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1 Collective Effects in Dense Fluids

1.1 Introduction

Letting sand flow through your fingers it certainly looks and feels like a liquid.
Nevertheless, you can walk on the sandy surface of a desert. Supporting the stresses
imposed by your weight, sand displays properties of a solid body. The formation
of stable sand piles by slowly pouring sand on the ground (e.g. in an hour glass,
Fig. also demonstrates that sand, or more generally, granular matter, can jam
and pass from a fluid state into an amorphous solid state. Adding some water makes
it possible to build highly detailed sand castles [1]E] Particularly interesting is the
tendency of granular systems to spontaneously form patterns [4-6].

The ability for granular matter to flow through chutes and hoppers also makes it,
besides water, one of the most important form of matter handled by the industry [L1].
This works well until a hopper jams and the granular material turns into a disordered
solid. Naturally, the behavior of granular matter is also important for geophysics, e.g.
to describe avalanches and debris flow [I2] or the natural formation of ordered stone
stripes [13]. Astoundingly, some animals have figured out how to swim in sand. Their
technique has been understood only recently [I4] 15]. As far as the early stages of
planet formation [16] or the dynamics of planetary rings [17) [I8] are concerned (the
rings of Saturn being the most prominent [19]), the field of astrophysics also benefits
from a detailed understanding of granular matter. In astrophysical conditions, the
concentration of particles is so low that one can speak of a granular gas. At this
point it appears that, depending on circumstances, one can have granular solids,
liquids and gases [20]. All these granular “phases” are under active investigation.
Some of the established results can be found in reviews by Jaeger et al. [21], 22],
Rajchenbach [23] and Herminghaus [24].

Another class of amorphous solids that we are familiar with is glass. Although
there is no clear cut definition and no consensus of what exactly defines a glass,
let me for the moment define it as a non-crystalline, i.e. disordered solid formed
by rapidly cooling a melt. Window glass (soda-lime glass) is the most well-known
example but glassy materials are also common among food (including cotton candy)
and thus glasses are highly relevant for the food industry [25], 26]. Even living cells
can show aspects of glassy behavior [27]. The last two examples belong to the class

! Although they are not indestructible [2], they are remarkably easy to build [3].
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Figure 1.1: Left: A running hour glass contains sand both in the fluid and in the
solid, jammed state. Incidentally, this picture also shows a strong glass former, silica
glass. Picture courtesy Labormikro [1]. Right: A few examples of granular particles.
Sand from the Baia di Porto Frailis, Sardinia; Picture courtesy Labormikro [§]. Roasted
coffee beans; Picture courtesy dominotic [9]. Painted steel nuts; Picture courtesy Ric
Martin [10]. Glass marbles; Picture courtesy A. von der Heydt.

of soft glassy materials [28] which are formed by complex, non-Newtonian fluids. For
the importance of amorphous solids in material science, see e.g. the review by Greer
on metallic glasses [29].

The standard technique to produce a glass is to start with a fluid or melt and
rapidly cool it below its melting temperature. Depending on the material, freezing
and crystallization may thereby be avoided. The viscosity of this supercooled melt
then rises quickly upon further lowering the temperature until the system reaches
the glass transition, conventionally defined as the temperature T,, where the viscosity
reaches 1013 P (see Fig. . This is extremely viscous in human terms if one keeps
in mind that the pitch drop experiment [30] (see Fig. is reported to display a
viscosity of approximately 107 — 10° P.

The glass itself is generally regarded to be out of equilibrium. Its properties then
depend on the time one waits after the glass has formed, a phenomenon called aging
[33, 34]. A completely satisfactory theoretical description of the glassy state is still
missingEl The question of how and exactly where the glass transition of water takes
place is, for example, still highly controversial [36], although there is evidence that
most of the water in the universe is in its amorphous form [37].

2The journal Science even ranked the question “What is the nature of the glassy state?” among
100 important scientific questions that are not answered yet [35].
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Figure 1.2: Left: The pitch drop expriment [30, 31], featuring an extremely viscous
fluid. Each drop takes about ten years to fall. Right: Angell plot of the viscosity, 7, as
a function of inverse temperature, T, /T, where the glass transition temperature, Ty, is
defined as n(T,) = 10'3 P. Reprinted from Ref. [32], Copyright (2009), with permission
from Elsevier.

At this point we have seen two ways to generate an amorphous solid from a fluid,
in the granular case one increases the density of a flow until it jams and one gets a
random close packed solid, and in the case of a melt one supercools it until one gets
an amorphous glass. It turns out that in both cases one can destroy or melt the solid
by loading or shearing it. This led to the idea of fragile matter [38] and the jamming
diagram [39]. The conjecture is that amorphous solids can be described in a unified
way in terms of the variables density, ¢, temperature, T', and shear stress, o (see
Fig. . A lot of work has been devoted to the jamming diagram in recent years
(see Ref. [40] and references therein) but the precise form of this unified description
has still to be worked out.

The choice of axes on the jamming diagram implies that the temperature, T, and
the shear rate, o, are understood as independent variables. Consequently, systems
supposedly described by the jamming diagram must implicitly contain either a heat
bath or an energy sink to balance the energy input due to shearing. For systems with
an energy sink, one has to consider nonequilibrium jamming- or glass transitions.
For nonequilibrium granular fluids, experimental signatures of a glass transition have
indeed been recently found [4TH46].

From a theoretical point of view, molecular fluids are most easily understood in the
limit of a very dilute gas. On the level of kinetic theory, they are well described by
the Boltzmann equation. To get a continuum description, there are carefully worked
out procedures to derive hydrodynamic equations from this starting point [48]. The
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1/
J
- Figure 1.3: The jamming diagram as proposed by O’Hern et al.
[47). The region of low temperature 7', low shear stress o and
/' high volume fraction ¢ around the origin is in the jammed state
T while outside of this region the system shows fluid behavior. The

jamming density is marked as point J.

Navier-Stokes equations that describe an isothermal fluid are the most important
instance [49] of such a continuum description. A hydrodynamic description has also
proven to be successful for granular gases, although it is actually more common
to encounter situations that fall outside the range of validity of hydrodynamics
[50, 51]. Using granular hydrodynamic equations allowed, for example, the discussion
of the stability of granular fluids and explanations of the clustering instability of a
freely cooling granular gas [52 53], or analysis of possible mechanisms leading to the
brazil nut effect [54H56]. More can be found in the reviews by Kadanoff [57] and
Goldhirsch [58].

Unexpectedly, it was found in computer simulations by Alder and Wainwright
[59, [60], that already at moderate densities, equilibrium fluids showed dynamic
phenomena that are not explained by the most simple hydrodynamic description.
In particular, the velocity autocorrelation function, ¥(t), was expected to decay
exponentially, 1(t) o< e/, on macroscopic time scales, but was actually found to
exhibit long-time tails, 1 (¢) oc %2, in d dimensions (see Fig. . Shortly afterward,
these long-time tails were also found for other correlation functions [61] and they
were traced back to the effect of ring collisions, i.e. loops in the sequence of colliding
particles [62, 63]. While the long-time tails are interesting in their own right, the
correlated interactions also ultimately prevent a description of a perturbed fluid at
finite density as an expansion around the unperturbed state [64} [65].

A second qualitative feature of the velocity autocorrelation function at higher
densities is that it acquires negative values for intermediate times. This signals the
onset of backscattering, i.e., the tagged particle becomes increasingly trapped by its
neighbors and is reflected from them. In recent years, observations of long time tails
and backscattering in simulations and experiments of various granular systems have
been reported [42] 66, [67] (see Fig. [1.4).

Crystalline order can be detected in neutron- or light scattering experiments through
the appearance of well-defined Bragg peaks [68]. Measurements of the scattering
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Figure 1.4: Left: The velocity autocorrelation function, [¢(t)|, of an elastic hard
sphere fluid for volume fraction ¢ = 0.35 (blue) and ¢ = 0.5 (magenta). Note the
double logarithmic scaling. Right: Long time tails of the velocity autocorrelation
function in a driven granular fluid with a coefficient of restitution € = 0.7 for volume
fraction ¢ = 0.2 (green) and ¢ = 0.35 (blue). Data courtesy A. Fiege.

function, S(q), for isotropic fluids show no such peaks in accordance with the absence
of long range order. At finite densities, the organization of the particles into shells
of nearest neighbors, next nearest neighbors, and so on, appears instead as radial
modulations of S(q) [69] (see Fig.[L.5). This makes it easy to distinguish fluid and
crystal phases based on the scattering function. The scattering function of a glass,
on the other hand, does not possess any qualitative features that would differentiate
it from that of a fluid [70].

The small wave number limit, lim,_,o S(g), is related to the magnitude of macro-
scopic density fluctuations and, for equilibrium fluids, to the compressibility [69].
A divergence of S(¢ — 0) and consequently of the compressibility is one of the
signatures of a liquid at its critical point [71]. An analogous divergence of S(q)
for nonequilibrium systems that may occur in extended regions of the parameter
space has been termed self-organized criticality [(2]. Depending on the method of
fluidization, such a low ¢ divergence may also be found in granular systems [73], [74]
(see Fig. [L.5).

In the following sections I will discuss some of the phenomena addressed above in
more detail. In particular, I will state the main results I obtained in the course of my
work. The derivation of these results will be given in the subsequent chapters of this
thesis (chapters . Technical derivations are further described in the appendices.
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Figure 1.5: Left: Static structure factor, S(k), for an equilibrium hard sphere fluid
at ¢ = 0.4 from an event driven simulation (blue) compared to the corresponding
Percus-Yevick analytical approximation (green). Right: Static structure factor of a
randomly driven granular fluid at a density ¢ = 0.3 with (blue) and without (green)
local momentum conservation.

1.2 Hard Spheres: Elastic and Inelastic Collisions
1.2.1 Elastic Hard Spheres

To describe the interactions of the atoms of a noble gas at room temperature,
fortunately, one does not necessarily have to solve a quantum mechanical problem.
Instead one can use classical potentials, like the Lennard-Jones potential. For some
effects even this is too much detail and it suffices to neglect the attractive part of
the potential and to approximate the repulsive part by an infinitely steep potential,

V(T):{ 0if r > 2a (11)

oo if r < 2a

where a is the sphere radius [69]. Another class of materials that is well described
by hard spheres are colloids, i.e. suspensions of um-sized spherical particles in a
solvent [75]. Due to their small size, single colloidal particles undergo random motion.
Although hydrodynamic interactions between the colloidal particles may become
important for dense suspensions, Brownian dynamics is usually assumed to remain a
good approximation.

The distance dependence of the hard sphere interaction sets a length scale but
there is no energy scale. Consequently, changing energy or temperature of a hard
sphere fluid simply rescales the time scale (the particles move faster on average if
the temperature is higher) but has no qualitative influence on the behavior of the
system. Every nonzero temperature is equivalent. A related artifact of the hard
sphere model (if regarded as an approximation to a short ranged potential) is the
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vanishing collision time. Collisions are necessarily instantaneous. This implies that
the dynamics is determined by a sequence of two-particle collisions as the probability
of K-particle collisions is zero for K > 3 and all initial conditions that are free of
particle contacts.

With the temperature being an irrelevant control parameter, the behavior of hard
sphere fluids is controlled by the number density, n, only. It is convenient to report
densities in terms of the dimensionless volume fraction ¢ := 47na3/3. The latter
can never exceed the close packed value, ¢o, = 7/ V18 ~ 0.740, valid for a fcc or hep
crystal. This has been assumed for a long time [76] but the recent proof by Hales
[77] is still being cross checked.

Surprisingly at first sight, the hard sphere fluid still undergoes a first order
crystallization transition to a fcc crystal at high densities [78]. As there is no
interaction energy, the transition has to be driven by entropy alone. The intuitive
argument is, that the loss in entropy due to the ordered structure of the crystal is
overcompensated above the freezing density by the entropy gain due to the increased
free volumelﬂ Such a hard sphere phase transition is actually found in computer
simulations (see, e.g., Ref. [80]) with a broad coexistence region between ¢ ~ 0.494
and ¢, =~ 0.545. While several theoretical approaches are able to reproduce the
transition and even approximate the transition densities, they are still plagued
by questions of convergence [78]. The question whether there is a crystallization
transition for hard disks in two dimensions is even more difficult [81].

In the ordered, crystalline configuration, the packing density is bounded by the
close packed value ¢¢p,. If, instead, a loose, athermal (1" = 0) assembly of smooth
spheres is compressed quasistatically, one finds that the density will not exceed the
random close packed density ¢,q, ~ 0.64 [82].

1.2.2 Inelastic Hard Spheres

Trying to describe the interactions of granular particles, one immediately realizes that
they are extremely complicated objects in reality. First of all, they never come as a
monodisperse system but, taking sand as an example, every grain is irregularly shaped
and different from every other grain (see Fig. . Depending on the specific way
two particles collide, they may dissipate different amounts of energy in a combination
of elastic (see below) and plastic deformations [83] [84]. Moreover, off-center collisions
will let the particles rotate around their center of mass.

Various idealizations are commonly employed, both for the particle shape as well
as for the interactions. While simulations can handle a limited amount of irregularity
like (rounded) polyhedra [85, 86] or agglomerations of spheres [87], most studies,

3Free volume is the volume that is available to particle movement. Not to be confused with the
volume fraction [79].
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both experimental and theoretical, consider spheres for simplicity. Exceptions include
studies on inelastic needles [88] [89] and capped rectangles [90].

Hertz [91] studied the collision of two smooth elastic spheres already in 1882.
Later, attempts were made to describe dissipative effects on the level of continuum
theories. The excitation of vibrations [92H94] and viscoelastic effects [95H97] have
been considered. Especially for simulations, an interaction model based on an effective
description via Hookian springs and viscous dampers is often used. It had first been
proposed by Cundall and Strack [98]. A more thorough discussion of various collision
models can be found in Ref. [94].

The most idealized system of granular matter that still retains the properties that
the particles are dissipative and of finite size is to model them as monodisperse
smooth hard spheres with mass m and radius a. Dissipation is parametrized by a
constant coefficient of normal restitution, € € [0, 1] (see, e.g., Refs. [99, [100]). The
coefficient of restitution extends the law of reflection,

P1a - Vg = —€P1a - V12, (1.2)

which relates the relative velocity immediately before the collision, vis = v; — v9,
to the relative velocity, v}y, immediately after the collision. Here, 712 is the unit
vector pointing from the center of one sphere to the center of the other. Together
with the condition of smoothness, 712 X v}y = 12 X v12, and the conservation law of
momentum, this uniquely determines the postcollisional velocities in terms of the

precollisional ones,
1+4e€

Vip=via F (P12 - v12)P12, (1.3)

This is precisely the model I will use in the rest of this thesis. For experimental
measurements of the coefficient of restitution see, e.g., Ref. [101].

In analogy to the kinetic definition of the temperature of a molecular gas, one
defines the granular (kinetic) temperature, T = m (v?) /d, as the mean kinetic energy
per particle. The most basic situation to describe is the free cooling of a granular
fluid that has been prepared in a homogeneous state of temperature Tp. Assuming
that the system remains homogeneous, an explicit equation for the time evolution of
the temperature, T'(t), can be derived, Haff’s law [99],

To

T = Gtz

(1.4)
where wy = w(Tp) is the initial collision frequency and 79 = d/(1—€?) is the relaxation
time scale if we measure time as the number of collisions 7, T'(1) = Ty exp(—7/70). A
stability analysis of the hydrodynamic equations derived for the so called homogeneous
cooling state predicts that it is actually unstable toward a inhomogeneous, clustered
state if the system exceeds a critical size, L.(g, €), depending on the density and the
coefficient of restitution [52] [53].
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To maintain a granular system in a homogeneous, fluidized state, it has to be
driven continuously to replenish the kinetic energy that gets dissipated in particle
collisions. While in practice, gravity is probably the most important driving force,
experimentalists have devised quite a few methods of fluidisation. The list includes
shaking [102], electrostatic [103 [104] or magnetic [104} 105] excitation and fluidisation
by air [106, [107] or water [108].

On the level of a theoretical description, shaking imposes boundary conditions on
the system and thus destroys homogeneity. Fluidisation through the interaction with
a (turbulent) host fluid (be it a gas or a liquid) will in general be more homogeneous.
Unfortunately, hydrodynamic interactions between particles in a fluid are extremely
difficult to describe and are thus a field of research on its own. A very crude
approximation of the effect of the fluid on the particles is to assume that the particles
receive instantaneous, uncorrelated, random kicks [109, [110],

v;(n7p) = vi(nTp) + vp&in, (1.5)

at discrete times, t,, = nTp, n € N. The &;,, are gaussian random variables with zero
mean, (&;,) = 0, and unit variance,

<ff:1§?m>§ = 6ij6nm0°", (1.6)

and «, 8 = x,y, z denotes the Cartesian components. In order to maintain a steady
state, the energy per time dissipated in the collisions has to be replenished through
the driving. In other words, the dissipative power, I', has to be equal to the driving
power, Pp = mv%/QTD.

At this point, there are two parameters, 7p and vp, to control the driving but
essentially we are only interested in the driving power, Pp. If we eliminate vp in
favor of Pp, the limit of infinite driving frequency, 751 — 00, can be performed (see
appendix . The kicks are now of the form

vi(t) = vi(t) +1/2Pp/mé&(t), (1.7)

where the random variables &;(t) describe a random walk in momentum space with
zero mean and variance,

(& e ), = 8:50°8(t — 1), (18)

and Pp as the single control parameter.

The center of mass momentum, P(t) o< [ 3=, &(7)dr, inherits the properties of a
random walk. It is zero on average, lim;_, oo % fg P(7)dr = 0, but the spontaneous
excursions will actually grow in time o v/t. By always kicking a pair of particles,
{i,7(i)}, at the same time with equal strength but opposite orientation, the driving
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can be made to conserve momentum. Momentum is conserved even locally, if one
requires that r; ;) = ¢, where £ is on the order of a mean particle separation. This
way of driving, which is similar to the random forces used in dissipative particle
dynamics (DPD) [IT1], restores the validity of hydrodynamics in d = 3 [112].

Throughout this work, I will analyze inelastic hard sphere fluids that are kept in
a stationary state by volume driving. I will show in the next section below and in
more detail in chapter [3| that the violation of momentum conservation by volume
driving will lead to long range correlations. In the subsequent chapters I will
assume that the driving conserves momentum locally.

1.3 Dense Fluids

1.3.1 Spatial Correlations

While a gas in the dilute limit is well described by point particles, the finite size of
the particles influences the properties of a fluid at higher densities. In particular, the
particles can no longer be regarded as spatially uncorrelated.

Spatial correlations between the particles can be partially quantified in terms
of the pair correlation function, n*g(r — v') = 3, ; (6(r; — r)d(r; — 7)), which
quantifies the deviation of the two particle density from its uncorrelated value,
n?. For hard sphere fluids, the contact value, x = ¢(2a), of the pair correlation
function is of particular importance, as it completely determines the equation of
state, p/nT = 1+ 4¢x(¢), where p is the pressure [69]. The most widely used
approximate expression for the contact value of the pair correlation function was

derived by Carnahan and Starling [113],

xcs(p) = w (1.9)

Its validity is discussed, e.g., in Ref. [I14]. In particular, ycs shows no sign of the

crystallization transition and consequently, it can only be valid sufficiently far below

the freezing density, ¢s. The mean free path, £y, is directly related to contact value
x [1I5],

a/ly = 3vV2px, (1.10)

as is the collision frequency, wy, in the Enskog approximation [48],

T
wp = 1225, [~ (1.11)
a mw™m

Experimentally, the structure factor, S; = 1+ nFT[g — 1](g), is easier to measure
than the pair correlation function. Upon introducing the Fourier transformed

10
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densities, pqg = FT[p], where p = p(r) is the density field in real space, the structure
factor can alternatively be expressed as S; = (pgp—_q) = (|pq|*) [69]. A particularly
useful theoretical approach to calculate the static structure factor in the fluid phase
was introduced by Percus and Yevick [116]. On the one hand, it allows for deriving
explicit expressions in the case of hard spheres [II7HIT9]. On the other hand it can
be made quantitatively quite accurate by introducing an effective density [120].

Van Noije et al. [74] studied static correlation functions of the hydrodynamic
variables density, n, momentum current, mj = nmu, and of the granular temperature,
T, in a two dimensional driven granular system. Their simulation results showed
growing correlation functions for small wave numbers ¢q. This had also been observed
by Peng and Ohta [73] before and was recently analyzed further by Head et al. [121].
Via a granular fluctuating hydrodynamics theory, van Noije et al. were able to relate
this increase on large length scales to the onset of a ¢~2 divergence as ¢ — 0.

New Results

The theoretical analysis in chapter (3| closely follows van Noije et al. [74]. While
I found the technical reasoning mostly correct, I will conclude that the small ¢
divergence is an immediate consequence of the violation of momentum conservation
by the driving which they deemed inconsequential. This is supported by the finding
that upon using a driving mechanism that conserves momentum locally, the small ¢
divergence vanishes.

Static structure factors I measured in large scale simulations of systems in three
dimensions will support these considerations. So far, no specific structure factor
theory for (driven) inelastic hard spheres exists. Thus, these measurements will
eventually be needed as input for the mode coupling theories developed in the
subsequent chapters of this thesis. Independently, I will use these measurements in
combination with the hydrodynamic theory to determine the speed of sound, sound
damping constant and the shear viscosity.

1.3.2 Long-Time Tails

Let us start by looking at the diffusion of tracer particles in a host fluid. As we
are not interested in mixtures, let’s assume that the tracer particles are physically
identical to the host particles; they are only labeled differently. The concentration, c,
of these particles will obey a continuity equation, ;¢ = —Vj, where j is the particle
current. Within the context of linear response theory, it is natural to assume that
this current will be linearly related to the concentration gradient, j = —DVe¢. The
constant of proportionality, D, is called the coefficient of diffusion or the diffusivity.
From that we get the diffusion equation, d;c = DAc. Green [122] and Kubo [123]
found that transport coefficients such as the coefficient of diffusion are related to
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1 Collective Effects in Dense Fluids

the correlation functions of the corresponding or conjugate fluxes, D = [ (t)dt,
where, 1(t) = (v(0)v(t)), is the velocity autocorrelation function (VACF). This is
one manifestation of a fluctuation dissipation relation which expresses a transport
coefficient in terms of the correlation function of spontaneous fluctuations.

If one simply assumes that the velocity of a tagged particle is disturbed by collisions
with its surrounding particles, one would assume that the VACF is of the form,
Y(t) = exp(—t/7.), where 7, is the time scale of collisions. This implies D oc 7,1, As
mentioned in the introduction, an algebraic, t~%/2_ rather than an exponential decay
is found in reality. While a precise derivation of this relation needs considerable
technical machinery, one can give a simple quantitative argument [69]. The more
rigorous theories will be discussed in chapter 5] when I will investigate the VACF for
a dense granular fluid.

Imagine that because of the repeated collisions of the tagged particle with the
surrounding particles of the liquid its momentum, ps, gets redistributed among
those particles. For simplicity let us assume that the momentum gets uniformly
distributed within a sphere of volume V() oc R(t)?. Because momentum transfer
occurs diffusively, the size of this sphere grows as R(t) oc v/t and thus the momentum
of the tagged particle at time ¢ will be p4(t) t~%2 with the same result for the
VACF, 1)(t) o (ps(0)ps(t)) oc t=4/2.

The fact that the Kubo integral, [;(7)dr, does not exist in two dimensions,
implies that the linear diffusion law shown above does not hold in planar fluids [64].
Fortunately, it does hold in three dimensions but here the correlations impede a
virial expansion of the coefficient of diffusion [65]. The latter becomes a non-analytic
function of the density,

D(¢)/Do =1+ D1p+ Dyo? Ing + Do® + ..., (1.12)

including logarithmic terms [124]. For hard spheres, the low density limit is given by
the Enskog diffusivity,
a
Dy =—/7T/m. 1.13
7T (113

New Results

In order to explain the simulation results on the long time tails and back scattering
by Fiege et al. [67] (see Fig.[1.4)), I will derive a mode coupling theory for the tagged
particle velocity in chapter [f] This allows me to describe the coupling of the tagged
particle to the collective density and current modes, pq, and j,, respectively. I will
show that the coupling to the transverse current jg is responsible for the long time
tails, exactly like in elastic hard sphere fluid.
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from Ref. [32], Copyright (2009), with
permission from Elsevier.
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1.4 Supercooled Liquids and the Glass Transition

1.4.1 Molecular Glass-Former

Upon cooling, most simple fluids or melts will undergo a first oder phase transition
toward a crystalline solid. In a simple fluid, the stress o is proportional to the strain
rate, ¥, i.e, 0 = n%y. The proportionality constant, 7, is defined as the fluid’s viscosity.
Solids, instead, build up a stress proportional to the strain, ¢ = G7, where G is the
shear modulus. To describe the time dependent stress, o(t), in response to a varying
strain rate, ¥(t), one has to promote the shear modulus to a time dependent stress
relaxation function, G(t),

o(t) = /0 "Gt — (). (1.14)

The relation for a solid is recovered for an approximately constant stress relaxation
function while in order to have a fluid, the stress relaxation function has to decay
for long times, lim¢ o G(t) = 0, such that n = [;° G(7)dr exists [125]EI A simple
phenomenological expression for the shear modulus is the Maxwell model, G(t) =
G exp(—t/7), parametrized by the relaxation time 7 [126]. This then yields the
famous expression, 7 = G 7, which states that the viscosity is directly proportional
to the microscopic relaxation time. It allows for using the relaxation time and the
viscosity interchangeably which is thoroughly exploited in the literature.

By following a carefully chosen protocol, it is possible to cool a lot of substances
below their melting temperature without any crystallization. This can only work
if it is possible, both in principle and by suitably controlling the process in an
experiment, to (i) cool slower than the microscopic relaxation time, 7, of the fluid in
order to stay in equilibrium and (ii) to cool faster than the nucleation rate, 7, for

“Note that especially if G(t) o< t~* for a < 1, G(t = 00) = 0 but the viscosity is still divergent. In
that case the material is neither a solid nor a true fluid.
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1 Collective Effects in Dense Fluids

the formation of crystal nuclei [I27]. As both time scales depend on the temperature,
T, it is conceivable that they eventually become equal, 7(Tks) = 7N (Tks). In that
case it would be impossible to supercool a liquid below its kinetic spinodal, Tys [128].
Whether such a kinetic spinodal exists and how it could be determined is still a
subject of debate [129].

As the physics of the glass transition is still not completely understood, there are
a number of definitions of the concept glass transition. Not all of them are even
mutually compatible. A review of all or even the most successful theories that have
been proposed to (partially) explain the transition from a supercooled liquid to a
glass lies beyond the scope of this work. More information can be found, e.g, in
the reviews by Jackle [130], Angell et al. [I31], Ediger et al. [132], and Debenedetti
and Stillinger [I133] and especially the very readable introduction by Cavagna [32].
Nevertheless, I will give a brief overview of the most prominent proposals of what
may define a glass transition and of the corresponding experimental signatures. This
will allow me to relate the definition adopted in this thesis to the most prominent
alternative definitions discussed in the literature.

I have already introduced the reaching of some arbitrary, high value of the viscosity
as one indication of the glass transition. This is useful because it turns out that the
value of the laboratory glass transition temperature, T}, is not particularly sensitive
to the precise value of the threshold viscosity. Upon changing the viscosity by several
orders of magnitude, T, will only change by a few percent [134] [135].

Around T}, the specific heat is found to drop significantly. This is attributed
to the fact that at this point, the cooling rate of the experiment actually becomes
faster than the relaxation rate of the system and one generates a nonequilibrium
and, in particular, nonergodic state where the number of microstates accessible to
the system is significantly reduced [I36]. Note that simulations necessarily employ
tremendous cooling rates and consequently fall out of equilibrium at comparably
high temperatures [137]. Up to this point, it is not obvious that the experimental
glass transition at Ty is the manifestation of a physical transition, independent of an
experimental protocol.

The strong increase of the viscosity, on the other hand, hints at an actual divergence
of the viscosity and indeed most of the experimental data can be fitted by the heuristic
Vogel—Fulcher—Tammannlﬂ (VFT) law [138-140],

A
n(T) x exp (T—TO) , (1.15)
where A and Tj are fit parameters [141].

If Ty ~ 0, which is the case for so called strong glass formers [136], this degenerates
to the Arrhenius law of activated dynamics, n(T") x exp(AE/T), [142] indicating

5Note that there is a fourth author, W. Hesse
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F.(a.t)

A S

Figure 1.7: Left: Susceptibility spectrum, xs(w) as a function of frequency w of a
Lenard Jones fluid close to the critical temperature T.. Right: The corresponding
intermediate scattering function, F(g,t), as a function of time ¢t. Reprinted figures
with permission from W. Kob and H. C. Andersen, Phys. Rev. E 52, 4134 (1995).
Copyright (1995) by the American Physical Society.

that the system has to cross energy barriers of a characteristic, fixed height AE. This
does not provide any evidence for a (glass) transition taking place in the supercooled
liquid. If Tj significantly differs from 0K, the substance is said to be a fragile glass
former and the dynamics must be more complicated than simple activation. In
particular, there could be a transition to a new (glassy) phase close to Ty < T,. More
fragile glass formers will show a stronger curvature in the Angell plot, Fig.

From the measurement of the heat capacity, one can get the entropy of the
supercooled liquid as a function of temperature, Ss.(T). Extrapolating Ss. to lower
and lower temperatures, it appears to reach zero at finite temperature. As this would
be unphysical, it has to change its slope at some point along that way. One candidate
temperature is the so called Kauzmann temperature, Tk, where the extrapolated
entropy of the supercooled liquid would cross the entropy of the crystal [128]. The
Kauzmann temperature is found to be comparable to the temperature Ty from the
VFET formula above [143], lending support to the possibility of a thermodynamic
glass transition.

The spectra of dynamic susceptibilities, x(w), of supercooled, fragile liquids show
a so called a-peak at frequencies that are orders of magnitude below the microscopic
relaxation rates [144] (see Fig. [1.7). Via the fluctuation dissipation relation, this
peak in the susceptibility translates into a plateau in the corresponding dynamic
correlation function, ¢(t), (see Fig. . Upon lowering the temperature, the a-peak
moves to lower and lower frequencies and the plateau gets longer and longer [144].
It is natural to assume that eventually the correlations will fail to relax completely
and the dynamic scattering function will instead attain a finite asymptotic value
¢(t — 00) =: fq # 0. This would signal an intrinsic ergodic to nonergodic (ENE) or
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localization transition at a temperature 7, which could be identified with a kinetic
glass transition. Such a transition is actually found for spin glasses [145] where
the nonergodicity parameter, f,, corresponds to the Edwards-Anderson (EA) order
parameter [146].

From the point of view of scattering theory, f, is understood as a Debye-Waller
factor. Such a factor was introduced to account for the effect of thermal vibrations
of atoms in a crystal lattice on scattering experiments [147, [148]. Later it was
generalized to glassy, i.e. amorphous, solids [149] [150].

The long time decay from the plateau can be empirically fitted with a stretched
exponential or Kohlrausch-Williams-Watts (KWW) law [I51],

$(t) o exp[—(t/7)"), (1.16)

where the exponent b < 1 depends on temperature and 7 is the a-relaxation time
scale. Upon expanding the KWW law to lowest order, one arrives at the von
Schweidler law [152), [153],

o(t) — f o< —tb. (1.17)

The EA order parameter, f,, as well as the stretching exponent, b, were found to be
independent of the details of the microscopic dynamics. In particular it is believed
that the long time behavior of the dynamic correlation function, ¢(t), can be matched
by rescaling the time argument. This was investigated by Gleim et al. [I54] for
Lenard-Jones particles and for almost hard spheres by Voigtmann et al. [I55]. See
Ref. [I56] for potential problems with this universality.

The observation that the mean square displacement, {(3r%) (t) = ([r(t) — r(0)]?),
develops a plateau on microscopic length scales around the same temperature as the
scattering function, ¢(t), (see Fig.[1.§and, e.g., Ref. [144]) inspired the so called cage
picture. One imagines that upon lowering the temperature, or, what is probably more
intuitive, upon increasing the density, the tagged particle gets stuck in a cage formed
by the neighboring particles. It has to wiggle around in this cage for a long time,
forming the plateau in <(5r2> (t), until it eventually finds an exit. This then restores
the diffusive behavior, albeit with a drastically reduced diffusivity corresponding to
the particle hopping from cage to cage. At T, the particle would be stuck in its cage
forever.

A more detailed analysis of this idea goes back to Goldstein [I57]. He considers
the potential energy landscape of a system of particles. In the deeply supercooled
regime, local clusters of particles will be stuck in minima of the potential energy with
barriers which are typically of the order of several kgT'. The low probability of the
activated transitions will then be responsible for the high viscosity of the supercooled
liquid. This description can only be valid up to a temperature, T, where the depth
of the local minima falls below kgT,. While the dynamics within a minimum can be
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Figure 1.8: Mean square displacement as a function of time. Top Left: A Lenard
Jones liquid close to the critical temperature T.. Reprinted figure with permission
from |W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).| Copyright (1995)
by the American Physical Society. Top Right: A colloidal suspension for volume
fractions ¢ = 0.466-0.583. Reprinted figure with permission from W. van Megen, T. C
Mortensen, S. R. Williams, and J. Miiller, Phys. Rev. E 58, 6073 (1998). Copyright
(1998) by the American Physical Society. Bottom Left: An air fluidized granular fluid
in two dimensions. Area fractions as indicated. Reprinted figure with permission from
A. R. Abate and D. J. Durian, Phys. Rev. E 74, 031308 (2006). Copyright (2006)
by the American Physical Society. Bottom Right: Randomly driven inelastic hard
disks. Coeflicient of restitution € = 0.9 and area fractions ¢ = 0.5-0.8. Data courtesy
I. Gholami
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1 Collective Effects in Dense Fluids

related to the fast g-relaxation, the slow a-relaxation will correspond to the evolution
between minima.

The idea of a kinetic glass transition, indicated by changes in the dynamics of the
fluid rather than a thermodynamic glass transition indicated by nonanalyticities in
the free energy was taken up by the mode coupling theory of the glass transition
(MCT) (see section [4.3). MCT predicts a divergence of the a-relaxation time
at a temperature T, > T,. As MCT is formulated as a fluid dynamical theory,
it does not take into account activated transport and it seems plausible that the
critical temperature of MCT, T, is related to the temperature T, at which activated
transport becomes important [158, [159].

The types of potential glass transitions introduced above, i.e., kinetic, experimental
and thermodynamical, are summarized in Fig. [I.6] together with the associated typical
relaxation times 7.

1.4.2 The Colloidal Glass Transition

Varying the concentration of colloidal suspensions, van Megen et al. [75], 160, 161]
found clear indications of a kinetic glass transition (see Fig. [I.§). Only now the
transition does not happen at a specific temperature, Ty, but rather at a specific
density, ¢4 =~ 0.578. At the same time, the existence of a supersaturated metastable
fluid state for densities between ¢; and ¢, was establishedﬁ An overview of their
results can be found in Ref. [164].

While the colloidal particles in an experiment are naturally polydisperse, the first
simulations of hard spheres used spheres of identical sizes for simplicity [165], 166].
More recent studies with larger system sizes then found that it is hardly possible
to supersaturate monodisperse hard sphere fluids significantly [167] and that even
samples that are initially perfectly amorphous, quickly crystallize [168] [169]. To
avoid the crystallization, polydisperse mixtures are used to stabilize the glassy phase.
Already binary mixtures where the big particles are about 10% larger than the
small particles were found to slow down crystal nucleation sufficiently [170, [168] to
allow for substantial supersaturation. Recently, the role of fractionationﬂ has been
emphasized [I7IHI73].

Simulations of hard sphere fluids at high densities were performed both with
Newtonian and with Brownian dynamics. A kinetic glass transition could be located
at ¢, ~ 0.58 which, surprisingly, coincides with the experimental value, 4. It has
been argued that activated transport, which allows the material to remain fluid for
temperatures T' < Ty, is suppressed in colloidal suspensions [I74] and that therefore
the localization transition at ¢, is actually the relevant glass transition.

5 Although in most experiments the density and not the pressure is used as a control variable, the
terms supercompressed or even supercooled are used most of the time. Notable exceptions are
Refs. [162] 163].

"Le., the demixing of the species
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Experiments and simulations indicate that a colloidal glass can be molten by
applying a shear that exceeds a specific yield stress [I75HI77]. Fuchs and Cates
have extended MCT to describe this behavior [I78-180]. In these experiments the
energy input of the shearing force is dissipated through the viscosity of the host
fluid of the colloidal suspension. The existence of a finite yield stress and a related
glass transition driven by an external shear fits well into the concept of the jamming

diagram (Fig. [1.3)).

1.4.3 The Granular Glass Transition

In measurements of the mean square displacement, <67"2> (t), in quasi two dimensional
systems of air fluidized [42] or vertically vibrated [44] steel beads, a plateau reminiscent
of the one found close to the localization transition was observed (see Fig. . While
the influence of wall induced ordering is not easy to rule out, these experiments hint
at a granular kinetic glass transition.

Simulations of the randomly driven granular fluid also display this behavior (see
Fig. . Different from the experiments, the coefficient of restitution can easily be
varied in a simulation. Measurements of the mean square displacement at a constant
volume fraction close to the critical value ¢, for a fluid of elastic hard spheres show
that upon decreasing the coefficient of restitution, the plateau becomes shorter or
even vanishes [I81].

New Results

In chapter [6] I will extend mode coupling theory to the nonequilibrium stationary
state of a randomly driven granular fluid. The resulting theory predicts a kinetic glass
transition for all values of the coefficient of restitution € (Fig. [L.9). The critical density
©c(€), increases continuously from the elastic value, i.e., a kinetic glass transition
occurs also in a driven granular fluid but at a higher density compared to a colloidal
suspension. Close to the critical density, ¢.(€), the familiar formation of a plateau is
found in the dynamic scattering function, ¢(q,t) (Fig.[1.9).

A second type of mode coupling theory (see chapter [7), allows me to derive
predictions for the incoherent scattering function and, even more important, the
mean square displacement, <67“2> (t), of a driven granular fluid. The predictions are
in qualitative agreement with the results from physical and numerical experiments
(Fig. that raised the question of an granular glass transition.

Both the critical EA order parametelﬂ f§ = f(e), and the exponent b = b(e) in the
von Schweidler law are found to depend on the coefficient of restitution, e. This

81 choose the term Edwards-Anderson order parameter to emphasize that I use it to identify the
kinetic glass transition. As little is known about the ergodicity of driven granular fluids and
scattering experiments of granular assemblies are still being developed, I avoid the alternative
terms nonergodicity parameter and Debye- Waller factor.
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Figure 1.9: Results of the granular MCT. Left: The critical density, ¢, of the granular
kinetic glass transition as a function of the coefficient of restitution, e. Right: The
coherent scattering function, ¢(q,t), as a function of time ¢ at wave number 2qa = 4.2,
for a coefficient of restitution e = 1.0 (green), 0.5 (blue), 0.0 (magenta). The dashed
lines correspond to a granular glass at the crictial volume fraction, . (¢€), while the solid
lines are for a granular fluid at a reduced density Ap(e) = [¢e(€) — ¢]/@c(€) = 1073,
close to the critical density.

indicates that the granular dynamics close to the glass transition is fundamentally
different from either the Newtonian dynamics of hard spheres or the Brownian
dynamics of colloidal suspensions. The dissipative, granular dynamics can not be
mapped to the equilibrium dynamics be rescaling the unit of time. The same holds
for the mean square displacement, <(5r2> (), and the incoherent scattering function,
¢°(q,t), where the localization length, 7. = r.(¢), and the plateau height, f; = f°(e),
also depend on the coefficient of restitution.

1.5 Mode Coupling Theories

The central results of this thesis (see chapters have been obtained by extending
mode coupling theory to the nonequilibrium steady state of a driven granular fluid.
A brief introduction to standard mode coupling theory and its extensions therefore
seems in order.

Fixman [I82] was supposedly the first to have used mode coupling ideas. He
wanted to calculate the viscosity of a liquid close to its critical point via the cor-
responding Green-Kubo expression. For this he needed precise expressions for the
stress autocorrelation function. Fixman’s ideas were generalized and formalized by
Kadanoff and Swift [I83] and Kawasaki [184] [I85] using projection operators. With
the advent of renormalization group techniques, the use of mode coupling theory to
calculate transport coefficients close to the critical point was soon superseded (See
Ref. [I86] for a review that relates the two approaches.) Mode coupling continued
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to be successful, though, for the calculation of dynamic correlation functions and
consequently, a number of groups developed mode coupling equations employing
various approaches. Rather comprehensive reviews have been provided by Pomeau
and Resibois [62], Oppenheim [I87] and more recently Das [I88]. These authors all
wanted to describe simple liquids, but mode coupling theory has also been applied
to magnetic phenomena [189, [190] and the direct interaction approximation [191]
employed in the field of turbulence appears to be a closely related approach.

There are in fact several theories that go by the name mode coupling theoryﬂ
I will show that at least three of those can be extended to the nonequilibrium
stationary state of a driven granular fluid. As any discussion of mode coupling
theory is necessarily rather technical, here I can give only a glimpse of the defining
aspect, i.e., a certain type of approximation for the memory kernel. A more technical
discussion will follow in chapter [4

I am going to discuss a number of dynamic correlation functions, ¢,(t), including the
VACEF, 1(t), the coherent scattering function, ¢(q,t), and its incoherent counterpart,
®*(g,t). All of these are solutions of either of two types of equations of motion [115],

ba(t) + voq(t) + /Ot M, (t — 7)pa(T)dT =0, (1.18)

Ba(t) + vda(t) + D2oa(t) + /Ot My(t — 7)o (1)dr =0, (1.19)

where v and € are characteristic relaxation rates and the function M,(t) is called the
memory kernel. While the relaxation rates v and 2 can in principle be determined
exactly, apart from special cases one has to resort to approximations for the memory
kernel M, (t). One of the many approximation schemes that have been used (see,
e.g., Ref. [I15]), is the mode coupling approximation,

Mq(t) = MOV () =" V2, 00(t)de(t), (1.20)
b,c

which assumes that the time dependence of the memory kernel’s dominant part can
be written as a product of two dynamic correlation functions, ¢,(t) and ¢.(t). The
so called vertices, V., are time independent.

In chapter 4 I will try to further motivate the form of the equations of motion
and the chosen mode coupling approximations for the correlation functions under
consideration; Namely the VACF 1(t) (chapter [5]), the coherent scattering function
¢(q,t) (chapter [6) and the incoherent scattering function ¢*(q,t) (chapter [7).

9The older literature also sometimes uses the term mode-mode coupling theory.
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2 Microscopic Dynamics and Averages

The microscopic dynamics of particles whose interactions can be described by an
interaction potential V, is fully described by the Hamiltonian equations of motion.
A particularly powerful reformulation of these equations of motion employs the
Liouville operator, £, which I will introduce in the following section. Already the
hard sphere interaction introduces some subtleties into this description that T will
indicate in the subsequent section For the driven inelastic hard sphere system,
I will give a description of the driving in terms of a suitable Liouville operator. In
the nonequilibrium stationary state of the driven granular fluid, the probability
distribution of the microscopic degrees of freedom is no longer given by the canonical
distribution function. While there are some results on the form of this nonequilibrium
distribution function, I still need to specify an approximate form that I will use in
the following chapters. Lastly, I will relate the violation of detailed balance in the
nonequilibrium stationary state to the fact that the adjoint Liouville operator, EL,
is no longer given by the time reversed operator, £_.

2.1 Conservative Dynamics

As is known from every text book on classical mechanics (e.g., Ref. [192]), the
dynamics of particles interacting by conservative forces, can be determined as the
solution of the Hamiltonian equations of motion. I will first introduce the concepts
for such a Hamiltonian system as the Hamiltonian requirements avoid most of the
subtleties introduced when I will generalize these concepts to hard spheres and
eventually inelastic hard spheres that are both necessarily nonconservative [193].

In all of these cases the state of an N particle system is described uniquely by
specifying the positions ¢ = (71,...,7ry) and momenta p = (p1,...,pn) of all
the particles. The pair, (g,p) € T', specifies the location of the system in the
corresponding phase space T'.

Within the Hamiltonian formulation of classical mechanics, the dynamics of the
positions and momenta follows from the Hamiltonian equations of motion,

. O0H . 0H

q_ﬁip’ P:*aiqa (2'1)

where H = p?/2m+V (q) is the Hamiltonian corresponding to an interaction potential
Viq) = Zi<j V(|ri — ""j’)'
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2 Microscopic Dynamics and Averages

On the microscopic level, every observable A must be a function of the phase space
coordinate (g, p) and possibly of the time, A = A(q, p,t). The time evolution of the
observable A can be expressed with the help of the Poisson brackets {-,-} as

dA 0A 0A

— ={H,A ——:‘A =
{ }+ il +8t’

= (2.2)

defining the Liouville operator £ [194]. The explicit imaginary unit in this definition
is purely conventional and was introduced to make formal contact with the time
evolution operator used in quantum mechanics. For the simple generic system
specified above the Liouville operator reads,

iﬁziﬁo—l—ZEin:% ZW rij) .(8_‘9)_ (2.3)
1<j

i<j arzg 8pi 8pj

For an observable that does not depend on time explicitly, the time evolution equation
(2.2) can be solved formally to yield an expression for the propagator, U(t,t'),

A(t) = U(t,0)A(0) = exp(itL) A(0), (2.4)

where the exponential operator, exp, is understood as a shorthand, exp O :=
>, O"/n!, assuming that this power series converges.

The ensemble average, (A;t), at time ¢ of an observable A can be defined as an
average over the distribution of initial conditions, o(T', ¢ = 0),

(A;t) = / dTo(T, 0) exp(it£) A(T') = / dTo(T, 0)A(T 1). (2.5)

Unless it can be the source of confusion, I will usually drop the time argument
and use (A) = (A;t). To introduce yet more notation, one can regard this average
as a scalar product, (A4;t) = (0, A(t)). From (o, A(t)) = (0,exp(itL)A) one then
immediately finds

d

= (Ast) = (0, exp(itL)iLA) = (0, A1) = (Ast), (2.6)

i.e., time derivatives and the averaging commute.
The scalar product notation suggests the introduction of an adjoint operator,

(0,iLA) =: (iLp, A). (2.7)

It is possible to [195], that this operator can be used to transfer the average from
the Heisenberg representation used above to the Schrédinger representation,

(A1) = / dTo(T, £)A(T) = / dTexp(itZ)o(T, 0)] A(T), (2.8)
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2.1 Conservative Dynamics

where the integration now no longer runs over the initial conditions but over the phase
space, weighted with its density at time ¢, o(T',¢). It is mostly this representation
that I will use in the rest of this work.

The fact that the time evolution of the distribution function is given by iL, can
also be expressed as the Liouville equation,

% +ilo=0. (2.9)
For Hamiltonian systems, the Liouville operator is self-adjoint, £ = £, and the
Liouville equation also holds with the Liouville operator, £, itself [196].

Although the distribution function, g, is well defined as the solution of the Liouville
equation this is, apart from simple examples, only a formal specification. For
most systems the Liouville equation can not be solved explicitly. A very usefull set
of identities to derive approximations is the so called BBGKY-hierarchy [69]

To make contact with notation used in the field, let fy = Noand let f,(z1,...,2,) =

ﬁ [dxpiq - deyfn(z1,...,2N) be the distribution function of the first n par-
ticles. Then one can derive the following exact identity,
) n Di n o
9t + Z Evi fn+ Z / dxpi11L5 1 frnr1 = 0, (2.10)
i=1 i=1

which relates the n-particle distribution function, f,, to the (n 4 1)-particle distribu-
tion function, f,41 [69]. As it stands, the BBGKY-hierarchy does not help a lot
as it expresses, e.g., the unknown single particle distribution, fi, in terms of the
two particle distribution function, fs, that usually is even less known. On the other
hand, one can argue that the single particle distribution function will depend less
and less sensitvely on the higher order distribution function in this hierarchy. Thus,
one might be able to truncate the hierarchy by applying some approximation to
one of these higher oder functions. In fact, the famous Boltzmann equation can be
understood as the realisation of such a procedure.

From the first two equations of this hierarchy and the assumption that (i) the
duration of a collision is much shorter than the mean time between collisions (which
will be fulfilled in the limit of low density and short ranged interaction potentials)
and (ii) the two-particle distribution function, fa, factorizes with respect to the
velocities, i.e., fo(r,v1,7,v2) = fi1(r,v1)fi1(r,v2) (called molecular chaos) one can
find a closed equation for the one-particle distribution function,

0
(81& + 'U1V> fi=Jf1], (2.11)
the Boltzmann equation, where,
d do / /
Jf1] = /d U2/dQ879U12[f1(v1)f1(v2) — fi(v1) fi(v2)], (2.12)
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2 Microscopic Dynamics and Averages

is the collision integral and the primed quantities are the values of the velocities
after a collision. The term do /02 denotes the scattering cross section, o, per solid
angle, Q [69]. The Boltzmann equation is one possible starting point to derive the
hydrodynamic equations [4§].

A special case of a relation from the BBGKY hierarchy is the Yvon-Born-Green
(YBG) theorem for the pair correlation function, g(r) [197]. From the definition,

g(ri2) = Vz/d37’3 edPry H 0r1(7ij), (2.13)
i<j

where g,2(75) o< exp[—pV (r;;)] is the spatial distribution function one finds,

Vig(riz) =V? /d37”3 e dPry[Viinora(ri2) + Y Vilnga(ri)lon
i (2.14)

= g(r12)Viln gro(r12) + n/d37“3g3(7’1, r2,73)V11n 0r2(r13),

which relates the pair correlation function to a particular integral of the triplet
correlation function, gs(r r2,r3). With the special form of the canonical distrbution
function, this can be further simplified to

nﬁ/dsrsgs("“h7‘277°3)V1V(7“13) = —Bg(r12)V1V(r12) — Vig(r12). (2.15)

In the same way, one can also derive the higher order analogues of this relation.

In the chapters on mode coupling theory I will need to calculate matrix elements,
(A|LB) = (A*LB), of the Liouville operator with respect to the observables A and
B. If one considers this kind of average as a scalar product, it is natural to introduce
the adjoint Liouville operator, £, defined via

(£1A|B) = (A|LB). (2.16)
From the sequence of identities,
(0£4, B) = (LTA|B) = (A|LB) = (oA, LB) = (LoA, B), (2.17)
one finds
LTA = 07 LpA, (2.18)
where o1 is the pseudo inverse of the phase space distribution function. In the

Hamiltonian case, the Liouville operator is a differential operator such that this can
be simplified to
LYA=TA+ Ao Lo (2.19)
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2.2 Hard Spheres

and due to the Liouville equation ({2.9), the adjoint operators with respect to both
scalar products are actually identical,

LY=C="CL. (2.20)

Because of the first identity, the free streaming and interaction part, are also self
adjoint separately, i.e., Eg = L.

Moreover, the Hamiltonian equations of motion are invariant under time reversal,
t — —t, which implies that the forward in time Liouville operator, £, is identical to
the backward in time Liouville operator, £_. Detailed balance, valid in equilibrium
systems, implies that (C_A|B) = (A|L+B) (see, e.g., Ref. [198]), which in turn
requires that EL = L+. Microscopic time reversal invariance, £, = £_, combined
with the result that the Liouville operator is self adjoint is compatible with this
requirement.

2.2 Hard Spheres

For hard spheres the definition of the Liouville operator via the Poisson bracket
certainly is not applicable. Nevertheless, it is still a deterministic system such that
the propagator U(t,t") must exist. The free streaming, Uy(t,0) = exp(itLy), of the
particles remains the same. It is only the hard core interactions that need to be
considered carefully. The fact that the particles experience periods of free streaming
interrupted by instantaneous pairwise collisions can be captured in the following
recursive equation, [199]

U(t,0) = Up(t,0) + Z /Ot drU(t, T)Z'Tj,;Uo(T, 0), (2.21)
g,k

where zTZJjr is the (forward in time) binary collision operator detailed below. Iterating
the above equation once and expanding it up to second order in time, we get,

1
U(t,0) = 1+ itLy(0) — 575253(0)

+;€/0 arl +i(t = LMETHEA+irLlO)] (o
+j’§:n/0 dT/T dT/iT?];(T/)iTZ’_n(T) + O(t%),

where the primed multisum runs over all pairwise distinct indices. If one insists
to write the propagator U in terms of a generator, the pseudo Liouville operator
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2 Microscopic Dynamics and Averages

Ly =Lo+ X< T} = Lo+ Ty [200], one finds that £2 # £, L, but

A /
LY=L+ ) [LoTyr + TihLol+ > TiiTo (2.23)

i<k J,kl,m

and similar for higher powers of ﬁ+. A related approach led Ernst et al. [199]
to introduce the binary collision operators. The power series for the exponential
operator, exp(z’tljJr), must then also be understood in terms of this modified product
ruler_-] For a critique of the pseudo Liouville operator and an alternative approach,
see Ref. [201].

The (forward or backward in time) collision operator, i7;jk[, can be written as

¢
iTE = Pi%% [ariTh (1) =~ 0O 030 ) (e — 200y~ 1), (220
where the operator b;; implements the collision rules (with e = 1) [100].

Detailed balance also holds for an hard sphere fluid in thermal equilibrium. There-
fore the adjoint of the Liouville operator is simply related to the time reversed
operator, [ﬁl = E}, which only differs in the sign inside the Heaviside step function,
O(+), of the collision operator. Note, that the free streaming operator, iLy, even
though it is formally identical to the one for Hamiltonian systems, is no longer self ad-
joint. In fact one can show from eq. that iL} = iLo+ 3k (Pik-vjk)d(rjk — 2a).

Due to the degenerate form of the hard sphere potential, the spatial distribution
function, o-(q) = limg . [[;<; exp[—BO(2a — ri;)] = O(r;5 — 2a), is not immediately
recognizable as the usual Boltzmann factor that it is. Its interpretation is, that
all configurations that are overlap free are equally probable. With Vi ln g,(r12) =
O(r12 — 2a)d(r12 — 2a)71, the YBG theorem for hard spheres reads

n/d37“393(7°17"°277“3)5(7’13 —2a)71 = Vig(riz) — xd(ri2 — 2a)7. (2.25)

2.3 Inelastic Hard Spheres

The dissipative interactions of inelastic hard spheresﬂ can also be described by a
pseudo Liouville operator,

Lo=Lo+ STk +Lh, (2.26)
i<k
where,
iTi = —(Pjk - vjk)O(—Fj1 - vj1) 0 (rjk — 2a) (b)), — 1), (2.27)

! Although the pseudo Liouville operator is widely and successfully used, I am not aware of a
mathematically rigorous discussion of its nontrivial algebraic properties.
2Tt appears that this dynamics can also be interpreted in terms of an economic model [202]
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2.3 Inelastic Hard Spheres

and bjk implements the inelastic collision rules (|1.2)) [203] 204]. In the limit of infinite
driving frequency, the Liouville operator corresponding to the driving force can be
written as a differential operator (see appendix [B|and Ref. [205]),

o  Pp o
iLh = &(t) 5+ L. (2.28)

m Ov?’

There is no reason to believe that detailed balance holds in the nonequilibrium
driven granular fluid. The stationary state is time translation invariant but no longer
time reversal invariant. By looking at the inelastic collisions one can easily detect the
direction of time. To obtain an explicit expression for the adjoint pseudo Liouville
operator one has to go back to eq. . Fortunately, it turns out that knowledge
of the adjoint pseudo Liouville operator, CL, is not strictly needed for any of the
following calculations.

No exact analytical expression analogous to the canonical distribution function of
the elastic hard sphere system is known for the driven inelastic hard sphere fluid.
I will follow the common assumption that the distribution function, o(I"), can be
factorized into a velocity distribution, g,(p), and a spatial distribution, o,(q), i.e.,
o(I') = or(q)0v(P)-

Not much is known about the spatial part. For the homogeneous and isotropic
systems considered here, it can only depend on the distances between all the particles,
or = 0r({rij}), and overlapping configurations must have zero weight. From that I
conclude that it can be written in the form,

or({ri}) o< [T ©(ri — 2a)9(rij), (2.29)
1<
with an unknown function ¥(r). Often it is assumed that the expressions for the pair
correlation function or the static structure factor of an elastic hard sphere system
are also approximately valid for inelastic hard sphere fluids. This corresponds to
the assumption ¥(r) = 1. In chapter [3| below, I will show explicitly that the static
structure factor of a driven granular fluid is not identical to that of the corresponding
elastic hard sphere fluid at the same density. Nevertheless, I will also use the
approximation ¥(r) = 1 as a simplifying assumption in the subsequent chapters.
As far as the velocity distribution function is concerned, it was found that the
one-particle velocity distribution function, g,1(v), is not a gaussian, but that the
high velocity tails are overpopulated (see, e.g., Ref. [206]). For an analysis of the
molecular chaos assumption in driven granular fluids, gy2(vi, vj) = 0v1(vi)ov (v5),
see Ref. [207]. I will only need the first two moments of the velocity distribution,
(v) = 0 and, (v?) = 3T/m < co. Therefore I assume without loss of generality a
gaussian form of the one-particle velocity distribution function,

0v1(v) o exp[—mwv? /2T, (2.30)
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2 Microscopic Dynamics and Averages

parametrized by the granular kinetic temperature T'. Let me stress here that the
severe approximation is the factorization of the velocity distribution function. Once
this is done, the quantities I am going to calculate do not depend on non-gaussian
corrections of the one particle velocity distribution function.

In conclusion, I will use the following approximate stationary distribution function,

o(T") H O(ri; — Qa)ﬁ(rij)e_m”?/ﬂ. (2.31)
1<j
With 9(r;;) = 1, this is the exact distribution function of a fluid of elastic hard
spheres in thermal equilibrium.
To get results that are independent of a specific realization of the driving, I will
include an average over the distribution of the random force, P(£) o exp(—£2/2),
i.e., I introduce the double average,

(ait) = [ d¢pi) [ dror,nar). (2.32)

While the driving does not change the density directly, i[% 04 = 0, matrix elements
with the current vanish, because the kicks are uncorrelated with the particles
velocities, (44/L544) = 0.

The formally exact form of the granular YBG theorem reads

Y

n/d37”393(7°1,7°2,1°3)[5(7‘13 —2a)P1 + V1Ind(r3)]
= Vig(r12) — x6(r12 — 2a)f1 + g(r12)ViInd(ri2). (2.33)
To be able to use the YBG theorem in the form for elastic hard spheres [eq. (2.25))],

I make the nontrivial assumption,

g(r12)Vilnd(riz) = n/d3T3g3(r1,T2,7‘3)V11D ¥(r13). (2.34)

2.4 Perspectives

While the velocity distribution function of the driven granular fluid is relatively well
understood (see, Ref. [208] but also Ref. [209]), it would be good to have a more
detailed characterization of the spatial distribution function that goes beyond the
approach of treating it as identical to that of an elastic hard sphere fluid.

An explicit derivation of the adjoint pseudo Liouville operator, EL, in the driven
dissipative case is work in progress. Preliminary results show that its knowledge will
probably not simplify any calculations but I expect that it will allow new insights
into the dynamics of the granular fluid. For some established mathematical results
concerning granular dynamics, see the review by Villani [210].
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3 The Static Structure

While the following chapters will be concerned with dynamic correlation functions,
in this chapter I want to discuss the static structure of a driven granular fluid.
Besides the static structure factor, S(k) = N (pgp—q), I will focus on the current
correlator, Sj;(k) = N (Jqj—q), where, mj(r) = mnu, is the momentum current.
The correlations of the temperature field, T'(r), with the particle density, p(r), and
momentum current, j(r), will also be considered briefly.

One of the first observations will be that the static structure of driven granular
fluid qualitatively resembles that of a fluid in thermal equilibrium — at least as long
as the driving conserves momentum. If this is not the case, one observes a divergence,
S(k — 0) oc k=2, for small wave numbers k. Equivalent formulations of this feature
predict long range correlations, g(r — 0o) — 1 o< #~1, in real space and giant number
fluctuations, IN? = (N?) — (N)? & N®, with a > 1. In fact an argument adapted
from Refs. [121] and [67] predicts 6N o< N¥?In N, i.e., a = 4/3 up to logarithmic
corrections.

An explicit derivation of this result within a theory of fluctuating hydrodynamics
will be given below. Alternatively, it can be understood from results in the study
of self organized criticality. The sand pile model, which was used to introduce the
concept of self organized criticality [72, 211] is a lattice model. A corresponding
continuum description was developed by Hwa and Kardar [212]. With this model in
mind Grinstein et al. [213| 214] studied the correlation function C'(k) o (hyh_g) of
an observable h obeying the stochastic equation of motion,

Oh = nV2h + €, (3.1)

with a stochastic force £ with zero mean, (£) = 0, and variance ({(k,t)¢(—k,t')) =
2D(k)6(t —t'). Then the correlation function is essentially given by C(k) < D(k)/nk?
which leads to a k=2 divergence if D(k) = const. as in the continuum sandpile
model. If A were a macroscopic observable of a system in thermal equilibrium, then a
fluctuation dissipation theorem would require that D(k) o nk? and consequentially,
C(k — 0) = const. Moreover, in this case C(k — 0) is completely independent of
the transport coefficient 7. The analysis of Grinstein et al. also showed that this
argument remains valid even if the equations of motion is modified by additional
terms from a large class of functional forms. Therefore, the same small k£ behavior
can be predicted for the hydrodynamic correlation functions including the static
structure factor S(k).
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3 The Static Structure

While the equilibrium fluctuation dissipation theorems make it impossible to extract
the transport coefficients like the viscosity or the heat conductivity from the static
correlation functions of a fluid in thermal equilibrium, the speed of sound, ¢, is related
to the static structure factor, ¢ = limy_o7/mS(k). I will show below, that this
can be generalized for the driven granular fluid in the form ¢ = limy_,o Sp(k)/S(k),
where Sy¢(k) is the longitudinal current correlator.

The noise induced by the external stochastic driving force is not restricted by an
equilibrium fluctuation dissipation theorem. I will show below that this makes it
possible to measure the transport coeflicients of a driven granular fluid from the
static correlation functions in the case of naive volume driving. In particular, I will
use the current correlator, S;;(k), to measure the shear viscosity, v, , and the sound
damping constant, Dg, from its transverse, S| (k) oc 1/v, k%, and longitudinal part,
See(k) oc 1/Dgk?, respectively.

In the next section, I will develop a fluctuating hydrodynamic theory based on the
work in Ref. [74]. In section I will present details of the event driven simulations
performed to study the driven granular fluid as well as of the way I measured the
static correlation functions. The results, including the extracted quantities: speed of
sound, ¢, sound damping constant, Dg, and shear viscosity, v, will be discussed in
section 33

3.1 Fluctuating Hydrodynamics

3.1.1 Hydrodynamic Equations

Either from rederiving it starting from the Boltzmann equation [2I5H217] or by
analogy one can write down the following set of balance equations for a homogeneous
freely cooling inelastic granular gas,

Din+nV . -u=0 (3.2a)
1
Diu; + %Vjpij =0 (3'2b)
2
DT + ?Tn(PijVjui +V.q) =-T. (3.2¢)

These are the continuity equations for the number density, n, the flow velocity, u,
and the granular temperature, 7. Einstein summation convention is understood and
Dy = 0, +u -V denotes the material derivative. Dissipation gives rise to the energy
sink term I". Within the Enskog approximation and neglecting the deviations of the
velocity distribution function from a gaussian on finds I' = 'y = ywgT where wg is
the elastic Enskog collision frequency and v = (1 — €2)/3 contains the coefficient of
restitution [99].
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3.1 Fluctuating Hydrodynamics

To include the driving force into the hydrodynamic description, the random force,
&i(t), acting on individual particles has to be promoted to a random field,

Z Ez o(r — rz )) (3.3)

with variance 1
(€ (i) (s, 1)) =~ €5(ri)5° 8t — 1), (3-4)

For the temperature or energy equation there is both an average contribution,
méd = mé3(r = 0), as well as a fluctuating field,

2m
0. 0) = 2 3o &) (r — 7i(1)) (35)
with variance amT
m
(D3, 00, )¢ = €3 rig)o(t — V). (3.6)
Put together, one arrives at a set of stochastic equations [74],
Din+nV-u=0 (3.7a)
1
Dy —_— PZ =& .7b
tu+mnV] i =£ (3.7b)
DT + o (PUV w;+V-q)=mé2 —T + 9. (3.7¢)

Asymptotically, the energy input from driving will balance the dissipation, m&3 —
I' = 0, and the system is characterized by a mean density, ng, and a mean tempera-
ture, Ty. Moreover, let us assume that the mean flow velocity vanishes, ug = 0. On
the Enskog level, one finds

2/3
(3.8)

Tor | «/ma&g
m 41— e)xp

The main assumption of hydrodynamic theory is that the balance equations (3.2))
can be closed by expanding the stress tensor, P, and the heat flux, g, in gradients of
the hydrodynamic fields, n,w and T'. To first, or Navier-Stokes order, this expansion
reads for an homogeneous and isotropic fluid [I15],

2
Pij ~ péij — U(Vz‘u]‘ + Vjui — gékauk) — C(Sijvkuk,
q~—krVT.

(3.9)

The pressure, p, is related to the hydrodynamic fields via the equation of state:
p(n,T) = nT(1 + 4px) for elastic hard spheres [48]. The contact value, x(n), of
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3 The Static Structure

the pair correlation function, g(r), is a function of density as well. The remaining
parameters are the shear and bulk viscosity, n and (, respectively, and the heat
conductivity k. A peculiar contribution to the heat flux oc Vn that is specific to
granular gases and absent in elastic fluids [218] is neglected. For the case of a driven
granular fluid, it was found to be extremely small anyway [219].

3.1.2 Linearzation and Relaxation Rates

If we linearize the hydrodynamic equations around this homogeneous state in the
fields n, u, T and Fourier transform both the spatial as well as the time coordinate, we
can write the hydrodynamic equations as a set of linear equations for the deviations
from the homogeneous state:,

iwda(k,w) = M(k)da(k,w) + F&(k), (3.10)

where da = (0n,0T,uy,u ) is the vector of deviation fields, dn(r) = n(r) — nog,
0T (r) = T(r) — Tp and the flow velocity has been decomposed into the longitu-
dinal part, ug(k) = k - u(k), and the transverse part, u (k) = u — kug(k). The
hydrodynamic matrix,

0 0 ikn 0 0
g(n)T'/n  Drk? +3T'/2T 2ikp/3n 0 0
M(k) = — | ikcZ/n ikp/mnT v k? 0 (I (3.11)
0 0 0 vik? 0
0 0 0 0 v k?

is given in terms of the thermal diffusivity, Dy = 2k/3n, the isothermal sound
velocity, c% = dp/Omn, and v, = (4n/3 + ¢)/mn, v, = n/mn the longitudinal and
transverse viscosity, respectively. The term g(n) = 1 + ndln x/0dn is the linearized
equation of state. In an elastic gas the M, term would be zero and the My
term would come without the k-independent part. Note that the equation for the
transverse velocity, u | , is decoupled form the rest of the equations as in elastic fluids.
The vector of driving forges, FI&r = (0,9,&, &), contains all stochastic terms, where
Se=k-§and & =& — k&

The eigenvalues, z)(k) = iwy(k), of the hydrodynamic matrix determine the
principal macroscopic relaxation rates. In an inelastic system, McNamara [52]
identified a critical length scale or wave number, k., which separates the elastic
regime, k > k., where relaxation rates are that of an elastic system from the
dissipative regime, k < ks, where the dissipation of energy is completely dominated
by the inelastic collisions.

From the hydrodynamic matrix, M(k), one finds that the critical wave number, ki,

is given by (see appendix |C.1))
(D + vg)k? = 3T/2T. (3.12)
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3.1 Fluctuating Hydrodynamics

Values of k, for the parameters of the simulations and with expressions for Dy and
vy from Ref. [219] and I' = 'y are given in table
The relaxation rate of the shear mode can immediately be seen to be given by

2 = —v k2 (3.13)

For the other eigenvalues one finds to second order in k in the elastic regime (see
also Ref. [115])

2y ~ —Dyk?, (3.14a)
2y =~ Fiesk — D3, (3.14b)

where ¢~ is the adiabatic speed of sound, 02> = ’yadc% = 02T + 2p%/3mn?T, with the
adiabatic index, 7,4. The sound damping, 2DZ = vy + (Yad — 1) D1 /7ad, includes a
contribution from the thermal diffusivity and Dy = Dp/7aq.

In the dissipative regime (see appendix , heat diffusion is irrelevant but there
are still propagating sound waves,

zg = —3I'/2T, (3.15a)
2y =~ Ficck — D§K?, (3.15b)
with a speed of sound,
2 _ 2
¢z = ¢ — 2gp/3mn, (3.16)

different from the elastic speed of sound, c¢~. In general, the speed of sound in the
inelastic fluid is considerably smaller than in the corresponding elastic system. In the
limit of vanishing density, n — 0, p = nT and g = 1, while v,q = 5/3 for spherical
particles. Then one finds ¢ = §C2T = 5c2.

The sound damping constant, 2D§ = vy + Dr, is independent of the thermal

conductivity and contains the new transport coefficient,

4pT

= T 3.17
r=g, —5(g+p/nT), (3.17)
instead. For low densities, Dr = §%%. The thermal diffusivity in the elastic regime

can be written as Dy = C’%wo_ with a constant, C, of the order one. For the
transport coefficient Dr, the collision frequency, wy, is replaced by the cooling rate,
I'/T. The sound damping constant, D;, diverges in the elastic limit, e — 1, but as
the length scales necessary to observe the inelastic regime also diverges, the relaxation
rate Dgk? < DSkZ = %‘gﬁﬁf < oo remains finite.

The relaxation rates given by the equations f confirm the results of
Ernst et al. [74] except for an additional heat diffusion term that was consistently

dropped here. Both in the elastic as well as in the inelastic regime, all eigenvalues
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3 The Static Structure

are negative implying that the homogeneous state is at least linearly stable [52]. The
intuitive expectation that driving the fluid will avoid the clustering instability is thus
confirmed.

As the hydrodynamic matrix, M, is not symmetric, it has both right eigenvectors,
M(k)w? (k) = zy(k)w?(k), and left eigenvectors, v*(k)M(k) = v*(k)z)(k) to the
eigenvalue z) (k). To fix a normalization, we require ), w?v? = | with the identity
|. Besides the trivial result wt = v, = (0,0,0,1), one finds to zeroth order in k and
in the dissipative regime

wf ~(0,1,0,0),

. (3.18)
w™ ~ (1,-2¢T/3n, £c< /n,0)

and

v, ~ (2v/29T/3n,1,1,0)/V2,
vr ~ (1,0,0,0), (3.19)
vy~ (0,n/cc,—n/c<,0),

in agreement with Ref. [74]. T give the duals of the left eigenvectors, v*, as they are

needed below. Note that the sound modes w* couple to the temperature mode. This
is not the case in an equilibrium fluid.

A

3.1.3 Fluctuating Hydrodynamics

In the linear regime of small fluctuations da, the terms neglected in expansion of the
pressure tensor and the heat flux can be described by random variables, 7;; and g
(see, e.g. Refs. [49] and [122], 220]),

2
Pij =~ pdij — n(Viuj + Vju; — §5ijvkuk) ~ G0 Vittk i, (3.20)

q~—rVT+g.

It turns out to be more convenient to work with the variables Z; = Vjm;;/mn
and © = 2V - g/3n, which can then be combined into a vector of internal noise,
fit = (0,0,Z4,E]), where Z; and E, are defined as usual. The internal noise
has zero mean, (f") = 0, by construction. For a fluid in thermal equilibrium, one
can express the variance of fi'* in terms of the transport coefficients [220]: For the
temperature fluctuations one finds

4T
0k, 1)0(—k,t))g = 3—DTVk2, (3.21)
n
while the velocity fluctuations take the following form,

<Ei(k7 t)‘Ej(_k7 t))E

2T . .
= VEk* v, (65 — kik; keik; | . 22
VR v (85 — kaky) + ik (3.22)
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3.1 Fluctuating Hydrodynamics

In the terminology of Toda et al. [221], the two relations above are instances of the
fluctuation dissipation theorem (FDT) of the second kind.

The distribution function of a driven granular fluid is known to be not a simple
Boltzmann factor, exp(—8H), and thus the equilibrium FDTs do not hold. The
question of what determines the amplitudes of the internal fluctuations in a driven
granular fluid is beyond the scope of this thesis. First results have been obtained
recently by Maynar et al. [222]. They found that under some assumptions the
equilibrium FDT still applies for the transverse component of flow velocity. Here, I
will rely on heuristic reasoning instead.

The tensorial structure of the variances follows from the assumption of homo-
geneity and isotropy that are the same whether we consider an equilibrium or a
non-equilibrium fluid. This also requires that the variances are a function of k2.
Neglecting the possibility of a nonanalyticity at k = 0, we expect that the variances of
the internal noise are of the same functional form as for fluids in thermal equilibrium
but will be parametrized by constants Dif‘t, Vé“t and Vift different from the heat
conductivity, k, and the viscosities vy and v;. A wave number independent term
can be ruled out because the statistical fluctuations vanish in the thermodynamic
limit. At this point the question whether the fluctuations, quantified by, e.g., I/ift,
are completely determined by the parameters quantifying dissipation is still unre-
solved. If the answer were negative, the relation that determines the strength of the
fluctuations should probably not be called a fluctuation dissipation theorem:.

Fluctuations around the homogeneous state are thus excited both by the driving
force, £9*, and by the internal noise, ft,

iwoa(k,w) = M(k)oa(k,w) + f(k), (3.23)

where, f = f4 + £t is a vector of random variables with zero mean, (f) = 0, and
variance (fi(k,t)|f;j(p,t")) = [i;(k)Vo(k — p)d(t —t'). The matrix of variances, T,
has the following nonzero entries

anTT(k) = Tmé&3(k) + DI*T?k?, (3.24a)
2VintT
nla(k) = & (k) + = —Fk, (3.24b)
int
Al L (k) = €2(k) + %k? (3.24¢)

3.1.4 Static Correlation Functions

Based on the linearized fluctuating hydrodynamic equations we can now derive an
expression for the static structure factor, X ,,(k), (see appendix |C.2))

_ w, (k)w) (—k)
Yap(k) = —AEH m g/”?(k)rcc(k)vg(—k% (3.25)
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3 The Static Structure

with the index sets H = {H,+, 1} and N = {n,T,¢, L }.
In the limit of small wave number one finds the following nonzero results. Apart
from the transverse current correlator,

B nl 1 (k)
SJ_J_(I{?) = nZJ_J_(k) =~ QVL]CZ (326)
and the two-point temperature correlation function,
44%T? Tnlrr(k)
Str(k) =nXrr(k) ~ =——Suk) + ———— 3.27
rr(k) = nXrr(k) 92 (k) + 3me (3:27)

all other correlation functions are proportional to the longitudinal current correlator,

nl (k)

Spe(k) = nXy(k) ~ 2D§k2 . (3.28)
The most interesting is most likely the static structure factor,
1
S(k) = —Ton(k) = Su(k)/cZ. (3.29)

In particular this relation will be used below to measure the speed of sound as

¢z = limg—0 See(k)/S(k). Sound propagation relies on the effect that density and

current are 90° out of phase,

DSk
S—Sue(k), (3.30)

1
C<

Sng(k) = nan(k) ~

while the result that density and temperature fluctuations are anticorrelated,

2gnT
3c2

SnT(k) = nZnT(k) = - Sﬁf(k)a (331)
is a peculiar effect of granular fluids. In a freely cooling granular gas, this leads to
the clustering instability [52]. For an equilibrium fluid one can show that S,r(k —
0) =0 [223].

The last nonzero cross-correlator is

29T DSk
Ste(k) = nXpe(k) ~ 193725
Cc<

See(k). (3.32)
The purely imaginary correlators S,,(k) and St,(k) have been ignored in Ref. [74].

At this point the origin of the small k& divergence becomes apparent. The two
important correlation functions S| | (k) and Sy (k) are of the form S, (k) oc Taq (k) /K2
For an equilibrium fluid, [4q (k) oc k2, such that all the correlation functions tend to a
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3.1 Fluctuating Hydrodynamics

finite value, Syq(k — 0) = const., but for the naive volume driving, nl,q(k — 0) = &2,
which leads to the k=2 divergence of the correlation functions.
If the driving conserves momentum on a length scale ¢, we have

€2(k) = €2[1 — sinc(kl)] ~ E20%K? (3.33)

and thus, . (k) oc k2, again like for an equilibrium fluid. This relation between
momentum conservation and the small & behavior of the static correlation functions
is one of the main results of this chapter.

Let us first consider the driving that does not respect momentum conservation,
€23(k) = &3. Then one finds

2 int T
SJ_J_(k) ~ 50 n -

~ .34
v, k2 n m’ (3.34)

which can be used to measure the shear viscosity, v, , and the ratio o™ /n which
quantifies the FDT violation. From the longitudinal current correlator,

& T
See(k) ~ —=— — 3.35
M( ) 2D§ 2 DE m’ ( )
I will extract the sound damping constant Dj.
For the locally momentum conserving driving, one finds
2£2 int T
Sii(ky~ 0 T (3.36)

T 2u) n m’

i.e., a sum of two terms where v, and 7'"*/n are the unknowns. One the one hand,
this makes it impossible to extract the shear viscosity from measurements of the
transverse current correlator. On the other hand, eq. above can be rewritten
as

V()

~in - m
VJ_t:VJ_?SJ_J_(k_)O)_T (3.37)

in terms of the dimensionless viscosity, 7, = v /w0€2, The measurements described
below are compatible with mS, (kK — 0)/7 = 1, independent of density ¢ and
dissipation € (see Fig. [3.8). Therefore I propose the following FDT for the granular
fluid with locally momentum conserving driving,

=) - 7(26), (3.38)

which smoothly connects to the equilibrium result, " = v, . Fluctuations of the
internal transverse random force, £, are thus smaller in the driven granular fluid

compared to a fluid in thermal equilibrium
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3 The Static Structure

From the longitudinal current correlator,

&
BEYE

vint 7
D§m’

See(k) - (3.39)
and the observation that it appears to tend toward an universal value, mSy/(k —

0)/T ~ 0.5 (see Fig. [3.6]), one can derive another FDT,
. 1 ~
%ﬁ:§@+Dﬂ—ﬂd (3.40)

In contrast to the transverse random force, the fluctuations of the longitudinal random
force, &, in the driven granular fluid are not smoothly connected to the fluctuations
in thermal equilibrium. Instead, they diverge in the elastic limit, e — 1. As any
resulting large current is quickly damped away by the divergent sound damping, D§,
this does not necessarily lead to large current fluctuations.

3.2 Simulations

3.2.1 Event Driven Molecular Dynamics and Volume Driving

Event driven [224] simulations were performed using an existing program that was
modified to allow for the locally momentum conserving driving. To resolve the small
k behavior, the system size should be as large as possible. At the time of the first
simulations, the maximum number of particles that could be accomodated by the
main memory was N = 400 000. The runtime of the simulations was mainly limited
by the maximum permissible CPU time of 28 days per job.

Whether an inelastic collapse can occur in driven system is still a controversial
issue [225], 226]. A number of techniques has been proposed to avoid the inelastic
collapse by using modified collision rules [227, 228]. Here, we use the method of
virtual hulls [67] with a thickness of Ar/2a = 107°. I believe that this is one of the
least intrusive methods to treat the inelastic collapse.

Despite what we assume for the theoretical description of the momentum conserving
driving mechanism, it is impossible to find a partner particle at a distance ¢, exactly.
Apart from completely artificial situations, the probability for two particles to be any
given distance apart is always zero. Thus, for the simulation, we have to allow for
some range of distances for finding a partner particle. What is done here, is to start
at a given distance, £, and search for the first particle, j, such that its distance
from the particle ¢ is at least £y, i.€,

J = argmin{r;x > lyin}- (3.41)
k

This will give rise to a distribution, P(?), of pair distances chosen for a driving pair
with a well defined mean, £. The mean driving distance, ¢, of the simulated systems
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3.2 Simulations

Table 3.1: Mean driving distance, ¢/a, as a function of volume fraction, ¢, and
coefficient of restitution, e.

Volume Fraction ¢

0.1 0.2 0.3 0.4

Restitution e

0.9 2.439 2.157 2.098 2.051
0.8 2.433 2.153 2.095 2.049
0.7 2.429 2149 2.092 2.046

is shown in table Note the small but significant decrease in ¢ with increasing
dissipation.

To keep the center of mass momentum, P(t), constant throughout a simulation
run, pairs of particles were kicked simultaneously even for the naive volume driving.
For that purpose, random pairs of particles were determined at the start of the
simulation. These pairs remained unchanged throughout the simulation. One
can show [229] that this leads to corrections in the long wavelength behavior of
the structure factor on the order of 1/N. In particular, a renormalized structure
factor, S(k) = S(k)/[1 + S(k)/N], is measured. Within the error bars, it will be
indistinguishable, S(k) ~ S(k).

The driving strength, pq,, was determined within the Enskog approximation such
that the driving frequency, wq;, equals the Enskog collision frequency, wg (see also
Ref. [110]). Using a higher driving frequency, wq, = 10wg, for a subset of the initial
conditions did not show significant differences. The random numbers needed for the
driving were generated by the RANMAR algorithm [230].

3.2.2 Initial Conditions and Simulation Parameters

Initial configurations were generated by the following method. The system size, L,
for N = 400000 particles corresponding to a given volume fraction, ¢ = %ﬂ'N (a/L)3,
was determined and then 400 particles where placed in a box of size L/10 by random
sequential additiorﬂ If this did not succeed within a reasonable time, the run was
canceled and restarted with a different random seed. Once the random positions for
the small system had been determined, the complete system was tiled with copies of
the subsystem. Subsequently, N — 1 random velocities were drawn from a gaussian
distribution with unit Variancd?] and assigned to all but one of the particles. The
velocity of the last particle was chosen such that the system has vanishing total

! A Mersenne Twister pseudo random number generator [Z31] in the implementation by SciPy [232]
was used. As the hard sphere dynamics is chaotic (see, e.g., Ref. [233]), I expect that the results
are independent of the pseudo random number generator.

2Generated by the common Box-Muller transformation [234].
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3 The Static Structure

Table 3.2: Number of initial conditions, M, per combination of volume fraction, ¢,
and coefficient of restitution, €; corresponding minimal wave number, 2k a, for
N = 400000 particles and critical wave number, 2k.a [see eq. (3.12))]

® € M 2kpina  2k.a

1.0 50 0.098 0
0.9 48 0.098 0.182

0-1 0.8 49 0.098 0.266
0.7 49 0.098 0.333
1.0 50 0.124 0
0.9 0.9 50 0.124 0.292
08 50 0.124 0.439
0.7 50 0.124 0.563
1.0 50 0.142 0
03 09 46 0.142 0.331
0.8 47 0.142 0.510
0.7 46 0.142 0.671
1.0 100 0.156 0
0.4 0.9 93 0156 0.323

0.8 94 0.156 0.511
0.7 93 0.156 0.691

momentum. To destroy the structure of the regular tiling, the system was evolved
elastically (e = 1) for ~ 80 collisions per particle. For reference, the structure factors
were also measured for these elastic systems. The driving and dissipation were
switched on and the system was given time to relax to the stationary state for ~ 1600
collisions per particle.

For every combination of volume fraction ¢, coefficient of restitution € and driving
mechanism, either ~ 50 or ~ 100 different initial conditions were simulated. All
the measurements were averaged over the initial conditions. To check whether the
stationary state had indeed been reached, 10 systems were evolved for an additional
~ 800 collisions per particle. No significant further evolution of the measured
quantities was observed. Table summarizes the simulation parameters.

3.2.3 Measuring Correlation Functions

To measure the static structure factor, S(q), I first calculated

A(k) = %Z ik (3.42)
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3.3 Results

for all k = (ng,ny,n.)Ak, ng =1,2,... where Ak = 4m/L is the reciprocal lattice
spacing, with the constraint that |k| < kmayx. From this I got S(k) = Np(k)p* (k).

Assuming a isotropic system, the structure factor, S (k), must be independent of
the direction k, i.e., S(k) = S(k). This can be exploited to average S(g) over all
wave vectors with the same absolute value k. For larger wave numbers I additionally
averaged over bins [k, k + 0k| of size dk = Ak/2. To properly resolve the small
k divergence, I did not use the binning for small wave numbers. The averaging
procedure allows to define a standard deviation, 6S(k), to quantify the precision of
the results. To further reduce the standard deviation, the structure factors were
finally averaged over different initial conditions. The error bars will be given as
+65(q).

For the current correlators, the x-component of the total current,

V3

Je(k) = zl: v¥ exp(ik - ;) (3.43)
and the longitudinal current,
- 1 ~ .
Je(k) = N Z(k -v;) exp(ik - 1), (3.44)

(2
were determined and then correlated in the same way as the density above to
form Spe(k) and Sy, (k). The transverse current correlator was then determined as
2511 (k) = Spx(k) — See(k).

The temperature, T'(r) = m((v?) (r) — u?(r))/3, and the flow velocity, u(r), can
only be determined as local averages. The size of the averaging region shall be
characterized by a length scale o. To proceed, I determine M = N/3 /o3, uniformly
distributed, random positions R,. At each position, R, I determine the local flow
velocity,

N
us = u(Ry) = ZwU(Ra — 7))y, (3.45)
i=1
and the local temperature,
T, =T % Zwa o — T —ul|. (3.46)

For the weighting function, I choose a gaussian, w, (1) oc exp(—72?/202). For the
calculation of S,r(k), the density, n(Ry) = >; w(Rq — 7;) is calculated analogously.

3.3 Results

The quantity that is measured most easily is the granular kinetic temperature, Ty,
in the stationary state. Table collects the measured temperatures relative to
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3 The Static Structure

Table 3.3: Stationary temperature, Ty /Tog, relative to the Enskog prediction, Tyg,
as function of volume fraction, ¢, and coefficient of restitution, e. The uncertainty is
on the order of 2 x 10~%. For every value of €, the first row concerns the naive volume
driving while the second row is related to systems with local momentum conservation.

Volume Fraction ¢
0.1 0.2 0.3 0.4
1.0107 1.0197 1.0223 1.0154

Restitution €

0-9 0.9949 0.9939 0.9916 0.9872
0.8 1.0217 1.0419 1.0513 1.0412

' 0.9896 0.9901 0.9884 0.9808
0.7 1.0323 1.0668 1.0859 1.0745

0.9857 0.9890 0.9887 0.9794

the one expected from the driving parameters and the Enskog approximation, Tyg.
Especially the systems without momentum conservation show surprisingly large
deviations from the Enskog prediction. Van Noije et al. [74] propose an approximate
theory to explain these deviations as a coupling of the temperature modes to the
other hydrodynamic modes. The deviations are significantly smaller if momentum
conservation is restored but interestingly, the temperatures are now consistently
lower than the prediction. The apparent maximum of Ty for the naive volume driving
in the ¢ = 0.3-0.4 range should be studied more closely in the future.

3.3.1 Static Correlation Functions

Let me start with the static structure factor, S(k), itself. Figs. and show
the structure factor as I measured it from the simulations. For all parameters, the
qualitative difference for small k£ with regard to momentum conservation is easily
visible. In agreement with Ref. [I21] I find it hardly possible to extract the exponent
from a fit to k7% but the measurements are certainly compatible with o = 2 for the
naive volume driving.

The height of the first peak is affected by both the degree of inelasticity and by the
specific driving mechanism. A more detailed analysis of the detailed behavior of the
structure factor at intermediate and large wave numbers k must be relegated to future
work. For the time being, I will only use the observation that the PY-approximation
is not systematically worse for the inelastic fluid with locally momentum conserving

driving as compared to the elastic case. For reference, I also show the direct correlation
function, nc(k) = 1 — S~1(k), in Figs. and Note that in case of naive volume
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Figure 3.1: Static structure factor, S(k), as a function of wavenumber, k, for an
elastic hard sphere fluid (green) and for a granular fluid with naive volume driving
and coefficient of restitution e = 0.9 (dark blue), 0.8 (magenta), and 0.7 (light blue).
The volume fraction is ¢ = 0.1,0.2,0.3,0.4 from a—d. The arrows indicate the critical

wavenumber, k., [see eq. (3.12))]

driving, the divergence of the structure factor, S(k — 0) — oo, corresponds to
nc(k — 0) =1 for all densities and all values of the coefficient of restitution e < 1.

For the longitudinal current correlator, Sy (k), (see Fig. and even more So
for the transverse current correlator, S | (k), (see Fig. the small £ divergence
is quite prominent even for the finite system size considered here. No significant
structure seems to be present for intermediate wave numbers.

For the momentum conserving driving, the longitudinal current correlator, Sy (k),
(Fig. shows a significantly smoother structure on large length scales compared to
the equilibrium fluid. Remember that this is despite the possibly large internal random
forces. The rise of Sys(k) for small wave numbers is not covered by the hydrodynamic
theory discussed above which only predicts the limiting value, Sg(k — 0). The
transverse current correlator, S, (k), (Fig. on the other hand seems to be
completely wave number independent. Different from the elastic case, there is a
slight but significant non-equipartition, S | (k) > Sy (k), between the longitudinal
and transverse modes.
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Figure 3.2: Static structure factor, S(k), as a function of wavenumber k for momen-
tum conserving driving. See also Fig.|3.1

For the naive volume driving the density-temperature correlations, S, (k), (see
Fig.|3.9a) are negative as expected. For the elastic hard sphere fluid, these correlations
are expected to be absent. In Fig. [3.9pb, it can bee seen that the measurements show
significant correlations on large length scales for the momentum conserving driving.
While I do not understand this result completely, I believe that it is an artifact of the
choice of weighting function, w(r), used for the definition of the local temperature,
T'(r). For the time being, the negative correlations in Fig. w should be considered
with some caution. For the temperature correlator, Spr(k), (Fig. the situation
is even less clear.

3.3.2 Speed of Sound

The speed of sound, c., could be extracted for both types of driving. Table [3.4]
summarizes the results. While the factor 5 between the squared speed of sound of an
elastic fluid and an dissipative fluid expected in the low density limit is not achieved
for the intermediate densities, sound waves are still considerably slowed down by the
dissipative interactions. Moreover, there seems to be a small dependence of the speed
of sound on the coefficient of restitution €, not captured by the hydrodynamic theory.
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Figure 3.3: Direct Correlation Function, nc(k), as a function of wave number, k, for
naive volume driving. See also Fig. [3.1

One could also speculate that the speed of sound is slightly lower if the momentum
conserving driving is used, but a statistically significant conclusion cannot be drawn
from the current data.

3.3.3 Shear Viscosity and Sound Damping for Naive Volume Driving

From the transverse current correlator, S, | (k), alone, one can extract both the
shear viscosity, 1, as well as the ratio 7" /n, quantifying the deviations from the
equilibrium FDT. The latter quantity is summarized in table One observes an
increasing deviation from unity both for increasing dissipation and increasing density.
All values being less than one means that the fluctuations induced by the microscopic
degrees of freedom are suppressed in an granular fluid as compared to an elastic fluid
in thermal equilibrium. The result that n™™® only slightly deviates from 7 supports
the conclusion of Ref. [222] that #'™* = 7 is a good approximation.
The theoretical prediction, eq. , can be written in the form

m — in
S (k) = S5y - (kd) ™2+ ™,

T (3.47)
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Table 3.4: Speed of sound, mc% /Ty, in units of the thermal velocity, \/Tp/m, as
a function of volume fraction, ¢, and coefficient of restitution, e. For the inelastic
systems, the first row concerns the naive volume driving while the second row contains
data from the momentum conserving driving. The uncertainty is given as one standard
deviation.

Vol Fracti
Restitution e olume Fraction ¢

0.1 0.2 0.3 0.4
1.0 2.18(2) 4.61(5) 10.4(1) 23.7(3)
09 09(3)  2.5(5) 6.(1) 11.(2)
' 1.0(2)  2.0(4)  3.9(7) 11.(1)
08 1L1(2)  27(2)  45(8) 10.6(9)
' 0.8(1)  1.9(2)  4.4(4)  9.1(8)
0 1.0(2)  2.2(2)  4.1(4)  8.9(7)
' 0.78(8) 1.8(1)  3.9(4)  9.1(5)

Table 3.5: Ratio n'™*/n that quantifies the deviation from the equilibrium FDT for
the naive volume driving.

1 Fracti
Restitution € Volume Fraction ¢

0.1 0.2 0.3 0.4

0.9 0.992(2) 0.978(3) 0.962(3) 0.967(3)
0.8 0.988(2) 0.952(3) 0.929(4) 0.929(3)
0.7 0.981(3) 0.928(4) 0.890(5) 0.885(4)
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Figure 3.4: Direct Correlation Function, nc(k), as a function of wave number, k, for
momentum conserving driving. See also Fig. [3.1

where, St = 36v0%\ 2%/ V¥, and vt = vy Jwol? is the dimensionless shear viscosity.
In principle, different approximations could be used for v and y. Therefore, I report
both v* as well as v% /yx? in table Like in an elastic fluid, the shear viscosity rises
with density and is expected to diverge at the freezing density, ¢y, or, alternatively,
at the glass transition density, ¢,. The observation that the viscosity is a decreasing
function of the coefficient of restitution will be a recurring theme in the following
chapters.

Garz6 and Montanero [219] have determined the transport coefficients of a driven
granular gas via the Chapman-Enskog method. For reference, I give their expression
in units of wol3:

57 1+ 2px(1+€)(3e —1 4 12
L sox(1+e)( ) 14+ o+ o) + 20231 +e).  (3.48)

TR 390+ e 5 5

The agreement between simulation and theory is rather good, although the Chapman-
Enskog method seems to systematically underestimate the value of the shear viscosity.

An expression completely analogous to eq. holds for the sound damping
constant Dy = Dg Jwol?. Sound damping is less strongly dependent on density
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Figure 3.5: Longitudinal current correlator, Sy (k), as a function of wave number, k,
relative to its uncorrelated value Tp/m for naive volume driving. See also Fig.|3.1

but the dependence on the coefficient of restitution, ¢, is rather strong. This is in
agreement with the prediction from fluctuating hydrodynamics, eq. , which
indicates a divergence of Dg oc (1 — €2)71,

As I have no information about the value of kinematic viscosity, vy, I can only
compare the measured sound damping, D%, to the transport coefficient Dr, peculiar
to a granular system. Assuming, that the values of the sound damping constant,
Dyg, from the hydrodynamic theory are reasonably correct, one expects that the
kinematic viscosity, vy, is roughly proportional to Dr.

3.4 Discussion

In this chapter, I explored the static structure of a driven granular fluid in a stationary
state. The simulations described in section and the measurements reported in
Figs. are an attempt to cover a broad range of fluid densities, ¢ = 0.1-0.4,
as well as different degrees of moderate inelasticities, quantified by a coefficient of
restitution € > 0.7.

Using the fluctuating hydrodynamic theory discussed in section I could show
explicitly that the small wave number divergence of the static correlation functions,
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Figure 3.6: Longitudinal current correlator, Sy(k), as a function of wave number, k,
relative to its uncorrelated value Tp/m for momentum conserving driving. See also
Fig. 3.1

Saa(k — 0) oc k72, is a result of the combination of momentum conserving inter-
actions of the granular particles and the naive volume driving that does not respect
momentum conservation.

For a fluid in thermal equilibrium, the longitudinal current correlator, Sy/(k) =
T'/m, is independent of the wave number k. My simulations showed that this does not
hold for the granular fluid, even for the momentum conserving driving. Nevertheless,
the speed of sound, ¢, can be determined from the ratio Sy(k)/S(k). In agreement
with the hydrodynamic theory, the speed of sound is reduced for inelastic hard
spheres compared to the elastic case. The speed of sound measured from the static
correlations here, are identical within error bars to the results from the dynamic
correlation functions [235].

Experimentally, it is difficult to generate a homogeneous, three dimensional granular
fluid. Consequently, experimental measurements of the speed of sound in such a
system are lacking. For measurements in a quasi two dimensional system, see, e.g.,
Ref. [236].

For the naive volume driving, I could measure the shear viscosity, v, , and the
sound damping constant, DS. The measurement of the shear viscosity validates the
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Figure 3.7: Transverse current correlator, S, | (k), as a function of wave number, k,
relative to its uncorrelated value Tp/m for naive volume driving. See also Fig.|3.1

Chapman-Enskog expansion performed by Garzé and Montanero [219]. Independent
of the density, the viscosity slightly decreases with increasing inelasticity. The
surprising prediction that the sound damping diverges in the elastic limit is also
supported by the simulation results. The fluctuations of the internal transverse
random force, &, were found to be slightly suppressed, '™ < 75, compared to an
fluid in thermal equilibrium. A similar ratio has been determined experimentally
[237] and interpreted as an effective temperature Teg.

For the momentum conserving driving, the transport coefficients could not be de-
termined. Instead, the measurements allowed the proposition of two non-equilibrium
FDTs,

vt =y, — ﬁ€2’ (3.49a)
. 1 r
vt = ZDg — ﬁe? (3.49b)

For the theoretical analysis of the simulation results, I focused on the regime of
large length scales. It would be desirable to have theoretical predictions for the
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Figure 3.8: Transverse current correlator, S, | (k), as a function of wave number, k,
relative to its uncorrelated value Tp/m for momentum conserving driving. See also
Fig. 3.1

intermediate and short range regime similar to, e.g., the Percus-Yevick equation for
elastic hard spheres.

On a quantitative level, it would also be interesting to explore the effect of
different collision rules. As long as the interactions are momentum conserving,
the qualitative behavior regarding the small wave number divergence of the static
correlation functions will remain unchanged, though. The study of rough spheres
would also be interesting but likely quite challenging [238, [239]. Simulation results
on the viscosity are available from Walton and Braun [240].

The second possibility to suppress the small £ divergence, namely an equation
of motion that does not conserve momentum has been studied independently [241].
There, a viscous friction force, —yw, inhibits the propagation of large wave length
sound modes.

Generalized Green-Kubo relations have recently been developed for granular fluids
[242, 243]. Tt would be interesting to see, which method allows for the most precise
determination of the transport coefficients. Finally, if the problems with determining
the temperature field indicated above could be resolved, one could also get information
about the heat conductivity, k, and the equation of state.
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3.4 Discussion

Table 3.6: Transport Coefficients. The dimensionless shear viscosity, 77, and the
dimensionless sound damping constant, Dg, as a function of volume fraction, ¢, and

coefficient of restitution, e.

eq. (3.48)] and Dr [see eq. (3.17)] are also listed.

CE

For comparison, the theoretical expressions v [see,

o e /e v Vi D5/10%yx%  D%/10°  Dr/102
0.9 13.0(6)  1.70(8) 112 3.1 0.4(2) 0.064
0.1 0.8 6.6(2)  1.64(4)  1.08 0.28(2)  0.070(5) 0.034
0.7  4.3(1) 1.52(4) 1.04  0.138(5) 0.049(2) 0.024
0.9 17.4(4)  5.0(2) 356 1.8(2) 0.53(6)  0.171
0.2 0.8 852(8) 472(4) 327 038(2)  021(1)  0.090
0.7  5.64(6) 4.42(4) 3.0l 0.190(7)  0.149(6)  0.064
0.9 23.6(6) 16.8(4) 142  2.0(3) 1.5(2) 0.51
0.3 0.8 12.2(2) 164(2) 126  0532)  0.72(3)  0.27
0.7 81(2) 154(4) 111 0.239(7)  046(1)  0.19
0.9 36.0(4) T70.4(8) 688  2.3(2) 4.6(4) 1.78
04 08 17.6(1) 65.4(4) 588  0.61(2)  2.24(7)  0.94
0.7 11.40(8) 59.8(4)  50.0  0.305(6) 1.60(3)  0.66
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4 Mode Coupling Theories:
An Overview

Most derivations of mode coupling theories either explicitly or implicitly used projec-
tion operators [244] introduced by Zwanzig [245, [246] and Mori [247, 248]. This is
also the approach I will use in the derivation of the granular mode coupling theories.
While I found it well suited for a detailed calculation, the abundance of technical
details can easily obscure the underlying idea. To get an intuitive understanding, I
found a diagramatical representation helpful instead[ﬂ

In the next section I will introduce the formally exact equations of motion for the
VACEF, #(t), the coherent scattering function, ¢(g,t) and the incoherent scattering
function, ¢*(q,t). In sections [£.2H4.4] T will discuss the three types of mode coupling
theory for the correlation functions ¥ (t), ¢(q,t) and ¢*(q,t). While, originally, both
the equations of motion and the mode coupling approximations were derived for
equilibrium fluids, in the subsequent chapters I will show explicitly that they also
hold in the nonequilibrium stationary state of a randomly driven granular fluid.

4.1 Memory Equations

4.1.1 The Velocity Autocorrelation Function

The autonomous differential equation,

Yo(t) +worbo(t) = 0, (4.1)

together with the initial condition 1(0) = 1 represents a particularly simple equation
of motion for the velocity autocorrelation function, 1y(t) = m (vs(0)|vs(t)) /3T, of
a dilute gas. Intuitively, it describes the randomization of the initial velocity due
to the scattering of the tagged particle off the particles of the surrounding fluid,
0(t) = —wov(t). While it is nontrivial to deduce the dependence of the collision
frequency, wg, on the state of the system, this equation of motion necessarily describes
an exponential decay of the velocity autocorrelation function. This is an exact result
for short times [I15], but the existence of the long time tails indicates that full

'See the publications by Andersen [249-251] and van Beijeren and Ernst [252] for much more
thorough attempts to formulate kinetic theory in terms of diagrams.
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4 Mode Coupling Theories: An Overview

dynamics is more complicated. A formally exact equation of motion is given by the
Langevin equation,

o(t) +wov(t) = f(2), (4.2)

where the fluctuating force, f, accounts for the influence of all the other degrees of
freedom on the tagged particle’s velocity [I15]. It can be shown (see section |5 below)
that the corresponding equation of motion for the VACF, 1) (t), reads

906) + wop ) + [ Mt — Tyb(r)dr = 0, (4.3)

where M, (t) is aptly called memory kernel [244] 115]. The solution of this full
equation of motion can be written implicitly in terms of the solution, g, of the time

local equation ,
¢(t) = %(t) + (w() * Mv * w)(t)a (44)

where * denotes a convolution in time. A possible representation of this equation in
terms of diagrams is given by

v = 4 +¢0@¢ (4.5)

It has been found that the relaxation rate wq is smaller in a driven granular fluid
by a factor (1 + €)/2 using an Enskog approximation [67].

4.1.2 The Coherent Scattering Function

Along the same lines, the hydrodynamic equations for an inviscid, isothermal fluid,
the Euler equations, can be augmented by a fluctuating force. Consider the dy-
namic scattering function, ¢(q,t) = N (pq(0)|pq(t)) /Sq, where, p, = FT[p](q) =
+ >, exp(ig - 7;), is the Fourier transform of the density field, p(r) = + > 0(r—rj),
and the normalization is provided by the static structure factor, Sy = N (pq(t)|pq(%))-
The corresponding equation of motion is given by,

Ba.1) + 930(0.0) + [ Mlgst = )b, r)ir =0 (4.6)

The initial conditions are ¢(g,0) = 1 and ¢(q,0) = 0 due to stationarity. The
frequency Q4 = gc(q) is essentially given by the generalized, wave number dependent

speed of sound, c¢(q) = /T'/mS, [I15]. The formal solution of the above equation
can again be written in the form of a Dyson equation,

6 = ¢ T o @qﬁl (4.7)
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4.1 Memory Equations

where ¢o(q,t) = cos(cqt), the solution of eq. without memory [M(q,t) = 0],
describes undamped sound modes and ¢ = lim,_, ¢(g) is the long wave length speed
of sound.

Either by Laplace transforming the above equation of motion or by looking at
the Dyson equation , one finds that the EA order parameter, f,, is given as a
solution of the equation

J
1_7"]0(1 = M(q,t — 00) /. (4.8)

If the fluid is supposed to undergo a kinetic glass transition, signaled by f, > 0, then
it also must have a nontrivial long time limit of the memory kernel M (q,t — o0) > 0.

New Results

I am going to show in chapter |§| that the equation of motion (4.6)) formally also holds
for a driven granular fluid at least approximately. The speed of sound acquires a
nontrivial dependence on the coefficient of restitution, e,

w1 — jo(2aq) + 2j2(2aq)* /. (4.9)

cz(q)_T 1 <1+e 1—65q)_(1+6)2

“mS, 2 T3 16

4.1.3 Tagged Particle Dynamics

Motivating the equation of motion commonly employed for the incoherent scattering
function, ¢*(q, t), is surprisingly nontrivial. A straightforward approach would yield a
first order equation of motion, similar to the one for the VACF [eq. } Meaningful
results are only obtained from a second order equation, formally identical to the one
for the coherent scattering function, ¢(q,t), [eq. ], though. Here, I can only give
a sketch of a possible justification.

On macroscopic time scales, the inertial force on a tagged particle is small compared
to the friction force, —yw, due to the presence of the other fluid particlesﬂ In this case
it is possible to formulate an equation of motion for the particle’s spatial probability
density, ps(r,t), the Smoluchowski equation, independent of the particle’s velocity
[253).

The incoherent scattering function, ¢°(q,t) = <p2(0)\pf1(t)>, of a fluid governed
by the Smoluchowski equation can also be formulated in terms of a memory kernel,
M?(q, s). Later, it was found that consistency requires working in terms of a redefined,

2Tt is also possible to approximately describe the interaction of particles with the host fluid in a
colloidal suspension in terms of a friction term —%wv. Note that here I do not discuss a suspension
but a pure fluid.
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4 Mode Coupling Theories: An Overview

irreducible memory kernel, M (q,t) [254, 198]. A relation between the two is given
in the Laplace domain by

~

M;(q, s)

Mirr .8) = — = ’
° (q ) 1+Tqu<Q7s)

(4.10)
where 7, := 1/Dyq? is the time scale of the diffusion process [255] and Dy is the short
time diffusion coefficient.

If one derives the equation of motion for the incoherent scattering function, ¢*(q,t),
based on Newtonian dynamics, i.e., retaining inertial effects, it was found that
on macroscopic time scales, the memory effects are essentially given by the same,
irreducible memory kernel,

. to .
B0+ E ) + P00 + [ M- nd e =0, (41

where v° := T'/mDy and the initial conditions are the same as in eq. (4.6) above:
¢*(¢,0) = 1 and ¢°(q,0) = 0 [255]. This explains the universality between the
Brownian and Newtonian description in dense colloidal suspensions. Note that this
equation of motion admits unphysical oscillatory solutions if one neglects the memory
effects.

The asymptotic valueﬂ fq = ¢°(q,t — 00), follows from the equation

I = mM™(q,t — 00)/¢°T, (4.12)
1—fs
which is the direct analogue of eq. [258].

The mean square displacement, <5r2> (t), can also be understood as the second order
coefficient in a small wave number expansion of the incoherent scattering function,
¢%(q,t) =1 — ¢ (672) (t)/6 + O(q*). A simple but often successful approximation is
to assume that the mean square displacement captures all of the time dependence
and write the incoherent scattering function in the gaussian approximation, ¢*(q,t) =
exp[—q? (dr?) (t)/6] [115} 235].

If one assumes that the dynamics in the fluid will eventually always be diffusive,
limy oo <5r2> (t) = 6Dsot, one finds that the long time diffusion coefficient is deter-
mined by the time integral of the memory kernel Mo (t) := lim,—,0 ¢> M (q, t) [257],

m o
D} =Dyt + ?/ My(T)dr. (4.13)
0
At the kinetic glass transition, the mean square displacement is bounded, (57%) (t —
o) = r2, instead, and the localization length is (see Ref. [257]) given by
r2 = 3T /mMy(t — o). (4.14)

3Sometimes referred to as the Lamb-MéBbauer factor [256, 257)
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4.2 Back Scattering and Long-Time-Tails

New Results

In chapter [7] I will show that the equation of motion (4.11]) also hold for a driven
granular fluid. The relaxation rate v* is reduced by a factor (1 + €)/2 compared to a
fluid of elastic hard spheres in agreement with the result for the VACF.

At this point, the equations of motion (4.3), (4.6) and (4.11)) are exact but formal.
If the memory kernels were known, the equations could be solved in the Laplace

domain. Thus, knowing the exact memory kernel is equivalent to having a complete
solution of the dynamical equations.

In the remaining sections of this chapter, I will briefly discuss the application of
the mode coupling formalism to the three memory kernels introduced above. In
particular, I will emphasize the differences between mode coupling theory as it has
been applied to equilibrium systems and the nonequilibrium mode coupling as it is
outlined in this thesis.

4.2 Back Scattering and Long-Time-Tails

The nontrivial behavior of the velocity autocorrelation function is a consequence of
the interaction of the tagged particle with the surrounding fluid. On macroscopic
time and length scales, one expects that the fluid is well described by hydrodynamic
equations. The most basic way to approximately include the effect of the interaction
between the tagged particle and the hydrodynamic modes is to retain the lowest
order term in a perturbative expansion of the memory kernel (see also appendix @

®o oty

T e Ty vt v (4.15)
% b4

Detailed balance (see chapter [2)) requires that the transition rates expressed by the
left '( and the right vertex )‘ are equal in equilibrium fluids.

As the suppression of diffusion and back scattering are attributed to the blocking
effect of the dense host fluid, one should be able to get such an effect by explicitly
treating the interaction of the tagged particle with the hydrodynamic density field,
bo(q,t) = exp(—Dgq*t) cos(cqt), characterized by the speed of sound, ¢, and the sound
damping constant, Dg. The long time tails, on the other hand were found to be related
to the transverse currents, qu =J¢—4q qu . The corresponding hydrodynamic correlator,
ot (q,t) = exp(—v ¢°t), is characterized by the shear viscosity, v; = n/mn. Indeed,
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4 Mode Coupling Theories: An Overview

one finds (see chapter [5)) that the memory kernel is given asymptotically as
o0
M (t) o< / gPe” Pt dq oc [(D + )t~/ (4.16)
0

reproducing the long time tail result.

Inspired by the original explanation of the long time tails by Ernst et al. [259],
there are quite a few derivations of mode coupling approximations for the velocity
autocorrelation function [260-268]. Starting from either kinetic theory or fluctuating
hydrodynamics, they mainly differ in two points: (i) The approximations used in
determining the vertices and (ii) the precise form of the correlation functions that
are used for the loops. While the theory as it is presented above can essentially
only explain the asymptotic regime, ¢ — 0o, some groups tried to formulate mode
coupling theories that yield reasonable results for all times. This can be done by
replacing the hydrodynamic correlators by correlation functions with a larger range
of validity and it allows, e.g., to calculate the coefficient of diffusion self consistently.
For particles with a smooth potential, mode coupling has to be applied to the second
order memory function, see, e.g., Ref. [269].

Apart form the mode coupling approach, the velocity autocorrelation function has
also been calculated with the help of other kinetic theories, see e.g., Refs. [270H273].

New Results

In chapter [5| I will derive the mode coupling expression for the memory kernel of a
driven granular fluid via the projection operator formalism. The resulting equations
are formally equivalent to those in the elastic case. In particular, the result for the
long time tails, 1(t) t73/2 will be recovered. What is fundamentally different is
that the granular fluid violates detailed balance and consequently the left and right
vertex are different. More specifically, the ability of the tagged particle to excite
coherent density waves is reduced as compared to the elastic case. In turn, this
reduces the efficiency of the back scattering, which results in an increased diffusivity
of the granular fluid.

4.3 The Coherent Scattering Function and the Glass
Transition

While the mode coupling theory for the velocity autocorrelation could be inter-
preted as the inclusion of some first order terms of a perturbation series, no
such straightforward interpretation is possible for the most widely used mode
coupling theory for the coherent scattering function. First, the memory kernel,
M(q,t) = v46(t) + Maicr[9](g, t), is assumed to be composed of a quickly decaying
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4.3 The Coherent Scattering Function and the Glass Transition

part, approximated by a delta function in time and an additional part that shall be
approximated in the spirit of mode coupling theory. In terms of diagrams, MyicT[d)]
it is given as

¢

Mycré] ZO (4.17)

)

Note the heavy lines in the loop, denoting the full correlation function. This turns
the equation of motion into a recursive definition of the coherent scattering
function, ¢(q,t), in other words, the equation of motion has become a nonlinear
integro-differential equation which has to be solved self-consistently.

Again, quite a number of authors have derived equations of this type for particles
interacting via smooth potentials [274-277] and for hard spheres [278-280]. Gotze
and coworkers later based their extensive studies of mode coupling predictions on the
derivation of the equations by Sjogren [281]. Boley [282] and Lindenfeld [283] were
able to show that Mazenko’s approach [274] is actually equivalent to the projection
operator formalism. Here, and in a large part of the literature, the vertices are
calculated with an Enskog approximation, i.e., spatial pair correlations are treated
exactly while the velocities of different particles are assumed to be uncorrelated.

Applied to classical fluids, the mode coupling expression for the memory kernel
constitutes an approximation but it is possible to construct physical models where
the mode coupling memory kernel is exact [284]. On the other hand one can also
find systems were it fails completely [285].

Bengtzelius et al. [258] realized that the nonlinear self-consistency equation admits
bifurcations in the space of solutions. If the high temperature or low density solution
with f; = 0 suddenly becomes unstable toward a solution with f, # 0 this describes
the kinetic glass transition. This behavior of the mode coupling equations becomes
especially transparent for the schematic model [286]. Here, the additional complexity
introduced via the wave number dependence of the scattering function is avoided by
approximating the static scattering function by a delta function, S, = 14+.5*6(q —q*).
The characteristic wave number ¢* is chosen as the location of the first and highest
peak of S;. The schematic mode coupling equations then read

b(t) + Q%p(t) + 4AQ? /O t ¢*(T)p(t — 7)dT = 0, (4.18)

where the strength of the memory effect is controlled by the coupling constant A.
Equation , determining the EA order parameter, f, turns into a simple
algebraic equation, f/(1 — f) = 4Af2. For A < 1, the only real solution is f = 0,
indicating fluid behavior while for A > 1, the only stable solution turns out to be
f >1/2, i.e., glassy behavior. A careful analysis (see, e.g., Ref. [287]) shows that the
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bifurcation scenario, where f, jumps from f, =0 to f; > 0 discontinuously, carries
over to the fluid model where everything depends on the wave number ¢.

From an expansion around the critical state at the glass transition, one can confirm
the von Schweidler law,

$(q,t) = fq o< =1, (4.19)

and a similar power law behavior for the g-relaxation,

¢(q,t) = fg oc ™, (4.20)

for a fluid close to the glass transition [287]. The critical exponents, a and b, are
related to a single critical parameter A\ via
_T?(1—a) T%(1+0)

A= T(1—2a) I(L+2b) (421)

where I'(z) is the Gamma function.

As a result of the Enskog approximation used to calculate the vertices and the
relaxation frequencies, the static structure factor, Sy, is a parameter of the the-
ory. Choosing the Percus-Yevick approximation of S;, one arrives at a critical
density ¢fY ~ 0.516 [258]. Using extrapolated structure factors from simulation

measurements, the value is slightly higher, ¢, ~ 0.546 [288].

New Results

For a driven granular fluid, the vertices and the relaxation frequency, Qg, deviate
from their elastic values in such a way, that the memory kernel for the dissipative
fluid, m§;cp[9)(q,t) = A(q, €)mact[@](g,t), acquires a positive prefactor A(q, €) that
depends on the wave number ¢ and on the coefficient of restitution €. An important
prerequisite for mode coupling theory to be mathematically sound is that the memory
kernel is positive definite [287]. This property was shown for the memory kernel of
the elastic hard sphere fluid and is manifestly retained for the driven granular fluid.
Consequently, the granular mode coupling theory predicts a granular glass transition
for all values of the coefficient of restitution. With increasing dissipation, the critical
density, ¢.(€), smoothly increases from the elastic value (see Fig. [1.9).

4.4 Coupling of the Tagged Particle to the Coherent
Modes

To determine the coupling of a tagged particle to the collective density modes, a
third kind of mode coupling theory can be used [289] 258], 290)]
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)

Myicrlg, ¢°] =O (4.22)

¢S

For a mode coupling treatment of the tagged particle dynamics of soft particles
see, e.g., Ref. [291].

Close to the glass transition, it is natural to choose ¢(q,t) = dmcer(g,t) [258],
the solution of the mode coupling equation for the coherent part of the loop.
Again, this turns the equation of motion into a closed equation for ¢*(q,t) that has
to be solved self consistently. Although it is widely assumed that this a successful
description of the tagged particle dynamics, besides Refs. [289] 290], there is almost
no discussion of the physical motivation for this approximation.

For the full time dependence the equation of motion can, again, only be solved
numerically. The asymptotic value of the incoherent scattering function, f7, follows
the behavior of the EA order parameter, f;, and becomes nonzero at the glass

transition.

New Results

In chapter [7] I will show how to carry out this type of mode coupling theory for
the drivep granular fluid. It turns out that the memory kernel, mf\jligT[qb, ?°l(q,t) =
(1 + e)myforlo, ¢°](g,t)/2, formally differs from the elastic expression only by a
simple prefactor. The more inelastic the fluid, the weaker the memory effects and
thus, the higher the diffusivity, D, for a given density. As the glass transition
density is increased in the dissipative fluid for the same reason, the critical length
scale, r¢, is nevertheless smaller than in the elastic fluid.
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5 The Velocity Autocorrelation Function

In this chapter I want to discuss the mode coupling description of the velocity
autocorrelation function (VACF') of a driven granular fluid for densities far away
from the glass transition. The main focus will be to find a description of the long
time tail. I will first apply the projection operator formalism of mode coupling theory
to an elastic hard sphere fluid in section In the following section I will
discuss the complications introduced by the extension to a nonequilibrium dissipative
fluid. With the feasibility of granular mode coupling established, I will present a
granular mode coupling description of the long time tails in section

To find a mathematical description for the VACF, ¢ (t), that predicts a long time
tail, ¥(t — o0) x t73/2 the memory kernel needs to have the same asymptotic
behavior, M,(t — 00) o< t~3/2. This can most easily be seen in the Laplace domain,
where the VACF is given by, 1)(s) = [s —iwg — M, (s)]"* and where the long time tail
corresponds to ¢(s — 0) & /5. An expansion of ¢)(s) in powers of \/s only contains
a linear term if M, (s — 0) o /s [I15]. This implies that the memory kernel of the
VACF of an elastic or inelastic hard sphere fluid must decay algebraically for long
times, M, (t) oc t=3/2.

5.1 Mode Coupling Theory for Elastic Hard Spheres

The results obtained in this section are a variant of those found in Refs. [261], 272].
Technically, I closely follow the formalism of Bosse et al. [269).

To get an explicit expression for the memory kernel of the VACF, ¢(t) =
m (vs|vs(t)) /3T, 1 use the Mori identity (see appendix [E) where the relevant projec-
tion operator is given by P = m |vs) (vs| /3T. Consequently, one gets for the VACF
in the Laplace domain

Wb(s) = [s —iwo — My(s)] (5.1)
where, wy =m <Usiﬁ+vs> /3T, is the collision frequency and the memory kernel is
formally given by
_m
R

and Q@ = 1 — P. This shows that the memory kernel, M, (t) < (F|F(t)), can also be
regarded as the autocorrelation of the so called fluctuating force, F = QL v, [244].

M, (s) <vs\ﬁ+Q(s - QE+Q)*1Q2+US> (5.2)
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5 The Velocity Autocorrelation Function

Let me introduce the mode coupling approximation with the coupling of the tagged
particle to the collective density mode, px = % >, €% 7i. Following the projection
operator formulation of mode coupling theory, I introduce a second projection
operator,

Po=NY, ‘pkp§> <PkP;’ / Sk, (5.3)
k.p

where, py = eP"s | is the probability density of the tagged particle and write

m

3T
Using the definition of P,, one finds

M, (1) (vl L4 QP, exp(itQL, Q)P, QL vy (5.4)

M,(t) ~ N2

37 2 (vs| L+ Qoipy) (ol @5 2oy ) {propy| QL w5 ) /SkS.

k,p
k/7p/
(5.5)
Two more approximations are needed to get a tractable expression for the memory
kernel: A factorization approximation,

<Pkﬁ§|e”gﬁ+gpkfﬂf;f> ~ <Pk|€itgﬁ+gpk’> <P§|e“9£+gpfy>

o s (5.6)
= <Pk!€”Q[’+QPk> <P§|€ZtQ£+Qp§> Sk Opp'
where the second equality holds exactly for a homogeneous system (see, e.g., Ref. [287]).
The second assumption is that for long times, higher powers of the reduced Liouville
operator, £ := QL Q, become identical to those of the original operator, £, i.e.,
exp(itQﬁ+ Q) ~ exp(itﬁ+). While this is difficult to prove in general, in the present
case it does not appear to be unreasonable as £, describes a dynamics that differs
from the full dynamics only in so far as the momentum of the tagged particle remains
fixed. T expect this to be a largely irrelevant modification for long times, indeed.
The last step allows to identify the dynamic correlation functions above with the
coherent scattering function, ¢(k,t), and its incoherent counterpart, ¢*(p,t),

(pul exp(it QL. Q)pr) (o3l expl(it QL Q)py) ~ Sio (k. )8 (p.1). (5.7)

With the three approximations introduced above, namely (i) the restriction to
a subspace with the projector P,; (ii) the factorization of the resulting four-point
function and (iii) the replacement £, — £ which together constitute the mode
coupling approximation, one finds

Mv(t> ~ Mvp(t> = 3% ng(k7p)sk¢(k7t)¢s(pvt)7 (58)
Ek.p
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5.1 Mode Coupling Theory for Elastic Hard Spheres

where the vertex, V,(k, p), is given by

Vo(k,p) = N (0| QL pu0}) Sk = N {psy] QL 105 /S (5.9)

and the left and right vertex are identical due to detailed balance (see section [2.2)).
Considering the defintion of the left vertex, one finds

<Us|£+ Qﬂkﬂf,> = <’Us\ﬁopkﬂf;> =k <’Us szpf7> +p <vs|ij§L> : (5.10)

The remaining averages are not difficult to calculate (see appendix and yield
VV,(k,p) = %kncké(k +p), (5.11)

where the delta function expresses the momentum conservation of the hard sphere

interaction.
Finally, we get a closed expression for the memory kernel,

Ao T 1 [°°
Moplt) = o [ bk (nes) Sk, 10" (k. ), (5.12)
or , o
M, (t) = 12v2r%wl? / bR (ney) 25,6 (k, )6 (k. 1), (5.13)
0

with the dimensionless wave number k = kfy. Remember that wg denotes the Enskog
collision frequency [eq. (L.11))] and x is the pair correlation function at contact.

As I am ultimately interested in the long time behavior, I will assume that
the time evolution of the collective density is well described by hydrodynamics,
d(k,t) = do(k,t) = exp(—Dgk?t) cos(ckt), where from now on I will assume that
the temperature is constant in space and time for simplicity. Consistently with
the hydrodynamic expression for the coherent scattering function, ¢(k,t), I assume
a diffusive behavior for the incoherent scattering function, ¢*(p,t) = ¢§(p,t) =
exp(—Dp?t), where D is the coefficient of diffusion.

From the Percus-Yevick approximation, one finds that k*(ncy)?Sk ~ cos?(2ak)
asymptotically for large k (see Fig. [5.1). With ¢(k,t = 0) = ¢*(k,t = 0) = 1, this
implies that the short time limit of the mode coupling memory kernel, M,,(t —
0) o J5° cos?(2ka)dk, does not exist. Quite to the contrary, the memory kernel must
vanish for short times, M, (¢ = 0) = 0, because even the smallest ring collision involves
at least three particles and two collisions with a finite interval of free streaming in
between.

More careful derivations [260-264] find that, instead of ¢(q,t)¢°(q,t), the memory
kernel contains a term [¢(q,t) — (g, t)]%(q.t), where ¢¢(q,t) = exp(=Tk?*t*/m)
is the coherent scattering function of noninteracting particles. As, ¢(q,t — 0) =
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Figure 5.1: Left: The nontrivial wave number dependence, Vf(k) := k*(ncy)? Sk, of
the integral kernel of the mode coupling memory kernel M, ,(t), eq. (5.12). Right: The
same for the mode coupling memory kernel My, i.e., V2 (k) := k*(2j2(2ak) — jo(2ak)].

¢r(q,t — 0), the difference term vanishes for ¢ — 0 as it should. The behavior of the
long time tails is independent of these considerations and thus I will continue to use
the simple memory kernel derived above.

As both the static structure factor, Si as well as the direct correlation function, ¢y,
tend to a constant for £ — 0, one finds the following asymptotic form of the mode
coupling memory kernel

Munt = 0) ox |7 dRE exp{-(D + D)’ co(ck) (5.14)

x t~ Y2 exp[—c?t/4(D + Dg)]

That this does not explain the long time tails was to be expected. Instead, in analogy
to the mode coupling description of the incoherent scattering function, ¢*(q,t), (see
chapter , I expect that M,,(t) describes the negative part of the VCAF. A negative
region in the VACF is indicative of back scattering which in turn is a precursor of
the cage effect.

Before coming back to question of long time tails, let me first show that the mode
coupling approximation explained above can be generalized to the nonequilibrium
stationary state of a driven granular fluid. After I have shown that this is indeed
possible, I will introduce more mode coupling contributions to the memory kernel
that will eventually be able to describe the long time tails.

5.2 Mode Coupling Theory for a Driven Granular Fluid

The Mori-Zwanzig expansion (appendix of the stationary state time evolution
of a driven granular fluid in terms of a relaxation frequency, wg, and a memory
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5.2 Mode Coupling Theory for a Driven Granular Fluid

kernel, M5(t), is formally identical to that of an equilibrium fluid discussed above.
The introduction of the projection operator P = m|vs) (vs|/3T yields a reduced
relaxation frequency [67]

1+e¢

T <(115]z£+'v8)> = wg, (5.15)
smaller than the elastic Enskog collision frequency, wg, and a memory kernel
My(t) = 37 (0] £4 Qexp(itQL, Q) QL w4, (5.16)

where the dynamics is encoded in the granular pseudo Liouville operator, £ ([2.26)),

and the average (-)) is defined over the stationary distribution function, o(T") (2.31)),

and the realizations of the random driving force. With F! = oct lvs #QLivs=F,

the memory kernel is no longer an autocorrelation of the fluctuating force F' but the

crosscorrelation function of two fluctuating forces, F and F', i.e., MS(t) o< (FT|F(t)).
The mode coupling projector

Po=N>_lproi) Corrpl/ S, (5.17)
k.p

together with the mode coupling approximations discussed above yields the approxi-
mation
M(E) ~ M, (1) = o2 Zv (I, )V} (K, D)6 (k1) (p, 1) (5.18)
7p
with two distinct vertices V,(k,p) and Vg(k,p) due to the violation of detailed
balance.

With Ej{,pkp; = 0, the left vertex, V, = N{vs|L1Qprp;))/Sk, is formally given
by eq. (5.11). The right vertex, V;(k:,p) = N{prp,Q|L+vs)/Sk, can be calculated
directly. Knowledge of the adjoint operator L’i is not required. With the approximate
granular YBG theorem (2.25)) one finds (see appendix ,

1+e€
VVi(k,p) = T—kncké(k +p), (5.19)
smaller than the left vertex, V,(k,p). The random driving force suppresses the

generation of density fluctuations through collisions between the tagged particle and
the particles of the host fluid. The result V,(k,p) # V;(k:, p) supports the hypothesis

that the granular pseudo Liouville operator £ has a nontrivial adjoint, EL *£L_
(see section [2.3)).

For the momentum conserving driving considered here, the static structure factor
of the driven granular fluid, Sk, although it is different from the one for a hard sphere
fluid in thermal equilibrium, also tends to a constant value for k — 0. Therefore, the
asymptotic behavior of the memory kernel is the same as for an elastic hard sphere
fluid, eq. . The strength of backscattering is reduced by a factor (1 + €)/2,
though.
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5 The Velocity Autocorrelation Function

5.3 Long Time Tails

Continuing the search for the origin of the long time tails, I introduce two more
mode coupling contr1but1ons that describe the coupling of the tagged particle to
the longitudinal, ]k = N > (k: vj)e ik and transverse, jk = Jr — k]k, current,
respectively. Here, jp = ZJ vje e’*7i  is the collective current mode. To this end I
define the projectors

=N_— Z ik es) (Gt P

. o (5.20)

P = N2T ZZ 3k o) (k@ oo,

« k,p

which lead to the following mode coupling memory kernels,

o) = 35 Zw k,p)V] (k. p)o" (k. )6 (p. 1) (5.21)
7p
and

) = 5 S Ve anlk PV sk p) (kD01 (5.22)

a,B k,p

where ¢ (k,t) = m(jf|ji ())/T and ¢" (k,t) = m(g{ |5} (1)) /2T are the longitudi-
nal and transverse current correlators, respectively.
In this case the left and right vertices turn out to be identical,

VV(k,p) = VVi(k,p) = Nm(vs|L Qjfp3) /T

_ %WEI}[%Q(ZM{:) — jo(2ak)]d(k +p) (5.23)

V] sk 0) = VY1 as(k.p) = Nim (L4 Q5 o)) /T
PN . :
= (ug — haks) - wp[2(2ak) — o(2ak)0(k +p) (5.24)
and are given in terms of the spherical Bessel functions, j,(z), of order v [292] (see
Fig. . For the longitudinal vertices V,(k,p) and Vg (k,p), the nontrivial static
correlations, Sy (k), discussed in chapter [3| above have been neglected.
With limy_0[2j2(2ak) — jo(2ak)] = 1 and ¢T (k,t) = exp(—v k*t), the transverse

contribution finally yields a memory kernel that is able to describe the long time
tails,

< (t = o0) o /000 dER2 exp|— (71 + DVE2] o L/[(D + v )2, (5.25)
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exactly like for elastic hard spheres. The magnitude of the memory kernel is reduced
by a factor (1 + €)?/4, though, which is again due to the randomizing effects of
volume driving.
Finally, the sum of the mode coupling memory kernels, My (t) =~ M ,(t) + Mg, (t) +
£, (t), is expected to be a accurate description of the VACF of a driven granular
fluid on macroscopic time scales.

5.4 Discussion

The mode coupling treatment of the VACF for elastic hard sphere fluids showed
that it is one of the simplest mode coupling theories with some predictive power.
Therefore it seemed to be a good starting point for the generalization of mode
coupling theory to the stationary state of a dissipative fluid far from equilibrium.
In the preceding sections I showed that indeed there are no fundamental obstacles
to such a generalization. In particular, I was able to show that the long time tail,
Y(t) oc t73/2, in a driven granular fluid has exactly the same origin as in a fluid in
thermal equilibrium. In both situations the coupling of the tagged particles’ velocity
to the transverse current, jkT, is responsible for the slow decay of the correlations.

It is tempting to try to calculate the coefficient of diffusion, D, self consistently via
the Green-Kubo expression, D o [;° ¢ (t)dt. Unfortunately, this integral is dominate
by the short time behavior of the VACF despite the long time tails. Therefore one
would need a rather precise understanding of the short time evolution of the VACF.
Naturally, this can not be given by mode coupling theory. A numerical solution of
the equation of motion for the VACF is work in progress.

While I concentrated on the locally momentum conserving driving, it would also
be interesting to get a mode coupling description of the modified long time tail,
¥(t) o< t71, in the case of naive volume driving [67]. A similar situation is given
by the Lorentz gas, where a tagged particle interacts with randomly placed fixed
obstacles. The corresponding mode coupling theory [293] might therefore be relevant.
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6 Granular Mode Coupling Theory/'|

In this chapter I want to discuss the mode coupling description of the kinetic glass
transition. I will start by describing the established projection operator approach
in section [6.1] and then explain the modifications that appear if this approach is
applied to the driven granular fluid in section As the granular mode coupling
theory is still in an early stage of development, I will complement the discussion of
the first results (section by an extended discussion of possible future directions

(section [6.4)).

6.1 Mode-Coupling and the Glass Transition of Elastic
Hard Spheres

The results obtained in this section for a elastic hard sphere fluid in thermal equi-
librium are a simplified version of the analysis by Leutheusser [278]. Technically, I
follow the formalism by Bosse et al. [275].

Like in the preceding chapter, I want to use the projection operator approach to
formulate the Langevin equation for the coherent scattering function, ¢(q,t),
and the mode coupling memory kernel, eq. . To this end, I introduce the
following projection operator,

P =N lpg){pal/Sq+NmY_ lighigl/T (6.1)

and use it to calculate correlation functions of the microscopic state

Ag = VN(pg/\/Sq:\Jm/T5E). (6.2)

What I ultimately want to know is the dynamic scattering function, ¢(q,t) =
N (pqlpq(t)) /Sq, which is the 11-component of the matrix of correlation functions,

baplq,t) = <A§]]Ag(t)>. In the Laplace domain this is equivalent to

bas(s) = (Aglls — Q= M(s)] 7 4F) (6.3)

! A brief account of the subject of this chapter has been published in Ref. [294].
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6 Granular Mode Coupling Theory

where, according to the Mori-Zwanzig formalism, Q = PL, P, M(s) = PL, Q(s —
oL, Q)’1Q£+73 and Q@ =1 — P. Inverting

. S/N —ij/,/TSq/m
(Agl(s =2 =M(s))Ag) = N :
—Qjp/JTSg/m  s/N —mll;; /T —mMj;(s)/T
(6.4)
where all but the 22-component of M(s) vanish because QL p, = 0, one finds

(Agl(s— L)' 4,)
mNQ]-]- _ mNij(s) NQPj

S —_—
_ 1 T T \/TSq/m
- mNQ;; mNDM;;(s) mN2Q,;Q; NQjp
sls — Ji ji } _ pitip S
|: T T TSq VT'Sq/m
(6.5)

where I used the notation §2;; = <qu]quL>, Q= Qy, = <pq\quL> and M;j;(s) =
<A2’M(S)A3> and suppressed most of the wave number dependence. Due to parity,
Qpp = <pq\ﬁ+pq> =q <pq]qu> = 0 vanishes. In particular one finds

~ B A 1 B 1
(a,5) = N {pal(s = L) pq) /S4 = oo s (66)

 5—Qj;N/v3—M;;(s)N/v}

This can be written more transparently as
2
&
s —ivg— M(q,s)’

¢~ a,8) =5~ (6.7)

where ) ) )

Q, =mN=Q,;Q, /TSy = —q°T/mS,,

vg = mNS; /T = wr[l — jo(2aq) + 2j2(2aq)],
with the Enskog frequency wg and the spherical Bessel functions j,(z) [292]. The

(6.8)

relaxation rates <pq|ﬁ+qu> = <qu|£A+pq> =gq <j§]jé:> = qT'/m are easily determined.
More details on the explicit calculation of the term 1, can be found in appendix
By Laplace transforming the equation of motion , one can show that it yields
exactly the form of eq. above.

The instantaneous part of the memory kernel, v, is sometimes called a viscosity.
In fact, the coherent scattering function of damped sound waves described by a speed
of sound, ¢(g), and a viscosity, (4, reads

g s) = s — ¢*c*(q) +q'¢
’ s = 2iq*¢y — M(q.5)

(6.9)
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6.1 Mode-Coupling and the Glass Transition of Elastic Hard Spheres

This implies that, more precisely, {;, = v,/ 2¢? is a viscous term. To lowest order in ¢
one finds ¢, = 3a’wg/5 + O(¢?). The speed of sound is then given by

*(q) = qf;’ —*¢, (6.10)

where the viscous correction is of the order ¢? and does not alter the long wavelength
speed of sound, lim,,0 ¢*(q) = T/mS(q = 0).

For the memory kernel, M(q,s) = mNM;;(q,s)/T, I am going to use the mode
coupling approximation discussed above (section . To this end I define the
projector

Pa=N2>"|owpp) {orppl /SkSp (6.11)
k.p

and write
Mjj(q,t) = (GEIL+ Qexp(itQL 1 Q) QL jE )

. . ~ (6.12)
~ < GEIL4 QPs exp(it QL Q)P QL qu> :

After the factorization step and with all the normalization factors included, this
yields

M(q,t) ~ MM (q.8) = NS (GFIL+ Qouny) (prppQILaiy ) Bk, )0(p,1)/SiSp.
k,
’ (6.13)

For attempts to avoid the factorization of the four point function, see Refs. [295-
297]. Alternatively, the factorization can be understood as a kind of mean-field
approximation, neglecting fluctuations of the ‘order parameter’ [32]. Indeed, if
we regard the scattering function, ¢(q,t) = (®(g,t)), as the macroscopic value
of a microscopic ‘order parameter’, ®(q,t) = pq(0)*p4(t), then the factorization
assumption corresponds to setting the fluctuations, A¢(k,p,t) = (®(k,t)P(p,t)) —
(P(k,t)) (®(p,t)), to zero.

The vertices, Vgrp = N<j(IL|CA+kapp> /Sk = N<pkpr|CA+qu> /Sp can be re-
duced to static correlation functions explicitly (see appendix [F.2.3)),

17T __

— 5t (@ B)Sy + (- p)Sk — g5 (k,p) /Sy Ok +p— @), (6.14)

where the delta function is a consequence of momentum conservation, again.
Unfortunately, much less is known about the triplet correlation function, S (3) (k,p),
than about the structure factor, S,;. For some results, see e.g., Refs. [298, [299].
Conventionally, the Kirkwood superposition approximation [300, B01], S (3)(k,p) ~
SqSkSp, is used. While it is largely uncontrolled and was shown to fail on large
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length scales [302], it can be understood as the maximization of an approximate
entropy functional [303].

Using the superposition approximation, the vertex can be expressed in terms of
the direct correlation function, nc, =1 —.5; L

17T . N
VVkp = nNESp (G- k)ek + (G- p)ep] 6(k+p — q). (6.15)
Thus, the memory kernel of an elastic hard sphere fluid within the mode coupling
and Kirkwood superposition approximation can be given explicitly in terms of the
static spatial correlation functions as

Mi¢l(a,8) = — > SiSpl(d-K)ex + (G- p)es]’ ok, t)d(p,t). (6.16)

Whenever I want to emphasis that the mode coupling memory kernel is expressed
in terms of the correlation function ¢, I will write it with the functional argument
explicitly. Going over to a infinite system we can write the dimensionless memory
kernel, m(q,t) = M(q, t)/Qg, as

migl(a,6) = o [ k1S {1d- Hew+1d- (-~ Wlega} o(k.Dé(g ~ k. 0).
! (6.17)
The temperature does not appear in the above expression at all. This expresses
the fact that the hard sphere system has no intrinsic energy scale and thus the
temperature only sets the overall timescale of the system.
Apart from the viscous term v, that is peculiar to hard sphere fluids, the memory
kernel for a fluid composed of particles with a differentiable potential has a formally
identical mode coupling approximation [287].

6.2 The Granular Glass Transition

To get a theoretical description of a possible kinetic glass transition in a driven
granular fluid, I want to generalize the mode coupling formalism outlined above to
the nonequilibrium stationary state. The success of this program for the VACF
in the preceding chapter shows that there is reason to expect that the coherent
scattering function, ¢(q,t) = N{pqlpq(t))/Sq, of the driven granular fluid will be
determined by an equation of motion that is formally identical to the one for a fluid
in thermal equilibrium.

Moreover it may also be possible to apply the mode coupling approximation
introduced above for elastic hard spheres. For the VACF it turned out that the
lack of knowledge of the adjoint Liouville operator, cl , made matters technically
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6.2 The Granular Glass Transition

more involved but presented no fundamental problems. I will show below that the
situation is more complicated for the coherent scattering function but that in the
end, a granular mode coupling theory can still be formulated.

To get a prediction of a granular kinetic glass transition, granular mode coupling
theory has to fulfill one more requirement in addition to the treatment of the VACF
in the preceding chapter. If the bifurcation scenario, i.e, the discontinuous jump
of the EA order parameter, f,, at the critical density ¢. is to remain valid, the
approximate memory kernel derived by the granular mode coupling theory must be
positive definite. I will show that this is guaranteed because the memory kernel of
the driven granular fluid formally differs from equation above by a positive
prefactor only.

6.2.1 The Equation of Motion

To begin with, I define the equation of motion by introducing the projector

P =N3> _lp)(pal/Sq+ Nm Y ligh{ig|/T (6.18)

and the microscopic state A4, equation (6.2). Again, the average (-) is defined over
the distribution function in the nonequilibrium stationary state, eq. , and the
realizations of the stochastic driving force £&. The dynamics is encoded in the pseudo
Liouville operator, £, eq. .

Without having an explicit expression for the adjoint Liouville operator, [,1, I
can not rule out that the memory kernel M,;(q,t) = (pq|L+Qexp(itQLQ) Q£+qu>>
is actually nonzero. Following the procedure outlined in the preceding section, I
therefore conclude that the coherent scattering function is given by

6 g, 5) =5 — mN?Q;,[Qp; + My;(s)]/TS, .
’ S—mNij/T—mNij(s)/T

(6.19)

Within the mode coupling approximation discussed below, M})\;ICT(q, s) = 0. In this
case, the equation of motion for the coherent scattering function, ¢(q, t), of the driven
granular fluid is formally identical to the one for the elastic hard spheres ((6.7)).

For the relaxation rates one finds

. q T
Qp = (1 1L+pa) = 17— (6.20)

identical to the elastic case but (see appendix [F.1)),

iz 1+e 1-—c¢
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6 Granular Mode Coupling Theory
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0 ‘ ‘ ‘ for different values of the coefficient of restitution
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different and explicitly dependent on the coefficient of restitution. Note the additional
structure factor appearing here. It accounts for the fact that due to the inelasticity
the granular particles have a higher probability to be close together compared to
elastic particles. The hard sphere contribution,

. . . 1+4+eT . .
Q= (HLyjy) = —iwp———[1 — jo(2aq) + 2j2(2aq)], (6.22)
2N m
only acquires an e-dependent prefactor.

The viscosity,
_1+e

(g = —~wnll = jo(2ag) + 2j2(2a9)}/*, (6.23)

is thus also reduced compared to a fluid of elastic hard spheres in thermal equilibrium.
For the speed of sound one finds

T 1 [14e 1—c¢
2 P — [
cW=ns 2 T2

Sq| — ¢*¢. (6.24)

For increasing dissipation, i.e., smaller coefficient of restitution €, the long wave
length speed of sound decreases smoothly from its elastic value (see Fig. . This
is in contrast to the hydrodynamic result [eq. ] which predicts a significantly
lower speed of sound as soon as € < 1. Temperature fluctuations and their coupling
to the density fluctuations lead to the modified speed of sound in the hydrodynamic
theory. They are completely neglected in the present theory, which, consequently,
can not describe the discontinuous jump in the speed of sound upon introducing any
inelasticity.

6.2.2 Granular Mode Coupling Theory
With the mode coupling approximation defined by the projector

P2 =N |prop) {oropl / SkSp, (6.25)
k.p
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6.2 The Granular Glass Transition

one finds

My;(q:t) = (pglL+Qexp(itQLL Q) QL jI)

~ N2 3 (pg QL1 pkpn) ooy QL TE) Sk, )b, 1)/ Sk Sy = 0, (6:26)
k,p

because (pq| QL+ prpp) = 0, confirming the assumption made above, and

M;j(q.) = (GF1L4Qexp(itQL, Q)QL j})
~ N2 SO GHQL prpp) (propl QLAY (k. )6 (p. 1)/ 515, (627)

k,p
For the left vertex we find

T6(k+p—q)

(g 1€+ Qonpy) = NI

(@ K)S,+ (- p)Sk — aSP (k. p)/S,|  (6.28)
which is exactly the elastic result but the right vertex,

1+eTik+p—q)
2 m N2V

(propQILsif) = — (@ K)S, + (@ p)Sk — a5® (k. p) /S,
(6.29)

explicitly depends on the coefficient of restitution again (see appendix . With

these results and upon applying the Kirkwood superposition approximation on

conventional grounds, we find the memory kernel for the granular dynamics,

1+eTn?
2 mN

M(¢)(q,s) = Y SSp(d-kex + (- p)ep)’ ok, t)d(p,t),  (6.30)

k+p=q

which is formally identical to the expression for the elastic case safe for the prefactor
(1+¢)/2.
For the dimensionless memory kernel,

nA 2
ml@](q,t) = kSkSiq—r) {1d- Klox +[d- (a — K)leyg-r | ok, t)o(la—kl,1),

(6.31)
this implies an e-dependent prefactor, A.(q) = [1 + (1 —€)S;/(1 + €)]~!. This is a
quite remarkable result. First of all, it guarantees that the memory kernel remains
positive definite. The effect of the prefactor A.(q) < 1 is to weaken the memory
effects compared to the elastic case. To get a memory effect for a dissipative system
comparable to the elastic case, one thus has to increase the density. This will make
the structure factor peaks more pronounced and thereby leads to a larger contribution
to the memory kernel.
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6 Granular Mode Coupling Theory

At this point we have established that the mode coupling formalism can be
generalized to a genuinely far from equilibrium system. This is a fundamental result
of this thesis.

It needed considerable mathematical and numerical ingenuity to, first, establish
how to find the physically relevant solution of the mode coupling equation and,
second, devise an efficient numerical scheme to actually solve it within reasonable
time. It would be a formidable task to redo all these developments for the generalized,
non-equilibrium theory I set up so far. Fortunately this is not necessary. The only
formal change to the memory kernel is the strictly positive prefactor A,(e). This
does not invalidate the positive definiteness of the memory kernel which has been
crucial for the equilibrium theory. Consequently, all the mathematical results that
appear in the literature for the mode coupling theory can readily be applied for our
non-equilibrium extension. For the same reason also the numerical programs to solve
the equations only need to be adjusted for the prefactors depending on the coefficient
of restitution e.

6.3 Discussion

At this point it should be no surprise that we do find a granular glass transition. It
is also virtually impossible that it will not depend on the coefficient of restitution, .
Furthermore if it depends on € it will smoothly deviate from the elastic, equilibrium
result. The only problem could be, that we are restricted to almost elastic particles
because the critical density will attain unphysical values for stronger dissipation. For
the EA order parameter, f,, we expect a dependence on the coefficient of restitution,
€. This precludes an universality of the long time dynamics among the different
degrees of dissipation. The critical long time dynamics for different coefficients of
restitution cannot be mapped on a single master curve by rescaling the time.

The numerical solution is based on a program by Dr. M. Sperl which we adapted
to the granular system. To make the results comparable with the existing literature,
I retained the choice of discretization parameters. In particular I used a wave number
cutoff at 2gmaxa = 40 and a discretization into M = 400 grid points in reciprocal
space. Time gets discretized on a logarithmic grid. Starting with 2!' time steps
with a spacing of Atvg/d = 1079 the time step gets doubled for the next 2! steps
and this procedure is repeated until the final time t,,x is reached. More details on
the efficient numerical algorithm to calculate the memory kernel can be found in
Ref. [304].

Taking the elastic Percus-Yevick expression for the static structure factors for
simplicity, a numerical estimation of the critical density shows that the theory predicts
values that are not a priori unreasonable all the way down to € — 0 (see Fig. [L.9).
The increase of the critical packing fraction with increasing dissipation is to be
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Figure 6.2: Left: Alternative rendering of the phase diagram. The inverse critical
density, 1/¢¢, as a function of the dimensionless driving power, IIp. The white
dashed line is an extrapolation of the critical density corrected for the Percus-Yevick
approximation in the limit of elastic hard spheres. Right: The EA order parameter
at the critical density, f{, as a function of the wave number, g, for different values of
the coefficient of restitution € = 1.0 (green), 0.5 (blue), 0.0 (magenta). The thin lines
show the scaled Percus-Yevick structure factor, S,/10, for the corresponding critical
densities, . (€).

expected insofar as the memory kernel for a given density is a decreasing function
of e. Only at a higher density the memory effects are strong enough to trigger the
bifurcation.

Instead of using the coefficient of restitution, ¢, as the control parameter, one
can also use the dimensionless driving power, IIp = Pp/woT. In the Enskog
approximation of the stationary temperature, it is simply given by IIp = (1 — €2)/4.
In this way, one could make closer contact to the jamming diagram (Fig. , where
the external driving force, the shear stress, o, is used instead of a quantity that
would characterize the dissipation. Plotting 1/¢. versus IIp (Fig. [6.2h), one gets a
variant of the jamming diagram adapted to the case of a randomly driven granular
fluid. The granular kinetic glass transition is the same for any nonzero temperature
and thus, the temperature axis in the original jamming diagram can be neglected.

For a fluid of elastic hard spheres, it was found that MCT with the Percus-Yevick
structure factor underestimates the critical density ¢. by ~ 5.8% [288]. Assuming
that this holds also for the granular kinetic glass transition and the granular mode
coupling theory, the dashed line in Fig. represents an estimate of the “true”
granular glass transition.

While the granular kinetic glass transition defines the lower bound for the density
of a granular glass, the upper bound is likely given by the random close packed
density ¢rep =~ 0.64. Consequently, I used 1/¢yq, as the lower bound in Fig. .

The corresponding critical EA oder parameters, f¢, are shown for a few values of the
coefficient of restitution, e, in Fig. [6.2b. For all values of €, the EA order parameter
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Figure 6.3: Left: The critical parameter, A (green), and the critical exponents, 2a
(blue) and b (magenta), as a function of the coefficient of restitution, e. Right: The
coherent scattering function, ¢(q,t), close to the granular glass transition (Ap = 107%)
as a function of time for wave number 2ga = 4.2 and coefficient of restitution ¢ = 0.5.
The blue dashed line is the von Schweidler law with exponent b, while the magenta
dashed line denotes the approximation for the S-relaxation with exponent a.

roughly follows the static structure factor. Upon increasing the inelasticity, fg
attains higher values for most length scales, implying a stronger correlation between
the corresponding density modes, except around the first peak, where it is slightly
depressed compared to the result for an elastic hard sphere fluid.

As expected, the critical parameter, A, and consequently also the critical exponents,
a and b, depend on the coefficient of restitution, € (see Fig. [6.3]). Close to the glass
transition, the three parameters f¢, a and b provide a good description of the coherent
scattering function over several orders of magnitude in time (see Fig. [6.3]).

6.4 Perspectives

The mathematical analysis of the mode coupling equations is quite advanced (see,
Ref. [287]). The application of this analysis is work in progress and will yield a better
understanding of the coherent scattering function close to the glass transition. The
extraction of rheological quantities like the viscosity or the shear modulus [305], now
all expected to be a function of the coefficient of restitution, will be a logical next
step.

The granular mode coupling theory developed in this chapter shows explicitly
that mode coupling theory can be applied to systems that are genuinely far from
equilibrium. The integrating through transients (ITT) approach of Fuchs et al. [I80]
considers a system that is forced out of equilibrium by an applied shear but that
is in thermal equilibrium initially. For the driven granular fluid, there is no such
equilibrium reference state. Within the approach presented here, there no need for
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6.4 Perspectives

such a reference state. This gives me reason to believe that it will be applicable to a
range of nonequilibrium systems other than driven granular fluids.

The rather formal approach to extend the ITT formalism to sheared granular
fluids that was recently presented by Hayakawa and Otsuki [306], implicitly assumes
detailed balance. If this is precisely verified or if this constitutes a crucial assumption
is not clear to me at the moment. Oppenheim et al. also generalize their derivation
of mode coupling theory [307, [308] to inelastically interacting, macroscopic particles
[309]. Their approach both to mode coupling and to the interaction of granular
particles is completely different from the one chosen here. This makes a comparison
challenging but I expect it to be a worthwhile exercise.

With the possibility of a nonequlibrium granular mode coupling theory established
a number of refinements present themselves as natural next steps. First of all
granular MCT should be generalized to mixtures to make contact with experimental
realizations. Following the work of Latz et al. [310} BI1], I do not expect this will
introduce any essentially new problems.

To avoid unnecessary complications, I chose a rather well established mode coupling
formalism for my generalization to a granular mode coupling theory. Initial attempts
to extend MCT focused on the description of hopping as a possible mechanism to
eventually avoid the localization transition [312H316]. More recent approaches try
to make the interpretation of MCT as a mean field theory more precise [317H320]
or provide a more careful derivation from a field theoretic perspective [321], [322]. It
would certainly be interesting to study some of this approaches with respect to their
implications for a granular mode coupling theory.
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7 Tagged Particle Dynamics Close to
the Glass Transition

In this chapter, I want to discuss the tagged particle dynamics close to the granular
kinetic glass transition. Technically, the mode coupling theory for the incoherent
scattering function, ¢*(q,t), is very similar to the mode coupling theory for the
coherent scattering function, ¢(q,t). In the next section, I will therefore only sketch
the derivation of the granular mode coupling theory for the incoherent scattering
function.

Partial information about the incoherent scattering function is contained in the
mean square displacement, (§72) (¢), the quantity that originally led to the proposition
of a granular glass transition. In section [7.2]I will discuss granular mode coupling
results both for the incoherent scattering function and the mean square displacement.

7.1 Granular MCT for the Incoherent Scattering Function

Via the Mori-Zwanzig projection operator technique, one first derives a generalized
Langevin equation for the tagged particle density, py = exp(iq - 7s), and longitudinal
current, ng = (g - vs)e'"s. In particular, by applying the projector

P =2 o) ekl + % > liRE) (a (7.1)
k k

to the state
Aj = (pk, ji\/m/T) (7.2)

one finds,

(ARl(s — Q= M(s) A7)~

mQs. mM?.(s)
_ 1 (S - T” - %J %QZJ (7 3)
mas. mM?.(s)} ms QS [mqys s ’ '
- - TP

pI""jp

T
which looks superficially identical to the continued fraction for the coherent quantities.
One should regard the inclusion of the tagged particle current, ng , in the set of
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7 Tagged Particle Dynamics Close to the Glass Transition

macroscopic observables although it is not a conserved quantity as a technical step
to arrive at the equation of motion (4.11]).
The elements of the frequency matrix, €2, are again easy to calculate:

T

;= (oaldg") = (7.4)
see appendix [F.1] and
S S S T
ij = <<]qL|‘C’+pq>> = qaa (75)

which follows directly from (j%|L1p5) = q(js*]js") and

s s s . 1+e : )
Q5 = (G Lgst) = —iwp—y—[1 — jo(2aq) + 2j2(2aq)] (7.6)

which is already known from the coherent scattering function.

In order to calculate the memory kernel, I resort to a mode coupling approximation
again. Close to the glass transition, the dynamics of the tagged particle will be com-
pletely dominated by the slow relaxation of the collective density modes. Therefore,
I will use the same mode coupling projector I already introduced for the VACF (see

section [5.2]),
Ps =N lproi) {projl/ Sk- (7.7)
k,p

With the usual set of mode coupling approximations, one gets the following approxi-
mation of the memory kernel,

M3i(q.t) = N> (G55 L4 Qprpd) (prps Q1L+ 55 Vb (K, )8 (p, t) / Sk, (7.8)
k,p

which is the wave number dependent generalization of the memory kernel M, (%),

ca. (19)

The left vertex is easily calculated (see appendix [F.2.2]) and it is again identical to
the one for elastic hard spheres,

17T
Nm

while the right vertex is decorated with an e-dependent prefactor again,

V{55 1QL prpy) = - — (G- k) (Sk — 1)0(g — k — p), (7.9)

s . 1+el1 T
V(o Qsist) = (@ B)(Sk = )3la—k—p).  (710)
This leads to a memory kernel
14+ €T n?
MS = S b Y '11
i) = —— k—%:qsk G- k)’cio(k, t)ps(p,t) (7.11)
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Figure 7.1: Left: The incoherent scattering function, ¢*(g,t), as a function of time for
a characteristic wave number, 2ga = 7.0, several values of the coefficient of restitution
e = 1.0 (green), 0.5 (blue), 0.0 (magenta) at the critical density . (dashed lines) and
close to the glass transition, Ap(e) = 1072 (solid lines). Right: Critical Lamb-Mébauer
factor, f;¢ (thick lines), and EA order parameter, f7 (thin lines; see Fig. ), for

several values of the coefficient of restitution ¢ = 1.0 (green), 0.5 (blue), 0.0 (magenta).

or, in dimensionless form,

1+e¢€
2

n ~
m(0.0(a.t) =~ 1y [ RS-k ok Dosla ~ kD). (712
Again, the memory kernel acquired a prefactor that depends on the coefficient of
restitution but that is strictly positive. The memory kernel for the mean square
displacement, mq(t) = limg_0 ¢*m®(g, t), is identical to the memory kernel M,,(t)
leq. (5.18))]

7.2 Discussion

The mode coupling approximation of the memory kernel m*(q,t) transformed the
equation of motion into closed equation for the incoherent scattering function,
¢*(q,t), once the coherent scattering function, ¢(q,t), and the static structure factor,
Sy, are specified. Using the coherent scattering function in the mode coupling approx-
imation, one expects that the corresponding solution for the incoherent scattering
function, ¢°(q,t) is valid close to the glass transition. Fig. shows the incoherent
scattering function for a number of values of the coefficient of restitution € at volume
fractions Ag(e) = 1073 close to the critical density, .(¢). The latter also depends
on the coefficient of restitution as I have shown in the previous chapter. The two
step relaxation scenario is also observed for the incoherent scattering function. The
plateau value, [, (see Fig. is structurally much simpler than the EA order
parameter for the coherent scattering function which is also shown for comparison.
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7 Tagged Particle Dynamics Close to the Glass Transition
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Figure 7.2: Left: Mean square displacement, <57’2> (t), as a function of time at the
critical density, ¢.(€) (dashed lines), and close to the glass transition [Ap(e) = 1073]
(solid lines) for some values of the coeflicient of restitution € = 1.0 (green), 0.5 (blue),
0.0 (magenta). Right: Localization length, 7., as a function of the coefficient of
restitution, e.

Consistent with the result for the EA order parameter, the persistent correlations,
4 » are stronger for the more inelastic systems.

The mean square displacement, (672) (¢), is shown in Fig. Comparison with
the simulation results in Fig. for a two dimensional system, and indeed with all
the mean square displacements in that figure show that the granular mode coupling
theory strongly supports a localization transition of the driven granular fluid. The
critical localization length, r.(¢), as a function of the coefficient of restitution, e
(Fig. shows that the more inelastic the particles are, the more tightly localized
they are at the granular glass transition.

While the localization length is smaller for the more dissipative systems and
consequently the plateau of the mean square displacement close to the glass transition
is lower, the long time diffusion coefficient, Do, is larger for inelastic hard spheres
compared to a fluid of elastic hard spheres in thermal equilibrium. This is consistent
with the simulation results of Fiege et al. [67].

To allow for a quantitative comparison with the experimental and numerical results,
the granular mode coupling theory developed here has to be formulated for two-
dimensional systems. In addition, the numerically exact static structure factors from
simulations should be used instead of the Percus-Yevick approximation for elastic
hard spheres.

Again, it would of course be interesting to apply the present formalism to other
nonequilibrium systems. I expect that for mesoscopic systems, where it may always
be challenging to obtain a dynamic scattering function experimentally, the mean
square displacement will be an accessible observable to detect a glass transition.
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A The Laplace Transform

I use the following definitions for the Fourier transform, 1" (w) = FT[¢](w), its inverse
and the Laplace transform, ¢(s) = LT[¢](s),

)=y [ dtem

= i/_o:o dwe™)" (w) (A.1)

= o efist
5) = /0 dte= (1)

With these definitions the following relation between the Laplace transform 1/3(5) and
the Fourier transform v”(w) holds,

— l/ dte—ist/ dweiwtw//(w)
™ Jo —00

I o0 o

_ 2 d " / dt —ist jiwt
- /_oo wip” (w) | dte™e (A.2)
1 o0 1!

= —/ de (w)
TJ)oco S—w

With the following famous identity for integral kernels,
. 1 r .
lim — =P— 4+ ind(w), (A.3)
e—0 w — 1€ w

one can show that

dQ 7/1” Mb” (w)

dw )—hmzpw—ze P/oo T w—§ (A.4)

=9/ (w) + i) (w),

i.e. the Fourier transform, 1" (w), is just the imaginary part of @ZAJ(w) This in turn is
connected to the real part via the Cramers-Kronig relation,

W (w) = P/OO a2 y7©) (A.5)

o T w—8
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B Driving

For simplicity I concentrate on a one particle system that is only affected by the
driving. The generalization to more particles and additional forces is straight forward.
In the case of kicks that happen with a finite frequency fp = 1/7p and with a
characteristic strength, vp, the corresponding Liouville operator reads

iLHA(v;t) = Z[A(’v +vpén;t) — A(v;1)]d(t — n1p) (B.1)

n

where the &, are random gaussian variables with zero mean (£,,) = 0 and variance
(€a88,) = 00,

Due to the d-function in equation (B.1)), one should look at the change due to
driving integrated over a small time interval. Doing this, one finds for the change in
momentum p = mwv and energy E = mv?/2,

1 *
— dtiLpp(t) = mvp&n /7D, (B.2)
D

where [*dt denotes the time integral over one single kick;

1 * 2
= | atiLpE®) = mPo(t) - &, + D

2
. B.
™ ™ 27p & (B3)

Lets define iLHA = 7' [*dtiLpA. Then we get <i£”l§p> = 0 and <z£~j{)E> =
mv% /27p = Pp which defines the driving power, Pp. In the end, the driving power
that will compensate the collisional cooling is all we care about. Therefore it is best to
think of the driving as being defined by Pp and 7p and to regard vp = \/2Pp7Tp/m
as a derived quantity.

If we consider the result of a finite number N of kicks, we find that due to the &,
being gaussian random variables, the total effect can be written in the form

/0 il Awit) = A(w(0) + Av(t)) — A(w;0), (B.4)

where t = N7p and, Av(t) ~ N(0,2N Pptp/m) = N(0,2Ppt/m), is again a gaussian
random variable. Assuming we let 7p — 0 this defines a Wiener process for the
velocity v(t). The corresponding stochastic differential equation reads

dv

= = \/2Pp/m&(t), (B.5)
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B Driving

where the £(t) are now gaussian random variables with zero mean, (£(¢)) = 0, and

variance <§O‘ (t)€P (t’)> = 0°85(t —t'). According to Ito Calculu we then have for an
observable A,

dA(v) = A'(v)dv + %A”(v)va + O(dv®)

P (B.6)

= A'(v)dv + A”('U)Zdt,

where A'(v) = 0A/0v. Keeping in mind that the &(¢) have awkward properties
and should in fact always be integrated over time, we can, nevertheless, define a
corresponding Liouville operator

oo o Pp o
iLF = \/2Pp/mE(t) - 5+ HDW‘ (B.7)

One can check that it has the right properties, i.e., (iL$p) = v/2Ppm (§) = 0 and
<7,,C%OE> = PDm/Z <£"U>+PD = Pp.

Alternatively, this limiting behavior for 7p — 0 can also be derived specifically
from equation . The expression iLpA(v) can be expanded as

i p Aoy — AL+ CVIDER) — 2407 + OVTpER/2) + A(w)
A (B.8)

| 2A(° + Cypta/2) — 24(°)
TD

I

where C' := \/2Pp/m. In the continuous limit this yields,
.

ns

lim iLpA(v) = A'(v) lim +/2Pp/mrpé&, + A" (v)

Tp—0 Tp—0 2?’77,

(B.9)

which turns into equation when we make the replacements lim., 0 &,/\/7TD —
&(t), which underlines that the £(t) are almost surely infinite, and lim,, o <§ﬁj§fﬁl> —

2(EMEE))-

"We need the relations dv? = dt and dv™ =0 for M > 2.

94



C Fluctuating Hydrodynamics

C.1 Hydrodynamic Eigenvalues
The eigen values are determined by
w 0 ikn
det[M(k) —iw] =| gT'/n  Drk*+30/2T +iw  2ikp/3n
ikck/n ikp/mnT vek? + iw
—iw|(Drk? + 3T/2T + iw) (vek* + iw) + 2k*p* /3mn>T)
— k2[gpT /mnT — c&(Drk* 4+ 3T/2T + iw)]
~ — iw® — w?[(Dr + v)k* 4 3T/2T)
+ iwk? (% + 2p* /3mn*T + 3Tv,/2T)
— gpTk?/mnT + &k*(Drk? + 3T/2T) = 0.

(C.1)

The isothermal speed of sound, c% = 8%’” ~ T'/m, is equal to the thermal velocity

in a dilute gas. With the molecular chaos assumption, the cooling rate, I'/T ~
1_362 wp, is always smaller than the collision frequency w.. Again in the dilute limit,
Dy ~ vy = O(f3w,). Finally, we have f2w? = T'/m. For the mixed term in the above
equation these relations imply 3Tv/2T ~ (1 — €2)T/m.

In the limit (D7 + vy)k? < 3T'/2T we have

3r 3r
—iw3—ﬁcﬂ+iwk2(02T+2p2/3mn2T+3F1/g/2T)+ﬁk2(c%—29p/3mn) =0. (C.2)

With the ansatz

(iw + 3T /2T (iw + ic<k + D5k?)(iw — icck + DSk>
S S

3r r
~ —iw® — w? +iwk?(2 + 3T DS /T) + ;’—TcikQ, (C.3)

2T
we get
2 = c& —2gp/3mn, (C.4a)
4pT
2D = T). .
§=vit b (g +p/nT) (C.4)
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C Fluctuating Hydrodynamics

C.2 Structure Factors from Fluctuating Hydrodynamics
Formally integrating eq. we get

da(t) = e™sa(0) + /t dre ="M f(7)
o (C.5)
— U(1)da(0) + /0 drU(t —7) (7).

which defines the propagator U. Multiplying the above equation by da*(t) and taking
the average, we get

t
(0aq(t)dag(t)) = Sap = Uac(t)Upg(t)Sca +/0 dTUac(T)Up g (T)T cq- (C.6)
Taking the time derivative of S we get

0= Mfc(k)uaf<t)UZd(t)Scd(k) + UaC(t)Mfd(_k)u;;f(t)scd(k) + Uac(t)UZd(t)rcd((éc)')
7

Setting the time to zero all the propagators degenrate to identies and we get
0= Mac(k)scb(k) + Mbd(_k)sad(k> + rab(k:)7 (CS)

or

— M(E)S(k) — S(k)MT (—k) = (k). (C.9)

Multiplying the above equation with partitions of unity from the left and from the
right and invoking the eigenvalue equation we get

[wa (k) (A(R)| T () [v,(K)) (w,(F)]
Z)\(k?) + Z;(k) ’

3" [wa(k)) (a (k)| S(K) [0, (k) (w, (k) = — 3
A, W
(C.10)

Upon rewriting the terms a little we get eq. (3.25).
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D Mode Coupling Diagrams

In this chapter I want to give a few more details on the diagrams used in chapter
While the interpretation is physically most transparent in the time domain, the
formulas become a little easier in the Laplace domain. In particular the convolution
theorem, [;° f(7)g(t —7)dr — £(5)9(s), reduces the number of integrals involved.
Following Wyld [323], I introduce a formal four-vector k := (s, k). For simplicity, I
further assume that the vertices Vgyip are independent of wave number except for

the generalized momentum conservation Vq];,ﬁ = Vi, S The convolution f % § is

defined as (f x §)(k) = [ d*pf(p)a(k — p) = [ d*p [ do f(o,p)3(s — o,k — p).
The equation of motion for the VACF reads in the Laplace domain,

¥(s) = dols) + do(s) My () (s), (D.1)

and with the mode coupling approximation, Mv(s) ~ Mvp = V2(gz§* gZ)S)(s, q=0),
we have

¥ (s) = do(s) +do(s)V2(d % 9°)(s,0)d (s). (D.2)

For the second order equation of motion for the coherent scattering function ¢(q,t)
one finds

6(4) = do(d) + bo()M(@)[d(q) — 1/3], (D.3)
i.e, with M(§) ~ V(¢ * $)(q),
&(4) = do(q) + bo()V*(d* &) (@)[B(q) — 1/s]. (D.4)

With the following three identifications and the additional rule that there is an
integration [ d*k; over every internal variable k; both eq. (D.2)) and eq. (D.4) can be
represented by diagrams that are structurally identical:

"o = %0(@) (D.5a)
5 =00 (D.5b)
* - Vs (D.5¢)
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E The Mori Identity

Starting from the trivial identity
(s+L)(s+L) =1
insert 1 =P + Q
(s+L)P(s+L) T+ (s+L)Q(s+ L) =1
use P2 =P
(sSP+PL)P(s+ L)+ (sP+PLOQ(s+ L) =P
and PQ = 0 and do the same again with Q

(s + PLP)P(s+ L) ' +PLO(s+ £)7*
(s +QLY)Q(s+ L) '+ QLP(s + £)!

P
Q
Multiply with P from the right

(s +PLP)YP(s + L) 'P+ (PLQ)Q(s + L) 'P=P?> =P
(s+QLY)Q(s+ L) 'P+ (QLP)P(s + L) 1P =0

—(QLPYP(s + L) 'P = (s + QLQY)Q(s + L)~ 'P

Substitute this in the second equation

[s +PLP —PLA(s+ QLY) 'QLPIP(s + L) 'P =P

(E.1)

(E.2)

(E.3)

(E.4)
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F Matrix Elements of the Liouville
Operator

In this appendix you can find the detailed calculation of the matrix elements of the

Liouville operator as they are needed in the main part of the text. Purely technical

aspects of the calculation that are used repeatedly are collected in section [F.3]|
Note the following important identities

A 14 g
’Lﬁoqu = Ny Z(q cup) e’ (F.1)
l
et I+e . SN . iq- q-
iTihiy = ——gp (P12 012)° (G- #12)O(~ 1z - v12)d(r12 — 2a) (€972 = 971 ) | (F.2)
ot I+e . L . iq-
ZTngJSL = (P15 - v15)2(q < P15)O(—T1s - V15)0(r1s — 2a)e' ", (F.3)

As velocities appear at most linearly in all of the following matrix elements, there is
no explicit contribution of the driving operator, £25.

F.1 The Frequency Matrix

For the tagged particle quantities one finds,

(pslceny) = (pylcony) = a (p3li") =0, (F.4)
due to parity and,
Gt nt) = a (GHsE) = g (F.5)
q q q q m’

in agreement with known results [115].
The element,

(ogleds™) = (o3l Loss™) + (P3| Teds™) (F.6)
is more difficult to determine. First, one finds,

T
—

<PZ\on£;L> =q <e*"q'rs(d : vs)Qeiq""s> =q (F.7)
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F Matrix Elements of the Liouville Operator

The collisional contribution,

(pyITeis") = 1;€N<(f15-v18) (- 716)0(~15 - 01,)(r1s — 2a)) =0, (F.8)

vanishes because the average ((¢ - 715)) = 0 in an isotropic system. The element
(js 1L j5") will be discussed below [see eq. (F.20)].
There is one vanishing element for the coherent modes,

(palCpa) = apdliy ) = 0. (F.9)
The known off-diagonal element can be reduced to [115],
L o A AR q T

(g 1Lpa) = a (iflig) = 5 (F.10)

The second off-diagonal element, (pq|L4jE), is again more difficult to determine.
The free streaming contribution is,

((pq|£0qu>> = % <Ze—iq~m (G- Uj)2ez‘q.m'> . (F.11)

i?j
The velocity integration yields a factor 7'/m while the remaining spatial integration
defines the static structure factor 9y,

oy 97T
<<Pq’£03q ) = NESq- (F.12)
For the collisional contribution we get the following result,
(gl Toig) =
1+e

7

q- <(f12 - v12)*P120(—F1z - v12)0(r12 — 20) (ei"""2 — eiq'”) > e‘iq'ri> :

i

4
(F.13)

The velocity integration yields a factor T'/2m while the spatial integration can be
expanded into the following types of averages,

# 5(T - 20“) 6iq~r2 - 6iq~r1 6—iq~ri> T — 2@ —iq-ry @iQ~r2

< 12 12 ( ); < 12 >
< (rig —2a)e —igT2 eiq~r1>

+ (N —-2) <7’125(r12 — 2a)e Zq""geiq.r2>
— (

N — 2) <’I"12(5(7‘12 — 2a) zq-rgeiq-r1> .
(F.14)
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F.1 The Frequency Matrix

By relabeling the integration variables, the four terms can be collapsed to two terms,

<f125(T12 — 2a) (6“’"’2 - eiq""l) Z e_iq""i> =2 <ﬁ125(r12 — 2a)€—iq~meiq~r2>
i

+2(N —2) <f125(7“12 — 2a)e_iq‘r3eiq'T2> )
(F.15)

With the help of the YBG-relation the second term can be written as
. , 1 . ,
N (P120(r12—2a)e” """ = _N<Sq—1>_<f'125(7"12 - 2a)6_1q'7m1€zq.712> , (F.16)
cancelling the first term in equation eq. (F.15)). We get,
. 14+eq T
L e — [ — J—
(ol Tl =~ L2 (5, - ), (P.17)
and all in all,
I 1qT
(PalC1b) = (1= S, + (1+0) (F.15)

The calculation of ( j(ﬂEJr jé: ) is not fundamentally new [278]. The free streaming
and driving parts do not contribute and the collisional contribution has already been
calculated for elastic hard spheres apart from the usual e-dependent prefactor.

Expanding the different type of contributions,

S T )
GHNTgly =i 1 ‘ <(q cv1)e MT2(G - o) (Fr2 - 012)2O(— P12 - v12)0(T12 — 2a)>

1+ . . . .
—i ‘ <(q 01)(§ - P12) (F12 - ©12)2O (=712 - v12)8 (112 — 2a)>

1+e€
+1

(N —2)((P12 - v3)e "I73(G - #12)(F12 - v12)2O(—F12 - v12)

X §(r12 — 2a) (eiq'r2 - eiq'”)),

(F.19)
one finds that the third term vanishes by symmetry while the first term can be
expressed in terms of spherical Bessel functions (see section below) to yield the
final result,

1;;%[1 — jo(2aq) + 2j2(2aq)). (F.20)

(g 1L+ig) = —iwp

The fact that the three particle term does not contribute also implies that the
corresponding tagged particle relaxation rate is essentially identical, ( j;;L|C+ ng )=

N{GEILLGE.
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F Matrix Elements of the Liouville Operator

F.2 The Vertices

F.2.1 The Velocity Autocorrelation Function

For the coupling to the density mode, the projector @ does not change the vertices
due to parity,

(v.]L+Qprp}) = (wulLmp) = (velLomers) (F21)

and
(propl QL vs) = (proplLivs) = (prop|Tivs ) - (F.22)

This is different for the coupling to the currents,

(vo 124 Qi pp) = (oI dlpp) — m{ve | Lyvs) (w213l oy ) /T (F.23)

and
(Lo QL sv%) = (loslLse) — m (Gpsles) (oEIL o)/ T, (F24)

Due to parity one finds
O(k+ D)

<]k,0p|v >/T = (NV)(S 8, (F.25)

The contributions to eq. (F.21)) are also of this form,

<vs!£opkp§> =k <vs !jkLpZ> +p <vslpkj§L> , (F.26)
where,
; . T 6k
p<vs\pkj;L> _ % <szelk'7‘j (p- ,Us)eZp-rs> — m(N—‘i_/mpSk' (F.27)
J

The three point quantities reduce to

(WS 1L dipy) = (vel0Todl ) (F.28)
and
(ikpplLve) = (Geppl ol ) - (F.29)
Explicitly, one finds

<pkp§\’f+vs> - ; ‘

d1+e
—1

<€_ik’rle_’p "o P158(r1s — 2a) (P - v15)*O (T - v15)>

N <eiik'r267iplrs’ﬁ15(5(7“15 — 2a)(f15 . 015)2@(—f’15 . '015)> .
(F.?)O)
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F.2 The Vertices

Upon invoking the YBG theorem on the second term, one finds that the first term

is canceled. The velocity integrations can be done immediately,

1+ed(k+p) T,
> NV m ST

(prp}| Tros) =
Moreover,

0 s e’ . ¥ Re ok +p o N6 .S,
<J;fpp\’f+’vs> = <J;f|’f+3p’ > = (Nv)5 P TaRe)

due to parity. The left vertex is identical.

F.2.2 The Incoherent Scattering Function

Here we have

(isH 1L+ 0proy) = (i 1L wpnpy) — G 1L 05) (ol orey )
and

(orppl QL) = CormplLods™) = (prrplog) (p5l L 4",
where,

S| s 1 —igrs ik _ipTs o(k+p—q)
<Pq’Pkpp>—N<%:e Tee r]epr>_NVSk'

As usual, the left vertex is easier to determine,

(st 1L voepp) = k (i3 Lk oy ) +p (Gt londs™)

where,
-sLy L s 1 ~ —iq-rs (1, ik-r; ipr
<]qL‘]I%pp> = N Z(Q'vs)e q S(k"l}j)ek ie'P S>
J
_Ték+p—aq)
T m NV
and

The right vertex is determined by

(oneplC435") = (oneplLods®) + (orrpl Tedgh ) -

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

(F.39)
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F Matrix Elements of the Liouville Operator

The free streaming contribution reads

S ] T 6(k +D— Q)
<pkpp‘£0qu> = QET

while the collisional contribution differs from eq. (F.31]) above by a factor ¢ exp(iq-r;)
inside the average,

= q% {proyloy) Sk, (F.40)

l+4edk+p-q T

(oI Tessh) = === - (S = 1). (F.41)
F.2.3 The Coherent Scattering Function
The vertices are, again, a sum of two terms,
{3512+ Qprpp) = (g 1L+ ko) — N{ig |1L+04) (Palorrp) /Sq (F.42)
and
(orppl QL1 T = CorpplL45g) = N (orpplog) (pal L4540/ Sq- (F.43)

The left vertex only has a free streaming contribution,
(is\Lvonpn) = (if 1 Coprpp) = k 3y likpp) +p (if Ioriy ) - (F.44)

Invoking the definitions one finds

L) - 1 R A oo
<]qL|]1€Pp> = N3 <Z(q . vj)e i (K - vk)e’k Tk o 7’e>

k.0

(F.45)

The velocity integration yields a factor T'/m while the spatial integration essentially
defines the structure factor again,

L) - Tik+p—q
<J§WJ£Pp>:: nl(jvgvr)(sk__l)' (F.46)

For the free streaming contribution we get

, T dk+p—gq
(roelCoil) = 4 {owpplog) = " ETE D50 ) (pa)

The d-function, 6(k+p—q)/V, that imposes the momentum conservation constraint
will be suppressed in the following to reduce clutter.
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F.2 The Vertices

The driving contribution vanishes for the same reason as in all the cases above.
The collisional contribution on the other hand requires considerable work. In order
to expand the different types of contributions to the following expression,

{prpp| T 5L )

LieT . , . .
= 4}6 E(j . <ZZ: etk z]: e "PTif156(r12 — 2a) (e’q“ - ezq'm)> , (F.48)

I use a short hand notation for the average,

(ig]12) = (11|12) + (22[12) + (12]12) + (21]12)
+ N((13]12) + (23]12) + (31]12) + (32|12) + (33]12)) (F.49)
+ N2 (34[12) .

The number of unique terms can be further reduced by exploiting the symmetries to
yield

(i7]12) = 2 (11]12) + (12]12) + 2N (13]12) + N (33]12) + N2 (34]12).  (F.50)

Now I will treate this expression term by term. Fortunately, most of the terms
eventually cancel each other and, thus, there is no need to calculate them explicitly.

(11]12) = (7 H e P15 (15 — 2a) (147> — ¢971) ) (F.51)
Switching to relative coordinates,
(1112) = (=D 751557y, — 20) (4712 1)), (F.52)

one can extract the momentum conservation constraint and reduce the expression to
the following standard form,

o(k+p—q)

(11]12) = %

<f'126(r12 — 2a)eiq'T12> . (F.53)
Calculation of the second term proceeds by essentially the same steps,
(1212) = (e* 1P T2416 (15 — 2a) (797> — eI ) ). (F.54)
Introduction of relative coordinates,

(1212) = (M EHP=D 725157y — 20) (12 — hmDme ) (F.55)
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F Matrix Elements of the Liouville Operator

and reduction to the standard form.,

S(k+p—q)
1%

The first three particle term ,

<12’12> = K’f‘lg(s(rlg — 2a)€ik‘r12> + <f215(7“21 — 2a)€ip-r21 >} . (F.56)

(13]12) = (R ePT37196 (15 — 2a) (€797 — e7iOTL) ), (F.57)
requires a little more work,
<13‘12> = <ei(k+p—q)'r2eik~r126ip~r32,f,125<7,12 - 2a)>

. . (F.58)
— <el(k7q)'1"1 ePT3F196(r19 — 2a)> .

The first term can be simplified by use of the BGY-relation again,

<ei(k—q)~r1 6ip'r3f125(T12 — 2a)>

_ W [ip(S, — 1) + N (7128(r12 — 2a)e®™2)] | (F.59)

while there is no need to evaluate the second term,

é(k+p—q)

(1312) = - ==

[ip(Sp -1+ N <ﬁ125(r12 — Qa)eip'”2>
— N? <eik'”26i”"”32f125(r12 - 2a)> } . (F.60)
The same hold for the second three particle term,
(3312) = (e® 3P40 (115 — 2a) (74T — eI ). (F.61)
Use the YBG-relation,

dk+p—q

(3312) = 22 )| [ dremiervg) — [drg(r)otr - 20piei7], (F.62)

to bring it to the standard form,

é(k+p—q)

12) = -2

lia(Sy = 1) + N (F123(r12 — 20)e™™2) | (F.63)

The four particle term,

(3412) = (e® T3P T4155(r15 — 2a) (74T — 7O ), (F.64)
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F.2 The Vertices

can be reduced to three particle contributions by the help of the BGY-relation again,

(34]12) =

3 3 3 —iq-T2 lk’!‘g ipTa a
NV3 /d rod>ra3d’rye e 870293(7'2,7‘3,?4)

+ /d3r2d3r3d37"4e iqra kT3 oip- "4$930(rog — 2a)gs(ra, T3, 74) (F.65)

NV3

NV3

Extraction of the momentum conservation constraint,

/d3r2d3r3d3r4e iqr2 gikers oip- "47940(1r24 — 2a)g3(re, T3, 74).

(34]12) = — ]32‘;13 /d3r2d3r23d3r24ei(k+p_q)'T2e_ik'r”e_ip”“gg(rgg, 724)
+ NV3 /d37“2d3r23d3r24el(k+p a)72 = ikT23 o —ip- 24 g3(1r9g, To4)T230 (123 — 2a)
+ NV3 /d37’2d37’23d37’2461(k+p D720 T23 e TIDTU o (o 1o ) Poyb(roy — 2a),
leaves us with three relatively simple terms, (00
(34]12) = — %W [S®(k,p) — Sk — S, — 5, +2]
_ 2‘w (e Rig(r — 2a) (F.67)
- 25(’{7—5\[1‘)/_@ <eik'reip'R1%5(R - 2a)> .

Adding up all the terms calculated above, most of them cancel as promised and
we get
2i0(k+p—q)

(i12) = — 5= [P(Sp = 1) + K(Sk — 1) + (S, — 1)
+a($® (k,p) - Sk — 5, — S, +2)], (F.68)

which can be simplified further to yield

oo 2i0(k+p—q) .
W) = 5——— [’@Sp +pSk —qS (kap)} (F.69)
or
. 1+eTék+p—q . .
(purpl Tty = S TORT L) (5606 ) — (4 k)8, — (a-p)Si] (.70
and
L
(prpplLsdf)
=TT N2 { 5 [(@-k)Sp+ (- p)Sk] + qu (k,p)} , (F.71)
respectively.
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F Matrix Elements of the Liouville Operator

F.3 Technicalities

In this section I will collect some of the mostly technical aspects of the calculations.
To calculate a term like

<f'5(7" - 2a)eiq'T> = /d?’rf'é(r — 2a)g(r)e, (F.72)
one switches to spherical coordinates,
<f6(r - 2a)eiq'r> = 8ma’xq /07T dv sin ¥ cos Ye?1aas Y, (F.73)
The remaining integral defines a spherical Bessel function [292],
<f5(r - 2a)eiq"°> = 16mia’xq7j1(2aq). (F.74)
To calculate a term like
N <f125(7“12 - 2a)e_iq'r3eiq'r2>
= %/d3r1d3r2d3r393(7’1,7'2,7“3)(5(7'12 — 2a)f*126*iq'r3eiq""2, (F.75)
one has to invoke the YBG-relation,

. , 1 ‘ |

N <7§125(T12 - 2“)6_Zq.rgezq.r2> - _W/d37“2d3r3€—zq.r3ezq.r2V239(r23)
X . . (F.76)

+ W /d3T2d3T35(T23 _ 2a)1¢,236—1q-1‘362q.r2.

The second term is rarely needed explicitly and is easier to recognize in the more
compact notation. For the first term, switching to relative coordinates yields
1

N (id(rnz = 2a)e=t7e072) = — & [ a7V lg(r) 1]

o (F.77)
— <’f’125(1"12 — 2(JJ)€_Zq.T1 ezq~r2>

or
EN —1iq-T3 ,iq'T 1 N —1iq-T1 QT
N<r125(r12 —2a)e 4T3 2> = _N(Sq -1)— <r125(r12 —2a)e "I 2>.
(F.78)
To calculate this third power of velocities,
<(¢j 1) (R v12)?O (=1 - ’012)> =q- <U1(ﬁ - 012)2O(—7 - Ul2)> (F79)

= (@-7) (- v1)(R- v12)?O(~7 - v12) ),
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F.3 Technicalities

it is best to switch to relative coordinates,

<(ﬁ cv1) (R 012)20(— 7 V1) )

(QWT> /d3”d3 (R -v)3 + (- v)2(R - V)]|O(—f - v)e ™ HVA/2T
(F.80)

The V-integration yields only a trivial contribution while a transformation to spherical
coordinates for v,

(- v1)(R - 012)20 (=12 - v12))

3/2 oo ™
= 4V2n ( ) / dv/ dv® sin ¥ cos® ge /2T (F.81)
2rT 0 w/2

yields
. . . 4 T 3/2
<(n 1) (- ’012)2@(—71, . ’U12)> = _ﬁ (m) . (F.82)
A term like
((d-#12)%(r1z — 20)0712) = / Prg(r)(r — 2a)(q- 7297 (F.83)

can easily be reduced to Bessel functions using spherical coordinates,

A 8 ™ .
<((j 712)2 12§ (r g — 2a)> = Wﬁmﬂx/ dd sin ¥ cos? Ye2ia1cosV (F.84)
0
Using the identity [292],
. 3. .
Ja(z) = —j1(2) = jo(@), (F.85)
for spherical Bessel functions, j,, one finds
T : 2 q iz cos? . 4. 2. .
/ d sin ¥ cos” Je = 2jo(x) — ;jl(aj) = g[jo(m') — 2jo(x)] (F.86)
0
or 16
EEN iq-r d
<(q CP12)2e T2 (g — 2a)> 3N e 2xljo(2aq) — 272(2aq)]. (F.87)
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