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Abstract 
This thesis is concerned with the formation and decomposition kinetics, as well as with the 

microstructure of CO2 hydrate at conditions relevant to those on the Martian surface and in the 

Martian interior. It was conducted in the framework of DFG-project Ku 920/11 – part of the larger 

German research initiative (Schwerpunktprogramm 1115) “Mars and the terrestrial planets”. 

Here, the results from neutron diffraction and gas consumption measurements of the CO2 

hydrate growth in the temperature range 185 K – 272 K are gathered and checked for consistency. 

Also first data from in situ neutron diffraction runs on CO2 hydrate decomposition are presented. A 

sigmoid reaction development (higher order kinetics) was observed in a number of runs in both – 

formation and dissociation, suggesting for concomitant nucleation and growth processes taking place. 

The asymmetry, found in the sigmoid shape of the reaction curves, suggests that diffusion also plays 

an appreciable role. A new two-stage method for data interpretation (stage A – nucleation-and-growth 

transformation and stage B – diffusion controlled transformation), trying for the first time to unify the 

theoretical description of both – formation and decomposition processes on macroscopic level is 

suggested. The previously reported anomalous preservation for the CO2 hydrate case is confirmed and 

first hints to explaining this problem are given. Thus, valuable information on the physics of the CO2 

hydrate formation and dissociation is obtained. On this basis it can be calculated that a volume of ice 

with a specific surface area of around 0.1 m2/g, exposed to Martian conditions, i.e. temperatures of 

about 150 K and pressures around 6 mbar, will be half transformed into CO2 hydrate in approximately 

10 000 yr and fully transformed in approximately 90 000 yr, disregarding the initial reaction-

controlled part and allowing only the diffusion to control the transformation. For its part, the 

anomalous preservation may, on one hand, serve as an inhibitor or at least as a slow-down factor for 

some catastrophic processes involving CO2 hydrate decomposition; on the other hand it may cause 

such processes, once the ice-hydrate phase boundary is crossed. 

Special attention is paid to the hydrate microstructure. For the first time an attempt for its 

quantification is presented on the basis of a partly-open 3D clathrate foam structure. An estimate of 

the connectivity between the foam cells (bubbles), important for different model simulations, is also 

given. Moreover, a general image processing algorithm, allowing for fast quantification of foam 

structures established by SEM is outlined. 
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Auszug 
Diese Doktorarbeit befasst sich mit der Kinetik der Bildung und der Zersetzung sowie mit der 

Mikrostruktur von CO2-Hydrat unter p-T Bedingungen der Marsoberfläche und des Marsinneren. Sie 

wurde im Rahmen des DFG Projektes Ku 920/11 als Teil einer DFG-finanzierten Forschungsinitiative 

"Mars und die terrestrischen Planeten" (Schwerpunktprogramm 1115) durchgeführt. 

Die Wachstumskinetik wurde mit Neutronenbeugungs- und Gasverbrauchs-Messungen im 

Temperaturbereich von 185 K bis 272 K untersucht und die Ergebnisse der beiden Methoden auf 

Konsistenz geprüft. Darüber hinaus werden erste Ergebnisse von in situ Neutronbeugungsmessungen 

der CO2-Hydrat-Zersetzung präsentiert. Eine sigmoide Reaktionsentwicklung (Kinetik höherer 

Ordnung) wurde mehrfach sowohl bei der Bildung, als auch bei der Zersetzung beobachtet. Diese 

weist darauf hin, dass teilweise gleichzeitig Keimbildungs- und Wachstumsprozesse stattfinden. Die 

Asymmetrie der sigmoiden Form der Reaktionskurven zeigt zudem, dass Diffusionsprozesse eine 

wesentliche Rolle spielen. Mit einer erstmals hier vorgeschlagenen zweistufigen Methode für die 

Dateninterpretation (Stufe A: Kernbildung- und Wachstumstransformation und Stufe B: 

Diffusionskontrollierte Transformation) wird zum ersten Mal versucht, die theoretische Beschreibung 

von Bildungs- und Zersetzungsprozessen auf phänomenologischem Niveau zu vereinheitlichen. Die 

von anderen Autoren berichtete „anormale Erhaltung“ von CO2-Hydrat wird bestätigt und erste 

Überlegungen zur Erklärung dieses Phänomens werden gegeben.. Die experimentellen 

Untersuchungen erlauben erstmals Vorhersagen des Umwandlungsverhaltens von CO2-Hydraten unter 

Marsbedingungen. So kann berechnet werden, dass ein Volumen von Eis mit einer spezifischen  

Oberfläche von ca. 0.1 m2/g bei Marsbedingungen, d. h. bei Temperaturen von 150 K und einem 

Druck um 6 mbar, in ca 10 000 J. zur Hälfte in CO2-Hydrat umgewandelt sein wird und in ca 90000 J. 

völlig transformiert. Im wesentlichen ist die Umwandlungskinetik dabei von der Diffusion der 

Bestandteile durch das kristalline Gashydrat bestimmt. Die „anormale Erhaltung“ steht zwar zunächst 

den mehrfach zur Erklärung geomorphologischer Strukturen herangezogenen katastrophalen 

Zersetzungsprozessen von Gashydraten entgegen, der Effekt kann andererseits aber auch solche 

katastrophalen Prozesse fördern, indem er großen Mengen von Gashydraten metastabil erhält, die sich 

dann beim Überschreiten des Eisschmelzpunkts  in katastrophaler Weise zersetzen. 

Spezielle Aufmerksamkeit wird in der Arbeit auch auf die Mikrostruktur der Gashydrate 

gerichtet. Zum ersten Mal wird ein Versuch für die Quantifizierung der Mikrostruktur basierend auf 

einer Beschreibung als teilweise offen-porigem Schaum präsentiert. Außerdem wird ein allgemeiner 

Bildverarbeitungsalgorithmus, der die schnelle Quantifizierung von im Rasterelektronenmikroskop 

beobachteten Schaumstrukturen zulässt, entworfen. 
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Chapter I  
 

CO2 clathrate hydrates on Mars 
 

The aim of this chapter is to give the reader a general idea about the planet of Mars with its 

atmosphere and inner structure, since the atmospheric conditions and the vertical thermal profile of the 

Martian interior are of major importance for the existence of CO2 hydrates on the Red Planet (see § 2 

and § 3). Also the ice Ih, as well as the clathrate hydrates with their structure and thermodynamics are 

conversed. The possible significance of the gas hydrates for the Universe, the Solar system, and 

certainly for our target – Mars is being discussed. Of course, this cannot be done in very detail for the 

reason of limited space. Nevertheless, this is supposed to be one enjoyable reading. 

 

§ 1. A few words about Mars1 

1.1. Martian atmosphere 

Being the fourth planet in the Solar system, Mars is the last of the inner planets, characterized 

by their rocky composition, unlike the gaseous and icy outer ones. The history of Mars exploration 

starts in the year 1608 with the first observations of Galilei. In 1659 Huygens saw a dark area on its 

surface (Syrtis Major). It helped for defining the Martian rotation period. In 17-th and 18-th century 

were found the polar ice regions and their seasonal variations, as well as the giant dust storms. The 

attempts to map the Martian surface date from the 1830 when Mars was close to the Earth. In 1877 

Schiaparelli, using the 22-cm refractor in Milan, observed and mapped his famous “canale” (Fig.I.1). 

He had won his fame first showing that the Perseides were linked to the Swift-Tuttle comet, a 

discovery that earned him his own observatory. Therefore his peculiar Martian map was taken 

seriously and that was the beginning of the speculations for the existence of intelligent life there. Some 

people even went further as for instance Clara Goguet Guzman, a French widow, who established the 

“Guzman Prize” (100 000 FFr) for the one who first established a contact with another civilization.  

By that time the scientific community got divided into two fractions - “canalists” and “anticanalists”. 

This delusion lasted till the beginning of the XX-th century when better telescopes with higher 

resolution appeared. 

Since 1960, 36 unmanned missions were sent to Mars, 20 of them by USSR/Russia, one by 

Japan, one by EU and the rest by USA. A huge amount of climate data, spectroscopic observations, 

pictures etc was gathered. 

                                                 
1 More information can be found for instance in the book “Towards Mars!” – Edited by R. Pellinen & P. Raudsepp – Oy 
Raud Publishing Ltd. Helsinki, 2000 
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Fig.I.1 The map of Giovanni Schiaparelli. He called the straight lines canals, and found out that the 
patterns on the surface changed with the seasons. He attributed this to the seasonal vegetation changes. 
 
 As mentioned above, Mars, just like Earth, has polar ice caps. Today they are assumed to 

consist of CO2 and water ices (including CO2 hydrate), as well as dust in unknown proportions, 

overlying the bedrock. The caps have two components – permanent and seasonal. The permanent 

component consists mainly of water ice. The seasonal one is composed of dry ice and due to 

deposition (during the autumn and winter) and sublimation of CO2 (during the spring and summer) 

considerably varies in size. The permanent 

northern cap (Fig.I.2) consists mainly of 

water ice. The data recently received from 

Mars Express suggest that the southern 

cap consists mainly of dry ice but also 

contains significant amounts of water ice 

(Fig.I.12). In some years the southern cap 

vanishes completely, during others a small 

residual cap can be seen. 

The atmosphere on Mars consists 

mainly of CO2 (Appendix I) and is 

extremely dry. If all atmospheric water is 

deposited on the surface it will make a layer ≈ 100 µm thick. The pT conditions there are often close 

to the water saturation ones. This leads to cloud formation early in the morning as near-surface fog, 

and in the afternoon as high condensation clouds. If Mars did not have atmosphere its average 

temperature would be determined by the radiation balance between the incoming solar radiation, the 

outward thermal radiation from the surface and the heat coming from the planet interior. Mars receives 

 
Fig.I.2 3D Mars’ North Pole 

Courtesy: MOLA Team, MGS Project, NASA. Image: Greg Shirah 
(SVS) 
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slightly more than 44 % of the solar radiation received by Earth. The heat conducted from the Martian 

interior is 10-4 times the solar heating and is insignificant from a climatic point of view. That means 

the first two factors play the principal role. The atmosphere itself significantly affects the average 

planet temperature, since gases are poor absorbers of visible light but often absorb well the thermal 

radiation, causing a greenhouse effect. CO2 is a good greenhouse gas. The increase of the temperature 

due to it is about 11oC on Earth and represents almost 30 % of the total greenhouse effect here. On 

Mars it worms up with about 7 oC. 

Dust and water ice particles can also strongly affect the atmospheric absorption and scattering 

of the visible and thermal radiation and thus to modify the atmospheric circulation. These effects are 

most common around the large volcanoes, the winter polar cap and globally, during dust storms 

(Fig.I.3). Although, the atmosphere always contains enough aerosols (dust and ice particles) to scatter 

~ 40 % of the incoming solar radiation. The net atmospheric effects depend on the physical properties 

(such as size and optical properties) and on the spatial and temporal distributions of the aerosols. The 

aerosols cause a strong decrease of the surface and near-surface daily temperatures as well as a 

reduction in the vertical rate of change in temperature2. 

The Martian near-surface atmospheric temperatures have been measured at the three landing 

sites in the northern hemisphere: predominantly at the two Viking Lander sites3 for one or more 

Martian years and by Pathfinder4 for about 1/8 Martian year during the summer. Elsewhere the surface 

temperatures have been measured from orbit. The lowest surface temperatures occur in the southern 

polar region during the winter. There they can go down to 148 K. The highest observed surface 

temperature have been measured in the summer in northern mid-latitudes and goes up to 293 – 298 K. 

In the Polar Regions the annual mean-surface temperature is between 158 and 163 K and at the 

equator, between 218 and 223 K. The typical diurnal temperature variations as measured by the 

Viking Landers at 1.5 m height above the surface showed values of around 70 K (Tillman et al. 1979). 

The Mars Pathfinder performed these measurements at three heights (0.25, 0.5, 1 m) and found the 

temperature to change very rapidly with height. The reason for that is the thin atmosphere. But during 

dust storms the difference of 70 K can be reduced to 6 K or even less. One very useful link is: 

http://www-mars.lmd.jussieu.fr/mars/live_access.html. It gives the opportunity to make a coarse 

forecast of the weather on Mars as well as the thickness if the dry ice coverage at different places, 

using the Martian Global Circulation Model linked to the Mars Climate Database. 

                                                 
2 A serious book, dealing with the Martian atmosphere, far not suitable for everybody is the one of Read & Lewis (2004). It 
can be described with four words “dynamic meteorology of Mars” 
3 VL1 landed at Chryse Planitia (22.48° N, 49.97° W planetographic, 1.5 km below the datum and 6.1 mbar elevation). 
VL2 landed at Utopia Planitia (47.97° N, 225.74° W, 3 km below the datum elevation) 
4 Mars Pathfinder landed at 19.3oN and 33.6oW. 
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The atmospheric pressure on Mars is between 5 and 

10 mbar. In the absence of a natural reference (like the see 

level on Earth), the pressure reference level there is the 

altitude, on which the annual mean pressure is 6.1 mbar 

(the triple point of water). The surface pressure on Mars 

exhibits significant spatial and temporal variations. During 

the winter the surface temperature at the Mars Polar 

Regions is low enough to cause the deposition of the 

atmospheric CO2 directly on the polar cap. During spring 

and summer some of the dry ice sublimates directly back 

into the atmosphere. The seasonal exchange of CO2 

between the caps and the atmosphere causes seasonal 

surface pressure variations of about 30 %. The pressure 

decrease with the altitude there is at about 63 % per 10.8 

km. Hence, the surface pressure varies substantially due to 

the large variations in the Martian topography. The 

difference in altitudes of the highest and the lowest points 

there is more than 30 km. The pressure at the highest peaks 

is around 1 mbar and in the deepest valleys – 

approximately 12 – 14 mbar. 

 
Fig.I.3 TOP Mars Dust Storm; MOC image: 
NASA/JPL/Malin Space Science Systems.
BOTTOM Earth Dust Storm; SeaWiFS image: 
Provided by NASA/GSFC and 
ORBIMAGE/SeaWiFS Project. 
 

 

 1.2. Martian inner structure 

Undoubtedly the best method for determining the inner structure of a planet is seismology. 

Basically no information about the seismic structure was returned from the Viking seismic experiment, 

which was too sensitive to the wind and the pressure fluctuations. Other previous spacecrafts have 

measured the gravity field, but this primarily provides information about the outmost layers of the 

planet, and it has proven difficult to choose among several reasonable models even for the lithosphere 

itself. Thus, the inner structure of Mars remains almost completely unknown. Nevertheless, a large 

number of models are trying to describe it5. On Fig.I.4 one of the present models of the Martian 

interior can be seen. Presently the most popular modeling approach is based on thermal convection of 

an infinite Prandtl number fluid with strongly temperature dependent viscosity. The main differences 

between those and previous models include the definition of the lithosphere; an early thermal history, 

which cannot be described by stationary scaling laws; high mantle temperature, and some predictions 

concerning the formation of hot plumes at the core-mantle boundary. 

                                                 
5 The overview of the models is after Sotin & Lognonné (1999) 
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As a result of the application of 

these models the internal structure of Mars 

can be divided into: conductive crust at the 

top, which includes the thermal lithosphere; 

convective mantle with unstable top and 

lower thermal boundary layers at the crust-

mantle and core-mantle boundaries 

respectively; iron-rich core, whose radius is 

a free parameter and which eventually sets 

apart into inner maybe solid core. The 

problems with the determination of its 

radius and state are debated by Schubert & 

Spohn (1990). Important parameters here 

are initial temperature of the mantle, radius 

of the core-mantle interface, and viscosity law of the mantle.  

 
Fig.I.4 Cutaway view of the Martian interior (Stevenson 2004). 
 

The initial temperature of the mantle must be larger than the iron alloys melting temperatures. 

The different models run with different initial temperatures and end up with very similar ones. If the 

temperature is initially too high, then the viscosity is low, the convection is more efficient and the 

cooling rate is fast and vice versa. Usually the models use an Earth-like viscous law for the Martian 

mantle viscosity, assuming it equal to 1021 Pa.s for temperature of 1350°C. Viscosity is assumed to be 

Newtonian and different values of the activation energy are used to study the viscous law influence on 

the mantle temperature and the planet cooling rate. The first numerical models showed that, if 

chondritic radiogenic heating rate was assumed, the temperature of the mantle would remain much 

higher than the peridotites’ melting point and a large partial melt zone would still be present in the 

Martian bowels at present. Alternatively, if one assumes that radiogenic elements have been 

segregated into the crust early enough in the Martian history, the mantle temperature would be lower 

than the solidus one. One major question still remains despite the efforts and the data of the MGS – 

the question about the possibility of plate tectonics (e.g. Sleep 1994) that would allow for a much 

faster cooling of the planet.  

The presence of volcanoes (e.g. Elysium, Olympus Mons, Tharsis area) suggests that the lower 

thermal boundary layer at the core-mantle interface has been unstable during the Martian thermal 

history (Parmentier, Sotin & Travis 1994 and Sotin & Labrosse 1999). Although, it is known that 

thermal convection of a fluid heated from within is driven by downwellings. Hot upwelling can appear 

if the temperature difference across the lower thermal boundary layer is large enough. In the models, 

this case occurs when a solid inner core forms at the center of the planet. Additional models are being 
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conducted to investigate the range of parameters that lead to the formation of hot plumes at the core-

mantle boundary. 

 

§ 2. Ice and clathrate hydrates 

2.1. Ice Ih 

The ice is quite abundant on Earth, in the Solar system, and in the interstellar medium (see 

Chapter I, § 3). If all the ice presently existing on Earth melts, the sea level will increase with about 70 

m. In some planets and in most of the satellites, the ice is the major constituent. For instance, Pluto 

consists of 80% ice; Ganymede, Callisto and Titan – of 40%. It is also present in many other moons, 

in the planetary rings, and in the comets. 

 The ice consists of water molecules. The 

oxygen atom in one water molecule is connected to 

two hydrogens by covalent bonds. Hydrogen bonds 

connect each water molecule with four others in a 

tetrahedral framework. They have electrostatic 

character. The hydrogen bond binds the hydrogen 

nucleus belonging to one molecule (hydrogen 

donor) to the lone-pair electrons of the oxygen from 

another molecule (hydrogen acceptor). Each 

oxygen atom uses two of the six outer electrons to 

make the covalent bonds and four (two lone-pairs) 

to make two hydrogen bonds. Each hydrogen atom 

participates in one covalent and one hydrogen bond. 

The ice can form different crystallographic 

structures depending on the thermodynamic conditions. The pT conditions of stability of the different 

crystalline phases of ice are shown on the phase diagram (Fig.I.5). The ice phase, used to form gas 

hydrates during these kinetic experiments, was ice Ih, stable at temperatures below 273 K and ambient 

pressures. 

 
Fig.I.5 Ice phase diagram (Lobban et al. 1998). Solid 
lines represent measured transitions; dashed lines - 
transitions extrapolated to low temperatures; dotted lines 
- predicted transitions. 
 

The oxygen atoms of the water molecules in ice Ih are arranged in layers of hexagonal rings. 

The atoms of each hexagonal ring are displaced with respect to each other alternately in two planes. 

The resulting hexagonal channels make ice Ih an open structure (see Fig.I.6). Its space group is 

P63/mmc. In reality the water molecules experience small displacements from the shown positions. 

Therefore, the arrangement on Fig.I.6 should be regarded as an averaged over space and time 

formation. More details about the hexagonal ice structure and its properties can be found in Kuhs & 

Lehmann (1986), Petrenko & Whitworth (1999). The water molecules on the ice surface are poorly 

bound because they interact with other molecules only from one side. It makes the structure of the free 
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surface to some extent different from the one of the bulk. A number of experimental and theoretical 

studies on the structure and the physical properties of the ice surface (e.g. Petrenko and Whitworth 

1999) showed the importance and complexity of such investigations, especially close to the ice 

melting point. Dash (1995) and Wettlaufer (1997) discussed theoretically the phenomenon of surface 

premelting or the existence of a quasi-liquid layer at temperatures and pressures below the melting 

point. Bluhm et al. (2002) presented experimental observations on the premelting of ice showing the 

existence of a quasi-liquid layer at temperatures between -20°C and 0°C. When the temperature 

approached the ice melting point the film was about 30 Å thick and at 253K it became insignificant. 

 
Fig.I.6 Structure of ice Ih (taken from Lobban 1998). The right and the left pictures show 
the structure as seen parallel and perpendicular to the hexagonal channels, respectively. 
 

 

2.2. Hydrate structures and phase diagram 

Clathrate hydrates comprise a class of ice-like solids in which, usually apolar guest molecules 

occupy, fully or partially, cages in the host structure formed by H-bonded water molecules. Different 

people give different names to this structure – gas clathrates, gas hydrates, clathrates, hydrates etc – 

but they all mean the same. They exist as stable compounds at high pressure and/or low temperature 

(van der Waals and Platteeuw, 1959).  

 The gas hydrates (hence this will be the name most frequently used in this work) usually form 

two crystallographic cubic structures – structure (Type) I and structure (Type) II (von Stackelberg & 

Müller, 1954) of space groups nPm3  and mFd 3  respectively. Rather seldom a third hexagonal 

structure of space group P6/mmm maybe observed (Type H). 

The unit cell of Type I consists of 46 water molecules, forming two types of cages – small and 

large (see Fig.I.7). The small cages in the unit cell are two against six large ones. The small cage has 

the shape of pentagonal dodecahedron (512) (see Fig.I.7) and the large one that of tetrakaidecahedron 

(51262). Typical guests forming Type I hydrates are CO2 and CH4. 

The unit cell of Type II consists of 136 water molecules, forming also two types of cages – 

small and large. In this case the small cages in the unit cell are sixteen against eight large ones. The 
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small cage has again the shape of pentagonal dodecahedron (512) but the large one this time is 

hexakaidecahedron (51264). Type II hydrates are formed by gases like O2 and N2. 

The unit cell of Type H consists of 34 water molecules, forming three types of cages – two 

small of different type and one huge. In this 

case, the unit cell consists of three small cages 

of type 512, twelve small ones of type 435663 

and one huge of type 51268. The formation of 

Type H requires the cooperation of two guest 

gases (large and small) to be stable. It is the 

large cavity that allows structure H hydrates 

to fit in large molecules (e.g. butane, 

hydrocarbons), given the presence of other 

smaller help gases to fill and support the 

remaining cavities. Structure H hydrates were 

suggested to exist in the Gulf of Mexico. 

There thermogenically-produced supplies of 

heavy hydrocarbons are common. 

 
Fig.I.7 Schematic of the cages, building the unit cells of the 
different hydrate structures 
 

The importance of the 

gas hydrates here on Earth is out 

of any doubt. The kinetics of 

their formation and 

decomposition, as well as their 

physical properties are of a 

significant importance for the 

gas industry, economy and 

ecology. Anyway, the topic of 

this work is the gas hydrates on 

Mars; therefore I am not going to 

enter into a detailed discussion 

about their role on our planet. 

But their importance in cosmic 

scale and especially for Mars 

will be debated in the next 

paragraph. 

 
Fig.I.8 CO2 hydrate phase diagram. The black squares show experimental data 
(after Sloan, 1998). The lines drawing CO2 phase boundaries are calculated 
according to the Intern. thermodyn. tables (1976). The water phase boundaries 
are only guides to the eye. 
 

The hydrate structures are stable at different pressure-temperature conditions depending on the 

guest molecule. Here one Mars related phase diagram of the CO2 hydrate combined with those of pure 
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CO2 and water is given (Fig.I.8). The CO2 hydrate has two quadruple points: (I-Lw-H-V) (T = 273.1 

K; p = 12.56 bar) and (Lw-H-V-LHC) (T = 283.0 K; p = 44.99 bar) (Sloan, 1998). The CO2 itself has a 

triple point at T = 216.58 K and p = 5.185 bar and a critical point at T = 304.2 K and p = 73.858 bar. 

The dark gray region (V-I-H) represents the conditions at which the CO2 hydrate is stable together 

with gaseous CO2 and water ice (below 273.15 K). On the horizontal axes the temperature is given in 

Kelvin and Celsius (down and up respectively). On the vertical ones the pressure (left) and the depth 

in the Martian regolith (right) are given. The horizontal dashed line at zero depth represents the 

average surface conditions. The two bent dashed lines show two calculated Martian geotherms after 

Stewart & Nimmo (2002) at 30o and 70o latitude. I will come back to this phase diagram several times 

later on. 

As a matter of fact, probably the first evidence for the existence of CO2 hydrates dates back to 

the year 1882, when Wroblewski (1882a, b and c) reported clathrate formation while studying 

carbonic acid. He noted that the gas hydrate was a white material resembling snow and could be 

formed by raising the pressure above certain limit in his H2O – CO2 system. He was the first to 

estimate the CO2 hydrate composition, finding it to be approximately CO2·8H2O. He also mentions 

that “…the hydrate is only formed either on the walls of the tube, where the water layer is extremely 

thin or on the free water surface…” This already indicates the importance of the surface available for 

reaction, i.e. the larger the surface the better. Later on in 1894, Villard deduced the hydrate 

composition as CO2·6H2O. Three years later, he published the hydrate dissociation curve in the range 

267 K – 283 K (Villard 1897). Tamman & Krige (1925) measured the hydrate decomposition curve 

from 253 K down to 230 K and Frost & Deaton (1946) determined the dissociation pressure between 

273 and 283 K. Takenouchi & Kennedy (1965) measured the decomposition curve from 45 bars up to 

2 kbar. For the first time the CO2 hydrate was classified as a Type I clathrate by von Stackelberg & 

Muller (1954). 

 

2.3. Formation and decomposition kinetics 

Since the 1950s, a large number of gas hydrate systems have been studied but still many of 

their physico-chemical properties as well as their formation and decomposition kinetics are not well 

understood, despite their importance for a number of reasons (e.g. Sloan 1998). 

A review of the kinetics of gas hydrate formation in aqueous laboratory systems can be found 

in Sloan (1998). The nucleation and the induction period of the gas hydrate formation in aqueous 

solutions are described within the frames of the General Nucleation Theory in the papers of Kashchiev 

and Firoozabadi (2002, 2003). Also a hypothetical microscopic mechanism for the nucleation of 

hydrate from ice with an emphasize put on the role of the quasi-liquid layer can be found in Sloan and 

Fleyfel (1991). Schmitt (1986) performed experimental measurements of the induction period of the 

CO2 hydrate formation at low temperatures. No clear dependence on the temperature and the 
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overpressure was observed. A strong dependence of the transformation rates on the surface area of the 

gas-ice contact was demonstrated by Barrer and Edge (1967). Later, Hwang et al. (1990) studied the 

methane-hydrate growth on ice as a heterogeneous interfacial phenomenon and measured the clathrate 

formation rates during ice melting at different gas pressures. Sloan and Fleyfel (1991) discussed 

molecular mechanisms of the hydrate-crystal nucleation on ice surface, emphasizing the role of the 

quasi-liquid-layer (QLL). Takeya et al. (2000) made in-situ observations of the CO2-hydrate growth 

from ice-powder for various thermodynamic conditions using laboratory X-ray diffraction. They 

distinguished the initial ice-surface coverage stage and a subsequent stage, which was assumed to be 

controlled by gas and water diffusion through the hydrate shells surrounding the ice grains. The 

process was modeled following Hondoh and Uchida (1992) and Salamatin et al. (1998) in a single ice 

particle approximation. The respective activation energies of the ice-to-hydrate conversion were 

estimated to be 19.2 and 38.3 kJ/mol. The first in-situ neutron diffraction experiments on kinetics of 

the clathrate formation from ice-powders were presented by Henning et al. (2000). They studied the 

CO2-hydrate growth on D2O ice Ih, using the high intensity powder diffractometer HIPD at Argonne 

National Laboratory for temperatures from 230 to 263 K at a gas pressure of approximately 6.2 MPa. 

The starting material was crushed and sieved ice with unknown but most likely irregular shape of the 

grains. To interpret their results at a later stage of the hydrate formation process, the authors applied a 

simplified diffusion model of the flat hydrate-layer growth, developed for the hydration of concrete 

grains (Berliner et al. 1998; Fujii and Kondo 1974), and determined the activation energy of 

27.1 kJ/mol. This work has been continued by Wang et al. (2002) to study the kinetics of CH4-hydrate 

formation on deuterated ice particles. A more sophisticated shrinking-ice-core model (Froment and 

Bischoff 1990; Levenspiel 1999) actually reduced to the diffusion model of Takeya et al. (2000; 2001) 

has been used to fit the measurements. Higher activation energy of 61.3 kJ/mol was deduced for the 

methane hydrate growth on ice. Based on Mizuno and Hanafusa (1987), the authors suggested that the 

quasi-liquid layer of water molecules at the ice-hydrate interface may play a key role in the (diffusive) 

gas and water redistribution although a definite proof could not be given.  

One of the recent and most intriguing findings is that, at least in cases where the guest species 

are available as excess free gas, some gas hydrate crystals grow with a nanometric porous 

microstructure. Using cryo field-emission scanning electron microscopy (FE-SEM), direct 

observations of such sub-micron porous gas hydrates have now repeatedly been made (Klapproth 

2002; Klapproth et al. 2003; Kuhs et al. 2000; Staykova et al. 2002; Staykova et al. 2003; Genov et al. 

2004). Hwang et al. (1990) reported that the methane hydrates formed from ice in their experiments 

were bulky and contained many voids. Rather interestingly, there is evidence that besides dense 

hydrates, some natural gas hydrates from the ocean sea floor also exhibit nanometric porosity (Suess et 

al. 2002). Based on experimental studies (Aya et al. 1992; Sugaya and Mori 1996; Uchida and 

Kawabata 1995) of CO2 and fluorocarbon hydrate growth at liquid-liquid interfaces, Mori and 
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Mochizuki (1997) and Mori (1998) had already proposed a porous microstructure of the hydrate layers 

intervening the two liquid phases and suggested a phenomenological capillary permeation model of 

water transport across the films. Although general physical concepts of this phenomenon in different 

situations may be quite similar, still there are no sufficient data to develop a unified theoretical 

approach to its modeling (Mori 1998).  

In accordance with numerous experimental observations (Henning et al. 2000; Kuhs et al. 

2000; Staykova et al. 2002; 2003; Stern et al. 1998; Takeya et al. 2000; Uchida et al. 1992; 1994), a 

thin gas hydrate film rapidly spreads over the ice surface at the initial stage of the ice-to-hydrate 

conversion (stage I after Staykova et al. 2002, 2003). Subsequently, the only possibility to maintain 

the clathration reaction is the transport of gas molecules through the intervening hydrate layer to the 

ice-hydrate interface and/or of water molecules from the ice core to the outer hydrate-gas interface. As 

mentioned above, a diffusion-limited clathrate growth was assumed for this second stage described by 

Takeya et al. (2000), Henning et al. (2000), and Wang et al. (2002) on the basis of the shrinking-core 

models formulated for a single ice particle, in their treatment without taking explicitly account of a 

surface coverage stage. Salamatin and Kuhs (2002) suggested in the case of porous gas hydrates, the 

gas and water mass transport through the hydrate layer becomes much easier, and the clathration 

reaction itself together with the gas and water transfer over the phase boundaries may be the rate-

limiting step(s) of the hydrate formation that follows the initial coverage and this process should be 

modeled simultaneously with the ice-grain coating (stage II after Staykova et al. 2002, 2003). Still 

they expect an onset of a diffusion-limited stage (stage III in this nomenclature) of the hydrate 

formation process completely or, at least, partly controlled by the gas and water diffusion through the 

hydrate phase. The values for the activation energies for the CH4 hydrate formation case they obtained 

were 39.9 kJ/mol (with D2O ice) and 34 kJ/mol (with H2O ice) for the reaction-limited stage and 59.9 

kJ/mol for the diffusion limited one. Later on, to improve the fit of the initial part of the reaction, the 

first stage was divided into two sub stages (Genov et al. 2004) – stage Ia and stage Ib. Stage Ib was the 

previously mentioned surface coverage, preceded by a crack filling stage Ia. In the case of CO2, 

hydrate they reported activation energies for stage I 5.5 kJ/mol at low temperatures and 31.5 kJ/mol 

above 220 K; 42.3 kJ/mol for stage II and 54.6 kJ/mol for stage III. 

The anomalous preservation is a well established but little-understood phenomenon of a long-

term stability of gas hydrates outside their stability field. It occurs after some initial hydrate 

decomposition into ice in certain temperature range. It is a very interesting phenomenon of substantial 

scientific and practical interest. Davidson et al (1986) performed early observations of this effect. Such 

were made independently in more detailed, by Yakushev & Istomin (1992). These authors observed an 

unexpected perseverance when gas hydrates were brought outside their stability field at temperatures 

below the ice melting point. More recently, Stern et al. (2001) and Takeya et al. (2001) investigated 

the temperature dependency of the effect in the methane hydrate case and found that the effect also 
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had a lower limit. According to Stern et 

al. (2001) the “anomalous preservation 

window” is between 240K and the ice 

melting point, while at temperatures 

below 240K the decomposition is rapid 

and appears to be thermally activated. 

Within this window the decomposition 

rates vary considerably by several 

orders of magnitude in a reproducible 

way (see Fig.I.9) with two minima at 

around 250 and 268 K. Takeya et al. 

2002 confirmed this effect and 

suggested diffusion limitation for explaining the slow decomposition kinetics within the anomalous 

preservation window. A similar, but not identical behaviour was observed for CO2 hydrate (Stern et al. 

2003). Still, the deeper physical origin of “anomalous preservation” remains obscure and the 

controlling parameters elusive (Wilder & Smith 2002, Stern et al. 2002, Circone et al. 2004). This 

effect may lead to a revision of the existing ideas about the importance of the CO2 decomposition for 

the processes running on Mars (see § 3). 

Fig.I.9 Self-preservation of CH4. (Stern et al. 2001) 
 

 

§ 3. CO2 hydrates on Mars 

Iro et al. (2003), trying to interpret the nitrogen deficiency in comets, discussed in detail the 

conditions needed to form clathrate hydrates in the proto-planetary nebulae, surrounding the pre-main 

and main sequence (MS) stars. They stated most of the conditions for hydrate formation were fulfilled, 

despite the rapid grain growth to meter scale. The key was to provide enough microscopic ice particles 

exposed to a gaseous environment. De facto, observations of the radiometric continuum of 

sircumstellar discs around τ-Tauri and Herbig Ae/Be stars suggest massive dust disks consisting of 

millimeter-sized grains, which disappear after several millions of years (e.g. Beckwith et al. 2000, 

Natta et al. 2000). A lot of work on detecting water ices in the Universe was done on the Infrared 

Space Observatory (ISO). For instance, broad emission bands of water ice at 43 and 60 µm were found 

in the disk of the isolated Herbig Ae/Be star HD 100546 in the constellation Musca. The one at 43 µm 

is much weaker then the one at 60 µm, which means the water ice, is located in the outer parts of the 

disk at temperatures below 50 K (Malfait et al. 1998). There is also another broad ice feature between 

87 and 90 µm, which is very similar to the one in NGC 63026 (Barlow 1997). Crystalline ices were 

also detected in the proto-planetary disks of ε-Eridani and the isolated Fe star HD 142527 (Li, Lunine 

                                                 
6 The Butterfly nebula in Scorpius. 
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& Bendo 2003, Malfait et al. 1999) in Lupus. 90 % of the ice in the latter was found crystalline at 

temperature around 50 K. HST demonstrated that relatively old circumstellar disks as the one around 

the 5 million year old B9.5Ve (Jaschek & Jaschek 1992) Herbig Ae/Be star HD 141569A are dusty 

(Fig.I.10) (Clampin et al. 2003). Li & Lunine (2003) found water ice there. Knowing the ices usually 

exist at the outer parts of the proto-planetary nebulae, Hersant et al. (2004) proposed an interpretation 

of the volatile enrichment, observed in the four giant planets of the Solar System, with respect to the 

Solar abundances. They assumed the volatiles had been trapped in the form of hydrates and 

incorporated in the planetesimals flying in the proto-planets’ feeding zones. Obviously, the idea that 

the gas hydrates may play a role in a cosmic scale starts to gain in popularity. Nevertheless, the 

pressure and temperature conditions in the outer space and on Mars are distinctly different. 

There is a well-known meteorological phenomenon called diamond dust production. At 

temperatures below –18 oC, ice Ih crystals may form as irregular hexagonal plates or non-branched ice 

needles or columns directly from water vapor in the air, through a process called deposition. Their size 

may go below 20 µm across, which may result in “snow” with a very high specific surface area. The 

ice existing and forming on Mars is most likely ice Ih in the shape of diamond dust. 

CO2 is an abundant volatile on Mars. It dominates 

in the atmosphere and covers the polar ice caps much of 

the time. In the early seventies, the possible existence of 

CO2 hydrates on Mars was proposed (Miller & Smythe 

1970). Recent consideration of the temperature and 

pressure of the regolith and of the thermally insulating 

properties of dry ice and CO2 clathrate (Ross and Kargel, 

1998) suggested that dry ice, CO2 clathrate, liquid CO2, 

and carbonated groundwater are common phases even at 

Martian temperatures (Lambert and Chamberlain 1978, 

Hoffman 2000, Kargel et al. 2000). 

What if CO2 hydrates are present in the Martian 

polar caps as some authors suggest (e.g. Clifford et al. 2000, Nye et al. 2000)? Clifford (1980a, 1980b, 

1993) first proposed that Chasma Boreale and Chasma Australe were possibly formed by a 

jökulhlaup-type event. He noted the large size of these reentrants and the fact that they crosscut typical 

polar channels and are geomorphologically similar to Ravi Vallis – an outflow channel with a flood 

origin (Fig.I.11). Clifford (1980b) hypothesized a basal melting in the past history of the polar cap 

was possible and that melt water could collect within and be catastrophically released from craters 

beneath the cap, resulting in a jökulhlaup. Heat generated by turbulence and viscous dissipation within 

the flowing water and by friction between the flowing water and surrounding ice could then serve to 

enlarge the drainage tunnel. 

Fig.I.10 Coronographic image of HD 141569 
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But if the polar caps contain 

significant amounts of CO2 hydrate mixed 

with water ice (Jakosky et al. 1995, Hoffman 

2000), then the cap will not melt as readily as 

it would if consisting only of water ice, 

because of the clathrate’s lower thermal 

conductivity, higher stability under pressures 

and higher strength (Durham 1998), compared 

to the pure water ice. Thus, obtaining an 

accurate estimate of the amount of CO2 

clathrate in the layered deposits is of major 

importance. Mellon (1996) studied this 

problem and found that the polar deposits probably contain relatively small amounts of CO2. 

However, if the polar deposits contain significant amounts of CO2 clathrate, this would affect the 

behavior of the melted polar material. Under constant pressure but increasing temperature beneath the 

cap, the decomposed CO2 clathrate would release liquid CO2 (soluble in water at low temperatures and 

high pressures), liquid water 

and excess, gaseous CO2 

(Hoffman 2000). When this 

melt mixture reaches the cap 

periphery, and pressure is 

therefore greatly reduced, the 

water would readily freeze 

and CO2 would now be 

nearly completely insoluble, 

leaving unstable pockets of 

CO2 gas within the ice which would be likely to burst (Hoffman 2000).  

 
Fig.I.11 Formation of Chasma Boreale by an outflow of melt 
water (from Fishbaugh & Head 2002). 
 

 
Fig. I.12 The Martian South Polar Cap as seen in terms of H2O (left), CO2 (middle) 
and normally (right). The arrows show the suspected clathrate containing regions. 
Courtesy: Mars Express, OMEGA team. Image Number: SEMVMA474OD 
 

The question of a possible diurnal and annual CO2 hydrate cycle on Mars also stays, since the 

large temperature amplitudes observed there cause leaving and reentering the clathrate stability field 

on daily and seasonal basis. The question is can the gas hydrate be detected by any means, being 

deposited on the surface. Probably yes. The OMEGA spectrometer on board of Mars Express returned 

some data, which were used by the OMEGA team to produce images of the south polar cap, as it was 

visible in terms of CO2 and H2O (Fig.I.12). The arrows assign areas where the existence of dry ice is 

not very likely but still it is visible and a strong water ice signal can be detected. If one looks back at 

the phase diagram from Fig.I.8 will see that dark gray p-T region where the water ice coexists with 

gaseous CO2 and CO2 hydrate. It is not clear if this is hydrate, because the images are in a rainbow 
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scale, which is not published yet and will not be available before the beginning of the year 2005 due to 

technical problems (OMEGA team private communication April 2004). Otherwise, one approach to 

see if this is hydrate or not is to try to find there the “golden ratio” of ≈ 6:1 water to CO2 molecules. In 

any case this is still an open question. 

The decomposition of CO2 hydrate is believed to play a significant role in the terra-forming 

processes on Mars. Many of the observed surface features are partly attributed to it. For instance, 

Musselwhite et al. (2001) argued that the Martian gullies (Fig.I.13) had been formed not by liquid 

water but by liquid CO2 since the present Martian climate does not allow liquid water existence at the 

surface in general. Especially this is true for the southern hemisphere where most of the gully 

structures occur. However, water can be present there as ice Ih, CO2 hydrates or hydrates of other 

gases (e.g. Max & Clifford 2001, Pellenbarg et al. 2003) or liquid water at depths below 2 km under 

the surface (see geotherms in the phase diagram Fig.I.8). With the present obliquity, the slopes where 

the gullies occur remain generally shaded during most of the year and are among the coldest spots on 

the planet. At such conditions, any dry ice just below the surface and in diffusive contact with the 

surface should remain stable and act as a dam trapping gas hydrate, water ice and liquid CO2 

underneath. In case of temperature increase the dry ice dam will get molten and the liquid CO2 will 

drain out. It will rapidly vaporize. Some of the vapor may snow out, but the rapid expansion should be 

enough to create a fluidized suspended flow of CO2 gas along with some entrained debris. The 

clathrate hydrate will dissociate into CO2 vapor plus water ice and the additional gas release should 

help to maintain the flow. Gully formation by this process can be in single or multiple episodes 

depending on the rate of replenishment of the liquid-CO2 aquifer and the formation of a new dry-ice 

plug. It is believed that the melting of ground-ice by high heat flux has formed the Martian chaotic 

terrains (Mckenzie & Nimmo 1999). Milton (1974) 

suggested the decomposition of CO2 clathrate had 

caused rapid water outflows and formation of 

chaotic terrains. When sediment saturated with 

water becomes subjected to a stress, a loosely 

packed grain framework suddenly collapses and the 

grains become temporarily suspended in the pore 

fluid (liquefaction) (see Fig.I.14). If water flows 

fast enough so that it balances with the settling 

velocity of grains, the grains are suspended in the 

stream and the water-sediment mixture behaves like 

fluid (fluidization). These two processes may have 

played important roles in the chaotic terrain formation (Ori & Mosangini 1997). If the amount of gas 

derived from clathrate is large enough and conditions for gas build-up under an impermeable layer 

 
Fig.I.13 Gullies on a Crater Wall in Newton Basin 
MGS MOC Release No. MOC2-317, 8 August 2002 
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exist, the pressure release of gas can play a major role in pulverizing rocks and remaining ices. 

Furthermore fragmented rocks by gas explosion can liquefy easily. Once liquefied and fluidized the 

mobilized water-sediment mixture flows out catastrophically. In some cases, ponds of water may have 

occurred in the depressions inside the chaotic terrain (Ori & Mosangini 1998). Ness & Orme (2002) 

gave a similar explanation of the formation of the Martian spiders. In their interpretation the process 

did not reach the stage of catastrophic flooding but stopped after intensive out-gassing and several 

other events linked in one or another way with the CO2 hydrate formation and decomposition. 

Cabrol et al. (1998) proposed that the physical environment and the morphology of the south 

polar domes on Mars suggest for possible cryovolcanism. The surveyed region consisted of 1.5-km 

thick-layered deposits covered seasonally by CO2 frost (Thomas et al. 1992) underlain by H2O ice and 

CO2 hydrate at depths > 10m (Miller and Smythe, 1970). When the pressure and the temperature are 

raised above the stability limit, the clathrate is decomposed into ice and gases, resulting in explosive 

eruptions. Cabrol et al. observed these pancake-shaped domes only in impact structures and suggested 

morphogenic processes associated with high pressure and high temperature conditions, created by 

meteorite impacts that can generate eruptive conditions for clathrates. All the domes are observed at 

the bottom of impact craters, and range between 40 - 50-km in diameter, with a few larger or smaller 

exceptions. They are round at their base and show concentric rings. This observation rules out the 

possibility of an aeolian construct. Their comparison illustrates a process of dome formation most 

likely by the emergence of underground material, which can be compared to the formation of 

terrestrial volcanic lava domes.  

 
Fig.I.14 Chaotic terrain (left: Courtesy ESA Mars Express 2004) and a possible mechanism of its 
formation (right: after Komatsu et al. (2000)). 

Still a lot more examples of the possible importance of the CO2 hydrate on Mars can be given. 

One thing remains unclear: is it really possible to form hydrate there? Kieffer (2000) suggests no 
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significant amount of clathrates could exist near the surface of Mars. Stewart & Nimmo (2002) find it 

is extremely unlikely that CO2 clathrate is present in the Martian regolith in quantities that would 

affect surface modification processes. They argue that long term storage of CO2 hydrate in the crust, 

hypothetically formed in an ancient warmer climate, is limited by the removal rates in the present 

climate. Other authors (e.g. Baker et al. 1991) suggest that, if not today, at least in the early Martian 

geologic history the clathrates may have played an important role for the climate changes there. Since 

not too much is known about the CO2 hydrates formation and decomposition kinetics, their physical 

and structural properties, it becomes clear that all the above mentioned speculations rest on extremely 

unstable basis. How fast do CO2 hydrates form? What limits their growth? What controls the hydrate 

decomposition? Is a catastrophic decomposition likely? Are the physics behind the hydrate formation 

and decomposition similar? Can we describe better the hydrate microstructure, which certainly affects 

its physical and mechanical properties? This work comes to try to throw more light upon these issues. 

 



Chapter II  
 

Methods and instrumentation 
 

In this chapter will be discussed the basic physics of the neutrons, such as their physical 

properties and interactions in which they play a role. A special emphasize will be put on the neutron 

scattering, neutron production and detection. Some other processes involving neutrons, which do not 

have a direct impact on the present studies will be mentioned very briefly. Also will be given a 

description of the instrument used in these studies – D20 – and certain issues of the radiation 

protection will be conversed. Later on the pVT system used in the in-house work will be described and 

its main ideology discussed. Then, the main principles of the electron microscopy will be introduced, 

together with some basic information on the physics of the electrons and a description of LEO 1530 

Gemini – the cryo FE-SEM used here. At the end of the chapter, the BET method for measuring 

specific surface area will be briefly described. 

 

§ 1. Neutrons – basic physics and instruments 

1.1. Neutrons – basic physical properties  

In the year 1930 Bothe and Becker performed an experiment on bombardment of beryllium 

with alpha particles. They detected highly penetrating radiation, which they identified as γ-rays. 

Frederic and Irene Joliot-Curie realized the considered radiation ejects protons out of paraffin target 

and obtained the velocity of the ejected protons ≈ 3.3 x 107 m/s. This was explained as a Compton 

scattering of γ-rays from protons. 

In 1932 James Chadwick (a student of Rutherford) carried out a series of experiments to define 

the real nature of the “beryllium” rays. He investigated them passing not only through paraffin but also 

through some other especially N-containing materials. Thus, he obtained the velocity of the ejected 

nitrogen nuclei (≈ 4.7 x 106 m/s). He rejected the hypothesis of the electromagnetic nature of this 

radiation and assumed it to consist of neutral particles with a steady state mass close to that of the 

proton (Chadwick 1932) – the neutron. For this, in 1935 he obtained the Nobel Prize in physics.  

Let us have a fast look at the main properties of the neutrons as well as the interactions they 

take part in. 

Mass: Estimation about the mass of these particles could be done on the basis of the 

conservation laws assuming them to be non-relativistic (with an accuracy of 1 %). 
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m and Mx are the masses of the unknown particle and the recoil nucleus respectively, v0 and v – the 

velocity of the particle before and after the collision, Vx – the velocity of the nucleus. By solving 

 

system (II.1) Chadwick got: 

s a result, the neutron mass mn
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A  = 939.57 Mev or 1.15 mp was found. 

In the same year Ivanenko and Heisenberg suggested that 

s and protons. 

Electric Charg  In the elementary particle physics as an electric charge of a particle is 

underst

between the 

particle

ood a discrete whole quantum number, whose conservation limits the possible kinds of 

transformations of the particle. All elementary particles carry an elementary charge, equal either to 0 e 

or to ±1 e. As a unit electric charge is taken the charge of the electron (1 e = 1.6 x 10-9 C). 

From the other site, the electric charge is a quantitative measure for the interaction 

s and the electric fields. The new theories unifying the forces require the neutron to be exactly 

neutral. In this sense its charge is less then 10-21 e. 

Spin: In the quantum mechanics is shown that the square magnitude of the orbital angular 

momentum has a quantized spectrum of eigenvalues: 

22
)1( h

r
+= lll  )1( += lll h

r
  (II. 3) 

where l is the azimuthal quantum number and for given principal quantum number n gets values l = 0, 

or 

1, 2……n – 1. The spectrum of the possible values of the projection of l
r

over a given direction z has 

(2l +1) values: 0;.....)1(; hh −±± ll . In the quantum physics only the maxi um projection of lm
r

equal to 

lh is measured. 

The expe riments have shown that the elementary particles have inner angular momentum, 

which has a quantum nature and is not connected with their orbital motion. It is called spin. 

Analogously to the former may be shown that the eigenvalues of the square of the operator of the spin 

are: 
22 )1( h

r
+= sss  or )1( += sss h

r

s +1) different values. The neutrons have a spin 

  (II. 4) 

The projection of over a given direction z has (2

=

sr

quantum number s  ½. Thus, they follow the statistics of Fermi – Dirac and obey the principle of 
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Pauli, which states that in a quantum system two particles of the same type cannot be in the same 

condition at the same time. 

 Magnetic momentum: From the classical electrodynamics is known that a particle with charge 

e and mass m, has also a magnetic momentum µ. In the quantum mechanics is shown that the 

magnetic momentum, which is due to the orbital motion of the particle, is equal to: 

)1(
2

+= ll
m
e

l hµ     (II. 5) 

and the one due to the spin is: 
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2
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m
egs hµ     (II. 6) 

where g is the gyro magnetic ratio. 

According to the equation of Dirac, a particle with spin equal to ½ should have a magnetic 

momentum - one magneton, if the particle is charged and 0 magneton if it has a zero charge. The 

experiments have shown anomalously high biases from the calculated values for the protons and 

neutrons: 

µp = 2.792763 µ0 

µn = -1.91315 µ0 

where µ0 is the nuclear magneton and is equal to pme 2/0 h=µ . This showed those particles had much 

more complicated structure, impossible to be explained with simple assumptions. According to the 

quantum chromodynamics, the hadrons (including the neutrons) consist of quarks, which together with 

the leptons are the building units of the whole material world. They are fermions (spin 1/2) and have 

non-zero steady state mass. The quarks interact between themselves with strong interactions carried by 

the gluons - neutral bosons (spin 1), with a zero steady state mass. According to the fragrance (their 

main characteristic) there are six quarks: u, d, s, c, b, t. The neutron has a udd structure. 

  

1.2.Neutron interactions 

1.2.1. Strong (nuclear) interactions 

There are three types of strong interactions for the neutrons: 

1. Neutron – proton interactions. 

2. Neutron – neutron interactions. 

3. Neutron – nucleus interactions. 

The reaction cross-sections for the neutron case significantly 

depend on its energy. The classification of the neutrons according to 

their energies is given in Table II.1. 

The nuclear interaction is, however weak in an absolute scale, 

and therefore the neutrons can penetrate the sample and investigate the bulk properties 

Name Energy [eV] 
 Cold 0 – 0.005 

Slow Thermal 0.005 – 0.5 
 Resonant 0.5 - 103 

Intermediate 103 – 105 
Fast 105 – 5 x 107 
Super fast > 5 x 107 
 
Table II.1 Neutron energy 
classification 
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1.2.2. Weak interactions 

On the first place it appears with its beta decay: 

eepn ν~++→ −  t1/2 = 10.2 min   (II. 7) 

The neutron takes part in many other weak interactions, which will not be considered here. 

1.2.3. Electromagnetic interactions 

The neutrons that have wavelengths of the order of or bigger then the atomic 

dimensions (En < 10 eV) take part in the electromagnetic interactions of the magnetic momentum of 

the neutron with those of the electron layers of the atoms. These interactions can be used in a large 

number of investigations in the field of the solid-state physics. The neutron can interact with the 

electric fields of the nuclei as well as (n, e-) scattering is possible. 

1.2.4. Radiative capture ((n, γ) reactions) 

This is one of the most common reactions of the neutrons with the matter. It follows the 

scheme, 

γ+→+ + XXn A
Z

A
Z

11
0     (II. 8) 

The latter nucleus is usually β-active. This type of reactions is typical for the slow and intermediate 

neutrons and is widely used for their detection. It is also the main responsible for the activation of the 

experimental equipment. 

1.2.5. (n, p) reactions 

It is typical for the fast neutrons. 

YpXn A
Z

A
Z 1

1
1

1
0 −+→+     (II. 9) 

This is an exothermal reaction because mn > mp. It cannot take part at low energies because the ejected 

proton needs energy to jump over the Coulomb barrier. 

1.2.6. (n, α) reactions 

This is a reaction of the type, 

YHeXn A
Z

A
Z

3
2

4
2

1
0

−
−+→+    (II. 10) 

It is typical mainly for the fast neutrons but in many cases the coulomb barrier of the nuclei for α 

particles is too low and the reaction can happen even with thermal neutrons. Thus, for registration of 

thermal neutrons the reaction, 

MeVLiHeBn 8.27
3

4
2

10
5

1
0 ++→+    (II. 11) 

is used. 

 Reactions resulting in producing more then one nucleon are also possible but will not be 

considered here. 

1.2.7. Neutron scattering1 
                                                 
1 This overview is based on: Pynn (1990) and Squires (1997) 
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When neutrons are scattered by matter, the process can change the momentum and the 

energy of the neutrons and the matter. The scattering is not necessarily elastic because the atoms in the 

matter can move to some extent. Therefore, they can recoil during a collision with a projectile, or if 

they are moving when the neutron arrives, they can pass on or absorb energy. 

The total momentum and energy are conserved. When a neutron is scattered it looses energy ε. 

Knowing that 

vmk rr
h =      (II. 12) 

it is easy to see that the amount of momentum given up by the neutron during its collision, or the 

momentum transfer, is 

)( kkQ ′−=
rr

h
r

h     (II. 13) 

where  is the wave vector of the incident neutrons and kk
r

′
r

is that of the scattered neutrons. The 

quantity kkQ ′−=
rrr

 is the scattering vector, and the vector relationship betweenQ
r

, , and kk
r

′
r

can be 

displayed in the scattering triangle (Fig.II.1). This triangle also emphasizes that the magnitude and 

direction of Q
r

 are determined by the magnitudes of the wave vectors for the incident and scattered 

neutrons and the deflection (scattering) angle 2θ. For elastic scattering (Fig.II.1a) = k , so ε = 0 and 

applying a bit of trigonometry to the scattering triangle leads to 

k
r

′
r

λθπ /sin4=Q . 

In the neutron-scattering experiments, are measured the intensity of the scattered neutrons (per 

incident neutron) as a function of Q and ε. This scattered intensity ),( εQI
r

is often referred to as the 

neutron scattering law for the sample. 

In a complete and elegant analysis, van Hove showed in 1954 that the scattering law could be 

written exactly in terms of time-dependent correlations between the positions of pairs of atoms in the 

sample. His result is that ),( εQI
r

 is proportional to the Fourier transform of a function giving the 

probability to find two atoms at a certain distance apart. Lets have a more detailed look at this. 

He used the observation of Fermi that the actual interaction between a neutron and a nucleus 

may be replaced by an effective potential, much weaker than the actual interaction. This pseudo-

potential causes the same scattering as the actual interaction but it is weak enough to be used in Born’s 

perturbation expansion. The Born approximation says the probability an incident plane wave with a 

wave vector k  scattered by a weak potential V
r

)(rr  to become an outgoing plane wave with a wave 

vector  is: k ′
r

2
3.

2
3.. )()( ∫∫ =′− rdrVerderVe rQirkirki rr rrrrrr

   (II. 14) 
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where the integration is over the volume 

of the scattering sample. Even though 

individual nuclei scatter spherically, V )(rr  

represents the potential due to the entire 

sample, and the resulting disturbance for 

the assembly of atoms is a plane wave. 

The potential to be used in (II. 14) 

is the Fermi’s pseudo-potential, which for 

a single nucleus is given by b )( jj rr rr
−δ , 

where bj is the scattering length of a 

nucleus labeled j at position jrr  and δ is 

the delta function of Dirac that is zero 

unless the position vector rr  coincides 

with jrr . Thus, for an assembly of nuclei, such as a crystal, the potential V )(rr  is the superposition of 

individual neutron-nuclei interactions: 

 
Fig. II. 1 Scattering triangles of (a) elastic scattering (k’ = k) and 
(b) inelastic scattering with gain (k’ > k) and loss (k’ < k) of energy 
from the projectile. 
 

∑ −=
j

jj rrbrV )()( rrr δ      (II. 15) 

The summation is over all nuclear sites in the crystal. 

Using (II. 14) and (II. 15) van Hove showed that the number of neutrons scattered per incident 

neutron is (van Hove’s neutron-scattering law): 

∑ ∫
∞

∞−

−−′
=

lj

titrQirQi
lj dteeebb

k
k

h
QI jl

,

)(.)0(.1),( εε
rrrrr

  (II. 16) 

The summation is over pairs of nuclei j and l and the nucleus labeled j is at position )(trj
r  at time t, 

while the nucleus labeled l is at position )0(lr
r  at time t = 0. The angular brackets denote averaging 

over all starting times for observations of the system, which is equivalent to an average over all 

possible thermodynamic states of the sample. Let us treat equation (II. 16) as if it described a classical 

mechanics system in order to clarify its physical meaning. The sum over atomic sites in (II. 16) can 

then be rewritten as:  

[ ] [ ]( )∑ ∫∑
∞

∞−

−−− −−=
lj

rQi
jllj

lj

trrQi
lj dtetrrrbbebb jl

,

.

,

)()0(. )()0(
rrrrr rrrδ  (II. 17) 

Lets suppose for a second that the scattering lengths of all the atoms in the sample are the same 

(bj = bl = b). The scattering lengths in (II. 17) can be removed from the summation, and the right-hand 

side becomes: 
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N is the number of atoms in the sample. The delta function in the definition of G ),( trr  is zero except 

when the position of an atom l at time zero and the position of atom j at time t are separated by the 

vector rr . ),( trG r  is equal to the probability an atom to be at the origin of a coordinate system at time 

zero and an atom to be at position rr  at time t, because the delta functions are summed over all 

possible pairs of atoms. ),( trG r is generally referred to as the time dependent pair-correlation function 

because it describes how the correlation between two particles develops with time. (II. 16) can be 

written as: 

∫
∞

∞−

− rdetrGNb rQi 3.2 ),(
rrr

[ ]( )∑ −−=
lj

jl trrr
N

trG
,

)()0(1),( rrrr δ
(II. 18) 

∫
∞

∞−

−−′
= rdtdeetrG

k
k

h
NbQI tirQi 3.

2

),(),( εε
rrrr

   (II. 19) 

Thus, ),( εQI
r

 is simply proportional to the Fourier transform of a function giving the probability to 

find two atoms at a certain distance apart. By inverting (II. 19), information about the structure and 

dynamics of condensed matter may be obtained. 

Actually, Van Hove’s formalism can be modified to expose two types of scattering effects. The 

first is coherent scattering. Here the neutron wave interacts with the whole sample as a unit, thus 

scattered waves from different nuclei interfere with each other. This type of scattering depends on the 

relative distances between the constituent atoms and consequently gives information about the 

structure. Elastic coherent scattering tells about the equilibrium structure, while inelastic coherent 

scattering provides information about the collective motions of the atoms. The second type is the 

incoherent scattering. Here the neutron wave interacts independently with every nucleus in the sample 

in order that the scattered waves from different nuclei do not interfere but the intensities from each 

nucleus just add up. For instance, the incoherent scattering may, be a result of the interaction of a 

neutron wave with the same atom but at different positions and times, thus providing information 

about diffusion. 

Even for a sample made of a single isotope, the scattering lengths emerging in (II. 16) will not 

be equal. This is because the scattering length of a nucleus depends on its spin. There is no correlation 

between the spin and the position of a nucleus. Therefore, the scattering lengths from (II. 16) can be 

averaged over the nuclear spin states without affecting the thermodynamic average (in the angular 

brackets). After introducing a nuclear spin averaging the sum in (II. 16) becomes: 

( )∑ ∑ ∑ −+=
lj lj j

jjjljllj AbbAbAbb
, ,

222 )()(    (II. 20) 
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Ajl replaces the integral from (II. 16). The first term in the right-hand side of (II. 20) represents the 

coherent scattering, and the second one corresponds to the incoherent one. Consequently, one can 

define the coherent and incoherent scattering lengths as: 

The expression for the coherent scattering law is a sum over j and l and thus involves 

correlations between the position of an atom j at time zero and this of an atom l at time t. Though j and 

l may sporadically be the same atom, in general they are not because of the large number N of nuclei 

in the sample. Therefore, one can say coherent scattering basically describes interference between 

waves produced by the scattering of a single neutron from all nuclei in a sample. 

The incoherent scattering involves correlations between the position of an atom j at time zero 

and the position of the same atom at time t. Consequently, here the scattered waves from different 

nuclei do not interfere. Most often, the incoherent scattering intensity is the same for all scattering 

angles, adding intensity to the background. 

The simplest type of coherent neutron scattering is diffraction. Assume the atoms are arranged 

at fixed positions in a lattice and a neutron beam is shooting at it. Let also the value of the incident 

wave vector,  is the same for all neutrons, i.e. they fly in parallel and have equal velocities. Because 

the atoms and their associated nuclei are fixed by default, there is no change in the neutron’s energy 

during the scattering and the scattering is elastic. When a projectile neutron wave arrives at each atom, 

the atom becomes a center of a scattered spherical wave and interference will take place. As the waves 

originate from a regular array of sites, the individual disturbances will reinforce each other only in 

particular directions. These directions are closely related to the symmetry and spacing of the scattering 

sites and can be used to deduce the symmetry of the lattice and the distances between the atoms.  

k
r

Though, the diffraction is an elastic scattering process (ε = 0), the diffractometers integrate 

over the scattered neutrons energies. Therefore, rather then setting ε = 0 in (II. 16), to calculate the 

diffracted intensity one integrates the equation over ε. This makes sure the effect of the atomic 

vibrations is taken into account in the diffraction cross-section. The integration gives another delta 

function, suggesting that the pair correlation function G ),( trr  has to be evaluated at t = 0. Thus the 

result for a single isotope crystal is: 

∑ −−=
lj

rrQi
coh

ljebQI
,

).(2)(
rrrr

    (II. 22) 

If the atoms in the sample were really stationary, the thermodynamic averaging brackets could 

be removed from (II. 22) since rj and rl would be constant. But de facto, the atoms oscillate around 

their equilibrium positions. When this is taken into account, the thermodynamic average introduces the 

Debye-Waller factor, and (II. 16) becomes: 
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)(bbbinc −= 22

bbcoh = (II. 21) 

 



2
2
1

,

).(2 )()(
22

QSeebQI
uQ

lj

rrQi
coh

lj
rr rrr

≡=
−−∑    (II. 23) 

where 2u  is the average of the square of the displacement of an atom from its equilibrium position; 

)(QS
r

 is the structure factor. 

One can determine Q
r

 at which )(QS
r

 is nonzero and at which diffraction occurs. Presume Q
r

 

is perpendicular to a plane of atoms and if it is any integer multiple of d/2π , (d is the distance 

between parallel, neighboring planes of atoms) then Q
r

 (rj – rl) is a multiple of 2π and )(QS
r
≠ 0 

because each exponential term in the sum in (II. 16) is unity. Thus, Q
r

 must be perpendicular to planes 

of atoms in the lattice and must not satisfy the condition, S )(Q
r

= 0, and there will be no scattering. If 

one applies the condition described above 

)/2( dnQ π=   , n – integer   (II. 24) 

to the scattering triangle for elastic scattering and then uses the relationship between Q, θ and λ, will 

obtain: 

θλ sin2dn =      (II. 25) 

This equation, called Bragg’s law, relates the scattering angle 2θ, to the interplanar spacing in a 

crystalline sample. Bragg’s law can also be understood in terms of the path-length difference between 

waves scattered from neighboring planes of atoms (Fig.II.2). Diffraction (or Bragg scattering) may 

occur for any set of atomic planes one can imagine in a crystal, providing the wavelength λ and the 

angle θ between the projectile neutron beam and the planes satisfy (II. 25). Bragg scattering from a 

particular set of atomic planes resembles 

reflection from a mirror parallel to those 

planes: the angle between the incident beam 

and the plane of atoms equals the angle 

between the scattered beam and the plane. If 

a beam of neutrons of a particular wavelength 

shoots on a single crystal, there will be no 

diffraction. To obtain diffraction for a set of 

planes the crystal must be rotated to the 

correct orientation so that Bragg’s law is 

satisfied. 

 
Fig. II. 2. The extra distance passed by the wave reflected by 
the second scattering plane is 2d.sinθ. When this distance is set 
to be equal to nλ the result is again the Bragg’s law. 
 

To this moment only a simple type of 

crystal that can be built of unit cells, each 

containing one atom was discussed. On the 
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other hand, polycrystalline powders, which consist of many randomly oriented single-crystal grains, 

will diffract neutrons whatever the orientation of the sample relative to the incident beam of neutrons 

is. There will always be grains in the powder that are correctly oriented to diffract. Thus, whenever the 

scattering angle, 2θ, and the wavelength λ satisfy the Bragg equation for a set of planes, a reflection 

independent of the sample orientation will be detected. This observation is the basis of the powder 

diffraction. 

 

1.3.Neutron production 

1.3.1. Neutrons from nuclear fission (Balabanov 1998) 

  The process of decay of the excited nuclei into 2 (rarely 3 or 4) pieces with comparable 

masses is called fission. O. Hahn, F. Strassmann, L. Meitner and O. Frisch discovered it in 1938 by 

bombardment of uranium-235 with neutrons. 

 The energetic instability of the heavy nuclei follows from the relatively small mass defects and 

the coulomb forces cause the fission. The fission of the heavy nuclei can be spontaneous or provoked 

by collisions with neutrons, protons, γ-rays etc and brings some energy gain. 

 To split a nucleus a certain amount of energy is needed to deform it. If a spherical nucleus  (α 

= 0) is deformed to ellipsoidal its volume will not change because the nuclear matter is not deformable 

but its surface will increase. From one side, this will cause an increase of the surface energy and the 

nucleus will tend to recover its initial shape ∆Eattr. From the other side, this deformation will lead to 

decreasing the coulomb repulsion energy ∆Erep. Obviously, if ∆Erep > ∆Eattr the nucleus will start to 

increase its deformation and eventually split (Fig.II.3). The maximum of the curve on Fig.II.3b 

corresponds to the state when the nucleus splits into two. The difference between the energy of the 

non-excited state and the maximal one is the activation energy, Ea. It is equal to the kinetic energy of 

the adsorbed neutron plus the binding energy fn of the neutron in the nucleus. If the binding energy is 

bigger then the activation one the fission may take place even with thermal neutrons. This is the case 

with 235U, where Ea = 5.8 MeV and  fn = 6.4 MeV. 

During the fission the 235U nucleus first absorbs a neutron, and a 236U compound nucleus is 

formed in an excited state. It is unstable, and splits into two fragments2 (Keepin, 1969) (rarely more). 

There are several hundred variants of splitting of 236U compound nucleus.  Here is one of them: 

235 236 90 143 3nU n U Kr Ba+ → → + +*     (II. 26) 

                                                 
2 The nuclei formed within 10-14s are fission fragments. These fast nuclei slow down by colliding with the atoms of the fuel 
material, then pick-up electrons, and finally become neutral atoms. Since they are radioactive, they undergo several decay 
processes, and form the fission products. 
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The primary fission fragments have more neutrons then the stable nuclei with the same atomic 

number. In most cases they undergo several successive β--transitions for „adjusting” their 

neutron/proton ratio. As an example, the fragment-pair from (II. 26) decays as follows:   

( )stableZr
β

64h
 Y

β

28year
 Sr

β

2,7min
 Rb

β

33s
 Kr 9090909090

−

→

−

→

−

→

−

→
 

( )stableNd
β

13,7d
 Pr

β

33h
 Ce

β

12min
 La

β

0,5min
 Ba 143143143143143

−

→

−

→

−

→

−

→
 

 

Additionally, a 

number of neutrons are 

emitted (2,47 for 235U with 

energy 1 - 2 MeV), more 

than 99% of them within 10-

12 s after the fission. These 

are the prompt neutrons and 

originate from fission 

fragments that usually have 

much higher excitation 

energy than the neutron 

separation one. The half-life of neutron-emission of these highly excited states is in the order of 10-15 s 

or even shorter. However, not all fission fragments emit neutrons. Some of them relax by emitting 

prompt γ-rays. It is possible 10 to 20 % of the prompt neutrons to be emitted during the deformation 

stage of the splitting nucleus. 

 
Fig. II. 3 Schematic drawing of the nuclear fission (left); The parameter α 
characterizes the degree of deformation of the nucleus. α = 0 corresponds to a 
spherical non-deformed nucleus (point A) (right). For slightly deformed nuclei α is 
equal to the distance between the foci of the ellipsoid. Bigger values of α have the 
meaning of distance between the secondary nuclei. 
 

Usually there is no neutron emission after the prompt neutrons. The fission products undergo 

several successive β-decays to reduce the neutron-excess. However, in some cases a daughter nucleus 

is formed after a β-decay, where the excitation energy is higher than the neutron binding one. This 

nucleus will emit a delayed neutron, nearly promptly after its formation. They are approximately 

0,64% of the emitted neutrons and may come sometimes several minutes (on average 12 s) after the 

fission. The decay chain is:  

nTYX 2N
A

1Z1N
A

1Z
β

N
A
Z +→→ −+−+    (II. 27) 

The “X” nucleus is called a delayed-neutron precursor; the “Y” nucleus is a delayed-neutron emitter. 

Obviously, for these neutrons the “delay time” is determined by the half-life of the precursor (X), 

which can be quite large, since the β–decay is governed by the weak interaction. The delayed neutrons 

play a major role in the nuclear reactors control. 
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1.3.2. Neutron production via spallation 

Another way of neutron production is to use an accelerator instead of a reactor. The 

neutrons obtained that way are called spallation neutrons. This is done by letting high-energy protons 

(or, less effectively, electrons) collide with a heavy-metal target, made of tungsten or uranium 

(Fig.II.4). When a fast particle, such as the high-energy proton, bombards a heavy atomic nucleus, 

some neutrons are “spalled”, or knocked out, in a nuclear reaction called spallation. Other neutrons are 

“boiled off” as the bombarded nucleus heats up. It is something like when a bad Snooker player breaks 

the balls at the start of the game using all the force he has. The result is that a few balls are 

immediately ejected and many more will just start mooching around. For every proton striking the 

nucleus, 20 to 30 neutrons are expelled. The accelerator coupled with a proton storage ring produces 

the protons in bursts lasting for less than a microsecond. One of the advantages of a spallation source 

is that only a small amount of energy (about 27 MeV per neutron) is deposited in the spallation target 

by the protons. Nuclear fission produces at about four to five times more energy in generating each of 

its neutrons. However, the price of producing the high-energy protons (electricity) is very high.  

Neutrons from a spallation source arrive in pulses rather than continuously as they do at the 

reactor. This means the monochromator crystal needed at 

reactors, for instance, can be avoided and all the neutrons 

can be used. The trick allowing for this is that one can 

measure the time of flight of each detected neutron 

between the moderator and the detector. From this time its 

velocity and wavelength can be determined. Therefore, 

generating a monochromatic beam is unnecessary. 

A thermal neutron with energy of 25 MeV flies 

with a speed of about 2.2 km/s (Mach 7). A typical neutron 

spectrometer is about 10 m long, so the neutron travels 

from the moderator to the detector in about 5 ms. Since the 

duration of the neutron pulse emerging from the moderator 

of a pulsed source is typically a few tens of microseconds, the time of flight of the neutron can be 

determined with high relative precision. 

 
Fig. II. 4 Mechanism of the neutron production 
via spallation 
 

 

1.4.Neutron detection 

The neutron detection is based on the registration of the products of the nuclear reactions they 

cause. The neutron detector is an ordinary charged particle (or γ-quantum) detector whose working 

media is rich in a solution reacting intensively with the neutrons. The large variety of nuclear reactions 

caused by the neutrons and the different dependence of the reaction cross-sections on their energy 
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gives the opportunity different types of detectors to be constructed. All the methods for neutron 

detection can be combined in several groups, briefly described below. 

1.4.1. Radiative capture method 

It is based on the registration of the γ-quanta coming from the radiative capture (n, γ) 

reactions, charged particles or fission products. One very convenient reaction for detecting low-energy 

neutrons is (II. 11). The Boron has a unique feature – the law “1/v”3 holds for it in a very broad energy 

interval. Moreover, in such reactions α-particles are emitted, which makes the registration easier. 

Usually (a) ionization cameras full of BF3 gas or with walls covered by a chemical compound rich in 

Boron; (b) proportional counters full of BF3; (c) scintillators rich in B or Li; (d) nuclear photo 

emulsions etc are used for neutron detection. Sometimes the reactions 
6Li(n, α)3H and 3He(n, p)3H    (II. 28) 

are used. The second one4 is actually implemented in the detecting system of D20 (see Chapter II §1, 

1.5). 

1.4.2. Method of the recoiled nuclei 

It is based on registering the recoiled nuclei (most frequently H2) as a result of elastic 

collisions between the fast neutrons and the detector’s active medium. Proportional counters full of 

hydrogen are used, as well as, Wilson and diffusion cameras full of gaseous or liquid hydrogen. 

Measuring the trace length one can deduce the neutron energy. Organic scintillators and nuclear photo 

emulsions with high hydrogen content are also utilized for this business. 

1.4.3. Activation (method of the indicators of radioactivity) 

The production of radioactive nuclei by bombarding a stable target with neutrons is 

activation. By measuring the intensity of the artificially created radioactivity (resulting in β or γ 

emission) the intensity of the neutron flux can be deduced. Unfortunately, this method does not give 

any immediate information on the neutron fluens. It is used for measuring constant fluxes and is 

useless for variable ones (as those during starting or stopping a reactor). It also plays a role for the 

radiation protection and health physics. 

 

1.5. D 20 – a high-intensity 2-axis neutron diffractometer 

  Now it is time to have a look at the neutron facility used in this work. Some of the in-situ 

kinetic experiments on the CO2 hydrate formation and decomposition were performed using neutron 

powder diffraction at the High-Intensity 2-Axis Neutron Diffractometer D20 (Fig. II. 5), at Institute 

Laue-Langevin (ILL), Grenoble, France. A detailed description of the instrument can be found at 

http://www.ill.fr/YellowBook/D20 and in Convert et al. (1998, 1999). 

                                                 
3 The neutron capture cross-section at energies smaller than the energy of the first resonance is described as: σ ≈ const/v 
4 Here the reaction products, a 191 keV triton and a 573 keV proton, are emitted in opposite directions. 
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A monochromatic neutron beam reaches the sample, located at 3200 mm from the 

monochromator. A large-area 3He Position Sensitive Detector (II.30) registers the diffracted by the 

sample neutrons. It covers part of a circle with center in the sample position. D20 uses a 

monochromatic thermal neutron beam with a very high flux. A monochromator of pyrolitic graphite 

HOPG (002) in reflection position with a fixed vertical focusing, giving wavelength of 2.4 Å at a take-

off angle of 42°, was chosen for the kinetic experiments, presented in this work. The beam flux, 

coming after the monochromator, is about 4.2·107 n.cm-2.s-1.  The position sensitive detector, used on 

D20, provides a detection zone of around 4 m by 150 mm. It is filled with 3.1 bar 3He and 0.8 bar CF4. 

A micro-strip gas chamber technology (MSGC) has been used in its construction. A thin chromium 

layer has been deposited on the polished surface of electronically conducting glass plates. Then the 

chromium has been etched to create conductive micro-strip electrodes (4 cathodes and 4 thin anodes 

per detector cell). The small distance between the anode and cathode (170 µm) provides fast 

evacuation of the positive ions, and allows for very high counting rates. Each detection plate, 

consisting of 32 cells, covers 3.2° (0.1° per cell). The position sensitive detector covers 153.6° with 48 

plates mounted at a distance of 1471 mm from the sample. The 32 cells of one plate have 32 

independent outputs. Each of the 1536 cells has individual amplifier and anti-coincidence logic unit. 

After the amplifier the signal coming from the cell is thresholded by the discriminator. Its neighboring 

cells are switched off for 1.5 µs, thus, preventing counting the same event twice. 2.5 µs after having 

passed the threshold a cell may count again. The limit of the counting rate is around 50000 s-1 per cell. 

This micro-strip detection system has a precise and very stable geometry. 

D20 is also equipped with a fast data acquisition 

system, which has a parallel input for up to 1600 cells. The 

instrument allows measuring of series of short histograms 

to observe irreversible kinetic phenomena, each lasting 

typically for a few seconds. In addition D20 is equipped 

with Silicon Graphics workstations for instrument and 

acquisition control, as well as with Large Array 

Manipulation Program (LAMP) - for data correction and 2 

and 3D plots of the data 

(http://www.ill.fr/data_treat/lamp/front.htm). 

The high flux at the sample position, the large 

stationary position sensitive detector and the fast data 

acquisition system make D20 an ideal tool for studying gas hydrate kinetics. 

Fig. II.5 D20 – schematic 
 

The proper p-T conditions for gas hydrate formation and decomposition are provided by high, 

low pressure or vacuum equipment together with cryogenic equipment. The required pressure at the 
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sample was supplied by gear built in Göttingen. Detailed descriptions of the used setups here and in 

the lab will be given in the next subsection. 

A calibrated temperature sensor fixed to the hull of the sample cell was reading the probe 

temperature. In addition, the pressure stick was equipped with a heating coil, controlling the 

temperature of the stick tube close to the one of the reaction. The aluminum sample cells used in the 

neutron diffraction experiments were also manufactured in GZG, Göttingen. 

A Helium Flow Cryostat (“Orange cryostat”), specially modified for D20, was providing the 

temperature control during the in situ kinetic experiments. The pressure cell, mounted on the pressure 

stick, was placed in a chamber with 10-20 mbar of He exchange gas, thus, giving the thermal contact 

between the cell and the surrounding sample chamber. Here is good to mention that if the pressure of 

the exchange gas is too high then the heat exchange between the stick and the cryostat becomes very 

strong. If this is the case, the heating coil cannot cope with it and the stick becomes overcooled. In the 

CO2 case this may lead to blockage due to dry ice formation. 

Opening the “cold” valve, which changed the helium gas flow through the chamber, controlled 

coarsely the chamber temperature. The heating coil of the cryostat heat exchanger provided the fine 

temperature control. In addition a thermocouple was placed at the cryostat’s sample-chamber wall to 

provide a reference temperature reading. The DTI temperature control interface adjusts automatically 

the cryostat temperature with precision of a fraction of the degree, using the previously mentioned 

reference temperature or the temperature measured on the hull of the sample cell, depending on the 

needs. Details on the cryostat construction can be found in Staykova (2004). 

 

1.6.Radiation protection 

The only aspects of the radiation protection 

debated here will be the activation of the experimental 

equipment used in this work. There are two types of 

interactions between the neutrons and the structuring 

materials in the beam, which can lead to activation – 

the radiative capture and the (n, α) reactions, described 

in subsection 1.1 of this chapter. Following the 

ALARA5 principle, when building such equipment, 

materials with as low as possible interaction cross-

sections must be used, thus to reducing the degree of 

activation. Also as little as possible material should be 

placed in the beam. 
Fig. II. 6 The stick (right) and the part closest to the 
beam (left). The white rectangle shows 
approximately the target of the direct beam. 
 

                                                 
5 ALARA – As Low As Reasonably Achievable – the main principle of the radiation protection. 
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Fig.II.6 shows the sample stick and a zoom-in of the part with the sample cell attached to it. 

The zoomed parts have been either in the beam or in some close vicinity. The tree white arrows assign 

tree different regions of interest. The topmost one points to the welding, connecting the main stick 

tube to the adapter for attaching the cell. It is a gas welding made with some composite containing Cu. 

The arrow in the middle shows the cell, made of high-strength Al alloy. It has also a Cd shield for 

reducing the scattering from the Bridgman seal. The third arrow points to the Bridgman seal, 

consisting mainly of Co and steel. On Fig.II.7 the spectra measured at these tree places are shown.  

 
Fig. II. 7. The spectra taken at the positions of the tree arrows from Fig. II. 6: the Bridgman seal (top), 
the welding (middle), the sample cell (bottom). 
 
Looking at the Bridgman seal spectrum, one can see only 56Mn in it. It has been produced by 

neutron (radiative) capture from the stable 55Mn following the scheme 55Mn(n, γ)56Mn. For t1/2 = 

2.5785 h it decays via β- to the ground state of 56Fe. 56Mn is present also in the other two spectra. This 

is quite well understandable because Mn is one of the very important additives in different alloys. It is 
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added to steel to improve rolling and forging qualities, strength, toughness, stiffness, wear resistance, 

hardness, and hardenability. With aluminum and antimony, and especially with small amounts of 

copper, it forms highly ferromagnetic alloys. It is also used in small amounts in the high-strength 

aluminum alloys together with silicon, magnesium and copper – the so-called silumins, as well as with 

Zn in the deformable alloys. Let us consider the spectrum around the welding. Together with the 56Mn 

some 64Cu appears. This is normal again knowing there is some Cu in the welding composite. It had 

been produced again after neutron capture, according to the scheme 63Cu(n, γ)64Cu. 64Cu has t1/2 = 

12.7 h and has two decay channels: via electronic capture or β+ to 64Ni with an overall probability of 

61 %, or via β- to 64Zn with probability 39 %. Both products are stable. In the sample cell two other 

isotopes are presented: 65Zn and 54Mn. The presence of 65Zn is not surprising, since 64Zn is one of the 

components of the alloy, which again via neutron capture has been transformed to 65Zn. On the other 

hand 65Zn undergoes electron capture to 65Cu with t1/2 = 244.26 d. But what does this exot 54Mn do 

here? There are two explanations. The first and most likely explanation is the peak is week and the 

program may have gotten confused. The second possibility is just for some reason 53Mn to be mixed in 

this alloy. This is a radioactive isotope, which via electron capture decays to 53Cr with t1/2 = 3.74E6 y. 

If any 53Mn is present in the alloy it will stay there for quite some time before decaying completely 

and during this time it may eventually capture some neutron and transform to 54Mn, which decays in a 

way very similar to the one of 64Cu to 54Cr or 54Fe with probabilities 100 % or < 2.9E-4 % 

respectively. 

Up to here I discussed only the “long living” activation products. Just to make the story more 

complete I will mention one last activation possibility. The aluminum in the structuring materials is 

100 % 27Al. It transforms to 28Al according to the well known already scheme 27Al(n, γ)28Al. Later on 
28Al undergoes β- decay to 28Si. The half-life of 28Al is only 2.2414 min and this is the reason not to 

see it in the spectra. 

Unfortunately, for proper analysis of the activation and extraction of the activities due to every 

single constituent a much more precise work is needed. In any case the activation levels are low 

enough and after several days out of the beam most of the 64Cu and almost all of the 56Mn will be 

gone. Anyway, these are the main contributors to the total activity of the materials I used. There will 

be still 65Zn and 54Mn (if any 54Mn at all), but the experience shows in a few days the emitted radiation 

is at background levels. 

 

§ 2. pVT method 

2.1. Main principles 

The gas hydrate formation or decomposition can be observed in situ either by diffraction or by 

continuous pressure recording during the reaction. The first method (already discussed in the previous 
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paragraph) is very accurate in terms of statistical precision, temporal resolution etc but is too 

expensive. Usually the beam time at the diffraction facilities as this in Grenoble, for instance, is very 

much limited and requires traveling together with the experimental setup, which the reader will 

probably agree, is quite heavy and voluminous. So, it is necessary to find a way to do experiments in 

the lab, and this way is exactly the implementation of pVT rigs.  

Let us make one imaginary experiment. Suppose an isolated thermodynamic system at certain 

temperature T, volume V and pressure p. If the system is really isolated, i.e. there is no gas supply 

from outside or change in the temperature, the pressure measured by the imaginary pressure gauge of 

this imaginary system will show the same pressure till the end of the Universe. Now let us put some 

normal ice in the system and provide such thermodynamic conditions that make sure no kind of 

reaction whatsoever can run in there. Again the pressure measured by the imaginary pressure gauge 

will be absolutely stable with time. Now let us make the system enter into the gas hydrate stability 

field by readjusting p, T or both to some new level. The ice lattice starts to rearrange and to arrest gas 

molecules thus forming the clathrate structure. These gas molecules will no longer be giving any 

contribution to the overall pressure in the system. Thus, by reducing the number of free gas molecules, 

the pressure will start dropping. Then obviously, the pressure drop in the system, being proportional to 

the number of the gas molecules trapped by the forming new phase, will be relative to the amount of 

hydrate formed. It has already become clear that just by recording the pressure drop in the system with 

time then transforming it into pressure accumulated in the hydrate phase and finally normalizing the 

whole reaction data set to the final amount of hydrate in the sample, one will get the hydrate fraction 

change with time. 

This is in fact exactly how our lab pVT rigs work. The later normalization is done in a way that 

after stopping the reaction and recovering the sample, the specimen is measured on the X-ray powder 

diffractometer in the lab. The diffraction data, as always, are analyzed with GSAS (see Appendix V). 

Up to now everything seams clear and straightforward but there is one problem and it is that 

one can never achieve perfectly isolated system. Especially this is true when measuring very low 

pressures, which is exactly my case in this work. Actually the diurnal temperature cycle made me 

think of a number of improvements of the pVT rig I used. The evolution of the setup helped but did 

not cure the problem completely. This will be discussed in the following subsection. In any case, at the 

end the setup became so good that the temperature fluctuations were negligible in most of the cases 

except during high summer when the air-conditioner was unable to cope with the heat. For this reason 

the High-Summer Correction (HSC) was invented. In reality the measured reaction sometimes comes 

out quite wavy, as one can see schematically on Fig.II.8. But this profile appears to be a superposition 

of the pure reaction + pressure fluctuations due to the temperature changes. In order to get the pure 

reaction out of this measured wavy chaos one needs only to subtract the background of the pressure 

fluctuations. Unfortunately, the real temperature-pressure changes do not show such nice regular 
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behavior as the ones on the figure. It is basically impossible to simulate them with any reasonable 

function. The way out of the mess is to generate the background using a record of the temperature 

during the reaction, and applying the Charle’s law, to simulate the pressure variations. For a reference 

pressure the one at the beginning of the reaction is to be 

taken. Obviously, to simulate the background this way 

an assumption that it has been produced in a system 

exactly as the one used but in which no reaction takes 

place and the pressure change is only due to the 

temperature variations is needed. Sometimes due to the 

imperfection of the thermodynamic boundary 

conditions, this treatment may result in an over- or 

under correction. To avoid this, a fetch factor can be 

introduced to enhance or suppress the 

pressure/temperature fluctuations (W. F. Kuhs private 

communication). Finally one can say that the combination between the improved system and the HSC 

gives really good data at the end. 

 
Fig.II.8 Schematic of how the HSC correction 
works. 
 

 

2.2. Experimental setups 

First this is the place to mention that for the experiments on CO2 hydrate formation and 

decomposition above 2 bar the setup of Staykova (2004) was used. For the low-pressure neutron and 

in-house experiments, purpose built hardware was employed and it was generally the same for both 

cases. Here only the low-pressure setup will be discussed, since information on the high-pressure one 

can be found in Staykova (2004). The main difference between the neutron and the in-house setups 

was the sample stick (Appendix II Sheet 5), which was quite long in order to be able to place the 

sample in the orange cryostat at D20 at the level of the beam. Initially the idea was to make the setup 

absolutely identical using the same sample stick in the lab and at the neutron facility. The low-

temperature baths used in the lab are relatively shallow and one could not expect to succeed to fit the 

whole stick into the cooling tank. There was only place to submerge the cell. That meant the whole 

stick was supposed to stay outside the coolant exposed to all possible temperature effects from the 

environment. The first trials, of course, confirmed this suspicion by recording nothing but the 

temperature diurnal variations. This suggested a reduction of the active volume and placing as much of 

it as possible in the coolant. The result, I will later on refer to this setup as to Evolution 1 (E1), can be 

seen in Appendix II Sheet 7. All the volume below the pressure gauge there is submerged. This put 

the pVT system light years closer to what was needed and already reactions could be observed without 

any problem. Of course the problems did not end here. The CO2 gas cylinder is stored at room 

temperature next to the pVT rig. That means when one wants to introduce the gas into the system, 
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where the ice is placed in order to start the hydrate formation, this gas will be at room temperature 

while the ice is at the temperature of the reaction (220 K for instance). Would this affect the reaction? 

Actually E2 showed a dramatic change in the hydrate formation behavior. But this will be discussed in 

the experimental chapter. Now, what was E2? It can be subdivided into E2a and E2b. E2a was when in 

the system a high-precision dosing valve Pfeiffer EVN 116 was introduced. It allowed extremely slow 

inflow of gas in the beginning of the reaction. Thus the gas would have all the time necessary to cool 

down to the targeted temperature before the start of the reaction. Firstly, if one has a look again at 

Appendix II Sheet 7 will realize that the surface available for the heat exchange and cooling the gas is 

not very large. The diameter of the tube above the sample cell is 12 mm. That means the starting ice 

will provide the main contribution to the cooling surface. Secondly, even if one decides to compensate 

this effect by lowering the gas flux into the system (easily possible with the dosing valve), he will 

enter into another trouble. It is that applying pressure from vacuum conditions at some stage one will 

reach the ice-to-hydrate phase transition boundary. But the required reaction pressure is well beyond 

this boundary. Until it is reached the system will be at conditions of hydrate formation and if it takes 

too long the initial part of the reaction will not be recorded on one hand, and on the other hand the 

formation will proceed at undefined conditions. To reduce these risks one needs to accelerate the gas 

filling. This is already a real vicious circle. To get out of it I came up with E2b, which was to fill this 

12 mm of diameter tube mentioned above with 1 mm in diameter bare-balls up to the top. Once they 

are cooled well the gas is introduced at low rate and cools down wandering between the bare-balls. 

Their existence already allows for much faster filling of the system with gas. 

A thermocouple was installed in the gas volume, next to the pressure gauge from Sheet 7 in 

Appendix II to read the gas temperature during the reaction. This temperature was used if needed for 

the HSC. 

Thus the system reached quite reasonable thermodynamic quality at relatively low price. The 

next evolutionary step will be just to try to cool down the incoming gas more effectively either by 

cooling the whole gas supply system including the gas cylinder or by introducing a small receiver 

submerged in the cooling tank. 

Now let us have a brief look at the technical specification of the used hardware (Fig.II.9). The 

low temperature bath is NESLAB ULT-80 with temperature range between 193 K to 283 K and 

temperature stability ±0.03o. The vacuum was produced by a vacuum pump Pfeiffer DUO 5, with 

capacity of 5 m3/h and max vacuum 10-3 mbar read with Pfeiffer Compact Pirani Gauge TPR 265. Its 

measurement range is 5×10-4 - 1000 mbar with accuracy of ≈ 10 % of the reading in the range of 10-3 - 

100 mbar (outside of this range up to factor 2). The reaction pressure was followed by Pfeiffer 

Compact Piezo Gauge APR 262. Its measurement range is 0.2 - 2200 mbar with accuracy of 2 % F.S. 

both gauges were connected to a Pfeiffer Dual-Channel Measurement and Control Unit for Compact 

Gauges TPG 262. An EXTECH 421508 thermometer with a K-type thermocouple read the 
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temperature in the system. Both the thermometer and the TPG 262 have RS 232 serial interface. 

Through it the data were transferred to a PC using Windmill 5 with COMIML commercial software. 

At the experiments above 2 bars the pressure was followed with 10 bar piezoelectric pressure sensor 

ASHCROFT Type KXD. 

Fig.II.9 The pressure changes in the system were transferred and stored on the PC using Windmill 5 
 

 

§ 3. Field Emission Scanning Electron Microscopy (FE-SEM) 

3.1. Electron – basic physical properties  

In the year 1897, Joseph John Thomson proclaimed that cathode rays were negatively charged 

particles, which he called “corpuscles”. He claimed that these corpuscles were the things from which 

atoms were built up. This was much beyond what he had actually discovered. Even British scientists 

did not generally accept Thomson’s corpuscle hypothesis, until he spoke of it again in 1899. By this 

time, the Irish physicist George Francis Fitzgerald had suggested that Thomson’s “corpuscles” making 

up the cathode ray were actually free electrons.  

Let us summarize here the main electron properties. Its mass is me = 9.1x10-31 kg = 0.511 

MeV, which is about three orders of magnitude less then these of the proton and the neutron. Its 

electric charge and magnetic momentum are e = 1.6x10-19 C and µ = 1.00116 µB, respectively. The 

electrons, having a spin s = ½, obey the statistics of Fermi – Dirac and follow the principle of Pauli as 

in the case of protons and neutrons. The electron’s classical radius is re = 2.8x10-15 m. In the classical 

electrodynamics the electron is considered as a particle whose motion is described by the equations of 

Lorenz-Maxwell. In 1927 its wave properties were proven. Its spin is of major importance for the 

motion of the electron in the atom. Taking this into account gives the opportunity to explain the 

periodic system of the elements as well as the chemical bonds. The motion of the electron cannot be 

described within the frames of the classical mechanics. It obeys the equations of Shrodinger and Dirac 

for the non-relativistic and the relativistic cases, correspondingly. The Dirac equation is de facto a 

system of four equations in three spatial and one temporal dimension: 
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Here m is the mass of the particle and γi are the matrices of Dirac, which are expressed with the 

matrices of Pauli σ1, σ2, σ3 and the unit matrix I: 
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The most significant result from this equation is the obtained relation between the energy, momentum 

and mass of the free particle (in this case the electron): 

224222422 cpcmEcpcmE eee +±=⇒+=   (II.34) 

This result suggests the electron can have either positive or negative energy. A forbidden energy 

interval separates both energetic regions. The negative energy values correspond to the bound states. 

 

3.2. Principles of the scanning electron microscopy 

The scanning electron microscopy (SEM) is used for 

observing bulk samples. It uses an electron beam to probe the 

specimen. Also since the electrons are charged particles, having 

magnetic momentum, they can be focused and accelerated in the 

SEM by means of electrostatic and magnetic fields. When the 

electron beam reaches the target a number of interactions can 

take place, thus giving information about the target. The most 

important processes are schematically shown on Fig.II.10. 

The electrons, coming from the beam-sample 

interactions, can be divided into several groups. Rutherford 

elastic scattering occurs when an incident electron collides with 

an atom of the sample and deflects without loosing energy. The 

incident electrons reflected backwards by the specimen surface, 

are called backscattered electrons. Since the scattering angles depend strongly on the atomic numbers 

of the involved nuclei, the detected backscattered electrons give images with information on the 

composition of the sample. 

Fig.II.10. Schematic of the interactions 
between the incident electron beam and 

the target sample. 
 

When high-energy electrons fly closely by specimen atoms, they can pass on some of their 

energy to electrons belonging to the outer levels of the atomic shells. As a result secondary electrons 

are being produced. The amount of energy given to the secondary electrons is so small that only those 

of them, which are created within a very thin surface layer (less than 10 nm thick), are able to escape 

from the sample. The detection of these secondary electrons provides high-resolution topographic 

images. 
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When a secondary electron leaves the inner atomic shell a vacancy is produced. A second 

atomic electron from a higher shell fills it. Some energy must be simultaneously released. A third 

electron (Auger electron) escapes carrying the excess energy in a radiationless process. The process of 

excited ion decaying into a doubly charged ion by ejection of an electron is called Auger process. 

Alternatively, an X-ray photon removes the energy. For low atomic number elements, the most 

probable transitions occur when a K-level electron is ejected by the primary beam, L-level electron 

drops into the vacancy, and another L-level electron is ejected. Higher atomic number elements have 

LMM and MNN transitions that are more probable than KLL. Each auger electron has a characteristic 

energy, corresponding to the element from which it is emitted and brings information about the 

specimen composition. The characteristic X-ray radiation corresponds to the electronic transitions 

involved in the energy release. Since these lines are specific for a given element, the composition of 

the material can be deduced. This can be used to provide information about the elements present at a 

given point of the sample, the so-called Energy-dispersive X-ray (EDX) analysis, or alternatively to 

map the amount of a particular element as a function of the position. 

The cathode luminescence (CL) or emission of ultraviolet, visible or infrared radiation is 

caused by electron bombardment of semiconductors and mineral samples. In combination with the 

electron-beam-induced-current (EBIC) in semiconductors, CL is used to image lattice defects. This is 

possible because of the recombination of charge carriers at the lattice defects. 

Unscattered primary beam electrons are incident electrons, which fly through the thin 

specimen without any interaction. Incident electrons, which deflect from their initial path as a result of 

elastic scattering without energy loss, are elastically scattered electrons. On the contrary, the 

inelastically scattered electrons are those incident electrons, which loose energy in the interactions 

with the specimen atoms. 

The absorption of incident electrons by the sample can charge it. 

The backscattered and secondary electrons carry the most important information for the image 

production. The backscattered electrons provide a good compositional imaging of the sample, while 

the secondary electrons produce better topographic images. 

 

3.3. LEO 1530 Gemini – one FE-SEM with cryo stage 

The ex-situ studies of the CO2 hydrates for this work were done on a high-resolution cryo field-

emission scanning electron microscope (FE-SEM) type LEO 1530 Gemini (Fig.II.11). It is equipped 

with a cryo transfer unit (Oxford instruments). Dry N2-gas, at -190°C coming from a Dewar full of 

liquid nitrogen, is used to cool the cryo stage. The gas flow and the level of liquid nitrogen in the 

Dewar control the temperature of the cryo stage, thus permitting to perform SEM measurements at low 

temperatures. 
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A schematic of the FE-SEM is shown 

on Fig.II.12. The primary electrons are 

emitted from ZrO/W (100) type of hot 

Schottky field-emission cathode (Fig.II.13). 

They are extracted from it and accelerated by 

the potential differences between the 

cathode’s tip and the first and the second 

anode, respectively. ZrO coating lowers the 

minimum energy required by one electron to 

leave the surface of the tip from 4.5 eV (in a 

thermionic tungsten emitter) to 2.8 eV (in a 

ZrO/W emitter). The electrons are extracted by applying voltage of 5 kV to the extractor anode. 

Selected (100) crystallographic orientation of the tip concentrates the emission within a cone with a 

semi-apex angle of about 0.1 rad as a result of the dependence of the potential barrier on the surface 

orientation of the tip. A second anode accelerates the emitted electrons. The brightness of the field-

emission gun is 5x108 A/cm2sr that is about 100-1000 times higher than the one of the conventional 

thermionic gun (105-106 A/cm2sr). The size of the crossover (10-20 nm) (the smallest beam cross-

section) of the ZrO/W Schottky type gun is 1000 times smaller than the one of the tungsten thermionic 

gun (20-50 µm). A negative biased suppressor electrode, which helps the dispersed electrons with 

kinetic energies lower than the one of the extracted electrons take the right direction, surrounds the 

field emission cathode. In order to avoid the destruction of the cathode tip by ion bombardment from 

the residual gas, ultrahigh vacuum of 10-9 mbar (UHV) is created. The vacuum is also necessary to 

provide free travel of the electron beam from the gun along the column to the target. Also vacuum 

conditions are necessary for the registration of the secondary electrons. Any foreign atoms along their 

paths can easily alter their energy, possibly skewing the results. The electrons, coming from the 

Schottky cathode, are pulled towards the sample surface by the potentials V0 and VB and focused on it 

by the GEMINI column lens system. The beam booster maintains the high beam energy throughout 

the whole optical column. An electromagnetic multi-hole beam aperture changer is incorporated close 

to the electron source. This is used to select the optimum beam aperture angle and to tune the probe 

current in conjunction with the magnetic field lens. The electron beam scans the sample in a mesh 

controlled by the scan coils. It has a transverse chromatic aberration (enlargement of the focal spot), 

caused by spreading of electron energy when the beam is redirected by the deflection system. This 

effect can decrease the resolution of the outer areas of the image. LEO 1530 is equipped with Gemini 

lenses (magnetic and 

Fig.II.11 LEO 1530 with cryo stage used for the present 
studies. Photo by K.Techmer. 
 

electrostatic, Fig.II.12), specially designed to reduce the chromatic aberration. They are made as an 

analog of the optic achromatic lenses, consisting of two component lenses, one convergent and the 
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other one divergent. The working distance is defined as a distance between the electrostatic lenses and 

the specimen. With increasing the distance the observed surface area increases together with the 

spherical aberration, resulting in a blurred and strongly distorted image. With decreasing the working 

distance the spherical aberration decreases. An optimum distance from the sample, providing optimal 

observed area and low spherical aberration, has to be found. If the specimen is closer to the front 

lenses then higher magnification of the observed object can be achieved. 

The FE-SEM images are obtained by the 

secondary electrons. The scintillator – photo-

multiplier combination known as a standard 

Everhart-Thornley detector, detects them. The 

secondary electrons are collected by a grid at 

+350V and accelerated to the scintillator. This 

light produced by the interaction of the 

secondary electrons with the scintillator enters 

the photo-multiplier. The current coming out of 

the photo-multiplier depends on the number of 

secondary electrons hitting the scintillator. By 

measuring this current a point of a relevant 

gray-scale value is displayed on the 

graphic container control (GCC – Picture box) of 

the imaging software. The repetition of this 

procedure for the whole observed area leads to 

the complete image build-up. After the scan is 

finished and the save command is executed the content of the Picture box is saved in a file on the hard 

disk. Just to cut the long story to a short, I will define the magnification in the SEM as the ratio of the 

GCC area to the scanned area. Therefore, an increase of the magnification is achieved by scanning 

over a smaller area. Since the size of the GCC depends on the screen size, the larger the screen is the 

better. In the old machines, the magnification was the ratio of the effective CRT (cathode-ray-tube) 

area to the scanned area. 

Fig.II.12 Schematic of the optics of LEO 1530 Gemini. The 
potentials V1, V0 and VB note the extractor voltage, the 
accelerator voltage and the booster voltage, respectively. 
Original by Till Heinrichs. Digitally remastered Georgi 
Genov. 
 

The tiny electron beam and the Gemini lenses permit the images obtained at low accelerating 

voltage to be with high resolution and good contrast. The improved contrast makes a better gray scale 

differentiation of the topology of the surface and more details are distinguished. A slow sublimation of 

the sample surface takes place when the sample stays in the vacuum more than half an hour. A quick 

sublimation within a defined area of some samples can be obtained with increasing the beam 

accelerating voltage up to 2.5-3 kV, thus giving clues about the structure development in depth. 
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The surface charging is another 

effect, which may appear during the 

scanning. It depends on the sample and 

scanning resolution (speed). The faster 

the scanning is, the lower the charging 

becomes. The sharp edges on the sample 

surface can also lead to charging. 

 

§ 4. BET method 

 Later, when the story comes to 

the point of the microscopic observations 

of the CO2 hydrate, the question of the degree of connectivity of the hydrate foam will arise (see 

Chapter IV). One very powerful method can be used in the attempts to find the answer – the BET 

method (surface adsorption). Actually, we started to work on this problem in the methane hydrate case 

together with Andreas Zeller in 2002. Later on he continued working alone, since this was his master 

thesis topic. Separate measurements for the CO2 hydrate case have not been done, but for reasons 

discussed in Chapter IV, one parallel or extrapolation from the CH4 to the CO2 case is justified. 

Moreover this method was used for estimating the specific surface area of the starting material for the 

kinetic experiments. 

  

Fig.II.13 Cutaway view of the Schottky gun (left) with an SEM 
picture of the emitter tip (right). Originals by Till Heinrichs. Digitally 
remastered Georgi Genov. 
 

Let the surface of the substrate be an array with NS identical adsorption sites. No more than one 

atom can occupy one site and the atoms do not interact between each other. In the grand canonical 

ensemble, each site’s grand partition function is: 

))(exp(1 0EzS −+=Ξ µβ     (II.35) 

E0 is the surface binding energy; z is the partition function associated with possible internal degrees of 

freedom at every site (sometimes may be taken as unity); TkB

1=β  is the inversed temperature and 

µ is the chemical potential of the film. The grand canonical free energy is: 
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Since the mean number of particles in the ensemble satisfies: 
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the fractional occupation is: 
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The characteristic scale of pressure is: 
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Here m/2 2hπβλ =  is the de Broglie thermal wavelength and g is the spin degeneracy of the atom. 

(II.38) is the Langmuir isotherm. It shows the coverage grows linearly at low p according to Henry’s 

law and saturates at p >> pL. 

 Brunauer, Emmett & Teller (1938) (BET) extended this lattice gas model to the case of multi-

layer films. Their model allows the particles to occupy a 3D array of sites above the surface. The 

interactions between the sites are neglected, but the sites closest to the substrate experience additional 

attraction V1. The relative probability, exactly N sites above a given surface to be occupied, is 

proportional to the corresponding term in the grand partition function for this site: 
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Here c = exp(-βV1) and z is the internal partition function per site of the bulk adsorbate. Thus, 

analogously to the Langmuir isotherm one obtains the BET isotherm: 
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On the basis of this isotherm, measuring the number of gas molecules adsorbed in the first layer 

cladding the substrate one can calculate its specific surface area (e.g. Legagneux et al. 2002, Zeller 

2004). 

The first SSA measurements were performed on the BET machine at LGGE, Grenoble, France, 

with the group of Florent Dominé. Later on a decision was made to build such machine in our lab in 

Goettingen in a consilium with the group of Dr. Dominé using the French apparatus as a prototype, 

trying to improve its thermodynamic performance and construction. Zeller (2004) gave a very detailed 

description of the machine and the experimental procedures. 
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 Chapter III 
 

Modeling approaches 
 

As already mentioned in the beginning (see Chapter I), the processes of gas hydrate formation 

and decomposition are not well understood. There are two ways to study the problem: 1) molecular 

dynamics simulations and 2) experimental, and two ways to describe it: 1) phenomenological and 2) 

theoretical. Unfortunately, up to now, none of them has given the ultimate answers. With a lot of hard 

work, at some point, both approaches will get closer to each other and finally will merge into a solid 

theory but this moment is still far in the future. The problem of all previous modelling approaches 

(phenomenological), briefly mentioned in Chapter I, was firstly - the stand-alone diffusion theory 

could not describe the initial part of fast transformation and secondly - it was difficult to take account 

of the shape of the starting material. The latter, for sure also affects the appearance of the diffusion law 

used for fitting the diffusion controlled part of the reaction. Since the present work is also 

phenomenological the modelling approaches considered here are also phenomenological. 

 

§ 1. Multistage Model of Gas Hydrate Growth from Ice Powder 

1.1 The model 

The Multistage Model of Gas Hydrate Growth from Ice Powder (Salamatin & Kuhs 2002) 

came to fill the gaps, mentioned a few lines earlier, including a description of the initial part. For this 

purpose, a precise parameterisation of the sample geometry and its evolution with time during the 

formation is of major importance for the kinetic data interpretation. Even in case of well-defined 

powders, prepared as a random dense packing of spherical ice particles, the samples are characterized 

by their size distribution function, typically a lognormal one (Kuhs & Salamatin 2003). A monosize 

approximation (Salamatin & Kuhs 2002; Staykova et al. (2003)) of the system is applicable only for 

modelling the starting phase of the process, until the spatial interaction of the hydrate shells growing 

on the ice spheres becomes a main factor controlling the gas flux towards the ice cores and the 

formation reaction itself. The theory of the hydrate formation kinetics in long-term experiments has 

been developed in (Kuhs & Salamatin 2003, Staykova et al. 2003). They distinguish the initial stage 

(I) of hydrate film spreading over the ice surface and the two subsequent stages, which are limited (II) 

by the rate of hydrate formation at the ice-hydrate interface and (III) by the gas and water transport 

(diffusion) through the hydrate shells, surrounding the shrinking ice cores. The second stage is 

introduced to account for the porous hydrate microstructure, since the pores are considered as 

pathways for the gas and the water molecules to go to and fro the ice surface covered by the growing 
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hydrate phase. This means the pores are assumed as tubes or hollows connected in a way that forms 

tunnels. 

The principal concepts of Arzt’s monodisperse model (1982) are generalized for the case of the 

polydisperse structure of growing contacting spheres with special focus on sample consolidation 

during the porous hydrate layer growth and its expansion beyond the initial ice-grain boundaries into 

the sample voids. However, in all available experimental runs (e.g. Staykova et al. 2003) with different 

gases and at different thermodynamic conditions, the model systematically underestimates the rates of 

the hydrate formation in the very beginning of the initial stage I. Scanning Electron Microscope 

(SEM) observations of ice powders during the first hours of hydrate formation show that the process 

of the ice-grain coating is divided in two sub-stages: (a) fast hydrate formation in the cracks of the ice 

grains and (b) subsequent spreading of the initial hydrate film across the ice-sphere surface (Genov et 

al. 2004).  

 A log-normally distributed starting material (ice powder) is assumed: 
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where r0 is the initial ice particle radius, and a and σa
2 the mathematical expectation and variance of 

the random value lnr0, respectively. 

 Actually in the experiments, one deals with a truncated form of the above distribution, which is 

non-zero only within a certain finite interval of lnr0. A 2.5%-accuracy limit of lnr0-variation for the 

lognormal law (III.1) is fixed within the range a ± 2.25σa. This means that the initial grain-size 

distribution function is taken as 
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rmin = exp(a − 2.25σa) ,     rmax = exp(a + 2.25σa)    (III.2) 

During the gas hydrate formation, ice spheres of initial radius r0 transform to ice cores of 

radius ri covered by the growing hydrate layers, which are modelled as spherical shells of external 

radius rh truncated at the inter-grain contact areas (see Fig.III. 1). It should be noted that each ice 

particle in a polydisperse powder at random dense packing has a specific relative environment of 

surrounding grains and the initial particle size does not determine uniquely the process of its 

conversion to hydrate. Consequently, the interaction of a reference ice sphere in the powder with 

neighbouring spheres can be described only on average. In this context, the above-introduced radii ri 

and rh should be understood as the mean (conditionally averaged) characteristics of all ice-hydrate 

particles which develop from initial ice grains of the same radius r0. The most important consequence 

of this approach is that the number of ice-hydrate particles in each initial size fraction remains constant 
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and the statistical ensemble of particles in the sample at any 

moment t can be represented by the ice-core size distribution 

function 
1

0
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
=

dr
dr

rftrf i
i  ,  ri > 0. (III.3) 

Equation (III.3) is the principal ice-particle 

conservation relation, which describes the evolution of the 

sample in case of dri/dr0 > 0. In general, f(ri, t) obeys the 

population balance equation 

Fig.III.1.  Hydrate shell growth around a 
reference shrinking ice core (Staykova et al. 
2003). 
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 In accordance with the recent observations, ice spheres in the starting material may have cracks 

(see Fig.III. 2) most probably caused by thermal strains which arise during ice powder preparation by 

means of water droplets freezing in liquid nitrogen (Staykova et al. 2003). Correspondingly, let us 

designate the total crack void fraction of ice grains in a sample as εf and the fissure-volume filling 

degree in ice spheres of initial radius r0 as χ. 

Hereinafter εf is considered as a small parameter. 

Fig.III.2. Hydrate formation in ice-grain fissure and 
its A-A profile (Salamatin & Kuhs 2003). 
 

By definition, the total number fraction of ice 

grains, which currently are not completely converted to 

hydrate, is given by 

∫= ii drtrfn ),(  (III.4) 

where the ensemble averaged value 〈ψ〉 of any 

characteristic ψ(r0, t), is determined as 

0000 )(),( drrftr∫= ψψ     (III.5) 

Accordingly, the initial and current mean-volume radii ( 0r  and ir ) of ice cores, average filling degree 

of their fissures χ , and the total reaction degree α are 
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Here the hydrate-phase expansion coefficient E is the proportion of the hydrate volume excess with 

respect to the consumed ice volume (Salamatin & Kuhs 2003, Staykova et al. 2003), 
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expressed via the mole density of ice ρi, the mole density of water ρhw in hydrate and meso-porosity εh 

of the clathrate phase. 

 Finally, the general problem of modelling the gas-hydrate formation from polydisperse 

powders of randomly packed ice spheres is reduced to mathematical description of the evolution of a 

single reference grain with a given crack volume fraction (characterized by parameters ri and χ) 

plunged into the powder medium with conditionally averaged properties of surrounding ice-hydrate 

particles. 

 The formation of the hydrate layer on the spherical surface of a reference ice particle in 

polydispersed powder has been described in (Kuhs & Salamatin 2003). The conventional assumption 

of the self-consistent field theory in the statistical physics and mechanics is that the conditionally 

averaged properties of the system around the reference particle are identical to the corresponding 

ensemble means. In this framework, as a starting point, one has to consider an ice grain of radius r0 in 

the monodisperse powder with random dense packing of ice spheres of the average radius 0r , as 

shown in Fig.III.3. The ice-mass balance equation governing the reduction of the ice core radius ri due 

to the hydrate layer growth is written as (Salamatin & Kuhs 2002): 

( t
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S

i SS ee
dt
dr ωω

ρ
)ω

ωδ −− −−−= 10  .   (III.7) 

Here, δ0 is the thickness of the ice layer converted into initial hydrate film spreading across the ice-

grain surface; ωS and ωV denote the rates of the surface coating and the ice-to-hydrate transformation, 

respectively. The former quantity can be defined as the fraction of the ice surface exposed to the 

ambient gas, which becomes covered by the initial hydrate film during a unit time period, while the 

latter one is the number of ice moles transformed to hydrate phase per unit of time on a unit area of 

spherical ice surface after its coating. Depending on the rate-limiting step (stage) of the hydrate 

formation process, ωV describes either the rate of the formation reaction (ωR) or the rate of the gas and 

water mass transfer (ωD) through the hydrate shell. Parameter δ0 is small compared to the initial grain 

size r0, but the formation rate (coating rate) due to the hydrate film formation ρiδ0ωS is assumed to be 

much higher than ωV on the hydrate-coated surface, and the ice-core surface area remains practically 

constant during the initial stage I. 

The driving force of the hydrate formation is the super-saturation of the gas-ice-hydrate 

system, ln(f/fd), expressed via the fugacities f and fd of the gaseous phase at the imposed and 

decomposition pressures (p and pd respectively) at a given temperature T. For each stage, this force 

determines the formation kinetics and is distributed among different steps of the ice-to-hydrate 

conversion in proportion to their apparent resistances; namely, kS
−1 for the initial hydrate film 
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spreading over the spherical ice surface, kR
−1 and kD

−1 for the pure reaction and gas/water diffusion 

through the hydrate layer, respectively. One can write: 

d
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f
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+

=ω  .   (III.81) 

The formation rate constants are assumed to be the Arrhenius-type functions of the temperature: 
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where kJ
* and QJ are the rate constant at the reference temperature T* and the activation energy of the 

J-type step, Rg is the gas constant. 

Phenomenological equations (III.7) and (III.8) are 

considered as a theoretical basis for detailed analysis of the 

hydrate formation kinetics on ice-grain surface. Actually, 

each J-th step, explicitly presented in the model may be 

further divided into a sequence of sub-steps characterised by 

their own resistances of which sum is kJ
−1. Nevertheless, for 

a fixed temperature kS and kR can still be used as tuning 

parameters. But the sample structure, its permeability, and 

the permeation rate constant kD depend on the geometrical 

characteristics of the hydrate layers growing around 

shrinking ice cores and must be related to ri and  to 

complete (III.7). 

 
Fig.III.3. Conditionally averaged initial 
structure of the ice powder around a smaller 
(left) or larger (right) reference particle. The 
zoom-in shows the growth geometry of two 
contacting spheres (Kuhs & Salamatin 2003). 
 

ir

 Thermal stresses, which occur in freezing water droplets sprayed into liquid nitrogen during 

the preparation of the ice powder, result in fracturing of some of the ice spheres. The fissures 

examined in SEM images of the starting material (ice samples), although rather narrow, are open and 

usually penetrate deep into the powder particles. The observed process of the fast initial hydrate 

growth in the ice-grain fissure (crack), schematically shown in Fig.III.2, is assumed to develop 

simultaneously with the hydrate film spreading over the spherical surface of the reference grain as an 

independent counterpart (sub-stage) of the initial stage I (Genov et al. 2004). To calculate the volume 

filling degree χ in a reference ice grain of initial radius r0, one writes analogues of  (III.7) and (III.8) 

for hydrate formation on the crack surface, designating all corresponding characteristics by primes. 

Thus, for instance, the thickness δ0' of the ice layer converted to the initial hydrate film spreading over 

the crack sides is introduced together with the respective rates ωS' and ωR' of the crack surface coating 

and the formation reaction, the latter two being related to the temperature dependent rate constants k'S 

and k'R with activation energies Q'S and Q'R. Then, for the mean crack-opening angle β the average 
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height h of the fissure filling normalised by r0 can be explicitly expressed (at constant ωR') versus time 

t: 
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until the complete filling is reached at h = r0, i.e. ξ = 1. 

The area Sf of each crack side exposed to the ambient gas decreases as the hydrate fills the 

fissure. The volume of hydrate growing in the crack is calculated by integration of the incremental 

mean hydrate layers with respect to h, which yields the filling degree χ in the following form: 
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and χ ≡ 1 for ξ > 1. 

 Although this relationship is derived for the fissure penetrating to the centre of a reference 

grain, it has a general structure and after substitution of  (III.92) can be tuned to any lesser mean initial 

relative depth of cracks by appropriate correction of a' and b' (e.g. by β). 

Hereinafter Kuhs & Salamatin (2003) follow the general line of the geometrical description of 

the powder particle growth developed by Arzt (1982) for a random dense packing of monosize spheres 

extended by them to a polydisperse powder. In addition, they assume the total crack-void fraction εf to 

be small and neglect a possible minimum influence of fissure openings (grain surface discontinuities) 

on the spatial (geometric) interaction of hydrate layers growing around ice cores. Fig.III.1 illustrates 

that the shape of the hydrate layer formed from the reference ice grain is represented as a truncated 

sphere of radius rh. The ice core shrinks due to the inward growth of the hydrate layer. But, because of 

the lesser density of water in the porous hydrate phase, the excess water molecules must be transported 

to the outward hydrate surface exposed to the ambient gas, and the hydrate layer simultaneously 

expands into the macro-pore space of the sample between the original ice grains. To extend Arzt’s 

approach to the polydisperse powder, the above scenario is also assumed for the “average” ice 

particles surrounding the reference one (see Fig.III.3). All of them consist of the inner ice cores of 

radius ir  occluded in the truncated spherical hydrate shells of external radius hr . The existing contact 

areas between the reference particle and the neighbouring ones increase, and additional contacts form 

as rh and hr  grow. Obviously, the evolution of a single reference ice grain of initial radius r0 must be 

modelled in interaction with the simultaneous ice-to-hydrate conversion in the surrounding “average” 

monodispersed medium of randomly packed spheres of radius 0r . Correspondingly, the specific 

surface of original macro-voids Sm and the macro-porosity εm of the sample decrease. 

In a random dense packing without particle rearrangement, the current number of contacts 

(coordination number) Z per a reference grain plunged into the monodisperse powder of average 
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particles can be expressed after Arzt (1982) as a linear function of the respective hydrate shell radii rh 

and hr : 
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Here Z0 is the initial coordination number of the reference ice grain, and C ~ 15.5 is the slope of the 

random density function in the average monosize particle structure. It is well predictable that in a 

polydispersed system Z0 monotonically increases with the relative size of the particle, and a plausible 

parametric approximation can be written as 

( )( )γ00min0min0 rrZZZZ −+=  ,    (III.11) 

where 0Z  ~ 7 is the coordination number in the random dense packing of monosize spheres, exponent 

γ ~ 1-2 and minimum coordination number Zmin ~ 2-3 are the approximation parameters 

 The principal geometric characteristic of the sample structure which determines the interaction 

of the reference particle with the surrounding medium is the fraction s of the free surface area of the 

hydrate shell (in units of 4πrh
2) exposed to the ambient gas. In the polydisperse powder this quantity is 

related to development of a contact area between two growing spheres (reference and average ones) of 

different external radii rh and hr . The generalised analogue of Arzt’s expression (1982) extended to 

polydisperse systems is 

( ) ( )200
0

0
00

00

82
1 rrrr

rr
C

rrrr
r
Z

s hh
h

hh
h

−+−−−+−−=
λλ

 ,  (III.12) 

where ( )0000 rrr +=λ . 

 The hydrate layer of the reference particle can grow only on the surface area of 4πsrh
2 due to 

the increase in the hydrate volume with respect to the consumed ice volume. The latter proportion is 

described (Staykova et al. 2003) by the expansion coefficient E determined in (III.6). The initial 

hydrate film thickness can be simultaneously calculated as d0 = δ0(1 + E). 

 The mass balance of water molecules directly relates the rate of the ice core radius decrease to 

the rate of the external hydrate radius increase 
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 Correspondingly, for the average grain (r0 = 0r , rh = hr ) from  (III.12)-(III.13) comes 
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where the mean free surface fraction s  is 
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  (III.10)-(III.14) determine all important geometrical characteristics of the polydisperse ice 

powder which are necessary to close the problem (III.7)-(III.9) of the conversion of a single ice grain 

to hydrate in the powder medium and to model the evolution of the ice core size distribution 

function (III.3) as well as other mean ensemble characteristics given by  (III.4) and (III.5). 

 First, one has to evaluate the permeation rate constant kD in (III.8). In accordance with 

(Staykova et al. 2003; Kuhs & Salamatin, 2003), for a given reference particle they introduce the 

distance r from the ice core centre to an average contact plane (see Fig.III.1) which is calculated in 

Appendix C 

     ( )
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The spherical boundary of radius r divides the hydrate shell into two sub-layers 1 and 2: from ri to r 

and from r to rh, respectively. The permeation (diffusion) resistance of the spherical sub-layer 1 is 

known from the diffusion theory (Crank 1975). To estimate the resistance of the truncated sub-layer 2, 

they assume that locally the mass transfer process in it is similar to diffusion through a concave 

spherical layer of the same thickness with the same total areas of bounding surfaces (see the insert in 

Fig.III.1). Finally they arrive at the following expression for the permeation rate constant in  (III.8): 
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where D is the apparent gas/water mass transfer (permeation) coefficient (e.g. see Salamatin et al. 

1998). The temperature dependence of the latter characteristic follows (82) with kD
* corresponding to 

D* at the reference temperature T * in (III.16). 

 The initial macro-porosity of the ice sample εm0 is directly linked to the structural parameters 

0Z  and C in (III.10) and (III.11), the quantity (1 − εm0)−1 being equal to the maximum relative volume 

of the average ice-hydrate particle with maximum mean particle radius hr  attainable at s  = 0. In 

accordance with definitions (III.5) and (III.6), the current porosity εm, specific surface area Si of ice 

cores, and total specific surface area of the original macro-pore space between the particles Sm are 
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 Due to the gas-hydrate expansion, the permeability of the pore channels formed by the original 

ice grains in the sample decreases, and the pores get closed at a certain macro-porosity εmc, related to a 

definite value of the free surface fraction cs  of average particles. This cuts the ambient gas flow 

towards the particles and stops the clathration process. In polydisperse powder the close-off porosity is 

preferentially reached near the bigger grains, which become isolated with time before their complete 

transformation to the hydrate phase. Here they assume that the gas inflow to a reference grain expires 
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at s = cs , and the ice core is switched out of the reaction. There is indeed evidence in literature (Stern 

et al. 1996) that a complete transformation is difficult to achieve (except with repeated milling). From 

this point of view specific surface area of an average grain 

( )5
0

2
0

23 rrrsS ihm ρ=  

determined in (Kuhs & Salamatin, 2003) overestimates Sm and more closely compares to the specific 

surface area of open pores. 

Thus, they arrive at the complete model (III.1)-(III.17), which describes the detailed evolution 

of the ice grain ensemble in the ice sample, during its conversion to hydrate. 

 They use now the basic equations (III.7) and (III.9) to derive the averaged mass balance 

relation, governing the gas hydrate growth from the powder directly in terms of the reaction degree α. 

This can be done explicitly only for the initial phase of the clathration process when the number of ice 

cores does not change i.e. until substantial amount of smaller ice grains has not been completely 

converted to hydrates and/or many of bigger ice grains have not got isolated, yet. 

First, in accordance with (Staykova et al. 2003), they assume that the ice-to-hydrate conversion 

at the earlier stages is limited by the reaction. Consequently, ωV is constant (ωV ≈ ωR), and the right 

hand side of (III.7) does not depend on r0, that is dri/dr0 ≈ 1 in (III.3). As a result, the ice-core size 

distribution function remains similar to the lognormal shape and is simply shifted with time to the left 

along the ri-axis. Hence, the multiplication of  (III.7) by ri
2f0(r0) and its integration with respect to r0 

yields the averaged equation for ir  of the same structure as the phenomenological one used in the 

monodisperse approximation (Staykova et al. 2003): 
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where Si is determined by  (III.17) and the mean reaction rate Vω  ≈ ωR. 

By definition, the relative variance of the initial grain size r0 in the ice powder is 

12
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2
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2
0 −= rrσ  . 

Based on the general properties of lognormal distributions, they approximately write 
2

0
22 1 σ+≈≈ iiii rrrr  . 

and express Si approximately in terms of ir : 
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After substitution of this expression, the averaged equation (III.18) can be integrated 

analytically. This gives the asymptotic solution at kD → ∞ in the form derived and discussed by 

Salamatin & Kuhs (2002) in case of monodisperse powders: 

  ( ) BteArr t
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with the mean-volume ice-grain radius 0r  for the initial size of ice particles and with additional factor 

( 12
01

−
+σ ) in definitions of coefficients A and B 
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 However, in case of non-zero crack void fraction εf the mean relative ice-core radius cannot be 

directly expressed via the reaction degree α from (III.6). Neglecting terms of ( )22 EO fε -order of 

magnitude, one obtains 
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 In accordance with (III.9), at the start of the reaction, when h → 0, the degree of fissure filling 

χ ≈ (3/4)πh/r0, and, an approximate relation for χ  asymptotically accurate at t → 0 directly follows 

from the definition (III.6) 
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 Substitution of the above equations into (III.19) finally yields a generalized analogue of the 

basic asymptotic relation (Salamatin & Kuhs, 2002) for the reaction-limited kinetics of the hydrate 

formation process valid for small α 
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As before,  (III.20) requires that the plot of (1−α)1/3 against time t in the beginning of the 

hydrate formation during stage II limited by the clathration reaction for t >> ωS
−1 should be a straight 

line with slope B and intercept ( )EA f 31 ε−− . 

 In the case of diffusion-limited stage III in the beginning of the gas-hydrate growth, it becomes 

clear from (III.16) that the rate of the hydrate formation ωV in (III.7) and (III.8) is inversely 

proportional to ri. The averaging procedure applied to the basic equation (III.7) after multiplication by 

ri
2 would lead to a term 〈ri

2ωV〉 ~ 〈ri〉. Again, assuming the ice-core size distribution being 

approximately a lognormal one, they arrive at (III.18) with Vω  expressed as in (Staykova et al. 2003) 
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the averaged analogues of  (III.10) and (III.15) for a monodisperse powder 
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 The averaged model (III.18)-(III.21) extends the monosize approximation of the process of the 

gas-hydrate formation from ice powders to polydispersed systems with non-zero crack void fraction 

but, as discussed, the model is valid only at the beginning of the clathration reaction for small α until 

the difference in ice grain size and the volume interaction between the particles does not become 

crucial. Further on with time, the smaller-size fraction of ice cores disappears while and bigger ice 

particles become isolated and are excluded from the reaction. This completely changes the size 

distribution in the ensemble of ice cores involved in the ice-to-hydrate transformation process, and the 

simplified averaged model breaks down. 

At the end let us summarize. A general phenomenological model for the porous gas hydrate 

formation from polydisperse ice powder is developed to describe the three predictable stages of the 

process. The first is the initial stage I of the hydrate-film spreading over the ice surface, including a 

fast sub-stage of hydrate formation in ice-grain cracks and filling the fissures. The two subsequent 

stages II and III of the porous hydrate layer growth are limited by the clathration reaction (including 

the gas transport along the pores of the ice-hydrate interface) and by the diffusive gas/water mass 

transfer through the hydrate shells, respectively. This theory extends the previous results (Staykova et 

al. 2003) for monodisperse powders to a more general case of ice-grain ensembles characterised by the 

lognormal distributions. The obtained equations are compared to the monosize description of the 

hydrate formation from ice powders and show that the latter simplified approach is valid only in the 

beginning of the clathration process. The difference in size of initial ice particles in the sample results 

in different rates of their conversion to hydrates with the larger-size fraction getting currently isolated 

and switched out of the reaction. This additionally slows down the ice-to-hydrate conversion and stops 

the hydrate growth in the sample before the complete transformation is achieved. At the same time, 

fast hydrate growth in ice-grain cracks causes a jump-like change in the reaction degree in the very 

beginning of the reaction clearly distinguished in most of experimental runs. 

 

§ 2. JMAKGB – a combined Avrami-Erofeev and Ginstling-Brounshtein model 

2.1. The approach 

The search for another approach is provoked on one hand by my belief that the reactions of 

hydrate formation and decomposition are in general reversible processes and there is no reason to try 
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to describe them differently (the multistage model was not foreseen to deal with decomposition at this 

stage). On the other hand, the impression is that the Ockham’s razor may have to be applied to the 

multistage model (see Chapter IV). 

The way of data treatment I suggest here assumes that the hydrate formation and 

decomposition can be treated in similar ways. At first sight it looks like both types of reaction proceed 

in completely different manners but in fact they both are nucleation-and-growth processes. In the case 

of hydrate formation, the hydrate is the growing phase and in the decomposition case – the ice is the 

growing phase. The differences in the formation and decomposition experiments presented in this 

work are firstly in the geometry of the starting material (ice spheres for formation, and hydrate with 

unknown geometry for decomposition) and secondly – the mechanisms of water and gas diffusion 

through ice and gas hydrate (including the porosity and inherent microstructures). All following 

explanations concern the formation process but can be easily transferred to the one of decomposition. 

In the present analyses, I assume that the hydrate formation starts with nucleation on the 

surface of the starting ice and spreads across it like a point source generated “plane” wave. Thus, a 

hydrate layer with small thickness compared to its surface extent covers the initial surface (or at least 

part of it). The thickness will be more or less constant during the hydrate spreading across the surface. 

The formation at this stage will be limited mainly by the reaction rate. After some time, the available 

for reacting surface will be transformed into hydrate and to continue the reaction an inward gas (and 

outward water) transports by means of diffusion through the hydrate layer will come into play and 

limit the rate of reaction development. At this point it is good to call attention to the fact that there is a 

clear front of advancing of the hydrate into the ice, which is clearly visible in all our electron 

microscopic observations. In other words, I suggest a “two-stage interpretation of the results” – stage 

A – nucleation and growth of the nuclei, and stage B – diffusion limited bulk growth. Of course one 

should keep in mind that the diffusion controlled bulk growth takes place during the whole reaction 

even at the earliest stages. That means the observed reaction profile is a superposition of both 

processes. To separate both stages and to extract their parameters (ideally), one needs to have 

sufficiently long reaction data sets in order to find the point when stage A switches off completely. 

Then by analysing the pure diffusion limited part its parameters can be obtained and the data affected 

mainly by stage A can be corrected for the diffusion influence. Thus, the pure stage A can be obtained 

and further analysed. This means a sort of inversed order data analysis is to be performed. For the 

processing of stage A the Avrami-Erofeev theory is used and for stage B – the Ginstling-Brounshtein 

diffusion formula is applied. A detailed discussion on both follows. 

 

2.1.1. Avrami-Erofeev equation 

The process of nucleation is always followed by growth of the nuclei, once they reach 

supercritical size. In many cases the nucleation theory is used for getting better insight in the 
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nucleation and growth rate laws involved in different processes running in the nature, under laboratory 

or industrial conditions. The most widely used method to correlate these two is the use of the Avrami 

equation. Its derivation is fairly straightforward. Assume the nucleation rate, I(t) and the crystal 

growth rate, G(t), are known functions of the time (e.g. temperature). A crystal, which nucleates at 

time τ after a while – at time t will have a volume of: 
dt

GdtSV 







= ∫

τ

     (III.22) 

where S is a shape factor and d depends on the dimensionality of the growth – d = 1 for one-

dimensional growth (dendrites), to 2 for two-dimensional growth (plates) etc. If the nucleation rate is 

I(t) at time τ, then the number of crystals nucleated within the time slot from τ to τ + dτ is given by 

VsysI(τ)dτ, where Vsys is the available volume for nucleation at that time. Therefore, at time t, the total 

volume of crystals nucleated within the considered time interval is: 
dt

sys dyyGdISVdV 







= ∫

τ

ττ )()(     (III.23) 

If the shrinkage of the volume available for nucleation is ignored, then Vsys can be set equal to the total 

volume of the material undergoing the transformation, Vtot. Let us name the extended volume dVex 

instead of dV and also assign the ratio V/Vtot = α and Vex/Vtot = αex. To obtain the total volume 

transformed during the entire nucleation and growth process it is enough simply to integrate (III.23): 

( )∫ ∫ 
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)( ττα
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    (III.24) 

(III.24) ignores the fact that the available volume for nucleation is shrinking, which leads to reducing 

the total number of nucleation sites, N0. That means the calculated number of nucleation sites will 

include a number of phantoms, which will never appear. It also neglects the fact that the growing 

crystals will impinge onto each other. In other words it allows for nucleation on already formed 

crystals and also crystals to grow into each other. Thus, to correct for these effects, Avrami suggested, 

the real reaction extent to be related approximately to this gloomy αex in the following fashion: 

)1( ααα −= exdd     (III.25) 

In general sense the Avrami correction is nothing but a mean field correction, very similar to those 

performed in the statistical mechanics, for instance. Integrating both sides of that equation leads to: 

)1ln()1( 1 ααααα −−=−== ∫∫ − ddxexex   (III.26) 

Let us suppose a first order formation of nuclei takes place. Then the total number of nucleation sites, 

including the phantoms, Nex is: 

( ))exp(10 tkNN nex −−=     (III.27) 

kn is the nucleation rate coefficient. Then the nucleation rate becomes: 
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)exp()( tkk
dt

dNtI nn
ex −==     (III.28) 

If the growth rate G(t) = const = kg, i.e. the reaction runs at isothermal conditions and also that the 

growth is in 3D (d = 3), the substitution of (III.28) in (III.24) leads to: 

∫ −−=
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3
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3 )exp()(α    (III.29) 

Substituting (III.26) in (III.29) and integrating (III.29) gives: 
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For long times, when the overlapping of the crystals starts to play role, the expression in the brackets 

can be approximated by its last term: 

)exp(1 3
0

3 tNSkg−−=α     (III.31) 

The widely used general form of this equation is: 

)exp(1 3Kt−−=α      (III.32) 

This equation is referred in many different ways as for example: JMA (Johnson-Mehl-Avrami), JMAK 

(JMA with added Kolmogorov), Avrami, Avrami-Erofeev and what so ever. 

Let us analyze equation (III.32). I particularly like to do that because in the literature one can 

find a number of wrong uses and interpretations of this formula (see Lasaga 1998). Some authors 

derive activation energies from the term K in (III.32), for instance. This cannot be done since in this 

coefficient are mixed both – nucleation and growth, i.e. no activation energy can be extracted out of it. 

What one can try to do is once obtaining K to go back to I and G and by treating them individually to 

obtain some meaningful activation energies. Unfortunately, presently this is not possible (there are 

some ideas how to overcome these problems in future) but still one can test whether it describes the 

experimental results. Let us rewrite (III.32) in the following shape: 

)exp(1 dKt−−=α      (III.33) 

The check is done by plotting the experimental data in the shape ln(ln(1/1-α)) vs. lnt. This is the well-

known (triple) logarithmic plot1, which should result in a straight line. Its slope gives d because if one 

takes the logarithm of (III.33) obtains: 

tdK lnln
1

1lnln +=







−α
     (III.34) 

Usually the power d is attributed to the number of the dimensions of growth of the investigated 

matter. According to the pure Avrami theory, it can have only integer values from 1 to 3, as mentioned 

above. But Erofeev considered the possibility that a nucleus may require β successive events to form 

it, before it starts to grow. This leads to the more general form of (III.33): 
                                                 
1 One should always keep in mind that such type of plots can smear to a grate extend some reaction features. 
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)exp(1 dKt +−−= βα      (III.35) 

It means that the power may get integer values equal or grater then 1. If it is equal to 1 only nucleation 

takes place. 

 

 Since the growth never proceeds in only 1, 2 or 3D, a requirement the power to take not only 

integer values, but values bigger then 1 appears. In fact this is the case found most often in the 

literature and rarely somebody obtains an integer d. 

In general the Avrami-like reaction is a partial case of a sigmoid growth function. Such 

functions are used in many different fields of the science to investigate processes from population 

growth to crystal growth. As seen from Fig.III.4, for values of d bigger then 1, the function has the 

traditional S-shape of the sigmoid growth functions. For d = 1, the Avrami formula describes the case 

of a classical first order growth. The question is: is it possible for d to obtain values smaller then 1 and 

if yes, what this means. As it will be shown in the next 

Chapter IV, this is the case observed in most of the CO2 

hydrate formation reactions. The first thought, which 

comes forward when finding such case is that, the 

considered events are in direct contradiction with the 

Avrami theory (in the face of equation (III.35)) and it 

cannot be applied for their analyses. But de facto, in 

some of the formation runs a sigmoid reaction shape 

appears and actually this is the way in which the reaction 

should develop. The abnormal thing is when it does not 

show this S-shape. I will come back to this problem in the next Chapter IV. 
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Fig.III.4 Sample Avrami curves with different 
values of the exponent, d. 
 

 

2.1.2. Ginstling-Brounshtein – reaction of spherical particles 

Let us consider a problem in which diffusion occurs in two different regions separated by a 

moving interface. Examples of such problems are: (1) tarnishing reactions in which a film of tarnish is 

formed at the surface of a metal by reaction with gas, where the diffusion of the gas through the layer 

is the rate controlling process; (2) the progressive freezing of a liquid etc. The moving boundary may 

be defined by a discontinuous change in the concentration as in (1) or by a discontinuity in the 

gradient of the concentration as in (2). Nevertheless, these are the different faces of one mathematical 

problem, which has been treated generally by Danckwerts (1950). 

The formation, controlled by bulk hydrate diffusion, after the creation of the thin clathrate 

surface crust can be considered as a typical case of a tarnishing reaction. A detailed description of this 

and many other diffusion problems can be found in the book of Crank (1956). 
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Let us assume having a plane surface separating the two regions and let the diffusion take place 

only in the direction perpendicular to this surface (x-axis). The concentration is initially uniform in 

every region. The diffusion may cause changes, which result in appearance or disappearance of matter 

at the interface in one or both regions, causing bodily movement of the matter in one or both regions 

relative to the interface. The rates of bodily motion of the stuff in both regions with respect to the 

interface are directly proportional to each other. Positions in medium 1 are defined by a coordinate in 

x1 system, which is stationary with respect to medium 1. For medium 2 the positions are specified in x2 

system, stationary with respect to medium 2. At time t the media are separated by a plane with 

coordinates in both systems x1 = X1 and x2 = X2, which is initially at x1 = x2 = 0. Medium 1 occupies 

the space between X1 < x1 < ∞ and medium 2 between -∞ < x2 < X2. In both media there is a substance 

moving by diffusion from one to another medium, relative to x1 and x2. The concentration of the 

diffusing substance at time t is c1 at x1 and c2 at x2. One can write the following equations: 
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where the diffusion coefficients D1 and D2 do not depend on c1 and c2. 

 At any time the concentrations c1 and c2 obey an equilibrium expression: 

RXQcXc += )()( 1122     (III.38) 

where Q and R are constants. The diffusing substance is conserved at the interface so that 
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 (III.39) 

As mentioned above, the rates of bodily motion of the stuff in both regions with respect to the 

interface are directly proportional to each other, i.e.: 

12 PXX =      (III.40) 

where P is a constant, depending on the conditions of the problem and sometimes may be zero2. 

Consider an infinite media where equations (III.36) and (III.37) hold. Then the solutions are: 
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with initial and boundary conditions as follows: 

c1 = c1(∞), x1 > 0,  t = 0 
c1 = c1(0), x1 = 0,  t > 0 

                                                 
2 P = 0 in case of absorption of a single component of a gas mixture by a liquid, for instance. Then the x2 coordinate of the 
liquid surface does not change and therefore X2 = 0, c2(X2) = c2(0) for all t. 
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c2 = c2(-∞), x2 < 0,  t = 0 
c2 = c2(0), x2 = 0,  t > 0 

For the same conditions, the total amounts of diffusing substance V1 and V2 crossing the planes x1 = x2 

= 0 in time t in the direction of decreasing x are: 
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Now let us show that the solutions (III.41) and (III.42) are compatible with expressions 

(III.38), (III.39) and (III.40) and the conditions determined by the character of the problem. There can 

be two types of problems – problems of class A3 and class B4. The gas hydrate formation (as described 

above) being a classical example of a problem of class A allows us to limit ourselves to consideration 

only of the class A problems. Here should be mentioned that values of c1 outside medium 1 and of c2 

outside medium 2 are considered without physical significance. 

The motion of one or both media relative to the interface is caused by diffusion of substance 

across the layer. Here two of the quantities c1(∞), c1(0), c1(X1), c2(-∞) or c2(0) are known and X1 and 

X2 are all the time proportional to the amount of diffusing substance crossing the layer (x1 = X1 and x2 

= X2). Thus one can write: 














+








∂
∂

=
=

dt
dX

Xc
x
c

DS
dt

dX

Xx

1
11

1

1
1

1 )(
11

   (III.45) 

Here S is the ratio of the magnitude of X1 to the amount of diffusing substance crossing the interface in 

the direction of decreasing x. Combining this with (III.39) and (III.40) one gets: 
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Substituting (III.38), (III.40), (III.41), (III.42) in (III.45) and (III.46) leads to 
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Putting x1 = X1 and c1 = c1(X1) in (III.41) gives 
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Equations (III.47), (III.48), (III.49) can be simultaneously satisfied only if X1/t1/2 = const. Assuming  

                                                 
3 Class A problems – the movement of one or both media relative to the boundary is caused by the transfer of diffusing 
substance across the layer. 
4 Class B problems – the movements of the media on either side of the interface are not related to the amount of diffusing 
substance, which has crossed the interface. 
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tDX 11 2α=      (III.50) 

and (III.47), (III.48), (III.49) become respectively 
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putting in (III.42) x2 = X2 and using (III.50) and (III.40) gives 
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Equations (III.51) and (III.54) are independent and contain the quantities c1(∞), c1(0), c1(X1), c2(-∞), 

c2(0), R, S and α. Thus, if two of the concentrations are given, the four equations can be solved for α 

and the other three and c1 and c2 come as functions of x and t from (III.41) and (III.42). The so 

obtained expressions for c1 and c2 satisfying the initial and the boundary conditions give the solution. 

Substitution for α in (III.50) gives X1 in terms of t and then X2 comes from (III.40). At the end one 

should point out that c1(X1) and c2(X2) at the interface are constant from (III.38) and (III.53). 

 Let us now go to the particular case of the tarnishing reactions. A film of tarnish (gas hydrate) 

is formed on the ice surface. The reaction proceeds by diffusion of gas/water through the film to/from 

the ice surface where its concentration c1(X1) is assumed to be zero (the film is assigned as medium 1). 

That means that the rate of the reaction is entirely controlled by the diffusion. The outer surface of the 

film is constantly saturated with gas. 

Since c1(X1) is not determined by diffusion through another medium, expressions (III.52) and 

(III.54) are not necessary. Let VM be the volume of tarnish containing one mole of gas and c1 – the 

concentration of dissolved gas expressed in moles per unit volume at a distance x1 underneath the film 

surface. The outer film surface is at x1 = 0 and the ice surface is at x1 = X1. From (III.45) 

MVS −=      (III.55) 

Moreover, since c1(X1) = 0 and from equations (III.51) and (III.53), the saturated concentration of gas 

at the outer film surface c1(0) is: 

)()()exp()0( 2
1 αααπα gerfcVM ==    (III.56) 

and we also know that 

tDX 11 2α=      (III.57) 

where D1 is the diffusion coefficient of the dissolved gas in the film. If c1(0) « 1/VM the expansion of  

exp(α2) and erf(α) shows that g ≈ 2α2 and 

tVcDX M)0(2 111 =     (III.58) 
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This is the well-known parabolic law for tarnishing reactions, which were first studied in detail by 

Wagner in the middle of the 1930-ties. 

The above treatment involves an approximation of quite obscure nature without a more 

detailed treatment. Practically it gives a good approximation if the concentration of the diffusing gas is 

much less then the concentration of the gas immobilized in the solid product. This means that large 

fractional readjustments of concentration in the diffusion region can take place, while the interface is 

moving very little. 

As mentioned in the beginning of this paragraph, the above derivations deal with semi-infinite 

geometry. In my formation experiments this is not the case because the starting material consists of 

spherical ice grains. The question is how I can modify the above results to match my case. There is 

some gloom in the literature on this. Usually three equations are used – the ones of Jander (1927), of 

Ginstling-Brounshtein (1950) and of Dünwald-Wagner-Serin-Ellickson (Dünwald & Wagner (1934); 

Serin & Ellickson (1941)). In the references to these equations clear indications of the approximations 

involved are missing. Also it does not become clear that de facto they do not refer to one and the same 

situation. 

The equation of Dünwald-Wagner-Serin-Ellickson describes the total amount of material 

entering or leaving a sphere as a fraction of the final amount, α = Mt/M∞: 
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It comes from 

∑
∞

=

−−+=
−
−

1

222

10

1 )/exp()1(21
n

n atDn
CC
CC

π    (III.60) 

Here C0 is the constant concentration at the sphere surface, C1 – the concentration in the sphere, a – 

radius of the sphere, D – diffusion coefficient. A curve of α vs. the dimensionless parameter Dt/a2 can 

be computed and used to convert values between both of them. A graph of α vs. time would be a 

straight line with slope D/a2. In any case this equation is applicable to diffusion with constant D into 

or out of a system of spheres of uniform radius with constant surface concentration of the diffusing 

species. And here comes the important point – it is not appropriate to the case of a sharp reaction 

interface advancing into the sphere. It works in cases in which the original interface becomes blurred 

with the development of the reaction and disappears at the end as such. This expression cannot be used 

here being in controversy with the always-observed (SEM) phenomenon of sharp borders between 

hydrate and ice. 

The equations of Jander and Ginstling-Brounshtein are both attempts to treat the advancing 

reaction interface case in spherical geometry. The expression of Jander, being a very rough 
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approximation should be used only for small extents of the reaction α. The one of Ginstling-

Brounshtein is the proper analogue of the parabolic law in spherical geometry. 

Now let us consider a sphere with initial radius b at which the concentration of the diffusing 

species is c1(b) = const all the time. At time t the reaction front has penetrated to radius a at which the 

reaction removes the diffusing species so that the concentration c1(a) becomes zero. The extent of the 

reaction will be: 

3

3

1
b
a

−=α      (III.61) 

Jander assumed that the thickness of the reacted layer X = (b – a) is given by the parabolic law 

applicable to the semi-infinite geometry (III.58) with the following assumption: 

tVbcDab M)(2)( 11
2 =−     (III.62) 

Equations (III.61) and (III.62) lead to 

( )( ) 2
11

2
3

1 )(211
b

tVbcD M=−− α    (III.63) 

This is the Jander equation, which obviously does not take into account the convergence of the 

diffusion paths at the center of the sphere. It has been shown it cannot be trusted for α > 0.15 (Giess 

1963). 

The steady-state solution of the diffusion equation for a spherical shell of radii a and b is 
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from this the flow rate of matter through the shell is 
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In the usual manner of the quasi-stationary state approach, having derived the above expression on the 

basis of constant a, let us allow a to vary with t: 
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Integrating and using (III.61) to convert from a to α leads to the Ginstling-Brounshtein equation: 

2
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3
21

b
tVbcD M=−−− αα    (III.69) 
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The plot of the left-hand side of this equation vs. t should be linear with a slope 2D1c1(b)VM/b2. It 

should be practically applicable up to high values of α. Its validity of course depends on the constancy 

of D and on how well the system can be approximated with spherical geometry. 

In the gas hydrate formation case the best variant, which seems to satisfy the observations, is to 

use the Ginstling-Brounshtein equation. To apply it directly and to extract D, on the first place a value 

for b is needed. Measuring spheres of the starting material gives it. Secondly – knowing the 

thermodynamic conditions at which the gas is imposed one can calculate c1(b), using the van der 

Waals real gas approximation. In the present interpretation I do not use c1(b), but the difference 

between c1(b) and the hypothetical concentration at p-T conditions corresponding to the hydrate 

formation/decomposition boundary, cd(b), i.e. C1(b) = c1(b) – cd(b). This plays the role of the driving 

force for the reaction development. 

VM can be calculated from: 

h

h
M

m
V

ρ
=      (III.70) 

where mh is the mass of the hydrate and ρh is its density. The mass of the hydrate should be given as a 

sum of the masses of the CO2 molecules, m  (or those of the gas involved) and that of the water 

molecules, m : 

2CO
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22

+=     (III.71) 

The number of water molecules building a clathrate structure containing 1 mol of CO2 if the hydrate is 

ideally stochyometric, i.e. the occupancy χ = 1, is approximately six water molecules per one gas 

molecule. But this is often not the case and χ ≤ 1 and varies with temperature. Then the expression for 

VM becomes: 

h

OH
CO

M

mm
V

ρ
χ

2
2
+

=     (III.72) 

Thus the modification of the Ginstling-Brounshtein equation I implement is: 
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Chapter IV  
 

Experiments, results and conclusions 
 

In this chapter will be presented the results from the CO2 formation and decomposition 

experiments as well as the observations of the microstructure. In the first paragraph, dealing with the 

clathrate formation, a comparison and critical discussion of the results arising from the two methods of 

data analysis, described in detail in Chapter III, will be given. In the second paragraph will be 

presented the data on CO2 hydrate decomposition. There, the first ideas of approaching the physics of 

the decomposition process will be discussed and a first attempt of data analysis will be shown. At the 

end the reader will be introduced to the micro-structural issues accompanying the CO2 hydrate kinetic 

problems. 

 

§ 1. Experiments on CO2 hydrate formation 

1.1. The starting material 

As a starting material for the in situ formation experiments of CO2 hydrate, for both neutron 

diffraction and pVT studies, an ice Ih powder was used. Since hydrogen has an enormous incoherent 

scattering cross section for neutrons (40 times larger than for deuterium), the initial ice powder was 

prepared out of heavy water. It was used for the neutron diffraction as well as for the in house 

experiments. The isotope influence on the gas hydrate formation was discussed in Staykova et al. 

(2003) and Staykova (2004). The authors concluded that there was no significant difference between 

the hydrate formation kinetics in the deuterated and the hydrogenated cases, at least for temperatures 

well below the ice melting. 

Two methods of preparation of the starting material were implemented. The goals were to 

obtain a powder with well-defined, reproducible geometry and at the same time with sufficiently high 

SSA. The first method was the one used by Staykova (2004) where heavy water is sprayed in liquid 

nitrogen. After the production the material is annealed at –30 oC for 3 hours to anneal the stacking 

faults in the ice Ih (see e.g. Kuhs et al. 2004). The resulting starting material consists of log-normally 

distributed spheres (Fig. IV.1 left) with a mean diameter of 54 µm. Its SSA was measured using the 

BET method, described in Chapter III and was found to be ≈ 0.1 m2/g (Zeller, 2004). This diameter is 

still too big compared to the one of the expected Martian diamond dust (see Chapter I). For this reason 

further attempts were made to reduce the sphere size and thus to increase the SSA. Moreover, as it will 

become clear later on in this paragraph, the low SSA affects the growth kinetics. The way out was 

searched in the construction of an electro-spraying device (Grigoriev & Edirisinghe 2002) but the idea 
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was abandoned, since the production rate of such device was calculated unacceptably low. Therefore, 

a new technology of controlled D2O frost formation in inert gas environment was developed. With the 

help of the technical staff, a frost generator was built and the produced material showed an SSA of 14 

m2/g (A. Zeller 2004, private communication). Unfortunately the price for the large SSA was a poorly 

defined geometry (Fig. IV.1 right). That made the treatment of the reaction data obtained using this 

starting material with the multistage model (see Chapter III) questionable, since it requires spherical 

ice powder with a lognormal distribution. This is also true for the GMAKJB approach, as seen in 

Chapter III. Another point here is that the samples produced this way are not annealed due to the fact 

that at present there is no technical possibility in our labs to precisely control the annealing regime. 

Any improper annealing technology may lead to a loss of SSA. 

  
Fig.IV.1. Starting ice Ih material produced by spraying (left) and frost deposition (right). 

 
The starting material (without accounting for the way of production) was filled in the same 

type Al cans as described in Staykova (2004). 

 

1.2. The Experiments 

For the neutron diffraction experiments, the Al-cans with the ice samples, prepared after the 

procedures described above, are transported in a dry-N2 mover dewar to ILL/Grenoble. The sample 

cell, already fixed to the sample stick (Fig. II.6), is cooled in dry ice. The Al cans are loaded into the 

cell. 

For the reactions above 1 bar, a weak gas flow during the sample loading ensures the full 

replacement of the air in the system with CO2. Than the Bridgman seal is closed and the stick goes 

into the “Orange cryostat”, which is set to the required temperature. After achieving temperature 

equilibrium, a high gas pressure, providing the hydrate formation conditions at the given temperature, 

is applied within a few seconds and the data collection begins. According to the security rules at the 

instrument the high-pressure gas bottle should be closed if left unattended. This is not a problem 

because of the large volume of the gas lines, providing almost constant pressure at the sample during 

the run. If necessary, the pressure is readjusted manually. 
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For the reactions below 

1 bar, the air is evacuated after 

closing the Bridgman seal and 

putting the stick into the 

cryostat. This is done by 

pumping the system, flashing it 

with CO2 and then again 

pumping, this time for 10 to 30 

min or pressure values of 10-3 

mbar. Until achieving the 

temperature equilibration, the 

pressure is kept below the 

hydrate formation limit via 

pumping. Then the required gas 

pressure for the hydrate 

formation at the given 

temperature is applied within 

seconds and the data collection 

begins. 

A series of in situ 

neutron diffraction experiments 

were performed to study the kinetics of gas hydrate formation from deuterated ice prepared following 

the already described procedures (Table IV.1). Most of the runs lasted 8 – 23 h, using D20 at its 

highest intensity setting, at λ = 2.414 Å.  

Temperature 
[K] 

p [bar] 
Concentrat. 

[mol/m3] 

pd [bar] 
Dec. Conc. 
[mol/m3] 

Durat 
[h] 

1851 
 

0.365 
23.71764 

0.124 
8.06024 

21 

1852 
 

0.266 
17.28706 

0.124 
8.06024 

25 

1902 

 
0.36 

22.77758 
0.178 

11.26508 
22 

1952 

 
0.505 

31.12688 
0.252 

15.53792 
15 

1933 
 

0.5 (0.5) 
31.33821 

0.22 (0.22) 
13.70597 

126 

2033 

E1 (Ch. II) 
0.89 (0.88) 
53.21975 

0.433 (0.43) 
25.64022 

48 

2033 

E2 (Ch. II) 
0.89 (0.88) 
53.21975 

0.433 (0.43) 
25.64022 

185 

2033 

E2 
0.89 (0.88) 
53.21975 

0.433 (0.43) 
25.64022 

2255 

2133 

E2 
1.5 (1.47) 
85.91072 

0.763 (0.75) 
43.04345 

185 

2183 

E2 
1.95 (1.88) 
109.52907 

1.005 (0.99) 
55.37993 

288 

2233 

E2 
1.95 (1.9) 
106.95191 

1.3 (1.28) 
70.00667 

240 

2301 

 
3 (2.9) 

160.77174 
1.86 (1.86) 
97.05614 

26 

2531 

 
10 (9.1) 

510.20337 
5.1 (4.9) 

241.14299 
23 

2631 

 
10 (9.3) 

485.43633 
7.5 (7.1) 

340.36857 
18 

 
 
 
 
 
 
Table IV.1 Summary of 
the successful reactions 
used in the present 
study. It shows the 
reaction temperature 
and pressure, p; the 
decomposition pressure 
for the given 
temperature, pd, and the 
corresponding gas 
concentrations, 
calculated from the van 
der Waals real gas law. 
The decomposition 
pressures are calculated 
from the formula found 
by Staykova (2004): 
       pd = exp(A – B/T) 
In the CO2 case: 
       A = 11.74 ± 0.07 
       B = -2559 ± 13 
The duration of each 
run is also shown. 
 

2724 
 

20 (19.7) 
884.96178 

11.4 (11.3) 
498.43705 

18 

For the in-house pVT experiments the same spherical ice powder as the one used in the neutron 

runs is used. Before starting the reaction, the sample cell is cooled down to almost dry ice temperature. 

The evacuation of the system is done in the way described above for the neutron experiments. The 

sample cell is inserted in the low temperature bath, already adjusted at the chosen temperature. Then 

the desired gas pressure is applied and the acquisition of the pressure drop in the closed ice-gas system 

begins. The time steps of the data collection are from 30 s to 30 min, depending on the reaction. The 

pressure in the system is adjusted manually to maintain it within a few percent of the desired value. 

The recorded pressure drop is then converted to gas consumed per unit time (see Chapter II, § 2). At 

                                                 
1 A neutron reaction with spherical (sprayed) starting material (d = 54 µm) 
2 A neutron reaction with the large SSA starting material (frost deposition) 
3 In house reaction 
4 Staykova et al. (2003) 
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the same time the temperature in the room is recorded. It is sometimes needed for the HSC (see 

Chapter II, § 2). 

 

1.3. Data analyses and discussion 

1.3.1. With the multistage model (Genov et al. 2004) 

In most of the neutron-diffraction measurements, the gas hydrate growth reveals itself 

by immediate increase of the gas hydrates’ Bragg intensities after the application of the gas pressure, 

followed by a slow-down while the amount of ice Ih decreases. The repeatedly reported induction 

period (Sloan 1998) was observed as a sigmoid growth only at temperatures below 200 K (Grenoble 

set up) and is not discussed within the frames of this model, in which this effect is not considered 

explicitly. A series of three experiments at 263, 253, and 230 K was performed with deuterated 

samples (see Fig. IV.2a). The reactions lasted between 17 and 26 h resulting in 13 – 37 % ice-to-

hydrate conversion. An experiment performed with larger ice grains at 272 K (Fig. IV.2b), reported 

by Staykova et al. (2003) with a total degree of transformation (reaction degree) – about 56 % was 

also used and re-analyzed here. 

Another series of in house experiments at 193, 203, 213, 218 and 223 K were processed. As 

mentioned before these experiments were done using the gas consumption technique (see Chapter II), 

also starting with deuterated ice. Practically no induction period was observed. All these experiments 

covering the temperature range from 193 to 272 K were used to obtain the tuned model parameters 

listed in Table IV.2; examples are shown on Figures IV.2c. 

During the first 6 – 7 hours both reactions, at 253 and 263 K run closely together; only at a 

later stage the reaction at 253 K significantly exceeds the one at 263 K. The explanation within this 

model is the counterbalancing of the influences of the temperature and the excess fugacity, (f - fd) / fd 

(see Fig. IV.2a and Table IV.2). To reach the same transformation degree of 10 %, a time of about 1 h 

is needed at 253 K; this is approximately 15 h at 230 K and exceeds 24 h at 193 K (compare Figs. 

IV.2a and IV.2c). In all experiments (except the ones revealing a sigmoid growth) the kinetic curve 

for the initial stage shows a strongly non-linear development with time and flattens at later stages 

while keeping a smooth overall shape without inflection points (more like a first order kinetics). The 

electron microscopic observations of the porous hydrate layer during stage I show that the coating 

process preferentially starts in cracks (see Fig. IV.3) with a subsequent spreading over the spherical 

grain surface. As explained in Chapter II, the model copes with this by dividing stage I into two sub-

stages: stage Ia (crack-filling) and stage Ib (surface-coating). The formation and spreading of hydrate 

patches is much slower than the filling of the cracks. Even at high temperatures, the ice surface is not 

fully covered with a hydrate shell after several hours, although in almost all cracks in the grains traces 

of hydrate can be found. 
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a b

c  

 
 
 
 
 
Fig. IV.2 Plots of the data obtained during the 
neutron diffraction (a) and (b) and the pVT (c) 
experiments, showing the pressure and 
temperature dependency of the growth kinetics. 
The light gray lines represent the multistage 
model fit. 

The multistage model was used to interpret the gas-consumption and diffraction data. A 

computer program was implemented to perform all necessary simulations. An intuitive manual 

iterative procedure was used to fit the model to the data. The same approach was employed previously 

in Staykova et al. (2003). Experimental constraints on the coating rate constants kS and kS' in (IV.81) 

and (IV.9) derived from the SEM images in experiments interrupted after different time elapsed were 

also taken into account, together with the SEM based estimates of the average crack opening angle β ~ 

0.06. 

Unfortunately, I could not derive such constraints up to now. Here are mentioned some of the 

reasons for that: the electron microscopy is a local method (square microns can be investigated) and 

(a) cannot give statistically reliable information about a sample with square meters available surface, 

within a reasonable time period. Consequently, no serious constraints on the coating rate constants can 

be derived; (b) since far not all spheres are cracked and many of the cracked spheres are split into 2 or 

more pieces, any estimate of the crack opening angle β becomes gloomy; (c) since the SEM is a 

method used for surface observations (in my case) no estimate for the thickness δ0 or δ0’ can be 

obtained. Looking at (IV.7) one can immediately see the extremely strong correlation between δ0’(δ0) 

and kS’ (kS). If there are no constrains for them, they can vary freely. This will be shown a few lines 

later; (d) here comes the purely statistical problem of deriving the parameters of the lognormal 

distribution of the quite irregular spheres and the following calculation of the SSA. I performed a 
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number of Monte Carlo-like simulations of real lognormal samples and the idealized SSA I got, 

underestimates the real SSA (measured by A. Zeller 2004) by a factor of two. One should keep in 

mind that the multistage model described in Chapter III uses more idealized (simple) approach for the 

sample geometry definition and sample packing. The conclusion is that the attempt to better describe 

the sample is not entirely successful, but this is not only a problem of the model but also of the sample 

preparation; (e) as a sequence of this comes the limited application of the model, since it is not likely 

that a spherical log normally distributed starting material will be always used. Still this approach can 

be implemented in attempt to deduce values of the pure reaction parameters from well-defined 

samples and later on to use these values for further analyses. 

 
a b 

 
c d 
Fig.IV.3 FE-SEM images of samples quenched at various stages of the CO2 hydrate formation process: (a) 
CO2 hydrate formation on a crack surface after 3 h of reaction at 193 K, 0.5 bar; view of a crack (b) and a 
zoom-in of the area of the black rectangle (c) under the same conditions after 8 h; (d) reaction, which had 
started in the crack and possibly spread across the grain surface (185 K, 0.36 bar, 21 h). 
 

Nevertheless, assuming that the constraints, described above, can be applied, as they were 

previously, one may say that the typical time scale (1/ωS) of stage Ib is proportional (see (IV.81)) to 

the reciprocal value of the ice grain coating rate constant 1/kS which increases from about 1 to 

approximately 12 h as the temperature decreases from 272 to 230 K (see Table IV.2). At 193 K it 

takes about 45 h. In these terms, for the thermodynamic driving force ln(f / fd) ~ 1, the reaction at 193 

K can be interpreted as pure crack-filling during the first 5 – 7 h, followed by a transition period and 

surface coating until approximately 150 h.  
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Assuming that in all CO2 experiments presented here the surface-coating stage is sufficiently 

well developed allows obtaining values for the coating rate constant kS. Thus, the activation energy QS 

of this process may be extracted (see Fig. IV.4a). Previously, two different regions were considered, 

above and below around 225 K. For the high temperature region, the value of the activation energy 

was 31.5 kJ/mol while it was 5.5 kJ/mol for the lower range (Genov et al. 2004). The newer 

observations reject this separation into two regimes (which was apparently due to the insufficient 

time/transformation extent of the runs at low temperatures as well as insufficient number of 

experiments) and give QS  = 33.8 kJ/mol. Nevertheless, at higher temperatures the reactions go far 

enough in time and transformation degree allowing for a model interpretation. The values of the 

reaction rate constant kR and diffusion coefficient D deduced under the assumption that the hydrate 

formation is either limited by reaction or diffusion are given in Table IV.2. The only exception is the 

3-months reaction at 203 K where the balance between reaction and diffusion could be found. The 

activation energy of the diffusion-limited process obtained for the 203 to 272 K range is QD = 36 

kJ/mol (Fig. IV.4b), while for the reaction-limited process energy of Qr = 34 kJ/ mol results from the 

analysis (Fig. IV.4c). This result suggests that the diffusion and the reaction-controlled stages should 

develop with the same speed, i.e. there is either no diffusion or no reaction limitation. The second is 

more likely, i.e. there is no reaction-limited stage. It was initially introduced because the pores in the 

hydrate structure were interpreted like pathways for the gas and water to and from the interior of the 

reacting matter after the pure surface coating. BET SSA measurements suggested that the porosity was 

predominantly closed (Zeller 2004) and further image analyzes showed it could be described as solid 

foam (see §3). In the light of these facts it becomes clear that the reaction-limited stage needs some 

revision and possibly unification with the surface coating stage. This will certainly affect the values 

for the activation energies for both – surface coating and diffusion limited stages. 

Concerning the initial crack-filling sub-stage and once again assuming all previous constraints 

hold true, one can deduce from kS' and kR' listed in Table IV.2 that, in general, this process is more 

rapid at high temperatures, but the surface coverage, being several orders of magnitude slower at low 

temperatures, accelerates to a much higher degree and becomes hardly distinguishable from the crack-

filling coverage (compare kR' and kR) at the melting point. This is in agreement with the SEM 

observations. As a consequence, at lower temperatures the crack-filling stage is much more easily 

separated from a subsequent surface-coating sub-stage. From the model fits typically several µm are 

obtained for the thickness δ0' of the ice layer converted to the initial hydrate film on the crack walls, 

which compares well with the thickness δ0 of the coating layer on the ice grain surface (obtained again 

from these model fits). 
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a b 

c 

 
 
 
Fig.IV.4 Arrhenius plots of the various stages 
of the CO2 hydrate formation process at 
temperatures above 203 K: (a) the surface 
coating stage; (b) the reaction limited stage; (c) 
the diffusion limited stage. The open circles 
represent old data excluded as “short and not 
reliable”. The open triangles and the crosses 
stay for data points resulting from the 
alternative fits of the long 203 K reaction with 
varying kS (not included for the activation 
energy). The latter will be explained later in the 
text. 

In any case, in the results for kS' and kR' listed in Table IV.2 a systematic behavior cannot be 

found. This suggests for some difference in the initial part of the reaction that does not seem to come 

from one temperature to another but from one sample to another. The reason can be that the different 

samples have a different number and geometry of the cracks, for instance. Or more realistically and 

more importantly, it can be caused by some frost collected in the sample during the preparation, thus 

changing the initial sample geometry. This may happen despite the “antifrost” measures taken 

(spraying in inert gas environment). The frost has a very large SSA and reacts faster, i.e. the different 

initial quantity of frost will lead to a different set of crack-filling-stage parameters. The amount of 

frost certainly depends on the weather (i.e. on the prevailing humidity in the air) and since the 

different samples are produced at different time of the year, they will contain different quantities of 

frost. 

Let us go back to the discussion on the robustness of the results of this model, already started a 

few lines above and first concentrate on the crack filling. The formulae describing it (IV.9) are 

absolutely independent from the others, describing the surface coating and reaction and diffusion 

limited stages. In other words the full reaction is considered as a superposition of crack filling and 

everything else. There is nothing wrong in this except that having all these unconstrained free 

parameters only in the fissure filling stage makes it easier to play with them in very broad ranges (3 
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orders of magnitude and possibly more) without changing the overall fit and still pretending they are 

full of sense (Table IV.3 and Fig. IV.5). For the examples from here on, I will take the reaction at 203  
React. kS’ 

[1/h] 
kR’ 

[kmol/m2 h] 
δ0’ 

[µm] 
kS 

[1/h] 
kR 

[kmol/m2 h] 
D 

[m2/h] 
δ0 

[µm] 
εf 

193 0.7 7.10-5 2.3 2.2.10-2 − − 1.9 1.8.10-2 

203 E1 5 2.3.10-4 2.3 2.7.10-2 − − 1.9 1.8.10-2 

203 E2 0.37 4.10-5 3.5 5.2.10-3 − − 2.45 1.9.10-2 

203 
long 

0.32 2.1.10-4 2.45 5.10-3 2.85.10-7 7.3.10-14 2.45 2.5.10-2 

213 1.5 6.7.10-5 3.5 0.018 7.5.10-7 3.6.10-14 1.5 1.7.10-2 

218 3 4.10-5 3.5 2.5.10-2 6.7.10-7 5.3.10-14 1.8 4.10-2 

223 1.8 1.18.10-4 2.3 3.5.10-2 3.7.10-7 1.9.10-14 1.4 1.8.10-2 

230 20 2.10-4 3.7 8.10-2 2.6.10-6 1.4.10-13 1.4 1.5.10-2 

253 20 4.10-4 3.3 0.35 1.4.10-5 1.5.10-12 2.8 1.6.10-2 

263 30 8.10-4 3.3 0.49 1.9.10-5 2.10-12 3.5-4.2 2.2.10-2 

272 5 4.10-5 3.3 0.85 3.5.10-5 6.4.10-12 4-5.6 1.7.10-2 

Table IV.2 Summary of the parameters obtained after implementing the multistage model 
 

K, which had been running for 3 months. In that reaction, according to the model, all stages are 

present and in accordance with our previous assumptions all parameters could be derived with a fair 

degree of reliability. These master parameters are shown on Fig. IV.5 and in Table IV.3 as “Fit 

Number 1”. All other parameters are kept fixed as in Table IV.2. The fits with parameters different by 

1, 2 or 3 orders of magnitude show even better match to the experimental data (on the basis of STD). 

Looking at the graph (Fig. IV.5) one can 

see that all four fits are practically 

indistinguishable. To examine the 

situation with the second part of the 

reaction – the surface coating plus the 

reaction and the diffusion parts (Table 

IV.4 and Fig. IV.6) – the parameters 

describing the crack filling are kept as 

the ones obtained from “Fit Number 1”, 

Table IV.3. This is justified because the 

variation in the crack filling parameters 

keeping the same initial fit does not 

affect the values of all the rest, since this 

part can be considered as a constant 

background, shortly after the reaction beginning. As seen from Table IV.4 and Fig. IV.6, the coating 

rate constant kS, and the thickness of the hydrate layer, δ0 can vary with 3 orders of magnitude 

resulting in variations in the reaction rate constant, kr and the diffusion coefficient D up to 56 %, 

without changing the STD and visibly to influence the overall reaction fit (see also Fig.IV.4). The case 

when the crack filling background additive is changed and compensated by variations in the  

 
Fig. IV.5 Demo fits with different values for the crack filling 
parameters as shown in Table IV.3 of the first 250 h of the 3 months 
reaction at 203 K. The plot displays a fair part of the surface coating 
and the reaction limited stages. The rest of the reaction is not shown 
for better visual resolution of the initial part; moreover there is no 
difference at all between the four fits later. 
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parameters of the rest of the reaction I will not 

consider here because the story is already quite 

confusing. In any case it is clear; this will add 

degrees of freedom to vary all parameters. 

Moreover, as mentioned before, this reaction 

was going for 3 months, thus giving enough 

room for the model to deploy all its tools for 

reaction stage treatment. 

The conclusion is: with so many free 

parameters (Table IV.5) and no 

means to constrain them, there is 

probably infinite number of 

“ultimate” fits. Consequently, no 

reliable values for the activation 

energies can be obtained (see 

Fig.IV.4). This is not so extremely 

dramatic for the reaction and the 

diffusion limited stages, since their coefficients differ only within 55-60 % but for the crack filling and 

the surface coating the variations are of orders of magnitude. Some other experiments of mine and also 

of D. Staykova (2003 – 2004 private communications) with the geometry of the model (varying the 

Fit 

Number 

δ0' 

[µm] 

kS' [h-1] kr' 

[kmol/h.m2] 

STD 

1 3.5 0.32 0.00021 0.00204 

2 0.35 0.032 0.0021 0.00188 

3 0.035 0.0032 0.021 0.00183 

4 0.0035 0.00032 0.21 0.00183 

Table IV.3 Shows the crack filling parameters’ values used 
to demonstrate the correlation between them. A little bit of 
extra tuning can lead even to obtaining the same STD for 
all 4 runs. All other reaction parameters were kept fixed as 
they were obtained from Fit Number 1. 
 

Fit Number δ0 [µm] kS [h-1] kr 

[kmol/h.m2] 

D [m2/h] STD 

5 2.45 0.005 2.85E-7 7.3E-14 0.00336 

6 (kS.10) 0.245 0.05 6E-7 3.75E-14 0.00336 

7 (kS.100) 0.0245 0.5 7.35E-7 3.25E-14 0.00336 

Table IV.4 Shows the reaction parameters’ values used to demonstrate 
the correlation between them. The fissure filling parameters were kept 
fixed as they were obtained from Fit Number 1, Table IV.3. Fit Number 
5, Table IV.4. corresponds to the master fit. 
 

 
Fig. IV.6 Demo fits with different values for the surface coating, reaction and diffusion 
parameters as shown in Table IV.4 of the 3 months reaction at 203 K. 
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distribution’s mean and standard deviation, porosities, crack geometry parameters within reasonable 

limits) also showed significant influence on the simulated reaction development. 

At the end let us summarize the parameters required for the model initialization. For clarity I 

will divide them into three groups (Table IV.5): (1) well-defined parameters, (2) not-very-well-defined 

parameters and (3) free parameters. To the first group belong the measured parameters. To the second 

group belong the parameters derived on the basis of some measurements and assumptions. For 

instance the mean radius and the STD were extracted on the basis of measuring the sizes of the starting 

ice spheres from SEM images (Klapp 2003, private communication). From several different samples, 

around 1000 spheres per sample were measured, from that their distribution was built and its 

parameters derived. The results differed to some extent from set to set. It is clear that far not every 

sample can be investigated that way, which means some average value for these quantities should be 

assumed. Moreover, variations of the STD lead to variations in the calculated specific surface area 

(SSA). Obviously this will affect, for example, the calculated coordination number Z per reference 

grain (III.10). In any case the negative effects coming as results of the uncertainties carried by the not-

well-defined parameters are negligible compared to the possible ones due to the free parameters. To 

reduce these uncertainties one needs to find ways to constrain all possible parameters. Let us start with 

the micro-porosity of the hydrate. It was taken to be around what Suess et al. (2002) measured for the 

natural methane hydrate case. Again the lack of representativity appears here, hand in hand with some 

purely experimental problems, like the one of the hydrate decomposition, which had taken place upon 

the hydrate recovery from the ocean floor. It is also uncertain if this parameter stays the same for the 

different sorts of gas hydrate. Concerning the crack opening angle and the crack void fraction – these 

are two correlating parameters. Initially the 

opening angle was defined from the SEM 

pictures mentioned above. For a number of 

reasons the statistics was very poor and the 

obtained values not fully reliable. The most 

important thing is that none of the coating 

rate constants as reaction rate constants and 

initial film thickness can be constrained. 

Neither the diffraction nor the SEM 

observations can be used for this purpose. 

Concerning the diffusion coefficient, it is 

traditionally a fitting parameter. 

 Ice density 1 
Well-defined  Water density in hydrate 2 
parameters Excess fugacity 3 
 Initial coordination number, Z0 1 
Not-very-well- Min coordination number, Zmin 2 
defined Slope of the random density function, C 3 
parameters Mean radius 4 
 STD 5 
 Micro porosity of hydrate, εh 1 
 Crack opening angle, β 2 
 Crack void fraction, εf 3 
 Initial film thickness on grain, δ0 4 
Free parameters Initial film thickness in crack, δ0’ 5 
 Coating rate constant on grain, kS 6 
 Reaction rate constant on grain, kr 7 
 Coating rate constant in crack, kS’ 8 
 Reaction rate constant in crack, kr’ 9 
 Permeation (diffusion) coefficient, D 10 
  

Table IV.5 
 

And to conclude, the model itself 
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has a value of a model, which tries to take into account all possible geometric effects and this way to 

extract the ultimate values of the transformation parameters for implementation in other types of 

analyses. Unfortunately it needs constraints, which cannot be applied at present. 

 

1.3.2. With the JMAKGB 

To overcome all the problems described above, a new approach needs to be 

implemented. It should be more robust and lead to a single ultimate solution for every reaction. The 

way to achieve the goal is to find an interpretation with less free parameters, as well as to rethink the 

way of data analyses. The main idea of the approach I had chosen was described in Chapter III 

JMAKGB. The only user-controlled parameter in this treatment is the switch point – or the moment 

from which on only the diffusion controls the reaction. All other parameters are obtained 

automatically by least least squares fitting, which is not the case with the multistage model, where the 

fitting is done by certain prescriptions, which are not necessarily based on physical and mathematical 

arguments. The reason for that was demonstrated a few lines before. 

On Fig.IV.7 one of the neutron diffraction runs at 263 K, 10 bars is shown. The line on 

Fig.IV.7a represents the Ginstling-Brounshtein diffusion fit. The switch point is 9.79 h. Then the data 

set is corrected for this diffusion and the result is fitted with the Avrami formula (Fig.IV.7b). On this 

basis an overall fit of the data can be obtained and it will be the superposition between both Avrami 

and diffusion (Fig.IV.7c). The criterion of selecting the switch point is that after the correction for the 

a  
b 

c 

 
 
Fig.IV.7 Demo fits of one of the three 
reactions from Fig.IV.2a, the one at 263 
K, 10 bars: (a) the Ginstling-Brounshtein 
fit of the diffusion controlled part or stage 
B according to the convention introduced 
in Chapter IV; (b) the same data set with 
subtracted diffusion or the pure stage A, 
according to the same convention. The line 
represents the Avrami fit; (c) the overall 
reaction fit, Avrami + Ginstling-
Brounshtein. 
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diffusion the data should flatten as shown on Fig.IV.7b. If there is a trend of the corrected reaction to 

continue to increase or to start to decrease from some point on, one should choose another switch 

point. Obviously this is an easily defined free parameter. Of course, one should keep in mind that 

some reactions may not reach far enough in time/reaction extent to define well the diffusion limited 

stage B. This is the case with the 193 K in-house experiment, for instance. 

 Following the described procedure I processed all other non-sigmoid reactions. From the 

Ginstling-Brounshtein fits came the diffusion coefficients for the different temperatures. As mentioned 

in Chapter III, for deriving the concentrations of the gas at the different pT conditions, I used the van 

der Waals real gas law. Fig.IV.9 shows the Arrhenius plot of the diffusion coefficients (QD = 20 

kJ/mol). The error bars are derived on the basis of the difference in the switch point selection, 

resulting in the best and the worst possible fits taken in “+” and in “-”, i.e. the worst achievable case. 

If the reaction is long enough, the switch point selection plays a very little role, close to nothing (the 

three months reaction at 203 K). At 203 K there are three reactions with three different error bars. The 

analyses of the longest one – 3 months – shown on Fig.IV.8 gave D = (2.431 ± 0.001)-16 where the 

uncertainty given is the statistical one. The maximal estimated error value, obtained as described 

above and also shown on Fig.IV.9 is around 2 %, compared with the 56 % gotten from the multistage 

model for the same reaction (see § 1 of this chapter).  

a  b

c  

Fig.IV.8 Demo fits of the 3 months 203 K 
reaction: (a) the Ginstling-Brounshtein fit 
of the diffusion controlled part or stage B 
according to the convention introduced in 
Chapter IV; (b) the same data set already 
with subtracted diffusion or the pure stage 
A, according to the same convention. The 
line represents the Avrami fit; the “waves” 
come from the diurnal temperature 
variations, becoming dramatically visible 
due to the scaling. Stage A reaches only 
around 10 % transformation; (c) the overall 
reaction fit, Avrami + Ginstling-
Brounshtein. 
 

The reaction at 223 K comes from the in-house system E1 (see Chapter II) as well as the 

reaction with the biggest error bar from the 203 K reaction set and the one at 193 K. The runs at 230 K 
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253 K, 263 K and 272 K are neutron ones. 

The two other reactions at 203 K, together 

with the 213 K and 218 K ones come from 

the in-house E2b system. The only 

reaction, which was corrected with the 

HSC (see Chapter II) was the one at 223 

K. For the others it was either unnecessary 

or it had not been invented yet. 

Unfortunately, for the present reactions 

showing sigmoid shape this approach is 

not applicable since none of them really 

reaches the stage where only the diffusion 

governs it. All the parameters from the 

Avrami and Ginstling-Brounshtein fits are summarized in Table IV.6. 

 
Fig.IV.9 Arrhenius plot of the diffusion-controlled stage B of the 
CO2 hydrate formation process at temperatures above 193 K. The 
obtained value for the activation energy is QD = 20 kJ/mol 
 

The Avrami fitting was done with the help of one of the built-in functions of Origin 6.0 – 

Weibull2 – after a slight modification, leading to the Avrami formula. The Levenberg-Marquardt chi-

square minimization was implemented. On Fig.IV.10 one can see how the pure Avrami formula fits 

the sigmoid reactions and also the Avrami triple logarithmic plots of the data. The parameters obtained 

this way are included in Table IV.5. 

The first of the Avrami parameters considered here is the one describing the dimensions of the 

hydrate crystals growth – d. As mentioned in Chapter III, this parameter should stay above 1, since 

any growth in lower dimensions cannot proceed. Still the values of d between 1 and 0 exist. The 

diffusion correction brings them above 1 for the low temperature runs but does not do the job at higher 

temperatures. To shed light upon this problem I will spend the next few lines to discuss the physics 

behind the Avrami exponent. A more detailed discussion on this and especially on the diffusion 

controlled grain growth in relation to the Avrami exponent can be found in Pradell et al. (1998) and 

the references reviewed there. I will allow myself to recall the reader’s attention once again at the 

derivations shown in Chapter IV, namely at the formulae (IV.22) – (IV.35). Lets now rewrite (IV.29) 

in the shape: 

∫ ∫==
t t

d
ex dytyTrSyTIdytyTVyTI

0 0

)],,([),(),,(),(α   (IV.1) 

where T stays for the temperature, as well as for any other external variables affecting the process; V(T 

, y , t) is the d-dimensional volume at time t, born at time y with a radius of r(T , y , t) the rest of the 

assignments are as in Chapter IV. The value of the Avrami exponent comes from (IV.34) assuming an 

isothermal crystallization, i.e. T is fixed. The radius r(T , y , t) comes from the integration of the 
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growth rate G(T , y). Thus for a constant nucleation and a radius dependent grain growth G(T , r(y , t)) 

the radius is r(T , y , t) = G0(T)(t - y)q then (IV.1) becomes: 

1

1
00

+
=

+

qd
tSGI qdd

exα      (IV.2) 

 

Temperat.5 
[K] 

p [bar] 
Concentr. 
[mol/m3] 

pd 
Dec. 
Conc. 

[mol/m3] 

Switch 
point 
[h] 

D 
[m2/s] 

A K d 

185 
First Gren. 

0.365 
23.718 

0.124 
8.060 

  0.03976 2E-5 1.78043 

185 
Gren. 

0.266 
17.287 

0.124 
8.060 

  0.33058 
0.84 

1 

1E-5 
5.8649E-6 
5.2827E-6 

2.35236 
2.0453 

2.02089 
190 

Gren. 
0.36 

22.778 
0.178 

11.265 
  0.49434 

0.84 
1 

1E-5 
9.8715E-6 
8.8247E-6 

2.48579 
2.16036 
2.10464 

195 
Gren. 

0.505 
31.127 

0.252 
15.538 

  0.81176 
0.84 

4E-5 
3E-5 

1.96926 
1.87708 

193 
Home 

0.5 
31.338 

0.22 
13.706 

116.1 
0 

(8.3±0.6)E-17 
(7.04±0.02)E-16 

0.18607 
0.07582 

6.6345E-6 

6E-5 
0.49017 
1.00626 

203 old 
Home 

0.89 
53.22 

0.433 
25.640 

3.71 
 

(2.20±0.01)E-16 0.07134 2.9 E-4 
 

0.81574 

203 calibr. 
Home 

0.89 
53.22 

0.433 
25.640 

21.83 
 

(2.299±0.004)E-
16 

0.07096 5E-5 
 

1.00726 

203 long 
Home 

0.89 
53.22 

0.433 
25.640 

13.81 
 

(2.431±0.001)E-
16 

0.09906 8E-5 1.24679 

213 
Home 

1.5 
85.911 

0.763 
43.044 

9.03 
 

(3.19±0.02)E-16 0.05727 1.5E-4 0.9015 

218 
Home 

1.95 
109.53 

1.005 
55.38 

42.3 
 

(3.06±0.01)E-16 0.1039 5E-5 0.54825 

223 
Home 

1.95 
106.952 

1.300 
70.007 

100.1 
 

(2.46±0.01)E-16 0.13149 4E-5 0.43631 

230 
Gren. 

3 
160.772 

1.86 
97.056 

3.08 
 

(8.12±0.01)E-16 0.06099 7.6E-5 0.57066 

253 
Gren. 

10 
510.203 

5.1 
241.143 

11.18 
 

(1.77±0.01)E-15 0.15433 2E-4 
 

0.56945 

263 
Gren. 

10 
485.436 

7.5 
340.369 

9.79 (3.16±0.01)E-15 0.14693 2.5E-4 0.6733 

272 
Gren. 

20 
884.962 

11.4 
498.437 

10.63 (4.25±0.03)E-15 0.39763 2.3E-4 0.66661 

Table IV.6 Summary of all parameters derived on the basis of JMAKGB 
 

 

and the Avrami exponent is equal to qd + 1. If there is no change in the transformation mechanism it 

should be constant through the whole reaction. Considering increasing (I(T , y) = I0(T) y p) or 

decreasing (I(T , y) = I0(T) (a + y) -p) nucleation rates gives increasing or decreasing Avrami 

exponents, which at the end become equal to p + qd + 1 and qd respectively. Usually increasing or 

decreasing nucleation rate is responsible for non-constant Avrami exponents. In the case of interface 

controlled growth, the growth rate is constant and the Avrami exponent becomes equal to d + 1, or 4 

                                                 
5 Light gray stays for a sigmoid reaction. 
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for 3D growth (with constant nucleation rate), 3 for 2D growth etc. For diffusion controlled growth 

rate, when steady state is reached holds: 

))((2),(
)(

),( 0
0 ytTDytr
r
TD

dt
drrTG −=⇒==    (IV.3) 

which leads to a value of the Avrami exponent of 1 + d / 2, for a constant nucleation rate (5/2 for the 

3D growth). For primary transformations where a 3D diffusion controlled growth rate is expected, the 

minimum value even for decreasing nucleation rates is qd = 3/2. For a decreasing growth rate with 

constant nucleation rate, the minimal expected value for the Avrami exponent is 1. Values of the 

Avrami exponent below 1 are normally attributed to decreasing nucleation and growth rates. This 

can be a result of the mixing of the lognormal starting material (relatively low SSA) with frost (large 

SSA), as discussed in the previous paragraph. On one hand the frost contains many more surface 

nucleation sites and on the other hand it is consumed much faster then the rest. This may lead to 

decreasing nucleation and growth rates. Pradell et al. (1998) also demonstrated that the consideration 

of a diffusion-controlled growth with soft impingement6 would explain such anomalous behavior of 

the Avrami exponents without introducing a decreasing nucleation rate. Then the Ginstling-

Brounshtein model does not succeed to correct for it completely because it is also a shrinking core 

approach exactly as the multistage model. I assume that works as a mean-field approximation but it 

may also fail completely due to a strongly inhomogeneous reaction development across the sample. 

Another explanation may be that in the beginning the diffusion coefficient is different from the 

following one, obtained from the Ginstling-Brounshtein treatment, since for the second only a hard 

impingement is assumed. The mathematics of processes with changing diffusion coefficients differs 

significantly from the one used here. Evidence supporting the diffusion idea is that the sigmoid 

reactions at 185, 190 and 195 K do not show any anomalies in the Avrami exponent. The starting 

Fig.IV.10 (a) Sigmoid runs fitted with the Avrami formula; (b) the Avrami triple logarithmic plot of most of 
the data sets, which should lead to a linear data representation. 
 

                                                 
6 As crystallization proceeds the diffusion profiles of neighboring grains begin to overlap appreciably (soft impingement), 
leading to a further decrease in the growth rate due to the reduction in the concentration gradient 
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material for these runs was the one with the very large SSA of 14 m2/g. This gives an equivalent ice 

sheet with an area of 14 m2 and a thickness of 77 nm. Obviously this is a thin layer for the gas to 

penetrate, compared to the ice spheres with 54 µm radii. The Avrami exponents there are around 2, 

which is reasonable since the hydrate formed consists of 3D crystals of the order of a µm as well as of 

some fluffy material looking like something between dendrites and scales (Fig. IV.11). 

 To summarize: in this treatment there are practically 5 free parameters: diffusion coefficient 

D, switch point, and the three Avrami parameters. D depends insignificantly on the switch point. But 

A depends on it and, from there on so do d and K. Unfortunately, no reliable numbers for the first part 

of the reaction can be obtained due to possible effects like decreasing nucleation and/or growth rates 

or changing diffusion coefficients. One can see that this treatment provokes more questions then gives 

answers but nevertheless, I consider it as giving better physical insides to the processes involved in the 

hydrate formation on a “macroscopic” level. As a disadvantage one can consider the dependence of 

the results on the geometry of the starting material, but in any case this is unavoidable. 

 

Fig.IV.11 Appearance of the gas 
hydrate formed at 185 K from a 
large SSA starting material with 
the EDX (Energy dispersive X-
ray) spectra taken in the regions 
surrounded with rectangles. The 
left EDX spectrum with the 
carbon signal (a sign for hydrate 
presence) corresponds to the 
lower left rectangle. The spectrum 
to the right is taken from the right 
rectangle – remaining starting ice. 
At higher magnification the 
aggregates of hydrate crystals do 
not show submicron porosity. 
 

 

Unfortunately, a comparison between the results of both approaches cannot be done directly, 

since the multistage model presently contains three stages but the JMAKGB has only two. Eventually, 

after removing the reaction-limited stage from the multistage model, which in a way “consumes” from 

the surface coating and the diffusion-limited stages, such comparison may become possible. 

 

§ 2. Experiments on CO2 hydrate decomposition 

2.1. Starting material and experiments 
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As a starting material for the CO2 hydrate decomposition in situ neutron diffraction 

experiments were used CO2 clathrate samples (~ 97 %). They were prepared as follows: deuterated ice 

was crushed into a very fine powder under a nitrogen atmosphere. This ice was then filled in the 

aluminum cans already mentioned in §1 of this chapter. These cans with the crushed ice were loaded 

into a big pressure cell and were reacted at –10oC and 25 bars CO2 pressure for nearly three weeks. 

The hydrate formed this way was stored in liquid N2 and transported to ILL. The hardware employed 

for these experiments was the vacuum setup used in the low-pressure formation runs. 

The sample cell, already fixed to the sample stick (Fig. II.6) was cooled in dry ice while the air 

was evacuated from the system. Afterwards, around 1 bar of CO2 was introduced into the system to 

avoid inflation with normal air upon opening the Bridgman seal for the sample loading. The Al can 

was put into the cell and a pressure providing conditions of stability for the clathrate sample was 

applied. The sample stick was introduced into the “Orange cryostat”. The pressure in the sample 

environment was manually kept in the narrow region of hydrate and gaseous CO2 coexistence all the 

way down to the requested reaction temperature.  Otherwise, dry ice would have been formed (see 

Fig.I.7). 

After achieving temperature equilibrium, the reaction was ready to go, the pressure in the 

system was reduced to 6 mbar – Martian conditions – and the data acquisition began. The only 

exception was the reaction at 260 K, 1 bar. Five decomposition reactions were followed: 170 K, 200 

K, 220 K and 260 K at 6 mbar and 260 K 1 bar. The runs lasted 3 – 12 h, again using D20 at its 

highest intensity setting, at λ = 2.414 Å. 

Temperature 
[K] 

p [bar] 
Concentration 

[mol/m3] 

pd [bar] 
Dec. Conc. 
[mol/m3] 

Duration 
[h] 

170 
 

0.006 
0.4245 

0.037 
2.6176 

12 

200 
 

0.006 
0.3608 

0.349 
20.9783 

9 

220 

 
0.006 
0.328 

1.118 
61.039 

5 

260 

 
0.006 

0.2776 
6.69 

307.3433 
3.5 

 
 
 
Table IV.6 Summary of the decomposition 
reactions used in the present study. It shows 
the reaction temperature and pressure, p; the 
decomposition pressure for the given 
temperature, pd, and the corresponding gas 
concentrations, calculated from the van der 
Waals real gas law. The decomposition 
pressures calculated as in Table IV.1. The 
duration of each run is also shown. 
 260 

 
1 

46.2116 
6.69 

307.3433 
5 

A summary of the decomposition reactions with their thermodynamic conditions and durations 

are given in Table IV.6. 

 

2.2.Data analyses and discussion 

The results from all performed neutron diffraction experiments on CO2 hydrate decomposition 

are shown on Fig.IV.12. The 170 K reaction (1) is extremely slow but plotted on a larger scale it is 

visible that it starts to develop an inverted S-shape curve similar to the one at 200 K (3). Interestingly, 
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run (2) at 260 K, 1 bar decomposes also very slowly and looking at Fig.I.10 it becomes clear that its 

pT conditions are deeply in the anomalous preservation region established by Stern et al. (2001) for 

the CH4 hydrate case. This observation confirms the appearance of anomalous preservation in the CO2 

hydrate case reported by Stern et al. (2003). Reactions (1), (3) and (5) should be out of this peculiar 

region, according to the nomenclature of Stern et al. and they really behave as if the temperature 

regulates the decomposition rate till completion (at least for (3) and (5)). Despite the fact that the 

reaction at 260 K, 6 mbar is in the preservation temperature region the decomposition starts very fast 

(as in (5)), passing the 50 % limit in less then 1 hour, but suddenly slows down and almost stops at 

about 30 % hydrate left. Following the Stern et al. nomenclature, this is not anomalous preservation 

since they build the preservation picture on the basis of “Time to 50 % dissociation” (see Fig.I.10). 

But as long as there is 30 % hydrate preserved, it is anomalous preservation (or perhaps more 

accurately “anomalous slowing down of the reaction”). Still one can argue if this is a real self-

preservation or an artifact caused by a blockage of the stick leading to a pressure build-up in the 

sample volume, stabilizing the remaining hydrate. This is very unlikely for the system used in this run 

since, on one hand, it is kept out of the dry ice formation conditions with the help of the stick capillary 

heating and on the other hand, the stick tube inner diameter is 5 mm at the narrowest point. It is very 

unlikely at the present conditions to build a bouchon of dry ice capable to stand almost 7 bar 

decomposition pressure. 

Fig.IV.12 All CO2 hydrate decomposition runs. 
Self-preservation is observed in the 260 K 
reactions. 
 

Fig.IV.13 Avrami plot of all decomposition 
reactions. 
 

T [K] A K d 
170 1 2.74E-6 1.166 
200 0.91 6E-5 1.4285 
220 1 2.8E-4 1.0109 

260 (6 mbar) 0.68 4.8E-4 1.0733 

 
Table IV.7 Summary of the parameters of 
the Avrami treatment of the CO2 hydrate 
decomposition neutron diffraction runs. 
 

260 (1 bar) -- -- 0.14 
 

Since the data sets are by far not enough in number to develop any serious theory about the 

kinetics of the CO2 hydrate dissociation, here I can only try to give some hints about a possible way of 
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analysis7. The hydrate decomposition can also be considered as a growth of ice. Then all these 

descending clathrate dissociation curves from Fig.IV.12 can be considered as sigmoid ice growth 

functions. As soon as the ice growth out of hydrate is again a nucleation and growth process, as 

discussed in Chapter IV, an attempt for treating it with the Avrami theory is justified. Concerning the 

Ginstling-Brounshtein part of the treatment it may appear necessary for the self-preservation cases. In 

any case none of the datasets allows for trying diffusion approaches, since they are all too short. 

Therefore, at this stage I will limit myself to considering the reactions as pure nucleation-and-growth 

ones. The first thing to do in such case is to have a look at the Avrami triple logarithmic plot 

(Fig.IV.13). All reactions show more or less linear behavior, which is in favor of the theory. The only 

run with a peculiar slope is the one at 260 K, 1 bar. This is the preservation run at the conditions for 

which Stern at al. observed the methane hydrate anomalous preservation. Nothing can be said about 

this run since the transformation extent is very limited and the kinetics itself does not show any clear 

S-shape. But all the rest, including the reaction at 260 K, 6 mbar, show similar slopes, i.e. very similar 

transformation behavior. The results of the fitting can be found in Table IV.7. 

Fig.IV.14 Diffraction patterns and Rietveld-fits for various stages of the decomposition at 170 K (left 
column) and 200 K (right column). A model fit assuming perfect ice Ih was used and the differences 
between observed and calculated profiles as well as tick-marks indicating the reflection positions are shown 
(top phase ice Ih, bottom phase hydrate). The inserts show zoom-ins of the 100 and 002 reflections of ice (at 
approximately 39° in 2-Theta). The beginning of the reactions – figures on top and the ends – bottom 
figures; after 12 and 9.5 h for 170 and 200 K respectively. 
 

                                                 
7 Takeya et al. (2001, 2002) treated their data on decomposition of CH4 hydrate using the diffusion formula of Dünwald-
Wagner-Serin-Ellickson (III.59). 
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An inspection of the diffraction features of the ice obtained upon gas hydrate decomposition 

clearly shows that imperfect ice Ih is formed at 170 K (see Fig.IV.14). It is worth noting that the 

starting ice in this case is almost perfect, suggesting that some annealing of most of the stacking faults 

(clearly visible as shoulders of the main hexagonal diffraction peaks after the decomposition) has 

taken place (most likely, during loading the sample into the sample stick and waiting for the 

temperature establishment). In contrary, the starting material for the 200 K decomposition is very 

defective initially. At the end of the run, the produced ice does not show any appreciable degree of 

defectivity. Obviously the higher the temperature goes, the higher the cooperative mobility of water 

molecules becomes, thus leading to annealing of defective crystallites with a resulting closing of 

existing pathways for gas diffusion. This in turn leads to the on-set of anomalous preservation (Kuhs 

et al. 2004). At this point, the gas molecules can only escape by solid-state diffusion, which slows 

down the decomposition reaction by orders of magnitude. It should be noted here that high gas 

pressures are not obligatory to stabilize the gas hydrate. What is needed is a chemical activity of the 

gas at the hydrate surface, which corresponds to conditions inside the stability field. Continuing in this 

direction leads to the impression that the self-preservation should not be a “threshold-like” effect as 

suggested by Fig.I.10, since the speed and degree of annealing depend on the temperature and may 

even compete with the hydrate-to-ice transformation rate. Subsequently the diffusion will become 

involved in the process to a different extend at different temperatures. The 200 K run supports this 

deduction with its highly asymmetric S-shape (see Fig.IV.12) and the ice produced at the end with a 

high degree of perfection.  

 

§ 3. Topological observations – hydrate foam structure 

 In the year 2000 the porous microstructure of the gas hydrates was found (Kuhs et al. 2000). It 

was observed even in the CO2 hydrate case, though the pore size was much smaller. This raised first 

questions about the possible influence of the pores on the further transformation of ice, remaining 

underneath the porous hydrate, as well as on the hydrate decomposition. The first assumption was that 

the pores, having some connectedness, were pathways for the gas to reach the buried ice and for the 

excess water to get out. On this basis the reaction limited stage was introduced in the multi-stage 

model. In any case, there were evidences neither for the connectedness nor against it. To clarify this 

situation I decided to have a careful look at some selected FE-SEM images. For this purpose, I got 

pictures of the CH4 hydrate sample produced together with A. Zeller at –8.8 oC and 60 bars in 2002. 

This sample was interesting because after the recovery it was crushed and by sieving through sieves 

with different sizes, it was separated in different fractions. The only fact of crushing the sample 

already made clear that some inner surface would be discovered. The picture looked always the same 

(e.g. see Fig.IV.15), regardless of the orientation, i.e. the structure was homogeneous in every 

direction. It resembled a sponge for washing dishes, which meant it was foam. 
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To put an end of an argument, which has not yet begun, let me define what foam is: it is a 

solution, which consists of interconnected network of struts or plates, which form the edges and faces 

of cells (Fig.IV.16). Most commonly the cells are polyhedra, packed in 3D, forming the foam. If all 

the material forming the foam is concentrated along the Plateau borders (i.e. there are no lamellae), the 

foam is open-celled. If the lamellae exist, i.e. the neighboring cells are sealed off from each other, then 

the foam is closed-celled. Of course, some kinds of foam are partly open and partly closed. Obviously, 

the definition is very broad. For instance, the polyurethane forms open-cell foam, the polyethylene – 

closed-cell, the polyether – both closed- and 

open-cell. Foams form metals like nickel, 

copper, zirconium, titanium also the glass. 

There are many examples of naturally formed 

foam as for instance cork, natural sponge, 

cancellous bone, coral etc. The bread and the 

aero chocolate are foams too. Clearly the foams 

do not finish with the soap and the beer froth, 

which is what the people usually think for when 

they are told about foam, as my experience has 

shown. 

The attempts to qualify and quantify the 

foam structures date back to Leonhard Euler, Josef Plateau and William Thomson. They have 

discussed the possible ways of space filling, coordination numbers, equilibrium rules etc. One of the 

most important parameters of the foam is the degree of “wetness”. It is expressed by its volume 

liquid/solid fraction Φs or gas fraction Φg: 

 
Fig.IV.15 Example of a crushed piece of CH4 hydrate. In 
both dimensions it looks the same. Still untransformed ice is 
visible. 
 

gs Φ−=Φ 1      (IV.4) 

The volume (average volume) of a cell or bubble is: 
3

23
4







=

dVb
π   

3

23
4









=

dVb
π    (IV.5) 

Then obviously: 

gbbVN Φ=      (IV.6) 

where Nb is the number of bubbles. 

Another interesting parameter, which is de facto the most important for the kinetic 

investigations, is the connectivity of the foam or in other words how much it is open-celled or closed-

celled. An attempt to clarify this follows. 

The results shown next, are obtained by taking electron micrographs of gas hydrate samples 

with the proper magnification and measuring the diameter of every single bubble in an attempt to 
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achieve good counting statistics (counting). In general it takes from one to three days to count one 

thousand bubbles. 

As mentioned before, the CO2 hydrate forms bubbles much smaller then the other hydrates and 

often they are beyond the resolution of the microscope. Only at high temperatures they allow for 

counting. For that reason the results I show here are based 

exclusively on counting CH4 hydrate and only one result from CO2 

hydrate is given. On Fig.IV.17 left column is shown one of the 

pictures used in the counting. Totally three distributions were 

created for three different bubble “plantations” – two of them from 

one sample and one from a different run. On this basis their foam 

parameters were derived, as described above. The results are 

shown in TableV.8 together with the one for the CO2 case 

(Fig.IV.18 right column). The bubble size distribution appeared 

to be lognormal in both cases – CO2 and CH4 hydrate. 

One should mention here the problems of this counting. It 

is not only the time and the pain stacking labor for obtaining these 

results. There are purely technical problems. First of all it is 

necessary that the picture that is used for the counting is perpendicular to the incident electron beam, 

since there is no way to estimate any tilt and to correct for it the measured bubble diameter. Secondly, 

the resolution – one needs to compromise between the best resolution and the possible charging effect. 

This often leads to the wicked situation of finding a wonderful surface but with a bad achievable 

resolution. Thirdly, the locality of the electron microscopy, already discussed before – 1000 bubbles 

counted at this place does not make the picture representative for the whole sample. Most probably the 

distribution will be always lognormal throughout the whole sample but it will differ in mean and 

standard geometric deviation. All these things lead to the conclusion that an automatic image 

processing procedure needs to be implemented (one attempt of mine in this direction can be found in 

Appendix IV). 

Fig.IV.16 polyhedral foam cell (left) 
and a zoom-in with the cross-section 
of a Plateau border (right). The cross-
section of a Plateau border is a 
concave triangle. 
 

Counting the bubbles whose bottoms are not visible can give an estimate for the connectivity 

of the foam. The number of the bottomless bubbles obtained from the CH4 hydrate pictures is around 

30 %. This should be considered as the highest bound since the electron beam and the high vacuum 

conditions lead to sample etching. The first parts of the hydrate surface, which will sublimate are the 

thinnest ones or the lamellae. This will lead to opening new and new holes and create an artificial 

connectivity. This effect, which appeared to be dramatic initially, was investigated in detail and even a 

film of the development of the artifacts was made. Unfortunately, for technical reasons I cannot show 

it on the pages of this thesis. But if one takes an overestimated number of, let us say, 40 % 

connectivity that means a surface covered with 1000 bubbles, of 465 nm diameter on average (CH4 
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case), will have contact with only one bubble belonging to the sixth bubble level, which is less then 3 

µm depth. This leads to the conclusion that in this particular case the CH4 hydrate foam structure is 

poorly connected and cannot serve as an appreciable pathway for gas and water transport to 

  
Fig.IV.17 (left column) CH4 hydrate formed at –8.8oC, 60 bar and its bubble size distribution: mean 
5.99, STD = 0.56, average bubble diameter of 465 nm, based on 1005 bubbles; (right column) CO2 
hydrate formed at –10oC, 10 bar and its bubble size distribution: mean 4.62, STD = 0.78, average 
bubble diameter of 137 nm, based on 548 bubbles. 
 

and fro the ice underneath. This estimate was confirmed for the whole sample by the BET 

measurements (Zeller 2004) for the CH4 case. The measured samples quenched after different times of 

reaction at the same conditions (different transformation extents) showed almost the same SSA within 

the uncertainty. Whether or not it can be extrapolated to the CO2 hydrate case is not sure. But since the 

counting suggests that the CO2 

and CH4 hydrate foams appear 

to differ only in mean and 

standard geometric deviation 

keeping the same distribution 

shape (CO2 hydrate foam is a 

scaled down version of the 

CH4 hydrate foam), such 

extrapolation seems justified. This result also confirms that the multi-stage model described and 

demonstrated previously needs a revision for the reaction-limited stage. 

 Conditions of 
preparation 

Average 
Bubble  

Average 
Bubble  

Gas 
Fract. 

Solid 
Fract. 

Gas Temperat. 
[oC] 

Press. 
[bar] 

Diameter 
[nm] 

Volume 
[µm3] 

Фg 
[%] 

ФS 
[%] 

CH4 -8,8 60 465±3 0,053±0,001 38±1 62±1 
CH4 -8,8 60 319±7 0,017±0,001 60±3 40±3 
CH4 0 600 627±25 0,13±0,02 32±4 68±4 
CO2 -10 10 137±12 (1.3±0.4).10-3 39±5 62±5 

 
TableV.8 Summary of the results of the counting of the different SEM images. 
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CO2 clathrate hydrates on Mars – yes or no? 

(Conclusions and outlook) 

 
The reader already became acquainted (in Chapter I) with the most important effects of the 

possible CO2 hydrate existence on Mars. Now, let me try to summarize the results of this work in the 

light of the Martian near-surface atmospheric and subsurface pressure-temperature conditions. All CO2 

hydrate formation experiments performed and represented here, were at temperatures between 185 K 

and 272 K and at pressures from 0.27 to 20 bars. This roughly corresponds to a region, which extends 

approximately between 60oN and 60oS or in somewhat more Martian terms, from the crater of 

Lomonosov, to the north, to the south most parts of Argyre planitia, and to depths from 1 m to 200 m, 

depending on the latitude. This covers at about 87 % of the Martian surface, but the remaining 13 % 

include the polar caps. Clearly, these 13 % are of major importance, since these are the places where 

the most significant water deposits exist and therefore, CO2 hydrate can be searched on the surface of 

Mars. Unfortunately, going down to temperatures as low as 150 K for a long time is a technical 

challenge, which is on its way to find its solution in our labs in the second and the third period of this 

project. 

In the first chapter I put forward a number of questions, which needed to be answered. Here I 

will repeat and try to clarify them in the light of the present results. 

1. How fast do CO2 hydrates form? 

2. What limits their growth? 

3. What controls the hydrate decomposition? Is a catastrophic decomposition likely? 

4. Are the physics behind hydrate formation and decomposition similar? In particular, for 

accumulation in diurnal or seasonal cycles, it is important which of the processes is faster. 

5. Can we describe better the hydrate microstructure, which certainly affects its physical and 

mechanical properties? 

Apparently, the first two questions go hand in hand and once realizing what limits the hydrate 

growth, this will give a clue about the rates of reaction development. The experimental results and 

their analyses in Chapter IV demonstrated the tremendous influence of the ice surface available for 

reaction. But on one hand the large specific surface area provides many more nucleation sites; on the 

other hand this reduces the potential diffusion problems. These problems are in fact very serious, since 

firstly the diffusion law depends strongly on the geometry and secondly there are not too many 

geometries, for which the diffusion equation has practically applicable analytical solutions. The logic 

conclusion is that the larger the SSA is, the closer to the purely reaction limited transformation we 

come. Of course, one should always keep in mind possible transformations undergone by ice at 
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temperatures above 195 K, which may lead to annealing or even to a surface loss due to consolidation 

(at higher temperatures). In Martian terms, the compression caused by the weight of overlaying 

deposits may also lead to consolidation and loss of SSA, if the transformation goes in depth. It is clear 

one has to compromise with the diffusion through the hydrate layer by trying to quantify it as well as 

possible. Obtaining its activation energy will help calculating the diffusion coefficient for any 

temperature. Thus, using the results listed in Chapter IV, for a temperature of 150 K, the extrapolated 

diffusion rate coefficients are 2.68x10-18 m2/s and 8.45x10-18 m2/s after the JMAKGB and the 

multistage model, respectively. Still it is not clear if such extrapolation is justified. As seen from 

Chapter II, § 2, the low-temperature bath used for the long-term in-house experiments could not go 

below 193 K. On the other hand, the limited beam time on D20 did not allow for sufficiently long runs 

below 185 K.  For these reasons, the temperature region between 140 K and 185 K (roughly 

corresponding to the Polar Regions) was not covered. Moreover, the nucleation behavior at these 

temperatures is not clear. It may be that below some temperature the nucleation proceeds on a 

geological time scale. Fortunately, the technical problems seem to have found their solution, given that 

a new cryostat arrived in our labs and this temperature interval will be investigated during the next 

period of this project. Nevertheless, assuming such an extrapolation can be done, one can estimate the 

timescales for hydrate formation on Mars, using the apparatus already discussed in Chapter III, §2. 

Supposing typical Martian Polar Region surface conditions, i.e. temperatures of about 150 K and 

pressures around 6 mbar, it can be calculated that a given volume of ice with a specific surface area of 

around 0.1 m2/g, will be half transformed into CO2 hydrate in approximately 10 000 yr and fully 

transformed – in approximately 90 000 yr, disregarding the initial reaction-controlled part and 

allowing only the diffusion to control the transformation. If this holds it would be unlikely to find 

much hydrate on the surface due to seasonal variations. A similar calculation can be made to see if 

there are places on Mars where CO2 hydrate can be formed in shorter period, e.g. 1 earth year 

(approximately ½ Martian years). This appears possible in regions where the temperature is above 200 

K. Such surface temperatures are relatively common for the areas locked between approximately 27oN 

and 27oS, i.e. south of Curie crater and north of Nirgal Vallis. But according to the remote sensing 

observations, there is almost no water there down to 1 m depth to form the hydrate. Going north (or 

south) from the 27-th parallel, to keep the temperature above 200 K, one needs to go deeper in the 

regolith. At about 70o north or south this temperature is reached as deep as 500 m under the surface. 

These are by far not very optimistic conclusions but nevertheless, it is worth mentioning that they 

should be considered as low estimates, since the starting ice there is expected to have much larger SSA 

(at least on the surface in the Polar Regions). Moreover, the first part of fast transformation, resulting 

in around 10 % formed hydrate, is totally neglected and including it may earn several thousand years. 

The reason not to include the initial fast reaction part was illustrated in Chapter IV. Since at some 

conditions the formation reaction reveals a sigmoid shape and in other cases it does not, this leads to, 
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sometimes peculiar parameters, describing the nucleation-and-growth stage, most likely because of 

frost collection problems in the starting material (see Chapter IV, §1, 1.3.1). The calculations 

demonstrated here are based entirely on the JMAKGB, since, as discussed in Chapter IV, the 

multistage model needs some modifications suggested by the experimental observations, namely 

cutting off the reaction limited stage. 

Concerning the CO2 hydrate decomposition – it seems that at temperatures below 220 K 

diffusion plays a small role. Its influence grows with increasing the temperature, since the mobility of 

the water molecules in the ice becomes high enough to cause the closing of a great deal of the paths 

for easy out gassing, by forming a contiguous shell of ice crystallites, encapsulating the remaining 

hydrate. Thus the diffusion comes to the fore. This appears to lead to the onset of the anomalous 

preservation, which may appear to be of significant importance for the Martian terra-formation 

processes. For instance, if the achieved temperature at a certain depth in the regolith becomes higher 

(see Chapter I) then the one of the ice melting, one would expect catastrophic outflows (if there is ice 

present). If there is CO2 hydrate instead of ice, it may still be stable, thus preventing a catastrophic 

event. Another possibility is that at some place in the regolith, the temperature goes out of the hydrate 

stability field but still stays well below the ice melting point. This will lead to hydrate decomposition 

into ice and gas. The gas will tend to move to the surface, forming some kind of out-gassing feature 

(e.g. Martian spiders in the South Polar Region). Since the ice formed this way has a smaller volume 

then the hydrate, this may lead to the formation of grooves alongside the out-gassing features. 

Obviously, the anomalous preservation effect would be of major importance in such cases. 

Unfortunately, there is no detailed investigation of the anomalous preservation region for the CO2 

hydrate and the results presented here are very intriguing but still preliminary. Long term dissociation 

experiments in the whole temperature region from 140 K to 272 K need to be performed and they are 

also foreseen for the next period of this project. 

The question about the similarity between the physics of the hydrate formation and 

decomposition processes was already addressed several times in the text (see Chapters III and IV). 

Since, both types of reactions are nucleation-and-growth with diffusion involved, the mathematical 

apparatus used in both cases will be, if not the same, at least very similar. A difference due to the 

sample geometry is expected in the implemented diffusion laws. 

The physical properties of the materials are connected to their composition and structure at all 

scales. The CO2 hydrate, with its porous microstructure, is particularly interesting in this context. The 

knowledge of its thermal conductivity may play a major role for a better understanding of the basal 

melting of the Martian polar caps and their rheology. Of course, the microstructure can influence 

significantly the hydrate decomposition kinetics. This may also affect the remote infrared clathrate 

detection, since the different microstructures lead to different reflectivity. Clearly, the porous hydrate 

will have much smaller albedo then a dense one. Image processing software is being developed for 
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fast quantification of the hydrate foam structure. Information on its present status can be found in 

Appendix III. A series of BET measurements of the specific surface area of the CO2 hydrate are to be 

performed in future on the system existing in our labs for such observations to help to estimate its 

connectivity. 

Recently in our department a DTA/TG-DSC analyser with a coupled quadrupol mass 

spectrometer (Netzsch STA 449 Jupiter) was installed. During the second and the third period of the 

project, experiments on CO2 hydrate decomposition with this instrument are to be performed, in order 

to shed further light on the energetics of the reaction. From these experiments are expected detailed 

prescriptions for the detection of CO2 hydrates (possibly occurring in intimate mixtures with 

solid CO2 and water ice) by in-situ analysers of future Mars missions. 

Unfortunately, a definite answer of the question about the existence of CO2 hydrate on Mars 

has not been found yet. The presented experimental results give new clues but also pose new problems 

that need more work to be solved. In any case to achieve this was initially foreseen to be done within a 

six-year-long project and in these terms, this thesis comes as a mile-stone somewhere in the middle of 

the road to a final answer. 
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Appendix I 
 
 

Basic Facts About The Planet Mars 

 
Mass 
 

6,42.1023 kg 
 

Density 
 

3.933 g/cm3 

 
Composition of the atmosphere 
(by volume) 
 

95.32% carbon dioxide                                               0.0 – 0.03% Water vapour 
2.7% nitrogen                                                              2.5 ppm1 neon 
1.6% argon                                                                  0.3 ppm krypton 
0.13% oxygen                                                              0.08 ppm xenon 
0.07% Carbon monoxide                                             0.04 – 0.2 ozone 
0.0 – 0.03% Water vapour 
 

Average air pressure at the 
surface 

6 millibars 
(compared to 1013 millibars on Earth) 
 

Average diameter of Mars 6 794 km 
(about half that of the Earth) 
 

Average distance from the Sun 
 

227 940 000 km (or 1.52 Astronomical Units, i.e. 1.52 times as far as Earth) 
 

Maximum distance from the 
Sun 

249.106 km 

 

Minimum distance from the 
Sun 

207.106 km 

 

Maximum distance from Earth 2.67 a.u. 
 

Minimum distance from Earth 0.37 a.u. 
 

Orbital Parameters 
 

(a) Semimajor axis: 227940000 kms                    (N) Longitudinal Node: 49.56 ° 
(i) Inclination: 1.85 °                                             (W) Ascending Node: 286.50 ° 
(e) Eccentricity: 0.093  
 

Albedo 
 

0.15 
 

Visual Magnitude 
 

-2 

Martian sidereal day 
(i.e., rotation time) 
 

24 h 37 min 23 s 
 

Martian solar day 
(i.e., time between 
two successive noons) 
 

24 h, 39 min 35 s 
 

Martian year 
(i.e., time to orbit the Sun) 
 

669.6 Martian solar days or 686.98 Earth days (i.e., about 1.9 Earth years) 

Length of seasons in northern 
hemisphere 

Spring 199 days = 194 sols                                        Autumn 146 days = 142 sols 
Summer 182 days = 177 sols                                     Winter 160 days = 156 sols 
 

Length of seasons in southern 
hemisphere 

Spring 146 days = 142 sols                                       Autumn 199 days = 194 sols 
Summer 160 days = 156 sols                                    Winter 182 days = 177 sols 

                                                           

 15
1 ppm – parts per million by volume 
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Axis inclination 25.2 o 

 
Speed on heliocentric orbit 24.13 km/s 

 
Compression 1:192 

 
Gravity on surface 3.73 m/s2 

 

Magnetic field A planet-wide magnetic field has not been detected; however, ancient remnant 
fields have been located in certain regions 
 

Global average temperature 
 

218 K (-55 °C) 

Minimum surface temperature: 
 

140 K (-133 °C) (temperature of frozen carbon dioxide on high elevations at the 
winter pole) 
 

Maximum surface 
temperature: 
 

300 K (27 °C) (dark tropical regions in summer) 

Surface area about the same as the land area on Earth 
 

Highest mountain 
 

Olympus Mons - the largest mountain in the Solar System rising 24 km above 
the surrounding plain (21.2 km above the reference level**). Its base is more 
than 500 km in diameter and is rimmed by a cliff 6 km high 
  

Largest canyon 
 

Valles Marineris - a canyon 4 000 km long, up to 5.3 km deep, and up to 20 km 
wide.  
 

Largest impact crater and 
deepest point on Mars 
 

Hellas Planitia - an impact crater in the southern hemisphere up to 7.8 km deep 
and 2 000 km in diameter 
 

Surface bulge: 
 

Tharsis - a huge bulge on the Martian surface that is about 4 000 km across and 
10 km high 
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Appendix III 
 

Data processing apparatus 
In this Appendix are briefly described the methods used for the analyses of the experimental 

results. In the first paragraph is given a description of the full-pattern Rietveld refinement software 

GSAS, including the automatic procedure for processing large numbers of files. At the end, will be 

described the approach for image processing of the SEM pictures I tried to implement. It is far from 

being finished but at least gives one of the two possible directions to go ahead. 

§ 1. GSAS 

1.1. Rietveld refinement – general information  

Fig 1 Constructing the diffraction pattern 
out of the input model information (taken 
from Staykova 2004). 
 

In the late 1960s the necessity of algorithm for 

extracting the structural information for powder samples led to 

the popularization of the Rietveld method (Rietveld 1967, 

1969). The analysis is based on a curve-fitting procedure. The 

input structural model is modified by least squares refinement in 

a way to minimize the differences between the observed and 

calculated profiles. In this sense the Rietveld method is a 

structure refinement method. It needs a good starting model to 

calculate the needed diffraction pattern (Fig. 1) using: (a) lattice 

parameters to calculate the positions of the reflections, (b) 

coordinates and temperature factors of the atoms to determine 

the intensities of the reflections in an asymmetric unit, (c) peak 

profile functions to model the reflections’ profiles and (d) 

background functions to model the background. 

One diffraction pattern can be described numerically by a number of intensity values yi, related 

to a consequence of equal steps i, which can be the scattering angles 2θ, for instance. The least-squares 

refinement minimizes the residual Φy, calculated as follows: 

∑
=

−=Φ
n

i
ciiiy yyw

1

2)(     (AppV.1) 

where , yii yw /1= i and yci are the measured and the calculated intensities at the i-th point, 

respectively; n is the number of data points. 

The result of a successful refinement of the model parameters is that a minimum of the residual 

(IV.1) is reached and the entire calculated pattern is fitted to the measured pattern. There is a number 
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of criteria of a good fit, which help checking its quality. For example 
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R is a weighted profile R-factor, where yi is the intensity at a 

step i, and wi is the related weight factor. The subscripts “o” and “c” denote the observed and the 

calculated values, respectively. The progress of the refinement is shown by the weighted profile R-

factor, Rwp being minimized during the refinement. It is proportional to the residual (IV.1). However, 

the quality of the fit, estimated by R-factors, has to be checked always by plotting the data and the fit. 

The refinement procedure is controlled by criteria of convergence and it continues until the 

changes, made in each refined parameter, become smaller than the uncertainty given by an estimated 

standard deviation, i.e. each parameter stays within its interval of uncertainty. This can be written as: 
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where ∆xj is the change in the parameter xj; σj is the estimated standard deviation of xj; and ε is the 

value determining when the refinement will reach convergence. When the convergence is achieved a 

minimum of the residual (AppV.1) is obtained. Starting from different values of x the refinement 

would lead to different minima of the residual. It is essential to start the refinement at such values of 

the parameters that would make it reach the global minimum. It means the initial model has to 

describe reasonably well the real crystal structure. 

1.2. GSAS  

Larson and von Dreele (1990) developed the program package GSAS (Generalized Structure 

Analysis System) to perform the Rietveld least-squares refinement of diffraction data. GSAS is a 

multitask software, which has versions running under UNIX/LINUX and Windows. It is widely used 

for analyzing powder diffraction data. The kinetic diffraction data of gas hydrate formation and 

decompositions in this work were processed using GSAS, to model the (hkl) reflections, which belong 

to all crystalline phases in the diffracting sample. 

The intensity at every point in a powder diffraction pattern has contributions from nearby 

reflections and background scattering. The reflection contributions are calculated from the structure 

factors and the background is modeled by empirical functions (Larson and von Dreele, 1990). Thus, 

the calculated intensity yc is determined as: 

∑ +=
p

bphphhc yYssy      (AppV.3) 
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where sh is a histogram scale factor, applied to the reflections from all phases in the sample; sph is an 

individual phase scale factor, applied only to the reflections from the p-th phase; Yph is the contributed 

intensity from h-th Bragg reflection of the p-th phase; yb is the background value. 

The contributed intensity Yph from a Bragg peak to particular profile intensity is determined as: 

phphphph KFY )(2 θθφ −=     (AppV.4) 

where Fph is the structure factor for this reflection; )( phθθφ − is the value of its profile peak shape 

function at position θ, displaced from its expected position θph; Kph is the intensity correction factor 

for that reflection. Each scale factor sph is proportional to the number of unit cells of the related phase 

that is presented in the sample. The scale factor can be converted to a weight fraction Wp of a phase in 

a multiphase composition: 

∑
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where mp is the unit cell mass for the phase p, computed from the atom site multiplicities and 

fractions, which are presented in that phase. The weight fractions for multiphase mixtures are 

automatically computed during the least-squares refinement in GSAS (routine GENLES) and are 

given together with their estimated standard deviations in the output ASCII file. 

The input powder data file used in the GSAS program has a header depending on the type of 

the data in it. For standard data types the header is: (‘BANK’, 3I, A, 4F, A) IBANK, NCHAN, 

NREC, BINTYPE, (BCOEF (I), I=1, 4), TYPE where IBANK is a bank number; NCHAN is the 

number of data points in the block of data; NREC is the number of records. The form of header with a 

TYPE of ‘ALT’ shows that the data records include the position of each point in rather unusual units. 

A BINTYPE of ‘RALF’ makes GSAS to use a BCOEF (2) to control the steps between the data 

points within the data block. When Staykova (2004) used for the first time GSAS for her neutron 

diffraction data analysis, she found that some of the GSAS data files had an error in BCOEF (2). It 

had occurred while they had been produced by LAMP out of the raw experimental data. This error did 

not allow the data processing before being corrected. When the value of BCOEF (2) was changed the 

processing of the neutron diffraction data was possible. As it was mentioned before each obtained 

neutron diffraction pattern was analyzed using GSAS. The structural model of the D2O-CO2 hydrate 

phase used in the Rietveld refinement of all neutron diffraction data has been already discussed in 

detail by Klapproth (2002) and Staykova (2004). The atomic positions and the displacement 

parameters of the input models were kept fixed during the refinement of the gas hydrate kinetic data. 

For each data set the lattice constants of the ice and the gas hydrate were kept fixed at values, refined 

from the last recorded diffraction pattern. The background, coming from the incoherent scattering, air 
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scattering, and thermal diffuse scattering was modeled using cosine Fourier series (Larson and Von 

Dreele, 1990) 
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 where Bj were determined by the Rietveld 

refinement background parameters and Q 

was the position, in degrees 2θ, along the 

diffraction profile. This background 

description can be applied in case of a 

slowly changing generally flat background. 

Cosine Fourier series with five parameters 

were used to describe it in the present 

experiments. GSAS modeled the reflection 

profiles, using a profile peak shape 

function, developed by Howard (1982) and 

Thompson at al. (1987) for angle-dispersive 

data.  

An experimental (EXP) file 

containing two phases (ice Ih + CO2 

hydrate) was prepared using one reference 

histogram from the data set. There the 

lattice constants, profile parameters and 

phase fractions of the ice Ih, background 

parameters and the gas hydrate were refined 

on the basis of this reference histogram. 

Once the successful refinement was 

achieved, the lattice constants and the profile parameters were fixed in the EXP file. This file was 

copied to a backup file (BAC) and used as ‘initial’ EXP file (see below). 

Fig. 2. Flowchart of the automatic processing of kinetic data 
 

1.3. Automatic procedure for processing large numbers of data sets  

All collected data sets were analyzed in an automated way with GSAS and the tools available 

in the Linux shell. The flowchart of the algorithm for automatic data processing (script dory.csh) is 

shown on Fig. 2. First the data file heather was corrected (script doro.awk) and copied into a buffer. 

Then the EXP file called the buffer for processing. A GSAS refinement of each diffraction pattern by 

the same ‘initial’ EXP file (script expCO2) was performed. The use of the same EXP file was 

necessary to avoid a crash of the automatic procedure if some of the data files created problems in the 

refinement. After the “GSASing” (by POWPREF and GENLES routines) an output file (LST) of the 
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results of the Rietveld fit came out. Then the name of the refined data was written in the same LST 

file. 

The procedure described above was repeated in a cycle until all data files were processed. The 

results of their refinement were collected in one LST file. Then the values of the gas hydrate and the 

ice weight fractions, corresponding to each refined diffraction pattern, were extracted from the LST 

file by the tools of the Linux shell. The automatically obtained gas hydrate fraction was plotted versus 

time and showed the trend of the hydrate formation. 

 

§ 2. Image Processing 

2.1.The approach 

The image processing is an applied science 

born in the 60-es to restore, extract, understand and 

decode information hidden in digital images. This 

is any operation that acts to improve, correct, 

analyze, or in some way change an image. The 

necessity of such science arouse in the early 60-es 

with the lunar program in NASA and the ranger 

program in NANA1. Its importance increased in the 

late 60-es with the rapid development of the X-ray 

computer tomography (CT), magnetic resonance 

imagery (MRI), positron emission tomography 

(PET) and ultrasound imaging. Nowadays it is 

largely applied in fields like medical diagnostic 

imaging, biological research, materials research, 

remote sensing and Earth resources, space 

exploration and astronomy, defense and 

intelligence, etc. The software developers, 

mathematical logicians and AI (Artificial Intelligence) specialists consider the IP as one of the most 

complicated problems to solve. That’s why potentially very powerful AI methods like PCNN (Pulse 

Coupled Neuron Network) find their application there. Here the artificial neuron networks will not be 

discussed because such were not used at this preliminary stage of the studies. Therefore, the impact 

will be on the more common but not ineffective techniques for IP, implemented here. 

Fig.3 The algorithm 
 

The IP in this work is based on processing bitmap files by noise filtration, thresholding and 

obtaining binary images. The further analysis includes filtration of the binary images, obtaining the 0-th 

                                                 
1 The NANA Region, encompassing 38 000 square miles (or about the size of Indiana), is situated in Northwest Alaska. 
Most of the region is above the Arctic Circle. 
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(area) and 1-st (center of mass) order moments of the explored objects and border extraction. The latter 

is to be used in a Delaunay tessellation procedure. It is supposed to provide a basis for implementing 

further procedures, like building the skeleton for quantifying of the hydrate foam structure. A general 

algorithm of this approach is given on Fig. 3.  

 

2.2.The bitmap format  

 The Windows bitmap (bmp) files are stored in a device-independent bmp (DIB) format 

allowing windows to show them on any type of display. “Device independent” means the bmp 

specifies pixel color in a form independent of the method of displaying. Each bmp file contains file 

header, info header, color table and an array of bytes, defining the bits (Fig. 4). 

The bmp file header contains information about the type, size and layout of a DIB. It is defined 

as BITMAPFILEHEADER structure. 

The bmp info header specifies the dimensions, compression type, 

and color format for the bmp. It is defined as a BITMAPINFOHEADER 

structure. 

The RGBQUAD array structure is a color table, containing as 

many elements as there are colors in the bmp. The color table is not 

present for bmps with 24 color bits, because each pixel there is 

represented by 24-bit RGB values in the actual bmp data area. The colors 

in the table appear in the order of importance. Thus the driver, using the 

biClrImportant member of the BITMAPINFOHEADER can render a bmp 

on a device that cannot display as many colors as there are in the bmp. 

The BITMAPINFO structure is used to show combined bmp 

information (header and color table). The BYTE array contains the bmp bits. It represents the scan-

lines of the bmp. Each scan-line consists of bytes representing the pixels in it in left-to-right order. The 

number of these bytes depends on the color format and on the width of the bmp in pixels. The scan-

lines are stored from the bottom to the top. Thus, the first byte in the array represents the lower-left 

corner pixel and the last – the upper-right one. 

 
Fig. 4 The bitmap file 
 

The biBitCount member of the BITMAPINFOHEADER determines the number of bits 

defining each pixel and the maximum number of colors in the bmp. This member can have one of the 

following values: 

1 - Monochrome bmp – the color table contains two entries. Each bit in the bmp array represents a 

pixel; 

4 - 16 colors bmp. Each pixel in the bmp is represented by a 4-bit index in the color table; 

8 - 256 colors bmp. Each pixel in the bmp is represented by 1 byte index into the color table; 
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24 – 224 colors bmp. The bmiColors (or bmciColors) member is NULL and each 3-byte sequence in 

the bmp array represents the relative intensities of red, green and blue for a pixel, respectively. 

The biClrUsed member of the BITMAPINFOHEADER specifies the number of color indexes 

used in the bmp color table. If biClrUsed is 0, the bmp uses the maximum number of colors, 

corresponding to the value of the biBitCount member. 

2.3.Image histogram, obtaining the binary image and its analysis 

The histogram is a representation of the frequency of each color’s intensity (red, green, blue or 

luminance) in one image. It is a fairly straightforward procedure to make the histogram of every 

image. One needs to count the intensities for every pixel in the image and store them into 256 member 

arrays. With this information one can perform histogram stretching, equalizing etc. Here the histogram 

is used in the production of binary images out of the grayscale SEM hydrate pictures. 

The binary images (BI) are images quantumised to two 

values – typically black and white. The assignment is 

usually 0 for black and 1 or 255 for white. The BIs have 

found many applications since they are the simplest to 

process. At the same time they are such an impoverished 

representation of the image information that their use is not 

always possible. However, they are useful when the 

silhouette of the object provides all the needed information 

and when one can obtain this silhouette easily. Sometimes 

the output of other image processing techniques is 

represented in the form of a BI; for example, the output of 

border detection can be a binary image. BI processing 

techniques can be useful for subsequent processing of these 

output images. BI are typically obtained by thresholding a 

gray level image. Pixels with a gray level above the 

threshold are set to “white”, while the rest are set to 

“black”. This produces a white object on a black 

background or vice versa, depending on the relative gray values of the object and the background. Of 

course, the “negative” of a binary image is also a binary image, where the pixel values have been 

reversed. However, choosing a threshold can be difficult, and is even considered by some authors to 

be a “black art” (Faugeras 1993). If one has a good fortune, the histogram will be bimodal and 

choosing a threshold will be easy. It may even be possible to construct an automatic procedure to 

determine it. Ideally, if one has a black object on a white background the histogram should appear as 

seen on Fig. 5. But there is the noise of the measurement. Then the real histogram is the result of 

 
Fig. 5 Ideal histogram of a light object on a 
dark plain background 

 
Fig. 6 Real histogram with background 
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convolving the “ideal” one with the probability distribution of the noise (see Fig. 6). If the gray levels 

of the object and the background are fairly close, the influence of the noise may result in the object  

only appearing as a “shoulder” in 

the histogram. In this case the 

histogram will be no longer 

bimodal and there will be no trivial 

way of choosing the threshold 

level. Repeated observations and 

averaging may help, but the spread 

of the histogram may be due to 

light or color variations in the 

background and in the object. 

 

 

Fig. 7 The sample image and its 
histogram (Max at Gray scale 132) 
 

What does the histogram give in the particular case of a picture of hydrate foam? From now on 

all the examples will be based on the image given in the next Fig. 7, where its grayscale histogram is 

also shown. Here comes one of the tricky moments in the whole story. Firstly the pictures here are 

considered flat. This means there are no other curvatures except the ones due to the bubbles. The 

second assumption is the electron beam is always perpendicular to the surface. Subsequently, in the 

image a reference line of zero altitude can be defined. Everything below this line is a “valley” and 

everything above is a “mountain”. This reference line corresponds to the histogram maximum. If one 

thresholds this image at luminance 132 (the maximum of this particular histogram) will get the picture 

on Fig. 8. The high level of noise is easily visible but this is something I will deal with later when the 

story goes about the applied filters. This image corresponds to a cut-off view of the structure or to its 

2D projection. The black spots are the bubbles (gas fraction) and the 

white area is the dense fraction. From this image one can easily 

extract the gas fraction in the 2D foam in %. Usually for such highly 

homogeneous structures is assumed that the 2D picture can be 

expanded into the third dimension. At this point, one could start 

thinking everything is finished and there is no need to do anything 

else. But the ultimate goal here is not only to find the gas fraction 

but also to extract the bubble distribution in the foam. This would 

eventually help the subsequent modeling of the heat and noise 

transport through the hydrate foam. 

 
Fig. 8 Result of the thresholding of 
the image at luminance level 132 
 

Usually the aim is to determine various characteristics of the objects in the image with the goal 

of using them to identify the objects, to determine their position and orientation or to follow the 

change in there size. The characteristic function of an object in one image is:  
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),( yxb      
= 0, for background points 

= 1, for points belonging to the object 

 

Lets suppose the object is continuous (it has infinite resolution). Then the area is given by its 0-

th moment:  

∫∫= dxdyyxbS ),(     (AppV.7) 

Its center of mass, ),( yx  is given by the 1-st moments: 
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This is certainly very beautiful but at the same time too complicated because the considered 

objects have smooth boundaries. When one processes pixilated pictures, all the objects consist of large 

numbers of small squares (pixels). This allows for transforming the above equations to something 

much simpler, i.e. 
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where b(xi , yi) is the characteristic function of one single pixel. 

Having the area of the object one can calculate its equivalent average radius, rav: 
2),( av

i
ii ryxbS π== ∑     (AppV.10) 

2.4.Filters and border extraction 

Median filter2 

As it became clear from Fig. 8, a lot of noise appeared after the thresholding. De facto, it had 

not appeared at all. It had been there before. This is mainly a noise from the equipment, essentially due 

to the amortization of the Shotky gun of the FE-SEM and when the lowest possible scan-velocity 

appears to be too high (because of charging). There are five approaches to solve this problem: (1) 

change the diode (the expensive one, which will not necessarily work), (2) filtration of the initial 
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image, (3) filtration of the binary image, (4) both filtrations and (5) all together (even more 

expensive). Here the filtration of the initial image is discussed. The one of the binary image will be 

considered later on. 

Image processing filters are mainly used to suppress either the 

high frequencies in the image (smoothing), or the low ones (enhancing 

or detecting edges). One image can be filtered either in the frequency3 or 

in the spatial domain4. The first involves transforming the image into the 

frequency domain, multiplying it with the frequency filter function and 

re-transforming the result into the spatial domain. The corresponding 

process in the spatial domain is to convolve the input image f(i,j) with 

the filter function h(i,j), i.e.: 

),() jif,(),( jihjig ⊗=

                                                

 

The results of the digital implementations vary, since one has to 

approximate the filter function with a discrete and finite convolution 

kernel, which is a small matrix of numbers used to perform filtering operation on each pixel in one 

image (Fig. 9). Most kernels have 3 rows and 3 columns but there is no size limitation. However, the 

larger the kernel the longer it takes to perform the filtration. The word “kernel” is also commonly used 

as a synonym for “structuring element”, which is a similar object used in mathematical morphology. A 

structuring element differs from a kernel in that it also has a specified origin. 

 
Fig. 9 Convolution kernel for a 
mean filter with 3×3 
neighborhood 
 

The median filtering is a non-linear signal enhancement technique for smoothing signals, 

suppression of impulse noise and preserving the edges. It is used to reduce the noise, somewhat like 

the mean filter. However, it usually does a better job than the 

mean filter in preserving useful details in the image. Like the 

mean filter, the median one considers each pixel in the image 

and looks at its neighbors to decide whether or not it is 

representative of its surroundings. Instead of replacing the 

pixel value with the mean of neighboring pixel values, it 

replaces it with their median. First sorting all the pixel values 

from the surrounding neighborhood into numerical order and 

then replacing the considered pixel with the middle pixel 

value, calculate the median. (If the neighborhood under 

consideration contains an even number of pixels, the average of the two middle pixel values is used). 

Fig. 10 illustrates one example calculation (after http://www.dai.ed.ac.uk/HIPR2/filtops.htm). 

 
Fig. 10 Example calculation of the median. 
The central pixel value of 150 is 
unrepresentative of the surrounding pixels 
and is replaced with the median value: 124. 
A 3×3 square neighborhood is used here. 
Larger neighborhoods will produce more 
severe smoothing. 
 

 
3 The frequency domain is a space where each image value at image position F represents the intensity variation in the 
image over a specific distance related to F. 
4 The spatial domain is the normal image space. In most cases, the Fourier Transform will be used to convert images from 
the spatial domain into the frequency one. 
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The noise reduction technique realized in this work is also known as “Pseudo 

median filtering” - a form of median filtering. For fuller discussion of the 

original algorithm one can refer to Pratt (1991). This algorithm also performs a 

neighborhood inspection on sequences of pixels in horizontal and vertical 

directions. By default a 5 x 5 filter lattice is implemented with horizontal pixels, 

labeled: a, b, c, d, e and vertical ones labeled: f, g, c, h, i (see Fig. 11). This 

sequence is further subdivided into groups of 3 pixels i.e. (a, b, c), (b, c, d), (c, 

d, e), (f, g, c), (g, c, h) and (c, h, i). Two passes over the image are done. In the 

first one the maximum values of 

each subsequence are taken and 

their minimum is gotten. This is 

stored in an array and the second 

pass runs over this array finding the 

minimums of each subsequence. 

Then the maximum of those 

minimums is taken and this gives 

already the filtered image. 

Obviously, this is quite a complex state of affairs. The first pass gets rid of the dark areas of noise and 

the second one – of the bright ones. At the end on Fig. 15 is given the algorithm of the filter, which 

will probably help for a better understanding. On Fig. 12 is 

shown the result of its use. 

 
Fig. 11 The 5 x 5 filter 
mesh used in the 
current work 
 

  
Fig. 12 Comparison between the original noisy image (left) and the result 
of the treatment with the filter (right). 
 

 
Fig. 13 Comparison between the 
histograms of the raw image (upper one) 
and the treated image (bottom). It shows 
the appearance of the false maximum in 
the treated image histogram. 
 

Now let us consider the problems arising from the use of 

this filter. First of all, the use of any filter leads to some loss of 

information besides the noise correction. The losses may be 

loosing contrast, blurring more or less the whole image, blurring 

more or less the edges etc. There are many different types of 

filtering algorithms, which are characterized with different 

degrees of denoising and worsening the image. It is clear when 

choosing an algorithm one must compromise between both 

positive and negative effects. Here I have chosen the pseudo-

median filter because it has the best performance in preserving 

the edges (which are the most important part of the image for 

this work) and at the same time performs very good denoising 

(Fig. 12). Still, when saying that it has “the best performance” it 
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does not mean that information is not lost. Also, in some cases it appears its use leads to a change in 

the histogram of the denoised image. It results in possible shifting the real histogram maximum to the 

right or more to the bright colors, as well as, in its slight asymmetrisation and shrinkage. Sometimes it 

gives significant rise to the color, which corresponds to the maximum of the raw image histogram, 

creating a false maximum there (Fig. 13). This must be kept in mind when thresholding the filtered 

image. In this case the reference level will be represented by the real histogram maximum. Another 

problem is the edge effect. Using this filter, as it is given here, will lead to a frame two pixels wide, 

which will stay denoised. There are two ways to deal with this problem; first to implement another 

filtering procedure for denoising the edges or second – to cut the edges. Here the second one is chosen. 

 

Binary image denoise filter 

As it is visible from Fig. 14-top the binary image obtained as a result of the thresholding the 

raw image with threshold level 132 is quite noisy. To get rid of the noise here I invented the “Binary 

image denoise filter”. It inspects the pixel’s nearby neighbors and decides whether or not to change its 

values to the negative one. It works with the, so called here, single pixel definition (SPD). SPD tells 

the computer what to consider as a single pixel (SP). The most straightforward idea is that a SP is a 

pixel surrounded entirely by pixels of the negative color. But here also the edge effect appears. The 

procedure this time is not to cut the noisy frame but to treat it. The SPD for the corner pixels, assumed 

in this algorithm, defines a SP as one having more then one neighbor of the negative color or this pixel 

will be inverted if two or three of its neighbors are negatively colored. The corresponding definition 

for the filtration of the edges (without the corners) stays that a SP has more then two neighbors of the 

negative colors. Up to here becomes clear the inversion of a corner pixel takes place if more then 33 % 

of the neighbors are colored negatively and for the edge pixels the number is – more then 20 %. 

Already the problem becomes visible. The treatment of the corners and the edges is not equivalent. 

This leads to the question: what SPD to choose for processing the bulk image? I decided to give more 

flexibility and to allow for choosing the number of the neighbors colored negatively, above which, the 

considered pixel is to be treated. One can choose between four possibilities: 0 – SP is the pixel whose 

neighbors are colored negatively; 1 (2 or 3) – SP is the one which has only one (2 or 3) neighbor(s) 

whit the same color. It is clear that by choosing option 2, the considered pixel will be transformed if 

more then 25 % of the neighbors are colored negatively. This seems to be the most appropriate choice. 

Anyway, a program of this type without AI involved cannot decide itself which variant is the best. 

This is still necessary to be done by a human. A comparison between the results of the four different 

ways of treating the image is given on Fig. 14. 

Thus, three different denoising procedures appeared on the horizon: (1) denoising the four 

corners, (2) the four edges and (3) the body of the picture. The third one is done twice (two passes); 
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from the top left corner to the bottom right and from bottom right to top left. A better idea about how 

this algorithm works can be obtained by observing the flowchart on Fig. 16. 

The border extraction is always considered as a very tricky 

business. Different algorithms based on convolution kernels exist. 

But having a binary image the procedure allows for simplification. If 

one has black objects placed on white background or vice-versa, 

every pixel, which has at least one neighbor of the negative color, is 

a border one. The process chosen here is very similar to the one of 

the Binary image denoise filter. Again the nearby pixels are checked 

and if only one of them is negatively colored, the considered pixel is 

classified as a border one. Easily, it may appear that such a border 

encloses a zero area. This would lead to unpredictable triangulation 

results afterwards. One has to think about a procedure for hunting 

and eliminating zero surfaces. 

After obtaining the satisfactory starting binary image and 

extracting its edges, a Delaunay tessellation procedure needs to be 

applied helping to describe the foam structure using either Voronoi 

or Johnson-Mehl structure models. The former assumes that nuclei of 

gas bubbles are randomly distributed with a density specified a 

priori. Nucleation of bubbles occurs at all sites simultaneously and 

all bubbles grow at the same rate. In contrast, the nucleation in a 

Johnson-Mehl model is continuous and follows the Poisson process. 

Here the nuclei of bubbles appear randomly in space and time and 

grow at a constant rate. Furthermore, calculations for the thermal 

transport through the hydrate cellular structure analogical to those 

made for the metal foams (e.g. Lu & Chen 1999) can be performed. 

And to conclude I will say a few words on the possibility for 

extracting real Z information from the SEM pictures. If the light 

source is situated right in the zenith and the detector is at the same 

point then the luminance levels in the image carry direct information 

for the altitudes in it. In the case of SEM, if one succeeds to find a 

surface perpendicular to the electron beam, exactly such geometry is 

established5. Having this information one can make a plot in coordinates (X, Y, Luminance). This 

would look exactly an AFM image with the only disadvantage that a calibration “Color – Real Z” does 

Fig. 14 Results of the filtration of 
the initial binary image choosing 
SPD 0 (top), 1, 2 and 3 (bottom) 
 

                                                 
5 Because of the physics staying behind the detection of all “reflected” by the surface electrons, the position of the detector 
does not play any role. 
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not exist. But if a sample of mica, prepared in a special way, is observed first in the AFM and then in 

the SEM machine such calibration may appear possible (Till Heinrichs private communication). 

Unfortunately, this is not foreseen for the near future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 The 
Binary Image 
Denoise filter 
flowchart 
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Fig. 16 The median filter flowchart 

 

 38



Acknowledgements 
 
 

I am especially grateful to my supervisor Prof. Dr. Werner F. Kuhs for the invaluable 
supervision and help in producing the experimental results for this thesis, as well as for the very 
productive discussions on the theoretical descriptions and model interpretations. His administrative 
support throughout my stay here in Goettingen is not forgotten either. 
 

Doroteya Staykova is gratefully acknowledged for introducing me into the GSAS software, for 
the nice discussions and also for the help upon my arrival in Goettingen. 
 

I would like to thank Viorel Chihaia, Andreas Zeller and Evgeny Goreshnik, for the useful 
discussions and technical support. 
 

I am also thankful to Andrey Salamatin for the discussions on the multistage model. 
 

Thanks to Till Heinrichs (GZG, Abt. Angewandte Geologie) and Kirsten Techmer for teaching 
me in electron microscopy. 
 

I would like to thank Heiner Bartels, Klaus Haepe and Eberhard Hensel for the hardware and 
software support. 
 

I am grateful to Thomas Hansen, Louis Melesi and Jean-Luc Laborier (ILL,Grenoble) for the 
help in performing the experiments on D20 and ILL for the beam time and support. 
 

And not on the last place, I would like to thank all my colleagues from the Institute of 
Crystallography for the incredible working atmosphere. I had really nice time here. 
 

This work was supported by the DFG grant Ku 920/11  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 39



 40

 
 
 
 
 
Lebenslauf  
Name: Georgi Yordanov Genov 

 
Anschrift: Leinestr.1, 37073 Göttingen 

 
Geburtstag: 03.08.1975 

 
Geburtsort: Varna, Bulgaria 

 
Staatsangehörigkeit: Bulgarisch 

 
Schulbildung: 1994 Technische Schule des Maschinenbauwesens und der 

Elektronik, Varna 
 

Hochschulbildung: 1999 Universität Sofia, Physikalische Fakultät 
 Studienrichtung: Physik 
 Abschluß: Diplom-Physiker 
 Thema der Diplomarbeit: Thermodynamic parameterization of 

multihadron production 
 2004 Doktorat am Geowissenschaftlichen Zentrum der 

Universität Göttingen Abt. Kristallographie 
 Thema der Promotion: Physical processes of the CO2 hydrate 

formation and decomposition at conditions relevant to Mars 
 
 
Göttingen, den 04.11.2004 
 



GENOV ET AL.: EXPERIMENTAL STUDIES ON THE FORMATION OF POROUS GAS HYDRATES 1229
American Mineralogist, Volume 89, pages 1228–1239, 2004

0003-004X/04/0809–1228$05.00        1228

INTRODUCTION

Gas clathrate hydrates are non-stoichiometric inclusion 
compounds encaging small, usually apolar guest molecules in 
a host-framework of hydrogen bonded water molecules. They 
exist as a stable solid phase at high gas pressures and/or low 
temperatures (van der Waals and Platteeuw 1959). Two main 
crystallographic structures of gas hydrates, the von Stackelberg 
cubic structures I and II, are distinguished, both consisting of two 
types of cavities, small and large cages, that can be occupied by 
guest molecules (Sloan 1998). It is generally assumed that the 
encaged gas molecules cannot exchange with the environment 
after formation. Rather, the guest molecules have to be built into 
the crystal structure during the growth process according to their 
chemical activity at the reaction site.

Since the 1950s, many gas hydrate systems have been stud-
ied. Still, some physico-chemical properties of gas hydrates 
as well as their formation and decomposition kinetics are 
neither well known nor properly understood, though they are 
of primary importance for several reasons (Sloan 1998). With 
traces of water in gas and oil transport systems hydrate stability 
conditions are met leading eventually to complete blockages of 
pipelines. Likewise, the kinetics of CH4-hydrate formation and 
decomposition is of major significance in geological settings, for 
our understanding of the role of methane gas in climate change, 
for the possible use of natural gas hydrate deposits as a future 

source of energy, or simply for a more economic transport and 
storage of gas. CO2 clathrate hydrates could also be a possible 
way to sequester CO2 into the ocean to reduce global warming 
(Warzinski et al. 2000). They may also play a major role in some 
terra-forming processes on Mars (Cabrol et al. 1997; Komatsu 
et al. 2000; Wilson and Head 2002). In addition, they could 
affect the rheological properties of the polar ice layers at the 
north and south Martian poles (Brightwell et al. 2003; Durham 
1998; Kargel 1998; Kargel and Tanaka 2002; Kreslavsky and 
Head 2002; Milkovich et al. 2002). Moreover, the higher the 
amount of CO2 hydrate in the caps, the longer the period needed 
for establishing a steady-state geothermal gradient in their inner 
parts, which would affect basal melting (Kargel and Tanaka 2002; 
Kreslavsky and Head 2002). Not much is known about the forma-
tion kinetics of CO2 hydrates under Martian conditions, and the 
present work partly intends to establish a solid physico-chemical 
basis for the hypotheses listed above. In this context, the most 
relevant formation process is the reaction of ice Ih with CO2 gas 
to hydrate. A strong dependence of the transformation rates on the 
surface area of the gas-ice contact was demonstrated by Barrer 
and Edge (1967). Later, Hwang et al. (1990) studied methane-
hydrate growth on ice as a heterogeneous interfacial phenomenon 
and measured the clathrate formation rates during ice melting 
at different gas pressures. Sloan and Fleyfel (1991) discussed 
molecular mechanisms of the hydrate-crystal nucleation on ice 
surfaces, emphasizing the role of the quasi-liquid-layer (QLL). 
Takeya et al. (2000) made in situ observations of CO2-hydrate * E-mail: ggenov@gwdg.de
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ABSTRACT 
Gas hydrates grown at gas-ice interfaces were examined by electron microscopy and found to have 

a sub-micrometer porous structure. In situ observations of the formation of porous CH4- and CO2-
hydrates from deuterated ice Ih powders were made at different pressures and temperatures, using 
time-resolved neutron diffraction data from the high-flux D20 diffractometer (ILL, Grenoble) as well 
as in-house gas consumption measurements. The CO2 experiments conducted at low temperatures are 
particularly important for settling the open question of the existence of CO2 hydrates on Mars. We 
found that at similar excess fugacities, the reaction of CO2 was distinctly faster than that of CH4. A 
phenomenological model for the kinetics of the gas hydrate formation from powders of spherical ice 
particles is developed with emphasis on ice-grain fracturing and sample-consolidation effects due to 
the outward growth of gas hydrate. It describes (1) the initial stage of fast crack-filling and hydrate film 
spreading over the ice surface and the two subsequent stages which are limited by (2) the clathration 
reaction at the ice-hydrate interface and/or by (3) the diffusive gas and water transport through the 
hydrate shells surrounding the shrinking ice cores. In the case of CO2-hydrate, the activation energies 
of the ice-surface coating in stage 1 are estimated to be 5.5 kJ/mol at low temperatures and 31.5 kJ/mol 
above 220 K, indicating that water molecule mobility at the ice surface plays a considerable role in 
the clathration reaction. Comparable activation energies of 42.3 and 54.6 kJ/mol are observed in the 
high temperature range for the reaction- and diffusion-limited stages 2 and 3, respectively.
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growth from ice-powder for various thermodynamic conditions 
using laboratory X-ray diffraction. They distinguished the initial 
ice-surface coverage stage and a subsequent stage, which was 
assumed to be controlled by gas and water diffusion through 
the hydrate shells surrounding the ice grains. This process was 
modeled following Hondoh and Uchida (1992) and Salamatin et 
al. (1998) with a single ice particle approximation. The respec-
tive activation energies of the ice-to-hydrate conversion were 
estimated as 0.2 and 0.4 eV (19.2 and 38.3 kJ/mol). The first 
in situ neutron diffraction experiments on kinetics of clathrate 
formation from ice-powders were presented by Henning et al. 
(2000). They studied CO2-hydrate growth on D2O ice Ih, us-
ing the high intensity powder diffractometer HIPD at Argonne 
National Laboratory at temperatures ranging from 230 to 263 K 
and at a gas pressure of approximately 900 psi (6.2 MPa). The 
starting material was crushed and sieved ice with unknown but 
most likely irregular grain shapes. To interpret their results at a 
later stage of the hydrate formation process, the authors applied 
a simplified diffusion model for flat hydrate-layer growth, devel-
oped for the hydration of concrete grains (Berliner et al. 1998; 
Fujii and Kondo 1974), and obtained an activation energy of 6.5 
kcal/mol (27.1 kJ/mol). This work was continued by Wang et al. 
(2002), who studied the kinetics of CH4-hydrate formation on 
deuterated ice particles. A more sophisticated shrinking ice-core 
model (Froment and Bischoff 1990; Levenspiel 1999) reduced to 
the diffusion model of Takeya et al. (2000, 2001) was used to fit 
the measurements. A higher activation energy of 14.7 kcal/mol 
(61.3 kJ/mol) was deduced for methane hydrate growth on ice. 
Based on Mizuno and Hanafusa (1987), the authors suggested 
that the quasi-liquid layer of water molecules at the ice-hydrate 
interface may play a key role in the (diffusive) gas and water 
redistribution although a definite proof could not be given.

One of the recent and most intriguing find is that, at least 
in cases where the guest species are available as excess free 
gas, some gas hydrate crystals grow with a nanometric porous 
microstructure. Using cryo field-emission scanning electron mi-
croscopy (FE-SEM), direct observations of such sub-micrometer 
porous gas hydrates have now been made (Klapproth 2002; Klap-
proth et al. 2003; Kuhs et al. 2000; Staykova et al. 2002, 2003). 
Hwang et al. (1990) reported that the methane hydrates formed 
from ice in their experiments were bulky and contained many 
voids. Rather interestingly, there is evidence that besides dense 
hydrates, some natural gas hydrates from the ocean sea floor also 
exhibit nanometric porosity (Suess et al. 2002). Based on experi-
mental studies (Aya et al. 1992; Sugaya and Mori 1996; Uchida 
and Kawabata 1995) of CO2 and fluorocarbon hydrate growth at 
liquid-liquid interfaces, Mori and Mochizuki (1997) and Mori 
(1998) proposed a porous microstructure for the hydrate layers 
between the two liquid phases and suggested a phenomenological 
capillary permeation model of water transport across the films. 
Although the general physical concepts of this phenomenon in 
different situations may be quite similar, we still do not have 
sufficient data to develop a unified theoretical approach to its 
modeling (Mori 1998). The study presented here is confined to 
the particular thermodynamic conditions of gas hydrate forma-
tion from ice in a single-component gas atmosphere at pressures 
well exceeding the dissociation pressure at constant temperatures 
below the quadruple point.

In accordance with numerous experimental observations 
(Henning et al. 2000; Kuhs et al. 2000; Staykova et al. 2002, 
2003; Stern et al. 1998; Takeya et al. 2000; Uchida et al. 1992, 
1994), a thin gas hydrate film rapidly spreads over the ice surface 
at the initial stage of the ice-to-hydrate conversion. This stage 
of surface coverage was labeled stage I in our previous publica-
tions (Staykova et al. 2002, 2003). Subsequently, the only way to 
maintain the clathration reaction is the transport of gas molecules 
through the intervening hydrate layer to the ice-hydrate interface 
and/or of water molecules from the ice core to the outer hydrate-
gas interface. As mentioned above, diffusion-limited clathrate 
growth was assumed for this second stage as described by Takeya 
et al. (2000), Henning et al. (2000), and Wang et al. (2002) on 
the basis of the shrinking-core models formulated for a single 
ice particle, without taking explicit account of a surface cover-
age stage. However, in the case of porous gas hydrates, gas and 
water mass transport through the hydrate layer becomes much 
easier, and the clathration reaction itself together with the gas and 
water transfer over the phase boundaries may be the rate-limiting 
step(s) that follows the initial coverage. This process should be 
modeled simultaneously with the ice-grain coating (Salamatin 
and Kuhs 2002). We have labeled this reaction-limited stage 
as stage II. Certainly, we can still expect the onset of a diffu-
sion-limited stage (stage III in our nomenclature) of the hydrate 
formation process completely or, at least, partly controlled by 
gas and water diffusion through the hydrate phase, especially 
when a highly consolidated ice-hydrate structure develops with 
thick and dense hydrate shells surrounding ice cores and/or when 
the nanometric porosity is predominantly closed. As a result, 
the hydrate-phase growth and expansion beyond the initial ice-
grain boundaries into the sample voids and the corresponding 
reduction of the specific surface of the hydrate shells exposed 
to the ambient gas can be a principal factor which slows down 
the hydrate formation rates at the later stages of the clathration 
reaction, as predicted by Staykova et al. (2003).

Here, we continue previous studies presented in Salamatin 
and Kuhs (2002) and Staykova et al. (2002, 2003) and attempt 
to quantitatively describe all the subsequent stages of the forma-
tion process of CH4 and CO2 gas hydrates as followed by in situ 
neutron diffraction and gas consumption experiments, starting 
from a well-characterized ice powder of known structure, grain 
size, and specific surface area. While neutron experiments give 
unique access to the fast initial part of the clathration reaction, 
in-house gas consumption experiments are indispensable for the 
much slower later stages of hydrate formation. Together with 
our kinetic diffraction studies, ex situ FE-SEM observations of 
the formation of porous gas hydrates proved to be helpful in 
understanding the initial coating phenomenon and the evolu-
tion of ice-powder structure during the clathration reaction 
and to construct a phenomenological multi-stage model of gas 
hydrate growth from ice powders. In particular, recent SEM 
images clearly show that the clathration reaction often starts 
in cracks of the ice grains formed during the preparation of the 
starting material. Thus, special attention will be paid here to the 
crack-filling sub-stage, which precedes or accompanies coverage 
of the spherical ice grain surfaces. A model for crack-filling is 
presented here for the first time and is applied to fit and interpret 
the experimental data.
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EXPERIMENTAL METHODS AND SAMPLE PREPARATION 

Diffraction instrumentation and gas-consumption technique
Neutron diffraction techniques are well suited to investigate gas hydrate 

formation kinetics as the strong penetration of neutrons allows for the use of 
thick-walled high-pressure gas equipment for cryogenic devices. We performed 
in situ neutron diffraction experiments at various pressures and temperatures with 
CH4 and CO2 gas on the high-intensity 2-axis D20 neutron diffractometer at ILL, 
Grenoble. D20 is a medium to high-resolution diffractometer providing a high flux 
at the sample position. It has 1536 detection cells in a stationary, curved linear 
position sensitive detector (PSD) covering a 2θ range of 153.6°. This makes D20 
an ideal tool for in situ diffraction studies with acquisition times under one second, 
which makes it possible to follow fast changes in the sample. More details about 
the instrument can be found at http://www.ill.fr/YellowBook/D20 and in Convert 
et al. (1998, 2000).

The beam-time allocation of neutron sources is typically limited to a few days. 
Therefore, the reaction kinetics at longer time scales can not usually be investigated 
by in situ neutron diffraction. At lower temperatures in particular, the reaction 
can take several weeks to several months. Therefore, we have also designed and 
employed an in situ technique based on gas consumption during the formation 
reaction. Different arrangements are used for pressures above and below 0.1 MPa 
shown in Figures 1 and 2 respectively. Using a gas pressure cell made of a high-
strength aluminum alloy with a typical volume of 2 cm3 and a low-temperature 
bath, the reaction is followed by recording the drop of gas pressure in the system. 
The pressure in the system is adjusted manually from time to time in order to 
maintain the pressure within typically a few percent fraction of the target pressure. 
As the pressure drop depends on the amount of ice in the pressure cell as well as 
on the free gas volume of the specific arrangement, calibration is necessary at the 
end of each experiment. This is achieved by measuring the ratio of unreacted ice 
Ih to newly formed gas hydrate by means of X-ray powder diffraction. As labora-
tory X-ray sources lack the penetration power to allow for in situ measurements, 
the samples are recovered at liquid nitrogen temperatures and investigated at 80 
K in a custom-made Philips MRD diffractometer equipped with an APD helium 

closed-cycle cryostat. The measured X-ray pattern is then analyzed using a full 
pattern Rietveld refinement technique with GSAS (Larson and von Dreele 1990). 
Occasional checks with samples measured previously by in situ neutron diffraction 
confirmed the reliability of the recovery method.

Sample preparation
Spherical D2O ice Ih grains with a typical diameter of several tens of μm were 

prepared (see Fig. 3a) in our laboratory in Götingen using a spraying technique. 
In order to quantify the morphology of the starting material, a representative part 
of the sample was investigated by FE-SEM. The pictures obtained were used to 
estimate the size distribution of the ice spheres. Measurements on different batches 
showed that the size distribution of ice spheres sprayed with the same nozzle is well 
reproducible and has a lognormal shape. The mean radius has been determined as 27 
μm with a relative standard deviation of 0.8; for the first neutron experiment at 272 
K ice spheres with a larger radius of 38.5 μm were used. The main characteristics 
of the ice samples and gas hydrates are presented in Table 1.

For the neutron diffraction experiments the samples were poured into thin-
walled Al cans and transported in a dry-N2 dewar to ILL/Grenoble. The estimated 
initial macro-porosity of εm0 ≈ 30 35% corresponds to a packing density of about 65 
70% in the Al cans. Two high-strength auto-frettaged aluminum gas pressure cells 
were manufactured in Götingen and adapted to an ILL sample holder. Temperature 
readings were obtained from a calibrated sensor fixed to the pressure cell wall. The 
Al cans were inserted into the pressure cell, already attached to the sample holder, 
and the Bridgman seal was closed. This filling operation was performed with a 
small stream of gas to ensure complete filling of the system. Subsequently, the 
pressure cell was inserted into the cryostat and the temperature was equilibrated at 
the chosen value. The desired gas pressure was applied within a few seconds while 
data collection was initiated. In our experiments, we did not observe an induction 
time except for temperatures below 200 K; reactions at higher temperatures began 
immediately (within the diffractometer time-resolution of a few seconds) after ap-
plication of gas pressures higher than the decomposition pressure.
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FIGURE 1. Schematic drawing of the set up for gas consumption 
measurement (>0.1 MPa)
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FIGURE 2. Schematic drawing of the set up for gas consumption 
measurement (<0.1 MPa)
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FIGURE 3. Field-emission scanning electron images of the starting 
ice-Ih material as well as samples quenched at various stages of the 
CO2-hydrate formation process: (a) initial ice-Ih material, consisting of 
spheres with average diameter of 40–60 μm; (b) CO2 hydrate formation 
on crack surface after 3 h of reaction at 193 K and 0.05 MPa; (c) view of 
a crack and a higher-magnification view into the crack (d) showing the 
crack surface coverage under the same conditions after 8 h of reaction; 
(e) reaction which started in the crack and spread over the grain surface 
(185 K, 0.036 MPa, 21 h); (f) surface coverage on a deuterated ice sphere 
after 52 min of reaction at 3 MPa and 275 K.
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Diffractometer data collection and processing
To observe changes in the diffraction patterns during gas hydrate formation we 

used D20 at its highest intensity setting and a wavelength of λ = 2.414 Å. The reac-
tion of gas (at constant pressure and temperature) with the ice grains was followed 
over a period of typically 10 to 20 h. The data presented here were collected with 
a time resolution of 30 s or 1 min for the initial fast reaction and with a resolution 
of 5 min for the slower later part of the reaction. In this way data of good statisti-
cal precision were obtained, suggesting that even times of several seconds would 
deliver useful information. An efficiency correction and a background subtraction 
were applied to all data. Subsequently, the measurements were analyzed with the 
GSAS Rietveld refinement program (Larson and von Dreele 1990), which gave 
quantitative information on the amount of gas hydrate formed as a function of time 
with an accuracy of about 0.1%. A two-phase (ice Ih + gas hydrate) Rietveld fit 
of the powder diffraction pattern obtained for each time interval was performed. 
Refined parameters were the lattice constants for ice Ih and gas hydrate, the phase 
fractions, and five to six background parameters; the scale factor and absorption 
coefficient were fixed. The atomic positions and displacement parameters for D2O 
ice Ih and CH4- or CO2-hydrate phases were taken from Klapproth (2002) and 
were also kept fixed. The weight fraction of the clathrate phase α (mole fraction 
of ice converted to the gas hydrate) was extracted from the refinement for each 
time interval and was plotted as a function of time.

FE-SEM observations and SSA measurements
We restrict our phenomenological model developed in the theoretical sec-

tion below to previous (Klapproth 2002; Klapproth et al. 2003; Kuhs et al. 2000; 
Staykova et al. 2002, 2003; Suess et al. 2002) as well as recent ex situ FE-SEM 
observations of porous gas hydrates recovered at various stages of the formation 
process. From a few hundred electron micrographs we have selected typical ex-
amples of the early stages of the reaction shown in Figure 3. Additionally, measure-
ments of the specific surface area (SSA) of the starting material and partly reacted 
samples were made (Kuhs et al. 2004) using a BET adsorption method originally 
developed for SSA measurements of snow (Legagneux et al. 2002, 2003) in order to 
check the extent to which the nanometric pores are interconnected. Based on these 
observations in combination with general physical and mechanical concepts, we 
can formulate the following statements: (1) The starting material (ice Ih powder) 
consists of spherical grains several tens of micrometers in diameter (Fig. 3a). The 
arrangement of the ice grains in the sample is close to a random dense packing with 
a packing porosity of about 30–35%. The measured specific ice surface indicates 
minimum contact areas between grains. The typical time scales of the heat and 
mass transfer processes in the ice-powder samples are small (∼5–10 min). The 
temperature in the pressure cell is essentially uniform, and all substances and energy 
are rapidly redistributed within the open space of the sample volume. (2) The initial 
stage of crack-filling and ice-grain surface coverage by a gas hydrate film is clearly 
distinguished from the subsequent stage(s) of growth of the hydrate shell into the 
shrinking isolated ice cores. Different mechanisms are generally involved in the 
coating process, such as preferential and relatively fast filling of cracks in the grains 
(Figs. 3b, 3c, and 3d), formation (nucleation) of hydrate patches on the ice surfaces, 
and lateral spreading of the hydrate film (Figs. 3e and 3f). At lower temperatures 
crack filling generally precedes surface coverage, while at temperatures above 
230 K the surface coverage becomes more rapid and usually overlaps with filling 
of the cracks. Subsequently the porous gas hydrate shell grows and covers the ice 
surface to a large extent, leading to a consolidated sample in which the original 
ice grain structure can still be recognized. The intermediate stage II is thought 
to be limited by the clathration reaction (including gas and water redistribution 
across the phase boundaries) while stage III is assumed to be influenced (or fully 

controlled) by water- and gas-mass transport through the hydrate layers from and 
to the inner parts of the original ice grains, respectively. (3) The SSA measurements 
show increasing SSA, mainly during the surface coverage stage I until it reaches a 
limiting value, which suggests that the porosity is only partly open over a scale of 
a few micrometers. Hence, it is likely that only the initial hydrate film spreading 
over the ice-grain surface retains a high permeability. The time scale of the coating 
process ranges from several hours to several days, depending on thermodynamic 
conditions (see also section 4). As the thicker clathrate layers develop further, 
the pores (at least partly) lose their interconnectivity inside the hydrate at longer 
distances. Therefore, mass transport at the later stages of the clathration reaction 
cannot be achieved via the predominantly closed sub-micrometer pores. Rather, 
it must occur by bulk diffusion. Stages II and III can be observed in the FE-SEM 
only after breaking the consolidated sample to provide some inner surfaces. (4) 
All our FE-SEM pictures show that the hydrate crystallites grown from ice are 
rather small (from a few to some tens of mircometers). Typically, single crystals of 
hydrates have an isotropic, porous structure with a mean pore size on the order of 
several hundred nm for CH4-, Ar-, and N2- (macropores in the generally accepted 
terminology of porous materials), and several tens of nm for CO2-hydrate (meso-
pores in this terminology), although non-porous gas hydrates are also observed in 
our SEM micrographs. There is no obvious dependency of the pore size on either 
pressure and temperature or on the time of reaction. From the SEM photographs, 
the internal meso- to macro-porosity of the hydrate phase is visually estimated as 
10–20%. The diffraction data suggest a good crystallinity of the hydrate crystals, 
indicating a coherent “inward” growth of the hydrate shells without any appreciable 
deformation. This is also confirmed by the FE-SEM pictures, which show that the 
growth process generally does not perturb the initial setting of crystallites. (5) The 
density of water in the crystalline hydrate lattice of both types I and II is noticeably 
less than that of ice. Thus, the excess water molecules must be partly “evacuated” 
from the ice-hydrate contact area to provide additional space for the newly formed 
porous clathrate hydrates. This water (∼20–30%) is transported toward the outer 
hydrate surface where it reacts with the ambient gas, leading to expansion of the 
hydrate layer into the open space between the initial ice grains and to a reduction of 
the pore surface area between them (see Figs. 3c–f). However, specific surface area 
measurements (see above) indicate that the total area of the gas hydrate interface 
does not decrease with time during the initial stage of the reaction. Consequently, 
as also confirmed by SEM micrographs, some of the nanometric porosity in the 
hydrates remains open. The higher the mean size of the ice grains, the less complete 
is the ice-to-hydrate transformation in a given time, presenting further evidence 
that thick hydrate layers gradually lose some of their permeability and/or closure 
of the open voids between the original ice grains occurs. The final consolidated 
stage is clearly born out by the compact nature of the product with irregular shapes 
of the ice-hydrate particles and little open pore space visible in the FE-SEM after 
breaking the sample.

THEORY 

Principal notions
Because a clear molecular picture of the clathrate formation 

process is lacking, the primary goal of our study is the develop-
ment of a phenomenological model for the different, partially 
overlapping stages of the clathration reaction in order to interpret 
the experimental kinetic data. In accordance with recent observa-
tions, ice spheres in the starting material may have cracks (see 
Figs. 3c and 3d) most probably caused by thermal strains which 
arise during ice-powder preparation by means of water droplets 
freezing in liquid nitrogen. Therefore, we continued our previ-
ous work (Salamatin and Kuhs 2002; Staykova et al. 2003) and 
additionally introduced a description for the crack-filling part 
of the initial surface coverage, which appeared in our FE-SEM 
micrographs as the prominent first step of the clathration reac-
tion, especially at lower temperatures. Following Staykova et 
al. (2003), the geometry of the ice-powder structure is described 
in a monosize (or monodisperse) approximation, in terms of the 
mean-volume ice grain (core) radius ri and the specific surface 
area of ice grains (cores) per mole of water molecules Si (with 

TABLE 1. Characteristics of ice samples and gas hydrates
Parameters and denotations Values

Ice samples
Ice density ρi, kmol/m3 51
Typical (mean) grain size ri0, μm 25–40
Relative standard deviation of grain radii 0.8
Specific surface area Si0, m2/mol 1.5–2.1
Average crack opening angle β, rad 0.06
Macro-porosity εm0 0.33
Coordination number Z0 7
Random density slope of particle distribution C 15.5

Gas hydrates
Water density in hydrate phase ρhw, kmol/m3 45
Sub-micrometer porosity of CH4– (CO2–) hydrates εh 0.15 (0.1)
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ri0 and Si0 indicating initial values). The degree of the reaction (the 
mole fraction of ice converted to hydrate phase) α is the principal 
characteristic of the hydrate formation process developed in time t. 
Correspondingly, the total crack-void fraction of ice grains in a 
sample is designated as εf, and the degree of crack-volume-fill-
ing in ice spheres of an initial radius of ri0 is χ. Hereinafter, we 
consider εf to have values of ∼0.01–0.03.

Some of the ice grains in the sample may be connected by 
bonds. Nevertheless, in accordance with our observations, we 
assume that Si0 is equal to the sum of the spherical grain surfaces 
and, by definition,

�
�
�
��
�

�

�
�
�
��

�
������ �

�

�� �
�

��
�
�

�

�
��

�

�

�
�

�

�
� �� �

�

�� �

�

�
��

�
��
� �

�
�

�

�

�
�
�

�

�
�
�

 
(1)

Here ρi is the molar density of ice. The hydrate-phase expan-
sion coefficient E is the proportion of the hydrate volume excess 
with respect to the consumed ice volume 
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expressed via the mole density of water ρhw in hydrate and meso-
porosity εh of the clathrate phase.

In accordance with Equation 1, the problem of modeling 
the gas-hydrate formation (reaction degree α) from monosize-
sphere powders is reduced to a mathematical description of the 
principal parameters ri and χ of a reference grain among densely 
packed identical neighbors with a given crack-volume fraction. 
The monodisperse approximation of the ice-sample structure 
was shown by Staykova et al. (2003) to be quite appropriate for 
the initial period of hydrate formation (α < 0.3–0.4) until the 
volumetric expansion and geometric interaction of the growing 
hydrate shells become principal factors controlling the reaction 
rate. In this case, the extension of the theory to polydispersed 
powders with an experimentally well-established log-normal 
distribution of ice-sphere radii is rather straightforward: ex-
pression 1 for Si should be additionally divided by the factor 
1 + σ0

–2, where –σ0 is the relative standard deviation of the grain 
size. The general model for hydrate formation from polydisperse 
powders of randomly packed ice spheres valid for the later part 
of the reaction will be presented elsewhere.

Ice-core model
Now, we introduce (after Staykova et al. 2003) the rate of the 

ice sphere surface-coating ωS and the rate of subsequent volume 
ice-to-hydrate transformation ωV outside of cracks. The former 
quantity can be defined as the fraction of the open (exposed 
to the ambient gas) ice surface which becomes covered by the 
initial hydrate film (hydrate patches) during a unit time period, 
while the latter is the number of ice moles transformed to hy-
drate phase per unit of time on a unit area of ice surface after 
coating. We also designate as δ0 the thickness of the ice layer 
converted in the coating process relative to the initial hydrate 
film of thickness d0 = δ0(1 + E). Parameter δ0 (and d0) is small 
compared to the mean grain size ri0, whereas the rate of the 
initial hydrate film formation is assumed to be much higher than 
that of the hydrate layer growth on the coated surface (ωS >> 
Si0ωV). Thus, the ice surface area remains practically constant 

(Si ≈ Si0) during stage I.
Consequently, in accordance with Salamatin and Kuhs (2002), 

the radius of the shrinking ice core ri in the sample is governed 
by the following mass balance equation
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or, identically, in monodisperse approximation for Si given by 
Equation 1
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The driving force of the hydrate formation is the supersatura-
tion of the gas-ice-hydrate system, ln(f/fd), expressed via fugaci-
ties f and fd of the gaseous phase and decomposition pressures 
p and pd at a given temperature T. For each stage, this driving 
force determines the clathration kinetics and contributes to the 
different steps in the ice-to-hydrate conversion in proportion to 
their apparent resistances, namely, kS

−1 for the initial hydrate film 
spreading over the ice surface, and kR

−1 and kD
−1 for the clathration 

reaction and gas/water permeation through the hydrate layer, 
respectively.

Hence, we conventionally write
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Depending on the rate-limiting step of the hydrate formation 
process, ωV describes either the rate of the clathration reaction 
(ωR) in stage II (when kD >> kR) or the rate of gas and water 
mass transfer through the hydrate shell (ωD) in stage III (when 
kD << kR). For comparable values of kR and kD in the latter part 
of Equation 3, both steps are important.

The clathration rate constants are assumed to be the Arrhe-
nius-type functions of temperature:
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,   J = S, R, D, (4)

where kJ
* and QJ are the clathration rate constant at the reference 

temperature T* and the activation energy of the J-type step; Rg 
is the gas constant.

Phenomenological Equations 1–4 are considered to be 
a theoretical basis for the detailed analysis of the different 
stages of hydrate formation and interpretation of the neutron 
diffraction data. Actually, each J-th step, explicitly presented 
in the model, may be further divided into a sequence of sub-
steps characterized by their own resistances, the sum of which 
is kJ

−1. Nevertheless, for a fixed temperature kS and kR can still 
be used as tuning parameters, but the permeation rate constant 
kD depends on geometrical characteristics of the hydrate layers 
growing around shrinking ice cores and must be related to ri to 
complete Equations 2 and 3.

Permeation resistance of the hydrate layer
Here we follow the geometrical description of powder-

particle growth developed by Arzt (1982) for a random dense 
packing of monodisperse spheres on the basis of the concept of 
Voronoi cells associated with the initial powder structure. The 
build-up of the starting material is characterized by the average 
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number of contacts per particle (coordination number) Z0 and 
the relative slope C of the random packing density function. 
Experimental estimates for these parameters deduced by Arzt 
(1982) are given in Table 1 and are consistent with the observed 
porosity of our ice-powder samples. 

As shown schematically in Figure 4, the shape of each hydrate 
layer formed from a single spherical ice grain is represented as a 
truncated sphere of radius rh. The ice core shrinks, and its radius 
ri decreases due to inward growth of the hydrate layer. However, 
because of the lesser density of water in the porous hydrate phase, 
the excess water molecules must be transported to the outward 
hydrate surface exposed to the ambient gas, and the hydrate 
layer simultaneously expands into the open space between the 
original ice grains, eventually filling most of the initial open 
space. The existing contact areas between neighboring hydrate 
shells (ice-hydrate particles) increases and additional contacts 
are formed as rh grows. Correspondingly (see Appendix A for 
details), the fraction s of the free hydrate surface area exposed 
to the ambient gas, the specific surface area of the macro-voids 
Sm, and the macro-porosity of the sample εm decrease. Finally, 
the current sample geometry is related to the ice core radius ri 
by means of the hydrate-volume expansion factor E.

The fictitious spherical boundary of radius r in Figure 4 
divides the hydrate shell into two sub-layers 1 and 2: from ri 
to r and from r to rh, respectively. The permeation (diffusion) 
resistance of the spherical sub-layer 1 is known from diffusion 
theory (Crank 1975). To estimate the resistance of the truncated 
sub-layer 2, we assumed (Staykova et al. 2003) that locally the 
mass-transfer process in the layer is similar to diffusion through a 
concave spherical layer of the same thickness with the same total 
areas of bounding surfaces. Finally, we arrived at the following 
relation for the permeation rate constant in Equation 3:
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(5)

Here D is the apparent gas/water mass transfer (permeation) 
coefficient proportional to that introduced in Salamatin et al. 
(1998), and σ is the complex geometrical characteristic of the de-
veloping sample structure expressed via normalized parameters 

R = r/ri0, Ri = ri/ri0, and Rh = rh/ri0. The temperature dependence 
of the permeation coefficient follows Equation. 4 with kD

* corre-
sponding to D* at the reference temperature T* in Equation 5.

If the expansion effect is neglected (E = 0), the hydrate shells 
in the sample remain within the initial ice-grain boundaries, Rh 
and s equal unity, and Equation 5 is reduced to the diffusive 
shrinking-core model for a single particle employed by Takeya 
et al. (2000) and Wang et al. (2002). Actually, in the case of a 
dense packing of the ice-powder, such an approximation might be 
valid only in the very beginning of the hydrate formation process 
when Rh − Ri → 0 in Equations 5 and σ → ∞ (i.e., kD → ∞). 
Consequently, in accordance with Equations 2 and 3, the kinetics 
of the ice-to-hydrate conversion passes, at least initially, through 
stages I and II as controlled by the ice surface coverage process 
and/or by the clathration reaction—and not by diffusion. Thus, 
the simplified models used in Henning et al. (2000), Takeya et 
al. (2000), and Wang et al. (2002) are neither applicable for an 
interpretation of the initial stage of the clathration reaction, nor 
are they valid for the final phase of sample consolidation.

Gas hydrate growth in a crack of an ice grain
The fissures were in SEM images (see Figs. 3c and 3d) of 

the starting material (ice samples), although rather narrow, are 
open and usually penetrate deep into the powder particles. The 
observed process of fast initial hydrate growth in the ice-grain 
cracks, schematically shown in Figure 5, is assumed to develop 
simultaneously with the hydrate film patches spreading over 
the spherical surface of the reference grain as an independent, 
relatively short counterpart (sub-stage) of the initial stage I. To 
calculate the degree of volume-filling χ in a reference ice grain 
of initial radius ri0, we write analogues of Equations 2 and 3 
for hydrate formation on the crack surface (see Appendix B), 
designating all corresponding characteristics by primes. Thus, 
for example, the thickness δ0' of the ice layer converted to the 
initial hydrate film spreading over the crack sides is introduced 
together with the respective rates ωS' and ωR' of the crack surface 
coating and clathration reactions, the latter being related to the 
temperature-dependent rate constants k'S and k'R with activation 
energies Q'S and Q'R. Then, as explained in Appendix B, for the 
mean crack-opening angle β the average height h of the crack-
filling (see Fig. 5) normalized by ri0 can be explicitly expressed 
(at constant ωR') vs. time t:

Gas

Ice
r2

r1

rrh

ri

12

Hydrate

FIGURE 4. Schematic diagram of gas hydrate expansion into the 
voids between the ice spheres during the growth of hydrate shells around 
the shrinking ice cores. In the diffusion model (see text) the permeation 
resistance of the convex sub-layer 2 surrounding the inner spherical 
hydrate layer 1 is assumed to be similar to that of the concave spherical 
layer shown in the insert. See text for further details.

Ice

Ice

r0

A

A

Hydrate

A
Sf

A

�

Fissure

h

FIGURE 5. Schematic diagram of the hydrate formation in an ice-
grain fissure and its A-A cross-section. The ice at the cleavage sides 
Sf is converted to hydrate at constant rate ωR', and the height h linearly 
increases with time. See text for further details.
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until complete filling is reached at h = ri0, i.e., ξ = 1.
The area Sf of each crack side exposed to the ambient gas 

decreases as the hydrate fills the fissure. The volume of hydrate 
growing in the crack is calculated in Appendix B by integration 
of the incremental mean hydrate layers with respect to h, which 
yields the degree of filling term χ in the following form:
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and χ ≡ 1 for ξ > 1.
Although this relationship is derived for a crack penetrating 

to the center of a reference grain, it has a general structure and 
after substitution of Equation 61 can be tuned to any lesser mean 
initial relative depth of cracks by appropriate correction of A' 
and B' (e.g., by β).

Qualitative analysis of the model
Solutions of the general models 1–6 can be obtained only 

numerically, but for fixed pressure and temperature conditions, 
during stages I and II, at least in the beginning of the clathration 
reaction when kD >> kR, quantities ωS and ωV given by Equation 
3 can be considered as constant values (ωV = ωR), and Equation 
2 can be integrated analytically. This yields an analogue of the 
asymptotic solution which was derived at kD → ∞ in Salamatin 
and Kuhs (2002).

ri/ri0 = 1 – A(1 – e–ωst
) – Bt  (7)

where
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Parameter A is the difference of two small terms and, hence, 
its absolute value is expected to be small although the quantity 
itself can be either positive or negative.

Neglecting terms of the order of magnitude of O(εf
2 / E2) 

and combining the latter Equation 7 with Equations 1 and 6, 
one obtains a generalized asymptotic relation for the reaction-
limited kinetics of the hydrate formation process valid for small 
values of α:

�� �� �
� �

� ��
�
�

��
� �� � � � �� ���� �� � � �� . (8)

As noted in Staykova et al. (2003), Equation 8 requires that 
the graph of (1 − α)1/3 vs. time t for the earlier phase of hydrate 
formation during stage II and limited by the clathration reaction 
for t >> ωS

−1 should be a straight line with slope B and intercept 1 
− A − εf / (3E). This also gives us an insight into how the model 
parameters can be constrained by the kinetic measurements. First, 
via Equations 7 and 8, the asymptotic slope B is directly linked 
to the bulk ice-to-hydrate transformation rate and, for a given 
estimate for the grain-surface-coating rate ωS, coefficient A (and, 
hence, δ0) is determined, while ωS can also be somewhat cor-

rected so as to follow back in time the preceding adjacent part of 
the reaction data. Then, the intercept of curve 8 directly delivers 
the crack void fraction εf. Finally, parameters A' and B' (i.e., δ0' 
and ωR' for a given estimate for ωS') in Equations 6 and 8 can be 
adjusted to fit the very beginning of the kinetic curve which is 
mainly affected by the crack-filling process. Due to the difference 
in time scales (ωS' >> ωS), the two sub-stages of the initial stage I 
are well distinguished, especially at low temperatures. The latter 
conclusion was demonstrated in Staykova et al. (2003), where a 
noticeable mismatch between Equation 7 and experimental data 
was observed at the very beginning of the clathration reaction 
(see Fig. 8 in this paper).

In the general case, the rate of the hydrate phase growth ωV in 
Equations 2 and 3 may be significantly influenced or even limited 
by gas and water diffusion through the hydrate layer. Substitution 
of Equation 5 into the last part of Equation 3 yields
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The dimensionless complex F in Equation 9 is the principal 
parameter responsible for the onset of stage III controlled (or 
influenced) by gas/water mass transfer through hydrate shells 
surrounding the shrinking ice cores. As explained above, the 
normalized factor σ changes from infinitely large values in the 
beginning of the clathration reaction to the first order of mag-
nitude in the later phase of the gas hydrate formation. Thus, the 
ice-hydrate system can never pass to stage III at large F, and ωV 
≈ ωR in Equations 3 and 9. For F << 1 stage II becomes extremely 
short and ends up, together with stage I, being directly replaced 
by the diffusion-limited stage III. The intermediate values of F ∼ 
1 correspond to the onset of stage III simultaneously controlled 
by both (reaction and diffusion) steps.

For the hydrate formation process influenced by gas and 
water transport through the hydrate layers, the time behavior 
of the quantity (1 − α)1/3 becomes non-linear. Correspondingly, 
after some time t* in the beginning of the diffusion-limited stage 
III described (for small α) by the simplified diffusion theory 
of Fujii and Kondo (1974), the relative ice-core radius ri/ri0 is 
proportional to (t − t*)1/2. More elaborate models (Salamatin et 
al. 1998; Takeya et al. 2000; Wang et al. 2002) predict even 
higher non-linearity due to the decrease in the ice-core surface Si. 
However, they do not take into account the initial stage I, as well 
as the sample compaction and the reduction of the macro-pore 
surface Sm in the course of the ice-to-hydrate transformation, as 
described by Equation 5. The latter effects additionally suppress 
the gas and water fluxes through the hydrate shells to and from 
the ice cores and slow down the reaction. However, as shown 
by Staykova et al. (2003), the difference between the reaction- 
and diffusion-limited kinetics of hydrate formation becomes 
noticeable only at the final phase of the clathration reaction 
(for α > 0.5–0.6). Before this, the α-curves can be equally well 
approximated by both limiting scenarios. Another peculiarity 
of the diffusion-limited conversion of ice powders to clathrate 
hydrates confirmed by Equations 1–3 and 5 and discussed in 
Staykova et al. (2003) is that the hydrate-growth rate in this case 
is inversely proportional to r2

i0, being in contrast to the first two 
stages with A and B inversely proportional to ri0 in Equations 7 
and 8. Thus, the stages controlled by different rate-limiting steps 
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(clathration reaction or gas/water transport through the hydrate 
shells) can be distinguished from each another. This may also 
help to recognize the formation of porous gas hydrates in the 
analysis of kinetic data.

As mentioned above, at the beginning of the hydrate forma-
tion process (for α < 0.3–0.4) the monosize description of the 
ice-sample structure can be directly extended to polydispersed 
powders with log-normal distribution of ice-sphere radii. The 
necessary correction of Equation 1 for Si presumes that the right-
hand side of Equation 22 and coefficients A', B' and A, B in Equa-
tions 6, 7, and 8 should also be divided by the factor 1 + 

–
σ2

0.

RESULTS AND DISCUSSION

CO2-hydrate formation
Two series of in situ neutron diffraction experiments were 

previously conducted with D2O-ice and a third one with H2O-ice. 
Some of these results, in particular for methane, were presented in 
Staykova et al. (2003) where it was also shown that the deuterated 
and hydrogenated systems were essentially identical. Recently, 
a new series of in situ diffraction experiments with D2O-ice as 
well as in-house measurements of CO2-gas hydrate formation 
have been performed. Here we apply the model developed above 
to continue our study of hydrate formation from ice powders 
with special emphasis on crack filling during the initial stage I 
and CO2-hydrate formation over a broad range of temperatures, 
including those related to Martian conditions (see Table 2).

In neutron-diffraction measurements, the gas hydrate growth 
reveals itself by an increase of the Bragg intensities originating 
from the gas hydrates which starts immediately after the applica-
tion of gas pressure and increases with time while the amount of 
ice Ih decreases. The repeatedly reported induction period (Sloan 
1998) was observed only at temperatures below 200 K and is not 
discussed here. A series of three experiments at 263, 253, and 
230 K was performed with deuterated samples (see Fig. 6a). The 
reactions lasted between 17 and 26 h (see Table 2), resulting in 13 
37% ice-to-hydrate conversion. An experiment performed with 
larger ice grains at 272 K (Fig. 6b) reported by Staykova et al. 
(2003) with a total reaction degree of about 56% was also used 
and is re-analyzed here. Likewise, the methane 230 K data up to 
5%-degree transformation obtained previously (Staykova et al. 
2003) have been re-examined with the improved model and are 
shown in Figure 6c along with the 230 K CO2 data.

Another series of experiments were performed at 223, 203, 
and 193 K using our in-house gas consumption technique (de-
scribed in section 2), also starting with deuterated ice. The reac-

TABLE 2. Conditions of experiments and kinetic parameters of gas hydrate formation
 Conditions of experiments Parameters of diffusion (D) and reaction (kR) limited kinetics

Ice ri0, Gas T, p (f), pd (fd), Time, kS’, kR’, δ0’, kS, kR, D, δ0, εf

 μm  K bar bar h 1/h kmol/m2 h μm 1/h kmol/m2 h m2/h μm 

  CH4 230 60 (46.2) 5.9 (5.8) 11 2 1.2⋅10–5 1.4 1.2⋅10–2 − − 1.6 1.2⋅10–2

    3 (2.9) 1.86 (1.82) 26 20 2⋅10–4 3.7 8⋅10–2 2.6⋅10–6 1.4⋅10–13 1–1.8 1.5⋅10–2

D2O 27 CO2 193 0.5 (0.495) 0.22 (0.219) 126 0.7 7⋅10–5 2.3 2.2⋅10–2 − − 1.9 1.8⋅10–2

   203 0.89 (0.88) 0.433 (0.43) 48 5 2.3⋅10–4 2.3 2.7⋅10–2 − − 1.9 1.8⋅10–2

   223 1.95 (1.9) 1.3 (1.28) 239 1.8 (0.85–1.5)⋅10–4 2.3 3.5⋅10–2 3.7⋅10–7 1.9⋅10–14 1.4 (1.6–1.9) ⋅10–2

   253 10 (9.1) 5.1 (4.9) 22.5 20 4⋅10–4 3.3 0.35 1.4⋅10–5 1.5⋅10–12 2.2–3.4 1.6⋅10–2

   263 10 (9.3) 7.5 (7.1) 17.5 30 8⋅10–4 3.3 0.49 1.9⋅10–5 2⋅10–12 3.5–4.2 2.2⋅10–2

 38.5  272 20 (19.7) 11.4 (11.3) 18 5 4⋅10–5 3.3 0.85 3.5⋅10–5 6.4⋅10–12 4–5.6 (1.6–1.8)⋅10–2
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FIGURE 6. Plots of the data obtained during the neutron diffraction 

experiments, showing the temperature and pressure dependency of the 
growth kinetics: (a) comparison of the growth of CO2 hydrate from 
deuterated ice under different thermodynamic conditions; (b) the most 
complete neutron kinetic experiment of CO2 hydrate formation from 
deuterated ice at 272 K and 2 MPa; (c) comparison of the hydrate 
formation rates of CO2 (0.3 MPa) and CH4 (6 MPa) at 230 K. The light 
gray lines are the model fits.
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tion degree did not exceed 17%. All these experiments covering 
the temperature range from 193 to 272 K were used to obtain the 
tuned model parameters listed in Table 2; examples are shown 
in Figures 6 and 7.

At high temperatures, the reduced (excess) fugacity (f − fd) / 
fd clearly influences the rate of CO2-hydrate formation (see Fig. 
6a and Table 2). During the first 6-7 hours both reactions at 253 
and 263 K run closely together; only at a later stage does the 
reaction at 253 K significantly exceed the one at 263 K. This is 
due to a counterbalancing of the effects of temperature and excess 
fugacity. To reach the same reaction degree of 10%, a time of 
about 1 h is needed at 253 K; this is approximately 15 h at 230 
K and exceeds 24 h at 193 K (compare Figs. 6a and 7). In all ex-
periments the kinetic curve for the initial stage shows a strongly 
non-linear development in time and flattens in later stages while 
keeping a smooth overall shape. Our electron microscopic ob-
servations of the porous hydrate layer during stage I show that 
the coating process preferentially starts in cracks (see Figs. 3b, 
c, and d) with a subsequent spreading over the spherical grain 
surface. This suggests dividing stage I into two sub-stages: stage 
Ia (crack-filling) and stage Ib (surface-coating). The formation 
and spreading of hydrate patches is much slower than the filling 
of the cracks. Even at high temperatures, the ice surface is not 
fully covered with a hydrate shell after several hours, although 
the cracks in grains are completely filled.

Based on these observations the theoretical model described 
in section 3 was used to interpret the gas-consumption and dif-
fraction data. An interactive computer program was developed 
to perform all necessary simulations. A least-squares procedure 
under user control was used to iteratively fit the model to mea-
surements within the framework of the general strategy described 
at the end of section 3. The same approach was successfully 
employed previously in Staykova et al. (2003), and all previous 
simulations showed that certain parts of the kinetic curves were 
selectively sensitive to different groups of tuning parameters. 
Experimental constraints on the coating rate constants kS and kS' in 
Equations 3 and 6 derived from our SEM images in experiments 
interrupted at various temperatures were also taken into account, 
together with the estimate of the average crack opening angle 
β ∼ 0.06. The most complete ice-to-hydrate conversion (up to 
56%) was observed in the CO2-D2O clathration reaction (see Fig. 
6b) at 272 K with a radius of the unreacted ice core shrunk to an 

averaged value of ≈ 29 μm. This makes the latter set especially 
valuable for model validation (Staykova et al. 2003).

The typical time scale (ωS
−1) of stage I (stage Ia + stage Ib) 

is proportional (see Eqs. 3) to the reciprocal value of the ice-
grain coating rate constant kS

−1 which increases from about 1 to 
approximately 12 h as the temperature decreases from 272 to 
230 K (see Table 2). At 193 K it takes about 45 h. In these terms, 
for the thermodynamic driving force ln(f/fd) ∼ 1, the reaction at 
193 K can be interpreted as pure crack-filling during the first 
5–7 h, followed by a transition period and surface-coating until 
approximately 150 h. The reaction curves at high temperatures 
are smoother, making it difficult to easily discern different sub-
stages. This is in agreement with our SEM observations that at 
higher temperatures different stages may develop locally (grain-
wise and even on one grain) with different speed and occur 
partly concomitantly when the whole sample is considered. As 
expected, the overall rates are much faster and complete surface 
coating at 272 K takes only about 6 h. 

In all CO2 experiments presented here the surface-coating 
stage was sufficiently well developed to obtain reliable values 
for the coating rate constant kS. Thus, we are able to extract the 
activation energy QS of this process (see Fig. 8a). Obviously, two 
different regions can be considered, above and below 220–230 
K. For the high temperature region, the value of the activation 
energy is 31.5 kJ/mol while it is 5.5 kJ/mol for the lower range. 
At low temperatures, the formation reactions should be followed 
for several months in order to get a robust result for the reaction 
rate constant kR and/or permeation coefficient D. Such long-term 
experiments have not yet been completed and will be presented 
elsewhere. Nevertheless, at higher temperatures the reactions 
definitely reach stages II and/or III and allow for a reliable model 
interpretation, although, as discussed by Staykova et al. (2003), 
the reaction degree is still too low to distinguish between the 
controlling steps. The values of the reaction rate constant kR and 
permeation coefficient D deduced under the assumption that the 
hydrate formation is either limited by reaction or diffusion are 
given in Table 2. They should be considered as lower estimates 
of these parameters if both steps are equally presented in the 
clathration process. The activation energy of the diffusion-limited 
process obtained for the 223 to 272 K range is 54.6 kJ/mol (Fig. 
8b), while for the reaction-limited process an energy of 42.3 kJ/
mol results from our analysis (Fig. 8c). The inferred permeation 
coefficient of the gas- and water-mass transfer in CO2-hydrate 
formed from deuterated ice-powder is 6.4 × 10−12 m2/h at 272 
K, and is in good agreement with the estimate of about 8 × 10−16 
m2/s (3 × 10−12 m2/h) obtained by Takeya et al. (2000) at 269 K 
for H2O ice. This provides additional evidence that the isotopic 
properties of ice do not significantly affect gas hydrate growth 
and that the observed kinetics are similar. Unfortunately, the 
mean particle size in ice powders used by Henning et al. (2000) 
was not reported and a comparison with their experimental data 
cannot be made.

Concerning the initial crack-filling sub-stage, one can deduce 
from kS' and kR' listed in Table 2 that, in general, this process is 
more rapid at high temperatures, but the surface coverage, being 
several orders of magnitude slower at low temperatures, acceler-
ates to a much higher degree and becomes hardly distinguishable 
from the crack-filling coverage (compare kR' and kR) at the melting 
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FIGURE 7. CO2 hydrate formation reaction at 193 K and 0.5 MPa 
performed by the pVT method (see Fig. 2). The light gray line is the 
model fit.
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point. This is in good agreement with our SEM observations. As 
a consequence, at lower temperatures the crack-filling stage is 
much more easily separated from a subsequent surface-coating 
sub-stage. From the model fits typically several μm are obtained 
for the thickness δ0' of the ice layer converted to the initial hydrate 
film on the crack walls, which compares well with the thickness 
δ0 of the coating layer on the ice grain surface, being entirely 
consistent with the observations from electron microscopy. 

CH4-hydrate growth from ice-powders
These experiments were reported in detail in Staykova et al. 

(2003). The latter paper also presented kinetic data interpreta-

tion, albeit under the assumption that ice grain surface-coating 
was the only process taking place in stage I of the reaction. A 
noticeable discrepancy between the observations and model fits 
at the very beginning of the kinetic curves (Staykova et al. 2003; 
Fig. 8) most likely was due to ignoring the crack-filling phenom-
enon. On the other hand, our SEM studies of methane hydrate 
formation suggest that at high temperatures the filling of cracks 
in ice grains may additionally overlap with particle necking, as 
well as the formation and lateral spreading of hydrate patches 
on the spherical ice grain surfaces. Therefore, in light of our 
low-temperature SEM observations when crack-filling is clearly 
distinguished from the much slower surface coverage, only the 
methane kinetic neutron data at 230 K presented in Figure 6� 
have been reconsidered here. Taking into account a separate 
crack-filling stage improved the fit considerably and modified 
somewhat the remaining parameter set established in our earlier 
work (Staykova et al. 2003). Based on the new theoretical model 
we can see that this experiment was rather short and did not ex-
tend beyond stage I. Reaction and diffusion rates (parameters kR 
and D) were too low to be reliably determined and are not given 
in Table 2. Comparison of these data in Figure 6c with those for 
CO2-hydrate formation at the same temperature of 230 K allows 
us to estimate and compare the ice-grain coating and crack-fill-
ing rates for the CH4- and CO2-clathration reactions. To do this 
one should note that in our case (see Table 2) the excess fugac-
ity (f – fd) / fd for the CH4-hydrate reaction at 230 K was about 
12 times that for CO2. Even at this much higher driving force 
methane reacts two to three times slower than carbon dioxide. 
The actual scales of the crack-filling and coating rates at equal 
thermodynamic conditions are characterized by the respective 
reaction rate constants kS' and kS. At 230 K (see Table 2), they 
are approximately one order of magnitude higher for CO2 than 
for CH4. Thus, the tendency of the clathration reaction on ice 
to be much slower for methane than carbon dioxide at 272 K 
(Staykova et al. 2003) appears to be even more pronounced at 
lower temperatures.
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APPENDIX A. SAMPLE STRUCTURE DESCRIPTION

As suggested by Arzt (1982), in random dense packing with-
out particle rearrangement, the current coordination number Z 
can be expressed as a linear function of the relative hydrate shell 
radius Rh = rh/ri0:

Z = Z0 + C(Rh − 1) (A1)

where the coordination number of the initial ice-powder Z0 ∼ 7, 
and the slope of the random density function C ∼ 15.5.

The normalized volume of a reference ice-hydrate particle 
schematically depicted in Figure 4 is directly related (Arzt 1982) 
to the relative ice-core radius Ri = ri/ri0

�
�

�
�
�
�

�
�
�
��� �

�

��
�
� �� � �

�

��
�
�
� �� �

�

��
�
��� � � �� � �� �

�

�� �  
 (A2)

The fraction s of the free hydrate surface area (in units of 
4πrh

2) exposed to the ambient gas is (Arzt 1982)
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 (A3)

The geometrical model A1–A3 fully describes the sample 
packing development during the ice to hydrate conversion. The 
initial macro-porosity of the ice-powder εm0 is directly linked to 
the packing parameters Z0 and C in Equation A1, the quantity 
(1 − εm0)−1 being equal to the maximum normalized volume of 
the reference ice-hydrate particle, i.e., to the value of the left-
hand side of Equation A2 at s = 0 in Equation A3. Accordingly, 
the current porosity εm and the normalized surface area of the 
macro-pore space are

εm = εm0 − E(1 − εm0)(1 Ri
3),    Sm = sRh

2Si0.

The area of the spherical cap surface of radius rh cut by one 
average contact from the truncated hydrate shell in Figure 4 can 
be calculated in two different ways:

2πrh(rh − r) = 4πrh
2(1–s)/Z 

thus yielding the distance r from the ice core center to an 
average contact plane
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APPENDIX B. GAS HYDRATE FORMATION IN A CRACK

We assume that on average the initial fissure in a reference 
ice grain of radius r0 has the form of a cleft penetrating to the 
sphere center with the angle 2β between its sides Sf (see Fig. 5). 
Most probably due to numerous physical defects, the process of 
gas hydrate formation in the cracks is much faster in comparison 
with the growth of hydrate layers around the shrinking ice cores. 
Nevertheless, SEM observations show that in general the crack-
filling passes through the two analogous stages of (1) hydrate 
film coating the crack surface and (2) reaction-controlled growth 
of the hydrate layer on the two crack sides. Thus, per unit time, 
additional fraction ω'Se–ω'St of the crack surface is covered with 
the initial hydrate film, formed of an ice layer with thickness δ0', 
and on the coated area exposed to the ambient gas, the ice layer 
of ω'R/ρi-thickness transforms to hydrate. In each case, the newly 
formed porous hydrate layer is 1 + E times thicker than the con-
sumed ice. The incremental excess hydrate volume intrudes into 
the cleft from both sides and leads to an increase in the average 
height h of the crack-filling. The above process is governed by 
an equation that copies Equation 22
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and results in Equation 61.
Simultaneously, the cleavage-side area (initially equal to 

πr0
2/2) decreases
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whereas the hydrate volume vf formed in and around the 
crack increases
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The sequential integration of the latter equations with respect 
to h from 0 to h yields
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� , ξ = h/r0.

The total hydrate volume which completely fills the crack 
corresponds to ξ = 1, and the last relation determines the current 
filling degree χ = vf/vf(ξ = 1) given by Equation 62.
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Anomalous preservation is the well-established but little-under-

stood phenomenon of a long-term stability of gas hydrates out-

side their thermodynamic field of stability. It occurs after some

initial decomposition into ice in the temperature range between

240 and 273 K. In situ neutron diffraction experiments reveal that

the low-temperature on-set of this effect coincides with the

annealing of stacking faults of the ice formed initially. The

defective, stacking-faulty ice below 240 K apparently does not

present an appreciable diffusion barrier for gas molecules while

the annealed ordinary ice Ih above this temperature clearly

hinders gas diffusion. This is supported by further experiments

showing that the so-called ice Ic formed from various high-

pressure phases of ice, gas hydrates or amorphous ices does

transform fully to ordinary ice Ih only at temperatures near

240 K, i.e. at distinctly higher temperatures than generally

assumed. In this light, some quite disparate observations on the

transformation process from ice Ic to ice Ih can now be better

understood. The transformation upon heating is a multistep-

process and its details depend on the starting material and the

sample history. This ‘memory’ is finally lost at approximately

240 K for laboratory time-scale experiments.

‘Anomalous preservation’ (sometimes also called ‘self-pre-
servation’) of gas hydrates is a very intriguing phenomenon of
considerable scientific and practical interest. Early observa-
tions of this effect were made independently by Davidson et al.1

and, more detailed, by Yakushev and Istomin.2 These authors
observed an unexpected persistence when gas hydrates were
brought outside their field of stability at temperatures below
the melting point of ice. More recently, Stern et al.3 and
Takeya et al.4 have investigated the temperature dependency
of the effect for the case of methane hydrate and found that
the effect also had a lower limit. According to Stern et al.,3 the
‘anomalous preservation window’ extends from 240 K to
the melting point of ice, while at temperatures below 240 K the
decomposition is rapid and appears to be thermally activated.
Within this window, the decomposition rates vary considerably
by several orders of magnitude in a reproducible way (Fig. 1)
with two minima at around 250 and 268 K. Takeya et al.5

confirmed this effect and suggested a diffusion limitation to
explain the slow decomposition kinetics of gas hydrates within
the anomalous preservation window. A similar, but not iden-
tical behaviour was observed for CO2 hydrate.

6 Still, the deeper
physical origin of ‘anomalous preservation’ remains obscure
and the controlling parameters elusive.7–9 The effect is of
potential economic interest as it would allow for a low-cost
compact and normal-pressure storage of gas in the form of
hydrate by simple cooling to temperatures below 0 1C.10 Here
we report on neutron diffraction experiments on both the
change of crystalline perfection in going from ice Ic to ice Ih

upon heating as well as on the decomposition of gas hydrate,
revealing for the first time the importance of the crystallo-
graphic state and perfection of ice as important ingredients in
understanding anomalous preservation phenomena. To be able
to appreciate this connection we first turn to a discussion of the
solid–solid transition of condensed forms of H2O into ice.
The decomposition of gas hydrates yields apparently normal

ambient pressure hexagonal ice, so-called ice Ih as confirmed by
Takeya et al.4,5 by laboratory X-ray diffraction. It is interesting
to note that at lower temperatures various solid water phases
transform not into ice Ih but into so-called cubic ice, ice Ic. This
form of ambient pressure ice is produced from amorphous
forms of water and from high-pressure ices when they are
heated after a recovery at low temperature and ambient
pressure.11,12 The transformation is ascribed to the on-set of
mobility of Bjerrum defects promoting an ice-like crystal
growth.13 It was noticed early on14 that the diffraction patterns
for ice Ic obtained from different starting materials were
different. These differences were explained by Kuhs et al.15 in
terms of various degrees of stacking faulting for ice Ic from
different origins. The faults were identified as deformation
stacking faults, which in diffraction experiments lead to the
appearance of broad reflections at Bragg angles typical for ice
Ih as well as to high- and/or low-angle shoulders on the Bragg
peaks at genuine ice Ic positions.15 The width of the cubic
reflections was used to estimate the particle size of ice Ic
produced from ice II as 160 Å. Stacking faults in ice Ih and
their creation by rapid temperature changes were also de-
scribed by other authors.16 Some authors have investigated
the transition of ice Ic into the normal hexagonal ice (ice Ih) by
diffraction, which was found to take place over a seemingly
large temperature range starting slowly at 150 K with a rapid
progress of the transformation between 190 and 210 K;17 at

Fig. 1 Decomposition kinetics and extent of ‘anomalous preservation’
regime of methane hydrate (modified after Stern et al.3).
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higher temperatures this work showed apparently pure ice Ih.
18

Differential thermal analysis of the ice Ic–ice Ih transition
revealed the main transition region again at 190–205 K, with
small but detectable events starting at E176 K19 and ending
at E240 K.20 A change of activation energy was observed at
185 K, and the transformation was observed to be complete at
210 K by Sugisaki et al.21 Already an earlier review of the
situation showed a confusing picture22 in which the ice Ic–ice Ih
transition was located at temperatures between 160 and 205 K,
a situation which has not much improved since. The reason for
this variability of ice Ic–ice Ih transition temperatures are not
clear, yet there are indications that in addition to the molecular
arrangement of the parent phase mentioned above, the surface
area of the ice Ic crystallites

23 has a significant influence. Thus
it appeared worthwhile to look in some more detail at the
transformation behaviour of ice Ic into ice Ih in the tempera-
ture range in question with a well-defined starting material.
Diffraction is the most promising tool as it permits insight into
changes of the molecular arrangement not only at long ranges
but also into a number of more local defect structures. More-
over, time-resolved diffraction experiments allow for in situ
studies of this transition and can give access to the transforma-
tion kinetics. Likewise, we have studied the crystallographic
nature of the ice produced in decomposition of gas hydrates at
temperatures below and within the anomalous preservation
window by time-resolved neutron diffraction.

Neutron diffraction techniques were chosen as they allow for
unrestricted work in the complex sample environment of high
pressures at low temperature. Moreover, neutron diffraction is
sensitive to proton arrangements in the various crystal struc-
tures, which could be important for some of the transitions.
The experiments were performed on the high-resolution scan-
ning powder diffractometer D2B (wavelength 1.6 Å) as well as
the high-intensity powder diffractometer D1B and D20
equipped with a linear position sensitive detector (wavelength
2.4 Å) at the High-Flux-Reactor of the Institut Laue-Langevin
in Grenoble, France. The first series of measurements consisted
of studies of the ice Ic–ice Ih transition. The starting material
used was the high-pressure ice V,24 returned to ambient
pressure at liquid nitrogen temperatures. Upon further heating
at ambient pressure the recovered ice transformed into ice Ic at
a temperature of 143 K within 15 h.25 Further temperature
increase led to a gradual transition into ice Ih. The main
structural rearrangements took place at temperatures below
205 K in agreement with a number of previous observa-
tions.18,19,23 Detailed observations were made in the tempera-
ture range between 180 and 265 K. Consequently, for the
experiment performed on D2B the temperature was increased
at a rate of 101 h�1 in steps with a holding time of 30 min after
reaching each target value. During both ramping and holding
the temperature diffraction data were collected with a time
resolution of 15 min. Any crystallographic changes are docu-
mented in the diffraction pattern. Particular attention was
given to the peak intensity and peak shape of the cubic 111
reflection as well as the neighbouring and partly overlapping
hexagonal 100, 002 and 101 reflections. Intensity changes of
these reflections upon heating were observed to take place first
rapidly, then slowing down and coming essentially to a hold.
The time spent at each temperature was chosen to cover the
period in which significant differences between adjacent data
sets could be detected as established from exploratory runs on
D20; with the good counting capability of D20, intensity
changes of 1% were detectable. Fig. 2 shows a typical result
of the detailed analysis of the first complex diffraction peak.
The plot depicts the intensity ratio of the hexagonal 100 and
002 reflection highlighting the persistence of some cubic com-
ponent at temperatures as high as 237 K. Following our earlier
analysis,15 this is interpreted as cubic stacking sequences and
represents the first unequivocal crystallographic evidence
for the persistence of significant two-dimensional defects

at temperatures above 205 K. Only at temperatures close to
240 K these imperfections finally disappear.
Independently, a number of time-resolved neutron diffrac-

tion runs were performed on the high-flux diffractometer D20
at ILL/Grenoble in order to study the decomposition beha-
viour of gas hydrates. Custom-made gas pressure cells were
used which were filled with almost pure gas hydrates formed
from hexagonal ice.26 The samples were equilibrated at given
pressure and temperature conditions. Concomitant with a
pressure release to the designed end pressure, data collection
was started. Complete diffraction patterns were recorded with
a time resolution of 10 s up to 1 min for the initial part of the
reaction and slower acquisition rates of typically 5 min for
the later part of the decomposition process. The complete
sample of typically 1 cm3 was intercepted by the neutron beam.
The analysis of the numerous diffraction data was performed
in an automated fashion using the Rietveld program GSAS27

similar to the approach described for the gas hydrate forma-
tion reactions.26 Between 50 and 300 individual diffractograms
were collected for each decomposition run as a function of
time. Beam-time restrictions limited the duration of each run to
typically less than half a day. Quantitative information on the
progress of the reaction was obtained from the phase fractions
of ice and gas hydrate for each data set. The results are shown
in Fig. 3a and b for CH4- and CO2-hydrate, respectively. In
agreement with earlier observations,3,4 the initial decomposi-
tion was always fast, but slowed down for temperatures above
approximately 240 K in the anomalous preservation regime. A
phenomenological model combining an initial reaction-limited
and a later diffusion-limited process can quantitatively explain
the decomposition. Similar successive processes also take place
during the gas hydrate formation from ice.26,28,29 More inter-
esting in the present context is the detailed nature of the ice
formed below and above the onset of anomalous preservation.
A detailed inspection of the diffraction features of the ice
obtained upon gas hydrate decomposition clearly shows that
imperfect ice Ih is formed. Indeed, there is unequivocal evi-
dence for the existence of stacking faults in the ice Ih crystal-
lites. They are clearly born out in shoulders of the main
hexagonal diffraction peaks as well as in the non-ideal intensity
ratio of the hexagonal 100 and 002 reflections shown in Fig. 4.
Insufficient crystallite statistics or textural effects can be safely
excluded as an explanation of the non-ideal intensity ratios. It
is noteworthy that the non-ideal character of the hexagonal ice
formed is more pronounced at lower temperatures and

Fig. 2 The temperature dependency of the intensity ratio of the
hexagonal 100 and 002 peaks during the transformation ice Ic into
ice Ih. At 237 K the transition proceeds on a laboratory timescale; the
open square is an extrapolated point. The broken lines gives the
intensity ratio of the defect-free structure of ice Ih.
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disappears completely for all data sets in the self-preservation
regime. Moreover, ice formed from CO2- and CH4-hydrate
appears to be different in that the latter shows more pro-
nounced features for deformation stacking faults born out in
the high-angle shoulders of the hexagonal 100 reflection.15

Cryo-scanning electron microscopy (cryo-SEM) was used to
study different stages of the gas hydrate decomposition reac-
tion. The set-up chosen for the decomposition runs was
identical to the one for the in situ diffraction experiments
described above. After a pressure release to the designed end
pressure the decomposition reaction was allowed to proceed
for a given time. Then, partly decomposed samples were
obtained from a rapid recovery to liquid N2 temperatures.
The initial stages of the decomposition are particularly reveal-
ing as individual ice crystallites could be identified in location,
shape and frequency of appearance. Fig. 5 shows some typical
examples. Frequently the gas hydrate phase could be identified
by its sub-micron porous appearance.30 The newly formed ice
crystallites exhibit frequently hexagonal symmetry and some
show kinks on the prismatic faces (see Fig. 5a). These kinks are
atypical for defect-free ice Ih crystals as found e.g. in prismatic
snow crystals31 and appear to be a consequence of the stacking
faults present in the crystallites. As judged from the number
and distribution of ice crystallites the density of nucleation sites
is quite high. Nevertheless, it is clear that a homogeneous
coverage of the gas hydrate surface is not readily achieved at
temperatures below 240 K. Rather, the ice cover is broken up
into individual crystallites with gaps in between (see Fig. 5b)
while at higher temperatures a contiguous coverage is devel-
oped. Clearly, the lower the temperature, the more inhomoge-
neous is the coverage leaving pathways for free diffusion
between individual crystallites.

Combining the observations essentially based on diffraction
data and supported by the SEM appearance, clear evidence is
found that the ice formed upon gas hydrate decomposition at
temperatures below the anomalous preservation window is
defective. It forms small crystallites of a few mm, which do

not combine to larger, more homogeneous assemblies below
240 K. Appreciable annealing of stacking faults and grain
growth of the ice crystallites sets in at temperatures of approxi-
mately 240 K. At the same temperature, the stacking faults
present in hexagonal ice formed from ice Ic finally anneal as
evidenced by the diffraction data. The initial degree of stack-
ing-faulty sequences and the details of the step-wise disappear-
ance of stacking-faults upon temperature increase apparently
depend on the parent phase as well as the speed of transforma-
tion into ice. Remarkable differences in lattice defects were
established earlier on for the various high-pressure ices as
parent phases.14 In a similar way, differences in the degree of
perfection were found for ice produced from decomposing CO2

and CH4 hydrate, with the latter showing more imperfections.
As the water topology of both hydrates is identical (both form
a cubic type I hydrate structure) the difference must arise from
the different transformation kinetics, with the CO2 hydrate
decomposing distinctly slower.
It is intriguing in the present context that a number of

spectroscopic properties of ice Ih show a change in behaviour
near 240 K. The temperature dependency of the NMR spin–
lattice relaxation time T1 for pure ice Ih samples shows a
change of slope32 as does the real part of dielectric permittiv-
ities33 and the temperature dependency of the frequency of the
translational lattice vibrations as observed by Raman spectro-
scopy.33,34 This suggests that intrinsic defects, most probable of
the Bjerrum-type, reach such degrees of mobility and concen-
tration that cooperative displacements of water molecules
became possible on laboratory timescales at temperatures near
240 K. Such phenomena were discussed for the movement of

Fig. 4 Diffraction pattern and Rietveld-fit for various stages of the
decomposition reaction showing the observed intensity data, a model
fit assuming perfect ice Ih, the difference between observed and
calculated profile as well as tick-marks indicating the reflection posi-
tions (top phase ice Ih, bottom phase hydrate). The insert shows the
enlarged portion of the diffraction pattern with the 100 and 002
reflection of ice. Please note the misfit in particular for the 002
reflection at approximately 391 in 2Y highlighting the existence of
stacking fault imperfections in the formed ice. (a) CH4 hydrate at 210 K
and 1 bar after 3.5 h of decomposition (b) CO2 hydrate at 170 K and
6 mbar after 12 h of decomposition.

Fig. 3 Time dependency of the decomposition of gas hydrate into ice
as established by neutron powder diffraction: (a) CH4 hydrate; (b) CO2

hydrate.
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dislocations in ice.35 Similar processes appear also to be
operative for the annealing of stacking faults. The higher
cooperative mobility of water molecules should lead to an
annealing of defective crystallites with a resulting closing of
existing pathways for gas diffusion. This in turn leads to the
on-set of anomalous preservation. At this point, the gas
molecules can only escape by solid-state diffusion, which slows
down the decomposition reaction by orders of magnitude. It
should be noted here that high gas pressures are not mandatory
to stabilize the gas hydrate. What is needed is a chemical
activity of the gas at the hydrate surface which corresponds
to conditions inside the stability field. Correspondingly, we
expect that changes in the microstructure of ice (e.g. a reduc-
tion of grain-boundaries due to Ostwald-ripening processes) is
also at the origin of the complicated anomalous preservation
features at higher temperatures.
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31 F. Dominé, T. Lauzier, A. Cabanes, L. Legagneux, W. F. Kuhs,
K. Techmer and T. Heinrichs, Microsc. Res. Tech., 2003, 62,
33–48.

32 K. Kume, J. Phys. Soc. Jpn., 1960, 15, 1493–1501.
33 T. Matsuoka, S. Mae, H. Fukazawa, S. Fujita and O. Watanabe,

Geophys. Res. Lett., 1998, 25, 1573–1576.
34 H. Fukazawa, D. Suzuki, T. Ikeda and S. Mae, J. Phys. Chem. B,

1997, 101, 6184–6187.
35 J. W. Glen, Phys. Kondens. Mater., 1968, 7, 43–51.

Fig. 5 Cryo-scanning electron microscopic images showing the sur-
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hydrate at 195 K and 6 mbar, (b) CH4 hydrate at 220 K and 1 bar.
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