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Chapter 1

Introduction

The condensation and evaporation of a fluid, the transition between its liquid and its
gas state, is a first order phase transition up to a maximum temperature, the critical
temperature Tc. Precisely at the critical temperature, at the critical point, the phase
transition between liquid and gas is continuous. Above the critical temperature, the fluid
is in the supercritical state, which is characterized by states of homogeneous composition
and a density that continuously changes with the chemical potential. This behavior
is in contrast to that below the critical temperature, where high density liquid and
low density gas phases can coexist, and where the density as a function of the chemical
potential is discontinuous at the phase transition between liquid and gas. From theoretical
considerations, as well as experimental results, it is established that the critical point of
the liquid↔gas phase transition belongs to the universality class of the Ising model1;2.
This implies that close to the critical point observables scale with critical exponents
that are characteristic of the Ising universality class and do not depend on the “system
details”3. For example, measurements on sulfurhexaflouride and 3He reported the critical
exponents β = 0.327(6) and β = 3.271(6), respectively3;4;5. Similarly, binary mixtures
of particles with short-ranged orientation-independent interactions also have a critical
temperature: Above this temperature, homogeneous mixtures exist for all mole fractions.
Below, some ratios of the mole fractions lead to a demixing into two coexisting phases
that differ in composition1.

In the Ising model, related models can be constructed by adding quenched disorder in
the form of random “impurities”. Examples of such random impurities are the removal
of randomly-selected Ising spins from the system and the addition of random static
location dependent external magnetic fields, which result in the site-diluted Ising model6

and the the random-field Ising model7 (RFIM), respectively. Such Ising models with
quenched disorder may have different critical behavior for the transition between para-
and ferromagnetic phase, as in case of weak random fields in d = 3 dimensions8;9. In
some cases, such as random fields in d = 2 dimensions10 or large amount of random site
dilutions11, quenched disorder can even eliminate the the existence of a ferromagnetic
phase altogether.

Since fluids and binary mixtures are in the universality class of the Ising model, similar
results may hold true for such systems in a volume with random static inhomogeneities,
such as the random wall structure formed by aerogels12. Indeed, it has been suggested
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by de Gennes that such confining random geometries should act on an immersed mixture
in the same way that a random static and location dependent magnetic field acts on the
Ising model13. This not only means that the behavior of the system is influenced by the
presence of the inhomogeneities (as is seen in experiments14). More importantly, it also
suggests that the properties of a macroscopic demixing (or a liquid↔gas transition) may
be “universal” in the sense that they are determined by only a few basic characteristics
of the inhomogeneities. In analogy to the Ising model, such characteristics may be the
spatial symmetry of the inhomogeneities, the range of their interaction with the mobile
components, and whether a preferred affinity to one of the potentially coexisting phases
exists.

Since for a fluid an exactly equal affinity of the inhomogeneities to the liquid and the
gas phase is unlikely, the expected universality class would be that of the random-field
Ising model. Yet, in experiments on 4He and N2 in silica aerogels, de Gennes’ hypothesis
of RFIM universality could not be confirmed. Critical exponents compatible with those
of the unperturbed Ising model were reported, instead15;16. As a possible explanation
of this discrepancy, it has been suggested that an aerogel may be better described as a
system with random impurities that have long ranged correlations15;16, in which case
RFIM universality would not apply17. However, another possibility could be a crossover
effect, as in RFIM systems with weak random fields, the true critical behavior is only seen
very close to the critical temperature, while further away the normal Ising universality is
seen8.

In this thesis, results from large scale computational studies are presented that provide
further evidence for the applicability of de Gennes’ hypothesis. To this end, results from
Monte Carlo simulations of the Widom-Rowlinson model18 in the presence of different
types of static inhomogeneities (“obstacles”) are presented and extrapolated to the
thermodynamic limit via finite-size scaling methods19;20. For random inhomogeneities
this requires investigating many different possible arrangements of the inhomogeneities,
which increases the computational effort and the complexity of the data analysis. To
handle thousands of inhomogeneity configurations, automatized data analyses have been
developed, which also forms a main ingredient of this work.

The outline of this thesis is as follows: In chapters 2 the Widom-Rowlinson model is being
introduced, which is a model that can be interpreted as a fluid model and a binary mixture
model at the same time, and therefore allows to draw conclusions about both types of
systems. The Monte Carlo method is briefly introduced, and a possible Monte Carlo
algorithm for the simulation of the Widom-Rowlinson model is presented. In chapter 3,
a finite-size scaling analysis of fluid simulation data is introduced, which foots on the
works of Fisher21;22 and Binder23. Chapter 4 introduces advanced Monte Carlo methods
that are required to obtain useful data with a sensible amount of computing efforta. A

aThe total computing effort is still considerable; roughly 2 · 105 hours of computing on a single 2.4

GHz CPU for the results presented here. The effort is merely reduced from “impossible” to “high”.
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side project that has resulted from the intensive preoccupation with the development of
efficient simulations and data analyses is presented in chapter 5. There, it is demonstrated
that simulation studies of first order phase transitions in fluids can benefit from the choice
of an unconventional choice of the system geometry, namely the surface of a hypersphere.

The main results are presented in chapters 6, 7, and 8. In chapter 6 the simplest case
of random static inhomogeneities, those which equally affect both possibly-coexisting
phases, is investigated. On the example of a two dimensional system it is shown that such
(weak) inhomogeneities affect the model such that its universal behavior is consistent
with the universality of the site-diluted Ising model. This implies that there still exists a
first-order phase transition that ends in a critical point, but with the critical temperature
reduced compared to that of the model without inhomogeneities (the “pure model”).

The case of random inhomogeneities that interact differently with the two components of a
three dimensional binary mixture is discussed in chapter 7. Standard methods and a new
finite-size scaling technique proposed by Binder24 are used for this case. In consistence
with previous simulations of similar scope25;26 (using finite-size scaling and considering
many different inhomogeneity configurations) it is found that the demixing transition
still exists, and that the critical temperature is reduced compared to that of the pure
model. By comparison with simulations of the random-field Ising model it is argued
that the universality of the critical point is indeed that of the RFIM, which implies an
unconventional critical point that violates the hyperscaling relation. Signatures of the
existence of a third phase that have been reported from other computational studies27

are explained as a finite-size artifact and the result of not taking into account a sufficient
amount of inhomogeneity configurations.

The corresponding two dimensional system is discussed in chapter 8. For this case, the
absence of a ferromagnetic phase in the 2D RFIM8 implies the absence of a demixing
phase transition, whereas simulations of grid-based models have reported the existence of
a demixing transition28. By investigation of systems of different size it is argued that the
indications of a first-order phase transition seen in the raw simulation data are a finite
size effect, and that in the thermodynamic limit the demixing transition (or liquid↔gas
transition) is eliminated by the inhomogeneities. Instead, a continuous freezing into
structures dictated by the inhomogeneities is found and argued to be the effect that
eliminates and replaces the phase transition.

Finally, an important potential application of the results found for the two dimensional
mixtures in the presence of random static inhomogeneities is discussed in the second
part of chapter 8. This application concerns the lateral structure of lipid bilayers, such
as membranes of eukaryotic cells. While in vesicles formed from the phospholipids
of eukaryotic cells a demixing transition compatible with the Ising universality class
is being observed29, no such transition has been reported in membranes of live cells.
Footing on a hypothesis that explains these effects as random site dilutions caused by
cytoskeleton bound proteins in the membrane30, in this thesis it is instead argued that a
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random-field effect is more likely. Such a random-field effect could explain the existence
of lipid rafts 31;32;33 as an equilibrium effect without requiring proximity to a critical
point. Molecular dynamics simulations of a model membrane with two different species of
phospholipids at near atomic resolutions are presented which are shown to be consistent
with the results obtained from the Monte Carlo simulation of the Widom-Rowlinson
mixture.
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Chapter 2

Model and Simulation Basics

As the model system to investigate in the presence of a background with random static
inhomogeneities the Widom-Rowlinson model18 (WR model) has been chosen. The WR
model has two key features that make it an interesting choice to consider: From the point
of view of a programmer the model components and interactions are simple to implement
and can be simulated efficiently with simple Monte-Carlo steps (the insertion and removal
of single particles described in section 2.2.2.1). For a physicist it is interesting that the
WR model is a model for a binary mixture and a single-species fluid at the same time -
in the sense that an exact mathematical transcription rule (a mapping) between both
interpretations exists (section 2.1.2). In many cases, this will allow drawing conclusions
for the fate of the liquid↔gas transition of a quenched fluid and the demixing transition
of a quenched binary mixture from the same data.

Random static inhomogeneities in the system are modeled in the form of randomly placed
static particles called obstacles. But before the case of quenched disorder is being discussed,
the Monte Carlo simulation method, a suitable finite-size scaling analysis (chapter 3),
and advanced Monte Carlo techniques (chapter 4 and 5) need to be introduced. These
methods are being discussed on the example of the original WR model without obstacles
(the pure model). The respective results for the pure model are presented alongside. Since
the critical exponents of the Ising universality are known to a good degree of accuracy, and
since independent computer simulations of the pure WR model exist, this also provides a
non-trivial test of the applicability and the proper implementation of these concepts.

2.1 The Widom-Rowlinson Model

2.1.1 The Widom-Rowlinson as a Binary Mixture

The WR model is best introduced in its interpretation as a binary mixture, the Widom-
Rowlinson mixture. The mixture consists of two particle species, A and B, which are both
spheres with diameter equal to one unit of length. The only interaction is a hard-core
interaction between particles of unlike species, i.e. overlaps of A particles with B particles
are forbidden while particles of the same species may freely overlap. For a d-dimensional
system of volume V with NA and NB particles of species A and B the microcanonical
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partition function can formally be expressed as

Ω(V,NA, NB) =
1

NA!NB!

∫
V

ddNAx ddNBy

NA∏
i=1

NB∏
j=1

θ(‖xi − yj‖ − 1)︸ ︷︷ ︸
=:X(x,y)

, (2.1)

where the term ‖xi − yj‖ is to be understood as the distance between the i-th A and
the j-th B particle, and θ is the usual Heaviside step function. The exclusion term X

therefore discards all microstates with an overlap of A and B particles from the sum.

The system defined by the partition function (2.1) does not contain any kinetics for the
particles. The extra terms for the momenta would be trivial and can be integrated out
resulting in just an extra analytic temperature-dependent term to carry around. For
simplicity and focus on the interesting part of the mixture, the spatial configurations,
the kinetics have been omitted herea. The grand canonical partition function with the
fugacities zA and zB as parameters is

Z(V, zA, zB) =
∑

NA,NB

zNA
A zNB

B Ω(V,NA, NB). (2.2)

Since there is no explicit temperature in the mixture picture, the logarithm of the fugacities
will be called the chemical potentials, i.e.

µA := log zA, and µB := log zB. (2.3)

2.1.2 The Widom-Rowlinson Model as a Fluid

The Widom-Rowlinson model can also be understood as a single species fluid with a
hidden symmetry, the Widom-Rowlinson fluid. To map the binary mixture on a fluid, first
re-interpret the mixture as a mixture of A particles with diameter two, and B particles
with diameter zero. This blurs the symmetry of the model, but leaves the partition
function unchanged. By integrating out the B particles’ degrees of freedom in the grand
canonical ensemble, the partition function of the WR mixture,

Z(V, zA, zB) =
∑
NA

zNA
A

NA!

∫
V

ddNAx︸ ︷︷ ︸
A particles

∑
NB

zNB
B

NB!

∫
V

ddNBy︸ ︷︷ ︸
B particles

X(x, y) (2.4)

maps onto the partition function of a single-species fluid. To see this, consider a fixed
number and configuration for the A particles. For this configuration, the term X(x, y)
creates a volume VX(x), in which no B particle can be located. Except for this volume

aFor a short description of model and mapping that involves the kinetics see e.g. Miguel et al.34.
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2.1. THE WIDOM-ROWLINSON MODEL 7

exclusion, there is no restriction on the B particles. They are an ideal gas in the remaining
volume V − VX(x), and their degrees of freedom can be integrated out:

Z(V, zA, zB) =
∑
NA

zNA
A

NA!

∫
V

ddNAx
∑
NB

zNB
B

NB!

∫
V−VX(x)

ddNBy 1

=
∑
NA

zNA
A

NA!

∫
V

ddNAx
∑
NB

zNB
B

NB!
(V − VX(x))NB

︸ ︷︷ ︸
=exp[zB(V−VX(x))]

(2.5)

=
∑
NA

zNA
A

NA!

∫
V

ddNAx e−zB(VX(x)−V ). (2.6)

With all degrees of freedom of the B particles eliminated, the partition function can be
interpreted as the partition function for a model containing only one species of particles (A
particles) at an inverse temperature of β = zB that has a binding energy term VX(x)− V .
While this binding energy is not expressed as the sum of one- and two-particle potentials,
the VX − V term is a short ranged attractive potential. It is attractive in the sense
that the closer overlapping particles move together, the less area they cover, and the
lower the potential energy of the state becomes. And it is short ranged in the sense that
non-overlapping clusters of A particles (or just single particles) can be moved around
freely without changing the potential energy. On a more technical note, the potential is
bound from above (since VX ≤ V ) and more importantly from below (VX ≥ 0), which
prevents the state from simply collapsing towards the state with infinite negative energy.
This latter property is required for the system to show true thermodynamics18, since it
allows entropy to compete with energy.

Because of these properties of the potential, the partition function in equation 2.6 is
considered the partition function for a one-species fluid with attractive interactions. The
WR model therefore describes a binary mixture and a single-particle fluid at the same
time, where mapping from the mixture to the fluid is essentially done by simply ignoring
the presence of the B particles. Since the WR fluid contains an energy term and an
inverse temperature the grand canonical partition function may be rewritten as

Z(V, zA, zB) =
∑

NA,NB

zNA
A zNB

B Ω(V,NA, NB)

=
∑
NA

zNA
A

∑
NB

zNB
B Ω(V,NA, NB)︸ ︷︷ ︸
=:Z(V,NA,zB)

(2.7)

=
∑
NA

zNA
A Z(V,NA, zB), (2.8)

where Z is the canonical partition function for the fluid with NA particles at an inverse
temperature zB.
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Figure 2.1: Effects of increasing the density in the two-dimensional Widom-Rowlinson model
of a square with periodic boundary conditions. At low densities (left image for ρA = ρB = 0.3)
both species are mixed. Upon increasing the density (center image, ρA = ρB = 0.6) clusters of
increasing size form, which are caused by the vicinity to critical point and are called near-critical
fluctuations. Above the critical density, the particles have de-mixed into two macroscopic clusters
with an interface parallel to the system boundaries (right image, ρA = ρB = 0.9).

2.1.3 The Phase Diagram

In figure 2.1 typical states for the two dimensional WR mixture at different densities
are seen (the three dimensional case is equivalent). For very low densities, the particles
mix. If the density is increased, clusters of particles develop that grow in size as the
density is increased further. At some point, the size of these clusters diverges, and a
macroscopic demixing occurs, in which the system volume is covered by two spatially
separated phasesb. One of the phases is rich in A particles and lean in B particles (the
A phase), the other phase has reversed composition (the B phase). The corresponding
behavior in the grand canonical ensemble is shown in figure 2.2. At fugacities far below a
critical fugacity, the system is in a mixed state. Upon increasing the fugacities towards
the critical one, growing clusters appear whose size diverges at the critical point. However,
contrary to the microcanonical ensemble no coexistence of two phases is seen for fugacities
above the critical fugacity. Instead, the system uniformly exhibits either the A or the B
phase, but not both at the same time (not even if zA = zB, since coexistence is suppressed
by an interface contribution to the free energy - see chapter 5).

The schematic phase diagrams for the Widom-Rowlinson model in the microcanonical
ensemble, in the canonical ensemble (of the fluid interpretation), and the grand canonical
ensemble are shown in figure 2.3 (a), (b), and (c), respectively. In the microcanonical
ensemble, mixed and macroscopically demixed states are separated by a demixing phase
transition in the plane of the densities ρA = NA/V and ρB = NB/V . The phase diagram
of the canonical ensemble is that of a fluid that can undergo a liquid↔gas phase transition

bOf course, the largest attainable length scale in a computer simulation is that of the small system

that is simulated. In simulations, a macroscopic demixing can only be indicated, but not actually occur.
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2.1. THE WIDOM-ROWLINSON MODEL 9

Figure 2.2: Effect of increasing the fugacity of the WR mixture in the grand canonical ensemble.
For low fugacities (left image at zA = zB = 1) a mixed state is seen. When the fugacity is increased,
domains of A and B particles develop that grow as the critical fugacity is approached (middle
state, zA = zB = 1.5). Above the critical fugacity, the system is either in a state containing almost
only A particles (the A phase) or in a state containing almost only B particles (the B phase), as
shown in the two rightmost snapshots at zA = zB = 2.

Figure 2.3: Schematic phase diagrams for the WR model in (a) the microcanonical ensemble,
(b) the fluid canonical ensemble, (c) and the grand canonical ensemble. Physical phase boundaries
are drawn in a solid line, the unphysical boundary to the supercritical phase is drawn with a
dashed line, the critical point is indicated with a red dot. The labels in figure (a) and (b) refer to
the mixture and the fluid picture of the WR model, respectively. In figure (c), the names of the
phases are given in both pictures. The border of the supercritical phase is drawn as a dashed line
to indicate that there is no phase transition associated with it.
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2D 3D
Theory ρcr zB,cr ρcr zB,cr

1970 mean field th.18 0.637 - 0.4775 -
1976 scaled particle th.35 - - 0.4347 -
2000 density functional th.36 - - 0.556 -

MC Simulations
1996 Semigrandcanonical37 - - 0.762(16) -
1997 Cluster flipping38 1.566(3) 1.726(2) 0.748(2) 0.9403(1)
2011 (this work) 1.562(5) 1.718(2) 0.752(4) 0.9373(6)

Table 2.1: Notable previous estimates for the critical density and the critical fugacity of the
WR model. While the Monte Carlo results essentially agree on all properties, various theoretical
approximations all disagree and also underestimate the critical density.

(note that 1/zB is the temperature in this interpretation). Above a critical temperature
(for 1/zB > 1/zB,cr, where zB,cr is the inverse critical temperature), the fluid can exhibit
any uniform density. This characterizes the supercritical phase. Below the critical
temperature, two distinct density regimes exist: the liquid phase and the gas phase.
Intermediate total densities are possible, but do not result in a uniform state but in
the coexistence of appropriate amounts of the liquid and the gas phase. In the grand
canonical ensemble the system exhibits a mixture of A and B particles below the critical
fugacity, i.e. for zB < zB,cr. Above the critical fugacity, the system is in either the A or
the B phase, but never in a state of coexistence between A and B phase. Instead, at the
phase transition line (that because of the WR mixture’s symmetry must lie at zA = zB)
a phase transition between A and B phase occurs. The transition is first order and ends
in an Ising critical point.

The existence of a phase transition ending in a critical point was already suggested when
the model was first presented18 and proven shortly thereafter39. But determining the
location of the critical point has, at least in two and three spatial dimension, been a
problem (see table 2.1). Originally, Widom and Rowlinson used a mean-field ansatz18,
which should become accurate in the limit of infinite dimensions. Attempts to improve
this result by more sophisticated theoretical methods resulted in a scatter of around 20%
of the original estimate, but with no systematic trend. The first computer experiment
performed on the WR model37, however, reported a critical density that is incompatible
with any of these theoretical results, and has since been confirmed in other computer
simulations34;38;40;41 - and also agree with my results. As expected for a fluid with short
ranged interactions, the model has been found to lie in the universality class of the Ising
model38;42.
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2.2. MONTE CARLO METHOD 11

2.1.4 Related Models

From a more abstract point of view, the Widom Rowlinson mixture is just a point in the
parameter space of the more general class of non-additive hard sphere binary mixtures,
which have a demixing for sufficiently large positive non-additivity35 (but in some cases
this critical density can lie within the solid regime43). The Widom Rowlinson mixture is
the special case of both particles having radius zero, which for example allows for the
mapping on the fluid model.

Another relation to other models can be constructed by axis-parallel cubes instead of
spheres. On the level of the partition functions the only difference is that the L2 norm
‖x‖ =

(
|x1|2 + · · ·+ |xd|2

)1/2 in the exclusion term X in equation (2.1) is replaced by
the L∞ norm ‖x‖ = max (|x1|, . . . , |xd|). Other than the microscopic geometry of the
particles and the volume occupied by them, the main properties of this model remain
that of the Widom Rowlinson model - including the mapping on a single-species fluid
with attractive interactions.

In two dimensions this model of axis-parallel squares is also equivalent to a system
of unit length horizontal and vertical rods of zero width that may not intersect, the
two-dimensional Zwanzig model44. Recently, simulations of lattice models with horizontal
and vertical rods have been performed, in which a transition from a mixed state to a
state with only one of the rod species has been seen45;46;47 and identified as an Ising type
phase transition48. Because of the similarity of these lattice models to the 2D Zwanzig
model (which can in some sense be considered the off-lattice version of such models) it
has been argued by Richard Vink and me49 that the phase transition that is seen can also
be understood as a transition from a supercritical state to a liquid or a gas phase rather
than an isotropic↔nematic type transition as it has originally been called45;46;47;48.

2.2 The Monte Carlo Method

To evaluate ensemble averages for the Widom-Rowlinson model in the respective ensembles,
Monte Carlo methods are used. Essentially, a Monte Carlo method is the approximation
of an ensemble (a phase space, an integration domain, a thermodynamic ensemble, ...) by
a randomly generated finite sequence of elements that are in some sense “representative”
of the full ensemble. In some cases, the generation of such a representative sample can
already be the sought-for result: In collider physics experiments computer programs called
event generators 50;51 are employed to randomly generate a representative set of collision
results that are used to optimize data analysis algorithms during the development stage
of the experiment, and to compare predictions of a particle physics model with actual
experimental results. In other cases, the reason for using the Monte Carlo method is
that operations that cannot be performed on the full ensemble may be performed on the
generated sequence instead, i.e. to approximate an operation’s result by approximating
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the ensemble. An example of this kind of application is the numerical integration of a
function over some domain (Monte Carlo integration52). The simplest way to perform
this is to pick elements from the integration domain randomly with an equal probability
p(γ) = const. In this case, the integral is then approximated by evaluating the function
on the points γi, taking the average of these values, and multiplying with the volume of
the integration domain.

In this thesis, the reason for generating a sequence γ1, γ2, . . . , γN of states from the
ensemble is the latter one: to calculate ensemble averages. In particular, ensemble
averages of the grand canonical ensemble shall be evaluated. In statistical physics, one
does not generate the sequence from a flat probability distribution, but instead takes
the Boltzmann weight into account for the generation of the sequence. If one thinks
of the Boltzmann weight as the relative probability for the state γ to actually appear
during a measurement, then a “representative” sequence is generated when the states are
sampled with a relative probability that equals their Boltzmann weight53. In case of the
WR mixture in the grand canonical ensemble, this means sampling from a probability
distribution

p(γ) =
const

NA(γ)!NB(γ)!
z
NA(γ)
A z

NB(γ)
B ·X(γ), (2.9)

where X(γ) is zero for all states γ with an overlap between A and B particles, and
one otherwise (i.e. represents the exclusion term X(x, y) in equation 2.1). In such a
biased sampling, which is called importance sampling, the Boltzmann weight is then not
taken into account a second time for the calculation of ensemble averages. Instead, the
approximates for ensemble averages 〈f〉 of a function f(γ) take the simple form

〈f〉 =
1
N

N∑
i=1

f(γi). (2.10)

Markov Processes

While ideally the γi are mutually uncorrelated, an independent construction of states
“from scratch” is usually very inefficient. For the WR mixture, an uncorrelated sequence of
states can be generated by choosing random particle numbers NA and NB from suitable
Poissonian probability distributions and inserting the respective amount of particles at
random independent locations. By discarding the so-constructed states that contain
an overlap between an A and a B particle (i.e. with X(γ) = 0), a sequence of states
according to the probability distribution (2.9) is generated. But as shown in figure 2.4(a),
for system sizes considered here (V > 100), X(γ) = 0 for almost all constructed states
and this method will essentially never result in the generation new entry in the sequence.

The solution to this problem is to give up the mutual independence of the sampled
states. Instead of generating each state from scratch a Monte Carlo step can take the
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2.2. MONTE CARLO METHOD 13

Figure 2.4: Efficiency for different methods to construct a Monte Carlo sequence for the two
dimensional WR mixture. Figure (a) shows the average number of MC steps that a direct
construction of states requires to construct a “legal” state without overlap between A and B
particles (the construction algorithm used is explained in the text). Lines are fits on the data
points. For relevant system sizes V > 100, a computer simulation would take forever to construct
even a single state this way. Figure (b) shows the average number of attempted MC steps that a
Markov Chain simulation with the MC steps introduced in section 2.2.2.1 needs until all particles
of the starting state have been replaced. Note the different scales on the two plots.

previously-constructed state γi−1 and randomly modify it. Thereby a new and in some
sense similar state γi is generated, that is correlated with γi−1 but also more likely to
be a valid state (meaning that X(γi) = 1). If the probability that a Monte Carlo step
creates a target state ν only depends on the previously-generated state µ then this
sampling formally is a Markov Process54 with a transition matrix Tνµ, whose entries
are the probabilities that γi+1 = ν if γi = µ (note that Tµµ 6= 0 is allowed). As long
as the transition matrix satisfies two conditions explained in the following, ergodicity
and detailed balance, then in the limit of a large number of sampled states the process
samples states with a probability according to the Boltzmann distribution53.

Ergodicity and Detailed Balance

A sampling process is ergodic in the strict mathematical sense exactly if for each pair
of states with a non-zero Boltzmann weight there is a non-zero probability to reach the
respectively other state after a finite number of steps. Consequently, a process is not
ergodic if there is a state of non-zero probability that cannot be reached from every other
state of non-zero probability with a finite number of steps. Ergodicity is a global property
of a Markov Process that ensures that states with a non-zero probability p(γ) can possibly
appear in the sequence. Detailed balance is a constraint on the entries of the transition
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matrix:
Tνµp(µ) = Tµνp(ν). (2.11)

This is a local condition on the Markov process that, in combination with ergodicity,
ensures that in the limit of a long sequence the states are generated according to the
Boltzmann distribution.

Note that (2.11) allows entries Tµµ 6= 0, i.e. a finite probability that the new state is the
same as the old state - being stuck in the state forever is ruled out by ergodicity. Also,
entries Tµν = 0 are allowed, even if p(µ) 6= 0 and p(ν) 6= 0. Ergodicity only demands that
the Markov Process can diffuse from state µ to state ν and back, but it is not required
that the transition happens in a single Monte Carlo step. Finally note that equation 2.11
implies that if a Monte Carlo step can lead from state µ to state ν (and both states have
a non-zero sampling probability), then there must be a non-zero probability to go back
from ν to µ: Monte Carlo steps obeying detailed balance must necessarily be able to
“undo” themselves.

2.2.1 Ergodicity Breaking

The principles of ergodicity and detailed balance are paramount to the construction and
understanding of Monte Carlo simulations in statistical physics, since they provide the
mathematical backup on which the trust in the method foots. Yet, real simulations
routinely violate either or both of these principles - in a controlled way. For example,
ergodicity in the strict sense introduced above is neither required nor sufficient for a
Monte Carlo simulation. For the WR mixture, it is (strictly speaking) not possible to
represent all states of the partition function: A floating point variable cannot exactly
represent a real-valued coordinate but merely stands for roughly 1016 discrete numbers
that approximate the real values over some interval, and the necessarily finite amount of
computer memory puts an upper limit to the number of particles that can be represented.
Of course, one can expect that a grid with 1016 discrete values for each coordinate is a
reasonable approximation for a continuum model and that particle numbers much larger
than zAV + zBV (the average number of particles in the model in case of the absence of
the interaction) are irrelevant, anyways. A simulation may break ergodicity as long as
the simulator is aware of these violations and can justify them as irrelevant to the result
(or correct for them).

Similarly, ergodicity in the mathematical sense is not sufficient for a simulations, since
ergodicity can be violated effectively. Effective ergodicity breaking can happen when two
important regions of the phase space (important in the sense that both contribute signifi-
cantly to the partition function) are connected by paths whose integrated probabilities
are greater than zero but small. Since a simulation can only perform a finite number
of Monte Carlo steps, this probability may be so small that the simulation does not
transit between the two regions and only samples states from one of them. This typically
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results in a non-representative sequence. An example of such a potential bottleneck
is the simulation of a system that undergoes a first order phase transition. At phase
equilibrium, both phases are equally likely to be present in the system and hence need to
be sampled. However, if the Monte Carlo steps that have been chosen can only move
from the one phase to the other by sampling intermediate states in which the two phases
coexist (that are very unlikely to appear in a simulation as explained in chapter 5), then
the transition between the two phases is effectively eliminatedc. Because of the uniform
sampling methods that are introduced in chapter 4, this does not directly become a
problem in the simulations presented here, but a remnant impact on ergodicity remains
in form of “shape transitions” (see chapter 5).

2.2.2 Generating Monte Carlo Steps

The construction of an ergodic computer algorithm that satisfies the detailed balance
condition (2.11) may seem like a daunting task. In practice, there is a trick that can be
employed that greatly simplifies this task and allows for a large amount of flexibility: One
chooses any algorithm that performs a random modification to the current state γi such
that the resulting Markov Chain is ergodic, but only accepts a proposed modification with
a suitably chosen probability Pacc(µ→ ν) and otherwise simply keeps the current state
(i.e. γi+1 = γi). With this extra step the detailed balance criterion for the off-diagonal
entries of the transition matrixd becomes

(2.11) : Pacc(µ→ ν)g(µ→ ν)︸ ︷︷ ︸
Tνµ

p(µ) = Pacc(ν → µ)g(ν → µ)︸ ︷︷ ︸
Tµν

p(ν), (2.12)

where g(µ→ ν) are the probabilities that the algorithm applied on state µ proposes the
new state ν (and therefore determined by the chosen modification algorithm), and p is the
probability distribution according to which states shall be sampled (equation 2.9). The
accept ratios Pacc are additional degrees of freedom that can be used to turn any ergodic
and self-invertible algorithm for random modifications into a Markov Chain process that
samples states according to a desired probability distribution. From the detailed balance
criterion (2.12) it follows that the accept ratios must satisfy the relation

(2.12)⇒ Pacc(µ→ ν)
Pacc(ν → µ)

=
g(ν → µ)p(ν)
g(µ→ ν)p(µ)

, (2.13)

These conditions do not completely fix the accept probabilities since there is an infinite
amount of solutions that satisfy (2.12) and 0 ≤ Pacc(µ→ ν) ≤ 1 (which accept probabili-
ties naturally have to obey). The best choice is choosing the accept probabilities as large

cNote that in the thermodynamic limit ergodicity is broken for a physical trajectory at phase

coexistence.
dThe conditions on the diagonal entries are trivially satisfied.
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as possible, since that means that the amount of accepted modifications is maximized,
and that the correlation between subsequent states in the generated sequence decays the
fastest. This maximum value choice for the accept probabilities is

Pacc(µ→ ν) = min
[
g(ν → µ)p(ν)
g(µ→ ν)p(µ)

, 1
]
. (2.14)

A Markov Chain based Monte Carlo algorithm with these accept probabilities is called a
Metropolis algorithm 55.

2.2.2.1 Single Particle Insertions and Removals

A simple and effective choice of Monte Carlo steps for the WR model in the grand canonical
ensemble is the random insertion or removal of only a single particle per step. At each
step first a random species X is chosen with an equal probability for X=A and X=B. Then,
one chooses, again with equal probability for both possibilities, whether the step tries
to insert a new particle at a random location in the volume (the generation probability
for each possible microstate then is g(NX → NX + 1) = 1/V ), or if a random particle of
species X is attempted to be removed from the system (g(NX → NX − 1) = 1/NX). It
is easy to see that a simulation with this choice of steps is ergodic, since the transition
between any two states is possible by first removing all particles of the original state
and then sequentially inserting the particles of the other state. Detailed balance of these
moves is ensured by using the Metropolis accept rates (equation 2.14). This yields the
accept probabilities

Pacc(NX → NX + 1) = min
[
zXV

NX + 1
, 1
]
, and (2.15)

Pacc(NX → NX − 1) = min
[
NX

zXV
, 1
]
, (2.16)

where NX is the number of particles of type X before the Monte Carlo step. In addition
to these accept probabilities, insertion steps in which the inserted particle would overlap
with an existing particle of the unlike species are rejected.

While the so-constructed sequence is strongly correlated, the higher acceptance rate for
each proposed change more than makes up for this. Figure 2.4 shows the average number
of Monte Carlo steps τ required that a state γi has been modified so much that γi+τ and
γi do not contain any common A or B particle, which can be considered a correlation
time. Compared to the typical number of Monte Carlos steps performed in a simulation
(roughly between 1010 and 1011 per simulation), the values are small, indicating that
while locally the generated sequence is strongly correlated, there exists a scale smaller
than the sequence length N on which the elements can be considered decorrelated.

Single particle insertions and removals are a standard choice in grand canonical Monte
Carlo simulations, and have been chosen in this work for their simplicity and adequate
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performance. More sophisticated “cluster moves”56 that had originally been developed
for the Asakura-Oosawa model57 (AO model) have been employed in the simulation
of the Zwanzig model49, but were found to be less efficient than single particle moves:
The reason those cluster moves are more efficient than single particle moves in the AO
model is that they eliminate a sampling problem that is caused by the asymmetry of
the particles in the AO model - a problem that does not exist in the WR model in the
first place. Also, unlike “cluster flipping” moves that have been developed for the WR
model38;58, the single particle moves are adequate for every fugacity and easily adapted
to the advanced sampling techniques introduced in chapter 4 and the presence of static
obstacles (which is the focus of this thesis).
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Chapter 3

Data Analysis

In statistical mechanics, first order phase transitions are defined in (and can only occur
in) the thermodynamic limit, which implies an infinite size of the system. Real world
systems are not infinite, but often still sufficiently large to be well approximated by the
thermodynamic limit. The system sizes that are accessible in Monte Carlo simulations
of phase transitions, however, are so small (many orders of magnitude below the 1023

particles often considered a typical thermodynamic system) that measurable deviations
from the behavior in the thermodynamic limit occur. To infer the behavior of the large real
world system from computer simulations, the simulation results need to be extrapolated
to the thermodynamic limit. In the case of phase transitions this first requires to define
analogous effects in a small system. Then, by simulating systems of different size (where
each system individually is too small to represent the thermodynamic limit) the behavior
in the thermodynamic limit can be estimated by extrapolation.

The WR model has been analyzed in the grand canonical ensemble and with the fluid
picture in mind. This means that the order parameter characterizing the phase transition
(the liquid↔gas transition) is related to ρA, and that zB is considered as an inverse
temperature for purposes of analysis (the model actually simulated still is the mixture).
For fluids undergoing a liquid↔gas transition, in particular for locating the critical point
of the transition, a robust finite-size scaling analysis exists21;22. Of course, due to the
fluid↔mixture mapping of the Widom-Rowlinson model, a phase transition in either
picture automatically implies a phase transition in the other one.

3.1 The Order Parameter Distribution

The feature distinguishing gas and liquid is the density ρA. Hence, the key role in all
attempts to locate the liquid↔gas transition and its critical point is played by the order
parameter distribution (OPD)

P (ρA|zA, zB) (3.1)

which is the probability that a system of a given size V is in a state that contains
NA = ρAV particles of type A at fugacities zA, zB. The OPD allows to calculate ensemble
averages 〈·〉 of observables that depend on ρA:

〈f(ρA)〉 :=
∫ ∞

0
dρA f(ρA)P (ρA|zA, zB) (3.2)
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Because of the symmetry of the Widom-Rowlinson model, it is known that the phase
transition from liquid to gas must occur at zA = zB, which leaves only a single degree of
freedom (say, zB) for the possible location of the critical point of the pure model. OPDs
can be directly extracted from Monte Carlo simulations performed at the sought-for
fugacities (see chapter 2.2); more efficient methods that allow to generate OPDs for many
different fugacities from a single simulation are discussed in chapter 4.

As shown in figure 3.1, order parameter distributions for fugacities above the critical
fugacity zB,cr ≈ 1.718 look qualitatively different from those at zB < zB,cr. For zB > zB,cr,
the OPD features two distinct peaks: The system is either in a state of low density or
a state of high density but not likely in a state of intermediate density. This situation
appears to be the finite-size equivalent of a phase equilibrium that would occur in the
thermodynamic limit, where liquid and gas (both with a well-defined density) are an
equally likely state of the system. To reflect this, the low and high density states are
referred to as pseudophases, which shall refer to anything that “looks like” it is the
finite-size equivalent of a phase that exists in the thermodynamic limita. Consequently,
the single peak seen for zB < zB,cr is attributed to the supercritical pseudophase. When
zB is increased, at the critical point the peak of the supercritical pseudophase broadens,
develops to a structure of two overlapping peaks at the critical critical point (as shown in
figure 3.1a), and finally results into the two non-overlapping peaks of two pseudophases
at phase equilibrium. With the exception of the critical fugacity, the peaks seen in the
OPD become sharper and (in case of the bimodal distribution at zB > zB,cr) increasingly
disconnected when the system size is increased. This indicates that in the thermodynamic
limit the three pseudophases indeed become proper phases with well-defined densities
(i.e. δ peaks in the OPD).

3.1.1 Order Parameter and Analogy to the Ising Model

The behavior of the order parameter distribution above and below the critical temperature
and as a function of the system size motivates the definition of the following order
parameter to distinguish the supercritical fluid state from the liquid-gas equilibrium:

〈|m|〉, where m := ρA − 〈ρA〉. (3.3)

Depending on zB, 〈ρA〉 is either the average density of the supercritical peak (for zB < zB,cr)
or an average density of the gas and liquid pseudophases (for zB > zB,cr). Since the peaks
become sharp for L→∞ (except at the critical point) the ensemble average of |m| either
converges to zero (for the supercritical phase), or to a measure of the density difference
of liquid and gas phase.

aI would like to point out that the term “pseudophase” is not a term used in literature, where the term

“phase” is commonly used for the small systems of computer simulations, too. The reason I introduced

a new term is that extrapolation to large systems can also reveal that in the thermodynamic limit the

respective phase does not exist (see chapter 8).
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Figure 3.1: Order parameter distributions for different system sizes L for a fugacity below, at,
and above the critical fugacity zB,cr (figures a, b, and c, respectively). Below the critical fugacity,
the OPD is a single peak that, upon increasing the system size, becomes Gaussian and sharp.
Above the critical fugacity (figure c), it features a peak at low and at high density, which represent
the gas and the liquid pseudophase, respectively. As the system size is increased, the two peaks
become sharp and the in-between minimum approaches zero. Figure (b) shows that at the critical
point the OPD assumes the shape of two overlapping peaks that only weakly depends on the
system size.
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α β γ ν

2D Ising 0 1/8 7/4 1
3D Ising 0.109(4) 0.3258(14) 1.2396(13) 0.6304(13)

Table 3.1: Critical exponents for the two- and three-dimensional Ising model. The exponents
for d = 2 are exact, owing to an exact partition function of the Ising model in two dimensions59,
the d = 3 values are estimated from renormalization group calculations60;61.

The order parameter 〈|m|〉 is constructed as a direct equivalent of the magnitude of
magnetization in Ising models, where the two ferromagnetic phases (spins up and spins
down) are loosely identified with the liquid and the gas phase. As the equivalents of the
reduced temperature t and the external magnetic field h of the Ising model the parameters

t :=
zB,cr − zB

zB,cr
, (3.4)

h := µA − µA,cr, (3.5)

are defined, where µA,cr is the value of µA at the critical point. The expression for t
follows from the interpretation of zB as an inverse temperature, the interpretation of
µA as an external field is suggested by the interpretation of ρA being related to the
magnetization.

3.1.2 Indicators for the Critical Point

Having defined an order parameter suggests that the location of the critical point can be
found by locating the B fugacity where 〈|m|〉 changes from being zero to being distinctively
non-zero. But as shown in figure 3.2(a), 〈|m|〉 is non-zero even far below the critical point.
Also, the order parameter strongly depends on the system size. Inspired by the Ising
model, generalized susceptibilities are being used to locate the critical point, instead.

For Ising models close to the critical point the derivatives of the singular part of the free
energy density with respect to the external field h scale as

∂nf(t, h)
∂hn

= |t|β+(1−n)(β+γ) · const, (3.6)

where β and γ are the usual critical exponents for the order parameter 〈|m|〉 and sus-
ceptibility χ(2), respectively1. Since for n ≥ 2 this implies a divergence at the critical
point (cf. the critical exponents of the Ising model in table 3.1), the following analogous
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Figure 3.2: Running of different observables with inverse temperature zB for 2D square WR
systems of edge length L. Figure (a) shows the behavior of the order parameter defined in (3.3).
Owing to the finite size of the systems, it is distinctively non-zero even for zB < zB,cr, and does
not indicate the critical fugacity very well. Figures (b), (c), and (d) show the functionals χ2, χ3,
and χ4 (equations 3.10-3.12), which show clearly identifiable extrema in the vicinity of the critical
point. With increasing system size, these extrema become more pronounced and approach the
critical point. By using finite-size scaling (section 3.2), this behavior can be exploited to find the
critical fugacity of the thermodynamic system.
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observables should diverge in the Widom-Rowlinson model:

χ(2) =
1
V

∂2 logZ
∂h2

∣∣∣∣
t

(3.4,3.5)
=

1
V

∂2 logZ
∂µ2

A

∣∣∣∣
zB

(A.8)
=

1
V
〈(NA − 〈NA〉)2〉 (3.7)

χ(3) =
1
V

∂3 logZ
∂µ3

A

∣∣∣∣
zB

(A.9)
=

1
V
〈(NA − 〈NA〉)3〉 (3.8)

χ(4) =
1
V

∂4 logZ
∂µ4

A

∣∣∣∣
zB

(A.10)
=

1
V
〈(NA − 〈NA〉)4〉 − 1

V
〈(NA − 〈NA〉)2〉2 (3.9)

3.1.3 Coexistence-stable Estimators

There is one problem with these generalized susceptibilities: they cannot be obtained
from the order parameter distributions by the direct application of the equations (3.7-
3.9). The reason is that the expressions (3.7-3.9) assume the existence of only a single
phase, whereas order parameter distributions simultaneously contain a liquid and gas
pseudophase. Particularly at the critical point, the OPD already features two overlapping
peaks (cf. figure 3.6a). For bimodal order parameter distributions, the problem is resolved
by considering the following functionals over the OPD, instead:

χ2 := V 〈(|m| − 〈|m|〉)2〉 (3.10)

χ3 := V 2〈(|m| − 〈|m|〉)3〉 (3.11)

χ4 := V 3
[
〈(|m| − 〈|m|〉)4〉 − 〈(|m| − 〈|m|〉)2〉2

]
(3.12)

These functionals are the direct equivalents of those defined in (3.7-3.9), where the density
ρA has been replaced with the magnitude of the deviation from the average density
between both pseudophases. The meaning of this substitution is best understood visually:
It is equivalent to mirroring the gas peak on 〈ρA〉, adding it to the liquid peak, and
applying the calculation rules (3.7-3.9) on this averaged peak. Since the generalized
susceptibilities of both phases diverge with the same critical exponent, the averaged peak
also diverges with this exponent. The functionals in (3.10-3.12) should therefore provide
proper estimators of the critical point in the sense that they diverge at the critical point
(except for finite-size effects that are discussed in the next section), and do so with the
same exponents as the physical observables χ(2), χ(3), and χ(4) would.

Using the functionals defined in (3.10-3.12) to locate the critical point solves the problem
of simultaneous appearance of pseudophases in the OPD. But this raises the question
how appropriate these measures are in the supercritical region where only one phase is
present. If one assumes that the OPD in the supercritical region has a Gaussian shape
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(which it assumes for sufficiently large systems), then by direct calculation one can verify
the relations

χ2 =
(

1
2
− 1
π

)
χ(2),

χ3 =
(4− π)
2π3/2

(
χ(2)

)3/2
,

χ4 =
(−12 + 4π + 3π2)

2π2

(
χ(2)

)2
.

Since χ(2) does not diverge in the supercritical region (except when the critical point is
approached), χ2, χ3, and χ4 are finite there, and diverge only at criticality.

In figure 3.2 the behavior of the functionals χ2, χ3 and χ4 is shown as a function of zB

for two-dimensional systems of different size. In all three cases, well-pronounced extrema
in the vicinity of the critical point and a vanishing away from criticality are seen. The
reason that rounded peaks rather than real divergences are seen and that the locations
of the extrema deviate from the critical fugacity is the finite size of the systems. By
using finite-size scaling 19;62 the location and height of the peaks can be quantitatively
understood, and the critical point of the system in the thermodynamic limit (as well as
the critical exponents) can be inferred.

3.2 Finite-size Scaling at conventional Critical Points

The key concept in finite-size scaling around critical points is the correlation length ξ,
which can be considered the length scale over which density fluctuations in the system
are correlated. If ξ is much smaller than the lateral extension L of a system, then the
system is sufficiently large to capture the physics of the model and only small corrections
due to boundary terms are expected23. On the length scale L � ξ, the system looks
homogeneous and is said to be self averaging. If on the other hand L < ξ, then the size
of the simulated system is insufficient to exhibit all the correlations that exist in the
thermodynamic limit. Such a situation necessarily occurs in the proximity of the critical
point, where the correlation length diverges with the positive correlation length exponent
ν as3

ξ ∼ |t|−ν . (3.13)

Because of this divergence, no simulation of a finite size system can ever display the true
behavior of the thermodynamic limit arbitrarily close to the critical point. Rather, the
largest correlation length that can be attained in such a system is of the order of and
proportional to the system’s size, i.e. ξ ∼ L (this statement is called the finite-size scaling
Ansatz ). If |t| in equation 3.13 is interpreted as the proximity to the critical point, then
the finite-size scaling Ansatz can be expressed in the following way: The closest proximity
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Figure 3.3: Magnitudes of the peaks in the functionals χn seen in figure 3.2 for the WR model
in two and three dimensions. As a function of the system size all data are compatible with the
scaling predicted in equation (3.14), as demonstrated by the linear fits on the data points (in
double-logarithmic display). As shown in table 3.2, the slopes of the fits are compatible with the
expectations for the observables χ(i) defined in (3.7-3.9).

χ(2) χ2 χ(3) χ3 χ(4) χ4

2D 1.75 1.75 3.625 3.64 5.5 5.52
3D 1.966(06) 1.99 4.449(16) 4.49 6.932(24) 6.95

Table 3.2: Exponents for the scaling of susceptibility-related observables with system size L for
the WR model. The exponents for the generalized susceptibilities χ(n) have been calculated using
the critical exponents in table 3.1. The exponents for the functionals χn have been inferred from
the slopes in figure 3.3, and match that of the χ(n) (which the χn were constructed to represent)
well.

to criticality |t|min that the system can exhibit is a function of the system size:

|t|min ∼ L−1/ν . (3.14)

This is simply a rewrite of (3.13) with the finite-size scaling Ansatz ξ ∼ L. This maximum
amount of criticality also affects the behavior of other observables in a finite system.
Particularly, an observable Y that diverges with a scaling law O ∼ |t|−w close to the
critical point only reaches a finite size-dependent maximum

|O|max ∼ |t|−wmin

(3.14)∼ Lw/ν . (3.15)

Relation 3.15 not only qualitatively explains the rounded peaks seen for χ2, χ3, and χ4.
By comparing the values of the global extremab for different system sizes it also allows to

bThe functional χ4 also exhibits a third extremum that is local. It has been ignored here because of
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measure the exponents w/ν. As shown in figure 3.3, the extrema indeed scale with the
system size according to a scaling relation like (3.15), and allow to extract values for the
exponents (table 3.2). Generally, this method allows to evaluate critical exponents (up
to the factor 1/ν) from computer simulation results. Here, comparison with the known
critical exponents of the Ising model allows for a non-trivial test that the functionals χn
(for n = 2, 3, 4) indeed are a proper representation of the generalized susceptibilities χ(n)

at criticality.

From equation 3.6 and relation 3.15 the generalized susceptibilities χ(2), χ(3), and χ(4)

are expected to scale with the system size as Lγ/ν , L(2γ+β)/ν , and L(3γ+2β)/ν , respectively.
Using the values for critical exponents of the the Ising universality in table 3.1, these
scaling exponents can be calculated. As shown in table 3.2, the exponents for the χ(n)

are equal to the exponents read off from figure 3.3 for the χn. This demonstrates that
the χn defined in (3.10-3.12) indeed are adequate functionals to represent the behavior of
the generalized susceptibilities χ(n).

3.2.1 Pseudocritical Points

As already seen in figure 3.2 there is also another effect of the system size on the
observables near the critical point. The location of the extrema of χ2, χ3, and χ4 is
not the critical point and depends on the system size. In the thermodynamic limit, the
fugacities of the extrema should of course converge towards the critical fugacity. Hence,
their locations are referred to as pseudocritical fugacities or pseudocritical points. In
analogy to pseudophases, this term indicates a fugacity that has a characteristic that
is the finite-size equivalent of a critical point’s characteristic. Note that even if only
one critical point exists, there can be many different pseudocritical fugacities in a finite
system.

Generally, for an observable O that scales like O ∼ t−w in the thermodynamic limit its
finite-size equivalent scales with the system length scale L as53

O(t) ∼ Lw/νŌ(tL1/ν). (3.16)

The function Ō in this relation is the universal scaling function for the respective
observable, which does not depend on L. Its extrema will generally not lie at tL1/ν = 0
(the extrema of O(t) still converge towards t → 0 as long as L1/ν → ∞). Hence, the
pseudocritical fugacities zL,cr defined as the extrema of χ2, χ3, and χ4 deviate from the
critical fugacity zB,cr by some amount that systematically depends on L. If an extremum

algorithmic problems (distinguishing a local extremum from a random fluctuation in imperfect data) and

because it is not required.
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Figure 3.4: Finite-size extrapolation of pseudocritical fugacities according to (3.17) for the 2D
and 3D Widom-Rowlinson model (left and right plot, respectively). As pseudocritical fugacities,
the global extrema of χ2, χ3, and χ4 (equations 3.10-3.12) have been selected. For the linear fits
according to (3.17) the Ising exponents ν = 1 (2D, exact) and ν = 0.63 (3D, approximate61) are
used. In the thermodynamic limit L−1/ν → 0, all pseudocritical fugacities scale towards a single
value, the critical fugacity zB,cr. The results shown here predict zB,cr = 1.7178(6) for the two
dimensional, and zB,cr = 0.9372(8) for the three dimensional WR model. In the the case shown
here, where different pseudocritical points approach zB,cr from above and from below, this method
for finding the critical point can be used even if ν is not known beforehand - it then becomes a fit
parameter.

of Ō(x) lies at some x = xmax, then

zB,cr − zL,cr

zB,cr
L1/ν = xmax

zB,cr − zL,cr = zB,crxmaxL
−1/ν

zL,cr = zB,cr − const · L−1/ν . (3.17)

If ν is known (at least approximately), then relation 3.17 can be used to find the critical
fugacity from a set of pseudocritical fugacities for different system sizes by plotting zL,cr

over L−1/ν and linearly extrapolating to L−1/ν → 0⇔ L→∞. This is shown in figure
3.4, where the Ising model exponents ν = 1 (2D) and ν ≈ 0.63 (3D) have been used. On
the scale of the plot the individual linear fits converge towards a common point as L→∞,
which is the finite-size corrected estimate for the critical fugacity zB,cr. Conveniently, the
linear fits for different pseudocritical points approach the critical fugacity from above and
from below, which makes the extrapolation very reliable.

From the scatter between the different linear fits in figure 3.4 an estimate for the accuracy
of zB,cr can be inferred, which is two orders of magnitude smaller than the scatter
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between the different pseudocritical points for the largest system that can be simulated.
This increase of accuracy is one of the reasons for the importance of finite-size scaling
in computer simulations. The other two reasons are extracting critical exponents (as
demonstrated) and the possibility to distinguish finite-size equivalents of a phase transition
from behavior that does not constitute a phase transition in the thermodynamic limit
(some examples of this will be shown in chapter 8).

3.2.2 Binder Cumulants

The evaluation of zB,cr via the extrapolation of pseudocritical fugacities in (3.17) requires
to either know the correlation length exponent ν beforehand, or to consider it a free
parameter in the fit of the simulation data. A method that does not require an a-priori
knowledge of ν is the Binder Cumulant Method 23. As shown by relation 3.16, the finite-
size equivalents of observables that exhibit a power law scaling of type ∼ |t|w scale with
the system length scale L as proportional to L−w/ν . However, not all of the critical
exponents are independent. Instead, scaling relations 3 between them exist, such as the
hyperscaling relation

2− α = 2β + γ = dν, (3.18)

where d is the spatial dimension. By making use of the hyperscaling relation, it is possible
to construct a product or ratio of observables that scales with the system size as L0,
i.e. is independent of the system size at the critical point (and hopefully only there). By
finding the fugacity where such an observable becomes independent of the system size,
the critical fugacity can be located.

A possible construction of such a fraction is to consider the ratio of susceptibility χ(2)

and the order parameter ψ:

χ(2)

V ψ2
∼ |t|−γL−d|t|2β (3.15)∼ Lγ/νL−dL2β/ν (3.18)∼ L0, (3.19)

where in the last step the hyperscaling relation has been used. The functionals used
for describing the susceptibility and the order parameter are χ2 and 〈|m|〉, respectively.
Therefore, a functional of the order parameter distribution that is independent of L at
the critical point is given by

U1 :=
χ2

V 〈|m|〉2
+ 1

(3.10)
=
〈(|m| − 〈|m|〉)2〉

〈|m|〉2
+ 1 =

〈|m|2〉 − 〈|m|〉2

〈|m|〉2
+ 1

=
〈|m|2〉
〈|m|〉2

(3.3)
=
〈|ρA − 〈ρA〉|2〉
〈|ρA − 〈ρA〉|〉2

.

(3.20)

The idea to use ratios such as U1 to locate the critical point goes back to Kurt Binder23.
In the literature, they are therefore called Binder cumulants.
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Figure 3.5: Binder cumulants U1 for the two and three dimensional WR model. From the
intersections of the cumulants for different system sizes, the critical fugacities zB,cr = 1.718(2)
(2D) and zB,cr = 0.9374(2) (3D) are found. The uncertainties in the estimates reflect the scatter
between the curves’ intersection points.

As shown in figure 3.5, the U1(zB) indeed depend on the size L of a system everywhere
except at one point, the critical fugacity. Hence, the method of Binder cumulants allows
to evaluate zB,cr without having to know the correlation length exponent ν, which makes
the method convenient to use.

The shape of the U1 curves in figure 3.5 can be understood from assuming idealized OPDs
for phase equilibrium and the supercritical phase. In the thermodynamic limit, the OPD
of liquid-gas equilibrium can be considered to consist of two narrow disconnected Gaussian
peaks, one at liquid and one at gas density. If the width of these Gaussian peaks vanishes
compared to the distance between them, U1 = 1 as is easily seen from the definition in
(3.20). In the supercritical region, the OPD can be considered a single narrow Gaussian.
By explicit calculation one finds that in this case U1 = π/2. “Intermediate” shapes, such
as two overlapping peaks or an OPD consisting of three disconnected Gaussian peaks
have intermediate values 1 < U1 < π/2. Thus, the behavior of the Binder cumulant in
the thermodynamic limit is

lim
L→∞

U1 =


π/2 : zB < zB,cr

const. : zB = zB,cr

1 : zB > zB,cr

, (3.21)

and the smooth transit from U1 ≈ π/2 to U1 ≈ 1 should be considered a finite-size
rounding effect (note that the constant that U1 assumes at zB = zB,cr is not arbitrary,
but must be the same value for all system sizes by virtue of construction of U1). Because
of this feature, U1 can also be used as a measure of supercriticality or phase equilibrium,
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Figure 3.6: Order parameter distributions for an L = 30 square Widom-Rowlinson system at
zB = 1.65, and for different zA (figure a). As zA is increased, the gas pseudophase develops into
a liquid pseudophase via an intermediate structure of two overlapping peaks around the phase
transition at zA = zB. In figure (b), the ensemble-averaged density is shown as a function of zA,
which has its maximum slope at the symmetry line of the phase transition. This motivates the
definition of the locus lMS in (3.22).

where U1 ≈ 1 is interpreted as the equilibrium of two pseudophases, and U1 ≈ π/2 as the
existence of only a single pseudophase (the supercritical one). Note that the independence
of U1 of the system size requires that hyperscaling is valid, but that the value of U1 gives
an impression of the OPD’s shape, regardless. The case where hyperscaling is violated and
methods to locate the critical point and quantify the violation of hyperscaling constitute
a main new result of this thesis (see chapter 7).

3.3 Constructing Loci: How to chose zA

In the pure Widom-Rowlinson model, the symmetry between A and B particles can be
used to reduce the degrees of freedom for the possible location of the critical point and
the phase transition curve to one, it has to lie on the equal fugacity line zA = zB. In the
presence of obstacles (or in other fluid models), such a symmetry may be absent. To
eliminate additional degrees of freedom it has been suggested21;22 to use suitably-defined
loci, which are constraints that define curves zA(zB) such that the curves converge towards
the phase boundary as the system size is increased. Loci do not necessarily need to be
an explicit mathematical expression (like zA = zB, which in fact is a very suitable locus
for the pure WR model), but can also be defined as a condition on the OPD. That is,
one chooses a suitable criterion that the OPD has to fulfill such that a) for each value of
the inverse temperature zB a unique zA is chosen, and b) the so-created curve zA = l(zB)
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converges towards and covers the phase transition curve in the thermodynamic limit21;22.

In figure 3.6(a) order parameter distributions for different zA at the same inverse temper-
ature are shown. When zA is below the phase equilibrium value (which in this case is
zA = zB), a gas peak at low density is seen, that slowly shifts towards higher densities as
zA is increased. At zA ≈ zB, this behavior changes qualitatively, and a second peak, the
liquid peak appears. Upon further increase of zA the liquid peak grows at the expense
of the gas peak until only the liquid peak remains. For even larger zA, the liquid peak
then shifts to higher A densities. The region that the zA should be tuned to is the
region in which the liquid and the gas peak are both present in the OPD. There are
different criteria that achieve this goal: The possibly most natural and most physical
choice is the equal area locus lEA, which is the condition that for a given zB, zA is chosen
such that two peaks with an equal integrated volume exist in the OPD. Physically, this
corresponds to the statement that the system is equally likely to be in the gas or in the
liquid pseudophase, which clearly is a suitable criterion to define the finite-size equivalent
of phase equilibrium.

While lEA is a popular choice in Monte Carlo simulations, it is not very suitable here,
because identifying two peaks fails for the supercritical region and for some of the “exotic”
OPDs that can be encountered in the presence of static obstacles (e.g. those shown in
figure 7.2a). A more stable choice of the locus is the maximum slope locus

lMS :
∂〈ρA〉
∂µA

∣∣∣∣
zB

→ max. (3.22)

This locus is also well motivated by the shapes of the order parameter distribution shown
in figure 3.6. Around the phase transition, the shape of the OPD quickly changes from
the gas to the liquid peak. Consequently, the change on average density 〈ρA〉 associated
with this change of shape is large. This is shown in figure 3.6(b), which also shows that
for the WR model without any obstacles the maximum slope indeed occurs at the phase
equilibrium line zA = zB. For zB so far below zB,cr that only a single supercritical peak
appears in the OPD, the lMS locus still is stable, and selects zA such that the peak has a
maximum width (which in the pure model also occurs at zA = zB).
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Chapter 4

Data Extrapolation

In the previous chapters, the basics of Monte Carlo simulation and the data analysis for
the identification and location of a liquid-gas type phase transition has been discussed.
There is still one concept left that is required to perform a reliable simulation and analysis
in a reasonable amount of CPU time, namely the extrapolation of simulation results
to other thermodynamic parameters. A simulation performed at fugacities zA,zB also
contains information about the system at other, nearby, fugacities z̄A, z̄B (as will be
shown). This means that it is not required to perform a separate simulation for all
fugacities, but that a few simulations, possibly just a single one, already allow to scan a
large range of the parameter space.

4.1 The Histogram Method

Reweighting in zA

The central object being sampled during the Monte Carlo simulation and used in the
analysis is the order parameter distribution (OPD) P (NA), which can be expressed as

P (NA|µA, µB)
(2.8)
=

eµANAZ(NA, µB)
Z(µA, µB)

, (4.1)

where Z and Z are the canonical and grand canonical partition functions of the WR
model that were introduced in chapter 2. Obtaining a probability distribution P (NA)
from a Monte Carlo simulation therefore automatically generates information about
the canonical partition functions. In particular, knowing the OPD fixes the ratios
Z(NA = i, µB)/Z(NA = j, µB) for any i and j, as

Z(i, µB)
Z(j, µB)

(4.1)
=

e−µAiP (i|µA, µB)
e−µAjP (j|µA, µB)

.

Conversely, knowing the canonical partition functions up to a common multiplicative
constant is equivalent to knowing the order parameter distribution for every possible
value of µA. This is, in essence, the idea behind the histogram method 63 (or histogram
reweighting).
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Figure 4.1: Reweighting of simulation data via equation 4.2 (figure a). Raw data are obtained from
a MC simulation sampling states according to the Boltzmann distribution at zA = 1.6, zB = 1.65,
which results in the OPD shown as a solid black curve. A reweighting of this OPD to zA = 1.7
results in the dashed red curve, which is an incorrect result (as shown by comparison with the
dashed blue curve that is the result of a direct simulation at zA = 1.7, zB = 1.65). The cause of
this error is shown in figure (b), where the amount of generated states is plotted over ρA: The
simulation did sample (almost) no states with ρA ≈ 1.5, which are the physically relevant densities
for zA = 1.7, and hence cannot predict the OPD in this region.
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The extrapolation of an order parameter distribution simulated at (µA, µB) to (µ̄A, µB) is
easily calculated by repeated use of (4.1). This leads to the simple reweighting equation

P (NA|µ̄A, µB)
(4.1)
= Z(NA, µB)

eµ̄ANA

Z(µ̄A, µB)
(4.1)
=

P (NA|µA, µB)Z(µA, µB)
eµANA

eµ̄ANA

Z(µ̄A, µB)

= P (NA|µA, µB)e(µ̄A−µA)NA
Z(µA, µB)
Z(µ̄A, µB)︸ ︷︷ ︸

normalization const.

, (4.2)

where the ratio of the grand partition functions that appears is just a constant that is
fixed by the normalization of the probability distributions. In principle, equation 4.2
allows to construct the order parameter distribution for arbitrary values of zA from just
a single simulation. In practice, this does not always work, as shown in figure 4.1(a)
on the example of a simulation at zA = 1.6, zB = 1.65 being reweighted to zA = 1.7
(corresponding to a reweighting from a gas pseudophase to a liquid pseudophase). The
reweighted OPD not only is of bad quality, but it also predicts an incorrect liquid density.

The failure of reweighting is caused by the necessarily finite number of Monte Carlo
steps and the first order phase transition from gas to liquid. Since the sequence of states
in the simulation is generated according to the Boltzmann distribution, the simulation
generates states that almost all have a gas density. Consequently, little or no information
is obtained about the Z(NA, µB) for liquid densities, and an OPD reweighted to the point
where those regions become important will have a very bad statistical accuracy - to the
point of being completely wrong! Since in all analyses, the OPDs of interest are those in
which the liquid and the gas pseudophase coexist, the Monte Carlo simulation introduced
in section 2.2.2.1 must be modified such that good statistical accuracy is obtained over all
potentially relevant ρA. Ideally, this means to define a density interval [0; ρA,max]a, and
have the simulation return an OPD with equally good statistics over the whole interval.

4.2 Uniform Sampling

A homogeneous sampling that still allows to extract the OPD from the generated
Monte Carlo sequence can be achieved by sampling according to a modified Boltzmann
distribution (cf. equation 2.9)

p(γ) ∼ X(γ)
NA!NB!

zNA
A zNB

B ew(NA) (4.3)

aA suitable upper limit ρA,max is given by the fact that the liquid densities can never exceed the

densities of an ideal gas of A particles at the same zA.
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with properly chosen sampling weights w(NA)64. If C(NA|zA, zB) is the number of times
that such a simulation sampled a state with NA particles of species A, then the order
parameter constructed from this simulation is

P (NA|zA, zB) = C(NA|zA, zB)e−w(NA) · const. (4.4)

Adapting the single particle insertions and removals introduced in section 2.2.2 to such a
weighted simulation is simple, and only the accept probabilities for the insertion or the
removal of an A particle have to be modified. The full set of accept probabilities becomes

Pacc(NA → NA + 1) = min
[
zAV

NA + 1
ew(NA+1)−w(NA), 1

]
, (4.5)

Pacc(NB → NB + 1) = min
[
zBV

NB + 1
, 1
]
, (4.6)

Pacc(NA → NA − 1) = min
[
NA

zAV
ew(NA−1)−w(NA), 1

]
, (4.7)

Pacc(NB → NB − 1) = min
[
NB

zBV
, 1
]
, (4.8)

where the extra terms caused by the sampling weights are indicated in gray. Particle
numbers again refer to the initial state of the MC step.

From equation 4.4 it is apparent that the sampling becomes uniform over NA when the
weights are chosen such that

w(NA) = − logP (NA|zA, zB) + const. (4.9)

Unfortunately, (4.9) does not state how the sampling weights should be chosen, since
the sought-for order parameter distribution appears on the right-hand side. Rather, the
equation says that knowing a good set of weights is equivalent to knowing the order
parameter distribution. The following discussion focuses on how to find a set of optimum
weights, since this is the easier language to formulate the sampling strategies in.

4.2.1 Wang-Landau Sampling

The probably most widely used sampling strategy in current simulations are variants of
Wang-Landau sampling 65 (WL sampling). The original version described in the following
takes an arbitrary starting choice of weights (in this case w(NA) = 0 for all NA) and
modifies it during the simulation to return an improved guess. This is repeated until
some convergence criterion is met.

The process of improving the weight guesses is split into different iterations which perform
successively finer modifications on the weights. During an iteration, the normal Monte
Carlo moves with the current weights are performed. But after each step the weight for



i
i

“thesisA4” — 2012/2/20 — 18:55 — page 37 — #22 i
i

i
i

i
i

4.2. UNIFORM SAMPLING 37

the current state is reduced by a constant amount 0 < δ ≤ 165, i.e. w(NA)→ w(NA)− δ.
This reflects the idea that the current density was just found to be a bit more probable
than expected previously, and that therefore less weight is needed for this state. The
sampling is continued until all possible values for NA have been visited sufficiently often.
A simple criterion for this is keeping track of the visited NA values in form of a histogram
h(NA) and demanding that this histogram has become “flat” by some criterion. Here,
the criterion being used is that the bin with the least counts should have at least 80%
the counts of the bin with the most counts.

A full Wang-Landau simulation consists of several iterations, perhaps 10 to 30 of them.
Initial iterations are performed with larger δ to quickly determine the crude shape of
the best-weight curve. In subsequent runs δ is then lowered after each iteration. Later
iterations therefore allow finer resolutions of the weight differences (note that the difference
in weights after e.g. the first iteration can only be multiples of δ, whereas the real weight
differences are not quantized).

While the most simple version of Wang-Landau sampling is easy to implement and
works for many systems, there are two problems associated with it: First, due to the
constant adjustment of the weights, detailed balance is violated at each step. This
problem is usually considered irrelevant in practice, since especially in later iterations,
the modification term δ, and thus the violation of detailed balance, becomes small65. The
other problem is that because of the decrease δ → 0 states generated in later iterations of
the sampling contribute very little to the overall result. In fact, the naive implementation
has been shown to reach a saturation point beyond which further iterations do not reduce
the statistical error any more66. This problem can be circumvented by using standard
WL sampling as a guide for the random walk in phase space, but use different methods
(than equation 4.9) to construct the OPD66;67;68. In this work, Wang-Landau sampling
is only used in tests of the quality of a random walk in phase space (chapter 5), for which
its basic version suffices. For obtaining physical results, a different uniform sampling
strategy has been employed.

4.2.2 Successive Umbrella Sampling

Another way to achieve a roughly uniform sampling over ρA is to employ umbrella
sampling techniques69: Instead of sampling over the whole range of A densities, only
small and overlapping sub-intervals are sampled. The full order parameter distribution
can then be constructed by “gluing” together the individual results in their overlapping
regions. A simulation can be restricted to a subinterval by either the choice of appropriate
sampling weights or by simply rejecting all MC moves that would leave the subinterval
(which is the method used in the following).

It is convenient to chose the intervals such that their size is minimal and to sample
the intervals in their logical order. This is a special flavor of umbrella sampling, called
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successive umbrella sampling (SUS)70. For the WR mixture this means choosing intervals
In : NA ∈ {n;n+1} and sampling them in the order I0, I1, . . . . This consecutive sampling
order has the advantage that the final state after simulation of interval In already is close
to an equilibrated state for the next interval In+1. Instead of having to worry about
equilibrating a proper initial state for In+1 from scratch one can therefore take the final
state of the previous interval, and merely perform a few “relaxation steps”70. In what
follows, the additive degree of freedom in the weights in (4.9) has been fixed by the choice
w(0) = 0.

Simulating the Subintervals

At the time that the interval In is being simulated, predictions of the optimum weights
w(1), w(2), . . . , w(n) are already determined by simulation of the previous intervals, but
w(n+ 1) is not. For simulating In some choice for w(n+ 1) has to be made and used
during the sampling. This sampling weight that is used for the accept rates of the Monte
Carlo moves (equations 4.5 to 4.8) shall be referred to as w̃(n+ 1), to distinguish it from
the sampling result w(n+ 1) that is used to construct the OPD. The optimum efficiency
for the simulation is obtained when w̃(n+ 1) is chosen such that the simulation samples
an equal amount of states with NA = n and NA = n + 1, but this value is again not
known prior to the simulation. Good results are achieved by linear extrapolation of the
previous weights (the choice of w̃(1) is discussed below).

The simulation of In is performed with the normal (biased) Monte Carlo steps, but with
the additional rule that proposed states that do not lie inside the interval are always
rejected. Two counters C+

n and C−n keep track of how often the system ended up in a
state in the upper (NA = n+ 1) and the lower bin (NA = n) of the interval, respectively.
The counters are updated after every attempted Monte Carlo step, irrespective of whether
the proposed step was accepted or not70;71. When both counters exceed a certain number,
the simulation of In is terminated. The optimum weight w(n+ 1) is then chosen as the
sampling weight that would have made both counters equal:

w(n+ 1) = w̃(n+ 1)− log
C+
i

C−i
(4.10)

By sampling all of the intervals I0, I1, . . . , and with the boundary condition w(0) = 0,
all “optimum weights” w(0), w(1), . . . are determined, from which the order parameter
distribution can be constructed via use of equation (4.9):

P (NA|zA, zB)
(4.9)
= const. · ew(NA) (4.11)
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Optimizing the first Interval

The only interval that does not benefit from the simulation of previous intervals is the
first, I0. But in case of the Widom-Rowlinson model, an equilibrated starting state and
the optimum sampling weight w(1) can be explicitly constructed. The generation of an
equilibrated state is straightforward, since in the interval I0 there is at most one A particle
in the system. If there is no A particle in the system at all, then the B particles form an
ideal gas. This means that NB is a random variable from a Poissonian distribution with
mean zBV , and that the locations of the B particles are completely uncorrelated. Thus,
by drawing a random NB from this Poissonian and adding this amount of B particles into
the system at random locations, an equilibrated state for the ensemble with NA = 0 is
created. By performing a few thousand MC steps in window I0 before starting to count
C+

0 and C−0 an equilibrated initial state is generated.

The optimum weight w(1), and therefore the optimum choice for w̃(1), can be calculated
explicitly: For NA = 0, the B particles form an ideal gas in the system volume. The
microcanonical partition function is

Ω(V, 0, NB) =
1

NB! 0!

∫
V

ddNBx 1 =
V NB

NB!
. (4.12)

If NA = 1, the B particles are an ideal gas is the remaining volume V − VX , where VX
is the volume that the A particle excludes for the B particles (which is the volume of a
d-dimensional unit sphere). The partition function is

Ω(V, 1, NB) =
1

NB! 1!

∫
V−VX

ddNBy︸ ︷︷ ︸
B particles

∫
V

ddx 1︸ ︷︷ ︸
A particle

=
V (V − VX)NB

NB!
. (4.13)

It follows that the ideal choice for w̃(1) is

w(1)− w(0)︸︷︷︸
=0

= logPL(NA = 1)− logPL(NA = 0)

(4.1)
= log

eµAZ(1, µB)
Z(0, µB)

= log

∑∞
NB=0 z

1
Az

NB
B Ω(V, 1, NB)∑∞

NB=0 z
0
Az

NB
B Ω(V, 0, NB)

(4.12,4.13)
= log

zA
∑∞

NB=0 z
NB
B

V (V−VX)NB

NB!∑∞
NB=0 z

NB
B

V NB

NB!

w(1) = log
zAV e

zB(V−VX)

ezBV
= −zBVX + log [zAV ] .

(4.14)
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The solution in equation 4.14 only applies to the first sampling interval, and only in the
case that no static obstacles are present in the system. In the presence of a low amount of
static obstacles (which is the case that is discussed here) the exact solution for the pure
model may still be an adequate choice for the sampling weight in I0. In fact, compared
to the default choice w̃(1) = 0 choosing w̃(1) according to (4.14) typically reduces the
deviations between the counters C+

0 and C−0 from a factor on the order of one hundred
to a factor of three or fourb.

4.3 Temperature Reweighting

So far, only the reweighting of simulation results in the chemical potential of the A particles
has been discussed. Histogram reweighting straightforwardly extends to extrapolation
in µA and µB by sampling a two dimensional histogram PL(ρA, ρB|zA, zB). But for the
uniform sampling strategies just discussed, this greatly increases the computational effort.
In SUS, the typical number of sub-intervals being sampled would increase from the order
103 to the order of 106. Also, effective ergodicity breaking (see section 2.2.1) may become
a real problem when NA and NB are both constrained to small subintervals. In WL
sampling, the number of MC steps required for a uniform sampling scales with the square
of the number of weights (for a random walk) or worse (in the presence of hidden barriers
such as the shape transition barrier discussed in chapter 5). Increasing the number of
weights by a factor of 103 hence results in an increase in CPU time by a factor of 106, at
least.

It turns out that a uniform sampling over the two dimensional OPD is not required.
It suffices to use uniform sampling over ρA as described previously, and only to collect
additional information about NB. To enable reweighting in zB, histograms hNA

(NB|µB)
are being sampled, which count the number of states with NA A particles and NB

B particles that were sampled in a simulation with a chemical potential µB for the B
particles. These histograms are to be understood as mutually independent one dimensional
histograms in NB. They are not being directly compared to each other, and so µA is
irrelevant to them. These one dimensional histograms contain information about the
microcanonical partition function, particularly

hNA
(NB|µB) ≈ const(NA) · Ω(NA, NB)eµBNB , (4.15)

where the explicit NA-dependence of the normalization constant is meant as a remainder
that the normalization constants between the histograms for different numbers of A
particles usually differ.

bNote that this factor increases the CPU time required but does not increase the statistical accuracy

of w(1), since that is dominated by the statistical accuracy of the counter with fewer entries.
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Relation 4.15 can be directly used to determine the change of the canonical partition
functions (equation 2.7) under a change of the B fugacity, which is

fNA
(µ̄B|µB) :=

Z(NA, µ̄B)
Z(NA, µB)

(2.7)
=

∑
NB

eµ̄BNBΩ(NA, NB)∑
NB

eµBNBΩ(NA, NB)
(4.16)

(4.15)
=

∑∞
NB=0 hNA

(NB|µB)e(µ̄B−µB)NB∑∞
NB=0 hNA

(NB|µB)
. (4.17)

Using the so-defined reweighting factors fNA
(µ̄B|µB), the order parameter distribution

can be extrapolated in both fugacities:

P (NA|µ̄A, µ̄B)
(4.1)
= Z(NA, µ̄B)

eµ̄ANA

Z(µ̄A, µ̄B)
(4.18)

=
Z(NA, µ̄B)
Z(NA, µB)︸ ︷︷ ︸

(4.16)
= fNA

(µ̄B|µB)

Z(NA, µB)
e(µ̄A−µA)NAeµANA

Z(µ̄A, µ̄B)
(4.19)

(4.1)
= fNA

(µ̄B|µB)e(µ̄A−µA)NAP (NA|µA, µB)
Z(µA, µB)
Z(µ̄A, µ̄B)

(4.20)

As demonstrated by the curve labeled “full” in figure 4.2, performing uniform sampling
over NA, collecting the histograms hNA

, and using (4.17) and (4.20) to reweight in both
fugacities allows extrapolation over reasonable rangesc. From a single simulation at
zA = zB = 1.72, the U1 cumulant on the locus lMS (which is of course to be understood
as only an example of an extrapolated observable) is very well approximated over the
range zB ≈ [1.5; 2.1]. The extrapolated data do, however, fail for zB < 1.5, as clearly seen
by the unexpected behavior. While such a failure of reweighting is easily identified by
visual inspection of the curve, it becomes a problem when thousands of simulations need
to be analyzed automatically. Therefore, a method to approximate fNA

has been used
that is more stable, and also reduces the need for disk space and CPU time.

4.3.1 Reweighting from Reduced Histograms

To reduce disk space it has been suggested to approximate the hNA
as a Gaussian

distribution that has the same average and variance as hNA
26. Since the reweighting of a

Gaussian probability distribution can be performed analytically this reduces data storage
for each histogram hNA

to only two numbers, and also speeds up the evaluation of fNA
.

cReweight quality will of course depend on the system, the simulation fugacities, and the number of

MC steps used. The results shown in figure 4.2 are to be understood as typical results for the pure WR

model in two dimensions.
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Figure 4.2: Quality of the histogram reweighting in zB (equation 4.20) for a 2D L = 20 WR
model on the example of the U1 cumulant (all three images show U1−1 as a function of zB, figures
b and c are merely zooms into figure a). Different curves show results from the same successive
umbrella sampling simulation performed at zB = 1.72, but extrapolated with different methods;
the locus lMS has been used in all cases. Black crosses are results from additional simulations
that have not been reweighted. The curve labeled “full” corresponds to using full histograms hNA

(equation 4.16). It yields the most accurate results, but at the cost of most CPU time, disk space,
and a sudden failure of reweighting around zB = 1.5. The curves O(n) are calculated using the
Taylor expanded approximations up to n’th order (see section 4.3.1). With increasing order they
become more accurate but also more likely to break down, as seen in the fourth order at zB ≈ 1.4.
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The Gaussian approximation works remarkably well and has been successfully employed
before24;26. It turns out, however, that the assumption of a Gaussian is not required, and
that the same result can be obtained by a Taylor expansion of log fNA

:

log fNA
(µ̄B|µB) = log fNA

(µB|µB)︸ ︷︷ ︸
=0

+
∞∑
n=1

(µ̄B − µB)n

n!
∂n log fNA

(µ̄B|µB)
∂µ̄nB

∣∣∣∣
µ̄B=µB

=
∞∑
n=1

(µ̄B − µB)n

n!
∂n logZ(NA, µ̄B)

∂µ̄nB

∣∣∣∣
µ̄B=µB

(4.21)

The derivatives of a partition function’s logarithm can be expressed via the first moments
of the corresponding probability distribution (see appendix A). In this case the probability
distribution is the normalized histogram hNA

(NB|µB), and so for performing an expansion
up to n’th order requires only the first n moments of hNA

. For example, the expansion to
second order is

log fNA
(µ̄B|µB) =

∂ logZ(NA, µ̄B)
∂µ̄B

∣∣∣∣
µ̄B=µB︸ ︷︷ ︸

(A.7)
= 〈NB〉

(µ̄B − µB)

+
∂ logZ(NA, µ̄B)

∂µ̄B

∣∣∣∣
µ̄B=µB︸ ︷︷ ︸

(A.8)
= 〈NB

2〉−〈NB〉2

(µ̄B − µB)2

2

⇒ fNA
(µ̄B|µB) = exp

[
〈NB〉(µ̄B − µB) +

(
〈NB

2〉 − 〈NB〉2
) (µ̄B − µB)2

2

]
.

(4.22)

This is precisely the result one would obtain from assuming that the hNA
have Gaussian

shaped. Hence, the Gaussian approximation is not required, and should be replaced with
the more general Taylor expansion of log fNA

, which also straightforwardly extends to
the reweighting in multiple parameters.

The results of reweighting according to an expansion up to fourth order are shown in
figure 4.2, labeled O(1), . . . O(4). As seen, already low orders of expansion approximate
the cumulant curve well, and are stable over a larger range. The slightly worse accuracy
of the extrapolated data is unproblematic, as very high precision is only required in a
small fugacity range (usually around zB,cr). This can be achieved by simply simulating in
this region after having identified it with extrapolated trial simulations. Tests on a Taylor
expansion of fNA

(rather than log fNA
), which may appear to be an alternative method,

have shown an extremely bad convergence behavior: A second order expansion of log fNA

has been found to be more accurate than an expansion of fNA
up to twentieth order.

dIt is a property of Gaussian distributions that higher order derivatives in the expansion vanish72.
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4.3.2 Multiple Histogram Methods

In the pure model, the zB-range that data from a single simulation can be extrapolated
to is sufficiently large to capture the interesting region (as demonstrated in figure 4.2). In
some cases, however, the use of multiple simulation points can be required to estimate an
observable over a large range of fugacities. The combination of many simulations in the
optimal way is known as the multiple histogram method 53;73 or weighted histogram analysis
method 74. For the work presented heree these methods are not directly applicable, as only
the first few moments of the hNA

and not the complete histograms are being stored. Thus,
a method in the spirit of finding the best combined estimate from all simulations has
been developed that is compatible with the Taylor expansion introduced in section 4.3.1.

As knowing the order parameter distribution is equivalent to knowing a set of best weights
wn (equation 4.9), knowing the OPD is also equivalent to knowing all weight differences
∆n := wn+1 − wn. A set of i = 1, 2, . . . ,M independent successive umbrella sampling
simulations each performed at different fugacities provides M estimates ∆(i)

n for this value.
These are

∆(i)
n := w

(i)
n+1 − w

(i)
n + (µA − µ(i)

A ) + log f (i)
n+1(µB|µ(i)

B )− log f (i)
n (µB|µ(i)

B ),

(4.23)

where the upper indices (i) indicate that the respective values are obtained from simulation
i at chemical potentials µ(i)

A and µ
(i)
B . If to each of these values a statistical variance v(i)

n

can be associated, then the best combined estimates for the weight differences become a
weighted average:

∆n =
1∑

1/v(i)
n

∑ ∆(i)
n

v
(i)
n

. (4.24)

The problem of finding a proper analogue of multiple histogram reweighting is therefore
related to the problem of finding proper estimates for the variances v(i)

n .

Deriving this variance from first principles is far from trivial because of correlations
between the MC moves used to sample the SUS subintervals, and because of remanence
effects such as the shape transitions discussed in chapter 5. Thus, the v(i)

n have been
approximated as the sum of the variance of the original difference in the weights and a
variance associated to the reweighting in zB (there is no statistical error associated to the
reweighting in zA). The statistical variance of the weight difference at the original fugacity
is only due to uncertainties in the counters C(i)+

n and C
(i)−
n (defined in section 4.2.2)

which are assumed as independent Poissonian variables. In this case, the variance can be

eI used the multiple histogram method in the form described in the book of Barkema53 for an analysis

of the 2D Zwanzig model that is mentioned in section 2.1.4 but not discussed in detail49.
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approximated as

var
[
w

(i)
n+1 − w

(i)
n

]
= var

[
logC(i)+

n − logC(i)−
n

]
(4.25)

=
1

C
(i)+
n

+
1

C
(i)−
n

. (4.26)

Assuming both counters to be uncorrelated Poissonian variables obviously underestimates
the error estimate. But as long as the variances for all simulations are underestimated
similarly, this can still result in an acceptable best estimate.

In a second order Taylor expansion of fNA
(equation 4.22) the terms contributing to

the statistical variance of the reweighting contribution are the average particle number
〈NB〉 and the variance 〈(NB − 〈NB〉)2〉 of the histogram hNA

that has been sampled. To
estimate a variance for the reweighting contribution, these two terms are assumed to
be independent random variables. Furthermore, all the entries in the histograms are
assumed to be independent random Poissonian variables (with the same reasoning as in
case of the counters of the SUS subinterval). Consider such a histogram that has been
sampled with C entries in total. The variance of the average of some function g(NB) is

var [〈g〉] = var

∑
NB

g(NB)
hNA

(NB)
C

 =
∑
NB

var
[
g(NB)

hNA
(NB)
C

]

=
∑
NB

g(NB)2

C2
var [hNA

(NB)]︸ ︷︷ ︸
=hNA

(NB)

=
1
N

∑
NB

g(NB)2hNA
(NB)
C

=
1
N
〈g2〉. (4.27)

The variances of the reweighting contributions in equation 4.23 are therefore approximated
as

var [log fNA
(µ̄A|µ̄)]

(4.22)
= var [〈NB〉] (µ̄B − µB)2 + var

[
〈(NB − 〈NB〉)2〉

] (µ̄B − µB)4

4
(4.27)

=
1
C

[
〈NB

2〉(µ̄B − µB)2 + 〈(NB − 〈NB〉)4〉(µ̄B − µB)4

4

]
, (4.28)

where averages 〈·〉 refer to averages over hNA
. The index for the simulation number has

been dropped for better readability. The term 〈(NB − 〈NB〉)4〉 can be evaluated in terms
of the first four moments of hNA

, so it does not require full histograms, but can also be
evaluated by knowing only its first moments.

Using equations (4.28) and (4.26) the variance ∆(i)
n in (4.23) and therefore the best

estimate for the local weight difference for a set of best weights in (4.24) can be estimated.
The construction of the best estimate order parameter distribution is then straightforward
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Figure 4.3: Cumulant values U1 obtained from the multiple histogram method introduced
in the text. The black curve is the best combined estimate from simulations performed at
zB = 1.45, 1.65, 1.85, 2.05, 2.25, and agrees well with the red crosses, which are results from direct
non-reweighted simulations at the respective fugacities.

(cf. equation 4.9). A result of using this multiple histogram method is shown in figure 4.3,
which demonstrates that despite the very dubious assumption of independent Poissonian
entries in the histograms good accuracy and stability over a large range is achieved.

4.4 Summary

In this section, the histogram method has been introduced, which is required for the
analysis of Widom-Rowlinson models by means of Monte Carlo simulations. It has been
demonstrated that for a reliable histogram reweighting the computer simulation should
not sample states according to the Boltzmann distribution. Instead, the simulation
must be modified such that an approximately equal statistical accuracy over an interval
ρA ∈ [0, ρA,max] is achieved. Two commonly-used method that achieve this, Wang-Landau
sampling and successive umbrella sampling, have been described.

An approximation for the reweighting in zB via Taylor expansions has been introduced
that, in contrast to normal histogram reweighting, does not require to store and evaluate
full histograms, but only requires their first few moments. This method reduces the
amount of disk space and CPU time required by approximately a factor of 25f and
straightforwardly extends to higher-dimensional histograms. An improved stability of
this method for reweighting over large distances (at the expense of some accuracy for
reweighting over intermediate distances) has been demonstrated. Because of this property

fMeasured on the calculation of the U1 cumulant for a 2D pure WR model of size 20× 20 and a Taylor

expansion to 4th order.
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and the high level of automatization required in analyses of the Widom-Rowlinson model
in the presence of quenched disorder, the reweighting via Taylor expansion (to second
order) has been chosen as the default method for reweighting in zB. Finally, a multiple
histogram method based on this approximation has been developed. This multiple
histogram method further extends the extrapolation range, which is required for the
simulation of the two dimensional Widom-Rowlinson mixture in the presence of random
obstacles with an unequal interaction to the A and B particles (chapter 8).
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Chapter 5

Phase Coexistence and Sampling

Barriers

5.1 Phase Coexistence

Above the critical fugacity a WR fluid can exist in two thermodynamic stable states,
the low density gas and the high density liquid phase. But since the uniform sampling
strategies introduced in the previous chapter also yield information about the region
between the liquid and the gas peak in the order parameter distribution the state of
the system at these intermediate densities is also of interest — and can in fact provide
valuable information. At these intermediate densities, the system is not in a uniform state,
but a state in which the liquid and the gas phasea exist simultaneously, both occupying
a part of the total system volume and separated by an interface. The phase occupying
less volume is the minority phase; its volume shall be denoted by VM. Depending on the
system’s dimension, its shape, and the ratio of the minority volume to the total volume
VM/V , the arrangement of the two phases can assume different shapes.

In two-dimensional systems simulated on squares with periodic boundary conditions
(topologically such systems are tori) the two possible arrangements for the phases are the
ones shown in figure 5.1: a minority phase droplet (left image) and a slab geometry (right
image), in which both phases arrange in system-spanning slabs parallel to the shortest
system sides. The possible configurations in a three dimensional system are shown in 5.2.
They are the droplet and the slab geometry known from the two-dimensional system, and
an additional stalk geometry that has the form of a cylinder spanning the system parallel
to its shortest axis75.

The appearance of these shapes can be understood as stemming from an interface
contribution to the free energy (note that the dominating bulk contributions are already
fixed by zA, zB and VM but do not determine the shapes). This contribution equals the

aIn the previous chapters, the term “pseudophase” has been used to emphasize that the states seen

in a simulation are finite-size states and only become proper phases in the thermodynamic sense in the

thermodynamic limit. Since in the pure WR model it is established that proper phases develop in the

thermodynamic limit, this distinction will be dropped in this chapter for readability.
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Figure 5.1: The two possible shapes that the minority phase can assume in a two-dimensional
system are the droplet shape shown in the left and the slab shape shown in the right image.

Figure 5.2: Simulation snapshots of the possible distinct shapes that the minority phase can
assume in a 3D WR mixture at phase coexistence. With increasing volume of the minority phase
these are, from left to right, a spherical droplet, a cylinder spanning the system (the stalk), and a
cuboid spanning the system in two dimensions parallel to the boundaries (the slab geometry).

Figure 5.3: Interface sizes of the different possible minority phase shapes for cubic systems with
side-length L and periodic boundary conditions in two (left plot) and three dimensions (right plot).
The functions for the amount of interface assume perfect geometrical shapes (sphere, cylinder,
axes-parallel cuboid). In both cases the favored shape is a function of the minority phase volume
VM.
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Figure 5.4: From OPDs, a free energy barrier ∆F associated to the formation of an interface
between coexisting phases can be extracted. Figure (a) shows OPDs for the 2D WR system
at zB > zB,cr for different system sizes. ∆F is defined as the difference between the average
logarithms of the peaks and the logarithm of the in-between minimum. In this case, the flat region
between the peaks indicates a slab geometry, which allows to extract the interface tension σ via
equation 5.2. The interface tension vanishes at the critical point. As shown in figure (b), the
measurement and interpolation of interface tensions can be used to estimate the critical fugacity
(marked by the red dot).

amount of interfaceb between the coexisting phases times the interface tension γ 77. To
minimize the free energy, the phases arrange such that the interface between them is
minimized which, depending on VM, can result in either of the shapes shown in figure
5.1 and 5.2. The amount of interface I caused by the different shapes as a function of
the minority phase volume is shown in figure 5.3. As clearly seen, different coexistence
shapes are assumed for different minority phase volumes.

5.1.1 The Slab Geometry: Extracting the Interface Tension

Of particular interest is the slab geometry, which in two and three dimensional systems
always is assumed for VM/V ≈ 0.5. If the system is sufficiently large, the two interfaces in
the slab geometry do not interact with each other, and the free energy of such a system
equals that of either of the two coexisting phases plus the contribution from the interface.
Since in the slab geometry I does not depend on ρA, the logarithm of the OPD (which
is directly related to the free energy — see equation 4.1) is flat there. Conversely, since
for all other coexistence shapes the amount of interface varies with VM the densities for
which the slab geometry is assumed can be inferred from the OPD by identifying its flat
regions (see figure 5.4).

bThe amount of interface generally depends on the length scale that it is measured on. The usage of

the term here refers to a macroscopic scale76.
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The Free Energy Barrier

On the locus of phase equilibrium, the free energy barrier ∆F , which is defined as
the difference between the average logarithm of the liquid and the gas peak minus the
logarithm of the in-between minimum, is due to an interface contribution

∆F = σ I, (5.1)

where σ is the interface tension and I is the amount of interface between the two coexisting
phases. In the slab geometry, the interface is known to be I = 2Ld−1. Thus σ can be
extracted from an OPD via the relation

∆F = 2σLd−1, (5.2)

where it now is assumed that the minimum between the two peaks in the OPD corresponds
to a slab geometry, indicated by a flat region in the OPDc. As shown in figure 5.4(b),
extracting the interface tensions can in principle be used to approximate the critical point,
since σ vanishes at zB,cr.

5.1.2 Shape Transition

For the Monte Carlo simulation described in the previous chapters, the transitions between
the different possible coexistence shapes pose a problem. Consider a two-dimensional
system of size L × L in a droplet state that crosses the droplet→slab transition at
VM/V = 1/π. The correct equilibrium state is the slab, but the radius of the droplet is
only 2L/π, which is smaller than the diameter of the lateral extension L that the slab
spans. Monte Carlo simulations performing only single particle moves can only transit
from the droplet to the slab geometry by the construction of intermediate states, in this
case lens-shaped minority volumes78. However, in these intermediate shapes the interface
between the coexisting phases is larger than in the equilibrium shapes by some excess
interface ∆I, causing an ensemble of such intermediate states to have an excess free
energy γ∆I compared to an ensemble of equilibrium states. Since the excess interface
grows with the lateral extension L of the system, the probability for the appearance of the
intermediate states during a Monte Carlo simulation using single insertion and removal
steps decreases exponentially78.

A similar reasoning holds true for the shape transition in the 3D system also, since neither
the radius of the droplet at the droplet↔stalk transition nor the radius of the stalk at
the stalk↔slab transition equal the lateral extension of the system. Again, an increased
suppression of the appearance of the intermediate states with increasing system size is
expected.

cIn practice, the d = 3 systems allow to extract reasonable values for σ even for system sizes that are

too small to show a flat region in the OPD. Seeing a plateau is therefore not strictly required.
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Figure 5.5: In simulations of the two-dimensional WR model on the surface of a sphere, no
shape transitions occur. Topologically, the only coexistence shape is that of two droplets. The
increase of one droplet’s volume at the expense of the other’s is always continuous and does not
require single insertion/removal steps to create unfavorable intermediate states.

As a direct result of this reduced probability to construct intermediate states, the
probability for a Monte Carlo simulation with single particle moves to perform the shape
transitions at the correct transition points also decreases exponentially. These shape
transition barriers limit the size of systems that can be properly simulated at phase
coexistence. In principle, one could imagine defining an order parameter for the shape
formed by the minority phase and using a uniform sampling scheme to smoothly guide
the simulation through the shape transition. But this not only adds an additional layer of
complexity to the simulation; it is also not clear what a suitable order parameter would
look like. In any case, it is probably computationally expensive (compared to the particle
number), making its use unattractive.

5.2 Simulations on Hyperspheres

An alternative way to circumvent the problem with the shape transitions has (for a two-
dimensional system) already been proposed in 199079, namely to perform the simulations
of a d-dimensional system on the surface of a d + 1-dimensional sphere rather than a
d-dimensional box with periodic boundary conditions. There, the slab geometry, which
is caused by the system abusing the periodic boundary conditions, is absent. The only
shape that the minority phase assumes is that of a continuously growing droplet (see
figure 5.5). According to the discussion in the previous section, the absence of a shape
transition should improve the efficiency of simulations sampling through the coexistence
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region, at least in the limit of large distance from the critical point and large systems.

In a related scenario, a 2D Ising model being simulated on the surface of a 3D cube,
such an efficiency improvement has been noted78 in multicanonical simulations64;80. This
analysis is closely related to the simulation of an off-lattice system of a sphere, but differs
in two aspects: First, the transition between droplet and strip is not entirely eliminated
but traded against other, albeit less severe, shape transitions78. Second, the spins on
the edges of the grid only have three nearest neighbors, not four. Thus, the system on
the surface of the cube contains “impurities”, and strictly speaking is not completely
equivalent to the standard system geometry, even in the thermodynamic limit.

The remainder of this chapter introduces simulations of the WR model on a true hy-
persphere, discusses the effect on simulation performance, and demonstrates that the
performance increase that is seen indeed owes to the absence of shape transitions.

5.2.1 Implementation Details for the WR Model

For the simulation of a d-dimensional system with spherical geometry the surface of a
sphere embedded in a (d+ 1)-dimensional Euclidean space is used. The surface of the
(d+ 1)-dimensional sphere is chosen as equal to the d-dimensional volume of the system
that shall be simulated. This fixes the radius R of the (d+1)-dimensional sphere. Particle
positions on the sphere are described by (d+ 1)-dimensional Euclidean vectors, where
the location ri of each particle i has to satisfy the “on sphere” condition ri · ri = R2.
The Monte Carlo simulation of the system on the spherical geometry is identical to the
simulation on the torus except for the construction of uniformly distributed random
locations for particles and the measurement of distances.

Uniformly distributed random locations are obtained by independently choosing the d+ 1
coordinates of a vector ri from a uniform distribution over [−R;R]. For each position,
this is repeated until the coordinates satisfy ri · ri ≤ R2, in which case the vector is
rescaled to ri · ri = R2, and accepted as the new random location.

On a surface of a sphere the shortest distance between any two points ri and rj lies on a
great circle. The on-sphere distance d between these two points is thus given by

d = R cos−1
(ri · rj
R2

)
. (5.3)

To test the intersection of two particles one only needs to check whether d is smaller than
some threshold value a, and does not need the actual value of d. This allows to eliminate
the computation of a trigonometric function for this check, since

d < a
(5.3)⇔ ri · rj > R2 cos(a/R), (5.4)

where the term R2 cos(a/R) is a constant over the course of the simulation.
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Figure 5.6: Finite size scaling of the extrema in χ2, χ3, and χ4 for simulation results from
spherical (hollow circles) and toroidal (filled squares) systems. Left plot is for the two- and
the right for the three-dimensional Widom Rowlinson model. For finite system sizes there is
a distinctive difference in the peak locations between the two geometries, but both geometries
predict the same critical fugacity in the thermodynamic limit.

5.2.1.1 Transcription Rules: How to chose a?

There is no unique way to transfer a WR model of a given size to a sphere, and there
are three possible choices for the interaction distance a. The simplest choice is the equal-
distance mapping, where a = 1. The other two are the equal-particle-volume mapping,
where on-sphere particle radii are chosen such that the integrated particle volume equals
that of the particles on the toroidal geometry, and the equal-excluded-volume mapping
where said equality holds for the volume that an A particle excludes for B particles.
These three choices lead to slightly different results for the finite systems, but in the
thermodynamic limit where the curvature integrated over the volume of a particle (or
the exclusion volume) vanishes, they become equal. All results shown here use the
equal-distance mapping.

5.2.1.2 Locating the Critical Point

The analysis of the order parameter distributions obtained from simulations on a hy-
persphere is identical to that of OPDs obtained from simulations in a toroidal system.
For the length-scale L that appears in finite-size scaling L = V 1/d has been chosen.
In figure 5.6 the finite-size scaling of the pseudo-critical points’ locations are shown
for spherical and toroidal WR systems in two and three dimensions. As expected, the
points of pseudocriticality differ between the two geometries, but in both cases the same
thermodynamic limit is found.
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Setup 1 Setup 2

Dimension 2 3
Fugacity (zA = zB) 2.5 1.5
Runs 40 20
Tuning locus lMS lMS

Wang-Landau Sampling
δ (first iteration) log(1.2) log(1.6)
δ adjustment δ → δ/2 δ → δ/2
iterations 20 21
Successive Umbrella Sampling
Window Size 2 -
MC Steps per Window 5 · 107 -

Table 5.1: The simulation parameters used for the performance analyses shown in this chapter.
The number of runs is the number of independent simulations performed for each uniform sampling
method and each geometry. The number of MC steps per window in successive umbrella sampling
counts all attempted MC steps, including those that were rejected.

5.2.2 Autocorrelation Times

On the example of the two-dimensional case it is now tested if exponential slowing down
is indeed less pronounced on a sphere. Consider a simulation using perfect weights in the
sense of equation 4.9 sampling the interval NA ∈ [0;Nmax

A ] using the single particle moves
introduced in section 4.2. Because of the perfect (or near-perfect) weights being used,
the simulation samples the interval uniformly, even without employing Wang-Landau
sampling or successive umbrella sampling. If there are no hidden barriers in the system,
then the simulation performs a random walk on the interval [0;Nmax

A ]. The autocorrelation
time τ , defined as the average number of MC steps the simulation takes to randomly
wander from a state with NA = 0 to a state with NA = Nmax

A and back to a state with
NA = 0, then scales with the system volume as proportional to V 2.

In the presence of shape transitions, the autocorrelation time instead shows an exponential
increase with the system size, stemming from the exponentially dropping probability to
transfer between the shapes. This is shown in figure 5.7(a), where the autocorrelation time
for simulations on toroidal and on spherical WR systems is shown as a function of volume.
The weights used in the simulations were obtained from previous high-quality successive
umbrella sampling runs. For the simulations with the standard system geometry, the
torus, an exponential increase of τ with the system volume is seen. In contrast to this,
the autocorrelation times obtained for simulations on a sphere are best described by
a polynomial increase τ ∼ V α with α = 2.47(10), which is distinctively different from
the result τ ∼ V 2 expected for a barrier-free simulation. The apparent elimination
of an exponential increase in autocorrelation time is caused by the elimination of the
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Figure 5.7: Different measures for the increased performance of hypersphere-based simulations of
the 2D WR mixture at zA=zB=2.5. Figure (a) shows the autocorrelation time τ for a simulation
using perfect weights as a function of system volume. For a toroidal system the exponential
increase τ ∼ V 2e0.0024V owing to the droplet↔slab transition is seen, whereas spherical systems
are best fitted by the polynomial τ ∼ V 2.47. Figure (b) shows the number of Monte Carlo steps
required to finish an iteration of Wang-Landau sampling of said systems as a function of the
weight change δ (cf. 4.2.1). In late iterations of WL sampling where δ is small, the barrier caused
by the droplet↔slab transition becomes effective, requiring an increased amount of Monte Carlo
steps to fulfill the flatness criterion.

droplet↔slab transition, which is absent on the sphere.

The reason that even on a sphere the autocorrelation time does not scale proportional to
V 2 is probably caused by nucleation, i.e. the formation of a minority phase droplet. The
nucleation barrier is in fact expected to also cause exponential increase in autocorrelation
time, albeit a less severe one78. The data shown in figure 5.7, however, are not compatible
with an exponential increase, at least not over the whole range of system volumes being
considered. The origin of this discrepancy between thermodynamics and simulation result
is probably caused by finite-size effect that were not taken into account: simulations of
larger systems are expected to ultimately show the exponential increase.

5.2.2.1 Significance for Uniform Sampling Strategies

In most simulations good weights are not available prior to the simulation, and so the
autocorrelation time measurement should be considered a generic test. While this test
seems to have no direct relevance for the determination of the order parameter distribution
it nicely demonstrates the effect of the shape transitions. Also, there is a closely related
scenario that can occur in the sampling of OPDs: In late stages of Wang-Landau sampling
a good guess for the weights is already available, the change δ being applied to the weights
after each MC step becomes negligible, and the flatness criterion to terminate an iteration
requires the simulation to visit the whole range of NA. Figure 5.7(b) shows the number of
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Monte Carlo steps required to finish one iteration of Wang-Landau sampling as a function
of the weight change δ. The data were obtained by performing 40 WL simulation runs
for each system and each geometry (setup one in table 5.1), and averaging the results.
The error bars for the toroidal data reflect the error estimate for this average, error bars
for the spherical systems are the same size and not shown.

For early iterations (large δ) the results for Wang-Landau sampling times in figure 5.7
show no measurable deviations between the number of Monte Carlo steps required to
finish an iteration in either geometry. This is explained by two effects overshadowing the
shape transition barrier. First, in early iterations the weights are assumed to be still of
bad quality, and so the lack of adequate weights dominate the comparably less severe
shape transition barriers. Second, large δ imply that the weights are dynamic during the
iteration, and can push the system over any barrier. In later stages, both these points
gradually become less correct, and indeed for δ < 10−4 a measurable difference between
both geometries develops. This difference becomes more pronounced for additional
iterations. But even at δ ≈ 3.5 · 10−7 the relative difference is less pronounced than in
the autocorrelation times τ (a factor of 1.6 vs. a factor of 10 for the V = 1600 system).

The analysis of the autocorrelation time τ clearly demonstrates the presence of a hidden
sampling barrier in the toroidal systems and its absence in spherical systems. But on
the scales being taken into account here this does not translate to a faster Wang-Landau
simulation, as a single MC step on a sphere requires roughly 1.5 times more CPU time
than a single MC step on a square system. On top of this, for successive umbrella sampling
no measurable deviation in the number of Monte Carlo steps is expected at all, which
raises the question whether in light of these results the use of a spherical geometry is
justified. This can indeed be the case, because there is another aspect that needs to be
considered, and that is the quality of the data obtained by the simulations.

5.2.3 Data Quality

The shape transition barriers not only increase the number of Monte Carlo steps required
for a sampling with perfect weights or late stages of Wang-Landau sampling. More
importantly, the shape transitions introduce errors to the simulations due to remanence
effects. For demonstrating this effect, several independent simulation runs have been
performed for both geometries. For any observable X, the independent estimates spread
around their average with some root mean square width that provides an estimate of the
statistical error of an individual measurement. The ratio

Q(X) :=
ut(X)
us(X)

(5.5)

is a measure for the quality increase of simulations on a sphere, where ut(X) and us(X)
are the statistical errors in the measurement of observable X on a toroidal and a spherical
geometry, respectively.
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Wang-Landau Sampling (2D)
V Q(〈ρA〉) Q(〈|m|〉) Q(〈|m|2〉) Q(〈|m|3〉) Q(〈|m|4〉)

900 1.4 1.7 1.7 3.4 1.2
1600 2.9 3.8 3.8 6.5 3.7
2500 2.7 3.3 3.3 4.7 7.8

Successive Umbrella Sampling (2D)
V Q(〈ρA〉) Q(〈|m|〉) Q(〈|m|2〉) Q(〈|m|3〉) Q(〈|m|4〉)

900 1.6 2.6 2.6 6.8 1.8
1600 3.5 6.3 6.3 15 2.7
2500 4.4 11 11 30 11

Wang-Landau Sampling (3D)
V Q(〈ρA〉) Q(〈|m|〉) Q(〈|m|2〉) Q(〈|m|3〉) Q(〈|m|4〉)

3375 1.4 1.3 1.3 1.3 1.3

Table 5.2: Q-values (see equation 5.5) for basic observables of WR mixtures using the simulation
and analysis parameters listed in table 5.1. All observables have Q > 1 for all system sizes,
indicating a better data quality for simulations on a sphere. In successive umbrella sampling,
the quality loss of simulations on a torus compared to those on a sphere are stronger than in
Wang-Landau sampling. This is consistent with the finding that WL simulations on a torus
perform a larger number of MC steps than equivalent simulations on a sphere (figure 5.7), whereas
SUS samples an equal amount of states on both geometries.
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Figure 5.8: Local error estimates σ for simulations of a V = 2500 two-dimensional WR model
(setup one of table 5.1) for Wang-Landau and successive umbrella sampling for both geometries.

In table 5.2 the Q-values are shown for different system sizes and different basic observables
(note that the central moments 〈|m|i〉 defined in (3.3) appear in the calculation of the χi
and the cumulants). The data shown were obtained using the parameters in table 5.1.
They clearly show an increased quality for simulations performed on a sphere surface
in all of the tested observables. The quality gain obtained by using a spherical system
geometry seems more pronounced in successive umbrella sampling where, unlike in Wang-
Landau sampling, an equal number of MC steps is performed for the simulations on both
geometries. But even in WL sampling, where simulations on toroidal systems perform
extra MC moves compared to simulations on a sphere (c.f. figure 5.7), the results obtained
in spherical systems are of better quality.

By considering local quantities, it can be demonstrated that the increase in data quality
for simulations on a sphere is indeed caused by the elimination of the transition between
droplet and slab shape. To this end, the weights w(NA) obtained from the simulations
have been considered. For each NA, each simulation provides an estimate for the local
weight change w(NA + 1) − w(NA). As in the case of the observables, the 40 values
obtained for the local weight change spread around some average value with a root mean
square σ(NA). These uncertainties in the local weight change are shown in figure 5.8,
where the σ(NA) have been averaged over 30 bins to provide a clearer signal. In both
sampling methods, the simulations performed on toroidal systems show peaks in the
weight uncertainty σ at the density where the transition between droplet and slab occurs.
In the simulations performed on a hypersphere these peaks are absent. Since apart
from these two peaks the errors in the local weight are the same for both geometries
this demonstrates that the quality difference seen in table 5.2 is indeed caused by the
elimination of the shape transition. The peak at ρA ≈ 2.2 seen in both geometries can be
identified as being caused by the nucleation transition, which is still present in spherical
systems, and has already been indicated by the measurement of the autocorrelation time
(figure 5.7). The peak for the nucleation of an A-phase droplet would be expected at very
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Figure 5.9: Wang-Landau sampling results for a 3D WR mixture with V = 3375 being simulated
on the standard toroidal geometry and the surface of a four-dimensional hypersphere. In figure
(a), the uncertainties σ of the local weights are shown. For the standard cubic system they exhibit
peaks that are attributed to nucleation and to the shape transitions between droplet and stalk
(green arrows) and between stalk and slab (black arrow). Such peaks are not seen for the spherical
geometry, indicating the absence of shape transitions. Figure (b) shows the number of MC steps
required to finish an individual iteration of Wang-Landau sampling. As in the two-dimensional
case (figure 5.7) the absence of shape transitions causes late iterations (with small weight changes
δ) to fulfill the flatness criterion faster.

low ρA. It is not clear whether the large σ values seen there overshadow this peak, or if
they actually are the nucleation peak.

5.2.4 The 3D Case

Contrary to the two-dimensional case, the three-dimensional WR model on the surface of
a four-dimensional hypersphere is not easily visualized. So while the absence of shape
transitions in 2D systems being simulated on the surface of a sphere is already quite
apparent from a visualization of states (figure 5.5), it is not obvious that there are no
shape transitions of the minority phase in 3D systems simulated on the surface of a 4D
hypersphere. But building upon the findings in figure 5.8 the absence of shape transitions
in this case can be inferred indirectly from investigating the local uncertainties σ(NA)
and demonstrating the absence of barriers in these data. To this end, Wang-Landau
simulations have been performed on both geometries with the parameters listed in table
5.1.

As shown in figure 5.9(a), the local uncertainties extracted from the simulations in a 3D
cube with periodic boundary conditions show peaks that can be attributed to the shape
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transitions of the minority phase between droplet, stalk, and slab and the nucleation of a
minority phase droplet. Contrary to the 2D case the nucleation peak is not identical in
both geometries. The origin of the discrepancy of the nucleation peaks between the two
geometries has not been investigated in detail, but it probably stems from the V = 3375
spherical system with a = 1 not being an exact equivalent of the L = 15 WR system
(cf. section 5.2.1.1).

The peaks attributed to the shape transitions in the cubic system are absent in the results
for simulations on the surface of a four-dimensional hypersphere. This is an indicator
that shape transitions of the minority phase are indeed eliminated. Again, the absence of
shape transitions results in an improved sampling efficiency, as seen in figure 5.9(b), where
it is shown that on the surface of a hypersphere the late iterations of the Wang-Landau
sampling require less MC moves to fulfill the flatness criterion. Finally, the Q-values
shown in table 5.2 also indicate a quality improvement of the sampling results, as again
Q > 1 for all observables.

5.3 Other Models on a Sphere

The simulation of spherical system geometries may appear very artificial — experiments
are usually not performed on the surface of a three or even four-dimensional sphere, except
for some cases like experiments on membrane vesicles81;82;83;84. This is, however, not
necessarily an argument in favor of the standard geometry choice given that experiments
are not conducted on cubes with periodic boundary conditions, either.

Considering the increase in sampling performance of the WR mixture on a hypersphere
motivates the question which other models may be applicable for a transfer to a hyper-
sphere. Clearly, the most natural candidates are off-lattice models, since grids suffer
from connectivity defects when transferred onto the surface of a hypersphere. For the
same reason, crystalline phases cannot be represented. Also, models with non-spherical
particles and an interaction that depends on the shape of the particles are probably
unsuitable, such as the two-dimensional Zwanzig model (see section 2.1.4). The exception
are models where there is no coupling between the spatial and the orientational degrees
of freedom85.

From a computational point of view, some models may be unsuitable for a transfer to
a sphere because of an unacceptable increase in CPU time per Monte Carlo step. In
the WR model, the use of CPU time intensive trigonometric functions could be avoided.
But this may not be true for all models, particularly not those where the pair-potential
continuously changes with the distance of the particles (note that if the pair potential
is a step function over only a few intervals one can find the correct interval via a few
threshold values a1, a2, . . . ). In models with long-ranged Coulomb interactions, it has
been proposed that the use of a spherical geometry can be beneficial for the calculation
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of forces86.
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Chapter 6

Random Neutral Obstacles

In this chapter, the simulation methods of the preceding chapters are used to study
the effect of quenched obstacles on the phase separation in binary mixtures with short
ranged interactions. To add quenched disorder to the Widom Rowlinson mixture, a third
particle species O (obstacles) of immobile unit diameter spheres is added. The obstacles
are chosen to have a hard-core repulsion with both mobile species A and B. Since the
obstacles’ interaction is indifferent to the mobile species, this choice of obstacles is the
case of neutral obstacles. It preserves the A↔B symmetry of the WR model, which
greatly simplifies the data analysis because a phase transition between A and B phase
is then known to lie on the line zA = zB. The exact mapping of the mixture picture
onto a fluid model (section 2.1.2) is destroyed, however. The scenario of random neutral
obstacles presented here is a model of a symmetric binary mixture with short-ranged
interactions, but not a model of a generic fluid in the presence of quenched disorder.

Since the WR model is in the universality class of the Ising model, the WR model with
this kind of random obstacles that exclude an equal amount of volume for both particle
species can be expected to behave like the Ising model with random site dilutions. Above
a certain threshold amount of dilution, the percolation threshold, no long range magnetic
order can exist in such an Ising model, and therefore no distinguished A and B phase
would be expected for the WR model. It is predicted in renormalization group theory
that for low amounts of dilutions the site-diluted Ising model still has a phase transition
between a ferromagnetic and a paramagnetic state with a renormalization group flow
towards the Ising model’s critical point at zero dilution6. However, this Ising universality
of the critical point is subject of debate87;88. If the universality is that of the pure
Ising model logarithmic corrections have to be taken into account for system sizes that
are computationally accessible89. Agreement with pure Ising universality after taking
into consideration the logarithmic corrections has been found in some simulations90;91;92,
whereas in other simulations no agreement with pure Ising universality was found despite
those corrections89;93.

In this work the case of interest is that of low obstacle density ρO, which is measured in
terms of the average number of obstacles per unit volume, and with a focus on the fate of
the phase transition from an A phase to a B phase. The presence of randomly located
static obstacles introduces a new layer of complexity that needs to be considered: While a
thermodynamic system may have a well-defined obstacle density, randomly selected small



66 CHAPTER 6. NEUTRAL OBSTACLES

pieces of this system (the necessarily finite system that one can simulate) do not have
exactly this number of obstacles per unit volume. Instead, in a randomly-picked volume
V of the system there is a random number of obstacles that is distributed according to a
Poisson distribution with mean ρOV . Furthermore, the behavior of the mixture in such a
finite system generally not only depends on the number of obstacles, but also on their
locations. To take this into account simulations have been performed for many obstacle
configurations, and their results have been suitably averaged over (as described in section
6.2). Compared to pure systems the investigation of systems with quenched disorder
therefore adds an additional layer of complexity, and is computationally more demanding.

6.1 Simulation

The simulations of each individual obstacle configuration is performed in the following
way: First, a random number of obstacles NO is drawn from a Poisson distribution with
mean ρOV , where ρO is the obstacle density of the infinite-sized thermodynamic system.
Then, the NO obstacles are placed at random locations inside the empty system volume,
whereby overlaps between O particles are allowed. After generating a starting state in
which the A and the B particles are equilibrated, the system is then being simulated via
successive umbrella sampling (section 4.2.2) using the single insertion and removal steps
described in section 4.2 - with the additional rule that insertions of A or B particles that
would lead to an intersection of the newly-inserted particle with an obstacle are always
rejected.

When NA=0, the B particles are an ideal gas in the system volume not excluded by the
presence of the obstacles. Consequently, the initialization routine described in section
4.2.2 can still be used for the construction of an initial state with only the minor adaption
that insertions of B particles that would intersect with an obstacle are discarded. An
exact analytical solution of the first SUS window is not possible when obstacles are
present. But if the amount of obstacles is not too large, the analytic result for the pure
model (equation 4.14) is an adequate guess for a simulation weight in the first window.

6.2 Disorder Average

Since the configuration of the obstacles differ from simulation to simulation, so do the
resulting order parameter distribution (see figure 6.1). The simulation of many different
obstacle configurations therefore does not yield a single order parameter distribution PL
as in the pure model, but a sequence PL,i of OPDs, where i = 1 . . . N is the sequence
index. Of course, not only the OPD but also the thermal averages of observables can
depend on the configuration of the obstacles, i.e. one also has 〈·〉 → 〈·〉i. This motivates
the following definition: Let Oi be the result for an observable O that has been evaluated
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Figure 6.1: Randomly-picked order parameter distributions for different configurations of
obstacles in a 30× 30 WR system on the lMS locus below (figure a), around (b), and above the
critical fugacity (c). The distributions for different obstacle configurations all qualitatively show
the same behavior as the pure model but differ quantitatively. This configuration-dependence of
the OPD necessitates introducing the disorder average to determine the behavior of the system in
the thermodynamic limit.
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from the i-th of a total of N mutually independent random obstacle configurations. Then,
the average

[O] :=
1
N

N∑
i=1

Oi (6.1)

is the disorder average of that observable.

The disorder average constitutes an additional average over the thermal one that must be
taken into account for the data analysis. The natural extension for the finite-size scaling
of the pseudocritical points inferred from the extrema of χ2, χ3, and χ4 is extrapolating
the extrema of their disorder averages [χ2], [χ3], and [χ4]. The proper equivalent of
the cumulants is ambiguous. The Binder cumulants can be considered as a measure of
supercriticality of an individual system, where values U1 ≈ π/2 indicates supercriticality
and U1 ≈ 1 indicates two coexisting phases. With this interpretation of the Binder
cumulant one may consider

[U1] =
1
N

N∑
i=1

U1,i, (6.2)

where U1,i is the cumulant value measured for the i-th system. On the other hand, the
second and the first central moment of the OPD that appear in the nominator and the
denominator of the cumulant definition in (3.20) can also be considered as the observables,
which motivates the definition

U1 =

[
〈|ρA − 〈ρA〉|2〉

]
[〈|ρA − 〈ρA〉|〉]2

. (6.3)

Further averages like averaging over susceptibility and order parameter independently
are also conceivable, and there is no unique correct way to perform the disorder average.
The choices being made here are to some extend arbitrary, but lead to similar conclusions
as demonstrated in figure 6.3.

For any configuration of symmetric obstacles it is clear that the transition from the A to
the B phase can only occur at zA = zB, which may hence seem to be the locus of choice.
Despite this, for a given zB each OPD has been reweighted to the lMS locus, instead. In
the context of symmetric obstacles this should be understood as a trick to compensate for
sampling errors, especially those caused by the shape transitions described in chapter 5a.

6.3 Results

The first indication for the behavior of the system is the visual inspection of system
snapshots and a few order parameter distributions at different zB. A few randomly

aThe individual tuning of the OPDs to some locus does have a physical significance for asymmetric

obstacles, though. This is discussed in section 7.1.1.
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Figure 6.2: Snapshots of the 2D WR mixture with ρO = 0.05 neutral obstacles in the micro-
canonical ensemble show mixed state at low densities ρA = ρB = 0.5 (left image) and a demixed
state at high densities ρA = ρB = 1 (right image) indicating the existence of a demixing transition.
The neutral obstacles are drawn in red.

selected obstacle configurations reveal that the order parameter distributions at high zB

(and on the lMS locus) tend to have well-distinguishable liquid and gas peaks, while at
lower zB they feature only a single peak corresponding to a mixed phase. Close to a
pseudocritical point, the OPDs resemble that of the critical distribution of the pure model,
except that the exact shape depends on the obstacle configuration (see figure 6.1). Visual
inspections of microcanonical simulations also indicate the existence of the qualitatively
same phase transition as in the pure model: As shown in figure 6.2 states at low densities
tend to be mixed, while at high densities the A and B particles are demixed. Based
on those simple observations a finite-size scaling analysis using the disorder averaged
quantities can be applied as normal.

6.3.1 Finite-size scaling

The expected universality class, the diluted Ising model, features a phase transition with
a critical point for which hyperscaling holds. Therefore, a cumulant intersection should be
found at this critical point. In figure 6.3 the cumulant intersection plots for the disorder
averaged cumulants according to equations 6.3 (figure a) and 6.2 (figure b) for an obstacle
density ρO = 0.04 are shown. The curves all drop from the single-peak value U1 = π/2 to
the value U1 = 1 associated with two independent peaks, and intersect at zB = 1.915(10)
and zB = 1.910(7) for U1 and [U1], respectively. This indicates a critical point zB,cr at this
value, and the existence of an A and B phase above it. As both estimates for a disorder
averaged cumulants effectively give the same results, both definitions are adequate for
the task.
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Figure 6.3: Cumulant plots for the 2D WR model with ρO = 0.04 neutral obstacles. Both
definitions of the disorder averaged cumulant, U1 according to (6.3) in figure (a) and [U1] according
to (6.2) in figure (b) have been taken over the same 600 obstacle configurations for each system
size. The curves obtained from the two different configuration averages are almost identical, and
predict a critical point at zB,cr = 1.915(10) (U1) and zB,cr = 1.910(7) ([U1]).

Figure 6.4: Finite-size scaling of the extrema in [χi]. The different pseudocritical point scale
to a common critical point for ν = 1.1(1), which is approached from above and from below. For
ν = 1.1 the critical fugacity zB,cr = 1.904(4) is found.



i
i

“thesisA4” — 2012/2/20 — 18:55 — page 71 — #39 i
i

i
i

i
i

6.3. RESULTS 71

In figure 6.4 the finite-size scaling of the global extrema of the observables [χ2], [χ3], and
[χ3] according to equation 3.17 is shown for the same obstacle density. The scaling lines
for the different observables nicely intersect for a correlation length exponent ν = 1.1(1).
This value for ν and its uncertainty have been inferred from visual inspection of the
plots and eye-gauging values that result in good agreement between the curves. It must
be emphasized that the value is to be understood as a best-fit parameter, not as a
measurement of the true correlation length exponent. The analysis setup introduced in
section 3.2 and used throughout this work does not take into account possibly important
logarithmic corrections. The focus of the analysis is the proof of a demixing transition
via location of a critical point, not a precision measurement of the critical exponentsb.
The values presented for ν should thus be understood as an effective correlation length
exponent, only.

With ν = 1.1 the location of the critical point is zB,cr = 1.904(04). This result is rather
insensitive to ν, because the location of the minimum of [χ3] happens to be almost
independent of the system size. As in the pure model, the pseudocritical points approach
zB,cr from above and from below, which puts a strong ν-independent constraint on the
possible location of zB,cr.

6.3.2 Self-averaging

As demonstrated by the results in figure 6.3 and 6.4 the disorder-averaged observables U1,
[U1] and [χi] all predict a critical point at somewhat higher inverse temperature compared
to the pure model. But for the large thermodynamic system this only implies a well
defined configuration-independent critical point if the system self-averages, that is if the
differences between different obstacle configurations vanish as the system size approaches
the thermodynamic limit. To demonstrate that this is indeed the case, a pseudocritical
point has been determined for each individual configuration by locating the maximum of
χ2, and the scatter around the average pseudocritical fugacity has been investigated.

In the left plot of figure 6.5 a histogram of pseudocritical points for two different system
sizes is shown. The histograms clearly show that the pseudocritical fugacities zcr,i differ
between obstacle configurations. As the system size is increased, the root mean square
width σ(zcr,i) of the histograms becomes smaller, indicating that indeed σ(zcr,i)

L→∞−→ 0.
This decrease is shown in the right plot of figure 6.5, where the σ(zcr,i) are shown for a
range of system sizes and a number of obstacle densities. For an effective correlation length
exponent ν = 1.2(1) the decrease is in excellent agreement with the scaling prediction94

σ(zcr,i) = L−1/ν · const. (6.4)

In the thermodynamic limit L→∞, all randomly-constructed obstacle configurations
bConsidering that there is controversy even in the computationally much simpler site-diluted Ising

model the prospects of such an endeavor do not look very promising, anyways.
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Figure 6.5: Configuration-dependence of the pseudocritical points. The left diagram shows
histograms of the pseudocritical points for 600 randomly-generated obstacle configurations with
ρO = 0.04. The right plot shows the widths σ(zcr,i) of these histograms for different system sizes
and different obstacle densities. For all ρO shown the data are in excellent agreement with the
scaling relation (6.4), implying that for L → ∞ the histograms shown in the left plot become
sharp.

hence show the behavior of the disorder average. This implies that in all of the systems
there exists a phase transition between an A and a B phase, but with a critical point
that is at a lower temperature. Qualitatively, the phase diagrams of the WR model
with low concentrations of randomly placed neutral obstacles still resembles that of the
pure WR model (see figure 2.3). It only depends on the concentration of obstacles,
but not on the particular obstacle configuration. This holds true as long as obstacle
configurations are randomly-picked from the ensemble of randomly-distributed obstacles.
Special “hand-crafted” choices can actually exhibit a different behavior, as is readily seen
in cases where all obstacles sit in the same location. But as seen from the vanishing width
of the distribution of pseudocritical points, such exotic configurations become rare and
insignificant in the thermodynamic limit.

6.3.3 Effect of the Obstacle Density

The shift towards higher critical fugacities becomes larger as ρO is increased. This is shown
in figure 6.6(a) where the critical fugacities are shown as a function of the obstacle density.
The estimates for the critical fugacities are a combined estimate from intersections in
U1 (as in figure 6.3a) and the finite-size scaling of the extrema of the [χi] (as in figure
6.4). For each obstacle density and for each system size, 600 obstacle configurations were
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Figure 6.6: Estimated critical point and suitable correlation length exponents as a function
of the obstacle density (plots (a) and (b), respectively). The increase in zB,cr(ρA) is in good
agreement with the prediction in (6.5), as indicated by the best-fit curve. In figure (b), the
best-fitting values for the effective correlation length exponent ν are shown. Values and error bars
represent the regions over which the individual maxima in [χi] extrapolate reasonably well to a
common critical fugacity (as in figure 6.4).

simulated and averaged over. For the site-diluted Ising model it has been observed that
for low concentrations of disorder the decrease in critical temperature is proportional the
dilution concentration88;95. When zB is interpreted as an inverse temperature and ρO as
the concentration of dilution this implies that

zB,cr(ρO) =
1

1
zB,cr(0) −A · ρO

(6.5)

with some fit parameter A, and zB,cr(0) ≈ 1.718 being the critical fugacity of the pure
WR model. For the best-fitting A this prediction is in excellent agreement with the
simulation results, as shown by the curve in figure 6.6(a).

Figure 6.6(b) shows the value of the effective correlation length exponent ν, which is
inferred from the finite-size scaling of the [χi]. The increase of ν with the obstacle density
is compatible with an actual increase of the correlation length exponent with obstacle
density87, but also with the scenario of an Ising critical point and logarithmic corrections
that become more relevant as the amount of disorder is increased.
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6.3.4 Summary of Results

In the thermodynamic limit the Widom Rowlinson model with a low density of randomly
placed neutral obstacles has a critical fugacity above which a first order transition from
an A phase to a B phase can occur. The existence of such a critical fugacity as well as
its increase with the amount of obstacles is compatible with the expectation that the
system belongs to the universality class of the site-diluted Ising model. This has also
been claimed from simulations of a similar three dimensional model96.

Because of the pure WR model being a model for a fluid it is tempting to conclude that
also for a fluid in the presence of low concentrations of randomly-placed neutral obstacles
the same results should hold true, i.e. a qualitatively identical liquid↔gas transition but
with a critical point shifted towards lower temperature. However, there are two caveats
that one should be aware of: First, the exact mapping of the WR mixture on the WR fluid
is destroyed by the presence of the obstacles since the argument that allows to integrate
out the B particles, namely that they form an ideal gas in the volume not forbidden by
the A particles, is not valid anymore. Second, it is not clear what the physical realization
of obstacles that have an identical preference for liquid and gas phase of a fluid might
be. In reality one would expect that obstacles do have at least some preference for either
phase. It will be shown in the next two chapters that this drastically changes the results
obtained for the neutral obstacles.
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Chapter 7

3D Mixtures with

Asymmetric Obstacles

In reality it is unlikely that obstacles have an identical interaction with both mixture
species or (in the fluid picture) an equal affinity to the liquid and the gas phase. Generally,
some preference for either species or phase is to be expected. Such obstacles would cause
spatially random preferences for either particle species. In an Ising-like analogue such a
model may be conceived as an Ising model where random magnetic fields act on each
spin, thus creating a local preference for either spin orientation - the random-field Ising
model7;8 (RFIM). Because of this analogy it has been hypothesized by de Gennes that
a fluid in the presence of random obstacles should be in the universality class of the
random-field Ising model13.

Usually, when considering the RFIM one considers random fields with no correlation
between the sites and with the random field on each site being drawn from either a
Gaussian distribution centered around zero or from a bimodal distribution. The case of
static obstacles is better represented by a more exotic realization of an RFIM, namely
one where the random field on each site is zero in most cases, but for a small number of
sites is infinitely strong (and thereby fixes the orientation of the spins at these sites). For
the RFIM it is known that in two dimensions there cannot be long-ranged orientational
order97, whereas in three dimensions a spontaneous magnetization exists at a finite
temperature97;98. Consequently, the existence of an A and a B phase is expected for the
WR mixture in d = 3 dimensions and at sufficiently high fugacities. In this chapter the
three-dimensional Widom-Rowlinson model in the presence of random obstacles with an
asymmetric coupling to the A and B particles is investigated. As expected, evidence of a
phase transition is found, but with very special critical behavior that is characteristic of
random-field Ising universality.

7.1 Simulation

For the simulations using asymmetric quenched disorder in three dimensions two species
of obstacles have been used, both with an equal density ρO. The B-affine obstacles
have a hard-core interaction at distance one with the A particles but may freely overlap
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Figure 7.1: The relative uncertainty of [χ2] as a function of the number of obstacle configurations
N being taken into account to calculate the disorder average. The uncertainty u([χ2]) is estimated
using the Jackknife error method53. Figure (a) and (b) show the relative uncertainty of [χ2] in
the vicinity of the pseudocritical fugacities (i.e. around the maxima of [χ2]) and the fugacity of
the critical point in the thermodynamic limit, respectively. In both cases (and also for the other
observables) at least a few thousand configurations must be considered to obtain an adequate
disorder average.

with the B particles. The A-affine obstacle species has an “opposite” interaction, i.e. a
hard-core repulsion with the B particles an no interaction with A particles. This choice
again prevents an exact mapping of the WR mixture on a fluid, but preserves the A↔B
symmetry in the average over all possible obstacle configurations. As usual, cubes
of different side-lengths L and periodic boundary conditions have been used for the
simulation.

Rather than allowing for a Poissonian fluctuation in the number of obstacles, a near-
constant amount of obstacles has been used. For both obstacle species the number of
obstacles chosen to represent an obstacle density ρO has been chosen at random from
the two natural numbers around ρOV (which itself usually is not an integer) such that
the average number of obstacles over all realizations is ρOV . Again, the obstacles are
independently placed at random locations before the start of the simulation, irrespective
of possible overlap with other obstacles. It turns out that even with this rather restrictive
choice for the number of obstacles (meaning not to allow Poissonian fluctuations) the
number of obstacle realizations required for accurate disorder averages is still high (in
the order of a few thousand). This is shown in figure 7.1, where the relative uncertainty
in [χ2] at two different fugacities is shown, where χ2 is the susceptibility that is defined
in equation 3.10.
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Figure 7.2: Around the pseudocritical zB the OPDs for three-dimensional WR models with
asymmetric obstacles can assume exotic shapes exhibiting an additional peak at intermediate
density that cannot be attributed to a supercritical state. As shown in figure (a) this peak can
either replace one of the two expected peaks (liquid and gas) or even appear as a third peak.
Around the critical fugacity of the L→∞ system the OPDs are bimodal with identifiable liquid
and gas peaks. This allows extracting a sensible free energy barriers ∆FL,i, as indicated by
the vertical arrow. The curves on the right plot are normalized to logPL,i(0) = 0 for better
visualization.

7.1.1 Tuning to Phase Equilibrium

The calculation of disorder-averaged observables is performed exactly as in the case of
the symmetric obstacles discussed in the previous chapter: For each zB a suitable zA is
selected according to the locus lMS (equation 3.22). From the OPD at these fugacities,
the sought-for observables are then evaluated. But contrary to the case of symmetric
obstacles the choice of zA according to some coexistence locus criterion is not merely a
correction to inaccuracies in the Monte-Carlo sampling: While the ensemble containing
all possible obstacle configurations preserves the A↔B symmetry of the WR model, a
single obstacle configuration does not. Choosing an individual zA,i for each configuration
i reflects that individual configurations do not have an A↔B symmetry, and instead favor
either particle species to a varying degree. This can be considered a finite-size effect and
in the thermodynamic limit this variation around the disorder ensemble’s symmetry line
zA = zB is expected to vanish26.
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Figure 7.3: The obstacle configuration in which all of the A-affine obstacles (red) sit on a regular
grid in one half of the volume and the B-affine obstacles (green) sit on a regular grid in the
other half is an extreme example of a system in which three stable states exist even for high zB.
These are the normal gas (left image) and liquid state (right image) for zA � zB and zA � zB,
respectively, and a state in which only the A-affine region is filled with A particles (center image)
for zA ≈ zB. Only the obstacles and the A particles (blue) are shown; the B particles are omitted
for clarity.

7.2 Pseudophases

It turns out that at fugacities around the maximum of [χ2] there are large variations
between OPDs of different obstacle configurations. While in the case of the neutral
obstacles all OPDs are qualitatively the same there are now strong deviations between
shapes. In some cases extra peaks at intermediate densities appear alongside a liquid or
a gas peak (see figure 7.2a).

The appearance of such peaks at intermediate densities can be explained by the existence
of large regions with a preference for either of the particle species. If the obstacle
configuration features such a cavity, a state in which the cavity is filled with its preferred
particle species and the rest of the system is filled with the opposite species can become
favorable. The unfavorable interface between the cavity and its surrounding is then
compensated by both the cavity and the surrounding containing the particle species which
they prefer. An extreme example of such an obstacle configuration is shown in figure
7.3, where all obstacles are arranged on a regular grid such that the obstacles with a
preference for the A particles are in the lower half of the box and the obstacles preferring
the B particles are in the upper half. As readily seen from the simulation snapshots,
depending on zA there are three distinct states for the system: the gas state, the liquid
state, and the intermediate state where only the lower half of the box is filled with A
particles.

The appearance of a third peak has been noted previously and has been interpreted as a
possible signature of a first-order phase transition99 or an indication for the existence of an
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Figure 7.4: Finite-size scaling of the pseudocritical fugacities for a WR mixture with ρO = 0.02
obstacles of two species. As shown in figure (a) on the example of [χ2], the disorder averages of
the susceptibilities show the expected qualitative behavior despite the occurrence of exotic order
parameter distributions like those shown in figure 7.2: A well-defined peak that systematically
grows and shifts with increasing system size is seen. In figure (b) the attempt of an extrapolation
towards a critical fugacity is shown. The predictive power of the extrapolation is restricted by the
large distance of the critical fugacity from the pseudocritical fugacities, which makes the results
sensitive to inaccuracies. Only an approximate interval for the critical fugacity and the correlation
length exponent can be obtained.

additional phase27. The obstacle configuration shown in figure 7.3 can indeed exhibit three
phases in the thermodynamic limit if scaled up appropriately100;101;102. Of course, since
the disorder ensemble considered here is that of randomly placed obstacles an obstacle
configuration as shown in figure 7.3 will effectively not exist in the thermodynamic limit,
since the probability for such an ordered arrangement approaches zero as L→∞. At the
critical point the occurrence of such exotic OPDs is expected to become a rare event24.

7.3 Extrapolating Pseudocritical Fugacities

Again, the extrapolation of pseudocritical fugacities towards the thermodynamic limit
is expected to yield the critical fugacity for this model. As previously, the disorder-
averaged susceptibilities [χ2], [χ3], and [χ4] show local extrema that can be attributed
to pseudocritical points. However, the functionals χ2, χ3, χ4 were designed to work for
OPDs featuring two (possibly overlapping) peaks and to be stable against the appearance
of OPDs with a single peak (see chapter 3.1). For more exotic OPDs it is not exactly
clear what these functional measure. However, as shown on the example of [χ2] in figure
7.4(a) the disorder averages of the functionals qualitatively behave as expected, indicating
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Figure 7.5: Values of the disorder-averaged cumulant U1 (equation 6.3) around the pseudocritical
fugacities (figure a) and the extrapolated region of the critical fugacity (figure b). As predicted
by modified hyperscaling, no common intersection point that would indicate a critical point with
normal hyperscaling is seen. The intersection of the curves for the three smallest system sizes in
figure (a) is interpreted as a crossover effect from Ising universality24;25.

that the functionals may still give an appropriate measure of the susceptibilities. As
previously, the locations of the functionals’ extrema are considered as the pseudocritical
points.

Contrary to previous cases, all of the pseudocritical fugacities increase with the system
size. This means that this time there is no interval in which the extrapolated critical
point is guaranteed to lie, but that zB,cr can in principle assume any value above the
largest pseudocritical fugacity. Related to this problem (and actually worsening it) is
that the correlation length exponent ν is not well known for the RFIM7;24. Lastly,
the prospected critical fugacity is much larger than the pseudocritical fugacities. This
results in the extrapolated critical fugacity to be very sensitive to errors in the peak
locations. Considering that e.g. the value of [χ2] is expected to be erroneous by 10%−30%
(see figure 7.1), these are not expected to be determined very precisely. Indeed, the
extrapolated lines in figure 7.4(b) do not agree on a single and unique value for the
critical point, but (as shown) merely scale towards a common interval that is not too large.
Results of the quality shown are obtained for correlation length exponents ν ∈ [1.3; 2.4],
and result in critical fugacities in the range of zB,cr ∈ [1.3; 1.42].
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7.4 Modified Hyperscaling

The other candidate method for the location of the critical fugacity that has been
introduced in section 3.2 is the cumulant method, that does not rely on extrapolation
of data and may thus seem like a promising candidate method to obtain a more precise
localization of the critical point. However, for RFIM universality this method does not
work: If one assumes that there is a critical point in the 3D RFIM, then that point
must show qualitative differences to the behavior of the pure Ising model. Particularly,
hyperscaling (equation 3.18) does not hold and is replaced with a modified hyperscaling
relation103

2− α = 2β + γ = ν(d− θ). (7.1)

The newly-appearing critical exponent θ is the violation of hyperscaling exponent, for
which it is assumed that θ ≈ 1.524. As a direct consequence of hyperscaling violation
no common intersection point in the cumulant curves for different system sizes at the
critical point is expected, anymore. As shown in figure 7.5 there is indeed no common
intersection point, neither around the pseudocritical fugacities (figure 7.5a) nor at the
prospected region of the critical fugacity (figure 7.5b).

The U1 cumulant can be considered as a measure for the ratio of the thermal fluctuations
in the order parameter |m| divided by the thermal average. In the presence of quenched
disorder a similar quantity can be defined, which is the disconnected cumulant, defined as
the fluctuations of the order parameter 〈|m|〉 between different obstacle configurations
divided by the disorder average [〈|m|〉]:

U1,dis =

[
〈|m|〉2

]
[〈|m|〉]2

(7.2)

It is expected that due to modified hyperscaling the disconnected cumulant curves for
different system sizes intersect at the critical point the same way that the normal Binder
cumulant does in the pure model24. However, this method does not work well in this
case. Instead, a new method based on the scaling of the free energy barrier with system
size has been employed24.

7.4.1 The Free Energy Barrier

As shown in figure 7.2(b) at zB = 1.4 (the prospected vicinity of the critical point) the
order parameter distributions exhibit two well-separated peaks. This allows to extract a
free energy barrier ∆Fi for each obstacle configuration i in the same way as for the pure
model (section 5.1.1). In the region where an A and a B phase coexist this barrier again
corresponds (for sufficiently large systems) to the contribution of the interface between
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Figure 7.6: Finite-size scaling for a WR system (with ρO = 0.02 A-affine and B-affine obstacles)
based on the scaling relation (7.3). Figure (a) shows the ratios [∆F ]/[χ2] for different system sizes
L which (assuming θ = γ/ν) intersect at the critical fugacity. Due to limited accuracy of the data
the curves do not intersect at a single point, but a candidate region for the location of the critical
fugacity is seen that is compatible with that found in figure 7.4(b). Figure (b) demonstrates the
scaling of the free energy barrier as described in the text. Visually, an excellent agreement of the
curves for different system sizes is achieved (but see also figure 7.7).

the phases. So for zB > zB,cr one expects [∆F ] ∼ L2. Below the critical fugacity, [∆F ] is
assumed to decrease with system size (if it can be extracted in the first place), owing to
the fact that the OPD of a sufficiently large system in the supercritical phase is just a
Gaussian distribution.

Contrary to the case of the pure WR model (or Ising model) precisely at an RFIM critical
point [∆F ] does not become independent of system size. This can be seen from the
scaling laws as the critical fugacity is approached from zB > zB,cr. For two coexisting
phases, the free energy barrier is proportional to the size of the interface Ld−1 and to
the interface tension σ (see section 5.1.1). By the Widom scaling relation104 σ ∼ t2−α−ν ,
where t is the reduced temperature. By using the modified hyperscaling relation (7.1)
and the cut-off scale ξ ∼ L for the correlation length one finds that24;100

[∆F ] ∼ σLd−1 ∼ t2−α−νLd−1 (3.13)∼ ξ(α+ν−2)/νLd−1 ξ∼L∼ L(α+νd−2)/ν

(7.1)∼ Lθ. (7.3)

Note that the same calculation can be performed for the pure model where the free energy
barrier at the critical point becomes independent of system size (as θ = 0, there).

For the RFIM it is assumed that the violation of hyperscaling exponent is not an
independent critical exponent but related to the other critical exponents by θ = γ/ν 103.
In conjunction with the scaling law (7.3) this implies that at the critical point the ratio



i
i

“thesisA4” — 2012/2/20 — 18:55 — page 83 — #45 i
i

i
i

i
i

7.4. MODIFIED HYPERSCALING 83

[∆F ]/[χ2] should become independent of the system size24. Consequently, when this
ratio is plotted over zB the curves for different system sizes should intersect at the critical
fugacity. As seen in figure 7.6(a) the curves indeed cross in some intersection region,
indicating the location of the critical point in this interval. This intersection interval
zB ∈ [1.35; 1.45] is consistent with the critical fugacity estimates found via finite-size
scaling of the extrema in [χ2], [χ3] and [χ4] found in section 7.3.

If around the critical point a scaling law like (3.16) also holds true for the free energy
barrier, then

[∆F ] = Lθf
(

(zB − zB,cr)L1/ν
)
, (7.4)

where f is the universal scaling function. This means that when [∆F ] · L−θ is plotted
as a function of zBL

1/ν for different system sizes, the different curves should fall on top
of each other if the correct values for the critical exponents θ and ν and the correct
critical fugacity zB,cr are used. Conversely, by varying these three parameters until a
good collapse of the curves is found θ, ν, and zB,cr can be determined. In figure 7.6(b) a
collapse of the curves for different system sizes is shown. The values ν = 2, zB,cr = 1.41
are in good agreement with the results previously found; the value of the critical exponent
θ = 1.39 is in reasonable agreement with the expectation that θ ≈ 1.5.

It is tempting to consider the collapse of the curves in 7.6(b) as an indication that the
critical exponents and the critical fugacity are determined very accurately. This is a
dangerous assumption because three independent fit parameters (θ, ν, and zB,cr) provide
many degrees of freedom that can be used to improve the quality of the collapse. More
importantly, it is not clear that what visually looks like a “good collapse” of the curves
actually corresponds to a good collapse on a reasonable physical scale. To tackle this
issue, an measure of the collapse quality has been developed that not only allows to find
a set of optimal parameters, but also quantifies the consistency of any set of parameters
with the data and therefore allows to estimate the statistical accuracy to which zB,cr, ν,
and θ are measured.

7.4.2 Likelihood of Critical Exponents

To quantify the quality of a collapse, the deviations between the curves are compared to
the uncertainties that are expected due to the necessarily finite number of N obstacle
configurations being considered. For any given values for θ, ν, zB,cr and for each τ := tL1/ν

the values yL := [∆F ]L−θ for different system sizes L scatter around their average with a
variance of σ2. This variance is compared to the statistical uncertainty expected due to
the finite number of N obstacle configurations. The square of the statistical uncertainty
of [∆F ] is

u2
L =

1√
N(N − 1)

N∑
i=1

(∆Fi − [∆F ])2 . (7.5)
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Owing to this uncertainty uL, the yL-values therefore have a statistical uncertainty
δyL := uLL

−θ.

Now, for any τ let δy be the average of the δyL, averaged over the different system sizes.
The ratio σ/δy, then is a measure of the scatter between the different curves compared
to the statistical uncertainty — for that particular value of τ . Since the observable of
interest is the quality of the collapse in some region around the critical point this ratio is
averaged over some interval [−∆τ ; +∆τ ] around the critical point (which is at τ = 0).
This finally gives rise to the likelihood-variable quantifying the quality of the collapse:

R(θ, ν, zB,cr) :=
1

2∆τ

∫ ∆τ

−∆τ

σ(τ)
δy(τ)

dτ. (7.6)

Values of R < 1 imply that the fluctuations between the curves are smaller than random
deviations, and can therefore be considered as fully consistent with a perfect collapse.
Values R > 1 are interpreted as increasingly less consistent. The integration range has
been chosen as ∆τ = 0.2 · 10−1/ν , meaning that e.g. for the L = 10 system the integration
range is |t| ≤ 0.2. The choice is a compromise between the proximity to the critical point
(so that scaling still applies) and a non-zero integration range (to avoid mis-interpreting
an intersection at a single point as a collapse of the curves). By numerically minimizing R,
the best-fitting parameters have been found to be100 zB,cr = 1.42, θ = 1.43, and ν = 2.31.

Interpretation of the Likelihood Variable

The likelihood variable R is a measure of compatibility of the data with the test hypothesis
that for the given parameters the curves yL(τ) for different system sizes become identical
around τ = 0. Since it has been constructed as the ration of the curves’ scatter to
a standard deviation of the statistical fluctuations the value of R can be interpreted
as measuring by how many statistical standard deviations the result differs from the
expected result if the hypothesis of scaling with the respective parameters were valid.
This allows for an analysis that is much more interesting than obtaining a single point
of best collapse, namely to define some criterion for accepting the hypothesis of scaling
with the given parameters (e.g. R ≤ 2), and then to identify the regions in the parameter
space that according to this criterion are possible values for θ, ν, and zB,cr.

In figure 7.7 such candidate regions for the critical exponents are shown, where for each
point in the (θ, ν) plane R has been minimized with respect to zB,cr. The left plot shows
the resulting R values for the ρO = 0.02 WR mixture with two species of asymmetric
obstacles discussed throughout this chapter, and with the system sizes L = 7, 8, . . . , 12
being taken into account. The right plot shows the same analysis, but for free-energy
data extracted from an actual random-field Ising model with uncorrelated Gaussian-
distributed random external fields acting on each lattice site. The ∆Fi data for the RFIM
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Figure 7.7: Likelihoods of the critical exponents θ and ν for the 3D WR model with ρO = 0.02 A-
affine and B-affine obstacles (left plot) and the 3D RFIM on a cubic lattice24;100 (right plot). The
plots show the color-coded R values for the best-fitting critical fugacity (or critical temperature)
at the respective point in the (θ, ν) plane; the scale bar in the right plot also applies to the left
plot. Both plots favor θ ≈ 1.5 as expected for the RFIM, and exclude θ = 0 and θ = d− 1 = 2 by
at least R > 3.

were provided by Richard Vink24;100; the systems taken into account are cubes with
L = 8, 10, . . . , 16 spins in each direction and periodic boundary conditions.

In both models an exact determination of the critical exponents is not possible, but
consistence with the expected RFIM criticality can be shown. Both data sets prefer the
expected θ ≈ 1.5, and the two “competing” values θ = 0 for a conventional critical point
with hyperscaling and θ = d− 1 = 2 for a first order phase transition both are effectively
excluded as they lie in the R > 3 region. The possible regions for the correlation length
exponent ν exclude ν ≈ 0.63 of the pure Ising universality. For the WR model, the
best-fitting critical fugacities in the region R ≤ 1, θ ≤ 1.5 are zB,cr ∈ [1.31; 1.48], which
is consistent with the results obtained from extrapolating the pseudocritical fugacities
and from the intersection region found in figure 7.6(a). The de-facto exclusion of θ = 0
and θ = 2 for the WR mixture with random asymmetric obstacles shows the existence
of a point in the phase diagram that is neither an Ising critical point nor a first-order
phase transition. The same is seen for the RFIM data, which confirms the assumption
that both models are in the same universality class.
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7.5 Conclusion: The Universality Class of 3D Mixtures

and Fluids in the presence of Quenched Disorder

In this chapter the three-dimensional Widom-Rowlinson mixture with randomly located
static obstacles that have an asymmetric coupling to the two species of the mixture has
been investigated. By means of disorder averages over a large set of N ≈ 5000 obstacle
configurations for each system size the existence of a critical fugacity much above that of
the pure model was found. The scaling behavior of the free energy barrier ∆F has been
investigated and a criterion to quantify the accuracy of estimates for the violation of
hyperscaling exponent θ has been developed and applied. By comparison with simulation
data of the random-field Ising model it has been confirmed that the universality class
of the mixture with asymmetric obstacles is that of the RFIM. This is consistent with
earlier findings for another non-additive hard sphere mixture with static obstacles, the
Asakura-Oosawa mixture26. While a precise measurement of the violation of hyperscaling
exponent θ has not been possible, a conventional critical point obeying hyperscaling and
a first order phase transition are excluded by the results. The R ≤ 1 candidate region for
θ found in both models, the WR mixture and the actual random-field Ising model, is in
good agreement with newer and more precise results9.

In all of the above an equal density of A-affine and B-affine obstacles has been used.
This choice has been made for convenience only, as it simplifies the numerical analysis
because A↔B symmetry is restored in the average over all disorder configurations. Just
as an Ising model with random fields not drawn from a distribution with an average of
zero still constitutes an RFIM model (since the shift from an average of zero is simply
compensated by a non-zero homogeneous external field) an unequal number of both
obstacle species should not change the universality class of the model, but merely shift
the phase transition away from zA = zB. A particularly interesting choice of obstacles
in this respect is using obstacles that have a hard-core repulsion with the A particles
but no interaction with the B particles. In this case, the mapping of the WR mixture
on a fluid model can still be performed, and maps on a fluid with obstacles that have a
hard-core repulsion with the fluid particles. The results of this chapter can therefore also
be considered a confirmation of the hypothesis by de Gennes13 that fluids in the presence
of random obstacles should lie in the universality class of the random-field Ising model.
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Chapter 8

2D Fluids and Mixtures

with Asymmetric Obstacles

In the previous chapter it has been argued that fluids in the presence of randomly-
distributed non-neutral obstacles belong to the universality class of the random-field Ising
model (RFIM). In d = 3 dimensions this implies the existence of a liquid↔gas transition
that ends in a hyperscaling violating critical point. The case of fluids with quenched
disorder in d = 2 dimensions is radically different. It is known that for sufficiently weak
fields even at zero temperature a spontaneous magnetization is absent, provided the proper
homogeneous external magnetic field is applied97;98. Furthermore, a first-order phase
transition between phases of different magnetizations cannot exist, there10. Consequently,
if a fluid with static obstacles indeed exhibits RFIM universality then no notion of liquid
and gas, and hence no transition between these two phases should exist.

A famous argument for the elimination of long-range order in the 2D RFIM is the Imry-Ma
argument105. Consider an RFIM system with magnetic fields acting on each lattice site
such that the average of the random magnetic field is zeroa. Now, consider an ordered
domain of spins characterized by a length scale l. The formation of such a domain is
associated with an interface free energy cost that scales ∼ ld−1. The average over the
random fields in the domain is zero, but exhibits Poissonian fluctuations. Thus, on
average the formation of the domain of appropriate spin direction is associated with a
free energy gain from aligning according to the random field that scales ∼ ld/2. From
the scaling of these two terms one sees that for d ≤ 2 the formation of large domains
(and thus the absence of a long-range order) is feasible, whereas for d > 2 the interface
contribution inhibits the formation of large domains.

A variant of the Imry-Ma argument (with the obstacles being interpreted as the random
field) should hold for the Widom-Rowlinson mixture. In this chapter, the hypothesis of the
absence of a liquid↔gas transition for two dimensional fluids in the presence of quenched
disorder is tested. In the mixture picture it is shown that at non-zero temperatures
macroscopic demixing is replaced by the formation of small domains whose shapes are
defined by the random obstacles. Finally, a possible real-world system where the findings
may be of relevance, eukaryotic cells, is briefly discussed. Results from molecular dynamics

aNon-zero averages can be compensated by applying an appropriate uniform external magnetic field.
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simulations that indicate the possible applicability of the WR model’s results to the much
more complicated cellular systems are presented.

8.1 Choice of Quenched Disorder

Two cases of random obstacles with a preferred affinity to one of the phases have been
investigated, which are the maximally asymmetric obstacles and the semidiluted obstacles.
The maximally asymmetric obstacles have a hard-core interaction with the A particles at
a center-to-center distance of one, and do not interact with the B particles at all. This
choice of obstacles is particularly interesting because it preserves the mapping of the
WR mixture on a fluid model (see chapter 2.1.2). Results for the WR mixture with
this choice of obstacles therefore directly imply results for a fluid model with random
de-wetting obstacles. The semidiluted obstacles have a hard-core interaction with the A
particles at a center-to-center distance of one, and a hard-core interaction with the B
particles at a smaller center-to-center distance (0.75). Such obstacles destroy the mapping
of the mixture on a fluid model, but are interesting in the sense that their interaction
contains an aspect that should result in RFIM universality (the asymmetric coupling
to the mixture species) and at the same time a dilution component that might point
towards site-diluted Ising universality (the exclusion of volume for both species of the
mixture). Such an additional dilution component is likely to be present also in real
mixtures with quenched obstacles, such as a plasma membrane of different lipids and
immobile proteins (see section 8.4). As will be shown, this additional dilution component
does not destroy the RFIM universality of the mixture. This provides additional evidence
that mixtures and fluids with any amount of asymmetric coupling of the obstacles behave
as a random-field Ising model.

As in the case of the symmetric obstacles in chapter 6, for each obstacle configuration
representing a macroscopic obstacle density ρO, the actual number of obstacles has been
chosen at random from a Poissonian distribution with average ρOV , and the obstacles have
again been put into the system at random locations independently. For the simulation
of the mixture, successive umbrella sampling with the single particle moves defined in
section 4.2 has been employed — with the additional rule that MC steps that would
lead to a forbidden overlap of a mixture particle and an obstacle are rejected. The pure
model’s exact result for the first window of successive umbrella sampling (equation 4.14)
has been used as the sampling weight in the first window.

8.2 Elimination of the Liquid↔Gas Transition

In figure 8.1 the order parameter distributions for eight randomly-selected configurations
of semidiluted obstacles are shown for different fugacities. With the exception of the
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Figure 8.1: Randomly selected order parameter distributions for the two-dimensional L = 20
WR mixture with ρO = 0.04 semidiluted obstacles for different fugacities. Same colors between
different graphs correspond to the same obstacle configuration. The curves indicate the existence
of a supercritical pseudophase at zB = 1.6 (figure a) and the coexistence of a liquid and a gas
pseudophase at zB = 2.2 (indicated in figure (c) by the presence of a peak at high and low ρA,
respectively — note the logarithmic scale on this plot). At intermediate fugacities (figure b),
overlapping peaks similar to the OPD around a critical point are observed. The OPD colored
in red differs from the other OPDs in that it is not a liquid pseudophase that coexists with the
gas pseudophase, but a pseudophase with only about half the A density of a liquid phase (see
figure 8.2). Since it will be shown that in the thermodynamic limit coexistence of any two phases
is absent, the actual nature of the coexisting pseudophases is not explicitly investigated.
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Figure 8.2: Detailed investigation of the obstacle configuration that lead to the order parameter
distributions colored in red in figure 8.1. In the left plot, the OPDs for different zB are shown (with
zA chosen according to lMS of equation 3.22). For zB = 2.1, 2.2, 2.3 coexistence between a gas and
a “half-filled” pseudophase is seen, but at higher fugacities the half-filled pseudophase becomes
suppressed and gas and liquid pseudophase exist. A typical state of the half-filled pseudophase
is seen in the right image, where the A particles (pale) and the obstacles (red) are shown. The
cause of this pseudophase is the random existence of a large cavity that is roughly half of the
system (remember that periodic boundary conditions are used), and causes this half of the system
to have a different affinity for the A particles than the other half (where the obstacles make the
presence of A particles less favorable).

configuration whose OPD is colored in red, all curves are qualitatively consistent with the
existence of a supercritical region at low zB, and the coexistence of an A and a B phase at
high fugacities: At zB = 1.6 the curves all show a single peak that can be attributed to a
supercritical pseudophase. At zB = 2.2, all OPDs with the exception of the red one show
what could be attributed to the coexistence between a liquid and a gas pseudophaseb. At
the intermediate fugacity zB = 1.9 an overlap between two peaks is seen.

The only exception to this interpretation is the obstacle configuration colored in red. As
shown in figure 8.2 this configuration is characterized by a large cavity, which in the sense
of the Imry-Ma argument is a region that locally has less rejection for the A particles
than the system on average. Note that by this definition a cavity is not required to be
void of obstacles, and can also have an irregular shape. In this case, the large cavity
causes the existence of a stable cavity-filling pseudophase (shown in figure 8.2) which

bStrictly speaking the case of semidiluted obstacles does not map on a fluid model, and “A pseudophase”

and “B pseudophase” would be the formally correct terms. But since the qualitatively same results as

with in the maximally asymmetric obstacles are seen, the less bulky terms “liquid” and “gas” are used

throughout this section, instead.
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Figure 8.3: Results for the U1 disorder averaged cumulant (equation 6.3) for the 2D WR model
with the two different cases of asymmetric obstacles introduced in the text. All curves drop from
values indicating a single pseudophase to U1 ≈ 1, which indicates two coexisting pseudophases.
No cumulant intersection is seen, which indicates the absence of a critical point with hyperscaling.
Instead, the curves appear as if with increasing system size they are merely shifted towards higher
zB (see also figure 8.4). The apparent saturation of the curves in the left plot is an artifact of
temperature reweighting reaching its limit (see section 4.3), as simulations were performed at the
maximum slope of U1. For the semidiluted obstacles simulation results from zB = 1.6, 1.7, . . . , 2.3
were combined (section 4.3.2).

coexists with the gas pseudophase of figure 8.1(c). Such “cavity dominated” configurations
appear more frequently in the two dimensional model than in three dimensions. This is
expected by the Imry-Ma argument that explicitly claims that cavities become relevant
in two dimensions. However, if zB is increased to sufficiently high values the peak of the
intermediate cavity-filling state in the OPD vanishes, and a coexistence between a liquid
and a gas peak develops (see figure 8.2).

Considering that for this model RFIM universality and hence a lack of a notion of liquid
and gas phase is expected, the consistent finding of order parameter distributions that can
be attributed to the coexistence of a liquid and a gas pseudophase may be a surprise. The
resolution of this apparent contradiction between theory and computer simulation is to
consider finite-size effects. In figure 8.3 disorder averaged cumulants U1 (equation 6.3) for
different system sizes and both types of obstacles are shown. For each individual system
size a decay of the cumulant value from supercriticality (U1 ≈ π/2) to the coexistence of
two pseudophases (U1 ≈ 1) is seen, but the transition region shifts towards larger zB with
increasing system size. As shown in figure 8.4(a), the same qualitative behavior holds
true for the disorder averaged cumulant [U1] defined in equation 6.2. The data shown in
figure 8.3 and 8.4 indicate that the minimum zB at which coexistence between a liquid
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Figure 8.4: Results for the disorder averaged cumulant [U1] (equation 6.2) for the WR model
with ρO = 0.04 semidiluted obstacles. Figure (a) shows [U1] as a function of zB, which qualitatively
looks identical to the other definition of a disorder averaged cumulant shown in figure 8.3. In
figure (b) the same data are displayed over zB−sL, where s = 0.0158(2) has been chosen such that
the curves for different system sizes L overlap. The red error bars shown are the uncertainties of
the L = 25 system due to the finite number of obstacle configurations being taken into account to
compute [U1]. The collapse of the curves seen is compatible with the statement that the fugacities
at which a liquid and a gas pseudophase can coexist ([U1] ≈ 1) diverge as L→∞.
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Figure 8.5: Results for maximally asymmetric obstacles arranged on a regular square grid. Figure
(a) shows a cumulant intersection indicating a regular critical point with hyperscaling. In figure
(b) the critical fugacities are shown as a function of ρO. The critical fugacities are determined
as a combined estimate from the intersections in the U1 cumulant and the extrapolation of the
locations of the χ2 maxima (error bars correspond to an “eye-gauged” combined uncertainty).

and a gas pseudophase can be observed approaches infinity as the system size approaches
the thermodynamic limit. Thus, in the thermodynamic limit no coexisting gas and liquid
exist for any finite zB. As shown in figure 8.4(b), the transition fugacities of the cumulant
curves are indeed compatible with a linear increase with system size.

The above argument for the elimination of the phase transition does not take into account
the nature of the coexisting pseudophases. This is not required because coexistence
between any pseudophases is expected to vanish in the thermodynamic limit altogether.
This does not mean that random cavities become irrelevant in the thermodynamic limit.
Rather, the network of many cavities of different sizes, shapes, and affinities are the cause
that a small change in µA results only in a small response in ρA. As demonstrated in
section 8.3 the peaks in the OPD that have been attributed to supercritical pseudophases
in fact are characterized by an alignment of the mixture particles to the structure of
cavities formed by the obstacles.

8.2.1 Non-random Obstacles

To demonstrate the importance of randomness in the obstacle positions, systems in which
the maximally asymmetric obstacles are arranged on a regular square grid have been
investigated. The number of obstacles is then not determined randomly from a Poissonian
distribution, but instead determined by the mesh size of the square grid and the system
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size, which must of course be an integer multiple of the mesh size. Since for each system
size there is only one configuration of obstacles, taking disorder averages is not required
and the simulations are computationally cheap. As demonstrated by the cumulant graph
in figure 8.5(a) a critical point with hyperscaling is recovered at some slightly higher
fugacity (i.e. a lower temperature than in the pure model without obstacles). As in the
case of randomly located symmetric obstacles (chapter 6) the critical fugacity increases
with ρO, as shown in figure 8.5(b). Again, at sufficiently high obstacle densities the phase
transition must be destroyed (at the very least at ρO = 0.5 where no A particle can be
inserted into the system at any location).

8.3 Structural Properties: Homogeneity Breaking and Do-

main Sizes

To demonstrate the importance of the complicated structure formed by the obstacles and
the alignment of the mixture particles to cavities, the WR mixture has been investigated
in the microcanonical ensemble, which also allows for much larger system sizes than
previously. To simulate the microcanonical ensemble, single particle insertion and removal
steps have been used, similar to those described in section 2.2.2.1, but with modified
acceptance criteria for the proposed moves: The particle numbers NA and NB must
stay within a small interval that is typically the size of about 1% of the actual particle
numbersc. All proposed moves that do not leave these intervals and do not lead to an
excluded-volume overlap between particles and obstacles are accepted. In the following,
only the case with an equal density of A and B particles ρA = ρB is considered. The only
thermodynamic parameter left is the total density ρ = ρA + ρB.

Figure 8.6 shows four randomly selected states for the same ρO = 0.04 configuration of
maximally asymmetric obstacles at a density ρ = 1.8. This density is above the critical
density ρcr ≈ 1.566(3) of the pure model38, and typical states for the pure model would
show a macroscopic demixing (as in the right image of figure 2.1). Instead, states that
resemble near-critical fluctuations are seen, i.e. randomly appearing transient domains
of various finite sizes that appear in the vicinity of a critical point (c.f. center image of
figure 2.1). However, the domains in figure 8.6 differ from critical fluctuations in two key
aspects.

The first difference is the size of the domains as a function of the density. In the
pure WR mixture, the correlation length diverges with a power law ∼ |t|−ν (with the
reduced temperature t defined in equation 3.4) when the critical point is approached
from zB < zB,cr. Consequently, the domains formed by the near-critical fluctuations

cSince no indication of the results’ sensitivity to density changes on the order of 1% were found, these

quasi-microcanonical simulations can be considered equivalent to proper microcanonical simulations (for

which single particle translations would be adequate Monte Carlo steps).
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Figure 8.6: Randomly selected microstates of a 60× 60 WR system with ρO = 0.04 maximally
asymmetric obstacles at density ρ = 1.8, which is above the demixing density of the pure model.
Obstacles are drawn in black. The structures seen visually resemble near-critical fluctuations, but
are different in that they are not spatially indifferent (see figure 8.8) and react differently to a
density change (figure 8.7).
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Figure 8.7: Domain sizes as a function of the particle density ρ. In the left image, the
determination of Pi(l) is demonstrated (a definition of this probability distribution is given in
the text). Shown is a state of A particles (green), B particles (red), obstacles (blue), and the
largest line segments passing through A domains that were found (black). The right plot shows
the average lengths of the segments for the pure WR mixture and the WR mixture with ρO = 0.04
maximally asymmetric obstacles as a function of ρ. In the pure model, a strong increase around
the critical density ρcr ≈ 1.56 is seen, that eventually becomes a divergence for L→∞. In the
presence of obstacles, the domain sizes appear to remain finite, as required for the absence of a
phase transition.
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dramatically grow as the critical point is approached, and ultimately become macroscopic
phases at zB = zB,cr (in the simulations this behavior is of course limited by the finite
size of the systems). Since in the case of randomly distributed asymmetric obstacles no
macroscopic A and B phases coexist in the thermodynamic limit, the typical size of the
domains seen in figure 8.6 can not show this type of growth. Consequently, a different
growth rate is expected around the critical density. Rather than measuring a correlation
length according to some suitable definition, a more direct measure of the domain size
has been used.

For a fixed state, horizontal and vertical lines are superimposed on the system. Then,
the largest possible line segments passing through an A domains are identified, where
such a segment is defined as a maximum interval on the line whose end-points lie on
mutually different A particles and which is not crossed by a B particle. The line segments
take into account the periodic boundary conditions, i.e. they do not end at the edges
of the box but continue on the opposite side. In the extreme case that such a line
segment hits itself because of the periodic boundary conditions (because there was no
B particle crossing the line at all), it counts as a line segment with size L. An example
of determining such segments is shown in the left image of figure 8.7. The lengths l of
the segments have been collected over many states and for many (300) different obstacle
configurations, resulting in probability distributions Pi(l) (where again the index i stands
for the respective configuration of obstacles). The average segments size [〈l〉] can be
considered as a measure for a typical diameter of a domain. The so-defined typical
diameters of the domains for the pure WR mixture and the WR mixture with maximally
asymmetric obstacles are shown in the right plot of figure 8.7. Around the critical density
ρ ≈ 1.56 the domain sizes behave very differently: While the domain size measured for
the pure model increases very strongly (and is restricted from diverging only by the finite
size of the system), the domains seen in the case of asymmetric obstacles do not show
such a rise.

The other key difference between critical fluctuations and the structures seen in figure 8.6
is that critical fluctuations are spatially indifferent, whereas the structures in the presence
of asymmetric obstacles appear at preferred locations. This behavior can be visualized
by defining a local measure for a spatial affinity for A particles. To this end, the systems
are divided into L2 square cells of size one. Then, during the microcanonical simulation
for each cell k two counters CA

k and CB
k count how often the cell is found to contain an

A and a B particle, respectively. To eliminate a possible dependence of these counters
from the initial state of the simulation, the counters are collected over 20 independent
simulation runs for each obstacle configuration.d From these counters, the local affinity

dThe outcome of this averaging over 20 runs in fact is that there is no dependence on the initial state,

anyways.
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Figure 8.8: Color coded local affinities (equation 8.1) for the system shown in figure 8.6 at
different densities ρ = 1.4, ρ = 1.8, and ρ = 2. Colors range from white (Ak = −1) to black
(Ak = 1), the orange dots are the obstacles. The image highlights the fate of the structures shown
in 8.6: Rather than growing towards macroscopic length scales and causing a phase separation as
in the case of the near-critical fluctuations, the structures become more spatially selective and
freeze-in to a structure defined by the arrangement of the obstacles.
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Figure 8.9: Analysis of the inhomogeneity values A defined in equation 8.1. Figure (a) shows
histograms of all the inhomogeneity values found for all cells, collected over 40 different obstacle
configurations. Around the critical density ρcr = 1.56 of the pure model the shape of the histograms
changes from that of a single peak around A = 0 towards a bimodal shape with peaks at A ≈ ±1.
This resembles the behavior of the OPD at a phase transition. Figure (b) shows that despite this
behavior, there is no phase transition with an order parameter |A|, which is defined as the average
absolute value of all A over all obstacle configurations and cells: As a function of ρ, |A| shows an
increase that resembles the finite-size behavior of an order parameter, but is insensitive to the
system size.

for the A particles can be defined as

Ak :=
CA
k − CB

k

CA
k + CB

k

. (8.1)

In figure 8.8 the color-coded A-values are shown for a configuration with maximally
asymmetric obstacles (the same configuration as in figure 8.6) at three different densities.
At all three densities, a spatial inhomogeneity caused by the presence of the obstacles is
seen. With increasing density these inhomogeneities become more pronounced This effect
explains why macroscopic demixing is prevented: When approaching the critical density
of the pure model from below, a correlation length develops and small domains appear.
In the pure model the size of the domains grows to infinity when approaching the critical
point, which ultimately causes the phase transition. When obstacles are present, the
domain growth stops at a size scale determined by the obstacles. Upon further increase
of the density, the domains freeze into their preferential shapes, rather than continuing to
grow.

A more conventional picture of the freezing-in can be obtained by collecting a histogram of
all Ak values over several obstacle configurations. These histograms for different densities
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are shown in figure 8.9(a) for the case of ρO = 0.04 maximally asymmetric obstacles.
Because of the quenched obstacles, some entries for Ak ≈ −1 always exist, which gives
the histogram some asymmetry around A = 0 that is particularly pronounced at low
densities, where the expected symmetric peak around A = 0 is modified to a peak around
some A > 0 with a long tail towards A = −1. Apart from this systematic skew, the
histograms show a remarkable similarity to the order parameter distributions of systems
undergoing a phase transition: At ρ = 1, a single peak is seen. When the density is
increased, this peak broadens and ultimately leads to a bimodal distribution.

This shape of the histograms motivates the question: Does the freezing of the system into
domains of a preferential structure constitute a phase transition with the order parameter
|A|, the average of all |Ak| taken over all cells and all obstacle configurations? According
to my simulation data the answer to this question is “probably not”. As shown in figure
8.9(b) the value of |A| as a function of ρ does behave like the order parameter in a finite
system (c.f. figure 3.2a). But contrary to the order parameter of a phase transition, the
curve appears insensitive to the size of the system, and does not seem to converge towards
a transition from |A| = 0 to |A| > 0 as L → ∞. The insensitivity of |A| to the system
size L suggests that the freezing-in into a preferred domain shape is a gradual process,
even in the thermodynamic limit.

8.4 Real-world Systems: Cell Membranes

So far, this chapter has dealt with the discussion of the 2D Widom-Rowlinson mixture
in the presence of quenched disorder, which has been chosen as a generic model for a
binary mixture with short-ranged interactions. Realistic systems that may be considered
two dimensional binary mixtures are cell membranes, whose main structure is formed
by lipids that have a hydrophilic head group and one or more hydrophobic carbon chain
tails. In water these lipids can arrange into the bilayer structure indicated in figure 8.10.
Such bilayers can form vesicles of various sizes, and also are the basic structure of cell
membranes. Experimental model systems are giant unilamellar vesicles (GUVs) and
the related giant plasma membrane vesicles (GPMVs). GUVs are created “from scratch”
from dried solutions of lipids and can grow to sizes up to a few tens of micrometers106;107,
while GPMVs are grown from real biological cell membranes by a chemical process called
“blebbing”108;109 and have typical sizes in the order of ten micrometers81;84.

In fluorescence microscopy experiments, a demixing transition has been observed in
GPMVs and in GUVs composed of different lipid species81;84. Based on the observation
of interfaces and near-critical fluctuations it has been argued that this demixing lies in the
universality class of the two dimensional Ising model29 (as does the demixing in the pure
WR mixture). Plasma membranes of real cells on the other hand are not seen to undergo
a demixing transition of its lipid components, even under circumstances where attached
GPMVs grown from this cell do demix110;111. Instead, in eukaryotic cells a heterogeneous
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Figure 8.10: Basic structure of a plasma membrane and its constituents. On the left side
the chemical structure of cholesterol (CHOL) and dipalmitoyl-phosphatidylcholine (DPPC) are
shown (both structures were taken from Wikipedia but are licensed as public domain). In water,
DPPC molecules can arrange to form the bilayer structure that is shown in the right image of a
computer simulation (imagine the structure to extent into the paper plane). The hydrophilic part
of a DPPC head (represented by two blue spheres per molecule) points towards the water (small
bright blue spheres). The hydrophobic parts of the DPPC molecule (red) are inside the bilayer
and screened from the surrounding water. Cholesterol (yellow) aggregates inside the membrane
between the DPPC tails.
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micro- or nanostructure is expected, that is characterized by the appearance of small
transient microstructures called lipid rafts 31;32;33. These rafts are described as regions
that, compared to their surroundings, are enriched in cholesterol, and that cluster proteins
to work as “signaling platforms”31.

It has been proposed that the reason why microdomains instead of a macroscopic demixing
is seen in live cells is the presence of static obstacles in the cell membrane that act on the
lipid mixture such as random site dilutions30. As possible realizations of such obstacles,
trans-membrane proteins that are attached to an interior structure of the cell, e.g. the
cytoskeleton or an actin network underlying the membrane), were proposed. In such
a system, the demixing temperature is lowered (see chapter 6), which is a possible
explanation why GPMVs attached to a cell demix while the cell does not. It is however
very unlikely that the static obstacles have a completely equal affinity to both of the phases
that would form in the free membrane. In fact, according to the raft hypothesis at least
the mobile proteins must have a preferred affinity, because otherwise the microdomains
could not cluster them together. According to the results in this and the previous chapter,
RFIM universality rather than site-diluted Ising universality would be expected, instead.
This of course has dramatic consequences for the membrane: Firstly, the presence of
asymmetric obstacles should entirely prevent a macroscopic demixing, rather than merely
reduce the transition temperature. Secondly, raft-like microstructures would appear that
are not critical fluctuations but instead have the characteristics of the RFIM-like domains
shown in figure 8.6. That is, they have a reduced sensitivity to temperature (figure 8.7)
and appear at preferential locations that are determined by the obstacle configuration.

The assumption that static obstacles are the key mechanism to account for the deviation
between model membranes and real cells is compelling but not coercible. Cell membranes
ultimately are very complex systems, exhibiting many features not accounted for in
the simulations of the WR model in above. First of all, live cells are not in thermal
equilibrium, and constant lipid exchange of the membrane with its surrounding may
prevent the formation of the large equilibrium domains112. Then, the assumption of
random locations may not hold. If the obstacles are indeed attached to some interior
cell structure then the distribution of obstacles may be not be well described by random
obstacles. Some correlated placement of the obstacles may be a better representation of
the disorder ensemble111;113, which might destroy RFIM universality (as demonstrated
in section 8.2.1). Also, while it has been argued that any amount of preference of the
obstacles to one of the forming phases should suffice to induce RFIM universality and
prevent a demixing transition in the thermodynamic limit, plasma membranes are not
infinitely large. Consequently, the originally proposed site-diluted Ising universality30

may still be a viable option if the obstacles’ asymmetry is so small that a crossover length
scale from site-diluted Ising universality to RFIM universality exists that is larger than
the size of a cell. Lastly, cell membranes are not flat two dimensional entities, but can
bend and fluctuate in the third dimension114, which constitutes degrees of freedom that
are not captured in the simulations of the 2D WR model.
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Figure 8.11: Snapshot from a molecular dynamic simulation of a plasma membrane consisting of
DPPC, DUPC, and CHOL as described in the text (water not shown). The image shows the state
of the membrane 6µs after starting from a mixed state. In the foreground, a slab arrangement of
a pseudophase consisting of DPPC and CHOL is seen that interfaces a pseudophase consisting of
mainly DUPC and almost no CHOL. In the background, a shape that resembles a DPPC droplet
is seen. But as shown in figure 8.12, this structure actually is a slab of a CHOL-rich pseudophase.
Since a two slab configuration is extremely stable in MD simulations, this state is considered
equilibrated and interpreted as an indication that the pure membrane, i.e. without any static
obstacles, demixes into two macroscopic phases.

8.4.1 Molecular Dynamics Simulations of Membranes

To test if the results found for the Widom-Rowlinson mixture can apply to real cells,
a more detailed model has been used to demonstrate that structure formation caused
by static obstacles still holds, there. As starting point a GROMACS115;116 molecular
dynamics (MD) simulation of a membrane bilayer consisting of cholesterol (CHOL) and
two different species of phospholipids has been used. The first species is dipalmitoyl-
phosphatidylcholine (see figure 8.10) with fully saturated carbon tails (DPPC), the
other species is a modification of the DPPC molecule with modified tail properties that
mimic multiple unsaturated bonds (DUPC)117. For the representation of the system in
the simulation, the MARTINI force field118 has been used, which provides a near-atomic
resolution of 3-4 atoms per simulation bead. The initial setup of the pure membrane
without obstacles was provided by Jelger Risselada, and had been shown to demix into
two distinct pseudophases117, one consisting mainly of DPPC and CHOL, and the other
consisting of mainly DUPC and being lean in CHOL.
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Figure 8.12: The CHOL distribution of the state shown in figure 8.11 as a view from the top
onto the membrane surface. The system is in a state consisting of two slabs of a CHOL-rich
pseudophase and a CHOL-lean pseudophase. The appearance of slab configurations indicates that
in the thermodynamic limit the pseudophases become proper phases, as they are indeed seen in
experiments on GUVs and GMPVs.
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This demixing behavior of the “pure membrane” was studied using a 44× 29 nanometer
sized membrane patch consisting of 1408 DPPC molecules, 2184 DUPC molecules, and
1532 CHOL molecules. In the initial state, the lipids already form a bilayer but have no
specific lateral order, i.e. they are mixed. The simulation of this system is computationally
demanding: One microsecond of simulated time requires roughly a week of CPU time on
three nodes with eight 2.4 GHz processors each. Consequently, only a single simulation
run has been performed. After 6 µs system time simulatede this bilayer exhibits the
demixing into a pseudophase consisting of mainly DPPC and CHOL, and a pseudophase
consisting of mainly DUPC and being depleted of CHOL. The stripe geometry (which is
particularly apparent in the distribution of CHOL, cf. figure 8.12) indicates that in the
thermodynamic limit these pseudophases become proper macroscopic phases as seen in
experiments81;84.

From the discussion in chapter 5 only a configuration with a single slab of either pseu-
dophase would be considered a sign of a phase separation. The “two-slab” configuration
of figure 8.11 and 8.12 clearly does not minimize the interface between the two coexisting
pseudophases. But in an MD simulation, in which particles are restricted to perform
physical motions, the situation is slightly different from the Monte Carlo simulations of the
WR model: Once the two CHOL slabs are formed they are stable against de-forming, and
also prevent that the DUPC lipids separating them can diffuse away. A merging of the two
slabs may therefore lie outside of achievable time scales in this simulation. Because of local
minimization of the interface between the two pseudophases, the “two-slab” configuration
is considered an indication of a phase separation existing in the thermodynamic limit.

8.4.2 A Membrane with Static Obstacles

To model the presence of quenched obstacles preferring one of the forming phases a simple
choice has been made: For some DPPC molecules, the bead containing the phosphate
atom has been immobilized in the lateral direction. These fixed molecules are obstacles
as they are immobile with respect to the demixing motion, and they have the same
preferential affinity to the pseudophase formed by DPPC and CHOL as a mobile DPPC
molecule. On both sides of the bilayer, the same number of obstacles (79 of them)
have been used and put on the same locations, which may be considered representing
trans-membrane obstacles. The laterally-immobilized beads (and hence the full obstacle)
are still allowed to move freely in the z-direction. The membrane can hence still undergo
the bending fluctuations that a pure membrane performs. The purpose of preserving
these fluctuations is to show that they do not cause incompatibility with the results from
the simulation of the WR mixture, in which no analogue of bending exists. Physically,
such obstacles can be considered modeling either very long trans-membrane obstacles

eSimulated times should be considered as an order of magnitude for the physical time, not an exact

value. It is know that diffusion rates in the MARTINI force field are roughly a factor 4 larger than in

atomistic simulations and experiments118.
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that the membrane fluctuates around, or to represent models that are attached to a very
soft underlying network.

In figure 8.13 the state of the membrane with static obstacles after a simulation time of
6 µs is shown — the simulation was started in a state in which the lipids are randomly
mixed. Clearly, there is no indication of a stripe geometry. Instead, domains of DPPC
and CHOL that form around the regions with the highest obstacle density are seen (this
is of course equivalent to saying that a DUPC domain arranges such that the obstacles
are avoided). The hidden layer of the membrane that is not visible in figure 8.13 looks
identical, since it has the same obstacle configuration and a coupling between the layers
exists117. Figure 8.14 shows a snapshot for the same obstacle configuration, but of an
independent simulation run and after 10 µs. Again, no formation of a stripe that would
indicate a macroscopic demixing is found, but instead domains that arrange according to
the obstacles are seen.

Because of the extreme amount of CPU time required for the molecular dynamics
simulations, thermal averaged inhomogeneities Ak according to (8.1) have not been
collected. A transition between different domain shapes is not expected to happen at time
scales accessible with this simulation. However, a comparison to the inhomogeneities of the
Widom-Rowlinson model can be made. To this end, a WR mixture in the microcanonical
ensemble has been simulated. The number of A and B particles have been chosen to equal
the number of DPPC and DUPC particles in a single layer of the membrane. The size of
the system has been chosen as 36× 24 resulting in a density ρ ≈ 2, which is above the
critical density of the pure WR mixture. In other words: Since the pure membrane was
shown to macroscopically demix, a density in which the pure WR mixture macroscopically
demixes has been chosen. The obstacles have been placed at the same lateral locations as
in case of the membrane simulation, and the inhomogeneity values Ak according to 8.1
have been obtained.

Figure 8.15 shows the color-coded inhomogeneities for the two different obstacle choices
that were used previously (the maximally asymmetric obstacles and the semidiluted
obstacles). By definition of Ak, the images show the preferred regions for the formation
of A domains (dark regions, corresponding to DUPC domains) and B domains (bright
regions, corresponding to DPPC and CHOL domains)f. Qualitatively, the preferred
domains are the same for both cases of obstacles; the preferential locations for the
maximally asymmetric obstacles are merely “sharper”. Visual comparison shows that the
domain structures seen in the MD simulations (figures 8.13 and 8.14) are in agreement
with the preferred locations in figure 8.15. This can be considered as a sign that the
results found for the WR mixture (the prevention of a macroscopic demixing and the
appearance of domains that appear at preferred locations) also hold in more realistic
membrane models and possibly for real plasma membranesg.

fNote that individual domains do not necessarily look identical to the shapes of preferred regions.
gBut real membranes are much more complex than the membrane model being used here.
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Figure 8.13: Simulation results for the membrane configuration shown in figure 8.11 and 8.12,
but with static obstacles (blue). The images show the state of the membrane 6 µs after starting
in a mixed initial state. The upper image shows the top view of the membrane, where the head
group of each phospholipid is represented with a single sphere. The CHOL, which resides inside
the bilayer (c.f. figure 8.10), is shown separately in the lower image. The slab configuration
indicating a macroscopic demixing that was found for the pure membrane (figures 8.11 and 8.12)
does not appear anymore. Instead, small domains appear that are determined by the obstacle
configuration. The location of the domains is in good agreement with predictions from Monte
Carlo simulations (figure 8.15).
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Figure 8.14: Analogue of figure 8.13, but from a simulation performed with a different set of
random numbers and after a simulation over 10 µs. Again, the slab geometry is eliminated in favor
of a domain structure. As in figure 8.13 the locations of the domains compare well to the Monte
Carlo results in figure 8.15. Note that even though the head groups of the obstacle molecules
are laterally fixed, their tails may freely move within this constraint. Due to periodic boundary
conditions, obstacle molecules close to the boundary can therefore appear at the opposite side of
the simulation box (compared to figure 8.13).
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Figure 8.15: Monte Carlo simulation of a 36× 24 two-dimensional Widom-Rowlinson model
with NA and NB equal to half the number of mobile DUPC and DPPC molecules used in the MD
simulations, respectively. Obstacles have been placed at the (lateral) locations that DPPC head
beads were fixed to in the MD simulation The upper and the lower image show the color-coded
Ak values for the case of maximally asymmetric obstacles and semidiluted obstacles, respectively.
Darker and brighter regions show a preference for A and B particles, respectively (c.f. figure 8.8).
In both cases of obstacles, clear preferential locations for domains are seen, which coincide well
with the locations where the domains are seen in figure 8.13 and figure 8.14.
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8.5 Summary: Elimination of a Phase Transition

In this chapter, the two dimensional Widom-Rowlinson model in the presence of asym-
metric obstacles has been investigated for two different types of obstacles. Consistent
with simulations of similar lattice based systems28, coexistence between pseudophases
has been found, but at even higher fugacities than in case of symmetric obstacles. By
considering the finite-size dependence of this coexistence region it has been argued that
in the thermodynamic limit no phase coexistence and thus no phase transition between a
liquid and a gas phase exists for any finite fugacity. Since the WR model is in the same
universality class as fluids undergoing a liquid↔gas phase transition this suggests that
two dimensional fluids in the presence of quenched disorder do not have a liquid or a
gas phase at any non-zero temperature. Similarly, two-dimensional binary mixtures with
short-ranged interactions in the presence of randomly placed obstacles with an unequal
coupling to the particle species should not macroscopically demix at finite temperatures.
In combination with the results of chapter 6 it has been shown that for the elimination of
the phase transition two ingredients are both required: an asymmetry in the interaction
of the obstacles and a sufficient randomness in their distribution.

By simulation in the microcanonical ensemble the formation of finite domains has been
found. These domains were shown to be transient at temperatures not too far below
the critical point of the pure model, but spatially selective. It has been shown that by
cooling the system the spatial selectivity of the domains becomes more pronounced, and
the particles “freeze-in” to a structure determined by the obstacles — such a freezing
also explains the absence of a macroscopic demixing. By considering simulation results
for different system sizes it has been argued that this freezing into a preferred structure
is a gradual process, and does not constitute a phase transition by itself.

Finally, plasma membranes of cells have been briefly introduced as an example of a
real-world system. It has been argued that with respect to lateral arrangement of
their constituting lipids they may be considered a binary mixture in the presence of
quenched disorder. Molecular dynamics simulations of a model membrane with near-
atomic resolution have been performed. As predicted by the results for the Widom-
Rowlinson model, an absence of a macroscopic demixing in favor of the formation of
spatially selective domains has been found. The elimination of macroscopic demixing is in
agreement with experimental results, in which no demixing transition is observed in live
eukaryotic cells; the small domains enriched in cholesterol that were found are compatible
with the lipid raft hypothesis. A feature predicted and found is the spatial selectivity for
the cholesterol rich domains, which not a property usually attributed to lipid rafts. But
in view of their predicted pivotal role in signaling processes, spatial selectivity may even
be an important property of lipid rafts, as it allows to control the formation of domains
via an adjustment of the obstacle configuration.
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Chapter 9

Summary

In this work, the universal behavior of the liquid↔gas transition in the presence of
random static inhomogeneities (“obstacles”) has been investigated by means of Monte
Carlo computer simulations. To this end, state of the art Monte Carlo sampling and
finite-size scaling techniques (one of which has been used for the first time in litera-
ture24;100) have been employed. By the use of efficient simulation techniques and a high
level of automatization, it has been possible to consider thousands of different disorder
configurations for a given system size. As demonstrated by the results, this is crucial for
a reliable analysis (figure 7.1).

For obstacles that are arranged on a regular grid it has been found that there still exists
a liquid↔gas phase transition. The critical temperature is shifted to lower temperatures
for an increasing amount of obstacles (figure 8.5). If instead the obstacles are randomly
distributed, the behavior of the fluid is determined by the symmetry of the obstacles’
interactions with the liquid and the gas phase and the spatial dimensionality.

Fluids with obstacles whose interactions are indifferent to the fluid’s phase have been
investigated in chapter 6. It has been demonstrated that such a system behaves like a site-
diluted Ising model. This implies that for low concentrations of obstacles the liquid↔gas
transition still exists, but at a critical temperature that is shifted towards lower values by
an amount that is proportional to the concentration of obstacles (figure 6.6).

If the obstacles have a preferred affinity to either the liquid or the gas phase, a behavior
that is consistent with that of the random-field Ising model is seen. In a three dimensional
system (chapter 7) this implies that the critical exponents of the liquid↔gas transition
not only differ from the “standard” Ising values7. It also requires one to introduce a new
critical exponent, the violation of hyperscaling exponent θ. This new critical exponent
causes an unconventional system behavior at the critical point that is usually expected
at a first order phase transition, namely the existence of a free energy barrier between
coexisting liquid and gas states that diverges with the system size. The value of the
hyperscaling exponent has been approximately determined (in agreement with later and
more precise results9) and demonstrated to be distinctively non-zero.

The case of the two dimensional fluid in the presence of static obstacles that are sensitive
to the phases has been investigated in chapter 8. By using finite-size scaling it has
been demonstrated that the simulated systems show signatures of a liquid↔gas phase
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transition, but that the apparent critical temperature strongly depends on the system size.
The system in the thermodynamic limit has been argued not to undergo a phase transition,
but instead on large scales to be on a supercritical-like state characterized by an obstacle-
generated spatial inhomogeneity. It has been shown that this inhomogeneity structure
becomes increasingly pronounced as temperature is decreased (thereby countering the
phase transition), but that this “alignment” to the obstacle structure does not constitute
a phase transition itself (see figure 8.9).

Since the fluid that has been investigated, the Widom-Rowlinson fluid, has an inter-
pretation as a binary mixture with short ranged interactions, the results found for the
fluid are expected to hold for binary mixtures, too. That is, mixtures in the presence
of randomly located static obstacles that have an equal interaction with both particle
species are expected to behave like a site-diluted Ising model, whereas obstacles that have
a stronger affinity to one of the species cause a random-field like behavior. This does in
particular imply that two dimensional mixtures in the presence of such obstacles do not
macroscopically demix, but instead arrange according to preferential microstructures as
the temperature is decreased.

A two dimensional mixture system where these finding may be applicable has been briefly
discussed: The plasma membranes of eukaryotic cells. Molecular dynamics simulations of
a membrane model with two different species of phospholipids and static inhomogeneities
with a preference for one of the lipids species have been performed. The structures found
in those simulation were shown to be consistent with the structures expected from the
simulations of the Widom-Rowlinson mixture. By extending a hypothesis of Yethiraj30 it
has been argued that plasma membranes may exhibit random-field like behavior owing
to the presence of trans-membrane proteins coupled to the cytoskeleton. This would
explain the apparent absence of phospholipid demixing (that is seen in experiments
on cytoskeleton-free model membranes) in live cells as a universal behavior that does
not depend on the detailed interactions of the membrane components. The small and
transient domains that have been seen in the simulation of the Widom-Rowlinson mixture
(figure 8.6) have been argued to be compatible with the hypothetical lipid rafts31. If
lipid rafts can indeed be understood as a random-field like fluctuation, this implies that
the regions where rafts occur are determined by the obstacle configuration. Assuming
that in a cell the obstacle configuration is fixed by the cytoskeleton, this may provide a
mechanism for the cell interior to influence the spatial arrangement in the cell membrane.
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Appendix A

Derivatives of the

Free Energy

Definitions

Consider a system with a variable number of particles, a conjugate field µ to the particle
number N , a tuple o of other state variables that are held constant, and β = 1 (for
simplicity). The probability to find a this system in a state with N particles (the order
parameter distribution) is given by

P (N |µ,o) =
1

Z(µ,o)
Z(N,o)eµN , (A.1)

where

Z(µ,o) =
∞∑
N=0

Z(N,o)eµN (A.2)

is the grand partition function, and Z(N,o) is the partition function for the system in
case of a constant number of N particles. The free energy of the system is given by

F (µ,o) = − logZ(µ,o). (A.3)

Ensemble averages of functions f(N) can be expressed as

〈f〉 :=
∞∑
N=0

f(N)P (N |µ) =
1

Z(µ,o)

∞∑
N=0

f(N)Z(N,o)eµN (A.4)
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Derivatives of Observables

For derivatives of the grand partition function and ensemble averages of functions of type
f(N) with respect to µ the following rules hold true:

∂µZ(µ,o)
(A.2)
=

∞∑
N=0

Z(N,o) ∂µeµN︸ ︷︷ ︸
=NeµN

(A.4)
= Z〈N〉 (A.5)

∂µ〈f〉
(A.4)
= ∂µ

[
1
Z

∞∑
N=0

Z(N,o)f(N)eµN
]

=
1
Z

∞∑
N=0

Z(N,o)f(N)∂µeµN −
1
Z2

(∂µZ)
∞∑
N=0

ρ(N, . . . )f(N)eµN

(A.4,A.5)
= 〈Nf〉 − 〈N〉〈f〉 (A.6)

Derivatives of the Free Energy

The repeated usage of the equations (A.5) and (A.6) allows to straightforwardly express
the first derivatives of logZ (i.e. those of the free energy) with respect to µ as a function
of the first moments of the order parameter distribution:

∂ logZ(µ,o)
∂µ

=
1
Z
∂µZ

(A.5)
= 〈N〉 (A.7)

∂2 logZ(µ,o)
∂µ2

= ∂µ〈N〉
(A.6)
= 〈N2〉 − 〈N〉2 (A.8)

∂3 logZ(µ,o)
∂µ3

= ∂µ

[
〈N2〉 − 〈N〉2

]
(A.6)
= 〈N3〉 − 〈N〉〈N2〉 − 2〈N〉

(
〈N2〉 − 〈N〉2

)
= 〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3 (A.9)

∂4 logZ(µ,o)
∂µ4

= ∂µ

[
〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3

]
(A.6)
= 〈N4〉 − 〈N〉〈N3〉 − 3

(
〈N3〉 − 〈N〉〈N2〉

)
〈N〉

−3〈N2〉
(
〈N2〉 − 〈N〉2

)
+ 6〈N〉2

(
〈N2〉 − 〈N〉2

)
= 〈N4〉 − 4〈N3〉〈N〉+ 3〈N2〉2 + 12〈N2〉〈N〉2 − 6〈N〉4 (A.10)
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and J. J. Ruiz-Lorenzo. Ising exponents in the two-dimensional site-diluted Ising
model. Journal of Physics A: Mathematical and General, 30(24):8379+, December
1997. 65

[91] P. H. L. Martins and J. A. Plascak. Universality class of the two-dimensional
site-diluted Ising model. Phys. Rev. E, 76:012102, July 2007. 65

[92] R. Kenna and J. J. Ruiz-Lorenzo. Scaling analysis of the site-diluted Ising model
in two dimensions. Phys. Rev. E, 78:031134, September 2008. 65
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