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1.1 Motivation

Despite first being discovered in 1888 by Friedrich Reinitzer when examining the
properties of derivatives of cholesterol [1], it was only the late 1960s and 1970s which
became the boom years for research in liquid crystals, as the usefulness of liquid
crystal displays was envisaged. The success of these efforts is clear: it is difficult
nowadays to buy a television or a computer which does not use a liquid crystal
display. Liquid crystals are used in many other applications, such as in thermal
sensors [2], as the lasing medium in liquid crystal lasers [3], as templates for the
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1 An introduction to liquid crystals

synthesis of inorganic nanostructures [4, 5, 6], and for electroluminescent diodes [7].
As a result of this research, there is a thorough understanding of the macroscopic
bulk properties of liquid crystals as exhibited by numerous review books on the
subject [8, 9]. Furthermore, de Gennes was awarded with the Nobel prize in physics
in 1991 “for discovering that methods developed for studying order phenomena in
simple systems can be generalized to more complex forms of matter, in particular to
liquid crystals and polymers” [10].

Despite this success, it is fair to say that our understanding of liquid crystals
in the presence of confinement is less developed compared to that in bulk [11].
To be precise, by confinement we explicitly mean the behavior of liquid crystals
in the presence of surfaces or substrates (which is, in fact, the “natural habitat”
for most applications). The discovery of polymer dispersed liquid crystals in the
mid-1980s (by phase separation [12] and emulsification [13, 14]), and their suitabil-
ity for displays heralded a new beginning of research in confined liquid crystals.
However, because of the increase in complexity of liquid crystal phase behavior in-
duced by confinement, there is still strong, active research in this field [15]. Put
simply: confinement of liquid crystals is common, but full understanding of the role
of confinement is still lacking.

The aim of this thesis is to further contribute to the fundamental understand-
ing of how liquid crystal phase behavior, in particular the isotropic-to-nematic
transition, is affected by the presence of confining surfaces. To this end we use the
Monte Carlo simulation method which has been shown, in recent years, to be well
suited to study problems of this kind [16, 17].

1.2 Liquid crystal basics

1.2.1 Isotropic and nematic phases

Liquid crystals take after their name; they can display both disorder (characteristic
of a liquid) and order (characteristic of a crystal). The liquid crystal phase in which
any kind of order is completely absent is called the isotropic phase, see Fig. 1.1(a).
What is depicted is an ensemble of molecules whose positions and orientations are
randomly distributed. Consider now the ensemble shown in Fig. 1.1(b). The posi-
tions of the molecules are still random, but now there is preferred alignment of the
molecules along some axes. The phase shown in Fig. 1.1(b) is called the nematic
phase; it is the liquid crystal phase showing the least amount of order possible
(namely orientational order only).

The nematic phase is the one we focus on in subsequent chapters. The essential
properties of the nematic are as follows:

1. There is no long-range order in the center-of-mass positions of the individual
molecules. Therefore, the X-ray diffraction patterns exhibit no Bragg peak
(unlike in a true crystal).
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1.2 Liquid crystal basics

Figure 1.1: Schematic arrangement of molecules in various liquid crystalline phases
in increasing order: (a) isotropic phase, (b) nematic phase, (c) smectic A
phase, and (d) smectic C phase. In the isotropic phase there is no order.
In the nematic phase there is long-range orientational order in average
in the direction of the director ~n but no positional order. Smectic A
phases have regular interlayer spacing, resulting in additional positional
order in the direction of ~n. Smectic C phases are further orientationally
ordered, with particles oriented at a common tilt within the layers.

2. In the nematic phase the molecules preferentially align in a common direction
called the director, and symbolized by ~n in what follows. Here ~n is a d-
dimensional unit vector, as shown in Fig. 1.1(b). In this thesis we consider the
experimentally relevant cases d = 2, 3 only.

3. We assume that ~n and −~n are indistinguishable. This “inversion symmetry”
of the nematic phase plays a major role in defining the order parameter.

In bulk systems, i.e. in the absence of any external fields and surfaces, the prop-
erties of the nematic phase do not depend on the direction in which ~n is pointing.
However, this ideal situation of complete rotational invariance may be difficult to
achieve in experiments because confining walls are always present, which typically
force a certain direction for ~n (anchoring effects [18]). In addition, in simulations,
it may be that the commonly used periodic boundary conditions induce preferred
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1 An introduction to liquid crystals

directions (so-called “easy-axes” [19]). Nematic phases are typically uniaxial; light
propagates only in one direction through the liquid crystal. Recently, however, it has
been shown that this need not necessarily be the case. Biaxial nematics, where light
propagates in two directions through the liquid crystal were, in fact, synthesized in
2004 [20].

1.2.2 Smectic phases

Of course, the nematic phase is not the only structure that can arise: depending
on the type of liquid crystal and the conditions (temperature, density, chemical en-
vironment) it is under, different structures (phases) may arise. For example, if the
molecules also display some positional order, they give rise to phases known as smec-
tics. Smectics, in general, are layered structures with well-defined inter-layer spac-
ing. This spacing can be measured by X-ray diffraction, similar to crystals. Original
work by G. Friedel only recognized one type of smectic liquid crystal [21], now known
as smectic A, shown in Fig. 1.1(c). Smectic A has regular inter-layer spacing but
irregular spacing within each layer. In fact, within each layer the molecules show no
long-range positional order and they behave like a two-dimensional liquid. However,
individual molecules tend to point in the same direction, perpendicular to the plane
of the layers. Other smectics display variations on this basic theme. For example,
smectic C is identical to smectic A except that individual molecules are positioned
at a common tilt within each layer, see Fig. 1.1(d). For this reason, smectic C is
optically biaxial whereas smectic A is optically uniaxial.

1.2.3 Inducing phase transitions: thermotropic versus lyotropic
systems

In addition to the structure of the phases that liquid crystals can form, we can
characterize liquid crystals by how they respond to external conditions. The most
commonly used distinctions are the thermotropic liquid crystals, which respond to
changes in temperature, and the lyotropic liquid crystals, which respond to changes
in the overall density. In a thermotropic bulk liquid crystal, for example, one can
induce a phase transition from the isotropic to the nematic phase by decreasing
the temperature. By decreasing the temperature further, the nematic phase can
undergo a transition to the smectic phase [22]. Note that a “hard” distinction
between thermotropic and lyotropic behavior is not always feasible, as some liquid
crystals display thermotropic and lyotropic characteristics simultaneously [23].

1.3 Liquid crystal molecules

An obvious prerequisite for any of the ordered phases shown in Fig. 1.1 is that the
molecules, in addition to a center-of-mass coordinate, must also have some “sense

4



1.3 Liquid crystal molecules

Figure 1.2: The chemical structure of the 8CB molecule, one of the most commonly
used molecules to study liquid crystal phase transitions. The “related”
molecules 5CB, 6CB, and 7CB have shorter CnH2n+1-side chains.

of direction”. That is, the individual molecules must be spatially anisotropic.
Common constituent molecules are organic molecules, helical rods (both found in
nature or artificially made), or more complicated structures consisting of polymer
chains. Brief descriptions of each are given next.

1.3.1 Small organic molecules

These small organic molecules are typically of size ∼ 10Å long and ∼ 1Å in di-
ameter. Some examples are PAA, MBBA, and the CB family of molecules. The
8CB molecule, for example, consists of two aromatic rings connected to a CN tail
and longer side-chain, as shown in Fig. 1.2. PAA is found in a nematic state at
389K − 408K [24], whereas MBBA is found in a nematic state at ∼ 293K − 320K
[25], making it more suitable for experiments. The nematic state is also found at
approximate room temperatures for the CB molecules [26]. All of these molecules
are relatively long (compared to their width) and rigid. It is typically easiest to
induce a phase transition in pure systems of such molecules by varying temperature;
therefore, these systems are thermotropic.

The liquid crystal 8CB, shown in Fig. 1.2, has been studied extensively in bulk
[28], in (effectively) two dimensions (via confinement between parallel substrates)
[29, 30, 31], as well as in other geometries such as cylindrical pores [32], and its
behavior is generally well-known in such environments. The 8CB molecules change
phase thermotropically, and therefore the phase transitions are defined as occurring
at certain temperatures. In bulk, 8CB exhibits transitions between liquid crystal
phases with increasing temperature from the smectic-A phase (SmA), to the nematic
phase (N), to the isotropic phase (I) [28, 33, 34, 35], with transition temperatures as:

SmA
306.8 K−→ N

313.6 K−→ I. (1.1)

In d = 3 dimensions, the smectic A - nematic phase transition is continuous, while
the nematic-to-isotropic (IN) transition is weakly first-order. The fact that the lat-
ter transition is weakly first-order is manifested by small discontinuities in density,
specific heat, and birefringence (for example, the volume change in 8CB samples at
the IN transition is only 0.35% [36]). In Fig. 1.3 we provide experimental data of the
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Figure 1.3: Experimental data of the IN phase transition of the liquid crystal 8CB
in three-dimensional bulk. The birefringence, which can be thought of as
a measure of nematic order [27], is shown versus temperature in Kelvin.
At ∼ 313.7 K we observe the characteristic “jump” corresponding to
the first-order transition from the isotropic (zero birefringence) to the
nematic (finite birefringence) phase. Data kindly contributed by Patrick
Huber and Andriy Kityk.

IN phase transition of the liquid crystal 8CB in bulk, where the birefringence is mea-
sured versus temperature. The discontinuous jump between the high-temperature
isotropic phase and low-temperature nematic phase takes place at ∼ 313.7K.

1.3.2 Long helical rods

Long helical rods are found in nature but are also easily constructed in the labora-
tory. For example, many polypeptides are rod-shaped and have lengths of ∼ 100Å
and widths of ∼ 10Å. When concentrated, these molecules can form liquid crystal
phases. Similar behavior is found for DNA and some viruses, most famously the
tobacco mosaic virus, which has length ∼ 3000Å and width ∼ 200Å [37]. Such rods
are particularly useful for experiments as they are of exactly the same size (monodis-
perse). Glass and plastic fibers can also be formed into similar rods, having larger
size, but similar ratios of length to width. For all such rods a phase transition can
be most easily induced by changing their densities; therefore, systems of such rods
are lyotropic. An additional advantage of the relatively large particle size is the
possibility of single particle visualization in experiments, see Fig. 1.4.
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1.3 Liquid crystal molecules

Figure 1.4: An electron micrograph of tobacco mosaic virus particles at 160,000x
magnification. The particles are stained in order to enhance visibility.
The particles are of uniform width and very similar length, making them
attractive for experiments [38].

1.3.3 Amphiphilic compounds

Amphiphilic compounds, with polar heads (attracted to water) and apolar tails
(avoiding water) can cluster together to become the building units of larger struc-
tures such as rods and sheets, which can yield liquid crystal phases [39]. These
systems can be both lyotropic and thermotropic. A famous example is the main
phase transition in membranes. In this case, the membrane undergoes a transition
from a liquid-disordered to a liquid-ordered phase. In both phases, there is no po-
sitional order in the lipid centers-of-mass, but in the liquid-ordered phase the lipid
tails are aligned, somewhat resembling a nematic phase [40, 41], as shown in Fig. 1.5.

1.3.4 Elastomers

Liquid crystal elastomers (LCEs) are formed by crosslinking a liquid-crystalline poly-
mer melt [43]. If the crosslinking is performed with the polymer melt being in the
isotropic phase, the low temperature phase of the LCE will be a polydomain struc-
ture [44, 45, 46]. Inside each domain, the sample is nematic in the sense that there is
preferred alignment along the director, but the directors between different polydo-
mains are randomly oriented from each other. Hence, there is no long-range nematic
order. The reason we mention LCEs here is because the crosslinkers provide a kind
of quenched disorder. The effect of quenched disorder on the isotropic-to-nematic

7



1 An introduction to liquid crystals

Figure 1.5: Simulation snapshots of liquid-disordered and liquid-ordered bilayers.
The lipid molecules (grey and gold) form the cell membrane. The tails
of the lipid molecules (purple) are much less ordered in the absence of
cholesterol (top image) than when cholesterol is present (bottom image).
The orientational order in the tail conformations somewhat resembles
that of a nematic phase. Reprinted from Ref. [42] with permission from
Elsevier.
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1.4 Isotropic-nematic transition: bulk theoretical approaches

transition plays a major role in the final chapter of this thesis.

1.4 Isotropic-nematic transition: bulk theoretical
approaches

From the experimental evidence, it transpires that the bulk isotropic-to-nematic
section (in three dimensions) is (weakly) first-order. We now present a number of
theories commonly used to describe this bulk transition. Common to all systems
which undergo an isotropic-to-nematic phase transition in bulk, is that the phase
transition is first-order and not continuous. We do not need statistical theories to
understand why this must be the case. In the isotropic phase the system is rota-
tionally invariant, while in the nematic phase this invariance is broken; the phase
transition therefore must be first-order [27]. However, we do need statistical theories
in order to understand the influence of the control parameters (temperature or oth-
erwise) driving the transition. In this section, we discuss three such theories. The
principal aspect these theories attempt to reproduce is the jump in order parameter
at the phase transition, as exhibited in Fig. 1.3. We emphasize that these theories
do not capture the behavior in the presence of confinement.

1.4.1 Nematic order parameter

The first ingredient of any theoretical description (and simulation) is some notion
of an order parameter to distinguish between the isotropic and nematic phases.
In Fig. 1.1(b) we introduced the director ~n, giving in which direction molecules
preferentially align. However, we have not defined a measure of how strongly aligned
they are in that direction, nor have we shown how to calculate ~n given a set of
molecular orientations. To this end, consider the arrangements of particles in the
isotropic and nematic phases of Fig. 1.1. One might naively guess that a scalar order
parameter suffices to distinguish between the isotropic and nematic phase. However,
more complicated phases (such as biaxial nematics) exist and it turns out that a
scalar is insufficient to fully describe the nature of nematic ordering. In fact, the
nematic order parameter takes the form of a tensor.

Definition of the orientational tensor

The form of the tensor follows quite naturally when one tries to compute the nematic
director ~n for a system of i = 1, . . . , N “rod-like” molecules. The orientation of
molecule i is given by a normalized vector ~di = (xi, yi, zi) so that |~di| = 1. The
director ~n is given by that vector for which the projection

P (~n) =
1

N

N∑
i=1

(
~n · ~di

)2

(1.2)
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1 An introduction to liquid crystals

Figure 1.6: Schematic representation showing the difference in molecular order be-
tween (a) the “standard” nematic (S > 0) where particles align parallel
to the director ~n and (b) the “perpendicular” nematic (S < 0) where
the particles align ⊥ to ~n.

is maximized. Note the presence of the square in the definition of P (~n) which

is required by the inversion symmetry, ~di ↔ −~di, of the nematic phase. Finding
the vector ~n that maximizes P yields an Euler-Lagrange problem with constraint
|~n| = 1. This can be cast into an eigenvalue problem, Q · ~n = λ~n, with eigenvalue
λ, and where the tensor Q is given by

Q =
3

2

〈x2〉 − 1/3 〈xy〉 〈xz〉
〈xy〉 〈y2〉 − 1/3 〈yz〉
〈xz〉 〈yz〉 〈z2〉 − 1/3

 , (1.3)

and where the angular brackets denote averages over all molecular orientations

〈αβ〉 ≡ 1

N

N∑
i=1

αiβi, (α, β) = (x, y, z). (1.4)

Note that the trace of Q is zero, since the molecular orientations are assumed to be
normalized.

The ordering of nematic phases is thus encoded in the orientational tensor Q
via its eigenvectors and eigenvalues. Note that Q can alternatively be expressed in
its more usual “short form” as

Qαβ =
3

2
〈αβ〉 − 1

2
δαβ, (1.5)

with Kronecker-delta δαβ. In addition, we point out that the definition of Q in
Eq.(1.3) is very convenient from the point of view of simulations since the molecular

orientations ~di are explicitly stored in memory.
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1.4 Isotropic-nematic transition: bulk theoretical approaches

Relation between the orientational tensor and nematic structure

To distinguish between isotropic and nematic phases, one needs to compute Q and
bring it into diagonal form. Since Q is symmetric it follows that all eigenvalues are
real. Note also that the trace of Q is zero. In the isotropic phase, one trivially
obtains a null matrix 1

Qdiag
iso =

0 0 0
0 0 0
0 0 0

 , (1.6)

while a (uniaxial) nematic phase yields

Qdiag
nem = S

−1/2 0 0
0 −1/2 0
0 0 1

 , S > 0. (1.7)

It is also possible to have a nematic phase where the particles align perpendicularly
to the director, see Fig. 1.6. In that case one finds

Qdiag
⊥ = S

−1/2 0 0
0 −1/2 0
0 0 1

 , S < 0, (1.8)

i.e. the same as for the uniaxial nematic, but with a negative prefactor. Finally, for
a biaxial nematic, one finds that

Qdiag
biaxial =

−S/2− η 0 0
0 −S/2 + η 0
0 0 S

 , (1.9)

where η measures the degree of biaxiality (when η = 0 one recovers the nematic
form of Q again).

Scalar nematic order parameter

From the above examples it follows that a scalar S is sufficient to describe isotropic
(S = 0), “standard” nematic (S > 0), and “perpendicular” nematic (S < 0) phases,
but not biaxial nematics. Fortunately, biaxial nematics are relatively scarce, and
we do not consider them in this thesis. Hence, we will mostly use the scalar S
as nematic order parameter in what follows. In simulations, this requires one to
compute the eigenvalues of the orientational tensor Q: the signs of the eigenvalues
tell us whether the phase is nematic, and the prefactor of Q tells us how strongly
the nematic phase is aligned (see additional discussion in [47]).

1Of course, for the isotropic phase, diagonalization of Q is not necessary.
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1 An introduction to liquid crystals

Note that S is related to the angular distribution function f(θ, φ) via

S =

∫
f (θ, φ)

(
3

2
cos2 θ − 1

2

)
dΩ, (1.10)

where f(θ, φ) denotes the probability of a molecule pointing in the direction (θ, φ)
where 0 < θ < π and 0 < φ < 2π are the “standard angles” of spherical coordinates.
As f(θ, φ) is a probability, we require a normalization condition∫

f(θ, φ) dΩ =

∫ 2π

0

dφ

∫ π

0

dθ sin θ f(θ, φ) = 1. (1.11)

Note that it is implicitly assumed in Eq.(1.10) that the director corresponding to
f(θ, φ) is parallel to the z-axes.

Measurement of the nematic order parameter in simulations

In our computer simulations we have direct access to the molecular orientations:
the order parameter S can thus be calculated explicitly from the eigenvalues of the
orientational tensor Q. The nematic order parameter follows from the eigenvalues
of the orientational tensor Q, which involves the diagonalization of a 3× 3 matrix.
The tensor Q is trivially computed in simulations using Eq.(1.5) and the molecular

orientations ~di. The diagonalization is performed using the exact expression for
the roots of a cubic polynomial. Comparing to Eq.(1.7), there are several choices
to extract S. The usual definition of S is simply to take the largest eigenvalue of
Q; the nematic director ~n is given by the corresponding eigenvector. However, in
the isotropic phase, this choice leads to a finite-size artifact. If always the largest
eigenvalue is taken, one also finds a finite nematic order parameter in the isotropic
phase of order O

(
N−1/2

)
, with N the total number of molecules [48]. We therefore

also occasionally use an alternative definition by taking S to be −2× the middle
eigenvalue of Q. As can be seen from Eq.(1.7), this choice also constitutes a valid
definition of S, which has the advantage of yielding S = 0 when averaged in the
isotropic phase.

Measurement of the nematic order parameter in experiments

In experiments the above method of calculating the nematic order parameter is usu-
ally not possible (except in systems of colloidal rods where real-space resolution is
available [49]). There are two fundamentally different ways the nematic order pa-
rameter can be measured in experiments. One can measure the anisotropy of some
macroscopic function, for example magnetically [50], electrically [51], or optically
[51], and the only additional knowledge required is of the maximum possible mag-
nitude of the function being measured, i.e. the anisotropy of the perfectly ordered
nematic phase. Birefringence is a good example of such a measure. The most sim-
ple case involves materials with uniaxial anisotropy, where there is no symmetry
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1.4 Isotropic-nematic transition: bulk theoretical approaches

between perpendicular planes. The material causes a beam of light to be split into
two components, each traveling at different velocities, and thus having different re-
fractive indices, dimensionless in value. Birefringence is measured as the difference
between these refractive indices, and thus in an isotropic material we expect the
birefringence to be zero [52]. A birefringence measurement of the liquid crystal 8CB
in bulk is given in Fig. 1.3. In the isotropic phase light passes through the liquid
crystal at equal velocities, regardless of the direction of travel. The nematic phase
is however anisotropic, and non-zero birefringence is measured.

Some experimental techniques, such as Raman scattering and nuclear magnetic
resonance, measure S through the anisotropy of individual molecules rather than
the bulk anisotropies of the liquid crystal [53]. Although it is impossible to measure
the anisotropy of a single molecule by these techniques, the statistical averages
(temporal and spatial) of the molecular anisotropy is possible to measure.

1.4.2 Landau-de Gennes phenomenological theory

Having defined the nematic order parameter, we can now discuss the theoretical
frameworks most commonly used to describe the bulk isotropic-nematic transition.
The first is the phenomenological Landau-de Gennes theory. The aim of this theory
is to describe a thermotropic isotropic-nematic phase transition using only general
symmetry considerations of the order parameter. Neglecting spatial fluctuations
(i.e. the mean-field approximation) the free energy density is Taylor expanded in
the order parameter up to fourth-order as

F (Q, T ) =
4∑

n=1

An(T ) Tr (Qn) , (1.12)

with Q the tensor order parameter of the nematic phase given by Eq.(1.7), expansion
coefficients An(T ), and where Tr denotes a trace (the reason one uses the trace is
because the free energy must be rotationally invariant). Note that the temperature
dependence is contained in the expansion coefficients. Since Q is traceless it follows
that the linear term vanishes A1 = 0. The second observation is that Q and −Q
describe different phases, as was shown schematically in Fig. 1.6. Hence, we must
allow for a non-zero cubic term in the expansion A3 6= 0 (which marks a strong
departure from the Ising ferromagnet where odd terms are explicitly forbidden by
symmetry). The free energy may thus be written as

F (S, T ) =
1

2
rS2 − wS3 + uS4, (1.13)

where we substituted Eq.(1.7), and with re-defined expansion coefficients r, w, u.
We may now attempt to describe the isotropic-nematic transition using the above

form of F . At the transition temperature TIN the free energy of the isotropic phase
(S = 0) must equal that of the nematic phase (S = Snem > 0) while both phases
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Figure 1.7: Generic shape of the free energy F of Landau-de Gennes theory for
T/TIN = 0.8, 1.0, 1.2 with coefficients w = u = 1. The thick black line
marks F = 0. At T > TIN the isotropic phase is favored, while for
T < TIN the nematic phase is favored. At T = TIN there is a first-order
phase transition between the isotropic and nematic phases.

must correspond to a minimum in the free energy. This leads to the following set of
equations

T = TIN :
1

2
rS2

nem − wS3
nem + uS4

nem = 0, rSnem − 3wS2
nem + 4uS3

nem = 0,(1.14)

r − 6wSnem + 12uS2
nem > 0, r > 0, (1.15)

which yield r = w2/2u and Snem = w/2u at the transition. The temperature
dependence of the free energy around the transition is captured by writing r =
(w2T )/(2uTIN) while w, u are independent of temperature. The generic shape of F
is shown in Fig. 1.7 for T/TIN = 0.8, 1.0, 1.2 and w = u = 1. Due to the presence of
the cubic term the transition is distinctly first-order.

The remarkable feat of Landau-de Gennes theory is that, purely based on the sym-
metry of the order parameter, it predicts a first-order isotropic-nematic transition.
Indeed, this is the case in the majority of bulk experiments. The main drawback of
the theory is, of course, its phenomenological nature: it is not a priori clear how u
and w relate to material properties.

1.4.3 Maier-Saupe theory

The Maier-Saupe theory [54, 55, 56] provides a mean-field description of the isotropic-
nematic transition in thermotropic liquid crystals. The advantage over Landau-
de Gennes theory is that the transition temperature is expressed in terms of a
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1.4 Isotropic-nematic transition: bulk theoretical approaches

material property, namely the Hamaker constant. In line with Landau-de Gennes
theory, one writes the free energy F as function of the nematic order parameter S

F (S) = E(S)− T Σ(S), (1.16)

with energy E, orientational entropy Σ, and temperature T . Note that there is a
competition between energy (high in the isotropic phase and low in the nematic
phase) and entropy (low in the nematic phase and high in the isotropic phase) and
this drives the isotropic-nematic transition. At low T the system will minimize
the energy and become nematic; at high T the system will maximize its entropy
and become isotropic. Consequently, at some temperature in-between an isotropic-
nematic transition must take place.

The order parameter S in Maier-Saupe theory is the scalar definition of Eq.(1.10).
For the energy one assumes that

E(S) = −uS
2

2
, u > 0, (1.17)

where the parameter u is a material property expressing the strength of the in-
teraction between neighboring molecules (which can be expressed in terms of the
Hamaker constant). Hence, aligned phases have larger S and are thus more energet-
ically favorable. The entropy is given in terms of the angular distribution function
f(θ, φ) by the Boltzmann relation as

Σ = −kB
∫
f(θ, φ) ln [αf(θ, φ)] dΩ, (1.18)

with kB the Boltzmann constant. As f(θ, φ) = 1/4π in the isotropic, we choose
α = 4π so that the entropy of the isotropic phase is zero. This results in a free
energy of the form

FMS(S) = −uS
2

2
+ kBT

∫
f(θ, φ) ln[4πf(θ, φ)] dΩ. (1.19)

However, to calculate S and Σ(S) fully, we require a distribution f(θ, φ). The dis-
tribution is chosen to (1) yield an order parameter S, (2) be normalized, and (3)
maximize the entropy. This leads to an Euler-Lagrange problem with two constraints
which can easily be solved [57]. The solution takes the form f(θ, φ) ∝ exp (λ cos2 θ),
with the Lagrange multiplier λ setting the value of S, and where the proportional-
ity constant follows from the normalization condition Eq.(1.11). Note that λ < 0
describes a “perpendicular” nematic (see Fig. 1.6(b)), λ = 0 an isotropic phase, and
λ > 0 a nematic phase, as seen in Fig. 1.8

For a given value λ ≥ 0, one uses the corresponding f(θ, φ) to compute the
order parameter S and entropy Σ, and uses these to calculate the free energy F via
Eq.(1.19). Any single value of λ yields a single point on the curve F (S); the full
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Figure 1.8: The angular distribution function f(θ, φ) of Maier-Saupe theory for sev-
eral values of the variational parameter λ. The value λ = 0 corresponds
to the isotropic phase (flat distribution). Positive values correspond
to nematic phases (distribution peaks at θ = 0, π) while negative values
correspond to “perpendicular nematics” (distribution peaks at θ = π/2).

curve is thus parametrized by λ. For small u/kBT there is a single minimum of the
free energy at S = 0, and the equilibrium state is therefore isotropic. However, at
u/kBT ≈ 4.55 a second minimum of equal depth appears, which deepens as u/kBT
increases. This describes the isotropic-nematic transition. There is a corresponding
discontinuity in the order parameter at the transition, where it jumps from S = 0
to S ≈ 0.44, indicating a first-order phase transition, shown in Fig. 1.9. Following
Eq.(1.17), this also implies a jump in the energy density ∆ρ/u = S2/2 ≈ 0.1.

Maier-Saupe theory is remarkably accurate [58], exhibiting good qualitative agree-
ment with bulk experiments in general, in particular providing a very good estimate
of the value of S in the nematic phase at the phase transition [59]. Discrepancies
with experiments are mainly due to the temperature dependence of u, which is ig-
nored in the theory. The role of fluctuations in S can also be important, but are also
neglected in this mean-field treatment. Larger discrepancies with experiments are
therefore expected in situations of confinement where fluctuations become partic-
ularly important.

1.4.4 Onsager theory

Onsager theory provides a description of the isotropic-nematic transition in lyotropic
liquid crystals [60]. A very basic model of a lyotropic liquid crystal is a system of
hard rods, modeled in three dimensions as cylinders with length L and diameter D.
We define the cylinder elongation as κ = L/D and consider κ� 1 in what follows.
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Figure 1.9: Free energy F (S) of the Maier-Saupe model calculated for various values
of order parameter S at u/kBT = 4.48, 4.542, 4.60. For u/kBT = 4.542
(green curve) the two minima at S = 0 (corresponding to the isotropic
phase) and S ≈ 0.44 (corresponding to the nematic phase) are of equal
height, and the transition between the two phases is first-order. For
u/kBT = 4.48 (pink curve) there is only one minimum and the transition
is not first-order. For u/kBT > 4.542 the minimum at S > 0 deepens.

The rods are hard meaning that they are not permitted to overlap, but otherwise the
interaction energy is zero. The energy thus plays no role and the free energy is solely
determined by the entropy. The isotropic-nematic phase transition is brought about
because there are two competing entropy contributions: the orientational entropy
Σorient due to the rod orientations, and the translational entropy Σtrans due to the
rod centers-of-mass. As such, the total entropy Σtot is given by

Σtot = Σorient + Σtrans. (1.20)

The orientational entropy may again be expressed in terms of the angular distribu-
tion function via Eq.(1.18). To obtain the translational entropy, we use the expres-
sion for an ideal gas, but with the volume V replaced by V − B, where B denotes
the excluded volume (we thus assume that the rod concentration is low). The result
is

Σtrans ≈ kB ln

(
V

NΛ3

)
− kBB

V
, B � V, (1.21)

with Λ the thermal wavelength, and N the total number of rods in the system.
Restricting ourselves to pair interactions, the excluded volume can be written as

B ≈ 2DL2N〈| sin γ|〉, κ� 1, (1.22)
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where γ is the angle between two rods, and where the average is computed as a
double-integral over the angular distribution function

〈| sin γ|〉 = 1/2

∫ ∫
f(θ, φ)| sin γ| f(θ′, φ′) dΩ dΩ′. (1.23)

This leads to a free energy of the form

FOnsager

kBT
≈ Γ 〈| sin γ|〉+

∫
f(θ, φ) ln[4πf(θ, φ)] dΩ, (1.24)

where additive constants have been dropped, Γ = 8κη/π, and with the rod packing
fraction defined as η = πD2LN/(4V ). To calculate the free energy explicitly an
“Ansatz” for the angular distribution function is made

fλ(θ, φ) =
λ

4π

cosh(λ cos θ)

sinhλ
, (1.25)

with variational parameter λ > 0. Note that λ → 0 corresponds to the isotropic
phase, while λ > 0 describes a nematic phase. If the free energy is calculated as
function of the scalar nematic order parameter S using Γ ∼ 9.4, one again observes
two minima at equal height characteristic of a first-order transition: one minimum
at S = 0 corresponding to the isotropic phase, and the other at S ∼ 0.84 cor-
responding to the nematic phase [57]. The term Γ in Eq.(1.24) thus plays a role
analogous to u/kBT in Maier-Saupe theory. Note that S in the nematic phase is
considerably larger than observed in experiments, where typically S ∼ 0.4 [61]. The
Onsager model also has other faults; the change in density at the phase transition,
for instance, is also much larger than observed in experiments [61].

1.5 Role of confinement: scope of the thesis

We have seen that nematics in bulk consist of anisotropic molecules aligned in a
common direction called the director. We have shown that in a nematic phase the
(diagonalized) orientational tensor Q takes the form of Eq.(1.7) with nematic order
parameter S > 0. In addition, we have presented a number of mean-field treatments
of the isotropic-nematic transition, all showing that the isotropic-nematic transition
is first-order.

While in bulk the use of mean-field approaches is usually safe, quite the reverse
is true for a system in confinement. By confining a system (for example between
two parallel walls) the dimension of the system is reduced. In these situations the
assumption that the order parameter is uniform is no longer valid. For a correct
description of the isotropic-nematic transition we now require a method whereby
spatial fluctuations of the order parameter are included. The method of choice
in this thesis are computer simulations. Computer simulations are, by nature of
storing information of all constituent particles, ideal to investigate such effects.
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The situation of liquid crystals confined between parallel walls is covered in chap-
ter 5. This is presumably the most simple case of confinement conceivable but the
results are already surprising. While we generally observe the loss of long-range
nematic order as the distance between the walls becomes smaller, owing to the
Mermin-Wagner theorem [62], we nevertheless observe an isotropic-nematic tran-
sition. The striking result is that the corresponding transition can be continuous,
as well as first-order, depending on the details of the interaction potential. The
fact that both continuous and first-order transitions can occur appears consistent
with experiments [29, 30, 31] as well as with a recent mathematical proof that such
non-universal behavior is indeed allowed [63].

In chapter 6 we consider a far more complex form of confinement, namely of a liq-
uid crystal inside a porous medium. In this case, the confinement constitutes a form
of quenched disorder. In addition to spatial fluctuations in the order parameter,
one now also needs to consider the fluctuation of results between different samples
of the quenched disorder. To tackle this problem analytically is extremely difficult,
but much less so in simulations. The main finding of chapter 6 is that fluctuations
between disorder samples are very pronounced, and need to be carefully measured
if a consistent description of the isotropic-nematic transition is to be obtained.

1.5.1 Thesis outline

In the next chapter we give an overview of the simulation methods used throughout
this thesis. Following that, in chapter 3 we introduce the Lebwohl-Lasher model,
which is one of the standard models used in computer simulations to describe ther-
motropic liquid crystals, and which is used as a basis throughout this thesis. In
chapter 4 we describe finite-size effects at first-order phase transitions. We present
results dealing with planar confinement in chapter 5 and porous media in chapter
6. Our results have also been published in the following peer-review journals:

1. J.M. Fish and R.L.C. Vink, Finite-size effects at first-order isotropic-to-nematic
transitions, Phys. Rev. B 80, 014107 (2009);

2. J.M. Fish and R.L.C. Vink, Isotropic-to-nematic transition in confined liquid
crystals: An essentially nonuniversal phenomenon, Rhys. Rev. E 81, 021705
(2010); and

3. J.M. Fish and R.L.C. Vink, Nematics with quenched disorder: violation of
self-averaging, Phys. Rev. Lett. 105, 147801 (2010).
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2.1 Introduction

The aim of our computer simulations is to describe the equilibrium phase behavior
of a large number of liquid crystal molecules interacting via the Lebwohl-Lasher
Hamiltonian (to be discussed in detail in chapter 3). The Monte Carlo method is well
suited to probe thermal equilibrium properties and will therefore be our method of
choice. In fact, early simulations of the Lebwohl-Lasher model also used Monte Carlo
methods [64, 65] and performing such simulations using single spin dynamics with
“standard” Metropolis sampling is straightforward. However, this standard method
is inefficient near a first-order phase transition due to the formation of interfaces
(these cost free energy which in turn leads to exponential slowing down making the
simulation very inefficient [66]). The simulations of this thesis are therefore based
on more sophisticated algorithms, such as Wang-Landau [67, 68, 65] and successive
umbrella sampling [69]. In addition, we use the transition matrix to also extract
information from Monte Carlo moves that are rejected.

A further point to note is that ideally we wish to describe the thermodynamic
limit, where the number of molecules tends to infinity while the density remains
constant. However, the thermodynamic limit cannot be simulated directly on a
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computer (computer memory is finite) and so an additional important ingredient
of this work is the use of finite-size scaling. The application of finite-size scaling
to continuous spin systems with quenched disorder constitutes an important aspect
of the new results of this thesis, and is therefore not presented in this chapter but
instead in the separate results chapters, namely chapters 4, 5, and 6.

In this chapter we describe the Monte Carlo methods used in this thesis. We begin
with a discussion of the “standard” Metropolis algorithm applied to the Lebwohl-
Lasher model. We then discuss the limitations of this algorithm near a first-order
phase transition which brings us to the discussion of Wang-Landau and successive
umbrella sampling (including a description of how Wang-Landau sampling can be
made even more efficient by using information from rejected Monte Carlo moves via
the transition matrix).

2.2 The Metropolis algorithm

The general method of performing a Monte Carlo simulation is well known. A
change to the system is proposed (via a Monte Carlo move) which is then accepted
with a certain probability. The idea is to generate a sequence of states “somewhat
representative” of a real system, for example an experiment. Fluctuations move an
experiment from state to state as time progresses; a Monte Carlo simulation models
this by also permitting these fluctuations to occur and calculates the probability of
the system moving between the different states. Typically, as we can sample only a
small fraction of total states, we need to try to make this sample as representative as
possible of the whole system. For the state to occur with the appropriate probability
we need to design rules governing how we change from one state to another.

2.2.1 Thermal equilibrium: Boltzmann distribution

At temperature T a system in thermal equilibrium is found in state µ at energy Eµ
with probability pµ according to the Boltzmann distribution

pµ =
1

Z
exp

(
− Eµ
kBT

)
, (2.1)

where the normalization constant Z is called the partition function and has value

Z =
∑
µ

exp

(
− Eµ
kBT

)
. (2.2)

The expectation value 〈Q〉 of an observable Q, such as the order parameter or the
energy is calculated as the weighted average

〈Q〉 =
∑
µ

Qµpµ, (2.3)
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2.2 The Metropolis algorithm

where Qµ is the value of the observable in state µ (in continuous systems the sum
over all states is replaced by an integration over phase space).

2.2.2 Importance sampling

For sufficiently simple systems the summation over all states can be performed
analytically (such as in the 1D Ising model). In that case an exact expression
for Z can be derived and expectation values can be computed by means of an
appropriate derivative. In general, however, an exact summation is not possible;
such is already the case for the (seemingly simple) Lebwohl-Lasher model. The
idea of equilibrium Monte Carlo is to estimate expectation values by replacing the
sum over all possible states with a sum over a subset {µ1, µ2, . . . µM} of states.
Assuming that the Monte Carlo scheme generates state µi with probability gµi the
best estimate of an expectation value may be written as

〈Q〉 ≈ 1

Z

M∑
i=1

1

gµi
Qµi exp

(
− Eµi
kBT

)
, (2.4)

with the partition sum approximated by

Z ≈
M∑
i=1

1

gµi
exp

(
− Eµi
kBT

)
. (2.5)

Typically, only a small fraction of all states contribute greatly to the partition
function. It is for this reason that selecting states with equal probabilities is a poor
choice. Monte Carlo simulations therefore attempt to select states intelligently; this
is called importance sampling. Since an experimental system samples states from
a Boltzmann distribution, given by Eq.(2.1), it makes sense to do the same when

simulating. If we manage to design an algorithm such that gµi ∝ exp
(
− Eµi
kBT

)
the

estimate of the expectation value simplifies to

〈Q〉 =
1

M

M∑
i=1

Qµi . (2.6)

With this optimal choice, each generated state contributes with equal weight to the
expectation value.

2.2.3 Markov chain Monte Carlo: detailed balance and
ergodicity

Despite knowing the optimal probability with which the states should be generated,
we are still lacking a practical algorithm to achieve this. To this end we use a Markov
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2 Simulation methods

process. A Markov process changes the system from one state µ to another state ν
by means of proposing a random change to the starting state µ - the random change
is called a Monte Carlo move. Repeating this many times a Markov chain of states
is formed. In order for the sequence of states µi in the chain to appear with the
desired target probability pµi we require the conditions of ergodicity and detailed
balance. For the Markov process to be ergodic, it must be possible to reach all
states possible from some arbitrary starting state by repeated applications of the
Monte Carlo move. This does not mean that the new state has to be accessible in
a single move, but that there must be some sequence of moves connecting the two.
The condition of detailed balance reads as

pµP (µ→ ν) = pνP (ν → µ), (2.7)

where pµ is the probability distribution that one wishes to sample, and where P (µ→
ν) is the probability that, being in state µ, the next step of the Markov process yields
state ν.

2.2.4 Metropolis algorithm

With the conditions of detailed balance and ergodicity in mind one easily constructs
a Monte Carlo algorithm that will generate “representative” states for the Lebwohl-
Lasher model, i.e. according to the Boltzmann distribution. The Monte Carlo move
that we use to simulate the Lebwohl-Lasher model is the generalized spin flip
which we describe in chapter 3. To derive the probabilities with which the Monte
Carlo moves should be accepted one “breaks-down” the probability P (µ → ν) of
Eq.(2.7) into proposition and acceptance parts

P (µ→ ν) = g(µ→ ν)A(µ→ ν), (2.8)

where g(µ → ν) is the probability that the Monte Carlo move proposes state ν
(starting from state µ) and A(µ → ν) is the probability that the proposed move is
accepted. Thus, we do not necessarily move to each state that is proposed. We can
therefore rewrite Eq.(2.7) as

A(µ→ ν)

A(ν → µ)
=
g(ν → µ)

g(µ→ ν)
exp

(
−∆E

kBT

)
, (2.9)

with ∆E = Eν−Eµ the energy difference between the states, and where for the target
probability the Boltzmann distribution was used. The proposition probabilities
depend on the type of Monte Carlo move used. For the generalized spin flip used in
this thesis, it holds that g(ν → µ) = g(µ → ν) (see chapter 3) so the ratio cancels
from Eq.(2.9). In what follows, we will drop the proposition probabilities from our
notation.

Eq.(2.9) only gives the ratio between accept probabilities, and thus we still have
some freedom in choosing the probabilities themselves. Since we are dealing with

24



2.3 Exponential slowing down

probabilities we require 0 ≤ A ≤ 1. Ideally we want to accept as many moves
as possible. Consider a move from state µ → ν: the optimal choice is to choose
A(µ → ν) as close to unity as possible. Consider first the case whereby the r.h.s.
of Eq.(2.9) is greater than unity. In that case we can safely choose A(µ → ν) = 1,
since for that choice the reverse probability A(ν → µ) yields a number smaller
than unity. Similarly for moves where the r.h.s. is smaller than unity one chooses
A(ν → µ) = 1 implying that in these situations A(µ → ν) < 1, i.e. there will now
also be rejection. The optimal choice for many applications is therefore to choose
the accept probabilities as

A(µ→ ν) = min

[
1, exp

(
−∆E

kBT

)]
, (2.10)

which is called the Metropolis algorithm [70]. Once again we emphasize that
the above equation only holds when the proposition probabilities are symmetric:
g(ν → µ) = g(µ→ ν).

2.3 Exponential slowing down

While the standard Metropolis algorithm has given valuable insights into the phase
behavior of the Lebwohl-Lasher model the algorithm has its limitations. To be
described in detail in chapter 3, the Lebwohl-Lasher model in 3D undergoes a first-
order phase transition between the isotropic and nematic phases [64]. At a first-order
phase transition one encounters phase coexistence, where patches of isotropic and
nematic domains coexist with each other. Hence, there is a considerable amount
of interface in the system which corresponds to a large cost in free energy owing
to surface tension [71]. The standard Metropolis algorithm performs poorly in this
case.

To see why this is consider the snapshots in Fig. 2.1 showing how a first-order
phase transition takes place in a system with periodic boundary conditions. Al-
though these are snapshots of the Lebwohl-Lasher model, the behavior is general in
the sense that it applies to any first-order phase transition [72, 73] (but to be explicit
we shall speak of the isotropic-nematic transition). Starting in the isotropic phase
(a) a first-order isotropic-nematic transition typically begins as a nucleation event
with the formation of a nematic droplet (b). As the transition progresses the droplet
grows until it interacts with itself through the periodic boundaries, upon which a
strip configuration is obtained (c). The isotropic and nematic phase are then sepa-
rated by two interfaces that run perpendicular to one of the edges of the simulation
box since this geometry minimizes the total interface length. In d dimensions the
total interface length (area in d = 3) equals 2Ld−1, with L the edge of the simulation
box. As the fraction of the nematic phase increases one observes the formation and
growth of an isotropic droplet (d), until finally the system is completely nematic (e).
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2 Simulation methods

Figure 2.1: Simulation snapshots of a (generalized) Lebwohl-Lasher model on a two-
dimensional lattice exhibiting a first-order isotropic-nematic transition
(note that the spins are three-dimensional). Starting in the isotropic
phase (a) a droplet of the nematic is initially formed (b). The droplet
spreads until it interacts with itself, because periodic boundary condi-
tions are used, and it forms a strip configuration (c). The fraction of
nematic phase increases until an isotropic phase is confined to a droplet
(d), and finally the system becomes completely nematic (e).
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In a standard Metropolis Monte Carlo simulation with configurations appearing
proportional to their Boltzmann weights, the strip configuration of Fig. 2.1(b) is
extremely rare due to the large cost in free energy owing to interface tension. The
corresponding free energy cost equals ∆F = 2σLd−1, with σ the interface tension,
and thus ∆F grows rapidly with system size. An algorithm sampling from the
Boltzmann distribution is therefore inefficient at a first-order phase transition. With
such an algorithm, the CPU time required to observe the interface states grows
exponentially with system size, hence the phrase exponential slowing down. For
this reason we use the different Monte Carlo sampling strategies described in the
following section.

2.4 Biased sampling algorithms

2.4.1 Wang-Landau algorithm

At a first-order isotropic-nematic phase transition in a thermotropic liquid crystal
there is a difference between the phases not only in the nematic order parameter,
but also in the energy. For example, in the theory of Maier-Saupe, the nematic order
parameter “jumps” at the transition by an amount ∆S ≈ 0.44, which corresponds
to a change in energy density ∆E/u ≈ 0.442/2 (see section 1.4.3. The energy may
therefore also be used as order parameter to distinguish between the isotropic and
nematic phase.

To study the isotropic-nematic transition one could thus measure the distribution
P (E) defined as the probability to observe the system in a state with energy E during
the Monte Carlo simulation. At the isotropic-nematic transition, this distribution
becomes bimodal: the peak at low energy corresponds to the nematic phase, the
peak at high energy to the isotropic phase, and the region between the peaks to phase
coexistence (see Fig. 2.2). However, as was explained in the previous section, if one
samples from the Boltzmann distribution the coexistence region is rarely visited,
and the bimodal structure of P (E) is not observed (instead, only the isotropic or
nematic peak is observed, depending on starting conditions).

To observe the full distribution we can use Wang-Landau sampling whereby a
state µ does not appear with its Boltzmann weight, but instead with a probability
given by

pµ ∝
1

G(Eµ)
, (2.11)

where G(E) denotes the density of states. The density of states G(E) is a measure of
how many states exist in a small interval dE around E. The probability distribution
of the energy P (E) is related to the density of states as

P (E) ∝ G(E) exp

(
− E

kBT

)
. (2.12)
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Figure 2.2: Logarithm of the distribution P (E) of the Lebwohl-Lasher model with
the exponent p = 10 on a d = 3-dimensional lattice, for system sizes
L = 10, 15, 20 with the inverse temperature ε chosen for each system
size to give isotropic (I) and nematic (N) peaks of equal height. The
distributions are plotted as functions of negative energy density −ρ; the
peak on the left thus refers to the isotropic phase, despite having higher
energy. The free energy is marked as ∆F for the L = 10 system.

If states could be produced in a Monte Carlo simulation with probability according
to Eq.(2.11), the simulation would perform a random walk in energy space. That is,
all energies would be observed equally often, including those states that contain an
interface. This would thus greatly reduce the problem of exponential slowing down.

The problem is that G(E) is a priori unknown. The Wang-Landau algorithm
[67, 68] solves this problem by initially setting G(E) = 1 for all states, and iteratively
improves the result such that it converges to the true value. To this end, we choose
an energy range Emin < Eµ < Emax in which to perform the simulation; the range
is chosen such that both the isotropic and nematic phase are contained. Since the
energy in the Lebwohl-Lasher model is continuous, we discretize the energy range
into bins or “energy windows”, each window being of equal width.

In the first Wang-Landau iteration, we perform generalized spin flips as usual. A
move from state µ, with energy Eµ, to state ν, with energy Eν , is accepted with
probability

P (Eµ → Eν) = min

[
1,
G(Eµ)

G(Eν)

]
. (2.13)

Note that this is just the Metropolis algorithm of Eq.(2.10) but with the Boltzmann
probability replaced by Eq.(2.11). The key difference from “standard” sampling is
that each time an energy window E is visited the corresponding estimate of the
density of states G(E) is multiplied by some modification factor f > 1, i.e. G(E)→
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G(E) · f (we initially set f = e ≈ 2.72). The effect of this modification is to make
it less likely to visit the same state again, and instead visit states that have not yet
been visited. Additionally, we keep track of a histogram H(E) counting the number
of times each energy window is visited. The random walk is continued until the
energy windows have been visited sufficiently often and H(E) is sufficiently flat. 1

This ends the first Wang-Landau single iteration.
For the second iteration, H(E) is reset and f is reduced according to some function

that monotonically decreases f to unity; we generally use

f → f 1/k. (2.14)

By using a smaller value of f we make less drastic changes to the density of states.
The simulation is then restarted, rebuilding H(E) and updating g(E) as before, until
all windows have once again been visited sufficiently often and H(E) is once again
sufficiently flat. More iterations then follow, each time using a reduced modification
factor f , until f is very close to unity (and H(E) hopefully very nearly flat). At
this point, the estimate of G(E) has converged to the true density of states, and the
energy distribution P (E) can be calculated for any temperature using Eq.(2.12).

To prevent numerical overflow, we calculate lnG(E) in the simulation: after each
move we thus update ln[G(E)]→ ln[G(E)]+ln(f). Between different Wang-Landau
iterations, the “fining” of the modification factor thus follows ln fnew = ln fold/k with
some constant k > 1. Wang-Landau iterations are continued until ln f is smaller
than some cut-off value, whereupon the simulation is complete. The choice of k is
important as it affects the accuracy of the measured density of states, as well as the
time required for the simulation to complete.

Of note is that early in the simulation, where f is still large and G(E) is be-
ing changed considerably, detailed balance is not fulfilled. The distribution being
sampled is being dynamically altered, and thus equilibrium will not be obtained.
However, toward the end of the Wang-Landau simulation, as the changes to G(E)
become negligible, detailed balance is restored.

The Wang-Landau algorithm can be optimized by performing many random walks
simultaneously on different or overlapping energy ranges. Performing simulations
on smaller energy ranges and combining them after they have finished can save
considerable time compared to performing a single simulation over the complete
energy range. Most of the results presented in later chapters were indeed obtained
by combining data from different Wang-Landau simulations.

2.4.2 Transmission matrix Wang-Landau algorithm

Wang-Landau sampling generally works very well; it certainly outperforms the
Metropolis algorithm at overcoming free energy barriers and it collects data of high

1There is a discussion of what is “sufficiently flat” in [68]. Generally, we find that choosing a
suitable degree of flatness is highly dependent on the system parameters.
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statistical quality. However, it has been noted that in the limit of long simulation
time, the statistical quality of the density of states no longer increases [69, 74]. To
solve this problem we use a modified version of the Wang-Landau algorithm based
on the transition matrix.

The point to note is that the accept probability in Eq.(2.13) is generally smaller
than unity. In fact, a considerable number of moves is rejected thereby wasting
valuable computer time. However, it is possible to also use information of rejected
moves to construct the density of states. To this end we introduce the quantity

T (µ→ ν), (2.15)

defined as the number of proposed Monte Carlo moves from a state with energy
Eµ to a state with energy Eν , regardless of whether the moves were accepted. The
quantity T above is known as a transmission matrix element. The advantage of
using the transmission matrix elements is that more information is collected, since
now also rejected moves are used, and thus G(E) can be estimated more accurately
and quickly than via conventional Wang-Landau sampling.

In terms of the transmission matrix elements, the probability of proposing a move
to a state with energy Eν , assuming one is in a state with energy Eµ, is given by

Ω(µ→ ν) =
T (µ→ ν)∑
ν T (µ→ ν)

. (2.16)

These proposal probabilities are related to the density of states by [75]

G(Eµ)

G(Eν)
=

Ω(ν → µ)

Ω(µ→ ν)
. (2.17)

Hence, from the transmission matrix elements the density of states can also be
constructed.

Note that if we were to collect information about all proposal statistics, as sug-
gested in Eq.(2.16), we would require a significant amount of computer memory.
However, if we perform only single spin flips it is very unlikely that the energy of
the system is going to be significantly altered. Starting in a state with energy in
“energy window” i, an extreme version of this idea would be to count only:

1. how often a move is proposed to a state with energy in the “left” window i−1
(Hleft);

2. how often a move is proposed to a state with energy in the “right” window
i+ 1 (Hright);

3. how often a move is proposed to a state in some other window (Hrest).
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The proposal probabilities are thus given as

T (i→ i+ 1) =
Hright

Hleft +Hright +Hrest

(2.18)

for a proposal to window i+ 1 and

T (i→ i− 1) =
Hleft

Hleft +Hright +Hrest

(2.19)

for a proposal to window i− 1. The density of states is related to the ratios of T as

G(i+ 1)

G(i)
=
T (i→ i+ 1)

T (i+ 1→ i)
. (2.20)

The complete density of states can be calculated recursively as

G(0) ≡ 1, G(1) =
T (0→ 1)

T (1→ 0)
G(0) (2.21)

and so forth for all energy windows. In this implementation the additional memory
load consists of only three arrays, which is negligible.

The transmission matrix elements can be used in conjunction with Wang-Landau
sampling as follows. In our implementation we distinguish two stages: a “pre-
pare” stage, followed by a “collect” stage. At the start of the prepare stage we set
f = e as before and perform Wang-Landau iterations as usual. After each move,
accepted or rejected, the density of states G(E), the energy histogram H(E), and
the transmission matrix elements are updated. When H(E) has become sufficiently
flat the transmission matrix elements are used to construct the density of states,
via Eq.(2.21), which is then used for the next Wang-Landau iteration. By using the
transmission matrix elements the “flatness” criterion can be relaxed tremendously:
G(E) can already be calculated accurately via Eq.(2.21) when each energy bin has
been visited only once. In addition we can reduce the modification factor much
more quickly than in conventional Wang-Landau sampling [69]. Typically one can
use k = 10 in Eq.(2.14), as opposed to k = 2 in the conventional implementation.
The modification factor f thus approaches unity extremely rapidly, which marks the
end of the “prepare” stage.

We now move onto the “collect” stage. The transmission matrix elements are
reset to zero, the histogram H(E) is no longer needed, but for G(E) we retain the
estimate obtained in the prepare stage. We now simulate according to the Wang-
Landau acceptance criterion Eq.(2.13), but only the transmission matrix elements
are updated after each move, and notG(E) (this corresponds to using f = 1). At this
stage, further sampling increases the accuracy of the transmission matrix elements
indefinitely [69], and the calculation of G(E) from the transmission matrix elements
thus always becomes more accurate. In addition, since during the “collect” stage
the density of states used in the acceptance probability of Eq.(2.13) is not altered,
detailed balance is strictly obeyed (as opposed to the prepare stage).
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Figure 2.3: Schematic of an energy E range divided into K energy windows of equal
width.

2.4.3 Successive umbrella sampling

In addition to transition matrix Wang-Landau sampling, we can also use successive
umbrella sampling [76] to obtain the density of states G(E). One motivation to do
so is to check the consistency of our results, with both methods hopefully yielding
the same result for G(E). A second more practical motivation is that by using
successive umbrella sampling the amount of CPU time for which the simulation is
to run can be specified, ensuring that simulations finish within a certain time limit.
This property is especially convenient when quenched disorder is introduced into
the system and we require the average of many realizations of disorder (see chapter
6).

Successive umbrella sampling is similar to Wang-Landau sampling, in that we
attempt to measure the density of states G(E) of the system. However, the method
in which this is done is quite different. With Wang-Landau sampling we perform
a random walk over some specified energy interval, sampling each state µ with a
probability inversely proportional to G(Eµ), and updating G(Eµ) as we go along.
With successive umbrella sampling we perform only one sweep over the energy range,
and the density of states is not updated whilst simulating (hence, detailed balance
is always obeyed).

We imagine setting the temperature T → ∞ and perform generalized spin flips
accepting each with the Metropolis probability of Eq.(2.10). Note that for T →∞
Eq.(2.10) implies that all moves are accepted. The obvious question is how can this
be a meaningful simulation approach? The trick of successive umbrella sampling is
to split the energy range of interest, Emin < E < Emax, into “energy windows”, as
was also done for Wang-Landau sampling. The splitting into windows is shown in
Fig. 2.3, where each of the windows is numbered from i = 1, . . . , K. Initially we
force the simulation to have an energy in either window 1 or window 2. That is
we perform generalized spin flips accepting all, except those which would yield an
energy outside of the bounds of windows 1 and 2 (there is rejection after all!). We
perform very many moves (typically hundreds of millions) and we count how often
the simulation is inside window 1 (H1) and in window 2 (H2). The ratio of the

32



2.4 Biased sampling algorithms

counts is related to the density of states

G(E2)

G(E1)
=
H2

H1

, (2.22)

where for Ei we take the value of the energy in the center of window i. Once the
ratio has reached a desired level of statistical accuracy we perform a simulation in
windows 2 and 3, from which G(E3)/G(E2) can be determined and so forth. By
extending this process all the way to the K-th window the density of states can be
constructed over the desired energy range via recursion (analogous to Eq.(2.21)).
This explains the basic successive umbrella sampling algorithm.

An important optimization of successive umbrella sampling is to use the informa-
tion obtained whilst simulating in windows (i, i + 1) for the next (successive) step.
To be explicit, assume that the ratio of counts after the first step F1 ≡ H2/H1 is very
large. This means that most time was spend in window 2. For optimal statistics
it would be better if windows 1 and 2 were visited equally often. Hence, to better
sample windows 2 and 3 we should abandon Eq.(2.10) and instead accept moves
according to

A(µ→ ν) =


1/F1 if Eµ ∈ window 2 and Eν ∈ window 3,

F1 if Eµ ∈ window 3 and Eν ∈ window 2,

1 otherwise,

(2.23)

where moves that lead to energies outside of the bounds of windows 2 and 3 are also
rejected. We thus assume that if F1 is large it is also likely that F2 ≡ H3/H2 will
be large. The above accept probability makes transitions from window 2 → 3 less
likely, leading to a measured ratio F2 that will be closer to unity. Of course, unless
H1 ≡ H2 either F1 or 1/F1 will be greater than unity. In this case the appropriate
accept probability is simply unity. Note that Eq.(2.22) must be correspondingly
modified

G(E3)

G(E2)
= F1 ×

H3

H2

(2.24)

and analogously for the subsequent steps.
Similar to Wang-Landau sampling, successive umbrella sampling provides an ad-

ditional means to obtain the density of states, and thus also the properties of the
system at any temperature by virtue of Eq.(2.12). Successive umbrella sampling
has the important practical advantage that one can trivially set the length of time
one wishes to simulate per window, thereby ensuring that simulations finish within
a certain time limit (this does not, of course, ensure that the statistical quality will
be sufficient). In this thesis successive umbrella sampling proves to be particularly
useful in dealing with systems with quenched disorder (see chapter 6, where results
must be averaged over many thousands of realizations of disorder.
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The liquid crystal model that is used as the basis of this thesis is that proposed
by Lebwohl and Lasher [64, 77]. The model is defined on a lattice and can be used
to describe a thermotropic isotropic-nematic transition. Originally studied in bulk
[64], the Lebwohl-Lasher model is easily adapted to tackle the more complicated
case of confinement (as we will show in later chapters). The relative simplicity of
the Lebwohl-Lasher model allows for very efficient simulations, although some fea-
tures of real liquid crystals are obviously lost. For example, in real liquid crystals
there are density fluctuations; these cannot be reproduced by the Lebwohl-Lasher
model. The Lebwohl-Lasher model nevertheless reproduces the isotropic-nematic
phase transition remarkably well. In three-dimensional (3D) bulk the model un-
dergoes a weakly first-order isotropic-nematic transition [64, 65] in agreement with
both experiments [27] and the theoretical descriptions of chapter 1.

3.1 Model definition

In its original form the Lebwohl-Lasher model is defined on a 3D lattice of form
V = L × L × L, with volume V and side length L and with periodic boundary
conditions applied in all directions. A 3D unit vector ~di (spin) is placed at each
lattice site i and each spin interacts with its nearest neighbors at sites j via the
Hamiltonian

H = −ε
∑
〈ij〉

|~di · ~dj|p, (3.1)

with the exponent p = 2 and coupling constant ε. The term 〈ij〉 denotes the sum
over all nearest neighbors and a factor 1/kBT is incorporated into the coupling
constant, with kB the Boltzmann constant and T the temperature. In this work
ε > 0, and it thus plays the role of inverse temperature. The use of the absolute
value ensures that the system remains symmetric under inversion ~di → −~di, as is
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required for liquid crystals (see section 1.2.1). Note that for p = 2 the Hamiltonian
of Eq.(3.1) can also be expressed in terms of the second Legendre polynomial, as was
done in the original paper [64]. For this reason, transition temperatures quoted in
this thesis differ by a factor of 3/2 when compared to many earlier works [64, 65, 78].

3.2 The generalized spin flip

When performing simulations using the Lebwohl-Lasher model, we use the gener-
alized spin flip Monte Carlo move, as was already mentioned in section 2.2.4. In
the Ising model, with spins si = ±1, a spin flip consists of changing the direction
(sign) of the spin. For the Lebwohl-Lasher model this move would be pointless, as
the system is invariant under such operations. Furthermore, such a move would not
be ergodic for the Lebwohl-Lasher model as the spins are continuous vectors. In the
generalized spin flip, one therefore randomly selects one of the spins ~di and assigns
it a completely new and randomly selected orientation. As the spins are 3D the
random selection of the orientation implies the selection of a random point on the
surface of a sphere. To this end we use a simple rejection-type approach [79] which
proceeds as follows:

1. generate three random numbers x, y, z in the range [−1, 1];

2. calculate r = x2 + y2 + z2;

3. if r > 1 return to step 1, otherwise proceed to step 4;

4. normalize x, y, z such that r = 1 and accept the orientation.

Using generalized spin flips we can now clearly see that the proposition probabilities
cancel from the Metropolis accept probability (see Eq.(2.9)). The selection probabil-
ities of such moves g(µ→ ν) between states µ and ν and the reverse move g(ν → µ)
are symmetric

g(µ→ ν) = g(ν → µ) =
1

4π

1

N
, (3.2)

where the last term reflects the combined probability of selection one of the spins
and the orientation. Now applying the condition of detailed balance one sees that
the proposition probabilities cancel, and so generalized spin flips can be accepted
using the Metropolis choice

Pacc(µ→ ν) = min
[
1, e−β(Eν−Eµ)

]
, (3.3)

where β is the inverse temperature, and Eµ and Eν are the energies of the system
in the states µ and ν respectively.
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Figure 3.1: Free energy F (E) = −kBT lnP (E) as a function of energy density E of
the Lebwohl-Lasher model with p = 2. Data is shown for system sizes
L = 30, 50, 60, 70 (in order of rising data sets). The free energy barrier
∆F of the transition is calculated for each system size as the difference
in free energy between the two minima and the maximum in-between.
Note that ∆F is very small: even for the L = 70 system ∆F ≈ 2 kBT .
Reprinted figure with permission from Ref. [80].
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Figure 3.2: The pair interaction of Eq.(3.1) as a function of the angle θ between two

spins i and j for various values of the exponent p, where cos θ = ~di · ~dj.
As p→∞ the interaction increasingly resembles a δ-function.

3.3 Summary of bulk results

The Lebwohl-Lasher model in its original form – with spins interacting via Eq.(3.1)
using p = 2 on a 3D lattice with periodic boundary conditions – undergoes a first-
order isotropic-nematic phase transition. However, the transition is very weak and
can only be shown convincingly in simulations using very large lattices, as shown
in Fig. 3.1. 1 The double-peaked structure of the energy probability distribution
P (E) reflecting the phase coexistence (typical of first-order phase transitions) only
appears in very large systems. Even for the largest system shown, with L = 70, the
free energy barrier ∆F of interface formation is only ∆F ≈ 2kBT .

3.4 A generalized Lebwohl-Lasher model

A simple modification of Eq.(3.1), which plays a major role in the results to come,
is to change the value of the exponent p. If one pictures a “rod-type” molecule, the
effect of making p large can be thought of as stretching the molecule so that it is
longer and thinner. For large p the pair-interaction becomes sharper, as shown in
Fig. 3.2. The effect is that for large p neighboring spins can appreciably lower the
energy by aligning, but once they are unaligned the effect on the energy is small.
This somewhat resembles the interaction in the Potts model [81]. In fact, as p→∞
the pair interaction of Eq.(3.1) approaches a δ-function.

1The Hamilton used in Fig. 3.1 equals H = −ε
∑

〈ij〉

{
3
2 (~di · ~dj)2 − 1

2

}
giving a different prefactor

from our Eq.(3.1).
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Figure 3.3: The effect of the exponent p in Eq.(3.1) on the isotropic-nematic transi-
tion in three dimensions. (a) Logarithm of the energy probability distri-
bution P (E) obtained in simulations of Eq.(3.1) using p = 2, 5, 10, 20,
all with L = 10. The distributions are plotted as functions of negative
energy density −ρ. Hence, the left peaks reflect the isotropic phase and
the right peaks the nematic phase. The inverse temperature ε has been
chosen for each distribution individually to give peaks of equal height,
permitting an easy calculation for the free energy barrier ∆F (to be
discussed in chapter 4). (b) Plots of the corresponding nematic order
parameters S versus inverse temperature ε for the same systems. The
characteristic “jump” of the first-order phase transition becomes stronger
as p increases.
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3 The Lebwohl-Lasher model

It has been noted [82, 83, 84, 85] and mathematically proven [63, 86, 87] that for
such interactions the first-order transition becomes stronger. We show this explicitly
in Fig. 3.3(a) where the logarithm of the probability distribution P (E) of the energy
is plotted against negative energy density for different values of p for fixed L = 10.
We observe a free energy barrier (indicating a first-order phase transition) which
increases profoundly with p. In (b) we show the nematic order parameter S versus
“inverse temperature” ε. The characteristic “jump” of the order parameter also
becomes more pronounced with increasing p.

Outlook

The Lebwohl-Lasher model can also be easily modified in other ways, for example
by applying walls or adding quenched disorder. Variations of the Lebwohl-Lasher
model along these lines are used throughout this thesis. The interesting finding is
that, depending on the value of p, qualitatively different scenarios for the isotropic-
nematic transition are found. This shows that phase transitions in Eq.(3.1) are not
governed by any strict universality class.
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4.1 Introduction

First-order phase transitions are characterized by discontinuities in the first deriva-
tives of the free energy. In thermotropic systems, at a certain temperature the order
parameter will jump suddenly between the disordered and ordered phases. As a
result observables, such as the susceptibility and the specific heat, have δ-function
singularities precisely at this temperature. These effects are due to phase coexistence
[88].

In contrast continuous phase transitions do not have discontinuities in the first
derivative of the free energy, and do not show phase coexistence. As the transition
is approached the correlation length ξ diverges to infinity and the behavior of, for
example, the susceptibility or the specific heat is characterized by critical exponents,
so-called because the region near the transition is known as the critical region [89].

A first-order phase transition with its characteristic discontinuities, however, has
no critical region (and hence no critical exponents). By virtue of the transition
being discontinuous, the divergences typical of continuous transitions do not occur.
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4 Finite-size scaling of the isotropic-nematic transition

Instead of becoming infinite ξ remains finite, even precisely at the transition (except
for systems with broken continuous symmetry [90]). For this reason both ordered
and disordered regions coexist precisely at the transition.

In this chapter we analyse finite-size effects at the first-order isotropic-nematic
transition by computer simulation. In particular, we investigate the link between
scaling relations derived for the Potts model and their applicability to the Lebwohl-
Lasher model.

4.2 Finite-size scaling

The divergences which occur at phase transitions in the thermodynamic limit do not
occur in finite-sized systems. Instead one typically observes rounding effects, where
peak heights of thermodynamic observables, such as the susceptibility or the specific
heat increase with system size, and the locations of these maxima are shifted, as seen
in Fig. 4.1. Although such effects occur for both first-order and continuous phase
transitions, their behavior is dependent on the type of transition. Knowledge of
these finite-size effects is particularly useful when performing simulations. Instead
of simulating as large a system as possible and hoping that it approximates the
thermodynamic limit, one can extrapolate from small systems, saving time and
obtaining more accurate results. This method of extrapolation is called finite-size
scaling . In order to perform finite-size scaling one needs to have knowledge of how
the system will scale. Scaling behavior is different for systems undergoing either
continuous or first-order phase transitions.

The effects of rounding at a continuous transition are due to ξ being limited by
the side length L of the system. Approaching the transition ξ → ∞, and therefore
at some stage ξ is going to be limited by L, because the simulation box is “too
small” to capture the relevant length scale [89].

The scaling effects at first-order phase transitions are fundamentally different be-
cause ξ does not diverge to infinity as the transition is approached. At the transition
ordered and disordered phases coexist, and finite-size effects are thus governed by
the volume V = Ld of the system, with d the spatial dimension [91]. Hence, non-
trivial critical exponents do not occur. Since two phases coexist, the order parameter
features two peaks, i.e. it is bimodal. As L → ∞ and the thermodynamic limit is
approached the bimodal distribution becomes more and more extreme until it be-
comes just two δ-peaks situated at values of the order parameter S1 and S2 and is
thus given by [92]

P∞(S) =
δ(S − S1) + δ(S − S2)

2
. (4.1)

To be explicit: for the isotropic-nematic transition, where the coexistence is between
the isotropic and nematic phase, we would have S1 = 0 and S2 = Snem, respectively,
with S the nematic order parameter defined in section 1.4.1. The susceptibility in d
dimensions χ = Ld

(
〈S2〉 − 〈S〉2

)
is therefore trivially ∝ Ld. As the system volume
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Figure 4.1: Specific heat cL = V
(
〈E2〉 − 〈E〉2

)
/V against inverse temperature ε

for the three-dimensional (3D) Lebwohl-Lasher model with p = 10 (see
Eq.(4.4)) using system side lengths L = 7, 10, 13. The peaks grow in
height and narrow in width with increasing system size. The peaks shift
towards the thermodynamic limit value, shown by the vertical line at
ε∞ = 1.5864.

increases, the squared width of χ narrows ∝ L−d, owing to the central limit theorem
[93] obtaining the δ-function limit of Eq.(4.1) for an infinitely large system [94, 95].

It is not just the height and widths of the maxima that change with system
size, but their positions are also shifted from their thermodynamic limit locations;
these shifts also have a 1/Ld dependence [96]. Using finite-size scaling laws we would
therefore expect to locate first-order phase transitions from finite systems with shifts
vanishing with 1/Ld.

4.3 Simulations using Lebwohl-Lasher type models

In this chapter we use the (continuous spin) Lebwohl-Lasher model [64, 77] to analyse
the first-order isotropic-nematic phase transition; the Lebwohl-Lasher model was
described in detail in chapter 3. However, the vast majority of finite-size scaling
results for first-order transitions were derived for the Potts model [97]. The Potts
model is fundamentally different to the Lebwohl-Lasher model as it has discrete
spins, i.e. the spins at the lattice sites are only allowed to assume q possible values.
This has some interesting consequences when the corresponding scaling relations are
applied to the Lebwohl-Lasher model. For example, in the Potts model, the specific
heat peak shifts from its thermodynamic limit value in finite systems as

εL,c = ε∞ − APotts/L
d +O(1/L2d), (4.2)
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4 Finite-size scaling of the isotropic-nematic transition

with proportionality constant APotts, the thermodynamic limit transition inverse
temperature ε∞, and εL,c the inverse temperature where the specific heat maximum
exists in a finite system of side length L [96, 98]. APotts is then related to the latent
heat density λL and the number of Potts states q as

APotts = ln q/λ∞. (4.3)

Because the Lebwohl-Lasher model has continuous spins, the significance of APotts

appears to be lost, although a numerical value for it could still be obtained by fitting
to finite-size simulation data. This would enable us to assign an effective discrete
number of states to the Lebwohl-Lasher model, even though the model is continuous.

The above subtlety appears to have gone unnoticed until now. Despite the scaling
equation Eq.(4.2) being derived for the Potts model, it has been applied to the
Lebwohl-Lasher model without question, and shown to work remarkably well for
this model also [99, 80]. With this observation in mind, it could be hoped that other
Potts model scaling relations also have significance for the Lebwohl-Lasher model.
One such case is a method of Borgs and Kotecký for calculating the thermodynamic
limit inverse temperature ε∞ [98, 100, 101]. The appealing property of the latter
method is that the finite-size effects decay exponentially, i.e. much faster than the
power-law decay of Eq.(4.2), making it possible for ε∞ to be obtained using smaller
systems and thus saving valuable computation time. In this chapter we investigate
if this approach indeed works.

4.3.1 Model and simulation method

The original Lebwohl-Lasher model (described in chapter 3) is defined on a three-
dimensional (3D) periodic lattice of form V = L×L×L, with volume V and system

side length L with periodic boundary conditions. A 3D unit vector ~di is placed on
each lattice site i and these interact with their nearest neighbors at sites j via

H = −ε
∑
〈ij〉

|~di · ~dj|p, (4.4)

with exponent p = 2 and coupling constant ε. The 〈ij〉 denotes the sum over nearest
neighbors. The factor 1/kBT is incorporated into the coupling constant, with kB
the Boltzmann constant and T the temperature, so that ε > 0 is playing the role
of the inverse temperature. In this form the model undergoes a first-order phase
transition, as has been previously discussed [77, 102, 80, 65, 99] at ε ≈ 1.34 [103].

As described in section 3.3, to observe the first-order isotropic-nematic transition
of the “original” Lebwohl-Lasher model (i.e. with p = 2) one needs very large system
sizes (L ≥ 70 in 3D [80]). For this reason, in this chapter we use the modification
of section 3.4, increasing the value of the exponent p in Eq.(4.4) and thus making
the phase transition more strongly first-order. For example, with p = 10 in three di-
mensions, phase coexistence can be easily observed with systems as small as L = 10,
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Figure 4.2: Logarithm of the energy density probability distribution PL,ε(E) of
Eq.(4.4) with p = 10 in 3D for several system sizes L. The distribu-
tion is distinctly bimodal, characteristic of a first-order transition. The
distributions are plotted as functions of −ρ = E/V . Therefore, the peak
on the left labeled I refers to the isotropic phase, whereas the peak on
the right labeled N refers to the nematic phase. The inverse tempera-
ture ε has been chosen to give peaks of equal height, permitting an easy
calculation for the free energy barrier ∆F between the two phases. The
latent heat density ∆ρ and ∆F are marked for the L = 10 system by
the horizontal and vertical arrows, respectively.
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4 Finite-size scaling of the isotropic-nematic transition

as shown in Fig. 4.2. Hence, to accurately study finite-size effects at the first-order
isotropic-nematic transition we proceed with this modified version of the Lebwohl-
Lasher model. We perform simulations not only on 3D systems, but also on 2D
systems, which we model as a single layer of spins, i.e. with volume V = 1×L×L,
but still keeping the spin vectors ~di three-dimensional.

Similar to previous simulations of the Lebwohl-Lasher model [99, 80], our simu-
lations are based on the order parameter distribution. Using the energy E as order
parameter, we use transmission matrix Wang-Landau sampling [69], as described
in section 2.4.1 to measure PL,ε(E) as accurately as possible, where PL,ε(E) is the
probability of observing energy E in a system of side length L at inverse tempera-
ture ε. To “speed-up” our simulations, we often split the energy range of interest
into many smaller energy intervals, with a single processor working on each interval.
Once all individual simulations have been completed we combine the results from
all energy intervals together to reproduce the full distribution. Because we simulate
systems as large as L = 25 in 3D and L = 100 in 2D, sub-division of the energy
range turned out to be crucial. For 3D systems of side length L = 10 it is found that
a single simulation lasting approximately one day on a 2.66 GHz processor suffices.
However, for L = 15 (already more than 3× the number of spins) it is more efficient
to split the energy range into 5− 10 intervals.

4.4 Results and analysis

Because we are interested in checking how first-order scaling laws of the Potts model
apply to the Lebwohl-Lasher model, we perform simulations of Eq.(4.4) which give
strongly first-order phase transitions. This is achieved in 3D and 2D by considering:

1. 3D lattices with p = 5− 45;

2. 2D lattices with p = 20− 50.

The general behavior of the model is well-known for the first scenario. The orig-
inal Lebwohl-Lasher model, i.e. with p = 2, already undergoes a first-order phase
transition. As has been shown in section 3.4, increasing p will make the transition
stronger. It is however less well-known that a Lebwohl-Lasher type model can also
undergo a first-order phase transition on a 2D lattice. This happens when p is
sufficiently large [82, 63, 87].

4.4.1 Determining the order of the transition

In the vicinity of a first-order phase transition the order parameter distribution
becomes bimodal, as shown in Fig. 4.2. The free energy barrier ∆F of interface
formation (see section 2.3) is given by the logarithm of the height difference be-
tween the peaks of the distribution and the minimum in-between (vertical arrow
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Figure 4.3: Simulation snapshot of the Lebwohl-Lasher model with p = 20 in 2D
with system side length L = 30 at phase coexistence. Clearly visible are
the two interfaces, each of length L.
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Figure 4.4: Verification of the first-order nature of the isotropic-nematic transition
using finite-size scaling of the free energy barrier ∆F in d = 3 dimensions.
For the chosen values of p we observe a linear increase of ∆F with
Ld−1 = L2, from which we conclude the transitions are first-order.

in Fig. 4.2). At a first-order phase transition, ∆F corresponds to the free energy
required for the formation of an interface between ordered (nematic) and disordered
(isotropic) domains [71]. It is expected that the ∆F barrier grows linearly with the
area, i.e. ∆F ∝ Ld−1. This can easily be inferred from a simulation snapshot taken
at the minimum of PL,ε(E). For a 2D lattice with periodic boundaries, the interface
between the domains would stretch from one side of the box to the other, as seen in
Fig. 4.3. The free energy required for its formation is proportional to the box side
length

∆F = 2σL (D = 2), (4.5)

with σ the line tension, and where the factor-of-two accounts for the fact that two
interfaces are present due to the periodic boundaries. Similarly, for a 3D box this
line-interface has to be replaced by a surface-interface, and it therefore yields

∆F = 2σL2 (D = 3). (4.6)

By performing simulations for various L and checking whether ∆F ∝ Ld−1 is
observed thus provides a good test for detecting whether a system undergoes a
first-order phase transition in the thermodynamic limit L → ∞ [104, 105]. At
a continuous phase transition ∆F is independent of L, whereas ∆F will vanish
altogether if no transition at all exists in the thermodynamic limit.

As can be seen in Fig. 4.4, 3D lattices with p = 5 − 45 show a linear increase of
∆F with L2. In Fig. 4.5 we see linear increases of ∆F with L for 2D lattices with
p = 20 − 50. Therefore, we can continue with further study safe in the knowledge
that our systems with the chosen p undergo first-order isotropic-nematic transitions.
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Figure 4.5: The analog of Fig. 4.4 but for d = 2 dimensional lattices with p = 20−50.
In this case a first-order transition yields ∆F ∝ L.

4.4.2 Extrapolation of εL,c: Potts 1/Ld scaling

Now that we know a first-order transition exists for the chosen p, we can attempt
to find the inverse temperature ε∞ at which the phase transition takes place. For
several values of the system size L, we calculate the specific heat as function of the
inverse temperature ε, where the specific heat is given by

cL =
〈E2〉 − 〈E〉2

Ld
, (4.7)

and E the energy given by Eq.(4.4). We then locate the inverse temperature εL,c
where cL reaches its maximum, see also Fig. 4.1, and extrapolate the latter using
the Potts finite-size scaling relation of Eq.(4.2). Example fits are shown in Fig. 4.6
where εL,c converges to ε∞ as 1/Ld for both p = 10 in 3D and p = 20 in 2D. The fit
parameters ε∞ and APotts are given in Table 4.1 for 3D systems and in Table 4.2 for
2D systems. As it has already been shown [99, 80] that the scaling relation Eq.(4.2)
works well with the “original” Lebwohl-Lasher model, it is no surprise that our data
are well-described by this relation also.

4.4.3 Extrapolation of εL,k: application of the Borgs-Kotecký
method

We now use a different finite-size scaling method to locate the isotropic-nematic
transition namely the Borgs-Kotecký method. As we had briefly stated before, this
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Figure 4.6: Estimation of ε∞ via the extrapolation of εL,c of the specific heat max-
imum using Eq.(4.2). (a) Data for p = 10 in 3D, where ε∞ = 1.5864.
(b) Data for p = 20 in 2D, where ε∞ = 2.7695. Additional results for
different p, as well as the values of the fit parameters, are summarized
in Table 4.1 and Table 4.2.

Table 4.1: Properties of the isotropic-nematic transition of Eq.(4.4) for various p
on 3D lattices. Listed are fit parameters ε∞,c and APotts of Eq.(4.2), the
best estimate ε∞,k obtained from the convergence of εL,k along kopt, the
logarithm of kopt with uncertainty ∆k, the latent heat density λ∞, and
the ratio ln kopt/λ∞.

p ε∞,c A ε∞,k ln kopt ±∆k λ∞ ln kopt/λ∞
5 1.3969 6.62 1.3970± 0.001 2.7± 0.6 0.358± 0.010 5.9− 9.2
8 1.5207 5.28 1.5207± 0.001 5.0± 0.2 0.908± 0.005 5.3− 5.7
10 1.5864 4.28 1.5864± 0.001 5.3± 0.5 1.156± 0.005 4.2− 5.0
15 1.7126 3.94 1.7126± 0.001 6.0± 0.2 1.523± 0.002 3.8− 4.1
20 1.8063 3.76 1.8063± 0.001 6.4± 0.3 1.727± 0.002 3.5− 3.9
45 2.0838 3.55 2.0838± 0.001 8.1± 1.0 2.120± 0.001 3.3− 4.3
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Table 4.2: Similar to Table 4.1 but for 2D lattices.

p ε∞,c A ε∞,k ln kopt ±∆k λ∞ ln kopt/λ∞
20 2.7695 5.18 2.7698± 0.001 4.1± 0.4 0.7145± 0.001 5.2− 6.3
25 2.8678 4.84 2.8679± 0.001 4.5± 0.2 0.8900± 0.001 4.8− 5.3
30 2.9517 4.69 2.9517± 0.001 4.8± 0.2 1.0023± 0.001 4.6− 5.0
35 3.0240 4.58 3.0241± 0.001 5.2± 0.6 1.0832± 0.001 4.2− 5.4
40 3.0882 4.52 3.0882± 0.001 5.2± 0.2 1.1432± 0.001 4.4− 4.7
45 3.1456 4.47 3.1455± 0.001 5.2± 0.5 1.1936± 0.001 3.9− 4.8
50 3.1976 4.50 3.1976± 0.001 5.6± 0.5 1.2320± 0.001 4.1− 5.0

method was also derived for the Potts model, and shown to yield finite-size effects
that vanish exponentially in L, which should prove to be more efficient. To apply
this method, we define the number k as the ratio of the areas under the isotropic
WI and nematic peaks WN of PL,ε(E)

WN/WI = k, (4.8)

which will typically depend on the inverse temperature ε, as well as on the system
size L. We also introduce the inverse temperature εL,k, defined as that inverse
temperature where Eq.(4.8) is obeyed. The key idea is that, in the limit L → ∞,
there is only one inverse temperature ε∞ where PL,ε(E) is bimodal: at a slightly
lower inverse temperature the system is fully isotropic; at a slightly higher inverse
temperature the system is fully nematic. Hence, a non-trivial solution of Eq.(4.8)
(by which we mean k 6= 0 and k 6= ∞) can only exist at ε∞ in the thermodynamic
limit. Hence, in finite systems, regardless which value of k we use, the series εL,k
will always approach ε∞ as L increases. However, the rate of convergence probably
will depend on k, and is fastest for some special value k = kopt.

In order to measure the series εL,k a practical prerequisite is that the peaks in
PL,ε(E) are sufficiently well separated. The areas of the peaks are then calculated
by

WN =

∫ Ecut

−∞
PL,ε(E) dE, WI =

∫ 0

Ecut

PL,ε(E) dE, (4.9)

with the cutoff energy Ecut defined as the energy between the two peaks where we
split the peak areas apart. In fact Ecut does not need to be particularly well-defined
as the values of the states around Ecut contribute very little to the total peak areas
[106]. We have chosen Ecut to be the average Ecut =

∫
EPL,ε(E)dE, with PL,ε(E)

obtained at the inverse temperature where the peak heights are equal, as in Fig. 4.2.
The value of Ecut is kept fixed while numerically solving Eq.(4.8).

The behavior of εL,k for 3D systems with p = 5, 10, 20 is shown in Fig. 4.7, and for
2D systems with p = 20, 35, 50 in Fig. 4.8, each time for three different values of k.
In all cases the data show that εL,k approaches ε∞ obtained via Eq.(4.2) regardless
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Figure 4.8: Variation of εL,k versus L, similar to Fig. 4.7, but for 2D lattices and
using p = 20, 35, 50.
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Figure 4.9: Calculation of ε∞ using system sizes L = 10, 12, 15, 20, 25 with p = 10 on
3D lattices. The data points for each system size are at kopt, kopt + 5∆k
and kopt − 5∆k. The lines are to guide the eye. Despite ∆k being large
in relation to k the estimate of ε∞ by this method is very accurate.

of the value of k, as predicted. For large k, where the ratio is dominated by the
nematic peak area, ε∞ is approached from high ε. The converse is also true, with ε∞
being approached for small k from low ε. We can thus indeed find a value k = kopt,
where finite-size effects are minimal.

To obtain an estimate of the uncertainties in kopt and the transition inverse tem-
peratures ε∞, we compare two systems of different sizes Li and Lj. At some inverse
temperature εij both systems have the same ratio of peak areas kij. We take the
average and the root mean fluctuations of εij and kij for all system size pairs and cal-
culate ε∞ and kopt along with their respective root-mean-square uncertainties from
these values. As can be seen in Fig. 4.9, for p = 10 on 3D lattices, the uncertainty
in kopt is substantial but this does not prevent accurate estimates of ε∞. The values
of ε∞,k (ε∞ for this method), ln kopt, and their respective uncertainties are given in
Table 4.1 for 3D systems, and in Table 4.2 for 2D systems.

For non-optimal values of k the shift in εL,k to ε∞ is

ε∞ − εL,k ∝ 1/Ld, (4.10)

i.e. it vanishes as a power-law in the inverse volume, as shown in Fig. 4.10, similar
to Eq.(4.2). At k = kopt we find that the finite-size effects in εL,k are too small
for a meaningful fit to be performed. This confirms that the method converges to
ε∞ quicker than 1/Ld. However, confirming that the convergence given by kopt is
exponential, as for the Potts model [95], still requires more accurate data.
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Figure 4.10: Scaling of non-optimal values of k (kopt + 5∆k, kopt + 5∆k) with 1/Ld

using p = 20 in 2D. The scaling behavior is similar to Eq.(4.2) but
slower than for an optimally chosen value of k.

A more practical implementation of the Borgs-Kotecký method

An equivalent method to that described above is to plot the area ratio k against
ε for several system sizes [106, 107]. The phase transition should be exhibited by
an intersection of these curves, taking place at ε = ε∞. Additionally, the value of
k at the intersection yields kopt. This is shown for a 3D system with p = 10 in
Fig. 4.11. Obviously, the values of ε∞ and kopt obtained from Fig. 4.11 coincide
with the estimate listed in Table 4.1.

4.4.4 Latent heat density

We have seen that finite-size scaling relations that have originally been derived for
first-order transition in the Potts model work well for the Lebwohl-Lasher model
also. In agreement with previous simulations of the Lebwohl-Lasher model [99, 80],
we have confirmed the validity of Eq.(4.2). We have also shown that the prediction
of Refs. [100, 98, 101] holds, namely of finite-size effects vanishing faster than 1/Ld

by choosing an appropriate ratio of peak areas k = kopt. In the Potts model, it
has additionally been shown that the number of Potts states q = kopt, i.e. finite-size
effects are minimized when the ratio of the areas in the order parameter distribution
is set equal to q.

We now verify that an analogous prediction holds for the Lebwohl-Lasher model,
but with q replaced by kopt. Even though the Lebwohl-Lasher model is a continuous
spin model, Eq.(4.2) allows us to obtain an effective number of spin states by fitting
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Figure 4.11: lnWN/WI versus ε, with p = 10 for L = 10 − 25 on 3D lattices. The
intersection gives ln kopt ≈ 5.3 at ε∞ ≈ 1.5864.

1.144

1.148

1.152

1.156

1.160

10 15 20 25

L

la
te

n
t 

h
e

a
t 

d
e

n
s
it
y
, 

λ

(a) d=3 p=10

(b) d=2 p=20

λL,1
λL,2

0.70

0.72

0.74

0.76

0.78

0.80

0 20 40 60 80 100

λL,1
λL,2

Figure 4.12: Variation in the latent heat density estimators λL,i with system size.
(a) The latent heat estimators for p = 10 on 3D lattices converging to
λ∞ from below. (b) The estimators for p = 20 on 2D lattices converge
to λ∞ from above.

56



4.5 Summary

to finite-size simulation data and using

APotts = ln q/λ∞, (4.11)

where λ∞ is the latent heat density. To check whether Eq.(4.11) holds for the
Lebwohl-Lasher model we obtain λ∞ independently by two methods. Firstly, the
latent heat is related to the specific heat maximum [98]

λL,1 =

√
4 cL,max

Ld
, (4.12)

which should approach λ∞ as L→∞. Secondly, the latent heat can be read directly
from the order parameter distribution as the peak-to-peak distance, marked ∆ρ in
Fig. 4.2. This can also be written numerically as

λL,2 =
2 〈|E − 〈E〉|〉

Ld
. (4.13)

To obtain λ∞, we measure λL,i (i = 1, 2) for several system sizes L and extrapolate
in L using λ∞ − λL,i ∝ 1/Ld. Some typical results are shown in Fig. 4.12: both
estimators tend towards a common value for λ∞ with minimal difference between
the two estimators for large systems. A particular feature observed is that λ∞ is
approached from below in 3D, but from above in 2D. If enough 2D systems were
stacked atop one-another, we would expect a crossover from the latter to the former
behavior.

We now use the estimates of λ∞ and kopt to calculate the ratio ln kopt/λ∞; results
are listed in Table 4.1 for 3D systems and in Table 4.2 for 2D systems. The relation
ln kopt/λ∞ ∼ APotts is found to hold in all cases, albeit with fairly large numerical
uncertainty. Hence, even though the Lebwohl-Lasher model is a continuous model,
its finite-size scaling behavior is well described by the Potts model, with an effective
number of Potts states qeff = kopt.

4.5 Summary

In agreement with other works [99, 80], we have shown that extrapolation of the
finite-size inverse temperature of the specific heat maximum εL,c converges to ε∞
with a shift vanishing as APotts/L

d, similar to the first-order phase transitions of
the Potts model. Because of this similarity we analysed another method used to
locate the transition inverse temperature ε∞ for the Potts model, where finite-size
effects vanish exponentially. To this end, we defined the estimators εL,k, which are
the finite-size inverse temperatures where the ratio of nematic to isotropic peak
areas in the order parameter distribution is equal to k. We indeed found that the
series εL,k converges faster with L to ε∞ than 1/Ld, provided an optimal value
k = kopt is used. An advantage of this method is that only moderate system sizes
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4 Finite-size scaling of the isotropic-nematic transition

are required, because the system size dependence of εL,k is very weak for k = kopt.
Furthermore we noticed that the ratio kopt/λ∞, where λ∞ is the latent heat density
in the thermodynamic limit, is remarkably similar to the proportionality constant
APotts of the scaling of εL,c (Eq.(4.2)). We therefore conclude that finite-size scaling
predictions for first-order transitions in the Potts model can also be used for the
first-order isotropic-nematic transition of the Lebwohl-Lasher model, provided that
kopt is replaced by q.

Despite it being stated that it would be difficult to extend the derivation of the
finite-size scaling relations from the Potts model to continuous spin models [101],
it is perhaps not so surprising that this q → kopt swap works. If the exponent p
in the Hamiltonian of the Lebwohl-Lasher model (Eq.(4.4)) is made very large, the

interaction becomes increasingly like that of a Potts model, as limp→∞ |~di · ~dj|p =

δ (~di, ~dj). In this case only very well-aligned neighboring spins lower the energy
appreciably, nearing the pair interaction of the Potts model.
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5.1 Introduction

It is standard for the isotropic-nematic phase transition of liquid crystals in bulk
(i.e. in d = 3 dimensions in the absence of any disorder or confining surfaces) to
be first-order and for there to be long-range order in the nematic phase. In the
isotropic phase the system is rotationally invariant; this invariance is broken in the
nematic phase, hence the first-order phase transition [27], see also chapter 1.

When a liquid crystal is confined between two parallel plates the first-order phase
transition need not occur. As the inter-plate distance H becomes small the isotropic-
nematic phase transition is thought to become continuous [108, 109, 110, 111, 112,
113]. Simulations show that the first-order phase transition is expected to become
continuous below some thickness Hx [114, 115, 116, 117, 118].

As H → 1 the system becomes two-dimensional (2D). There appears to be not
only many possibilities but also confusion regarding phase transitions in this limit.

59



5 Confinement of nematic liquid crystals

Figure 5.1: Experimental evidence of liquid crystal thin-films exhibiting phase coex-
istence at the isotropic-nematic phase transition. Shown are micrographs
of 38, 60 and 89 nm-thick films of 4-n-octyl-4’-cyanophenyl (8CB) at tem-
peratures 37.0, 38.6 and 40.0 ◦C. The micrograph of the 89 nm film in
the row labeled 38.6 ◦C is actually taken at 39.5 ◦C. Reprinted figure
with permission from Ref. [31].

Recent simulations of the Lebwohl-Lasher model [64] have come to the conclusion
that either no phase transition exists [119, 120], or a phase transition with Kosterlitz-
Thouless [121] characteristics occurs [122]. In contrast, continuous phase transitions
have been very difficult to realize experimentally [109, 29]. Instead, experiments in
2D have shown coexistence of large isotropic and nematic domains [29, 30, 31], in-
dicating a first-order phase transition, see Fig. 5.1. This seems somewhat strange
as the Mermin-Wagner theorem states that confinement to d ≤ 2 dimensions de-
stroys long-range order in the nematic phase [62]. However, quasi-long-range order
is permissible and correlations will then observe power-law decay, but the decay
may be very slow [48]. Additionally, there exists a mathematically rigorous proof
showing that first-order isotropic-nematic phase transitions are in fact possible in
2D [123, 87], and this has been confirmed by simulations [124, 125].

In short, from this jumble of scenarios we can confidently say that the isotropic-
nematic phase transition in confinement cannot belong to a single universality class
but instead must be dependent on microscopic details.

This confusion is the motivation of this chapter to find one possible microscopic
detail responsible for determining which thin-film scenario occurs. In this chapter
it is shown that a generalized Lebwohl-Lasher model can reproduce all the thin-film
scenarios described above, with the change of just one parameter in the Hamiltonian.
By making the pair-interaction sharper and more narrow (i.e. a stronger interaction
between aligned particles, but an indifferent one for unaligned particles, see section
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5.2 Simulation setup

Figure 5.2: Image of the simulation setup. Spins are attached at regular lattice
points on each layer. We use periodic boundary conditions in the L-
direction, but not in the H-direction to describe the planar confinement.
For H = 1, the lattice is purely two-dimensional, corresponding to a
single layer of spins; increasing H → ∞ creates a three-dimensional
system.

3.4), we can move from no phase transition in the 2D limit, to a continuous phase
transition, to a first-order isotropic-nematic phase transition. This last case is par-
ticularly interesting as it matches experiments (first-order phase transitions in 2D
with phase coexistence, see Fig. 5.1) and has not previously been realized in the 2D
limit by simulations.

The outline of this chapter is as follows. In section 5.2, we describe the simula-
tion model. Next, in section 5.3, we present results for purely 2D liquid crystals.
In section 5.4 we then enlarge the simulation box into the third dimension to cre-
ate “thin films”, and analyse the differences with the purely 2D limit. In section
5.5 we analyse the first-order phase transitions observed and perform a test of the
Kelvin equation, i.e. the shift of the transition temperature as a function of film
thickness. We believe this is important as it verifies that the transitions we observe
are genuinely first-order, and not just finite-size artifacts. Finally, in section 5.6, we
summarize our findings.

5.2 Simulation setup

The original Lebwohl-Lasher model [64] (described in detail in chapter 3) is defined
on a three-dimensional (3D) periodic lattice of form V = L × L × L, with volume

V and system side length L. A 3D unit vector ~di is placed on each lattice site i and
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5 Confinement of nematic liquid crystals

these interact with their nearest neighbors at sites j via

H = −ε
∑
〈ij〉

|~di · ~dj|p, (5.1)

with exponent p = 2 and coupling constant ε. The 〈ij〉 denotes the sum over nearest
neighbors. The factor 1/kBT is incorporated into the coupling constant, with kB
the Boltzmann constant and T the temperature, so that ε > 0 is playing the role
of the inverse temperature. In this form the model undergoes a first-order phase
transition, as was already discussed previously [77, 102, 80, 65, 126] at ε ≈ 1.34
[103].

In chapter 4 we made a generalization to Eq.(5.1) by altering the value of p. In
order to study planar confinement, we remove the periodic boundary condition in
one direction, forming a “sandwich” geometry, representative of a thin-film. The
simulation box can now be described as being V = L×L×H, with periodic boundary
conditions in the L directions but not in the H direction. This setup is shown in
Fig. 5.2. In this sandwich geometry, the thermodynamic limit is obtained by letting
L → ∞ at fixed H. This confined Lebwohl-Lasher model setup is identical to that
of a previous study [114]. By setting H = 1, we form a purely 2D system (although

the vectors ~di are still chosen to be 3D).

5.3 The two-dimensional limit

It is now our aim to show that the three scenarios for the isotropic-nematic transition
in confinement described in the introduction can all occur in this 2D limit, namely:

1. no transition occurs;

2. a continuous transition occurs;

3. a first-order transition occurs.

We do this by changing only the exponent p in Eq.(5.1). Again, in the 2D limit,
the film thickness H = 1, while the lateral extensions of the box L → ∞, see also
Fig. 5.2.

The simulation method used throughout this section is the same as in chapter 4.
That is, we use transmission matrix Wang-Landau sampling see 2.4.2 to obtain the
distribution P (ρ, S), defined as the probability to observe the system in a state with
energy density ρ and nematic order parameter S. Recall that the latter is defined
as the maximum eigenvalue of the orientational tensor, see section 1.4.1, and that
it is intensive: 0 ≤ S ≤ 1.
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Figure 5.3: Finite-size scaling analysis of the model of Eq.(5.1) for p = 2 in the 2D
limit, i.e. the film thickness H = 1, while the lateral extensions L are
varied. Shown in (a) is the specific heat cL versus inverse temperature
ε for various system sizes L. The peaks shift with L to larger values
of ε. Hence, if a transition takes place, it must occur at some value
ε > 2.35, as this is where we observe the specific heat maximum of the
L = 40 system. Shown in (b) is the cumulant U1 versus ε for various
L. The key message is that the cumulant does not progress with system
size towards an ordered phase at high-ε. If the phase transition were to
occur the U1 → 1 for the larger systems at high-ε (compare, for instance,
to Fig. 5.4(a) where a cumulant intersection does occur).
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5 Confinement of nematic liquid crystals

5.3.1 No phase transition

Let us start with the exponent in Eq.(5.1) set to p = 2. Although this has been
extensively studied, even recent papers have disagreed with each other, predicting
either a phase transition possibly of the Kosterlitz-Thouless type [122] or no phase
transition at all [119, 120]. Here, we briefly revisit the problem using our own data.

To this end, we consider the cumulant U1 = 〈S2〉/〈S〉2. As is well known, U1

becomes independent of system size at a continuous phase transition [92, 127].
This property is intrinsically related to hyperscaling. To show the L-independence
of the cumulant, one expresses the order parameter 〈S〉 and susceptibility χ =
V
(
〈S2〉 − 〈S〉2

)
in terms of the correlation length ξ:

〈S〉 ∝ ξ−β̄, χ ∝ ξγ̄. (5.2)

These expressions hold at both a second order phase transition, as well as at a
Kosterlitz-Thouless transition [128]. Note that, at a second order transition, the
exponent ratios can furthermore be expressed as β̄ = β/ν and γ̄ = γ/ν, with ν
the correlation length critical exponent. At a Kosterlitz-Thouless transition, this
identification cannot be made, since then the correlation length diverges faster than
any power law in temperature; the exponent ν itself is then not defined, but exponent
ratios still are.

In terms of the order parameter and susceptibility, the cumulant becomes

U1 − 1 =
χ

V 〈S〉2
∝ ξγ̄+2β̄−d, (5.3)

where in the last step Eq.(5.2) was used. If we now use the finite size scaling Ansatz
ξ ∝ L, as well as the hyperscaling relation

γ̄ + 2 β̄ − d = 0, (5.4)

it follows that the L-dependence in Eq.(5.3) vanishes, showing that the cumulant
is system size independent at a continuous transition. A continuous transition may
thus be located by plotting U1 versus the inverse temperature ε for a number of
system sizes L: at the transition temperature, curves for different L intersect.

To test this idea, we first plot in Fig. 5.3(a) the specific heat cL =
(
〈E2〉 − 〈E〉2

)
/V

versus inverse temperature ε, for a number of system sizes, where E denotes the en-
ergy given by Eq.(5.1). The salient feature is a maximum, which shifts to larger ε
as L increases. We conclude that, if a transition occurs, the transition inverse tem-
perature of the thermodynamic limit must occur at some value ε > 2.35, since this
is where the specific heat maximum of the L = 40 system occurs. However, in that
regime, there is no sign of an intersection in the cumulant, see Fig. 5.3(b). Rather,
as L increases, the cumulant approaches the same value as in the high-temperature
region, from which we conclude that the presence of a transition is unlikely. Hence,
our analysis agrees best with the recent findings of Paredes [119, 120].
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5.3 The two-dimensional limit

5.3.2 A continuous phase transition

We have seen in chapter 4 that increasing the value of p in Eq.(5.1) makes the pair-
interaction sharper; in three spatial dimensions this made the isotropic-nematic
transition more strongly first-order. By repeating this idea, we show that it is
possible to induce a phase transition in two dimensions also, simply by increasing
the exponent p. To this end, we now choose p = 8 (recall from the previous section
that for p = 2 no transition was observed).

Evidence for a continuous phase transition is shown in Fig. 5.4 (a), as the U1 curves
for various L now intersect, this being at ε(H = 1) ≈ 2.452. Further evidence that
the transition is continuous, as opposed to first-order, follows from the scaling of
the specific heat cL = (〈E2〉 − 〈E〉2)/V , where V = HL2 is the number of lattice
sites. In Fig. 5.4 (b), we plot cL versus the inverse temperature ε, and we observe a
maximum that increases with L. At a first-order phase transition, the specific heat
maximum scales with the volume of the system, i.e. cL,max ∝ V . For a 2D system
this implies

cL,max ∝ Lᾱ (5.5)

with ᾱ1st = 2. If we apply this scaling relation to the maxima in Fig. 5.4(b) we
obtain ᾱ = 0.379, implying that we are observing a continuous and not a first-order
phase transition.

In Fig. 5.4 (c), we plot the susceptibility versus ε. As expected at a continuous
transition, the susceptibility for the finite system reveals a maximum, which grows
rapidly with L. As a precaution, we check that the hyperscaling relation Eq.(5.4) has
been fulfilled at ε = 2.452. By using Eq.(5.2) together with the scaling Ansatz ξ ∝ L,
we obtain β̄ ≈ 0.19 and γ̄ ≈ 1.63 at this temperature, which agrees rather well with
the hyperscaling equation. The values of the critical exponents are quite different
to the values of the XY universality class, β̄XY = 0.125 and γ̄XY = 1.75 [128]. This
indicates that the phase transition observed belongs to a different universality class.

5.3.3 A first-order phase transition

As the p = 8 system undergoes a phase transition, it would be natural to assume
that a p = 20 system does likewise. Indeed, in Fig. 5.5(a) we observe an intersection
of U1 curves at ε = 2.770. However, this time the phase transition is first-order, and
not continuous.

As explained in section 4.4.1, at a first-order phase transition, a free energy barrier
∆F arises, which reflects the cost of the interface between ordered (quasi-nematic)
and disordered (isotropic) domains. This barrier can be “read-off” as the height of
the peaks in the energy density probability distribution lnP (ρ), and it scales with
the size of the system as ∆F ∝ Ld−1, where d is the spatial dimension (see also
Fig. 5.10). In the present case d = 2, and from Fig. 5.5(b) we indeed see that ∆F
increases linearly with the system size. This confirms that, using p = 20, the system
indeed undergoes a first-order phase transition.
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Figure 5.4: Data for Eq.(5.1) with p = 8 in 2D, i.e. H = 1. In (a) we plot U1

against inverse temperature ε for many system sizes L. We observe an
intersection point of these curves, indicating a phase transition. The
specific heat cL and susceptibility χL against inverse temperature are
shown for many L in (b) and (c) respectively. The thick vertical lines at
ε = 2.452 in (b) and (c) indicate where the inverse temperature of the
cumulant intersection occurs. The critical exponent ratios are calculated
using Eq.(5.2) at this inverse temperature.
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Figure 5.5: Data for p = 20 in 2D, i.e. H = 1. We observe an approximate inter-
section of the curves for various L in the U1 versus ε plot (a). The linear
increase of ∆F with L in (b) and the quadratic increase of cL,max with
L in (c) indicate that the phase transition is first-order.
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5 Confinement of nematic liquid crystals

Additionally, in Fig. 5.5(c) we see that the specific heat maxima increase cL,max ∝
Lᾱ, with ᾱ ≈ 1.98 obtained by fitting. This is very close to ᾱ1st = 2 of a first-order
phase transition in 2D and provides further confirmation that the transition is now
first-order.

5.3.4 Summary of results for the 2D case

By analyzing the generalized Lebwohl-Lasher model using three different exponents
p in Eq.(5.1), we have demonstrated that a single scenario describing the isotropic-
nematic transition in 2D does not exist. A simple change in microscopic detail,
namely the value of p, determines what type of phase transition takes place, or even
if a phase transition takes place at all.

In 3D the isotropic-nematic transition in Eq.(5.1) is first-order for p ≥ 2. In 2D
a first-order transition requires a higher value of p. Since the system with p = 20
undergoes a first-order phase transition in 2D we expect the phase transition to be
first-order irrespective of the film thickness H. In contrast, for p = 8 the transition
is continuous in 2D, which means that a cross-over to first-order behavior must occur
as H increases. Similarly, for p = 2 we observe no transition in 2D, which means
that a cross-over to first-order behavior also takes place upon increasing H. In the
following section we look at the change in behavior of these models as the systems
become thicker and the bulk limit is approached, i.e. as we let H →∞.

5.4 Thin films: between 2D and 3D

We now analyse different scenarios of the isotropic-nematic phase transition in thin-
film geometry by extending the thickness in the non-periodic dimension, i.e. we
now consider a L × L × H simulation box, with periodic boundary conditions in
the L directions, but not in the H direction, and with H > 1. The Lebwohl-Lasher
model with p = 2 has previously been studied with this setup and it was found that
a first-order phase transition exists provided the film thickness exceeds a certain
crossover value somewhere between Hx = 8− 16 lattice layers [114]. We here revisit
the problem but using a larger exponent p = 8 in Eq.(5.1).

5.4.1 Finite-film thickness: the case p = 8

Based on our previous finding that the transition for p = 8 is continuous in the limit
H = 1, we postulate there must be two identifiable regions in this case:

1. H < Hx where the phase transition is continuous; and

2. H > Hx where the phase transition is first-order.
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Figure 5.6: Evidence of the phase transition of the p = 8 model becoming first-
order as the system becomes thicker. In (a) we see that the ∆F barrier
has become proportional to L by H = 6. For H = 6 the specific heat
maximum also increases proportional to L2, as seen in (b). In both plots
the lines are merely to guide the eye.
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Table 5.1: Properties of the continuous isotropic-nematic phase transitions observed
with p = 8, i.e. for values of the film thickness below Hx. Listed are
the transition inverse temperature ε∞(H), and the critical exponents of
the nematic order parameter β̄ and susceptibility γ̄, for film thicknesses
1 ≤ H ≤ 4.

H ε∞(H) β̄ γ̄
1 2.452 0.19 1.63
2 1.864 0.17 1.67
3 1.716 0.15 1.71
4 1.650 0.10 1.81

To obtain the crossover thickness whereupon the phase transition becomes first-
order we consider the free energy barrier ∆F of interface formation, as well as the
specific heat. As can be seen in Fig. 5.6(a), the barrier ∆F grows ∝ L at H = 5−6.
Additionally, in Fig. 5.6(b), at H = 6, we obtain a value of ᾱ = 2.00 for the fit of
the specific heat maxima with system size L, see Eq.(5.5), confirming that the phase
transition is first-order in these cases. For H = 5 we obtain ᾱ = 1.94 and for H = 4
we obtain ᾱ = 1.74. We therefore conclude that the phase transition is continuous
for H = 4 and that the crossover thickness is at Hx = 5.

Using the cumulant intersection method, we can determine at what temperatures
the continuous phase transitions take place for values of the film thickness 1 ≤ H ≤
4. Once the critical temperatures have been located, we can use Eq.(5.2) to obtain
the critical exponent ratios. These critical exponents are given in Table 5.1, along
with the transition temperatures. For H > 1 the general trend is for β̄ → 0 and
γ̄ → 2, i.e. the ratios approach their first-order values.

Although we have discussed the scaling of the nematic order parameter S at
the transition point, Eq.(5.2), we have not yet looked at how S scales at other
temperatures. Shown in Fig. 5.7 are typical behaviors for (a) the bulk case, for (b)
a first-order phase transition in a film of thickness H = 10, and for (c) a continuous
phase transition with H = 2. In all cases S increases with ε and the slope dS/dε has
a maximum at approximately ε∞(H). For the first-order phase transitions shown in
Fig. 5.7, both in bulk (a) and also for the H = 10 film (b), S becomes independent
of system size at high ε. This suggests long-range nematic order, as otherwise S → 0
in the thermodynamic limit. For the bulk case, the presence of long-range order is
undebated. For the confined case H = 10, the situation is less clear. In this case
the Mermin-Wagner theorem [62] may still apply, but it could be that the decay
of nematic order with system size L requires system sizes beyond the reach of our
simulations to be seen.
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Figure 5.7: Nematic order parameter S against inverse temperature ε for (a) bulk
three-dimensions, (b) inside a film with thickness H = 10 (still above
Hx), and (c) a film with H = 2, all using p = 8. In contrast with the
first-order phase transitions observed for (a) and (b), distinctly differ-
ent behavior is observed at high ε for H = 2 where the transition is
continuous: S decays with increasing L in that case.

71



5 Confinement of nematic liquid crystals

In contrast to the first-order transitions, the curves for the continuous phase
transition in Fig. 5.7(c) do not saturate at high ε but instead decrease with L.
This indicates the absence of long-range nematic order in the thermodynamic limit.
Hence, the most likely explanation is that we see a transition with Kosterlitz-
Thouless characteristics in this case. One additional piece of evidence pointing
to a Kosterlitz-Thouless type phase transition for H < Hx is the behavior of the
specific heat maximum. As seen in Fig. 5.4 (c), cL,max barely grows with system
size for H = 1, consistent with a negative specific heat exponent, in turn consistent
with a Kosterlitz-Thouless type phase transition [121]. For larger values of the film
thickness H, we observe much faster growth of cL,max with L, as can be seen in
Fig. 5.6(b), ultimately scaling as cL,max ∝ L2 for H = 6, where the transition is
first-order.

In principle, for a Kosterlitz-Thouless transition, we could also obtain ε∞(H) from
extrapolations of the inverse temperature εL,χ(H) where the susceptibility obtains
its maximum, see also Fig. 5.4(c). The latter are expected to scale as [129]

εL,χ(H) = ε∞(H) +
a

ln(L/b)1/ν
, (5.6)

with non-universal constants a and b, and ν characterizing the divergence of the cor-
relation length at a Kosterlitz-Thouless -transition, ξ ∝ exp(atν) and t = ε∞(H)−ε.
However, as ν is also unknown (we cannot use the XY value νXY = 1/2 as the
critical exponents in two dimensions did not match, see 5.3.2) we are left with a
four-parameter fit, and for this reason we consider this method unsuitable.

To summarize the results for p = 8 we still construct the capillary phase diagram.
To this end, we plot the energy densities of the coexisting isotropic (ρiso(H)) and
(quasi-)nematic (ρnem(H)) phases as function of inverse film thickness 1/H (these
values are simply the peak positions in the energy density distribution, see Fig. 5.10,
and can be directly “read-off”). The extrapolation to the thermodynamic limit of
ρL,iso and ρL,nem obtained in finite systems is assumed to take the form

ρ∞(H)− ρL(H) ∝ 1/V. (5.7)

Of course, this procedure only makes sense when H > Hx, because the peaks ρiso and
ρnem exist only for first-order and not continuous phase transitions in the thermo-
dynamic limit. Hence, the binodal lines in the phase diagram terminate at H = Hx.
The resulting capillary phase diagram is shown in Fig. 5.8.

5.4.2 Finite-film thickness: the case p = 20

We have seen in the previous section that by increasing the film thickness, the
isotropic-nematic transition ultimately becomes first-order, beyond some crossover
thickness Hx. However, for p = 20, the transition is first-order already for H = 1,
and here the crossover does not occur. Consequently, in the capillary phase diagram,
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Figure 5.8: Capillary phase diagram with p = 8. Shown is the variation of the
coexisting isotropic energy density ρiso(H) and nematic density ρnem(H)
with inverse film thickness 1/H. The phase transition is first-order up
to the crossover inverse thickness at 1/Hx ∼ 0.33, where the individ-
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only within the enclosed area.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5

1
/H

−ρ

IN coexistence

ρiso  
ρnem

Figure 5.9: Capillary phase diagram with p = 20. The branches do not terminate at
any inverse thickness 1/H but continue to the 2D limit (corresponding
to 1/H = 1). Isotropic-nematic coexistence can be observed anywhere
between the two branches.
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5 Confinement of nematic liquid crystals

the isotropic and nematic branches do not terminate. By using the extrapolation of
the energy densities ρL,iso and ρL,nem as in Eq.(5.7), we can immediately construct
the resulting capillary phase diagram, shown in Fig. 5.9. In contrast to the capillary
phase diagram for p = 8 shown in Fig. 5.8, the isotropic and nematic branches do
not terminate, and isotropic-nematic phase coexistence can be observed at arbitrary
film thickness.

5.5 Application of the Kelvin equation

In this section we study the change in transition inverse temperature ε∞(H) with
film thickness H, but only for values of H where the corresponding isotropic-nematic
transition is first-order. In this case, we expect the Kelvin equation to hold [111]:

∆ε ≡ 1− ε∞
ε∞(H)

=
2γ∞
L∞H

, (5.8)

where ∆ε is the (normalized) shift in inverse temperature, ε∞ is the bulk transition
inverse temperature, γ∞ is the bulk interfacial tension, and L∞ is the bulk latent
heat density. The form of Eq.(5.8) is particularly useful as all quantities appearing
can be extracted from finite-size simulation data. At a first-order phase transition,
for example, ε∞(H) can be determined by the finite-size scaling methods of sections
4.4.2 and 4.4.3. We can calculate the latent heat LL(H) for a particular system of
size L using the corresponding energy probability distribution lnP (ρ). The distance
between the isotropic and nematic peaks, ∆ρ ≡ ρnem − ρiso equals the latent heat
density, see also Fig. 5.10. A second way to extract the latent heat is via the specific
heat maxima and by using the relation [98]

LL(H) =
√

4 cL,max(H)/V , (5.9)

and this we extrapolate to L → ∞ assuming L∞(H) − LL(H) ∝ 1/V , similar to
Eq.(5.7).

The bulk surface tension is related to the free energy barrier as [71]

γ∞ = lim
L→∞

γL, γL = ∆F/(2L2), (5.10)

where dimensionality d = 3 is assumed. To obtain γ∞ of the thermodynamic limit,
we extrapolate in L using

γ∞ = γL + a lnL/L2 + b/L2 (5.11)

with constants a and b [71], and where a cubic periodic L×L×L simulation box is
used. This method yields values of γ∞ ≈ 0.08 for p = 8 and γ∞ ≈ 0.31 for p = 20
(in units of kBT per squared lattice spacing).
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Figure 5.10: Plots of lnP (ρ) obtained from bulk simulation boxes (periodic bound-
ary conditions in all directions) for system sizes 10× 10× 30 (red) and
10 × 10 × 60 (green), for both p = 20 in (a) and p = 8 in (b). The
height of the peaks to the minimum in-between is related to the inter-
facial tension γ∞ by Eq.(5.10). Note that there is larger discrepancy in
∆F barriers between the system sizes for p = 8 than for p = 20.
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Table 5.2: Dependence of the transition inverse temperature ε∞(H) on the film
thickness H for those cases where the isotropic-nematic transition is first-
order, i.e. H ≥ Hx. Results are listed for p = 8 and p = 20. As the film
thickness increases, the transition inverse temperature approaches the one
of the bulk system, i.e. ε∞(H) → ε∞. For completeness, the bulk latent
heat density L∞ and the bulk interfacial tension γ∞ are also included, as
they are required for the comparison to the Kelvin equation (Eq.(5.8)).

p = 8 H ε∞(H) p = 20 H ε∞(H)
5 1.614 1 2.769
6 1.593 2 2.175
7 1.578 4 1.962
8 1.568 8 1.874
10 1.555 10 1.858
15 1.540 30 1.821
30 1.528
50 1.525
100 1.522

ε∞ 1.521 ε∞ 1.806
L∞ 0.909 L∞ 1.727
γ∞ 0.065 γ∞ 0.300
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Figure 5.11: The Kelvin equation, Eq.(5.8), tested for (a) p = 8 and (b) p = 20.
The fits of the inverse temperature shift ∆ε to inverse film thickness
1/H yield slopes of a ≈ 0.14 for p = 8 (when fitting to large H only)
and a ≈ 0.34 for p = 20.

Rather than using Eq.(5.11), a method to circumvent the finite-size scaling is to
use a stretched simulation box of form L× L×D, with an elongated axis D � L,
but still with periodic boundary conditions [71]. The corresponding energy density
probability distributions lnP (ρ) are shown in Fig. 5.10. We now see a pronounced
flat region in the distributions between the peaks. This means that interactions
between the interfaces in the coexistence region are small, which in turn implies
that ∆F more accurately reflects the interface free energy. By using this method
we obtain γ∞ ≈ 0.05 for p = 8 and γ∞ ≈ 0.29 for p = 20. For large L the calculated
value of ∆F should be independent of the elongated axis D, but for both p = 20
in Fig. 5.10 (a) and p = 8 in (b) we see this is not completely true, especially for
p = 8 (some interaction appears to remain between the interfaces). The estimates
of γ∞ from the two methods for p = 20 match well, but for p = 8 there is small
discrepancy; the values quoted in Table 5.2 are the averages of the two methods.

All quantities needed for Eq.(5.8) are now to hand. In Fig. 5.11 we plot the inverse
temperature shift ∆ε against 1/H for the first-order phase transitions of both p = 8
and p = 20. If the Kelvin equation holds a linear relation should result. For p = 20
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this is clearly the case. According to Eq.(5.8), the slope of a linear fit through this
data should equal a = 2γ∞/L∞. From fitting we find a ≈ 0.34, whereas using
our independent estimates we calculate 2γ∞/L∞ = 0.35. The agreement is quite
remarkable. For p = 8, however, the linear fit works only in the limit 1/H → 0, and
therefore it appears that only strongly first-order phase transitions scale according
to the Kelvin equation. If we use only the largest system thicknesses, i.e. the systems
with the strongest first-order phase transitions, we obtain a ≈ 0.14 from fitting and
2γ∞/L∞ = 0.13 by using the values of Table 5.2. The agreement is again remarkable.

It has been noted that interfacial fluctuations in complete wetting films give rise
to corrections to the Kelvin equation [130]. In this case the 1/H dependency, as
seen in Fig. 5.11, is replaced by 1/H − bl, where l is the thickness of the wetting film
and b is an amplitude constant. However, using this method on the p = 8 data gives
an unphysical wetting film thickness. As a result in Fig. 5.11 we plot ∆ε against
1/H.

5.6 Summary of simulations between flat walls

We have found that there is no universal scenario describing the nature of the
isotropic-nematic phase transition in thin films. By changing a single parameter
governing the sharpness of the pair-interaction of neighboring particles in the gen-
eralized Lebwohl-Lasher model, we have been able to bring about first-order phase
transitions, continuous phase transitions, and also the absence of transitions. It
is generally found that upon decreasing the film thickness, the transition inverse
temperatures increases. For strongly first-order phase transitions we find very good
agreement to the Kelvin equation. We observe not only the “1/H” shift of the tran-
sition inverse temperature, but by using the independently measured bulk latent
heats and interfacial tensions, we also recover the prefactor of this shift. However,
when the phase transitions are only weakly first-order, deviations from the Kelvin
equation become apparent.

Two different phase diagram topologies were also obtained: the binodals either
terminate at some film thickness H = Hx, or they persist all the way down to the
pure 2D limit. It is interesting that the topology of the p = 8 diagram (terminating
isotropic and nematic branches of the binodal) is also observed in simulations of
colloidal rods and plates in confinement [116, 117, 118, 131]. The topology of the
p = 20 phase diagram compares well to some of the experiments [29, 30, 31]. As the
binodal branches do not terminate in this case, first-order isotropic-nematic phase
transitions are possible in thin-films even in the exact 2D limit!
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6.1 Introduction

The effect of disordered media upon liquid crystal phase transitions has been studied
experimentally using various systems [11]. In certain cases, the disordered medium
induces a quenched random field. The interaction between the quenched random
field and the liquid crystal imposes preferred orientations for the liquid crystal par-
ticles at certain (random) locations, see the sketches in Fig. 6.1. The material most
commonly used for studying such effects is silica aerogel [132, 133, 134, 135, 136],
although certain glasses, such as Vycor have also been used [137, 138]. These porous
media are quite remarkable in the sense that they exist almost of “empty space”, as
can be seen in Fig. 6.2. The volume fraction of aerogel, for example, can be as low
as 1% [139].

A nematic phase in bulk, i.e. in three-dimensions (3D) and in the absence of any
external fields or confining walls, exhibits long-range nematic order (LRO). With an
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Figure 6.1: (a) Microscopic and (b) macroscopic sketches of how ellipsoidal liquid
crystal molecules are anchored to aerogels. In the microscopic view,
liquid crystal molecules (red) preferentially align planar to the aerogel
branch (blue). In the macroscopic view one observes randomly located
and oriented pinning sites, around which liquid crystal molecules align
in one direction preferentially.

Figure 6.2: Transmission electron microscopy (TEM) micrographs of a silica aerogel,
showing three-dimensional net structure and pores ∼ 50 nm. If liquid
crystal molecules are inserted into the aerogel, the structure imposes
a preferred orientations in random locations. The aerogel has porosity
∼ 95 − 97 % and is thus fairly transparent. Reprinted from Ref. [139]
with permission from Elsevier.
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Figure 6.3: Experimental results of the excess heat capacity ∆Cp(N − I) of the
isotropic-nematic phase transition for 8CB in bulk and in four aerogels
of densities ρ = 0.08, 0.17, 0.36, 0.60 g/cm3. The size of the specific heat
peak is reduced as aerogel density is increased. Reprinted figure with
permission from Ref. [132].

applied quenched random field, LRO is destroyed at finite temperatures in dimen-
sions d ≤ 4 [140], which thus includes the experimentally relevant cases d = 2, 3.
However, just because LRO is destroyed does not mean that phase transitions are
not possible to realize. In fact, isotropic-nematic phase transitions in the presence
of external fields are often observed in experiments [132, 134, 136, 141].

The isotropic-nematic phase transition in bulk is usually first-order. It has been
predicted that random fields can change the order of the isotropic-nematic phase
transition, either making it continuous, or even destroying it completely [142]. Ex-
periments on liquid crystals also show similar effects. For example, the liquid crys-
tal 8CB undergoes a weakly first-order isotropic-nematic phase transition in bulk
at ∼ 313.2 K [28]. When 8CB is confined in the connected porous network of a
silica aerogel the isotropic-nematic phase transition is found to be rounded and the
first-order transition is replaced by a continuous phase transition [134, 132]. Fur-
thermore, the phase transition is shifted to occur at a lower temperature. These
effects are seen in Fig. 6.3.

A further important theoretical result of systems in quenched random fields is
that they do not necessarily self-average [143, 144, 145]. Normally, if we have two
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very small samples of the same material and we take measurements on each, we
likely obtain two different results, due to fluctuations within the samples. However,
if we double the size of the samples and take measurements again, we would expect
the results to be more similar than for the smaller samples owing to the central
limit theorem. We could then repeat this doubling of sample size until we reach a
large (macroscopic) sample where the results should be identical. This is the usual
scenario. However, if self-averaging is violated this need not be true. Individual sam-
ples, even when macroscopically large, will still reveal fluctuations between them.
This naturally poses a problem when comparing results between different experi-
ments. For example, the specific heat maximum of a nematic liquid crystal confined
within an aerogel may be found at different temperatures for different samples of
the aerogel! In the extreme case, in the absence of self-averaging, the distribution
of the specific heat maxima may not become sharp in the thermodynamic limit! In
this chapter we investigate these subtleties in more detail by means of computer
simulation and finite-size scaling.

6.1.1 Sprinkled Silica Spin model

We use the Sprinkled Silica Spin model [146] to simulate nematic liquid crystals in
disordered media [147, 148, 146, 149, 150]. It is very similar to the Lebwohl-Lasher
model, but with the additional ingredient of quenched disorder. The Sprinkled-
Silica-Spin model is defined on a 3D periodic lattice of volume V = L×L×L with
system side length L. A 3D unit vector ~di (spin) is attached to each lattice site i.
The spins interact with their nearest neighbors at sites j via

H = −ε
∑
〈i,j〉

|~di · ~dj|p, (6.1)

with coupling constant ε > 0 and the sum over nearest neighbors denoted by 〈i, j〉.
The factor 1/(kBT ) is incorporated into the coupling constant ε, with kB the Boltz-
mann constant and T the temperature; the parameter ε is thus a measure of inverse
temperature. Increasing the exponent p has the effect of making the shape of the
interaction sharper and narrower, as was explained in section 3.4.

The difference between the Lebwohl-Lasher model and the Sprinkled-Silica-Spin
model is that a fraction q of spins are quenched. These spins are assigned some
orientation at the start of the simulation but remain static thereafter. The quenched
spins are randomly chosen and randomly oriented (although still being unit vectors,
of course). This can be conceived of as a random field of infinite strength acting
on a fraction of the spins. It is important for us to choose the fraction of quenched
spins carefully. If q is very small we would require enormous system sizes to observe
any effect of the quenched spins, whereas if q is too large the non-quenched spins
will no longer form a percolating network. In this latter case a true phase transition
(i.e. a phase transition in the thermodynamic limit) trivially cannot occur because
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correlations cannot propagate throughout the entire lattice. We use q = 0.10 (10%
of all spins) throughout this work. As we shall see, this is sufficient to observe a
pronounced random-field effect.

Because the Sprinkled-Silica-Spin model exhibits metastable states [151, 152], it is
important to use a simulation method that performs a random walk in phase space.
A standard Monte Carlo method, sampling states directly from the Boltzmann dis-
tribution, may “get stuck” and therefore we use two broad histogram sampling
methods, namely Wang-Landau sampling [67] and successive umbrella sampling
[76], see sections 2.4.2 and 2.4.3 respectively. By using these methods we can mea-

sure P
(k)
L,T (ρ, S), the probability distribution of the energy density ρ and the nematic

order parameter S, at system size L and temperature T , for some arrangement of
quenched spins k. The energy density is defined via the Hamiltonian of Eq.(6.1) as
ρ = H/(εL3); the nematic order parameter S was defined in section 1.4.1.

6.1.2 Initial results

In contrast to previous chapters we must now perform many simulations of the
same system size in order to obtain averages over many different realizations of the
quenched disorder. The importance of the disorder average is clear from Fig. 6.4(a)
where we see results for two randomly chosen realizations of disorder of a L = 10
system governed by Eq.(6.1) with p = 2. The maxima of the specific heat c =
L3
(
〈ρ2〉 − 〈ρ〉2

)
curves occur at different inverse temperatures ε and they are also

of different magnitude, a trend that is also observed for the nematic susceptibility
χ = L3

(
〈S2〉 − 〈S〉2

)
curves.

Therefore, for each random-field sample k of size L×L×L, we associate a pseudo-
critical inverse temperature εc,k, defined as the inverse temperature of the specific
heat maximum (alternatively, one could use the temperature of the susceptibility
maximum also). We simulate the Sprinkled-Silica-Spin model for M ≈ 1000− 2500
random field samples for each system size, waiting for the “running average” values
of quantities of interest, such as the pseudo-critical inverse temperatures, to reach
plateau values. In Fig. 6.4(b) we show the average of the inverse temperatures of
the specific heat maxima [εc], and in Fig. 6.4(c) the corresponding sample-to-sample
fluctuation

δεc =
√

([ε2c ]− [εc]2), (6.2)

both with L = 10 and p = 2. The square brackets [·] signify the disorder average
and is calculated as

[εnc ] = (1/M)
M∑
k=1

εnc,k. (6.3)

As shown in Fig. 6.4, both [εc] (b) and δεc (c) require M ≈ 2000 realizations before
plateau values are reached.
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Figure 6.4: (a) Different realizations of disorder give different inverse temperatures
ε and heights of the susceptibility χ and specific heat c peaks. The χ
and c curves with the peaks more toward the left come from one real-
ization of disorder, the curves with the peaks on the right from a second
realization of disorder. The number of disorder realizations M needed
to obtain accurate results is large, see (b) and (c). It requires M ≈ 2000
realizations of disorder until the average transition temperature of the
specific heat maxima [εc] (b), and the fluctuations in these temperatures
δεc (c) reach plateau values. Data for all three plots is obtained using
Eq.(6.1) with p = 2 from Eq.(6.1) on 3D lattices of side length L = 10.
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6.1 Introduction

From Fig. 6.4 it clearly follows how important it is to simulate a sufficiently large
set of quenched disorder samples, as results between samples differ (δεc > 0). In a
pure system (without quenched disorder) there are only thermal, and not disorder,
fluctuations. Thermal fluctuations typically become large near phase transitions.
For example, the thermal order parameter fluctuations define the susceptibility

χ = Ld
(
〈S2〉 − 〈S〉2

)
, (6.4)

which for a system with quenched disorder generalizes to

χcon = Ld
[
〈S2〉 − 〈S〉2

]
, (6.5)

with 〈·〉 a thermal average and [·] the disorder average (it is convention in the spin-
glass community to call the above fluctuation the connected susceptibility, hence the
subscript “con”). In the presence of quenched disorder, however, we can also de-
fine different fluctuations (called disconnected fluctuations) which do not have their
analog in pure systems. The role of the disconnected fluctuations in the Sprinkled-
Silica-Spin model will be discussed next.

6.1.3 Violation of self-averaging

To this end, we consider the fluctuation in the thermally averaged nematic order
parameter 〈S〉 between quenched disorder samples. For each random-field sample k
we measure the thermally averaged nematic order parameter 〈S〉k (using Wang-
Landau or successive umbrella sampling sampling) and then calculate the sample-
to-sample fluctuation

R2
dis = [〈S〉2]− [〈S〉]2, [〈S〉n] =

1

M

M∑
k=1

〈S〉nk , (6.6)

This is called a disconnected fluctuation, and it only has meaning in a system
with quenched disorder, because in a pure system the disorder average [·] does
not exist and one trivially obtains Rdis = 0. If the system self-averages Rdis → 0
in the thermodynamic limit L → ∞. In this case a single large sample would be
representative for all samples. If, however, Rdis remains finite in the thermodynamic
limit, then self-averaging is violated and a single sample will not be representative
for all samples (even if the sample were infinitely large).

In Fig. 6.5 we plot Rdis against “inverse temperature” ε for three different system
sizes. The data show that Rdis decreases with increasing system size for small-
ε, and hence the system is self-averaging in this regime. However, at high-ε (low
temperature) Rdis increases with system size, implying that self-averaging is violated
here. Note also that the two regimes are separated by a maximum in Rdis; the
inverse temperature of the maximum will be used to define εR in what follows; εR
thus denotes the inverse temperature at which self-averaging is maximally violated.
Note that εR is L-dependent.

85



6 Random quenched disorder in liquid crystals

10
−3

10
−2

10
−1

1.0 1.5 2.0 2.5

R
d
is

ε

L=7
L=11
L=15

Figure 6.5: Rdis versus ε for p = 2. The inverse temperature of the Rdis maxi-
mum defines εR. At low-ε there is self-averaging (Rdis decreases with L).
However, at high-ε self-averaging is violated (Rdis increases with L).

6.2 Fate of the isotropic-nematic transition: the case
p = 2

In order to see the effect of self-averaging violation on the isotropic-nematic transi-
tion we first specialize to using p = 2 in Eq.(6.1). One mechanism which can induce
violation of self-averaging is a large correlation length ξ. The Brout argument [153]
pictures the thermodynamic limit as being an infinitely large sample consisting of
many independent, characteristic subsamples of size ξ, as seen in Fig. 6.6. However,
this picture breaks down if the correlation length were to become very large. In that
case the subsamples will not be independent from each other but “interact”.

6.2.1 The nematic correlation function

To see if the correlation length is large in the Sprinkled-Silica-Spin model (with
p = 2) we consider the nematic correlation function

Gk(r) =

〈
3

2
(~d(0) · ~d(r))2 − 1

2

〉
. (6.7)

In this work we calculate Gk(r) using all spins, both free and quenched. The function
Gk(r) measures the thermally averaged correlation between two spins at distance
r apart for some sample of quenched disorder k. In a periodic box of side length
L we can compute the correlation function up to distances r = L/2. The value
at the maximum distance is related to the thermal average of the nematic order
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6.2 Fate of the isotropic-nematic transition: the case p = 2

Figure 6.6: A visual representation of the Brout argument [153]. When self-
averaging applies, a large sample (left) can be subdivided into a “grid”
of many statistically identical and independent subsamples (right), each
of size ξ. However, if the the correlation length becomes very large a
the division into independent subsamples is no longer possible, and self-
averaging is no longer guaranteed.

parameter in that sample as Gk(L/2) = 〈s〉2k. From our initial measurements of Rdis

in Fig. 6.5 we already concluded that 〈s〉k varies between samples, which implies
that also Gk(r) will reveal sample-to-sample fluctuations.

In Fig. 6.7(a) we show Gk(r) at ε = 2 for a number of quenched disorder samples.
This value of ε is significantly above the value where the specific heat and suscep-
tibility maximum occur, and thus we are deep in the “nematic” phase where the
system is non-self-averaging, see Fig. 6.5. We indeed observe substantial fluctua-
tions in the correlation function between samples. Also shown in Fig. 6.5(a) is the
disorder averaged correlation function [G(r)] calculated using

[G(r)n] =
1

M

M∑
k=1

Gn
k(r). (6.8)

Following the Imry-Ma argument [140], for a continuous spin system in d ≤ 4
dimensions we expect the complete destruction of long-range nematic order in the
thermodynamic limit for any finite amount of quenched (random field) disorder
q > 0. This prediction is indeed confirmed by experimental G(r) measurements
using filled nematics [147]. Furthermore, it is consistent with our measurement of
[G(r)] which clearly shows a decay with increasing distance. Over the range of r
accessible, the decay conforms best to a power-law, in agreement with Ref. [154].
This indicates that the nematic order is quasi-long-ranged.

To find out more about the sample-to-sample fluctuations in the correlation func-
tion we next consider

κ(r) = [G(r)2]/[G(r)]2, (6.9)

which may be regarded as the disconnected correlation function [155, 156]. In a
pure system this is trivially κ = 1 but in the presence of quenched disorder κ > 1
is also possible. The result is shown in Fig. 6.7(b) for the range 5 ≤ r ≤ 15. At
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Figure 6.7: The behavior of the connected and disconnected pair correlation func-
tions for the Sprinkled-Silica-Spin model with p = 2, L = 30, and
ε = 2.0. (a) On double-logarithmic scales, we show Gk(r) for five sam-
ples of quenched disorder (dashed curves), and the disorder-averaged
result [G(r)] (solid curve), where M = 100 random-field samples were
used. (b) The variation of the disconnected correlation κ(r) where im-
portantly κ > 1 for large r. The solid curve is a power-law fit to the
large-r regime, where the fit κ ∝ rθ with θ ≈ 0.10.
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Figure 6.8: Histograms of εc,k (a) and cmax,k (b) of the specific heat, shifted by their
respective averages, and for several L. The histograms do not become
sharp as L increases.

small r we observe κ ∼ 1 but for larger values we clearly see an increase. Over the
range of r that we can simulate we observe power-law growth κ ∝ rθ with θ ≈ 0.10.
The fact that κ(r) increases means that the connected correlations are decaying
independently from the disconnected correlations. If the system were self-averaging
we would expect both types of correlations to decay similarly, implying θ = 0.

6.2.2 Pseudo transition temperatures

We now consider the distribution in the pseudo transition temperatures. We com-
pute the inverse temperature εc,k where the specific heat attains its maximum for
each random field sample. In addition we record the corresponding value of the spe-
cific heat at the maximum cmax,k. In Fig. 6.8(a) we show the histogram of observed
εc,k values, shifted by the average [εc], for system sizes L = 7, 11, 15. The crucial re-
sult is that the histograms do not become sharp as L increases. This implies that the
temperature of the isotropic-nematic transition is not well-defined, but rather that
each sample of random fields undergoes the transition at a different temperature,
even if the sample is large.
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6 Random quenched disorder in liquid crystals

Table 6.1: Properties of systems with p = 2 and q = 0.1. Listed are the disorder av-
erage inverse temperatures of the specific heat maximum [εc], the inverse
temperature and temperature of the Rdis maximum εR, and the disorder-
averaged specific heat maximum [cmax] for system sizes L = 7, 11, 15.

L [εc] εR [cmax]
7 1.469 1.444 1.545
11 1.527 1.518 1.481
15 1.557 1.571 1.382

Similar effects are seen in the values cmax,k of the specific heat at the maxima.
The corresponding histograms are shown in Fig. 6.8(b) shifted by the average [cmax].
Again, we observe that the width of the histograms is independent of system size:
the histograms are not becoming narrower and sharper as L increases.

In short, for the Sprinkled-Silica-Spin model with the parameters considered here,
the violation of self-averaging is so extreme, that, based on our finite-size scaling
analysis, we must conclude that no “true” isotropic-nematic phase transition occurs.
While in finite samples we do observe a maximum in the specific heat, the distri-
bution of (pseudo) transition temperatures as well as the value of the specific heat
itself, do not become sharp in the thermodynamic limit. In addition we observe that
the quenched-averaged maximum value of the specific heat [cmax] decreases with L,
see Table 6.1. This furthermore suggests the absence of a true phase transition since
otherwise [cmax] should increase with L [89].

We now discuss the temperature range of the non-self-averaging regime. We
notice that [εc] is very close to the inverse temperature εR where Rdis is maximal
(see Table 6.1). As L increases both [εc] and εR increase. The non-self-averaging
regime thus becomes smaller in larger systems, i.e. one needs to go to ever lower
temperatures to observe it. An interesting question is whether εR remains finite
in the thermodynamic limit. Unfortunately we do not know of a rigorous finite-
size-scaling theory describing the shift of εR with system size. The increase of
εR with L is in any case very slow. For example, if we assume a power-law shift
1/εR−1/ε∞ ∝ 1/Ly, 1/ε∞ ≡ limL→∞ 1/εR, then in the maximal scenario (1/ε∞ = 0)
we obtain an exponent of at most ymax ∼ 0.16.

6.2.3 Consequences for experiments

Because the decay of 1/εR and 1/[εc] with L are so slow we expect that the non-self-
averaging regime would survive in macroscopic samples. In experiments we would
therefore expect that the specific heat maxima will occur at different temperatures,
depending on the particular aerogel sample used (even if the samples appear to be
identical). In bulk the liquid crystal 8CB undergoes a weakly first-order isotropic-
nematic phase transition, as does Eq.(6.1) with p = 2 and q = 0 (i.e. without
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Figure 6.9: (a) Rdis versus ε for p = 10 for L = 7, 10, 13. Self-averaging is observed
at both low- and high-ε, and there is only a small intermediate region
where self-averaging is violated. (b) The quenched-averaged specific heat
maxima [cmax] versus system size L for L = 7 − 13. The specific heat
maxima diverge [cmax] ∝ Lᾱ with ᾱ ≈ 0.62, with this fit shown by the
solid curve, consistent with a continuous transition.

quenched disorder). When inserted in silica aerogel of density ρ = 0.36 g/cm3 the
enthalpy H of the isotropic-nematic phase transition obtained from different samples
varies between 3.6 − 5.23 J/g [134, 132], noted as being particularly large [132].
This is of note because the enthalpy is fundamentally linked to the specific heat.
Therefore, as we have seen that the specific heat can be non-self-averaging, such a
large fluctuation in the enthalpy could be consistent with our observation of non-
self-averaging behavior.

6.3 Fate of the isotropic-nematic transition: the case
p = 10

We have seen that the Sprinkled-Silica-Spin model with p = 2 and q = 0.1 does not
undergo a phase transition. However, an important conclusion of chapter 5 was that
the phase behavior of liquid crystals is not determined by a particular universality
class, but instead by microscopic details, i.e. the shape of the particle-particle pair
interaction. Therefore, we now consider the Sprinkled-Silica-Spin model with p = 10
in Eq.(6.1), but still using a fraction of quenched spins q = 0.1.
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Figure 6.10: Histograms H ((εc,k − ε∞)Ly) obtained using p = 10 in Eq.(6.1).
The histograms for different L collapse, consistent with Eq.(6.10) and
Eq.(6.11), indicating that a phase transition occurs. The fit parameters
used are ε∞ = 1.80 and y = 0.88.

Indeed, we observe a remarkable departure from the case p = 2. In Fig. 6.9(a) with
p = 10 we now see that self-averaging is conserved at both low- and high-ε, and that
there is only a small region where self-averaging is violated. This region becomes
smaller as L→∞, resulting in a critical point at the transition temperature of the
thermodynamic limit (marked with the dot in Fig. 6.9(a)).

We believe that the corresponding transition is a genuine one and that it is con-
tinuous, based on the variation of the quenched-averaged specific heat maximum
[cmax] with system size L, see Fig. 6.9(b). The fact that [cmax] increases with L is
consistent with the presence of a transition (in contrast to the case p = 2 where
[cmax] decreases with L, see Table 6.1). At a first-order transition it holds that
[cmax] ∝ Lᾱ with ᾱ = d = 3. With p = 10 and q = 0.1 we instead measure ᾱ ≈ 0.62,
shown by the solid curve in Fig. 6.9(b), from which we conclude that the transition
is continuous.

6.3.1 Distribution of pseudo transition temperatures

Next we consider the distribution in the pseudo transition temperatures εc,k of the
specific heat maximum. Since we now observe a transition, we would expect the
corresponding histogram to become sharp as L increases (in contrast to Fig. 6.8
for the case p = 2). In fact, we expect the usual scaling predictions to apply [143,
144, 145, 157]. That is, the shift of the quenched-averaged transition temperature
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6.3 Fate of the isotropic-nematic transition: the case p = 10

Table 6.2: Properties of systems with p = 10 and q = 0.1. Listed are the dis-
order average inverse temperatures of the specific heat maximum [εc],
the inverse temperature and temperature of the Rdis maximum εR, and
the disorder average of the specific heat maximum [cmax] for system sizes
L = 7, 10, 13.

L [εc] εR [cmax]
7 1.717 1.714 13.85
10 1.739 1.735 18.32
13 1.751 1.747 20.42

[εc] = (1/M)
∑M

k=1 εc,k is expected to obey

[εc]− ε∞ ∝
1

Ly
, (6.10)

with exponent y > 0, and ε∞ the inverse transition temperature in the thermody-
namic limit. Furthermore, the fluctuation in the pseudo transition temperatures δεc
defined in Eq.(6.2) is expected to scale similarly

δεc ∝
1

Ly
. (6.11)

Therefore, since both the shift [εc]− ε∞ and the fluctuation δεc scale with the same
power-law in L, we expect the histogram of H ((εc,k − ε∞)Ly) to be L-independent,
provided that suitable values for ε∞ and y are used. Indeed, the scaling is confirmed
in Fig. 6.10 using ε∞ ≈ 1.80 and y ≈ 0.88, and the collapse of the histograms for
different L is clearly excellent. Note that the value of ε∞ obtained matches the
inverse temperature of the intersection of Rdis curves for different L in Fig. 6.9(a),
showing that this is an alternative method for obtaining ε∞. For completeness the
numerical data of [εc], εR, and [cmax] for the L = 7, 10, 13 systems are also given in
Table 6.2.

6.3.2 Violation of hyperscaling

We have seen that, unlike pure systems, disordered systems have not only thermal
fluctuations but also disorder (sample-to-sample) fluctuations. However, we have
not yet directly contrasted these fluctuations. We have already defined the con-
nected susceptibility χcon as the thermal order parameter fluctuations averaged over
all realizations (see Eq.(6.5)). At a continuous transition the susceptibility diverges
with system size L as χcon ∝ Lγ̄ with critical exponent γ̄. Note that this scaling-law
holds for both conventional and Kosterlitz-Thouless critical points; in case of the
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Figure 6.11: The “thermal” cumulant QT and “disorder” cumulant QD obtained
at the specific heat maximum as function of 1/L. The key message to
take from this figure is that QT → 0 as L increases, while QD remains
constant. This shows that conventional hyperscaling is violated (data
obtained for p = 10, q = 0.1, and system sizes L = 7− 13).

former γ̄ can still be related to the critical exponent of the correlation length [128].
The equivalent measure for sample-to-sample fluctuations is the disconnected sus-
ceptibility

χdis = Ld
([
〈S〉2

]
− [〈S〉]2

)
, (6.12)

which scales χdis ∝ Lγ̄dis at the transition [155]. In order to compare the importance
of thermal and sample-to-sample (disorder) fluctuations, we introduce the cumulant
ratios QT and QD

QT ≡

√
[〈S2〉 − 〈S〉2]

[〈S〉]
=

√
χcon/V

[〈S〉]
, (6.13)

and

QD ≡

√
[〈S〉2]− [〈S〉]2

[〈S〉]
=

√
χdis/V

[〈S〉]
, (6.14)

which, respectively, compare the magnitude of thermal and disorder fluctuations to
the order parameter. At a continuous transition the latter is expected to decay as
[〈S〉] ∝ L−β̄, defining another exponent β̄.

To make progress we now derive how QT and QD are expected to scale with
system size L at the transition. At conventional continuous transitions, meaning
without quenched disorder, one typically observes a hyperscaling relation between
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the critical exponents of the form [92]

γ̄ + 2β̄ = d, (6.15)

here with d = 3 spatial dimensions. Using the above scaling relations for χcon and
[〈S〉] one then easily derives that QT becomes L-independent, which is commonly
used to locate such transitions (the famous “Binder cumulant intersection method”
[92]). The fact that QT remains finite simply means that the thermal fluctuations
of the order parameter remain comparable to the order parameter itself. Thus, in
the absence of quenched disorder, QT is constant and independent of system size
at the transition. In Fig. 6.11, where we have plotted the values of QT (taken at
the specific heat maxima), this is not what we observe but instead QT → 0 as
L→∞. The thermal fluctuations thus become negligible as L increases, indicating
that hyperscaling is violated in this instance.

In fact it has already been predicted that hyperscaling is often violated in the
presence of quenched random fields [158, 159, 160]. Instead the hyperscaling relation
of Eq.(6.15) should be replaced with a “modified hyperscaling” relation

γ̄dis + 2β̄ = d, (6.16)

with γ̄dis the critical exponent of the disconnected susceptibility. If one now uses
this modified relation to compute the L-dependence of QT and QD at the transition,
one finds that QT → 0 as L increases, while now QD remains constant (which was
our motivation to introduce QD of Eq.(6.14) in the first place). True to prediction in
Fig. 6.11, we see that QD calculated at the specific heat maxima stays approximately
constant with system size. In addition, directly measuring at ε = ε∞ = 1.80 the
values of the critical exponents (using the corresponding scaling laws) we obtain
γ̄ + 2β̄ = 1.50− 1.98 and γ̄dis + 2β̄ = 2.80− 3.48 ∼ 3, giving further evidence that
“standard hyperscaling” is violated, but that the modified relation holds. The fact
that QD remains constant at the transition is extremely important for simulations.
Therefore, in finite systems there will be very large fluctuations between disorder
samples, and meaningful results thus require a substantial disorder average (as was
done for the first time in this thesis).

6.4 Summary

In this chapter we have shown that random-field quenched disorder strongly affects
the isotropic-nematic phase transition. We found large sample-to-sample fluctua-
tions, a change in the transition type (from first-order to continuous), and violation
of self-averaging. For computer simulations it is essential to measure a disorder aver-
age comprised of many random-field realizations to gain any meaningful information
at all.

For a system that undergoes a weakly first-order phase transition in bulk the
violation of self-averaging is so severe that no phase transition occurs at all in the
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thermodynamic limit. For a system that undergoes a more strongly first-order phase
transition in bulk the violation of self-averaging is restricted to a single-temperature
in the thermodynamic limit. In this case a phase transition does occur but it has
rather unusual properties. In particular we find that hyperscaling is violated and
replaced by a modified relation.
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