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Abstract

Detailed three dimensional information of macromolecules is often crucial to the study

of biological systems. Structural data have for example been used to elucidate the basis

of diseases resulting from variant forms of proteins and design drugs to inhibit molecules

involved in diseases.

However, given a purified macromolecule under investigation there still is no trivial way to

experimentally “image” the three dimensional structure directly. All currently available

methods (such as X-ray crystallography, single particle cryo-electron microscopy or nu-

clear magnetic resonance) deliver experimental data which first have to computationally

processed prior to obtaining a meaningful three dimensional structure. Thus, the quality

and efficiency of computational methods in structure biology have a major impact on the

whole field. Recent advantages in technical setup and computational power allow for the

design of new methods which were virtually infeasible to use before. This especially holds

true in the field of cryo-EM which computationally is most demanding compared to all

other methods mentioned above.

In the work presented here new methods for managing and processing the huge amounts

of image data produced by the cryo-EM technique are introduced and discussed. Algo-

rithms aiming for accuracy improvements during image processing were implemented using

state-of-the-art technology (such as parallel programming on graphic processing devices)

and were embedded in a flexible, object-oriented image-processing suite delivering a high

degree of operational flexibility and simplicity. Most importantly an algorithm was de-

signed which is able to automatically identify and remove individual images which, upon

inclusion, would reduce the overall quality of the final 3D structure.
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Chapter 1

Introduction

Mit jedem Fortschritt der Wissenschaft wird die Schwierigkeit der Aufgabe des Forschers

immer größer, die Anforderungen an seine Leistungen immer stärker und es stellt sich

immer dringender die Notwendigkeit einer zweckmäßigen Arbeitsteilung ein. Vor allem

hat sich seit etwa einem Jahrhundert die Teilung in Experiment und Theorie vollzogen.

—Max Planck

1.1 Three dimensional structure determination of macromolecules

Given a purified, intact sample of a biological macromolecule and the interest in knowing

about the three dimensional (3D) structure of the latter, at least three different methods

are availabe to date. Those are single particle (cryo-)electron microscopy (cryo-EM), X-

ray crystallography, and nuclear magnetic resonance spectroscopy (NMR).

X-ray crystallography may safely be termed the oldest, most commonly used and most

mature method. The first protein structure to be solved by this method was that of myo-

globin at 6 Å resolution already in 1957 (Kendrew et al., 1958). Crystallographic analysis

can be applied to a wide range of compounds, starting from the smallest inorganic miner-

als which may consist of less than 10 atoms up to huge macromolecular complexes like the

ribosome which is build up from approximately 14000 atoms (Rossmann, 2006). Unfor-

tunately, this method exhibits a severe bottleneck which prevents its completely routine

usage - the preparation of the biological sample, i.e. the growth of a well diffracting crystal.

The process of crystallization is still not understood to an extend that would allow the

controlled growth of crystals from any biological macromolecule (Mandelkern, 2001a,b).

Thus, the structural investigation may be impeded in the very beginning. Having available

1



2 1 | Introduction

crystals, however, potentially very high resolution structures (in extreme cases < 1 Å, for

example see (Biadene et al., 2007)) can be achieved. Another limitation, which results

from the very concept of analyzing crystals, is the relative difficulty in inspection molec-

ular dynamic effects other than atomic thermal motion (Schneider, 1996; Kidera et al.,

1992; Benoit and Doucet, 1995; Thüne and Badger, 1995).

In contrast to crystallography, the analysis of molecular dynamics is a strength of NMR-

based structure investigation (for example see (Salmon et al., 2009)). This method uti-

lizes the biophysical properties of nuclear spins to retrieve indirect structural information

(such as specific atom linkages and distances) from which the final structure is computed.

The biological sample is commonly analyzed in solution (rarely in a solid state), however

biomolecules have to be isotope-labeled and quite a big amount of mostly hard to obtain

biological starting material is needed. Furthermore NMR is limited to molecules of mod-

erate size (∼ 40 kDa), which severely impairs the investigation of large macromolecular

complexes.

Regarding the investigation of asymmetric macromolecules, single particle cryo-electron

microscopy historically is the youngest method available. Although the first three dimen-

sional reconstruction from electron micrographs (tail of bacteriophage T4) succeeded in

1968 (de Rosier and Klug, 1968), only 10 years after solution of the first crystal structure,

this structure was a mere methodological proof of concept. The first asymmetric structure

of sub-nanometer resolution was that of the ribosome obtained by Valle et al. in 2002.

Only recent improvements in instrumentation and especially in computing performance

empowered this method to be used more or less routinely. Cryo-EM is very well suited

for the analysis of huge macromolecules or even complexes of those (Frank, 2006, 2002;

Stark and Lührmann, 2006). It has the big advantage of needing only tiny amounts (in

the order of three magnitudes less than needed for crystallography or NMR) of the bi-

ological sample under investigation. If the dataset (i.e. the collection of single molecule

projections) and the computing power is large enough, dynamic effects may also be stud-

ied via separating different conformers and performing ensemble refinements (Leschziner

and Nogales, 2007). Structural studies additionally exploiting dynamical effects were for

example performed for the U4/U6.U5 Tri-snRNP (Sander et al., 2006), the RNA editing

machine in trypanosomes (Golas et al., 2009) or the anaphase-promoting complex (Herzog

et al., 2009). Conversely, smaller molecules (< 200 kDa) are hard to investigate as they
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are lacking contrast in transmission electron-microscopic images.

Common to all methods is their need of extensive computational post-processing of the

experimentally obtained data. This is especially true for cryo-EM where the reliability

of the final model is directly linked to the accuracy of the engaged algorithms and lim-

ited by the amount of computational power available. Given their specific prerequisites

and properties, these methods complement each other in determining the 3D structure

of a given biological macromolecule. Table 1.1 summarizes the main features of X-ray

crystallography, NMR, cryo-EM outlined so far.

Table 1.1: Comparison of methods used for three dimensional structure determination.

Property/Method X-Ray NMR Cryo-EM

Main physical phenomenon Elastic X-ray

scattering

on electrons

Nuclear spin

transitions and

interactions

Elastic electron

scattering on nuclei

Size range < 1.5 MDa < 40 kDa > 200 kDa

Typical resolution 1 - 6 Å n.a. 5 - 30 Å

Analysis of dynamics − ++ +

Current number of

structures solved∗
49485 7846 240

∗As obtained from the RCSB Protein Data Bank (Berman et al., 2000), May 2009.

1.2 Single particle cryo-electron microscopy

1.2.1 Overview

Briefly, the purified biological sample is applied to a sample grid and either stained at room

temperature or shock frozen in its native, hydrated state in a thin layer of vitrified ice

(Lepault and Dubochet, 1986). Subsequently, transmission electron microscopic images

are recorded, in which various two dimensional projections of identical but randomly

oriented 3D biomolecules on the sample grid are represented. As the biological samples are

sensitive to radiation damage, image acquisition is done under low dose conditions (∼20

e/Å2). This, however, results in reduced contrast and increased noise in the recorded
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Figure 1.1: Overview - From sample to structure in single particle cryo-electron microscopy.

images. In order to overcome those experimentally imposed limitations, single particle

images representing the same orientation of the 3D biomolecule can be averaged. Prior

to averaging, images representing the same orientation have to be found and aligned onto
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Figure 1.2: A: The latest generation of a TEM, the FEI “Titan Krios”. The overlay (indicated by

the yellow frame) shows the microscope as it would look like with front doors open. B: Schematic

illustration of the main components a TEM is built of.

each other, such that the averaging is taking place over information related to the same

structural content. Averaging can become very difficult in the presence of high levels of

noise and extensive sample heterogeneity (i.e. the presence of several, slightly different

3D biomolecules from which the 2D projections are obtained from) and hence is aided by

intensive computational image processing (see later sections for more detail).

1.2.2 Instrumentation

The experimental data obtained from a cryo-EM experiment is 2D projection images of

single molecules as imaged by a transmission electron microscope (TEM) in bright-field

imaging mode. Figure 1.2A shows a state-of-the-art TEM (FEI - “Titan Krios”) as for

example is used in the group of Prof. H. Stark. The field emission gun (FEG) is the source

of a spatially and temporally highly coherent electron beam. Electrons are accelerated

through a selected potential difference of typically 100 – 400 kV resulting in a ∼ 100, 000

fold shorter wavelength than that of visible light (380 – 780 nm). The condenser system

(consisting of two or more lenses) demagnifies the initial beam and enables the adjustment

of the spot size (i.e. the beam diameter on the specimen). Below the condenser lies the

specimen chamber, one of the most crucial parts of a modern TEM. A special holder must

be positioned accurately and under liquid nitrogen temperature inside the objective lens.
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It furthermore has to be capable of being moved several millimeters and tilted by large

angles, still being operated in Ångstrom precision and stability. The strong objective lens

forms the first intermediate image and the first diffraction pattern in the back focal plane.

By limiting the angular range of the scattered rays the objective lens aperture ultimately

sets the upper resolution limit (and thus no aperture or a large aperture setting is used

for high resolution images). The intermediate and projector lenses further magnify the

first image and finally project it onto a fluorescent screen or a CCD device, respectively.

Figure 1.2B illustrates the most important components schematically.

1.2.3 Image formation

The underlying physical principle of image formation in a TEM is the interaction of beam

electrons with the specimen. For this interaction two mutually exclusive effects are distin-

guished: i) elastic scattering and ii) inelastic scattering. In the case of elastic scattering

the electrons are diffracted by the Coulomb field of the specimens’ nuclei. No loss of energy

is involved in this interaction. In contrast, inelastic scattering involves energy transfer,

i.e. the electrons loose energy which is deposited on the specimen, leading to radiation

damage and unwanted background scattering effects. It is the elastic scattering effect

which is used for imaging whilst the influence of inelasting scattering is tried to be re-

duced, which can partly be accomplished by energy filtration (if instrumentally available),

i.e. masking out electrons that have lost marginal amounts (0 – 15 eV) of energy. The

amount of radiation damage is reduced by cooling the specimen to cryogenic temperatures.

Having scattered electrons, still an image has to be formed. Using electron lenses, Ernst

Ruska succeeded in this task with the first electron microscope built in 1931 (for a his-

torical review see (Ruska, 1979)). A meaningful image exhibits image contrast, i.e. a

2D distribution of different intensities. Independent of the scattering type, contrast may

physically be generated by means of amplitude-contrast (particle-optical effect) and/or

phase-contrast (wave-optical effect). In cryo-EM a mixture of both effects take part in the

image formation process but with /sim95 % contribution the effect of phase-contrast is of

most importance and is introduced briefly in the following section.

1.2.3.1 Phase contrast

The elastic scattering by the specimen may first be simplified by inspecting the scattering

by two points P and Q separated at a distance r. Figure 1.3 shows an incident wave along
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Figure 1.3: The black dots (P and Q) are sources of scattering. The origin of the system is at P;

Q is at position r. The system is irradiated by an incoming wave in direction s0. The scattered

wave is observed in the direction of vector s. Because of the path difference p + q, the scattered

wave 2 will lag behind scattered wave 1 in phase. The total scattering can be described by the

vector S, which is perpendicular to an imaginary reflecting plane.

s0 scattered by P and Q resulting in the scattered vector s. We assume the points to

scatter completely independent of each other. Therefore, the amplitudes of the scattered

waves 1 and 2 are equal, but have a phase difference resulting from the geometric path

difference between the wave passing through point P and the wave passing through point

Q. The path difference is p+ q = λ[r · (s0 − s)]. The phase angle of wave 2 in respect to

wave 1 is

ϕg =
−2πλ[r · (s0 − s)]

λ
= 2πr · S (1.1)

where S = s− s0 and λ is the wavelength.

As depicted in Figure 1.3, S is perpendicular to an imaginary diffraction plane reflecting

the incident and the exit beam at equal angles θ, and the length of S is given by

|S| = 2sin
θ

λ
(1.2)

Thus the total scattering for the two-point system is

ψ(r) = fp + fqe
2πir·S (1.3)

where fp and fq are the resultant wave amplitudes for P and Q, respectively. Stepping

gradually back to real world, the term “point” may as well be replaced by “atom”, such
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that f becomes the scattering power of atoms P and Q of the specimen. Unfortunately,

f does not linearly change with the atomic number (Z). Especially for high values of Z,

absorption effects have to be taken into account. This is practically done by making the

atomic scattering amplitude complex and separating it into three parts: fcorr = f+f ′+if ′′

where f is the contribution of the “original” (uncorrected) scattering amplitude and f ′

and f ′′ are the real and imaginary contributions of the absorption effect. In TEM this

effect is attributed to those contributing to amplitude contrast 1.

The diffraction of the whole specimen may now be regarded as the diffraction of a plane

of atoms, which itself leads to a phase retardation of ϕs = π
2 with respect to the scat-

tering by a single atom. This phase retardation is caused by means of Fresnel diffraction

which exact derivation is out of the scope of this introduction and is referred to Kauzmann

(1957). Thus, the exit wave after passing the specimen can be described by

ψs(r) = ψ0e
iϕs(r) (1.4)

with ψ0 being the incident wave prior to specimen diffraction. Finally, the amplitude F (S)

in the diffraction plane can be obtained by integration over all the surface elements d2r

of the specimen plane,

F (S) =
∫∫

ψs(r)e(iϕg) d2r =
∫∫

ψs(r)e(2πir·S) d2r (1.5)

This shows that F (S) mathematically is the (two dimensional) Fourier transform of ψs(r).

The intensities in the final image (which are proportional to the squared amplitudes) may

be exemplified by decomposing F (S) into an unscattered incident wave amplitude ψi and

a scattered (π2 phase-shifted) amplitude ψsc. Figure 1.4 shows that, for ψsc � ψi, the re-

sultant amplitude has approximately the same absolute value as ψi, so that I = |ψi+iψsc|2

does not significantly differ from I0 = |ψi|2. This simply means that no contrast is gener-

ated and the phase object (similar to light-microscopy) is invisible. If however, the phase

of the scattered wave could be shifted by a further ±π
2 the superposition would become

ψi ± ψsc and hence I = |ψi ± ψsc|2 6= I0 resulting in negative or positive phase contrast,

respectively (see Figure 1.4).

In light-microscopy this phase shift is introduced by a so-called Zernike (Zernike, 1942)

phase plate, which - for technical reasons (Majorovits et al., 2007; Cambie et al., 2007;
1In analogy, this phenomenon is known as anomalous dispersion (see REF) in X-ray crystallography.
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a

b

c

Figure 1.4: Electron microscopic phase contrast. a: Addition of the vectors of incoming and

diffracted wave under the assumption that no additional phase shift has occurred in the objective

lens. b: A phase shift of π
2 causes positive phase contrast. c: A phase shift of −π2 results in

negative phase contrast.

Schroder et al., 2007) - can not easily be used in TEM. Instead, phase contrast is generated

by defocussing.

Phase contrast transfer function The phase shift ϕd induced through defocusing is

a function of the scattering angle θ or, in other words, varies with the spatial frequency

(real-space: resolution-shell). To be accurate, another source of phase shift has to be taken

into account which is caused by the so-called spherical aberration Cs, a property inherent

to all real lenses including light-optical as well as electro-magnetic ones. Together these

effects are termed wave aberration and can concisely be written using the Scherzer formula

(Scherzer, 1949)

W (θ) =
π

2λ
(Csθ4 − 2∆zλθ2), (1.6)
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Figure 1.5: Wave aberration W (θ̂) as a function of the generalized scattering angle θ̂ for various

reduced focusing distances ∆ẑ. Figure modified from Reimer and Kohl (2007).

with θ describing the scattering angle and ∆z the current defocus. As the wave aberra-

tion depends on two parameters Cs and λ which are typically different among different

instruments/experiments it is convenient to discuss 1.6 in terms of generalized coordinates

θ̂ = θ(
Cs
λ

)
1
4 and ∆ẑ = ∆z(Csλ)−

1
2 . (1.7)

This results in the general wave aberration

W (θ̂) = 2π(
θ̂4

4
− ∆ẑθ̂2

2
) (1.8)

which is plotted in Figure 1.5. Inspection of this function reveals that a generalized

defocus of ∆ẑ = 1 (also called Scherzer focus) in terms of creating contrast is most advan-

tageous because W (θ) has the value −π
2 over a relatively broad range of scattering angles

or spatial frequencies, respectively. However, in practice a disadvantage of images gener-

ated in Scherzer focus is that they are hard to detect because lower resolution features

(low spatial frequencies) are poorly transmitted thus having the same effect on the image

as a drastic high-pass filter (see A.2) would have.



1.2 Single particle cryo-electron microscopy 11

The effect of (1.6) as an additional phase shift on (1.5) can be imagined as a, with increas-

ing spatial frequency accelerating, rotation of the scattered amplitude ψsc in the complex

plane. Thus the final intensity I at scattering angle θ can be described as

I(θ) = |F (S)|2 sin(W (θ)) (1.9)

where sin(W (θ)) often is referred to as phase contrast transfer function (PhCTF) (Fig-

ure 1.6). Equation (1.9) only holds true under the assumption of an infinite aperture and

-1

0

1

0 0.5 1 1.5 2 2.5
θ̂ →

∆ẑ = 1
∆ẑ = 5

-1

0

1

0 0.5 1 1.5 2 2.5
θ̂ →

∆ẑ = 1
∆ẑ = 5

Figure 1.6: Left: Undampened PhCTF. Right: Exponentially dampened PhCTF. Both functions

are shown for different generalized defoci ∆ẑ.

perfect beam coherence. In practise neither of both assumptions holds true, and the effect

of a finite aperture and partial beam coherence dampens the amplitude exponentially.

This dampening may be expressed through the convolution with an envelope function

for which different representations have been developed (Wade and Frank, 1977) and is

termed (experimental) B-factor.

1.2.3.2 Amplitude contrast

Amplitude contrast is mainly generated by two effects, i) strongly scattered electrons that

do not hit the recording device anymore ii) electrons that get absorpt by the specimen.

Both effects decrease the total electron beam power, hence resulting in amplitude contrast.

However, in cryo-EM very thin specimens with maximum aperture settings are investigated

hence the effect of amplitude contrast - to a first approximation - can be neglected.
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1.2.4 Computational image processing

“Computers are useless. They can only give you answers.”

—Pablo Picasso

Having collected digital images of the specimen, a lot of computer aided processing has

to be performed to extract the inherent 3D structure(s) out of the 2D projections. To

date, the methods available are too numerous (for an overview see Frank (2006)) as to be

exhaustively discussed in the context of this thesis. Hence, only a brief introduction of

the most important concepts is given in the following sections.

1.2.4.1 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is the ratio between the variance of the signal and the

variance of the noise in a given image. This measure is extremely useful in assessing

the quality of experimental data and in designing appropriate synthetic data of different

quality.

1.2.4.2 Particle picking

The raw data produced by any modern TEM are large (typically 4k by 4k pixels - depend-

ing on the detector), noisy CCD images of single molecules (particles). Prior to further

processing those particles have to be cut out into typically squared windows with an 30 %

increased width compared to the particles diameter. This task may already be challenging

as particle contrast may be very low depending on the defocus used (see Section 1.2.3.1),

the particle size and the preparation quality. Some semi-automated routines exist (e.g.

Boxer (Ludtke et al., 1999), Signature (Chen and Grigorieff, 2007), Pika (Busche, 2009))

to perform this otherwise tedious task of boxing out up to 106 individual images. Most

of them at some point use local variance detection and Fourier-based cross-correlation

functions (for a review see Nicholson and Glaeser (2001) and for a comparison see Zhu

et al. (2004)).

1.2.4.3 Correction of the PhCTF and image filtering

As outlined in Section 1.2.3.1 the image signal is convoluted with the PhCTF. Hence, the

image intensities will flip in sign after every zero crossing (in the frequency domain) of the

PhCTF. In an ideal case, these intensity flips are regular over a whole micrograph (i.e. all
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images are convolved with the same PhCTF), however as the PhCTF varies with defocus,

instrumental instabilities (especially regarding tilt experiments) or different thicknesses of

the vitrified ice may locally change the defocus and hence the CTF. To this end automatic

procedures have been developed to locally fit the PhCTF and correct for it by appropriate

“phase flipping” (Huang et al., 2003; Mindell and Grigorieff, 2003; Sander et al., 2003).

Amplitudes are commonly not adjusted for their relative more difficult fitting (envelope

function, amplitude contrast effects etc. ) and the danger of (unwanted) raw data manip-

ulation.

Typically, images are filtered prior to further processing. Very low frequencies in the

Fourier domain correspond to slowly varying features in the real domain rwhich are unre-

lated to the particle structure (e.g. variations in the carbon film, ice or stain thickness).

High frequencies are relatively more deteriorated by noise, leading to a poor spectral

signal to noise ratio (SSNR) which is unwanted for the initial alignment and classifica-

tion routines. Thus, images are band-pass filtered (A.2) to remove those parts of image

information that would otherwise compromise further processing.

1.2.4.4 Alignment

In cryo-EM, alignment is understood as the mathematical operation which minimizes the

distance between two images. The mathematical operation commonly is a transformation

matrix T given by

T =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 (1.10)

describing three degrees of freedom: a rotation θ and two translations along x and y,

respectively. The distance criterion typically used is the total absolute difference between

corresponding pixels in a defined region D of the images. Thus, in a least squares sense,

the problem of aligning image f (reference) and g (destination) can be reformulated as

the minimization of ∫
u∈D
|f(u)− g(Tu)|2du, (1.11)

where D is the region of interest (for example, a disk with diameter d0), u is the pixel-

coordinate vector [ux uy 1]T and T is the transformation matrix defining the rotation

and the translations of the image (1.10). It is the optimization algorithm and the type
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Figure 1.7: The figure shows how strong reference bias can be if non-meaningful content is

aligned. In this extreme case 1000 samples of pure noise were aligned using standard algorithms

to the Einstein reference. The resultant images to the right show the clearly biased 2D averages

of the 1000 images for each alignment protocol.

of interpolation in what currently available methods differ. Conceptually, 2D alignment

methods can be divided into two classes: those that exhaustively sample all possible

combinations of the three orientation parameters, and those that use either simplifications

(by separating the search problem into a translational and a rotational part) (Penczek

et al., 1992), or take advantage of invariant image representations (for example see (Schatz,

1992; Frank et al., 1992)). Technically, five main methods can be distinguished:

Direct alignment in real space The two images are directly compared in real space,

sampling all possible orientations of the particle view.

Direct alignment using 2D FFT The reference image is rotated and for each rotated

version the 2D FFT is computed and stored. In a second step the 2D FFT of the

destination image is compared to all references making use of the rapid Fourier-based

cross-correlation function (FT-CCF, see A.1.2).

Alignment using the Radon transform The 2D discrete Radon transform (also known

as sinogram) (A.4) of the reference and the destination image is computed. Briefly,

the properties of the generated sinograms combined with appropriate additional 1D

and 2D FFTs allow for the determination of the three parameters (θ, x and y) at

once. For a detailed description see Lanzavecchia et al. (1996).
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Alignment using re-sampling to polar coordinates In this method, the destination

image is re-sampled to polar coordinates with respect to selected origin locations

within the image frame. The different origin locations reflect the translational de-

grees of freedom and have to be searched for exhaustively. The reference image is

also re-sampled to polar coordinates but is not being shifted. As the polar coordinate

re-sampling transforms rotational relationships into translational ones the rotation

angle θ can rapidly be found using the FT-CCF.

Autocorrelation based (non-exhaustive) alignment This method is based on the

idea of inspecting invariants which are obtained by computing the auto-correlation-

function (ACF) (A.1.2). In essence, the relative rotation between reference and desti-

nation is obtained by comparing their translation-invariant representations, whereas

the relative translation is revealed by comparing their rotational invariant represen-

tations. The comparisons are always performed using the fast FT-CCF.

All described methods are proven to deliver good results, however they vary in perfor-

mance and in accuracy given different input data. It is important to choose the best

performing method on the given problem, because even smallest differences both in accu-

racy and performance (speed) have a huge impact on the global 3D reconstruction process.

Inaccuracies ultimately lead to blurring or biasing effects and thus hinder high-resolution

determination as do slow performing algorithms which easily scale up to several years of

computation on huge (> 106 images) datasets. For a comparison and evaluation between

the outlined methods see for example Joyeux and Penczek (2002).

1.2.4.5 Dimension reduction and classification

Whilst the alignment algorithm may find the optimal transformation to make a pair of

images as similar as possible to each other, this by no means implies that also the con-

tent of the two images has to be similar. Formulated more drastically, even pure noise

can be aligned to a reference in an optimal way. And exactly this behavior leads to one

of the currently biggest problems in the field known as reference-bias or more generally:

model-bias (see Figure 1.7). To prevent this from happening, it has to be ensured that

the images subjected to alignment and subsequent averaging indeed represent the same

(or at least very similar) content. Hence, the dataset has to be sorted into subsets prior to

alignment or averaging. Obviously, if the classification is not invariant against translation

and rotation of the individual images, alignment and classification are closely intertwined.
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Although methods for invariant classification exist (Schatz, 1992; Tang et al., 2007) they

are not commonly used for their relative worse performance regarding lower SNRs. In-

stead, alignment and classification are performed separately in an iterative manner (see

overview Figure 1.1). The classification problem mentioned above can be formulated in a

general way:

Given a non-empty set B of individual images xi ∈ B the task is to group elements

xi into n subsets Ai ⊆ B with
∏n
i=1Ai = ø such that for all subsets the intra-subset

similarity

Sxy := {x, y|x ∈ Ai ∧ y ∈ Ai} (1.12)

gets maximized and the inter-subset similarity

S̄xy := {x, y|x ∈ Ai ∧ y ∈ Aj , i 6= j} (1.13)

gets minimized. As the stated problem is inherent to many other disciplines, standard

tools like K-means, hierarchical-, spectral-, fuzzy clustering etc. exist and are used in

cryo-EM. The Imagic (van Heel et al., 1996) software suite for example uses an ascending

hierarchical clustering algorithm. However, given the size of standard datasets, direct clas-

sification using the full pixel information of each image (which can easily total numbers

> 109) is - even on modern workstations - infeasible to compute. Therefore, a dimen-

sionality reduction step prior to classification is routinely performed. The Imagic suite

for example uses multivariate statistics based on the principle-component-analysis (PCA)

(Frank, 2002).

The PCA (or synonymously Eigenanalysis) is a statistical method to describe a mul-

tidimensional dataset. Orthogonal, principle extensions (also termed Eigenvectors, or

Eigenimages) of the data cloud are found and weighted by their total interimage vari-

ance. By means of a coordinate transformation, the original data-points can be projected

into a new coordinate system with the Eigenimages as basis vectors. A dimensionality

reduction can now be achieved by taking only a limited number of Eigenimages (sorted by

decreasing associated variances) into account. The first coordinate axis will thus point in

the direction of highest variance of the data set, the second axis into the second highest

variance and so on. As a consequence of the dimensionality reduction, the classification

can now be performed much faster, but still on data containing information about the

main differences within the dataset. Mathematically the Eigenvectors of an image dataset
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can be found by populating a matrix X, such that each row contains the linearized pixels

of each image.

X =



x11 x12 . . x1J

x21 x22 . . x2J

. .

. .

xI1 xI2 . . xIJ


(1.14)

where xij represents the j’th pixel of the i’th image. Eigenvectors and Eigenvalues are

calculated using the Eigenvector-Eigenvalue equation:

Du = λu (1.15)

where matrix D is defined as

D = (X − X̄)′(X − X̄) (1.16)

where X̄ represents a matrix containing the average image in each row, and λ is a mul-

tiplier and D is termed the covariance matrix. Equation (1.15), solved by diagonalizing

the matrix D, has at most p solutions {u1,u1, ...,up where p = min(I, J). The vectors

ui describe the basis vectors of an orthogonal coordinate system in RJ and are termed

Eigenvectors, with their associated Eigenvalues λi (see (1.15)).

Irrespective the preprocessing procedure, a degree of similarity (1.12) between images

(or reduced versions of those) has to be determined in the end. The most important

similarity measures published and proposed for use in cryo-EM are listed in the following.

Cross Correlation Coefficient Let f1 and f2 denote two images each with J discretely

sampled pixels (represented as J-dimensional vector rj ; j = 1, ..., J) the cross-correlation

coefficient (CCC) is defined as:

CCC =

∑J
j=1(f1(rj)− f̄1)(f2(rj)− f̄2)√∑J

j=1(f1(rj)− f̄1)2
∑J

j=1(f2(rj)− f̄2)2
(1.17)

where

f̄i =
1
J

J∑
j=1

fi(rj); i = 1, 2 (1.18)

The CCC can be regarded as the “cross-variance” between two images.
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Differential Phase Residual Let F1(k) and F2(k) denote the 2D Fourier transforms

of images f1 and f2 respectively, the differential phase residual (DPR) (Frank et al., 1981)

is defined as:

DPR(k) =

√∑
k[∆ϕ1,2(k)]2 · (|F1(k)|+ |F2(k)|)∑

k(|F1(k)|+ |F2(k)|)
(1.19)

where

∆ϕ1,2(k) = arg(F2(k))− arg(F1(k)) (1.20)

and k = [kx ky]T is the discretely sampled spatial frequency. The sums are computed

over Fourier components falling within concentric rings of spatial frequency radii k = |k|.
Hence, unlike the CCC which gives a single scalar value, the DPR evaluates to a function

of k. In order to obtain a single figure of quality, the spatial frequency where the DPR

equals π
4 (often also termed k45) is used. The DPR can be understood as the root mean

square (r.m.s) deviation of the phase difference between two Fourier transforms, weighted

by the average Fourier amplitude.

Fourier ring correlation The Fourier ring correlation (FRC) (Saxton and Baumeister,

1982; van Heel and Stöffler-Meilicke, 1985) is defined as:

FRC(k) =
Re{

∑
k F1(k)F∗2(k)}√∑

k |F1(k)|2
∑

k |F2(k)|2
(1.21)

The meanings of k, F1(k), and F2(k) are the same as in equation 1.19 and again all sum-

mations are over specific rings in Fourier space. If the images are real, the corresponding

Fourier transforms exhibit hermitian-symmetry (also called Friedel symmetry), hence the

phase of the complex conjugated product in the numerator will add up to zero whilst scan-

ning one concentric ring. The FRC is thus a real cross-correlation coefficient, normalized

by the square root of the power in the rings in each of the transforms. Like the DPR the

FRC evaluates to a function of spatial frequency k. Different criteria have been described

to retrieve a single quality figure from the FRC, such as the 2σ (van Heel and Stöffler-

Meilicke, 1985), the 3σ (Orlova et al., 1997), 5σ (Radermacher, 1988; Radermacher et al.,

2001)or simply the 0.5 value (Böttcher et al., 1997) which is most frequently used.

Q-Factor In contrast to all similarity measures mentioned so far, the Q-Factor (van

Heel and Hollenberg, 1980; Kessel et al., 1985) can be used to evaluate more than two

images at once and is defined as:

Q(k) =
|
∑N

i=1 Fi(k)|∑N
i=1 |Fi(k)|

(1.22)
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where Fi(k) denotes the 2D Fourier transform of image i with k being the spatial fre-

quency. If the complex amplitudes of all images at a fixed spatial frequency are drawn

into the diagram, the Q-Factor describes the ratio between the length of the sum vector

and the length of the total pathway of the vectors contributing to it. Hence, the Q-Factor

evaluates to a number between zero (worst similarity) and one (identical images) for each

specific spatial frequency. This furthermore implies that the Q-Factor is not weighted

by amplitude powers. The expectation value for pure noise is Q(k) = 1√
N

, which can

be derived in equivalence to the random wandering of a particle under Brownian motion

(Einstein equation). Images are commonly regarded as having significant similarity if their

score is three times higher than the corresponding pure noise expectation (i.e. 3√
N

).

Spectral signal-to-noise ratio Like the Q-Factor the spectral signal-to-noise ratio

(SSNR) (Unser et al., 1987) can be used to evaluate any number of images at once. The

SSNR is defined as the ratio of the estimated normalized signal energy σ̂2
ks

and the esti-

mated noise variance σ̂2
kn

in a local region of Fourier space (typically annuli with distinct

spatial frequency radii k = |k|):

SSNR(k) =
Nσ̂2

ks

σ̂2
kn

(1.23)

where

σ̂2
ks

=
1
K

K∑
k

|F̄ (k)|2 (1.24)

σ̂2
kn

=
∑K

k

∑N
i=1 |Fi(k)− F̄ (k)|2

K(N − 1)
(1.25)

and

F̄ (k) =
1
N

N∑
i=1

Fi(k) (1.26)

with N denoting the total number of images evaluated and K denoting the number of

Fourier components per ring. Hence, the estimate for the normalized signal energy σ̂2
ks

is

computed from the Fourier transform of the averaged image.

Whilst similarity measures for comparing more than two images at a time are proposed

(see (1.22) and (1.23)), they are almost never used during optimization (a notable excep-

tion being the program Frealign (Grigorieff, 2007)). DPR, FRC, Q-Factor and also SSNR

are rather used for final quality assessment and not as objective function. It is the CCC
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distance criterion which is most frequently used during alignment and classification. Al-

beit being able to be rapidly computed, the CCC is a relatively rough similarity measure,

strongly varying with content independent features of the data. Within the presented

work the effect of using similarity measures other than the CCC is exploited and detailed

in later sections.

1.2.4.6 3D Reconstruction

The problem of reconstructing a 3D structure from the measured 2D projections finds its

analogy in the phase-problem encountered in X-ray crystallography. Both experimental

methods deliver only indirect structural information such that the experimental data can

not be used to simply compute the corresponding 3D object. Albeit not missing phases,

the information lost during cryo-EM is the 3D orientation (commonly described in Eu-

ler angles) of each recorded 2D projection, which will be termed “orientation-problem”

throughout this thesis.

Having once assigned correct angles to each projection, computing the 3D structure is

straight forward (see Figure 1.8), as is for X-ray crystallography if phases are assigned to

the structure factors. Like in crystallography also in cryo-EM several methods exist to

solve the orientation-problem and the best choice is made dependent on the properties of

the current experiment. A short overview is given below:

1. If a similar 3D model to the structure under investigation is already available, this

model can be used as a molecular-replacement. Projections with known orientations

are generated from the molecular-replacement structure in-silico. Those projec-

tions are then used as references for the experimental projections during alignment

(projection-matching). As already discussed this procedure can lead to substantial

model-bias if not used extremely cautiously (see Figure 1.7).

2. If no startup 3D model is available, the orientation-problem can theoretical be solved

by utilizing the Fourier slice-theorem which states that the Fourier transforms of

different pairs of projections resulting from the same 3D object should share at least

one common line. Thus, by finding those common lines the relative orientations

of the projections can be determined (Crowther et al., 1970). However, in practice

several factors like uneven distribution of the projection directions, the amount of

noise in the data, and sample heterogeneity limit the success of this method.
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Figure 1.8: Schematic diagram to illustrate the principle of 3D reconstruction. Each projected 2D

image, as obtained from the micrograph and after CTF correction and averaging (through classi-

fication and alignment) is subjected to a 2D Fourier transform. Following the so-called projection-

theorem (see A.3) those transforms represent central sections in the 3D Fourier transform of the

underlying 3D object. Hence, after accumulation enough sections from different views a 3D map

of the structure can be calculated by a 3D inverse Fourier transform.

3. Another method for de-novo structure determination is the so-called random-conical

tilt method (Radermacher et al., 1987). The basic idea is to take at least two images
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of the same specimen detail under different tilt angles. Commonly an untilted (i.e.

specimen plane perpendicular to electron beam) and another strongly tilted (by

rotating the whole specimen-holder in the beam up to ±60◦) image is collected. This

additional information can be used to solve the orientation problem of an unknown

structure. Drawbacks of this method are the increased radiation damage (due to

multiple image exposure) and the complicated image processing caused by merging

of the datasets (e.g. pairwise particle selection, precise tilt-geometry determination,

relative scaling etc. ).

After assignment of initial projection directions by either of the above mentioned meth-

ods, the resultant 3D (Coulomb-)density function of the reconstructed object is refined in

an iterative procedure in which reconstruction steps are alternated with estimation and

re-evaluation of the projection directions (Penczek et al., 1994; Grigorieff, 2007). Hence,

the reconstruction algorithm has to be fast and accurate in order to prevent propagation

of errors.

The reconstruction can be achieved by using several general strategies. One strategy

is to algebraically solve a linear system of equations built up from the individual rays (i.e.

the discrete 3D ray transform) of the 3D object. This problem commonly is too huge

for direct matrix inversion, hence iterative techniques such as the simultaneous iterative

reconstruction technique (SIRT) (Gilbert, 1972; Penczek et al., 1992) or the algebraic recon-

struction technique (ART) (Marabini et al., 1998) are used. Methods of this class are very

accurate but also very slow. Another strategy is to use the inversion of the 3D ray trans-

form. The widely used (weighted) filtered back-projection methods (Radermacher, 1992)

belong to this class. Other methods of the same strategy are the so-called direct Fourier

methods, which exploit the projection theorem by directly reconstructing in Fourier space

and finally reversing the 3D reconstruction to result in a real space density map. Those

methods require sophisticated Fourier interpolation schemes as non-uniformly sampled

Fourier grids are necessary to be computed during this technique. A recent approach to

this problem was achieved by Penczek et al. (2004) making use of a gridding-based direct

Fourier reconstruction (GDFR), which seems to be the superior method (both in speed

and accuracy) in comparison to all other existing ones.
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1.2.4.7 Validation

Literature focussing on quality control of cryo-EM structures is hard to find. Admittedly,

individual methods, such as the alignment or the reconstruction process (see Joyeux and

Penczek (2002) or Penczek et al. (2004)) are individually validated for consistency and

reproducibility. However, assessment of the global influences and the propagation of er-

rors as for example introduced through the iterative reference-based alignment and the

separation of the latter from the classification process, is - at least to the authors knowl-

edge - never done systematically. The obvious reason for the shortage in validation tools

roots in the very poor quality of the experimental raw data. Well proven measures, such

as the Rfree (Brünger, 1992) known from crystallography can not be applied to cryo-EM

as the statistical significance per raw data is much to low. In other words, performing a

cross-validation against noisy raw data results in noisy (meaningless) accuracy figures.

1.3 Scientific software development

1.3.1 Management and storage of large datasets

Scientists working in a laboratory know about the importance to keep track about per-

formed experiments including all related parameters (e.g. chemicals, concentrations, tem-

perature etc. ). Frequently, this information is archived in a lab-book which may later

be consulted for repetition of experiments or as basis for the design of new experimental

strategies. The exact and complete storage of scientific data forms a major part of a set of

general guidelines termed “good laboratory practice” (GLP). Similarly, computer-based

experiments like the image-processing part of cryo-EM have to be documented. This

however is non-trivial thanks to the huge amount of data involved. Furthermore some

requirements special to digital data storage should be fulfilled: i) Data should be query

able and saved consistently ii) Data should be portable (different operating systems) iii)

Data should be easy to archive (e.g. to be concisely stored on tape-based backup systems)

iv) Data reading and writing should be fast.

The type of data to be stored in cryo-EM are images, corresponding meta data and

the history of manipulation routines performed on those images. Technically, only two

different systems are capable of fulfilling most of the mentioned requirements. This is

at the one hand a relational database (DB) and on the other hand a sophisticated, in-
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ternally structured file. An example of a DB based solution to cryo-EM can be found

by Liang et al. (2002). A file based approach to multi-data storage is not easily found

in cryo-EM but is very popular and frequently used in protein X-ray crystallography.

Crystallographic data often is collected in a so-called MTZ-file, which can be regarded

as an binary, hierarchical, fixed-format data and metadata storage system2. However,

most software packages in cryo-EM use more or less flat-file based approaches, featuring

no, or only limited amount of history tracking and enforced naming and storing consis-

tency. Consequently, each user stores files in different folders among different operating

systems on different physical places (local or server site) with individual naming and sort-

ing convention. This most often wreaks havoc with increased time and number of projects.

Addressing the above mentioned shortcomings a new file format for project based data

management was developed as part of this thesis. The file stores image data and all rel-

evant meta data (such as image headers, manipulation parameters, internal linkage and

history) in a binary, hierarchical format and is based on the HDF (hierarchical data for-

mat) framework3. HDF was chosen for its long history, proven stability and support.

A prominent user of this framework for example is the NASA with its Earth Observ-

ing System (EOS), the primary data repository for understanding global climate change.

Over the 15 year lifetime of this project NASA will store 15 petabytes of data in HDF,

demonstrating the data management capabilities of this framework.

1.3.2 Parallel programming

It is a general trend in scientific and engineering disciplines that with the increased sophis-

tication in instrumentation also more data per time unit are produced. Hence, to keep up

with computational downstream processing, either the algorithms have to perform more

efficiently or the underlying hardware has to boost the execution time accordingly. Whilst

the former approach most often is infeasible, hardware manufactures where quite success-

ful in doing the job over the past decades. Throughout the entire 1990s the CPU (central

processing unit) processing power doubled almost every 18 month. However, recently this

pace can not be kept up anymore. Physical limitations such as heat generation and the

very small sizes (lithographic scattering limits) prevent the CPU from getting even faster.

Consequently, if a single unit can not be made faster, the idea is to use more of them in

2See http://www.ccp4.ac.uk/html/mtzformat.html#fileformat for more details.
3http://www.hdfgroup.org/
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Figure 1.9: This figure schematically illustrates different levels on which parallel programming

may be applied. A Shows the input data to be computed (here 2D images with four pixels each).

B On a first level of parallelization the data may be split amongst physically different computing

units. C The data is furthermore split (still as whole image entities) and distributed among available

GPUs. The highly optimized GPUs are able to break the parallelization down to the individual

pixels of the images. Thus if parallelization overhead is neglected, the processing time of the

illustrated example that execution time of a single pixel-operation.

parallel. At the time of writing even a moderate-priced desktop PC features at least two,

but sometimes also up to eight CPUs. Furthermore, since very recently a new technology

which allows for massively parallel computing on the GPU (graphics computing unit) got

available (see Section 1.3.2.2). Hence, a single desktop PC (possessing a descent GPU in

the optimal case) is already able to theoretically massively speed up computations through

parallelization (Schmeisser et al., 2009).
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Unfortunately, algorithms that are not explicitly designed to make use of more than one

computing unit will be unaffected in speed, irrespective the potential power of the un-

derlying hardware. Admittedly, it is a tedious job to rewrite already existent algorithms

to make use of this new kind of power. But when designing new algorithms with po-

tentially very long execution times or rapidly increasing input data sizes, it is a must to

think about a design which scales with the number of parallel computing units available.

Method development for the single particle cryo-EM technique is an excellent example

of such a situation. The data load is very heavy (routinely several GB and increasing)

and algorithms get increasingly complex with the improvement of overall accuracy. Thus,

new methods not only have to be scientifically accurate, but also - and with the same

importance - technically feasible to be computed in a descent time. New developments

regarding both aspects are subject to this thesis and will be presented in later sections.

Parallelism may be applied at different levels of granularity as is illustrated in Figure 1.9.

It is thus important to divide the computing problem in a way such that the overhead

introduced by the additional mechanisms needed for the very act of parallelization gets

reduced.

1.3.2.1 Farming

The uppermost level of parallelism is achieved by scaling out the computational problem

to many physical computers, also called nodes (compare Figure 1.9B). This technique fre-

quently referred to as farming can be further subdivided according to the properties of

the individual nodes.

If a fixed number of nodes with exactly the same hardware and thus the same computing

power are available, they can be connected to a dedicated, homogeneous cluster. Inter-

node communication is established via message passing through high speed point-to-point

network connections. A de facto standard for such a communication is the language inde-

pendent protocol MPI (message passing interface) (Park and Hariri, 1997), which is at the

foundation of many software solutions aimed to facilitate dedicated parallel programming.

On the other extreme, if the nodes participating in the parallel computation are of dif-

ferent hardware, they can not be trusted to be available and are only connected to single

master node but not between each other. This arrangement consequently is termed a non-
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Figure 1.10: The GPU consists of more artihemtic logic units (ALUs) than a CPU, but has rela-

tively less control and cache capabilities.

dedicated, heterogeneous environment. Being much less demanding in hardware infras-

tructure, even the Internet can be used as network and the nodes are provided voluntary

by any Internet user. Such frameworks exist and are also used for scientific purposes,

the most prominent examples being SETI@HOME or Folding@HOME using the BOINC

framework (Anderson, 2004). A similar system (albeit using a smaller network) especially

designed for the needs of cryo-EM was designed by Schmeisser (2009), which may also

serve as reference for more detailed information on farming.

1.3.2.2 GPU programming

GPU programming is at the finest level of parallel programming, allowing for data-element

wise multi-threading (compare Figure 1.9 C). GPUs are mainly build into specialized de-

vices (e.g. graphic boards) but can sometimes also be found directly as part of the mother-

board. Originally designed for the purpose of rendering pixels onto a screen, GPUs exhibit

an inherent parallel hardware design. Many more transistors (computer lingo: arithmetic

logic unit, ALU) are devoted for data processing rather than data caching and flow control,

as schematically illustrated in Figure 1.10. Hence, the GPU is especially well suited for

data parallel programming (i.e. the same program is executed on many data elements in

parallel) with high arithmetic density4. In the context of cryo-EM, a typical data element

to be processed in parallel (in a so-called thread) is a pixel or voxel of a 2D or 3D image,

respectively. Relating back to the concept of granularity, executing an individual thread

for each data-element reflects the finest level of concurrency theoretically possible and al-

lows for a maximum degree of scaling under varying numbers of parallel processing units.

4Arithmetic density describes the ratio of arithmetic operations to memory operations
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Prior to GPU computing, the data has to be transferred from CPU RAM (random access

memory) to GPU RAM. This is done via direct memory access (DMA) which is controlled

by a so-called DMA-Controller featuring an individual BUS system and thus is decoupled

from the CPU. General purpose GPU programming became more interesting only very

recently, the reasons being manifold:

i) Memory transfer still is the relatively slowest operation but an unavoidable over-

head for GPU programming. Former graphic boards were very limited in dedicated

memory (GPU-RAM) such that arithmetically dense programming was virtually not

possible. Recent boards feature up to 4 GB dedicated memory (e.g. NVidias Tesla

10 Series), hence reducing the need of memory transfer.

ii) For a long time, writing GPU code was merely like “hacking” the graphic board to

compute custom problems. Only with the advent of completely new designed and

well documented specific programming languages for GPUs, it is possible to write

code in a similarly convenient way as is possible for “normal” CPU code.

iii) Recent graphic boards feature a much for flexible design for on-board memory access.

All ALUs are allowed to perform reading from (gather) and writing to (scatter) any

memory location (Figure 1.11). This was not possible on older graphic boards, but

is needed for a CPU-like programming flexibility.

Unfortunately, the two main hardware vendors for graphic boards (ATI and NVidia) are

developing mutually incompatible product solutions up to now. However, a new open,

royalty-free standard for cross-platform parallel programming of modern processors (as

found in personal computers, servers or even mobile devices) called “OpenCL” (Khronos-

Group, 2008) promises to overcome these limitations in future. For the GPU based al-

gorithms described in this thesis the solution offered by NVidia, the so-called CUDA

(compute unified device architecture) language was used. A very brief introduction to

CUDA will be given withing the next section.

The CUDA programming language In CUDA lingo, anything related to the main

CPU is termed “host” whereas the GPU is regarded to as “device”, respectively. These

two keywords will be used throughout this thesis from now on.

The CUDA language can be regarded as an extension to the well known “C” language.
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Figure 1.11: CUDA scatter and gather operations. Reproduced with permission from Busche

(2009).

Hence, only minor syntactical extensions have to be learned by a C-programmer to be able

to write device code. Additionally, CUDA code is easily integrated into an object-oriented

C++ design, which is a great advantage for the work presented here, as all host code is

written in C++. The integration is facilitated by a specialized compiler (NVCC - NVidia

C-Compiler) that is part of the CUDA package available as a free download from the In-

ternet. The NVCC generates C conform object files, which can be linked to any C/C++

code via standard C/C++ compilers. The most important concept specific to CUDA

programming is the - in comparison to “normal” CPU threads - much extended thread

management system. Threads are batched into blocks, and blocks are batched into grids.

Each thread possess a unique ID (thread-ID) within a block also identified by a unique ID

(block-ID). All threads within a block can cooperate together by efficiently sharing data

through some fast shared memory. All threads within a block have to be synchronized by

the programmer to assure coordinated data access. For memory reasons, each block can

only have a limited number of threads, such that multiple blocks are created and arranged

in a grid. Communication between threads of different blocks is not possible. A parallel



30 1 | Introduction

computation has to be launched through calling a specialized function termed kernel with

a defined number of same-sized blocks and threads. Thus, the total number of parallel

operations (threads) equals the number of blocks multiplied with the number of threads

per block.

CUDA example - inverting image contrast Listing 1.1 shows a small example pro-

gram, which inverts the contrast of an image. The function to be called from outside is

a pure C-function (line 14), which may be easily embedded into a C++ framework. The

first thing to do is to allocate memory on the device (lines 16-17). Next, the host data

(here the array of an image) has to be copied to the device (line 19). Line 21 actually

launches the GPU part of the computation with 64 blocks and 128 threads as indicated

by the special <<< 64, 128 >>> syntax.

The code to be executed on the device is implemented by the function starting with

the CUDA directive global (line 5) which just means that this function can be called

by the host, i.e. represents a kernel ( device in contrast would indicated a function

only callable by the device). The current thread index is calculated utilizing in-build

variables, and the total number of threads is stored in gridSize (line 6,7). The while

loop ensures processing of all array elements (pixels) even if less threads than pixels are

available. This strategy ensures full usage of the device capability and renders the code

scalable with respect to different GPU boards. The actual contrast inversion happens in

line 9 by negating the current pixel.

Information about more complex issues of CUDA programming may be found in NVidia

(2009).

Listing 1.1: CUDA example code. The program shown inverts the contrast of an image.

1 #include <cuda_runtime_api.h>

2

3 extern "C" void invertContrast(float* arrayH , int size);

4

5 __global__ kernel(float* arrayH , int size) {

6 int idx = threadIdx.x + blockDim.x * blockIdx.x;

7 int gridSize = blockDim.x * gridDim.x;

8 while (idx < size ) {

9 arrayH[idx] *= -1.0;

10 idx += gridSize;

11 }
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12 }

13

14 extern "C" void invertContrast(float* arrayH , int size) {

15 // Allocate device memory

16 float* arrayD = 0;

17 cudaMalloc ((void **)&arrayD , sizeof(float)*size);

18 // Copy image data from host to device

19 cudaMemcpy(arrayD , arrayH , sizeof(float)*size , cudaMemcpyHostToDvice);

20 // Launch the kernel (64 blocks with 128 threads each)

21 kernel <<<64,128>>>(arrayD , size);

22 // Copy data back from device to host

23 cudaMemcpy(arrayH , arrayD , sizeof(float)*size , cudaMemcpyDeviceToHost);

24 }

1.4 Aim of the work

To date, the bottleneck on the way to high resolution cryo-EM structures is not the amount

of raw experimental data that has to be produced. It is rather the image manipulation

process, which has to be capable of retrieving the statistically available high resolution

information from the huge dataset. For such a process to be successful, it has to run fully

automatically, user-interaction and bias-free and it has to robustly increase the classifica-

tion and alignment quality under increasing amounts of available raw data. That implies

the identification and removal of individual raw images that are not of sufficient quality

to help improving the overall accuracy.

Currently available tools are already very powerful, but are believed to still not facilitate

the ultimate high resolution information available in state-of-the-art cryo-EM datasets.

Reasons for that may be manifold, but it is fair enough to formulate them as hypotheses

underlying the presented work:

- Most of the currently available methods use a pair-wise distance function to judge

image content similarity in the end. Under the present noise in the data, those

measures are believed to have a huge error associated to their result, limiting the

overall performance of any sophisticated manipulation based on those measures from

the very beginning on. It is the hypothesis that similarity should always be measured

for several images at once, thus statistically reducing the associated error to this

measurement.
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- Almost all current methods drive a supervised optimization strategy. Critical pa-

rameters (such as number and type of references for alignment, number of classes

and Eigen-images to be used for classification etc. ) are determined upon subjective

human decisions. This is believed to introduce bias and to reduce reproducibility of

the whole process. It is another hypothesis of this work, that subjective human inter-

action should be reduced to an absolute minimum and hence processes be designed

to run in an unsupervised fashion.

- As outlined in Section 1.2.4.5 the de-facto standard for image pre-processing is to

separate the alignment from the classification process and to overcome their inter-

dependency though an iterative approach. This process is believed to introduce

uncontrollable model-bias and may lead to albeit high in resolution but wrong in

geometry 3D structures. It is the third hypothesis of this work, that in order to

achieve accurate high-resolution 3D structures all processing routines have to be ab-

solutely reference/bias-free and that the alignment and classification problem should

be treated as a combined problem and solved at once.

In order to accept or reject any of the hypotheses mentioned above a new similarity

measure was developed that is able to evaluate an arbitrary number of images at once.

Furthermore, a new image processing strategy (named Crystalign) is introduced within

this thesis which will run in an unsupervised fashion and is aimed to combine classification

and alignment to a single reference-free optimization process. The efforts underlying this

thesis thus are focussing on an improvement of the overall accuracy and resolution of

cryo-EM based 3D structural investigation of biological macromolecules.



Chapter 2

Materials and Methods

2.1 Code generation – hard- and software used

Software development and all described local computations were mainly performed on a

desktop PC equipped with an AMD PhenomTM 9650 Quad-Core Processor with 8 GB

RAM, a NVidia GeForce 9800 GTX+ (500 MB RAM) graphics board and a NVidia

Tesla C870 (1.5 GB RAM) compute board.

Coding was mainly done using Emacs or (more rarely) Microsoft Visual Studio. Soft-

ware versioning was performed using Subversion running on a web-server and allowing

for team-oriented programming. For quality control and unit testing the CppUnit frame-

work was used. Automatic generation of documentation pages (preferably in html format)

was performed using the Doxygen software. The programming language used throughout

all described algorithms was C++ or CUDA for code running on the host or device, re-

spectively. Linux host-code compilation was aided by the CMake (Cross-Platform-Make)

meta-language and using the GNU-C++ compiler and linker. Windows builds were aided

by the tools offered within the Microsoft Visual Studio software. Building and linking

under windows was performed using the Microsoft C compiler/linker. Device code was

compiled separately using the NVidia C Compiler (NVCC). For tasks such as multi-

threading, reading/writing of various image formats, fast Fourier transform computation,

external freely available libraries were used, which are summerized in Table 2.1.

33
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Table 2.1: Listing of all external libraries used

Library Reference Purpose

boost www.boost.org Extensions to the C++ STL

hdf www.hdfgroup.org File-based data management

freeImage freeimage.sourceforge.net Image reading/writing of standard file formats

cppUnit cppunit.sourceforge.net Unit-testing framework

fftw, cufft www.fftw.org Fast Fourier transform (CPU, GPU)

openMpi www.open-mpi.org Parallel message passing interface

qt www.qtsoftware.com Cross-platform GUI development

2.2 Image processing framework

The post-processing of raw images as obtained from a cryo-EM experiment is a com-

plex process, involving various different manipulations such as normalization, filtering,

alignment, classification and reconstruction operations. In order to streamline this com-

putationally expensive process and to avoid unnecessary and error-prone file conversions

needed for the various expert software modules available, an in-house software pipeline

(termed Cow-Framework) is being developed under the administration of Prof. H. Stark.

The core of this pipeline (referred to as back-end from now on) is formed by a modular,

object-oriented C++ library, which has been already available at the beginning of this

work, but heavily extended and redesigned throughout. To be useful, the flexibility and

modularity of the back-end has to be reflected in an user-friendly interface (referred to as

front-end from now on). Consequently, next to a standard console application a graph-

ical user interface was designed, featuring “visual programming” and intuitive project

management for maximum usability.

2.2.1 Back-end

The design goals of the back-end may be summarized into six points:

1. Maximum possible performance for image manipulation algorithms

2. Uniform interfaces for core functionality (such as parameter handling, input/output,

image operations) allowing a “Plug-and-Play” architecture
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Figure 2.1: Simplified UML (Alhir, 1998) diagram illustrating the relationships of the main program

modules. Connections starting with a diamond represent “has a” relationships (aggregation),

arrows indicate “is a” relationships (inheritance). Classes in blue represent fixed core modules,

whereas yellow classes are specialized implementations of a given interface and may be added

in a Plug-and-Play manner. Instances of the Image class typically represent individual cryo-EM

images, and supply some basic functionality. The image functionality is fully abstracted from

the underlying type (i.e. could be GPU located) by making use of the so-called “State” design

pattern (Gamma et al., 2005). Instances derived from the Logic class describe manipulations

which are performed on multiple images. Logics may have several input and output channels.

Processors in contrast describe single image manipulations, hence read one image in and write

the processed version out. Typically, a logic makes use of one or more processors (aggregation).

Derived instances of the IO base class implement image reading and writing functionality for

various formats. Newly added back-end modules (yellow) will immediately be available in the

front-end application, as the communication interface (the Project class) abstracts all back-end

functionality.

3. Simple set up of individual tests for new functionality, which integrate into a unified

testing framework
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4. Consistent coding and documentation conventions

5. Project based data management, storage and archival

6. Cross-platform portability

As outlined above, the computational load for cryo-EM image processing is very high. Spe-

cific operations such as image-image alignment may be necessary to compute hundreds of

thousands times. Consequently, a maximum performance of highly repetitive functions

has to be strived for. However, speed optimized code typically exhibits harder readability,

especially for non-authors. It is the very concept of object-oriented programming to hide

those pieces of code behind clean, well defined interfaces. Other programmers just need

to know about the interfaces in order to make use of the existing highly optimized code.

In case of the Cow-Framework this clean interface is mainly guaranteed by the Parameter

object. The Parameter object can be regarded as a dictionary of key/value pairs where

the key is represented as a string (e.g. “numberOfIterations”) and the value can be of any

type1. Each dictionary entry must have a conventionalized description connected to it,

again expressed as a list of key/value pairs, including default values, parameter descrip-

tion, valid ranges etc. . The correct setup of the interfaces is ensured by the technique

of inheriting (in other words: detailing) base classes (see the blue boxes in Figure 2.1)

defining all important function signatures in an abstracted way. Thus, once a new func-

tionality is added to the back-end (be it a new IO channel for jpg reading, a new processor

for filtering, or a new logic for alignment) it will immediately be available throughout the

whole software system and can be directly used by back-end programmers or front-end

users (e.g. via the visual programing interface). This technique is frequently known as

Plug-and-Play architecture and has the big advantage of enabling new programmers to be

rapidly productive in developing new functionality as almost no knowledge or learning of

the tiring details of the underlying library is needed. Such a strategy ensures continual

improvement and completion of the software pipeline even under frequently varying per-

sonal conditions as is the common case in academic institutions.

Even more important than adding new functionality is testing it and ensuring proper

behavior under all possible conditions. This is especially true as biological conclusions
1This is convenient as in C++ all data types such as integral and floating point numbers, characters

etc. need to be differentiated
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are drawn and eventually published not based on the original experimental data but on

heavily computationally manipulated versions of the latter. To this end a unit-test frame-

work was developed which exploits the same convenience in usability as described above.

At any time the test can be run and the complete functionality of the whole pipeline be

tested and ensured for proper operation. Especially in team driven projects, an individual

programmer can not easily assure that a modification to a shared, widely used function-

ality will not affect the code generated by others. Running the unit test framework with

all tests passed however will.

As outlined in the introduction (see Section 1.3.1) a novel data file for storing project-

based information was developed within the HDF framework. Figure 2.2 illustrates the

internal file organization, which is not presented to the end-user in that detail. As can be

seen from the figure, the internal structure is quite similar to that of a linux file system.

The blue rectangles can be regarded as directory analogs, the red data symbols would

consequently correspond to ordinary files. Staying with the original HDF terminology,

folders will be referred to as groups and files will be termed datasets from now on. The

green dog-eared boxes (termed attribute-lists) are a special feature of the HDF technol-

ogy and have no analog in the linux file system. Attribute lists can be associated to both,

groups and datasets and are intended as commentary fields organized as a list of key/value

entries, much like the above described Parameter object as is used in the Cow-Framework.

In fact, a function was designed that takes a Parameter object as an argument and

translates it one-to-one into a HDF attribute-list. Each image header, for example, is

represented by a Parameter object within the Cow-Framework (every Image has a Pa-

rameter to store header information, see Figure 2.1), which after writing to the HDF file

will be converted to an attribute-list associated to the corresponding image meta dataset

(compare M1-3 from Figure 2.2 - only one attribute-list is shown for the sake of clarity).

Starting at the top, the HDF file itself contains some global project information such

as authorship, experimental setup, project date/time etc. stored as an attribute-list (top

green box in Figure 2.2). On the next hierarchy level, the file is separated into two groups:

i) a Data group which sequentially stores all data produced through execution of a Logic

(i.e. a multi-image manipulation routine) and ii) a Collection group which only stores

lightweight internal links (illustrated as black arrows) to all images produced. The Keep
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Figure 2.2: Internal structure of the HDF file. Blue rectangles represent groups (directory-like),

red boxes represent datasets (file-like) and green boxes represent lists of key/value data. Black

arrows indicate internal linkage (shortcut-like). See the text for more details.
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group is updated automatically after each computation and items are only allowed to be

removed from the end on, ensuring full project history tracking and thus good scientific

practice. Custom selections of individual images (compare S1 in Figure 2.2) are stored

in the Selection group, which allows random access and removal. The Link group is of

technical importance only and is used to store complex input/output connections that are

needed for the visual programming feature (see Section 2.2.2).

For each image, meta information (M1-3) and raw pixel data (I1-3) are stored separately,

allowing to write header data only and linking it to previously stored raw pixel data. This

is very useful for all algorithms that do not manipulate the actual pixel values, but merely

do a reordering or grouping of images (as for example all classification algorithms do).

Hence, redundant copies of pixel data are avoided which has a great impact on the total

memory needed to store and archive project related data (a single set of 10, 000 images

with 128x128 pixels already totals approximately 655 MB in size!). Furthermore, each

image meta dataset is linked to its job group containing all information (in form of an

attribute-list) necessary to be re-computed. Finally image-image linkages are established,

enabling history tracking of each individual image from the very raw data to the final

3D structure. Together the tight internal linkage allows for a deallocation of raw pixel

data at intermediate steps (which will shrink the file size drastically and is useful for long

term archival). A restoration of previously deallocated data can be achieved by simply

recomputing the corresponding jobs.

All software was developed with portability issues in mind from the very beginning on.

Theoretically, ISO/IEC conform C++ code should be platform independent, practically

this however is simply not true due to limitations and bugs in compilers and libraries. The

Linux GNU compiler and the Windows C compiler differ substantially in various specific

aspects of the language, such as Real Time Type Identification (RTTI), handling of static

members and template management/linking. Differences also exist in very basic function-

ality provided by the standard template library, termed STL. Only a parallel development

(in this case Linux and Windows) from the beginning on will result in reliable, fully plat-

form independent code. All described algorithms in this thesis can, without exception, be

equally well executed on a Linux or a Windows operating system.
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Figure 2.3: Screenshot of the user front-end CowEyes. The main modules are indicated by the

circled characters. A: Project management module B: Visual programming module C: Display

module D Property module.

2.2.2 Front-end

Having encapsulated all functionality in the back-end, front-end design only needs to

implement user-interaction and viewing possibilities. Hence, a console application can be

written very concisely whilst retaining full back-end functionality. A console application

allowing to use the new algorithms described in this thesis was developed. It can be

executed either command-line based or interactively. In order to further improve overall

usability and to simplify project managing tasks a graphical user interface (GUI) was

implemented in collaboration with B. Busche. The GUI currently features four main

modules (see Figure 2.3 for a corresponding screenshot):

Project management module The project management module gives the user access

to the HDF file, but abstracts the complex internal structure. The module is divided

into two parts: a history tracking and selection. The history part corresponds to

the Keep group (compare Figure 2.2) and lists jobs with their corresponding output

collections. Only the most recent job may be deleted from the history. The selection
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part corresponds to the Selection group (compare Figure 2.2) and can be used to

store any number of custom selections (i.e. collections of individual images). Random

deletion is allowed. Content information is retrieved through the Property and

Display modules (see below).

Property module The property module is a generic information window of key/value

type. The module is represented as an individual window, and shows information

about any object currently selected. Selecting a job item in the project management

module for instance will display all job related parameters, whilst selecting an image

thumbnail in contrast will display the corresponding header information.

Display module The display module is designed for image inspection. Images may be

displayed as a collection (thumbnail representation) or individually. Common manip-

ulation routines such as scaling, grey-value and mid-tone adjustment are available.

Visual programming module In the visual programming module all available back-

end modules (Logics) can be graphically represented and connected via their indi-

vidual input an output channels. Assemblies of several logic elements can thus be

regarded as small programs which we call templates. Templates can be saved for

later reuse or exchange among different users. Figure 2.3 shows a sample template

which was frequently used for testing the performance of the classification algorithms

developed within this thesis.

Currently the GUI operates as a stand-alone program on the computer it was started.

Although the back-end will detect the number of processors available (CPU and GPU)

and automatically makes use of these, the computing power available may still not suffice

to compute large jobs in a reasonable time. For this reason a server interface is in prepa-

ration, which runs the GUI as a client for submitting jobs to computer-clusters. The user

will be able to simply connect to a master server, hence switching the background com-

putation from local- to server-side without changing the overall appearance and behavior

of the GUI.

If not explicitly specified otherwise, all image manipulation routines and all figures (show-

ing cryo-EM related image representations) of this thesis were generated using the Cow-

Framework software including the described back-end and the GUI which will be referred

to as CowEyes from now on.
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Figure 2.4: The figure illustrates the relation of the crystal’s quality to its diffraction pattern. Crys-

tals are depicted by the collection of blue rectangles (representing nano-crystals). The red spots

indicate the diffraction pattern for a perfect crystal, which is overlaid in A and B for comparison.

With increased ordering of the crystal the diffraction spots get more and more defined.

2.3 Reference-free image classification

In this thesis a novel algorithm for reference-free classification of noisy images was devel-

oped (named Crystalign). New concepts for measuring image similarity and clustering of

images are introduced. All algorithms fit in the software framework described above and

are thus available to the user in various front-end realizations.

2.3.1 Motivation

The basic idea underlying all described algorithms is best understood by drawing an anal-

ogy to X-ray crystallography. Disregarding all systematic and random errors during a

diffraction experiment, the quality of the diffraction pattern is directly linked (via the

linear Fourier transform) to the quality (i.e. the regularity of the unit cells) of the crystal.

Thus, if one were to reverse the experiment, i.e. improve the diffraction pattern, the unit

cells would rearrange to be more regular and more similar to each other. The analysis of

the diffraction pattern of simulated crystals formed by individual images as unit cells is the
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key idea of all classification strategies described in this thesis. The principle idea however

is not new, an experimental version termed quasi-optical Fourier filtration was described

by Ottensmeyer et al. already in 1977. At this time no digital image processing was

available, but the problem of aligning and classifying images taken on photographic film

(micrographs) was still present. To this end Ottensmeyer developed an optical arrange-

ment that would visualize the diffraction pattern of stacked micrographs and selectively

display only the periodic information represented by the Bragg lattice. Alignment of im-

ages was achieved by manually moving and rotating individual micrographs of the stack

in a way that would lead to an improved diffraction pattern. With the advent of modern

digital image processing, this technique was superseded by other similarity measures (see

Section 1.2.4.5) such as the most frequently used CCC.

2.3.1.1 The objective function

Following the idea of measuring the quality of the diffraction pattern as an indicator of

image similarity the way how to assess this quality has mathematically to be specified. In

X-ray crystallography an important factor to address the quality of the diffraction pattern

is its resolution. A diffraction pattern in X-ray crystallography can be understood as a 2D

section of the power spectrum (A.1.3) of the 3D Fourier transform of the crystal’s electron

density distribution under a given beam-crystal orientation. The diffraction pattern of a

crystal exhibits so-called diffraction peaks, which can be regarded as the discrete sampling

of the continuous diffraction pattern that would result from a single unit cell. In other

words, due to the periodic arrangement of many copies of the unit cell, the amplitudes

for frequencies that are not also periodic with the unit cell dimensions will average to

zero (those frequencies correspond to sine waves sampling over statistically random con-

tent and hence
∫ +∞
−∞ sin(x) dx = 0 with xi = rand.). Diffraction peaks on concentric

rings refer to the same spatial frequency with increasingly higher frequency for larger ring

radii. The outermost diffraction peaks with average intensity above some certain thresh-

old (for example two standard deviations over background noise) are used to define the

real-space resolution (which is the reciprocal of the current spatial frequency). This con-

cept is very similar to the former described Q-factor (1.22), with the difference that the

Q-factor also exploits individual unit cell phase information unavailable in crystallogra-

phy. The squared numerator of the Q-Factor equation is analogous to the intensity of a

crystallographic diffraction peak (also termed structure factor). But instead of referenc-

ing the total intensity to background noise the Q-Factor inspects the individual complex
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contributions of each unit cell from which (by complex summation) the structure factor

is built of. The resolution of a synthetic crystal built up by cryo-EM images as unit cells

could thus be estimated by inspecting the Q-factor and choosing the highest frequency for

which the Q-Factor is above some certain threshold. Resonable threshold values can be es-

timated from the expectation value of the Q-Factor for random noise which is Q(k) = 1√
N

.

The maximum resolution is a good estimation for the total crystal quality as high res-

olution enforces accurate periodicity of the unit cell’s content on very fine detail (i.e. small

real-space distances) which commonly will only emerge if grainer detail (larger real-space

distances) is already perfectly repeated. The objective function used for all described

experiments and results in this thesis reads:

S =
1
K

K∑
k=1

wk

qk if qk > tN

0 else
(2.1)

with

wk =
k

K
, (2.2)

where

qk =
|
∑N

i=1 Fi(k)|∑N
i=1 |Fi(k)|

, (2.3)

and

tN =
1.7√
N

, (2.4)

where Fi(k) is the Fourier transform of the i’th unit cell for frequencies |k| = k, K is

the maximum frequency (Nyquist), and N is the total number of unit cells in the crystal.

The scalar score S thus results from the integration over Q-Factors of individual spatial

frequency up to a threshold value which is determined by a noise estimate tN (2.4) for

the current crystal size N . The integration is linearly weighted by a ramping function

wk (2.2) which enhances the contribution of higher spatial frequencies. In addition to the

total crystal score S, individual unit cell scores Si are computed, describing how well a

given unit cell fits into the context of the current crystal. These scores Si are obtained by

a statistical analysis of the weighted complex distances of each unit cell contribution to

the current average at frequency |k| = k:

Si =
di − d̄
σd

(2.5)
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with

di =
K∑
k=1

wi(Fi(k)− F̄ (k))2 (2.6)

where

wi =
|
∑N

i=1 Fi(k)|∑N
i=1 |Fi(k)|

, (2.7)

and

d̄ =
1
N

N∑
i

di , σdi
=

√
(di − d̄)2

N − 1
, F̄ (k) =

1
N

N∑
i=1

Fi(k) . (2.8)

It should be noted, that the sum over frequencies in (2.6) is also limited in same way as

qk is in (2.1) but not explicitly written for clarity.

2.3.2 Implementation

The optimization process consists of building several crystals and changing their unit cells

in order to result in an improved diffraction pattern. Hence, memory and time efficient

methods had to be developed to allow for continuous updates of the evolving crystals. To

this end three main structures (C++ objects) were developed:

Unit cell In crystallography a unit cell is defined as the smallest entity from which - by

applying translational operations only - the whole crystal can be build of. Similarly

the individual 2D images (on a fixed pixel frame) form the unit cells of the in-silico

crystals. However, unlike in crystallography not the original image itself, but a

complex representation of the latter is actually used as unit cell for computational

reasons (see Section 2.3.2.1).

Crystal Like in crystallography the crystal object represents a collection of unit cells. In

contrast to physical 3D crystals, the simulated crystals used here are one dimensional

only. They are generated by arranging unit cells in a linear array next to each other.

To be memory efficient an algorithm was implemented that minimizes the total

memory rearrangement operations upon change of the current unit cell composition.

Each crystal object can be individually evaluated for its diffraction quality and its

unit cells be sorted according to their contribution to the overall diffraction quality

(see Section 2.3.1.1 for details). The crystal object was designed in a way that the

details of the objective function can be changed without needing to adjust any other

code of the global framework.
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Crystal Map The crystal map contains crystal objects and hence represents the result

of the classification process. Several algorithms intended for parallel computation

act on the crystal map structure.

From now on the term “crystal” or “class” will be used interchangeably describing a set

of images found to be similar enough for later averaging. Images of a class will be referred

to as “unit cells” or “class members”. Having mentioned the main structural modules,

the classification process can also be divided into functional modules.

2.3.2.1 Unit cell preparation

Prior to all optimization functions, the input images are pre-processed. In this regard it

is of importance to notice that the discretely sampled Fourier diffraction peaks obtained

by Fourier transforming an array of periodic elements (i.e. a crystal) can mathematically

exactly be reproduced by summing up the complex Fourier coefficients of same frequency

as obtained from Fourier transforming each periodic element (i.e. a unit cell) individually.

Hence, the Fourier coefficients needed for crystal evaluation (see (2.1) and (2.5)) can al-

ready be pre-computed. In contrast to a naive coding scheme in which each crystal that

changes its unit cell composition (during optimization) would have to be Fourier trans-

formed in full length, the speedup in computing much smaller Fourier transforms of each

unit cell and this only once for the rest of the program run is tremendous. Indeed, without

this “trick” the described algorithms would be infeasible to be computed in any reasonable

time.

Secondly, some reasoning of how to exploit the 2D information of each unit cell has to

be done. In a naive setup, 1D Fourier transforms along image rows could be computed

resulting in row-wise crystals. Albeit easy to treat, such an arrangement would completely

ignore valuable 2D relations present in the data. A better approach would be to compute

the 2D Fourier transform of each image and use the resulting coefficients for crystalliza-

tion. However, this approach results in difficulties for later quality evaluation as Fourier

coefficients of same frequency lie on concentric circles, which are computationally difficult

to treat efficiently. The currently implemented solution to this problem makes use of the

so called discrete Radon transform (Sinogram) which can be understood as a kind of po-

lar sampling of the 2D Fourier transform (see A.4). The radon transform is rotated and

reordered in such a way that rows through the crystals correspond to image features of

increasing radial distance to the image center.
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Figure 2.5: Image pre-processing.

Thirdly, regarding the previously mentioned critical separation of alignment and clas-

sification (see Section 1.2.4.5), the possibility to pre-compute translational, rotational or

translational and rotational invariant representations of the input images was build into

the preparation module. Translational invariance is achieved via the computation of the

image’s auto-correlation function (A.1.2). Rotational invariance is generated in the same
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way but on a polar sampling of the image (as polar sampling transforms rotational rela-

tions into translational ones). Due to the usage of the Radon transformation during the

preparation process, a polar sampling of the image is already available such that the in-

variance computation just has to occur at the correct point of time during pre-processing.

For rotational invariance the so-called self-correlation (SC) is computed which differs from

the AC by taking the square root of the complex Fourier amplitudes prior to transforming

them back to real space. The reasoning behind this is a numerical one. Each evaluation

of an AC will result in squaring the complex Fourier amplitudes. Multiple squaring of the

Fourier amplitudes (which even without manipulation show a very high dynamic range)

quickly exceeds the maximum dynamic range of the floating point number a computer can

represent, hence leading to undefined behavior and artefacts. With regard to numerical

and also algorithmic stability another modification to the AC/SC is performed. Origin

peaks are removed (set to 0), as they only present the total sum of all pixel values (SC)

or the total sum of all squared pixels (AC) respectively, and hence will have no impact on

discrimination of structural features.

Prior to all the manipulations mentioned above, image mean normalization, circular mask-

ing, and internal coarsening (pixel binning) is performed. Figure 2.5 summarizes the

pre-processing steps in a flow diagram.

2.3.2.2 Crystallization

The crystallization module is intended for de-novo classification of unit cells (i.e. prepared

images as described in Section 2.3.2.1). Figure 2.6 illustrates the algorithm as a flow chart

and the following explanations are ought to be understood in line with this figure.

Briefly, each unit cell at a given point in time may be in one of two possible “pots”,

either in a linear queue (with no specific ordering imposed) or in a crystal map (see def-

inition above) as part of one specific crystal. Initially, the linear queue contains all unit

cells and the crystal map is empty. In the end all unit cells are ordered in crystals that

are part of the crystal map and the linear queue is empty. Hence, during the algorithm

unit cells are popped from the queue and incorporated into crystals. The decision to

which crystal a given unit cell should belong to and how many crystals are built in total

emerges completely automatically by applying the objective function criteria as defined in

Section 2.3.1.1. A unit cell is added to a given crystal if two scoring criteria are fulfilled,
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Figure 2.6: Flow-chart of the crystallization algorithm. Blue boxes describe operations, red ones

decision points. The two main structures, i.e. the linear queue of unit cells and the crystal map

between which the unit cells are shuffled, are illustrated in green. Refer to the text for more details.

i) the total crystal score S (2.1) with the unit cell is higher than the crystal score

without the unit cell

ii) the individual score Si (2.5) of the unit cell is below a given threshold value (user

adjustable, default 1.2)
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If a new unit cell is built in, subsequently the worst scoring unit cell of the crystal is deter-

mined. If its score Si is above the threshold value (as in ii) this unit cell is removed from

the crystal and pushed to the back of the linear queue of unit cells for later re-evaluation.

If a unit cell could not be incorporated into a crystal because one or both of the above

scoring criteria were not fulfilled, this unit cell is tried on the next crystal available. If all

crystals were tried and at no time the unit cell could be build in, this unit cell seeds a new

crystal.

Two special cases of the algorithm described so far should be mentioned. In order to

avoid possible infinite looping (due to circular pushing and popping the same set of unit

cells to and from the linear queue, respectively), individual unit cells are allowed to be

pushed back only a finite amount of times (typically once) to the linear queue and are af-

terwards forced to form new crystals. A second special case is a user adjustable maximum

crystal size, which when reached always removes the currently worst performing unit cell

upon registration of a new unit cell in the crystal (i.e. ignoring scoring criterion ii) in favor

of constant crystal size).

Thus the only factors manually adjustable and possibly influencing the number and size

of the crystals (after the preparation procedure) are the threshold value for the individual

unit cell scores Si (2.5) and the maximum class size. This behavior is a remarkable dif-

ference to most of the other clustering algorithms (like K-means, hierarchical clustering,

etc. ) which need a predefined amount of classes or class members, which of course can

not be known in advance. On the other hand the ability of automatic detection of both,

number of classes and class size comes at the cost of an expensive iterative process as

described in this section. Furthermore, the described algorithm scales worse than linear

with increased size of input data. For this problem to be handled, initial trials on mixing

the current algorithm with standard techniques of dimension reduction and classification

(see Section 4.1.2) were performed and seem promising.

2.3.2.3 Crystal Improvement

The crystal improvement module can be regarded as a refinement tool to be used on al-

ready classified data (e.g. such as obtained after running the crystallization module, or

after any other classification procedure). The procedure can be restricted to perform an

intra-class refinement only or may be allowed to also reorder unit cells between different
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crystals (inter-class refinement).

The intra-class refinement procedure is very similar to the optimization algorithm de-

scribed for crystallization (see Section 2.3.2.2). It can be understood as a crystallization

process which is performed on the unit cells of every already existent crystal individually.

Thus, the algorithm outlined in the flow chart of Figure 2.6 has to be thought of being

executed N times with N being the number of pre-built crystals and the input being

the unit cells of the current crystal. Depending on the quality of pre-classification, the

refinement will remove more or less unit cells from the original crystal and split them into

several smaller crystals of higher quality. A user adjustable threshold determines to which

total size crystals will be kept, smaller crystals are removed from the dataset. Being a

mutually independent operation the intra-class optimization can be heavily sped up by

massive parallel computation, and thus does not suffer from the critical performance issues

mentioned in Section 2.3.2.2.

Inter-class refinement is achieved by running an intra-class refinement first, collecting

all solvated unit cells (i.e. those that are found not to fit the current crystal) and then

starting a complete crystallization procedure (see Section 2.3.2.2). However, already exis-

tent (refined) crystals are not destroyed and only the former removed unit cells are added

to the linear input queue. Hence, the input data size is typically much smaller in com-

parison to a de-novo crystallization resulting in a heavily improved performance for this

procedure.
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Chapter 3

Results

3.1 Preparation of synthetic test data

An objective evaluation of the quality of any image manipulating algorithm is only pos-

sible on data with exactly defined properties. Those properties (e.g. original signal, type

and amount of noise present, random and systematic frequency aberrations etc. ) can not

at all or only very inaccurately be retrieved from real (cryo-EM) data. Consequently, a de-

fined synthetic test set of images has to be generated for performance evaluation purposes.

Classification algorithms intended for single molecule reconstruction typically face the

problem of having to cluster images varying in content for two very different reasons.

Firstly, images differ because the underlying 3D object (the molecule) is frozen in random

orientation in the electron microscopically investigated sample, leading to different 2D pro-

jections in possibly very close angular distances. The second reason is caused by sample

heterogeneity, which invalidates the assumption that all projection images stem from the

same 3D object. Typically heterogeneity is caused by effects like ligand binding/absence,

movement of domains or random fragmentation of the molecule. Thus, images which are

identical in their projection direction may still differ because of the aforementioned reason.

Clearly, those two phenomena are interrelated as sample heterogeneity may be detected

better or worse under different projection angles. To exploit this additional information

for classification it is necessary to include 3D relationships to the classification process

which is not subject to this thesis. However, research related to this problem is ongoing

and combinations of the ideas outlined in Schmeisser (2009) with this thesis’ findings are

under currnt investigation.

53
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The test dataset was generated from the 3D structure of the 70S ribosome as available

from the RCSB Protein Data Bank (Berman et al., 2000). In order to reflect sample

heterogeneity, five different modifications of this structure were generated1:

1. 50S subunit only

2. 70S ribosome without tRNA and ternary complex

3. 70S ribosome without tRNA and ternary complex, 30S rotated by 7 degree

4. 70S ribosome with ternary complex bound

5. 70S ribosome with ternary complex and P-site tRNA bound

Modification 1 is intended to simulate molecule fragmentation as may occur in reality

during sample preparation. Modification 3 simulates domain movement and all other

modifications model ligand binding effects with different detail (with the ternary complex

having a molecular weight of ∼3% and the P-site tRNA of only ∼1% relative to the molec-

ular weight of the total 70S ribosome).

Projection angle differences were simulated by projecting each of the five mentioned mod-

ifications under 10 different solid angles in 4 degree intervals. In the context of cryo-EM

reconstruction this spacing would be regarded to already be very fine grained and ade-

quate for high-resolution reconstruction. Consequently, the test data set consists of 50

individual 2D images differing in the features described above. For preparation the image

processing software Imagic (van Heel et al., 1996) was used, with which the atomic model

was converted to a density map of grey-valued pixels. The final projection images were

adjusted to fit a 384x384 pixel frame, with each pixel corresponding to 1 Å. Figure 3.1

shows the noise free test dataset.

Further preparation of the data was performed with the test-image module of our soft-

ware. Typically the noise-free images were first band-pass filtered (Gaussian kernel) with

a high-frequency threshold of 0.8, a low-frequency threshold of 0.05, and zero transmission

(see A.2). The idea behind high-pass filtering is to lower interpolation artifacts eventu-

ally introduced during projection of the 3D model. The low-pass filtering is intended to

simulate the decrease in resolution with increased spatial frequency as the latter effect is

1PDB-IDs for 50S subunit: 1VOU, 30S subunit: 2UUB, ternary complex: 1OB2, and tRNA: 1TRA
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Figure 3.1: Synthetic test dataset of 50 different 2D projections generated from 5 modifications

of a 70S ribosome. Images of each row represent projections of solid angles incremented by 4

degrees each.

introduced to a greater or lesser extend by all experimental imaging processes including

TEM. Filtered images subsequently were normalized to zero mean pixel-intensity and to

a fixed variance (typically 1.0).

Realistic noise generation is a non-trivial task as it needs knowledge of the noise dis-

tribution features of real cryo-EM data. Indeed, complicated noise models have been

derived (e.g. Scheres et al. (2007)) to most accurately simulate and treat real-life images.

However, as the synthetic data generated here only serves the purpose of proving concepts

of the new algorithms and are not used for extensive qualitative analyses, a simplified

noise model was used throughout. Uniformly distributed noise was generated using a

mersenne twister (Matsumoto and Nishimura, 1998) random number generator. Random

numbers generated this way will have a period of 219937− 1, hence suffice for uncorrelated

noise generation of the decribed test datasets. Uniform noise generated in this way was

subjected to band-pass filtering equal to that applied for signal filtering. Finally, the noise

was normalized to also have zero mean intensity and its variance was adjusted according to

the currently aimed for SNR. The final noisy images were generated by simple pixel-wise

addition of the previously described signal and noise components, respectively.
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3.2 Proof of concept using synthetic data

This section is shows that the new scoring functions and optimization algorithms intro-

duced in the last chapter conceptually work on synthetic data. The terms cluster, class or

crystal will be used interchangeably describing a set of individual images that are believed

to fulfill the classification conditions as described in (1.12) and (1.13) of Section 1.2.4.5.

Individual images of a class will be referred to as class members or unit cells.

The most difficult part of the classification process is to determine not only the number

of classes but also the number of members for each class automatically (i.e. unsupervised)

in an optimal way or at least near optimal way. Not enough though, the process should

be robust under a wide range of noise and possibly work with translational and rotational

invariant representations of the images to break the interrelation of alignment and classi-

fication.

To the author’s knowledge no tool is currently available that can fulfill all the above

mentioned criteria. All classification methods implementing K-means or any type of hier-

archical clustering will by design not be able to cluster in an unsupervised way. Methods

that utilize PCA or CA will have trouble with invariant representations as they are very

sensitive to the strongly scaled Fourier amplitudes resulting from the auto-correlation

processes frequently used to compute the latter (Frank, 2006). In the following the per-

formance of the new algorithms with respect to the mentioned classification criteria is

described.

3.2.1 Discrimination of individual images

As described in Section 2.3.1.1, for each class two scores are computed. One score (S)

is intended to evaluate the total quality of the corresponding class, which is important

for unsupervised assignment of the correct number of class members and cross-class qual-

ity comparison (sorting). The second score (Si) is intended to evaluate how well each

individual image fits into its current class context and hence is most important during

optimization. Smaller scores indicate a better, and higher scores a worse fit to the current

class and can be understood as the distance to the average fitting class member in units

of standard deviations. The performance of image scoring will theoretically be assessed

by evaluating synthetically constructed test data sets.
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Figure 3.2: Test setup for inidvidual image scoring. Two different experiments are performed to

evaluate the theoretical performance in scoring individual images in their current class context.

The first experiment is intended to simulate sample heterogeneity by comparing ribosomes with

or without p-Site tRNA with each other. A representative of each and the difference density is

shown at different SNRs (A: noise-free, B: 0.4, and C: 0.06 respectively) in rows A-C. The second

experiment is intended to simulate projection angle differences. D-F illustrate the images used

and the corresponding difference density at various SNRs (D: noise-free, E: 0.4, F: 0.02 ). The

difference in projection angle used here is 4 degree.

To a class consisting of already 10 correct images (i.e. difference is introduced only

by noise), a single “bad image” is added and subsequently Si is evaluated for all

members. This experiment is done on two different setups, one simulating sam-

ple heterogeneity (presence/absence of a part of density) the other one simulating

projection angle differences (see Figure 3.2). As can be seen from Figure 3.3 and

Figure 3.4 the scoring performs well over a wide range of SNRs. Real cryo-EM data

typically do not exceed SNRs far below ∼ 0.1, such that in this case the “bad image”

would always be correctly detected.

For the computation of the individual Si scores all images of the current class are

investigated at once, such that the accuracy or in other words the contrast of one bad

image in a growing number of good images should increase. This behavior can indeed

be observed on the test data. Figure 3.5 shows the results for the identification of

one image with its projection angle different to a growing number of images resulting
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Figure 3.3: Single image scoring - data heterogeneity. Discrimination of a single “bad image”

next to 10 “good” ones. The difference of the images being presence/absence of the p-site tRNA

(see Figure 3.2 A-C).

from the same projection angle. For this setup the SNR was kept constant at 0.04

and the projection difference was that described in Figure 3.2 (D-F).

This test is intended to show the scoring behavior under a growing number of “bad

images” but keeping the “good images” constant in size (here 10). The test data are

the same as described in scenario 2. Image discrimination is completely accurate for

less than 50 % of wrong images. Higher ratios lead to increasing inaccuracies (see

Figure 3.6).

As can be seen from the results shown so far, image discrimination improves with increas-

ing accuracy of the underlying class. This behavior suggests an iterative optimization

algorithm which grows classes under permanent control of the individual image scores.
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Figure 3.4: Single image scoring - projection angle differences. Discrimination of a single “bad

image” next to 10 “good” ones. The difference of the images being the projection angle which

differs by 4 degree (see Figure 3.2 D-F).

This idea is similar to the physicochemical process of crystal growth. In fact, in chemistry

one way to purify a compound is through crystallization. For that a saturated solution

of the impure substance is prepared and subsequently crystals are grown by shifting the

solution to an even higher saturation level (by means of cooling, vaporization etc.). In

this way even mixtures of different compounds may be purified by pooling similar crystals

and repeated crystallization approaches on those (“fractional or selective crystallization”).

It has been experimentally observed that the process of crystal growth has to be slow in

order to obtain highly homogeneous crystals. Too fast crystal growth results in crystals

of inferior quality i.e. in crystals exploiting irregularities in their unit cell composition.

Another similar process to crystallization is that of metal annealing (as for example used

during alloying) for which the metals are first heated up and then slowly cooled down re-
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Figure 3.5: Single image scoring - contrast enhancement. Identification of the “bad image” is

dependent on the current class context and will improve if more images of good similarity are

available. All results are generated at a constant SNR of 0.04.

sulting in a very ordered (atomic) fine structure. This process has even found its way into

numerical computing and has become a widely used tool for maximization/minimization

of functions and is known as “simulated annealing” (Salamon et al., 2002; van Laarhoven

and Aarts, 1987).

The optimization algorithm described in Section 2.3.2.2 can be understood as an in-

silico crystallization method, similar to a simulated annealing procedure. Crystals are

grown slowly and are repeatedly updated and cleaned using the individual image scoring

Si ensuring high quality crystals and thus good classification results.
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Figure 3.6: Single image scoring - growing dissimilarity. To a class of 10 correct images, a

constantly growing number of images being wrong in the projection angle by 4 degree are added.

All results are generated at a constant SNR of 0.04.

3.2.1.1 Discrimination on invariant representations

This section is intended to prove the concept generating invariant representations of images

by the method described in Section 2.3.2.1. Furthermore the performance of image scoring

on these invariant representations is assessed.

Computing translational and rotational invariance For test purposes a synthetic

image with three circles of different intensities were generated in a 128x128 pixel frame.

Using the test-image module of CowEyes, 10 copies of the original image were randomly

translated and rotated (see first row of Figure 3.7). The second row of Figure 3.7 shows the

images after computing translational invariance through Fourier based auto-correlation.

As can be seen, the images are indeed identical in their relative translation, but still differ

in rotation. For rotational invariance the full discrete Radon transform (0–2π) is com-
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Figure 3.7: Proof of concept for generating translational and rotational invariance. The first

row shows the original image, rotated and translated at random. The second row shows the

images after auto-correlation and reodering such that the origin comes to lie in the center of the

image. The third row shows the images after 1D self-correlation of each row of the rotated Radon

transform (i.e. horizontal lines describe polar samplings of constant radius). The fourth row finally

shows complex representations of the images (unit cells), as are used for further processing.

puted and rotated such that horizontal lines describe features of constant polar radius and

are subsequently row-wise self-correlated. After this manipulation the resulting images

are both translationally and rotationally invariant (compare third row of Figure 3.7). The

last row of Figure 3.7 shows the complex representation of the images (unit cells) as used

for further processing. Reducing the image features to those which are invariant under

translation and rotation of course results in a loss of data. More precisely, Fourier phases

are removed (set to zero) twice along the process (due to the two auto/self-correlation op-

erations). Moreover, this process has a strong influence on the image’s Fourier amplitudes

which - as multiplied (and in case of auto-correlation even squared and multiplied) with

each other - are relatively overestimated for low spatial frequencies (as those commonly

having large amplitudes) and underestimated for higher spatial frequencies, respectively.

Together, the effect of Fourier rescaling and the loss of information renders the discrimi-

nation of invariant images (especially for low SNRs) extremely difficult.

Individual scoring of invariant images Discrimination of images differing by the

presence/absence of tRNA only (as used previously) is currently beyond the sensitivity
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Figure 3.8: Test setup for invariant image scoring. 10 copies of a ribosome are rotated in

the range of −90 to +90 degree and translated (±10 pixels in each direction) at random. The

separated image furthermore differs in its projection angle which is altered by 4 degree. All images

shown here are unfiltered and noise-free.
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Figure 3.9: Single image scoring - discrimination of invariants.

at SNRs relevant to real cryo-EM data. However, separation of images differing in their

projection angles is possible, even at relatively low SNRs (see Figure 3.9). In the con-

text of a processing strategy in which images after invariant classification and subsequent

alignment are subjected to a second but non-invariant classification, the shown discrimi-

nation behavior may already be sufficient. This is because sample heterogeneity can - as
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Figure 3.10: Complete classification of a synthetic dataset. The data were prepared as described

in Section 3.1 and adjusted to consist of 10 images per class, resulting in a total size of 500

images. A classification was performed using three different programs (Crystalign, Imagic, and

CowCluster). The plot is showing the different scoring accuracies as assessed by (3.1) for various

SNRs and analysing the first 80 classes (N = 80) of each program’s output.

shown previously for the aligned datasets - be detected and separated for in the second

classification process.

3.2.2 Classification of synthetic data

Having demonstrated the performance of individual image scoring, this section is intended

to show the capabilities of the new algorithms for a complete classification of a synthetic

dataset. The test data were designed as described in Section 3.1, hence 50 different classes

were produced. Class sizes were adjusted such that each class is represented by 10 copies

(with different noise) of the same image, i.e. resulting in a dataset totalling 500 images.
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The aim of this test is to determine the maximum classification accuracy possible under

decreasing SNRs. To that end a very low Si threshold of 1.0 was chosen, which has

the side-effect of producing relatively small classes compared to those resulting from a

larger threshold values (as statistically fewer very similar images under a given noise level

will be available). The new method Crystalign on average splits each class, resulting in

approximately 100 classes per classification run. In order to judge the overall classification

accuracy the following scoring system was used:

Accuracy = 1− 1
N

N∑
i

ci (3.1)

with

ci =

∑M
j

∑M
k=j+1 δjk · pjk

0.5 ·M(M − 1)
, (3.2)

where N is the total number of classes to be scored, ci is the per-class score, M the number

of members of the ith class, δjk the Kronecker delta and pjk the penalty for a mismatch of

images j and k. Thus all unordered pairs of images within one class are inspected and a

penalty value for all mismatches is summed up. Subsequently this penalty value us divided

by the number of total pairs per class, before computing the score for several classes from

the average of the individual class scores.

Consequently, if all images in a class are correctly classified ci will be 0 conversly, ci
will be 1 if all images are incorrect (i.e. all pairs mismatch). This relatively stringent

scoring is relaxed by the fact that images under the same projection angle differing only

in the presence/absence of the tRNA (compare Section 3.1) are penalized by p = 0.5 in

contrary to all other mismatches which are penalized by p = 1.0.

In order to evaluate the performance of Crystalign in the context of other existing classi-

fication routines, the accuracy evaluations were performed on the results as obtained by

running Imagic (van Heel et al., 1996) and CowCluster (Lüttich, 2007). As both programs

can not run in an unsupervised fashion the number of classes to be generated was set to

100 and the number of Eigenimages to use for classification was set to 69 (the upper limit

of the Imagic software). For all three programs the 384x384 input images were coarsened

by a factor of 4 (i.e. binning of square blocks containing 16 pixels each) thus resulting in

96x96 pixel sized input images. Figure 3.10 show the results over a range of SNRs for

the first 80 classes N = 80. As is evident from the figure all three programs perform
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very well on the synthetic dataset, the differences between them being only marginal. For

the two highest SNR values of 0.6 and 0.4 respectively, CowCluster does the best job in

classifying almost without any mistake. However, over the full remaining range from SNR

0.2 down to a SNR of 0.04, Crystalign is the most accurate routine in classifying this syn-

thetic dataset. Notably, Crystalign seems to be less sensitive to increased noise ratios as

the relative difference to the other routines increases with decreasing SNR. The improved

accuracy at SNR 0.2 compared to SNR 0.4 of Crystalign is contra-intuitive and may be a

sign for an incomplete convergence of the optimization algorithm as better results should

theoretically be achieved for higher SNRs (see Section 4.1 for discussion).

3.3 Classification of real data

The evaluation of any classification performed on real data is - as the correct result is

unknown - much more difficult. Commonly, for a final 3D structure the quality and res-

olution is assessed by computing the Fourier Shell Correlation (FSC) (Harauz and van

Heel, 1986) which is the 3D equivalent of the 2D Fourier Ring Correlation (FRC) already

described in Section 1.2.4.5. For this reason it was decided to use the FRC as a quality

criterion for the 2D classification results presented in this work.

As the FRC is a cross-correlation measure, only two images at a time can be compared to

each other. To overcome this obstacle each class resulting from a classification experiment

was randomly split into two and individually averaged. Subsequently, the FRC between

the two averages of each class was computed and finally all FRCs were averaged to re-

sult in a Fourier based correlation measure for the whole dataset over the entire spatial

frequency range. A drawback of the described comparison strategy however, is its strong

dependence on the number of images subjected to averaging (i.e. the class size). Larger

classes will always tend to have higher correlations than smaller classes as long as not only

pure noise is being averaged. To this end, all classification experiments were designed to

produce classes of possibly similar size.

3.3.1 Test scenario 1 - 70S ribosome

For this test, a dataset of 1000 already filtered and aligned cryo-EM images of a 70S ribo-

some sample was used. The classification was first done using Crystalign which resulted in

83 classes with approximately 10 images each. 165 images were automatically discarded
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Figure 3.11: The first row shows a sample of filtered and aligned images of the 70S ribosome

used as input for classification. The next block shows the class sums generated by Crystalign for

the first 50 images. The last block corresponds to the first 50 class sums of an Imagic classifica-

tion. Marked with a white arrow (in the first block) is the L7/L12 stalk of the ribosome (Diaconu

et al., 2005), which is believed to be very flexible and thus only visible if accurately averaged.
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Figure 3.12: Test scenario 1 - Classification of a real cryo-EM dataset (70S ribosome) containing

1000 images. Plotted are the average FRC curves for the first 15 (left plot) and 25 (right plot) class

sums. The gray horizontal line at indicates the 0.5 threshold value (refer to text for more details).

as the result of an user-defined minimum class size of 8 members. For comparison, classi-

fication of the same data was performed using Imagic and CowCluster with class sizes set

to 100 and the number of Eigenimages to 69 (upper limit of the Imagic software).

Figure 3.11 shows a sample of the input images and the first 50 class sums as result

of a classification with Crystalign and Imagic, respectively. Unlike in Imagic, class sums

in Crystalign are individually scored and are sorted accordingly. This becomes already

clear by human inspection of the class sums. In case of Imagic, class sums are seemingly

better and worse at random, whereas the Crystalign classes have a more homogeneous

(however in quality decreasing) appearance. The same observation is made when inspect-

ing the averaged Fourier Ring Correlations for increasing number of classes. Figure 3.12

shows the FRC as a function of spatial frequency for the first 15 class sums (left) and

the first 25 class sums (right). Statistically most significant are the values above a cor-

relation of FRC = 0.5 (indicated by the grey line in all FRC plots) which correspond to

SNRs > 1. For lower FRC values the noise will be stronger than the signal and therefore

analysis of these is regarded risky (Frank, 2006). For spatial frequencies corresponding to

FRC values greater 0.5 Crystalign performs very well in classification. The partly better
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Figure 3.13: Test scenario 1 - Classification of a real cryo-EM dataset (70S ribosome) containing

1000 images. Plotted are the average FRC curves for the first 50 (left plot) and 80 (right plot) class

sums. The gray horizontal line at indicates the 0.5 threshold value (refer to text for more details).

performance of Imagic with respect to higher spatial frequencies has to be evaluated with

care as class sizes are in average slightly greater than those of Crystalign and thus may

reflect an unspecific statistical effect (compare Figure 3.14). The performance of the third

program CowCluster can not objectively be discussed if only part of the class sums are

taken into account. This is because the distribution of class sizes is monotonically increas-

ing to higher class sum indices as illustrated in Figure 3.14.

With inclusion of more class sums into the quality evaluation the performance of Crys-

talign gets increasingly weaker (compare Figure 3.13). This behavior is not surprising as

class sums are sorted by quality. The FRC curve for the first 80 class sums clearly shows

that too many class sums were selected from Crystalign’s result set. For routine usage

this can be avoided by setting a sensible threshold for the total image score S, which -

as an absolute and data independent measure - can be applied among different datasets

and prevents inclusion of low quality classes. In summary, Crystalign produces classes of

high quality but in a relatively small amount. This phenomenon is believed to root in the

optimization rather than the scoring strategy of Crystalign. Ideas for further improvement

of the optimization process are discussed in Section 4.1.2.
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Figure 3.14: Test scenario 1 (70S ribosome) - The figure shows the sizes of the class sums as

generated by the programs Crystalign, Imagic and CowCluster.

3.3.2 Test scenario 2 - anaphase-promoting complex (APC)

This second test was performed exactly identical to the first test described above. Out of

1000 input images, 201 images that ended up in classes smaller than eight members in size

were discarded by Crystalign. The remaining 799 images were clustered into 80 classes,

i.e. again the average class size was 10. Consequently, Imagic and CowCluster were run

with the same setup as described for the ribosome case. Although the APC dataset has

quite different characteristics compared to the ribosome dataset the overall results are very

similar. Again, Crystalign is able to classify and sort the data such that for at least the

first 50 class sums its performance is clearly better in comparison to the other routines (see

Figure 3.16). The inclusion of 50 class sums into the evaluation results in approximately

equal performance of all routines (compare left plot of Figure 3.17). Evaluation of all 80

classes produced by Crystalign, results in a similar effect as was observed for the ribosome

case. The lowest quality classes (which under routine usage should be discarded from

further analysis) are decreasing the overall quality of Crystalign’s results to an amount

that results in total worse performance relative to the other routines.
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Figure 3.15: The first row shows a sample of already filtered and aligned images of the

anaphase-promoting complex used as input for classification. The next block of images shows

the classification results (class sums) of Crystalign for the first 50 images. The last block corre-

sponds to the first 50 class sums of an Imagic classification.
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Figure 3.16: Test scenario 2 - Classification of a real cryo-EM dataset (anaphase-promoting

complex) containing 1000 images. Plotted are the average FRC curves for the first 15 (left plot)

and 25 (right plot) class sums. The gray horizontal line at indicates the 0.5 threshold value (refer

to text for more details).

3.4 Refinement of already classified data

...die guten ins Töpfchen, die schlechten ins Kröpfchen!

—Aschenputtel, Gebrüder Grimm

As demonstrated in Section 3.2.1 the new method Crystalign is able to identify images

that are not fitting into the current class context. To be able to make use of this property

outside the frame of the de-novo classification a separate “clean” module was implemented.

Any pre-classified data can be refined using this module, which in the simplest case sorts

all classes by quality and removes the worst images (to be defined via the Si threshold)

from each class. As cleaning can be performed on each class individually, with respect

to computation this problem can be described as “embarrassingly parallel” and is indeed

implemented to make use of the maximum number of CPUs or GPUs available. Hence,

even for large datasets this kind of refinement is extremely fast.

A robust routine which is able to sort class sums by quality and prevents accumulation

of low-quality or misfitting raw images is especially important for automation. To date,
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Figure 3.17: Test scenario 2 - Classification of a real cryo-EM dataset (anaphase-promoting

complex) containing 1000 images. Plotted are the average FRC curves for the first 50 (left plot)

and 80 (right plot) class sums. The gray horizontal line at indicates the 0.5 threshold value (refer

to text for more details).

the selection of class sums that are subject to further processing is commonly performed

manually, by visual inspection. This firstly is a tedious job to do (especially in respect

of the ever increasing amount of data), and secondly disrupts any automation pipeline

from image acquisition to 3D structure and finally adds a subjective (possibly biasing)

component to the whole process. The routine described herein is intended to abolish the

need of manual inspection and is designed to fill another gap on the way to full automa-

tion. To demonstrate the capability of this module the previously described cryo-EM

data of the 70S ribosome was used. Using Imagic, 1000 images of this dataset were clas-

sified into 50 classes. Subsequently, the average FRC (as described in Section 3.3.1) for

an increasing number of class sums (intervals of 10) was computed. As expected for un-

sorted class sums, no trend in the overall FRC quality was observable (compare the left

plot of Figure 3.18). In contrast, the right plot of Figure 3.18 shows the results for the

same data, but after quality sorting by Crystalign. Notably, the class sums are not simply

sorted by their individual class sizes (the average class sizes are shown in round braces

for each block in Figure 3.18); class sums 10 – 20 for example are on average smaller in

size than those from 20 – 30 still showing a higher quality. Thus, through omitting low
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Figure 3.18: Effect of sorting class sums by quality. Left: Original data as obtained from an

Imagic classification. Right: The same data, but after sorting using Crystalign. Scores are com-

puted for increasing number of class sums. The number of class sums was increased in intervals

of 10, the average class size for each interval is given in round braces.

quality class sums a total higher accuracy for the remaining dataset can be achieved. With

regard to automation, a threshold may be determined and images below this threshold

may safely be removed as they will be of increasingly lower quality. Due to the Fourier

based computation of the class scores, these scores are data independent and thus allow

quality comparisons of different image sets. This is generally not possible on results ob-

tained through Principle Component Analysis (PCA) or Correspondence Analysis (CA)

as their coordinate system of Eigenvectors is relative and data dependent. In comparison

the Eigenvectors of a Fourier transform, which are the complex exponentials, also reside

in an multi-dimensional and orthogonal but fixed and data independent coordinate system.

In addition to data sorting and eventually skipping the worst class sums, further im-

provement may be achieved by removing individual images identified to statistically misfit

their current class context. Unfortunately, this effect is difficult to show using the FRC

based evaluation, as removing images from the averaging process during the FRC cal-

culation statistically results in a score lowering. To this end a conservative threshold of

Si = 2.5 was selected which resulted in removal of only 20 bad images corresponding to
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Figure 3.19: Removal of low quality images. Using the Imagic software, 1000 images of a

cryo-EM dataset (70S ribosome) were clustered into 50 classes. The blue curve shows the corre-

sponding average FRC. The red curve corresponds to the average FRC after removal of the worst

20 images as identified by Crystalign. In green the same analysis is shown for a random removal

of 20 images.

2 % of the total dataset. For comparison 20 images were removed at random and the

remaining images scored. Figure 3.19 shows that - also if minor in effect - the total qual-

ity was improved after removal of the bad images identified by Crystalign, whereas the

random removal had no effect on the overall quality.

3.5 Performance issues in the light of parallel programming

Performance is a big issue for cryo-EM related image processing. The amount of single

particle images to be processed is increasing fast. Even worse, with advent of the latest

generation of CCD detectors, also the absolute number of pixels per image will increase.

To date, images in the range of 64x64 – 128x128 pixels are most commonly processed.

However, in near future pixel frames of 256x256 or even 512x512 will be the common

format. The quadratic increase of the total pixels by doubling the edge length will quickly

swamp algorithms not prepared to handle that. The routines described within this thesis

are all developed with this future demands in mind. Whenever possible, parallel code was

developed and the most important core functions were implemented twice, once in C++
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Figure 3.20: Speed measures for a “naive” implementation of the Radon transformation on 24

squared images with different sizes. Images were rotated over a total range of 180 degrees in

intervals of 1 degree and subsequently projected down onto one line, resulting in the discrete

Radon transform (Sinograms) of the latter. Times are taken for the hardware setup as described

in Section 2.1. The inlet plot shows a direct comparison of one CPU vs. one NVidia Tesla board.

for standard CPU computation and another time in CUDA for graphics board device

computation. A general observation regarding performance related to GPU code, was the

strong dependency on the problem size. For small problem sizes the total execution time

often was too short in order to weigh out the extra time necessary to set up the paralleliza-

tion (e.g. host-to-device, device-to-host copies, post-processing of parallel data structures

etc.), resulting in only minor overall speed-ups. However, as soon as the problem size

increased the power of parallel computation became evident.

A good example of the described problematic is the computation of the discrete Radon

transformation (sinogram), as is used for the routines described in this thesis but is also

commonly used for image alignment.

Computing a sinogram requires generation of a set of image projections along angular
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directions separated by ∆ϕ. Two projections, π/2 apart, can be obtained by summing the

pixels of all images rows and columns, and more are obtained by repeating the sums after

stepwise rotation. For a sinogram being sampled in the interval [0 − π], n rotations are

needed with n = π/(2 ·∆ϕ). As sinograms can be computed for each image individually,

the input data set can easily be split and evenly distributed to the number of processors

(be it CPU or GPU) available to be processed in parallel. A further, finer grained, level

of parallelism can be achieved using the CUDA technology. For that, even the individual

pixel operations necessary during rotation and projection, can be processed in parallel

on the GPU. Figure 3.20 summarizes the behavior of the sinogram computation under

various hardware configurations all available in a single desktop PC. As can be seen in the

Figure 3.20 the full power of parallel processing gets unleashed only under increased sam-

ple size. Although the problem size gets squared with each data point in Figure 3.20 the

processing time for the GPU keeps almost linear. The maximum speed up to be achieved

by the GPU computation in comparison to one CPU for this example is by a factor of

∼15.
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Chapter 4

Discussion

4.1 Classification - Iterative vs. multivariate data analysis

In order to judge the potential of the new classification strategy it is of importance to

understand the fundamental differences of this method compared to the existing multi-

variate data analysis (MDA) based approaches. The most striking difference lies in the

context upon which the decisions of class membership are taken. In the case of MDA, the

context is set up once in the beginning by defining a new reduced coordinate system with

basis-vectors corresponding to features of highest variance relative to the whole dataset1.

Classification finally is done on the images expressed in this reduced coordinate system.

This strategy has some striking advantages, as it prevents severe misclassifications in sep-

arating images according to in significance decreasing order of features, which are found

relative to all features present in the whole data set. Furthermore, by taking only few sig-

nificant features a drastic data reduction is achieved (typically more than 70-fold) which

reduces computation time correspondingly. However, a disadvantage of this approach is

that during feature extraction every pixel of each image comes into the evaluation with the

same weight. In other words, images of bad intrinsic quality will equivalently take part in

the feature extraction process and thus will add noise which may hide fine differences (i.e.

features with less total variance in respect of all data) possibly existing between images

of very good intrinsic quality. Strategies to overcome this problem by applying multiple

MDA analyses on ever similar image subsets are under development (e.g. “Cluster Track-

ing” (Fu et al., 2007)).

1Technically this most commonly is achieved by means of Principle Component Analysis, Correspon-

dence Analysis, Self Organizing Maps (Pascual-Montano et al., 2001), etc.
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In contrast, for the classification strategy described here no fixed context is set up. In fact,

several contexts are generated (as many as there are classes) which evolve and adapt during

optimization. As described in Section 2.3.1.1 each image is evaluated with respect to the

class it is currently in. The biggest advantage of this strategy over the MDA approach, is

that the classification decision is taken according to a local context, thus allowing to decide

on finer or rougher criteria depending on the intrinsic quality of the context. Hence, with

increasingly improving context the classification criteria also adaptively get increasingly

sharper. An obvious disadvantage of this strategy is the start-up phase, in the beginning

the contexts (classes) are of small size and hence the classification criteria are fuzzy. If for

this very reason not well fitting images are added in the beginning the context will not

sharpen but rather blur. The situation thus is in danger of self-enhancing its unwanted

behavior and may lead to severe misclassifications2.

Another fundamental difference is based on the decision of how many classes with which

amount of members should be generated. For the MDA approach this decision can not

easily be done in an automatic fashion. As the feature extraction is a data relative pro-

cess, no generic threshold is easily found that would define how many of the features

(Eigenimages) are still describing the signal component or already analyze noise statistics.

This problem is well known and methods to circumvent this problem have been designed.

Frank et al. (1993) for example, describe a method that finds a significance threshold by

producing an artificially generated noise-only control out of the same data. In essence

all approaches will depend on a relative identification of noise and signal given the input

data only. Thus, the problem simply remains that at no time an absolute quality mea-

sure contributes to the decision, of which images are going to be classified together. As

an exaggerated theoretical situation of a misleading signal/noise decomposition one could

imagine an inproperly working CCD. This chip may have a region of so called “hot-pixels”

on the CCD camera which would introduce a systematic intensity increase for all images

collected at this very region. In terms of MDA the absence and presence of this intensity

increase on different images would be identified as a strong signal feature relative to all

images available. An FRC analysis for images clustered in this way would however show

weak results as the few hot pixels would represent only a minor, local correlation.

For the iterative process described here a mixture of relative signal/noise decomposition

2Crystallographers will call this “precipitation”
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and absolute scoring is used. This duality is expressed in the two scoring functions S and

Si (see Section 2.3.1.1). The absolute score S being a variant of the Q-Factor is Fourier-

based and thus data independent, whereas the Si score is a statistical analysis relative to

the current class context with a dynamic detection and down-weighting of noise compo-

nents in Fourier space (which implies that individual image scores Si can not be compared

amongst different classes). The advantage of this duality is that an absolute threshold

for class-quality may be defined (compare (2.4)) which allows for unsupervised evolution

of number and sizes of classes and additionally allows inter-dataset quality comparisons.

The challenge is to find an appropriate combination of these two measures under varying

class sizes. Throughout this thesis several ideas have been implemented with respect to

this issue. None of them were completely satisfactory nor is the currently demonstrated

one, which tends to produce too small classes. This issue is regarded to be one of the key

problems of the new approach and is still under active investigation.

Concerning the fundamental differences in the principle design of the new classification

strategy, surprisingly good results are obtained in comparison to the established proce-

dures. This result encourages further investigation and improvement of this new method.

Some ideas that will be implemented and tested in near future are outlined in the following

sections.

4.1.1 Modified scoring function and unit cell setup

It was mentioned above that a key issue for classification quality is believed to be the

correct combination of a relative (statistical) and an absolute scoring. To this end another,

possibly superior, scoring function utilizing a variant of the SSNR (see Equation (1.23))

will be practically investigated in future and is theoretically introduced in the following

outline. Starting from the raw input images the preparation process for each image will

be the following:

1) Image masking (circular mask) and normalization

2a) Optionally: Auto/Self-correlation to achieve translational invariance

3) Computation of the discrete Radon transform (sinogram)

3a) Optionally: Auto/Self-correlation to achieve rotational invariance

4) 1D-FFT on all rows (i.e. for constant polar angle ϕ)
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5) Multiplication of each row with a response function to balance the uneven sampling

in Fourier space

6) Transposition of the complex image (i.e. exchange of rows and columns)

The discrete Radon transformation in combination with the subsequent row-wise 1D-

Fourier transformation can be understood as the polar sampling of the 2D Fourier trans-

form of the image. Polar samplings of evenly spaced grids always lead to uneven, radius

dependent sampling, with a relative oversampling for small radii (low spatial frequencies)

and a relative undersampling at larger radii (high spatial frequencies). The sampling dif-

ference has a linear relationship and is thus easily corrected for by multiplication with a

ramping function in Fourier space3 (or equivalently by convolution of the ramping function

in real space). After final transposition, the image rows represent evenly sampled Fourier

coefficients of same spatial frequency, well suited for efficient scoring.

The total score S could be computed using the SSNR (1.23):

S = max(k) for SSNR(k) > t (4.1)

by finding the maximum resolution |k| = k in terms of the highest spatial frequency

available upon an appropriate threshold t (commonly a value of t = 4 is reported to be

appropriate (Unser et al., 1987)).

The single image scores could be found similar to Equations (2.5)-(2.8) but weighted

by the SSNR for the corresponding frequency instead by the Q-Factor:

Si =
di − d̄
σd

(4.2)

with

di =
K∑
k=1

SSNR(k) · (Fi(k)− F̄ (k))2 (4.3)

where

d̄ =
1
N

N∑
i

di , σdi
=

√
(di − d̄)2

N − 1
(4.4)

and

F̄ (k) =
1
N

N∑
i=1

Fi(k) (4.5)

3Electron microscopists will know this correction from the filtered back-projection reconstruction
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with Fi(k) being the Fourier transform of the i’th image, K the maximum frequency

(Nyquist), and N the total number of images per class.

The described modified scoring may be superior to the presented one as the SSNR is

believed to have a better statistical performance than Q-Factor, DPR or FRC especially

for smaller class sizes. Moreover, as Unser et al. (1987) pointed out, the SSNR directly

relates to the Fourier based resolution criteria commonly used in crystallography, hence

may fit the optimization approach of growing crystals in-silico best.

Another improvement - not in scoring - but in computational performance will certainly be

achieved by implementing another, faster algorithm for the Radon-transform as described

in Lanzavecchia et al. (1996). This algorithms makes uses of the relationship between

Radon- and Fourier transform, i.e. uses a 2D FFT approach with a polar sampling in

Fourier space to compute the sinograms.

4.1.2 Taking the best from two worlds - Ideas for a hybrid approach

As outlined above the biggest problem with the current optimization strategy is in the very

beginning. Crystals are still small and thus weak in their ability to decide for well fitting

unit cells. This problem could be overcome by a seeding approach, i.e. the optimization

process is started on already existing small crystals of sufficient quality. The preparation

of those seeding crystals may be done by a MDA approach like PCA directly on the

complex unit cells or on the real input images. An advantage of using the complex unit

cells for PCA would be an already in dimensionality reduced input dataset as high spatial

frequencies could be omitted in the first place. Using a sufficiently high enough and fixed

number of Eigenimages an initial classification resulting in crystals of ∼ 10 members in

size could be performed. Subsequently, crystals could be sorted by quality (making use

of the absolute class score S) and the worst fraction of crystals could be solvated, such

that the optimization process as described in Section 2.3.2.2 is initialized with partly filled

containers for both sides, the best seeding crystals in the crystal map and the worst, into

unit cells solvated ones as part of the linear queue of unit cells. Of course, any already

existing MDA approach with appropriately adjusted parameters could be initially used

for testing, and the Crystalign part could be implemented similarly to the clean module,

as a “refine” module.
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4.2 The align in Crystalign

In Section 1.4 it was formulated that the separation of image classification and alignment

is believed to be in danger of introducing model-bias. However, any approach that would

exhaustively align and classify all combinations of images including any combination of

translation and rotation per image is deemed to fail (even on the latest available hardware)

due to the combinatorial explosion of available possibilities. Therefore, the only practical

feasible strategy is separation. It is the uncoupling of this two processes which is left as

a solution to the problem, and a way to do so is to classify using only features which are

not used for alignment. Section 3.2.1.1 shows that utilizing the new scoring functionality

image discrimination (the basis for classification) even under presence of relatively high

amounts of noise is theoretically possible. Although finer details may not be separated,

this does not harm the overall strategy. Alignment of images that are different in details

only will still be meaningful and sufficiently bias-free. Resolution lost during alignment

and averaging of slightly different images can easily be reconstituted by another cycle of

classification, yet on already aligned images.

As for all described scoring procedures, sinograms of each image are computed and a

sinogram-based alignment like the one described by Lanzavecchia et al. (1996) will be

implemented and tested for performance in future.

4.3 Streamlining the process from raw data to 3D structure

Irrespective the experimental method used, the elucidation of a 3D structure is a complex

and complicated process. Only concerning the computational part of the process, the

amount of available expert routine’s (available for all disciplines, i.e. NMR, Crystallog-

raphy, and cryo-EM) is overwhelming. The correct combination of the routines and the

adjustment of each routines’ individual parameters for maximum performance require in-

depth knowledge of the underlying theory and an up-to-date overview about all software

available. Furthermore, to connect individual routines into a global work flow requires

programming skills at least on a scripting level in order to let the routines communicate

with each other (i.e. fit input and output formats etc.). In context of the advanced ex-

perimental methods, which too require a serious training, it seems impossible to equip

oneself with all skills necessary to solve a 3D structure of an biological macromolecule

independently and in a reasonable amount of time.
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For this reason the crystallographic community started to think of the structure elucidation

process as one global process, hence time was invested to minimize all user-interactions

needed and replace them with intelligent automatic decision making and parameter ad-

justment. Those ideas peaked in the so-called Collaborative Computational Project (Col-

laborative Computational Project, 1994) which not only enabled beginners in the field to

be able to use existing software and solve structures but also scientifically added more

consistency, reliability and reproducibility to the whole process. Besides other specialized

software pipelines (e.g. Auto-Rickshaw (Panjikar et al., 2005) for improved synchrotron

data collection at EMBL Hamburg) at least one other package is becoming more and

more powerful and more widely used and is called PHENIX (Adams et al., 2002). To the

author’s opinion the success of PHENIX is a result of essential design goals met in this

software:

i) Leading scientists in the field have decided to work with each other and cooperate

on a joint software, rather than everyone crafting an individual solution.

ii) The software is rather complete (thanks to i) in also small details that are still

necessary for structure solution. This completeness avoids the need for using any

other software in between which would break the project flow and would add a huge

amount of user-interaction to the process.

iii) The software can be used by beginners, however leaves experts the possibility to

adjust the default parameters.

iv) Internally the software is designed in a well structured object-oriented pattern, which

allows for easy extension by external software developers. Again the design is flexible,

such that beginners in programming may use a high level scripting interface (here:

Python) and experts may add fast performing modules in C++.

A similar product for cryo-EM, based on the PHENIX environment is currently under

active development. The so-called SPARX (Hohn et al., 2007) suite aims to combine al-

ready existing excellent software from cryo-EM (e.g. EMAN (Ludtke et al., 1999), SPIDER

(Frank et al., 1996)) and from X-ray crystallography.

However, in comparison to crystallography, a big obstacle for all pipelines in cryo-EM

is the lack of several modules needed for automation, the most important being:
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i) Automatic solution of the orientation problem, which needs the collection of tilted

datasets and - more challenging - routines for robust and automated picking of tilt-

pairs (i.e. projections of the same particle on raw images differing by the tilt angle

only).

ii) Automatic detection and removal of images with bad quality throughout the whole

refinement process.

iii) Bias-free ensemble refinement of several 3D structures representing the inherent

heterogeneity of the dataset.

iv) Objective validation of the quality and correctness of the final 3D structures.

Only those pipelines which will feature all the described modules will be able to seriously

set a milestone in automatic processing. It is thus the highest prioritized objective to

close those gaps. With the efforts underlying this thesis at least the second point can be

canceled from the list already.



Appendix A

Mathematical Fundamentals

A.1 Fourier theory

The Fourier transformation is a linear mapping of a function into a different representation. This
representation can be understood as a linear combination of sine waves with different frequencies,
amplitudes and phases. Physically, if the original function describes a process in a specific domain,
the Fourier transform will describe the same information in the reciprocal domain (commonly
referred to as time domain and frequency domain, respectively). Being a linear transformation one
can go back and forth (indicated by the “⇐⇒” symbol) between the two representations (here f
and F , respectively) by means of the Fourier transform equations:

F (k) =
∫ ∞
−∞

f(x)e2πikxdx ⇐⇒ f(x) =
∫ ∞
−∞

F (k)e−2πikxdk (A.1)

If x for example is measured in seconds, then k in equation (A.1) will be in cycles per seconds (i.e.
in Hertz).

In the discrete case (A.1) can be written as:

F (k) =
N−1∑
k=0

f(x)e
2πikx
N ⇐⇒ f(x) =

N−1∑
k=0

F (k)e
−2πikx
N (A.2)

Symmetries present in one domain will lead to special relationships in the other domain. Table A.1
summarizes those correspondences between the two domains. Other important correspondences
between Fourier pairs are:

f(ax)⇐⇒ 1
|a|
F

(
k

a

)
time scaling (A.3)

1
|b|
f
(x
b

)
⇐⇒ F (bk) frequency scaling (A.4)

f(x− x0)⇐⇒ F (k)e2πikx0 time shifting (A.5)

f(x)e−2πik0x ⇐⇒ F (k − k0) frequency shifting (A.6)

With two functions f(x) and g(x), and their corresponding Fourier transforms F (k) and G(k) two
combinations of special interest can be formed.
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Table A.1: Correspondence between symmetries in the two Fourier related domains

If... then...
f(x) is real F (−k) = [F (k)]∗

f(x) is imaginary F (−k) = −[F (k)]∗

f(x) is even F (−k) = F (k)
f(x) is odd F (−k) = −F (k)
f(x) is real and even F (k) is real and even
f(x) is real and odd F (k) is imaginary and odd
f(x) is imaginary and even F (k) is imaginary and even
f(x) is imaginary and odd F (k) is real and odd

A.1.1 Convolution

The convolution of the two functions, denoted (f ∗ g)(x), is defined by:

(f ∗ g)(x) ≡
∫ ∞
−∞

f(ξ)g(x− ξ) dξ (A.7)

(f ∗ g)(x) is a function in the time domain and (f ∗ g)(x) = (g ∗ f)(x). It turns out that the
convolution can be written as a simple transform pair,

(f ∗ g)(x)⇐⇒ F (k)G(k) convolution theorem (A.8)

In words, the Fourier transform of the convolution is the product of the individual Fourier trans-
forms.

A.1.2 Correlation

The correlation of two functions, denoted (f ? g)(x), is defined by:

(f ? g)(x) ≡
∫ ∞
−∞

f(ξ + x)g(ξ) dξ (A.9)

The correlation is a function of x, which is called the lag. It therefore lies in the time domain, and
turns out to be a member of the Fourier transform pair:

(f ? g)(x)⇐⇒ F (k)G∗(k) correlation theorem (A.10)

if f and g are real functions. This shows that multiplying the Fourier transform of one function by
the complex conjugate of the Fourier transform of the other gives the Fourier transform of their
correlation. The correlation of a function with itself is called its autocorrelation. In this case (A.9)
becomes the transform pair

(f ? f)(x) ≡
∫ ∞
−∞
|F (x)|2 Wiener-Khinchin theorem (A.11)
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Figure A.1: Typical 2D-Gaussian band-pass filter profile. Plotted is the filter profile with parame-
ters trans = 0.0, freqLow = 0.15, and freqHigh = 0.70 (see text for more details). The frequency
cut-offs define spatial frequencies for which the transmission is reduced to e−1 and are indicated
in yellow.

A.1.3 Power spectrum

The total power in a signal is of course the same whether it is computed in the time or frequency
domain. It is known as the Parseval’s theorem:

total power ≡
∫ ∞
−∞
|f(x)|2 dt =

∫ ∞
−∞
|F (k)|2 dk (A.12)

What is used here as the power spectrum is the power contained in the frequency interval between
0 (“zero frequency” of D.C.) to +∞ which commonly is called the one-sided power spectral density
(PSD) of the function f:

Pf (k) ≡ |F (k)|2 + |F (−k)|2 0 ≤ k <∞ (A.13)

When f(x) is real, the two terms in (A.13) are equal such that Pf (k) = 2|F (k)|2.

A.2 Fourier based Gaussian image filtering

Gaussian image filters are 2D Gaussian functions in the frequency domain. One commonly differ-
entiates three types of filtering, low-pass (higher frequencies are downweighted), high-pass (lower
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frequencies are down weighted), and band-pass (lower and higher frequencies are down weighted).
Profiles as used within this thesis are generated by (only shown for square images for clarity):

G(kx, ky) =

[
1− p · e

−
„
k2x
lx

+
k2y
ly

«]
e
−

„
k2x
hx

+
k2y
hy

«
(A.14)

with

p = 1− trans (A.15)

lx,y = (freqLow · rx,y)2 (A.16)

hx,y = (freqHigh · rx,y)2 (A.17)

where rx,y describes the x and y radius of the original image, respectively. Three parameters are
used to define the profile, trans (residual transmission of low frequencies), freqLow, and freqHigh
(low- and high frequency cutoff, respectively). A profile for a typical band-pass filter is illustrated
in Figure A.1. The filtered image ffil(x, y) is computing from the original 2D image f(x,y) by the
convolution with the filter profile:

ffil(x, y) = F−1[F (x, y)G(x, y)] (A.18)

where F (x, y) denotes the 2D Fourier transform of f(x, y) and F−1 indicates a reverse 2D Fourier
transformation.

A.3 Fourier-slice theorem

The Fourier-slice theorem (also known as projection theorem) states that the Fourier transform of
the projection of a 2D function f(x, y) onto a single line is equal to a slice through the origin of
the 2D Fourier transform of that function which is parallel to the projection line. The theorem
can be extended to N dimensions and is of special use for cryo-EM, as the 2D projection images
can be reconstructed to its 3D object by assembling their corresponding 2D slices in a 3D Fourier
space and subsequently computing the inverse 3D Fourier transform to yield a real representation
of the 3D object.

For clarity the proof of the theorem will be shown for the 2D case and with the projection
line taken as the x-axis of the 2D function f(x, y). The proof can easily be extended for higher
dimensions and other projection lines. Let f(x, y) denote a 2D function then the projection of
onto the x axis is p(x) where

p(x) =
∫ ∞
−∞

f(x, y) dy.

The Fourier transform of f(x, y) is

F (kx, ky) =

∞∫∫
−∞

f(x, y)e−2πi(xkx+yky) dx dy.
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The slice s(kx) is then

s(kx) = F (kx, 0) =

∞∫∫
−∞

f(x, y)e−2πxkx dx dy

=
∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
e−2πxkx dx

=
∫ ∞
−∞

p(x)e−2πxkx dx

which is just the Fourier transform of p(x).

A.4 Radon transform

The 2D Radon transform (in its discrete form also known as sinogram) of a function f(r) can be
defined as:

fradon(p, ξ) =
∫
f(r)δ(p− ξTr) dr (A.19)

where r = (x, y)T and δ(p − ξTr) represents a line defined by the direction of the (normal) unit
vector ξ. One can think of the 2D Radon transform as a systematic stack of 1D projections of the
original image under different rotation angles (defined by the direction of the vector ξ). The Radon
transform is, like the Fourier transform, an integral transformation, and thus both transforms are
related. A more detailed mathematical treatment is out of the scope of this thesis but is referred
to Helgason (1999).
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List of Symbols and Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
Å Ångstrom (1 Å = 1−10 m)
AC Auto-Correlation
APC Anaphase Promoting Complex
ART Algebraic Reconstruction Technique
CA Correspondence Analysis
CCC Cross Correlation Coefficient
CCD Charge Coupled Device
CPU Central Processing Unit
cryo-EM Cryogenic Electron Microscopy
CUDA Compute Unified Device Architecture
DFT Discrete Fourier Transformation
DPR Differential Phase Residual
FFT Discrete Fast Fourier Transformation
FRC Fourier Ring Correlation
FSC Fourier Shell Correlation
GPU Graphical Processing Unit
HAC Hierarchical Ascending Classification
HDF Hierarchical Data Format
HPC High Performance Computing
MDA Multivariate Data Analysis
MPI Message Passing Interface
NVCC NVidia C Compiler
PCA Principal Component Analysis
PhCTF Phase-Contrast Transfer Function
RCT Random Conical Tilt
SC Self-Correlation
SIRT Simultaneous Iterative Reconstruction Technique
SNR Signal-To-Noise Ratio
SSNR Spectral Signal-To-Noise Ratio
STL Standard Template Library
TEM Transmission Electron Microscopy
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T. Thüne and J. Badger. Thermal diffuse x-ray scattering and its contribution to understanding
protein dynamics. Prog Biophys Mol Biol, 63(3):251–276, 1995.

M. Unser, B. L. Trus, and A. C. Steven. A new resolution criterion based on spectral signal-to-noise
ratios. Ultramicroscopy, 23(1):39–51, 1987.

M. Valle, J. Sengupta, N. K. Swami, R. A. Grassucci, N. Burkhardt, K. H. Nierhaus, R. K. Agrawal,
and J. Frank. Cryo-em reveals an active role for aminoacyl-trna in the accommodation process.
EMBO J, 21(13):3557–3567, Jul 2002. DOI 10.1093/emboj/cdf326. URL http://dx.doi.org/

10.1093/emboj/cdf326.

M. van Heel and J. Hollenberg. Electron Microscopy at Molecular Dimensions, chapter The
stretching of distorted images of two-dimensional crystals., pages 256–260. Springer Verlag,
Berlin/NewYork, 1980.
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