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Abstract

The olfactory bulb (OB) is the only central processing station of the vertebrate

olfactory system. It is assumed that odors are represented by a spatio-temporal

code in the OB, with both the identity of the activated neurons and the temporal

sequence of their activity patterns being stimulus-relevant parameters. An adequate

investigation of these coding principles thus relies on the simultaneous recording of a

large number of cells with a high temporal resolution. To date, few studies have been

based on recordings of this type, and even less have attempted to investigate and

quantify aspects of inter-neuronal dependencies in the odor evoked activity patterns.

A fast confocal microscope was designed, built, characterized, and subsequently used

to study inter-cellular dependencies in neuronal activity patterns, which would be

obscured by inter-trial variability in successive single-cell recordings. Speci�cally, the

onset times of odor-evoked activity in ensembles of mitral/tufted cells in the Xeno-

pus larvae OB were investigated, visualized using the Ca2+ indicator dye Fluo-4. A

novel measure, the inversion index, was introduced to quantify the similarity in the

order of response onsets between pairs of stimulus applications. Using this measure,

it could be shown that these patterns are highly reproducible between applications

of a given odor, both for mono-molecular odorants and for complex mixtures. Ad-

ditionally, the onset order was found to be highly informative about odor identity,

while it only relies weakly on the odor concentration. These observations make the

onset pattern of OB neurons a promising candidate for a stimulus-relevant feature

of the code implemented in the OB. Relation to other properties of the olfactory

system and possible decoding strategies are discussed. In a second application, the

fast imaging system was used to acquire time series of image stacks of spontaneous

activity in the OB. By exploiting the diverse temporal activity patterns as a means

of intrinsic contrast, the individual neurons' dendritic morphology could be visu-

alized. The result of this novel method, termed activity correlation imaging, is a

high-contrast multi-color visualization of the neuronal network, as demonstrated on

the mitral/tufted cells of the Xenopus larvae OB. Yielding both functional and struc-

tural information about neuronal populations, this method opens up unprecedented

possibilities for the investigation of neuronal networks.
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Ivan, Joško, Sebastian, Stefanie and Thomas, for a great atmosphere and advice

and support whenever asked for. Special thanks to Esther and Ivan for reading

parts of the thesis.

I am grateful to have shared my time here in Göttingen with many wonderful

xviii



people. You are the main reason why I enjoyed these years so much! Thank you,

Felipe, Corinna, Alex, Lucian, Alexandra, Foteini, Phil and Michael.

I want to thank all the numerous musicians with whom I played during the last

years. You gave me the opportunity to forget everything neuroscience for a couple

of hours every week. These were most welcomed breaks.

I want to thank the Göttingen Neuroscience program, and in particular Michael

Hörner, Sandra Drube and Simone Cardoso de Oliveira for their great organization.

Many thanks to the Bernstein Center for Computational Biology and to the state

of lower saxony, who provided the funding for my work during these years.

My warmest thanks go to my parents, for their unconditional love and support

during all my life.

Finally, I want to thank Ioanna, with whom I shared these last years. You gave

me the strength to get to this point by distracting me when I was too caught up

in work and making me work when I got too distracted, but foremost by always

making me smile when I needed it. I will try my best to be as supportive during

the tough last months of your PhD. Anupomonẃ gia ta qrónia pou érqontai.
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1

Introduction

1.1 Tasks and Function of Sensory Systems

{ In short, our perceptions are not direct records of the world around

us. Rather, they are constructed internally according to the constraints

imposed by the architecture of the nervous system and its functional

abilities. |

`Principles of Neural Science', Eric R. Kandel (∗1929)

All animals depend on the interaction with their environment. They have to

locate food and distinguish it from harmful substances, detect a predator in time,

�nd mating partners, and recognize and protect their o�spring. For all these

tasks, animals depend on a reliable and immediate knowledge about the world

around them. To this end, species have developed a variety of sophisticated

sensory systems. Each of these systems captures a certain physical aspect of the

environment and translates it into a neural representation. This representation is

the basis for a perceptual sensation, an appropriate behavioral response or serves

a learning process. The understanding of both the capacity and the function of a

sensory system does thus depend on the knowledge of what physical aspects of the

environment can be captured by this system, how they are translated into a neural

representation, and how this representation on a neuronal or network level relates

to the actual sensation that it elicits.

Each sensory system is adjusted to e�ciently capture the relevant features of a

stimulus space, i.e. the space of all possible values the respective physical quantity

can assume. This implies a trade-o� between the accuracy set by the sampling

1



1. Introduction

density and the amount of information the nervous system has to process. Most

sensory systems use one of two strategies for an e�cient sampling and representation

of the respective modality. The �rst way is to use a small number of functionally

specialized receptor types for a sparse sampling of the stimulus space, thus gaining

e�ciency by sacri�cing detail. This strategy is found for example in the �ve basic

tastes of the gustatory system, the three color receptors in the visual system, or

the four di�erent receptor types of the somato-sensory system (these numbers refer

to the human nervous system, but are similar in other species). Another way is

to use a one- or two-dimensional receptor array of identical receptors for a dense

sampling of the receptor space. In systems employing this strategy, speci�city is

derived from the spatial location of the receptor cells. This architecture o�ers the

possibilities of feature classi�cation based on spatial activation patterns and contrast

enhancement by local inhibitory networks. These transformations combine the large

amount of information contained in the activity patterns of these receptor arrays

into a condensed and abstracted representation. At the same time, they maintain

and even enhance details contained in the stimulus. Examples for this kind of

receptor arrays are found in the retina or the array of hair cells placed along the

basilar membrane in the inner ear. Most physical phenomena can be represented

with su�cient detail using one of these two strategies or a combination of them (e.g.

combining aspects of colors and shapes in the visual system).

The olfactory sense is unique in that it has to cover a very large and heterogeneous

stimulus space, which cannot be represented by a two-dimensional map in which

the distance of two stimuli is directly related to their degree of di�erence (Friedrich

and Korsching, 1997; Laurent, 2002). This precludes the use of a small number

of receptor types, since the sampling of the space would be too sparse. It neither

allows a functionally consistent, and architecturally e�cient, representation in a one-

or two-dimensional odor map. This property of the olfactory system is manifested

in the perception of humans. There is no apparent order as found in the pitch of

a chromatic scale or the color of the rainbow; there are no fundamental sensations

that are perceived independently like the basic tastes of the gustatory system; and

there is no direct correlate between the spatial activation patterns and the elicited

2



1.2 The Olfactory System

perception as for the recognition of shapes by the visual system. Thus, compared

to other sensory systems, we still have a limited understanding of how this sense

identi�es, categorizes and combines information into the �nal percept.

1.2 The Olfactory System

{Und er roch nicht nur die Gesamtheit dieses Duftgemenges, sondern
er spaltete es analytisch auf in seine kleinsten und entferntesten Teile
und Teilchen. Seine feine Nase entwirrte das Knäuel aus Dunst und
Gestank zu einzelnen Fäden von Grundgerüchen, die nicht mehr weiter
zerlegbar waren. Es machte ihm unsägliches Vergnügen, diese Fäden
aufzudröseln und aufzuspinnen. |
(And he did not merely smell the mixture of odors in the aggregate, but he dissected it analytically

into its smallest and most remote parts and pieces. His discerning nose unraveled the knot of vapor

and stench into single strands of unitary odors that could not be unthreaded further. Unwinding

and spinning out these threads gave him unspeakable joy.)

`Das Parfüm', Patrick Süskind (∗1949)

The olfactory system was among the last of the sensory systems for which the basic

principles of transduction and coding were understood, with many details still being

highly debated today (Fletcher et al., 2005; Mombaerts, 2004). In fact, while the

molecular basis of odor sampling is mostly agreed upon, the means of information

representation and processing in the olfactory bulb, which are important for odor

learning, discrimination and identi�cation, are active areas of research with a

variety of proposed hypotheses, but without a common consensus to date (for

reviews, see (Friedrich, 2006; Laurent, 2002; Lledo et al., 2005)).

1.2.1 Functional organization of the olfactory system

The olfactory epithelium

The detection of on odor starts in the olfactory epithelium, a sheet of cells covering

the nasal cavity. The olfactory epithelium is composed of three cell types (Fig. 1.1):

the olfactory receptor neurons (ORNs) are responsible for the transduction process

and the relay of action potentials into the olfactory bulb (OB); the sustentacular

cells are glia-like supporting cells (Getchell, 1977; Okano and Takagi, 1974); the

3



1. Introduction

L

SC

ORN

BC

Axons

Cilia

Knob

M

Dend

a b c

Figure 1.1: Organization of the olfactory epithelium. The olfactory epithelium consists of three cell

types: the olfactory receptor neurons; the sustentacular cells, which are glia-like supporting cells;

and the basal cells, which provide the epithelium with the capacity of cell regeneration. (a) Staining

of the olfactory epithelium of a Xenopus laevis tadpole, adopted from Manzini et al. (2002). The

ORNs were back�lled through the nerve using the biocytin/avidin staining (green), the slice was

counterstained with propidium iodide (red). Scale bar, 20 µm. (b) Schematic representation of

the olfactory epithelium. Each ORN expresses a single type of olfactory receptor, indicated here

by di�erent colors. The receptors are located in the membrane of the cilia, which extend into the

lumen and are covered by a layer of mucus. The axons of the ORNs are projecting to the olfactory

bulb through the olfactory nerve. (c) Magni�cation of the dendritic terminal, termed the dendritic

knob, which is decorated with numerous cilia. This is the place of odor binding, that initiates the

odor recognition process. Adopted from Manzini et al. (2002). Scale bar, 5 µm.

Abbreviations L: lumen of the nasal cavity; M: mucus; SC: sustentacular cell; ORN: olfactory

receptor neuron; BC: basal cell; Dend: dendrite.

basal cells provide the epithelium with the capacity of cell regeneration (Graziadei,

1971). The ORNs have a large dendrite projecting towards the lumen of the nasal

cavity. The dendrite terminates in the dendritic knob, a protrusion decorated with

a number of �ne cilia extending into the lumen (Fig. 1.1). These cilia contain the

olfactory receptors, which are responsible for binding of odorous molecules. The

olfactory receptors form a family of seven-transmembrane proteins belonging to the

group of G-protein coupled receptors (Buck and Axel, 1991). The speci�city of

odor recognition is achieved by a di�erential expression of olfactory receptors in the

ORNs. From the large receptor family (up to about 1,000 in higher vertebrates

(Buck and Axel, 1991; Mombaerts, 1999), about 400 in the frog (Niimura and Nei,

2006)) typically a single receptor is expressed in each ORNs (Buck, 1996). Each of
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1.2 The Olfactory System

NL

GL
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MCL

GCL

V

ON

MOB

a b

a bFigure 1.2: Organization of the olfactory bulb. The OB is a layered structure, consisting of the

nerve layer, the glomerular layer, the external plexiform layer, the mitral cell layer, and the granule

cell layer. Refer to the text for a summary of the anatomy and connectivity of the OB. (a) Triple

staining of the OB of a Xenopus laevis tadpole, adopted from Nezlin et al. (2003). Biocytin

injection into the olfactory nerve (green), synaptophysin immunostaining (red), and DAPI nucleic

acid staining (blue). Scale bar, 100 µm. (b) Schematic representation of the OB. The axons of

the ORNs converge in a receptor speci�c manner (indicated by colors) in the olfactory glomeruli.

M/T cells are the principle neurons of the vertebrate OB. They send their primary dendrite into

the glomeruli, where they receive input from the ORNs and they send their axons to higher brain

regions. Several types of local interneurons modulate the M/T cell activity. The ( - symbol

indicates excitatory, the

T

- symbol inhibitory synapses. Refer to the text for details.

Abbreviations ON: olfactory nerve; MOB: main olfactory bulb; V: ventricle; NL: nerve layer;

GL: glomerular layer; EPL: external plexiform layer; MCL: mitral cell layer; GCL: granule cell

layer.

these receptors can typically bind a variety of odor molecules with di�erent a�nities,

resulting in odor speci�c activation patterns in the olfactory epithelium (Duchamp-

Viret et al., 1999; Kajiya et al., 2001; Malnic et al., 1999; Manzini and Schild, 2004).

The olfactory bulb

The OB receives information from the olfactory epithelium through the axons of the

ORNs. It is the �rst and only central relay station of the olfactory system, since its

projections diverge into various parts of the brain (Kandel et al., 2000). Accordingly,
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1. Introduction

much e�ort has been directed during the last decades towards uncovering the coding

strategies implemented by the OB.

The OB has an anatomically layered structure consisting of the nerve layer, the

glomerular layer, the external plexiform layer, the mitral cell layer and the granule

cell layer (Fig. 1.2). The axons of the ORNs terminate in large neuropil structures

known as the olfactory glomeruli, which are located in the periphery of the OB. The

ORNs show a speci�c convergence pattern, with the axons of neurons expressing the

same receptor converging typically into two olfactory glomeruli (Ressler et al., 1994;

Vassar et al., 1994). In this way, the speci�city achieved by the di�erential receptor

expression in hundreds of thousands of individual ORNs is not only maintained but

condensed into a spatial map with only two elements per receptor type. This map

is however di�erent from the topographical maps found in other sensory systems

(Kandel et al., 2000), as there is no consistent functional pattern evident in the

spatial arrangement of this `glomerular map' (Friedrich and Korsching, 1997; Lledo

et al., 2005; Meister and Bonhoe�er, 2001).

The mitral/tufted (M/T) cells are the principle neurons of the OB, they receive

input from the receptor neurons and their axons project to higher brain regions.

Their morphology and their connectivity with other neurons provide the possibility

of processing the incoming `raw' signal into the outgoing olfactory code. Each M/T

cell has one apical dendrite that extends into the glomerular layer. At its end,

it branches extensively, forming a glomerular tuft in typically a single glomerulus

(Lledo et al., 2005), though innervation of several glomeruli by the same M/T cell

have been reported (Nezlin et al., 2003). Additionally, M/T cells possess several

lateral dendrites which extend into the external plexiform layer, and which can span

almost the complete olfactory bulb (Mori et al., 1983; Orona et al., 1984). The

following connectivity patterns have been found to date in the OB and are thought

to be important for the olfactory coding (for a thorough review see Lledo et al.

(2005)):

1. The glomerular tufts of both M/T (Berkowicz et al., 1994) and periglomerular

(Bardoni et al., 1996) cells receive excitatory (glutamatergic) input from the

axon terminals of the ORNs. These can act via NMDA and AMPA receptors

6



1.2 The Olfactory System

(Aroniadou-Anderjaska et al., 1997; Bardoni et al., 1996; Berkowicz et al.,

1994; Ennis et al., 1996).

2. The M/T cells innervating the same glomerulus are inter-connected by elec-

trical synapses (Christie et al., 2005; Paternostro et al., 1995).

3. The glomerular tufts of M/T cells are innervated by dendrites of a variety

of juxtaglomerular cells. These cells form both intra- and interglomerular

connections and have been suggested to form a center-surround inhibitory

network at the glomerular level in the mouse (Aungst et al., 2003).

4. Another presumed center-surround network is formed by the axon-less,

GABAergic inhibitory granule cells which make contact with the secondary

dendrites of M/T cells (Shipley and Ennis, 1996).

5. M/T cells form dendrodendritic synapses with granule cells (Pinching and

Powell, 1971; Rall et al., 1966), providing a mechanism of M/T cell self-

inhibition (Isaacson and Strowbridge, 1998; Jahr and Nicoll, 1982) which ap-

pears to depend on NMDA receptors (Schoppa et al., 1998). Dendrodendritic

synapses are also the main connection between juxtaglomerular cells (Pinching

and Powell, 1971).

6. Various cases of self-modulation are found in the OB (Isaacson, 1999; Nicoll

and Jahr, 1982). These were reported to be involved in driving slow oscilla-

tions of the membrane potential (Schoppa and Westbrook, 2001), helping to

synchronize M/T cells that project to the same glomerulus (Schoppa andWest-

brook, 2002), and supporting action potential backpropagation (Salin et al.,

2001). While all these phenomena depend on self-excitation of M/T cells, self-

inhibition has been reported for periglomerular cells (Smith and Jahr, 2002).

Olfactory systems across species and the choice of a model organism

Many properties of the olfactory system are very conserved across species from ne-

matodes to mammals (for reviews, see Ache and Young (2005); Eisthen (2002);

Hildebrand and Shepherd (1997)). Speci�cally, investigations of insects (Hansson
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a b c
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Figure 1.3: Larval Xenopus laevis as a model organism for olfactory research. (a) Larval Xenopus

laevis. (b) Head of a Xenopus laevis tadpole. The outline indicates the tissue block that is cut

out for the nose-brain preparation. (c) Slice of the tissue block indicated in (b), containing the

olfactory epithelia, the olfactory nerves and the olfactory bulbs. This preparation is termed nose-

brain preparation and is used for the physiological experiments throughout the thesis. Scale bar,

500 µm. Photographs kindly provided by T. Hassenklöver (a) and S. Gliem (b,c).

Abbreviations OE: olfactory epithelium; ON: olfactory nerve; OB: olfactory bulb.

and Anton, 2000; Stocker, 2001), amphibians (Manzini and Schild, 2004; Nezlin and

Schild, 2000; Nezlin et al., 2003), �sh (Byrd and Brunjes, 1995; Korsching et al.,

1997), and mammals (Shipley and Ennis, 1996) indicate, that the main features of

the olfactory epithelium (di�erential expression of olfactory receptors in ORNs) and

the olfactory bulb or its analogous structures (ORN axons converge in an receptor

speci�c manner in olfactory glomeruli; a single layer of principle neurons; inhibitory

interneurons both on the level of glomeruli and of principle neurons) are shared

among insects and di�erent classes of vertebrates. This high degree of structural

similarity suggests that there might be also similarities with respect to the olfactory

code that is created by the underlying network. Consequently, a wide variety of

model organisms from di�erent classes have contributed to the current understand-

ing of the olfactory system.

The ultimate goal of neuroscienti�c research is the understanding of the human

nervous system, yet most neurophysiological research is conducted using animal
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1.2 The Olfactory System

models. Besides ethical considerations, these model systems often have the advan-

tage of being less complex, while exhibiting the same fundamental features as higher

evolved species. Furthermore, some species have properties that facilitate experi-

mental research, such as short reproduction times, easy manipulation of the gene

code, transparency of the tissue or simply small size. The choice of an appropriate

model organism is thus in many cases the key to successful research.

The tadpole of Xenopus laevis (Fig. 1.3) has proven to be an excellent model

system for investigations both of the olfactory epithelium (Hassenklöver et al., 2008;

Manzini and Schild, 2003a, 2004) and of the olfactory bulb (Czesnik et al., 2001,

2003; Manzini et al., 2007a; Nezlin and Schild, 2005). The major experimental ad-

vantage of this animal is the lack of the cribriform plate, the bone separating the

nasal cavity and the olfactory bulb. It is thus easy to create a `nose-brain' prepa-

ration that can be used to study the e�ects of natural odors in the OB (Fig. 1.3c,

Czesnik et al. (2003)). The olfactory system of tadpoles is known to be functional

and behaviorally relevant (Kiesecker et al., 1996; Waldman, 1985), justifying the

use of an embryonic animal for the functional investigation of a sensory system.

Furthermore, it is known that amino acids are behaviorally relevant stimuli for

Xenopus laevis tadpoles (Kiseleva, 1983, 1995), as they are for other aquatic ani-

mals (Carr, 1988; Ferrer and Zimmer, 2007). Amino acids form a convenient set of

stimuli, as they are chemically well de�ned, and encompass both similar and dis-

similar molecules. Consequently, many studies of the olfactory system of aquatic

animals have used amino acids for odor stimulation (Czesnik et al., 2003; Friedrich

and Korsching, 1998; Manzini et al., 2007b, 2002; Tabor et al., 2004).

1.2.2 Coding principles in the olfactory system

Processing of information in the olfactory bulb

In all sensory systems, the information captured by the receptor cells is processed

on its way to higher brain centers. The investigation of these processes in di�erent

sensory systems revealed recurrent mechanisms, the most famous probably being

the concept of local contrast enhancement by lateral inhibition, �rst discovered in

the retina (Hartline, 1969). This processing of the sensory information serves two
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main purposes: to locally enhance contrast in order to emphasize di�erences between

similar activation patterns; and to combine aspects of the activity patterns into more

abstracted representations that allows a categorization of the captured stimulus.

Single molecules usually activate a variety of receptor types (Duchamp-Viret

et al., 1999; Kajiya et al., 2001; Malnic et al., 1999; Manzini and Schild, 2004).

This observation led to the conclusion that a given odor (which is in most cases

a complex mixture of di�erent molecules) is characterized by the speci�c combina-

tion of activated olfactory receptors. This strategy of odor coding is referred to as

`population coding'. The pattern of activated ORNs is transformed into a pattern

of activated M/T cells by the circuits in the OB described above. While much is

known about the anatomical and molecular details of these circuits, the functional

signi�cance of this transformation is still debated. The problems of uncovering the

coding strategies largely originate from the complexity of the odor space, and the

di�culty to de�ne odor categories and a measure for odor similarity.

It has been proposed that the lateral connections formed at the level of glomeruli

by the juxtaglomerular cells (Aungst et al., 2003) and at the M/T level by the

granule cells (Shipley and Ennis, 1996) serve the function of local contrast enhance-

ment (Aungst et al., 2003; Johnson et al., 1999; Vucini¢ et al., 2006; Yokoi et al.,

1995), in analogy to other sensory systems (Hartline, 1969; Kandel et al., 2000).

However, only one of these studies provided evidence for center-surround receptive

�elds of M/T cells (Yokoi et al., 1995). Furthermore, the role of the center-surround

architecture for sharpening of tuning curves has been questioned (Fantana et al.,

2008; Urban, 2002), including suggestions for alternative roles, such as the removal

of concentration dependency of the activity patterns (Cleland et al., 2007). The

signi�cance of lateral interactions for odor discrimination and recognition tasks has

additionally been challenged by the observation that ablation of large parts of the

OB do not impair odor discrimination abilities (Bisulco and Slotnick, 2003; Fecteau

and Milgram, 2001; Slotnick et al., 1987). Consequently, the precise role of the OBs'

interneurons and of its characteristic connectivity pattern is still unknown.

Furthermore, while most sensory systems show a topographical organization of

neurons at di�erent levels, the M/T cells are not organized in such a spatio-functional
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1.2 The Olfactory System

way. It has been shown recently, that M/T cells innervating the same glomerulus

are both highly synchronous in their activity but also spread across most of the OB

(distances up to half the bulb diameter, Chen et al., submitted). The spatial map

of activated M/T cells is thus not informative about the stimulus, and one should

rather use a term like `identity map' to refer to the functional activity pattern of

M/T cells. For the sake of consistency, the former term is retained throughout this

thesis.

Spatio-temporal coding strategies

While it is unquestioned that the combinatorial activity patterns of M/T cells carry

information about the stimulus, it has been hypothesized that odor identi�cation

and discrimination requires more information than the identity of the activated

M/T cells. In fact, some of the earliest investigations of OB neurons concerned the

temporal patterning of spontaneous and odor-evoked activity (Adrian, 1942).

Walter J. Freeman later proposed a role of chaotic dynamics in the OB for ol-

factory coding. This theory was based on the complex temporal structure found in

olfactory electroencephalograms (Freeman, 1991, 1994; Skarda and Freeman, 1987).

These recordings had the disadvantage of averaging over larger populations of neu-

rons, which proved to be unsuitable for the investigation of the olfactory system.

More recent models were motivated by the reproducibility and speci�city of tem-

poral activity patterns recorded from individual M/T cells. These models were also

considering two other properties of the olfactory system: (1) The M/T cells show

clear temporal patterning of their activity in response to odor stimulation. (2) Smell

is a sense with a comparably low temporal resolution, which allows the use of time

as a coding parameter (Laurent, 1999). The two most in�uential approaches will be

introduced brie�y.

The model proposed and developed by Gilles Laurent (for a review, see Laurent

et al. (2001)) is based on two observations: (1) During odor stimulation, projec-

tion neurons and local neurons (the insect analogs to M/T cells and granule cells,

respectively) exhibit sub-threshold oscillations (20 � 30 Hz) of their membrane po-

tential. These oscillations are phase-locked for all projection neurons and have a
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�xed phase-shift of 90◦ between projection neurons and local neurons. It is possible

to measure these oscillations by extracellular recordings of the local �eld potential.

The oscillations cannot be found in ORNs, and are thus attributed to the circuitry

of the antennal lobe (the insect analog to the OB). (2) The odor-evoked responses

of projection neurons are characterized by cell- and odor-speci�c temporal patterns

of increased and decreased activity. The timing of action potentials relative to the

local �eld potential oscillations depends on the cell, the stimulus and the phase of

the response, creating a reproducible sequence of phase-locked and non-phase-locked

epochs during the evoked response. According to this model, an understanding of

the olfactory code relies on a combined analysis of the local �eld potentials oscil-

lations and the spike pattern of the individual projection neurons. It was further

shown that the temporal activity patterns become more odor speci�c over the course

of the evoked response, resulting in a gradually optimized stimulus representation

(Friedrich and Laurent, 2001). This was shown by analyzing the degrees of correla-

tion between the M/T cell activity pattern and by performing principle component

analysis in 200 ms time windows for a variety of odorants. These analyses suggest

that odor classi�cation is best performed in the initial 600 ms of the response, during

which similar odors elicit similar excitation patterns. During the later phase of the

response, the patterns created by chemically similar odors become more distinct, fa-

cilitating odor identi�cation. Another extension of the model uses a classi�cation of

phase-locked vs. non-phase-locked spikes, suggesting that these two populations of

spikes carry distinct information about odor category and odor identity, respectively

(Friedrich et al., 2004).

John J. Hop�eld approached the question of olfactory coding from a more com-

putational and information theoretical point of view, using properties of actual bi-

ological systems as an inspiration for rather general models for sensory coding. He

proposed a variety of mechanisms that could play a role for olfactory coding, in-

cluding the analysis of temporal �uctuations in stimulus intensity (Hop�eld, 1991);

the timing of action potentials relative to a global underlying oscillation (Hop�eld,

1995); the role of di�erential activation of a large number of receptor types (Hop-

�eld, 1999); and the use of synchronized subpopulations of M/T cells for olfactory
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coding. Similar to the model proposed by Laurent, a global oscillation that serves

as a temporal reference is an important aspect of Hop�eld's models (Hop�eld, 1995;

Hop�eld and Brody, 2004). However, while Hop�eld only considers action poten-

tial timing relative to this oscillation, Laurent explicitly exploits the evolution of

temporal M/T cell dynamics over hundreds of milliseconds.

Time scales set by behavioral discrimination tasks

The described studies have signi�cantly advanced our understanding of the OB dy-

namics. However, the coding strategies proposed by Hop�eld are only loosely based

on the actual olfactory system and have to be validated experimentally. The model

proposed by Laurent, on the other hand, demands time scales for odor discrimination

around 1 s, which is signi�cantly longer than the reaction times observed in most

sensory systems, including the olfactory system. Odor discrimination tasks have

been performed in humans and rodents. In rodents, di�erent discrimination tasks

have been tested, using single odors and binary mixtures (Abraham et al., 2004),

odors with a varying degree of similarity (Slotnick, 2007b; Uchida and Mainen,

2003) and discrimination between novel and familiar odors (Wesson et al., 2008).

While there are subtle di�erences in the results, the overall discrimination times

range typically between 200 and 400 ms, with the exception of tasks concerning the

discrimination of novel odors (Slotnick, 2007a). The response times measured for

humans are slightly longer (around 400 ms, Laing (1986)), but the results are similar

to the studies in rodents in that the odor identi�cation can be achieved within a

single sni� (Abraham et al., 2004; Uchida and Mainen, 2003). The response times

measured in these discrimination tasks do not only rely on the processing of infor-

mation in the OB, but they include decision making and initiation of the actual

motor response. This implies that the time interval used for the `discrimination

analysis' is even shorter than the reported response times. As the coding strategy

proposed by Laurent et al. is based on studies in insects and �sh, and the behavioral

studies were conducted in higher vertebrates, a direct comparison between their re-

sults is not possible. Nevertheless, the behavioral experiments indicate that odor

identi�cation and discrimination might not depend on the changes in neuronal ac-
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tivity over almost one second, but that the relevant information is contained in the

activity patterns over shorter time scales. In order to investigate the odor speci�c

variations in the population dynamics shortly after stimulus application, it would

be required to observe a signi�cant M/T cell population with a high temporal res-

olution. The variability of temporal activity patterns within short time intervals

(few hundred milliseconds) is limited, especially considering the stereotypic burst-

ing found in M/T cells in various species (Margrie and Schaefer, 2003; Scheidweiler

et al., 2001; Wellis et al., 1989). It is thus reasonable to investigate concrete param-

eters of the responses, such as the response latency, i.e. the time between odor onset

and the �rst spike, or the mean �ring rate. This approach is further supported by

recent �ndings in other sensory systems, that indicate a role of response latencies

for rapid and reliable coding of sensory information (Carr and Konishi, 1990; Gol-

lisch and Meister, 2008; Johansson and Birznieks, 2004; Reich et al., 2001). First

attempts in this direction have been made in the olfactory system, either using

electrophysiological tools (Bathellier et al., 2008; Margrie and Schaefer, 2003), or

functional imaging (Spors and Grinvald, 2002; Spors et al., 2006). The electrophys-

iological recordings su�er from the low number of simultaneously recorded neurons,

while the imaging experiments were investigating olfactory glomeruli, rather than

M/T cells. Most importantly, none of these studies tried to quantitatively evaluate

the observed parameters under a population coding paradigm. Such an approach

requires a trial-by-trial population analysis, instead of �rst averaging over trials for

single cells and subsequently investigating the population dynamics.
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1.3 New Scienti�c Insights Through New Experimental Tools

{Misura ciò che è misurabile, e rendi misurabile ciò che non lo è. |
(Measure what can be measured, and make measurable what can not.)

probably Galileo Galilei (1564 - 1642)

1.3.1 Why olfactory research could pro�t from fast image acquisition

Our understanding of the nervous system, and of nature in general, was always

advanced by the introduction of novel experimental tools. The advent of molecular

biology in the second half of the 20th century has provided powerful tools that

enabled the uncovering of the molecular principles underlying the early stages of

olfactory coding (Buck and Axel, 1991; Ressler et al., 1994; Vassar et al., 1994).

Signi�cant improvements in photochemistry on the other hand provided functional

dyes, such as voltage or calcium sensitive �uorophores (Orbach et al., 1985; Tsien,

1981), which are today ubiquitously used to monitor neuronal activities in large

populations of cells. Thanks to confocal and multi-photon microscopy, it is possible

to measure �uorescent signals with high speci�city in all three spatial dimensions,

even deep inside living tissue (Stosiek et al., 2003; Yaksi et al., 2007).

These advances allow the simultaneous observation of the activity of a large num-

ber of neurons with a high spatial resolution. They su�er however from a low tem-

poral resolution, usually at the order of a few Hertz for both conventional confocal

and wide�eld microscopes. The time scale at which neurons communicate is about a

hundred times shorter. The investigation of functional aspects of neuronal systems

is thus limited to either electrophysiological recordings with high temporal, but ef-

fectively no spatial resolution, or to the observation of neuronal populations using

imaging systems with a low temporal resolution. Since the olfactory system is char-

acterized by population coding, the investigation of a single or a small number of

cells can yield only an incomplete understanding of the olfactory coding strategies.

This motivates the investigation of odor-evoked population responses with a high

temporal resolution. First attempts in this direction have been made (Spors and

Grinvald, 2002; Spors et al., 2006), though with the drawback of a low spatial res-
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olution, which restricted the experiments to the observation of olfactory glomeruli,

which are about three times larger than neuronal somata. Since the M/T cells are

the neurons projecting to higher brain areas, it is of particular interest to investigate

the activity patterns of these cells. This requires a microscopic tool with high spatial

and high temporal resolution.

1.3.2 Demands on a high-speed �uorescent microscope to study neu-

ronal populations

A microscope designed for the investigation of neuronal populations with high tem-

poral resolution should meet the following requirements:

1. The spatial resolution has to be su�cient to distinguish single somata in all

three spatial dimensions. This implies the ability of creating so called `op-

tical sections', i.e. to exclude out-of-focus light, as realized by the confocal

microscope �rst introduced by Marvin Minsky (Minsky, 1957, 1988).

2. The temporal resolution should be su�cient to capture details of neuronal

activity patterns. The time scale at which neurons communicate is in the range

of milliseconds, which de�nes the desired resolution for a fast microscope.

3. Since biological systems show large inter-trial variability, it is required to re-

peat a given experiment several times in the same preparation, in order to

separate systematic from random events.

These considerations motivated the design of a novel confocal microscope op-

timized for fast imaging of biological specimen. By focusing the light into a line

instead of a point as in conventional laser scanning microscopes, the scanning is re-

duced to one dimension, and in combination with a fast detector high frames rates

can be achieved. A number of line scanning realizations have been described (Im

et al., 2005; Masters and Thaer, 1994; Sheppard and Mao, 1988), most often though

with applications to non-�uorescent samples or non-biological specimens. The new

microscope was thus designed to (1) maximize e�ciency in the emission pathway, (2)

optimize the trade-o� between spatial resolution and signal-to-noise ratio for imag-
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ing of neuronal populations, and (3) provide the possibility to restrict fast image

acquisition to short time intervals of interest.

1.3.3 Visualizing neuronal morphology based on fast 3D image acquisi-

tion

While the microscope setup was primarily motivated by questions concerning olfac-

tory coding, its application is not limited to fast 2D imaging. By extending the

image acquisition to the third dimension, considerably larger fractions of a network

could be observed, and the analysis could be extended from somata to neuronal

processes. In this way, another important aspect of the study of the brain could be

approached, namely the investigation of the structure of neuronal networks. The

density of biological tissues generally requires a sparse staining in order to generate

images with su�cient contrast for the visualization of individual neuron's morphol-

ogy. Instead of using the �uorescent intensities for the generation of image contrast,

it is possible to exploit other parameters, as it is commonly done in functional MRI.

In the case of neuronal networks, the complex and diverse temporal structure of

neuronal activity, visualized by a calcium indicator dye, could be exploited as a

means of intrinsic contrast. By using fast image acquisition, it is possible to ob-

serve a large fraction of a network quasi simultaneously. Based on these recordings,

the spatial positions exhibiting a given activity pattern can be detected by means

of correlation analysis. This approach should enable the detection of functionally

synchronous structures in the volume under observation.

This section of the thesis was a collaboration with Tsai-Wen Chen, Department

of Neurophysiology and Cellular Biophysics, University Göttingen.
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1.4 Goals of this Thesis

This thesis aims at deepening our understanding of function and structure of the

olfactory system, in particular the spatio-temporal coding in the olfactory bulb. To

shed new light on this yet unresolved problem, novel experimental and analytical

tools were designed, implemented and used. The presented work encompasses three

successive parts:

1. A novel confocal microscope for fast 2- and 3-dimensional image acquisition

was designed and realized. The microscope was characterized concerning its

spatial and temporal resolution. This characterization was the basis for the

subsequent biological applications.

2. A novel way of visualizing the architecture of neuronal networks from time

series of functional 3D-imaging data was developed. By acquiring complete

image stacks with sub-second resolution with the new microscope, large parts

of a network could be imaged quasi simultaneously. The introduced algorithm

generates a high-contrast multi-color visualization of the network, which com-

plements the functional imaging data for an unprecedented combination of

structural and functional information about the network under observation.

3. The early phase of the odor-evoked response in the OB of Xenopus laevis

tadpoles was measured with high temporal resolution, taking advantage of the

fast 2D-imaging capabilities of the new microscope. These recordings were

used to investigate aspects of olfactory coding, in particular the population

patterns of M/T cell response onset times.
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Materials and Methods

2.1 Electronic Components and Data Acquisition System

The novel line-illumination microscope contains a number of electronic components,

such as the CCD camera, the scan mirror and the piezo actuator. It depends there-

fore on a system to control and synchronize these elements. Additionally, a syn-

chronization with external devices, such as a stimulus application system or a patch

clamp unit is desirable.

2.1.1 Control of electronic components

The control of the electronic components and the data acquisition was distributed

to two PCs to avoid con�icts of these demanding processes. The control unit PC

is the `master unit' of the setup (Fig. 2.1). It creates the scan schemes for the

scan mirror and the piezo actuator as well as the trigger for the image acquisition,

controls the shutter, the neutral density �lters, and provides an external trigger to

synchronize the image acquisition to other instruments (e.g. a patch clamp setup

or an stimulus application system). These processes are controlled and interfaced

using the software linlab custom written in C++ by Mihai Alevra (Department of

Neurophysiology and Cellular Biophysics, University Göttingen). The user interface

enables the creation of standard scan protocols, resulting in scan schemes as shown

in Figure 2.2, including the speci�cation of pre-acquisition lines and pre-acquisition

frames to exclude the `�y-back' times of the scan mirror and the objective from

the image acquisition. More complex scan protocols can be created and exported

using an interface written for Matlab by Stephan Junek, the exported �les can

then be loaded into linlab. This software allows for example the change of temporal

19



2. Materials and Methods
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Figure 2.1: Overview of the control system of the scanning microscope. The `master control' of the

setup is PC1 that produces the signals for all electronic components (scan mirror, piezo actuator,

shutter, camera trigger, external trigger). The camera trigger is fed into a PC2 which is used for

the image acquisition. The external trigger can be used to synchronize the data acquisition to

other elements of the experimental setup, such as the odor application system or a patch clamp

unit.

resolution during a single acquisition, as used in the Results (see Fig. 3.15).

2.1.2 Data acquisition system

The data acquisition trigger supplied by the master PC is fed into the PC used

for image acquisition. The software omap custom written in C++ by Mihai Alevra

provides the interface to set image acquisition parameters and it controls the actual

image acquisition by communicating with the CCD camera. The image data of each

acquisition, which can be up to 4-dimensional, are directly written to the hard drive

into a single �le. These data can be visualized and analyzed using software custom

written for Matlab by Stephan Junek.
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Figure 2.2: Schematics of a scan protocol used to control the electronic components of the micro-

scope. (a) The scan mirror is controlled by a periodic stair-case like function. The image acqusition

is paused during the `pre-acquisition lines' to exclude the return movement of the scan mirror from

the acquisition. When de�ecting the scan mirror strongly, the light does not reach the objective

and the sample is not illuminated (`Light-o�'). This can be used as a fast shutter to introduce short

breaks in the acquisition. The image acquisition periods are indicated by gray bars. (b) The piezo

actuator is driven by a ramp function. Similarly to the scan mirror, the return of the objective

can be excluded from the acquisition interval by the de�nition of `pre-acquisition frames'. (c) The

output trigger can be used to control external devices, such as the odor application system. (d)

Another trigger is used to control the shutter, thereby restricting the illumination of the sample

to the time of the experiment.
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2.1.3 Tuning and characterization of scan mirror and piezo actuator

The behavior of the scan mirror and the piezo actuator were evaluated using custom

written routines (Matlab, The MathWorks, USA) to generate command pat-

terns and read out the monitor signal from the control boards. Signals were sampled

at 25 kHz. This con�guration was used to adjust the settings of the proportional

� integral � di�erential controllers to achieve optimal performance for the experi-

mentally relevant parameters. In case of the piezo actuator, the dependence of the

response on the weight of the objective motivated the addition of a second control

board. The user can now select from two settings, one optimized for light and fast

responding objectives, the other one optimized for heavy and inert objectives. For

display purposes, the signals were �ltered o�-line at 10 kHz.

2.2 Slice Preparation and Physiological Experiments

2.2.1 Slice preparation

Tadpoles of Xenopus laevis (stage 51 � 54; staged after Nieuwkoop and Faber (1967))

were chilled in a mixture of ice and water and decapitated, as approved by the Göt-

tingen University Committee for Ethics in Animal Experimentation. A block of tis-

sue containing the olfactory mucosa, the olfactory nerves and the anterior two-thirds

of the brain were cut out and kept in bath solution containing (in mM): 98 NaCl,

2 KCl, 1 CaCl2, 2 MgCl2, 5 glucose, 5 sodium pyruvate, 10 Hepes; 230 mosmol, pH

7.8. The tissue block was glued onto the stage of a vibroslicer (VT 1000S, Leica,

Bensheim, Germany) and cut horizontally into approximately 200 µM-thick slices

(Manzini et al., 2002). The slices were transfered into custom built microscopy

chambers and stabilized with a grid (Edwards et al., 1989).

2.2.2 Staining protocols

Bath incubation

For the staining solution, Fluo-4/AM (Molecular Probes, Karlsruhe, Germany)

was �rst dissolved in 20% Pluronic F-127 in DMSO, and then diluted in the bath
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solution to reach the �nal concentration. To avoid transporter-mediated destaining

of the slices, MK571 (50 µM; Alexis Biochemicals, Lörrach, Germany), a speci�c

inhibitor of multidrug resistance-associated proteins, was added to the staining so-

lution (Manzini and Schild, 2003b; Manzini et al., 2008). For 2D imaging, the tissue

slices were incubated in a solution with dye concentration of 2 � 5 µM for 30 min, fol-

lowed by a post-incubation period of 30 min in ringer solution with MK571 (50 µM).

Bolus loading

For 3D imaging, a solution containing 100 - 500 µM Fluo-4/AM was pressure-

injected at a depth of approx. 70 µm using patch pipettes (6 � 8 MΩ, 50 � 100 hPa

for 1 � 5 min) into two sites per bulb hemisphere (adopted from Garaschuk et al.

(2006); Stosiek et al. (2003)). The progress of the injection was monitored using

a 40× water immersion objective. The spontaneous activity of the neurons was

investigated after an incubation period of 30 � 40 min following the last injection.

Staining of ORNs by electroporation

The animal was anesthetized in ice cold water, placed on a preparation dish covered

with silicon, and gently �xed by restraining its movements with �ne needles. The

caudal part of the tadpole was covered with wet cellulose tissue. Small crystals (1 �

10 µg) of Fluo-4 dextran (Invitrogen, Karlsruhe, Germany) were placed in both

nasal cavities. After the crystals dissolved, two platinum electrodes were inserted

in the nasal cavities. The dye was transferred into the cells by electroporation. Six

pulses of 20 V and 20 ms duration were applied, with a break of 5 min between

the third and fourth pulse. After another 5 min, the animal was placed back into

the water. Experiments were carried out 1 � 2 days later. This staining proce-

dure was established by Eugen Kludt, Department of Neurophysiology and Cellular

Biophysics, University Göttingen.
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2.2.3 Application of odorants

Application system

For odor application experiments, the recording chamber was constantly perfused by

gravity feed from a syringe through a slightly modi�ed version of a funnel applicator

described earlier (Manzini, 2002; Schild, 1985). The tip of the applicator was placed

in front of the ipsilateral mucosa using a 10× objective. The odorants were applied

into the funnel without stopping the �ow of the bath solution using an electronic

pipette (HandyStep electronic, Brand, Wertheim, Germany). The pipette was

modi�ed to control the out�ow with the trigger signal (TTL) provided by the control

PC. The timing and reproducibility of the stimulus application was measured by

adding �uorescent dye (1 µM Fluorescein, Sigma, Deisenhofen, Germany) to the

stimulus solution, and imaging the out�ow from the tip of the applicator with a 10×
objective at 400 Hz. The delay was measured to be (363± 9) ms, (436± 19) ms and

(716± 108) ms for 10%, 50% and 90% of the maximum concentration, respectively

(see Fig. 3.15b). The absolute time of this delay might slightly vary from slice to

slice due to the positioning of the applicator relative to the mucosa. Fluid was

removed from the recording chamber using a syringe needle connected to a vacuum

pump (Hy�o Model C vacuum pump, Medcalf Brothers Ltd., Potters Bar,

England) via a waste-bottle.

Odor stimuli

The olfactory system was stimulated with solutions containing amino acids or an

extract of amphibia food based on Spirulina algae (Mikrozell, Dohse Aquaristik,

Bonn, Germany). The amino acids (Sigma, Deisenhofen, Germany) were dissolved

in bath solution (10 mM stock) and diluted prior to the experiment to the �nal

concentrations as indicated in the text. The amino acids were applied individu-

ally or as a mixture of 15 amino acids (L-proline, L-valine, L-leucine, L-isoleucine,

L-methionine, L-glycine, L-alanine, L-serine, L-threonine, L-cysteine, L-arginine,

L-lysine, L-histdine, L-tryptophane, L-phenylalanine), excluding amino acids that

could have a direct e�ect on the neurons in the OB (L-glutamate, L-aspartate, L-
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glutamine and L-asparagine). For the solution containing the food extract, 0.5 g of

Spirulina algae were dissolved in 100 ml bath solution and �ltered through a single

use �lter (0.5 µm pore size, Minisart, Sartorius AG, Göttingen, Germany). Ap-

plication of bath solution was used as a negative control. Odors were applied in a

randomized order, with a minimum interstimulus duration of 1.5 min.

2.2.4 Microscopy

The custom built line-illumination microscope, described in detail in 3.1, was used

for all image acquisition except for imaging the results of the dye injection ex-

periments in 3.2. After dye injection, slices were imaged using an Axiovert 100M

equipped with a laser-scanning unit LSM 510 (Zeiss, Jena, Germany). Alexa Bio-

cytin 532 was imaged in the red channel (helium/neon laser, 543 nm, NFT 545,

LP 560). The green channel (Fluo-4) was imaged for alignment with the physio-

logical recordings from the line illumination microscope (argon ion laser, 488 nm,

HFT 488/53, BP 505-550). The following objectives were used as indicated in the

text: 25× LD LCI Plan-Apochromat 0.8 W; 40× Achroplan 0.8 W; 63× Achro-

plan 0.95 W; 40× C-Apochromat 1.2 W; 10× Plan-NeoFluar 0.3 (all Zeiss, Jena,

Germany). For each experiment, `dark images' were acquired by closing the laser

shutter with otherwise identical acquisition parameters. These images were used for

background estimation.

2.2.5 Electrophysiology

Patch clamp was performed using an EPC7 plus ampli�er (Heka, Germany)

and pipettes with a series resistance between 8 and 12 MΩ. Alexa Biocytin 532

(Invitrogen, Germany) was added to the intracellular solution (in mM: 2 NaCl,

11 KCl, 2 MgSO4, 80 K-Gluconat, 10 Hepes, 0.2 EGTA, 2 Na2ATP, 0.1 Na2GTP).

After breaking the seal, the cell was held at -65 mV for one minute to allow di�usion

of the dye into the cytosol.
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2.3 Data Analysis

All data analysis was performed using custom software written in Matlab (The

MathWorks, USA).

2.3.1 Characterization of point spread functions

In order to determine the width of the point spread functions (PSF) of the micro-

scope, image stacks of individual �uorescent silica beads with a diameter of 175 nm

(Fluospheres, Molecular Probes, Karlsruhe, Germany) were analyzed and the

resulting values averaged. The analysis consisted of three steps:

1. Determination of the `center of gravity' of the intensity distribution. The voxel

closest to this position was used as the center of the PSF. Using neighbouring

voxels or interpolating the intensities into the sub-pixel position of the bead

center did not signi�cantly alter the following results.

2. The (x, y)-image plane through the bead center was used to determine the

lateral size of the PSF. The intensity distribution in the (x, y)-plane was �tted

with a two-dimensional Gaussian.

3. Similarly, the axial intensity distribution along the center of the bead was

determined, and �tted with a one-dimensional Gaussian.

From the �t values in the three spatial directions, the full width at half maximum

(FWHM) was calculated for each bead, and the mean and standard deviation of

these values were calculated from many beads for each objective.

2.3.2 Image analysis

Drift of the slice was corrected whenever necessary using a custom written routine.

The image data recorded by the CCD camera were transformed into ∆F/F0 =

(F (t) − F0)/F0 values after subtraction of the background. F0 was determined as

the mean of the intensity values of the �rst 10 data points for each pixel.
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2.3 Data Analysis

2.3.3 Autocorrelation map

To facilitate the identi�cation of neurons that respond to a given stimulus repro-

ducibly, an `autocorrelation map' was calculated. This map is calculated on a pixel-

by-pixel basis. For each pixel, the time traces Ia(t) (t = 1, ..., T ) for all applica-

tions a ∈ {1, ..., A} of a given stimulus were concatenated into a single vector I∗(t)

(t = 1, ..., A ·T ). For this vector, autocorrelation values C were calculated for time

shifts that are multiples of one application sequence T :

C(n) =

∑AT
t=1(I∗(t+ nT mod AT )− I∗) · (I∗(t)− I∗)∑AT

t=1(I∗ − I∗)2
,

for n = 1, ..., (A − 1). The values C(n) of each pixel were averaged. The result

is map that indicates positions which exhibited similar time courses during the

repeated applications of the stimulus. As the time courses of Ca2+ indicators show

transients with decay times around 1 s due to the delayed removal of Ca2+ from

the cytosol, this map is insensitive to small temporal �uctuations in the activity

patterns. This map was used as a guide for placing the regions of interest (ROIs).

This procedure was additionally guided by visually evaluating the �uorescent time

courses from all applications.

2.3.4 Activity correlation imaging

Drift of the slice was corrected whenever necessary using a custom written routine. A

bleach correction was performed for all pixels by subtracting a linear trend from each

pixel's time trace. The reference traces were obtained by averaging the �uorescence

intensities across individual regions of interests (ROIs) for each time point. To

facilitate the selection of regions of interest, a `pixel correlation map' was obtained

by calculating the cross-correlation between the �uorescence signals of a pixel to that

of its immediate neighbors and then displaying the resulting value as a grayscale

map. As physiological responses often give similar signals in adjacent pixels, this

method speci�cally highlights those pixels. In contrast, pixels that contain only

noise show uncorrelated traces and thus appear dark in the cross-correlation map

(Manzini et al., 2007a). The ROIs were then selected semi-automatically, based on

the correlation between the time traces of a manually selected pixel and the time
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traces of the pixels in a certain neighborhood (approx. 20 × 20 × 20 µm3) around

this pixel. The correlation map for the jth ROI was then created by calculating the

correlation coe�cients between the reference trace rj(t) and the time traces vi(t) of

each pixel. The ith pixel in the jth correlation map gets thus assigned the value

cij =

∑T
t=1 (vi(t)− vi)(rj(t)− rj)
‖vi(t)− vi‖ · ‖rj(t)− rj‖

, (2.1)

with T being the number of time points of the observation, and ‖ · ‖ denoting the

2-norm of the respective vector. Displayed correlation maps were in some cases

mildly Gauss-�ltered (width < 1 pixel, indicated in the text).
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3

Results

3.1 Design, Realization and Characterization of a Fast Con-

focal Line-Scanning Microscope

3.1.1 Design of the optical pathway

A confocal laser scanning microscope that projects a line of excitation light (instead

of a point) onto the sample was designed and built (Fig. 3.1). The object is scanned

in one direction only, perpendicular to the excitation line. Provided a fast sensor

and acquisition system, high frame rates can thus be achieved. This microscope will

be referred to as Line Illumination Microscope (LIM).

Excitation pathway

In a conventional laser scanning microscope, the arrangement of the optical ele-

ments (scan mirrors, scan lens, tube lens and objective; Pawley (2006)) results in a

focus of the laser beam in the front focal plane of the objective (Fig. 3.2, bottom

panel). In order to create an illumination line that is scanned across the sample,

this optical design is modi�ed by adding a cylindrical lens in front of the dichroic

mirror (Fig. 3.2, top panel). In this way a focus of the initially parallel laser beam is

created in only one direction on the scan mirror, and subsequently in the back-focal

plane of the objective. Due to the introduced anisotropy in the light beam, the

light propagation has to be discussed separately for the two lateral directions (i.e.

directions perpendicular to the optical axis). The direction of the focus line on the

scan mirror will be referred to as the x-direction, the y-direction being perpendicu-

lar to it. Figure 3.2 shows the light propagation of the excitatory pathway for both
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Figure 3.1: Schematic of the complete assembly of the line illumination microscope. The foci of

the beam can be recognized, arrows indicate the direction of light propagation (green: excitation

light, red: emission light, yellow: `overlap' of excitation and emission light). The inset illustrates

the scan scheme for the acquisition of an image stack: The light is focussed into a line in the

object plane, which is scanned across the sample for the acquisition of a single frame. Changing

the position of the objective with the piezo actuator allows to move the imaged plane along the

optical axis.

Abbreviations GF: glass �ber, Coll: collimator, ExF: excitation �lter, NF: neutral density �lter,

CL: cylindrical lens, DM: dichroic mirror, SM: scan mirror, SL: scan lens, TL: tube lens, PA:

piezo actuator, Obj: objective, S: specimen (object plane), EmF: emission �lter, DL: detector

lens, CCD: CCD camera.

directions (the scan mirror position is indicated, while the de�ection caused by the

mirror is omitted for clarity). The introduction of the cylindrical lens results in a

parallel light beam in the x-direction in front of the objective. Since the y-direction

is not a�ected by the cylindrical lens, the objective focuses the light into the object

plane along the y-direction, and the desired `focussed line' is created. One of the

two scan mirrors used in conventional confocal microscopes becomes thus obsolete.

While the light propagation in y-direction is the same as in a confocal microscope,

the x-direction resembles the pathway of a wide�eld microscope.
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Figure 3.2: The optical arrangement for the excitation pathway of the LIM in x-direction (top,

broken lines) and y-direction (bottom, solid lines) direction. The two directions di�er due to the

cylindral lens that introduces a focus in x-direction on the scan mirror and in the objective's

backfocal plane. The light consequently propagates through the object plane in a parallel and

focussed fashion for the x- and y-directions, respectively. In this way, a focussed line is created in the

object plane. While the arrangement of elements for the y-direction is identical to a conventional

confocal point-scanning microscope, the optical pathway of the x-direction resembles a wide�eld

microscope. For the sake of clarity, only the lenses, but no �lters and mirrors are shown. The

indicated variables refer to the calculations of the pathway in the text.

Abbreviations GF: glass �ber, Coll: collimator, CL: cylindrical lens, SL: scan lens, TL: tube

lens, BFP: backfocal plane of the objective, Obj: objective.

In order to assure good imaging properties, two requirements have to be satis�ed:

(1) The length xObj of the line should be signi�cantly larger than the desired �eld

of view, since the Gaussian pro�le of the laser beam will lead to a drop of intensity

toward the periphery of the line. (2) The width yObj of the line in the object plane

(i.e. the focus width) should be very small to achieve good spatial resolution.

The width of the focus yObj depends on the excitation wavelength λexc, the nu-

merical aperture NA of the objective and the ratio of the beam diameter in the

back-focal plane yBFP and the diameter of the back-focal aperture dBFP (Fig. 3.2).
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The width of the line can be calculated according to (Wilhelm et al., 2003)

yObj = 0.71 · λexc
NA
·
√

0.51 +
0.28

(yBFP/dBFP)2
,

measured as full width at half maximum (FWHM). Expressing this value as a multi-

ple of airy units (1 AU= 1.22 · λexc
NA

) removes the explicit dependency on wavelength

and NA:

yObj =
0.71

1.22
·AU ·

√
0.51 +

0.28

(yBFP/dBFP)2
. (3.1)

Equation 3.1 shows that there is a fundamental lower bound for the width of the

focus given by yObj ≥ 0.42 ·AU (as yBFP/dBFP → ∞). This limit is approached for

large beam diameters in the back-focal plane. A focus width of yObj ≤ 0.5 ·AU thus

requires yObj ≥ 1.1 · dBFP, where yBFP depends on the diameter of the collimated

laser beam dcoll and the focal length of scan and tube lens (Fig. 3.2)

yBFP = dcoll ·
fTL
fSL

.

The length of the line xObj can be calculated by means of geometrical optics from

the initial beam diameter dcoll and the focal length of cylindrical lens, scan lens and

the magni�cation M of objective and tube lens (Fig. 3.2):

xObj = dcoll ·
fSL
fCL
· 1

M
. (3.2)

The �eld of view is chosen to enable observation of a complete Xenopus laevis tadpole

olfactory bulb with a 25× objective, i.e. to be in the range of 400 µm × 400 µm

for this magni�cation.

The requirements for both xObj and yObj can be satis�ed by expanding the laser beam

to a su�ciently large diameter dcoll. The following values were chosen for the focal

length of the various lenses: fCL = 40 mm for the cylindrical lens (Linos, Göttingen,

Germany), fSL = 80 mm for the scan lens (Linos, Göttingen, Germany) and fTL =

164.5 mm for the tube lens (Zeiss, Göttingen, Germany). The diameter dBFP of

the objective backfocal plane is di�erent for each objective (10.6 mm, 6.6 mm and

5.0 mm for the 25×, 40× and 63× objectives listed below, respectively). Choosing

the diameter of the collimated beam dcoll = 12 mm results in the values for xObj and

yObj listed in Table 3.1. For these three objectives the width of the line is close to
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3.1 The Confocal Line-Scanning Microscope

Table 3.1: Size of the illumination line and pixel scale for three di�erent objectives as speci�ed in

the Materials and Methods. The values for the length xObj and the width yObj of the line as well

as the pixel scale as multiples of airy units are derived from the calculations in the text, while the

pixel scale in µm and the size of the �eld of view result from measuring a standardized grid.

Objective xObj yObj yObj Pixel Scale Pixel Scale Field of View

[µm] [µm] [AU] [AU] [µm] [µm × µm]

25× 0.80W 960 0.32 0.44 1.18 0.90 461 × 461

40× 0.80W 600 0.32 0.42 0.73 0.54 276 × 276

63× 0.95W 380 0.26 0.42 0.55 0.30 154 × 154

the theoretical limit of 0.42 AU and the length of the line is about twice as large

as the �eld of view. The selected con�guration therefore meets the aforementioned

demands. The beam diameter of dcoll = 12 mm is achieved by using a lens with focal

length fcoll = dcoll/[2 · tan(arcsin NAGF)] = 50 mm (Linos, Göttingen, Germany)

to collimate the laser beam emerging from the single mode glass �ber with numerical

aperture NAGF = 0.12 (Laser Components, Olching, Germany). The position

of the scan mirror (GSI Luomincs, Billerica, USA), which has to be placed in a

conjugated plane to the back-focal plane of the objective, is determined through the

(�xed) distance m = 152 mm between the tube lens and the back-focal plane of the

objective (Fig. 3.2, (Gennerich, 1999)):

l = fSL

[
1 +

fSL(fTL −m)

f 2
TL

]
= 82.9 mm.

The complete design of the microscopic setup including both excitation (green lines)

and emission (red lines) pathways, as well as all optical elements (excitation �lter:

z488/10, emission �lter: HQ532/70, dichroic mirror: z488rdc, all from AHF Ana-

lysentechnik, Tübingen, Germany) is depicted schematically in Figure 3.3 and in

the �nal 3D assembly in Figure 3.1. An argon ion laser (Laser Technologies,

Kleinostheim, Germany) at 488 nm is used as light source. The maximum laser

intensity of 250 mW ensures su�cient illumination intensity across the line.
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Figure 3.3: Propagation of beams for excitation and emission pathways. Schematic of the propa-

gation of the light rays for the x-direction (top, broken lines) and the y-direction (bottom, solid

lines) for both excitation (green) and emission (red) light. By inclining the scan mirror, the line

is scanned across the sample. In x-direction, the mirror de-scans the emission light, while in y-

direction the line is imaged onto the linear CCD array at any time. Behind the dichroic mirror,

a single lens forms the image on the sensor. The width of the CCD pixel acts as the confocal

aperture.

Abbreviations GF: glass �ber, Coll: collimator, ExF: excitation �lter, NF: neutral density �lter,

CL: cylindrical lens, DM: dichroic mirror, SM: scan mirror, SL: scan lens, TL: tube lens, PA: piezo

actuator, Obj: objective, S: specimen (object plane), EmF: emission �lter, DL: detector lens, CCD:

CCD camera.

Emission pathway

In x-direction, each point of the line is imaged onto a di�erent position on the detec-

tor, while in y-direction the tilt of the scan mirror ensures that the de�ection of the
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3.1 The Confocal Line-Scanning Microscope

focus is compensated and that the line is always projected onto the same y-position

on the detector (`de-scanned'). Similarly to the excitation pathway, the y-direction

resembles a conventional confocal scanning microscope, while the x-direction is rem-

iniscent of a wide�eld microscope.

High-speed 2D or time-lapsed 3D imaging usually requires the acquisition of a large

number of images, which is typically accompanied by signi�cant bleaching of the �u-

orescent dye. The design of the emission pathway was thus optimized for maximum

e�ciency by reducing the number of optical elements. To this end, advantage was

taken of the properties of the detector, a fast read-out, linear CCD array consisting

of 512 pixel (AViiVA SM2 CL0514, Atmel, France). The small size of the pixel

(14 µm × 14 µm) allows to use the pixel width as the confocal aperture. While this

design sacri�ces the ability to adjust the thickness of the optical section, it max-

imizes photon e�ciency by omitting the associated optics required for a confocal

aperture. Consequently, a single lens behind the dichroic mirror su�ces to focus

the emission light onto the CCD camera (Fig. 3.3). The fact that the CCD array

acts as both detector and the confocal aperture, puts consequently a constraint on

the magni�cation from the object plane to the plane of the sensor: most of the

light emanating from the (�nite-sized) focus in the object plane (Eq. 3.1) has to

be projected onto the CCD-pixel, while the out-of-focus light should not reach the

detector. The total magni�cation from the object plane to the position of the sensor

Mtot is the product of the magni�cation of the objective / tube lens (MObj) and the

magni�cation of the telescope-like pair scan lens / detector lens (MSL/DL = fDL/fSL):

Mtot = MObj ·MSL/DL. The width of the line at the sensor is thus

yCCD = Mtot · yObj = 0.5 AU ·Mtot = 0.5 AU ·MSL/DL ·MObj.

The width of the image of the line depends on the magni�cation of the objective,

resulting in a dependency of the optical sectioning properties on the choice of objec-

tive. For a conventional LSM, a pinhole size of 1 AU is a good compromise between

signal strength and resolution (Pawley, 2006). The magni�cation of the lens pair

scan lens / detector lens was thus chosen to achieve a pixel scale (i.e. width of the

confocal aperture) of approximately 1 AU for the 25× objective by selecting a focal

length of fDL = 50 mm for the detector lens (Linos, Göttingen, Germany). The
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pixel scale for the higher magni�cation objectives is consequently smaller than 1 AU

(Tab. 3.1). To determine the precise magni�cation from the object plane into the

detector plane for di�erent objectives, images of standardized gold grids (Plano,

Wetzlar, Germany) were taken and analyzed. The pixel scales measured from these

images and the respective dimensions of the �eld of view (for 512 × 512 square pixel)

are provided in Table 3.1. It should be mentioned that the pixel width in y-direction

can be adjusted by changing the amplitude of the scan mirror movements. This can

be used to either increase the sampling density (smaller scan steps) or to increase

the �eld of view (larger scan steps). For most experiments, including the investiga-

tion of the spatial resolution in 3.1.2, the sampling in y-direction was chosen to be

identical to the �xed pixel width in x-direction.

The axial position of the object plane

The object is mounted on a piezo - driven actuator (PI, Karlsruhe, Germany) that

allows the adjustment of the z-position of the object plane (Fig. 3.3). The change

of the position of the objective's back-focal plane relative to the excitation beam is

small (≤ 100 µm) compared to the focal length of the tube lens (fTL = 164.5 mm).

It does thus not have a signi�cant e�ect on the properties of the illumination line.

Characterization of the microscopic setup

Before using a novel tool to address biological questions, it is necessary to charac-

terize and evaluate its performance. This analysis provides the technical range of

potential applications and the expertise to select the optimal settings for a given

experiment. The LIM was designed to enable functional imaging with high temporal

resolution in 2D and 3D. This aim puts demands on the technical abilities of the

setup (high acquisition rates have to be realized) as well as on the biological speci-

men under observation (a large number of frames has to be acquired). Especially the

limitations posed by the sensitivity of biological specimen will often require a trade-

o� between experimental parameters (e.g. temporal vs. spatial resolution), making a

good understanding of the technical possibilities even more crucial. Speci�cally the

following factors are important for the investigations of neuronal network dynamics:
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3.1 The Confocal Line-Scanning Microscope

• To decide which structures of a given network can be resolved (olfactory

glomeruli > somata > dendrites > axons), the spatial resolution in x-,y- and

z-direction has to be known.

• To decide which kind of temporal processes can be studied, the temporal

resolution for both 2D- and 3D-imaging needs to be known.

3.1.2 Spatial resolution

The cylindrical lens in the excitation pathway and the slit-like confocal aperture

of the CCD sensor introduce two principle axes in the image plane. Apart from

the anisotropy of the beam and the aperture, these two directions di�er in that the

sampling density is �xed along the x-direction (for a given objective) by the pixel

pitch of the CCD sensor, while it can be adjusted in the y-direction by changing

the amplitude of the scan mirror movement. The resolution of the microscope was

investigated for isotropic sampling intervals along the x- and y-directions.

Resolution limits in optical microscopy

The resolution of an imaging system is de�ned as the minimum distance at which

two objects can be distinguished. For conventional imaging systems it is fundamen-

tally limited by the wave nature of light, restricting the resolution to the range of the

wavelength of the light (Abbe (1873), but see Betzig et al. (2006) and Hell (2003)

for recently developed exceptions). The second important factor for the resolution

of an imaging system is the numerical aperture (NA) of the objective, since it deter-

mines how strongly the light is focussed and which spatial frequencies of the light

emanating from the object are captured. A number of slightly di�erent numerical

de�nitions for the resolution exist. For the lateral resolution (i.e. the resolution in

the image plane), the Rayleigh criterion is commonly used (Pawley, 2006),

dlat
min =

1.22 ·λem

2 ·NA , (3.3)

with λem being the wavelength of the emission light. It holds both for wide�eld

and confocal microscopes, unless the confocal pinhole is smaller than 0.25 AU. The
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Figure 3.4: Point spread function using the 63× Achroplan 0.95 W objective. For a quanti�cation,

analytical functions were �tted to the intensity pro�les of individual beads. For display purpose,

the image stacks were aligned using the bead center obtained from the �t, and averaged. Shown

are the intensity pro�les through the center of the bead as 2D images and 1D plots. (a) Intensity

pro�le in the (x, y)-plane and along the x- and y-axis. Shown are the data points (blue) and �tted

Gaussians (green). The black line indicates the full width at half maximum (FWHM) of the �tted

curve, which was used for the quanti�cation of the width of the PSF. The lateral pro�les show a

symmetric intensity distribution along the principle axis, with virtually identical FWHM. Listed

are the �t values for the three spatial directions. See Table 3.2 for the respective values of other

objectives and standard deviations. (b) The intensity pro�les in the (x, z)- and (y, z)-planes are

symmetric with respect to the optical axis. Therefore, two types of visualization could be combined

in each graph. The averaged intensity values are shown in the left half of each image (top colorbar),

the right half shows superimposed a logarithmic contour plot for better visualization of the low

intensities (bottom colorbar). The slit aperture results in di�erent pro�les in these two planes,

with cone-like side lobes in the (x, z)-plane (white arrowheads), indicating a reduced rejection of

out-of-focus light. (c) Axial intensity pro�le with �tted Gaussian and FWHM.

anisotropy of the beam path is thus not expected to have an e�ect on the lateral res-

olution. The axial resolution of a conventional point-scanning confocal microscope

with a pinhole diameter larger than 0.25 AU is given by (Wilhelm et al., 2003)

dax
min =

0.88 ·λexc

n−
√
n2 −NA2

, (3.4)

with λexc being the wavelength of the excitation light. While these de�nitions specify

a theoretical lower bound, a given confocal microscope might not reach these limits.
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3.1 The Confocal Line-Scanning Microscope

A common reason is the insu�cient illumination of the backfocal plane, which leads

to a smaller e�ective NA. Aberrations or misalignment of optical elements can fur-

ther reduce the resolution of an imaging system (Pawley, 2006; Wilhelm et al., 2003).

Additionally, the axial resolution of the LIM might be di�erent from a conventional

confocal microscope for which Equation 3.4 was derived, as the illumination with a

line instead of a point can be expected to decrease the optical sectioning capabili-

ties (Pawley, 2006). The sampling theorem by Shannon adds another fundamental

limitation to the resolution of a measuring system (Pawley, 2006; Shannon, 1949).

When sampling a continuous, one-dimensional signal, the highest frequency that is

contained in the discrete measurements is half the sampling frequency (or expressed

in spatial coordinates: the smallest distance that can be resolved is twice the dis-

tance between sampling points). The sampling frequency for the x-direction is �xed

by the size of the CCD pixels (scaled with respect to the object plane, see Tab. 3.1).

For the y-direction, the same sampling interval is chosen in order to create square

pixels, while the sampling rate in z-direction is only limited by the precision of the

piezo actuator, thus not posing an e�ective limit to the resolution.

Since all of these factors have an e�ect on the resolution of an imaging system,

it is necessary to determine the resolution of the LIM experimentally.

Determination of the resolution

A common way to measure the resolution of a microscope is by imaging �uorescent

beads with a diameter signi�cantly below the theoretical resolution limit. Since

optical systems behave over a large range linearly with respect to signal intensity,

the image of such bead can be understood as the `impulse response function' of the

microscope. In microscopy this function is referred to as the point spread function

(PSF) and it characterizes the imaging properties of the optics (in the linear ap-

proximation). While a comprehensive characterization requires the complete three-

dimensional intensity distribution of the PSF, the intensity pro�les along the three

principles axis can be used to assess the resolution of the microscope along its three

principle directions. The resolution along the x-,y- and z-axes can be obtained from

�ts of appropriate functions to the intensity pro�les along these axes. The lateral
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intensity distribution of the PSF can be described by a squared Bessel function, the

axial pro�le by a sinc-function. For the sake of determining the width of these pro-

�les, Gaussian functions can be used instead, as they describe the pro�le su�ciently

well ((Pawley, 2006) and Materials and Methods for details of �tting procedure).

Measurements of PSFs are very susceptible to noise, especially due to the fast

drop of intensity toward the periphery of the pro�le. It is thus necessary to acquire

large numbers of 3D image stacks of single beads. For each of these image stacks, the

center of the PSF is determined as the `center of gravity' of the light intensities. A

two-dimensional Gaussian is then �tted to the intensity pro�le through this center.

The results of this �t yield the full width at half maximum (FWHM) values for the

x- and y-direction. The axial intensity pro�le through the image center is �tted by

a one-dimensional Gaussian, yielding the FWHM for the z-direction. For display

purposes, the results of the �ts can be used to align and average the individual image

stacks, creating a representative visualization of the PSF for a given objective.

The PSFs of the objectives used throughout this thesis were acquired and analyzed

(25×, 40× and 63×, see Materials and Methods for details). Figure 3.4 shows

the following results for the 63× objective as an example: the averaged intensity

distributions in the (x, z)-, (y, z)- and (x, y)-plane, the averaged pro�les along the

x−, y- and z-axes as well as the �tted functions and the mean of their FWHM. The

mean values and standard deviations of the FWHM are listed in Table 3.2 for the

three objectives.
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3.1 The Confocal Line-Scanning Microscope

Table 3.2: Fit results and theoretical limits for the FWHM of the PSFs along the three spatial

coordinates for various objectives. The �t values are the results of �tting Gaussian functions,

as shown in Figure 3.4 for the 63× objective. Theoretical limits are calculated according to the

equations (3.3) and (3.4) for lateral and axial resolution, respectively. The pixel pitch imposes

an additional limit due to the resulting sampling rate. This limit is given by twice the pixel

size relative to the object plane, as speci�ed for each objective in µm and Airy units in the �rst

column. Number of beads: 25×: n = 42, 40×: n = 25, 63×: n = 50.

Objective Dimension Fit Theoretical Sampling
(Pixel pitch) [µm] values limit limit

x 1.58 ± 0.16 0.39 1.80
25× / 0.8 W y 1.48 ± 0.15 0.39 1.80

(0.90 µm / 1.18 AU)
z 4.22 ± 0.66 1.61 �

x 1.07 ± 0.12 0.39 1.08
40× / 0.8 W y 1.03 ± 0.11 0.39 1.08

(0.54 µm / 0.73 AU)
z 2.26 ± 0.28 1.61 �

x 0.61 ± 0.05 0.33 0.60
63× / 0.95 W y 0.59 ± 0.04 0.33 0.60

(0.30 µm / 0.55 AU)
z 1.38 ± 0.17 1.08 �

Lateral resolution

The symmetry of the intensity pro�le of the PSF in the (x, y)-plane (Fig. 3.4a) in-

dicates that the resolutions in x- and y-direction are identical for the 63× objective.

This is con�rmed by the �t results. For each of the three objectives, the di�erence

of the FWHM in x- and y-direction lies within the variance of the measurements

(3.2). The anisotropic image acquisition does thus not a�ect the lateral resolution.

The lateral FWHM are signi�cantly larger than limits calculated according to Equa-

tion 3.3. This discrepancy is mainly due to the low sampling rate. Based on the

pixel pitch with respect to the object plane (�rst column in Tab. 3.2), the resolu-

tion limit imposed by the sampling rate can be calculated for each objective (last
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column in Tab. 3.2). For the 40× and 63× objectives, these theoretical values lie

within the error interval of the measurements. For the 25× objective, the measured

FWHM is slightly smaller than the theoretical limit. This can be explained by the

fact that unlike the resolution limit, the FWHM of a PSF is not scaling linearly

with the sampling distance, especially for large di�erences between object size and

sampling distance. The lateral resolution of the LIM is thus limited by the sampling

rate, which is de�ned by the pixel pitch of the CCD camera and the magni�ca-

tion factor from the object to the image plane. It should be noted that imaging

systems sample the space anisotropically by creating a pixel (or voxel) grid with

an arbitrary orientation to the specimen. The resolution in directions other than

the principle directions de�ned by this grid is slightly lower, due to larger sampling

intervals(Pawley, 2006).

Axial resolution

A comparison of the intensity pro�les in the (x, z)- and (y, z)-plane illustrates the

e�ect of the anisotropy introduced by the slit aperture (Fig. 3.4b). The pro�le in

the (x, z)-plane, which is parallel to the direction of the slit, shows side lobes in the

logarithmic contour plot (white arrowheads in Fig. 3.4, (Pawley, 2006)). These re-

semble the PSFs measured using confocal microscopes with large pinhole diameters

or wide�eld microscopes. In contrast, the pro�le in the (y, z)-plane, perpendicular

to the direction of the slit, shows the ellipsoid contours typical for a confocal mi-

croscope with a small pinhole diameter (≤ 1 AU). This pro�le demonstrates the

rejection of out-of-focus light by the confocal aperture which is the basis for optical

sectioning. The FWHM values are larger than the theoretical limit calculated for

a point-scanning confocal microscope. The di�erence between the measured values

and the theoretical limits can have di�erent reasons. The described e�ect of the

one-dimensional aperture reduces the axial resolution (Pawley, 2006). Further, an

insu�cient illumination of the objective's backfocal plane will reduce its e�ective

NA. In the LIM, the laser beam is focussed into a line in the backfocal plane. De-

spite the e�ort to increase the length of this line, the Gaussian pro�le of the laser

beam results in an intensity drop towards the periphery of the line. An e�ect on
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3.1 The Confocal Line-Scanning Microscope

the resolution can thus not be excluded. Further, as the objectives cover a large

�eld of view, aberrations by the optical system can be an additional cause for an

increase in the axial FWHM. The limit given by Equation 3.4 is calculated for opti-

mal imaging conditions, which are only satis�ed for the vicinity of the optical axis.

Imaging quality is typically reduced in the periphery of the �eld of view. Another

source for the deviation of the measurement from the theoretical limit is the low

lateral sampling rate, which is imposed by the pixel pitch of the camera. Due to

this undersampling, each value of the axial intensity pro�le is an average over a

signi�cant area in the (x, y)-plane. As the width of o�-axis pro�les through a bead's

image increases with the distance from the optical axis, this results in a broadening

of the recorded axial pro�le. The di�erences between the theoretical limits and the

actual values are largest for the low magni�cation 25× objective. However, even for

this objective, the axial FWHM of the PSF is signi�cantly smaller that the typical

diameter of a single neuron, enabling observation of somata without strong over-

lap of signals emitted by di�erent cells. Test measurements with thin �uorescent

layers con�rmed these results (data not shown). The width of the PSFs along the

z-direction is an indicator for the thickness of the optical section. It can serve as

a guide for the optimal separation of z-planes for 3D imaging and for the choice of

an objective for a given experiment. Only for extensively �uorescing specimens, the

optical sectioning might be reduced due to the side lobes in the (x, z)-pro�les of the

PSFs (Fig. 3.4c).

The obtained values are summarized in Table 3.2 and serve as a guideline for

which objective is appropriate for the application of interest.

3.1.3 Acquisition speed for 2D- and 3D-imaging

Acquisition speed for 2D imaging

The acquisition speed of a laser scanning microscope with mechanical (non-resonant)

scan mirrors is limited by the inertia of the oscillating mirrors (Pawley, 2006; Tan

et al., 1999). CCD-camera based systems on the other hand are limited by the

read-out speed of the camera (see e.g. Appendix 3 in (Pawley, 2006)). The LIM

combines 1D scanning with a fast CCD sensor, it is thus not obvious which factor
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Figure 3.5: Response behavior of the scan mirror to voltage steps of di�erent amplitude. The

control signal (top, broken lines) is a step function, the voltage applied to the mirror and the

corresponding pixel position are indicated by the left and right y-axes, respectively. The monitor

signal of the mirror (solid lines) shows a steep shoulder and, depending on the amplitude of the

control signal, a slight overshoot or a creep behavior for small and large amplitudes, respectively

(bottom: residuals). The control system is optimized for medium frames sizes (light blue curves;

see text for details), for which the residuals are smaller than one pixel width after about 0.5 ms

(bottom graph, pixel width of the camera indicated by broken lines).

will be limiting for the acquisition speed of this microscope.

The acquisition time tLine
Acq for a single line is the sum of the exposure time tLine

Exp and

the constant read-out time of the camera of approximately 7 µs. Since the read-out

of each line is triggered in order to be synchronous to the scan mirror movement,

tLine
Acq is restricted to multiples of the length of the clock cycle provided by the control

unit PC (32 µs). The minimum frame acquisition time tFrame
Acq additionally depends

on the number of lines that a frame is composed of. While in x-direction always the

complete line (i.e. the 512 pixel the sensor is composed of) has to be read out, the

size of the y-dimension can be selected by the user, with a maximum of 512 lines

per frame. tFrame
Acq can then be calculated as the product of tLine

Acq and the number of

lines NAcq. It is thus necessary to investigate whether the scan mirror is fast enough

to achieve the respective scan frequencies fFrame
Acq = 1 / tFrame

Acq .
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Figure 3.6: Response behavior of the scan mirror to voltage ramps of di�erent frequencies and

amplitudes. The depicted scan schemes are test charts used to determine which fraction of a scan

cycle can be used for data acquisition. Due to the addition of pre-acquisition lines, the e�ective

frame rates di�er from the values indicated in these graphs. Table 3.3 lists e�ective frame rates for

a variety of experimental parameters. Shown are four examples of scanning parameters relevant to

experiments in this thesis (top: control and monitor signal; bottom: residual). ±1V corresponds

to a frame width of 1/2 frame height, ±2V corresponds to a square full frame. The best response

is achieved for medium scan amplitudes and frequencies (b), where more than 90% of the cycle can

be used for data acquisition. For large amplitudes (a) or very fast scan rates (c and d), only about

80% of the cycle can be used for acquisition (percentages for all protocols indicated in graphs).

Note that for (b) � (d) the pixel spacing in y-direction is larger than in x-direction (pixel aspect

ratio ∆x/∆y 6= 1). This reduces noise (longer exposure times for fewer pixel) by sacri�cing spatial

resolution. The scan scheme shown in (b) was used for most of the experiments in section 3.3, the

scan protocol in (c) for the characterization of the perfusion system (Fig. 3.15b).
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Table 3.3: Recommended number of lines NTot = NAcq + NPre and resulting e�ective frame

acquisition rates fFrame
Acq for di�erent scan parameters (number of acquisition lines NAcq, line

acquisition time tLine
Exp and pixel aspect ratio ∆x : ∆y). These values result from the response

curves of the scan mirror at the respective scan speeds as shown in Figure 3.6 and serve as a

guideline for the design of scan protocols.

NAcq tLine
Acq [µs] ∆x : ∆y NTot fFrame

Acq [Hz]

32 32 1:8 39 800

64 32 1:8 75 410

64 64 1:2 68 230

128 32 1:1 148 210

128 64 1:2 134 117

256 32 1:1 269 117

256 64 1:2 304 50

512 32 1:1 609 50

The scan signal, which is provided by the control PC, is a stair-case like curve

with variable amplitude and frequency. The scan mirror is controlled by a propor-

tional � integral � derivative controller (PID controller), which has to be tuned to

achieve optimal performance in response to a given command signal (Tietze and

Schenk, 1999). Di�erent experiments require di�erent scan patterns in order to ad-

just the �eld of view (i.e. the amplitude of the scan signal) or temporal resolution

(i.e. the frequency of the signal). When tuning the PID, a compromise had to be

made to ensure good properties for the most common experimental conditions. In

the following, the results of this tuning procedure will be presented for di�erent scan

parameters.

First, the amplitude dependence of the scan mirror behavior was examined. To

this end voltage steps of varying amplitude were used as the command signal,

and the position signal of the scan mirror (provided from the PID controller) was

recorded (Fig. 3.5). The largest voltage step in Figure 3.5 corresponds to a full frame

(512 × 512 pixel). The plot of the residuals between command and position signal
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3.1 The Confocal Line-Scanning Microscope

shows that for the (most commonly used) amplitudes of one half or one quarter of

a full frame, the error is less than one pixel after about 0.5 ms. For all shown am-

plitudes, the command position is reached within less than 3.5 ms with a precision

of one pixel width. The di�erent shapes of the responses and the corresponding

residuals demonstrate that the PID controller is not behaving linearly and that a

precise adjustment to the correct range of parameters is important.

In order to evaluate the scan mirror behavior under the experimental conditions,

voltage ramps of di�erent amplitudes and frequencies were applied while measuring

the response of the mirror. While it is possible to improve scan mirror behavior

by optimizing the waveforms to the physical properties of the galvanometer (Tan

et al., 1999), it was tested whether simple voltage ramps can yield su�ciently precise

mirror movements for the required one-dimensional scanning procedure. Figure 3.6

shows a number of representative conditions which relate to actual experiments

demonstrated in this thesis. For easier comparison between command and monitor

signal, all curves are corrected for phase shift by aligning the zero-crossing of the

two curves. Since this implies only a constant shift in time for a given curve it does

not a�ect the interpretation of the data. As expected from Figure 3.5, for none of

the cases the mirror can follow the command signal perfectly. It lags behind the

sharp up-rise and subsequently minimizes the di�erence to the command signal.

The design of the scan protocol allows the introduction of an arbitrary number

of `pre-acquisition lines' which precede the start of measurement in each scan cy-

cle (Fig. 2.2). Strong deviations of the position from the command signal can be

avoided in this way for the acquisition period. The question remains whether the

mirror follows the command signal reasonably well for the majority of the scan pe-

riod. Deviations a�ect the acquired image in form of a deformation in y-direction

(i.e. non-uniform pixel width across the frame). While excessive deformation should

be avoided, a systematic error in the range of 1 � 2 pixel can be accepted, espe-

cially since high-speed imaging is usually not combined with detailed morphological

measurements. Figure 3.6 shows that even for large amplitudes (Fig. 3.6a) and high

frequencies (Fig. 3.6d) the accuracy of the mirror movement is satisfactory over ap-

proximately 80% of the scan period. Medium scan speeds (around 100 Hz frame
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rate) and amplitudes (1/2 full frame) yield the best results and more than 90% of

the scan period can be used for data acquisition. In order to maximize the frame

rate, measurements like the examples in Figure 3.6 can be used to determine the

minimum number of pre-acquisition lines. Table 3.3 gives some guideline numbers

for di�erent experimental conditions together with the resulting maximum frame

rates. These numbers demonstrate that the minimum line acquisition time of 32 µs

is the limiting factor for the acquisition speed. It is therefore not necessary to use

more complex command signals to reduce �y-back times (Tan et al., 1999).

It should be mentioned that the maximum frame rate is only achieved for the

shortest possible exposure time provided by the camera (25 µs). This time is in

many practical cases insu�cient given the low intensity emanating from most living

biological samples. Especially for experiments that require the acquisition of a large

number of frames, the excitation intensity has to be reduced to prevent excessive

photo bleaching. Consequently, the experimenter is often forced to raise the frame

acquisition time above the technical limit.

Acquisition speed for 3D imaging

3D imaging is enabled using a piezo driven actuator to change the position of the

objective along the optical axes. The piezo drive is regulated by a proportional −
integral controller (PI controller, (Tietze and Schenk, 1999)). While the physical

properties of the scan mirror are �xed, the objective can � and often has to � be

changed, resulting in di�erent response behavior to identical scan schemes. This

di�erence can be severe when objectives have very di�erent masses. The optimal

setting of the PI strongly depends on the inertia of the controlled system, leading to

overshoot, oscillations or damping if not properly tuned. Increasing the gain leads to

a faster response, but can also result in oscillations (proportional gain) or overshoot

(integral gain) when the inertia of the controlled system is too high (Tietze and

Schenk, 1999). On the other hand, lowering the gain decreases the responsiveness of

the system but can show improved behavior for systems with a large inertia. There-

fore the responses of both `heavy' and `light' objectives (the Zeiss Plan-Apochromat

25× W/0.8 and the Zeiss Achroplan 40× W/0.8, respectively) was examined for
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Figure 3.7: Response behavior of the objective's piezo actuator to voltage steps of di�erent ampli-

tudes. The position of the objective was monitored for both light and heavy objectives (�rst and

second row, respectively), and using both fast and slow settings of the PI (�rst and second column,

respectively). Top: control and monitor signal. The corresponding command voltage is indicated

by the line colors. Bottom: residual and ±0.5 µm indicated by broken lines for comparison between

measurements. (a) The light objective shows ideal behavior when used with the fast PI setting,

with only a small overshoot and fast decaying oscillations. The residual is less than 0.5 µm after

less than 15 ms even for the largest amplitude of ±50 µm. (b) Using the slow PI settings with the

light objective introduces a slow creep, which reduces the responsiveness of the system. Residual

below 0.5 µm are only achieved after about 30 ms, even for small amplitudes. (c) Using the heavy

objective with the fast PI settings results in strong and slowly decaying oscillations, making this

combination unsuitable for experiments. (d) Combining the heavy objective with slow PI settings

reduces the amplitude of the oscillations to an acceptable level.
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Figure 3.8: Response behavior of the piezo actuator that drives the objective at di�erent frequencies

for a �xed amplitude. Top: control and monitor signal. Bottom: residual and ±0.5 µm indicated

by broken lines for comparison. The time is scaled to one scan period to allow a direct comparison

of di�erent scan frequencies. (a) Similarly to the responses to voltage steps (Fig. 3.7), the light

objective is best used with the fast PI setting. More than 90% of the scan cycle can be used for

data acquisition for frequencies up to 10 Hz. (b) Using the slow PI setting for the light objective

reduces the responsiveness of the system signi�cantly (compare to (a)). For most scan rates a large

fraction of the cycle cannot be used for data acquisition. (c) The heavy objective combined with

the fast PI setting shows large oscillations which degrade image quality. (d) Using the slow PI

settings for the heavy objective reduces the amplitude of the oscillations and scan frequencies up

to 5 Hz can be achieved with about 80% of the cycle available for imaging.



3.1 The Confocal Line-Scanning Microscope

di�erent settings of the PI.

To evaluate the amplitude dependence of the system's responsiveness, the re-

sponse to voltage steps is shown in Figure 3.7 for both `fast' PI settings (i.e. larger

gains) and `slow' PI settings (i.e. smaller gains). In contrast to the scan mirror, the

controller of the piezo actuator behaves approximately linearly, resulting in quali-

tatively similar residuals for di�erent amplitudes (compare Fig. 3.5 and 3.7). This

implies that larger scan amplitudes will be accompanied by larger residuals.

Using a light objective and the fast PI settings resulted in a rapid decrease of the

di�erence between command and monitor signal, allowing for high scan frequencies

in z-direction. Using the slow PI settings on the other hand, it took signi�cantly

longer to reach the command position, severely limiting the potential scan speed.

While the heavy objective combined with slow settings showed a reasonably good

response (as fast as possible given the large weight of the objective), it exhibited

strong oscillations when used with the fast setting. In order to overcome either

limitation, two sets of PI controllers were installed onto the control board, enabling

the user to switch between `fast' and `slow' settings depending on the objective, scan

amplitude and scan frequency in z-direction.

Figure 3.8 shows the response of the system to voltage ramps as they are used

for the acquisition of z-stacks in actual experiments. Similarly to the scan mirror,

the control software allows to introduce a certain time delay (in multiples of frames)

at the beginning of each stack. In this way the return time of the objective can be

excluded from the measurement (see Fig. 2.2). As expected from the experiments

using voltage steps (Fig. 3.7), the fast setting is optimal for the light objective and

allows precise movements up to 10 Hz after an initial time delay (about 10% of the

scan period, Fig. 3.7a). The residuals are below 0.5 µm. Since this is less than the

axial resolution for all tested objectives (see Fig. 3.4 and Tab. 3.2), it does not have

a signi�cant impact on the image quality. For the heavy objective, the highest usable

frequency is 5 Hz, where about 80% of the cycle can be used for image acquisition

(Fig. 3.7d).
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3.1.4 Discussion of the microscope setup

The idea to modify the concept of a confocal point-scanning system into a line-

scanning microscope with a slit aperture was �rst introduced by Maurice (1974).

The imaging properties of confocal microscopes with slit apertures were quantita-

tively discussed by Sheppard and Mao (1988). Several realizations of this approach

have since been described (Engelmann, 2006; Im et al., 2005; Masters and Thaer,

1994; Poher et al., 2008). Interestingly, there is few literature addressing biological

questions with such devices. In many cases, non-�uorescent (Masters and Thaer,

1994; Maurice, 1974) or non-biological (Im et al., 2005; Poher et al., 2008) applica-

tions were used for the demonstration of the capabilities of these microscopes. In

order to addressing biological questions with fast imaging of �uorescent indicator

dyes, it is necessary to meet various requirements. High spatial resolution, high

temporal resolution, long observation times, repeated trials of a given experiment to

enable statistical evaluations, high signal-to-noise ratio, no photo-bleaching of the

dye and no e�ect on the biological preparation are some of the desired properties.

These requirements are however mutually restricting, mainly due to the limitations

in �uorescent microscopy using living specimen. Besides the technical di�culty of

achieving fast frame rates, increasing the acquisition rate implies an increase of ac-

quired images for a given observation time. The acquisition of large numbers of

frames is typically accompanied by photo-bleaching, which results in a decrease of

signal over time and can additionally result in the production of toxic substances

(Knight et al., 2003). In fact, �uorescent dyes have a statistical `life-time' in terms

of excitation cycles (typically 104 to 105 per dye molecule). This poses a strict phys-

ical limit on the number of frames that can be acquired without using exaggerated

dye concentrations. Experiments using �uorescent dyes thus always face a trade-o�

between various experimental parameters.

The current implementation of a line-scanning confocal microscope was thus de-

signed to optimize temporal resolution and signal e�ciency, slightly compromising

�exibility (no adjustable pinhole) and spatial resolution. In this way, the setup is

optimized for addressing biological questions that demand a high temporal resolu-

tion.
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3.1 The Confocal Line-Scanning Microscope

Both lateral and axial resolution suggest that small structures (such as �ne den-

dritic branches or axons) ares adequately sampled using the 63× objective (and

presumable higher magni�cation / higher NA objectives). The ability to resolve

these structure is limited for the 25× and to a smaller extent for the 40× objec-

tive. This does not exclude the detection of these processes, but it rather limits the

discrimination of closely positioned �ne structures. Obviously, the spatial resolu-

tion could have been improved by choosing a di�erent design of the optics, i.e. by

increasing the magni�cation from the object plane to the image plane. However,

the current con�guration was chosen to distribute the emission light over a smaller

number of pixels. As the read-out of each pixel adds noise to the data, the reduction

of the pixel number can be described as a pre-read-out binning. This results in an

increase of the signal-to-noise ratio at the cost of spatial speci�city. Additionally,

the �eld of view is enlarged by the smaller magni�cation, which is bene�cial for the

investigation of neuronal networks.

The LIM shows a highly increased acquisition speed when compared to conven-

tional laser-scan or wide�eld microscopes. The scan mirror behavior was optimized

for scan amplitudes that correspond to half the length of the linear CCD array and

to frame rates around 100 Hz (compared to typically 1 � 10 Hz for conventional

confocal microscopes). This gain in speed can for example be used for fast 2D Ca2+

imaging, with a sampling frequency above the average spike rate of many types of

neurons, in particular the principle neurons of the Xenopus olfactory bulb (Scheid-

weiler et al., 2001). This should even enable the detection of single action potentials

from the time course of Ca2+-sensitive dyes (Lin et al., 2007; Smetters et al., 1999).

Alternatively, the increased acquisition speed can be used to acquire complete image

stacks at up to 10 Hz. This resolution is su�cient for the observation of the neuronal

activity patterns, as it has been done at comparable or even lower acquisition rates

in 2D imaging for many years. Thanks to the confocality of the microscope, the

investigation of these time courses is not restricted to somata, but can be extended

to neuronal processes across the observed volume. It is thus possible to investigate

activity patterns of a large fraction of a given neuronal network with high spatial

and temporal resolution.
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3.2 Activity Correlation Imaging (ACI)

3.2.1 The general principle of activity correlation imaging

Analysis of neuronal network function would be drastically improved by a technique

that allows the simultaneous measurement of both the activity of every neuron in a

network and its morphology and projection pattern. Signi�cant advances in one or

the other direction have been made recently. On the one hand, transgenic strategies

for combinatorial expression of �uorescent proteins allow the visualization of the

detailed morphology of neuronal populations with excellent contrast (Livet et al.,

2007) but fail to detect the functional activities of the labeled neurons. On the

other hand, functional imaging using bolus loading of membrane-permeable Ca2+

indicators allows an almost complete visualization of neuronal activity at cellular

resolution (Ohki et al., 2005, 2006; Stosiek et al., 2003). However, because this

technique unspeci�cally stains every neuron in the network, it does not give su�cient

contrast to visualize the �ne processes of individual neurons (Garaschuk et al., 2006;

Nagayama et al., 2007). Alternatively, Ca2+ indicators can be loaded into a sparse

subset of neurons to enable a simultaneous visualization of activity and �ne neuronal

structures (Nagayama et al., 2007), but this approach is intrinsically limited to image

a small fraction of cells. Combining the advantages of these approaches would

provide an invaluable tool for neuroscience research.

A new method is proposed that allows high contrast visualization of neuronal

circuitry during large-scale functional imaging experiments using bolus loading of

membrane permeable Ca2+ indicators. Speci�cally, image contrast is derived from

the diversity of temporal activities recorded with Ca2+ sensitive dyes, rather than

from the di�erences in �uorescence intensities. This allows to visualize individual

�ne neuronal processes even when the entire neuronal circuit is unspeci�cally stained

with �uorescence dye. This method develops its full potential when combined with

the fast image acquisition provided by the LIM and provides a multi-color visualiza-

tion of neuronal networks during functional imaging of brain tissue. The spontaneous

Ca2+ activities in the mitral/tufted (M/T) cell layer of the olfactory bulb (OB) of

Xenopus laevis tadpoles were imaged (25× 0.8 W objective) using bolus loading
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Figure 3.9: Imaging of spontaneous activity in the Xenopus laevis olfactory bulb. (a) A �uores-

cence image of the Xenopus olfactory bulb stained with Ca2+ indicator Fluo-4 (mean projection

over time). The processes of the neurons are hardly visible due to a lack of contrast. Three re-

gions are indicated by colored rectangles (arrowheads). Scale bar, 10 µm. (b) The �uctuations of

the [Ca2+]i-dependent intensities of the three regions indicated in (a) appear very similar, despite

di�erent amplitudes. (c) The traces become virtually identical after correcting them for bleaching

and normalization.

of the membrane permeable Ca2+ indicator Fluo-4/AM (Fig. 3.9). The high frame

rates and the fast piezo actuator (3.1.3) of the LIM allows to image a signi�cant frac-

tion of the network by acquiring image stacks of about 20 z-planes within 500 ms.

Within time series of such image stacks, individual pixels carry time-dependent sig-

nals. These re�ect the �uctuations of the intracellular calcium concentration [Ca2+]i

of the imaged structures. In some cases, very distant pixels that do not show any

relation or connection in the �uorescent intensity images (Fig. 3.9a) can be found to

exhibit very similar temporal �uctuations (Fig. 3.9b). After correcting the traces for
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bleaching and for the di�erent absolute intensities, the traces of these pixels become

virtually identical (Fig. 3.9b), suggesting a functional or morphological relation be-

tween the underlying structures. This observation motivates the idea to exploit the

time patterns of the [Ca2+]i �uctuations to visualize functionally related structures

in the network, i.e. structures exhibiting similar [Ca2+]i dynamics.

To visualize the spatial distribution of a particular time trace, `activity cross-

correlation maps' were constructed. In this map, the brightness of each pixel encodes

the cross-correlation value of the pixel's signal to a predetermined reference signal

(e.g. the [Ca2+]i signal of a particular soma or olfactory glomerulus). The cross-

correlation value of two traces is an indicator for their similarity, with highly similar

traces producing a correlation value equal or close to one (Fig. 3.10b, top), and

unrelated traces yielding a correlation value around zero (Fig. 3.10b, bottom). These

correlation maps mostly showed a brightly labeled structure from which the reference

signal was taken (Fig. 3.10c) on a relatively dark background. This re�ects the fact

that the spontaneous Ca2+ activities of most cells were uncorrelated (Chen et al.,

submitted). Interestingly, the correlation maps also revealed structures resembling

neuronal processes (Fig. 3.10c), not seen in the raw �uorescence image (Fig. 3.10a).

3.2.2 Combining ACI with fast time lapsed 3D imaging

A two-dimensional correlation map as displayed in Figure 3.10c can be created with

a conventional confocal or even wide�eld microscope. However, such a map mainly

reveals neuronal processes close to the `reference structure'. The LIM provides the

possibility to virtually simultaneously acquire [Ca2+]i signals from a number of dif-

ferent z-positions. It is thus possible to clarify whether the distal processes leave

the optical slice or whether the correlations of the [Ca2+]i signals decrease along the

processes. To this end, correlation maps to the same reference trace were calcu-

lated for all optical slices of the image stacks. Figure 3.11 shows for four (out of

18) slices the mean projection over time of the intensity images (a) as well as the

corresponding correlation maps (b). It is obvious from these maps that temporally

correlated structures can be found across the complete observed volume, with the

neuronal processes meandering in and out of a given image plane. Each map by
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Figure 3.10: Principle of activity correlation imaging (ACI). ACI exploits the speci�city of temporal

�uctuations of the �uroescent signals to generate contrast. (a) Mean projection over time of

�uorescent images of the Xenopus olfactory bulb. Indicated is a reference region ROIref placed

on an olfactory glomerulus (red) and two further regions, ROI1 (green) and ROI2 (blue). Scale

bar, 10 µm (applies also to (c)). (b) Top: The [Ca2+]i �uctuations of ROI1 (green trace) and of

ROIref (red trace) are very similar, yielding a cross-correlation value ccref,1 close to one. Bottom:

In contrast, the [Ca2+]i �uctuations of ROIref and ROI2 (blue trace) are very di�erent, resulting

in a cross-correlation value ccref,2 close to zero. (c) For each pixel of the image frame, the cross-

correlation value between its own [Ca2+]i time course and the [Ca2+]i time course of the reference

region was calculated. These values create a map that indicates which positions exhibit a time

course similar to the reference region. This similarity in temporal behavior suggests a functional

and / or morphological relationship between the underlying structures.

itself only shows some parts of the neuronal structures, their overall connectivity

is revealed by a maximum z-projection (Fig. 3.11c). Alternatively, the spatial ar-

rangement of the neuronal processes can be reconstructed into a three-dimensional

model from the stack of correlation maps (not shown). Although such a map can

contain a number of neurons, the `labeling' is sparse enough to identify the neuronal

processes and assign them to their respective somata. As long as the dendrites do

not leave the observation volume, the connectivities between somata and glomerulus

can be established unambiguously. This procedure of contrast generation is called
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Figure 3.11: Activity correlation imaging using fast 3D image acquisition. Correlation maps can

be calculated across all z-positions of the image stack, yielding a complete 3D reconstruction of

the correlated structures. (a) Fluorescent images from four di�erent z-positions as indicated. The

reference region is indicated in red, its [Ca2+]i time pattern is superimposed. (b) Correlation

maps of the z planes shown in (a), all of them being calculated with respect to the trace indicated

in (a). (c) A maximum projection of all 18 planes of the experiment reveals the connectivity of

the correlated structures, including the (reference) glomerulus, several somata and their dendrites.

Due to the sparseness of the functional labeling, the processes are clearly identi�able and the

connectivity between somata and glomerulus is obvious. The colorbar indicates the assignment of

gray levels to correlation values. Scale bar, 10 µm.

`activity correlation imaging' (ACI). ACI can thus visualize processes and guide the

measurement of signals from a neuron's processes even when they are located far

away from the soma and not visible in the raw �uorescence image.

As individual neurons show speci�c activity patterns, it is possible to obtain many

correlation maps using reference signals from di�erent regions of interest (ROIs).

Figure 3.12 shows six correlation maps as maximum z-projections as in Figure 3.10c

with the respective [Ca2+]i time traces superimposed. Many more of these maps can

be created from a given data set and by assigning di�erent colors to the resulting

maps, it is possible to visualize the neuronal circuits with a markedly enhanced
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Correlation maps for different reference traces

Figure 3.12: Using reference traces from di�erent regions allows to create numerous correlation

maps within the same experiment. Shown are the maximum z-projections of correlation maps that

were created using the respective superimposed time traces. The colormap and the �eld of view is

identical for all maps.

contrast. Figure 3.13a shows the time traces of 190 ROIs. Each of these traces

can be used to create a correlation map. Assigning each of these maps a distinct

color allows an almost complete visualization of many neurons and their processes

(Fig. 3.13c1). Using di�erent color schemes (Fig. 3.13b), it is possible to create
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Figure 3.13: The numerous correlation maps can be combined into a multi-color display. (a)

[Ca2+]i signals of 190 di�erent ROIs, arranged as a matrix with time in x- and ROI index in y -

direction. Color code of the time traces, dark blue to light red for low to high [Ca2+]i, respectively.

(b) Four di�erent color lookup tables chosen to highlight di�erent features of the network. (c)

Combining the correlation maps of di�erent ROIs using the corresponding color lookup tables in

(b). In these maps, the hue of each pixel is determined by the hue of the ROI that most correlates to

the pixel's signal. The intensity was determined by the degree of correlation. The maps represent

a multi-color visualizations of the complete network (c1), highlighting multiple (c2, c3) or a single

(c4) ensemble of correlated neurons.
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various multi-color visualizations of the network, each emphasizing di�erent aspects

of the network (Fig. 3.13c1-c4). For example, one can selectively highlight multiple

(Fig. 3.13c2) or a single (Fig. 3.13c3) ensemble of neurons to visualize how these

neurons are embedded in their surrounding circuitry.

It is noteworthy that the neuronal activity patterns of these units are obtained

from the functional imaging data. Combining the activity time traces with the

deduced structural information reveals network structure and function in an un-

precedented clarity.

3.2.3 ACI and single cell dye injection

As this polychromatic `staining' generated by ACI is the result of a cross-correlation

algorithm, its interpretation is less obvious than for example a �uorophore staining.

A number of control experiments were performed, to compare the correlation maps

(acquired with 40× 0.8 W objective) with the neuronal morphology as revealed by

dye injections (imaged with 40× 1.2 W objective). To this end a complete set of

3D correlation maps was generated online, and a particular neuron, selected from

one of the maps, was �lled with �uorescent tracer through a patch pipette. This

experiment may also serve to demonstrate that this method can be used as an

online-tool. Figure 3.14a shows the staining obtained after the pipette was detached

from the cell, while Figure 3.14b shows the correlation map of this neuron. The

overlay in Figure 3.14c con�rms that the structures emerging from the soma of the

selected neuron in the correlation map are indeed processes of this cell. It was never

observed, that structures in the correlation map branching o� from the selected

neuron were not visible in the injection image. Of course, the correlation maps

revealed � by de�nition � additional somata and dendritic segments with highly

correlated activity, whenever present.

Combined ACI and dye injection were performed in �ve cells. The comparison

of the morphology of the investigated neurons resulted in the following numbers

(dye injection / ACI): primary dendrites emerging from the soma and ending in a

glomerulus: 6 / 6 (1 or 2 per cell); branching of dendrites (sub-branches leaving the

observation volume in some cases): 7 / 9 (1 - 3 per cell); further processes emerging
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Figure 3.14: ACI and dye injection. (a) Intensity image after dye injection with a patch pipette

(Alexa 532). The neuron's processes that are visible in the correlation map (b) are all present

here. Some dendrites appear only very faint, indicating their small diameter (inset, empty and

�lled arrowheads). The inset is a projection of only three out of 24 z-planes. Scale bar 10 µm. (b)

From this correlation map, the soma was selected for dye injection (black star). The inset shows

a magni�cation of the indicated part (same as in a), with the empty arrowhead pointing at a part

of a dendrite that disappears into noise (�lled arrowhead). The marked dendrite (green star) does

not belong to the �lled neurons and only seems to branch o� of the primary dendrite due to the

projection of the image stack. The image is slightly gauss-�ltered (width 0.8 pixel) for improved

display. (c) The overlay of the correlation map with the injection image con�rms that the majority

of the structures of the �lled neuron is present in both images. (d) Correlation map acquired with

a higher magni�cation objective. Thin secondary dendrites can be identi�ed unambiguously (�lled

arrowheads). Scale bar, 10 µm.

from the soma (possibly axons): 3 / 5 (0 - 2 per cell).

Occasionally, very thin structures that were observable in the injection-labeled
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image were missing in the correlation map (see insets of Fig. 3.14a and 3.14b, ar-

rowheads). To address the question whether these thin processes were generally

inaccessible to this technique, ACI was performed using a higher magni�cation ob-

jective (63 × 0.95 W). As can be seen in Figure 3.14d, the correlation maps of

these experiments clearly revealed very thin dendritic structures, proving that ACI

can detect these structures as long as they exhibit correlated [Ca2+]i signals.

3.2.4 Discussion of ACI

ACI can generate a virtually unlimited number of correlation maps in a single ex-

periment, and coding each of them with a di�erent color results in a multi-color

visualization of the complete neuronal network.

Recently, multi-color visualization of neuronal networks has been realized using

a transgenic approach (Livet et al., 2007). In the Brainbow transgenic mice, a dif-

ferential expression of 2 � 4 di�erent �uorescent proteins is used to provide the

contrast to distinguish neurons. Each neuron in Brainbow is thus coded by 2 � 4

variables, each representing the expression level of a particular �uorescent protein.

ACI takes a di�erent and partly complementary approach. The neurons are stained

with a single �uorescent dye, and the neurons' speci�c temporal activity waveforms

are exploit as a contrast variable. In this way, each neuron is `labeled' by an N -

dimensional temporal activity waveform, with N being the number of sample points

in time. As the number of time points can be increased (limited only by bleaching),

ACI provides a very high speci�city to distinguish neurons. This is manifested by

the fact that individual correlation maps typically reveal only one or few neurons

and their processes with little unspeci�c labeling. A further advantage of obtaining

contrast in the `time domain' is that this leaves the unused spectral channels avail-

able for other potential applications. For example, one might use �uorescent dyes of

di�erent colors to label the expression of certain proteins or molecules. This would

make it possible to simultaneously map the expression of molecules, the expression

of functional activities, and the morphology of neurons.

ACI develops its full potential when combined with a fast image acquisition sys-

tem. Recently, a number of fast 3D imaging systems have been developed based
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on point scanning through a prede�ned trajectory (Göbel et al., 2007), AOD scan-

ning (Reddy and Saggau, 2005; Vucini¢ and Sejnowski, 2007) or planar illumination

(Holekamp et al., 2008). Combined with bolus loading of Ca2+ indicators, these

systems allow the imaging of many neuronal somata distributed in 3D. To visu-

alize dendritic structures, however, the labeling density must be reduced, e.g. by

electroporation (Nagayama et al., 2007) or by single cell dye injections. But this in-

trinsically limits the number of neurons that can be imaged to at most a few percent

of all neurons. In contrast, the ACI approach provides the simultaneous visualiza-

tion of both the functional activities and the dendritic connections of virtually all

active and dye-loaded neurons in the volume of interest.

We performed ACI in the OB taking its spontaneous activities as the basis. Spon-

taneous activity has been recorded by use of calcium indicator dyes in many parts

of the brain, including the cortex (Ikegaya et al., 2004; Mao et al., 2001; Stosiek

et al., 2003) and the hippocampus (Usami et al., 2008). In some cases, small num-

bers of neurons were found to be synchronized (Mao et al., 2001), similarly to the

M/T cells innervating the same glomerulus in the OB. Thus, with respect to the

occurrence and properties of the spontaneous activity, our model system appears to

be representative for a large number of networks in the brain. Obviously, ACI could

also be based on evoked activity, as long as the subset of activated neurons is either

sparse or inhomogeneous with respect to the temporal response patterns.

It should be noted that the correlation map reveals the parts of an image that

exhibit changes in �uorescence similar to the selected ROI. This might be a group of

neurons, an entire neuron, or a sub-compartment of a cell. In cell types where there

is a strong action potential back-propagation into the dendritic tree (e.g. mitral

cells (Bischofberger and Jonas, 1997; Charpak et al., 2001); pyramidal neurons or

substantia nigra dopaminergic neurons (Stuart et al., 1997)), the correlation map

is likely to reveal a substantial part of the cell, as we have shown here for the case

of mitral cells. ACI may also be useful to study cell types where action potential

back-propagation is relatively weak (e.g., Purkinje neurons (Stuart et al., 1997)). In

these cases one might use the signals from di�erent dendritic segments as reference

signals to construct complementary correlation maps. This might reveal the whole
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cell's morphology but also the extent of functional sub-compartmentalization within

a single neuron and thus help to elucidate how these neurons integrate and process

information.

While compartmentalization of �uorescent dye in organelles was not an issue for

the performance of ACI in our preparation, it might potentially a�ect the results

of the ACI algorithm. It might prove bene�cial to place the reference ROIs in

organelle-free parts of the cell (e.g. periphery of the soma or olfactory glomerulus)

and to minimize compartmentalization by optimizing the experimental parameters,

such as the incubation temperature and the choice of the calcium indicator dye (for

a review, see Takahashi et al. (1999)).

An additional strength of the method is that the computation of correlation maps

can be done very fast. Using Matlab on a common PC, it is possible to calculate 190

correlation maps (512×256×18 pixels each, 112 time points, see Fig. 3.13) in 30 s,

which is within the time for acquiring the actual data. The ability to map func-

tion and structure of neuronal populations online opens up a number of intriguing

applications. It allows selecting speci�c cells (Fig. 3.14) or cell pairs (Chen et al.,

submitted) for targeted electrophysiological recordings. Further applications might

include selecting neurons with certain functional and/or projection pro�les for tar-

geted ablation or stimulation. This way it will be possible to investigate how these

changes a�ect the network function.

Taken together, ACI opens up novel ways for investigating and manipulating

neuronal networks with an unprecedented speci�city.
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3.3 Olfactory Coding with Population Onset Times

Information about an olfactory stimulus are contained in the spike patterns of mi-

tral/tufted (M/T) cells at the level of the olfactory bulb (OB). Even for very simple

stimuli (e.g. mono-molecular odorants) this information is distributed over numer-

ous cells. The relative timing of the response patterns of the di�erent neurons is

assumed to be important for the coding of an odor (Friedrich and Laurent, 2001;

Kauer, 1991; Laurent, 1999; Laurent et al., 2001). Findings in other sensory sys-

tems and behavioral studies in the rodent and human olfactory system motivate

a detailed investigation of the early phase of the odor-evoked M/T cell response

patterns (Abraham et al., 2004; Gollisch and Meister, 2008; Kiesecker et al., 1996;

Laing, 1986; Slotnick, 2007a; Verhagen et al., 2007).

Di�erent parameters of the early M/T cell response patterns have been suggested

to be important for olfactory coding: the time of the response onset, the frequency

of the evoked spike train in a neuron, and the number of elicited action potentials

(Bathellier et al., 2008; Margrie and Schaefer, 2003). The present study aims at

investigating the time of the response onset (which is also referred to as response

latency) for single neurons and particularly the relations between onset times across

neurons in the OB. Unlike the response frequency and the number of action po-

tentials, the onset times of single M/T cells have been suggested to be odor and

concentration dependent across species (insects (Wilson et al., 2004), �sh (Yaksi

et al., 2007) and mammals (Spors et al., 2006)). Additionally, the timing of the

�rst spike has been implicated in coding strategies in various sensory systems (Gol-

lisch and Meister, 2008; Johansson and Birznieks, 2004; Petersen et al., 2001). This

makes the pattern of response latencies a likely candidate for a general (species

independent) odor speci�c aspect of the M/T cell response pattern. Additionally,

response times provide an immediate and thus fast measure, and e�cient strategies

for decoding the order of response onset patterns have been proposed (Gütig and

Sompolinsky, 2006). The analysis of onset times was thus extended to an inves-

tigation of the order in which ensembles of M/T cells start responding to a given

stimulus.
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3.3 Olfactory Coding with Population Onset Times

An investigation of the patterns of response onsets requires the simultaneous

observation of the activity of a large number of neurons with a temporal resolution

that allows to distinguish the onset times of many neurons within a short time

interval. The LIM provides fast confocal imaging, and functional dyes can be used

to visualize neuronal activity of cell populations. Tissue slices of the OB of Xenopus

laevis tadpoles were thus stained with the Ca2+ sensitive �uorescent dye Fluo-4/AM.

The onset time of a neuron is de�ned by the time of the �rst odor-evoked spike. Since

the Ca2+ dependent �uorescence signal is known to re�ect the electrical activity of

M/T cells in Xenopus (Lin et al., 2007), the Ca2+ trace can be expected to show a

sharp rising phase at the beginning of the response, which facilitates the detection

of the onset time. Amino acids were used as stimuli, as they have been shown to be

behaviorally relevant odors in tadpoles (Kiseleva, 1983, 1995) and other amphibians

(Ferrer and Zimmer, 2007).

3.3.1 Measuring odor-evoked responses with high temporal resolution

The determination of the response onset times requires a high temporal resolution

for the investigation of the onset of the odor-evoked response. Additionally, the

acquisition of pre- and post-stimulus time periods are necessary to evaluate the

level of spontaneous activity and the late phase of the response. For these phases of

the image acquisition, a lower temporal resolution is however su�cient. The custom

built LIM o�ers the possibility of dynamic scan protocols. This allows to change the

temporal resolution within a single acquisition period, and thereby to restrict high

frame rates to a `time interval of interest'. In this way bleaching of the �uorescent

dye is minimized, and thus a large number of stimulus applications can be carried

out on a single slice. In the following, an (odor) application refers to the image

sequence acquired during a single odorant stimulation, while an experiment refers

to all applications carried out on a single olfactory bulb slice. Di�erent stimuli were

applied in a randomized order, with a minimum inter-stimulus interval of 1.5 min.

Application of ringer (bath solution) was used as a negative control.

Figure 3.15a shows a typical scan protocol used for most experiments in this

section. The baseline of the intracellular calcium level is recorded for 5 s at 2 Hz,
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Figure 3.15: Schematics of scan protocol for odor stimulation experiments. (a) The onset of the

response is imaged with a high temporal resolution (100 Hz). To minimize photo-bleaching, the

baseline and the late part of the response are acquired with a lower resolution (2 Hz). The scan

mirror returns to the `light-o�' position in between frames. The dotted horizontal lines indicates

the imaged area, the scanned area (blue rectangle) is slightly larger due to the additional `pre-

acquisition lines' (see 3.1.3). One frame consists of 128 lines in y-direction that cover a length

corresponding to 256 pixels in x-direction, resulting in rectangular pixels. (b) The odor delivery

is initiated by a trigger from the control PC (blue curve). The normalized time course of ten

applications, visualized by adding �uorescent dye to the solution, are shown in green. Vertical

green lines indicate the averaged times of 10%, 50% and 90% of the maximum concentration

(0.36 s, 0.42 s and 0.72 s after trigger onset, respectively). (c) The scanning procedure results in

a sequence of �uorescence images. Shown are six images acquired at the indicated time points.

The red outline indicates the position of a neuronal soma. Scale bar, 10 µm. (d) By averaging

the pixel over a soma, the temporal pattern of Ca2+ dependent �uorescence intensities can be

extracted from the image series, shown as ∆F/F0 values. The red curve shows the time trace

of the region indicated in (c), the green curve shows the trace of a spontaneously active neuron

outside the �eld of view. During the time of fast scanning, the neuronal activity is captured with

great detail.
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followed by a high speed acquisition at 100 Hz for 2 s, and �nally another 5 s acquisi-

tion at 2 Hz. The odor application is triggered to the central acquisition phase with

the arrival of the odor being delayed by few hundred milliseconds (see Fig. 3.15b).

This delay might vary from slice to slice due to the positioning of the perfusion can-

nula relative to the mucosa, but it is highly reproducible for repeated applications in

one slice (Fig. 3.15b). The result of this scanning scheme is a series of �uorescence

images with varying inter-image time intervals (representative examples are shown

in Fig. 3.15c). By outlining the area of a neuronal soma with a region of interest

(ROI, red rectangle in Fig. 3.15c) and spatially averaging the �uorescence intensities

of the pixels included in this area, the relative [Ca2+]i time course of this neuron

can be extracted from this image series. Typically this time course is displayed

after correcting for the baseline [Ca2+]i level as ∆F/F0 = (F (t) − F0)/F0 value,

with F (t) being the �uorescence measured at time t, and F0 being the �uorescence

prior stimulation (temporal average). The red curve in Figure 3.15d represents the

�uorescence time course of the stimulated neuron outlined in Figure 3.15c. The

green trace (extracted from a neuron outside the �eld of view in Fig. 3.15c) displays

a spontaneously active neuron. Without the pre-stimulus image acquisition, the

activity around t = 5.6 s could be interpreted as an odor-induced response, which

is unlikely, given the similar [Ca2+]i transient prior stimulus application (around

t = 1 s). Levels of spontaneous activity were evaluated based on the time traces

of all applications. Traces with elevated levels of spontaneous activity were not

included in the analysis.

3.3.2 Determination of the response onset time

The following experiments concern the reproducibility and speci�city of the onset

time of the odor induced response, both for single neurons and for neuronal ensem-

bles. In previous studies, the response onset was determined by �tting a sigmoidal

function to the Ca2+ dependent �uorescent time course (Spors and Grinvald, 2002;

Spors et al., 2006). While this approach yields an estimate of the response begin, it

is unlikely to capture the onset time with a su�cient precision, as it is based on the

global shape of the response pattern. Since the current study aims at exploring the
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Figure 3.16: The onset of the response is determined in three steps, demonstrated using the

responses of two neurons (�rst and second row). Horizontal bars at the bottom of the graphs in (a)

and (b) indicate stimulus application (gray values correspond to averaged values from Fig. 3.15b).

(a,c) First, the raw traces (light blue) are smoothed using an edge-preserving �lter (dark blue).

Then, a function is �tted to the data (�tted curve: green solid line, estimate for onset: green

broken line; see text for details) to determine an estimate of the response onset. (b,d) The

precise onset is determined by a local analysis restricted to the interval of ±100 ms around the

estimated value (light gray area around broken green line). From the linear regression (solid red

line) of the data points within a moving window (cyan line), prediction intervals are calculated

(red errorbars). The window is moved from early towards later times, and the onset is de�ned

as the �rst out of 20 consecutive time points that are outside the prediction intervals (broken red

line). (e) For some traces, the onset cannot be determined due to an insu�cient signal-to-noise

ratio. These curves were not used in the further analysis. The displayed prediction intervals were

calculated at the presumed onset. The inset shows unambiguously that the neuron was active

during the observation interval. (f) Some neurons show high levels of spontaneous activity. Since

this is a potential error source, these neurons could not be included in the analysis. Shown are

responses of a neuron to repeated applications of a stimulus. The reaction to the stimulus was

superimposed by spontaneous activity (compare to control measurements, inset), which makes a

reliable determination of the response onset impossible.
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latencies of a large number of neurons within a limited time interval, it is crucial

to use a precise method that works equally well for di�erent shapes of evoked Ca2+

response patterns. A novel method for a reliable determination of the response onset

time was thus devised. The determination of the response onset consists of three

steps (see Fig. 3.16 for two exemplary Ca2+ traces):

1. The trace is smoothed using the edge preserving Kuwahara �lter (Kuwahara

et al., 1976) with a width of 30 ms (three time points). The use of an edge-

preserving �lter ensures a suppression of noise without `blurring' the sharp

response onset (Fig. 3.16a and c, light and dark blue curves show raw and

�ltered signal, respectively).

2. A piecewise de�ned function ffit, consisting of a linear `baseline' in the �rst

part followed by a double-exponential function containing both a rising and a

declining term, is �tted to the trace (see Fig. 3.16a and c, green solid line):

ffit(t) =

 alin · t + f0 , t < tfit
on,

alin · tfit
on + f0 + aexp · e−(t−tfit

on)/τdown · (1− e−(t−tfit
on)/τup), t ≥ tfit

on.

The fast rising and slowly declining exponentials account for the response onset

and the subsequent Ca2+ out�ux, respectively. The following values are �tting

parameters: The coe�cients alin and aexp, the value f0 = f(t = 0), the time

constants τup and τdown of the exponential terms and the onset estimate tfit
on

that separates the two sections of this function (Fig. 3.16a and b, green broken

vertical line).

3. To determine the precise onset time, a local regression analysis is performed

in a time window ±100 ms around the onset estimate tfit
on. The onset is char-

acterized by a signi�cant deviation from the linear baseline. To determine this

time point, the linear regression fregr (red solid line) over a time window of

300 ms (cyan data points) is used to calculate linear prediction intervals for

later time points (red error bars):

fregr(tn) = aregr · tn + b+ ε,
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assuming a normal distribution of the residuals ε = N(0, σ2). Using M time

points for the regression, the prediction interval for the (M +1)st value to be a

continuation of the linear trend is given by (Beichelt and Montgomery, 2003)

fregr(tM+1)− tM−2,α/2 s

√
1 +

1

M
+

(tM+1 − t̄)2

stt
,

fregr(tM+1)+ tM−2,α/2 s

√
1 +

1

M
+

(tM+1 − t̄)2

stt

,
where fregr(tM+1) = aregr · tM+1 + b is the predicted value at time point tM+1,

s2 = 1
M−2

∑M
n=1 (fmeas(tn)− fregr(tn))2 is the empirical residual variance of

fmeas(tn), stt = (M − 1)s2
t =

∑M
n=1 (tn − t̄)2 is the variance of the time data

and tM−2,α/2 is the (1− α
2
) - quantile of the t-distribution withM−2 degrees of

freedom (`−2' for the regression parameters aregr and b). The time window is

moved from early towards later times (starting from tM+1 = tfit
on−100 ms), until

twenty consecutive data points are found outside of the prediction intervals.

The analysis was found to be insensitive to the required number of time points,

as long as it is su�ciently large to ensure that the deviation from the linear

trend is signi�cant. The �rst of these time points is de�ned as the odor onset

(indicated by red vertical line in Fig. 3.16b and d).

While the algorithm performs well for most time traces (Fig. 3.16a-d), there are

cases where, despite the smoothing, the signal-to-noise ratio is too small and the

onset time is not accessible using the described algorithm (see example in Fig. 3.16e).

These traces could not be included in the subsequent analysis. Furthermore, while

the global �t (step 2 of the algorithm) is rather insensitive to noise and occasional

spontaneous activity, elevated levels of spontaneous activity were a potential error

source for the algorithm. Figure 3.16f shows an example of a neuron that displayed

a superposition of spontaneous and odor-evoked activity. Neurons showing consis-

tently high levels of spontaneous activity were not included in the analysis. The

occasional occurrence of non-odor dependent activity remained however a potential

source for erroneous onset times.
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3.3 Olfactory Coding with Population Onset Times

3.3.3 Reproducibility and concentration dependence of response onset

times

A typical experiment for the investigation of response onset patterns of M/T cells

is shown in Figure 3.17. The olfactory bulb tissue slice was stained with the Ca2+

indicator dye Fluo-4 (overview of bulb hemisphere in Fig. 3.17a), and the M/T cell

layer is used for image acquisition (red outline in Fig. 3.17a and Fig. 3.17b). To

facilitate the selection of responsive neurons, an `autocorrelation map' was calcu-

lated (Fig. 3.17c). This map highlights the regions that show similar time courses

upon repeated application of a stimulus (see Materials and Methods for details).

Figure 3.17d shows exemplary the time courses of the four ROIs indicated in Fig-

ure 3.17c for four applications of the same stimulus (arginine, 25 µM). The responses

are highly reproducible, including the time of response onset. In order to compare

the onset times of the neurons during the individual applications, the same data

are shown in Figure 3.17e sorted by application. The times of response onset, de-

termined using the algorithm described above, are indicated by vertical lines. The

onset order of the four cells is nearly identical for all applications, indicating a high

reproducibility of the population onset pattern. Solely the onset order of cells 1

and 2 are exchanged in the last application. This motivates the investigation of the

reproducibility and stimulus dependence of the response latencies of individual M/T

cells as well as of onset patterns of ensemble of M/T cell.

First, the variability of response onset times was investigated from 247 cells in 14

slices, stimulated with a variety of stimuli (varying both in odor and concentration).

Each stimulus was repeatedly applied (6 � 8 times), and the standard deviation

of the response onset was calculated for each cell across all applications of a given

stimulus. As not all cells responded to all applications, and as the response times

could not be assessed for all traces, the standard deviations are based on a di�erent

numbers of values. Figure 3.18a shows the distribution of standard deviations, with

di�erent colors indicating di�erent number of measurements from which the standard

deviation was calculated. The distribution has a peak around 40 ms, a median of

84 ms and few values larger than 200 ms. In contrast, the standard deviation

calculated over all recorded onset times is 288 ms. To test whether the variability
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Figure 3.17: Investigation of odor-evoked latency patterns in the olfactory bulb. (a) Overview

of one hemisphere of the olfactory bulb, stained with the Ca2+ sensitive �uorescent dye Fluo-4

(compare to organization of the olfactory bulb in Fig. 1.2). The region used for imaging (red

outline) is placed in the mitral cell layer. Scale bar, 50 µm. (b) Mean projection over time of

the image series of an actual experiment. (c) Selection of neurons that respond to a stimulus

is facilitated by calculating an `autocorrelation map'. Four somata that respond to the stimulus

(arginine, 25 µM) are indicated. Scale bar, 50 µm. (d) Responses of the four neurons indicated

in (c) to repeated applications of the amino acid arginine (25 µM). The timing of the responses

is highly reproducible. Insets: time traces during application of ringer solution (negative control).

Horizontal bars at the bottom of each graph indicate stimulus application (gray values correspond

to averaged values from Fig. 3.15b). (e) The same traces as in (d), but sorted by application. The

vertical lines indicate the response onsets. The order of the onsets is very reproducible. Only the

fourth application shows a deviation from the pattern.

Abbreviations a: anterior, p: posterior, l: lateral, m: medial, NL: nerve layer, MCL: mi-

tral/tufted cell layer, GCL: granule cell layer.
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Figure 3.18: Variability of response onset times. (a) For each neuron and each stimulus, the

standard deviation of the response onset time was calculated. The distribution has a peak around

40 ms and a median of about 84 ms. As a comparison, the standard deviation of the odor application

system is around 25 ms. The onset times across neurons and stimuli have a standard deviation of

almost 300 ms. Colors indicate the number of applications that were included in the calculation

of the standard deviation values. (b) To test whether the variability of the onset times depends

on the absolute latency, the standard deviation was plotted as a function of mean onset time for

each cell and each stimulus. There is a positive correlation between these parameters, as quanti�ed

by the correlation coe�cient (cc2−8 : correlation coe�cient based on all values, cc5−8 : correlation

coe�cient of values that are based on at least �ve onset times.) The lines indicate the respective

linear regressions. Despite this general trend, some neurons with a long latency show a remarkably

small standard deviation.

Abbreviation std: standard deviation.

of the onset time is related to the absolute latency, the standard deviation of the

onset times for each cell and each stimulus was plotted against the mean onset

time (Fig. 3.18b). The distribution indicated a weak positive correlation, which

was con�rmed by calculating the correlation coe�cient (cc2−8 = 0.25). Using only

the statistically reliably values that are based on at least 5 onset times, gives an

increased correlation coe�cient of cc5−8 = 0.42. This observation might re�ect the

co-variance between latency and standard deviation reported for receptor neurons

(Gomez and Atema, 1996). Despite this general trend, some cells with a long latency

show a remarkable reproducibility in their onset times (see also cell 4 in Fig. 3.17d),

indicating that the M/T cell onset pattern is not simply a copy of ORN activation

75



3. Results

ti
m

e
[s

]
a

0

0.5

1

1.5

2

2 10

Cell 1

50 250 2 10

Cell 2

50 250 2 10

Cell 3

50 250 2 10

Cell 4

50 250

ΔF
F0

 

 

0

0.5

1

2 10 50 250

0.5

1

1.5

c [μM]

o
n
se

t
ti
m

e
[s

]

b
** **

2 10 50 250

c [μM]

** **

2 10 50 250

c [μM]

** **

2 10 50 250

c [μM]

** **

Figure 3.19: Concentration dependence of response onset times. (a) Shown are the responses of

four neurons from the same slice as ∆F/F0 values (see colorbar). Each plot consists of columns

depicting the response patterns of a given neuron to eight applications of the odor arginine at the

indicated concentration (in µM). The white `×'-symbols indicate the response onset. (b) Each

graph depicts the mean values and standard deviations of the onset times of the respective neuron

above it, and the mean values only for the other three cells. For all neurons, the response latency

decreases with increasing concentration. This change is statistically signi�cant (∗∗: p < 0.01).

Additionally, it appears that the onset order across neurons is independent of concentration.

patterns.

To investigate whether the population onset patterns contain information about

the odor identity, the reproducibility and concentration dependence of onset times

for a �xed odor (arginine) were investigated. An odor speci�c feature of the M/T cell

response pattern has to be invariant with respect to odor concentration. Figure 3.19a

shows the responses of four M/T cells to four di�erent concentrations of the same

odor, each being applied eight times. The selected concentrations cover the dynamic

range of e�ective stimuli (Czesnik et al., 2003; Manzini et al., 2007a). The ∆F/F0

time courses are displayed as color coded columns. The onset times (indicated by
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Figure 3.20: Inter-neuronal correlations between onset times across trials. (a) To determine

whether the �uctuations in onset times are correlated between neurons, the correlation coe�-

cients of onset times was calculated for all pairs of neurons within a slice over all applications of

each stimulus. The distribution shows a peak around 0.95, indicating that the �uctuations in onset

times are strongly correlated. Colors indicate the number of applications that were included in the

analysis. Coe�cients based on less than three applications were excluded from the display. (b)

As a comparison, the correlation coe�cients were calculated after randomizing the trial order, in

this way removing any causal relations between cells. The peak at large coe�cients disappeared,

the distribution appears nearly uniform (same color-code as (a)). This observation emphasizes the

necessity to measure populations of neurons simultaneously.

the `×') show that the response latency decreases with increasing concentration

for all cells (Fig. 3.19b). The concentration dependent di�erences in onset times

cover a range of typically about 200 ms and they are signi�cant for all pairs of

concentrations except 50 µM vs. 250 µM (Student's t-test, p < 0.01, see Fig. 3.19b).

The onset order (vertical order of lines in Fig. 3.19b) is in addition very similar

across concentrations. The population onset pattern appears to be a concentration

independent feature of the overall spatio-temporal response pattern, and therefore

a promising candidate for a stimulus speci�c characteristic.

While the concentration dependence of the absolute response latency was demon-

strated unambiguously by using the averages of the response onset times, the evalu-

ation of the order of response onsets is less clear even for only four cells (Fig. 3.19).

Larger numbers of neurons make it impossible to draw a conclusion about the re-

producibility of the onset order or inter-neuronal delay times based on mean values

and standard deviations of the response onset times. Another way of quantifying
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the odor-evoked population responses is therefore required.

3.3.4 Measures for the similarity of population onset times

Scienti�c research commonly uses averages of values that result from various trials

of a given experiment (e.g. repeated applications of the same stimulus). This serves

to emphasize the characteristic features that are contained in the behavior of the

observed system and to suppress random variability. The activity patterns in the

olfactory bulb are however assumed to rely on the temporal dependencies of the

activity of the individual neurons. The absolute response times of individual cells is

thus unlikely to carry the relevant information. Rather, the odor speci�c information

is contained in the relative timing of neuronal activity within the network. Trial-

to-trial �uctuations of the absolute times of activity might result from variability in

the experimental setup (e.g. �uctuations in the time of stimulus onset) or due to a

variability of the temporal behavior of parts or the complete network. To determine

whether the variance of neurons within a slice co-vary, the correlation coe�cient

between pairs of cells across applications of the same stimulus were calculated:

cc(i,j) =

∑
a(t

on
i (a)− ton

i ) · (ton
j (a)− ton

j )

‖ton
i (r)− ton

i ‖ · ‖ton
j (r)− ton

j ‖
.

The distribution of correlation coe�cients, shown in Figure 3.21a, is skewed towards

large values with a peak around 0.95. As a comparison, the correlation coe�cients

were calculated after randomizing the onset times of the neurons, thereby removing

any causal covariance. The resulting distribution (Fig. 3.21b) is close to a uniform

distribution, emphasizing the existence of a covariance in the onset times of the

neurons. This observation is only possible due to the simultaneous recording of

a large number of neurons, and emphasizes the need to investigate inter-neuronal

dependencies in response patterns of single trials, rather than comparing inter-trial

observations. The observed covariance in M/T cell responses obscures the presumed

invariant patterns of population dynamics when averaging absolute response times

for individual neurons before investigating inter-neuronal dependencies. It is thus

crucial for the analysis of neuronal network dynamics to investigate the dependencies

of the neuronal activities on a trial-by-trial basis, and to use averages only for

quantities that concern the population dynamics and do not depend on an absolute

78



3.3 Olfactory Coding with Population Onset Times

1 2 3 4

Δ
F

/
F

0

time [s]

Application 1a

0.5 1 1.5 2

0

0.5

1

1.5
12 3 4

Δ
F

/
F

0

time [s]

Application 4

0.5 1 1.5 2

0

0.5

1

1.5

time [s]
Application 1

A
p
p
lic

a
ti
o
n

4
ti
m

e
[s

]

Correlation Coefficient

cc1,4 = 0.84

b

0.5 1 1.5 2
0.5

1

1.5

2

Inversion Index

Onset order Appl. 1 ( 1 2 3 4 )

Onset order Appl. 4 ( 2 1 3 4 )

Number of inversions NInv
1,4 = 1

Max. number of inversions NInv
max(4) = 6

Inversion index I 1,4 = 1 – 1/6 = 0.83

c

Figure 3.21: Two measures for the similarity of latency patterns between odor applications within

the same slice are introduced, the correlation coe�cient and the inversion index. (a) Shown are

the relative Ca2+ time courses of four neurons to two odor applications and the respective response

onsets (vertical lines; same data as in Fig. 3.17d, Appl. 1 and 4). While the correlation coe�cient

is based on the time of the onsets, the inversion index uses the relative order in which the cells

start responding (cell order indicated by colored numbers on top of graphs). (b) Plotted are the

onset times of the four cells during application 2 against the onset times during application 1.

The correlation coe�cient measures the `linearity' of the depicted pairs of onset times. Since the

values form approximately a straight line (with the exception of cell 2, cyan point), the resulting

correlation coe�cient cc1,4 is close to 1. (c) The inversion index is based on the number of

inversions between the two `order-of-onset' vectors. In this example, only the neurons 1 and 2

exchanged their position, i.e. there is only one inversion. This value is then normalized to the

maximum number of inversions for the respective number of cells (in this case a maximum of 6

inversions) and then subtracted from one.



3. Results

time reference. To this end, a measure for the similarity between the population

onset patterns of two neuronal response patterns has to be de�ned. This measure

can be used to compare the response onsets for pairs of applications using either the

same or di�erent stimuli. Averages of this measure can be calculated for each pair

of stimulus conditions (stimulus A vs. stimulus A; stim. A vs. stim. B; stim. B vs.

stim. B; etc.).

Two measures are introduced to compare the population onset patterns between

pairs of odor application experiments within the same preparation. These measures

are based on the response onset times ton
i (r) and ton

j (r) of the ith and jth applica-

tion, respectively, for neurons r ∈ R,R being the set of all M/T cells within the

�eld of view. Not all neurons might respond during each application and for some

responsive neurons the onset time might not be accessible (see 3.3.2). For each pair

of applications, the intersection Ri,j ⊆ R of neurons with available onset times is

used for the quanti�cation of the response similarity. The number of elements in

Ri,j can be di�erent for each application pair (i, j). The traces of the applications 1

and 4 in Figure 3.17e will be used to illustrate the proposed measures (Fig.3.21a).

Correlation coe�cient

The correlation coe�cient Ci,j can be used to measure the similarity of the response

onset times ton
i (r) and ton

j (r) of a set of neurons from two odor applications i and j

(Fig. 3.21b). Ci,j is de�ned as (Beichelt and Montgomery, 2003)

Ci,j =

∑
r∈Ri,j

(ton
i (r)− ton

i ) · (ton
j (r)− ton

j )

‖ton
i (r)− ton

i ‖ · ‖ton
j (r)− ton

j ‖
.

This value is a measure for the degree of linearity between the pairs of onset times

of these neurons (Beichelt and Montgomery, 2003). While this value can be a useful

indicator for onset similarity, it is very sensitive to extreme values. If, for example, a

neuron consistently responds with latencies much longer than the other neurons, the

correlation coe�cient will assume arti�cially large values, regardless of the relation

between the remaining onset times.
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3.3 Olfactory Coding with Population Onset Times

Inversion index

Thus another measure is introduced that exclusively assesses the similarity of the

onset order, while disregarding the durations by which the onset times are separated.

To this end, the neurons of a slice are numbered in an arbitrary way. For each

application, the numbers of the responding neurons are sorted in the order of the

respective onset times (see colored numbers on top of the graphs in Fig. 3.21a).

The similarity of two onset patterns is now de�ned by the degree to which the cells

appear in the same order in these two permutations (Fig. 3.21c). This similarity

can be quanti�ed by counting the pairs of cells that appear in a di�erent order in

the two sequences, i.e. the number of inversions N Inv (Weisstein, 2002). Inversion

based measures are commonly used to assess the similarity of genomic sequences

(Watterson et al., 1982). In the example from Figure 3.21, the only inversion is

found in the �rst two positions of the permutation vectors for the applications 1

and 4, yielding N Inv
1,4 = 1. The range of this value depends on the length of the

sequence, i.e. on the number of elements in Ri,j. It is desirable to create an index

that is independent of this number and that assumes large values for a high degree of

similarity. Thus the inversion index Ii,j for the application pair (i, j) is introduced,

de�ned as

Ii,j = 1− N Inv
i,j

N Inv
max(Li,j)

,

with N Inv
max(Li,j) being the maximum number of inversions for a sequence with length

Li,j, which is given by N Inv
max(Li,j) = Li,j · (Li,j − 1) / 2. This normalization yields a

range that is independent of the sequence length (I ∈ [0, 1] for all L). The example

in Figure 3.21 yields L1,4 = 4, N Inv
max(4) = 6 and thus I1,4 = 1 − 1/6 = 0.83. It

can be shown that NInv is a metric on the space of all permutations of the numbers

{1, ..., L}, justifying the use of the inversion index as a `measure of similarity' (inverse

distance measure) in a mathematical sense.

Both the inversion index and the correlation coe�cients are measures of neuronal

interdependencies of population response onset. They are thus independent of an

absolute time frame. It should however be acknowledged, that an inversion index

based on a long sequence of neurons contains more information than an index based

on a short sequence. For example, a pair of identical sequences of length ten is
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less likely to occur by chance than a pair of identical sequences of length two. For

the display of inversion indices, color-coded stacked histograms can be used (see

Fig. 3.22). Each histogram visualizes the distribution of inversion indices, which

are pooled into bins of equal width (bin width is 0.1 for inversion index histograms

throughout this thesis). The counts within each bin are segregated according to

the underlying distribution of sequence lengths. This distribution is visualized by

stacked color patches, with the height of each segment representing the number of

counts and the color representing the sequence length (see colorbar in Fig. 3.22 and

3.23). The same visualization is used for the display of the correlation coe�cients

(see for example Fig. 3.22e). When calculating average values, the sequence length

can be accounted for by using a weighted mean instead of the common (unweighted)

arithmetic mean. In this way, values based on longer sequences will have a stronger

`impact' on the resulting average value than those based on short sequences. It is

desirable that the weighted mean Ĩ has the same range as I, the weight factor is

therefore chosen to be the maximum number of inversions N Inv
max. This results in the

weighted mean inversion index

Ĩ =

∑
i,j Ii,j ·N Inv

max(Li,j)∑
i,j N

Inv
max(Li,j)

= 1−
∑

i,j N
Inv
i,j∑

i,j N
Inv
max(Li,j)

,

with N Inv
i,j and N Inv

max(Li,j) being the number of inversions and the maximum possible

number of inversions for the application pair (i, j) with sequence length Li,j, respec-

tively. This de�nition of Ĩ is consistent with the de�nition of I in that (1) Ĩ ∈ [0, 1]

and (2) if all sequences have the same length Li,j ≡ L, Ĩ is becoming the regular

average of the inversion index Ĩ = Ī = 1
K

∑
i,j Ii,j. Similarly, a weighted standard

deviation σ̃I is de�ned,

σ̃I =

√√√√∑i,j (Ii,j − Ĩ)2 ·N Inv
max(Li,j)∑

i,j N
Inv
max(Li,j)

.

For the correlation coe�cient, the sequence length Li,j is used as a weight. This

yields the following de�nitions for the weighted mean C̃ and standard deviation σ̃C

of the correlation coe�cient, respectively:

C̃ =

∑
i,j Ci,j ·Li,j∑

i,j Li,j
and σ̃C =

√√√√∑i,j (Ci,j − C̃)2 ·Li,j∑
i,j Li,j

.
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3.3 Olfactory Coding with Population Onset Times

In the following, both measures will be used to measure the similarity between onset

patterns, with a focus on the inversion index.

3.3.5 Concentration and stimulus dependence of the inversion index I

Concentration dependence of I

Using the inversion index and the correlation coe�cient, the similarity of the pat-

terns of M/T cell onset times for applications of di�erent concentrations (5 µM,

25 µM, 125 µM) of the amino acid arginine was quanti�ed. Figures 3.22a and b

show the distributions of inversion indices for pairs of concentrations for a single

slice and pooled over slices (n = 8), respectively, arranged in a matrix-like display.

The color code of the histograms indicates which fraction of the distributions are

due to shorter (cold colors) or longer (warm colors) sequences. Both diagonal (i.e.

pairs of identical concentration) as well as o�-diagonal distributions are centered

around large values (0.7 � 0.9), with virtually no entries for values smaller than

0.5. To facilitate the comparison of the distributions between same vs. di�erent

concentrations, the data from Figure 3.22b are combined accordingly into the two

histograms in Figure 3.22c. To appreciate the signi�cance of the pattern similari-

ties both for conditions of identical as well as di�erent concentration, distributions

of inversion indices were calculated for randomly generated sequences of onset or-

der (using the same number of `experiments' and distributions of sequence length).

These histograms (Fig. 3.22d) are centered around the value 0.5. Especially for long

sequences (warm colors), the probability of randomly generating two highly similar

patterns twice is virtually zero, as re�ected by the histograms. This emphasizes the

signi�cance of the high degree of similarity between onset patterns from stimulations

with identical or di�erent concentrations of the same odorant.

Odor speci�city of latency patterns

The reproducibility of the population onset patterns can have two reasons. It could

either imply that the M/T cell network contains `early' and `late' neurons, i.e. that

the latency is cell speci�c and independent of odor identity (though concentration

dependent as seen from Fig. 3.19). Alternatively, it could mean that the order is

83



3. Results

5
μ
M

a

0

5

10

15

2

14

2
5

μ
M

0

5

10

15

1
2
5

μ
M

5 μM
0 0.5 1

0

5

10

15

Distributions for a single experiment

25 μM
0 0.5 1

125 μM
0 0.5 1

5
μ
M

b

0

20

40

60

2

18

2
5

μ
M

0

20

40

60

1
2
5

μ
M

5 μM
0 0.5 1

0

20

40

60

Distributions pooled over experiments

25 μM
0 0.5 1

125 μM
0 0.5 1

Inversion index
c

S
am

e
co

n
c.

0 0.5 1
0

100

200

2

18

Random events
d

0 0.5 1
0

100

200

Correlation coef.
e

−1 0 1
0

100

200

Inversion index

D
iff

.
co

n
c.

0 0.5 1
0

100

200

2

18

Inversion index
0 0.5 1

0

100

200

Correlation coef.
−1 0 1

0

100

200

Figure 3.22: Distribution of inversion indices for applications of di�erent concentrations of arginine.

Arginine was applied repeatedly at three di�erent concentrations and the inversion index was

calculated for all pairs of applications. Blue vertical lines indicate the weighted mean, gray bars

indicate mean ± standard deviation (weighted according to sequence length, see text for details).

(a) `Matrix' of distributions of inversion indices for all pairs of concentrations for a single slice.

Colors indicate the number of neurons underlying the calculated index (see colorbar). For pairs

of both equal and di�erent concentrations the distributions show peaks and mean values between

0.7 and 0.9, indicating a high reproducibility of the onset pattern. (b) Same display as in (a),

but pooled results over eight slice preparations. The distributions are similar to (a), though with

a larger standard deviation. (c) Inversion indices sorted for application pairs of equal (top) vs.

di�erent (bottom) concentrations. (d) For comparison, the distribution of inversion indices for

randomized onset orders is displayed. These are centered around the value of 0.5. Note that

especially for long sequences (warm colors), the probability for values close to one is almost zero.

(e) Histograms of correlation coe�cients of the same experiments used for the histograms in (c),

sorted for application pairs of equal (top) vs. di�erent (bottom) concentration.
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odor speci�c, and that a given cell C1 could have a shorter latency to odor A and

a longer to odor B, while the cell C2 shows a long latency in response to odor A

and a shorter to odor B. If the former explanation was correct, the inversion indices

comparing applications of di�erent odors should be very similar to the inversion

indices comparing applications of the same odor and small inversion indices should

not occur. To test the hypothesis of odor independent onset patterns, experiments

using applications of di�erent amino acids (arginine, histidine, and phenylalanine)

were conducted. Figure 3.23a and b show the distributions for all pairs of odors from

a single slice and pooled over slices (n = 6), respectively. Comparing applications

of identical odorants (histograms on the diagonal in Fig. 3.23a and b) yields simi-

lar distributions found the experiments concerning concentration dependence, with

most values around 0.8 � 0.9. Comparing on the other hand applications of di�erent

odors yields distributions centered around smaller values. The distributions appear

gaussian shaped with an odor-pair speci�c mean value for experiments of a single

slice. When pooling the results over several slices (Fig. 3.23b), the distributions for

pairs of di�erent odors appear broader and shifted toward smaller values, compared

to the distributions for pairs of identical stimuli.

The degree of similarity between onset pattern presumably depends on the choice

of odorants (see distributions in Fig. 3.23) and the preparation (as a random `se-

lection' of M/T cells is in the �eld of view). It is nevertheless desirable to quantify

and compare the similarities of ensemble patterns between stimulations with various

concentrations of an odorant vs. stimulations with various odorants. The weighted

mean and standard deviations indicated in Figures 3.22 and 3.23 are a �rst indi-

cator that the onset patterns are more informative about odor identity than odor

concentration. Due to the weights associated with each value (inversion index or

correlation coe�cient), a traditional signi�cance test is however not possible. For

this reason, the bootstrap sampling method was used (Boos, 2003; Efron, 1979).

This method is based on resampling the data by drawing independent samples with

replacement from a given data set. The statistics of this resampled set is computed

(e.g. the weighted mean), and the procedure is repeated a larger number of times

(1000 times for the results presented here). In this way a distribution of weighted
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Figure 3.23: Distributions of inversion indices for applications of di�erent odorants. Three di�erent

amino acids were applied repeatedly and the inversion index was calculated for all pairs of appli-

cations. (a) `Matrix' of distributions of inversion indices for all pairings of odorants for a single

slice. Di�erent colors represent di�erent numbers of neurons underlying the calculated index (see

colorbar). The histograms along the diagonal are similar to the histograms shown in Fig. 3.22a.

In contrast, the o�-diagonal histograms show a shift to lower values. This shift appears to be odor

pair speci�c, for some being larger (Arg / Phe), for others smaller (Met / Phe). (b) Same display

as in (a), but pooled results over �ve slice preparations. (c) Inversion indices sorted for pairs of

same (top) vs. di�erent (bottom) odor. (d) For comparison, the distribution of inversion indices

for randomized onset orders is displayed. (e) Histograms of correlation coe�cients of the same

experiments used for the histograms in (c), sorted for pairs of equal (top) vs. di�erent (bottom)

odors.

Abbreviations Arg: arginine, Met: methionine, Phe: phenylalanine
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means can be generated and used for statistical signi�cance tests. Figure 3.24a and b

show the results of the bootstrap analysis, performed for the inversion indices pooled

over experiments using various concentrations and various stimuli, respectively. The

distributions show, that the inversion index is largest for pairs of applications us-

ing the same stimulus, i.e. identical both in concentration and identity (centered

around 0.83). Comparing applications using the same odor at di�erent concentra-

tions shows a signi�cant (p < 0.01) but small reduction in inversion index (centered

around 0.77). Comparing applications of identical concentration but di�erent odor

shows a signi�cant (p < 0.01) and strong reduction in inversion index (centered

around 0.67). The onset order of M/T cell ensembles is thus highly reproducible for

a given odor, and signi�cantly more informative about the odor identity than about

odor concentration.

Finally, the variability of inversion indices and correlation coe�cients between

di�erent slice preparations was compared. To this end, the weighted mean of either

measure was calculated for each slice, and the mean and standard error of these

measures was calculated across slices (n = 8 for various concentrations and n = 6

for various stimuli). The results are shown in Figure 3.24b and c. The calculated

mean values are consistent with the bootstrap analysis, and the inter-slice variability

is small. This demonstrates that the results are consistent across slices and thus

represent a characteristic of the Xenopus laevis tadpole olfactory bulb.

3.3.6 Preliminary results

Population onset patterns for complex odorants

The presented experiments concerning reproducibility and speci�city of odor-evoked

population onset patterns were conducted using single amino acids as odorants.

While these are known to be behaviorally relevant stimuli for tadpoles and other

amphibians (Ferrer and Zimmer, 2007; Kiseleva, 1983, 1995), most natural odors are

complex mixtures of single odorant molecules. Due to a broader activation of both

receptor neurons and M/T cells, interaction within the OB (via lateral connections

by periglomerular and granule cells) might play a bigger role for shaping the spatio-

temporal response patterns. It is thus not clear whether features of the response

87



3. Results

Inversion index

Bootstrap sampling of inversion index

 

 

a

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150
same concentration
different concentrations

Inversion index

 

 

b

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100
same stimulus
different stimuli

Mean values inversion index

In
ve

rs
io

n
in

d
ex

 

 

c

various concentrations various stimuli
0.4

0.6

0.8

1

same

different

Mean values correlation coefficient

C
or

re
la

ti
o
n

co
ef

.

 

 

d

various concentrations various stimuli
0

0.5

1

same

different

Figure 3.24: Statistical analysis of the results for the inversion index and the correlation coe�-

cient. (a) Bootstrap sampling was performed to test for signi�cance of the di�erences in inversion

indices using various concentrations (see text for details). Based on this analysis, the inversion

indices calculated for pairs of applications using the same concentrations (green) are slightly, but

signi�cantly larger than inversion indices calculated for pairs of applications using di�erent concen-

trations (red). (b) Results of the bootstrap analysis for experiments using applications of various

odorants. The inversion indices for pairs of applications using the same odorant (green) is signi�-

cantly larger than for pairs of applications using a di�erent odorant (red). This di�erence is much

more pronounced than for experiments with variable odor concentration (a). (c) Mean values and

standard error of inversion indices across slices. For each slice, the weighted mean of the inversion

index was calculated for both conditions of identical and di�erent concentrations / stimuli, and

these values were averaged and the standard error was calculated. The results show, that the

intertrial-variability is very small, and that the presented results represent general properties of

the Xenopus olfactory bulb. (d) Mean values and standard deviations of the correlation coe�cient

across slices, for both conditions of identical and di�erent concentrations / stimuli. The resulting

values con�rm the presented �ndings, additionally showing that the interslice-varibality is small.

patterns upon stimulation with mono-molecular odorants can be generalized to more

complex odors. To investigate whether the reproducibility and speci�city of pop-

ulation onset patterns can be found for stimulation with complex mixtures, a �rst

experiment was conducted using a mixture of 15 amino acids and a food extract as
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Figure 3.25: Distributions of inversion indices for applications of two complex mixtures. A mixture

from 15 amino acids and a food extract were repeatedly applied and the inversion index was

calculated for all pairs of applications. (a) Histograms of correlation coe�cients sorted for pairs

of equal (top) vs. di�erent (bottom) odors. The bottom histogram shows a shift towards smaller

values. (b) Inversion indices sorted for pairs of same (top) vs. di�erent (bottom) odor. The

prominent peak at 0.9 seen in the top histogram does not exist in the bottom graph. The values

are shifted towards smaller values. (c) For comparison, the distribution of inversion indices for

randomized onset orders is displayed.

stimuli. The results are presented in Figure 3.25 as distributions of inversion indices

and correlation coe�cients, similar to the display in Figure 3.23c-e. The results

are very similar to the experiments using single amino acids, with a high similarity

of onset patterns when comparing applications of the same stimulus (top row of

histograms in Fig. 3.25), and with a signi�cantly lower similarity when comparing

applications of di�erent stimuli (bottom row of histograms). This result shows, that

the responses to complex mixtures show the same reproducibility and speci�city of

population onset patterns that was observed for simple odorants. This observation

holds for both the inversion index and the correlation coe�cient. This preliminary

result (obtained in a single slice) has to be substantiated by further experiments.

Additional experiments should address a potential correlation between the similar-

ity of odors (chemical similarity for single molecules or with respect to similarity of
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Figure 3.26: Preliminary results concerning response onset times in binary mixtures. Shown are

representative examples of two neurons, responsive to both arginine (arg) and histidine (his). The

amino acids were applied individually and in mixture, using a �xed concentration for arginine and

two concentrations for histidine (see legends). Traces are averages over six applications of each

stimulus. (a) While the neuron does not respond to low concentration of histidine (10 µM), it

responds with a long latency to a high concentration of histidine. The response to the mixtures

appears always dominated by arginine, with no apparent di�erence in onset time. The onset time

could in this case be predicted as the shortest onset time measured for the components. (b) The

low histidine concentration is not an e�ective stimulus, and does not a�ect the response to an

equally low concentration of arginine. The neuron responds (weakly) to higher concentration of

histidine, and the mixture of the two e�ective stimuli show a reduced response latency compared

to its components. The e�ect could be described as `cumulative', as the e�ect of the two stimuli

appears to add up.

mixtures for complex odors) and the similarity of population onset patterns.

Response onset times for binary mixtures

Most natural odors are complex mixtures of di�erent types of molecules. The task

of the olfactory system is to recognize and distinguish these complex odors, taking

into account the contained components, as well as the ratios at which these are

contained in the mixture. The responses to di�erent components of an odor can

be expected to interact in the OB. An understanding of these interactions and how

the response to a mixture related to the responses to its components is crucial for

our understanding of the coding principles of the OB. Much attention has conse-

quently been payed to the investigation of the response patterns upon stimulation
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with simple odors and their mixture, in particularly using two mono-molecular odors

and their binary mixture (see for example (Giraudet et al., 2002; Kang and Caprio,

1997; Khan et al., 2008; McNamara et al., 2007; Tabor et al., 2004)). For the in-

vestigation of population onset patterns, it is of interest to study the relation of

the onset time of single neurons upon stimulation with either single odors or their

binary mixture. A �rst step in this direction has been made with the amino acids

arginine and histidine and their binary mixture, using two di�erent concentrations

of histidine. Figure 3.26 shows two representative examples of neurons responsive

to either amino acid as well as to their mixture (response patterns averages over

six applications of each stimulus). As expected, adding a subthreshold stimulus to

an e�ective stimulus does not a�ect the response of the system (10 µM histidine

in Fig. 3.25a,b). On the other hand, when mixing two e�ective stimuli (e.g., his-

tidine 250 µM and arginine 10 µM), the response to the mixture was found to be

related to the responses to the components in one out of two ways: The latency

when stimulating with the mixture was either similar to the shortest of the compo-

nent latencies (Fig. 3.26a), or it was shorter than the shortest component latency

(`cumulative e�ect', Fig. 3.26b). While these preliminary results are not exhaus-

tive or conclusive, they indicate how latency patterns in complex odorants might be

generated based on latency patterns of the components. Given the concentration

dependence of the response latency, the system would be able to generate speci�c

population onset patterns for mixtures that di�er only in the mixing ratios of their

components. However, more complex interactions of components of a mixture are

very likely, given the lateral connectivity and the occurrence of inhibitory M/T cell

responses in the OB. The question concerning coding of (binary) mixtures, and the

relation between onset patterns for the mixture and its components, requires much

attention and the investigation of a wide variety of odor pairs and their mixtures.

Response latencies at the ORN level

The existence of odor and concentration dependent response latencies raises the

question about possible mechanisms that generate these speci�c latencies. An im-

mediate question is, whether the latencies are already present at the level of ORNs
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Figure 3.27: Concentration dependence of glomerular response onset times. (a) Overview of the

OB. The ORNs have been �lled with Ca2+ indicator dye, allowing to measure exclusively from

glomerular terminals of ORN axons. The red ellipse outlines the glomerulus (shown magni�ed in

the inset) that was responsive to the stimulus (mixture of 15 amino acids). Scale bar, 50 µm;

scale in inset, 10 µm. (b) Responses to di�erent concentrations of the odorant, including control

measurement (three applications per concentration). The `×'-symbols indicate the response begin.
(c) Averages and mean values of response onset times. The decrease in onset times with increasing

concentration is statistically signi�cant (∗: p < 0.05, ∗∗: p < 0.01). The di�erence appears to be

less pronounced than for M/T cells (Fig. 3.19).

or whether they are entirely generated by the circuitry of the OB. A novel prepara-

tion for the larval Xenopus laevis (established recently by Eugen Kludt, Department

of Neurophysiology and Cellular Biophysics, University Göttingen) allows the inves-

tigation of ORN activity at the level of olfactory glomeruli. Using electophoresis,

the ORNs are �lled with Ca2+ sensitive �uorescent dye, which di�uses through the

axon into the glomerular terminals. Using this preparation, it is possible to mea-

sure exclusively presynaptic glomerular signals. The size of the glomerular, their
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3.3 Olfactory Coding with Population Onset Times

spatial distribution in the OB, and the optical sectioning of the LIM restricts the

observation to only a few glomeruli at a time. Typically one or sometimes very

few glomeruli within an optical slice will respond to a given stimulus. Therefore,

the concentration dependence of the response latencies of individual glomeruli was

investigated, instead of the population onset patterns across glomeruli. As it can

be seen in Figure 3.27, the ORN response onset time is concentration dependent,

with higher concentrations resulting in shorter latencies. The dependence appears

in this example to be less pronounced than for M/T cells (compare to Fig. 3.19),

with larger di�erences in concentration necessary for a signi�cant change in onset

time. This preliminary data does not yet allow a quanti�cation or a quantitative

comparison with the �ndings in the OB. The result that the onset time of ORNs

depends on the concentration of the stimulus is however in agreement with previous

reports in other animals (Getchell and Shepherd, 1978; Gomez and Atema, 1996;

Spors et al., 2006). While the existence of latencies at the level of ORN might be

important for the dynamics of the M/T cell responses, their existence does not im-

ply that the latency patterns in the M/T cells are simply a `re�ection' (i.e. a direct

e�ect) of these latencies.

Detection of action potentials from Ca2+ signals

Parameters other than the population onset patterns might be relevant for olfac-

tory coding (Bathellier et al., 2008). It would therefore be interesting to investigate

further parameters, such as the spike frequency, the number of spikes or the modu-

lation of spike patterns over time, and to analyze their interneuronal relations and

dependencies. Di�erent aspects of the response pattern might be strongly correlated

(Margrie and Schaefer, 2003) or might code for di�erent aspects of the stimulus

(Friedrich et al., 2004). It is therefore desirable to assess and analyze the overall

population activity, i.e. the patterns of APs in the population of M/T cells in the

OB. It has been shown, that APs are re�ected as discrete steps in the Ca2+ signal

(Smetters et al., 1999), as recorded using Ca2+ dependent indicator dyes at a suf-

�cient temporal resolution. Ca2+ imaging is thus a suitable tool for recording APs

in neuronal populations. The task is to reliably extract the times of APs from the
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Figure 3.28: Strategies for the detection of single action potentials from the Ca2+ trace. Two

algorithms were tested and are presented using odor-evoked Ca2+ traces from two M/T cells. (a)

Traces of Ca2+ indicator dyes recorded with a high temporal resolution (here 100 Hz) often show

step-like shapes, characteristic for occurrence of single action potentials. (b) Calculating local

cross-correlation between the Ca2+ trace and a step function results in peaks at the points of

presumed APs. By choosing an appropriate threshold (here 0.85) and detecting local maxima in

the function yields the candidate time points. (c) Another approach starts from the global �t

obtained for the purpose on determination of the response onset. The �t is modi�ed and improved

by successively replacing it by steps of constant amplitude. This procedure is repeated as long as

the residual between the original trace and the �t is diminished.

recorded Ca2+ traces. Two algorithms were tested on odor-evoked response patterns

from data presented here.

The �rst method is based on a local cross-correlation analysis. To this end, the

shape of the Ca2+ trace in response to a single AP is locally approximated by a step
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3.3 Olfactory Coding with Population Onset Times

function (signum function)

s(t) =

−1, t < 0

+1, t ≥ 0.

To detect APs from a given Ca2+ trace, a local cross-correlation between the intensity

trace I(t) and s(t) is calculated over a window with a width of (2n+ 1) time points.

For each of the discrete recording times ti a correlation value is obtained:

c(ti) =

∑ti+n

τ=ti−n
I(τ) · s(τ − ti)√

‖I(t)− Ī‖[ti−n,ti+n] · ‖s(t)− s̄‖[t−n,t+n]

,

with ‖ · ‖[t1,t2] being the 2-norm over the interval [t1, t2]. Due to the normalization,

c(ti) is insensitive to the amplitude of the trace in the time window I(τ), ti−n < τ <

ti+n. This is advantageous, since the absolute �uorescent intensity (or the ∆F/F0 �

value) depends on parameters that are not relevant for the detection of APs (such as

the level of staining). The occurrence of steps in the original trace will be re�ected

by peaks in the `correlation-trace' (Fig. 3.28b). The method poses the problem to

select an appropriate threshold in order to detect only peaks that are signi�cant.

In Figure 3.28b, a threshold of 0.85 was used, but the selection has to be based on

statistical criteria (such as thresholding algorithms for the histogram of correlation

values), and should be validated by simultaneous electrophysiological recordings.

The second method tested is based on a �tting procedure and does thus not

depend on the choice of a threshold. Is starts from the bi-exponential �t that was

calculated for the determination of the response onset time in 3.3.2. Assuming

that APs are re�ected as sharp rising phases in the �uorescent intensity, this �t

is modi�ed by consecutively replacing parts of it by individual steps of constant

amplitude. After �tting n steps, the function has the form

fn(t) =


a0 · t +f0 , t < t0

ai , ti−1<t < ti

a0 · tfit
on +f0 + aexp · e−(t−tfit

on)/τdown · (1− e−(t−tfit
on)/τup), tn <t,

for i ∈ [1, ..., n]. Steps are added as long as the norm of the residual between I(t)

and fn(t) is decreased, |I(t) − fn(t)| < |I(t) − fn−1(t)|. The time points (t1, ..., tn)

then indicate the occurrences of APs.
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Testing these procedures using actual recordings of somatic Ca2+ traces, both

appear to perform well (based on visual inspection, see Fig. 3.28). However, their

performance has to be validated in future experiments by simultaneously recording

the electrical activity of the neuron. A reliable determination of APs from population

of M/T cells will signi�cantly extend the current analysis of spatio-temporal odor-

evoked response patterns in the OB.
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Discussion

4.1 Conclusions

The coding of odorants in the olfactory system, and in the olfactory bulb (OB) in

particular, is an unsolved problem. It is commonly accepted, that both the spatial

pattern of activated mitral/tufted (M/T) cells (the principle neurons of the OB),

as well as the temporal pattern of their activity are important for the coding of

odors. An understanding of the coding principles depends thus on a study of these

patterns with a su�ciently high temporal and spatial resolution. Motivated by re-

sponse times measured in behavioral tasks and by recent �ndings in other sensory

systems, the present study concentrated on the examination of the response onset

times across M/T cells. Experiments were conducted on larval Xenopus laevis, as

it is an approved model system for olfactory research (Czesnik et al., 2003; Manzini

et al., 2007a; Scheidweiler et al., 2001). Behaviorally relevant stimuli are known and

natural stimulation can be combined with Ca2+ imaging using a nose-brain prepa-

ration (Czesnik et al., 2003). The new line-illumination microscope (LIM) enabled

the simultaneous measurement of the activity of dozens of individual cells with a

temporal resolution of 100 Hz using Ca2+ indicator dyes. Based on the odor-evoked

Ca2+ time courses, the response onset, i.e. the time of the �rst spike, could be

determined for large numbers of responsive neurons. These times, being recorded

simultaneously, were then used to examine the interneuronal dependencies of the

activation pattern. It could be shown, that the �uctuations in onset time are corre-

lated between neurons of a slice, which emphasizes the importance of simultaneous

recordings. Two measures for the similarity of the population onset times between

two odor applications were introduced. These measures are independent to overall

97



4. Discussion

shifts in onset time and do not rely on time values averaged over trials. First, the

newly de�ned inversion index measures the similarity of the order of response onsets

in a neuronal population between two applications. Second, the correlation coe�-

cient measures the linearity of onset times from the responsive neurons between two

applications. These measures assess thus di�erent aspects of the pattern of onset

times.

By investigating the odor-evoked responses upon stimulation with behaviorally

relevant odors in the olfactory bulb of Xenopus laevis tadpoles, the following results

were obtained:

1. For a given odor at a �xed concentration, the population onset pattern is

highly reproducible, as assessed both by the inversion index and the correlation

coe�cient.

2. Stimulating with the same odor at di�erent concentration results in a overall

decrease of the onset times with increasing concentration for all neurons.

3. The population onset pattern for a given odorant at di�erent concentrations is

highly similar, with only a small decrease in similarity with respect to compar-

ing applications using the same concentration as assessed by the two measures.

4. The population onset pattern compared between applications of di�erent odor-

ants on the other hand are very dissimilar and the degree of similarity appears

to depend on the pair of odors that are compared.

These experiments focussed on the investigation of one speci�c aspect of the activity

pattern. The presented results can thus not be exhaustive, as there might be other

aspects containing odor related information, such as modulation of spontaneous

activity, or levels of �ring rates across neurons. On the other hand, the approach to

include all responsive neurons in the analysis of population onset patterns is very

conservative, as there might exist functional subpopulation of cells that are rather

independently active. The reproducibility of the onset order across all observed

responsive neurons is remarkable and might be even more pronounced for functional

neuronal subsets. These observations make the order of response onset a likely
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candidate for an odor-speci�c code that might be used by higher brain centers,

rather than a coincidental epiphenomenon.

Even though the similarity in onset patterns was assessed by two di�erent pa-

rameters, it could not be concluded whether the onset order or the durations of the

di�erences in onset times across neurons are more informative about the odor. Both

parameters showed a slight dependence on concentration and a strong dependence

on odor identity.

In the following, it will be discussed, what further experiments can be done,

how the presented results relate to other �ndings in the olfactory and other sensory

systems, and possible strategies for both encoding and decoding of population onset

patterns.

Response onset patterns provide a large variety of combinatorial responses, that

could be optimized for recognition and di�erentiation of critical odors by the OB

network. The existence of these invariant and speci�c patterns raises a number of

questions about their origin, their relation to properties of the stimulus and possible

decoding strategies to extract information from these patterns.

4.2 Future experiments

The reported phenomena motivate a number of future experiments:

• Determining the latency patterns for a wider variety of stimuli, it will be

possible to infer whether a similarity between two stimuli is re�ected in a

similarity of the stimulus speci�c latency patterns. The similarity in stimuli

can be either a similar chemical structure for mono-molecular odorants, or a

similarity in mixing ratios for more complex odors.

• Experiments investigating the relationship of onset patterns for given odor-

ants and their mixture will uncover whether interactions exist that are more

complex than those described in the preliminary results of this thesis (3.3.6).

Results of these experiments might be additionally informative about the role

of the bulbar network for the manifestation of M/T cell onset patterns.

• Similarly to the attempt to quantify the similarity between onset patterns,
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it will be desirable to quantify and compare further aspects of the spatio-

temporal activity patterns and their inter-neuronal dependencies, such as spike

rate, spike number or inhibitory responses. The di�erent parameters might

contain complementary information, might be redundant, or not stimulus spe-

ci�c at all.

• A con�rmation of the presented results in other preparations and animal mod-

els is desirable. Slice preparations as used for the experiments in this thesis

o�er great control about the experimental conditions, and have contributed

much to today's neuroscienti�c knowledge. However, whole-brain and in vivo

preparations o�er systems even closer to the natural state of the nervous sys-

tem. Currently, staining and imaging techniques are being developed in our

laboratory that will allow the investigation of M/T cells in the un-cut brain

of Xenopus leavis larvae. As the olfactory system is very conserved across an-

imal species, it will be interesting to study population onset patterns in other

species, from insects to higher vertebrates.

• Eventually, it will be possible to combine measurements and manipulations

at the single-cell level with behavioral experiments. Using the recently dis-

covered channelrhodopsin and their derivatives (Boyden et al., 2005; Nagel

et al., 2002), it will be possible to arti�cially generate spatio-temporal activa-

tion patterns in the OB, without a stimulation of the ORNs. By varying these

patterns and combining them with behavioral paradigms, such as simple odor

discrimination tasks (without actually applying any odor), it will be possible

to relate characteristics of the activation patterns to behavioral responses. As

the required tools are already available, they will hopefully be combined in the

near future to uncover which aspects of the OB code are responsible for odor

recognition.
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4.3 Response latencies in the olfactory and other sensory

systems

4.3.1 Response latencies in the olfactory system

A number of studies, using both electrical recordings and imaging of functional

dyes, has investigated the properties of odor-evoked response latencies in the ol-

factory system. While these studies agree in that latencies of M/T cell responses

are variable, there is no general conclusion as to whether and to what extent these

latencies carry relevant information. Further, there has not yet been an approach to

quantify similarities in latency patterns between applications of identical or di�erent

odorants.

Already in 1977, response latencies were reported based on electrophysiologi-

cal recordings of mitral cells in the salamander Ambystoma tigrinum (Kauer and

Shepherd, 1977). This study reported concentration dependent onset times ranging

between 120 and 450 ms for excitatory responses, though without investigating the

odor speci�city of these latencies. More recent studies using electrophysiological

recordings tried to assess the information contained in the response latencies. These

investigations used di�erent approaches for interpreting the acquired data, yielding

diverging conclusions. Margrie et al. used the respiration cycle of mice as a tempo-

ral reference and showed that the time of the �rst spike relative to the respiration

cycle is strongly correlated to the number of spikes per respiration cycle, both for

arti�cial stimulation of the olfactory nerve and for odor stimulation (Margrie and

Schaefer, 2003). They concluded that the time of the �rst spike is the fastest and

most reliable indicator of input strength. This study does however not include an

investigation of the odor speci�city of the response latencies or of the ensemble pat-

terns of onset times, as it was restricted to a single recording at a time. Bathellier

et al. recorded a small number of neurons simultaneously by using tetrodes (a total

of 101 neurons from recordings in 13 animals,(Bathellier et al., 2008)). They used

a variety of odors and concentrations, and performed classi�cation tests, to assess

which feature of the response patterns contains the most odor related information.

They concluded that the mean spike rate contains the most information, with la-
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tency and phase of the response showing much higher error rates in the classi�cation

task. However, their analysis is based on pooling responses across trials and across

animals, which removes temporal dependencies between neurons. A coarse measure

like the mean �ring rate is insensitive to this averaging procedure, which makes

it the most reliable feature of such an analysis. The present study tried to avoid

this pitfall by quantifying response patterns on a single trial basis. The imaging

approach employed by Spors and Grinvald (2002) is the most similar to the results

presented here. While this study reports reproducible patterns of response latencies

as measured from postsynaptic glomerular terminals, it does not attempt to quantify

the inter-trial degree of similarity, or to investigate the odor speci�city of the onset

patterns. A quanti�cation of these parameters is crucial for a conclusion about the

potential relevance of the observed phenomenon.

An indication that response latencies might play a role for the perception and

recognition of odorants came from behavioral tasks in humans (Laing et al., 1994).

Using binary mixtures of odorants, it was found that the components are perceived

in a temporal order, and that in many cases one component is suppressing the per-

ception of the other component. This suppression could be correlated to the order in

which the components where perceived, with the `faster' component suppressing the

`slower' one. However, the role of `dominant' and `suppressed' component as well as

their perceived order could be exchanged by introducing a slight temporal delay in

the application of the two components (on the order of hundreds of milliseconds).

Following the results presented in this thesis, the idea that the components produce

overlapping patterns of response latencies, and that the `earlier' component domi-

nates this pattern and thus the perception is a possible explanation of the neuronal

basis of these �ndings.

4.3.2 Response latencies in other sensory systems

Response latencies have been implicated in the stimulus coding in other sensory

systems, based both on cellular investigations, and on behavioral studies.

The auditory system The probably most famous example was found in the

auditory system. The small temporal di�erence at which a sound reaches the two
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ears results in the slightly delayed generation of APs in the two sides of the brain.

This interaural time di�erence is used by the nervous system to localize the source of

the sound (Carr and Konishi, 1990; Je�ress, 1948). It has been further shown, that

�rst-spike time latencies of auditory cortical neurons contain information about the

change of peak pressure in the auditory cortex of cats (Heil, 1997). Additionally,

a phenomenon similar to the masking e�ect reported for the olfactory system (see

above, (Laing et al., 1994)) is known from psychoachoustic experiments as the Haas

or precedence e�ect (also known as `Gesetz der ersten Wellenfront', (Haas, 1949)).

When two identical sounds from di�erent sources are played with a slight temporal

di�erence, the observer perceives the sound as coming exclusively from the earlier

source.

The visual system In the visual system it was found that the spatial structure

of a stimulus is represented in the timing of the �rst spikes of retinal ganglion cells

(Gollisch and Meister, 2008). The stimulus could be recovered more accurately from

the latencies of the �rst spike of the ganglion cells, than from their spike counts.

Furthermore, binocular delays have been implicated in the perception of depth (Burr

and Ross, 1979), somewhat similar to the sound localization based on interaural

time di�erences. It was further shown that response latencies in the striate cortex

of monkeys vary with stimulus contrast and suggested that synchronization based

on latencies might contribute to feature binding in the visual system (Gawne et al.,

1996). These �ndings were con�rmed and extended more recently (Reich et al.,

2001).

The somatosensory system In the somatosensory system, object manipulation

tasks showed, that tactile information are used faster by the nervous system than

can be explained by using �ring rates (Johansson and Birznieks, 2004). However,

the activation sequence of di�erent a�erents provided the required information fast

enough to account for the observed response behavior, implying a role of onset

patterns for coding in these tasks. Analysis of spike patterns in the rat barrel cortex

revealed that spike timing is more informative about stimulus location than spike

number, with the timing of the �rst spike being particularly informative (Panzeri
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et al., 2001; Petersen et al., 2001, 2002).

4.4 Onset patterns and properties of the olfactory system

The observation of odor speci�c latency patterns in the OB suggests a possible role

of these patterns for olfactory coding. While this hypothesis cannot yet be tested

directly, it has to be consistent with other properties of the olfactory system.

Latencies of ORN responses Receptor type and concentration dependencies of

response latencies in ORNs have been reported across species (Firestein et al., 1993;

Friedrich and Korsching, 1997; Getchell and Shepherd, 1978; Gomez and Atema,

1996; Spors et al., 2006), and are in agreement with the present preliminary record-

ings from ORN terminals in the OB of Xenopus tadpoles. These latencies originate,

at least in part, from stimulus integration (Gomez and Atema, 1996), and might be

one basis for the latency patterns observed in the OB.

Concentration independence of odor perception It has been shown that

recognition and perception of odors is independent over a wide range of concentra-

tions for humans (Gross-Issero� and Lancet, 1988), rats (Youngentob et al., 1990)

and honeybees (Pelz et al., 1997). However, the activity patterns elicited in the OB

are not concentration invariant, with large arrays of glomeruli (Johnson and Leon,

2000; Meister and Bonhoe�er, 2001) and M/T cells (Czesnik et al., 2003) being

activated with increasing concentration, due to the fact that higher concentrations

activate additional receptor types in the olfactory epithelium. Further, the odor-

evoked time pattern in M/T cells were found to be concentration dependent (Wellis

et al., 1989). The high degree of similarity of population onset patterns provides

a response characteristic that can account for the concentration invariance of the

perception. The additional recruitment of M/T cells at higher concentrations would

not a�ect the perception, as the cells activated by ORNs with a lower a�nity, would

be expected to show longer delays. At least one alternative strategy for achieving

concentration invariant odor perception has been proposed (Cleland et al., 2007).

The model is based on a presumed normalization of M/T cell responses, which is
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implemented by the OB network.

Identi�cation of the components of a mixture One property of the olfactory

sense (at least in humans) is the limited ability to decompose complex mixtures

into their components. Even for small numbers of components (less than �ve),

human subjects were found to perform poorly (Laing and Francis, 1989; Laing and

Glemarec, 1992). Given the fact that most natural odorants are complex mixtures,

this appears not too surprising, as the olfactory sense seems optimized for recognizing

mixtures as undivided entities rather than decomposing them. A coding scheme

exploiting response latencies would be in agreement both with the lacking ability

to recognize components in mixtures, as well as with an optimization to memorize

compound mixtures, as each mixtures (with �xes component-ratios) produces as

characteristic population onset pattern. This concept is supported by the recent

�nding that marginal changes in a mixture are su�cient for an altered perception

(Berre et al., 2008). Also the reported suppression of components in a mixture

((Laing et al., 1994), see above) is in accordance with the proposed role of population

onset patterns.

Role of sni�ng Sni�ng is assumed to play a crucial role for odor recognition

(Kepecs et al., 2006; Laing, 1986; Scott, 2006; Verhagen et al., 2007). Its assumed rel-

evance is supported by the presence of sni�-like behavior in non-mammalian species

(`coughing' in �sh (Nevitt, 1991) and antennular �icking in crustaceans (Atema,

1995; Mellon, 1997)). While each sni� is thought to represent a unit of olfactory

processing (Kepecs et al., 2006), its precise role is not yet understood. Assuming

a role of population onset patterns, sni�ng could be assigned at least two concrete

roles: to create a temporal reference for the odor onset patterns (similarly to the

proposed role of saccades in the visual system (Gollisch and Meister, 2008)), and

to improve odor recognition by generating repeated sequence of onset patterns with

each sni�, in this way removing uncertainty due to random �uctuations.

Discrimination times for odors of varying similarity It has been reported

that the time required to discriminate two binary mixtures depends on the similarity
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of the mixtures (Abraham et al., 2004). This �nding is in agreement with a coding

scheme using response latencies, as the similarity of two stimuli is re�ected in the

degree of overlapping responsive M/T cell populations. Thus, very di�erent stimuli

can be distinguished rapidly, based solely on the initial spatial activity pattern.

Highly similar stimuli on the other hand depend on the temporal onset patterns,

and possibly on the late activation of weakly activated cells that might be speci�c

of either stimulus.

Structure and role of olfactory glomeruli The olfactory glomeruli are a unique

structure of the olfactory system. It is assumed that they serve to improve the

signal-to-noise ratio by integrating responses from a large number of receptor neu-

rons. Considering the idea of coding with response latencies, they could have a more

distinct role, namely the generation of a reproducible onset time even for low con-

centration of odorant. It is known that the response latency of ORNs varies greatly,

especially for low odor concentrations (Gomez and Atema, 1996). By integrating the

responses from many ORNs of the same type, as realized in the olfactory glomeruli,

this variability could be greatly reduced, resulting in reproducible onset times even

for very low concentrations.

Spontaneous activity and inhibitory responses in the OB M/T cells are

known to be occasionally spontaneously active at low spiking rates (0.3 Hz in sala-

mander (Kauer and Shepherd, 1977), 0.5 Hz in frog (Doeving, 1964) and 0.6 Hz in

mice (Margrie et al., 2002)). While it was suggested that the spontaneous activity

in receptor neurons plays a role for the establishment and maintenance of an olfac-

tory sensory map (Yu et al., 2004), it is not clear whether the spontaneous activity

of M/T cells (or its modulation) contributes to the olfactory code. Further, M/T

cells are known to be inhibited in response to some odors. It is not clear whether

the observed suppression of spontaneous activity is part of the olfactory code used

by higher centers, or whether it is due to lateral inhibition that is only relevant in

the sense of a not-activated M/T cell. The sparseness and low �ring rate of the

spontaneous activity do not support a crucial role of its suppression for fast coding.

In particular, the onset time of an inhibitory response is not identi�able accurately
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(Kauer and Shepherd, 1977), making these responses unsuitable for a coding scheme

based on response onset times. In insects, spontaneous activity of projection neu-

rons (the equivalent of vertebrate M/T cells) has been implicated in the formation

of memory, based on the comparison of pre- and post-stimulus spontaneous activity

(Galán et al., 2006).

4.5 Decoding of response latency patterns

The proposition of a coding scheme immediately raises the question about potential

read-out mechanisms that might be employed by higher brain areas, i.e. mechanisms

for decoding the stimulus under the proposed coding scheme. Many of the proposed

coding schemes suggested for the olfactory system relied on a global reference signal,

the information being contained in the timing of spikes relative to this reference. In

most cases, this global reference was suggested to be the local �eld potential oscil-

lations in the γ range (Hop�eld, 1995; Laurent et al., 2001), but also subthreshold

θ-oscillations in M/T cells which are locked to the breathing cycle were suggested

(Margrie and Schaefer, 2003). While this is a possible coding strategy, there is at

least one report arguing against an essential role of these oscillations for olfactory

coding. It was reported, that young rats (postnatal day 7) lack the local �eld po-

tential γ-oscillations, but show no signi�cant di�erence in either the receptive �elds

of M/T cells, nor in behavioral odor discrimination. A role of oscillations coupled to

the breathing cycle appears tempting, as the frequency of these oscillations match

the rather slow dynamics of the OB. However, while breathing-like behavior has

been described for some �sh (Nevitt, 1991) and crustaceans (Atema, 1995; Mellon,

1997), it is probably not a feature common for all animals or even vertebrates. This

does not exclude that sni�ng might help to increase accuracy and sensitivity, but

makes it an unlikely candidate for a required general aspect of olfactory coding.

One reason that global oscillations have been favored by scientists might origi-

nate from the inability to synchronously record the activity of a large number of

neurons. The observed oscillations were a convenient way to temporally relate suc-

cessive recording, by aligning them to the phase of the oscillations. Such a global

reference is however not an essential part of a multi-neuron coding scheme. Instead,
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the spike times across neurons might carry information that can be read out by

higher centers without relying on a global reference frame. An example for such a

coding with inter-neuronal latencies is the sound localization based on inter-aural

time di�erences mentioned earlier (Carr and Konishi, 1990; Je�ress, 1948). The

time di�erence between spikes from the two sides of the brain are read out � de-

coded � using axonal delays. A generalized version of this mechanisms could be

used by higher olfactory centers. The time delay associated with certain odors

would have to be learned by such a system. In fact, it has been noted by Hop�eld

that the piriform cortex, one of the targets of OB output, is a suitable structure

for learning and decoding inter-neuronal time delays (Hop�eld, 1995): `The sim-

plest scheme is to have a multiplicity of time delays, direct or indirect, available

via di�erent synapses. This would be easily done in a structure like the piriform

cortex, where the recurrent collaterals allow many possible indirect paths of di�er-

ent time delay between two cells. In such a structure the correct time delays would

merely need to be selected by strengthening appropriate synapses using a Hebb-like

rule.' Another biologically plausible mechanism for decoding spatio-temporal spike

patterns has been introduced recently as the Tempotron by Gütig and Sompolinsky

(2006). They demonstrated that a learning rule based on information contained in

the spatio-temporal structure of spike patterns, rather than in mean �ring rates,

is capable of distinguishing large numbers of input patterns. Additionally, it was

shown that the learning capacity of the tempotron exceeds the capacity of compa-

rable decoders based on mean �ring rates, such as a single-layer perceptron (Gütig

and Sompolinsky, 2006; Minsky and Papert, 1969) .

The presented results suggest a role of M/T cell response onset patterns for olfac-

tory coding. A coding scheme relying at least in parts on these ensemble patterns

appears consistent with the properties of the olfactory system, could be decoded

by higher brain centers and is supported by similar observations in other sensory

systems.
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Summary

This thesis aimed at investigating coding principles of the olfactory system by de-

veloping novel experimental and analytical tools and applying them to speci�c bi-

ological questions. The olfactory bulb (OB) is the only central processing station

of the vertebrate olfactory system. It is assumed that odors are represented by a

spatio-temporal code in the OB, with both the identity of the activated neurons and

the temporal sequence of their activity patterns being stimulus-relevant parameters.

An adequate investigation of these coding principles thus relies on the simultane-

ous recording of a large number of cells with a high temporal resolution. To date,

few studies have been based on recordings of this type, and none of these has at-

tempted to investigate and quantify aspects of inter-neuronal dependencies in the

odor-evoked activity patterns.

First, a fast confocal microscope was designed, built and characterized. By scan-

ning the sample with a line instead of a point, and by using a fast sensor, high

frame rates can be achieved. The aperture provided by the pixel width of the CCD

camera provides optical sectioning capabilities. The microscope was optimized for

light e�ciency in the emission pathway, as biological specimens demand both low

levels of illumination and repeated trials of a given experiment. The microscope

was characterized with respect to its spatial and temporal resolution, as these are

key parameters for investigating neuronal networks. It was shown that the spatial

resolution is adequate for the observation of single neurons, with high magni�cation

objectives providing su�cient resolution even for small neuronal processes. The

temporal resolution depends on the pixel dimension of the acquired frame, rang-

ing from 50 Hz (512 × 512 pixels) to 800 Hz (512 × 32 pixels) of maximum frame

rates. The microscope was thus shown to be a suitable tool for investigating the
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spatio-temporal activity patterns of neurons in the OB.

As a �rst application, a novel method for the visualization of neuronal morphol-

ogy based on functional imaging data was demonstrated. Time series of image

stacks of spontaneous activity, visualized using Ca2+ indicator dyes, were acquired

with subsecond resolution. By exploiting the diverse temporal activity patterns as

a means of intrinsic contrast, the individual neurons' dendritic morphology could be

visualized. The result of this novel method, termed activity correlation imaging, is

a high-contrast multi-color visualization of the neuronal network, as demonstrated

on the mitral/tufted cells of the Xenopus larvae OB. Yielding both functional and

structural information about neuronal populations, this method opens up unprece-

dented possibilities for the investigation of neuronal networks.

Various aspects of the odor-evoked activity patterns in the mitral/tufted cells

have been suggested as being relevant for olfactory coding. Motivated by �ndings

in other sensory systems, and by the short time scales set by various olfactory dis-

crimination tasks in behavioral experiments, the timing of the onset of odor-evoked

responses was investigated. The simultaneous recording of dozens of neurons enables

the investigation of inter-neuronal dependencies in the odor-evoked responses, which

would be obscured by inter-trial variability in successive single-cell recordings. To

this end, nose-brain preparations of Xenopus laevis larvae were stained with Ca2+

indicator dye, stimulated with natural odorants and imaged with a high temporal

resolution (100 Hz). A novel measure, named the inversion index, was introduced

to quantify the similarity in the order of response onsets between pairs of stimulus

applications. Using this measure, it was shown that these patterns are highly repro-

ducible between applications of a given odor, both for mono-molecular odorants and

for complex mixtures. Additionally, the onset order was found to be highly informa-

tive about odor identity, while it only relies weakly on odor concentration. These

observations make the onset pattern of M/T cell ensembles a promising candidate

for a stimulus-relevant feature of the code implemented in the OB. The thesis is

concluded by relating the reported �ndings to other properties of the olfactory sys-

tem and by discussing possible decoding strategies for the observed response onset

patterns.
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