Open Mesoscopic Systems:
beyond the Random Matrix Theory

Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultaten
der Georg-August-Universitat zu Gottingen

vorgelegt von

Alexandre Ossipov

aus Kemerovo/Ruflland

Gottingen 2003



D7

Referent: Prof. Dr. Theo Geisel
Koreferent: Prof. Dr. Kurt Schonhammer

Tag der miindlichen Priifung: 01.04.2003



Contents

1 Introduction

1.1 Scattering matrix and related quantities . . . . . .. ... ... ...

1.2 Random matrix theory and its limitations . . . . .. .. ... ... ....

Localization: one-dimensional Anderson model

2.1 Localization in disordered systems . . . . . . . . . . . .. ... ...
2.2 Anderson model with one open channel . . . . . . .. ... ...
2.3 From transfer matrix to Hamiltonianmap . . . . . . ... ... ... ...
2.4 Distribution of phases . . . . . ... Lo
2.5 Distribution of Wigner delay times . . . . . . . . ... ... ... .. ...
2.6 Distribution of resonance widths . . . . . . . . .. ..o

2.7 Outlook . . . .

Diffusion: chaotic and disordered systems

3.1 Diffusion in chaotic and disordered systems . . . . . . . . ... ... .. ..
3.1.1  From classical to quantum diffusion . . . . . . .. ... ... ...
3.1.2  Quantum chaos and periodically driven systems . . . . . . ... ..

3.2 Closed systems: distribution of eigenfunction intensities . . . . . . . . . ..

3.2.1 One-dimensional and two-dimensional kicked rotor models . . . . .

11

15

16

16

18

20

23

27

29

31



CONTENTS

3.2.2  One-dimensional kicked rotor . . . . .. .. ... ...
3.2.3 Two-dimensional kicked rotor . . . . . ... ... ...
3.3  Open systems: distribution of resonances and delay times . . .
3.3.1 Open kicked rotor model . . . . . . . ... ... ....
3.3.2 Resonance widths distribution . . . . . ... ... ...
3.3.3  Wigner delay times distribution . . . . . . . ... ...

3.4 Outlook . . . . . . . .

4 Criticality: one-dimensional quasiperiodic systems

4.1 Quasiperiodicmodels . . . . . ... ...
4.1.1 Harpermodel . . . . . . ... ... .. L.

4.1.2  Quasiperiodic tight-binding Hamiltonians . . . . . . . .

4.1.3 Properties of the Harper and Fibonacci chain models

4.2 Opensystem . . ... . ...
4.3 Statistics of resonances . . . . . ... Lo
4.4 Wigner delay times . . . . . .. ... ... ... L.
4.5 Survival probability . . . . .. ..o
4.6 S-matrix autocorrelation function . . . . . ... ..o

4.7 Outlook . . . . . .

5 Conclusion

A Effective Hamiltonian, resonances and Wigner delay time

A.1 Effective Hamiltonian for open one-dimensional system . . . .

A.2 Wigner delay time and poles of the S-matrix . . . . . .. ...

B Single parameter scaling hypothesis



CONTENTS

C From Hamiltonian map to Fokker-Plank equation 87
C.1 Expression for phases in terms of Hamiltonianmap . . . . ... ... ... 87
C.2 Recursion relation for phases . . . . . . . . . ..o 88
C.3 Recursion relation for Wigner delay times . . . . . . .. ... ... .... 88
C.4 Fokker-Planck equation for distribution of Wigner delay times . . . . . . . 89

D Mean free path and diffusion coefficient for the kicked rotor model 91
D.1 Calculation of the mean free path . . . . . . . .. .. ... ... ... ... 91
D.2 Diffusion coefficient in the random phase approximation. . . . . . . . . .. 94

E Construction of the S-matrix for the kicked rotor model 97
E.1 Unitarity of the S-matrix. . . . . . . ... ... ... 98

E.2 Wigner-Smith operator . . . . . . .. . ... 98



CONTENTS




Chapter 1

Introduction

Physical systems having sizes between microscopic and macroscopic are referred to as meso-
scopic [1,2]. The motion in mesoscopic systems is phase-coherent, that means they must be
treated by quantum mechanics. Another important property of mesoscopic systems is that
they usually contain a lot of microscopic details (e.g. an impurity arrangement) which can
not be taken into account exactly. Therefore one chooses a statistical approach considering
an ensemble of systems having different microscopic configurations but the same macro-
scopic parameters. The rapid development of technology of fabrication of small electronic
structures, having dimensions from a few nanometers to hundreds of microns, allows now
to study mesoscopic systems experimentally.

In experiments or measurements one deals not with idealized closed, but with open systems.
The natural way to describe an open system in quantum mechanics is to use a scattering
formalism. Statistical approach to the scattering problems in mesoscopic physics is usually
based on the random matrix theory (RMT) [3,4]. The strength of the RMT consists in
the universality of its predictions containing no energy or length scales or any parameter
dependence. At the same time this is the weakness of the RMT, because it does not allow
to take into account various phenomena appearing in mesoscopic systems, which introduce
new scales or parameters in the system, like for example localization.

This thesis is devoted to study exactly that type of scattering problems where "naive” RMT
can not be applied. We consider different models of disordered and chaotic systems whose
closed analogs have various specific features such as diffusion, fractality or localization. The
investigation of different quantities related to scattering, like distributions of the Wigner
delay times and the resonance widths, the survival probability, allows us to show how these
features manifest themselves in the statistical properties of open systems.
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1.1 Scattering matrix and related quantities

Attaching leads to the sample makes it an open system. Then the whole system ”sam-
ple+leads” can be described by a scattering setup (see Fig. 1.1). Taking into account that
the potential V' vanishes inside the leads, the stationary Schrodinger equation there takes
the following form:

n? [ 02 0?
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Denoting by w the width of the leads and imposing the Dirichlet boundary condition at
y = tw/21i.e. ¢¥(z,£w/2) = 0 one can represent the solution of Eq. (1.1) as a superposition
of plane waves:

)wnszm%w (1.1)

1
Un(x,y) = (%) [Ae ™" 4+ B,e™ "] sin [kg (y + %)] , (1.2)
where k% = nm/w, k**+k¥? = k> = 2mE /h?. The index n takes integer valuesn = 1--- M,
where M is the number of open channels, defined as the largest integer number less or equal
to kw/m.

The Hamiltonian of the whole system is the sum of the Hamiltonian of the closed sample
described by the N x N Hermitian matrix H;, , the free Hamiltonian of the leads which
corresponds to Eq. (1.1), and the coupling between sample and leads. Assuming that
this coupling is local and the sample is finite we can argue that an asymptotic solution
(x — 4o00) of the stationary Schrodinger equation for the whole system is given by the
superposition of plane waves introduced in Eq. (1.2), where we denote by Aﬁ(R) and Bﬁ(R)
the corresponding amplitudes for the left (right) lead.

According to the general definition, the scattering matrix S relates the outgoing wave
amplitudes to the incoming wave amplitudes. In our setup it is a 2M x 2M matrix defined

(g ) =55 (). 13

where ALR) = (AF) L ALNT 5nq BL®) = (BI . BEINT - The flux conservation

guarantees that the S-matrix is unitary
SSt=1 (1.4)

and can be written in a block-diagonal form:

S:<Z f,) (1.5)
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Figure 1.1: Two-dimensional sample attached to two leads.

All blocks in this decomposition have dimension M x M. The matrix r (r') describes the
reflection for the waves coming from the left (right) lead, whereas the matrix ¢ (¢') describes
the transmission for the waves coming from the left (right) lead. This form of the S-matrix
allows to connect its properties with quantities measurable in an experiment. Indeed,
according to the Landauer formula [5,6] the conductance G of the mesoscopic sample can
be calculated from the total transmission:
2
G = 2% gt (1.6)
h
Thus one can extract the information about the conductance from the knowledge of the
properties of the S-matrix. In this way it is possible to calculate for example the weak
localization corrections to the conductance or the universal conductance fluctuations (for
a review see [4]).

One can show [7,8] that the scattering matrix can be written in the form (see also Appendix

A)
1
S=1-2irWl——W, 1.7
W, (1.7)
where the effective Hamiltonian H,s is given by
Hepp = Hyp — itWWH. (1.8)

The matrix W is a rectangular N x 2M matrix, which describes the coupling between sam-
ple and leads and generally is energy dependent. From Eq.(1.7) we see that the eigenvalues
of the effective Hamiltonian H, ¢y are the poles of the scattering matrix. Since the effective
Hamiltonian given by Eq. (1.8) is non-Hermitian its eigenvalues are complex £ = F — %F.
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The poles of the S-matrix correspond to the resonances — long-lived quasi-stationary
states leaving in the interaction region [9]. Because of the presence of negative imaginary
part of the eigenvalue, the resonant states decay in time exponentially. The quantity I’
is referred to as the resonance width and it is inverse proportional to the lifetime of the
corresponding resonant state. The properties of resonances are not only fundamental for
the dynamics of the particle inside an open mesoscopic system (see Eq. (1.11 bellow), they
are also directly related to the quantities measurable in experiments. One example is a
quantum dot in the regime of Coulomb blockade. It is known that conductance in this case
can be expressed in terms of the resonances [10,11]. Another application is related to the
study of random lasers [12,13]. In this field one considers a multiple scattering of light in
some disordered and in the same time amplifying media. The existence of the amplification
leads to the shift of the poles of the S-matrix toward the real axis. When one of the poles
reaches the real axis the lasing instability takes place: the gain due to the amplification
becomes larger than the decay caused by opening of the system. Thus the position of the
resonances are important for the understanding of the lasing instability.

The knowledge of the S-matrix allows in principle to study all characteristics of scattering
problem. One of these characteristics is the time spent by the particle in the scattering
region. Whereas in classical physics this issue is well defined without any additional expla-
nations, in quantum mechanics one should first give a correct definition of this quantity.
This problem is a fundamental one, since there is no natural quantum observable asso-
ciated with time, and has a long history, which goes back to the works of Wigner and
Eisenbud [14,15]. The idea that they used is to follow the peak of the scattered wave
packet. Then one can define the Wigner delay time 7 as a delay in propagation of the peak
due to the interaction with the scatterer in comparison with a free propagation. Mathe-
matically the Wigner delay time can be derived from the S-matrix as follows [8, 15, 16].
Since the S-matrix is unitary its eigenvalues have form exp(if,,) with some real phases 6,.
Then the Wigner delay time is given by the derivative of the total phase § = 6, with
respect to energy. Another way to write it is
;
T(E) = —iha%lnDetS = ihTraaiES (1.9)
The Wigner-Smith time delay matrix ) = ih%—‘gs introduced by Smith [17] generalizes
the notion of the Wigner delay time. Its eigenvalues 7, the so-called proper delay times,
correspond to the delay time at one particular channel n. For the mesoscopic conductors
the Wigner-Smith delay matrix determines the frequency-dependent current fluctuations
[18-20]. In particular the admittance of the mesoscopic capacitor is given to leading order
in frequency by [21]
T . T
G (w) = szeT s (1.10)
where C, is the geometric capacitance, 7 is the dimensionless Wigner delay time, n =
C.A/(Me?), and A is the mean level spacing. The knowledge of the delay times makes also
possible to understand the properties of the reflection eigenvalues R,, of SST for optical or
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microwave cavities with absorption [22]. For the case of the weak absorption the eigenvalues
R, can be expressed in a very simple way through the proper delay times 7,,: R,, = 1—7,,/7,,
where 1/7, is the absorption rate.

Another important quantity, which captures the time-dependent aspects of the scattering
is the survival probability P(t). It is defined as the probability of finding a particle inside
the sample at time ¢ provided that the particle was injected into the sample at time £ = 0.
Averaged over initial states it can be written as

1 .

P(t) = N ;(LHLD(RHRQ expli(&; — &Ex)t], (1.11)
with |Ry) and (Lg| being the right and left eigenvectors and & the corresponding eigen-
values of the effective Hamiltonian H,s¢. The survival probability is directly related to the
problem of current relaxation in a mesoscopic sample [23], since it is proportional to the
time-dependent conductance G(t) defined by the Ohm law

I(t) = /t Gt — V(). (1.12)

—00

It is worth to mention that in mesoscopic systems, because of the strong fluctuation of the
quantities discussed above (even in the thermodynamic limit), one needs to study not only
the average values, but the whole statistical distributions.

1.2 Random matrix theory and its limitations

The properties of the scattering matrix strongly depend on the character of the corre-
sponding closed system. This can be clearly seen from Eq. (1.7) and Eq. (1.8), which give
the connection between the S-matrix and the Hamiltonian H;, of the closed system. So it
is natural to begin the analysis of the scattering problem by defining the properties of the
closed sample.

As it was mentioned above mesoscopic samples with the same macroscopic parameters
can differ in microscopic details like disorder configurations or the exact shape of the
boundaries. This force us to consider the corresponding Hamiltonian as random one and
leads to the statistical description of the problem. The simplest and at first glance naive
way to implement the idea of some randomness of the Hamiltonian is to assume that each
of its matrix element is independent random number with some (for example Gaussian)
probability distribution. However it turns out that this idea, which is underlying for the
so-called random matriz theory (RMT) [3], is very fruitful and efficient not only in the field
of disordered mesoscopic systems, but also in many other areas of physics.
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The RMT was pioneered by Wigner [24], who proposed to use large random matrices as
Hamiltonians of complex nuclei in order to describe their excitation spectra. In 1960s the
RMT was developed further by Dyson and Mehta [3,25]. The starting point of RMT is
the ensemble of random Hamiltonians determined solely by the global symmetries of the
system. For example, if there are no special symmetries in the system, one introduces
a set of all possible Hermitian matrices. For any unitary transformation this set is an
invariant one. Supplied with some invariant measure described below it is referred to as
Gaussian Unitary Ensemble (GUE). If the system obeys time-reversal symmetry, then one
demands that the matrices should be real and symmetric. The invariant transformations
are now orthogonal and the corresponding ensemble is referred to as Gaussian Orthogonal
Ensemble (GOE). The invariant measure is given for both classes by

P(H) = exp(—atrH? + btrH + c) (1.13)

with certain constants a, b, c. Using these probability distribution functions one can calcu-
late all possible statistical properties of the eigenvalues and eigenfunctions of the random
Hamiltonians. Since the probability measure (1.13) does not contain any system-specific
information and depends only on the global symmetries, all predictions of the RMT are
universal.

The success of the RMT is not restricted by nuclear physics only. In 1984 Bohigas et
al. [26] put forward a conjecture that the statistical properties of spectra of ”quantum
chaotic” systems can be also described by the RMT. By a quantum chaotic system [27-29]
one understands a quantum system whose classical analog is chaotic. It means that the
dynamics of the system is exponential sensitive to the infinitesimal changes of the initial
conditions. Therefore despite of the absence of any stochastic noise or disorder this type
of systems shows very irregular behavior and ”"randomness” appears in this case from the
deterministic dynamics. A lot of numerical results confirm the validity of the RMT for
fully chaotic system. Nevertheless the justification of its applicability remains a conjecture,
although some attempts were made in order to prove it analytically [30-33].

For disordered systems in the ballistic regime the RMT conjecture suggested first by
Gor’kov and Eliashberg [34] was proven in 1982 by Efetov [35] using the so-called non-
linear supermatrix o-model. Using Grassmann variables this approach allows to perform
an averaging over the disorder potential explicitly mapping the problem to some effective
field-theoretical model. In the limit when the spatial variations of the effective field can be
neglected one can show [36] that the nonlinear o-model reproduces the RMT results. The
last condition corresponds to the limit, when the dimensionless conductance of the sample
goes to infinity.

In the cases, where the random matrix theory is established as an appropriate tool for the
description of a disordered or chaotic system, it is natural using Eq. (1.7) and Eq. (1.8)
to apply it for the study of its open counterpart. In particular, one can ask, what are
the distributions of resonance widths and delay times for the system, whose closed analogs
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obey the RMT statistics. This issue has been a subject of intensive research activity in the
last years and many interesting results were obtained in this direction (for review see [8]).

As it was mentioned above, the main advantage of the RMT is its universality. In the
same time the universality means, that the RMT doesn’t "know” anything about the
specific properties of the system under study. Since no physical parameters (except the
global symmetries) are plugged in the RMT machinery, it is clear that it can give the
correct predictions only in some limiting case, when all physical parameters and scales
can be considered as irrelevant. This can be easily understood especially for the case of
disordered systems, for which exact criteria of the applicability of the RMT exist.

One of the fascinated phenomenon known in disordered system is the phenomenon of lo-
calization. In 1958 Anderson [37] showed that a typical eigenstate of an one-dimensional
tight-binding disordered model (known now as the Anderson model) is exponentially local-
ized. The mechanism which is responsible for this result is the appearance of destructive
quantum mechanical interference effects. One of the surprising consequences following from
this fact is the prediction, that the conductance of an one-dimensional wire goes exponen-
tially to zero with increasing its length and the system behaves as an insulator. Later
the localization theory was developed not only for one-dimensional, but also for two- and
three-dimensional cases (for review see [38]). According to the so-called scaling theory of
localization the infinite one- and two-dimensional systems (in the absence of interaction)
are always in the localized regime. For the three-dimensional case the situation is more
subtle: if the disorder is sufficiently strong the eigenstates are again localized and the
system has an insulating behavior, if the disorder is weak enough there is no localization
and the system has a metallic behavior. This phenomenon is referred to as the Ander-
son metal-insulator transition. Exactly at the transition point the eigenfunctions exhibit
multifractal properties with strong fluctuations on all scales and the system has a critical
behavior.

The appearance of the localization and the corresponding length scale — the localization
length (which is inverse proportional to the decay rate of the typical eigenfunction) make
the applicability of the RMT of course impossible. What are the consequences of localiza-
tion for open disordered system? This issue is studied in Chapter 2, where the distribution
of the phases of the S-matrix and the Wigner delay times are found for one-dimensional
Anderson model [39]. Because of the universality of the localization mechanism, it is nat-
ural to expect that the obtained results are valid in the localized regime independent from
the dimensionality or the symmetry class.

The fact that the RMT is not valid in the localized regime is not surprising. But it
is interesting that even in the metallic regime the application of the RMT is strongly
restricted. Indeed, it is well known that the motion of the electrons in a metal is diffusive.
The rate of the diffusion process is characterized by the diffusive constant, which according
to the Einstein relation determines the conductance of the sample. This parameter is again
not included in the random matrix theory, therefore its predictions are valid only in the
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limit when the conductance goes to infinity. What happens when the conductance is large
but finite? One can suggest that in this situation it is possible to describe the deviations
from the RMT theory in a perturbative way. This is however not completely true. It turns
out that, despite the fact that in a metallic regime the localization length is much larger
than the system size and typical eigenstates are extended, there are some states which
are anomalously localized. They exist due to some rare disorder realizations and can be
considered as the signature of the onset of localization in a metallic regime . Although these
states are rare and untypical in some sense, their existence lead to the long tails, which
deviate strongly from the predictions of the RMT, in the distribution of many physical
quantities (see review [23]).

The phenomenon of localization is known not only for disordered systems but also in the
field of quantum chaos. The prominent example is the dynamical localization [40] found
for the kicked rotor model [41]. The eigenstates of system are exponentially localized like
in the case of the Anderson localization, although no disorder is present. It is clear again,
that the RMT is not applicable for this chaotic system in the localized regime. Taking into
account the discussion of the previous paragraph, it is natural to ask, what happens with
such a quantum chaotic system when the localization length exceeds the system size and the
localization is not dominant. Do the anomalously localized states exist in this case? Do the
distribution of the physical quantities deviate from the RMT prediction? These questions
are addressed in Chapter 3.1, where the distribution of the eigenfunction intensities
are studied for the kicked rotor model and its two-dimensional generalization [42]. After
establishing the kicked rotor as a nice model to study the metallic regime in chaotic and
disordered systems we come back to the main issue of this thesis, namely to the properties
of open systems. Construction of the S-matrix for the two-dimensional kicked rotor in
Chapter 3.2 allows us to investigate, how the classical diffusion on the one hand and the
existence of the anomalously localized states on the other hand affect the distributions of
the resonance widths and the Wigner delay times [43]. Based on the results of Chapter
3.1 one can claim that these results are valid not only for chaotic but also for disordered
systems.

The criticality is also out of scope of the RMT. The Anderson metal-insulator transition is
a very hard problem both for analytical and numerical study. One reason for this is the fact
that one should deal with a high-dimensional problem. In order to avoid this problem one
can study instead critical systems in lower dimensions. This is the subject of Chapter 4.
In this chapter the statistics of the resonance widths, the distribution of the Wigner delay
times, the survival probability, and the S-matrix autocorrelation function are investigated
for various one-dimensional quasi-periodic systems at critical conditions [44,45]. This class
of systems is interesting by itself (see for example [46]). In particular, the one-dimensional
Harper model describes effectively an electron in a two-dimensional periodic potential in a
magnetic field.

Finally, Chapter 5 contains the summary of the main results of this thesis.



Chapter 2

Localization: one-dimensional
Anderson model

This chapter deals with one-dimensional tight-binding model with random potential. It
is well known that eigenfunctions of the closed system are exponentially localized. Here
we investigate the properties of the open system, in particular, we study the statistics of
phases of the S-matrix and the Wigner delay times both analytically and numerically for
different strength of disorder potential. The importance of the distribution of phases of
S-matrix for the single parameter scaling hypothesis is discussed. We also analyze how the
different type of disorder influences on the distribution of the Wigner delay times.
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2.1 Localization in disordered systems

The concept of localization was introduced in 1958 by Anderson [37]. He was the first
who pointed out that quantum diffusion is suppressed in random media due to destructive
interference effects. In particular, he found that the eigenfunctions of a disordered sample
are exponentially localized, provided that the disorder is sufficiently strong:

|4(r)| ~ exp(|r —ro|/) (2.1)

where the parameter £ is referred to as localization length and shows the degree of local-
ization. The appearance of localization can be understood easily in the case of very strong
disorder. In this limit the eigenstates in zero order approximation are represented by the
localized states located in the deep minima of the random potential. If one wants to go
beyond the zero order approximation, one should consider the overlap between different
states. The states which are located nearby in space have usually very different values of
energy due to the random character of the potential. Whereas the states which are nearly
degenerate in energy are usually located at very different points in space, so that their
overlap is infinitesimal small. Thus there is no possibility to establish an existence of any
extended state and the resulting eigenstate is exponentially localized.

It turns out that the eigenstates are exponentially localized in one dimensional systems
even for arbitrary weak disorder and the corresponding localization length is of the order of
the mean free path. This statement is rigorously proved now by different methods [47—49].
According to the scaling theory of localization (see Section B and review [38]) the same is
true for two dimensions. The localization length in this case scales exponentially with the
mean free path. In three dimensions the degree of localization depends on the strength of
disorder. If the disorder is weak, there is no localization and the states are extended. For
sufficiently strong disorder however all states are exponentially localized. The theory of
localization is very important for many observable quantities like for example conductance.
In particular, it predicts non Ohmic behavior for sufficiently large one- and two-dimensional
samples and metal-insulator transition for three dimensional systems.

2.2 Anderson model with one open channel

One of the simplest and well-known models of disordered systems, which allows to study
the effect of localization, is the tight-binding Anderson model. The tight-binding model
is a useful approximation used not only in solid state physics [50], but also in optics and
acoustics. Within this model the wavefunction is expressed in terms of localized atomic
orbitals one at each site. In this representation the one-dimensional Schrodinger equation
takes the form:

wn+1 + wnfl + Vnwn = Ewna (22)
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where E is the dimensionless energy and V), is the on-site potential. The diagonal term
of the tight-binding Hamiltonian describes the particle localized at some site n with the
eigenenergy V,,. Two non-diagonal terms allow the particle to hop from the site n to the
nearest neighbor sites n —1 and n+1. Eq.(2.2) can be thought also as a discrete version of
the Schrodinger equation after one replaces the Laplace operator by the finite differences.

0.1
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Figure 2.1: Example of the exponentially localized eigenstate of the one-dimensional Anderson
model.

One dimensional disordered systems can be described by Eq. (2.2) when one considers the
on-site potential V,, as a random variable having some probability distribution. This model
is referred to as the Anderson model. The strength of the disorder potential determines
the energy mismatch between different sites, whereas the hopping elements (equal to one
in our case) control the probability that a particle will be transfered to another site. Thus
the important parameter is the ratio of the disorder strength to the hopping strength,
which fixes the degree of localization in the system. In agreement to the general theory
of localization the eigenstates of the Anderson model are exponentially localized (Fig. 2.1)
for any disorder strength.

In the following we consider a finite disordered sample of length L with one semi-infinite
perfect lead attached on the left side (see Fig. 2.2). This means that V}, are delta-correlated
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random variables with a distribution Py having mean zero and variance o3 for 0 < n < L.
For n < 0, V,, = 0 and we impose Dirichlet boundary condition at the edge ¢, = 0.

V=0 V=Vj

L
<t =

Figure 2.2: Disordered sample of size L with one semi-infinite perfect lead attached on the left
side.

The solution of Eq.(2.2) for n < 0 can be found easily:

Yp = €M pre ™ <0 (2.3)
E = 2cosk

It represents a superposition of an incoming and a reflected plane waves. Since there is
only backscattering, the reflection coefficient, 7(E) = €'®¥) is of unit modulus and the total
information about the scattering is contained in the phase ®(FE). The Wigner delay time

is given now according to its general definition (1.9) by 7(F) = dq;g) (here we put i = 1).

Our aim is to find the probability distributions of the phases Pg(®) and of delay times
P.(7) in the thermodynamic limit, i.e. when L — oo. The knowledge of the distribution
of phases is not only necessary to calculate the distribution of delay times, which is in the
focus of our main interest, but it has its own importance. The question, whether the phases
are distributed uniformally or not, is crucial for the justification of the single parameter
scaling hypothesis (see Appendix B), which is the cornerstone of the localization theory .

2.3 From transfer matrix to Hamiltonian map
Equation (2.2) can be written equivalently in a form

< w&:l ) M, ( Jf: ) | (2.4)

where M, is a transfer matrix given by

Mn:<E_1V” _01> (2.5)

Equation (2.4) can be iterated so that one relates the wavefunction amplitudes at sites
n = —1 and n = 0, where the wavefunction is a superposition of two plane waves described
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by Eq. (2.3), with wavefunction amplitudes at sites n = L and n = L + 1. Recalling that
Y11 = 0 due to the Dirichlet boundary condition, we can write the following equation:

0 . P11 P12 1 +7r
< wL ) - ( P21 P22 ) ( e—ik: +reik ) ) (26)

where matrix P is a total transfer matrix given by the product of all transfer matrices at
each site P = Hi:o M,,. From this equation 7 can be found:

_ Pu+ Ppoe™*
Py + Prget®

Introducing a new variable ¢ = ®/2 and noting that the nominator in the last expression
is a complex conjugate to the denominator, one obtains (Appendix C.1):

P11 + Plg cos k
t = . 2.8
an¢ ( P12Sinl€ > ( )

(2.7)

As was indicated in Ref. [51,52], one can introduce new variable (x,,p,) by

Tn, U, 1 0
~ R T 2.9
< Pn ) ( Yn-1 ) ( rry il ) (29)
so that Eq. (2.4) takes the form (Appendix C.1)
Tn+1 _ T,
(pn+1> Q“(%)’

cosk — A,sink  sink
@n = ( —A,cosk —sink cosk ) ' (2.10)

Q. is related to the transfer matrix M, through a similarity transformation @, = RM, R!

and A, = Si‘fl"k. If we consider (x,,p,) as coordinates in a phase space, then Eq. (2.10)

describes the time evolution of a system with the Hamiltonian H given by

kp?  kx?  x?

which is a Hamiltonian of a parametric linear oscillator subjected to periodic kicks of
strength A,, and period T" = 1. Between two successive kicks, there is a free rotation in
the phase space which is determined by the eigenenergy E of our initial equation (2.2). In
such a representation, the amplitudes 1, of a specific eigenstate correspond to positions of
the oscillator at times ¢, = n.

The total transfer matrix P is related to the map F = Hi:o @, through the similarity
transformation P = R™'FR. Using this, together with (2.8) we write ¢ in terms of the
Hamiltonian map F' as (Appendix C.1):

tan ¢ = <_F}12> (2.12)
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We can give a geometrical interpretation for (2.12). Consider the time evolution of the
vector v(t = 0) = (0,1)” under the inverse map F~'. For time ¢, = L we have

v(t = L) :F1< (1) ) = ( _F}SQ ) (2.13)

Then ¢ is exactly the angle between the vector v(t = L) and the x-axis. It is convenient
therefore to pass to polar coordinates (r,,0,), using the transformation z = rcosf and
p=rsinf. Then (2.10) is written in the form [51]:

riH = 12D, ; D? = (1 + A2 cos? 0, — A, sin20,)
cosOpy1 = D;'[cos(f, — k) — A, cos B, sin k]
sinf,,1 = D, '[sin(d, — k) — A, cosb, cosk]. (2.14)

Inverting the last two equations for n = L we obtain the following relation (Appendix C.2):
tan ¢ 1 = tan(op + k) + Apiq, (2.15)

which relates half of the phase of the scattering matrix for the chain of size L with the
one for the chain of size L + 1 obtained from the previous chain by adding a new site at
n =L+ 1. Eq. (2.15) can be also obtained directly from the initial tight-binding equation
(2.2) [53].

Equation (2.15) is a starting point in order to get analytical results on the distribution of
phases of scattering matrix presented in the next section.

2.4 Distribution of phases

The recursion relation (2.15) can be used in order to get a Frobenius-Perron equation [54]
for the distribution of phases in the thermodynamic limit. Since the random variables ¢y,
and Ay, are statistically independent we have

Ptan¢L+1 (y) = /dsptan(¢L+k) (y - S)PA(S)v (2'16)

where we introduced the corresponding distributions of each term of Eq. (2.15). Rewriting
this equation in terms of the distribution of ¢ yields

Py, (arctany)

Ptan(gbL)(y) - 1 + y2

(2.17)

Assuming further that P4, goes to some stationary distribution P, when L — oo, we
obtain

Py (arctan y) / Py arctan & 8)) - k)PA(S)- (2.18)

1+ y? 2
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We start our analysis by investigating first the limit 04 = oy /sink < 1 which occurs
when the disorder is week oy < 1 and £ is far from the band edge (k % 0,7). In this limit
we can approximate P4(s) by a —function. Then from (2.18) we have that

Ps(P) = Po(P — k), (2.19)
which for k£ equals to irrational multiples of 7, immediately leads to a uniform distribution
1

Pa(®) = o—: k/m ¢ Q (2.20)

in agreement with previous numerical results [55,56]. We understand (2.20) in the following
way: For o4 < 1, the particle travels long distances inside the sample and undergoes many
scattering events which leads to randomization of the phase. Our numerical results reported
in Fig. 2.3a are in perfect agreement with (2.20). We notice here that the same uniform
distribution of the reflection phases in the weak disorder limit was found also for continuous
disordered models [57-59].

The case of k equals to rational values of 7 requires a special treatment. For these cases
the wavefunction in the absence of disorder is commensurate with the lattice. Thus one
expects that the discreteness of the lattice will show up. For example, for &k = 7/2 we
obtain [52]

T

Po(®) = <2IC(%) 3+ cos(2<1>)> k= > (2.21)

where K is the complete elliptic integral of the first kind. The above expression (2.21)
describe well our numerical results presented in Figs. 2.3b.

The deviation from the uniform distribution occurs at the band edge as well, i.e, when
k — 0,7. For this case the distribution has the form [52]

_ f(e/2) [0 2.J
Po(P) = W/o dfm, (2.22)

where f(x) = exp (2(’?—;(% cot® x + cot x)) and J is a normalization constant.

In the o4 > 1 limit, we distinguish between two parts of the spectrum. Namely, £ near
the band edges (i.e. k ~ 0,7) and far away from them. For the latter case and for V,
distributed uniformly between [—%; %] one can derive an analytical expression for Pg using
Eq. (2.16) in the thermodynamic limit. In this limit it is easy to show that Piang)(y) is
given in the first order in 1/04 by the uniform distribution:

Prantoy(y) = (V1204)7'O <\/§aA — |y + cot k|) , (2.23)

where ©(z) is the Heaviside function. The distribution of phases Pg(®) can be derived
easily from (2.23):

Pa(®)

1 © (V304 — [tan(3) + cot k|) (2.24)
) | |

N 2v/30 4 cos?(2
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P(®)

Figure 2.3: Distribution of the phases P(®) for various disordered strengths and energies. The
on-site potential is uniformly distributed between [-¥; ¥]. (a) V =0.2and k = /7. (b) V = 0.2
but now for k£ = w/2 (band center); (¢) V = 10 and k£ = y/w. Our numerical data (histogram) are
in perfect agreement with the analytical predictions (dashed lines). (d) V = 0.2 and k = 10~3/7

In contrast with the o4 < 1 limit (2.20), here the distribution of phases (2.24) is highly
non-uniform. By increasing the disorder strength o, two peaks appear in the neighborhood
of ® = 7 (see Fig. 2.3c) while a gap is created between them. In general they are not
symmetric because of the presence of the term cot k in argument of the Heaviside function
Eq. (2.24). As 04 increases further, the two peaks move closer to one another. Now the
scattering is so strong that most of the particles are reflected back from near the surface,
thus being scattered only from a few sites. The possibility to be scattered from extremely
strong on-site potential having either positive or negative sign explains the existence of
two peaks in the distribution. In the limit 04 — oo, the distribution becomes a ¢ function
centered at & = 7. Eq. (2.24) is in very good agreement with our numerical data presented
in Fig. 2.3c. The behavior near & = 7 is more subtle than the one given above; nevertheless,
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(2.24) gives the correct scale on which the distribution vanishes near ® = 7. Distribution
(2.24) agrees quite nicely also for other disorder potentials. It is worthing to point that a
similar expression as (2.24) was found in [58] for continuous models in the limit of strong
disorder.

Near the band edge (k ~ 0,7), our detail numerical analysis showed that Pg(®) is again
highly non- uniform. Namely the distribution becomes narrower and centered (although
with a slight asymmetry) at ® = 7 . We notice that such a choice of the parameters, can
be realized even for weak disorder 0 < 1. In Fig.2.3d we present a representative case
corresponding to k = 1073/ and o = 0.0577. We point that the closer we are to the band
edge the strongest is the singularity around ® = 7 . We also notice the different form of
the distribution with respect to the previous case (04 > 1 but away from the band edges).

All these results show that the distributions of phases P(®) undergoes a transition from
uniform (04 < 1) to non-uniform behavior (o4 > 1), where 04 = oy/sink. The latter
limit can be achieved either by decreasing the disorder strength o, or by taking £ — 0, 7.
In context of single parameter scaling hypothesis, it means that it can be violated even in
the case of weak disorder oy < 1. In this limit, the states near the band edge k£ ~ 0,7
never obey the single parameter scaling since o4 > 1. Thus the spectrum of the system is
divided into two groups with different scaling properties, which coexist at the same disorder
strength [60].

2.5 Distribution of Wigner delay times

Let us now turn to the analysis of delay times. Taking the derivative of both sides of
Eq. (2.15) with respect to energy we get (see Appendix C.3) the following iteration
relation for 7,,:

Gfl ( + 1 ) AL+1 cot k
T = T . — .
e BT sink 1+ (tan(¢y — k) + Apy,)’sink
Gr = 1+ Apysin(2(or + k) + A7 cos®(¢r + k), (2.25)

which proves to be very convenient for numerical calculations since it anticipates the nu-
merical differentiation which is a rather unstable operation.

For 04 < 1 and k equals to irrational multiples of 7, we obtain an analytical expression
for P.(7). To this end, we first derive from (2.15) and (2.25) a set of stochastic differential
equations for the phases ¢ and rescaled delay times 7 = o7 (up to 0%), respectively
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(Appendix C.4):

% ~ k- 0'1248in(¢+ k) Cos3(¢_|_ k) + COSZ(QS—|— k)A
Z_z ~ —0j; (F(cos* (¢ + k) —sin®2(¢ + k) —sink) — 7sin2(¢ + k)A. (2:26)

This system of stochastic differential equations corresponds to the Fokker-Planck equation
for the joint probability distribution of ¢ and 7 [61]. Using the fact that ¢ follows the uni-
form distribution (see Eq. (2.20)) and assuming that the variables ¢ and 7 are statistically
independent, we obtain the Fokker-Planck equation for P:(7, L) (Appendix C.4):
OP:(7,L) o3 [0 0 < 0

T = T = (7 — 4sink)Pa(7, L) + o %E(%P;(%,L))ﬂ. (2.27)

The resulting stationary distribution is obtained by setting % = 0 and has the form

P(r) = % exp(—§/vT); o4 < 1, (2.28)
where £ = 2(4— E?)/0? is the localization length and v = |0E/Jk| is the group velocity. We
note that (2.28) is independent of the nature of the disorder; it only depends on its second
moment through the localization length. (2.28) takes its maximum value at 7,54, = 0.5¢ /v,
indicating that the most probable trajectory that an electron travels (forth and back)
before it scatters outside the sample is the mean free path I, = £/4. As 7 — oo, P(7)
shows a long time tail which goes as 27,,.,/7. This leads to a logarithmic divergence
of the average value of 7, indicating the possibility of the particle traversing the infinite
sample before being totally reflected. As was indicated in [62] (see also [63]) this is another
manifestation of the fact that in the localized regime the conductance shows lognormal
distribution due to the presence of Azbel resonances. Our numerical results (see Fig. 2.4)
are in perfect agreement with (2.28). The same expression as (2.28) was obtained in [64]
(see also [62,65,66]) using different approaches for continuous disordered models.

Finally we discuss the distribution of delay times P(7) for o4 > 1. In this limit, the
technique of the Fokker-Planck equation can not be applied. However our iteration rela-
tion (2.25) has proven very efficient for numerical investigations. In Fig. 2.5a we show the
distribution of the delay times for a uniform and a Gaussian on-site potential distribution
with the same variance o2 = 10. It is clear that the short time distribution differs con-
siderably in the two cases and also deviate strongly from the theoretical prediction (2.28)
for o4 < 1. On the other hand, the distribution of large delay times, shows the same
1/7? behavior independent of the form of the disorder potential. The asymptotics of the
distribution for large 7 is presented in Fig. 2.5b, where we plot the integrated distribution
I(y) = [) P(y)dy" of the inverse delay time v = 1/7 in double logarithmic scale. To
this end, we calculated 107 delay times using the iteration relation (2.25). In both cases
(Gaussian and uniform distribution) presented in Fig. 2.5b we collected at least 10* delay
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Figure 2.4: Distribution of the delay times P(7) for on-site potential, uniformly distributed
between [—0.1;0.1] and wavenumber k = /7. The dashed line corresponds to (2.28). In the inset
we present the same data in a log — log plot.

times that were larger than 7 > 150. Our numerical data clearly show that I(y) ~ v for
v < 1 and thus P(r) ~ 1/72. This disagrees with the results obtained for the continuous
case in the low energy (strong disorder) limit [65]. In this case it was found that the
distribution of delay times shows an exponential behavior which is in contradiction with
our findings. How can one reconcile this numerical finding with the result of Texier and
Comtet [65]7 We give two possibilities: (a) One could argue that the discreteness of our
model is responsible for this apparent contradiction. For this reason we calculated again
I(v) for energy near the band edge corresponding to & = /71073, in order to minimize
the influence of the discreteness. The disorder strength is V' = 10. Our results reported in
Fig. 2.5b, in a log — log scale, are based on more than 10* delay times with v < 1. Again
a nice power-law behavior of the form I(y) ~ 7 can be observed. However, one can not
exclude a priori that we are still sensitive to the existence of the lattice. (b) The model
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Figure 2.5: (a) Distribution of the delay times P(7) for uniform and Gaussian Py. In both
cases the variance is 02 = 10 and the wavenumber is k = /7. The dashed line corresponds to
(2.28). (b) The integrated distributions of inverse delay time y = 1/7. Solid lines correspond to
the same parameters as in (a) while the dot-dashed line correspond to the strong disorder case
(V = 10) and wavenumber k = /71073 (band-edge). The dashed bold line has slope 1 and is
drawn to guide the eye.

discussed in [65] differs with respect to ours in the way that the disorder is introduced;
the weight of the d—scatterer are constant while their position is random (see also [55]).
Recently Heinrichs [67] argued that 1/72 behavior can be found in the Anderson model by
considering the scattering on the first site only, which is justified in the case of extremely
strong disorder.
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2.6 Distribution of resonance widths

The resonances show up as the poles of the scattering matrix S(£) in the complex plain. In
the case of the one-dimensional system with one open channel this problem is reduced to the
problem of finding poles of the reflection coefficient r(£). This can be done by representing
the reflection coefficient in terms of some effective Hamiltonian H, ;s and determination its
eigenvalues in the complex plain (see Appendix A.1). The effective Hamiltonian H,; is
obtained from the Hamiltonian of the closed system by adding the imaginary shift ¢ to its
first diagonal element (if one neglects its energy dependence at the band center):

Hepp=H —ie(R) e, (2.29)

where € = (1,0,0,...,0) 7 is an L—dimensional vector, that describes at which site we
open the system.

The behavior of the distribution of the resonance widths can be understood by the following
consideration [68]. We know that the eigenstates of the closed system are exponentially
localized. That means that the intensities of the eigenstates at the boundary are usually
very small. For this reason most of the eigenstates are affected very weak once we open
the system. Only the eigenstates localized near the boundary can ”feel” the change of
the boundary condition. However, when the system size becomes large, the probability of
finding such eigenstates goes to zero. Thus we can consider the opening of the system as a
small perturbation. Then taking into account the form of the effective Hamiltonian (2.29),
we have in the first order perturbation theory:

e ~ U4, (2.30)

where 1F is the n—th component of an eigenstate of the closed system with energy Ej.
This eigenstate is localized at some distance [;, from the boundary. So we can estimate its
intensity at the boundary as

[Yr[? ~ e ?eE (2.31)

with & being the localization length. This estimation yields
Ty ~ e 2k/8 (2.32)

Now assuming that the eigenstates are distributed uniformly along the system, i.e. the
quantity [ is distributed uniformly in the interval [0, L], we obtain the distribution of the

resonance widths: .
P(T) ~ T (2.33)

It is interesting to note, that in the thermodynamic limit the probability of finding an
eigenstate at any finite distance from the boundary is equal to zero. Thus the distribution
of the resonance widths in this case collapses into a delta function centered at zero.
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Figure 2.6: The distribution of InT" for the one-dimensional Anderson model.

We check the above prediction (2.33) by numerical diagonalization of the effective Hamil-
tonian (2.29). From Eq. (2.33) follows that P(InT) is constant, which is in nice agreement
with numerical data (Fig. 2.6). Here we would like to mention that the distribution of the
resonance widths was calculated analytically in Ref. [69]. According to this calculation the
distribution is given by slightly different power law P(T') ~ 1/T''?. However some steps
of this calculation are uncontrollable. Moreover the later numerical calculation of Ref. [70]
are in favor of the prediction of Eq. (2.33).
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2.7 Outlook

This chapter is concerned with distributions of phases of S-matrix and Wigner delay times
in one-dimensional Anderson model with one open channel. It is shown that these dis-
tributions depend not only on the strength of the disorder oy but on the wave vector k
of the incoming wave as well. Only in the case, when disorder is week and £ is far from
the band edge and in the same time is not equal to a rational multiple of 7, the distri-
bution of phases is uniform. When one of this conditions is not satisfied the deviations
from uniformity appear. This indicates a possible violation of the single parameter scaling
hypothesis.

The universal form of the distribution of Wigner delay times is found analytically in the
case when 04 = oy /sink < 1. The important feature of this distribution is the power
law 1/7% tail, leading to the divergence of the mean value of 7 in the thermodynamic
limit. This is explained in terms of Azbel resonances, which are some special realizations
of disordered potential allowing the particle to penetrate arbitrary deep in the sample. In
the opposite limit 04 > 1 the origin of the distribution is model depended. However the
tail of the distribution shows the same universal 1/7% behavior.

Finally the distribution of the resonance widths P(I") is discussed. It is shown that it has
power law behavior P(I") ~ 1/T", which can be explained by a heuristic argument based on
the exponential localization of the eigenstates.

It would be interesting to extend our investigation to systems in higher dimensions. Al-
though the situation in the localized regime is expected to be the same independently of
the dimensionality of the system, in higher dimensions one can study the full transition
from the ballistic through the diffusive to the localized regime. The simplest geometry for
which this question can be addressed is a geometry of the quasi-one-dimensional wire. It is
known that the closed quasi-one-dimensional samples can be treated very efficiently by the
nonlinear o-model [35]. So it would be reasonable to try to apply the nonlinear o-model
to the open quasi-one-dimensional systems.
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Chapter 3

Diffusion: chaotic and disordered
systems

This chapter deals with quantum disordered and chaotic systems in the diffusive regime.
In this regime the underlying classical diffusion is very important for the behavior of
many physical quantities. On the other hand, the quantum mechanical interference effects
become crucial for the correct physical description of the systems. In particular, the
existence of prelocalized states affects the statistical distribution of various quantities like for
example the eigenfunction intensities. Whereas for disordered systems the field theoretical
approaches were developed to describe the statistics of the eigenfunction intensities in this
regime, nothing is known for dynamical systems with classical chaotic behavior. This issue
is studied in the first part of this chapter. The second part is devoted to the properties of
the corresponding open systems. We show what are the signatures of the classical diffusion
and prelocalized states in the distribution of the resonance widths and delay times.
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3.1 Diffusion in chaotic and disordered systems

3.1.1 From classical to quantum diffusion

Diffusion process is a very general phenomenon which appears in many different areas of
physics, chemistry and biology. In particular, the motion of electrons in a metal can be
described classically by diffusion. The diffusion in a metal appears as a result of scattering
of the electrons on the impurities, which is always present in non-ideal samples. The
diffusion picture is sufficient to determine many important properties of the metals like
for example its conductivity. Indeed according to the well known Einstein relation the
conductivity o = €*(0n/0u)D is proportional to the diffusion constant D.

One can think that diffusion appears only in stochastic systems. But this is not always
the case. It can also appear in deterministic systems provided that they are chaotic. The
chaotic systems are opposite to the integrable systems, where the motion is regular and
can be described in a very simple way by an introduction of the appropriate action-angle
variables. The motion in the chaotic systems is in contrast very irregular and complicated.
In the limiting case of the fully developed chaos all trajectories are exponentially sensitive
to any infinitesimal change of the initial conditions or perturbation [54,71].

In the area of the mesoscopic physics, where the motion is assumed to be phase-coherent,
quantum mechanical effects become important. As was discussed already in Chapter 2, the
diffusion in disordered systems can be affected very strongly by quantum localization. If
the system size exceeds the localization length, then the diffusion is completely suppressed
after the time needed for the wave packet to spread over the scale of the localization length.
But even in the absence of strong localization the existence of prelocalized states [72-77]
influences the behavior of different physical quantities in the diffusive regime.

Having this in mind, it is legitimate to ask, what happens with deterministic chaotic
systems when quantum mechanical description becomes relevant? This issue is studied in
the field of quantum chaos.

3.1.2 Quantum chaos and periodically driven systems

In quantum mechanics the uncertainly relation prevents a precise determination of the
position in the phase space. Hence the notion of trajectory loses its meaning. Moreover
the Schrodinger equation is a linear one, so one can not expect any exponential sensitivity
to the change of the initial conditions. On the other hand the correspondence principle
demands that quantum mechanics continuously develops into classical mechanics, as i — 0.
Then the question arises, whether there are any criteria allowing to distinguish regular and
chaotic systems in quantum mechanics? The study of quantum systems, whose classical
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analogs are chaotic, during last two decades shows that such criteria do exist [27-29].

One of these criteria is related to the energy spectra of chaotic systems. It is one of the
cornerstones of quantum chaos and it emerged as a conjecture put forward by Bohigas
et al. [26] in 1984. According to this conjecture the statistical properties of the energy
spectra of chaotic systems are described by the random matrix theory [3,24,25], which
was developed initially to study the spectra of complex nuclei. It was a very surprising
discovery that the spectra of deterministic systems having only few degrees of freedom
show the same behavior as those of complex many body systems. Despite the success of
the random matrix theory in the quantum chaos its applicability is restricted only by fully
chaotic systems in the ballistic regime. In particular the appearance of diffusion can not
be captured by the RMT (see the discussion in Introduction).

A prominent example of a system with classical diffusion is, the well known in the field of
quantum chaos, the kicked rotor model [41], which consists of the free propagating rotor
driven periodically in time by the external force (see its detailed description in the next
section). Since the total energy is not conserved for a driven system, the chaotic behavior
can appear even in the one-dimensional case. For the same reason there is no stationary
Schrodinger equation and one should consider a time dependent solution. Because of
the periodicity of the external force a time dependent solution can be represented as a
superposition of Floquet states [78], which are the eigenstates of the evolution operator for
one period (Floquet operator). For the kicked systems the interaction with external force
is instantaneous and one can factorize the total Floquet operator into the product of the
evolution operators corresponding to the free propagation and the interaction. Due to this
fact the kicked systems are very convenient for numerical study. Another advantage of the
kicked rotor consists in the fact that due to the unitarity of the evolution operator all its
eigenstates have the same statistical properties. This is in contrast to the eigenstates of
Hamiltonian models (like Anderson model), where the eigenstates belonging to different
parts of the spectrum have different statistical properties and therefore they must be picked
up from a narrow energy window.

The kicked rotor model is also well known because of the phenomenon of the dynamical
localization found by Fishman et al. in 1982 [79]. It turns out that the eigenstates of this
model are exponentially localized similar to the eigenstates of disordered systems. Despite
of the absence of disorder the localization occurs here due to the fact that chaotic dynamics
creates complicated interference effects. Attempts were made to put on a solid base this
analogy between the kicked rotor model and disordered models [31,79]. However all of
them require an additional randomization or ensemble averaging. Therefore the problem
remains open. In this context the study of the prelocalized states (known from disordered
systems) for the kicked rotor model allows to test this analogy on a new level. This is one
of the motivations of the investigation of the statistics of the eigenfunction of the kicked
rotor in the diffusive regime presented in the next section.
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3.2 Closed systems: distribution of eigenfunction in-
tensities

The statistical properties of wavefunction intensities have sparked a great deal of re-
search activity in recent years. These studies are not only relevant for mesoscopic physics
[23,72-77,80-86], but also for understanding phenomena in areas of physics, ranging from
nuclear [87] and atomic [88,89] to microwave physics [90-93] and optics [94]. Experimen-
tally, using microwave cavity technics it is possible to probe the microscopic structure
of electromagnetic wave amplitudes in chaotic or disordered cavities [90-93]. Recently,
the interest in this problem was renewed when new effective field theoretical techniques
were developed for the study of the distribution of eigenfunction intensities P(|]?) of
random Hamiltonians. As the disorder increases, these results predict that, the eigen-
functions become increasingly non-uniform, leading to an enhanced probability of finding
anomalously large eigenfunction intensities in comparison with the random matrix theory
prediction. Thus, the notion of prelocalized states has been introduced [72-77] to explain
the appearance of long tails in the distributions of the conductance and other physical
observables [72].

Up to now all theoretical predictions [23,72-77,80-82] and numerical calculations [84-86]
apply to disordered systems and are based on an ensemble averaging over disorder real-
izations. Their validity, however, for a quantum dynamical system (with a well defined
classical limit) that behaves diffusively is not evident. Furthermore, based on an argument
put forward in [81] (see also [31]), the far tail of P(]/|?) is due to rare realizations of the
disorder potential, and therefore requires an exponentially large number of eigenfunctions,
which can only be accounted by disorder averaging. Here instead we study the statisti-
cal properties of eigenfunctions in a dynamical model without introducing any ensemble
averaging. Our main conclusion is that in a generic dynamical system with classical dif-
fusion, P(|1|?) is described quite well by the nonlinear c—model (NLSM). We point out
that between the various theoretical works there is a considerable disagreement about
the parameters that control the shape of P(|1)|?) and their dependence on time-reversal
symmetry (TRS). More specifically, the NLSM suggests that the tail of P(|¢?) in two
dimensions (2d) is sensitive to TRS [23, 76,77, 80, 81], while a direct optimal fluctuation
(DOF) method predicts a symmetry independent result [82]. Recent numerical calcula-
tions [84] on the Anderson model seem to support the latter theory. This controversy, was
an additional motivation for the present study.

3.2.1 One-dimensional and two-dimensional kicked rotor models

The one-dimensional kicked rotor (KR) model is one of the most studied and representative
models in quantum chaos (for review see [41]). The classical model is described by the
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time-dependent Hamiltonian:
H = Hy+V> §(t—mT),
(L) = S(L+7)
V(o) = k <cos(9) cos(a) + % sin(26) sin(a)) (3.1)

where £ denotes the angular momentum and # the conjugate angle of the rotor. The
kick period is T, k is the kicking strength, while 7 is a constant inversely proportional
to the moment of inertia of the rotor. The parameter « breaks time reversal symmetry
(TRS) [41,95,96], the parameter + is an irrational number whose meaning will be explained
below. The Hamiltonian (3.1) describes a system which is kicked periodically in time.

One can construct a two-dimensional generalization of (3.1) taking two rotors with free
Hamiltonian given by the sum of free Hamiltonians of each rotor:

H = Hy+V» 6(t—ml), (3.2)
Ho({L}) = 35 (Lt ),

interacting with each other by the potential
1
V({6:}) =k (Cos(ﬁl) cos(6) cos(ar) + 5 sin(26;) cos(265) sin(a)) (3.3)

Index i = 1(2) is related to the first (second) rotor correspondingly. Another representation
of the Hamiltonian (3.2) may be given by one rotor moving on a two-dimensional sphere.
The classical equations of motion which correspond to Hamiltonians (3.1) and (3.2) can
be integrated over the kick period T' giving a set of simple maps:

61(n+1) = 6i(n)+nTLi(n) mod 27
O(n+1) = 6y(n) + nTLy(n) mod 27
Li(n+1) = Li(n) —k(—sin(@(n+ 1)) cos(f2(n + 1)) cos(a) +
+cos(201(n + 1)) cos(202(n + 1)) sin(«))
Lo(n+1) = La(n) — k(—cos(f(n+1))sin(f(n + 1)) cos(a) —
—sin(26,(n + 1)) sin(26(n + 1)) sin(«)) (3.4)

where 6;(n) and L£;(n) are the values of the dynamical variables taken just after the n-th
kick. (For the one-dimensional case one should omit all terms with ¢ = 2). The motion
generated by this set of maps is integrable in the absence of the kicking potential. For
sufficiently small but non-zero k the phase space of this system contains both regular
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Figure 3.1: Poincaré section of the classical phase space for Hamiltonian (3.2) for (a) k£ = 0.36,
(b) k=6.37

islands and chaotic sea. When £k is large enough then the dynamics becomes fully chaotic
(see Fig. 3.1) and there is diffusion in momentum space (Fig. 3.2) with diffusion coefficient

D = limy_o < L2(t) > [/t ~ k?/2T (3.5)

The last expression is correct within the random phase approximation [41,97] (see Ap-
pendix D.2).

If the £; are taken mod(27wm;/T';) where m; are integers, Eq. (3.1) defines a dynamical sys-
tem on a torus. The quantum mechanics of this system is described by a finite-dimensional
time evolution operator for one period

U = exp [=iHo({£:})T/2] exp [=iV ({0 })] exp [—iHo({£:})T/2] (3.6)

where we put 7 = 1. Upon quantization, additional symmetries associated with the dis-
creteness of the momentum show up, which can be destroyed by introducing irrational
values for the parameters ~;’s. The most striking consequence of quantization is the sup-
pression of classical diffusion in momentum space due to quantum dynamical localiza-
tion [41,79]. We introduce the eigenstate components W, (n) of the Floquet operator in
the momentum representation by

> Unn®r(n) = e+ " ¥y (n) (3.7)

The quantities wy are known as quasi-energies, and their density is p = T//2w. The cor-
responding mean quasi-energy spacing is A = 1/(pL%), where L is the linear size of the
system. The Heisenberg time is t; = 27 /A while tp = L?/D is the diffusion time (Thouless
time). Now one can formally define a dimensionless conductance as g =ty /tp = D, L2
where Dy = TD is the diffusion coefficient measured in number of kicks. Four length
scales are important here: the wavelength A, the mean free path [,;, the linear extent of
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Figure 3.2: Diffusion in momentum space for £ = 9.1

the system L, and the localization length . According to Refs. [23,73-77,80-82] the field
theoretical predictions are derived under the conditions

MW KIly < LK€ (3.8)

The first condition ensures that transport between scattering events may be treated semi-
classically. This limit can be achieved for our system (3.1) when & — oo, T" — 0 while
the classical parameter K = kT remains constant. When [,; < L as long as the motion is
not localized (i.e. L < &) it is diffusive, since a particle scatters many times before it can
traverse the system. The resulting mean free path for our system (3.1) is Iy ~ v/D}, while
the localization length for d = 1 is &€ ~ D, /2 [41] and for d = 2 is & ~ [;eP*/? [38,97].

Here we calculate the distribution function P(t = L|®(n)|?) by using a direct diagonal-
ization of the Floquet operator (3.6). The TRS is broken entirely for o = 5.749. In order
to test the issue of dynamical correlations, we randomize the phases of the kinetic term of
the evolution operator (3.6) and calculate the resulting P(¢). This model will be referred
to as Random Phase KR (RPKR). Since all our eigenfunctions have the same statistical
properties (in contrast to the Anderson cases where one should pick up only eigenfunctions
having eigenenergies within a small energy interval [84-86]) we make use of all of them in
our statistical analysis. The classical parameter K is large enough in all cases to exclude
the existence of any stability islands in phase space. The classical diffusion coefficient Dy, is
calculated numerically by iterating the classical map obtained from (3.1). Below we present
our numerical results and compare them to the predictions of Refs. [23,73-77,80-82].
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3.2.2 One-dimensional kicked rotor

It was shown in [31], that the effective field theory describing the semiclassical physics
of the system is precisely the NLSM for quasi-one dimensional (1d) metallic wires. Such
a mapping however, requires an averaging over an ensemble of rotors having the same
classical limit. We point out again that in the calculations below we do not adopt such an
averaging procedure.

The NLSM for quasi-1d systems can be solved exactly for the distribution function Pg(t),
using a transfer matrix approach [23,74,75,80,81]. In the ballistic regime (where g — 00)
RMT is applicable and one finds [23]

PEYT() = exp(—t/2)/V2rt (3.9)
Pl () = exp(-t). (3.10)

Here (3 denotes the corresponding Dyson ensemble: § = 1(2) for preserved (broken) TRS.
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Figure 3.3: Distributions of the eigenfunction intensities in the ballistic regime for one-
dimensional kicked rotor (solid lines) compared with the RMT predictions (dashed lines).
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This result can be easily understood. Indeed, within the random matrix theory one assumes
that all the eigenvector components are independent (the normalization of the eigenvector is
not essential in the thermodynamic limit, i.e. when the number of its components becomes
very large) random variables obeying Gaussian distribution. Going to the distribution of
the modulus square of the components one immediately recovers Eq. (3.9). For the case
of the broken time reversal symmetry one should take into account that each component
has statistically independent real and imaginary parts, leading to the distribution given
by Eq. (3.10). The numerical data presented in Fig. (3.3) shows that the distributions of
the eigenfunction intensities in the ballistic regime for one-dimensional kicked rotor are
described very nice by the RMT prediction.

As localization increases, the deviations from the RMT results of the body and the tails of
the distribution Ps(t) become noticeable and can be parameterized by a single parameter
which is the dimensionless conductance g = Dy /L.

For t < \/Dy/L, according to all studies [74-77,80] P(t) is just the RMT result with
polynomial corrections in powers of L/Dy, i.e. Pg(t) = PFM"(t)[1 + 6Ps(t)]. The leading
term of this expansion is given by

3/4—3t/24+t*/4 forp=1
OP(t) “{1—2t+t2/2 forg=2 "

where k ~ 1/g is the 1d diffusion propagator, which is identical for § =1 and § = 2 since
it is a classical quantity.

(3.11)

In Fig. 3.4(a) and 3.4(b) we report our numerical results for 6Pg(t) for two representative
values of Dy. One can clearly see that the agreement with the theoretical prediction (3.11)
becomes better as Dy increases. This is due to the fact that by increasing Dy we are
approaching the semiclassical region and therefore Eqgs. (3.8) are better satisfied. At the
same time higher order corrections in 6Ps(t) become negligible with respect to the leading
term given by Eq. (3.11). The resulting x; and x5 obtained by the best fit of our data to
Eq. (3.11) are found to be equal and in agreement with the theory (see Fig. 3.4(c)). We
therefore conclude, that in a generic dynamical system, the only parameter that controls the
shape of the deviations dPs(t) is the classical diffusion propagator. Moreover, our results
are in excellent agreement with the recent NLSM predictions derived in the framework
of diffusive disordered systems. Finally in Fig. 3.4(c) we also report the outcome of the
RPKR model. The results remain essentially the same indicating that Pg(t) for quasi-1d
systems are insensitive to dynamical correlations.

The tail of the distribution (¢ > D /L) deviates strongly from the RMT prediction and
has a stretched exponential form [74-77,80)]

Ps(t) ~ Agexp(—205Vt), Cs = \/Dy/L (3.12)

where Apg is a symmetry dependent constant. Our numerical results agree nicely with
Eq. (3.12). In Fig. 3.5(a) we present an example of Pg(t). By fitting our data to Eq. (3.12)
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Figure 3.4: Corrections to the distribution intensities 0Pg(t) for the kicked rotator model i.e.
Eq. (3.1). The system size is L = 1024, (o) =1, (¢) = 2. The solid (dashed) lines are the
best fit of (3.11) for # = 1(2) to the numerical data: (a) Dy ~ 1800 and (b) Dy = 3150 ; (c)
Shows the extracted diffusion propagator xg vs. L/Dj,.

the coefficients C,Cy can be extracted. In Fig. 3.5(b) we report the extracted stretched
exponential coefficients Cz from the best fit of (3.12) as a function of the square root of
the dimensionless conductance ¢ = Dy/L. A nice linear behavior is observed. The best
linear fit Cﬁ = Aﬂ\/Dk/L + Bﬂ yields, Aﬂzl = 0.41 £ 0.05 and Aﬁ:Q = 0.82 & 0.05. The
resulting ratio R = Ay/A; = 2 is in excellent agreement with the theoretical prediction
(3.12). We have also calculated the stretched exponential coefficients Cj for the RPKR
model. The results for various Dy values are summarized in Fig. 3.5(b) and show a nice
agreement with the results obtained from the real Hamiltonian.
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Figure 3.5: (a) Tails of the distribution Pg(t > Dy/L) for the model (3.1) with L = 1024,
Dy, ~ 2625 and for f =1 (o) and 5 = 2 (). The solid (dashed) lines are the best fit of (3.12)
for § = 1(2) to our data; (b) Coefficients Cz vs. /Dy /L. The solid (dashed) lines are the best

fits to 05 = Aﬁy/Dk/L -I-Bﬁ for ﬁ = 1(2).
3.2.3 Two-dimensional kicked rotor

We start our analysis again with the ballistic regime. One expects to obtain the same
statistics of the eigenfunction intensities as in the one-dimensional case, because the RMT
predictions given by Eq. (3.9) and (3.10) are universal and don’t depend on the dimension-
ality of the system. The numerical data presented in the Fig. (3.6) confirm this expectation.

According to Ref. [74], corrections to the body of PFMT are still given by Eq. (3.11), but
now « is the 2d diffusion propagator.

Figures 3.7(a) and (b) show corrections to PgM" for g = Dy > 1 for two representative
values of Dj,. We find again that the form of the deviations are very well described by
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Figure 3.6: Distributions of the eigenfunction intensities in the ballistic regime for two-
dimensional kicked rotor (solid lines) compared with the RMT predictions (dashed lines).

Eq. (3.11) and the agreement becomes better for larger values of the diffusion constant.
In Fig. 3.7(c) we summarize our results for various Dj values. The extracted kg values
are obtained by the best fit of the data to Eq. (3.11). Again we find that s depends
linearly on 1/Dy. However, contrary to the 1d-KR, here k; and ks, are different. Moreover
the best fit with kg = AﬁDk’1 + B yields Ag—y = 5.44 £ 0.03 and Ag—y = 10.84 + 0.04
indicating that the ratio R = Ay/A; is close to 2, a value that could be explained on the
basis of ballistic effects [23,81,84,85]. Taking the latter into account leads to an additional
term in the classical propagator kg = Kgifr + gmba”. The first term is the one discussed
previously and is associated with long trajectories which are of diffusive nature while the
latter one is associated with short ballistic trajectories which are self-tracing [23,81]. Thus,
when Kgrr < Kpany we get R = 2. The calculation with the RPKR model shows, however,
that the corresponding ratio is R ~ 1 in agreement with the theoretical prediction for
disordered systems with a pure diffusion. This indicates that dynamical correlations can
be important in the 2d case.

For the tails of the distributions, the result of the NLSM within a saddle-point approxi-
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Figure 3.7: Corrections to the distribution intensities 6Pg(t) for the two-dimensional kicked
rotator model (3.2). The system size is L = 90, (o) 8 =1, (¢) 8 = 2. The solid (dashed) lines
are the best fit of (3.11) for § = 1(2) to the numerical data: (a) Dy ~ 34 and (b) Dy = 53 ; (c)
Fit parameters sz vs. D, . The solid (dashed) lines are the best fits to kg = AgD, ' + By for

B =1(2).

mation [23,76,77,81] is

pr’p D
> (L/l)

Note that the decay in the tails of Eq. (3.13) depends on 3, as in the 1d-KR case (see
Eq. (3.12)). Recently, a DOF method was used to calculate the tails of Pg(t) [82]. It was
found that the tails are still given by Eq. (3.13) but with a log-normal coefficient C' which
is independent of the parameter [ :

(3.13)

Ps(t) ~ exp[-Cg(Int)?], CF =

D
CPOF = 7r2p17 (3.14)
n

(L/A)
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Figure 3.8: (a) Tails of the distribution Pg—;(t > Dj,) for the model (3.2) and Dy, ~ 35. The
system size is L = 80, (o) =1, (0) f = 2. The solid (dashed) lines are the best fit of (3.13) for
B = 1(2) to the numerical data; (b) Fitted log-normal coefficients Cz versus the classical diffusion
coefficient Dj,. The solid (dashed) lines are the best fits to Cs = AgDy + Bg for f = 1(2).

Figure 3.8(a) shows a representative case of Pg_;(t > Dj). The tails show a log-normal
behavior predicted by Eq. (3.13). In Fig. 3.8(b) we report the log-normal coefficients Cj
extracted from the best fit to our numerical data, versus the classical diffusion coefficient.
A pronounced linear behavior is observed in agreement with both theories. However one
clearly sees that C differs from C in contrast to the DOF prediction (3.14) and to recent
numerical calculations done for the 2d Anderson model [84]. We point out here that in [84]
the authors were not able to go to large enough values of conductance ¢ (in comparison
to our study) where the theory can really be tested. In contrast, the NLSM predicts a
value of 2 for the ratio R = CF/C7. We note that Cf is only the leading term in D.
In order to calculate this ratio, we performed a fit to our data with Cs = AgDj + Bg.
The resulting ratio was found to be R = Ay/A; = 1.97 + 0.03 in perfect agreement with
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the NLSM predictions. Finally in Fig. 3.8(b) we also present our results for the RPKR
model (using the same data as the one in Fig. 3.8(c)). Again we found that the ratio
R =1.96 £0.03 ~ 2. Thus P(t > Dy) depends on TRS and is described by the NLSM.
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3.3 Open systems: distribution of resonances and de-
lay times

For diffusive mesoscopic samples, there is no systematic investigation of P(T") and P(7)
besides Ref. [98] where the authors have focused on the tails of P(T") for a quasi-1D system
in the diffusive regime. In the next section we fill this gap by presenting the study of P(T)
and P(7) for 2D open systems in the diffusive regime. This study can be important for
various applications like quantum dots [11], microwave cavities [29] or random lasers [12,94]
where most of the theoretical treatment is limited by the RMT.

3.3.1 Open kicked rotor model

To proceed with the analysis of the resonance widths and delay times we turn the closed
2D KR model (3.6) into an open one. To this end we impose absorption at the boundary
of a square sample of size L X L in the momentum space. In other words, every time
that one of the components of the two dimensional momentum (L£;, £,) takes on the value
1 or L, the particle is absorbed without coming back to the sample. Using a recently
proposed recipe [99] we can write down the corresponding scattering matrix S in the form
(see Appendix E)

-
I —ewPU
P = I-Ww (3.15)

S(w) = —-WUe™

where I is the L? x L? unit matrix and W is a M x L? matrix. It has only M non-
zero elements which are equal to one and describe at which ”site” of the L x L sample
we attach M leads” [in our case M = 4(L — 1)]. Here WTW is a projection operator
onto the boundary, while P is the complementary projection operator. The scattering
matrix S;; given by Eq. (3.15) can be interpreted in the following way: once a wave enters
the sample, it undergoes multiple scattering induced by [I — e PU] ! = Y>> (e™ PU)"
until it is transmitted out. It is clear therefore that the matrix U = PU propagates the
wave inside the sample. However, contrary to the closed system in which the evolution
operator is unitary, the absorption breaks the unitarity of the evolution matrix U so that
all eigenvalues X move inside the unit circle. Therefore each eigenvalue can be written in
the form ), = € = exp(—iw, —I',/2) where ', > 0 is the dimensionless resonance width
of an eigenstate.

The Wigner delay time can be expressed as the sum of proper delay times 7,. The latter
are the eigenvalues of the Wigner-Smith operator written in our case as (see Appendix E)

Q) = 2512 =

b —e “WKWIWKUTKWT (3.16)
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where K = (P — UTe_i“’)fl.

The corresponding classical system is described by the same set of equations (3.4) as the
closed one, on top of which we add absorbing boundary conditions. Namely, we set L;
equal to zero, if £; < 0 or £; > L. These conditions give to ”the particles” the possibility
to escape from the system. The evolution of the classical density p(z,y,t) can be described
in this case by the diffusion equation:

dp D
— =—A 3.17
5 = 1 0P (3.17)
with absorbing boundary condition
— D —
Iy = —Z(Vp)n =-, (3.18)

which sets the flux at the boundary fn to be equal to the number of particles ®,, carried
out under one iteration of the map. The solution of Eq. (3.17) can be represented as the
superposition of the diffusive eigenmodes v (z,y):

p(x,y, 1) =D cre *ug(z,y) (3.19)
k=1

where v, are the corresponding eigenvalues and ¢, are coefficients determined by the initial
condition. The asymptotic behavior of the density is governed by the smallest eigenvalue
v1 = [ As a consequence one has an exponential decay of the classical survival probability
P(t)= [ [dxdy p(z,y,t):

P(t) oc ettt (3.20)

The classical decay rate I’y ~ D/L? can be estimated as the inverse time needed for the
particle to reach the boundary (Thouless time). The exact value of the classical decay
rate can be obtained as the solution of the corresponding eigenvalue problem or from the
numerical calculation of P(t) (see Fig. 3.9).

Below we present our theoretical considerations and compare them with the numerical
data obtained for the 2D KR model. The parameters of the model were chosen in such
a way that the conditions (3.8) discussed in the previous section were fulfilled. In order
to improve our statistics, we randomized the phases of the kinetic term of the evolution
operator (3.6) and used a number of different realizations. In all cases we had at least
60000 data for statistical processing.

3.3.2 Resonance widths distribution

In this section we demonstrate that the distribution of resonance widths is determined by
the diffusive classical dynamics of the corresponding closed system and depends on the
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Figure 3.9: Exponential decay of the classical survival probability for open kicked rotor model.

time-reversal symmetry. Specifically, the resonance width distribution P(T") is given by

P <T,) ~ exp(—=Cs(InT)?), where Csz~ D
/D 1
PLZTa) ~ 7232 (3.21)

where [ denotes the symmetry class.

We start our analysis with the study of resonance width distribution P(T") for I' < I';;. The
small resonances I' < A can be associated, with the existence of prelocalized states of the
closed system which were discussed in the previous section. They consist of a short-scale
bump (where most of the norm is concentrated) and they decay rapidly in a power law
fashion from the center of localization [23,82]. One then expects that states of this type
with localization centers at the bulk of the sample are affected very weakly by the opening
of the system at the boundaries. In first order perturbation theory, considering the opening
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as a small perturbation we obtain
r
5 = (PWW[T) = > 1¥m)P ~ LU(L)f (3.22)

nE€boundary

where |U(L)|? is the wavefunction intensity of a prelocalized state at the boundary. At the
same time the distribution of # = 1/v/LU(L) for large values of the argument is found to
be of log-normal type [82]:

P(0) ~ exp (—7°D1n*(6%)) (3.23)

Using this together with Eq. (3.22) we obtain
P(1/T) ~ exp (—7*D1In*(1/T)) (3.24)

We would like to stress that the expression for P(f), must be corrected by including the
TRS factor S in the exponent. This is due to the fact that the Optimal Fluctuation
Method, which was used to derive the above expression for P(f), does not describe the
effect of breaking TRS in a correct way [42,100]. Taking all the above into account we end
up with the expression given in Eq. (3.21).

The numerical data reported in Fig. 3.10 support the validity of the above considerations.
However, we would like to mention that the perturbative argument is valid only for the
case of very small resonances i.e. I' < A, whereas our numerical data indicate that one
can extend the log-normal behavior of P(I") up to resonances with A <T' < T.

Next we turn to the analysis of P(T") for I' > I',;. In Fig. 3.11(a) we report our numerical
results for P(I') with preserved (broken) TRS for two representative values of D. An
inverse power law P(T') ~ '™ is evident in accordance with Eq. (3.21). (The behavior
of the extreme large I' tails of P(I") is essentially determined by the coupling to the leads
which is model dependent. Their relative number is proportional to M/L? ~ L' and
therefore they are statistically insignificant.) From the figure it is clear that this part of
the distribution is independent of the symmetry class, in contrast to the small resonance
distribution discussed above.

The following argument provides some understanding of the behavior of P(T') for T 2 T',;.
First we need to recall that the inverse of I' represents the quantum lifetime of a particle
in the corresponding resonant state escaping into the leads. Moreover we assume that
the particles are uniformly distributed inside the sample and diffuse until they reach the
boundaries, where they are absorbed. Then we can associate the corresponding lifetimes
with the time tg ~ 1/T'gr ~ R?/D a particle needs to reach the boundaries, when starting a
distance R away. This classical picture can be justified for all states with I' > T'yy ~ D/L?.
The relative number of states that require a time ¢ < tg in order to reach the boundaries
(or equivalently the number of states with I' > I'g) is

> S(tr)

Pon(Tw) = [ PT)E ~ 2]
Cr

(3.25)
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Figure 3.10: (a) The distribution of resonance widths (plotted as P(1/T") vs. 1/T") forI' < T',; for
two representative values of D. The system size in all cases is L = 80. Filled symbols correspond
to broken TRS. The solid lines are the best fit of Eq. (3.21) for f = 1(2) to the numerical data.
(b) Coefficients Cz vs. D. The solid lines are the best fits to Cg = AgD + Bg for 5 = 1(2). The
ratio R = Ay /A; = 1.95+0.03

where S(tg) is the area populated by all particles with lifetimes ¢ < ¢5. In the case of open
boundaries we get

L*— (L —2R)? T, T.
( © . fta _ La (3.26)

L? I'r Tr

Pint(T'r) ~

For ' > T the first term in the above equation is the dominant one and thus Eq. (3.21)
follows.

Here it is interesting to point that a different way of opening the system might lead to
a different power law behavior for P(I'). Such a situation can be realized if instead of
opening the system at the boundaries we introduce ”one-site” absorber (or one ”lead”)
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Figure 3.11: (a) The resonance width distribution P(T") for preserved TRS and D = 20.3
(o) and D = 33.5 (¢). The corresponding filled symbols represent P(I') for broken TRS and
the same values of D. The dashed (solid) vertical line mark the classical decay rate I';; for
D =20.3(D = 33.5). (b) The Piy:(I") for a sample with nine leads (lower curve). For comparison
we plot also the Py (T") for the same sample but when we open the system from the boundaries.
The dashed lines correspond to the theoretical predictions (3.26) and (3.27).

somewhere in the sample. In such a case we have

S(tr) _ B* _Dtp Ty
2 12 L2 T'p

Pint(T'r) ~ (3.27)

The above result is valid for any number M of "leads” such that the ratio M/L? scales as
1/L?. In Fig. 3.11(b) we report the integrated resonance width distribution Py, (T") for the
case with nine ”leads” attached somewhere to the 2D sample.

A straightforward generalization of our arguments for 3D systems in the diffusive regime
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gives
3
Fcl Fcl 4 Fcl 2
Pni(Tr) ~y/=— —2—+ - | =— 3.28
+(Cr) Ty Tp @ 3 (FR> (3.28)
which for ' > T'; leads to the same universal expression as in Eq. (3.21). Similarly, the
analog of Eq. (3.27) in 3D is

Prc(T) ~ (E—;) (3.29)

It is interesting to compare the above prediction (3.21) with the results of the random

matrix theory. In the general case, Fyodorov and Sommers [8] proved that the distribution
of scaled resonance widths v = I'/A for the unitary random matrix ensemble, is given by

)M M g Sinh(ym
(’Y) — ( ) ’YM 1 — (e ymq ( ))

(M) dy (ym)
where M is the number of open channels and the parameter ¢ controls the degree of

coupling with the channels. In the limit of M > 1, which is relevant for the comparison
with Eq. (3.21), Eq. (3.30) reduces to the following expression [8]

(3.30)

M M M
Ply) = { oo ol e <V SR (3.31)
0 , otherwise

One can see two essential distinctions between this result and Eq. (3.21). Firstly, the
power law P(T') ~ 1/I'? is not the same as the power law predicted by Eq. (3.21) for
large resonances P(I') ~ 1/I'*2. Since this difference appears in the ”classical” part of
the distribution, it can be explained as a difference in the classical dynamics of a particle
inside the system: ballistic (RMT) versus diffusive motion. Indeed, taking into account
that for ballistic system R ~ vt and 'y ~ v/L, where v is the velocity of the particle,
one immediately finds from Eq. (3.26) that Py (T'r) ~ ['y/Tg for Tp > Ty, in agreement
with the RMT prediction P(T") ~ 1/T'%. Secondly, according to Eq. (3.31) there is a gap in
the distribution of the resonance widths: there are no resonances with widths smaller than
%. The existence of the gap can be understood, if one relates the small resonances
to the coupling of the wavefunctions to the leads. Since the wavefunctions in the RMT
are extended, the probability to find a wavefunction, which is weakly coupled to all M
channels, goes to zero when the number of channels becomes very large M > 1. In the
diffusive regime, in contrast, there are prelocalized states, which are weakly coupled to
the leads. Due to their existence the distribution of the small resonance widths has a

non-trivial behavior described by Eq. (3.21).

3.3.3 Wigner delay times distribution

The main result of this section is the distribution of the Wigner delay times, which is given
by the following expressions:
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_ 1
P(r ST ~ 32 exp(—o/7)
P(r>T,") ~ exp(—Cs(InT)?) (3.32)

where o is some constant of order unity and Cjs ~ D is the same constant as in Eq.(3.21).
Our theoretical understanding will be based on the following relation (see Eq. (A.26))

L2

Tw) =Y . wnr)§+ 77 (3.33)

n=1

which connects the Wigner delay time and the poles of the S—matrix. Let us start with
the far tails. Tt is evident that large times 7(w) ~ ', correspond to the cases when w ~ w,
and I',, < 1. Then for the distribution of delay times we obtain

P(r) ~ / dCP(T)3(r — 1)) (3.34)

Then the small resonance width asymptotic given by Eq. (3.21) yields the log-normal law
of Eq. (3.32).

Now we estimate the behavior of P(r) for 7 < I';'. In this regime many short-living
resonances contribute to the sum (3.33). We may therefore consider 7 as a sum of many
independent positive random variables each of the type 7, = T',z,, where z, = dw,>.
Assuming further that dw, are uniformly distributed random numbers we find that the
distribution P(z,) has the asymptotic power law behavior 1/xf’/2. As a next step we find
that the distribution P(7,) decays asymptotically as 1/75’/2 where we use that P(T,) ~
1/Ff’/2. Then the corresponding P(7) is known to be a stable asymmetric Levy distribution
L,1(7) of index po = 1/2 [101] which has the form given in Eq. (3.32) at the origin. We point
out here that the asymptotic behavior P(7) ~ 1/7%2 emerges also for chaotic/ ballistic
systems where the assumption of uniformly distributed dw, is the only crucial ingredient
(see for example [8]).

Since T = Zf\il 7,4, We expect the behavior of the distribution of proper delay times P(r,)
to be similar to P(7) for large values of the arguments (for 7 > 1 we have 7 ~ 7,7%).
Moreover, from the numerical point of view P(7,) can be studied in a better way because
a larger set of data can be generated easily. Our numerical findings for P(7,) are reported
in Fig. 3.12 and are in nice agreement with Eq. (3.32), even for moderate values of 7,.
We stress here that the dashed lines in Fig. 3.12, have slopes equal to C's taken from the

corresponding log-normal tails of P(T").

Finally we would like to compare our result (3.32) with the results known from the random
matrix theory. Although the distributions of the proper delay times [102,103] and partial
delay times (defined as a derivative of the partial phase 6; of the S-matrix with respect to
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P(rq)

Figure 3.12: The proper delay times distribution P(7;) for D = 20.3(c) and D = 29.8(0J). The
(e) correspond to D = 20.3 but now with broken TRS. The dashed lines have slopes equal to Cj
extracted from the corresponding P(I') (see Fig. 1b). In the inset we report P(7,) for moderate
values of 7, in a double logarithmic scale.

energy) [8] have been calculated recently, there is no analytical expression for the distribu-
tion of the Wigner delay times. Nevertheless using consideration similar to one presented
above (see the discussion for 7 < T';') one can argue [8] that the part of P(r) for 7 < T
is the same in the RMT as stated in Eq. (3.32). However, the distribution of the large
delay times in the RMT is expected to have a power law behavior P(7) ~ 1/72+6M/2 with
M being the number of open channels. This is in contrast with a log-normal tail stated in
Eq. (3.32).
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3.4 Outlook

This chapter is devoted to the investigation of chaotic and disordered systems characterized
by the classical diffusion. The first part deals with study of the closed system. Specifi-
cally, we perform a detailed numerical analysis of the eigenfunction intensities P(¢) of the
standard kicked rotor on a torus and its two-dimensional generalization. Based on these
results, we concluded that the distribution P(t) of generic quantum dynamical systems
with diffusive classical limit is affected by the existence of prelocalized states. An example
of one of the prelocalized states is presented in Fig. 3.13. The deviations from RMT are
well described by field theoretical methods developed for disordered systems. In partic-
ular, in a clarifying way we have resolved the controversy between DOF and NLSM by
demonstrating that the dependence of the tails of Pg(¢) on TRS is described correctly by
the latter theoretical approach.

\
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Figure 3.13: An example of anomalously localized state. The size of the system is L x L = 90x90,
the diffusion coefficient D = 33.8
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The study of the eigenfunction intensities can be extended to the open systems. Here one
is interesting in the statistical properties of the non-orthogonal eigenvectors of the effective
non-Hermitian Hamiltonians. The knowledge of their statistical properties is significant
in understanding the dynamical properties of scattering and specifically the relaxation
of the survival probability (see Eq. (1.11). Another important application appear in the
frame of quantum optics, where it was shown that the quantum limited linewidth of a laser
depends on the non-orthogonality of the cavity modes (Petermann factor) [104]. Up to now
the results on the statistical properties of non-orthogonal eigenvectors are associated with
chaotic/ballistic systems where the RMT predictions are applicable [104,105]. However,
nothing is known for the diffusive regime, where deviations from the RMT are expected to
appear.

The second part of this chapter deals with the study of the open system. We investigate
the distribution of the resonance widths P(I") and Wigner delay times P (7). We obtain
the forms of these distributions (log-normal for large 7 and small T, and power law in the
opposite case) for different symmetry classes and show that they are determined by the
underlying diffusive classical dynamics and by the existence of the prelocalized states. Our
theoretical arguments are supported by extensive numerical calculations.

Although the arguments, we used to explain the behavior of P(T") and P(7), can be easy
generalized to the three-dimensional case, the numerical test of these predictions has not
been still performed. Moreover the study of three-dimensional case would allow to inves-
tigate these distribution at the critical point of the metal-insulator transition. The first
attempt to attack this problem was done in Ref. [106], but a detailed understanding is still
required.



Chapter 4

Criticality: one-dimensional
quasiperiodic systems

This chapter is concerned with one-dimensional quasi-periodic systems at critical condi-
tions. Many interesting results are known for the closed systems of this type. In particular,
the energy spectra of these systems have fractal structure. Not much is known about the
corresponding open systems. For this reason we study here the statistical properties of
resonances, Wigner delay times, survival probability and scattering matrix autocorrelation
function for two different types of quasi-periodic tight-binding models. We demonstrate
how the behavior of these quantities is related to the fractal dimension of the spectrum.
The first model we study is the Harper model, which shows a metal-insulator transition in
one dimension. The second one is the Fibonacci chain model, which allows us to test our
predictions in a more general way.
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4.1 Quasiperiodic models

4.1.1 Harper model

For the Bloch electron in magnetic field Peierls [107] and Onsager [108] suggested the
following effective-Hamiltonian concept. One starts with the energy dispersion en(l;) for
the n-th band without magnetic field. Then one substitutes the wave vector k by the
operator

k- %(ﬁ _eA), (4.1)

where A is the vector potential. The new operator is considered as an effective one-band
Hamiltonian associated with the n-th band and gives in the classical limit the semiclassical
equation of motion. The justification of this procedure was discussed in the literature by
many authors (see for example [109,110]). Using the effective Hamiltonian one can write
the stationary Schrodinger equation for the n-th band as

1. .
(3o-ed) v =0 (12)
where 1(x, y) is the wavefunction at the position (z,y) and F is the corresponding eigenen-
ergy.

The second approximation we _use is the simplest form of the energy dispersion. Since
en(k) is a periodic function of &, its simplest non-trivial form contains only lower Fourier
components:

en (k) = Eo(cos kya + cos kya), (4.3)
where a is the lattice constant and 2Ej is the band width of the unperturbed band.

The magnetic field in z direction yields the vector potential A = B(0,,0) in the Landau
gauge. We substitute now Eq. (4.3) into Eq. (4.2) and obtain

[EU cos (%) + cos (“—gy - “f’”)] W(z,y) = Bz, ). (4.4)

Using that cos @ = (e 4 e~™) and taking into account that e?=/" and e'®=/" are trans-
lations operators one has

SEo [0+ 00) + 9@ = a,) + e P,y + @)+ P,y — )] = Bb(e,y),
(4.5)
The wavefunction at the point (z,y) is coupled now only to the four neighbor points. This
is the result of the simplest form of the energy dispersion (4.3) we used.
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Introduction of the dimensionless variables n = x/a, [ = y/a, E = 2E/F, (further we use
E again instead of E), and o = a’eB/h yields

77bn—|—1,l + 77bn—1,l + e_ﬂﬂnawn,l—l—l + ei27mg’¢}n,l—1 — Ewn,l- (46)

Since the coefficients of this equation don’t depend on [, one can use the free propagating
waves as the ansatz in y-direction:

wn,l = 6iulwn- (47)
Substituting this equation into Eq. (4.6) we find the one-dimensional tight-binding equation
Ynt1 + Y1 + Acos(2mno — v)iy, = Eiy, (4.8)

where A = 2. This equation was studied first by Harper [111] and is referred to as the
Harper equation.

The parameter o in this equation plays a very important role. It is proportional to the
magnetic ﬁeld and gives the number of flux quanta in a unit cell. It is also equal to the
Tl (having a momentum 2571 to the
inverse cyclotron frequency . When ¢ is an irrational number the period of the effective
potential V;, = Acos(2mon) is incommensurate with the lattice period. In the following
we consider generic irrationals which cannot be approximated “too well” by rationals. To
this end we take o as the limit of successive rationals p/q, so that the potential becomes

\

Figure 4.1: The spectrum of the Harper model by A = 2 and o taken as a rational approximant of
the golden mean. The magnifications of the parts of the spectrum show its self similar structure.
(The figure is taken from Ref. [112])
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periodic on the lattice with a period q. Then we can define a scaling procedure where
the incommensurate limit ¢ — oo becomes equivalent with the thermodynamic limit.
The parameter v, the wave vector of the plane wave in y-direction, is in contrast not so
significant and therefore one can put it to be equal to zero.

4.1.2 Quasiperiodic tight-binding Hamiltonians

The Harper equation (4.8) belongs to the class of one-dimensional tight-binding models
with a quasiperiodic potential.

wn+1 + wnfl + Vnwn = Ewna (49)

where V,, is given by some quasiperiodic sequence. This class of models describes in par-
ticular the physics of quasicrystals [113]. The quasicrystals differ from normal crystals on
one hand and from amorphous matter on the other hand, by possessing a new type of
long-range translational order — quasiperiodicity. Since the discovery of quasicrystals in
1984 [114,115] they are the subject of intensive research both in physical and mathematical
communities [116].

One of the basic models describing quasicrystals is the Fibonacci chain model [117-120],
which was implemented experimentally using semiconductor superlattices [121]. The po-
tential V,, in this model takes only two values +V" and —V arranged in a Fibonacci sequence
as follows. Two basis sequences are giving just by two different letters Sy = A and S; = B.
Then we define the sequence S, as the sequence S,,_; followed by the sequence S, _».
According to this definition we have

So = A

S5 = B

Sy = BA

S3 = BAB

Sy = BABBA

The interest to the quasiperiodic systems is motivated not only by their unusual properties
discussed in the next section, but also by their various experimental realizations. Among
them are superconductor superlattices [121,122], Wigner crystals [123] and microwave
experiments [124].
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4.1.3 Properties of the Harper and Fibonacci chain models

It is known that the states of the closed Harper model are extended when A < 2, and
the spectrum consists of bands. For A > 2 the spectrum is point-like and all states are
exponentially localized. The most interesting case is the critical point A = 2 where one has
a metal-insulator transition. The eigenstates at this point are critical, i.e. they possess
self-similar fluctuations on all scales [46,125-127], while the spectrum is a zero measure
Cantor set (see Fig. 4.1).

A Cantor set can be characterized by the so-called fractal dimension defined as follows.
Consider a set T contained in a n-dimensional space. Let N(¢) be the minimum number of
n-dimensional cubes of side-length € needed to cover 7 . Then the fractal (box-counting)
dimension of 7 is defined as

(4.10)

o

Figure 4.2: The Hofstadter butterfly shows the dependence of the spectrum of the Bloch electron
from the magnetic field (from 0 to 1 flux quanta in a unit cell). (The figure is taken from Ref. [112])

The spectrum of the Harper model at the critical point has the fractal (box-counting)
dimension D¥ < 0.5 [128,129]. One of the fascinated phenomenon known for the critical
point of the Harper model is so-called Hofstadter butterfly [130] (see Fig. 4.2) — a self-
similar structure appearing when one plots the spectrum of the Bloch electron as a function
of the magnetic field.
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Similarly, the spectrum of the Fibonacci model is a Cantor set with zero Lebesgue measure
for all V> 0. The fractal dimension of the spectrum depends non-trivially on the strength
of the on-site potential DF = DEF (V) (Fig. 4.3).
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Figure 4.3: The box-counting dimension D{ of the spectrum of the Fibonacci chain model as a
function of the on-site potential strength.

The fractal nature of the spectrum leads to an unusual energy level spacing distribution
P(s) ~ s7'=P% which is a signature of level clustering [46,127]. This is in strong contrast
to the level repulsion predicted by the RMT P(s) ~ s”. Traces of the fractality can be
also seen in the dynamics. Specifically, the variance of a wave packet spreads anomalously
in time as var(t) ~ 1206 (see Fig. 4.4) [46,127,131].

The corresponding closed systems were intensively studied during the last two decades and
many interesting phenomena were found. All of them appear due to the fractal nature of
the spectrum. In the following we show what are the fingerprints of the fractal spectrum
for open systems.

4.2 Open system

We consider the same scattering setup as the one used in Chapter 1. It consists of the
finite quasiperiodic sample of size L and one perfect lead attached on the left side (see
Fig. 2.2). Thus the system is described by the tight-binding equation (4.9), where V,
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Figure 4.4: The variance of the wave packet as a function of time. The numerical calculation
are plotted by solid lines, while dashed lines represent the best fit with a power low dependence,
which is in reasonable agreement with the prediction var(t) ~ t2P0. (a) The Harper model (b)
The Fibonacci model for three different values of the potential V' = 0.5,1,1.5 (from up to down).

is given by a quasi-periodic sequence for 0 < n < L and V,, = 0 for n < 0. We impose
Dirichlet boundary condition at the edge ¢y, = 0. Therefore, for n < 0, scattering states
of the form v, = e* + Se~*" represent the superposition of an incoming and a reflected
plane wave. Here, k = arccos(E/2) is the wave vector supported at the leads. Since there
is only backscattering, the scattering matrix S(F) = €*®(#) is of unit modulus and the total
information about the scattering is contained in the phase ®(F).

Using this setup we study various important quantities describing the open system in the
thermodynamic limit (L — 00). The main findings of our investigation can be summarized
as follows. The resonance widths distribution P(I"), the distribution of the Wigner delay
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times P(7), the S-matrix autocorrelation function C'(x) and the survival probability P(t)
have a power law behavior

PT) ~ '™, a=1+DF (4.11)
P(r) ~ 7" u=2-DF (4.12)
Pt) ~ t; v=1-DF (4.13)
Cly) ~ 1—x". (4.14)

The important result here is the fact that the corresponding power law exponents are
related to the fractal dimension of the spectrum in a very simple way.

4.3 Statistics of resonances

The poles of the S-matrix are associated with the eigenvalues of the non-Hermitian effective
Hamiltonian (see Appendix (A.1)):

Vi+e* 1 0 0 0
L ik o . 1 Vo 1.0 --- 0
Hip(B) = HY +ete@e= | 7 SRR - @)
0 0 0 1 Vg
where &€ = (1,0,0,...,0) T is an L—dimensional vector describing the sites at which the

sample is coupled to the leads. Since k = arccos(E/2) changes only slightly in the center of
the band, we put £ = 0 and neglect the energy dependence of H.g. The poles &, = En—%Fn
of the S—matrix are computed by direct diagonalization of H.;; and the resonance widths
[',, are extracted by taking its imaginary parts. We note here that numerical diagonalization
of complex non-Hermitian matrices is a time consuming process and imposes limitations
on the system size due to limited storage capacity. The size of the matrices that we used
in our analysis below was up to rank 5000.

First, we will investigate the statistical distribution of the resonance widths I" for the Harper
model at the critical point A = 2. Specifically we determine the integrated distributions

Pint(x) = /oo P(a")dz! (4.16)

whose derivatives P(r) = —dPj,;/dx determine the probability density of resonance widths
P(z =T). In all our calculations we take approximants of the golden mean o = (v/5 —
1)/2. For this case it is known that D’ ~ 0.5 [128,129].

Figure 4.5 shows P, (") for three different rational approximants o of the golden mean
oq. It clearly displays an inverse power law

Pint(T) ~ T (4.17)
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Figure 4.5: P;,;(T) of the Harper model (A = 2) for three approximants of o, o1 = %; 09 =

%; and o3 = %. An inverse power law Pj,;(T) ~ I''~® is evident. A least squares fit yields
a = 1.5 in accordance with DY ~ 0.5 and Eq. (4.11).As is seen the lower cutoff of the scaling

region decreases for higher approximants.

and thus the resonance width distribution behaves as stated in (4.11) with a ~ 1.5 =
1+ D§. The integrated resonance width distribution cuts off at a small value of I'’s (see
Fig. 4.5), since for all rational approximants of og the total number of &, is finite. This
cutoff, however, can be shifted to arbitrarily small values for higher approximants.

The connection between the exponents a and the fractal dimension D of the spectrum
of the closed system calls for an argument for its explanation. The following heuristic
argument, similar in spirit to the one used in Section 3.3.2, provides some understanding
of the power law (4.11). We consider successive rational approximants o; = p;/q; of the
continued fraction expansion of o. On a length scale ¢; the periodicity of the potential is not
manifested and the variance of a wave packet spreads as var(t) ~ t2P9 (Section 4.1.3). We
attach the lead at the end of the segment ¢; which results in broadening the energy levels by
a width I'. The maximum time needed for a particle to recognize the existence of the leads,
is 74, ~ qil/DOE. The latter is related to the minimum level width 'y, ~ 1/7,,. The number
of states living in the interval is ~ ¢;. Thus the number of states with resonance widths
I' > 1/7, is ~ ¢;. Therefore P (I'y,) ~ ¢; ~ D¢, By repeating the same argument
for higher approximants o;.1 = p;11/¢i+1 we conclude that in the thermodynamic limit
P(T) ~ [=0+P8) in agreement with (4.11). Although the numerical results support the
validity of the above argument, a rigorous mathematical proof is still lacking.
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The validity of the heuristic arguments (and thus of Eq. (4.11)) can be verified in a more
general way in the case of the Fibonacci chain model where other scaling exponents can
be obtained. We again find inverse power laws for the integrated distributions P(T).
Here the exponent depends on the potential strength V', while Eq. (4.11) still relate the
corresponding statistics to the fractal dimension DJ. Our results for various V values
are summarized in Fig. 4.6 and show a nice agreement between the exponents o and D}/
according to Eq. (4.11).
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Figure 4.6: Power law exponents « (plotted as a — 1) of the resonance widths as a function of
the potential strength V for the Fibonacci model compared with the fractal dimension D(‘? of the
spectrum.

4.4 Wigner delay times

In this section we investigate the delay time statistics P(7). For its calculation we use
recursion relations (2.15) and (2.25) developed in the previous chapter.

Our first observation is the fact that the Wigner delay time as a function of the energy
shows clear self-similar behavior at all energy scales ( Fig. 4.7). This self-similarity appears
due to the fractal nature of the real parts of the poles of the S-matrix (see Eq. (4.19) and
the discussion afterwards). Moreover the numerical analysis shows that the positions of
the real part of the poles are very similar to the eigenenergies of the corresponding closed
system and their fractal dimensions are approximately the same.
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Figure 4.7: The Wigner delay time as a function of energy for the Harper model shown at three
different energy scales.

In Fig. 4.8 we report the integrated P;,;(7) for three different rational approximants of the
golden mean. Due to the efficiency of our recursion relation (2.25) we can approximate og
by increasing the periodicity ¢ of the potential as much as we like. Our numerical data are
compatible with an inverse power law i.e.

Pint (7—) ~ 7—1_“

(4.18)
with a value of p ~ 1.5 = 2 — DF given by a best least square fit, in agreement with
Eq. (4.12).

The following argument allows us to understand the relation between the power law decay
exponent £ and the fractal dimension DJ’. Our starting point is the well known relation
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12

Figure 4.8: P;,;(7) of the Harper model (A = 2) for three approximants of the golden mean

_ 233, _ 987, _ 832040 . . U BT
01 = 555,02 = 1xg7; and 03 = {55, An inverse power law Py (1) ~ 7 is evident. A least

squares fit yields p =~ 1.5 in accordance with D ~ 0.5 and Eq. (4.12). As is seen the upper

cutoff of the scaling region increases for higher approximants.

(see Eq. (A.26) in Appendix A.2)

L r.
T(B) =) CENATES Y (4.19)

n=1

which connects the Wigner delay times and the poles of the S—matrix. It is evident
that anomalously large time delay 7(F) ~ T['.' corresponds to the cases when F ~ E,
and I',, < 1. In the neighborhood of these points, 7(E) can be approximated by a single
Lorentzian (4.19). Sampling the energies E with step AFE < [y, we calculate the number
of points for which the time delay is larger than some fixed value 7 (see Fig. 4.9). Assuming
that the contribution of each Lorentzian is proportional to its width one can estimate this
number as > p _,, I'n/AE. For the integrated distribution of delay times we obtain

Pint (1) ~ fl/T dTP(T)T ~ 7=(2=%) in the limit AE — 0 where we used the small resonance
width asymptotic given by Eq. (4.12) (for similar argumentation see also [8,132]). Then for
the asymptotic distribution of delay times we get P(7) ~ 7=(2=DF) in agreement with (4.12)
and our numerical findings.

Different power law exponents obtained for Fibonacci chain model for various values of the
potential V' are presented in Fig. 4.10. The comparison with the fractal dimension D}’ of
the spectrum confirms again the validity of Eq. (4.12).



4.5 Survival probability

69

2V i S

Y |

ar, +-----

Figure 4.9: Schematic plot for the Wigner delay time as a function of energy according to
Eq. (4.19)

4.5 Survival probability

A complementary approach for the study of open systems is to consider the time evolution
of an excitation originally started inside the system. Then one of the most important quan-
tities characterized this process is the survival probability. It is defined as the probability
to find a particle localized initially at £ = 0 inside the open system to be found there after
a time t.

The dynamics of the quantum mechanical particle is described by the time-dependent
Schrodinger equation

difn (1)
dt

- Vnwn(t) + 7/)TL+1 (t) + T/an(t)a (4'20)

i

corresponding to the tight-binding Hamiltonian (4.9). We assume absorbing boundary
conditions at the ends of the sample (our results are valid also for the case of a semi-
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Figure 4.10: Power law exponents p (plotted as 2 — p) of the delay times as a function of the
potential strength V' for the Fibonacci model compared with the fractal dimension D{)E of the
spectrum.

infinite lattice with one absorbing boundary) which correspond to a perfect coupling with
the outside. The initial excitation is a d—like packet launched at one of the boundaries,
i.e. Yp(t =0) = d,,. Equation (4.20) has been integrated numerically using a Cayley
scheme [133] with integration time step dt = 0.1. We attached 15 additional sites at the
ends of the sample and erased all components of the wave packet on these sites after each
time step dt. The decay of the norm of the wave packet obtained in this way was not
affected by a further decrease of dt.

We investigate first the survival probability P(t) for the Harper model at the critical point
A =2 and 0 = gg. The results for various sample lengths L are shown in Fig. 4.10. In all
cases the survival probability clearly displays an inverse power law

P =" ln() ~ 7. (421)

The best fit to the numerical data yields v = 0.55 £ 0.05 in accordance with Eq. (4.13).

For a further test of the validity of Eq. (4.13) we now turn to the Fibonacci model. In
Fig. 4.12 we report some of our numerical results for P(t). Again we find a power-law decay
P(t) ~ t7¥, where the exponent depends on the potential strength V. The exponents v
extracted for various V' are compared with the corresponding fractal dimension DJ in
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Figure 4.11: The survival probability P(¢) of the Harper model (A = 2), for three different
sample lengths L = 250, 500,4000 exhibits an inverse power-law P(t) ~ t~". A least squares fit
yields v = 0.55 £ 0.05 in accordance with D ~ 0.5 and Eq. (4.13).

Fig. 4.13 and confirm the validity of Eq. (4.13).

We now want to give a general argument for the validity of Eq. (4.13). As we know from
section 4.3 the open system can be described by the effective Hamiltonian (4.15) (here we
neglect its energy dependence at the band center):

HINE) = HP —ieR)¢, (4.22)

where & = (1,0,0,...,0) T is an L—dimensional vector, that describes at which site we im-
pose the absorbing boundary condition. The eigenenergies of the effective Hamiltonian are
complex & = Fy — i’y /2 leading to the decay of the survival probability P(¢). When the
on-site potential fulfills |V,,| > 1 the imaginary shift can be considered as a small pertur-
bation of the Hamiltonian of the closed system. In this case according to the perturbation
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Figure 4.12: Survival probabilities P(t) of the Fibonacci model, for three different potential
strengths V; = 0.5, Vo = 0.75 and V3 = 1.5 showing inverse power-laws P(t) ~ ¢t~ (dashed
lines). The sample size is L = 2000 in all cases.

theory, ['y, ~ |#¥|? holds, where ¥ is the n—th component of an eigenstate of the closed
system with energy E}. The survival probability is then given by

Pt) =) exle ™, (4.23)
k

where ¢, are overlapping elements of the initial state with the eigenstates 1.

Now choosing the initial state to be concentrated at site n = 1, we have that the overlapping
elements |c;|?, appearing in Eq. (4.23), are equal to the n = 1 component of the eigenstates
i.e. |cx|? = |¢¥2. The latter, however are proportional to the resonances widths (see Fig. 4
) and thus we get that |c|? ~ T'x. Using this and converting the sum (4.23) into an integral
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Figure 4.13: Power-law exponents v of the survival probability obtained numerically as a func-
tion of the potential strength V' for the Fibonacci model. The solid line is the theoretical prediction
v=1-D}.

we obtain:

P(t) ~ / I P(T) e ", (4.24)

where P(T") is the resonance width distribution. In order to check the validity of the
perturbative arguments resulting in Eq. (4.24), we numerically calculate the resonance
widths T'; and the overlapping elements ¢, for the Harper and Fibonacci models. As can
be seen from Fig. 4.14 the prediction |c;|? ~ T}, of the perturbation theory holds even for
small V' although the coupling of the whole system to the exterior is not weak, but is a
perfect coupling. Moreover the wavefunctions of the closed analog are not localized, but
have self-similar structure on all scales and may be expected to undergo severe changes
when the system is opened in that way.

Thus, Eq. (4.24) allows us to calculate within perturbation theory the decay of the survival
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Figure 4.14: Resonance widths I'y as a function of the overlapping elements |ci|?. The data are
obtained by direct diagonalization of the effective Hamiltonian H.s¢ (see Eq. (4.22)). The dashed
lines of slope 1 are shown for comparison demonstrating a linear relation for small T'. In all cases
the sample size is L = 1597, corresponding to an approximant of the golden mean o = %. (a)
Harper model for A = 2; (b) Fibonacci model for V' = 0.1; (c) Fibonacci model for V' = 0.5; and
(d) Fibonacci model for V' = 1.5.

probability, provided that the resonance widths distribution P(T") is known. Using our
previous result for P(I") Eq. (4.11) we find the asymptotic power-law decay for the survival
probability P(t) stated in Eq. (4.13).

For finite samples the power-law decay of P(t) (Eq. (4.13)) holds up to a break time #*,
beyond which it turns into an exponential decay. The rate of the latter is determined by
the smallest resonance width T, and thus t* ~ 1/Ty;,. An estimation for the scaling
properties of ¢* with respect to DY and the size of the system L can be derived as follows.
Imposing the normalization condition for the resonance width distribution and assuming
that the power law (4.11) for P(T') is valid for I' > T',,;,, we get

o 1
L:/
r

Dt~
min

Solving the above equation with respect to I';,,;, and substituting in the previous expression

t* ~ 1/Tim we obtain

dr'P(I) =

min

(4.25)
r

t"~ L7 n=1/Df, (4.26)

This prediction is verified numerically in Fig. 4.15 where we defined ¢* as the time where
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P(t) deviates by 5% from the power-law decay. We want to point out that the increase of t*
for decreasing DY is consistent with the enlargement of the interval where |c;|? ~ I'; holds
and its shift towards smaller values (note the change of the axes scales in Figs. 4.14 (b)-
4.14 (d)).
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Figure 4.15: Dependence of the break-time £*, on the system size L and the box-counting
dimension DY . (o) refer to the Harper model at A = 2 and various L’s while () refer to the
Fibonacci model with various V’s and L = 2000. The dashed line has slope 1 and corresponds to
the theoretical expectation Eq. (4.26).

4.6 S-matrix autocorrelation function

An immediate consequence of Eq. (4.13) is the fact that the scattering matrix autocorre-
lation function C(x) =< S(E)'S(E + x) >g decays in a power law fashion. In particular,
using the relation between the survival probability P(¢) and C(x) [134], we obtain

1= C(y) ~ x / QP (1) exp(—ity) ~ X', x < 1. (4.27)
Equation (4.27) is in contrast to the Lorentzian form of C'(x) predicted by RMT for
chaotic/ballistic systems [135]. Comparison of C'(x) for the Harper model at A = 2 and
for various V-values of the Fibonacci model with the theoretical prediction Eq. (4.27)
in Fig. 4.16 shows a nice agreement and provides an additional check for the validity of
Eq. (4.13). In these calculations the sample of the length equal to L = 10946 is attached
to one lead. The phase of the corresponding scattering matrix S(FE) = €*®(#) is calculated
with the help of the iteration relation (2.15).
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Figure 4.16: The scattering autocorrelation function Eq. (4.27) (plotted as 1 — |C(x)|) for (a)
the Harper model (A = 2) and (b) for some representative V' values of the Fibonacci model. The
dashed lines are the theoretical expectations (4.27).

4.7 Outlook

It has been shown that various statistical quantities, describing open one-dimensional quasi-
periodic systems at critical conditions, decay algebraically. The corresponding exponents
are determined by the fractal (box-counting) dimension of the spectrum of the closed
system. These results are obtained numerically for two different types of quasi-periodic
tight-binding models and are supported by analytical arguments.

The rigorous mathematical treatment of these problems is up to now still lacking. In
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particular, it would be interesting to understand the role of the other fractal dimensions of
the spectrum and eigenstates in the properties of the open system. This task is however
a very difficult one, because even for the closed systems there are only few results proven
rigorously.

An experimental verification of our predictions is also desired. A possible experiment
can be realized with microwaves propagating through an array of scatterers arranged in a
quasiperiodic sequence. This type of experiments have been already done successfully for
closed systems, and their extension to open geometries is realistic.
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Chapter 5

Conclusion

This thesis deals with the statistical properties of various open mesoscopic systems. In par-
ticular, different disordered, chaotic and quasi-periodic systems at criticality are studied.
All of them possess dynamical or spectral properties, which can not be captured by the
random matrix theory. The main quantities under consideration are distributions of the
resonance widths and Wigner delay times, which are fundamental for the quantum descrip-
tion of open systems and are motivated by experimental applications. In some cases other
characteristics like the survival probability and statistics of the phases of the S-matrix are
investigated as well. The results of this study demonstrate how the generic properties of the
corresponding closed systems like localization, diffusion or fractality manifest themselves
in the statistical properties of the open counterparts.

We start our analysis with the one-dimensional Anderson model, which is one of the basic
models in the localization theory. The first quantity we study is the reflection phase
of the S-matrix. Usually it is assumed that this quantity is distributed uniformly. This
assumption is very important for the single parameter scaling hypothesis — the cornerstone
of the localization theory. Our investigation reveals however that the distribution of the
phases is strongly nonuniform for strong disorder. The same is true in the case of weak
disorder for special values of the wave vector related to the discrete nature of the lattice
and for energies near the band edges. In all this cases the violation of the single parameter
scaling hypothesis is expected. The second quantity under consideration is the Wigner
delay time. We find that the typical delay time corresponds to the propagation of the
particle at the distance of the order of the localization length. At the same time the mean
value of the delay time diverges, when the system size goes to infinity, because of the long
algebraic tail of the distribution. The existence of this tail is independent of the nature of
disorder and is believed due to the presence of the Azbel resonances — the special disorder
arrangements allowing the particle to traverse a very long distance before being reflected.
We also discuss the distribution of the resonance widths and explain how it can be derived
from the localization of the eigenfunctions.
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Next we study systems characterized by classical diffusion. The quantum properties of such
systems are influenced by diffusion on one hand and by quantum localization effects on the
other hand. The models we use are the kicked rotor, its two-dimensional generalization
and their randomized versions. The kicked rotor model is one of the first models appeared
in the field of quantum chaos. Its randomized version can be mapped to the disordered
tight-binding equation. Thus our choice of the models allows us to study the problems in
a way relevant both for the quantum chaos and disordered systems.

The first issue, we investigate in this framework, is the distribution of the eigenstates in-
tensities of the closed system. For disordered systems the field theoretic methods predict
the existence of prelocalized states, which appear due to some rear realizations of disor-
dered potential and are responsible for the long tails in the distributions of various physical
quantities. We show that such states do exist also for dynamical systems and they deter-
mine the tail of the distribution of the eigenfunction intensities. The analysis of this tail
in the presence and in the absence of time reversal symmetry allows us to resolve the
contradiction between two different theoretical predictions existing for disordered systems.

The second issue concerns the properties of the open system in the diffusive regime. Specif-
ically, we study the distributions of the resonance widths and delay times. We find that the
part of these distributions corresponding to the large values of the resonance widths and
small values of the delay times is determined by the classical diffusion. The complementary
parts of these distributions — small resonance widths and large delay times are strongly
connected to the prelocalized states of the closed system. The effect of the breaking of the
time reversal symmetry on these distributions is studied as well.

The last part of this thesis is devoted to the one-dimensional quasiperiodic systems at
critical conditions. The first model, we consider, is the Harper model, which appeared
originally for the description of the Bloch electron in the magnetic field. Despite of its one-
dimensional character, the Harper model exhibits a rich variety of interesting properties,
e.g. the metal-insulator transition taking place at the critical point. At this point the
spectrum is a Cantor set with non-trivial fractal dimension. The last property is shared by
the Fibonacci chain model, used intensively in the field of quasicrystals. For both models
we investigate the distribution of the resonance widths and the Wigner delay times, as
well as the survival probability and the S-matrix autocorrelation function. The main
conclusion of our study is the following. The behavior of these quantities can be described
by different power laws with exponents, which are given essentially by the fractal (box-
counting) dimension of the energy spectrum of the corresponding closed system.



Appendix A

Effective Hamiltonian, resonances
and Wigner delay time

A.1 Effective Hamiltonian for open one-dimensional
system

The aim of this appendix is to show that the poles of the S-matrix can be found as
eigenvalues of some non-Hermitian effective Hamiltonian.

From Eq. (2.7) we know that the S-matrix (reflection coefficient r in our case) can be
written in terms of the total transfer matrix as:
L L i
PV(E) + Py (B)e™

r=— - (A1)
P(E) + P (E)eik

Here Pi(kL) (E) are elements of the total transfer matrix of the system of size L. By real values
of energy the nominator in the last expression is a complex conjugate to the denominator,
so |r| =1 as expected. When we allow energy to take complex values then this is not true
any more. Moreover for some values of energy the denominator can become equal to zero
so that r becomes infinite. These are the poles of the S-matrix and they are solutions of

the following equation:
L L i
P (B) + PR (E)e™ =0 (A-2)

In order to rewrite this equation using some effective Hamiltonian, let us first consider the
closed system. The eigenenergies of the closed system with Dirichlet boundary conditions
can be found as eigenvalues of the Hamiltonian:

det (HY — E) =0 (A.3)
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where the Hamiltonian H") for a system of size L is given by a L x L three-diagonal
matrix:

Vi 1 0 0 0
g _| 1 V% 10 0 (A4)
0 0 01 Vg

The equation for the eigenenergies can be also written in terms of the total transfer matrix:

L L
0\ _( AYE) PYE) ) (o
= (L) (L) 5 (A.5)
2 Py (E) Py’ (E) 0
where ¢x are components of the eigenfunction and we use Dirichlet boundary conditions

at k =0, L+ 1. From this equation we conclude immediately that PI(IL)(E) = 0 if and only
if E is an eigenenergy, i.e.

PY(E) =0« det (HY —E) =0 (A.6)

Both expressions in the last equation are polynomials of the same order. Since they have
the same roots they must be equal up to some constant factor. This factor can be found
by comparison the coefficients at E*, which is equal to 1 for P{/)(E) and equal to (—1)*
for det (H") — E). So we obtain

PP(E) = det(E — H®) (A.7)

Now using the definition of the total transfer matrix we have

PY(E) PY(E)\ _ [ PYV(E) PV E-V 1
(P2(1L)(E) PYE) )\ PV (E) P V(E) < L0 ) (A.8)

where P(*~1(E) is the transfer matrix corresponding to the chain of the size L — 1 which
is obtained from the initial chain of the size L by removing the first site. In particular this
equation yields
L L—1 -
PY(E) = —P{ V(E) = —det(E — H® V), (A.9)

Substituting expressions (A.7) and (A.9) in Eq. (A.2) one obtains
det(E — HP)) — det(E — HED)el* =0, (A.10)
which is equivalent to the following equation

det(H, ()

ot (B) — E) =0, (A.11)
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where the effective Hamiltonian is obtained from the Hamiltonian of the closed system by
adding e?* to its first diagonal element i.e.

Vi+e* 1 0 0 0
R = A0 ore@e= | LV L0 Uy
0 0 0o 1 VvV,

where €= (1,0,0,...,0) 7 is an L—dimensional vector.

The obtained equation (A.12) for the effective Hamiltonian is a special case of the general
expression emerging in the construction for the S-matrix [7, 8]:

1
S=1—2irWl—o0—W, (A.13)
E — H,y

where W is a rectangular M x L matrix describing the coupling of the system to the

"outside world”, M is the number of open channels and the effective Hamiltonian is given
by
Hepp=H —itWWH. (A.14)

This form of the effective Hamiltonian suggests that the poles of the scattering matrix have
negative imaginary part and can be written as

£y = E, — %rn (A.15)

where F, and I';, are called position and width of the resonances, respectively.

A.2 Wigner delay time and poles of the S-matrix

In this section we obtain a simple formula relating the Wigner delay time with the poles
of the S-matrix.

We start with another representation of the S-matrix which can be obtained from Eq. (A.13).
To this end we rewrite the term containing H.s¢ as follows:

1 it 1 1

E— H+irWWt [ +inAzWWHE — H
- 1 fH 1 1
_ )k 1 - 1 —
=Y (—im)* (W ——— W = W W=
kz%( i) { E-H ] T+inWiz—=W  E-H
11

= — Al
im I +iK (A.16)
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where the Hermitian matrix K is defined as

K =7W! W A7
Wle—pg (A.17)
Now inserting the last expression of Eq. (A.16) into Eq. (A.13) we find:
1 (I +iK) — 2K
=7-2 K = Al
5 "T+iK [+iK (A.18)
Thus finally we obtain
I —1K
= A.19
I+iK ( )
According to the definition Eq. (1.9) the Wigner delay time (we put A = 1) is given by
0
FE) = —i—In DetS. A2
7(F) imp D etS (A.20)

Using Eq. (A.19), the latter quantity can be written as
Det(] —iK) Det(I —in[1/(E — HYWWT])

InDetS =
e "Det(T +iK)  Det(I +in[l/(E — H)WW)
Det(E — H — itWWT)
A.21
"Det(E — H + inW W) (A.21)
where we used that for any matrices U, V' the following identity is valid:
Det(I — UV) = Det(I — VU) (A.22)

Since In Det(X) = Trin(X) for arbitrary matrix X the last expression in the Eq. (A.21)
can be written as

InDetS = Trin(X) — Trin(X™) (A.23)

X = E—H—inWWT' (A.24)

with X* being the complex conjugate of X. Taking the derivative with respect to the

energy and neglecting the energy dependence of the coupling matrix W (this can be done,
since usually this dependence is rather smooth) we obtain

In(X In(X* | | 1
(B) = —i|m? n(X) _ pdin( )} S [Tr— . Tr—] — 9mTr—— —

dE dE X X+ X*

1 1

N
— oImT S A.25
YT TH Ciaww m;E—EnHrn/z (A.25)

Thus finally we obtain a simple relation connecting the Wigner delay time and the poles
of the S-matrix:

N r.
T(B) =) CENATES Y (A.26)

n=1



Appendix B

Single parameter scaling hypothesis

In this appendix we follow the ideas of Ref. [136]. Let us consider a cubic d-dimensional
disordered sample of size L with dimensionless resistance p. The exact value of p is deter-
mined by various microscopic details like for example impurity arrangement in the sample.
Therefore it is convenient to define an ensemble of samples, with different impurity ar-
rangements, and to study the probability distribution Pr(p) for the resistance at the given
size L.

When the sample size L is small this distribution depends again on many details speci-
fying the ensemble (type of impurities, their statistics and concentration, etc). However
when the sample size L becomes large one can expect that the microscopic details will
become irrelevant and the distribution Py (p) will have some universal form, which can be
characterized only by a few parameters completely.

Single parameter scaling in these terms means that the large-scale distribution is specified
by just one parameter Ay:

Pr(p) = F(p; Ap), (B.1)
and that this parameter obeys a scaling law:
dln AL

S B(Ar) (B.2)

Thus all other parameters needed to specify the microscopic system are replaced now by a
single parameter Ay. This parameter scales according to universal S-function, depending
only on dimension of the system.

Single parameter scaling hypothesis was proven for the case of weak disorder, under one
very important assumption — the so called random phase approximation (RPA).

In order to understand the meaning of the RPA let us consider a chain composed of n
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quantum resistors or scatterers. We denote by p, ; the resistance of a chain of n — 1
scatterers and by p(()n) the resistance of the last nth scatterer. The resistance of the n-
scatterer chain is given by [2]

1

P =Pt + 00" + 20000 = 2 [ 1yp6” (L+ 1) (14 p5) | cos by, (B.3)

where #,, is a sum of the reflection phases associated with the scatterers pf)n) and p,_1.

The RPA assumes that the distribution of 6, is uniform. Using this assumption and the
central-limit theorem one can show that the variable u, = In(1 + p,) obeys Gaussian

distribution:
_\2
[ (Un — )
exp | ————*

2Au2

M=

P(un) ~ (2rAuZ)” (B.4)

where 7, and Au2 are the mean value and the variance of the distribution of w,, corre-
spondingly. Thus we get two independent scaling parameters. In the weak scattering limit
these two parameters become related:

Au? = 2w, (B.5)
and thus the single parameter scaling hypothesis is proved.

Returning to the distribution of the reflection phases Pg(®) we conclude that its deviation
from uniformity can indicate the violation of the single parameter scaling hypothesis.



Appendix C

From Hamiltonian map to
Fokker-Plank equation

C.1 Expression for phases in terms of Hamiltonian
map

We start with the expression for the reflection coefficient r in terms of the elements of the
total transfer matrix (2.7):
P+ Plgefik

= C.1
P11 + PlgeZk ( )
Denoting Py; + Pioe ™ as z = pe'(?t3) | one obtains:
_ G2 C.2
r - e (C.2)
Now we find ¢:
z = P11 + Plg cosk — iplg sin k (03)
™ —Plg sin k
R — t C4
o+ 5 arg(z) arctan (Pu TP, cosk) (C.4)
P11 + P12 cos k
t = C.5
an ¢ < Plg sin k > ( )

which leads to Eq. (2.8). Introducing the Hamiltonian map by the similarity transformation

P = R'FR with
1 0
R = ( cos k —1 ) (06)

sink sink
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one finds the relations between matrix elements of P and matrix elements of F':

Py P\ 1 0 Fi Fip 1 0 .
Py Py o cosk —sink Fyy Fy (s:?;]]z sillk o

_ F11+F12§?§,I§ , —F12ﬁ (C.7)
Fiicosk — Fysink + Fio 2k — Fyycosk  —Fp% 4+ Fyy '
Then Eq. (C.5) yields
F11+F12C?SI]:—F12.L]CCOSI€7 F11
t — sin sSin — 08
ano ( —Fio—L sink —Fi (C8)

C.2 Recursion relation for phases

Dividing the third equation in (2.14) by the second one we have

sin(, — k) — A, cos, cosk _ sinf, cosk —cost,sink — A, cosf,cosk

tan g, = = =
ATt cos(0, — k) — A, cosf,sink  cosb, cosk +sinf,sink — A, cosf, sin k

tan@, cosk —sink — A,cosk tan#, —tank — A,

= = C.9
cosk +tan#, sink — A,sink 1+ tanf, tank — A, tank (C.9)
The last equation can be written as
tanf, ., + tanf,,, tan#, tank — A, tanf,,, tank = tanf, —tank — A,
tan @, (tan 6, tank —1) = —tanf,,; —tank — A,(1 — tanf,,; tank)
tan #,,1 + tan k
t en - nt n
an 1 —tanf, ., tank +

tanf, = tan(f,.1+k)+ A, (C.10)

Interchanging indices n and n + 1 and taking n = L in the last equation one obtains the
recursion relation for the inverse map (2.15).

C.3 Recursion relation for Wigner delay times

Differentiation of the sides of Eq. (2.15) with respect to k yields

L dera _ 1 (d¢>L
cos? gy dk cos? (¢ + k) dk

+1) —AL+1 cot k (C].].)
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Multiplying both sides of this equation by cos? ¢;,; and using that cos®> x = 1/(1 + tan®z)

we obtain 16 16
L+1 —1 L

e A |

dk Gr (dk )

Using again Eq. (2.15) one can substitute

tan’ gr1 = (tan(p + k) + Apgq)? (C.13)
in the last term of Eq. (C.12) and in the expression for G
1+ (tan(¢r + k) + Ara)®

AL+1 cot k

- 12
1+ tan? ¢y (C.12)

1+tan® ¢r 41

where G, = rtan? (o1 k)

G = e r— =1+ (2tan(¢r + k) A1 + A7) cos®(¢r, + k) =
= 1+ Apysin(2(¢r + k) + A7, cos®(ér, + k) (C.14)
Recalling the definition of the Wigner delay time
_d®,  _dop |dk| 1 dop
"ET4E T Tdk [dE| T sink dk (C.15)

we obtain from Eq. (C.12) the recursion relation (2.25) for the Wigner delay times.

C.4 Fokker-Planck equation for distribution of Wigner
delay times

We start with the recursion relation for ¢;, given by Eq. (2.15). Finding ¢, as a function
of ¢r, and keeping only the terms up to the second order in A7 ,; one has

¢ry1 = arctan(tan(¢p + k) + Apq) =

1 1 —2tan(¢, +k)
oL R o ) T S A (g £ A T
= ¢ +k+cos’(¢r + k)Ap1 — tan(or + k) cos*(or + k) AT, (C.16)

Replacing the random variable A7 | by its variance 0% and going to the continuum limit
we obtain a stochastic differential equation for the random variable ¢ (2.26).

In order to get a stochastic differential equation for the delay times we first multiply both
sides of Eq. (2.25) by 0% and introduce the rescaled variable 7 = o2 7. Keeping again only
the terms up to the second order in A7, one has

o2 )
sin k

foo = GI'(F+

2

= (1= Apyisin(2(or +F)) — A%+1(COS2(¢L + k) — Sin2(¢L +k) +-) (T + S;Vk) -

= 7, — Appsin(2(ér + k)7 — A%_H(COSQ(d)L + k) —sin®(2(¢r, + k)7L + 0% sink
(C.17)
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Repeating the same procedure described below Eq. (C.16) we obtain a stochastic differential
equation for the random variable 7 (2.26).

The next step is to write the Fokker-Planck equation for the joint probability distribution
P(¢,7, L) which corresponds to the system of two stochastic differential equation (2.26)

[61]

P(o,7,L)

oL

0 2 3
_8_d>(k — o5 sin(¢ + k) cos® (¢ + k)) —
—%(—af‘ (F(cos®*(¢ + k) —sin®2(¢ + k) —sink)) +
7 3 cos® 3 cos® 2 7 sin
+ 2| (oo +-1) (g (oo 1) + g(rsin2to+ 1)) ) +
+ % ((7: sin2(¢p + k)) (%(0032@) +k)) + %(f’ sin2(¢ + k))))]

(C.18)

Using the fact that ¢ follows the uniform distribution and assuming that the variables ¢
and 7 are statistically independent, one can integrate Eq. (C.18) over ¢ and obtain the
Fokker-Planck equation (2.27) for Pz (7).



Appendix D

Mean free path and diffusion
coefficient for the kicked rotor model

D.1 Calculation of the mean free path

Let us consider the evolution operator of the two-dimensional kicked rotor introduced in
Eq. (3.6) (to simplify the calculations we put 7' = 1)

U — e—iHo(f,l,ﬁg)/?e—iV(ﬂl,92)6—iH0(E1,[,2)/2‘ (D].)

The set of the orthogonal eigenfunctions of the free Hamiltonian Hj is given by plane waves
in the angle representation

1 .
¢(n1,n2)(01a 92) = %6z(n101+n202)_ (D.Q)

They are normalized in such a way that

2w 2w
/ / d91d92|¢(n1’n2)(01, 92)|2 - 1 (D3)
o Jo
Let us denote by Uk, .),(n1,n,) the matrix elements of the evolution operator in this basis

U(k17k2)7(n17n2) = <¢(’C1J€2)|U|¢(nhn2)>' (D'4)

According to the definition of the evolution operator the modulus square of its elements
have the meaning of the probability to change the initial momentum (n;,ns) to the final
momentum (ky, k2) in one kick. Therefore one can define the mean free path in momentum
space [97] by

=22 01+ 1) U00) v (D.5)

T1 r2
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Here we used the fact that |Ug, 4m, otmo),(n1+minatma) > = Utk ko), (n1,m2) | SO without loss
of generality one can take the initial momentum equal to (0,0). In order to calculate the
right hand side of Eq. (D.5) we first give an explicit expression to the matrix elements

U(kl k2),(n1,m2)

U(kl,k2),(n1,n2) =
= Z (Diry ooy [T TOEE2 3 N (i le ™V O o 1)) (Do le T HOEE 2 o ) ) =

1,7,8,t
i(Ho(k1,k2)+Ho(ni,n2))/2 <¢ Ky ka) |6 V(61,62) |¢ (n1,n2) > -

=e
2w
= 6i(HO(kl,k2)+H0(n1,n2))/2_/ / dgldgzefiv(gl,92)6i(n17k1)91+i(n27k2)92 (D6)
a2 Jo  Jo
Taking (kq, ko) = (0,0) and (nq,ng) = (r1,72) we obtain
» 1 2 2w » Ny -
U(U,O),(rl,rQ) —e l(H0(0,0)+H0(r1,7"2))/24_7r2/0 /0 d91d92€ zV(Gl,Gg)ezrlﬂl ezrm (D7)

The substitution of this expression into Eq. (D.5) yields

1 2w 2 2 2w o ) o . - ) .
2 2 2 —i(V(01,02)—V (01,0 ir1(01—01) ira(02—0
lM—;;(rﬁrQ)W/o /0 /0 /0 6, d05d0, dGye= Y 01:02)=V (01.02)) pirs (01=01) pira(62-02)

(D.8)
Taking into account that
. . 92 )
7,,%611"1(917911) — _ 627‘1(917911) (Dg)
00,00,
and that the same is valid for r, the partial integration of the Eq. (D.8) gives
0? 0?
ZZ . / / / / df,d0,d6, db, < )
471' 891891 892892
o—iV (91 02)— (01,02))6”1(91 91)6”‘2(92 ‘92) (D.l())
The summation of the exponents over r; and ry yields two d-functions:
2
2o 2/ / / / 06, d0,df, df < ‘0 A )
47 891891 892892
VORIV 00050, — §,)5(0, — ) =
2T 2w 2w 2T av av av
_ 472 / / / 40, d0,d0, b (a_el 91,92 (91,92) g, 00 02) (91,92)>
e v (01’02 01’02 91 — 91) (92 — 92) =

- 471'2 / / d01 d92

<091 (91,92)>2 + (%(91,92)>2] (D.11)



D.1 Calculation of the mean free path

The last expression can be written in a compact form

1 2 21 .
B= / 40,0,V (81, 05) || (D.12)
™ Jo 0

Now we calculate the mean free path in the case where the potential V (6, 6,) is given by
Eq. (3.3):

1
V(6y,0:) =k <Cos(91) cos(fy) cos(ar) + 5 sin(26;) cos(263) sin(a)) (D.13)
Taking the derivative of this expression with respect to #; and 6, one has

oV 2
(87(91’ 92)> = k*(sin® ; cos? B cos?® a + cos? 20, cos® 20, sin® o —
1
—2sin 0 cos 261 cos B, cos 26 cos arsin )
oV ’ 20 2 a2 2 .2 .2 .2
87(01’ 6) = k*(cos” 0, sin® 0, cos” o + sin” 26, sin” 2605 sin” v +
2
+2 cos 0y sin 26, sin 6, sin 265 cos a:sin «) (D.14)

The integration over #; and 6, yields

1 k2
= Fk2(7r2 cos? a + w2 sin® a + 72 cos® a + w2 sin® ) = 5 (D.15)
m

The analogous calculations for the one-dimensional kicked rotor yield
1o v\’
= — do | ==(0) | . D.1
= [ a0 (50) (D.16)
Inserting into this expression the potential V() of the one-dimensional kicked rotor
1
V() =k (COS(G) cos(a) + 5 sin(20) sin(a)) (D.17)

we find that the mean free path is given by exactly the same formula as in the Eq.(D.15):

Lk
T2

Thus the mean free path is in our model completely determined by the kicking strength.

(D.18)
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D.2 Diffusion coefficient in the random phase approx-
imation

We start by writing the classical maps Eq. (3.4) for the general form of the potential

V(91, 92)3

h(n+1) = 6i(n)+nTLi(n) mod 27
92(7’L+ ].) = 92(71) +T2T£2(’I’L) mod 27

Lint1) = Li(n)— 20 (n+ 1), 040+ 1))

00,
Laon+1) = Laln) = S (Or(+ 1), Oo(n+ 1)
—sin(26,(n + 1)) sin(26(n + 1)) sin(«)) (D.19)

The diffusion coefficient in momentum space is defined as

b (B0 + £3(0)

t—00 t

(D.20)

The average in this expression is taken over an ensemble of trajectories, with different
initial conditions. Using the classical maps for £, and £, we obtain

Z<(§Z(el<> ) -+ (50000 >+
2> <§—Xl(91() (i ))2;/1(91( ),02(7)) + g;;(el() Os (i ))2;2(91( ), 92(]'))>

i=1 =1,

1
D = lim —;
LS

(D.21)

For the large values of the kicking strength k, in a good approximation one can consider
the phases (i) and (i) as random variables which are uncorrelated for different i and
distributed uniformly in the interval [0, 27r]. Using this random phase approximation it is
easily to show that only the diagonal terms in Eq. (D.21) give non-zero contribution in the
limit n — oo. Taking into account that the distribution of the phases is uniform one can
convert the sum for the diagonal terms into an integral. Finally we obtain

= /% /% 0,6, <591 (91,92)>2+ (g;; (91,92)>2] (D.22)

Then the formula for the diffusion coefficient measured in number of kicks D, = T'D is
given by

2T 2m
Dy = / d0,d0, ||V (0, 02)| (D.23)

47(2
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which has exactly the same form as one appearing Eq. (D.12). Thus we obtain that in the
random phase approximation the following relation between the mean free path and the
diffusion coefficient is valid: 2

Dy =10 = 5 (D.24)

Therefore changing the kicking strength we can easy tune the diffusion constant or Thou-
less conductance (for disordered systems). This allows us to investigate various regimes:
ballistic, diffusive and localized.
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Appendix E

Construction of the S-matrix for the
kicked rotor model

In Ref. [99] Fyodorov and Sommers suggested the following construction of the S-matrix
for systems with discrete time dynamics (maps):

S(w)=VI-—r1ir — TT;UT, (E.1)

e~w — A
where U is a unitary matrix describing the evolution of the closed system, 7 is a rectangular
N x M diagonal matrix with entries 7;; = 0;;7, 1 <t < N, 1 <j <M, 0< 7, <1.
This matrix provides a coupling to the "outside world” that makes the system open. The
corresponding evolution of the open system is described by the subunitary operator A =

UI — 77t

For the kicked rotor model it is natural to change this construction in such a way that the
dynamics of the open system is given by the operator A = /I — WIWU (first evolution of
the closed system and then ”the elimination of the particles which go out”). Having this
in mind, one can rewrite the definition of the S-matrix as follows:
1
e J—
In the case of the perfect coupling, W is a rectangular A x N matrix with entries W;; =
0ij, 1 <i< M, 1<j5<N. Then WWT = Iy and Wi is a N x N diagonal matrix
with M non-zero elements equal to one. So P = I — WTW is a projection operator that

implies:
VI-WW =1-Ww (E.3)

Taking this into account, the expression (E.2) can be simplified:

1 1
Wt=wu Wt (E.4)

S(w) = —WU— : .
(@) e~ — (I — WIW)U U—e™—WIWU
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Using the unitarity of the evolution operator U we can rewrite the last expression as follows:

1
S=w — E.5
I—-WIW —Ute-w (E:5)
This equation is useful for the derivation of the Wigner-Smith operator and we will use it
later.

Below we prove that the S-matrix constructed in this way is unitary.

E.1 Unitarity of the S-matrix

Let us rewrite the expression for S-matrix (E.4) in a more symmetric way. To this end we
use a series expansion for inverse operator in (E.4):

1

Ve W] = {(v o) (1- mw*vw)] "

1 -t L |
—I-— wiw S wiw - [(E.
|: U _ e—zw U:| —e ZDJ Z < — e ZDJ U) U _ e—zw ( 6)

k>0

Substituting this expansion in Eq. (E4) we obtain

1 1 k+1
S = WU WTWU 7WT WU———wt =
WUU W WL wt WU o (E7)

—lw

[—WU Wi~ W ([T - L)Wt W2 Wi

Now using the unitarity of the evolution operator U we can calculate the Hermitian con-
jugate S-matrix:

W= wh  we Wt Wt

§t= - = - SR LA = (E8)
We=—=W We“" W me

Thus the unitarity of the S-matrix is proven.

E.2 Wigner-Smith operator

The Wigner-Smith operator generalizes the notion of Wigner delay time. It is defined as
(for the kicked rotor model one should use quasi-energy instead of energy in the definition
of Wigner-Smith operator)

oS

:_T
@ S&u

(E.9)



E.2 Wigner-Smith operator

Introducing a new operator
1
K = . E.10
I —WtW —Ute-w ( )

and taking the derivative of both sides of Eq. (E.5) we obtain

S oK 1 . 1
95 _ 9Bt it t_
D VooV =Wy —pree U0 U e — e

= —ie “WKU KW (E.11)

Then the definition of the Wigner-Smith yields
Q= —ie “WKWWKUTKWT (E.12)

The trace of the above expression gives the value of the Wigner delay time allowing to
calculate it without using numerical differentiation.
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