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Chapter 1

Introduction

In a recent issue the International Herald Tribune dedicated a front page article to
the world-wide growing industrial fabrication of products which are structured
on the scale of nanometers, for example, computer chips, nano-machinery for
medical applications, materials designed for special (aeronautical, automotive)
applications, molecular engineering, biotechnology, and so forth [0]. The author
points to the technological and sociological importance and potential dangers of
this new development taking place only a few decades after microelectronics have
found their way into everyday life. As a crucial issue he observes that by going
down to such minute scales the —in his view— obscure laws of quantum mechanics
are about to play an important role in the realm of industrial engineering which so
far has been comfortably ruled by Newton’s and Maxwell’s intuitive theories. So
it seems, with no irony intended, that a century after Max Planck introduced the
quantization of action the public finally gets in touch with quantum mechanics.
In a way, one might think this right on schedule considering that today global
positioning devices are being sold in food discounter stores to large groups of
non-professional users. Not all of the buyers are likely to know that the global
positioning system can only work with due account of Albert Einstein’s special
theory of relativity which like Planck’s discovery is a child of the early 20th
century.

An example of modern nanotechnology are the high-quality silicon nitride
transmission gratings made by T. Savas and co-workers at the Massachusetts In-
stitute of Technology (MIT, USA) [2] with a period of 100nm and a depth of
about the same size. The product is continuously being improved to meet indus-
trial demand for applications such as optical elements in X-ray satellites. Typical
wavelengths of X-rays are roughly equal to the de Broglie wavelength of atoms in
conventional molecular beams so the transmission gratings have been found suit-
able for diffraction experiments with atoms which since 1990 has led to the con-
struction of interferometers for atoms by various groups [, d]. Other spectacular
achievements in this field have been made by demonstrating that large molecules
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like fullerenes [4] and also metastable atoms [G] can be diffracted from nanos-
tructured transmission gratings. Particularly fruitful applications have been re-
alized during the last years by the Toennies group at the Max-Planck-Institut
fiir Stromungforschung, Gottingen, who used the diffraction of a molecular he-
lium beam from a transmission grating to separate He clusters according to their
size [[f], or focused an atomic beam by means of a nanostructured Fresnel zone
plate [8]. With theoretical support from the Hegerfeldt group at the Institut fiir
theoretische Physik der Universitat Gottingen the size of the large and fragile
helium dimer has been accurately measured for the first time [9] with further
implications for other molecules 10, 1], and the strength of the van der Waals
interaction between rare-gas atoms and the grating material has been determined
by diffracting atomic beams from transmission gratings [[2]. The latter method
bears a high potential of accuracy as the van der Waals interaction strength di-
rectly influences the intensity of the principal diffraction order peaks which can
be measured very precisely due to the high flux of particles through the grating.
The influence of the van der Waals force is also very pronounced because all the
narrow grating slits offer a large interacting surface to the passing atoms, which
is a definite improvement with respect to similar experiments using a single edge
to deflect the atomic beam [I3]. Furthermore, the small width of the grating slits
allows for definite statements on the influence of retardation effects which greatly
facilitates the classification of the measured interaction strength which otherwise
has to be interpreted in terms of an atom-surface potential that lies somewhere
in between the retarded and the non-retarded limits.

As the measured interaction strengths of rare-gas atoms with the silicon ni-
tride grating material have not yet been quantitatively compared with theoret-
ical values a central aim of this work is to provide these theoretical values and
make such a comparison. It will turn out that there are significant discrepancies
between the theoretical and the measured values so that a careful review and
substantial improvements of the method are presented in this work which finally
yield an explanation of the observed deviations. Another systematic discrepancy
between theoretical and measured diffraction intensities that has long obscured
an adequate interpretation of the measurements is clarified in this work to the
benefit of current and future projects that are based on the atom diffraction
technique. The comprehensive insight into the method is then used to determine
for the first time accurate values of the van der Waals interaction strength of
metastable He* and Ne* atoms from a new series of experiments. These atoms
are of great practical relevance as they are frequently used for diffraction or in-
terferometric experiments [I4, 15, 06] some of which are quite similar to those
discussed in this work. Especially slow metastable beams have been employed in
sophisticated applications like atom holography [, I8, T9] or the recent spec-
tacular realization of Bose-Einstein condensates of metastable He* [P0, 21]. A
further step in this direction is to conduct Bose-Einstein condensates in waveg-



uides or study the collective effects upon interaction with surfaces [22, 23]. An
obvious prerequisite for these endeavours is the knowledge of the interaction of
single metastable atoms with a solid surface which this work aims to provide
both from the theoretical and the experimental side. Additionally, this work is
devoted to looking for extensions to the versatility of the accurate atom-optical
technique, for example, to answering the question if it is possible to measure the
entire atom-surface potential rather than only the long-ranged attractive part.
Another important extension is to look for ways to measure the interaction of an
atomic beam with surface materials different from the silicon nitride of which the
gratings are made at present.

To address the issues raised above this work is organized as follows. Chapter 2
explains the scattering theoretical foundations of atom diffraction from transmis-
sion gratings according to the works of G. C. Hegerfeldt and T. Kohler [24, P&, P6).
Use is made of certain principles of scattering and diffraction theory which can
be found in textbooks [27, PR, 29, B0, B1, 32, B3, B4]. As a new aspect, the rele-
vance of Fresnel corrections to the previously applied Fraunhofer diffraction limit
is investigated for typical experiments, and the consequences of the due inclusion
of the Fresnel corrections are worked out.

The following chapter 3 is dedicated to the theory of van der Waals (vdW)
forces a complete picture of which is given with the help of literary sources on the
quantum electrodynamical origin of the vdW forces, the relevance of atomic and
solid state properties, and adequate ways to evaluate the interaction strength of
arbitrary materials from optical data. The theoretical values of the interaction
strengths of ground-state rare-gas atoms with silicon nitride are then calculated
and compared to extant measurements [I2].

Chapter 4 demonstrates the application of the scattering theoretical results
of chapter 2 to the experiments as carried out by the Toennies group. A refined
theoretical treatment is shown to open the way to new applications for this type
of experiment. The new aspects also help to deliver a comprehensive discussion of
the experiments and their interpretation which stands at the beginning of chapter
5. Two important systematical corrections to the technique are motivated as a
result of the discussion, furthermore, a new method is presented that allows
to determine the total atom surface potential which consists of a short-range
repulsive and a long-range attractive part. Finally, the vdW interaction strengths
between metastable atoms and the silicon nitride grating material are determined
from measured diffraction intensities. In order to increase the significance of
the results, various methods of measurement and analysis are compared with
each other and with the theoretical values calculated in chapter 3. A detailed
treatment of the errors aims to provide a reliable base for current and future
experiments. In a final chapter the summaries that conclude each chapter are
reviewed and analyzed in view of future projects which are presented in an outlook
at the end of this work.



Chapter 2

Scattering Theory

2.1 Experiment

The following theoretical description is aimed at an experimental situation which
is schematically drawn in Fig.B-1. There is a high-pressure source from which a

detector

source

\4

_ diffraction
"~ grating

Figure 2.1: Schematic top-view on a typical experiment to be described. The atom
source and the detector are each about 1m away from the 100 nm-period transmis-
sion grating which is illuminated over a width of 10 um. The depth of the grating is
approximately 100 nm.

spray cloud of independently propagating rare-gas atoms expands into the vac-
uum inside the apparatus at a typical velocity of 1000 m/s. By means of collima-
tion slits a 5 mm high and 10 yum wide beam is selected in the forward z direction.

4
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About 1m downstream from the source, at z = 0 the collimated beam illumi-
nates approximately 100 slits of a 100 nm-period transmission grating that has
been designed to maintain its regular structure over the total width and also the
total height of the beam [2]. Especially the far-reaching translational invariance
of the grating along the (vertical) y direction allows the set-up to be described in
a two-dimensional formalism. Approximately 1m behind the grating a detecting
device records the number of atoms that are scattered at angles || < 10 mrad.

The forces between the atoms and the grating are essentially the strong Pauli
repulsion of the outer electrons of the atom and the surface at distances of a few
Bohr radii, and the van der Waals attraction due to mutually induced charge
fluctuations, which extends to distances of a few nanometers. Both forces tend
to zero faster than 1//? for large atom-surface separations [, therefore the total
scattering potential is short-ranged and can be assumed to vanish near the source
and near the detector.

In this work, the interaction of the atomic beam with the transmission grating
is assumed to be essentially due to elastic scattering processes. It turns out that
for each particle the possibility of directly hitting the surface of the grating bars
does not significantly alter the possibility of being transmitted and diffracted by
the grating. The possibility of a particle exciting a lattice vibration inside the
amorphous silicon nitride compound of the grating bars while passing them is
considered negligible.

After all, the scattering potential bears no explicit time dependence so that the
theoretical foundations can be conveniently set out in the framework of stationary
scattering theory [274, PR, 29).

2.2 Stationary Scattering Theory

For an atom of mass m, let |¥(¢)) be the general solution of the scattering
problem as described in the previous section, in a sense that it fulfils the time-
dependent Schrodinger equation

ih ]ﬁ/(t)) = H V(1)) . (2.1)
The Hamiltonian H of the system is given by
P2
H = o + V(X) =: Hy+V(X), (2.2)

where P and X are the momentum and position operators, respectively. An atom
just leaving the source does not feel the short-ranged scattering potential V' and
is represented by a freely propagating wave packet

<I'|\I’(t)> = \I}(r’t) ﬁ)) % /d2]{]/1;(k/)ei[k/rw(k/)t] , (23)
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with the dispersion relation

n _ DE)?
w(k') = e (2.4)
The symbols ﬁl’ z ~ 0, and 9<% indicate locations near the source, the trans-
mission grating, and the detector, respectively. In this chapter, all coordinate
space-related mathematical objects are by default two-dimensional according to
Fig.21. In particular, bold type letters denote two-dimensional vectors, e.g.
r = (x,2)T, where the superscript appears to indicate that r is a column vector.
A tilde distinguishes any reference to three dimensions, e.g. T = (z,y,2)T, or
P R®— C, 1 — ().

In the present type of experiment the atomic wave packets spend about a
millisecond travelling from the source to the detector. Within this time-span
their broadening can be neglected and the atoms are thought of as wave packets
of constant shape moving along at the group velocity v = d‘ggf,) | =k taken at the
center k of the wave packet in momentum space. The well-known concept of the
scattering of wave packets (see, e.g. [28]) can thus be applied to the problem. In
view of the applications to be made later in this text it is sufficient to neglect even
the width of the wave packet in momentum space, which means that all measured
quantities can be interpreted in terms of a single sharp velocity v for each particle.
The distribution of particle velocities in the real experiment is taken account of
by simply summing up the theoretical diffracted intensities obtained for the single
particle velocities. This is possible because the particles in the beam propagate
independently and thus exhibit no effects of coherence.

The concept of single velocities just suits the approach of stationary scattering
theory whose central advantage lies in the fact that the scattered intensity in an
experiment can be predicted by merely solving the time-independent Schrodinger
equation

H |ih) = E [) (2.5)

for an energy eigenstate [iy), that is subject to the asymptotic condition
2<0 1 ikr
(rlir) = Yi(r) Z=5 (r]k) = o elkr (2.6)

The energy E associated with the energy eigenstate |¢y) in Eq. (B.5) is deter-
mined in the region near the source where the scattering potential V' vanishes so
that the full Hamiltonian H can be replaced by the free Hamiltonian H,, which
thus represents the kinetic energy of the atom just leaving the source. In coor-
dinate space representation one obtains for Hy acting on the asymptotic state of

Eq. (2.6)

1, (h/iV)? 1 . P21 1.
Ho — ikr _ _ oikr _ okr B ikr ) 2.7
09r° om  2r om 2r o1 (2.7)
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Rewriting and re-arranging Eq. (2.5) with this result leads to
(A+k —U(r))u(r) =0, (2.8)

where for convenience the reduced potential U := 2mV/h?* is introduced, which
has the physical dimension of m=2.

Formally, the root of the inhomogeneous Eq. (B.§) is given by

h(r) = % S /dzr’ G(r, ") (") U(x'). (2.9)

The Green function G(r,r’), whose k dependence is suppressed in the notation,
is subject to
(Ar + k) G(r,r') =6@(r —1). (2.10)

A closer look at the analytical properties of G(r,r’) reveals that in accordance
with the incident wave function Eq. (B.6) it must be chosen such as to make
Ui (r) e i ,0 < z a wavefunction going out from rather than running towards the
scattering center [28, B2]. This property is indicated formally by the superscripts
wl(f)(r) and G (r, 1').

In three-dimensional space one obtains for the Green function GV)(F,#),

corresponding to the three-dimensional outgoing solution zzl(:r) (r) of Eq. (@),
the well-known result o

- 1 el r—r

GHEF) = ———— 2.11
whereas in two dimensions the suitable Green function G*)(r,r') is found ac-
cording to Rubinowicz [33] by integrating the right-hand-side of Eq. (B.11]) along
the ¢y axis. With the substitutions T — ¥ =: R =: (0,y — ¢/, 0) + @ one has

e1

ikR
R .

+o0
~ 1
G,y = / dy (2.12)
s

This integral can be related to Sommerfeld’s representation of the Hankel function
Hél) of the first kind and order zero [35]

n—ioco
HP(2) = / dteest 0<p<m. (2.13)

—n+ioco
After introducing to Eq. (2.12) the variable t € C by

/

y—1y =: —ipsint, dy =ipcostdt = R* = p’cos’t (2.14)
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there follows as a result for the two-dimensional Green function

GH(r,r') = —iHél)(kQ). (2.15)

Rewriting Eq. (B.9) with the additional information about the outgoing wave-
function leads to the two-dimensional Lippmann-Schwinger equation

o (r) = %eikr + / 42 GO (r, ) () U ) . (2.16)

Far behind the grating, in the experiment near the detector, Eq. (B.1G) can be
expanded with respect to small 7. The Hankel function from Eq. (2.15) is thereby
replaced by its asymptotic behaviour [34]

2 .. 1
H(l) L 0<ko _“ iko—in/4 1 _ . 2.1
o (ko) — ﬁer +O(k‘g) (2.17)

To first order in 7/, this yields

1. ikr /) iz -
() 252 L OIVACT [y o), @y

Vi ome ! Vroo 4w
with the de Broglie wavelength \ := 2?” One recognizes in the first term the

incoming plane wave, and in the second a circular wave going out from the origin
of the coordinate frame where the scattering potential is located. The vector
k7 =: K reflects the fact that the outgoing circular wave looks like a plane wave

KT as it reaches the far-away position r of the detector.

The two-dimensional scattering amplitude is defined by

-\/Xe_% 1 —iKr’ ’ ’
fr) = i Y2S /d% e Ky (1) U (1) (2.19)
Hereby, Eq. (B.18) becomes
; 1 . ikr
Dy 055 gl | & gy (2.20)

27 T

This result can be compared with the experimental count rate as a function

of the detector position r which is often stated in terms of the scattering angle 9
with

r = (rsind,rcosd)’ . (2.21)

The theoretical equivalent of the experimental count rate is the probability I (r) =

Io(¥) of an atom entering the detector aperture at r which subtends an angle
) with respect to the scattering centre. Io(¥) is given by the probability flux



2.3. GRATING POTENTIAL 9

through the aperture, which is just the integral of the well-known probability flux
density over the angle €2. One has

9+3
h 0 0
1o0) = 5o [ 40 () 506 - ) @)
0’9

(2.22
where a star has been used to denote the complex conjugate, and with r' =
(rsind’,rcos®¥)™. Summing up the steps made so far, the important theoretical
result is Io(r) from Eq. (2.23) because it can be compared to experimental count
rates of atoms scattered towards the detector position r. In order to calculate
Io(r) from Eq. () the wavefunction wl(j)(r) is required for which, according
to Eq. (2:20), one needs to know the scattering amplitude f(r).

2.3 Grating Potential

To determine the scattering amplitude f from Eq. (B.19) it is useful to discuss
the structure of the scattering potential U, because then an appropriate approx-
imation can be chosen that simplifies the remaining steps. The atom-surface
potential consists of a strongly repulsive core (Pauli) and an attractive part (van
der Waals) the latter of which will be shown in chapter 3 to be essentially given
by —%, with the interaction strength C's > 0 and where [ stands for the distance
between the atom and the surface. For the repulsive part there is a number
of models available in the literature [36, 37] which are usually preferred to one
another for reasons of mathematical convenience. The present problem is most
simply described by a Lennard-Jones-type 9-3 potential
Cy Cs

with C9 > 0. To give a quantitative example the approximate potential for
ground-state helium atoms and a dielectric silicon nitride surface is plotted in
Fig.2-2. For systematic reasons, the scattering potential U can be divided up into
the comparatively weak attractive interaction U and the very strong repulsive
part U™P.

To be definite, consider the closed line around the trapezoid-shaped cross-
section of each bar in the z-z plane (see the inset of Fig.P.1) where the attractive
and the repulsive part of the potential just cancel, like at [y in Fig.R.2. If A C R?
is the region within the circumferences so defined then one may write approxi-
mately U = U 4 U™ and

atb/y 0 : reA
U*(r) .—{ wa(r) © rdA (2.24)
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Figure 2.2: Realistically scaled sketch of the potential V'(I) (solid line) between a
helium atom at a distance [ from a dielectric silicon nitride surface. At [y the repulsive
and the attractive terms cancel (dashed lines). The attractive part alone is shown
as a dotted line. The potential can be approximated by the sum of a repulsive square
potential barrier for distances smaller than [y and the attractive part alone for distances
greater than ly.

where u,(r) is an attractive potential and

TP (r) = { "o i;j , (2.25)

with ug > E > 0.

From the range of the forces involved it is known that the potential of each
grating bar practically vanishes on the sites of the neighbouring bars, hence the
total grating potential U can be written as a sum of single bar potentials

U=> U, (2.26)

all of which are, in the same sense as indicated in Eq. (2.24) and Eq. (2.27), the
sum of an attractive and a repulsive part

U; = U™ + U™ (2.27)

In absence of the attractive interaction U?" the situation would be in complete
analogy with the diffraction of light by a transmission grating with reflecting bar
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surfaces. For small incident wavelengths and correspondingly small diffraction
angles and detector positions far behind the grating it is of minor importance
if the bar surfaces are reflecting or absorbing. It has been shown by T.Kohler
[24] that within the stated limits for a purely repulsive potential the reflected
amplitude is negligible, which means that seen from far away only the silhouette
of the grating contributes to the diffraction image. Therefore the case without any
attractive potential is analogous to the diffraction of light from a thin transmission
grating.

For atoms whose de Broglie wavelength A is small compared to the range
a of the bar potentials and if both A and a are smaller than the slit width s
of the grating the probability of atoms being multiply scattered from several
grating bars becomes negligibly small. A rigorous proof of this fact is based on
the application of Watson’s theorem [27, 2R] for the scattering amplitude arising
from a potential which is the sum of single potentials, like the grating bars in
the present case [24]. As an important result it turns out that the scattering
amplitude f of the whole grating is well approximated by the sum of scattering
amplitudes f; arising from the single bars, hence one has

f=2_5 (2.28)

A similar treatment can be applied to the single bar potential which is the
sum of an attractive and a repulsive part. In the limit of small de Broglie wave-
lengths it can be deduced from Watson’s theorem that also for the single grating
bar potential the total scattering amplitude is well approximated by the sum
of scattering amplitudes fi** and f;* arising from the respective attractive and
repulsive parts alone [24]. Hereby the scattering amplitude of the attractive po-
tential is calculated with respect to an incident wave that has been diffracted by
the repulsive part of the potential, a common procedure which is known as the
distorted wave Born approximation [27, 28]. Bearing this in mind one may write

f=2 0= 5"+ £ (2:29)

As the scattering from the repulsive part of the grating potential can be
reduced to the simple analogy with the diffraction of light it is possible to calculate
the detection probability by an easy scheme that nevertheless fully includes the
concept of the distorded wave Born approximation. This scheme is formally
accomplished by replacing in equation Eq. (.20) the general scattering amplitude
f(r) by the more detailed expression Eq. (B.29) which yields

ikr
o0 25 e S (0 + 1) (230)
J
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After identifying the wavefunction @Dr(;;)(r) arising from the scattering by the
repulsive potential alone one has

U (r) 53 g Z F(r) (2.31)

The advantages of this procedure are that wrep (r) can be easily calculated with
a method known from optics [32] which is based on the application of Green’s
theorem, to be evaluated here in two dimensions. Furthermore, the result to
be obtained contains two terms that cancel exactly which yields an expression
for the detection probability that can be generalized straightforwardly to include
Fresnel diffraction effects. As a first step, the wavefunction %E;;) (r) that describes
the diffraction of atoms from the repulsive core of the grating bar potentials is
calculated in the following section.

2.4 Diffraction from the Repulsive Potential

As explained above, the influence of the repulsive potential on the diffraction of
atoms from a transmission grating can be reduced to the simple case that the
transmission grating is represented b%l a plane screen perforated by a periodic
array of slits. The wavefunction ¢re ) at a (detector) position r behind the
grating is subject to the Helmholtz equatlon

(A + k%) zprep (r)=0. (2.32)

This is just the formerly stated Eq. (B.§), for the given case of the grating potential
U being zero everywhere except right on the grating bars. Drawing a small circle
OC around the position r of the detector one may define a region A C R? as the
whole region behind the grating except for the area C' of the small circle.

Fig. B.4 illustrates how the concept of this region A is realized by mount-
ing a semicircle on the back side of the screen whose perforation constitutes the
transmission grating. Letting the radius of this semicircle tend to infinity accom-
plishes the region A. The fact that the incident wave (from the left, in the figure)
is totally blocked by the screen outside the perforated stretch is in agreement
with the experimental situation where a collimated beam is used that vanishes
outside a certain illuminated spot on the grating.

Using Eq. (2.39) and the definition Eq. (2.10) of the appropriate two-dimensi-
onal Green function one notes that inside A the equation

/ &1 (Gr,r) ABB () — ) () AG(r, 1)) = 0 (2.33)

A
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Figure 2.3: The area A is bounded by the rear side of the perforated screen that
represents the transmission grating, and by a semicircle mounted thereon. Note that
A excludes the circle C around the detector position behind the grating. The incident
atoms arrive at the screen from the left. The normal vectors on the boundary 0A are
defined to point out of the region A.

holds. On applying Green’s theorem in two dimensions this area integral can be
converted into a line integral along the boundaries 0A of the region A which are
the infinite semicircle and the small circle around the detector position r. One
has

0= /ds(r') <G(r,r’)5in1/zr(;)(r’) —M;;)(r’)a%G(r,r’)) , (2.34)
8A

where the normal vector n points out of the region A as indicated in Fig. £-4. On
the infinite semicircle, the integrand vanishes except on the openings of the screen
which can be seen as follows. For large r the Green function, which is a Hankel

function as introduced in Eq. () and Eq. (), is proportional to % and so

is the wavefunction wﬁ;} (r) because from Huygens’ principle it is expected to be
a cylindrical wave with the stated r dependence. Each term of the integrand in
Eq. (.34) is therefore, with inclusion of the spatial derivative, proportional to %2
On the arc of the semicircle which is linear in r this leads to a vanishing like % of
the respective contributions to the line integral as the arc tends to infinite radii.
The wavefunction wlg.;;) (r) also vanishes on JA immediately behind the grating
bars which obstruct the plane wave that falls on the grating from the left.

The contribution of the small circle around the detector position r to the line
integral Eq. (2.34) is evaluated in the limit of infinitely small radii Ry := [r—1'| —
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0 of the circle. As a result, one has

0 0
tin [aste) (600 St ) Q) SLG0) ) = vl (239)
oC

To see how this comes about consider first the second term {3 (r')Z£G(r,r') in
Eq. (2334). In the limit Ry — 0 the Green function G is known to behave like

G — 5= In(£2) [33] which leads to

1

. / a / /
lim () (r )8—nG(r’r) = -\ () Ry

Jim, (2.36)

Upon line integration around the circle 9C' this becomes —@ZJIS,;;) (r). The first term
in the integrand of Eq. () vanishes in the limit Ry — 0 because %wr(éi,)(r' ) is
finite and the circumference of the circle is linear in Ry so that the logarithmic
divergence of G is overridden.

Therefore, in order to find the solution wgp)(r) of the diffraction problem it
suffices in Eq. (2:34) to calculate the remaining part of the contour 0A along the
openings of the screen. It is evaluated with the help of the asymptotic behaviour
Eq. (2.17) for large arguments of the Green function Eq. (2.15) and yields

s

Z\/dxle—ik(m’—f—jd)sinﬁ. (237)

1 eikr e—i7r/4
Vrap (1) = 5

LV

N

By the summing over j the integration runs over each grating slit, in that the
integrand contains an appropriate shift of the local coordinate =’ parallel to the
backside of the grating by j times the grating period d.

2.5 Eikonal Approximation

As the attractive contribution U to the total scattering potential U is relatively
small, and the observation in the experiment is restricted to small scattering an-
gles, the scattering amplitudes fftt which arise from the attractive potential in the
7th slit are calculated in the semi-classical eikonal approximation which is espe-
cially suitable for these cases [28]. As mentioned earlier the scattering amplitudes
arising from the attractive potential are calculated for an incident wavefunction
wr(et))(r) that is already diffracted by the repulsive part of the potential. The
eikonal approximation yields a result for f#** that only depends on the incident
wavefunction at positions inside the jth slit. Applying Huygens’ principle to the
diffraction by the repulsive potential alone which is analogous to the diffraction
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of light is is clear that inside the slits the wavefunction 1052;)[(% 0)'] is identical
to the incident plane wave.

This motivates the ansatz
ikr

) = ) (2:38)

which stands at the beginning of the procedure leading to the scattering ampli-
tude fj‘t“ in eikonal approximation. Inserting the ansatz into Eq. (R.1¢) one has

ok(r)=1-— /dzr’ G (r, 1) UM(r') ekO=T) o (1)) (2.39)

For the following steps it is instructive to look in detail at the term G™)(r,1’).
Upon Fourier transformation the definition Eq. (.I0) of the Green function in
terms of a J-function reads

1 ; / 1 . g
d2 ik(r—r’) _ Ar ]{?2 /d2 ik(r—r’) 2.4
R [ e A+ ) s [ @G w), (240)
which by standard methods leads to
1 ik(r—r’) > d e
AN d2 € _ / ¥ / d K o K iklr—r'| cos ¢ )
Glr.r) (27)2 / " k2 (27)2 "\k—k wtk)©
0 —00

(2.41)
The outgoing wave solution Eq. (B.11]) requires a complex contour integration
along the real axis and a half-circle in the upper half-plane during which the
poles at +k are infinitesimally shifted to +(k + ie). Formally, this procedure is
denoted by

-1 ein(r—r’)
O(r,r') = R 2.42

G, ) (2ﬂ)2/dnm2—k2—i€ (242)
With Eq. (B:49) and the new variables K := k —k and R :=r — 1’ Eq. (2.39)

is rewritten as
25 elRR tt (+)
d°K U r—R —R).
(2.43)
Examining the integrand with respect to [ d*R it becomes evident that the inte-

gral becomes stationary for small values of K. It is therefore reasonable to expand
the first term of the integrand in Eq. (2.43) with respect to small K which yields

(+)

Pk ( d’R

eiKR eiKR K2

= 14—
K2+ 2Kk —ie 2Kk—ig( +2Kk—15

+ O(K4)) : (2.44)

This expansion forms the core of the eikonal approximation. It is possible to
proceed in lowest order if ka > 1, i.e. the de Broglie wavelength A\ := 27” of the
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atoms be much shorter than the range a of the attractive potential. In a typical
experimental situation the de Broglie wavelengths A involved are about 50 pm,
while the van der Waals interaction of the atoms with the bars has a typical range
of about 1nm. This leads to ka =~ 100.

Proceeding from Eq. (B.44) in zeroth order Eq. (B.43) becomes after a little
algebra

“+o0
1 olK:Z
(+) 2 att (+)
=1-— [/ d X)) U: — — dK, — 2.4
AV =1 [ RSO UM Ry oD R) [ (2a5)

where the K,-axis has been chosen to point in the direction of the incident plane
wave vector k. By contour integration in the complex plane the second integral is
zero for Z = z— 2’ < 0, i.e. before the grating, and 27i for Z > 0, i.e. behind the
grating, in the region of interest. Thus, in zeroth order eikonal approximation
one has o\ (r) ~ pE(r), where ¢E(r) is subject to

+oo
i o N .
eEr)=1- oy / dZ UM (x — Z&,) i (r — Z8,) | (2.46)
0

and &, is the unit vector in z-direction. As one can easily check, Eq. (B.4G) is
solved by

z

D) _ _L / Tratt /
¢ (r) = exp oF /dz Ui (z,2') | . (2.47)

—00

Going back to the ansatz Eq. (2.38) one has for the zeroth order eikonal approx-
imation of the wavefunction in the scattering region

P (r) = eﬂ exp [ —— / dz' U (z, 2') | . (2.48)

In order to obtain the scattering amplitude f3** the result Eq. (2.48) is inserted
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into Eq. (2.19) which yields

a \/Xe_% —iKr/ rra e’ i a
fjtt(r) — o /dQT/e K tht(r/) o= exp _ﬁ/dzu tht(x/’Z//) _
(2.49)
_ e_% a2 i(k—K)r/ d i A" U (2 5" Cos,l’:z12 50
= > r'e &P | ~op 21U (o, 2") ~ (2.50)
“+oo [e%e]

Q

1 .
e 4 Y 1
dx’e ik’ sin ¥ exp | —— / dZ” Uatt (33'/, Z”) 1

27T\/X 2k J
(2.51)
In the third step, the approximation for small diffraction angles v
0 — sin?
"k —K)=(2,7) - ~ —ka'si 2.52
r'( ) = (2',2") k(l—cosﬂ) kx'sin (2.52)

has been used. Recalling that the evaluation of fi*'(r) has to be in terms of the

wavefunction wﬁjp) (r) that results from the influence of the repulsive potential
it is clear that the integral along the back side of the grating that appears in
Eq. (2.49) has to include the grating slits where ¢§:p) (r) is equal to the incident

wave, and exclude the region right behind the bars where 1[1]5;;)(1') is zero.

It is convenient at this point to express the attractive potential of two neigh-
bouring grating bars in terms of the attractive potential ¥V that is produced in
the slit in between. After defining

2m (1) = { Uitt(r) + UYy(r) : jd—5<a<jd+3 (2.53)

=77 yratt
K2 Vit 0 : else

it can be assumed that the attractive potential is the same in each slit so that the
subscript j is dropped and V**(r) = V*(r). The scattering amplitude f*"(r) of
all grating slits, as arising from the attractive interaction is obtained according

to Eq. (2.2§) and Eq. (2.29) by summing up the contributions of all slits. This
yields

im +% . oo
fatt (I‘) _ Z 26 \;X dx/efik(x’+jd) sin ¢ exp _hi / Az 1At (Q?’, Z”) 1
X s v
J — —o0

s
2

(2.54)
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In the limit of large distances r from the grating to the detector and within
the stated approximations the solution to the whole diffraction problem becomes

eikr .
) = ) + = ). (2.55)
Inserting the results Eq. (2.37) for i) (r) and Eq. (2.54) for f2**(r) into Eq. (2.55)

one obtains

i(kr—1) :
+ € 4 —ik(z'+jd) sin 1 a
¢l(< )(I') _ ; —rr /dx’e k(' +35d) ﬂeXp - / 4"V tt(l'/,Z//)
(2.56)
Introducing the momentum transfer
k:=ksind ,or k' :=ksind (2.57)
and evaluating the sum for N grating slits one has
N-1 ik .
Z o—irid _ 1 — e isNd/2 — o—in(N=1)d/2 sin(Nkd/2) (2.58)
= 1 — eind/2 sin(kd/2) '

According to Eq. (B:22), the diffraction of a monochromatic beam of velocity v
with an incident direction parallel to the z axis leads to a detection probability

2

0+$ +5/2 +00
Io(9) = Al /dﬁ'H (") /dx’e_i”/x/ exp —L/szatt(az' z)
. AT\ N T ’ ’
197% s/2 —o0o
(2.59)
with the grating function
1] v sin(Nkd/2)|”  sin®(Nkd/2)
Holr) e L |eminv-nar2 o/2) | _ S AvR/2) 2.60
w(r) N | sin(kd/2) N sin?(kd/2) (2.60)

Apparently, Eq. (B.59) is analogous to classical optics except for the additional

phase factor
+0o0

(z,0) ;= exp —% /szatt(x,z) (2.61)

that can be interpreted as being inscribed on the incoming plane wave at the
position z = 0, i.e. the back side of the grating. The phase factor not only
accounts for the phase arising from the atom travelling through the attractive
potential before it passes the grating but also through the region behind the grating
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on its way to the detector. As the scattering angles are small the integration is
carried out along a straight line trajectory, regardless of the scattering angle.
This is a central feature of the eikonal approximation.

It is interesting to see how the result Eq. (2.59) can be related to experimental
diffraction patterns. As a first point, it is well known from optical diffraction
theory that for large numbers N of illuminated grating slits the grating function
Eq. (2:60) turns into a ”Dirac Comb”

+oo
A}LH})O Hy(k) =7 Z_ (K — Kn), (2.62)

i.e. a row of equally spaced d-functions with a period determined by the zeros 1,
of the denominator in Eq. (2.60) which are given by

nA
d )
so that k, = 2”7”. If the grating function is assumed to be d-like then Eq. ()
is non-zero only for the principal diffraction angles 4,,, namely

(2.63)

sind,, =

N
Io(9) = o | fasc (02 (2.64)

where a slit amplitude has been defined by

+s/2 . foo
faie(9) := / da’e ™ exp —% / dz V(' 2) | . (2.65)
—s/2 —o0

For finite N the gaps between the principal maxima are populated with N
smaller side maxima, as the reader may recall from Fraunhofer diffraction of
classical optics. In a typical experiment, one has N ~ 100 and so that roughly
8 side maxima additionally fall into the detector aperture €2 ~ 0.06 mrad if the
detector is placed centre on one of the principal maxima whose spacing is 3 R
0.5mrad. The integral over the detector opening in Eq. (B:59) in this case also
depends on how the series of maxima is modulated by the slit amplitude | fg; (9)[*.
A numerical study reveals that for N = 100 the detection probability Io(r) at
the principal diffraction angles is between 1.73% and 1.4% smaller than that
given in Eq. (.64) for N > 100. Bearing in mind that for a comparison with
the experiment only the ratios of different diffraction orders are used, this nearly
constant correction factor can be ignored as it leads to an error in the relative
intensities of at most 0.33 %. Fig.B.4 illustrates for the realistic case of N = 100
the intensity across the detector aperture if it is placed centre on the zeroth
diffraction order.
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Figure 2.4: The theoretical detection probability for the zeroth diffraction order of
a monochromatic incident wave is equal to the integral over the shown curves, which
are the angle-dependent diffracted intensities as given inside the detector aperture
which ranges over 0.06 mrad. The shaded area under the solid curve is calculated with
N = 100 illuminated grating slits. It is wider than the other curve calculated with
N = 200. The respective areas are 0.983 and 0.992 while in the limit of N — oo the
central peak becomes a delta function whose area is unity.

In the experiment, the measured diffraction pattern is interpreted as an in-
coherent superposition of many monochromatic diffraction patterns of the sort
described by Eq. (2.59). They correspond each to a set of particles in the beam,
while each set contains enough particles to represent a quantum mechanical en-
semble. The observed shape of the principal orders is broadened as a consequence
of the inevitable angular and velocity distribution of the atoms in the incident
beam. As the monochromatic components are well described by d-shaped prin-
cipal maxima and as long as the broadening does not merge the peaks of neigh-
bouring order the relative areas Aey,(n) under the measured nth order peaks are
equivalent to the relative intensities Iq(?J),) of the principal diffraction orders as
given by Eq. (2.59). For example, normalizing to the zeroth order one has

_[Q (19”) ; Aexp(”)

[Q(O) eXp(0> '

(2.66)

With this formula a direct comparison of the theory with the experimental results
can be established.
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2.6 Fresnel Corrections

For the real experiments it is necessary to generalize the present approach to
include situations in which the detector is closer to the scattering centre than
would justify the use of the Fraunhofer diffraction limit. This limit applies if
the path difference A between two lines connecting the detector position with
the centre or the boundary of the illuminated region on the transmission grating
is small compared to the de Broglie wavelength A of the incident particles. In
the typical experimental situation, where the detector slit is at a distance of

= 0.43m from the grating which is illuminated over a width of about 100
periods (=10 pum), one has A ~ 0.05nm while also A ~ 0.05nm so that the
Fraunhofer limit is not readily justified.

In order to adjust this shortcoming an exact treatment of the path difference
can be realized by replacing the Fraunhofer term e!l*"—#@"+idl in Eq. (R.56) with
the exact expression

eik (z—2'—jd)2+22 ’ (267)

where x and z are the coordinates of the detector. After expansion of the square
root with respect to small (2’ + jd), Eq. (2.56) becomes

S

+_
ilkr=2)

27T\/_

dx/efilfl(ﬁ?/‘i’jd) elk (z/;zd)2 w(x/7 O) , (268)

MM

which leads to a detection probability

+§’ +2 2

N-1
—'m’gc’iM 1
WA Z/dx’e F (2, 0) +0(5).  (269)

Q J=0"
2

L
2

This formula gives a description of particle scattering in the Fresnel limit of
diffraction. It is valid as long as the detector position r and the size of the
detector aperture €2 justify the use of straight trajectories within the eikonal
approximation, i.e. the detector may not be further off-centre and the aperture
not wider than a few rad.

If Eq. (B.69) is evaluated for a typical experimental set-up in which r = 0.43 m
it becomes apparent as shown in Fig. 2.5 that due to the Fresnel corrections the
shape of the principal diffraction maxima is quite unlike the idealized J-peak
on which the practical formula Eq. (2.64) is based. Remarkably, it turns out
at this point that Eq. (B.64) nevertheless can be used in good approximation.
The reason for this very convenient fact is that although the principal maxima
are considerably deformed by the Fresnel corrections they retain their character
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Figure 2.5: This figure is completely analogous to Fig.B.4 except that Fresnel correc-
tions are included with a typical grating-detector distance » = 0.43 m. If the illuminated
spot on the grating is N = 100 slits wide (dotted line) the zeroth order peak is more
narrow whereas for N = 200 (solid line) the Fresnel corrections lead to a considerable
broadening. The shaded area 0.9923 is practically equal to that 0.9917 under the solid
curve, and both are sufficiently close to the area 1 that follows for the Fraunhofer limit
with N — oo. Consequently, the simple formula Eq. (2.:64), which is based on this
limit, can be applied to the current experiments.

as nth diffraction orders in that the area under the peaks remains the same.
Therefore, as long as neighbouring peaks in the diffraction patterns do not overlap
(i.e. A not be too short) it is possible to describe the current experiments with
the help of the Fraunhofer diffraction limit, as set out in the previous section, and
to assume the number N of illuminated slits to be very large so that the principal
diffraction orders in theory become ¢ function-like. The theoretical peak shapes
shown in Fig.P.5 for monochromatic incident wavefunctions are not observed in
the experiments because the distribution of angles and particle velocities in the
incident beam and the detector aperture lead to a blurring and a broadening of
the measured principal order maxima. As these are incoherent effects they do not
interfere with the applicability of the Fraunhofer limit as recommended above.
A more detailed discussion of this point is deferred until chapter 4.
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2.7 Summary

The contents of this chapter are summarized as follows.

e The quantum mechanical scattering theoretical treatment of the scattering
of atoms from the bars of a solid transmission grating results in a description
that is largely analogous to the diffraction of light from a transmission
grating whose depth is negligible.

e Aiming at an experimental situation with a high kinetic energy of the atomic
beam and a small relevant range of scattering angles centred around zero
one may neglect the reflected part of the scattered amplitude.

e What distinguishes the diffraction of atoms from the optical case is that on
applying Huygens’ principle one has to take account of an additional quan-
tum mechanical phase which arises from the interaction of the transmitted
atoms with the grating bars and which is calculated with the help of the
distorted-wave Born approximation and the eikonal approximation.

e As a new result, it is observed that typical experiments actually fall in
the regime of Fresnel diffraction theory but as long as they are based on
the relative areas of well separated principal order peaks the results can
practically be compared with theoretical values calculated in the Fraunhofer
limit of diffraction.



Chapter 3

van der Waals Potentials

In the literature, the term van der Waals (vdW) forces is widely employed to
generally describe forces which act between electrically neutral objects such as
atoms, molecules, or macroscopic bodies as a result of their electromagnetic po-
larization. This description of things subject to the vdW forces matches most
of the matter of our daily encounter and so there is a number of everyday phe-
nomena which have been correctly described in terms of these forces. Among
these phenomena are the adhesion of smooth surfaces on each other, the physical
adsorption of little particles on a surface, wetting effects and the surface tension
of liquids. The behaviour of real gases, liquids, or thin films, in fact, is always a
consequence of the van der Waals forces within. As a topic of current research,
scientists are trying to figure out the way large molecules like polymer chains or
proteins fold up as a result of the vdW forces between their constituent parts.
The fundamental character of the van der Waals forces becomes apparent in the
famous Casimir effect that leads to a non-gravitational attraction between two
metal plates which are placed parallel at a mutual distance of centimetres in free
space, and each of which possesses no static electromagnetic field.

From the observed strength of the vdW forces and their presence in the vac-
uum it is clear that they are of electromagnetic origin, ruling out gravitation
and nuclear forces. As the interaction partners are electrically neutral the vdW
forces must be due to higher multipoles of the charge distributions within the
interacting objects. Quite generally, three cases can be distinguished,

1. the force between permanent multipoles, e.g. two polar molecules can be
represented by two dipoles,

2. the force that arises when permanent multipoles induce a polarization
within the other interaction partner,

3. the forces due to mutually induced polarization which results from ever-
present charge density fluctuations within each of the interaction partners.

24
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While the first two aspects might be described by classical electrodynamics the
third is of purely quantum mechanical origin. The problem of atoms interacting
with the electrically neutral and unpolarized material of a transmission grating,
which is a central topic in this work, is entirely due to the third of the cases
enumerated. It is referred to by the names dispersion force, electrodynamic force,
or charge fluctuation force; in the following the name dispersion force shall be
adopted. The pioneering works on the dispersion force by London (1930) [38, B9],
Casimir and Polder (1948) [40], and Lifshitz with co-workers (1956) [41] were
focused on the interaction via mutually induced dipole moments so the common
term London force is understood as to refer to this limit.

In the years after the pioneering works the dispersion force has been exten-
sively investigated by many authors which has led to a generalization and also
a simplification of the concepts involved. Today, the principles can be found in
standard textbooks on quantum mechanics [d2], whereas concrete applications
are still a subject of current research.

To establish a connection between theoretically and experimentally deter-
mined values of the dispersion interaction strength between rare gas atoms and
the material of the transmission gratings it is usual on the theoretical side to go
back to the situation of an atom in front of an infinite half-space of the given
materialf]. On the experimental side it has proven difficult to relate measured
results obtained with macroscopic bodies of a certain shape to corresponding
theoretical predictions. In a famous series of experiments between 1969 and 1975
Raskin, Kusch and co-workers determined the dispersion force by measuring the
deflection of an atomic beam flying past a glass cylinder covered with a metal
film [3, 43, 44, @5]. Their results repeatedly differed from theoretical predictions
by some 50% which has sparked a number of subsequent publications by various
authors [46, A7, 48, 49]. Finally, the discrepancy was ascribed to the crucial in-
fluence of unknown parameters such as surface roughness so that the experiment
was actually found not suitable to be compared to any theory due to a lack of
specified information [50, 51).

Generally, the measured values of the interaction strength for a certain atom
and a certain surface do not tend to coincide to better than about 30% [52, 53].
Theoretical calculations usually suffer from a lack of accurate optical data on the
solid material which will be shown crucial for evaluating the interaction strength.
The extrapolation of optical data is usually performed in the most simple one-
electronic-oscillator model for the solid which leads to an acknowledged uncer-
tainty around 20% in the interaction strength [38, 55].

The first simple experimental method to measure the dispersion interaction
strength was presented in 1999 by Grisenti et al. [I2] who determined the po-
tential between a beam of rare gas atoms and the bars of a (dielectric) silicon

'In fact, the interaction strength coefficient is defined in terms of this standard situation.
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nitride transmission grating by relating the diffracted intensity to the dispersion
potential. A similar experiment with metastable rare gas atoms has recently
been published [64] by our group and will be treated later on in this work. The
following sections provide the theoretical concepts that will allow for the first
time to calculate the relevant atom-surface interaction strengths, so that the old
results for ground-state atoms and the new results for metastable atoms, both
with silicon nitride gratings, can be compared to theoretical values. Due to recent
progress in acquiring and extrapolating optical data for silicon nitride [97] the
calculations exhibit a relatively high accuracy.

3.1 The Dispersion Force

The dispersion force is a quantum mechanical effect. Intuitively, it can be ex-
plained as arising from spontaneous and mutually induced charge fluctuations
within the interaction partners. These fluctuations are expressed in terms of the
frequency-dependent susceptibilities of the interacting objects to an electric field.
The susceptibilities in turn are derived from the electronic degrees of freedom
which are characteristic for the respective atoms, molecules, or solids. In partic-
ular, the force depends on the symmetry properties of all their electronic quantum
states so that in general the interaction does not follow a simple single power law
in terms of the mutual distance [b6, b7, b8, 59, 60], it can also be anisotropic and
repulsive or attractive under varying conditions [I5, 18, 61]. Especially the pos-
sibility of a repulsive dispersion interaction is a matter of current interest [62] as
it involves applications for the growing industry of nanomachinery. The presence
of a third interaction partner always changes the mutual response to charge fluc-
tuations within the other two, hence the dispersion force is non-additive, unlike
the pure Coulomb interaction [63, 64, 65].

In any case, the dispersion force between objects is mediated by the electro-
magnetic field in between. Any response will thus be retarded by the time light
takes to cover the distance between the interaction partners. This retardation
is known to weaken the force, thereby adding to the difficult task of finding a
closed expression for the interaction strength as a function of the distance. As
a rule, the effect of retardation is said to be negligible if the distances between
the objects involved are less than the wavelength Ay of a photon whose energy
matches that of the most likely electronic transition within the system.

For the simple case of two ground-state atoms A and B at a distance R < A,
which allows retardation to be ignored, the dispersion potential V' (R) can be
obtained from an electric multipole expansion that yields

V(R)= ——0 - =8 _Z10 . (3.1)
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The leading dipole-dipole term can be derived from stationary perturbation the-
ory with the Hamiltonian H = Hy, + V, with H,|00) = 2E,|00), and where

D e?
V= = m(xAxB + yayp — 22a2B) (3.2)

represents the energy of a dipole eX, in the field of another dipole eXgy at a
distance R. The ket |00) represents the ground-state of both atoms. While the
first order energy correction vanishes the second order correction becomes

Cs
with
« (00| D [nm)|?
- n%; (Eo — En) + (Eo — Ep) - (34)

For the sake of simplicity the sum in Eq. (B.4) is restricted to the the most impor-
tant contributions that arise from nearest excited states |[nm) of the two atoms
and that are taken to be a degenerate triplet of p-states like in hydrogen atoms.
This yields

(0] za [n)]? [{O] zp |m)|?
Cp = MEO Trelh Z , (3.5)

Wp, + W,

with hw; := Ey — F;. This result, first obtained by Eisenschitz and London in
1930 [B8] can be rewritten using the identity [66]

1 2 T Wi,
—=—/d . 3.6
Wn + Wi 7?/ Y T D)+ w?) (36)
0
It follows that
3h i )
Cs = — dw ap (iw) ap(iw) , (3.7)
0
where ’ | ’
() z; |n
. = i ) — A B .
(€ 47% z Z , o i=A, (3.8)

are the usual frequency-dependent atomic polarizabilities, that are evaluated in
Eq. (B:7) at imaginary frequencies, which is accomplished by setting & = iw in
Eq. (B-§). This is convenient because the polarizability « on the imaginary axis is
a real monotonously decreasing function without poles. A comprehensive expla-
nation of this general feature of susceptibilities, for which the atomic polarizabil-
ity a(w) is a standard example, can be found in Landau and Lifshitz’ textbook
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on statistical physics [67]. As a result, the dipole contribution to the dispersion
interaction energy of two hydrogen atoms in their ground-state is given by

1 oo
AE(R) = —ﬁ% dw a?(iw) . (3.9)
0
In 1948 Casimir and Polder [40] have shown that in the retarded limit R >> g

the interaction potential like in Eq. (B.9) becomes

1 23hca?(0)
R 47 ’
where ¢ stands for the speed of light, which is expected to appear in this equation
for the retarded interaction. As a further detail, it may be noted that it is
sufficient in this limit to use the static value «(0) of the polarizability. The
reason for this will become clear later in this section.

AE(R) = (3.10)

In the years from 1948 to the early seventies several authors have presented
their methods of developing the general expression from which both the non-
retarded (Eisenschitz and London, Eq.(B.9)) and the retarded (Casimir and
Polder, Eq. (B.10)) result can be derived. While the earlier attempts involved
quite elaborate field theoretical calculations [68] that are beyond the scope of
this text, some of the publications that followed explained the problem more
intuitively by simplifying the required technique as far as possible. A well un-
derstandable approach has been presented by McLachlan in a series of papers
beginning in 1962 [63, 69, 0] that will serve to illustrate the underlying concepts
on which the later calculations of the dispersion interaction strengths in this work
are based.

McLachlan’s approach starts from the notion that the interaction energy AF
due to spontaneous charge fluctuations of an atom A at ra, represented by an
oscillating dipole, and the electromagnetic field around it is given by an integral
over imaginary frequencies similar to Eq. (B.7), namely

o

h
AE = ~5- /dw oy (iw) Bri(ra, Ta,iw) . (3.11)
0
0
In this equation o’} stands for a component of the polarizability tensor a® of
the atom A, and Fj;(r,r’) in general is a component of the susceptibility tensor
E(r,1’) of the electromagnetic field at r responding to an oscillating electric dipole

at r’.

Here and in the following summation over repeated indices is implied. Both
tensors are explicitly given by 3 x 3 matrices and are represented here by under-
scored bold types while their components are denoted by doubly indexed plain
types.
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The components of the field susceptibility Fy;(ra,rp,iw) at ra as arising from
an oscillating dipole at rg can be calculated classically via the spectral Fourier
component E(ra,w) of the electric field at ry that is generated by an oscillating
dipole PB(w) located at rz. Simply put, one can infer the field susceptibility
if one knows the cause of the field (the dipole at rg) and the field itself at rx
because the susceptibility is by definition just the quantity that connects the two.
The formal expression of the above said is

E(rA,w) :E(rA,rB,w) PB(u)). (312)
The calculation of the field E(ra,w) follows a standard procedure starting

from the electromagnetic wave equation with the electric dipole as an inhomo-
geneity which yields

1 S B
E(ry,w) = 4W€0V X (V X = P (w)) : (3.13)

with R := rp — rg. Without restricting generality the z axis of the coordinate
frame is chosen parallel to R and an explicit evaluation of Eq. (B.13) yields

ok iRk — 1+ R%k? 0 0
E(ra,w) = - 0 iRk — 14 R%k? 0 PE(w),
Ameolt 0 0 2(1 — iRk)

(3.14)
with £ := 2. The field susceptibility tensor is identified by comparison of this
result with Eq. (B.12). Like in Eq. (B.§), it is in accordance with the analytical
properties of the susceptibility to change to imaginary frequencies by simply
replacing w — iw.

With the field susceptibility thus available it is important to note that by the
way it has been put Eq. (B.IT) represents the infinite interaction energy of the
atom A with its own dipole field, because R = |ry — ra| = 0 so that Eq. (B.14)
diverges. There is no physical meaning associated with this but if another atom
B # A is present the concept can be interpreted to make sense. Through its
dipole moment P® the atom B adds to the field susceptibility around atom A a
finite term so that the ”difference’f] of interaction energies of atom A with the
field for the cases with or without the second atom B is finite and is identified
with the mutual dispersion energy of the two atoms A and B.

The formal expression of this is to replace in Eq. (B.11]) the field tensor
Eki(ra,ra,iw) by a modified one Ej;(ra,ra,iw) that describes the interaction of
atom A as carried over to atom B by the electromagnetic field and then back to

A.

2Infinite plus finite minus infinite is not a proper difference. Keeping in this as a result the
finite term is called a renormalization, which is common in quantum electrodynamics.
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The modified field susceptibility Eki(rA,rA,iw) is obtained as follows. In
Eq. (B.12), one interprets the dipole moment P®(w) as the result of atom B re-
sponding to the electric field

E(rg,w) = E(rg,ra,w) P4 (w). (3.15)

generated by the oscillating dipole of atom A. The response of atom B is then
given by
PP(w) = a"(w) E(rp,w), (3.16)

which is where the polarizability tensor a®(w) of atom B necessarily enters.
Combining Eq. (B.15) and Eq. (B-16) one has

P2(w) = a®(w) E(rp, ra, w) PA(w). (3.17)

It is now possible to obtain an equation that is formally analogous to Eq. (B.12)
and thus similarly allows to calculate the modified field susceptibility
Eyi(ra,ra,iw). For this purpose one inserts the right-hand-side of Eq. (B.17) in
Eq. (B-12) which yields

E(ry,w) = B(ra,ra,w) P4 w), (3.18)

with the matrix product

A

E(rAa Ia, Cd) = E(rAa s, (.U) QB (w) E(rBa Ia, CU) . (319)

After changing to imaginary frequencies the interaction energy between the atoms
A and B becomes

[e.9]

h .
AE(R) = —5 [ dw oy (iw) Eri(ra, ra,iw), (3.20)
0

where the R dependence is contained in E'kz

Within the approximation of isotropic atomic polarizabilities the tensors a(iw)
become scalars a(iw) and an explicit evaluation of Eq. (B.20) using Eq. (B.19)
yields

h
21 R6

AE(R) = — / dw o™ (iw) P (iw) e 2% (6 + 12k + 10k + 4k> + 2k*) .
0

(3.21)
In the limit of small R London’s result Eq. (B.9) is recovered by setting the expo-
nential equal to 1 and by neglecting all terms of higher than zeroth order in kR.
In the retarded limit R is large and only small £ = % significantly contribute to
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the integral. Therefore approximating a(iw) ~ «(0) and substituting £ := Rk it
follows for large R

AE(R) = _hea®(0) aB(0) /dﬁe—f (6+6§+ 5 + = & S+ 8¢ )

AT R7

0
~ 23hca™(0) a®(0)
47 R7 ’

which is Casimir and Polder’s result Eq. (B.I0).

The essence of the last few pages is thus Eq. (B.21]) which is the ”general
formula” spoken of earlier from which both the non-retarded and the retarded
limit of the dispersion interaction between two atoms can be derived.

(3.22)

3.2 Atom-Solid Interaction

In view of the experiments to be described later in this work, where atoms interact
with the dielectric material of a transmission grating it is important for the
study of retardation effects to obtain a formula similar to Eq. (B.21)) for atoms
interacting with a dielectric solid.

Speaking in terms of the concept explained in the previous section, the rel-
evant finite part of the electric field susceptibility around the atom arises from
charge fluctuations within the solid that are induced by the charge fluctuations
within the atom. There is also another contribution that takes account of the
fact that excitations of the electromagnetic field are reflected at the interface
vacuum-dielectric. The reflection behaviour is usually described in terms of Fres-
nel coefficients which depend on the dielectric properties of the media involved
and on the polarization of the field quanta [[71]. In reality, the (heterogeneous)
composition and (corrugated) structure of the surface will also influence the re-
flectivity.

For a perfect surface and reflection included Lifshitz has shown in 1956 how a
formula for the interaction energy between single atoms and a dielectric surface
at all distances can be derived from a general theory [41]. It turns out that the
radiation scattered at the interface is most relevant for large distances, in the
retarded regime. For closer distances an atom A represented by an oscillating
dipole of spectral density P*(w) and located at ry = 7&, opposite a dielectric half-
space defined by z < 0 can be described in terms of an image dipole ZEZ;J: PB(w)

at —rp within the solid whose dielectric function is e(w). This approximation
assumes that the dielectric response of the solid is isotropic, and it neglects the
effects associated with the reflected radiation but includes retardation. It is
expected to be correct for distances of the order of, or slightly larger than the
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"retardation limit” \g. Within this approximation the interaction energy can be
written in a form similar to Eq. (B.20) as

hoT |
AE(R) = —5 [ dw o (iw) B ey, ra,iw), (3.23)
0

with the atom-dielectric field susceptibility tensor

i i€ —(i§-1+¢?) 0 0
E 1e (I'A,I'A,U)) = Areqn R3 0 _(lé -1+ 52) 0 )
0 0 0 2(1 — i€)

(3.24)
with § = Rk and k = %. Note that the minus sign of the rz and yy components
accounts for the inverted orientation of the mirror dipole. Expressed in terms

of the atom-surface distance [ = g and for a scalar atomic polarizability the
interaction energy becomes
h Ay . —2kl 272
AE(l) = B dw o™ (iw) g(iw) e ™™ (1 + kI + k°17) (3.25)
™

0

where the electronic response g(iw) of the solid is defined by

o f(iw) —1
g(iw) := W) 1 (3.26)

The non-retarded limit of Eq. (B.2]) for the dispersion potential between an
atom and a dielectric surface is widely used, especially for adsorption problems.
It is obtained by taking [ small enough to replace the exponential by unity and
neglect all terms higher than zeroth order in kl. This yields

N —— (3.27)

37

with the interaction strength C5 given by the so-called Lifshitz formula
Wl e
C3 = yp dw o (iw) g(iw) . (3.28)
s
0

It is clear from Eq.(B:25) that in the general case the dispersion interaction
strength C3 depends on the atom-surface distance [, in particular, it is reduced
due to retardation for increasing [. A quantitative discussion of this point is
deferred until section 4.4 of this text.
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For the non-retarded limit the formulae Eq. (B.27) and Eq. (B.2§) show that
in order to calculate AE(I) at any distance [ a complete knowledge of the atomic
polarizability «(iw) and the electronic response g(iw) of the solid is required. The
corresponding complex frequency-dependent susceptibilities, respectively, a(w) =
o (w) + i’ (w) and g(w) = ¢'(w) + ig"(w) are known from general considerations
of their analytic properties [67] to be real, continuous, monotonically decreasing
functions on the positive imaginary axis. Their values on the positive imaginary
axis are connected with those of their imaginary parts at real frequencies through
Kramers-Kronig relations of the form

2 [ a(6)¢
==14d 2
© a5 (3.20)
0
for the atom and .
2
) =1+ ;/ w2+€2, (3.30)
0

through the definition Eq. (B.2G) of g(iw) for the solid. The following two sections
present a semi-empirical way to find the dynamic atomic polarizability a(iw)
at imaginary frequencies, and the response g(iw) of the solid. The result will
in principal allow, for an arbitrary choice of atoms and dielectrics, to evaluate
Eq. (B:25) and especially the Lifshitz formula Eq. (B.28) and so obtain theoretical
values of the dispersion interaction strength C5. In view of later applications
in this work a focus is put on rare-gas atoms and the amorphous silicon nitride
material of the transmission gratings.

3.3 Atomic Polarizability

For the atom, the easiest approach to the polarizability is via Eq. (B.§). It is today
a common procedure [7Z] to construct the eigenstates of light atomic species and
evaluate the matrix elements in Eq. (@) to directly obtain a(iw) by

(0] X |n)|?wp,
= g 3.31
a(iw) 47reo h w2 + w? (3:81)

The empirical way of dealing with the last equation is to write

a(iw) 3.32
( 47T€0 )2m Z w? —i— w? ( )
and fit the oscillator strengths f,, and the transition frequencies w, to values
obtained from gas spectroscopy. Today, experimental and theoretical data for
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the frequency-dependent polarizability of ground-state rare-gas and other atoms
are in very good agreement [73, (74, [/5, [76]. Since lately accurate theoretical
calculations of the frequency-dependent polarizability have also been performed
for the lowest-lying metastable states of rare-gas atoms [[(7, (R, 79, 80, 81, K2,
R3]. Although the dispersion interaction of these excited atoms requires a special
treatment, as from fundamental considerations of the van der Waals interaction,
the lifetimes involved are all long enough to treat the metastable states like
"ground-states” from which no downward transitions are likely to occur.

With a(iw) given theoretically or semi-empirically it is by Eq. (B.7) straight-
forward to determine the mutual dispersion interaction strength Cg of two iden-
tical rare-gas atoms. Table B.1] displays accurately calculated values of Cg for
ground-state and metastable rare-gas atoms as taken from the literature.

It has been noted by several authors that in order to determine the mutual
interaction coefficients Cy for different atomic species it is correct within a few
percent to represent the dynamic atomic polarizabilities as due to single oscilla-
tors at characteristic electronic transition frequencies w, for each atom by

. Qg
o(iw) = . 3.33
)= 1% (333)
Note hereby that through the Kramers-Kronig relations
. 2 a9E 2 [ a"(6) Bapay .
/ —_= — = — —_= =
lelir(l)a (w) = ili% - /df - /d£ ¢ }E.% aliw) = ap (3.34)
0 0

Eq. (B:33) is correct in the static limit by definition. For both ground-state
and metastable rare-gas atoms the respective values of the static polarizabilities
a(0) = ag are well established and can be found in standard literature. Relevant
values are on display in Table B

For reasons of consistency the characteristic atomic excitation frequency w,
of each species is taken such as to reproduce the interaction constant Cy that
appears on the left-hand-side of Eq. (B.7). Inserting the one-oscillator approxi-
mation Eq. (B.33) into Eq. (B.1) for two like atoms yields

3 [ 2 3 02 huw,
Co=2 [ dow—20__ _ 2% (3.35)
T J (1 + i—%)? 4
from which follows iC
E, = hw, = — . 3.36

The resulting characteristic energies F, for atoms dealt with in this work are also
listed in Table B.J. In some cases (e.g. He, Ne; cf. Table B.J]) the characteris-
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Figure 3.1: Precisely calculated values [[/6] of the dynamic polarizability «(iE) of
ground-state He atoms at imaginary energies iE (circles) are well fitted by the one-
oscillator approximation Eq. (B.32) (solid line). «g is taken as the static limit of the
calculated data (see Eq. (B:33)) while the best-fitted characteristic excitation energy E,
of helium is (27.240.7) eV, in agreement with the tabulated value (TableB.]]) 27.67 V.
The fitted curve displays systematic deviations at intermediate energies where it is too
large and at large energies where it is too small (see text).

atomH He’Ne’DQ‘Ar‘Kr‘Ne*‘He*‘Ar*‘Kr*

dmegap || 0.205 | 0.397 | 0.806 | 1.64 | 2.48 27.6 46.8 47.9 20.6
Cs 0.8724 | 3.764 | 7.23* | 38.83 | 77.67 | 1156.9" | 1957.6° | 2770.1 | 3165.6"
b, 27.67 | 31.84 | 14.84 | 19.25 | 16.84 | 2.025 1.192 1.610 1.649

Table 3.1: Atomic data for ground-state and metastable species. First row: Static
polarizability (A%) from Ref. [92]. Second row: Dispersion interaction strength of two
like particles (eVAS) from Ref. [66]. Third row: Characteristic atomic excitation energy
(eV) as calculated with Eq. (B.36). The metastable states are 3Py except for He* that
is 3S1. Special references: ® : Value for Hy adopted from [95]; P : Ref. [83]; © : Ref. [82];
d': Ref. [98]

tic atomic excitation energy F, comes out higher than the respective ionization
potential, which is ascribed to a finite electronic transition probability into con-
tinuum states [66].

A direct fit of the one-oscillator approximation Eq. (B.32) to diligently calcu-
lated values for the dynamic polarizability at imaginary energies of ground-state
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helium atoms [76] is shown in Fig.B.1. The fitted E, = 27.2251 eV reproduces
the tabulated value (Table B.1)) 27.67¢eV within 2%. K. T. Tang has pointed
out that the systematic deviations of this approximation tend to cancel when
two functions of the approximated type are multiplied and integrated over [R4].
Therefore the one-oscillator approximation is especially suited for the purpose of
calculating dispersion coefficients Cg of two atoms or C5 of an atom and a surface,
the latter of which is important for this work and which is shown in the following
sections to arise from integrals closely analogous to those just discussed.

3.4 Response of the Solid

The second step towards calculating the atom-solid dispersion coefficient Cj is
to determine the response g(iw) of the solid. Using the Kramers-Kronig relation

Eq. (B-29) one has

-1

2 s 1! 2 s "
gliw) = = / dé ;2 (f_); 2+~ / e ;2 (?5’52 . (3.37)
0 0

The material of interest in this work is amorphous silicon nitride (SiN,) because
the transmission gratings used in the new atom diffraction experiments are etched
out of an approximately 100 nm thick layer of SiN,. Amorphous silicon nitride
is an important compound in the field of microelectronics where it is used as an
anti-reflection coating in lithographic processes. By varying the manufacturing
method and the parameters involved it is possible to make SiN, films of well-
defined properties. In particular, the the optical band gap width is a function of
the stoichiometric coefficient x, which is controlled by the relative amount of gases
from which the films are deposited [86]. An important step in the manufacturing
process is to check the band gap by measuring the frequency-dependent index of
refraction n(w) and the absorption coefficient x(w). These are connected with
the complex dielectric function €(w) by the well-known formulae

€ (w) = n*(w) — k*(w) (3.38)

and
' (w) =2n(w) k(w) . (3.39)

The transmission gratings for the atom diffraction experiments to be discussed in
this work have been made by Savas and co-workers [2] at the MIT using a process
called low pressure chemical vapour deposition (LPCVD). The authors have pro-
vided a measurement [85] of the optical data n(w) and k(w) in the range between
1eV and 6€V for silicon nitride films from which the transmission gratings are
made. A plot of the data is shown in Fig.B.24. With Eq. (B-3§) it is possible to
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Figure 3.2: Energy-dependent refractive index n(E) and absorption coefficient x(E)
for two silicon nitride samples as communicated by Savas [85]. The onset of k(E)
at about 2.2eV marks the width of the optical band gap A inside the amorphous
material. The static value of n(E) as arising from electronic excitations in the solid
can be extrapolated as n(0) ~ 2.1. The plot of k(F) is cut off on the right as on the
original communication.

extract the imaginary part of the dielectric function €’(w) in the given frequency
range. However, in order to determine the dispersion coefficient Cs via Eq. (B.2§)
one needs €(iw) at imaginary frequencies and this requires by the Kramers-Kronig

relation Eq. (B.30) the knowledge of €”(w) over the entire frequency range from
zero to infinity.

In the past, people proceeded by fitting €’(w) in the limited range with an
ansatz that included one or more electronic oscillators representing the solid and
so were able to extrapolate €¢’(w) to high frequencies. While more-oscillator
solutions proved difficult to handle because of the large number of parameters,
the one-oscillator approach, similar to that described above for atoms, lacks some
accuracy. The crucial point is that a simple oscillator model does not account
for the optical band gap A, i.e. a range of frequencies 0 < w < A where no
electronic transitions are likely to occur within the solid. This leads to errors in
the calculation of C5 Eq. (B.29) if the characteristic atomic transition frequency
falls in the range of the optical band gap of the solid as is the case for metastable
rare-gas atoms and silicon nitride (cf. Table B.1)).

In a recent publication Zollner and Apen of the Motorola company have stud-
ied the optical properties of LPCVD-made amorphous silicon nitride layers in
detail. They point out that the imaginary part €¢’(w) of the dielectric function is

well parameterized by the Tauc-Lorentz formula [97]

AQD (w — Qp)?
[(wZ _ QQ)Q + FQWQ] w ’

where the optical band gap appears explicitly as A = h{2p. O is the step func-

€' (w) = O(w — Qr)

(3.40)
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tion and A,Q,I' are the strength, frequency, and spectral width, respectively,
of one characteristic electronic transition within the solid. The measurement of
refractive index n(w) and the absorption coefficient x(w) communicated by Savas
[85] bears a convincing resemblance to that published by Zollner and Apen for
LPCVD anti-reflection coatings, while it differs from those for silicon nitride made
by another technique in terms of the magnitude of n and the onset of x which
marks the width of the optical band gap. By comparison with other sources in
the literature [87, 88, B9, 90, U] it turns out that the latter two features can in
fact be used to identify the manufacturing process by looking at the optical data
in the given range. As a result, it is plausible that the measurement of Savas has
been performed on a LPCVD silicon nitride sample similar to the anti-reflection
coatings tested by Zollner and Apen. Savas asserts that the measured material
is identical with that of the transmission gratings that have been used in the
diffraction experiments to be discussed.

From the foregoing observations it is concluded that the best way to ex-
trapolate €’(w) for the transmission gratings is to use the Tauc-Lorentz formula
Eq. (B:40). Tt is expected to be more correct for low frequencies in the range of
the optical band gap, while in the limit of large frequencies it is comparable to
usual extrapolation methods. On extracting €’ (w) via Eq. (B.3§) from Savas’ data
and fitting to it the Tauc-Lorentz formula Eq. (B.40) one obtains good agreement
as is illustrated in FigB.3.

By inserting the fitted ¢’ (w) into Eq. (B.37) and subsequent numerical integra-
tion the electronic response g(iw) of silicon nitride is obtained. Combining this
result with the atomic polarizability as in Eq. (B-33), finally, the atom-SiN,, dis-
persion coefficient C3 is determined by numerical integration of Eq. (B.2§). Table
B.2 shows the appropriate values for ground-state and metastable rare-gas atoms.
The deuterium molecule Dy that also appears in the table is hereby and in the
following counted among the ground-state atoms because due to its small size it
can be treated like an atom in the present diffraction experiments.

atomH He ‘ Ne ‘ D, ‘ Ar ‘ Kr ‘ Ne* ‘ He* ‘ Ar* ‘ Kr*
Cs || 0.136 | 0.274 | 0.412 | 0.936 | 1.346 | 3.624 | 3.841 | 5.146 | 5.551

Table 3.2: Dispersion interaction strength C3 in units of meV nm? for ground-state
and metastable rare-gas atoms with silicon nitride. The calculations are based on the
non-retarded Lifshitz formula Eq. (B.2§), into which the one-oscillator approximation
of the atomic polarizability Eq. (B:33), and the response of the solid, as found with the
help of the Tauc-Lorentz parameterization Eq. (B:4(), have been inserted.
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Figure 3.3: Imaginary part of the energy-dependent dielectric function of the silicon
nitride grating material. The Tauc-Lorentz parameterization [97] Eq. (B-40) (solid line)
with Q1 = 2.29eV, hA = 74.5eV, h) = 7.17eV, and hI' = 7.62eV reproduces well
the data extracted from a measurement by Savas [8H].

3.5 Discussion

In Fig.B-4 the values of C5 for the atoms listed in Table B.Z are plotted versus
their static polarizability. One notes that for the ground-state particles the data
points nearly fall on a straight line while those for metastable atoms do not. The
reason for this is illustrated in Fig. B.§ where the reduced dynamic polarizability

a(iw) = %;") for ground-state helium, krypton and metastable helium atoms,
and the reduced response §(iw) := % of silicon nitride are plotted versus the

energy F/ = hw. In terms of these normalized quantities the dispersion interaction
strength C5 becomes

Cs = ap g(0) % / dEG(iE) §(iE). (3.41)

This formula shows that the dispersion interaction strength C3 of various atoms
with silicon nitride depends linearly on the static atomic polarizability «y if

/ dE G(iE) §GE) = g(0) K (3.42)
0

9(0) i
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Figure 3.4: Calculated dispersion interaction strength Cs for the atoms of Table B.2
versus their static polarizability from Table B.1. The data points from left to right
correspond to He, Ne, Do, Ar, Kr, Ne*, He* Ar* Kr*. The ground-state atoms
exhibit a nearly linear behaviour (solid line). A vague trend towards linearity (dashed
line) can be inferred for the metastable atoms which is clearly broken by He* (see text).

is a constant. As the solid does not change it is clear that the response g(0) and
g(iE) of the solid in Eq. (B.47) is the same for all atoms. The crucial point is
thus if the value of the integral in Eq. (B.49) depends on the atomic species that is
represented by its reduced polarizability &(iF) in the integrand. It can be seen in
Fig.B-3 that for ground-state atoms that possess a high characteristic excitation
energy F, (cf. Eq. (B:33)) the graphs of &(iF) are wider than that of g(iF) whose
width can also be interpreted in terms of a characteristic excitation energy within
the solid. If the polarizabilities a(iE) are each multiplied with the response of the
solid g(iF) and integrated over all energies the value of the integral K depends
only weakly on the width of & so that for ground-state atoms the dependence
of the dispersion interaction strength C3 on the static atomic polarizability aq
becomes roughly linear.

If the characteristic atomic excitation energy F, is much smaller than the
width of g(iw) as is the case for metastable atoms the integral K will crucially
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Figure 3.5: Left panel (a): Normalized atomic polarizabilities &(iF) for He (dotted
line), Kr (dashed line), He* (long dashed), and normalized response g(iF) of the solid
(solid line). If the atomic curves are each multiplied by the solid’s the results, which
are displayed on the right panel (b), are similar for the ground-state atoms, but quite
different for the metastable atom. Upon integration over all energies, the curves on
the right panel for He and Kr yield approximately the same value whereas that of He*
differs considerably.

depend on FE, and the shape of g(iF) at low energies. The obvious deviation
from the straight line of the data points associated with the metastable atoms
in Fig. B4 illustrates for metastable atoms the breakdown of the previous linear
approximation .

However, as Fig.B.4 shows, the data points for the metastable species Ne*,
Ar*, and Kr* also exhibit a roughly linear behaviour whereas that of He* breaks
the trend. The reason for this becomes clear after comparing the characteristic
atomic excitation energies F, of the metastable atoms in Table B1. The former
three metastable species are each in a 3P, state which brings about similar char-
acteristic excitation energies of F, ~ 2eV. On the other hand, the metastable
3S, state of He* has a smaller characteristic energy of E, ~ 1eV. The integral
K is very sensitive to this difference which is why He* deviates from the roughly
linear behaviour of the other metastable atoms.

In his 1980 paper Hoinkes [37] has investigated the dispersion interaction of
various species of ground-state atoms with several dielectric surfaces. Empirically,
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he finds that for ground-state atoms one may approximate
03 ~ KO&O g(O) s (343)

where he takes K (cf. Eq.(B.42)) as a constant somewhere in between 1.08 eV
and 1.41eV. The two values are based on theoretical and experimental data,
respectively. The discrepancy generally reflects the difficulties in measuring Cj
and maybe those in obtaining and extrapolating optical data for the solids. The
calculations of this chapter for ground-state atoms as presented in Table B.2 are
fitted in Fig.B.4 according to Hoinkes approximation Eq. (B.43) by a straight line
of slope K¢g(0) = 0.554¢eV. From Savas’ measurement of n it can be extrapolated
that

Eq.3.47

BRI 1) g BT ()~ 0.6, (344)

n(0) ~ 2
from which follows K ~ 0.92¢eV. This is in reasonable agreement with Hoinkes’
result based on theoretical data K = 1.08¢eV.

A systematically better approximation has been studied by Cole and Vidali.
It consists in using a one-oscillator description for the response g(iF) of the solid,
similar to that Eq. (B.33) for the atomic polarizability which the authors also
employ [92]. They set
g(iE) = (3.45)
14 E2
where Eg is a fit parameter that represents a characteristic transition energy
within the solid, and gy is another parameter that can be set equal to the static
limit of g(iE) but is used by the authors as a free parameter which in practice

helps to compensate for the missing account of the optical band gaps of the solids.

Fig.B.g compares g(iF) as obtained from the Tauc-Lorentz formula for silicon
nitride with the one-oscillator approximation Eq. (B.45) while gq is identified with
the static limit g(0) = 0.588 of the result of the Tauc-Lorentz parameterization.
The one-oscillator approximation is best fitted to the more exact curve with a
characteristic excitation energy Fg = 13.47 eV for the solid.

On using one-oscillator approximations for both the atomic polarizability
a(iF) Eq. (B.:33) and the response g(iE) of the solid Eq. (B.45) the integral
Eq. (B:41)) that represents the dispersion coefficient C3 becomes analytically ac-
cessible. One has

| I 1 1 ayg(0)E Eg
Cy¢ = —ag g(0) /dE— =2 : (3.46)
3 At ) g_g 1 —+ g_; S(Ea + Es)

In view of the failure of the linear approximation for metastable atoms as
described above it is interesting to see if Eq. (B.46) can be applied to both ground-
state and metastable atoms. If go is kept fixed to the static limit g(0) = 0.588
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Figure 3.6: The response g(iF) of the solid as extrapolated from optical data (solid
line) is well fitted by the one-oscillator approximation Eq. (B.45) with gy = ¢(0) = 0.588
fixed and Eg = 13.43eV (dashed line). From experimental values of C3 [I7] the dotted
curve has been derived, which clearly underestimates the response as given by the other
curves.

of the result of the Tauc-Lorentz parameterization, and FEg is determined by
a least-square fit of Eq. (B.46) to the values of C3 from Table B.3 one obtains
Es = 14.31eV, which is in reasonable agreement with the value Fg = 13.47eV
that has been extracted from a direct fit of the one-oscillator approximation
Eq. (B:4H) of g(iF) to the Tauc-Lorentz result (cf. Fig.B.f). The absolute value

of the relative error v := %3_03 is less than 7% throughout (see Table @), S0
it turns out that Vidali and Cole’s formula Eq. (B.4€) is suitable to describe both

ground-state and metastable atoms.

It is remarkable that the C3'© values for the metastable atoms are smaller than
those obtained with the Tauc-Lorentz parameterization. From Fig. one could
expect that for metastable atoms whose polarizability at imaginary energies has
a narrow peak at low energies, C3 according to Eq. (B.41]) would be comparatively
larger as the one-oscillator approximation of g(iF) is larger than the exact curve
for low energies. However, the high energy contributions where the approximation
runs below the exact curve more than compensate for that.

For the sake of completeness it shall be mentioned that it is possible to keep
go fixed as before, but extract Fs from a fit to the ground-state atoms only.
Another method is to directly follow Cole and Vidali’s example and apply a fit
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atom H He ‘ Ne ‘ D, ‘ Ar ‘ Kr ‘ Ne* ‘ He* ‘ Ar* ‘ Kr*

Cs 0.136 | 0.274 | 0.412 | 0.936 | 1.346 | 3.624 | 3.841 | 5.146 | 5.551
Ciyc 0.143 | 0.283 | 0.432 | 0.942 | 1.429 | 3.603 | 3.789 | 5.101 | 5.505
v (%) | 51 | 33 | 49 | 06 | 62 | 06 | -1.4 | 0.9 | -0.8
C’;’C 0.136 | 0.269 | 0.415 | 0.901 | 1.370 | 3.568 | 3.767 | 5.061 | 5.546
v (%) 0 1.8 07 | 37| -18 | -1.5 | -1.9 | -1.6 | -0.1
CQ/C 0.135 | 0.267 | 0.416 | 0.901 | 1.371 | 3.625 | 3.834 | 5.147 | 5.553
v (%) | -07 | 26 | 1.0 | 37| 19 | <0.1] -02 | <0.1 | <0.1

Table 3.3: Dispersion interaction strength Cs in units of meV nm3. Top row: Theoret-
ical values based on the Tauc-Lorentz parameterization. First double row: Eq. (B:40)
fitted to the theoretical values with gy = 0.588 fixed, Fs = 14.31eV, and relative er-
ror. Second double row: Analogous. Fit to ground-state atoms only; gog = 0.588 fixed,
Eg =13.26eV. Third double row: Analogous. Fit to all atoms with two fit parameters
go = 0.601 and Fg = 12.78 eV

to all atoms with both gy and Eg as fit parameters. Both methods yield results
of a similarly good quality to the method first discussed. It is worth noting that
the best fit is obtained with two parameters where gy comes out as 0.601, which
could have been estimated directly from Savas’ optical data, as shown in Fig. B2
and demonstrated in Eq. (B.44). The details of both alternative fitting procedures
can be also be read from Table B33.

In sum, if both Hoinkes” and Vidali and Cole’s approximations are evaluated in
terms of the optical data as provided by Savas they lead to values of the dispersion
interaction strength C5 that are in good agreement with those calculated with
the help of the Tauc-Lorentz parameterization.

The values of the dispersion interaction strength C3 for the ground-state par-
ticles He, Ne, Dg, Ar, and Kr that have been measured by Grisenti et al. [I2] have
not yet been compared to theoretical values in quantitative terms. With the help
of the theoretical values as in Table B.Z such a comparison is now possible and
is displayed in Table B-4. It turns out that the experimental values are all about
20 % smaller than the theoretical ones. In the following the experimental results
are analyzed in terms of Hoinkes’ and Vidali and Cole’s approximations. The
parameters that fit the approximations to the experiment are then interpreted
in terms of the optical properties of the solid and compared to the optical data
that have been provided by the manufacturers of the transmission grating. It will
then be possible to draw a conclusion as to whether the experimental values are
systematically too small or the theoretical ones are too large.

In their paper [[7] the authors have demonstrated that the measured values of
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atom H He Ne Ds Ar Kr
C5 theo. 0.136 0.274 0.412 0.936 1.346
Cs exp. || 0.10 £ 0.02 | 0.21 4+ 0.04 | 0.34 £ 0.09 | 0.71 £ 0.12 | 1.09 + 0.17
v (%) -26.5 -23.4 -17.5 -24.1 -19.0

Table 3.4: Dispersion interaction strength Cs in units of meV nm?. First row: Theoret-
ical value based on the Tauc-Lorentz parameterization. Second row: Measured values
[T2]. The third row shows that the experimental values are all about 20 % smaller than
predicted by theory.

the dispersion interaction strength C3 of He, Ne, D5, Ar, and Kr with amorphous
silicon nitride exhibit a linear behaviour when plotted versus the static atomic po-
larizability ag, which is in agreement with Hoinkes’ rule Eq. (B.43). The straight
line through the origin that has been fitted to the data by the authors has a slope
g(0) K = 0.440eV. Adopting Hoinkes’ lower limit for K = 1.08eV one obtains
a maximal g(0) = 0.407. The static limit of the index of refraction n(F) can be
derived from this result by re-arranging Eq. (B.26) which yields

1+ ¢(0)

}Jiino e(iF) = T=40)° (3.47)

From the Kramers-Kronig relation Eq. (B.30) it is evident that

lim €(iE) = lim €'(F) . (3.48)

E—0 E—0

According to Eq. (B-38) the static index of refraction n(0) is given by
n(0) = 1/€(0), (3.49)

where the contribution from the static limit of the absorption coefficient x(0) has
been ignored because due to the optical band gap its value is zero. This leads to
n(0) = 1.58 which is clearly below the static limit of n(0) ~ 2 that the optical
measurement Fig.B.2 suggests.

Alternatively, one might interpret the slope of the experimental curve with
the help of the optical data which yields g(0) ~ 0.6. Then one obtains as a
result K = 0.73 which is about 25 % below the lowest of Hoinkes’” values, namely
K =1.08.

The second approximate method to interpret the measured values of Cj is
Vidali and Cole’s who use the formula Eq. (B.46). If this equation is fitted to
the experimental data one obtains for the two fit parameters gy = 0.558 and
Es = 9.9eV. The one-oscillator approximation Eq. (B.43) for the response g(iF)
of the solid is plotted for these two values in Fig.B.6. It is evident that the
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response curve derived from the experimental values of ('3 underestimates the
response that follows from the extrapolation of the optical data.

It is concluded that the measured values of C'5 are lower than can be expected
from the optical data of the amorphous silicon nitride material. In section 5.1.3
the process that determines Cj in Ref. [12] is briefly reviewed. Thereby a plausible
explanation of the deviations becomes apparent and is presented to the reader.

3.6 Summary

In order to provide for the first time accurate theoretical values of the dispersion
interaction strength Cj of atoms with the transmission gratings’ silicon nitride
material the following issues have been clarified in the course of this chapter.

e The dispersion interaction in the retarded and in the non-retarded regime
between atoms can be derived from a general formula that is rooted in
quantum electrodynamics.

e On treating the dielectric grating material as a continuum and neglect-
ing the scattering of virtual photons at the interface vacuum-dielectric the
quantum electrodynamical formalism can be be applied to atoms inter-
acting with an idealized dielectric surface, for both the retarded and the
non-retarded regime.

e The interaction constant Cj is calculated in the dipole approximation as a
function of the frequency-dependent atomic polarizability and the electronic
response of the solid. In the retarded case, C3 depends on the distance
between the atom and the surface, whereas in the non-retarded case the
potential follows a power law with the inverse cube of the atom-surface
distance.

e The frequency-dependent atomic polarizability is determined semi-empiri-
cally within a suitable one-oscillator model.

e The response of the dielectric solid is determined semi-empirically with
the Tauc-Lorentz parameterization which is a one-ocillator model that also
takes explicit account of the optical band gap. As experimental input the
energy-dependent index of refraction n(E) and extinction coefficient k(F)
in the region between 1eV and 6eV are sufficient.

e Within certain limits the accurate calculation of the dispersion interaction
strength C'3 of atoms with silicon nitride, as a function of the static atomic
polarizability, is in good agreement with a simple linear approximation and
with an approximation that ignores the band gap of the solid.
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e The calculated results, together with available optical data on the grating
material suggest that previously published measured values of C3 are sub-
ject to a systematical error of 30 %. The origin of the error is in chapter
5 traced back to a misinterpretation of data concerning the grating bar
geometry.



Chapter 4

Inclusion of Atom-Surface
Potentials

After the origin of the attractive dispersion interaction has been clarified in the
last chapter, the following sections demonstrate how to implement the dispersion
interaction for a particular transmission grating in order to evaluate the scattering
theoretical result Eq. (2.59) for the detection probability. The shape of the grating
bars is taken account of by a new integration method which can be generalized
easily to describe diffraction with inclined incidence, adsorbate layers on the
bar surface, or interaction potentials with different power laws as regards the
atom-surface distance. Furthermore, it is investigated for the first time how the
retarded atom-surface potential Eq. (B.25) can be specified for the grating bar
geometry and if the retarded potential can be inferred from measured diffraction
intensities.

4.1 Phase Shift

The scattering theoretical result Eq. (B.23) for the detection probability Ig(r)
requires the knowledge of the quantum mechanical amplitude v(z,0) at the rear
side of the transmission grating inside a slit of width s which is centred around
the origin of the chosen coordinate frame (cf. Fig.[L.1). According to its definition
Eq. (.6]) the wavefunction v (z,0) is a complex exponential whose phase reads

+0o0
o(x) == _h_lv dz V¥ (z, 2). (4.1)

—00

The potential V**(x, z) between an atom and the two bars on each side of the slit
is evaluated in Eq. (1)) along a straight trajectory parallel to the z axis, which

48
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/2 s/2+b

beam trajectory

Figure 4.1: Theoretical sketch of an atomic beam scattered off a single trapezoid-
shaped grating bar. The straight line labeled "beam trajectory” supports the visual-
ization of the newly defined impact parameter (. It represents one of the possible paths
an atom can follow on its way through the grating. In reality, b ~ 30 nm while the de
Broglie wavelength A of the incident particles is about 300 times smaller.

also marks the direction of the incident beam. When regarding this situation
illustrated in Fig. .1 it should be borne in mind that the mentioned trajectory is
just one out of many possible paths the atom could go through the grating. The
interaction of the atom with the grating bars is evaluated quantum mechanically
in terms of all possible paths. The only physical reality about the trajectories
is their all being possible in the present experiments. The trapezoid-shaped
idealization of the bar cross-section as shown in Fig. 1] is chosen according to a
scanning electron micrograph Fig. .3 taken by T. Savas of one of his transmission
gratings.

Regarding the atom-surface potential V**(z, 2) that appears in Eq. (1) it
is possible to go beyond the approximate concept introduced in Fig.2.23 for an
atom at a distance [ from a dielectric semi-infinite half-space. There the attractive
part of the potential is taken to arise solely from the non-retarded dispersion
interaction

Vall) = =2, (4.2)

while the repulsion is modelled as a rectangular barrier placed at the distance [
from the surface where the attraction and the repulsion cancel. In view of the
formula Eq. (B:27) it is now possible to also include the repulsive part

(4.3)
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Figure 4.2: Scanning electron micrograph of the grating bars before they are removed
from the substrate during the manufacturing process, taken by Tim Savas, MIT. The
regular structure of a period of 100 nm and the trapezoid-like cross-section of the bars
is clearly visible.

so that the correct shape of the potential well near the surface can be taken
account of by adding to the integrand in Eq. (f.1]) the appropriate potential
V™P(z, z). This may be done because for small | < [y the repulsion increases
very quickly with — which leads to a sharp rise of the phase Eq. (.1). The
wavefunction ¢ (z,0) in the slit is the complex exponential of that sharply rising
phase so it oscillates rapidly for atom-surface distances that fall in the realm
of the repulsion. Upon integration over the slit as in Eq. (B.2) the regions of
rapid oscillations contribute zero to the detection probability hence the situation
is nearly equivalent to the slit being narrowed by twice l. What makes a dif-
ference, though, is that the dispersion interaction is calculated with respect to
[ and not [ — [y which would be the case if the slit was really narrowed by 2[,.
This qualitative argument remains valid if the semi-infinite half-space is replaced
by the finite grating bar cross-section as is shown in the following. The funda-
mental advantage of the inclusion of the repulsive potential is that for the first
time the atom-bar potential can be modelled realistically which opens the way
to measuring the real atom-surface potential by means of atom diffraction.

The V3 potential given in Eq. (.9) refers to the standard situation of an
infinite half-space {r’ € R|2’ < 0} each volume element of which interacts with
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an atom outside at r via an attractive potential of the form

e
v — /|6’

We(r) = (4.4)

with Kg > 0. Without restricting generality the atom can be placed at r =
(1,0,0)T. Then one finds by standard integration methods

+o00 +o00 0
_KG —K67T —03
= dy/ dz da’ = = . (4.5
[ [+ [ e - e o 09

The repulsive Vg potential in Eq. (£.3) can similarly be expressed as arising from
an interaction between the atom and the volume elements of the solid, which has
the form

Ko
WlZ(I') = m . (46)
One obtains as an analogon to Eq. (f.5)
. K127T . Cg

as is demonstrated in the appendix for both the attractive and the repulsive case.

In order to incorporate the geometry of one bar within the concept just set out
the limits of the integrals involved in Eq. (£.5) and Eq. (£.7) are modified such as
to enclose the volume of the trapezoidal prism that forms a grating bar. Hereby
the the boundaries in y-direction are known to be far away from the scattering
plane and can be conveniently set to +oo, respectively. The other boundaries
can be deduced elementarily from Fig.[l.1. It turns out that the phase shift ¢(x)
defined in Eq. (1) is the sum

p(x) = o(x) +pi(2) (4.8)
_ hlv dz [V (2, 2) + V(2 2) + Vi (2, 2) + VP, 2)]

—00

(4.9)

of the the respective contributions from the bars on the right and on the left
side of the slit, each of which consists of an attractive and a repulsive part. The
potentials are given by the equations

5 S 1b+2' tan B

Vas(e,2) = -0 / az / A B R R CEEl

—fz ’tan B
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5+b+2" tan 8
4 _
VP (2 5Co / / dy/ / da’ [(x— a2+ () + (= = )7 ",
5—2'tan 3
(4.11)
5+b+2"tan g
Vit (z, 2) _6Gs / / dy/ / da’ [(z — 2" + (y)* + (z — &)?] -
Efz’ tan 3
(4.12)

and

5+b+2" tan 8

0 400
ViP(x, z) = 457r09 /dz' / dy/ / da’ [(z — 2/ 4+ (¥)* + (z — &)?] -
—t —0o0

5—=2'tan 3

(4.13)
On inserting these four expressions into Eq. (£.§) and subsequent evaluation of
the integrals as demonstrated in the appendix one obtains for the phase ¢, (x)
arising from the potential of the right bar

o (1 1 L L
#rle) = m{?‘<<+ttanﬁ>2+<g+b>2‘<<+b—ttanﬁ>2}_

Co 1 1 1 1
~ 8hwtanf {F Tt tanp® | CxbF ((+b—ttanﬁ)8} ’
(4.14)

where the impact parameter ¢ := 2 —x with respect to the right slit boundary has
been introduced (cf. Fig.[f.1]). One obtains the contribution ¢, from the left bar
by simply replacing ¢ with s — (. The interested reader may check the progress
of the calculation summarized by Eq. (f.14) in the appendix where it is shown
that similar formulae can be easily derived for all potentials of the form

+C)

[ ’

V(1) = ne{234,..}, (4.15)

or a sum of these potentials. Fig.l.3 shows a typical example of the result
Eq. (BI4) for helium atoms and a silicon nitride grating like those used in the
experiment.

The first term of the sum in Eq. (£.14) can be rewritten as

2¢(1+2)

3 ttan By b ttan 8
hv( (1+"‘T)2 (1+<)(1+<(11 ))

ttan 3
1y [ 1+ Hms 1 e

(4.16)
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Figure 4.3: The quantum mechanical phase ¢, (x) (solid line) arising from the interac-
tion between the atomic beam and the grating bar on the right of the slit is plotted as
a function of the distance between the beam trajectories (quantum mechanical paths)
and the protruding trailing edge at x = § of the bar (cf. Fig.[E.1]). For large distances
the contribution (dotted line) from the attractive potential dominates. At § —x = (o
(dashed line) the influence of the repulsive potential produces a local maximum of the

phase.

It is possible to ascribe the first term in this result to the side of the bar facing
the slit, while the second term accounts for the far side. It can be seen that
for very wide bars b — oo the latter term vanishes. Within this limit the result
Eq. ((I6) is comparable to that presented in [I2] which contains an additional
factor cos 3. The difference is due to the approximate method of integration
which has been employed in the cited reference and which uses only a part of the
trajectory of length & ¢t whereas in Eq. (f.1) the trajectory correctly extends from
minus to plus infinity. The correction that arises from this is a factor of about
2% to the phase p(z). In anticipation of a later result it may be said that this
leads to an average error of 0.2 % in the diffraction intensities which is negligibly
small. Furthermore, the approximate integration method [I2] proves useful when
it comes to retarded bar potentials (see section 4.4) whose structure is somewhat
more complicated than the potentials’ treated so far.

Varying the wedge angle 3 in Eq. (f.14) it is possible to account for different



o4 CHAPTER 4. INCLUSION OF ATOM-SURFACE POTENTIALS

grating bar cross-section shapes ranging from triangles to rectangles, provided
their base line is perpendicular to the incident beam. A completely arbitrary bar
shape can be evaluated by decomposing the shape into a sum of small triangles
and rectangles whose base lines have the above stated property. If the base line is
no longer perpendicular to the incident beam the integration limits in Eq. (£.14)
assume a complicated intertwined structure that hinders a straightforward ana-
lytical solution. However, it will be shown below that there is a simple way to
modify Eq. (£.14) for the case that the grating is rotated around the vertical axis.

With the above result for the phase ¢(x) that describes the influence of the
atom-surface potentials inside a grating slit the diffraction problem is practically
solved! For a perfect grating whose bars are homogeneous trapezoidal prisms,
and for an incident beam that is an incoherent superposition of plane waves of
various velocities and angles of incidence, each of the plane waves leads to an
intensity Iq(1J,) of the nth diffraction order

Io(Vn) o< | faie(Vn) [, (4.17)

with the slit amplitude

faie(Vn) = [ da’ e el (4.18)

\wm

Njw

and where the phase p(z') is given by Eq. (£.8) and Eq. (£.14).

Besides this phase that arises from the atom-bar interaction, the integrand
in Eq. (L.1I§) displays a geometrical phase shift kz’sind,, = k,2’. The latter
reflects the fact that for an incident plane wave which arrives at all points z’
of the grating’s trailing edge at the same time, the waves going out from ' at
an angle 1, are advanced or retarded by z’sin, with respect to those emitted
in the origin. Looking at typical numbers the geometrical phase shift is equal
to 2m for 2/ &~ s so the first exponential in Eq. (£.1§) only runs through a few
cycles across the slit. By contrast, the second exponential oscillates rapidly if
o(z') changes fast with z’ as is the case for trajectories passing close to the bar
surfaces. Note that the speed of oscillation does not depend on the absolute value
of p(x) but on its derivative with respect to x. As the impact parameter ¢ tends
to zero the phase shift ¢, (x) tends to —oo at increasing speed, and the associated
exponential in this limit oscillates infinitely fast. As any fast oscillations formally
cancel out when integrated over the divergence has no conceptual consequences
for the result Eq. (f.14). This is intuitively understandable recalling that the
atomic trajectories cannot even in theory be taken as infinitely narrow but rather
of a finite width which in atom optics is set equal to the de Broglie wavelength A
of the atom. If the phase ¢(x) given by Eq. (1.§) and Eq. (f.14) changes by more
than a full cycle 27 over a distance Az = \ the trajectory as part of the quantum
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Figure 4.4: The real part of the integrand of Eq. (f.18) is here denoted by Re(¥) and
plotted versus the integration variable x that is a measure for the distance across the
slit. Integrated over z, the function ¥ yields the slit amplitude fg;()1) for the first
principal diffraction order. The slow oscillations arise from the geometrical phase shift
(see text), the fast oscillations near the edges of the 70nm wide slit are due to the
atom-bar interaction.

mechanical ensemble cannot contribute a definite phase to the amplitude at the
detector and, in effect, vanishes. Fig.[.-4 shows the real part of the integrand in
Eq. (E.18).

According to Eq. (.17) the intensity Io(1J,) of the nth principal diffraction
order is equal to the modulus squared of the slit amplitude fg;;(9,,). Fig. .5 shows
a plot of | fai(9)]? versus the continuous diffraction angle 1. The same plot is
in Fig. . compared to an analogous case but without any atom-bar potential
beyond a strongly repulsive core at the very bar surface. It can be interpreted
as if arising from the diffraction of an X-ray beam that has the same wavelength
as the atomic beam. One notes that the atom-bar potential leads to an effective
narrowing of the slit so that the slit function becomes wider. Furthermore the
sharp minima of the optical case are removed because for atoms approaching
the surface the onset of the potential happens slowly as compared to the abrupt
barrier the X-ray photons experience on the bar surface. These observations
noted here for didactic purposes are explained in more detail in [17].

It remains to show how the results given so far for a monochromatic incident
atomic beam apply to the real experimental beam which is an incoherent super-
position of many monochromatic atomic states which possess different angles of
incidence ¥, and different velocities v. In chapter 2 (cf. Eq. (B.66)) it has been
anticipated that the relative intensities, to be derived from Eq. (.17) are equal
to the relative areas under the corresponding peaks in the measured diffraction
pattern. With explicit results now available it is possible to derive a theoreti-
cal expression for the peak areas, from which Eq. (2.66) follows directly. For a
monochromatic incident beam the intensity I (%, ) at the detector, which is fixed
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Figure 4.5: The theoretical detection probability of the nth principal diffraction order
(crosses, joined by dotted lines) are given by the value of the modulus squared of the
slit amplitude fg;t(¢,) (solid line) evaluated at the principal diffraction angles 9, (cf.
Eq. (.63)) of the Fraunhofer theory of diffraction. The slit amplitude contains the
atom-bar interaction and is here plotted for a situation with ground-state He atoms at
a velocity v=1800 % which corresponds to a de Broglie wavelength A = 55pm, and a
typical grating geometry.

at an angle 4,,, has been shown to be
Io(Vy) / A9 §(0" — 9| faie (0)* = | faie (0n) P - (4.19)

The detector aperture €2 is usually smaller than the spacing ¢, = % of the equidis-
tant principal maxima. If the detector scans the angular region a with 2 < a < 1,
there will be a finite signal as long as the § peak is within the detector aperture so
that a rectangle of a height proportional to | fg;(9J,)]? and a width Q will appear
in the diffraction pattern. The area A(n) under this rectangular signal around
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Figure 4.6: The theoretical detection probabilities of the nth principal diffraction or-
ders for the cases with atom-bar interaction (crosses) and with only a strongly repulsive
core at the bar surface (circles; this case applies to the diffraction of X-rays with a de
Broglie wavelength A = 55 pm) are given by the modulus squared of the respective slit
amplitudes fq;t(Uy,) evaluated at the principal diffraction angles 9, in the Fraunhofer
limit of diffraction. Due to the atom-bar interaction the slit is effectively narrowed so
that the solid line describes a wider slit function than that (dashed line) of the case
with only the repulsive core. As the slit functions are evaluated at the same angles the
deviations lead to pronounced differences in the detection probabilities.

1,, can be written as

Ont+2
A(n) = dd In(V)
On—2
Ints  Ontd

- dv A" (9" — )| faie (V) |?

In—5 On—
Intg
- dd X[ﬁn—%,ﬂn+%}(19)|fslit(79n)|2 ) (420)
In—5
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with
1 9, —-2<v<9,+2 |
X[ﬂn_%fﬂn""%](,&) = { O else ? 2 (421)
Hence it follows that
Ag(n) = Q faie (9)[7. (4.22)

Consider now the respective distribution functions ®y(¥i,.) and @, (v) of the
incident angles ¥y, and velocities v. Without restricting generality they can be
assumed to be normalized with

jus

/ At By (Vi) = 1 (4.23)

INE

and
o0

/ dv By (v) = 1. (4.24)
0
Due to the collimation of the beam in the experiment the distribution of the
incident angles @ (%) is taken to be symmetrical about its maximum at J;,. = 0
and narrow as compared to the spacing v, of the principal diffraction orders. For
Uine # 0 the slit amplitude becomes

—1 /(si i . i /
dx’e ikz! (sin 94-sin Yinc) eup(x )

fslit (19) -

dx/e—ikCC, Sin(ﬂ‘f"&inc) eiQO(CC,) . (425)

Q

| |
NI \Mlm [N \M\m

Hereby the angles are defined as indicated in the
figure on the left. As all relevant 1J;,. are small
it is already conceptually included in the eikonal
\ approximation that the atom-bar interaction term
CANNYS (@) in Eq. (4.2) is the same for all incident an-
gles. The grating function Hy (k) = Hy(ksind)

0 from Eq. (B.60) becomes for ¥, # 0
X Hy[k(sin® + sin Ve )] & Hy [k sin(d 4+ Jine)] -
\ (4.26)
ﬂmc\ The principal maxima of the grating function are
= now to be found for arguments of the sine that

fulfil d—Qk sin(d + Yine) ~ nr. In the limit of large
numbers N of illuminated slits this yields
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lim Hylksin(? + Oinc)] Z (Y — Fine — V) (4.27)

N—o0
n=-—00

With the distribution of incident angles included the area Ay(n) under the de-
tected signal of the nth principal maximum becomes

o+

Nl

dﬁ/ / dﬂinc q)ﬂ(ﬁinc) 6<19, - 19inc - 1971) |fslit (79, + 19inc)|2

_T
2

O+ 2 g Iinc+ 3

_ /dﬁ / Abine Bo(Vrme) / A0’ 5(€ — 9,) | fors ()2
Un=5 =3 O+Dine— 5
; ks

= /d‘ﬁmcq)l9 inc) /d7‘9X[ﬁn+19inc_%»19n+191nc+%](/l9>|fSlit</L9n)|2' (4.28)

SIE]
Mlp

As the relevant incident angles are small the rectangular function y which is
shifted by ¥, in this result always falls within the range a over which the nth
maximum is scanned. Therefore the result simplifies to

dﬁine q)ﬂ(ﬁinc) Q |fslit(19n)‘2 = Q |fslit(19n)|2 . (429)

\Nlﬂ

Ay(n) x

Wl

As long as only relative areas are considered this result is equivalent to the area
A(n) from Eq. (.20) for a monochromatic beam with ¢;,. = 0.

In view of certain tested qualities of the beam source in the experiment one
may assume for the distribution of incident velocities ®,(v) that it is symmetri-
cally centred around the most probable value vy, and that it is narrow such as to
ensure that all relevant atoms have a velocity v which differs from vy by at most
10 %. The peak area Ay,(n) of the nth order in the diffraction pattern including
the incident angle- and velocity distributions can be written as

Ago(n m/m@, /@@ YO Fa (v, 9. (4.30)
0 0

Analysing the v-dependence of fy;(9,,) in Eq. (£.25) one notes that ksind, =
Kp = 2”7" does not depend on the velocity v. By the factor ¢/#(*) the slit amplitude
depends weakly on v as the phase ¢(x) % For narrow velocity distributions as
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those considered here the incoherent superposition

/dv (V) | faie (v, 9) |2 (4.31)

is equal to | fait(vo, ¥,)|* within about 0.1 %, so the v dependence of fqit(1,) has
no effect altogether. As a result, the distribution of incident angles and velocities
is expected to have no influence on the relative peak areas and hence

Ago(n) oc Ag(n) oc A(n) o | faie(9n)]? (4.32)

For example, the ratio of experimental peak areas Aexp(n) directly corresponds

Aexp(0)
to the just derived % which is equivalent to the equation Eq. (2.66) to be

proved.

4.2 Inclined Incidence

From an experimentalist’s point of view it is not always easy to make sure the
beam impinges on the grating perpendicularly. As space inside the evacuated
apparatus is limited one may omit the fine positioning devices on behalf of more
essential items of machinery. This can lead to deviations from the ideal perpen-
dicular grating set-up of the order of a few angular degrees. While a forward
or backward tilt of the grating is unimportant, a rotation around the vertical
axis leads to a different phase shift for trajectories in the right and left half of
each grating slit which has measurable consequences. A generalization of the
result Eq. (£.14) to include the inclined incidence of the atomic beam is therefore
required. From a theoretical viewpoint this generalization is a fit goal as much
more information about the scattering potential can be revealed in the diffraction
picture if the orientation of the target is controlled during the experiment. In the
following sections it will be shown that arbitrary incident angles can be taken
account of by minor modifications to the results just obtained.

4.2.1 Bar Potential for Rotated Grating

As a preparing step one notices that the result Eq. (f.14) can be applied to
asymmetrical trapezoids by simply replacing the wedge angle 3 in the first and
second term by new angles for the left and right side of the bar, respectively (cf.

Fig. [L.1)).
The situation of inclined incidence is equivalent to that of straight incidence
with the grating rotated by an angle 7 with respect to the x-axis. It is difficult to
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Figure 4.7: An atomic beam along the z-axis falls upon a grating that is rotated by
an angle 7 < 0. The area of the grating bars is divided up into thin stripes (as shown
on the right bar) that are oriented parallel to the incident beam, i.e. the z axis.

calculate the phase shift p(x) arising from the atom-bar potential like in Eq. ({.14)
when the trajectory over which to integrate is no longer perpendicular to the
base line of the trapezoid. Additional unwieldy integration limits appear that
considerably increase the analytical effort. A simple geometrical consideration
can overcome these difficulties.

One may imagine the trapezoid that represents a grating bar as composed
of many thin stripes each of which is oriented parallel to the direction of the
incident beam. Figl 7] shows a sketch of this situation. The calculation of ¢ is
not affected by this as the integration over the bar will just sum up all of the
stripes. Now looking closer at the structure of the four integrals appearing in
Eq. (BI4) one finds that a translation of the potential parallel to the z-axis, i.e.
the beam trajectory, does not change the value of ¢, because the integration over
z ranges from —oo to +o0. Therefore it is possible to slide each of the stripes of
the trapezoid along in z direction in order to construct an equivalent bar shape
whose base line is again perpendicular to the incident beam and that is thus
easier to integrate. The boundary conditions of the construction process are that
the area of the bar cross-section remain constant and that the distance from the
beam trajectory to each area element stay the same which are both guaranteed
within the decomposition into stripes.

In a detailed geometrical analysis of the grating rotation 7 there are five
cases to be distinguished according to the geometry of the trapezoid. They are
0<|7| < B, |7l =0, 08 <|7| <Oy, |7] =61, and O < || < Oy, characterized
by the wedge angle § and ©;, which is defined by
b—ttan

t )

and which marks the case that the bar is rotated until its diagonal is parallel to

tan ©; 1= (4.33)
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Figure 4.8: Three out of five distinct cases of grating rotation 7. Left:0 < |7| < S,
middle: |[7| = g, right: 8 < |7| < ©1. From the rotated original grating bar cross-
sections (top row) the shapes equivalent for diffraction experiments are constructed
(bottom row) by decomposing the rotated original shape into thin stripes each of which
is shifted in z direction (vertically, in the figure) until a new shape is realized whose
base line is perpendicular to the z direction. As the length of the stripes does not
change the area of each trapezoid is conserved during the operation. An example for
one stripe is indicated in the figure by the bold line within each shape.

the incident beam. The maximum rotation angle ©y with

s+ ttan
t
is reached when seen in z-direction two neighbouring bars begin to overlap so that

the transmission through the grating is blocked. To illustrate the construction
principle three of the five cases are displayed in Fig. £.8.

tan ©g = (4.34)

Remarkably, it is possible for any rotation of the original bar with respect to
the incident beam to form an equivalent new asymmetrical trapezoid with the
face and the base line perpendicular to the incident beam. The new depth ¢/,
base line ¢/, and wedge angles o and v are subject to the same formulae in every
case, namely

(4.35)

b =bcosT, (4.36)
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tana = cos® 7 (tan 3 + tan ), (4.37)

and
tany = cos® 7 (tan 3 — tan 7). (4.38)

It should be commented that the limit 7 — +7 is not relevant for the current
application because it makes no sense to have the incident beam parallel to the
grating plane and perpendicular to the bars.

4.2.2 Slit Amplitude for Rotated Grating

In addition to the modifications of the bar potential as explained in the previous
section the features arising from the repulsive potential that have been seen to be
closely analogous to classical optics also undergo some changes when the grating
is rotated with respect to the incident beam.

Introducing a new coordinate axis § := == along the rear side of the rotated

grating the incident wave which is in the case 7 = 0 represented by unity under
the integral Eq. (.18) for the slit amplitude becomes e*¢*"7 in order to account
for advanced or retarded arrival in sections of the grating tilted towards or away

from the source, respectively. Similarly, the geometrical phase factor e ##sin? jp
Eq. (£.18) is for a rotated grating appropriately replaced by e *¢sn(+7) With
O(7) :=sin(d +7) —sinT (4.39)

the total geometrical phase factor can be written as e *¢®(") Apart from that,
for rotation angles |7| > [ the illuminated region within each grating opening
is reduced as parts of the incoming beam are blocked out by the adjacent bars.
Denoting by s, the left end and by s, the right end of the illuminated spot,
expressed in terms of the new coordinate &, one has

_s —0, <1<
si(r) = 2 Sozr=h (4.40)
t(tanT—tanﬁ)—g <717 <0
and
s D =0 < T < —
se(m) =4 2 +itan 4 tan) SozT==f (4.41)
5 —B <7< 6

With the essential modifications now complete one obtains for the area Ay(n)
under the nth order maximum in the diffraction pattern

A(n) o | fau(On, 7)I7, (4.42)
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with

se(T)
fslit(ﬁna T) = / d€ e—ik{ sin &(7) ein(I) . (443)
s1(7)

With the results Eq. (£.35)ff the phase ¢, (x) for a grating rotated by 7 is written
as a sum

pr(x) = ¢h(2) + ¢y (x) (4.44)
of the contributions ¢! (z) and % (x) of the left and right bar, respectively. The
latter is given by

@) = C+t’tana) }+

2 hv tana

1
+ 2hvtan {Cr+b’ Cr+b’—t’tan'y) }_

B Cr+t’tana) }+

8 hv tana

1
* 8hvtan7{(§r+b’) (Cr+b’—t’tanfy)8} ’
(4.45)
with the modified impact parameter
G :=coST 8:(T) — x = cosT [s:(T) — ] (4.46)

that describes the least distance between the trajectory and the rotated grating
bar. Note that for rotation angles 7 greater than the wedge angle 3 of the original
bar the leading edge of the bar is closer to the trajectory than the trailing edge.
A sketch of the situation is presented in Fig.[.9. The phase contribution of the
bar to the left of the slit is given by

L) = ST R S +
Pr © 2mwtany | ¢ (G +ttany)?

LG 1 1 -
2hvtana | (G+0)?  ((+V —t'tana)?

S R B S O
8hvtany | ¥ (G + t'tan~y)8

Co 1 _ 1
8hvtana | (G + V)2 ((+V —t'tanw)® |’
(4.47)

with the corresponding impact parameter

G:=x—cosTs(7) =cosT[€ — s1(T)]. (4.48)
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Figure 4.9: For a grating rotation 7 < 0 the slit amplitude is given by an integral along
the & axis from s; to s,. The latter boundary takes account of the ”shadow” (shaded
area) cast by the leading edge of the right bar. The impact parameter (; is defined
as the least distance between the beam trajectory and the right bar. The dotted lines
show the original bar shapes while the two identical shapes framed by solid lines are
the constructed equivalent bar cross-sections that are easier to integrate. The modified
wedge angles are indicated in the figure.

The grating rotation causes an interesting effect of asymmetry in the intensity
pattern which clearly distinguishes atom diffraction from optics. From Fig. .9 it
can be seen that for rotation angles 7 < 0 the beam trajectories are more parallel
to the side of the right bar than to that of the bar on the left of the slit. As a
consequence, the atom-bar interaction is stronger on the right-hand-side of the
slit which in the diffraction pattern leads to an enveloping slit amplitude function
which is wider on the side where the interaction is stronger. This coincides with
the classical notion of more atoms being attracted towards the right bar and
thus being deflected to larger angles. Fig. .17 illustrates the phenomenon with
the help of a theoretical example with metastable helium atoms at v = 1500 7
diffracted from a grating whose bars have a wedge angle § = 11°. Besides the
asymmetry of the the slit amplitude function there are two well-known effects
apparent in the figure. First, the slit amplitude function is widened on both sides
of the diffraction pattern upon grating rotation because the slit is effectively
narrowed by a factor cos7. Second, the principal diffraction angles increase
because upon the rotation 7 # 0 the grating function Hy (cf. Eq. (B.60)) assumes
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Figure 4.10: Theoretical diffraction pattern for a beam of metastable helium atoms
and a transmission grating whose bars have a wedge angle § = 11°. The shaded curve
is the enveloping slit amplitude function for the case 7 = 0, i.e. no grating rotation.
White bars are added whose centres mark the principal diffraction angles. For a grating
rotation of 7 = —10.9° the envelope function (solid line) assumes higher values for
positive diffraction angles 9. This is due to different atom-bar interaction potentials
on the sides of each grating slit. The envelope function is generally wider for 7 # 0
because the rotated grating slits appear more narrow when seen in beam direction.
For increasing diffraction orders n the vertical solid lines at the principal diffraction
angles for the rotated grating are seen to wander out of the white bars whose centres
mark the principal angles in the non-rotated case, i.e. the principal orders assume a
wider spacing for rotated gratings. This well-known optical effect does also apply to
the diffraction of atoms (see Eq. (.50)).

its principal maxima under the condition

kd® A
sin [ﬁl =0 o P(r) =sin(d+ 1) —sinT = % =7,. (4.49)
In view of the detector angles ¥} being as small as a few mrad a first-order Taylor

expansion may be used to obtain

Un,

cosT’

Y —

(4.50)

which states that the principal diffraction angles upon grating rotation are equi-

distant as in the case 7 = 0, but the spacing increases by a factor ColsT.
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4.3 Surface Roughness

The theory presented so far has been based on an idealized shape of the grating
bars, namely that of a trapezoidal prism. From scanning electron micrographs like
Fig. .2 it is evident that the real grating bars exhibit certain deviations from the
idealized shape. These corrugations of the bar faces are due to the manufacturing
method of the gratings which includes an etching process to produce the slits.

For the diffraction experiments, only the corrugation of the bar sides is rele-
vant while that of the front and rear faces can be ignored. The particular aspect
of the bar side corrugation that leads to a deviation of the bar cross-section from
an ideal trapezoid will be treated in detail in section 5.1.3 of this work.

In the following, the other important consequence of the bar side corrugation
is discussed that leads to wavy rather than straight trailing edges of the grating
bars so that the grating slits are in fact bounded by undulated lines. Of course,
this situation requires a three-dimensional approach that includes the y direction
along which the bar edges are undulated. This approach, however, is analogous to
the two-dimensional case, particularly with respect to the eikonal approximation,
and apart from constant factors. For the interpretation of experimental data only
relative diffraction intensities are relevant so that those constant factors can be
left out of the consideration.

The three dimensional wavefunction (F) at the detector slit position T is then
given by

L)
1;(%) x Z / dy/ / dx/ eik\/(ﬁ*iﬂ/*jd)2+(y7y/)2+22,(;(a:/ + ]d, y/’ O) , (451)
T T

where A}(y') and A(y') stand for the difference between the respective left and
right boundaries of the jth grating slit, taken at a vertical position ¢/, and their
respective mean values &5 + jd with respect to an average over the height Y of
the grating . In view of the interferometric technique that is employed to write
the slits on the silicon nitride substrate during the manufacturing process it is im-
probable and contrary to the assertions of the manufacturers that the periodicity
of the slits be subject to a systematical error, especially since the gratings have
been tested to maintain their periodicity well over distances a hundred times
longer than the typical width of the illuminated region on the grating in the
experiment.

On expansion of the square root in Eq. (.51) one obtains in first order

(' + jd)2+ (y—y)?
oF oF

8

\/(ﬂf - ]d)? + (y _ y/)2 + 22 = f—j(:lf/+jd)+ ) (452)

<
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from which it can be seen that within this approximation the integrand in

Eq. () contains a factor e’ (y;;/)Q.

The wavefunction 12(1" + jd,y’,0) which also appears in the integrand in
Eq. (E5T) is well collimated with respect to the z’ direction because the col-
limation slits in the experiment are sufficiently narrow to produce a coherent
wavefront on the grating over about 100 periods (see section 5.4.2). The coher-
ence length L, in the vertical y direction can be estimated from the width of the
central Fraunhofer diffraction maximum as results from the vertical diffraction of
atoms at a typical de Broglie wavelength A\ ~ 50 pm from one of the 5 mm-high
collimation slits. In analogy with classical optics the amplitude A(#) diffracted
at a vertical angle 6 is given by

sin(“2 sin 6)

(0) o T hsng (4.53)

where h stands for the height of the collimation slit. For a distance 7 ~ 1m
between the collimator and the grating the sine sin(#) of the diffraction angle 6
can be replaced by y;f, where 3 is the vertical coordinate on the grating. The
coherence length L, is then estimated by

kh Ly _

454
2 7 (4.54)

from which follows L, ~ 10nm for typical values of k = 27” This result indicates
that in Eq. (.51)) it is sufficient to describe the diffraction of an atom by an
integral in y" direction that runs over the coherence length L, rather than the
total illuminated height Y of the grating. Within these limited boundaries the

k (y—y )2

factor e =2 can be replaced by unity because

(y - ?/)2 ko -3
kX2 < —[2~15107". 4.55
2r -2 Y ( )

For a detector slit position r in the z-z plane the amplitude becomes

o saw)
D(F) oy / dy’ / da’ o D (o 1,y 0), (4.56)
T s Al

where the Fraunhofer limit with x := ksin(¢) has been adopted for horizontal
diffraction angles v/. This approximation is sufficient to reveal the essential in-
fluence of the edge roughness on the detected intensity. In the real experiment,
the detector slit position is not specified with respect to the vertical coordinate
y as the detector slit is 5mm high. Because of the small coherence length L, the
vertical coordinate y of where the particle enters the detector slit is determined
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by the vertical position ' + % of where the particle passes through the grat-
ing. Therefore the height of the detector slit does not lead to any new effects of
coherence, it merely helps to increase the count rate in the experiment.

For a given trajectory that passes through the grating at (2’ + jd, ¥/, 0)* the
wavefunction ¥ (2’ + jd,y’,0) in the integrand of Eq. () is given by

QZ(:U/ + jd7 y/7 0) = el¢(z/+ﬁd7y/) . (4.57)

This expression describes a plane wave arriving at the rear side plane 2/ = 0
of the grating inside the slits, which carries the additional phase ¢ due to the
interaction of the atom with the grating bars. For the current purpose the cross-
section of the bars is taken to be a trapezoidal prism whose width b varies with
the vertical coordinate 3/’ like

bi(y) =d—s—Al(y) — AL (y) (4.58)

which leads to an undulated trailing bar edge as intended to discuss now. The so
assumed theoretical bar shape is illustrated in Fig. f.TT]; it is conceptually close
to the real bar shape as can be seen from a comparison with Fig. f.2.

(@ (b)

Sz

Figure 4.11: (a): Model three-dimensional shape of a grating bar that includes the
feature of edge roughness. The chosen model is close to the form of the real grating bars
as can be seen from the scanning electron micrograph Fig.[.2. (b): The corrugation of
the bar sides that leads to a deviation of the bar cross-section from an ideal trapezoid
has a qualitatively different influence on the diffraction of atoms. It is excluded from
the current investigation and is treated in section 5.1.3.

The phase ¢ that appropriately accounts for the three-dimensional grating
bar shape is written, similarly to Eq. (£.§), as

P’ + jdy') = i’ + jd. ) + @2’ + jd,y), (4.59)
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with
+00 0 +o0 737A; (y')+2z"tan B
6C-
G1(z+jd,y) = 75 dZ/dZ’/dz/ A’ [(z—2')*+(y—y ) *+(z—2)*]°
mho
oo b =00 —5-A(y)—bi(y)—2 tan 3
(4.60)
and
“+o00 0 “+00 §+A§'(y,)+bj+1(y/)+z,tanﬁ
6C
aulaidg) = 2 [z [az [ay [ (@ma Pty P2
mhu
—oco  —t — %—&-A; (y")—~#"tan B

(4.61)
Note that the coordinates of the beam trajectory that appear in the argument on
the left-hand-side of the last two equations have been changed in order to avoid
doubly primed quantities under the integral. x and y now stand for the position
of the beam trajectory while the primed quantities locate volume elements inside
the bars. For the sake of simplicity at this point the terms proportional to Cy,
that in Eq. (£.14) and account for the detailed shape of the repulsive atom-bar
potential, have been omitted in Eq. (f.60) and Eq. (f.61)). Their inclusion is
accomplished analogously to the following procedure. In contrast to Eq. (£.14),
Eq. (£60) and Eq. (£.61)) cannot readily be solved because the integral over 3/’ is no
longer trivial due to the presence of the edge roughness that depends on 3’ which,
in principal, requires the calculation of the dispersion potential of each point of a
given trajectory with respect to each point on the corrugated surface, no matter
how distant and how feeble its influence may be. An obvious simplification in
order to proceed is to expand Eq. (f.60) and Eq. (f.61]) with respect to small
y' and retain only the lowest order. This means that for each y the region of
the edge that significantly contributes to the phase ¢ is assumed to be locally
straight. For a typical range of the dispersion interaction of a few nanometers
and the observed corrugation lengths of about the same size this approximation
is roughly justified. It is important to note that the edge roughness is not thrown
away with this step but still present through the edge positions characterised by
Al(y'), etc. For example, Eq. (.61) becomes within this approximation

+oo 0  4oo aTAL(W)+bj41(y)+z tanp
6C"
alaoridy) =20 [ far fay [ ai@-aPr -2
whv
- -t -0 5+A%(y)—7' tan 8
(4.62)

whereby the left and right boundaries of the right grating bar are evaluated only
at y which is the vertical position at which the particle passes through the grating.
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The integrals can be performed like in Eq. (£.14) which yields

G 1 1
Pzt jdy) = 2hvtanﬁ{?_(é+ttanﬁ)2 +

1 1
i (C+bjt1(y))? B (¢ + bj41(y) — ttan 5)2} (4.63)

where the impact parameter ¢ := § + A%(y) — r measures the horizontal distance
from an atomic trajectory at (x + jd,y,0)T to the corrugated edge of the bar on
the right-hand-side of the jth slit. As for the moment grating rotations are not
considered one may neglect the terms in Eq. (.63) that contain the width b; 11 (y)
of the bar. This simplification included, the phase @;(x + jd, y) arising from the
interaction of the atoms with the bar on the left side of the jth slit becomes

N N 1 1
¢i(z +jd,y) = o tan {? — m} : (4.64)

Here, ( stands for x—}—g—l—A; (y) which is the distance between the atomic trajectory
and the corrugated edge of the left bar.

Formally inserting the results Eq. (f.63) and Eq. (£.64) into Eq. (£.56) one
obtains

Ly
- 0
OE) o Y e / dy’ / da’ e~ llpr@"+idy) (e +idy)l |
J Ly —5-AL(y)
SHAL(Y)
N / Ao’ o llB1 (@ +idy)+én (@ +idy)] | (4.65)
0

With the separation of the integral into the respective left and right half of the slit
one may for non-rotated gratings drop the phase contribution from the bar of the
respective opposite side because it is practically equal to zero. After applying
the substitutions ¢ := 2’ 4+ % + Al(y) to the first integral in Eq. (.65), and
¢ =35+ Aj(y) — 2’ to the second one finds

Ly CRRAVICD)
J Ly 0
2
SHAT(Y)
N / ¢ =52 Wlgie(©) | (4.66)
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where the phase

_ G 1 L
?(Q) = Shtan { 2 (C+ttanB)? } (4.67)

is the same for both integrals. Since it refers to straight stretches of the bar edges
it is equal to the phase used in the two-dimensional approach to the diffraction
problem, except for the terms neglected so far.

The partial slit amplitudes fi(¢) and f,(J) arising from the respective left and
right half of each slit without corrugation can be extracted by the definitions

S

2

A) = / dC (0 gi9(©) (4.68)

0

and .
fo(@) == [ d¢e (579 O (4.69)

/

with k = ksind. It might be worth mentioning that the slit amplitude fg; (1)
used in the non-corrugated case can be obtained by

S

2

S .
ﬁmw%amm+fM%=2/ﬁ<wwﬂ§—oww0. (4.70)
0
This leads to a detection probability
LTy
—irjd / /{fr(ﬁ) e—inAZ(y’) + fl(ﬁ) eifeAIj(y’) +
-3

2

n i [einA;(y/) . eq;;A;(y’)} } (471)

1K

For the principal maxima in the diffraction pattern one has ¥ = ¢,, and the
momentum transfer x becomes k,, = 22" so that

e it =1 (4.72)

After expanding the exponentials up to the second order the term in square
brackets in Eq. (£.71]) becomes for the nth principal maximum

§:/@_{mwm—§@w» i 50) + 2430

i/ﬁ?n i/fn

o e P R



4.3. SURFACE ROUGHNESS 73

where the expectation values ( ), and variances a] , refer to an average over the
grating slits and the vertical coherence length L,. Since the corrugation has been
defined as the deviation from the mean value the expectation values are equal
to zero. Furthermore there is no reason to believe the left and right bar edge
corrugations have different statistics so one has

(07,)" = (05,,)* =t (05,) (4.74)

iy iy
and, as a consequence, Eq. (.73) is equal to zero. With this, Eq. (£.71]) becomes

Io(9,)  fi(9,) <einnﬁg(y)>A + fo(0) <e—mnA§(y)>‘ . (4.75)

For typical experimental values the arguments of the exponentials are about
0.03 x 2mn which allows approximately to write for Eq. (.79) the simple result

27rno"7 y

) | a0 (4.76)

The influence of grating imperfections has been studied by Grisenti et al.
[@9]. For the strictly two-dimensional case the authors derive a Debye-Waller-like
damping factor

Io(0,) o 3% | fu (9,2 = o

Io(V,) oc e 270 | fiie(0,,) 2 (4.77)

to the nth order intensity. The quantity o7 stands for the variance of the slit
edge positions with respect to their mean values jd & 3 as averaged over all illu-
minated slits j. This result is in agreement with Eq. (£.76) in the limit L, — 0,
i.e. a vanishing coherence in y direction of the incident beam. It is apparent
from Eq. (.7G) that the inclusion of a finite coherence length leads also to a
Debye-Waller damping, as long as the atom-bar interaction can be calculated
with respect to a locally straight bar edge. For corrugations that vary strongly
over small lengths Ay each trajectory experiences a different potential than that
assumed for the straight edge which leads to a dependence on y of the partial
slit amplitudes fi(9¥) and f.(¢) in Eq. (E.71) which can be expressed in terms
of a y-dependent complex number R(y) assigned to each of the amplitudes. If
the corrugated surface potential is such that the regions where the potential is
stronger due to the roughness find a complement in regions where it is weaker
one may expect (|R(y)|), = 1 so that there is only a phase factor assigned to
each amplitude which will also lead to a damping similar to that obtained above.
For corrugated potentials that cannot be averaged to that of a locally straight
edge (e.g. if the surface layer of the bar has a porous structure) the corruga-
tion will yield a factor R(y) whose modulus has an average different from zero.
This means that in the latter case the diffraction intensities will be affected by
the surface corrugation. A quantitative evaluation of these cases is numerically
demanding and requires more detailed information on the bar surfaces than is
available today. Recent progress in acquiring scanning electron analyses of the
transmission gratings is expected to enable further work on this issue.
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4.4 Retardation

The effect of retardation can be included in the attractive dispersion potential
V5(l) = —% for an atom at a distance [ from the plane surface of a dielectric by
assigning an [-dependence to the dispersion interaction strength C3(l) which is
given according to Eq. (B.23) in chapter 3 by

Cs(l) = —% /dw a(iw) g(iw) e 2 (1 4 ki + K21?), (4.78)
0

with k = %, where ¢ stands for the speed of light. With the help of the procedures
described in chapter 3 the polarizability a(iw) of the atom and the electronic
response ¢(iw) of the solid can be determined and the integral Eq. (£.7§) can be
evaluated numerically as is illustrated in Fig. .17 for helium atoms and a silicon
nitride half-space. As explained earlier, a(iw) has roughly the shape of the right
half of a Lorentz curve centred at the origin. For ground-state helium, which has
a high average excitation energy among all atoms considered in this work, the
half-width of the curve of a(iw) is large, so upon integration like in Eq. (L.78)
a large portion of the area under the integrand function is taken away by the
retardation factor e 2! (1 + kI + k21?). In other words, the effect of retardation
is more pronounced for helium than for most other atoms. Especially metastable
atoms, whose average excitation energy is ten times smaller that that of ground-
state atoms, are less affected by retardation. For example, C3(5nm) of metastable
helium as shown in Fig. decreases from the static value by only 5% whereas
C3(5nm) of ground-state helium falls by 20 %.

The large drop of C5(l) of ground-state helium over distances of the order of
the range of the dispersion interaction raises doubts if the dispersion interaction
strength C'3 measured in diffraction experiments can really be identified with the
non-retarded limit. This problem can be addressed by calculating a theoretical
diffraction pattern with retardation and compare it with a corresponding non-
retarded result. If the associated change in the detection probability I (?,)
for the nth order maximum in the diffraction patterns is small for ground-state
helium atoms it can be concluded that the same is true for other atoms and
especially for metastable species. In accordance with the theory set out in the
previous sections the detection probability Io(1,) is practically determined by

the phase

+oo
1
() = 7 dz V¥ (z, 2) (4.79)

—00

whose definition Eq. (f.1)) is restated here for clarity. Without any loss of sig-
nificance the current investigation can be carried out assuming the atom-bar
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Figure 4.12: The dispersion interaction strength gg(%)) for ground-state helium atoms

and a silicon nitride surface assumes a dependence on the distance [ if retardation is
included (solid line). In order to later draw quantitative conclusions on the impact
of the retardation the unnormalized curve has been fitted by the function C3(l) =
(C5(0) 4+ Agl + A11%) e 42! (dotted line), with Ay = 5.689891073, A; = 4.95089 104,
and Ay = 0.102751. For metastable helium atoms (dashed line) the effect of retardation
is weaker because their average excitation energy is lower than for ground-state atoms.

interaction to be of the form
l(x,z

VAt (2, 2) = Vi [l(z, 2)] == —%. (4.80)
Hereby I(x, z) stands for the perpendicular distance between the side of the grat-
ing bar facing the slit and the atomic trajectory. As Fig. .13 shows, this perpen-
dicular distance is well-defined only for a section of the beam trajectory whose
starting and end points are denoted by z; and z¢, respectively. As mentioned
earlier in this text, the portions of the beam trajectory that are ignored by this
procedure amount to a factor cos 3 in the resulting phase ¢(z), where 3 is the
wedge angle of the trapezoid-shaped bar cross-section. This technique to deter-
mine the phase ¢(x) that has been used in [[7] for a non-retarded potential. Tt
will become apparent in the following that an extension to retarded potentials is
possible with the help of the fitting function

O (1) = (C3(0) + Agl + A1) e~ (4.81)

that paraphrases the exact expression Eq. (.78). Since the fitting function has
the same form as the retardation factor in the integrand of Eq. (.78) it appears
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- beam trajectory

Figure 4.13: For the calculation of the quantum mechanical phase p(x) with the
retarded bar potential the beam trajectories for an impact parameter ¢ are integrated
from z; to zy, where the perpendicular distance [ to the bar surface is well-defined.

probable that there is an analytical solution to the integral Eq. (.7§) if the one-
oscillator approximations Eq. (B.33) and Eq. (B.43), respectively, are used for the
atomic polarizability a(iw) and the response g(iw) of the solid. The main concern
here is that for ground-state helium the approximation Eq. (f.81)) works excel-
lently for all distances [ at which the potential Vie[l(x, 2)] significantly differs
from zero. Fig. @12 illustrates the quality of the fit that is realized with the
parameter set Ay = 5.689891073, A; = 4.9508910~*, and A, = 0.102751.

With these considerations, the phase ¢(z) becomes for ground-state helium
atoms

zf

) = _i . 03(0) Ao Ay engl(:v,z)
#(z) hv /d <l(ac,z)3 * I(x,2)? * l(x,z)) ' (4.82)

Zi

From the figure Fig. .13 it can be derived by elementary geometrical methods

that
_ (+ttanf

" (4.83)

Iz, z) = i(x)
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and

Iz, %) = li(x) = ﬁ , (4.84)

where the usual impact parameter ¢ := 5 —x has been introduced. One also finds

l(xz,z) = cosff— zsinf3, (4.85)
which can be used to substitute in Eq. (£.82). This yields
o) A A
_ ar (= 204 ) el 4.86
o) hvsinﬂ/ <z3+12+z>e (4.86)
l¢(x)

The evaluation of this integral is of mainly technical interest as may be checked
in the appendix. As a result, one obtains

B 1 e C’;;(O)cosﬁ_& B
ple) = 2hv tanﬁ{e ’ { ¢? C}

_dcttiams) C3(0) cos 3 K,
¢ [(C—i—ttanﬁ)?_c—i—ttanﬁ]

K, ttan 3 [ —A2\" (¢ +ttanB)" — ("
hvsinﬁ{ln(1+ ¢ )_;(cosﬂ) nn! }’

(4.87)
with Cr(0) A2
Kl = Al - AQAO + 3< ) 2 (488)
and
K2 = C3(O)A2 - 2A0 . (489)

The non-retarded limit of the lengthy expression Eq. (£.87) is obtained by setting
all parameters A; equal to zero so that both K; also vanish. This yields

~ C3(0)cos B [ 1 1
ole) = 2hv tan 8 {F (¢ +ttan 6)2} ’ (4.50)

which is equivalent to the result stated in Ref. [12].

The phase p(z) according to Eq. (.87) is compared with the phase for the
non-retarded case in Fig.[.T4. It can be seen that despite the large variation of
C3(1) (cf. Fig.[:12) the phase ¢(z) changes only by a little because the side of
the bar is not parallel to the beam trajectory but inclined by the wedge angle
[ of the bar. The figure shows that for a bar depth ¢t = 57nm and g = 11°
the difference between the retarded and the non-retarded phase is smaller than



78 CHAPTER 4. INCLUSION OF ATOM-SURFACE POTENTIALS
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Figure 4.14: The inclusion of retardation in the atom-bar potential leads to a small
reduction of the quantum mechanical phase ¢(2) which determines the diffracted inten-
sities. The lower solid line accounts for the non-retarded case of ground-state helium
atoms with a grating whose bars have a wedge angle of 3 = 11° and a depth ¢ = 57 nm.
The corresponding curve with the retardation included (lower dashed line) is only
slightly smaller. For the new generation of gratings with § = 5° and ¢ = 100 nm the
difference between the non-retarded (upper solid line) and the retarded case (upper
dashed line) is more pronounced. All curves increase as they approach the bar edge at

¢ = 5 —x = 0 because there the atom-bar interaction is strongest.

for a bar with ¢ =100nm and 3 = 5° which is roughly the geometry of the new
generation of transmission gratings used in current experiments. The change of
the phase ¢(z) due to retardation leads to a change in the principal diffraction
intensities Io(v,,) that is summarized in table L] for both bar geometries. As
it turns out, the small 3rd, 6th and 9th order intensities of the non-retarded
case are reduced by about 10 % as a consequence of retardation while the higher
intensities of the other orders are affected by about 1%. For the bar with the
smaller wedge angle the effect is slightly more pronounced as can be expected
from the behaviour of the phase shown in Fig.[.14. In sum, the influence of
retardation on the diffraction intensities is a few-percent-effect for ground-state
helium atoms. As these atoms are used to determine the slit width s of the
grating that has been employed for the diffraction of metastable atoms it will
be checked in chapter 5 if the resulting s has to be interpreted in terms of the
retardation. For the diffraction of metastable atoms itself the effect of retardation
can be expected to be significantly smaller than for ground-state helium atoms so
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n || Io(9,)/10(0) | I5"(9,) /T5(0) | v (%) | 7 (%) (new grating)
1 0.1868 0.1861 -04 -0.7
2 0.04011 0.04222 0.3 0.5
3 0.0008286 0.0007315 -13.3 -12.8
4 0.01309 0.01300 -0.7 -1.1
5 0.005438 0.005479 0.8 1.0
6 0.0007189 0.0006512 -10.4 -10.0
7 0.004608 0.004578 -0.7 -0.9
8 0.001814 0.001829 0.8 0.0
9 0.0006241 0.0005755 -84 -8.0
10 0.002360 0.002349 -0.5 -0.6

Table 4.1: Comparison of relative theoretical diffraction intensities of ground-state
helium with (second column) and without (third column) retardation. The calculation
is based on grating bars with a wedge angle § = 11° and a depth ¢ = 54nm. In the
fourth and fifth columns the relative deviations ~ of the nth order intensities with and
without retardation are compared, respectively, for this grating bar geometry which
corresponds to the gratings used for metastable atoms, and for the new generation of
gratings with 8 = 5° and ¢ = 100 nm which are used in current experiments.

that it can be neglected. The distinct deviation of some non-retarded diffraction
intensities from those of the retarded case, especially for the new generation of
gratings with small wedge angles, opens the challenging perspective of measuring
for the first time atom-surface potentials in an intermediate range of distances
where the retardation effects set in.

4.5 Adsorbate

The method of measuring atom-surface interaction potentials with the help of
atom diffraction from transmission gratings is a tool which obviously becomes
more valuable if it can be applied to a wider variety of atoms and surfaces. While
it poses no principal problems to add beam sources of a great number of different
atoms and molecules to the diffraction apparatus the surface they interact with
has to stay the same as, in fact, there are no transmission gratings of the desired
quality made from other materials than silicon nitride fl. A way to circumvent
this shortcoming is to cover the grating bars with a layer of the material whose

1Gold gratings may be an exception, although by judging from scanning electron micrographs
and diffraction experiments silicon nitride gratings seem to have a significantly better quality.
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interaction with the atomic beam one wants to study. In view of modern deposit
techniques this approach is much more feasible than trying to make good gratings
from materials that are less rigid than the ceramic-like silicon nitride compounds.

With the theory presented so far the diffraction of atoms from a transmission
grating, whose bar surfaces are covered with an adsorbate layer, can be easily
described. The simplest model that reveals all the essential details is illustrated
schematically in Fig. . 1T5. Within the model, all grating bar sides are covered

Z4 /\ s/2  s/2+a s/2+b—a s/2+b
5 | ‘

ébeam trajectory

Figure 4.15: The figure shows a model of a grating bar of width b—2a which is covered
with adsorbate layers of thickness a on both sides. The model is used to calculate the
quantum mechanical phase ¢(z) which determines the diffraction intensities.

with a layer of thickness a that consists of a material whose interaction with the
atomic beam is characterised by the strength coefficient Cs. The shape of the
layers is chosen such that the bar cross-section with the layers added is an ideal
trapezoid. As the grating is not rotated with respect to the incident beam the
atom-bar potential is practically equal to zero in the middle region of the slit.
Then the detection probability

Io(0,) o< | faie (V)| (4.91)

associated with the nth order maximum in the diffraction pattern, depends on
the adsorbate situation by the quantum mechanical phase ¢(x) that appears in
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Figure 4.16: The quantum mechanical phase ¢(x) of ground-state helium atoms is
plotted for grating bars that are covered with 1 nm-thick adsorbate layers whose dis-
persion interaction strength Cj is half (dotted line), equal (solid line), or twice (dashed
line) C5 of the core silicon nitride material of the bar. The circles are the result of a
calculation for a bar that consists entirely of a material with C~’3 = 2(5. As the cir-
cles nearly fall on the dashed curve it can be concluded that the phase ¢(z) is mostly
determined by the dispersion interaction strength Cs of the 1 nm-thick surface layer.

the slit amplitude

fotie (D) = 2 / d¢ Cos[ﬁn(— — ()] e¥@ (4.92)

where the impact parameter ¢ := 3 —x with respect to the layer surface has been
defined. The phase

p(x) = p1(x) + p2(x) — p3() (4.93)
is written as a sum of three terms each of which can be calculated like in Eq. ({.14),
while the terms containing the bar width b and those arising from the atom-bar
repulsion can be dropped in the present investigation. In Eq. (£.93), the first
term

tCy 1+ 2(<+a tan 3
h(C+a)® (1 + 7 tan B)?

accounts for the interaction of the beam traJectory with the silicon nitride core
of the bar, whose base line width is b — 2a. Due to the adsorbate layer the beam

o1(z) = (4.94)
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trajectory cannot get closer to the core surface than a. The second term

tCy 143 £ tanﬁ
ho¢® (1 + c tanﬁ)

po(x) = (4.95)

describes the interaction with a bar of width b which consists entirely of the
adsorbate material. In reality, only the layers on the surface consist of this
material, therefore an appropriately sized core of the same material is subtracted
in order to get the correct result. In Eq. (£.93), this is accomplished by the term

té'g 1+ 2(<+a tan 3

#s(7) = hw(C+a)* (1+ 75 - tan 3)2 (4.96)
In total, one obtains
ot Cy 1+ % ¢ tan (Cs—C4) 1+ 2(C+ j tan 3
o) =5y {? (1+¢ tanﬁ) ~ (C+aP 1+ L tanp)’ (4.97)

Fig.[L.16 shows plots of the phase ¢(x) in the vicinity of the bar surface covered
with a 1nm thick adsorbate layer for the cases Cy = 2C5 and Cy = 0.5C5.
As one intuitively expects, the respective curves run above and below that with
Cs = Cs, i.e. the adsorbate layers consists of the same material as the core of the
bar. The case Cy = 2 Cj is also compared with the phase arising from a bar that
consists entirely of the adsorbate material. As the two curves are nearly identical
it can be concluded that the phase effectively depends only on a 1 or 2 nm-thick
skin of the bar whereas the bulk material is of minor importance. In view of
an application of this effect as described in the introduction to this section it
is important to see if the distinct character of the phases persists in the actual
diffraction intensities. That this is indeed true is illustrated in Fig. .17 where
a comparison of the principal diffraction intensities is made for the same cases
as set out above. The fact that the diffraction intensities for a bar covered with
a 1nm thick layer of material A are very close to those of a homogenous bar
made of A speaks much in favour of an extended use of the on-going diffraction
experiments whereby the grating bars are to be covered with certain substances
in order to measure their interaction potential with the atoms in the beam.

4.6 Summary

This chapter has demonstrated how the fundamental results of the previous chap-
ters can be applied to the diffraction of atoms from transmission gratings of a
certain shape and material. Through detailed investigations the versatility of the
experimental scheme has been improved in a number of ways.
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Figure 4.17: The theoretical relative principal order diffraction intensities are plotted
versus the diffraction angle for gratings whose bar sides are covered with a 1 nm-thick
layer of adsorbate material whose dispersion interaction strength Cs with the diffracted
ground-state helium atoms is half (dotted line), equal (solid line), or twice (dashed line)
(5 of the silicon nitride core material of the bar. The circles are calculated for bars that
consist entirely of a material with C3 = 2C5. As the circles practically reproduce the
intensities calculated for only a top layer with C3 = 2 Cj it is evident that for ground-
state helium the diffraction intensities are determined by the dispersion interaction
strength of the adsorbate layer.

e The theoretical description of atom diffraction with rotated gratings is used
in chapter 5 to determine the grating geometry and is of central relevance
for future experiments.

e For the first time the influence of retardation is described in quantitative
terms which opens the way for future pioneering projects on this subject.

e By theoretically accounting for adsorbate layers on the transmission grat-
ings it is made possible to extend the present measurements of dispersion
interaction constants to many materials and thus create an experimental
standard which will be of great use for all further work on atom-surface
potentials.

e The detailed account of the grating bar corrugation, together with the above
items helps in chapter 5 to find an explanation to unresolved deviations of
the measured diffraction intensities from theory and completes the theoreti-
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cal description of the given type of diffraction experiments with transmission
gratings.



Chapter 5

Diffraction of Metastable Atoms

The purpose of this chapter is to determine the dispersion interaction constants
C3(He*) and C3(Ne*) of metastable helium and neon atoms from measured diffrac-
tion patterns obtained with a silicon nitride transmission grating of the type
frequently discussed in the previous chapter. As the metastable species decay
quickly to their respective ground-states when in direct contact with a surface
[[04, 05, 006, 007 the dispersion interaction strength cannot easily be mea-
sured from surface scattering experiments. The atom-optical method is unique
in that the metastable atoms remain intact while scanning the grating bar po-
tential. After the possibility of diffracting metastable rare-gas atoms from nanos-
tructured transmission gratings has been demonstrated by O. Carnal et al. [B]
the study presented in the following is of great value for recently started ex-
periments of a French group concerned with inelastic scattering processes which
metastable atoms undergo upon passage through a transmission grating [I4].
The present method marks a progress from earlier attempts at measuring the
dispersion interaction strength of fragile atoms being in metastable or Rydberg
states [[08, 09, [0, 52, [T, [T, B3, [6, I5] because not least due to the high
quality of the used transmission gratings very accurate results can be achieved.
Furthermore, the small period (100nm) of the gratings offers a large surface to
interact with the incident beam so that the signal of atoms actually in contact
with the surface potential is higher than for single cavities or slits. Finally, the
small grating period guarantees only the non-retarded potential to be scanned
which is not possible with wide slit or cavities.

Parts of the following investigation, in particular those concerned with the ge-
ometry of the grating, are based on results obtained by the diffraction of ground-
state helium atoms. In order to achieve significant results for the dispersion in-
teraction strength C5 of metastable atoms it is necessary to review in some detail
the experimental and theoretical concepts of the ground-state helium diffraction,
and to scrutinize the actual experiment carried out with the metastable species.
It will become apparent in the course of this chapter that the careful analysis

85
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which is based on the theoretical studies of the previous chapter does in fact help
to clarify and refine the experimental and theoretical approaches so that new
interesting aspects become visible at which future experiments can be aimed.

The diffraction apparatus used for the experiments with metastable atoms is
shown as a schematic drawing in Fig.5.1. It reflects the data given in [64]. The
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Figure 5.1: Experimental set-up for the diffraction of metastable atoms. A rotating
slotted disk (chopper) between the first and the second collimator periodically blocks
and transmits the atomic beam. When one of the slots passes through the beam the
detector is triggered to await the arrival of a flock of atoms. Upon arrival at the detector
the atoms are counted in different channels according to their time-of-flight (TOF). By
this means many diffraction patterns of atoms can be recorded simultaneously whose
individual velocity range is five times narrower than that of the source without the
TOF device and whose resolution is considerably enhanced.

beam of metastable atoms is emitted from a source whose details are explained
in section 5.4.1 and is pre-shaped by the first collimator. The bulk of the beam
is then periodically blocked and transmitted by a rotating slotted disk (chopper)
such that the intervals between subsequently transmitted flocks of atoms are long
enough to avoid a simultaneous arrival at the detector of the slowest atoms of
the first group with the fastest ones of the following group. By means of an
appropriate triggering device the atoms arriving at the detector are counted into
several channels according to the time that has passed since one of the slots in the
chopper disk allowed the beam to pass. With this time-of-flight (TOF) selection of
the atoms several diffraction patterns for different particle velocities are recorded
at one angular scan of the detector. The procedure is necessary as the source for
metastable atoms produces a beam with a wide velocity distribution which leads
to high-order principal maxima in the diffraction patterns that are wider than
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the spacing in between, so, in effect, the high-order maxima overlap unless the
TOF device is used which pre-selects atoms within a narrow range of velocities.
The remaining aspects of the diffraction apparatus are explained in the following
sections.

5.1 The Transmission Grating

The gratings used in the diffraction experiments have been manufactured by
T. Savas and co-workers at the MIT. They are delivered on silicon chips whose
size is about 1cm x 1cm and whose thickness is 400 um. In each chip there are
three parallel rectangular windows that are barred by the actual transmission
gratings levelling with the bottom plane of the chip. The grooves in the chip
surface that form the windows are 5mm long and trough-shaped (a trapezoidal
prism with its narrow face in the bottom plane of the chip and a wedge angle
of about 35°) the top side width being 2mm and the bottom side 1.44mm, as
specified for the particular chip number 5-3. The right window on this chip
harbours the grating 5-3-1 that was used for the diffraction of metastable atoms.
Fig.b.2 illustrates the geometry described so far.

Top View (a) (b)
grating 5-3-1 top
chip 5-3
\ 2mm
7 window
Smm 0.4mm

3 oonnnQnpn
| grating |

.

windows 2mm

Figure 5.2: The transmission grating 5-3-1 used for the diffraction of metastable atoms
is delivered on a silicon chip as shown on the left panel (a). For experiments with a
rotated grating it is important to know that the actual grating bars are situated at the
bottom of a window through the chip (b).
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5.1.1 Period

The period d of the grating 5-3-1 as calibrated by the manufacturers is d =
100 £ 0.01nm [98]. For the interpretation of the measured diffraction patterns
of metastable atoms in terms of their dispersion interaction strength C' it is
important to know the period d of the grating to a better accuracy than 1 %. This
is because the method that helps to determine the slit width s of the grating is only
sensitive to the ratio 5. By standard error propagation laws a 1% deviation of the
period d would likewise affect the value of the slit width s, but for a reasonably
accurate determination of the dispersion coefficients Cj3 it has proven necessary to
have the value of the slit width s given within less than 1% error. In view of the
delicate scales involved, is not considered acceptable to just believe the calibrated
value of the period d that is delivered along with the very gratings, instead,
several sets of measured data are interpreted in terms of d and are compared
with the given value.

In order to gain information on the period d it is sufficient to consider the
diffraction of atoms by a transmission grating in the Fraunhofer limit. The prin-
cipal maxima of order n in the measured diffraction pattern are expected to
be found at angles 9, = arcsin(%)‘) ~ "7)‘ for experimentally relevant values of
n < 15 and of the atomic de Broglie wavelength A ~ 0.01 nm. Extracting the
principal diffraction angles ¢J,, from the measured diffraction pattern for a given

time-of-flight 7 it is possible to determine the period d of the grating by

g n_)\ B n2wh B n2rht
Y, mvd, mL?Y,’

(5.1)

where L is the distance from the chopper to the detector (cf. Fig.5.dl) and
m stands for the mass of the atoms. An analysis of 10 diffraction patterns of
metastable He* with 7 evenly distributed over a range of 0.665 ms< 7 <0.959 ms
yields Ld = (193940 4 496) 107 m?. From the experimental set-up as shown in
Fig.b.1 one has L = (158 £ 1) cm, which leads to d = (122.75 £ 1.09) nm. An
analogous procedure applied to six diffraction patterns of metastable Ne* with
1.75ms< 7 <2.3ms yields d = (98.9 + 2.4) nm. After a check of the record in
the laboratory books it appears highly probable that the result obtained with
He* is systematically wrong due to a scaling factor that has been erroneously
forgotten to be applied to the flight times 7. Leaving He* aside it remains to say
that the result for the grating period d as obtained from the Ne* data has too
large errors which is due to the fact that the peak positions in the measured Ne*
diffraction patterns are not equally spaced, as opposed to theoretical predictions.
This discrepancy is due to systematical errors of the apparatus that are explained
further in section 5.4.3 of this work.

These errors have been recognized and subsequently eliminated by R. Briihl
who has then recorded a series of diffraction patterns for ground-state He atoms
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at various velocities. The diffraction of metastable atoms cannot be repeated
because the beam source has been removed since the first experiment and is
currently being re-designed for future projects. For ground-state He atoms it
lies in the nature of the beam source that the atomic beam has a sharp velocity
distribution so that no TOF device is needed in order to obtain clearly separate
principal peaks in the measured diffraction patterns. Despite the lack of a flight
time 7 in Eq. (5.1) the formula can be used. Treating the He gas in the source as
an ideal gas one obtains from elementary thermodynamics for the mean velocity

of the atomic beam
S5kpT
v =] == (5.2)
m

where kg is Boltzmann’s constant and T is the temperature of the beam source,
which can (non-trivially) be assumed in our case to be equal to that of the He
gas inside. Using the principal diffraction angles ¢,, of 9 measured ground-state
He diffraction patterns at 8 different source temperatures 12 K< 7' <350 K, and
inserting the beam velocity v(T") = £ according to Eq. (b.2) one obtains from
Eq. (b.1]) for the grating period d = (100.02£1.05) nm, which is in good agreement
with the value d = 100nm as given by the manufacturers of the grating.

To round the picture off and taking the opportunity of an atomic force mi-
croscope (AFM) being available, the bottom plane of the chip 5-3 which contains
the relevant grating 5-3-1 has been scanned with that device. Scaling errors have
been avoided by measuring the distance between the edges of two grating bars
20 periods apart from each other and by measuring immediately afterwards the
distance between two marks on a commercially available calibration grid for AFM
tools. The result d = (104.3 & 1.0) nm which has not been altered significantly
with two other gratings of the same nominal slit width being scanned is now sup-
posed to arise from the calibration grid to be faulty in terms of the stated errors.
In an attempt to have the calibration grid compared at the MIT to the scale of
the manufacturers, the tool disappeared in the mail which is likely to be due to
very strict controls during the weeks after September 11th 2001. On the other
hand, the manufacturers communicated that the very transmission gratings are
actually being sold in the US as calibration tools and that in view of this they
have been subject to a check at the National Institute of Standards and Tech-
nology (NIST) who have found no fault with them. All of this may be seen as
a motivation to assume the period of the grating 5-3-1 to be d = 100nm in the
following.

5.1.2 Shape of the Grating Bars

From the scanning electron micrograph image Fig.[I.2 of a transmission grating
similar to the one (5-3-1) used in the actual experiment with metastable atoms it
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can be inferred that the grating bars have a shape close to a symmetrical trape-
zoidal prism. In order to determine the ratio E of the depth ¢ of the grating bars
and the slit width s and also the wedge angle 3 of the trapezoid, the transmitted
intensity of a beam of ground-state He atoms is measured while the grating is
rotated around the vertical axis that passes through the centre of the illuminated
spot on the grating. There have been some inaccuracies in earlier experiments
with this purpose. In particular, they have led to values of the depth ¢ and the
wedge angle (3 of the bars of the relevant grating 5-3-1 which cannot be matched
to form a trapezoid, or even a triangle. Motivated by this the experimental as
well as the theoretical approach have been refined. On the experimental side,
R. Briihl has made sure the rotation axis be really at the beam centre and also
that the incident beam hit a region on the chip in the middle of the window that
frames the grating under investigation. By this it can be avoided that parts of
the incident beam are blocked by the frame which otherwise could wander into
the beam path upon rotation of the grating (see Fig.p.3).

incident beam

o
l v <><>
| o
| o
SO
o0 grating
o
— <
o

<

?chip frame

Figure 5.3: In the new transmission measurements to determine the grating bar geom-
etry the centre of the incident beam spot has been placed on the centre of the grating
to avoid a situation as shown schematically in the figure, where the transmission is
artificially reduced at large rotation angles because parts of the beam are blocked by
the frame of the grating.
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As a further improvement the zero angle position is no longer read from the
dial that controls the grating rotation and that usually involves an offset but
instead directly from the intensity profile as a function of the grating rotation
angles which for this purpose newly includes negative angles. As a further con-
venience, the symmetry of the bars can be checked by comparing the left with
the right-hand-side of the intensity profile, while the position of zero rotation is
simply identified with the symmetry centre of the plot.

On the theoretical side, the purely geometrical description of the grating
transmission as described in [99] has been abandoned in favour of a quantum
mechanical treatment that includes the dispersion interaction of the atoms with
the grating bars. It is reasonable to do this because it is known that the at-
traction of the atoms towards the grating bars leads to an effective narrowing of
the slit, whereas the method to be improved aims at the ratio ﬁ of the depth t
of the grating bars and the geometrical slit width s. Furthermore it has proven
advantageous for experiment and theory to restrict the detection to the zeroth
order diffraction maximum rather than widening the detector slit to gather the
intensity of several low-order diffraction maxima at once.

Figure 5.4: The effective geometrical slit width w as seen in beam direction is reduced if
the grating is rotated by 7 with respect to the incident beam. For the new transmission
measurements it has been taken into account that w is further effectively reduced by the
interaction of the atoms with the grating bars which changes with the grating rotation
angle.
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For the zeroth order diffraction intensity (o, 7) as a function of the grating
rotation angle 7 it is sufficient to consider the Fraunhofer diffraction limit with
due inclusion of the dispersion potential as developed in section 4.2.2. One has

se(7) 2

I :
9(190, 7_) x / dx eltp($,’7’) 7 (53)

where the angle-dependent boundaries s(7) and s.(7) of the illuminated region
inside each grating slit are given by Eq. (f.41]). For the quantum-mechanical
phase (z,7) one has

PRSI0 £ S .

2hvtana | 2 (G + t' tana)?

Co 1 1

~ Shwtana {C_f_(gr+t’tanoz)8}+
Cs 1 1

+ 2hvtan7{C_12_(Cl+t’tan7)2}+

Cy 1 1
8 hv tan vy {C_ﬁ (G +t’tan7)8} ’ (54)

with the impact parameters (; and (, measured from the respective left and right
boundary of the rotated slit given by Eq. (f:4§) and Eq. (f.4G). For brevity,
the grating bars on each side of the single slit that needs to be calculated in
the Fraunhofer limit have been assumed to be infinitely wide. The error in the
resulting zeroth order intensity associated with this approximation amounts to
less than 0.1 %. The angles o and v, and the quantities ¢ and o' are given by
Eq. (:37) ff. They account for the beam trajectories passing the grating bars at
different angles if the grating is rotated.

Without the atom-bar interaction the relative zeroth order diffraction inten-

sity ﬁgggg as a function of the grating rotation angle 7 is given by
I w?
olr) _ | (5.5)
I(0)  cos?Ts?
where
s <
w = cosT(s; — §)) = cosT rl=6 (5.6)
s —t(tan|r| —tanB) : B <|7] <Oy ,

is the effective geometrical width of the slit upon grating rotation as seen in beam
direction (z direction). At || = © the incident beam is completely blocked by
the rotated grating (cf. Eq.(f.34)). The geometrical situation is illustrated in
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Figure 5.5: A measured curve of the intensity of the zeroth order maximum of ground-
state helium atoms at 350K (v = 1904 ), diffracted from grating 5-3-1, as a function
of the grating rotation angle 7 is fitted with a theoretical curve (solid line) according
to Eq. (@) The two fit parameters are the ratio ﬁ = 0.853 + 0.008 of the grating bar
depth t and the geometrical slit width s, and the wedge angle 5 = (11 £ 0.5)° of the
trapezoid-shaped grating bars.

Fig.p.4. Note that in Eq. (5.5) another factor cos 7 appears because upon grating
rotation more slits are illuminated for an incident beam of constant width. With
inclusion of the atom-bar interaction the relative zeroth order diffraction intensity
1{;((’;%8 is found in excellent agreement with the measured intensity profile. Fig.@
shows a fit of Eq.(b.3) to an experimental transmission curve taken with the
relevant grating 5-3-1 and a beam of ground-state He atoms. The dispersion
interaction strength C3 for He and the silicon nitride material of the grating
is in the fit set equal to the theoretical value C5 = 0.136 meV nm? calculated in
chapter 3. A 30 % variation of C3 does not significantly affect the resulting values

of £ =0.8540.01 and the wedge angle 3 = (11 £ 0.5)°.

For the new generation of transmission gratings used in experiments today
the purely geometrical method that ignores the atom-bar interaction has been
abandoned in favour of the refined procedure as presented above. The old method
can no longer be applied because the wedge angles of the new gratings are smaller
than e.g. that of grating 5-3-1, and the grating bars are deeper as well. Fig.b.q
shows that the theoretical predictions of the zeroth order intensity with or without
atom-bar interaction differ considerably for a realistic example of a new grating
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Figure 5.6: The inclusion of the atom-bar interaction is compulsory for an accurate
determination of the wedge angle 3 and the ratio of the bar depth ¢ and the slit width
s for the new gratings used in experiments today. Shown in the plot is a typical
example with 8 = 5° and é = 1.5. The appropriate choice for a comparison with
the experiment is the theoretical curve Eq. (5.3) that includes the atom-bar interaction
(solid line) and that is qualitatively different from the theoretical curve without the
interaction Eq. (b.3) (dashed line). As a result of the repulsive part of the atom-bar
interaction the solid curve displays oscillations in the region around 7 = 0, as will be
discussed in section 5.2.

with # = 5° and é = 1.5. In particular, the region around 7 = 0 is constant for
the case without interaction, whereas the inclusion of the atom-bar interaction
leads to a rounding-off where otherwise the edges at 7 = £+ would mark the
wedge angle [3.

5.1.3 Slit Width

The final requirement for the characterization of the grating geometry is to de-
termine the slit width s. As the interaction of the particles with the grating bars
effectively narrows the slit one faces the task of determining simultaneously the
slit width s and the strength C3 of the attractive dispersion potential, whereby
the narrowing of the slit can be supposed to increase with C3 for intuitive reasons.
This unwanted effect is reduced if weakly interacting particles are used, for which
the best available choice are ground-state He atoms. An obvious and better alter-
native is to use X-rays which can be diffracted from the silicon nitride gratings [g]
but, unfortunately, no such experiment has been performed so far. Another good
alternative to measure the geometrical slit width s is to acquire accurate scanning
electronic micrographs of the rear side of the transmission gratings. From similar
images it has recently been possible to even derive quantitative results for the
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roughness of the trailing edges of the single grating bars to an accuracy of a few
Angstrgm [100].

Such a direct route not being available a good way of finding the slit width
s circumventing the interdependence with the dispersion strength C is to fit
theoretically calculated diffraction intensities for ground-state He atoms to the
corresponding experimental values with the slit width s as a fit parameter, and
adopting the theoretical value of C5 = 0.136 meV nm? as calculated in chapter 3.
The nth order diffraction intensity Io(v,) is given by

2mnog )2

Ig(ﬁn) X e_( d

dg/e~irne’ elel@) (5.7)

|
NI \Mlm

where the edge roughness o of the bars appears in a Debye-Waller-like exponen-
tial damping factor as explained earlier in section 4.3. The quantum mechanical
phase ¢(x) hereby is adopted from Eq. (£.14). In particular, the wedge angle /3
and the ratio ﬁ of the grating bar depth t and the slit width s as determined
in the previous section are contained in ¢(x) which is how they enter the fitting

procedure as fixed parameters.

In accordance with Eq. (1.32) the relative intensities I?Q(?OTS) from Eq. (@) have
(n

been fitted to the relative areas ’:(—0)) of the nth order peaks extracted from a series
of measured diffraction patterns of ground-state He atoms at various velocities
360.8 % < v < 1904.7 7% and grating 5-3-1. Besides the slit width s the edge
roughness o( has been used as a fit parameter. One obtains og = (1.6 £ 0.1) nm
and s = (66.7 £ 0.2) nm but it is possible that the value for the slit width s con-
tains a systematical error because there are qualitative discrepancies between the
theoretical and the experimental diffraction intensities as is shown in Fig.b. 1. It
is especially the theoretical third and sixth order intensities that deviate clearly
from the measured values. This does not change if different values for the disper-
sion interaction strength C'3 are used and it is observed for diffraction patterns
of various atoms and at all available velocities. In the past, the deviations have
been attributed to the noise signal in the experiment which produces a con-
stant background counting rate over all angles and affects most the low-intensity
peaks because for them the signal-to-noise ratio is highest. However, in the new
experiment now under consideration the background noise has been diligently
identified and then subtracted from each measured intensity, so the origin of the
discrepancies remains unclear.

In view of this unfavourable state of affairs the aim of this chapter need be
extended to offer an explanation for the described differences between theory
and experiment for ground-state He atom diffraction, furthermore, a reliable
method of determining the slit width s has to be given. This method has in
particular to be proved independent of the effect that causes the discrepancies
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Figure 5.7: Experimental diffraction intensities of ground-state helium atoms at v =
1769.9% (data points with error bars) are directly fitted by Eq. (5.7) (full circles joined
by a solid line). The theoretical dispersion interaction strength C3 = 0.136 meV nm?
and the grating geometry of grating 5-3-1 are fixed parameters. As fitted parameters
one obtains the slit width s = 66.5nm and the damping constant og = 1.6nm. The
fit shows systematic deviations especially at the +3rd and 4+6th order intensities. The
discrepancies persist for all reasonable variations that both fixed and fit parameters
can undergo.

between theoretical and experimental diffraction patterns. It turns out that these
investigations lead to the prediction of a phenomenon which adds a new quality
to the diffraction experiments currently in progress.

In order to check the value s = 66.7nm of the slit width obtained above
with the help of direct fits to the diffraction intensities a refined version of the
method is presented in the following that has been employed by Grisenti et al.
(2] for the simultaneous determination of the slit width s and the dispersion
interaction strength C5 of ground-state atoms and a silicon nitride transmission
grating. The technique is based on the Fraunhofer limit and can be applied to
atom diffraction with the transmission grating normal parallel to the incident
beam, i.e. no grating rotation, and the bars oriented vertically. Starting from
Eq. (6.7), the essential step is to express the logarithm of the quantity

N

O(£k) = / dgeii“d%e@@) (5.8)

0
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in terms of the cumulant expansion [I7]

In®(+k) = Z (j:j“'i)j R;, (5.9)

j=1

where the quantum mechanical phase

_ G J1 L
#(0)= 2hvtan 3 {C2 ¢+ ttanﬁ)z} (5.10)

is taken to arise only from the attractive dispersion interaction, neglecting the
repulsive part. As grating rotations are not considered, the slit is symmetrical
to its centre, so that the integral in Eq. (5.§) runs over half the slit width s, and
the phase in Eq. (5.10) takes only account of the interaction of the atoms with
the bar nearby. This yields for the relative intensities I(1J,) of the nth principal
diffraction orders

Io(¥,) o (F532)? o [ TNSeft .o [ TN0
To(00) ~ (R 1 07 sin ( g )—|—smh )| (5.11)

d eff

Hereby the effective slit width

Seff ' =S — 2Re(Ry) = 2Re/d( 9@ <5 (5.12)
0

reflects the fact that due to the attractive dispersion interaction between the
atoms and the grating bars the detected intensity transmitted through the slits
is effectively reduced because the attraction between the atoms and the bars
leads to scattering at large angles while the detection is limited to small angles.
The picture is not complete without the imaginary couterpart of Eq. (5.12) which
defines the quantity d as appears in Eq. (5.11]). One has

p
§:=2Im(R,) = QIm/dC el?(©) (5.13)
0
It is worth noting that with the definitions Eq. (5.12) and Eq. (b.13) it follows
from the starting equation Eq. (B.7) that
In(0) o s + 02 (5.14)
The variable o in Eq. (5.11]) is defined by

o =05 + Re(Ry), (5.15)
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with the second cumulant coefficient given by

s

2

Ry = (%)2 — R? - 2/d§§ei“"(o , (5.16)
0

and the grating bar edge roughness oy as mentioned above. It is important to
note that the cumulant expansion Eq. (5.9) is restricted to the first two terms in
the sum which leads to the formula for the diffraction intensities Eq. (5.11). This
is checked to be justified for ground-state He atoms by calculating the relative
diffraction intensities from the starting equation Eq. (5.7) with the specific V3-
phase p(z) from Eq. (b.1() based on the dispersion potential V3(I) = —<2, and
comparing them to the corresponding values as from Eq. (5.11), where sqg, 0,
and o are calculated with Eq. (5.1F) ff on the basis of the V3-phase. An example
for such a comparison is shown in Fig.b.8 for a typical velocity of the He beam
whereby the geometrical parameters of the grating 5-3-1 have been adopted. It
is evident from the figure that the restriction to two cumulant coefficients is
applicable for diffraction orders up to 7.

In accordance with the procedure described in [I2] the slit width s of the
particular grating 5-3-1, which is the one used for the diffraction of metastable
atoms, is found by fitting Eq. (5.11]) to the diffraction intensities of a series of
9 diffraction patterns of ground-state He atoms and grating 5-3-1 for 8 different
velocities 360.8 % < v < 1904.7 2. Hereby seg(v), 0(v), and o(v) are treated as
independent fit parameters, which rests on the assumption that for any attractive
potential similarly weak as the dispersion potential V3, the cumulant expansion
Eq. (5.9) practically converges after the second term. Technically, the zeroth order
intensity in the experiment is known to unwantedly arise also from He clusters
in the beam and is left out of the fit. Fig.p.9 illustrates on the basis of a typical
example that the experimental diffraction intensities are well fitted by Eq. (5.17)).

The slit width s is obtained in the next step by fitting to the experimental
dataset s.r(v) a corresponding theoretical curve from Eq. (5.17) which is cal-
culated with the specific Vs-phase, where the slit width s and the dispersion
interaction strength C'3 serve as fit parameters, and v is inserted according to the
experimental beam velocities. At this point it turns out that the experimentally
obtained values of s.g(v) and §(v) are impossible to match as respective real and

imaginary parts of the integral fos/ 2d¢e¥©) if () is taken to arise from a dis-
persion potential of the form V(I) = —%. In particular, the theoretical value
of 6 = 1.2nm is less than half as large as that extracted from the experiment
(0 ~ 3nm). The interested reader may check the figure captions of Fig.5.§ and
Fig.b.9 which are comparable in this sense.

The question arises whether it is justified to ignore the mismatch of § and
proceed by focusing on the effective slit width s,z alone in order to obtain the
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Figure 5.8: The principal order diffraction intensities of ground state He at v =
1769.9 2 calculated with the exact theory (full circles) are in excellent agreement with
those calculated with the help of the cumulant expansion [I7]. For the sake of clarity,
the latter data points are merely indicated by a solid line joining them. With the given
velocity the effective slit width becomes s.g = 65.2nm which is 1.5 nm less than the
assumed geometrical slit width s = 66.7nm. The difference s — seg is generally of the
same size as the parameter 6 = 1.2nm. With an edge roughness of o9 = 1.6nm the
calculation further yields ¢ = 2.6 nm.

slit width s. Equivalently, one may ask whether the parameters s, and o are
decoupled in the fit. Looking at Eq. (b.11]) is becomes evident that for typical
values of the parameters s,z &~ 65 nm and § &~ 3 nm their influence on the intensity
pattern does tend to decouple. Fig.b.10 illustrates that the third and sixth
order intensity are dominated by the sinh? term in Eq. (5.11]) whose argument is
essentially &, while the other intensities are dominated by the sin® term which
contains Sg.

It is thus obvious that the discrepancies between theory and experiment for
the third and sixth order intensities that at the beginning of this section motivated
the current investigation are now reflected in the large experimental values of 4.
Neither the large values of § nor the partial mismatch of the direct fit to the
measured diffraction intensities can be explained within the employed concept of
the V3 dispersion potential and the assumed grating geometry. In the case of the
direct fit one has to hope that the discrepancies of the third and sixth diffraction
order intensities do not have a negative influence on the fit that would lead to a
wrongly determined slit width s which is not acceptable in view of the desired
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Figure 5.9: The relative peak areas % as extracted from an experimental diffraction
pattern of He at v = 1769.9 * with grating 5-3-1 (data points with error bars) are well
fitted by the cumulant-based formula Eq. (5.11]) (solid line) with three independent fit
parameters sog = 65.6nm, 6 = 3.0nm, and ¢ = 2.4nm. These parameters can be
compared to those that in Fig.b.§ help to fit theoretical diffraction intensities for an
analogous situation.

1% accuracy of s.

On the other hand, for the s,z method it has become apparent that the
features in the measured diffraction pattern which might arise from an unknown
difference between the real and the theoretical potential, can be absorbed largely
during a fit by the parameter § while the important other parameter s.g which
will give the slit width s is expected to remain unchanged. In order to specify the
last point the measured third and sixth order intensities which most distinctly
mark the difference between the real and the theoretically assumed potential are
artificially varied by up to 50 % and then the fit of Eq. (5.11)) is repeated. In the
course of this numerical experiment the fitted value of s.g varies by less than
0.1 nm while the values of § are seen to follow the change in the intensities. From
this one may conclude that despite the discrepancies it is justified to compare in a
fitting procedure the values of s.¢ that have been extracted from the experiment
to those calculated on the basis of the given grating geometry and the V3 atom-bar
potential.

The slit width s of the grating 5-3-1 is obtained by an extrapolation to very
large velocities v — oo of the experimentally found dataset of seg(v) where v
stands for the beam velocities of the various diffraction patterns from each of
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Figure 5.10: The theoretical relative nth order diffraction intensities of He and a
grating like 5-3-1 have been calculated with the cumulant-based formula Eq. (5.11))
and are represented by the total height of the bars shown in the plot. The absolute
contribution of the sinh? term is equal to the open top section of the bars whereas the
shaded section represents the contribution of the sin? term. It can be seen that the
3rd and 6th order intensities are dominated by the former term which contains the
parameter 9.

which one data point seg(v) is extracted. The meaning of the limit v — oo is
that the influence of the atom-bar interaction as given by Eq.(b.10) vanishes
as v appears in the denominator. It has proven justified above to perform the
extrapolation with a corresponding theoretical curve that is based on the usual
dispersion potential V (I) = —%, and the grating geometry as determined earlier.
In particular, the assumption of straight rather than corrugated bar edges is
maintained as it has been shown in section 4.3 that the edge roughness in lowest
order leads only to a damping of the outer maxima in the diffraction pattern by
which the effective slit width s.g is not affected, although one should bear in mind
that the slit width s to be determined represents an average over all illuminated

slits and the vertical coherence length L, of the incident particles.

G.C. Hegerfeldt has pointed out [[01] that the theoretical effective slit width
Sef as plotted versus the inverse of the square root % of the beam velocity v is

well approximated by
1 1
Seff(%) =s—K % s (517)

hence the data points Seﬁ(%) are expected to fall on a straight line, whose
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intersection with the ordinate gives the slit width s while the slope

L 7TC3
K = 1/“%5 (5.18)

helps to determine the dispersion interaction strength C'3. This method which
is in the following referred to by ”the seﬁ(ﬁ) method” is easier to handle and

more transparent than the plot of se versus plain v as used in the past [12]. The
derivation of the simple result Eq. (5.17) starts from the definition Eq. (5.12) of
the effective slit width s.g which can be written as

s

Cs 1 1
Seff = Q/d( COS [m <? - W)] . (519)
0

The second argument

Cs 1
= 2
y(Q) 2hwtan B (¢ + ttan 3)? (5:20)
of the cosine in Eq. (5.19) is smaller than the first argument
Cs 1
= . 21
#(0) 2hv tan 3 (2 (5:21)

For SiN, grating bars with a realistic depth of ¢ = 50nm and a wedge angle
f = 11°, passed by a beam of ground-state helium atoms at a velocity v >500
one has

e 1
y(¢) <y(0) = o tan 3 (i tan )2 <0.01 (5.22)

With a beam of metastable atoms whose dispersion interaction strength Cj5 is up
to 50 times stronger than that of ground-state helium atoms the number on the
right hand side of Eq. (5.22) rises proportionally. A smaller wedge angle (3 is seen
to also increase the maximum value of y(¢). As long as 3 > 5° it is guaranteed
even for metastable atoms that y(¢) < 1 so that the influence of y(() as part of
the argument in Eq. (5.19) always amounts to less than half a cycle of the cosine.
In order to find an appropriate approximation one deduces from Eq. (5.19)

S

sur =2 [ d¢ {cosla(Q)] cosy(©)) + snfof@)Jsinly(O]} . (523)

For ground-state He atoms it follows from Eq. (5.29) that y(¢) can be replaced
by zero in Eq. (5.23). The error in s.g associated with this approximation turns
out to be less than 0.1 nm. Therefore one has

suft = 2 / d¢ coslz(¢)] (5.24)
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which can be solved analytically with the substitution £ := z(() as z(() is a
strictly monotonous function of . This yields

Seff = M/dg Czsf , (5.25)

2

where, for convenience, A := m has been defined. On integrating by parts

and using the definite integral [I16]

/dzsm(z) - T 0<s<?2 (5.26)
0

one finds

seff:\/Z

—2\c/<<> ] /ésm / Sm_ = (5.27)

0

1
:S—VQWAES—K%, (5.28)
where in Eq. (5.28) the integral [;° Cl has been neglected because its value amounts

to less than 3 % of the other integral, which corresponds to a correction to s.g of
less than 0.1 nm.

Fig. @ illustrates the application of the sef( \/—) method for ground-state He
atoms diffracted from grating 5-3-1. It is apparent that the experimental data
points are distributed along a straight line, in agreement with the theoretical con-
cept. The line indicated in the figure is obtained by a least-square-fit of Eq. (5.17)
to the data. The slit width s comes out of the fit as s = (66.8 £ 0.2) nm which
agrees with the value s = (66.7 & 0.2) nm that has been obtained earlier from
a direct fit of theoretically calculated diffraction intensities to the experiment,
whereby the theoretically calculated value for the dispersion interaction strength
Ctheo = (0.136 meV nm? has been used as a fixed parameter.

The slope of the line that fits the experimental data points seg( \/_) in Fig.

comes out of the fit as K = (=48 £ 7)nm /=, If this value is mterpreted
according to Eq. (5.18) in terms of the dispersion strength one finds C5 = (0.09+
0.3) meVnm?. In similar measurements with ground-state He atoms but with
different gratings it has for longer been a puzzle that the resulting values of Cj
are varying between 0.05meV nm? and 0.16 meV nm?. A possible explanation for
this unusual behaviour is that the He atoms do not experience the total wedge
angle 3 of the bar but rather a local wedge angle 3'°¢ which describes the average

:>




104 CHAPTER 5. DIFFRACTION OF METASTABLE ATOMS

67

66,5 - _

66 — —

65,5 —

seff(v'm) (nm)

65— —

64,5 .

\ \ \ \ \
0 0,01 0,02 0,03 0,04 0,05 0,06

Vfl/2 (I’I]/S)illz

Figure 5.11: The values of the effective slit width s.g as a function of the inverse
of the square root of the velocity v as determined by fitting Eq. (5.11]) to measured
diffraction intensities at several v fall on a straight line as predicted by Eq. (5.17). The
errors are estimated from those of the respective fits. By extrapolating the straight
line, which is the result of a two-parameter least-square fit of Eq. (5.17), towards the
ordinate one finds the geometrical slit width s = (66.8 & 0.2)nm. From the slope
K = (=48 £ 7)nm /™ of the line the dispersion strength C3 can be determined (see
text).

shape of that protruding portion of the bar side, with which the atoms are actually
in contact during their passage through the slit. This hypothesis implies that the
real shape of the horizontal cross-section through the grating bars deviates from
an exact trapezoid in that the sides are slightly concave, i.e. bent inwards (cf.
Fig.p.12). Considering the fact that the grating bars are the result of an etching
process the notion of concave bar sides appears plausible.

For ground-state atoms whose dispersion interaction with the bar material
is comparatively weak and short-ranged any part near the narrow face of the
bar that is further away from a given trajectory than a certain distance of a
few nanometers can be neglected in good approximation. This is the reason
why the depth t of the grating bars has dropped out of the formula Eq. (5.28)
for the effective slit width s of grating 5-3-1 with ground-state He atoms. A
numerical experiment with theoretical diffraction patterns of He from a virtual
grating 5-3-1 reveals that only a 10 nm-thick slice at the foot of the grating bars
bears any relevance for the diffraction, while the total bar depth is t = 57 nm (cf.
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7C3
htan 3

ground-state He atoms and grating 5-3-1 is consistent with the theoretical value
(O3 = 0.136 meV nm? of the dispersion interaction strength for He and SiN, if the
wedge angle 3 = 11.0° is replaced by 3'°¢ = 15.7°. This suggests a shape similar
to that shown in Fig.p.12.

Fig.p.12). For example, the value of the slope K = just determined for

Figure 5.12: As the grating bars are the result of an etching process during the manu-
facturing it is probable that the sides of the bar cross-section shown in the figure deviate
from the idealization of a straight line (dotted line on the left of the bar). Experimental
evidence suggests that the cross-section rather has concave sides as indicated in the
figure, which leads to the concept of a local wedge angle 3'°¢ especially at the bottom
of the bar (z = 0). The protruding edge there in place interacts most with the atomic
beam that passes the bar and thus determines the diffraction rather than the averaged
overall wedge angle .

It is clear that during the measurement of the transmitted zeroth order in-
tensity Io (Yo, 7) as a function of the grating rotation angle 7 the slightly concave
region of the bar sides is hidden behind the protruding top and foot edges so that
the total wedge angle # determined by this experiment actually describes the an-
gle of a straight line between the top and foot edge of the bar with respect to the
grating normal. As the supposed bar sides bend away from the atomic trajecto-
ries it can be expected that the dispersion interaction appear somewhat reduced
in the transmission experiment. This has been qualitatively confirmed in a series
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of attempts to simultaneously adjust the ratio % of the bar depth t and the slit
width s, the total wedge angle 3, and the dispersion interaction strength Cj5 in
a fit of Eq. (@) to the measured intensity profile ﬁg%gg; With due caution be-
cause of a quite shallow minimum of the sum of squared deviations in this type of
fit the dispersion interaction strength was found to be C3 = (0.1+0.02) meV nm?
which is smaller than the theoretical value C3 = 0.136 meV nm? and in agreement
with the hypothesis of slightly concave bar sides.

Another check of the hypothesis is to apply the seg(%) method to differ-
ent atomic species diffracted from the same grating. The best choice is to use
ground-state He atoms and Dy molecules because they have virtually the same
mass (mpe = 4.002602 a.m.u., mpy = 4.048204 a.m.u.) so that beams of the two
species have about the same velocity for a given beam source temperature. In
the diffraction experiments of the present type the internal degrees of freedom of
the Dy molecules can be neglected and the particles can be treated like atoms.
As the only relevant difference between He and D, remains that the latter attains
a dispersion interaction strength C'3 with silicon nitride which is three times as
large as that of He atoms.

If the bar cross-section were an exact trapezoid one would expect from the
seg(%) method when applied to both species that the values of the determined
slopes K be subject to

K?(He)  Cj(He)
K?(Ds)  C3(Dy)’
as follows from Eq.(5.18). Fig.p.I3 displays the result of an examination of

diffraction patterns of ground-state He atoms and Dy molecules with grating 5-
2-2. By least-square-fits of straight lines to the respective datasets Seﬂ‘(ﬁ> of
He and Dj one obtains for the slit width s = (70.5 £ 0.2)nm (He) and s =
(70.7 £ 0.2) nm (D) which is satisfactorily consistent. For the slopes in the
previously used units one has K = (=37 £ 5) (He) and K = (=73 £ 10) (D2).
A comparison with the ratio of theoretical values for the dispersion interaction

strengths Cj, like Eq. (5.29) yields

K2(He) < Cg(He)
K2?2(Dy)  C3(Dy)

(5.29)

0.257 =

= 0.330 (5.30)

which is in disagreement with the theoretically expected equality of both ratios
for an exact trapezoid shape of the bars. Assuming concave bar sides and the
theoretical values of C5 to be correct, the fitted slopes K in Fig. b.13 are con-
sistent with locally averaged wedge angles ($'°¢ = 25.4° (He) and ¢ = 20.3°
(Dg) while the total wedge angle of grating 5-2-2 is about $ = 13.0°. This result
is intuitively correct because due to their larger dispersion interaction strength
C3 the Dy molecules are sensitive to a larger portion of the bar side which on
average is more parallel to the beam trajectory, i.e. closer to the total wedge
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Figure 5.13: From diffraction experiments with grating 5-2-2 [I15] the values of
Seﬁ(%) for ground-state helium (full circles) and Do (full squares) are extracted and
fitted with straight lines according to Eq. (5.17). The result for the geometrical slit
width s = (70.7£0.2) nm (He) agrees well with that for Da: s = (70.5+£0.2) nm. From
the measured slopes (-3745)107%y/ms (He) and (-734+10)10~%,/ms (D2) conclusions
on the wedge angle of the grating bars can be drawn.

angle 3 = 13.0°. The average local wedge angle 3'°¢ = 20.3° for Dy molecules is
therefore expected to be smaller than that of He atoms which are sensitive only
to the very foot of the bar where the local wedge angle 3'°° = 25.4° is largest.

These considerations show that the method of determining the slit width s of
grating 5-3-1 by direct fits of theoretical to experimental diffraction intensities,
which stands at the beginning of this section, is in fact not consistent with the
seg(%) method despite the similar results for s. The reason is that the direct
fit is based on an ideal trapezoid bar cross-section with an overall wedge angle
(8 = 11° whereas the Seﬁ‘(%) method in the previous paragraph indicates that the

diffraction of helium atoms is determined by a local wedge angle 3°¢ = 15.7° near
the foot of each bar. It turns out that during the fit the systematic mismatch
of the third and sixth diffraction order intensities leads to an error that cancels
with that arising from the undue use of the overall wedge angle instead of the
appropriate local wedge angle 3'°¢ = 15.7° of grating 5-3-1 for helium atoms.

In order to illustrate this coincidence the third and sixth order are assigned a
reduced weight during a new fit while the local wedge angle 3'°¢ = 15.7° is used
to replace the formerly employed total wedge angle § = 11° as a fixed parameter.
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Figure 5.14: According to the hypothesis of concave bar sides the measured diffrac-
tion intensities of ground-state He at v = 1769.9 7+ are compared with a theoreti-
cal pattern which is based on a local wedge angle $'°° = 15.7°. On assigning low
weight factors to the +3rd and +6th diffraction orders and using the theoretical value
C3 = 0.136 meV nm?® for the dispersion interaction strength the geometrical slit width
is fitted as s = (67 = 0.2) nm which is in agreement with the result of the Seﬂ(%)
method. By comparison with Fig.b.7 the full-weighted maxima are seen to be much
better reproduced in the present fit.

Fig.b.14 shows that by leaving out the third and sixth order the other diffraction
order intensities are clearly better reproduced than in the comparable fit shown
in Fig.b5.7. The new fit yields for the slit width s = (67.0 + 0.2) nm which is
consistent with the result of the Seﬁ“(%) method, while the other fit parameter
09 = 1.7nm is practically unchanged.

Finally, it remains to say that the above considerations are independent of
retardation effects. This has been checked by fitting the cumulant-based relative
diffraction intensities Eq. (5.11) to the theoretical diffraction intensities given
in table l.1. For the non-retarded case one obtains s = (65.3 £ 0.15) nm,
0 = (1.3+£0.1)nm, and ¢ = (0.6 £ 0.1) nm, which is practically identical to
the retarded case which yields s.¢ = (65.4 £ 0.15)nm, § = (1.2 £ 0.1) nm, and
o = (0.6 £ 0.1)nm. From this example it can be concluded that retardation
effects have no significant influence on the effective slit width seg-.
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5.2 Repulsive Potential

A closer look at the figures Fig.p.T1 and Fig.p.13 reveals that the curves of the
experimentally determined curves of the effective slit widths seg( \/—) for different
atomic species and different gratings bear a certain resemblance in that the data
points seem to oscillate about the straight line that has been fitted to them
according to Eq. (5.17). It will be shown in the following that it is theoretically
expected to observe some kind of oscillation in the seg( curves. The origin of
the new feature lies in the repulsive short-range part 01{ he atom-bar potential,
in particular, the depth D of the potential well near the surface.

In order to understand the cause of the oscillations of Seﬁ(%) it is sufficient
to look at the simplified expression Eq. (5.24) for s.g which is re-stated here for

clarity:
; A
Seff = 2/d§ Cos (CQ) , (5.31)
0
with A = %Ut . Recalling the results of the eikonal approximation in chapter

2 one notes that the divergence of the argument of the cosine in Eq. (5.31)) for the
limit ¢ — 0 is a direct consequence of an analogous behaviour of the dispersion
potential V(I) = —l—?’ when the atom-surface distance ! tends to zero. Including
the atom-surface repulsion one has

—Cs5 Oy

V()= <+ o

(5.32)

which in the eikonal approximation and including the grating geometry leads to

s

[ A B
Sef = 2 [ dC cos ( — —) , (5.33)
(a2

which is just the generalization of Eq. (), and where B := W has been
defined. Fig.p.15 shows a plot of the argument
A B

e(¢) = e (5.34)

of the cosine in Eq. (5.33). A simple way to include the contribution arising from
the repulsive part of the potential is to approximately set

@(C)%{ & (>6 : (5.35)

oo (<
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Figure 5.15: The quantum mechanical phase ¢(¢) for ground-state He atoms and a
silicon nitride grating bar runs through a maximum at ( = {y = 0.12nm near the bar
surface at ¢ = 0 if the repulsive part of the atom-bar potential is taken into account.

where )
Cy ) 6
= = 5.36
o= (g (5.36)
marks the maximum of the function ¢(¢). Hereby it is worth noting that (y does

not depend on the velocity v. The approximation Eq. (5.35) is also indicated in
Fig.p.15. As a consequence of the approximation, Eq. (5.33) can be written as

s

Seff = 2/d( cos (%) ) (5.37)

o

where the lower boundary of the integral has been replaced by the cut-off (j
which takes approximate account of the repulsive part of the atom-bar potential.
Applying the same substitution that has led to Eq. (5.25) one finds

. &
set = VA {%zsgr’—z/dgsjg . (5.38)

2

For ground-state He atoms and the SiN, grating bars the cut-off comes out as

Co = 0.12nm, while (0.5nm)? < A = %ﬁﬁﬁ < (1.0nm)? (note the v dependence
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of A). In the limit {; — oo the upper boundaries in Eq. (5.38) tend to infinity and
the previous result Eq. (5.17) is obtained, whereas for the given values of (5 and
A the upper boundaries are 17 < g%’ < 70. The reason for the oscillations in the
Seft curves becomes apparent after a look at the plot Fig. 5.1 of the integrand in
Eq. () Apparently, functions of the type of *2& converge slowly so that from

Ve

sin(€) /sqrt(&)

40

Figure 5.16: For large and small velocities v, {max varies between 17 and 70, so that the
integral (shaded area) as a function of the velocity v displays an oscillatory behaviour.

Eq. () an oscillatory behaviour of s.g is expected as the upper boundary % =

%1}57;5% of the integral varies with the beam velocity v. On further evaluation,

Eq. (5.38) reads

sin &

dé\/g7

(5.39)

\o’?okb

Seff = S — 2(y COS (%) — WA
0

'S
S

[
|

which shows that another oscillating cosine term appears in the expression. In
view of the coarse approximation that has been made for the repulsive part of
the potential in Eq. (5.35) the amplitude of the oscillations, which is of the order
of a few Angstrom, marks an upper limit to the oscillations observed with the
exact potential.
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In an exact treatment, the effective slit width s.g is given by

S

e = Re / dz €@ = Re fyi (Vo) , (5.40)
0

where the quantum mechanical phase ¢(z) that includes the repulsion is given
by equation Eq. (.I4). The origin of the oscillations of ser as a function of the
velocity v can be visualized by plotting the integral in Eq. (5.4() as a vectorial
sum of complex numbers dz €#*) in the complex plane. The effective slit width is
then the difference between the real part of the starting point and the end point of
the resulting track, while the quantity 6 corresponds to the imaginary part of the
difference between these points. Furthermore it can be seen from Eq. (5.14) that
the zeroth order intensity is given by the absolute value of the distance between
the start and the end of the curve in the complex plane. Fig.b.17 shows such
a plot for ground-state He atoms at v = 1500 diffracted from grating 5-3-1.
The figure shows that the atom-bar interaction at both ends of the slit (both
ends of the curve) bends the path in the Gaussian plane so that with increasing
potential near the bar surface the track rolls up in a spiral whose sense of rotation
is determined by the sign of the force the atom experiences at a certain distance
from the bar surface. Without repulsion each end point of the curve converges
in the centre of a single spiral that is produced by the attractive dispersion
potential. With repulsion, the process of convergence is interrupted when the
repulsion starts dominating the attraction for distances close to the bar. This
changes the sense of rotation of the spiral so that the end pieces of the track
move out of the centre region of their respective vertices before they wind up
themselves as a result of the increasing repulsion at the bar surface. The actual
convergence is thus achieved in points off-centre with respect to the convergence
spirals of the attractive interaction alone.

By increasing the particle velocity v one reduces the curvature of the whole
track because in Eq. (5.40) the phase ¢(z) is proportional to * (cf. Eq. (f.14)).
This becomes manifest in the curves shown in Fig.p.17 in that the spirals un-
wind. During this process the mentioned appendices which contain the important
end points of the track rotate about the centre of the spirals to which they are
attached. This leads to an oscillation of the distance between both end points
that is observed in the experiment and becomes apparent in the oscillations of
Seﬁ‘(%) in Fig.p.13. The rotation of the end pieces of the convergence spirals
upon variation of the beam velocity v is illustrated in Fig. b.18.

From the figure it can be seen that the value of the oscillating part of seg(v)
runs through a local maximum if the end point of the track lies to the right of the
centre of the larger convergence spiral, because then the additional length of the
appendix is counted as real and so increases the effective slit width s.g. One may
approximately characterize the situation by the complex differential increment
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Figure 5.17: The integral Eq. (5.40) which is equal to the slit amplitude fq(Jg) is
visualized in the complex plane as a vector sum of complex differential increments
dz ¢?®) . The complex value of the slit amplitude can be read from the plot as the
end point of the track which starts at the origin. The curvature depends in sign and
magnitude on the value of the phase ¢(z) which in turn depends on the atom-bar
potential. In the two in-sets the end regions of the track are shown where the potential
minimum near the bar surface is reflected in a change of curvature so that the track
does not wind up in a single spiral as would be the case for a solely attractive atom-bar
potential but rather evades the centre of the spiral and forms a little appendix where
it forms a quickly rotating vortex up as a result of the strongly increasing repulsion of
the atoms near the bar surface.

d¢ e#(€) being real and positive at the turning point of the trackf]. This means
that the phase ¢((p) (cf. Fig.b.15) is an integer multiple of 27. With the help of
Eq. (5:36) for ¢y, Eq. (5.34) yields in this case

4/3 1/3
SD(CO) — n27T e 3 CS 1/3 = K2 73 C3 1/3 , (541)
8hv, tan 3 Cy 8mu, Cy

where K is the slope of seg(%) as introduced in Eq. (p.18).
For very high velocities v the tracks of the type shown in Fig.p.18 of Fig.5.T7

'i.e. where the curvature changes sign
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Figure 5.18: The real coordinate of the end points of each track is identical to the
effective slit width seg while the imaginary coordinate gives the quantity §. The cen-
tres of the larger spirals of each track represent the values of seg and § without the
repulsive interaction. These centres wander along as v is increased. With the repulsive
interaction included the end points of the track are found at the end of little appendices
which rotate about the centres as v is increased. This rotation causes the oscillations
of § and s.g as functions of the beam velocity v.

are not curly but straight and real with a length s.g(v — 00) = s, equal to the
geometrical slit width. Decreasing the beam velocity the right half of the track
bends upwards, and for the velocity

30,/

V1 = K2 —_—
1672 03/3

(5.42)

the track has completed its first revolution. According to Eq. (5.41]) the subse-
quent revolutions of the track as a consequence of a decreasing beam velocity v

are completed at velocities
U1
Uy = — . 5.43
. (5.4

For the oscillations of 3&?(%) in Fig. this means that the maxima of the
modulation are expected to appear at \/Lv_l, £/ %, \/ %, etc. From the definition
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Eq. (:32) of the Lennard-Jones potential V(1) the well depth

D= 2V3 (C5)3/2 (5.44)

NG

can be derived, which is equivalent to

(582) -(@)"

Inserting Eq. (5.45) into Eq. (5.42) one finds after a little algebra

3
3 Un \ 2
D ~n? 147Gy (F) , (5.46)
which makes it possible to determine the well depth D from the maxima of the
modulation of Seﬁ‘<ﬁ).

In order to illustrate the concepts just explained and despite the few number
of available data points it is tried to fit theoretical seff(\%) curves that include
the repulsive part of the atom-bar potential to the measured curves of He and
D, with grating 5-3-1 and 5-2-2 as presented earlier. The results are shown in
Fig.p.19 and Fig.p.20. The potential well depths D that have been employed in
the fit are for Do D = —50.8 meV and for the two samples of He D = —34.6 meV
which are reasonable values in view of the known well depths of these particles
interacting with other insulator surfaces. For the special amorphous silicon nitride
material of the gratings, no comparable values are available in the literature. It
is somewhat reassuring to see that for the two samples of He diffracted from the
gratings 5-2-2 and 5-3-1 the same atom-surface parameter set C3, Cy is able to
mimic the local trends in the respective seg(%) curves.

The fact that the effective slit width can reveal details of the atom-bar poten-
tial concerning the repulsive part adds a new quality to the ongoing diffraction
experiments. Unfortunately, the experimental accuracy has so far not been aimed
at measuring the effect, especially the limited number of data points in the mea-
sured Seﬂ‘(%) curves makes it difficult to infer any structure more complicated
than a straight line. An improvement on this issue can obviously be achieved by
providing more data points.

A possibly more distinct evidence of the same effect could be achieved by
measuring the absolute intensity I () of the zeroth diffraction order at different
beam velocities v. According to Eq. (b.14) one has

In (o) o< 82 (v) + 6*(v) . (5.47)

In Fig. b.17 this quantity is equal to the squared absolute distance between the end
points of the shown curve. The rotation of each end point with varying velocity
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Figure 5.19: The data points of the effective slit width Seﬁ"(%) for ground-state He
(circles) and Dy (squares) are compared with theoretical curves that take account of
the atom-surface potential well. Adjusting the theoretical curves by hand with the
help of the repulsive potential strength Cy reasonable agreement with the experiment
is achieved for values of Cy that correspond via Eq. (5.44) with potential well depths

D = —34.6eV (He) and D = —50.8eV (D2).

v as described above and illustrated in Fig.p.I1§ clearly leads to an oscillatory
behaviour of I (). The magnitude of the expected oscillations can be estimated
from Fig.b.21 where Io(v) is plotted as a function of the beam velocity v, for a
grating like 5-3-1 and an atom-surface potential V(1) like in Eq. (5.32).

It may be pointed out that the presence of steps in Fig. .21 is a distinct feature
of matter diffraction which is absent in the diffraction of light of a comparable
wavelength. The steps reflect a quantisation of the transmission through the
grating as a result of Planck’s constant appearing in the denominator of the
phase ¢(z) in Eq. (f.14) that arises from the atom-bar potential.

Another way to observe this quantised transmission is to repeat the measure-
ment of the zeroth order intensity Io(7) under grating rotations 7 at a higher
precision than has been sufficient so far. In this type of experiment the change in
the phase p(x, 7) is not accomplished by changing the beam velocity v but rather
through the grating rotation 7 by which the atomic beam passes the grating bars
at different angles on each side of the slit. The theory presented in chapter 4 is
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Figure 5.20: The atom-surface potential well depth D = —34.6¢eV as fitted to data (cf.
Fig.p.19) for ground-state He atoms diffracted from grating 5-2-2 reproduces reasonably
well also the data of Seﬁ(%) obtained for the grating 5-3-1.

straightforward in predicting a transmission curve with the repulsive potential
included. Fig.p.22 shows a comparison of an experimental transmission curve of
ground-state He atoms and grating 5-3-1 with a theoretical curve. It is not pos-
sible to speak of any discernible structure in the experimental curve that could
be compared to the theory. The noise that is visible in the random fluctuations
of the experimental curve can be traced back to mainly mechanical reasons in-
side the apparatus so that it appears feasible to achieve higher precision in this
type of experiment, which would allow to to check for the predicted oscillatory
behaviour.

Concluding the issue, it is stressed again that the oscillations are a conse-
quence of the fact that there is potential well at the bar surface, regardless of its
specific form. In particular, the oscillations are expected to be observable despite
the corrugation of the bar surface. In lowest order, as presented earlier, this is
true because the assumption of locally straight bar edges renders the bar surface
potential equal to that used in the above predictionsfl. In a detailed treatment,

%In Fig.p.15, p.109 the corrugation does not shift the maximum of the phase ¢(¢) because ¢
is defined as the distance from the corrugated edge and hence follows the undulation as different
vertical positions are considered
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Figure 5.21: The dashed lines mark the experimentally accessible velocity range for
ground-state He atoms. Within this range, the theory predicts clearly discernible steps
in the absolute intensity of the the zeroth order diffraction maximum.

the effective surface potential and hence the relevant quantum mechanical phase
(z) is modified by the corrugation, for example through terms with a different
power law with respect to the impact parameter. However, this does not alter the
central feature that the phase runs through a global maximum near the surface
which leads to the oscillations.

5.3 Error Analysis

As the reader is now familiar with most intricacies of the atom diffraction tech-
nique it is considered the best opportunity to embark on a little digression con-
cerned with the origin of the frequently mentioned difference between the real
and the theoretically assumed form of the interaction potential of the atoms and
the grating bars. It is illustrated in the figures Fig. 5.7 and Fig. .14 that the mea-
sured diffraction intensities for ground-state He atoms exhibit some systematic
deviation from the theoretical predictions, especially for the 3rd and 6th diffrac-
tion orders. The same discrepancies also appear for other ground-state species
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Figure 5.22: The measured zeroth order intensity of ground-state He atoms at v =
1769.9 2 (full circles with error bars) as a function of the rotation angle 7 of grating 5-3-
1 is compared with a theoretical curve that takes account of the atom-surface potential
well. Despite some promising features in the experimental data there is no significant
agreement between the theoretically predicted oscillations for small rotation angles and
the experimental data which suffer most from errors in this region of interest.

such as those measured by Grisenti et al. [I2], and they cannot be removed con-
sistently for all beam velocities v by variation of the parameters ¢, d, s, and 3 that
describe the grating geometry, nor by using different values for the dispersion in-
teraction strength C3 or the damping parameter oy. As mentioned earlier, the
possibility of experimental background noise has been ruled out recently when
the diffraction experiments with ground-state He were repeated after a careful
over-all check of the apparatus. In particular, the grating orientation has been
accurately fixed to the standard position of the grating normal being parallel to
the incident beam, and the bars at right angles to the scattering plane. A number
of other issues, e.g. the purity of the incident beam have also been settled. They
are dealt with later on in connection with the diffraction of metastable atoms.

From the above considerations it is concluded that the origin of the discrep-
ancy must lie beyond the theoretical description originally available. In sum, this
description is based on strictly two-dimensional scattering theory with ideally
trapezoid-shaped grating bar cross-sections and straight vertical bar edges. The
atom-bar interaction is initially assumed to consist of an infinitely repulsive po-
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tential and an attractive term that rests on the non-retarded limit of the dipole
approximation of the dispersion potential between the atom and the material of
the grating bars. As the need now arises, the given theoretical concept leaves
room for many hypotheses and possible improvements in order to explain the
deviant features.

As a first possibility, retardation effects have been shown in section 4.4 to
be too small to explain the deviations which amount to up to 50% in the third
and sixth order diffraction intensities, moreover the theoretical 3rd and 6th order
intensities tend to become smaller with retardation included which adds to the
difference between theory and experiment.

Second, the presence of some repulsive potential near the surface has been
shown to lead to small oscillations of the diffracted intensities as a function of
the beam velocity v but the amplitude of the effect is generally too small to
account for the observed discrepancies.

Third, the possibility of significant terms with other power laws being present
in the atom-surface potential, describing higher multipoles of the dispersion in-
teraction, or arising from the surface corrugation, cannot account for the discrep-
ancies. In chapter 4 it is shown that the quantum mechanical phase ¢(z) can be
easily calculated for those additional potentials of the form

0,

[ ’

V(1) n€{2,3,4,..}. (5.48)
On comparing the resulting theoretical diffraction intensities and the theoretical
Seﬁ‘(%) curves it becomes apparent that in order to significantly alter the the-
oretical 3rd and 6th order intensities the additional potentials have to be very
strong which leads to a clear deviation of the seﬁ(\%) curve from a straight line

which is not observed in reality. In other words, the measured Seﬂ(%) curve rules
out the possibility of significantly strong additional potentials, hence they cannot
be the origin of the observed discrepancies between theoretical and experimental
diffraction intensities. The same is true regarding the repulsive contribution to
the atom-surface potential which can be modelled by an additional % term in
the potential. The adaption of this term to the idealized grating bar geometry
has been demonstrated in section 4.1.

In section 4.5 the theoretical treatment of adsorbate layers on the grating bars
has revealed that such layers can indeed produce modifications in the theoretical
diffraction intensities that resemble the measured features. However, in recent
experiments the transmission gratings are heated up to a temperature of a few
hundred degrees Celsius which is known to evaporate any possible adsorbate
layer, and the discrepancies in the intensity pattern are seen to persist [102].
This allows to conclude that the discrepancies are not caused by adsorbate layers
on the grating bars.
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The influence of the bar surface corrugation is shown in section 4.3 to lead to
a mere damping of the diffracted intensities which cannot explain the deviations
of the 3rd and 6th order intensities. In higher order, the corrugation can lead
to an effective change of the atom-bar potential, which in principal may affect
the relative intensities. The corrections to the potential can always be expressed
within an expansion of the total potential in terms of a sum of inverse power laws
like Eq. (5.48). It has been demonstrated above that any significant contribution
from terms of a power law different from the usual dispersion potential V3(1)
leads to a change in the effective slit width seﬁ(\/i;) which is not observed in
the experiment. Therefore the corrugation of the bar surfaces cannot deliver the
desired explanation of the discrepancies between theoretical and experimental
diffraction intensities.

As the only plausible reason for the discrepancies remains that due to the
manufacturing process the slit width s, as averaged over the width of the illu-
minated spot on the grating, and the vertical coherence length L,, varies over
the total height Y &~ 5 mm of the illuminated spot. Generally, the vertical coher-
ence length L, of the incident beam is much smaller than the total illuminated
height Y, so that the detected intensity as a function of the scattering angle ¢
is always to be understood as an incoherent superposition of diffraction patterns
generated at different vertical positions on the grating. In the case that the av-
erage slit width s is not constant for different vertical positions on the grating
the measured diffraction intensities are an incoherent superposition of different
diffraction patterns, namely those arising from different average slit widths.

With the help of this work’s repeatedly employed theoretical example of
ground-state helium atoms at v = 1769.9 = diffracted from grating 5-3-1 it is
shown in Fig.p.23 that an incoherent superposition of diffraction intensities aris-
ing from slit widths uniformly distributed between s—4 nm and s+4 nm is practi-
cally equal to a single pattern generated with the measured slit width s = 66.8 nm,
except that the 3rd and 6th order intensities of the former pattern are higher by
a factor two. This is remarkable because from Fig.b.14 it can be seen that the
theoretical diffraction intensities based on the new concept of a local wedge angle
(3¢ are in agreement with the measured intensities except for the 3rd and 6th
order. With the assumption on the varying average slit width s the theoretical
and experimental patterns are in complete agreement for all beam velocities.

The Debye-Waller damping which is observed in the diffraction experiments
with ground-state helium atoms is consistent with a variance 02 = (1.6nm)? of
the bar edges. From this the standard deviation As of the slit width s is obtained
by [T03]

As=14/20% =+5.12nm ~ 2.3nm. (5.49)

The uniformly distributed slit widths used above have a standard deviation As
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Figure 5.23: The experimental diffraction intensities (data points with error bars)
are prefectly reproduced if the theoretical intensities are the result of an incoherent
superposition of diffraction patterns arising from different slit widths s. In the figure,
the example of ground-state He atoms is presented that is comparable to the figures
Fig.b.7] and Fig.p.14. The best fit without any incoherent superposition (open circles
connected with a solid line) fails to describe the +3rd and +6th order intensities. An
incoherent superposition with slit widths uniformly distributed between s — 4 nm and
s+4 nm perfectly adjusts the +3rd and £6th order intensities while the other intensities
remain unchanged.

of
A 1/2
~ 1

As = 3 /da: z? nm &~ 2.3nm, (5.50)

—4
which coincides with the measured value As. Note that As and As are supposed
to be of entirely different origin. The first describes the bar edge corrugation and
refers to a coherent effect, while the second suggests that the average bar width
varies over the height of the grating.

It is concluded that the proposed concept is well suited to account for the
measured 3rd and 6th order intensities. In reality, the average slit width s is
presumably rather normally than equally distributed along the height of the
grating, but this is not expected to change the quality of the result. A good way
to check the entire hypothesis is to diffract X-rays from the gratings used for the
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atom diffraction. Due to the variation of the average slit width the diffracted
X-ray intensities are expected to display the same deviations, namely their 3rd
and 6th order intensities are to be measured twice as large as the Fraunhofer
diffraction theory predicts.

5.4 Diffraction Experiment with Metastable Atoms

This subsection analyzes a series of diffraction experiments that have been per-
formed in December 1999 by R. Grisenti at the Max-Planck-Institut fiir Stro-
mungsforschung, Gottingen with metastable He* and Ne* atoms in order to de-
termine the dispersion potential strength C3 of both species with the silicon
nitride material of the transmission grating 5-3-1 that was used throughout.

Experience has shown that the interpretation of the measured diffraction pat-
terns in terms of the interaction constant C3 is quite sensitive to a number of
potential errors arising from the geometry and orientation of the transmission
grating, and from the way the experiment is carried out. In order to achieve a
relative error of at most 30 % in Cj it has proven inevitable to look at the sources
of error in detail. The essential steps toward this goal have already been done
in the preceding sections where the geometry of the transmission grating 5-3-1
has been found to be suitably characterized by the period d = 100nm, the slit
width s = (66.8 + 0.2) nm, and the total wedge angle g = (11 4 0.5)° of the
grating bars. The bars are assumed to be ideal trapezoidal prisms because from
the strong dispersion interaction of the metastable atoms it can be expected that
the local inclination of the bar sides will be effectively averaged over the whole
depth ¢ = 57nm to give the total wedge angle 3. Using this assumption one
avoids the arbitrariness of estimating the effective local wedge angle as specified
for both diffracted atomic species at the price of an error in Cy of about 10 %.

The remaining piece of investigation into the potential errors is concerned
with the experimental apparatus a schematic yet detailed drawing of which is
shown in Fig.b.1. The following description of the experiment focuses on those
aspects that are relevant for a general understanding and, in particular, for the
discussion of the potential errors. A comprehensive account of the experimental
details has been published in [54].

5.4.1 Beam

From a nozzle in the wall of a continously refilled high pressure chamber located
at z = —115cm a supersonic jet of either He or Ne gas streams out into the
vacuum inside the apparatus. The beam is directed along the z axis towards
the transmission grating 5-3-1 at the origin of the chosen coordinate frame. The
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grating bars are vertically oriented in y-direction while the z-axis is taken to
point to the right when seen from the position of the beam source. Between
an electrode inside the nozzle and a metal funnel (”"skimmer”), whose narrow
end at z = —112cm points toward the nozzle, a high-voltage discharge spark is
maintained during the operation of the source. The discharge raises the atoms
in the beam to all sorts of excited states which relax to the ground-state before
the atoms reach the grating except for the respective metastable states of the
He and Ne atoms whose life-times are known to be at least 10 times longer than
it takes for the atoms to reach the detector at z = 730mm. From the 10!
atoms that arrive at the grating per second an average of only 10° atoms are
in metastable states, a disadvantage which is compensated for by the very high
detection efficiency of the channel plate detector. After leaving the turbulent
zone at the skimmer the atoms essentially propagate without mutual collisions
in the beam whose atomic number density is about 10'?/m?, corresponding to
an average mutual distance of the atoms of about 0.1 mm. The natural velocity
distribution of the source of metastable atoms can be characterised by a Gaussian
distribution around the mean velocity vy whose measured variance o2 in the case
of He* is 2» = 13.3%.

It is known from other experiments [IT3, [14] with beam sources of the given
type that 98 % of the metastable He* atoms are in the 3S; state and 2% are
in the 'Sy state. Of the metastable Ne* atoms, 85 % are in the 3P, state and
15% are in the P, state. The difference in the respective states of He* and
Ne* arises solely from the spin degree of freedom. All mentioned states can be
imagined as one electron of the outer shell being raised to the next higher level
which is an s level for He atoms, and a p level for Ne. The theoretical analysis
in this text focuses on the respective major portions of the He* and Ne* beams,
which is expected to lead to a small error in the case of He* because the relative
amount of atoms in the 'Sy state is small. In the case of Ne*, there are theoretical
calculations on the dispersion interaction between atoms that predict a maximum
of 10 % changes in the interaction strength between various inter-combinations of
the two metastable states [83]. From this it can be concluded that the interaction
of the two metastable states of Ne with the grating bars will be equal within 10 %.
The relative influence of the smaller portion in the Ne* beam on the dispersion
strength ('3 extracted from the measured diffraction patterns is thus expected to
fall below 2 %, which is included in the error bars.

5.4.2 Collimation and Diffraction

After emerging from the skimmer at z = —112 cm whose least diameter is 0.72 mm
the cone-shaped atomic beam encounters a barrier at z = —1 m with a rectangular
collimation window whose centre falls on the z-axis, and which is s; :=20 um wide
and 5mm high. Each monochromatic ensemble of atoms in the beam undergoes
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quantum mechanical diffraction by this slit whereby the macroscopical dimension
of the slit height leads to vertical diffraction effects as described in section 4.3.
The subsequent passage of the atoms through one of the about 1 mm-wide slots
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Figure 5.24: The figure shows the theoretical intensity of a ground-state He atom at
v =1769.9 ¥ diffracted from the first collimator as evaluated in the plane of the second
collimator which is placed L = 0.85m downstream from the first and whose width is
indicated by the shaded boundaries. For atoms that reach the first collimator at an
incident angle 99; = 0 the bulk of the intensity is seen to fall into the second collimation
slit (solid line). The dashed curve is calculated for an atom that reaches the first
collimator at an incident angle ¢; = 4 urad. As can be seen the left boundary of the
second collimation slit clips the intensity profile. This effect determines the angular
distribution of atoms impinging on the grating that lies behind the second collimation
slit.

of the chopper at z = —85cm can be treated classically. On arrival at the second
collimating slit at 2 = —15cm which is also 5mm high and s, := 10 um wide
each atomf] can be described by a quantum mechanical amplitude A(z, ;) which
in Fraunhofer diffraction theory is given by

sin[ks2 (57 +91)]

Az, 9;) o { Fgp 1) o] <

S2
2 (5.51)
0 : |z|> %

3Read, also in the following: Each monochromatic ensemble of atoms in the beam.
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where L=85 cm is the distance between the first and the second collimator and
¥; stands for the angle at which the atom falls from the skimmer onto the first
collimator.

It can be seen from Eq. (5.51) that this skimmer emission angle ¥J; leads to a
sideway shift of the quantum mechanical amplitude A(x, ;). For ¥; = 0 the max-
imum of the amplitude falls on the centre of the second collimation slit whereas
for [9;| > 72 the maximum hits the edges of the second collimation slit and is
partly cut off (cf. Fig.5.24). From this one deduces that the number N(9;) of
atoms able to pass the second collimator and travel on to the grating is propor-
tional to the probability of finding an atom emitted from the skimmer at an angle
¥; inside the second collimation slit. This probability is given by

K]

(V]

2 _ sin[ks1 (57 + v;)] 2

dz |A(z, 9;)| R + 07
o, T Vi

x N(%). (5.52)

—

s2

2

Therefore the number of atoms impinging on the transmission grating at an angle
¥ is distributed according to N(v;) as given by Eq. (5.52). Fig.p.25 shows a plot
of this distribution which attains a full width at half maximum (FWHM) of
0.012 mrad.

The quantum mechanical amplitude on the grating for a definite particle ve-
locity and incident angle, and the width of the region which is reached by a sig-
nificant number of atoms are the result of the amplitude A(z, ;) from Eq. (5.51])
being diffracted by the second collimation slit. If the transmission grating were
placed right behind the second collimator the incident amplitude Wy(z, ;) on the
grating would obviously be equal to A(x,d;), and the width of the illuminated
spot would be equal to the width ss = 10 um of the second collimation slit which
in view of the period d = 100 nm of the transmission grating would correspond to
a sharply bounded region of N = 100 illuminated slits. In reality, the transmis-
sion grating is placed 150 mm behind the second collimation slit and the incident
quantum mechanical amplitude Wq(x, ;) on the grating can be calculated in the
Fresnel picture of diffraction, which yields

£l

ho

oz, ;) oc [ da’ A(a!, 0;)eRV @l +22 (5.53)

—

s2

2

where Z = 150 mm is the distance from the second collimator at z = —150 mm
to the grating at z = 0. The result of a numerical evaluation of Eq. (5.53) is
displayed in Fig.p.2( where the intensity |¥y(z,0)|? and the phase arg[¥o(x,0)]
of the quantum mechanical amplitude Wy(z,0) are plotted as a function of the
lateral coordinate x on the grating, for the case of normal incidence ; = 0. It
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Figure 5.25: The distribution N(¥;) of incident angles assumes a full width at half
maximum of 0.012mrad as a consequence of the width of the second collimation slit

(cf. Fig.p.24).

can be seen that the number of incident atoms is significantly greater than zero
over a region including about N = 80 grating periods. Within that region the
quantum mechanical phase varies by less than 7 so that it is roughly justified
to replace each of the monochromatic incident wavefunctions by a plane wave in
order to facilitate further calculations as presented in chapter 2. The number of
illuminated grating slits and the coherence of the incident wavefunction can be

considerably enhanced by narrowing the first collimation slit to s; = 10 um, as is
illustrated in Fig.b.27.

Two examples of measured diffraction patterns of metastable He* and Ne* are
shown in Fig.b.28 and Fig.b.29, respectively. The data points for the intensity
given in counts per second are the averaged result of 5 minutes (He*) and 8
minutes (Ne*) measuring time. The velocities v = 2347 % (He*) and v = 873 %
(Ne*) of the atoms follow from an analysis of the principal order peak positions in
the diffraction patterns. Each pattern represents the signal of the channel plate
detector for a certain time-of-flight window while during the two experiments
with He* and Ne* many of those windows are measured simultaneously with the
help of an appropriate triggering of the detector as explained above. The width
of the windows, i.e. the uncertainty in the time-of-flight leads to distribution of
incident velocities for each diffraction pattern whose width Awv is about 3% of
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Figure 5.26: As a result of the collimation of a monochromatic wavefunction the in-
cident quantum mechanical amplitude on the transmission grating assumes values as
shown in the plot where the dashed line represents the normalized intensity correspond-
ing to the right vertical scale, and the solid line is the phase corresponding to the left
vertical scale. It can be seen that for the width of the first and the second collimation
slit in the experiment about 80 slits are significantly illuminated while the phase over
that region changes by less than 7. One may thus speak of an incident wavefront of
ground-state He atoms at v = 1769.9 7 which is coherent over 80 grating periods.

the mean velocity v.  The peak shape results from the width of the detector
slit and the distribution of angles and velocities of the beam impinging on the
grating. For increasing diffraction orders the peaks become wider because of
the velocity distribution. By fitting a sum of Gaussian curves to the diffraction
patterns the areas of the peaks are determined. The relative areas have been
shown in chapter 1 and chapter 3 to correspond to the theoretical diffraction
intensities of the respective diffraction orders. In the case of metastable neon the
detector slit is comparatively wide so that the low diffraction orders overlap in
the measured pattern. Furthermore, the higher order peaks exhibit somewhat
distorted shapes whose analytic areas, though, are close to the areas determined
with the Gaussian fit.
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Figure 5.27: This figure is analogous to Fig.b.20 except for the width of the first
collimation slit which is taken half as wide as before. It becomes evident that the
modification helps to enhance the width of the coherently illuminated spot on the
grating which puts the experiment closer to the theoretical concept of an incident
plane wave.

5.4.3 Error Sources in the Apparatus

There are a few systematic sources of error in the experiment. During the angular
scan it is possible that the absolute intensity of the beam varies with time which
would affect the count rates and hence the intensities of the diffraction orders
measured at that moment. The intensity at each angle is recorded for about 5-10
minutes. In order to detect such a varying absolute intensity the scan has to
be repeated, which has not been done in the He* and Ne* experiments because
of the limited measuring time available. Another way to check for the beam
stability is to measure both positive and negative diffraction angles and compare
the symmetrical diffraction orders whose intensities with a stable beam should
be equal. Unfortunately, there has been measured only one side of the diffraction
pattern. A repeated scan or a scan of both sides is also interesting in that it
will show if the above mentioned distorted peak shapes of metastable neon can
be reproduced which would make it necessary to extend the theory that to-date
cannot predict any peak shape similar to the measured distorted ones.

A comparison of both sides of a diffraction pattern also reveals if the grating
normal is oriented parallel to the incident beam which refers especially to an
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Figure 5.28: Measured diffraction pattern of metastable helium at a velocity v =
2347 7. At least 9 principal diffraction orders are shown to be clearly resolved by the
experimental technique.

erroneous grating rotation angle around the vertical y-axis passing through the
centre of the grating. While a forward or backward leaning of the grating has no
grave consequences on the measurement a possible rotation of the grating around
the normal is expected to lead to small asymmetries in the diffraction patterns.
It is assumed that the grating has been possible to be fixed in a position that
aligns the bars within a few angular degrees around the vertical, so the rotation
of the grating around the grating normal and the forward and backward leaning
are thought of as included in the error bars of the result.

For a clockwise rotation 7 of the grating around the vertical axis the theory
set out in chapter 4 predicts that the positive low order diffraction intensities
are higher than their symmetrical negative counterparts. It has been tested that
an erroneous rotation of 7 = 3° leads to an error of about 20% in the disper-
sion interaction strength C's which comes out as a fit parameter when theoretical
diffraction intensities are fitted to the corresponding measured data. In the ex-
periment, the rotation angle 7 of the grating has not been specified but has been
aimed to be set to zero.

For He* there exists a preliminary diffraction measurement on grating 5-3-1
without a time-of-flight analysis which is shown in Fig.p.30. The wide distri-
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Figure 5.29: Measured diffraction pattern of metastable neon at a velocity v = 873 2.
The overlap of the low-order peaks is due to the width of the detector slit.

bution of incoming velocities allows only for the + first diffraction orders to
be clearly seen, where the stress lies on the fact that the first and minus first
order can be compared in order to check for an erroneous grating rotation 7.
The areas under the -1st, Oth, and 1st order peaks are, respectively, in arbi-
trary units /_; = 1752 £ 27, Iy = 6829 £ 54, and [,; = 1654 £+ 27. Exclud-
ing the possibility that the absolute beam intensity was higher when the neg-
ative angles were scanned and adopting the geometrical parameter set of the
grating 5-3-1 as determined earlier the measured intensity ratios 11__01 and I+_01
are reproduced to within 0.1% by theoretical values according to Eq. (£.42) ff.
Hereby the grating rotation angle 7 = (—3.3+0.5)° and the dispersion coefficient
Cs3(He*)= (4.25 + 0.7) meV nm?® of He* with SiN, have been used as fit param-
eters, where the errors mainly arise from the Gaussian fit that has been used
to extract the experimental peak areas. The result for the dispersion coefficient
Cs(He*) is in good agreement with the theoretical value C3(He*)= 3.8 meV nm?

calculated in chapter 3.

It should be stressed that this method of obtaining the dispersion coefficient
C5 from a two-parameter fit to two experimental peak intensities is more accurate
than it may seem. Fig.b.30 shows that the peaks are distinctly shaped by many
data points so that there is small doubt about the experimental peak areas. The-
oretically, it has been shown that collimation and Fresnel effects do not affect the
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Figure 5.30: Measured diffraction pattern of metastable helium at v = 2285.0 * with-
out the TOF device. The large number of data points per peak allows the areas of
the -1st, Oth, and 1st maximum to be accurately determined. From the asymmetry of
the -1st and 1st intensity (the left peak is slightly bigger than that on the right) and
the ratio to the Oth order intensity an erroneous grating rotation and the dispersion
interaction strength C3 of He* can be determined.

concept that the intensity ratios based on the Fraunhofer picture are practically
equivalent to the measured relative peak areas. Small errors in the slit width s
are included in the stated errors for the dispersion strength Cj; as for the wedge
angle ( it has been pointed out with the help of an example of He and D, earlier
on that for large dispersion interaction strengths Cf like those of the metastable
atoms the particles effectively interact with the grating bars over the whole depth
t so that they tend to be sensitive to the average of the local inclinations of the
bar side which is given by the total wedge angle § = (11 £ 0.5)°, which in view
of the new improved technique seems to be a reliably measured quantity. The
influence of the bar edge roughness has been shown to be small for diffraction
orders with high intensities among which the above used +1st orders belong.

What also makes this simple approach towards finding the dispersion coef-
ficient C5 favourable as compared to the available time-of-flight analyzed scans
over a large range of angles is that due to its heaviness the detector arm of the
apparatus does not run smoothly on the rail which leads in a circle around the
location of the grating at the origin of the use coordinate frame. Occasionally,
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the driving force of the motor is obstructed by strains in the bending parts that
connect the grating chamber with the detector chamber, or when the wheels at
the bottom side of the detector unit encounter an uneven spot on the rail, or
when the rail is pushed out of level by the weight of the detector so that a down-
hill force bends and twists the apparatus and causes it to lean to one side. While
the numerical values of the angle which are recorded reflect only the revolutions
of the angular drive the detector slit happens to remain obstructed at certain
positions, or to follow the drive in a jerk at others. This leads to errors in the
centre positions of the diffraction peaks, in their width, and distortions of the
peak shapes similar to those observed for Ne* in Fig.p.29. The areas of certain
peaks in this case are subject to observed fluctuations of up to 30 %. What also
enters at this point is that the stress in the apparatus during the angular scan
leads to shear forces which actually displace the detector slit with respect to the
detector so that the maximum of the diffracted image of the detector slit falls on
a region of different sensitivity on the channel plate. This can amount up to a
10 % variation in the detection efficiency which is proportional to the measured
count rates.

Given the large number of error sources which have been mostly unrecognized
and hence not specified during the measurement the best way is to include in the
analysis a possibly large number of diffraction patterns at different velocities
because then the errors can to some degree be expected to be averaged out of the

fit.

5.4.4 Dispersion Interaction Strength

In order to determine the dispersion interaction coefficient C'5 from the measured
diffraction intensities a first approach is the Sﬁ}"(%) method as described in
v

section 5.1.3. It has been pointed out in this section that the interpretation of
the slope of the approximately linear function seg(ﬁ) in terms of the disper-
v

sion interaction strength Cj is hindered if the range of the dispersion potential is
small as compared to the depth ¢ of the grating bars because the particles in this
case interact with a small portion of the grating bar side which has a local wedge
angle 3¢ different from the experimentally determined total wedge angle 3. As
mentioned earlier this restriction is not expected to be relevant for metastable
atoms because of their stronger dispersion interaction potential. Therefore it can
be tried to apply the Seﬁ(ﬁ) method to the metastable atoms, with the addi-

tional advantage that Eq. (5.11) can be used including the zeroth order diffraction
intensity as there are known to be no clusters of metastable atoms in the beam.

The approximations used to predict that the graph of seﬂc(%) be a straight line
are no longer rigorously justified for the metastable atoms but with the geomet-
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rical slit width s already available the effective slit width determined from the
diffraction intensities of metastable atoms can be used to estimate the dispersion
interaction strength C'3. It is possible to obtain the effective slit width s.g in this
case as the three-parameter fit of Eq. (5.11) to the measured intensities with the
independent parameters s.g, 0, and o( actually works well for diffraction intensity
patterns of the metastable atoms. Fig.b.31 shows two typical examples of mea-
sured He* and Ne* diffraction intensities (=the area under the respective peaks
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Figure 5.31: With the help of the experimental diffraction intensities of a) He* at
v = 234772 and b) Ne at v = 873 it is shown that the cumulant based formula
Eq. (B.I1) (solid lines) is suitable to describe the experiment.

in the measured diffraction patterns) and the fitted theoretical curves according
to Eq. (B.11)).

It remains to show that Eq. (5.I11) is a suitable approximation of the theo-
retical diffraction intensities that are derived from scattering theory. Eq. (B.11))
is based on the cumulant expansion Eq. (5.9) and has been discussed in section
5.1.3. There it is shown that the expansion can be restricted to the first two
terms in order to describe the theoretical diffraction intensities of ground-state
He, based on a theoretically expected dispersion potential. With the help of the
example of He* which has the stronger dispersion interaction of the two and is
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thus furthest from the case of ground-state atoms it is investigated if same is
true for the metastable species He* and Ne*. Fig.b.37 illustrates the result of
the comparison between the exact theory and the cumulant-based Eq. (5.11]) for
ground-state He and metastable He* atoms at v = 2000 7 diffracted from a vir-
tual grating 5-3-1. It can be seen that by using only the first two terms in the

1 = 1 =
0,1 = 0,1 —
S N ] s C i
HC: B T :TC: B 7
S| l= | |
N e C i
0,001 |- = 0,001 —
: 1 RS
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Figure 5.32: The left panel shows that the theoretical diffraction intensities of
metastable He* at v = 2000 % (full circles) are in reasonable agreement with the kumu-
lant approximation Eq. (5.11)) (solid line) whose parameters seg, 0, and o are calculated
according to Eq. (b.12) ff. By including two more cumulants in the approximation (cf.
Eq. (5:50)) the situation is only improved up to the fifth diffraction order (dotted line).
For orders greater than 5 the approximation breaks down quickly because the cumulant
expansion Eq. (5.9) converges slowly. For ground-state helium at the same beam veloc-
ity (right panel, full circles) the two-cumulant approximation Eq. (5.11) (right panel,
solid line) works well because the dispersion interaction strength of He is much smaller
than that of He*.

cumulant expansion good convergence is achieved for ground-state He atoms up
to the eighth diffraction order (Fig.b.§ is just re-plotted here for a comparison)
whereas for metastable He* atoms already the third diffraction order displays
a slight mismatch which, however, does not deteriorate much with increasing
diffraction order. The reason for the worse convergence in the latter case lies in
the fact that the dispersion interaction of He* with SiN, is 50 times stronger than
that of ground-state He.

If two more terms are included in the cumulant expansion Eq. (5.9), with the
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appropriate next two cumulant coefficients

Ry= —R®—3R.Ry + (%)3 —3 [ d¢ (o) (5.54)

o
N|w

and

s

2
Ry = —R{ —6R?Ry —3R2 — 4R\ R3 + (%)4 — 4/d§ ), (5.55)

0

the equivalent of Eq. (5.11) becomes

I, e~ () . 5, TNSez (1) o, mnd(n) ]
— = - sin“(——~ sinh . 5.56
I (55 + 30) [ T e 659

The essential difference of this Eq. (5.58) and the former Eq. (5.11)) is that the
parameters Sqz(n), d(n), 6(n) now attain a dependence on the diffraction order
n. They are given by

Seff (1) = Seff + Asei(n) = s — 2Re(Ry) + % <%>2 Re(R3), (5.57)
§(n) = 6 — Ad(n) = 2Tm(Ry) — é (%)2 Im(Rs) (5.58)

and
72(n) = 0% — Ao(n) = 02 + Re(Ry) — % (%)2 Re(Ry). (5.59)

From direct fits of theoretical to experimental diffraction intensities it turns out
that the higher diffraction order maxima for metastable atoms are subject to an
only small Debye-Waller damping, i.e. the damping parameter oy is practically
set equal to zero. This is an example of a higher order effect of the corrugation as
the lowest order description given earlier predicts the same damping for ground-
state and metastable atoms. Because of the strong interaction of the metastable
atoms with the bars the interaction potential for a given trajectory at interme-
diate distances from the surface is averaged over a comparatively long stretch of
the bar surface which suppresses the damping effect of the surface corrugation.
For smaller distances where the local corrugation becomes important the large
interaction strength of the metastable atoms leads to rapid oscillations of the
quantum mechanical phase which significantly reduces the influence of this range
of distances on the diffraction intensities.
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For ground-state atoms, the correction terms Asqz(3) = 0.007nm, Ad(3) =
0.007nm, Ac(3) = 0.004nm? in Eq. (5.56) calculated for the third order diffrac-
tion intensity (n = 3) are small compared to the respective values of s.¢ ~ 65 nm,
§ ~ 3nm, and 0% =~ (2.3)2nm? which explains the good convergence apparent in
the Fig.b.32. For metastable He* atoms, on the other hand, the corresponding
numbers are Aseg(3) = 0.09nm, A§(3) = 0.19nm, Ac(3) = 0.11nm?  Gener-
ally, the cumulant expansion is sure to converge because of the denominator j!
under the sum over j, but the convergence is significantly slowed down in the
case of metastable atoms, as is seen from the large absolute values of the newly
included cumulant coefficients R3 and R4. In particular, for diffraction orders
higher than m = 5 the parameter 5%(n > m) becomes negative which leads to
an exponential rise of I’}% in Eq. () This effect is visible in the left panel
of Fig.p.32 where alternatively to the two-cumulant-formula Eq. (5.11]) also the
four-cumulant formula Eq. (5.56) is plotted.

Apparently, no persistent improvement can be achieved in the cumulant me-
thod by including two more coefficients, however, as can be seen from Fig. 5.9 the
theoretical accuracy of the two-cumulant formula Eq. (b.11]) with respect to the
diffraction intensities based on the exact theory is about the same as that in the
fit of Eq. (5.11) to measured diffraction intensities as shown in Fig.p.g. As the
deviations in both cases arise from different causes, namely the limitations of the
cumulant approximation one one side and experimental errors on the other, it is
reasonable to assume that by fitting Eq. (5.11) to measured diffraction intensities
of metastable atoms there will be some truth in the values of seg(ﬁ) that are
obtained in the fit.

Besides the result that has been obtained earlier for the dispersion strength
C3(He*) when investigating the possibility of an erroneously rotated grating the
application of the Seﬂ‘(ﬁ) method provides a second means of checking the results
for C5(He*) and C3(Ne*) that are to be obtained later on. The progress of the
Seﬁ‘(%) method as applied to the metastable atoms diffracted from grating 5-3-1

is on display in Fig.p.33.

With the slit width s = 66.8 nm as determined earlier with the help of ground-

state He atoms a fit of )

1
fi(—) =5 — K — 5.60
et ( \/5) s—K—# (5.60)
(cf. Eq.(p.17)) yields C3(He*)=(3.9% 0.5) meVnm?® and C3(Ne*)=(0.94+ 0.5)
meV nm?®. This is in good agreement with the theoretical value Cfh*°(He*)=3.8
meV nm? in the case of He*, but with C{°(Ne*)=3.6 meV nm? in no agreement
for the case of Ne* which is already apparent in the wild scattering of the data

points of seﬁ(\/%j) in Fig. .

The bad performance of Ne* reflects the fact already mentioned that espe-
cially for Ne* experimental diffraction intensities, a fit to which produces the
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Figure 5.33: The geometrical slit width s determined by extrapolating experimental
values of Seﬂ(%) for ground-state helium (full circles) is kept fixed as straight lines
are fitted to the data points of metastable helium (open circles) and metastable neon
(full squares). The slope of the fitted lines is according to Eq. (5:17) used to estimate
the dispersion interaction strength C5 of the metastable species. The data points of
metastable neon display a rather unphysical behaviour which is due to the overlap of
the low-order maxima in the measured diffraction patterns.

data points seﬁc(\%), are extracted from the experimental diffraction patterns (cf.

Fig. ) with errors of up to 30%. The Seﬁ“(%) method is especially sensitive
to the high low-order intensities which in the case of Ne* coalesce because the
detector aperture is too wide as compared to the spacing of subsequent diffrac-
tion order peaks while for the lighter He* atoms the spacing is wider so that
subsequent peaks do not coalesce which renders the extraction of the peak areas
more accurate. For He*, the newly found value of Cj is also in good agreement
with that obtained in the analysis of the erroneously rotated grating experiment
C5t = (4.240.7) meV nm?, which speaks in favour of the seg(ﬁ) method, despite
its failure with the diffraction data for metastable Ne* atoms currently available.

A final method to determine the dispersion interaction strength C3 of the
metastable He* and Ne* atoms is to directly fit theoretical diffraction intensities
as given by Eq. (b.7) to experimental intensities extracted as peak areas from
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Figure 5.34: Experimental diffraction intensities of a) metastable helium at v = 2347
and b) metastable neon at v = 873 %} are well fitted by theoretical values (solid lines)
whereby the dispersion interaction strength Cj serves as the only fit parameter.

a number of velocity selected experimental diffraction patterns. For He*, 10
sample diffraction patterns have been taken evenly distributed over a range of
flight times which corresponds to a range of velocities from 2028 = < v < 2924 7,
while for Ne* 6 samples have been included in the analysis. The latter have been
chosen from a range of low velocities 696 % < v < 873 ' because they exhibit a
wider spacing between adjacent diffraction orders which minimizes the unwanted
overlap of neighbouring peaks. The first diffraction order is left out of the fit
as the area of the peak is significantly off the trend for the analyzed diffraction
patterns. In particular, the peaks are known from theory to increase in width
for increasing diffraction orders. The determined width of the first order peaks
is persistently found to be between 10 and 25% lower than the interpolation
between those of the zeroth and the other maxima.

Fitting Eq. (B.1) separately for each velocity to the measured diffraction in-
tensities with the dispersion coefficient C5 as only fit parameter one obtains a set
of values for C3(v). The final results for C5 of He* and Ne* are calculated as the
weighted average over all C5(v) for the given atomic species, where the weights
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are given by the inverse of the relative mean square deviation x?(v) of the fits to
the experimental diffraction intensities for the velocities v. x?(v) for each velocity
v is the average of the squared differences between the theoretical and the ex-
perimental value for each diffraction order intensity, divided by the experimental
intensity. This standard procedure takes due account of the statistical error v N
for a measured count rate of N events per diffraction maximum .

method H Cs(He*) (meV nm?) ‘ C3(Ne*) (meV nm?)
fit to diffraction intensities 41+ 1.0 2.8+ 1.0
Seft(75) 3.9+ 0.5 0.9+ 0.5
rotated grating 4.25+ 0.7 -
theory 3.8+ 0.1 3.6+ 0.1

Table 5.1: Comparison of the values of the dispersion interaction strength C3 as
determined from the experiment with the theoretical values calculated in chapter 3.
¢ Systematical errors due to overlapping diffraction maxima.

The quality of the fit of the theory to the measured diffraction intensity is
illustrated in Fig.p.34 with the help of two typical examples for He* and Ne*.
The results for the dispersion coefficients C3 of He* and Ne* are on display in
Table b.1], where they are compared with other measured and theoretical values.
It can be seen that for He* all values of C'5 determined experimentally by various
methods are in good agreement whereas for Ne* the agreement is less good due to
the errors that have been discussed above. For both atomic species the measured
values agree with the theoretical values of C'3 within the error bars.

5.5 Summary

The results of this chapter are summarized as follows.

e The dispersion interaction strength C5 of metastable He* and Ne* atoms
with silicon nitride is extracted from measured diffraction intensities by
three methods which are all in good agreement with the theoretical values
calculated in chapter 3.

o A detailed account of the error sources is given which have partly been im-
plemented in new experiments and which help at designing future projects.

4The number of events is actually the sum of the count rates of all data points forming
a maximum in the measured pattern times the measuring time. As only relative weights are
important in the fit the "number of events” is conveniently normalized to the area of the zeroth
order peak.
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e The diffraction experiment is for the first time analyzed comprehensively in
terms of the beam collimation and Fresnel effects which facilitates current
and future experimental work.

e A new method is developed with which the complete atom-surface potential
can be measured by atom-diffraction from transmission gratings.

e A systematic misinterpretation of the grating geometry measurements is
clarified which explains a 30 % deviation of measured from theoretical val-
ues of the dispersion interaction strength C5 that has previously been un-
detected.

e Systematic deviations of experimental from theoretical diffraction intensi-
ties whose origin has been unclear so far are now explained as an incoherent
effect arising from a variation of the average bar width over the height of
the grating. This explanation together with the preceding item of this list
leads for the first time to a complete agreement between theoretical and
experimental diffraction intensities.



Chapter 6

Summary and Outlook

6.1 Summary

The foundations of this work are laid in chapter 2 which gives account of an
existing theory of atoms scattered from small structures. As a new feature,
the last section is dedicated to the previously neglected fact that in order to
describe typical atom diffraction experiments the Fresnel limit has to be applied.
It is shown in detail that by appropriately collimating the atomic beam and by
choosing a suitable detector aperture the theoretical diffraction intensities are
practically equal to those obtained in the Fraunhofer limit of diffraction which is
easier to calculate.

The following chapter 3 provides for the first time theoretical values of the
dispersion interaction strength C'3 between ground-state and metastable rare-gas
atoms. By reviewing the work of many authors a concise and comprehensive
picture is drawn that extends from the quantum electrodynamical roots of the
dispersion interaction as part of the van der Waals forces to the description of
the dynamic atomic polarizability and goes on to an accurate treatment of the
electronic response of dielectric solids, evaluated especially for amorphous silicon
nitride which is the transmission grating material used in the experiment. The
theory is general in that it includes retardation and it can be applied to all kinds of
atom and dielectric solid. With the help of the calculated results a comparison is
made with values of C3 measured in the past that have since lacked an appropriate
theoretical complement.

Starting from the scattering theoretical results of chapter 2 a specific ex-
perimental situation is analyzed in chapter 4. Based on a new technique the
atom-grating bar interaction is evaluated in quantitative terms and then general-
ized to include four new aspects that are of considerable importance for current
diffraction experiments and also open the way for new projects in the future.

142
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First, the diffraction of atoms from rotated gratings is crucial for an accurate
determination of the grating bar geometry and also for new experiments whose
successful performance depends on a rotation of the transmission grating.

Second, the description of adsorbate layers on the grating bar surface makes it
possible to measure the dispersion interaction strength C3 for many more atoms
and solids. The high accuracy of the atom-optical method can so be applied
especially to those materials of interest that cannot be used to make transmission
gratings.

As a third generalization of the atom diffraction technique, the influence of
retardation is shown to be measurable which is interesting in view of extant
theoretical studies on this subject.

The fourth extension of the theoretical concept takes account of the surface
corrugation of the bars which is pivotal for a complete understanding of the
measured diffraction patterns.

A practical example of the concepts developed in this work is given in chapter
5 which describes an accurate method of determining the dispersion interaction
of metastable He* and Ne* atoms with the silicon nitride surface. Due to their
fragility the atom-optical technique is especially suitable for the metastable atoms
and provides unprecedented accuracy. Three methods are presented to extract
the values of ('3 from the measured diffraction patterns which are all in good
agreement with the theoretical values from chapter 3 of this work within the
error bounds.

To the benefit of present and future diffraction experiments a detailed ac-
count of the errors is given as well as a discussion of boundary issues like the
beam collimation, the beam composition, and the detector aperture. As a funda-
mental improvement to the versatility of the current atom diffraction experiments
it is shown how the complete atom-surface potential, in particular the depth of
the potential well near the surface, can be determined from measured diffrac-
tion intensities. For this purpose three experiments are proposed and discussed
briefly. The insight into the new concept is greatly enhanced by visualizing the
slit amplitude with the help of a parametric plot in the complex number plane.

By analyzing various diffraction experiments it is revealed that previous in-
terpretations of the measured data have suffered from an oversimplification of the
grating bar geometry that has led to an error of 30 % in the determined values
of C3. Along with this the origin of a systematic deviation of measured from
theoretical diffraction intensities that has so far been unexplained is clarified and
shown to arise from the average grating bar width that varies over the height
of the grating. With the latter two improvements the theory developed by our
group is now in complete agreement with the measured diffraction intensities.
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6.2 Outlook

The detailed analysis of the atom-optical determination of atom-surface poten-
tials as presented in this work is perfectly suitable to be applied in current experi-
mental and theoretical studies done by other groups with metastable argon [[4] or
large molecules [B, IT7]. The metastable atom source is currently re-designed in
the MPI group to measure at higher precision the dispersion interaction strength
of four metastable species, namely He*, Ne*, Ar*, Kr*. With the help of the given
error analysis it will be possible to reduce the error in C5 to about 15 % which is
suitable to create an experimental standard that can also be extended to other
atoms or molecules.

In view of the plans for metastable atom diffraction and other experiments
which are aimed at determining the size of helium dimers and trimers from their
diffraction intensities it will be advantageous to exploit the possibility of measur-
ing directly the slit width and the bar edge corrugation with scanning electron
microscopy. The same insight can be provided by comparing with a certain trans-
mission grating the diffraction intensities of a helium atom beam with those of an
X-ray beam that has the same wavelength. As has been pointed out on several
occasions, such a comparison is very useful because it is able to clearly separate
the effects specific for atoms from general diffraction features.

With experimental data available it is an interesting theoretical topic to cal-
culate the effective change of the atom-bar potential as due to the surface cor-
rugation. Beyond theoretical estimates, there is not much work available in the
literature that would quantitatively explore the effect of surface roughness on the
potential. As has been shown in this work the simple geometry of the transmis-
sion gratings reduces the problem to one dimension as for helium diffraction the
corrugation is manifest mainly in the waviness of the trailing bar edges. This
constitutes an opportunity for a pioneering quantitative study on the potential
between atoms and corrugated surfaces.

As the production of high-quality transmission gratings today is fostered by
industrial demand (X-ray gratings for applications in satellites) there is continu-
ous improvement in each new generation of gratings which is very favourable for
the on-going diffraction experiments. A particularly fruitful innovation would be
to make silicon nitride gratings that are covered with a thin layer of varying ma-
terials, so that a standard in the measurement of atom-surface potentials could
be established by performing a series of diffraction experiments with a certain
type of atom, e.g. ground-state helium, and different gratings each of which is
covered with a surface layer of a different material. It has been shown in this
work that the diffraction is practically determined by the surface layer material
rather that the core material of the grating, so theoretically, the method appears
entirely feasible.
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With the experimental equipment available to-date it is possible to determine
for the first time the depth of the atom-surface potential well with an atom-optical
method as described in this work. The procedure is a consequent generalization of
the atom scattering from small structures like the transmission gratings, which is
based on the same theoretical foundations as high energy potential scattering. As
the latter is nowadays a fully developed branch of physics it is most promising for
the future to continue the transfer of know-how to low energy scattering in order
to reveal surface properties by atom and molecule diffracted from nanostructured
targets.



Appendix A

Infinite Half-Space

Consider an atom at r = (z,0,0) opposite an infinite half-space {r’ € R|z’ < 0}
whose interaction with each volume element d3r’ is given by

Ky
v — /|6

W(r) := (A1)

Without restricting generality r is chosen to be r = (1,0,0)T. Then the interaction
potential becomes
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The atom-surface interaction strength C5 can be identified with
K,
Cy = % . (A7)

It is possible to derive an atom-surface potential of the general form

Vi(l):ig.i . iEN,i>2 (A.8)
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from a similar integration over volume elements of the half-space where for each

1 a potential
+ K43

‘I‘ _ r/‘i+3

Wigs(r) = (A.9)

is integrated. Hereby the atom-surface interaction strengths C; have to be iden-
tified with ’ .
C,L' = 7TKZ‘+3 [Z ]] s (AlO)
j=1

which yields C; = ”1—%7, Cs = “1—{5)8, Ce = ”2—119, etc...



Appendix B

Grating Bar Potential

The bar has a trapezoid shape with a base length b, a depth ¢, and a wedge angle
B (see Fig.[l.1] in the text). The van der Waals phase shift p(x) = ¢, (z) + ¢@1(2)
arising from an attractive V3 potential (cf. Eq. (A.9)) is the sum of contributions
from the right and the left bar to the sides of each slit, whose width is denoted
by s. The coordinate x runs along the rear side of the grating, perpendicular to
the bars so that ¢ := § — x is the least distance between a given beam trajectory
and the protruding edge at the rear end of the grating bar to the right of the slit.

The contribution from the right bar is
+oo 0 +o0 5+b+2"tan g
K
i) = To / d / dz' / dy / daf(z— 'Y+ ()2 + (2 — )2 (B.1)
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where in the last step the definition Eq. (A.7) of C3 has been used. On further
evaluation this yields
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The contribution from the left bar is obtained by replacing in this result the
impact parameter ¢ with s — (.

According to the generalization stated in Eq. (A.§) ff it is here also possible
to derive a result for potentials of other integer power laws. The integrals are
of a similar quality and can be found — like those above — in integration tables
(e.g. [I16]). It is most convenient to express the general result in a way similar
to Eq. (B:4). The there following simplifications Eq. (B.5) etc. can in principle
be applied to the general result but they lead to a large obscuring number of
additional terms and are therefore omitted. One obtains for bar potentials of the

form Eq. (A.§)

e 1 1 1 1
) = T {<<+b>f TG T Crb—ttangy <<+ttanﬁ>f} | \
(B.8

with ;7 = ¢ — 1, while the contribution from the left bar is again obtained by
replacing ¢ +— s — (.




Appendix C

Retarded Bar Potential

In chapter 4 it is shown that due to the retarded atom-bar interaction the quan-
tum mechanical amplitude in the right half of a symmetrical grating slit attains
a phase given by Eq. (£.86) which reads

li(z)
o 1 03(0) AO Al — Ayl
o) = M/dz<l3 +l2+l>e | (1)
le(2)

hvs

The integral is solved by repeatedly integrating by parts the terms in the bracket
until one has

1 g [ C3(0) Ay C5(0)4,\ 1%
Sdgj)_f’wsinﬁ{ [e Al(_ 202 _T+ 2l )] *

lg(x)

li(z)
2 —Asl
+ <A1 — AgAs + 03(2)A2) dr s z } , (C.2)

le(z)

where the remaining integral over [ gives

o0

eat (at)n
— =1 . .
/dt ; nt—l—ngl o (C.3)
Herewith, and after re-substituting for
¢
= 4
W)= (1)
and ¢+ ttang
an
li(z) = >—— .
@)= (©5)
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one finds

1 4, ttiang C5(0) cos? 3 (C3(0)Ay — 2A0) cos ﬁ] B
pla) = hv sin 8 ¢ {_2

(¢ + ttan 3)? 2(¢ + t tan )
—Ay—— Cs(0 26 (C5(0)A45 — 2A ﬂ
ot [_ 3<2>CCZOS L (G5(0) QQC o) cos H+
K, (+ttan g > —As n(C+ttan6)2—§2
+fwsinﬁ{ln (T) +;(0085> ol }, (C.6)

where the abbreviation

Cs(0)A3

K1 = Al—AOA2+ 9

(C.7)

has been introduced. The result Eq. (£.83) quoted in the text is obtained upon
extraction of a factor % from the first curly bracket in Eq. (C.6).
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