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Abstract

The simulation of gravitational microlensing light curves is a time-consuming effort, but essential
for confirming potential planetary microlensing events. The basic equations of lensing, describing
the expected magnification of a source star affected by a binary lens, comprise transcendental
functions whose roots cannot be determined analytically. Two major approaches to simulating
light curves can be identified: ray-tracing simulating magnification maps or root-finding leads
to the required image positions implying that the magnification can be simulated for arbitrary
source positions.

The use of graphics processing units (GPUs) has become increasingly common for accelerating
the simulation of light curves. Ray-tracing seems to be optimally suited for graphic cards, and
thus the existing implementations have focused on this approach. In the context of this thesis,
I present a different implementation of a point-wise binary lens model, parallelized on GPUs.
As most graphic cards are equipped with machines with single-precision floating point numbers,
special care was taken to understand and control the numerical accuracy.

In order to increase the efficiency of the process, I have exploited information theoretical
concepts to speed-up the fitting process. For this purpose, the parameter space to be investigated,
is probed using a Monte Carlo Markov Chain. Based on the insight, that observations differently
contribute to the total information content, subsets of the light curves are selected according to
the current state of the model.

The assessment of the information content of a light curve can also be useful for planning
observations, particularly for following-up microlensing events with a high cadence. Prioritization
schemes for selecting the most promising targets rely on the chance of detecting a planet. For
this purpose the analytical point source point lens model is considered. I have addressed this
approach from the point of view of optimal experimental design. After testing different ways
of distributing observations, an information modulated approach offers a convenient compromise
between sampling points with highest information content and preventing gaps.

In order to search for extrasolar planets, I have participated in follow-up observations as part
of the MiNDSTEp consortium and prepared a data reduction pipeline for the Göttingen MONET
telescope. The analysis of an anomalous event, observed in the season 2010, was used to test
the newly developed GPU-model for fitting light curves. The best solution from a Markov Chain
Monte Carlo fit was used for inferring the event parameters of the binary system. Based on the
Besançon population synthesis model of the Galaxy, a physical interpretation of the system was
given, indicating that one component is likely to be a substellar object. A planetary system can be
excluded for both components. The second component is either a low-mass star or a heavy brown
dwarf, which motivates further analyses. The estimated source star radius can only be consistently
achieved, if the distance between lens and source star is ≈ 0.2 kpc and the corresponding stars
are located around 6 kpc.

I conclude this work, by providing estimates for the limiting magnitudes for two space missions,
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namely the Heliospheric Imagers 1 (HI 1) onboard the STEREO satellites and the planned PLATO
mission. According to these estimates, only extremely bright stars can be seen from (HI 1) and
due to the short coverage of the bulge, this is a less rewarding endeavor. The prospects for
PLATO are much better and depending on the final mission characteristics, high-magnification
events can be observed with an appropriate signal-to-noise ratio contributing satellite parallax
measurements from the Lagrangian point L2.
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4.4 Source star radius distribution in the Besançon model . . . . . . . . . . . . . . . . 43
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Chapter 1

Introduction

The deflection of light in the gravitational field of an astronomical body, predicted by Einstein
(1911), has lead to a new field of research, namely the study of gravitational lensing: the ob-
servable distribution of electromagnetic radiation emitted by distant sources is changed by the
presence of a mass-energy distribution along the line-of-sight. Advances in the instrumentation
of telescopes turned these theoretical considerations into an active observational research field,
with the discovery of multiple images of lensed Quasars starting by Walsh et al. (1979). If the de-
flecting mass distribution is a galaxy, Chang & Refsdal (1979) showed that its stellar constituents
lead to a detectable change of brightness for each image. While the total mass of the lensing
galaxy leads to resolved macroscopic images, the action of individual stars does not, which lead
Paczynski (1986a) to introduce the concept of gravitational microlensing. In the following thesis,
this system used in the context of Galactic gravitational microlensing, indicating that lens and
source stars originate from our galaxy (Paczynski, 1986b).

In recent years, gravitational microlensing has impressively proven its capability for detecting
distant low-mass objects, such as planetary systems in our galaxy. The sensitivity of these detec-
tions has reached several Earth masses (Beaulieu et al. 2006; Bennett et al. 2008) and theoretical
estimates indicate that even moons (Liebig & Wambsganss 2010) or debris disks around host stars
(Hundertmark et al. 2009) are detectable. On the theoretical side, higher order corrections for
the deflection angle are accessible, but require a substantially higher data quality. Gravitational
microlensing is subject to all kinds of distortions of space-time, and, as was recently shown by Abe
(2010), can be applied even to detecting the presence of Ellis wormholes. For achieving further
milestones beyond the detection of extrasolar planets and for improving the sensitivity of existing
follow-up efforts, this thesis tries to exploit the modern computing capabilities of on graphics
processing units (GPUs) for speeding-up the simulations of light curves. Furthermore, I discuss
the benefits of applying basic principles of information theory, adding extra worth with respect to
the dynamic estimation of microlensing parameters and their uncertainties and illustrating how
data compression can support the analysis.

For testing the outlined improvements, observations were taken as part of the international
MiNDSTEp consortium’s search for extrasolar planets. Microlensing is an interesting detection
technique for planets, due to its unique capabilities for detecting rocky extrasolar planets far away
from their host stars, as microlenses are not required to be bright. In fact, lenses do not have to be
observable at all, as long as a distant source star is sufficiently well-aligned with the lens star; For a
typical configuration the angular separation is of the order microarcseconds (µas). Consequently,
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Figure 1.1: Mass and semi-major axis of extrasolar planets for different detection meth-
ods. The triangle on the left frame indicates where highly magnified microlensing events
can certainly be detected.

microlensing probes a complementary parameter space in mass and semi-major axis1 as illustrated
in Fig. 1.1. Longer radial velocity measurements lead to an improving coverage of the semi-major
axis especially for objects beyond Neptunian-mass, but the ground-based detections of Earth-
mass planets around 2 AU achieved by microlensing, justifies further efforts. The distance from
our Solar System, due to the detectability of faint lenses, is a second important aspect as illustrated
in Fig. 1.2, where planetary systems are shown along with their estimated position in our galaxy.
Thus, microlensing probes the large-scale distribution of extrasolar planets in the Milky Way.
Actually, the true lens positions can deviate from the reported position, if the distances to lens
and source are insufficiently constrained, for instance, because the mass estimate relies exclusively
on statistical inference using an underlying Galactic model.

The structure of this work is motivated by an extrasolar planet follow-up scheme. The first
chapter provides a derivation of the microlensing formalism based on the derivation of the de-
flection angle from General Relativity. Essential for microlensing is the lens equation encoding
how light, subject to the attractive deflection of a mass-energy distribution, is redistributed.
The simple analytical solutions for a point lens are given and examples of binary light curves
are shown, whereas the binary lens model is predominantly applied for characterizing planetary
events. Finally, a numerical simulation of a perturbed point lens model is shown, that is used for
constructing an interpolant, enabling the assessment of higher order effects and their feasibility.

The second chapter introduces the benefits of modeling finite source point lens and finite
source binary lens light curves by exploiting the capabilities of graphics processing units (GPUs)

1based on exoplanet.eu (22th April 2011)
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Figure 1.2: Artist’s impression of the top-down view of the Milky way (Image credit:
NASA) overlaid with distributions of known extrasolar planets.

and describes the implementation of a point-wise GPU-assisted contouring algorithm. The im-
plementation was tested on GPUs, where processing units carry out computations with ≈ 7 digit
precision. Accordingly, estimates of the resulting numerical accuracy of the model were made and
compared with results from CPU-based ray-tracing simulations.

After discussing the prerequisites for modeling microlensing events, the information-driven
sampling of microlensing events is discussed in the third chapter. An emphasis is put on the
possible application of methods from information theory. For this purpose, Shannon’s and Fisher’s
definition of information are compared in the context of Galactic microlensing. The former
considers each single brightness measurement as independent carrier of information, while the
latter approach shows how observations should be sampled for increasing the total information
content, interpreted as the inverse variance-covariance matrix. These suggestions indicate how
a fixed number of observations needs to be distributed in the course of an event, leading to an
information modulated observing strategy.

For analyzing data with a Metropolis-Hastings Markov Chain Monte Carlo, the GPU-assisted
contouring method demands modifications due to the limited model accuracy. In addition, it
turns out that the Fisher information can be used for selecting subsets of the data-set, modifying
the likelihood function at runtime but being able to neglect irrelevant parts of the observations
for the given state of the Markov chain. A first implementation of such an approach is shown in
chapter four. In the following chapter, five, the results of following up and modeling the event
MOA 2010-BLG-406 are shown. For this purpose, relevant aspects for setting-up a data reduction
pipeline are discussed and a physical interpretation of the best fit is given, based on a Galactic
model.

The final chapter illustrates the capabilities of the MONET telescopes for a test observation in
2010, where MONET/North has achieved a good coverage for MOA 2010-BLG-477. In addition,
the prospects of using auxiliary telescopes as part of space missions are discussed. For this
purpose, signal-to-noise estimates and limiting magnitudes for microlensing observations towards

3
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the Galactic center are given for the Heliospheric Imager 1 onboard the STEREO mission and
compared with estimates for the future use of the PLATO spacecraft, which is one of ESA’s
planned M-class missions.

4



Chapter 2

Gravitational microlensing

Gravitational Microlensing is the science of modeling and measuring the effects of light deflection
in metric theories of gravitation by studying unresolved images of Galactic and Extragalactic
source objects. In this respect gravitational microlensing is a special case of strong gravitational
lensing, where galaxies or galaxy clusters produce resolved multiple images of whole galaxy or
quasar source objects which can be seen from ground based observations. In the following thesis,
the special case of Galactic microlensing will be considered, where lens and source are stellar
objects located in the Milky Way Galaxy.

2.1 The deflection angle

Before being able to predict how light is deflected, it is inevitable to start with the conception of
space-time in the sense of special relativity (Einstein, 1905) where time is considered to behave
like one of the other spatial coordinates. The constancy of the speed of light in all reference
frames implies in the flat space of special relativity that massive test particles move with light
speed through the four dimensional space-time. The time in a comoving reference frame denoted
as proper time depends on its relative motion and the closer it gets to the speed of light the
smaller the eigen time will be. The remarkable insight of Einstein (1915) that space and time are
curved by energy and momentum leads to a modification of that picture - time and space intervals
have to be changed according to the curved geometry giving rise to changed equations of motion.
The quantitative description of how space-time is curved is encoded in Einstein’s field equations,
where curvature, expressed as a Ricci tensor Rµν , the scalar curvature R, the stress-energy tensor
Tµν , and the cosmological constant Λ are connected to each other:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c2
Tµν . (2.1)

These field equations provide the framework for determining the metric tensor gµν
1 describing

how lengths and times can be locally measured. A vacuum solution for spherical objects, which
is particularly relevant for gravitational lensing, was derived by Schwarzschild (1916): its line
element ds, shown in the form of Weinberg (1972), for spherical coordinates is

ds2 = −A(r)c2dt2 +B(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (2.2)

1the chosen metric signature is (−,+,+,+)

5



6 CHAPTER 2. GRAVITATIONAL MICROLENSING

Curved 2D Space

Flat 2D Space

Figure 2.1: Flat and curved two dimensional space is illustrated for a star and empty
space-time; n.b. this simplified picture suggests only spatial coordinates are curved but
the coordinate time is affected as well.

where the expressions A(r) and B(r) are given by

A(r) = 1− 2GM

c2r
, B(r) =

(
1− 2GM

c2r

)−1

. (2.3)

The latter can be modified for higher order corrections as shown by Keeton & Petters (2005).
For an appropriate description of motion of particles and light in curved space-time, equations of
motion like the Euler-Lagrange equations in classical mechanics need to be found. The natural
approach for this endeavor is to start searching for an extremal principle giving rise to the already
known equations characterizing the problem. In general relativity, one can understand light
deflection in the context of Fermat’s principle where light takes the “shortest” path through
space-time which is by definition a geodesic. The arc-length with a given metric tensor gµν takes
the form∫ λ2

λ1

(
gµν

dxµ

dλ

dxν

dλ

)1/2

dλ, (2.4)

where λ parameterizes the path. Alternatively one can use the principle of stationary action
(compare, for example, Gönner 1996)∫ λ2

λ1

1

2
gµν

dxµ

dλ

dxν

dλ
dλ (2.5)

for finding the equations of motion, where the integrand is the Lagrangian L of the problem. The
light deflection of a spherically symmetric body cannot depend on the angle θ, which can then be
conveniently chosen to be θ = π/2. In the latter case, the Lagrangian of the Schwarzschild metric
Eq. 2.2 is

L =
1

2

(
−A(r)c2

(
dt

dλ

)2

+B(r)

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2
)

dλ. (2.6)

The Euler-Lagrange equations

d

dλ

(
∂L

∂ (dxµ/dλ)

)
=

∂L

∂xµ
(2.7)
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2.1. THE DEFLECTION ANGLE 7

provide constants of motion kφ and kct for the coordinates φ and ct, as these coordinates do not
explicitly appear in Eq. 2.6:

kct = A(r)c
dt

dλ
(2.8)

kφ = r2 dφ

dλ
(2.9)

A third equation of motion can be obtained by using the fact that light propagates at zero eigen
time and, thus, that the line element gµν

dxµ

dλ
dxν

dλ vanishes:

−A(r)c2

(
dt

dλ

)2

+B(r)

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= 0 (2.10)

For determining the deflection angle, a differential equation for r(φ) is required. Dividing by(
dφ
dλ

)2
gives

−A(r)c2

(
dt

dλ

)2(dφ

dλ

)−2

+B(r)

(
dr

dφ

)2

+ r2 = 0. (2.11)

Inserting the constants of motion leads to

−k
2
ct

k2
φ

+
1

r4

(
dr

dφ

)2

+
A(r)

r2
, (2.12)

which can be further simplified by substituting p = r−1 (see Capozziello et al. 1997)(
dp

dφ

)2

− 2GM

c2
p3 + p2 − k2

ct

k2
φ

= 0. (2.13)

The desired differential equation can be simplified by differentiating with respect to φ and dividing
the result by 2 dp

dφ :

d2p

dφ2
+ p =

3GM

c2
p2, (2.14)

which is an ordinary second-order nonlinear differential equation. The solution for the homoge-
neous solution is easily found to be

p(φ) = C sin(φ+ φ0) (2.15)

where the integration constant can be determined for the impact parameter b as illustrated in
Fig. 2.2. The angle φ can be freely chosen to cancel the phase angle φ0. For a thin lens, the
impact parameter can be used to determine the constant C = 1/b and thus the homogeneous
solution is

p(φ) = b−1 sin(φ) (2.16)

The solution for the inhomogeneous part (Eq. 2.14) is given by Schröder (2007) as

pp(φ) =
GM

c2b2
(1 + cos(φ)) . (2.17)

7
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φ

α̂

Observer

b

Lens

Source star

��
��
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Figure 2.2: Definition of quantities for determining the deflection angle.α̂

The combination of both solutions can be expressed in Cartesian coordinates

y = b− GM

c2b

2x2 + y2√
x2 + y2

≈ b− 2GM

c2b
x (2.18)

According to the definitions in Fig. 2.2, the total deflection angle can be determined as

α̂ =
4GM

c2b
. (2.19)

There are other ways of deriving this deflection angle using perturbative approaches fo Eq. 2.17
or by expanding the elliptic integrals solving Eq. 2.14, but approximations are necessary in the
course of each derivation. The deflection angle Eq. 2.19 can be determined even with the same
result, in the weak-field approximation and thus without the Schwarzschild metric. The deflection
angle is not just robust concerning its derivation - another benefit from keeping the first order
approach turns up when considering the lens equation.

2.2 The lens equation

In classical optics as well as in gravitational microlensing the creation of images is described by
a lens equation under similar approximations. In both cases, the propagation of light is modeled
as one dimensional ray propagating orthogonally to the wavefront of the electromagnetic wave
and the thin lens approximation is applied. Recent calculations by Walters et al. (2010) have
shown one way of superseding the approximations that have been made in the previous section.
This approach would require numerical efforts for integrating the deflection angle which can be
neglected for regular main-sequence stars acting as lenses. The standard lensing geometry is
illustrated in Fig. 2.3. The corresponding lens equation for this case can be written as

tanβ = tan θ − Dds

Ds
(tan θ + tan(α̂− θ)) (2.20)

If the lens star is not in the relativistic regime, i.e. the lens is not a black hole (cf. Virbhadra &
Ellis 2000) the small angle approximation is satisfied and thus the lens equation can be written
as

β(θ) = θ − Dds

DdDs

4GM

c2θ
. (2.21)

8
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Figure 2.3: Side view of the lensing geometry (left) and the corresponding magnification
of the source star area.

Assuming the number of stellar black holes in our galaxy is ≈ 109 (Brown & Bethe, 1994) and
the Milky Way contains of the order of 1011 stars, several microlensing events could have been
black holes, but for sufficiently large separations these are well approximated by the small angle
approximation. The lens equation (Eq. 2.21) can be used to model symmetric lenses. For systems
with multiple components it is assumed that deflection angles can be superposed and thus the
total deflection of N deflectors and an underlying mass-energy density can be obtained

β(θ) = θ −
N∑
i

Dds,i

Dd,iDs,i

4GMi∆θi
c2∆θ2

. (2.22)

The superposition approach is valid as long as the deflectors are sufficiently separated and thus
the curvature of one lens does not affect the curvature of another object, which is a first order
consequence of the weak field approximation for

2GM

c2r
� 1. (2.23)

2.3 Observable quantities

2.3.1 Einstein radius

In the commonly used point lens equation (Eq. 2.21), the constant quantities can be summarized
by considering a collinear alignment of source star, lens star and observer, i.e. β = 0. In this case
the solution corresponds to a ring with an angular radius of

θE =

√
4GM

c2

Dds

DdDs
. (2.24)

This quantity can be used to obtain the dimensionless lens equation for i 6= j

βj
θE

=
θj
θE
− θEθj
θ2
i + θ2

j

, (2.25)

9
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Figure 2.4: Images of a point lens (left) and the corresponding light curve shape (right).

where the angular Einstein radius does not have to be explicitly included if all angles are given in
its unit. In the following, this assumption is made and the corresponding quantities are denoted
as θ′ and β′. Therefore Eq. 2.25 becomes

β′j = θ′j −
θ′j

θ′2i + θ′2j
(2.26)

The Einstein radius is of the order of a milliarcsecond (mas) for Galactic microlensing, preventing
a direct measurement, whereas the Einstein radius can be resolved for extragalactic objects (e.g.
Fig. 2.5).

Figure 2.5: Example for strong lensing of galaxies: Hall’s arc (SDSS
J104943.14+442035.6) as seen from the DANISH 1.54m telescope in the R-band. For
detailed measurements see Estrada et al. (2007)
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2.3.2 Brightness

Point source point lens

Currently the most common observational technique for Galactic microlensing is that proposed by
Paczynski (1986b) and is based on the analysis of microlensing light curves requiring an adequate
description how such a curve can be created. For the purpose of data fitting it is convenient to
consider the simple model of a symmetric lens. The magnification can be obtained by solving
the lens equation for the images θ, integrating the subtended angle of the solutions and, where
appropriate, convolving the solutions with a suitable limb-darkening law. For idealized point
source stars, the magnification of a single image of the lens equation is given by the modulus of
the inverse Jacobian determinant (Schneider et al., 1992) constituting the infinitesimal change of
an area element subject to the gravitational deflection. In an ordinary Cartesian representation,
the magnification for a single solution θ of the lens equation is

µ =

(
∂βi
∂θi

∂βj
∂θj
− ∂βi
∂θj

∂βj
∂θi

)−1

(2.27)

which can be calculated for every differentiable lens equation. For a point source point lens (PSPL)
model, both components of the lens Eq. 2.26 can be combined and provide as corresponding image
positions

θ′j,± =
1

2

(
|β| ±

√
β2 + 4

) β′j
|β|

. (2.28)

For each solution in the lens plane the Jacobian determinant can be calculated according to
Eq. 2.28 and the magnification becomes

µ =

(
1− 1

|θ′|4

)−1

. (2.29)

The total magnification for a given source position can be obtained by summing up the magnifi-
cation at every given image position. For a PSPL model the magnification can be obtained from
Eqs. 2.29 and 2.28 and depends only on the modulus of the source position |β′| which is denoted
in the literature as |β′| = u

µ(u) =
u2 + 2

u (u2 + 4)1/2
(2.30)

This equation serves as a fiducial model for further considerations. Light curves can be simulated
according to this equation by parameterizing the changing source position. To first order, one
can assume that a point lens and a point source move uniformly with different proper motions.
Relevant for the magnification of an ongoing event is the relative motion of source and lens. The
timescale of a microlensing event is characterized by the time tE it takes to cross the Einstein
ring while the maximal magnification depends on the closest separation u0 at a time t0:

u(t) =

(
u2

0 +
t− t0
tE

)1/2

. (2.31)

Among these parameters the Einstein time is the most interesting one, because it is related to
the mass. Nevertheless, knowledge of the distances and the relative lens-source proper motion

µr =
θE

tE
(2.32)

11
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is required for determining the mass. Furthermore, all observations are carried out in crowded
fields and the flux of a source star FS can be contaminated by blending flux from other objects
FB (Di Stefano & Esin, 1995) which, in turn, can exhibit variability. The observed light curves
thus take the shape

F (t) = FS(t)µ(u(t)) + FB(t). (2.33)

If the blending can be considered to be insensitive with respect to time-dependent changes, it
is convenient to introduce the blending parameter g = FB

FS
(e.g. Dominik 2009). The blending

parameter can have a significant impact on the determination of the Einstein time, which is the
observable quantity related to the mass of the lens. The effect can be seen if the full width at
half maximum (FWHM) of a point source point lens (PSPL) model is considered as introduced
by Gondolo (1999) and approximated for source star positions much smaller than the Einstein
radius

tFWHM ≈ 3.46
tE

µ(u0)
(2.34)

where it can be directly seen how a misinterpretation of the blending parameter alters the
prospects of accurately determining the Einstein time for high magnification events.

The binary lens

Binary lens models with two components in the general lens equation (Eq. 2.22) play a major role
for characterizing ongoing events deviating from the standard PSPL structure. Even if binary
stars cannot be found in 1/2 but 1/3 of all potential stellar systems as suggested by Lada (2006),
the number of binary stars serving as lenses for surveys observing 108 stars at any given time
stays high.

Different magnification maps are shown in Fig. 2.6. These maps provide the magnification
for a given source star position on the sky. In cases where the Jacobian determinant (Eq. 2.27)
vanishes, the resulting point source magnification diverges, but this is a hypothetical scenario,
since all source objects are extended structures. Points in the lens plane with infinite magnification
are referred to as critical curves and, after being mapped to the source plane, they become caustics.
In the case of a point lens the critical curve is the Einstein radius and the caustic is the diverging
magnification for a collinear alignment of lens, source and observer. The angular Einstein radius
for binary systems is

θE =

√
4G (M1 +M2)

c2

Dds

DdDs
, (2.35)

where M1 and M2 are chosen in a way that the mass ratio q = M1
M2
≤ 1.0 and the angular

separation d is given in units of the angular Einstein radius. In contrast to the single lens case,
the angle between source trajectory and connecting line of both lenses arises as additional model
parameter. Without loss of generality, a convenient coordinate system can be chosen: throughout
this thesis the center of mass is chosen as origin and both lenses are placed on the first axis.

Depending on the combination of the parameters mass ratio and separation, different lensing
regimes can be discriminated (Schneider & Weiss, 1986). Extended caustic structures can easily
be detected as the number of images changes when a source star passes a caustic. For randomly
oriented tracks, the chance of detecting a binary system in a given light curve increases with

12
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Figure 2.6: Magnification maps are shown along with critical curves and caustics for
different mass ratios q and separations d .

caustic size while, in turn, the caustic size depends on mass ratio and separation. Fig. 2.6
illustrates qualitatively different trends such as an increase of the caustic size with mass ratio as
well as an increase in caustic size for separations d ≈ 1 θE. For widely separated binaries, the
resulting caustic structure resembles the superposition of two point lens magnification patterns.
In addition, it is worth noting that the number and position of cusps can serve as important
constraints for selecting possible configurations. The drastic changes of magnification close to
cusps and during caustic crossing events enable the detection of low-mass objects such as planets
below 10M⊕ even from ground-based observations. Fig. 2.7 gives an example of the variety of
light curves that can be obtained just for one combination of mass ratio and separation. Details
on the calculation of these events by means of graphical processing units are given in chapter 3.
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Figure 2.7: Binary light curves for different source tracks are shown along with critical
curves and caustics. A mass ratio of 0.1, a separation of 0.9 θE and a source star radius
of 0.007 θE have been chosen.

2.4 Optical depth and event rates

It was shown in Equations 2.31 and 2.35, that the duration of an event is related to the mass of a
given lens distribution. However, to infer the lens mass, potential lens and source distances, as well
as mass and velocity distributions are required. The first estimates for graviational microlensing
were made by Paczynski (1986b) in his seminal paper.

The fundamental quantity for detecting gravitational microlensing events is the optical depth:
it does not describe the transparency of a medium but provides a measure of the chance of a given
source star to be lensed. Evidently, this is related to the measure of transparency contained in the
classical optical depth, as it gives an estimate of how transparent the Galaxy is with respect to
being lensed. For this purpose, a definition has to be made, when a source star has been lensed.
A source star is considered to be lensed when the closest separation is smaller than 1 θE and thus
the magnification exceeds 1.34. The optical depth τ depends on the sizes of the Einstein radii for
a given distribution of deflectors, where each deflector contributes its Einstein ring area

τ = π

∫ Ds

0
n(Dd)θ2

EdDd (2.36)

comparable to the cross section in nuclear and particle physics. The optical depth depends on
the linear number density of lenses n(Dd) and the Einstein radius for the given distance.

A further parameter of interest is the event rate Γ of microlensing events. Paczynski (1991)
connected the event rate to the optical depth and the event duration tE as the inverse time interval
between two consecutive microlensing events for the same observer-source configuration

Γ =
2τ

πtE
, (2.37)

14



2.4. OPTICAL DEPTH AND EVENT RATES 15

which has to be integrated for different source positions but also for different relative proper
motions µr depending on the given source and lens position, leading to an event rate

Γ = 2

∫ Ds

0
n(Dd)θEµrdDd. (2.38)

2.4.1 Astrometry

For the confirmation of extrasolar planets in a binary microlensing event it is necessary to know
the mass of the lens star: binary models can provide a direct measurement of the mass ratio but
even the parameter space for determining mass ratio and separation is affected by degeneracies
caused by the structure of the binary lens equation (Dominik, 1999). Astrometrical observations
can help to discriminate between different lens configurations.

The centroid position of the source star is changed due to the multiplicity of solutions of the
binary lens equation and their corresponding brightnesses (Hog et al., 1995; Miyamoto & Yoshii,
1995; Walker, 1995). For typical microlensing configurations with a lens of 0.3M� located at
6.5 kpc and source star located at 8.5 kpc, the resulting Einstein radius corresponds to an angular
size of 0.3 mas. The centroid position θc for a lens configuration with N solutions θi is

θc =

∑N
i kiθiµi∑N
i µi

(2.39)

where ki denote possible transmission coefficients for light-rays passing through an attenuating
medium. The transmission coefficients can be used to analyze an attenuating medium around a
microlens as indicated by Hundertmark et al. (2009). Fig. 2.8 illustrates the maximal effect of an
optically circumstellar thick disk around a microlens.
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in AU assumes a typical Galactic microlensing event (right).
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2.5 Classification of Microlensing applications
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Figure 2.9: Mindmap for microlensing related effects from a modeler’s point of view.

The observable shape of a point source point lens microlensing light curve can be altered by
two different classes of effects; effects changing the lens equation and effects preserving the mag-
nification pattern on the sky but modifying everything else. The former class comprises changes
in the underlying metric as well as the mass and energy distribution of the deflection system,

16
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whereas the latter class considers arbitrary source structures, blending, extinction and dynamical
changes caused by the complicated structure of the lens-source-observer relative motion. Equally
well one could have classified the effects according to different observational techniques, but from
a modeler’s point of view the given choice outlines the implementation. Fig. 2.9 illustrates ex-
amples of different detectable effects directly following from common astrophysical concepts and
independent of potential detailed studies. A complete picture requires the treatment of several
effects and all aspects shown in Fig. 2.9 can be present at the same time.

In the following, methods for quickly estimating the impact of these effects in comparison to
the point lens will be discussed. Depending on the objectives, a detailed analysis can be a time
consuming effort. Due to the existing surveys MOA (Microlensing Observations in Astrophysics;
Bond et al. (2001); Sumi et al. (2003)) and OGLE (The Optical Gravitational Lensing Experiment;
Udalski (2003)) an emphasis is put on brightness variations.

2.5.1 Perturbations of the PSPL model

As indicated, the PSPL model and its lens equation serve as a fiducial model for all further
calculations and its lens equation (Eq. 2.21) can be modified by adding an angular perturbation
vector δ (θ), where we will assume that the additional deflection is small in contrast to the PSPL
approximation:

β(θ) = θ − Dds

DdDs

4GM

c2θ
+ δ (θ) (2.40)

In the most simple case, the perturbation does not depend on the image position and thus the gen-
eral shape of the magnification map is conserved; δ vanishes in the partial derivatives of Eq. 2.27.
The PSPL model is adapted simply by changing the source positions β for each solution. One
example of such a perturbation is given by Chiu et al. (2006), who treat gravitational lensing
in Tensor-Vector-Scalar (TeVeS) gravity (Bekenstein, 2004), illustrating that the effect does not
leave the light curve shape invariant. For all further considerations it is assumed that the per-
turbed light curve changes its shape and cannot be scaled or shifted for correcting the baseline
and blending flux in Eq. 2.33.

Modifying the mass distribution of the lens or by using higher order approximations for dif-
ferent physical situations (e.g. Keeton & Petters 2006a,b) leads to changes depending on the lens
position which generally cannot be solved analytically. In addition, it is not clear a priori how
the number of solutions evolve. For treating all possible solutions, the squared deviation of the
perturbed lens equation (Eq. 2.40)

sqd =

∣∣∣∣β(θ)− θ − Dds

DdDs

4GM

c2θ
+ δ (θ)

∣∣∣∣2 − r2
? = 0 (2.41)

as introduced by Schramm & Kayser (1987) is considered, permitting a quick inspection of the
solution structure. The magnification in the lens plane can be evaluated numerically according
to Eq. 2.27 with multi-precision packages2. The image position is corrected for the perturbed
version by using a random walk starting at the point lens solutions and taking random steps
scaled according to the squared deviation.

By definition, this approach fails to address finite source effects and thus certain parts of the
parameter space must not be included. The achievable maximal magnification of a source star

2The calculations presented here were carried out in Python using the Mpmath module by Johansson et al.
(2010).
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18 CHAPTER 2. GRAVITATIONAL MICROLENSING

modeled as a uniform disk with radius r? can be directly calculated from Eq. 2.28. In this case,
the images merge and form the Einstein ring with θ± as inner and outer radii. The maximal
magnification becomes

µmax(r?) =

√
1 +

4

r2
?

. (2.42)

In the picture of the PSPL model this corresponds to a minimal separation of

u0 =

√
r?/2(1 +

(
(1 + 4/r2

?)
2 − (1 + 4/r2

?)
)1/2

− (1 + 4/r2
?)). (2.43)

For a typical configuration3 a sun-like star acting as source has a radius of 2 · 10−3 θE while
the disk of a giant star with 55R� corresponds to 0.01 θE. Instead of imposing a cutoff in
minimal separation, a cutoff is imposed for the maximal magnification which can be applied to
prevent the evaluation at caustic crossings. For the intermediate case r? = 0.005 θE, this implies
a magnification limit of µmax ≈ 400.

The evaluation of the detectability requires knowledge of the sampling of points in the source
plane. As long as no prior information is available, all tracks on the sky are equally likely:
consequently an equidistant grid with sampling intervals of 0.02 θE is chosen. For an Einstein
time tE = 20 d an observation is necessary every 0.4 d , which is achieved by survey programs like
OGLE and MOA.

Binary perturbation

Before looking at two classes of perturbations, I consider the canonical binary model. In Fig. 2.10
the effect of a perturbation caused by a binary lens is shown. The magnification in the lens plane
displays lines of infinite magnification, where the Jacobian determinant vanishes - the afore-
mentioned critical curves. If the source star is located inside or outside the caustic either three
or five images are created. One way of estimating the maximal number of solutions is achieved
by converting the lens equation to a complex polynomial, as shown by Witt (1990); according to
the fundamental theorem of algebra, the number of solutions can be as high as the degree of the
resulting polynomial. Consequently, the total magnification will be underestimated if just two
solutions from the magnification pattern are used, but if these solutions already increase the total
brightness by a detectable amount, detailed studies are justified. Fig. 2.11 gives an example of a
perturbed binary model with source positions sufficiently far away from the caustic.

2.5.2 Higher order calculations

For directly estimating the order-of-magnitude deviation of higher order effects, two simple in-
terpolating relations shall be given which directly provide a measure for the deviation and can
be used for a sensitivity and detectability analysis. In the first case, the lens equation can be
modified by including second order effects, leading to the lens equation

β′j = θ′j −
θ′j

θ′2i + θ′2j
− ksec

θ′j(
θ′2i + θ′2j

)3/2
(2.44)

3DS = 8.5 kpc, DL = 6.5 kpc and M = 0.3M�
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Figure 2.10: The magnification in the lens plane calculated for a point lens (top) and
for a binary lens with a mass ratio of 1/9 (bottom). The points of infinite magnification
form the critical curve and can be mapped to the source plane. Right: the squared
deviation of the lens equation is plotted, illustrating the shape and position of the given
images. For finite sources, the squared deviation corresponds to the squared source star
radius r? in units of Einstein radii.

where the coefficient ksec depends on the origin of the correction which, in turn, depends in the
Schwarzschild metric on the size of the Einstein radius. For theories introducing a constant offset
like TeVeS, a second different relation can be used:

β′j = θ′j −
θ′j

θ′2i + θ′2j
− koff

θ′j(
θ′2i + θ′2j

)1/2
(2.45)

The correction of the magnification is determined on a grid of values where the correction term can
be determined sufficiently accurately. For this purpose,

√
sqd provides a measure of uncertainty:

for
√
sqd < 2 · 10−18, a finite source star with 2 · 10−3, and a minimal achievable separation

u = 10−3, the magnification can be determined with an accuracy of 10−12. Both limits are taken
into account during interpolation by fitting a bivariate polynomial to the data, as illustrated in
Fig. 2.12. As the order-of-magnitude is most relevant for these estimations, all quantities are
considered on a logarithmic scale according to

log10(|∆µ|) = p1 log10(k) + p2 log10(u) + p3 log10(u) log10(k) + p4, (2.46)
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Figure 2.11: A perturbed binary light curve for a mass ratio of 0.1 and 0.5 θE (left) is
shown along with the corrected tracks on the lens plane (right).

and the corrected light curve is then

µ =
2 + u2

u
√
u2 + 4

± 10p1 log10(k)+p2 log10(u)+p3 log10(u) log10(k)+p4 (2.47)

where the coefficients pi are provided in Tab. 5.1 and the sign depends on the sign of ∆µ.

Coefficient p1 p2 p3 p4 SSR

ksec -1.14355 1.96606 -0.02000 -0.67545 0.00264
koff -1.000051 1.000034 -7.7623e-06 0.0001751106 0

Table 2.1: Coefficients for the estimation of higher order effects according to Eq. 2.46.

Finally, the interpolation can be applied to estimate the detectability of such a deviation.
For this purpose, we need the probability density for the separation u. Assuming a uniform
distribution of u0, the distribution of u is given as

P (u) = 2u, (2.48)

on the interval u ∈ [0, 1]. In combination with Eq. 2.46 the expected deviation can be calculated
according to

〈log10(|∆µ|)〉 =

∫ 0

1
2u log10(|∆µ|)(u)du (2.49)

= p1 log10(k)− p2
1

2 log(10)
− p3

1

2 log10(k) log(10)
+ p4. (2.50)

For studying events with potential second order effects, events with koff > 6.3 · 10−3 and
ksec > 2 · 10−3 provide an expected deviation exceeding 1 %.
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Figure 2.12: Expected magnitude of perturbation and simulation used for determining
the coefficients of Eq. 2.46.

2.6 Conclusions

Gravitational microlensing is a versatile tool with a sheer variety of physical, geometrical and
observational models - all seeking to overcome various limitations and approximations. The point
is less whether they are currently observable but whether the requirements that have to be fulfilled
to make them detectable are obtained. For this purpose, order-of-magnitude estimations provide
helpful constraints in order to achieve an assessment, if a more detailed model is appropriate.

At the conclusion of this chapter, a simple test has been presented for estimating the order
of magnitude of perturbations for higher order perturbations based on initial numerical simula-
tions. The resulting power law approximation provides a tool for comparing the detectability of
higher order effects. Potential theories are second order corrections as introduced by Fischbach
& Freeman (1980) or the detailed version by Keeton & Petters (2005). For a constant offset, the
relativistic generalization of MOND as introduced by Bekenstein (2004) offers a convenient test-
ing ground. The numerical approaches introduced by Walters et al. (2010) could also be used for
obtaining approximations. The possibility of ambiguous point source point lens models describing
higher order effects can be addressed by fitting PSPL-models to the corrected light curves or by
studying the information content and parameter correlations which will be shown later in this
work.
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Chapter 3

GPU-based models for gravitational
microlensing

Before being able to infer physical parameters from observed light curves, an appropriate model
is required. For fitting purposes, models need to be sufficiently precise, accurate and, for practical
reasons, computationally inexpensive. Satisfying all these requirements can be challenging and
overcoming these limitations often requires access to a computer cluster. This work shall illustrate
how commercial off-the-shelf graphic cards can be used for modeling microlensing events, thereby
significantly reducing the computational as well as the ecological burden. As introduced in pre-
ceding chapter, systems consisting of multiple lenses or asymmetrically distributed matter require
numerical solutions of the lens equation. Existing strategies comprise approximative approaches,
perturbative analyses, inverse ray-shooting simulations and contouring techniques based on inte-
grating around the contour lines of images. The latter technique shall be studied in more detail
and a first implementation on graphics processing units (GPUs) using the NVIDIA® CUDA™
technology will be presented.

3.1 GPU-computing

The rapid evolution of computation capabilities as predicted by Moore (1965) is restrained by
the atomic structure of semiconductors. As long as further miniaturization is not achievable,
the number processing units have to be increased either by using multiple CPUs or by devoting
more space on existing chips for computation and less for flow control. Accidentally, such a
concept exists and is used in modern graphic cards - strongly but not exclusively motivated by
the consumer interest in elaborate computer games.

Graphical Processing Units act as mathematical coprocessors and consequently GPU-assisted
software consists of parts executed on a CPU and parts executed on a GPU. Fig. 3.1 gives an
overview of a single multiprocessor and indicates what steps have to be taken to parallelize an
algorithm for running it on graphic cards. Starting from a single loop, a series of commands is
executed, denoted as thread1; These threads are organized as blocks which in turn are arranged
on a grid. Parallelization means preparing loops as lightweight threads for an execution on a
grid of blocks. Depending on the thread structure, more or less registers and shared memory
are needed and, considering that processors cannot arbitrarily communicate between themselves,
the programmer has to optimize the code in advance for this structure. Despite having some

1in contrast to GPU-threads which are the smallest processed data elements
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Figure 3.1: Simplified structure of a multiprocessor consisting of arithmetic logical units
(ALU), registers (R) (left) and basic parallelization of GPUs.

global strategies for programming (e.g. Kirk 2010), the runtime optimization is a time-consuming
effort. Despite being able to analyze the occupancy of the GPU, an implementation has to be
rewritten several times by identifying the limiting quantities regarding precision and runtime. In
the following, this is done for a single finite source point lens model.

3.2 The finite size model revisited

On the basis of the trivial case of a point source point lens, the next enhancement for creating a
realistic multiple lens model considers the magnification of a finite source point lens, where the
source star is included as uniform disk. One early model describing the light curve of such an
event was developed by Witt & Mao (1994) and can be efficiently implemented on computers,
because it is based on Elliptic integrals which can be quickly evaluated numerically, in principle
as fast as the evaluation of a logarithm, since it can be expanded in a similar series. There are
different strategies of how this approach can be optimized, e.g. by Lee et al. (2009).

For illustrative purposes and to get an understanding how precise and accurate an integration
on a GPU can be made, the finite source effect of a point lens is modeled as a simple, i.e. not self
intersecting, polygon as shown in Fig. 3.2. By consecutively mapping the segments of the source
star contour the area A can be numerically integrated on the basis of the Gaussian trapezoidal
rule

A =

∣∣∣∣∣12
N∑
i

(θ1,i − θ1,i+1) (θ2,i + θ2,i+1)

∣∣∣∣∣ . (3.1)
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A similar contour integration approach was proposed by Gould & Gaucherel (1997). The basic
implementation can be equally well achieved on CPUs but cannot compete with the analytical
formulae of Witt & Mao (1994), as it relies on multiple evaluations of PSPL-solutions. Evidently,
the outlined approach can be easily converted to the block structure outlined in the previous
section. The integration of every point in the light curve is processed as a thread. This approach
wastes some registers during the evaluation but reduces the memory transfers to the final light
curve transfer. Despite the fact that the usage of the shared memory, available for each block, can
be as fast as accessing registers, an exclusive usage of registers is a safe way to avoid performance
losses which may arise in accessing shared memory.
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Figure 3.2: The implemented version of a finite source model calculated on GPUs is
shown along with the results of the finite source model by Witt & Mao (1994), as well as a
point source model. The central point of each solution is not required for the integration
and is shown for indicating a non-equidistant size of integration elements.

3.2.1 Estimating the numerical uncertainties

For estimating the numerical uncertainties it is necessary to identify the limiting quantities in a
given implementation. In case of the finite size model the dominant uncertainty is caused by the
discretization of the contour line. Depending on its number of elements, relative and absolute
uncertainties can be controlled. For obtaining an analytical estimate, the images of the source
contour are assumed to be scaled versions of a circle and in that sense the effect of discretization
can be approximated by comparing the area of a magnified circle

µ =
R2

r2
?

(3.2)

with the area of the magnified simple polygon of the images. The discretization error δd for a
given magnification can be estimated and expanded for N � 1 as

δµ,d =

(
1.0− N sin2 (π/N)

π tan(π/N)

)
µ ≈ 2π2

3N2
µ, (3.3)
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In the given situation, this obstacle can be addressed by estimating the magnification ahead of
time and increasing the resolution to reach the desired accuracy. The initial estimate can be
achieved by evaluating a point source point lens model or alternatively by integrating a coarse
grid of elements. In a second step the final integration is carried out by applying the trapezoidal
integration. Comparing the results from the GPU with the achievable accuracy on a CPU for
the same approach shows the drawbacks of the GPU implementation as illustrated in Fig. 3.3.
An absolute precision of 10−4 was demanded but just a relative precision of ≈ 10−4 was achieved
with the GPU approach.
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Figure 3.3: Accuracy and precision of a finite size point lens model implemented for
GPUs are compared with a CPU version. The two lower panels show the absolute change
in magnification of the reference model (Witt & Mao, 1994) with different initial estimates
of the magnification in Eq. 3.3 and respective elements in the integration. The upper panel
illustrates the relative deviation between the two finite models. The minimal separation
parameter is u0 = 0.01 θE and the source star radius is 0.01 θE.

All expressions evaluated in the model can be calculated up to machine precision2 and for most
arithmetic operations there is no simple software solution for reaching double-precision on single-
precision machines, but there are techniques for compensating round-off errors in the calculation
of sums. In the simulations shown before, the relative deviation was reduced by following the
proposed compensation algorithm by Kahan (1965), keeping track of low-order bits by storing
them in an additional variables as illustrated in Fig. 3.4. Most efforts reducing round-off errors
cost computation time and cannot compete with a true double-precision implementation. The
GPUs used in this thesis are operating at their maximal speed exclusively with standard single-
precision variables and thus double precision variables were not used in the given implementation.

2predominantly IEEE 754 single-precision (32 bits)
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Figure 3.4: Compensation of numerical errors by using a running compensation accord-
ing to Kahan (1965).

3.3 GPU-contouring for binary events

The contouring technique for calculating the magnification of a microlensing event relies on de-
termining the image contour for a given source star contour and calculating the relative change
in area expressed in angular units. For a given source star radius the lens equation needs to be
solved either as complex polynomial providing the solutions as complex roots (cf. Witt & Mao
1995) which can be efficiently evaluated by using Laguerre’s method (e.g. Vermaak 2000; Bozza
2010) or by using the squared deviation function as introduced by Schramm & Kayser (1987).
The latter approach was used by Dominik (2007) in his adaptive contouring approach. Due to
the low requirements concerning registers and the possibility of analytically calculating the first
derivative, the latter approach will be followed, as illustrated in 3.5, where the images are given
as lines of equidistant squared deviation and the function values themselves correspond to the
squared source star radius.

gl For an efficient evaluation of the two-dimensional parameter space, the lens plane was
parameterized by using two polar coordinate systems centered on each lens. This improves the
accuracy, as the search direction is nearly orthogonal to the contour line and thus the residing
deviation is small. Both grids are separated by a normal line at the center of mass. For each
angular segment, an independent radial root-finding search is carried out, implemented as one
thread. The starting point for each search has to be chosen sufficiently away from the singularity
but also close enough to avoid missing a solution. In our implementation the starting point
was chosen to be one source star radius away from the singularity, which readily fulfills both
constraints. The polar parmeterization is not only useful for the contouring approach, but also
for simulating light curves via ray-shooting as shown by Bennett (2010).
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Squared deviation on a polar grid

Figure 3.5: Polar parameterization of the lens equation as squared deviation function
(cf. Schramm & Kayser 1987) for source stars located outside of the caustic.

3.3.1 Root-finding techniques

For obtaining an adequate numerical solution, an appropriate root-finding technique needs to be
selected (Press, 1994). By selecting the contouring approach, techniques for finding the roots of
a polynomial can be rejected. The analytical derivative offers the possibility of quickly probing
the parameter space. Consequently, the first search is based on Newton’s method and stopped if
a given accuracy is reached, namely 5 · 10−7. The second solution is found by using a bracketing
technique which needs an initial pair of points bracketing the root. The initial points for bracketing
the second solution are determined by using a parabolic approximating of the underlying function.
The numerical accuracy limits for all roots need to be larger than 10−6 to ensure convergence.
This can be directly understood as a consequence of single-precision variables, as solutions are
located around ≈ 1 θE and 7–8 digits are available.

Another advantage of a polar parameterization is a simple stopping criterion for searching
the parameter space. A change in sign of the first derivative of the squared deviation serves as
breaking condition, if no root has been detected. Although it is often desirable that all threads
execute the same number of operations, stopping all threads in a block permits processing the next
one. As the complicated root-finding cannot be unrolled further, it is safe to skip this option and
break the execution of threads. Nevertheless, one can also set a limit for the maximal number of
iterations which can be used as additional breaking criterion. For each grid the squared deviation
decreases by ≈ r−2, where r is the distance from the grid center. Newton’s method changes the
step size by 2nr? and thus convergence can be achieved in 20 iterations. The bracketing approach
follows a similar convergence rate. In some cases, minor images are located far away from the
lens, requiring more steps to be taken before discarding a radial direction.
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Figure 3.6: Precision control is achieved by rescaling the number of integration elements
after a first search. Due to the independent evaluation of each radial direction at the end
of each angular grid the total area underestimated.

3.3.2 Precision control for binary models

The numerical uncertainties of the binary model can be described by analogy with the finite size
model in Eq. 3.3 providing the number of integration elements

N ≈ 2.6

√
µ

σµ
, (3.4)

where σµ is the requested accuracy. For most ground-based observations without adaptive optics
and lucky-imaging cameras, a photometric accuracy of 1 % is achieved and thus the model needs to
be good enough to provide results which are at least one order of magnitude below the photometric
accuracy. This implies, that at least 100 integration elements have to be used for lensed events
with µ > 1.34 corresponding to a source-lens separation of 1 θE and for high magnification events
with µ ≈ 200 the requested number of elements should be > 1000.

In contrast to the single lens model, two modifications have to be taken into account, namely
the finite accuracy of the root-finding without compensation of round-off errors, which is σR =
10−6, and a loss of area caused by the segmented grid as depicted in Fig. 3.6. The former issue
can be addressed by propagating the numerical error in radial direction under the assumption of
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an uncorrelated and normally distributed σr which gives

δµ,dr =
2
√
µN sin2 (π/N)

πr? tan (π/N)
≈ 2
√
µ
σr
r?
, (3.5)

approximated for N � 1. For low magnification events µ < 100 one can reach the desired
precision only for σr < 5 ·10−8 or by imposing a lower magnification limit. This is still feasible for
32 bit single-precision providing 7–8 digits if precision, as long as the image positions stay around
1 θE. For image positions around 10 θE, effectively one digit is lost for the residual deviation.

Finally, an estimate for the upper limit of the missing area can be given, because the maximal
number of solutions is known to be five and if one complete segment can be missed on each side
the uncertainty becomes

δµ,dϕ ≈
10

N
µ. (3.6)

The last component is a delicate one, as it is not obvious what the true size of the missing
component really is. For modeling purposes, it is desirable to stay at least one order of magnitude
below the scatter of datapoints. In the case under consideration, this means a relative precision
of 10−3 is required with at least 104 segments for each integration.

In contrast to the finite source point lens model, the number of elements cannot be arbitrarily
increased as long as the number of integration elements decays for solutions located far away
from the lens positions. the precision decreases with a decreasing number of segments. If the nu-
merical uncertainties of the model vary systematically with model parameters, the numerical and
systematical uncertainties act as a prior distribution, compromising the fit results and particularly
confusing the comparison of degenerate parameter configurations.
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Figure 3.7: The solution structure of the lens equation is shown for different source
tracks corresponding to different light curves. The binary mass ratio is 0.9 and lenses are
separated by 0.9 θE.
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All strategies aiming to conserve the precision discussed before are obsolete if complete images
are missed, which is in principle possible whenever solutions are located sufficiently far away from
the lens position. In order to address this problem properly, an initial grid search is carried out
with a source star radius increased by a factor of two. In most cases, one can expect to find
solutions at separations of the order of 1 θE from the nearest lens as depicted in Fig. 3.7; the
image positions for different source tracks stay around critical curves. For a main sequence source
star with an angular radius of 10−3 θE solutions will be missed if they are located more than 5 θE

away from the closest lens which would also mean a separation of the source of ≈ 5 θE. Widely
separated lenses, i.e. d� 1 θE, can equally reduce the chance of detecting all solutions and thus
the initial source star radius is also scaled with d as long as d > 1.

For optimally exploiting the available resources, an initial grid search is carried out with 16384
elements. After transferring the angular position back to the CPU the total number of segments is
scaled to 16384 and contiguous solutions are send back to the GPU for refinement. The refinement
is limited to a total number of 1024 elements as numerical uncertainties start affecting the results.
The maximal precision is not reached as there is an overlap of detections in the initial search due
to the scaled source star radius. The improvement reached by a refined integration is illustrated
in Fig. 3.8. For a well sampled light curve it is even possible to recycle some segments as adjacent
source positions provide adjacent solutions, as shown in Fig. 3.7.
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Figure 3.8: The disadvantages of a grid with fixed resolution are illustrated for source
star radii between 5 · 10−4 and 3 · 10−2.

3.4 Inverse ray-shooting

For solving the lens equation Eq. 2.22 the number of solutions and the corresponding magni-
fications have to be determined. In order to compare the results of the new GPU-contouring
approach, a different technique is used as a fiducial model. One successful approach is based on
the inverse ray-shooting technique as introduced by Kayser et al. (1986) and applied to planetary
microlensing events by Wambsganss (1997). The magnification map for a given configuration of
mass ratio q and separation d is created by inserting a grid of rays into the lens equation and
deflect them to the source plane. Each pixel in the source plane coincides with a given source
position and the number of hits per pixel is proportional to the magnification.

The basic steps that have to be taken for simulating magnification maps are illustrated in
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Figure 3.9: A grid of rays is on the lens plane (left) is deflected after jittering the ray
position it is deflected according to the lens equation (middle) and binned to a grid of
pixels or apertures for calculating the magnification(right).

Fig. 3.9. The lens plane is covered by rays probing the lens equation and in order to prevent
aliasing in the source planes, each ray is jittered within a given pixel. The computational bur-
den for calculating random numbers can be decreased by using a pre-calculated grid of random
numbers which is restarted at a random position. For each target pixel in the lens plane, the
relative numerical uncertainty δµ,rs can be estimated assuming the deflected rays are randomly
distributed. If the theoretical number of hits for the true magnification is N2

h , every ray at the
border has a ≈ 50 % chance of missing the pixel. The binomial distribution tells us that the
expected value will provide just half of the border elements with a standard deviation of 1/2

√
Nh

which is negligible for Nh � 2

δµ,rspx =
2(Nh − 1) + 1/2

√
Nh

N2
h

≈ 2

Nh
(3.7)

For an aperture the number of elements at the edge decreases to 2
√
π and the uncertainty is

δµ,rsap ≈
√
π

Nh
, (3.8)

which is not helpful as the number of hits is assumed to be constant but in praxis one cannot
skip rays missing the aperture grid. In order to reach a relative precision of 10−3 one needs 4 ·106

rays per pixel and each deflection requires at least 2 divisions with 4 floating point operations
(FLOP) per clock cycle. As ray-shooting requires complete pixel grids with typical dimensions
of 4 K× 4 K pixels just the divisions need 260 TFLOP; for a CPU capable of 0.1 TFLOP/s that
means just the divisions will take 45 minutes.

3.4.1 Accelerating ray-shooting by interpolation

One of the most time consuming aspects of light deflection is the evaluation of divisions. For
accelerating the computation it is helpful to use a bilinear interpolation for the deflection angle
in each direction. According to Press (1994) a bilinear interpolation can be carried out with
16 multiplications and 8 additions/subtractions for a binary event, while a direct evaluation of
the lens equation requires 10 additions/subtractions, 8 multiplications and 2 divisions. Under
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the assumption that the latter counts as 8 regular operations, one expects to see just a slight
acceleration but for the simulation of planetary systems consisting of multiple deflectors this
means a significant improvement, because the number of operations stays constant for the bilinear
approximation. One example is the deflection angle of an arbitrary solar system state as illustrated
in Fig. 3.10.
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Figure 3.10: Interpolated components of the deflection angle caused by the presence of
the planets in our solar system.

3.4.2 Existing implementations for graphic cards

GPU implementations of the ray-shooting technique have been shown by Bate et al. (2010) and
Thompson et al. (2010) which is especially for large number of lenses a useful approach as the
deflections consist of homogeneous operations. The simulation of binary events cannot directly
exploit all these benefits, because the results of each deflection have to be stored temporarily and
transferred back to device memory. In addition, magnification maps must be kept in the device
memory, otherwise the data transfer of a typical grid of 4 K× 4 K points means moving ≈ 64 MB
from the device to host memory, i.e. the whole analysis needs to be carried out on the GPU. For a
light curve where ≈ 200 points characterize and particularly exclude features the simulation of a
whole magnification map is unnecessary and sophisticated optimization codes for fitting purposes
exist on CPUs which cannot be used by this approach. In this thesis, a pointwise approach has
been chosen, where the evaluation and calculation of the magnification for each single point is
parallelized on GPUs.

3.5 Comparison

From a numerical point of view, comparing contouring and ray-shooting methods is artificial
as in both cases the lens equation is evaluated for determining the magnification pattern and
by definition both approaches require the same number and the same kind of mathematical
evaluations for the lens equation. Both methods require an overhead of evaluations. A thorough
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comparison is hard to achieve as every magnification map quickly permits the evaluation of
arbitrary source tracks while inadequate magnification maps are wasting a substantial amount of
the parameter space especially during a fitting routine based on a random walk. By considering
the idealized approximations of the numerical uncertainties in Eq. 3.7 and Eq. 3.3 it is obvious
that the uncertainties of the ray-tracing model require a factor of π2/3 more evaluations to reach
the same precision.

3.5.1 Comparing Simulations

For testing the accuracy and precision of the GPU-contouring model a ray-tracing model was
evaluated for a source star with a radius of r? = 0.0025 θE. A single magnification map for a mass
ratio of q = 0.5 and a separation of d = 0.7 θE was created by using the ray-shooting method.
More than 106 rays were deflected per pixel; according to Eq. 3.8, the accuracy was better than
2·10−3. Indeed the standard deviation for the residuals µNh−µ2Nh with Nh = 500 and 2Nh = 1000
is 1.3 · 10−4 and thus one magnitude below the expected accuracy of the GPU-model.

In Fig. 3.11 relative deviation and the deviation divided by
√
µ are shown which is motivated

by Eq. 3.3. Statistically, the given histograms perfectly comply with the accuracy requirement
10−3. Nevertheless, deviations can occur for single points of a given light curve if the solutions
are located exactly on the line separating both polar search grids. For high magnifications the
number of segments is limited, due to the occurring high values in the integration of Eq. 3.1.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Lens plane in θE

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

|R
e
la

ti
v
e
 d

e
v
ia

ti
o
n
|

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Lens plane in θE

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

|D
e
v
ia

ti
o
n
/µ

1
/2

|

 0

 200

 400

 600

 800

 1000

 1200

-0.005  0  0.005

P
ro

b
a
b
ili

ty
 d

e
n
s
it
ie

s

Deviation

Absolute dev.
Abs. dev./µ

1/2

Rel. dev.

Figure 3.11: Absolute and relative deviations between ray-shooting and GPU-
contouring approach are shown for q = 0.5, d = 0.7 θE and r? = 0.0025 θE along with the
corresponding probability density histogram of the deviation.

3.5.2 Runtime comparison

It is not obvious what the runtime improvement of the contouring model really is, as the solution
is customized for graphic cards. Due to the possibility of rearranging the grid search after finding
a first solution, one could start smaller polar sub-grids for a refinement as shown in Fig. 3.12.
Moreover, most modern computers can be operated in a multithreading mode which can speed-up
calculations even on a single processor and, last but not least, optimized mathematical functions
are used on GPUs which are not directly accessible on CPUs, though architecture-specific compiler
options could avoid some losses. Keeping all these caveats in mind, the code can be compiled
as a forthright test for execution in a device-emulation mode taking into account some of the
aforementioned optimizations. On a test-system3 a speed-up by a factor of≈ 60 has been achieved.

3Intel® Pentium® 4 CPU 3.40GHz and GeForce™ 8600 GT
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Figure 3.12: An illustration of a possible optimization of the grid search in polar
coordinates for CPUs is shown for the major image. Instead of searching all angular
directions in parallel, these searches are carried out until the first search provides a root
and polar sub-grids integrate along the contour.

In addition, different versions of the given source code have been tested on three different
graphic cards for a test configuration. The comparison of the GPU-contouring code with existing
contouring implementations was based on the assumption that an integration with a relative
precision of 10−3 θE can be achieved. For the code presented by Dominik (2007) it is possible
to simulate 1000 points of a caustic crossing light curve with an accuracy of 5 · 10−3 on a CPU4

in less than 3 minutes, albeit depending on the magnification and the given parameters. The
refined GPU-contouring code requires 10 seconds on the same test-system at the cost of absolute
precision but with a dependence on the magnification at a given point.

Comparing the performance of the code on three different test systems (Table 3.1) reveals that
the refined solution runs particularly slow on standard GPUs due to the bandwidth limitations
between GPU and CPU, while it benefits strongly from the specifications of a dedicated system
where the initial analysis communicates quickly and accelerates later calculations without loosing
performance in first place.

4Intel® Pentium® 4 CPU 3.40GHz
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Testing CPU GPU Number of Runtime Runtime
environment processors unrefined (s) refined (s)

Laptop Intel® Core 2 Duo GeForce™ 16 10 20
2.00 GHz 9400 M

Desktop PC Intel® Pentium® 4 GeForce™ 32 2.0 9.1
3.40 GHz 8600 GT

Tesla system Intel® Xeon® TESLA™ 240 1.7 1.1
E5520 2.27 GHz C1060

Table 3.1: Runtime of the refined and the unrefined binary model for a light curve
consisting of 1000 points.

3.6 Conclusions

GPU-assisted models for simulating binary events are an inevitable result of the ongoing minia-
turization of computer hardware components. I have shown that a contouring code can run faster
on existing graphic cards with a predictable runtime of the simulation but by giving up absolute
accuracy for highly magnified source stars. A full double precision simulation can be used for
compensating inaccuracies.

There is still a list of improvements that can be made for improving the precision of the model:

• the refinement can be started between two adjacent solutions where an additional bracketing
can be carried out;

• for the first and last entry an additional sub-grid can be started;

• the required memory operations for refining the grid can be kept on the GPU and just the
number and positions of the solution can be send back to the host;

• limb darkening approximations can be implemented as a grid of magnifications for different
source star radii weighted according to a chosen limb darkening law; and

• if a crude solution structure has been found a ray-tracing scheme can be applied to refine
the solutions

The ongoing development of new graphic cards enabling double-precision calculations without
undermining the code acceleration is prepared to address issues which were not within the scope
of this thesis. For points of a light curve requiring high accuracy it is probably a convenient
approach to merge existing codes and switch between these solutions. Ways how to decide which
points can be neglected and which points have to be kept are discussed in the next chapters.
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Chapter 4

The Information Content of Light
Curves

Applying the methods of information theory to gravitational microlensing can be rewarding for
a variety of reasons. Even Einstein’s field equations can be motivated by using an information
theoretical approach, as has been shown by Frieden (2004). In the scope of this thesis, a different
aspect is addressed. Global telescope networks following-up ongoing anomalous microlensing
events have to decide how to distribute their observing time among different events. Naturally,
these networks want to follow a strategy for detecting and characterizing as many planetary events,
as well as possible. Other strategies are conceivable, such as the search for deviations from an
underlying Schwarzschild metric. Planning ongoing observations requires an understanding of the
worth of each data point with respect to the physically interesting parameters.

When the measurement is finished it can be helpful for the analysis to select the most impor-
tant data points for characterising the system and reducing the computational burden, but how
does one define what is important? All these complications, outlined by Dominik (2009), can
be addressed by modeling the information content of quantities of interest in event prioritization
systems and selecting the most valueable data points.

4.1 Shannon’s and Fisher’s definition of information

The term “information” expresses the gain in knowledge with respect to a certain quantity. Ev-
idently, information can be characterized in different ways depending on the context where it is
used. In the natural sciences, there are at least two convenient approaches for measuring and
characterizing the information content in a given system. One of these methods was introduced
by Shannon (1948) and is intended to measure the information content based on the frequency of
measured values. The corresponding information Iµ for such a frequency provides the information
content for each measurement µ as

Iµ = − log2(pµ), (4.1)

where pµ is the chance of observing the magnification µ. The unit of Shannon’s information
definition in Eq. 4.1 is given in bits, being a consequence of its original application to describe
human communication by means of telegraphy or digital computers. By choosing a basis of 10, the
information can be expressed in digits, which is appropriate regarding scientific measurements.
In Shannon’s theory, measuring a microlensing light curve can be interpreted as a communication
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process between nature and an observer, transmitting knowledge of the physical lensing properties
encoded as change of brightness. Because the total information content is calculated by assessing
each individual observation, i.e. neglecting that observations belong to one light curve, Shannon’s
entropy gives a global measure for the information content. Consequently, one can assess the
information content by studying the frequency of observable values or deduced quantities following
the maxime: the more frequent a value occurrs the less informative it is.

As an initial choice, the event magnification µ is considered as the observable quantity, which
is achievable as long as baseline and blending flux can be determined. If single brightness mea-
surements are regarded as carriers of information, prior information about the expected light
curve shape is discarded; especially our knowledge about the parameter values. The latter issue is
addressed by Fisher’s definition of information (Fisher, 1922), which is requires a model describing
an observed light curve. Given the likelihood L and a parameter vector pi of an observation, the
information content can be calculated according to the Fisher matrix:

Fi,j =

〈(
∂ log(L )

∂pi

)(
∂ log(L )

∂pj

)〉
. (4.2)

Assuming the measurement of some quantity subject to statistical and systematic fluctuation, it
is obvious that the more measurements are taken, the higher the total information content will
be. Furthermore considering the information instead of uncertainties is beneficial as the total
information is the simple sum of the information content of each point. The Fisher-matrix offers
a simple interpretation, using estimates of uncertainties obtained from light curve modeling:
the higher the determined uncertainties are, the less informative the observation is. For this
interpretation a connection has to be found between parameter uncertainties, correlations and the
Fishers matrix in Eq. 4.1. This relation is given by the Cramér-Rao inequality (Radhakrishna Rao,
1945),(Cramér, 1946) which provides a lower bound for the variance-covariance matrix C = Ci,j
assuming unbiased estimators:

C ≥ F−1, (4.3)

where the difference between these matrices is a non-negative definite matrix. The equality in
4.3 is valid if and only if the underlying likelihood is Gaussian. A derivation of Eq. 4.3 is given,
for instance, by Cover (2006). The inequality itself is a consequence of the Cauchy-Schwarz
inequality for the given definitions under the assumption of an unbiased estimator of the Fisher
matrix shown in Eq. 4.1.

4.2 Light Curves as language

Astronomical light curves are inspected by human observers to assess by eye if an ongoing mi-
crolensing event exhibits anomalous behaviour. In that sense, light curves can be compared to
sentences in a regular language where every brightness measurement is considered as a character.
The information content for any given magnification can be calculated according to the defini-
tion by Shannon (1948), where frequently occurring magnification values are supposed to be less
informative than less frequently ones. It is also possible to consider combinations of consecutive
measurements instead of single measurements, but it is pointless to use consecutive measure-
ments without including the time interval between these measurements. As the latter remark is
genuinely part of Fisher’s information definition, the effect of different sampling rates will be dis-
cussed there. The frequency of possible magnification values depends on the number of possible
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light curves. The corresponding probability density for the lens-source separation u is

P (u) = 2u, (4.4)

for a unifrom distribution of u0 and u ∈ [0, 1]. This can be translated to a distribution of
magnification values for perfectly covered light curves. For unblended events, it is possible to
determine directly the magnification and solve for the separation u. As each measurement is
done with a given finite accuracy ∆u, there is a limited number of accesible magnification values.
These magnification bins are the characters building the microlensing language. The probability
of detecting a value around u±∆u is given by

p(u) = 4∆uu (4.5)

and the corresponding information content is given by

IS(u) = − log2(∆uu)− 2 (4.6)

Each separation u corresponds to a distinct magnification µ according to

u(µ) =

√
2
−µ2 +

√
µ2 (µ2 − 1) + 1

µ2 − 1
(4.7)

with an adapted value for

∆u(µ,∆µ) = u2(µ+ ∆µ)− u1(µ−∆µ) (4.8)

and thus the value for each magnification can be obtained from

IS(µ) = − log2 (∆u (µ,∆µ)u (µ))− 2 (4.9)

Expressing Eq. 4.1 in digits instead of bits confirms the expected results that more significant
digits are available if the uncertainty in ∆µ stays the same. It also quantifies how observers select
ongoing events: by plotting and inspecting incoming light curves, human anomaly detectors are
guided by values or light curve shapes which are rare and thus carry high information in Shannon’s
sense. In Fig. 4.1 the information value of binned magnification measurements are shown. Due
to the a priori insight that information is an inverse uncertainty, it is clear that the information
content rises as soon as more magnification values can be discriminated. Furthermore, the finite
size affect limits the number of possible bins. Depending on the accuracy and the finite source
size, it is possible to estimate the expected information content for an ensemble of measurements.
The required relation is denoted as Shannon-entropy which can be used for the geometrically
constrained values of u ∈ [umin, 1]

H(u) = −
∫ +∞

−∞
p(u) log2 (p(u)) du, (4.10)

which integrates to

H(u) =
1

2

2 log(2)− 1

log(2)
≈ −0.279 (4.11)

39



40 CHAPTER 4. THE INFORMATION CONTENT OF LIGHT CURVES

 5

 10

 15

 20

 25

 30

 0  40  80  120  160  200
1.51

3.01

4.52

6.02

7.53

9.03

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t 
in

 b
it
s

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t 
in

 d
ig

it
s

Magnification

rs=2e-2 θE

rs=1.5e-2 θE

∆µ 0.050
∆µ 0.010
∆µ 0.005

 5

 10

 15

 20

 25

 30

 0  40  80  120  160  200
1.51

3.01

4.52

6.02

7.53

9.03

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t 
in

 b
it
s

In
fo

rm
a

ti
o

n
 c

o
n

te
n

t 
in

 d
ig

it
s

Magnification

rs=2e-2 θE

rs=1.5e-2 θE

Figure 4.1: For a point lens, the information content can be calculated analytically
according to Eq. 4.9 and is plotted for currently achievable accuracies (left). The number
of possible “states” is limited by the finite source effect, which is numerically simulated
for two different source star radii r? = 1.5 · 10−2, 2 · 10−2 (right).

but does not anticipate finite size effects and finite photometric accuracy. For this purpose it is
more convenient to use the information content depending on the sampling rate

H(u) = −
Nµ∑
i=0

4∆uu log2(4∆uu). (4.12)

As the maximal magnification for finite sources affects small separations u� 1, the magnification
can be approximated as µ ≈ 1/u and the maximal magnification due to the finite size effect can
be expanded in a series

√
1 + 4/r2

? ≈ 2/r?. Thus the number of accesible magnification bins is
given by

Nµ =
µmax − 1.0

2∆µ
≈ 2/r? − 1.0

2∆µ
(4.13)

The maximal achievable Shannon entropy for uniformly distributed magnification values is simply

Hmax ≈ log2(
2/r? − 1.0

2∆µ
), (4.14)

and grows for smaller source star radii and higher photometric accuracy as the number of dis-
tinguishably states increases. Due to the rareness of high magnification events, the expected
information is not sensitive to changes in the source star radius, as illustrated in Fig. 4.2.

4.2.1 Distribution of source stars

Motivated by the sensitivity of the magnification distribution, an exemplary study for a more
realistic distribution of source star radii can be made. For estimating the change of information
caused by the source star radius, a galactic model is required. In the following, the Besançon model
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Figure 4.2: The maximal Shannon entropy depending on Photometric accuracy and
source star radius illustrate the change of the information content of an ongoing mi-
crolensing event.

introduced by Robin et al. (2003) is applied for estimating the distribution of source star radii.
For generating a sample of stars at a given field of view, diffuse extinction is included as a relative
extinction value. Marshall et al. (2006) have introduced a three dimensional extinction distribu-
tion in the KS-band which can be used for inferring parameters in gravitational microlensing as
shown by Kerins et al. (2009). Unlike preceding studies, the Besançon model can also provide
a theoretical distribution of source star radii. For this purpose, a catalogue simulation of the
Besançon model is carried out in a 1x1 arcmin region in Baade’s window at l = 1.2◦, b = −2.7◦

corresponding to the fields where Sumi et al. (2006) analyzed the optical depth. For converting
the extinction AKS appropriately to the visual extinction, the relation AKS/AV = 0.062± 0.005,
determined by Nishiyama et al. (2008) for the OGLE-fields has been used. The total extinction
changes most rapidly in the first 4 kpc and remains constant afterwards. For the source star
distributions, a diffuse extinction with 0.4 mag kpc−1 is used. Estimates for the given field relying
on the alternative conversion AKS/AV = 0.1 would provide the commonly used visual extinction
of 0.3 mag kpc−1 for fields within the Galactic plane. The apparent magnitude limit in the I-band
I < 19 was chosen to match the limiting magnitude in the OGLE data.

The source star and lens star distributions for such a configuration were extracted by applying
a rejection sampling to the simulated catalog. Fig. 4.3 shows a consistency check for the requested
model with extinction rates of 0.3 and 0.4 mag kpc−1. The optical depth τ is calculated for all
lenses below a given value. For each lens in the catalog, all possible source stars were used for
obtaining an average Einstein radius per lens. Given a source star position, multiplying the
optical depth by the possible number of sources provides the number of observed source stars
per distance bin, which can be understood as probability function of the source star position.
Resampling from this distribution and drawing a lens star according to the probability of single
lenses leads to the distribution of lens stars. The resulting distributions agree with a typical lens
distance of 6.52+1.03

−0.98 kpc, as well as a typical source distance of 7.8+0.80
−1.91 kpc. The latter estimates

are given as mode values and their uncertainties as differences with respect to the 16 % and 84 %
quantiles. The average optical depth is τ̄ = 2.97± 1.80 · 10−6, which is consistent with the result
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Figure 4.3: Optical depth (left) and lens/source-star distributions depending on posi-
tion, according to a catalog simulation using the Besançon model in a 0.001 square degree
field pointing towards l = 1.2◦, b = −2.7◦

for 32 OGLE events: τ = 2.55+0.57
−0.4610−6 (Sumi et al., 2006).

The given Galactic model yields more predictions about the underlying source star structure.
Estimates for bolometric magnitude and effective temperature are part of the Besançon model
and according to the Stefan-Boltzmann law the stellar radius can be calculated. For this purpose,
a source-lens star pair is drawn from the simulated sample and converted to Einstein radii. In
the preceding consistency check, the optical depth was determined assuming a magnitude limit of
I < 19 but microlensing magnifies fainter stars beyond that limit. For estimating the distribution
of source star radii, it is necessary to accept fainter stars if their maximal magnification exceeds
the magnitude limit. Given that the minimal separations u0 are uniformly separated, a larger
number of source stars has to be taken into account. Since the simulation provides the Einstein
radius for an accepted object, the event rate depending on the Einstein time is not required for
obtaining the source star distribution. In Fig. 4.3 the expected number of source stars is shown
on a logarithmic scale, indicating that a log-normal distribution appropriately describes the data

P (r?) =
1√

2πσr?
e−(r?−〈r?〉)2/(2σ2

r?
), (4.15)

where the parameters and uncertainties can be determined with a least square fit and the corre-
sponding (logarithmic) coefficients are 〈r?〉 = −6.326+0.0053

−0.0057 and σr? = 1.0074+0.0049
−0.0049. This result

can be used for simulating finite source light curves but it also serves as prior distribution for
binary events. Note that the GPU-model presented in the preceding chapter gives results with
0.1 % accuracy for 〈r?〉 > −6.9. The probability density of the source star magnitude covers
the range of values observed by the OGLE survey (Udalski, 2003). The distribution of source
star radii is not a smooth function, as different population of stars contribute, typically main
sequence and giant stars, however the uncertainties in lens and source position combined with
the stellar mass function smooth out the distribution if they are expressed in units of θE. Finally,
the possibility of studying the source star distribution can be reassessed. Instead of providing
the change in information content, it is more relevant to estimate the number of measurements,
which may have been affected by finite source effects. For a source star radius of r? ≈ 5 · 10−3

the finite source light curves will start to deviate by more than 1 % for u < 0.0179 and thus for
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Figure 4.4: In the top row the unblended baseline magnitude of source stars is shown
(left) along with the source star radius expressed in R�. The lower row illustrates
the source star distribution in units of θE (left) and an approximation as lognormal-
distribution (right).

µ > 55.9. Assuming that finite source effects cannot be reproduced by rescaling the model light
curve, the distribution of relative deviations and its frequency can be studied. The results for the
given source star radius distribution and u < 0.02 are shown in Fig. 4.5, along with a modified
distribution with 〈r?〉 = −2.302. As before, the high number of small deviations are caused by
the transition from the PSPL dominated part of the light curve. The peak around 35 % is caused
by the local minimum of deviation where the source star radius starts to overlap the singularity.
The small fraction of higher deviations is mostly informative for discriminating different source
star radii distribution hypotheses. Due to the contamination by high magnification values by
binary events, the prospects of such a study are limited, given that high magnification events are
especially sensitive for binary events, such as planetary systems (Yoo et al., 2004).

4.2.2 Distribution of Super-Earth magnification patterns

As a final application, the distribution of relative deviations and its direct information content is
shown for different planetary magnification patterns. The effect of source star radii was considered

43



44 CHAPTER 4. THE INFORMATION CONTENT OF LIGHT CURVES

 0

 2

 4

 6

 8

 10

 12

 0  0.25  0.5  0.75  1

P
ro

b
a
b

ili
ty

 f
u

n
c
ti
o

n

Relative deviation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
u
m

u
la

ti
v
e

 p
ro

b
a
b

ili
ty

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.25  0.5  0.75  1

P
ro

b
a
b

ili
ty

 f
u

n
c
ti
o

n

Relative deviation

 0

 0.2

 0.4

 0.6

 0.8

 1

C
u
m

u
la

ti
v
e

 p
ro

b
a
b

ili
ty

 1

 2

 3

 4

 5

 6

 0  0.25  0.5  0.75  1
0.301

0.602

0.903

1.2

1.51

1.81

In
fo

rm
a
ti
o
n

 c
o
n

te
n

t 
in

 b
it
s

In
fo

rm
a

ti
o

n
 c

o
n

te
n
t 

in
 d

ig
it
s

Relative deviation

 1

 2

 3

 4

 5

 6

 0  0.25  0.5  0.75  1
0.301

0.602

0.903

1.2

1.51

1.81

In
fo

rm
a
ti
o
n

 c
o
n

te
n

t 
in

 b
it
s

In
fo

rm
a

ti
o

n
 c

o
n

te
n
t 

in
 d

ig
it
s

Relative deviation

Figure 4.5: The top row shows the distribution of relative deviation values for finite
source stars simulated according to Eq. 4.15 (left) and with 〈r?〉 = −2.302 (right). The
lower row illustrates the information content for the deviation considered as observable
quantity.

to be independent of the sampling rate, assuming that a good coverage of observations within 1 θE

will compensate these effects. Due to the given asymmetries and moreover the short perturbations,
it is necessary to include the effects of typical sampling intervals. In the following, sampling
intervals ∆t ∈ [15, 30, 60 min] are chosen for the simulation. In order to translate these to Einstein
radii, the Einstein time is simulated using a prior distribution obtained from the Besançon model.
The corresponding distribution is shown in Fig. 4.6 along with fits of a log-normal distribution
with and without skewness sk.

P (tE) =
2√

2πσtE
e
−(tE−〈tE〉)2/(2σ2

tE
)
, (4.16)

where the best fit parameters are summarized in Tab. 4.1. Undeniably the given models does
not fit the data as long as the whole parameter space is used for normalization. If long duration
binary events occur, they would exhibit parallax effects (Hardy & Walker, 1995). In addition, their
duration reduces the difficulty of properly characterizing the event. As a cut-off an Einstein-time
of 100 days is used, i.e. 15 % of all events are not considered. Assuming that future microlensing
surveys will be able to see 1000 microlensing events per year, only 15 anomalous events per year
are not taken into account.
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σ 〈tE〉 sktE χ2/d.o.f.

3.310+0.012
−0.013 1.1197+0.0088

−0.0088 0 (fixed) 14.3

1.625+0.029
−0.032 2.229+0.031

−0.027 1.712+0.082
−0.087 2.7

Table 4.1: Parameters for modeling the prior distribution of Einstein times.
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Figure 4.6: The distribution of Einstein times is modeled as log-normal distribution
with and without skewness.

Depending on the binary lens parameters, a PSPL fit can partly compensate and redistribute
the detectable deviation as illustrated in Fig. 4.7. Taking this into account, binary light curves
have been extracted from a grid of magnification patterns. The PSPL model was fitted to each
simulated binary light curves using the simplex method. If the fit did not converge, the intial
PSPL model for the given parameters was assumed to be correct. For each magnification map
5000 light curves have been simulated whereas 1.6 % of all fits did not converge. The finite source
star size was fixed at ≈ 6 · 10−4 which is in the range of typical values. According to the prior
estimate for the distribution in Fig. 4.4, 30 % of all source stars are below such a value. The
detection efficiency of planetary events is affected by finite source effects as giant source stars
smooth out distinct features, as shown by Bennett & Rhie (1996), but for main-sequence stars
the following estimates are correct.

The resulting median ∆χ2 values with variance one are shown in Fig. 4.8 for sampling rates of
15 and 30 min and maximal magnifications above and below ≈ 28.2. Assuming the baseline flux
can be determined with an accuracy of 5 %, all values in Fig. 4.8 are increased by a factor of 400.
For all light curves in the upper panel, the resulting ∆χ2 value is around 40 and should decrease
approximately linear with langer sampling intervals. The chance that these deviation occur by
accident is of the order 10−8. Demanding a significance level of 5 % leads to sampling intervals
of < 1 h. If the errorbars are only known up to an order of magnitude, the resulting sampling
interval for Super-Earths is ≈ 5 min. Obviously, high magnification events are not subject to
these issues, i.e. well sampled planetary events will be detected for a given main-sequence source
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responding source track and caustic structure (right). A PSPL-fit to the binary model
indicates the magnitude of the detectable deviation.

star (Griest & Safizadeh, 1998).

For the outlined scenario, the contribution of Earth-like planets to the detectable distribution
of ∆χ2 values and their corresponding information content can be calculated (Fig. 4.9). The
logarithmic representation is a convenient choice for providing a shape-invariant distribution that
can be shifted according to a given sampling rate and photometric accuracy. As expected, the
information content is higher for larger ∆χ2. In addition to the complete Super-Earth grid
distribution, the high-mass end is shown separately indicating a higher contribution of larger
deviations. Nevertheless the prospects of detecting such a deviation are small. The fraction of
log(∆χ2) exceeding a 5 % significance level can be described by power laws depending on the
requested frequency. Requesting that every fourth Super-Earth on the given grid is detected, the
sampling intervals are given as

∆t ≈ e−1.99σ−4.96
µ . (4.17)

Demanding a minimal time between two visits of ≈ 10 min, requires a photometric accuracy of
2.6 % where the latter is achievable for most events, but the former needs to rely on an intensified
coverage by follow-up teams.

4.3 Information driven sampling

After discussing the information content of observable parameters such as magnification and
∆χ2, the worth of customized sampling stragegies for determining the event parameters can be
addressed. Techniques for this purpose are commonly used for analyzing the likelihood sensitivity
to parameters, but frequently the theoretical worth of optimal sampling and observation planning
is not explicitly discussed. In order to obtain analytical estimates of the information content for
each observed data point, an underlying model needs to be defined for the parameters denoted as
pi. Based on a given model, the effect of changing one or more parameters can be studied for the
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Figure 4.8: The detectability of binary microlensing light curves is shown for u0 ∈ [0, 1]
(upper row) and u0 ∈ [0, 0.1] (lower row), with sampling rates of 15-20 min.

local Fisher (information) matrix as introduced in Eq. 4.1. This defintion can be interpretated in
the context of a given likelihood L as a first order part of the multivariate Taylor expansion of the
− log(L ) surface. Qualitatively, it is clear that the uncertainties are related to ∂ log(L )/∂pi, as a
higher rate of change in ∆χ2 demands smaller parameter intervals in order to reach the requested
significance level. For the best fit value, given as local minimum in χ2, a difficulty arises: the first
order terms vanish and thus the next order needs to be included, providing a modified version of
Fi,j

Fi,j =

〈(
∂2 log(L )

∂pi∂pj

)〉
, (4.18)

which is simply the curvature of the log(L ) surface. By assuming Gaussian noise, the first
order approximation Eq. 4.1 can provide a reasonable interpretation assuming that the best fit
parameters are subject to fluctuations. This follows from − log(L ) with normally distributed
noise which is related to the χ2 of N observations via

log(L ) =
1

2
χ2 =

1

2

N∑
k

(fmodel − fobs)
2

σ2
. (4.19)
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Figure 4.9: Distribution and information content of ∆χ2 values in the Super-Earth
regime.

If the model appropriately describes the data, the numerator is a random number, scaled accord-
ing to a given observation. Depending on the number of observations and the sampling of these
observations, the shape of the global minimum is altered as depicted in Fig. 4.10. The Fisher ma-
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Figure 4.10: The curvature change of the χ2-surface illustrates the change of the infor-
mation content of an ongoing microlensing event.

trix itself does not depend on a given observation, which is expressed by calculating the expected
value for random variables, ensuring the validity of the Cramér-Rao inequality (Frieden, 2004).

The observed value fobs in Eq. 4.19 does not explicitly depend on the parameters pi and the
corresponding derivative vanishes but, in practice, the determination of best estimators depends
on a given fit. For a complete measurement, different realizations should provide similar model
parameters, as the likelihood is calculated for several points which includes averaging over random
variables. Under this assumption, the Fisher information for a complete light curve can be
obtained independent of a given realization according to

Fi,j =

〈(
∂χ2

∂pi

)(
∂χ2

∂pj

)〉
(4.20)
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For the sake of clarity and without loss of generality, the contribution of a single measurement can
be calculated providing the desired quantity. The observation does not change when the model
parameters are altered and thus the derivative of the model remains

Fi,j =

〈
1

σ4

(
∂fmodel

∂pi
fmodel −

∂fmodel

∂pi
fobs

)(
∂fmodel

∂pj
fmodel −

∂fmodel

∂pj
fobs

)〉
(4.21)

Those terms exclusively depending on the model or on the observed value cancel each other out
as 〈fobs〉 = fmodel for Gaussian noise. Suprisingly, the result still depends on the expected value
of the variance and thus the Fisher information can be written as

Fi,j =
1

σ2

(
∂fmodel

∂pi

)(
∂fmodel

∂pj

)
. (4.22)

This expression is analytically accesible for PSPL events and thus the local information content
with respect to given parameters can be determined. Without the averaged fluctuation of different
realizations, the first derivatives would vanish for the maximum likelihood estimators.

4.3.1 Information content of PSPL models
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Figure 4.11: Information content according to the entries of the Fisher matrix normal-
ized on the interval [−1, 1] θE. Extremal points have been marked in the point lens light
curve.

To first order, the Fisher-matrix can be used to estimate the parameter variances of a fit
according to the Cramér-Rao inequality, where for the diagonal entries in Eq. 4.3 reduce to

σ2
pi ≥

1

Fi,i
(4.23)

The resulting parameter uncertainties underestimate the true error and have to be replaced by
uncertainties from Monte-Carlo simulations and a good error model if the parameter is biased
or if the likelihood deviates from a Gaussian distribution. However, the Cramér-Rao inequality
implies that the maximal achievable information content can be estimated. Fig. 4.11 shows the
entries of the Fisher information depending on the standard lensing parameters. Blending effects
are not shown, as the Fisher information of the blending flux is the same for every point, while
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the information content of the baseline flux directly follows the magnification. Even if a blending
ratio is introduced, the location of the maxima of each entry is not affected.

Due to the initially limited knowledge about the event parameters, it is difficult to give a
general recommendation, on how to proceed before reaching the maximum of a PSPL light curve.
As a first estimate, the first appearing maximum at

tos = t0 − tE

√√
u4

0 + 4u2
0 + 1− 1 (4.24)

can be used as starting point. In 99.7 % of all cases tos is covered when sampling is started for
magnifications µ > 1.625 assuming a uniform impact parameter u0. For achieving a sampling
rate offering the chance of covering local maxima, the given number of points have to be sampled
in steps of

∆tmin =
1

4

√√
u4

0 + 4u2
0 + 1− 1 (4.25)

in units of the Einstein radii. Using the prior distribution of Einstein times as input, this result
can be translated to a minimal sampling rate for a good characterization of events. In 99.7 %
of all cases, a cadence of ≈ 20 min is sufficient, but in 95.4 % of all cases the requirements are
achieved already for revisits every ≈ 5 h, justifying the success of existing surveys. The given
numbers are valid for PSPL models, but one can determine local maxima for every other desired
quantity, such as astrometric centroid shift or planetary detection zone equally well.
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Figure 4.12: Impact of information driven sampling of a light curve (left) on the error
ellipses (right) in contrast to randomized observations. The best points were chosen to
be local maxima of the Fisher matrix entries with an assumed uncertainty of 5 % for each
value µ.

Fig. 4.12 illustrates how the error ellipse for the parameter u0 and tE is changed for a set of
randomized data points and observations taken at the local maxima of the Fisher matrix entries.
If further points are supposed to be optimally placed, the pointwise description is insufficient,
as all entries need to be addressed at the same time. In addition, the advantage of determining
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the information locally turns into a disadvantage as the combined information content of a given
set of measurements alters all entries of the Fisher-matrix and makes further proposed points
dependend on the current state of observation. As there is no unique optimal sampling, different
optimality criteria need to be studied.

4.3.2 Optimality criteria

Optimality per se needs a reference quantifying in what sense optimality is regarded. In many re-
spects, gravitational microlensing studies can be subject to improvements. For instance, exposure
times and technical specifications can be chosen to increase the number of detected events, the
data reduction can be adapted to increase the signal-to-noise ratio of the light curve in crowded
fields, and finally observing and modeling can be accelerated, if data points do not contibute
to the parameter estimation. The latter approach can be applied for planning obervations and
defines how frequently a given target should be observed.

A comprehensive overview of different kinds of optimality criteria are given by Atkinson (1992)
and the nomenclature used here follows their definition, originally introduced and motivated by
Kiefer (1959). Most of the given approaches seek to reduce the area and/or principle components
of the generalized error ellipses as shown in Fig. 4.12. For practical purposes, the volume of the
np-dimensional error ellipsoid can be minimized by maximizing the determinant of the Fisher
matrix. This is a useful approach, as maximizing the determinant of Fi,j minimizes all entries of
the resulting covariance matrix due to the Cramer-Rao inequality and the relation

C = F−1 =
1

det(F)
FTadj , (4.26)

which is referred to as D-optimality. A further approach relies on maximizing the sum of the
eigenvalues λ of the inverse Fisher matrix

Aλ =

i=np∑
i=0

λ (4.27)

denoted as A-optimality. Major and minor axes of the error ellipses are given as eigenvalues of the
covariance matrix and consequently minimizing the eigenvalues of the covariance matrix reduces
the uncertainties. According to Eq. 4.26, this can be directly expressed for the Fisher matrix
itself, as the eigenvalues of F are proportional to the inverse eigenvalues of the covariance matrix.
Maximizing the trace of those also leads to an improvement. In principle, it is desirable to improve
all parameters, but if this is not achievable or does not lead to distinct recommendations, the
minimal eigenvalue of F can be maximized acting as limiting quantity. Further enhancements can
be made, which are not addressed here, but can be useful for an optimal discrimination between
models. Due to the Gaussian uncertainty propagation

σ2
f = DfCDf

T , (4.28)

where the vector Df carries the local derivatives of the model with respect to the parameters,
the given optimality criteria also increase the predictive power of the model. Note, however, that
the approach of locally optimizing a microlensing light curve cannot be achieved for D- and A-
optimal designs: the determinant of the Fisher matrix vanishes and the minmal eigenvalue is zero
- parameter independent. In the case of multiple measurements, this drawback can be overcome,
due to the additivity of information.
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Before showing examples of these criteria for µPSPL, the relevance for detecting extrasolar
planets can be illustrated, en passant. Keeping in mind that the information content has been
evaluated as sensitivity with respect to µPSPL, other functions characterizing the chance of de-
tecting planets and their dependance on event parameter can be studied. Horne et al. (2009)
have shown how follow-up teams can optimize their gain of detecting extrasolar planets. Their
prioritization relies on the calculation of detection zones in the lens plane. In the context of the
Shannon entropy, we have seen how the ∆χ2 is distributed for a variety of light curves in the
Super-Earth regime. Horne et al. (2009) have calculated ∆χ2 maps around given image positions
for an underlying PSPL model and calculate detection zone areas according to

Dza(µ) = (2µ+ 1)

(
µ− 1

µ+ 1

)1/2

(4.29)

defining a weighting factor g characterizing the value of each observation depending on the mass
ratio q, the exposure time for a signal-to-noise of one tsnr1 and a ∆χ2 threshold

g =
qDza(µ)√
tsnr1∆χ2

. (4.30)

Under the assumption of a given distribution of planets these expressions may change (e.g. Do-
minik et al. 2010). Whatever exact shape is chosen, they all rely on a good characterization of
the event parameters on the basis of an initial PSPL fit. Due to the uncertainties of the PSPL
fit, the resulting Fisher matrix can be used for estimating the impact on the detection zones.

Fig. 4.13 shows how the information content changes for given light curves, assuming the
underlying PSPL model is known. As expected, different methods indicate where the highest
change is expected to be. Notably A- and E-optimality contribute contradicting recommendations,
i.e. the minimal eigenvalue does not change at points, where the total standard deviation can
be reduced. The recommendations and maxima for different types of optimality overlap with
existing data points. D-optimality provides the most useful description of how to continue for
limited initial information, as it is minimizes all entries of the covariance matrix. As expected, it
recommends a good coverage at t0 with a smooth increase for given initial observations. For each
light curve different ending points were chosen implying that the position of maxima depends
on the given observations. This behaviour suggests a constructive technique for determining an
optimal sampling:

supposing the correctness of the given model and using an initial set of measurements, it can
be assumed that an observation will be taken at a proposed point and first of all at t = t0; In
a second step the position of new local maxima can be determined and assumed to be observed;
this process can be iterated until a certain number of points, ∆χ2 or thresholds for functions of
F are achieved. In Fig. 4.14 the first three steps of such an iteration are shown, indicating how
quickly the remaining points converge towards an uninformative evolution. Our first approach
of optimizing each matrix entry separately is not unreasonable. Precautions have to be made
exclusively for light curves where data has been taken exactly at t = t0, because the information
content for the parameters t0 and u0 becomes infinity. Finite exposure times and imperfect timing,
prevent this in practical cases.

4.3.3 Optimal sampling for unknown event parameters

In the rising part of the light curve, little is known about the event parameters. Nevertheless,
estimates for possible future tracks can be given based on the distribution of u0 and the current
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Figure 4.13: The expected change in information with respect to magnification and
planetary detection zone after detecting an increase of brightness is shown for three
different optimality criteria. The light curves were simulated with a noise of 5 % and
three different ending points were chosen.

magnification µ⇒ u0,max. As before, an uninformative uniform distribution is assumed neglecting
the limiting magnitude for a given field. The additional contribution of each data point cannot be
determined independent of the complete light curve obtained for a given sampling rate. Obviously,
it is better to spend more time on regions with a higher information content: if the sampling
intervals ∆t between two observations are chosen to be

∆t ∝ 1

I
. (4.31)

a better sampling of information carrying points is achieved. Here I represents the information
content for a chosen optimality criterion and underlying sampling rate, yielding a total observing
time of

tobs =

Nobs∑
i=1

∆t, (4.32)
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Figure 4.14: Iteratively improved sampling for D-optimal designs are shown for different
starting points (top left). The initial recommendation is to observe at t = t0 (top right).
Assuming this point has be observed leads to local maxima (lower left) and assuming the
two remaining maxima leads to the nearly flat change in information (lower right).

where the average sampling rate is supposed to be given as

tobs

Nobs
(4.33)

D-optimal designs are more appropriate for such an approach, as different units of the eigenvalues
contribute to the global scaling. In an A-optimal scenario, this would lead to differing weights for
each parameter. The example in Fig 4.15 shows how such a directly modulated sampling can be
realized for a given PSPL-light curve (the marginalized error ellipses are shown for the standard
parameters). The number of regions with higher sampling rate depends on the impact parameter
u0 and exhibits a more complicated sampling structure for low magnification events. Here one
sees now an information modulated approach has several advantages over the other approaches:
in contrast to a sampling which is exclusively driven by local maxima, potential gaps are filled
ensuring that possible anomalous deviations can be detected. An iterative scheme as shown
before, where the local information content is used, is numerically costly as all possible future
times have to be simulated and only when the maximal magnification is reached all the event
parameters provide better predictions for the remaining light curve. As long as the light curve is
incomplete, only typical values or constraints from expected values such as 〈u0〉uniform = u0,max/2
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and the mode for a given line of sight tE,mode(l, b) can be provided, which is 8.04 d for the earlier
mentioned OGLE field at l = 1.2◦, b = −2.7◦.
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Figure 4.15: Information modulated sampling for a PSPL-light curve with u0 =
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resulting marginalized error ellipses.

All these assumptions and issues lead to an interpolation formula for an optimized sampling.
The proposed sampling depends not only on the knowledge of the parameters, but also on the
definition when a microlensing event is supposed to be discovered. Given that the photometric
accuracy is at least around 3 %, required by the planet search, a detection of a microlensing
event is by defintion beyond 3σ and thus the magnification needs to exceed 1.1 which implies
t ∈ [t0 − 1.67 tE, t0 + 1.67 tE] or for a 1 % limit t ∈ [t0 − 2.5 tE, t0 + 2.5 tE]. For both scenarios,
different sampling strategies are required. Fig 4.16 illustrates how the proposed sampling recom-
mendations are affected by u0, photometric accuracy and the respective sampling interval. For low
magnification events, multiple local minima contribute equally to the total information content,
but for high magnification events a sampling rate increasing with magnification is dominant. The
symmetry of the light curve and the initial sampling modify the requested intensified sampling.
For practical purposes this function can be interpolated by using a bivariate polynomial

∆t =
tE
〈∆t〉

N∑
i=0

N−i∑
j=0

αi,ju
i
0

∣∣∣∣ t− t0tE

∣∣∣∣j , (4.34)
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where 44 parameters αi,j for N = 8 can be determined from a linear fit. Evidently the sampling
intervals have to be adapted in the course of a microlensing event due to the aforementioned
difficulties. The accuracy of the 8th order interpolant can be determined according to the scatter
of the residuals and in both cases it stays around 10−3tE, implying for typical events an optimal
placement up to 15 min. Comparing this with a 6th order approach with 27 parameters would
have degraded the accuracy by a factor of two.
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Figure 4.16: Modulated sampling recommendations depending on u0 and photometric
accuracy are shown along with a interpolant based on an 8th order bivariate polynomial.
The sampling intervals are calculated for an underlying equidistant sampling intervals of
〈∆t〉 = 0.01.

i,j 0 1 2 3 4 5 6 7 8
0 0.023 -0.135 -1.983 32.279 -139.874 301.582 -361.651 230.726 -60.752
1 1.930 -3.936 -19.410 77.872 -67.571 -6.974 18.019 -2.515 -
2 -6.400 31.357 -40.504 -71.108 150.293 -39.611 -3.755 - -
3 11.163 -49.238 102.163 -74.864 -65.369 19.693 - - -
4 -11.210 37.923 -36.865 85.079 1.726 - - - -
5 5.308 -25.936 -17.237 -18.593 - - - - -
6 0.448 14.355 8.097 - - - - - -
7 -1.440 -3.323 - - - - - - -
8 0.388 - - - - - - - -

Table 4.2: Interpolation parameters for 1 % photometric accuracy

56



4.4. CONCLUSIONS 57

i,j 0 1 2 3 4 5 6 7 8
0 0.028 -0.151 -3.014 38.339 -157.047 323.976 -364.446 212.509 -50.107
1 1.450 -2.932 -8.552 30.363 -20.458 -4.321 8.734 -3.573 -
2 -3.139 14.863 -14.880 -24.439 31.464 -5.598 1.191 - -
3 3.366 -17.083 29.738 -5.931 -12.949 0.531 - - -
4 -1.819 8.849 -13.522 9.429 2.021 - - - -
5 0.184 -3.071 0.973 -2.082 - - - - -
6 0.328 0.932 0.337 - - - - - -
7 -0.166 -0.151 - - - - - - -
8 0.025 - - - - - - - -

Table 4.3: Interpolation parameters for 3 % photometric accuracy

4.4 Conclusions

Information theory can provide interesting new results and different interpretations of existing
studies. The considerations being illustrated here, rely on a frequentist statistical approach and
prior information was exlusively introduced for creating possible parameter configurations. Nev-
ertheless, most methods can be extended for Bayesian statistics; local and global information
content can be modified by replacing frequency probabilities by posterior probabilities.

Both information theoretical approaches provide recommendations on how experiments should
be designed for studying planetary populations or any other scientific objective. Shannon’s in-
formation definition quantifies the worth of rarely occurring observables and motivates merging
all microlensing observations to a single experiment. Instead of using the results of single light
curve fits, ensembles of observable values based on the observed brightness change can be used.
This approach requires the construction and understanding of background distributions. Such
a description needs to include all potential explanations of anomalous events, imposing a major
challenge for the future. Furthermore, the underlying planetary population may lead to ambigous
results of uninformative results, as shown for the source star distribution. As PSPL model fits
can be achieved rather easily, the distribution of χ2 values seems to be a good criterion as devia-
tions may provide the desired insights. Such an approach has one major drawback: the errorbars
provided by using existing data reduction pipelines are not always convincing. Consequently, a
good simulation starts with simulating frames according to chosen Galactic models and for each
observing site. For different realizations of the observation, the total uncertainties of the observa-
tion and reduction could be deduced and applied to all preceding reductions. This would increase
the confidence in all results so far achieved and it is inevitable if microlensing is used as a unified,
global experiment.

The local information content, encoded as a Fisher matrix, leads to completely different re-
sults. It helps observers to improve planning their experiments in order to achieve more accurate
parameter estimates spending the same observing time. Nevertheless the effect is limited if the
true shape of the light curve is unknown. For PSPL events, a general strategy can be defined.
After sampling the maximal magnification the knowledge of parameters is dramatically increased,
as u0 and t0 are well known afterwards. The resulting recommendations require next points to be
taken based on the current state of the light curve. This is especially helpful as symmetries can
be exploited. An information driven sampling approach is a delicate system in the rising wing
of the light curve, as the initial parameter estimates are not known, smoothing out the distinct
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maxima of information content for different model parameters. By assuming typical event pa-
rameters an information modulated strategy was introduced, following a D-optimal design. This
approach is not only useful for predict the next light curve points but also for optimizing the
information about the planetary detection zone. In the theory of optimal experimental design,
more optimality criteria have been proposed (cf. Atkinson 1992) and wait for being applied to
gravitational microlensing.

Finally, the prospects for an optimal experimental design are lower as soon as survey tele-
scopes are able to provide a high number of event detections and a high observational cadence
simultaneously. The future application of optimally sampled light curve needs to be customized
for characterizing anomalous events, such as the prospects of studying extrasolar planets and
extrasolar moons Liebig & Wambsganss (2010).

A more relevant application for the Fisher-matrix can be achieved if it is used in the course
of fitting a binary microlensing event, as it provides a local estimate of the sensitivity of a model
with respect to model parameters. Consequently, it tells us which data points could temporarily
detected and thus compress the amount of data.
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Chapter 5

Data analysis techniques

In the previous chapter, I discussed how light curves should be sampled in order to increase the ac-
curacy of parameter estimates. In the following chapter, the practical implications of information
theory are used to efficiently fit models to real observations. One of the standard global optimiz-
ing techniques, namely Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) method, is
adapted for use with the GPU-assisted contouring model. The information content of a given light
curve can help to reduce the amount of data being processed. This reduction can be achieved by
processing a subset of the observed light curve or by using other information-driven compression
techniques.

5.1 Massive compression

As indicated by Shannon (1948), the consideration of information content can lead to a more
efficient communication process and thus to data compression. One historic example of such a
lossless compression is the Morse code, where frequently used characters consist of less bits. For
microlensing measurements, Fisher’s information approach can also be relevant. Heavens et al.
(2000) have shown how a massive lossless data compression of galaxy spectra can be achieved,
where lossless by definition means without loss of information and here without loss of Fisher
information. In principle this technique can be applied to gravitational microlensing for speeding
up the fitting process. The following adaptation follows their work.

Starting with a vector of flux measurements Fobs, weighting vectors wn are constructed for
each parameter p compressing the measurement vector to a single value. If a model with np
parameters describes the data well, the resulting compressed measurement consists of np data
points. Demanding that the resulting data points are uncorrelated leads to an orthogonalization
scheme for determining the compressed parameters:

wn =
dn −

∑np−1
i (cn ·wi)wi√

Fn,n −
∑np−1

i (cn ·wi)
2

(5.1)

where the vectors cn and dn are defined as

cn =
∂Fi
∂pn

(5.2)

dn =
1

σ2
i

∂Fi
∂pn

, (5.3)
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and the Fisher matrix entry Fn,n is computed as defined in Eq. 4.1. Eq. 5.1 can be qualitatively
understood as a weighting scheme where every observed data point is weighted according to its
sensitivity and accuracy. By consecutively constructing compression vectors for all parameters,
the contribution of already determined weights is adapted in order to conserve the Fisher matrix.

Eq. 5.1 is given in a less general form under the idealized assumption that consecutive obser-
vations are uncorrelated. For observations carried out in the same night, and thus with similar
weather and seeing conditions, this assumption will inevitably be violated. For fitting purposes,
the maximum likelihood fit can be determined as usual except for exchanging data set and model
by its compressed constituents

Fcmprs,p = wn · Fobs. (5.4)

The compression requires prior knowledge of the event parameters and Heavens et al. (2000) have
indicated that a fiducial model can be used for an initial estimate providing parameter estimates
which can be iteratively improved, that means by updating the compression and reanalyzing the
event.
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Figure 5.1: The potential of massive data compression is shown for a light curve simu-
lated on a randomized grid with a photometric accuracy of 2 % (upper left) as marginal-
ized − log(L ) surfaces for log10(u0) and tE (lower row). The best fit is indicated for
different modifications starting with the uncompressed χ2 surface.

The feasibility of implementing this approach for gravitational microlensing can be assessed
theoretically in the context of the outlined scheme. Originally, the compression technique was used
for analyzing galaxy spectra (Reichardt et al., 2001), which are usually well sampled and feature
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rich. As shown in the preceding chapter, the sampling clearly affects the Fisher-matrix which is
used for compressing the data in Eq. 5.1. Consequently, the compressed data points Fcmprs,p will
not remain uncorrelated. However, use of Fisher-matrices for estimating uncertainties requires
unbiased estimators. For a fixed fiducial model, used for compression this inevitably leads to
biased parameter estimates. Nevertheless, just the possibility of speeding up the initial part of
data-analysis justifies an implementation for a PSPL-model.

Fig. 5.1 illustrates a PSPL-model simulated for the parameters tE = 1 d, t0 = 100.0 d, u0 = 0.1
and a blend ratio g = FB/FS = 0.5. The χ2 surface is plotted for the parameters tE and u0 for a
fit using the whole data set and for a massively compressed version. The compression was tested
with a perfect fiducial model, but also with a fiducial model increasing all parameters by 20 %.
The resulting best fits are indicated: for a perfect model the 4 parameter fit provides reasonable
estimates but for a wrong compression iterations are required.

In principle, this technique can also be applied to binary microlensing events. The advantage of
using more parameters is in general a higher information content. Nevertheless, the computation
of the compression requires a complete model for a given light curve, the first derivatives with
respect to all parameters and, last but not least, a good fiducial model. The latter issue is the most
delicate one, as the parameter space is too large to be treated with a single fiducial model. Fig. 5.1
also gives an idea what happens if different weighting vectors are used. Preparing subspaces in
parameter space with each compressed in a different way, is one option. Another difficulty for
such an endeavor arises, as the compression depends on the sampling of a light curve. A pre-
calculated grid of compressed models requires that unevenly sampled observations are rebinned
and interpolated to match the reference model. Such an approach increases the uncertainty
per data point and an overall lossless accuracy is not longer achievable. Finally, a standard
technique is needed for determining the accurate solution and the corresponding uncertainties.
The given requirements motivate following different ways of directly integrating an information
driven compression in existing standard approaches.

5.2 Metropolis Hastings Markov Chain Monte Carlo

Different optimization algorithms are used for fitting single and binary lens microlensing events,
one example is the simplex technique (Nelder & Mead, 1965): a simplex in n dimensions is a gen-
eralized triangle probing the parameter by modifying the vertices of the simplex, i.e. substituting
the worst vertices. Alternatively, one can use the Levenberg-Marquardt algorithm (Levenberg,
1944; Marquardt, 1963) which is a modified version of Newton’s method with additional step size
control. Both techniques can be applied to the analysis of microlensing events, but require addi-
tional modifications to avoid getting stuck in local minima. The Levenberg-Marquardt algorithm
demands accurate first derivatives, which is hard to guarantee for the GPU-contouring model as
long as single precision GPUs are used.

I have chosen to use another common technique, namely the Metropolis Hastings Markov
Chain Monte Carlo (MHMCMC) algorithm. In the seminal paper by Metropolis et al. (1953),
it was shown how the equation of state can be efficiently calculated by carrying out a random
walk and accepting new steps with a defined transitional probability, i.e. better steps are always
accepted and worse steps are accepteed according to the ratio of the system probability, in the
original case the Boltzmann probability. The next proposed step in the random walk exclusively
relies on the current state of the system and thus satisfies the Markov property, that is, a series
of steps is a Markov chain. Hastings (1970) has generalized the original sampling approach for
application to a wider range of numerical problems. The transitional probability can be calculated
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for other processes such as the likelihood ratio in a fitting scheme. For this purpose, random steps
are taken in the parameter space and accepted if the likelihood is increased. The likelihood L (y|p)
(Fisher, 1922), for a given model is the probability of the parameter configuration p for any given
observation or for a larger data set

L (y|p) =

N∏
i=0

P(y|p), (5.5)

and depending on the probability density P(y|p) of each observation y. This technique is fre-
quently applied for simulating the posterior probability function according to Bayes theorem

P (p|y) =
L (y|p)P(p)

P(y)
, (5.6)

which is relevant for inferring estimates including prior knowledge in the form of a distribution
P(p). In data analysis, the probability L (y|p) represents the likelihood of an observation with
model parameters p. The normalization constant P(y) needs to be determined properly for
estimating probabilities, but can be neglected if exclusively the distribution of parameters is of
interest.

In many practical cases, the problem reduces to the special case of a Gaussian likelihood
function. The transitional probability in the MHMCMC scheme then reads

Ptransition = e−∆χ2/2. (5.7)

Compared with other fitting techniques, the MHMCMC approach can be effective at avoiding
local minima, though at the price of computationally intensive sampling. In practice, the basic
MHMCMC approach needs further modification for being used as fitting algorithm. Depending
on the initial parameter estimates, the proposed steps may not match the scale of the current
part of the parameter space, and as a consequence, inefficiently sample the parameter space. In
order to compensate for such an behavior, the scale of the proposed steps can be increased to
reach an empirical efficiency of around 20 %, i.e. every fifth step is accepted. Depending on
the implementation and the given problem, a different range of values can be useful. Caldwell
et al. (2009), for instance, have tried to keep the efficiency between 10 and 50 %. For the GPU-
computing part, too small proposed steps have to be avoided, leading to pseudo-efficient sampling:
Markov chains can reach formal convergence not only because of reaching the desired distribution
but also because of parameter ranges where the walk only probes the numerical inaccuracies.
For this purpose the sampling can be increased by a factor of 10 whenever the relative step size
σ/p drops below a defined threshold, such as 10−4 · pi, ensuring that 2-3 digits of the step size
remain significant. This correction is especially relevant when a small number of data points is
considered.

Whenever an efficient sampling has been reached, the proposal distribution needs to be
adapted to match the structure of the distribution being analyzed. For Gaussian proposal func-
tions, the standard deviation can be used for updating the proposal function in each dimension.
Such an update can be done after a defined number of steps or with running updates the standard
deviation and efficiency control. I implemented the latter approach in order to ensure that local
minima can be left as soon as a better solution is found. The efficiency control supports this
effort, as inadequate sampling is assessed after each step. One disadvantage of running updates
can be ameliorated by the choice of proposal function shape: instead of using marginalized Gaus-
sians for each dimension, a multivariate Gaussian proposal function helps to avoid wasting steps,
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as correlations are included and better follow non-symmetric structures in the likelihood (e.g.
Doran & Müller 2004). This implies that a principal component analysis needs to be done for
every step, counteracting the GPU-acceleration effect, as the Graphics processor then has to wait
for the CPU to propose the next MCMC step.

Another important aspect for configuring the MHMCMC is the question when the chain is
sampling from a stationary distribution and thus when the proposal function can be fixed. A
technique for evaluating the convergence of a chain was developed by Gelman & Rubin (1992):
instead of considering single chains, the behavior of several chains in parallel is evaluated. The
variance, of each parameter p within one of the chains W and the variance between all chains B
can be compared using the statistic

Rp =
n− 1

n
Wp +

1

n
Bp, (5.8)

where R ≈ 1 in case of convergence. The complete run is considered to be converged if all
parameters provide R-values below a given threshold, usually R < 1.2 Doran & Müller (2004). In
addition, it is important to ensure that the sampling efficiency stays around the aforementioned
empirical limits, where the sampling efficiency is defined as the relative number of accepted steps.
In the implementation for the GPU-model, the efficiency was kept between 15 and 35 % and
running updates were based on the last 50 steps. The scale factor, rescaling all step sizes if the
sampling is out of the efficiency limits, was chosen between 21/50 and 31/50 .

The effect of the single precision limitation is apparent in the χ2-value

χ2 =
N∑
k

(∆f + ∆fnum)2

σ2
obs

, (5.9)

which is used in the fitting process. In addition to the random residual ∆f a random fluctuation
∆fnum leads to a systematic broadening which is for two Gaussian distributed random numbers

σeff =
√
σ2

num + σ2
obs, (5.10)

reducing the effect of the accuracy limit. For a given constant uncertainty σobs the effect on the
∆χ2 can be assessed. Assuming the number of data points n is much greater than the number of
parameters np, the change of χ2 per degree of freedom dof yields

〈
∆χ2

〉
/dof =

1

σ2
obs

(
〈2∆fσobs∆fnum〉+

〈
∆f2

num

〉)
=
σ2

num

σ2
obs

. (5.11)

This equation summarizes why it is usually demanded that a numerical model needs to be at least
one order of magnitude more accurate than the measurement itself, implying the resulting χ2

red is
accurate up to 1 %. The first term in Eq. 5.11 does not seem to contribute to the result but its
fluctuation needs to be determined to define a safe limit for rejecting the effect of an inaccurate
model. By calculating the variance, Eq. 5.11 reads

〈
∆χ2

〉
/dof =

σ2
num

σ2
obs

± 2σobsσnum (5.12)

The worst case for a 3σ-level is a change in χ2 by σ2
num/σ

2
obs + 6σobsσnum. Considering again

a numerical accuracy one magnitude below the measurement implies a relative contribution of
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less than 1 % to the ∆χ2, which is negligible in most practical cases. A typical example with
σobs = 0.01 and σnum = 0.001 leads to an additional ∆χ2 ≈ 15±0.03 for a light curve consisting of
≈ 1500 points, which is relevant for the case of confirming the presence of a planetary perturbation.
Due to the model inaccuracy, of the order of one data point is effectively discarded and the best
fit is still achieved, but with a shifted χ2.

5.3 Initial fit

Before discussing other ways of exploiting the Fisher information in fitting techniques, a simulated
light curve is considered. The parameters were chosen in a way that difficulties will be encountered;
more precisely, these difficulties are caused by symmetries, parameter degeneracies and imperfect
coverage. In principle, sufficiently long MHMCMC chains should be able to reach the best fit, as
the random walk can leave local maxima. However, depending on the structure of the likelihood
function, many local distributions need be probed before the global minimum is reached.

An initial grid with multiple chains can be helpful for getting an understanding where more
chains are needed, due to the fluctuations of the likelihood. The grid search comprises three
parameters which are especially affected by fluctuations, namely q, d and ϕ (e.g. Dong et al.
2009). For each grid point the remaining PSPL parameters are fitted, initially with a higher
source star radius and thus with reduced bookkeeping for GPUs. The resulting marginalized χ2

surface for q,d is shown in Fig. 5.2 along with the initial configuration. The final fit, resulting
from MHMCMC chains that were started at the best grid points, and the best fit in a least square
sense are also shown. For this exemplary fit, no convergence was achieved even for the best fit
result and thus no credible uncertainties can be deduced. The reason why the correct answer was
not found is obvious when one considers the sampled light curve and the best fit as shown in the
right panel of Fig. 5.2: a degenerate solution was found due to the poor coverage with respect to
information carrying parts of the light curve leading to the parameters shown in Tab. 5.1. It is
still remarkable that some parameters, particularly q and tE serving as indication of the masses
M1,M2, do provide a reasonable answer. In total 200 data points have been simulated.

The situation can be improved by using the aforementioned lower limits for the variances of
the proposal function, but at the end, a good initial guess of parameters is needed. If a PSPL
model can be fit to the light curve, parameters like t0 can be accurately determined in advance.
Nevertheless, a limited coverage can lead to wrong results, even with a perfectly sampled light
curve and converged chains. Binning or rejecting data points in a microlensing light curve is a
risky endeavor as long as the parts of the light curve carrying information are affected, leading
to an approach for selecting the right points at runtime.

Model u0 tE t0 ϕ q d r?
Underlying model 0.1 10.0 100.0 135.0 0.5 0.5 0.0018

Best fit 0.07713 11.2680 100.97322 253.57241 0.50180 0.51468 0.00102

Table 5.1: Example fit for a simulated binary light curve.
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Figure 5.2: χ2 surface for a simulated binary light curve (left) and the corresponding
best fit along with the initial model.

5.4 Information-accelerated MHMCMC

In most practical cases, featureless parts of the light curve leave the likelihood unchanged when
parameters are changed. As the simulation of each point of the light curve increases computation
time, the best fit can be achieved more quickly if parts of the light curve can be neglected. The
initial selection of relevant data points seems to be the easiest way for reducing the computational
burden, but this may exclude important data points depending on the given state of a light curve.
Before introducing s more flexible strategy, the calculation of the information content in a binary
model needs to be discussed.

5.4.1 Information content in binary models

Recalling the findings of chapter 4, a considerable number of first derivatives have to be determined
in order to compute the information content. Seven parameters particularly need to be addressed
for fitting purposes. The parameters for such a standard binary event were introduced in chapter 2:
their meaning is summarized in Fig. 5.3 for the simple case of a linear source star track. The
source track itself requires three parameters: orientation ϕ; impact parameter u0; time of closest
approach of the center of mass t0; and the source star radius in units of the Einstein radius r?.
The minimal separation u0 is given relative to the center of mass as well, which is defined to be
the origin of the source plane. This definition is kept throughout this work, providing a good
agreement with a PSPL model as long as the track is sufficiently far away from a caustic. A
plethora of other choices can be found in the literature. All parameters are necessary for inferring
the physical properties of the system, because parameter degeneracies arise due to an insufficient
sampling rate, symmetries in a given light curve or symmetries in the lens equation itself. The
masses M1 and M2 are not directly accessible, but their mass ratio q and the angular separation
d are, because they correspond to a distinct caustic curve for a perfectly sampled light curve.

Analytically, the maximal information content for a binary model with a given source track
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Source track

2M0u

Caustic

Critical curve

Center of mass

r * 

M

ϕ

1

Figure 5.3: Parameter definition for a standard binary microlensing event.

parameterization µ (β) can be obtained from

Fi,j = ((∇βµ) · (∂piβ)) ·
(
(∇βµ) ·

(
∂pjβ

))
= max. (5.13)

Neglecting the effect of mixed terms, the information content follows the gradient of the magnifica-
tion pattern. In general, mixed terms with potentially negative contributions cannot be neglected
and thus numerical derivatives are inevitably neede for calculating the total information content.

Given that the accuracy of the GPU-model is limited by a numerical uncertainty of ≈ 0.1 %,
the step size for each numerical evaluation must be chosen to balance numerical inaccuracy and
the discretization error. The optimal step size for each parameter p is (Press, 1994, p. 187.)

∆p ≈
(
10−3

)1/3
p. (5.14)

Based on this estimate, numerical derivatives for determining the information content are cal-
culated for each parameter. The total information content is calculated as volume of the error
ellipsoid, based on the product of eigenvalues which is determined according to Galassi et al.
(2009). The resulting vector of information serves as a sorting key where a predefined fraction
of data points will be used for the fit. The total information content of a binary light curve is
shown in Fig. 5.4 and, as expected, there is an increase in information close to the magnification
maxima, but there are also points in the wings of the light curve carrying high information. At
these positions the first derivatives predict changes caused by the morphology of the parameter
space. Finally it is remarkable that the best initial fit and the original parameter configuration
provide similar results. Keeping in mind that the caustic structure for a degenerate solution
is similar compared to the true configuration, some gradients have to be similar as well. The
overhead caused by calculating the derivative information selection can be minimized, but the
Levenberg-Marquardt technique, for instance, requires complete derivatives for each step.
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Figure 5.4: Information content Fi,i for a given binary light curve (left) calculated for
the best fit and the initially chosen parameter combination.

Using different subsets also implies that different likelihoods must be optimized. Whenever
a new subset is selected, a new Markov Chain needs to be started. The results of the preceding
chains do not need to be discarded; they contribute to the starting point and the initial proposal
function. By definition, the new subset will react more sensitively to the proposed steps. Despite
an initially lower likelihood, the chains can reach the global minimum quicker not only due to the
smaller data set but also due to the ability of leaving local minima more quickly. A lower number
of points leads to a less informative likelihood where the samples will provide larger steps. In
addition, efforts avoiding pseudo-convergences due to too small steps are reduced.

For the test configuration shown in Tab. 5.1, the chains have been started close to the desired
solution. In Fig. 5.5 the reduced χ2 is shown for different ways of updating the chain and two
different underlying light curves. The selected subset always comprises 100 data points while the
corresponding complete data set consists of 200 and 500 data points. The regular MHMCMC is
illustrated with and without lower limit for the variance of the proposal function preventing the
chain to run into a deadlock. The exemplary chains illustrate that a variance control descends
more quickly to the desired solution. Fig. 5.5 also reveals one of the drawbacks of the method:
At the transition to a new chain, the ∆χ2 is reset to the new starting point and thus neglecting
the last achieved minimum. By keeping the ∆χ2 value, the convergence rate can be enhanced
because jumping to a new peak will be prevented. A disadvantage that may become evident is
the adaptation of the proposal function, because proposed steps will be less frequently accepted,
especially if the likelihood is dramatically changed by the new subset.

5.5 Conclusions

Compression techniques based on the Fisher information have been introduced for the use with
microlensing models. The most radical compression reduces the light curve to a data set with
np points. A PSPL model was studied in the context of this approach and illustrated two major
issues when using a pre-calculated grid of compressed binary curves: the light curve needs to be
binned and interpolated to match the sampling rate of the compressed binary model. In addition
the success of the compression depends on the fiducial model used for compressing all models.
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Figure 5.5: Reduced χ2 for a MHMCMC accelerated by using an information-driven
selection of subsets.

An approach that cannot be fulfilled easily. Alternatively, a less radical rejection of data points
was developed and tested.

The alternative approach relies on the MHMCMC technique for fitting binary events. After
fitting a PSPL model, a grid of short chains is started without formally checking the convergence.
The final search for the best solution can be achieved by starting chains at the highest local minima
in the initial search. Two complications were identified, both of them related to the finite accuracy
of the model. The possibility of reaching a pseudo-convergence for parameter configurations, that
are limited by numerical effects needs to be compensated for to avoid running in a deadlock. In
addition the likelihood will be systematically underestimated due to the inaccuracy of the model.
The result of a MHMCMC approach is a distribution of samples drawn from the parametere space
under consideration. Histograms deduced from these samples can be marginalized and depending
on the marginalization will provide different modal values also reflecting numerical limitations of
the model.

The new idea tested in the context of using MHMCMC for searching the global optimum,
is selecting the information carrying points for the current state of the search and continuing to
fit the corresponding subset of the light curve. It was shown for a typical example, that such a
technique can reach the minimum of the reduced χ2 faster and with less computational efforts. Due
to the difficulties of determining the convergence, regular chains are required for finally fulfilling
convergence criteria. One relevant aspect for further studies, is the optimal configuration of an
information driven fitting, which was not quantitatively accomplished in the scope of this thesis.
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Chapter 6

Modeling observations

After discussing the prerequisites for interpreting data, such as modeling, optimal sampling and
fitting techniques, I discuss the observations carried out in the scope of this thesis. This obser-
vational part describes follow-up observations using the MONET/North telescope in Texas, the
DANISH 1.54m telescope in Chile and the SALT telescope in South Africa. The Follow-up of
microlensing events is a highly collaborative effort; the taking and re-reduction of data as well
as its analysis is usually carried out by different groups and individuals. Consequently, not all
observed events are discussed in detail, as they are part of ongoing research. Here the complete
analysis of the microlensing event MOA 2010-BLG-406, observed at the the DANISH 1.54m will
be shown which was analyzed using the GPU-contouring model. A second analysis for the event
MOA 2010-BLG-477, also observed with the MONET/North telescope, is shown in the follow-
ing chapter. The latter observation can be used for estimating the expected capabilities of the
MONET telescopes for future observations.

6.1 Crowded field photometry

For detecting and characterizing anomalous microlensing events, i.e. events which are not well
described by a PSPL model, feedback strategies like those as shown in Fig. 7.2 have been estab-
lished. The basic idea is to observe microlensing events and to report brightness measurements
as quickly as possible to a central repository accessible to all other observers (Dominik et al.
2008). Incoming data points can be processed and potential deviations can be used for triggering
additional observations (Dominik et al. 2007). According to the assessment of this initial analysis,
further observations can be prioritized (Horne et al. 2009). Clearly, the feedback system depends
crucially on the processing time, given that planetary or other low-mass perturbations are of short
duration. For this purpose an adequate data reduction system needs to be prepared.

A series of astronomical images carries the information for a microlensing event, accessible as
the brightness variation of a single object in a potentially crowded field. In order to extract the
corresponding light curve, one has to address the issue of blending by other stars. The optimal
image subtraction technique introduced by Alard & Lupton (1998) has become one of the standard
approaches for this analysis. As microlensing light curves consist of observations covering several
nights, the observing conditions between different images can differ substantially. In order to
reduce the effect of blending, frames can be subtracted, demanding some preparatory work.

The basic idea of optimal image subtraction pipelines, which are predominantly used for
crowded field photometry, is to construct a high quality reference frame based on parameters like
seeing and background level. Afterwards a spatially varying convolution kernel (Alard 2000) is
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Figure 6.1: Follow-up scheme for gravitational microlensing.

determined and applied to each data-frame, thereby compensating for different observing condi-
tions, and exposure times. In addition, potential gradients on each frame can be compensated
for bivariate polynomial. In short, the difference image D is constructed from an image I to be
analyzed and the reference image R according to

D = I − (K ⊗R) +B, (6.1)

where the kernel K consists of a superposition of modulated Gaussian basis functions as chosen
in the original approach (Alard & Lupton 1998). A more general and flexible approach was
introduced by Bramich (2008), who considered each pixel of the kernel to be subject to the
adaptation which is done in a least square sense for the residuals constituting each difference
frame. The final subtraction effectively cancels out stars with constant brightness while variable
stars remain. The final light curve is obtained by fitting a model of the Point-Spread-Function
(PSF) to the residing PSF of the variable object on each difference frame. An example for such a
subtraction can be seen in Fig. 6.2 showing MONET/North data of the event MOA 2010-BLG-
406.

Most pipelines comprise a similar number of preparatory steps which shall be described in
brief. Here it is assumed that all frames are taken with a charged coupled device (CCD) and
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Figure 6.2: Example of a difference image (right) observed from the DANISH 1.54m
telescope. An aligned, resampled and convolved version of the image (middle) is sub-
tracted from the reference frame (left). The residual PSF at the center is caused by the
microlensing event MOA 2010-BLG-406.

calibrated using at least bias and flat-field frames. The latter corrects for vignetting and pixel-
to-pixel variations caused by dust on filters and the detector itself. Images taken with CCDs
having limited cooling capabilities requiring the subtraction of a dark current, which is generated
by thermal electrons. Depending on the cooling capabilities, dark frames taken with closed
shutters can improve the image quality. The liquid nitrogen cooling of the Danish Faint Object
Spectrograph and Camera (DFOSC) is sufficient for providing good results without dark frame
correction (TCCD ≈ −120◦C), while the Peltier cooled Apogee Alta E47+ CCD, which was used
by MONET/North, demands a dark correction (TCCD ≈ −20◦C).

Depending on the telescope, the pixel position of an object can differ due to pointing inac-
curacies. In order to avoid subtracting and determining the convolution kernel with a varying
amount of underlying stars, images are cropped to common subframes. The chosen technique for
aligning the frames is already affected by the demanded properties of the resulting light curve.
In this context especially two characteristics of the resulting frame are changed, namely flux con-
servation, needed for estimating the uncertainties using the camera gain and correlated noise in
neighboring pixels (the latter is particularly discussed by Albrow et al. (2009). In the context of
this work, two different pipelines are applied for re-reducing the frames: one pipeline (DIAPL) is
based on the difference imaging package introduced by Wozniak (2000) relying on a kernel con-
sisting of polynomial modulated Gaussian basis functions; in the second approach (DanDIA), the
Gaussians in the basis function are replaced by δ-peaks creating a numerical kernel at every given
position, by Bramich (2008). Both approaches can be time consuming, but the latter is especially
so, so the reduction to 256× 256 pixel subframes is also essential for reducing the computational
burden and providing quick results.

6.2 Data reduction pipeline

For a real-time reduction of binary events the optimal image subtraction packages need to be
integrated in an automatic system that takes care of the calibration and subsequent calls of
all packages for reducing the data. For this purpose the DIAPL package based on the work of
(Wozniak 2000) was chosen. Despite the advantages of the numerical kernel approach, quick
re-reductions of a real-time light curve update can be achieved more quickly with the modulated

71



72 CHAPTER 6. MODELING OBSERVATIONS

External packages

(DIAPL)

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 4950  4975  5000  5025  5050  5075

D
if
fe

re
n

c
e

 f
lu

x

Time in JD-2450000

MOA 2009-BLG-217
(χPSF-fit

2
/px <1.5)

WWW

WWW

Determine Seeing and Background level

Check for an existing reduction

PSF−Photometry

Resample frames (update reference)

Add reference flux

If reference frame exists

Crop aligned subframe

Apply existing calibration data

Detect microlensing event

Image subtraction

Figure 6.3: The data flow in the implemented reduction pipeline is shown starting from
an web-based prioritization tool and ending with the submission of new data points.

Gaussian kernel. Data taken with the MONET/North telescope was processed remotely, as data
access is limited due to its location: the Galactic Bulge is only visible for 1-2 hours per night at
≈ 2 airmasses, i.e. of the order 50 frames need to be processed. The MONET/South telescope
will contribute more observations due to better visibility and thus shorter exposure times. The
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automatic data reduction system for MONET/North was available in 2010 for a first test run.
The data flow is depicted in Fig. 6.3, showing how the exemplary event MOA 2009-BLG-217 was
processed.

As indicated in the illustration, the essential routines for subtracting the images were taken
from the DIAPL package. For the use in an automated realtime reduction, they had to be arranged
differently in contrast to the provided framework. The initial registration and resampling of frames
does not have to be repeated for every incoming frame and is kept. If the initial seeing estimate
cannot be made, e.g. because of a cloudy night, the entry is immediately removed from the list and
cannot lead to numerical difficulties in the subtraction process. The nightly image subtraction is
also performed for each single frame as long as the reference is still close to the best seeing frame.
Following this approach, a brightness measurement can be reported within ≈ 1 min. Updates of
all reference frames after a night with significantly improved seeing conditions, are carried out
after daybreak.
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Figure 6.4: The χ2/px obtained from the best fit of the PSF position is shown for each
point of the light curve (left). The grid of the total least squares per pixel for all points
of the reported light curve are shown along with a paraboloid fit to the surface (right).

Test observations have lead to insights for future improvements of the data reduction and
shall be summarized in the order of their appearance. Usually, the best seeing frames are selected
for the final-data reduction but, due to possible differing background gradients, the safer option
is to use all the frames of the best seeing night. A completely empirical selection can be done
by testing different combinations and minimizing the sum of the least squares of all difference
frames, which can lead to optimized sorting keys1. In a similar way, the number and size of
Gaussian components can be optimized. For very inhomogeneous observing conditions it can be
beneficial to consider two parameter configurations of the pipeline as independent light curves
due to the different blending ratio. Fig 6.4 show how the photometry can be enhanced if the PSF
is relocated. Resampling frames for compensating image distortions may cause correlations, but
this approach is kept for Gaussian basis functions as the kernel is shifted on a pixel grid contrary
to the numerical kernel approach where resampling can be switched off.

The initial position of the microlensing events does not necessarily lead to the correct pixel
coordinates of the residual PSF on the difference frames (Albrow et al. 2009). Nevertheless, all

1Corresponding tests were done in the Bachelor’s thesis by Andreas Boesch: Optimierung einer Reduktionspi-
peline für Mikrogravitationslinsenereignisse (2010)
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existing pipelines report the χ2/px giving an insight how to center the PSF model. Given a grid
of assumed PSF positions, the total least squares for all PSF-fits can be determined and indicates
clearly where to put it; otherwise the light curve quality will deteriorate quickly. Assuming the
fitting noise given by the χ2 is independent of the photon noise, the contribution to the reported
uncertainty is on average 0.2 % and in the worst PSF-fit 5 %, which is still negligible. If the PSF
position is not accurate to one pixel, the relative contribution increases by an order of magnitude,
which is alarming and must be included in the uncertainty estimation. Even better, it can be
avoided by the use of a better PSF-model, e.g. by using an empirical PSF-model as in the DanDIA
pipeline.

6.3 Observed events

In the context of this thesis different observing runs were carried out using telescopes on dif-
ferent sites. In 2008, data was taken by the South African Large Telescope (SALT) during its
commissioning phase. A follow-up of the event OGLE 2010-BLG-510 was triggered as a target
of opportunity and observed in service mode. The main mirror of SALT consists of 92 mirror
segments and those were not optimally aligned: a point spread function (PSF) consisting of mul-
tiple images of all objects in the crowded fields limited the photometric accuracy to ≈ 100 mmag.
In 2009, the MONET/North telescope in Texas was available for test observations. The quality
and coverage of observations was limited by weather conditions combined with observations at
low altitude, i.e. ≈ 2 airmasses. The best coverage was achieved for the anomalous event MOA
2009-BLG-217, illustrated in Fig. 6.3, where 70 data points were contributed. In the 2010 season,
two weeks of observations with MONET/North and two weeks of observations at the DANISH
1.54m telescope were carried out as part of the MiNDSTEp consortium. In the following, the
event MOA 2010-BLG-406 is discussed in detail and indications of the nature of the event MOA
2010-BLG-477 (see Fig. 6.4) are given on the basis of data from the DANISH 1.54m telescope
and the MONET/North telescope, giving an insight into the current capabilities of the robotic
MONET telescopes.

6.4 Modeling of the event MOA 2010-BLG-406

The gravitational microlensing event MOA 2010-BLG-406 was followed up in the 2010 observing
campaign at the 1.54m DANISH telescope as part of the MiNDSTEp consortium. Data was
taken after having been triggered by the SIGNALMEN anomaly detector (Dominik et al., 2007)
starting on July 10th, 2010. The data was reduced using both the DIAPL and the DanDIA
pipelines (Bramich, 2008). Despite the improved capabilities of the numerical kernel approach,
the first part of the analysis relied on a reduction based on Gaussian kernel functions.

6.4.1 Preparing the data

The available online data from the MOA collaboration represents several years of observing and
thus provides an accurate baseline for fitting purposes, but instead of simulating all these points
they are all collapsed to one highly accurate baseline measurement. Their propagated weight
ensures that the linear baseline and blending is well constrained, reducing potential ambiguities.
From the Fisher matrix it is known that the information content of the blending flux is constant
for each point of a light curve and for extremely low magnifications the same applies to the
baseline flux; 5 tE away from t0 the magnification is changed by less than 0.3 %. The microlensing
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event itself occurred between the Julian dates 2455370 and 2455410, and the weighted mean of all
other sufficiently accurate data points was used for constraining the baseline and blending flux,
where sufficiently accurate means the reported uncertainties were demanded to be below three
times the median uncertainty. In Fig. 6.5 the steps for preprocessing the MOA light curve for a
binary fit are shown.
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Figure 6.5: Data preparation for binary fitting by rejecting data points exceeding three
times the median and by averaging all baseline points (left). After an initial parameter
estimation a MHMCMC fit is carried out.

After rejecting inaccurate data points, the standard parameters of a PSPL event u0, tE and
t0 are determined assuming an unblended event. The maximal observed magnification can be
translated to the parameter u0 as u0 ≈ 1/µmax. Due to the anomalous nature of the light curve
t0 and tE cannot be determined very well. For initial parameter estimates the light curve is
supposed to be of Gaussian shape and by applying the rejection sampling method from von
Neumann (1951), it is possible to sample from the observed times. The expected value yields the
time of maximal magnification and the standard deviation σt can be applied for estimating the
Einstein time via

tE ≈ 0.68 · µmaxσt, (6.2)

according to Eq. 2.34. In contrast to other methods this approach is less sensitive with respect
to the anomalous shape of the light curve and requires just a small number of evaluations. Based
on this estimate, all points exceeding 3σ defined by the residuals, are rejected in the final PSPL
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fit. Due to the anomalous shape of the light curve, the wings provide the requested information
about the underlying PSPL-model. Unfortunately, the Einstein time can only be determined
properly if the parameter u0 is known; which cannot be unambiguously determined for the given
measurements.

For obtaining an initial parameter estimate, a PSPL model is fitted by starting starting several
Markov chains. The variance within and between different chains were used for checking if the
chains have converged and samples have been used for determine the uncertainties. The result
of this analysis is a multidimensional probability distribution, which can be used to simulate or
calculate all other properties. If the finalized chain elements are kept, different Galactic models
or distributions can be used for inferring the physical properties by drawing samples from the
chain according to the prior probability. The initial estimates of the PSPL parameters shown in
Tab. 6.1 serving as starting point for further analyses. The uncertainties are determined after
reaching convergence and the resulting estimates are shown in Tab. 6.1.

u0 tE in d t0 in d

6.6583+0.0032
−0.0034 · 10−5 7.606+0.023

−0.022 5387.46681+0.00074
−0.00072

Table 6.1: PSPL fit parameters for the initial grid search.

6.4.2 Initial grid search

For investigating potential configurations reproducing the characteristic features of an anomalous
microlensing light curve, the GPU-based binary model introduced in chapter 3 was applied to
model the event. A preliminary grid search was carried out relying on 600 starting values of log(q)
and log(d). At each of these grid points, 250 steps of an MHMCMC search were simulated, just
without convergence control. At this stage, the finite source size is kept fixed at 0.015 θE: no
prominent caustic crossing features can be seen, so by fixing the source star radius at a comparably
large radius, the computationally faster unrefined GPU-model can be used.

The microlensing model parameters obtained in different studies make use of the freedom to
define source-plane coordinate systems. As pointed out by Skowron et al. (2011), a common format
for reporting results would ease comparing the results of different models. However, different
coordinate systems chosen to support modeling efforts are following the variety and characteristics
of binary microlensing light curves. For an initial estimate of the PSPL parameters of the given
event, a close binary configuration with separations d < 1 θE can be efficiently determined if the
center of mass is considered as basis for modeling. The case of widely separated binaries can be
more appropriately addressed by using models centered on each of the companions. Thus, for this
study, each random MCMC walk was repeated for three initial positions, namely center of mass
and the positions of the companions.

The total computation time required for such an approach is still large and thus the amount
of data was reduced by selecting a subsample from both data sets. As shown before, a massive
data compression needs a model for appropriately rejecting data points. In order not to introduce
a selection bias the subset used in this context has been selected randomly, by accepting data
points according to their reported brightness as high magnification values are less likely and
thus, according to Shannon’s information definition, more informative. In addition, points close
to gaps were given heigher weight, reducing parameter degeneracies caused by gaps. Fig. 6.6
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illustrates snapshots in the fitting process with local minima caused by the limited coverage of
the event. There are also other reasons for degenerate parameter configurations that may affect
the analysis as, e.g. symmetric binary light curves, parameter degeneracies, but intrinsically
degenerate solutions can emerge from symmetries in the lens equation itself (Dominik 1999).
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Figure 6.6: The coverage related parameter degeneracy, limiting the possibility of de-
termining the best solution, is shown for local maxima in the course of the initial grid
search.

The initial grid search depicted in the left plot of Fig. 6.7 provided local minima, that serve
as convenient starting points for further Markov chains, as shown in the right plot. The χ2 value
is used to compare the solutions offered by these approaches and to decide if the measurements
are well described, assuming that it is much easier to convolve the corresponding distributions
with a prior which may need to be altered. The uncertainties of the photometry have been kept
as provided: in the initial DIAPL reduction, a Poisson-like estimate is provided according to the
total Flux Ftot measured by aperture photometry on the unsubtracted image (Wozniak, 2000) by

σF =

√
Ftot

gain
, (6.3)

This may result in an unbalanced view, as the reported uncertainties are not necessarily com-
patible with the scatter of the data points, but for the given case this seems to be suitable.
The fitting radius was also adapted to be less affected by outliers, which may have been caused

77



78 CHAPTER 6. MODELING OBSERVATIONS

by measurements in the nonlinear regime of the detector, where the number of electrons is not
proportional to the number of collected photons. Nevertheless, the resulting χ2-values are in a
reasonable range, and thus attempts to rescale the reported uncertainties were skipped.
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Figure 6.7: Grid search for determining appropriate starting points for subsequent
Markov chains (left) and first results from a refined analysis of these events (right).

6.4.3 Refined study of local minima

Before starting longer chains for the selected measurements in Fig. 6.5 and observations from
the DANISH 1.54m, accuracy issues with the reported time-stamps need to be discussed. The
analysis relies on the reported Julian date which has been determined according to the reported
coordinated universal time (UTC). The orbital motion of the Earth and the observatories sepa-
rated by several 1000 km can produce an effect of several minutes. For an event lasting several
days, the resulting change is of the size of a source star or of the exposure time. Timing accuracy
should not affect the results, for MOA 2010-BLG-406, as it does not exhibit caustic crossing
features, where uncorrected dates could have affected the estimates. Being able to include con-
straints from space-based observatories as discussed by Graff & Gould (2002) and Gould et al.
(2003), would rely on more accurate time-stamps. To compensate Rømer’s delay caused by the
finite speed of light, different approaches are followed. Most commonly the Heliocentric Julian
Date is calculated, transferring the time-stamp reference system to the center of the sun. A more
accurate correction has been recommended by Eastman et al. (2010) and is used here for finalizing
the parameter estimations: the final reported times are given as Barycentric Julian Date in the
Barycentric Dynamical Time standard BJDTDB. The correction applied to the given observa-
tions represents a maximal offset between the time-stamps of both sides of ≈ 30 s relative to the
initially reported JDUTC. This correction can be neglected for fitting a standard binary model
without diurnal parallax, orbital motion or multi-site parallax effect.

The analysis was carried out by starting multiple chains from local minima of the χ2-surface
as shown in Fig. 6.7. For this purpose, the prepared MOA and complete DANISH 1.54m measure-
ments are used and Markov chains were started for both rereductions of the observed DANISH
1.54m light curve. Fig. 6.8 illustrates that the chains end in similar regions of the parameter space
for both reductions and, despite differently reported uncertainties, the χ2 value provides a simi-
lar answer. The reported photometric uncertainty in the DANDIA pipeline particularly includes
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Figure 6.8: Resulting χ2 for Markov chains started at local minima shown for two
reductions of the DANISH 1.54m follow-up observation (top) and their evolution on the
log(q)− log(d) plane (bottom).

two contributions which were neglected in the DIAPL pipeline, i.e. readout noise and the noise
contribution caused by the reference frame. Because of using a stacked reference frame in both
cases, there is only a minor effect. The best fit in a least-squares sense is used for comparing how
the residual noise is affected by different reductions and, according to Fig. 6.9 it is evident that
systematic deviations at the peak were reduced in the numerical kernel approach. Consequently,
the numerical kernel rereduction is used for inferring parameters.

In addition to reaching a low χ2, it is important that the best solutions sample from the same
distribution. In some cases different starting points leave the tested region immediately or step
towards other solutions and even for chains close to the best solution, the formal convergence
criterion was not achieved in the course of the fitting process. The PSPL-parameters especially
did not comply with the r-value criterion Eq. 5.8. The adaptive step-size control is not sufficient as
long as it relies exclusively on the variance of each chain. For achieving convergence, the variances
of the proposal function were adjusted according to the variance between 5 chains, which were
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Figure 6.9: Comparison of light curve fits of the numerical kernel approach (left) and the
kernel consisting of modulated Gaussian basis functions illustrating the resulting change
in data quality.

started at the lowest χ2 value of all chains. One possible explanation why the chains did not
formally converge is the limited numerical accuracy of the input parameters, leading to pseudo-
convergence as the numerical noise is sampled instead of the required distribution. By using the
variance between different chains, the proposal function better reflects the local parameter space
and converges in all dimensions efficiently. The best fit is achieved for the light curve shown in
Fig. 6.10.

The result of the MHMCMC is a sample providing likelihood distributions for all parameters
and all possible marginalizations. The important special case of the two dimensional marginal-
ization is shown in Fig. 6.11, illustrating that no unimodal distribution is achieved. In principle
this can be avoided by restarting chains with constraints on the parameter space or by selecting
the global mode. In fact, each mode shown in the likelihood plot corresponds to the same χ2

(Fig. 6.11) and thus these modes need to be included for getting an unbiased view. Each mode
reflects the artifacts and structures of the observed data as well as accuracy limitations due to
the model. Given the (single precision) GPU-model, these multimodal distributions provide the
most sincere interpretation that can be given in that context.
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Figure 6.10: The best fit binary lens light curve simulated with the GPU-contouring
model is shown for MOA 2010-BLG-406 along with the corresponding residuals.

6.4.4 Physical parameter estimates

If the observed data does not intrinsically provide estimates for the distances to lens and source
star as well as the lens-source proper motion, a Galactic model is required to deduce the results
by deducing the physical parameters given the fit parameters. Instead of directly converting the
fit results based on defined parameter distributions, samples are drawn from a catalog simulation
of the Besançon-model. Pairs of lens and source-stars are drawn from these catalog samples in

Reported u0 tE t0 ϕ in ◦ q

Median 0.1377+0.00057
−0.0019 6.763+0.100

−0.046 5388.0297+0.0049
−0.0053 56.03+0.22

−0.22 0.4125+0.0082
−0.0072

Mode 0.1371+0.0011
−0.0013 6.784+0.079

−0.067 5388.0216+0.013
−0.0028 55.70+0.55

−0.11 0.4149+0.0058
−0.0096

d r? gMOA gDANISH χ2

0.5297+0.0014
−0.0029 9.2814+0.0049

−0.019 · 10−3 −0.98689+0.00020
−0.00021 −12.393+0.18

−0.088 944.9+3.2
−2.0

0.5308+0.00031
−0.0040 9.2830+0.0034

−0.021 · 10−3 −0.987125+3.0·10−5

−4.5·10−4 −12.44+0.13
−0.13 944.0+4.1

−1.1

Table 6.2: Sample parameters deduced from one dimensional marginalizations of the
converged MHMCMC chains
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Figure 6.11: Probability of binary lens parameters and χ2 as two dimensional marginal-
izations of the final Markov chains.

order to infer the mass of each component.

One relevant issue for such a resampling approach is to guarantee that a sufficiently large
number of stars is available in the corresponding data set, supposed to be compatible with all
cuts applied to the distribution. In addition to the parameters from the fit, position and base-
line magnitude from MOA (Bond et al., 2001) can help to constrain potential configurations.
Regarding these limitations leads to the setup for the catalog simulation which shall be briefly
summarized.

A high blend ratio indicates that baseline and blend flux are of the same order of magnitude, so
thus the reported baseline magnitude gives an indication what kind of source stars are consistent
with the fit results. For converting the fit parameters, the apparent magnitude of the source star is
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Figure 6.12: Control plots for the extinction in comparison to the extinction map
(Marshall et al., 2006) are shown (left). In addition the 1D marginalized distributions
for source and lens position for the Besançon model are shown for different apparent
magnitude cuts (middle) as well as their 2D marginalized representation (right) . The
best fit light curve simulated with the GPU-contouring model is shown for MOA 2010-
BLG-406 along with the corresponding residuals.

assumed to be in the range of 20.5±1.5 Imag. For properly determining the apparent magnitude,
the extinction of the given field has to be known. The relative extinction was adapted for matching
the closest distribution in the maps of Marshall et al. (2006) at l = 358.00◦, b = −3.25◦ with
AKS/AV = 0.1. The corresponding relative extinction was set to 1.172 mag kpc−1 in the visual
band. Stars were simulated in the range of [0, 11.5] kpc, for constraining the size of the output
files, which covers the expected range of stars as shown in chapter 4. The field of view was set
to 0.002 square degrees and no cut was applied for the apparent magnitude, because faint stars
can serve as lenses, but proper motions are required. For all other parameters the standard
configuration was kept.

Control plots for the parameter distributions are given to ensure that the observed values can
be analyzed; the corresponding results are shown in Fig. 6.12. In contrast to the OGLE field
discussed in Chapter 4, the expected source position is shifted to positions of ≈ 9 kpc, which has
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only a minor effect on the expected mass, as the Einstein radius is changed by 1.2 % in comparison
to the typical configuration DD = 6.5 kpc, DS = 8.5 kpc. The empirical distributions extracted
from the catalogue simulation of the Besançon model are used to simulate lens-source distances by
consecutively drawing potential parameter pairs (DD, DS). Such an initial distribution serves as
the envelope distribution for drawing samples from the Galactic model. Applying this technique
leads to the distributions shown in Fig. 6.12 indicating that the fitted parameter configuration
does not occur frequently.
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Figure 6.13: Mass of the binary components of MOA 2010-BLG-406 determined ac-
cording to a catalog simulation based on the marginalized distribution of Einstein times.

If samples are drawn from the simulated star catalog according to the observed Einstein
time, the potential mass distribution of the components of the binary system can be determined
and leading to the distributions shown in Fig. 6.13. The planetary and brown dwarf limits are
indicated as 13 and 90MJupiter (Spiegel et al. 2011; Close et al. 2005) depending on the exact
physical properties of the lens star, which are not accessible here. The tE-based sample provides
different alternatives for the given parameter configurations. The system is likely to be a binary
star and not a planetary system. The low mass companion can also be explained by a brown
dwarf. If the remaining samples are demanded to be consistent with tE and the source star radius
in θE it turns out, that no source star is consistent.

Recalling that the lens and source positions were drawn according to the lensing probability
and the potential number of stars, one can consider an additional analysis for arbitrary lens and
source star positions, selected exclusively to match the fit parameters tE and r?. The range of
source star radii is rather small and so is the number of stars complying with such a range. The
(single precision) GPU-model is not able to address limb-darkening due to the required small
annuli. The model accuracy itself is also affected by the computational limitations of the model
and finally the reported stellar radius in the Besançon model is estimated based on the bolometric
magnitude while the fit parameters are obtained from observations in a specific band. Altogether,
the reported uncertainty seems to be to small and thus for selecting samples a ±10 % range was
accepted, resulting in a configuration that can be more easily achieved, as illustrated in Fig. 6.14.
As expected, the lens-source positions are changed in comparison to the initial assumption. It is
especially noteworthy that the lens-source distance DDS is changed to relatively short distances
around 0.18 kpc, according to the parameter estimates shown in Tab. 6.3. The mass distribution

84



6.4. MODELING OF THE EVENT MOA 2010-BLG-406 85

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-2 -1.5 -1 -0.5  0  0.5

P
ro

b
a

b
ili

ty
 f

u
n

c
ti
o

n
 l
o

g
1

0
(M

s
o

l)
-1

Log10(M/Msol)

 0

 0.2

 0.4

 0.6

 0.8

 1

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

B
ro

w
n

 d
w

a
rf

 l
im

it

P
la

n
e

t 
lim

it

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-2 -1.5 -1 -0.5  0  0.5

P
ro

b
a

b
ili

ty
 f

u
n

c
ti
o

n
 l
o

g
1

0
(M

s
o

l)
-1

Log10(M/Msol)

 0

 0.2

 0.4

 0.6

 0.8

 1

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

B
ro

w
n

 d
w

a
rf

 l
im

it

P
la

n
e

t 
lim

it

Figure 6.14: Mass of the binary components of MOA 2010-BLG-406 determined ac-
cording to a catalog simulation based on the marginalized distribution of Einstein times
and the source star radius given in units of the Einstein radius.

supports more clearly the possibility of a brown-dwarf companion and even the possibility of a
binary brown dwarf.

Constrained by M1 in MJupiter M2 in MJupiter DD in kpc DS in kpc DDS in kpc

tE, q 131+272
−88 319+657

−215 6.8± 1.7 9.3± 1.1 2.5± 1.8

Constrained by M1 in MJupiter M2 in MJupiter DD in kpc DS in kpc DDS in kpc

tE, q, r? 49+86
−19 119+208

−45.0 5.9+2.0
−1.8 6.2+1.8

−2.1 0.18+0.22
−0.12

Table 6.3: Physical parameter estimates of mass and distances for the given event.

6.4.5 Alternative explanations

The short duration and the symmetry of the event make parallax effects, such as the first event
discovered by Alcock et al. (1995), unlikely. This can be supported by a heuristic estimation of
the maximal achievable effect, as illustrated in Fig. 6.15. The sum of angles provides a relation
if lens and observers as well as source and observers form isosceles triangles, implying that the
offset of the source position is

∆βmax = π − 2 arctan

(
B

2DS

)
− 2 arctan

(
2DD

B

)
, (6.4)

where B denotes the baseline between two observing sites or their orbital motion. As the ar-
guments of the arc tangents are roughly of inverse order, replacing them by approximations is
not advisable. For the given configuration, this implies that the resulting scale for a baseline
of 8500 km is ∆βmax ≈ 5 · 10−6 θE, which is clearly below the finite size of the source star of
≈ 10−2 θE and thus no multi-site parallax is available. For the given Einstein time, the corre-
sponding Earth’s orbital motion is large enough to create an offset of ∆βmax ≈ 10−2 θE and thus
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Figure 6.15: Geometrical, maximal change in the effective source position for β1 = β2

(left) shown along with the distribution of Einstein radii (right) for the interpretation of
the data set including tE, r?.

will have a negligible impact on the parameter estimates. In addition, the offset is not able to shift
the source position to the caustic as shown in Fig. 6.16. The asymmetric light curve also excludes
finite source point lens models. Finally, the effect of a binary source needs to be considered, which
cannot directly by excluded, although the light curve shape and especially the even brightness
between both maxima of magnification a priori supports a binary lens. The resulting light curve
is a superposition of two PSPL light curves as introduced by Griest & Hu (1992). Assuming the
separation of both companions is static leads to the parameterization introduced by Gaudi (1998)

F (t) = F1(t)µPSPL((u1 (t)) + F2 (t)µPSPL (u2 (t)) + FB (t) (6.5)

For modeling the given event, the tracks are then parameterized with one source position centered
on one of the potential source stars

u1 (t) =

(
u2

0 +
t− t0
tE

)1/2

. (6.6)

and a second source star displaced by (∆u0,∆ut):

u2 (t) = (u0 + ∆u0)2 +

(
t− t0
tE

+ ∆ut

)1/2

. (6.7)

In the fitting process different baseline fluxes are represented by their flux ratio

fr =
F2

F1
, (6.8)

as introduced in the superposition of both magnifications in Eq. 6.5. For fitting such a model, a
standard simplex algorithm was used and the reported uncertainties were estimated by applying
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Figure 6.16: Source star track with respect to the caustic structure of the best fit.

the bootstrap technique, resampling distributions by drawing samples with replacement from the
underlying data (Efron, 1979; Press, 1994). The resulting parameter configuration is shown in
Tab. 6.4 and the corresponding best fit in Fig. 6.17. The parameter space does not provide a
clear indication as the parameters tE, u0 are degenerate, which is a consequence of Eq. 6.2 and
directs the fit to extremely large Einstein times, which is unlikely regarding the initial estimates
which are consistent with the binary lens fit.

χ2 u0 t0 in d fr

4064.54 5.182+0.0849
−0.729 · 10−5 2365.284+41.9

−77.5 1.07.4·10−6

−7.4·10−6

tE in d ∆u0 ∆ut

5388.6249+0.00042
−0.0060 0.0001160+0.000025

−0.0000049 0.0008693+0.0000083
−0.000073

Table 6.4: Best fit parameters for a binary point source model.

6.5 Conclusions and discussion

In the course of this chapter, the data reduction system implemented for the telescopes used by the
MiNDSTEp consortium was introduced and applied to the anomalous microlensing event MOA
2010-BLG-406. The reduction was compared with the results of the numerical kernel approach.

87



88 CHAPTER 6. MODELING OBSERVATIONS

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

F
lu

x

Best fit
KB10406 MOA

KB10406 DANISH1.54m

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 5384  5386  5388  5390  5392

R
e
s
id

u
a
ls

JD - 2450000

 0

 1000

 2000

 3000

-5 -4 -3 -2

t E
 i
n
 d

log10(u0)

 4000

 4100

 4200

 4300

 4400

 4500

χ
2

Figure 6.17: The best fit binary source light curve simulated with the GPU-contouring
model is shown for MOA 2010-BLG-406 along with the corresponding residuals and the
χ2 in the course of the simplex fit.

Both systems were providing consistent results, but due to the reduced systematics the numerical
kernel approach was used for an assessment of the physical nature of the event.

The GPU-model developed in the context of this work was applied to a MHMCMC scheme
for fitting the corresponding light curve. The multimodal structure of the parameter estimates
obtained from the fit indicate either systematic effects in the reduction or limitations caused by
the limited parameter accuracy of the single-precision GPU-model. The resulting one-dimensional
marginalized distributions were combined with a catalog simulation of the Besançon model. The
most likely source and lens positions are not able to reproduce the fitted Einstein-time and source
star radius consistently. By letting the source and lens position vary independent of the lensing
probability, it turns out that pairs of close lens and source stars provide the required configuration.
According to this analysis, one of the source stars is likely to be a brown dwarf, while the second
component can be a brown dwarf or a low-mass star.

These results here, were achieved for a given Galactic model: as differing initial mass functions
can alter the mass estimates, a more detailed study including recent brown dwarf populations is
inevitable. Moreover, the system serves as a first test of the GPU-assisted contouring approach,
though and a double precision version may lead to different parameter estimates as these are
not subject to the same numerical inaccuracies. The sharp modes of the given fit illustrate how
difficult the parameter space can look. Degeneracies set their footprint on the analysis and if the
global minimum for the event is located in a sharp distinct feature of the total likelihood, there
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is a chance, that the number of Markov chains miss such a solution.
Despite all these complications, the results of this analysis encourage a more detailed study

of this event, as it indicates the possibility of measuring a rare brown-dwarf binary at several kpc
with a source star a few hundred light-years away.
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Chapter 7

Future observational prospects and
summary

In this last chapter, I provide esimations for the detectability of planets using the MONET and
space-based telescopes. The latter have the principle capability of contributing observations with
large baselines. Gould (1995) and Graff & Gould (2002) showed that observations from space can
provide a satellite parallax measurement if they are sufficiently far away from the Earth. Due to
the altered optical axis, the new source position with respect to the lens changes the magnification
and thus constraints the distance to lens and source. In this study, the feasibility of using the
existing STEREO mission and the planned M-class mission PLATO are discussed. Both missions
are not dedicated for carrying out microlensing observations, but use auxiliary telescopes capable
of observing the Galactic bulge.

7.1 MONET/North observation of MOA 2010-BLG-477

So far, the best covered microlensing event observed with MONET/North is MOA 2010-BLG-
477, which is also the first observation which was carried out semi-automatically by means of an
automated system called Claude (Husser 2011), which processes target recommendations from
ARTEMiS. The automatic data reduction pipeline based on the DIAPL software presented by
Wozniak (2000) was run locally in Göttingen. As this event was highly prioritized, it was also fol-
lowed by the DANISH 1.54m telescope, offering the possibility of directly comparing the two data
sets which were taken with similar cadence and longitude. By aligning the data sets, estimates of
the capabilities of both MONET telescopes can be given which optimize current recommendations
and increase the chance for further detections.

The expected signal-to noise ratio of CCD-detectors (Howell 2000) can be approximated by

S

N
≈
√
Nelectrons, (7.1)

for photon noise dominated observation. This is a consequence of the standard deviation of a
Poisson distribution expressed for the number of electrons - the countable quantity. In the linear
regime of the detector, where the number of counted electrons is proportional to the number of
photons, the signal-to-noise is S

N ∝
√
texp assuming that the exposure is not affected by time-

dependent perturbations, such as clouds. The ARTEMiS system estimates the exposure time
according to the initially reported magnitudes. The reported baseline magnitude is used for
estimating the exposure time, without assessing its true reliability. In practice, the estimate of
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the baseline magnitude is subject to blending and on a thorough calibration of the instrumental
flux. This implies that the magnitude cannot alway be properly determined, for instance, due to
a time dependent baseline flux or a bright blend star which, in turn, changes the noise level. If
photon noise and the blend ratio q ≥ 1 are limiting the data quality, the signal-to-noise of the
observable source star variation is

FSµ√
FSµ+ FB

≈ g−1/2
√
FSµ, (7.2)

and thus reduced by a factor of g−1/2. For a potential blend ratio of 10, this leads to a decrease in
the signal-to-noise by a factor of 3, requiring to increase the exposure time by a factor of 10. In
these cases a systematical error in the determination of FB may easily affect the proposed exposure
times. One of these systematic effects is the determination of the reference flux. Difference imaging
pipelines provide a difference flux with respect to the chosen reference frame. For estimating the
absolute flux and magnitude m, it is necessary to measure the brightness as reference flux FR on
the reference frame, yielding the magnitude m

m = m0 − 2.5 log(FR + ∆F ), (7.3)

where m0 is an offset, which can be calibrated to provide absolute magnitudes. Overlapping PSFs,
for instance, can lead to bad estimates of the reference flux and hence to the reported blend ratio.
The blending flux is not considered for determining the exposure time for MONET/North, as
most events stay between blend ratios of g ∈ [0, 1] (Smith et al. 2007) and thus the worst case
leads to a signal-to-noise reduction by 2−1/2 for magnifications µ ≈ 1.

The exposure time estimates for MONET are integrated in the automation tool Claude by
Husser (2011), which receives the list of recommended targets from ARTEMiS, calculates the
required exposure times for MONET, and submits the corresponding results back. Moving the
telescope and starting the exposures is done automatically via Claude. Due to technical con-
straints, exposure times are kept between 20 and 300 s, providing a sufficient number of stars for
the subtraction and ensuring that the telescope tracking does not lead to elongated PSFs.

According to the uncertain blending estimates leads to proposed events with exposure times
between 300 and 600 s. The exposure time estimation itself relies on an inversion of the signal-
to-noise calculation (Howell 1989) including the MONET telescope parameters, such as a sky
brightness of mI ≈ 20 mag/arcsec2 and a fixed extinction coefficient of 0.08 per airmass. Test
observations have indicated, that the initially required S/N ≈ 100 is not sufficient for the given
parameter estimations and thus S/N ≈ 500 was demanded. The reasons for this offset are the age
of the camera, a decreasing mirror reflectivity, but also the assumption of applying an aperture
photometry with a given aperture radius of 1 arcsec. Consequently, either empirical corrections
are needed or a quality assessment of the reported light curve fit needs to be implemented.

In Fig. 7.1 the preliminary results of the GPU-assisted grid search for the event MOA 2010-
BLG-477 are shown. For this purpose, observations from the DANISH 1.54m and the MONET/North
telescope are used. Data sets from both sites were re-reduced using the same difference imaging
package (DIAPL). Obviously, no convergence was achieved as the light curve is dominated by
gaps. The corresponding χ2

red stays around χ2
red ≈ 8, which is partly caused by the fit, but also

by the reduction indicating a limited quality of the PSF fit (cf. Fig.6.4). As a consequence, it is
likely that the reported errorbars are underestimated. The initial χ2-surface does not reflect the
final result, but in contrast to the event discussed in the preceding chapter, a potential lower mass
ratio cannot be excluded. Directly comparing MONET/North and DANISH 1.54m observations
illustrates that the outlined configuration was working well, considering the geographical location
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of the telescope and observations through 2 airmasses. The exposure time chosen for the baseline
was at its maximum and thus events fainter than 17 mI are hardly accesible for MONET/North.
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Figure 7.1: Preliminary binary lens fit for MOA 2010-BLG-477.

7.2 Space-born microlensing

The benefits of observing microlensing events from space are twofold: on the photometric side,
highly accurate brightness measurements can be achieved as long as the spatial resolution is good
enough to separate lens and source stars. On the geometric side, long baselines can constrain
the distances to lens and source, which is important for constraining the mass of a potential
planetary system. The first observation of that kind was carried out by Dong et al. (2007). In the
following, prospects for the STEREO mission (Driesman et al., 2008) and its Heliospheric Imager
1 (HI-1), as part of the SECCHI instrument suite (Defise et al., 2001; Howard et al., 2002; Eyles
et al., 2009), and the PLATO mission (Catala & the PLATO consortium, 2008; Catala, 2009) are
compared with respect to observing microlensing events.

7.2.1 Distance constraints

The geometric effect is limited by the baseline of the corresponding space observatory. An initial
assessment of the capabilities concerning a satellite parallax can be given according to Eq. 6.4. The
STEREO, HI cameras are moving ahead and behind the Earth’s orbit, changing their position with
time but also staring at the space between the Sun and the Earth and thus the baseline can even
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reach ≈ 1 AU. The proposed PLATO mission is supposed to be located around the Lagrangian
point L2, in a large amplitude libration orbit leading to a baseline of about 1.5 million kilometers.
For a 0.5M� lens at DD = 6 kpc and a source at DD = 8 kpc the effective change in source
position is ∆βPLATO ≈ 10−3 θE making the observations relevant for smaller source star radii,
such as main-sequence stars observed in high magnification events. For the STEREO mission
the effect is more prominent: ∆βSTEREO ≈ 0.1 θE for B = 1 A. For a microlensing event with
tE = 10 d this would correspond to an offset of 2 days.

7.2.2 Photometric limitations

Microlensing observations are limited by detections in crowded fields. Auxiliary telescopes on
space missions are often equipped with small aperture telescopes covering large fields of view.
The corresponding pixel scale, usually given in arcseconds per pixel, is large for these telescopes
leading to a higher blending flux contribution if a microlensing event within such a pixel is
observed. This kind of pixel-lensing was originally motivated for surveys observing M31 (Crotts
1992; Baillon et al. 1993), but can be applied to microlensing observations of the Galactic bulge
as well. The major disadvantage of this technique is the increased blending flux contributing to
the background noise and reducing the signal-to-noise.

Assuming that microlensing events are detectable if a limiting magnitude is exceeded, leads
to estimates for the expected number of events for a given brightness interval. A magnitude limit
of mI < 19 serves as an initial selection criterion. As mentioned before, the number of observable
source stars exceeds the number of stars below the magnitude limit, because the magnification
can increase the brightness to make these sources observable. A simulation of the corresponding
stellar statistics for the field l = 1.2◦, b = −2.7◦ as presented in chapter 4 is shown in Fig. 7.2
constrained by limiting magnitude, magnification and underlying Galactic model.
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Figure 7.2: Expected visual magnitudes for a catalog simulation centered on l =
1.2◦, b = −2.7◦ with and without taking magnification into account.

For microlensing observations, a signal-to-noise ratio of S/N ≈ 100 is required for detect-
ing planetary deviations. For simulating the effective signal-to-noise per pixel, the frequency of
magnitudes in the catalog simulation is used and scaled according to the field of view, given in
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square degrees. The noise contribution of all stars can be assessed for both space missions. In the
case of STEREO, the photon noise for HI-1 depending on different magnitudes is taken from the
electron statistics presented by Howard et al. (2002) and for PLATO the photon noise estimates
are relying on the expected number of electrons Ne = 1.5 · 108h−1 (Catala 2009), where the noise
contribution of fainter stars is extrapolated, assuming the number of photons is proportional to
the flux and dominated by photon noise. The source star magnitude serves is defined to be the
corresponding limiting magnitude for each mission. For PLATO, a magnitude limit of 14 mV

(Catala & the PLATO consortium 2008) is assumed for the PLATO mission and for STEREO
12 mV (Eyles et al. 2009). Fig. 7.2 also provides an estimate of the fraction of observable stars for
both missions. The magnitude limit for STEREO is < 1.3 % and given that the Galactic bulge
is visible only for 2-4 weeks, the total number of accesible microlensing events stays around one.
Estimates for PLATO are more promising, because 2 % of the 3 · 106 stars comply with 14 mV

and assuming a staring phase, covering the Galactic Bulge for half a year. PLATO can contribute
data to at least 20 events, neglecting caustic crossing events with an intrinsic high magnification,
which are not included by recent estimates.
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Figure 7.3: OGLE events observed by STEREO HI1A in 2008.

More accurate estimates can be given if the signal-to-noise is known. The resulting estimates,
shown in Tab. 7.1, are based on the assumption that the source star flux is predominantly stored
in one pixel and thus extraction techniques for pixel-lensing (Gould, 1996) need to be applied.
The STEREO mission is only helpful if the unbinned HI1 frames are used and a microlensing
event is magnified below 11 mV. Even in this case, systematical effects have to be considered,
such as the contamination by the Frauenhofer corona (F-corona). The latter effect can be roughly
estimated by considering the underlying count rate of each frame, implying that for most of the
time (12 d) the contribution of the F-corona is below ≈ 2 · 104 photo electrons per pixel. In this
scenario, the signal-to-noise is reduced by a factor of 2 and thus it is more advisable to consider
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Mission/instrument PLATO STEREO HI1 (unbinned) STEREO HI1 (2× 2)

FOV in arcsec 12.4 35 70
exposure time in s 20.0 40 40
limiting magnitude 14 mV 12 mV 12 mV

S/N per px 160 20 10

Table 7.1: Estimated signal-to-noise for the STEREO and PLATO mission based on
photon noise. The signal-to-noise is provided for the limiting magnitude.

events below 10 mV. If such an event occurs, it needs to be checked if it was in the field-of-view
of HI1-A or HI2-B. Fig. 7.3 illustrates where microlensing events were located in the 2008 season,
after applying the pointing calibrations by Brown et al. (2009).

The signal-to-noise estimates for PLATO support the feasibility of using it for microlensing
observations. Nevertheless, the assumption of considering one pixel can be violated, as the PSF
can be distorted at the edge of the detector, where the Galactic Bulge is expected to be observable
(Zima et al. 2010). If these kind of systematics affect the quality of the corresponding light curve,
it is still possible to keep the signal-to-noise by stacking or drizzling potentially dithered frames
(Fruchter & Hook 2002). In addition, the variability of all stars in a given pixel was neglected,
contaminating the observation if the observed source has same brightness compared to the variable
contaminant. Fig. 7.4 summarizes again the prospects including different observing times for the
PLATO mission as well as differently binned frames for HI-1 with and without additional F-corona
noise.
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7.3 Planetary detections

The possible number of detectable microlensing planets by the PLATO mission can be estimated
for different magnification-scenarios, i.e. especially for high magnification events with µ > 100
and low magnification events. In chapter 4 the sensitivity of detecting planets was assessed by
fitting PSPL models to light curves and calculate the ∆χ2. The following estimates are made
by integrating the contours of a predefined relative deviation between binary magnification map
and a PSPL map (Chung et al. 2005). The magnification maps were divided by the PSPL model
centered on the host star, as illustrated in Fig. 7.5, and its detectable area was integrated and
related to the area of a given maximal PSPL magnification. One Einstein radius was used as
reference for low magnification events and thus planetary caustics were only considered within
that radius

Relative deviationMagnification

Figure 7.5: Example for the calculation of relative deviation from PSPL model and 1 %
contours for q = 1.39 · 10−4, d = 1.20.

Detecting planets in high magnification events is more likely, because the deviation caused
by the central caustic coincides with the central region, sampled by the source star (Griest &
Safizadeh, 1998). For PLATO, a high magnification approach is the natural strategy, as it de-
mands bright events. This constraint can be fulfilled either by a bright source star, with a
potentially larger source star radius, which smoothes out the planetary signal, or by a highly
magnified event. In order to estimate the chances of detecting Super-Earths and the prospected
number of detections, a few assumptions need to be made. The number of planet-detections can
be estimated using the number of microlensing events Nevents, the frequency of planets in the
Galaxy pplanets and the detection sensitivity for each event psensitivity:

Nplanets = Nevents · pplanets · psensitivity. (7.4)

The number of microlensing events per year is well known and for a given magnitude limit, one
can estimate the number of detections. Despite efforts to improve the number of microlensing
events, is is assumed that ≈ 1000 events can be detected per year. The sensitivity is calculated
according to the area of the contour of the 1 % deviation and multiplied by the chance of having
a planet in the detectable zone of microlensing events. Estimates for the frequency of planets can
be provided by using all planets so far discovered or by using planetary evolution simulations.
The latter take into account a variety of potential parameters, as shown by Ida & Lin (2005),
for instance. Another example for such a simulation was presented by Mordasini et al. (2009)
and is used here to estimate the chance of having a planet in the microlensing regime. For the
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distributions of the semi-major axis a uniform distribution of planets ranging from 0 to 10 AU is
assumed. For Super-Earths in that regime, a chance of 40 % can be assumed.
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Figure 7.6: Planet detection probability for Super-Earths based on estimates from
planet-formation calculations given for low magnification events (left) and high magnifi-
cation events (right). The black line indicates the triangle of certain detection assuming
a magnification of µ ≈ 1000 (Gould et al., 2010).

Combining these results with the sensitivity from the contour sensitivity, leads to a planet
detection probability as shown in Fig. 7.6. For low magnification events we obtain an averaged
probability of 1.3 % for detecting Super-Earths and for high magnification events a chance of
8.8 %. The number of events accesible for the PLATO mission is limited to ≈ 20 events per year,
demanding a magnitude limit of 14 mV. For a S/N ≈ 100 the corresponding limiting magnitude
is 14.5 mV with ≈ 40 events per year. This would lead to a 0.4 Super-Earth detections per year
and its feasibility depends on the final specification as well as the number of detected events in
the year 2018 and beyond.

7.4 Summary

To conclude this thesis, a short review of its content shall be given. After reflecting the derivation
of the deflection angle and the lens equation, the observable quantities and analytical limitations
for simulating light curves were discussed. For assessing higher order contributions, a numerical
perturbative approach was introduced for studying the detectability of deviations in light curves.
In order to address the computationally demanding simulation of light curves, a GPU-assisted
model was developed and its numerical limitations were studied and compared with CPU-based
ray-tracing simulations.

Before applying this technique to real observations, the benefits of applying information the-
oretical properties were outlined, especially exploiting Shannon’s and Fisher’s definition of in-
formation. This has lead to the insight how sampling strategies can be optimized and that all
observations could be used as one large data set. Furthermore, information theory leads directly
to compression techniques, which was illustrated by implementing the compression technique in-
troduced by Heavens et al. (2000). The benefits of using an information driven selection in the
course of an MCMC fitting were introduced.
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For the microlensing event MOA 2010-BLG-406 the Besançon model was combined with the
GPU-model and it was estimated that the underlying event is a binary system, where at least one
component is a brown dwarf. In addition, lens and source only comply with a rather small lens-
source separation encouraging further studies of this event. Finally, the future prospects for using
space-born telescopes, designed for different purposes are addressed for the ongoing STEREO
mission and the planned PLATO satellite. The latter can contribute to planetary detections via
microlensing, but only with the detection of ≈ 1 Super-Earth for 2 years of bulge observations.

There are a number of relevant issues for further studies. Higher order corrections and different
metric theories of gravitation should be assessed to exploit observations of higher photometric
precision. The GPU-technology can be applied to various stages of the analysis, e.g. to the image
subtraction, light curve simulation, fitting process and to Galactic modeling. The results from
information theory, especially those of optimal experimental design, can be used in a similar way
to add extra worth to each observation. It also seems promising to define the detectability of
planets as an optimization goal and to study the information theoretical implications. In the
context of real-time binary modeling, the compression techniques can improve the applicability
of these methods. Concerning the limitations of the Galactic model, two improvements need to
be considered: the spiral arm structure of the Galaxy is not included, which may change some of
the estimated planetary masses significantly; and for brown dwarf binaries and their host stars,
suitable distributions are required for detections beyond the solar neighborhood.
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Appendix A

GPU-contouring

Code details

The implementation of the root-finding is illustrated in Fig. A.1 and indicates how each radial
direction is used for finding the contour. If less than 20 directions provide roots, the source star
radius is increased in order to fulfill this requirement. The refinement for the initially chosen
radius is started afterwards.

Graphics Processing Unit

LensLens 

ALU

R

ALUALU

RR

ALU

R

Figure A.1: GPU-contouring implementation details.
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110 APPENDIX A. GPU-CONTOURING

Runtime issues

A runtime analysis of the unrefined GPU-model relying exclusively on one grid-search, reveals the
limiting factor in the simulation. Despite efforts to accelerate the root-finding, it is responsible
for the highest contribution to the total runtime, as illustrated in Fig. A.2. One reason is the
limited occupancy (33 %), which will can be resolved by GPUs with more registers.
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Figure A.2: Runtime of the unrefined GPU-contouring model.

Attempts of rearranging the computation of the squared deviation function, did not reduce the
total runtime, due to higher latencies. In addition, a limit for the maximal number of root-finding
iterations was tested. This can speed-up the computation drastically, because some multiproces-
sors have to wait for others for finishing the search. Unfortunately, the systematic noise increases,
especially in the wings of a lightcurve, where solutions are more than ≈ 1 θE away from the critical
curve and thus the search stops before reaching the image contour.

The CPU interaction cannot be optimized for the unrefined model, but for the refined model
flags for indicating the convergence are exchanged. Finally, there is only the integration time
which can be reduced, but given that it is contributing only 10-15 %, the expected acceleration is
negligible.
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Appendix B

Data analysis

Multimodal likelihood

The distributions of binary parameters for the microlensing event MOA 2010-BLG-406 are multi-
modal. The multimodal structure of the target distribution is a consequence of adjacent parameter
distributions with the same χ2. This fact is illustrated in Fig. B.1, where these
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112 APPENDIX B. DATA ANALYSIS

B.1 Extinction and Galactic model effects

The physical interpretation of the binary fit for MOA 2010-BLG-406 relies on the Galactic coor-
dinates of the catalog simulation and on appropriate extinction coefficients. In order to illustrate
what happens if the catalog simulation for l = 1.2◦, b = −2.7◦ and an extinction of 0.3 mag/kpc
is used, Fig. B.2 shows how the resulting masses of the components are affected. The interpre-
tation given in this context, crucially depends on the correctness of the Galactic model and the
extinction.
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Figure B.2: Binary mass inferred for l = 1.2◦, b = −2.7◦ and 0.3 mag/kpc.
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Andrews eingeladen hat und mich unter anderem auf die Schwierigkeit der optimalen Verteilung
von Beobachtungen hingewiesen hat.

Fernerhin gilt mein Dank allen weiteren Mitgliedern des MiNDSTEp Konsortiums, insbeson-
dere Uffe Jørgensen für den Betrieb des DANISH 1.54m Teleskop, das rechtzeitig für die Beobach-
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zlich danken.

Den Mitgliedern des Graduiertenkolleg 1351 “Extrasolar planets and their host stars” danke
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