the AP initiation site (L < 100 µm) were insensitive to an in-
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crease of Na+channel densities (Figure 11.5 B, blue region on the left side). In
other words, the rapid onset of the propagating wavefront only occurred in a large
distance from the AP initiation site.

11.4 Onset Rapidness vs. Propagation Velocity

In this section, we derive an analytical expression for the onset rapidness of the
action potential when it propagates far enough to reach the asymptotic state with
invariant waveforms.

The cable equation for a homogenous axon can be written as:

τ
∂V

∂t
= −V + λ2∂2V

∂x2
+ i(x, t) (11.9)

We are searching for the stationary solution of the traveling wave such that
the wavefront has an invariant shape, which means, at a given time t1 > t0, the
graph of V (x, t1) has the same appearance as that of V (x, t0) except that the
wave is moved to the right by the amount of θ · t. The constant θ represents
the propagation velocity of the traveling wave. In order to represent V (x, t) by a
function of one variable, we introduce a new variable

y = x − θ · t, (11.10)

then Eq. (11.9) becomes

− τθ
dV

dy
= −V + λ2 d2V

dy2
+ i(y) (11.11)

At the leading edge of the AP, the lateral current is one order of magnitude larger
than the local sodium current. We can then neglect the ionic current i(y) and
the system is reduced to a linear ordinary differential equation:

V − τθV ′ − λ2V ′′ = 0 (11.12)

As the upstroke of the action potential approaches the linear phase, we search
for a special solution of the form V = V0 exp(ky). The problem then becomes an
eigenvalue problem for the equation

1 − τθk − λ2k2 = 0 (11.13)

The positive solution of this equation is

k =
−τθ +

√
τ 2θ2 + 4λ2

2λ2
(11.14)
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The onset rapidness r is defined as the first derivative of the function V̇ (V ) at
the AP onset point of V̇ = 10V/s:

r =
∂ ∂V

∂t

∂V
=

∂ dV
dy

· ∂y
∂t

∂V
=

∂(kV · θ)
∂V

= kθ (11.15)

= −τθ2

2λ2
+

θ
√

τ 2θ2 + 4λ2

2λ2
(11.16)
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Figure 11.6: AP onset rapidness and the propagation velocity All simu-
lation data from Figure 11.4. The onset rapidness of somatic AP plotted against
the propagation velocity of the cable. Blue dots: all data points; red crosses: the
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µm; solid line: analytical solution in Eq. 11.16.

To compare the analytical solution with the numerical results, we computed
for each simulation the propagation velocity of the traveling waves. The propa-
gation velocity increased with the maximum Na+conductance (data not shown).
Figure 11.6 shows the scatter plot of the onset rapidness of the somatic AP versus
the propagation velocity recorded at axon. The solid line is the analytical solu-
tion of the traveling waves as in Eq. 11.16, which describes the AP onset when
the soma is away from the initiation site in the order of several electrotonic length
(red crosses: L = 1 mm). This solution gave a good approximation in the regime
of low velocity, which means ḡNa is small, thus it was safe to neglect the local
ionic current in Eq. (11.9). However, if the distance between soma and initiation
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site was smaller than one electrotonic length (green crosses: L = 50 µm), the
onset rapidness hardly changed with propagation velocity or with increasing ḡNa.
The data points lie on a horizontal line of the scatter plot and the values of onset
speed are much below 10 ms-1.

11.5 Effects of Lateral and Local Currents

In the previous section we have examined the asymptotic solution for the traveling
wave, where the onset rapidness is mainly determined by the propagation velocity.
It raises the question how the AP waveforms are changed by propagation? In
particular, how big is the influence of the lateral currents at different propagation
distance?
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Figure 11.7: The big AP in space and the lateral current. (A) The AP
onset rapidness plotted over distance. The blue, cyan, green, red, yellow squares
correspond to the distance of 0, 50, 400, 734 and 1000 µm from the initiation site.
(B) The instantaneous V (x) at the AP onset time of the corresponding locations.
The black dashed curve shows the threshold voltage at different locations. (C)
The AP onset latency plotted over distance. The squares indicate the same
locations with the same colors as in (A). (D) The instantaneous lateral currents
at the AP onset time of the corresponding locations. Simulation data from the
same example in Figure 11.3 A (L = 50 µm, α = 1, gNa = 300 pS/µm2).
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To answer this question, we analyzed the spatial potentials and the lateral
currents induced by propagation. Figure 11.7 shows the same example as plotted
in Figure 11.3. The onset rapidness of the propagating AP gradually increased
over a large distance (L ≃ 2λ) and peaked at L = 734 µm. The onset rapidness
underwent a dynamical change even after the propagating velocity saturated to
a constant value (Figure 11.7 A, B, green-red-yellow squares). In Figure 11.7 C,
we plotted the instantaneous V (x) at the onset time of APs in the four locations
marked by squares. Assuming the duration of an AP around 1 ms, and the
propagation velocity around 1 m/s, the spatial AP spreads over a distance as
large as 1 mm. However, such a ‘big AP’ emerged only if it has traveled away
from the initiation site for a distance on an order of λ.

The voltage threshold became more negative while propagating away from
the initiation site (Figure 11.7B). At the initiation site, the action potential was
generated at the highest voltage threshold, where many Na+channels were inac-
tivated and the peak AP was small. At a distance far from the initiation site AP
was mainly triggered by the lateral current. Figure 11.7D plots the lateral cur-
rents at the time of AP onset in the corresponding locations. The instantaneous
lateral currents (marked by squares) fed into these sites were similar, indicating
the deflection rate of the membrane potential at 10V/s characterized as the onset
of spikes. However, the acceleration rate and the peak magnitude of the lateral
currents increased significantly by propagating for such distances that a ‘big AP’
had been established in space.

Besides the local Na+currents and the lateral currents, another current source
of the spatial extended neuron came from the constant current injection at the
end of the axon. We explored the influence of the injected current by terminating
the constant input after the first AP was initiated at the injection site. As shown
in Figure 11.8 the following APs were delayed, but the changes of AP waveforms
by propagation were not altered by terminating the injected current.

Finally, the increase of onset rapidness by propagation can not simply be
explained by the inactivation of the Na+channels induced by the constant current
injection. Even if we removed the Na+channel inactivation from the model, the
onset dynamics showed the same behavior on the large spatial scale of propagation
(data not shown).

11.6 Decomposing the Somatic AP

Another experimental evidence that has been invoked to support the lateral cur-
rent hypothesis are the sometimes observed double peaks on the second derivative
of the AP trace. By focal TTX application at the proximal axon one of the peaks
can be eliminated, which suggests that orthodromic spikes were initiated in the
proximal axon and back propagated to the soma (Meeks & Mennerick, 2007). A
frequently found interpretation is that the first peak of somatic APs results from
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the lateral current invasion from the axon to the soma and the second from the
local Na+channel activation at the soma.

In this section we comprehensively characterize the somatic AP waveforms
by computing the first and second derivatives of the somatic voltage traces. The
traces of V, V̇ , V̈ derived from one simulation are shown in Figure 11.9A. The
ratios between the first and the second peaks were computed in each simulation
and presented in the phase diagrams shown in Figure 11.9B and Figure 11.9C.
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Figure 11.9: Two components of the somatic action potential (A) Exam-
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We first analyzed solutions in which the local Na+channel activation con-
tributed to the major component of the somatic AP, whereas the first peak in-
duced by the lateral current was smaller. From the phase diagram shown in
Figure 11.9 B, the somatic AP was monophasic (ratio ρ = 0) if the soma size is
smaller than 0.3 or the distance from the initiation site to the soma is shorter than
250 µm. Enhancing the Na+channel density from 300 pS/µm2 to 1200 pS/µm2,
biphasic APs were found at a distance closer to initiation sites. However, the
AP waveforms within the first 50 µm of the propagation distance were usually
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monophasic (blue regions in the phase diagram) even if we further increased the
Na+channel density to 3000 pS/µm2.

Then we searched for the solutions with a larger ‘axonal’ peak preceding a
smaller ‘somatic’ peak, which appeared to occur only if the distance from the
initiation site to the soma was between 30 and 60 µm. If they were too close,
the smaller peak would merge into the bigger one; if they were too far apart, the
traveling wave front arrived before the local Na+channels were activated, hence
only the first but not the second peak was left. Such a distance of 30 to 60
µm away from the soma happens to be the location of the AP initiation site as
suggested by the experimental recording.

Figure 11.10D depicts the latency between the two peaks. The temporal
separation of two peaks indicated the current flow from thin axon to big soma.
The latency was shorter (< 20 µs) when the larger peak of the ‘axonal component’
proceeded the smaller peak of the ‘somatic component’. When a smaller axonal
component was followed by a larger ‘somatic component’, the latency between
two peaks was also influenced by the kinetics of local Na+current such that larger
Na+channel density results in shorter latency.

In general this short latency does not match the latencies observed in ex-
periments, which might result from one simplification in this study, namely, the
homogenous cable property in the geometric model and the instantaneous activa-
tion of Na+channels in the Wang-Buzsaki model. Nevertheless, here we present
a useful tool to characterize more detailed models with specific properties at AP
initiation site.

11.7 Effects of Delayed Sodium Channel Kinetics

The Wang-Buzsaki model makes an idealization that the activation of sodium
channels is instantaneous. In reality the activation time is finite, although the
detailed properties of Na+channel gating and activation kinetics are still to be
uncovered for cortical neurons. The activation time constant estimated from in

vitro recordings of Na+currents in cortical neurons is around 200 µs at 23°C, and
is expected to be even faster at the physiological temperature (Baranauskas &
Martina, 2006; Engel & Jonas, 2005).

To study the impact of delayed channel kinetics we introduced the voltage- and
time- dependent activation of sodium channels into our baseline model. Following
Hodgkin and Huxley’s formalism, the Na+current is controlled by two kinetic
processes, activation and inactivation:

INa = ḡNam
nh (V − ENa) , (11.17)

where m is the probability that any one of the n independent gating events for
activation has occurred, and the exponent n indicates the number of subunit
gates.
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A recent study by Baranauskas & Martina (2006) suggested that the activa-
tion time course was better fit by a mono-exponential function rather than the m3

kinetics originally proposed in the Hodgkin-Huxley model. For a systematic com-
parison of the different candidate models, we therefore constructed two types of
channel kinetics, the WBm1 model and the WBm3 model. To facilitate compari-
son, in both models we use the same activation curve as shown in Figure 11.11A
and the same voltage dependent activation time constant:

τm(V ) = ϕ/(αm(V ) + βm(V )), (11.18)

where ϕ is a scaling factor to set the maximum activation time constant τ 0
m around

200 µs (Figure 11.11B, solid line). In both models, if the maximum activation
time constant was larger than 200 µs, slow activation of Na+channels coupled
with faster inactivation resulting in bursting of APs (data not shown).

In the WBm1 model the activation variable m approaches its steady state
value m3

∞ mono-exponentially:

gNa = ḡNamh, (11.19)

τm(V )
dm

dt
= m3

∞(V ) − m. (11.20)

And the WBm3 model follows the original HH model formulation:

gNa = ḡNam
3h, (11.21)

τm(V )
dm

dt
= m∞(V ) − m. (11.22)

To depict the different channel kinetics in the WB, WBm1 and WBm3 models,
we applied a voltage step from -65 mV to -40 mV and plotted the channel opening
probabilities and the corresponding Na+currents in Figure 11.11. As expected
from the channel kinetics, the WB model with instantaneous activation exhibited
a step increase of the Na+current and then decayed exponentially due to the
channel inactivation. In both WBm1 and WBm3 models Na+currents increased
as a continuous functions at time initially rising linearly or parabolically (∽ t3),
respectively.

Figure 11.12A plots spike patterns of these models. Different activation ki-
netics did not affect the rheobase current to generate action potentials. Given
the same level of injected currents, the first AP fired simultaneously in the three
models. However, the subsequent APs showed deviation in their time course:
APs in the WBm1 model (green trace) preceded those in the WBm3 model, while
the WB model exhibited the longest inter-spike intervals. Thus fast activation
and inactivation would space the subsequent spikes more sparsely. The phase
plots in Figure 11.12B verify that the onset dynamics agrees with the channel
kinetics, i.e., fast kinetics resulted in fast onset dynamics. To obtain the same
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WBm1 model: ḡNa = 600 pS/µm2; WBm3 model: ḡNa = 750 pS/µm2.

level of peak V̇ , a higher maximum Na+channel conductance was required in
compensate of the slower activation kinetics.

Then we applied the different kinetic models to the multi-compartment sim-
ulations of the geometric neuron. The AP onset rapidness was quantified for
different combinations of the three parameters L, α, and ḡNa using the same pro-
cedure as described before for the WB model. The simulation results are shown
in Figure 11.13. The parameter dependencies of the AP onset dynamics were
similar as that in the WB model except that the peak onset rapidness was dra-
matically reduced from 70 ms-1 (WB model) to 20 ms-1 (WBm1 model) and
10 ms-1 (WBm3 model).

Another Hodgkin-Huxley type m3 model widely used in cortical neuron simu-
lations is the Mainen-Sejnowski model (Mainen et al., 1995). More details about
its channel kinetics can be found in the appendix to Chapter 9. Figure 11.14
summarizes the onset rapidness of somatic APs obtained by applying Mainen-
Sejnowski channel kinetics in the geometric model. The effect induced by propa-
gation was qualitatively the same but quantitatively much smaller in this model,
with the maximum value of onset rapidness below 10 ms-1 in all simulations.
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Figure 11.13: Somatic AP onset in WB m1(A) and m3(B) models The
onset rapidness of somatic AP depends on (A1, B1) the distance from ini-
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11.8 Summary and Discussion

In this chapter we presented a comprehensive study of the somatic action poten-
tial waveforms using an idealized geometric model with axonal AP initiation and
back propagation.

First, the waveforms of the somatic APs were quantified by the measure of
onset rapidness. Its parameter dependence was characterized with respect to the
distance from the AP initiation site to the soma, the soma size, and the overall
Na+channel density.

In our simulations the waveforms of APs exhibited a transition from an ini-
tially slow onset to a rapid onset with increasing propagation distance. If the
spikes were triggered within 50 µm away from the soma, the onset dynamics of
somatic APs was as slow as that at the initiation site. At a large propagation dis-
tance, the traveling APs reached an invariant waveform. For these traveling APs,
we derived the onset speed as a function of the propagation velocity (Eq. 11.16).

The impact of soma geometry was found to depend on the propagation dis-
tance. If the propagation distance was small (L ≪ λ), expansion of the soma
area introduced a larger current load, so that the AP onset was slowed down;
If the propagation distance was large (L > λ), the traveling wave had reached
an invariant waveform such that increasing the soma size had hardly any im-
pact on the onset dynamics of the somatic AP; At an intermediate distance in
the transition regime (L ≈ λ) with a high Na+channel density, the local current
source outweighed the current load, thus a larger somatic membrane area actually
speeded up the AP onset in the middle point of the soma.

Na+currents provide the major current source for the generation of APs. A
higher Na+channel density was reflected by increase of the peak rate of rise dV/dt.
The impact on the AP onset dynamics differed at different propagation distance.
Close to the initiation site, the onset dynamics remained slow and was rather
insensitive to an increase in Na+channel density. At an intermediate propagation
distance, increasing Na+channel density dramatically increased the onset speed;
At a large distance, increasing Na+channel density speeded up the propagation
velocity, thus the onset speed was increased correspondingly.

Second, we investigated the relative impacts of the lateral and local currents.
Our results suggested that APs propagating over a distance on the order of one
electrotonic length established a strong potential field in space, generating a large
lateral current. The contributions of lateral currents and local Na+currents to
the somatic AP waveforms were revealed by the double peaks on the traces of
dV/dt and d2V/dt2. Two components in the first and second derivatives could be
detected only if the soma size, the distance, and the channel density were within
a certain range. Particularly for a larger lateral current to preced a smaller
local Na+current, this could happen only within a small range of the propagation
distance between 30 and 60 µm. The corresponding somatic APs exhibit slow
onset regardless of the double peaks in V̈ . Thus biphasic APs, even with a salient
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peak induced by invasion of axonal APs, do not necessarily result in fast onset.
Finally, different models of Hodgkin-Huxley type show qualitatively the same

parameter dependence of the AP onset dynamics. The changes induced by prop-
agation were more prominent with faster Na+channel activation kinetics, i.e., the
onset dynamics of somatic APs was fastest in the WB model, slower in the WBm1

and WBm3 model, and even slower in the Mainen-Sejnowski models.



Chapter 12

Dynamics of AP Initiation in the

Soma-Proximal Axon-Complex

12.1 Introduction

In view of the comprehensive study of the simplified geometric model in Chap-
ter 11, one might argue that the spatial inhomogeneity of electrical properties
in a real neuron could shape significantly the AP initiation and propagation. In
the following, we characterize the impact of AP initiation and propagation on
somatic AP waveforms using a myelinated axon while implementing the channel
kinetics as realistic as possible. To distinguish it from the simplified geometric
model we term it ‘the full model’.

The myelinated axon is not a homogeneous cable but can be subdivided into
functionally different regions of axon hillock, axon initial segment(AIS), the in-
ternode myelinated segment, and the nodes of Ranvier.

Though the soma is considered the integration site of incoming synaptic in-
puts, it is not the spike initiation site. Axonal initiation of action potential has
long been demonstrated in cortical neurons (Stuart et al., 1997). Voltage sensitive
dye imaging (VSDI) studies have suggested that AP initiate at AIS of pyramidal
neurons, about 20-40 µm away from the axon hillock (Palmer & Stuart, 2006),
which was corroborated by simultaneous somatic and axonal recordings (Yu et al.,
2008).

The region of AIS is characterized by intense antibody labeling of voltage-
gated Na+channels and cytoskeleton proteins. The exact location of the peak
channel density has however remained ambiguous. Peak channel densities have
been found at 10 µm (Kole et al., 2008) or 40-50 µm (Meeks & Mennerick, 2007)
from the soma, or in the first 50 µm of the proximal axon (Hedstrom & Rasband,
2006; Inda et al., 2006). Neither soma nor proximal dendrite was visible by
Na+channel antibody staining.

Assuming that channels have similar ion gating properties, a surplus of chan-
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nels in the AIS should lead to significant larger Na+current at AIS. However
electrophysiological studies using either cell-attached or outside-out patch clamp
mode revealed only a small difference between soma, proximal dendrite and AIS,
incompatible with the large density differences (Colbert & Pan, 2002; Kole et al.,
2008).

In this chapter we constructed a full model of myelinated neuron according
to experimental observations. By varying the length of the AIS alongside its
Na+channel density in simulations, we tested the resulting AP initiation sites
and the corresponding waveforms of somatic spikes. In particular, neurons with
passive dendrites showed different behaviors compared to neurons with uniform
Na+channel distributions across soma and dendrite.

12.2 Model Description

12.2.1 Model Neuron Morphology

The morphology of the full model (Figure 12.1) was contructed according to
Na+imaging recordings of pyramidal neurons (Data provided by Michael Gutnick,
Hebrew University).

mµ0 Xa 50 100− 40 − 20

Figure 12.1: Modeling the morphology of a myelinated cortical neuron
Details refer to the text. Distance is measured from the end of the soma to the
axon. Red arrow indicates current injection into the middle of the soma.

The soma was modeled as an octagon with a length of 40 µm and a maximum
width of 20 µm. The total somatic membrane area is 1414 µm2, which was divided
to 20 segments of 2 µm length.

Attached to the soma is a myelinated axon consisting of axon hillock (xa in
length, tapping from 3 µm to 1 µm in diameter), the axonal initial segment (AIS,
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(50−xa) µm in length, 1 µm in diameter), the alternating myelinated internodes
(50 µm in length, 1 µm in diameter, 25 segments) and nodes of Ranvier (2 µm in
length, 1 µm in diameter, one segment).

At the other end of the soma is the dendrite, which was modeled as an equiv-
alent cylinder tapping from 2 µm at the proximal part to 1 µm at the distal
part. The proximal dendrite of the first 100 µm was divided to 10 segments of
10 µm segment length, and the distal dendrite in length of 500 µm was divided
to 7 segments of 50 µm segment length in Section 12.3. The passive dendrite in
Section 12.4 consists of 58 segments of distal dendrite, yielding a total dendritic
length of 3000 µm and a total membrane area of 9582 µm2.

12.2.2 Passive Electrical Parameters

Passive parameters were adjusted to match experimental observations. Mem-
brane capacitance Cm was assumed to be 10 nF/mm2 everywhere except that for
the myelinated part, Cmyelin

m = 0.1 nF/mm2. The leak conductance of somatic
membrane was taken as gL = 1 pS/µm2 according to the Wang-Buzsaki model.
Thus the somatic region has a membrane resistance (the inverse of the leak con-
ductance) of 1 MΩ · mm2 and a membrane time constant of 10 ms. Due to
myelination the membrane of internode parts is supposed to be less leaky than
that of nodes. We chose the leak conductance of the nodes and the internode
segements gnode

L = 10 pS/µm2 and gmyelin
L = 0.1 pS/µm2, correspondingly. The

intracelluar resistivity rL was assumed to be a constant value of 5 kΩ ·mm across
the neuron, which is an important quantity determining the electrotonic length
and the input resistance of the neuron, as discussed later.

Simulations were performed to test the sensitivity of the model behavior to
different choices of passive parameters. In particular, our baseline model was set
to fullfill three requirements:

• The axonal electrotonic length λ ≃ 400 µm (Shu et al., 2006).

• Onset latency between soma and initiation site ∆t ≃ 100 µs (Stuart et al.,
1997; Clark et al., 2005; Palmer & Stuart, 2006; Kole et al., 2007).

• AP propagating speed θ ≃ 1 m/s (Stuart et al., 1997; Kole et al., 2007).

Electrotonic Length

The linear cable equation for mathematical analysis of signal propagation down
a cable-like structures of axons or dendrites is written as:

τM
∂V

∂t
= λ2 ∂2V

∂x2
− V + rmie, (12.1)
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where τM and λ measure the temporal and spatial scales of the membrane poten-
tial dynamics. For a cable of radius a, membrane resistence rm, and intracellular
resistivity rL, λ is given by

λ =

√
arm

2rL
. (12.2)

Thus, the steady state membrane potential along a cable for a constant current
injection at the point x = 0 is described as:

V (x) = IeRin exp

(
−|x|

λ

)
, (12.3)

where Ie is the total amount of injected current, and Rin is the input resistance
at injection site.

Since the axon consists of alternating myelinated internodes ( 50 µm in length,
1 µm in diameter) and nodes of Ranvier ( 2 µm in length,1 µm in diameter), the
‘hybrid’ electrotonic length λ is obtained by solving the equation:

x1 + x2

λ
=

x1

λ1

+
x2

λ2

(12.4)

For the myelinated axon, x1 = 50 µm, x2 = 2 µm, a = 0.5 µm. We assumed
an invariant intracelluar resistivity rL = 5 kΩ · mm so that λ1 = 500 µm and
λ2 = 50 µm from Eq.12.2, yielding λ = 371 µm.

12.2.3 Channel Distribution

The channel kinetics of the Wang-Buzsaki model was summarized in the appendix
of Chapter 9. The maximum Na+and K+conductances at soma were taken as
300 pS/µm2 and 150 pS/µm2, respectively.

Assuming a similarity between soma and axon hillock, we used the same chan-
nel density at axon hillock as the somatic density. The maximum Na+conductance
ḡNa at the axon initial segment (AIS) was varied between 300 pS/µm2 and
6000 pS/µm2 so as to explore its impact on the AP initiation sites and the somatic
AP waveforms.

The Na+channel density in the nodes of Ranvier was assumed to be 3000 pS/µm2,
10-fold of the somatic density. Additional simulations were performed at a higher
nodal Na+channel density of up to 50-fold, 15000 pS/µm2, which was found not
to alter the results presented below. For simplicity the active components of
voltage-gating channels were assumed to be absent in the myelinated segments.

Physiological studies have revealed similar Na+channel densities between soma
and apical dendrites in pyramidal neurons by either whole cell (Huguenard et al.,
1989) or single channel patch recordings (Huguenard et al., 1989; Stuart & Sak-
mann, 1994; Kole et al., 2008). In Section 12.3 we applied a uniform Na+channel
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distribution throughout soma and dendrite. As a comparison, we used a passive
dendrite with only 10% of somatic channel density in Section 12.4.

The K+channel density was adjusted from the baseline level of somatic ḡK pro-
portionally to the Na+channel density, so that the basic shape of AP waveforms
was maintained while varying the channel density.

12.3 Models with Active Dendrites

In simulations of models with active dendrites we systematically varied the start-
ing point xa of AIS ranging between 5 µm and 45 µm measured from the end of
soma. The Na+channel density ḡNa at AIS varied from 300 pS/µm2 to 3900 pS/µm2.
A constant current was injected into the soma and the level of current was ad-
justed such that the model neurons fire repetitively at 10 Hz.

Figure 12.2 shows an example with xa = 20 µm and ḡNa = 900 pS/µm2. The
local membrane potentials were recorded simutaneously thoughout the neuron
(Figure 12.2A). The onset of action potential was detected when the rate of
change dV/dt crossed 10 V/s. The AP initiation site was recognized at the
location with the most negative onset latency compared to the somatic AP onset
(Figure 12.2C). In this typical example, an AP was initiated at the axonal site of
35 µm away from the end of the soma with an onset latency of around -100 µs.

The onset rapidness of APs was measured by the slope on the phase plot
(Figure 12.2B) at the point of AP onset, which sustained a value as low as 3 ms-1

in both the initiation site and the soma. The onset rapidness started to increase
only after a distance of 100 µm propagating away from soma (Figure 12.2D).

We compared these simulation results with those of the simplified ‘ball-and-
stick’ models in the previous chapter (Figure 11.3). The models behaved quali-
tatively similar, particularly with respect to the fast onset requiring a minimum
propagation distance of ∼ 100 µm.

12.3.1 Sites of AP Initiation

In the full model of a myelinated neuron, we applied the current injection at the
soma and searched for parameter regimes with action potentials preferentially
initiated at the axonal initial segement (AIS). In this model, the axonal APs
were triggered by applying a higher Na+channel density ḡNa at AIS compared to
that at the soma.

We recorded the sites of AP initiation in different simulations varying the
starting point xa of the AIS and the maximum Na+channel conductance ḡNa at
AIS (Figure 12.3). In these models, a channel density of ḡNa > 900 pS/µm2 was
sufficient to bring the AP initiation site from the current injection site in the
soma to the distal part of AIS. By moving the starting point xa away from the
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Figure 12.2: Simulation of neurons with active dendrites (A) APs evoked
at different locations are superimposed on the same time axis. Green trace: AP
at the axonal initial segment (AIS); red trace: AP at the somatic site; blue
traces: APs at dendrites. (B) Phase plots depict the rate of change in membrane
potential dV/dt with respect to V at the corresponding locations. (C) AP onset
latency plotted over distance. (D) Onset rapidness of APs at different locations.
xa = 20 µm, ḡNa = 900 pS/µm2.
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Figure 12.3: AP initiation sites in neurons with active dendrites (A) The
sites of AP initiation shifted from soma (−20 to 0 µm, with current injection at
10 µm ) to the distal AIS (30 to 50 µm) as ḡNa increased above 900 pS/µm2 in the
model. (B) Axonal AP initiation sites were preferentially at distal AIS (30-50
µm) while varying the starting point of AIS between 5 and 45 µm.
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soma, the total membrane area of AIS was decreased, thus it required higher
Na+channel density at AIS for an AP initiation(Figure 12.3A, red trace).

On the other hand, when the AP was initiated at axon, a small positive
correlation was detected between xa and the initiation site such that a larger xa

resulted in an initiation site further away from the soma (Figure 12.3B). However,
even if the AIS region started right after the soma (xa = 5 µm), the site of axonal
AP initiation was found to be at the end of the AIS ( 30 µm away from the axon
hillock), which might be due to the fact that the distal AIS is electrically isolated
from the current sink of soma and dendrites, such that the membrane at the
distal AIS is most easily depolarized by local activation of Na+channels.

12.3.2 Onset Dynamics of the Somatic AP

From these simulations, we further analyzed the waveforms of the somatic AP,
in particular its onset dynamics. As shown in Figure 12.4A, the onset rapidness
of the somatic APs increased with the Na+channel density ḡNa at AIS. Such
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Figure 12.4: Somatic AP onset in neurons with active dendrite A The
onset rapidness of somatic spikes increased slightly with enhancing ḡNa at AIS.
B The changes of somatic AP onset while varying the starting point of AIS xa

between 5 µm and 45 µm distance from soma.

increase was more pronounce when the AIS started at a closer distance xa away
from the soma (Figure 12.4B). Our interpretation is that the total number of
Na+channels at the membrane area between AP initiation site and the soma
might account for the increase of onset rapidness at soma, due to more Na+current
recruited along the way propagating from the initiation site to the soma. A larger
propagation distance by increasing xa was compromised by the reduction of the
total membrane area of AIS, resulting in an optimal distane of xa, a value which
was larger for higher Na+channel density. If the channel density was relatively
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low (ḡNa ≤ 1500 pS/µm2), the onset rapidness of the somatic AP was found to
decrease monotonically with increasing xa.

Above all, the somatic APs exhibited a smooth onset for the length of AIS
between 5 µm and 45 µm and the Na+channel density at AIS ranging from 300
to 3900 pS/µm2. The fastest onset we found in these simulations was far below
20 ms-1 as observed from the cortical neuron recordings.

12.4 Models with Passive Dendrites

To explore the potential impact of neuronal compartments distant from the AP
initiation site, we generated models with a 3000 µm long dendrite with much
lower Na+channel density ḡNa = 30 pS/µm2. The dendritic membrane was to
the extreme so passive that it even failed to regenerate propagating APs. APs
indeed only invaded the first 150 µm of the model dendrites, which was about 5%
of the total dendritic area in the model. In these models with passive dendrites,
we studied the somatic AP waveforms varying ḡNa at AIS up to 6000 pS/µm2.
Figure 12.5 shows a simulation example with xa = 20 µm and ḡNa = 6000 pS/µm2.
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Figure 12.5: Simulation example of neurons with passive dendrite(A) APs
evoked at different locations are superimposed on the same time axis: green trace:
AP at the axon initial segment (AIS); red trace: AP at the somatic site; blue
traces: APs at dendrites; cyan traces: APs propating down the axon. (B) Phase
plots depict the rate of change in membrane potential dV/dt with respect to V
at the corresponding locations. (C) AP Onset latency plotted over distance. (D)
Onset rapidness of APs at different locations. xa = 20 µm, ḡNa = 6000 pS/µm2.

When we compared it to propagating APs with active dendrite in Figure 12.2,
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here the peak values of APs decreased dramaticly during back propagation (from
green trace to red and to blue traces in Figure 12.2A). The AP waveforms became
broader and smaller from the AIS back to soma and further into the passive
dendrites.

Moreover, the peak rate of changes dV/dt in membrane potentials at the AIS
was unrealistically high being much larger than 2000 V/s (Figure 12.2B). Such
a high value of dV/dt has never been observed in experimental recordings but
resulted in the generation of double peaks in the phase plots of APs propagating
down the axon (cyan trances in Figure 12.2B).

From Figure 12.5C the onset latency between the AP initiation site (around
50 µm) and the soma was as large as 200 µs. The propagation speed of APs along
the axon was also smaller compared to the simulations with active dendrites.

The onset rapidness recorded between the AIS and the somatic site was not
a flat function any more, As shown in Figure 12.5D, the AP onset became faster
at both the left and right sides of the AP initiation site. The value of onset
rapidness increased abruptly at the transition point between the soma and the
dendrites. The somatic AP shows an onset rapidness of about 15 ms-1 in this
simulation example.

12.4.1 Sites of AP Initiation

The AP initiation sites in the model with passive dendrite were no longer re-
stricted to the soma and the distal AIS. As in the model with active dendrites,
neurons with homogeneous channel density ḡNa across the soma and the AIS
showed AP initiation at the soma; neurons with much higher channel density at
the AIS and a relatively smaller value of xa showed AP initiation at the distal
AIS. Given an intermediate ḡNa at the AIS, the models with passive dendrites
showed AP initiation at the proximal axon, which was sometimes even before the
starting point of the AIS. The sites of AP initiation moved closer to the soma
while varying the starting point of AIS xa away from the soma (Figure 12.6).

This result seems counter-intuitive at first glance. Our interpretation is as
follows. The preference for AP initiation at the AIS compared to that at the
soma was due to either a higher Na+channel density at the AIS, or an electrical
isolation of the axon from the large current sink induced by the long passive
dendrite. When ḡNa at the AIS was high enough, both of the effects resulted in
an AP initiation at the distal part of AIS. However, due to the large current sink
induced by the long passive dendrites, if ḡNa at the AIS was not high enough and
the membrane area of the AIS was relatively smaller with a larger value of xa,
the local activation of Na+channels per se was not sufficient to trigger an AP.
Thus the AP initiation was induced at the proximal axon which was strongly
depolarized by the current injection at the soma.
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Figure 12.6: AP initiation site in neurons with passive dendrites (A)
The site of AP initiation moved from the somatic site (−20 to 0 µm, with current
injection at 10 µm ) to the distal AIS as ḡNa at the AIS increased; (B) The
sites of AP initiation while varying the starting point of AIS xa away from the
soma; Color code indicates the Na+channel density at the AIS (For a detailed
explanation see the text).

12.4.2 Onset Dynamics of the Somatic AP

The onset dynamics of the somatic APs were analysed in the models with passive
dendrites. For all those simulations with AP initiation at the distal AIS, the
onset of the somatic APs speeded up significantly with increasing ḡNa at AIS
(Figure 12.7A). On the other hand, if the initiation site was close to the soma
(i.e., compare the red trace in Figure 12.6 and that in Figure 12.7A ), the somatic
APs exhibited a smooth onset far below 5 ms-1. Given the AIS starting at 30 to
40 µm away with a channel density of 5000 pS/µm2, the somatic AP onset could
be as fast as 20 ms-1.

The onset rapidness of the somatic APs versus the starting point xa of the
AIS peaked at intermediate values of xa. When xa was small, the propagation
distance from the AIS to the soma was correspondingly small; When xa was large,
the total membrane area of the AIS was reduced and thus less Na+channels were
activated during the period of backpropagation from the AP initiation site to the
soma. As ḡNa at AIS increased, the optimal value of xa was shifted to a more
distal site (Figure 12.7B).

To summarize the parameter dependence of the AP initiation site and the
onset rapidness of the somatic APs, we presented the simulation results of our
models with passive dendrites by the phase diagrams shown in Figure 12.8. The
AP initiation sites were found mostly at the distal AIS (L > 40 µm) given
the Na+channel density ḡNa > 1000 pS/µm2at the AIS. Only if the Na+channel
density was not so high at the AIS or the total membrane area of the AIS was
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Figure 12.7: Somatic AP onset in neurons with passive dendrite (A) The
onset rapidness of somatic spikes increased significantly with enhancing ḡNa at
AIS. (B) The changes of somatic AP onset while varying the starting point of
AIS xa between 5 µm and 45 µm away from soma. The maximum onset speed of
somatic spikes was induced by intermediate values of xa, which was shifted to a
larger value as ḡNa increased.

relatively small, the APs were found to initiate at the soma or the proximal AIS
(Figure 12.8A). The onset rapidness of the somatic APs is shown in Figure 12.8B.
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Figure 12.8: Phase diagram in models with passive dendrites (A) AP
initiation site and (B) onset rapidness of the somatic APs in simulations varying
the starting point xa of the AIS and its Na+channel density.

The changes of the somatic waveforms induced by propagation became more
pronounce with increasing ḡNa at the AIS and the starting point xa of the AIS
further away from the soma. Among these models the fastest onset of the somatic
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APs was found in the simulation with ḡNa = 6000 pS/µm2 and xa = 35 µm,
yielding a value of r = 24 ms-1.

12.5 Impact on Dynamic Response Properties

What are the response properties of a spatially extended neuron model with so-
matic current injection and axonal AP initiation? In the following, we investigate
the voltage response at the soma and the AIS in the presence of synaptic noise.
The voltage traces at these two sites revealed a highly linear correlation. The
corresponding population response function is compared to those in the single
compartment neuron models.

12.5.1 Voltage Dynamics at the Soma and the AIS

To study a neuron’s input-output function to convert fluctuating synaptic inputs
into spike trains, we simulated the multi-compartment neuron models applying
time-varying inputs at the soma:

I(t) = I0 + σIIsyn(t),

where the synaptic noise Isyn(t) was generated from a stochastic Ornstein-Uhlenbeck
process (see Chapter 9.1).

Figure 12.9A shows the voltage traces at the soma and the AIS in models
with a 10-fold increase of Na+channel density at the AIS compared to the soma.
Different from repetitive firing under the constant current injection, the mem-
brane potentials showed subthreshold fluctuation interrupted by firing of one or
more action potentials. Due to the high channel density, action potentials were
first generated at the AIS and then propagated into soma with an onset latency
of around 200 µs (Figure 12.9A, inset).

The phase plots in Figure 12.9B shows a monophasic waveform at the AP
initiation site with a smooth onset of about 4 ms-1. The somatic APs exhibit
biphasic waveforms in the phase plot and the onset speed is slightly faster, with
a value around 7 ms-1. Given the maximum Na+channel conductance ḡNa at the
AIS was 3500 pS/µm2, such as 10-fold of the somatic Na+channel density, the
peak rate of MP rise dV/dt at the AIS was as high as 2000 V/s.

We computed the variances of the subthreshold MP fluctuations at the soma
and the AIS, as shown in Figure 12.9C. To erase memory effects from the previous
spikes, we used only time windows starting from 30 ms after each spike to the
onset of the next spike. The subthreshold membrane potential fluctuation at
the soma and at the AIS showed a highly linear correlation in all models we
investigated.

Figure 12.9D plots the voltage thresholds of AP onsets at both sites, which
also suggests a strongly linear correlation. The voltage thresholds at the soma
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were more depolarized and showed a slightly smaller variability than those at the
AIS.

Figure 12.9: Response to noisy inputs in models with ḡNa × 10 at AIS.
The model with active dendrites: ḡNa = 300 pS/µm2at the soma; ḡNa = 3000
pS/µm2at the AIS; xa = 30 µm. The injected current was generated from an
Ornstein-Uhlenbeck stochastic process with τc = 40 ms. (A) The voltage traces
at the soma (red) and the AIS (blue). Inset: the enlarged window of one AP
indicating axonal initiation of spikes. (B) The phase plots showing the rate of
changes in membrane potentials v.s. the voltages at the soma (red) and the
AIS (blue). Inset: the enlarged phase plot of the somatic APs. (C) Correlation
of the sub-threshold membrane potential fluctuations at the soma and the AIS.
(D) Correlation of the voltage thresholds at the soma and the AIS. The total
simulation time: 20 s; time step: 10 µs.

12.5.2 Frequency Response to Oscillatory Noisy Inputs

Finally, we compared the coding properties of these multi-compartment neuron
models with those of point neuron models. We simulated the multi-compartment
models by somatic injection of noisy oscillatory inputs

I(t) = I0 + I1 cos(2πft) + σIIsyn(t),



144 Dynamics of AP Initiation in the Soma-Proximal Axon-Complex

The constant current level I0 was adjusted in simulations to set the mean firing
rate ν0 around 10 Hz. The modulation of the input currents I1 was taken as
10% of I0. The magnitude of the synaptic noise σ was chosen such that the
subthreshold fluctuation of somatic MP had a standard deviation between 3 and
5 mV and the temporal correlation of noisy current has a time constant of 40 ms.

The population response of these model neurons was characterized by the
instantaneous firing rate ν(t) averaged over thousands of trials and fitted by the
linear response function

ν(t) = ν0 + ν1 cos(2πft + φ(f)).

The frequency modulation ν1 of the population firing rate was plotted against
the input frequency in Figure 12.10.
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Figure 12.10: Frequency modulation of Population Firing Rate in multi-
compartment models. Asterisk: single-compartment Wang-Buzsaki models
with ḡNa = 300 pS/µm2 (black) and ḡNa = 3000 pS/µm2 (magenta). Squares:
multi-compartment Wang-Buzsaki models with active dendrites; ḡNa = 300
pS/µm2 at the soma and ḡNa = 3000 pS/µm2 at the AIS. Triangles: multi-
compartment Wang-Buzsaki models with large passive dendrites; ḡNa = 300
pS/µm2 at the soma, ḡNa = 3000 pS/µm2 (green) and 6000 pS/µm2 (red) at
the AIS. The temporal correlation of the background synaptic noise τc = 40 ms.
Error bars represent the standard error of the mean (SEM) across independent
trials.
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From Figure 12.10, the strength of the oscillatory response ν1 in these multi-
compartment models showed similar damping at high input frequency as was
found in the single-compartment Hodgkin-Huxley-type models. In the presence
of synaptic noise with τc = 40 ms, the cutoff frequency was about 50 Hz in
both models. For input frequencies f ≥ 200 Hz, the response modulation ν1

went up significantly when we increased the Na+channel density at AIS from
300 pS/µm2 to 3000 pS/µm2 and 6000 pS/µm2 in the passive dendrite models.
On the contrary, a 10-fold increase of Na+channel density in single compartment
models and active dendrite models has rarely any impact on the modulation
amplitude of high frequency response.

12.6 Summary and Discussion

In this chapter, we studied two classes of multi-compartment models of myeli-
nated neurons using physiologically constrained parameters. The onset dynamics
of somatic APs were analyzed in simulations while systematically varying the
length of the AIS and its Na+channel density. In models with homogenous chan-
nel distribution across soma and dendrites, the somatic AP onset was as smooth
as that at the AP initiation sites; In models with large passive dendrites where
APs only invaded 5% of the total dendritic membrane, the somatic AP waveforms
were strongly shaped by lateral currents in the parameter regime with a distal
AIS and a 10-fold or even higher Na+channel density at the AIS.

Different from the single compartment neuron models, the input and output
sites are spatially separated in real neurons, where soma is considered to be
the integration site of synaptic inputs, and AIS is the initiation site of action
potentials. How is the neurons’ output function affected by the spatial isolation
of soma and AIS in the multi-compartment models?

We have shown above that in most physiological models there are no signifi-
cant differences between soma and AIS in AP onset dynamics. Due to the fact
that APs are initiated in the AIS, the proximal site of the axon, which is electri-
cally tightly coupled to the soma, subthreshold MP fluctuations of these two sites
are found to be highly correlated. Our simulations further predict a strong linear
correlation of the voltage thresholds at both sites (Figure 12.9). These results
demonstrated that it is plausible to predict the spike generation at AIS from the
temporal dynamics of the MP fluctuations at soma.

Intriguingly, although dendrites are often treated as the sites of synaptic in-
puts, our study suggests that the morphology of the dendritic tree has impact on
the somatic AP waveform and the output function of the neuron. The somatic
AP onset could reach the observed value of about 20 ms-1 in models with large
passive dendrite if the Na+channel density at AIS was as high as 5000 pS/µm2.
However, so far no direct experimental evidences support the existence of large
passive dendritic trees and extremely high Na+channel density at AIS. Thus an
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overwhelmingly strong lateral current is not very likely to occur in AP initiation
dynamics of cortical neurons.

We also computed the response function to noisy input of different frequen-
cies in the spatially-extended neuron models. There seemed to be a small but
significant improvement of the high frequency response in these models with pas-
sive dendrites compared to the point neuron model and the models with active
dendrites. Nevertheless, all the multi-compartment models we have investigated
exhibited a power-law-like decay of the modulation amplitude for input frequency
f > 50 Hz, contradicting to the experimental observation of undamped responses
up to 200 Hz in cortical neurons (Köndgen et al., 2008).



Chapter 13

Discussion and Conclusion of

Part II

In this study, we characterized the phase plot dynamics of action potentials in
different biophysical models of cortical neurons and explored the population cod-
ing properties of these models. A new class of CB model called the cooperative
Wang-Buzsaki (cWB) model was constructed by implementing the mechanism of
channel cooperativity. This model including a small fraction of strongly coupled
Na+channels exhibited an abrupt AP onset and a substantial improvement of its
high frequency response. Our comprehensive simulations of multi-compartment
models suggested that phase plots of somatic APs largely represented the dy-
namics of AP initiation at AIS. Exceptionally, neuron models with large passive
dendrites and an extremely high Na+channel density at the AIS showed a fast
onset dynamics and biphasic phase plots. These models appeared slightly more
sensitive to high frequency inputs with increasing of Na+density at the AIS. Thus
our results suggested two possible mechanisms in modeling of cortical neurons
with improved high-frequency coding properties.

Do phase plots of somatic APs represent the dy-

namics of AP generation?

In the past years, many studies have used phase plots from somatic recordings
to characterize the dynamics of AP initiation, however, the interpretation of the
observed somatic AP waveforms is still an open question. In many spatially ex-
tended neuron models we investigated in this study, phase plots obtained from
somatic APs provide a valid tool to infer the characteristic Na+current activa-
tion. We performed systematic simulations of multi-compartment neuron models
varying the AP propagation distance, the soma size, and the Na+channel density.
Different models of Hodgkin-Huxley-type channel kinetics showed qualitatively
the same parameter dependence of the AP onset dynamics. Even the Wang-
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Buzsaki model with the fastest conceivable Na+channel activation kinetics failed
to reproduce a rapid onset of somatic APs as recorded in cortical neurons. In
these modes, the somatic AP waveforms remained as smooth as at the AP initi-
ation site under the physiological constraint that the propagation time from AIS
to soma was consistent with experimental observations and for a large range of
channel distributions.

We found two special situations where the AP waveform at the soma was
strongly influenced by lateral currents: this can occur either for antidromic APs
with a long propagation distance, or by APs initiated at the distal AIS back
propagating into soma connected to a large passive dendrite.

In the first case, the antidromic APs should propagate over a distance at least
one electrotonic length in order to establish a strong potential field in space and
thus large lateral currents. Previous studies have provided substantial experi-
mental evidence that action potentials of the pyramidal neurons are initiated in
the axon initial segment (AIS), 30-40 µm away from the soma (Palmer & Stu-
art, 2006; Kole et al., 2007; Meeks & Mennerick, 2007). In our simulations the
passive parameters were chosen such that the electrotonic length of the cable was
λ ≃ 400 µm, as suggested by simultaneous recordings from soma and axon (Shu
et al., 2006). With this parameter choice, if the spike is triggered within 50 µm
away from the soma, the onset dynamics of somatic APs was as slow as that
at the initiation site. We conclude that antidromic propagation per se cannot
explain the observed high onset rapidness if the AP initiation site is as close to
the soma as currently believed.

In the second situation, neurons with a large passive dendrite could strongly
shape the onset dynamics of the somatic APs. One example of such a model has
been recently described by Yu et al. (2008). Such a passive dendrite contains few
Na+channels not even enough to regenerate back-propagating APs. Indeed APs
invaded only a small amount of dendritic area, which covered 5% of the total
dendritic area in our simulation. However, physiological studies have revealed
similar Na+channel densities across soma and dendrites (Huguenard et al., 1989;
Stuart & Sakmann, 1994; Kole et al., 2008). Dendritic membrane was found to
be rather excitable in many studies of dendritic APs such that backpropagating
APs spread effectively throughout the dendritic tree (Stuart & Sakmann, 1994;
Magee & Carruth, 1999; Williams & Stuart, 2000). Due to the large current
sink provided by passive dendrites, APs in those models were delayed before
propagating into the soma, which apparently leads to a large lateral current and
a change in somatic AP waveform. As a consequence, such a model yielded an
extremely high rate of rise of MPs at the initiation sites, with a rather value up
to 3000 V/s. In contrast, the experimentally recorded peak rate of rise dV/dt
at axon is about 1000 V/s or even below. Our study of passive dendrite models
thus resulted in a rather unrealistic situation.

Except for the two situations discussed above, in most cases phase plots of
somatic APs reveal the characteristics of the AP generator. A recent study by
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(Badel et al., 2008) used the dynamic I-V curves obtained from phase plots of
experimental recordings to generate abstract neuron models, which very precisely
predicted both the subthreshold and super-threshold responses of the neuron to
novel stimuli. The success of these predictions is hardly understandable if the
onset dynamics of the somatic AP is fundamentally different from that in the
initiation site. Our results showed the congruence of the AP onset dynamics in
the soma and in the AIS, justifying the use of phase plots from somatic recordings
to predict a neuron’s output function.

What makes cortical neurons sensitive to high fre-

quency inputs?

To explore the mechanism in the spike generation of cortical neurons that fa-
cilitates the fast response of a cortical neuronal population, we computed the
neurons’ response function to noisy inputs of various frequencies in different
conductance-based models.

Our study characterized the AP onset dynamics and response function in a
new class of CB models for AP generation, implementing the mechanism of chan-
nel cooperativity. Cooperativity of channel gating has been reported in studies
of various types of ion channels (Molina et al., 2006; Marx et al., 2001; Un-
drovinas et al., 1992). Only recently, Naundorf et al. (2006) hypothesized that
cooperative gating of Na+channels may underly the observed abrupt AP on-
set in cortical neurons. Our results directly demonstrate that the cooperative
Wang-Buzsaki (cWB) model exhibits a rapid AP onset and two distinct compo-
nents in the phase plots, resulting from collective activation of the cooperative
channel fraction. Given 10% of cooperative Na+channels with strong coupling
strength, the modulation amplitude of the neuronal response at input frequency
f > 200 Hz is about one order of magnitude larger than that in the uncou-
pled models (Figure 10.7). The modulation gain at high input frequency decays
roughly exponentially, which deviates somewhat from the power law behaviors
previously reported in conventional conductance-based models (Knight, 1972a,b;
Brunel et al., 2001; Fourcaud-Trocmé et al., 2003; Naundorf et al., 2005a; Badel
et al., 2008).

Because there exists an alternative explanation of the rapid somatic AP on-
set by the ‘lateral current hypothesis’, we further study the frequency-dependent
encoding in spatially extended neuron models with noisy current injection to
the soma and AP initiation in the AIS. How is a neuron’s response function
influenced by the spatial displacement of the input and output sites in real neu-
rons? Our study computed for the first time the frequency response function in
multi-compartment neuron models. The high frequency response of these models
showed power-law decay at input frequencies f > 50 Hz (Figure 12.10) similar
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to the behaviors found in the Hodgkin-Huxley-type single compartment models.
However, the response strength slightly increased with increasing of Na+channel
density at the AIS, resulting in a partial undamping of the high frequency re-
sponse. To the contrary, a 10-fold increase of Na+channel density in the single
compartment neuron models had no effect on the high frequency response. Our
results suggest a small but significant improvement of the high frequency response
in multi-compartment models with increasing Na+channel density at AIS.

Recently, Köndgen et al. (2008) reported for cortical neurons a rather flat
frequency response function with no attenuation of the modulation amplitude
up to 200 Hz (see Figure 9.3.2). Despite the significant improvement of high
frequency coding properties, neither of the model neurons we discussed above is
yet in full agreement with the cortical neurons with respect to their capability of
tracking fast-varying inputs.

Conclusion

The spatio-temporal dynamics of AP initiation and the response properties of
cortical neurons has become very prominent over the past years. Recent experi-
mental observation of abrupt onset and fast response of cortical APs (Silberberg
et al., 2004; Naundorf et al., 2006; Köndgen et al., 2008) have been inspired
by previous theoretical studies that explored the coding properties of simpli-
fied neuron models and their relation to the underlying spike generation mecha-
nism (Fourcaud-Trocmé et al., 2003; Fourcaud-Trocmé & Brunel, 2005; Naundorf
et al., 2005a,b). Intriguingly, so far no conductance-based model has been found
that simultaneously reproduces the onset dynamics and coding properties of cor-
tical neurons.

Our study identifies two different ways to construct such a neuron model
more sensitive to fast varying inputs. First, in the cWB models with cooperative
channel gating, a small fraction of strongly coupled Na+channels induces abrupt
changes of AP initiation and biphasic features in phase plots. The high frequency
responses of these models are substantially improved compared to the uncoupled
models. Second, most multi-compartment models we have studied behave simi-
larly as the single compartment models, such that phase plots of somatic APs are
representative of the activation kinetics of the axonal AP generator. However, in
neuron models with large passive dendrites and an extremely high Na+channel
density at AIS, phase plots of somatic APs exhibit rapid onset and two dis-
tinct components as those in experimental recordings. These models with higher
Na+channel density at AIS showed a slightly slower gain attenuation in the high
frequency sensitivity.

In both models there appears to be a correlation between the rapid onset
dynamics of somatic APs and improved high frequency response properties. Ap-
parently, this correlation is due to entirely different underlying mechanisms in
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the two models. Further studies are thus required to clarify the relation of onset
rapidness and dynamical response properties in CB models.

Our simulation results indicate that neither cooperative channel gating nor
the spatial separation of input integration site (soma) and spike initiation site
(AIS) can easily reproduce the response properties of cortical neurons with no
attenuation up to the input frequency of 200 Hz. This shows that the requirement
to reproduce dynamic response functions of cortical neurons puts very tight con-
straints on biophysical models of these neurons, a test which most ad hoc models
will not pass. Based on our results, it is tempting to hypothesize that both
mechanisms might synergistically act on the functions of cortical neurons and in
concert contribute to the coding properties for high frequency inputs. Whether
this is the case or not is an interesting question for the future study.
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Summary

Studies of pattern formation in many physical systems have identified many tools
of nonlinear dynamical systems theory that appear suitable for the investigation
of spatio-temporal patterns in neuroscience. In this thesis we apply these tools
to study pattern formation in the cerebral cortex on two different scales: the
development of spatially complex visual maps on the level of cortical columns, and
the onset dynamics of action potential generation on the level of single neurons.

In the first part of this thesis, we develop a quantitatively controlled numeri-
cal method to study the dynamical processes resulting from competitive Hebbian
learning in the development of orientation preference maps (OPMs). Kohonen’s
self-organization feature mapping has been widely used to simulate the emergence
and arrangement of different feature maps in the visual cortex. Even though the
formation of OPMs in this model is known to be affected by an unstable dynamics
that removes biologically important structures called spontaneous pinwheel an-
nihilation, the problem of pinwheel stability has been left unexplored in almost
all studies of this model and the model’s attractor states have largely remained
un-characterized.

Our study identifies different dynamical regimes in the Kohonen model and
performs a comprehensive study for various system sizes, feature space dimen-
sionalities and stimulus distributions. We first consider the development of OPMs
coupled only with retinotopy in a 2D+2D model and characterize the unstable
pinwheel dynamics by quantitative analysis of the kinetics of pinwheel annihila-
tion. Different from previous simulation work that overlooked this instability and
the resulting pattern rearrangement in map dynamics, our study demonstrates a
general way to characterize the long term dynamics in large systems.

Including more feature dimensions in this model, we further test whether the
pinwheel dynamics may be stabilized by interactions of different feature maps.
Intriguingly, we find an essential 2D mapping close to the symmetry breaking
threshold, whereas the additional n − 2 feature dimensions are suppressed until
subsequent bifurcations. Our study reveals the new phenomena of dimension
suppression and pinwheel crystallization in different dynamical regimes. The
transformation from an initial pinwheel-rich aperiodic pattern to either pinwheel-
free orientation stripes or pinwheel crystals appears to be a robust dynamical
phenomenon in developmental models.
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In the second part of this thesis, we study the phase plot dynamics of action
potential (AP) initiation in conductance based (CB) neuron models and its im-
pact on population coding properties. Cortical recordings of somatic APs have
revealed an abrupt onset in phase plots unexpected from canonical Hodgkin-
Huxley-type models. The fast onset of individual spikes has been hypothesized
to result from cooperative sodium channel gating and has been hypothesized to
lead to a more reliable population response to high frequency inputs.

In our study, we construct and characterize a new class of CB model imple-
menting the mechanism of channel cooperativity. For a low fraction of strongly
cooperative channels, this model reproduces the rapid onset dynamics and bipha-
sic waveforms observed in phase plots of cortical APs. Strong sodium channel
cooperativity is found to boost the encoding of fast varying inputs.

To examine an alternative explanation for the rapid onset of somatic APs,
namely that it is due to lateral currents from the axon initial segment (AIS), we
further characterize AP waveforms in multi-compartment neuron models. In spa-
tial extended neuron models constrained to fit known physiological parameters,
phase plots of somatic APs faithfully reveal the characteristics of the AP gener-
ator. Lateral currents are found to have little impact on the onset dynamics of
somatic APs except in the models with large passive dendrites and an extremely
high Na+channel density at the AIS. Finally, we test the coding properties of
these models and find a slightly weaker gain attenuation in the high frequency
sensitivity with increasing of Na+density at AIS than is observed in single com-
partment models.

In summary, we identify two possible mechanisms for modeling AP genera-
tion in cortical neurons with a rapid onset and a fast coding property. We point
out that neither the cooperative channel models nor the spatially extended neu-
ron models can easily reproduce the coding properties of cortical neurons which
appear to exhibit no attenuation in their high frequency response up to 200 Hz.
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