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On peut même dire, à parler en rigueur, que presque toutes nos con-
naissances ne sont que probables; et dans le petit nombre des choses que
nous pouvons savoir avec certitude, dans les sciences mathématiques
elles-mêmes, les principaux moyens de parvenir à la verité, l’induction
et l’analogie se fondent sur les probabilités; [. . . ]

Pierre-Simon de Laplace [100]
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1 Introduction

The investigation of quantum many-particle systems is a central goal of modern
condensed-matter physics. Complex physical phenomena such as high-temperature
superconductivity [101], heavy-fermion behavior [72], and correlation-driven metal-
insulator transitions [78] are central aspects of this particular field of science.

The Hubbard model [76, 63, 91] is a paradigm of correlated-electron physics. The
model describes interactions between electrons in the most basic way by assum-
ing the Coulomb repulsion to be local to each lattice site. It is one of the simplest
quantum-mechanical lattice models capable of capturing relevant physical aspects of
strongly correlated electron systems such as high-temperature superconductivity [5]
or correlation-driven insulators [78]. Outside of condensed-matter physics, the Hub-
bard model plays an important role in the explanation of many-body phenomena
observed in ultra-cold atoms trapped in optical lattices [23]. These systems present
a remarkably pure realization of the Hubbard model and other quantum-mechanical
lattice models [80]. In contrast to condensed-matter systems, the model parame-
ters can be precisely controlled offering the possibility of a systematic experimental
study of models that were initially formulated for applications in condensed-matter
physics.

Despite its simple structure, the Hubbard model cannot be solved in general. Es-
pecially for lattices in two and three dimensions no exact solution exists. Therefore,
numerical methods are of prime importance of the investigation of its properties.
In this thesis, we study the three-dimensional (3D) Hubbard model using quan-
tum Monte Carlo (QMC) simulations. Our aim is a precise numerical study of its
properties in the thermodynamic limit.

QMC algorithms are powerful tools to calculate thermodynamic properties of in-
teracting quantum many-particle systems, such as spin models [66, 158, 159] or more
generally bosonic systems [68, 162]. However, a direct investigation of lattice models
in the thermodynamic limit is generally impossible because QMC simulations cannot
treat infinite lattice sizes. A reliable finite size extrapolation to the thermodynamic
limit is very difficult, especially for fermionic systems such as the Hubbard model,
where the sign problem [184] limits simulations to either very small systems or to
special cases such as particle-hole symmetric models.

Therefore, approximative schemes that allow calculations directly in the thermo-
dynamic limit are advantageous. A widely applied approximation of this kind is the
dynamical mean-field theory (DMFT) [48, 96]. The DMFT maps the infinite-lattice
problem onto a single-site impurity model embedded in a mean field. The single-
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1 Introduction

site problem is then solved by QMC or other suitable impurity solvers like exact
diagonalization methods [30] or Wilson’s numerical renormalization group (NRG)
algorithm [27]. The DMFT approximates all quantum fluctuations to be local and
treats long ranged correlations in a mean-field limit only, an approximation that is
only exact in the limit of infinite dimensions [118, 126]. The neglect of non-local
many-body correlations renders the DMFT incapable of capturing physical effects
such as spin-wave and spin-liquid physics or disorder-induced localization.

Cluster mean-field theories [109] represent a systematic extension of the DMFT
by expanding the single impurity to a finite cluster embedded in a mean field. By
systematically enlarging the cluster size, more and more non-local correlations are
re-introduced into the problem. The original lattice problem is regained in the limit
of infinite cluster size. Thus, cluster mean-field theories offer the possibility of a
systematic finite-size analysis. Two distinct cluster mean-field theory algorithms
have been developed in recent years: the dynamical cluster approximation (DCA)
[71, 70] and the cellular dynamical mean-field theory [97]. Since the difference
between the two methods is mainly of a technical nature, we use the DCA exclusively
for this thesis.

We employ QMC simulations to solve the effective cluster model of the DCA.
Alternative methods applied as impurity solvers in the DMFT context such exact
diagonalization or NRG are not applicable to the more complex cluster problems.
However, even when using QMC methods, the transition from a single impurity
to finite clusters dramatically enhances the numerical complexity of the simulation
requiring highly optimized algorithms and the application of high-performance com-
puting resources.

The quasi-standard for QMC simulations of fermionic systems used to be the
Hirsch-Fye algorithm [75] which suffered from a systematic error caused by an ar-
tificial discretization of the imaginary time axis. We use recently developed QMC
algorithms [152, 153, 59] which are formulated in continuous imaginary time and
are free of any systematic error. These QMC methods in combination with addi-
tional performance-optimized algorithms [56] enable us to do a precise study of the
thermodynamic properties of the 3D Hubbard model in the thermodynamic limit.

Important insight can be gained into the properties of correlated materials by
studying dynamic quantities such as single-particle spectra. The second focus of
this thesis is therefore the calculation of spectral properties of the Hubbard model.

QMC methods map the quantum-mechanical lattice model on a classical one at
the expense of an additional dimension, which is identical or at et least closely
related to an imaginary time axis [40, 34, 160]. For this reason, QMC algorithms
can only provide dynamical data on the imaginary time or frequency axis. The
necessary analytic continuation to the physically relevant real axis has proven to be
a difficult problem that has to be approached by advanced data analysis tools.

The maximum entropy method (MEM) [83] is the standard technique to handle
this problem. It uses methods of Bayesian inference [86, 61] to determine the most
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probable spectrum subject to the incomplete information given by the QMC data.
We apply the MEM to the problem of extracting momentum-resolved single-particle
spectra from QMC simulations of the 3D Hubbard model. Furthermore, we discuss
and expand algorithms that were recently proposed as alternatives to the standard
MEM approach [157, 13, 176, 45] and provide a full interpretation of these methods
within the framework of Bayesian probability theory.

The thesis starts with an introduction to the Hubbard model and its properties
and presents its applications in the context of condensed-matter physics and cold-
atom experiments (chapter 2).

The subsequent two chapters deal with the theoretical and numerical methods
which were used to solve the Hubbard model within a cluster approximation. An
overview of the DCA as the applied cluster mean-field theory is given in chapter 3,
whereas the QMC techniques to solve the resulting cluster problem are described in
chapter 4.

As first application of these techniques, chapter 5 presents an expansive study
of the thermodynamic properties of the 3D Hubbard model for temperatures above
the Néel temperature. To make contact to cold-atom experiments, we focus on
thermodynamic properties, that could be valuable to experimental research and
compute properties of the model subject to an external trap.

The subject matter of the following two chapters is the calculation of energy
spectra. Chapter 6 introduces the MEM as a method used for the necessary analytic
continuation of QMC data. Additionally, a detailed characterization of stochastic
analytical inference, an alternative to the MEM, and its application to a test case
is given. Finally, momentum-resolved energy spectra of the 3D Hubbard model in
the paramagnetic and the antiferromagnetic phase are presented in chapter 7. The
thesis concludes with a short summary of the results (chapter 8).
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2 The Hubbard model

The single-band Hubbard model [76, 63, 91] is commonly defined as

H = −t
∑
〈i,j〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (2.1)

The operators c†iσ (ciσ) create (annihilate) an electron with spin σ ∈ {↑, ↓} at lattice
site i, niσ = c†iσciσ is their corresponding number density, t is the hopping parameter
between neighboring sites (denoted by 〈i, j〉), and U implements the Coulomb re-
pulsion. Note that Coulomb repulsion is taken to be local at each lattice site. This
is characteristic approximation of the Hubbard model.

We study the Hubbard model in three dimensions on a simple-cubic lattice. For
U = 0 eq. (2.1) simplifies to the tight-binding model for non-interacting fermions,

Htb = −t
∑
〈i,j〉σ

c†iσcjσ =
∑
kσ

εkc
†
kσckσ . (2.2)

The second expression follows from a Fourier transformation into momentum space1

using the dispersion relation

εk = −2t
3∑
i=1

cos(ki) . (2.3)

The momentum k = (k1, k2, k3) is an element of the first Brillouin zone which – in
the case of the simple-cubic lattice – is of cubic shape. The bandwidth W = 12 t of
this dispersion is used as energy scale for all results in this thesis.

2.1 The Hubbard model in condensed-matter physics

Although the repulsion between electrons per se is a strong and long-ranged force,
the Coulomb potential is screened by the presence of other electrons resulting in
a short ranged Yukawa potential. This effect combined with the high velocity of
electrons near the Fermi level cause electron interactions to be a small effect in most

1We use the convention ~ = 1 in all chapters of this thesis. Consequently, we do not distinguish
between the terms “wave vector” and “momentum”, or “frequency” and “energy”, respectively.
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2 The Hubbard model

materials. In this case, the system can be described by Fermi liquid theory [12],
i. e., by quasi-particles that effectively behave like free fermions with renormalized
coupling parameters. However, this is not always true and electron-electron corre-
lations can have a significant influence on the physical properties of the material.
The Hubbard model is one of the simplest quantum-mechanical lattice model that
captures this electron-electron interaction explicitly.

We can motivate the Hubbard model by starting with the general Hamiltonian
for interacting electrons subject to the electric potential of the atoms [39]. If we
employ the Born-Oppenheimer approximation and assume the atoms to be fixed,
we can describe the influence of the atoms by a conservative lattice potential VL(r).
The Hamiltonian of electrons of mass m, charge e, and spin σ in second-quantized
form is

H =
∑
σ

∫
dr ψ†σ(r)

(−~2

2m
∇2 + VL(r)

)
ψσ(r)

+
1

2

∑
σσ′

∫
drdr′

e2

|r′ − r|ψ
†
σ(r)ψ†σ′(r

′)ψσ′(r
′)ψσ(r) (2.4)

using the fermionic field operators ψσ(r). An expansion in localized Wannier states
Wα(r − ri),

ψσ(r) =
∑
iα

ciασWα(r − ri) , (2.5)

with band index α introduces the annihilation (creation) operators c
(†)
iασ at each

lattice site. The result of the expansion is

H = −
∑
ijασ

tαijc
†
iασcjασ +

1

2

∑
ijklσσ′

∑
αβγδ

V αβγδ
ijkl c†iασc

†
kβσ′clγσ′cjδσ (2.6)

with

V αβγδ
ijkl =

∫
drdr′

e2

|r′ − r|W
∗
α(r − ri)W

∗
β (r′ − rj)Wγ(r

′ − rk)Wδ(r − rl) (2.7)

and the hopping

tαij =

∫
drW ∗

α(r − ri)

(
− ~2

2m
∇2 + VL(r)

)
Wα(r − rj) . (2.8)

Now we employ the approximation that only one band is relevant for the physical
properties of the systems. This approximation is justified if the inter-band inter-
actions are small and all bands except one conduction band are far away from the
Fermi level. The single-band Hubbard model eq. (2.1) then follows from eq. (2.6)
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2.1 The Hubbard model in condensed-matter physics

Figure 2.1: (taken from ref. [48]) Experimental phase diagram of V2O3 as measured by
McWhan et al. [115] as function of doping or as a function of pressure.

if we keep only the most significant terms, i. e., the hopping between nearest neigh-
bors and the local coulomb repulsion U = 1

2
V αααα
iiii . The second approximation is

justified if the intra-atomic Coulomb repulsion is large compared to the inter-atomic
interaction and, at the same time, cannot be neglected compared to the hopping.

This situation is believed to be realized in many materials such as transition metal
oxides, cuprates, actinides, or materials containing rare-earth elements [78]. These
materials often feature flat conduction bands consisting mainly of d and f orbitals,
whose strong localization causes a dominant local Coulomb repulsion between elec-
trons in the same orbital. These materials exhibit prominent evidence of strong
electron-electron correlations including various types of magnetism, correlation-
driven metal-insulator transitions, or superconductivity.

An example for a 3D transition metal oxide is vanadium(III) oxide, V2O3. Fig. 2.1
shows the phase diagram of this compound as a function of pressure and as function
of doping with chromium or titanium. The increase of pressure causes a larger
overlap between orbitals and thus enlarges the hopping t, or, alternatively, decreases
the fraction U/t. The doping with Cr3+ or Ti3+ ions has a similar effect [115, 78].
The phase diagram exhibits an antiferromagnetic insulator at low temperature. A
transition line emerges from this phase which separates a metallic and an insulating

7



2 The Hubbard model

paramagnet. The transition line ends at a critical point at larger temperatures,
above which only a crossover between metallic and insulating behavior is observed.
We will show in the subsequent two sections that the Hubbard model provides the
possibility to study both metal-insulator transitions and antiferromagnetism.

The Hubbard model is one of the simplest quantum-mechanical model of interact-
ing electrons capable of capturing – at least qualitatively – basic physical properties
of strongly correlated materials. For a quantitative description of real materials, the
precise orbital structure and lattice configuration must often be taken into account.
This leads to more complicated forms of the kinetic energy and Coulomb repulsion.
One can try to incorporate these effects by extending the Hubbard model to include,
for example, multiple bands [178] or non-local interactions [185]. But even in its
most basic formulation – despite its very simple structure – the Hubbard model can
only be solved exactly in one [39] and infinite spatial dimensions [48].

In one dimension, the Hubbard model can be solved in most cases by the Bethe
ansatz [103, 104]. Here even weak Coulomb interactions cause strong perturbations
and the physical features are distinctly different from systems in higher dimensions
[39].

In the other exactly solvable limit, i. e., D → ∞, it turns out that all dynamical
renormalizations become purely local [118, 126]. As it can be related to a genuine
mean-field theory, the name dynamical mean-field theory (DMFT) has been coined
for this solution. Besides being exact in the limit D → ∞, it is frequently used
to approximately treat two respectively three-dimensional systems. Within DMFT,
the phase diagram of the single-band Hubbard model eq. (2.1) is already well under-
stood. It features an antiferromagnetic phase at half filling, which will be discussed
in the next section. Antiferromagnetism is persistant off half filling up to a critical
doping and shows additional phase separation [185, 85, 202]. For very large values
of U and low temperatures, antiferromagnetism is replaced by a small ferromagnetic
phase off half filling [127, 131, 136].

To what extend these results are transferable to 2D and 3D systems is still an
open question. Especially, the 2D Hubbard model is studied intensely, since it is
believed to capture the physics of the superconducting planes in high-temperature
superconductors [200, 5, 109]. In the following, we will focus on results for the
3D Hubbard model, especially on the two mechanism we are mostly interested in,
antiferromagnetism and the Mott-Hubbard metal-insulator transition.

2.1.1 Antiferromagnetism

The Hubbard model eq. (2.1) at half filling shows antiferromagnetic order at finite
temperature for any value of U > 0. Antiferromagnetic order breaks the transla-
tional symmetry of the lattice causing a doubling of the unit cell. In momentum
space, this translates to a reduction of the first Brillouin zone. The resulting antifer-
romagnetic Brillouin zone possesses only half of the original volume (see fig. 2.2a).
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2.1 The Hubbard model in condensed-matter physics

a)
π
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b)

antiferromagnet

paramagnet

Figure 2.2: Panel a: the reduced first Brillouin zone of the simple-cubic lattice with an-
tiferromagnetic order. Panel b (taken from ref. [92]): the antiferromagnetic
phase diagram of the 3D Hubbard model at half filling as calculated by lattice
QMC [144] (denoted by “Staudt”), second order perturbation theory (SOPT)
[179], the Heisenberg model [154] Weiss mean-field theory (“Weiss”), DMFT
(denoted by “DMFA”), and DCA [92]. Note that the units refer to the hopping
parameter t.

Following an argument by Slater [170], the back-folding of the conduction band
into the reduced Brillouin zone combined with the opening of a gap at the new
zone boundary causes the ordered state to be an insulator. This insulating behavior
is primarily induced by symmetry breaking and already exists at small interaction
strengths. It is not related to the correlation driven insulators discussed in sec-
tion 2.1.2.

At very large U , on the other hand, it is energetically highly disadvantageous
that two electrons occupy the same site. If we consider the model at half filling,
this implies that there is precisely one electron per site. No electron can move and
the system is insulating. In this limit, the remaining spin degrees of freedom can be
accurately described by the Heisenberg model [47] whose antiferromagnetic phase is
well studied [154].

The extent of the antiferromagnetic phase between these two limiting cases can
be determined by QMC simulations. Fig. 2.2b displays the antiferromagnetic phase
diagram of the 3D Hubbard model at half filling as calculated by second order per-
turbation theory [179], the Heisenberg model [154], QMC on finite lattices [144],
Weiss mean-field theory, DMFT, and dynamical cluster approximation (DCA) [92]
(cf. chapter 3 for details of the DCA). The figure shows how the DCA and lattice
QMC results interpolate between those from perturbation theory at small U and
those from the Heisenberg model at large U . The DMFT overstates the Néel tem-
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2 The Hubbard model

perature already at intermediate values of U and converges with the results of the
(static) Weiss mean-field theory [191] at larger interaction values.

2.1.2 Mott-Hubbard metal-insulator transition

The Hubbard model also features a correlation-driven metal-insulator transition
as first described by Mott [124]. The argument given in section 2.1.1, that the
system is insulating at half filling and for U →∞, still holds for the paramagnetic
state. For weak interaction, on the other hand, the paramagnetic state can be
accurately described by Fermi liquid theory [12] and is therefore a metal like the
non-interacting system itself. A potential phase transition between these to states
is the Mott-Hubbard metal-insulator transition (MH-MIT).

Unfortunately, the low-temperature behavior of the single-band Hubbard model
on the simple cubic lattice is completely dominated by the antiferromagnetic phase.
Above the Néel temperature, only a crossover from metallic to insulating behavior
can be observed [144] while the whole antiferromagnetic phase is insulating by sym-
metry. Thus, the MH-MIT cannot be observed directly. However, it is nevertheless
possible to study the MH-MIT on the Hubbard model by artificially suppressing
antiferromagnetic order in the system. While this may appear unphysical at first
glance, it is the proper route to understand the influence of electron correlations in
the model, because it also allows to distinguish between effects that come from fluc-
tuations, hence are dynamical, and those that are due to actual symmetry breaking.

Studies of the MH-MIT at finite temperatures were performed for a Bethe lattice
in the limit of infinite dimension, i. e., within DMFT [28, 87, 181]. The DMFT,
like any other mean-field theory, offers the possibility to artificially suppress an-
tiferromagnetic order. Results calculated by the numerical renormalization group
method (NRG) [27, 28], QMC [87], and the so-called iterated perturbation theory
(ITP) [150] are presented in fig. 2.3. Note that the units of the graph refer to the
bandwidth WBethe of the Bethe lattice. The ITP employs only second-order pertur-
bation theory to solve the local problem and its results differ notably from those of
the other two methods. The DMFT exhibits a coexistence region below a critical
temperature2 Tc ≈ 0.02WBethe (according to NRG and QMC). Inside this region,
the solution is either metallic or insulating depending on the starting point of the
DMFT iteration (cf. section 3.2 for details of the DMFT/DCA algorithm). By com-
parison of the free energies of the two possible solutions, one can decide which one
of the two solutions is actually the physical one. Since estimation of the free energy
is particularly difficult for many impurity solvers including QMC (see section 4.1),
further DMFT studies with alternative methods that enable the calculation of free
energies, e. g., exact diagonalization techniques, show that the actual phase transi-

2We set Boltzmann’s constant kB to unity in this thesis and will therefore refer to temperatures
in energy units.
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2.1 The Hubbard model in condensed-matter physics
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Figure 2.3: (taken from ref. [28]) The MH-MIT of the Hubbard model in infinite dimen-
sions on the Bethe lattice as calculated by NRG [28], QMC [87], and iterated
perturbation theory (IPT) [150]. The dashed lines for T > Tc indicate the
position and width of the crossover region. Note that the units refer to the
bandwidth WBethe of the Bethe lattice.

tion line is situated close to the upper critical value of the coexistence region [28].
Collecting all results, one can also deduce that the transition line is of first order
and ends in two second-order critical end points at T = 0 and T = Tc [150, 48].

In order to locate the MH-MIT in the phase diagram fig. 2.2b, one should be
aware of the fact that the DMFT calculations were performed using a different
non-interacting band structure. Thus, energy units like the bandwidth cannot be
compared directly. Following the discussion in section 7.2.2, the upper critical end
point of the MH-MIT at Tc ≈ 0.02WBethe and Uc ≈ 1.2WBethe translates to Tc ≈
0.016W = 0.2 t and Uc ≈ 0.98W = 11.7 t, respectively, on the simple cubic lattice.
This demonstrates in comparison to fig. 2.2b that the MH-MIT is far below the Néel
temperature TN ≈ 0.3 t for this particular interaction strength.

2.1.3 Magnetic frustration

The emergence of the MH-MIT from the antiferromagnetic phase as seen in fig. 2.1 is
the most obvious qualitative difference between the phase diagram of V2O3 and that
of the single-band Hubbard model. The predominance of antiferromagnetism in the
Hubbard model can be attributed to its simplified lattice structure compared to the
real material which exhibits a fairly complex corundum structure of vanadium ions
surrounded by an octahedron of oxygen atoms (fig. 2.4a). The oxygen effectively
mediates the hopping of electrons between vanadium ions. If we reduce the structure
and show the vanadium ions only (fig 2.4b), the partly triangular structure of the
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a)

b)

Figure 2.4: Panel a: the corundum structure of V2O3. Each vanadium atom (denoted by
red spheres) is surrounded by a octahedron of oxygen atoms (yellow spheres).
Panel b: The same structure reduced to the vanadium atoms and seen from
above. The dashed lines highlight the triangular structure.

lattice becomes apparent. Antiferromagnetic order relies on a bipartite lattice, i. e.,
a lattice which can be divided into two sub-lattices. The spins point upwards on one
sub-lattice and downwards on the other. A lattice with triangular structure elements
is not bipartite. Hence it is impossible to establish a complete antiferromagnetic
order where each spin is surrounded by spins of opposite direction only: the order
is frustrated.

We can incorporate frustration into our model by introducing a hopping t′ between
next-nearest neighbors (denoted by 〈〈i, j〉〉) to the Hamiltonian eq. (2.1) via

H ′ = H − t′
∑
〈〈i,j〉〉σ

c†iσcjσ . (2.9)

This will also affect the dispersion relation eq. (2.3) yielding

εk = −2t
3∑
i=1

cos(ki)−4t′ [cos(k1) cos(k2) + cos(k2) cos(k3) + cos(k1) cos(k3)] (2.10)

with bandwidth

W =

{
12t for |t′| ≤ t/4
8t+ 16|t′| for |t′| > t/4

. (2.11)

DMFT calculations on frustrated Bethe lattices have shown that the antiferromag-
netic phase of the Hubbard model becomes smaller with increasing t′ up to the point
where the MH-MIT emerges from the phase [137].
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2.2 Cold atoms in optical lattices

2.2 Cold atoms in optical lattices

Besides its applications in condensed matter physics, the Hubbard model plays an
important role in the explanation of many-body phenomena observed in dilute, ultra-
cold atomic gases [23]. Major advances in laser cooling [116] in the 1980s and 1990s
led to the realization of artificial crystals of atoms bound by light at temperatures in
the micro-Kelvin regime. These systems can present a remarkably clear realization
of the Hubbard model and other quantum-mechanical lattice models [80]. The
model parameters are often under precise control of the experimentalist and offer
thus an opportunity to systematically study the properties of lattice models, hereby
expressing the concept of a “quantum simulator”.

Typically, neutral atoms – in most cases alkali metals – are confined in a magneto-
optical trap [145], a device that applies a combination of magnetic trapping and
Doppler cooling to reduce the temperature of the atoms. A system of laser beams
with frequency ω slightly less than a resonant frequency ωR produces light which
can only be absorbed when the beam is red-shifted due to the Doppler effect, i. e.,
when the atoms are moving towards the laser source. An additional varying magnetic
quadrupole field causes a Zeeman shift towards the laser frequency ω which becomes
stronger with increasing distance from the trap center, thus providing a further
confinement mechanism.

After cooling, the atomic cloud is transfered to an optical dipole trap [52] con-
sisting of several laser beams. When the atoms are placed in the light field, the
oscillating electric field E(r, t) induces an electric dipole moment d(r, t) in an atom
at coordinate r. This leads to a Stark shift

V (r) = −〈d(r, t) ·E(r, t)〉 = −α(ω)
〈
E2(r, t)

〉
(2.12)

of the atomic energy levels. Here α(ω) denotes the atomic polarizability and 〈. . .〉
a period average. The laser frequency ω = ωR + ∆ is usually tuned far away from
an atomic resonance frequency ωR, such that spontaneous emission effects from
resonant excitations can be neglected and the dynamic energy shift V (r) behaves
like a purely conservative potential. It is attractive for ∆ < 0, when the induced
dipole is in phase with the electric field (α(ω) > 0).

A stable optical trap can be realized by focusing the laser beam to a spot size
w. If we assume a Gaussian intensity distribution along the radius r, the resulting
potential has the form

VT(r) ≈ V0 exp

(−2r2

w

)
, (2.13)

where the trap depth V0 is proportional to the intensity of the beam. Expanding
around r = 0, the harmonic approximation of the potential radial to the propagation
direction of the beam is given by

VT(r) ≈ V0

w2
r2 . (2.14)
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2 The Hubbard model

In order to confine the atoms in all spatial dimensions, two or more crossed laser
can be used. If the trap depth is continuously lowered by decreasing the laser
intensity, high-energy atoms leave the trap and the remaining ones thermalize at
a lower temperature. Thus, an additional cooling effect is achieved by evaporative
cooling [113].

A periodic potential can then be formed simply by overlapping two counter-
propagating laser beams with identical wavelength λ. The interference between
the two laser beams forms an optical standing wave creating a potential with a dis-
tance λ/2 between two minima. By interfering more laser beams, one can obtain
1D, 2D, and 3D periodic potentials. The potential as seen by the atoms is then

VL(r) =
D∑
n=1

V0n cos2

(
2πrn
λ

)
(2.15)

with the potential depths V0n in each of the D dimensions. This periodic potential
can again be approximated around each minimum by a harmonic potential. An
important advantage of using optical fields to create a periodic trapping potential
is that the geometry and depth of the potential are under complete control.

Experiments on fermions are more difficult to realize than those on bosons. The
main problem is the cooling process. In contrast to the bosonic case, two-body
elastic scattering is mostly absent in a Fermi system at low temperature due to the
Pauli exclusion principle. This inhibits thermalization and precludes direct imple-
mentation of evaporative cooling. To overcome this problem, one uses a mixture of
bosons and fermions, which are cooled simultaneously [122]. Recent efforts aiming
at the implementation of the Hubbard model in a cold gas experiment [95] has led
to experimental signs of the Mott insulator [88, 163]. A major experimental achieve-
ment will be the detection of the antiferromagnetic phase, for which the slow and
ill-understood equilibration rates, the limited number of detection methods, and
cooling problems will have to be overcome.

2.2.1 Theoretical modeling

Early experiments on cold atoms focused on weakly interacting, dilute gases of
bosons in optical or magnetic traps [36, 102] and were mostly conducted without a
periodic potential. The main goal was to investigate quantum mechanical coherence
which led, e. g., to the first experimental realization of a Bose-Einstein condensate
[37]. More recently, the emphasis has shifted to strongly interacting systems. As
first pointed out in ref. [79], a system of bosonic atoms in an optical lattice can be
appropriately described by a Bose-Hubbard model. This identification can be gen-
eralized to a multitude of Hubbard type lattice models [80], including the fermionic
Hubbard model.
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2.2 Cold atoms in optical lattices

The Hubbard model can again be motivated by starting with the Hamiltonian for
fermions of mass m and spin σ subject to the external potentials VT(r) and VL(r)
of the previous section,

H =
∑
σ

∫
dr ψ†σ(r)

(−~2

2m
∇2 + VL(r) + VT(r)

)
ψσ(r)

+
1

2

4πas~2

m

∫
dr ψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r) . (2.16)

Here the interatomic repulsion is already approximated by a local potential using as,
the s-wave scattering length. Additionally, other energy bands are assumed to be
high in energy and irrelevant for the effective description. Note that – in contrast to
a solid – this condition can actually be controlled experimentally. An expansion in
Wannier states at each lattice potential minimum yields analogous to the calculation
in section 2.1

H = −t
∑
〈i,j〉σ

c†iσcjσ +
∑
iσ

Viniσ + U
∑
i

ni↑ni↓ (2.17)

with

U =
1

2

4πas~2

m

∫
dr|W (r)|4 . (2.18)

The notable difference to eq. (2.1) is the non-uniform onsite potential

Vi =

∫
dr VT(r)|W (r − ri)|2 ≈ VT(ri) (2.19)

due to the trap. A closer inspection of the relevant energy scales shows that the
approximations in the derivation are justified and that the coupling strengths can
in principle be realized experimentally [80]. A sketch of an optical lattice system
with the parameters of the Hubbard model is shown in fig. 2.5.

Various types of Hamiltonians of Bose and Fermi systems can thus be realized
in optical lattices. This offers remarkably clean access to model Hamiltonians, that
were originally developed in the context of condensed-matter physics, providing
model systems for testing fundamental theoretical concepts. The observation of a
quantum phase transition between a Mott insulator and a superfluid phase in a
system of bosons [51] demonstrated the potential of this approach.

Theoretical modeling of atoms in a harmonic trap is more difficult than for ho-
mogeneous systems, because the trap breaks translational symmetry. This problem
is most easily solved in one dimension. QMC studies on trapped 1D systems have
been performed for both bosons [8] and fermions [147, 146]. For higher dimensional
systems, especially for fermions on 3D lattices, one has to revert to approximation
schemes.

One particularly common approximation [163, 38] is the local density approxi-
mation (LDA) which avoids the simulation of an spatially inhomogeneous system.
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U
V (r)

t

Figure 2.5: Sketch of an optical lattice system in one dimension. Atoms (depicted by red
dots) with spin up/down (blue arrows) can move from one minimum of the
lattice potential to the other. The system can be effectively described by a
Hubbard model with local Coulomb repulsion U and hopping t. The ratio
between the parameters t and U can be tuned by changing the height of the
trapping potential. Not the parabolic shape of the lattice potential.

Here one assumes that in the limit of large lattices with a slowly varying trapping
potential the influence of the trap becomes local. Thus, a series of calculations of
a homogeneous systems with chemical potentials µ− VT(r) is sufficient to take the
trap geometry into account. There exist a few approximate schemes that do not rely
on the LDA, e. g., the real-space DMFT [69, 171]. Calculations with these methods
have shown that the LDA is indeed a very a good approximation, at least for simple
thermodynamic observables [69, 161].

However, even within the LDA, the remaining task to solve the homogeneous Hub-
bard model on a 3D lattice with arbitrary filling is difficult. Since there are no exact
methods available for this problem, most authors use approximate methods like
DMFT [163, 38] or high temperature series expansions (HTSE) [161]. These calcu-
lations resulted in temperature and entropy estimates. The entropy is a particularly
interesting quantity, because the atoms are well isolated from their environment and
experiments are therefore carried out adiabatically at constant entropy. Since a di-
rect experimental temperature measurement in the dilute atomic gas is not possible,
thermometry is also an important issue. The temperature can be inferred from com-
parisons of experimental observables with those from simulations of the Hubbard
model. Previous works focused on the double occupancy as a experimentally mea-
surable candidate for thermometry [89, 49]. Results from these calculations have
already been applied to experimental data [89].

We provide entropy estimates and observables for thermometry based on an ap-
proximate solution of the homogeneous 3D Hubbard model with the DCA simula-
tions (see chapter 5). We focus on the direct vicinity of the Néel phase providing
data that could be experimentally valuable for the detection of the antiferromagnetic
phase.
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3 Dynamical cluster approximation

The dynamical cluster approximation (DCA) is an approximation scheme, that maps
the infinite lattice Hamiltonian described in the previous chapter on a finite cluster
embedded in a mean-field. Details and properties of this mapping are the subject
of the present chapter. Means to solve the resulting effective cluster problem are
discussed in chapter 4.

The numerical treatment of lattice models in the thermodynamic limit is generally
impossible. Limited computational resources restrict the tractable system sizes to
finite clusters with only a small number of lattice sites. Numerically exact solutions
of finite lattice systems are usually gained by exact diagonalization [192] or QMC
methods. Exact diagonalization is severely limited by the exponential growth of the
computational effort with system size, whereas QMC suffers from the sign problem
[184], that also restricts the simulations to small systems and special cases, such as
particle-hole symmetric situations.

Thus, a finite-size extrapolation to the thermodynamic limit is very difficult. In
particular, the identification of ordered phases, which requires a reliable finite-size
scaling, becomes exceedingly complicated. A direct investigation of the properties
of ordered phases possibly present in the thermodynamic limit is not possible, be-
cause finite systems cannot exhibit a spontaneously broken symmetry. Therefore, a
suitable approximation scheme allowing calculations directly in the thermodynamic
limit while including dynamical correlations in a controlled way is highly desirable.
Such methods have been devised under the name of dynamical mean-field theory
(DMFT) [48, 96] and cluster mean-field theories [109].

The DMFT maps the lattice problem onto an effective single-site model embed-
ded in a mean-field. The single-site problem is solved by a suitable impurity solver.
Examples for impurity solvers are renormalization techniques [27], exact diagonaliza-
tion [30] and, again, QMC algorithms, which will be discussed in detail in chapter 4.
An important technical aspect in the context of QMC algorithms is that the DMFT
completely avoids or at least strongly limits the sign problem in many cases. The
mean-field must be determined self-consistently, similar to well known mean-field
theories such as the Weiss theory for spin models [191]. Although it differs from
these theories in this respect, that it is dynamic, i. e., time dependent, and can thus
treat quantum fluctuations.

The DMFT becomes exact in the limit of infinite coordination number or equiva-
lently infinite dimensions [118, 126]. However, non-local corrections become impor-
tant in finite dimensions. Non-local many-body correlations are necessary to study
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the interplay or competition of formation of a Fermi liquid and more exotic states
of matter. Thus, the DMFT is unable to capture the physics of, e.g., localization in
disordered systems, spin waves in quantum-mechanical spin models, or spin-liquid
physics in correlated electronic systems.

Cluster mean-field theories approximate an infinite lattice problem by a finite
cluster embedded in a mean field, similar to the spirit adopted in DMFT. Within
this approximation, all physical effects local to the cluster including quantum fluctu-
ations and short ranged correlations are treated exactly. In contrast to conventional
finite size calculations, long range correlation are captured as well, but in a mean-
field treatment only. In the limit of infinite cluster size the original lattice problem is
regained. If the cluster consists of only one lattice site, the approximation simplifies
to DMFT, which only captures fluctuations local to the single lattice site and ne-
glects all spatial correlations. Thus, cluster mean-field theories can be understood as
a systematic extension to the DMFT by incorporating more and more short-ranged
correlations as the cluster size increases.

Cluster mean-field theories have been applied to different quantum-mechanical
lattice models. Examples include the Falicov-Kimbal model [71, 70], the 1D Hub-
bard model [24], the 2D Hubbard model with [98, 135] and without [77, 125, 55]
frustration, and the 3D Hubbard model [92].

Two distinct methods have been developed in recent years, the DCA [71, 70] and
the cellular dynamical mean-field theory (CDMFT) [97]. The difference between
the two methods is mostly of a technical nature. While the CDMFT violates trans-
lational symmetry, the DCA restores this property of the infinite lattice and can
therefore be efficiently formulated in momentum space. This simplifies, e. g., the
calculation of two-particle properties [70, 84]. The two methods also differ in their
finite-size scaling behavior [110]. We used the DCA for this work exclusively and
will therefore only briefly mention details of the CDMFT algorithm in the course of
this chapter.

3.1 Cluster structure

We study the simple cubic lattice in three dimensions. Each site of the lattice is
described by a vector

r = n1x̂ + n2ŷ + n3ẑ , (3.1)

where n1, n2, n3 are integers and x̂, ŷ, ẑ orthonormal vectors in the three spatial
dimensions. We tile the infinite lattice by finite-size clusters with periodic boundary
conditions by defining a parallelepiped spanned by the 3× 3 matrix

C := (l1, l2, l3) :=

l11 l12 l13

l21 l22 l23

l31 l32 l33

 , (3.2)
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Figure 3.1: The DCA illustrated for a 8-site cluster in two dimensions. In real space (a)
the origin of a cluster is labelled by r̃. Each site of the cluster is identified
by R. Fourier transformation maps the coordinate r = r̃ + R of each lattice
site to a vector k in the first Brillouin zone (b). The cluster momentum K
now identifies the centre of a cell in momentum space. All points inside this
cell are accessible by k̃. The DCA integrates out k̃ and thus replaces the full
k-dependence of the lattice by the cells labelled by K.

where the entries lij are again integers. The infinite lattice can be reconstructed by
translating the origin of the cluster by

r̃ = n1l1 + n2l2 + n3l3 (3.3)

and thus tiling the whole lattice with the parallelepiped. The sites inside each cluster
are described by the vector R, so that r = r̃+R. The size Nc of the cluster is equal
to the volume of the parallelepiped, Nc = det C. An example for such a cluster in
two dimensions is given in fig. 3.1a. Although 3D lattices are the main focus of this
work, we will restrict the examples in this chapter to the square lattice in 2D for
simplicity. In case of 2D lattices C reduces to a 2× 2-matrix. The figure shows the
cluster defined by

C =

(
2 2
2 −2

)
. (3.4)

Because the DCA is formulated in momentum space, we also need to Fourier-
transform the cluster structure. In reciprocal space, the vector r is mapped onto
an element k of the first Brillouin zone. The vectors R and r̃ are transformed into
K and k̃, respectively. The cluster structure described above is now equivalent to
tiling the first Brillouin zone into Nc non-overlapping cells, each represented by its
central momentum K. All vectors inside the volume V of the cell are accessible
by k̃ (cf. fig. 3.1b for an example). This coarse-graining of the first Brillouin zone
forms the basis of the DCA, the details of which are given in the next section.
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3.2 Outline of the method

The central quantity for the DCA is the single particle Green function in imaginary
time τ , defined by

Gσij(τ) = −〈Tτciσ(τ)c†jσ〉 . (3.5)

Here Tτ is the imaginary-time ordering operator, 〈. . . 〉 denotes a thermal expectation
value and cσi(τ) = e−Hτcσie

Hτ . The DCA is also applicable to Green functions
depending on real times. However, we will restrict ourselves to imaginary times and
frequencies in the course of the chapter having in mind the application of imaginary-
time-based QMC methods. The spatial and temporal Fourier transform of the Green
function eq. (3.5) is

Gσk(iωn) =
1

Nc

∑
ij

exp [ik · (ri − rj)]

∫ β

0

dτ eiωnτGσij(τ) , (3.6)

where ωn = (2n + 1)π/β with n ∈ Z and β = 1/kBT are the fermionic Matsubara
frequencies. As usual, T denotes the temperature and kB Boltzmann’s constant.
The self-energy Σσk(iωn) is defined via Dyson’s equation

Σσk(iωn) = gσk(iωn)−1 −Gσk(iωn)−1 (3.7)

using the bare Green function

gσk(iωn) =
1

iωn + µ− εk
, (3.8)

where µ denotes the chemical potential and εk the bare dispersion eq. (2.3). The
bare Green function is the Green function of the non-interacting system.

The full k-dependence of the self-energy is now approximated by the self-energies
at the discrete set of Nc cluster momenta K by replacing Σσk(iωn) by ΣσK(iωn).
Here ΣσK(iωn) is taken to be constant in each cluster cell volume V . This coarse-
graining of the self-energy is the central approximation of the DCA. It will be further
motivated in section 3.3. In the limit Nc = 1, only the single cluster momentum
K = 0 is kept and the coarse graining is extended to the whole first Brillouin zone.
This purely local limit is identical to the DMFT. If we apply this approximation to
the Green function eq. (3.6)

Gk =
1

g−1
k − Σk

(3.9)

(omitting the dependency on iωn and σ from now on) and average over the volume
V of the cell corresponding to cluster momentum K, we obtain the coarse-grained
Green function

ḠK =
1

V

∫
dk̃

1

g−1

K+k̃
− ΣK

, (3.10)
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GK −→ Cluster Solver −→ GK

↑ ↓

G−1
K = Ḡ−1

K + ΣK ΣK = G−1
K −G−1

K

↑ ↓

ḠK =
1

V

∫
dk̃
[
iωn + µ− εK+k̃ − ΣK

]−1

Figure 3.2: The self-energy ΣσK(iωn) is determined self-consistently by iterating the de-
picted procedure until convergence is reached. The bottom line shows the
calculation of the coarse-grained Green function ḠK by averaging over the
momentum cell centered around K via integrating k̃ over the volume V of
the cell. The dependency of the Green functions and the self-energy on iωn
and σ is omitted for simplicity.

where only the momentum dependence of the self-energy is approximated, while the
bare Green function still depends on k = K+k̃. Finally, an effective non-interacting
cluster Green function is defined via

G−1
K = Ḡ−1

K + ΣK . (3.11)

With this set of quantities and using a suitable method to solve the effective cluster
defined by GK and the interaction U , one can determine the self-energy ΣK self-
consistently.

Fig. 3.2 depicts outlines of the iterative procedure to determine the cluster self-
energy ΣK . The iteration starts with an initial guess for the self-energy. One usually
takes the free solution ΣK = 0 and calculates ḠK = GK . This quantity serves as
input to the cluster solver, which treats GK as the effective bare Green function of the
cluster and calculates the interacting Green function GK subject to the interaction
U . This task is performed by the QMC methods detailed in chapter 4 and is by far
the most time consuming part of the self-consistency loop. The solution defines a
new self-energy via Dyson’s equation,

ΣK = G−1
K −G−1

K . (3.12)

A recalculation of ḠK and GK follows using the new self-energy. Subsequently, the
interacting Green function GK is again calculated by the cluster solver. Additional
iterations follow until convergence of the self-energy is accomplished.
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Φ = � +� +
1

2� +
1

2 � + . . . (3.14)

Figure 3.3: First and second order contributions to the generating functional Φ. Dashed
lines represent the interaction U . Double line arrows represent the Green
function G. Each diagram of order n is weighted by a factor 1

n .

3.3 Diagrammatic motivation

In order to motivate the central approximation of the last section, i. e., the coarse-
graining of the self-energy, we provide a diagrammatic argument of the DCA equa-
tions.

A thermodynamically consistent approximation may be constructed by requiring
that the self-energy fulfill [10, 11]

g−1 −G−1 = Σ =
δΦ[G,U ]

δG
, (3.13)

where Φ[G,U ] denotes the Luttinger-Ward generating functional defined as a skele-
tal sum over all compact, closed, connected graphs constructed from G and the
interaction U [106]. A few lowest order contributions of Φ can be seen in fig 3.3.
On the one hand, eq. (3.13) demands that the self-energy be a functional deriva-
tive of Φ with respect to the Green function G. Thus, any approximation scheme
should be performed on the generating functional Φ. On the other hand, the poten-
tially approximated self-energy needs to fulfill Dyson’s equation thereby creating a
self-consistency condition.

The relation between Φ and the grand-canonical potential Ω is [106, 1]

Ω[G,U ] = − 1

β
(Φ[G,U ]− Tr ln(−G)− Tr ΣG) , (3.15)

where the trace indicates summation over lattice momenta, Matsubara frequencies,
and spin. Subject to the condition eq. (3.13), Ω is stationary with respect to G, i. e.,

δΩ[G,U ]

δG
= − 1

β

(
δΦ[G,U ]

δG
− Σ

)
(3.13)
= 0 . (3.16)

The potential Ω will still be stationary, if one uses an approximated generating func-
tional Φc and consequently an approximated self-energy Σc by enforcing eq. (3.13),
i. e., the self-consistency equation Σc = g−1−G−1. Such an approximation is thermo-
dynamically consistent: Observables calculated from G agree with those calculated
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from Ω. It conserves quantities derived from the potential such as particle number
and pressure. That means that the approximation also preserves conservation laws
[10] and is therefore called a conserving approximation.

The DCA does not restrict the number of diagrams in Φ as is common, for exam-
ple, in the Hartree-Fock approximation, which takes only the first order diagrams in
fig. 3.3 into account. The approximation is introduced into the momentum conser-
vation at internal vertices of each diagram which is described by the Laue function

∆ =
∑
r

eir·(k1+k2+···−k′1−k′2−... ) ∝ δk1+k2+...,k′1+k′2+... . (3.17)

Here, k1,k2, . . . are the momenta entering the vertex and k′1,k
′
2, . . . the momenta

leaving it. If one introduces the cluster structure and writes k = K + k̃ and
r = R+ r̃, several approximation schemes are possible. If all phase factors including
r̃ are omitted, the result is the CDMFT [97]. In this approximation, the factors
including k̃ violate the translational symmetry of the clusters. The CDMFT is
therefore formulated in real space. In order to regain translational symmetry, the
phase factors including k̃ are neglected as well resulting in the Laue function of the
DCA,

∆DCA =
∑
R

eiR·(K1+K2+···−K′1−K′2−... ) ∝ δK1+K2+...,K′1+K′2+... . (3.18)

If the conservation of momentum is ignored completely, i. e., ∆ = 1, we regain
the DMFT [126]. The integral over k̃ is no longer restricted to any momentum
conservation law if we use ∆DCA in each diagram of Φ[G,U ] and can therefore be
performed freely. Thus, each Green function G and interaction U is replaced by it’s
coarse-grained counterparts,

ḠK =
1

V

∫
dk̃GK+k̃ and ŪK =

1

V

∫
dk̃UK+k̃ . (3.19)

The coarse-graining of the interaction is trivial in the case of the simple Hubbard
model with only local interactions. The result of this procedure is an approximated
Φ[ḠK , ŪK ] which generates the cluster self-energy

ΣK =
δΦ[ḠK , ŪK ]

δḠK

. (3.20)

By imposing eq. (3.13) it becomes apparent that the self-energy of the whole lattice
is replaced by the cluster self-energy which depends on cluster momenta K only,

g−1
k −Gk = Σk = ΣK . (3.21)

Integrating over k̃, one derives

ḠK =
1

V

∫
dk̃

1

g−1

K+k̃
− ΣK

, (3.22)

which was postulated previously in eq. (3.10).
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3.4 Effective cluster model

The self-consistency scheme depicted in section 3.2 requires a tool to solve the cluster
problem described by the effective bare Green function GK eq. (3.11) and the local
Coulomb repulsion U . In the path integral formulation the partition function of this
system is [129]

Z =

∫
D[φ∗, φ] e−S[φ∗,φ] . (3.23)

The measure

D[φ∗, φ] =
∏
Kσ

Dφ∗KσDφKσ = lim
M→∞

M∏
j=1

∏
Kσ

dφ∗Kσ(τj) dφKσ(τ ′j) (3.24)

denotes a path integral over the Grassmann variables φKσ(τ). The action S[φ∗, φ] =
S0[φ∗, φ] + SU [φ∗, φ] can be divided into two parts. The non-interacting part

S0[φ∗, φ] =−
∫ β

0

dτ

∫ β

0

dτ ′
∑
Kσ

φ∗Kσ(τ)G−1
σK(τ − τ ′)φKσ(τ ′)

=− 1

β

∑
iωn

∑
Kσ

φ∗Kσ(iωn)G−1
σK(iωn)φKσ(iωn) (3.25)

depends on GKσ(iωn) only. The interaction part

SU [φ∗, φ] = U

∫ β

0

dτ
∑
i

φ∗i↑(τ)φi↑(τ)φ∗i↓(τ)φi↓(τ) , (3.26)

is most easily written in real space using the local Coulomb repulsion U and the real
space equivalent φiσ(τ) of the Grassmann variables.

It is also possible to formulate the cluster model using a specific Hamiltonian
description. This formulation directly reflects the image of a cluster embedded in a
mean field. Expressing the bare dispersion

εK+k̃ = ε̄K + δεK(k̃) (3.27)

via the averaged bare dispersion ε̄K = 1
V

∫
dk̃ εK+k̃ and the deviation δεK(k̃) we

rewrite the coarse-grained Green function eq. (3.10),

ḠK(iωn)−1 = iωn − ε̄K + µ− ΣK(iωn)− ΓK(iωn), (3.28)

or alternatively

GK(iωn)−1 = iωn − ε̄K + µ− ΓK(iωn), (3.29)
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3.4 Effective cluster model

which defines the hybridization function

ΓK(iωn) =
1
V

∫
dk̃ δε2K(k̃)GK+k̃(iωn)

1 + 1
V

∫
dk̃ δεK(k̃)GK+k̃(iωn)

. (3.30)

In this formulation ḠK(iωn) already reflects the structure of the effective cluster
model: The bare cluster is described by the bare dispersion ε̄K . The interaction due
to the local repulsion U is captured by ΣK(iωn), whereas ΓK(iωn) represents the
dynamic coupling of the cluster to the surrounding bath. Let us now consider the
effective cluster Hamiltonian

Hc =
∑
Kσ

(ε̄K − µ) c†KσcKσ + U
∑
iσ

ni↑ni↓

+
∑
Kσ

∫
dk̃ ζK+k̃ a

†
K+k̃ σ

a
K+k̃ σ

+
∑
Kσ

∫
dk̃
(
VK(k̃) c†KσaK+k̃ σ

+ H. c.
)

. (3.31)

The first line is the finite cluster with the usual Hubbard interaction. The second
line introduces a non-interacting infinite bath represented by auxiliary fermionic
operators a

(†)
kσ and an unknown energy dispersion ζk. The bath is coupled to the

cluster via coupling amplitudes VK(k̃) (unknown as well). The action of this system
is

Sc[φ
∗, φ, ψ∗, ψ] =

∫ β

0

dτ
∑
Kσ

φ∗Kσ(τ)

(
∂

∂τ
+ ε̄K − µ

)
φKσ(τ) + SU [φ∗, φ]

+

∫ β

0

dτ
∑
Kσ

∫
dk̃ψ∗

K+k̃ σ
(τ)

(
∂

∂τ
+ ζK+k̃

)
ψK+k̃ σ(τ)

+

∫ β

0

dτ
∑
Kσ

∫
dk̃
(
φ∗Kσ(τ)VK(k̃)ψK+k̃σ(τ) + H.c.

)
, (3.32)

where φ
(∗)
Kσ and ψ

(∗)
kσ are the Grassmann variables to the corresponding operators c

(†)
Kσ

and a
(†)
kσ, respectively. The bath variables ψ

(∗)
kσ only appear in a biquadratic form and

can be integrated out yielding the bath contribution Zbath to the partition function.
Using the Gaussian integration formula for Grassmann variables∫ ∏

i

dξ∗i dξi exp

(
−
∑
ij

ξ∗iAijξj +
∑
i

[J∗ξi + ξ∗J ]

)
= detA exp

(
J∗A−1J

)
(3.33)
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3 Dynamical cluster approximation

and identifying ξi = ψkσ(τ), A = δkk′δσσ′δ(τ − τ ′)
(
∂
∂τ
− ζk

)
, and J = VK(k̃)ψkσ(τ),

the partition function of the effective model becomes

Zc =

∫
D[φ∗, φ]D[ψ∗, ψ]e−Sc[φ∗,φ,ψ∗,ψ]

=Zbath

∫
D[φ∗, φ]e−S0[φ∗,φ]−SU [φ∗,φ] (3.34)

with

S0[φ∗, φ] =

∫ β

0

dτ
∑
Kσ

φ∗Kσ(τ)

(
∂

∂τ
+ ε̄K − µ

)
φKσ(τ)

+

∫ β

0

dτ
∑
Kσ

φ∗Kσ(τ)

∫
dk̃ V ∗K(k̃)

[
∂

∂τ
+ ζ̄K+k̃σ

]−1

VK(k̃)φKσ(τ)

=− 1

β

∑
iωn

∑
Kσ

φ∗Kσ(iωn)

iωn − ε̄Kσ + µ−
∫

dk̃

∣∣∣VK(k̃)
∣∣∣2

iωn − ζK+k̃

φKσ(iωn) .

(3.35)

Eq. (3.29) shows that S0 is indeed identical to eq. (3.25), if we define

ΓK(iωn) =

∫
dk̃

∣∣∣VK(k̃)
∣∣∣2

iωn − ζK+k̃

. (3.36)

Thus, although the bath does not enter the algorithm explicitly, it is nevertheless
implicitly included in the effective bare Green function GKσ(iωn).

3.5 Antiferromagnetic order

So far, all quantities such as Green functions and self-energies were diagonal in
momentum space, because the DCA preserved the translational symmetry of the
lattice problem. Antiferromagnetic order breaks translational symmetry, leading to
a doubling of the unit cell. This means that the first Brillouin zone correspondingly
becomes smaller. Evaluating the mapping for the 3D cubic lattice, then results in
the reduced zone shown in fig. 2.2a.

In order to explicitely break the full translational symmetry alongside with the
SU(2) symmetry, one adds staggered magnetic field hi = h0 eiQ·ri with Q = (π, π, π)
to the Hamiltonian eq. (2.1) as

Hh = H +
∑
i

himi , (3.37)
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3.5 Antiferromagnetic order

where mi = ni↑ − ni↓ is the spin polarization at lattice site i. One can then in
principle study the properties as function of this staggered field. However, because
such a field is of little experimental relevance, one is conventionally only interested
in the limit h0 → 0. If a finite polarization remains in this limit, we have found a
state with spontaneous symmetry breaking.

In a real simulation, one usually proceeds slightly differently via adding a small
field (in our case we chose h0 = 0.01) in the intialization of the iteration process.
The field is switched off after the first few iterations for subsequent iterations and
the system is allowed to evolve freely. Eventually, the process will converge either
to a solution with vanishing staggered magnetization 〈mi〉 = 0, meaning that we are
in a parameter regime where the thermodynamically stable state is a paramagnet,
or else have 〈mi〉 6= 0 and thus an antiferromagnetically ordered state.

In order to be able to include such a field in our simulations, we have to ensure
that the cluster we use has the proper translational symmetry with respect to a
double unit cell. These clusters are the bipartite clusters (cf. section 3.7.2). Since
the DCA is formulated in momentum space, the broken translational symmetry
introduces explicit non-diagonal elements in quantities like the Green function or
the self-energy. Using

GσK1,K1(iωn) =
1

N

∑
ij

exp [i (K1 ·Ri −K2 ·Rj)]Gσij(iωn) (3.38)

as extension of eq. (3.6) for Green functions with momenta K1 6= K2, the antifer-
romagnetic Green function can be represented by the 2×2 matrix

GσK′(iωn) :=

(
G00
σK′(iωn) G01

σK′(iωn)
G10
σK′(iωn) G11

σK′(iωn)

)
:=

(
GσK′,K′(iωn) GσK′,K′+Q(iωn)
GσK′+Q,K′(iωn) GσK′+Q,K′+Q(iωn)

)
(3.39)

where K ′ is now an element of the reduced Brillouin zone depicted in fig. 2.2a. The
symmetry relations G00

σK′(iωn) = G11
σ̄K′(iωn) = −

(
G11
σK′(iωn)

)∗
= −

(
G00
σ̄K′(iωn)

)∗
and G10

σK′(iωn) = G01
σK′(iωn) = G10

σ̄K′(iωn) = G01
σ̄K′(iωn) hold for the Green function

as well as for the self-energy, which must be extracted by matrix inversions,

ΣσK′(iωn) = GσK′(iωn)−1 −GσK′(iωn)−1 . (3.40)

The self-consistency loop fig. 3.2 applies to the antiferromagnetic case as well, if one
replaces all scalar Green functions and self-energies by their corresponding 2×2 ma-
trices. Special attention is required for the coarse-grained Green function ḠσK′(iωn).
In the presence of a staggered magnetic field, it can be described by [109]

ḠσK′(iωn) =
1

V

∫
dk̃

[(
iωn + µ− εK′+k̃ hσ/2
hσ/2 iωn + µ− εK′+Q+k̃

)
−ΣK′(iωn)

]−1

(3.41)

using hσ = h↑/↓ = ±h0.
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3 Dynamical cluster approximation

3.6 Finite-size scaling

The DCA has several well-defined limits. It becomes exact in the limit of infinite
cluster size Nc → ∞, when the effective cluster problem becomes identical to the
original problem and the cluster Green function becomes the exact Green function
of the complete system. At cluster size Nc = 1 the DCA reduces to the DMFT for
a finite-dimensional system. In this limit, all quantities become local. Thus, the
DCA can be regarded as an interpolation scheme between the DMFT and the exact
solution. Moreover, it can be shown that the DCA is a systematic approximation
in cluster size and possesses a well-defined finite-size scaling behavior. This offers
the possibility to systematically extrapolate results for finite clusters to the infinite
system limit.

The approximation performed by the DCA is to replace the exact Green function
by its coarse-grained counterparts in diagrams of the generating functional Φ. The
relation between the coarse-grained Green function ḠK and the exact Green function
Gk is given by (cf. eqs. (3.28) and (3.27))

Gk =
[
Ḡ−1

K − δεK(k̃)− δΣK(k̃) + ΓK

]−1

(3.42)

defining Σk = ΣK + δΣK(k̃). Since the diagrams in Φ are integrated over k̃
and 1

V

∫
dk̃ δεK(k̃) = 0 by definition, all contributions linear in δεK(k̃) vanish.

If we assume a simple cubic cluster of size Nc = L3
c, the cluster momenta are

K =
(
n1π
Lc
, n2π
Lc
, n3π
Lc

)
with n1, n2, n3 ∈ {−Lc, . . . , Lc}. Using the simple dispersion

eq. (2.3), the quantity δεK(k̃) = εK+k̃ − ε̄K becomes

δεK(k̃) =
3∑
i=1

cos

(
niπ

Lc

+ k̃i

)
− π

Lc

3∑
i=1

∫
dk̃ cos

(
niπ

Lc

+ k̃i

)
. (3.43)

We observe, that δεK(k̃) ∼ O(1/Lc) for large Lc. The hybridization function van-
ishes like δε2K(k̃) to leading order (cf. eq. (3.30)), hence the average hybridization
per cluster site scales like

Γ̄ =
1

Nc

∑
K

ΓK ∼ O(1/L2
c) . (3.44)

If we assume, that the correction to the self-energy δΣK(k̃) scales with the same or
higher order than the hybridization function, we find that the DCA converges like
ΦDCA ≈ Φ+O(1/L2

c). The same behavior can be expected from all other observables
derived from ΦDCA. This scaling relation was numerically verified for the 1D Falicov-
Kimball model [110] and will be the foundation of the finite-size scaling employed
in chapter 5.
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3.7 Cluster selection

The argument above was only given for a cubic cluster of length Lc. We usually
perform DCA simulations on clusters that do not possess a simple cubic shape. For
this reason, we have to define an effective cluster length Lc = N

1/3
c . The next section

deals with the details of selecting clusters for optimal finite-size scaling.

3.7 Cluster selection

The choice of an appropriate finite-size cluster is important, since its size is severely
limited by computational restrictions. Early simulations of 2D spin models on finite
lattices using exact diagonalization were usually performed on square-shaped tiles
[132]. In order to overcome the limited number of useful tilings it was shown that
parallelogram tiles of a certain kind could also produce useful results [64]. Moreover,
Betts et al. introduced criteria to judge the quality of finite clusters with periodic
boundary conditions based on topological structure and geometrical shape and de-
termined a set of optimized parallelogram-shaped tiles of the square lattice [19, 18].
They demonstrated that these tiles show a much better finite-size scaling behavior
than their simple square-shaped counterparts. Thus, they argued that topological
perfection is more important than the conservation of the full point group symmetry
of the lattice. The criteria were later applied to parallelepiped tilings of the simple
cubic lattice [21, 92], the face-centered cubic lattice [172], and the body-centered
cubic lattice [20]. We present the criteria for finding clusters with good finite-size
scaling behavior in the following two sections.

3.7.1 Topological imperfection

A set of clusters with different sizes exhibit good finite-size scaling if each cluster
represents a certain length scale closely connected to its size. A physical relevant
length scale is the number of nearest-neighbor shells which are part of the cluster.
A nearest-neighbor shell shall be defined in a way, that it reflects the topology of
a model with nearest-neighbor interaction: Site i is kth-nearest neighbor to a site j
if i and j can only be connected by k or more hopping processes between nearest
neighbors. For example, each site on an infinite square lattice possesses 4 nearest
neighbors, 8 second-nearest neighbors, 12 third-nearest neighbors, 16 fourth-nearest
neighbors, etc.

A finite cluster can only incorporate a finite number of nearest-neighbor shells. It
is possible that there are less sites in a specific shell than in the corresponding shell
of the infinite lattice. A topologically perfect cluster fills up the lowest neighbor
shells completely and possesses only one incomplete shell for its remaining sites.
An example for a perfect 16 site cluster is shown in fig. 3.4b. The two lowest
shells are completely filled. The third-nearest-neighbor shell inhabits the remaining
three sites and is incomplete. All other shells are empty. A simulation of a model
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Figure 3.4: A comparison of two 16 site clusters in 2D with periodic boundary conditions
which tile the simple square lattice. One arbitrary site (labeled by 0) is cho-
sen as reference point. Nearest-neighbor shells are labeled by 1, 2, 3, 4. The
square cluster (a) exhibits a full nearest-neighbor shell and incomplete second
(6 of 8 sites), third (4 of 12), and fourth-nearest-neighbor shells (1 of 16).
Its topological imperfection is I = 3. The parallelogram-shaped cluster (b)
possesses complete nearest-neighbor and second-nearest-neighbor shells and
only one incomplete third-nearest-neighbor shell (3 of 12). All higher neigh-
bor shells are empty. Although the cluster (b) is not as symmetric as (a), it
is topologically perfect (I = 0).

using this finite cluster correctly treats physical processes acting on a length scale
up to the second-nearest-neighbor shell. The third-nearest-neighbor shell is treated
approximately due to the lack of several sites. All higher length scales are not
captured at all.

A less than perfect finite cluster is shown in fig. 3.4a. It exhibits incomplete
second, third, and fourth-nearest-neighbor shells. This cluster treats even longer
length scales (the fourth-nearest-neighbor shell) while approximating already the
processes on the second-nearest-neighbor shell. It therefore mixes several different
length scales and is not a pure representative of a specific scale. Although this
cluster is a perfect square and conserves the point group symmetry of the lattice, it
is less suitable for a systematic finite size analysis and should be avoided.

In order to have a quantitative statement of cluster perfection one defines the
topological imperfection [21]

I = If − Ip . (3.45)

The first quantity If is based on the cluster in question,

If =
∞∑
k=0

k nk , (3.46)
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Figure 3.5: Panel a: The same cluster of fig. 3.1 described by the same parallelogram as in
fig. 3.1 (blue) and by a completely different parallelogram (red). Each cluster
site is identified by a number 1, 2, . . . , 8. Right column: a non-bipartite cluster
with even number of sites in real space (b) and in momentum space (c).

where nk is the number of sites in the kth-nearest-neighbor shell. The second term Ip

is the same quantity determined for a perfect cluster of the same size, which possesses
at most one incomplete nearest-neighbor shell. This definition is independent of the
fact, wether such a perfect cluster exists or not. The definition of I can easily be
extended to the simple cubic lattice in 3D. In this case the number of sites in the
nearest-neighbor shells of the infinite lattice are n1 = 8, n2 = 18, n3 = 38, etc.

3.7.2 Geometry and symmetry

The topological imperfection is taken to be the most important quantity to judge
the quality of a cluster [21]. For a particular size, there exist many clusters with the
same imperfection but described by different matrices C. Some of these are even
identical. Due to the periodic boundary conditions, the description by the matrix
C is not unique. For example, the cluster of fig. 3.1 can be described with different
parallelograms (cf. fig. 3.5a). It can be shown, that two clusters C1 and C2 of size Nc

are identical, if and only if A = C−1
2 C1 has only integer elements [107]. But there

can still exist several non-identical clusters with different geometrical properties
including clusters with very thin, flat, or elongated shapes. These clusters are not
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3 Dynamical cluster approximation

desirable, since they exhibit effectively only two or even one-dimensional properties.
It is therefore necessary to choose a cluster which is as close to a cubic shape as
possible.

Using the lengths of the four body diagonals of the parallelepiped d1, d2, d3, d4

and of the six face diagonals f1, f2, . . . , f6, we take their geometric mean length
d = (d1d2d3d4)1/4 and f = (f1f2f3f4f5f6)1/6, respectively, as well as the mean of the
three edges l = (l1l2l3)1/3. These are used to define the cubicities [21]

c1 =

√
3l

d
and c2 =

√
2l

f
. (3.47)

Obviously c1 = c2 = 1 for the cube. The closer these cubicities are to unity the
closer the parallelepiped is to a cube. The combined cubicity parameter

c = max(c1, c
−1
1 ) max(c2, c

−1
2 ) (3.48)

is used as an criterion to choose clusters that are closest to a cube.
A parallelepiped cluster obviously breaks the cubic symmetry of the infinite lat-

tice. While all clusters are at least symmetric under coordinate inversion, the re-
maining 46 mirror and rotation symmetries of the cubic group may be broken.

A potential antiferromagnetic order of a simulated system will be frustrated, if
the lattice is not bipartite, i. e., cannot be split into two sub-lattices. The infinite
simple cubic lattice is bipartite, but a finite cluster may not. All clusters with
uneven number of sites are non-bipartite, but also certain clusters with an even
number of sites. Thus, in order to avoid an artificial frustration, a bipartite cluster
is mandatory for a study of antiferromagnetic order. Another disadvantage of non-
bipartite lattices is, that they cause a sign problem in the QMC algorithm even
in particle-hole-symmetric situations. The two-sub-lattice structure of a bipartite
cluster transforms into momentum space in the following way: For each cluster
momentum K the momentum K + (π, π, π) is also a cluster momentum. The
cluster momenta can accordingly be divided into pairs. In particular the momentum
(π, π, π) itself is a cluster momentum. This symmetry is a necessary ingredient for
the cancelation of the fermionic sign. Since the sign problem limits the performance
of the algorithm severely, non-bipartite clusters should be avoided at least in the
context of QMC simulations. The cluster of fig. 3.5b is a 2D example of a non-
bipartite cluster with even number of sites. In 2D the vector (π, π) is the relevant
direction for antiferromagnetic order. If one observes the cluster in momentum space
(fig 3.5c), the lack of the cluster momentum (π, π) becomes apparent.

All simulations in this work exclusively used bipartite clusters which were opti-
mized following these rules. For a given cluster size Nc, the chosen cluster was the
one with the smallest possible topological imperfection and cubicity closest to one,
in this order of priority. Only bipartite clusters with an even number of cluster
sites were used. For Nc ≤ 100, these clusters were already published in ref. [92].
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Figure 3.6: Imperfection per cluster size I/Nc and the deviation from cubic shape c − 1
for optimized clusters of the 3D simple cubic lattice. Only bipartite clusters
with 46 < Nc < 1000 and even number of sites are shown.

Additional bipartite clusters in 3D with Nc ≤ 1000 were found by examining all ma-
trices C with individual components up to ±9 by direct enumeration. A selection
is listed in appendix E. Fig. 3.6 shows imperfection and cubicity of these optimized
clusters plotted against the effective cluster radius N

1/3
c . A periodic pattern in

the imperfection is clearly visible showing that minimizing I effectively causes the
nearest-neighbor shells to be filled up one after the other. Unfortunately, regions
of low imperfection coincide with those of largest deviation from the cubic shape.
However, the cubicity remains at moderate values c < 1.2 and fluctuates heavily, so
that individual clusters with low cubicity can be found.

3.8 Summary

The DCA provides an approximation scheme for the Hubbard model by approxi-
mating the infinite-lattice problem on an effective finite cluster embedded in a mean
field. All quantum fluctuations local to the cluster are treated exactly while long-
ranged correlations are included in a mean-field limit. The DCA is a systematic
generalization to the DMFT and offers the possibility of a finite-size scaling analysis
(cf. chapter 5 for an application). The remaining problem, i. e., how to solve the
effective cluster problem, is the subject of the subsequent chapter.
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4 Quantum Monte Carlo simulations
in continuous time

In this chapter, we give a detailed description of the QMC algorithms employed
to solve the cluster model introduced in chapter 3. An introduction into QMC
methods and an overview of Monte Carlo techniques in general is followed by a
characterization of the two distinct continuous-time QMC algorithms used for this
work.

There exist several completely different classes of algorithms which are commonly
described by the term “quantum Monte Carlo”. They only have in common that
they employ stochastic methods to simulate quantum mechanical problems. Varia-
tional Monte Carlo [114, 33] and diffusion Monte Carlo [42] are used for the direct
calculation of wave functions of many-body systems, while path integral Monte Carlo
techniques [34] such as the stochastic series expansion [160, 177], the loop [41, 14, 40]
and the worm algorithm [143, 142] sample the action of many-body-problems. This
latter group of algorithms is mostly applied to bosonic systems [68, 162], quantum
magnets [66, 158, 159], and one-dimensional fermionic systems [165]. The fermionic
sign problem [184] generally prevents the application of these methods to fermionic
models in higher dimensions.

A third group of algorithms provide methods suitable for the stochastic sampling
of the action of fermions. Because of the sign problem, their application is lim-
ited to either particle-hole-symmetric lattice problems [22] or to impurity problems
within an optional DMFT or DCA context. In the past, the standard method for
fermionic impurity models was the algorithm by Hirsch and Fye [75]. It decou-
ples the fermion degrees of freedom by a discrete Hubbard-Stratonovich transfor-
mation [73, 74] of the partition function, which introduces an auxiliary Ising field.
This transformation requires a discretization of the imaginary time axis into equally
spaced time slices ∆τ using a Trotter-Suzuki decomposition [182, 174]. Such a dis-
cretization introduces a systematic error of O(∆τ 2), which demands a careful and
numerically expensive extrapolation ∆τ → 0. A characteristic technical feature
of the algorithm is that the Monte Carlo weights depend on the numerically often
expensive calculation of determinants.

Alternatives to the Hirsch-Fye algorithm have been developed in recent years
[152, 153, 59, 194, 196, 60]. All of them avoid the error due to the Trotter-Suzuki
decomposition and work in continuous time instead. They are similar to the Hirsch-
Fye algorithm in this respect, that they require the calculation of determinants.
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4 Quantum Monte Carlo simulations in continuous time

We employ two of these algorithms, which are both based on an expansion in the
interaction term of the Hamiltonian. The continuous-time interaction expansion
algorithm (CT-INT) was developed by Rubtsov et al. [151, 152, 153]. It is often
called “weak coupling” algorithm [119, 58, 59], which is somewhat inappropriate,
since its application is not limited to weak coupling strengths. The continuous-
time auxiliary-field method (CT-AUX) was initially developed by Gull et al. [59]
based on an algorithm for finite lattices by Rombouts et al. [148, 149]. This
method exhibits stronger similarities to the Hirsch-Fye algorithm than the CT-INT.
Although technically different, both algorithms were shown to be equivalent for
Hubbard type interactions [119]. There exists another algorithm also formulated in
continuous imaginary time, which is based on an expansion in the hybridization with
the surrounding bath [194, 196]. However, it is not suitable for large scale cluster
applications, because the interacting cluster problem has to be solved exactly. This
causes an exponential scaling of the algorithm with cluster size [196], which limits
the size of treatable clusters to a minimum.

4.1 Monte Carlo evaluation

We are aiming at a Monte Carlo evaluation of the single particle Green function and
other thermodynamic observables. The thermal expectation value of an observable
O is

〈O〉 =
1

Z
TrO e−βHc (4.1)

with the partition function

Z = Tr e−βHc (4.2)

of the effective cluster model eq. (3.31). In a many-body quantum system, the direct
evaluation of the trace over the exponentially large number of many-particle states
is generally impossible. In order to evaluate eq. (4.1) stochastically, the thermal
average needs to be transformed into a sum of configurations C weighted by w(C),

〈O〉 =
∑
C

O(C)w(C) . (4.3)

Such a weighted average can be calculated by a Monte Carlo procedure. The ex-
plicite calculation of the weights w(C) themselves is generally not possible, since
the norm of the weights is determined by the partition function Z whose calcula-
tion again involves a trace over an exponentially large number of states. Another
exponentially hard effort is the diagonalization of the Hamiltonian Hc, which could
otherwise provide the transformation eq. (4.3). The details of the transformation
are specific to each QMC algorithm and will be covered in sections 4.2 and 4.3,
respectively. The inability to calculate Z directly also prohibits the direct Monte
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4.1 Monte Carlo evaluation

Carlo evaluation of observables that depend directly on the partition function, for
example the entropy S = 1

β
lnZ or the free energy.

In order to sample averages like eq. (4.3) effectively, we apply Monte Carlo tech-
niques [99]. We generate a Markov chain of configurations

C1 → C2 → · · · → Cn → Cn+1 → . . . . (4.4)

A configuration Cn+1 in the chain is only connected to its immediate predecessor Cn
by the transition probability t(Cn → Cn+1). That means, that the current configu-
ration of the chain does not depend on its past nor do any future configurations. We
need to find transition probabilities that will generate a finite set of configurations
C1, C2, . . . , CN , such that these configurations are distributed according to w(C) in
the limit N →∞. If this can be accomplished, the average eq. (4.3) is approximated
by

〈O〉 =
∞∑
n=1

O(Cn) ≈
N∑
n=1

O(Cn) +O(
√

1/N) . (4.5)

The statistical error of such an approximation is of order O(
√

1/N). Thus, in princi-
ple every observable can be calculated with a desired accuracy by a sufficiently large
number of generated configurations. The Monte Carlo estimate for 〈O〉 possesses
statistical errors only and is otherwise exact.

The Markov chain must generate configurations distributed by w(C). It is suffi-
cient for the transition probabilities t(Cn → Cn+1) to fulfill two conditions:

Ergodicity: Any configuration must be reachable from any other configuration in a
finite number of Markov steps.

Detailed balance: We demand

t(Cn → Cn+1)w(Cn) = t(Cn+1 → Cn)w(Cn+1) . (4.6)

We apply a Metropolis-Hastings algorithm [117, 67] to satisfy these conditions. The
transition probability is split into a proposal part p and an acceptance probability
a,

t(Cn → Cn+1) = p(Cn → Cn+1) a(Cn → Cn+1) . (4.7)

Thus, the detailed balance condition becomes

a(Cn → Cn+1)

a(Cn+1 → Cn)
=
w(Cn+1) p(Cn+1 → Cn)

w(Cn) p(Cn → Cn+1)
, (4.8)

which is satisfied, if we propose a change of the current configuration Cn and accept
the change with the probability

a(Cn → Cn+1) = min

(
1,
w(Cn+1) p(Cn+1 → Cn)

w(Cn) p(Cn → Cn+1)

)
. (4.9)

Here the weights w(C) only appear in ratios eliminating the dependence on the
normalization Z.
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4 Quantum Monte Carlo simulations in continuous time

4.1.1 Sign problem

The interpretation of eq. (4.9) as a probability requires its non-negativity. While
the proposal probabilities are usually positive, the weights stemming from eq. (4.3)
are generally not. Depending on the QMC algorithm and the model in question the
quantities w(C) may be negative, thus inhibiting their interpretation as probabilities
in a weighted sum. In principle, this problem can be avoided by switching from an
average 〈. . .〉w using w(C) to 〈. . .〉|w| involving the absolute values |w(C)| of the
weights. The relation

〈O〉w =

∑
C O(C)w(C)∑

C w(C)
=

∑
C sgn(w(C))O(C) |w(C)|/∑C |w(C)|∑

C sgn(w(C)) |w(C)|/∑C |w(C)| =
〈sgn(w)O〉|w|
〈sgn(w)〉|w|

(4.10)

displays that the average of each observable O can be calculated by measuring
〈sgn(w)O〉|w| with respect to the positive weights |w(C)| and subsequently dividing
by the average sign of the weights 〈sgn(w)〉|w|. This ensures that the Monte Carlo
algorithm described in the previous section is still applicable. Numerical problems
arise if the average sign becomes very small, which is unfortunately often the case.
The statistical errors even grow exponentially with β and system size Nc, which
renders the measurement of an observable with vanishing sign an exponentially hard
problem [184]. This can be shown, by observing that the average sign 〈sgn(w)〉|w| =
Zw/Z|w| is the ratio of the partition functions of the system with respect to w,
Zw =

∑
C w(C), and with respect to |w|, Z|w| =

∑
C |w(C)|. Per definition, the

partition function depends exponentially on the free energy F = − 1
β

lnZ. That
means that also the average sign depends exponentially on the difference ∆f of the
free energy densities f = F/Nc, i. e.,

〈sgn(w)〉|w| ∝ exp(−βNc∆f) . (4.11)

The relative error σ(sgn)/ 〈sgn〉|w| follows as

σ(sgn)

〈sgn〉 |w|
=

√(
〈sgn2〉|w| − 〈sgn〉2|w|

)
/N

〈sgn〉|w|
∝ eβNC∆f

√
N

. (4.12)

Since measurements of all observables depend on the average sign, the exponential
increase of the errors with inverse temperature and system size is true for all observ-
ables. This effect is commonly known as the sign problem. The exponential increase
of the statistical errors effectively prevents the application of QMC techniques to
many models.
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4.2 Continuous-time interaction expansion

4.2 Continuous-time interaction expansion

The CT-INT algorithm provides a numerical tractable transformation of the expec-
tation value eq. (4.1) into the weighted sum eq. (4.3) by expanding the partition
function in the interaction term of the Hamiltonian.

We divide the cluster Hamiltonian Hc = H0 +HU into a non-interacting part H0

and
HU = U

∑
i

ni↑ni↓ . (4.13)

We switch into the interaction representation by defining time-dependent operators
O(τ) with respect to H0, i. e.,

O(τ) = eτH0Oe−τH0 . (4.14)

If we introduce the operator

U(β) = eβH0e−βHc , (4.15)

the partition function eq. (4.2) can be written as

Z = Tr
[
e−βH0U(β)

]
. (4.16)

The operator U(β) has the property

dU(β)

dβ
= −HU(β)U(β) ⇒ U(β) = Tτ exp

[
−
∫ β

0

dτHU(τ)

]
. (4.17)

The partition function in the interaction representation follows as

Z = Tr
[
e−βH0Tτe

−
∫ β
0 dτHU (τ)

]
= Z0

〈
e−

∫ β
0 dτHU (τ)

〉
0
, (4.18)

which defines the non-interacting partition function

Z0 = TrTτe
−βH0 (4.19)

and the ensemble average

〈. . .〉0 =
1

Z0

TrTτ . . . e−βH0 . (4.20)

The interaction Hamiltonian HU is modified by coupling an auxiliary Ising field
si = ±1 to each cluster site. Thus, eq. (4.13) becomes

HU = U
∑
i

∑
si=±1

(
ni↑ −

1

2
− δsi

)(
ni↓ −

1

2
+ δsi

)
. (4.21)
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4 Quantum Monte Carlo simulations in continuous time

The coupling strength δ and the additional terms 1
2

cause no physical change in
the Hamiltonian except a trivial shift in energy. However, the modification greatly
affects the sign of the Monte Carlo weights and can even eliminate the sign problem
for particle hole symmetric models [151, 6].

An expansion of the exponential function in the partition function eq. (4.18) to
all orders yields

Z = Z0

∞∑
k=0

(−U)k
∫ β

0

dτ1 · · ·
∫ τk−1

0

dτk
∑
i1si1

· · ·
∑
iksik

〈(ni1↑(τ1)− α1↑) (ni1↓(τ1)− α1↓) . . . (nik↑(τk)− αk↑) (nik↓(τk)− αk↓)〉0 . (4.22)

Here we have defined αkσ = 1
2

+ sgn(σ)δsik(τk) with sgn(↑) = 1 and sgn(↓) = −1.
Since the average 〈. . .〉0 is performed over a non-interacting system, we can employ
Wick’s theorem [198] to factorize the expectation values in this expression. The
result is a sum over all possible contractions of the operator string in eq. (4.22),
which can be expressed in terms of the determinant of a 2k × 2k matrix. This
determinant factorizes into two sub-determinants for each spin resulting in

Z = Z0

∞∑
k=0

(−U)k
∫ β

0

dτ1 · · ·
∫ τk−1

0

dτk
∑
i1si1

· · ·
∑
iksik

∏
σ

det
[
G0
kσ − Akσ

]
. (4.23)

with
Akσ = diag (α1σ, α2σ, . . . , αkσ) . (4.24)

Since
〈
ciσ(τ)c†jσ(τ ′)

〉
0

= −Gijσ(τ − τ ′) and 〈niσ(τ)〉0 = −Giiσ(β−), the matrix G0
kσ

can be explicitly evaluated yielding

G0
kσ = −


Gi1i1σ(β−) Gi1i2σ(τ1 − τ2) · · · Gi1ikσ(τ1 − τk)
Gi2i1σ(τ2 − τ1) Gi2i2σ(β−) Gi2ikσ(τ2 − τk)

...
. . .

...
Giki1σ(τk − τ1) Giki2σ(τk − τ2) · · · Gikikσ(β−)

 . (4.25)

We can finally express the partition function eq. (4.23) as a sum of configurations
C. Each configuration is characterized by an expansion order k and a set of times,
sites, and Ising field configurations,

C = {k; i1, . . . , ik; τ1, . . . , τk; si1(τ1), . . . , sik(τk)} . (4.26)

Each one is weighted by

w(C) = Z0(−U)k
∏
σ

det
[
G0
kσ − Akσ

]
, (4.27)
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4.2 Continuous-time interaction expansion

such that the partition function eq. (4.23) can be written in the form

Z =
∑
C

w(C) (4.28)

if we formally combine all sums and integrals into a single sum over C. Accordingly,
all observable averages can be expressed as the Monte Carlo average eq. (4.3). Again,
we point out the importance of the matrix Akσ to avoid the sign problem. If one
omitted Akσ, G0

k↑ = G0
k↓ would hold for spin-symmetric problems. The alternating

sign stemming from the term (−U)k would then create a massive sign problem.

4.2.1 Monte Carlo updates

The presented QMC algorithm produces weights of the form (cf. eq. (4.27))

w(C) = Z0c
k
∏
σ

detM−1
kσ (4.29)

with a constant c = −U and k × k matrices M−1
kσ = G0

kσ − Akσ. If the current
configuration Ck consists of k vertices, a possible update is the insertion or removal
of one vertex, thereby expanding or reducing the expansion order k by one. The
proposal probabilities for the insertion update is

p(Ck → Ck+1) =
1

βNc

, (4.30)

which reflects the choice of randomly picking a time τk+1 from the interval [0, β]
and a cluster site sk+1 from Nc possible sites. When removing one vertex from a
configuration of order k + 1, we must choose one of k + 1 vertices. The proposal
probability is consequently

p(Ck+1 → Ck) =
1

k + 1
. (4.31)

These two quantities enter the acceptance probability eq. (4.9), hence

a(Ck → Ck+1) = min

(
1,
cβNc

k + 1

∏
σ

detM−1
k+1,σ

detM−1
kσ

)
, (4.32)

a(Ck → Ck−1) = min

(
1,

k

cβNc

∏
σ

detM−1
k−1,σ

detM−1
kσ

)
. (4.33)

Appendix A deals with the numerically efficient evaluation of these weights as well
as with details of the update process of the matrix Mkσ. Updates of this kind are
already sufficient to render the algorithm ergodic. In order to reach one arbitrary
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Figure 4.1: Histogram of the expansion order k of several DCA simulations for the Hub-
bard model at half filling on a simple cubic lattice.

configuration from another, one could, for example, remove all current vertices and
add the ones from the target configuration. The expansion order k of the configu-
ration can in principle reach all possible values. In real simulations, however, the
average expansion order will be peaked around a finite value. Fig. 4.1 shows a his-
togram of the expansion order for several different parameter values. Each histogram
exhibits a clear maximum and an overall Gaussian shape around the maximum. We
can also observe that the average expansion order scales linearly with the inverse
temperature β, the Coulomb repulsion U , and the cluster size Nc. Appendix A
shows that the Monte Carlo updates scale as O(k3). The overall scaling of the al-
gorithm is thus O((βUNc)

3). That means that the simulation becomes more and
more inefficient for increasing β, U , and Nc.

4.2.2 Observables

In the DCA context, the quantity we are most interested in is the single-particle
Green function as defined in eqs. (3.5) and (3.6). The imaginary-time dependent
Green function in real space is easily expressed in the interaction picture by

Gσij(τ − τ ′) = −
〈
Tτciσ(τ)c†jσ(τ ′)

〉
=

〈
−e−

∫ β
0 dτHU (τ)ciσ(τ)c†jσ(τ ′)

〉
0〈

e−
∫ β
0 dτHU (τ)

〉
0

. (4.34)
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4.2 Continuous-time interaction expansion

Applying the expansion eq. (4.22) to the enumerator yields a sum over weights

w̃(C) = Z0c
k det M̃−1

k+1,σ detM−1
kσ̄ , (4.35)

where det M̃−1
k+1,σ denotes the original k × k matrix M−1

kσ = G0
kσ − Akσ augmented

by an additional row and column,

M̃−1
k+1,σ =

(
(M−1

kσ )pq Gσipj(τp − τ ′)
Gσiiq(τ − τq) Gσij(τ − τ ′)

)
. (4.36)

The indices p and q are elements of 1, 2, . . . , k. Thus,

Gσij(τ − τ ′) =

∑
C
w̃(C)
w(C)

w(C)∑
C

w(C)
=

〈
det M̃−1

k+1,σ

detM−1
kσ

〉
w

=

〈
detMk,σ

det M̃k+1,σ

〉
w

, (4.37)

which exhibits a similar ratio of determinants as the Monte Carlo weight eq. (4.32).
Applying the framework detailed in appendix A (cf. eq. (A.8)), the Green function
becomes

Gσij(τ − τ ′) = Gσij(τ − τ ′)−
〈

k∑
p,q=1

Gσiip(τp − τ ′)(Mkσ)pqGσiqj(τ − τq)
〉
w

. (4.38)

A spatial and temporal Fourier transformation into Matsubara frequencies further
simplifies this expression yielding

GσK(iωn) = GσK(iωn)− G2
σK(iωn)

1

β

〈
k∑

p,q=1

eiK·(Rip−Riq )eiωn(τp−τq)(Mkσ)pq

〉
w

(4.39)

for paramagnetic systems. Antiferromagnetic Green function are no longer diagonal
in momentum space. The spatial Fourier transformation of eq. (4.38) leads to the
matrix notation of eq. (3.39),

GσK′(iωn) = GσK′(iωn)− GσK′(iωn) 〈M kσ〉w GσK′(iωn) (4.40)

using the 2× 2 matrix

(M kσ)K1K2
=

1

β

k∑
p,q=1

ei(K1·Rip−K2·Riq )eiωn(τp−τq)(Mkσ)pq . (4.41)

In contrast to the Hirsch-Fye algorithm, the Green function can be directly mea-
sured in momentum space and Matsubara frequencies. A Monte Carlo measurement
consists of the evaluation of the quantity in the brackets 〈. . .〉w, which is basically a
spatial and temporal Fourier transformation of the configuration matrix Mkσ. The
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Figure 4.2: The paramagnetic single-particle Green function GK=0(iωn) of the Hubbard
model on the simple cubic lattice at half filling. The Green function was
calculated in a DCA simulation with parameters Nc = 18, U = W , and T =
0.025W . Points denote QMC measurements using the CT-INT algorithm.
The error bars are smaller than the symbols. Solid lines denote the solution
of a high-frequency expansion (cf. appendix B).

calculation must be repeated for each Matsubara frequency. Since one is naturally
limited to measurements of a finite number of frequencies, only a certain number
of lowest frequencies is measured. The high-frequency behavior can be approxi-
mated by a series expansion (cf. appendix B). The number of measured frequencies
depends on the parameters of the simulation. Fig. 4.2 shows a Green function as
calculated by the CT-INT algorithm. In this example, the high-frequency expansion
is valid for |iωn| & 30. Measurements of higher Matsubara frequencies are therefore
unnecessary.

The local particle density 〈nσi〉 and the spin polarization mi = 〈n↑i − n↓i〉 are
easily measured using eq. (4.38) by evaluating nσi = 1 +Gσii(τref − τref), where the
reference time τref is chosen randomly.

For measuring two-particle correlators such as the density-density correlations
〈niσnjσ′〉, the matrix Mkσ must be extended by two additional rows and columns.
Applying Wick’s theorem, the result is the determinant of a 2× 2 matrix,

〈niσnjσ′〉 =

〈
det

(
niσ Gσσ′ij(0

+)
Gσ′σji(0

+) njσ′

)〉
w

. (4.42)

For the spin-symmetric Hubbard model, the off-diagonal elements are non-zero for
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4.3 Continuous-time auxiliary-field method

σ = σ′ only. Particularly interesting two-particle correlators are the double occu-
pancy 〈ni↑ni↓〉 and the spin-spin correlation 〈(ni↑ − ni↓)(nj↑ − nj↓)〉. Both will be
important in the context of the simulations discussed in chapter 5.

4.3 Continuous-time auxiliary-field method

The basis of the CT-AUX algorithm is the relation [148, 149]

1− βU

K

(
ni↑ni↓ −

ni↑ + ni↓
2

)
=

1

2

∑
s=±1

eγs(ni↑−ni↓) (4.43)

with

cosh(γ) = 1 +
Uβ

2K
, (4.44)

where K is an arbitrary positive constant. The relation can be applied to the
problem, if HU is modified to become

HU = U
∑
i

(
ni↑ni↓ −

ni↑ + ni↓
2

)
− K

β

=
K

2β

∑
i

∑
si=±1

eγsi(ni↑−ni↓) (4.45)

again causing only an energy shift. The transformation again introduces the Ising
field si into the algorithm. We expand the exponential in the partition function
eq. (4.18) in the same fashion as in eq. (4.22). We treat the time ordering explicitly
in the integration bounds and write

Z = Z0

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk
∑
i1si1

· · ·
∑
iksik

(
K

2β

)k
×

Tr
1∏

m=k

e−∆τmH0 eγsim(nim↑(τm)−nim↓(τm)) (4.46)

using ∆τm = τm+1 − τm for m < k and ∆τk = β − τk + τ1. This is very similar to
equations in the Hirsch-Fye algorithm [75], e. g., see eq. (121) in ref. [48]. The trace
over the string of exponential operators can be calculated explicitly,

Z = Z0

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk
∑
i1si1

· · ·
∑
iksik

(
K

2β

)k∏
σ

N−1
kσ (4.47)

using G0
kσ as defined in eq. (4.25) and

N−1
kσ = det

[
eVkσ −G0

kσ

(
eVkσ − 1

)]
(4.48)
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4 Quantum Monte Carlo simulations in continuous time

with
eVkσ = diag

(
eγ sgn(σ)si1 , eγ sgn(σ)si2 , . . . , eγ sgn(σ)sik

)
. (4.49)

Analogous to the CT-INT algorithm, Z can be calculated as a sum over configura-
tions C with weights

w(C) = Z0

(
K

2β

)k∏
σ

N−1
kσ . (4.50)

4.3.1 Monte Carlo updates

The weights in eq. (4.50) possess the same structure as the weights of the CT-INT
algorithm in eq. (4.29), if we identify c = K

2β
and M−1

kσ = N−1
kσ . The acceptance

probabilities eq. (4.33) remain therefore unchanged. One can employ additional
spin-flip updates to speed up the performance of the algorithm. These updates
flip randomly chosen Ising spins without altering the expansion order k. If two
matrices Nkσ and N ′kσ have the same imaginary time and space location for all
vertices but differ in the value of one auxiliary spin, which is flipped from sp to s′p,
their acceptance probability is given by

a(Ck → C ′k) = min

(
1,
∏
σ

detNkσ

detN ′kσ

)
. (4.51)

Spin-flips are known from the Hirsch-Fye algorithm. Many aspects of this algorithm
are still valid for the present continuous-time version. If we define the matrix Gkσ

analogous to eq. (4.25) using the full Green function Gij(τi − τj) instead of the
effective bare Green function, Nkσ is related to Gkσ by Gkσ = NkσG

0
kσ [75, 48].

Another crucial relation found by Hirsch and Fye is that the matrices Nkσ and N ′kσ
in eq. (4.51) are related by a Dyson equation

N ′ij = Nij + (Gip − δip)λNpj , (4.52)

G′ij = Gij + (Gip − δip)λGpj , (4.53)

λ = eγ sgn(σ)(s′p−sp) − 1 , (4.54)

omitting dependence on spin σ and expansion order k. This follows directly from
eq. (4.48). This relation allows for an efficient update of the configuration matrix
Nkσ and calculation of the acceptance probability. We use the “sub-matrix” update
algorithm [56] described in appendix C, which performs a series of spin-flip and
insertion/removal updates in a way that optimizes computer memory performance.

4.3.2 Observables

Note that the insertion of an arbitrary number of interaction vertices with “non-
interacting spins” s = 0 into eq. (4.46) does not change the value of the partition
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4.4 Summary

function. If we add two additional spins s = s′ = 0 at sites i, j and times τ, τ ′, we
can derive an expression for the Green function measurement. ZGσij(τ, τ

′) is then

given by an expression similar to eq. (4.46), with an insertion of ciσ(τ) and c†jσ(τ ′) at
the corresponding times. Denoting with a tilde the corresponding enlarged matrices
of size k + 2, we can use the standard Hirsch-Fye formula (eq. (118) of ref. [48]) to
obtain

Gσij(τ, τ
′) =

1

Z

∑
C

w(C)G̃kσ . (4.55)

Since s = s′ = 0, the (τ, τ ′) component of the matrix G̃kσ can be extracted from a
simple block calculation,

Gσij(τ − τ ′) = Gσij(τ − τ ′)

−
〈

k∑
p,q=1

Gσiip(τp − τ ′)
[(

eVkσ − 1
)
Nkσ

]
pq
Gσiqj(τ − τq)

〉
w

. (4.56)

This formula is identical to the measurement of the Green function in the CT-INT
algorithm if we identify Mkσ =

(
eVkσ − 1

)
Nkσ. All other measurement formulas in

section 4.2.2 are therefore still valid.

4.4 Summary

We have given a description of the QMC algorithms that can be used to solve the
quantum cluster problem of the DCA algorithm. In the next chapter, we show
how the DCA in combination with these QMC methods can be applied to calculate
thermodynamical properties of the Hubbard model.

Our implementation of the CT-INT and CT-AUX algorithms and the DCA frame-
work described in the previous chapter is based on the libraries of the ALPS project
[3, 9, 57]. ALPS (Applications and Libraries for Physics Simulations) is an open
source effort providing libraries and simulation codes for strongly-correlated quan-
tum-mechanical systems. The QMC algorithms were implemented in collaboration
with Emanuel Gull.
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5 Thermodynamics of the 3D
Hubbard model on approach to
the Néel transition

In this chapter, we study the thermodynamic properties of the 3D Hubbard model
for temperatures down to the Néel temperature TN. We perform large-scale DCA
calculations using the methods outlined in the previous two chapters and controlled
extrapolations to the infinite system size limit. We provide the full thermodynamical
equation of state of the Hubbard model – in particular the entropy, energy, density,
double occupancy, and nearest-neighbor spin-spin correlations – for interactions U
up to the bandwidth and for temperatures above TN.

We check the reliability of our approach by comparing our results with QMC
simulations on finite lattices at half filling and high-temperature series expansion
(HTSE) calculations.

To make contact with cold-gas experiments, we also compute properties of the sys-
tem subject to an external trap in the local density approximation. We calculate the
entropy required to reach the Néel state in an optical lattice experiment and provide
the temperature dependence of observables that can be used for thermometry.

Major parts of this chapter were published in ref. [43]. HTSE calculations as well
as all trap averages were calculated by Lode Pollet. Lattice QMC simulations were
performed by Evgeny Kozik and Evgeny Burovski.

5.1 Method

We solve the Hubbard model within the DCA using the CT-AUX algorithm with
sub-matrix updates introduced in section 4.3. We have performed extensive DCA
calculations on bipartite clusters with Nc = 18, 26, 36, 48, 56, 64. In order to achieve
an optimal scaling behavior, we exclusively use the clusters determined in ref. [92]
following the criteria in section 3.7. We show that an infinite system extrapolation
can be done accurately and reliably in practice to obtain converged results for the
Hubbard model directly in the thermodynamic limit [111, 92].

Fig. 5.1 shows, as a first example, the self-energy for the lowest Matsubara fre-
quency iω0 along a path through the high-symmetry points of the Brillouin zone.
The self-energies were calculated at the location of the discrete cluster momenta
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Figure 5.1: Real and imaginary parts of the lowest Matsubara frequency of the interpo-
lated DCA self-energy Σk(iω0) for U = 0.67W at half filling for three different
temperatures. The lines denote DMFT results (horizontal straight lines) and
results for clusters of size 18, 84, and 100. The self-energies are plotted along a
path through the high-symmetry points of the first Brillouin zone (cf. fig. 7.1b
for reference) and were interpolated using Akima splines [2].

K and were interpolated between these points using Akima splines in three dimen-
sions. The high-temperature self-energy plotted in panel 5.1a is clearly converged as
a function of cluster size, the intermediate temperature self-energy plotted in panel
5.1b shows some cluster size dependence, and the right panel 5.1c shows a self-energy
that even for 100 cluster sites is not yet converged – a sign of the long-ranged antifer-
romagnetic fluctuations important near TN. A reliable extrapolation of the cluster
self-energy to the infinite-system limit would require even larger clusters.

While momentum-resolved self-energies show a very difficult convergence behav-
ior, this is typically not true for momentum-averaged quantities. We measured
energy, particle density, double-occupancy, and nearest-neighbor spin-spin correla-
tion for each cluster size and extrapolate our results to the thermodynamic limit.
While most observables can be measured directly along the lines of section 4.2.2, the
evaluation of the kinetic energy demands more effort. We can express the kinetic
energy using the single-particle Green function and the bare dispersion εk via

Ekin =
∑
iωn,k

εkGk(iωn) ≈ 1

V

∫
dk̃

∑
iωn,K

εK+k̃

iωn + µ− εK+k̃ − ΣK(iωn)
. (5.1)

The DCA enters here by approximating the self-energy part of the Green function
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Figure 5.2: Finite-size scaling of the energy for U = 0.67W at half filling for two dif-
ferent temperatures. DCA simulations on optimized bipartite clusters with
Nc = 18, 26, 36, 56, 64 are taken into account. Monte Carlo errors are smaller
than the symbol size. The DMFT energy is represented by a horizontal line.
The left panel (a) presents additional DCA results for optimized non-biparte
clusters with Nc = 18, 36, 64 and the result for the bipartite 16-site cluster
described by l1 = (2, 0, 0), l2 = (0, 2, 0), l3 = (0, 0, 4) with – compared to the
optimized clusters – high imperfection I = 7 and cubicity c = 1.209.

by the piecewise constant ΣK(iωn).

Following the arguments in section 3.6, we assume 1/L2
c finite-size scaling in the

effective linear cluster size L = N
1/3
c . Two scaling plots for U = 0.67W at half filling

are shown in fig. 5.2. The lower temperature in panel 5.2a corresponds approximately
to TN, while the higher temperature in panel 5.2b is far above TN. The figure shows
the DMFT solution as a horizontal line and DCA estimates for five different bipartite
clusters plotted against 1/L2

c. A linear least-squares fit to the DCA data produces a
straight line whose interception with zero gives the extrapolated energy. The error
due to the extrapolation is much larger compared to the statistical Monte Carlo
errors. We therefore neglected the Monte Carlo errors in the process. Fig. 5.2a
presents additional DCA results for optimized non-bipartite clusters. The non-
bipartite clusters show a rather irregular scaling behavior compared to the bipartite
ones. That indicates that the non-bipartite clusters may not only have a frustrating
effect on antiferromagnetic order but on fluctuations as well. We therefore base
our extrapolations exclusively on bipartite clusters. In order to demonstrate the
relevance of topologically and geometrically optimized clusters, fig. 5.2a includes
the energy of a 16-site cluster with high imperfection I = 7 (red square), which is
far off the scaling curve and thus unsuitable for finite-size scaling.
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5 Thermodynamics of the 3D Hubbard model on approach to the Néel transition

In the immediate vicinity of the Néel temperature one would expect critical scaling
behavior like 1/L

1/ν
c . The critical exponent ν ≈ 0.71 [156] is known from the Heisen-

berg model whose universality class the Hubbard model belongs to. This ansatz has
proven to be useful for the determination of the Néel temperature itself [92], but
is not applicable to temperatures far above TN, which is the case for most of our
data. Our scaling law should be replaced by critical scaling for data points which
are very close to TN. However, such a procedure would introduce arbitrariness into
the extrapolation, because the extent to which critical behavior is still valid away
from TN is unknown. We therefore consistently use the 1/L2

c scaling and neglected
critical finite-size scaling.

The entropy is not directly accessible to the QMC by the methods described in
section 4.1 since it is not a thermal average but depends directly on the partition
function Z. However, when the energy has been calculated on a sufficiently dense
temperature grid, the entropy S can subsequently be calculated by a numerical
integration of the energy E via

S(T ) = S(Tu)−
∫ Tu

T

dT ′
dE

T ′dT ′

= S(Tu)− E(Tu)

Tu

+
E(T )

T
−
∫ Tu

T

dT ′
E(T ′)

T ′2
(5.2)

up to a Tu ≈ 3.5W , where the entropy S(Tu) is accurately given by a high-
temperature series expansion up to second order [15].

5.2 Results at half filling

We start our analysis at half filling, i. e., at chemical potential µ = U/2, and focus
on U = 0.67W where a comparison with results from lattice simulations [144, 29] is
possible. We see in fig. 5.3 that the energy and entropy calculated using DCA and
lattice QMC coincides within error bars at all temperatures. Agreement with a 10th
order high temperature series expansion (HTSE) [161] is found down to T ≈ 0.1W .
At that temperature single-site DMFT already deviates substantially, because this
method misses short-range antiferromagnetic correlations. The Néel temperature
was found to be TN ≈ 0.030(2)W in ref. [92]. The lattice QMC calculations find it
at TN = 0.0278(6)W . Using DCA, the critical entropy is s := S/Nc ≈ 0.46(4) for
TN according to ref. [92], and s ≈ 0.42(2) for TN according to lattice QMC. In the
rest of the chapter we will use TN as determined by lattice QMC, where available,
but entropies from DCA, since lattice QMC simulations are not possible away from
half filling.

Temperatures T ≥ 0.03W are reliably accessible for all but the largest interaction
strength U = W , where we have been restricted to T ≥ 0.04W . The difference
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Figure 5.3: Energy per lattice site E (a) and entropy per lattice site s (b) as a function of
temperature T , for U = 0.67W , at half filling. Dashed vertical lines (black):
TN from ref. [92], dotted lines (blue): according to lattice QMC. Dashed
horizontal lines (black): entropy per lattice site s at TN [92], dotted lines
(blue): according to lattice QMC. Lattice QMC data are extrapolated linearly
in 1/Lc from simulation of cubic shaped lattice with Lc = 6, 8, 10. The inset
(c) shows DMFT and extrapolated DCA entropies for U = 0.83W at half
filling.

between DMFT and DCA is even more pronounced for stronger interactions. For
U = 0.83W (fig. 5.3c) the DMFT data for low temperatures are close to ln 2,
the entropy of a free spin. This indicates that the charge degrees of freedom are
mostly frozen out, whereas the spin degrees of freedom are mostly unrestricted. Spin
correlations, due to the antiferromagnetic fluctuations incorporated in the DCA,
seem to cause a substantial decrease in entropy compared to DMFT.

The double occupancy, which has played a crucial role in optical lattice experi-
ments [88, 163, 161, 173], is shown in fig. 5.4a as a function of temperature at half
filling for different values of U . While for small U a remarkable increase is seen on
approach to TN, only a plateau remains at moderate values of U . This is in contrast
to the DMFT predictions but similar to lattice QMC results in two dimensions [133].
For larger interactions (U & W ), the double occupancy rises above that of a single
site paramagnet, consistent with DMFT results for the antiferromagnetic phase be-
low TN [49]. The negative slope of the double occupancy, discussed in the context of
single site DMFT [193], persists for a wide range of parameters. Sharp features just
above TN, as detected in single site (momentum independent) studies [49], are not
observed for the interaction values and temperature ranges studied here. Hence the
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Figure 5.4: Double occupancy (a) and nearest-neighbor spin-spin correlation (b) as a func-
tion of T at half filling. Extrapolated DCA results are shown as solid lines
and DMFT values as dashed lines. Vertical lines: see fig. 5.3.

proposal that the double occupancy is a good candidate for thermometry [89, 49] is
not substantiated by more accurate momentum-dependent calculations.

The spin-spin correlation function, plotted in fig. 5.4b as a function of temperature
for various U , is only accessible in methods that include non-local correlations, but
may be accessible experimentally [183]. It has a steep slope on approach to the
Néel temperature, which makes it an ideal quantity for thermometry, in contrast to
the double occupancy. This corresponds to the intuitive picture that charge degrees
of freedom are already essentially frozen out around TN while the spin degrees of
freedom start to order there.

5.3 Results away from half filling

Away from half filling the sign problem hampers the performance of the QMC algo-
rithm. Fig 5.5a shows the average sign close to TN as a function of the filling 〈n〉 =
〈n↑〉 + 〈n↓〉 for U = 0.67W and different cluster sizes. The sign depends strongly
on cluster size and its minimum as a function of filling is situated at 〈n〉 ≈ 0.3.
This minimum corresponds to a chemical potential µ′ = µ−U/2 = −0.58W for the
largest cluster with Nc = 64.

We study the temperature dependence of the sign for these particular parameters
in fig. 5.5b. The figure exhibits a logarithmic plot of the sign as a function of the
inverse temperature. The exponential nature of the sign problem is clearly visible
in the linear slope at high 1/T . The sign of the converged DCA simulation is also
compared to the sign of a finite-lattice calculation of the same cluster without the
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DCA mean field. The comparison makes apparent that the average sign of the
finite-lattice simulation is much smaller. For example, at 1/T = 30W−1 the sign is
already more than two orders of magnitude smaller than in the DCA calculation.
This behavior effectively prohibits finite-lattice simulations away from half filling
and illustrates how the DCA offers a possibility to study this parameter regime.

One should be aware of the fact, however, that the average sign is not the same for
all DCA iterations. If we start the simulation with the usual free solution ΣK(iωn) =
0, the sign is almost as small as in the finite-lattice case (cf. fig. 5.5b). We can
overcome this problem if we use the converged result of a simulation at the same
temperature but at a slightly larger chemical potential µ′ = −0.33W as starting
point. In this case, the sign problem is even weaker than in the converged simulation.
This illustrates that one should use a starting point which is as close as possible to the
converged solution. We employ therefore the following strategy in our simulations:
We perform simulations at fixed chemical potential µ. The converged solution at a
certain µ serves as the starting point of the simulation with next smaller chemical
potential. If we start at half filling, where the sign problem is absent, we avoid bad
starting configurations and can thereby iteratively simulate all chemical potentials.

After the discussion of the sign problem we proceed with simulation results. The
suppression of entropy due to antiferromagnetic fluctuations in the DCA only takes
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place near half filling. This can be seen in fig. 5.6, which shows the entropy per
lattice site for U = 0.67W near TN. The inset demonstrates that entropy per
particle number N increases strongly at lower densities. While single-site DMFT
remains accurate for densities n . 0.6 due to the weak momentum dependence of
the self-energy in this regime [54], the DCA results are important closer to half
filling. Thus, DCA simulations are only necessary relatively close to half filling. We
thereby avoid the region of minimal sign exhibited in fig. 5.5a.

The calculation of the entropy off half filling offers the possibility to test the
accuracy of the integration formula eq. (5.2). The relation

S(µ, T ) =

µ∫
−∞

dµ′
∂n(µ′, T )

∂T
, (5.3)

i. e., integrating over chemical potential µ, can serve as an alternative to the tem-
perature integration eq. (5.2) [49] and yields the same results (fig. 5.6b). The figure
also proves that, although the HTSE can be used to calculate the entropy, the ap-
proximation only holds for very low densities. We will use HTSE to calculate the
low density part of a trap in the next section.

Similarly, near half filling, DMFT overestimates the double occupancy by 10 %
(fig. 5.7a), while deviations are less pronounced at lower densities. This observation
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persists for all interactions and temperatures investigated. On the other hand,
the spin-spin correlation function (fig. 5.7b) changes most rapidly near half filling
when approaching TN since it couples strongly to the developing (short-range) spin
correlations.

5.4 Entropy in the optical lattice system

We now turn to the experimentally relevant case of an optical lattice in a harmonic
trap, which is a closed system where entropy is conserved. So far, we have ignored
the trap potential in all calculations. Now, we extend the Hubbard model by an
energy potential Vi on each lattice site i (cf. eq. 2.17),

Htrap = H +
∑
σi

Viniσ . (5.4)

We choose parameters close to current experiments: Vi = 0.004(|ri|/a)2 t with lattice
spacing a, and we consider the case of half filling in the trap center (µ = U/2). We
treat the harmonic confinement in a local density approximation (LDA): for every
site we perform a DCA simulation for a homogeneous system and average the results
over the trap. LDA was found to be a good approximation for the Bose-Hubbard
model for wide traps, except in close proximity to the critical point [197, 31, 32, 140]
of the U(1) phase transition because of the diverging correlation length. In our setup
LDA errors are small compared to errors from the uncertainty of TN.

Due to the large volume fraction, the wings of the gas may capture more entropy
than the center of the trap, even though the entropy per site is comparable to the
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smaller than the symbol size. Panel b: Entropy per particle averaged over
the trap as a function of temperature relative to TN for different U . The Néel
temperature is TN = 0.0278(6)W for U = 0.67W with an average entropy
S/N = 0.65(6). Errors (not shown) in S(TN) are estimated to be in the 10 %
range, with the largest contribution caused by the uncertainty in TN.

one in the center (see fig. 5.8a). In fact, the entropy of the whole density range
0.1 < n < 0.9 is large. This opens the possibility to observe anti-ferromagnetic
order in the trap center at an average entropy per particle over the trap which is
about 50 % larger than what could be expected from a homogeneous study. Optimal
parameters are around U = 0.67W when TN = 0.0278(6)W according to lattice
QMC, corresponding to S/N = 0.65(6) in the trap, while S/N = 0.42(2) would
be expected for a homogeneous system. As seen in fig. 5.8b, all U in the range
0.67 < U/W < 1 lead to similar conclusions. We have verified that changing the
trap by a factor of 4 does not alter these conclusions.

5.5 Summary

We have provided the full thermodynamics of the 3D Hubbard model in the ther-
modynamic limit using the DCA formalism for U ≤ W and temperatures above
the Néel temperature. Comparing to single-site DMFT, we found that the latter
already fails at remarkably high temperatures (T ≈ 0.13W for U = 0.67W at the
1 % level) near half filling. While the entropy per particle at the Néel temperature
TN = 0.0278(6)W (determined with lattice QMC) is S/N = 0.42(2) for U = 0.67W
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5.5 Summary

in a homogeneously half-filled system, we find that the Néel transition in a trap can
already be reached at S/N = 0.65(6) in a realistically sized harmonic trap (taking
TN according to ref. [92] leads to S/N = 0.69). Within the error of our calculation,
taking any U in the range 0.67 < U/W < 1 is equally optimal for crossing the
Néel temperature, and our conclusions do not change when the trap parameter is
different.

We have also investigated the double occupancy and the nearest-neighbor spin-
spin correlation function as experimentally measurable quantities that were sug-
gested to show precursors of antiferromagnetism. The double occupancy is almost
flat as a function of temperature, while the spin correlations show a strong tem-
perature dependence around the Néel temperature. This suggests that the spin
correlations, not the double occupancy, are best suited to observe precursors of an-
tiferromagnetism and measure the temperature. Our numerical data can be used to
calibrate such a spin-correlation thermometer.

We have measured energy, entropy, density, double occupancy, and nearest-neigh-
bor spin-spin correlations for many chemical potentials, temperatures above TN, and
interaction strengths U ≤ W . Since we could not present all results in this chapter,
the complete data set can be obtained from tables in the supplementary material to
ref. [43].
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6 Analytic continuation of quantum
Monte Carlo data

QMC algorithms provide powerful computational tools to calculate properties of
interacting quantum many-particle systems. Of particular interest in those systems
are dynamical correlation functions such as single-particle spectra or susceptibilities
respectively dynamical structure factors. However, QMC presently provides data
only on the imaginary time axis, and the necessary analytic continuation of these
data has proven to be difficult.

The analytical structure of many-particle correlation functions is well known and,
in principle, complete knowledge of their values along the imaginary time or fre-
quency axis suffices to determine their values on the physically relevant real axis. If
the correlation function is known analytically, this analytic continuation is indeed
trivial in most cases. However, analytic continuation is one of many inverse prob-
lems in mathematics that are known to be ill-posed [7]. Although a unique solution
of the problem exists, the solution is not stable with respect to even minimal vari-
ations in the input data. This means that – in the context of numerical methods,
where only a finite number of discrete input data points can be calculated with often
limited precision – a direct numerical solution of the inverse problem is impossible.
The unavoidable statistical errors of Monte Carlo measurements further enhance the
problem.

The standard tool to handle this difficulty is the maximum entropy method
(MEM) [83]. It uses arguments of Bayesian logic [86, 61] to extract the most prob-
able spectrum from the incomplete information provided by the data. The MEM
is applied to a variety problems in data analysis in many fields of science and en-
gineering [94]. Examples are image reconstruction [62], e. g., in astronomy [128],
crystallography [155], spectroscopy of biological molecules [105], language process-
ing [17], ecological modeling [139], or marketing research [65].

We give an overview over the maximum entropy techniques used to solve the
analytic-continuation problem of QMC data. We especially focus on the Bayesian
interpretation of the MEM. In order to solve the analytic-continuation problem ef-
ficiently, the MEM approximates all occurring probability distributions to be of
Gaussian shape. In the past efforts were made to provide an alternative to this ap-
proach [157, 13, 176]. It was proposed to perform a Monte Carlo average over a wide
range of spectra instead of selecting a single spectrum. So far, the method lacked a
rigorous rule to eliminate a regularization parameter inherent in the algorithm.
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6 Analytic continuation of quantum Monte Carlo data

Although the MEM has been interpreted in terms of Bayesian inference [176],
none of the authors utilized Bayesian logic to eliminate the above-mentioned reg-
ularization parameter. In this chapter, we derive a strict criterion to eliminate
this free parameter, which is completely based on Bayesian logic. It uses Monte
Carlo techniques to both calculate the average spectrum and to eliminate the reg-
ularization parameter. It treats all probabilities exactly and hereby avoids the ap-
proximations made in the standard maximum entropy method. The algorithm is
applied to imaginary-frequency quantum Monte Carlo data. The resulting spectra
are compared with results from standard maximum entropy calculations. Further
applications of the MEM can be found in chapter 7, which deals with the calculation
of momentum resolved single-particle spectra of the Hubbard model.

Major parts of this chapter were published in ref. [45]. A rudimentary implemen-
tation of the algorithm as initially described in ref. [13] and first tests on dynamical
susceptibilities of one-dimensional quantum magnets were already presented in the
author’s diploma thesis [46].

6.1 Analytic continuation

For a finite temperature T , QMC simulations can provide accurate estimates Ḡn for
either imaginary-time correlation functions G(τ) at a finite set of N imaginary-time
points τn or, alternatively, for imaginary-frequency correlation functions G(iωn) at a
finite set of N Matsubara frequencies ωn (cf. e. g., section 4.2.2 for the measurement
of single-particle Green functions). The frequencies are defined as ωn = (2n+1)π/β
for fermions and as ωn = 2nπ/β for bosons.

Because of the stochastic nature of Monte Carlo algorithms, each of the Ḡn pos-
sesses a known statistical error. Moreover, the data for the different time or fre-
quency points are usually statistically highly correlated. Therefore, the input to the
analytic-continuation procedure consists of the Monte Carlo estimates Ḡi and their
covariance matrix

Cnm = GnGm − ḠnḠm . (6.1)

In principle, the spectral function A(ω) = − 1
π
ImG(ω + i0+) can be extracted from

these data by inverting

Gn =

∞∫
−∞

dωKn(ω)A(ω) (6.2)

with

Kn(ω) = K(τn, ω) := − e−ωτn

1± e−ωβ
(6.3)

for time-dependent data or

Kn(ω) = K(iωn, ω) := ± 1

iωn − ω
(6.4)
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Figure 6.1: Three distinct spectra functions labeled by 1,2,3 (a) and their counterparts in
imaginary frequencies (b) based on the fermionic kernel eq. (6.4) at β = 10.

for frequency-dependent data, where the upper sign holds for fermions and the lower
one for bosons.

Usually, one is interested in correlation functions of the form G(τ) =
〈
TτO(τ)O†

〉
,

for example the local single-particle Green function Gσii(τ) = −〈Tτciσ(τ)c†iσ〉 (cf.
eq. (3.5)). For fermionic operators O and O†, the function A(ω) is real, non-negative
for all ω, and normalized to

N =

∞∫
−∞

dω A(ω) . (6.5)

For bosonic operators O and O†, the same is true for the quantity A(ω)/ω. These
properties are necessary for the analytic-continuation process. Both the MEM and
the stochastic analytical inference discussed in section 6.3 rely on this behavior of
A(ω). That means that, for example, a non-local single-particle Green function
Gσij(τ) with i 6= j, where A(ω) has both positive and negative values, cannot be
directly calculated by these methods. This has also consequences for the analytic
continuation of antiferromagnetic self-energies described in section 7.3.

A direct inversion of eq. (6.2) is an ill-posed problem and numerically impossible.
An alternative approach is a least-squares fit of A(ω) to the data Ḡn, i. e., minimizing
the χ2 estimate

χ2[A] =
∑
n,m

(
Ḡn −Gn

)∗
C−1
nm

(
Ḡm −Gm

)
(6.6)

with respect to A(ω). This approach, however, leads to a multitude of different so-
lutions. Fig. 6.1 illustrates this effect. The apparently different spectra displayed in
fig. 6.1a produce almost identical imaginary-frequency data (fig. 6.1b). The smallest
40 frequencies of the imaginary-frequency function of spectrum 1 in fig. 6.1a were
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6 Analytic continuation of quantum Monte Carlo data

used as a reference for a χ2 estimate after adding artificial Gaussian noise of width
σ = 0.001. With respect to these data, the χ2 estimate of the highly irregular spec-
trum 3 was even smaller than that of spectrum 2 (χ2 = 27.5 compared to χ2 = 34.1),
although spectrum 2 appears to be much closer to the input spectrum 1.

This example illustrates, that a simple least-squares fit cannot solve the problem
either. Additional assumptions about positivity, smoothness, or known moments of
the spectrum can be applied to regularize the fit. Each of these assumptions involves
a Lagrange parameter, which often cannot be determined unambiguously. Spectra
calculated by these means are only qualitatively correct [164, 81].

6.2 Maximum entropy method

The maximum entropy method can be understood as a controlled attempt to regu-
larize the least-squares fit described above. One defines the entropy

S [A] = −
∞∫

−∞

dω A(ω) ln
A(ω)

D(ω)
(6.7)

relative to a default model D(ω). Any information, which is known about the
spectrum beforehand, can be encoded in the default model. If A(ω) and D(ω) are
non-negative and possess the same norm N , the entropy S will be non-positive and
maximal for D(ω). Instead of just minimizing χ2 the MEM minimizes the quantity

Q[A] =
1

2
χ2[A]− αS[A] (6.8)

introducing a regularization parameter α > 0. This optimization problem can be
numerically solved for fixed α to find the minimizing spectrum Âα(ω). In the limit
of α → ∞ the spectrum minimizing Q is the default model D(ω). For α → 0
the least-squares fit is regained. Thus, the parameter α interpolates between the
least-squares fit and the default model.

There exist different approaches to find a criterion to eliminate the parameter α.
The simplest rule is to take the spectrum where χ2 ∼ N . This choice ensures that
the differences between model and data are of the order of the error bars, thereby
avoiding over-fitting. In order to derive more sophisticated methods, the MEM
needs to be reinterpreted by means of Bayesian statistical inference [86, 61].

6.2.1 Bayesian statistical inference

The MEM can be reformulated by defining probabilities for the quantities involved
in the analytic-continuation problem. Let P [A] denote the prior probability of the
spectrum A(ω). P [A|Ḡ] denotes the posterior probability of A given the input data Ḡ
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6.2 Maximum entropy method

and P [Ḡ|A] the likelihood function. Bayes’s Theorem [134] relates these probabilities
to each other,

P [A|Ḡ] = P [Ḡ|A] P [A] / P [Ḡ] . (6.9)

The probability P [Ḡ] is called the evidence and serves as normalization for the
posterior probability P [A|Ḡ],

P [Ḡ] =

∫
DAP [Ḡ|A] P [A] . (6.10)

One identifies

P [Ḡ|A] =
1

Z1

exp

(
−1

2
χ2[A]

)
(6.11)

and

P [A] =
1

Z2

exp(αS[A]) . (6.12)

The quantities

Z1 =

∫
DḠ e−

1
2
χ2[A] (6.13)

and

Z2 =

∫
DA eαS[A] (6.14)

normalize the respective probabilities. This way, the posterior probability can be
rewritten as

P [A|Ḡ] =
e−Q[A]

Z1Z2P [Ḡ]
(6.15)

with

P [Ḡ] =

∫
DA e−Q[A]

Z1Z2

. (6.16)

Thus, the minimization of Q can be reinterpreted as the maximization of the poste-
rior probability P [A|Ḡ] ∝ e−Q. The MEM therefore determines the most probable
spectrum Âα given the input data Ḡ.

6.2.2 Bayesian inference and the regularization parameter α

This alternative formulation of the problem provides the necessary tools to eliminate
the free parameter α [168, 169]. Eq. (6.9) can be rewritten including α:

P [A,α|Ḡ] = P [Ḡ|A,α] P [A,α] / P [Ḡ] . (6.17)

If one applies Bayes’s theorem to factorize P [A,α] and integrates over A, the relation

P [α|Ḡ] = P [α]

∫
DAP [Ḡ|A,α] P [A|α] / P [Ḡ]

=
P [α]

Z1Z2P [Ḡ]

∫
DA e−Q[A] (6.18)
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6 Analytic continuation of quantum Monte Carlo data

for the posterior probability P [α|Ḡ] can be found. Analogous to the argument given
above, one identifies P [Ḡ|A,α] ∝ exp(−1

2
χ2[A]) and P [A|α] ∝ exp(αS[A]). The

evidence

P [Ḡ] =

∞∫
0

dα
P [α]

∫
DA e−Q[A]

Z1Z2

(6.19)

is an α-independent normalization constant. All quantities in this equation are
known except P [α], the prior probability of α. It is either taken to be constant or
to be the Jeffreys prior 1/α [53, 169, 25]. However, the choice of P [α] turns out to
be of little influence on the resulting spectra.

By assuming all probabilities involved to be of Gaussian shape, a treatment of eqs.
(6.15) and (6.18) by a numerical optimization process becomes possible. Details of
the algorithm are described in appendix D. There are still two alternatives to treat
the parameter α:

1. one calculates α∗ as the α that maximizes P [α|Ḡ] and takes Âα∗ as the final
result for the spectral function [168, 169];

2. one averages over all Âα weighted by the posterior probability of α, i.e., the
average spectrum

〈A〉 =

∞∫
0

dαP [α|Ḡ]Âα (6.20)

is taken as the final result [25].

It is a priori not clear, which of the two algorithms is favorable.

6.3 Stochastic analytical inference

Stochastic analytical inference (SAI) is an alternative to the standard MEM which
does not employ the explicit regularization of the fit by the entropy eq. (6.7). Rather
than maximizing P [A|Ḡ], an average over all possible spectra weighted by

w ∝ exp(−1

2
χ2/α) (6.21)

is performed. Beach refined this approach, by introducing the default model D(ω)
of the MEM into the algorithm [13]. By mapping ω on x ∈ [0, 1] using

x = φ(ω) =
1

N

ω∫
−∞

dω′D(ω′) , (6.22)
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6.3 Stochastic analytical inference

a dimensionless field n(x) can be defined as

n(x) =
A(φ−1(x))

D(φ−1(x))
. (6.23)

The field n(x) is normalized to 1,

1 =

∫ 1

0

dxn(x) . (6.24)

The correlation function eq. (6.2) is rewritten as

Gn =

∫ 1

0

dx K̂n(x)n(x) (6.25)

using N K̂n(φ(ω)) = Kn(ω). One calculates the average field

〈n(x)〉α =
1

Z

∫
D′n(x)n(x) e−

1
2
χ2[n(x)]/α (6.26)

with

Z =

∫
D′n(x) e−

1
2
χ2[n(x)]/α . (6.27)

The measure

D′n(x) = Dn(x) Θ[n] δ

(∫ 1

0

dxn(x)− 1

)
(6.28)

restricts the integration to fields n(x) that satisfy norm rule eq. (6.24) and the
positivity requirement. In eq. (6.28),

Θ[n] =

{
1 if ∀x : n(x) ≥ 0

0 otherwise
. (6.29)

The average spectrum 〈A〉α can then be regained via

〈A(ω)〉α = D(ω)〈n(φ(ω))〉α . (6.30)

If 1
2
χ2 is interpreted as the Hamiltonian of a fictitious physical system, eq. (6.26)

possesses the structure of a canonical ensemble average at a temperature α. The laws
of statistical mechanics then state that the average spectral function 〈A〉α minimizes
the free energy

F =
1

2
〈χ2〉α − αS . (6.31)

This expression displays a similar structure as eq. (6.8). Thus, the averaging process
implicitly generates an entropy S. However, this entropy does not have the explicit
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6 Analytic continuation of quantum Monte Carlo data

form of eq. (6.7). In the limit α→ 0 the averaging process minimizes χ2. Whereas in
the limit α→∞ the average in eq. (6.26) is completely unaffected by χ2 and will –
constrained by eq. (6.24) – result in 〈n(x)〉 = 1. In this case, the resulting spectrum
is the default model. The algorithm therefore exhibits the same limiting cases as the
MEM. Beach further showed that a mean-field treatment of the fictitious physical
system described by 1

2
χ2[n(x)] is formally equivalent to the MEM [13]. Thus, at

least in this respect, the SAI represents a generalization of the MEM.

6.3.1 Bayesian statistical inference

The remaining open question, namely, how to eliminate the parameter α, was ad-
dressed by all preceding authors differently:

1. Sandvik proposed to examine the plot of the average entropy against α and
identifies the final α by a sharp drop in the entropy curve [157];

2. Beach examined a double-logarithmic plot of the average χ2 and identifies
the final α by a kink in the χ2 curve [13];

3. Syljůasen argues to take α = 1 [176].

Especially the first two criteria are merely based on heuristic arguments. The simple
rule to take χ2 ∼ N is also applicable to this method and should be mentioned here.

In the following, we will use Bayesian inference to derive a criterion to eliminate
the regularization parameter α. In contrast to the MEM, the stochastic analytical
inference does not maximize the posterior probability P [A|Ḡ]. Instead, it averages
all possible fields n (omitting the argument x in the progress) weighted by P [n|Ḡ],

〈n〉 =

∫
DnnP [n|Ḡ] . (6.32)

Bayes’s theorem can be applied to factorize P [n|Ḡ] analogous to eq. (6.9),

P [n|Ḡ] = P [Ḡ|n] P [n] / P [Ḡ] . (6.33)

The SAI does not introduce an explicit entropy term. Following ref. [176] only the
positivity requirement and norm rule eq. (6.24) enter the prior probability

P [n] = Θ [n] δ

(∫ 1

0

dxn(x)− 1

)
. (6.34)

The likelihood function is identified as

P [Ḡ|n] =
1

Z ′
e−

1
2
χ2/α . (6.35)
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6.3 Stochastic analytical inference

By evaluating the Gaussian integral, the normalization Z ′ is readily calculated to
be

Z ′ =

∫
DḠ e−

1
2
χ2/α = (2πα)N/2

√
detC . (6.36)

Using

P [Ḡ] =

∫
D′ne−

1
2
χ2[n]/α

Z ′
=
Z

Z ′
(6.37)

the posterior probability results in

P [n|Ḡ] = Θ [n] δ

(∫ 1

0

dxn(x)− 1

)
1

Z
e−

1
2
χ2[n]/α , (6.38)

as expected from the comparison of eqs. (6.26) and (6.32).

6.3.2 Bayesian inference and the regularization parameter α

Bayesian logic can also be utilized to calculate the posterior probability P [α|Ḡ].
Substituting n for A in eq. (6.18) and identifying P [n|α] = P [n] with P [n] from
eq. (6.34) and correspondingly P [Ḡ|n, α] = P [Ḡ|n] with P [Ḡ|n] from eq. (6.35), one
obtains

P [α|Ḡ] =P [α]

∫
DnP [Ḡ|n, α] P [n|α] / P [Ḡ]

=
P [α]

Z ′P [Ḡ]

∫
D′n e−

1
2
χ2[n]/α . (6.39)

The evidence

P [Ḡ] =

∞∫
0

dα
P [α]e−

1
2
χ2/α

Z ′(α)
(6.40)

is again an α-independent normalization constant. The combination of eqs. (6.36)
and (6.39) gives the final expression for the α-dependence of the posterior probabi-
lity,

P [α|Ḡ] ∝ P [α]α−N/2
∫
Dn e−

1
2
χ2[n]/α . (6.41)

Analogous to the MEM one has two possibilities to treat the regularization para-
meter:

1. one calculates α∗ as the α that maximizes P [α|Ḡ] and takes 〈n〉α∗ as the final
result;
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6 Analytic continuation of quantum Monte Carlo data

2. one averages over all 〈n〉α weighted by the posterior probability of α, i.e., the
average field

〈〈n〉α〉 =

∞∫
0

dαP [α|Ḡ]〈n〉α (6.42)

is taken as the final result.

6.4 Monte Carlo evaluation

In order to calculate the quantities appearing in eqs. (6.26) and (6.41), a numerically
treatable approximation for the field configuration n(x) and the integration measure
D′n has to be found. The average eq. (6.26) is evaluated by a standard Monte Carlo
simulation, treating the regularization parameter α as the temperature of the system.
The simulation has to be performed for a wide range of different α-values, which
makes a parallel-tempering algorithm [175, 108, 112] necessary to ensure convergence
for small α. In order to measure the average field configuration, a histogram of the
delta function walkers is recorded. Our implementation closely follows ref. [13] and
is further detailed in appendix D.

A particular problem in the proposed approach is that a numerical treatment of
eq. (6.41) involves the calculation of the quantity

Z =

∫
D′n e−

1
2
χ2/α . (6.43)

This is equivalent to calculating a partition function in a canonical ensemble at
temperature α. Standard Monte Carlo techniques are only able to calculate thermal
expectation values but not the partition function itself. We therefore use a Wang-
Landau algorithm [189, 188] to generate the density of states ρ(E) of the system.
Once ρ(E) is calculated, the partition function can be obtained by

Z =

∫
dE ρ(E)e−E/α. (6.44)

The Wang-Landau algorithm was developed to overcome critical slowing down of
Monte Carlo simulations near a first-order phase transition. It is generally useful
for systems with complex free-energy landscapes. Here, we only utilize its ability to
calculate the partition function directly.

6.5 Simulation results

We apply the algorithm to imaginary-time data from quantum Monte Carlo simu-
lations. As test case we consider the single-band Hubbard model eq. (2.1) in two
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Figure 6.2: Simulated spectra for a range of regularization parameters α (β = 14W−1).
For large α the Gaussian shape of the default model is visible. For decreasing
α several features begin to appear.

dimensions. The full lattice model was approximated by a square-shaped 2×2 clus-
ter embedded in a mean field using the DCA. The single-particle Green function was
calculated by QMC using the CT-INT algorithm (see section 4.2). The model was
simulated for U = W , where W = 8 t denotes the bandwidth, and at fixed filling
〈n〉 = 〈n↑ + n↓〉 = 0.9 for several temperatures T . Since it is possible to calculate
the Green function directly in frequency space (eq. (4.39)), no Fourier transforma-
tion or discretization of the imaginary time axis is necessary. In all simulations the
number of measured Matsubara frequencies was restricted to nmax = 2Uβ, which
has proven to be sufficient for all calculation. A further increase in the number of
frequencies had no influence on the analytic-continuation results.

Figure 6.2 shows the α dependence of the single-particle spectra calculated by
the parallel-tempering Monte Carlo simulation (β = 14W−1). A Gaussian default
model

D(ω) =
1√
2πσ

e−ω
2/2σ (6.45)

with σ = 0.25W 2 was used. The shape of the default model is clearly visible for
large α. One can see how several different peaks and other structures appear for
decreasing α. Since the α dependence is so strong, one definitely needs a criterion
to eliminate the regularization parameter.

The density of states calculated by the Wang-Landau simulation and the probabil-
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Figure 6.3: The probability distributions P [α|Ḡ] (a) based on a Wang-Landau simulation
of the density of states (b). The different choices for P [α] only have a weak
influence on the position of the peak. The resulting spectra (c) are calculated
by either averaging all spectra over P [α|Ḡ] or by taking the spectrum that
maximizes them. The four different spectra are practically identical.

ity distribution P [α|Ḡ] following eq. (6.41) is shown in fig. 6.3. P [α|Ḡ] is plotted for
the two most common choices for P [α], i. e., P [α] = constant and P [α] = 1/α. The
density of states varies over at least 15 orders of magnitude (note the logarithmic
scales). The probability distributions P [α|Ḡ] exhibit a well-defined peak at α̂ ≈ 0.2.
Note that the two different choices for P [α] have only weak influence on the posi-
tion of the peak. The two different probability distributions are used to calculate
the final single-particle spectrum. Following the discussion in section 6.3.2, fig. 6.3
shows the average of all spectra of fig. 6.2 weighted by P [α|Ḡ] and the spectrum
whose α maximizes P [α|Ḡ]. The resulting spectra are nearly indistinguishable and
show that neither the ambiguity in the treatment of the probability distribution nor
the choice of P [α] has a significant influence on the resulting spectrum.

We compare our results from the stochastic analytical inference with those ob-
tained with other methods to fix α. Fig. 6.4a shows that the point where χ2 ∼ N
corresponds to α ≈ 1. That means that the α determined by this rule is identical to
Syljůasen’s choice. The χ2 estimate also exhibits a kink in the very same α region.
Thus, the spectra determined by all three methods are identical (fig. 6.4c). The cho-
sen α = 1 is larger than α̂ ≈ 0.2. That indicates that the spectra determined with
this criterion are stronger regularized than the spectra calculated by the probability
distributions in fig. 6.3. However, at least for the QMC data under consideration,
the difference between the two spectra is only small. The entropy (fig. 6.4b) shows
no significant features and gives no indication how to choose the parameter α. A
sharp drop in the entropy curve is not visible in the simulated area.

Finally, we compare the SAI with the standard MEM approach. Figure 6.5 shows
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Figure 6.4: The double-logarithmic plot of χ2 (a) shows a kink at α ≈ 0.8 which is very
close to the choice of Syljůasen (α = 1). It is also the region where χ2 ∼ N .
Thus, all three methods give about the same answer and the resulting spectra
(c) are identical. A comparison shows that this solution is quite close to the
spectrum shown in fig. 6.3c. The entropy (b) exhibits no significant features
and gives at least for this data set no indication how to determine α.
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Figure 6.5: Results of a maximum entropy calculation for the same QMC data as in figs.
6.3 and 6.4. The probability distribution P [α|Ḡ] (a) shows a noticeable depen-
dence on P [α], but analogous to SAI, the resulting spectra (c) are identical.
The α where χ2 ∼ N (b) is larger (α ≈ 500) than the one for which P [α|Ḡ] is
maximal (α ≈ 90). Accordingly, the spectrum chosen by the χ2 ∼ N rule is
more regularized than the one calculated by Bayesian inference.
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Figure 6.6: Spectra simulated by stochastic analytical inference compared to maximum
entropy calculations. All calculations are based on a Gaussian default model.

results of a maximum entropy calculation using Bryan’s algorithm [25] for the same
QMC data as before. The qualitative behavior is similar to the SAI simulation:
the probability distribution P [α|Ḡ] shows a noticeable dependence on the prior
probability P [α]. However, the resulting spectra depend neither on P [α] nor on
whether one averages over P [α|Ḡ] or whether one takes the maximum. The χ2 ∼ N
rule determines an α which is again larger than the one calculated by Bayesian
inference. Accordingly, the spectrum calculated by this criterion is more regularized,
although the difference is relatively small. Interestingly, in the MEM the relevant
values for α are about one or two orders of magnitude larger compared to those
appearing in the SAI simulations. There seems to be no direct correspondence
between the α-values of the two methods.

An extended comparison of SAI spectra with results of maximum entropy calcu-
lations for several temperatures is collected in fig. 6.6. All calculations are based
on the Gaussian default model eq. (6.45). As already noted before, MEM tends to
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Figure 6.7: Spectra for β = 34W−1 based on a flat default model calculated by SAI (a)
and by the MEM (b). These spectra are only marginally different compared
to those calculated using a Gaussian default model. We conclude, that for the
QMC data under consideration the calculated spectra are quite independent
of the default model.

stronger regularize the spectra and consequently the SAI spectra exhibit noticeably
sharper features for all temperatures shown. Especially the pseudo-gap [77], which
opens at β = 34W−1, is captured nicely by SAI while the MEM cannot resolve it
yet at that temperature.

An important question concerns the dependence of the spectra on the default
model. To this end we show in fig. 6.7 again SAI and the MEM results for the spec-
trum at β = 34W−1, this time, however, based on a different default model, namely
a rectangular default model of width 1.8W . The resulting spectra are very similar
to the one obtained for the Gaussian default model presented in fig. 6.6. Thus,
even at low temperatures the resulting spectra are quite independent of the default
model. More precisely, we could not detect a significant default model dependence
at any temperature.

Finally, in order to make a definite statement about the accuracy of our method,
we test it on a case where the actual spectrum is known. To this end we create
artificial input data by constructing a spectrum

A(ω) =

{ |ω|√
ω2− 1

4

− 1 if |ω| > 1
2

0 otherwise
. (6.46)

This function is a particularly difficult example for any analytic-continuation method,
since the actually divergent peak is almost impossible to resolve. The spectrum was
transformed into fermionic Matsubara frequency space at β = 10 via the integra-
tion kernel eq. (6.4). The first 20 frequencies were calculated. Artificial Gaussian
distributed random numbers with a standard deviation σ = 5× 10−4 where added,
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Figure 6.8: Results for a square-root-shaped spectrum. Only positive frequencies are
shown since the spectrum is symmetric around zero. This symmetry was en-
forced for all simulations. The SAI including the Wang-Landau criterion for
the determination of α is the most successful in resolving the sharply peaked
input spectrum. Note that the choice α = 1 gives the same result as χ2 = N .

simulating a somewhat simplified version of statistical errors of real Monte Carlo
data by omitting any correlations between the data points. Figure 6.8 shows that
the SAI is more successful in reconstructing the peak than the MEM. It also indi-
cates, that the Wang-Landau criterion leads to an even sharper contour and a better
reconstruction of the input spectrum compared to the simple χ2 ∼ N rule.

6.6 Summary

We have demonstrated that the stochastic analytic-continuation method introduced
by Sandvik and Beach can be interpreted in terms of Bayesian probability theory.
We developed an algorithm that uses Monte Carlo techniques to both calculate
the average spectrum and to eliminate the regularization parameter. It treats all
probabilities exactly and hereby avoids the approximations made in the maximum
entropy method.

Comparisons to the standard MEM show that the SAI results in robust spec-
tral functions which are less regularized and consequently show more pronounced
features, in particular with decreasing temperature in the model calculations. As
known from standard MEM, no significant dependence on the default model could
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be observed. Comparisons to other approaches to fix the regularization parameter
α show that the method identifies a smaller α and thus a typically less regularized
spectrum, although for the high-quality Monte Carlo data used here the results differ
only slightly. Note that this observation adds additional confidence to the method
and this type of analytic continuation in general, because it proves that in the limit
of infinitely precise data, all methods give the same result.

A comparison of the Wang-Landau criterion and the χ2 ∼ N rule using artifi-
cially constructed input data based on a sharply peaked spectrum with a hard gap
shows a significant improvement due to the new method; while at the same time
the stochastic analytical inference in both cases seems to be more accurate in ap-
proximating the singular structure than the classical maximum entropy. As to when
simple rules such as χ2 ∼ N or the choice α = 1 may or may not present a good way
to fix the regularization parameter depends sensitively on the model, the quality of
the data, and structures occurring in the spectral function. However, we can expect
the SAI to result in spectra which are in general closer to the exact one, with the
Wang-Landau approach typically giving the most accurate image.

One apparent drawback of the method is the necessity to perform simulations for
a broad range of values for α, independent of whether one chooses the Wang-Landau
approach or χ2 ∼ N , respectively, α = 1 to fix α. Although this can be performed
efficiently with parallel-tempering techniques, the required computer resources for
one single spectrum can sum up to about 20 processor hours and are hence orders of
magnitude larger than the few seconds that are usually needed for standard MEM
approaches. Especially for QMC data at higher temperatures, more computer time
may even be needed for the analytic continuation than for the simulation of the
Monte Carlo data itself. As the resulting spectra tend to be less regularized one
has to ponder the gain in details in the structures against the significant increase in
computer time. For example, the calculation of momentum-resolved single-particle
spectra described in the next chapter required up to 50 analytic-continuation pro-
cedures for a single set of parameters. The application of the SAI for this task was
therefore not practicable and we reverted to standard MEM techniques.
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7 Spectral properties of the 3D
Hubbard model

In this chapter, we present momentum-resolved single-particle spectra of the 3D
Hubbard model for the paramagnetic and antiferromagnetically ordered phase. The
absence of a time discretization error in continuous time QMC and the ability to
perform Monte Carlo measurements directly in Matsubara frequencies enable us to
analytically continue the self-energies by maximum entropy, which is essential to
obtain momentum-resolved spectral functions for the Néel state. We investigate
the dependence on temperature and interaction strength and the effect of magnetic
frustration introduced by a next-nearest-neighbor hopping. One particular question
we address here is the influence of the frustrating interaction on the metal-insulator
transition of the 3D Hubbard model.

Major parts of this chapter were published in ref. [44].

7.1 Method

Our aim is to study the Hubbard model in three dimensions within the DCA to
include both the short to medium-ranged antiferromagnetic fluctuations and the
possibility of actual long-range antiferromagnetic order. In the past, the quasi-
standard for simulations of fermionic many-particle systems was the Hirsch-Fye
algorithm [75], which uses a discretization of the imaginary time axis. The absence
of a time discretization error in the continuous-time algorithms and the possibility of
Monte Carlo measurements directly in Matsubara frequencies enhance the quality of
the data significantly [58] and hence enable us to directly analytically continue self-
energies [190]. This avoids the extraction of the self-energies from already continued
Green functions by a numerically difficult multi-dimensional root finding algorithm
[82].

We obtain from the QMC algorithm the cluster Green function GσK(iωn). Usu-
ally, one then uses the maximum entropy method (MEM) to analytically continue
this quantity to the real axis. In order to be able to reverse the coarse-graining,
i. e., calculate Gσk(ω+i0+) for all k from the first Brillouin zone, one however needs
the self-energy ΣσK(ω+ i0+) [109]. One possible way to extract it is by numerically
inverting GσK(ω + i0+). While this is feasible in the paramagnetic phase, the ma-
trix structure appearing in the antiferromagnetically ordered phase (cf. section 3.5)
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7 Spectral properties of the 3D Hubbard model

renders this approach impossible.
We therefore follow here an alternative procedure and analytically continue the

self-energy directly, which is related to the cluster Green function by

ΣσK(iωn) = GσK(iωn)−1 −GσK(iωn)−1 , (7.1)

i. e., an inversion of GσK(iωn). This inverse is calculated directly from the Monte
Carlo bins using a jackknife procedure [121], which also incorporates a full error
propagation of the covariance matrix. As in all these iterative procedures, the er-
rors of the bare Green function GσK(iωn) stemming from previous iterations are
neglected. The analytic continuation of the self-energy from imaginary to real fre-
quencies is then performed by the maximum entropy method. Details of the method
were already discussed in chapter 6. Details of the implementation can be found in
appendix D.

In order to properly continue self-energies with the MEM, we need to know their
high-frequency behavior [190]. To this end, we perform a high-frequency expansion
of the self-energy

ΣσK(iωn) = Σ0
σ +

Σ1
σ

iωn
+O((iωn)−2) , (7.2)

where the coefficients are given by (see appendix B)

Σ0
σ = U

(
〈nσ̄〉 −

1

2

)
and Σ1

σ = U2〈nσ̄〉 (1− 〈nσ̄〉) . (7.3)

We now define the quantity

Σ′σK(iωn) :=
ΣσK(iωn)− Σ0

Σ1

. (7.4)

Since the average number density 〈n−σ〉 is a Monte Carlo measurement, we estimate
Σ′σK(iωn) and its covariance matrix by a jackknife procedure as before. The rescaled
self-energy Σ′σK(iωn) as function of Matsubara frequencies is related to the imaginary
part Im Σ′σK(ω + iδ) on the real frequency axis through the Hilbert transform

Σ′σK(iωn) = − 1

π

∞∫
−∞

dω′
Im Σ′σK(ω′)

iωn − ω′
. (7.5)

By virtue of the rescaling eq. (7.4) we furthermore have

− 1

π

∞∫
−∞

dω Im Σ′σK(ω) = 1 , (7.6)
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Figure 7.1: The self-energy on the real-frequency axis in the paramagnetic phase for K =
Γ, U = W , t′ = 0 and T = 0.021W . The default model that entered the MEM
calculation of the imaginary part is also shown. The real part is obtained from
the imaginary part via eq. (7.7). Panel b: The full first Brillouin zone of the
cubic lattice including high-symmetry points and paths taken for plots of k-
resolved spectra.

i. e., the spectral function − 1
π
Im Σ′σK(ω) is non-negative, normalized to one, and can

thus be calculated by the MEM from the data on the imaginary axis. The real part
of the self-energy then follows from the Kramers-Kronig relation

Re ΣσK(ω) = − 1

π
P

∞∫
−∞

dω′
Im ΣσK(ω′)

ω − ω′ + Σ0
σ , (7.7)

where P
∫

denotes a principal value integral. An example for a full self-energy on the
real-frequency axis is shown in fig. 7.1. An interpolation of the coarse-grained self-
energies yields the self-energy Σσk(ω) for all momenta k of the Brillouin zone. We use
a 3D interpolation based on Akima splines [2] which provide a smooth interpolation
along the momentum points while avoiding unnatural oscillations. Finally, the single
particle spectral function Aσk(ω) is calculated using Dyson’s equation:

Aσk(ω) = − 1

π
Im

1

ω + µ− εk − Σσk(ω)
. (7.8)

7.2 Properties of the paramagnetic phase

We begin the discussion of our results by presenting spectral functions in the para-
magnetic phase of the model, i. e., we will presently deliberately ignore any ordered
phase.
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Figure 7.2: Momentum-resolved single-particle spectra Ak(ω)/W−1 for T = 0.021W and
t′ = 0. The momenta k follow a path along high-symmetry directions of the
first Brillouin zone as depicted in fig. 7.1b. The left part of each diagram
shows the local single-particle spectrum A(ω) derived from the direct ana-
lytic continuation of the Green function. The dashed line denotes the bare
dispersion εk.

For this chapter, we choose a fixed cluster of size Nc = 18, which is described by
the vectors a1 = (1, 1, 2), a2 = (2, 2,−2), and a3 = (2,−1,−1). This cluster has
been identified as the optimal bipartite cluster of this size [92] following the criteria
detailed in section 3.7. Since we are primarily interested in identifying trends and
basic physical effects we did not perform calculations for larger clusters to obtain a
finite-size scaling as would have been necessary, e. g., for a precise estimation of the
Néel temperature in the thermodynamic limit [92]. The high precision necessary for
a analytic continuation of the QMC data as well as the relatively low temperatures,
especially for simulations around the MH-MIT, rendered a finite-size analysis along
the lines of chapter 5 beyond our numerical powers.

7.2.1 Metallic phase

Fig. 7.2 presents paramagnetic single particle dispersions for T = 0.021W , t′ = 0
and different Coulomb repulsions U . The selected k points follow a path along
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a momentum-dependent cluster self-energy (b). The inset highlights a part of
the spectrum using an alternative color scheme.

the high-symmetry points of the first Brillouin zone depicted in fig. 7.1b. Local
single particle spectra are also shown. For small U = 0.67W one observes a quasi-
particle peak at the Fermi level, both in the local density of states (DOS) and the
momentum-resolved spectral function. The momentum-resolved spectra show, that
the main contributions to the quasi-particle peak are situated halfway between the
Γ and R points and the X and M points, respectively. Comparing its dispersion in
these regions to the non-interacting one, one clearly sees a flattening at the Fermi
energy, i. e., an increased effective mass of the quasi-particles. At higher energies
additional structures – the lower and upper Hubbard bands – are visible, which
follow the curvature of the bare dispersion, although shifted to higher energies. The
Hubbard bands are connected to the quasi-particle band through broad ”waterfall”-
like features similar to recently observed structures in angel-resolved photoemission
spectroscopy of cuprates [50]. For increasing Coulomb repulsion U the quasi-particle
band at the Fermi energy vanishes and is replaced by an insulating gap. At the same
time the dispersion of the high-energy structures flattens, i. e., the system as a whole
becomes more localized in nature. Thus for the temperature under consideration a
crossover from a metallic dispersion at U = 0.67W to the Mott insulator at U = W
is clearly visible. We will return to the details of the Mott-Hubbard metal-insulator
transition in section 7.2.2.

In order to make the influence of the momentum dependence of the self-energy
in the spectra more transparent, fig. 7.3 compares an insulating spectrum based
on self-energies of the 18 site cluster to the corresponding spectrum based on a
momentum-independent DMFT self-energy. Although the overall features are simi-
lar, there are qualitative differences. For example, if one looks at the details of the
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Figure 7.4: Momentum-resolved single-particle spectra Ak(ω)/W−1 for U = 0.67W , T =
0.021W and finite t′.

spectra close to the Γ point (insets to fig. 7.3), one notices that a substantial part
of the DMFT spectrum around the Γ point is situated just above the Fermi energy.
This contribution is shifted to higher frequencies in the cluster calculation, and the
curvature is reversed, more resembling the structure of the lower Hubbard band,
however with much less spectral weight. This feature can be regarded as a precursor
of the complete symmetry with respect to the Fermi energy occurring for spectra in
the antiferromagnetically ordered phase (see section 7.3). Thus, we attribute these
pale reflections of the lower Hubbard band to the so-called shadow bands [90] arising
due to the antiferromagnetic fluctuation neglected by the DMFT simulation.

Next, we want to examine the influence of next-nearest neighbor hopping t′ on
these finding by simulating the system described by the Hamiltonian eq. (2.9). Since
we are using QMC to solve the quantum cluster, we have to expect that a finite value
of t′ introduces a fermionic sign problem [184] into the simulations. However, for
the temperatures, Coulomb repulsions and cluster sizes studied here the average
sign was always greater than 0.94 and thus affects the efficiency of the simulations
only weakly.

Fig 7.4 shows results of calculations for U = 0.67W and different values for t′. The
particle-hole-symmetric spectrum of fig. 7.2a becomes more and more asymmetric
with increasing t′. These changes can to a large amount be attributed to the changes
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Figure 7.5: Momentum-resolved single-particle spectra Ak(ω)/W−1 for U = W , T =
0.021W and finite t′.

in the bare dispersion εk. However, while for small to moderate t′ the quasi-particle
properties do not seem to change dramatically, one observes for larger t′ a significant
reduction in the spectral weight at the Fermi energy, resulting in a reduction of the
quasi-particle peak in the DOS. For example, at t′ = −t the integrated weight of
the quasi-particle peak is reduced by 50 % compared to the case with t′ = 0 in
fig. 7.2a. These observations point towards a reduction of the quasi-particle mass
with increasing t′, in accordance with the findings from DMFT [138].

Frustration effects on the insulating spectrum fig. 7.2d (U = W ) can be seen in
fig. 7.5. As for the metallic spectrum, the features present in fig. 7.2d for t′ = 0
initially change only weakly, in particular the shadow structures seem to be present,
too, albeit reduced in weight. For strong frustration, the Hubbard bands become
dominant. Interestingly, these Hubbard bands have a rather well-defined structure
and dispersion reminiscent of the bare dispersion. Furthermore, a peak develops
just below the Fermi energy, which becomes more pronounced with increasing t′

and appears to have hardly any momentum dependence.
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7.2.2 Mott-Hubbard metal-insulator transition

One of the interesting properties of the Hubbard model is the formation of a correla-
tion driven metal-insulator transition in the paramagnetic phase, the Mott-Hubbard
metal-insulator transition (MH-MIT, cf. section 2.1.2). Different from the conven-
tional band insulators for even electron number, where the insulating behavior is
due to a completely filled band, the MH-MIT occurs in a partially filled band, which
within a simple single-particle picture would thus be conducting. Such a transition
is believed to frequently be present in transition metal oxides [78], and has been
under debate both from an experimental and theoretical point of view over the past
50 years.

Unfortunately, for a simple cubic lattice with nearest-neighbor hopping only, the
MH-MIT of the Hubbard model at half filling is completely covered by the antiferro-
magnetic phase [144]. Nevertheless, one can study it within a generalized mean-field
theory by suppressing any antiferromagnetic order in the system. Under this condi-
tion, the MH-MIT can be identified by inspecting the value of the DOS at the Fermi
energy: if it is finite at T = 0, one will have a metal, otherwise an insulator. Iden-
tifying it at finite temperature is somewhat more subtle, but again the DOS at the
Fermi level can serve as ”order parameter”. While off the MH-MIT the DOS varies
smoothly as function of temperature, it jumps when one approaches the transition.
What is even more interesting and has first been shown by the DMFT is that this
transition is of first order and quite likely related to an Ising-like transition [48, 123].

An easy way to obtain the trend of the DOS at the Fermi energy without having to
perform an analytical continuation is through the low-frequency behavior ofGii(iωn):
if it decreases towards zero with decreasing ωn, the system is insulating, otherwise
metallic. Fig. 7.6a shows the imaginary part of Gloc(iωn) := Gii(iωn) for t′ = 0 and
T = 0.01W obtained within the DCA for a cluster size of 18. The jump from an
insulating Green function at U = 0.80W to a metallic solution at U = 0.766W
indicates that the MH-MIT is situated in this interval at this temperature. For
T = 0.015W we could only detect a crossover from insulating to metallic behavior
(see fig. 7.6b). This indicates that the critical endpoint of the MH-MIT transition
line is located between T = 0.01W and T = 0.015W , substantially below the Néel
temperature at this interaction strength (TN = 0.030(3)W at U = 0.8W [144, 92]).

A more accurate way to study the MH-MIT is through the effective mass, which
is defined as

m∗k
m

= 1− ∂ReΣσk(ω)

∂ω

∣∣∣∣
ω=0

, (7.9)

where m denotes the bare carrier mass. To avoid the process of analytical continu-
ations, the effective mass at finite temperature can be estimated directly from the
QMC data as [166]

m∗k
m
≈ 1− ImΣσk(iω0)

ω0

, (7.10)
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Figure 7.6: The imaginary part of the local Green function in Matsubara frequencies for
t′ = 0, T = 0.01W (a) and T = 0.015W (b). Several values of U around the
MH-MIT are shown.

where ω0 is the lowest Matsubara frequency. A sharp increase in m∗k across the
Fermi surface indicates the metal-insulator transition.

The estimate for the effective mass obtained that way is shown in fig. 7.7a for
two different values of U = 0.73W < Uc(t

′ = 0) and U = 0.8W > Uc(t
′ = 0)

respectively t′ = 0 and −0.2 t at T = 0.01W . We do not show the result for m∗k from
the interpolated data, as the division by ω0 with ω0/W � 1 also strongly enhances
spurious artificial oscillations due to interpolation, but rather present the masses
m∗K for each of the 18 cluster momenta as function of their mean distance to the
non-interacting Fermi surface for t′ = 0. The mean distance is thereby calculated by
averaging the distance to the Fermi surface of all points inside the particular cluster
cell around K. Due to symmetry, some cluster momenta are equivalent and thus
we obtain only five different masses. Fig. 7.7b depicts one representative cluster
momentum for each one of these five equivalence classes.

The first thing one notes is that for both values of t′ the K-dependence of m∗K
for U well in the metallic phase is rather weak, although nevertheless visible. Going
into the insulating phase shows a dramatic increase of the effective mass for the
cluster momenta near the Fermi surface. As in particular point 1 is situated on the
Fermi surface of the non-interacting system, the natural interpretation is that one
preferably obtains strong mass enhancements for k-points at or close to the Fermi
surface [55]. Points far away from the Fermi surface on the other hand, like points
4 and 5 (5 for example corresponding to Γ respectively R), experience only weak
renormalizations. This interpretation is further supported by the influence of finite
t′, which moderately reduces the mass.

In the following, we focus on cluster momentum 1, which is situated directly on
the Fermi surface, midway between Γ and M . Since this point exhibits the strongest
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mass enhancement in the insulating phase, it is an ideal candidate to study the MH-
MIT. The effective mass of this K point is plotted in fig. 7.8 as a function of U .
At Uc = 0.766W both an insulating and a metallic solution can be stabilized, de-
pending on the initial Green function used to start the DCA self-consistency. This
behavior indicates a coexistence region in this regime of interaction parameters and
tells us that the qualitative physical properties of the paramagnetic MH-MIT do
not change at least qualitatively for a true 3D system. The figure also shows the
corresponding curves for next-nearest-neighbor hopping parameters t′ = −0.1 t and
t′ = −0.2 t. Here the coexistence region has vanished at the temperature for which
the simulations were done, while the relatively smooth shape of the curve indicates
that one is still observing a crossover and not yet a sharp phase transition as in the
case of t′ = 0. This is again in accordance with previous DMFT calculations, where
a reduction of the critical temperature and also critical value of U was observed
with increasing t′ [137]. It would be highly desirable to perform simulations at lower
temperatures for finite t′, but as the computational effort necessary increases dra-
matically with decreasing temperature, we were not yet able to do these simulations
for the time being.

Previous studies of the MH-MIT at finite temperatures were typically performed
for a Bethe lattice in the limit of infinite dimension within the DMFT approximation
[28, 87]. While the general features of the MH-MIT appear to be rather insensitive to
the actual non-interacting band structure, the details like critical values for temper-
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ature and Coulomb interactions vary strongly with such details. In order to compare
these values for lattices with different noninteracting density of states, e. g., the sim-
ple cubic lattice, one uses the second moment of the non-interacting density of states
ρ(ω) [26, 48],

Weff = 4

√√√√√√
W/2∫

−W/2

dω ω2ρ(ω) , (7.11)

as characteristic energy scale instead of the bandwidth W . From eq. (7.11) one
obtains Weff = WBethe for the Bethe lattice and Weff ≈ 0.816W for the simple cubic
lattice, and a rather good agreement of critical values when relating them to Weff

[26, 201].

Our result Uc = 0.77(3)W for the coexistence region then translates to Uc =
0.94(3)Weff at T = 0.012Weff . For a conventional DMFT calculation, refs. [28] and
[87] located the coexistence region for this temperature around Uc = 1.18(2)Weff (cf.
fig. 2.2). This indicates, that for a true 3D system the critical values of the MH-MIT
will be renormalized, notably the critical Uc will be shifted to lower values. Although
there is no direct evidence, we think it reasonable to attribute these renormalizations
to the short-ranged antiferromagnetic fluctuations present in the DCA. They will
have the tendency to suppress the formation of quasi-particles and will thus cause
the transition to shift to smaller Coulomb repulsions U .
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7.3 Antiferromagnetic phase

As already mentioned, the actual thermodynamically stable low-temperature phase
of the Hubbard model at half filling and t′ = 0 is the antiferromagnet. It also com-
pletely covers the MH-MIT [144, 138]. Conventionally, one investigates the onset
of the antiferromagnet by looking at the divergence of the staggered susceptibility,
coming from the paramagnetic state at high temperature. Another route is to try
and simulate the symmetry-broken phase directly. While this scheme surely is not
suited to obtain the phase boundaries with high accuracy, it can address the prop-
erties within the ordered phase and thus is relevant for comparison to experiment.
Furthermore, it is often desirable to investigate the direct change of quantities when
one has competing phases or when different ordering phenomena are present simul-
taneously.

The first thing to note is that the antiferromagnetic order breaks the translational
symmetry of the lattice, leading to the well-known doubling of the unit cell. This
means, that the first Brillouin zone correspondingly becomes smaller. Evaluating
the mapping for the 3D cubic lattice then results in the reduced zone, also called
magnetic Brillouin zone (MBZ) (shown in fig. 2.2a and fig. 7.10b).

As detailed in section 3.5, a small staggered magnetic field is applied to the system
during the first iteration of the simulation. The field is switched off for subsequent
iterations and the system is allowed to evolve freely. Since the DCA is formulated
in momentum space, one has to incorporate the symmetry breaking explicitly by
allowing for quantities that are non-diagonal in momentum space. Thus, the anti-
ferromagnetic Green function is represented by the 2×2 matrix (cf. eq. (3.39))

GσK′(iωn) =

(
G00
σK′(iωn) G01

σK′(iωn)
G10
σK′(iωn) G11

σK′(iωn)

)
=

(
GσK′,K′(iωn) GσK′,K′+Q(iωn)
GσK′+Q,K′(iωn) GσK′+Q,K′+Q(iωn)

)
, (7.12)

where K ′ is an element of the reduced Brillouin zone and Q = (π, π, π). The
symmetry relations

G00
σK′(iωn) = G11

σ̄K′(iωn) = −
(
G11
σK′(iωn)

)∗
= −

(
G00
σ̄K′(iωn)

)∗
(7.13)

and
G10
σK′(iωn) = G01

σK′(iωn) = G10
σ̄K′(iωn) = G01

σ̄K′(iωn) (7.14)

hold for the Green function as well as for the self-energy. The latter is still defined
via Dyson’s equation

ΣσK′(iωn) = GσK′(iωn)−1 −GσK′(iωn)−1 , (7.15)

which however now involves quantities which are 2× 2 matrices.
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Figure 7.9: Staggered magnetization ms as function of T for U = 0.67W as obtained from
a DCA calculation with Nc = 18 and the DMFT. The dashed lines are meant
as guide to the eye. The DMFT results were obtained by Thomas Pruschke
using Wilson’s numerical renormalization group algorithm.

A first simple test of the method is to calculate the staggered moment

ms =
∑
i

mi e
iQ·ri (7.16)

with mi = ni↑ − ni↓ as a function of temperature and thus locate the antiferro-
magnetic phase. The results of such a calculation for U = 0.67W as function of
temperature are shown in fig. 7.9 for DCA simulations and, for comparison, DMFT
calculations using Wilson’s numerical renormalization group (NRG) algorithm as
impurity solver [27]. The first thing to note is that within DCA the critical tem-
perature is reduced by roughly 30 % as compared to the DMFT. The values of
TN ≈ 0.03W for DCA and TN ≈ 0.042W for DMFT agree with the results obtained
by Kent et al. [92]. The saturation value of ms(T → 0), on the other hand, is only
weakly affected by the finite cluster. This is in agreement with the expectation,
that for a 3D system far enough away from the critical region one should not see
dramatic influence by the order parameter fluctuations any more. Finally, while the
functional shape of ms(T ) for the DMFT follows the standard mean-field behavior
ms(T ↗ TN) ∝

√
1− T/TN respectively ms(T → 0) ∝ 1 − 2e−2TN/T , the form ob-

tained from DCA is very different, rather exhibiting a linear behavior just below TN

and a constant value for T . 0.02W .
With the ability to perform reliable calculations in the symmetry-broken phase,

one is of course interested in extracting dynamics from the simulations, preferably
by analytically continuing the single-particle self-energy. To this end, we again need
the high-frequency behavior of the self-energy, which can be obtained from a high-
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7 Spectral properties of the 3D Hubbard model

frequency expansion (see appendix B) as

ΣσK′(iωn) =O((iωn)−2) + U

(
〈nσ̄〉 − 1

2
〈mσ̄〉

〈mσ̄〉 〈nσ̄〉 − 1
2

)
+
U2

iωn

(
〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉2 〈mσ̄〉 (1− 2〈nσ̄〉)
〈mσ̄〉 (1− 2〈nσ̄〉) 〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉2

)
(7.17)

using the staggered spin polarization

〈mσ〉 =
∑
i

eiQ·ri〈nσi − nσ̄i〉 . (7.18)

The direct analytic continuation of non-diagonal self-energies – or Green functions
– is not possible, since the non-diagonal spectral function − 1

π
Im Σ10

σK′(ω) has both
negative and positive values while the standard MEM algorithm can only deal with
non-negative spectral functions. In order to solve this problem, we employ the linear
transformation [180] (omitting spin and frequency dependencies)

Σ±
K′

=
Σ00

K′ + Σ11
K′

2
± Σ10

K′ (7.19)

and determine Im Σ±
σK′

(ω) along the diagonal elements Im Σ00
σK′(ω) and Im Σ11

σK′(ω)
using the MEM. Analogous to the paramagnetic case, the high-frequency coefficients
eq. (7.17) are used to normalize the self-energies prior to the analytic continuation.
Finally, the real parts are calculated by a Kramers-Kronig relation analogous to
eq. (7.7). Since the transformation eq. (7.19) is linear, it holds for the analytically
continued functions as well and can thus be solved for the non-diagonal element
Σ10
σK′(ω). An example for a complete self-energy matrix on the real frequency axis

obtained by this procedure is shown in fig. 7.10. Note that the diagonal and off-
diagonal elements have different symmetry properties. For the particle-hole sym-
metric situation presented here, the former obey the relation Σαα

σK′(ω) = Σαα
σ̄K′(−ω)

respectively Σᾱᾱ
σK′(ω) = Σαα

σK′(−ω) following from the structure of the Néel state,
while the latter are all identical but obey Σαᾱ

σK′(ω) = −Σαᾱ
σ̄K′(−ω). This last relation

in particular implies that the real part is an even function of ω, and the imaginary
part is odd.

The resulting self-energies for the cluster K ′ points are then interpolated as in the
paramagnetic case, and finally the spin-averaged spectral function for all momenta
k′ of the magnetic Brillouin zone follows from

Ak′(ω) = − 1

π
Im Tr

[(
ω + µ− εk′ 0
0 ω + µ− εk′+Q

)
−Σk′(ω)

]−1

, (7.20)

where Tr denotes the trace over the 2×2-matrix.
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Figure 7.10: The self-energy for K ′ = Γ, U = 0.5W , t′ = 0 and T = 0.021W in the
antiferromagnetic phase (a). The real and imaginary parts of the elements
Σ00
↑K′(ω) = Σ11

↓K′(ω) = Σ11
↑K′(−ω) = Σ00

↓K′(−ω) and Σ10
↑K′(ω) = Σ01

↑K′(ω) =

Σ10
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↓K′(ω) are shown. The right panel (b) depicts the magnetic
Brillouin zone of the simple cubic lattice and the path along high-symmetry
points used for the presentation of spectra in the antiferromagnetically or-
dered state in fig. 7.11.

Results for single-particle spectra in the antiferromagnetically ordered phase and
different values of U for T = 0.021W are shown in fig. 7.11a-c for paths connecting
high-symmetry points in the magnetic Brillouin zone in fig. 7.10b. As expected,
the spectral function and DOS have a gap around the Fermi energy, i. e., we always
have an insulating state. Furthermore, it is symmetric with respect to the Fermi
energy, reflecting the back-folding of the spectrum due to the broken translational
symmetry. Along a large part of the Brillouin zone one has rather flat bands. For
weak and moderate coupling these structures have a rather high spectral weight,
which results in the formation of characteristic van Hove singularities at the gap
edges. This is a typical weak-coupling result consistent with a conventional Hartree
approximation. The gap increases for increasing U , while at the same time the
weight in the structures at the gap edges is redistributed to larger energies, leading
to a softening of the structures in the DOS.

Fig. 7.11d shows an antiferromagnetic spectrum for finite t′ = −0.2 t. The next-
nearest-neighbor hopping breaks the symmetry with respect to the Fermi energy
analogous to the paramagnetic case. Since magnetically frustrating interactions
cause the antiferromagnetic phase to vanish quickly at the present temperature, no
larger value of t′ was simulated.
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Figure 7.11: Spin-averaged single-particle spectra Ak(ω)/W−1 for T = 0.021W in the
antiferromagnetic phase for different interaction strengths. The lower right
panel (d) shows a spectrum for finite next-nearest-neighbor hopping t′ =
−0.2 t. The left part of each figure depicts the local single-particle spectrum
for both the majority spins (red) and the minority spins (blue). In figure (a)
the edges of the gap are too sharp to resolve properly. In order to avoid a
numerical division by zero, an artificial imaginary shift −iδ with δ = 0.03W
was added to the self-energy. The result is a slight broadening of the gap
edges. The interpolation follows the path along the high-symmetry points of
the reduced Brillouin zone depicted in fig. 7.10b.

7.4 Summary

One particular drawback of QMC algorithms is the problem to extract spectral
functions from the QMC data. As this requires an analytic continuation based
on maximum entropy, a thorough error analysis for the quantity to be continued
including proper high-frequency information is necessary. With the standard Hirsch-
Fye QMC this prevented the direct continuation of the irreducible self-energy and
made rather unreliable root-searching techniques necessary [82].

Modern continuous-time QMC algorithms allow for a direct simulation of data in
frequency space and moreover yield high-quality data for the self-energy with reliable
error estimates, thus allowing for a direct analytic continuation of the self-energy.
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7.4 Summary

Based on this new route we presented a method to extract momentum-resolved dy-
namical correlation functions from QMC simulations of strongly correlated electron
systems. We showed that QMC simulation of clusters within the DCA can provide
data which enable the calculation of both momentum and frequency-resolved single-
particle spectra. The method can resolve very detailed structures in the spectral
functions, including waterfall-like features. Thus, spectra based on momentum-
resolved self-energies can lead to qualitatively different features as compared to
DMFT spectra, and will give a more reliable way to extrapolate cluster results.

In addition, we showed that one now can access not only spectra in the paramag-
netic state but is also able to calculate frequency and momentum-resolved spectra
in more complex ordered phases. As an example, we discussed spectral properties of
the Hubbard model inside the antiferromagnetic phase, also including an additional
magnetic frustration through next-nearest-neighbor hopping.

We detected the MH-MIT at T = 0.012Weff and Uc = 0.94(3)Weff , a value, which
is substantially smaller than the DMFT result Uc = 1.18(2)Weff . For finite values
of t′ no MH-MIT could be detected for temperatures T ≥ 0.01W . The presence
of a smooth cross-over indicates that the transition has presumably moved to lower
temperatures – an effect that has been previously studied in a DMFT context [137].
To clarify this point as well as the t′ dependence of Uc, further studies at lower
temperatures are necessary.
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8 Summary

We have studied the Hubbard model in three dimensions within the dynamical clus-
ter approximation using quantum Monte Carlo simulations and analytic-continuation
techniques.

We have provided the full thermodynamics of the 3D Hubbard model in the
thermodynamic limit for U ≤ W and temperatures above the Néel temperature
in chapter 5. The necessary finite-size scaling analysis relied on large-scale cluster
calculations up to Nc = 100 cluster sites which would not have been numerically
feasible without the recently developed highly-optimized continuous-time QMC al-
gorithms. Comparing the DCA results to single site DMFT, we found that the latter
already fails at remarkably high temperatures near half filling. This indicates that
DMFT extensions such as the DCA – although numerically much more expensive –
are mandatory for a precise quantitative study of the Hubbard model.

We have made contact to optical lattice experiments by calculating entropy av-
erages over realistic trap geometries thereby providing an exact estimate of the
entropy which would be sufficient to reach an antiferromagnetically ordered state
in the center of the optical trap. The calculated value is ∼ 40 % larger than the
entropy at Néel temperature in a homogeneous system showing the trap geometry
to be an important influence on the system. We have also investigated the double
occupancy and the nearest-neighbor spin-spin correlation function. The double oc-
cupancy was shown to be almost flat as a function of temperature, while the spin
correlations have shown a strong temperature dependence around the Néel temper-
ature. This suggests that the spin correlations, not the double occupancy, are best
suited to observe precursors of antiferromagnetism and measure the temperature.
Our data can be used to calibrate such a spin-correlation thermometer and could
be experimentally valuable for the detection of the antiferromagnetic phase.

We have addressed the difficult and even ill-posed problem of extracting energy
spectra from QMC simulations (chapter 6). After giving an overview of the max-
imum entropy method (MEM) that is usually applied to this problem, we have
introduced stochastic analytical inference as an extension of the stochastic analytic-
continuation method introduced by Sandvik and Beach which is fully based on
Bayesian probability theory. We developed an algorithm that uses Monte Carlo tech-
niques to both calculate an average over all possible spectra and to eliminate the
characteristic regularization parameter of analytic-continuation algorithms. It treats
all probabilities exactly and hereby avoids the approximations made in the maxi-
mum entropy method. Comparisons to the MEM have shown that the SAI produces
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8 Summary

robust spectral functions which are less regularized and display more pronounced
features compared to MEM spectra. Since maximum entropy methods provide gen-
eral data analysis tools whose application is not limited to analytic-continuation
techniques [94], our research in this field could also be relevant in various other
fields of science and engineering.

We have demonstrated the possibility to extract both momentum and frequency-
resolved single-particle spectra from simulation of clusters within the DCA in chap-
ter 7. The recently developed continuous-time QMC algorithms have provided high-
quality data that allowed for a direct analytic continuation of self-energies. The
method was able to resolve detailed structures in the spectral functions which lead
to qualitatively different features as compared to DMFT spectra. We have shown
that this method can be extended to symmetry-broken phases and discussed energy
spectra inside the antiferromagnetic phase, also including magnetic frustration. Ad-
ditional simulations detected the Mott-Hubbard metal-insulator transition at sub-
stantially smaller value for the Coulomb interaction than was previously calculated
by DMFT.

We have studied the Hubbard model focussing on two aspects, thermodynamics
and spectral functions. On the one hand, the DCA in combination with high-
performance QMC techniques offered the possibility of a systematic finite-size scaling
analysis and was able to produce precise results for the thermodynamic limit of the
system. On the other hand, the calculation of energy spectra – although inherently
difficult – benefited from recent development in both QMC and analytic-continuation
methods producing additional insight into the physical properties of the model.
Thus, we have shown that the DCA in combination with modern QMC and analytic-
continuation methods constitute valuable numerical tools to study thermodynamic
and spectral properties of quantum many-particle systems.
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Appendix A

CT-INT: Inversion by partitioning

The CT-INT algorithm introduced in chapter 4 requires the efficient calculation of
ratios of determinants (cf. eqs. (4.32), (4.33), and (4.37))

r =
detM−1

k+1

detM−1
k

, (A.1)

where M−1
k denotes a k × k matrix. The matrix M−1

k+1 is the matrix M−1
k with

one additional row and column containing either – in an insertion update – the
newly added vertex, or the vertex to be deleted in an removal update. Since the
determinant is invariant under the exchange of rows and columns, we assume these
additional row and column to be the last ones, writing

M−1
k+1 =

(
M−1

k Q
R S

)
, (A.2)

where Q, R, S are k × 1, 1 × k, and 1 × 1 matrices, respectively, which contain
the additional row and column. It has been proven to be most efficient to store the
inverse matrix Mk, mostly because all measurements depend on Mk instead of M−1

k .
This causes also the question how to update the matrix during an accepted Monte
Carlo update while avoiding a numerically expensive inversion of the whole matrix.
In other words, knowing Mk, Q, R, and S, how do we compute

Mk+1 =

(
P̃ Q̃

R̃ S̃

)
? (A.3)

Following ref. [186], a straightforward calculation shows that the solution to this
problem is

S̃ = (S −RMkQ)−1 (A.4)

Q̃ =−MkQS̃ (A.5)

R̃ =− S̃RMk (A.6)

P̃ =Mk +MkQS̃RMk . (A.7)
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Only one inversion in the calculation of S̃ is needed, which is trivial because S̃ is
only a 1 × 1 matrix. For the rest of the update O(k2) steps are necessary for the
matrix multiplications. Using detM = 1/ detM−1 and the Laplace expansion for
determinants, the ratio eq. (A.1) can also be determined yielding

r =
detMk

detMk+1

=
1

det S̃
= det [S −RMkQ] . (A.8)

This expression is the basis of the measurement formula eq. (4.39). The presented
formalism does not only hold for one additional row and column in the determinant
ratio eq. (A.1). It is also valid for the case where S is a general n× n matrix, Q a
k × n matrix, and R an n× k matrix, respectively [186]. Thus, the relation

detMk

detMk+2

= det [S −RMkQ] (A.9)

can be applied to the measurement of two-particle correlations as in eq. (4.42). In
contrast to eq. (A.8), however, the result is the determinant of a 2× 2 matrix.
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Appendix B

High-frequency expansion

In this appendix chapter, the high-frequency tails of Green functions and self-
energies obtained for the dynamical mean-field theory [141, 35] are generalized to
the momentum-dependent case suitable for the DCA in both antiferromagnetic and
paramagnetic phases.

The antiferromagnetic coarse-grained Green function ḠσK′(iωn) in the presence
of a staggered magnetic field can be described by (see eq. (3.41))

ḠσK′(iωn) =
1

V

∫
dk̃

[(
iωn − ξK′+k̃ hσ/2
hσ/2 iωn − ξK′+Q+k̃

)
−ΣK′(iωn)

]−1

(B.1)

using the matrix notation eq. (7.12) and ξK′ = εK′−µ. In order to gain an expression
for the high-frequency coefficients of the self-energy, one uses the ansatz

ΣσK′(iωn) = Σ0
σK′ +

Σ1
σK′

iωn
+O

(
(iωn)−2

)
(B.2)

and expands the coarse-grained Green function up to fourth order:

ḠσK′(iωn) =
C1
σK′

iωn
+

C2
σK′

(iωn)2 +
C3
σK′

(iωn)3 +O
(
(iωn)−4

)
. (B.3)

The results are

C1
σK′ =

(
1 0
0 1

)
, (B.4)

C2
σK′ =

(
ξK′ hσ/2

hσ/2 ξK′+Q

)
+ Σ0

σK′ , (B.5)

C3
σK′ =

[(
ξK′ hσ/2
hσ/2 ξK′+Q

)
+ Σ0

σK′

]2

+ Σ1
σK′ , (B.6)

where the over-lined quantities are coarse-grained over the momentum patch cen-
tered around K ′, e. g.

ξK′ =
1

V

∫
dk̃ ξK′+k̃ . (B.7)
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A direct calculation of the Green function using Heisenberg’s equations of motion
provides the information necessary for the determination of the unknown coefficients
Σ0
σK′ and Σ1

σK′ . Starting again with the Hamiltonian eq. (3.37), the high-frequency
coefficients of the single-particle Green function in real space

Gσij(iωn) =
C1
σij

iωn
+

C2
σij

(iωn)2 +
C3
σij

(iωn)3 +O
(
(iωn)−4

)
(B.8)

can be obtained [35] via

C1
σij =

〈{
ciσ, c

†
jσ

}〉
, (B.9)

C2
σij =−

〈{[
Hh, ciσ

]
, c†jσ

}〉
, (B.10)

C3
σij =

〈{[
Hh,

[
Hh, ciσ

]]
, c†jσ

}〉
(B.11)

using the Hamiltonian eq. (3.37). Here [A,B] ({A,B}) denotes the (anti)commutator
of the operators A and B. A straightforward calculation yields

C1
σij =δij , (B.12)

C2
σij =− ξ̃ij − [hσi + U〈nσ̄i〉] δij , (B.13)

C3
σij =

∑
m

ξ̃imξ̃mj +
(
hσihσj + U2〈nσ̄i〉

)
δij

− (hσi + hσj) ξ̃ij − U (nσ̄i + nσ̄j)
(
ξ̃ij − hσiδij

)
, (B.14)

where ξ̃ij = t +
(
µ+ U

2

)
δij for nearest neighbors, ξ̃ij = t′ +

(
µ+ U

2

)
δij for next-

nearest neighbors (if we consider next-nearest-neighbor hopping according to the
Hamiltonian eq. (2.9)), and zero otherwise. The high-frequency coefficients of the
coarse-grained Green function in cluster momentum space eq. (B.3) are readily calcu-
lated by a Fourier transformation of eqs. (B.12)–(B.14) followed by a coarse-graining
in k-space. One obtains

C1
σK′ =

(
1 0
0 1

)
, (B.15)

C2
σK′ =

(
ξ̃K′ + U〈nσ̄〉 U〈mσ̄〉+ hσ/2

U〈mσ̄〉+ hσ/2 ξ̃K′+Q + U〈nσ̄〉

)
, (B.16)

C3
σK′ =

(
ξ̃2

K′ + h2
σ/4 + 2U〈nσ̄〉ξ̃K′ + U2〈nσ̄〉+ Uhσ〈mσ̄〉

(U〈mσ̄〉+ hσ/2)
(
ξ̃K′ + ξ̃K′+Q

)
+ U2〈mσ̄〉+ Uhσ〈nσ̄〉

(U〈mσ̄〉+ hσ/2)
(
ξ̃K′ + ξ̃K′+Q

)
+ U2〈mσ̄〉+ Uhσ〈nσ̄〉

ξ̃2
K′+Q + h2

σ/4 + 2U〈nσ̄〉ξ̃K′+Q + U2〈nσ̄〉+ Uhσ〈mσ̄〉

)
, (B.17)
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where ξ̃K′ = ξK′ − U/2 and

〈mσ〉 =
∑
i

eiQ·ri 〈nσi − nσ̄i〉 . (B.18)

These formulas constitute the basis of the Green function measurement at high
frequencies discussed in section 4.2.2 (see, for example, fig. 4.2). A comparison with
eqs. (B.4)–(B.6) yields

Σ0
K′ =U

(
〈nσ̄〉 − 1

2
〈mσ̄〉

〈mσ̄〉 〈nσ̄〉 − 1
2

)
, (B.19)

Σ1
K′ =U2

(
〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉2 〈mσ̄〉 (1− 2〈nσ̄〉)
〈mσ̄〉 (1− 2〈nσ̄〉) 〈nσ̄〉 (1− 〈nσ̄〉) + 〈mσ̄〉2

)
, (B.20)

which is the solution shown in eq. (7.17). The non-diagonal parts vanish for 〈mσ〉 = 0
and the expression simplifies to the paramagnetic solution eq. (7.3).
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Appendix C

Sub-matrix updates for the CT-AUX
algorithm

Two numerical algorithmic improvements have significantly increased the size of
systems accessible by simulations with the Hirsch-Fye algorithm: the “delayed”
updates [4], and the “sub-matrix” updates [130]. The “delayed” update algorithm
can be straightforwardly generalized to spin-flip operations in the CT-INT and CT-
AUX algorithms [195], and an adaptation of the concept of delayed updates to vertex
insertion and removals in the interaction expansion was recently proposed as well
[120]. Our implementation of the CT-AUX algorithm uses a generalization of the
“sub-matrix“ technique of ref. [130].

Both “delayed” and “sub-matrix” updates are based on efficient memory man-
agement. The central object in continuous-time algorithms is a matrix, which for
large cluster calculations does not fit into the cache of computer memory. Monte
Carlo updates often consist of rank one updates or matrix-vector products. Such
updates perform O(k2) operations on O(k2) data, where k is the average matrix
size, and therefore run at the speed of memory. Matrix-matrix operations (with
O(k3) operations executed on O(k2) data) could run at the speed of the registers,
as more calculations as compared to memory access operations are performed.

This appendix chapter follows ref. [56] closely.

C.1 Sub-matrix updates

To derive the sub-matrix updates [130], we consider a step n of the algorithm at
which a spin at pn from k interaction vertices is changed from spn to s′pn . The new
matrix Gn+1 is then given by eq. (4.53),

Gn+1
ij = Gn

ij + (Gn
ipn − δipn)λnGn

pnj , (C.1)

λn = eγ sgn(σ)(s′pn−spn ) − 1 (C.2)
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again omitting the dependence on spin σ and expansion order k. A change to the
inverse Green function matrix An = (Gn)−1 is of the form [167]

An+1
ij = Anij + γn(Anip − δip)δpj , (C.3)

γn = e−γsgn(σ)(s′pn−spn ) − 1 . (C.4)

This is commonly known as the Sherman-Morrison formula. We define Ãnij = Anij +

γnAnipδpj with det Ãn = (1 + γn) det(An). We then rewrite eq. (C.3) as An+1
ij =

Ãnij − γnδipδpj, and using det(Aij + uivj) = (1 + vl(A
−1)lquq) detAij, we have

detAn+1 = det(Ãn) det(1− γn[(Ãn)−1]pp)

= − detAnγn
[
Gn
pp −

1 + γn

γn

]
. (C.5)

This formula yields the determinant ratio detNn/ detNn+1 = detAn+1/ detAn

needed for the acceptance or rejection of an update.
We can recursively apply eq. (C.5) to obtain an expression for performing multiple

interaction changes, as long as they occur for different spins pi 6= pj (i 6= j),

An+1
ij = Ãnij −

n∑
m=0

γmδipmδpmj

= Ãn −Xn(Y n)T , (C.6)

with Xn
ij = γjδipj and (Y n)Tij = δpij. X and Y T are index matrices that label the

changed spins and keep track of a prefactor γn.
For measurements, we need access to the Green function G. It is obtained after

nmax steps by applying the Woodbury identity [199] to eq. (C.6),

Gq+1 = G̃+ G̃X(1− Y T G̃X)−1Y T G̃ (C.7)

with q denoting a Woodbury step combining nmax vertex update steps and where
G̃ = Ã−1. After some simplification, eq. (C.7) can be shown to be

Gq+1
ij = D−1

i

(
Gij −GipnΓ−1

pnpmGpmj

)
. (C.8)

Here we have introduced the nmax × nmax matrix Γ, defined as

Γpq = G0
pq − δpq

1 + γp
γp

, (C.9)

and a vector D that is 1 everywhere but at positions where auxiliary spins are
changed,

D−1
pn =

1

1 + γn
. (C.10)
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Note that G0
pq is the interacting Green function at step n = 0 and not the effective

bare Green function.
Translating this Green function formalism to a formalism for N is straightforward:

writing G = NG0 and multiplying eq. (C.8) from the right with (G0)−1 yields

N q+1
ij = D−1

i (Nij −GipnΓ−1
pnpmNpmj) , (C.11)

where one Gipn remains in eq. (C.11).
Inserting G = NG0 into eq. (4.53) and setting s′ = 0 (N ′ = 1) we obtain:

1 = NeV −NG0e
V +NG0 (C.12)

(NG0)ij = (Nije
Vj − δij)/(eVj − 1) = Gij (C.13)

Nij = Gij(1− e−Vj) + e−Vjδij . (C.14)

The computation of G from N in this manner fails if the interaction is zero. In this
case we need to compute Gij = NikG

0
kj.

C.2 Monte Carlo updates

To either accept or reject a configuration change, we need to compute the determi-
nant ratio detNn+1/ detNn. Following ref. [130] we write

detAn+1 = (−1)n+1

n∏
j=0

γj detA0 det Γn . (C.15)

We successively build Γn by adding rows and columns while keeping track of a LU
decomposition of the matrix,

Γn =

(
Γn−1 s
wT d

)
=

(
Ln−1 0
xT 1

)(
Un−1 y

0 β

)
(C.16)

with Ly = s, UTx = w, and

β = G0
pnpn −

1 + γn

γn
− xTy , (C.17)

where both xT and y are computed in O(n2) by solving a linear equation for a
triangular matrix. The determinant ratio needed for the acceptance of an update is

detAn+1

detAn
= −βγn . (C.18)

These updates have been formulated for spins that have only been updated once.
In the case where the same spin is changed twice or more, rows and columns in Γ,
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or L and U , need to be modified. These changes are of the form Γ→ Γ + uvT , and
Bennett’s algorithm [16] can be used to re-factorize the matrix.

To efficiently make use of the sub-matrix updates, we add an additional step before
insertion and removal updates are performed. We insert a number nmax of randomly
chosen non-interacting vertices with auxiliary spin s = 0, which does not change
the value of the partition function. Once these vertices are inserted, insertion and
removal updates at the locations of the pre-inserted non-interacting vertices become
identical to spin-flip updates.

To accommodate this pre-insertion step, we split our random walk into an inner
and an outer loop. In the outer loop (labeled by q) we perform measurements
of observables and run the preparation step discussed above as well as recompute
steps. These steps are described in more detail below. In the inner loop (labeled by
n) we perform nmax insertion, removal, or spin-flip updates at the locations of the
pre-inserted non-interacting spins.

We begin a Monte Carlo sweep by generating randomly a set of nins
max pairs of

(site, time) indices, where nins
max denotes the maximum insertions possible. We then

compute the additional rows of the matrix N for these non-interacting spins:

Ñ =

(
N 0

R̃ 1

)
, (C.19)

where R̃ is a matrix of size k × nins
max containing the contributions of newly added

non-interacting spins,
R̃ij = G0

in(e−γσsn − 1)Nnj, (C.20)

as well as the Green function matrix G = NG0 for the new spins.
Vertex insertion updates are performed by proposing to flip one of the newly

inserted non-interacting spins from value zero to either plus or minus one. The
determinant ratio is obtained using eq. (C.17). Vertex removal updates consist
accordingly of a proposed change of a spin form ±1 to zero. To perform a spin-flip
update we choose a currently interacting spin with value ±1 and propose to flip it
to ∓1. Each time a update is accepted, the auxiliary spin is changed and the matrix
Γ is enlarged by a row and a column.

This scheme of insertion, removal, and spin-flip updates is repeated nmax times.
With each accepted move the matrix Γ grows by a row and a column. To keep the
algorithm efficient we periodically recompute the full N -matrix using the Woodbury
formula (C.11)

N q+1
ij = D−1

i (Gij −GipnΓ−1
pnpmNpmj) , (C.21)

as Γ grows with every accepted update, and the cost of computing determinant
ratios is O(n2). Non-interacting auxiliary spins can then be removed from N q+1

ij by
deleting the corresponding rows and columns. At the end of a sweep, if the system
is thermalized, observable averages can be computed.
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C.3 Summary

For large problem sizes, the “sub-matrix” algorithm achieves a significant perfor-
mance increase as compared to the traditional update scheme, by replacing the slow
rank-one updates by faster matrix-matrix operations. Our implementation of the
sub-matrix updates in the CT-AUX algorithm requires an additional preparation
step in which non-interacting vertices with auxiliary spins s = 0 are introduced. Af-
ter this step, the CT-AUX vertex insertion and removal updates become equivalent
to spin-flip updates. The sub-matrix algorithm then proceeds by manipulating the
inverse of the Green function matrix, for which changes under auxiliary spin-flips
are completely local. This allows for a significantly faster computation of the QMC
transition probabilities under a spin-flip update. The algorithm keeps track of a
number k of these local changes, similar to the delayed update algorithm, and then
performs a Green function update as a matrix-matrix multiply.

Because this algorithm requires additional overhead over the traditional CT-AUX
implementation, there is an optimal choice for the maximum number of spin-flip
updates nmax per Green function update which depends on problem size and archi-
tectural parameters such as the cache size. For an optimal value of nmax, a speed
increase up to a factor of 8 relative to the traditional CT-AUX updates can be found
[56]. Without this increase in performance, the large-scale cluster calculations up
to Nc = 100 necessary for the finite-size extrapolation in chapter 5 would not have
been possible.
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Appendix D

Analytic continuation:
Implementation details

This appendix chapter deals with algorithmic details of the MEM and SAI algo-
rithms introduced in chapter 6. Our implementation of these algorithm is based
on the libraries of the ALPS project [3, 9]. ALPS (Applications and Libraries for
Physics Simulations) is an open source effort providing libraries and simulation codes
for strongly correlated quantum-mechanical systems.

Both the maximum entropy method and stochastic analytical inference require a
numerical treatment of the χ2 estimate eq. (6.6)

χ2[A] =
∑
n,m

(
Ḡn −Gn

)∗
C−1
nm

(
Ḡm −Gm

)
(D.1)

with (c. f. eq. (6.2))

Gn =

∞∫
−∞

dωKn(ω)A(ω) . (D.2)

We apply a matrix-vector notation to eq. (D.1) obtaining

χ2 =
(
Ḡ−G

)T
C−1

(
Ḡ−G

)
(D.3)

and

G =

∞∫
−∞

dω K̃(ω)A(ω) , (D.4)

where K̃(ω) describes a vector with elements Kn(ω). Numerical diagonalization of
the covariance matrix C yields the diagonal eigenvalue matrix E and a orthogonal
transformation matrix O with C = OEOT . We define y := E−1/2OT Ḡ, K :=
E−1/2OTK̃, and write

χ2 =

∣∣∣∣∣∣y −
∞∫

−∞

dωK(ω)A(ω)

∣∣∣∣∣∣
2

. (D.5)
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D.1 Maximum entropy algorithm

We specify an interval where the spectrum A(ω) is non-zero and discretize it on
this interval using a grid of frequencies ωm. If we define the vector a with elements
am = A(ωm)(ωm+1 − ωm) and the matrix K with elements Knm = Kn(ωm), the
relation eq. (D.4) can be written as the matrix-vector product G = Ka, hence

χ2 = |y −Ka|2 . (D.6)

The central quantity of the maximum entropy method is the entropy eq. (6.7)

S = −
∑
m

am ln

(
am
dm

)
(D.7)

with respect to the default model dm = D(ωm)(ωm−ωm+1). The aim of the method
is to minimize the quantity eq. (6.8)

Q =
1

2
χ2 − αS (D.8)

with respect to a for several fixed values of α. This can be performed by a nonlinear
numerical optimization algorithm. We implemented a standard version of such an
algorithm introduced by Bryan [25]. The condition for an extremum of Q is

∇Q = KT (y −Ka) + α ln
(a
d

)
!

= 0 , (D.9)

where the expression ln
(
a
d

)
is understood as a vector with elements ln(am/dm). The

vector a has of order 100 elements depending on the chosen frequency grid. In order
to avoid a search for a minimum in such a high number of dimensions a singular-
value decomposition of the matrix K is performed. The result is K = ŨΣ̃ṼT with
the diagonal matrix Σ̃ and orthogonal matrices Ũ and Ṽ. The diagonal elements of
Σ̃ are non-negative although many of them will be zero or at least equal or smaller
than the machine precision of a computer. The dimension of Σ̃ is therefore truncated
to a small number s (usually less than 10) and only the largest s values are kept.
We denote the truncated matrix by Σ and truncate the orthogonal transformation
matrices accordingly, yielding K = UΣVT . The condition eq. (D.9) then becomes

ΣUT (y −Ka) + αVT ln
(a
d

)
!

= 0 . (D.10)

Finally, we substitute a by the small vector u of dimension s,

u := VT ln
(a
d

)
⇒ a(u) = d exp(Vu) (D.11)

yielding

ΣUT (y −Ka(u)) + αu
!

= 0 . (D.12)

This is a nonlinear root-searching problem in s dimensions, which can be solved
iteratively using a Levenberg-Marquard algorithm [25, 187].
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D.2 Stochastic analytical inference

Our implementation of the Monte Carlo procedure needed for the SAI algorithm
follows ref. [13] closely. The SAI substitutes the spectrum A(ω) by the dimensionless
field n(x) writing (c. f. eq. (6.25))

χ2 =

∣∣∣∣y − ∫ 1

0

dx K̂(x)n(x)

∣∣∣∣2 (D.13)

analogous to eq. (D.5). In contrast to the maximum entropy algorithm, the SAI
does not discretize the frequency axis but represents the field as a substitution of a
finite set of delta functions with weights nm at positions xm,

nC(x) =
∑
m

nmδ(x− xm) . (D.14)

The choice of weights and positions constitutes a Monte Carlo configuration C =
{nm, xm}. The weights nm are non-negative and satisfy

∑
m nm = 1. This repre-

sentation renders χ2 as well as the measure D′n(x) (cf. eq. (6.28)) computationally
tractable,

χ2
C =

∣∣∣∣∣y −∑
m

K̂(xm)nm

∣∣∣∣∣
2

, (D.15)

D′nC(x) =
∏
m

∞∫
0

dnm

∫ 1

0

dxm δ

(∑
m

nm − 1

)
. (D.16)

We can propose a new configuration C ′ by changing a subset Λ of the delta functions,

nm → n′m +
∑
l∈Λ

δml∆nl , (D.17)

xm → x′m +
∑
l∈Λ

δml∆xl , (D.18)

which produces a new χ2 estimate

χ2
C′ =

∣∣∣∣∣y −∑
m

K̂(xm)nm +
∑
l∈Λ

[
K̂(xl)nl − K̂(x′l)n

′
l

]∣∣∣∣∣
2

. (D.19)

We implemented two kinds of Monte Carlo updates: delta function moves and weight
shifts. For the former we propose a random coordinate shift ∆x for a randomly
chosen delta function. The latter are proposed shifts of the weights nm. These
updates must conserve the norm of the field. This is most easily accomplished by
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randomly choosing two delta functions 1 and 2 and proposing the shift n1 → n1−∆n
and n2 → n2 + ∆n, where ∆n ∈ [0, n1]. The simulation becomes more efficient if
one uses weight shifts that incorporate more than two delta functions and which
conserve not only the norm but also higher moments

Mk =

1∫
0

dxnC(x)xk =
∑
m

nmx
k
m (D.20)

of the field configuration [157, 13]. If one chooses k > 2 delta functions Λ =
{λ1, . . . , λk} and defines the scale factors

Ql =

 1 ; l = l1∏
m∈Λ\{l1}(xm−xl1)∏
m∈Λ\{l}(xm−xl)

; else
, (D.21)

the weight shifts
n′l = nl − sQl (D.22)

conserve the lowest l−1 moments. In order to ensure positivity for all n′l, s is chosen
from the interval

max
l∈Λ−

rl
Ql

< s < min
l∈Λ+

rl
Ql

, (D.23)

where Λ− := {l : Ql < 0} and Λ+ := {l : Ql > 0}. We implemented updates up to
m = 5.

Update proposals are accepted by the usual Metropolis acceptance probability

a(C → C ′) = min

(
1, exp

[
− 1

2α

(
χ2
C − χ2

C′
)])

. (D.24)

The most important Monte Carlo measurement is the average field configuration
n(x). It is measured by repeatedly recording a histogram of the moving delta func-
tions.

The free-energy landscape of the system in question has proven to be quite com-
plex. Previous implementations of the algorithm [157, 13] used either simulated
annealing [93] or parallel tempering [175, 108, 112] to overcome convergence prob-
lems of the simulations. We implemented a parallel-tempering algorithm, where
several simulations with different regularization parameters αp run in parallel. The
temperature profile is chosen logarithmically with a constant modification factor
f = αp+1/αp. This causes no further simulation effort, since a calculation of average
spectra for a wide range of α is necessary anyway. All simulations, however, need
to run in parallel and are not independent of each other. Neighboring simulations
αp and αp+1 are allowed to swap their configurations with probability

p = min

(
1, exp

[(
1

2αp
− 1

2αp+1

)(
χ2
p − χ2

p+1

)])
. (D.25)
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Thus, configurations at low temperatures have access to high temperatures, where
they can move more easily in phase space. This ensures that low temperature
configuration can overcome barriers in the free-energy landscape.

D.2.1 Wang-Landau algorithm

A particular problem in the SAI is that a numerical treatment of eq. (6.41) involves
the calculation of the quantity

Z =

∫
D′n e−

1
2
χ2/α . (D.26)

This is equivalent to calculating a partition function in a canonical ensemble at
temperature α. Standard Monte Carlo techniques are only able to calculate thermal
expectation values but not the partition function itself. We use a Wang-Landau
algorithm [189, 188] to generate the density of states ρ(E) of the system. Once
ρ(E) is calculated, the partition function can be obtained by

Z =

∫
dE ρ(E)e−E/α . (D.27)

The Wang-Landau algorithm performs a random walk in energy space with proba-
bility

p(E) = 1/ρ(E) (D.28)

using the usual Metropolis weights, i. e., a proposed move from an energy E1 to E2

is accepted with the probability

a(E1 → E2) = min

(
1,
ρ(E1)

ρ(E2)

)
. (D.29)

Such a random walk visits all possible energy values with equal probability. We
record a histogram H(E) during the simulation: each time an energy E is visited,
the corresponding entry H(E) is incremented by 1. A random walk subject to the
probability eq. (D.28) would produce a completely flat histogram.

Since the density of states is unknown at the beginning of the simulation, one
starts with an arbitrary starting value, e. g., ρ(E) = 1. For each visited energy, one
multiplies the density of states by an modification factor f > 1. This modification
ensures that the current energy will be frequented less often in the further course
of the simulation. As a result, the energies are visited more evenly. When the
histogram is reasonably flat, one resets the histogram and restarts the simulation
with a new modification factor f ′ =

√
f . The starting value of f is usually taken

to be Euler’s constant and the procedure is repeated until f is very close to 1 (16
times in our implementation). Each new iteration further refines the structure of
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ρ(E) until it converges to the density of states of the system up to an unknown
normalization factor.

In order to speed up the algorithm, it is advisable to divide the energy range of
interest into several slightly overlapping smaller intervals. This offers parallelization
possibilities and accelerates convergence. The density of states varies over many
orders of magnitude (cf. fig. 6.3b for an example). It is therefore only possible to
store its logarithm. It nevertheless provides a possibility to evaluate the partition
function eq. (D.26) and hence the probability distribution eq. (6.41).
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Cluster table

The following table lists optimized finite-size clusters of the simple cubic lattice in
three dimensions following the rules determined in ref. [21]. It is meant to be an
extension to the clusters already published in ref. [92].

Only bipartite clusters with an even number of cluster sites Nc are listed. All
vectors l1, l2, l3 with individual components up to ±9 were examined by direct enu-
meration. The table shows the cluster with the smallest possible topological im-
perfection I, cubicity c closest to one, and smallest surface area A, in this order of
priority. If a cluster features only a marginally larger cubicity (less than 0.01 %) but
a much smaller suface area (more than 20 %), the one with the smaller surface area
is chosen instead. Not all cluster sizes are equally likely to produce high quality
clusters (see Fig. 3.6). Thus, those cluster sizes are omitted where only relatively
high imperfections and cubicities are possible.

Table E.1: Optimized bipartite clusters

Nc l1 l2 l3 I c A

80 (4, 1,−1) (−3, 2,−3) (−2, 3, 3) 4 1.05411 117.287
96 (4, 2,−2) (−4, 2,−2) (−2, 3, 3) 4 1.06462 131.417

100 (4, 2,−2) (−3, 2,−3) (−2, 3, 3) 6 1.02882 132.452
156 (5, 3,−2) (−4, 2,−2) (2, 4, 4) 11 1.04364 182.029
158 (5, 3,−2) (−4, 1,−3) (−3, 3, 4) 10 1.04959 184.262
162 (5, 2,−1) (−2,−4,−4) (−4, 3,−3) 8 1.06373 187.548
168 (5, 3,−2) (−4, 0,−4) (−3, 3, 4) 9 1.07053 197.177
174 (5, 2,−3) (−3, 5, 0) (3, 4, 3) 10 1.06760 201.745
180 (4, 4,−2) (−4,−2,−4) (−3, 4, 3) 11 1.05875 202.473
188 (5, 3,−2) (−2, 4,−4) (−3, 3, 4) 9 1.05157 207.287
190 (5, 3,−2) (−5, 2,−3) (−3, 3, 4) 10 1.06137 207.225
194 (5, 3,−2) (−2,−4,−4) (−4, 3,−3) 12 1.04167 207.776
196 (5, 3,−2) (−4, 2,−4) (−3, 3, 4) 13 1.03629 209.062
198 (5, 3,−2) (−4, 3,−3) (2, 3, 5) 14 1.04300 211.239
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N l1 l2 l3 I c A

280 (6, 4,−2) (−4, 4, 4) (4, 1, 5) 14 1.06190 277.060
282 (6, 2,−2) (−5, 3,−4) (−3, 4, 5) 13 1.06070 272.050
284 (6, 4,−2) (−5, 2,−3) (2, 5, 5) 20 1.05982 272.817
286 (5, 5,−2) (−3,−2,−5) (−4, 5, 3) 21 1.02963 272.601
292 (6, 3,−1) (−5, 3,−4) (2, 5, 5) 16 1.07416 278.630
294 (6, 2,−2) (−4, 3,−5) (−3, 4, 5) 19 1.04306 277.267
298 (5, 4,−3) (−4,−3,−5) (−4, 5,−3) 21 1.06352 287.151
314 (5, 5,−2) (−5, 4, 3) (3,−4, 5) 21 1.05739 295.808
316 (6, 4,−2) (−4, 3, 5) (4,−5, 3) 18 1.06232 296.746
322 (5, 5,−2) (−5,−2,−5) (−3, 5, 4) 23 1.06622 299.074
324 (6, 4,−2) (−4, 3, 5) (3,−5, 4) 16 1.05347 299.188
330 (6, 3,−3) (−5, 3,−4) (−3, 4, 5) 19 1.04217 296.425
332 (6, 4,−2) (−4, 3, 5) (2,−5, 5) 20 1.06057 304.019
336 (6, 5,−1) (−3, 5,−4) (−5, 3, 4) 22 1.05355 309.831
340 (7, 3,−2) (−5, 2,−5) (−4, 4, 4) 24 1.06152 307.845
342 (6, 3,−3) (−3,−5,−4) (−5, 5,−2) 25 1.04107 305.393
412 (6, 5,−3) (−5, 4, 5) (4, 2, 6) 29 1.07416 363.612
416 (7, 3,−2) (−4, 4, 6) (2,−6, 4) 31 1.05718 354.921
420 (7, 4,−1) (−5, 4, 5) (2,−6, 4) 29 1.05854 359.607
422 (7, 3,−2) (−1, 6,−5) (−4, 5, 5) 28 1.06524 362.717
424 (5, 5,−4) (−6,−2,−4) (−3, 5, 6) 27 1.06112 365.802
430 (7, 5,−2) (−5, 4, 3) (4, 3, 7) 32 1.06523 376.913
444 (7, 5,−2) (−5, 5, 4) (4, 2, 6) 21 1.06078 378.755
448 (6, 5,−3) (−4, 4, 6) (6, 1, 5) 27 1.07072 380.156
452 (7, 4,−3) (−6, 2,−4) (−4, 4, 6) 25 1.06006 371.934
460 (7, 4,−3) (−4, 5, 5) (6,−2, 4) 29 1.04672 371.302
462 (5, 5,−4) (−6, 3,−3) (3, 4, 7) 32 1.03192 372.631
464 (7, 3,−2) (−6, 4,−4) (3, 5, 6) 25 1.06330 375.665
474 (7, 4,−3) (−4, 5, 5) (4, 1, 7) 26 1.06484 392.977
484 (5, 5,−4) (−6, 3,−5) (−2, 2, 8) 29 1.06773 392.684
490 (6, 5,−3) (−5,−3,−6) (−4, 6, 4) 26 1.06179 397.412
492 (7, 4,−3) (−5, 6,−3) (−4, 4, 6) 27 1.07046 400.262
498 (7, 4,−3) (−4, 5, 5) (3,−6, 5) 26 1.05840 402.976
500 (7, 4,−3) (−4, 4, 6) (4,−6, 4) 25 1.05837 401.711
504 (6, 6,−2) (−5, 4, 5) (3,−6, 5) 29 1.05957 405.711
508 (7, 4,−3) (−3, 6,−5) (−4, 4, 6) 23 1.05849 405.394
514 (7, 5,−2) (−3, 6,−5) (−5, 4, 5) 26 1.05569 410.347
516 (7, 4,−3) (−4, 4, 6) (2,−6, 6) 27 1.06906 411.256
518 (7, 4,−3) (−4, 4, 6) (7,−3, 4) 32 1.06550 406.077
520 (7, 5,−2) (−5, 3, 6) (4,−6, 4) 33 1.05866 412.599
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522 (7, 4,−3) (−4, 4, 6) (3,−5, 6) 38 1.04971 406.186
524 (8, 4,−2) (−5, 4, 5) (3,−6, 5) 31 1.05959 417.563
530 (7, 5,−2) (−3, 6,−5) (−5, 3, 6) 38 1.05838 415.893
532 (7, 4,−3) (−7, 4,−3) (−3, 6, 5) 39 1.06024 412.773
534 (7, 5,−2) (−5,−2,−7) (−5, 5, 4) 36 1.06245 423.184
614 (7, 6,−3) (−6,−3,−7) (−4, 5, 5) 45 1.07069 475.127
620 (6, 5,−5) (−5, 4,−7) (3, 7, 4) 42 1.06942 474.396
624 (8, 3,−3) (−6, 3,−5) (−4, 6, 6) 44 1.04862 456.226
626 (7, 6,−3) (−6, 5, 5) (4, 3, 7) 39 1.07238 481.495
634 (8, 4,−2) (−5, 5, 6) (2,−7, 5) 39 1.06262 474.309
636 (6, 5,−5) (−6, 3,−7) (3, 7, 4) 38 1.06477 482.022
638 (8, 4,−2) (−4, 3, 7) (7,−5, 4) 45 1.05967 467.337
642 (7, 6,−3) (−6,−2,−6) (−5, 5, 6) 43 1.07004 485.276
648 (8, 5,−1) (−6, 5, 5) (2,−7, 5) 40 1.06561 485.139
652 (6, 6,−4) (−7,−2,−5) (−4, 5, 7) 38 1.06647 487.652
656 (7, 2,−5) (−3, 6,−7) (6, 5, 5) 36 1.06682 491.656
662 (8, 4,−2) (−5, 5, 6) (6,−1, 7) 45 1.06521 487.957
676 (8, 5,−3) (−5,−2,−7) (−5, 6, 5) 30 1.06269 499.414
678 (7, 5,−4) (−4, 7,−5) (−3, 4, 7) 47 1.04668 487.185
682 (7, 6,−1) (−4, 7,−5) (−7, 4, 5) 35 1.07457 506.196
686 (7, 5,−4) (−5, 7,−4) (−3, 4, 7) 45 1.04034 490.134
696 (8, 3,−3) (−4,−6,−6) (−7, 5,−4) 36 1.05831 491.571
706 (8, 5,−3) (−4,−2,−8) (−5, 6, 5) 39 1.06161 512.003
712 (8, 5,−1) (−3, 8,−5) (−6, 5, 5) 36 1.07238 521.215
718 (7, 6,−3) (−5, 5, 6) (4,−7, 5) 39 1.06322 517.114
726 (7, 5,−4) (−5,−4,−7) (−5, 7, 4) 37 1.06034 517.827
732 (7, 6,−3) (−6,−3,−7) (−5, 6, 5) 38 1.06537 522.523
740 (7, 6,−3) (−5, 4, 7) (5,−7, 4) 46 1.06099 525.370
742 (8, 5,−3) (−5, 6, 5) (3,−7, 6) 39 1.06576 531.178
746 (9, 5,−2) (−6, 5, 5) (4,−7, 5) 47 1.07101 538.668
748 (7, 6,−3) (−6,−3,−7) (−4, 7, 5) 50 1.06724 527.466
750 (8, 5,−3) (−5, 4, 7) (5,−7, 4) 43 1.06411 529.209
756 (8, 5,−3) (−5, 5, 6) (3,−7, 6) 34 1.05986 531.951
758 (7, 7,−2) (−7, 3, 6) (5,−6, 5) 49 1.06599 536.797
760 (8, 5,−3) (−5, 4, 7) (4,−7, 5) 40 1.05948 531.445
768 (8, 6,−2) (−6, 4, 6) (4,−7, 5) 44 1.05945 539.047
770 (8, 5,−3) (−5, 4, 7) (3,−7, 6) 45 1.06387 535.917
772 (8, 6,−2) (−6, 5, 5) (3,−7, 6) 46 1.06094 542.929
776 (9, 5,−2) (−4, 7,−5) (−6, 4, 6) 48 1.06441 544.589
780 (9, 4,−3) (−7, 3,−6) (−5, 5, 6) 50 1.06570 536.537
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Appendix E Cluster table

N l1 l2 l3 I c A

786 (9, 5,−2) (−6, 5, 5) (3,−7, 6) 53 1.06183 551.440
792 (8, 6,−2) (−5, 5, 6) (3,−8, 5) 56 1.05955 550.741
868 (8, 6,−4) (−6,−4,−8) (−5, 6, 5) 63 1.06979 599.507
870 (8, 6,−4) (−6, 7, 5) (5, 4, 7) 62 1.06891 598.837
872 (8, 6,−2) (−6, 7, 5) (5, 3, 8) 65 1.06962 593.299
878 (8, 7,−3) (−6, 7, 5) (5, 4, 7) 62 1.07120 605.032
882 (9, 6,−3) (−6, 5, 5) (4,−8, 6) 60 1.07092 615.089
896 (9, 7,−2) (−6, 6, 4) (5, 3, 8) 65 1.05459 601.062
900 (8, 6,−4) (−6, 6, 6) (5, 3, 8) 51 1.07399 611.515
902 (8, 6,−4) (−6,−3,−7) (−5, 7, 6) 58 1.06607 608.484
904 (8, 6,−4) (−4,−4,−8) (−6, 7, 5) 57 1.06991 611.109
906 (9, 5,−4) (−6,−3,−7) (−6, 7, 5) 56 1.07462 615.423
910 (9, 4,−3) (−5, 6, 7) (7,−3, 6) 58 1.05399 589.550
912 (8, 7,−3) (−7, 6, 5) (4, 4, 8) 53 1.07406 620.929
914 (9, 4,−3) (−8, 4,−6) (−4, 5, 7) 64 1.04999 592.505
918 (9, 5,−2) (−6, 5, 7) (3,−8, 5) 54 1.06318 607.483
920 (9, 4,−3) (−5, 6, 7) (2,−8, 6) 53 1.06682 610.466
924 (8, 5,−3) (−6, 5, 7) (4,−8, 6) 51 1.06651 616.484
926 (9, 5,−4) (−6, 8, 4) (5, 4, 7) 58 1.06259 621.652
928 (9, 5,−4) (−6,−4,−8) (−5, 7, 4) 57 1.06462 620.966
930 (8, 7,−3) (−5,−3,−8) (−6, 6, 6) 48 1.06837 623.034
934 (9, 6,−1) (−7, 5, 6) (3,−8, 5) 54 1.06720 620.966
940 (8, 5,−5) (−6, 2,−8) (3, 9, 4) 63 1.06641 614.538
944 (8, 7,−3) (−5, 7, 6) (5, 3, 8) 61 1.06574 624.861
948 (8, 6,−2) (−7, 5, 6) (4,−8, 6) 47 1.07054 629.040
950 (8, 5,−5) (−7,−2,−7) (−4, 7, 7) 62 1.06933 629.386
952 (9, 6,−1) (−2, 8,−6) (−7, 6, 5) 61 1.07195 632.337
964 (8, 7,−3) (−6, 5, 7) (6, 2, 8) 55 1.07279 638.890
966 (9, 6,−3) (−6, 7, 5) (5, 3, 8) 42 1.06310 635.469
972 (9, 6,−3) (−6, 6, 6) (6, 2, 8) 39 1.07195 641.354
984 (9, 5,−4) (−5, 7, 6) (6, 2, 8) 49 1.06520 641.604
986 (9, 7,−2) (−6, 7, 5) (5, 3, 8) 52 1.06325 645.361
988 (7, 7,−4) (−7, 6,−5) (5, 5, 8) 55 1.07118 642.496
994 (9, 4,−3) (−4,−8,−6) (−8, 5,−5) 52 1.06831 630.719
998 (9, 5,−4) (−6, 5, 7) (5,−7, 6) 54 1.07303 646.831

1000 (8, 7,−3) (−6, 8, 4) (4, 4, 8) 65 1.04999 637.212
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[173] N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger,
R. Sensarma, D. Pekker, E. Altman, and E. Demler, Observation of elastic
doublon decay in the Fermi-Hubbard model, Phys. Rev. Lett. 104, 080401
(2010).

[174] M. Suzuki, Relationship between d-dimensional quantal spin systems and
(d+1)-dimensional ising systems, Progress of Theoretical Physics 56, 1454–
1469 (1976).

[175] R. H. Swendsen and J. Wang, Replica Monte Carlo simulation of spin-glasses,
Phys. Rev. Lett. 57, 2607 (1986).
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