Dynamical modeling with application to
friction phenomena

Dissertation

zur Erlangung des Doktorgrades
der Mathematisch—Naturwissenschaftlichen Fakultaten
der Georg—August—Universitat zu Gottingen

vorgelegt von

Alexander Hornstein

aus Leninabad

Gottingen 2005



D7

Referent Prof. Dr. Ulrich Parlitz
Korreferent Prof. Dr. Theo Geisel

Tag der miindlichen Priifung: 09.11.2005



Contents

[l__Introduction

[2 Modeling taskd

.1 Static modeling taskd . . . . . . .. o
1.1 Regressionl . . . . . . oo
D12 Classificatiol . . . . . . ..o

2.2 Time processing taskd . . . . . ... ...,

3.1 Static modelind . . . . . . ... ..

B11 _Embedding sted . . . . . . . ...
3.1.2 _Regression step ...

.13 Application of static modeld . . . . . ... ... .. ...
B2 Biasinstaticmodeld . . . ...

B.2.1_Modeling objeotivel .....................

B.2.2 Linearsvstem| . .. ... ... ... ... ... ... .

B.2.3 _Driven logisticmap| . . . . . ... ... ... ...,
B24 NARX svsterd . . . . . ..o

KU1 Preliminaried . . . . . . . . .. ..
K21 Svnchronization manifold and stabilitd . . . . . . . . . .
122 Coupling configurationd . . . . . ... ... .. .....

13
14
14
17
19
20
22
22
24
27
28
31
31



iv CONTENTS

W31 Definitiond . . ... . . . . . 44

432 Definition 1 . . . . . . . .o 46
[4 4 _Using synchronization for modelind . . ... ..., 47

M4l Reliabilitd . . . . ... .. 47

K42 Modeling with Lorenz systemd . . . . . . .. .. ... .. 52

|5 Dvnamical networkd 61
|51 General structure of dvnamical networkd . . . . . . . . ... .. 62

5.3.1  Stability revised . . . . . . ... 73

5.3.2 _Internal and external modd . . . . . .. ... ... ... 78

[5.3.3  Using selection methodd . . . . . . . . .. .. ... ... 87

I5.3.4 Optimization of internal connectiond . . . . . ... ... 90

6 Ty 01 97
I6.1 Friction phenomena and modeld . . . . . . . ... .. .. ... . 98
6.2 Modeling of pre-sliding frictionl . . . . . . . . .. .. 107
6.2.1  Experimental setug . . . . . o oo 108

641  Trackine problemd . . . . . . . . o 122
6.4.2 _Simulation sefud . . .. ... 125
6.4.3  Training . . . . o o e e 126
.44 Testind . . . . . . .. .. 129

............................ 132




CONTENTS v
|A.2.2 Fast Orthogonal SearcH . . . . . . . . . .. .. ...... 145

[A3 Querfittind . . . . ... ... 147
[B_Miscellaneousd 149
B_l_Blasmi_pammﬂtm;esmma.tmﬂ ................... 149






Chapter 1

Introduction

Every day we are confronted with a multitude of new facts that we have to
include in our decision making. Media, like television, radio, or newspapers
inform us about current events from politics and economics. We are provided
with the latest prices from the stock markets as well as the newest results
from sports. In scientific journals we are informed about new research achieve-
ments with myriads of data and facts that support the presented theories. In
magazines we read about the newest software and hardware issues in the field
of computer technology, about new fashion trends, about the latest medical
advices, about the best way to invest money, and so on. To refer to all the dif-
ferent kinds of information in a complete manner would simply be impossible.
Especially with the growing popularity of the Internet in the last decade, one
can say that there is virtually no information that we cannot access.

Since human beings depend on information to plan ahead and decide their
course of action, it seems that we live in heavenly times. With the infinite
pool of facts that can be accessed day and night everybody should be able
to make the best possible decisions. Curiously enough, this is not what is
happening. Instead of using the information to their advantage, people are
often overwhelmed by it. The sheer amount of facts makes it impossible to
filter the important things from the unimportant and to prioritize the results.
It is not a question of whether but of how many important decisions in the
politics, industry, or in private households are made in the wrong way because
vital information could not be found or was simply overlooked.

Clearly, the people need help managing information nowadays, and re-
searchers all over the world are working on solutions. Concepts like 'Data
mining’ and 'Data warehouse’ have become buzzwords in recent years. These
concepts do not try to produce new data but are simply meant to manage the
data that is already there in a meaningful way and to reveal information that
is hidden in the data pool. This is done by searching for common patterns, by
interpolating and extrapolating among data points, and by developing models
that can extract the essential laws behind them. Although the nomenclature



2 Introduction

may vary from decade to decade, the dream behind these concepts is an old
one, namely that of artificial intelligence.

The question of how to draw conclusions from information that is already
in our possession is very interesting and has been bothering researchers for a
very long time. Our brain performs this task every day, sometimes without
us even noticing it consciously. When we see a pedestrian cross the street,
our brain predicts the most likely trajectory that he is going to follow and
we adjust the speed of our vehicle or take evasive action according to it. Our
decision making is influenced by facts like if the pedestrian is paying attention
to the traffic, if he is a child or an elder, if he limps, and so on. Of course
our decision does also depend on our experience, e.g. if we do not know that
elder people usually walk slower, we cannot include this information in our
strategy. The speed, with which the brain processes information from the
world around us and filters it for important data, is simply marvelous and even
modern computers have difficulties in matching it in some fields. Especially
the processing of audio-visual information seems to be the domain in which
the human brain still outperforms computers. However, the limitations of the
brain are also obvious. It is inferior to computers in processing abstract data,
e.g. the computation of the natural logarithm of 423772418 or the counting of
the letter ’a’ in the Bible would pose a very time-consuming problem for most
of the people while it would be a matter of mere seconds for a computer. The
advantages of computers are their superior computational abilities and their
sheer limitless memory capacity.

So on the one hand we have the human brain, which is able to find patterns
very quickly and link different kinds of information but which also is slow in
computing numbers and has a limited capacity. On the other hand we have
computers, which are very fast in mathematical operations and have a loss-
less and virtually infinite memory at their disposal but which lack the ability
to draw meaningful conclusions from their 'knowledge’. The straightforward
solution to the problem of dealing with too much information is to combine
the strengths of both entities to compensate for their individual weaknesses.
At the moment there are two different routes to this goal. One is integrating
artificial computational implants in the human brain, enhancing its memory
capacity and providing superior computational abilities. Although this still
sounds like Science Fiction, research on the interface between neurons and
computer chips is well on its way. The other route is a little bit older and
consists of enabling computers to learn. In this context learning means not
simply the storage of new information but the finding of hidden patterns in
the data as already described above. Without remotely implying something
like consciousness, the second route can be subsumed in the term artificial
intelligence.

Eventually at this point the reader might be wondering how this thesis,
with its title suggesting a work about modeling applications, is related to



the problem of information processing, which was described in such a grand
scope in the previous paragraphs. One part of the answer is simple. On a
much smaller scale the development of prediction models is nothing else but
making sense of provided information, finding patterns in it, and extracting
the common laws by which the data is governed.

The other part of the answer has to do with the different processing strate-
gies of brains and computers. This work was started with a basic question
about the mechanisms behind the human brain: How is it possible that the
brain can store information and use it to draw new conclusions? To our best
knowledge the brain does not store information in some 'memory cells’ whose
state can be permanently set to specific values, like zeros and ones in comput-
ers. Rather, learning takes place by strengthening or weakening connections
between neurons. If the brain is represented by a dynamical system, this means
that a few changes of parameters enable this system to access the information
when stimulated with with a specific external input. So what is the mech-
anism behind it? Although we will not be able to answer this question, the
considerations lead to interesting ideas. We will present two different modeling
strategies. One that employs models with a lossless memory and is similar to
the digital processing strategy of computers. And another that involves models
whose memory is affected by forgetting. Interestingly, the latter is based on the
synchronization phenomenon, an effect that is also hypothetically considered
being the key mechanism of memory access in in the human brain.

In Chapter [ the concept of modeling is specified and discussed in de-
tail. Although modeling can also mean the qualitative description of real phe-
nomena through mathematical models, only the quantitative kind of models,
applicable to tasks like prediction or classification, is considered in this the-
sis. This chapter is intended to make readers familiar with different modeling
scenarios and the corresponding notations. Several kinds of modeling tasks
are described and the important difference between one-step and free-running
predictions is explained.

In Chapter Bl the static modeling concept is introduced. This approach
consists of two steps. In the first one data sequences are transformed into
individual patterns lying in an abstract space. In this way information in
time, i.e. correlations between data points, can be represented as relations
in space. In the second step these relations are tried to be captured by a
static function, which is fitted to the patterns with conventional regression
techniques. Since the patterns formed from the time series can include values
that reach arbitrarily far into the past, the memory of static models is formally
lossless. In the chapter the polynomial NARMAX model serves as an example
of a static model. It is shown that static modeling has certain weaknesses. An
alternative modeling approach is schematically described that can overcome
these weaknesses. This approach is named dynamical modeling. It consists
of a dynamical system that is driven by an external signal and can employ



4 Introduction

its state variables to form a suitable output for the specific modeling task.
The internal states are similar to the patterns in the static modeling approach
but instead of being artificially constructed in a separate processing step they
are an inherent feature of dynamical models. In contrast to static models
dynamical models cannot store values from the past with arbitrary precision.
For reasons of stability they are based on a fading memory.

The dynamical modeling approach is strongly related to synchronization.
Therefore, Chapter @ gives a short review of this phenomenon with its focus
on identical and generalized synchronization. The latter is used as a basis
for developing the concept of reliability, which is a necessary requirement for
dynamical modeling. An example of dynamical modeling is presented in a
network-like model that uses coupled Lorenz systems as its elemental modules.

Network-like models seem to be best suited for applications in dynamical
modeling. Therefore, this type of models is discussed in Chapter Bl from a
broader perspective. After an introduction to notational issues recurrent neu-
ral networks are reviewed in more detail as the most prominent representative
of models with a network structure. It is shown how these models fit into
the concept of dynamical modeling. Leading from that, some ideas for im-
provements to the usual techniques in modeling with recurrent networks are
presented.

In Chapter [@l the static and the dynamical modeling approach are applied
to frictional motion. After introducing the reader to friction phenomena, ex-
amples with simulated and measured friction data are presented. It is shown
that dynamical models seem to be better suited for describing friction phe-
nomena than static models. In a simulated control application the usage of a
dynamical model as controller is demonstrated.

In the last chapter, Chapter [0, the main points of this thesis are summa-
rized and some ideas for future work are presented.



Chapter 2

Modeling tasks

Many different modeling problems have been investigated in the past decades.
Unfortunately, namings and definitions vary from publication to publication,
making it difficult to find a common ground for discussions. In order to clarify
things and to allow the reader an easier access, the definitions and meanings
of the most important concepts are introduced. In analogy to static and dy-
namical modeling approaches it makes sense to explicitly differentiate between
static modeling tasks (Section ZII) and time processing tasks (Section Z2).

2.1 Static modeling tasks

Naturally, the most important characteristic of static modeling tasks is the lack
of reference to concepts like time, sequence, or dynamics. Data are presented
in the most abstract way as separate patterns, which have no natural order
and can be disarranged without influencing the immanent information. Two
of the most important representatives of static modeling tasks are regression
and classification.

2.1.1 Regression

The data patterns for regression tasks are represented as value pairs (x;, y;),
1 =1,...,N, called regressor value x; € R™ and target value y, € R". It
is assumed that there exists the same functional relationship f : R™ — R”
between regressor and target value of every pattern: y, = f(x;),i=1,..., N.
The regression task is to find a function f(-) that approximates f(-) as best as
possible (see Fig. ). With the help of the model function f(-) it is possible
to interpolate or extrapolate the target values y,; for new query points x;,
j=N+1,....N+ K.

Usually, in modeling approaches only the one-dimensional case n = 1 is
regarded, where the target value is a scalar y; € R and a scalar function f(-)
is fitted to the data. However, this is not a serious constraint, as in most



6 Modeling tasks

Ay opatern - f f AX® separating manifold

N

Figure 2.1: Left: In a regression task the goal is to find an approximating function f ()
of the relationship y; = f(@;) based on the information from the patterns. Right: In a
classification task the goal is to find a separating manifold, which separates points of class 1
from points of class 2 in the feature space.

cases the results can be easily extended to the multidimensional case n > 1
by treating every component of the target value separately. Only when there
are strong interdependencies between the components of the target, a special
treatment in the context of multidimensional regression is necessary.

2.1.2 Classification

Similar to regression the classification task operates with value pairs (x;,y,),
1 =1,..., N. However, the target value, which in this context is often called
label, is an element of a discrete finite set: y, € Z = {s1,82,...,8,}. Each
label y, attributes its corresponding point x; € R™ to one of the k different
classes in a unique way. It is assumed that the labeling of a point «; can be
deduced from its m components or features (xl(l), e Z(m)) The classification
task is to find a rule that can correctly predict the label of each point.

For the special case of two classes k = 2 the classification task reduces to
finding a separating manifold M = {x € R™| f(x) = C}, with C € R, in the
features space R™. The manifold M separates the points of the two classes
from each other (see Fig. Zl). The labels s; and ss can be attributed to points

x; according to whether f(x;) > C or f(x;) < C, respectively.

2.2 Time processing tasks

As the name suggests time processing tasks rely heavily on the concept of time.
In contrast to static modeling tasks the data are not represented as separate,
independent patterns but as ordered sequences of data values, also called time
series, or as continuous signals. The reference to time indicates that the source
of the data is usually less abstract than in static modeling tasks. Typically,



2.2 Time processing tasks 7

the data are taken from measurements or knowledge of real (physical) systems.
The values provide information about the state of these systems at concrete
points in time. Thus, time determines the natural order of the data and any
disarrangement results in a change of inherent information.

An interesting topic is the modeling of continuous signals. In contrast to
discrete time series their continuous nature renders a direct application of nu-
merical techniques impossible. However, there are two main approaches to
treat continuous signals. The usual way is to sample the signal in equidistant
time intervals (sampling time) and then to perform a numerical processing
on the sampled time series. An alternative way is the usage of analogue de-
vices. With their help continuous signals can be processed without relying on
discretization as an intermediate step.

Before presenting examples of time processing tasks, a formal remark is
necessary. Throughout the thesis we will use the following notation

{us}4er — discrete: wy, t €1 C Z,
—  continuous: u(t),t€ I CR, (2.1)

with an abstract index set I if we speak about signals or time series. This
shorthand represents an ordered sequence of data points, including both the
discrete and the continuous case, whenever the range of the index t is not
important for the context. For example in the discrete case the index set can
be equal to the set of integers I = Z (infinite), or I = N (right-infinite), or
I ={1,2,...,N} (finite). Similarly, the shorthand in Eq. (1) is used for
continuous signals with the index set from the set of real values, e.g. I = R
(infinite).

In the following sections we limit our attention to the processing of discrete
time series. Important time processing tasks are prediction, cross-prediction,
system identification/simulation, filtering, and dynamical classification.

2.2.1 Prediction

Given a time series {u;}ier = w1, U, . .., u; € R ¢ € I, we assume that future
values are functionally related to values from the past
Uty = .f(uta U1, .. ) P (22)

with f : R x R x ... — R?% The prediction task is to estimate future
values of the time series by exploiting this functional relationship. Here, we
have to differentiate between three different kinds of prediction: the one-step
prediction, the multistep prediction, and the free-running prediction.

For the one-step prediction past values of the original time series w;, u;_1, . . .
are used to estimate some future value usyr

il’t-i—T = g(ut, Ut_1, .. ) s (23)



8 Modeling tasks

U¢ Ut; Ut Ut .
I i
Uit CIt __»—>| model t,
hold T model ——
Sy S—

Figure 2.2: Left: In the one-step prediction the model produces an estimate u; of the
original value u; when provided with a delayed version u;_r of the same signal. (Equivalent
to predicting ustr with us.). Right: In a free-running prediction the model is initialized
with values from the original time series and then decoupled from the data source. The
model’s next estimates u; of the original value u; are based solely on its own previous
predictions ;1.

with g : R? x R? x ... — R? the modeling function and 7" € N the prediction
step (see Fig.lZ2). Note that 'one-step’ does not refer to the value of the
prediction step T'. It means rather that the estimation of u;, 7 is performed
in one step.

In a multistep prediction the same goal of estimating the future value w; r
is pursued in a different way. Instead of predicting w;.r in one long step,
many short step predictions with an intermediate step length A, with 7" =
K - A, K € N, are performed in an iterative way. A schematic of a multistep
predictions for an intermediate step length A =1 is shown in Fig.EZ3 Based
on the values of the original time series a one-step prediction is performed,
yielding the values on the first prediction level. These values are used in the
next step to perform a 2-step prediction, an so on ... The values on the T-th
prediction level represent T-step predictions. That means to predict ;.7 in a
T-step prediction the following values have to be computed iteratively

at+1 - g(ut7 U1, - - ) 9
Upyy = g(’&tH’ Uy, - . ) )

(2.4)
’&HT = g(’&t+T717 'i’/t+T727 .- ) .

For the prediction of the next value u; 7,1 the whole iteration process is
repeated after initializing with the values of the original time series

Upyy = g(ut+17 Uy, - . ) )
Urps = G(Uppo, Wipr,...),
(2.5)
Uiyrr1 = G(Wiyr, Wyr—1,...).

If the model function g(-) is a perfect approximation of f(-), the T-step pre-
dictions on the same level are functionally related to each other, namely by



2.2 Time processing tasks 9

/’—_>... LN

prediction 9/‘* 9,~—-> -
Ievel ‘*m g -—» 9 500
(:J/,,_+ A "»us g " U4 q

Figure 2.3: Schematics of multistep predictions with a prediction step length T'= 1. The
original time series is produced by the function f(-) on the Oth prediction level. The one-
step predictions on the 1st level are produced by the model function g(-) and are based
on the original values. The 2-step predictions on the 2nd level are based on the one-step
predictions, and so on ... Note that multistep predictions on the same level are not related
by any functional relationship. The first value of every prediction level (marked with white
circles) represents a value of free-running predictions.

the function f(-). However, in general, small errors of the model function tend
to destroy this functional relationship for high values of T

Multistep predictions are sometimes superior to one-step predictions, yield-
ing smaller errors. Their advantage is that they rely on short step predictions,
which usually allows for much simpler model functions g(-) as compared to
one-step predictions. A disadvantage of multistep predictions, however, is
that errors tend to accumulate in the iteration process.

The third kind of predictions are free-running predictions (see Fig.EZZ2
and Fig.E23). This approach takes the multistep prediction to its extreme.
Instead of restarting and reinitializing the iterative process for every value
Ui, i1, - - - the iteration is simply continued. Effectively the prediction
step T' is incremented for every estimated value, i.e. while w7 is a T-step
prediction the next value w741 is a T + 1-step prediction (see Fig.2Z3)).

Aside from the initialization, the free-running predictions never refer to val-
ues of the original time series and thus deviations of model predictions cannot
be corrected. This means that prediction errors will stay in tolerable limits
only if the model function g(-) is a good approximation of f(-) H In contrast
to multistep predictions the free-running predictions are always functionally

L If the data source is a chaotic system, the free-running predictions may deviate strongly
from the original time series even when the model function g(-) is a perfect approximation of
f(©). The reason for this is the inherent instability of chaotic trajectories where small devi-
ations grow exponentially in time. As a consequence a low error of free-running predictions
is not suited as a quality criterion for models of chaotic systems.



10 Modeling tasks

v, Vi Vi Vi

Uy Vi L-—.-h dT Ve Vi

——| model |— 0 model [——*
Uy g

Figure 2.4: Left: Pure cross-prediction: Provided with signal w; the model produces
predictions v; of original values v;. Right: Mixed cross-prediction: Provided with signal
u; and a delayed version vy_r the model produces predictions 9; of the original values v
(one-step prediction scheme).

related to each other. However, this relationship is grounded on the model
function g(-) and not on the original function f(-).

2.2.2 Cross-prediction

Cross-prediction is very similar to prediction. Instead of one, we are given two
time series, {u;}e1 and {v;}ier. The task is to estimate the value v; of one
time series with the values u;, u;_1, ... of the other time series

ﬁt = g(ut, U1, .. ) s (26)

with g(-) the model function. Cross-predictions into the future or the past
vy, with T € Z, are subsumed under this case by setting v; = viip, t € 1
and using the shifted signal {¥;}c; instead of {v;}ic;. Alternatively a corre-
sponding time shift can be performed on the other time series {u;}c5. We call
this approach a pure cross-prediction (see Fig.2Z4l). Discrimination between
one-step or multistep predictions is unnecessary as former estimates are not
used for following ones.

Sometimes it is beneficial to consider also past values v;_p, v;_7r_1,... of
the same time series for the estimation of v,

'IAJt :g(’Ut,T,’Ut,Tfl,...,’U,t,ut,h...) . (27)

This alternative approach is a mixture of a simple prediction with a prediction
step T' and a pure cross-prediction. We call it a mized cross-prediction (see
Fig.2Z4l). As described in the section about prediction, we have to discriminate
between a one-step, a multistep, and a free-running prediction.

The cross-prediction task is a very general formulation of a problem, and we
will see that all the following tasks are in fact special cases of cross-prediction.
Even the previously introduced prediction task can be easily described within
this framework.



2.2 Time processing tasks 11

\Y/ \Y/ o
Uq V t t Vi vV V;
U omen] I A
t ‘
3 4» &)
»| model 4Vt> del \A/t L’ Ut \A/t
—e

Figure 2.5: Left: In system identification/simulation the model imitates the input-output
behavior of the system. Provided with the same input time series u; the model produces
estimates ¥; of the original system output v;. Middle: One typical task in filtering is
denoising of corrupted signals. Provided with the noisy signal u; = wv; + €; the model

produces estimates ©; of the clean signal v;. Right: The model in dynamical classification

produces an estimate ¥4 of the label values vy = v,g 2) according to whether the incoming

signal u; origins from data source 1 (u; = ug )) or data source 2 (u; = u§2)).

2.2.3 System identification/simulation

In system identification/simulation the input-output behavior of a system
is characterized by the input time series {u;};c; and the output time series
{v¢}ier. The task is to find a model that can mimic the behavior of the sys-
tem, i.e. provided with the same input time series the model should produce
an output time series {¥;};c1 as similar as possible to the output time series
of the system (see Fig.ZH). It is easy to see that this task fits well into the
framework of cross-prediction.

2.2.4 Filtering

Filtering always aims at modifying and transforming signals. In the filtering
task the model represents a filter with the purpose of transforming an incoming
time series {u; }er into a desired form {v;}er.

A typical problem is the denoising of corrupted time series. Assume a
time series {s;}er is transferred through a noisy channel that adds random
distortions e; to it §; = s; + ;. The filtering task is to create a model that
can reproduce the clean signal {s;};c; when provided with the noisy one. By
setting v; = s; and w; = 8, t € I, the problem can be reformulated as a
cross-prediction task (see Fig.2.H).

2.2.5 Dynamical classification

In static classification tasks, data patterns (x;, y;) comprise points x; and labels
y;- The points belong to a finite number of classes, and each label marks the
affiliation of its corresponding point to one class in a umque way. Similarly,
in dynamical classification tasks there are signals {ut hern, 7 €41,2,...,J},
belonging to a finite number of different data sources. Each one of these



12 Modeling tasks

source signals is accompanied by a label signal {vﬁj )}teﬂ attributing it to one
specific data source. Typically, the label signals are constant in time vﬁj ) = Cj,
and their value is an element from a finite discrete set C; € {s1,...,s;}.
The modeling task is to create a model that can reproduce the label signal
{vt(j )}teﬂ for each corresponding source signal {ugj )}teﬂ (see Fig.ZH). Again,
the connection to cross-prediction is obvious.

An example for dynamical classification is a monitoring device recording
and interpreting a time series {u;}4cr from a system. The system can transit
between a fully functional state and a barely functional state, thereby chang-
ing the characteristics of signal {u;}+er. The change is formally equivalent to
switching the data source of the recorded signal and can be detected by dy-
namical classification. A possible scenario: If the system if fully functional,
the recorded signal is {u;}ier = {ugl)}teﬂ and the label function v{" = +1,
t € 1, is signaling a valid system state. When a problem occurs, the signal
change {w;}ier = {uil)}ten — {u e = {uiQ)}tE]I produces a new label func-
tion UF) = —1, t € [, signaling a failure. Catching this signal, the monitoring
device can set off an alarm or initiate countermeasures.



Chapter 3

Static and dynamical modeling

In this chapter the reader is introduced to the concepts of static modeling
and dynamical modeling. The first section (Section Bl) starts with the static
modeling approach. Compared to dynamical modeling it is still the favored
approach in the fields of science and engineering. Most of the modern mod-
eling procedures are based upon static modeling because it allows the usage
of sophisticated regression tools on time processing tasks. The main idea of
this approach is to encode time information in static data patterns, thus fa-
cilitating the application of memoryless model functions. The advantage of
these functions is that they can be adapted to the data patterns by common
regression techniques.

One common type of static models are the so called NARMAX models,
which are a nonlinear extension of the well known linear ARMAX modeld]. For
the concrete case of NARMAX models concepts and shortcomings of the static
modeling approach are demonstrated. A subtle problem, which nevertheless
can considerably degrade the model performance, occurs for static models if
the data are noisy. In this case the structure selection and the parameter
estimation in the modeling procedure systematically produce wrong results,
a phenomenon referred to as biased estimation. This problem is described in
detail in the second section (Section BZ).

The weaknesses of the static modeling approach lead directly to the formu-
lation of an alternative method in Section B3l namely the dynamical modeling
approach. In contrast to static modeling the dynamical modeling approach em-
ploys models with memory. Despite their greater complexity these models are
predestined for time processing tasks because of their internal dynamics. They
handle sequential data without relying on an extra encoding step. However,
this advantage is also their greatest handicap. Unlike static modeling the
dynamic modeling approach has not the mathematical backup of the static
regression machinery. Nevertheless, in recent years new concepts and tools,
designed for dynamical problems, have been developed that make dynamical

! Nonlinear AutoRegressive Moving Average with eXegeneous input



14 Static and dynamical modeling

AV .

t B Lo N Y
\ meedding o ce * regression

t X

Figure 3.1: Embedding step and regression step in a static modeling approach. In the first
step sequential data is transformed into static data patterns. In the second step a function
is fitted to the patterns.

modeling attractive for applications.

3.1 Static modeling

The main idea of static modeling is to reduce time processing tasks to static
regression tasks and thus to facilitate the application of the many well devel-
oped regression tools. For this purpose static modeling comprises two separate
steps. In the first step, which we call embedding step, time information in se-
quential data is encoded in regression patterns (see Fig.BIl). In the second
step, called the regression step, a static model function is fitted to these pat-
terns. This devision into two distinct processing steps is characteristic for the
static modeling approach.

Not associated with the modeling procedure but also very characteristic
for static models is the way in which they are applied. Since these models are
memoryless functions, which operate on patterns, their application has to be
preceded by a preprocessing step, in which the sequential data is translated in
an appropriate way.

3.1.1 Embedding step

During the embedding step, data sequences are transformed into data patterns.
For a demonstrative example assume that a finite scalar time series {u;}eq =
Uy, ..., un,I=41,2,..., N}, is given and that every value u; € R is produced
deterministically by

wp = fUp_1, U9,y Ug—q) (3.1)

with an arbitrary function f : RY — R and involving d € N past values of the
same time series from the past. Further, we assume the time processing task
to be a one-step prediction into the future. Although this task is dynamical,
it can be reformulated as a static regression task. For this purpose the data
series is reordered during the embedding step, thereby creating data patterns



3.1 Static modeling 15

time sgrfig;t 77777777777777777777777777777
O OROR0ROa0R020, OO OROROs0On0On0
' regressor . target ‘ regressor target
g g trt S : g g
next ste Y 4
I:_l 5 () pattern 3

®-G-@® ‘® patem? ®
OO0 @ OO0 @

Figure 3.2: The embedding procedure: Step for step a sliding time window selects regres-
sors and corresponding targets from the time series.

(¢, y;) with the regressor @, and the target value y;. The targets are simply
set equal to the current value of the time series,

Y = Uy, t:1,2,...,N, (32)
and the regressors are chosen as vectors in the d-dimensional embedding space,
wt:(utflaut727"'7utfd)7 t= 1727"'7N7 (33>

filled with previous values corresponding to the target (see Fig.B2). The data
patterns (x;,y;), which are generated during the embedding step, are used
in the next step for fitting a static regression function g, = g(x;). In this
regression step the data patterns are treated as being independent and having
no natural order. That means a reordering of the patterns has no influence
on the outcome of the regression procedure. All time information is encoded
within the patterns.

The regressors are effectively windows sliding over the time series. Since
they have to be filled with data values, there is a problem at the beginning of
the time series. Concretely, the first d regressors, @1, ..., x4, cannot be fully
filled because, according to Eq. (B3), they rely on the values ug, u_1,u_o,.. .,
which are unknown. There are two ways of dealing with this problem. The
first one is to drop the first d patterns and using t = d + 1 as the first possible
indexl. The second one is called zero-padding and consists in setting the
unknown values equal to zero. Both variants have their merits, the first one
being more accurate the second one being more economical with the data. The
reader should keep in mind, though, that embedding in general goes along

2 In this case it would be mathematically more thorough to introduce an extra index
t' =t — d for the patterns with the range ¢’ € [1,...,N — d]. However, such an explicit
distinction is more confusing than helpful and will be avoided where the meaning should be
clear from the context.



16 Static and dynamical modeling

with a decrease in the number of data points or a distortion of data by the
introduction of auxiliary patterns. Problems can arise if the time series is
very short and there are long-term dependencies. However, in such a case the
usage of high dimensional regressors is not advisable anyway, because then the
embedding space is too sparsely filled for any reasonable modeling procedure.

In many ways the above example is a simplification of the situation one
usually encounters in time processing tasks. It might invoke the false notion
that the embedding step is a small formality which can be dealt with in passing.
However, this is not the case. The embedding step is very important for the
the modeling procedure. The values of many parameters are chosen during
this stage, and the success of the following regression step depends heavily on
this choice.

For example, the embedding dimension d of the regressor is almost never
known a priori and has to be defined in an appropriate way. Choosing a low
value, one risks to loose important information from the past. Choosing a
high value often introduces redundancy and wastes computational resources.
Another important question is: which past elements should be chosen as com-
ponents for the regressor? For finely sampled signals from continuous systems
it often makes no sense to include consecutive values because the informational
gain is very small. Typically, a time delay, 7 € N, is introduced to sparsely
choose values from the past

Ty = (Ut—n Ut—27y - - - 7ut—d7') . (3-4)

However, equidistant values in time may not be optimal for some problems.
By allowing individual delays, 7; € N, 7 =1, ..., d, components can be selected
from arbitrary times in the past

Ly = (Ut_TI,Ut_7-2, Ce 7ut—7'd) . (35)

The optimization of these parameters is not trivial as the number of combina-
tions increases dramatically with the embedding dimension.

Vector valued time series, {w;}ier, up, € R™, 1T = {1,..., N}, are treated
in analogy to scalar time series. However, now all dimensions have to be
considered in the regressor

y )@ m
T, = (ug_)l, ug_)Q, . ,uijd, ug_)l, . ,ugfc)l) : (3.6)

Again, individual time delays can be introduced if necessary, making the opti-
mization of parameters arbitrarily complicated. Similarly, past values of other
time series, {v;}er, €.g. for cross-predictions, can be incorporated into the re-
gressor. All these measures lead effectively to higher embedding dimensions
and increase modeling complexity and computational costs.



3.1 Static modeling 17

3.1.2 Regression step

During the regression step a model function
gt:g(mt|w17"'awM)7 (37)

is fitted to the patterns (x;, ), t = 1,..., N, that were produced in the em-
bedding step. Typically, the model depends on a finite number of parameters
w;, 1 =1,..., M, which have to be adapted to the data. The functional rela-
tionship between the regressors «; and the targets y; is in general nonlinear.
Therefore, the model function ¢(-) has to include nonlinearities in some way,
and techniques from nonlinear regression have to be applied. The specific pro-
cedure can be chosen from many possible approaches like NARMAX models,
Support Vector models, Neural Networks, local models, and so on [49,30].

NARMAX models

A relatively simple approach are additive NARMAX models, which are a non-
linear extension of the well known, linear ARMAX models [I7,3]. The model
function is formulated as a linear superposition of nonlinear basis functions

g(xe|wy, ... wy) = Zwigi<wt) . (3.8)

The advantage of this approach is twofold. On the one hand, the nonlinearity of
the model function is controllable by the number M and the type of the basis
functions. On the other hand, the parameters w; in Eq. (BS) enter linearly
into the model, making an estimate in the scope of a least squares fitting very
simple.

The usage of basis functions can be interpreted as a nonlinear transforma-
tion of the regressors x; € R™ from the linear into the nonlinear feature space
(see Fig.B3). In the nonlinear feature space the new regressors

@, = (g1(@1), - gu (@) (3.9)

are the transformed versions of the original regressors x;. Even if the original
regressors x; € R™ are nonlinearly related to the corresponding target values
s, the functional relationship of the new regressors &; € RM can turn out to
be linear. However, this depends on the right choice of the basis functions.
Possible classes of basis functions are monomials or polynomials [3,[T9],
rational functions [(2,20], radial functions [ZI,[73], or wavelets [I2]. For ex-
ample, monomials are products of the components in vector valued inputs

z= (21,22, 24)

g(z) =[] (3.10)



18 Static and dynamical modeling

linear feature space nonlinear feature space
A A
..
y *® . P ) y /.".’
[N A
o ® ° A 0’./;
. transformation o
. l/ ,)'".
» > »
X 9(x)

Figure 3.3: The features (components) of the regressors x; are often nonlinearly related
to the corresponding target values y;. An appropriate transformation of the features with
nonlinear basis functions may yield an almost linear relationship between the new features
Z: = (g1(xt), ..., gm(x1)) and the original target values y;.

with the exponents p; € N. The sum of the exponents

d
maXij =p, (3.11)
j=1

defines the degree (or order) of the monomial.

The most common method to estimate the parameters or weights w; in
Eq. B8) is the least squares minimization (see Section [A2Tl). The main idea
is to minimize the squared deviations of the model outputs from the original
target values. The least squares minimization yields the solution

. T o\ ' T NN
w:(X X) X'y, §=Xw, (3.12)
with the target vector y = (y1,...,yn)?, the model output ¢ = (91,...,9n5)%,
the estimated weight vector w = (i1, ...,y )7, and the regressor matrix
gi(@1) - gu(x)
X = : : . (3.13)
gi(@n) -+ gu(on)

In order to avoid the inclusion of redundant basic functions, the computa-
tion of the model parameters is usually combined with a selection technique,
e.g. the Fast Orthogonal Search (FOS) [43,44.[18] (see also Section [A2.2)).
Iteratively basis function are selected from a pool of possible candidates into
the model. Every iteration step only the best function from the pool is in-
cluded. The quality of each function is measured by its contribution to the
model performance on the training data. In this way a parsimonious model is
created.



3.1 Static modeling 19

,,,,,,,,,,, static model
input model . output
translator function |

Figure 3.4: The model function in static modeling cannot process sequential data directly.
Instead, the input is preprocessed by a translator, which transforms the data sequence into
data patterns and passes the latter to the model function.

However, since the selection is a sequential process, which considers only
one basis function at a time, it does not lead necessarily to the smallest possible
model. Usually, a suboptimal solution is found. Nevertheless, the FOS is a
relatively fast algorithm that can be relied on to produce adequate models
with good performances.

Although the naming may imply otherwise, the reader should keep in mind
that the regression step in the static modeling approach is in most cases more
than a mere estimation of parameters. While the embedding step determines
how time information in the data is encoded, the regression step is responsible
for developing a model structure that can handle the data. This involves the
choice of parameters and nonlinearities, the complexity and such things as
stability of the model.

3.1.3 Application of static models

The final goal of time processing tasks is a model that can process sequential
data from the same source as the training data in an appropriate way. This
assignment is achieved in static modeling in an indirect way. During training
the modeling task is altered from a time processing task to a static modeling
task, and the model function is adapted to process static data patterns. The
embedding step is a formal trick to simplify the modeling procedure. However,
the price one has to pay for this simplification is the inability of the model
function to process sequential data directly. A characteristic aspect of static
modeling is that the model function depends on a translator that converts time
series into patterns (see Fig.Bl).

The translator uses the parameters from the embedding step to rearrange
the time series into patterns. In this way the translator is a necessary key,
giving the model function access to the data. The final applicable model in
static modeling consists of two important parts: the translator and the model
function.



20 Static and dynamical modeling

3.1.4 Shortcomings of static modeling

One of the shortcoming of static modeling was already indirectly mentioned. It
is the separation of the embedding and the regression into two different steps.
The separation is a weak spot of static modeling because time information
in the data and the structure of the models have to be individually adjusted
and thus cannot be coordinated adequately. In the end, this leads to a try
and error approach, where different combinations of embeddings and model
structures have to be tested. For complicated dependencies on time and for
multiple input signals it is often not possible to test every possible embedding,
leading often to suboptimal solutions.

Another weakness that concerns specifically the NARMAX models but is
inherently present in most of the static approaches is the way in which the
model structure and the parameters of the model are determined. All selection
methods, including the FOS, are based on the MSE cost function

MSE) (1) = 3 (3 — u(w))’ (3.14)

the index 1 indicating that the model outputs g, are one-step predictions (see
Section ZZJl). The selection procedure finds the best suited basis functions
that lower the cost function in Eq. (BI4]) the most. In parallel the weights
w = (wy, ..., wy) are defined by the global minimum of Eq. (BI4]). This least
squares estimation leads to the best possible model for one-step predictions.

However, a problem arises if instead of one-step predictions the modeling
goal involves free-running predictions. In this case lowering cost function MSE;
in Eq. BI4) does not result in an optimal model. Models that perform well
on one-step predictions are not automatically the best suited for free-running
predictions. Therefore, if the goal of the modeling procedure is a free-running
model, it makes more sense to use the following cost function

N

MSE, (w) = % S (e — Gilw))? (3.15)

t=1

Formally, Eq. (BI10) looks the same as Eq. (814]). The difference, indicated by
the index oo, is that in this case the model outputs ¢, are based on free-running
predictions. Lowering MSE, results in the best possible free-running model.
However, the difficulty now is that the minimization problem is not convex as
before. By iteratively using previous predictions in a free-running scheme (see
Fig.22), the dependence of cost function MSE,, on the model weights w is
strongly nonlinear. Hence, a nonlinear optimization method has to be applied,
which cannot guarantee a globally optimal solution.

Even worse, iterative selection schemes, like the FOS algorithm, are not
applicable for cost function MSE,,. This is schematically depicted in Fig.BA



3.1 Static modeling 21

one-step free-running
1 basis X y Y X vy
function EE— gl > T: gl 1I
Y, g L v
g < !
2 basis X vV oy X > ¥y
functions| ®— . o
- % |5t <
2 Y, E--» 2 Y, :

Figure 3.5: The difference between one-step and free-running predictions has consequences
for the selection of basis functions into the static NARX model. For one-step predictions the
performance of basis function g; is independent of basis function go. After the additional
selection of go the output y; of g1 remains the same. This is different for free-running
predictions, where the basis functions have an extra feedback (dashed line). This feedback
for ¢y is different if g5 is selected into the model. Thus, the performance of g; cannot be
estimated independently from gs.

If the cost function is based on one-step predictions, like MSE; in Eq. (B14),
the contributions of the different basis functions to the reduction of the cost
function are mutually independent. Thus, the best basis functions can be
selected one by one. Unfortunately, this is not possible for MSE,,. Free-
running models utilize their previous outputs for their current outputs. With
this feedback loop a mutual dependence of the basis functions in the model is
established. Thus they cannot be selected individually.

Since the sequential selection of individual basis functions is not possible in
the scope of cost function MSE,, there are two alternatives for the user. The
first approach is the brute-force method. One abandons the idea of forward
selecting and simply tries out every possible combination of basis functions
from the pool. For small function pools this is possibly the best procedure.
Nevertheless, it is clear that for greater pools the brute-force procedure is
absolutely impossible, as the number of combination grows exponentially with
the number of basis functions.

The second alternative is a compromise. First, the selection is done with
MSE;. Afterwards, the estimation of the weights is performed with the MSE
cost function. This latter approach has the advantage that it is still feasible for
greater function pools. However, it has also its shortcomings. Cost function
MSE; does not take into account that small errors tend to accumulate in free-
running predictions. Especially if the model is strongly nonlinear, instabilities
are often the result. Sometimes it is beneficial to use a simpler model even
if it performs worse in one-step application, simply because it is more stable
for free-running predictions. Therefore, cost function MSE; is not a suitable
indicator for the quality of free-running models. Another concern is noisy data.



22 Static and dynamical modeling

As will be described in the next section, distortions in the data often cause
the model parameters to deviate systematically from the optimal values.

3.2 Bias in static models

In the training phase of a modeling procedure the parameters of a model are
adjusted according to a specified task. Assuming that the model structure is
appropriate, the parameters can take on values for which the model is consid-
ered optimal. In black-box modeling, information about the correct values has
to be extracted from the training data. This extraction usually proves difficult
because the information is limited by two factors: finiteness and noisiness of
the datal. Different procedures for estimating the correct parameters can be
classified by the way they deal with these two limiting factors.

Suppose a model with one free parameter a € R is optimal for the param-
eter value a = ag. A data set 7 with finite and noisy data is used for training
the model and a method M is applied for estimating the model parameter.
Due to the limitations of the training set 7 the estimated value of a probably
shows a deviation from the correct value

M(a|T) = ag+e. (3.16)

The magnitude of the deviation ¢ € R depends on the estimation method M
and on the training data set 7. A statistical statement can be made about the
estimation method M by looking at the average value of the estimated value
for (infinitely) many training sets 7;

(M(a|T) )i =ao+ (& )i (3.17)

with (-); the average over all index values i € N. The average deviation (¢; );
is called the bias of the estimator M. If it vanishes the estimator is referred to
as unbiased. Otherwise it is a biased estimator. Although formally incorrect,
the categorization is often transferred to the model as well, which is then called
biased or unbiased, respectively.

3.2.1 Modeling objective

To give the discussion some focus the effects of noisy data on modeling is
considered for the special case of a system simulation, as depicted in Fig.B.6.
An arbitrary system is driven by an input signal {u;}; and produces a re-
sponse signal {y; }1e1. The system can either be discrete or continuous. For the

30f course, there is also the case that the data is incomplete. Sometimes important
variables are not observable and cannot be used in the modeling procedure. In this situation
the partial lack of information has to be compensated in some way. However, this case is
not regarded here. We assume that all needed variables are present.



3.2 Bias in static models 23

measurement noise

stl

U, Y Y
= system ——»(H)———»
= model yt—»

Figure 3.6: Driven by an input {u:}:er, the system produces an output {y:}ier. In
contrast to the input signal, the output signal is not known and has to be measured, leading
to imprecise values §; = y; + €;. The modeling task is to predict the original signal {y;}se1
from the input {u;}ier.

latter case {uy }er and {y; }er are assumed to be sampled versions of the corre-
sponding continuous signals. The modeling objective is to develop a black-box
model that simulates the behavior of the system, i.e. provided with the input
signal {u, },e1 it generates an output signal {g; }4e1, which resembles the original
response signal {y; }1e1 as closely as possible.

For a more realistic modeling scenario two assumptions are made. The
first one concerns the model structure and is motivated by the purpose of
the model. In experimental setups measurements on systems are often costly
and complicated. In fact, one of the reasons for developing a model is to
replace costly measurements by cheap numerical predictions. Consequently,
this means that no measurements are performed during the application of the
model and that predictions g; of the original values y; cannot rely on the
knowledge of previously measured output values ¢;_1, 9o, ... We adopt this
viewpoint for our models and restrict them in such a way that during the
application phase the predictions of y; are based solely on the knowledge of
the input values us, us_1, . ..

The second assumption concerns noise present in the input and the output
signal. Since the input is usually provided by the user, it is save to assume
that the values u; of the input signal are known with sufficient accuracy, i.e.
they are noise-free. However, the output signal {y;}e1 of the system has to
be measured in some way and a realistic treatment of the subject ought to
include measurement noise (or additional noise). Therefore, measurements on
the system produce the output values

Us = Y + &t (3.18)

which are the original output values y; distorted by a noise signal {e;}ier. If
not stated otherwise, we will assume the measurement errors to be normally
distributed &; ~ N(, 02) with zero mean p = 0 and a finite variance 62 € R*.



24 Static and dynamical modeling

3.2.2 Linear system

A very basic example, showing the effects of measurement noise, is the identi-
fication of a driven linear system

Yt = AoYi—1 + bouy . (3.19)

The parameter by € R can be chosen arbitrarily. However, parameter ag €
R is obviously restricted to |ag| < 1 for reasons of stability. Since additive
measurement errors are assumed, the output is contaminated by il noise

Yt = Y + €t = aoYi—1 + bour + &4, (3.20)

with normally distributed errors g; ~ N(0, o2).
The model function is chosen to have the same form as the system function

Qt = aﬂt71 + but , (321)

with two free parameters a and b. The parameters have to be estimated on
a finite data set consisting of measured output values 71,...,yy and known
input values uy, ..., uy during the training phase of the model.

The estimation of the parameters is done within the scope of an optimiza-
tion problem by minimizing cost function MSE; from Eq. (814

N
1 5 R
MSE;(a,b, N) = N Z (O — yt)2

1=1

=

((ag — a)ys—y — agi—1 + (bo — b)uy + &)* (3.22)

==

~.
—_

which is an average over all squared one-step prediction errors. By looking at
the cost function in the limes N — oo, statistical properties of the correlations
between the signals can be exploited:

MSE;(a,b) = lim MSE;(a,b, N)

= (azoi a)?Cyy (0) + a®02 + (by — b)>C\uu(0) (3.23)
+(ao — a)(by — b)Cyu(1) + 072,

with o2 being the variance of the noise signal {&; };er.
In Eq. B23)) the usual notation for values of the correlation function be-
tween two signals {v; }er and {wy }ier is used:

N
1
Cow(7) = lim N Z ViWyyr (3.24)

N—oo
t=1

4independently identically distributed



3.2 Bias in static models 25

which has the time shift 7 between the signals as its only argument. From
here on the explicit mentioning of the time shift will be omitted for better
readability. Instead of C,,(0) and C,,(0) for the auto correlations, we will
write Cy,, and Cy,, respectively. The cross correlation Cy, (1) will be expressed
as Cy,. Here, the bar over y denotes that the cross-correlation is computed for
the time shifted output signal

- = lﬂoﬁzyt 1UL . (325)

With y; = agys—1 + bouy it follows that
= by Zao (i), (3.26)

which is a weighted summation (since |ag| < 1 it is a finite geometric series) of
all auto-correlation values of the input signal {u; };er with a time shift j greater
zero. The magnitude of parameter ay determines how fast the influence of long
term correlations is decreased.

The cost function in Eq. (B2Z3) is a quadratic function, and thus it has a
unique minimum. The necessary conditions for this extremum are vanishing
derivations

OMSE b
% = —2(ap —a)Cyy + ZCLU@Z — 2(bo — 0)Cyy = 0, (3.27)
OMSE b
% = —2(by — b)Cru — 2(ag — a)Cyy = 0. (3.28)
From these equations it follows for the model parameters a and b that
CuuClyy — Cz?u
_ . 3.29
¢ CuuClyy — CFy + Cuu0? o ( )
and
C?
b= b0+ 0y - a), (3:30)

From the Cauchy-Schwartz inequality it follows that C’;u < CuuCyy. That
means that generally the magnitude of parameter a is underestimated, while
that of parameter b has a constant bias depending on ag.

For the special case that uncorrelated white noise is used as input signal
uy ~ N(0, ¢2), it follows from Eq. (B20) that Cj, = 0. Since the input signal
has zero mean, the auto-correlation coefficients are equal to the variances of the
signals (Cy, = 0y and Cy, = o7) and the cost function in Eq. (B23)) becomes

MSE; (a,b) = (ap — a)ZOZ +a’0? 4 (by — b)*02 + o2 (3.31)



26 Static and dynamical modeling

The equations for the model parameters simplify to
a=—"2—"aqa, (3.32)

and

b= by. (3.33)

That means that if an uncorrelated input signal is used, the estimation of
parameter b is unbiased. Unfortunately, this is not the case for parameter a.
Depending strongly on the relation between the output variance 05 and the
noise variance o2, the value of a deviates systematically from the true value.

The problem with biased estimations arises from the fact that cost func-
tion MSE; is based on one-step predictionsﬁ. By using cost function MSE,
which is based on free-running predictions, the bias can be reduced, as shown
analytically in Section [BJJl A numerical simulation demonstrates this phe-
nomenon clearly. The system in Eq. ([I9) was numerically simulated with
ap = 0.8 and by = 1.0 as system parameters. In the simulation a random
sequence u; ~ N(0, 1) with normally distributed values (N = 10000) was used
as an input signal, producing the same amount of output values {y;};c1. The
measurement errors {&; };c; were chosen as normally distributed random values
er ~ N(0, 0.6407).

On the left hand side of Fig.B7 cost function MSE; is depicted for different
values of the model parameters a and b. As can be clearly seen, the minimum
of the cost function lies far away from the true values ay = 0.8 and by = 1.0.
Since the position values of the minimum are taken as estimations for the
model parameters a and b, the figure shows how much the model parameters
deviate from the true values. While the deviation for parameter b is very small,
parameter a deviates dramatically from ay = 0.8. This reflects the fact that a
is biased while b is unbiased. On the right hand of Fig.B7 the values of cost
function MSE,, are shown. Here, the minimum lies near the true values. That
means that in this case both parameters a and b are unbiased.

®Actually, the deeper reason behind the biased estimate is that the least squares method
is based on the assumption that the regressors are noise free. An extension of the least
squares method, the so called Total Least Squares (TLS), can indeed cope with noise in
the regressors and thus yields unbiased estimates. However, TLS is mostly limited to linear
problems because the noise distribution of each individual component in the regressor has
to be known. Nonlinear regressions that are made pseudo-linear with a regression matrix
as in Eq. @I3) tend to combine and transform the noise distributions of the input values
in various ways, which would have to be determined before application. Therefore, TLS is
unpractical for most but the simplest nonlinear problems.



3.2 Bias in static models 27

14 2.2
1.35 2
13 1.8

1.25

0.8 1 12 14 16 18 T 08 1 12 14 16 18
b b

Figure 3.7: The value of the cost functions MSE; (left) and MSE., (right) for different
model parameters a and b. Note that the logarithm of the cost functions is used for better
resolution. The minimum of both cost functions is marked with a white, filled circle. The
true values of the linear system were ag = 0.8 and by = 1.0.

3.2.3 Driven logistic map

In the next example the linear system from the last section is replaced by the
driven logistic map

yr = (1 — )Aye—1(1 — Y1) + auy , (3.34)

with the parameters o and A. Parameter \ is the canonical parameter of the
logistic map, taken from the interval [0,4]. The parameter « is chosen from
the interval [0,1]. It plays the role of the coupling strength of the system
to the input signal. For the input signal we use u; ~ U[0, 1], i.e. uniformly
distributed random numbers from the interval [0, 1].

The nonlinear system in Eq. (B334) can be described by a NARX model

e = agjs—1 + by} + cuy, (3.35)

with three adjustable parameters a, b, and ¢. The optimal values for these
three parameters would be ap = (1 — a)\, by = —(1 — @)\, and ¢y = «. If the
data are noise-free, the optimal values are estimated correctly. Otherwise, the
estimation is biased.

For a numerical simulation we have chosen the parameters o = 0.5 and
A = 4.0. It should be noted that the value of @ = 0.5 implies a non-chaotic
logistic map. A random sequence u; ~ U [0, 1] with uniformly distributed
values in the interval [0, 1] with N = 10000 values was used as an input signal.
The measurement noise ; ~ N(0, o.) was simulated with normally distributed
random values. To pronounce the effects a strong noise signal was employed
with the variance equal to the variance of the output signal, o, = 0.



28 Static and dynamical modeling

Figure 3.8: The values of the cost functions MSE; (left) from Eq. B3H)) and MSE
(right) for different values of @ and b. For better resolution the logarithmic value of the
cost functions is depicted. The minimum of the cost functions is marked with a filled white
circle. The correct values were ag = 2 and by = —2. The white areas on the right hand side
show the regions, where the free-running model is unstable, leading to infinite cost values.

In Fig.B8 the values of cost function

N

MSEs (a,b,c = co) = > (5 — :)°, (3.36)

=1

are presented for various values of the parameters a and b. For a better graph-
ical presentation in two dimensions the third parameter was held fixed at the
correct value ¢ = ¢y = 0.5. Similar to the linear system, the position of the
minimum deviates strongly from the true values if the cost function is based on
one-step predictions. For cost function MSE,, which is based on free-running
predictions, the minimum lies exactly at the correct values a = ay = 2 and
b="by=—2.

3.2.4 NARX system

As our last example the following NARX system is considered

Yr = aoYr—1 + + couy - (3.37)

0
1+ |y
It is similar to the first, linear example in Section B2 However, with the
second addend, Eq. B31) includes an additional nonlinearity that cannot be
fully described by a polynomial NARX model. This is in contrast to both
former examples in Section and Section B.2Z3

Here, the model can only approximate the nonlinear system in Eq. (B31).
There are optimal model parameters that guarantee the best possible approx-
imation. However, there are no correct model parameters that could be com-
pared to the parameters of the original system. This is the example that shows



3.2 Bias in static models 29

the typical situation of black-box modeling: The parameters of the model have
no or just an unknown analogon in the parameters of the original system. In
almost all cases a black-box model solely approximates a system behavior with-
out being able to perfectly describe it. Therefore, it is interesting to see how
noise in the training data affects models that are imperfect from the beginning.

The modeling of the system in Eq. 37) was done with a polynomial
NARX model. The FOS algorithm was applied to a pool of potential ba-
sis functions, consisting of all monomials with maximum degree p = 5 and the
possible components w, U1, Us—2, Yi—1, Yi—2-

A training set was generated with NV = 10000 data points. The system
in Eq. B37) was simulated with the parameters ay = 0.8, by = —0.2, and
co = 1.0. As an input signal a random sequence of normally distributed values
with zero mean and a standard deviation of one, u; ~ N(0, 1), was used. With
the same parameter settings a second, independent test set was produced with
the same amount of data.

The FOS algorithm yielded the following model structure

U = Wo+ Wi1Y—1 + Walr—2 + Waly +
w4yt2—2 + w5yf’_2 + w6yf—2 + w7yf_2 ) (3.38)

with the parameters

wo = —0.4801, wy = 0.7970, wy = —0.0664, w; = 9.9923,
w, = 0.1136, ws = 0.0191, ws = —0.0055, w; = —0.0009 . (3.39)

On the test set the model performed with a normalized mean squared error

NMSE, = w =6.11%, (3.40)
Ty
meaning that the model was able to capture the system characteristics fairly
well but was by no means very precise. As such this model was an ideal
representative of an imperfect model, and the model structure in Eq. (B338) was
taken for further investigations concerning the influence of noise on parameter
estimations.

To show the effects of noise another approach had to be taken this time.
Since the model has a different structure from the system and there are no
perfect parameters, systematic deviations from them cannot be shown. Instead
we resorted to the model performance. Models with biased parameters show an
inferior performance when simulating the input-output behavior of the given
system. Thus, the following approach was taken: The models were trained
on noisy data. After the training phase the models were used for simulation,
and their output compared to the noise-free output of the given system. If
the deviations were small, the model captured the behavior of the original,



30 Static and dynamical modeling

NMSE [%]
H S »h 8 &

0 0.2 0.4 0.6 0.8 1

Figure 3.9: The plot shows the influence of noise in the training data on the performance
of the model. The z-axis denotes the level of noise that was present in the training data.
The y-axis denotes the performance of the model measured with NMSE., on the noise-free
test set. The filled circles represent the performance of models, trained with cost function
MSE;, while the filled squares represent the performance of models trained with MSE .

undisturbed system well. In this case the noise in the training data did not
introduced a bias in the model. Otherwise, if the performance were bad, the
estimation of the model parameters in the training phase could be considered
biased.

In the numerical experiment we utilized the training and test data set
that were already employed for developing the model structure in Eq. (B35).
Random sequences with normally distributed values, ¢, ~ N(0, 0.), were added
to the output time series {y; }:er of the training data to simulate noisy data,
while the test set was left untouched. Eleven different modeling procedures
were performed subsequently with different levels of noise

o.=i-0l0,, i=0,1,...,10, (3.41)

with o, being the standard deviation of the original undisturbed output se-
ries. Each modeling procedure included the adjustment of the weights w; in
Eq. (B38)) based on the minimization of the cost function MSE;. An addi-
tional model was developed by using the alternative cost function MSE.,. In
the latter case a nonlinear optimization method was applied (fminsearch,
Matlab 6.5, based on Nelder-Mead simplex method). Afterwards each model
was tested on the clean test data set and the performance measured with the
NMSE,, criterion, as defined in Eq. (B240). The results can be seen in Fig. B4l

Obviously the models based on the minimization of one-step predictions
in cost function MSE; were strongly influenced by the noise present in the



3.3 Dynamical modeling 31

training data. The performance on the test set deteriorated dramatically for
higher noise levels in the training set. Not the imperfect model structure
was the cause for this impairment but the model bias. This can be seen by
comparing the results with the performance of the models that were gained
on the basis of optimizing cost function MSE,,. Using a cost function based
free-running predictions sustained the quality of the model even for very high
levels of noise in the training set.

3.2.5 Consequences for static models

It was shown that noise in the training data leads to biased estimations of
the parameters. In [34] a recursive method was presented that can reduce
this effect. It is based on including the noise dependencies into the modeling
procedure. However, this method is very time consuming. Here, another
approach was introduced for the special case of system simulation. If the
estimations of the parameters are done with cost functions that are based on
free-running predictions instead of one-step predictions bias in the estimates
can be avoided or at least reduced.

Unfortunately this method is not applicable to the selection process of the
basis functions. For reasons already mentioned the selection procedures still
can only be performed in the scope of cost function MSE;, which is based
on one-step predictions. Consequently, the selection process itself is always
biased for noisy data. In the next section an alternative modeling approach is
presented that can employ MSE,, for the development of the model structure.

3.3 Dynamical modeling

The problems of static modeling can be used to formulate the requirements
for a better modeling strategy. The main problems are the separation of the
embedding and regression step and the dependency of the selection process on
the MSE; cost function. The former inhibits a proper coordination between
the processing of time information in the data and the structure of the model.
The latter leads to models that are not optimal for free-running applications
and, if the data is noisy, to a biased selection and estimation of the model
parameters.
Concluding from these problems, an approach is needed that can

a) merge the embedding step and the regression step into one optimization
procedure.

b) employ the MSE,, directly for the selection of the model structure and
parameter estimation.



32 Static and dynamical modeling

selection application

ool
P model

e
> model
@ external memory
no memory

Figure 3.10: In the static modeling approach basis functions g;(-) are selected from a pool
of potential candidates into the model. Since the basis function are mutually independent,
the ones lowering cost function MSE; the most can be chosen for the model in the selection
process. For a free-running application a mutual dependency between the selected functions
is introduced by an external feedback loop.

In the static modeling approach a model is created by choosing the best
candidates from pool of basis functions (see Fig.BIM). Since the time infor-
mation is hidden in the embedding structure of the regressor patterns, these
basis functions are memoryless transformation mappings. As such, the benefit
of each function for the model performance can be estimated independently of
the other ones. However, this performance can only be assessed for cost func-
tion MSE;, which is based on one-step predictions. The performance for cost
function MSE,, cannot be evaluated at this stage because an external feedback
loop is used in free-running applications and this feedback loop introduces mu-
tual dependencies between the selected basis functions in the model. Because
of the external feedback loop cost functions MSE; and MSE, have different
values.

The dilemma is that one has to know all basis functions in the model be-
fore the external feedback loop can be reasonably applied and the performance
of free-running predictions evaluated. Therefore an iterative selection process
based on MSE, is not feasible. There are three possible solutions to this prob-
lem. The first solution is to keep the external feedback loop and approximate
MSE,, by MSE;. This path is taken by static modeling approach. It produces
often good models but suffers from the described problems.

The second solution is to avoid the external feedback loop during the free-
running application. This has the advantage that cost functions MSE; and
MSE,, are equivalent. However, in many cases the prediction performance
suffers considerably if the feedback is removed, rendering this strategy only as
a last resort.

The third solution is to incorporate the positive effects of feedback loops
from the beginning into the pool so that an additional external feedback is not



3.3 Dynamical modeling 33

virtual application
selection
model
pool
U(t)—>
—> 9('[)
model internal memory
internal memory

Figure 3.11: In the dynamical modeling approach a state space model is regarded as a
pool of different response dynamics to a driving input signal. In a virtual selection process
the state dynamics z; that lower the cost function MSE., the most are chosen to represent
the model output. Because of the internal memory there is no need for an external feedback
loop in free-running applications.

needed in later applications of the model. Similar to the second solution, the
cost functions MSE; and MSE,, are equal. However, the prediction perfor-
mance does not degrade because there are still feedback loops present. This
path is taken by the dynamical modeling approach and shall be discussed here
in more detail (see also Fig.BITl).

The dynamical modeling approach includes internal feedback loops between
the basis functions in the pool from the start. Since no additional external loop
is applied later, the basis functions already unfold the dynamics that they also
show during the applications of the model. In effect, this leads to the equiv-
alence between one-step and free-running predictions, so that consequently
MSE., = MSE;. For this reason the benefit of each basis function for free-
running predictions can be assessed independently of the others. To implement
the internal feedback structure, an internal memory in form of a state vector
has to be introduced. The output of all basis functions in the pool is stored in
this internal state vector for one time step. Since the basis functions influence
each other, the state vector is used in each iteration to produce the output for
the next time step.

Formally, the pool of basis functions in the dynamical modeling approach
is a dynamical system that is driven by an external input signal {u;}ser

e = g(Ti—1,u) (3.42)

with &, € RM the state vector, storing the output of M basis functions in
the pool at time step ¢, and g(-) = (¢1(-), ..., gnm(+)) the vector function that
includes all basis functions ¢; : RM x R — R. The output of the model is set



34 Static and dynamical modeling

in analogy to the static models as a superposition of the basis functions

M
Y = Zwigi(mt—laut) : (3.43)
i=1

Only the basis functions that contribute the most to a good prediction
performance are needed for the model output. Since the cost functions MSE;
and MSE., are equivalent, the best ones can be chosen in a selection process
similar to the static models (see Fig.BITl). One should note, however, that this
selection process is only virtual, because the whole pool is needed to create the
desired dynamics. The weights w; of the basis functions that are not selected
are simply set to zero in Eq. (843]). This is different from the static approach,
where the selection process really reduced the size of the model. This is the
downside of the dynamical modeling approach: The size of dynamical models
usually exceeds the size of static models by far.

Nevertheless, both requirements from the beginning of the chapter are met
by the dynamical modeling approach. Since an external feedback loop is not
employed, the bias problem of the static models does not occur for dynamical
models. Besides, an additional embedding step is not needed because the
internal state a; stores implicitly the history of the input {u; }e1. By adjusting
the parameters of the basis functions and the internal feedback loops between
them, time information in the input data and model structure are optimized
at the same time.

The creation of recurrent elements in the function pool through internal
feedbacks is by no means trivial. In order to produce reliable response sig-
nals to an input signal the dynamics of the pool has to meet some stability
criteria. This problem is discussed in more detail from the point of view of
synchronization in the next chapter.



Chapter 4

Synchronization and modeling

When two systems are coupled to each other, they can sometimes assimilate
their behavior. This phenomenon is called synchronization. Its discovery is
accredited to Huygens (1629-1695), who observed that two pendulum clocks
adjusted their oscillations when they were attached to the same beam [G1].
Since then many other examples of synchronization were found ranging from
organ pipes over biological clocks to glowworms. Especially with the upcoming
of radio communication in the beginning of the 20th century, synchronization
became an essential concept receiving more and more attention from engineer-
ing, mathematics, and physics.

In the last decades of the 20th century synchronization was linked with
the popular chaos theory. It was found numerically and experimentally that
chaotic systems could be synchronized (e.g. [27], [60], [58]). This new aspect of
synchronization was spectacular because it went against all intuition concern-
ing chaos. In chaotic systems even slight differences of initial conditions lead
to completely different trajectories and it was astonishing that such systems
could be brought to assimilate their dynamics and to stay locked in this state
in a stable manner. Many scientists of the nonlinear dynamics community
seized the opportunity to explore the new field of chaotic synchronization; and
the combination of chaos theory and synchronization proved fruitful for re-
search. Nowadays synchronization is among the mostly investigated nonlinear
phenomena with many applications in fields like control, communication, or
neuroscience.

In this chapter we want to give a short introduction to concepts regarding
synchronization. Since there are so many of them, we will restrict the topic to
the most important ones for this work. These are the identical synchronization
in Section and the generalized synchronization in Section For broader
reviews see e.g. [13], [61], [B6], or [53.

In the last section (Section B4l the dynamical modeling approach, which
was introduced in Section B3l is examined from the perspective of synchro-
nization. The concept of reliability is developed, which is based primarily on



36 Synchronization and modeling

X = E(X) drive system x = K(X) T hy(x,y)
1

A\ Y

y=EM*h(X, ¥)| response system y=Ey) Thx,y)

Figure 4.1: Left: Unidirectional coupling scheme between two dynamical systems. How
the state of the response system evolves is influenced by the state of the drive system. Right:
Bidirectional coupling scheme. Because of the mutual influence there is no distinction be-
tween drive and response system.

generalized synchronization. In a practical example we show how a synchro-
nized system can be used for dynamical modeling. In this case the model
system consists of interconnected Lorenz systems.

4.1 Preliminaries

Before going into detail about synchronization, a short notion on coupling
schemes is required. For the general case of two coupled dynamical systems
we have

z = Fi(x)+ hy(z,y),
Yy = Fy(y) +hy(z,y), (4.1)

with £ € R™ and y € R" as state vectors and F, : R™ — R™ and Fy : R" —
R™ as vector fields of the two systems. The functions h, : R™ x R" — R™
and h, : R™ x R" — R" define the mutual coupling between both systems.
This coupling scheme is called bidirectional. In the special case that one of the
coupling functions is zero, the coupling is called unidirectional (see Fig.ETI).
In contrast to bidirectional coupling, where both systems mutually influence
each other, the information flows only in one way for the unidirectional case.
The system providing the information is called drive or master system. The
system receiving the information is called response or slave system.

Although the unidirectional and the bidirectional coupling schemes have
similarities, they also differ in many ways and there is no general method to
transfer results from one to the other. Compared to the bidirectional coupling
the unidirectional coupling is a docile scenario. Since the drive system is not
influenced by the response system, it sets the course of the dynamics in the
mutual state space. The response system is more or less restricted to the
choice of following or not following. In the bidirectional case the dynamics
is not dictated by one system. Rather, both systems compete for dominance



4.2 Identical synchronization 37

and the dynamics in the mutual state space is the result of this struggle. The
bidirectional coupling produces a whole new system with its own dynamics
and thus proves more difficult for analysis. In our work bidirectional coupling
plays only a minor role and if not explicitly referred to, we will restrict our
attention on the unidirectional case.

All definitions in this chapter refer to the case of two coupled continuous
systems. However, with minor modifications they can also be transfered to
multiple coupled systems. In the case of discrete systems the ordinary differ-
ential equations in Eq. (1)) have to be replaced with difference equations

T = fa(T) +ha(Teyy)
Y1 = fy(yt) + hy(z1, y,) - (4.2)

Apart from that definitions and concepts for the continuous and the discrete
case are generally the same. Exceptions will be explicitly pointed out to the
reader.

4.2 Identical synchronization

Identical synchronization (IS)E is the simplest and most intuitive case of syn-
chronization. We speak of IS when two coupled systems assimilate their dy-
namics and evolve in exactly the same way. This occurs only if two identical
systems are coupled to each other. As a consequence IS is a mathematical
abstraction because generally it is impossible to guarantee the identity of sys-
tems in real physical environments. Nevertheless, IS can be experimentally
approximated and more importantly it serves as a good starting point for the
understanding of synchronization.

4.2.1 Synchronization manifold and stability

In the special case where the vector fields in Eq. [@l) coincide Fp = Fyy = F
IS is possible. A possible definition is the following:

Definition 4.1 In the unidirectional coupling scheme the drive system and
the response system

& = F(z),
y = F(y)+hy(z,y), (4.3)

with z,y € R™, F : R™ — R™, and hy : R™ x R"™ — R™, are considered
identically synchronized iff the two following conditions are met:

! Alternative names for IS often found in literature are complete synchronization or con-
ventional synchronization.



38 Synchronization and modeling

State space

daive |22V & y
B — p—yl
l X
response M» y af

Figure 4.2: Identical synchronization occurs if two identical dynamical systems are coupled
in an appropriate way. In the mutual state space the dynamics is then restricted to the
synchronization manifold M which is a plane through the origin. The attractor A of the
coupled system lies inside M and is surrounded by a basin of attraction B.

(i) There exists a compact, invariant manifold
M=A{(z,y) e R" xR"|x =y}, (4.4)

containing the attractor A of the combined system in the mutual state
space
ACMCR™ xR™. (4.5)

(i) There exists a basin of attraction B around the attractor A C B such
that

V(xo,y,) € R™ x R™ :
(@(t = 0),y(t = 0)) = (®0,9) € B = lim [[&(t) —y(t)[| =0. (4.6)

In the above definition the stability of the manifold M plays a crucial
role. It establishes synchronization as a robust phenomenon demanding that
small perturbations of the system states should not lead to a breakdown of the
synchronized motion.

The stability property is closely linked to the coupling between the systems.
In the generalized notation the coupling signal was assumed to be a function
of the drive and the response state hy,(x,y). In many coupling functions a
proportionality factor is utilized

hy(®,y) = c-hy(z,y), (4.7)

with ¢ € R referred to as the coupling strength. The coupling strength deter-
mines how much the dynamics of the response system is influenced by the drive
system and it is essential for the stability of synchronization. Consider two
identical systems with a vanishing coupling strength, (¢ = 0), starting from
the same initial conditions. Although they may evolve in the synchroniza-
tion manifold M in Eq. (f4]), the systems cannot be considered synchronized.



4.2 Identical synchronization 39

Even for small perturbations of the systems the evolving state would leave
the manifold M and especially for chaotic systems its distance from M would
grow exponentially. As a consequence a finite coupling strength, (|c¢| > 0), is a
necessary requirement for synchronization. Depending on the coupling config-
uration the coupling strength has typically even to exceed a critical value to
initiate synchronization.

Conditional Lyapunov exponents

The stability of the synchronization manifold M = {(z,y) |z = y} in Eq. [E3)
can be investigated by looking at the synchronization error e = y — . The
evolution of e is governed by

ée=F(x+e)+hy(x,x+e)— F(x). (4.8)

These equations can be linearized for small synchronization errors near the
manifold where y = x

e~ Dp(x)-e, (4.9)
with D g being the Jacobian of the vector field F'. The Jacobian tells us about

the stability properties at a specific point « in the state space. The eigenvalues
of the symmetric matrix

A(z) = Dp(z)" - Dp(x) (4.10)

determine whether synchronization errors grow or shrink. In order to make
statements about all points on the manifold the local properties have to be
averaged for the whole trajectory {ax}. Starting at a(0) at time ¢ = 0 one
defines the averaging matrix Y as

Y(0)=1, (4.11)

and integrates it along the trajectory

Y (t) = Dp(x(t)Y(t). (4.12)
The eigenvalues u;, i = 1, ..., m, of the symmetric matrix
. T 1/2t
A = lim Y'Y, (4.13)

determine the stability properties of the synchronization manifold [28]. The
logarithms of the eigenvalues, A\; = In(y;), i = 1,...,m, are called Lyapunov
exponents (LES)H. A necessary condition for synchronization is that all LEs

2With appropriate modifications Lyapunov exponents can also be computed for discrete
systems or can be derived in case the state equations are unknown purely from samples of
time series. For a nice review of different methods see [2§].



40 Synchronization and modeling

are negative \; < 0. Then M is on the average stable. The addition 'on the
average’ is important as the LEs provide information only about the averaged
stability behavior of a system following a typical trajectory on the attractor.
Even for negative LEs there may still be local instabilities present in the man-
ifold M disrupting possible synchronization for small periods of time. This is
the reason why negative LEs are a necessary but not sufficient condition for
synchronization [T3].

For unidirectionally coupled identical systems it makes a difference whether
the LEs are computed along the trajectory of the driver or the one of the driven
system [63]. If the LEs are computed along the trajectory {ax} of the driver, as
described in Eq. (£3), they are called transverse Lyapunov exponents (TLEs).
Otherwise, if they are computed along trajectory {y} of the response system,
they are called conditional Lyapunov exponents (CLEs).

The CLEs are a very general concept and define the stability properties
of any non-autonom system, which is driven by an external signal. The word
‘conditional’ refers to the fact that the stability of the response system depends
on the driving signal. If all CLEs are negative, the response system has no
degrees of freedom left and its trajectory is fully determined by the trajectory
of the drive system. Independent of the initial conditions, the driven system
evolves in the same way for the same driving signal after the transient behavior
is decayed (see also Section E3]).

Lyapunov function

Even though the Lyapunov exponents can tell us about the local stability of
the synchronization manifold, it is not possible to derive global stability from
them. The latter can be proved with the help of a so called Lyapunov function.
A Lyapunov function £(e) with the synchronization error e as its argument
provides sufficient conditions for synchronization. It is defined as a continu-
ously differentiable real valued function having the following two properties

(i) Vee R™ : e#0 = L(e)>0 and e=0 = L(e) =0,

y " dL(e)
(ii) Ve e R™ 1 e # 0 = =3~ <0.

If such a function can be found for a coupled system, a stable synchronization
is ensured (see for example [42]). Compared to conditional LEs the analysis
via Lyapunov function is more difficult to apply because the construction of
the latter is not standardized for arbitrary nonlinear systems.

4.2.2 Coupling configurations

Many researchers have developed standard techniques for coupling two system
in such a way as to guarantee synchronization. Three of the most important



4.2 Identical synchronization 41

y =F(y) J

Figure 4.3: In the diffusive coupling scheme the synchronization error e = & — y is used
as a feedback to the response system. Whenever the mutual state (x,y) leaves the syn-
chronization manifold M = {(x,y) | y = @}, the feedback is activated, adding a dissipative
component into the system dynamics. Through this dissipative mechanism the synchroniza-
tion of the coupled systems is stabilized.

X = F(x)

ones are diffusive coupling [10], Pecora-Carroll decomposition 58], and active-
passive decomposition [A1].

Diffusive coupling (DC)

The concept of Dl is very simple: A coupling term proportional to the syn-
chronization error e = x —y is added to the equations governing the dynamics
of the response systems

z = F(x),
y = F(y)+C(z—y), (4.14)

with the proportionality m xm matrix C (see Fig.l3)). The idea is to introduce
an additional dissipation into the dynamics countering possible instabilities of
the synchronization manifold M in Eq. ([4]). If the state (x,y) in the mutual
state space is evolving inside M, the dissipation term vanishes. However, every
time the evolving state tries to escape the manifold M due to instabilities or

perturbations, the dissipation term is activated forcing the response system
back.

Dissipative coupling can be analyzed with the help of conditional Lyapunov
exponents (CLEs) as described in Section EEZl The linearized equations for
the synchronization error read

¢ = (Dp(z)— C)e. (4.15)

Usually the Jacobi matrix D g will have positive conditional Lyapunov expo-
nents defying synchronization. However, now they can be neutralized by an
appropriate choice for the coupling matrix C.



42 Synchronization and modeling

-—
—

7

N
4

split
system

copy
response

system

=

response
replica

response response

I
1

Figure 4.4: For the PCD a dynamical system is split into a drive and a response subsystem.
The response system is copied and the replica system is driven in the same way as the
response system. If the stability conditions are met, IS can be observed between the response
and the replica system.

Pecora-Carroll decomposition (PCD)

Pecora and Carroll suggested in [58] a coupling method that involves the split-
ting of a system into a drive and a response subsystem (see Fig. L)

z = F(z)

!
T = Gu(z,y), (4.16)
y = Gylz.y).

After the splitting a replica, i.e. an exact copy, of the response system is built
and driven by the same signal as the original response system

¥ =Gy(z,y) (4.17)

Provided that the conditional Lyapunov exponents are all negative the re-
sponse and the replica system assimilate their dynamics yielding identical syn-
chronization y = y'.

One disadvantage of the PCD is that the number of possible drive-response
subsystems for low dimensional systems is rather limited and that the number
of stable response system is even smaller.

Active-passive decomposition (APD)

The APD was suggested by Kocarev and Parlitz in [41] as a very general
method for constructing coupling configurations between two systems. It starts

3An alternative name for diffusive coupling is dissipative coupling.



4.2 Identical synchronization 43

virtual

AT 1T ]

syste m rewrite as

|/ response |/

virtual response response

response replica

Figure 4.5: For the APD an autonomous dynamical system is rewritten as a non-
autonomous system. The driving signal is ascribed to a virtual, external drive system
(active part). The virtual response system, called the passive part, is copied and the replica
system is driven in the same way as the virtual response system. If stability conditions hold,
IS can be observed between the response and the replica system.

with a formal trick by rewriting an autonomous dynamical system as a non-
autonomous one (see Fig. L)

i=F(z) — &=G( (1)), (4.18)

with the driving signal s(¢) defined as s = h(x) or § = H(x). Even though
the driving signal is a functional part of the dynamical system, it is treated as
coming from a virtual drive system that influences a virtual response system.
In contrast to the PCD the virtual drive system is not necessarily a subsystem
of the original dynamical system but rather a function of its state. Thus APD
is a more general concept with many possible coupling configurations including
the ones from diffusive coupling and PCD.
Similar to PCD a replica of the virtual response system is built

¥ =Gy, s(t)), (4.19)

and driven with the same signal s(¢). Provided the synchronization manifold
M ={(x,y) |y = x} is stable, identical synchronization between the virtual
response and the replica system occurs.

Analyzing the stability of the synchronization for the APD approach, can
either be finding a Lyapunov function or investigating the conditional Lya-
punov exponents (CLEs). In the latter case the linearized equations read

e = Dg(x,s)e, (4.20)

governing the evolution of small synchronization errors e = y—a. The stability
can be deduced from the signs of the CLEs in this equation. Negative CLEs
ensure a stable synchronization between virtual response and replica system.
In this case the virtual response system is acting as a passive system that is
driven by an active system (virtual drive system). Hence the name active-
passive decomposition.



44 Synchronization and modeling

4.3 Generalized synchronization

The research concerning identical synchronization (IS) led to a new concept
called generalized synchronization (GS), which is broader in its scope and
includes the IS as a special case [2], [65]. While IS is concerned with coupled
identical systems, GS focuses mainly on the coupling between systems with
different dynamical properties. As a consequence, if GS occurs, the relationship
between the state variables of the drive and the response system is not as simple
as Yy = « anymore. Some of the concepts of IS can be transfered directly to
GS. However, as a more general concept GS features many new aspects of
synchronization.

In the simplest case GS involves a synchronization manifold that is a non-
linear functional relationship y = W(x) between drive and response states.
Depending on the systems the function W(-) can either be only slightly non-
linear or it can be very complex in its shape. It can either be smooth or even
non-differentiable. However, in some cases the relationship between drive and
response states is multi-valued, making it impossible to define any function
W(-) at all. Taking these difficulties into account, it is by no means a trivial
task to identify GS for two unidirectional coupled systems. Two main detec-
tion methods have been established, which differ in their approach. One is
based on the detection of a functional relationship between drive and response
system. The other method investigates the behavior of replica systems and is
related to conditional Lyapunov exponents. Since the definition of GS depends
on the detection method, the two approaches lead to concepts of GS that are
not quite congruent [56], [54).

4.3.1 Definition I
Consider two unidirectionally coupled dynamical systems
& — Fla).
¥y = G(y,h(z)), (4.21)

with the state vectors * € R™ and y € R" and the vector fields F' and
G. The first system is driving the second one with the coupling signal h(x).
For this coupling the definition of GS follows Definition(@1l) of IS except for
the characterization of the synchronization manifold M. While for IS the
manifold is simply a plane through the origin y = «, the manifold for GS can
be arbitrarily shaped

M={(z,y) e R"" x R"|y = ¥(x)}, (4.22)

with the ¥ : R™ — R" representing the functional relationship between the
state variables & and y. IS is included in the concept of GS as a special case
where ¥(-) = <d(-).



4.3 Generalized synchronization 45

state space
drive AW X y P
l B — ~ 9
X
response M» y )

Figure 4.6: Generalized synchronization occurs if two (possibly) nonidentical dynamical
systems are coupled in an appropriate way. In the mutual state space the dynamics is
then restricted to the synchronization manifold M, which can be an arbitrarily shaped
hyperplane. The attractor A of the coupled system lies inside M and is surrounded by a
basin of attraction B.

Definition 4.2 In the unidirectional coupling scheme the drive system and
the response system

& = Fla),
§ = Gly.h@)). (4.23)

withx € R™y € R", F: R™ — R™, and h : R™ — R*, have the property of
generalized synchronization iff the two following conditions are met:

(i) There exists an attracting synchronization set
M= {(x,y) € R" xR |y = ¥(x)}, (4.24)

containing the attractor A of the combined system in the mutual state
space
ACMCR™ xR™. (4.25)

(i) There exists a basin of attraction B around the attractor A C B such
that

V(xo,yy) € R™ x R" :
(®(t = 0),y(t = 0)) = (®0,49) € B = lim [[y(t) = ¥(z())| = 0.
(4.26)

The definition above was used for example in [42] and [35] and explicitly
formulated in [56]. Note that it makes no statement about the properties of
W(-). Depending on the investigated drive and response systems the function
may be smooth or even non-differentiable at all [63], [35]. For detecting GS
in the above sense nearest neighbors statistics were suggested in [65] and [59].
These methods use the fact that for synchronized systems points in a small



46 Synchronization and modeling

drive drive
copy
response
response
response response replica

Figure 4.7: A replica system (also auxiliary system) is simply an exact copy of the response
system. During an application the original system and the replica are driven by the same
driving signal.

e-region in the state space of the drive system are mapped by W(-) to points in
the state space of the response system which lie also very near to each other. In
case that no synchronization is established, these points lie arbitrarily scattered
in the state space of the response system.

4.3.2 Definition II

Another method for detecting GS is the application of a so called auxiliary or
replica system as described in [1] (see Fig.ET). The replica system is an exact
copy of the response system

¥ =Gy, h(x)). (4.27)

The purpose of the replica is to test whether the response system retains any
degrees of freedom or whether its dynamics is totally determined by the driving
signal. For the former case the replica system gy’ and the original response
system y behave differently even when driven by the same signal h(x). In
the latter case, when GS is established, both systems asymptotically behave
in the same way. That means in spite of possibly different initial conditions
their trajectories assimilate in the course of time

lim [ly(t) — /(1)) = 0. (4.28)

This behavior can be interpreted as the response system forgetting its initial
state. Following [56] the second definition for GS can be written as

Definition 4.3 In the unidirectional coupling scheme the drive system and
the response system

i = Fla),
§ = Gly.h()). (4.29)

with x € R,y € R", F : R™ — R™, and h : R™ — R*, have the property of
generalized synchronization iff the following condition is met:



4.4 Using synchronization for modeling 47

1) There exists an open basin of attraction B C R™ x R™ such that
P

Yo, y0). (@o.y5) € B = lim ly(t) —y/(0] =0.  (430)

The second definition of GS is more general than the first one because it
includes also the case where there is no functional relationship between the
states of the drive and the response system due to multivaluedness.

4.4 Using synchronization for modeling

At the end of the last chapter the concept of dynamical modeling was formu-
lated (see Section B3)). The basic idea was that a dynamical system is used as
a pool of various response signals to an external driving signal. The response
signals can be combined to model any deterministic input-output relationship
that consists between the driving signal and another output signal. In this
section the requirements for dynamical modeling are investigated in the scope
of synchronization.

Dynamical modeling relies on the stability of the driven dynamical sys-
tem but also on a property that we refer to as reliability. Reliability is inti-
mately related to the concept of Generalized Synchronization and is discussed
in detail in Section EEZTl In Section we show how a dynamical model
can be employed for a prediction task. The example is based on the driven
Lorenz-Oscillator, which was used in [41] to demonstrate the Active-Passive-
Decomposition.

4.4.1 Reliability

A dynamical system that is driven by an input signal {u;}cr as in

oy = f(@i1,uw) or  &(t) = f(et) ul)), (4.31)
is said to be BIBO-stabldl if the output values of the system
Y = gout(mt) s (432)

with an arbitrary output function g.. : R™ — R are finite for finite values
of the input, i.e. in mathematical formalism VC, € R*3C, € Rt : || <
C,,Vt el=|y| < C,,Vt € 1. Since such a behavior is desirable for modeling
purposes, a dynamical model is usually required to be BIBO-stabldl. However,

4Bounded Input Bounded Output

5Sometimes, when it is known that the magnitude of all input values will never exceed
a certain bound Cpax € RT, a weaker version of BIBO-stability can be utilized: VC, <
Cmax3Cy € RY ¢ |uy| < Cy,Vt € T = |y < Cy,Vt € I. Models with this property can
become unstable if the input unexpectedly exceeds the threshold Ciax, which can happen
for example if the input is noisy.



48 Synchronization and modeling

this requirement is not enough. Another important point is that the response
of the driven system is always the same to a specific input signal {u;}er. If
this were not the case, the dynamical system could not be used as a model
for tasks like prediction because it would produce unreliable output and could
not be trained. The response has to be independent of the initial state of the
system, although there may be a transient phase in which the system adjusts
to the input. We call this property reliability and define it as follows

Definition 4.4 A driven discrete dynamical system

Ly = f(wt,l, Ut) s (433)
with ¢, € R™ and f : R™ x R — R™ s said to be reliable iff

V{u }en Vo, ¢, € R™ Ve > 03T € NVt € N
t>T= |z, — x| <e. (4.34)

In analogy a continuous dynamical system

a(t) = fla(t),u(t)), (4.35)
with (t) € R™ and f : R™ x R — R™ is called reliable iff

V{u(t) ber+ Vo, ) € R™Ve > 03T € R*Vt e RT .
t>T=|zlt)—z' ) <e, (4.36)

with xy and x|, the initial states at time step t = 0.

Comparing the definition of reliability with the one of Generalized Syn-
chronization (GS) in B3 we find them almost identical except for two points.
The first difference is that the source of the input signal is not explicitly given
for reliability. That means that a reliable dynamical system has to synchronize
to every possible input signal after a transient phase. The second difference
is that the initial states are not limited to a basin. Since the input source is
not given, practical considerations make it necessary to define reliability as a
global property.

The difference between generalized synchronization and reliability is demon-
strated with a simple, one-dimensional example. Consider the driven Gaussian
map

1y = exp(—a’[zi_y — b)) +uy, (4.37)

with the parameters a = 3.5 and b = 0.5. In [54] this system was examined
for the special case that the input signal u; = sz;, s € R, is a scaled version of
the tent map

zg=1—2|z_1—0.5]. (4.38)



4.4 Using synchronization for modeling 49

Figure 4.8: Bifurcation diagram of the driven Gaussian map in Eq. ([3d) for constant
input signals {us = c}teg. The magnitude ¢ of the input signal is used as a bifurcation
parameter. For every magnitude ¢ € [0,1] the points mark 100 sequential states x; of the
Gaussian map in a stationary mode.

If the scaling factor is set to s = 0.4, the Gaussian map exhibits generalized
synchronization [54]. In this case the system responds always in the same way
to the same input signal. Nevertheless, the system is not reliable because the
generalized synchronization is not indifferent to the input signals but occurs
only if the latter have specific properties. For constant inputs u; = ¢, ¢ € R,
the stationary behavior of the Gaussian map is shown in Fig. 8 One can
see that the spectrum of different responses ranges from stable fixed points
over n-cycles to chaotic behavior, depending on the magnitude of the input.
The signal from the tent map alternates between these regimes and manages
to stabilize the Gaussian map enough to invoke generalized synchronization.
However, for other input signals the reliability of the Gaussian map cannot be
guaranteed.

From the Gaussian map we can draw an important conclusion. A necessary
criterion for the system in Eq. ([BZ33)) to be reliable is the existence of one stable
fixed point for a constant external input, i.e.

V{u; = c}ier,c € RIx, € R™: tlim e — x| = 0. (4.39)

If this requirement is not met, e.g. if the system has multiple fixed points,
the state space is divided into different basins of attraction and the response
from the system depends on the initial state of the system. Another example
is a system with a stable n-cycle. Although such a system has formally only
one basin, it has n different ways (‘phases’) to run through the n-cycle. Thus,
the state space is effectively divided into n sub-basins. Starting in two differ-
ent sub-basins means that the system responds differently to the same input



50 Synchronization and modeling

-30 -20 -10 0 10 20 30 =5 0 5
c X,

Figure 4.9: Left: Fixed point x; of the Duffing oscillator in Eq. (=20) for constant input
u(t) = ¢ in the range ¢ € [—30, 30]. While the second component of the fixed point (dashed
red line) remains at zero, the first component (blue line) changes its value according to the
input. Right: Chaotic Duffing attractor. If the Duffing oscillator is driven by the sinus
signal u(t) = 27sin(1.4¢), it displays chaotic behavior.

signalﬁ. The worst case for a BIBO stable system is chaotic behavior for a
constant input. There is no way to get a reliable response from a chaotically
system since even the smallest deviation from initial conditions already leads
to totally different output signals. Note that the requirement in Eq. (E39) and
analogous arguments also apply to the continuous case.

Although an attractive fixed point for constant input signals is an impor-
tant criterion, it is not sufficient to define a reliable system. Consider for
example the driven single-well Duffing oscillator

l"l = XI9 (440)
By = —xp — 2 — 0215 + ult). (4.41)

For a constant input u(t) = ¢, ¢ € R, t € I, the dynamics settle on a fixed
point as shown in Fig.lL9 for the range ¢ € [—30,30]. However, it was shown
in [57] and [52] that the dynamics becomes chaotic if the oscillator is driven
by an alternating signal u(t) = asin(wt) with a = 27 and w = 1.4 (see rhs of
Fig.E9)). Therefore, even though the Duffing oscillator has a single attractive
fixed point for all constant input signals, it is an unreliable system.

The Gaussian map and the Duffing example showed that the concept of
reliability is similar but also distinct from generalized synchronization and
global stability. A practical way of proving the reliability of a dynamical
system is by finding a suitable Lyapunov function. Consider for example the

6 An example for a stable fixed point and a coexisting 2-cycle is discussed in detail for a
dynamical system of the type x; = tanh(Cx;—1 + bu;) in Section B3Il It is shown that
the basin structure depends on the input values. Thus, the same initial state can belong to
different basins depending on the input signal.



4.4 Using synchronization for modeling 51

Lorenz system

i‘l = O'(ZL‘Q — IL‘1)
1’2 = Trxy — T2 —X1T3, (442)
i‘g = T1X9 — bl‘g

with the parameters 0,6 > 0 and r € R. In 2] it was shown the coupling
scheme

.jfl = O'(SL’Q — 1’1)
Ty = ru(t) —xo —u(t)xs, (4.43)
i‘g = U(t)ZL'Q — bl‘g

leads to generalized synchronization (GS) of the Lorenz system to any input
signal {u(t)}ser. The difference e(t) = y(t) — y'(t) between trajectories of
the system in Eq. ([43) and a replica system is considered and a Lyapunov
function for this variable can be constructed in the following way

Le) = (el/o +e5+¢e3)/2. (4.44)
Using the relations in Eq. (E43]) one can show further that

L(E) = €1é1/0' + €2é2 + €3é3
= e1ey — ef — eg — uegez + uegez — be§
= —(e; —e9/2)* —3e3/4 —be2 < 0. (4.45)

Therefore, the trajectories of every replica system has to assimilate to the
original system independent of the input signal. According to our definition
such a system is called reliable.

Along with the coupling scheme in Eq. ([43) an even simpler one was
considered for the Lorenz system in [42], which is

1 = —oxy + u(t)
1’2 = Ty — T2 — T1X3 . (446)
1’3 = T1T2 — b.Tg

Driving a Lorenz system in this way also leads to GS for all possible input
signals. This can be easily seen if we consider the difference e = y—1v’ between
the system in Eq. (E40) and a replica like before. For the first component it
follows with ¢; = —oe; that it vanishes in the course of time. That leaves the
subsystem

€y = —ey —Ti€3
ég = XT1€9 — beg, (447)



52 Synchronization and modeling

for which the Lyapunov function L = €3 + e can be defined. Following from
this is

L = 2(—e2 — zye9e5 + T1e903 — bel) = —2(e2 + be2) < 0. (4.48)

Again, this is proof that the system in Eq. (246 is reliable.
As an example for discrete dynamics we can use the following system, which
is known from discrete-time recurrent neural networks,

x; = tanh (Cx;_1 + buy) | (4.49)

with the state vector x; € R™, the connection matrix C € R™* ™, the input
connection vector b € R, and the input u; € R (see Section for detailed
description). The nonlinear transformation function tanh(-) in Eq. ([EZ9) is
applied separately to each component of its vector valued argument. It has
the property

|tanh(z) — tanh(y)| < |z —y|, Vz,y €R, (4.50)

which we will use in the following prooiﬁ. Similar to the continuous case the
difference e; = x; — o} between system and replica is considered with the
following Lyapunov function L(e;) = ||e]|*. It follows that

AL(e;) = L(ey) — L(e;1)
= |[tanh (Cm_1 + bu;) — tanh (Cz)_, + bu,)||* — [lec|”
< [ICer]® — el (4.51)

with the last inequality the result of Eq. (ER0). If the connection matrix C
has a shrinking effect on vectors, i.e. if its norm is smaller one, o(C) < 1, it
follows that AL(e;) < 0, which proves that the system in Eq. (£49) is reliable
(for detailed discussion see also Section B3T]).

4.4.2 Modeling with Lorenz systems

In the last section it was shown that a driven dynamical system has to be
reliable in order to use it for dynamical modeling. Two coupling schemes
for the Lorenz system were presented that are suitable candidates for such
a modeling approach. In this section we want to use the second coupling
scheme in Eq. (@46), which is only slightly modified in the first component

"In fact, the transformation function is not restricted to tanh(-). Any function can be
used as long as it complies to the inequality in Eq. @20), which is equivalent to the function
being Lipschitz with the Lipschitz number 1.



4.4 Using synchronization for modeling 53

1t x®

-10 . x@)
_ol S
x® 2 .
-20f _al y
3 NEY
" S
3% -2 0 2 4 -4 -2 0 2 4
c c

Figure 4.10: Fixed point x5 of Lorenz system in Eq. [EE2) for constant input signals
{u(t) = c}ier in the range ¢ € [—4,4]. Changes in the first component of x; are marked
as blue dotted line, second component as green dashed line and third as red line. Left:
parameter set: o7 = 10, r; = 28, by = 2.666, ar; = 1.0 Right: parameter set: o9 = 10,
To = 1, b2 = 20, Qo = 1.0.

(u(t) — ou(t)) and has an additional parameter a > 0, as a basis for developing
a dynamical model:

1 = ao(u(t) —x;)
Ty = arr; —xy — x123) . (4.52)
l"g = Oz(l‘ll‘g — bl‘g)

Note that all numerical simulations in this section were performed with an
integration time ¢; = 0.1, which was also used as the sampling time.

The Lorenz system in Eq. ([E52)) is reliable. That means that for a con-
stant input u(t) = ¢, ¢ € R, the system dynamics settles on a fixed point x;.
In Fig.EETQ the position of this point is shown in relation to the magnitude
¢ € [—4,4] of the constant input signal for two different sets of parameters:
o1 = 10, my = 28, by = 2.666, ay = 1.0 and o9 = 10, 79 = 1, by = 20,
as = 1.0. Leaving out all dynamical effects, i.e. for a very slow dynamics
of the input signal u(t), we can say that the first component of the driven
Lorenz in Eq. (E52) simply follows the external input signal, the second com-
ponent transforms it nonlinearly in a sigmoid fashion, and the third performs
a quadratic transformation.

Taking into account also the dynamical effects, we are able to produce
different responses to an arbitrary input signal u(¢) by changing the free pa-
rameters o, 7, b, and «. If we combine the individual response signals x;(t),
i=1,2,3, in Eq. ([@12), we can form an output signal ¢(t)

y(t) = Z w;x(t) + wo (4.53)



54 Synchronization and modeling

a) b) ---- parallel | ¢y feed—forward
Lorenz system :

Figure 4.11: Different strategies for building a dynamical model with Lorenz systems.
a) Driven Lorenz system as a basis module for the three different strategies. The input
signal drives the system. The response signals from the three state variables are linearly
combined to form the model output. b) Parallel strategy: Different Lorenz systems are
driven with the same input signal. Their individual outputs (three each) is combined in the
model output. There is no interconnection between the individual systems. ¢) Feed-forward
strategy: Lorenz systems are arranged in layers. The Lorenz systems can get their input
from the systems of all preceding layers. System in the same layer can be connected only in
one way, so that no loops occur. Only the first layer is connected to the external input.

with the linear weights w; € R, ¢ = 1,2,3, and the constant offset wy, € R
(see Fig.EETT). In this way the Lorenz system is used as a reservoir or pool
of dynamical responses, which is the basic idea of dynamical modeling (see
Section for details).

Of course a reservoir with three different response signals is not rich enough
to be of any use for any but the simplest modeling tasks. An option is to
extend the Lorenz system with additional state variables, i.e. to create a high-
dimensional nonlinear systems that is able produce a great diversity of response
signals to an input. However, in most cases it is practically not possible to
guarantee reliability of such systems, as the dynamics becomes more and more
complex with each dimension and there is no general rule to find a suitable
Lyapunov functionfl. An alternative way is the usage of many Lorenz systems
with different parameter sets in parallel (see Fig.FLTTl). A finite number M
of Lorenz systems represent the dynamical model. All of these systems are
driven with the same input signal and their 3M response signals are linearly
combined in the model output. This dynamical modeling approach is referred
to as parallel strategy.

The parallel strategy was tested for the following cross-prediction task. The
Rossler system

21 = 2 + 21 (ZQ — 4)
2:'2 = —21 —Z3, (454)
23 = z9+ 04523

was integrated for a time span t = 1000 and the first component was used as
an input signal to the Lorenz systems u(t) = z1(¢). The desired model output

80ne of the exceptions are recurrent neural networks, which are discussed in Section 2



4.4 Using synchronization for modeling 55

. , , , , \ , , \
0 20 40 60 80 100 120 140 160 180 200 A 2 0 2 2 5
t u(®

Figure 4.12: The cross-prediction task consists of predicting the second component of
the Rossler system in Eq. 24 lying a time span 7' = 10 in the future from the current
value of the first component. Left: A sample of the input time series u(¢) = #1(¢) and the
output time series y(t) = z2(t 4+ 10) for the time period ¢ € [0,200]. With a sampling time
of ts = 0.1 each time series has 2000 data points. Right: Plotting input against output, a
complicated nonlinear relationship becomes visible.

was set to y(t) = zo(t+7T') with T' = 10, i.e. the model had to perform a cross-
prediction from the first component to the second component, lying a time
step T'= 10 in the future (see Fig.EETZ). As can be seen the time span 7" = 10
corresponds roughly to one and a half oscillations of the Rossler system.

The first component z;(¢) of the Rossler system in Eq. [E04]) was used to
drive M = 32 parallel Lorenz systems, having each different sets of parameters
Ois Tiy by oy, 1 =1,..., M. The output of the model was the weighted sum of
the Lorenz state variables

g(t) = Z > w2 () + wo, (4.55)

with xy) being the j-th component of the i-th Lorenz system. With a sampling
time of ¢, = 0.1 the integration yielded 10000 data points for the learning phase
of the modeling process. The first 1000 data points were discarded as transient,
while the last 3000 data points were used as a validation set (see Section [A3]).
The other 6000 data points were used for training the 3M 41 weight parameters
in Eq. (E50). This was done by minimizing the mean squared error

6000
MSE = Z (v — ?)t)2 J (4.56)

t=1001

on the training set, which is a quadratic problem with a simple solution scheme
(see Section [A2.T)).

Since randomly picked parameter sets of the Lorenz systems were not likely
to produce good results, the parameters were additionally optimized in a Sim-
ulated Annealing (SA) procedure, similar to the one described in Section B34



56 Synchronization and modeling

Bl parallel
7k B forward [

# models

0 0.5 1 1.5 2 2.5
NMSE [%]

Figure 4.13: Evaluation results of the parallel (left) and the feed-forward strategy (right)
on the test set. The NMSE value for 20 different modeling runs for each strategy. The
average value for the parallel strategy is NMSE = 1.9. The results of the forward strategy
group around NMSE = 0.9.

Random changes were performed iteratively on the 4M parameters o;, r;, b;,
and «;. If these changes led to a lower MSE on the validation set, they were
automatically accepted. If they led to a higher MSE, they were accepted
with a certain probability p that was lowered from iteration to iteration. The
number of iterations was set to 400. The initial parameters were chosen from
the uniform distributions: o; ~ U[0, 20], r; ~ U[0, 40], b; ~ U0, 10], and

After the training process the model was evaluated on a fresh test set
consisting of 10000 data points. The quality measure was the normalized
mean squared error

100 % 10000 R
NMSE = —= Y (v —9)* (4.57)
Y t=1001

with crs being the variance of the target signal. Again the first 1000 data
points were left out to avoid influence of transient behavior. This modeling
procedure was repeated for 20 different models. The results are displayed in
Fig. LT3 (lhs). Although not a perfect model for cross-prediction, the average
value of NMSE = 1.9 indicates a result that can be called satisfactory. In
Fig. LTl an example of a model cross-prediction on the test set is shown for
1000 data points from the time span ¢ € [250, 350].

The problem with the parallel strategy is that the response signals from the
different Lorenz systems do not differ enough. Different parameter sets may
cause slower or faster reactions to the input signal and also different transfor-
mations (see Fig.ELT0). However, the response signals still show a significant
correlation with the input signal. A mechanism is needed that can introduce



4.4 Using synchronization for modeling 57

- orig I
— pred

y(®

1 1 1 1 1 1 1 1
250 260 270 280 290 300 310 320 330 340 350

Figure 4.14: The original signal y(¢) (blue dashed line) and the predicted signal §(t) (red
line) of the dynamical model consisting of parallel arranged Lorenz systems for a sample
time span t € [250,350] taken from the test set. Below, the corresponding model error
e(t) = §(t) — y(t) is plotted.

- orig I
— pred

y(®

e(t)

-0.5F -

1 1 1 1 1 1 1 1 1
250 260 270 280 290 300 310 320 330 340 350
t

Figure 4.15: The original signal y(¢) (blue dashed line) and the predicted signal 4(¢) (red
line) are shown for the same time span ¢t € [250, 350] as in Fig.EET4 However, the dynamical
model employed follows the feed-forward strategy. Below, the corresponding model error
e(t) = §(t) — y(t) is plotted.



58 Synchronization and modeling

greater delays between the responses and produce internal combinations of
them. Such a mechanism can be found by coupling the Lorenz systems in-
stead of using them separately.

We set the output of the Lorenz system in Eq. (E52)) to be

) 1 )
0y ==2V4), i=1,...,M. (4.58)
T
If two systems are uni-directionally coupled to each other, the output of the
driving system is used as the input u(t) to the driven system in Eq. ([{E52). If
two Lorenz systems are coupled to one system, the input u(t) is a weighted
sum of the two outputs. More generally the input to the i-th Lorenz system

can be written as
M

ul () = i€ (t) + bu™(t) (4.59)
j=1

with ¢;; € R being the connection weight form the j-th system to the i-th
system and b; € R the connection weight to the external input u®™*(t). Since
recurrent loops might lead to unreliable systems the coupling scheme has to be
restricted to feed-forward connections (see Fig.ELTTl). Formally this means that
the connection matrix C € RM*M with the elements equal to the connection
weights ¢;; is restricted to a lower left matrizg].

Similar to the parallel strategy the forward strategy was tested on the same
cross-prediction task as described above. Everything was done in the same
way as for the parallel strategy except that the M = 32 Lorenz systems were
arranged in 4 layers with 8 systems each. The systems in the first layer were
driven by the external input signal. The other systems were driven by internal
coupling signals. The initial coupling scheme was chosen in such a way that
each Lorenz system was coupled to exactly one system in a previous layer.
The coupling weights were randomly chosen from a uniform distribution in
¢; € [—1.5,0.5]U 0.5, 1.5]. Additionally 30 randomly placed connections were
introduced with the same uniform distribution and according to the forward
scheme.

The SA procedure was also done similarly as in the parallel strategy. How-
ever, instead of spending all 400 iteration on optimizing the parameters of
the Lorenz systems, only 200 steps were employed. The other 200 iterations
were used to optimize the connection matrix C'. New connections were added,
old connections were cut or their value was rescaled. The resulting model was
evaluated with the same NMSE criterion from Eq. (ER1). The results for 20 dif-
ferent runs are shown in Fig.EET3 (rhs). With an average value of NMSE = 0.9
the performance of this network-like model for the cross-prediction task is very
good. In Fig.LTH an example of the model prediction is shown for the time

91f the notations seem too confusing, the reader is advised to read Section Bl first, where
the coupling structure is explained in a more general but also more systematic way.



4.4 Using synchronization for modeling 59

sample t € [250, 350] of the test set. Compared with the parallel strategy, the
forward strategy is superior.

Recurrent connections in the connection matrix C' would contribute even
more to the diversity of the different response signals. However, in the case
of coupled Lorenz systems the reliability cannot be guaranteed if the coupling
scheme deviates from the feed-forward form. With the Recurrent Neural Net-
works an example system is presented in Section b2 that can employ recurrent
loops, because in this case there exists an easy criterion that can ensure relia-
bility.



60

Synchronization and modeling




Chapter 5

Dynamical networks

In the Chapter Bl the concept of dynamical modeling has been introduced
to the reader. It was shown that it offers interesting features, which can
prove beneficial for some modeling tasks. In this chapter we want to shift our
attention to the types of models that can be employed for dynamical modeling.
It was already mentioned in Chapter B that it is advantageous to use models,
comprising elements that are coupled to each other, because they strike a good
balance between simplicity and complexity, i.e. the diversity of the internal
responses is high but reliability can still be ensured. They are able to exhibit a
very complex behavior even if the included elements themselves have a simple
dynamics. Since this is exactly the property that makes them interesting for
dynamical modeling, the focus of this chapter are models with an internal
network structure. We call these models dynamical networks, referring to the
internal dynamics of the individual elements and the network-like coupling
schemdl.

In Section Bl we start by introducing the general structure of dynami-
cal networks. The reader is familiarized with notation issues and some use-
ful terms. In Section the most prominent representatives of dynamical
networks are presented: Recurrent Neural Networks. As a dynamical exten-
sion of static Feedforward Neural Networks, they are much more versatile but
also much more complex to handle. Because of this complexity the simpler
Feedforward Neural Networks still enjoy a greater popularity, dominating in
applications and scientific publications. Nevertheless, much has been done to
change the neglected status of Recurrent Neural Networks. The most impor-
tant ideas are summarized in Section 2. Some of these ideas are picked up in
Section b3 where we take a closer look at the application of recurrent networks
for modeling. In numerical experiments strengths and weaknesses of recurrent
networks are revealed and some techniques are introduced that can improve

Tn the literature the term dynamical network is sometimes applied to artificial neural
networks with a connection matrix that is not constant in time. However, this usage is not
adopted in this thesis.



62 Dynamical networks

the performance of these networks.

5.1 General structure of dynamical networks

Dynamical networks have many different realizations. There are rings of logis-
tic maps, chains of Lorenz Oscillators, recurrent neural networks, and so on.
Despite their obvious differences, which lie mostly in the internal dynamics of
the elements, these systems have a coupling structure that can be described
in a common framework. All of the mentioned models represent dynamical
networks, and the network-like structure is the same for every one of them.
The purpose of this section is to show the common background of dynamical
networks and to introduce a compact notation for further usage.

5.1.1 Networks with multi-dimensional elements

Consider a dynamical model with M elements. Every element has an internal
state that can be described by a finite number of real values, merged into
one state vector. If the state vector has just one component, the element is
called one-dimensional, otherwise it is called multi-dimensional. The update
equation for the state vector :cﬁ) R4 of the d-dimensional i-th element]
at time step ¢t € [ C N can generally be written as

— £ (wt , (“) =1, M tel, (5.1)

with It(i) € R being a value of the scalar internal input signal, {It(i)}te]l, which
drives the i-th element (see also Fig.BEdl). The transfer or update function
FO R xR — R in Eq. (1) is in most cases a nonlinear function. In
continuous models the elements change their states not abruptly in discrete
time steps but continuously, as defined by the wector field. Instead of the
difference equations in Eq. (B]) we have ordinary differential equations (ODEs)

e (t) = f9 (29), 191)), i=1,...,M, t€ICR, (5.2)

with £@ RY xR — Rd(i), here playing the role of a vector field.
All elements produce internal output signals, which are functions of their

state variables
RO g<>( <z>>, i=1,...,M, tel, (5-3)

and for continuous networks

A1) =g (29(t)), i=1,....,M, tel. (5.4)

2In this section an index in parenthesis, like (9| is being used to indicate that the indexed
variable is associated with the i-th element.



5.1 General structure of dynamical networks 63

I?i)put_. SO output output

0 70 SAY T
- 0 Xy g Zi X -
b QO ’

e, T

Figure 5.1: Left: Driven by the internal input signal {It(i)}te]l, the i-th element changes its

state wff) according to Eq. &) and produces an output zgi) according to Eq. (&3]). Right:

The network consists of elements that are mutually connected by weights cg-i). It is driven

by the external input signal {u;}+cr and produces an output signal {y;}tcr according to

Eq. &10).

with a possibly nonlinear output function g : R — R. For even greater
generality the internal output signals could also be chosen multi-dimensional.
However, this would imply many parallel connection paths between the el-
ements, which would complicate the notation in an unnecessary way. For
simplification we consider only the one-dimensional case here.

The elements of dynamical networks are internally connected to each other.
That means that an element can receive internal output signals of other ele-
ments and vice versa send its own output signal to them. All signals, mﬂu—
encing the i-th element, are summed up in the internal input signal {[ }te[[
from Eq. (&20)). It consist of the following addends

M
19 = Z VB D by, i=1,.. M, tel. (5.5)
k=

Again, in the continuous case the analogy to Eq. (2H) can simply be produced
by eXChan%lng the discrete time series for the continuous signals. The pa-

rameters ¢’ € R, 4,7 = 1,..., M, in Eq. (&) are called internal connection

(») represents a connection from the j-th element to
the i-th element. A nonzero value of cg»i) means that the output z,gi )1 of the

pammeters Specifically,

j-th element contributes to the internal input [t(i) of the i-th element and thus
influences the update of the latter’s statd]. The magnitude of cg-i) reveals the
strength of the unidirectional influence. A special role is reserved for param-
eter c(()l) eR,i=1,...,M. It is usually referred to as the bias of the i-th
element and can be regarded as the connection strength to a virtual, constant
signal {zéo) ter, with 29 =1, vtel

3This includes also possible auto-connections or self-connections for j = i.



64 Dynamical networks

Similar to the internal connections, the parameters b e R, i =1,..., M
in Eq. (B0) represent connections of the elements to the external input signal
{us }er, which drives the dynamical model. In case the external connection
parameter b is nonzero the state ) of the i-th element is influenced by
the external signal. In case the external input signal is multi-valued with p
different channels, u; = (uyy, ..., uy)", the external connection parameter is
a vector-valued parameter, b = (bgi), . bz(,i))T, with an extra component for
every input channel.

The external output of a dynamical model is a function of its internal states

v =gous (2 2™)or y(t) = gow (@0(0), ., @M (D) . (5.6)

If direct links from the external input to the external output are necessary,
they can also be included into the output function geu(-). A typical output
function is a simple weighted sum over all state variables of the network

M
ye=> (w7 zl? +wy, (5.7)
i=1
_ : AT .
with output parameters w® = (wgl), e ,wé%) e R for every element and

an additional bias value wy € R that represents a constant offset in the output

signal. If the external output is multi-valued, y, = (Y11, ..., yq)", Eq. &)
(4)

applies to every output channel with an extra set of output parameters w;”,

r=1,....M,5=1,...,q.

5.1.2 Networks with one-dimensional elements

In Section LTIl networks with multi-dimensional elements are described on
a very general level to include an extensive class of dynamical models with
a network-like structure and point out common ideas and properties of its
members. In this way, different models, like rings of logistic maps or chains of
Chua oscillators, fit in the introduced scheme. However, due to generalization
the presented equations lack a certain compactness and, in their current form,
are cumbersome for further usage. In this section we loosen our claim for
generality and state the equations of dynamical networks for the prevalent case
of discrete networks with one-dimensional elements and the usual settings that
are used in this thesis.

For one-dimensional elements, the update equations in Eq. (B]) can be
written as

2 = fO W 1Dy i=1,.. M, tel, (5.8)

with the nonlinear transfer function f@® : R x R — R. In many cases the
transfer function depends only on the internal input signal

FOED IO = Oy i=1,... M, tel, (5.9)



5.1 General structure of dynamical networks 65

with a so called transformation function h® : R — R, which transforms the
internal input signal {[t(Z)}tGI[ in a nonlinear way. For example, in artificial
neural networks this function is usually sigmoid, like tanh(-). It limits the
amplitude of the input signal and is often referred to as squashing function.
Elements whose update function is represented by a transfer function as
in Eq. (29) are able to describe time series from discrete systems very well
but sometimes lack to capture smoother dynamics. For continuous signals the
transformation function in Eq. (B9)) can be augmented by an additional term

FOED 19y = @20 4 nO(IPY ) i=1,... M, tel, (5.10)

with the so-called relazation parameter a'’ € (—1,1) C R. For positive relax-
ation parameters, ¥ > 0, the additional term in Eq. (5I0) has an averaging
effect on the dynamics of the element, producing a smoother state transition.
For negative values, a¥ < 0, the dynamics can be made even more erratic. In
this way the relaxation parameter offers a leverage for the smoothness of the
element dynamics.

For multi-dimensional elements the output function ¢ : R — R of the
i-th element is a function of its d state variables. Usually it is chosen to
produce linear combinations of the d® state variables, reducing in this way
a multi-dimensional signal to a scalar signal that can be distributed among
the other elements. This task is superfluous for one-dimensional elements.
Here, the only useful task of output functions ¢(-) is to transform the scalar
states of the elements. However, since nonlinear transformation of internal
signals is already performed by the functions A, the application of the output
functions ¢ () is mostly redundant. For this reason, output functions are
not usedl, setting them effectively equal to identical functions, g () =1id(-),
1=1,..., M. In this way the output of a one-dimensional element is equal to
its state variable

20 =20 i=1,... M tel, (5.11)

“In some publications the roles of the functions ¢(¥(-) and h((-) are reversed. The output
functions g(¥) (-) are responsible for internal transformations and the transfer functions A (.)
are not used. In this case the update equations read

) = g0,
J

instead of
) =G ).
J
For invertible functions it can be shown that both forms are equivalent [33]. However, this
does not apply to arbitrary functions.



66 Dynamical networks

and the internal input signal from Eq. (B20) transfers to

M
19 = Z e oy, =1, M, tel, (5.12)
k=

which we can express without usage of the internal output signals {zt(i)}teﬂ.
The equations Eq. (EI0) and Eq. (E12) completely describe the determin-
istic behavior of driven networks with one-dimensional elements. However, we
can now derive a very compact matrix notation. Since M one-dimensional ele-
ments are used, the state of the whole network is defined in one M-dimensional
vector oy = (xgl), o ,a:gM))T, which includes all individual states of the ele-
ments as components. Taking the before mentioned specifications into account,
the update equation for the network state can be written in a compact matrix

form

@, = Az, +h(I,), tel, (5.13)

with the relazation matriz A being a diagonal matrix with the relaxation
parameters a in the diagonal. The vector-valued input signal is defined as

IL=", . I =Cxyy+co+bu,, tel, (5.14)

with the connection matriz C, whose entries equal the connection parameters,
Cij = cﬁ). The bias vector ¢y = (c((]l), . c(()M))T, and the external connec-
tion vector b = (b, ... bM))T are similarly defined by the corresponding
parameters from Eq. (212). The arrow above the vector-valued transforma-

tion function h(-) in Eq. (EI3) is a special abbreviation in the notation. It

denotes that each transformation function ) : R — Rin h = (V) ... D)
is applied 1nd1v1dually to the correspondm;; component of the vector-valued
argument, i.e. A1) is applied to I () ) to I , and so on. If all transformation

functions are equal, R (-) = h(-), i =1,..., M, we write Eq. (B13]) as
x, = Az, +h(ly), tel, (5.15)

which means that function A : R — R is applied to each component of its
vector valued argument separately.
The output of the network in Eq. (&) reduces to a simple linear sum

ye=w’ - @ 4wy = Zw Y+ w, (5.16)

with the output coefficients w = (w®, ..., w™))T and the bias w, € R.



5.2 Recurrent Neural Networks 67

5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the best example of models with in-
ternal dynamics and a network-like structure. Formally an extension to Feed-
forward Neural Networks (FNNs), they transcend the latter in their ability to
approximate the behavior of diverse systems. Their internal memory makes
RNNs well suited for the identification of patterns in time as well as in space
and is the basis for their computational superiority. However, the downside
of the internal dynamics is that RNNs are difficult to handle in applications.
In contrast to simple input-output models, like FNNs, they represent full dy-
namical systems on their own. Thus, issues like stability have to be dealt
with.

There are many different approaches to RNNs and a complete review of
them would probably fill many books. Coarsely, RNNs can be divided in two
classes: the ones with a constant input and the ones with a time varying
input [31]. The former class is suitable for static modeling tasks like pattern
recognition, where the RNNs are used as associative memory. The latter class
is applied to temporal processing of input-output relationships and is suited
for dynamical problems like prediction or simulation (see Section & for detailed
definitions). Since this work centers around dynamical applications, only the
second class of RNNs is of interest to us. Therefore relaxation networks like
Hopfield networks or Boltzman machines, which represent a great part of the
usual RNN literature, will not be discussed here (for a broad review see [31]).

5.2.1 Elman/Jordan Networks

Coming from the field of automatic language processing, Jordan developed one
of the earliest RNNs in 1986 [39)], followed by Elman in 1990 with a slightly
different approach [25]. Both network types are named after their creators;
and today, Elman and Jordan networks rank among the classical architectures
of RNNs. Their internal structure only slightly deviates from the traditional
structure of FNNs. Like an ordinary feedforward network, Elman and Jordan
networks consist of one input layer, one hidden layer, and one output layer
(see Fig.b2). However, what sets them apart is an additional layer, which
is called the context layer. The context layer is used as an internal memory
that (partially) stores the previous state of the network. Every time step the
context layer provides its contents as an additional input next to the external
input. Thus, every external input value is evaluated in the context of the
previous state of the network.

The difference between Elman and Jordan networks lies in what part of the
previous state of the network is stored. The context layer of Elman networks
stores the contents of the hidden layer while the context layer of Jordan net-
works stores the contents of the output layer. Also, all neurons in the context



68 Dynamical networks

feedforward Elman Jordan

copy

structure
copy |__hidden _|

] .npuH-!m )
in hid out in . con. hid .out in . con. hid .out Q

connection | n/ in o
matI’IX hid con ‘ e con - \ .
out out i “ out

Figure 5.2: Left: Feedforward structure with the input layer connected to the hidden
layer and the hidden layer connected to the output layer. The connection matrix has non-
vanishing entries (marked as tinged areas) only in the lower left below the diagonal. Middle:
The Elman network has an additional context layer, which is an exact copy of the previous
output of the hidden layer. The connection matrix has entries above the diagonal, marking
it as a recurrent connection matrix, where the hidden neurons are connected to the context
neurons with weights equal one. Right: The Jordan network is similar to the Elman
network. However, the context layer is a copy of the previous contents of the output layer.
The connection matrix indicates connections with weights equal one from the output neurons
to the context neurons. Additionally, the context neurons have a self reference with weights
equal p € [0, 1).

layer of Jordan networks have additionally a feedback to themselves, render-
ing them effectively smoothing filters for the network output. Both network
types can be easily described in our notation from Section as they are
only rigorous restrictions of the generalized dynamical networks. Assumed the
network has M;, input neurons, M., context neurons, My;q hidden neurons,
and M, output neurons, with M = M, + M.on + Myiqa + Moy, the neurons
are arranged according to their function. Then the external connection vector
b and the internal connection matrix C' in Eq. (EE14)) are restricted as follows.
The external connection vector has non-vanishing entries only for the input
elements

b= (by,... by ,0,...,0)7 . (5.17)

The connection matrix C' of both types of networks has the typical structure
as schematically depicted in Fig..2 It has roughly the lower left structure
of a feedforward network with additional blocks above the diagonal, which
indicate connections from hidden (output) neurons to context neurons. Since
the context layer is merely a copy of the hidden (output) layer, the additional
blocks are diagonal with entries equal one.

Because of the rigid rules that restrict the internal recurrent connections
to a specified set, Elman and Jordan networks belong to the class of partially
recurrent networks. Typically, the weights of the recurrent connections are



5.2 Recurrent Neural Networks 69

synapse feedback . activation feedback output feedback

B I e
= "L

Figure 5.3: Three basic methods of local feedback. Depending on the position of the linear
filter they are called local activation feedback, local synapse feedback, or local output feedback.
(Figure freely drawn after [9].)

set to a constant value and are not changed during the learning phase. The
relatively rigid internal structure of both network types allows for a simpler
training procedure. However, the advantage of an easier training is often paid
for by a lack of variety in the internal dynamics. Fully recurrent networks are
much harder to train. However, their internal dynamics is in most cases much
richer.

5.2.2 Locally recurrent globally forward

Another approach of bringing recurrent elements into former feedforward struc-
tures of neural networks were the so called Locally Recurrent Globally Forward
Networks (LRGFN), proposed by Tsoi and Back in [68]. The main feature of
these networks is that the recurrent loops are hidden in the dynamics of the
individual elements. On a global level all elements are connected in a feedfor-
ward scheme, meaning that the output of an element does not influence other
elements that lie in the same or in a preceding layer. However, on the local
level feedback is present. This is achieved by introducing an internal mem-
ory and dynamics to the elements, making them more than passive nonlinear
transformation functions.

The local feedback is implemented as linearly filtered (FIR or IIR) versions
of the internal signals [68]. Depending on where the linear filter is placed one
can distinguish three different methods (see Fig.B3)). If the internal signals
{a:gi) }Her are filtered before they are summed up to the elemental input {It(i) Her,
the method is called local synapse feedback. If the signals {[t(i)}te]l are filtered
before they are nonlinearly transformed, the method is called local activation
feedback. The last method is called local output feedback. Here a filtered version
of its own output signal {xil)}teﬂ is fed back to the element.

The advantage of LRGFNs is that the stability of the network can be
easily ensured. If all linear filters are stable, then the same is valid for the
whole network [49]. In contrast to pure feedforward architectures the internal
dynamics of LRGFNs allows them to store information for long periods of
time, making the latter ideal for time processing tasks. However, similar to



70 Dynamical networks

partially connected networks, the emphasis on stability limits the range of
possible responses of the network to externally applied driving signals.

Note that in a sense the coupled Lorenz oscillators that were used for mod-
eling in Section are continuous LRGFNs. There we exploited the stability
property of individual driven Lorenz oscillators for building a stable network.
In analogy to LRGFNs the global feedforward coupling scheme ensured us the
stability of the whole system.

5.2.3 Echo State Networks

In contrast to the classical Elman and Jordan networks, fully recurrent net-
works are not restricted in their choice of recurrent connections. This freedom
of choice comes at a high cost, though. Since the structure does not follow
specific rules, the training of a fully recurrent network is much more compli-
cated. Williams and Zipser presented in [69] one of the first learning algorithms
that was capable of adjusting a fully recurrent architecture to a specific task.
Later more algorithms were added with the Backpropagation Through Time
and Realtime Recurrent Learning the most popular among them [31]. Every
one of these approaches suffers from being computationally intensive and from
frequently producing suboptimal solutions. Another drawback of fully recur-
rent networks is that stability is not automatically ensured by the training
procedure. Therefore, although these networks have very good approximation
abilities, they are usually avoided in applications due to their complexity.

Recently, a new modeling approach was presented by Jaeger in [38] (see
also [36], [37]) that tries to overcome the weaknesses of the RNNs concern-
ing trainingﬁ. The modeling technique is referred to as Echo State Networks
(ESNs). The naming is a little misleading in implying a new sort of network
even though the internal dynamics of the neurons in ESNs are still the same
as in simple sigmoid RNNs. The difference to former approaches lies rather in
the training method, which will be described below.

The state equations of an ESN, consisting of M neurons and driven by a
one-dimensional signal {u, }cr, can be written in our notation as

x; = Axy_q + tanh(Cxy_ 1 + co + buy) , (5.18)

with the state vector x; € RM. The relaxation matrix A is a diagonal matrix
with the diagonal elements a;; € [0,1), i« = {1,...,M}. Every element has
its own bias value, subsumed in the vector ¢, € RM. If the input signal is
k-dimensional, i.e. u, € R* with k& > 1, the input coefficients are expressed as
a matrix B € RM** instead of a vector b € R,

®Parallel to and independent from Jaeger’s work, Maass et al. proposed in 8] a similar
approach called Liquid State Machines. The difference between the two methods lies in
the type of networks they are applied to, which are simple amplitude RNNs for Jaeger and
spiking RNNs for Maass.



5.2 Recurrent Neural Networks 71

The Echo State approach involves randomly creating sparsely connected
RNNs and using their state variables in Eq. (2I8) as reservoirs of different dy-
namics that can be superimposed to model any desired functional relationship
between the input and the output signal. The network output is represented
by the dynamics of the output neuron

M
Yt = Gout (Z wi:cgz) + w(]) = Gous (W' @t + wp) | (5.19)
i=1

with xgi) the i-th component of state vector @; in Eq. (BI) and the trans-
formation function g,y () being either linear or sigmoid. A constant offset in
the output is formally added as an extra weight wy € R. If the output of the
network is d-dimensional, i.e. y, € R? with d > 1, the output weights form a
matrix W € RM*? instead of a vector w € RM.

The main idea of ESNs is to leave all internal parameters, e.g. the connec-
tion matrix C' or relaxation matrix A, untouched during the training phase.
In contrast to conventional approaches these parameters are randomly gen-
erated and held fixed at their initial values. Only the output weights w;,
i =0,1,...,M, from Eq.([I9) are adapted to the training data. In this
way the modeling procedure is simplified to a quadratic optimization problem,
making the optimal solution computable by some simple matrix manipulations
(see Section [A2T]).

The price that has to be paid for the minimalistic training efforts of ESNs
lies in the large sizes of the networks. In order to create a diversity of elemental
dynamics in Eq. (EI8) the number of neurons has to be chosen sufficiently high.
It is characteristic for ESNs to have more than 100 neurons, reaching even 1000
neurons [38]. These are numbers, which would prove more than problematic
for usual training methods like Backpropagation Through Time.

Since the internal parameters are not adapted, the stability and reliability
of ESNs has to be ensured in some other way. Otherwise, the dynamics could
become unreliable as in any other complex dynamical system, which would
rend the network useless for modeling purposes. The stability of ESNs is
enforced by scaling the internal connection matrix C and the relaxation matrix
A in Eq. (EI8) in an appropriate way [36] (see also Section l31l). Jaeger refers
to RNNs whose matrices comply to the scaling conditions as ESNs [36].

In a special mode of ESNs the output of recurrent networks is coupled back
by an external feedback loop. In this case the state equations read

x, = Az, + tanh(Cxy_ + ¢ + buy + c*Fy,_1) (5.20)

with the feedback coefficients c¢”** € RM for one-dimensional output and
CPak ¢ RMd for d-dimensional output. We refer to this mode as the external
mode of the ESNs to set it apart from the internal mode, where c’** = 0.



72 Dynamical networks

It is important to differentiate between the two modes. While the internal
mode guarantees stability , the external mode does not. We will discuss the
implications in more detail in Section B3

5.3 Practical aspects of RNNs

The idea that was presented with the Echo State Networks (ESNs) in [38] is
very fascinating. A randomly and sparsely connected network is able to per-
form complex computations simply by combining the diverse response signals
of the individual elements. Compared to the previous approaches concerning
Recurrent Neural Networks (RNNs), which typically involve the optimization
of every internal connection in computationally intensive procedures like RTRL
or BPTTﬁ, the ESN approach seems to involve only minor computational ef-
forts. Not only that, Jaeger showed in [38] that ESNs can well compete with
the canonical RNNs and even outperform them.

In this section we want to explore the ESN approach since it fits seamlessly
into the scope of using generalized synchronization for modeling. One of the
major concerns in applications is the stability of models. Although stability is
also the key concept of ESNs, it is treated rather shortly by Jaeger. For this
reason we examine this aspect in greater detail and try to clarify some of its
implications. Furthermore we show that the strategy of ESNs to use random
connections, although intriguingly simple, is often not adequate to produce
good models. Some techniques are presented that can considerably improve
the performance of ESNs.

A mixture between ESNs and canonical RNNs is explored, which tries to
combine the advantage of both approaches. The main idea of this combination
is to use sparsely connected networks and to adapt them to specific tasks.
However, instead of using a computationally expensive optimization routine
like BPTT the diversity of the internal dynamics is exploited for the adaptation
process. We argue that since the ESNs have a rich internal dynamics from the
start, they do not depend on intensive optimization methods that are based on
gradient descend. Rather some minor structure changes, like adding, cutting,
or rewiring some of the connections, are oftentimes sufficient to adapt the
RNNs to the modeling objectives.

The proposed RNNs are a mixture between canonical RNNs and ESNs be-
cause they are adapted to modeling tasks like the former but exploit at the
same time the rich internal dynamics like the latter. Since they depend on
a comprehensive reservoir of different internal signals the number of elements
in the new RNNs is typically greater than in canonical RNNs. However, be-
cause of the adaptation process this number can be usually much smaller than

6Real Time Recurrent Learning and Backpropagation Through Time are the standard
methods for training RNNs [31].



5.3 Practical aspects of RNNs 73

in ESNs in order to achieve comparable performances, making the combined
approach better suited for time critical applications.

5.3.1 Stability revised

The Echo State approach is based on random connection matrices. Since ESNs
are fully recurrent, special attention has to be paid to their stability properties.
Jaeger provides in [36] stability conditions for the ENS. The stability of an ESN
is guaranteed if its connection matrix C' has a norm smaller one:

o(C) <1, (5.21)

where o(C') denotes the largest singular value or the 2-norm of matrix C. This
is valid in the global sense, i.e. a network with the state equations

Ly = tanh(C:Et_l + but) (522)

may start at arbitrary initial states £y € R? and x, € R? and nevertheless
arrive at the same trajectory

Jim |z — i =0, (5.23)

given that it is driven by the same input signal {u;};cr. This is what we call
reliable because the model answers always in the same way to an external input
after a finite transient phase (see Section EZZT]). On the other hand if

p(C) > 1, (5.24)

is valid, with p(C') denoting the spectral radiud] of C, it can be proved that
the dynamics in Eq. (B21]) is unreliable.

According to Jaeger the interesting regime of scaling lies between these two
cases. Numerical observations suggest that the condition in Eq. (B2]]) is too
strict. Jaeger mentions that he experimentally found

p(C) <1, (5.25)

to be a sufficient condition for stability [36]. In practice the stability conditions
can be ensured for all possible connection matrices C'. Since both values o(C')
and p(C) scale linearly with a multiplicative factor in the connection matrix,
the stability conditions are fulfilled by using a modified connection matrix
C™" = o - C with an appropriate scaling factor & € R so that p(a-C) < 1
is valid [36].

"The spectral radius p(C) of an arbitrary matrix C is defined as the maximum of its
greatest eigenvalue: p(C) = max{|A;| | A; is eigenvalue of C'}. For symmetrical matrices
the spectral radius is equal to the greatest singular value and thus to the matrix 2-norm.



74 Dynamical networks

Jaeger’s arguments seem intuitive since it is known from linear systems
Ly — Awt,1 (526)

that the zero state & = 0 is a stable equilibrium for all initial conditions if the
spectral radius of A is smaller one,

p(A) < 1. (5.27)

Such a passive system would always produce reliable response signals when
driven by an external signal. However, the problem is that this property
is partially destroyed for ESNs by the nonlinear transformation of the tanh-
function. The condition in Eq. (B2H) also includes unreliable networks.

Consider as an example a network with the input coefficients b = (1,1)7
and the following connection matrix

C— 0.34 231 . (5.28)
—0.56 —1.93

The norm and the spectral radius of this matrix are
0(C) ~3.07 and p(C)~0.79. (5.29)

Following Jaeger’s concept a network with such a connection matrix should
have the "echo state property”, i.e. it should be reliable for all input signals
{u;}te1. However, this is not the case. For the zero input signal with u, =
0,Vt € I, the network in Eq. (B22) follows different trajectories depending on
the initial state (see Fig.[b5.4l).

In the numerical experiment the recurrent network with the connection ma-
trix C' defined in Eq. (B28) was iterated 2000 time steps according to Eq. (B22)
for different initial states @, € R?. Additionally to the stable equilibrium point
z1 = (0,0)T the system has also a stable 2-cycle, alternating between the points
294 ~ (0.864, —0.694)T and zq, ~ (—0.864,0.694)” which are both stable fixed
points of the 2-iterated system equations in Eq. (£22)). The basins of these at-
tractors and the stationary behavior of the first component of the network are
depicted in Fig.BAl The basin of the 2-cycle is split in region 2a and region 2b
to mark the regular cycle and the anti-cycle, which result effectively in two
different outputs from the network.

Since the network behaves in different ways, depending on the initial states,
it does not fulfill the requirement for a reliable model, which is forgetting its
history and approaching a specific trajectory that corresponds to the input
signal. One may argue that the network could always be started from the
same initial state, thus leading to the same behavior. However, this does not
provide the desired reliability condition, as is shown next.



5.3 Practical aspects of RNNs 75

0.8 A
2 T T T T T r . i
. xtir region 1
. region 2b t
0:
. |
. i Xt region 2a |
region 1 t
0.
-0.2] 1K
-0.4 . . ' ' ' j
region 2a thl- region 2b |
-0.6 g o
-08 b . . . . ]
1 -0.5 )?1 05 1 To92 To5 — — 3
’ t

Figure 5.4: Left: Depending on the initial state ¢ = (z,23)", the network dynamics
in Eq. (BZ2) settles either on the fixed point z; = (0,0)T (region 1) or on the 2-cycle
Zoap ~ (£0.864, F0.694)T (region 2a/b). The three orbit points z1, Z2q4/p are marked as
white circles. Right: The final behavior of the first component of the state vector for time
steps t = 1991, ...,2000. Either constantly at zero (region 1) or alternation between —0.864
and 0.864 (region 2a/b). The behavior of the second component of the state is similar (not
shown here).

In [36] Jaeger admits that ”Recurrent networks [...] may exhibit disjoint
regions A, B of their state space in which network states stay contained”.
Additionally, he requires these regions to be independent of the input, and
his discussion of the network behavior is based on the existence of one such
region, in which the network dynamics takes place and which he calls the set
of admissible states [36]. This requirement is very problematic. If multiple
attractors coexist in a nonlinear system, their basins of attraction generally do
depend on the input signal. This is demonstrated with the previous example
in Fig. .0 and Fig..8l Instead of driving the network with a pure zero signal,
a simple sine signal with the amplitude a = 0.15 is prepended (see Fig.[R.H).
The driving is started at three different points in time t, = 1, t, = 101,
and ty = 301, which results in starting with a zero amplitude, the maximum
amplitude and the minimum amplitude, respectively. For each of these runs
the signal amplitude is set to zero at time step t; = 1200 and the network
is given 800 time steps to settle into a stationary behavior. In analogy to
Fig.BE 4l the initial states that result in different network dynamics at time step
t = 2000 are marked as belonging to region 1, region 2a, or region 2b (see
Fig.b6l). As can be clearly seen, the basins of attraction are not fixed and
depend strongly on the value of the input signal at the time step at which the
driving was started.

This means that starting for example from the zero initial state oy = (0,0)7
can result in three different response signals. If the driving is started at time
step o = 1, the network settles in the fixed point zy = (0,0)%. If it is started
at tp = 101, the network’s stationary behavior is jumping between the points
Z9a ~ (0.864,—0.694)T and zq, ~ (—0.864,0.694)T. And for t; = 301 this



76 Dynamical networks

L4 -
= 301

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t

Figure 5.5: The input signal that was used for driving network in Eq. (222), beginning at
three different points in time: tg = 1, tx = 101, and ty; = 301.

jumping occurs in an anti-cycle.

The problem of different basins is not limited to the initial conditions.
In many real world applications the input signal generally contains a certain
amount of noise. Even if the network is started at an initial state which would
normally produce a reliable response, a noise peak in the input signal may kick
the internal state of the network from one basin into another and thus provoke
an unreliable response.

It cannot be assumed that in high dimensional state spaces of networks
with many elements the structure of the basins is simpler than for this 2-
dimensional example. On the contrary, it can be expected that many different
forms of stationary behavior can coexist, which are much more complicated and
whose basins depend also strongly on the input signal. In practice this means
that if there are multiple equilibrium states for a network it is impossible to
find something like ”admissible states” that can guarantee a reliable response
signal to an input. Such networks are only reliable if driven by the same
signal or at least one that deviates as less as possible from the original signal.
However, models are seldom developed to be applied only on one specific input
signal. On the contrary, typical applications involve the network being driven
by different input signals. If the network behaves unreliably, it is certainly not
suited as a model for tasks like control or prediction.

The conclusion from this section is that networks that comply to the con-
dition in Eq. ([EZH) are not automatically reliable and that they should be
used with caution. While the strong condition in Eq. (2ZI]) ensures a reliable
network, the weaker condition in Eq. (E28) may produce unreliable networks.
Therefore, the latter should be avoided as a guideline in the developing phase
of recurrent networks if reliability is crucial for the application at hand. If
this is not possible, a thorough testing phase with different input signals is
necessary in order to minimize the risk of producing an unreliable model.



5.3 Practical aspects of RNNs 77

region 2b

region 1

region 2a

region 2b

region 1

region 2a

region 2b

region 1

region 2a

Figure 5.6: The basins of attraction for the network in Eq. (222) that was driven with the
signal in Fig. B starting at three different times: ¢g = 1 (top), to = 101 (middle), ¢, = 301
(bottom). The initial states are color coded depending on the stationary behavior at time
step t = 2000 (as defined in Fig.B4).



78 Dynamical networks

internal mode | | external mode |

N
y 9 u O A y

Figure 5.7: Left: In the internal mode the network is driven by an input signal {u;}ser
and responds with an output signal {§:}+c;. The elements are mutually coupled by the
internal connection matrix. Right: In the external mode an additional external feedback
loop is established by using the network output as an extra input signal. For some tasks, as
for example free-running predictions, the network is decoupled from the external input, and
the driving is taken over by the external feedback loop.

5.3.2 Internal and external mode

Recurrent networks can be used in two different ways, which are in this thesis
referred to as internal mode and external mode (see Fig.|1). In the internal
mode the network is driven by a signal {u;}s from the outside and produces
an output signal {g; }ser (see lhs of Fig.E). In this mode the elements of the
network are coupled only by the internal connection matrix C € RM*M and
the system equations in matrix notations are

Ly = tanh (th_l + Cy + but) s (530)

with @, the state vector at time step t € I, ¢y € RM the bias values of the
elements, and b € R the connection coefficients to the external input signal.
As discussed in the previous section (Section B3l) connection matrix C' is
required to have a norm smaller unity, o(C') < 1, in which case the output of
the network is reliable.

In the external mode the mutual coupling between the elements is extended
by an external loop, which feeds the output of the network back as an addi-
tional input to the system (see rhs of Fig.B). In the general notation the
external mode can be expressed as an extension to the state equations in

Eq. (B30), namely as
x, = tanh (Czi_y + ¢ + bu; + ”*g_y) | (5.31)

with the additional feedback coefficients ¢b** € RM.

For both modes the output of the network is a function of its state variables
as defined in Eq. (&0). Typically this function is represented by the linear
weighted sum

g =w! -z, +w, (5.32)



5.3 Practical aspects of RNNs 79

with w € RM the output coefficients and w, € R the bias value or the constant
offset of the network. For this special choice of output function the notation
of the external mode can be reduced to the one of the internal mode. The
reduced form can be written as

x; = tanh <émt_1 et but> : (5.33)
with the new connection matrix
C=C+c™*guw’, (5.34)
with ® denoting the tensorial product, and the new bias values
o = co + woc”*. (5.35)

Although this reformulation is formally possible, it is often unpractical. In
most cases the integration of the feedback loop into the new connection matrix
C leads to the property C > 1. From Section F30 it is known that networks
with such a connection matrix are unreliable, and this implies that networks in
the external mode have to be treated differently than the ones in the internal
modd]. Tt is important to differentiate between the two modes in applications
and to know about their strengths and weaknesses. For this reason this topic
is discussed in more detail for the modeling tasks of prediction and cross-
prediction.

Prediction

The internal mode is typically applied for tasks like one-step predictions, where
a time series {y; }e1 has to be forecast a constant time step 7' € N into the
future (see Section 22Tl and Fig.EZ2). For example for 7" = 1 the network
output ¢, is an estimation of the true value ¥y, and the input signal is a delayed
version of the original time series: u; = y;_1, V¢ € L. In this case Eq. (B:30)
and Eq. (5:32) can be written as

x, = tanh (Cxy_y +co +by,—1) , 9= w' -2, +wy. (5.36)

If the norm of the connection matrix is smaller one, o(C) < 1 (see Sec-
tion B3]), the network in Eq. (B36) follows for every input signal a specific
trajectory, which is independent of the initial state @, after a certain time span
of transient behavior. Then the output weights w and wy can be adapted to
the data in such a way that the network output approximates any desired
signal that is deterministically related to the input signal.

8For the the case C < 1 the external mode is indeed equivalent to the internal mode and
does not need to be treated in an extra scope.



80 Dynamical networks

| internal mode | | external mode |

¥ initial point
found

Figure 5.8: A recurrent network for free-running predictions has to be started in the
internal mode. After the tuning-in phase, in which the transient behavior has receded and
the right initial state has been found, it can be switched into the external mode.

When the network in Eq. (B230) has been adapted to the data and produces
one-step predictions of the time series {y;}er, it can also be used for free-
running predictions. For this purpose the delayed version of the time series is
replaced by the network’s own output one time step from the past, so that we
have

x, = tanh (Cx;_1 +c¢co +bj_1) , G =w’ - a2 +wp. (5.37)

Technically the step from one-step to free-running predictions is done by de-
coupling the network from the external input signal and by establishing an
additional feedback loop from the output to the input. Therefore, it can be
seen that Eq. (31) is a special case of the external mode where the external
connections were set to zero b = 0 and their former values were taken over by
the feedback connections c’** = b.

As already mentioned, the external form can be formally reduced to the
internal form. For Eq. (B37) the result of such a reduction is

2, = tanh (C’mt_l + ao) C gi=wlx . (5.38)
with )
C=C+bew’, (5.39)
and
¢y = cp + web. (5.40)

These are state equations of an autonomous network, which is not driven by
an external signal. To be used for free-running predictions of a specific time
series {y; }ter, it has to be started at the correct initial state @y. The difficulty
is to find the right one which corresponds to the time series. Another point is
that stability for the dynamical system in Eq. (38) is no longer guaranteed
but has to be numerically verified for every case.

While the former connection matrix C' has to comply to the reliability

criterion o(C) < 1, the new connection matrix C' must not. Otherwise the
state of the network in Eq. (B:38]) would approach a fixed point and the output



5.3 Practical aspects of RNNs 81

of the network would become constant, which is hardly a desired behavior in
free-running predictions. The implication is that for free-running predictions
we are dealing with reliable networks that are deliberately made unreliable by
an external feedback loop.

The unreliability of the network does not imply that it is unstable but only
that it can produce unexpected responses if it is not started in the right basin
(see Section ZTl). This is equivalent with the former notion that every time
series {y; }er that we want to predict has a corresponding initial state xg. A
practical way to find such an initial state is to run the network in the internal
mode as in Eq. (B30), producing one-step predictions, until the transient be-
havior recedes. This is also called the tuning-in phase of the network where it
atones to the time series {y; }+c1 that is to be predicted (see Fig.ES). The reli-
ability criterion of connection matrix C' guarantees that the transient behavior
does eventually recede and the network starts to follow a specific trajectory
that corresponds to the input signal. When this happens, the network can
be switched into the external mode from Eq. (E31) by replacing the external
signal with its own output. If the right initial state xy is known beforehand,
the detour with the tuning-in phase can be avoided and the network can be
directly started in the external mode. However, this is almost never the case
since the basin structure of the network dynamics depends strongly on the
input signal, as discussed in Section B3]

Cross-prediction

In the case of free-running prediction it was shown that the network has to run
in a combination of the internal and the external mode. This is what we refer
to as the external approach. The case of cross-prediction is more interesting
because here the application of the external mode can be avoided and the
network can be run in a pure internal mode. This is what we call internal
approach. In this section the two approaches are compared to each other.

In a cross-prediction task we have a signal {u;}41 that we use as an input
to the model and we want to predict another signal {y, };c1 that is determin-
istically related to the former signal (see Section and Fig.Z4). The
straight-forward way is the internal approach (see lhs of Fig.B). Thereby the
network is used in the internal mode, driving it with the input signal {u;}ser
and reading out its output {g; }+e1. The state equations are

Iy = tanh (Cmt_l + Cy + but) s ?)t = ’UJT i + Wo , (541)

with ¢, the estimated value of the original one ;. Since in this mode the
network does not depend on its previous predictions, there is no difference
between one-step and free-running cross-predictions for the internal approach.

In the external approach a delayed version of the time series {y; }er is used
as an additional input signal {u}}c1 (see rhs of Fig.B9l). This is equivalent to



82 Dynamical networks

internal approach external approach

X initial point
found

Figure 5.9: For cross-prediction task there are two possible approaches. Left: In the
internal approach only the internal mode is applied. Right: The external approach is
similar to the approach for free-running predictions in Fig.BE:8 The network has to be
started in the internal mode. After a transient phase it can be switched into the external
mode.

one-step predictions and can be written as
x, = tanh (Cxy_y + co + biuy +boye1) , G =w’ - @ 4+ wy. (5.42)

with b; € RM the connection coefficients to the first input signal {u;};cr and
b, € RM the connection coefficients to the second input signal {u}}scg, with
u, = Y1, Vvt € . For free-running predictions the additional input signal is
replaced by the network’s own output, so that we have

x, = tanh (Cxy_y + co + biuy + bof1) , G = w’ - @ 4+ wy. (5.43)

Again this can be reformulated in the reduced version as

Iy = tanh (émt_l + E:O + blut> s Qt = ’UJT + Ly + wo - (544)
with )
C=C+b,w’", (5.45)
and
¢y = ¢y + wobs . (5.46)

Similar to the free-running predictions the external mode cannot be used di-
rectly from the start for free-running cross-predictions because in most cases
o(C) > 1 and the network is thus unreliabld]. Instead, the network is started
in the internal mode and is only switched into the external mode after the
transient behavior abated.

Compared to the internal approach the external approach seems to be

unnecessarily complicated. The external mode cannot be applied directly but

9In contrast to free-running predictions there is no argument that the condition a(é )>1
is really necessary for free-running cross-predictions. The network can produce variational
responses even if o(C) < 1 because it is driven by an external input signal {u;};cr. That
means the reduced form in Eq. (24)) can indeed yield connection matrices with o(C) < 1.

In such a case the network can be treated in the scope of the internal approach.



5.3 Practical aspects of RNNs 83

has to be preceded by the internal mode to find the right initial state. This
means that for every application of the network the user has to provide not
only the input signal {u;}; but also a short starting sequence of the time
series {y; }+er for the tuning-in phase of the network.

Another disadvantage is that the guarantee for a stable system as in the
internal approach is lost, because the feedback loop destabilizes the network
dynamics. The network response can become unreliable for networks with
elements that have a bounded activation function, like tanh(-) or even grow
unlimited for unbounded activation functions.

Nevertheless, the external approach has also advantages which can out-
weigh its negative sides. Since it is not limited by the requirement o(C) < 1,
it can represent a broader class of input-output relationships. In a numerical
experiment we have used the modeling task from Section BZZ4] to compare
the internal and the external approach to each other. The task consisted of
reproducing the input-output behavior the system

Yi = apYi—1 + + couy (5.47)

I
1+ ‘yt72|

with the parameters set to ag = 0.8, by = —0.2, and ¢q = 1.0.

As models we used recurrent networks with M = 200 elements, which were
randomly connected with a connection probabﬂity@ of p = 0.01, meaning that
every element in the network was connected to two other elements on average.
The probability for external connection was set to p = 0.1 and for elemental
bias values to p = 0.8. The values of all nonzero random parameters were
normally distributed, cl-j,b(i),c(()l) ~ N(0,1), 4 = 1,...,200, and connection
matrix C was scaled to accord to o(C) = 0.95. The output weights w;,
1 =0,1,...,200, were trained on a training data set consisting of the input
time series {u;}ter and the output time series {y;}er each with N = 10000
data points. During training the first 1000 data points were left out to discard
transients. For the internal approach as well as for the external approach
the numerical experiment was repeated on 100 different networks, which were
randomly created in the above described way.

The performance was measured on a distinct test set with N = 10000 data
points. The models were to predict the original values in a free-running mode.
The first 1000 data points were discarded as transients, while the rest was used
for the NMSE quality measure

100 % 10000 )
NMSEo = —5— > (e —8)°, (5.48)
¥ t=1001

with U; the variance of time series {y; }e1, which was to be predicted. The
results can be seen in a histogram in Fig.E.T0 While the performance of the

19Connection probability denotes the probability that an entry in the connection matrix
C' is non-zero.



84 Dynamical networks

Il internal approach
Bl external approach

# networks
N
o

6 7 8 9 10 11
NMSE [%]

Figure 5.10: Performance of internal and external approach for a cross-prediction task of
simulating the system in Eq. (521), measured with the NMSE, value in Eq. (@48). The
external approach produces notworks that are much more precise for free-running cross-
predictions than the ones produced by the internal approach.

internal approach is grouped around the mean value (NMSE..) ~ 9.4 %, the
performance of the external approach is much better with a mean value of
(NMSE ) ~ 3.3%.

The superiority of the external approach concerning the prediction per-
formances could be empirically confirmed on further numerical experiments,
which cannot all be exemplified here. One possible reason for these results
was already mentioned. By loosening the tight stability bound o(C) < 1 the
networks can model a broader range of systems. Another reason is that the
external approach effectively uses one-step predictors in the training phase.
Free-running applications with these networks are only possible because of
the external feedback loop. Since one-step predictions involve much simpler
transformation functions from the input values to the output values, the prob-
ability that a randomly created network can successfully model such a re-
lationship is much higher than for free-running predictions. Therefore, the
internal approach should always be combined with an optimization procedure,
as described in Section B34

Aside from potentially being unstable, the external approach has another
weakness. For noisy data it is susceptible to biased predictions. It was already
described in detail that models based on one-step predictions produce outputs
that systematically deviate from the true values, a phenomenon referred to
as bias (see Section B2). The same happens for networks that are based
on the external approach. For demonstration the above cross-prediction task
concerning the simulation of the system in Eq. (241) was repeated. However,
instead of using the original output time series {y;}c1 in the training set it



5.3 Practical aspects of RNNs 85

10 1 1 1 1 1
---- external approach
ol — refined external approach P

NMSE [%]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o, / oy

Figure 5.11: The NMSE, values of free-running predictions on a noise-free test set, gained
by networks that were created in accordance to the external approach on noisy training
data. The noise level of the training set was stepwise increased as 0. = k- 0.1 - o, with
k = 0,1,...,10. For each noise level 100 networks were tested. The lines connect the
averages of the NMSE, values while the errorbars denote the standard deviations of each
performance distribution. The dashed blue line marks the results of the usual external
approach while the red line represents the results of the refinement procedure.

was modified to
Yo = Y + &4, (5.49)

with normally distributed values g; ~ N(0, ¢2), representing additive noise as
common for measurement errors. To see the effects of a noisy training set more
clearly, the noise variance o was increased stepwise according to 0. = k-0.1-0,,
k=0,1,...,10. For every such noise level 100 randomly created networks were
trained with the same specifications as mentioned above. Also the performance
was measured in the same way, following the NMSE,, criterion in Eq. (B-48)) on
a noise-free test set. The results are displayed in Fig.E.TIl Clearly, networks
based on the external approach are strongly influenced by noise in the training
data. Their performance deteriorates more and more with increasing level of
noise.

The problem that arises with noisy training data is based on limiting the
training to one-step predictions (see Section B2)). The output weights w; of
the network are adapted to one-step predictions instead of optimizing them for
free-running predictions. However, the latter would be necessary, because in
free-running application the values for the output weights are also used for the
feedback loop c”**i = w,. Thus, optimal weights for free-running applications
can be obtained by optimizing them on cost functions based on free-running



86 Dynamical networks

predictions like MSE,, which is in most cases a very time intensive nonlinear
optimization procedure.

A linearized procedure, which approximately obtains the optimal solution
is the following refinement algorithm for recurrent networks that are based on
the external approach. The algorithm follows a predictor-corrector scheme,
where the feedback loop is used to compute new output weights and then the
output weights are used to update the feedback loop.

step 0: Set n = 0. Obtain output weights w® by training network on
one-step predictions (MSE;). Set c?** = w©®. Compute free-running
performance with NMSE on validation set.

step 1: Set n = n + 1. Use the external loop ¢"®* in the training as if part

of internal connection matrix. Obtain new output weights @™, which
are now based on MSE.

step 2: Update real output weights according to
w™ = (1—-a) w4 a-w". Set e’k = w.

step 3: Compute free-running performance with NMSE&Z) on validation set.
If NMSE™ < NMSE" "V go to step 4 else go to step 5.

step 4: Accept w™ for network and go to step 1.
step 5: Reject w™ for network and stop.

The update parameter o € [0,1] C R should have a small value to enable
smooth transitions of the values in the feedback loop. Another point is that
a validation set has to be reserved in the training set. The validation set is
used only to measure the performance of the network and not to determine
the output weights. In this way overfitting is avoided (see Section [A3]).

A demonstration of the refinement algorithm is seen in Fig.ETIl We have
used the update parameter o = 0.1 and reserved the last 2000 data points in
the noisy training set for validation. As can be seen, the performance of the
networks can be considerably improved by the refinement algorithm. This is
due to the optimization on free-running predictions, which tends to reduce the
influence of noise on the modeling procedure (see Section B2). Note also that
the performance can be slightly improved by the refinement algorithm even for
noise-free training data. Although the refinement algorithm does not yield the
optimal output weights it allows the development of recurrent networks which
are far less susceptible to bias and which are better adapted to free-running
predictions.



5.3 Practical aspects of RNNs 87

5.3.3 Using selection methods

To ensure a rich internal dynamics ESNs must have an appropriate number of
elements. Depending on the application, typical network sizes are 100, 200,
or 400 elements. On the one hand the random construction of the internal
connections creates a broad range of response signals from the elements. On
the other hand it cannot be ensured that each one of these signals differs from
the others. On the contrary, in most cases some of the elements in the network
will behave similarly, leading to redundant internal responses.

The redundancy of the internal dynamics can cause problems for the com-
putation of the weights that are employed for the network output. They are
computed by minimizing the cost function

Lw)=wy-9" y-9) =Hy—Xw' (y-Xw), (5.50)
with
x=|: ... ], (5.51)
RONNLY)

the matrix of the internal states, representing the output of M elements in N
time steps. The optimal weights can be expressed as

w=(X"X) XTy=X'y. (5.52)

with the so called pseudo inverse X' (see Section AZZT]). If some of the
columns of X are redundant, as in the case of elements with similar behavior,
great care has to be taken concerning the computation of the pseudo inverse
to avoid results corrupted by numerical instabilities (see Section [A2T]).

An even greater risk is that overfitting occurs because the number of ad-
justable parameters grows with the number of elements (see Section [AJ). If
the size of the training data set is comparably small or noise is present in
the data, the generalization ability of the model cannot be ensured. This
situation is similar to the static modeling approach with NARX models (see
Section B.T.2), in case the model consists of a great number of basis function.
In the static approach this situation is remedied by using a forward selection
technique called Fast Orthogonal Search (FOS, see Section [A2.2]), where only
a non-redundant subset from a pool of possible basis functions is selected. The
advantage of the FOS procedure, aside from the anticipating redundancy, is
that also chances of overfitting are considerably reduced. By choosing one
basis function at a time the complexity of the model can always be adapted
to the data. If only the relevant basis functions are selected, an adaptation of
the model to artifacts, produced by noise or finiteness of data, can be averted
or at least diminished.



88 Dynamical networks

Recurrent networks can also benefit from the FOS procedure. Instead of
using all internal response signals of the network only the few best ones can
be selected for the network output. In this way redundancy and overfitting is
avoided. This is demonstrated in a numerical experiment. In this experiment
the relationship of a Rossler system that drives a Lorenz system has to be
reproduced by the model. The Rossler system is given by the following ODE

l"l = 2 + l‘l(ZL‘Q — 4)
jﬂ‘g = —T1 — I3 (553)
T3 = x9+ 0.4573

and the driven Lorenz system

2’1 == —]_0(21 — 2’2)
Zy = 28u(t) — 2z — u(t)z; (5.54)
Z"g = u(t)22 — 266623

with the driving signal u(t) = x1(t) + x2(t) + x3(t). The systems in Eq. (E53))
and Eq. (224 were numerically integrated by the Runge-Kutta algorithm with
an integration time step ¢; = 0.025. For modeling purposes the driving signal
u(t) was given as the input signal and the first component of the Lorenz system
was given as the output signal y(t) = z;(¢), where the latter had to be predicted
by the model from the former. The training and test set contained both signals
as sampled time series {u; }er and {y; e with the sampling time ¢, = 0.1.

A RNN with 200 elements was randomly created and was trained to repro-
duce the functional relationship between the driving and the driven oscillator.
All networks were based on the internal approach (see previous section, Sec-
tion B32). An artificial noise source was added to the training data

Yr = Yy + &, (5.55)

with the noise terms &, ~ N(0, o.). Three different noise levels were applied:
o./o, =0.0,0.2,0.4, with 0. and o, the rooted variances of the noise and the
output signal, respectively. The number of training points was varied from
N = 1000 to N = 10000 data points. Training of the output weights of the
network was done either with the pinv routine of Matlab or with the FOS
algorithm. For both procedures the first 500 data points were discarded as
transients. Following the training the performance of the models was measured
on a noise-free test set by the NMSE criterion

100% 10000 )
NMSE = 2 > (g —30)?. (5.56)
t=501

To account for the randomness in the creation of the RNNs every training
procedure was repeated on 10 different RNNs. The results of the experiment



5.3 Practical aspects of RNNs 89

10" : , : _ 10* , , , :
—e— pinv —e— pinv
—— FOS —— FOS
10° -
_ _10°
2, )
—11
g :
z : ; zZ
10
107 .
107 107
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
a) # training set c) # training set
103 ¥ ¥ T = 104 T T i B
: ‘ —e— pinv ‘ —e— pinv
) —— FOS s ’\ —— FOS
glol [ : glo2
A o
2 10° K ‘ , 2 10* \\ , ,
= \\*\M o \\\‘"\‘:::»t'\——‘\."‘
107 10*
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
b) # training set d) # training set

Figure 5.12: Comparison of the pinv and the FOS algorithm. Depicted are the prediction
performances of RNNs with 200 elements against different sizes of the training set. While the
performance values were measured on noise-free test data, the training data was artificially
corrupted with different levels of noise. Every point in the figures represents the mean
values of 10 different simulation runs. The relative noise levels of the training sets were: a)
oe/oy = 0.0, b) 0./0, =0.1, ¢) 0./0, = 0.2, d) 0./0, = 0.4 Note that the NMSE values
are represented on a logarithmic scale.

are shown in Fig.BE.T2 For noise-free training data both algorithms are effec-
tively equivalent in producing good models. For both routines the quality of
the models is improved by raising the number of data point in the training set.
This improvement is drastic for the step from 1000 to 2000 data points and
saturates around 4000 data points. With increasing noise level in the training
data the differences of the two algorithms become more and more apparent.
While the performance of the networks that were trained with the pinv algo-
rithm deteriorates strongly, the networks trained with the FOS algorithm can
keep up good results even for small training sets.

In the numerical example it was noticeable that only a fraction of the
internal response signals was needed to create the output of the network. Many
of the elements did not contribute to the output. This does not necessarily
mean that these elements are useless. Some of them are needed to produce
internal lags in the mutual information exchange, which also increases the
diversity of the internal dynamics. However, many of the elements are indeed



90 Dynamical networks

redundant showing no or only small deviations in their response from other
elements and having no positive effect on the internal dynamics. Herein lies the
chance to reduce the network size. By adapting the model to the data many
of the redundant elements can be put to use. This is primarily the reason why
the size of optimized RNNs can be chosen smaller than that of ESNs without
reducing the performance, as is shown in the next section (Section B34).

5.3.4 Optimization of internal connections

The strength of a network lies in the fact that a multitude of computing units
process data sequences in a parallel manner. Even though the elements in the
network may be simple functions, the network as a whole is able to perform
very complex computations. To make this possible an exchange of informa-
tion between the individual elements is needed. Through different connection
paths signals are sent and received, creating a diversity in the responses of the
otherwise equal elements. It comes at no surprise that the structure of these
connections plays the most important role for the performance of recurrent
networks.

The Echo State approach uses networks that are based on randomly con-
nected elements [36]. These networks utilize the information in the training
set only to adapt the output weights and not to adapt the internal connection
weights. The argument behind this idea is that the amount of diversity in the
internal dynamics of the network is rich enough to approximate any determin-
istic input-output relationship. Nevertheless, as can be seen in Fig.BI0, the
performance of randomly created networks can have a wide distribution. It
seems that some of the random network architectures are better suited for the
modeling task than others, and the difference between them cannot be totally
compensated by adapting the output weights. It means that with luck we can
have a very precise model, but also that in the other case a random network
can perform very poorly.

In order to avoid picking the network with the worst performance the sim-
plest strategy is to create many randomly connected networks and to choose
the one that performs the best on a validation set. In this way we use the
information in the training set also for choosing the best set of internal con-
nections. Although this strategy is better than to use the next best network,
it still uses the information of the data in an uncoordinated way. It does not
use the fact that in general good networks can be made even better by slightly
changing their parameters. Therefore, instead of jumping randomly in the pa-
rameter space, a better strategy is to make improvements by looking for better
solutions in the vicinity of the current parameters.

Here we used an algorithm that is based on Simulated Annealing (SA).
However, any algorithm that can deal with discrete and continuous variables,
e.g. Genetic Algorithms, is possible. The SA procedure starts with a randomly



5.3 Practical aspects of RNNs 91

created network and the iteration parameter 7', which is usually referred to
as temperature, is initialized as T' = Ty € R. Step for step the temperature
is decreased following an exponential cooling scheme, T"% = « - T™V with
a € (0,1) € R. And each step the network is modified by changing some of
its parameters. In our case the changes could be

add connection: A zero entry in the connection matrix C'is set to a random
value taken from the normal distribution N(0, 1).

cut connection: A non-zero entry in the connection matrix is set to zero.

rewire connection: A zero and a non-zero entry in the connection matrix
swap their locations.

change connection weight: A non-zero entry in the connection matrix is
slightly changed by adding a random value from the normal distribution
N(0, 02). The variance o may vary its value during a run of the SA
procedure and is usually a function of the temperature. In our case:
o2 = (T/Ty)%

change input weight: A nonzero entry in the input connection vector b is
changed (see change connection weight).

change bias value: A nonzero entry in the bias vector ¢ is changed (see
change connection weight).

After having performed the modifications the stability criterion o(C) < 1 is
checked. If the new connection matrix does not comply, it is rescaled appropri-
ately. The modified network is evaluated against the former one on a validation
data set, using the NMSE value as a measure of quality. If the new network
performs better, i.e. NMSE™" < NMSE®M it is automatically accepted. If its
performance is worse, it is accepted with the probability

~ NMSE®? — NMSE""
a NMSE

p=e" 0 (5.57)
The acceptance of bad networks serves as a measure against getting stuck in a
local minimum in the parameter space. It is mainly active in the beginning of
an optimization run. With decreasing temperature the probability of accepting
a bad network is effectively zero at the end.

For a demonstration of the algorithm we picked the same numerical exper-
iment as in the subsection about cross-prediction in Section The task
consisted of simulating the input-output characteristics of the following system

b

0
——— + Uy, 5.58
1+‘yt72| o ( )

Yi = apYi—1 +



92 Dynamical networks

with the parameters ay = 0.8, by = —0.2, and ¢y = 1.0. The models were
chosen to be RNNs with the dynamics described by Eq. (&Z]). On the one
side we used randomly created networks with different numbers of elements
M =100, M = 200, and M = 400. On the other side we used networks with
M = 60 elements, that were optimized in the above described way. We could
choose the network size drastically smaller because the optimization routine
enabled us to reduce the number redundant elements, which are inevitably
present in randomly created networks.

The random networks were created with a connection probability adjusted
in such a way that every element had on the average 4 connection to other
elements, i.e. p = 0.04, p = 0.02, and p = 0.01. These values were chosen ac-
cording to the best results on the validation set. The optimized networks had
a connection probability of p = 0.06, which translates almost to the same num-
ber of average connections. The probability for external connections was set to
p = 0.1 for elemental bias values to p = 0.8. The values of all nonzero random
parameters were normally distributed, cl-j,b(i),c(()l) ~ N(0, 1), 7 = 1,...,200,
and connection matrix C' was scaled to accord to o(C') = 0.9.

The output weights w; of all networks were trained on a training data set
consisting of the input time series {u;}e1 and the output time series {y;}ier
each with V = 10000 data points. For the optimized networks this data set
was split in the first 8000 data points for training and the last 2000 data points
for validating. The number of optimization steps in one SA run was set to 400.
During training the first 1000 data points were left out to discard transients.
All networks were trained in the sense of the external approach. Afterward
the networks were evaluated with the NMSE; and the NMSE, criterion on a
distinct test set consisting of N = 10000 data points. The first 1000 data points
were neglected as transients. For all randomly created networks we repeated
the experiment 400 times for each network size. The optimization routine
was repeated 100 times. In Fig.BET3 and Fig.[ET4 the resulting performance
distributions are depicted for the one-step cross-predictions (NMSE;) and the
free-running cross-predictions (NMSE,,).

As can be seen the performance of the networks can be improved by the
addition of elements. This is naturally true as the diversity of the internal
dynamics is higher in a network with M = 400 elements than in a network with
only M = 100 elements. However, even a network with such a large number
of elements as M = 400 is inferior to the smaller networks with M = 60 if the
latter are optimized. As can be seen in Fig.B.T3 and Fig.b.T4, the optimized
networks on the average outperform the randomly created ones. Only the
best random networks with M = 400 elements can compete with an average
optimized network.

We can conclude from this numerical experiment that randomly created
networks can have very good performance values, which can even be further
improved by raising the number of elements. However, if performance is im-



5.3 Practical aspects of RNNs 93

60 . . . .
N=100, random

40

20

0
80 I I I 1

ok _ N=200, random| |

401 -

I '
O —y L | |

80 . . . .

60+ N=400, random| |
401 -
20 -
0 . . .
40 . . .
30
20
10
%

Figure 5.13: Performance of networks measured with NMSE; (one-step cross-predictions).
The networks were either created with random internal connections or with optimized con-
nections. The number of elements in the randomly connected networks varies between
N =100, N = 200, and N = 400. The number of elements in the optimized networks is
N = 60. Note that only 100 optimized networks were produced, while the number of the
random networks was 400 for each network size.

# networks

N=60, optimized

15 2 25

B 0i5 1
NMSE [%]



94 Dynamical networks

80 1 1 1 1 1 1
N=100, random

60

40

20

100 T T r T T T
N=200, random

50

150 . . : . . .
N=400, random

# networks
o
i
.
?I
I

100

50

0 1 ) 1 1 1
15 1 1 1 1 1

N=60, optimized
10f .

0 1 1 1 1
1 2 3 4 5 6 7 8

NMSE [%]

Figure 5.14: Performance of the same networks as in Fig.ET3 However, this time mea-
sured with NMSE, (free-running cross-predictions).



5.3 Practical aspects of RNNs 95

portant and the time spent for the optimization routine is not an issue, the
connection structure of a network should always be optimized, because this
leads to smaller and faster networks, which are in most cases more precise
than random ones. Echo State Networks, which are huge and slow but need
no optimization routine, and classical recurrent networks, which are small and
fast but invest a great deal of computation effort in optimizing every single
internal connection, are only two extreme sides of the modeling approach with
recurrent networks. It seems that the middle way can integrate the advan-
tages of both sides very well. A greater number of elements can enrich the
internal dynamics of a recurrent network and thus make computationally in-
tensive algorithms like the BPTT superfluous. A coarse optimization can help
in keeping the network size in sensible bounds.



96

Dynamical networks




Chapter 6

Friction

Friction is a phenomenon that affects our everyday life. When the surface of an
object slides across the surface of another, friction is the tangential force that
opposes the motion. This force is sometimes beneficial. In a world without
friction shoelaces would open permanently, screws would fall from the walls,
pedestrians would slip on the pavement, and car breaks would fail miserably.
The functionality of many important things depends on friction. Nevertheless,
more often we deal with the downsides of friction. Mechanical devices like
watches devices have to be supplied with energy otherwise they stop working.
A great part of the fuel in cars is wasted in the effort to compensate for
frictional forces. Drills annoy us with noise and have to be cooled in order
to function properly in permanent operation. Most of the negative effects of
friction can be subsumed under unwanted energy dissipation, noise emission,
and wear of mechanical devices. The perhaps most frightening effect of friction
are earthquakes. When tectonic plates slide over each other, friction forces let
the earth tremble, often with devastating effects on a geographical scale.

One way or the other, the importance of friction in our world simply cannot
be overestimated. The many aspects of this ubiquitous phenomenon have
fueled the interest of researchers to investigate it and to develop theories and
models to describe its nature. Aside from scientific curiosity, this interest
has been furthered by problems and practical concerns stemming from the
development and production departments of the industry. The car industry, for
example, has always tried to increase friction effects to improve the efficiency
of breaks or tires. On the other hand the manufactures of mechanical or optical
storage devices, have tried to reduce friction effects in order to enhance the
precision in the movements of read heads. Even though much research has
been done, applicable friction models are still in great demand by engineers.

The first section of this chapter (Section [E]) serves as an introduction
to the field of friction. The reader is familiarized with the main phenomena.
Furthermore, common theories and modeling approaches are presented, which
try to describe frictional behavior. The purpose behind it is to demonstrate



98 Friction

the complexity of friction and to lay the conceptual basis for the sections to
come.

Following the introduction, results in the context of black-box modeling
with static and dynamical models are presented. These results were obtained
in the scope of the VW-Stiftung project No. 1/76938. Cooperating were the
Katholieke University of Leuven, Belgium, the University of Sheffield, UK,
the University of Patras, Greece, and our University of Gottingen, Germany.
Specifically, Section deals with the modeling of experimentally measured
pre-sliding friction. The results were published in [55]. As a pre-step, model-
ing of pre-sliding friction has also been done on numerically simulated data.
The results of these simulations have led to publications in in [4] and [5]. Sec-
tion extends the modeling attempts from the pure pre-sliding to the sliding
regime. Again, experimental data was used for modeling and the results were
published in [70]. The last section (Section B4]) deals with control of plants
whose movement is affected by friction. Here, the experience and the results
from modeling of friction were applied to a numerical simulation of a tracking
problem.

6.1 Friction phenomena and models

The field of research that investigates friction is called tribology, from the
Greek word 7pitfBoo, meaning rubbing. Although the naming is not older than
40 years, investigations started much earlier. Leonardo da Vinci (1452-1519)
was one of the first to study friction phenomena in a systematic way. He made
two remarkable observations: If a body is dragged across a surface,

e the friction force does not depend on the size of the contact area.
e the friction force is proportional to the normal force.

Unfortunately da Vinci’s ideas concerning friction were not made public and
thus went unnoticed by the science world. Guillaume Amontons (1663-1705)
rediscovered the two basic laws of da Vinci and added some of his own obser-
vations to them [8]. Since then the laws are referred to as Amontons’ laws.
John Theophilius Desaguliers (1683-1744), Leonard Euler (1707-1783), and
Charles Augustin Coulomb (1736-1806) extended the knowledge about fric-
tion [24], [26], [21]. The concept of adhesion was introduced and another law
added:

e The friction force is independent of the sliding velocity.

These individual laws tried to capture the essence of friction. However,
their greatest weakness was that they were purely empirical and, unlike New-
ton’s laws, nothing fundamental could be deduced from them. Nevertheless,



6.1 Friction phenomena and models 99

surface of object 1

PPN

surface of object 2

Figure 6.1: Left: The contact between an object and the surface beneath it is influenced
by the normal force F,, (weight of the object or normal load). If the object is dragged
a certain distance z across the surface, its movement is opposed by a force Fy, which is
called friction. Right: Physical theories explain friction as a microscopic effect caused by
asperities on the surface of objects. On a microscopic scale every surface, no matter how well
polished, is uneven. If two objects are brought together, the effective area of contact is much
smaller than the surface area of both objects because they touch only at the protrusions in
the surface.

scientists persisted in their efforts to find generalized rules concerning friction.
Their work resulted in some remarkable achievements but, unfortunately, was
not crowned with success as there is still no satisfactory model for friction.
None of the models developed so far has the ability to reproduce all aspects of
friction that were found in experiments. The difficulty lies in the fact that fric-
tion is a highly nonlinear phenomenon and includes processes on many scales,
demanding a theory that can integrate all the different levels. Up to now,
models of friction usually describe only some of its aspects in good agreement
with experiments while being inaccurate in others. As long as there is no
profound theoretical model for friction, researchers have to resort to heuristic
models, which are based on experimental observations. In the following we
present some of the most important friction phenomena accompanied by cor-
responding modeling approaches. For a deeper review of friction effects and
the development of models see for example 9] and [51].

In 1950 Bowden and Tabor investigated friction in systematic experiments
and proposed a physical explanation for the friction laws [14], [15]. They
surmised that the effective contact zone of two objects touching each other is
not identical to the contact area but much smaller. The reason for this can
be seen schematically on the right hand side of Fig.E1l On a microscopic
scale even very smooth surfaces reveal a certain roughness. As a consequence,
when two surfaces touch, contact is established only at discrete protruding
points, which are called asperities. That means that the real contact area is
necessarily smaller than the apparent one. If the normal load is increased the
asperities are deformed and the effective area of contact grows. This explains
the dependence of friction on the normal load rather than on the apparent
contact surface.



100 Friction

Consider the simple example of an object lying on an arbitrary surface (see
lhs of Fig.lEd). If the object is moved across the surface with the velocity
v = %, this movement is obstructed by the friction force Fy. Classical models
describe the F; as a function of the relative displacement z and the relative
velocity v = & between the two surfaces in contact. Typical for these kinds
of models is a discrimination between static friction, or short stiction, for the
case v = 0m/s and dynamic friction for the case v # 0m/s.

Stiction is trivial to model if the external force that is applied to the object
is known. The friction force simply counteracts the external force and precludes
the object from moving. Static friction can usually reach higher magnitudes
than dynamic friction and, naturally, it cannot be described as a function of
velocity v. The classical way of modeling stiction is

Fstatic - Fea (61)

with the precondition v = O0m/s and F, being the external force applied to
the moving object (see lhs of Fig.l82). At some critical force value Fj, which
is called breakaway force, the object starts to glide across the surface. If this
happens, the friction force drops rapidly to a lower value and from then on has
to be described in the context of dynamic friction.

Things get more complicated when the object’s dynamics transits between
the static and the dynamic regime. Then the breakaway force Fj is not a
constant but changes its value depending on the dwell time, i.e. the time span
in which the relative velocity of the two surfaces is zero [9]. During the dwell
time the adhesion forces between the asperities of both surfaces is established.
If it is short, the contacts are weak and the breakaway force is small. If it is
long, all contacts have enough time to build up strong adhesion forces. Then
the tangential force needed to break these bonds is much higher.

Even though no sliding occurs in the static regime, it is found experimen-
tally that the external force effects a displacement of the object [64]. Tt is
explained by an elastic deformation or shearing of the asperities. For external
force values smaller than the breakaway force the asperities behave similar to
nonlinear springs, resulting in a displacement of the object. Since the con-
tacts do not break and thus no real sliding occurs, these tiny displacements
are referred to as pre-sliding or micro-sliding.

However, limiting the deformations of the asperities to be only elastic is a
gross oversimplification. Additionally to the elastic deformations pre-sliding
involves also plastic deformations. An increase with a following decrease of
the external force results in an non-vanishing effective displacement of the
object (see rhs of Fig.l52). Some of the asperities retain their deformations
without returning to their previous state. Thus, a memory effect is introduced
to pre-sliding [22]. The result for an alternating external force application
is a hysteresis curve, which is typical for the pre-sliding regime. The special
feature of the hysteresis curve is its non-local aspect. The future values of the



6.1 Friction phenomena and models 101

Fstatic
E breakaway

sliding 2

R

time

Figure 6.2: Left: In the static regime the friction force Fy simply compensates the exter-
nally applied force F.. If a critical value Fy is reached, the object starts to slide and the
magnitude of the friction force usually drops to a lower value. Right: Although the regime
is called static, an externally applied force F. effects a displacement = of the object. It is
caused by elastic and plastic deformations of contacting asperities on both contacting sur-
faces. The plastic deformations prevent the object from returning to its previous position.
It retains an effective displacement. If an alternating force signal is applied, this behavior
leads to a hysteretic curve. The latter is attributed with a non-local memory: if the inner
loop (3,4) is closed the hysteresis follows again precisely the track of the outer loop (5,1,2).
This shows that the system remembers’ its previous extremal displacement from the past.

friction force are not uniquely defined by the actual friction value and the future
displacements of the object. Instead, the history of the past displacements is
important for the future behavior (see for example [TT]).

In contrast to static friction, dynamic friction is a function of velocity and
not of displacement. The so called Coulomb friction

Fi(v) = F, - sign(v), (6.2)

is a discontinuous function that connects velocity with dynamic friction. It
states that for steady velocities (v = const) the friction force does not depend
on the magnitude of the velocity but has a constant value F,. and is opposed
to the direction of movement. Usually, viscous friction is added to Eq. (€2)
(see Fig.6E3), resulting in

Fy(v) = F, -sign(v) + F, - v. (6.3)

The viscous part is proportional to the velocity and is inspired by the viscous
friction force from hydrodynamics. It is applicable if the surfaces are not dry
but coated with lubricants.

Combining static and dynamic friction together in one equation leads to a
multi-valued function

Fitatic = Fe 1fv:0m/s (|Fe| <Fs)

Fr=
denamic(v) = I - Sign<v) + F,-v else

, (6.4)

which is shown in Fig.[lE3 In the static regime the friction force is independent
of the velocity. As soon as the breakaway force is exceeded and the object starts



102 Friction

Rt E‘/> E‘\/>
] /! Vv /\l v

\7

Coulomb C. + viscous C. +v. + Stribeck

Figure 6.3: The dependence of the friction force Fy on the velocity v in the stationary limit
(v = const). All three functions are multi-valued in the region of static friction (v = 0m/s).
Here the friction force is a function of the position rather than of velocity and cannot be
properly displayed in the diagrams. Left: The Coulomb friction models the dry friction case.
The friction force is constant and only depends on the direction of the velocity. Middle:
If a lubricant is present, the Coulomb friction is augmented by the viscous friction, which
is proportional to the velocity. Right: The Stribeck curve takes into account that the
transition from static friction to dynamic friction is continuous.

to glide, the friction force drops instantaneously to a lower value. This sharp
drop in magnitude for an object that is just starting to move is not confirmed by
experimental observations. Rather, it was found by Stribeck that the velocity
dependence is continuous [66]. A common form for the dependence is

Fiynamic(v) = F. - sign(v) + F, - v + (F, — F,)e /vl (6.5)

where the Stribeck velocity v and the parameter §, are adjusted to experimen-
tal data. The typical minimum (maximum) in the Stribeck curve for positive
(negative) velocities in Fig.l63]is called Stribeck effect.

The model in Eq. [E4) is referred to as classical static model. Although it
describes many of the aspects of friction, it is not well suited for simulations
or control tasks in practice. One drawback is that the external force F, is
used as an input in the static regime. However, in many applications F, is
not always explicitly given. Instead, one often wishes to have a functional
relationship between the friction force and the displacement of the object.
This relationship can be deduced in the dynamic regime from the velocity
without problems. However, in the static regime the relationship is more
complicated as it involves memory effects. Another drawback is the strict
distinction between the pre-sliding and the sliding regime. During a numerical
simulation it is notoriously difficult to decide at which point a system has
zero velocity. Although Karnopp proposed a simple cure for this problem by
defining a region |v| < Vpouna for stiction in [40], his solution is only roughly
approximating the real situation.

Perhaps the greatest weakness of Eq. (64) is its inability to describe friction
for non-constant velocities. It was shown by Hess and Soom in [32] that a
hysteretic relationship between velocity and friction can be observed if the



6.1 Friction phenomena and models 103

y A
c
il
= N\ /
RS
=
- 5
time =
A k3]
> =
‘o
i=]
(O]
>
time velocity

Figure 6.4: Left: If the velocity of the object is changed, the friction force does not follow
instantaneously but with a delay. This is referred to as friction lag. Right: The friction lag
leads to a hysteretic behavior for an alternating velocity.

magnitude of the velocity is changed alternately (see Fig.[E4dl). The reason for
the hysteresis curve is a temporal lag in the reaction of the friction system. If
the velocity of a sliding object is changed, the friction force changes its value
not simultaneously but with a delay, which is referred to as friction lag. The
classical static model in Eq. (64]) is not able to explain these findings.

To overcome the shortcomings of the static models, attempts were made to
describe friction by dynamic models. One of the basic models is that of Dahl
[23]. In its common form it describes friction as a function of the displacement

dF F

d—xf —0 <1 - FJc‘sign(:i:)) , (6.6)
with o being the stiffness coefficient of the asperities and F.. the Coulomb fric-
tion. Using F' = (dF/dx)¢ Eq. (E8) can be reformulated as a time dependent
function

C

. F F
Fr=o0 (1 - Ffsign(a’:)) i=0 (:c - Fim) . (6.7)
Another reformulation results in the known state space model

o]
F.
Fy = oz, (6.8)

Z = I— z

with one internal state z. For a steady state Z = 0 the friction is given by
Fy = F,sign(z), (6.9)

which is exactly the Coulomb force in the dynamic regime. The advantages of
Dahl’s model are its simplicity and its ability to incorporate both the static
and the dynamic friction regime without having to resort to switching. Its
disadvantages are a moderate accuracy in the description of the static regime



104 Friction

and the lack of features like the Stribeck effect. The Dahl model was used in
many applications and served as a basis for some more elaborate models. The
most popular among these models is the LuGre modell [T6]. As an extension
to the Dahl model in Eq. (68)) the LuGre model is similar in its state equations

s x._0'0|fi7|
9(@)
Ff = 0'024—0'124-0'21’, (610)

with the extra micro-viscous part o1Z and the viscous part o9&. The function
g(2) in Eq. (E10) models the steady-state behavior for constant velocities. It
is usually set to

g(#) = F, + (F. — F)e @/’ (6.11)

to reproduce the Stribeck effect with a Gaussian function. Choosing damping
parameter oy to be constant as in Eq. ([E10) is called standard parameterization
of the LuGre model. Choosing this parameter as dependent on the velocity
introduces dissipation

oy (&) = o @v* (6.12)

as was shown by Olsson in [B0]. The LuGre model is able to model many of
the experimentally observed friction phenomena, like static friction behavior,
friction lag, Stribeck effect, and stick-slip behavior. However, prediction of
experimental data, especially in the pre-sliding regime, could not be achieved
by this model with a satisfying accuracy.

Swevers et al. suggested in [67] another extension, known by the name
of Leuven model, that deals with some shortcomings of the LuGre model. In
particular, the Leuven model incorporates additional free parameters, which
enable the fitting of arbitrarily shaped transition curves, i.e. the functional re-
lationships between displacement and friction force. For the description of the
non-local hysteresis in the pre-sliding regime the Leuven model uses memory
stacks that store the minima and maxima of previous force values.

To avoid the rather inconvenient computations with stacks, Laempert et
al. proposed in [A7] a modification that is based on the Maxwell-slip model.
In a refined version in 5] and [6] this model is referred to as Generalized
Mazwell-slip (GMS) model. The main idea of the Maxwell-slip model is to
simulate a fixed number M of plasto-elastic springs in parallel, each with its
own characteristic hysteretic behavior (see Fig.l5H). The GMS model extends
the Maxwell-slip model by substituting the springs with massless block-springs.
These elemental blocks behave in the static regime similar to the springs but
show additionally sliding characteristics of friction systems, e.g. the Stribeck

!The naming "LuGre’ is derived from the first letters of the two cooperating universities:
Lund in Sweden and Grenoble in France.



sticking -

6.1 Friction phenomena and models 105
sliding k, ky

0 1000 2000 3000 4000 5000
time index

sliding kNF1 1]
7- VY VY o

K o -1
sticking -—\/\\\/7 0 1000 2000 3000 4000 5000 1 05

0 05
time index position

position
o =

|

-
o
3l

force
o

1
o
3l

force

Figure 6.5: Left: Generalized Maxwell-slip model consists of M elemental, massless block-
springs acting in parallel and following their own dynamics. The total friction force of the
whole system is a superposition of the individual forces. Right: Position and force signal
from a simulation of a GMS model consisting of M = 10 elements. When plotted against
each other, the result is a hysteresis with non-local memory, which is typical for the static
regime.

effect. For the i-th element the following state equation is given for sliding

i F

F; = sign(z)C (1 - — ) , (6.13)
vig ()

with C' a constant parameter and ¢(&) defined in analogy to Eq. (E11), rep-

resenting the steady state behavior for constant velocities. For compatibility

reasons the individual parameters v; have to fulfill the condition

M
d =1 (6.14)
=1

The element remains slipping until its velocity goes through zero. Then the
element sticks and the state equation is given by

F, = ki, (6.15)

with a constant individual parameter k; (stiffness). The element remains stick-
ing until F; = v;g(¢). The total friction force results by superimposing the
outputs of the individual elements and adding an extra term that accounts for
the viscous friction:

Fy(t) = Fi(t) + o2 (6.16)

The GMS model is able to describe the pre-sliding regime as well as the sliding
regime with good accuracy. All major phenomena of friction are captured, e.g.
breakaway force, stick-slip behavior, or friction lag. Note that by using a
population of individual elements for the simulation of friction, the modified
Leuven model is only a few steps away from the physics based models, which
are described in the remaining paragraphs of this section.



106 Friction

The presented friction models so far have been all empirically motivated.
Their structure was developed in a heuristic approach to describe the experi-
mentally observed phenomena. Thereby, the empirical models have two some-
what contradicting goals. On the one hand they try to describe frictional
behavior with preferably good agreement to experiments. On the other hand
they try to retain a simplicity that makes them applicable in online control
tasks. This compromise between accuracy and simplicity is sometimes a disad-
vantage if one is interested specifically in the dynamics of friction. Therefore,
an alternative approach exists to modeling friction. It starts with modeling
the physical processes that happen at the microscopic level. The experimen-
tally observed friction effects, like Stribeck effect or hysteresis curves, are then
an emergent feature of such physically motivated models. Since these models
involve the simulation of populations of microscopic processes, they are com-
putationally much more demanding than the empirical models and therefore
too unwieldy to be used for applications like control. However, their advantage
is that they enable a deeper insight into the mechanisms behind friction.

It is generally accepted that the deformation of asperities on the rubbing
surfaces and the mutual adhesion between them is responsible for friction, as
proposed by Boden and Tabor [T4], [T5]. Haessig and Friedland introduced in
1991 the so called bristle model, which tries to model the behavior of the mutual
contact points at the level of the asperities [29]. The touching surfaces are
modeled as randomly littered with flexible bristles (see lhs of Fig.lE8). If the
surfaces are moved against each other, the bristles are deformed. The contact
between each individual bristle breaks if a certain threshold deformation is
reached. Since the bristles act like springs, each of them contributes to the
friction force resisting the motion. The dependency on the velocity is captured
by reducing and increasing the number of random bristles according to the
speed of movement. The bristle model is found to yield good results and can
also capture the randomness present in the friction process.

After the introduction of the bristle model many similar approaches were
developed that tried to include even more of the friction phenomena. Recently,
Al-Bender et al. from the KU Leuven proposed a theoretical model, which cap-
tures most of the friction effects in one unifying formulation [7], [6]. The basis
of their model are idealized asperities with certain geometrical and elastic at-
tributes. During an application a population of thousands and more of such
asperities is used for simulating the frictional behavior of surfaces. Thereby
all elastic properties are attributed to the moving surface on top, while the
lower surface is simulated as a rigid profile. Before the simulation is started,
a randomly uneven profile is chosen for the lower surface and the asperities
are also placed arbitrarily across the moving surface. All attributes are ran-
domly assigned to each of the asperities. On the right hand side of Fig.[e.8l the
schematics and the average life-cycle of an asperity is depicted. Every asperity
has an individual mass m, height h, tangential stiffness k;, and normal stiffness



6.2 Modeling of pre-sliding friction 107

free movement stick-slip internal dissipation

| surface 1 >

({0

surface 2 ‘

Figure 6.6: Left: Bristle model proposed by Haessig and Friedland. Flexible bristles,
which are randomly placed on the rubbing surfaces, represent the asperities on a micro-scale
level. If the surfaces are moved against each other, the bending of the bristles evokes a force
(friction) that opposes the motion. Right: Generic friction model proposed by Al-Bender
et al.. The asperities are modeled with individual masses m and heights h, displaying elastic
behavior with a normal stiffness k;,, and a tangential stiffness k;. In a typical life-cycle the
asperity transverses from free movement to an active state, where it establishes contact to
the lower surface, and back again to free movement. During contact the asperity exhibits a
stick-slip behavior. Directly after breaking loose from the surface all stored elastic energy is
dissipated by means of internal processes.

k,. During the movement of the surface the asperities transition from states in
which they have contact and states in which they move freely. If an asperity
establishes contact, it sticks to the rigid profile. The external force applied
to the asperity increases until the breakaway threshold is reached. Then it is
dragged across the surface (sliding). The breakaway force is modeled as being
dependent on the dwell-time of the asperity. After gliding across the profile
the asperity looses the contact at some point. If this happens, the asperity
vibrates in tangential and normal direction while dissipating the stored elastic
and inertial energy. During the simulation the state of every asperity is up-
dated every time step. By calculating the work that was performed between
two time steps by an asperity and dividing it by its relative displacement, the
contribution to the friction force can be acquired. Summing up all contribu-
tions yields then the total friction force. As shown in [7] and [6], the so called
generic friction model (GF model) is in excellent agreement with most of the
friction phenomena.

6.2 Modeling of pre-sliding friction

As already mentioned, friction in the pre-sliding regime is dominated by the
position and not the velocity of an object that is rubbed against an arbitrary
surface. The micro-sliding occurring in this regime is a result of the applied
force. Theoretically, the dependence between position and force should be
easy to model. However, the nonlocal memory inherent in this system poses
some problems. If a force is applied to the friction object, it changes its



108 Friction

load
force sensor contact surface

/ elastic joint ' mirror mirror

:l:ﬁ;—‘_’i friction block ﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lorenz actuator

moving block M M

OO0 000O00 GIOIONO);

Figure 6.7: Schematic diagram of the tribometer setup with three main components:
actuator part: Lorenz actuator, stinger, and moving block friction part: friction block,
elastic joint, and force sensor loading part: load, exerting normal force on friction block.
The friction force was measured by a force sensor (piezo crystal), while the position of
the moving block was determined optically with a laser interferometer (fixed and moving
mirror).

position depending on previous force applications. Formally, the system has
an inner state that retains the history of the driving signal to some extent.
This behavior must be captured by the model if it is to describe pre-sliding
friction correctly.

6.2.1 Experimental setup

The experimental friction data was measured with a tribometer developed by
the Department of Mechanical Engineering, Division P.M.A., KU Leuven, Bel-
gium. The description of the setup follows [55] (see also [46]). In Fig.E1 a
schematic of the tribometer is shown, which consists mainly of three parts: the
actuator part, the friction part, and the loading part. The actuator part and
the friction part are coupled by the friction interface, which is the object of
interest. All other mutual influences between the three parts are minimized as
much as possible by the chosen setup in order to guarantee a precise measure-
ment of the friction force. Especially a decoupling between the loading part
and the frictional part is established by the usage of an air-bearing. In this
way all tangential forces arrive at the force sensor.

A Lorenz actuator in the actuator part drives the moving block with the
help of a stinger, while the exact displacement of the moving block is mea-
sured with a Renishaw laser interferometer. The latter measures the distance
between the mirror fixed on the moving block and the one fixed on the frame.
By feeding back the actual position of the moving block through a controller



6.2 Modeling of pre-sliding friction 109

. . . . . . . . 501
0 10 20 30 40 50 60 70 80 90 <
time [s] © 02
0.5 T T o
—_. O -03
2
< 0 ~0.4
3
8 -0.5 =0.5)
. . . . . . . . -0
0 10 20 30 40 50 60 70 80 90 1o 12 14 16 18
time [s] position [um]

Figure 6.8: Experimentally obtained position and friction force, measured for a time period
T = 96s and with a sampling frequency f; = 250Hz. Left: Position and friction force
plotted against time. Right: Friction force plotted against position. The hysteresis effect
is clearly visible.

the Lorenz actuator can be used to impose either a specific force signal or a
desired displacement trajectory.

The friction force between the contacting surfaces of the moving block and
the friction block is measured by the friction part. It consists of the friction
block, an elastic joint, and a force sensor. The joint comprises two pairs
of elastic hinges with the purpose of setting off small vertical, lateral, and
rotational alignment errors of the friction block. Thus, the friction part in the
longitudinal direction follows the principle of minimal compliance. Only if this
stiffness property is valid, the relative displacement between the moving block
and the friction block can be considered equal to the absolute displacement of
the moving block. Also in this case the force measured by the force sensor in
the friction part equals the friction force without influence from the inertial
force. As verified experimentally, a peak-to-peak force value of 10N in the
setup in Fig.[B7 results in a displacement equal to 0.12 pym.

6.2.2 Training and testing

The position signal P(t) and force signal F'(t) were measured for a time period
T = 96s and with a sampling frequency f;, = 250Hz. In Fig.[E8 the two
resulting time series, position {P,}cr and force {F,}iep, I = {1,..., N}, are
shown with N = 24000 data points each. The position P, was measured in ym
while the friction force F; was deduced from the voltage output of the force
sensor. Since the scaling of the force signal is not important for our modeling
process, we will leave the units of the force time series as arbitrary units (A.U.).

Looking at the force signal, one might notice a slow trend in the data.
This trend can be made visible by looking at the mean part of the time series.
In Fig.E9 the force signal is shown after it was filtered by a symmetrical
moving average filter with an effective length of N.g = 2001 data points. As
can be clearly seen, the mean of the force signal is not constant but slowly



110 Friction

-0.05 -1

=]
< 01} -
N
Q
2
S -0.15[ -
\
-0.2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
time [s]

Figure 6.9: Filtered force signal indicates a trend in the data. The filtering was done with
a symmetrical moving average filter having a window length of 2001 data points. Instead of
zero-padding at the beginning and the end of the time series, the first and last 1000 data
points were left out. Note, the scaling of the y-axis is different from the one in Fig.[E8

rises with time. Obviously, the force signal is non-stationary and has a slight
trend towards higher values. The trend is explained by leakage of charge from
the force sensor (piezo Crystal)ﬁ. To make things worse, the trend does not
continue linear in time but saturates slowly. Therefore, it is not straightforward
to adjust the measured data to compensate for the artificial trend.

We followed two different approaches to solve the ’trend problem’. In the
first approach we tried to detrend the data by subtracting the part which lin-
early grows in time, knowing that this could improve the modeling results for
black-box models but also that we might introduce new inconsistencies. In the
second approach we left the measured data untouched and saw the trend as
part of the modeling problem. Although this second approach is more inconve-
nient for black-box models, it might be the more realistic one. Non-stationary
data with biased measurement errors are not the kind of data modelers hope
for but they reflect real-life conditions, which have to be regularly coped with.

A cross-prediction from the position signal to the force signal was chosen as
model objective. It translates to determining the actual force value F; at time
stept € 1,..., N that led to the actual position ;. The prediction of the force
value was constrained to be based solely on the position signal, meaning that
free-running models had to be employed. This model objective was chosen
because it leads to models that can be used for control (see Section 4.

The data points of both time series, position and force, were split into the
three classical sets for modeling: the training set, the validation set, and the
test set. Each set was chosen to have the same size, resulting in all sets contain-
ing 8000 data points. The training and the validation set were both applied
for adjustment of the model parameters. The test set was not used during the
training phase of the model but was only presented afterwards for the evalua-
tion of the generalization abilities of the model. The quality measures were the
usual NMSE and MAX criteria based on free-running predictions. To assure

2Unfortunately, this measurement error was unavoidable for measurements in the static
regime.



6.2 Modeling of pre-sliding friction 111

the stability of the models, the free-running predictions were started at the
very first force value F} and followed through until the last value Fyyp09. The
NMSE was then computed on the last 8000 data points, representing the test
set,

100% 24000 R
NMSE = — (F, — F})?, (6.17)
8000 - 0% . ;G()Ol

with F} being the measured force signal at time step ¢ and F} the free-running
prediction produced by the model. Similarly the MAX criterion was computed
as

1 .
MAX = —max{|Ft — Fy| | t=16001,.. .,24000} . (6.18)

OF

6.2.3 Results

The results gained with NARX models and RNN models are shown in Fig. .10
The first presented model is a polynomial NARX model, which was developed
with the FOR technique and optimized on free-running predictions. It has 32
monomials with a maximum degree pya.x = 3 as basis functions and is using
the following targets and regressor vectors in the embedding

ye=1ry, x = (PtaPt—Qa“'aPt—lSaFt—Q)Ta (6-19)

with ten values of the position time series and one value of the force signal
as components in the regressor. The evaluation of the model on the test set
yielded the quality criteria NMSE = 2.49% and MAX = 0.41, indicating that
the model describes the system fairly well but fails in recognizing all of the
characteristics. A look at the errors for the whole test set reveals the reason
for this failure. The model cannot adapt to the slight trend in the force signal.
The free-running predictions tend to be smaller than the original values. In
the course of time the errors are bound to grow even more because the trend
is not accounted for by the model.

The results for the polynomial NARX model could be improved by remov-
ing the linear trend from the friction force. As said before, this pre-processing
step was not ideal, as the artificial measurement error was not really grow-
ing linearly in time. However, it was the simplest possible procedure and it
provided data that were more stationary and thus improved the adaptation
process for the NARX model. In this case the FOR procedure yielded a model
consisting of 54 monomials with maximum degree py,.x = 3, which was based
on the following embedding

ye=ry, x = (PtaPt—Qa“'aPt—?)GaFt—Q)T- (6-20)

In contrast to the previous model, this embedding includes much more infor-
mation from the past, since the regressor vector contains 18 previous values of



112 Friction
NARX model
T T T T T T =
; orig
0'2_“ :“, --- pred
—_— 1
o) \ a ) M IR Al =2
< oF \ { \ 'l“ A ! | | A I\ fr NP . ”‘\ AN
= Ve Vo [ B} 1 D W A ’
AR A T N A [ ) 1 by N [ A ‘N PNy
Q N Y (VR ] 1 by v ' VAR B N
o \ " v v ‘I 1 \ o 'R AW l\ [ KERYERN
° —02k \ \ |' ] VY W |‘ YA ! \ N g Y, <
b ! A\ v N [y - hid e
|} ’ 1 r
v |d' kY
_0 1 1 1 1 1 1 1
'%4 64.5 65 65.5 . 66 66.5 67 67.5 68
time [s]
'5' 0.1 T T T T T T
< OWNWMWWWMWMWW
5 0.1 s
s ; ; NMSE = 2|.49% MAXI =0.41
-0.2
65 70 75 80 85 90 95
time [s]
NARX model (pre-processed force signal without trend)
T T T T T T
0.41 A origd
A N --- pre
S ook oA g A
A 2 ) A g 1 \ - o -1
$ " |' ‘I A A l, \ ,’ ‘| ol A 4 ‘l . ,' ‘\ A A
\ [ N | Y N W B | A v A A\ AR ATV A
) NN B Y : A A A JAR " \ "\ / \ /vy [
ba) (WA AR N IR Y U R A [\ VA ~ I\ / vV,
= oF L. v V! (] \ / \, \ \ AN v AL { v/ M
-9 ‘\‘ [ \i L A N Y ./ \oe 9
\j Vv \ | WA
| V v/ \ i
_0'2 1 1 1 > 1 1 1 1
64 64.5 65 65.5 66 66.5 67 67.5 68
time [s]
'5' 0.1 T T T T T T
< owwmw
5 -0.1F
s ; ; NMSE = JI..67% MAXI =0.97
-0.2
65 70 75 80 85 90 95
time [s]
RNN model
T T T T T T =
A orig
0.2, [
_ \ | ‘.‘ ' --- pred
D: ‘l l"‘ A A ,' \ ’ ‘| -'-l I"’| M
< oy, 'REAY ,"\| / ". { ‘-_\ ,'l \ NSV A s AN
\ ,: |'|"| A \J 1 [ v o i \l'\,l
8 VoL A WA Al N A YA NS
S -o2f v (WY \ [ ° VAR YNNG T
\/ Y A\ |I It v
w i 1%.4
_0 1 1 1 1 1 1 1
'%4 64.5 65 65.5 . 66 66.5 67 67.5 68
time [s]
; 0.1 T T T T T T
< OWWMMWMW”MMWMW\MM
5 -0.1f .
= : : NMSE = O|.86% MAXI =0.41 :
-0.2
65 70 75 . 80 85 90 95
time [s]

Figure 6.10: Results of the cross-prediction problem for the polynomial NARX and the

RNN model. For each model a sample of the first 1000 predicted force values Ft and original
values F; of the test set are presented along with the errors e; = Ft — I} for the whole test
set (note the different time spans). Top: The NARX model trained on the measured data
shows the worst results. As can be seen, the errors are biased, because the model predictions
are generally smaller than the original values. This is a result of the trend in the force signal.
Middle: The predictions of the NARX model can be improved by removing the trend from
the measured force signal. The bias of the NARX model that was trained and tested on such
pre-processed data is considerably smaller. Bottom: The predictions of the RNN model
are very good even though it was trained and tested on the original data with trend.



6.3 Modeling of pre-sliding and sliding friction 113

the position time series. Indeed, although the preprocessing was not optimal,
the performance of the model could be improved leading to NMSE = 1.67%
and MAX = 0.97. Again, this is an acceptable result although still not overly
precise.

The third model we used was an RNN consisting of ten elements with the
following internal dynamics

10
xf) = a(i)xgijl + (1 — |a®]) tanh(c;o + Z cij:pl@l +v9p), i=1,...,10,
j=1

(6.21)
with the free parameters a® € [0,1), cij € R, and b ¢ R. This network was
optimized on the training and validation set according to learning methods
described in Section B34l As can be seen in Fig. [0 the RNN yields the best
predictions even though it was trained on the original force signal with trend.
With its performance of NMSE = 0.86% and MAX = 0.41 it seems to capture
the characteristics of the friction system very well.

In [55] these three models were compared to other black-box models and
to physics based models that were specifically designed to describe friction
system. Although the NARX models showed acceptable results among the
black-box models, they were no match for the more sophisticated physics based
models. However, the RNN could well compete with the best of the physics
based models, which had quality criteria of NMSE = 0.75% and MAX = 0.51
(see [BI]).

As an aside, the best prediction results could be achieved by combining the
two best physics based models and the RNN black-box model in a so called
ensemble model. The improved criteria in this case were NMSE = 0.28% and
MAX = 0.24. These remarkable values indicate that physics based models and
black-box models are not necessarily mutually exclusive but on the contrary
may benefit from each other.

6.3 Modeling of pre-sliding and sliding friction

The modeling of pre-sliding friction combined with sliding friction is a great
challenge for most of the modeling approaches. Both regimes are fundamen-
tally different from each other concerning the behavior of the system. In con-
trast to pre-sliding, the friction in the sliding regime is governed by velocity.
Although, for itself, the sliding regime is not more difficult to describe than
the pre-sliding regime, the difficulty lies in the combination of both. Whenever
the system switches from pre-sliding to sliding, genuinely new characteristics
have to be modeled.



114 Friction

50 T T T T T T T T -0.4
T
= -0.6
s 0 i
3 -0.8)
o
o —
_ 1 1 1 1 1 1 1 1 o _
5GO 5 10 15 20 25 30 35 40 < 1
time [s] ©
0 T 5—1.2
) -
= | 1.4
o 1
o —1.6]
o
5 1 1 1 1 1 1 1 _18
0 5 10 15 20 25 30 35 40 60 —40 -20. 0O 20 40
time [s] position [um]

Figure 6.11: Experimentally obtained friction data. Position and friction force measured
for a time period T' = 44 s with a sampling rate f; = 2500 Hz. Left: Position and friction
force plotted against time. Right: Friction plotted against position. Compared to the
pre-sliding case the hysteresis curves are much broader.

6.3.1 Training and testing

The friction data from the sliding regime were measured by the group of KU
Leuven with the same setup as was used before for the pre-sliding friction (see
Section and Fig.[87). In order to initiate sliding the peak-to-peak value
of the reference trajectory was chosen to be higher than in the pre-sliding case.
As a result the friction block would slide for greater displacements in the same
direction and stick at the reversal points of the trajectory, yielding a position
and a force signal that included sliding as well as pre-sliding characteristics
(see Fig.GIT).

Comparing the right hand side of Fig.le.TTl with that of Fig.[lE.8 one can see
the broadening of the hysteresis curves, which is characteristic for the gross-
sliding regime. It is evoked by the occurrence of sliding behavior. Here, where
the friction block starts to glide on the surface beneath it, friction is no longer
dominated by displacement. Instead, the velocity becomes the critical variable.
Plotted against time, the sliding regions are discernible as 'plateaus’, where the
force seems almost constant over long periods of time (see Fig.l512). However,
zooming into such a region (see rhs of Fig.[E12) reveals that the force is by no
means constant. It oscillates rather on a much finer scale. These oscillation
are explained by ’stick-slip behaviorfl of the friction-block.

The fast oscillations stemming from stick-slip motion are the reason why
the sampling frequency had to be increased to f; = 2500 Hz in comparison to
the pre-sliding case, where it was f; = 250 Hz. This is explained in Fig.[ET2
Similar to the pre-sliding case the force signal follows coarsely the oscillations
of the reference position signal. Since the reference position signal is chosen

3 Here, the term stick-slip behavior does not refer to the classical usage, which describes a
movement, where an object alternates between standing still and moving. Instead, stick-slip
behavior is used for a movement with an alternating slow and fast velocity. Note that the
parentheses will be omitted for the rest of the section.



6.3 Modeling of pre-sliding and sliding friction 115

position [pm]
position [pm]
o

0 ‘ ‘ [ e subsampling every 80th point ‘ ‘ ‘ [ subsampling every 5th point ||
2 2.2 24 2.8 3 3.2 34 3.6 20 2.88 29 2.92 2.94 2.96 2.98 3
time [s] time [s]

-0.5¢

force [A.U.]
I
=

|
=
3]

2 22 24 26 3.2 34 3.6 " 2.88 29 2.92 2.96 2.98 3

2.8 2.94
time [s] time [s]

Figure 6.12: The measured force signal poses considerable difficulties for modeling because
of its oscillations on very distinct scales. Left: The low frequency component in the force
signal follows the oscillations in the reference position signal. It is well captured by a
heavily subsampled version. For demonstration every 80th point is marked by a filled circle.
Right: Zooming into a sliding regime reveals a finer scale in the force signal. These faster
components do not result from fluctuations in the reference position signal and thus are not
predefined by the user. Rather they correspond to stick-slip behavior of the friction system.
Information in the higher frequencies is only preserved for higher sampling frequencies. For
demonstration every 5th data point is marked by a filled circle. Note that the fast oscillations
are also present in the measured position signal. However, they are not visible in this figure
due to their very small amplitude.

to have only low frequencies (f ~ 4 Hz), the response signal from the friction
system (namely the friction force) alternates also very slowly. Information
about these oscillations is preserved even if a lower sampling frequency (see
lhs of Fig.[E12) is used. However, in contrast to pre-sliding, stick-slip behavior
occurs in the sliding case. During such periods the system does not follow
exactly the reference position. Due to sticking the position of the system
sometimes lags behind the reference trajectory until a slipping phase occurs.
This alternating behavior is characterized by low amplitude oscillations in
the measured position and the force signal (see rhs of Fig.[E12). The stick-slip
oscillations are much faster than the oscillations of the reference position signal
(f ~ 60Hz). Therefore, information about the sliding phase is only preserved
if the sampling frequency is chosen higher than in the pre-sliding case.

With a sampling frequency f; = 2500 Hz the number of data points was
much higher than in the pre-sliding case, although a shorter measurement
period T" = 44 s was used. Each time series (position and force) consisted of
N = 110000 samples. From these time series the first 90000 data points were
used for training and validation, while the last 20000 data points were taken
for testing. As before for the pre-sliding case, the modeling task was a cross-
prediction. The force value F; at a time step t € N had to be predicted from
past and present values of the position time series P, P,_1, ...



116 Friction

For quality evaluation the NMSE and MAX criteria were based on free-
running predictions. Again, the free-running predictions were started at the
very first force value I and followed through until the last value Fji9g00. The
NMSE was computed as

100% 110000 -
NMSE = 50000 o2 t%m(m — F})?, (6.22)
and MAX as
MAX = é max {\Ft — B | t=90001,..., 110000} . (6.23)

6.3.2 Results

The multi-scaled force signal, as mentioned in the previous section, had a great
impact on the strategies and the results of the static and dynamic modeling
approach. Both approaches had to be adapted in specific ways in order to
achieve good prediction results, and it is worthwhile to address the different
strategies of the two approaches separately.

NARX models

Since the force signal included information on different scales, it was not trivial
to determine an appropriate embedding for the static modeling approach. The
usual rule of thumb is to choose the delay about one forth of the dominant
period of oscillation in the signal. However, here we had two very distinct
frequencies: fast oscillations in the sliding regime and slow oscillations follow-
ing the course of the reference trajectory. With a try-and-error approach the
following embedding was found to yield acceptable results

Yy = F, = = (thh P, P9, P4, P,
Py g0, Pi—s2, Pi—ga, Pi_s6 (6-24)

T
Pt—1607 Pt—162a Pt—1647 Pt—166) .

The regressor had 13 components and two different delays, which reflected the
individual scalings in the signal. The short delay 7 = 2 stored the information
about the fast oscillation, while the long delay 7 = 80 contained information
about the slow oscillations.

The FOR procedure yielded a polynomial NARX consisting of 57 mono-
mials with maximum degree pp.x = 3. The one-step prediction error of this
model was excellent. However, the real testing was supposed to be performed
for free-running predictions. Unfortunately, in this mode the NARX model
turned out to be unstable. Starting with the first point in the training set,
the prediction performance was acceptable until time step 7' ~ 31.1s (see



6.3 Modeling of pre-sliding and sliding friction 117

N
o

8 . . . . .
original NMSE = Inf MAX = Inf
--- predicted

force [A.U.]
< °
f o @
error [A.U]

! <
N
T

=
2}
T

0
N

. . . . . . . . . - | I I I I I
30.2 30.4 30.6 30.8 31 31.2 314 31.6 31.8 32 ) 5 10 15 20 25 30
time [s] time [s]

Figure 6.13: After training the NARX model, it was tested in the free-running mode.
Unfortunately, it revealed itself as being unstable. From the time 7" ~ 31.1s the prediction
errors grew unboundedly. Because of the instability the NMSE and the MAX criterion could
not be evaluated on the test set, which starts not until 7' = 36 s.

Fig.6E13). From here on the prediction errors grew unboundedly rendering
the evaluation on the test set (starting from 7' = 36s) impossible. Clearly,
this NARX model could not be used without a stabilization strategy.

There are many ways to stabilize polynomial NARX models, and we tested
three of them. The simplest way to stabilize a model is by bounding its output.

Instead of the genuine model output Ft a transformed version Ft = h(Ft) with
a bounding function A : R — R is used for further processing. For example, a
simple bounding function is

U ifx>U
hz)=q2 fL<x<U, (6.25)
L ifxz<lL

with an upper bound U € R and a lower bound L € R. This strategy is fast
to apply because it does not involve any retraining of the model. However,
the lack of retraining is at the same time a weakness of the strategy as it
might introduce artificial behavior of the model that is not sanctioned by the
information in the training data.

In our case, the bounding strategy was effective in stabilizing the model.
Fig.[ET4 shows the results of for two different sets of bounds. In both cases the
model output was left unbounded from below with L., = Ly = —o0. In the first
case the upper bound was set to be marginally over the maximum force value
in the training set: U; = —0.42. In the second case we were more generous
with U; = 1.0. As can be seen, stabilization is successfully established in both
cases. After the instability region at T &~ 31.1s is overcome, the predictions
regain their former precision. Another result is that the prediction quality on
the test set is not influenced by the choice of the upper bound. For both cases
the criteria are NMSE = 1.28% and MAX = 0.53.

Another strategy for stabilizing polynomial NARX models is ridge regres-
sion (see for example [30]). Tt leads to a reduction of the model complexity



118 Friction

Fan® o, fay / Vv,

U=-042 L=-Inf ‘ ‘ ‘ original I y=10, L=-inf ‘ ‘ P original
—0.5F N Eaa --- predicted L [ --- predlcledi

\

force [A.U/]
|
i
=7
force [A.U.]

_1sf \_J ot \_N Lo N
L

L L L L
31.2 314 31.6 31.8 32

. . . . . . . . | . . .

302 304 306 308 31 31.2 314 316 318 32 302 304 306 308 31

time [s] time [s]
T T

error [A.U]
error [A.U]

NMSE =1.28% ‘ MAX =053 NMSE =1.28% ‘ MAX = 0,53
37 38 39 41 42 43 44 37 38 39 41 42 43 44

40 40
time [s] time [s]

Figure 6.14: Results of the bounding strategy for the free-running mode of the NARX
models with two different upper bounds. Note, in both cases the model outputs are not
bounded from below (L = —c0). Left: The upper bound is chosen as U = —0.42, which is
a value slightly above the maximum value of the force signal in the training set. Bounding
the model output overcomes the instability at 7" ~ 31.1s. After that the model finds its
way back to its previous accuracy. Right: The upper bound is chosen very generously
as U = 1.0. However, even with this high value stability can be established. After some
time the free-running equal the ones in the previous case. Thus, the NMSE and the MAX
criterion on the test set are not influenced by the choice of the upper bound.

by shrinking the individual weights of the basis functions. The shrinkage is
thereby controlled through a balancing factor £ € R. For higher values of k
the procedure leads ideally to simpler models, which also tend to be more sta-
ble. The tuning of the balancing parameter can be done with the help of the
validation set. Ridge regression is slower than the bounding strategy because
it requires a retraining of the model.

The results for two different values of the balancing factor k£ are shown in
Fig. &Il The first value £ = 0.05 was optimized on the validation set. It
strikes a good balance between model simplicity and model accuracy. One can
see that the resulting model outputs have considerable deviations from the
true values at the former instability region 7' ~ 31.1s. However, the model
stays stable, and the precision criteria on the test set are NMSE = 1.38% and
MAX = 0.62.

For demonstration purposes, ridge regression was repeated with the higher
balancing factor & = 0.2. Higher factors favor simpler models, which are
generally also more stable. However, the constraint in the complexity usually
makes the models more rigid, leading to lower model accuracy. These features
are nicely visible on the right hand side of Fig.ETA The new model copes
better with the instability at 7" &~ 31.1s but the price paid are higher errors
on the test set. The quality criteria NMSE = 2.28% and MAX = 0.86 are
considerably higher than before.

A third possibility to stabilize polynomial NARX models is the optimiza-
tion of the parameters based on free-running predictions. This is maybe the
best but also the most time-consuming procedure. Similar to ridge regression



6.3 Modeling of pre-sliding and sliding friction 119

o 577 focnn, o AN o I PR VN

original k= ‘0_2 ‘ ‘ ‘ ' ' ' original
--- predicted —0.5F 7 --- predicted
i

\

force [A.U.]
i
&
force [A.U]
i

1 I { { . v vy A ’
Y ) : . [N i 3 /

I R o~ Yo
- - e’ e ol

L L L L L L L L L L L L L L L L
302 304 306 308 312 314 316 318 32 302 304 306 308 312 314 316 318 32

31
time [s]
T

T T T T T
0.2 1
0
L

NMSE =1.37% | . MAX = 0,62
37 38 39 41 22 43 24 - 37 38 39

31
time [s]
T

error [A.U]
error [A.U]

NMSE =2.28% | . MAX = 0,86

a1 42 43 24

40 40
time [s] time [s]

Figure 6.15: Results of the ridge regression strategy for two different values of the balancing
factor k. Left: The first factor £ = 0.05 was optimized on the validation set and strikes a
good balance between model complexity and model accuracy. As expected, the model errors
on the test set are low. Right: By raising the factor to £ = 0.2 the complexity of the model
is further constrained. This leads to a model that shows an even more stable behavior in
the instability region T' ~ 31.1s. However, the accuracy suffers under these constraints as
can be seen by the higher errors on the test set.

the model has to be retrained. However, unlike ridge regression the minimiza-
tion problem in the free-running mode of the model is in general not convex.
Nonlinear optimization has to be applied, which is computationally intensive.

In our case, the optimization of the free-running model could not be done
directly because of the instability at 7"~ 31.1s. Instead, the optimization was
performed in combination with error-propagation. In this method the output
of the model is fed back to the model in a pre-processed version. Instead
of using the pure model output it is mixed with the original time series and
the model is trained with this modified feedback. The mixture is a weighted
average of model output and original time series. By putting more weight to
latter, instabilities of the model can be remedied. After one training phase is
finished a new weighting is applied in the mixture and a new training phase is
started. Iteratively the main weight of the mixture is shifted from the original
time series to the model output. In the last iteration only the model output
is used.

The results of this procedure are shown in Fig.[E.T6 As can be seen, the
instability at 7'~ 31.1s is overcome easily by the retrained NARX model. In
fact, the errors in this region for the free-running approach are the lowest of all
our stabilization efforts. Good results were also achieved concerning the model
accuracy on the test set where the NARX model performs with NMSE = 1.11%
and MAX = 0.49.

As a last option we tried to optimize the embedding step of the static
modeling approach. Instead of simple try-and-error a new procedure based on
a genetic algorithm was tested. The new embedding was optimized for local
models, where it showed very good results. It had the following targets and



120 Friction

Tt
f

' ' ' ' ' ' ' original
-0.5}f . N L - -~ predicted |
A £\ fo ‘
\ b P | \ 1 kY J

ul

force [A.
error [A.U.]

A N N Way ., )
S I S N ]

NMSE =1.11% ‘ MAX = 0,49

30.2 30.4 30.6 308 31 312 31.4 31.6 318 32 - 37 38 39

40 41 42 43 44
time [s] time [s]

Figure 6.16: Results gained by optimizing the model performance in the free-running mode.
The former instability of the model at T' =~ 31.1s has almost vanished. The performance on
the test set with very low error amplitudes is remarkable.

regressors
vy =F, = (Fi,P, P16 Pi—es, Pr—67) - (6.26)

This embedding was used as a basis for a new polynomial NARX model. The
FOR procedure produced a model consisting of 84 monomials with maximum
degree pmax = 5. Following, its weights were optimized in the free-running
mode because this procedure showed already good results for the previous
NARX model. In Fig.GT7the results of the optimization procedure are shown.
With the new embedding the performance on the test set could be significantly
improved leading to NMSE = 0.44% and MAX = 0.37. This demonstrates how
important the choice of the right embedding is for a static modeling approach.

RNN models

The multi-scaled force signal complicates things in the dynamical modeling
approach as well. In order to reproduce the fast oscillations a finely sampled
version of the position signal has to be provided as an input to the RNN.
However, for the slow oscillations information from a long time in the past is
needed. In order to have such information present at the actual time step,
the RNN has to store informations for a long period of time. This leads to a
dilemma. Since the memory of RNNs is not lossless and the memory capacity
is constrained by the number of elements, a very large network is required. On
the other hand, such a large network hampers optimization attempts by being
too slow and unwieldy.

In order to avoid problems concerning overly large networks and to save
computation time another solution was found. An external memory in form
of delay lines was used, which relieved the internal memory of the RNN. On
the left hand side of Fig.lE.T8 the concept of these delay lines is schematically
depicted. The position signal P; which serves as an input to the RNN is split
into three different signals. The first signal is the original position signal. The
second signal is a delayed version of the position signal with a delay equal to
7 = 80 samples. And similarly the third signal has a delay 7 = 160 samples.
These three signals are presented to the RNN as a new multi-variate input



6.3 Modeling of pre-sliding and sliding friction 121

" " " " " " " original L
—0.5F X § --- predicted 02
A he M P =
IR AR U N

5 0.1

force [A.U.]
i
&
error [A.U]

N A N AN
-1.5f \‘_W,/ ‘F‘""‘" l“.‘r' ".:‘""’ Iy \,,..\ /A

NMSE =0.44% ‘ MAX =037

30.2 30.4 30.6 30.8 31 31.2 314 31.6 31.8 32 e 37 38 39 40 41 42 43 44
time [s] time [s]

Figure 6.17: Prediction performance of polynomial NARX model, which is based on an
optimized embedding. The former instability region at T' &~ 31.1s has effectively vanished,
and the prediction performance on the test set could be improved, as can be seen by the
remarkably good model accuracy.

signal. Thus, the RNN can resort to past values without having to store them
internally.

This strategy seemed to be very effective in our case. On the right hand
side of Fig.lBI8 are shown the results of the dynamical modeling approach.
The optimized network consisted of 45 elements with the internal dynamics

45
2l = a(i)xf_)l + tanh(c; + Z cl-j:cﬂ)l +0DP), i=1,...,45.  (6.27)
=1

The connectivity of this network was about 11% translating to 225 internal
connections. The optimization procedure was based on Simulated Annealing as
described in Section B34l In Fig.E I8 one can see that the instability region of
the polynomial NARX models at T" &~ 31.1 s was no problem for the dynamical
modeling approach. This is obviously resulting from the optimization proce-
dure of the RNN, which is automatically based on free-running predictions
and cannot produce unstable results. Furthermore, the performance concern-
ing the precision of predictions on the test set is by far better than that of the
NARX models. Both criteria, NMSE = 0.13% and MAX = 0.2, have very low
values indicating a very precise model.

In [70] the NARX model and the RNN were compared to other black-box
models and to gray-box models, with the latter including knowledge about
some aspects of the physics behind friction. Similiar as for pre-sliding friction
the dynamic modeling approach could show its strength in producing reliable
and stable models also for the sliding regime of friction. The RNN was the
best model from all black-box and gray-box models. The next best model was
a gray-box model with the quality criteria of NMSE = 0.29% and MAX = 0.90
(see [(0]). By combining the RNN with other models in an ensemble model
the performance could be slightly improved.



122 Friction

T T T T T T T ongnal
—0.5- . fr N bos o predicted
i [ N\ AT [
A P [ FN [ p
P P [t I\ | \ f

force [A.U]
I
1N
.

P(t) A I A N

\ 15} e LS ‘-:"_.," '-,r",/' N
P(t-80) £ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32
network ——— time [s]

0.1, T T T T T T T
B
P(t-160) £ 0
i<}
e NMSE =0.43% ‘ MAx=02 ]
37 38 39 40 41 42 43 44
time [s]

Figure 6.18: Left: For capturing slow oscillations the RNN has to have access to informa-
tion in the input signal P; that lies long time in the past. This can be achieved by creating
an external memory in form of delay lines. The signal is stored in these lines for a specific
period of time (80 samples or 160 samples) and then presented to the network as an extra
input. Right: The instability region of the NARX models at T' &~ 31.1s is not present
for the multi-variate RNN. Also the performance on the test set is better than that of the
NARX models.

6.4 Control

Models of friction are usually meant to be applied in control tasks. Even
though common sense suggests that accurate models probably show better
control results than inaccurate ones, this implication does not follow auto-
matically. It is not clear whether models with good prediction performances
will indeed have a positive impact on the controllability of a system. Accu-
racy comes often at the cost of complexity, which could prove a hinderance
in control applications. In this section we take a closer look at the usage of
dynamical networks for the tracking problem.

6.4.1 Tracking problem

The tracking problem is one of the most important control tasks. The objective
is to develop a controller that forces the behavior of a system to follow a desired
course. Formally, the dynamics of a discrete system can be described by the
state equation

w(t) = fa(t = 1),u(t)), (6.28)

with an inner state variable z(t) € R% a transition function f : R% x R —
R and an input signal u(t). The transition function defines deterministically
how the system changes its states for certain inputs. If the inner state is
accessible, the tracking problem reduces to the identification of the transition
function f(-). With the knowledge of the transition function the future states
x(t) can be forced to follow a desired, reference trajectory x,.(t) by generating
an appropriate input signal wu(t).



6.4 Control 123

MT
; P e P E
signal ' C P it
generator control system P e E P

signal " P
generator Q_’ control @ system

[

Figure 6.19: Left: Closed loop control by a P-controller. The P-controller forces the
system to follow a reference trajectory P.(t) created by a signal generator. For this purpose
it applies a control signal Fp(t), which is proportional to the deviations e(t) = P,.(t) — P(t)
between the actual position P(t) and the reference position. Right: The closed loop control
is extended by an additional feed-forward controller. The model uses the information from
the desired trajectory to produce an additional control signal Fyf(t), which assists the closed
loop controller.

Unfortunately, the inner state variable is seldom available to the user in
real world applications. Typically the access from the outside is limited to
an observable variable y(t) € R%, which is a transformation of the original
system state

y(t) = h(=(1)), (6.29)

with the transformation function h : R% — R%. We call the observable vari-
able also the output or response of the system. Without the explicit knowledge
of the inner states, the system response is the only means by which the sys-
tem’s behavior can be determined and controlled. The tracking problem is to
find an appropriate controller that forces the output signal of the system to
follow (or track) a reference signal vy, (¢), which is specified by the user. The
control is regarded successful if the output follows exactly the reference. The
distinction between the inner state and the observable variable is not necessary
if the functional relationship between them is one-to-one. However, this case
is rare because most of the time only partial information about the system
state can be gained by measurements on real physical systems. The incom-
plete knowledge of the system state is often what makes tracking problems
complicated.

In our numerical simulation we simulated the friction setup from Fig.[e.1
The input to the system was the force signal, u(t) = F(t), its output the
position variable, y(¢) = P(t), and the reference signal the desired position,
yr(t) = P.(t). This setup is very general and one can find many examples for
it, e.g. a robot-arm following a desired trajectory or the positioning of read
head in an optical storage device under the influence of friction.

As a basis for the simulation a closed-loop control scheme as depicted on the
left hand side of Fig.[ET9 was used. In this scheme the actual position of the
system, P(t), is measured and compared to the reference trajectory P,.(t). The



124 Friction

deviations or tracking errors e(t) = P,(t)— P(t) are used by a P-controllef] as a
feedback to produce a control signal Fp(t). The control signal is proportional to
the deviations and affects the system in such a way as to minimize the tracking
errors. For linear systems this control scheme is nearly perfect, rendering an
error signal e(t) that is almost vanishing. However, a system influenced by
friction is nonlinear in its nature and for such systems the P-controller displays
weaknesses. The deviations of the system trajectory from the reference signal
become significant in their amplitude, leaving room for improvement. In this
case one should consider applying controllers, specifically designed to handle
nonlinearities.

As a simple solution we used a nonlinear model (RNN) as an additional
feed-forward controller (see rhs Fig.[5.19). The model made use of the informa-
tion from the reference position to produce an appropriate force signal Fys(t).
Ideally, the additional force signal was to minimize the tracking errors, leading
eventually to a control region that could be considered linear and where the
P-controller could be employed in a more effective way. The improvement was
measured by the reduction in the amplitude of the error signal e(t) (see next
section).

Since the setup was numerically simulated, we had to use a model for the
friction system in Fig.lTd This led to a somewhat redundant situation of
developing a model of a model. Selecting both models from the same model
class, e.g. RNNs, in this situation would normally yield perfect control results.
These results, however, would only be of limited value. Instead, we tried to
minimize the redundancy by choosing very distinct model classes. Specifi-
cally, the applied friction model was required to have only little in common
with RNNs and to include as many aspects of real friction systems as pos-
sible. These requirements were nicely fulfilled by the generic friction model
(GF model) of the Leuven group (see Section [6I), which is among the most
sophisticated among the physics based models. With its statistic approach
to modeling friction on the microscopic level with a huge population of ele-
ments it is sufficiently different from RNNs and poses with its random nature a
great challenge to control attempts. As a pre-step to modeling and controlling
the complex generic model we also used the Generalized Maxwell-slip model
(GMS model) of the Leuven group (see Section [61I), the latter model having
the advantage of being more simplistic and thus better suited for exhaustive
numerical simulations.

Summarizing we can state that in the light of the mentioned redundancy
it is problematic to transfer results from numerical simulations of control ex-
periments to real world applications. However, with the precaution steps we
followed, the numerical simulations should at least yield some qualitative facts

4A P-controller is the simplest possible feedback controller. It produces a control signal
which is proportional to the deviations between system position and reference trajectory.
Usually, it is combined with an integral and a derivative part in PID control.



6.4 Control 125

about the control ability of dynamical black-box models. Especially the usage
of a RNN as control model and the generic friction model as friction system
preserves realistic aspects and is a legitimate pre-step for real world control
experiments.

One valid question still remains: Why not use the generic friction model
from Leuven for the control itself if it is so sophisticated? The short answer
is that such an approach usually has immense disadvantages. Even though a
model may be solidly grounded in physics and show good agreements to real
physical systems, it does not automatically mean that it is easy to apply to a
concrete modeling task. As already mentioned in Section Bl there is a differ-
ence between physics based models, which should show as much resemblance
to real systems as possible, and simple black-box models, which are trained to
show good approximations only for specific situations. Often, complex models
have dependencies on parameters that are notoriously difficult to determine.
For example, in the case of friction many parameters depend on material prop-
erties or environmental conditions that are unknown or eventually change in
time. In such a case it is often advantageous to adjust a black-box model to the
current situation (or even use self-adjusting ones) rather than to reestimate all
parameters of a sophisticated model. In the end it condenses to the question:
What is the final goal of the modeling task? If it is a deeper understanding
of friction, physics based models should be used. If it is a quick solution to a
tracking problem, black-box models may be a better choice.

6.4.2 Simulation setup

The simulation was done in Simulink (Version 5.0 (R13)) with the setup follow-
ing the schematics in Fig.[E201 The basis for this schematics was already ex-
plained in Fig.lET9 In its core it consists of a closed-loop control (P-controller)
complemented by feed-forward control through a nonlinear model. For the
simulation a fixed-step ODE solver (ode5, Dormand-Prince) was chosen with
a time step ¢ = 0.001. The subsystems, simulating the friction and the signal
generator, were developed by the group of KU Leuven, who were also respon-
sible for the experimental part of the project. The friction systems are based
on their GMS and GF model (see Section ETI).

Following from the experiences made in context with the modeling of slid-
ing friction data (see Section B3]) we employed an external memory for the
dynamical model. The input to the model subsystem, namely the reference
trajectory P,.(t), was split into three individual versions, P,(t — 27), P.(t — ),
and P,(t) with a fixed delay 7 (see Fig.l20). This multivariate input signal
was then provided to the dynamical model (RNN), which produced a force
signal Fys(t). The force signal from the nonlinear model was used as an ex-
tra feed-forward control signal in addition to the signal from the P-controller.
The internal parameter of the P-controller was held fixed for all simulations



126 Friction

at K, = 4000. The feed-forward control could be switched on and off with the
help of a time trigger during a simulation run.

In separate simulation runs two different friction models were used for
the friction subsystem. In both cases the inertial forces were computed for a
friction block with a mass m = 5.

Friction system 1 included the GMS model for simulating the dry friction
force. The GMS model consisted of 10 elements with individual parameters.
Additionally a viscous part depending on the velocity was simulated with the
parameter 0o = 0.2. To include random aspects of friction, which cannot be
captured by models, an internal noise source with uniform random numbers
r; ~ U[=0.05, 0.05] (see Fig.[6.20).

Friction system 2 included only the physics based GF model in addition to
the inertial part (see Fig.[E.20). Since the GF model is inherently random, the
noise source could be omitted here. The GF model consisted of 1000 elements
with individual parameters. In this case the viscous part was left out.

6.4.3 Training

Before dealing directly with the control problem, the nonlinear model was
adapted to the system behavior in the training phase. For this purpose we
had to acquire sample data from the system, which could be used for offline
learning. Although it may seem simple, the acquisition of data can be done
in many ways and the choice between them is often critical for the success
of the modeling task. Probably the most important requirement is that the
training data should capture the system behavior in all main operation regimes
that could also occur during its later application in the control setup. This
is especially important for black-box modeling because here the training data
represent the only source of information about the modeled system.

First, we tried a straightforward approach to creating training data as
shown on the left hand side of Fig. B2l With a signal generator a random
reference trajectory P, (t) was produced. From this trajectory the inertial force
F(t) was computed that is necessary to move a mass block with m = 5. The
inertial force was applied to the friction system as input. In this situation a
system without friction would follow exactly the reference trajectory. However,
due to internal friction forces the real system position P(t) deviates from the
trajectory. In our case the deviations rendered the computed input and output
data useless for training because of the instationarity of the position signal (see
rhs of Fig.[821l). The amplitude of the position drifted in regions that were
not typical for the later application in the control environment. Note that
in this example we used friction system 1 (GMS model) for simulating the
friction block. However, the same drifting happens also for friction system 2
(GF model).

In order to gain usable training data, an alternative approach was chosen.



6.4 Control 127

control setup

time trigger
> [ 0 I
\AA constant
model 1

reference P_r e |tracking error F | force
position < = .

) 4
R O
— -
signal generator P controller friction system

P | position
A

) 4

A 4

L. friction system 2
friction system 1
-

pr
Tz Tz

uniform noise [-1,1] @Q ' P 71 g '@
= z-1 z-1

1/m

P’ Tz SMicro01C

generic friction model

model

friction model

RNN |+

F_ff

viscous sigma_2

Figure 6.20: The control setup in Simulink follows the scheme presented in Fig.[ET9
Additionally a time trigger is included, which activates the feed-forward control during a
test run. During the numerical simulations two different friction models are employed for
the friction system. Both models are provided with the control signal F'(t) (force) as input
and export their actual position P(t) as output. Friction system 1 consists of a frictional
part, which is simulated by the GMS model. Additionally, a viscous friction is implemented,
which is proportional to the velocity of the system. An internal noise source simulates the
unpredictable aspects of friction. Friction system 2 consists only of the frictional part
that is simulated by the GF model. The GF model is much more complex than the GMS
model. Since it is inherently random, the random noise can be omitted here. In contrast to
friction system 1 viscous friction is not simulated. Subsystem model: Before the reference
position P.(t) is provided as an input to the model, it is split into three delayed versions. The
RNN is then driven with the new multivariate signal P(t) = (P.(t — 27), P,(t — 7), P, (1))
and produces the control signal Fy¢(t) as an output (here: 7 = 50 samples).



128 Friction

force
(@)

o le ] 0 20 40 60 80 100

time

friction system

position

ED* signal generator

0 2.0 4.0 . 6.0 8b 100
time

Figure 6.21: Direct approach to creating training data leads to instationary data. Simu-
lation was run with friction system 1 (GMS model). Left: A random reference trajectory
P.(t) is produced by the signal generator. The inertial force F'(¢) is computed from this tra-
jectory and provided as input to the system. Because the system is under the influence of
friction, the real position P(t) deviates from the reference position. Right: The computed
force F(t) and position signal P(t) are not suited for training because the position signal is
highly instationary. The deviations to the reference trajectory P.(t) are not typical for the
following control application.

force
o

E 0 20 40 60 80 100
time

signal generator P control  friction system

position
o

0 2.0 4.0 . 6.0 80 100
time

Figure 6.22: Indirect approach to creating training in the scope of closed-loop control
Simulation was run with friction system 1 (GMS model). Left: A random reference trajec-
tory P-(t) is produced by the signal generator. A P-controller (K, = 4000) is used to force
the friction system to follow this trajectory. The control signal F'(t) (force) and the actual
position P(t) are recorded and used later for training. Right: The computed force F(t)
and position signal P(t) are well suited for training. In contrast to the direct approach, the
position signal stays in the operation region that is also relevant later for control. Note, the
reference trajectory was not plotted because in chosen resolution it coincides with P(t).



6.4 Control 129

O \
du/dt > durdt 5 ¢ 1
| . = @—% du/dt f—»{ durdt |—{ 5 & 1

P_r

» GMS

friction model

»  SMicro01C

2

A . generic friction model

viscous sigma_2
Figure 6.23: Left: Perfect model Ml(;c)rf for friction system 1 (see Fig.[l520). Additionally
to the inertial force the friction forces (GMS dry friction and viscous friction) are accounted
for. Right: Perfect model Mgc)rf for friction system 2 (see Fig.[20). The dry friction force
is accounted for by the GF model.

Instead of directly applying a force to the friction system, the training data
was generated in the scope of a closed-loop control scheme (see Fig.[5.22). The
same signal generator that was used for the former direct approach produced
a reference trajectory P,(t). However, this time a P-controller with K, = 4000
forced the friction system to follow this trajectory. Thus, the recorded position
P(t) remained in an operating region that was relevant for the following control
application. With this approach a training data set, consisting of the force and
the position time series each with 100000 data points, was generated.

6.4.4 Testing

After training the dynamical models (RNNs) for the control application, their
quality was evaluated with two different criteria in order to discriminate be-
tween their static and their dynamic properties. Additionally, we had to bear
in mind that random generators were used in the friction systems to simulate
internal noise sources. Since these noise terms could not be modeled, they
introduced a limit to the model precision. This limit had to be considered for
the evaluation of our models.

In our case the precision limit could be very easily computed by applying
perfect models for testing. These perfect models are a convenient byproduct
of our artificial, numerical environment. Usually, in real world applications
we do not have full knowledge about the systems that we want to model.
However, in our numerical case we knew everything about friction system 1
and friction system 2 and we could use this knowledge to create models (M(l)

perf?
Ml(fe)rf) for them (see Fig.l823)). Without any internal noise source, Méle)]ff could
predict and control friction system 1 flawlessly (same goes for Ml(fe)rf and friction

system 2). However, the inherent randomness of the friction systems lead to
modeling errors also in this case. Evaluating the performance of Ml(ot)rf

M®

perf’

and

we could derive a quality limit for our dynamical models.



130 Friction

Static evaluation

Ideally, after the training process, a model has captured the main character-
istics of the system and is capable of predicting the system’s behavior. Thus,
before using the model for control, it is interesting to see its prediction qualities
on a static data set.

For this purpose we applied the usual NMSE and MAX criteria on a test
data set, which was created with the same setup as the training data (see
Fig.622)). The only difference between creating training and test data was a
different seed parameter in the random signal generator. Thus, a test signal
with similar characteristics to that of the training data was created but with a
different time evolution. In analogy to the training data the test data contained
also N = 100000 data points. The test data was employed to compute the
static NMSE and MAX,

100% -2
NMSE, = N‘O%Z (F-F) , (6.30)
i=1001
1 R
MAX, = —max{|F— £ [i=100L,...,N}, (6.31)
OF

which were based on free-running predictions of the force values as required
by the intended application in the control environment. The first 1000 data
points were omitted to reduce the influence of transient behavior. The lowest
possible values NMSEP® and MAXP®™! were evaluated with the perfect models
Ml(ole)rf and Mfe)rf’

To account for the internal noise sources of the friction systems, we repeated
the computation of all evaluation criteria for 20 different realizations of the test

set and averaged the values.

Dynamic evaluation

In tracking problems the success of control is determined by the magnitude
of the control errors e(t) = P(t) — P.(t). The smaller these deviations are,
the better the control. Therefore, we used dynamic NMSE and MAX criteria,
which were defined similarly to the static NMSE and MAX and applied to the
tracking errors e(t). According to the setup in Fig. 20 a simulated control task
was performed for a time duration 7" = 100 and with a time step t, = 0.001.
During the simulation the tracking error was recorded, yielding the time series
e, t=1,..., N, with N = 100000 data points. This error signal was used for
the computation of the dynamic NMSE and MAX values.

The absolute values of NMSE and MAX had little significance in the dy-
namic scenario and had to be extended by relative values. The reason for this
approach is that the P-control already reduced the deviations e; to a great ex-
tend. Therefore, low absolute values for NMSE or MAX did not automatically



6.4 Control 131

indicate a good model. It was necessary to compare the control performances
with and without the feed-forward control. To capture the relative improve-
ments two extra criteria were added: « and (3.

We included a time trigger in our setup that switched between pure P-
control and P-control in combination with feed-forward control (see Fig.[5.20).
The switching took place at a time step Tywiten = D0 in the middle of the test
run. During the first half only the P-controller was operating, yielding an
absolute NMSE value

50000
100
NMSEp = (7; > e (6.32)

o
Pr 5=20001

with op, the standard deviation of the reference trajectory. The first 20000
data points were generously left out to exclude any transient behavior. After
the switching at time step Tiyiten = 50 the feed-forward control from the RNN
was added. The new NMSE was computed as

100000
100
NMSEq = — (75 > e, (6.33)

-0
Pr 5=70001

again leaving out the first 20000 data points.
Comparing both NMSE values the relative improvement was subsumed in
the a-criterion

_ NMSEp — NMSEg
- NMSEp
An a-value near 100% indicated a nearly flawless control, while a value near
0% indicated that the application of the dynamic model could not improve the

P-control.
In analogy to NMSE the MAX criterion was defined as

-100% . (6.34)

1
MAXp = —max{|e]| | i =20001,...,50000} , (6.35)
OF
1
MAXg = —max{|e] | ¢ =70001,...,100000} . (6.36)
OF
The relative improvement was described by the (-criterion
MAXp — MAXg
= -100% . 6.37
3 MAX, 0% (6.37)

The lowest possible values NMSER™ and MAXE™ were again evaluated
with the perfect models MY and M?

perf perf> l€ading to the corresponding values

aPf and AP, respectively.

To account for the internal noise sources of the friction systems, we repeated
the control simulation with 20 different realizations of the internal noise signals.
All evaluation criteria were accordingly averaged.



132 Friction

6.4.5 Results
Friction system 1 (GMS)

Before starting with the modeling procedure we determined the theoretical
precision limits of the modeling task. The static evaluation with the perfect

model 1\/[1(316)]rf yielded the results

NMSEP™ = (1.54+1.7) - 107* %,  MAXP" = (1.0+1.1)-1072.

These values represent the best possible performance that can be achieved for
static prediction. They reveal that the internal randomness of friction system 1
plays only a minor role in its dynamics. Most of its behavior is deterministic
and can be predicted from the input time series (position).

The dynamic evaluation yielded similar results

NMSEp = (8.9651 4 0.0005) - 107" %,  MAXp = (2.7981 £0.004) - 107",
NMSER™ = (7.143 £ 0.009) - 107° %,  MAXE™ = (9.7+0.2)-107*
ot = (99.992 +0.008) %, BT = (99.65 £ 0.02) % .

Summarizing, we can say that the internal noise should have no significant
effect on the modeling precision because the behavior of friction system 1 is
dominated by deterministic processes.

In the training phase the parameters of the RNN model were adapted to
the training data in an offline learning procedure according to the optimization
methods described in Section B34l The optimization procedure was combined
with a constructive approach. Every time the optimization procedere would
stop improving the results on the validation set, new elements were added
to the network and the optimization was restarted. If this also did no lead
to better performances, the training phase of the RNN was stopped. In our
case the final structure of the RNN consisted of 27 elements with 58 internal
connections. The elemental dynamics used was

27

3
x;(t) = ayx;(t — 1) + tanh (Z cijri(t—1)+ Z bikuk(t)> , 1=1,...,27,
j=1 k=1
(6.38)

with the multivariate input uy(t) = P.(t — 100), us(t) = P.(t — 50), and
us(t) = P,.(t) (see Fig.5.20).

In the static testing phase the prediction quality of the model was evaluated
(see Fig.[624)). Here the prediction criteria were

NMSE;, = (3.020 £0.006) - 10' %,  MAX, = (1.58740.004) - 10~*.

Although these values are not as good as the ones of the perfect model, they
are very good considering the kind of model that was used. As a black-box



6.4 Control

133
P [IVAY
original ~ / \
--- predicted 7 N \
501 \ B
A N %\ s Vi
o N i 4 S rd |
o \ f \‘ 5 i \ i
S O W A S \ VA A
b Y / “‘ / '| l‘ \ / \ /
¥ Axd \‘ ll ‘\ll |I 'l \‘l
-50 =y A \ i
\‘ /N__l' “/'
| | | ‘~-"\ | | |
28 28.5 29 29.5 30 30.5 31 315 32
time
4
2
s O
@ -2
‘;‘ NMSE_= 0.3% MAX_=0.16
—bkE | { L L L | 1 I t —
10 20 30 40 50 60 70 80 90 100
time

Figure 6.24: Prediction performance of RNN model for friction system 1. Top: The

original force time series and the prediction of the model for a sample period between
t1 = 28 and t5 = 32. Bottom: Prediction error for the whole test data set.

0.2t N | A . refer. trajectory |
foy ~ \ /\ | --- actual position
» 1 N 7 \ \
L ! i 1Y I LA [ ]
_ 01 / A [N A \ [ N
—_ ) 4 \
2 ,' i 'l \ g “ \ Il II ,I \
> o / V1 oM™ 7 \ /A |
o] / ] ,' A% ) “ \ / \ I: \\ ~
A \
o S 1 q L] { ) \ / \ / AN /oA
L lI i ' J lI \ / \ { N4 v
-0.1 K (S ‘\ [} ] \‘ ,/ \ ,I \
F W v \ \ \ \
F A \ \ V4 /
b 9 J ) v ) () \}
_02‘ ‘.I ». . \ l‘ ’I |‘ '4
L v

84 85

error

NMSEP =0.9% MAXP =0.28
1 1 1 1

-0.04

NMSEﬁ =0.0022% MAXff =0.018
1 1 1

| |
10 20 30 40 50 60 70 80 90 100
time

Figure 6.25: Control performance of RNN for friction system 1. Top Left: Reference
trajectory and actual position of system for pure P-control in the time interval [30, 35]. Top
Right: Reference trajectory and actual position of system for P-control with additional
feed-forward control by the RNN in the time interval [80,85]. Bottom: The tracking error

for the whole simulation time 7' = 100. At switch time t; = 50 feed-forward control is added
to the P-control.



134 Friction

model the RNN was based on no other knowledge than the information in the
training data. The NMSE as well as the MAX value indicate that the behavior
of friction system 1 was indeed captured by the RNN.

With the good results concerning the prediction abilities of our nonlinear
model, it was interesting to see how the latter would do in the control setup.
The quality values for this dynamical task were

NMSEp = (8.9651 +0.0005) - 10°* %,  MAXp = (2.7981 £ 0.004) - 10!,
NMSEg = (2.150 £ 0.009) - 10 %,  MAXg = (1.768 & 0.005) - 102
o =(99.760 £ 0.008) %, B =(93.6840.03)%.

The good results from the static evaluation could be well reproduced in the
dynamic environment. It is noteworthy that the averaged precision of the
RNN, which is described by the NMSE and « criteria, is almost as good as
that of the perfect model. Only for the maximum deviations, described by
MAX and (3, the RNN is slightly inferior to the perfect model. Nevertheless,
the dynamical evaluation revealed a successful modeling attempt. The tracking
error was considerably reduced, as can be seen in Fig.[5.20

Friction system 2 (GF)

Again we started with determining the precision limits of the modeling task.
With the perfect model Ml(i)rf the results of the static evaluation were

NMSEP™ = (824 0.6)-103%,  MAXP™ = (3.8+0.3)-1072.

Better results than these cannot be achieved by any model. The NMSE and the
MAX criteria of the perfect model reveal that randomness in friction system 2
plays a greater role than in friction system 1. However, its influence is still
very small in comparison to the deterministic part.

The results of the dynamic evaluation were

NMSEp = (6.047 £0.008) - 107" %,  MAXp = (2.340 +0.009) - 107",
NMSER™ = (3.540.8)- 107 %, MAXE™ = (7.0+1.1)-107°
Pt =(99.94+0.19) %, B*=(97.0+£0.8)%.

Randomness in friction system 2 has greater effects than in friction system 1.
It lowers the precision of even perfect models. However, the lowered limits are
still at such a high level that they should not affect the modeling results.

The RNN was trained in exactly the same way as in the previous modeling
task concerning friction system 1. Also the elemental dynamics was the same
as well as the external delay lines. The final structure of the RNN consisted
of 70 elements with 383 internal connections.



6.4 Control

135

3000; original n
20001l -~ - predicted A\ A
~ o I\ , YA
L I' \ IR PSRN " 'l n I 'l \ " 1
g 1090 PN YN A Ny
o [ A ,' Vv T A} [ \ g
=) 07 " ‘\ | ‘I / 1y \ I’ \ ’, : ‘\l’
- NPt AV ARY U S ATAY
_10007“: \“ / \ ," S ~‘\ / v ‘|‘ [
2000/ oA
| | | | | [ |
28 28.5 29 29.5 30 30.5 31 31.5 32
time
T
500
S o
()
-500 - : -
NMSEs = 0.95% MAXS =0.63
| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
time

Figure 6.26: Prediction performance of RNN model for friction system 2. Top: The

original force time series and the prediction of the model for a sample period between
t1 = 28 and t2 = 32. Bottom: Prediction error over the whole test data set.

refer. trajectory /’\. ,\ AN\
5/ --- actual position R ] N ANV |
l“—"‘-\\ ," “4 i “\ /’ \ /’ ‘\ / ‘\
c / Y AR w \/ \‘ / V) .
o sty 14 b 1 s \ / \
= 0 / S / 3 1' I| [ / i
D i W { T ] . / \
8 \ g ‘\ : ‘l 4 N\ J ‘\
S \/ \ \
-10; ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
30 31 32 33 34 35 80 81 82 83 84 85
time time
1
0.5
5 oM
@
_05 _
1 NMSEP =0.6% MAXP =0.23 NMSEff = 0.028% MAXff =0.069 |
L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
time

Figure 6.27: Control performance of RNN for friction system 2. Top Left: Reference
trajectory and actual position of system for pure P-control in the time interval [30, 35]. Top
Right: Reference trajectory and actual position of system for P-control with additional
feed-forward control by the RNN in the time interval [80, 85]. Bottom: The tracking error
for the whole simulation time 7" = 100. At switch time t; = 50 feed-forward control is added

to the P-control.



136 Friction

In the static testing phase the RNN had to predict the force value that is
needed to push the plant to a specific position. The results of this task are
shown in Fig.lE26l The following performance criteria were obtained

NMSE; = (0.955 4+ 0.005) %, MAX = 0.632 £ 0.007.

As already mentioned, the modeling of friction system 2 was much more diffi-
cult than that of friction system 1, the reason behind it being the more complex
generic friction model. This difficulty is revealed in the peformance values,
which are slightly worse than for friction system 1. Nevertheless, the results
indicate that the RNN was still able to capture all the main characteristics of
the system.

In the next step the RNN was used in the control environment (see Fig.[521).
An evalutation yielded the following quality values for this dynamical task

NMSEp = (6.051 £0.009) - 10°'%, MAXp = (2.354+0.02)- 107",
NMSEg = (2.76 £0.05) - 1072 %,  MAXg = (6.92 +0.06) - 1072
a=(9543+£023)%, [ =(70.50+0.69)%.

The values indicate that the RNN performed worse in the dynamical environ-
ment than the model for friction system 1. This was to be expected because it
was already less accurate for static predictions than the latter. Nevertheless,
the task to improve the control by an additional feedforward model can be
considered successful as the averaged error was also in this case considerably
lowered.



Chapter 7

Conclusion

7.1 Summary

The main focus of this thesis was to investigate the two different concepts
of modeling: static modeling and dynamical modeling. Motivated by mecha-
nisms in the human brain, the dynamical modeling approach was formulated
as an alternative to the usual static modeling. It was interesting to see if a
model with fading memory can hold up to the results which can be achieved
with a static model, where the memory is practically lossless. Hoping to get
results that were not much worse, we were pleasantly surprised to find that
the dynamical modeling approach has even some advantages compared to the
static approach and sometimes produces even better results than the latter.

Starting with the conventional modeling approach, static models were in-
troduced to the reader. It was shown that static models follow a simple scheme
by reducing dynamical modeling tasks to static ones. The separation of the
embedding step and the regression step was marked as one weak spot of the
static modeling approach. Through the separation the parameters of the model
are divided in two groups and cannot be optimized in one step. Instead a try-
and-error scheme has to be applied, which involves great computational effort
and is not guaranteed to yield a satisfactory solution.

Another weakness of the static approach was found to be the transformation
from sequential data with inherent time information to static patterns itself.
Through this transformation the development phase of static models is mainly
focused on one-step predictions. It was demonstrated that this inclination
leads to biased estimations of model parameters if the training data is noisy.
A solution to this problem was shown to be a nonlinear optimization of the
parameters in the scope of free-running predictions. However, it was also
shown that in the case of polynomial NARMAX models the refinement of
the model parameters through the optimization on free-running predictions
could not solve the bias problem completely, the reason for this being the
selection process of the basis functions which is necessarily based on one-step



138 Conclusion

predictions.

An alternative approach to modeling was presented that overcomes both
weaknesses of the static approach. By using the internal response signals of a
dynamical system to an external input signal any desired output signal that
is deterministically related to the input signal can be approximated. Thereby
the internal states of the driven system function as a memory, storing the his-
tory of the input signal and the previous states of the system. Through the
internal transition from one state to another the state variables produce differ-
ent dynamics and can be employed as dynamical basis functions. Embedding
step and regression step, which were two distinct steps in the static modeling
approach, are combined into one step in the dynamical approach. Further,
because of the internal storage of previous states, dynamical models are suited
to be optimized on free-running predictions.

It was shown that dynamical modeling is related to synchronization. The
driven system, which is utilized as a model, has to adapt to a driving signal in
the same way every time the experiment is repeated. Otherwise, only quali-
tative but no quantitative results can be expected. The adaptation process of
the driven system is exactly the same one as in generalized synchronization,
where a driven system adapts to the driver. The concept of reliability was
introduced that is based on generalized synchronization but is more rigorous
in its demands on the driven dynamical system. It requires the dynamical
system to synchronize to every possible input signal independent of the initial
conditions, i.e. only one global basin of attraction is allowed. With these re-
quirements it is possible to use reliable systems as pools of different dynamics
for dynamical modeling.

It was argued that low-dimensional dynamical systems are not suited as
pools of response signals because they obviously cannot create the necessary di-
versity. On the other hand, reliability is difficult to ensure in high-dimensional
systems. Therefore, models with a network structure consisting of coupled
low-dimensional elements were favored as dynamical models where reliability
can be proved more easily. The theoretical concept of dynamical modeling
was demonstrated with a network-like model that uses synchronized Lorenz
systems as elements.

It was shown that dynamical modeling is already applied for some time in
the modeling with Recurrent Neural Networks (RNNs). Especially the concept
of Echo State Networks (ESNs) fits very nicely into the philosophy of dynam-
ical modeling. A stable RNN is created and used as a reservoir of different
dynamics which are combined to a common output. Instead of optimizing ev-
ery connection in the network, the ESNs use a randomly connected structure
and compensate the missing nonlinear optimizations by the greater number of
neurons. It was demonstrated that the usual stability criterion of ESNs, which
requires the spectral radius of the connection matrix to be smaller unity, some-
times produces unreliable RNNs and has to be used with great care.



7.2 Outlook 139

Further, the usage of an external loop was examined for the prediction and
cross-prediction tasks. It was shown that in most of the cases the loop leads to
unreliable networks, which has to be used in special way that involves a tuning-
in phase in which the network has to find the correct initial state. Although
networks with external loops seem to produce better prediction results in some
cases, they are not reliable and thus prone to produce unexpected results. As
such they are also to be treated carefully and have to be thoroughly tested for
instabilities. As improvements to the application of RNNs a selection scheme
based on the Fast Orthogonal Search was presented and a refinement algorithm
that can cope with bias in RNNs with external loops.

It was shown that randomly created networks can display a rather diverse
performance. In order to produce a good model the random creation process
should be repeated for a certain number of times and the best network chosen
afterwards. With not much more computational effort smaller networks with
better performance values can be produced by adjusting the network parame-
ters to the data. This adjustment does not depend on a thorough optimization
algorithm like Backpropagation Through Time, which is often applied for small
networks. By using the fact that a middle sized network already represents
a pool of dynamics with an acceptable diversity, only minor changes to some
network parameters are necessary. It was demonstrated that middle sized net-
works optimized with a rather crude algorithm based on Simulated Annealing
proved superior to large random networks.

The application of static NARMAX models and dynamical RNNs was
tested on friction data. On various examples ranging from cross-predictions
on simulated and measured data to control applications it was shown that dy-
namical models are well suited to capture the different phenomena of friction.
In most cases RNNs could well compete even with the physics based models
and was sometimes superior to them.

7.2 Outlook

As probably all works do, this thesis gives answers to some questions but also
leads to more questions itself. Some of the ideas for further investigations are
given here.

The foremost question might be: Is there an easy way to produce reliable
high-dimensional dynamical models? A possible route to this goal was shown
in constructing reliable systems by coupling low-dimensional reliable systems.
An example was given with the coupled Lorenz systems. Unfortunately, the
coupling scheme had to be limited to forward connections without any recur-
rent loops for the sake of stability. A greater diversity could be expected from
coupling schemes with recurrent loops. Such systems were presented with the
Recurrent Neural Networks, where the question of reliability can be reduced



140 Conclusion

to properties of the connection matrix. However, the problem of producing
reliable systems is not really solved. Can we find a simple rule to produce
reliable dynamical models, whose elements have a more interesting dynamics
than the saturating sigmoid transformation in neurons?

It was shown that the introduction of an external loop can improve the
modeling results for RNNs. However, the price is often an unreliable system.
Is there a way to ensure that the instability introduced with the loop is as
small as possible? The goal should be finding a parameter that can balance
prediction quality and model stability.

Numerical experiments indicated that dynamical models can deal with data
that is slightly non-stationary. Further studies should be made to investigate
this phenomenon.

One of the main disadvantages of the presented modeling techniques con-
cerning dynamical modeling is that they are not user-friendly. There are many
free parameters that have to be chosen without having a simple rule how to
do so. In our numerous simulations we have gained the expertise or rather
a 'feeling’ for which parameter values are more suited than others in certain
circumstances. However, a future goal has to be developing an automatic
procedure that enables non-experts to use the models.



Appendix A

Training of black-box models

This chapter gives an short review of the main techniques of model learningﬂ
that were used throughout the thesis. More specifically, it deals with methods
that belong to the category of so-called supervised learning of black-box models.
Supervised means that the desired behavior of the model is known on a set of
examples and that this knowledge is used during the learning process to tune
the model parameters. Black-box means that besides these examples no other
information is incorporated in the model structure. This is different with the so
called white-box and gray-boxr models, which both make use of prior knowledge
about the specific process that is to be modeled (see [49]).

The set of examples is a finite data set, also known as training set. During
the learning procedure the model performance on the training set is evaluated
and optimized by adjusting the model parameters.

Roughly speaking, supervised learning copes with two tasks. The fist one is
to find the right means to evaluate model performance. The knowledge about
the desired behavior of a model has to be made mathematically seizable in
form of a function that measures the performance of models. Such a function
is referred to as evaluation function or cost function (see Section [Al). The
second task is to adjust the model parameters with the help of the cost function.
This is done within the scope of an optimization problem (see Section [A.2]).

A.1 Cost functions

After having chosen the type and the basic structure of the model, its free pa-
rameters have to be adapted in the training procedure. In supervised learning
information about the model behavior is present in form of examples, which
is called the training set. Compliance with this behavior marks good models,
while noncompliance marks bad models. An evaluation function translates the

!Following the common usage, training and learning are treated as synonyms in this
chapter.



142 Training of black-box models

criteria ’good’ and ’bad’ into numbers by looking at the performance of the
model on the training set. Usually, it is formulated as a cost or loss functianﬁ,
which measures the deviations of the model from the training examples. In
this sense, good models have low cost values and bad models have high cost
values. The optimal model, i.e. the model with the best possible parameters,
is characterized by producing the lowest cost value.

As an example consider a model function g(-|w), which depends on the
parameters w = (w1, ..., wy )’ € RM. Further, a training set is given with N
patterns (x;,v;), i = 1,..., N, consisting of regressors x; and targets y; (see
Section ZT]). If the model is applied to the regressors x; it produces outputs

g = g(@i |w), (A1)

which depend on the parameters wy, ..., wy;. Usually, the goal of the learning
procedure is to find the parameters, for which the model outputs y; deviate as
less as possible from the original targets y;. How these deviations are measured
depends on the cost function.

The most popular choice for the cost function is the sum of squared errors

(SSE)
Lw) = (y; — glailw))* . (A2)

i=1

Minimization of this cost function is called least squares minimization. Note

that the mean squared error MSE = SSE/N and the normalized mean squared

error NMSE = MSE/ 02 are equivalent to the SSE for minimization purposes,

because the constant factors do not change the position of the minimum.
Other cost functions are the sum of absolute errors

N
Lw) ="y — g(ai|w)| | (A.3)
=1
or the maximum error
£(w) = max {ly: — glaw)]} (A

It depends on the modeling objective which of these possible cost functions
is adequate. Each one has advantages and disadvantages in combination with
certain noise properties of the data (see e.g. [49]).

A.2 Optimization

In the (M +1)-dimensional space RM* the cost function £ : RM — R, with the
parameters w € R of the model as arguments, describes an M-dimensional

2The terms ’cost function’ or ’loss function’ originate from the economics, where bad
solutions to a problem are associated with higher costs or losses, respectively.



A.2 Optimization 143

manifold

M ={(v,w) € R x RM|p = L(w),w € RM}. (A.5)

Picturing this manifold as a 3-dimensional landscape with mountains and val-
leys, the parameters of the optimal model are the coordinates of the lowest
point in the deepest valley of this landscape. This is the global minimum of
the cost function, and it depends on the smoothness and the curvature of the
manifold if it is easy or difficult to find.

If £(-) depends linearly on the parameters w, the manifold M is a plane
and the minimum can be found at the boundaries of the parameterdl. If L(+)
is quadratic in the parameters w, the manifold M is a parabolic surface with
a unique global minimum. Both cases, the linear and the quadratic, belong to
the class of problems that can be solved by global optimization, i.e. the optimal
solution can be computed taking into consideration the entire parameter space
RM,

However, in general the dependencies of cost function £(-) on the param-
eters w are neither linear nor quadratic but much more complex. Typically,
manifold M is wildly shaped and the global minimum coexists next to many
local minima. In this case there is seldom a simple analytical solution and
global optimization cannot be used. Instead, one has to resort to local op-
timization. Starting from an arbitrary point on the manifold M subsequent
points are chosen in such a way as to improve the performance in the long
run. How the points are chosen depends on the algorithm that is used. There
are many such algorithms but all have in common that they can operate only
locally on the manifold and make only small improvements in an iterative way.
If the algorithm is sound, chances are high that the path of small improve-
ments eventually leads to the global minimum of £(-). Unfortunately, there is
no guarantee that the global minimum will be found at all.

Local optimization algorithms can be divided into two main streams: the
gradient-based and the non-gradient-based methods. The former use informa-
tion about the first and sometimes even the second derivative of function £(-)
for improvements, while the latter do not rely on this knowledge but employ
direct comparisons of function values.

A.2.1 Quadratic cost function

If the cost function is quadratic in the parameters, the learning problem is
convex and can be solved with a global method. This is usually preferable to
nonlinear, local optimization techniques, because the latter are notorious for
getting stuck in local minima. For this reason many model architectures try

3 All statements in this section are restricted to optimization without additional con-
straints on the parameters aside from boundedness in the linear case. By introducing
constraints even the simple linear and quadratic optimization problems can become very
difficult to solve.



144 Training of black-box models

to incorporate parameters in a linear way, so that the popular cost function
based on squared errors becomes quadratic. For example NARMAX models
are weighted sums of basis functions

M
g(mt|w17 s ,'lUM) = Z wzgl(mt) . (AG)

i=1
with weights wy, ..., wy as linear parameters (see Section BELZ). A similar

case are Echo State Networks, where the basis functions are represented by
internal states and the output weights are also linear parameters of the model

(see Section LZ3]).

For these models the optimal set of weights is determined by minimizing
the sum of squared errors

£<w17 s 7wM> = Z (yt - g<wt|w17 s '7wM>>2 = Z (yt - Qt)z ) (A7)

t=1 t=1

or in matrix notation

Lw)=(y-9)" (y-9) =@y - Xw) (y-Xw), (A8
with the original target vector y = (yi,...,yn)?, the estimated target vector
¥ = (J1,...,95)7, the weight vector w = (wy, ..., wy )T, and the regressor
matrix

gi(®1) - gu(xr)
X = : : . (A.9)
gi(@y) -+ gu(xN)

Since the model is linear in the parameters w;, the minimization problem
is convex and thus has a unique minimum if the rank of X is not smaller than
M. An important requirement for the latter condition is that N > M, i.e.
there have to be at least as many data points as parameters. The solution is
easily computed via

N
i = (XTX) x'y. (A.10)
The matrix

X' = (XTX)_l x7 (A.11)

is usually referred to as the pseudo inverse of matrix X [A9]. The solution
in Eq. (AI0) is not always well defined. If for example there are two basis
functions that are highly correlated or even equal, there are infinitely many
solutions for the weights w. Because of this reason the weights are usually not
determined by explicitly computing the pseudo inverse. Instead the Singular
Value Decomposition (SVD) of X is used [62].



A.2 Optimization 145

A.2.2 Fast Orthogonal Search

The usage of black-box models implies that besides the training data no ad-
ditional assumptions are made concerning the functional relationship between
regressors and targets. Therefore, there are no informations about the correct
form of the model. For example, it is impossible to know beforehand which
basis functions are useful in a NARMAX model and which are not. Similarly,
it is not obvious how to choose the number of elements in RNNs. Therefore, a
simple strategy is to create a flexible model, which can be adapted to all kinds
of data in different situations. That means for NARMAX models and RNNs
to include a large number of basis functions or elements, respectively, in order
to be prepared for all eventualities.

However, this strategy has many flaws. One problem is that it introduces
redundancies into the model by correlated basis functions or internal states,
respectively. Even if numerical instabilities can be avoided by techniques like
the SVD, redundant model components lead to unnecessarily large models,
which can become unwieldy in applications. Worse, the effects of overfitting
become relevant (see Section [AZ).

A solution to the overfitting problem and the problem of too large models
was found with the so called forward orthogonal selection methods, the Fast
Orthogonal Search (FOS) being one of the most prominent among them [43],
[44], [18]. The FOS was specifically designed for NARMAX models. Therefore,
we will describe it in this scope here. However, FOS is not bound to NARMAX
models. An application to RNNs is presented in Section B33

Instead of including all basis functions from the start, the idea of FOS is
to choose only the best ones into the model. One starts with an empty model
and a large pool of possible basis functions. Then, step by step, functions
from the pool are selected. The selection criterion is based on evaluations
on the training data set. Every function is tested in its ability to reduce the
model error. The basis function that yields the highest error reduction is then
selected, while all the other basis functions in the pool are made orthogonal
to it. The orthogonalization makes the evaluation of the basis functions in the
pool independent of the already chosen basis functions. In this way redundant
basis function cannot be chosen.

If P={g:(:)]i =1,...,K} is the pool of basis functions and set I; =
{1,..., K} denotes the indices of all basis function in the pool, the FOS algo-
rithm can be expressed as



146 Training of black-box models
step 1:

D(lvlai): <gi|gi>v é(lai): <y|gi>v Vi€l

Q(1,i) = C(1,i)*/D(1,1,i), Vi€l

i, = arg rznez}f{(()(l,z)) , =1L \1

D(1)=D(L,1,i), C(1)=C(La), Q1)=Q(Li)
step 2:

b(271 .):<gi|gi1>7 Vi € Iy

D(2,2,i) = D(1,1,i) — D(2,1,i)?/D(1), Vi€ I,

C(2,4) = C(1,i) = D(2,1,i) - C(1)/D(1), Vi€l

Q(2,4) = C(1,0)?/D(2,2,i), Vi€l

iy = arg rznez}x( )(2,1)), I3 =1\1y

a(2,1) = D(2,1,i5)/D(1)

D(2) = D(2,2,i5), C(2) =C(2,i2), Q(2) = Q(2,42)
step m:

C(m,i) = C(m—1,i) — D(m,m —
Q(m,i) = C(m,i)*/D(m,m,i), Vi€ l,

im = argmax(Q(m, 1)), Iny1 = In \im

a(m, k) = D(m,k,in)/D(k), k=1,...,m—1

D(m) = D(m,m,in), C(m)=C(m,in), Q(m)=Q(m,iy)

In the description above the vector values of the basis function and the target
values are defined as

9: = (@1, gi(an))  andy = (y,....yn)", (A.12)



A.3 Overfitting 147

and the product (-|-) as

(9:19;) = gilm)g; (). (A.13)

[teratively the basis functions g¢;,(+), gi,(+), ... are chosen from the pool. The
variable Q(m,i) computed at the m-th iteration step is the error reduction
that could be gained by choosing the i-th basis function g;(-) into the model.
Therefore, for every time step m the basis function with the maximum value
of Q(m, 1) is selected.

The application of FOS makes it necessary to find an appropriate stopping
criterion for the selection process. This can either be the training error falling
below a threshold, which is set manually by the user, or the rising of the
test error on a validation set (see Section [AL3]). If the selection algorithm
was stopped after the M-th basis function was chosen, the parameters w;,
1=1,..., M, have to be computed. They can be easily gained by the recursive
formula

. Cl)
wm:;vim, m=1,...,M, (A.14)
with
i—1
U =1, vi:—Zairvr, i=m-+1,....,M. (A.15)

A.3 Overfitting

On one hand a model has to be flexible in order to describe various functional
relationships between data points. This means that the model must have an
appropriate number of free parameters that can be adapted to the data. On
the other had a model can be fitted to any data set if it is only flexible enough.
An extreme case is the fitting of a line to two points in the space. Too much
flexibility leads to models that loose their ability to generalize. Instead these
models try to describe artificial relationships in the data, which is caused by
random factors such as measurement errors. They are overadapted to the
data, a phenomenon referred to as overfitting. Keeping the balance between a
model that is too rigid and one that is too flexible is an important problem in
modeling and is known under the name bias-variance dilemma or bias-variance
trade-off (e.g. see [A9)]).

In the FOS algorithm, described in Section [AZ2Z2 the model is itera-
tively extended by adding new basis functions. This is equivalent to making
the model more flexible, which eventually leads to overfitting. The selection



148 Training of black-box models

method helps avoiding redundancies but does not solve the overfitting prob-
lem. A criterion is necessary which is able to reveal the first signs of overfitting
and which can be used to stop the selection process at this point.

This criterion is found by testing the performance of the model on an
independent data set, which was not utilized for parameter adaptation. For
this purpose the data is split up in three different sets, which are the training
set, the validation set, and the test set (e.g. see [49]). The training set is used
exclusively for the adaptation of the model parameters. The magnitude of
model errors on this data set tends to decrease with every extra parameter in
the model. That means that with every selection from the pool the error on
the training set becomes smaller. An overadaptation is not revealed with the
model error on the training set.

However, if the model is evaluated on an extra data set, namely the val-
idation set, the situation changes. Since the model parameters are adjusted
only to the training data, the model error on the validation set reveals the
generalization abilities of the model. If the new selected basis function cap-
tures relevant features of the data, the error on the validation set decreases.
However, if overfitting occurs, the error rises. This rising can be used as a
stopping criterion for the selection process.

The last of the three data sets, the test data, is needed to make an unbiased
estimate of the prediction performance of the model. This cannot be done
with the validation set because, similarly to the training set, it was used for
the adjustment of the model structure. Therefore, the error on the validation
set would yield a too optimistic view on the model performance.



Appendix B

Miscellaneous

B.1 Biased parameter estimations

This section contains computations, which were left out of Section for
reasons of readability. To understand the motivation and notation of this
section, background knowledge from Section is essential.

In the following an uncorrelated, zero-mean input signal {u; };e; with nor-
mally distributed values u; ~ N(0, 02) is assumed. As described in Sec-
tion B2 in this case, the parameter a is biased while parameter b is bias-free.
This is valid only if the ordinary cost function MSE; is used, which is an av-
erage of the squared one-step-ahead errors. In this section the effects of using
multi-step prediction errors in the cost function are examined.

2-step predictions

Regard the errors e; 11 = 911 — Y11 of a 2-step prediction. With

Utp1 = oYt + botsyr + €441
agyi—1 + aobouy + bous1 + 441 (B.1)
and
Uip1 = af + bugy
= a*§,_1 + abuy + bug,
= @Y1 + @’y + abuy + bugy (B.2)

the errors can be written as
er1 = (a3 — a®)y,—1 — a1 + (agby — ab)uy + (bg — b)ugy1 +ei01 . (B.3)

If we insert these 2-step prediction errors in Eq. (B31]) instead of the one-step-



150 Miscellaneous

ahead errors, the cost function reads
| N
. 2
MSEy(a,b) = ]\}'Enoo N ; e;
= (a} - QQ)QUZ + a*o? + (aghy — ab)?o2 + (by — b)?02 + 0iB.4)
Compared to the previous cost function the influence of the interfering term
a*o? is decreased. This leads to a smaller bias in the parameter a.

(m + 1)-step predictions

More general, look at the errors e, = Ur1m — Yerm Of (m+1)-step predictions.
With

Ytgm = agLJrlyt—l + by Z alguterfk + Et+m (B.5)
k=0
and .
gt—f—l = am+1yt_1 + a,m+1€t_1 + bz (],kut+m_k s (BG)
k=0

the error is
m
o m—+1 m—+1 m—+1 k k
erim = (ag —a™ " )y —a" ey + g (boag — ba™)utim—k + Et4m - (B.7)
k=0

Inserting these errors into the cost function yields

N

1
MSE b) = lim — ) ¢
SE(n+1)(a,b) NN ;et
= (ag™ —a™)?0) —a®" ol + Z(boalg — ba*)?0? {BR)
k=0
The influence of the interfering term a*"*2¢? is decreased even more if the

number of prediction steps m + 1 is increased.

free-running predictions

The transition to free-running prediction errors is simply made by looking at
the limes m — oo for the (m+1)-step prediction errors. Then the cost function
reads

MSE(a,b) = lim MSE,11(a,b)
= Z(boalg — ba*)?0? 4 o2 (B.9)

k=0



B.1 Biased parameter estimations 151

The terms (ag'+* — a™*1)?02 and a*"*?¢? vanish for m — oo because of the

conditions |ag| < 0 and |a| < 0 for stable systems and models, respectively.
Necessary conditions for the minimum of the cost function are vanishing
derivations

OMSE(a, ) 2 - k-1 k ky !

—— " = —202 kgzo ka" " (bgag — ba") =0, (B.10)
OMSE(a,b) 2 - k k ky !

= —20, kg_o a”(bpag — ba”) = 0. (B.11)

With the known limit values of the geometric series

E _ k _
g ¥ = and ,;0 ka® = L for|z| <1, (B.12)

1—2z
0

it follows from Eq. (BI0) and Eq. (BI1)) that

boao(1 — a*)? = ba(1l — apa)?, (B.13)

and L2
b=—"p. (B.14)

1—apa

Inserting the latter equation into the former one yields
a=ag. (B.15)

and following from that

Thus, the main results of this section is: Both parameters a and b are bias-free
if they are estimated by minimizing the MSE,, cost function based on free-
TUNNING errors.



152 Miscellaneous




Bibliography

1]

H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik. Generalized syn-
chronization of chaos: The auxilliary system approach. Physical Review
E, 53(5):4528-4535, 1996.

V.S. Afraimovich, N.N. Verichev, and M.I. Rabinovich. Stochastic syn-
chronization of oscillation in dissipative systems. Radiophysics and Quan-
tum FElectronics, 29:747-751 (795-803), 1986.

L. A. Aguirre and S. A. Billings. Retrieving dynamical invariants from
chaotic data using NARMAX models. International Journal of Bifurca-
tion and Chaos, 5(2):449-474, 1995.

F. Al-Bender, V. Lampaert, S. D. Fassois, D. D. Rizos, K. Worden, D. En-
gster, A. Hornstein, and U. Parlitz. Measurement and identification of
pre-sliding friction dynamics. In 4th International Symposium, Investiga-

tions of Non—Linear Dynamics Effects in Production Systems (Volkswa-
genstiftung), 2003.

F. Al-Bender, V. Lampaert, S. D. Fassois, D. D. Rizos, K. Worden, D. En-
gster, A. Hornstein, and U. Parlitz. Measurement and identification of
pre—sliding friction dynamics, pages 349-367. in: Nonlinear Dynamics of
Production Systems (G. Radons and R. Neugebauer, Eds.). Wiley—VCH
Verlag, Weinheim, 2004.

F. Al-Bender, V. Lampaert, and J. Swevers. Modeling of dry sliding
friction dynamics: From heuristic models to physically motivated models
and back. CHAOS, 14(2):446-460, 2004.

F. Al-Bender, V. Lampaert, and J. Swevers. A novel generic model at
asperity level for dry friction force dynamics. Tribology Letters, 16(1):81—
93, 2004.

G. Amontons. De la résistance causée dans les machines. Mémoires de
I’Academie des Sciences, pages 203222, 1699.



154 BIBLIOGRAPHY

[9] B. Armstrong-Hélouvry, P. Dupont, and C. Canudas de Wit. A survey
of models, analysis tools and compensation methods for the control of
machines with friction. Automatica, 30(7):1083-1138, 1994.

[10] D. G. Aronson, G. B. Ermentrout, and N. Koppel. Amplitude response
of coupled oscillators. Physica D, 41(3):403-449, 1990.

[11] P. Bérenyi, G. Horvath, V. Lampaert, and J. Swevers. Non-local hys-
teresis function identification and compensation with neural networks.
Periodica Polytechnica/Electrical Engineering, 47((3-4)):253-267, 2003.

[12] S. A. Billings and D. Coca. Discrete wavelet models for identification and
qualitative analysis of chaotic systems. International Journal of Bifurca-
tion and Chaos, 9(7):1263-1284, 1999.

[13] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou.
The synchronization of chaotic systems. Physics Reports, 366(1-2):1-101,
2002.

[14] F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids (Part
I). Clarendon Press, Oxford, UK, 1950.

[15] F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids (Part
II). Clarendon Press, Oxford, UK, 1964.

[16] C. Canudas de Wit, H. Olsson, K. Astrom, and P. Lischinsky. A new
model for control of systems with friction. IEEE Transactions on Auto-
matic Control, 40:419-425, 1995.

[17] S. Chen and S. A. Billings. Representation of non-linear systems: the
NARMAX model. International Journal of Control, 49(3):1013-1032,
1989.

[18] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods
and their application to non-linear system identification. International
Journal of Control, 50(5):1873-1896, 1989.

[19] K. H. Chon, J. K. Kanters, R. J. Cohen, and N. Holstein-Rathlou. De-
tection of chaotic determinism in time series from randomly forced maps.
Physica D, 99:471-486, 1997.

[20] M. V. Corréa, L. A. Aguirre, and Mendes E. M. A. M. Modelling chaotic
dynamics with discrete nonlinear rational models. International Journal
of Bifurcation and Chaos, 10(5):1019-1032, 2000.

[21] C. A. Coulomb.  Théorie des machines simples.  Mémoires de
Mathématique et de Physique de I’Academie des Sciences, pages 161-331,
1785.



BIBLIOGRAPHY 155

[22]

[23]

[24]

[25]

[20]

[27]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Courtney-Pratt and E. Eisner. The effect of a tangential force on the
contact of metallic bodies. Proceedings of the Royal Society, A238:529—
550, 1957.

P. Dahl. A solid friction model. Technical Report TOR-0158(3107-18),
The Aerospace Corporation, El Segundo, CA, 1968.

J. T. Desaguliers. Some experiments concerning the cohesion of lead. Phal.
Trans. Roy. Soc. London, 33, 1725.

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211,
1990.

L. Euler. Sur le frottement des corps solids. Histrorie de I’Academie
Royale a Berlin, pages 122-132, 1748.

H. Fujisaka and T. Yamada. Stability theory of synchronized motion in
coupled—oscillator systems. Progress of Theoretical Physics, 69(1):32-47,
1983.

K. Geist, U. Parlitz, and W. Lauterborn. Comparison of different meth-
ods for computing lyapunov exponents. Progress of Theoretical Physics,
83(5):875-893, 1990.

Jr. D. A. Haessig and B. Friedland. On the modelling and simulation
of friction. Journal of Dynamic Systems, Measurement, and Control,
113(3):354-362, 1991.

T. Hastie, R. Tibshirani, and J. Friedman. The FElements of Statistical
Learning. Springer, 2001.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, 1994.

D. P. Hess and A. Soom. Friction at a lubricated line contact operating at
oscillating sliding velocities. Journal of Tribology, 112(1):147-152, 1990.

F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural net-
works. Springer, New York, 1997.

A. Hornstein and U. Parlitz. Bias reduction for time series models based

on support vector regression. International Journal of Bifurcation and
Chaos, 14(6):1947-1956, 2004.

B. Hunt, E. Ott, and J. Yorke. Differentiable generalized synchronization
of chaos. Physical Review E, 55(4):4029-4034, 1997.



156 BIBLIOGRAPHY

[36] H. Jaeger. The ”echo state” approach to analysing and training recurrent
neural networks. GMD Report 148, German National Research Center
for Information Technology, 2001.

[37] H. Jaeger. Short term memory in echo state networks. GMD Report 152,
German National Research Center for Information Technology, 2001.

[38] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication. Science, 304(5667):78—
80, 2004.

[39] M. I. Jordan. Attractor dynamics and parallelism in a connectionist se-
quential machine. In Proceedings of the Eighth Annual Conference of the
Cognitive Science Society, pages 531-546, 1986.

[40] D. Karnopp. Computer simulation of slip-stick friction in machnical dy-

namic systems. Journal of Dynamic Systems, Measurement, and Control,
107(1):100-103, 1985.

[41] L. Kocarev and U. Parlitz. General approach for chaotic synchro-
nization with applications to communication. Physical Review Letters,
74(25):5028-5031, 1995.

[42] L. Kocarev and Parlitz U. Generalized synchronization, predictability,
and equivalence of unidirectionally coupled dynamical systems. Physical
Review Letters, 76(11):1816-1819, 1996.

[43] M. Korenberg, S. A. Billings, Y. P. Liu, and P. J. McIlroy. Orthogonal
parameter estimation for non-linear stochastic systems. International
Journal of Control, 48(1):193-210, 1988.

[44] M. J. Korenberg. A robust orthogonal algorithm for system identification
and time-series analysis. Biological Cybernetics, 60:267-276, 1989.

[45] V. Lampaert, F. Al-Bender, and J. Swevers. A generalized maxwell-slip
friction model appropriate for control purposes. In Porceedings of the
International Conference on Physics and Control, 2003.

[46] V. Lampaert, F. Al-Bender, and J. Swevers. Experimental characteriza-
tion of dry friction at low velocities on a developed tribometer setup for
macroscopic measurements. Tribology Letters, 16(1):95-105, 2004.

[47] V. Lampaert, J. Swevers, and F. Al-Bender. Modification of the leuven
integrated friction model structure. IEEE Transactions on Automatic
Control, 47(4):683-687, 2002.



BIBLIOGRAPHY 157

[48]

[49]

[50]

[51]

[55]

[56]

[57]

[58]

[59]

[60]

W. Maass, T. Natschlager, and H. Markram. Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11):2531-2560, 2002.

O. Nelles. Nonlinear System Identification. Springer, 2001.

H. Olsson. Control Systems with Friction. PhD thesis, Lund Institute of
Technology, University of Lund, 1996.

H. Olsson, K. J. Astrom, C. Canudas de Wit, M. Gravert, and P. Lischin-
sky. Friction models and friction compensation. FEuropean Journal of
Control, 29(4):176-195, 1998.

U. Parlitz. Common dynamical features of periodically driven strictly
dissipative oscillations. International Journal of Bifurcation and Chaos,
3(3):703-715, 1993.

U. Parlitz. Synchronization of uni-directionally coupled chaotic dynamical
systems (habil. thesis), 1999.

U. Parlitz and A. Hornstein. Detecting generalized synchronization from
time series. In D. H. van Campen, M. D. Lazurko, and W. P. J. M.
van der Oever, editors, Fifth FUROMECH Nonlinear Dynamics Con-
ference ENOC-2005, 09-224, pages 1174-1181. Eindhoven University of
Technology, 2005.

U. Parlitz, A. Hornstein, D. Engster, F. Al-Bender, V. Lampaert,
T. Tjahjowidodo, S. D. Fassois, D. Rizos, C. X. Wong, K. Worder, and
G. Manson. Identification of pre-sliding friction dynamics. CHAOS,
14(2):420-430, 2004.

U. Parlitz and L. Kocarev. Handbook of Chaos Control, chapter Syn-
chronization of Chaotic Systems, pages 271-303. Wiley—VCH, Weinheim,
Germany, 1998.

U. Parlitz and W. Lauterborn. Superstructure in the bifurcation set of
the duffing equation. Physics Letters, 107A(8):351-355, 1985.

L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems.
Physical Review Letters, 64(8):821-824, 1990.

L. M. Pecora, T. L. Carroll, and J. F. Heagy. Statistics for mathematical
properties of maps between time series embeddings. Physical Review E,
52(4):3420-3439, 1995.

A. S. Pikovsky. On the interaction of strange attractors. Zeitschrift fir
Physik B — Condensed Matter, 55:149-154, 1984.



158

BIBLIOGRAPHY

[61]

[62]

[71]

[72]

A. Pikowsky, M. Rosenblum, and J. Kurths. Synchronization, A universal
concept in nonlinear sciences. Cambridge University Press, 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C (Second Edition). Cambridge University Press,
1992.

K. Pyragas. Weak and strong synchronization of chaos. Physical Review F,
54(5):R4508-R4511, 1996.

E. Rabinowicz. The nature of the static and kinetic coefficients of {riction.
Journal of Applied Physics, 22(11):1373-1379, 1951.

N. F. Rulkov, M. M. Sushchik, and L. S. Tsimring. Generalized syn-
chronization of chaos in directionally coupled chaotic systems. Physical
Review E, 51(2):980-994, 1995.

R. Stribeck. Die wesentlichen Eigenschaften der Gleit— und Rollenlager
— the key qualities of sliding and roller bearings. Zeitschrift des Vereines
Deutscher Ingenieure, 46(38,39):1342-1348, 1432-1437, 1902.

J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo. An inte-
grated friction model structure with improved presliding behavior for ac-
curate friction compensation. IEEFE Transactions on Automatic Control,

45(4):675-686, 2000.

A. C. Tsoi and Back A. D. Locally recurrent globally feedforward net-
works: A critical review of architectures. IEEE Transactions on Neural
Networks, 5(2):229-239, 1994.

R. J. Williams and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1:270-280, 1989.

K. Worden, C. X. Wong, U. Parlitz, A. Hornstein, D. Engster,
T. Tjahjowidodo, F. Al-Bender, S. D. Fassois, and D. D. Rizos. Identifica-
tion of pre-sliding and sliding friction. In Furopean Nonlinear Oscillation
Conference (ENOC-2005), number 17-408, pages 1985-1995, 2005.

G. L. Zheng and S. A. Billings. Radial basis function network configura-
tion using mutual information and the orthogonal least squares algorithm.
Neural Networks, 9(9):1619-1637, 1996.

Q. M. Zhu and S. A. Billings. Parameter estimation for stochastic non-
linear rational models. International Journal of Control, 57(2):309-333,
1993.



[73] Q. M. Zhu and S. A. Billings. Fast orthogonal identification of nonlinear
stochastic models and radial basis function neural networks. International
Journal of Control, 64(5):871-886, 96.






Acknowledgments

I thank Prof. Dr. Ulrich Parlitz for his guidance and support. With his nu-
merous and valuable ideas and suggestions he contributed a great deal to this
thesis. I thank Prof. Dr. Werner Lauterborn for letting me being part of the
Third Physical Institute, in which I always felt at home. Of course I am grateful
to the VW-Stiftung for financial support and for the great opportunity to work
in an international project. In this context I thank Prof. Dr. Fahrid Al-Bender,
Prof. Dr. Spilios Fassois, Prof. Dr. Keith Worden, Tegoeh Tjahjowidodo, De-
mos Rizos, and Chian Wong for their cooperation in this project. It was a
pleasure and fun to be working with them.

I thank my parents, Lioudmila and Viktor Hornstein, for supporting me
and standing by my side at all times. I thank Ramona Emmrich who gives me
strength and makes my life so much richer. I thank all my friends for moral
support. Especially, I thank Sebastian Grieb and Bernhard Wolfrum, who
alway tried to motivate me through the hard times. I thank Jorg Dittmar,
David Engster, Elke Hanke, Philipp Koch, Immo Wedekind, Karsten Peters,
and other guys from the Third Physical Institute for stimulating discussions
and friendly chats.






Lebenslauf

Alexander Hornstein

geboren am 31.05.1973 in Leninabad (Tadschikistan, ehem. UdSSR)

deutsche Staatsangehorigkeit

1981

1981-1985

1985-1987

1987-1994

1994-1995

1995-2001

2001-2005

Umzug nach Deutschland, Oldenburg in Niedersachsen
Grundschule Nadorst, Oldenburg

Orientierungsstufe Flotenteich, Oldenburg

Altes Gymnasium Oldenburg mit Abschluss Abitur

Zivildienst beim Deutschen Roten Kreuz, Oldenburg
Physikstudium in der Universitdt Gottingen mit Abschluss Diplom

Promotionsstudium in Physik am Dritten Physikalischen

Institut (Universitdt Gottingen)



	Title
	Table of Contents
	1 Introduction
	2 Modeling tasks
	2.1 Static modeling tasks
	2.1.1 Regression
	2.1.2 Classification

	2.2 Time processing tasks
	2.2.1 Prediction
	2.2.2 Cross-prediction
	2.2.3 System identification/simulation
	2.2.4 Filtering
	2.2.5 Dynamical classification


	3 Static and dynamical modeling
	3.1 Static modeling
	3.1.1 Embedding step
	3.1.2 Regression step
	3.1.3 Application of static models
	3.1.4 Shortcomings of static modeling

	3.2 Bias in static models
	3.2.1 Modeling objective
	3.2.2 Linear system 
	3.2.3 Driven logistic map 
	3.2.4 NARX system
	3.2.5 Consequences for static models

	3.3 Dynamical modeling

	4 Synchronization and modeling
	4.1 Preliminaries
	4.2 Identical synchronization
	4.2.1 Synchronization manifold and stability
	4.2.2 Coupling configurations

	4.3 Generalized synchronization
	4.3.1 Definition I
	4.3.2 Definition II

	4.4 Using synchronization for modeling
	4.4.1 Reliability
	4.4.2 Modeling with Lorenz systems


	5 Dynamical networks
	5.1 General structure of dynamical networks
	5.1.1 Networks with multi-dimensional elements
	5.1.2 Networks with one-dimensional elements

	5.2 Recurrent Neural Networks
	5.2.1 Elman/Jordan Networks
	5.2.2 Locally recurrent globally forward
	5.2.3 Echo State Networks

	5.3 Practical aspects of RNNs
	5.3.1 Stability revised
	5.3.2 Internal and external mode
	5.3.3 Using selection methods
	5.3.4 Optimization of internal connections


	6 Friction
	6.1 Friction phenomena and models
	6.2 Modeling of pre-sliding friction
	6.2.1 Experimental setup
	6.2.2 Training and testing
	6.2.3 Results

	6.3 Modeling of pre-sliding and sliding friction
	6.3.1 Training and testing
	6.3.2 Results

	6.4 Control
	6.4.1 Tracking problem
	6.4.2 Simulation setup
	6.4.3 Training
	6.4.4 Testing
	6.4.5 Results


	7 Conclusion
	7.1 Summary
	7.2 Outlook

	A Training of black-box models
	A.1 Cost functions
	A.2 Optimization
	A.2.1 Quadratic cost function
	A.2.2 Fast Orthogonal Search

	A.3 Overfitting

	B Miscellaneous
	B.1 Biased parameter estimations

	Bibliography
	Acknowledgments
	CV

