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1 Introduction

Measure what is measurable,
and make measurable what is
not so.

(Galileo Galilei)

In many systems, regular spatially extended structures can arise from interactions
between its component parts [3, 23]. For instance, in vertically shaken, shallow
granular beds, a rich variety of patterns including stripes, squares and hexagons
form spontaneously [58, 60] in a way that can be explained by the inelastic colli-
sion of grains together with a randomization of their horizontal velocities by shak-
ing [84]. Pattern formation is observed in fluids [8], chemical reactions, epidemics
and morphogenesis [37, 47, 96]. One hallmark of pattern formation is the selection
of patterns within a particular class (e.g. stripes or hexagons). The class primarily
depends on the form of the interactions of the constituent parts and the process of
formation is frequently robust with respect to the details of the system and against
noise, explaining why patterns belonging to the same class can be observed in dif-
ferent systems often composed of very different materials and operating through
different microscopic interactions [3, 23].

Evidence for pattern selection in the brain comes from experiments inducing
substantial manipulations of neural activity. For instance, implanting tadpoles a
third eye leads to a segregation of alternating eye specific domains with character-
istic length scale in the normally monocularly innervated tectum (Fig. 1.1) [19]. In
cat visual cortex, changing the relative strength of synaptic inhibition and excita-
tion was shown to change the spacing of columns that are dominated by one eye or
the other [38]. Viewed from a dynamical systems perspective, these and other ex-
amples of activity-dependent remodeling of neuronal circuitry resemble processes
of dynamical pattern formation.

In this thesis, we explore for the example of the orientation map in the visual
cortex in how far a pattern formation framework can capture the phenomenology
of large-scale structure formation in the brain. We hope that an appropriate and
transparent description of these processes may help to identify the basic principles
underlying the development and modifiability of neural networks.

In the visual cortex, as in most areas of the cerebral cortex information is pro-
cessed in a 2-dimensional (2D) array of functional modules, called cortical columns
[22, 50, 63]. Individual columns are groups of neurons extending vertically through-
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1 Introduction

Figure 1.1: Pattern selec-
tion in the brain by activity-
dependent competition. In a
normal frog, retinal ganglion
cells from each eye project
to the contralateral tectum.
Implanting tadpoles a third
eye leads to a segregation of
alternating eye specific do-
mains with a characteristic
length scale. From [46].

out the entire cortical thickness that share many functional properties. Orientation
columns in the visual cortex are composed of neurons preferentially responding to
visual contours of a particular stimulus orientation [40]. In a plane parallel to the
cortical surface, neuronal selectivities vary systematically, so that columns of simi-
lar functional properties form organized 2D patterns, known as functional cortical
maps. In the case of orientation columns, this 2D organization is named the orien-
tation map. An orientation map in the left brain hemisphere covers the complete
cortical representation of the right visual hemifield and vice versa. Whereas the
preferred visual field position of neurons varies roughly gradually with location in
the orientation map, their preferred orientation varies repetitively with a charac-
teristic length scale in the millimeter range termed column spacing. The squared
column spacing, in turn, defines the fundamental unit of surface area in an orien-
tation map often called a hypercolumn.

The orientation map is characterized by so called pinwheels [14], regions in
which columns preferring all possible orientations are organized around a com-
mon center in a radial fashion [9, 10, 93]. At the center of pinwheels, the normally
smooth orientation map is discontinuous and the preferred orientation of nearby
columns changes by 90 degrees. Pinwheels are abundant in the visual cortex of
higher mammals such as primates and carnivore [99]. They occur numerously in
the primary visual area V1, but also in visual areas V2, V3 [109] and MT [111] with
typically a few pinwheels per hypercolumn. Thus, even a point-like stimulus like
a star in the sky evokes activity in a cortical region large enough to contain typ-
ically a few pinwheels. Despite their abundance, the role of pinwheels remains
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enigmatic. It was reported that in the vicinity of pinwheel centers neurons ex-
hibit normal orientation selectivity [4, 56] (but see also [70]). Although plausible,
it remains controversial whether the organization of pinwheels influences visual
processing [26, 80].

What is guiding the development of the orientation map? Presently, biological
researchers favor two alternative hypotheses, in the tradition of the classical nur-
ture vs. nature dichotomy in systems neuroscience. The first hypothesis states that
the formation of orientation columns is a dynamical process dependent on neu-
ronal activity and sensitive to visual experience [88, 92]. This is suggested not only
by the time line of normal development, but also receives support from various ex-
periments manipulating the sensory input to the cortex. For instance, in the ferret,
re-routing projections from the retina to the auditory pathway induces the forma-
tion of orientation selective neurons arranged in a pinwheel like pattern in the pri-
mary auditory cortex [83]. Moreover, the comparison of development under condi-
tions of modified visual experience demonstrates that adequate visual experience
is essential for the complete maturation of orientation columns and that impaired
visual experience, as with experimentally closed eye-lids can suppress or impair
the formation of orientation columns [21, 103]. This observation suggests that the
capability to form a system of orientation columns is intrinsic to the learning dy-
namics of the cerebral cortex given appropriate inputs. Moreover, the comparison
of development under conditions of modified visual experience demonstrates that
adequate visual experience is essential for the complete maturation of orientation
columns and that impaired visual experience, as with experimentally closed eye-
lids can suppress or impair the formation of orientation columns [21, 103]. This is
consistent with the hypothesis that sensory input instructs cortical circuitry [20].

However, a number of experiments suggest that the basic layout of orientation
maps is only barely susceptible to activity-dependent modification. In animals
which have been reared in complete darkness, seemingly normal orientation maps
form at about the same time than in normal animals [103] and a restructuring of
the orientation map by manipulating sensory experience has never been reported.
Rearing kittens in a striped environment consisting of a single orientation caused
up to twice as much cortical surface area to be devoted to the experienced orien-
tation, but neither eliminate the representation of the orthogonal orientation that
was never experienced by the animals completely nor changed the typical layout
of the orientation map with its typical periodicity and its abundant pinwheels [82].
Moreover, in kittens with alternating monocular experience from birth, achieved
by sequential monocular deprivation, similar orientation maps were found for the
left and right eye [36].

This apparent stability of the orientation map has revived the second hypothesis
which has been proposed originally by Hubel and Wiesel, namely that orientation
maps are prespecified in detail by genetic factors [41] (but see also [31, 106] for alter-
native explanations). Indeed, a recent quantitative analysis by the author provided
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1 Introduction

evidence for a genetic control on properties of the orientation map such as the spac-
ing and form of columns [44] and on the system of ocular dominance columns [45].
In this view, sensory experience plays only a permissive role, i.e. the presence of
activity is sufficient for generating maps, but which map is selected does not de-
pend on the patterns of neuronal activity. A combined scenario, supported by more
recent work, favors an initial phase in which circuitry is established without much
sensory instruction, followed by a period of refinement through detailed sensory
input [25, 34, 46].

Following the first hypothesis, a number of mathematical models for the activity
dependent development of orientation selectivity were proposed [30, 32, 61, 62, 65,
67, 92, 100, 104]. These models show that orientation selective neurons can arise by
activity driven self-organization of cortical circuitry. In this picture, spontaneous
symmetry breaking in the developmental dynamics of the cortical network under-
lies the emergence of cortical selectivities such as orientation preference [61]. How-
ever, most of the work focused only on the initial phase of development, partially
due to a lack of computer power at this time. It was first noted by Wolf and Geisel
[107] that orientation maps with a realistic number of pinwheels are expected to be
unstable in many proposed models.

More sophisticated approaches were proposed to overcome this problem. So-
lutions containing a large number of pinwheels were stabilized by assuming a
common symmetry of orientation and visual field representation [49, 94]. An al-
ternative approach emphasizing the cost of cortical wiring showed that there are
pinwheel rich solutions minimizing the total length of wiring [18]. This model not
necessarily meant to describe ontogenetic development of the orientation map, but
rather its optimization under evolution. However, in both approaches, orientation
maps are periodic, a property which is not shared by the orientation map in the
visual cortex. A third approach argued that fixed clustered long-range intraareal
connections may provide a scaffold for orientation maps stabilizing even realistic
solutions [86]. However, a fixed scaffold questions the necessity of plasticity dur-
ing development and seems rather unrealistic, since long-range connections also
develop experience dependent.

A recent and highly promising approach stressing the analogy to pattern form-
ing systems showed that pinwheels can be stabilized by activity dependent long-
range interactions [105]. A phenomenological order parameter field model based
on the Swift-Hohenberg equation [89] was proposed in which orientation maps
arise from a supercritical bifurcation of Turing-type. The stabilizing nonlinearity
includes only key features of visual cortical organization and is constraint by bio-
logically plausible symmetry assumptions. Near the bifurcation point, the model
exhibits quasiperiodic attractors resembling orientation maps in the visual cortex.
The convergence towards an attractor of this developmental dynamics can be in-
terpreted as an optimization process. The analogy to pattern formation appears
plausible. Like other systems where pattern formation has been observed [3, 23],
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the orientation map arises probably from an initially unselective state, it exhibits
a typical periodicity and a spatial extension at least an order of magnitude larger
than the basic periodicity length. Adopting the framework provided by the the-
ory of pattern formation, the model can be treated analytically near bifurcation.
Moreover, by this approach, even large cortical regions can be modeled numer-
ically which would be impossible in a microscopical model given that already a
few hypercolumns require the description by ∼ 106 synaptic strengths.

Thus, a variety of models have been proposed, but do they provide an appropri-
ate description of the organization and development of the visual cortical orienta-
tion map? This question is not easy to answer despite the fact that a large number
of experimental studies have been accumulated over the past years. The reason for
this is primarily that quantitative predictions of the models were not tested exper-
imentally. Recordings only provide a qualitative picture of orientation maps and
the experimental data has barely been analyzed quantitatively mainly because of
two reasons one of technical and one of more conceptual nature. Technically, ori-
entation maps, like most data from the brain, are significantly contaminated with
noise which renders a quantitative estimation at least difficult. Even more impor-
tantly, neural structures are often conceptualized as elaborately designed to fulfill
the specific functional demands of a particular brain region for a distinct species.
An accurate quantitative description aiming to identify rules or laws then may ap-
pear inappropriate or useless. We will provide evidence in this thesis that is hard to
reconcile with this viewpoint. Progress in the field of neural map development, we
believe, relies primarily on an precise quantitative characterization of experimental
data.

In this thesis, we investigate pattern selection in the visual cortex. We quantita-
tively characterize the organization of pinwheels in the visual cortex and interprete
the observed statistics by means of a phenomenological pattern formation model
that reproduces many aspects quantitatively. We study induced pattern selection
in both the model and in experimental data which leads us to the novel concept
of soft spots, that are locations at which a neural network is highly modifiable by
stimulation.

We begin with an investigation of column spacing selection in different visual
cortical areas from the left and right brain hemisphere. We present a quantita-
tive method for analyzing locally the column spacing in visual cortical orienta-
tion maps. A decomposition of local column spacing into the three parts average,
systematic, and individual variation reveals a matching of column spacing in re-
mote but connected brain regions, in individual animals and consolidating with
age. Next, we calculate the density of pinwheels, i.e. the number of pinwheels per
hypercolumn, in large data sets from three different species. Based on the local
column spacing, we develop a novel method for the identification of pinwheels
that is largely insensitive to noise. We find, that the average pinwheel density and
the spatial variation of pinwheels, expressed by the count-statistics and the nearest
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1 Introduction

neighbor statistics, are universal in the analyzed species but different in compara-
ble random maps. The average pinwheel density is in all three species statistically
indistinguishable from the mathematical constant π .

We analyze the organization of pinwheels in the abovementioned pattern forma-
tion model. We find that this model reproduces the observed pinwheel statistics in
a large and apparently realistic parameter regime. For solutions close to the bi-
furcation point, we show analytically that in the limit of long-range interactions,
the average pinwheel density converges to π . Numerically, we show that away
from the bifurcation point and for a realistic interaction ranges, soon after maps
arise from the initially unselective state, an average pinwheel density close to π is
robustly selected and remains largely preserved throughout development. Next,
to characterize the organization of the orientation map during development, we
investigate pinwheel annihilation and creation rates, survival probabilities, pin-
wheel path lengths and pinwheel speed. These quantities show, that the strength
of reorganization decays as a power law during development, but with different
exponents before and after a characteristic time. These quantities capture more
sensitively the reorganization of the map during development providing guide-
lines for future experimental investigations.

In the remainder of this work we study induced reorganization in orientation
maps. Extending the pattern formation model we include the impact of a localized
stimulation. Numerical simulations show an induced pinwheel dynamics remi-
niscent to normal development. At particular locations, so-called soft spots, the
stimulation results in a persistent and large-scale structural modification. An anal-
ysis based on the amplitude formalism indicates that these soft spots are largely a
consequence of the complex structure of the orientation map. A quantity named
softness predicts the location of potential soft spots from the layout of the map. The
predictions of the model are compared to experiments using direct electrical in-
tracortical microstimulation (ICMS) in visual cortical orientation maps. Assessing
quantitatively the induced organization, we confirm the movement, annihilation
and creation of pinwheels. The considerable variation of the observed modification
is consistent with the interpretation of soft spots in the visual cortex. Preliminary
results suggest that potential soft spots can be confined by the softness.

This thesis is organized as follows. The following Chapter 2 briefly describes
biological basics and introduces the pattern formation model underlying all the-
oretical investigations. In Chapter 3, we present a method for quantifying local
column spacing and identify its selection in different brain regions. The analysis of
pinwheels and their organization in the visual cortex is shown in Chapter 4. Pin-
wheels in the model are studied in stationary solutions in Chapter 5 and during
development in Chapter 6. In Chapter 7 we explore induced reorganization in the
model and compare the predictions to experiment in Chapter 8. The main results
and consequences are provided in Chapter 9 at the end.
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2 Basics

If the mat was not straight, the
master would not sit.

(Confucius)

In the following, we outline the state of research in this field and previous work
this theses is based on. In parts, this chapter follows the presentation in [105].
In the first section, we describe the system of orientation columns in the visual
cortex, its formation during development and its plasticity. In the second section,
we introduce a pattern formation model for the development of orientation maps
in the visual cortex.

2.1 Orientation maps in the mammalian visual cortex

2.1.1 Orientation map

In the visual cortex, as in most areas of the cerebral cortex, information is pro-
cessed in a 2-dimensional (2D) array of functional modules, called cortical columns
[22, 50]. Individual columns are groups of neurons extending vertically through-
out the entire cortical thickness that share many functional properties. Orientation
columns in the visual cortex are composed of neurons preferentially responding to
visual contours of a particular stimulus orientation [39]. In a plane parallel to the
cortical surface, neuronal selectivities vary systematically, so that columns of sim-
ilar functional properties form highly organized 2D patterns, known as functional
cortical maps (Fig. 2.1). In the case of orientation columns, this 2D organization
is characterized by so called pinwheels, regions in which columns preferring all
possible orientations are organized around a common center in a radial fashion
[9, 93].

Experimentally, the pattern of orientation preferences can be visualized using
optical imaging methods [7, 9]. Optical imaging of intrinsic signals is based on
the fact that the optical properties differ in active vs. less active parts of the cortex
[11]. This is utilized to record patterns of activity from light reflectance. In a typi-
cal experiment, the activity patterns Ek(x) produced by stimulation with a grating
of orientation θk are recorded. Here x represents the location of a column in the
cortex. Using the activity patterns Ek(x), a field of complex numbers z(x) can be
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a

b c

Figure 2.1: Patterns of orientation columns in the primary visual cortex of a tree shrew visual-
ized using optical imaging of intrinsic signals (modified from [13]). a, Activity patterns resulting
from stimulation with vertically and obliquely oriented gratings. White bars depict the orientation
of the visual stimulus. Activated columns are labeled dark grey. The used stimuli activate only
columns in the primary visual area V1. The patterns thus end at the boundary between areas
V1 and V2. b, The pattern of orientation preferences calculated from such activity patterns. The
orientation preferences of the columns are color coded as indicated by the bars. A part of the
pattern of orientation preferences is shown at higher magnification in c. Two pinwheel centers
of opposite topological charge are marked by arrows.

constructed that completely describes the pattern of orientation columns:

z(x) = ∑
k

ei 2θk Ek(x) . (2.1)

The pattern of orientation preferences ϑ(x) is then obtained from z(x) as follows:

ϑ(x) =
1
2

arg(z) . (2.2)

Typical examples of such activity patterns Ek(x) and the patterns of orientation
preferences derived from them are shown in Fig. 2.1. Numerous studies confirmed
that the orientation preference of columns is an almost everywhere continuous
function of their position in the cortex. Columns with similar orientation prefer-
ences occur next to each other in so called iso-orientation domains [91].
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2.1 Orientation maps in the mammalian visual cortex

Typically, not the entire area V1 is accessible to optical imaging methods. Ori-
entation columns in a complete visual area can be labeled by radioactive 2-[14C]-
deoxyglucose and visualized in flat-mount sections [51]. A disadvantage with this
method is that the representation of only one stimulus orientation can be labeled.

2.1.2 Intra-cortical connectivity

Visual cortical neurons are embedded in densely connected networks [15]. Besides
a strong connectivity vertical to the cortical sheet between neurons from differ-
ent layers within a column, neurons also form extensive connections horizontal to
the cortical surface linking different orientation columns. These connections ex-
tend for several millimeters parallel to the cortical surface and are therefore called
long-range horizontal connections. As shown in Fig. 2.2 for the example of the tree
shrew, these connections are clustered primarily connecting domains of similar ori-
entation preference. They have been observed in various mammals [13, 54, 87, 103]
and repeatedly hypothesized to play an important to role in visual processing tasks
such as contour integration.

Figure 2.2: Long-range hor-
izontal connections extend
over several millimeters par-
allel to the cortical surface
(tree shrew, superimposed
on the orientation prefer-
ence map). White symbols
indicate locations of cells
that were filled by a tracer
(biocytin). Labeled axons
are indicated by black sym-
bols. From [13].

2.1.3 Pinwheels

It was found experimentally that at abundant locations the iso-orientation domains
are arranged radially around a common center [9, 10]. Around these pinwheel [14]
centers, stimulus orientations are represented in circular fashion (Fig. 2.1b, black
frame). Such an arrangement had been previously hypothesized on the basis of
electrophysiological experiments [1, 93] and theoretical considerations [90]. The
regions exhibiting this kind of radial arrangement were termed pinwheels [14].
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The centers of pinwheels are point discontinuities of the field ϑ(x) where the mean
orientation preference of nearby columns changes by 90 degrees. They can be char-
acterized by a topological charge q which indicates in particular whether the ori-
entation preference increases clockwise around the center of the pinwheel or coun-
terclockwise,

qi =
1

2π

∮
C j

∇ϑ(x)ds , (2.3)

where C j is a closed curve around a single pinwheel center at xi. Since ϑ is a cyclic
variable within the interval [0, π ] and up to isolated points is a continuous function
of x, qi can only have the values

qi =
n
2

(2.4)

where n is an integer number [59]. If its absolute value |qi| is 1/2, each orientation
is represented exactly once in the vicinity of a pinwheel center. Pinwheel centers
with a topological charge of ±1/2 are simple zeros of z(x). In experiments only
pinwheels that had the lowest possible topological charge qi = ±1/2 are observed.
This means there are only two types of pinwheels: those whose orientation pref-
erence increases clockwise and those whose orientation preference increases coun-
terclockwise. This organization has been confirmed in a large number of species
and is therefore believed to be a general feature of visual cortical orientation maps
[4–6, 12, 101].

If the orientation map changes smoothly over time, the entire topological charge
QA of a given area A is invariant as long as no pinwheel transgresses the bound-
ary of the area [59]. If the pattern contains only pinwheels with qi = ±1/2, then
only three qualitatively different modifications of the pinwheel configuration are
possible. First, movement of the pinwheel within the area; second, generation of a
pair of pinwheels with opposite topological charges; third, the annihilation of two
pinwheels with opposite topological charge when they collide. Only these trans-
formations conserve the value of QA and are therefore permitted. A small variation
of the pattern does not alter the number of pinwheels, a property called topological
stability.

2.1.4 Hypercolumn and pinwheel density

Neighboring iso-orientation domains preferring the same stimulus orientation ex-
hibit a typical lateral spacing Λ in the range of 1mm, rendering the pattern of pre-
ferred orientations roughly repetitive [39, 50]. The column spacing Λ determines
the size of the cortical hypercolumn, which is considered to be the basic processing
unit of the visual cortex [22, 44]. The hypercolumn is loosely defined as the cor-
tical region representing all stimulus features (e.g. orientation, spatial frequency,
ocular dominance) at a given visual field position. We define the size of a hyper
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2.1 Orientation maps in the mammalian visual cortex

column by Λ2. The pinwheel density is defined as the number of pinwheels per
unit area Λ2. By this definition, the pinwheel density is independent of the spacing
of columns and dimension-less.

2.1.5 Development and the role of visual input

In normal development, orientation columns first form at about the time of eye
opening [17, 21, 103] which for the ferret is approximately at post natal day (PD)
31. As shown in Fig. 2.3 by the time line of early cortical development for the ferret
[88], this is just a few days after neurons first respond to visual stimuli. A subset
of neurons show orientation preference from that time on, but the adult pattern
is not attained until seven weeks after birth [16]. Roughly clustered horizontal
connections are present by around PD 27 [75].

What is guiding the development of the orientation map? Presently, there exist
two mutually excluding hypotheses. The first hypothesis states that the forma-
tion of orientation columns is a dynamical process dependent on neuronal activity
and sensitive to visual experience [88, 92]. This is suggested not only by the time
line of normal development, but also receives support from various experiments
manipulating the sensory input to the cortex. Most intriguingly, when visual in-
puts are rewired to drive what would normally become primary auditory cortex,
orientation selective neurons and a pattern of orientation columns even forms in
this brain region that would normally not at all be involved in the processing of
visual information [83, 88]. This observation suggests that the capability to form
a system of orientation columns is intrinsic to the learning dynamics of the cere-
bral cortex given appropriate inputs. Moreover, the comparison of development
under conditions of modified visual experience demonstrates that adequate visual
experience is essential for the complete maturation of orientation columns and that
impaired visual experience, as with experimentally closed eye-lids can suppress or
impair the formation of orientation columns [21, 103]. This is consistent with the
hypothesis that sensory input instructs [20] cortical circuitry. However, a number
of experiments suggest that the basic layout of orientation maps is only barely sus-
ceptible to activity-dependent modification. In animals which have been reared in
darkness, seemingly normal orientation maps form at about the same time than in
normal animals [103] and a restructuring of the orientation map by manipulation of
sensory experience has never been reported. Rearing kittens in a striped environ-
ment consisting of a single orientation caused up to twice as much cortical surface
area to be devoted to the experienced orientation, but neither eliminate the repre-
sentation of the orthogonal orientation completely nor changed the typical layout
of the orientation map with its typical periodicity and its abundant pinwheels [82].
Moreover, in kittens with alternating monocular experience from birth, achieved
by sequential monocular deprivation, similar orientation maps were found for the
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Figure 2.3: Time line illustrating many of the events during the normal development of the
visual cortex. Orientation maps form at the time of eye opening a few days after the onset of
responsiveness in the visual cortex. From [88].

left and right eye [36].
This apparent stability of the orientation map has revived the second hypothesis

which has been proposed originally by Hubel and Wiesel, namely that orientation
maps are prespecified in detail by genetic factors [41] (but see also [31, 106] for alter-
native explanations). Indeed, a recent quantitative analysis by the author provided
evidence for a genetic control on properties of the orientation map such as the spac-
ing and form of columns [44] and on the system of ocular dominance columns [45].
In this view, sensory experience plays only a permissive role, i.e. the presence of
activity is sufficient for generating maps, but which map is selected does not de-
pend on the patterns of cortical activity. A combined scenario, supported by more
recent work, favors an initial phase in which circuitry is established without much
sensory instruction, followed by a period of refinement through detailed sensory
input [25, 46].

To approach this puzzle about the potential reorganizational capabilities of the
visual cortex, Godde et al. [35] altered the intracortical activity pattern, instead
of manipulating sensory input, directly by electrical intracortical microstimulation
(ICMS). They found that in adult cat, a few hours of local stimulation induced a
highly variable complex and nonlocal reorganization of the orientation map. Pre-
viously it was reported that by using a pairing protocol combining ICMS with si-
multaneous visual stimulation, the general structure of the orientation map is pre-
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2.2 The self-organizing orientation map

served [79]. However, whereas the former study recorded maps up to 18 hours
after ICMS, the latter only addressed a time window up to 3− 4 hours after ICMS
suggesting that changes may develop on a slow temporal scale. To study the long-
term behavior of the map after ICMS and to analyze in detail the processes of reor-
ganization, a novel study was initiated combining ICMS with chronic experiments
accompanied by a theoretical analysis of the underlying process. The results of this
study are presented in Chapters 7 and 8.

2.2 The self-organizing orientation map

Viewed from a dynamical systems perspective, the activity-dependent remodeling
of the cortical network described above is a process of dynamical pattern forma-
tion. In this picture, spontaneous symmetry breaking in the developmental dy-
namics of the cortical network underlies the emergence of cortical selectivities such
as orientation preference [61]. The subsequent convergence of the cortical circuitry
towards a mature pattern of selectivities can be viewed as the development to-
wards an attractor of the developmental dynamics [107]. This is consistent with
the interpretation of cortical development as an optimization process. In the fol-
lowing, we will briefly describe a model [105] that is based on this view. This
model is the starting point of a number of analyses carried out in this thesis.

2.2.1 A pattern formation model

Self-organization has been observed to robustly produce large scale structures in
various complex systems. Often, the class of patterns emerging depends on fun-
damental system properties such as symmetries rather than on the system specific
details. Its formation can therefore be described by an effective model incorporat-
ing only these properties. For patterns with a typical scale such a model is

∂tz = F[z]
= LSHz + N2[z] + N3[z] + · · · (2.5)

where the linear part is the Swift-Hohenberg operator [23, 89]

LSH = r−
(

k2
c +∇2

)2
(2.6)

and z(x, t) is a scalar field. If the bifurcation parameter r < 0, the homogeneous
state z(x) = 0 is stable. For r > 0, a pattern with average spacing close to Λ =
2π/kc emerges. The lowest order nonlinearities N2 and N3 are quadratic and cu-
bic in z, respectively. The form of these nonlinearities determines the class of the
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emerging pattern, whether e.g. hexagons, rotating stripes, spiral waves, or of other
type.

In analogy to the theory of complex systems Wolf [105] adopted a model of the
form Eq. (2.5) with nonlinearities derived from key features of the visual cortex.
As in experimental recordings, orientation columns are represented by a complex
field [90, 107]

z(x) = |z(x)| ei2ϑ(x) (2.7)

where ϑ is the orientation preference and |z| a measure of the selectivity at location
x in the map. The factor 2 in the exponent accounts for the π-periodicity of stimulus
parameter orientation. The model includes the effects of long-range intracortical
connections between columns with similar orientation preference (Fig. 2.2). Based
on the repetition of columnar circuits across cortex it is assumed that the dynamics
is symmetric with respect to translations,

F[T̂y z] = T̂y F[z] with T̂y z(x) = z(x + y) , (2.8)

and rotations

F[R̂β z] = R̂β F[z] with R̂β z(x) = z
([

cos(β) sin(β)
− sin(β) cos(β)

]
x
)

(2.9)

of the cortical sheet. This means that patterns that can be converted to one another
by translation or rotation of the cortical layers are equivalent solutions of Equa-
tion. It is further assumed that the dynamics is symmetric with respect to shifts in
orientation,

F[eiφ z] = eiφ F[z] , (2.10)

such that patterns whose arrangement of iso-orientation domains is the same but
whose orientation preference values differ by a given amount, are equivalent so-
lutions of Equation. Solutions contain equal representation of all stimulus orien-
tations. Moreover, we neglect all possible couplings to other visual cortical repre-
sentations such as ocular dominance or retinotopy. Considering only leading order
terms up to cubic nonlinearities the nonlinear part reads [105]

N3[z(x)] = (g− 1) |z(x)|2z(x) +

(2− g)
∫

d2y Kσ (y− x)
(

z(x)|z(y)|2 +
1
2

z̄(x)z(y)2
)

(2.11)

and N2 = 0. Long-range interactions are mediated through convolutions of a
Gaussian

Kσ(x) =
1

2πσ2 e−
x2

2σ2 (2.12)

with SD σ of the order of column spacing Λ. The second parameter 0 ≤ g ≤ 2
controls local and nonlocal influences. The model minimizes an energy functional
during development. It is consistent with synaptic models based on Hebb-type
plasticity, e.g. [32, 62, 92].
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2.2 The self-organizing orientation map

2.2.2 Weakly nonlinear analysis

Close to the finite wavelength instability (at r � 1), stationary solutions to Eq. (2.5)
with (2.6) and (2.11) can be calculated analytically using a perturbation method
called weakly nonlinear stability analysis. When the dynamics is close to a finite
wavelength instability, the essential Fourier components of the emerging pattern
are located on the critical circle. Thus, solutions may be sought in terms of Plan-
form patterns

z(x) = ∑
j

A jeik jx (2.13)

composed of a finite number of Fourier components. By symmetry, the dynamics
of amplitudes Ai of a planform are governed by amplitude equations

Ȧi = rAi −∑
j

gi j
∣∣A j
∣∣2 Ai −∑

j
fi j A j A j− Āi− (2.14)

where j− denotes the index of the mode antiparallel to mode j. The form of Eq.
(2.13) is universal for models of a complex field z satisfying symmetry assumptions
(2.8-2.10). All model dependences are included in the coupling coefficients gi j and
fi j and may be obtained from F[z] by multiscale expansion [23, 57]. Denoting the
angle between the wave vectors ki and k j byα, the coefficients read

gi j =
(

1− 1
2
δi j

)
g (α)

fi j =
(

1− δi j − δi− j

)
f (α) (2.15)

where

g(α) = g + 2(2− g) exp
(
−σ2k2

c

)
cosh

(
σ2k2

c cos(α)
)

f (α) =
1
2

g(α) (2.16)

are called angle-dependent interaction functions.
Stationary solutions of Eq. (2.14) are given by planforms

z(x) =
n−1

∑
j=0

∣∣A j
∣∣ ei(l jk jx+φ j) (2.17)

of order n with wavevectors

k j = kc

(
cos

(
jπ
n

)
, sin

(
jπ
n

))
(2.18)

21



2 Basics

Figure 2.4: Essentially complex plan-
forms with different numbers n =
1, 2, 3, 5, 15 of active modes: The pat-
terns of orientation preferences θ(x)
are shown. The diagrams to the left
of each pattern display the position of
the wavevectors of active modes on
the critical circle. For n = 3, there are
two patterns; for n = 5, there are four;
and for n = 15, there are 612 different
patterns.

distributed equidistantly on the upper half of the critical circle and binary values
l j = ±1 determining whether the mode with wave vector k j or with wavevector
−k j is active. These planforms cannot realize a real valued function and are called
essentially complex planforms (Fig. 2.4). For such planforms the third term in Eq.
(2.14) vanishes and the effective amplitude equations for the active modes reduce
to a system of Landau equations

Ȧi = rAi −∑
j

gi j
∣∣A j
∣∣2 Ai (2.19)

with stationary solutions (2.17) with amplitudes of equal modulus

|Ai| =
√

r
∑ j gi j

(2.20)

and an arbitrary phase φi independent of the mode configuration l j. If the dy-
namics is stabilized by long-range nonlocal interactions (g < 1, σ > Λ), large
n planforms are the only stable solutions. In this long-range regime, the order n
grows linearly with the interaction range 2πσ/Λ. For a given order n, different
planforms are degenerated in energy. This is a consequence of a fourth symmetry
of the nonlinear part (2.11) namely the permutation symmetry

N3(u, v, w) = N3(w, u, v) . (2.21)

This symmetry implies that the relevant stable solutions are essentially complex
planforms which in turn guarantees that all stimulus orientations are represented
in equal parts. The property of multistability is characteristic for this model class
and will play an important role in Chapter 7.
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2.2.3 Pinwheel density

Figure 2.5: Pinwheel densities of the constitu-
tively different essentially complex planforms for
n = 3, 4, ..., 17. In the case of n = 3, a periodic
pattern is formed in which the pinwheel densi-
ties are exactly equal to 2 cos(π/6) ' 1.73
and 6 cos(π/6) ' 5.2. The points mark the
numerically determined pinwheel densities ρi of
the constitutively different planforms for different
numbers of active modes n. With increasing
numbers of active modes the pinwheel densi-
ties occur within an interval of allowed pinwheel
densities 1.4 < ρ < 3.5.

Whereas degenerate in energy, essentially complex planforms of order n vary
substantially in their pinwheel densities. Fig. 2.5 shows the pinwheel densities ρi,
i.e. the number of pinwheels per unit area Λ2, of the essentially complex planforms
from Fig. 2.4 of various order n. Each value represents an average over the ensem-
ble of phases φ j. Pinwheel densities fill a band of values between 1.5 and 3.5 with
the majority of values between 2 and 3.5. Pinwheel density selection is analyzed in
experimental data in Chapter 4, and in the described model in Chapters 5 and 6.
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3 Interareal coordination of column development
in the visual cortex

3.1 Motivation

It is a necessary prerequisite for calculating pinwheel densities to determine the
column spacing Λ with high precision. Owing to its definition, ρ = ρ̂Λ2 where ρ̂ is
the pinwheel density in units 1/mm2, the column spacing Λ contributes quadrat-
ically to the pinwheel density ρ. A relative error in Λ, therefore, results in a rel-
ative error twice as large for ρ. Furthermore, since there is no apriory reason to
assume that the column spacing is constant within a map, it is important to es-
timate column spacings locally. Visual inspection of orientation maps suggests a
considerable variation of local column spacing at least in some cases.

In this chapter, we investigate the column spacing locally within a set of complete
visual areas V1 and V2 in cat visual cortex, both containing a complete represen-
tation of the binocular contralateral visual field [97, 98]. We adopt methods that
we used previously for an analysis of genetic influence on columns spacing [44, 45]
and calculate a map of local column spacing Λ(x) for each orientation map express-
ing the spatial variation of local column spacing in this map. Decomposing Λ(x)
into the three components average, systematic variation, and individual variation
reveals that in V1 and V2 and in the left and right brain hemisphere, column spac-
ings covary in regions representing the same part of the visual field. Surprisingly,
this matching of column spacing even applies to individual brains and consolidates
with age. The analysis demonstrates the precision of the estimation of local column
spacings.

3.2 Methods

3.2.1 Animals

We analyzed 2-deoxyglucose (2-DG) labeled patterns of orientation columns in
the visual cortex (V1 and V2) of 27 normally reared cats (41 hemispheres). From
this group, 20 animals (31 hemispheres) were born in the animal house of the
Max-Planck-Institut für Hirnforschung in Frankfurt am Main, Germany, 7 animals
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(10 hemispheres) were bought from two animal breeding companies in Germany
(Ivanovas, Gaukler). All animals stayed at the animal house until the 2-DG exper-
iments. The visual stimuli during the 2-DG experiments were always identical in
spatial and temporal frequency, and only differed in orientation. Mostly cardinal
orientations were used.

3.2.2 Image processing

Photoprints of the 2-DG autoradiographs were digitized using a flat-bed scanner
(OPAL ultra, Linotype-Hell AG, Eschborn, Germany, operated using Corel Photo-
shop) with an effective spatial resolution of 9.45 pixels/mm cortex and 256 grey
levels per pixel. For every autoradiograph this yielded a two-dimensional (2D) ar-
ray of grey values I0(x), where x (a 2D vector) is the position within the area and
I0 its intensity of labeling. For every autoradiograph we defined two regions of in-
terest (ROI) encompassing the patterns labeled in areas V1 and V2. The manually
defined polygons encompassing the entire patterns of orientation columns within
areas V1 and V2, respectively, were stored together with every autoradiograph.
Only the patterns within areas V1 and V2 were used for subsequent quantitative
analysis. Regions with very low signal and minor artefacts (scratches, folds, and
air bubbles) were excluded from further analysis. All digitized patterns were high-
pass filtered using the Gaussian kernel K(y) = 1

2πσ2
K

exp(−y2/2σ2
K) with a spatial

width of σK=0.43mm for V1 and σK=0.57mm for V2. The patterns were then cen-
tered to yield

∫
V1 d2y I(y) = 0. To remove overall variations in labeling intensity,

patterns from V2 were thresholded to uniform contrast by setting I(x) = 1 in re-
gions larger than 0, and I(x) = −1 in regions smaller than 0. Finally, values in
artefact regions and in regions outside of areas V1 and V2 were set to zero.

3.2.3 Spacing analysis

Patterns of orientation columns were analyzed using a wavelet method introduced
recently [44, 45]. For each analyzed pattern of orientation columns we determined
a 2D map representing the column spacing at each cortical location. We first calcu-
lated wavelet representations of a given pattern I(x) by

Î(x,θ, l) =
∫
A

d2y I(y)ψx,θ,l(y) , (3.1)

where x,θ, l are the position, orientation, and scale of the waveletψx,θ,l(y), Î(x,θ, l)
denotes the array of wavelet coefficients and A denotes the ROI in V1 or V2. We
used complex-valued Morlet-wavelets defined by a mother-wavelet

ψ(x) = exp
(
−x2

2

)
eikψ·x (3.2)
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and

ψx,θ,l(y) = l−1ψ

(
Ω−1(θ)

y− x
l

)
(3.3)

with the 2D rotation matrix Ω. The characteristic wavelength of a wavelet with
scale l is Λψl with Λψ = 2π/|kψ|. We used wavelets with about 7 lobes, i.e. kψ =
(7, 0), to ensure a narrow frequency representation while keeping a good spatial
resolution of the wavelet. From these representations we calculated the orientation
averaged modulus

Ī(x, l) =
π∫

0

dθ
π
| Î(x,θ, l)| (3.4)

of the wavelet coefficients for every position x, and then determined the scale

l̄(x) = argmax ( Ī(x, l)) (3.5)

maximizing Ī(x, l). The corresponding characteristic wavelength

Λ(x) = l̄(x) Λψ (3.6)

was used as an estimate for the local column spacing at the position x. For every
position (spatial grid-size 0.12mm) wavelet coefficients for 12 orientations θi ∈
{0, π/12, ..., 11π/12} were calculated for V1 on 15 scales l j (with liΛψ equally
spaced in [0.5, 2]mm) and for V2 on 21 scales l j (spaced in [0.5, 2.5]mm). The scale
maximizing Ī(x, l) was then estimated as the maximum of a polynomial in l fitting
the Ī(x, l j) for a given position x (least square fit). The local column spacing was
calculated for typically 4 flatmount sections in each hemisphere. Values at corre-
sponding locations in different sections were averaged and combined resulting in
a single map of local column spacing Λ(x) for V1 and V2 in each brain hemisphere.
Locations sampled by <2 sections were excluded from further analysis. After su-
perposition, the local column spacing Λ(x) was smoothed using a Gaussian kernel
with σ=1.25mm.

For every map of local column spacing Λ(x), the mean column spacing Λ =
〈Λ(x)〉x was calculated. It measures whether a pattern predominantly contains
large or small orientation columns. The map of the systematic topographic varia-
tion of column spacing Λsys(x) was obtained by Λsys(x) = 〈Λ(x)−Λ〉hemis, i.e. by
subtracting from each map of local column spacing Λ(x) its mean value Λ and then
superimposing and averaging over different hemispheres. For superposition, we
localized the representations of the vertical meridians (VM) and the areae centrales
on the autoradiographs and aligned the 2D maps of local column spacing from
different animals using these landmarks [45, 52]. Maps from right hemispheres
were mirror inverted. The alignment of spacing maps based on these landmarks
matches corresponding locations from different hemispheres. The systematic to-
pographic variation of column spacing Λsys(x) was calculated only at locations x
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where at least 8 hemispheres contributed. Maps of individual topographic varia-
tion of column spacing, Λindv(x), were obtained by Λindv(x) = Λ(x)−Λ−Λsys(x),
i.e. by subtracting from each map of local column spacing its mean column spacing
Λ and the map of systematic topographic variation Λsys(x).

3.2.4 Accuracy and measurement errors

All quantities presented are subject to measurement errors. The estimation of mea-
surement errors was carried out following [45]. The error of the local colum spac-
ing, ∆Λ, and the error of the mean column spacing, ∆Λ(x), were estimated based
on the multiple flatmount sections analyzed for every hemisphere. Spacing values
were calculated for every section individually and SEM were estimated from the
values for different sections. SEMs for mean column spacings Λ were 15µm for V1
and 35µm for V2. Errors were larger in V2 due to its smaller size and the weaker
labeling. Errors ∆Λ(x) of the local column spacing were on average 58µm in V1
and 64µm in V2. The error of the systematic topographic variation Λsys(x) was cal-
culated by error propagation from the error of the local column spacing Λ(x) , that

is ∆Λsys(x) =
√
〈∆Λ(x)2〉hemis /

√
Nhemis, where the average is taken over the pop-

ulation of the Nhemis hemispheres contributing to Λsys(x). Its error was relatively
small (SEM, 19µm for V1, and 23µm for V2). The maps of individual topographic
variation were mainly inflicted by the error of local column spacing and the sys-
tematic topographic column spacing.

3.2.5 Decomposition of variance

The variances of all spacing parameters (e.g Λ(x), Λ, Λsys(x)) were error corrected
following [45]. The variance vmean of the mean column spacing Λ was calculated
by vmean ≈ s2

mean −
〈
∆Λ2〉

hemis, where smean is the SD of the values of the mean
column spacing Λ for different animals and

〈
∆Λ2〉

hemis is the squared error of

Λ averaged over hemispheres from all animals. For its square root
√
〈∆Λ2〉hemis

we obtained 0.018mm for V1 and 0.046mm for V2. The variance vsys of the sys-
tematic intraareal variability of local column spacing was calculated from the SD
ssys of the systematic topographic variation Λsys(x) and the its error ∆Λsys(x) by
vsys ≈ s2

sys −
〈
∆Λsys(x)2〉

x. The square root of the spatially averaged squared er-

ror,
√〈

∆Λsys(x)2
〉

x, yielded 0.020mm for V1 and 0.024mm for V2, respectively.
The variance vall of all orientation column spacings in all hemispheres (from V1 or

from V2, respectively) is given by vall = s2
all −

〈
∆Λ(x)2〉

all, where
√
〈∆Λ(x)2〉all is

the square root of the error of the local spacing squared and averaged over all loca-
tions in all hemispheres. For V1 we obtained 0.088mm, for V2 0.093mm. Denoted
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3.2 Methods

by sall is the SD of local spacing values Λ(x) from all hemispheres.
The total variance vall ≈ vmean + vsys + vindv is composed of the variance of the

mean column spacing vmean, the variance of the systematic topographic variation
of column spacing vsys, and the average variance of the individual topographic
variation of column spacings vindv. This decomposition provides an estimate for
the relative magnitudes of the different contributions to the total variance in the
population of column spacing maps from V1 or V2 (Fig. 3.1d).

3.2.6 Morphing

Column spacing maps from V2 were morphed on those from V1 by thin-plate
spline interpolation. By this method, defined reference points in V2 were morphed
on corresponding points in V1, and the remaining locations are morphed such that
the distortion of the morphed map is minimal. We used 30 reference points in areas
V1 and V2 distributed along the common V1/V2 border, and along the lateral bor-
der of V2 and the medial border of V1. The same morphing was used for all V1/V2
pairs. This provides only a rough mapping of corresponding locations in individ-
ual V1/V2 pairs (see e.g. the pronounced size variation of V1 [44]. No attempt was
made to optimize the similarity of spacing maps of V1/V2 pairs.

3.2.7 Permutation tests

Permutation tests were used to test for statistical significance. In these tests the
value of a statistic (e.g. for cross-correlation or for an average differences) was
compared to values obtained for randomized data. Usually, a distribution of 104

random realizations was sampled. The significance value is given by the probabil-
ity of obtaining the real value or a value more extreme by chance. The significance
value for the correlation between mean column spacings Λ in V1 and V2 was calcu-
lated by permuting all mean column spacings from V2 and is given by the fraction
of correlation coefficients found to be larger than the real value. The significance of
the distance ∆ between the map of the residual topographic variation from V1 and
and the morphed map from V2 was calculated by permuting among all maps from
V2. The average distance ∆ was calculated from all V1/V2 pairs with a common
area of at least 70mm2 (in the coordinate system of V1) and compared to averages
obtained in 104 comparable groups of pseudo V1/V2 pairs. The significance value
is given by the fraction of averages smaller than the average of the real distance ∆.
Distances ∆ between individual topographic variations in the left and right hemi-
spheres were compared to pseudo left/right pairs generated from all hemispheres.
All significance tests regarding the distance ∆ were based on aged matched ran-
domizations. Cases 9 weeks old or younger (n=19) were exchanged by pseudo
pairs generated from this group only. Random pairs older than 9 weeks were gen-
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3 Interareal coordination of column development in the visual cortex

erated only from the cases older than 9 weeks (n=22).

3.3 Decomposition of column spacing

We analyzed the spacing of orientation columns in V1 and V2 in n=41 brain hemi-
spheres (N=27 animals) using the wavelet method described in [44]. Because this
method provides highly precise estimates of local column spacing with an error
much smaller than the large intrinsic variability of column spacings (SEM, 15–
50µm), differences and similarities of column spacings in the sample can be iden-
tified reliably. The spacing of adjacent orientation columns was calculated inde-
pendently at every cortical location in each area (Fig. 3.1b). Thus, for each area
a two-dimensional map of local column spacing was calculated representing the
variability of local column spacings in this area.

3.4 Mean column spacing

From these maps we first extracted the mean column spacing in areas V1 and V2
for each hemisphere and assessed their statistical dependence (Fig. 3.2). We found
that mean column spacings Λ varied considerably in different individuals (Fig.
3.2c). In V1, values ranged between 1.1mm and 1.4mm, in V2 between 1.2mm and
1.8mm. The distributions for the two areas were partially overlapping with the
smallest column spacings from V2 at about the average value of V1. Nevertheless,
in all hemispheres, the mean column spacing Λ in V2 was substantially larger than
in V1, consistent with previous reports [50, 52]. Mean column spacings Λ did not
vary independently across different animals in V1 and V2, but were substantially
correlated in both areas (Fig 3.2d; r=0.62, p< 10−5, permutation test).

3.5 Systematic topographic variation

In both areas V1 and V2, orientation columns generally exhibited a substantial
intra-areal variation in spacing around the mean column spacing. In each area,
one part of this variation is common to all hemispheres. In the following, we will
call this component the systematic topographic variation of column spacings (the
blue map in Fig. 3.1c). It is the intra-areal variation (in V1 or V2) averaged over the
entire population of hemispheres (i.e. a 2D spacing map with zero mean). For av-
eraging, the V1/V2 borders of different hemispheres were aligned and maps from
right hemispheres were mirror-inverted. The remaining part of the variation char-
acterizes an individual hemisphere. Accordingly, this part will be called individ-
ual topographic variation of column spacings (orange map in Fig. 3.1c). It is also
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3.5 Systematic topographic variation

Figure 3.1: Quantification of orientation column spacing in cat visual cortex. a, Overall layout
of 2-[14C]-deoxyglucose labeled (dark grey) orientation columns in flat mount sections of areas
V1 (right) and V2 (left). Black and white arrow heads indicate the external border of V1 and
V2, respectively. Cortical representations of the vertical meridian (VM) (i.e. the V1/V2 border)
and the horizontal meridian (HM) of the visual field are represented by the white dashed lines
(a=anterior, m=medial; scale bar, 10mm). b, 2D-maps of local column spacing in areas V2 (left)
and V1 (right) (grey scale coded). Contour lines are drawn at the mean spacing (thick white line)
and mean ± SD (thin white lines). Black crosses mark the central visual field representation.
c, Decomposition of the V1-spacing map in b: Each map of local column spacing (grey) is
composed of (i) the mean column spacing (green) (ii) the systematic part of the topographic
variation of local column spacing (population averaged, blue), and (iii) the individual part of
topographic variation (orange). d, According to c, the variance of all column spacings in the
population is the sum of (i) the variance of the mean column spacings of the different areas
(green), (ii) the variance of the systematic variation (blue), and (iii) the average variance of the
individual variation (orange). The percentages of these variance components are represented
by colored bars for V2 (i, 38%; ii, 8%; iii, 54%) and V1 (i, 34%; ii, 14%; iii, 52%), and for ocular
dominance columns in cat V1 (i, 18%; ii, 24%; iii, 58%). e, For comparing layouts in V1 and
V2, V2 spacing maps were mirror inverted and morphed (shown schematically) aligning regions
representing similar parts of the visual field in areas V1 and V2.

a 2D spacing map with zero mean calculated by subtracting the first two compo-
nents from the map of local column spacing (grey map in Fig. 3.1c). The variances
of the systematic and the individual topographic variations add up together with
the variance of mean column spacings to the total variance of column spacings in
the sample. Interestingly, the individual topographic variation accounted for the
largest part of the variance of column spacings in both areas V1 and V2 (Fig. 3.1d).

The systematic topographic variation of column spacings in V1 exhibited virtu-
ally the same overall 2D organization as the one in V2, appearing as a horizontally
stretched mirror-image of the V2 map when displayed side by side (Fig. 3.3, a and
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3 Interareal coordination of column development in the visual cortex

Figure 3.2: Mean column spacings in V1 and V2 covary. a, b, Overall layout of orientation
columns in V1 and V2 in two individuals (white dashed line: V1/V2 border; scale bar, 10mm).
For a the mean column spacing Λ is relatively large in both areas (V1, 1.21mm; V2, 1.58mm),
whereas for b it is small in both areas (V1, 1.09mm; V2, 1.31mm). c, Mean column spacings Λ

in V1 (crosses) and V2 (boxes) from n=41 hemispheres (N=27 animals). Values in V1 and V2
vary considerably in different hemispheres (V1, 1.0–1.4mm; V2, 1.2–1.8mm). d, Mean column
spacings Λ in V1 and V2 of individual hemispheres are strongly correlated (r=0.62, p < 105 ,
permutation test).

b): In both areas, columns were systematically wider than average along the repre-
sentation of the horizontal meridian (HM) with this tendency increasing towards
the periphery. In contrast, columns smaller than average more often occurred along
the peripheral representations of the vertical meridian (VM). The systematic vari-
ation in areas V1 and V2 ranged between -0.15mm and +0.15mm (Fig. 3.3, a and
b). In order to conveniently compare topographically corresponding parts in areas
V1 and V2, the V2 map was mirror-inverted and morphed by superimposing major
landmarks such as the representations of the VM (located along the V1/V2 border),
the central visual field, and the HM (Fig. 3.1e, Fig. 3.3c). Since the morphed V2 map
strongly resembled the V1 map (compare Fig. 3.3, b and c) the cross-correlation be-
tween the maps was high (r=0.66). Furthermore, the systematic variation observed
in a comparable data set of ocular dominance column spacings in cat V1 (Fig. 3.3d,
modified from [45]) also exhibited a very similar intra-areal organization with a
strong cross-correlation of r=0.82 to the population averaged spacing map for ori-
entation columns in V1 (compare Fig. 3.3, b and d).
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3.6 Individual topographic organization

Figure 3.3: The systematic topographic variation of column spacing is similar in subregions
representing the same visual field position in areas V1 and V2. a, b, Systematic topographic
variation of orientation column spacing in V2 (a) and V1 (b) (color scale codes systematic vari-
ation from the mean value; arrangement and symbols as in Fig. 3.1). c, The morphed map
from V2 (a). d, Population averaged spacing of ocular dominance columns in cat V1 (modified
from [45]). SD for V2, 0.052mm; V1, 0.047mm; V1 ocular dominance columns, 0.049mm. Scale
bar, 10mm. Note that for both orientation and ocular dominance maps columns representing
the HM and, in particular, the horizontal periphery were on average wider than columns repre-
senting the peripheral parts of the VM. Hence, the systematic variations of orientation columns
in V1 and V2 were correlated at topographically corresponding locations (correlation between b
and c, r=0.69), as were those of orientation and ocular dominance columns in V1 (correlation
between b and d, r=0.82).

3.6 Individual topographic organization

Typically, the individual topographic variation of column spacings in V1 and V2
was also similar in regions analyzing the same part of the visual field. The exam-
ples shown in Fig. 3.4a-c display the same general pattern in both areas V1 and
V2 with maxima (white) and minima (dark orange) approximately at correspond-
ing retinotopic locations. Among different individuals the pattern of individual
variation differed considerably. To quantify the similarity of the individual topo-
graphic variation in V1 and V2 we calculated for each hemisphere the absolute
value of the difference between both maps averaged over all analyzed locations,
called their mismatch ∆V1V2. Mismatches ∆V1V2 were significantly smaller than
values obtained for randomly assigned pseudo V1/V2 pairs (p=0.03, age matched
permutation test). Thus, in an individual hemisphere the individual topographic
variation of column spacings is adjusted at topographically corresponding loca-
tions of both areas.
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3 Interareal coordination of column development in the visual cortex

Figure 3.4: In individual brains, columns in different areas are closely matched in size at topo-
graphically corresponding subregions. a-c, Similarity of the individual topographic variation of
column spacings in V1 and V2. a, The overall layout of orientation columns for the hemisphere
shown in Fig. 3.1. A pair of topographically corresponding subregions from the more anterior
part of V1 and V2 (yellow boxes) and a pair from the more posterior part (blue boxes) are dis-
played magnified such that all spacing differences except those due to the individual topographic
variation were equalized: Since the relative difference of mean column spacings in V1 and V2
was ΛV2/ΛV1 = 1.3, the subregions from V1 were magnified relative to those from V2 by this
factor. To equalize the differences due to the systematic topographic variations the two pos-
terior sub-regions were magnified by an additional factor of Λsys(xa)/Λsys(xp) = 1.05, where
Λsys(x) is the systematic topographic variation of column spacing and xa (xp) is the center of
the anterior (posterior) region of V1 in the shown hemisphere. Note that the spacing of columns
is similar within each pair. b, Patterns of individual variation of column spacing for V2, V1, and
the morphed version of V2 for the hemisphere in a (color scale, black cross and contour lines
as in Fig. 3.1). c, Similarity of the individual variation in V1 and V2 at topographically matched
locations in another example. d, e, Similarity of the individual topographic variation of column
spacings in the left and right brain hemisphere. d, The overall layout of orientation columns in
the left and right hemisphere of an individual animal. A pair of topographically corresponding re-
gions from the anterior part of the VM representation in V1 of both hemispheres (yellow boxes)
and a pair from a more posterior part in V1 (blue boxes) was magnified such that all differences
except the individual topographic variation were equalized (mean column spacings Λr

V1 and
Λl

V1 were equal in both hemispheres and the systematic topographic variations were equalized
by magnifying the two posterior sub-regions by a factor Λsys(xa)/Λsys(xp) = 0.98). Note that
the spacing of columns is similar within each pair. e, Patterns of the individual variation of local
column spacing in V1 for the hemispheres in d displayed with the representation of the VM side
by side (crosses and contour lines as in Fig. 3.1). In both residual maps, the blue rectangles
(width, 3mm) are positioned at the representation of the VM. Note that the residual maps tend
to be similar only along the VM-representations. Scale bar, 10mm.

34



3.7 Consolidation of column size matching

Altogether, these results raise the hypothesis that columns from different areas
exhibit an adjusted spacing when they encode a similar visual field position and
are synaptically connected. In order to further test this hypothesis we compared
columns from V1(V2) in the left and right brain hemisphere encoding similar parts
of the VM. Areas V1 and V2 from both hemispheres each contain a full represen-
tation of the VM [97, 98]. A narrow region of the ipsilateral visual hemifield is
represented in both V1 and V2 in the transition zone spanning approximately 1.0–
1.5mm along the V1/V2 border [68, 69]. V1-columns at corresponding parts of
the VM representation in both hemispheres receive similar afferent input and also
mutual input mediated by callosal connections concentrated in the vicinity of the
VM representation. Our hypothesis predicts that these columns should exhibit
matched spacings.

To test this, we analyzed the 2D maps of individual topographic variation of
column spacing in V1 within a narrow strip of 3mm width adjacent to the V1/V2
border in pairs of left and right hemispheres (Fig. 3.4d-e). Whereas maps of in-
dividual variation from both hemispheres differed at mirror-symmetric locations
representing the visual periphery, they were often very similar along the V1/V2
border (Fig. 3.4e). By the mismatch ∆LR we quantified the absolute value of dif-
ferences between left and right maps averaged over the defined region. Values of
∆LR were significantly smaller than those obtained for randomly assigned pairs
of hemispheres, (p=0.01, age matched permutation test). A similar behavior was
found for V2 (data not shown). Interestingly, ∆LR were larger for regions more
distant from the V1/V2 border. These results further corroborate the specificity
of column size matching at topographically corresponding positions in different
areas.

3.7 Consolidation of column size matching

What is the neuronal mechanism underlying the emergence of coordinated column
layouts in widely distributed cortical regions? To our knowledge, there is currently
only one scenario supported by experimental evidence that explains our findings.
Recently, Hensch and Stryker showed that pharmacologically shifting the balance
of inhibition and excitation during development modifies column spacing in cat
V1 [38]. Presumably, column spacings are also determined by the local inhibitory-
excitatory balance in normal development. Here this balance may be set by reg-
ulatory mechanisms, such as synaptic scaling [29], that are sensitive to neuronal
activity. The emergence of size matched columns in distant cortical regions might
thus be caused by a similar balance of inhibition and excitation in these regions
that emerges from their mutual synaptic coupling. Alternatively, one might imag-
ine that the shared visual input of the columns causes the emergence of matched
column spacings. However, even major modifications of visual input do not induce
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Figure 3.5: Consolidation of column size matching with age. a, Mismatches ∆LR between the
V1 individual topographic variations in the left and right brain hemispheres versus age (n=13,
calculated within the blue rectangles shown in Fig. 3.4e). b, Mismatches ∆LR for V2 (n=10, cal-
culated from the morphed maps of V2). c, Mismatches ∆V1V2 between the individual variations
in V1 and in the morphed V2 (n=23, area larger than ≥70mm2). d, Mean column spacings Λ in
V1 (crosses) and V2 (boxes) (from Fig. 3.2c) versus age. Correlations with age are significant
in a (r=-0.64, p=0.007), b (r=-0.5, p=0.02) and c (r=-0.39, p=0.01), but were not in d. Solid lines
are regression lines (least square fit). Note that large mismatches in a-c occur only in young
animals but never in those of older age.

detectable changes in column spacing [45, 72] which renders this hypothesis quite
unlikely. Because the regulatory mechanisms setting inhibitory-excitatory balance
certainly are under genetic control, the balance mechanism described above also
offers a simple explanation of the apparently strong impact of genetic factors on
column size variability [44, 45].

Our data supports such a dynamical activity-dependent mechanism of column
size matching. Fig. 3.5a-c shows the spacing mismatches for topographically cor-
responding columns in left/right pairs of V1, V2 and for V1/V2 pairs as a function
of age. For all three pairs of areas substantial mismatches were only observed in
animals younger than 10 weeks. In older animals, mismatches of column spacing
were generally less than 0.1mm. As a consequence all three measures are signifi-
cantly anti-correlated with animal age (∆LR for V1 r=-0.64, p=0.007; for V2 r=-0.5,
p=0.02; ∆V1V2 r=-0.39, p=0.01; age matched permutation test). In contradistinction,

36



3.8 Conclusion

the average column spacings of areas V1 and V2 are age independent (Fig. 3.5d).
This suggests that the spacings of mutually connected columns are adjusted dur-
ing development without changing average spacings. The age range in which we
observe a decreasing column size mismatch represents the late phase of the critical
period for ocular dominance plasticity, which in cats extends into the third month
of life. This further supports the hypothesis that activity-dependent developmental
mechanisms mediate column size matching.

3.8 Conclusion

We analyzed the local spacing of columns in complete orientation maps from cat
visual cortex. We compared local column spacings in i) left/right pairs of brain
hemispheres and ii) in areas V1 and V2 of individual brain hemispheres. Whereas
the size of columns varied strongly within all areas considered, columns in differ-
ent areas were typically closely matched in size if they were synaptically connected.
Exceptional deviations from column size matching were only observed in young
animals, suggesting that the layout of connected columns is progressively adjusted
over the course of development. The observed matching of column spacing in re-
mote, but synaptically connected regions indicates that the pronounced variation
of column spacing is real and not just due to a measurement error. Furthermore,
this demonstrates that local column spacing can be measured with high precision.

The formation of cortical columns is often conceptualized as a local process in
which synaptic microcircuits confined to the volume of the emerging column are
established and selectively refined [33, 46]. However, many neurons that are wiring
up locally are simultaneously building macroscopic circuits spanning widely dis-
tributed brain regions such as different cortical areas or the two brain hemispheres
[77, 78]. Thus, in principle, interareal interactions may shape the local column lay-
out. Comparing the layout of distant columns that are mutually connected and
represent related aspects of the sensory input, we showed that the columnar archi-
tectures of different areas of the cat visual cortex in fact develop in a coordinated
manner, not adequately described as a local process.

It is tempting to hypothesize that the interareal coordination of column layouts
found here reflects a tight coupling of circuit development and cortical function.
Many lines of evidence indeed suggest that the operations of cortical columns in
the brains of behaving animals are often inseparably coupled by top down and lat-
eral interactions in far reaching cortical circuits [2, 76, 95]. If activity coordinated
between areas is in fact a predominant mode of cortical function, interareal inter-
actions most likely also play a role in the development of cortical columns.
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4 Pinwheel density selection in the visual cortex

4.1 Introduction

The organization of orientation columns into pinwheel-like patterns has been ob-
served in diverse species such as galagos (primate) [109], ferrets (carnivora) [17,
103], and tree shrews (scandentia) [13] (Fig. 4.1a-c). These mammals are separated
for more than 30 million years of evolution and specialized to different ecological
niches with different behavioral rhythms. Their visual systems differ in many re-
spects including the distribution of retinal ganglion cells, the input to the visual
cortex and the average orientation selectivity of neurons [27, 43, 48, 73]. It is there-
fore conceivable that the organization of orientation maps differs strongly in these
species. A characteristic quantity for orientation maps is the pinwheel density. It
has been suggested that from the pinwheel density in adult visual cortex, the possi-
ble developmental process can be inferred [107]. Large inter-species differences of
pinwheel densities have been stated previously [64, 66, 92, 107]. However, quanti-
tative conclusions in these studies were difficult, because of the interspecies [64, 66]
and intraareal [13, 85] variation of column spacing and the large contribution of
noise in the data.

In this chapter, we quantitatively characterize the spatial organization of orien-
tation pinwheels in galagos, ferrets, and tree shrews. We develop a novel pinwheel
analysis method that is independent of the spacing of columns and largely robust
against noise. We calculate the density and the spatial variation of pinwheels in
galagos, ferrets and tree shrews and find that their statistics is universal in all three
species.

4.2 Methods

To characterize visual cortical orientation maps, we first analyzed the number of
pinwheels per unit area. Whereas pinwheel localization requires recording meth-
ods providing high signal to noise ratio and spatial resolution, pinwheel counting
is relatively robust against imperfect assessment. The reason for this is that by
moderate signal inference pinwheels are not eliminated, but only altered in their
form and location, a property called topological stability. Noise can annihilate pin-
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Figure 4.1: Calculating pinwheel densities. a-c, Optically recorded orientation maps in galago
(a), ferret (b), and tree shrew (c) visual cortex. Each map contains a large number of pinwheels.
Four pinwheels are marked by white arrows in the magnified region in b (black frame). d, High
and low pinwheel density regions from c magnified. e, Pinwheel locations (marked by white
points) obtained by the method sketched in f and g. Maps are low-pass filtered by applying a
cutoff in the Fourier domain at wavelength λ = 0.5 (in units of column spacing Λ; see Methods).
f, g, Method. f, Maps of local pinwheel density ρλ(x) calculated from d after low-pass filtering
with cutoff wavelengths λ = {0.2, 0.4, 0.6, 0.8, 1.0}. g, Spatially averaged pinwheel density
ρλ = 〈ρλ(x)〉x in each region as a function of filter strength λ. Over a broad range of filter
strengths, the pinwheel density ρλ is constant defining the pinwheel density ρ in each region
(orange curve, fit ρ =2.48 (dotted); blue curve, fit ρ =3.78 (dashed).

wheels only in pairs, requiring a distortion sufficiently strong to move pinwheels
onto each other. In order to ensure the necessary signal accuracy, especially avoid-
ing the effects associated with blurring [70], optical recordings were carried out
using a large depth of focus (for details see e.g. [13]).

In previous studies, pinwheel densities were found to exhibit a considerable
interspecies, interindividual [64, 66] and intraareal [13, 85] variability. Its largest
fraction is due to the variation of column spacings Λ [44, 64]. Adapting the meth-
ods from the previous chapter for calculating the local spacing of columns (Section
4.2.3), we estimated average column spacings of 〈Λ〉 = 0.69 ± 0.02mm (mean ±
s.e.m.; 〈〉 denotes species average) for the galago, 〈Λ〉 = 0.61 ± 0.01mm for the
tree shrew, and〈Λ〉 = 0.88 ± 0.01mm for the ferret. Other factors of the layout
being equal the pinwheel density ρ̂ per mm2 scales as ∼ 1/Λ2 [92, 107] implying
2.08 more pinwheels per mm2 for the ferret compared to the tree shrew. In order
to eliminate all variation due to differences in column spacings Λ and to enable a
comparison among species, individuals and different regions, we defined the pin-
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wheel density by [92, 107]
ρ = ρ̂Λ2 (4.1)

relative to the ’hypercolumn’ of size Λ2. The pinwheel density ρ is dimension-
less and depends only on the layout of orientation columns. The pinwheel density
defined in this way is large for patchy and small for more band-like columnar or-
ganizations (e.g. Fig. 4.1d, e).

Based on the robustness of pinwheels against noise, we developed an objective
and fully automated method for estimating pinwheel densities (see Section 4.2.4).
To separate efficiently signal from noise in the maps, we applied a soft signal cut-
off in the Fourier domain at cutoff wavelength λ. Moreover, since the structure
of the noise and the spacing of columns varies typically across cortex (Fig. 4.1a-
c), we subdivided the maps into smaller regions (with size . 5Λ2, Fig. 4.1c-e)
and analyzed the pinwheel density separately in each region. This eliminated high
frequency noise without affecting the pinwheel density ρ, as shown in Fig. 4.1f,
g. Filtering with small cutoff wavelengths preserved many spurious pinwheels in
the map. Filtering with large cutoff wavelengths degraded the organization of the
map. Both effects were absent within an intermediate filter regime where the fil-
ter dependent pinwheel density exhibited a plateau (Fig. 4.1g). As an operational
definition, the value of the plateau is used as an estimate of the pinwheel density
ρ in the following. The mean pinwheel density ρ of an orientation map was cal-
culated by two independent methods (see Methods for details). In a first method,
we estimated pinwheel densities ρ in sufficiently small regions (. 5Λ2, Fig. 4.1c-e)
by fitting the plateau based on visual inspection and averaged it over all regions
(weighted by their area). Using a second method, we automatically fitted a func-
tion to the plateau at every location in the map (least square fit) and averaged the
resulting local pinwheel density ρ(x) over the entire map. Both methods yielded
consistent results (see Section 4.2.9). Wherever not noted otherwise, presented re-
sults are based on the first method. The remainder of this section describes the two
methods in more detail and presents supplementary studies.

4.2.1 Fermi filtering

Fermi-filtering can be used to efficiently eliminate high and low frequency noise
without deteriorating the signal. Low-pass filtering can be carried out in the Fourier
domain by a product

Ĩ(k) = K̃(k) J̃(k) (4.2)

between Fourier representations of the unfiltered map J and the filter kernel K.
Frequency components in the map J at which the kernel K̃ is close to 0 are elim-
inated. Components at which the kernel is equal to 1 remain unchanged. Fig.
4.2 compares the effects of the widely used Gaussian filter kernel and the Fermi
kernel (4.3). Multiplying the map with a Fermi function (blue curve) eliminates
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high frequency components while leaving the bulk of the signal unchanged. This
is not, however, ensured for a Gaussian kernel (red curve). Eliminating most high
frequency noise with a Gaussian kernel typically deteriorates also the bulk of the
signal substantially. It is left unchanged only for weak filtering (a Gaussian with
large width).

Figure 4.2: The advantage of Fermi-low-pass
filtering. The black curve shows the average ra-
dial component of the power spectrum of the
galago map from Fig. 1a (high-pass filtered;
normalized). Superimposed are the radial com-
ponents of Gaussian (red curve) and Fermi filter
kernels (blue curve).

4.2.2 Preprocessing

A region of interest (ROI) was defined for each hemisphere containing the imaged
part of area V1 (and parts of area V2 in the case of ferrets). Locations outside the
ROI were excluded from further analysis. From each difference map I′(x) (0◦ −
90◦, 45◦ − 135◦) we calculated a high-pass filtered map I(x) = I′(x) − J(x) by
subtracting its local average J(x) obtained from a product with a Fermi-function

K̃hp(k) =
1

1 + e−(khp−|k|)/βhp
(4.3)

in the Fourier domain where khp is the high-pass cutoff frequency and β con-
trols the stiffness. To account for the boundary of the ROI, the local average J(x)
was normalized in real space by the weight W(x) =

∫
ROI K(x′ − x) d2x′ of the

Fermi function K within the ROI. We used βhp = 0.05 khp and khp = 2π/λhp with
λhp = 1.6mm for the ferret, λhp = 1.2mm for the tree shrew and λhp = 1.4mm
for the galago to account for the interspecies differences of column spacing Λ. The
independence of pinwheel densities from the value of the high-pass cutoff wave-
length λhp is shown for the galago as an example in Fig. 4.6.

4.2.3 Column spacing

Difference maps I(x) were low-pass filtered in the Fourier domain by multiplying
Eq. ( 4.3) withβlp = 0.05klp, klp = 2π/λlp and λlp = 0.3mm for the ferret and λlp =
0.2mm for the galago and tree shrew. For each difference map I, the local spacing of
columns was calculated using the wavelet method introduced previously [44, 45]
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and described in more detail in Chapter 3. Morlet wavelets (kψ = 7, σy = 1)
were sampled with a spatial resolution of 0.05mm on n scales li equally spaced
in an interval d (ferret, n = 19, d = [0.4, 1.3]mm; galago and tree shrew, n =
17, d = [0.3, 1.1]mm) using 16 wavelet orientations θi = {0π/16, . . . , 15π/16}.
The local column spacing ΛI(x) was defined by the scale l∗ maximizing the angle
averaged modulus of wavelet coefficient. The maximum was interpolated using
cubic splines. The local column spacing ΛI(x) of the two difference maps I was
averaged to obtain a single 2D map of local column spacing Λ(x) for each map.
In regions with artefacts in one of the maps, values were determined only from
the other map. The mean column spacing was defined by the spatial average Λ =
〈Λ(x)〉x of local column spacing.

4.2.4 Pinwheel density estimation

We applied a variable filtering scheme to ensure filter independence of the esti-
mated pinwheel density ρ. Pinwheel centers were calculated in orientation maps
low-pass filtered as described above using various cutoff wavelengths λlp (ferret,
90 values λlp equally spaced in [0.1, 0.99]mm; galago and tree shrew, 70 values in
[0.1-0.79]mm; βlp = 0.005). Pinwheel centers were identified in each map by the
zero contour crossings of the two difference maps [53]. The filter dependent local
pinwheel density was defined as ρ(x, λ) = ρ̂(x, λ)Λ(x)2, where ρ̂(x, λ) is the den-
sity per mm2 calculated as superposition of normalized Gaussians withσ = 0.25Λ

centered at the putative pinwheel locations for low-pass cutoff wavelength λlp, fol-
lowed by a local rescaling λ = λlp/Λ(x) expressing the cutoff wavelength relative
to the local column spacing Λ(x). Thus, ρ(x, λ) is the number of pinwheels in
an area of size Λ(x)2 surrounding x as a function of the reduced low-pass cutoff
wavelength λ (Fig. 4.1f).

Pinwheel densities ρ were estimated using two different methods. The first
method is based on visual inspection. We divided orientation maps into rectan-
gular regions of size . 5Λ2 defined on a grid (Fig. 4.1c, d). For each region we
calculated the filter dependent pinwheel density ρ(λ) = 〈ρ(x, λ)〉x by averaging
over all locations x. Typically, ρ(λ) was constant over a broad range of cutoff wave-
lengths λ (Fig. 4.1g). The pinwheel density ρ of the region is given by the value
of this plateau and was estimated by fitting to it a constant function f (λ) = c.
The fitting was done based on visual inspection. To do this objectively, the scale
on the ρ-axis was removed and its range shifted by an amount drawn from a cen-
tered Gaussian distribution with unit SD. Regions for which a plateau could not be
identified unambiguously (< 5%) were excluded from further analysis. Pinwheel
densities from different regions were averaged weighted with their size in hyper-
columns Λ2 to obtain the mean density ρ of a map or the average density 〈ρ〉 of
a number of maps. The average density ρ of a map was robust against variations
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of the grid such as shifts or rotations. For cases with spatially homogeneous noise
(ferret, 14 out of 82; galago, 7 out of 9; tree shrew, 8 out of 26) we calculated ρ(λ)
and thus ρ from only one region spanning the entire map which provided very
consistent estimations of ρ as revealed from test cases.

The second method applies an automatic fitting scheme to estimate the pinwheel
densities ρ. At every location x, we fitted to the filter dependent local pinwheel
density ρ(x, λ) (calculated for σ = 1Λ) in the interval 0.2 < λ < 1 a piecewise
linear function

h(λ) = c0 + c1[−λ+ λ0]+ + c2[λ− (λ0 + ∆λ)]+

that exhibits a plateau of value c0 ranging from λ0 to λ0 + ∆λ (least-squares fit;
[]+denotes rectification). The slopes c1and c2 accounted for the λ-dependence of
ρ(x, λ) outside of the plateau (compare Fig. 4.1g). Across cortical locations and
different maps, plateaus differed in their position and extent. To ensure an optimal
sampling of a plateau, we varied its position λ0 and extension ∆λ in h (constraint by
λ0 ≥ 0.2, ∆λ ≥ 0.4, and 0.2 + λ0 + ∆λ ≤ 1), and then defined the local pinwheel
density ρ(x) by c0 from the best fit. Averaging over space yielded the pinwheel
density ρ of a given area.

4.2.5 Pinwheel locations

The location of pinwheels was defined using a cutoff wavelength λ = ξ at the cen-
ter of the plateau of ρ(λ) (Fig. 4.1e). This method can introduce artificial pinwheel
’copies’ close to real pinwheels ifξ varies over space. These pinwheels were identi-
fied based on their topological charge and eliminated. While accurately identifying
the density of pinwheels, pinwheel locations were only determined approximately.
Since pinwheels are topologically stable, slight filter dependent shifts are consistent
with the same total number.

4.2.6 Nearest neighbor distances

From the pinwheel locations we calculated the distances h of a pinwheel to its near-
est neighbors. Since pinwheels are characterized by a topological charge, three
distances are of particular interest: the distance h++,−− to the nearest pinwheel
of equal sign, the distance h+−,−+ to the nearest pinwheel of opposite sign, and
htot, the smallest distance to any other pinwheel. The distance htot is always the
smaller of the two other distances. We determined these distances for each pin-
wheel at location x0, say, and normalized them by the local column spacing Λ(x0)
at the location of the considered pinwheel. Distributions include distances from all
pinwheels in a set of maps.
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4.2.7 Systematic variation

The map of systematic variation of local pinwheel density ρsyst(x) was calculated
by superimposing and averaging all maps of local pinwheel density ρ(x) from a
species. Maps from different hemispheres were aligned along their V1/V2 bor-
der and their estimated representation of the horizontal meridian. To achieve
this, maps from right hemispheres were mirror inverted. Locations were included
where ≥ 10 hemispheres contributed to the calculation of ρsyst(x).

4.2.8 Permutation tests

Significances were tested by comparison with randomly permuted data. The p-
value was the fraction of pseudo values larger than the real one. The distance of the
average pinwheel density 〈ρ〉 in real and random maps and those of the mean SD
〈s〉 in different species were compared to pseudo distances obtained by randomly
permuting the data among both groups. The SD of the systematic variation ρsyst(x)
of the tree shrew was compared to pseudo SDs obtained from superpositions of
equally many (N=26) maps randomly drawn from all ferret hemispheres (N=82).

4.2.9 Comparison of fully and semi automatic method

The two methods for estimating pinwheel densities ρ provided very consistent re-
sults. This is demonstrated in Fig. 4.3 comparing the pinwheel densities ρ obtained
by the two methods. For each species, values were highly correlated with r = 0.91
for tree shrews, r = 0.93 for galagos and r = 0.82 for ferrets. For individual maps,
pinwheel densities calculated by the two methods differed on average by 2.4% for
the tree shrew, 2.7% for the galago, and 4.3% for the ferret.

Figure 4.3: Comparison of methods. a-c, Scatter plots of pinwheel densities ρ calculated by
the fully- and semi automatic method. Pinwheel densities were highly correlated (tree shrew,
r = 0.91, galago; r = 0.93; ferrets, r = 0.82).

The starting point for both methods is the filter dependent pinwheel density
ρ(x, λ). Using the semi-automatic method the density ρ(x, λ) is first averaged over
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4 Pinwheel density selection in the visual cortex

regions . 5Λ2 defined by an arbitrary arranged regular grid superimposed on the
map. Then the pinwheel density ρ of the region is estimated by visual inspection
from the plateau in the averaged filter dependent density ρ(λ). Using the fully
automatic method, the pinwheel density is estimated from the plateau of ρ(x, λ)
by an automatic fitting procedure before averaging the result over space. The ad-
vantage of the semi automatic method is that the estimation of the plateau can be
checked for at every step. In some regions the plateau is more irregular: Values
may fluctuate around an average value, plateaus may be relatively short, or there
may be multiple plateaus at different ranges of cutoff wavelength λ. In these cases,
a thorough inspection appears necessary. Regions for which a plateau cannot be
determined unambiguously (regions with poor signal to noise ratio) can be identi-
fied by this inspection and excluded from further analysis.

4.2.10 Measurement of column spacing by Fourier analysis

To estimate column spacings locally we used wavelets. The mean column spacing
Λ of a given map can be calculated from local column spacing Λ(x) by averaging
over space. An alternative method for calculating the column spacing Λ is pro-
vided by Fourier analysis. From each difference map I(x) we calculated its two
dimensional power spectrum

P(k) =
∣∣ Ĩ(k)

∣∣2 (4.4)

as the squared modulus of the Fourier representation of the map I(x). Averaging
over the angle,

P(k) =
2π∫
0

dθ
2π

1
k
P(k,θ) , (4.5)

yielded the one dimensional spectrum P. The dominant frequency q of the spec-
trum P determines the typical spacing through Λ = 2π/q. To estimate the fre-
quency q we smoothed the spectrum P with a Gaussian kernel of widthσk = 2π/σx
with σx = 1mm and fitted it with the function

G(k) = a0 exp

(
− (k− a1)

2

2a2
2

)
+ a3 + a4k + a5k2 (4.6)

where the ai are fitt parameters and q = a1 (nonlinear least-squares fit).
Fig. 4.4 shows scatter plots of mean column spacings Λ for the three analyzed

species calculated by the wavelet and by the Fourier method. Values were very
similar in all species. In tree shrews, the correlation was r = 0.99. Relative dis-
tances of column spacings Λ obtained by the two methods were on average 1.5%,
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Figure 4.4: Consistency of column spacing estimation. a-c, Column spacings Λ calculated by
wavelet analysis (blue crosses) and by Fourier analysis (orange diamonds). Column spacings
were highly similar (average distance (relative): tree shrew, 1.5%; galago 0.7%; ferret, 2.3%).

and the distance of the average column spacing 〈Λ〉 was 0.7%. In galagos, the cor-
relation was r = 0.99 with average distances 0.7% and distance of averages 0.01%.
In ferrets, we found r = 0.95, 2.3% and 0.7%, respectively. Deviations between the
Fourier and wavelet method were mainly due to a variation of column spacings
across cortex. While generally small in the galago, in tree shrews this variation
could exceed > 10% in some of the cases, and in ferrets (see the examples in Fig.
4.1). Since these variations are better captured by the nonlocal wavelet analysis,
the values obtained with this method appear more appropriate. Nevertheless, the
deviations between the two methods may be taken as an estimate for the error of
column spacing measurement. Concerning the average pinwheel density 〈ρ〉, these
errors imply a possible absolute error of ≈ 0.04 in tree shrews, ≈ 0.001 in galagos,
and ≈ 0.05 in ferrets. We conclude that Fourier analysis confirms the estimation of
column spacings by wavelet analysis and thus of pinwheel densities.

4.2.11 Age-dependence

Pinwheel densities do not depend on age, as indicated by N=82 ferret cases recor-
ded between postnatal day (PD) 30 and > 270. In the ferret, orientation maps are
not observed before PD 30 [17]. As shown in Fig. 4.5, most of the data from ferret
visual cortex was recorded within this period. However, a clear dependence of
pinwheel densities on age was not indicated. It may be absent or weak but covered
by the substantial variation of values.

4.2.12 Dependence of pinwheel density on high-pass filtering

Low frequency noise has only a weak effect on pinwheel densities. The origin of
low frequency signal components in optical data is mainly the curvature of the
cortex implying various sources of inhomogeneity such as variation in light re-
flectance, light absorption and cortical depth of recording. Whereas high frequency
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Figure 4.5: Pinwheel densities are indepen-
dent of age. Pinwheel densities ρ of maps from
N=82 ferret hemispheres vs. age at recording
time. The abscissa is shortened between day
120 and day 270.

noise can induce a large number of spurious pinwheels, low frequency noise is less
problematic. In addition, low frequency noise is often dominant on spatial scales
very distinct from the scale of the signal and therefore easily separable.

We tested the impact of low frequency noise on the pinwheel density by varying
the high-pass cutoff wavelength λhp underlying the analysis. As a representative
example we analyzed galagos. Fig. 4.6 shows the average pinwheel density 〈ρ〉
of the galago for various cutoff wavelengths λhp. For each value of λhp the entire
analysis was performed including the calculation of the map of local column spac-
ings Λ(x) and the filter dependent pinwheel density ρ(x, λ). The fully automatic
method was used to estimate pinwheel densities ρ. Apart from the high-pass cut-
off wavelength λhp, all parameters were identical for each data point. We found
that the average pinwheel density 〈ρ〉 was nearly constant between λhp = 1.0 and
λhp = 2.0 demonstrating the robustness of the pinwheel density estimation against
low frequency noise.

Figure 4.6: Dependence on high-pass filtering.
Average pinwheel density 〈ρ〉 for various high-
pass cutoff wavelength λhp. Values are〈ρ〉 =
3.21, 3.19, 3.17, 3.13, 3.13, 3.11 (from left to
right).

4.3 Universal pinwheel density in galago, ferret and tree
shrew

We found that the average pinwheel density 〈ρ〉 was, up to the precision provided
by our analysis, indistinguishable in the three analyzed species. In 26 tree shrew
hemispheres, the average pinwheel density was 〈ρ〉 =3.12±0.04 (mean±s.e.m.;
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Figure 4.7: Universal pinwheel density in the mammalian visual cortex. a-c, Pinwheel den-
sities ρ in tree shrews (a, N=26 hemispheres), galagos (b, N=9), and ferrets (f, N=82). Red
dashed lines in a-c represent average pinwheel densities 〈ρ〉 (tree shrew, 3.12±0.04; galago,
3.18±0.09; ferret, 3.16±0.03; mean±s.e.m., weighted by the size of maps in units of Λ2, see
Methods).

weighted by the size of the maps) with mean pinwheel densities ρ in individ-
ual maps ranging from 2.7 to 3.5 (Fig. 4.7a). In 9 galago hemispheres, pinwheel
densities ρ varied comparably with an average of 〈ρ〉 =3.18±0.09 (Fig. 4.7b).
An average pinwheel density of 〈ρ〉 =3.16±0.03 was found in 82 ferret hemi-
spheres (Fig. 4.7c). Mean pinwheel densities ρ varied stronger across individ-
ual ferret maps, between 2.0 and 4.0. The average pinwheel density in all three
species was 〈ρ〉 = 3.14 ± 0.03. These results were confirmed by the fully au-
tomatic method with average pinwheel densities 〈ρ〉 = 3.11 ± 0.04 for the tree
shrew, 〈ρ〉 = 3.17 ± 0.10 for the galago, 〈ρ〉 = 3.17 ± 0.03 for the ferret, and
〈ρ〉 = 3.14± 0.03 for the total average.

4.3.1 Uncertainty of average pinwheel density estimation

Figure 4.8: The range of average pin-
wheel densities. Averages were calculated
by boot strapping from the data from Fig. 2
(N=10000 samples for each species). SD
of histograms: tree shrew, 0.03; galago,
0.08; ferret, 0.03.

The range of possible values of average pinwheel density that is consistent with
the data set can be estimated using the method of boot strapping. The histograms
of values for the three species are shown in Fig. 4.8. The width of distributions
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measured by their SDs were 0.03 for tree shrew, 0.08 for the ferret and 0.03 for
the galago. These values agreed well with the estimation of the s.e.m. in Fig. 4.7.
Thus, possible averages ranged between 3.06 and 3.18 for the tree shrew, between
3.10 and 3.22 for the ferret, and between 3.02 and 3.34 for the galago (±2SD from
mean).

4.3.2 Random maps

Figure 4.9: Pinwheel densities in real and random orientation maps. a, Tree shrew orientation
map from Fig. 1c. b, Random map generated from a by phase shuffling in the frequency domain.
c, Pinwheel densities ρ of random maps (crosses, N=20) and of original maps (diamonds, N=4
[tree shrew, N=2; galago, N=2]; 5 random maps were generated from each original map). The
blue dashed line represents the average pinwheel density 〈ρ〉 of random maps (3.50±0.05), the
red dashed line the average in the three species (3.14± 0.03). Note that average densities are
significantly different (p < 0.0001, permutation test).

The observed pinwheel densities indicate that in the three analyzed species the
average pinwheel density is tightly selected. In principle, orientation maps can be
constructed exhibiting any pinwheel density [70, 107]. How likely is it to obtain
similar average pinwheel densities by chance in maps comparable to experimental
maps? To answer this question, we investigated random orientation maps with
identical second order statistics (Fig 4.9a, b). Random maps were generated by
transforming maps from the tree shrew and galago into the Fourier domain, ran-
domizing all phases, and transforming it back into real space, restricting the new
map to a geometry identical to the measured maps. By this procedure, an arbi-
trary large ensemble of surrogate maps with identical spatial correlation functions
can be generated for each measured map. From each of 4 different orientation
maps (2 from galago and 2 tree shrew) we created 5 surrogate maps resulting in
a total of N=20 random orientation maps. We found that pinwheel densities ρ
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ranged between 3.15 and 3.9 (Fig. 4.9c). The average density 〈ρ〉 = 3.50 ± 0.05
(〈ρ〉 = 3.54± 0.04 for the automated scheme) was considerably larger than for the
real maps (p < 10−4; random tree shrew maps only, p < 10−3; galago random
maps only, p < 10−4; permutation test). Thus, pinwheel densities observed in ori-
entation maps in the visual cortex are highly exceptional in comparable random
maps suggesting the action of a nontrivial selection principle.

4.4 Local irregularity and universal pinwheel statistics

4.4.1 Large scale selection

Figure 4.10: Large scale selection of pinwheel density. a, Pinwheel densities ρ in regions of
various size A randomly selected from tree shrew orientation maps (4 × 104 circular regions
(partially truncated by map boundaries) with sizes uniformly distributed in 0 < A < 30Λ2

drawn from N=26 tree shrew maps with sizes > 30Λ2). The red dashed line marks the average
tree shrew pinwheel density 〈ρ〉 = 3.12. b, SDs of pinwheel densities ρ in randomly selected
regions for the three species (diamonds) and for the random maps from Fig. 3 (black triangles,
density corrected). The black dashed curve represents the SD for a 2D Poisson process of
equal density. The inset shows the number variance (NV) increasing as cA 〈ρ〉 with c ≈ 0.9 for
the tree shrew, c ≈ 0.8 for ferret and galago, c = 1 for Poisson and c ≈ 0.5 for random maps.

Are pinwheel densities also selected locally or is there a minimum cortical region
to which such a selection principle applies? To answer this question we randomly
drew subregions of various size A from orientation maps and calculated their pin-
wheel densities ρ. Fig. 4.10a shows the distribution of densities ρ for the tree shrew
as a representative example. In small regions A < 5Λ2, pinwheel densities ρ var-
ied substantially with smallest values ρ ≈ 1 and largest values ρ > 5. In regions
of size A ≈ 15Λ2 values covered a smaller range between 2 and 4. The variation
was similar to those found for the ferret maps (Fig. 4.7c) exhibiting an average
size of ≈ 15Λ2. For larger regions, pinwheel densities ρ converged towards the
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species mean 〈ρ〉. In all three species, the variability (SD) of pinwheel densities de-
creased proportional to

√
A such that the number variance (NV) increased linearly

as cA 〈ρ〉. The proportionality factor was c ≈ 0.9 for the tree shrew and c ≈ 0.8 for
ferret and galago (Fig. 4.10b). The NV was smaller than for a 2D Poisson process
with c = 1, but larger compared to the phase shuffled maps from Fig. 4.9 for which
we found c ≈ 0.5.

By extrapolating the decay of SD to the size AV1 of the entire V1, we estimated
the true variation of pinwheel densities ρ among individual hemispheres. We
obtained a SD of ≈ 0.08 for galagos assuming that V1 covers AV1 ≈ 200mm2

[73]≈ 420Λ2 and, likewise, a SD of ≈ 0.16 for tree shrews and ferrets where
AV1 ≈ 100Λ2 [48]. Thus, whereas the average density of pinwheels appears to
be tightly selected even within an individual brain hemisphere, the local density
varies substantially and in a similar fashion in all three species.

4.4.2 Systematic inhomogeneity

Not all properties of orientation maps are universal. Indeed, distinct map designs
are consistent with the observed pinwheel statistics. For instance, the tree shrew
differs from the other species by its often stripe-like and thus pinwheel sparse orga-
nization of orientation columns along the V1/V2 border region and at the caudal
pole. Fig. 4.11a exemplifies this by showing the map of local pinwheel density
ρ(x) for the tree shrew orientation map from Fig. 4.1c (see Methods). Local densi-
ties ρ(x) varied from below 1 at the V1/V2 border to values larger than 4 in more
central representations. Densities varied comparably in tree shrew and ferret maps
(p = 0.28, permutation test, Fig. 4.11b) and exhibited indistinguishable distribu-
tions across all maps (Fig. 4.11c). However, in the tree shrew, pinwheel-sparse and
pinwheel-rich regions covaried in maps from different individuals, whereas in the
ferret, such regions were less related in different animals. This is revealed by the
maps of systematic variation of local pinwheel density ρsyst(x) for the tree shrew
(Fig. 4.11d) and the ferret (Fig. 4.11e) calculated by superimposing and averag-
ing maps of local pinwheel density ρ(x) from different animals. In the tree shrew,
pinwheel densities were systematically lower than average along the V1/V2 bor-
der and at the caudal pole (ρsyst(x) < 2.5), and, compensating for this, higher
than average in the representation of near central eccentricities (ρsyst(x) > 3.5).
The histogram of ρsyst(x) was significantly wider for the tree shrew (Fig. 4.11f, b,
p = 0.005, permutation test). In contrast, distributions of nearest neighbor dis-
tances of pinwheels were very similar in the two species (Fig. 4.11g, h) and also in
the galago (data not shown). The histograms of these distances are statistics sen-
sitive to the local arrangement of pinwheels indicating that despite the different
systematic organization, local map properties are remarkably similar in the two
species.
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Figure 4.11: Species specific properties of pinwheel densities. a, Map of local pinwheel density
ρ(x) (grey scale coded, see Methods) with pinwheel locations superimposed (blue diamonds)
for the orientation map from Fig. 4.1c (mean pinwheel density, ρ = 3.08; SD, 0.63). b, SDs
of local pinwheel density ρ(x) (left; mean over hemispheres; black bars indicate s.e.m.) and
of systematic variation of local pinwheel density ρsyst(x) (right; from N=26 hemispheres; fer-
ret, mean and s.e.m. calculated from 104 subsets (N=26) randomly selected out of the N=82
hemispheres). c, Histograms of local pinwheel densities ρ(x) from all hemispheres. d, e, Maps
of systematic variation of local pinwheel density ρsyst(x) = 〈ρ(x)〉 for the tree shrew (d) and
ferret (e) calculated by superimposing and averaging maps ρ(x) from all hemispheres at corre-
sponding cortical locations (see Methods; blue scale coded; contour line drawn at average). f,
Histograms of ρsyst(x) (ferret, average histogram for subsets from b, right). g, h, Distributions
of nearest neighbor distances htot between pinwheels of arbitrary topological charge (g), and of
distances h++,−− between pinwheels of equal (dashed) and h+−,−+of opposite charge (solid)
(h).

4.5 Conclusion

We found that several properties of visual cortical orientation maps are universal in
the ferret, tree shrew and galago. Relative to the typical distance of columns which
is specific for a given species, pinwheels occurred with a constant average density.
Furthermore, in the three species, pinwheels exhibited an equal degree of spatial
variation and a very similar statistics of nearest neighbor distances. This appears
in contrast to the substantial differences reported for other columnar systems such
as ocular dominance which is organized into regular blobs in the galago [110], in
domains of rather irregular shape and size in the ferret [102], and in laminae in
the tree shrew [42]. The universal organization of orientation columns is reminis-
cent of many examples of complex systems where structures within a particular
universality class are selected by self-organization despite differences in details of
the microscopic dynamics [23]. In the following chapter, we therefore analyze the
pinwheel statistics in solutions of a model formalizing the idea of self-organization
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of orientation columns in the visual cortex.
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5 Theory of pinwheel density selection

Eyes are round.

(Claudia Benze)

5.1 Motivation

What mechanism can explain the observed universality of pinwheel statistics in
the visual cortex? A common hypothesis states that random forces might form
the structure of orientation maps. However, this hypothesis is hard to reconcile
with our observation that pinwheel densities cannot be reproduced by random
maps with second order statistics identical to real maps. Also genetic factors seem
unlikely taking into account that the investigated species are separated for more
than 30 million years of evolution. And sensory instruction, if prevailing, would
rather counteract a universal organization given the substantial differences in their
upstream visual systems in the different animals. An alternative explanation is of-
fered by self-organization of cortical circuitry. Self-organization has been observed
to robustly produce large scale structures in various complex systems. Often, the
class of pattern emerging depends on fundamental system properties such as sym-
metries rather than on the system specific details. Its formation can therefore often
be described by an effective model incorporating only these properties. The robust
occurrence of a universal pinwheel statistics suggests that pinwheel formation may
be explained by a simple model neglecting many details of cortical connectivity.
In analogy to the theory of complex systems we therefore adopted a generalized
Swift-Hohenberg model of the form Eq. (2.5) with nonlinearities derived from key
features of visual cortical organization. The model includes the effects of long-
range intracortical connections between columns of similar orientation preference.

We study the average pinwheel density, the count statistics of pinwheels, and
their nearest neighbor distributions for solutions of the generalized Swift-Hohen-
berg model (2.5) close to the bifurcation point. In the limit of infinite interaction
range, we calculate the average pinwheel density analytically. The results are
checked by numerical simulations away from the bifurcation point. We find that
for a realistic range of nonlocal interaction, the model reproduces the observed
pinwheel statistics quantitatively.
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5 Theory of pinwheel density selection

5.2 Methods

5.2.1 The model

The model is defined by the integro-differential equation

∂tz(x, t) = Lz(x, t)− N[z(x, t)] (5.1)

with a Swift-Hohenberg type [89] linear part

L = r− (q2
c +∇2)2 , (5.2)

where r is the bifurcation parameter governing the stability of the homogeneous
solution. For r < 0, the homogeneous solution z (x) = 0 is stable. For r > 0, a pat-
tern starts growing via a Turing instability. Near criticality, the critical wavenumber
qc = 2π

Λ defines the column spacing Λ of the pattern. The nonlinear part is given
by

N = (g− 1)|z|2z + (2− g)(zKσ ∗ |z|2 +
1
2

z̄Kσ ∗ z2) (5.3)

where ∗ denotes convolution, Kσ is a Gaussian

Kσ =
1

2πσ2 e−
x2

2σ2 (5.4)

and 0 ≤ g ≤ 2 controls the relative strength of local and non-local interactions. The
model minimizes an energy functional during development. For a more detailed
description of this model, refer to Chapter 2.

5.2.2 Numerical integration

To numerically obtain solutions of Eq. (5.1), the use of spectral methods is ad-
vantageous particularly when solutions satisfying periodic boundary conditions
are sought. Moreover, both the spatial derivatives of the linear part (5.2) and
the computationally demanding convolutions of the nonlinear part can be treated
efficiently with spectral methods. Spatial derivatives become multiplications in
Fourier representation avoiding phase errors commonly introduced when calcu-
lating derivatives with finite difference methods. To solve Eq. (5.1) numerically in
a rectangular region, the field z(x, y, t) was sampled on a regular grid

xi =
(i− 1)Lx

Nx
, i = 1, . . . Nx

y j =
( j− 1)Ly

Ny
, i = 1, . . . Ny (5.5)
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with Lx and Ly the dimensions of the region and Nx and Ny the number of sam-
ple points in the x and y directions. The amplitudes in the frequency domain
z̃((qx)k, (qy)l , t) are related to the sampled field z(xi, y j, t) through the discrete
Fourier transform

z̃ =
Nx

∑
i=1

Ny

∑
j=1

z(xi, y j, t) e−i(qx)kxi e−i(qy)l y j (5.6)

where the wave numbers are confined to the set (qx)k = 2πk
Lx

with −Nx
2 + 1 ≤ k ≤

Nx
2 and to (qy)l = 2π l

Ly
with −Ny

2 + 1 ≤ l ≤ Ny
2 , respectively. By the backward

transform

z =
1

NxNy

Nx/2

∑
k=−Nx/2−1

Ny/2

∑
l=−Ny/2−1

z̃((qx)i, (qy)i, t) ei(qx)kxi ei(qy)l y j (5.7)

the field z can be recovered from the modes z̃. In Fourier representation, the linear
part (5.2) is diagonal with eigenvalues

λ(qx, qy) = r− (q2
c − (q2

x + q2
y))

2 , (5.8)

that are positive around the critical wavenumber qc = 2π
Λ only. The Fourier trans-

form 5.6 translates Eq. (5.1) into a system of nonlinear ordinary differential equa-
tions

˙̃z = λz̃− Ñ(z̃, t) (5.9)

in which the coupling among the components of z̃ is mediated through the non-
linearity

Ñ(z̃, t) = (g− 1)z̃ ∗ z̃ ∗ ˜̄z + (2− g)
(

z̃ ∗ (K̃σ z̃ ∗ ˜̄z) +
1
2

˜̄z ∗ (K̃σ z̃ ∗ z̃)
)

, (5.10)

the Fourier representation of the nonlinear part (5.3). The nonlinear term (5.10)
was evaluated by pseudospectral methods where convolutions in real space are
calculated by products in Fourier space while convolutions in Fourier space are
calculated by products in real space, respectively. For a finite collection of ampli-
tudes this method leads to aliasing of modes which can cause numerical instabili-
ties. However, the strong linear damping by the biharmonic term suppresses con-
taminated modes provided there is sufficient resolution in real space. For a cubic
nonlinearity, modes with wavenumbers qalias ≥

qmax
2 = nπ

2L are subject to aliasing.
Therefore, the maximal wavenumber qmax must be chosen large enough to ensure
qmax > 2(qc + δ/2) where δ is the width of the range of wavenumbers around qc
not efficiently suppressed by the linear part (5.8). Numerical tests revealed that
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5 Theory of pinwheel density selection

for r ≤ 0.3 a ratio of qc
qmax

≤ 2
5 provided sufficient suppression of all effects due to

aliasing.
Because of the stiffness of the biharmonic operator contained in the linear part

(5.8), an implicit temporal integration scheme was necessary, since an explicit time-
marching procedure would require the use of an unacceptably small time step
[71]. To achieve this, the linear term was integrated using an exponential propaga-
tion procedure. The nonlinear term was treated explicitly by a predictor corrector
scheme, interpreting Eq. (5.9) formally as a system of linear equations modified
by a nonlinear forcing term (following [24]). Multiplying both sides of the system
(5.9) by the integrating factor exp(−λt) leads to

e−λt′ z̃(t′)
∣∣∣t+∆t

t
=

t+∆∫
t

dt′ Ñ(z̃(t′), t′)e−λt′ (5.11)

after integration over one time step ∆t. Assuming a sufficiently smooth solution z̃
the nonlinear term Ñ can be approximated in the time interval t ≤ t′ ≤ t + ∆t by a
linear function

Ñ(z̃(t′), t′) ≈ Ñ0 + (t′ − t)Ñ1 (5.12)

where

Ñ0 = Ñ(z̃(t), t) ,

Ñ1 =
Ñ(z̃(t + ∆t), t + ∆t)− Ñ(z̃(t), t)

∆t
(5.13)

are determined from the solution z̃ at the endpoints of the time interval. Inserting
the linear approximation (5.12) with (5.13) into (5.11) one obtains

e−λ(t+∆t) z̃(t + ∆t) = e−λt z̃(t) + Ñ0

t+∆t∫
t

dt′ e−λt′ + Ñ1

t+∆t∫
t

dt′ (t′ − t)e−λt′ . (5.14)

After performing the integrals this results into the time marching scheme

z̃(t + ∆t) = eλ∆t z̃(t) + Ñ0
eλ∆t − 1
λ

+ Ñ1
eλ∆t − (1 + λ∆t)

λ2 (5.15)

for advancing z̃ from t to t + ∆t. Note that expression (5.15) is still implicit since
the term Ñ1 depends also on z̃(t + ∆t). To evaluate z̃(t + ∆t), Eq. (5.15) was solved
iteratively by a predictor-corrector procedure. Setting in a first step Ñ1 = 0, the ob-
tained solution z̃(t + ∆t) was used to estimate Ñ1, and to revaluate z̃(t + ∆t) with
this guess in a second step. This two step procedure already provided sufficient ac-
curacy for our demands (see below). It can be shown that this temporal integration
scheme is accurate to 2nd order [24].
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To ensure accuracy of the solution, its numerical error was controlled by means
of an adaptive step size procedure [71] adjusting the time step ∆t after every step
in order to maintain a predefined accuracy ε. After each step the distance

∆z̃ =
∣∣∣∆z̃∆t − ∆z̃∆t/2

∣∣∣ (5.16)

between solutions z̃(t + ∆t) obtained for step size ∆t and ∆t
2 was calculated. If the

maximal fractional error defined by

∆ =
max {∆z̃}

max
{∣∣∣z̃∆t/2

∣∣∣} (5.17)

exceeded the desired accuracy ε the step was reevaluated using the rescaled step
size

∆′t = c∆t
( ε

∆

)1/3
(5.18)

where the exponent accounts for the scaling of the error ∆ ∼ ∆t3 in the used in-
tegration scheme and c is a safety factor. To ensure a maximal possible step size
during integration, a scaling inverse to (5.18) was applied to the subsequent step
whenever the error ∆ was below the desired accuracyε. For all simulationsε = 102

and c = 0.9 was used.
Solutions were obtained on a 128× 128 mesh using aspect ratios of Γ = 17− 25

(Γ = D/Λ where D is the diameter of the system). Initial conditions z0 = z(t = 0)
were band-pass filtered Gaussian random fields with spectral width δk = kc and
average amplitude A =r. Computer runtime increased approximately linear with
the time t rescaled by the intrinsic time constant T = 1/r of the linear part (5.2).
The speed of marching was ≈ 1× 103/180s= 1× 106/50h on a Pentium 4 (2GHz).
Consistency of the results was tested by single runs using a larger mesh-size of
256× 256.

5.2.3 Linear wavelength selection

The purpose of this Section is to illustrate the behavior of the model during the
initial phase of the dynamics.

A solution of Eq. (5.1) starting from a band-pass filtered Gaussian random map
is shown in Fig. 5.1. The time t has been rescaled by the time constant

T =
1
r

(5.19)

associated with the growth rate of the linear part (5.2). The rescaling Eq. (5.19) of
time will be applied throughout this chapter. While, initially, the map varied on
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5 Theory of pinwheel density selection

Figure 5.1: Numerical solution of Eq. (5.1) using integration scheme (5.15). a, Early devel-
opment of angle map (upper row, subregion of size A = (4.25Λ)2, smoothed for illustration)
and power spectrum (lower row, origin of Fourier-space in center of annulus, only central region
covering the critical circle shown). Starting from a band-pass filtered Gaussian random map at
t = 0, the solution was advanced to t = 100 (rescaled by T = 1/r) using periodic boundary
conditions and parameters g = 0.98, r = 0.1, σ = 1.7, Γ = 17 on a mesh size 128 × 128.
b, Cross section through the spectrum λ of the linear part of Eq. (5.1). Modes exp(ikxx) with
kx ' qc = 1 have positive growth rate. c, Power P (Eq. (5.20)) of the evolving solution.

various spatial scales reflected by a broad power spectrum, shortly after its organi-
zation became more ordered and regularly spaced with energy mostly confined to
the selected wavelength Λ = 2π

kc
(Fig. 5.1a). This behavior is manly due to the ac-

tion of the linear part (5.2) forcing modes on the critical circle |k| = kc to grow with
rate r while strongly suppressing those further away (Fig. 5.1b). Following Eq.
(5.8), this growth is uncoupled. Acting as a band-pass filter, the structure related to
scale Λ remained unchanged whereas larger and smaller scales were eliminated.
Fig. 5.1c shows the time course of the total power of the field

P(t) =
〈
|z(x, t)|2

〉
x

, (5.20)
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where 〈〉x denotes average over space, reflects the different growth rates among
modes. The power P initially distributed over various modes with P(0) = r = 0.1
first decreased until t ≈ 1 due to the suppression of modes outside the critical cir-
cle, but later on increased again until saturating on a level of ≈ r after t ≈ 10. At
this time, the growth of amplitudes on the critical circle saturated with an approx-
imate modulus

|A| ≈
√

r
1 + g(n− 1)

(5.21)

predicted by weakly nonlinear analysis, where n is the number of active modes in
a planform solution (Chapter 2). Eq. (5.21) implies a stationary power of

P ≈ nr
1 + g(n− 1)

(5.22)

consistent with Fig. 5.1 where g = 0.98 has been used. At the time the amplitudes
of the modes reach near stationary strengths, the influence of the nonlinear part
becomes comparable to the linear part in Eq. (5.1) both scaling as ∼ r3/2. At this
stage, at t ≡ to ≈ 101, the phase of nonlinear competition between modes begins
that leads to reorganization of the structure of the map and ultimately to pattern se-
lection. In parts, it can be analyzed by means of the amplitude formalism (Chapter
2), but the richness of the dynamics will only get apparent in numerical solutions
of the full dynamics.

5.2.4 Pinwheel identification

Pinwheel centers were identified by the crossings of the zero contour lines of the
real and imaginary part of the field z. To calculate the expectation value of the pin-
wheel density 〈ρ〉 in an ensemble of planforms of order n (Section 5.3), planforms
(5.23) with randomly chosen sets of wavevector directions l j and phases φ j were
synthesized with aspect ratio Γ = 32 on a 2048 × 2048 grid. In each planform,
pinwheel locations were identified within a quadratic subregion of size 8Λ× 8Λ.
Realizations were collected until sufficient precision of average pinwheel densities
〈ρ〉 was reached, measured by the standard error measure (SEM) ∆ = s/

√
N, were

s is the standard deviation (SD) of densities ρ and N the number realizations. The
afforded precision of ∆ < 0.03 for 5 ≤ n ≤ 14 and ∆ < 0.01 for 15 ≤ n ≤ 20
required between 100 and 1000 realizations per order n.

To analyze pinwheels in numerical solutions of Eq. (5.1) (Section 5.5), solutions
z̃(k, t) to Eq. (5.9) were synthesized on a 512× 512 grid providing sufficient spatial
resolution of the field z(x, t) in real space. Pinwheels were identified in each map in
a quadratic subregions of 3/4 of the total width spanning an area of 12Λ× 12Λ−
21Λ× 21Λ dependent on the aspect ratio Γ .
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5 Theory of pinwheel density selection

5.3 Pinwheel densities near criticality

Solutions of model Eq. (5.1) close to the bifurcation point r = 0 are of particular
interest. In this regime, the relevant solutions are known in close form, derived by
means of the amplitude formalism (see Chapter 2), allowing for a precise estima-
tion of the expectation value of quantities of interest such as the pinwheel density.
Furthermore, since the form of the amplitude equations is universal near the bifur-
cation point for a large class of models, conclusions derived in this regime remain
valid also for variations of model (5.1). The solutions obtained near the bifurcation
point at r � 1 serve as a baseline for investigations further away from criticality
at r > 0 which can at present only be carried out by numerical methods. While
dependencies on the details of the model are expected to play a role for r > 0,
solutions in this regime can still be categorized by those obtained for r � 1.

As outlined in Chapter 2, for r � 1 solutions of Eq. (5.1) are planforms

z(x) =

√
2
n

n−1

∑
j=0

ei(l jk jx+φ j) (5.23)

of order n consisting of n active modes with wavevectors

k j = kc

(
cos

(
jπ
n

)
, sin

(
jπ
n

))
(5.24)

distributed equally on the upper half of the critical circle |k| = kc, with binary
variables l j ∈ {−1, 1} determining whether the mode with wave vector k j or −k j
is active, and with arbitrary phasesφ j. The order n of the selected solution depends
on the two model parameters σ and g and scales for given g approximately linear
as

n ' 2πσ . (5.25)

For a given n, the family of solutions consists of all possible combinations of direc-
tions l j and phasesφ j and has a degenerated potential.

5.3.1 Pinwheel densities for intermediate interaction range

The specific interaction rangeσ for a given species or animal depends on the range
of intracortical long-range horizontal connections (see Fig. 2.2). Estimated values
are approximately in the interval 0.5Λ . σ . 3Λ. It is therefore important to
analyze the pinwheel density in planforms of intermediate order of range 3 . n .
20 given that n andσ are related through Eq. (5.25). To proceed in this, planforms of
various order n were synthesized numerically with randomly chosen l j andφ j (see
Methods). The pinwheel density ρwas calculated in each realization by identifying
all pinwheel locations within a pre-defined subregion by the zero crossings of the
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5.3 Pinwheel densities near criticality

Figure 5.2: Pinwheel densities in
model Eq. (5.1) near the bifurcation
point (r � 1). a, Average pinwheel
density 〈ρ〉 in planforms of order n (di-
amonds). Planforms with random sets
of wavevector directions l j and phases
φ j were synthesized on 2048× 2048
grids with aspect ratio Γ = 32. For
each planform the pinwheel density
was determined in a quadratic Γ = 8
subregion. Planforms were drawn un-
til a achieving SEM ∆ = 0.03 for n <
15 and ∆ = 0.01 for n ≥ 15. The
dashed line represents 〈ρ〉 = π , valid
in the limit n → ∞. Note that the av-
erage pinwheel density 〈ρ〉 is close to
π even at intermediate orders of n. b,
Standard deviation (SD) s of densities
ρ. Note that s decreases with order n.

real and imaginary part of (5.23). From the ensemble of realizations of order n the
average pinwheel density 〈ρ〉 and the SD s were determined. Using this method,
with a sufficient large number of realizations, both quantities can be evaluated with
arbitrary precision.

Fig. 5.2a shows the average pinwheel density 〈ρ〉 of planforms of various orders
ranging between 3 ≤ n ≤ 25. Among smaller orders n ≤ 7, average densities 〈ρ〉
were found to fluctuate substantially covering the range 2.5 ≤ 〈ρ〉 ≤ 3.5. How-
ever, they were much more confined between 2.9 ≤ 〈ρ〉 ≤ 3.2 for intermediate
orders 8 ≤ n ≤ 15. For large order n > 15, the ensemble average 〈ρ〉 appeared to
converge towards π from below. Furthermore, as shown in Fig. 5.2b, the variation
s of pinwheel densities ρ in different realizations decreased drastically with n. For
large n, it became successively smaller indicating that for large n both the average
pinwheel density 〈ρ〉 and the pinwheel density ρ of a single realization are close to
π .

5.3.2 Limit of large interaction range: Planform anisotropy

These results highlighted in Fig. 5.2 suggest that in the limit n → ∞, the equality
〈ρ〉 = π is exact. To show this, we first calculate the average pinwheel density
〈ρl〉 for an ensemble of planforms (5.23) with a fixed set of wavevector directions
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l = (l0, l1, . . . , ln−1) but arbitrary phases φ j in the limit n → ∞. Here, and in the
following 〈〉 denotes average over all phasesφ j. In this limit, local linear function-
als of z have Gaussian statistics such that the density of pinwheels is determined
by the second order statistics of the field. In a second step, the average over all sets
of l is evaluated as the expectation value of densities 〈ρl〉.

Pinwheels are the zeros of the field (5.23). The number of pinwheels in a given
area A is obtained by

N =
∫
A

d2x δ(z(x)) J(z(x)) , (5.26)

where

J(z(x)) =
∣∣∣∣∂R(x)

∂x
∂I(x)

∂y
− ∂R(x)

∂y
∂I(x)

∂x

∣∣∣∣ (5.27)

is the Jacobian of the field
z(x) = R(x) + iI(x) (5.28)

split for convenience into its real and imaginary part. Averaging Eq. (5.26) over the
ensemble of phasesφ j reads

〈N〉 =
∫
A

d2x
〈
δ(z(x))

∣∣∣∣∂(R(x), I(x))
∂(x, y)

∣∣∣∣〉 (5.29)

implying that

〈ρl〉 =
〈
δ(z(x))

∣∣∣∣∂(R(x), I(x))
d(x, y)

∣∣∣∣〉 (5.30)

is the expectation value of the pinwheel density for a fixed set of l.
The expectation value (5.30) only depends on local quantities, namely on the

field (5.23) and its spatial derivatives

∇z(x) = i

√
2
n

n−1

∑
j=0

l jkjei(l jk jx+φ j) (5.31)

such that owing to the central limit theorem, both quantities have Gaussian statis-
tics in the large n limit. Eq. (5.30) is therefore determined by the first and second
order statistics of z and ∇z. Furthermore, since their statistics is the same at each
location x, it is sufficient to evaluate Eq. (5.30) for z(0), ∇z(0). The spatial depen-
dency can be omitted in the following. Thus, the average in Eq. (5.30) is given by
an integral over the joint probability density

p(v) =
1

(2π)3
√

det C
e−

1
2 vTC−1v (5.32)
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of components

v =
(

R, I, ∂xR, ∂x I, ∂yR, ∂y I
)

. (5.33)

with covariance matrix C which shall be analyzed in the following.
First, the diagonal elements of C are evaluated. Using (5.23) and (5.28) the auto-

correlations of the field are

〈
R2
〉

=
2
n

n−1

∑
j, j′=0

〈
cosφ j cosφ j′

〉
= 1 (5.34)

for the real part and

〈
I2
〉

=
2
n

n−1

∑
j, j′=0

〈
sinφ j sinφ j′

〉
= 1 (5.35)

for the imaginary part. For the spatial derivatives one obtains

〈
(∂xR)2

〉
=

2
n

n−1

∑
j, j′=0

l jl j′kx jkx j′
〈

sinφ j sinφ j′
〉

=
1
n

n−1

∑
j=0

k2
x j (5.36)

where kx j is the x-component of k j and, likewise,

〈
(∂x I)2

〉
=

1
n ∑

j
k2

x j〈(
∂yR

)2
〉

=
1
n ∑

j
k2

y j〈(
∂y I
)2
〉

=
1
n ∑

j
k2

y j . (5.37)

The equality of these correlations follows from inserting Eq. (5.24) into (5.36) yield-

65



5 Theory of pinwheel density selection

ing 〈
(∂xR)2

〉
=

k2
c

n

n−1

∑
j=0

cos2
(

jπ
n

)

=
k2

c
n

n−1

∑
j=0

sin2
(

jπ
n
− π

2

)

=
k2

c
n

n−1

∑
j=0

sin2
(

jπ
n

)
=

〈(
∂yR

)2
〉

(5.38)

and also 〈
(∂xR)2

〉
=

k2
c

n

n−1

∑
j=0

cos2
(

jπ
n

)

= k2
c −

k2
c

n

n−1

∑
j=0

sin2
(

jπ
n

)
= k2

c −
〈
(∂xR)2

〉
(5.39)

such that all auto-correlations become〈
(∂xR)2

〉
=
〈(

∂yR
)2
〉

=
〈
(∂x I)2

〉
=
〈(

∂y I
)2
〉

=
k2

c
2

= 2π2 (5.40)

when choosing without loss of generality the column spacing to be Λ = 2π/kc ≡ 1.
Most off-diagonal elements of the covariance matrix C vanish. All non-vanishing

contributions are related to the planform anisotropy ξ depending on the set l. The
covariance between the field and its derivative reads

〈z∇z̄〉 = − 2
n

i
n−1

∑
j, j′=0

l j′k j′
〈

ei(φ j−φ j′ )
〉

= − 2
n

i
n−1

∑
j=0

l jk j

= −2i~χ (5.41)

with ~χ ≡ 1 ∑n−1
j=0 l jk j ≥ 0. The modulus χ = |~χ| is small for an isotropic distri-

bution of wavevectors l jk j. To estimate its upper bound χmax, consider the most
anisotropic case with all l jk j situated in the right plane (l j = 1 for j ≤ n/2, l j = −1
for j > n/2). For large n this upper bound is
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χmax =

∣∣∣∣∣ 1n n−1

∑
j=0

l jk j

∣∣∣∣∣
=

kc

π

∣∣∣∣∣∣
n
2−1

∑
j=− n

2

π

n
eiπ j

n

∣∣∣∣∣∣
≈ kc

π

∣∣∣∣∣∣∣
π
2∫

− π
2

dαeiα

∣∣∣∣∣∣∣
= 4 (5.42)

such that the anisotropy defined by

~ξ ≡ 1
4n

n−1

∑
j=0

l jk j (5.43)

has its modulus ξ =
∣∣∣~ξ∣∣∣ within 0 ≤ ξ ≤ 1. In the following, without loss of

generality, it is assumed ~ξ = ξ(1, 0) implying that all correlations involving one
derivative in y-direction vanish. Correlations involving ∂x are obtained by writing
Eq. (5.41) and

〈z∇z〉 =
2
n

i
n−1

∑
j, j′=0

l j′k j′
〈

ei(φ j+φ j′ )
〉

= 0 (5.44)

in the form

〈z∇x z̄〉 = 〈R∂xR〉+ 〈I∂x I〉+ i (〈I∂xR〉 − 〈R∂x I〉) = −i8ξ
〈z∇xz〉 = 〈R∂xR〉 − 〈I∂x I〉+ i (〈I∂xR〉+ 〈R∂x I〉) = 0 (5.45)

and comparing both imaginary parts showing that

− 〈I∂xR〉 = 〈R∂x I〉 = 4ξ (5.46)

does not vanish for anisotropic planforms.
Expression (5.46) are the only non-vanishing non-diagonal elements of the ma-

trix C. Indeed,
〈R∂xR〉 = 〈I∂x I〉 = 0 , (5.47)
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follows from comparing both real parts in Eq. (5.45). Furthermore, correlations
between the real and imaginary part and between their derivatives, e.g.

〈RI〉 = 0
〈∂xR∂x I〉 = 0〈
∂yR∂x I

〉
= 0 , (5.48)

vanish since they contain terms of the form
〈

sinφ j cosφ j′
〉

=
〈
sinφ j

〉 〈
cosφ j

〉
=

0. Finally, because〈
∂xR∂yR

〉
=

2
n ∑

j j′
l jl j′k jxk j′y

〈
sinφ j sinφ j′

〉
=

1
n ∑

j
k jxk jy

=
2k2

c
n

n−1

∑
j=0

sin
(

2π
j
n

)
(5.49)

vanishes for arbitrary n, also correlations between derivatives in different direc-
tions, 〈

∂xR∂yR
〉

=
〈
∂x I∂y I

〉
= 0 , (5.50)

do not contribute to the density of pinwheels.
Altogether, the covariance matrix for the vector v = (R, I, ∂xR, ∂x I, ∂yR, ∂y I)

reads

C =



〈R2〉 〈IR〉 〈∂x IR〉
〈RI〉 〈I2〉 〈∂xRI〉

〈I∂xR〉 〈(∂xR)2〉
〈R∂x I〉 〈(∂x I)2〉

〈(∂yR)2〉
〈(∂y I)2〉



=



1 4ξl
1 −4ξl

−4ξl 2π2

4ξl 2π2

2π2

2π2

 (5.51)

with determinant
det C = 2π4

(
π2 − 8ξ2

)2
. (5.52)
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5.3 Pinwheel densities near criticality

Substituting

∂xR = r2 cosθ2
∂yR = r1 cosθ1
∂x I = r2 sinθ2
∂y I = r1 sinθ1 (5.53)

and integrating over all components of v yields the average pinwheel density

〈ρl〉 = π

√
1− 8

π2ξ
2 (5.54)

for an ensemble of planforms defined by the set of wavevector directions l. Since
the anisotropy ranges within 0 ≤ ξ ≤ 1, the pinwheel density (5.54) is confined
by 1.36 . 〈ρl〉 ≤ π . Eq. (5.54) appears to be consistent with the result from Fig.
5.2 showing that already for intermediate orders of n averaging over l leads to
pinwheel densities smaller but close to π . That averages are smaller than π is ex-
plained by the upper bound of 〈ρl〉 implying an upper bound also for its average.
That they are, in fact, not much smaller than π is already suggested from the ’rela-
tivistic’ form of the dependency of the pinwheel density 〈ρl〉 on the anisotropyξ in
(5.54). Even moderate anisotropies up to, e.g., ξl = 0.3 result in pinwheel densities
〈ρl〉 > 3.

5.3.3 Distribution of planform anisotropies

What is the distribution of anisotropies ξ in the large n limit? To address this ques-
tion consider the ensemble defined by the different sets l = (l0, . . . , ln−1). From
now on, 〈〉 shall denote the expectation value over this ensemble. In the following
we assume that the distribution of the vector anisotropies ~ξ is isotropic and Gaus-
sian in the large n limit. The isotropy follows from the rotation symmetry of the
model equations. It implies that 〈

~ξ
〉

= 0 . (5.55)

The Gaussian statistic is due to the fact that by its definition (5.43), the vector
anisotropies ~ξ results from various wavevectors l jk j with pairwise independent
directions l j. The distribution thus reads

p(~ξ) =
1
πνξ

exp

(
−

~ξ2

νξ

)
(5.56)
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with variance νξ given by

νξ =
〈
~ξ2
〉

=
1

16n2 ∑
j j′

k jk j′
〈

l jl j′
〉

=
1

16n2 ∑
j

k2
j

=
π2

4n
. (5.57)

where
〈

l jl j′
〉

= δ j j′ . The probability density for ξ follows from the distribution of

the vector anisotropy~ξ by

p(ξ) = 2πξp
(∣∣∣~ξ∣∣∣)

=
8n
π2ξ exp

(
−4n
π2ξ

2
)

, ξ ≥ 0 (5.58)

where in the first equation the prefactor accounts for the change to the one-dimen-
sional distribution of the modulus

∣∣∣~ξ∣∣∣.
5.3.4 Pinwheel density in the large n limit

Distribution (5.58) for the anisotropy ξ translates with Eq. (5.54) into the distribu-
tion of pinwheel density ρ. This distribution is obtained from (5.58) by

p(ρ) = p (ξ (ρ))
∣∣∣∣dξdρ

∣∣∣∣ (5.59)

by means of a coordinate transform ξ → ρ. With ξ =
√

(π2 − ρ2)/8 (Eq. (5.54))
this leads to the pinwheel density distribution

p(ρ) =
n
π2ρ exp

(
− n

2π2

(
π2 − ρ2

))
, 0 ≤ ρ ≤ π , (5.60)

valid in the large n limit. The expectation value of the pinwheel density follows as

〈ρ〉 =
π∫

0

dρρp(ρ)

= π −
e−

n
2π

3
2 Φi

(√n
2

)
√

2n
(5.61)
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5.4 Local pinwheel statistics

where Φi is the imaginary error function. In the limit n → ∞, the fraction vanishes
yielding the average pinwheel density

lim
n→∞〈ρ〉 = π . (5.62)

This proves the convergence of pinwheel densities towards π for large n that has
been suggested from Fig. 5.2a.

Moreover, the pinwheel density becomes δ-distributed at 〈ρ〉 = π in the large n
limit as its variance ν converges towards 0. Having

〈
ρ2
〉

=
π∫

0

dρρ2 p(ρ)

= π2 2e−
n
2 + n− 2

n
(5.63)

which goes to π2 for n → ∞, one finds

ν = 〈ρ2〉 − 〈ρ〉2

= 0 (5.64)

suggesting that for large n not only the average pinwheel densities 〈ρ〉 but the
density ρ of almost every single realization is close to π . This is consistent with
the decrease of the SD s for increasing n observed for the distributions of pinwheel
densities ρ in synthesized realizations of planforms (Fig. 5.2b).

5.4 Local pinwheel statistics

We next asked whether in addition to the average pinwheel density the model
also predicted the spatial variation and nearest neighbor distributions of pinwheels
depicted in Fig. 4.10 and 4.11.

5.4.1 Count statistics

In analogy to Fig. 4.10a, we calculated pinwheel densities ρ in regions of various
size A in planforms with n = 20 active modes. Fig. 5.3a shows that pinwheel den-
sities ρ varied considerably in regions of a few hypercolumns, and became closer
to the average density 〈ρ〉 only in large regions. This quantitatively agreed to the
maps from the visual cortex, as shown by the comparison of the SD s and number
variance ν in Fig. 5.3b. For the planforms, both quantities were calculated as in
Fig. 4.10 with the count variance given by ν = 〈m− 〈m〉〉2 where m is the number
of pinwheels in an area A and 〈〉 denoting average over regions of size A. The SD s
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5 Theory of pinwheel density selection

Figure 5.3: Spatial organization of pinwheels in the model for intermediate interaction range.
a, Pinwheel densities ρ in regions of various size A (in units of hyper columns Λ2). Regions
were randomly sampled on planforms (5.23) (order, n = 20; number of realization, N = 26;
1000 regions drawn per hyper column increment). For comparison with experiment, planforms
were confined to the geometry of tree shrew maps. b, SD s and number variance ν of pinwheel
densities ρ from a compared to both quantities from tree shrew and ferret (Fig. 4.10). Note
the excellent correspondence between the model and experiment and the deviation from the
random map ensemble (black triangles).

decreased approximately proportional to
√

A implying that ν increased as cA 〈ρ〉.
The proportionality factor was c ≈ 0.9 which agreed well with the factor observed
in the visual cortex and which was very different than for the ensemble of phase
shuffled maps (black triangles in 5.3b).

5.4.2 Nearest neighbor statistics

Another important characteristics of pinwheel patterns are the distances h of a pin-
wheel to its nearest neighbors. Since pinwheels are characterized by a topological
charge, three distances are of particular interest: the distance h++,−− to the nearest
pinwheel of equal sign, the distance h+−,−+ to the nearest pinwheel of opposite
sign, and htot, the smallest distance to any other pinwheel. The distance htot is al-
ways the smaller of the two other distances. The histograms of these distances are
statistics sensitive to the local arrangement of pinwheels.

Pinwheel nearest neighbor distances were very similar to those for the tree shrew
and ferret as shown in Fig. 5.4. Distances were calculated for the same n = 20
planforms as in Fig. 5.3 with methods identical to those used for the experimental
data (Fig. 4.11). For these solutions, distances htot to the next neighbor of arbitrary
charge were mostly smaller than half the column spacing Λ (Fig. 5.4a). Very small
distances occurred less frequently than intermediate distances. The distribution
had a clear peak at ≈ 0.4 defining a typical pinwheel distance of this value. As
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5.5 Pinwheel densities away from criticality

Figure 5.4: Nearest neighbor distances of pinwheels in the model for intermediate interaction
range. a, Histogram of distances htot to the next pinwheel of arbitrary topological charge for the
planforms from Fig. 5.3 compared to those for the tree shrew and ferret (histograms normalized;
distances in units of Λ). b, Histograms for opposite charge (h+−,−+, solid lines) and equal
charge (h++,−−, dashed lines). Note the excellent agreement with tree shrew and ferret.

revealed by a comparison with Fig. 5.4b, most nearest neighbors were of opposite
sign. Distances between equally charged pinwheels were considerably larger with
peak at ≈ 0.55 and only a negligible fraction of the distances being smaller than
. 0.2Λ. Each of these distributions was very similar to the analog distribution
obtained for the tree shrew and ferret (thin lines in Fig. 5.4a, b; from Fig. 4.11).
Not only did they agree in their center and width, but also displayed a virtually
identical overall shape. These findings remain valid for other choices of n > 13
(σ & 2.0). Thus, in this regime, the model predicts all aspects of pinwheel orga-
nization found to be universal in the visual cortex: The average pinwheel density,
the regional variation of local density and the distribution of distances between
adjacent pinwheels.

5.5 Pinwheel densities away from criticality

It is obviously difficult to gauge the value of the bifurcation parameter r for the
development of the orientation map in the visual cortex, and the possibility that
the system is in a regime further away from the bifurcation point must not be ne-
glected. It is unclear, however, whether the results valid close to criticality estab-
lished in the previous Section 5.3 generalize to the regime further away from the
bifurcation point. To assess the robustness of these results it is therefore important
to study the regime r > 0.

In fact, a regime r > 0 is suggested from the following considerations. First, at
least for the tree shrew, the layout of the pattern along the boundary suggests a
rather short ranging influence within a few column spacings Λ. (Fig. 2.1). This is,
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5 Theory of pinwheel density selection

Figure 5.5: Two examples of orientation maps obtained at intermediate time t = 3 · 102 (left in
a, b) and at late time t = 3 · 104 (right in a, b) with t rescaled by T = 1/r. Integration of 5.1 and
parameters as in Fig. 5.1. The upper row shows subregions of the angle map (A = (4.25Λ)2,
smoothed for illustration). Below each angle map the power spectrum of the entire map is
depicted (origin of Fourier-space in center of annulus). At t = 3 · 102 unstable active modes are
present. In a an example of a high pinwheel density map is depicted with almost equidistance
of active modes on the critical circle. b shows an example of a low pinwheel density map with
most modes confined to one half of the critical circle.

however, inconsistent with the stiffness of the solutions implied by r � 1. As men-
tioned above, only for r > 0, the critical circle is sufficiently wide to allow for such
sharp transitions in the layout. Second, even in orientation maps of intermediate
size with aspect ratios of Γ ≈ 20 − 30, large-scale inhomogeneities are observed
that may be interpreted as different domains (see e.g. Fig. 4.1). Clearly, such
domains would only occur in a regime further away from the bifurcation point,
since owing to the width δk ∝

√
r of the critical circle, the size of such a coherent

structure isO(1/
√

r). Third, assuming that r is not constant in time in a cortex per-
manently driven by visual stimuli, in the case r were close to the bifurcation point,
these fluctuations of r could cause occasional transitions from maps of orientation
selective neurons to unselective neurons. Such large scale fluctuations, however,
were never observed in recordings nor do they appear very beneficial for vision.

Two representative solutions of Eq. (5.1) for r = 0.1 are depicted in Fig. 5.5 at
intermediate and late times t (rescaled by (5.19)). In transient states at t = 3 · 102 all
active amplitudes were already confined to the critical circle, but not yet in a stable
configuration. In the near stationary states at t = 3 · 104, in contrast, all finally
active amplitudes were selected and the further development mainly consisted in
the relaxation of the phases of these amplitudes. Whereas the final state depicted in
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Fig. 5.5a exhibited a high pinwheel density with almost equidistant active modes
on the critical circle (small anisotropy ξ , Eq. (5.43)), a map of lower pinwheel den-
sity with most modes confined to one side of the spectrum (large anisotropy ξ) is
shown in Fig. 5.5b.

5.5.1 Transient states

Transient states exhibited average pinwheel densities 〈ρ〉 very similar to those ob-
served in the visual cortex in Chapter 4. As shown in Fig. 5.6a, after an interme-
diate integration time t = 3 · 102 the average pinwheel density was 〈ρ〉 ≈ π for
various values of r and interaction ranges σ . However, pinwheel densities did not
mimic the fluctuation with σ found for planforms (Fig. 5.6b), but appeared rather
independent of σ . The deviation from the planforms was even more apparent for
the variability s of pinwheel densities ρ across individual maps (SD, Fig. 5.6b).

The origin of this deviation from planform solutions is that this developmental
stage still falls into the phase of nonlinear competition. The finally active modes
have not been fully selected yet. Especially, the low pinwheel density realizations
with active modes only in one half of the critical circle leading to high anisotropies
ξ occur only in much later stages. Therefore, pinwheel densities at this stage ex-
hibit slightly higher values and less variation compared to planforms. Map devel-
opment is further discussed in Chapter 6.

5.5.2 Near stationary states

The pinwheel densities observed for the near stationary states agreed for small
values of r well with the experimental results and those obtained for planforms.
Fig. 5.6c shows the average pinwheel densities 〈ρ〉 for the same initial conditions
as in Fig. 5.6a, but after t = 3 · 104. Above r ≥ 0.03, however, a deviation of 〈ρ〉
relative to the planform densities became evident. Solutions for a given r diverged
stronger from the asymptotic density near criticality, 〈ρ〉 = π , for larger interaction
ranges σ . Also the variation s followed the results for planforms only for small r
and interaction ranges 1.0 ≤ σ ≤ 2.0 (Fig. 5.2d), but was more pronounced for
large values of σ and r.

The interpretation of these findings is that at this stage the phase of nonlinear
competition has come to an end. Planform-like solutions are selected, however,
with a bias towards larger anisotropiesξ and therefore to smaller average pinwheel
densities and a larger variation (see Section 5.3). Different from planforms, for
r > 0 solutions do not appear to have degenerated energy anymore. Striving the
amplitude expansion to higher than 3rd order may provide insights into an energy
splitting or other mechanism controlling the selection of solutions.
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5 Theory of pinwheel density selection

Figure 5.6: Pinwheel densities of the full model Eq. (5.1). a, Average pinwheel densities
〈ρ〉 for different values of bifurcation parameter r and interaction range σ . Numerical solutions
were obtained after t = 3 · 102 starting from the identical set (N=50) of initial conditions z0 at
t = 0 for each parameter set (see Methods; mesh size, 128 × 128 using periodic boundary
conditions; g = 0.98, Γ = 21 for σ = 1.0, 1.4, Γ = 24 for σ = 1.7, 2.0, Γ = 25 for σ = 2.5).
Pinwheel densities 〈ρ〉 of planform solutions (Fig. 5.2) shown at σ = n/1.5π (diamonds). Their
asymptotic density 〈ρ〉 = π is indicated by the dashed line. b, SD s of pinwheel densities. c, d,
as in a, b, respectively, but at a much larger time t = 3 · 104 at which solutions are close to the
attractor.

5.5.3 Robust selection

The importance of long-range connections for the selection of pinwheel densities
is illustrated in Fig. 5.7. If long-range interactions are absent, low pinwheel den-
sity solutions are preferred and pinwheels annhilate after a short period of time
[107, 108]. In the presence of long-range interactions, pinwheel densities are ro-
bustly selected. Pinwheel densities and pinwheel dynamics during development
are further studied in Chapter 6.
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Figure 5.7: Robust dynamical pin-
wheel density selection. a, Upper
map, r = 0.1, g = 0.98 and σ = 1.7.
Lower map, r = 0.1, g = 2. b,
Pinwheel densities ρ in the presence
(blue) and absence (green) of long-
range interactions (N = 30, param-
eter as in a).

5.6 Discussion

The previous Chapter 4 identified several universal properties of pinwheel statis-
tics in the visual cortex. This resembles a behavior found in many complex sys-
tems where structures within a particular universality class are selected by self-
organization despite the often involved different microscopic dynamics [23]. In
this chapter, we analyzed a model formalizing the idea of self-organization of the
orientation map including only key features of the visual cortical organization.

The model showed that pinwheel densities close to π are robustly selected if
interactions between remote contour detectors are prevalent. Solutions closely re-
sembled real orientation maps in the large parameter regime of sufficiently wide
and strong nonlocal interactions (σ & 0.5Λ, 0 ≤ g < 1). Otherwise, low pinwheel
density solutions are preferred and pinwheels annhilate after a short period of time
[107, 108]. Near criticality (r � 1), in the limit of large intracortical interaction
rangeσ , the average pinwheel density converged to the fixed number 〈ρ〉 = π . For
intermediate ranges 1Λ . σ . 3Λ, average pinwheel densities 〈ρ〉 were smaller
but close to this limit value. For successively larger rangesσ , the pinwheel density
approaches π from below. Numerical solutions of the model using various values
of r confirmed these results. Both medium term and near stationary solutions ex-
hibited for 1 ≤ σ ≤ 2.3 similar average pinwheel densities 〈ρ〉 as for r � 1. Thus,
in an apparently realistic parameter regime, the model agrees quantitatively with
the average pinwheel density 〈ρ〉 in the tree shrew, galago and ferret.

We evaluated the spatial variation and nearest neighbor distributions of pin-
wheels and compared them to the experimental results from the previous Chapter
4. Pinwheel densities ρ varied considerably in regions of a few hypercolumns, and
converged towards the average density 〈ρ〉 only in large regions. This quantita-
tively agreed with the tree shrew and ferret maps, as demonstrated by the com-
parison of the SD and number variance. Moreover, also pinwheel nearest neighbor
distances were very similar to those for the tree shrew and ferret. These findings
remained valid within a large parameter regime σ & 2.0 and g < 1. Thus, in this
regime, the model reproduces all aspects of pinwheel organization found to be uni-
versal in the visual cortex: The average pinwheel density, the regional variation of
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local density and the distribution of distances between adjacent pinwheels.
The invariance of the pinwheel density in the visual cortex is a non-local prin-

ciple. A small region of cortex does not experience a hard constraint and may
therefore deviate substantially from average. Rather, this principle applies to the
network as a whole governing its organization on a large spatial scale. This sug-
gests that long-range horizontal connections are crucial for this process. Indeed,
the proposed model indicates that for the establishment of the observed pinwheel
patterns, a prevalent contribution of non-local interactions is both necessary and
sufficient. The latter explains the robustness of its occurrence in different species.
The former explains why similar patterns were not often observed in examples of
pattern formation from physics, since in most pattern forming systems interactions
are local [3, 23]. It is worth mentioning that a non-local principle offers the possi-
bility of fast and widespread organization and thus the development of a virtually
mature map at an early stage. The development of the orientation map is studied
in more detail in the following chapter.
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6.1 Motivation

So far, most recordings of cortical maps are carried out at a single point in time,
often in the adult visual cortex. Chronic recordings that allow for measurements
over many hours, days or weeks are technically possible, but challenge experimen-
talists. Nevertheless, it is expected that chronic recordings will be important in or-
der to understand the dynamics of the neuronal network during development. In
enhancing the efficiency of upcoming experiments, model studies shall contribute
an important part. Properties on which to focus in experiment are suggested by
the model. The time scale, for instance, on which network changes occur is a use-
ful quantity to know when endeavoring an experiment. In the model study in this
chapter, we focus on the dynamics of pinwheels during development. The meth-
ods for analyzing pinwheels in experimental data developed in Chapter 4 can be
extended to data from chronic experiments. A first approach to this is undertaken
in Chapter 8. Thus, a direct test of the analyses presented in this section is expected
to be possible in the near future.

We begin this chapter by analyzing the changes of the layout of the orientation
map over time using the generalized Swift-Hohenberg model Eq. (5.1). We assess
the evolution of various pinwheel statistics during development including pin-
wheel density, nearest neighbor distributions, pinwheel creation and annihilation
rates, survival probabilities, pinwheel motion and pinwheel speed. We identify
two different regimes, the regime of early nonlinear selection in which the devel-
opment is largely independent of the bifurcation parameter r, and a late regime
in which pinwheel statistics depend on r. This suggest to derive the relevant time
scales of the early nonlinear phase from weakly nonlinear stability analysis. Fi-
nally, we consider the development of orientation maps in hard wall boundary
conditions.
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6 Predicted pinwheel kinetics during development

6.2 Methods

The model and its numerical integration is described in Section 5.2 of the previous
chapter.

6.2.1 Pinwheel tracking

To track pinwheels during the evolution of the orientation map, states were moni-
tored at times ti separated by exponentially decreasing time intervals ∆ti = ti− ti−1
in order to account for the various temporal scales the dynamics encounters from
the primary instability at t = 0 to the very slow development near the attractor at
t = 1 · 106. Usually, 300 maps were sampled at times

ti =
t f

e10 − 1
(e(10t′i/t f ) − 1) (6.1)

with t′i equally distributed between the initial time t0 = 0 and the final time t f ,
where t f = 3 × 104, or in long-run simulations t f = 1 × 106, respectively. All
results were checked by using constant time intervals ∆i with various temporal
resolutions. Pinwheel locations were identified at each time ti by the crossings of
the zero contour lines of the real and imaginary part of the orientation map. Pin-
wheels were tracked over time based on their similar locations in maps at succes-
sive times ti and ti+1. Since pinwheels move continuously, there is a time interval
∆ti = ti+1 − ti for which all pinwheels move less than a given distance ∆x. A
pinwheel differing in position by less then ∆x between ti and ti+1 was considered
identical. If more than one pinwheel had a smaller distance than ∆x the one with
the smallest distance was chosen (a case which most often occurred before annihi-
lation when two pinwheels approached each other). If no corresponding pinwheel
was found within ∆x at subsequent time ti+1 it was considered as annihilated. If
a pinwheel at ti+1 could not be assigned to one at ti it was considered as created.
With a choice of ∆x = 0.2Λ, the above exponential temporal sampling provided a
sufficient resolution of pinwheel movements.

6.2.2 Boundary conditions

To integrate equation (6) with boundary conditions (6.41) on a disk (Section 6.6), a
circular ramp in the bifurcation parameter r was used, maintaining the region sur-
rounding the circle at a subcritical value thereby suppressing the amplitude of the
pattern. A similar treatment of boundary conditions (6.41) has been used in numer-
ical solutions of the Swift-Hohenberg equation [74] and of the Navier-Stokes equa-
tion [28] where it has been shown successfully in comparison with experiment. A
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boundary term was defined by

B(x) = −brΘ(|x− x0| − R) (6.2)

with R the radius of the disk centered at x0 in the simulated quadratic region and
b > 1 controlling the strength of the suppression at and outside the boundary. The
ramping was implemented in the Fourier domain by

ÑB(z̃, t) = Ñ(z̃, t) + B̃ ∗ z̃ (6.3)

as an additional contribution to the force term in Eq. (5.9). To enforce boundary
conditions (6.41) one may choose b � 1. However, this would reduce the step size
of time marching drastically since the implementation of (6.3) is explicit. In numer-
ical tests using various strengths b, a sufficient impact of the imposed constraints
on the pattern was obtained even for b ≥ 2. In typical simulations ranging over
large times (t = 1× 106) a value of b = 3 was used. Wrap around effects induced
by the pseudo spectral treatment of the nonlocal interactions in the nonlinear part
(5.3) were avoided by choosing the region inside the boundary sufficiently small.
With an aspect ratio of Γ = 24.5 and an interaction range σ ≤ 2.5Λ, this was
achieved with a diameter of the disk covering 7/8 of the total width of the sim-
ulated quadratic region (mesh size 128 × 128). Initial conditions were Gaussian
random fields with an average amplitude of A = 1× 10−4√r throughout the en-
tire simulated region.

6.3 Development of orientation maps

A representative example of a developing orientation map is presented in Fig. 6.1.
After t = 102, the state already resembled an orientation map observed in the vi-
sual cortex. The initially broad spectrum was narrowed due to the strong damping
of the linear part Eq. (5.2) further away from the critical circle |k| = kc. On the
critical circle, modes grew initially exponential with rate r until their amplitudes
were of order ∼ r1/2. For the choice of r and the amplitude of the initial conditions
used, this phase typically ended at t ≈ 101 (Fig. 5.1). The subsequent phase of
nonlinear competition among modes lead to the development of isolated ampli-
tudes distributed around the critical circle at t = 102, and to a stable configuration
of amplitudes at t = 104. The solution consisted of a finite number of active modes
as predicted by the amplitude formalism (see Chapter 5 and 2). Different from the
planform solutions, however, phases φi of the amplitudes A j = |A j|eiφ j were not
degenerate anymore. In fact, phases φi still changed after t = 104 and complete
stationarity was not always reached even at t = 106.

The amplitude formalism provides an approximate description for the second
phase of mode competition. Within this framework modes develop on a time scale
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Figure 6.1: A developing orientation map. A band-pass filtered Gaussian random map as initial
condition at t = 0 was advanced until t f = 106. Integration of Eq. (5.1) and parameters as in
Fig. 5.1 (r = 0.1, g = 0.98, σ = 1.7Λ, Γ = 17). The upper row shows a subregions of the
angle map at initial, final and intermediate times (A = (4.25Λ)2, smoothed for illustration) with
beneath the power spectrum of the entire map (origin of Fourier-space in center of annulus).
Note that the map is considerably stable already after t = 102.

of O(r). Thus, during the first two phases orientation maps might approximately
develop on time scale O(r). Stable solutions of the amplitude equations of third
order are degenerate in phases φ j. Since the next correction is of 5th order the
adjustment of phases will happen on a time scale of at least O(r2). This suggests
that in maps the selection of phases φ j takes place on a much larger time scale
consistent with the long term dynamics depicted in Fig. 6.1 and in the following
figures. To compare results obtained for different values of r during the phase of
mode competition, they were presented using the rescaled time t (Eq. (5.19)), as in
previous sections.

A more quantitative view on the map development governed by Eq. (5.1) is
revealed by tracking the similarity across different stages of development. For this
purpose consider the time dependent cross-correlation

C(t, t′) =

√
Re (

∫
d2x z(x, t)z̄(x, t′))√∫

d2x |z(x, t)|2
∫

d2x |z(x, t′)|2
(6.4)

between the map at time t and the map at a fixed reference time t′. Fig. 6.2 shows
the correlation C for three different reference times t′ and for three values of r. Each
cross-correlation was averaged over N = 10 different solutions.

For r = 0.1 (red curves), maps developed rapidly during the early phase and the
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6.3 Development of orientation maps

correlation between the initial and the developing map dropped considerably be-
fore t = 103 (dashed curve). Interestingly, however, even at very late stages, maps
did not become uncorrelated from the initial maps, but maintained a correlation of
C ≈ 0.2. Moreover, very late maps at t = 106 were with C ≈ 0.5 still moderately
correlated with their early states at t = 102 (dashed-dotted curve), a time still at the
beginning of the phase of mode competition. When the modes reached their final
configuration at t = 104 maps were already very similar to their very late states at
t = 106. During phase relaxation, correlations did not change substantially indi-
cating that on average, phases experience only small changes, at least until t = 106

(solid curve). Thus, largest changes occurred before t ≈ 103. After t ≈ 104, maps
were basically stable. The map layout strongly resembles the final layout even be-
fore that time, after t = 102 as shown by the representative example in Fig. 6.1
(cross-correlation between maps at t = 102 and t = 106, C = 0.45). Consistent
with these results, several experimental studies observed a persistence of the basic
layout of the orientation map during development. Experimental paradigms for
testing the predicted dynamical changes during development will be proposed at
the end of this chapter.

Figure 6.2: Quantified changes during
map development. Cross-correlation
C(t, t′) (Eq. (6.4)) between the map and
the map at fixed reference times t′ =
100 (dashed lines), t′ = 102 (dashed-
dotted), t′ = 106 (solid) for different val-
ues of r. Each curve represent an av-
erage over N = 10 cases. Parame-
ters as in Fig. 5.1. Note that already
after t ≈ 102, maps are considerably
correlated with their very late states at
t = 106.

A dependence of map stability on r was observed especially during the inter-
mediate and late stages of development. Solutions obtained for different values of
r showed identical time courses of C(t) during the initial phase of development
(dashed curves). Approximately between t = 103 and t = 104, a dependence on
r became apparent as highlighted by the dashed-dotes curves. Whereas for small
r, solutions remained relatively similar to the early state at t = 1 · 102 during this
stage of development (C ≈ 0.6), they diverged stronger from the early state for
large r as indicated from the decrease of C below 0.4. At late stages t > 1 · 104, cor-
relations stabilized. Consistent with a faster phase dynamics for large r, changes
during this phase were stronger for solutions with a larger value of r (solid curves).

Following these results, the development of orientation maps may be subdivided
into three stages. First, a phase of linear growth taking place for 0 ≤ t ≤ 101 when
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6 Predicted pinwheel kinetics during development

amplitudes near the critical circle grow until reaching their maximum. Second,
the phase of nonlinear competition among modes between 101 < t < 104 when
the finally active amplitudes are selected. Third, the relaxation of phases of the
selected amplitudes for t > 104. This defines two time scales central for the study
in this section: The end of the linear phase denoted by to ≈ 101 and the end of
mode competition called the cross-over phase t∗ ≈ 104.

6.4 Development of pinwheel statistics

Typically, pinwheel densities fluctuated considerably during development. Fig. 6.3
shows a representative example of the time course of pinwheel density ρ(t) in an
orientation map developing from a Gaussian random field at t = 0 to t = 3 · 104.
Between t = 1 · 100 and t = 1 · 103 the pinwheel density ρ(t) varied between 2.8
and 3.3 with fluctuations occurring on various temporal scales. During the late
phase at t > 1 · 104 that is characterized by the relaxation of phases fluctuations of
ρ(t) diminished considerably.

Figure 6.3: Tracing pinwheels during develop-
ment in model (5.1). Time course of pinwheel
density ρ(t) of an orientation map developing
from band-pass filtered white noise at t = 0 to
a near final state at t = 3 × 104 (blue curve).
Integration of (5.1) and parameters as in Fig.
5.1. Pinwheels were counted and tracked in
a square of size 12.75Λ over 300 intermedi-
ate solutions. The survival fraction µτ (t) of pin-
wheels present at t = τ

not annihilated until t is shown for τ =
1× 100 (red) and τ = 5× 101 (orange).

The fluctuation of the pinwheel density ρ was mainly due to pinwheel annihila-
tion and creation processes happening frequently during development. From a set
of pinwheels present at time t = τ only the fraction µτ(t) survives until time t ≥ τ .
To calculate µτ(t), pinwheels were tracked throughout the course of development
(see Methods, Section 6.2). Fig. 6.3 shows the survival fractions µτ(t) of pinwheels
for τ = 1 · 100 and τ = 5 · 101. Both fractions decayed rapidly during the phase
of nonlinear competition. After cross-over to pure phase dynamics at t∗ ≈ 1 · 104,
pinwheel annihilation occurred much less frequently consistent with the reduced
strength of density fluctuations in this regime. Pinwheel annihilation and creation
processes are further studied below (Section 6.4.3).
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6.4 Development of pinwheel statistics

Figure 6.4: Pinwheel densities during development. a, Pinwheel density trace ρ(t) for different
random initial conditions (N = 40, parameter as in Fig. 6.1 and Fig. 6.3). The average trace
is represented by the black line. Until t ≈ 3 · 102, all traces were confined to the small range
2.8 < ρ < 3.3. Thereafter, traces diverged and reached near final levels at the cross-over time
t∗ ≈ 1 · 104. b, Traces ρ(t) obtained for different values of the bifurcation parameter r (N = 10).
Solutions were advanced to t = 1 · 106 (rescaled time). Note that independent from r traces
diverge during the same period just before t = t∗. In the late stage t > t∗, pinwheel densities
exhibited much smaller fluctuations.

6.4.1 Pinwheel density

Fig. 6.4a shows the evolution of pinwheel densities ρ(t) for a large set of different
initial conditions. Up to t ≈ 3 · 102, pinwheel densities ρ were generally confined
between 2.8 and 3.3. However, later on, the densities diverged starting from var-
ious points in time and with rates of change depending on initial conditions. The
near steady-state distribution reached at cross-over time t = t∗ was confined to
an interval between ρ = 1 and ρ = 3.5 similar to the distribution obtained for
planforms [105]. The low density solutions exhibit large anisotropies ξ , i.e. have
most active amplitudes located in a hemifield (Section 5.3). All transient pinwheel
densities ρ(t) for t ≤ 3 · 102 were close to π , consistent with Fig. 5.6 showing an
average pinwheel density of 〈ρ〉 ≈ π at t = 3 · 102. For most cases, also the final
density was close to π , but their average was, consistent with the results from Fig.
5.6, slightly reduced due to the presence of solutions with large anisotropy ξ at
large times.

How does the described dynamics of pinwheel densities depend on the bifurca-
tion parameter r? Fig. 6.4b shows that near final values of pinwheel densities ρ
developed at t ≈ 1 · 104 = t∗ independent of r suggesting that the phase of nonlin-
ear competition follows a similar type of dynamics for different r. However, other
than the time course of selection, the selected ensemble did depend on r with a
tendency towards low density solutions for large r consistent with the results from
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6 Predicted pinwheel kinetics during development

Fig. 5.6 (for discussion, refer to Section 5.5). Owing to the ongoing phase relax-
ation, pinwheel densities continued to change after t = t∗, albeit with reduced
amplitudes of fluctuations and as expected with faster changes for larger r. Thus,
whereas some details of the pinwheel dynamics depend on r, the time scale t∗ gov-
erning the primary development appears insensitive for different r.

How well do pinwheel densities at reference time t′ predict densities at time t?
Since the average pinwheel density is largely preserved during development, it is
conceivable that final pinwheel densities can be predicted from densities at an early
stage. To test this, we calculated for the set of pinwheel density traces presented in
Fig. 6.4a the cross-correlation Cρ between the set of pinwheel densities ρ j at time
t and those at various reference times t′. As shown in Fig. 6.2 pinwheel densi-
ties ρ j were predictable only over a limited time interval. For instance, densities at
t = 103 were only moderately correlated with the near final densities at t = 104.
For t ≤ 102 pinwheel densities were essentially uncorrelated over the range of
one order of magnitude. Compared to the cross-correlation C between maps (Fig.
6.2), pinwheel densities were much less predictable during development This is ex-
plained by the fact that the presence or absence of a single active mode can strongly
influence the pinwheel density of a map, but has only a relatively small effect on its
cross-correlation. Thus, pinwheel densities are not a conserved label of individual
maps during development.

Figure 6.5: Correlations Cρ between pinwheel
densities ρ j at time t and at reference times t =
100 (orange), t = 101 (red), t = 102 (violet), t =
103 (blue), t = 104 (dark green) for the traces
from Fig. 6.4a. Pinwheel densities are generally
less predictable compared with the map itself
(Fig. 6.2).

6.4.2 Nearest neighbor statistics

Having observed that pinwheel densities fluctuate during development, we next
asked whether the local statistics of pinwheels is also altered. In particular, we
focused on the nearest neighbor distances between pinwheels introduced in Sub-
section 5.4.2: the distance h++,−− to the adjacent pinwheel of equal sign, the dis-
tance h+−,−+ to that of opposite sign and htot, the smallest distance to any other
pinwheel. Fig. 6.6a-d shows that the histograms of the three distances remain rel-
atively constant over time (average over N = 10 solutions obtained for r = 0.3,
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6.4 Development of pinwheel statistics

Figure 6.6: Nearest neighbor distances of pinwheels during development. a-c, Histogram of
distance to the next pinwheel of arbitrary (tot, a), opposite (+−, −+, b), and equal (++, −−,
c) topological charge at different times (normalized, average over the N = 10 solutions from
Fig. 6.4b with r = 0.3). All distributions are preserved over time. d, Average (solid lines)
and SD (dashed lines) of the histograms from a-c. Slight changes in mean and SD occur before
t = 1 · 104, at the time pinwheel densities diverge (compare Fig. 6.4). e, Traces of mean as in d,
but for each map individually. Transitions towards larger distances correspond to those leading
to lower pinwheel densities. f, Comparison of final histograms (thick lines). Almost all neighbor
pinwheels have opposite sign. Planforms (of order n = 20) show very similar distributions (thin
lines).

σ = 1.7Λ). Individual maps that developed into low pinwheel density solutions at
t = t∗ showed transitions towards higher distances at that time (Fig. 6.6e). How-
ever, besides these cases the nearest neighbor statistics appeared very stable over
time. Fig. 6.6f shows that almost all nearest neighbors were of opposite charge. All
histograms were very similar to those for planforms of order n = 20 (Subsection
5.4.2) indicating that they are largely independent of the two model parameters
r and σ in the regime σ > 1.7Λ. Taken together, this shows that pinwheels are
predicted to maintain their nearest neighbor statistics during development.

6.4.3 Annihilation and creation

The reorganization of the orientation map during development leads to the annihi-
lation and creation of pinwheels pairs. Both processes are major structural changes
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6 Predicted pinwheel kinetics during development

that alter the topology of the map. The pinwheel annihilation rate defined by

α(t) =
1
πA

dNα
dt

(6.5)

describes the rate of change of the number of annihilated pinwheels Nα in a given
area A. Analogously, the number Nχ of created pinwheels defines

χ(t) =
1
πA

dNχ

dt
(6.6)

for the creation rate. To estimate these rates, all annihilation and creation processes
must be identified. To achieve this, pinwheels were tracked over time. For details
see Methods (Section 7.3).

Both rates were fairly equal throughout development. Fig. 6.7a, shows averages
over the ensembles of solutions from Fig. 6.4a, while Fig. 6.7b shows those from
Fig. 6.4b. The average rates decayed algebraically as

〈α〉, 〈χ〉 = bt−1 (6.7)

with different prefactors b before and after the cross-over time t∗ = 104. In the
regime of mode competition at to < t < t∗ best fits were obtained for b ≈ 1/5,
whereas a much smaller value of b ≈ 1/20 was found for the late regime t∗ < t <
106. At the cross-over time both rates decreased abruptly with a slight prevalence
of pinwheel creation processes in the beginning followed by a phase of more pro-
nounced annihilation when some of the solutions turn into low pinwheel density
configurations (see Fig. 6.2). During the linear phase t < to annihilation rates α
were higher due to the large number of pinwheels present in the initial condition
(compare Fig. 6.1).

Given a set of pinwheels present at time τ , what is the fraction µτ(t) of those
surviving until t? This fraction is calculated from

dµτ
dt

= −µτα (6.8)

with µτ(τ) = µ0 as initial condition. Inserting the average annihilation rate Eq.
(6.7) yields

µτ(t) = µ0

(
t
τ

)b
(6.9)

with exponents b = 1/5 for the early and b = 1/20 for the late regime. Fig. 6.7d, e
shows fractionsµτ(t) directly determined from the solutions from Fig. 6.2 by track-
ing all pinwheels during development present at t = τ . Indeed, pinwheels were
found to decay following a power-law with different exponents on both sides of
the cross-over time t = t∗ with average values of b ≈ 0.18 before and b = 0.03 after

88



6.4 Development of pinwheel statistics

Figure 6.7: Pinwheel annihilation and creation during development. a, Annihilation rateα (black
crosses) and creation rate χ (green stars) normalized and averaged over the N=40 solutions
from Fig. 6.4a and, b, for the N=10 simulations from Fig. 6.4b with r = 0.1 advanced until
t = 1 · 106. Both rates are nearly equal and decay according to power laws with different
prefactors before and after the cross-over time t∗ = 1 · 104. Fits: α, χ = bt−1 with b = 1/5
for t < t∗, and b = 1/20 for t > t∗. c, For various r the annihilation rate α is nearly equal for
t < t∗. Subsequently, the rates split up and are higher for larger r due to its faster relaxation of
phases φ j. d, Survival fraction µτ (t) of pinwheels present at τ = 3 · 100 for the solutions from
a (colors as in 6.4a). The average is presented by the black curve. e, Survival fraction µτ (t)
with τ = 1 · 101 for the solutions from b (colors as in 6.4b). The piecewise algebraic decay ∝ tb

derives from the annihilation and creation rates α and χ (see text). Dashed and dotted lines
drawn for b = 1/5 and b = 1/20, respectively. f, The survival fraction µτ (t) is independent
of r before t ≈ t∗ and, afterwards, becomes smaller for larger r. g-h, The preserved fraction
η pinwheels at final time t f = 3 · 104(g, for the solutions from d using identical colors) and
t f = 1 · 106 (h, from e). i, Preserved fraction η for various r. All graphs are drawn on logarithmic
axes. Note that whereas more processes occur during the early nonlinear phase, they never
really come to an end due to algebraically decaying rates.
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6 Predicted pinwheel kinetics during development

t∗. Across different solutions, the exponent b was relatively similar. The predicted
values for b by (6.9) deviated slightly from the measured values since they were
based on the average rate 〈α〉. These results predict that of the pinwheels present
at an early stage, a considerable fraction is already annihilated after a short period
of development (Fig. 6.7d). Altogether, only ≈ 30% of the pinwheels survived
from t = to to t = 106. The power law decay of rates in the late phase indicates a
possibility of structural changes in the map even after very long times.

A related number is the fraction of pinwheels present at time t that survive up to
the final time t f . This fraction of long term stable pinwheels, called the preserved
fraction η, combines the information in µτ(t) for all values of τ and t = t f . Fig.
6.7g, h show the fraction η for the set of solutions shown in Fig. 6.7d, e. Again, one
finds a power law behavior with different exponents before and after the cross-over
point t = t∗. Consistent with µτ , only ≈ 30% of pinwheels present at the end of
the linear phase at t = to remained until t = 1 · 106 , but after t = t∗, most of the
pinwheels (≈ 90%) were stable up to this very long time.

Up to the cross-over point t = t∗, these processes were largely independent of the
bifurcation parameter r. As depicted in Fig. 6.7c, f and i, the annihilation rateα, the
creation rate χ, and the surviving fraction µτ were almost identical for t < 3 · 103.
The same was true for the fraction of long-time stable pinwheels ηwhen taking the
final time as t f = 3 · 103. After this phase for t > t∗, the creation and annihilation
rates depended on r. Consistent with a faster phase dynamics, both rates were
larger for larger values of r leading to higher rates of change of both fractions µτ
and η compared to their behavior for small r.

6.4.4 Movement and speed

Two pinwheels annihilate by moving towards each other, and pinwheels appar-
ently have to repel each other when a new pair is created. Not all movement,
however, is related to annihilation or creation processes. We found that pinwheels
surviving throughout the whole course of development followed curved trajecto-
ries of lengths ≈ Λ. Fig. 6.8a, b shows the trajectories through which all pinwheels
passed that were present for 1 · 100 ≤ t ≤ 1 · 106. Although the layout of the map
changes substantially during this period, pinwheels generally do not reach very
far. The distribution of path lengths

l j ≈ ∑
i
|(x j

i+1 − x j
i )| (6.10)

calculated from the locations x j
i of pinwheels j in N = 10 different solutions sam-

pled at times ti was peaked at ≈ 0.9 column spacings Λ with largest values below
2.0Λ (Fig. 6.8c, blue curve). Interestingly, there was not a single pinwheel which
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Figure 6.8: Pinwheel movement during development. a, Orientation map at the quasi stationary
state at t = 1 · 106. b, Trajectories of pinwheels present during 1 · 100 ≤ t ≤ 1 · 106. Different
pinwheels j are marked by randomly chosen colors. c, Histograms of final distances d j (yellow)
and pathlengths l j (blue) of the N = 10 solutions from Fig. 6.4b with r = 0.1. Note that all
pinwheels move during development, but not all reach a distant final location. d, Long path
lengths l j do not imply large final distances d j (C = 0.48). e, f, Average normalized path length
l (e) and pinwheel speed v (f) of all pinwheels from d (r = 0.1) and, likewise, for the sets from
Fig. 6.4b with r = 0.3 and r = 0.01. The pathlength l increases logarithmically with a change of
the prefactor at t = t∗ while the speed v exhibits a discontinuity at this cross-over point. Before
this point, the speed of pinwheels is universal for various r.

did not show any movement. Final distances

d j = |(x j
f inal − x j

0)| (6.11)

of pinwheels from their initial locations were, in contrast, often close to zero (yel-
low curve). Pinwheels did not terminate further than 1Λ and typically with a dis-
tance of 0.25Λ. Pinwheels moving further away from their initial location often
curved around or changed directions. Pinwheel distances d j and path lengths l j

were only weakly correlated (Fig. 6.8d). Long path lengths l j not always resulted
in remote final locations.

Pinwheels moved predominantly during the early stage of development. After
the cross-over time t = t∗, much shorter routes were passed. This was quantified
by the average fractional path length

l(t) = 〈l j(t)/l j
total〉 j , (6.12)
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where the average is over the pathlengths l j(t) of individual pinwheels j, each
normalized by its total pathlength l j

total = l j(t f ). This quantity is shown in Fig. 6.8e
for different values of r calculated for the solutions from Fig. 6.4b. The relative path
length increased approximately logarithmically from the initial condition l0 = l(t0)
as

l = l0 + a ln (t/t0) (6.13)

with different prefactors a before and after the cross-over phase and (Fig. 6.8e). For
all r, the largest fraction of the total path (≈ 90%) was covered for t < t∗ due to
the relative large value of a ≈ 0.1 in this regime. The instantaneous mean speed of
pinwheels calculated by

v(t) ≈ v(ti) =
〈|(x j

i+1 − x j
i )|〉 j

ti+1 − ti
(6.14)

was found to decay as
v ∼ at−1 (6.15)

which was consistent with its interpretation as the derivative v = d〈l j〉/dt of the
average path length with respect to time. The cross-over phase around t ≈ t∗

was noticeable from a discontinuity of pinwheel speed v corresponding to a kink
in the relative path length l. After this phase, the speed of pinwheels dropped to
slower values with much smaller prefactors. Whereas in the late phase for t >
t∗, the speed of pinwheels depended on r, it was universal before the cross-over
phase. After this time, the map develops further albeit with a much smaller rate
presumably determined by the relaxation of phases.

6.5 Temporal scaling of map dynamics

The proceeding subsections have shown that the behavior of pinwheels during de-
velopment is in many aspects independent of the bifurcation parameter r during
the early phase of nonlinear competition of modes. This defines a temporal scale of
t∗ ≈ 1 · 104 on which the development takes place. What is the origin for this scale?
in the following we analyze whether it corresponds to the decay rate of an unsta-
ble fix point. Initially, at the end of the phase of linear growth at t ≈ 1 · 101 many
modes are active. During the consecutive phase of nonlinear competition the final
set of active modes are selected. In general, one expects the dynamics to wander
around hyperbolic fix points in phase space. At each fix point the the largest eigen-
value of the linearized dynamics determines the decay rate. The absolute time for
the attractor to settle into a stationary configuration of modes is mainly determined
by the unstable fix point approached with smallest decay rate.
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Figure 6.9: Unstable fixpoints encountered
during development. Traces of number of
active modes n for N = 5 solutions form
Fig. 6.4b calculated with r = 0.01. Modes
were counted by selecting all localized zones
in the powers spectrum |z̃(k)|2 larger than
0.6 times the maximum. Stationary solutions
consist of n = 8 active modes in four cases
and n = 7 in one case. At the end of the
linear phase at t ≈ 1 · 101 most opposite
modes are active. Transiently, most modes
are suppressed.

What are the unstable fixpoints encountered in the course of development? Fig.
6.9 shows for solutions from Fig. 6.4b the traces of the number N of modes ac-
tive at time t. The number of finally active modes was n = 8 or n = 7. At the
beginning of the phase of nonlinear competition among modes at t ≈ 101 almost
twice as many modes were active including many pairs of opposite modes. Con-
secutively, the number of modes decayed rapidly leading to a suppression of most
modes at t ≈ 3 · 102. At even later stages individual modes get reactivated until
the final number of a stable configuration is obtained. The selection terminated at
t∗ ≈ 104 consistent with previous characterization of the cross-over phase between
amplitude and phase dynamics at that time. The time constant of the decay is of
the order of T ∼ 10 and much faster than that of the reactivation being of order
T ∼ 100− 1000.

The competition among modes is described approximately by the amplitude for-
malism. In the following, I consider planforms of order n written as

z(x) = ∑
j

A jeil jk jx + ∑
j

B je−il jk jx (6.16)

where k j = kc (cos( jπ/n), sin( jπ/n)) with j = 1, 2, . . . , n and the amplitudes are

given by e.g. A j = A je
iφA j . The amplitude equations take the form

∂
∂t

Ai = rAi −∑
j

gi j|A j|2 Ai −∑
j

(
1 + δi j

)
gi j|B j|2 Ai − 2 ∑

j
fi j A jB jB̄i

∂
∂t

Bi = rBi −∑
j

gi j|B j|2Bi −∑
j

(
1 + δi j

)
gi j|A j|2Bi − 2 ∑

j
fi j A jB j Āi (6.17)

independent of the configuration (l1, l2, . . . , ln). For σ > Λ, the interaction coeffi-
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cients are well approximated by

gii = 1 , gii− = 2 , gi j = g

fii = 0 , fii− = 0 , fi j =
g
2

(6.18)

with j 6= i, i−. The amplitude equations (6.17) have solutions with uniform abso-
lute values

Ai = A =
√

r
∑ j gi j

Bi = 0 (6.19)

and arbitrary phasesφAi which are stable for 0 < g < 1.
To analyze the stability of fixpoints it is convenient to split the amplitudes equa-

tions (6.17) into equations for the absolute valuesAi and the phaseφAi. Performing
the derivative at the left hand side of Eq. (6.17) and separating the real and imagi-
nary part yields

∂
∂t
Ai = rAi −∑

j
gi jA2

jAi −∑
j

(
1 + δi j

)
gi jB2

jAi −

2 ∑
j

fi jA jB jBi cos
((
φA j +φB j

)
− (φAi +φBi)

)
∂
∂t
φAi = −2 ∑

j
fi j
A jB jBi

Ai
sin
((
φA j +φB j

)
− (φAi +φBi)

)
(6.20)

and a corresponding expression for Bi. It can be easily seen that the linearized
equations for the dynamics of the moduli A j and phases φA j are decoupled in the
vicinity of a stationary solution. Hence, it is possible to discuss the stability of sta-
tionary solutions with respect to phase perturbations and amplitude perturbations
separately. A stationary configuration of the absolute values of the amplitudes
A j , B j fulfills

0 = rAi −∑
j

gi jA2
jAi −∑

j

(
1 + δi j

)
gi jB2

jAi − 2 ∑
j

fi jA jB jBi

0 = rBi −∑
j

gi jB2
jBi −∑

j

(
1 + δi j

)
gi jA2

jBi − 2 ∑
j

fi jB jA jAi (6.21)

when the phases satisfyφA j +φB j = Φ0 =const. .
To first analyze the initial phase of decay, we consider the unstable fixpoint of

Eq. (6.17) of a planform with all 2n modes active. All modes Ai and Bi have the
same modulus
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Ai = A
Bi = A (6.22)

that is given through (6.21) by

A =
√

r
2 ∑ j gi j + gii + 2 ∑ j fi j

. (6.23)

The linearized equations for perturbations ai = Ai − A around the unstable fix-
point Eq. (6.22) are

∂
∂t

ai = rai −A2 ∑
j

(
2 + δi j

)
gi jai − 2A2 ∑

j

(
gi j + fi j

)
a j −

A2 ∑
j

fi jbi − 2A2 ∑
j

((
1 + δi j

)
gi j + fi j

)
b j

= ∑
j

(
Di ja j + Di j+nb j

)
(6.24)

together with the symmetric expressions for bi = Bi −A. The matrix D =
(

Dqp
)

is
symmetric and has therefore 2n real eigenvalues wi. It is easy to see that there are
n eigenvectors vi of the form

ai = −bi = 1
a j 6=i = b j 6=i = 0 (6.25)

with eigenvalue

we = r−A2

(
2 ∑

j
gi j − gii − 2 ∑

j
fi j

)

= r−
2 ∑ j gi j − gii − 2 ∑ j fi j

2 ∑ j gi j + gii + 2 ∑ j fi j

=
2
3

r . (6.26)

describing the decay from the fixpoint (6.22) due to the competition between an-
tipairs of modes. Following (6.26), it exhibits a similar time scale as the exponential
growth during the initial linear phase of the dynamics (Fig. 5.1).

A further analysis shows that these eigenvectors comprise all instable directions.
Another eigenvalue, n− 1 times degenerated, is given by

w0 =
6g− 6

3(n− 1)g + 3
r (6.27)
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which is always negative for 0 < g < 1. The last eigenvalue

w1 = −2r (6.28)

corresponds to a uniform perturbation

ai = bi = 1 . (6.29)

Thus, a transient that is close to fixpoint (6.22) in the early nonlinear phase experi-
ences on temporal scale

Te =
1

we
=

3
2

1
r

(6.30)

the decay of one pair of modes. This is about one order of magnitude smaller than
the observed time scale of T ∼ 10 for the decay of amplitudes in Fig. 6.9. The
form of the decrease of the number of active amplitudes in Fig. 6.9 suggests that
it arises from a cascade of fixpoints with increasing temporal scales encountered
during early evolution. However, since we are primarily interested in explaining
the occurrence of the scale t∗, we do not further pursue this here.

At the later stage of nonlinear mode competition, transient states are character-
ized by the absence of one or more modes compared to the final configuration. As
shown in Fig. 6.9, states comprising an increasing number of modes may be visited
during development. First, an unstable fixpoint

Ai = A , i 6= l
Al = 0
Bi = 0 (6.31)

is considered in which only a single mode Al is inactive compared to the stable so-
lution (6.19). The uniform amplitude A is determined from (6.21) which simplifies
to

0 = rAi − ∑
j 6=l

gi jA2
jAi , i 6= l (6.32)

yielding

A =
√

r
∑ j 6=l gi 6=l j

. (6.33)

The linearized equations around solution (6.31) become

∂
∂t

ai = rai −A2 ∑
j 6=l

gi jai − δli2A2 ∑
j 6=l

gi jaJ

∂
∂t

bi = rbi −A2 ∑
j 6=l

(
1 + δi j

)
gi jai − δli2A2 ∑

j 6=l
fi ja j . (6.34)
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The eigenvector of greatest interest is

al = 1
ai = 0 , i 6= l
bi = 0 (6.35)

pointing directly towards the attractor (6.19). Its eigenvalue is

w = r−
∑ j 6=l gl j

∑ j 6=l gi 6=l j

= r (1− g)
1

(n− 2)g + 1
≈ rε/(n− 1) (6.36)

where ε = 1 − g and where the last step is valid for ε � 1. Thus, for g close
to 1 the growth rate of the last missing mode depends linearly on ε and becomes
arbitrary small for g → 1. The mechanism for this behavior is that the auto and
cross interaction is almost identical as apparent from the fraction in the first step of
(6.36). By symmetry, Eq. (6.34) has another eigenvector with identical eigenvalue,
namely the one expressing a growth of B1 instead of A1. All further eigenvalues
are always negative. With the parameters used in Fig. 6.9, n = 8 and g = 0.98, the
time scale of growth of this mode is Tl = 350/r in approximate agreement with the
observed scale.

As indicated in Fig. 6.9 the stable state may also be reached via fixpoints with
more than one mode missing. In fact, there exist unstable fixpoints with n− k active
modes of the form

Ai = A, i /∈ {1, 2, . . . k}
A1 = A2 = · · · = Ak = 0
Bi = 0 (6.37)

and with amplitudes

A =
√

r
∑n

j=k+1 gi 6=1,...,k j
. (6.38)

There are 2k eigenvectors each of them corresponding to the growth of one of the
possibly growing modes A j≤k or B j≤k, respectively. They have degenerated eigen-
values

wl = r(1− g)
1

(n− 1− k)g + 1

≈ rε
1

n− k
(6.39)
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6 Predicted pinwheel kinetics during development

Figure 6.10: Time scale of mode competition depends on g. a, Traces of average pinwheel
densities 〈ρ〉 for various g (parameter as in Fig. 6.1, N = 5 solutions per g). Dashed vertical
lines show the scaling predicted (Eq. (6.36)) for the end of the cross-over phase at time t∗.
Estimating t∗g = 1 · 105 for g = 0.999, other t∗g′ were rescaled by t∗g′ = t∗g(1− g)/(1− g′). b,

The fraction 〈µ〉 of surviving pinwheels for the same set of solutions. Note that the slope of 〈µ〉
shows a tendency to be steeper for smaller g indicating a faster dynamics. However, the actual
values of t∗g are difficult to estimate from the curves.

which decrease with the number of yet active modes n− k. Thus, in the late phase
of nonlinear mode competition lacking modes grow on a temporal scale

Tl =
1

wl
=

n− k
ε

1
r

. (6.40)

Inserting the parameters from Fig. 6.9 yields time scales ranging between Tl = 50/r
for one mode active and Tl = 350/r for seven modes active. This time scale scales
with 1/r explaining the observed scaling of the cross-over point t = t∗ in the full
dynamics. Compared to Fig. 6.9 the time scale Tl appears to be a factor of 2 − 3
smaller. However, if for a given solution only a subset of possible modes grow
around a fixpoint Eq. (6.37), it is forced to visit another fixpoint of type Eq. (6.37)
with reduced k. This may explain why the scale of mode growth seems to increase
between t ≈ 102 and t ≈ 103. For instance, with k ≈ 5 the effective scale would be
Tl ≈ 103/r which is consistent with the observed final time of the cross-over phase
is t∗ ≈ 1 · 104.

The preceding analysis showed that the temporal scale on which the final mode
configuration – the primary determinant of the pinwheel density – forms is deter-
mined by the parameter g controlling the relative strength of the local and non-local
nonlinear interaction. Following Eq. (6.36) and Eq. (6.39), the cross-over time t∗

is predicted to scale ∼ ε. In order to test this, pinwheel dynamics have been ana-
lyzed in solutions calculated for various values of g. As shown in Fig. 6.10a for the
examples of the average pinwheel density 〈ρ〉, qualitatively, this scaling is repro-
duced, especially for larger g as can be seen from the point of near stationarity of
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the pinwheel density. However, it was difficult to identify the cross-over time with
higher precision than about half an order of magnitude rendering a comparison for
the different values of g difficult. This difficulty arises from the large variation of
individual pinwheel density traces (Fig. 6.4) and may be circumvented by using
larger ensembles (but compare also, e.g., Fig. 6.8 where the ensemble was twice as
large). The reason for this variation is unclear at present. One possible explanation
is that solutions contain different grains (which is generally expected for large r)
and that the pinwheel density fluctuation is influenced by the movement of grain
boundaries during development. As shown in Fig. 6.10b, the average surviving
fraction 〈µ〉 provided a somewhat better indication for the different time scales.
The slope of 〈µ〉 was steeper for smaller g which is consistent with a faster dynam-
ics to be expected. Thus, at least on a qualitative level, the results of the analysis
were reproduced by the full dynamics. The cross-over time t∗ until which the re-
organization is relatively strong depends through the parameter g on the relative
strength of nonlocal interactions. The weaker these interactions compared to the
purely local contribution, the faster near final pinwheel densities emerge.

6.6 Pinwheel densities in a bounded area

The presence of boundaries that confine the system can modify the pattern selec-
tion process. Solutions must match the boundary conditions such that among the
set of possible solutions of the free equations only a subset might be favored with
lateral boundary conditions. Furthermore, constraints along the boundary might
alter the structure of the solution in its vicinity. The range of direct influence is
typically of O(

√
r) and can thus exceed Λ. For orientation maps in the visual cor-

tex estimated aspect ratios are Γ ≈ 25 for the cat [44], galago [73] and tree shrew
[13]. The area of the map under direct influence of the boundary constraint might
be a considerable part of the map. Thus, both mechanisms can alter the layout of
the selected map significantly which can influence it statistics such as the pinwheel
densities. In the tree shrew, for instance, the layout of the pattern along the border
to visual cortical area V2 often consists of stripes oriented perpendicular to the bor-
der (see Fig. 2.1 or Fig. 4.1) resulting in a pinwheel density systematically lower
than average in this region as shown in Section 4.4.

While an effect of the boundary on the development of orientation preference
along the boundary is plausible, its precise nature is difficult to specify at present.
Presumably, both the long-range and short range intracortical connections are or-
ganized differently for boundary neurons. long-range connections are shown in
tracing studies to range over several columns spacings Λ in all cortical directions
[2, 13, 55]. However, for neurons at the boundary of the horizontal peripheral rep-
resentation connections can only be formed in one direction. In the border region
representing the vertical meridian, instead, neurons are known to exhibit exten-
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6 Predicted pinwheel kinetics during development

sive connections with the contralateral V1 representing the other visual hemifield.
Similarly, orientation columns in the bulk presumably experience different input
from nearby columns through short range connections than columns located at the
border.

An alternative approach followed here is to judge the nature of the boundary
conditions by the columnar layout observed in experiments. In the tree shrew
columns form stripe-like domains along the V1 border towards the adjacent area
V2 (Fig. ). In cat and ferret V1 this tendency is less pronounced. However, in the
peripheral representation of cat V1, columns are observed to form stripe-like do-
mains perpendicular to the boundary [44]. Therfore, boundary conditions might
be chosen

z(x) = 0
∇b · z(x) = 0 (6.41)

where ∇b is the derivative perpendicular to the boundary. These boundary con-
ditions have been investigated in various systems [23]. For systems with ideally
stripe-like solutions (e.g. for the classical Swift-Hohenberg equation) they have
been shown to enforce the rolls to be oriented perpendicular to lateral wall. For the
quasiperiodic solutions investigated here, this is less clear. Since stripe like regions
are pinwheel sparse the pinwheel density will be reduced near the boundary. As
observed for the tree shrew (Fig. 4.11), the pinwheel density in the bulk region
could be larger and compensate for this. Indeed, for topological reasons, perpen-
dicular stripes along the entire boundary induces additional pinwheels of number
L/Λ where L is the length of the boundary Fig. a. However, both contributions do
not scale equally and are expected to depend on r. Since the shortest influences of
boundaries and thus the largest overall pinwheel densities are expected for large r,
solutions for a relatively large value of r = 0.3 have been sought.

A representative example is shown in Fig. 6.11. Already at t = 1 · 102 the pattern
segregated into a pinwheel rich bulk part and a pinwheel sparse boundary part
consisting of band-like orientation columns arranged perpendicular to the border.
At successive times, the pattern in the bulk region reorganized and after t = 1 · 106

a pattern reminiscent to the patterns obtained with periodic boundary conditions
(Fig. 6.1) appeared. The layout along the boundary resembles the layouts observed
in tree shrew V1 along the border towards area V2 (Fig. 2.1).

The pinwheel density ρ(t) calculated for N = 3 different initial conditions is
shown in Fig. 6.12a. In contrast to the case of periodic boundary conditions (Fig.
6.4) immediately after the linear phase at t ≈ 101 pinwheel densities decreased to
reach a plateau of ρ ≈ 2.4 between 102 ≤ t ≤ 104. The decrease is explained by the
formation of the stripe like organization along the boundary starting already before
102 as indicated in Fig. 6.11. During the plateau, values from different solutions
were very similar. The cross-over time t∗ ≈ 105 was consistent with the prediction
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Figure 6.11: Development of orientation map in a bounded area. Eq. (5.1) was integrated
on a disk with boundary conditions (6.41) (aspect ratio Γ = 23.5, r = 0.3, g = 0.999, and
σ = 1.7). The upper row shows the initial state (band-pass filtered Gaussian random field, left),
two intermediate states (meddle) and the near stationary state (right). The lower row shows the
power spectrum of each state. Note that the bulk of the final state resembles solutions obtained
with periodic boundary conditions (compare Fig. 6.1) while along the border, stripe-like pinwheel
sparse domains organize perpendicular to the boundary resembling layouts observed in the tree
shrew V1 along the V1/V2 border (Fig. 4.1).

Figure 6.12: Development of pinwheel densi-
ties in a confined circular area. Traces of pin-
wheel density ρ(t) for N = 3 different initial
conditions. Parameters as in Fig. 6.11. Den-
sities start decaying immediately after the end
of the linear phase at t ≈ 101. Final values at
t = 106 cover a range 1.3 ≤ ρ ≤ 2.6 with an
average around ρ = 2 which is considerably
smaller than for periodic boundary conditions
(compare Fig. 6.4). The cross-over to pure
phase dynamics occurred around t∗ ≈ 105

as predicted from (6.40) with g = 0.999.

6.10 from the amplitude equations for g = 0.999 and similar to the case of periodic
boundary conditions when using the same value of g (Fig. 6.10). Before t∗ the
traces started to diverge indicating the development of planform like solutions in
the bulk of the pattern. Indeed, the final solution depicted in Fig. 6.11 consisted
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6 Predicted pinwheel kinetics during development

Figure 6.13: Systematic inhomogeneity of local pinwheel density induced by boundary. a, Local
pinwheel density of the final state shown in Fig. 6.11. b, Average local pinwheel density in the
final states calculated from 10 different initial conditions (compare Fig. 6.12). c, Horizontal (red)
and vertical (blue) cross section through the average local density from b. In the bulk region the
pinwheel density ρ is close to the number π while along the border it decays to zero.

of discrete modes distributed around the critical circle. The pinwheel densities ρ
of the final solutions exhibited a similar distribution as for the periodic boundary
conditions besides a negative shift of≈ 0.6. Thus, the effect of boundary conditions
(6.41) are a reduction of pinwheel densities towards unrealistic small values.

Fig. 6.13 shows that this reduction of pinwheel density is mainly due to the
border regions. The local pinwheel density ρ(x) (defined as in Section ) of a map
advanced until 105 shown in Fig. 6.13a and the systematic variation, i.e. the av-
erage 〈ρ(x)〉 over N = 10 maps of local pinwheel density depicted in Fig. 6.13b,
revealed a strong reductions of local pinwheel density along the border reflecting
the stripe-like organization of columns. Cross sections through the center of ρ(x)
and 〈ρ(x)〉 are shown in Fig. 6.13c. While in the bulk region 〈ρ(x)〉 is close to
the number π , the reductive influence of the border is apparent over a distance of
more than 5 column spacings Λ. Thus compared to the tree shrew where a rela-
tively high pinwheel density in the bulk of the pattern balanced the regions of low
density along the border, this was not the case in the model. Moreover, whereas
in the tree shrew, pinwheel densities along boundaries were only moderately re-
duced to values around ρ ≈ 2, this reduction was much stronger to ρ ≈ 0 near
the boundary. This suggests that the boundary condition (6.41) may be improper
for describing the influence of the boundary on the development of the orientation
map.

6.7 Discussion

The investigation of the evolution of the orientation map during development
revealed a number of interesting effects useful as a guideline for upcoming ex-
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periments. Statistically, the layout of the orientation map was, apart from the
early phase, remarkably stable during development. The average pinwheel density
and distributions of pinwheel nearest neighbor distances were largely preserved.
Quantities that more sensitively reflected the changes during development were
proposed and analyzed including pinwheel annihilation and creation rates, pin-
wheel pathlengths and pinwheel speed.

Consistent with all analyzed quantities, we identified two subsequent phases of
map development. During the first phase of nonlinear competition among active
modes, the development was found to be largely independent of the bifurcation
parameter r. The duration of this phase, denoted as the cross-over time t∗, was
equal on a timescale rescaled by r as confirmed analytically by a weakly nonlinear
analysis. The late phase was primarily determined by the relaxation of the phases
of the finally active modes depended on r.

Pinwheel densities from individual maps were found to fluctuate around ρ ≈ π

during the first phase, while in the late phase, a fraction of low density maps was
observed associated with the low density states revealed by weakly nonlinear anal-
ysis [105] (Fig. 2.5). The cross-over from high to low density states often occurred
relatively abrupt. Consistent with a preserved average pinwheel density, we found
equal annihilation and creation rates for pinwheel during development. Both rates
decayed algebraically with an equal exponent but different prefactors before and
after the cross-over time t∗. Consequently, also the survival fraction decayed as a
power law with different exponents before and after t∗ while the preserved fraction
showed an approximately algebraic increase. Individual pinwheels were found to
move on curved paths with speed decaying as∼ t−1. Consistently, the pathlengths
increased approximately logarithmically with different prefactors before and after
the cross-over time t∗ such that about 90% of the total pathlength of ≈ Λ were
covered before t∗. Thus, on the one hand, the strength of reorganization of the
orientation map decreases algebraically during development. Consequently, the
largest changes occur during the earliest phase of development, and the map ap-
pears rather stable throughout later stages although changes do not really termi-
nate even after very long time. On the other hand, map development contains one
intrinsic scale t∗ at which its governing exponent changes abruptly.

These findings offer an alternative interpretation for an observation central for
our understanding of the orientation map, namely its apparent stability during de-
velopment. The few chronic experiments reported in the past have been taken to
suggest that the basic structure of orientation maps is preserved during develop-
ment. In a pioneering experiment, correlation coefficients of C ≈ 0.5 have been
observed between post-natal day (PD) 35 and PD45 in the ferret [17]. Because of
the presence of high spatial frequency noise, this value should be regarded as a
lower bound of the true value. Coefficients around C ≈ 0.8 between PD50 and
PD120 were found in an analysis performed by the author. In the cat, coefficients
up to C ≈ 0.8 were observed between maps at PD35 and PD48 even for reversed-

103
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occluded animals [81] (however, without applying any high-pass filtering before
calculating correlations). These experiments have raised the suspicion that orien-
tation maps are prespecified by genetic instructions [21, 62, 79, 81]. Our analysis,
however, shows that a developmental scenario based on self-organization is con-
sistent with an apparently stable development of the orientation map.

In fact, our analysis shows that the model accounts even quantitatively for the
observed similarities as suggested from the following considerations. In sensory
systems so called critical periods have been observed, when the circuits underly-
ing response properties (such as orientation selectivity or ocular dominance) are
especially susceptible to changes of sensory input. Thus, the development of such
properties is characterized by one intrinsic time scale. Stimulated by our results, we
conjecture that the cross-over time t∗ is equal to this time scale for orientation se-
lectivity. Unfortunately, this time scale is not known at present. Assuming that it is
similar to the duration of the critical period of ocular dominance columns that ter-
minates at approximately PD60 in the ferret (see Fig. 2.3) we can associate the stage
t = 0 with PD25 (the time orientation selectivity arises) and t = t∗ to PD60. For the
classical ferret experiment mentioned above, the model predicts cross-correlations
around C ≈ 0.8 between maps recorded at these days (Fig. 6.2) which is even
larger than the observed correlation of C = 0.5. As outlined in this chapter, this
prediction is largely independent of the model parameter r and g.

Apart from demonstrating the consistency of the model with previous experi-
mental results, our analysis suggests also ways to test its further predictions ex-
perimentally. In order to be able to observe any differences through measures of
similarity, maps should be recorded at a very early phase in development. How-
ever, due to the growth of the visual cortex, chronic experiments during the first
weeks are very difficult. Our analysis suggest that, if the experiment is performed
at a very early stage, an acute experiments in which the map is recorded repeat-
edly within on session may be sufficient. An acute experiment usually provides
better signal to noise ratios and introduces much less technical difficulties. To be
able to observe the movement of pinwheels, our analysis suggest to record maps
at exponentially increasing time intervals.
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7 Soft spots in the functional architecture of
the visual cortex

The secrets of nature reveal
themselves more readily under
the vexation of art than when
they go their own way.

(Francis Bacon)

7.1 Introduction

Chapter 5 has shown that the pattern formation model (5.1) reproduces the pin-
wheel statistics reported in Chapter 4. This supports the hypothesis that the correct
model of the development of the orientation map is within the same universality
class represented by this model. In this chapter, we explore further predictions of
this model class and suggest ways to test them experimentally. In Chapter 8, we
analyze data from experiments and compare them to the predictions of the model.

So far, stationary states and self-generated dynamics have been considered. How-
ever, properties of a dynamical system can often be well studied by perturbing it.
Fortunately, since very recently, this is possible by electrical intracortical micros-
timulation (ICMS) which directly enforces local, intracortical synchronous activity.
ICMS had been applied previously to various cortical areas such as the motor, so-
matosensory and auditory cortex, inducing plastic reorganization that remained
localized and recovered completely shortly after stimulation. In their pioneering
work, Godde et al. [35] worked out a paradigm for applying this stimulation pro-
tocol to adult cat visual cortex. They demonstrated an extensive restructuring of
the layout of orientation maps up to several millimeters away from the ICMS site.
Moreover, the induced changes showed a highly varying temporal dynamics rang-
ing from complete recovery shortly after stimulation to progressive reorganization
after ICMS and changes persistent up to 18hours. They suspected that both the
high variability of the effect and the persistence of induced changes may be linked
to the complex structure of the orientation map compared to the much more homo-
geneous organization of stimulus representations in e.g. the somatosensory cortex.

The framework of model (5.1) describes orientation maps as attractors of a non-
linear dynamics of cortical reorganization. This dynamics has multiple attrac-
tors characterized by different sets of active modes with different combinations
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of phases. Theoretically, it is conceivable that a perturbation may drive the ori-
entation map into a new basin of attraction resulting in a global rearrangement
of the pattern as it converges to the new attractor. Thus, within this framework
the reorganization observed in ICMS experiments is interpreted as a switching be-
tween different attractor states. What stimulation would cause such switching?
Due to the quasi-periodicity of the attractors, the reorganization induced by ICMS
is expected to depend on the location of the ICMS site. If the orientation map had
discrete translation symmetry (e.g. a hexagon or square pattern), this would also
hold for the dependence of reorganization of the ICMS site. For quasi-periodic
maps, however, the translation invariance is broken completely, such that no site
of stimulation may be alike to any other. Moreover, this suggests that there are
particular locations in the map that one might call soft spots, at which a localized
perturbation induces strong and persistent reorganization. It is therefore an at-
tractive hypothesis that the spatial dependency of ICMS efficiency is the primary
origin of the high variability observed between experiments.

We begin this chapter by extending the generalized Swift-Hohenberg model (5.1)
to mimic the effect of ICMS. In numerical simulations, we investigate the reorga-
nization under ICMS including the dynamics of pinwheels. We identify soft spots
and study their dependence on stimulation parameter and map layout for the full
dynamics and, near criticality, by means of amplitude equations. We develop the
quantity softness enabling a prediction of potential soft spots from the layout of
the map.

7.2 Modeling intracortical microstimulation (ICMS)

The effect of ICMS is described in [35] (and references therein). Directly at the ICMS
site the orientation preference remains constant. In its close vicinity, the preferred
orientation is shifted towards the orientation at the ICMS site. Thus, locally ICMS
has a enforcing effect on the orientation preference. The cortical region subject to
the direct effect of ICMS is approximately 100µm which is an order of magnitude
smaller than the spacing of orientation columns.

The effect of ICMS was examined in the phenomenological model (5.1) for the
activity-driven dynamics of orientation maps introduced in Chapter 2. As outlined
in Chapter 2, this model exhibits stable solutions which resemble orientation maps
in the visual cortex. Since the aim is an understanding of the reorganization in
the adult animal, the effect of ICMS on such stable solution is sought. To mimic the
situation of an ICMS experiment, we modeled the application of ICMS by enforcing
locally the preferred orientation. The full dynamics including the action of ICMS
at cortical location xS reads

∂tz(x, t) = Lz(x, t) + N[z(x, t)] + Θ(t)Θ(tS − t)S(x) (7.1)
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where Θ is the Heaviside function, tS the duration of ICMS (starting at t = 0). The
first two terms on the r.h.s. denote the original model (5.1). A stable solution of the
free dynamics will be denoted by z∞(x) in the following.

In the model, ICMS is mimicked by an external force term. Consistent with the
phenomenology of the experiment, ICMS shall enforce the preferred orientation at
the ICMS site within a small cortical region. We thus modeled ICMS by choosing

S(x) = δ r z∞ (xS)µ (x− xS) (7.2)

where δ is the ICMS strength and µ the stimulation function describing the spatial
form of the direct ICMS effect. In the following, we use

µ (x) =
1
πσ2

S
exp

(
− x2

2σ2
S

)
, (7.3)

a Gaussian with widthσS. The direct effect of the force term Eq. (7.2) is to strengthen
the selectivity |z(xS)| around the stimulation site xS and to widen the surrounding
iso-orientation domain. Thus, for a given orientation map z∞ and ICMS site xS,
ICMS is controlled by three parameters: The strength δ and duration tS of applica-
tion, and the spatial width σS. The width is constraint by σS � Λ since the exten-
sion of the direct ICMS effect is expected to be small on the scale of the columnar
pattern Λ. The duration tS shall be small on the scale t∗ on which a state z∞ close
to the attractor is reached.

The implementation of ICMS in the form (7.2) can be interpreted as a simplifica-
tion of a more accurate description. Including modulations of the map z∞ in the
vicinity of the ICMS site and accounting for the temporal evolution of the stimula-
tion the ICMS term may be written as

S1(x, t) = δ rz(x− xS, t)µ(x− xS, t) (7.4)

with z(x, t = 0) = z∞(x). Assuming that properties of the tissue (location of
neurons, the surrounding glia cells, the concentration of ions, etc.) remain stable,
the stimulation function can be taken as constant in time, µ(x, t) ' µ(x). If, in
addition, the stimulation has a small range, the direction of stimulation can be ap-
proximated through z(x) ' z(xS) by the direction at the center. At pinwheel cen-
ters where the orientation preference is not continuous the selectivity approaches
zero, such that the ICMS term becomes very small. Since the ICMS term enforces
the selectivity around xS, the phase of z(xS) will remain constant expecially if the
complete system is translation and rotation invariant. Simplifying, one can use
z(xS, t) ' z∞(xS) thereby avoiding the positive feedback-loop in Eq. (7.4) for
which there is no experimental evidence and which is undesirable from a tech-
nical perspective. Thus, apart from pinwheel centers where the modeling of ICMS
is unclear for several reasons, both implementations Eq. (7.2) and Eq. (7.4) are
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expected to yield similar results. As will become apparent below, the basic mecha-
nism underlying the effect of ICMS on the map is common for both forms.

7.3 Methods

7.3.1 Numerical integration

The semi-implicit numerical integration scheme used to integrate Eq. (7.1) without
the ICMS term and its implementation are described in Section 7.2. The ICMS part
(7.2) was treated explicitely. Writing

Ñ′ = Ñ + S̃ (7.5)

it was implemented in the Fourier domain as an additional term of the nonlinear
part Ñ of Eq. (5.10). Formally, Ñ′ was treated as a correcting force term to the
dynamics governed by the linear part L.

ICMS was applied to a near final state integrated until t = 106 (in time scales
of t = 1/r) using strengths ranging from δ = 10−2.5 to δ = 10−1 with durations
between tS = 102 and tS = 103.5. After the termination of ICMS, the solution
was advanced over t = 104 to obtain a new stable solutions z. To calculate the
induced modification ∆(x), the ICMS site was varied on a 50× 50 grid in an area
of 6.6Λ× 6.6Λ within a larger map of size 17Λ× 17Λ.

We used amplitude equations to study systematically the dependence on the
ICMS parameter. Amplitude equations were integrated by an Adams-Gear scheme
based on backward differentiation formula methods. The method is accurate in 5th
order. The Jacobian matrix was approximated by divided differences. In parameter
regimes with stable solutions of n active modes the integration was performed
for 2n amplitudes by approximating the interaction coefficients by gii = 1, gi j =
g, gii− = 2, fi j 6=i = g/2 and fii− = 1. Before and after ICMS the solution was
advanced to t = 1011. Further parameters were g = 0.98, and r = 0.1. Consistency
test were carried out with arbitrary number of amplitudes (between 32 and 128)
and the complete coefficient matrix.

7.3.2 Pinwheel analysis

Pinwheels were identified and tracked over time as described in Section 6.2.1.
States were monitored at times ti separated by exponentially increasing time in-
tervals ∆ti = ti − ti−1 between t = 0 and t = tS during the period of ICMS and
between t = tS and t = tS + 104 during relaxation after ICMS. A total of N = 100
maps was sampled during each period.
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Figure 7.1: Transient changes induced by intracortical microstimulation (ICMS). Orientation
preference map ϑ(x) (OPM), orientation selectivity |z(x)| (OSI), and 2D power spectrum |z̃(k)|2
(origin of k-space at the center of annulus) before (Pre) and at different stages after the applica-
tion of ICMS (Post-Final state). Shown is a subregions of a larger map (Γ = 17) integrated on a
128× 128 grid with g = 0.98, σ = 1.7, δ = 10−2.9, tS = 102.7, advanced to t = 106 before and
t = 104 after ICMS. For each state the local cross-correlation (Eq. (7.7)) with the initial map
is shown in the lower row. Bright (dark) regions exhibit larger (smaller) correlations. Note that
the initial and the final maps are very similar (average cross correlations: Pre/Post, r = 0.71;
Pre/Final, r = 0.95) and exhibit identical power-spectra.

7.4 A numerical ICMS experiment

Starting point is the simulation of an ICMS experiment. An orientation map z∞ was
prepared by integrating the free dynamics Eq. (5.1) up to t = 106 using r = 0.1,
g = 0.98 and σ = 1.7. ICMS was applied as described in Section 7.3 (Eq. (7.1))
with strength δ = 10−2.9 and duration tS = 102.7. As in the real experiment,
the orientation map was monitored immediately before and at various stages after
ICMS. This Section shows for two representative examples the spatial-temporal
reorganization induced by ICMS.

7.4.1 Transient reorganization

ICMS induced significant reorganization of the orientation map that continued af-
ter the end of application. Fig. 7.1 shows a numerical experiment in which ICMS
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has been applied to an attractor z∞ with n = 8 active modes. Immediately after
ICMS, the map appeared distorted with largest changes concentrated around the
ICMS site. The domain surrounding the ICMS site was enlarged and numerous
new modes on the critical circle |k| = kc were activated as shown by the power
spectrum |z̃(k)|2 of the orientation map. At later stages the induced changes de-
veloped further while the map was relaxing towards a new stationary state. The
power spectrum revealed that in this case, apart from a small phase shift, the orig-
inal attractor recovered.

The induced spatial-temporal changes were quantified by means of local cross-
correlation between the attractor z∞ before ICMS and states developing after ICMS
(Fig. 7.1). Maps z(x, t) were windowed at each location x′ by

w(x, x′, t) = g(x− x′) z(x, t) (7.6)

where g is a Gaussian with σ = 0.6Λ. For every location x′, we calculated the
cross-correlation between two windowed maps w∞ and w2 according to

C(x′) =
〈
w∞(x, x′, t) w2(x, x′, t′)

〉
x (7.7)

yielding a map of local cross-correlation C(x′) between the two maps. For the sake
of numerical efficiency, maps were rescaled to the size of 1/6 of the original maps.
We found that the evoked changes were spatially inhomogeneous and maximal
not in the immediate vicinity of the ICMS site. The average local cross-correlation
between the initial and final map was C = 0.95 confirming that the original map
was largely recovered. In contrast, immediately after ICMS the correlation was
reduced to C = 0.71, indicating a transient reorganization.

7.4.2 Persistent reorganization

A very different effect was observed applying ICMS at an adjacent site. Fig. 7.2
shows a simulation carried out using the same attractor and identical stimulation
parameters as for Fig. 7.1, but at a site shifted by 0.13Λ. Compared to Fig. 7.1,
the effect immediately after ICMS was stronger and spatially widespread. More-
over, the map remained modified even after relaxation up to t = 104 (right map
in Fig. 7.2). A qualitatively new attractor developed as apparent from the power
spectrum. Three of the modes active before the application of ICMS changed their
location switching their wavevectors from k j to −k j. This process results in a re-
duced cross-correlations of C = 0.67 for the map immediately after ICMS and
C = 0.70 for the final map. The dissimilarity is spatially inhomogeneous reflect-
ing the modulation due to the three deviating modes. Note that even though the
change is substantial, it is not easily detected by inspection of the orientation pref-
erence maps. The power spectrum and the local cross-correlation provide a clearer
descriptions of the effect which suggest to apply these analyses also to the experi-
mental data (see Chapter 8).

110



7.4 A numerical ICMS experiment

Figure 7.2: Persistent changes induced by ICMS. Application of ICMS as in Fig. 7.1, but to an
adjacent site. Illustration as in 7.1. In contrast to 7.1 the final and initial map differ in many, but
not all regions (Pre/Post, r = 0.67; Pre/Final, r = 0.70). Note from the power spectrum that
modes have switched under the action of ICMS.

7.4.3 Spatial-temporal dynamics

The direct effect of ICMS is purely local. A spreading of the induced reorganization
to remote sites is mediated by the local and non-local interactions in the model.
The spreading is indicated by the maps of local cross-correlation in Fig. 7.1 and
Fig. 7.2. To quantify the spreading of the ICMS effect, we averaged the local cross
correlation C(d cosθ, d sinθ) over angles,

C0(d) =
2π∫
0

dθ
dπ2 C(d,θ) , (7.8)

with the origin of space at the ICMS site. The ICMS distance dependent correlation
c0(r) shows the spreading of changes (Fig. 7.3). In the two simulations from Fig.
7.1 and Fig. 7.2, changes were initially localized around the stimulation site. Dur-
ing prolonged application of ICMS, changes spread in a complex fashion to more
remote regions. The largest difference was within a region of ≈ 3Λ reminiscent of
the the distance covered by long-range connections of σ = 1.7Λ. After ICMS, the
evoked changes either started to shrink back and the initial map recovered or they
developed further and a new map emerged.
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Figure 7.3: Spatial-temporal spreading of ICMS effect. a, b, Cross-correlations C0 as a function
of the distance d ICMS site) for the data fro Fig. 7.1 (a) and Fig. 7.2 (b). The initially localized
reorganization spreads under persistent stimulation. Immediately after ICMS (Post), largest
changes occur within a distance of ≈ 3Λ from the ICMS site. During the phase of relaxation
after ICMS these regional changes either disappear largely (a) or a globally new state develops
(b).

7.5 Soft spots in the orientation map

The two numerical ICMS experiments discussed in the previous Section 7.2 show
that ICMS at nearby sites in the same orientation map can have very different ef-
fects on the orientation map. Whereas transient changes were induced in both
cases, only for one case these changes were persistent. This suggests that a given
orientation map contains soft spots, i.e. locations in the map where a stimulation
such as ICMS is very effective in inducing large and persistent reorganization. In
this Section, we identify the soft spots of a given map by systematically varying the
location of the ICMS site in the map.

7.5.1 Dependence of reorganization on ICMS site

How does the strength of induced reorganization depend on the location of the
ICMS site in the map? To explore this spatial dependency we systematically var-
ied the ICMS site over a subregion of the map (see Method Section 7.3). Induced
changes were quantified by

∆ (xS) =
1

2 |A|2
∫
Ω

d2k
∣∣∣|z̃∞(k)|2 − |z̃xS(k)|2

∣∣∣ (7.9)

called modification in the following. It is defined by the difference between power
spectral densities of z∞ and zxS integrated over some area Ω containing the region
of linear positive growth rate close the critical circle k = kc. With A the amplitude
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Figure 7.4: Soft spots where ICMS in-
duces strong reorganization. a, Origi-
nal orientation preference map ϑ∞(x) (left)
and power spectrum |z̃(k)|2 (right). b,
Modification ∆ (xS) (left; calculated as in
Fig. 7.1 with δ = 10−3, tS = 103 by
systematically varying the ICMS site) and

power spectrum
∣∣∆̃ (kS)

∣∣2 (right). Note that
∆ strongly depends on the location of the
ICMS site in the orientation map. Note fur-
ther that the spatial organization of ∆ bears
no simple relation to the layout of the map.
Its power spectrum contains most contribu-
tions on scales larger and smaller than the
map.

of an active mode this measure counts the number of active modes switched from
the action of ICMS. A nonzero value of ∆ (xS) indicates the development of a new
attractor with different modes active.

Fig. 7.4 shows the map of modification ∆ (xS) together with the region of the
map over which the modification was sampled. Interestingly, the modification ∆

exhibited a complex spatial pattern bearing no resemblance to the layout of the
underlying map. ICMS at nearby sites often had largely different effects. While
inducing large layout changes at particular locations, applied to nearby sites the
same stimulation could have no persistent effect whatsoever. Nevertheless, the
modification ∆ exhibited a large scale variation such that regions of the size of a
few columns with enhanced modification alternate with regions of generally low
modification. Consistently, the power spectral density of ∆ (Fig. 7.4b) showed two
prevalent spatial scales around 1/2Λ and 2Λ. In contrast, the contribution on the
scale Λ of the orientation map appeared much weaker.

7.5.2 Induced pinwheel dynamics

Pinwheels were found to move and annihilate under the application of ICMS. Dur-
ing the induced reorganization of the map most pinwheel centers changed their
location (Fig. 7.5a, b). We observed distances covered up to one mean column
spacing. The range of movement only slightly depended on the distance to the
ICMS site. The total number of pinwheels changed as a function of time during
reorganization (Fig. 7.5c). A fraction of the pinwheels were annihilated. New pairs
were created. Both the strength of these transient changes and the final result again
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Figure 7.5: ICMS induced pin-
wheel movement, production and
annihilation. a, Initial orienta-
tion preference map with marked
pinwheel locations (subsection of
the map simulated, smoothed for
illustration). b, Movement of pin-
wheel centers during ICMS in-
duced reorganization of the map
in a (in mean column spacings
Λ). Different colors were used to
discriminate pinwheels. c, Total
number of pinwheels as a func-
tion of time during reorganization.
Black crosses (green stars) mark
the number of annihilation (cre-
ation) events. d, e, Pinwheel den-
sity (number per area A = Λ2,
with mean column spacing Λ) as
a function of time during reorga-
nization for a set of ICMS loca-
tions inducing transient reorga-
nization of the map (d) and for
ICMS locations inducing persis-
tent changes of the map (e). f, g,
Pinwheel numbers directly after
termination of ICMS (f) and after
convergence to a stationary state
(g) as a function of the ICMS site.

strongly depended on the location of the ICMS site (Fig. 7.5d-g). Final maps con-
taining more pinwheels than initial maps were observed as well as cases with less
pinwheels. Thus, ICMS induced complex dynamics of pinwheel locations some-
times leading to persistent changes of the qualitative structure of the map.

7.5.3 Independence from local map properties

One candidate for explaining the spatial scales occurring in the map of modifica-
tion ∆ is the orientation selectivity |z∞|. In fact, the strength of ICMS is propor-
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Figure 7.6: Relation of modification ∆ to local map properties. a-c, The modification ∆ is
weakly anti-correlated to the orientation selectivity |z∞|(C = −0.16) (a) and uncorrelated to
the local density of pinwheels ρ (C = −0.07) (b) and the local density of hyperbolic points
(C = −0.02) (c). Local densities in b, c were calculated by smoothing densities with Gaussian
kernel (σ = Λ/3).

tional to the selectivity |z∞| (Eq. (7.2)) and thus varies with ICMS location. More-
over, also the selectivity contains many spatial scales different from the scale of the
map. Nevertheless, as shown in Fig. 7.6a, the correlation between the modification
∆ and the orientation selectivity |z∞| was only weak and negative (C = −0.16). A
large modification was mostly observed at locations with intermediate selectivity.

Other candidates are pinwheel centers and hyperbolic points which are both par-
ticular locations in the orientation map. Their spatial organization is less regular
than the columnar layout and they exhibit broad nearest neighbor distributions
(Section 5.4). Furthermore, at pinwheel centers the orientation preference is discon-
tinuous. This suggests that the arrangement of pinwheels and hyperbolic points
might be related to the modification ∆. We tested this by analyzing the correlation
between the modification ∆ and the smoothed density of pinwheels ρ and hyper-
bolic points η. As shown in Fig. 7.4b, c, no dependence was found on either of
these quantities. This suggests that a more profound analysis is necessary in order
to unravel the mechanism underlying soft spots in orientation map. Before ad-
dressing this, the dependency of the modification on stimulation parameters such
as the ICMS duration tS and strength δ shall be studied in more detail.

7.5.4 Stimulation strength and duration

The location of soft spots within a map did not sensitively depend on the ICMS
strength δ and its duration tS. For δ or tS too small no changes were induced
besides a shifting of phases φ j of the active modes. Only if the strength and the
duration were sufficiently large a switching of modes was observed at some sites.
Increasing the strength or duration of application typically induced larger changes
at these sites. However, an increase of either of these quantities did not always
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Figure 7.7: Dependence on ICMS strength δ and duration tS. a, Map from Fig. 7.4 and
modification ∆ for δ = 10−3, tS = 102.5, below. b, Increasing ICMS strength: Modification ∆δ,
for δ = 10−2.5, tS = 102.5; below, scatter plot with ∆ (C = 0.48). c, Increasing ICMS duration:
Modification ∆tS , for δ = 10−3, tS = 103; below, scatter plot with ∆ (C = 0.41). Note that
dependent on the ICMS site xS, both an increase of ICMS strength or duration may result either
in a larger or weaker modification, but its basic structure is relatively insensitive.

lead to a stronger effect. At particular ICMS sites xS, the effect was always found
to decrease with δ and tS. Fig. 7.7a shows the modification ∆ calculated for the
orientation map from Fig. 7.4 using δ = 10−3 and tS = 102.5. The modification ∆δ
calculated for stronger ICMS of δ = 10−2.5 exhibited a similar spatial structure, but
with a larger average value (cross-correlation, C = 0.48; Fig. 7.7b). Likewise, this
was the case for the modification ∆tS calculated for an increased ICMS duration of
tS = 103 (C = 0.41, Fig. 7.7c). The depicted scatter plots of the two modifications
∆δ and ∆tSwith ∆ show that at particular sites, an increase of the ICMS strength or
duration can also result in a weaker modification. However, the overall pattern of
modification did not sensitively depend on the stimulation parameter. By means
of amplitude equations, the parameter dependence will be studied in more detail
in the following.

7.5.5 Amplitude equations

The numerical calculations presented in the previous sections are very time con-
suming. However, it is desirable to gain a better understanding of the dependence
of the ICMS effect on stimulation parameter such as ICMS strength δ and dura-
tion tS. To achieve this, we formulate ICMS in terms of the amplitude formalism.
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Within this approximation, which remains accurate for small r, the dynamics be-
come much more tractable numerically. Moreover, the reduced dynamics of am-
plitudes will provide an improved conceptual understanding of the mechanisms
underlying the observed reorganization induced by ICMS as shall be outlined in
the Section 7.7.

In Fourier representation the ICMS term Eq. (7.2) reads

S̃(k) = δrz∞ (xS) µ̃(k) (7.10)

where µ̃ is Fourier transform of the stimulation function (7.3). For the upcoming
analysis it is convenient to shift the ICMS site xS to the origin of the coordinate
system. The stimulation function then simply becomes the Gaussian

µ̃(k) = exp

(
−
σ2

Sk2

2

)
(7.11)

with width 1/σS. Since this width is large compared to the typical wavenumber
kc = 2π/Λ we may set µ̃ (kc) = 1 for simplicity. With Eq. (7.11) the ICMS term
(7.10) exhibits a uniform complex phase

φ∞ (xS) = arg {z∞ (xS)} (7.12)

which is determined by the orientation preference at the ICMS site by φ∞ (xS) =
2ϑ (xS).

Hence, the amplitude equations accurate at order r3/2 read

∂t Ai = rAi −∑
j

gi j
∣∣A j
∣∣2 Ai −∑

j
fi j A j A j− Āi− + Θ(t)Θ(tS − t)δrz∞ (xS) (7.13)

governing the development of amplitudes A j =
∣∣A j
∣∣ eiφ j under the presence of

ICMS between t = 0 and t = tS. Eq. (7.13) is for 0 ≤ t ≤ tS a set of inhomoge-
neous equations. The ICMS term in (7.13) acts as an additional force with constant
strength and constant phase on the modes on the active amplitudes Ai. For very
small strength δ this force will mainly shift the phases φ j of the active amplitudes
towards the ICMS phaseφ∞(xS). For sufficiently large δ additional amplitudes on
the critical circle may grow or previous active amplitudes are suppressed. In the
following, the dependency of the ICMS effect on the two stimulation parameters
strength δ and duration tS shall be evaluated using amplitude Eq. (7.13).

7.5.6 Modification diagram

The modification diagram displayed in Fig. 7.8a captures the dependence of the
mean modification ∆ = 〈∆(x)〉x induced by ICMS on its two parameters ICMS
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Figure 7.8: Modification diagram: Dependence of modification ∆ on ICMS duration tS and
strength δ. a, Mean modification ∆ = 〈∆ (xS)〉xS

calculated by the amplitude equations 7.13.
ICMS was applied to a planform solution with n = 8 active modes (inset). b, Modification ∆ and

its power spectrum
∣∣∆̃∣∣2 (illustration as in Fig. 7.4b) for different parameter regimes (marked

by stars in a). In the small δ, tS regime the configuration of active modes remains unchanged
under ICMS. For sufficiently large δ, a single mode is flipped for some ICMS sites xS (I). Under
very strong stimulation, 4 modes switch on average (IV). Soft spots are found in the parameter
regime of moderate modification given by 10−1 . δtS . 102 for tS < 102 and 10−3 . δ . 100

for tS > 102. Note that ∆ is similar for I I and V (c = 0.66) and for I I I and VI (c = 0.55).

strength δ and duration tS. Calculations were carried out using a planform of n = 8
active modes. For short and weak stimuli the modification was close to zero – the
stimulation failed to switch any of the active modes. For large durations tS >
103, the modification depended on δ only. In fact, there was a minimal strength
δmin ≈ 10−3 necessary for inducing any modification at all in a map. A nonzero
modification was obtained for strengths as small as δ > 10−3 for duration tS > 102

or for tS < 102 for strengths fulfilling δtS > 10−1. For larger δ, the mean effect
∆ was found to increase gradually over more than three orders of magnitude of
ICMS strengths δ. The maximal effect was a switching of more than half of the
originally active modes. In this regime ICMS induced an activation of all n =
16 amplitudes to an almost equal amplitude. The selection of the finally active
modes after termination of ICMS becomes essentially a random process in which
on average n = 4 modes switch.

Thus, soft spots are only found in the parameter regime in which usually a frac-
tion of the possible modes are switched. This regime of moderate modification, is
therefore of particular interest in the following. As will become apparent later in
this chapter, in this regime, the modification can be predicted to some degree from
the ICMS site in the map. The strength of the modification ∆ increases gradually
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Figure 7.9: The modification ∆ largely depends on the product δtS of ICMS strength and
duration. a, Traces of cross-correlations C parallel (solid) and perpendicular (dashed) to the
level lines of equal mean modification ∆. The four reference modifications at tS = 100 and
δ = 10−1, 10−1/2, 100, 101/2 are marked by different symbols. b, Correlations parallel to level
lines vs. ICMS duration tS remain large over a broad width. c, Correlations perpendicular to
level lines decay rapidly.

with the strength δ and duration tS of ICMS in this regime. Fig. 7.8b shows the
representative maps of modification ∆ from 6 different regions of the modification
diagram. Whereas the spatial dependence of stimulation is essentially random for
very large and strong stimulation, in the regime of moderate modification, it ex-
hibits an intriguing spatial dependence resembling the results form the numerical
calculations of the full dynamics (compare Fig. 7.4 and Fig. 7.7). As for the full
dynamics, in this regime the modification ∆ varies on spatial scales smaller and
larger than the pattern itself as will be discussed in further detail in Section 7.7.1.

Fig. 7.8 shows a further property of the modification ∆ that is worth noting. The
spatial structure changes only little when moving along the level lines in the mod-
ification diagram. The modification maps II and V were significantly correlated
(c = 0.66) despite their relatively large distance in parameter space. A similar cor-
relation was found for III and VI ( c = 0.66). To evaluate this more systematically
we calculated cross-correlations of the maps of modification parallel and perpen-
dicular to the equal effect level lines starting from four maps within the sensitive
regime at equal time t = 100, but with various strength δ (Fig. 7.9). Along the lines
of equal mean modification their spatial structure was largely reproducible, espe-
cially along the line given by δtS = 1 with correlations close to 1 (Fig. 7.9b, solid
lines in a). The spatial structure of the modification ∆ was much less similar along
the perpendicular direction and correlations decayed rapidly (Fig. 7.9c, dashed
lines in a). Thus, the combination of stimulation strength and duration mainly de-
termines the induced modification. For a duration tS < 103 the result depends to a
good approximation only on the product δtS.
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Figure 7.10: Layout of orienta-
tion map implies the occurrence
of soft spots. a, Fourier rep-
resentation of map before ICMS
(schematic). Active amplitudes
with moduli

∣∣A j
∣∣ (black dots) and

phases φ j (blue arrows, shown for
two amplitudes). b, c, Phase condi-
tion for ICMS sites with small mod-
ification ∆. Under ICMS, phases
φ j (diamonds) are shifted towards
the ICMS phase φ∞ = π (red ar-
row) strengthening all active ampli-
tudes. d, Phase condition at ICMS
site with large ∆. Here, two am-
plitudes are suppressed and can
therefore be exchanged by different
amplitudes.

7.6 Soft spots implied by map layout

Section 7.5 has shown that the reorganization induced by ICMS strongly depends
on the location of the stimulation-site in the map. Other parameters being equal,
ICMS at adjacent locations often results in a qualitatively different outcome as
highlighted in Fig. 7.4. Moreover, this spatial dependency did not depend sensi-
tively on the parameter of the stimulation. This suggest that, despite any apparent
resemblance to the orientation map z∞, the modification ∆ depends to a consider-
able degree on the arrangement of columns.

Consider an orientation map in the form

z∞(x) =
n−1

∑
j=0

A jeik jx+iφ j (7.14)

composed of n active modes j with amplitudes A j = Aeiφ j (Fig. 7.10a). Let us
assume that all amplitudes have an equal absolute valueA j = A (which is accurate
within the approximation of amplitude equations) and that the ICMS site is at the
origin, xS = 0. According to Eq. (7.10), ICMS acts with uniform phaseφ∞ on active
and inactive amplitudes. Following

|z∞| eiφ∞ = A
n−1

∑
j=0

eiφ j (7.15)
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this phase results from the complex superposition of active amplitudes. Conse-
quently, the majority of phases φ j points towards the direction of the the ICMS
phaseφ∞ (as in Fig. 7.10b, c). Under the influence of ICMS, these amplitudes shift
their phase towards φ∞ and grow in modulus. Thus, they get further enhanced
thereby suppressing through nonlinear competition the growth of new, previously
inactive amplitudes finally preventing a switching to a new attractor. As illus-
trated in Fig. 7.10d, ICMS successfully suppresses an active amplitude A j if the
phase condition

eiφ j(xS) ∝ −eiφ∞(xS) (7.16)

is fulfilled, i.e. if the phase of the amplitude is opposed to the phase of ICMS.
Given that the phase shift of φ j is very slow, the amplitude is suppressed by the
now opponent ICMS force. If sufficiently suppressed, a new growing mode may
eventually exceed this amplitude by the end of the ICMS application. Depending
on the strength and duration of ICMS and the details of the governing dynamics
of the model this can lead to the observed switching. The state enters a different
basin of attraction and finally relaxes towards a different stable solution.

How does the dependence on the location of the ICMS site arise? The phases of
the active amplitudes change as

φ j → xS · k j +φ j (7.17)

with ICMS location xS. Thus, dependent on the projection of k j on xS, phases φ j
change on scales equal or larger than Λ which may explain the occurrence of long
scale contributions to the modification ∆ (see e.g. Fig 7.4). The occurrence of small
scales in ∆ at approximately Λ/2 (Fig 7.4) may be understood from reconsidering
Fig. 7.10d. A similar phase constellation at a different site is possible only if it is
≥ Λ/2 remote, because a phase shift of π is necessary in order to obtain two ampli-
tudes with phases opposite to φ∞. The importance of the phase constellation also
suggests why spots of large modification ∆ are rare in a map. By the enforcing na-
ture of ICMS, phasesφ j tend to point towards the ICMS phase. For one amplitude
condition (7.16) only holds at a subsample of ICMS sites and the probability to hold
for more than one amplitude is much smaller. Moreover, a fraction of amplitudes
satisfying the phase condition (7.16) requires an even larger fraction concentrated
around φ∞. In fact, the maximum number of phases fulfilling Eq. (7.16) can never
exceed half of the total number of active modes. Thus, for inducing a large reorga-
nization in the orientation map, the ICMS site must be chosen at a very particular
location.

The mechanism described in this Section shows that the property of soft spots
arises naturally from the spatial structure of the orientation map. It is a conse-
quence of its various component modes. At least for moderate stimulation the
phase relation (7.16) provides a necessary condition for inducing significant reorga-
nization: Where it is not fulfilled, a persistent ICMS effect is not expected; where it
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is satisfied, the map undergoes persistent reorganization or not, depending on the
details of the dynamics governing its evolution. Thus, the modifiability through
ICMS is constraint by the layout of the map.

7.7 Predicting soft spots

Section 7.5 showed that the induced reorganization strongly depended on the ICMS
site in the map, but less on ICMS parameter stimulation strength and duration. It
was suggested to depend to some extent on the layout of the orientation map lead-
ing to the notion of soft spots. In the previous Section 7.6, we proposed a mecha-
nism by which the layout of the map can influence the efficiency of ICMS at a given
site in evoking persistent reorganization. In this Section, we develop methods for
analyzing the validity of this mechanism. It is suggested that the effect of ICMS
can be predicted to some degree from the layout of the map.

7.7.1 Softness

To evaluate the implication of the simple phase condition (7.16) for the convertibil-
ity of a map by ICMS, it is convenient to express it by a real scalar function which
is called softness κ in the following. The softness κ shall become larger the more
amplitudes fulfill the phase condition and small at sites where it does not hold for
any of the active amplitudes. Furthermore, it shall be a function of the modes φ j
only. We defined the softness by

κ (xS) = SD
(
cos

[
φ j (xS)−φ∞ (xS)

])
(7.18)

where SD () denotes standard deviation. The cosine in the brackets is −1 for am-
plitudes A j for which the phase condition Eq. (7.16) is fulfilled, and +1 if the phase
is identical to the ICMS phase. The softness κ is large if the phases φ j exhibit a bi-
modal distribution on the unit circle (as in Fig. 7.10d). It is small, if phases φ j are
rather uniformly distributed (Fig. 7.10c) and very small for a unimodal distribution
(Fig. 7.10b). The quantityκ increases generally with the number of modes fulfilling
the phase condition.

Fig. 7.11 shows a comparison of the softness κ to the modification ∆ calculated
by the amplitude equations as in Fig. 7.8 (with tS = 102.5, δ = 10−2). The modifi-
cation (Fig. 7.11a) highly resembled the map of softness κ (Fig. 7.11b). Especially
for regions of low modification and softness (dark regions in Fig. 7.11a, b), the sim-
ilarity was strong consistent with the interpretation of the phase condition (7.16) as
a necessary condition for inducing large reorganization. The relation of ∆ and κ is
depicted in Fig. 7.11c (cross-correlation, C = 0.71). Thus, the softness κ can indeed
successfully predict the modification ∆ at least when obtained from the amplitude
equations.
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Figure 7.11: The predictive
power of the softness κ. a, b,
Modification∆ for the map from
Fig. 7.8 (tS = 102.5, δ = 10−2)
(a) and softness κ (b). Dark
(bright) regions indicate small
(large) values of ∆ and κ, re-
spectively. c, The spatial struc-
ture of κ predicts ∆ to a high
degree (cross-correlation, C =
0.71). Their power spectra

∣∣∆̃∣∣2
(d) and |κ̃|2 (e) share most preva-
lent scales (C = 0.77) (f).

Before further pursuing this approach, it is interesting to consider the spatial
scales on which the softness κ varies. Using Eqs. (7.15) and (7.17) we rewrite (7.18)
into

κ (xS) = SD

(
A

|z∞ (xS)| ∑l
cos

[
φl (xS)−φ j (xS)

])

= SD
(

∑l Φl j√
∑li Φli

)
j

(7.19)

where
Φl j = cos

[(
kl − k j

)
xS +φ0

l −φ
0
j

]
(7.20)

withφ0
j = φ j (xS = 0). Following Eq. (7.19), the softnessκ (xS) comprises a variety

of spatial scales generated through multiple combinations of wavevectors k j − ki.
Depending on the attractor, already these constituent wavevectors vary in their
modulus within 0 ≤

∣∣k j − ki
∣∣ ≤ 2kc cos (π/2n), i.e. on scales between Λ/2 and ∞

in the large n limit, but even larger frequencies are generated from these wavevec-
tors by Eq. (7.19). As demonstrated in Fig. 7.11f the range of scales in the power-
spectrum of the modification,

∣∣∆̃(k)
∣∣2 (Fig. 7.11d), is shared by the spectrum of the

softness, |κ̃(k)|2 (Fig. 7.11e). Thus, the phase condition (7.16) in the form of the
softness κ can indeed account for the observed spatial dependency of the induced
modification ∆.

7.7.2 Predictability

The softness κ provides a means of predicting the effect of stimulation to some
extent without knowing the dynamics of the system. The extent to which this is
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Figure 7.12: Parameter regime of successful prediction of reorganization. a, Diagram of pre-
dictability P of modification from softness κ: Dependence on ICMS duration tS and strength δ
(in red scales). b, Effect diagram from Fig. 7.8. The strength of induced reorganization can be
predicted in the parameter regime of moderate reorganization.

possible, denoted by the predictability P , is quantified as the cross-correlation be-
tween modification ∆ (xS) and softness κ (xS). A value of P close to 1 indicates a
high similarity between both quantities. A value close to 0 indicates no predictive
power of the softness κ. The predictability P may depend on the duration tS and
strength δ of ICMS. Comprehensively, this can be studied only by the amplitude
equations which are much more tractable both analytically and numerically. There-
fore, we first focus on this approximation before investigating the full dynamics.

Fig. 7.12a shows the diagram of predictability P for the attractor from Fig. 7.8 to-
gether with the diagram of mean modification for the same range of ICMS strength
δ and duration tS as in Fig. 7.8a. Across the parameter regime of moderate modi-
fication we observed a high predictability P . Values of P > 0.6 were found in the
regime δtS ≈ 1, especially for small strengths of δ ≈ 10−2 and large durations of
tS & 102 with predictabilities up to P = 0.75. The predictability was low only in
the regime of no persistent modification and in the regime of maximal modification
where all amplitudes are equally activated by a strong external stimulation.

What gives rise to this large predictability in the regime δtS ≈ 1? An improved
understanding of the effect of ICMS can be obtained by linear response analysis.
Starting point are the amplitude equations in the form Eq. (7.13). Linearizing
around a planform solution

Ai = Aeiφ0
i , i = 0, . . . , n− 1

Bi = 0 , i = i, . . . , n− 1 (7.21)

and splitting the ICMS term into the part acting on the amplitudes and that acting
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on the phases leads to equations

ȧi = −2A2 ∑
j

gi ja j + δ r |z∞| cos
(
φ∞ −φ0

i −θi

)
θ̇i = δr |z∞| sin

(
φ∞ −φ0

i −θi

)
(7.22)

for the small amplitudes ai(t) = Ai(t)−A and phases θi(t) = φi(t)−φ0
i where

in the first equation we used r = A2 ∑ gi j. Thus, their linearized dynamics are
decoupled from those of the inactive modes B j. The phases are given by

θi(t) = φ∞ −φ0
i + sign

(
φ0

i −φ∞) 2 arctan (exp (−δr |z∞| t + c1)) (7.23)

with

c1 = ln

(
tan

(∣∣φ∞ −φ0
∣∣

2

))
(7.24)

showing that they are driven towards the ICMS phase φ∞. The dynamics of the
amplitudes ai is according to Eq. (7.22) governed by an inhomogeneous system of
linear ODEs. The solution is a superposition of the general solution of the homoge-
neous system and a particular solution of the full system. Since gi j = g and gii = 1,
the homogeneous system has two different growth rates, both stable. The fast rate
is given by λ f = A2(1 + (n− 1)g), the slow one by λs = A2(1− g) = A2ε with
ε = 1− g � 1. A particular solution to (7.22) is obtained from

a =
1

2A2 G−1 · s (7.25)

where G =
(

gi j
)

and si = δr |z∞| cos (φ∞ −φi). The ansatz that G−1 is of the same
form as G with c on the diagonal and d on the off-diagonals leads to

c + (n− 1)dg = 1
d + g(n− 1)(c + (n− 2)d) = 0 (7.26)

from which follows (
G−1

)
ii

=
1 + (n− 2)g

(1− g)(1 + g(n− 1)(
G−1

)
i j

= − g
(1− g)(1 + g(n− 1)

(7.27)

for the entries of the inverse matrix of G. The components of the particular solution
read

ai = δr |z∞| (1 + g(n− 2)) cos (φ∞ −φi)− g ∑ j 6=i cos
(
φ∞ −φ j

)
2A2(1− g)(1 + g(n− 1))

= δ |z∞| (1 + g (n− 2)) cos (φ∞ −φi)− |z∞| /A
2ε

(7.28)
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where we used A2 = r/ ∑ gi j and Eq. (7.15). Thus, the dynamics of amplitudes
is decoupled in linear approximation. The particular solution (7.28) represents the
amount the original amplitude is shifted under ICMS.

Consider an original amplitude Ai with phase φi = φ∞ + π , opposite to the
ICMS phase. The ICMS strength δ∗ suppressing the amplitude completely can be
estimated from the condition ai = −A as

δ∗ =
2ε√

n
(
1 +

√
n + g(n− 2)

) (7.29)

where we substituted |z∞| by its average value

〈|z∞|〉x =
√

nr
1 + (n− 1)g

. (7.30)

The temporal scale on which the dynamics relaxes towards the new state is

ts =
1 + g(n− 1)

ε

1
r

(7.31)

An ICMS with strength δ∗ and duration t∗S = tsr fulfills

δ∗t∗S =
2 + 2g(n− 1)√

n
(
1 +

√
n + g(n− 2)

) . (7.32)

In particular, for the parameter values used in Figs. 7.8 and 7.12, g = 0.98, n = 8,
Eq. (7.32) predicts δtS ≈ 0.6 which agrees well with the estimated value of δtS ≈ 1.

This analysis also predicts the minimal magnitude necessary to induce a persis-
tent change. The presence of a minimal magnitude explains the deviation from
δtS ≈ 1 in the small δ regime. Fig. 7.12 shows that this deviations occurs at
δ ≈ 10−3. Following Eq. (7.29) the minimal strength to achieve the necessary am-
plitude suppression is on average δmin = 1.5 · 10−3. At very susceptible locations
this value can be reduced by a factor of ≈ 2 depending on |z∞ (xS)|.

Following Eq. (7.31) the temporal scale on which the dynamics including ICMS
relaxes towards the attractor is ts = 3.9 · 102/r for the set of parameters used in Fig.
7.12. This accounts for the finding that at least for tS > 103 the modification ∆ and
to some extent also the predictability P remain constant with increasing duration
tS.

To what extend does the modification ∆ and the predictability P depend on the
initial solution z∞? The linear response analysis is independent of the configura-
tion l = (l0, l1, . . . , ln−1) of active modes suggesting that both quantities are similar
for an anisotropic attractor. Indeed, fig. 7.13a shows that both the predictability
P and the mean modification ∆ are very similar for a map with an anisotropic
spectrum.
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Figure 7.13: Predictability P (left, in red scales) and modification ∆ (right, in blue scales) for
a map with anisotropic spectrum containing n = 8 active modes (a), a map with n = 9 active
modes (b), n = 17 modes (c), and for an attractor of the full dynamics integrated numerically to
t = 106 (from Fig. 7.4) (d). Predictions of the linear response analysis are δmin = 1.5 · 10−3,
tS = 3.9 · 102 (a), δmin = 4.0 · 10−3, tS = 2.0 · 102 (b), and δmin = 4.9 · 10−4, tS = 8.3 · 102 (c).
Note that both the predictability and the modification depend only weakly on the type of map.

Both the minimal strength δmin necessary to induce any persistent effect and the
relevant time scale ts depend on the number of active modes n. The diagrams for
a solution with n = 4 modes (Fig. 7.13b) indicate a reduction of ts and an increase
in δmin as predicted from Eq. (7.31) and Eq. (7.29), respectively. Likewise, for an
attractor with n = 17 modes (Fig. 7.13c) ts was larger and δmin reduced compared
to a solution with n = 8 modes. Generally, the maximal mean modification ∆ was
half the number of active modes and a prediction from the softness κ was possible
in the parameter regime of moderate modification.

7.7.3 Predicting the full dynamics

Next we asked to what extent the reorganization ∆ of the full dynamics Eq. (7.1)
is predicted from the phase condition (7.16). Fig. 7.14a shows the map of mod-
ification ∆ (xS) (reproduced from Fig. 7.4b) and the map of softness κ (xS) (Fig.
7.14b) calculated at corresponding cortical locations. The softness κ reproduced
many characteristics of the modification ∆ including variation on small scales with
nearby locations often having very different values, and variation on scales large
compared to the typical scale of the column pattern. Statistically, both quantities
were related (Fig. 7.14c, C = 0.40). A large ICMS effect was obtained only at sites
with large softness κ. At locations with small softness κ ICMS did not cause any
persistent changes in the layout of the map. Thus, the softness accurately predicts
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Figure 7.14: Predicting potential soft spots. a, Modification ∆ from Fig. 7.4b. b, Softness κ
coded in gray scale. Bright (dark) regions mark low (high) values of κ. Note that the softness κ
shares structural features of the modification ∆. c, Scatter plot κ vs. ∆ for all analyzed locations
x0. The modification ∆ is large only where the softness κ is large, i.e. a large value of κ is a
necessary condition for significant reorganization.

the ’hard’ spots, where the induction of persistent reorganization is impossible. A
large value of softness, instead, is a necessary, but not a sufficient condition for
inducing significant reorganization.

Why does the softness fail to provide a sufficient condition? At least partially,
this is due to a considerable variation in the amplitudes A j of active modes shown
in Fig. 7.15a (orange crosses). Generally, modes with smaller amplitudes were sup-
pressed more severely. However, this was not simply due to their smaller size, but
rather due to a reduction in stability as indicated by the stronger reduction they
experience under ICMS. Fig. 7.15b shows that amplitudes with small modulus are
much more often subject to switching than amplitudes with initially larger modu-
lus. In fact, two of the larger amplitudes experienced no switching at all. One of
the larger amplitudes (no. 5) often encountered successful suppression, despite its
relatively small change immediately after ICMS. Fig. 7.15b furthermore shows that
the active amplitudes often altered their magnitude through ICMS. Apparently,
the range of possible changes was discrete. An explanation for this phenomenon
is unclear at present, and could include the loss of degeneration of amplitudes for
large r or a shifting of grain boundaries induced by ICMS. A thorough analysis of
these phenomenom would be promising but requires also 5th order contributions
to the amplitude equations or to allow for spatial variation of amplitudes (envelope
equations) which is beyond the scope of this work.

The softness κ can be refined by incorporating the dependency of the modifica-
tion on amplitude differences into its definition. Crucial is a different treatment of
amplitudes with phases opposed to the ICMS phase. A simple way to do this is to
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Figure 7.15: Modes with small amplitudes switch more likely. a, Absolute values A of the
initially active amplitudes in the map from Fig. 7.4a (orange crosses) and their values immedi-
ately after ICMS applied at the 50×50 sites xS shown in Fig. 7.4b (black dots). b, Amplitudes
from a (orange crosses) after relaxation from ICMS (black dots). Amplitudes can either decay
and switch with new amplitudes or alter their magnitude discretely. Note that modes with small
amplitudes are stronger suppressed by ICMS and experience with higher probability complete
suppression after relaxation.

Figure 7.16: Contribution of ampli-
tude differences to modification. a,
Constellation of amplitudes A j (nor-
malized to

〈
A j
〉

j = 1) at site xS with

large softnessκ but small modification
∆ (compare Fig. 7.14c). Illustration as
in Fig. 7.10. b, Configuration at site
with large κ and ∆.

define the softness by the SD

κ′ = SD
(
A′

j cos
(
φ j −φ∞)) (7.33)

where

A′
j = A−q

j , cos
(
φ j −φ∞) > 0

A′
j = A j , cos

(
φ j −φ∞) ≤ 0 (7.34)

ensuring for q > 0 and a prevalent contribution of amplitudes with smaller abso-
lute values A j if their phasesφ j point in opposite direction to the ICMS phaseφ∞.
The softnessκ′ is small either if no amplitude exhibits a phase opposite to the ICMS
phase (as in the case of κ), or if such amplitudes exhibit large moduli (Fig. 7.16a).
Only if both conditions are satisfied (as in Fig. 7.16b) the softness κ′ becomes large.
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Figure 7.17: Improved prediction of potential soft spots. a, Modification ∆ from Fig. 7.4b. b,
Softness κ′ coded in gray scales. Bright (dark) regions mark low (high) values of κ′. Note that
the softness κ′ shares more structural features of the modification ∆ as κ (Fig. 7.14). c, Scatter
plot κ′ vs. ∆ for all analyzed locations xS. As in the case of κ, the modification ∆ is large only
where the softness κ′ is large. In addition, a large value of κ′ implies a large ∆. Thus, a large
value of κ is a necessary and sufficient condition for significant reorganization.

For the full dynamics the softness κ′ improves the predictability P of modifica-
tion ∆. Fig. 7.17a, b compares both quantities for the map from Fig. 7.4a. Not only
appear the dark regions (low values) to overlap, as in the case for κ, but now also
the bright regions (high values). Both quantities were considerably correlated as
shown by the scatter plot in Fig. 7.17c (C = 0.56). In contrast to Fig. 7.14c, most
sites with large softness showed indeed significant modification. Even higher pre-
dictabilities could be obtained by e.g. completely eliminating the contribution of
amplitudes with large magnitude and phase opposite to ICMS. However, since the
generalization to solutions obtained with other parameter and different dynamics
is not clear, this shall not pursued further. This shows that by incorporating also
the magnitude of amplitudes into the definition of the softness, as in Eqs. (7.33)
with (7.34), even larger predictabilities can be attained, at least for the analyzed
model.

7.8 Discussion

We explored ICMS in a dynamical model of the reorganization of the orientation
map. We found that local stimulation can induce both transient and persistent
changes dependent on the stimulation site. In general, the dynamical rearrange-
ment continued after termination of local stimulation. ICMS induced pinwheel mo-
tion including stimulation-driven generation and annihilation of pinwheel pairs.
The degree of reorganization showed a complex and sensitive dependence on the
location of the ICMS site that was relatively robust against variation of model pa-
rameters leading to the notion of soft spots in the map at which ICMS induces
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spatially widespread and persistent reorganization. Since in a large and relevant
parameter regime, the location of soft spots depends only little on the parameters
of the model but on the layout of the map, it was possible to predict the reorgani-
zation to a substantial degree from the layout of the map.

In the analyzed model, soft spots are a consequence of the aperiodic structure of
the orientation map and the property of multistability by mode competition. In-
ducing large reorganization by ICMS translates into a switching between different
attractors which in turn requires switching among active and inactive modes. This
can be achieved by suppressing a fraction of the active modes such that inactive
modes can grow and finally prevail over the formerly active ones. Due to the en-
forcing nature of ICMS, a suppression of several active modes is realized only at
particular locations in the map. The stimulation in Fourier representation acts with
a phase given by the preferred orientation at the ICMS site. Since it is the preferred
orientation, most Fourier components in the map exhibit a similar phase and are
therefore enforced by this stimulation. However, if a fraction of modes exhibits an
opposite phase, it will be suppressed by such a stimulation. Thus, following this
interpretation, soft spots are at least partially determined by the phase of the stim-
ulation relative to the phases of the active modes and therefore by the location of
the ICMS site in the map.

This interpretation was formalized by the softness κ which quantifies the effi-
ciency of a stimulation in suppressing active modes based on the map before ICMS.
For the model, the softness enables to predict the ICMS sites where no significant
reorganization is induced. Thus, it identifies the ICMS sites of potentially high im-
pact. This has interesting consequences for the experiment circumventing two diffi-
culties a prediction of soft spots during an experiment based on a dynamical model
would encounter. First, an analysis of soft spots based on this model requires many
hours of computation time, even on a modern computer cluster (for instance, Fig.
7.4 required 50 days of computation on a Pentium 4 processor). Thus, without con-
siderable improvements of numerical methods or computer hardware, it appears
impossible to predict the soft spots online, during an ICMS experiment. The soft-
ness, in contrast, can be calculated from a map within minutes since it is based on
the layout of the map, in fact, the only specific quantity being measured before an
ICMS experiment. Second, the softness is more general than the model. Its ap-
plicability requires multistability by mode competition for solutions with multiple
active modes. This property is not necessarily restricted to the class of models with
permutation symmetry albeit different classes fulfilling this requirement are not
known at present.
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8 Reorganization of visual cortical orientation
maps by intracortical microstimulation

8.1 Introduction

In this chapter we study the effects of ICMS on the orientation map in the visual
cortex. The theoretical analysis of ICMS induced reorganization in terms of an at-
tractor dynamics in Chapter 7 has exposed three primary predictions which shall
be tested in the following. First, it states that an induced reorganization by ICMS
can be persistent, simply as a consequence of the presence of multiple attractors.
Second, it predicts that the induced effect is highly variable due to the strong de-
pendence of the location of the ICMS site in the map. A third prediction of the
analysis is that ICMS sites of potentially large modification can be predicted from
the layout of the map.

To test this, we use two experimental paradigms (Fig. 8.1). In a first set of exper-
iments, we combine ICMS with chronic experiments to test whether in the adult
visual cortex an orientation map can be converted to a different map that is stable.
ICMS, albeit activating a localized group of cortical neurons, is due to strong intra-
cortical connectivity a means of inducing large scale reorganization [35]. Chronic
experiments over a period of days or weeks enable to study the stable states of
the orientation map provided that all relevant temporal scales of the dynamics or
cortical reorganization are smaller. Thus, chronic experiments hold the promise
to study the phenomenon of switching between different possible solution of the
visual cortical learning dynamics.

In a second set of experiments, we conduct a series of acute experiments in order
to reveal a better understanding of the reorganization processes initiated by ICMS.
In these experiments ICMS is applied the same way as in the chronic experiments,
but with several repetitions of recordings of the map immediately after ICMS. The
temporal resolution of ≈ 2h obtained with this paradigm provides an complemen-
tary view on the process of reorganization. This is important, since it is not known
yet on which temporal scale cortical reorganization can take place. Furthermore, in
order to identify the spreading of the induced changes we use a recording window
twice as large as for the chronic recordings.

To compare the experimental results to those from the model, we have to apply
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a
pre post ICMS                 +15h

-3                   0                 7 days

b

Figure 8.1: ICMS experiments. ICMS
consists of 13 charged-balanced negative
pulses, 6µA, 200µs with 300Hz, at 1Hz ap-
plied for 3h. a, Acute experiment. The
orientation map is recorded two times be-
fore (Pre) and after ICMS (Post) followed
by repeated measurements up to ≈ 15h.
b, Chronic experiment. Recordings at
−3days (control), before (pre), after (post),
and +7days after ICMS. Between −3days
and post, and post and +7days the animal
has normal experience.

a similar set of quantitative analyses to the ICMS data. For this, we adopt methods
developed in Chapters 5 and 7 such as the quantification of similarity among maps,
the pinwheel dynamics and the concept of softness. In addition to the demands
for an analysis of the model, data requires preprocessing in order to diminish the
influence of noise and to bring maps from a series of recordings into the same
reference frame. For analyzing pinwheel densities and movement, we will use
the methods developed in Chapter 4. Experiments were conceived and designed
together with Siegrid Löwel, and Hubert Dinse. The chronic experiments were
conducted by Karl-Friedrich Schmidt in the lab of Siegrid Löwel at the Institute
for Neurobiology (IfN), Magdeburg. Acute experiments were carried out by Klaus
Kreikemeier in the lab of Hubert Dinse, Ruhr-University, Bochum. These studies
are part of the PhD-thesis of Klaus Kreikemeier at the Ruhr-University, Bochum.

In this chapter, after describing the analysis methods, we study transient and
persistent reorganization of orientation maps induced by ICMS. We analyze the
spatial-temporal spreading of changes, the induced dynamics of pinwheels and
compare the observed modification to the prediction of the softness indicator func-
tion. We find that ICMS induces pinwheel movement. Moreover, ICMS can re-
structure orientation maps persistently and modify their pinwheel density. The
effect is highly varying and a preliminary analysis suggests that the softness might
indeed predict ICMS sites with high potential for inducing large reorganization.

8.2 Experimental paradigm and analysis methods

8.2.1 Alignment of maps

Typically, the frame of reference of recordings slightly varies during an experiment.
In order to compare the maps from the different recordings, their cortical coordi-
nates must be aligned. To achieve this, we morphed all maps onto a reference map
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chosen to be the map recorded immediately before ICMS (Pre map). We used a
linear morphing

z (x) = z
(
x0 + bΩαx′

)
(8.1)

with the 2-dimensional rotation matrix Ωα, a scaling factor b ≈ 1, and the transla-
tion x0 = (x0, y0). To find the 4 morphing parameters for a given map we used two
methods. The first method aims to maximize the cross-correlation between maps,
the second to align the position of radial vessels in images from the cortex.

The correlation method is applicable only if the map remains sufficiently similar
during an experiment. For instance, if the changes induced by ICMS are too large,
an alignment based on the structure of the map may become questionable. Practi-
cally, correlation coefficients down to 0.3 were tractable. For efficiency of parameter
search, we used three steps of successive refinement. First, a relative wide param-
eter region of α = 0± 4.8◦, b = 1± 0.05, x0 = 0± 0.3mm, y0 = 0± 0.3mm was
scanned using maps subsampled by a factor of 4. For 1.6 · 104 randomly chosen pa-
rameter combinations equally distributed within these intervals, we calculated the
cross-correlation within the overlap region of both maps under the condition that
the overlap was sufficiently large (we required 50% of the area of each map). The
parameter combination maximizing the cross-correlation was further optimized by
a gradient ascent on cross-correlation. In each subsequent step the resulting param-
eters were used as an initial guess. Parameter ranges were decreased by a factor of
2, the number of tested combinations decreased by a factor of 4 while the size of
the maps increased by a factor of 2.

The method using radial vessels works independently of the structure of the
map. It is based on the vasculature image showing the cortex with superficial blood
vessels in the region of the map (Fig. 8.2). Whereas these vessels can move consid-
erably between subsequent recordings, the location where they enter the cortical
layers, called radial vessels, remain fixed. By visual inspection, we identified a
number of radial vessels within each vasculature image. The function chosen to
be minimized by morphing was the average nearest neighbor distance between
radial vessel locations in the reference and the morphed map. For the sake of effi-
ciency, we used rescaling as for the correlation based method. Though in principle
the method of choice, it suffers from technical difficulties concerning the recording
devices. With the present equipment in the labs were the experiments were con-
ducted, displacements of the map relative to the vasculature image are frequently.
In fact, by means of local cross-correlation displacements of more that 0.6mm were
observed rendering the application defective given that the map has a typical scale
of ≈ 1.2mm.

Thus, we used the radial vessel method wherever it was possible and the corre-
lation method in all other cases. The radial vessel method was used for k109 and
k341, the correlation method for k060, k116, k242, k343, k119 and all acute experi-
ments. A mix of both methods was used for k114 and k242.
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Figure 8.2: A method for ensur-
ing for each map identical cor-
tical coordinates with the refer-
ence map (Pre). Maps were mor-
phed such that the radial ves-
sels (marked by yellow symbols
in each image) were aligned with
those in the Pre-map (left image).

8.2.2 Preprocessing

After morphing all maps from a given experiment into the same coordinate sys-
tem, a common region of interest (ROI) was defined excluding regions containing
major vessels, boundary or reflectance artifacts, and regions with a low signal-to-
noise ratio. High- and low-pass filtering was applied in the Fourier domain using
a Fermi-filter as described in Chapter 4. We used λhp = 1.7mm,λlp = 0.6mm, and
β = 0.1 for the chronic experiments (Magdeburg) in accordance with the typical
column spacing of Λ ≈ 1.2mm observed. Larger column spacings of Λ ≈ 1.5
were found in the animals from the acute experiments for which we used λhp =
2.5mm,λlp = 0.7mm.

8.2.3 Power spectrum

The power spectrum |z̃(k)|2 of an orientation map z was calculated by transform-
ing the unfiltered map into the Fourier domain, multiplying with the high- and
low-pass Fermi-filter kernels, and finally taking the squared absolute value. The
resolution in k−space was artifically increased by a factor of 4 by zero wrapping in
the spatial domain.

8.2.4 Local similarity

Maps of local similarity where calculated as described in Chapter 7. To reduce
fluctuations over time, maps were averaged over predefined time intervals before
calculating the local similarities. We used the intervals [post, 3h], [3h, 9h], [9h, 15h],
[>15h], each containing typically 2-3 maps in each experiment.

8.2.5 Pinwheel analysis

Pinwheels were analyzed based on the Methods developed in Chapters 4 and 5. To
estimate pinwheel locations and densities also at times in between the recordings,

136



8.3 Persistent and transient reorganization

we interpolated between subsequently recorded orientation maps. To avoid fur-
ther assumptions we used linear interpolation, sampled with a sufficiently large
number of equally distributed maps. Usually, m = 20 maps were sufficient for
our purpose leading to a total of m = 64 maps in the case of an experiment with
recordings at 4 different times.

For each of these maps we calculated the pinwheel density using the fully au-
tomated method described in Chapter 4 using 50 low-pass cutoff wavelengths λlp
equally spaced in [0.2, 1.18]mm with βlp = 0.05. Local column spacings Λ (x)
were calculated using wavelets with 25 scales li equally spaced in the interval
d = [0.8, 2.0]mm with 12 wavelet orientations θi = {0π/12, . . . , 11π/12}. The
calculation was performed on a grid with a spatial resolution of 0.1mm. Since we
are primarily interested in a changing of the number of pinwheels and not of col-
umn spacing, we used for all maps the local column spacing Λ (x) of the Pre map
assuming that the changing of column spacing under ICMS is negligible.

For tracing individual pinwheels, we used the method described in Chapter 5.
Nearest pinwheels in subsequent maps were assigned if their distance did not ex-
ceed ∆x = 0.2mm. The pinwheel locations in a given (real or interpolated) map
were calculated with the low-pass filtering resulting from the pinwheel density
analysis. With this filtering, the low-pass cutoff wavelength λ (x) generally varies
for different locations. As discussed in Chapter 4, the cutoff wavelength λ (x) at a
given location is constraint by the range [λ0, λ0 + ∆λ] of the plateau of the filter de-
pendent pinwheel density ρ(x, λ). For the ICMS data we used a cutoff wavelength
λ = λ0 + ∆λ/4. Consistency was checked by comparing the pinwheel density in
this optimally filtered maps with the pinwheel density ρ from the above analysis.

8.2.6 Softness

To calculate the softness κ+ we transformed the unfiltered map into the Fourier
domain and multiplied it with the Fermi filter kernels. By this procedure, low and
high frequency amplitudes are eliminated. Furthermore, at low and high frequen-
cies this also truncates the contribution from the Fourier transform of the boundary
of the map (approximately varying as sin x/x over many frequencies) with which
the power spectrum of the map is convolved. Neglecting the contribution of many
spurious modes with small amplitudes, we truncated the sum in Eq. ( 8.3) by in-
cluding only the n = 100 largest amplitudes. Finally, we normalized the softness
by its average value to enable a comparison between different maps.

8.3 Persistent and transient reorganization

To study whether orientation maps can be restructured in the adult visual cortex,
we applied ICMS in a chronic experiment (Fig. 8.1b). By this, we directly test the
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8 Reorganization of visual cortical orientation maps by intracortical microstimulation

primary assumption of model (5.1) namely that orientation maps are attractors of
a dynamics of cortical reorganization. For such a dynamics one expects i) the pos-
sibility of switching to a different stable map and ii) the relaxation to the original
map if the stimulation is not driving the map into a different basin of attraction.

8.3.1 Persistent reorganization

Fig. 8.3 shows the experiment k119 for which the induced reorganization was per-
sistent over a period of 7 days. The illustration is analogous to Fig. 7.1 for the
model and shows the orientation preference map ϑ (x), the orientation selectivity
|z (x)|, the power spectrum |z̃ (k)|2, and the maps of local similarity C(x) before
and after a chronic ICMS experiment. As for the model, the induced reorganization
was most evident in the maps of local similarity. Immediately after ICMS (Post),
the induced changes were only weak and confined to the region around the ICMS
site (average cross-correlation, C = 0.75). Seven days later, however, the reorgani-
zation was stronger and much more widespread (C = 0.45) when compared to the
fluctuation between the control recording before ICMS (C = 0.81). Interestingly,
after 7 days, changes were not maximal at the ICMS site but more than 2mm away
from it. The orientation selectivity remained large in these regions indicating that
the changes observed were not just due to noise.

In experimental maps, estimating the induced modification based on the power
spectrum appears much more difficult than for the model. As in Fig. 8.3 ampli-
tudes varied considerably in their magnitude, extension and form. Due to their
relative small size the resolution of the maps in Fourier space was rather coarse.
Nevertheless, in this experiment k119 a closer inspection of the two control maps
recorded before ICMS revealed that the spectra shared most peaks, whereas the
spectrum 7 days after ICMS apparently exhibited at approximately seven o’clock a
peak that was not present before ICMS.

8.3.2 Transient reorganization

A very different progression was observed for experiment k116 shown in Fig. 8.4.
Here, the initial map almost recovered completely 7 days after the application of
ICMS (C = 0.87) even though immediately after ICMS, the induced changes were
stronger compared to k119 and more widespread (C = 0.71; similarity before ICMS
(control), C = 0.89). The largely complete recovery was also indicated by the simi-
lar locations of the amplitudes in the power spectra before and 7 days after ICMS.
The only signature of persistent reorganization after 7days was the annihilation of
a pinwheel pair at the right hand side. Thus, whereas in experiment k119 after
the termination of ICMS the map progressively rearranged, in k116 it returned to
its original state consistent with a relaxation-like dynamics as predicted from an
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8.3 Persistent and transient reorganization

Figure 8.3: Persistent changes induced by ICMS (Experiment k119). Orientation preference
map (OPM), orientation selectivity (OSI), 2D power spectrum (origin of k-space at center of
annulus) and map of local similarity 3 days before, immediately before (Pre), immediately after
(Post) and 7 days after the application of ICMS. Bright (dark) regions in the similarity maps mark
larger (smaller) correlations with the pre condition. The dark spot on the lower left of the -3 days
spectrum indicates the resolution in k-space. Immediately after ICMS, changes are confined
to the vicinity of the ICMS site. After seven days changes cover even remote regions (cross-
correlation, Pre/-3days, C = 0.81; Pre/Post, C = 0.75; Pre/+7days, C = 0.45). For comparison
with the model, refer to Fig. 7.2.

attractor model.

8.3.3 Two classes of experiments

Guided by these two cases we classified all experiments into two classes based on
visual inspection of orientation maps and maps of local similarities. The first class
consists of all experiments for which a widespread rearrangement was persistent
over the period of 7 days. The second class contains all experiments for which the
map showed a tendency to recover completely within a few days after ICMS. From
the six experiments, three fitted into the first class and three into the second class.
The time course of rearrangement quantified by the similarity C with the reference
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Figure 8.4: Transient changes induced by ICMS. Illustration as in Fig. 8.3. In this experiment
(k116), the final map is very similar to the initial one (cross-correlation, Pre/-3days, C = 0.89;
Pre/Post, C = 0.71; Pre/+7days, C = 0.87). Immediately after ICMS the map is different even
at regions far away from the ICMS site. However, apart from a pinwheel pair vanishing at the
right end, the map nearly recovers after 7 days. For comparison with the model, refer to Fig.
7.2.

map recorded immediately before ICMS is summarized in Fig. 8.5. Non-recovery
experiments are marked in orange, recovery-experiments in blue. Grey symbols
mark sham-experiments, i.e. control experiments carried out in identical fashion,
but without inducing any current in the cortex. Generally the similarity was re-
duced immediately after ICMS when compared to the control similarity between
maps recorded before ICMS. In the recovery-class, similarities almost returned to
this baseline after 7 days. In experiment k114 for which the map was recorded al-
ready 3 days after ICMS, the similarity exhibited an intermediate value suggesting
that the map had recovered only partially after this period. A possible interpre-
tation is that the reorganization associated with recovery to the original state can
last more than 3 days. In the non-recovery class, the similarity either remained
constant on a relatively low level 5-7 days after ICMS or decreased progressively.
Interestingly, this decrease was observed to initiate after 5 days in experiment k109
for which the map was recorded twice after 5 and after 7 days. Consistent with
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8.4 Spatial-temporal dynamics

Figure 8.5: Reorganization in-
duced by ICMS: Summary of ex-
periments. Depicted are simi-
larities C between the reference
map recorded immediately be-
fore ICMS (Pre) and the map at
other stages of the experiment.
Different symbols denote differ-
ent animals. Grey indicates sham
experiments, orange cases with
persistent, blue with just transient
reorganization.

experiment k114, this suggests that the process of reorganization induced by ICMS
can require several days.

Following Fig. 8.5, the degree of reorganization obtained in an experiment can
be quantified by comparing the similarity values C at different stages of the exper-
iment. For this purpose we defined the modification

∆C =
Cpost

Clate
(8.2)

as the quotient between the similarity Cpost observed immediately after ICMS and
the similarity Clate obtained several days after ICMS for the latest map being recor-
ded. The modification ∆C is large if the induced reorganization is large and it is
small if the map largely recovers. It will be used in Section 8.6.

We conclude that by ICMS, orientation maps can be converted to a different map
persistent at least over 7 days. Moreover, induced changes can be transient lead-
ing to a largely complete recovery of the original map. Both observations support
the hypothesis that the reorganization of the orientation map follows an attractor
dynamics.

8.4 Spatial-temporal dynamics

In order to obtain a better understanding of the reorganization initiated by ICMS,
we conducted a series of acute experiments (Fig. 8.1a). Besides the relatively high
temporal resolution gained with this method (of≈ 2h) we also increased the frame
of the recording window by a factor oft two since we were interested in the spread-
ing and the spatial range of the induced changes.

We observed a progressive rearrangement in the hours following ICMS. The rear-
rangement developed continously indicating that the reorganization evolves with
a temporal scale on the order of 1h (Fig. 8.6). Largest changes were found within
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a distance of 3mm from the ICMS site and often, the maximum change was not di-
rectly at the ICMS site. For the experiment shown in Fig. 8.6a, the induced changes
were initially small and remained small up to 3h before becoming much stronger
after 9h. In contrast, for the experiment in Fig. 8.6b, the effect was maximal im-
mediately after ICMS and decreased thereafter. In the example shown in Fig. 8.6c,
changes went back and forth. The observed increase and decrease often resembled
a process of relaxation further supporting the hypothesis of an underlying attractor
dynamics. However, a reorganization as strong as observed for the chronic exper-
iments 7 days after ICMS was generally not seen in the acute experiments. One
possible interpretation consistent with experiments k114 and k109 (Fig. 8.5) is that
the reorganization of large regions of the map and regions away from the ICMS
site takes place on the temporal scale of days rather than hours. An alternative
explanation is that reorganization may require normal visual experience or sleep.

Figure 8.6: Transient changes induced by ICMS. a, b, c, Similarity C0 as a function of the
distance from the ICMS site (averaged over concentric rings around the ICMS site) evolving in
acute experiments. Induced changes can increase substantially over a period of several hours
after termination of ICMS (a). Already immediately after termination of ICMS (post) the induced
changes can spread over 3mm (b). Changes can decrease after ICMS and progressively in-
crease at a later stage (c). For comparison with the model, refer to Fig. 7.3.

8.5 Induced pinwheel dynamics

A further quantity of particular interest is the pinwheel density. In Section 7.5.2 we
showed that the model predicts a complex pinwheel dynamics under ICMS includ-
ing movement, creation and annihilation during and after ICMS. In this Section we
test this by applying the pinwheel analysis developed in Chapter 4 to the ICMS
data. To estimate the position of pinwheels between the recordings, we linearly
interpolated between subsequent maps (see Section 8.2).
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8.5 Induced pinwheel dynamics

8.5.1 Pinwheel movement

Pinwheels were found to move during and after the application of ICMS. Occa-
sionally, pinwheel pairs were annihilated or new pairs were created as shown in
Fig. 8.7 displaying the pinwheel maps for the two experiments from Fig. 8.3 and
Fig. 8.4. Some pinwheels moved out of the observation frame or entered it from
outside. The traces of pinwheels throughout the experiment are shown in Fig. 8.7b,
c. In the recovery experiment k116, pinwheels either wiggled around or if moving
under ICMS, returned along nearly the same path after ICMS (8.7b). In the non-
recovery experiment k119, pinwheels covered longer paths reaching larger final
distances (Fig. 8.7d). Some pinwheels continued to move after ICMS into the same
direction then during ICMS. Pinwheels traveling farther than a column spacing
Λ ≈ 1.3mm were not observed.

Figure 8.7: ICMS induces pinwheel dynamics. a, Pinwheel centers (marked by white dots) in
the recovery experiment k116 from Fig. 8.4. b, Pinwheel traces during reorganization by linear
interpolation between recorded maps. The red part of each trace marks the movement during
ICMS (Pre to Post), the blue part the movement after ICMS (Post to +7days). The grey traces
mark the movement before ICMS (-3days to Pre). c, d, Pinwheel centers (c) and pinwheel
traces (d) in the non-recovery experiment k119 from Fig. 8.3. Note that in the non-recovery
experiment traces are longer.

8.5.2 Pinwheel density

By annihilation and creation of pinwheels, the pinwheel density can change over
time. Indeed, the traces of pinwheel density ρ(t) for the two experiments from Fig.
8.7 showed a considerable variation of pinwheel density ρ over the time course of
the experiment compared to the control fluctuations before ICMS (Fig. 8.8). The
time course of the pinwheel density was more complex for the non-recovery map
k119 showing larger fluctuations. In both maps, an initial density of ρ ≈ 2.4 de-
creased to ρ ≈ 1.8 7 days after ICMS. Thus, ICMS is indeed capable of inducing
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changes in the pinwheel density. These changes are not captured by the measure
of similarity used e.g. in Fig. 8.5.

Figure 8.8: ICMS changes pin-
wheel density as shown by its
time course ρ(t) for the two ex-
periments from Fig. 8.7. Densi-
ties fluctuate in the non-recovery
map k119. In both cases, largest
changes occur after ICMS and
the final densities are reduced.
For comparison with the model,
refer to Fig. 7.5.

8.6 Soft spots in the visual cortex

In Section 7.7 of the previous chapter we developed methods for predicting from a
map its soft spots, i.e. the ICMS sites with potential for significant restructuring of
the orientation map. As highlighted in Fig. 7.14 the softnessκ provides a necessary
condition for the degree of reorganization. In this closing Section we apply this
concept to the ICMS experiments in the visual cortex. First, we define the softness
κ+ that is used for experimental maps. In a second step, we compare the predicted
to the observed modification.

8.6.1 Softness

The softness as defined in Eq. (7.18) can in principle be calculated for an arbitrary
orientation map. However, with the real maps analyzed here one is facing sev-
eral problems. First, there is noise on many spatial scales modifying the active
amplitudes and introducing new artificial ones. Second, the maps are relatively
small implying a low resolution in the Fourier domain. The measured amplitudes
may be a superposition of many nearby amplitudes. Third, the modulus of the
measured amplitudes vary over orders of magnitude. This might be simply a con-
sequence of the first two points or reflect the actual dynamics of the visual cortex.
To account at least partially for these factors, we defined for the experimental maps
the softness by

κ+ (xS) =
1
N ∑

j

[
A j
(
φ j (xS)−φ∞ (xS)

)]
+ (8.3)
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8.6 Soft spots in the visual cortex

Figure 8.9: Predicting soft spots in the visual cortex. a, Orientation preference map (left) and
map of softness κ+ (right) for the non-recovery case k119 (Fig. 8.3). Bright (dark) regions mark
large (small) values. Note that the softness at the ICMS site is relatively large (κ+ = 1.13). b,
Orientation map and softness for the recovery case k116 (Fig. 8.4). In this case, the softness
at the ICMS site is moderate (κ+ = 1.05). c, Softness κ+ at the ICMS site vs. modification ∆C
(Eq. (8.2)) for all analyzed experiments. For comparison with the model, refer to Fig. 7.14c.

where [x]+ = x for x ≥ 0 and [x]+ = 0 for x < 0. The softness κ+ sums up all
amplitude components opposed to the ICMS directionφ∞. It is normalized by the
average value of a map N to ensure comparability between different maps. The
softness κ+ has similar properties than the softness κ defined in Eq. (7.18) that was
used for the analysis of the model. In fact, for model orientation maps, κ and κ+
were highly correlated with similar diagrams of predictability P (Fig. 7.12). How-
ever, important properties of the softness κ+ favor its application to experimental
maps rather than the softness κ. First, in κ+, each amplitude is weighted by its
modulus to avoid the prevalent contribution of small amplitudes to the softness.
This is necessary since for experimental maps the measured active amplitudes gen-
erally accumulate around A = 0. These amplitudes may be due to noise and even
if real, a switching would barely lead to significant rearrangement of the maps. Sec-
ond, the softness κ+ neglects the contribution of amplitudes with phases pointing
towards the ICMS phase. It is large only if many large amplitudes are opposed to
the ICMS direction. Since amplitudes accumulate in the vicinity of A = 0, the SD
of cos

(
φ j −φ∞) does not separate well favorable from unfavorable phase constel-

lations. In fact, κ is relatively large also if most larger amplitudes are pointing to
the direction of ICMS which, however, implies a low potential for reorganization.

8.6.2 Predicting soft spots in the visual cortex

Fig. 8.9 shows the maps of softnessκ+ for the two experiments k119 and k116 from
Fig. 8.3 and 8.4, respectively. As observed for the model, the softness varied on
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spatial scales larger and smaller than the orientation map itself. In some regions,
nearby points exhibited very different values whereas in other regions, large or
small values were predominant. Whereas in the non-recovery experiment k119,
the softness was with κ+ = 1.13 relatively large at the ICMS site (Fig. 8.9a), it was
with κ+ = 1.05 only moderate in the recovery experiment k116 (Fig. 8.9b).

Fig. 8.9c summarizes the values of softness κ+ from all experiments and shows
its relation to the actual observed modification ∆C. Large modifications ∆C were
only observed in cases where the softness κ+ was large at the ICMS site. At least
for the present data, a small softness accompanied the absence of persistent reor-
ganization. This resembles the results obtained for the model (compare Fig. 7.14c)
suggesting that also for the visual cortical orientation map a large softness is a nec-
essary condition for inducing significant and persistent reorganization.

8.7 Discussion

In this chapter, we showed that ICMS is capable of inducing substantial reorgani-
zation of the visual cortical orientation map. While initially confined to the vicinity
of the ICMS site, induced changes evolved on temporal scales between hours and
days to more remote regions of the map. The outcome of experiments was highly
variable. In one class of experiments, the initial map largely recovered completely.
In a second approximately equally large class, changes were persistent at least over
a period of 7 days suggesting that a new stable map has formed.

The reorganization was accompanied by pinwheel movement, and annihilation
and creation processes. The density of pinwheels was found to change consid-
erably during and after the application of ICMS and to differ significantly in the
initial and final map. This was true for both classes of experiments indicating that
pinwheel densities can change strongly by only slightly changing the map and that
a substantially modified map does not imply a different pinwheel density neces-
sarily. We observed a tendency of ICMS to enforce a more stripe-like columnar
organization thereby decreasing the density of pinwheels.

Within the theoretical framework developed in Chapter 7 these experimentally
observed effects of ICMS are interpreted as a switching between several different
equilibrium states of a cortical learning dynamics. This interpretation suggests
that the observed variability in the persistence of the induced effect is due to its
sensitive dependence on the location of the ICMS site in the map. To test this, we
compared the predicted modifiability associated with a given ICMS site quantified
by its softness to the actually observed modification. We found that this relation
strongly resembled the analog relation for the model suggesting that also for the
visual cortex, a large softness at the ICMS site is a necessary condition for inducing
persistent modification implying that potential ICMS sites can be predicted from
the layout of the map only. A further corroboration of these results requiring more
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8.7 Discussion

experiments appears necessary. However, in upcoming studies this prediction can
be tested much more specifically, since due to its simplicity the softness can be cal-
culated online during an experiment enabling the possibility of a more purposeful
selection of the stimulation site.
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9 Conclusion

Nature uses as little as
possible of anything.

(Johannes Kepler)

In this thesis, we investigated the pattern of preferred stimulus orientations in the
primary visual cortex of higher mammals, known as the orientation map. Based
on a pattern formation model including only key features of visual cortical orga-
nization, we analyzed the dynamics of the orientation map during normal devel-
opment and under perturbation. In particular, we focused on the statistics and
dynamics of abundant topological defects in orientation maps, called pinwheels.
The theoretical analysis was complemented by a comprehensive quantification of
experimental data. This revealed several interesting observations that were often
quantitatively reproduced by the model.

Analyzing pinwheel densities in data from the visual cortex, we found that in di-
verse species such as ferrets (carnivora), tree shrews (scandentia), and galagos (pri-
mate), orientation maps share several universal properties: Pinwheels occur with
equal overall density, similar spatial variation and virtually identical distributions
of nearest neighbor distances. The pattern formation model studied, a general-
ized Swift-Hohenberg equation with multiple attractors, quantitatively reproduces
the observed universal properties of orientation maps in the apparently realistic
parameter regime where long-range interactions between remote contour detec-
tors are present. In the model, the observed pinwheel density is robustly selected
briefly after the emergence of the orientation map and remains stable through-
out development. Also the distributions of pinwheel nearest neighbor distances
are largely preserved. Nevertheless, we proposed quantities capturing more sen-
sitively the reorganization during map development including pinwheel annihi-
lation and creation rates, survival fraction, pinwheel pathlengths and pinwheel
speed. This shall provide means for future experiments to further corroborate or
falsify the predictions of the model.

We found that similar reorganization processes can also be evoked by stimula-
tion. Extending the model to mimic the effect of so-called intracortical microstim-
ulation (ICMS) we studied the rearrangement of the orientation map during and
after this localized stimulation. Orientation maps display widespread rearrange-
ment including complex pinwheel dynamics. If the stimulation drives the orien-
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tation map into a new basin of attraction, the induced modification is global and
persistent. The degree of modification strongly depends on the location of stim-
ulation and is particularly high when stimulating at specific locations in the map,
named soft spots. The potential locations of these soft spots are largely determined
by the layout of the map. The quantity softness capturing this dependency predicts
the potential soft spots of a map from its layout. The softness provides a necessary
condition for inducing large modification. We tested these predictions of the model
by analyzing ICMS experiments. We observed a transient reorganization often con-
tinuing after the termination of ICMS. In one group, maps relax to a near original
state after 7 days. In another group the changes persist at least over a period of
7 days. In both groups, ICMS induces movement of pinwheels and a changing of
their density. The variability of induced reorganization appears consistent with the
hypothesis of soft spots in visual cortical orientation maps and the results indeed
suggest the possibility of predicting potential soft spots from the softness. This fur-
ther agreement between model and experiment supports the interpretation of the
visual cortical orientation map as the result of activity-dependent self-organization.
Soft spots, defined more generally as stimulations for which a network is especially
susceptible, appear as a natural consequence of complex circuitry subject to a large
scale reorganization principle.

Our investigation revealed two important properties of pinwheels. The first
property is the as astounding as unexpected observation that the average density
was not just constant, but close to the mathematical constant π . An average pin-
wheel density close to π is reproduced by the model within a large and apparently
realistic parameter regime. Moreover, near criticality, the pinwheel density is ex-
actly π in the limit of infinitely long interaction range. Because of this agreement it
is natural to conjecture that the pinwheel density in the visual cortical orientation
map is π . This interpretation has several important implications. First, it poses a
severe constraint on any theory describing the development of orientation selectiv-
ity in the visual cortex. The model class studied in this thesis largely satisfies this
requirement. However, this class may not be the only possibility. All other models
proposed so far need to be reconsidered, since they do not seem to be consistent
with this finding. Second, the occurrence of π suggests the presence of a large scale
optimization principle for visual cortical circuitry. That the cortex is optimized for
something is widely believed. The π-principle casts a new light on the enquiry for
such a principle.

A second property concerns the controversial issue of whether pinwheels are
static, anatomically fixed building blocks of a prespecified cortical machinery or
rather flexible entities that can change their place and interrelation dependent on
patterned cortical activity. Our analysis clearly supports the latter interpretation.
This was indicated by the model showing that reorganization is accompanied by
pinwheel movement, and annihilation and creation processes. Such pinwheel dy-
namics occurred during normal development and after perturbation by ICMS. More
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importantly, this was also found in the visual cortex by an analysis of reorganiza-
tion induced by ICMS. We observed induced pinwheel motion including stimulation-
driven generation and annihilation of pinwheel pairs that can lead to a change of
the pinwheel density in individual maps.

What are the implications of this for cortical development? Cortical development
is often thought to be guided by external factors. Following one branch of hypothe-
ses, cortical circuitry is laid out in detail under genetic control [41, 46, 79]. Other
lines of arguments suggest that sensory experience instructs connectivity through
some Hebbian mechanism [20, 35, 38, 62, 82, 92]. The universal pinwheel statistics
reported here are hard to reconcile with either of this view. Genetic instruction,
on the one hand, is unlikely to produce congeneric maps in species separated for
more than 60 million years of evolution. Sensory instruction, on the other hand, if
prevailing would rather counteract a universal organization given the substantial
differences in their upstream visual systems in the different animals.

Our results rather indicate a predominance of emergent properties of cortical cir-
cuitry. Neocortical neurons are embedded in densely connected networks. Chang-
ing synapses driving a neuron may influence its firing pattern and by this alter
its synapses to other neurons which in turn may change their activity. Hence, lo-
cal changes induce further changes, finally influencing the network as a whole.
Presumably, not every configuration of the network is stable under the persistent
influence of cortical activity. A map self-organizes until a global stable ’synaptic
ground state’ is reached. The present study suggests that such synaptic ground
states exist and belong to a specific class at least partially characterized by the de-
scribed universal pinwheel statistics.

What is the role of activity in this process? Unless being deteriorating [103],
spontaneously generated activity appears sufficient for establishing a map within
the described class. In this respect, activity is only permissive and not instructive.
The class is largely stable against changes of the environment, and apparently even
stable against mutations during evolution. The selection of the map within this
class, however, may be instructed by specific patterns of activity or other external
factors. The possible range within the limitation set by the class is illustrated by
the distinct systematic variation of local pinwheel densities we observed in the tree
shrew compared to the ferret.

Thus, pattern selection appears beneficial as it guarantees the development of a
proper map in the visual cortex. In the model studied here, this is accompanied by
a considerable stability during development, a property which appears important
from a physiological point of view. On the one hand, the stability of the orienta-
tion map observed in previous experiments has been interpreted as evidence that
the visual cortical architecture is fixed and probably prespecified [17, 79, 81]. Self-
organization models on the other hand have often been associated with massive
reorganization during development. Our model study shows that both interpreta-
tions are not conclusive. We found that the reorganization of the orientation map
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decays algebraically. Although reorganization never really comes to an end, it is
strongest during early development. The reorganization observed in the analyzed
model is consistent with the experimental evidence for the development of the ori-
entation map.

After all it is remarkable that our approach works at all. Even at second sight,
the brain seems overwhelmingly difficult to describe. Since the pioneering work of
the neuroanatomist Cajal (1852–1934), the relevant parameters seem to be hidden
somewhere in the circuitry. On the one side, there is this seemingly highly elabo-
rated and densely connected network of which each constituent itself is a highly
nonlinear and spatially extended system. On the other side, there is a model con-
sisting of a field with some effective interactions, an average over an ensemble
of activity patterns, ignoring further response properties of neurons and crosstalk
with other parts of the brain. The agreement between both, noted by measuring a
set of cortices, offers some hope that even in the brain when described at an appro-
priately chosen level things may follow simple principles.
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