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Chapter 1

Introduction

The control and manipulation of the atomic translational degrees of freedom via
atom-laser interaction is an essential tool in modern quantum optical experiments.
The underlying basic mechanism for this is the transfer of the photon’s momentum
when it is absorbed or emitted by the atom. The sophisticated implementation of
these basic processes allows for a large variety of applications.

For example it has become possible in the last decades to slow down the atomic
motion to velocities of the order of centimeters or even millimeters per second.
These cooling techniques allow to trap atoms or ions in suitable laser fields or radio-
frequency electromagnetic fields, respectively. The atoms in these traps can be
cooled down to their motional ground state and can be stored for practically ar-
bitrarily long times. Atom traps permit many interesting experiments concerning
the foundations of quantum mechanics and allowed the realization of rudimentary
quantum computers. Today they are one of the most promising candidates for the
development of quantum computers of practical use.

Another application of atom-laser interaction is atom optics. The goal of this
area of research is to make the basic devices known from classical optics available for
atoms and molecules. This has led to experimental realizations of atomic mirrors,
lenses, interferometers, and even waveguides. Again, foundational aspects as well as
very promising technical applications are the motivation for this field. Examples for
the latter are atom lithography, in which atomic interference patterns are deposited
on a substrate in order to create a periodic structure, or integrated atom optics
devices on a chip for quantum information processing.

The present work is concerned with theoretical investigations which may shed
some light on certain experiments in this field.

In the first part of this work cooperative effects in the fluorescence of dipole-dipole
interacting atoms in a trap are studied. When illuminated by lasers, single trapped
atoms which possess a metastable state in their effective level scheme, may, under
certain conditions, exhibit macroscopic dark periods in their fluorescence signal. The
spontaneous emission abruptly ceases for a certain period of time. In a simplified
picture, this can be explained as a shelving of the electron in the metastable state. If
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two or three atoms showing this effect are stored simultaneously in a trap this leads
to three or four periods of different intensity, namely a dark period and periods
with once, twice or three times the intensity of a single atom. The statistics of
these periods is influenced by the dipole-dipole interaction between the atoms in
a sensitive manner. This work is concerned with a theoretical description of these
effects, including a discussion of the seemingly contradictory experimental results
which have been obtained in this context. The main result of this section indicates
that the huge rate of double and triple jumps reported for three trapped Ba+ ions
can in fact not be attributed to the dipole-dipole interaction.

In the second part, the possible use of an evanescent wave atomic mirror as a
measuring device for the properties of an atomic wave packet is investigated. The
idea is taken from an experiment, in which such a mirror was used for the temporal
diffraction of a cloud of laser cooled atoms dropping out of a magneto-optical trap.
This was achieved by letting the atoms bounce off the mirror twice where each time
the mirror was switched on for only a short time span. The switch-on time of the
mirror can thereby be seen as the analogue of the width of a slit in the usual spatial
diffraction experiments. The resulting distribution was analyzed by a third bounce
and subsequent determination of the number of reflected atoms by a fluorescence
measurement. In this work, the focus is set on the measurement procedure whereas
the first two bounces are merely regarded as a way to prepare a sufficiently broad
wave packet and are not further analyzed. A model for the investigation of the
atomic wave function with such a mirror is given, and the outcomes of different set-
ups are investigated. The main result of this section shows that with such a mirror
one can sample the mod-squared of a spread-out wave function, and this opens
the way for a realistic possibility for measuring this otherwise not easily accessible
quantity.

More detailed introductions into the subjects of this work as well as outlines will
be given at the beginning of each of the two parts.



Part I

Dipole-dipole interacting atoms in
a trap
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Introduction

With the development of atom and ion traps it has become possible to store single
atoms or ions for practically arbitrarily long times at temperatures in the sub-Kelvin
regime. This allows to perform experiments, which give new insight into the foun-
dations of quantum mechanics, and to observe effects which can not be seen in
ensembles of particles.

One such effect is the occurrence of so-called macroscopic quantum jumps or
macroscopic bright and dark periods in the spontaneous fluorescence of single atoms
which are subject to laser radiation. The idea to this goes back to Dehmelt who, in
1975, proposed the following scheme in the context of high-precision spectroscopy
[1]. Consider a three level atom in the so-called V configuration. The ground state
of this atom is strongly coupled by a laser to an excited level. A second laser
weakly couples the ground state to a third meta-stable level. The excitation by
the strong laser leads to the emission of photons at a constant rate, typically of
the order of 108 photons per second. In a simplified picture, the weak laser pumps
the electron to the meta-stable state where it is shelved for a certain period of
time. This causes an intermission of the fluorescence signal until the electron returns
to the ground state. About a decade after Dehmelt’s proposal such macroscopic
quantum jumps were indeed observed in experiments with single trapped Ba+ ions
[2, 3] and Hg+ ions [4]. First theoretical work on this topic for incoherent [5] and
coherent [6, 7, 8, 9, 10] excitation showed that the fluorescence of such systems can
be viewed as a two step telegraph process with exponentially distributed lengths
of the different phases. Further research eventually led to the development of the
quantum jump approach by Hegerfeldt and Wilser [11, 12, 13, 14] and the similar
methods of quantum trajectories by Carmicheal [15] and the Monte Carlo wave
function approach by Dalibard, Castin, and Mølmer [16].

The quantum jump approach describes the time development of a single quantum
system interacting with the free radiation field and additional laser fields. It is well
suited both for analytical and numerical analysis of such systems and provides a
profound understanding of the effect described above.

Apart from single atoms or ions, it is also interesting to store small numbers of
atoms in traps. In this case one has to take into account the dipole-dipole interaction
between the atoms which may lead to cooperative effects in their radiative behavior.
This topic is of great importance in many fields, most recently in the study of
possible quantum computers based on trapped ions or atoms, and has therefore
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attracted considerable interest in the literature (see [17, 18] and references therein).
If there are two atoms in the trap, each exhibiting macroscopic quantum jumps,

one expects three periods of different intensity in the overall fluorescence signal: a
dark period, a period with the intensity of a single atom’s bright period, and a period
with twice this intensity. Accordingly, four different periods are to be expected for
three atoms and so on. In addition to the usual jumps between periods whose
intensities differ by once the intensity of a single atom there is also the possibility
of multiple jumps. These occur if two or more consecutive upward or downward
jumps happen within a short enough time interval, so that they cannot be resolved
experimentally. The statistics of these periods may be altered by the dipole-dipole
interaction between the atoms. There are a number of experiments with seemingly
contradictory results on this question. For two and three Ba+ ions a large number
of double and triple jumps have been observed, two orders of magnitude more than
expected for independent atoms [19, 20, 21]. Experiments with other ions showed
no such effects [22]. In particular, none were seen for two Hg+ ions [23]. More
recently, effects similar to that of reference [19] were found in an experiment with
Ca+ ions in a linear Paul trap [24], in contrast to other experiments with the same
ion species [25, 26]. Neither were cooperative effects found in an extensive analysis
of two trapped Sr+ ions [27].

Theoretically, the qualitative explanation of such large cooperative effects for
distances of the order of ten wavelengths of the strong transition proved to be difficult
[28, 29, 30, 31]. In particular, Lewenstein and Javanainen showed that for incoherent
population of the meta-stable state and in the limit of infinitely strong driving
cooperative effects occur only for inter-atomic distances smaller than a wavelength
of the strong transition [32, 33]. Skornia et al. recently put forward a new proposal
for observing the dipole-dipole interaction of two V systems, based on the individual
detection of the light emitted from each atom [34].

For two V systems numerical [35] and analytical [17] investigations of the effect
of the dipole-dipole interaction showed an increase of up to 30 % in the double jump
rate when compared to independent systems. However, the level systems used in
the experimental setups of References [3, 19, 23] were not V systems so that a direct
comparison between theory and experiment was not possible.

In this part of the present work, the main goal is to develop a theoretical de-
scription of the relevant experimental level systems. Explicit experimental data for
the high double jump rate of Reference [19] was given for three Ba+ ions only. In
order to decide whether this can be explained by the dipole-dipole interaction, it
is particularly important to achieve a realistic description for this case. The main
result of this part is the analytical calculation of the transition rates between the
different intensity periods for two and three atoms and different experimentally rel-
evant level schemes. The cooperative effects are shown to be noticeable for suitable
parameters but negligible in the case of the experiments.

The structure of this part is as follows: In Chapter 2, the theoretical description
of macroscopic quantum jumps is explained. In Section 2.1 the quantum jump
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approach is introduced. Furthermore, the connection to the optical Bloch equations
is established and explicit expressions for a general three-level system are given. In
Section 2.2 the theoretical description of macroscopic bright and dark periods for a
single atom is reviewed. Chapter 3 contains the treatment of two and three dipole-
dipole interacting atoms with different relevant level configurations. Following the
derivation in Reference [36] the generalization of the quantum jump approach to
dipole-interacting multi-level systems is presented in Section 3.1. In Section 3.2 the
results for two atoms are presented. First, the derivation of the transition rates for
two V systems as given in Reference [17] is explained. This approach is extended first
to the case of two D systems for the description of the Hg+ ions and then to the case
of two four level systems for Ba+ ions. In each case a discussion of the results is given
including a comparison with the results of reference [37]. In Section 3.3 the results
for three dipole-interacting atoms are presented. First, the conditional Hamiltonian
and the reset state for this case are derived. Due to the increasing complexity
group theoretical methods have to be applied exploiting symmetries inherent in the
system in order to reduce the dimensionality of the equations involved. For the
three V systems and three D systems the transition rates and the double and triple
jump rates are calculated and discussed. For increasing level numbers the method
becomes increasingly laborious, but fortunately insights stemming from a structural
analysis allowed a surprising simplification which led to explicit results for this case.



Chapter 2

Quantum jumps in the
fluorescence of single atoms

2.1 The quantum jump approach

The quantum jump approach by Hegerfeldt and Wilser [12, 13, 11, 14] has been
developed to describe quantum optical experiments with single or few quantum
systems. It is equivalent to the Monte Carlo-wave function method of Dalibard,
Castin and Mølmer [16] and the method of quantum trajectories by Carmichael
[15]. A detailed review about this method and major applications can be found in
Reference [38].

2.1.1 The conditional Hamiltonian

In the following a laser-driven single atom subject to the free quantized radiation
field will be considered. Let H be the Hamiltonian of the whole system, atom and
radiation field. It consists of the free part H0 = HA +HF for atom and field and an
interaction term H1 including the coupling to the laser, which is treated classically,
and the free field. In the atomic HamiltonianHA the translational degrees of freedom
are disregarded since the atoms are assumed to be located at a fixed positions in
the trap in this part of the work. The state of the system is given by the product
of the atomic state |ψ〉 and the state of the radiation field in Fock basis |nk,λ〉, with
wave vector k and polarization λ. The time development is described by the time
development operator U(t′, t).

For this system the emission of photons shall be observed. In order to avoid
the problems of continuous measurements, discrete gedanken measurements in time
intervals ∆t are being performed. For this purpose an ideal 4π detector is assumed
which collects every emitted photon. The time interval ∆t has to fulfill certain
bounds. On the one hand it has to be short compared to the lifetimes of the atomic
states involved. These are of the order of 10−8s. On the other hand ∆t has to be
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large enough to avoid a freezing of the atom’s time evolution due to the quantum
Zeno effect [36, 39]. For optical transitions this leads to

∆t ≈ 10−12 s. (2.1)

At time t = 0 the system is in the state |0ph〉|ψ0〉. After a time ∆t it has evolved
to the state U(∆t, 0)|0ph〉|ψ0〉. Now the first gedanken measurement is performed. If
no photon has been detected this corresponds to a projection onto the zero photon
subspace with the projector P0 = |0ph〉〈0ph| [40]. After the measurement the system
is therefore in the state

P0U(∆t, 0)|0ph〉|ψ0〉 = |0ph〉〈0ph|U(∆t, 0)|0ph〉|ψ0〉 (2.2)

in this case.
Accordingly, the state of the system at time tn = n∆t is given by

|0ph〉|ψcond(tn)〉 = P0U(tn, tn−1)P0 . . .P0U(t2, t1)P0U(t1, t0)|0ph〉|ψ0〉
= |0ph〉US

cond(tn, t0)|ψ0〉
(2.3)

if no photon has been detected up to this time. Here the conditional time-develop-
ment operator in the Schrödinger picture

US
cond(tn, t0) = 〈0ph|U(tn, tn−1)|0ph〉〈0ph| . . . |0ph〉〈0ph|U(t1, t0)|0ph〉 (2.4)

has been defined. It describes the time development of the atomic state under the
condition that no photon has been detected. In the interaction picture with respect
to H1 it can be written as

Ucond(ti, ti−1) = 〈0ph|UI(ti, ti−1)|0ph〉
= eiHAti/~〈0ph|U(ti, ti−1)|0ph〉e−iHAti−1/~.

(2.5)

Using the Hamiltonian in the interaction picture HI(t) = eiH0t/~H1e
−iH0t/~ the con-

ditional time-development operator Ucond(ti, ti−1) can be calculated by expanding UI

into its Dyson series yielding

Ucond(ti, ti−1) = 11A −
i

~

ti∫
ti−1

dt′ 〈0ph|HI(t
′)|0ph〉

− 1

~2

ti∫
ti−1

dt′
t′∫

ti−1

dt′′ 〈0ph|HI(t
′)HI(t

′′)|0ph〉+O(∆t2),

(2.6)

where 11A is the unity operator on the atomic subspace. The conditional time devel-
opment is generated by a conditional Hamiltonian Hcond, so that

Ucond(t, t0) = e−iHcond(t−t0)/~. (2.7)
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The conditional Hamiltonian is non-Hermitian since the norm squared of the con-
ditionally time-developed state is diminishing. It gives the probability of detecting
no photon up to time t

P0(t;ψ0) = ‖|ψcond(t)〉‖2 = ‖e−iHcondt/~|ψ0〉‖2. (2.8)

The extension of this formalism to density matrices is obvious. If ρ0 denotes the
state of the atom at time t = 0 then

ρcond(t) = Ucond(t, 0)ρ0U
†
cond(t, 0) (2.9)

gives the conditionally developed density matrix at time t and

P0(t; ρ0) = Trρcond(t). (2.10)

Besides the zero-photon probability P0(t;ψ0) another quantity which is often
needed is the probability distribution of the first photon w1(t;ψ0). It is given by the
negative derivative of the no-photon probability

w1(t;ψ0) = − d

dt
P0(t;ψ0). (2.11)

2.1.2 The reset state

In the previous section the time development of the atom under the condition that
no photon has been detected was addressed. Now the state of the atom after the
detection of a photon will be derived. This question is discussed in detail in Reference
[13].

Let the state of the whole system at time t be in the state ρAF(t) = |0ph〉ρ(t)〈0ph|,
where ρ(t) is the density matrix of the atomic state. Then at time t+ ∆t it will be
in the state

ρAF(t+ ∆t) = UI(t+ ∆t, t) |0ph〉ρ(t)〈0ph|U †
I (t+ ∆t, t). (2.12)

Now, again, a gedanken measurement is carried out. Since ∆t is short compared to
the lifetimes of the energy levels involved, it is very unlikely to find more than one
photon in a measurement. So, if a photon was detected, one has to project onto the
one-photon subspace and the state after the measurement is

P1UI(t+ ∆t, t)|0ph〉ρ(t)〈0ph|U †
I (t+ ∆t, t)P1, (2.13)

with P1 :=
∑

k,λ |1k,λ〉〈1k,λ|. Here it is assumed that a photon does not interact with
the atom anymore when it is absorbed in the detector. The state of the atom after
a photon detection arises by taking the partial trace with respect to the radiation
field

Trph (P1ρAF(t+ ∆t)P1) =
∑
k,λ

〈1k,λ|UI(t+ ∆t, t)|0ph〉ρ(t)〈0ph|U †
I (t+ ∆t, t)|1k,λ〉.

(2.14)
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Expanding the time development operators into a Dyson series and keeping only
first order terms in ∆t gives the unnormalized reset state R(ρ)

Trph (P1ρ(t+ ∆t)P1)

=
1

~2

t+∆t∫
t

dt′
t+∆t∫
t

dt′′
∑
k,λ

〈1k,λ|HI(t
′)|0ph〉ρ(t)〈0ph|HI(t

′′)|1k,λ〉+O(∆t2)

= R(ρ)∆t+O(∆t2). (2.15)

The normalized reset state is given by

R̂(ρ) :=
R(ρ)

Tr(R(ρ))
, (2.16)

where Tr(R(ρ)) is the probability of detecting a photon after the time interval
∆t. It can be used again as an initial state for a subsequent time development
with Ucond. By generating random photon emissions in accordance with the first
photon distribution w1(t;ψ0) the quantum jump approach thus allows to simulate
fluorescence trajectories of single atoms. An efficient algorithm for this purpose is
given, for example in Reference [36].

2.1.3 The optical Bloch equation

A given ensemble of atoms which at time t is described by ρ(t) can be divided at
time t + ∆t into two sub-ensembles. One contains all atoms which have emitted a
photon and the other contains the atoms which have not emitted a photon. The
former is described by the reset state, and the latter is given by ρcond(t + ∆t). For
the whole ensemble one therefore has

ρ(t+ ∆t) = Ucond(t+ ∆t, t)ρ(t)U †
cond(t+ ∆t, t) + R(ρ(t))∆t

= (11A −
i

~
Hcond∆t)ρ(t)(11A +

i

~
H†

cond∆t) + R(ρ(t))∆t

= ρ(t)− i

~

[
Hcondρ(t)− ρ(t)H†

cond

]
∆t+ R(ρ(t))∆t

(2.17)

up to first order in ∆t. Since ∆t is much smaller than the time scale on which ρ(t)
evolves one has

ρ̇(t) = − i

~

[
Hcondρ(t)− ρ(t)H†

cond

]
+ R(ρ(t)) (2.18)

This is the master equation for the atomic state of an atom interacting with the
radiation field also known as the optical Bloch equation. It is usually derived in a
different way without the use of gedanken measurements [41]. It can be shown that
both approaches yield the same result [13].
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strong laser, Ω3 =⇒ A3

⇐= weak laser, Ω2

|1〉

|2〉

|3〉

Figure 2.1: Three-level system in V configuration.

The right hand side of equation (2.18) can be used as a definition for the Liouville
super-operator L

ρ̇ = L ρ, (2.19)

which immediately gives the formal solution

ρ(t) = eL tρ(t0). (2.20)

2.1.4 Application to three-level systems

In the following sections the conditional Hamiltonian and the reset state for three-
level systems in different configurations are needed. The corresponding calculations
will be given here, as an example, for the V-system as shown in Figure 2.1, in order
to illustrate the necessary steps.

The free Hamiltonian for atom and radiation field is given by

H0 = ~ω3|3〉〈3|+ ~ω2|2〉〈2|+
∑
kλ

~ωka
†
kλakλ (2.21)

where ω2 and ω3 are the transition frequencies between the ground state and the
excited states, a†kλ and akλ are the raising and lowering operators for the field mode
with wave vector k, polarization λ, and angular frequency ωk = c|k|. The interaction
Hamiltonian in dipole approximation reads

H1 = D · (E(r) +EL(r, t)). (2.22)

with the dipole operator

D = D12|1〉〈2|+D13|1〉〈3|+ h.c., (2.23)

using the dipole transition matrix elementsDij = e〈i|x̂|j〉. The field terms are given
by

E(r) = i
∑
kλ

√
~ωk

2ε0V

(
εkλakλe

ik·r + ε∗kλa
†
kλe

−ik·r
)

(2.24)
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for the free radiation field and

EL(r, t) = Re (E0,L2e
i(kL2

·r−ωL2
t)) + Re (E0,L3e

i(kL3
·r−ωL3

t)). (2.25)

for the laser fields. Defining the Rabi frequencies as

Ωj =
e

~
(E0,Lj

·D1j) (2.26)

and the coupling constants for the interaction between the radiation field and the
atom as

g
(j)
kλ = ie

√
ωj

2ε0~V
(D1j · εkλ) (2.27)

one has for the Hamiltonian

H = H0 +H1

=
3∑

j=2

~ωj|j〉〈j|+
∑
kλ

~ωka
†
kλakλ +

3∑
j=2

∑
kλ

[
~g(j)

kλakλ|j〉〈1|+ h.c.
]

+
3∑

j=2

~Ωj

2

[
|1〉〈j|eiωLj

t + h.c.
]
.

(2.28)

In the laser adapted interaction picture with respect toHL
0 = ~ωL2|2〉〈2|+~ωL3|3〉〈3|+∑

kλ ~ωka
†
kλakλ the Hamiltonian can be written as

HI = eiHL
0 t/~HL

1 e−iHL
0 t/~

=
2∑

j=1

∑
kλ

~
[
g

(j)
kλakλe

−i(ωk−ωj)t|j〉〈1|+ h.c.
]

+
3∑

j=2

~
2
Ωj

[
|1〉〈j|+ |j〉〈1|

]
−

3∑
j=2

~∆j|j〉〈j|,

(2.29)

where the laser detunings ∆j = ωLj
− ωj have been introduced. For the calculation

of the conditional Hamiltonian the time development operator Ucond(ti, ti−1) has to
be determined to first order in ∆t, according to equation (2.6). In first order in HI,
the atom-field interaction term drops out due to the field operators. One has

− i

~

ti∫
ti−1

dt′ 〈0ph|HI(t
′)|0ph〉 = − i

~

3∑
j=2

[
~Ωj

2

[
|1〉〈j|+ |j〉〈1|

]
− ~∆j|j〉〈j|

]
∆t. (2.30)

The corresponding term in second order is discarded since it is proportional to ∆t2.
After some calculation, the residual terms lead to (see, e.g., Reference [12])

− 1

~2

ti∫
ti−1

dt′
t′∫

ti−1

dt′′ 〈0ph|HI(t
′)HI(t

′′)|0ph〉 = −
3∑

j=2

Aj

2
|j〉〈j|∆t+O(∆t2). (2.31)
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Here the Einstein coefficients

Aj =
e2ω3

j |D1j|2

3πε0~c3
(2.32)

have been defined. Overall, the conditional Hamiltonian for the V system reads

Hcond =
3∑

j=2

~Ωj

2

[
|1〉〈j|+ h.c.

]
−

3∑
j=2

~
2

(
iAj + 2∆j

)
|j〉〈j|. (2.33)

The reset state

The reset state for a single V-system can be determined without calculation. After
a photon emission the system is always in the ground state. The normalized reset
state is therefore

R̂(ρ) = |1〉〈1|. (2.34)

The probability for an emission in a particular state is given by the population of
the state multiplied with the corresponding Einstein coefficient, which implies the
non-normalized reset state

R(ρ) = A2|1〉〈2|ρ|2〉〈1|+ A3|1〉〈3|ρ|3〉〈1|. (2.35)

2.2 Description of the fluorescence properties

The quantum jump approach allows the description of the fluorescence process of
single quantum systems. In this work particular interest is put in the effect of
macroscopic bright and dark periods which can only be observed in single quantum
systems. In this section the mechanism which leads to this effect is explained in
more detail.

The occurrence of macroscopic bright and dark periods in the fluorescence of a
single quantum system can be explained by means of the quantum jump approach
on the grounds of quantum mechanics. This approach also allows to describe the
statistics of these periods. In the following a brief explanation of the basic principles
of these calculations will be given. A more detailed discussion can be found in
Reference [12].

A three-level system shows macroscopic quantum jumps if one of the excited
states is meta-stable and driven by a weak laser1. For the V system this means

Ω2, A2 � Ω3, A3 . (2.36)

1For macroscopic quantum jumps without a meta-stable state see Reference [42].
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In the case of the V system the atom is in the ground state after each photon
emission. Hence, the probability that no photon is detected until time t after this
emission is given by the zero-photon probability

P0(t; |1〉) = ‖e−iHcondt/~|1〉‖2. (2.37)

With M ≡ iHcond/~ this can be written as

P0(t; |1〉) = ‖
3∑

j=1

3∑
k=1

|j〉ajke
−µkt‖2 =

3∑
j=1

∣∣∣ 3∑
k=1

ajke
−µkt

∣∣∣2, (2.38)

where

ajk := 〈j|
∏
l( 6=k)

M − µl

µk − µl

|1〉. (2.39)

The µj are the eigenvalues of M . They are given, to good approximation, by

µ1,2 =
1

4

(
A3 − 2i∆3 ±

√
(A3 − 2i∆3)2 − 4Ω2

3

)
, µ3 =

A2

2
+ Ω2

2

A3 − 2i∆3

2Ω2
3

. (2.40)

For simplicity, resonant excitation of the weak transition (∆2 = 0) has been assumed
here. Since Reµ3 � Reµ1,2 the probability P0(t, |1〉) can be divided into a fastly

decreasing part P
(1)
0 (t) and a slowly decreasing part P

(2)
0 (t). This bi-exponential

form is the reason for the occurrence of macroscopic dark periods. Due to P
(1)
0 (t)

it is very likely that the time between two successive photons is very small. But
from time to time it may happen that no photon has been emitted up to a time
where P

(1)
0 (t) has already vanished. Then only P

(2)
0 (t) plays a role leading to a long

dark period. The state of the system is given by the corresponding eigenstate |µ3〉.
It can be shown that this state is given to good approximation by |2〉, with small
contributions of the other two states [39, 43].

Consequently, the dark periods can be defined by introducing a time constant tD
for which the condition

1

2Reµ1,2

� tD �
1

2Reµ3

(2.41)

is posed. A dark period is then defined as period without photon emission which
lasts longer than tD. Accordingly, the probability that after a given photon emission
there is a dark period is given by p = P0(tD). As long as (2.41) holds this probability
is independent of the actual (specific) choice of tD. For the V system it is given by

p = Ω2
2

A2
3 + 4∆2

3

Ω4
3

+ A2. (2.42)

Splitting the first photon distribution w1(t) into a part for t < tD and a part for
t ≥ tD one can define a probability density

w1L(t) =
1

1− p
χ[0,tD)(t)w1(t) (2.43)
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describing the distribution of the time between two emissions during a bright period
and a density

wD(t) =
1

p
χ[tD,∞)(t)w1(t) (2.44)

describing the distribution of the dark periods. The latter is approximately given
by

wD(t) = −χ[tD,∞)(t)
1

p

d

dt
P

(2)
0 (t) = −χ[tD,∞)(t)

1

p

d

dt
pe−2Re µ3t

= χ[tD,∞)(t)2Reµ3e
−2Re µ3t.

(2.45)

Neglecting A2, the mean duration of a dark period is thus given by

TD =

∞∫
0

dt wD(t)t =
1

2Reµ3

=
Ω2

3

A3Ω2
2

(2.46)

and its inverse can be interpreted as the transition rate from dark to bright period

p01 =
A3Ω

2
2

Ω2
3

. (2.47)

A similar, though slightly more complicated, calculation using w1L gives the tran-
sition rate from bright to dark period p10 [12]. More heuristically, this transition rate
should be given by multiplying p with the mean photon density in a bright period.
Since during a bright period mainly the states |1〉 and |3〉 are populated and the
system basically behaves like a two-level system one can use to good approximation
the steady state photon rate of the two level system [12]

I2L
ss =

A3Ω
2
3

A2
3 + 2Ω2

3 + 4∆2
3

, (2.48)

The transition rate from bright to dark period is given by

p10 = pI2L
ss =

Ω2
2A

3
3

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)

= T−1
L , (2.49)

where TL is the mean duration of a bright period. The statistics of the bright and
dark periods is described completely by the transition rates p01 and p10.

2.3 Experimentally relevant level structures

The level structures of the ions used in most of the relevant experiments cannot be
described by the V system. In this section alternative level systems are presented
which are better suited for the description of the experiments.
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|1〉

|2〉

|3〉

A3

A2

A1

strong laser, Ω3 =⇒

|1〉

Figure 2.2: Three-level system in D configuration for the description of Hg+, with
fast transitions (solid lines) and slow transitions (dashed lines).

2.3.1 The D system

The Hg+ ions used in the experiments of References [4, 23] have a level structure in
which the meta-stable state is populated via spontaneous decay and is not coupled
by a laser. It can be modeled by the three-level system in a D configuration depicted
in Figure 2.2. The transition |1〉−|3〉 is driven by a strong laser with Rabi frequency
Ω3. The state |3〉 can decay via a fast transition, with Einstein coefficient A3, back
to the ground state but also via a slow decay with A2 to the meta-stable level |2〉.
For simplicity all transitions are treated as dipole transitions. This level itself can
decay slowly back to the ground state. The condition

A3,Ω3 � A1, A2 (2.50)

enables the occurrence of macroscopic dark periods.
The level scheme of Ca+ used in the experiments of references [24, 25, 26] is a

bit more complicated but the D system can also be used in this case.

2.3.2 The four-level system for the description of the Ba+

ions

The effective level scheme of the Ba+ ions used in the experiment of References
[19, 20] is more complicated. It is given by the 5-level system shown in Figure 2.3(a).
The ground state 6 2S1/2 and the two upper states 6 2P1/2 and 5 2D5/2 constitute a
strongly driven fluorescing Λ system. The P1/2 level decays with a rate of about
3× 107 s−1 to the D3/2 level and 108 s−1 to the ground state. The photons from the
transition of the ground state to the P1/2 state are recorded constituting the signal
of the bright periods. An excitation by the weak incoherent driving of the 6 2S1/2

- 6 2P3/2 transition and a subsequent decay to the meta-stable 5 2D5/2 state leads
to a dark period. This happens with a branching of about 1 : 3 since rate to the
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6 2P3/2

6 2P1/2

6 2S1/2

5 2D3/2

5 2D5/2

(a)

A1

A2

A3

A4 W

Ω3

|1〉

|2〉

|3〉

|4〉
(b)

Figure 2.3: (a) Relevant level scheme of Ba+ [19, 20]. For circled levels see text. (b)
Effective four-level system for Ba+. Strong coherent driving of the |1〉−|3〉 transition
by a laser, weak incoherent driving of the |1〉 − |4〉 transition by a lamp, weak decay
of level |2〉.

ground state is 1.2×108 s−1 and the rate to the meta-stable state is 4×107 s−1. The
dark period ends when the ion decays back to the ground state which happens with
a rate of 0.02 s−1. The laser driving the S1/2 − P1/2 transition was detuned in the
experiment by ∆ = −1.5× 108 s−1.

The transition to the dark state D5/2 is only possible when the system is in the
ground state. Therefore the details of the two upper states of the Λ system, marked
by the circle in Figure 2.3(a), play no significant role for the transition to a dark
period, and therefore these two states are here replaced by an effective single level.
This leads to the four-level configuration of Figure 2.3(b).



Chapter 3

Cooperative quantum jumps for
two and three dipole-interacting
atoms

If more than one atom or ion is stored in a trap the dipole-dipole interaction between
them may alter their radiative behavior. Such cooperative effects have attracted con-
siderable interest in the literature (see [17, 18] and references therein), and they may
play a role for possible quantum computers based on trapped ions or atoms. In the
case of atoms showing macroscopic bright and dark periods in their fluorescence
the dipole-dipole interaction may change the statistics of the jump process. In this
context, different experimental results have been obtained which at first view seem
to be contradictory. In an experiment with two and three Ba+ ions the observa-
tion of a large number of double and triple jumps, exceeding by far the expected
value for independent atoms, was reported [19]. These are jumps by two or three
intensity steps within a short resolution time. Experiments with Hg+ ions showed
no such effects [23]. More recently, effects similar to Reference [19] were found in
an experiment with Ca+ ions [24], in contrast to another, comparable, experiment
[25]. Neither were cooperative effects found experimentally in an extensive analysis
of the quantum jump statistics of two trapped Sr+ ions [27].

In this chapter the dipole-dipole interaction between two and three of the three-
and four-level systems presented in the last chapter will be investigated. The aim is
to describe the relevant experiments and to find out if cooperative effects as observed
in the experiment of Reference [19] can be explained by the dipole-dipole interaction.

In Section 3.1 the extension of the quantum jump approach is presented. In
Section 3.2 methods for the calculation of the transition rates between the different
intensity periods for two V and D systems are presented and carried over to the four-
level system for Ba+. In Section 3.3 these methods are used for the description of the
three of the named three-level schemes. Finally a simplified approach is presented
which also allows to gain analytical results for three four-level systems.
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3.1 Quantum jump approach for dipole-interac-

ting atoms

The Hamiltonian for n general three-level systems in dipole- and rotating-wave-
approximation and in the interaction picture is given by

HI =
n∑

i=1

HIi =
n∑

i=1

3∑
j=2

∑
kλ

~
[
g

(i)
j,kλakλS

+
i,je

ik·rie−i(ωk−ωj)t + h.c.
]

+
n∑

i=1

3∑
j=2

~
2

[
ΩijS

−
ij + h.c.

]
−

n∑
i=1

3∑
j=2

~∆jS
+
ijS

−
ij ,

(3.1)

where ri is the position of the ith atom and

S+
i1 = |3〉ii〈2|, S+

i2 = |2〉ii〈1|, S+
i3 = |3〉ii〈1|, and S−ij = S+†

ij (3.2)

are the raising and lowering operators for the different transitions of the ith atom1.
In the following the transition connected to the operators S±ij will be referred to as
transition j. Note that for two D systems the definitions of S+

i1 and S+
i2 have to

be interchanged in order to retain the suggestive notation introduced for a single D
system in the last chapter. The coupling constants between the atom and the free
radiation field are given by

g
(i)
j,kλ := ie

√
ωk

2ε0~V
(D

(i)
j · εkλ), (3.3)

where D
(i)
j is the dipole transition matrix element for the transition j. The Rabi

frequencies are defined as

Ωij :=
e

~

(
E0,Lj

·D(i)
j

)
e−ikLj

·ri , (3.4)

with E0,Lj
being the field amplitude of a laser field tuned to match the frequency of

the transition j.

1For simplicity, the unity operators on the subspaces of the other atoms and of the radiation
field are suppressed in the following.
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3.1.1 The conditional Hamiltonian for dipole-interacting
three-level systems

The conditional Hamiltonian can be calculated as in section 2.1.1 using the Hamil-
tonian (3.1) and expanding the conditional time development operator

Ucond(ti, ti−1) = 11A −
i

~

ti∫
ti−1

dt ′〈0ph|HI(t
′)|0ph〉

− 1

~2

ti∫
ti−1

dt′
t′∫

ti−1

dt′′
n∑

i,i′=1

〈0ph|HIi(t
′)HIi′(t

′′)|0ph〉+O(∆t2).

(3.5)

The first order terms

− i

~

ti∫
ti−1

dt ′〈0ph|HI(t
′)|0ph〉 = −

n∑
i=1

3∑
j=1

[
~
2

[
ΩijS

−
ij + h.c.

]
−∆jS

+
ijS

−
ij

]
∆t (3.6)

and the second order terms with i = i′

− 1

~2

ti∫
ti−1

dt ′
t′∫

ti−1

dt ′′
n∑

i=1

〈0ph|HIi(t
′)HIi(t

′′)|0ph〉 = −
n∑

i=1

3∑
j=1

[
Aj

2
S+

ijS
−
ij

]
∆t (3.7)

yield contributions corresponding to the sum of n independent atoms. The second
order terms with i 6= i′ represent the dipole-dipole interaction between the atoms.
The complete calculation of these terms is given in [44]. It yields

1

~2

ti∫
ti−1

dt ′
t′∫

ti−1

dt ′′〈0ph|HIk(t
′)HIl(t

′′)|0ph〉 = −
3∑

j=1

C
(j)
kl

2
S+

kjS
−
lj ∆t (3.8)

with the complex dipole-dipole coupling parameters given by

C
(j)
kl =

3Aj

2
eia

(j)
kl

[
1

ia
(j)
kl

((
D̂

(k)
j · D̂(l)

j

)
−
(
D̂

(k)
j · r̂kl

)
(r̂kl · D̂(l)

j

))
+

(
1

a
(j)2
kl

− 1

ia
(j)3
kl

)((
D̂

(k)
j · D̂(l)

j

)
− 3
(
D̂

(k)
j · r̂kl

)(
r̂kl · D̂(l)

j

))]
,

(3.9)

where the hats denote the normalized versions of the corresponding vectors. Here
the quantity a

(j)
kl denotes the distance between atoms k and l with respect to the

wavelength of the corresponding transition

a
(j)
kl =

2πrkl

λj

=
ωjrkl

c
. (3.10)
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Figure 3.1: Distance dependence of the real and imaginary part of the coupling
coefficients C

(j)
kl with ϑkl = π/2 following equation (3.11).

In experiments, usually a homogeneous magnetic field is applied to the atoms in
order to align the dipole moments. In this case all dipole moments connected with a
specific transition are the sameD

(i)
j = Dj and the dipole-dipole coupling parameters

can be written as

C
(j)
kl =

3Aj

2
eia

(j)
kl

[
1

ia
(j)
kl

(1− cos2 ϑkl) +

(
1

a
(j)2
kl

− 1

ia
(j)3
kl

)
(1− 3 cos2 ϑkl)

]
, (3.11)

with the angle ϑkl defined as

cos2 ϑkl =
∣∣∣D̂j · r̂kl

∣∣∣2 , (3.12)

which for real dipole moments can be interpreted as the angle between the dipole
moment and the line connecting atoms k and l. Obviously C

(j)
kl = C

(j)
lk in this case.

Furthermore the Rabi frequencies Ωij now only depend on the atom number via the

phase factor e−ikLj
·ri .

As Figure 3.1 shows, the coupling constants exhibit distance dependent oscilla-
tions. These oscillations have a maximum amplitude for ϑkl = π/2. For a

(j)
kl → 0 the

imaginary part diverges whereas the real part reaches the value of the corresponding
Einstein coefficient.

The conditional Hamiltonian is then given by

Hcond =
n∑

i=1

3∑
j=1

~
2i

(Aj − 2i∆3)S
+
ijS

−
ij +

n∑
i=1

3∑
j=1

~
2

[
ΩijS

−
ij + h.c.

]
+

n∑
k,l=1
k<l

3∑
j=1

~
2i
C

(j)
kl

(
S+

kjS
−
lj + S+

ljS
−
kj

)
.

(3.13)

The special cases for further calculations with a specific level system and a specific
number of atoms are given in the respective sections.
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3.1.2 The reset state

In addition to the conditional Hamiltonian also the reset state is needed for the
following. The situation is more complicated than for a single V system which
makes a calculation necessary. According to equation (2.15) one has to evaluate

R(ρ)∆t+O(∆t2)

=
1

~2

t+∆t∫
t

dt′
t+∆t∫
t

dt′′
∑
k,λ

〈1k,λ|HI(t
′)|0ph〉ρ(t)〈0ph|HI(t

′′)|1k,λ〉+O(∆t2). (3.14)

Analogously to the calculation of the conditional Hamiltonian, there are terms which
give the reset state for each atom individually

1

~2

t+∆t∫
t

dt′
t+∆t∫
t

dt′′
∑
k,λ

〈1k,λ|HIi(t
′)|0ph〉ρ〈0ph|HIi(t

′′)|1k,λ〉

= AjS
−
ijρS

+
ij∆t+O(∆t2), (3.15)

and terms which correspond to the dipole-dipole interaction between a pair of atoms

1

~2

t+∆t∫
t

dt′
t+∆t∫
t

dt′′
∑
k,λ

〈1k,λ|HIk(t
′)|0ph〉ρ〈0ph|HIl(t

′′)|1k,λ〉

= ReC
(j)
kl S

−
kjρS

+
lj ∆t+O(∆t2). (3.16)

As above, equal dipole moments D
(i)
j = Dj have been assumed. This leads to the

reset state

R(ρ) =
n∑

i=1

3∑
j=1

AjS
−
ijρS

+
ij +

n∑
k,l=1
k<l

3∑
j=1

ReC
(j)
kl

(
S−kjρS

+
lj + S−ljρS

+
kj

)
. (3.17)

For the full calculation Reference [44] can be consulted.

3.2 Two dipole-interacting atoms

In this section cooperative effects of two dipole-interacting atoms are investigated.
First the necessary methods are presented for two V systems. Afterwards two three-
level systems in a D configuration modeling the level scheme of Hg+-ions [23] and
two four-level systems for the experiments with Ba+-ions [3, 19, 20] are studied.
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3.2.1 Two V systems

The conditional Hamiltonian for two dipole-interacting V systems can be read off
from equation (3.13) by setting n = 2, Ω1 = 0, and A1 = A2 = 0. For ∆2 = 0, this
results in

Hcond =
~
2i

[
(A3 − 2i∆3)

[
S+

13S
−
13 + S+

23S
−
23

]
+ C3

[
S+

13S
−
23 + S+

23S
−
13

]]
+

2∑
i=1

3∑
j=2

~
2

[
ΩijS

−
ij + h.c.

]
,

(3.18)

with C3 = C
(3)
12 = C

(3)
21 . For further simplification it is assumed in the following that

the lasers are directed orthogonal to the line connecting the two atoms. Then the
Rabi frequencies connected with a specific laser are equal and can be assumed to be
real

Ω13 = Ω23 = Ω3, Ω12 = Ω22 = Ω2. (3.19)

With the same assumptions the reset state of equation (3.17) becomes

R(ρ) = A3

[
S−13ρS

+
13 + S−23ρS

+
23

]
+ ReC3

[
S−13ρS

+
23 + S−23ρS

+
13

]
. (3.20)

For a single V system the reset state was a density matrix of a pure state.This has
the advantage that a single fluorescence trajectory can always be described by a
pure state. For two interacting V systems this is not possible anymore. However,
with the reset operators

R+ :=
(
S−13 + S−23

)
/
√

2, R− :=
(
S−13 − S−23

)
/
√

2 (3.21)

it is possible to write the reset state as a sum of two density matrices of pure states

R(ρ) = (A3 + ReC3)R+ρR
†
+ + (A3 − ReC3)R−ρR

†
−. (3.22)

Dicke basis

For further calculations it is convenient to use instead of the basis of product states
a basis which is adapted to the symmetry of the system under the exchange of the
atoms. This so-called Dicke basis is given by

|g〉 = |1〉|1〉, |e2〉 = |2〉|2〉, |e3〉 = |3〉|3〉, (3.23a)

and

|sij〉 =
(
|i〉|j〉+ |j〉|i〉

)
/
√

2, |aij〉 =
(
|i〉|j〉 − |j〉|i〉

)
/
√

2. (3.23b)
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|g〉

|s12〉|a12〉

|e2〉

|e3〉

|s23〉|a23〉

|s13〉
|a13〉

Figure 3.2: Level scheme of two V systems in Dicke basis. Arrows with solid lines
represent decays with A3 ± ReC3, solid lined double-sided arrows represent laser
coupling with Ω3, dashed double-sided represent laser coupling with Ω2. The levels
|s13〉 and |a13〉 are shifted by ±ImC3 with respect to their energy without interaction
(dotted line).

In this basis the conditional Hamiltonian takes the form

Hcond =
~
2i

(A3 − 2i∆3)
[
2|e3〉〈e3|+ |s23〉〈s23|+ |a23〉〈a23|+ |s13〉〈s13|+ |a13〉〈a13|

]
+

~
2i
C3

[
|s13〉〈s13| − |a13〉〈a13|

]
+

~
2
Ω3

[√
2
(
|g〉〈s13|+ |s13〉〈e3|

)
+ |s12〉〈s23| − |a12〉〈a23|+ h.c.

]
+

~
2
Ω2

[√
2
(
|g〉〈s12|+ |s12〉〈e2|

)
+ |s13〉〈s23|+ |a13〉〈a23|+ h.c.

]
(3.24)

and the reset operators of (3.21) are given by

R+ = |g〉〈s13|+ |s13〉〈e3|+
(
|s12〉〈s23| − |a12〉〈a23|

)
/
√

2,

R− = |g〉〈a13|+ |a13〉〈e3|+
(
|s12〉〈a23|+ |a12〉〈s23|

)
/
√

2.
(3.25)

Figure 3.2 shows the level scheme arising from the conditional Hamiltonian and
the reset state in Dicke basis. The coupling between the atoms due to the dipole-
dipole interaction has two distinguished effects on this level scheme. On the one
hand the energy of the states |s13〉 and |a13〉 is shifted by ±ImC3, respectively. On
the other hand the decay rate of transitions between states with the same symmetry
is enhanced by ReC3 whereas it is reduced by ReC3 for transitions between states of
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different symmetry. Furthermore, one can see that the lasers only couple states with
the same symmetry. This arises from the assumption that the lasers are directed
perpendicular to the axis of the atoms.

Transition rates via Bloch equations

In contrast to a single V system, the reset state of two such systems is not inde-
pendent of the state before the emission of a photon. This is due to the fact that
there are many different possible transitions on which the decay may occur, as can
be seen in figure 3.2. Therefore it is much more difficult to apply the quantum jump
approach for the calculation of the transition rates. Therefore another method is
used here which is based on a perturbation theoretical approach applied to the Bloch
equations of this system [17]. This method will be presented in this section.

In principal, a system of two atoms which exhibit bright and dark periods in
their fluorescence should show three periods of different intensity. A dark period
I0 in which both atoms do not emit any photons, a period I1 with the intensity of
the bright period of a single atom where one atom is dark and the other one emits
photons, and a period of double intensity I2 in which both atoms emit photons. If
the weak Rabi frequency is neglected the system decouples into three independent
subsystems as can be seen in Figure 3.2

S0 =
{
|e2〉
}
, (3.26a)

S1 =
{
|s12〉, |a12〉, |s23〉, |a23〉

}
, (3.26b)

S2 =
{
|g〉, |s13〉, |a13〉, |e3〉

}
. (3.26c)

As in the one atom case where one can assume to good approximation that the
population is mainly in state |2〉 in a dark period and mostly in {|1〉, |3〉} in a
bright period, the different subspaces S0,S1,S2 can be associated with the different
intensity periods I0, I1, I2. The transition rates will thus be calculated by starting
with a density matrix in one particular subspace. Then the rate of build-up of
population in the other subspaces will be determined. Taking a density matrix
ρ0,i ∈ Si at a time t0 the state after a time t0 + ∆t is calculated in perturbation
theory with respect to the small parameters. The time interval ∆t used here should
be long in comparison to the mean time between the emission of two photons but
short compared to the duration of the intensity periods

Ω−1
3 , A−1

3 � ∆t� Ω−1
2 . (3.27)

For the calculation the Bloch equation is written in a Liouvillean form

ρ̇ = L ρ = {L0(A3, C3,Ω3,∆3) + L1(Ω2)}ρ, (3.28)

where L1 serves as the perturbation. For the state at time t + ∆t one then has to
first order in perturbation theory

ρ(t0 + ∆t; ρ0,i) = eL0∆tρ0,i +

∫ ∆t

0

dτ eL0(∆t−τ)L1e
L0τρ0,i. (3.29)
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Since ∆t satisfies the condition (3.27), the first term on the right hand side gives the
equilibrium state ρss,i of L1 in subsystem Si. The term eL0τρ0,i under the integrand
also rapidly reaches this equilibrium state. After the substitution τ → ∆t − τ one
therefore has

ρ(t0 + ∆t; ρ0,i) = ρss,i +

∫ ∆t

0

dτ eL0τL1ρss,i. (3.30)

Since for two V system L1 corresponds to the driving with the weak laser, the
term L1ρss,i only consists of coherences between subspace Si and the neighboring
subspaces. The zero-eigenvalue subspace of L0, on the other hand, is spanned by the
quasi-steady states ρss,i. Therefore, L1ρss,i has no components in the zero eigenvalue
subspace of L0. The other eigenvalues all have negative real parts of the order of A3

and Ω3. Therefore the integrand in equation (3.30) is rapidly damped which allows
to extend the upper integration limit to infinity. This yields

ρ(t0 + ∆t; ρ0,i) = ρss,i + (ε−L0)
−1L1ρss,i , (3.31)

independent of ∆t [17], where the limit ε↘ 0 is implied.

Let |xi〉, i = 1 . . . 9 denote a numbering of the Dicke states. From the Bloch
equations one gets the exact relations

d

dt
〈e2|ρ|e2〉 =

√
2Ω2Im 〈s12|ρ|e2〉, (3.32a)

d

dt

∑
xi∈S2

〈xi|ρ|xi〉 = Ω2Im
[√

2〈s12|ρ|g〉+ 〈s23|ρ|s13〉+ 〈a23|ρ|a13〉
]
, (3.32b)

d

dt

∑
xi∈S1

〈xi|ρ|xi〉 = − d

dt

[
〈e2|ρ|e2〉+

∑
xi∈S2

〈xi|ρ|xi〉
]
. (3.32c)

Together with equation (3.31) this allows to calculate the transition rates as

pij =
d

dt

∑
xk∈Sj

〈xk|ρ|xk〉
∣∣∣
ρ=ρ(t0+∆t;ρ0,i)

. (3.33)

Note that p02 = p20 = 0 so that no direct, i.e. instantaneous, double jumps occur.

Transition rates

The stationary states in the different subsystems are determined by L0ρss,i = 0,
where L0 is restricted to the subspace {|xk〉〈xk|}, |xk〉 ∈ Si. Since S0 is one-
dimensional, the corresponding stationary state is simply given by

ρss,0 = |e2〉〈e2|. (3.34a)
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By symmetry the steady state for S1 is given by

ρss,1 =
1

2

[
ρ2N

ss ⊗ |2〉〈2|+ |2〉〈2| ⊗ ρ2N
ss

]
=

1

2

A2
3 + Ω2

3 + 4∆2
3

A2
3 + 2Ω2

3 + 4∆2
3

(
|s12〉〈s12|+ |a12〉〈a12|

)
+

1

2

Ω2
3

A2
3 + 2Ω2

3 + 4∆2
3

(
|s23〉〈s23|+ |a23〉〈a23|

)
+

{
1

2

(iA3 + 2∆3)Ω3

A2
3 + 2Ω2

3 + 4∆2
3

(
|s12〉〈s23| − |a12〉〈a23|

)
+ h.c.

}
,

(3.34b)

independent of C3. For subspace S2 one calculates

ρss,2 =
1

N

[{
(A2

3 + Ω2
3 + 4∆2

3)
2 + (A2

3 + 4∆2
3)(|C3|2 + 2A3ReC3 − 4∆3ImC3)

}
|g〉〈g|

+ Ω2
3(2A

2
3 + Ω2

3 + 8∆2
3)|s13〉〈s13|+ Ω4

3

{
|e3〉〈e3|+ |a13〉〈a13|

}
+
{

Ω3(iA3 + 2∆3)
[√

2(A2
3 + Ω2

3 + 4∆2
3(A3 + 2i∆3)C3)|g〉〈s13|

+ iΩ3(A3 + C3 − 2i∆3)|g〉〈e3|+
√

2Ω2
3|s13〉〈e3|+ h.c.

}]
with

N = (A2
3 + 2Ω2

3 + 4∆2
3)

2 + (A2
3 + 4∆2

3)(|C3|2 + 2A3ReC3 − 4∆3ImC3).

(3.34c)

The transition rates for the V systems can now be calculated according to equa-
tions (3.31), (3.32), and (3.33) using these steady states. The result is

p01 = 2
A3Ω

2
2

Ω2
3

, (3.35a)

p10 =
A3

3Ω
2
2

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)
, (3.35b)

p12 =
A3Ω

2
2

Ω2
3

[
1 + 2ReC3

A3

A2
3 + 2Ω2

3 + 4∆2
3

− 4ImC3
A3

A2
3 + 2Ω2

3 + 4∆2
3

]
, (3.35c)

p21 = 2
A3Ω

2
2(A

2
3 + 4∆2

3)

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)

[
1 + 2ReC3

A3(A
2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2
(3.35d)

− 4ImC3
∆3(A

2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2

]
,

to first order in C3. For p01 and p10 this is also the exact result, to all orders in
C3. For the other two transition rates exact expressions in C3 can in principal be
evaluated, but will not be given here since they are too complicated. For usual
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Figure 3.3: Transition rate p21 for two dipole-interacting V systems. Dotted line:
independent atoms. Dashed line: up to first order. Dash-dotted line: up to second
order. Solid line: exact expression. Parameter values: A3 = 2× 108s−1, Ω3 =
5×107s−1, Ω2 = 104s−1.

parameter values the second order corrections are small at distances of more than a
wavelength λ3 [17].

As can be seen from equations (3.35) the cooperative effects are maximal if Ω3

is small compared to A3, i.e. for weak driving of the strong transition. In Figure
3.3 this case is illustrated for the rate p21. At a distance of one wavelength of
the strong transition deviation from the rate without interaction is about 40%. At
usual experimental distances of about 10λ3 the cooperative effects have decreased
to around 5%.

The double jump rate

The physical quantity investigated in the experiments of References [19, 20, 23, 22,
27] is the double jump rate. This is the rate at which jumps between periods of
intensities that differ by twice the intensity of a single system occur within a small
time interval TW, which cannot be resolved experimentally. It can be expressed
through the transition rates pij as follows [17].

The full double jump rate nDJ is a sum of the rate for upward and downward
double jumps

nDJ = n20
DJ + n02

DJ . (3.36)

First the downward rate is calculated. Each period of double intensity I2 is followed
by one with single intensity I1. The probability that the latter period is shorter than
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Figure 3.4: Double jump rate nDJ for two dipole-interacting V systems. Dotted line:
independent atoms. Dashed line: up to first order. Solid line: exact expression.
Parameter values: TW = 10−3s, other parameters like in Figure 3.3.

TW is given by
pT1<TW

= 1− e−(p10+p12)TW . (3.37)

The branching ratio for the following period to be of zero intensity is p10/(p10 +p12).
With the mean number of intensity periods Ii per unit time denoted by ni the rate
n02

DJ is given by

n20
DJ = n2

p10

p10 + p12

(
1− e−(p10+p12)TW

)
. (3.38)

Analogously, one finds

n02
DJ = n0

p12

p10 + p12

(
1− e−(p10+p12)TW

)
. (3.39)

It remains to determine n0 and n2. Since a period of intensity I1 is either followed
by a period of intensity I0 or by a period of intensity I2 one has, with the respective
branching ratios

n0 =
p10

p10 + p12

n1, n2 =
p12

p10 + p12

n1. (3.40)

Thus n20
DJ and n02

DJ are equal and the total double jump rate is given by

nDJ = 2n1
p10p12

(p10 + p12)2

(
1− e−(p10+p12)TW

)
. (3.41)

The mean durations of the intensity periods Ti are given by

T0 =
1

p01

, T1 =
1

p10 + p12

, T2 =
1

p21

. (3.42)
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In addition they fulfill
2∑

i=0

niTi = 1 (3.43)

which leads to

n1 =
p01p21(p10 + p12)

p01p12 + p01p21 + p10p21

. (3.44)

For TW � T1 the exponential can be expanded, finally leading to

nDJ = 2
p01p10p12p21

p01p12 + p01p21 + p10p21

TW. (3.45)

Figure 3.4 shows the double jump rate for parameter values maximizing cooperative
effects. The results are similar to those of the transition rate p21.

3.2.2 Two D systems

The D configuration, as displayed in Figure 2.2, can be seen as a model of the level
system of Hg+ used in the experiments of References [23, 45]. In the following two
dipole-interacting D systems will be investigated. The transition rates between the
three different intensity periods and the double jump rate will be calculated. Due
to the incoherent population of the dark state |2〉 the method presented for the V
systems has to be modified.

Conditional Hamiltonian and reset state

Using the Dicke basis of equation (3.23) the conditional Hamiltonian for two dipole-
interacting D systems can be written as

Hcond =
~
2i

{
A1

[
2|e2〉〈e2|+

2∑
j=1

|sjj+1〉〈sjj+1|+ |ajj+1〉〈ajj+1|
]

+
(
A2 + A3 − 2i∆3

)[
2|e3〉〈e3|+

2∑
j=1

|sj3〉〈sj3|+ |aj3〉〈aj3|
]

+
2∑

j=1

Cj

[
|sjj+1〉〈sjj+1| − |ajj+1〉〈ajj+1|

]
+ C3

[
|s13〉〈s13| − |a13〉〈a13|

]}
+

~
2
Ω3

{√
2
(
|g〉〈s13|+ |s13〉〈e3|

)
+ |s12〉〈s23| − |a12〉〈a23|+ h.c.

}
.

(3.46)

The reset state is given by

R(ρ) =
3∑

j=1

[
(Aj + ReCj)R

(j)
+ ρR

(j)†
+ + (Aj − ReCj)R

(j)
− ρR

(j)†
−

]
, (3.47)
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|g〉

|s12〉|a12〉

|e2〉

|e3〉

|s23〉|a23〉

|s13〉|a13〉

Figure 3.5: Level configuration of two D systems in the Dicke basis. Only the weak
transitions with the rates A2±ReC2 (dotted arrows) and A1±ReC1 (dashed arrows).
Line shifts due to detuning and to ImCi are omitted.

where the reset operators

R
(1)
+ =|g〉〈s12|+ |s12〉〈e2|+

1√
2

(
|s13〉〈s23|+ |a13〉〈a23|

)
,

R
(1)
− =|g〉〈a12|+ |a12〉〈e2|+

1√
2

(
|a13〉〈s23| − |s13〉〈a23|

)
,

R
(2)
+ =|e2〉〈s23|+ |s23〉〈e3|+

1√
2

(
|s12〉〈s13|+ |a12〉〈a13|

)
,

R
(2)
− =|e2〉〈a23|+ |a23〉〈e3|+

1√
2

(
|s12〉〈a13| − |a12〉〈s13|

)
,

R
(3)
+ =|g〉〈s13|+ |s13〉〈e3|+

1√
2

(
|s12〉〈s23| − |a12〉〈a23|

)
,

R
(3)
− =|g〉〈a13|+ |a13〉〈e3|+

1√
2

(
|s12〉〈a23|+ |a12〉〈s23|

)
.

have been used. As one can see in Figure 3.5 the level scheme without the weak
parameters A1, A2 is identical to the corresponding level scheme for two V systems.
Accordingly, one has the same independent subspaces S0,S1,S2 given by equation
(3.26). The transitions between the subsystems occur via spontaneous decay in this
case. The corresponding rates are given by A1±ReC1 for the transition to a period
with higher intensity and with A2 ± ReC2 for a transition to a period with lower
intensity.
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Transition rates

For the calculation of the transition rates a perturbation theoretical approach similar
to that for the V systems can be used. The Bloch equation is written in a Liouvillean
form as in the V system case

ρ̇ = − i

~

[
Hcondρ− ρH†

cond

]
+ R(ρ)

= {L0(A3, C3,Ω3,∆3) + L1(A1, A2, C1, C2)} ρ.
(3.48)

The perturbation part of the Liouvillean depends on the weak decay rates and the
corresponding dipole-dipole interaction parameters. For a given state ρ0,i in one of
the subsystems at time t0 the resulting state at time t+ ∆t can again be calculated
in perturbation theory to first order by

ρ(t0 + ∆t; ρ0,i) = ρss,i +

∫ ∆t

0

dτ eL0τL1ρss,i, (3.49)

where the time interval ∆t has to fulfill the condition

A−1
3 ,Ω−1

3 � ∆t� A−1
1 , A−1

2 . (3.50)

While L1ρss,i is a superposition of just the eigenstates for nonzero eigenvalues of L0

in the case of the V systems this is not true for the D systems. It is thus necessary
to modify the calculation at this point. In the case of D systems L1 describes
spontaneous emission due to the Einstein coefficients A1 and A2. Therefore L1ρss,i

consists of density matrix elements 〈xk|ρ|xl〉 where both states |xk〉 and |xl〉 lie in
the same subspace Si. It is thus a superposition of eigenstates of L0 with zero as
well as non-zero eigenvalues

L1ρss,i =
2∑

j=0

αijρss,j + ρ̃, (3.51)

where ρ̃ contains the contributions from the eigenstates for nonzero eigenvalues of
L0. These eigenvalues are negative and of the order of A3 and Ω3. The coefficients
αij are calculated by means of the dual eigenstates ρi

ss [46]

αij = Tr(ρj†
ssL1ρss,i). (3.52)

Inserting equation (3.51) into equation (3.49) one obtains

ρ(t0 + ∆t; ρ0,i) = ρss,i +

∆t∫
0

dτ

(
2∑

j=0

αijρss,j + eL0τ ρ̃

)

= ρss,i +
2∑

j=0

αijρss,j∆t+ (ε−L0)
−1ρ̃.

(3.53)
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For the ρ̃ term the upper integration limit can be extended to infinity since ρ̃ belongs
to nonzero eigenvalues of L0 and is therefore rapidly damped. Now, L −1

0 is of the
order of A−1

3 and Ω−1
3 on ρ̃, and thus the last term in equation (3.53) is of the

order of L1/(A3,Ω3) which is much smaller than αij∆t ∼ L1∆t, by equation (3.50).
Therefore the last term in equation (3.53) can be neglected, and this equation then
reveals that the αij’s have the meaning of transition rates between the subspaces Si

and Sj

pij = αij. (3.54)

As already mentioned above, the unperturbed Liouvillean L0 is identical to
the one for two V systems. Therefore also the stationary states ρss,i of the three
subsystems are the same as those of the V systems given by equations (3.34a),
(3.34b), and (3.34c). The last remaining problem in the calculation of the transition
rates is the determination of the dual eigenstates ρi

ss. Only those for eigenvalue 0 of
L0 are needed. They are defined through

Tr(ρi†
ssρss,j) = δij, i, j = 0, 1, 2 (3.55)

Tr(ρi†
ssL0A) = 0 for any matrix A. (3.56)

The latter means L †
0 ρ

i
ss = 0, with the adjoint L †

0 defined with respect to a scalar
product given by Tr(A†B). The reciprocals ρi

ss are easily determined as follows.
Since the Bloch equations conserve the trace one has

0 = Trρ̇ = TrL0ρ (3.57)

for any ρ. Thus

0 = Tr(11L0ρ) = Tr((L †
0 11)ρ) (3.58)

for any ρ and therefore L †
0 11 = 0. Now 11 can be written as a sum of terms purely

from S0,S1, and S2 and, since the subspaces are invariant under L0, these terms
must be annihilated by L †

0 individually. This yields

ρ0
ss =|e2〉〈e2|, (3.59a)

ρ1
ss =|s12〉〈s12|+ |a12〉〈a12|+ |s23〉〈s23|+ |a23〉〈a23|, (3.59b)

ρ2
ss =|g〉〈g|+ |s13〉〈s13|+ |a13〉〈a13|+ |e3〉〈e3|, (3.59c)

since the sum of the right hand sides indeed gives 11 and the normalization condition
of equation (3.55) is fulfilled.

The transition rates are now obtained from equations (3.52), (3.54) and (3.34a)-
(3.34c)) as

p01 = 2A1, p10 =
A2Ω

2
3

A2
3 + 2Ω2

3 + 4∆2
3

, p12 = A1, (3.60a)
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and

p21 = 2
A2Ω

2
3(A

2
3 + 2Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2 + (A2
3 + 4∆2

3)(|C3|2 + 2A3ReC3 − 4∆3ImC3)
(3.60b)

=
2A2Ω

2
3

A2
3 + 2Ω2

3 + 4∆2
3

[
1− 2ReC3

A3(A
2
3 + 4∆2

3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2
(3.60c)

+ 4ImC3
∆3(A

2
3 + 4∆2

3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2

]
+O(C2

3) .

One sees that, for two D systems, only p21 depends on the dipole coupling constants
C3 in first order. This contrasts with two V systems where both p21 and p12 depend
on C3. The physical reason for this is that transitions between bright periods for
two D systems are due to decays and not due to the laser. Hence the transition
rates should essentially be governed by the Einstein coefficients of these decays on
the one hand and by the population of the states in the initial subsystem on the
other hand. Therefore the parameter C3 enters only through the quasi-stationary
state ρss,i of the initial subsystem. The absence of a linear C1 and C2 dependence
can be understood from Figure 3.5(b) as follows. For most slow transitions between
two subspaces there are two channels with rates Aj ± ReCj so that ReCj cancels.
States with a single decay channel lie in S1 and, by symmetry, they appear in pairs
with different sign of ReCj.

As for the V systems one obtains the double jump rate nDJ from the transition
rates pij by equation (3.45). Significant cooperative effects occur only as long as
Ω3 and ∆3 are at least an order of magnitude smaller than A3. When compared to
non interacting systems, the cooperative effects are up to 30% for distances between
one and two wave lengths and 5% around ten wave lengths, similar as for two V
systems. For longer distances they are practically absent and this is consistent with
the experimental results of Reference [23]. Figure 3.6 shows p21 and nDJ versus the
relative distance r/λ3 for typical parameters, where λ3 is the wave length of the
strong transition.

The explicit results for arbitrary r given here confirm the large-distance result
of Reference [37] where it is argued that for λ1, λ3 � r � λ2 cooperative effects
are “suppressed by the rapid decay on the fast transition”. In fact, these effects
are only to first order independent of the coupling parameter C2; the second order
contributions in C2 are, however, negligible for the experimental values of reference
[23]. The corresponding calculation can be found in Appendix A.

3.2.3 Two dipole-interacting four-level systems as a model
for two Ba+-ions

The experiments of References [20, 19] used Ba+ ions. As explained in Section 2.3
the relevant level scheme is modeled by the effective four-level configuration shown
in Figure 2.3 (b). The |1〉 − |4〉 transition is driven weakly and incoherently by a
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Figure 3.6: Transition rate p21 and double jump rate nDJ for two dipole-interacting
D systems. The dashed lines show the case of independent systems. Parameter
values are A1 = 1 s−1, A2 = 1 s−1, A3 = 4×108 s−1, Ω3 = 5×107 s−1, and ∆3 = 0.

lamp, while the |1〉− |3〉 transition is driven coherently by a strong laser. The Bloch
equation can therefore be written as [47]

ρ̇ = − i

~

[
Hcondρ− ρH†

cond

]
+ RW (ρ) + R(ρ) (3.61)

= {L0(A2, A3, A4,Ω3,∆3, C2, C3, C4) + L1(A1, C1,W )} ρ

where RW (ρ) describes the incoherent driving as in Reference [47] and is given
explicitly below. The Dicke states are defined in analogy to equation (3.23), and
Hcond and R(ρ) can be calculated as for the V and D systems and are given by

Hcond =
~
2i

{
A1

[
2|e2〉〈e2|+ |s12〉〈s12|+ |a12〉〈a12|+

4∑
j=3

{
|s2j〉〈s2j|+ |a2j〉〈a2j|

}]
+
(
A2 + A4

)[
2|e4〉〈e4|+

3∑
j=1

{
|sj4〉〈sj4|+ |aj4〉〈aj4|

}]
+ (A3 − 2i∆3)

[
2|e3〉〈e3|+

2∑
j=1

{
|sj3〉〈sj3|+ |aj3〉〈aj3|

}
+ |s34〉〈s34|+ |a34〉〈a34|

]
+W

[
2|g〉〈g|+ 2|e4〉〈e4|+

3∑
j=1

{|sj4〉〈sj4|+ |aj4〉〈aj4|}

+
4∑

j=2

{|s1j〉〈s1j|+ |a1j〉〈a1j|}
]}

+
~
2i

{
C1

(
|s12〉〈s12| − |a12〉〈a12|

)
+ C2

(
|s23〉〈s23| − |a23〉〈a23|

)
+

4∑
j=3

Cj

(
|s1j〉〈s1j| − |a1j〉〈a1j|

)}
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+
~
2
Ω3

{√
2
(
|g〉〈s13|+ |s13〉〈e3|

)
+ |s12〉〈s23| − |a12〉〈a23|

+ |s14〉〈s34|+ |a14〉〈a34|+ h.c.
}

(3.62)

and

R(ρ) =
4∑

j=1

[(
Aj + ReCj

)
R

(j)
+ ρR

(j)†
+ +

(
Aj − ReCj

)
R

(j)
− ρR

(j)†
−

]
, (3.63)

with

R
(1)
+ = |g〉〈s12|+ |s12〉〈e2|+

1√
2

(
|s13〉〈s23|+ |a13〉〈a23|+ |s14〉〈s24|+ |a14〉〈a24|

)
,

R
(1)
− = |g〉〈a12|+ |a12〉〈e2|+

1√
2

(
|a13〉〈s23| − |s13〉〈a23|+ |a14〉〈s24| − |s14〉〈a24|

)
,

R
(2)
+ = |e2〉〈s24|+ |s24〉〈e4|+

1√
2

(
|s12〉〈s14|+ |a12〉〈a14|+ |s23〉〈s34| − |a23〉〈a34|

)
,

R
(2)
− = |e2〉〈a24|+ |a24〉〈e4|+

1√
2

(
|s12〉〈a14| − |a12〉〈s14|+ |s23〉〈a34|+ |a23〉〈s34|

)
,

R
(3)
+ = |g〉〈s13|+ |s13〉〈e3|+

1√
2

(
|s12〉〈s23| − |a12〉〈a23|+ |s14〉〈s34|+ |a14〉〈a34|

)
,

R
(3)
− = |g〉〈a13|+ |a13〉〈e3|+

1√
2

(
|s12〉〈a23|+ |a12〉〈s23|+ |s14〉〈a34| − |a14〉〈s34|

)
,

R
(4)
+ = |g〉〈s14|+ |s14〉〈e4|+

1√
2

(
|s12〉〈s24| − |a12〉〈a24|+ |s13〉〈s34| − |a13〉〈a34|

)
,

R
(4)
− = |g〉〈a14|+ |a14〉〈e4|+

1√
2

(
|s12〉〈a24|+ |a12〉〈s24|+ |s13〉〈a34|+ |a13〉〈s34|

)
.

The lamp term is obtained as in Reference [47] as

RW (ρ) = W
(
R

(4)
+ ρR

(4)†
+ +R

(4)
− ρR

(4)†
− +R

(4)†
+ ρR

(4)
+ +R

(4)†
− ρR

(4)
−
)

where W is the product of the spectral energy density of the lamp W (ω4) and the
Einstein B coefficient of the |1〉 − |4〉 transition

W = (D14 ·E0)
2W (ω4)πe2

2ε0~2
. (3.65)

Now the procedure is similar as for the D system. The Liouvillean L0 possesses
three (quasi-) stationary states ρss,0, ρss,1, and ρss,2 which coincide with those for the
V systems in equations (3.34a)-(3.34c) and which are associated with the dark and
the two bright periods. As before, one calculates ρ(t0 + ∆t) as in equation (3.49)
and decomposes L1ρss,i as in equation (3.51). Now, however, the reciprocals ρi

ss are
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more difficult to determine since |4〉 can decay into |1〉 as well as |2〉. An exact
solution of L †

0 ρ
i
ss = 0 is rather elaborate. Therefore the decomposition

L †
0 = L †(0)

0 (A2, A3, A4,Ω3,∆3, C3) + L †(1)
0 (C2, C4) (3.66)

is applied and, by the computer algebra software Maple, ρi
ss is calculated to first

order in perturbation theory with respect to C2 and C4, with the same constraint
as in equation (3.55). In zeroth order (C2 = C4 = 0) the result is given by

ρ(0),0
ss = |e2〉〈e2|+

A2

A2 + A4

[
|s24〉〈s24|+ |a24〉〈a24|

]
+

A2
2

(A2 + A4)2
|e4〉〈e4|, (3.67a)

ρ(0),1
ss = |s12〉〈s12|+ |a12〉〈a12|+ |s23〉〈s23|+ |a23〉〈a23|

+
2A2A4

(A2 + A4)2
|e4〉〈e4|+

A4

A2 + A4

[
|s24〉〈s24|+ |a24〉〈a24|

]
+

A2

A2 + A4

[
|s14〉〈s14|+ |a14〉〈a14|+ |s34〉〈s34|+ |a34〉〈a34|

]
, (3.67b)

ρ(0),2
ss = |g〉〈g|+ |s13〉〈s13|+ |a13〉〈a13|+ |e3〉〈e3|+

A2
4

(A2 + A4)2
|e4〉〈e4|

+
A4

A2 + A4

[
|s14〉〈s14|+ |a14〉〈a14|+ |s34〉〈s34|+ |a34〉〈a34|

]
, (3.67c)

which is independent of C3. The first order corrections are given by

ρ(1),0
ss =

A4ReC2

A2

[
|s24〉〈s24| − |a24〉〈a24|

]
, (3.68a)

ρ(1),2
ss =

A2ReC4

A

[
Ω2

3

(A3 + 2A)[A(A+ A3) + Ω2
3 + 4∆2

3]

[
|s34〉〈s34| − |a34〉〈a34|

]
+

(A+ A3)
[
(A3 + 2A)2 + 4∆2

3

]
+ (A3 + 2A)Ω2

3

(A3 + 2A)2[A(A+ A3) + Ω2
3 + 4∆2

3]

[
|s14〉〈s14| − |a14〉〈a14|

]
− i

Ω3(A+ A3)(A3 + 2A+ 2i∆3)

(A3 + 2A)2[A(A+ A3) + Ω2
3 + 4∆2

3]

[
|s14〉〈s34| − |a14〉〈a34| (3.68b)

+ |s34〉〈s14| − |a34〉〈a14|
]]
,

ρ(1),1
ss = −ρ(1),0

ss − ρ(1),2
ss , (3.68c)

with A = A2 + A4.
As for the D systems the transition rates are given by

pij = Tr(ρj†
ssL1ρss,i) (3.69)

and one obtains for two dipole-interacting four-level systems of Figure 2.3 (b) to
first order in C2 and C4

p01 = 2A1 p12 = A1 p10 =
A2W

A2 + A4

A2
3 + Ω2

3 + 4∆2
3

A2
3 + 2Ω2

3 + 4∆2
3

(3.70a)
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Figure 3.7: Transition rate p21 and double-jump rate nDJ for two dipole-interacting

four-level systems, with optimal Ω3 = 1
2

√√
5− 1

√
A2

3 + 4∆2
3 and all other param-

eters as in the experiment [19]. The dashed lines show the case of independent
systems.

and

p21 = 2A2W
(A2

3 + Ω2
3 + 4∆2

3)(A
2
3 + 2Ω2

3 + 4∆2
3) + (A2

3 + 4∆2
3)B

(A2 + A4)(A2
3 + 2Ω2

3 + 4∆2
3)

2 + (A2
3 + 4∆2

3)B

=
2A2W

A2 + A4

[
A2

3 + Ω2
3 + 4∆2

3

A2
3 + 2Ω2

3 + 4∆2
3

+ 2ReC3
A3

3Ω
2
3

[A2
3 + 2Ω2

3 + 4∆2
3]

3
(3.70b)

− 4ImC3
∆3A

2
3Ω

2
3

[A2
3 + 2Ω2

3 + 4∆2
3]

3

]
+O(C2

3),

with B = |C3|2 + 2A3ReC3 − 4∆3ImC3 . It is seen that p01, p10, and p12 are
independent of the coupling parameters and are thus the same as for non-interacting
systems.

These results for two four-level systems show great similarity with those for the
two D systems of the preceding section. In both cases only p21 depends to first order
on C3, the coupling parameter associated with the laser-driven transition. However,
cooperative effects are significantly smaller for the two four-level systems. For fixed

laser detuning, the effect of C3 becomes maximal for Ω3 = 1
2

√√
5− 1

√
A3 + ∆2

3.
For this value of Ω3, Figure 3.7 shows the transition rate p21 from a double intensity
period to a unit-intensity period and the double jump rate nDJ over the relative
distance r/λ3, with the other parameters as in the experiment [19, 20]. Despite the
optimal choice of the Rabi frequency, Ω3, the deviations from the value for non-
interacting systems are very small. Already for a distance of about a wave length
λ3, they are not more than 1% for p21 when compared to non-interacting systems,
while for nDJ they are less than 1h.
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3.3 Three dipole-interacting atoms

Although the results of the previous section seem to contradict the findings of Refer-
ences [19, 20] a direct quantitative comparison with the experiments is not possible
since explicit experimental data was only provided for three Ba+ ions.

The aim of this section is to narrow this gap by investigating three dipole-
interacting three-level systems in V configuration and in D configuration (see Figures
2.1 and 2.2), respectively, and to compare the results with those for two such sys-
tems. For three systems this becomes much more complicated since one has to deal
with 729 × 729 density matrices, and in order to do this we use group theoretical
methods to exploit the symmetry of the problem.

A full description of the Ba+ experiment [19, 20] requires the treatment of three
of the four-level systems of Reference [46]. This is rather complex with the methods
presented so far, due to the larger number levels involved. This section is therefore
completed by the presentation of a simplified model which reduces the computational
effort and allows the analytical treatment of three four-level systems.

3.3.1 Conditional Hamiltonian and reset state

In the following we investigate three dipole-interacting three-level systems both in
a V-type and in a D-type configuration as shown in Figures 2.1 and 2.2. As before
the conditions

Ω3, A3 � Ω2

for the V systems and
Ω3, A3 � A1, A2

for the D systems should hold in order to have macroscopic bright and dark peri-
ods. From the general result (3.13) in section 3.1 one can read off the conditional
Hamiltonian for three dipole-interacting V systems as

Hcond =
3∑

i=1

~
2i

(A3 − 2i∆3)S
+
i3S

−
i3 +

3∑
i=1

3∑
j=2

~
2

[
ΩjS

−
ij + h.c.

]
+

3∑
k,l=1
k<l

~
2i
C

(3)
kl

(
S+

k3S
−
l3 + S+

l3S
−
k3

) (3.71)

and for three dipole-interacting D systems as

Hcond =
3∑

i=1

3∑
j=1

~
2i
AjS

+
ijS

−
ij +

3∑
i=1

~
2

[[
Ω3S

−
i3 + h.c.

]
− 2∆3S

+
i3S

−
i3

]

+
3∑

k,l=1
k<l

3∑
j=1

~
2i
C

(j)
kl

(
S+

kjS
−
lj + S+

ljS
−
kj

)
,

(3.72)
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with S±ij defined as in the treatment of two atoms. The reset state is given by

R(ρ) =
3∑

i=1

3∑
j=1

AjS
−
ijρS

+
ij +

3∑
k,l=1
k<l

3∑
j=1

ReC
(j)
kl

(
S−kjρS

+
lj + S−ljρS

+
kj

)
, (3.73)

where for the V systems only the terms with A3 and ReC
(3)
kl have to be taken into

account. In contrast to the case of two atoms there are now three dipole-dipole
interaction parameters for each transition

C
(j)
kl =

3Aj

2
eia

(j)
kl

[
1

ia
(j)
kl

(1− cos2 θkl) +

(
1

a
(j)2
kl

− 1

ia
(j)3
kl

)
(1− 3 cos2 θkl)

]
,

one for each pair of atoms. They depend on the inter-atomic distances and the angles
between the dipole moments and the line connecting each pair of atoms. In general
all these quantities can assume different values. They are basically determined by
the geometrical arrangement of the atoms in the trap, the direction of the applied
magnetic field used to align the dipole-moments of the atoms, and the direction of
incidence of the lasers. Depending on the kind of ion trap used in an experiment
there are two possible geometric configurations. In the usual ion traps utilized in the
experiments of references [19, 20] and [23] the atoms form an equilateral triangle.
Since the inter-atomic distance is, in this case, the same for all pairs of atoms,
r = rkl, one has a

(j)
kl = aj = 2πr/λj, so that the coupling parameters only depend

on the atom number via the angles ϑkl. In the linear ion traps used in the newer
experiments [22, 24, 25, 27], however, the atoms are positioned on a line giving
r12 = r23 = r13/2. In following only the first case will be discussed.

For simplicity it would be preferable to have identical coupling parameters for
each pair of atoms (i.e. C

(j)
kl ≡ Cj). This would be the case if the angles between

the dipole moments and the line connecting two atoms were the same for all pairs
of atoms. The dipole moments are usually aligned in the experiments by applying
a homogeneous magnetic field. In addition, it has already been assumed implicitly
that the Rabi frequencies for a given transition have the same phase eikL·ri for each
atom. The latter is achieved most easily by setting the laser direction perpendicular
to the plane of the triangle, which gives kL · ri = 0. With the dipole moments
perpendicular to the laser direction, as in the experiment of Reference [19], it is in
this case impossible to obtain the same value of cosϑkl for the three angles ϑkl as
illustrated in Figure 3.8. If on the other hand, by choosing a laser direction in the
plane of the triangle, one fixes the ϑkl = π/2 which gives maximal values for C

(j)
kl ,

one has to adjust the inter-atomic distance r to the right value in order to have
eikL·ri = 1 for all atoms. This is difficult to achieve experimentally.

However, in spite of this, it will be assumed C
(j)
kl ≡ Cj and kL · ri = 0 in the

following because this case leads to maximal cooperative effects and can be seen as
a limiting case for all other possible configurations.
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atom 3
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plane of the atoms
dipole moments in the
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the plane of the atoms

ϑ12 ϑ23

ϑ31

Figure 3.8: Geometry of the atoms in the trap. The arrows symbolize the dipole
moments. In the picture the angles have the values ϑ12 = π/2, ϑ23 = π/6, and
ϑ31 = 5π/6 leading to cos2 ϑ12 = 0, and cos2 ϑ23 = cos2 ϑ31 = 3/4.

3.3.2 Group theoretical methods

As in the case of two atoms it is necessary for the calculation of the transition rates
for both V systems and D systems to compute the quasi-steady states ρss,i, i.e. to
solve the linear equation

L0ρss,i = 0. (3.74)

In addition, for V systems the first order term

ρ
(1)
i = (ε−L0)

−1L1ρss,i

of equation (3.31) has to be calculated, which was done by solving

L0ρ
(1)
i = L1ρss,i . (3.75)

Equations (3.74) and (3.75) are linear equations for the 729 matrix elements of ρss,i

and ρ
(1)
i , respectively. It would be therefore advantageous to restrict the problem to

smaller subspaces. This is indeed possible with the use of group theoretical methods
which exploit the symmetries of the system.

In the case of two atoms it was convenient to use the Dicke basis, i.e., the
basis consisting of the symmetric and antisymmetric linear combinations of the
product states. Generally speaking, this means using a basis which is adapted with
respect to the symmetry group S2 of permutations of two atoms. The symmetric
and antisymmetric states correspond to the irreducible representations of this group.
Hence , for three three-level systems, a basis that is adapted to the symmetry group
S3 of permutations of three particles is used. On the subspace spanned by the
product states with all three atoms in different states the irreducible representations
of the S3 are the two one-dimensional representations mentioned above and another
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two equivalent two-dimensional representations. This leads to the states

|s123〉 =
1√
6

(
|1〉|2〉|3〉+ |2〉|3〉|1〉+ |3〉|1〉|2〉+ |1〉|3〉|2〉+ |2〉|1〉|3〉+ |3〉|2〉|1〉

)
,

(3.76a)

|a123〉 =
1√
6

(
|1〉|2〉|3〉+ |2〉|3〉|1〉+ |3〉|1〉|2〉 − |1〉|3〉|2〉 − |2〉|1〉|3〉 − |3〉|2〉|1〉

)
,

(3.76b)

|b123〉 =
1√
12

(
2|1〉|2〉|3〉 − |2〉|3〉|1〉 − |3〉|1〉|2〉+ 2|1〉|3〉|2〉 − |2〉|1〉|3〉 − |3〉|2〉|1〉

)
,

(3.76c)

|c123〉 =
1

2

(
|2〉|3〉|1〉 − |3〉|1〉|2〉 − |2〉|1〉|3〉+ |3〉|2〉|1〉

)
, (3.76d)

|d123〉 =
1√
12

(
2|1〉|2〉|3〉 − |2〉|3〉|1〉 − |3〉|1〉|2〉 − 2|1〉|3〉|2〉+ |2〉|1〉|3〉+ |3〉|2〉|1〉

)
,

(3.76e)

|e123〉 =
1

2

(
|2〉|3〉|1〉 − |3〉|1〉|2〉+ |2〉|1〉|3〉 − |3〉|2〉|1〉

)
(3.76f)

in the case where all three atoms are in different states. For the remaining states
one then easily gets for i, j = 1, 2, 3, i 6= j,

|sijj〉 =
1√
3

(
|i〉|j〉|j〉+ |j〉|j〉|i〉+ |j〉|i〉|j〉

)
, (3.76g)

|bijj〉 =
1√
6

(
2|i〉|j〉|j〉 − |j〉|j〉|i〉 − |j〉|i〉|j〉

)
, (3.76h)

|cijj〉 =
1√
2

(
|j〉|j〉|i〉 − |j〉|i〉|j〉

)
(3.76i)

if two atoms are in the same state and

|g〉 = |1〉|1〉|1〉, |e2〉 = |2〉|2〉|2〉, |e3〉 = |3〉|3〉|3〉 (3.76j)

if all three atoms are in the same state. Similarly to the situation with two atoms,
the reset state can then be written as a sum of three density matrices of pure states

R(ρ) =
3∑

j=1

{
(Aj + 2ReCj)R

(j)
1 ρR

(j)†
1 + (Aj − ReCj)

[
R

(j)
2 ρR

(j)†
2 +R

(j)
3 ρR

(j)†
3

]}
,

(3.77)
with

R
(j)
1 =

1√
3

(
S−1j + S−2j + S−3j

)
, (3.78a)

R
(j)
2 =

1√
6

(
2S−1j − S−2j − S−3j

)
, (3.78b)
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R
(j)
3 =

1√
2

(
S−2j − S−3j

)
. (3.78c)

For the solution of equations (3.74) and (3.75) there are two properties of L0

which allow the restriction of the equations to smaller subspaces. Analogous to two
atoms there are four subspaces

S0 = {|e2〉}, (3.79a)

S1 = {|s122〉, |b122〉, |c122〉, |s322〉, |b322〉, |c322〉}, (3.79b)

S2 = {|s211〉, |b211〉, |c211〉, |s123〉, |a123〉, |b123〉, |c123〉,
|d123〉, |e123〉, |s233〉, |b233〉, |c233〉}, (3.79c)

S3 = {|g〉, |s311〉, |b311〉, |c311〉, |s133〉, |b133〉, |c133, |e3〉} (3.79d)

which are only coupled by the weak parameters, Ω2 for the V systems and A1, A2 for
the D systems. Consequently, the space of density matrix elements can be divided
into 16 subspaces Sij with the same property. Let |xi〉, i = 1 . . . 27 be a numbering
of the states (3.76). Then these subspaces are given by

Sij =
{
〈xk|ρ|xl〉

∣∣ |xk〉 ∈ Si, |xl〉 ∈ Sj

}
. (3.80)

Since L0 is independent of Ω2 and A1, A2 respectively they are invariant with respect
to L0.

In addition the conditional Hamiltonian Hcond and the reset state R(ρ) and
therefore also L0 are invariant under the exchange of atoms, as can be seen from
equations (3.71), (3.72), and (3.73). Hence, subspaces which consist of all density
matrix elements which belong to a particular irreducible representation of S3 are
also invariant with respect to L0. Since the density matrix elements form a repre-
sentation of S3 which is a tensor product of twice the representation spanned by the
Dicke basis of equation (3.76) the new irreducible representations are easily found.
The density matrix elements

|sα〉〈sβ|, |aα〉〈aβ|,
1

2
(|bα〉〈bβ|+ |cα〉〈cβ|) ,

1

2
(|dα〉〈dβ|+ |eα〉〈eβ|) , (3.81)

1

2
(|bα〉〈eβ| − |cα〉〈dβ|) ,

1

2
(|eα〉〈bβ| − |dα〉〈cβ|)

belong to the symmetric representation, the elements

|sα〉〈aβ|, |aα〉〈sβ|,
1

2
(|bα〉〈cβ| − |cα〉〈bβ|) ,

1

2
(|dα〉〈eβ| − |eα〉〈dβ|) , (3.82)

1

2
(|bα〉〈dβ|+ |cα〉〈eβ|) ,

1

2
(|dα〉〈bβ|+ |eα〉〈cβ|)
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belong to the antisymmetric representation, and the remaining 24 possible linear
combinations form two-dimensional representations. Here α and β stand for one of
the subscripts of the Dicke states. By transforming the Liouvillean L0 into this new
basis each of the 16 invariant subspaces Sij is in itself decomposed into four invariant
subspaces connected to the elements belonging to the symmetric, antisymmetric, and
the two dimensional representations, respectively. For the calculation of both the
quasi-steady states ρss,i and the transition rates for the V systems only the symmetric
subspaces are needed. With these two simplifications the dimension of the system
of linear equations needed for the calculation reduces considerably (namely to a
maximum of 20 for the calculation of p23 and p32).

3.3.3 Transition rates

The transition rates can then be calculated as explained in section 3.2. For three V
systems the equivalent of equation (3.32) is given by

d

dt
〈e2|ρ|e2〉 =

√
3 Ω2Im 〈s122|ρ|e2〉 , (3.83a)

d

dt

∑
xi∈S1

〈xi|ρ|xi〉 = Ω3Im

[
2〈s112|ρ|s122〉 − 〈b112|ρ|b122〉 − 〈c112|ρ|c122〉 (3.83b)

−
√

3〈s122|ρ|e2〉+
√

2〈s123|ρ|s223〉 −
1√
2

(〈b123|ρ|b223〉+ 〈c123|ρ|c223〉)

+

√
3

2
(〈d123|ρ|c223〉 − 〈e123|ρ|b223〉)

]
− d

dt
〈e2|ρ|e2〉 ,

d

dt

∑
xi∈S2

〈xi|ρ|xi〉 = − Ω3Im

[
2〈s112|ρ|s122〉 − 〈b112|ρ|b122〉 − 〈c112|ρ|c122〉 (3.83c)

−
√

3〈s122|ρ|e2〉+
√

2〈s123|ρ|s223〉 −
1√
2

(〈b123|ρ|b223〉+ 〈c123|ρ|c223〉)

+

√
3

2
(〈d123|ρ|c223〉 − 〈e123|ρ|b223〉)

]
− d

dt

∑
xi∈S3

〈xi|ρ|xi〉 ,

d

dt

∑
xi∈S3

〈xi|ρ|xi〉 = Ω2Im

[
1√
2
(〈b113|ρ|b123〉+ 〈c311|ρ|c123〉) (3.83d)

+

√
3

2
(〈b311|ρ|e123〉 − 〈c311|ρ|d123〉)−

√
3〈g|ρ|s211〉

−
√

2〈s311|ρ|s233〉 − (〈s133|ρ|s233〉+ 〈b133|ρ|b233〉+ 〈c133|ρ|c233〉)
]
.

The resulting transition rates are

p01 = 3
A3Ω

2
2

Ω2
3

, (3.84a)
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Figure 3.9: Transition rate p32 for
three dipole-interacting V systems plot-
ted versus the inter-atomic distance r in
units of the wavelength λ3 of the strong
transition. Solid line: p32 up to sec-
ond order in C3. Dashed line: first or-
der. Dotted line: independent systems.
Parameter values are A3 = 2×108 s−1,
Ω3 = 5×107 s−1, and Ω2 = 104 s−1.
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Figure 3.10: Transition rate p32 for two
dipole-interacting D systems. Dashed
line: independent systems. Parameter
values are A1 = 1 s−1, A2 = 1 s−1,
A3 = 2×108 s−1, and Ω3 = 107 s−1.

p10 =
A3Ω

2
2(A

2
3 + 4∆2

3)

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)
, (3.84b)

p12 = 2
A3Ω

2
2

Ω2
3

[
1 + 2ReC3

A3

A2
3 + 2Ω2

3 + 4∆2
3

− 4ImC3
∆3

A2
3 + 2Ω2

3 + 4∆2
3

]
, (3.84c)

p21 = 2
A3Ω

2
2(A

2
3 + 4∆2

3)

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)

[
1 + 2ReC3

A3(A
2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2
(3.84d)

− 4ImC3
∆3(A

2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2

]
,

p23 =
A3Ω

2
2

Ω2
3

[
1 + 4ReC3

A3

A2
3 + 2Ω2

3 + 4∆2
3

− 4ImC3
∆3

A2
3 + 2Ω2

3 + 4∆2
3

]
, (3.84e)

p32 = 3
A3Ω

2
2(A

2
3 + 4∆2

3)

Ω2
3(A

2
3 + 2Ω2

3 + 4∆2
3)

[
1 + 4ReC3

A3(A
2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2
(3.84f)

− 4ImC3
∆3(A

2
3 + 4Ω2

3 + 4∆2
3)

(A2
3 + 2Ω2

3 + 4∆2
3)

2

]
to first order in C3. While for p01 and p10 this is also the exact result to all orders,
the higher order terms for the other four transitions are too complicated to be given
here. The zeroth order terms in equations (3.84) are those one would expect for
independent atoms (namely the rates p10 and p01 for a single V system multiplied by
a factor 1, 2, or 3). For the first order terms it is important to note that the single
systems interact via C3 only if they are in a bright period. Therefore the rates p01
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and p10 are independent of C3 while p12 and p21 have the same first order term as
the corresponding rates for two V systems (in the intensity period I2 the three V
systems behave like two V systems in the period I2 plus an additional non-interacting
system). In the rates p23 and p32 the first order term is just twice the first order
term of p21 and p12. This surprising property is due to the simplicity of the quasi-
steady state ρss,3, namely all diagonal elements of this state have the same first order
dependence. Figure 3.9 shows the transition rate p32 for three V systems to first and
to second order in C3. The first order rate becomes negative for distances of about
one half to three quarters of a wavelength of the strong transition. By looking at
the second order rate one can see that this is an artifact of the approximation. The
rate with the dipole interaction included shows deviations of up to 100 % from the
rate for non-interacting atoms for distances of somewhat more than a wavelength
λ3 and still about 10 % for interatomic distances of about 10λ3. It is realistic that
an effect of this size could be observed experimentally, although one has to keep in
mind that it refers to an ideal configuration of the ions in the trap and is smaller
for other configurations.

The transition rates for three dipole interacting D systems are given by

p01 = 3A1, p12 = 2A1, p23 = A1, (3.85a)

p10 =
A2Ω

2
3

A2
3 + 2Ω2

3

(3.85b)

and

p21 = 2
A2Ω

2
3(A

2
3 + 2Ω2

3)

(A2
3 + 2Ω2

3)
2 + A2

3B

=
2A2Ω

2
3

A2
3 + 2Ω2

3

[
1− 2ReC3

A3
3

(A2
3 + 2Ω2

3)
2

]
+O(C2

3), (3.85c)

p32 =
3A2Ω

2
3 [(A2

3 + 2Ω2
3)

2 + A2
3B]

(A2
3 + 2Ω2

3) [(A2
3 + 2Ω2

3)
2 + 3A2

3B] + 2(A2
3) [|C3|2|A3 + C3|2 +B2]

=
3A2Ω

2
3

A2
3 + 2Ω2

3

[
1− 4ReC3

A3
3

(A2
3 + 2Ω2

3)
2

]
+O(C2

3), (3.85d)

with B = |C3|2+2A3ReC3. For simplicity, only the rates with ∆3 = 0 are given. The
transition rates with detuning are completely analogous to the case of two atoms.

Compared to two D systems the transition rates show the same behavior as
explained above for the three V systems. This is not surprising as the quasi-steady
states are identical and as the D systems also only interact via C3 when they are
in a bright period. Figure 3.10 shows the exact transition rate p32 compared to the
interaction free case. For distances of about a wavelength, p32 deviates up to 75 %
from the rate without interaction. The first peak at about 0.7 wavelengths even
reaches a maximum of seven times the rate for independent atoms. For such small
distances, however, one would have to check the validity of the model (namely, that
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in a particular intensity period most of the population is in a specific subspace).
Also one has to keep in mind that all the experiments cited here were performed at
greater ion distances. As for two D systems large cooperative effects occur for weak
driving and decrease with increasing Rabi frequency. For strong driving (Ω3 > A3)
the effects are negligible in accordance with the experimental results for the Hg+

ions.

3.3.4 Double and triple jump rate

As for two atoms one can evaluate the double jump rate from the transition rates
given above. Since for three atoms there are now four periods of different intensity
it consists of four contributions

nDJ = n20
DJ + n31

DJ + n13
DJ + n02

DJ . (3.86)

In addition there is also the possibility of triple jumps, i.e. a change in intensity
within the time window TW from zero to the maximum value or vice versa.

nTJ = n30
TJ + n03

TJ . (3.87)

The calculation of the double jump rate is analogous to the two atom case. The
contributions starting in periods I0 and I3 are given by

n02
DJ = n0

p12

p10 + p12

(
1− e−(p10+p12)TW

)
, n31

DJ = n3
p21

p21 + p23

(
1− e−(p21+p23)TW

)
.

(3.88a)

The other two contributions

n13
DJ = n1

p12

p10 + p12

p23

p21 + p23

(
1− e−(p21+p23)TW

)
(3.88b)

and

n20
DJ = n2

p21

p21 + p23

p10

p10 + p12

(
1− e−(p10+p12)TW

)
(3.88c)

each have an additional branching ratio since the initial intensity periods can be
followed by periods with higher or lower intensity. With the relations

n0 =
p10

p10 + p12

n1, n3 =
p23

p21 + p23

n2,

n2 =
p12

p10 + p12

n1 + n3, and n1 = n0 +
p21

p21 + p23

n2, (3.89)

the rates can be simplified to

n02
DJ = n20

DJ = n1
p10p12

(p10 + p12)2

(
1− e−(p10+p12)TW

)
(3.90a)
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Figure 3.11: Double jump rate nDJ and triple jump rate nTJ for three dipole-
interacting V systems. Solid line: up to second order in C3. Dashed line: inde-
pendent systems. Time window TW = 10−3 s. Other parameter values as in Figure
3.9.

and

n13
DJ = n31

DJ = n1
p12p23

(p21 + p23)(p10 + p12)

(
1− e−(p21+p23)TW

)
. (3.90b)

Using the relations

T0 =
1

p01

, T1 =
1

p10 + p12

, T2 =
1

p21 + p23

, T3 =
1

p32

,
3∑

i=0

niTi = 1 (3.91)

for the mean durations of the intensity periods and expanding the exponential one
finally obtains

nDJ = 2
p01p21p32(p01 + p12)

p21p32(p01 + p10) + P01p12(p23 + p32)
TW (3.92)

as the double jump rate for three of either three-level systems.
The calculation of the triple jump rate is similar. The rate for a jump from

period I3 to period I0 is given by

n30
TJ = n3

p10p21

(p10 + p12)(p21 + p23)

(
1− e−(p21+p23)TW

)(
1− e−(p10+p12)TW

)
, (3.93)

with the appropriate branching ratios for downward jumps and with the probabilities
for the periods I2 and I1 to be shorter than TW given by

pT2<TW
= 1− e−(p21+p23)TW pT1<TW

= 1− e−(p10+p12)TW . (3.94)

Analogously one has

n03
TJ = n0

p12p23

(p10 + p12)(p21 + p23)

(
1− e−(p21+p23)TW

)(
1− e−(p10+p12)TW

)
. (3.95)
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Figure 3.12: Double jump rate nDJ and triple jump rate nTJ for three dipole-
interacting D systems. Dashed line: independent systems. Time window TW =
5×10−3 s. Other parameter values as in Figure 3.10.

Expanding the exponentials in both contributions yields

n30
TJ = n3p10p21T

2
W, and n03

TJ = n0p12p23T
2
W. (3.96)

Using the relations (3.89) and (3.91) one finds that

n30
TJ = n03

TJ = n1
p10p12p23

p10 + p12

T 2
W (3.97)

and finally

nTJ = 2
p01p10p12p21p23p32

p21p32(p01 + p10) + p01p12(p23 + p32)
T 2

W . (3.98)

Note that the defining time window TW enters quadratically in this case. Figures
3.11 and 3.12 show plots of nDJ and nTJ for the V systems and the D systems,
respectively. For the D systems the exact values for the pij are used whereas for the
V systems only the expanded expressions up to second order in C3 are used since
p23 and p23 could not be calculated exactly for the V systems. For the V systems
there are cooperative effects of up to 110 % for the double jump rate nDJ and 170 %
for the triple jump rate nTJ for distances of somewhat more than a wavelength of
the strong transition. For the same distance range the D system shows cooperative
effects of up to 150 % for both nDJ and nTJ. The first peak at three quarters of a
wavelength reaches 16 times the value for independent systems for both rates. For
distances of about 10 wavelengths cooperative effects of 15 % are still present for
both systems. In the case of the D system, which models the level configuration of
the Hg+ ions used in the experiments of Reference [23, 45], large cooperative effects
only appear if the Rabi frequency Ω3 is smaller than the Einstein coefficient A3.
So, for the experimental parameters (i.e. Ω3 > A3 and r/λ3 ≈ 15) the effects are
negligible, in agreement with the experimental results.
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3.3.5 Simplified approach: Treatment of three four-level
systems

Due to the increased number of levels involved, a calculation of a the transition
rates for three dipole-interacting four-level systems would be, although in principal
possible with the methods introduced above, even more laborious than for three
three-level systems. It is however possible to read off the transition rates without
having to carry out the full calculation. One only needs the steady states of the
corresponding subsystems. In the following this simpler approach will be presented
and verified by applying it to examples for which the transition rates have already
been calculated in the previous sections.

In order to illustrate the underlying mechanism the Bloch equation approach for
a single D system will now be recapitulated and given explicitly. The conditional
Hamiltonian of this system is given by

Hcond =
~
2i

[
(A2 + A3)|3〉〈3|+ A1|2〉〈2|

]
+

~Ω3

2

[
|1〉〈3|+ |3〉〈1|

]
, (3.99)

where the detuning has been neglected for simplicity. The reset state is given by

R(ρ) = A1|1〉〈2|ρ|2〉〈1|+ A2|2〉〈3|ρ|3〉〈2|+ A3|1〉〈3|ρ|3〉〈1|. (3.100)

Defining, as before, the Liouvillean of the system as

ρ̇ = L ρ = − i

~

[
Hcondρ− ρH†

cond

]
+ R(ρ)

and splitting it into two parts as

L = L0(A3,Ω3) + L1(A1, A2)

the density matrix at time t+ ∆t is given by

ρ(t+ ∆t, ρi) = ρss,i +

∫ ∆t

0

dτ eL0τL1ρss,i

= ρss,i +
2∑

j=1

αijρss,j∆t+

∫ ∆t

0

dτ eL0τL1ρ̃.

(3.101)

If the small optical parameters A1, A2 are neglected the system splits into indepen-
dent subspaces. They are given by

S0 = {|2〉}, S1 = {|1〉, |3〉} (3.102)

The steady states in these subspaces are given by

ρss,0 = |2〉〈2|, (3.103a)
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ρss,1 =
1

A2
3 + 2Ω2

3

[
(A2

3 + Ω2
3)|1〉〈1|+ Ω2

3|3〉〈3|+ iA3Ω3

(
|1〉〈3| − |3〉〈1|

)]
(3.103b)

for the dark and the bright period respectively. One therefore has

L1ρss,0 = −A1|2〉〈2|+ A1|1〉〈1| (3.104a)

L1ρss,1 = A2
Ω2

3

A2
3 + 2Ω2

3

(
|2〉〈2| − |3〉〈3|

)
− iA2

2

A3Ω3

A2
3 + 2Ω2

3

(
|1〉〈3| − |3〉〈1|

)
(3.104b)

With the dual steady states

ρ0
ss = |2〉〈2|, and ρ1

ss = |1〉〈1|+ |3〉〈3| (3.105)

the transition rates are then calculated to be

p01 = α01 = Tr(ρ1†
ss L1ρss,0) = A1 (3.106)

and

p10 = α10 = Tr(ρ0†
ss L1ρss,1) =

A2Ω
2
3

A2
3 + 2Ω2

3

. (3.107)

By looking at equation (3.104) one realizes that this latter step in the calculation
although formally more satisfactory was actually not necessary in order to gain the
final result. The transition rates are already present as prefactors to some of the
density matrix elements. In fact, L1 can be interpreted as a transition operator
which gives the transitions due to the weak Einstein coefficients. Multiplying it to
some state of the system yields the density matrix elements which are modified by
the weak decays multiplied by the corresponding decay rates, positive for density
matrix element which gain population and negative for those which loose population
due to the decay. In the case in which one started with ρss,0 = |2〉〈2| one therefore
has a term −A1|2〉〈2| taking into account the loss of population of level |2〉 and a
term A1|1〉〈1| for the corresponding gain of population in the ground state. When
starting with ρss,1 the Einstein coefficient A2 for the decay from |3〉 to |2〉 has to be

multiplied with the additional factor
Ω2

3

A2
3+2Ω2

3
for the steady state population of level

|3〉. The last two terms in (3.104b) are due to the decay of the coherences between
|1〉 and |3〉.

From these considerations one is lead to a simple scheme for the evaluation of
the transition rates. First one has to identify the different independent subspaces for
vanishing weak decay rates and calculate the steady states in these subspaces. For
a single D system these are the states ρss,0 and ρss,1 for the subsystems associated
with the dark and bright period, respectively. By looking at the level scheme one
can then determine the possible decay channels between the subsystems, a decay by
A2 from |3〉 to |2〉 and a decay by A1 from |2〉 to |1〉 in the case of one D system.
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The transition rates are then given by the decay rate multiplied by the steady state
population of the decaying level.

Physically this is quite intuitive. The transition rates are given by the corre-
sponding decay rates multiplied by the mean occupation probabilities of the levels
involved.

The question is now if this approach can be extended to more complicated sys-
tems, especially to dipole-interacting D systems and to the four-level system for the
description of Ba+. This is indeed possible. For two dipole-interacting D systems for
example the possible decays can be read off in Figure 3.5(b) and the steady states
are given by equations (3.34). The easiest case is the transition rate p01. Here the
transitions involved are from |e2〉 to |s12〉 and |a12〉. The corresponding decay rates
are A1 + ReC1 and A1 − ReC1, respectively. The steady state population of |e2〉
is unity, so the transition rate is p01 = 2A1 in agreement with the previous result.
The other transition rates are a bit more complicated. For p10 one has to take into
account the decays from |s23〉 and |a23〉 to |e2〉, for p12 the decays from |s23〉 and
|a23〉 to |s13〉 and from |s12〉 and |a12〉 to |g〉, and for p21 the decays from |e3〉 to |s23〉
and |a23〉 and from |s13〉 and |a13〉 to |s12〉 and |a12〉. By multiplying for each decay
the decay rate by the steady state population of the initial level and adding up the
different contributions one obtains the results for the transition rates calculated in
Section 3.2.2. The same is also true for three dipole-interacting D systems.

An application of this method to the four-level system describing Ba+ is also
possible. For the transition from a bright to a dark period one has to use the
product of the incoherent transition rate W with the branching ratio A2/(A2 +A4)
for a decay from state |4〉 to state |2〉 instead of a single Einstein coefficient. Then
everything works as in the case of the D systems and one confirms the results for
one and two four-level systems already known from the Bloch equation approach.

Consequently it is also possible to obtain the transition rates for three four-level
systems which would be rather involved to do with the Bloch equation approach. The
steady states are already known from the calculations for three three-level systems.
As for three three-level systems one can use a symmetrized basis analogous to the
Dicke basis for two atoms. This leads to the states

|sijk〉 =
1√
6

(
|i〉|j〉|k〉+ |j〉|k〉|i〉+ |k〉|i〉|j〉

+ |i〉|k〉|j〉+ |j〉|i〉|k〉+ |k〉|j〉|i〉
)
, (3.108a)

|aijk〉 =
1√
6

(
|i〉|j〉|k〉+ |j〉|k〉|i〉+ |k〉|i〉|j〉

− |i〉|k〉|j〉 − |j〉|i〉|k〉 − |k〉|j〉|i〉
)
, (3.108b)
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|bijk〉 =
1√
12

(
2|i〉|j〉|k〉 − |j〉|k〉|i〉 − |k〉|i〉|j〉

+ 2|i〉|k〉|j〉 − |j〉|i〉|k〉 − |k〉|j〉|i〉
)
, (3.108c)

|cijk〉 =
1

2

(
|j〉|k〉|i〉 − |k〉|i〉|j〉

− |j〉|i〉|k〉+ |k〉|j〉|i〉
)
, (3.108d)

|dijk〉 =
1√
12

(
2|i〉|j〉|k〉 − |j〉|k〉|i〉 − |k〉|i〉|j〉

− 2|i〉|k〉|j〉+ |j〉|i〉|k〉+ |k〉|j〉|i〉
)
, (3.108e)

|eijk〉 =
1

2

(
|j〉|k〉|i〉 − |k〉|i〉|j〉

+ |j〉|i〉|k〉 − |k〉|j〉|i〉
)
, (3.108f)

i < j < k; i, j, k = 1, . . . , 4, in the case where all three atoms are in different states.
For the remaining states one gets for i, j = 1, . . . , 4, i 6= j,

|sijj〉 =
1√
3

(
|i〉|j〉|j〉+ |j〉|j〉|i〉+ |j〉|i〉|j〉

)
, (3.109a)

|bijj〉 =
1√
6

(
2|i〉|j〉|j〉 − |j〉|j〉|i〉 − |j〉|i〉|j〉

)
, (3.109b)

|cijj〉 =
1√
2

(
|j〉|j〉|i〉 − |j〉|i〉|j〉

)
, (3.109c)

if two atoms are in the same state and

|g〉 = |1〉|1〉|1〉, |ei〉 = |i〉|i〉|i〉 for i = 2, 3, 4 (3.110)

if all three atoms are in the same state. The quasi-steady states for intensity periods
I0 to I2 are, by symmetry, given by

ρss,0 = |e2〉〈e2|, (3.111a)

ρss,1 =
1

3

{
ρ1D

ss ⊗ |2〉22〈2| ⊗ |2〉33〈2| (3.111b)

+ |2〉11〈2| ⊗ ρ1D
ss ⊗ |2〉33〈2|+ |2〉11〈2| ⊗ |2〉22〈2| ⊗ ρ1D

ss

}
,

ρss,2 =
1

3

3∑
i=1

ρ2D
ss,2 ⊗ |2〉ii〈2|, (3.111c)

where ρ1D
ss is the quasi-steady state of one D system in the {|1〉, |3〉} subspace and

ρ2D
ss,2 is the quasi-steady state in the subspace corresponding to double intensity of
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two D systems. The state ρss,3 is rather complicated. Therefore only the populations
of the relevant levels will be given, i.e.

〈g|ρss,3|g〉 =
1

N

[
(A2

3 + Ω2
3 + 4∆2

3)
[
(A2

3 + Ω2
3 + 4∆2

3)
2 + 3(A2

3 + 4∆2
3)B
]

+ 2(A3 + 4∆2
3)
[
|C3|2|A3 − 2i∆3 + C3|2 +B2

]]
, (3.112a)

〈s113|ρss,3|s113〉 =
Ω2

3

N

[
(A2

3 + Ω2
3 + 4∆2

3)(3A
2
3 + Ω2

3 + 12∆2
3) + 3(A2

3 + 4∆2
3)B
]
,

(3.112b)

〈b113|ρss,3|b113〉 = 〈c113|ρss,3|c113〉 =
Ω4

3

N
(A2

3 + Ω2
3 + 4∆2

3), (3.112c)

〈s133|ρss,3|s133〉 =
Ω4

3

N
(3A2

3 + Ω2
3 + 12∆2

3), (3.112d)

〈e3|ρss,3|e3〉 = 〈b133|ρss,3|b133〉 = 〈c133|ρss,3|c133〉 =
Ω6

3

N
, (3.112e)

with

N =
{
(A2

3 + 2Ω2
3 + 4∆2

3)
[
(A2

3 + 2Ω2
3 + 4∆2

3)
2 + 3(A2

3 + 4∆2
3)B
]

+ 2(A3 + 4∆2
3)
[
|C3|2|A3 − 2i∆3 + C3|2 +B2

]}
and

B = |C3|2 + 2A3ReC3 − 4∆3ImC3.

Now the procedure is the same as described above for two D systems and one obtains

p01 = 3A1, p12 = 2A1, p23 = A1, (3.113a)

and

p10 =
A2W (A2

3 + Ω2
3)

(A2 + A4)[A2
3 + 2Ω2

3]
, (3.113b)

p21 = 2
A2W

A2 + A4

(A2
3 + Ω2

3)(A
2
3 + 2Ω2

3) + A2
3(|C3|2 + 2A3ReC3)

(A2
3 + 2Ω2

3)
2 + A2

3(|C3|2 + 2A3ReC3)

= 2
A2W

A2 + A4

[
A2

3 + Ω2
3

A2
3 + 2Ω2

3

+ 2 ReC3
A3

3Ω
2
3

[A2
3 + 2Ω2

3]
3

]
+O(C2

3). (3.113c)

p32 = 3
A2W

A2 + A4

(A2
3 + Ω2

3)[(A
2
3 + 2Ω2

3)
2 + 3A2

3B] + 2A2
3[|C3|2|A3 + C3|2 +BΩ2 +B2]

(A2
3 + 2Ω2

3) [(A2
3 + 2Ω2

3)
2 + 3A2

3B] + 2A2
3 [|C3|2|A3 + C3|2 +B2]

= 3
A2W

A2 + A4

[
A2

3 + Ω2
3

A2
3 + 2Ω2

3

+ 4 ReC3
A3

3Ω
2
3

[A2
3 + 2Ω2

3]
3

]
+O(C2

3) (3.113d)
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Figure 3.13: Double jump rate nDJ and triple jump rate nTJ for three dipole-
interacting four-level systems with experimental parameter values of reference [3].
Solid line: exact results, dashed line: independent systems. In the graph for nTJ

∆3 = 0 and Ω3 = 1
2

√√
5− 1A3 are chosen for maximal effects and the dotted line

shows the result up to first order in C3.

as transition rates up to first order in C3. The exact results including detuning are
given in Appendix B. The approximations to first order in C3 have the same structure
as in the other cases. In Figure 3.13 plots of nDJ and nTJ are shown. The double jump
rate is displayed for the experimental parameter values of Reference [3]. The effects
of the dipole-dipole interaction are negligibly small in particular for experimental
distances of about ten times the wavelength λ3 of the strong transition. Without

detuning ∆3, maximal cooperative effects are obtained for Ω3 = 1
2

√√
5− 1A3. This

case is shown in Figure 3.13 for the triple jump rate nTJ. For inter-atomic distances
larger than one wavelength λ3 of the strong transition cooperative effects are less
than 5% and as before they are rapidly decreasing for larger distances. For non-
zero detuning the maximally achievable effects have about the same value. Also
one has to bear in mind that, as in Reference [48], this result has to be seen as
an upper limit for all possible configurations in the trap. Large cooperative effects,
i.e. enhancements of the double and triple jump rate by several orders of magnitude,
can therefore not be explained by the dipole-dipole interaction. Furthermore one
sees that the first order results of equation (3.113) are a very good approximation
to the exact transition rates given in Appendix B.

V system and similar level schemes

From the previous results the question arises whether the method presented here is
also applicable to level systems like the V system, i.e. systems in which the transition
between different bright and dark periods results from a coherent excitation. It turns
out that for these systems the situation is much more complicated. For a single V
system for example L1(Ω2) contains coherences between the ground state |1〉 and
the meta-stable state |2〉. Therefore L1ρi has no component in the subspace of
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eigenstates of L0 for eigenvalue zero. According to equations (3.30) and (3.31) the
state at time t+ ∆t in the Bloch equation approach is thus given by

ρ(t+ ∆t, ρ0,i) = ρss,i + (ε−L0)
−1L1ρss,i. (3.114)

An explicit evaluation of this expression for a single V system starting with ρ1 not
only leads to terms proportional to the quasi-steady state population of the ground
state but also to terms proportional to the quasi-steady state coherence between
ground state and excited state.

The situation gets even more involved for dipole-interacting V systems. Here the
term (ε−L0)

−1 gives rise to additional factors which depend in a very complicated
way on C3. This is in contrast to the D and the four-level system, for which the
C3 dependence in the transition rates is solely due to C3 dependence of the quasi-
steady states. The physical reason is that the efficiency of the laser driving is
influenced by the dipole interaction, for example via additional detunings. Therefore
the mechanism of the quantum jumps is much more complex than for jumps based
on spontaneous decay so that the method outlined above is only applicable in the
latter case.



Part II

Detection of ultra-cold moving
atoms
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Introduction

Atom optics is a recent and growing sub-field of atomic, molecular, and optical
physics which aims at exploiting the wave nature of matter. In this vain, one has
realized conventional optics experiments with atoms instead of light. Often the role
of light and matter with respect to their usual use in conventional optics is simply
reversed. More specifically, the influence of laser light on the translational motion
of atoms can be utilized to construct optical elements like beam splitters, diffraction
gratings, lenses, and so on based on light.

In the second part of this work a model for the measurement of properties of
the wave function of laser cooled atoms is developed. The idea to this model is
taken from an atom optical experiment by Szriftgiser et al. [49, 50]. It was part of
a series of experiments performed in the group of Dalibard in which an evanescent
wave atomic mirror was used to demonstrate a number of atom optical devices like
a lens and a phase modulator [51, 52]. In the particular experiment of interest, the
realization of the temporal equivalent of a diffraction experiment was demonstrated.
The basic principle of the experiment is the following. A cloud of laser cooled cesium
atoms is released from a magneto-optical trap located above the mirror. After two
rebounds during which the mirror is switched on for only a short period of time
the atoms show a diffraction pattern. This is detected by measuring the number of
atoms reflected in a third rebound, again with a short switch-on time of the mirror.
Since the atomic gas is very dilute the atoms do not interact with each other and
the experiment can be seen as an experiment with single atoms.

The part of the experiment described above most interesting for the present work
is the measurement procedure given by the third reflection. It can be used to infer
interesting quantum features from the wave functions of the atoms impinging on
the mirror. When switched on, the mirror basically cuts out a short part of the
atomic wave function, which is reflected. This small section contains information
about the value of the wave function at the specific point which hit the mirror at
the moment it was switched on. The shorter the switch-on time is the more precise
this information is. A model for this procedure will be developed in this work which
allows the detailed analysis of the process. The question of how to prepare a suitable
wave packet to be detected by the mirror is not considered in this work. The above
diffraction experiment can be seen as a way of achieving this technically.

Two distinct measurement set-ups are investigated in the following. First, if the
switch-on time of the mirror is kept fixed and the position of the mirror is moved it
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will be shown that one can measure the probability density, i.e. the modulus squared,
of the wave function. This can be seen as an interesting result in the field of quantum
state estimation. In this area of research one tries to deduce the full information
about a given state of a quantum mechanical system from a series of measurements
(for a recent review see reference [53]). This has already been achieved for different
quantum states of the radiation field [54], for the motional state of an atom in
a trap [55], the vibrational state of a molecule [56], and especially has become a
standard technique in quantum information processing with trapped ions for the
reconstruction of the internal states of the ions [57, 58]. A partial reconstruction of
the motional state of unbound atoms has been achieved experimentally for atomic
beams with interferometric methods, namely for the transversal degrees of freedom
[59, 60] and for the longitudinal degree of freedom [61, 62]. However, for laser
cooled atoms released from a trap a quantum state reconstruction of the translational
degrees of freedom has not been realized so far. The result presented here can be
seen as a step in this direction.

Secondly, if the position of the mirror is kept fixed and the reflection window is
shifted in time one may expect from considerations based on classical mechanics to
measure the arrival-time distribution of the atoms. In quantum mechanics, however,
the notion of arrival-time and of time observables in general is not unambiguous
and a still controversially discussed question [63]. In this context it is important
to find connections between ideal or axiomatically defined quantities and actual
measurements. Therefore, attempts have been undertaken to propose experimental
schemes how to measure time observables. For the measurement of the time of
arrival a quantum optical model has been proposed in which the detection time of
the first fluorescence photon of a two-level atom impinging on a laser illuminated
region is taken as the arrival-time of the atom [64]. This first photon distribution can
be linked to ideal quantities like Kijowski’s distribution or the quantum mechanical
flux [65].

For the experimental realization of such a quantum optical model, a major techni-
cal challenge is that it is necessary to achieve a laser profile which is sharp compared
to the width of the wave packet in order have a well defined arrival point. At the
same time, the atoms for which the arrival-time is to be observed have to be suffi-
ciently slow so that quantum effects can be observed. These conditions are fulfilled
by the present measurement scheme. The question arises whether one of the named
ideal quantities is measured. As a major result of this part of the work, it will be
shown that in fact none of the ideal arrival-time distributions is measured but rather
a semi-classical distribution.

This part of the work is organized as follows: Chapter 4 gives background in-
formation on a few topics important for the following investigations. In Section 4.1
the experiment under investigation is described in more detail and relevant exper-
imental data is given. In Section 4.2 the principle of the evanescent wave atomic
mirror is explained and some theoretical background on the dipole force and quan-
tum mechanical motion in exponential potentials is given. Section 4.3 contains a
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short review of the problem of quantum time of arrival. The theoretical concepts
which are important in the context of the experiment in question are presented. In
the following Chapter 5, the model for the description of the measurement proce-
dure is presented and an expansion of the measured reflected norm in terms of the
length of the time slit is given. Furthermore numerical calculations are presented
which illustrate the different possible measuring set-ups. Finally a three-dimensional
generalization of the model is presented.

In Appendix C a review of some basic properties of the Hilbert transform are
given, together with the calculation of Hilbert transforms for two classes of functions
needed in this work.



Chapter 4

Atoms in evanescent laser fields

In this chapter some background information on the experiment is presented from
which the basic idea of the detection scheme is taken which will be analyzed in this
part of the work. First, in Section 4.1 a short description of the experiment itself
is given. This includes information about the values of the physical parameters in
the experiment which are of some importance for the model which will be developed
later. Following this, Section 4.2 is concerned with the theoretical description of the
evanescent wave atomic mirror. This is the principal component of the experiment
and of the detection scheme to be developed. For one specific application of this
scheme which will be discussed later a consideration based on classical mechanics
suggests that it may be possible to measure a quantum arrival-time distribution.
Section 4.3 therefore reviews certain aspects of this controversially discussed topic.

4.1 Description of the experiment

A schematic illustration of the experimental set-up is shown in Figure 4.1. A cloud
of laser cooled Cesium atoms which has been cooled down to about 5µK is released
from a magneto-optical trap and dropped onto an atomic mirror located 3 mm below
the trap. This mirror consists of a prism illuminated from underneath by laser light
as shown in Figure 4.2. The laser is totally reflected at the prism surface giving
rise to an exponentially decreasing field above the surface. This so-called evanescent
light field has a decay length on the sub-micrometer scale and forms the actual
mirror. More precisely the decay length κ−1 of the evanescent wave field is given by

κ =
2π

λ

√
n2 sin2 θ − 1, (4.1)

where λ is the wave length of the laser, n is the refractive index of the dielectric
forming the prism, and θ is the angle of incidence of the laser beam. For the
experiment the estimation κ−1 = 0.19µm was given [50].

The laser is blue detuned from the 6S1/2 ↔ 6P3/2 resonance line of the cesium
atoms. This results in a repulsive force acting on the atoms which is called dipole
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Figure 4.1: Sketch of the temporal diffraction experiment of Reference [49].

force [66]. By switching the laser field on and off the mirror can be switched on
and off very quickly, in about 0.5µs. With the laser switched off the atoms stick to
the surface of the prism and are lost for the experiment. At the time t = 0 when
the atoms are released from the trap the mirror is in the off-state. It is turned on
for a short time window, or pulse, of length τ centered at time T = 25 ms which
corresponds to the classical falling time of the atoms T =

√
2z0/g, with z0 the

distance between trap and mirror and g the gravitational acceleration. The mirror
is switched on again at time t = 3T later, again for a pulse of length τ .

The resulting wave packet is measured by a third pulse which is shifted in time
around t = 5T . This is done by determining the number of atoms that have been
reflected by this pulse in a fluorescence experiment using probe laser. The integrated
intensity of the fluorescence induced by this probe laser is proportional to the number
of atoms that have been reflected. From a more quantum mechanical point of view
the mirror cuts out a short section of the wave packet which impinges onto the
mirror. The norm of this reflected part of the wave packet contains information
about the value of the wave function at the position of the mirror. The shorter the
duration of this measurement pulse is the more accurate this information will be.
These simple considerations show that it might be interesting to study this detection
process in more detail which will be the aim of the following chapters of this work.
Since the atomic gas is very dilute the atoms do not interact with each other and
the experiment can be seen as an experiment with single atoms.

For sufficiently small values of τ the wave packet describing the atom after the
second pulse exhibits sidebands due to temporal diffraction effects. In the exper-
iments this was seen for approximately τ ≤ 35µs. The concept of diffraction in
time in quantum mechanics goes back to Moshinsky, who considered the question
of what happens to a monochromatic beam of particles interrupted by a shutter if
this shutter is suddenly removed [67, 68]. This concept was then further investi-
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physical parameter Notation exp. value

wavelength of the atomic transition λ 852 nm

decay rate of the transition Γ 2π × 5.3 MHz

saturation intensity Isat 2.2 mW/cm2

laser intensity I ≈ 35 W/cm2

Rabi frequency Ω0 =
√

Γ2Isat/I ≈ 4.2 s−1

laser detuning ∆ 9.5 GHz

inverse decay length of the laser field κ 5.3× 106 m−1

cesium mass mCs 2.2× 10−25 kg

mean velocity of the atoms v0 0.25 m/s

mean wave number of the atoms k0 = mCsv0/~ 5.3× 108 m−1

kinetic energy in units of ~ Ekin/~ 65.3× 106 s−1

Table 4.1: A compilation of the experimental data relevant for the investigations in
this work. The Rabi frequency given here is an estimation based on the intensity of
the laser outside the prism and on experimental values given in reference [50]. It
should therefore merely be seen as an upper boundary.

gated theoretically and generalized by several authors [69, 70, 71]. The experiment
of Reference [49] is a first realization of this concept for atoms.

For practical purposes connected with the detection scheme which will be de-
veloped in the following it is an important point that the wave packets produced
by the first two pulses are broad compared to the decay length of the mirror. This
allows to resolve the wave packet by a measurement with the mirror. For example,
for τ = 30µs the measured distribution had a full width at half maximum (FWHM)
of about ∆t = 80µs. This corresponds, via ∆x = v0∆t, to ∆x = 20µm. Here, v0 is
the classical velocity at the position of the mirror for atoms initially at rest.

The mechanism for the formation of the wave packets will now be shortly illus-
trated in a simple classical picture. The first two pulses select atoms with a certain
range of velocities. Let the surface of the mirror be positioned at z = 0. The classical
trajectories of the atoms between the first and second rebound are given by

z(t) = v0t−
g

2
t2 (4.2)

where now t = 0 is the time at which the atoms leave the mirror surface after the
first reflection. In order to be reflected, the atoms have to reach the mirror again
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after a time 2T − τ ≤ t ≤ 2T + τ . This yields

g
(
T − τ

2

)
≤ v0 ≤ g

(
T +

τ

2

)
(4.3)

as the range of possible velocities just before the first reflection and thus just after
the second reflection. Assuming a broad, practically uniformly distributed, initial
velocity distribution, one arrives at a triangular velocity distribution centered around
v0 = gT with a FWHM of ∆v = gτ/2 just after the second rebound. At the same
time the spatial distribution of the atomic cloud is limited by ∆x = v0τ . For
τ = 30µs one has ∆v = 0.15 mm/s and ∆x = 7.5µm. Although the velocity
distribution is quite sharp there is still some spreading in the spatial distribution
until the atoms reach the measurement pulse. Atoms with velocity v = gT reach the
mirror again after a time t = 2T whereas atoms with velocity v ±∆v arrive after a
time t = 2T ∓ τ . Thus the atoms arrive at the mirror for the third rebound with a
width of roughly ∆x = 3v0τ = 22.5µm which is in reasonably good agreement with
the experimental result. In the following the preparation process itself disregarded.
It is simply assumed that a preparation of a wave packet with the above properties
is possible.

4.2 Evanescent wave atomic mirrors

The main component of the experiment of Reference [49] is an atomic mirror based
on an evanescent light field on the surface of a dielectric prism. It is used in the
following as a measuring device to extract information from the wave packet. This
chapter gives some theoretical background on the basic mechanism of such a mirror.

The original idea of using an evanescent wave light field as a mirror for atoms is
due to Cook and Hill [72]. The first experimental realization of such a mirror was
achieved by Balykin et al. [73, 74] for a beam of thermal atoms at grazing incidence
and by Kasevitch et al. [75] for the so-called “trampoline” configuration in which
laser cooled atoms are released from an atomic trap and being dropped onto the
mirror in perpendicular incidence.

The basic principle of the evanescent wave mirror is this. If an electromagnetic
wave propagating in a dielectric undergoes total reflection at the surface of the
material then on the outside of the medium there is an evanescent wave, i.e. a
field with an amplitude which is exponentially decreasing with the distance to the
surface [76]. The decay length κ−1 as given by Equation (4.1) in the previous section
is typically of the order of a wave length and κ−1 = 0.19µm in the example given
above. Due to this intensity gradient, an atom which is placed into the evanescent
field experiences a force, the so-called dipole force. If the frequency of the light field
is tuned above an atomic resonant frequency this force is repulsive and a sufficiently
slow atom is reflected without reaching the surface. A sketch of the basic design of
such a mirror is given in Figure 4.2.
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Figure 4.2: Sketch of the principle of an evanescent wave mirror.

In order to set forth this mechanism in more detail the following two sections deal
with the dipole force and the quantum mechanical motion of atoms in exponential
potentials.

4.2.1 The dipole force

Usually the derivation of the dipole force is done via a semi-classical approach using
Bloch equations [66]. In this approach the atom is considered to be point-like and
the internal states of the atom are assumed to follow the laser field applied at any
given point adiabatically. However, the assumption of the atom to be point-like is
not fulfilled in the set-up to be discussed here. In contrary, a very broad wave packet
is being prepared. Therefore a different approach is chosen here which is based on
the partitioning technique due to Zwanzig and Mori [77, 78, 79].

The calculation starts with the conditional Hamiltonian for a moving atom with
internal two-level structure interacting with a laser field

Hc =
p̂2

2m
− ~(∆ + iγ/2)|2〉〈2|+ ~Ω(x̂)

2

(
|1〉〈2|+ |2〉〈1|

)
(4.4)

describing the time evolution until the emission of the first photon in the framework
of the quantum jump approach [80]. Here, γ is the decay rate of the excited level
and ∆ is the detuning of the laser. For the present problem of an evanescent wave
mirror the position dependence of the Rabi frequency is given by

Ω(x̂) = Ω0e
κx̂ (4.5)
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although the following calculation is valid for more general laser profiles. In contrast
to the experiment the atom is now assumed to be moving horizontally and coming
in from the far left. Gravitation is discarded in the following. The prism surface is
assumed to be at x = 0. Therefore, only the region x ≤ 0 is of interest. The initial
state of the system is given by

ψ0 = ψ0|1〉 (4.6)

where ψ0 is the initial wave function for the center of mass motion. Using the
projectors on the ground and excited states

P = |1〉〈1|, Q = |2〉〈2|, Q+ P = 11 (4.7)

the Schrödinger equation for the conditional time development can be written as

ψ̇t = − i

~
Hcψt = − i

~
(P +Q)Hc(P +Q)ψt. (4.8)

The projections of this equation onto the ground state and the excited state are
given by

P ψ̇t = − i

~
PHcPPψt −

i

~
PHcQQψt (4.9)

and

Qψ̇t = − i

~
QHcQQψt −

i

~
QHcPPψt, (4.10)

respectively. Defining f(t) = − i
~QHcPPψt the formal solution of Equation (4.10)

is given by

Qψt = e−
i
~ QHcQtQψ0 +

∫ t

0

ds e−
i
~ QHcQ(t−s)f(s) (4.11)

= − i

~

∫ t

0

ds e−
i
~ QHcQ(t−s)QHcPPψs, (4.12)

since Qψ0 = 0. Inserting this into equation (4.9) gives

P ψ̇t = − i

~
PHcPPψt −

1

~2
PHcQ

∫ t

0

ds e−
i
~ QHcQ(t−s)QHcPPψs (4.13)

as an integro-differential equation for the time development of the state Pψt. Using
the explicit expressions

PHcP =
p̂2

2m
, QHcQ =

p̂2

2m
− ~(∆ + iγ/2), PHcQ = QHcP =

~Ω(x̂)

2
(4.14)

and applying the substitution τ = t− s yields

P ψ̇t = − i

~
p̂2

2m
Pψt −

Ω(x̂)

4

∫ t

0

dτ e−
i
~

(
p̂2

2m
−~(∆+iγ/2)

)
τΩ(x̂)Pψt−τ . (4.15)
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In order to simplify this expression it is possible to apply a kind of Markov approx-
imation to the integrand. If |~(∆ + iγ/2)| � | p̂2

2m
| the integrand is fastly oscillating

(if ∆ � γ) or rapidly damped so that only the contribution from τ = 0 plays a
significant role in the integral. Therefore, to good approximation, one can put τ = 0
in Pψt−τ and the upper integration limit can be extended to infinity. Then one has

P ψ̇t = − i

~
p̂2

2m
Pψt −

Ω(x̂)

4

∫ ∞

0

dτ e−
i
~

(
p̂2

2m
−~(∆+iγ/2)

)
τΩ(x̂)Pψt (4.16)

= − i

~
p̂2

2m
Pψt −

~Ω(x̂)

4

1

i
(

p̂2

2m
− ~(∆ + iγ/2)

)Ω(x̂)Pψt. (4.17)

When the kinetic energy term in the integrand is neglected the Rabi frequency
commutates with the integral yielding

P ψ̇t = − i

~
p̂2

2m
Pψt+

Ω2(x̂)

4i(∆ + iγ/2)
Pψt = − i

~
p̂2

2m
Pψt−i

Ω2(x̂)

4(∆2 + γ2/4)
(∆−iγ/2)Pψt.

(4.18)
If, in addition, the relation ∆ � γ is fulfilled one finally gets

P ψ̇t = − i

~

[
p̂2

2m
+

~Ω2(x̂)

4∆

]
Pψt . (4.19)

as an effective Schrödinger equation for the ground state. The second term on the
right hand side can be regarded as a potential, namely the potential of the dipole
force. It is identical to the term obtained by the usual derivation. In the case
investigated here, it is given by

V (x̂) =
~Ω2(x̂)

4∆
=

~Ω2
0

4∆
e2κx̂. (4.20)

Note that in contrast to the first part of the work only the translational degrees
of freedom have to be considered whereas the internal degrees of freedom can be
disregarded.

The approximation of Equation (4.16) is only valid for Ω � ∆ since else the
state Pψt−τ can be fastly oscillating itself. This can be seen in the simplified case,
when Ω is a number instead of an operator. This is the case, for example, when Ω is
constant over the whole real axis. Then Equation (4.15) can be solved by applying
a Laplace transform. The solution is given by

Pψt =
Ωeff −∆γ

2Ωeff

e−
i
~ ( p̂2

2m
−~

2
(∆γ+Ωeff))t +

Ωeff + ∆γ

2Ωeff

e−
i
~ ( p̂2

2m
−~

2
(∆γ−Ωeff))t, (4.21)

with ∆γ = ∆ + iγ/2 and Ωeff =
√

Ω2 + ∆2
γ. The first term of this solution oscillates

with a frequency larger than 2∆ even if Ω � ∆. If the condition Ω � ∆ (and also
∆ � γ as above) is fulfilled the solution (4.21) can be approximated by

Pψt =
Ω2

4∆2
e−

i
~ ( p̂2

2m
−~∆)t + e−

i
~ ( p̂2

2m
−~Ω2

4∆
)t, (4.22)
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so the fastly oscillating term can be neglected.
The experimental values given in Table 4.1 do not strictly fulfill the condition

Ω � ∆ since ∆/Ω ≈ 2. The kinetic energy of the atoms in the experiment, however
is much smaller than the maximal value of the potential given by Equation (4.20).
Thus, the atoms will be already reflected at a position at which ∆/Ω � 1 indeed is
fulfilled. In addition one can show that the mean number of photons to be emitted
by an atom during its flight through the evanescent wave field is smaller than one
for the given parameter values. This is another indication for the validity of the
approximation applied in the calculation of the optical potential.

4.2.2 Atoms in exponential potentials

In this section the behavior of a quantum particle in an exponential potential is dis-
cussed in order to illustrate the simplifications applied to the model for the detection
scheme given further below. The argument mainly follows Reference [81].

The Hamiltonian of the problem is given by

H =
p̂2

2m
+

~2k2
max

2m
e2κx̂. (4.23)

By defining kmax =

√
mΩ2

0

2~∆
one obtains the optical potential of the previous sec-

tion. In order to describe the atomic reflection from this exponential potential the
stationary Schrödinger equation[

− d2

dx2
+ k2

maxe
2κx

]
ψ(x) = k2ψ(x) (4.24)

will now be solved exactly. This done by applying the transformation

x→ u(x) = αeκx, (4.25)

with α = k/κ. Equation (4.24) then takes the form[
u2 d2

du2
+ u

d

du
− (u2 − α2)

]
ψ(u) = 0. (4.26)

The solution to this equation is given by linear combinations of the modified Bessel
functions I±iα(u) defined by [82]

I±iα(u) =
(u

2

)±iα
∞∑

k=0

(
u
2

)2k

k!Γ(k + 1± iα)
, (4.27)

where Γ(z) is the Euler gamma function. In order to find a unique solution one has
to consider the behavior of this function for x→ ±∞ which is equivalent to u→∞
and u→ 0, respectively. The former limit can be computed by using an asymptotic
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expansion [82] and the latter limit by using the first term of the expansion (4.27).
This gives

x→ −∞ : I±iα(u(x)) '
√

sinh (πα)

πα
e±[α(κx+ln β/2)−arg Γ(1+iα)] (4.28)

u→ +∞ : I±iα(u) ∼ 1√
2πu

eu(1 +O(1/u)), (4.29)

with β = kmax/κ. Since physically reasonable solutions have to vanish for x→ +∞
the eigenstate with wave number k is given by

φk =
1

2i

√
πα

sinh πα
[Iiα(u(x))− I−iα(u(x))] = −

√
α

π
sinh (πα)Kiα(u(x)), (4.30)

with the modified Bessel function of the second kind Kiα(z). It has the asymptotic
expansion

u→∞ : Kiα(u) ∼
√

π

2u
e−u(1 +O(1/u)).

Thus, the eigenstates of Equation (4.30) are exponentially damped for x→∞ and
equation (4.28) shows that it asymptotically describes a plane wave with initial mo-
mentum ~k coming in from the far left which is totally reflected and is experiencing
a phase shift

∆φ(k) = 2α ln(β/2)− 2 arg Γ(1 + iα) (4.31)

in the reflection process. If one considers an atomic wave packet

ψ(x, t) =

∫ ∞

0

dk ψ̃(k)φke
−i ~k2

2m
t (4.32)

with a momentum amplitude ψ̃(k) peaked around some average wave number k0

one can use the method of stationary phase to calculate the position xwp(t) of the
center of the wave packet. For the asymptotic incoming and outgoing state on finds

xin
wp(t) =

~k0

m
t− 1

2

(
∂∆φ(k)

∂k

)
k0

(4.33)

xout
wp (t) = −~k0

m
t− 1

2

(
∂∆φ(k)

∂k

)
k0

. (4.34)

Thus, as far as the asymptotic behavior is concerned the exponential potential be-
haves as an infinitely steep step potential located at the position

ξ0 = −1

2

(
∂∆φ(k)

∂k

)
k0

= −1

κ

(
ln (β/2)− Re Ψ(1 + iα)

)
, (4.35)
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where Ψ(z) is the digamma function defined by Ψ(z) = ∂ ln Γ(z)/∂z and α = k0/κ.
For α� 1, as is the case in the experiment in question, this position simplifies to

ξ0 = −1

κ
ln
( β

2α

)
. (4.36)

Of course, the actual optical potential is not growing to infinity for x→∞ but
reaches a maximum value ~Ω2

0/4∆ at the surface of the prism. Therefore it would
be more realistic to use a potential which is cut at x = 0. This is described by the
Hamiltonian

H =
p̂2

2m
+

~2k2
max

2m
e2κxθ(−x), (4.37)

with the Heaviside step function θ(x). The eigenfunctions for an atom incoming
from the left can be written in the form

x < 0 : φ(x) =

√
πα

sinh (πα)
[Iiα(u(x)) + AI−iα(u(x))] (4.38)

x ≥ 0 : φ(x) = Beik0x = Beiακx. (4.39)

From the matching conditions at x = 0 one then obtains the prefactors

A = − Iiα+1(β)

I−(iα+1)(β)
B = −2i

√
α

β

√
sinh (πα)

πβ

1

I−iα−1(β)
, (4.40)

which obey the relation A2 + B2 = 1, as they should. This can be shown using
properties of the Bessel functions [82]. Numerical analysis using the experimental
values shows that for β/α = 1.05 the transmission probability is already smaller
than |B|2 = 0.5%. For the typical kinetic energies of the experiment the optical
potential can be regarded as completely reflecting.

4.3 Arrival-times in quantum mechanics

In the analysis of the detection scheme motivated by the experiment presented in
Section 4.1 the question arises, whether the distribution obtained in a particular
set-up can be interpreted as an arrival-time distribution. In order to provide the
necessary background, in this section a few important concepts and definitions of
arrival-times are presented. Since quantum arrival-times are not the main issue of
this work only a short overview is given. More detailed discussions can be found in
[63, 83].

4.3.1 Classical arrival-time

Before discussing the quantum case it is useful to review the main properties of
classical arrival-times. In the following only the straightforward situation of arrival-
times of free particles will be treated. For the discussion of the case of interacting
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particles, where topics like multiple crossings have to be considered, see Reference
[63].

In classical mechanics the arrival-time at x = xA of a freely moving particle with
initial position x0 < xA and initial momentum p0 > 0 is given by

tA =
m(xA − x0)

p0

. (4.41)

Since the particle crosses the point x0 once and only once, no distinction has to
be made between arrival-time and first arrival-time. For an ensemble of classical
particles the distribution of arrival-times is given by the probability flux or current
density Jcl(t, xA). It can be written as the average of the phase-space function
J (x, p;xA) = p

m
δ(x − xA) evaluated with the phase space distribution function

ρt(x, p)

Jcl(t, xA) =

∫ ∞

−∞
dx

∫ ∞

0

dp ρt(x, p)
p

m
δ(x− xA) (4.42)

where ρt(x, p ≤ 0) = 0. This is the classical probability flux or current density. The
average arrival-time is given by the first moment of Jcl

〈tA〉 =

∫ ∞

−∞
tJcl(t, xA). (4.43)

By use of the trajectory equation x = x0 + p0

m
t and Liouville’s theorem this can be

rewritten as the average of the times tA with respect to the phase-space distribution
function

〈tA〉 =

∫ ∞

−∞
dx0

∫ ∞

0

dp0 ρ0(x0, p0)
m(xA − x0)

p0

. (4.44)

For the more general case of arbitrary initial momentum the flux Jcl(t, xA) itself
is not the arrival-time distribution anymore. However, the positive flux

Jcl
+(t, xA) =

∫ ∞

−∞
dx

∫ ∞

0

dp ρt(x, p)
p

m
δ(x− xA) (4.45)

and minus the negative flux

Jcl
−(t, xA) =

∫ ∞

−∞
dx

∫ 0

−∞
dp ρt(x, p)

p

m
δ(x− xA) (4.46)

are unnormalized arrival-time distributions for particles moving rightwards and left-
wards, respectively. As a consequence the sum of these two expressions

Jcl
tot(t, xA) = Jcl

+(t, xA)− Jcl
−(t, xA) =

∫ ∞

−∞
dx

∫ ∞

−∞
dp ρt(x, p)

|p|
m
δ(x− xA) (4.47)

gives the total arrival-time distribution in this case.
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4.3.2 Quantum arrival-times

The question of how to incorporate the time of arrival as an observable into stan-
dard quantum mechanics is a controversially discussed topic with a long history. In
principal, one has to distinguish clearly between attempts of defining arrival-time
operators and approaches which deal with the proposal of arrival-time distributions
and mean arrival-times. In this section only the latter approach will be discussed.

Quantum mechanical flux

Since for particles with only positive momenta the classical arrival-time distribution
is given by the current density Jcl(t, xA) it seems obvious to use the analogous
quantity, namely the quantum mechanical flux

J(xA, t) =
~
m

Im
(
ψ(xA, t)ψ

′(xA, t)
)

(4.48)

as the arrival-time distribution for the quantum mechanical state ψ(x, t) at the
arrival point xA. However, this quantity is not necessarily positive. For wave packets
with purely positive wave number contributions J(x, t) can become negative on
arbitrarily long, but finite, time intervals [84]. This is the so-called back-flow effect
[85]. In many cases, nevertheless, the flux provides a well-defined expression for an
arrival-time distribution.

The situation becomes more difficult when one tries to carry over the general clas-
sical result (4.47) to quantum mechanics in the same way. The quantum mechanical
flux can be seen as a quantization of the phase-space function J = p

m
δ(x− xA). In

the general case one analogously has to consider the corresponding functions J+ and
J−. The problem is here that for example the quantization of J+ = p

m
δ(x−xA)θ(p)

is non-unique because the flux operator does not commute with θ(p̂). The same ap-
plies for J− and there are infinitely many symmetrization possibilities [63].

Kijowski’s distribution

A different quantum arrival-time distribution based on classical correspondence has
been given by Kijowski [86, 87]. He defined a number of axioms which in the classical
case lead to the right distribution, namely that of Equation (4.42). Carried over to
the quantum case these axioms lead to a uniquely defined distribution. For free
particles with only positive momentum components this distribution is given by

ΠK(t, xA) = 〈ψt|
1

m
p̂1/2δ(x̂− xA)p̂1/2|ψt〉

=
~

2πm

∣∣∣∣∫ ∞

0

dk ψ̃(k)
√
ke−i ~k2

2m
teikxA

∣∣∣∣2 (4.49)

for the arrival at x = xA. This distribution is called Kijowski’s distribution. Note
that the operator in Equation (4.49) can be seen as a positive quantization of the
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classical expression (4.42). For positive momentum components ΠK is identical to
the distribution later obtained [88] by means of positive operator valued measures
(POVMs) from the so-called Aharonov-Bohm arrival-time operator [89].

For interacting particles and also for wave packets with arbitrary momentum
components the axiomatic approach of Kijowski does not seem to be directly appli-
cable. Generalizations for particles in external potentials are still subject of research
[90, 91].

Recently a quantum optical scheme for measuring arrival-times has been pro-
posed [64]. It could be shown that the arrival-time distribution resulting from this
operational scheme can be linked to the quantum mechanical flux as well as to
Kijowski’s distribution in certain limits of the parameters involved [64, 65]. This
approach also allows for the generalization of Kijowski’s distribution to the case of
particles with arbitrary momentum components and to the case of particles in an
external potential [92].

Expansion of Kijowski’s distribution

As mentioned in the last section Kijowski’s distribution (4.49) can be written in the
form

ΠK(t, xA) = 〈ψt|
1

m
p̂1/2δ(x̂− xA)p̂1/2|ψt〉. (4.50)

For wave packets which have a sharply peaked momentum distribution around some
momentum p0 the operator p̂1/2 can be expanded in terms of powers of (p̂− p0) [93],

p̂1/2 = p
1/2
0 +

1

2
p
−1/2
0 (p̂− p0) +O

(
(p̂− p0)

2
)
. (4.51)

In the following p0 is taken to be the first moment p0/~ =
∫

dk k|ψ̃(k)|2 of the
momentum distribution of the wave packet. Then, inserting the expansion into
Equation (4.50) gives to zeroth order the particle’s density at the arrival point xA

times the mean velocity

ΠK(t, xA) = v0|ψ(xA, t)|2 +O
(
(p̂− p0)

)
. (4.52)

this is also a possible time of arrival distribution which has been studied for example
in Reference [94] which can be seen as a semi-classical distribution since it can be ob-
tained from the classical term by replacing the classical spatial distribution function
by the quantum mechanical probability density. More accurately the normalized
distribution should be written as

Πsc(t, xA) = |ψ(xA, t)|2/
∫

dt |ψ(xA, t)|2 (4.53)

because for wave packets with only positive momenta one has
∫

dt |ψ(xA, t)|2 =
1/〈v−1〉. The expansion of ΠK to second order in (p̂− p0) yields the flux at x = xA

ΠK(t, xA) = J(xA, t) +O
(
(p̂− p0)

2
)
. (4.54)
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So, the quantum mechanical flux and the quite intuitive expression of Equation
(4.52) can be seen as approximations to the ideal distribution of Kijowski for wave
packets peaked sharply in momentum space.



Chapter 5

The atomic mirror as a measuring
device

In the following the detection procedure used in the experiment described in Section
4.1 is analyzed in detail. This is done in a simplified one dimensional model without
gravitation as depicted in Figure 5.1. Consider a freely moving wave packet prepared
at time t = 0 at position x0 coming in from the left. At time T a perfectly reflecting
mirror is switched on at the position x = 0 and switched off again at time T + τ .
Then the norm of the reflected part of wave packet is measured. This measurement
is done sufficiently far away from the position of the mirror so that the reflected and
the transmitted part of the wave packet can be distinguished clearly. For simplicity
the mirror will be modeled in the following by applying the boundary condition
ψ(x = 0) = 0. This situation can be seen as the limiting case of a square potential
of the form

V (x) = V0χ[−a,a](x), (5.1)

where χ[ξ1,ξ2](x) is the characteristic function of the interval [ξ1, ξ2] and, in the limit
a → 0, V0 has to fulfill 2V0a → ∞. For example, one could use V0 = U/2a2 with
a constant U . In other words one needs a potential which is stronger than a delta-
type potential. The truncated exponential potential of equation (4.37) approaches
the situation described by the above boundary condition for κ→∞ with β = kmax/κ
kept constant. The approximation is good if the wave packet is prepared such that
it is much broader than the decay length κ−1 of the actual mirror.

5.1 Calculation of the reflected norm

In order to investigate which quantities connected with the wave function can be
obtained by the measurement scheme described above one has to calculate the norm
of the reflected part of the wave packet. There are two different ways of achieving
this. In the first method one calculates the momentum amplitude of the wave
packet after the mirror has been switched off by projecting onto the corresponding
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Figure 5.1: Simplified model for the detection scheme of the experiment of Reference
[49]. A wave packet prepared at some point x0 < 0 and moving to the right is
considered. At t=T a mirror consisting of a thin square well potential with large V0

is switched on for a time τ . Afterwards the wave packet again evolves freely and the
norm of the reflected part is measured.

momentum eigenstates. The second method uses the Green’s function of the problem
in order to derive an expression for the wave function in position space after switching
off the mirror. Both methods shed light on different aspects of the procedure so they
will be presented both.

5.1.1 Momentum representation point of view

The momentum amplitude of the incoming wave packet is supposed to have support
only for positive momenta. The general case of a wave packet with arbitrary momen-
tum components is discussed later. For a freely moving wave packet the eigenstates
can be divided into right and left moving plane waves

φ+
k (x) =

1√
2π

eikx, φ−k (x) =
1√
2π

e−ikx. (5.2)

After the mirror has been switched on one needs new eigenfunctions which account
for the boundary condition ψ = 0 at x = 0. These are

φR
k (x) =

√
2

π
sin (kx) θ(x), φL

k (x) =

√
2

π
sin (kx) θ(−x). (5.3)
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for the left and the right hand side. The scalar products between these functions
can be easily calculated yielding

〈φL
k , φ

+
k′〉 =

i

2
δ(k − k′)− 1

π
P

k

k2 − k′2
, (5.4a)

〈φR
k , φ

+
k′〉 =

i

2
δ(k − k′) +

1

π
P

k

k2 − k′2
, (5.4b)

〈φ−k , φ
L
k′〉 =

i

2
δ(k − k′) +

1

π
P

k′

k2 − k′2
, (5.4c)

〈φ−k , φ
R
k′〉 = − i

2
δ(k − k′) +

1

π
P

k′

k2 − k′2
, (5.4d)

where P· denotes the Cauchy principal value. One now starts with a wave function

ψ(x, t) =

∫ ∞

0

dk ψ̃(k)φ+
k e−i ~k2

2m
t, (5.5)

which has been prepared at time t = 0 at a position x0 far away from the mirror.
At time t = T the mirror is switched on. Subsequently the parts of the wave packet
on the left hand side and on the right hand side of the mirror evolve independently
according the eigenstates φR

k (x) and φL
k (x), with the new momentum amplitudes

given by the projections onto these eigenstates, respectively. Therefore, when the
mirror is switched off again at a time T + τ , the state at that moment is given by

ψL
mirr.(x, T + τ) =

∫ ∞

0

dk φL
ke−i ~k2

2m
τ

∫ ∞

0

dk′ 〈φL
k , φ

+
k′〉ψ̃(k′)e−i ~k′2

2m
T (5.6)

and

ψR
mirr.(x, T + τ) =

∫ ∞

0

dk φR
k e−i ~k2

2m
τ

∫ ∞

0

dk′ 〈φR
k , φ

+
k′〉ψ̃(k′)e−i ~k′2

2m
T (5.7)

for the left and right hand side of the mirror, respectively. The momentum amplitude
of the reflected part of the wave function after switching off the mirror is then
obtained by projection onto the free, left moving plane waves

ψ̃L
refl.(k) = 〈φ−k , ψ

L
refl.〉 =

∫ ∞

0

dk′ 〈φ−k , φ
L
k′〉e−i ~k′2

2m
τ

∫ ∞

0

dk′′ 〈φL
k′ , φ

+
k′′〉ψ̃(k′′)e−i ~k′′2

2m
T ,

(5.8)

ψ̃R
refl.(k) = 〈φ−k , ψ

R
refl.〉 =

∫ ∞

0

dk′ 〈φ−k , φ
R
k′〉e−i ~k′2

2m
τ

∫ ∞

0

dk′′ 〈φR
k′ , φ

+
k′′〉ψ̃(k′′)e−i ~k′′2

2m
T .

(5.9)

After insertion of the identities (5.4) equation (5.8) can be written as

ψ̃L
refl.(k) =− 1

4
ψ̃(k)e−i ~k2

2m
(T+τ) +

i

2π
P

∫ ∞

0

dk′ ψ̃(k′)
k′

k2 − k′2
e−i ~k′2

2m
(T+τ)

− i

2π
e−i ~k2

2m
τP

∫ ∞

0

dk′ ψ̃(k′)
k

k2 − k′2
e−i ~k′2

2m
T

− 1

π2
P

∫ ∞

0

dk′
k′

k2 − k′2
e−i ~k′2

2m
τP

∫ ∞

0

dk′′ ψ̃(k′′)
k′

k′2 − k′′2
e−i ~k′′2

2m
T

(5.10)
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for the part left of the mirror. Defining the functions fT (k) and fT+τ (k) as

fT (k) = ψ̃(k)e−i ~k2

2m
T , fT+τ (k) = ψ̃(k)e−i ~k2

2m
(T+τ) (5.11)

and their Hilbert transforms (see Appendix C) as

gT (k) = H[fT ] =
1

π
P

∫ ∞

−∞
dk′

fT (k′)

k′ − k
, (5.12)

gT+τ (k) = H[fT+τ ] =
1

π
P

∫ ∞

−∞
dk′

fT+τ (k
′)

k′ − k
(5.13)

and expanding the fractions one can rewrite Equation (5.10) as

ψ̃L
refl.(k) =− 1

4
fT+τ (k)−

i

4π
P

∫ ∞

0

dk′ fT+τ (k
′)

[
1

k′ − k
+

1

k′ + k

]
+

i

4π
e−i ~k2

2m
τP

∫ ∞

0

dk′ fT (k′)

[
1

k′ − k
− 1

k′ + k

]
− 1

4π2
P

∫ ∞

0

dk′
[

1

k′ − k
+

1

k′ + k

]
e−i ~k′2

2m
τ×

×P

∫ ∞

0

dk′′ fT (k′′)

[
1

k′′ − k′
− 1

k′′ + k′

]
.

(5.14)

Since ft(k) = 0 for k ≤ 0, the integrals containing f can be expanded over the whole
real axis. Therefore one has

ψ̃L
refl.(k) =− 1

4
fT+τ (k)−

1

4π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ

− i

4
[gT+τ (k) + gT+τ (−k)] +

i

4
[gT (k)− gT (−k)] e−i ~k2

2m
τ .

(5.15)

It is important to note here that gt(k) spreads over the whole momentum range,
although ft(k) is only non-zero for positive values of k. In order to get some physical
insight into this expression it is useful to consider the limit τ → 0. This corresponds
to cutting off at time T the part of the wave packet which is on the right hand side
of the mirror. With the skew-reciprocity of the Hilbert transform H[H[f ]] = −f
[95, 96], the second term in Equation (5.15) becomes 1/4(fT (k) + fT (−k)) and one
has

ψ̃L
refl.(k) =

1

4
fT (−k)− i

2
gT (−k). (5.16)

The first term is zero for positive k but the second term still remains. So, there is
some reflection even though the mirror was not switched on. This is due to the fact
that a sudden cut-off of a wave function leads to back flow even if the original wave
packet only had positive momentum components.
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An analogous calculation for the part of the wave function on the right hand side
of the mirror gives

ψ̃R
refl.(k) =− 1

4
fT+τ (k)−

1

4π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ

+
i

4
[gT+τ (k) + gT+τ (−k)]−

i

4
[gT (k)− gT (−k)] e−i ~k2

2m
τ .

(5.17)

In this expression also a small reflected amplitude remains in the limit τ → 0. If one
is interested in the overall reflected amplitude one has to add up Equations (5.15)
and (5.17) which leads to

ψ̃refl.(k) = −1

2
fT+τ (k)−

1

2π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ . (5.18)

In this expression the second lines of Equations (5.15) and (5.17) have canceled
out and for τ → 0 one indeed has no reflection. This corresponds to the physical
picture that no cut-off has been applied and the wave packet moves freely across
the site of the mirror. By looking at equation (5.17) one might get the impression
that the reflected amplitude from the right hand side of the mirror is similar to the
reflected amplitude which originates from the left hand side since the corresponding
expressions are quite similar. In fact, the important difference between the two
expressions is the different sign of the second row. For the right hand side the
first and the second line cancel each other out, so that only a very small amplitude
remains which is due to the cut-off effect mentioned above.

One may ask whether Equation (5.15) or equation (5.18) provides the more
realistic description of the experiment. If the mirror is switched off in the experiment
the atoms hit the prism and stick to the surface or are scattered diffusively. In either
case they are lost to the experiment and do not appear in the reflected amplitude.
Therefore, considering the whole reflected amplitude as in Equation (5.18) seems
more appropriate since only for this case there is no reflection in the limit τ → 0
which corresponds to the mirror never being switched on. Also, the actual reflection
from the exponential potential happens at a distance of approximately 1/κ in front
of the prism surface. So one may argue that also in the experiment there is the
possibility of having a small part of the reflected amplitude coming from the right
hand side of the actual point of reflection.

For sake of completeness the expressions for the momentum amplitude of the
transmitted part of the wave function are also given which are

ψ̃L
trans.(k) =

1

4
fT+τ (k)−

1

4π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ

− i

4
[gT+τ (k) + gT+τ (−k)]−

i

4
[gT (k)− gT (−k)] e−i ~k2

2m
τ .

(5.19)
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for the part on the left hand side of the mirror and

ψ̃R
trans.(k) =

1

4
fT+τ (k)−

1

4π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ

+
i

4
[gT+τ (k) + gT+τ (−k)] +

i

4
[gT (k)− gT (−k)] e−i ~k2

2m
τ

(5.20)

for the part on the right hand side of the mirror. This yields

ψ̃trans.(k) =
1

2
fT+τ (k)−

1

2π
P

∫ ∞

−∞
dk′

gT (k′)− gT (−k′)
k′ − k

e−i ~k′2
2m

τ (5.21)

for the whole transmitted wave packet. As expected this last expression tends to
fT (k), i.e. the momentum amplitude of the free wave packet, for τ → 0.

5.1.2 Green’s function point of view

The momentum amplitudes obtained in the previous section can also be calculated
using the Green’s function of the Schrödinger equation in position space. This allows
a different view on the results of the last section.

The Green’s function of the Schrödinger equation for a free particle is given by

GF
t (x, x′) =

√
m

2πi~t
e−

m
2πi~t

(x−x′)2 . (5.22)

From this one can easily calculate the Green’s function for a free particle with a
mirror at x = 0, i.e., for the boundary condition ψ(0, t) = 0

GS
t (x, x

′) =

√
m

2πi~t

[
e−

m
2i~t

(x−x′)2 − e−
m

2i~t
(x+x′)2

]
. (5.23)

With this Green’s function it is possible to calculate the time development of a wave
function subject to the mirroring procedure described above. Namely, the wave
function for x > 0 at the switch-off time of the mirror is given by

ψR
T+τ (x) = θ(x)

∫ ∞

0

dx′GS
τ (x, x

′)ψT (x′)

= θ(x)

√
m

2πi~t

[∫ ∞

0

dx′ e−
m

2i~t
(x−x′)2ψT (x′)−

∫ ∞

0

dx′ e−
m

2i~t
(x+x′)2ψT (x′)

]
,

(5.24)

where again θ(x) denotes the Heaviside step function and ψT (x′) is the wave function
at the switch-on time T which is connected to the wave function at preparation time
t = 0 via

ψT (x) =

∫ ∞

∞
dx′GF

T (x, x′)ψ(x′, 0). (5.25)
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Analogously, the wave function for x < 0 is given by

ψL
T+τ (x) = θ(−x)

√
m

2πi~t

[∫ 0

−∞
dx′ e−

m
2i~t

(x−x′)2ψT (x′)−
∫ 0

−∞
dx′ e−

m
2i~t

(x+x′)2ψT (x′)

]
.

(5.26)

The above formulas can be rewritten in a compact form using the convolution for-
mula

f ∗ g =

∫ ∞

−∞
dx′ f(x− x′)g(x′).

This yields
ψR

T+τ (x) = θ(GF
τ ∗ (θψT ))(x)− θ(GF

τ ∗ π(θψT ))(x), (5.27)

where π(·) denotes the parity operation x → −x. Analogously, the wave function
on the left hand side can be written as

ψL
T+τ (x) = θ−(GF

τ ∗ (θ−ψT ))(x)− θ−(GF
τ ∗ π(θ−ψT ))(x), (5.28)

with θ− = θ(−x). Finally, the overall wave function at switch-off time is given by
the sum of the two terms

ψT+τ (x) = ψL
T+τ (x) + ψR

T+τ (x). (5.29)

As in the previous section one can take the limit τ → 0 which implies GF
τ → δ. In

this limit one has

θ(δ ∗ (θψT ))(x)− θ(δ ∗ π(θψT ))(x) + θ−(δ ∗ (θ−ψT ))(x)− θ−(δ ∗ π(θ−ψT ))(x)

= (θψT )(x)− (θθ−ψT )(x) + (θ−ψT )(x)− (θ−θψT )(x) = ψT (x) (5.30)

as expected.
In order to identify the left moving part of the wave packet one can now go to

momentum space. With the use of the convolution formulas

f̃ ∗ g =
√

2πf̃ g̃ and f̃ ∗ g̃ =
√

2πf̃g,

where ·̃ denotes the Fourier transform, one has

ψ̃T+τ (k) =
1√
2π

[
θ̃ ∗ (G̃F

τ (θ̃ ∗ ψ̃T ))(k)− θ̃ ∗ (G̃F
τ π(θ̃ ∗ ψ̃T ))(k)

+ θ̃− ∗ (G̃F
τ (θ̃− ∗ ψ̃T ))(k)− θ̃− ∗ (G̃F

τ π(θ̃− ∗ ψ̃T ))(k)
]
.

(5.31)

The Fourier transforms of the functions involved in this formula can be easily cal-
culated yielding

G̃F
τ (k) =

1√
2π

e−i ~k2

2m
τ , θ̃(k) =

1√
2π

1

ik + ε
, and θ̃−(k) = − 1√

2π

1

ik − ε
. (5.32)



5.2 Behavior for short switch-on times of the mirror 85

Inserting these Fourier transforms into Equation (5.31) yields

ψ̃L
T+τ (k) =

1

4π2

∫ ∞

−∞
dk′

[
1

i(k − k′)− ε
− 1

i(k + k′)− ε

]
e−iαk′2

∫ ∞

−∞
dk′′

ψ̃T (k′′)

i(k′ − k′′)− ε
(5.33)

for the momentum amplitude resulting from the left hand side and

ψ̃R
T+τ (k) =

1

4π2

∫ ∞

−∞
dk′

[
1

i(k − k′) + ε
− 1

i(k + k′) + ε

]
e−iαk′2

∫ ∞

−∞
dk′′

ψ̃T (k′′)

i(k′ − k′′) + ε
(5.34)

for the momentum amplitude resulting from the right hand side. Here the quantity
α = ~τ

2m
was used as a simplification. Note that these are the momentum amplitudes

for the whole wave function and are therefore valid for both the reflected (negative k)
and the transmitted (positive k) part. The expressions of equations (5.15,5.17,5.18)
and (5.19,5.20,5.21) are obtained by inserting the identities

1

i(k ± k′)− ε
= −iP

1

k ± k′
+ πδ(k ± k′)

1

i(k ± k′) + ε
= −iP

1

k ± k′
− πδ(k ± k′)

(5.35)

and substituting k → −k for the reflected parts. Also note that at this point of the
calculation the momentum amplitude at switch-on time ψ̃T (k) is not restricted to
positive k-values but allows for general amplitudes.

5.2 Behavior for short switch-on times of the mir-

ror

In order to get more physical insight into the expressions obtained in the previous
section it is helpful to look at the behavior of the norm of the reflected wave packet
in the case when the mirror is switched on for only a very short time. This will be
done by expanding the momentum amplitudes in α = ~τ

2m
which occurs as αk2 in

the exponential. Therefore the condition τ � 2m/~k2
0, where p0 = ~k0 is the mean

momentum of the wave packet, has to be fulfilled in order to have a valid expansion
in α.

The expansion is done for the model without a cut-off of the wave packet. One
therefore has to consider the sum of equations (5.33) and (5.34). In addition,
wave packets with only positive momentum components before the measurement,
i.e. ψ̃T (k) = 0 for k < 0, are regarded now. The general case of wave packets
with arbitrary momentum components is discussed further below. When adding up
Equations (5.33) and (5.34) and inserting the identities (5.35) the mixed terms—the
terms containing a principal value in the first integral and a delta function in the
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second or vice versa—drop out and one has

ψ̃T+τ (k) =
1

2

∫ ∞

−∞
dk′
(
δ(k − k′)− δ(k + k′)

)
e−iαk′2

∫ ∞

−∞
dk′′ δ(k′ − k′′)ψ̃T (k′′)

+
1

2π2

∫ ∞

−∞
dk′
[
P

1

k′ − k
+ P

1

k′ + k

]
e−iαk′2P

∫ ∞

−∞
dk′′

ψ̃T (k′′)

k′ − k′′

=
1

2

(
ψ̃T (k)− ψ̃T (−k)

)
e−iαk2

(5.36)

+
1

2π2
P

∫ ∞

−∞
dk′
[ 1

k′ − k
+

1

k′ + k

]
e−iαk′2P

∫ ∞

−∞
dk′′

ψ̃T (k′′)

k′ − k′′

as the total momentum amplitude after switching off the mirror. This result can
already be used to calculate the first order term of the expansion. In the experiment
the norm in position space of the reflected part of the wave packet is measured at
a time tmeas. at which it is again far away from the mirror. This is equivalent to
measuring in momentum space the part of the norm of the wave packet with negative
k at switch-off time

Nrefl.(α) =

∫ ∞

−∞
dx |ψrefl.(x, T + τ + tmeas.)|2 =

∫ 0

−∞
dk |ψ̃T+τ (k)|2. (5.37)

Note that for the momentum amplitude obtained from the Green’s function picture
the reflected part of the wave function indeed corresponds to negative values of k
whereas in the projection picture the same quantity was given with positive momenta
since it was obtained by projecting on the left moving plane waves proportional to
e−ikx.

Calculation of the lowest order term

In order to compute the expansion in α of equation (5.37) one has to keep in mind
that only the linear combination of the two terms in Equation (5.36) tends to zero for
τ → 0 and not the individual terms themselves. Therefore it is useful to incorporate
the free momentum distribution terms into the integral. This can be achieved my
means of the identity∫ ∞

−∞
dk′ P

1

k′ − k
P

1

k′ − k′′
= π2δ(k − k′′) (5.38)

which is a restatement of the skew-reciprocity of the Hilbert transform. Then the
first term of Equation (5.36) can be rewritten in the form

1

2

(
ψ̃T (k)− ψ̃T (−k)

)
e−iαk2

= ψ̃T (k)e−iαk2 − 1

2

(
ψ̃T (k) + ψ̃T (−k)

)
e−iαk2

= ψ̃T (k)e−iαk2 − 1

2π2
P

∫ ∞

−∞
dk′
[ 1

k′ − k
+

1

k′ + k

]
P

∫ ∞

−∞
dk′′

ψ̃T (k′′)e−iαk′′2

k′ − k′′
. (5.39)
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The term ψ̃T (k)e−iαk2
can be omitted since it vanishes on the interval in question.

Now equations (5.36) and (5.39) can be combined and the substitution k′ → k′/
√
α

can be made. This yields

ψ̃refl.(k) =

√
α

2π2
P

∫ ∞

−∞
dk′
[ 1

k′ −
√
αk

+
1

k′ +
√
αk

][
e−ik′2P

∫ ∞

−∞
dk′′

ψ̃T (k′′)

k′ −
√
αk′′

−P

∫ ∞

−∞
dk′′

ψ̃T (k′′)e−iαk′′2

k′ −
√
αk′′

]
. (5.40)

This formula can be used for the computation of the different orders of the expansion
in α. When keeping only the lowest order in α the term in the second brackets gives
(e−ik′2 − 1)/k′. This is an odd function and thus one has

ψ̃refl.(k) =

√
2πα

π2
ψT (x = 0)P

∫ ∞

−∞
dk′

1

k′ −
√
αk

e−ik′2 − 1

k′
(5.41)

with

ψT (x = 0) =
1√
2π

∫ ∞

−∞
dk ψ̃T (k). (5.42)

In order to calculate the norm of the reflected part of the wave packet Equation
(5.41) can now be inserted into Equation (5.37) which leads to

Nrefl.(α) =
2α

π3
|ψT (0)|2

∫ ∞

−∞
dk′
∫ ∞

−∞
dk′′
∫ 0

−∞
dkP

1

k′ −
√
αk

P
1

k′′ −
√
αk
×

× e−ik′2 − 1

k′
eik′′2 − 1

k′′
. (5.43)

Due to the invariance of the integrand under a simultaneous change of sign of all
variables, the integration over k just gives an additional factor of two when extended
from −∞ to ∞. After a further substitution k → k/

√
α one can apply again the

identity (5.38), and to lowest order in α the norm of the reflected part of the wave
packet is given by

Nrefl.(α) =

√
α

π
|ψT (0)|2

∫ ∞

−∞
dk

2− 2 cos k2

k2
= 2

√
2α

π
|ψT (0)|2 (5.44)

This is a first major result of the model for the description of the experiment.
Namely, for sufficiently short switch-on times of the mirror the norm of the reflected
part of the wave packet is proportional to the density at the position x = 0 of the
mirror and at switch-on time t = T . This result and further implications of it will
be discussed more thoroughly in the next section.
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Higher order terms

The higher order terms of the norm can be obtained in the same way. For this,
the terms in the second pair of brackets of Equation (5.40) have to be expanded in
powers of

√
α∫ ∞

−∞
dk′′

ψ̃T (k′′)

k′ −
√
αk′′

=
1

k′

[∫ ∞

−∞
dk′′ ψ̃T (k′′) +

√
α

k′

∫ ∞

−∞
dk′′ k′′ψ̃T (k′′) +O(α)

]
=

√
2π

k′

[
ψT (0) +

i
√
α

k′
ψ′T (0)− α

k′2
ψ′′T (0) +O(

√
α

3
)

]
(5.45)

and∫ ∞

−∞
dk′′

ψ̃T (k′′)e−iαk′′2

k′ −
√
αk′′

=
1

k′

[∫ ∞

−∞
dk′′ ψ̃T (k′′) +

√
α

k′

∫ ∞

−∞
dk′′ k′′ψ̃T (k′′) +O(α)

]
(5.46)

=

√
2π

k′

[
ψT (0) +

i
√
α

k′
ψ′T (0)− α

k′2
(1 + ik′2)ψ′′T (0) +O(

√
α

3
)

]
.

As for the first order term the two fractions in Equation (5.40) can be combined by
substituting k′ by −k′ in the 1/k′ +

√
αk-term. This cancels the terms with even

functions of k′ in the expansion and leads to

ψ̃refl.(k) =
√

2πα

π2
P

∫ ∞

−∞
dk′

1

k′ −
√
αk

[e−ik′2 − 1

k′
ψT (0)− α

e−ik′2 − 1 + ik′2

k′3
ψ′′T (0) +O(α2)

]
︸ ︷︷ ︸

≡fα(k′)

.

(5.47)

This can now be inserted into Equation (5.37) and one has

Nrefl.(α) =
2α

π3

∫ 0

−∞
dk

∫ ∞

−∞
dk′
∫ ∞

−∞
dk′′ P

1

k′ −
√
αk

P
1

k′′ −
√
αk
fα(k′)fα(k′′).

(5.48)
By the same argument as above this yields

Nrefl.(α) =

√
α

π

∫ ∞

−∞
dk |fα(k)|2, (5.49)

and up to third order in α on has

Nrefl.(α) = 2

√
2α

π

[
|ψT (0)|2 − α

(
1

3
Re
(
ψT (0)ψ′′T (0)

)
− Im

(
ψT (0)ψ′′T (0)

))
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+ α2

(
2

5
|ψ′′T (0)|2 − 11

30
Re
(
ψT (0)ψ

(4)
T (0)

)
+

1

6
Im
(
ψT (0)ψ

(4)
T (0)

))]
. (5.50)

Here, ψ
(4)
T denotes the fourth derivative of ψT with respect to x. So, if the mirror

was switched on for a sufficiently short span of time, the signal obtained by the
measurement procedure analyzed here is proportional to the density evaluated at
the position of the mirror. If one repeats the measurement with a varied switch-on
time T one can therefore measure this quantity against time. It is known that it can
be seen as a semi-classical arrival-time. Note that an expansion of the wave function
in odd powers of

√
t has recently been obtained in the somewhat related problem

of the time evolution of a wave function which at t = 0 was confined in a region of
space with sharp boundaries [97].

The case of arbitrary momentum distributions

In principal one can also think of a situation in which the wave packet, at the
time of preparation, has a momentum amplitude with contributions from negative
momenta. In the following the expansion in powers of α of the norm of the reflected
part of the wave packet is done for such general momentum amplitudes. In this case
the first term in Equation (5.39) has to be taken into account

ψ̃refl.(k) = ψ̃T (k)e−iαk2

+

√
2πα

π2

∫ ∞

−∞
dk′ P

1

k′ −
√
αk
fα(k′)

≡ ψ̃(1)(k) + ψ̃(2)(k).

(5.51)

The reflected norm calculated with this expression then has three contributions

Nrefl.(α) =

∫ 0

−∞
dk |ψ̃(1)(k)|2 +

∫ 0

−∞
dk |ψ̃(2)(k)|2 + 2

∫ 0

−∞
dkRe ψ̃(1)ψ̃(2). (5.52)

The first term simply gives∫ 0

−∞
dk |ψ̃(1)(k)|2 =

∫ 0

−∞
dk |ψ̃T (k)|2 (5.53)

which is a constant term in the expansion. The physical interpretation of this term
is obvious. It corresponds to the initially left moving part of the wave packet which
reaches the detector in any case, even without switching on the mirror. The second
term is the result obtained for the case of only positive incident momenta. The
mixed term

2

∫ 0

−∞
dkRe ψ̃(1)ψ̃(2) = 2

√
2πα

π2

∫ 0

−∞
dkRe

{
ψ̃(k)eiαk2

P

∫ ∞

−∞
dk′

1

k′ −
√
αk
fα(k′)

}
(5.54)
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is going to be evaluated in the following. Since in this term only one Hilbert trans-
form is involved it is not possible to apply the identity (5.38). An explicit evaluation
of the Hilbert transforms yields

2

∫ 0

−∞
dkRe ψ̃(1)ψ̃(2) =

− 2

√
2α

π
Re

{
(1 + i)

[
ψ(0)

∫ 0

−∞
dk ψ̃(k)

C
(√

2α
π
k
)

+ iS
(√

2α
π
k
)

√
αk

− αψ′′(0)

∫ 0

−∞
dk ψ̃(k)

(
C
(√

2α
π
k
)

+ iS
(√

2α
π
k
))
− eiαk2

√
2α
π
k

(
√
αk)3

+O(α2)

]}
(5.55)

where C(·) and S(·) are the Fresnel cosine and sine functions as defined in appendix
C. An expansion of the fractions in this expression then gives

2

∫ 0

−∞
dkRe ψ̃(1)ψ̃(2) =

− 4

√
α

π
Re

{
(1 + i)

[
ψ(0)

∫ 0

−∞
dk ψ̃(k)

[
1 +

iαk2

3
− α2k4

10
+O(α3)

]
− αψ′′(0)

∫ 0

−∞
dk ψ̃(k)

[
−2i

3
+

6αk2

15
+O(α2)

]
+ α2ψ(4)(0)

∫ 0

−∞
dk ψ̃(k)

[
− 4

15
+O(α)

]
+O(α3)

]}

= − 4
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π
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(1 + i)

[
ψ(0)
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]}
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[
ψ(4)(0)
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+O(α3)

]
. (5.56)

There is a simple possibility to check this result. If one shifts the upper integration
limit to infinity in Equation (5.52) the result should be unity. The same is true

for the integral with ψ̃(1)(k) on the right hand side of this equation. Since the

integral with ψ̃(2)(k) gives the same result when integrating over only positive or
only negative k the mixed term integrated over all k should give twice the result
for the norm of the reflected wave packet in the case of momentum amplitudes with



5.3 Numerical analysis of the model 91

only positive k, only with the opposite sign. This is indeed the case for the above
result.

In a measurement it would be desirable to be able to distinguish between ψ̃(1) and

ψ̃(2) because only the latter has actually been reflected at the mirror. This is rather
simple for the pure term of Equation (5.53). Since it is independent of k it forms
a constant background signal which can be extracted by measuring with different
values of τ . The interference term of Equation (5.54) is much more problematic
because in lowest order it also gives a term proportional to

√
τ . One might try

separate the two terms by measuring the reflected signal for different ranges of k.
The problem with this is, however, that ψ(1) may have an arbitrary momentum
distribution.

5.3 Numerical analysis of the model

In order to gain more physical insight into the model, the analytical investigations of
the previous section are complemented with some numerical analysis in this section.
All the numerical calculations presented in the following use, for convenience, a
minimum-uncertainty Gaussian wave packet

ψt(x) =

√
∆x√
2π

1√
∆2

x + i ~t
2m

ei(k0x−~k2
0

2m
t)e

− (x−x0−v0t)2

4(∆2
x+i ~t

2m ) (5.57)

which is prepared at time t = 0 at a position x0 left of the mirror and with a
width ∆x in position space. This wave packet has in principal also negative mo-
mentum components which are, however, negligibly small for numerical purposes.
The parameter values given in the following for each figure always correspond to the
quantities in the above equation. The corresponding momentum amplitude ψt(k)
can be written in the form

ψ̃t(k) =

√
∆x√
2π

e−∆2
xk2

0+ik0x0eβ2/αe−α(k−β/α)2 , (5.58)

with α = ∆2
x + i ~t

2m
and β = k0∆

2
x − ix0/2. Therefore, using Equation (C.10) of

appendix C, one can perform the Hilbert transform of this function analytically

gt(k) = H[ψ̃t] = −

√
∆x√
2π

e−∆2
xk2

0+ik0x0eβ2/αe−α(k−β/α)2erfi(
√
α(k − β/α)), (5.59)

where erfi(·) is the imaginary error function. This can be used to compute the mo-
mentum amplitude of the reflected part of the wave function according to Equation
(5.18). In Figure 5.2 this has been done for different switch-on times τ of the mirror.
In the calculations parameter values corresponding to the physical situation in the
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Figure 5.2: Momentum distributions for the reflected part of the wave packet for dif-
ferent switch-on times τ . For very short times the distribution is broad and becomes
more and more narrow for longer switch on times.

experiment have been used. The wave packet reaches the measurement pulse at a
time T = 50 ms after the second rebound, which is regarded here as the moment
of preparation, with a velocity v0 = 25 cm/s. Note, however, that in the simplified
model used here one has free motion instead of free fall in gravity. Thus, the posi-
tion x0 = −12.5 mm of preparation is matched such that the wave packet reaches
the mirror after the experimental time T . Also note, that the wave packet in the
experiment has a sinc-shaped form in contrast to the Gaussian used here. One can
see in Figure 5.2 that for very small τ the momentum distribution of the reflected
wave packet is much broader than the distribution of the incoming packet with a sig-
nificant contribution near k = 0. For increasing τ the distribution becomes sharper
and sharper. However, side-bands remain which originate from the sharp switching
processes.

Another important point is the numerical verification of the series expansion for
the norm of the reflected part of the wave function given in the last section. For
this purpose Nrefl.(τ) may be calculated numerically by integrating the momentum
distributions of Figure 5.2 over k and plotting it against τ . This can be compared
with the first terms in the expansion of Equation (5.50). In principle, one expects
the expansion to give a good approximation to the actual value if the product

√
αk

is small against one, where k ranges over the values for which the momentum dis-
tribution gives a noticeable contribution. The former is the case if τ < 2m/~k2. In
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Figure 5.3: Plot of Nrefl. against the switch-on time of the mirror for experimental
parameter values. Gaussian wave packet prepared at time t = 0 with mean position
x0 = −12mm, mean velocity v0 = 25 cm/s, initial width ∆x = 1.6µm. Mirror
switched on at T = 50ms. The series expansion (first order: solid line, up to
second order: dotted line, up to third order: dashed line) agrees only for very short
times (< 0.02µs) with the numerical result (thin line with dots). Inset: plot of the
numerical and first order result against

√
τ/t0 with t0 = 0.01µs.

order to achieve good results for large values of τ the atom has to be sufficiently slow
with a narrow momentum distribution. For a wave packet with the experimental
values given above one has the condition τ < 1.5×10−8 s. This is much shorter
than the time window used in the experiment. Figure 5.3 shows the numerical re-
sult for this case together with the first three orders of the expansion. First of all
the

√
τ -dependence for short switch-on times as predicted by the Equation (5.44)

is clearly visible and verified by the inset showing a plot of Nrefl. against
√
τ . The

above estimation of the range of validity of the expansion is also confirmed. The
first order differs noticeably from the numerical result for τ > 0.01µs. The approxi-
mation up to third order gives good results up to τ = 0.03. In order to improve the
range of validity one may prepare a slower wave packet. This is shown in Figure 5.4
for a wave packet with a mean velocity of v0 = 1 cm/s. One then expects a good
agreement of the expansion with the numerical results for τ < 9.5µs.

5.3.1 Measurement of the spatial distribution of the wave
function

In this section a scheme for the measurement of a spatial distribution with the atomic
mirror will be discussed. The basic set-up is the following: An ensemble of atoms
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Figure 5.4: Plot of the integrated reflected norm against the switch-on time of the
mirror for a slow Gaussian wave packet v0 = 1.1 cm/s prepared at time t = 0 with
mean position x0 = −0.66µm, initial width ∆x = 0.1µm. Mirror switched on at
T = 60µs. The agreement between the series expansion (up to first order: solid line,
up to second order: dashed line, up to third order: dotted line) and the numerical
result (thin line with dots) is considerably improved compared to Figure 5.3.

is prepared at some point x0 < 0 in space with a mean velocity v0 > 0. The mirror
at x = 0 is switched on at time T and switched off again at T + τ . Afterwards the
number of reflected atoms is counted, for example in a fluorescence measurement.
More specifically the reflected atoms pass a laser illuminated region and the number
of spontaneously emitted photons is counted by a photon detector. The experiment
is repeated and the position of the mirror is changed whereas the instant T = T0 of
switching on the mirror is kept fixed. There are two different possibilities of moving
the mirror. One alternative is to move the prism (and with it the whole set-up
for the mirror) mechanically. The other would be to change the laser intensity. In
this way the effective reversal point of the atoms is moved. The second technique,
however, is limited by the range of laser intensities available.

The distribution which can be measured by the set-up described above will be
referred to as Λmirr.(x, T0) in the following. For each position x it is given by the
norm of the wave packet reflected from the mirror positioned at x and switched-on
at T0. Due to the finite time window τ it is more accurate to refer to the point in
time in the middle of the time window as the moment of reflection. One therefore
has

Λmirr.(x, T0 + τ/2) = N refl.
T0

(τ, x). (5.60)
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Figure 5.5: Mod squared of the wave function (solid line) and reconstruction for
switch-on times τ = 10µs (dots) and τ = 30µs (dashed line) for experimental
parameter values (see Figure 5.3) at time T = 50ms.

According to Equation (5.44) the normalized distribution for sufficiently small τ is
given by

Λ(x, T0) = |ψT0(x)|2. (5.61)

The present scheme thus allows to obtain the probability density of the wave func-
tion. This gives therefore a realistic possibility of measuring this otherwise not
easily accessible quantity and is the main result of this part of the work. Further-
more, it can be regarded as a step towards the quantum state reconstruction of the
translational degrees of freedom of a laser cooled atom.

In the field of quantum state reconstruction or estimation one tries to infer the
complete information of a quantum state from a series of repeated measurements of
this state [53]. This has been very successfully achieved for a number of physical
systems, for instance the quantum state of light in a cavity [54] or for the motional
and the internal states of trapped ions [55]. Especially the latter has become a
standard technique in quantum information processing [57, 58]. The motional state
of unbound atoms is much more difficult to measure. The Wigner function of the
transversal state of motion of a supersonic beam of helium has been measured in the
group of Mlynek [60, 59]. This was done in a diffraction experiment with a micro-
fabricated double-slit structure. In such an experiment, however, it is known that
the van-der-Waals interaction between the atoms and the grating has a significant
influence on the state of the atoms [98]. A somewhat similar experiment has also
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Figure 5.6: Norm squared of the wave function (solid line) and reconstruction for
switch-on time τ = 1µs (dots) and τ = 5µs for the wave packet of Figure 5.4 at
time T = 60µs.

been done for a beam of neutrons [99]. In an experiment with a supersonic beam
of natrium atoms in the group of Pritchard the longitudinal state of the atoms was
analyzed, also by interferometric methods [100, 101, 61, 102, 62, 103]. For theoretical
proposals for the measurement of the quantum state of motion of atomic beams see
Reference [104] and references therein.

Such a state reconstruction has not yet been achieved for laser cooled atoms. A
main problem is the influence of the measurement apparatus on the motional state of
the atom. For example, an interferometric measurement using a standing light field
as diffraction grating leads to partial reflection of the atomic wave function [105].
The method presented here circumvents this problem by using reflection for which
the reduction of losses is easier to achieve. Moreover it is experimentally feasible
since it only requires a minor change in set-up of an experiment which has already
been performed. However, it only allows to measure the modulus squared of the
wave function. The information about the phase of the wave function is lost.

In Figures 5.5 and 5.6 two examples of the reconstruction of the probability den-
sity of the wave function are shown. The first shows the numerical result for a wave
packet with the experimental parameter values as used for figure 5.7. Surprisingly,
a good result is achieved for time windows up to τ = 10µs although the result for
the expansion in τ suggests that a close approximation to the probability density
should only be possible for much shorter values of τ . Apparently, possible devia-
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tions are compensated by the normalization process. Also, the narrow momentum
distribution of this wave packet may have a positive influence on the accuracy of the
reconstruction. For larger switch-on times deviations occur, as shown in the graph
for τ = 30µs. The second plot shows the results for a slow atom with parameter
values as in Figure 5.8. In this case deviations from the theoretical curve start to
develop for switch-on times larger than τ = 1µs. This is in agreement with the
result of Figure 5.4.

5.3.2 Measurement of temporal distributions

In this section a measurement scheme will be described and analyzed numerically
which in the case of classical mechanics yields the arrival-time distribution of an
atomic ensemble. Due to the difficulties outlined in Section 4.3 concerning the
quantum version of this distribution it will be a major question here whether the
scheme to be described in the following can also quantum mechanically be ascribed
to an arrival-time measurement. The scheme is basically the same as described in
the last section. Only now, the experiment is repeated with the position x = 0 of
the mirror kept fixed and the switch-on time T varied.

For a cloud of classical particles this set-up would yield the classical arrival-time,
as will be shown now. In the classical case one has to calculate the fraction of
reflected particles if at t = 0 the phase-space distribution function of the particles
is given by ρ0(x, p) and the mirror at position xA is switched on in the interval
[T, T + τ ]. It is supposed that ρ0(x, p) = 0 for p ≤ 0. Using the trajectory equation
for free motion one finds that all particles which are located in the interval [x1, x2]
with

x1 = xA −
p(T + τ)

m
, x2 = xA −

pT

m
(5.62)

at time t are reflected. Thus, the fraction of reflected particles is given by

nxA
(τ) =

∫ ∞

0

dp

∫ x2

x1

dx ρ0(x, p) = −
∫ ∞

0

dp

∫ xA− p(T+τ)
m

xA− pT
m

dx ρ0(x, p). (5.63)

Now the result for short switch-on times τ is to be evaluated. For τ = 0 one has
nxA

(τ = 0) = 0. The term proportional to τ yields

d

dτ
nxA

(τ)
∣∣∣
τ=0

=

∫ ∞

0

dp
p

m
ρ0(xA −

p

m
T, p)

=

∫ ∞

0

dp

∫ ∞

−∞
dx ρT (x, p)δ(x− xA) = Jcl(T, xA).

(5.64)

Therefore for short times τ the number of reflected particles is proportional to the
classical probability flux which has been identified in Section 4.3 with the classical
arrival-time distribution.
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It is therefore natural to ask the question which quantity is obtained by this set-
up according to quantum mechanics. According to Equation (5.44) and assuming
perfect reflection the resulting distribution is given by

Πexp(T, 0) = 2

√
~τ
mπ

|ψT (0)|2 (5.65)

if the mirror has been switched-on for sufficiently short times τ . As before it is
more accurate to use T + τ/2 instead of T . This distribution is not normalized
to one. The normalization can be done by deviding by the integral

∫
dT Πexp(T ).

This has the advantage that the resulting distribution is free of effects of a less
than perfect detector efficiency. The normalized distribution is identical to the
semi-classical arrival-time distribution which has been derived in Section 4.3.2 as an
approximation to Kijowski’s axiomatic distribution for wave packets with a sharply
peaked momentum distribution.

The measurement scheme described above is therefore not capable of measuring
what is regarded as a true quantum mechanical arrival-time distribution but rather
gives an approximation to such a distribution. Consequently, the labeling “arrival-
time” in the diffraction curves measured in Reference [49] should be used with some
caution.

Figures 5.7,5.8, and 5.9 show examples for the scheme described above for dif-
ferent wave packets. In Figure 5.8 the result for a wave packet with the values
from the experiment is shown. Since in this case the momentum spread is very
small Kijowski’s distribution ΠK(0, t), the flux J(0, t), and the semi-classical distri-
bution |ψ(0, t)|2/

∫
dt · give the same graph. As for the corresponding case in the

last section, the distribution obtained from the model for τ = 10µs is in very good
agreement with the theoretical curves although the expansion in τ is not valid for
such large switch-on times. For τ = 30µs deviations from the theoretical curve start
to form which seem to originate from the fact that the time window is too coarse to
reproduce the details of the distribution.

Differences between the different arrival-time distributions are expected for wave
packets for which ∆v/v0 is sufficiently large, where ∆v is the velocity spread and v0

is the mean velocity of the packet. Such a situation is shown in figure 5.8 using a
wave packet with v0 = 1.1 cm/s and ∆x = 0.11µm. The graph for the reconstructed
distribution with τ = 0.1µs is in good agreement with the normalized probability
density. This shows that indeed neither Kijowski’s distribution nor the flux is mea-
sured by the present set-up. For τ = 5µs noticeable deviations occur which in this
case is in good agreement with the expectations from the result for the expansion
in τ .

Another good example for a wave packet for which the different theoretical
arrival-time distributions are distinguishable is a coherent superposition of two Gaus-
sians with different mean velocity. Such an example is shown in figure 5.9. The two
Gaussian states are prepared such that they superimpose at x = 0. The difference
of the mean velocities is of the order of the velocities themselves. The additional
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Figure 5.7: Theoretical time-of-arrival distributions and results from the model for
a wave packet with experimental parameter values (see Figure 5.3). The different
theoretical arrival-time distributions (straight line) are indistinguishable in this case.
Reconstructions for time windows τ = 10µs (dots) and τ = 30µs (dashed line) are
shown.

problem for the measurement of this wave packet is that it has a finer structure due
to the inference. Thus, one needs a short enough time window in order to resolve
these structures.

Recently, a quantum optical model for the measurement of the time of arrival
has been proposed in which the detection time of the first fluorescence photon of a
two-level atom impinging on a laser illuminated region is taken as the arrival-time
of the atom [64]. This first photon distribution could be linked to ideal quantities
like Kijowski’s distribution or the quantum mechanical flux [65]. For the experi-
mental realization of such a quantum optical model a major technical challenge is
that it is necessary to achieve a laser profile which is sharp compared to the width
of the wave packet in order have a well defined arrival point. At the same time the
atoms for which the arrival-time is to be observed have to be sufficiently slow so
that quantum effects can be observed. The scheme presented here has the advan-
tage of experimental feasibility since a corresponding experiment has already been
performed. However, the connection to the named ideal quantities is not established
so far. This might be a possibility for further research.
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Figure 5.8: Theoretical time-of-arrival distributions and results from the model for
a slow wave packet with relatively broad momentum distribution. Minimum uncer-
tainty Gaussian wave packet prepared at t = 0 with parameter values as in Figure
5.4. The straight line represents the normalized distribution Πsc(t), the dashed line
is Kijowski’s distribution ΠK(t), and the almost identical dash-dotted line gives the
flux J(0, t). Reconstruction for time windows τ = 0.1µs (triangles) and τ = 5µs
(dotted line) are shown.

5.3.3 Reflected and transmitted wave packet in position
space

In the case of the measurements for fixed position x0 and shifted time T one may ask
the question if it is possible to perform multiple measurements at different times in
the same measurement cycle. In other words, one might try to switch on the mirror
more than once during the passage of the wave packet. In this way one could gain
more or less the same data in one measurement instead of having to repeat the ex-
periment for each data point. There are two potential problems with this approach.
First, the wave packet which is to be measured might be changed by the mirror, so
that the second measurement would be disturbed by the first one. Second, if the
time between two subsequent measurement pulses is too short the reflected wave
packets of these pulses could overlap and therefore not be distinguished anymore.

In order to investigate these questions the time development of the wave function
in position space after switching off the mirror has to be calculated. This can be
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Figure 5.9: Time-of-arrival distributions for coherent superposition of two Gaus-
sians prepared at t = 0 with x1 = −0.8µm, x2 = −0.4µm, v1 = 2.2 cm/s,
v2 = 1.1 cm/s, and ∆x = 0.1µm. Density Πsc(t) (solid line), flux J(0, t) (dashed
line), and Kijowski’s distribution ΠK(t) (dotted line) differ in this case. The recon-
struction for τ = 1µs (triangles) is still a good approximation to the density whereas
for τ = 5µs (dots with thin solid line) differences appear.

done according to equation (5.29) by the formula

ψT+τ+t(x) = GF
t ∗
[
θ(GF

τ ∗ (θψT ))− θ(GF
τ ∗ π(θψT ))

+ θ−(GF
τ ∗ (θ−ψT ))− θ−(GF

τ ∗ π(θ−ψT ))
]
(x).

(5.66)

As before, T is the switch-on time, τ is the duration of the time slit, and t is the
elapsed time after the mirror has been switched off. If the wave packet at time T
is given by the Gaussian of Equation (5.57) the evolution up to time T + τ can be
calculated analytically. The result is lengthy, so it will not be given here. Basically
it consists of a linear combination of products of Gaussians and error functions.
The second convolution for the time evolution after the switch-off time has to be
performed numerically. Figure 5.10 shows |ψrefl.(x, t)|2 for different times t after
reflection from the mirror with a pulse length of τ = 30µs. Here t denotes the time
which has passed after the mirror has been switched off. All other parameters are
chosen as in the previous example. Shortly after reflection the wave packet has a
width corresponding to v0τ and has a form which resembles the diffraction image
of a single slit in the Fresnel limit of classical optics. For longer times the wave
packet broadens and reshapes. Eventually, at time t = 50 ms, it has a sinc-function
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Figure 5.10: Reflected part of the wave packet for the case of a Gaussian wave
packet with experimental parameter values at different times t after the switch-off
time of the mirror.

form resembling the Fraunhofer limit of classical optics. Moreover, the shape and
the width ∆x are similar to the signal measured for a pulse length of τ = 30µs in
the experiment. One has to keep in mind here that the measured graph shows the
wave function after the second rebound whereas here, the wave function reflected
by the measurement pulse has been calculated Nevertheless, this can be seen as a
confirmation of the validity of the model used here and the approximations connected
with it.

In the context of the question posed at the beginning of this section one sees that
the determination of the norm of the reflected wave packet has to be done shortly
after the reflection in order to be able to resolve subsequent reflected wave packets.
In the example shown in Figure 5.10 the wave packet at time t = 1 ms still has
almost the original width of about 7.5µm. At time t = 50 ms it already has a width
of about 25µm. This corresponds to a time resolution of about ∆x/v0 = 0.1 ms in
contrast to the original 30µs time window of the mirror.

However, the more severe problem is indeed the disturbance of the original wave
function by the reflection process, as can be seen in Figure 5.11. Due to the sharp
switching process the transmitted wave packet shows strong oscillations with a pe-
riod much shorter than the width of the wave packet itself. One might hope that for
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Figure 5.11: Wave packet (solid line) in position space after switching of the mirror
(v0 = 9.5 cm/s, ∆x = 0.24µm, x0 = −1.3µm, τ = 1µs, T = 15µs). The dotted line
shows the freely evolved wave packet.

a reflection time window which cuts out a slice of the wave function that is larger
than the period of these oscillations the effects may average out. But this would need
a more detailed analysis. Another way around this problem is to use a smoother
switching. This may reduce the oscillations. Such a reduction of oscillations by
using smoother cuts has been seen in the investigation of a related problem [106].

5.4 3D Model: Tomography of the wave packet

So far, only a one-dimensional model of the atomic mirror experiment has been
considered. In this section it will be shown that there is a straight forward gen-
eralization of this model to three dimensions. This, in principal, allows the three
dimensional measurement of the probability density of an atom by means of tomo-
graphic methods.

In the following the reflection of a three dimensional wave packet, incident from
the negative x-axis, from plane mirror situated at the position x = 0 is considered.
As before the mirror is modeled by the Dirichlet boundary condition ψt(x = 0, y, z) =
0. In order to calculate the momentum amplitude of the reflected part of the wave
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packet on can proceed analogously to the Green’s function method used in the one-
dimensional problem. The Green’s function for a freely moving atom is given by

GF
t (x) =

( m

2iπ~t

)3/2

e−
m

2i~t
x2

. (5.67)

With the use of the three-dimensional convolution formula

f ∗ g =

∫ ∞

−∞
d3x′f(x− x′)g(x′) (5.68)

the momentum amplitude at switch-off time t = T + τ again can again be written
as

ψT+τ (x) = θx(GF
τ ∗ (θxψT ))(x)− θx(GF

τ ∗ πx(θ
xψT ))(x)

+ θx
−(GF

τ ∗ (θx
−ψT ))(x)− θx

−(GF
τ ∗ πx(θ

x
−ψT ))(x).

(5.69)

Here θx = θx(x) is defined as being equal to 1 for x > 0 and equal to 0 elsewhere.
Accordingly, θx

− = θx(−x, y, z). The operation πx stands for change of sign of the
x-coordinate. Using the Fourier space identities

f̃ ∗ g = (2π)3/2f̃ g̃ and f̃ ∗ g̃ = (2π)3/2f̃g (5.70)

the momentum amplitude at switch-off time t = T + τ can again be written as

ψ̃T+τ (k) = ψ̃L
T+τ (k) + ψ̃R

T+τ (k)

=
1

(2π)3/2

[
θ̃x ∗ (G̃F

τ (θ̃x ∗ ψ̃T ))(k)− θ̃x ∗ (G̃F
τ πkx(θ̃

x ∗ ψ̃T ))(k)

+ θ̃x
− ∗ (G̃F

τ (θ̃x
− ∗ ψ̃T ))(k)− θ̃x

− ∗ (G̃F
τ πkx(θ̃

x
− ∗ ψ̃T ))(k)

]
.

(5.71)

The Fourier transforms involved in this expression are

G̃F
τ (k) =

1

(2π)3/2
e−i ~k2

2m
τ , (5.72)

θ̃x(k) =
√

2π
1

ikx + ε
δ(ky)δ(kz), θ̃x

−(k) = −
√

2π
1

ikx − ε
δ(ky)δ(kz).

Thus the explicit form of the momentum amplitude for positive values of x is given
by

ψ̃R
T+τ (k) =

∫ ∞

−∞
d3k′ θ̃(k − k′)GF

τ (k′)

∫ ∞

−∞
d3k′′

[
θ̃(k′ − k′′) + πk′x θ̃(k

′ − k′′)
]
ψ̃T (k′′)

=
e−iα(k2

y+k2
z)

4π2

∫ ∞

−∞
dk′x

[ 1

i(kx − k′x) + ε
− 1

i(kx + k′x) + ε

]
e−iαk2

x

∫ ∞

−∞
dk′′x

ψ̃T (k′′x, ky, kz)

i(k′x − k′′x) + ε
(5.73)
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and correspondingly for negative values of x by

ψ̃L
T+τ (k) =

e−iα(k2
y+k2

z)

4π2

∫ ∞

−∞
dk′x

[ 1

i(kx − k′x)− ε
− 1

i(kx + k′x)− ε

]
e−iαk2

x

∫ ∞

−∞
dk′′x

ψ̃T (k′′x, ky, kz)

i(k′x − k′′x)− ε
.

(5.74)

So, after the insertion of delta functions and principal value terms according to the
identities (5.35), the momentum amplitude at switch-off can be written as

ψ̃T+τ (k) = ψ̃T (k)e−iαk2

+

√
α

2π2
e−iα(k2

y+k2
z)P

∫ ∞

−∞
dk′x

[ 1

k′x −
√
αkx

+
1

k′x +
√
αkx

][
e−ik′2x P

∫ ∞

−∞
dk′′x

ψ̃T (k′′x, ky, kz)

k′ −
√
αk′′x

−P

∫ ∞

−∞
dk′′x

ψ̃T (k′′x, ky, kz)

k′x −
√
αk′′x

e−iαk′′2x

]
, (5.75)

in complete analogy to the one-dimensional model. In the calculation of the norm
of the reflected part of the wave packet

Nrefl.(α) =

∫ 0

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz |ψ̃T+τ (k)|2 (5.76)

the exponential with respect to ky and kz drops out and the expansion in α is
identical to the one-dimensional case. The first order term in the expansion gives

Nrefl.(α) = 2

√
2α

π

∫ ∞

−∞
dy

∫ ∞

−∞
dz |ψT (0, y, z)|2. (5.77)

In the three-dimensional case one therefore obtains by this experimental configura-
tion the averaged position space density of the wave function in the plane x = 0,
as long as the mirror is switched on for a short enough time span. By rotating
the plane of the mirror around the origin x0 = 0, or mathematically equivalent by
letting the wave packet impinge from different directions, one can also measure the
atom’s density averaged over different planes defined by the mirror surface. One
may also vary the point x0 around which the mirror is rotated. In general, one may
parametrize all possible planes in R3 by the pair (ξ, p) with a unit vector ξ and a
real number p. Then each plane (ξ, p) can be characterized by all x0 which satisfy
x0 · ξ = p and the measured quantity is proportional to

f̌(ξ, p) =

∫
R3

d3x0f(x0)|ψ(x0)|2δ(p− x0 · ξ), (5.78)

with f(x0) = |ψ(x0)|2. From the mathematical point of view this is a so called
Radon transform [107]. It is the basis for many applications, as for example in med-
ical imaging technology like computer tomography or nuclear magnetic resonance,
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in which one is interested in reconstructing information about an object which is
obtained by profiles on lines or planes through this object. For sufficiently fast
decreasing C∞-functions f there exists the following inversion formula

f(x0) = − 1

8π2
∆x0

∫
|ξ|=1

d3ξf̌(ξ,x0 · ξ). (5.79)

This means that in order to obtain the value of |ψ|2 at the position x0 one in principal
has to measure the quantity of Equation (5.78) for all planes going through x0.
Indeed, it can be shown that for an exact reconstruction of f(x0) one needs an infinite
number of planes [107]. However, due to the large number of applications of the
Radon transform, many different algorithms have been developed for inversion for
practical purposes. For an overview over these methods, see for example References
[108, 109].

Therefore, in the situation given here, by repeating the measurement for a suit-
able number of mirror positions, one can reconstruct the density of the wave packet.
In analogy to the other applications of the Radon transform one may call this a to-
mography of the wave function’s density. This has to be clearly distinguished from
the notion of quantum state tomography in which a tomographic reconstruction of
the Wigner function of a given quantum state is calculated [53].

Note that similar situation is at hand in the three dimensional extension of the
operational time-of-arrival model mentioned in Chapter 4.3.2 [110].



Chapter 6

Conclusion

The control and manipulation of the translational and internal degrees of freedom
of atoms by atom-laser interaction play a major role in modern quantum optical
experiments. In this context, two distinct physical systems have been investigated
in this work.

In the first part of the thesis, the influence of the dipole-dipole interaction on
the fluorescence of atoms or ions in a trap was studied. Single trapped ions that are
subjected to laser radiation may exhibit macroscopic light and dark periods under
certain conditions. The constant rate of spontaneously emitted photons vanishes
for a certain period of time when the electron is essentially shelved in a meta-stable
level. For two or three such ions, three or four periods of different intensity can be
seen, respectively. The dipole-dipole interaction may lead to change in the statistics
of these intensity periods. Such cooperative effects were found in an experiment
with two and three Ba+ ions [19]. Namely, a largely increased double jump rate
was measured. Double jumps occur if two consecutive upward or downward jumps
happen within a period of time which is too short to be resolved experimentally.
In experiments with Hg+ ions such an effect was not observed [23]. More recently,
again contradictory results were reported in experiments with Ca+ ions [24, 25, 26].

The goal of this part of the work was to find a theoretical description of the named
experiments, especially those with Ba+ and Hg+, to obtain quantitative expressions
for the rate of double and triple jumps and to ascertain which of the experiments
agreed with the theoretical analysis. Since the statistics of the different intensity
periods is governed by the transition rates between these periods, this amounts to
calculating the transition rates for level systems which reflect the main features of
the effective level systems of the ions used in the experiments.

The starting point of the present work is an approach based on Bloch equations
developed by Addicks et al. [17] which they used in order to calculate the transition
rates for two dipole-interacting three-level systems in V configuration. For this sys-
tem cooperative effects of up to 30% for inter-atomic distances of the order of one
wave length of the strong transition were found. In this method, the level system
is divided into three subsystems which can be connected to the different intensity
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periods. For each period the system is assumed to be in the corresponding subsys-
tem. The transition rates are obtained by calculating the build-up of population in
the other subsystems using a perturbation theoretical approach based on the Bloch
equations.

The V configuration is not appropriate for the description of the ions in question
here. The Hg+ ions can be described by a three level system in a D-type configura-
tion in which the meta-stable state is populated via spontaneous decay. The level
structure of Ba+ is more complicated. Therefore a four-level system was introduced
in this work which contains all important features of the original level scheme.

In a first step, the Bloch equation approach of reference [17] was expanded in
order to yield a treatment of two dipole-interacting D systems and two four-level
systems, respectively. In contrast to the V system, only the transition rate from
double to single intensity was found to be affected by the dipole-dipole interaction
in both cases. This can be explained by the mechanisms leading to the transition
between the different periods. This mechanism is incoherent in both the D system
and the four-level system. In the case of two D systems, cooperative effects of up
to 30%, as for the V system, were found. However, contrary to the V system, large
effects occur only for weak driving. In particular the effects are negligible for the
experimental parameter values given for the Hg+ ions [23], in agreement with the
experimental results. In addition it was shown that the approach used in this work
is more general than a theoretical treatment of two D systems in reference [37] and
includes the results given there.

The cooperative effects in two four-level systems were found to be much smaller
than for the D systems. The transition rate p21 only differs about 1% from the
value for independent atoms at an inter-atomic distance of one wave length of the
laser-driven transition for the experimental values for Ba+ and a value of the Rabi
frequency optimized for large effects. The effect is much smaller at experimental
distances of about 10 wave lengths. The effects found for the double jump rate are
smaller by a factor of ten.

From this result, one may already conclude that the effects reported in reference
for Ba+ are not likely to be explainable by the dipole-dipole interaction. However,
experimental data was only given for the case of three ions in the trap. Therefore,
also the case of three dipole-dipole interacting atoms was investigated in this work.
The dimensionality of the problem increases dramatically when the number of atoms
is increased. Thus, the treatment was first constricted to the three level systems,
both in V and D configuration. In order to reduce the number of equations, group
theoretical methods are used to take advantage of the symmetries of the system.
After this reduction the transition rates were obtained also for this case. The basic
properties described above for the case of two atoms persist in the case of three
atoms. Essentially, the strength of the cooperative effects increases by a factor of
two. Effects of up to 100% were found for both three V systems and three D systems.
The effects for the experimental parameter values are still negligible, however.

The treatment of three four-level system with the approach used in the previous
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calculations is difficult, due to the increased complexity. A thorough analysis of
the individual steps in this approach led to a surprising simplification permitting
explicit analytical results also in this case. Similarly to the three-level systems, an
enhancement of cooperative effects by a factor of two was observed. The effects for
experimental parameter values are still negligible, though. It thus seems that the
dipole-dipole interaction can be ruled out as an explanation of the effects observed
in reference [19].

In conclusion, the results of this part of the work show that the magnitude of co-
operative effects in the jump statistics of dipole-interacting atoms strongly depends
on the specific level scheme, on the choice of the optical parameters (for example
weak or strong driving), and also on the number of levels involved. Regarding the
experiments which were investigated here, it was shown that the cooperative effects
are too small to account for any increase in the double jump rate. However, with
the right choice of the named parameters quite large effects may be observed. The
methods presented here may also be used for the description of other level schemes,
as the basic population mechanisms (coherent and incoherent driving, spontaneous
emission) are incorporated in the different approaches.

In the second part of this thesis, a measurement scheme was investigated which
allows to gain information about the quantum state of the translational degrees of
freedom of a laser cooled atom. The idea to this scheme was taken from an exper-
iment in which an evanescent wave atomic mirror was used to generate a temporal
diffraction pattern in an atomic wave packet and most importantly to measure it by
means of this mirror.

In the model presented here, the diffraction part of the experiment was merely
seen as a means to prepare a wave packet that is sufficiently broad in order to be
resolved by the mirror. Our investigations were focused on the detailed analysis of
the measurement process. In the experiment, this process consists of switching on
the mirror for a short period of time and recording the fraction of reflected atoms
via the number of spontaneously emitted photons induced by a probe laser. In
this work, this is modeled as follows: a wave packet with only positive momenta is
prepared at some point on the negative x-axis. This wave packet then travels freely
in the direction of positive values of x. At some point in time the mirror is switched
on. This is done by applying reflection boundary conditions for the left and the right
half axis at x = 0, which can be seen as limiting case of a thin and steep rectangular
potential barrier at this point. After a time τ the mirror is switched off again and
the wave packet evolves freely, again. The norm of the reflected part of the wave
packet is calculated.

The question of how the distribution obtained in this way is connected to the
original wave packet for small switch-on times τ was then investigated by giving
a series expansion of the reflected norm in terms of τ . The lowest order of this
expansion was shown to be of the order of

√
τ and proportional to the probability

density of the wave function at x = 0 and switch-on time. These findings were
validated by numerical investigations.
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This result allows for two different measurement schemes which were further in-
vestigated numerically. The first scheme consists of repeating the experiment with
the mirror moved to different positions and the switch-on time kept fixed. This
amounts to a sampling of the wave function squared and yields the probability den-
sity of the wave function |ψ(x, T0)|2 at switch-on time T0. This is an interesting result
in itself since it is technically very difficult to resolve this quantity. Furthermore,
it can be seen as a step towards quantum state reconstruction of the translational
degrees of freedom of ultra-cold atoms. Such a reconstruction, in which one tries to
infer the complete knowledge about a quantum state from a series of measurements,
has so far only been realized for supersonic atom beams with interferometric meth-
ods [60, 62]. The method given here is a more direct measurement. However, the
information about the phase of the wave packet is lost. It might be interesting to
look for schemes that also allow for the measurement of the phase using the atomic
mirror.

The numerical results for this case confirmed that it is indeed possible to measure
the probability density of the wave packet with good accuracy for experimentally
feasible parameter values.

In the second scheme, the position of the mirror was kept fixed and the switch-
on time was shifted in time. This resulted in a distribution in time which if the
experiment is treated classically was shown be the classical arrival-time distribution.
The question of how to define a quantum mechanical arrival-time distribution is more
ambiguous than in the classical case and there are a number of different theoretical
proposals for this, most prominently Kijowski’s distribution [86] and the quantum
mechanical flux. It is therefore interesting to see whether one of these quantities
is obtained with the described scheme. It was found that after normalization, the
recorded distribution is essentially given by v0|ψ(0, T )|2. This quantity has also been
studied in the literature and can be regarded as a semi-classical distribution [94].
It is also an approximation to Kijowski’s distribution for wave packets with narrow
momentum distribution.

It could be shown by numerical calculations for a wave packet prepared with val-
ues taken from the experiment, that the named distribution can indeed be measured
to good accuracy with reasonable switch-on times of the mirror. For such a wave
packet, however, all of the arrival-time distributions mentioned above are identical.
Therefore, other wave packets were studied for which this is not the case. The differ-
ence between the distribution obtained from the model and Kijowski’s distribution
are clearly visible for these examples.

An interesting question for further research might be if connections to other
arrival-time distributions may be found by modifying the present scheme. The
advantage of this scheme over others for which such connections could be established
is an easier experimental practicability.

A further result of the work is the generalization of the measurement scheme
to three dimensions. If the mirror is orthogonal to the x-axis and positioned at
x = 0 it was shown that the measured quantity is proportional to three-dimensional
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probability distribution averaged over the plane x = 0 for small τ . By rotating the
mirror and additionally moving it along the x-axis one accordingly obtains averages
of the named quantities over all possible planes. From this data one can reconstruct
a tomographic image of the probability density.



Appendix A

Quantum jump approach for two
D systems

For two dipole-interacting D systems it is also possible to apply the quantum jump
approach in order to calculate the transition rates between the intensity periods.
This allows to calculate higher order corrections in the interaction parameters con-
nected with the weak transition. The procedure will first be explained for a single
D system which has just two types of periods, light and dark ones. From its level
configuration in Figure 2.2 it is evident that the onset of a dark period is preceded
by a photon from the |3〉 − |2〉 transition, with frequency ω2. Hence, starting at
t0 = 0 in state |1〉, the probability density for the next photon to occur at time t
and to come from the |3〉 − |2〉 transition is given by

w1ω2(t) = A2|〈3|e−iHcondt/~|1〉|2 (A.1)

since Hcond gives the time development between photon emissions [11]. Then its
time integral,

Pω2 =

∞∫
0

dt w1ω2(t), (A.2)

is the probability for the next emitted photon to come from the |3〉 − |2〉 transition.
Now, let the photon rate in a light period be denoted by IL. Then, after each
photon of the light period the system is reset to the ground state and thereafter, with
probability Pω2 , emits a photon from the |3〉 − |2〉 transition. Hence the transition
rate from a light to a dark period is

p10 = ILPω2 . (A.3)

This can be carried over to two dipole interacting D systems as follows. An emission
trajectory is considered and assumed to be in a particular intensity period, of unit
intensity, say. In contrast to a single D system, the reset state after a photon emission
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in this period is not always quite the same, but it is reasonable to start from ρss,1

and to use

ρ1 ≡
{

(A3 + ReC3)R
(3)
+ ρss,1R

(3)†
+ + (A3 − ReC3)R

(3)
− ρss,1R

(3)†
−

}
/Tr(·) (A.4)

as an average reset state. The transition to a double-intensity period is marked by
a photon from the |2〉− |1〉 transition, and therefore the probability density for such
a transition, starting from the above reset state, is

w1ω1(t) = Tr
{

(A1 + ReC1)R
(1)
+ e−iHcondt/~ρ1e

iH
†
condt/~R

(1)†
+

+ (A1 − ReC1)R
(1)
− e−iHcondt/~ρ1e

iH
†
condt/~R

(1)†
−

}
(A.5)

Integration over t gives the total transition probability, denoted by P1ω1 . The photon
rate in a period of unit intensity is that of two dipole interacting two level systems
and is given by [111]

I(2)
ss = 2

Ω2
3[A3(A

2
3 + 2Ω2

3 + 4∆2
3) + ReC3(A

2
3 + 4∆2

3)]

(A2
3 + 2Ω2

3 + 4∆2
3)

2 + (A2
3 + 4∆2

3)(|C3|2 + 2A3ReC3 + 4∆3ImC3)
. (A.6)

Thus p12 is given by
p12 = I(2)

ss P1ω1 . (A.7)

In a similar way one obtains p10 and p21. The transition rate p01 can be directly read
off from the no-photon probability e−2A1t. One obtains the same results as in Section
3.2.2 when one expands in the small parameters. In the case λ1, λ3 � r � λ2 one
can put C1 = C3 = 0 and one obtains for example

p12 = A1

(
1 +

ImC2
2

A2
3 + 2Ω2

3 + 4∆2
3

)
. (A.8)

The term proportional to ImC2
2 may have a noticeable effect for r/λ2 � 1 since

the imaginary parts of the coupling parameters diverge for r → 0. For experimental
parameter values according to Reference [23] this term is negligible, however.



A
p
p
e
n
d
ix

B

E
x
a
ct

tr
a
n
si

ti
o
n

ra
te

s
fo

r
th

re
e

fo
u
r-

le
v
e
l
sy

st
e
m

s

T
h
e

ex
ac

t
do

w
n
w
ar

d
tr

an
si

ti
on

ra
te

s
in

cl
u
d
in

g
d
et

u
n
in

g
ar

e
gi

ve
n

b
y

p 1
0

=
A

2
W

(A
2 3
+

Ω
2 3
+

4∆
2 3
)

(A
2
+
A

4
)[
A

2 3
+

2Ω
2 3
+

4∆
2 3
]

(B
.1

a)

p 2
1

=
2A

2
W

A
2
+
A

4

(A
2 3
+

Ω
2 3
+

4∆
2 3
)(
A

2 3
+

2Ω
2 3
+

4∆
2 3
)
+

(A
2 3
+

4∆
2 3
)(
|C

3
|2

+
2A

3
R

e
C

3
−

4∆
3
Im

C
3
)

(A
2 3
+

2Ω
2 3
+

4∆
2 3
)2

+
(A

2 3
+

4∆
2 3
)(
|C

3
|2

+
2A

3
R

e
C

3
−

4∆
3
Im

C
3
)

=
2A

2
W

A
2
+
A

4

[ A
2 3
+

Ω
2 3
+

4∆
2 3

A
2 3
+

2Ω
2 3
+

4∆
2 3

+
2R

e
C

3
A

3
Ω

2 3
(A

2 3
+

4∆
2 3
)

[A
2 3
+

2Ω
2 3
+

4∆
2 3
]3
−

4
Im

C
3

∆
3
Ω

2 3
(A

2 3
+

4∆
2 3
)

[A
2 3
+

2Ω
2 3
+

4∆
2 3
]3

] +
O

(C
2 3
).

(B
.1

b
)

p 3
2

=
3A

2
W

A
2
+
A

4

(A
2 3
+

Ω
2 3
+

4∆
2 3
)[

(A
2 3
+

2Ω
2 3
+

4∆
2 3
)2

+
3(
A

2 3
+

4∆
2 3
)B

]+
2(
A

2 3
+

4∆
2 3
)[
|C

3
|2 |
A

3
−

2i
∆

3
+
C

3
|2

+
B

(Ω
2 3
+
B

)]

(A
2 3
+

2Ω
2 3
+

4∆
2 3
)
[(
A

2 3
+

2Ω
2 3
+

4∆
2 3
)2

+
3(
A

2 3
+

4∆
2 3
)B

]+
2(
A

2 3
+

4∆
2 3
)
[|C

3
|2 |
A

3
−

2i
∆

3
+
C

3
|2

+
B

2
]

=
3A

2
W

A
2
+
A

4

[ A
2 3
+

Ω
2 3
+

4∆
2 3

A
2 3
+

2Ω
2 3
+

4∆
2 3

+
4

R
e
C

3
A

3
Ω

2 3
(A

2 3
+

4∆
2 3
)

[A
2 3
+

2Ω
2 3
+

4∆
2 3
]3
−

8I
m
C

3
∆

3
Ω

2 3
(A

2 3
+

4∆
2 3
)

[A
2 3
+

2Ω
2 3
+

4∆
2 3
]3

] +
O

(C
2 3
).

(B
.1

c)

w
it
h
B

=
|C

3
|2

+
2A

3
R

e
C

3
−

4∆
3
Im

C
3
.

T
h
e

ot
h
er

tr
an

si
ti
on

ra
te

s
ar

e
al

re
ad

y
ex

ac
t

as
gi

ve
n

in
S
ec

ti
on

3.
3.

5



Appendix C

Hilbert transforms

Since the Hilbert transform is an integral transform which is not as commonly used
as others, a few basic properties of it will be reviewed here. Furthermore the Hilbert
transform for two classes of functions will be presented which are not found in the
literature. For further information see the References [95, 96].

The Hilbert transform is defined by

g(y) = H[f(x)] =
1

π
P

∫ ∞

−∞
dx

f(x)

x− y
(C.1)

for real variables x and y. In the above formula P· denotes the Cauchy principal
value. The function f(x) and its Hilbert transform are skew-reciprocal, that is

H[g(y)] = −f(x). (C.2)

Some simple general properties of the Hilbert transform are given in table C.1. In
the following a technique for the calculation of Hilbert transforms is given for the
example of the function

f(x) = e−α(x−α
β

)2 α, β ∈ C, Reα, Imα ≥ 0 (C.3)

The Hilbert transform of this function is formally given by

g(y) = H[f(x)] =
1

π
P

∫ ∞

−∞
dx

f(x)

x− y
=

1

π
P

∫ ∞

−∞
dx

e−α(x−α
β

)2

x− y
. (C.4)

With the substitution ξ = x− y this can be rewritten as

g(y) =
1

π
P

∫ ∞

−∞
dx

e−α(ξ+y−α
β

)2

ξ
= e−α(y−α

β
)2 1

π
P

∫ ∞

−∞
dx

e−αξ2
e−2α(y−α

β
)ξ

ξ

= e−α(y−α
β

)2 1

π
P

∫ ∞

−∞
dx

e−αξ2
e−2αzξ

ξ︸ ︷︷ ︸
I(z)

,
(C.5)
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f(x) 1
π
P
∫∞
−∞ dx f(x)

x−y

f(x) g(y)

g(x) −f(y)

f(a+ x) a ∈ R g(a+ y)

f(ax) a > 0 g(ay)

f(−ax) a > 0 −g(ay)

(x+ a)f(x) (y + a)g(y) + 1
π

∫∞
−∞ dx f(x)

f ′(x) g′(y)

Table C.1: General properties of the Hilbert transform.

where the new variable z = y−β/α has been defined. The integral which is denoted
by I(z) will now be evaluated as a function of z . For z = 0 one has

I(0) = P

∫ ∞

−∞
dξ

e−αξ2

ξ
= 0, (C.6)

since the integrand is an odd function. Therefore one can write

I(z) =

∫ z

0

dt I ′(t). (C.7)

Evaluating the derivative of the integral gives

I ′(t) = −2α

∫ ∞

−∞
dξ e−αξ2

e−2αtξ = −2αeαt2
∫ ∞

−∞
dξ e−α(ξ+t)2 = −2

√
παeαt2 . (C.8)

Therefore

I(z) = −2
√
πα

∫ z

0

dt eαt2 (C.9)

and

g(y) = −e−α(x−α
β

)2 2√
π

∫ √
α(y− β

α
)

0

dt et2 = −e−α(x−α
β

)2erfi(
√
α(y − β

α
)) (C.10)

with the imaginary error function

erfi(z) = −i erf(iz) = − 2i√
π

∫ iz

0

dt e−t2 =
2√
π

∫ z

0

dt et2 . (C.11)
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An analogous calculation gives the Hilbert transform g(y) of the function f(x) =
e−ix2

g(y) =
1

π
P

∫ ∞

−∞
dx

e−ix2

x− y
= −

√
2

π
(1 + i)e−iy2

∫ y

0

dt eit2

= −(1 + i)e−iy2

(
C
(√ 2

π
y
)

+ iS
(√ 2

π
y
))

,

(C.12)

where the Fresnel sine and cosine functions

C(x) =

∫ x

0

dt cos
π

2
t2, S(x) =

∫ x

0

dt sin
π

2
t2 (C.13)

have been used. Apart from this function also the Hilbert transforms for related
functions are needed. Namely these are functions of the form

fn(x) =
1

x2n+1

[
eix2 −

n∑
k=0

(ix2)k

k!

]
. (C.14)

These can be transformed via iteration by means of the formula

H[xf(x)] = yg(y) +
1

π

∫ ∞

−∞
dx f(x) (C.15)

for the known transform g(y) = H[f(x)]. Since H[1] = 0 this formula can be applied
to (f(x)− 1)/x via

g(y) = H[f(x)−1] = H
[
x
f(x)− 1

x

]
= yH

[f(x)− 1

x

]
+

1

π

∫ ∞

−∞
dx

f(x)− 1

x
(C.16)

and therefore

H
[f(x)− 1

x

]
=
g(y)

y
− 1

yπ

∫ ∞

−∞
dx

f(x)− 1

x
. (C.17)

For the odd function f(x) = e−ix2
one has

P
1

π

∫ ∞

−∞
dx

e−ix2 − 1

x
= 0 (C.18)

and therefore

g1(y) = H[f1(x)] = H
[e−ix2 − 1

x

]
= −(1 + i)e−iy2

C
(√

2
π
y
)

+ iS
(√

2
π
y
)

y
. (C.19)

In the same way using

P
1

π

∫ ∞

−∞
dx

e−ix2 − 1

x2
= −

√
2π(1 + i) (C.20)
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one has

H
[e−ix2 − 1

x2

]
= −(1 + i)

e−iy2
(
C
(√

2
π
y
)

+ iS
(√

2
π
y
))
−
√

2
π
y

y2
(C.21)

and

g2(y) = H
[f1(x)/x+ i

x

]
= H

[e−ix2 − 1 + ix2

x3

]
= −(1 + i)

e−iy2
(
C
(√

2
π
y
)

+ iS
(√

2
π
y
))
−
√

2
π
y

y3
.

(C.22)

The process can be continued to arbitrary n. The next transform is given by

g3(y) = −(1 + i)
e−iy2

(
C
(√

2
π
y
)

+ iS
(√

2
π
y
))
−
√

2
π

(
y − i2

3
y3
)

y5
. (C.23)
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[50] P. Szriftgiser. Cavité gravitationelle et optique atomique temporelle. PhD
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[98] R. Brühl, P. Fouquet, R. E. Grisenti, J. P. Toennies, G. C.
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