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1. Introduction

Collisions of macroscopic bodies like billiard balls, sand grains, or other familiar ob-
jects are frequently encountered by everybody. Despite their common occurence and
apparent simplicity, real objects, in contrast to idealised bodies like e.g. hard spheres,
can show a surprisingly complex collision behaviour. The outcome of a collision may
depend on material, mass, shape, surface structure, elastic moduli, impact velocity,
and other parameters [Bro96]. One of the reasons for this complexity is the existence
of static and sliding friction which acts between the touching surfaces; another rea-
son is restitution, i.e. energy loss that occurs even if friction plays no role. In recent
years, nanotribologists have tried to elucidate the microscopic origin of friction in
its various guises [WG97]. The microscopic origin of restitution, however, has so far
been mainly described phenomenologically only. This work therefore concentrates
on one particular aspect of restitution, the production of vibrations by collisions, in
order to derive macroscopic collision behaviour from a microscopic description.

Granular matter is one of the physically interesting (and at the same time techni-
cally important) fields where the non-ideal nature of particle collisions is crucial; it is
responsible for many of the intriguing properties of such systems. A great deal of this
work is therefore devoted to the application of the macroscopic collision laws derived
from the microscopic description to granular many-particle systems. Consequently,
the collision models proposed here are mainly discussed in the context of granular
matter, even though they are of wider applicability.

In the following, an overview over the physics of granular matter will be given
in order to set the stage for the more detailed discussions that are to follow in the
main body of the text. A presentation of collision models used for modelling granular
media and an explanation of the basic ideas of the models developed in this work
conclude the introduction.

1.1. Granular matter

Granular materials have attracted the interest of many scientists over several cen-
turies, including such famous physicists as Faraday, Coulomb, Reynolds, and many
others. This is probably due to the fact that examples of granular media like sand,
sugar, meal, soot, powder and the like can be found in everyday life, while at the
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1. Introduction

same time they show an enormous variety of phenomena which more often than not
elude a simple description. These phenomena include such diverse aspects as heap
formation, giant force fluctuations, segregation, avalanches, dunes, the exotic “os-
cillons” and many more. For a general overview over granular materials and their
behaviour, see e.g. [HHL98, JN92, JNB96, dG99]. To date, there exists no “unifying
theory” which would describe all important aspects of granular materials in a gen-
eral framework. There are even some who deny the very existence of such a theory
[Kad99]. Nevertheless, it is worthwhile to investigate into the matter in order to il-
luminate at least a few corners of the whole picture. In recent years, much effort has
been put into this; the renewed interest can be ascribed to the host of still unsolved
questions and the increased number of theoretical, experimental, and computational
methods and techniques that were not available to the early investigators.

Granular media are systems composed of a large number of possibly small but
macroscopic particles. Therefore they obey purely classical behaviour. There are
two main points that set granular materials apart from standard systems of statisti-
cal mechanics: a) Nonconservation of energy through dissipation and friction upon
particle contact and b) irrelevance of the usual thermal energy scale kBT [JNB96].
Thus, a granular system can be trapped in one of many meta-stable states where
all particles are at rest due to static friction, such as e.g. a heap: It then behaves
like a solid. When driven, however, the particles can move, showing fluid-like be-
haviour like e.g. in an avalanche. The fluid behaviour can roughly be divided into
two regimes: When external driving is weak, particles are in permanent contact with
each other, the dynamics being dominated by friction forces and steric constraints
due to particle geometry. When the driving is strong, e.g. through gravity or vibrat-
ing plates, the particles are mostly flying freely and only interact through inelastic
collisions. This is the so-called granular gas (or rapid flow or grain inertia) regime.
When considering large assemblies of granular particles, this work will mainly focus
on the latter; therefore a short overview over the physics of granular gases shall be
given in the following.

Granular gases

“Real life” examples of granular gases can for instance be found in planetary rings
[SHB95, BWKH96, SSK97] or in the top layers of an avalanche. Much research has
been done on these kinds of systems, experimentally, computationally, and theoreti-
cally. Some of the more recent experiments are e.g. to be found in [CLB+93, WHJ95,
FFL99]. The experiments are usually performed on a vibrating bottom plate in
order to input the energy required to sustain a fluidized granular gas “phase”1 at
the top. Note also the interesting experiments described in [FWÉ+99] which were
performed in low gravity, a situation which is closer to the one usually considered

1The quotation marks are to indicate that there is no precise definition of a granular gas which
would unambigously distinguish it from slow flows.
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1.1. Granular matter

in theories and simulations. Numerous simulational studies of granular materials
have been performed and discussed in the literature since many quantities of phys-
ical interest like density and velocity fields are very difficult to measure in experi-
ments but easy to observe in simulations. Such simulations have been described in
[GTZ93, MY92, MY93, LCB+94, LHB94, MY96, OBvNE97, ML98], to name but a
few. The experiments and simulations are supplemented by theories: Gas kinetic
theory was introduced into the field of granular matter by Savage, Jenkins, and oth-
ers [SJ81, LSJC83, JS83, JR85a, JR85b] and led to a hydrodynamic description in
terms of coarse grained density, velocity, and energy fields. A similar result was also
obtained by Haff [Haf83] using phenomenological arguments. Due to the dissipa-
tive grain interaction laws one has to employ non-equilibrium statistical mechanics
methods in order to make any progress on the theoretical side. The most impor-
tant methods to derive macroscopic theories from some basic assumptions about
the constituents of the system originally come from gas kinetic theory, namely the
Boltzmann equation and the Pseudo-Liouville operator, both extended to the case of
inelastic collisions. There is an enormous amount of literature on these topics, only
little of which will be cited here [CC60, Cer88, EDHvL69, vNEB98] since this will
not be the primary interest of this work.

Many theoretical works consider the so-called homogeneous cooling state, i.e.
they employ the assumption that the granular gas remains spatially homogeneous
and has a velocity distribution whose shape is constant in time (it is usually, but not
always [GS95, Hut99], assumed to be a Gaussian2) and which has only one scaling
parameter, the granular temperature, which decays in time if no energy source is
present. The term “granular temperature” is the literature standard for the mean
kinetic energy of the particles, defined analogously to the temperature in an ordinary
gas, although it is not a temperature in the thermodynamic sense. For rough or
nonspherical particles, where rotations become important in collisions, it is necessary
to introduce two temperatures, one for translational and one for rotational degrees
of freedom [GS95, HZ97, LHMZ98, HAZ99]. The two temperatures in general decay
differently: a clear manifestation of the nonequilibrium nature of such systems since
in equilibrium systems one would find equipartition instead.

These theories have been formulated and extended in many ways and have led
to an improved understanding of important features like clustering [GZ93, McN93,
OBvNE97], which is a consequence of the instability of the homogeneous cooling state
against long wavelength density fluctuations and has been traced to noise reduction
[BE98b]. Other aspects are still unsolved; e.g. a theory that remains valid in the
clustering regime, away from the homogeneous cooling state, is still lacking, although
attempts are being made in this direction [BE98a, vNE99, Hut99].

2This assumption is also disproved by some experiments, e.g. [OU99].
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1. Introduction

1.2. Collision models

There are at least three levels on which one can look at a granular gas. From a
macroscopic point of view, one is concerned with hydrodynamic properties like gran-
ular temperature, flow or density fields. The laws governing these quantities can be
derived from a more mesoscopic level where individual grains are taken into account.
In order to do so, one must introduce more or less phenomenological dissipative in-
teraction rules for the particles. Systems of this type can be regarded as an open
thermodynamic system with an energy sink [vNE99]. Finally, one can look down to
the level of the grains themselves and include the grains’ microscopic dynamics in
the description in order to account for the dissipative mechanisms. In this work, the
latter point of view is taken. Starting from a microscopic description of individual
grains, collision properties are derived, and many particle systems composed of such
particles are studied.

Input to all the theories on the mesoscopic level are models for energy dissipation
and friction. Very often, theories understandably use the simplest ones in order to
keep calculations tractable; yet these models, the most prominent of which is the
inelastic hard sphere (IHS) model, are often at best phenomenological and lack a
sound theoretical basis (see [Rou98, Lud98, CR98] for a discussion of several such
models). The IHS model considers the granular particles to be spheres with con-
stant coefficients of normal restitution ε and possibly tangential restitution β3. This
is certainly a rather crude approximation which is also invalidated by experiments
[Gol60, FLCA94, Dil93, HBL88, BSL+96]. As mentioned above, real granular parti-
cles show a very complex collision behaviour.

This discrepancy between the elaborate theories and their somewhat unsound
foundations inspired the question of how and how much energy is lost in granular
collisions under which circumstances. Several loss mechanisms can be identified:
First, plastic deformation and fracture of the particles plays a role [And30, Tab48,
Dil93], i.e. collisions tend to permanently damage the particles such that energy will
be irretrievably stored in lattice defects like dislocations. Second, the particles may
be made of a viscoelastic material [Pao55, KK87, HSB95, BSHP96] such that energy
is lost by internal friction in the material. Such an approach yields velocity dependent
coefficients of restitution which can be fitted to agree with experimental results and
which are of importance in e.g. the modeling of planetary rings [SHB95, SSK97].
Third, collisions of particles could excite elastic vibrations of the particles which
take up energy. This effect is clearly visible in simple experiments (e.g. a hammer
striking a bell) and has also been investigated for spheres hitting an elastic plate
[Ram20, Zen41, Kol83]. Rayleigh [Ray06] estimated by an extension of Hertz’ theory
of contact [Her82] that the effect for spheres should be small. His estimate, however,

3The symbols ε and β are going to appear again in the main text later on. Their exact definitions
are therefore deferred until then.
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1.2. Collision models

is only valid for identical spheres in a head-on collision. The ultimate aim of the
present work is therefore to develop a method to go beyond Rayleigh’s calculation
and to check whether his estimate remains true under all conditions and to estimate
the relative importance of the latter loss mechanism.

However, since the general case of colliding, elastically vibrating three-dimensional
bodies is rather difficult to treat analytically (as will become clear in the text, see also
[GZ99] for an approach in two dimensions), this work will start from a model of colli-
sions of one-dimensional particles with internal, vibrational degrees of freedom. This
model was introduced in [GZ96, Gie96] and has many intriguing properties worth
studying in their own right. It led, for instance, to a stochastic description of the col-
lision process with a fluctuating coefficient of restitution. It will be extended here in
several respects: In Sec. 2 the exact solutions of the equations of motion for two such
particles will be given and exploited in order to derive some exact properties of the
probability density for the coefficient of restitution. Using these results, an analytical
approximation will be constructed which can be used to perform accelerated simu-
lations of many particle systems composed of these elastically vibrating particles.
Simulations of such many particle systems will be presented in Ch. 3. Starting from
the same equations of motion for the two particle system, but under more general
conditions, a solution is presented in Ch. 4 which not only extends the result given
before but is also easily generalisable to two and three dimensions. Hence by this
calculation an approach to the problem of three-dimensional spheres (in principle
even arbitrarily shaped bodies) becomes possible. The resulting expressions are still
too complicated to permit a complete analytical solution but at least they allow for
a relatively efficient numerical calculation of two body collisions, each body having
vibrational degrees of freedom. Thus one is now in a position to test Rayleigh’s esti-
mate and to go beyond it by exploring the parameter space of radii, masses, poisson
numbers, and other parameters. It is also possible to check the range of validity of
Hertz’ contact law [Her82] itself. Some first results of such simulations are presented
in Ch. 5.
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2. One-dimensional particles 1: The
two particle system

In [GZ96, Gie96], Giese and Zippelius introduced the model that forms the basis of the
present work. Their model describes the end-to-end collision of two one-dimensional,
elastically deformable particles (which will in the following occasionally be denoted
as “rods”), interacting through a contact potential which forbids overlapping of the
particles. Nevertheless, they can and in general will be elastically deformed. Through
this mechanism translational energy is transferred to internal degrees of freedom
during a collision. Consequently, collisions are in general inelastic (with respect to
translational energy Etr) and can be characterised by a coefficient of restitution ε 6= 1.
The coefficient of restitution in one dimension is simply the ratio of the moduli of
the relative particle velocities after and before the collision.

The statistical properties of binary collisions of one-dimensional, elastic rods were
analysed in [GZ96]. One of the main results concerns a separation of timescales:
Equipartition among the vibrational modes is achieved much faster than the decay of
the translational energy. This has led to modeling the internal degrees of freedom by
a thermalised bath, characterised by a temperature TB. The binary collision process
can then be reduced to a stochastic equation of motion for the relative velocity of
the two particles. The duration of a collision as well as the relative velocity after
collision are stochastic variables, depending on the state of the bath of each particle.
The time evolution of Etr upon successive collisions can be interpreted as a Markov
process. During a collision, Etr changes to a new value E ′tr = Etrε

2 with a transition
probability pTB

(Etr → E ′tr).
In the following I will review the model and the associated concepts in Sec. 2.1

with regard to later extensions in Ch. 4 and will then proceed to show in Sec. 2.2 some
exact analytic results for the probability distribution of the coefficient of restitution
that can be derived from the model. Starting from these exact results I construct
in Sec. 2.3 an analytic expression for a probability distribution which has the same
properties in order to approximate the correct probability distribution. This non-
standard procedure was chosen because neither an exact nor even a perturbative
calculation was possible due to the extreme nonlinearity of the hard-core potential.
Finally, in Sec. 2.4, I compare the approximation with simulations in order to confirm
that it shows all the desired features.
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2.1. Review of the one-dimensional model

2.1. Review of the one-dimensional model

The aim of this section is the equation of motion for the relative velocity of two
colliding elastic rods, which was derived in [GZ96, AGZ98b, AGZ98a] and which will
be reviewed here in some length for it also forms the basis of Sec. 4.1.

Two one-dimensional particles of lengths l1 and l2 with masses m1 and m2 move
freely along a (circular) line until they collide. Their vibrational excitations are de-
scribed by Nmod

i normal modes uiν(s) (ν = 1, . . . , Nmod
i and s ∈ [−li/2, li/2] denotes

the position along the rod) of wavenumber kiν = πν/li and frequency ωiν = ckiν
with amplitudes qiν and conjugate momenta piν (i = 1, 2). The only important
material parameter for this model is the sound velocity c. The centre-of-mass posi-
tions are denoted by R1 and R2, their distance is R = R2 − R1, and their relative
velocity is denoted by Ṙ. Accordingly, P = µṘ is the relative momentum and
µ = m1m2/(m1 + m2) the effective mass. It is sometimes convenient to use di-
mensionless quantities when dealing with one-dimensional particles. This is done by
dividing all lengths by l = 2l1l2/(l1 + l2), while times will be measured in units of
l/c, i.e. τ = tc/l is the dimensionless time.

The Hamilton function of the system of two particles is then given by the sum of
three contributions, the translational energy, the vibrational energy and the interac-
tion potential:

H = Htrans +Hvib + Vα

=
P 2

2µ
+

2∑
i=1

Nmod
i∑
ν=1

{
piν

2

2mi

+miω
2
iν

qiν
2

2

}
+Be−αr.

(2.1)

The interaction potential is modelled by a short-range repulsive potential Vα(r) =
B exp (−αr) (with positive but otherwise arbitrary B), which depends on the mo-
mentary end-to-end distance r (to be defined below). Thereby translational and
vibrational degrees of freedom are coupled. The parameter α controls the hardness
of the potential. It will be sent to infinity later on in order to arrive at the hard-core
limit.

2.1.1. Derivation of the equations of motion

The equations of motion are derived from the Hamilton function given in Eq. (2.1)
in the usual way. Before they can be written down, one needs to know the distance
r of the endpoints of the rods, which is given by

r = R− (l1 + l2)/2 +

Nmod
2∑
ν=1

q2νu2ν(−l2/2)−
Nmod

1∑
ν=1

q1νu1ν(l1/2), (2.2)
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2. One-dimensional particles 1: The two particle system

where R is the distance of the two centers of mass of the rods. The ν–sums in
Eq. (2.2) comprise the vibrational part of the end-to-end distance.

The equations of motion then read

Ṗ = µR̈ = −V ′α(r) (2.3)

ṗiν = miq̈iν = −miω
2
iνqiν − (−1)iV ′α(r)uiν

(
(−1)i+1li/2

)
. (2.4)

Putting Eq. (2.3) into Eq. (2.4) and letting u0
iν := (−1)iuiν((−1)i+1li/2), one gets

q̈iν = −ω2
iνqiν + u0

iν

µ

mi

R̈. (2.5)

This linear differential equation describes a driven harmonic oscillator and can be
solved with the Green function

Giν(t) = Θ(t)
sin(ωiνt)

ωiν
(2.6)

(Θ(·) is the usual Heaviside step function) which yields, given the initial conditions
qiν(T0) and piν(T0) at some time T0,

qiν(t) = qiν(T0) cos(ωiν(t− T0)) +
piν(T0)

miωiν
sin(ωiν(t− T0)) +

u0
iν

µ

mi

∫ t

T0

Giν(t− t′)R̈(t′) dt′ (2.7)

for t ≥ T0. The part stemming from the initial conditions will be abbreviated as
Qiν(t). The initial time T0 should be chosen such that the particles have not touched
and are well seperated prior to T0. It is to be considered as the starting time of the
approach of the two particles.

The solution Eq. (2.7) is now put into Eq. (2.2), which is in turn inserted into
Eq. (2.3) to give

R̈ =
αB

µ
e−α(R+Q+(G∗R̈)) (2.8)

where

Q(t) =
2∑
i=1

Nmod
i∑
ν=1

u0
iνQiν(t), (2.9)

G(t) =
2∑
i=1

Nmod
i∑
ν=1

µ

mi

(u0
iν)

2Giν(t), (2.10)
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2.1. Review of the one-dimensional model

and where (· ∗ ·) denotes a convolution integral as in Eq. (2.7).
Eq. (2.7) can be brought into a more convenient form by writing

R(t) = R(T0) + (t− T0)Ṙ(T0) +

∫ t

T0

(t− t′)R̈(t′) dt′ (2.11)

and letting G̃(t) := G(t) + tθ(t), which then gives

R̈(t) =
αB

µ
e−α(R(T0)+(t−T0)Ṙ(T0)+(G̃∗R̈)(t)+Q(t)) (2.12)

Note that the complicated-looking expression in the exponent is simply the end-to-
end distance of the two rods (multiplied by −α).

From here one can proceed in two ways: The first is to explicitly calculate G̃(t) in
the limit Nmod

i →∞ for homogeneous rods, use it to solve Eq. (2.12) and afterwards
carry out the hard core limit α → ∞. The second way is to keep Nmod

i finite and
solve Eq. (2.12) for α → ∞1. Here, I will go the first way and defer the second one
to Sec. 4.1. The reason is that the two approaches lead to different points of view
of the collision process and have different areas of applicability. This will become
clearer in Sec. 4.1.

By introducing the normalised velocity gain w(t) = (Ṙ(T0) − Ṙ(t))/Ṙ(T0), one
can write

(G̃ ∗ R̈)(t) = −Ṙ(T0)(G̃ ∗ ẇ)(t) (2.13)

= −Ṙ(T0)(G̃′ ∗ w)(t) (2.14)

by integration by parts. The summation of G̃′(t) can be performed exactly for the
normal modes of homogeneous particles [Gie96] and yields

G̃′(t) =
l

c

(
δ(t) +

2∑
i=1

∞∑
ν=1

δ

(
t− 2liν

c

))
, (2.15)

so that

(G̃′ ∗ w)(t) =
l

c

(
w(t) +

2∑
i=1

∞∑
ν=1

w

(
t− 2liν

c

))
. (2.16)

Thus due to the term proportional to δ(t) in G̃′(t), the integral equation (2.12)
becomes an ordinary differential equation containing memory terms (viz. the double

1One might conjecture that order of the limits Nmod
i → ∞ and α → ∞ is not important. While

this is likely to be true, however, it will be seen later that it has so far not been possible to
prove.
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2. One-dimensional particles 1: The two particle system

sum), which is, expressed in rescaled units of time (τ = tc/l) and with a suitable
choice of the arbitrary but positive constant B,

d

dτ
w(τ) =

1

κ
exp

{
κ

(
τ − τ0 − w(τ)−

2∑
i=1

∞∑
ν=1

w(τ − νΓi) + q(τ)

)}
, (2.17)

where κ = −αl
c
Ṙ(T0) and τ0 = c(R(T0)/Ṙ(T0) + T0)/l. The initial conditions are

contained in q(τ) = cQ(τ l/c)/(lṘ(T0)). The Γi are just constants and are determined
by the length ratio γ = l1/l2 (assuming l1 < l2 without loss of generality) of the rods
according to Γ1 = 1 + γ and Γ2 = 1 + 1

γ
.

Eq. (2.17) can be solved exactly by separation of variables. Subsequently, the
hard core limit (α → ∞ or equivalently κ → ∞) can be performed by saddle point
methods, yielding

w(τ) = max

(
0, max

τ ′∈[0,τ ]

{
τ ′ − τ0 −

2∑
i=1

∞∑
ν=1

w(τ ′ − νΓi) + q(τ ′)

})
. (2.18)

This is the main result which will be used extensively in this chapter. The collision
ends when the memory terms in Eq. (2.18) overcompensate the gain from the other
terms τ ′−τ0+q(τ ′), which are on average increasing. Fig. 2.1 shows a sample collision
process in order to illustrate Eq. (2.18).

2.1.2. Lasting contacts

A first conclusion that can be drawn from Eq. (2.18) concerns the existence of lasting
contacts between the endpoints of the two rods. The expression inside the parentheses
on the rhs of Eq. (2.17) is again the end-to-end distance r multiplied by −α, since
Eq. (2.17) is only a reformulation of Eq. (2.12),

r(τ) =
l

c
Ṙ(T0)

(
τ − τ0 − w(τ)−

2∑
i=1

∞∑
ν=1

w(τ − νΓi) + q(τ)

)
. (2.19)

This remains true in the hard-core limit α→∞.
Whenever the expression inside the curly braces in Eq. (2.18) is monotonically

increasing in τ ′ in the vicinity of τ ′ = τ and simultaneously takes on its maximum at
the right boundary of the interval [0, τ ], w(τ) simply follows this function. In other
words,

w(τ) = τ − τ0 −
2∑
i=1

∞∑
ν=1

w(τ − νΓi) + q(τ) (2.20)

in each time interval during which the rhs is monotonically increasing and larger
than all previous values of w(τ). Comparison with Eq. (2.19) then shows that under

12



2.1. Review of the one-dimensional model

these circumstances the end-to-end distance r is zero. This corresponds to a lasting
contact between the endpoints. Since this is the only situation in which w(τ) can ac-
tually increase, it follows that lasting contacts are the generic behaviour for collisions
described by Eq. (2.18)2. A complete collision process will therefore be composed of
periods in time where the endpoints touch, alternating with periods where they are
separated.

2.1.3. Stochastic description

It was shown in [GZ96] that equipartition among the vibrational modes is established
fast as compared to the decay of the translational energy. Based on this observation
the internal degrees of freedom were modelled by a thermalised bath, characterised
by a temperature T

(i)
B = E

(i)
vib/N

mod
i , where the vibrational energy of a rod i, E

(i)
vib,

is given by the sum of the energies of the individual modes. While the number
of modes, Nmod

i , was assumed to be infinite for the derivation of Eq. (2.18), it is
reintroduced here for reasons that will become clear below. Under these assumptions
the function q(τ) becomes a stochastic process since the initial conditions are no
longer known precisely. It was shown in [GZ96, Gie96] that q(τ) is the sum of two
periodic Brownian bridge processes [KP92, p. 42] with periods Γ1 and Γ2 and is thus
a Gaussian random process with zero mean. Its covariance is

Cq(τ) = 〈q(τ ′)q(τ ′ + τ)〉

=
2∑
i=1

{
1

2Γi

(
τ − Γi

2
− Γi

∞∑
ν=1

θ(τ − νΓi)

)2

− Γi
24

}
T

(i)
B

2Etr

.
(2.21)

Here Etr = (P (0))2/2µ is the translational energy of the colliding rods before the
collision.

Since Eq. (2.18) has now become a stochastic equation, all observable quantities
become stochastic as well, e.g. the duration of the collision as well as the final velocity
or the coefficient of restitution. The latter two are related by

ε = lim
τ→∞

w(τ)− 1. (2.22)

If the two particles are installed on a circular line such that they perform an
infinite series of collisions with each other as they travel back and forth on the circle,
this can be interpreted as a Markov process in discrete time which accounts for
transitions of the translational energy upon successive collisions. During a collision,
Etr changes to a new value E ′tr = Etrε

2. The probability density pTB
(Etr → E ′tr) for

2If q(τ) is a gaussian random process, as will be the case below, this may not be strictly true
since in that case, q(τ) may be nowhere monotonically increasing. But since this is only a
mathematical idealisation, this objection can be ignored for the present argument.

13



2. One-dimensional particles 1: The two particle system

this transition is connected to the probability density for the coefficient of restitution
pβ(ε) according to

pTB
(Etr → E ′tr) =

1

2εEtr

pβ(ε)

∣∣∣∣∣
ε=

√
E′tr
Etr

. (2.23)

Here β = Etr/TB. For notational simplicity, no distinction is made between the
temperatures of the individual rods, assuming they are equal.

Changes in the bath temperature are not independent, but determined by energy
conservation:

T ′B = TB +
1− ε2∑
iN

mod
i

Etr. (2.24)

Note that one drawback of Eqs. (2.17) and (2.18) is that in their derivation it was
necessary to use an infinite number of modes. Later, one had to return to a finite
number of modes, otherwise the bath temperatures of the rods would never change
(cf. Eq. (2.24)). This problem will be remedied in Ch. 4.

The stationary state of the Markov process is known: after cooling (i.e. starting
from an initial state that has TB = 0), the system of two particles, each equipped
with an internal bath, evolves into a stationary state with a Boltzmann distribution
for Etr and with bath temperature T 0

B = Etot

2Nmod+1/2
where Etot is the total energy of

the system.

2.2. Characteristics of the transition probability

In this section some exact properties of the transition probability introduced in the
previous section are derived from Eq. (2.18). The approximation to this probability
that is going to be built at the end of this chapter will be constructed in such a way
that it obeys all of these properties.

2.2.1. Detailed balance

Since the underlying model is microscopically reversible, detailed balance holds for
the Markov process: the transition probability for the process Etr → E ′tr = Etrε

2 is
related to the transition probability for the reverse process E ′tr → Etr = E ′tr/ε

2 via

pT0
B
(Etr → E ′tr)e

−Etr/T 0
B = pT0

B
(E ′tr → Etr)e

−E′tr/T 0
B . (2.25)

Here fluctuations of the temperatures of the baths have been neglected which seems
justified because changes in the bath temperature are O(1/Nmod

i ) (see Eq. (2.24)).
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2.2. Characteristics of the transition probability

Detailed balance, Eq. (2.25), implies the following relation for pβ(ε):

pβ(ε)e−β = pε2β

(
1

ε

)
e−ε

2β. (2.26)

Since detailed balance is a property of the equilibrium state of the two particle system,
this is strictly valid only if the temperatures of both rods are equal. Later, for lack
of a better scheme, it will also be used for rods with different bath temperatures.

2.2.2. High and low temperature limits

When the temperatures of the baths of oscillators are zero, i.e. q(τ) = 0 for all
τ , the collision is deterministic. For this case, Eq. (2.18) can be solved exactly
“by inspection”: As long as the expression inside the curly braces in Eq. (2.18) is
monotonically increasing, which it is for τ ′ < τ0 + Γ1 (recall that Γ1 < Γ2), the
inner max-function is redundant such that w(τ) = (τ − τ0)Θ(τ − τ0) for τ < τ0 + Γ1.
For larger τ , the memory terms compensate all the gain from the term τ − τ0, thus
the final value of w(τ) is Γ1. Hence it follows that the coefficient of restitution is
ε = Γ1 − 1 = γ, the length ratio of the rods. This is well known and has been
shown e.g. in [Aue94, GZ96]. Apparently, the earliest derivation of this result seems
to be due to Saint-Venant as early as 1867, according to the reference on p. 283 in
Rayleigh’s article [Ray06]3. Thus in the limit of small temperatures, pβ(ε) should
approach a δ-Function centered around γ.

At large temperatures, on the other hand, pβ(ε) is a uniform distribution, i.e.
pβ=0(ε) = const. (within a certain range and zero outside of it). This is proved in
App. A.4.

2.2.3. Maximum collision time

If the length ratio γ is a rational number, it is possible to extract some more infor-
mation about pβ(ε) from Eq. (2.18). First one needs to know the maximum duration
of a collision before an upper and lower bound for ε can be deduced.

The stochastic process q(τ) consists of two periodic Brownian bridge processes
with periods Γ1 and Γ2 respectively. If γ is rational, say γ = p/s (where the integers
p and s are relatively prime), then Γ1/Γ2 = p/s is rational and thus q(τ) is periodic,
the period being given by p+ s. Let τ ∗ be the time where τ − τ0 + q(τ) first equals 0
and is greater than 0 in an (arbitrarily small) interval to the right of τ ∗ (see Fig. 2.1).
In other words, τ ∗ is the time when the particles first touch and the collision begins.
The periodicity of q(τ) now leads to a maximum collision time because whatever

3A slightly more involved calculation than the one mentioned here shows that amazingly w(τ)
assumes the same final value Γ1 even if only the longer rod is nonvibrating while the shorter one
vibrates with arbitrary strength.
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2. One-dimensional particles 1: The two particle system

1τ*
2 3 4 5 6 7 80

τ

−4

−2

0

2

4

6
w(τ)
τ−τ0+q(τ)
−w(τ−Γ1)
−w(τ−2Γ1)−w(τ−Γ2)

Figure 2.1.: Sample collision process for γ = 1/2, i.e. Γ1 = 3/2 and Γ2 = 3. The
stochastic process q(τ) is periodic with period 3. The memory terms
(the dotted and short dashed curves) are attached to the curve for w(τ)
for illustration. The time τ ∗ marks the beginning of the collision.

w(τ) is for a particular realisation of q(τ), the memory terms which accumulate over-
compensate the gain from the term τ ′− τ0 +q(τ ′) after time τ ∗+p+s (see Eq. (2.18)
and Fig. 2.1 for illustration).

This can be seen more clearly by the following argument. By evaluating Eq. (2.18)
at τ = τ ∗ + p+ s it is clear that

w̃ := w(τ ∗ + p+ s)

= max
τ ′∈[0,τ∗+p+s]

{
τ ′ − τ0 −

2∑
i=1

∞∑
ν=1

w(τ ′ − νΓi) + q(τ ′)

}

≥ τ ∗ + p+ s− τ0 −
2∑
i=1

∞∑
ν=1

w(τ ∗ + p+ s− νΓi) + q(τ ∗ + p+ s)

= p+ s−
2∑
i=1

∞∑
ν=1

w(τ ∗ + p+ s− νΓi). (2.27)

The last step follows from the definition of τ ∗ and the periodicity of q(τ). When the
expression inside the curly braces in Eq. (2.18) is rewritten in the following way by
splitting the double sum in three parts, one for i = 1 and ν ≤ s, the second one
for i = 2 and ν ≤ p, and the third one containing the rest (keeping in mind that
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2.2. Characteristics of the transition probability

sΓ1 = pΓ2 = p+ s and renumbering appropriately),

τ ′ − τ0 + q(τ ′)−
2∑
i=1

∞∑
ν=1

w(τ ′ − νΓi) =

(τ ′ − (p+ s))− τ0 + q(τ ′ − (p+ s))−
2∑
i=1

∞∑
ν=1

w(τ ′ − (p+ s)− νΓi)

−
s∑

ν=1

w(τ ′ − νΓ1)−
p∑

ν=1

w(τ ′ − νΓ2) + p+ s, (2.28)

the last four terms can be estimated by use of Ineq. (2.27): p+s−
∑s

ν=1 w(τ ′−νΓ1)−∑p
ν=1 w(τ ′−νΓ2) ≤ w̃, first only for τ ′ = τ ∗+p+s but since w(τ) is a monotonically

increasing function, this also applies for all τ ′ > τ ∗ + p + s. From the two sums the
last terms could even be dropped because they are zero for τ ′ = τ ∗+ p+ s. However,
only one of these last terms will be dropped, resulting in

p+ s−
s−1∑
ν=1

w(τ ′ − νΓ1)−
p∑

ν=1

w(τ ′ − νΓ2) ≤ w̃ for τ ′ ≥ τ ∗ + p+ s. (2.29)

Thus the rhs of Eq. (2.28) can be estimated as follows (again for τ ′ ≥ τ ∗ + p+ s):

τ ′ − (p+ s)− τ0 + q(τ ′ − (p+ s))−
2∑
i=1

∞∑
ν=1

w(τ ′ − (p+ s)− νΓi)

−
s∑

ν=1

w(τ ′ − νΓ1)−
p∑

ν=1

w(τ ′ − νΓ2) + p+ s ≤

τ ′ − (p+ s)− τ0 + q(τ ′ − (p+ s))−
2∑
i=1

∞∑
ν=1

w(τ ′ − (p+ s)− νΓi)

−w(τ ′ − (p+ s)) + w̃ ≤ w̃.(2.30)

The last inequality again follows from Eq. (2.18), evaluated at τ = τ ′ − (p + s):
w(τ ′ − (p + s)) (which is the one term that was kept) is greater than or equal to
τ ′ − (p + s) − τ0 + q(τ ′ − (p + s)) −

∑2
i=1

∑∞
ν=1 w(τ ′ − (p + s) − νΓi). Since the

lhs of Ineq. (2.30) was just the expression in curly braces from Eq. (2.18) and w̃ =
w(τ ∗ + p + s), this means that no further contributions to w(τ) come from times
τ > τ ∗ + p+ s and it therefore follows that p+ s is the maximum collision time.

2.2.4. Upper and lower bound for ε

Since the maximum collision time is p+s, we have ε = w(τ ∗+p+s)−1 (cf. Eq. (2.22)).
Bounds on ε can now be derived from Eq. (2.18), evaluated at τ = τ ∗ + p + s, by
neglecting or over-estimating the memory terms.
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2. One-dimensional particles 1: The two particle system

Consider first Eq. (2.18) at τ = τ ∗+p+s with all memory terms neglected which
yields the following inequality:

w(τ ∗ + p+ s) ≤ max

(
0, max

τ ′∈[0,τ∗+p+s]
{τ ′ − τ0 + q(τ ′)}

)
. (2.31)

Since τ ∗ is the beginning of the collision, it is clear that τ ′ − τ0 + q(τ ′) ≤ 0 for all
τ ′ ≤ τ ∗. Thus it is also clear that τ ′− τ0 + q(τ ′) ≤ p+s for all τ ′ ≤ τ ∗+p+s (simply
by replacing τ ′ by τ ′−p−s and using the periodicity of q(τ)). At time τ ′ = τ ∗+p+s,
this inequality even becomes an equality. Therefore, the rhs of Eq. (2.31) is equal to
p+ s, so one gets

ε+ 1 = w(τ ∗ + p+ s) ≤ p+ s. (2.32)

Next, the at most p+s−2 non-zero memory terms in Eq. (2.18) at time τ ∗+p+s
are over-estimated by the maximum possible value, namely w(τ ∗ + p+ s) = ε+ 1:

w(τ ∗ + p+ s) ≥ max

(
0, max

τ ′∈[0,τ∗+p+s]
{τ ′ − τ0 − (p+ s− 2)(ε+ 1) + q(τ ′)}

)
. (2.33)

By the same argument as above, the rhs of Eq. (2.33) is equal to p+s−(p+s−2)(ε+1).
Thus one has

ε+ 1 = w(τ ∗ + p+ s) ≥ p+ s− (p+ s− 2)(ε+ 1)

⇔ ε ≥ 1

p+ s− 1
(2.34)

It is easy to see that the upper and lower bounds on ε are also compatible with
the detailed balance condition, Eq. (2.26), as it should be.

Because it will be needed later on, the parameter ξ is introduced here for conve-
nience:

ξ =
1

p+ s− 1
. (2.35)

The bounds calculated in this section are optimal bounds. This follows from the
fact that pβ=0(ε) is a uniform distribution between ξ and 1/ξ which is proved in
App. A.4.

2.2.5. The special case γ = 1

When the length ratio of the rods, γ, is equal to 1, an exact solution for pβ(ε) can be
deduced from the results of the preceding sections. If γ = 1, the periods of the two
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2.3. Construction of an approximation for the transition probability

processes that constitute q(τ) are p = s = 1, which results in the following upper
and lower bounds for ε:

Upper limit: ε ≤ p+ s− 1 = 1 (2.36)

Lower limit: ε ≥ 1

p+ s− 1
= 1. (2.37)

In other words, if γ = 1, the probability density is given by

pβ(ε) = δ(ε− 1) for all β (2.38)

exactly. Note that this result implies the interesting and rather counter-intuitive fact
that no matter how the two rods vibrate prior to the collision, the outcome is always
ε = 1.

2.3. Construction of an approximation for the
transition probability

As a short summary, the following properties of the probability density pβ(ε) have
been established so far:

Normalisation:
∫∞

0
pβ(ε) dε = 1 (2.39)

Positivity: pβ(ε) ≥ 0 (2.40)

Low temperature limit: lim
β→∞

pβ(ε) = δ(ε− γ) (2.41)

High temperature limit: lim
β→0

pβ(ε) = const. within bounds (2.42)

Upper and lower bounds: pβ(ε) = 0 for ε < ξ and ε > 1
ξ

(2.43)

Detailed balance: pβ(ε)e−β = pε2β
(

1
ε

)
e−ε

2β (2.44)

It is desirable to know the functional form of pβ(ε) explicitly because that would
greatly speed up simulations of a many particle system. Without it, simulations
rely on a numerical solution of Eq. (2.18) with a randomly generated process q(τ)
at every collision event. This is a very time consuming method which doesn’t allow
for a many particle system to be simulated over very long times. Therefore I now
want to construct an analytical approximation for pβ(ε) which fulfills all of the above
conditions Eq. (2.39) – (2.44). I will restrict myself to rational γ since Eq. (2.43),
which will prove to be quite useful in the following, applies only for this case.

2.3.1. General solution of the detailed balance equation

First, the detailed balance equation (2.44) is rewritten in terms of the probability
density p(x, y) for the variable x = βε2/2 where the parameter y is given by y = β/2.
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2. One-dimensional particles 1: The two particle system

Then Eqs. (2.39) and (2.44) read:∫ ∞
0

p(x, y) dx = 1 (2.45)

p(x, y)e−2y = p(y, x)e−2x (2.46)

It is easy to check that the general solution of these two equations together is given
by

p(x, y) = e2y ∂2

∂x∂y
c(x, y) (2.47)

where c(x, y) is an arbitrary real function which is symmetric with respect to inter-
change of its arguments and with the additional property that

c(0, y) =
1

2
e−2y and

lim
x→∞

c(x, y) = 0 for all y. (2.48)

So far, Eq. (2.47) does not guarantee that p(x, y) is non-negative everywhere
nor does it give any clue as to how to choose c(x, y) such that the limits given in
Eqs. (2.41) and (2.42) are fulfilled. In order to get an idea how to accomplish this,
let’s take a look at the known solution of pβ(ε) for the case γ = 1, see Eq. (2.38).
Expressed in terms of x and y, this gives

p(x, y) = δ(x− y). (2.49)

It can be checked that this function is generated using

c(x, y) =
1

2
e−x−y−|x−y| (2.50)

in Eq. (2.47).
This expression suggests a way to reformulate Eq. (2.47) for arbitrary γ. As will

be proved in App. A.1, c(x, y) may be written without loss of generality in the form

c(x, y) =
1

2
e−x−y−f(x,y) (2.51)

where f(x, y) is a real, symmetric function of its arguments with additional con-
straints f(0, y) = y and limx→∞(x+ f(x, y)) =∞ in order to satisfy Eq. (2.48). For
γ . 1 this new function f(x, y) is expected to be approximately equal to |x− y| but
it is also expected to be differentiable for all γ < 1. The ansatz of Eq. (2.51) gives

p(x, y) =
1

2
e2y ∂2

∂x∂y
e−x−y−f(x,y)

=
1

2
ey−x−f(x,y)

((
1 +

∂f

∂x

)(
1 +

∂f

∂y

)
− ∂2f

∂x∂y

)
. (2.52)
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2.3. Construction of an approximation for the transition probability

Now a function f(x, y) has to be found which generates a p(x, y) with all requirements
specified by Eqs. (2.39) – (2.44).

As shown in App. A.1, the non-negativity of p(x, y) can be guaranteed by choosing
f(x, y) such that ∂2f/(∂x∂y) ≤ 0 for all x, y. It is also shown in App. A.1 that this
condition implies |∂f/∂x| ≤ 1 for all x, y. Although this may not be the most general
choice of f(x, y), simulations suggest that the “real” f(x, y) behaves in just this way.

The upper and lower limits for ε, Eq. (2.43), require that

f(x, y) = |x− y| exactly for x < ξ2y and x > ξ−2y. (2.53)

So all that remains is to construct f(x, y) in the range ξ2 < x/y < ξ−2 in such a way
that the high and low temperature limits are fulfilled.

2.3.2. Low temperature limit

First the average values of x and
√
x are computed from Eq. (2.52):

〈x〉 =
1

2
ey
∫ ∞

0

(
1 +

∂f

∂y

)
e−x−f(x,y) dx (2.54)

〈
√
x〉 =

1

4
ey
∫ ∞

0

(
1 +

∂f

∂y

)
e−x−f(x,y) dx√

x
. (2.55)

These are related to the average values of ε and ε2 by

〈ε〉 =
〈
√
x〉
√
y

(2.56)

〈ε2〉 =
〈x〉
y
. (2.57)

Thus for Eq. (2.41) to hold we must have 〈ε〉2 = 〈ε2〉 = γ2 as β →∞. Expressed in
terms of x and y this yields

lim
y→∞

〈
√
x〉
√
y

= γ (2.58)

lim
y→∞

〈x〉
y

= γ2. (2.59)

It is shown in App. A.2 that this condition is satisfied if f(zy, y) has the following
property:

lim
y→∞

y(1− z)− f(zy, y) =

{
0 if 0 ≤ z < γ2

−∞ if γ2 < z ≤ 1
. (2.60)
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2. One-dimensional particles 1: The two particle system

2.3.3. High temperature limit

First, Eq. (2.52) is reformulated in terms of a new function f̃(z, y) which is defined
by

yf̃(z, y) = f(zy, y). (2.61)

The symmetry condition implies f̃(z, y) = zf̃(1/z, zy). Eq. (2.53) requires that
f̃(z, y) = |1 − z| for z ≤ ξ2 and z ≥ ξ−2. This then gives, after translation into an
equation for the original variables ε and β,

pβ(ε) =
εβ

2
e
β
2

(1−ε2)−β
2
f̃(ε2,β

2
)

((
1 +

∂f̃

∂z
(ε2,

β

2
)

)(
1 +

∂f̃

∂z
(ε−2,

ε2β

2
)

)

+
2ε2

β

∂2f̃

∂z2
(ε2,

β

2
)− ∂2f̃

∂z∂y
(ε2,

β

2
)

)
. (2.62)

As β → 0, only one term on the rhs of Eq. 2.62 survives:

pβ=0(ε) = ε3
∂2f̃

∂z2
(ε2, 0). (2.63)

Now this has to be a constant for ε inside the range (ξ, 1/ξ) (see Eq. (2.42) and
App. A.4). As shown in App. A.3, this is the case if

f̃(z, 0) =


1− z for z ≤ ξ2

− 4ξ
1−ξ2

√
z + 1+ξ2

1−ξ2 (z + 1) for ξ2 < z < ξ−2

z − 1 for z ≥ ξ−2

. (2.64)

2.3.4. Approximation for intermediate temperatures

At intermediate temperatures, 0 < y < ∞, f̃(z, y) shall be constructed in such a
way that Eq. (2.64) is obtained in the limit y → 0 and Eq. (2.60) holds in the limit
y →∞. By writing

f̃(z, y) =

√
f̃ 2(z, 0) + h(z, y)

(
(1− z)2 − f̃ 2(z, 0)

)
, (2.65)

where use has been made of yet another auxiliary function h(z, y) which is invariant
under the transformation z → 1/z and y → zy (in order to satisfy the symmetry
condition for f̃(z, y)), and such that h(z, 0) = 0 and 0 ≤ h(z, y) ≤ 1, the y → 0 limit
is automatically fulfilled. If h(z, y) has the additional property

lim
y→∞

h(z, y)

{
= 1 if z ≤ p2

s2
or z ≥ s2

p2

< 1 if p2

s2
≤ z ≤ s2

p2

, (2.66)
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2.4. Comparison with computer simulations

and convergence is sufficiently fast, then also the low temperature limit Eq. (2.41) is
satisfied (see Sec. 2.3.2 and Eq. (2.60)) since this condition ensures that

lim
y→∞

f̃(z, y)

{
= |1− z| if z ≤ p2

s2
or z ≥ s2

p2

> |1− z| if p2

s2
≤ z ≤ s2

p2

. (2.67)

Such a function is not hard to construct. One example is

h(z, y) = 1−
v
(

1 + v−1
(
−ay
√
z log zp2

s2
log zs2

p2

))
v (1 + v−1(0)) + by

√
z

, (2.68)

where

v(η) = η − 1

η
for η > 0 (2.69)

and v−1(η) is the inverse function of v(η). The parameters a and b can be used to
fit the resulting expression for pβ(ε) to data from simulations (see Sec. 2.4). The
full expression for pβ(ε) will not be presented here because it is very lengthy indeed.
It can be generated, however, with e.g. the help of a symbolic algebra program by
putting h(z, y) from Eq. (2.68) into Eq. (2.65) and then applying Eq. (2.62).

There is one last thing that has to be checked, namely whether this particular
choice of h(z, y) is consistent with the condition ∂2f/(∂x∂y) ≤ 0. Although I am at
present unable to prove this, numerical checks indicate that it holds.

2.4. Comparison with computer simulations

So far I have only dealt with analytic calculations. The approximations made, how-
ever, were rather uncontrolled. In order to test their quality, one must resort to
computer simulations since the exact results are not available. Therefore I will first
summarize very briefly the essential computational details (much more is to follow in
the next chapter) before I make a comparison between the analytical and numerical
probability densities.

2.4.1. Computational details

In order to obtain the probability distribution numerically, one has to go back to
Eq. (2.18) and perform a Monte-Carlo simulation. The first thing to note is that for
a given q(τ), Eq. (2.18) can easily be solved numerically by dividing the time axis in
small intervalls and successively evaluating the max-function (which is then only the
maximum of a finite number of values and depends only on previous, already known
values of w(τ)). This suggests the following algorithm for fixed β:
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2. One-dimensional particles 1: The two particle system

1. Randomly generate two Brownian bridge processes q1(τ) and q2(τ) with periods
Γ1 and Γ2. This is simple since they are Gaussian, and their covariance is given
by the respective terms in the sum on the rhs of Eq. (2.21) (this is the only
point where β = Etr/TB enters). Their sum is the process q(τ). See e.g. [KP92]
for details on the generation of random processes on the computer.

2. Solve Eq. (2.18) numerically. Since the maximum collision time is known, it
is only necessary to solve it up to this time (counted from the time of first
contact).

3. Extract the value of ε from the final value of w(τ) according to Eq. (2.22) and
insert it into a histogram.

4. Repeat from step 1 until the statistics are good enough.

This procedure has to be performed for each β-value that is of interest. The result
is a histogram of ε for each β, such as it is shown in Fig. 2.2(a).

2.4.2. Comparison of numerical and analytical probability
densities

Since the probability density that was constructed in the preceding section has only
some (but certainly not all) of the properties of the real density, it must be compared
with simulation results in order to check if the parameters a and b from Eq. (2.68)
can be adjusted in such a way that the two densities agree. Fig. 2.2 demonstrates
that for the particular case γ = 4/5, a and b can indeed be nicely adjusted to match
the simulation data. This is also true for other values of γ which are not shown here.
Although this comparison is not very precise, it is sufficient for the present purpose.
It encourages the belief that the function constructed in this chapter captures the
important aspects of pβ(ε). This view is also confirmed by the comparison made in
the next chapter of many particle simulations performed with the numerical, “exact”
distribution, and the new, approximate distribution.

2.5. Summary

The equations of motion for the two particle system with internal vibrations could
be solved exactly, giving rise to an implicit equation containing memory terms,
Eq. (2.18). If the initial conditions, i.e. the vibrational state of the rods before the
collision, are unknown and are instead modelled by a random process, this results
in a stochastic equation, giving rise to a fluctuating coefficient of restitution. The
stochastic equation could be exploited to derive several exact properties of the tran-
sition probability pβ(ε) of the coefficient of restitution. These properties are rather

24



2.5. Summary

0
1

2
3

4

ε
0

1

2

β
0

0.5

1

1.5

2

(a)

1
2

3
4

ε
0

1

2

β
0

0.5

1

1.5

2

(b)

Figure 2.2.: (a) Simulation data for the probability distribution function for γ =
4/5. (b) Analytic probability distribution function for γ = 4/5. The
parameters a and b of Eq. (2.68) were fitted to best match the data
shown in (a). The agreement is quite satisfactory. Note that while it
is possible to plot the β = 0 limit in (b), it is impossible to reach this
limit in the simulation (a). This is responsible for the apparent difference
between the two graphs at β = 0.

intriguing, in particular the extremely non-continuous dependence on the length ra-
tio γ as manifested e.g. in the upper and lower bounds. They could in turn be used
to construct an analytical approximation which had the same properties and could
nicely be fitted to numerical results. The relevance of this will become more evident
in the next chapter where simulations using it will be discussed. Apart from this
more technical use, a similar procedure as shown in this chapter can be used for the
construction of other analytical expressions for pβ(ε), but still obeying some or all of
the properties derived before, which might be used to test the universality of certain
properties of the many particle system.
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3. One-dimensional particles 2: Many
particle systems

After the presentation of the two particle model, the analytic derivation of exact
properties of the transition probability pβ(ε), and the construction of an analytic
approximation for it in the previous chapter, this chapter is devoted to numerical
simulations of many particle systems using these results. While the simplest case is
certainly the direct implementation of the model introduced in the previous chapter,
it is not the most realistic because so far, the model conserves total energy. Yet
the energy stored in vibrations must definitely be lost eventually, e.g. through black
body radiation or by phonon scattering into regions of k-space that are irrelevant
to the collision process. While these ideas do not fit into the general concept as
outlined before (or would make it too complicated), it is possible to mimick their
effect by introducing a relaxation time by which the vibrational energy stored in each
vibrational mode is exponentially damped. Thus it is possible to simulate systems
without total energy conservation. This makes a great difference in many respects,
as will be shown below.

This chapter is therefore organised as follows: After a description of the details of
the many particles system there follows a short introduction to the necessary com-
putational prerequisites. Next, results from simulations using the “exact” method
as described in Sec. 2.4.1 are presented. They illustrate the general behaviour of the
system under consideration and its advantages over simulations of systems with a
constant ε, and they can also (at least in part) be compared to simulations using
the approximate pβ(ε) in order to confirm the view that was already expressed in
the previous chapter, namely that the approximation contains all essential features.
Following this, several other simulation results of damped and undamped systems
will be presented that were performed using the approximate but faster method.

3.1. The many particle model

The model for the individual particles and their interactions was presented in the pre-
vious chapter. The aim is now to simulate the dynamic evolution of N such particles
on a ring of circumference L +

∑N
i=1 li. L is thus the total length of the interpar-
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3.2. Computational methods

ticle spacings. For the following arguments the actual lengths of the particles are
unimportant because the point in time when a collision occurs depends solely on the
end-to-end distance and the outcome of a collision depends only on the length ratio.
In order to keep the notation simple the system is therefore mapped to an equivalent
one consisting of N point particles on a ring of circumference L. Each particle is
characterized by its position Ri(t), its velocity Ṙi(t), and the temperature of its in-

ternal bath T
(i)
B (t). The Nmod (Nmod being the same for all rods) internal modes of a

rod are represented by one degree of freedom only, namely T
(i)
B =

∑Nmod

ν=1 Eiν/N
mod,

where Eiν is the vibrational energy of a mode. The rods are assigned alternating
lengths such that the ratio γ for each collision has a fixed value, in this case 4/5.
The ratio of masses is also given by γ, assuming the same homogeneous mass density
for both kinds of rods. The rods are assigned alternating lengths because due to the
result given in Sec. 2.2.5, a length ratio of γ = 1 implies ε = 1 always which would
simply correspond to a standard one dimensional hard sphere gas.

3.2. Computational methods

In order to simulate such a many particle system, some simplifications have to be
made:

• It is assumed that two particle collisions dominate the dynamic evolution of
the system. This is justified for a dilute granular gas. The typical time of
interaction in the model is given by tint = 2l/c, i.e. the time a signal needs to
travel back and forth on a rod. Hence in principle, two colliding rods can inter-
act with a third one. This will be highly unlikely, as long as the time between
collisions is much longer than tint. This requires 2l/c� L/(N |Ṙi+1 − Ṙi|). So
either the length of the rods has to be chosen sufficiently small as compared
to the mean distance L/N or the initial velocities |Ṙi+1 − Ṙi| should be small
compared to the velocity of sound. The latter is a material parameter and can
have quite high values for hard materials (e.g. for steel, c ∼ 104m/s), favouring
short interaction times. In a standard event-driven simulation inelastic collapse
(see Sec. 3.2.2) occurs when the number of particles is sufficiently large, result-
ing in a diverging collision frequency. This would clearly violate the condition
that the time between two collisions is long compared to tint. However, since
the algorithm avoids the inelastic collapse, as will be discussed below, I will
still make use of the assumption that three or more particle collisions will not
be important. The whole system will thus be described by instantaneous two
particle collisions with a stochastic coefficient of restitution ε.

• Next, there are two ways to generate the random coefficient of restitution ε:
The first is to solve Eq. (2.18) numerically, as was described in Sec. 2.4.1, the
second is to use the approximate pβ(ε). While the former is exact (at least
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3. One-dimensional particles 2: Many particle systems

apart from numerical errors), the latter is not. However, it is by at least a
factor of 10 faster than the former which is the main reason for its use.

• Another approximation concerns the fact that, in principle, the two particles
participating in a collision may have different internal bath temperatures. This
does not pose a problem when using the first method to generate ε, but it does
for the approximate method since pβ(ε) is only known for equal bath temper-
atures. Therefore, before performing a collision, an average bath temperature
is computed from the two particles and the corresponding β is used for the
collision. Additionally, neither of the two methods can determine how the vi-
brational energy of the two particles is distributed between themselves after
the collision. For simplicity, they are both assigned the same amount.

3.2.1. The Event driven/Monte Carlo algorithm

The algorithm that will be used is a hybrid of an event driven algorithm and a
Monte Carlo simulation. The particles move freely in between collisions, as in event
driven algorithms. When two particles collide their states are updated stochastically,
according to the distribution of ε.

It is convenient to introduce dimensionless variables xi = RiN/L and vi =
Ṙi

√
µ/T0. T0 serves as an energy scale and will be identified with the homoge-

neous initial granular temperature of the many particle system. Time is measured
in units of L

√
µ/T0/N .

For the algorithm one only needs relative distances and velocities

∆xi =

{
xi+1 − xi for 1 ≤ i ≤ N − 1

N + x1 − xN for i = N
(3.1)

∆vi =

{
vi+1 − vi for 1 ≤ i ≤ N − 1
v1 − vN for i = N

(3.2)

The algorithm is defined by iteration of the following steps:

1. Calculate the time difference ∆t for the next collision to take place:

∆t = min
{i|∆vi<0}

(
−∆xi

∆vi

)
(3.3)

The pair of particles which is going to collide next is denoted by (i0, i0 + 1).

2. The relative distances of all particles are updated according to:

∆xi(t+ ∆t) = ∆xi(t) + ∆vi(t)∆t. (3.4)

For the designated pair (i0, i0 + 1) one obtains ∆xi0(t+ ∆t) = 0.
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3.2. Computational methods

3. The kinetic energy of relative motion of the pair (i0, i0 + 1) as well as the
mean local bath temperature are calculated according to Etr = ∆v2

i0
/2 and

TB = (T
(i0)
B + T

(i0+1)
B )/2. Subsequently, a random value of ε is chosen from

the probability distribution pβ(ε), either by numerically solving Eq. (2.18) and
applying Eq. (2.22) or by using the analytical form for pβ(ε). See Sec. 2.4.1 for
a detailed description of the former and Sec. 3.2.3 for the latter method.

4. The bath temperatures and relative velocities are updated

T
(i0)
B (t+ ∆t) = T

(i0+1)
B (t+ ∆t)

= TB +
1− ε2

2Nmod
Etr (3.5)

∆vi0−1(t+ ∆t) = ∆vi0−1(t) +
1 + ε

2
∆vi0(t) (3.6)

∆vi0(t+ ∆t) = −ε∆vi0(t) (3.7)

∆vi0+1(t+ ∆t) = ∆vi0+1(t) +
1 + ε

2
∆vi0(t). (3.8)

5. Continue with step 1.

This algorithm is not the most efficient one conceivable; Lubachevsky [Lub91]
introduced a better method. However, the algorithm above is simple and still only
O(N) (as the one from [Lub91]) because the search for the next collision partner is
trivial in one dimension.

3.2.2. Inelastic collapse

One of the benefits of the model under consideration is that it avoids the so called
“inelastic collapse”. This section is therefore not concerned with problems of the
present work but rather with problems of other methods and why they do not appear
here.

The inelastic collapse has been widely discussed in the literature [BM90, MY92,
MY93, CSB98, GSB+98, SB99, CDKK99, OU98, LM98]. In short, it describes the
phenomenon that inelastically colliding particles can experience an infinite number
of collisions in a finite time (in the idealised situation that the duration of a collision
is zero, i.e. if the collisions are instantaneous), thus losing all of their kinetic energy
in finite time. While this is quite natural experimentally (e.g. a handful of sand
comes to a complete stop after a short time when dropped on the floor) and is a
very interesting phenomenon in its own right, it is more of a nuisance for numerical
simulations. If collisions between particles are handled one after the other (as in
the standard event driven method), the simulation will obviously never get beyond
the point in time where the collapse occurs since this would involve infinitely many
collision events. Therefore one either has to restrict oneself to small numbers of
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3. One-dimensional particles 2: Many particle systems

particles and coefficients of restitution close to 1 where the collapse does not occur
(the so-called quasielastic limit [MY92, MY93]) or to make use of modified collision
rules that avoid the collapse. One example for the latter case is the TC-model
[LM98] where particles that have already suffered a collision a very short time ago
are assigned a coefficient of restitution ε = 1 for their next collision. Another example
is the method proposed in [DB97] where rebound velocities are rotated by a small
random angle after each collision. Obviously, this does not work in one dimension.
What’s more, both methods require the input of some more or less ad hoc parameters.

The collision model of the present work intrinsically shows no inelastic collapse for
the following reasons: When an inelastic collapse is at hand, i.e. when three or more
of the elastically deformable particles start to collide in rapid succession with each
other, their internal modes will become excited. When they have been excited, there
is a finite probability that the outcome of a collision is not inelastic but (possibly
even over-) elastic (ε ≥ 1). This probability increases with the degree of excitation
(see Fig. 2.2 for details on the transition probability). Therefore such situations will
be broken up by the energy stored in the internal modes. This is even the case if the
internal vibrations are damped (as will be the case later on) since the time between
collisions will eventually become so short that damping is negligible.

3.2.3. Implementation of a random number generator

In order to make use of the analytical approximation calculated in the previous chap-
ter, one has to implement a random number generator that generates random num-
bers distributed according to this probability density. To this end, the inverse of the
distribution function D(x, y) is needed (see e.g. [PTVF92], Ch. 7). The distribution
function can be computed from Eq. (2.52):

D(x, y) =

∫ x

0

p(x′, y) dx′ = 1− 1

2
ey−x−f(x,y)

(
1 +

∂f

∂y
(x, y)

)
. (3.9)

This can be transformed into the distribution function for ε and β:

Dβ(ε) = 1− 1

2
e
β
2

(1−ε2)−β
2
f̃(ε2,β

2
)

(
1 +

∂f̃

∂z

(
ε−2,

ε2β

2

))
(3.10)

where f(x, y) has again been expressed in terms of f̃(z, y) as in Eq. (2.61).
It is probably impossible to calculate the inverse of this function analytically but

it is easy to invert numerically [PTVF92]. The random ε are finally generated by
plugging a uniformly distributed random number r from the interval (0, 1) into D−1

β :

ε = D−1
β (r). (3.11)
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3.3. Simulation results using the “exact” method

3.3. Simulation results using the “exact” method

In this section, simulations using a numerical solution of Eq. (2.18) at every colli-
sion event will be presented. The simulations were performed on a many particle
system with 10 000 particles. Where necessary, the results for this large system are
supplemented by runs of a 50 particle system for illustrational purposes. At the
beginning of each simulation run, the system was prepared in a homogeneous state
and all internal bath temperatures were set to zero. Thus the cooling behaviour,
i.e. the transfer of translational energy into the internal baths, could be studied as
time evolves. The data will first be analysed with regards to global properties (total
kinetic energy, collision rates). Second, local quanties such as particle and energy
densities will be considered.

3.3.1. Global quantities

Kinetic energy

At the beginning of a simulation run, the system is prepared in a homogeneous state
and all internal bath temperatures are set to zero. Then the decay of the kinetic
energy is monitored.

The time development of the total kinetic energy, which is given by

Ekin =
N∑
i=1

Γi
2
v2
i (3.12)

in dimensionless units, is shown in Fig. 3.1, in comparison with results for the deter-
ministic model with constant ε. For small times the curves for the deterministic and
the stochastic dynamics are similar. In the initial stage very little energy is stored
in the internal modes and hence the coefficient of restitution is approximately given
by the deterministic value. The deterministic system, however, runs quickly into the
inelastic collapse, as can be seen from the total number of collisions which is shown
as a function of time in Fig. 3.2. When this happens, the simulation gets stuck so
that the curve for the kinetic energy breaks off in Fig. 3.1. The stochastic dynamics
shows completely different behaviour: The kinetic energy continues to decrease until
equilibrium is reached, where Ekin continues to fluctuate around the stationary value
which is given by Estat

kin = Ekin(t = 0)/(2Nmod + 1). The final state has not yet been
reached for the 10 000 particle run in the time interval that is shown in Fig. 3.1.
For this reason, the results of a simulation run with 50 particles have been included
in the figure to show that equilibrium is reached eventually and that equipartition
holds in the stationary state. There are considerable fluctuations in the curves for
the kinetic energy in Fig. 3.2 (around t = 104–105) before equilibrium is reached:
these are due to the formation and breakup of clusters as will be shown below. The
final state of the stochastic model is a consequence of the idealised assumption that
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Figure 3.1.: Reduction of the kinetic energy per particle as a function of time. The
curve for the deterministic coefficient of restitution breaks off because
an inelastic collapse occured. The dash-dotted line shows the average
energy per vibrational mode for the 50 particle run and illustrates that
equipartition holds in the stationary state.

the total system be conservative. As demonstrated below, this changes when net
energy dissipation is included in the model.

Collision rate

Simple mean field arguments [Haf83, SG95] have been used to derive scaling laws for
the time evolution of kinetic energy and collision rate. One assumes that the particle
velocities are uncorrelated and Gaussian distributed. For a constant coefficient of
restitution one obtains Ekin(t) ∼ t−2 and Ṅcoll ∼ ln t. Neither scaling law fits the
data here, as can be seen from figs. 3.1 and 3.2. McNamara and Young [MY93]
have already pointed out that the mean field scaling laws are only applicable in the
quasi elastic regime, where no inelastic collapse occurs. Otherwise the assumption
of uncorrelated Gaussian velocities breaks down. In the stochastic model one has
additional fluctuations of the coefficient of restitution, which invalidate the derivation
of the above scaling laws. Hence it is no surprise that the data disagree with these
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Figure 3.2.: Number of collisions as a function of time. The inset shows a comparison
of the deterministic model (dashed line) and the stochastic model (solid
line). (The units on the axes of the inset are the same as on the regular
axes.) The deterministic model quickly runs into the inelastic collapse,
seen by the diverging number of collisions. The dotted lines shows the
theoretical number of collisions as a function of time in the stationary
state according to Eq. (3.14) for the 10 000 and the 50 particle runs. The
data for the 50 particle run has been scaled by a factor of 100 in order
to fit on the graph.

relations.
The rate of collisions becomes constant as the stationary state is approached, as

can be seen from Fig. 3.2. The average collision rate is given by Ṅcoll = N∆v/(2∆x).
In the stationary state the velocities are indeed uncorrelated Gaussian variables,
distributed according to

pj(v) =

(
2π

2Nmod + 1

)−1/2

exp

(
− Γjv

2

2(2Nmod + 1)−1

)
, (3.13)

where j = 1(2) again stands for the shorter (longer) type of rods. Assuming ∆x = 1
and performing the average over velocities, one obtains

Ṅ stat
coll =

N

2
√
π(2Nmod + 1)

. (3.14)
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3. One-dimensional particles 2: Many particle systems

This result is in very good agreement with the simulations of the 50 particle system
in the stationary state (see Fig. 3.2). The 10 000 particle system is also approaching
the correct value as it gets closer to the stationary state.

3.3.2. Local quantities

Apart from the global observables which characterise the system as a whole, much
information about the system and its dynamics is contained in local quantities like
density fields. In the following, several such quantities will be analysed in order to
illuminate the behaviour of the system under consideration.

Particle density

Figure 3.3.: Time evolution of the coarse grained particle density. Dark (bright)
regions indicate high (low) density.

The system is initialised again with a spatially homogeneous distribution of par-
ticles. Evolving spatial structures will be analysed with help of a coarse grained
density ρ. The total length of the ring is divided into 100 bins and the number of
particles in each bin is counted. The coarse grained density is defined as the actual
number of particles in each bin divided by the average.
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3.3. Simulation results using the “exact” method

The time evolution of ρ is shown in Fig. 3.3. Several phases in the cooling process
can be identified. First, the particles start to form clusters and voids as they lose
kinetic energy in collisions (initially, when TB is small compared to the translational
energy, the coefficient of restitution is always close to γ). After these clusters have
formed, one observes collisions of clusters, forming larger clusters. Simultaneously
the dissolution of clusters starts to set in, the remains being sent outwards to join
neighbouring clusters. The biggest clusters and voids are seen to survive for times
of order 104. A similar observation has been made by Puglisi et. al. [PLM+98] who
examined a one-dimensional system of Brownian particles with inelastic collision
rules. In contrast to the present system, however, they found a steady state in
which clusters are continously created and destroyed, while here the creation and
destruction of clusters is only an intermediate phase of the cooling process: The
complex interaction of forming and dissolving clusters continues with a clear tendency
to form fewer and larger clusters. However, the actual approach to equilibrium is
not accessible with the slow simulation method used in this chapter. It is therefore
necessary to use the faster method using pβ(ε), the results of which will be shown in
Secs. 3.4 and 3.5.

The formation and break-up of clusters is responsible for the fluctuations in the
energy decay as shown in Fig. 3.1: When two clusters collide to form a larger one,
much of the translational energy of the merging clusters is temporarily transferred
into vibrational energy, resulting in one of the dips in Fig. 3.1. When later the
bigger cluster breaks up again, the vibrational energy is retransformed in translational
energy, hence the maybe unexpected increase in kinetic energy at the end of a dip.

For 10 000 particles it takes a time longer than the simulation range until the
cooling dynamics is finished and the equilibrium state is reached, whereas for 50
particles it takes only a time of order 103 (see Fig. 3.1). It will be shown below that
the time to reach equilibrium for the 10 000 particle system is in fact exceedingly
long.

Phase space

The complete information about the state of the system at time t is contained in
a phase space plot, as shown in Fig. 3.4. Within a cluster of particles one expects
frequent collisions and hence an effective transfer of kinetic energy to internal vi-
brations. Frequently, regions of high average density are characterized by particle
velocities centered around zero. However, one also observes clusters with an average
nonzero velocity, resulting at a later time in collisions of clusters. One such collision
of two clusters can be traced in Fig. 3.4 around x ∼ 2 500. In Fig. 3.4(a) (a snapshot
taken at t = 14 000) one observes two clusters both with nonzero average velocity
moving towards each other, wheras in Fig. 3.4(b) (taken at t = 20 000) the clusters
have collided and formed a larger one.

One also sees around x ∼ 1 000 the occurrence of a stripe-shaped fluctuation in the
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Figure 3.4.: Phase space plot of the system at two different times.

phase-space plot. This type of fluctuation has already been observed and discussed
by McNamara and Young [MY93] and Sela and Goldhirsch [SG95]. It gives rise to the
formation of clusters out of an initially homogeneous region. Thus figure 3.4 shows
that the dynamics of the present system are indeed rather complex as formation,
movement, interaction and dissolution of clusters all happen simultaneously.

Local kinetic energy

It is interesting to see how the kinetic energy is spatially distributed. A coarse grained
kinetic energy density is defined similar to the coarse grained density by summing the
kinetic energies of all particles inside a bin and dividing by the number of particles
in the bin.

One might be tempted to conjecture that the local kinetic energy is in some way
correlated to the clustering because most collisions occur within the clusters. Fig. 3.5
(as an example) reveals, however, that this is generally not the case: although the
kinetic energy shows some structure there is no visible correlation to the density, not
even in a state as the one shown in Fig. 3.5, where all the particles are extremely
clustered. Fig. 3.5 is a snapshot of the system at time t = 100343 (cf. Fig. 3.3).

Velocity distribution

In the cooling stage, the system is still far from equilibrium, so that the velocity
distribution of the particles is not expected to be a Maxwell distribution. It is
therefore interesting to test what kind of distribution the velocities really follow.

Data analysis shows that the velocity distribution of all particles is indeed not a
Gaussian distribution (see Fig. 3.6). There are relatively large systematic deviations
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Figure 3.5.: Comparison of the local kinetic energy (dashed line) and particle density
(solid line).

especially near the maximum of the curve. If one restricts the data analysis to only
those particles inside a single cluster, however, one finds that the velocity distribution
of these is to a much better degree gaussian, considering that there are only about
1/10th of the total number of particles in the cluster. This is not surprising, however,
since there are many collisions between particles inside a cluster and thus a local
equilibrium is reached, resulting in a Maxwellian distribution. On the other hand the
velocity distribution of all particles reflects the velocity distribution of the clusters.
As long as the complicated process of forming and dissolution of clusters is underway,
the clusters are naturally far from equilibrium. This leads to the observed deviations
from the gaussian curve.

Since the system is far away from the quasielastic limit, one sees quite a dif-
ferent velocity distribution than MacNamara and Young [MY93], who simulated a
one dimensional system of quasielastic particles. They observed a bimodal velocity
distribution because the particles tend to concentrate on the upper and lower edges
of a band in a phase space plot similar to Fig. 3.4. In this simulation, the situation
is much more complex because of the formation of many clusters, each with its own
velocity distribution.
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Figure 3.6.: Velocity distribution of all particles (circles) and the particles inside one
particular cluster (triangles) at time t = 14 000. The cluster chosen for
this curve is centered around x = 2 000 (cf. Figs. 3.3 and 3.4(a))

Correlation function

The inelasticity of collisions leads to a clustering of particles, as can be seen in Fig. 3.3.
Williams [Wil96, WM96] has described a one dimensional system of individually
heated granular particles. He found that the pair correlation function, defined by
g(x) = 1

N−1

∑
i6=j δ(x − |xi − xj|) of the system in the steady state approximately

follows a power law. Here, one observes quite a different behaviour of the correlation
function (see Fig. 3.7). Instead of showing a divergence at zero separation, it levels
off to a plateau. The explanation for such a different behaviour lies in the mechanism
of heating: When the particles are heated individually, i.e. when they are driven by a
random force, they will half of the time be kicked back in the direction of the particle
that they last collided with. Thus there is some additional tendency for the particles
to stick together. In this model, however, the particles will only change their velocity
when they collide, thus favouring larger distances.

It should be noted that the correlation function in Fig. 3.7 is not that of the
steady state of the system but a snapshot taken during the cooling process.
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Figure 3.7.: The pair correlation function g(x) of the system at t = 14 000.

3.4. Comparison of many particle simulations using
the numerical and analytical pβ(ε)

In order to estimate the quality of the approximation for pβ(ε), runs of systems with
10 000 particles using both the “exact” method and pβ(ε) were performed. Again, the
length ratio γ = 4/5 was used. The time decays of the translational energy for both
runs are compared, Fig. 3.8 shows the result. The curves agree very well, keeping
in mind that they are merely single runs which necessarily show fluctuations. These
fluctuations are due to production and breakup of clusters (see Secs. 3.3.1 and 3.3.2).
Fig. 3.9 shows the time evolution of the density in a similar plot as Fig. 3.3. Note
the similarities between these two graphs, but note also the difference in time scales
which is due to the increased simulation speed which makes longer runs possible.
This agreement supports the claim that the approximated probability distribution
captures the essential features of the model.

The road to equilibrium as seen in this simulation confirmes the remarks made
earlier: The system evolves first by creating many small clusters, which succesively
collide to form fewer and larger ones. But since here the simulation time is about
one decade longer than in the run shown before, some more details can be inferred
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Figure 3.8.: Energy decay towards equilibrium using the “exact” method (thin line)
and using pβ(ε) (thick line). The agreement is very good. The equilib-
rium value of the energy is indicated by the horizontal line. Note that
due to increased simulation speed the thick line extends more than one
decade further than the thin line.

from Fig. 3.9: The larger clusters are becoming ever less distinct; towards the end
they are merely small density fluctuations which travel back and forth.

Note also that Fig. 3.9 shows that the approach to the true equilibrium state is ex-
tremely slow: Even though the kinetic energy has decayed to basically its equilibrium
value (Fig. 3.8), there are still visible correlations in the density. The explanation
for this phenomenon will be given in the next section.

3.5. Application of pβ(ε) to many particle systems

Since the previous section has shown that the two simulation methods give identical
results, I will now concentrate on using the faster of the two in order to be able to
perform longer runs of larger systems. The results of these simulations are presented
in this section.
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3.5. Application of pβ(ε) to many particle systems

Figure 3.9.: Time evolution of the particle density from a simulation using the ap-
proximate pβ(ε) starting from a nonequilibrium state with all internal
bath temperatures set to 0. The corresponding decay of the kinetic en-
ergy is shown in Fig. 3.8. Grayscale coding is as described in the caption
to Fig. 3.3.

3.5.1. Undamped equilibrium system

As a first application I consider a system of 10 000 particles on a ring in equilibrium,
i.e. with all internal bath temperatures set to such an initial value that equipartition
of the energy over all modes, translational and vibrational, is given. Naively, it could
be argued that this state (as it is an equilibrium system of particles coupled to the
heat bath of internal oscillators) is trivial and identical to a one-dimensional gas of
completely elastic point particles. The simulations show that this is not the case;
Fig. 3.11 shows a comparison of the dynamical structure factors S(k, ω) of an gas of
elastic particles and of the aforementioned simulation. While the dynamic structure
factor for the ideal gas is essentially structureless, the particles with internal modes
show a distinct Brioullin line (see e.g. [HM86, Ch. 8]) corresponding to soundwave
propagation. This can also be verified by eye in Fig. 3.10 where a certain preferred
slope in the time developement of the density is evident. The absence of a Rayleigh
line centered around ω = 0 in the dynamic structure factor is due to the fact that
the prefactor of this line is given by (cp−cv)/cp where cp and cv are the specific heats
per particle at constant pressure and volume, respectively [HM86]. In the present
case, each particle is equipped with a large number of internal modes, each of which
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3. One-dimensional particles 2: Many particle systems

Figure 3.10.: Time evolution of the coarse grained spatial density of a system of
10 000 particles using pβ(ε). Stripes with a characteristic slope can
be identified, i.e. density fluctuations travel with a certain velocity; this
corresponds to soundwave propagation as described in detail in Sec. 3.5.

contributes kB (Boltzmann’s constant) to both cp and cv. This leads to cp/cv ≈ 1
and thus to a vanishing prefactor for the Rayleigh line. The difference between the
completely elastic system and the present one lies in the ergodicity of the latter and
the non-ergodicity of the former. While a truly elastic one-dimensional system never
loses memory of its initial conditions and never completely visits its phase space, the
stochastic nature of the collisions quickly eliminates memory of the past and allows
for an unhindered exploration of phase space. Thus the assumption of molecular
chaos which lies at the heart of hydrodynamic theories is justified for the stochastic
system. Therefore it comes as no surprise that a hydrodynamic description yields
very accurate results. Similar arguments have been brought forward by Sela and
Goldhirsch for the hydrodynamics of a one-dimensional system of particles with a
fixed coefficient of restitution [SG95]: They also find that hydrodynamics apply for
their system, but with the difference that an additional hydrodynamic field had to
be introduced.

Fig. 3.12 shows the linear relationship between the peak position ωmax of the
Brillouin line and the wave vector k. The slope of this line is the adiabatic sound
velocity cs. The agreement with the theoretical result (the sound velocity of an ideal
gas with cp/cv = 1 is cs =

√
1/2 in dimensionless units) is very good. The width of
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3.5. Application of pβ(ε) to many particle systems

(a)

(b)

Figure 3.11.: Dynamic structure factor of a purely elastic system (a) and a system
using pβ(ε) (b) drawn to the same scale. Note the pronounced Brillouin
line in (b), indicating soundwave propagation which is also evident in
Fig. 3.10.
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Figure 3.12.: The peak position ωmax of the Brillouin line from Fig. 3.11 as a function
of wave vector k. The dashed line is the expected result, corresponding
to a sound velocity of cs =

√
1/2 in dimensionless units.

the Brillouin line should be proportional to k2 [HM86]; the data (not shown here)
is consistent with this result although there is too much scatter to draw a decisive
conclusion.

The slow approach of the undamped system to equilibrium, as it is shown in
Fig. 3.9, is partly due to the fact that thermal damping of the sound mode is small
for systems with cp/cv ≈ 1 [HM86]. More importantly, however, the decay time of a
density fluctuation is inversely proportional to its wavevector squared, k−2. Therefore
the fluctuations with the longest wavelengths survive longest, and this is exactly what
can be seen in Fig. 3.9.

Additionally, the static density fluctuations in the system with internal modes
are higher than in the ideal gas. This is not shown here but can be inferred from
Fig. 3.11(b): The static structure factor S(k, t = 0) is proportional to the area under
the curve S(k, ω) for fixed k (by an inverse fourier transformation at t = 0). For
an ideal gas, S(k, t = 0) = 1, which is obviously violated in Fig. 3.11(b). This is
qualitatively understandable if one keeps in mind that in the system with stochastic
coefficient of restitution velocity fluctuations are coupled to density fluctuations by
the following mechanism: In a region where particles happen to collide with a higher
than average velocity, the translational energy will temporarily be stored in the
vibrations, resulting in a mean coefficient of restitution < 1. This in turn leads to an
increased density in that region due to the usual clustering mechanism in granular
systems. Analogously, the case of lower than average collision velocity leads to a
decreased density. Both effects together result in increased density fluctuations.
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3.5. Application of pβ(ε) to many particle systems

3.5.2. Damped system

The next application of the probability distribution constructed in the previous chap-
ter is a long time simulation of 1 000 particles with damping, i.e. a simulation where
exponential decay of the energy stored in the vibrations is included. This is used to
model net dissipation of energy (in contrast to the original model which has over-
all energy conservation). Simulations of this extended model tend to last very much
longer than simulations of undamped systems because situations which would lead to
an inelastic collapse in simulations with constant ε take longer to break up if damping
is present. They are therefore only accessible with the simulation algorithm using
pβ(ε). The results of this simulation should be comparable to other one-dimensional
simulations of granular systems. However, due to the properties of the present model,
there is no inelastic collapse which allows for long runs.

Figure 3.13.: Time evolution of the coarse grained spatial density for a system of 1 000
particles with damping. Clusters form quickly and interact completely
inelastically when they collide until there is only one cluster left.

Figs. 3.13 and 3.14 show some of the results of this simulation. Not surprisingly,
the time evolution of the particle density in Fig. 3.13 shows a clear tendency for
clustering. In one dimension, the shape of clusters is naturally considerably simpler
than in two or three dimensions (cf. e.g. simulation results in [MY96, GZ93]). It is
seen that the behaviour on a large scale is dominated by relatively simple cluster
dynamics. The clusters form very quickly, then drift, collide, and stick until only one
big cluster is left.
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3. One-dimensional particles 2: Many particle systems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t/dimensionless units

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
ki

n

Figure 3.14.: Decay of the translational energy of the system of 1 000 particles with
damping. The last big step in the curve corresponds to the collision of
the last two clusters. By this collision, basically all of the macroscopic
kinetic energy is removed and only small “thermal” fluctuations remain.

The energy decay, Fig. 3.14, shows a succession of steps, each of which corresponds
to a cluster collision. During each completely inelastic cluster collision a substantial
amount of kinetic energy stored in the movement of the clusters is removed from the
system. This goes on until the last two clusters collide which removes basically all of
the remaining kinetic energy, visible in the giant step at around t = 104. Naturally,
this behaviour is quite distinct from the homogeneous cooling law, Etr ∼ t−2 [Haf83].

3.6. Summary

The results of Ch. 2 were used to carry out many particle simulations of particles with
internal degrees of freedom. These simulations yielded several noteworthy points:

• The internal degrees of freedom can store energy which is released in situations
that would otherwise lead to an inelastic collapse, thus breaking up the col-
lapsing cluster. Hence the model effectively avoids the inelastic collapse, with
or without damping.

• The particles undergo complex cluster dynamics including an interplay of for-
mation, drift, collisions, and breakup of clusters on their way from their homo-
geneous initial state to the equipartitioned equilibrium state, when no damping
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3.6. Summary

is present. With damping, the dynamics are less complicated since clusters only
form, drift, and stick on collisions, but do not break up any more. The final
state is one big cluster in this case.

• The undamped equilibrium system behaves exactly as predicted by hydrody-
namic theories which is unusual for a one-dimensional system. It is explained
by the fact that the stochastic nature of collisions destroys memory and asserts
the molecular chaos assumption.

• The hydrodynamic behaviour of the equilibrium system provided an explana-
tion for the extremely slow approach to equilibrium that could be observed in
the nonequilibrium simulations: Decay times of density fluctuations are pro-
portional to their wavelengths squared, thus the longest wavelengths survive
for very long times.

Thus the model of internal, vibrational degrees of freedom in granular particles
gives rise to a number of interesting many particle effects, not present e.g. in models
with constant ε. These effects motivated much of the work in this chapter.
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4. From one to three dimensions

The previous chapters were concerned with one-dimensional particles and a way to
model the uptake of kinetic energy into vibrational energy. The ultimate aim of
this work is to generalise this idea to two- and three-dimensional particles since
this is more closely related to actual experiments of granular materials or colliding
macroscopic bodies in general.

The concept that was introduced in the previous chapters, namely elastically
vibrating bodies that interact through a repulsive hard-core potential, can of course
be generalised to two or three dimensions. However, the equations of motion that can
be written down for even a smooth potential (see below for some of them) are much
too difficult to be solved analytically. Thus the hard-core limit cannot be taken to
obtain a result equivalent to Eq. (2.18). Moreover, even numerical simulations using
a smooth potential are very difficult and time consuming (see [GZ99] for an example
in two dimensions) since the potential must act between every point on the surface of
the first body and every point on the surface of the other body. This would require
an extensive numerical integration at every time step. While finite-element methods
might be feasible, they would amount to pure phenomenology only, without giving
insight into the physical details of the process.

Therefore I develop in this chapter a more general variant of the method pre-
sented in Sec. 2.1, first only for one dimension but since this new method is easily
generalisable to two or three dimensions, I will proceed to do so. This method then
opens up the way to relatively efficient simulations of the complete collision process
of two (in principle arbitrarily shaped) particles.

4.1. One-dimensional elastic model

Consider again two elastic one-dimensional particles of lengths l1 and l2 travelling
along a line and colliding end-to-end, interacting through the repulsive potential
Vα(x) = Be−αr between the endpoints (separated by a distance r) as in Sec. 2.1.
Once again, the Hamilton function is given by Eq. (2.1). However, while in Sec. 2.1.1
the continuum limit of infinitely many modes (Nmod → ∞) was carried out before
the hard-core limit was performed, it is also of interest to see what happens if there
are indeed only a finite number of modes. This is e.g. the case when the particles
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4.2. Hard-core solution of the equations of motion

are considered to be composed of a number of “atoms” connected by springs. The
special case of two atoms connected by a spring has been treated in [BBW63] but
here I am interested in the general case.

4.2. Hard-core solution of the equations of motion

In Sec. 2.1.1 the derivation of the equations of motion was already given. The result
was the nonlinear integral equation (2.12). Here, I will follow the path that was
deferred back there, which is to calculate the solution of Eq. (2.12) in the hard core
limit without assuming an infinite number of modes. However, since the details of
the solution are rather technical and do not illuminate the physical understanding,
they are delegated to App. B. Here, I only cite the result (the notation of this chapter
is the same as that of Sec. 2.1):

R̈(t) = −
∑
{tn}

2ṙ(t−n )

γ
δ(t− tn) (4.1)

where the sum runs over the discrete set of times {tn} where the endpoints touch, and
ṙ(t−n ) is the relative velocity of the endpoints at these times (or rather immediately
before). The constant γ = G̃′(0+) is the initial slope of G̃. The excitation of the
modes can then easily be calculated from Eq. (2.7). Note, however, that the times tn
can not be calculated beforehand, but have to be calculated “along the way”: At first
only t1 may be calculated (either analytically, but more likely numerically), allowing
to compute the changes in velocity and excitation of the modes at that time. After
that, one can calculate t2 and so on.

Each of the δ-collisions results in a reversal of the relative velocity of the endpoints,
as can be verified by plugging Eq. (4.1) into the expression for the end-to-end distance
(taken from the exponent in Eq. (2.12))

r(t) = R(T0) + (t− T0)Ṙ(T0) + (G̃ ∗ R̈)(t) +Q(t) (4.2)

= R(T0) + (t− T0)Ṙ(T0) +

∫ t

T0

G̃(t− t′)R̈(t′) dt+Q(t) (4.3)

= R(T0) + (t− T0)Ṙ(T0)−
∑
{tn}

2ṙ(t−n )

γ
G̃(t− tn) +Q(t) (4.4)

and taking the derivative,

ṙ(t) = Ṙ(T0)−
∑
{tn}

2ṙ(t−n )

γ
G̃′(t− tn) +Q′(t). (4.5)
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4. From one to three dimensions

The end-to-end velocity ṙ(t) immediately before a particular δ-collision at time tm is
thus given by (remember G̃′(0−) = 0, G̃′(0+) = γ)

ṙ(t−m) = Ṙ(T0)−
∑

{tn|tn<tm}

2ṙ(t−n )

γ
G̃′(t− tn) +Q′(t), (4.6)

while immediately after the collision it is

ṙ(t+m) = Ṙ(T0)−
∑

{tn|tn<tm}

2ṙ(t−n )

γ
G̃′(t− tn)− 2ṙ(t−m) +Q′(t) (4.7)

= −ṙ(t−m). (4.8)

This velocity reversal seems very natural and could even have been guessed from
the start: In a very short time interval around the δ-collision, the “atoms” at the
endpoints only feel their hard core interaction and do not notice the springs they are
connected to, so they simply bounce off each other as in a simple elastic hard-core
collision.

The difference between the approach of Ch. 2.1 and the present approach can be
summarised as follows: The solution of Ch. 2.1 relies on the choice of a particular
infinite set of vibrational modes (namely the modes of homogeneous rods). It is thus
not completely general, but it results in an elegant equation of motion containing
memory terms, Eq. (2.18). Additionally, the collision processes which are described
by that equation allow for lasting contacts between the endpoints, see Sec. 2.1.2. On
the other hand, the method shown in this chapter is very general as long as only
a finite set of modes is used, but there is no closed expression which describes the
complete collision process because the times tn need to be determined somehow. A
further difference is that there can be no lasting contacts since only δ-collisions occur.

Interestingly, it has so far not been possible to reobtain the result Eq. (2.18) by
performing the limit Nmod

i → ∞ from Eq. (4.1). Nevertheless it is the belief of the
author that the order of the limits Nmod

i →∞ and α→∞ is unimportant and that
only mathematical difficulty prevents the proof. Partly responsible for the failure
is the fact that this is a very singular limit: G̃(t) becomes singular, the δ-functions
in Eq. (4.1) are concentrated at points which become dense during what is going to
become a lasting contact, the end-to-end distance r goes to zero but not necessarily
its derivatives, and so on.

While this result of multiple δ-collisions is not new [BBW63, Wid58], to the best
knowledge of the author this is the first time that it has been considered in com-
plete generality for an arbitrary number of modes and has been derived by explicitly
performing the hard-core limit of some equations of motion.
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4.3. Energy considerations

4.3. Energy considerations

Having seen that a complete collision process consists of a number of δ-collisions, I
will show now that the change in the relative velocity of the centres of mass during
such an event can also be calculated by a simple energy balance. The change in
relative velocity is denoted by C such that

R̈ = Cδ(t− tc) (4.9)

Ṙ = Ṙ(t−c ) + Cθ(t− tc) (4.10)

for t in an interval around tc small enough such that it contains only the one collision
event at t = tc. The symbols t−c and t+c are used to denote the times immediately
before and after the collision. The two contributions to the total-energy difference
before and after the collision, namely the translational and the vibrational part, will
now be computed.

The translational part is given by

∆Etrans =
µ

2

(
(Ṙ(t−c ) + C)2 − Ṙ2(t−c )

)
= µṘ(t−c )C +

µ

2
C2. (4.11)

The vibrational energy before and after the collision can be written as in Eq. (2.1)

E±vib =
2∑
i=1

Nmod
i∑
ν=1

(
p2
iν(t
±
c )

2mi

+
miω

2
iνq

2
iν(t
±
c )

2

)
. (4.12)

From Eq. (2.7) one can read off that after the collision, i.e. for t > tc,

qiν(t) = qiν(t
−
c ) cos(ωiν(t− tc)) +

piν(t
−
c )

miωiν
sin(ωiν(t− tc)) +

Cu0
iν

µ

miωiν
sin(ωiν(t− tc)), (4.13)

which means that immediately after the collision, qiν has not changed and the new
piν is given by

piν(t
+
c ) = piν(t

−
c ) + Cu0

iνµ. (4.14)

The change in vibrational energy is thus given by

∆Evib =
2∑
i=1

Nmod
i∑
ν=1

(
piν(t

−
c )Cu0

iνµ

mi

+
(Cu0

iνµ)2

2mi

)
. (4.15)
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4. From one to three dimensions

Noting that (−1)i
∑Nmod

i
ν=1

piνu
0
iν

mi
is just the velocity of the endpoint of rod i relative to

its centre of mass, which will be called vi, this result can also be written as

∆Evib = Cµ(v2(t−c )− v1(t−c )) + C2µ
2

2

2∑
i=1

1

mi

Nmod
i∑
ν=1

(u0
iν)

2

︸ ︷︷ ︸
=:D

. (4.16)

The sums in the last term of this expression are merely a constant, depending only
on the masses and normal modes of the two particles. It will be named D.

The total energy is conserved, thus the energy difference must vanish:

∆Etrans + ∆Evib = 0. (4.17)

This gives rise to a quadratic equation in C when Eqs. (4.11) and (4.16) are inserted.
Its two solutions are

C = 0 (4.18)

and

C = −2
Ṙ(t−c ) + v2(t−c )− v1(t−c )

1 + µD
. (4.19)

The former corresponds to the case of no potential (if the particles simply ignored
each other, there would of course be no change in energy), the latter is the relevant
solution for the present case. It states that the velocity transfer is determined by the
relative velocity of the endpoints just before the collision, but as compared to the case
of ridgid bodies, the result is also modified by a factor of 1/(1 + µD) which reflects
the influence of the elastic modes in their ability to reduce momentum transfer. The
case of ridgid bodies is included in Eq. (4.19) as a special case: When one uses zero
modes for both particles, D = 0 but also v1 = v2 = 0 and one thus recovers the well
known simple velocity reversal for the collision of two ridgid bodies in one dimension.
Note that in this case there is only one δ-collision whereas for a higher number of
modes there will in general be a whole sequence of such collisions.

Comparison of Eqs. (4.19) and (4.1) shows that the energy balance gives indeed
rise to the same result that was obtained before (recalling the definition of the Green
function G̃ from Sec. 2.1.1 and of the constant D in Eq. (4.16)).

4.4. Two- and three-dimensional objects

The results of the preceding sections, namely that (a) a complete collision process
consists of a number of δ-collisions and (b) the change of velocity in each of these
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4.4. Two- and three-dimensional objects

δ-collisions can be derived from an energy balance, can be generalised to higher
dimensional objects, i.e. d = 2 or 3. As for the one-dimensional case, the exact form
of the normal vibrational modes of these objects is not important for the calculation.
For later applications, however, it shall be mentioned that the normal modes of e.g.
spheres are known [Lam82]. Here, I will only present the results for three-dimensional
bodies since two-dimensional ones can be regarded as a special case.

Between the δ-collisions, the particles behave according to the equations of motion
of free (but possibly elastically vibrating) particles as given in Sec. 4.5. In particular,
the linear and angular momenta remain constant. During such a collision, however,
there will be three things happening: a change in velocity, a change in angular
momentum, and excitation of the elastic modes.

Barring an “accidental” symmetry1, there will always be exactly one point of
contact at a time tc of a collision. During one such δ-collision there will be a change
of relative velocity ∆Ṙ which can be written as

∆Ṙ = Cn, (4.20)

where C is an as yet unknown number and n is a unit vector normal to the tangent
plane at the point of contact. This is due to the fact that within this microscopic
description there is no friction involved, thus forces can only act normal to the surface.
The coefficient C will be calculated in the following. It will be seen below that it
depends on several quantities such as linear and angular momentum.

There will also be a change in angular momentum in the centre of mass frame of
reference of each particle due to linear momentum transfer. This is easily computed
as

∆Li = (−1)iX i × µ∆Ṙ, (4.21)

where X i is the vector from the centre of mass of particle i to the point of contact
and µ is the effective mass.

In order to calculate the excitation of the modes, one has to go back to a finite-
range potential and derive equations of motion for the amplitudes of the modes.
Compared to the one-dimensional situation, the Hamilton function is more com-
plicated here because of the possible presence of rotations which introduce inertial
forces into the system. Suffice it to say here that the conjugate momenta piν have a
different form than in the one-dimensional case, namely

piν = miq̇iν + Jiν , (4.22)

where Jiν is some function of the coordinates qiν , angular momenta and the tensors
of inertia, and that there exists an additional term Hcouple in the Hamilton function

1Unfortunately, such an accidental symmetry is present in the case of two initially nonvibrating
spheres: At some time after the first contact, there might exist a whole contact ring instead of
only one point. It will be shown in the next chapter how to deal with this situation.
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4. From one to three dimensions

which is due to the coupling between rotations and vibrations. The details can be
found in Sec. 4.5.

Thus the Hamilton function of the system is given by

H = Htrans +Hvib +Hrot +Hcouple + Vα (4.23)

where

Htrans =
P 2

2µ
(4.24)

Hvib =
2∑
i=1

Nmod
i∑
ν=1

(
p2
iν

2mi

+
miω

2
iνq

2
iν

2

)
(4.25)

as before, and

Hrot =
1

2

2∑
i=1

LT
i I
−1
i Li (4.26)

Hcouple = −
2∑
i=1

Nmod
i∑
ν=1

J2
iν

2mi

(4.27)

Vα = αB

∫
Surface 1

dd−1x′1

∫
Surface 2

dd−1x′2 e
−α|Z|. (4.28)

The relative momentum of the centres of mass is given by P . The new symbols Li
and I i denote the angular momentum and the tensor of inertia of the two (possibly
deformed) particles, respectively. The vector Z is directed from the point referenced
by x′1 on the surface of particle 1 to the point referenced by x′2 on the surface of par-
ticle 2. The potential now acts between all pairs of points on different surfaces. The
vectors x′i (and all other primed vector quantities in the following) are measured in a
comoving and corotating frame of reference of particle i (see Fig. 4.1 for illustration).
The comoving and corotating frame is a coordinate system whose origin is always
located at the centre of mass of a particle, and such that the total angular momentum
of the particle (as measured in this frame) is zero at all times. The term “comoving
and corotating” will in the following be frequently abbreviated by “comoving” only.
It is again assumed that the vibrational normal modes u′iν(x

′
i) of the particles and

their frequencies ωiν are known.
There are four contributions to the vector Z: the vector R connecting the centres

of mass of the bodies, the undisplaced locations x′i of the points on the surface, the
displacement due to vibrations, and the displacement due to rotations. The rotations
that take a vector x′i from the comoving coordinate system to the regular inertial

54



4.4. Two- and three-dimensional objects

2

X’21X’

1

x’1

Z

2x’

Figure 4.1.: Two spheres and their comoving frames of reference, embedded in an
outer inertial coordinate system. The vectors x′i point from the centre of
mass of sphere i to an arbitrary point on the undeformed surface. From
there, two displacement vectors point to the corresponding points on the
deformed surfaces. The vector Z connects these two points. The vectors
X ′i point to the point of contact.

system will be denoted by rotation matrices T i. Thus Z is given by (see also Fig. 4.1)

Z = R+ T 2

(
x′2 +

∑
ν

q2νu
′
2ν(x

′
2)

)
− T 1

(
x′1 +

∑
ν

q1νu
′
1ν(x

′
1)

)
. (4.29)

As in the one dimensional case, the equations of motion for R and qiν can now
be written down:

µR̈ = −α2B

∫
dd−1x′1 d

d−1x′2
Z

|Z|
e−α|Z|, (4.30)

ṗiν = miq̈iν + J̇iν

= −miω
2
iνqiν − α2B

∫
dd−1x′1 d

d−1x′2
ZT

|Z|
e−α|Z|T iu

′
iν(x

′
i)(−1)i −

1

2
LT
i

∂I−1
i

∂qiν
Li +

Nmod
i∑
µ=1

Jiµ
mi

∂Jiν
∂qiν

.

(4.31)

Since the potential Vα is sharply peaked for large α, one can replace x′i by X ′i,
the vector from the centre of mass to the point of contact, in the the term u′iν(x

′
i) in

the integral in Eq. (4.31) without introducing errors when letting α→∞. The first
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4. From one to three dimensions

part of the integral is then identical to the one in Eq. (4.30) which means that one
can insert it into Eq. (4.31) to give

q̈iν = −ω2
iνqiν +

µ

mi

R̈
T
T iu

′
iν(X

′
i)(−1)i +O(L) (4.32)

to zeroth order in angular momentum. One could also go to the next higher or-
der since the equations retain their harmonic-oscillator structure in that case. This
would, however, only complicate the matter without giving additional physical in-
sight. To zeroth order, the conjugate momenta are given by their familiar nonrotating
value, i.e. piν = mqiν . Refer to Sec. 4.5 for details of the approximation of the equa-
tions of motion to zeroth and the next higher order.

Eq. (4.32) is formally equivalent to Eq. (2.5). This means that one can proceed
in a similar manner as in the one-dimensional case. Following the same arguments
as before, the change in momentum of a mode after a collision is now given by

piν(t
+
c ) = piν(t

−
c ) + CµnTT iu

′
iν(X

′
i)(−1)i. (4.33)

Eqs. (4.20), (4.21) and (4.33) provide enough information to write down the
energy balance,

∆Etrans + ∆Erot + ∆Evib = 0. (4.34)

The energies turn out to be, after a little algebra,

∆Etrans =CµṘ
T
n+ C2µ

2
(4.35)

∆Erot =
2∑
i=1

(
(−1)iCµLT

i I
−1
i (X i × n) +

µ2C2

2
(X i × n)T I−1

i (X i × n)

)
(4.36)

∆Evib =CµnT

2∑
i=1

(−1)i
Nmod
i∑
ν=1

piν(t
−
c )T iu

′
iν(X

′
i)

mi︸ ︷︷ ︸
=:vi(t

−
c )

+
C2µ2

2

2∑
i=1

Nmod
i∑
ν=1

(
nTT iu

′
iν(X

′
i)
)2

mi︸ ︷︷ ︸
=:D

.

(4.37)

The abbreviation vi(t
−
c ) in the first term of the expression for ∆Evib denotes the

vibrational part of the velocity of the point of contact of particle i before the collision.
This gives, as before, a quadratic equation in C. Apart from the trivial solution

C = 0, it is solved by

C = −2
Ṙ+ v2 − v1 + ω2 ×X2 − ω1 ×X1

1 + µ
∑2

i=1 (X i × n)T I−1
i (X i × n) + µD

n, (4.38)
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4.5. Differential equations of the free motion of an elastically vibrating body

where ωi = I−1
i Li(t

−
c ) is the angular velocity of particle i at time t−c . This expression

for C can now be used in Eqs. (4.20) and (4.21).
This result has again a fairly simple interpretation: The important quantity is

the relative velocity of the points of contact immediately before the time of contact,
which appears in the numerator of Eq. (4.38). It consists of three contributions, the
motion of the centres of mass, the vibrations, and the rotations. The denominator
describes to which extent the momentum transfer is reduced by the rotations (the
middle term) and vibrations (the term µD). The quantity D is here no longer
a material constant as in the one-dimensional case but depends on the particular
vibrational and rotational state through n, T i and X ′i.

Again, the case of ridgid hard spheres is included in Eq. (4.38): When one spe-
cialises to zero modes, D = vi = 0 and all the terms containing X i vanish since X i

is always parallel to n for spheres. What remains is simply a reversal of the velocity
component normal to the surface at the point of contact, as should be the case for
hard spheres.

4.5. Differential equations of the free motion of an
elastically vibrating body

Inbetween two δ-collisions, the two bodies do not interact and behave according to
the laws of classical mechanics. In this section, the equations of motion for such a
freely flying, elastically vibrating, rotating body will be derived.

The equations of motion for a freely flying, rigid body are the well known Euler
equations (see e.g. [LL91b] or any other standard textbook on classical mechanics).
Here, they are of little use since the tensor of inertia of a vibrating body is in general
not constant in time, even its system of principal axes is not. Additionally, inertial
forces appear due to rotations which influence the vibrations. While the Euler equa-
tions are equations for the angular velocity only, it is furthermore required here to
calculate the full rotation matrix T = exp(φJ) that rotates the body from its initial
position into its present state. Here J is the vector of infinitesimal generators (cf.
e.g. [Sch90, p. 90]),

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 , (4.39)

and φ is the vector whose direction specifies the axis of rotation and whose length
is given by the angle of rotation. In the following, a derivation of the equations of
motion for φ and the excitations of the modes is given.

In this section, the meaning of the symbols ρ, qν , ων , L, T , I, and u′ν will be the
same as in Sec. 4.4 but without particle index for notational ease.
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4. From one to three dimensions

4.5.1. Equations of motion for the rotation

Since angular momentum is conserved, L = const., the equations of motion for the
rotation are simple to derive. The rotation matrix T = exp(φJ) can be written
explicitly as

T = 1 cos(φ) + φ̂φ̂
T

(1− cos(φ)) + (φ̂J) sin(φ) (4.40)

with φ = |φ|, φ̂ = φ/φ. The angular velocity ω is connected to φ̇ through

ω = Aφ̇ (4.41)

where the matrix A is given by

A = 1
sin(φ)

φ
+ φ̂φ̂

T
(

1− sin(φ)

φ

)
+ (φ̂J)

1− cos(φ)

φ
. (4.42)

While this doesn’t seem to be standard textbook lore, it can be checked by a (tedious)
calculation. The basic idea to derive this result is to notice that the velocity of a
vector x which is rotated by a time-dependent rotation matrix T is on the one hand
given by Ṫ x and on the other hand in terms of the angular velocity by ω × (Tx) =
(ωJ)Tx. Since this holds for arbitrary x, it follows that

Ṫ =
3∑
j=1

φ̇j
∂T

∂φj
=

(
3∑
j=1

ωjJ j

)
T . (4.43)

This asserts the linear relationship between ω and φ̇. The precise form of the cor-
responding matrix A that connects ω and φ̇, Eq. (4.42), can be obtained by solving
Eq. (4.43) for ω.

Now the necessary ingredients are available to write down the equation for the
rotation matrix T or rather the rotation vector φ (I is the time-dependent tensor of
inertia, I ′ is the same but in the comoving frame):

L = Iω = TI ′T TAφ̇, (4.44)

thus φ̇ = A−1TI ′−1T TL. (4.45)

The inverse of A can be calculated explicitly:

A−1 = φ̂φ̂
T

+
(
1− φ̂φ̂

T
) φ sin(φ)

2− 2 cos(φ)
− (φ̂J)

φ

2
. (4.46)

Eq. (4.45) is a highly nonlinear differential equation for φ which is explicitly time
dependent through I ′−1. Since L is merely a constant, the only remaining question
is how the tensor of inertia changes due to vibrations. This will be given in Sec. 4.5.3.
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4.5. Differential equations of the free motion of an elastically vibrating body

4.5.2. Equations of motion for the modes

The starting point is the Lagrangian L = Ekin − Epot. The motion of the centre
of mass will be disregarded here since it decouples and has a trivial time evolution.
Then the kinetic energy part is given by

Ekin =

∫
Object

d3x′
ρ

2

(
d

dt
T

(
x′ +

∑
µ

qµu
′
µ(x′)

))2

(4.47)

=

∫
Object

d3x′
ρ

2

(Ṫ (x′ +∑
µ

qµu
′
µ(x′)

))2

+

2

(
Ṫ

(
x′ +

∑
µ

qµu
′
µ(x′)

))T(
T
∑
µ

q̇µu
′
µ(x′)

)
+

(
T
∑
µ

q̇µu
′
µ(x′)

)2
 .

(4.48)

The first part of this expression is the purely rotational energy of the deformed body,
which can also be expressed as

Erot =
1

2
LTI−1L. (4.49)

The last part is the purely vibrational energy which is, due to the orthonormality of
the modes,

Evib =
∑
ν

mq̇2
ν

2
. (4.50)

The crossterms, however, do not vanish and give rise to an additional term in the
Hamiltonian later on.

The potential energy is

Epot =
∑
ν

mω2
νq

2
ν

2
(4.51)

and does not depend on q̇ν . Therefore the conjugate momenta are given by

pν =
∂L
∂q̇ν

= mq̇ν +

∫
Object

d3x′ ρ

(
Ṫ

(
x′ +

∑
µ

qµu
′
µ(x′)

))T

Tu′ν(x
′). (4.52)
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4. From one to three dimensions

They differ from the conjugate momenta in one dimension. Using the relation from
Eq. (4.43) and the well-known expression for the angular velocity,

Ṫ = (ωJ)T and (4.53)

ω = I−1L, (4.54)

this can also be written as

pν = mq̇ν +
(
(I ′)−1T−1L

)T
∫
d3x′ ρ

(
x′ +

∑
µ

qµu
′
µ(x′)

)
× u′ν (4.55)

=: mq̇ν + Jν ({qµ},L,T , I ′) . (4.56)

For any object there exist three “vibrational” modes which correspond to rotations of
the whole body. Since their frequencies are zero, however, they are usually not used
and rotations are treated seperately, like e.g. in this work. These modes have the
form u′rot(x

′) ∝ ω′ × x′ with the rotation axis defined by ω′. They are orthogonal
to each other and all of the regular modes. By cyclically exchanging the factors
of the triple product ω′T(x′ × u′ν) in the integral defining Jν in Eq. (4.55) (where
ω′ = (I ′)−1T−1L), it can be seen that due to the orthogonality the first term of the
integral vanishes. Thus Jν takes on the simple form

Jν =
(
(I ′)−1T−1L

)T
∑
µ

qµ

∫
d3x′ ρu′µ × u′ν . (4.57)

Therefore the Hamiltonian is given by

H = Ekin + Epot (4.58)

=
1

2
LTI−1L+

∑
µ

pµ − Jµ
m

Jµ +
∑
µ

(pµ − Jµ)2

2m
+
∑
µ

mω2
µq

2
µ

2
(4.59)

=
1

2
LTI−1L+

∑
µ

(
p2
µ

2m
+
mω2

µq
2
µ

2

)
−
∑
µ

J2
µ

2m
(4.60)

Here the crossterms and the vibrational energy have been written in terms of pµ and
Jµ. From the Hamiltonian one gets the equations of motion for the qν :

ṗν = mq̈ν + J̇ν = −∂H
∂qν

(4.61)

= −mω2
νqν −

∂

∂qν

1

2
LTI−1L+

∂

∂qν

∑
µ

J2
µ

2m
, (4.62)
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which is equivalent to

q̈ν = −ω2
νqν −

1

2m
LT∂I

−1

∂qν
L+

∑
µ

Jµ
m2

∂Jµ
∂qν
− J̇ν
m
. (4.63)

The presence of the last two terms is physically clear: They comprise the effects of
inertial forces. The last one contains the Coriolis force and the force due to changes
in angular velocity while the second to last one contains the centrifugal force. The
situation is complicated by the non-constantness of the tensor of inertia which comes
into play in all of the last three terms.

Eq. (4.63) is exact but not very useful since it is very complicated, nonlinear, and
couples different modes. What’s more, the method presented in Sec. 4.4 relies on
the fact that the modes behave like a harmonic oscillator, which is obviously not the
case in Eq. (4.63). For small excitations and angular momenta, however, it can be
expanded. Here, only the lowest nontrivial order will be kept. Eq. (4.57) shows that
the term

∑
µ
Jµ
m2

∂Jµ
∂qν

is of order O(L2q). The term J̇ν contains a part which is also

O(L2q), one that is O(Lq2), and one which is only O(Lq). The second term on the
rhs of Eq. (4.63) is O(L2). Considering L and qν to be both small, the latter two are
obviously the leading terms; to this order, the equation looks like

q̈ν = −ω2
νqν −

1

2m
LT∂I

−1

∂qν
L−

(
(I ′0)−1T−1L

)T
∑
µ

q̇µ

∫
d3x′ ρu′µ × u′ν +O

(
(·)3
)

(4.64)

Here, I ′0 is the tensor of inertia of the undeformed object. The sloppy notation of
the higher order terms is to indicate that they contain mixed terms of various orders.
This differential equation is now linear and could in principle be diagonalised which
would lead to small frequency shifts and mode-mixing, but would retain the structure
of a set of decoupled harmonic oscillators. Thus one has the choice to only go to
zeroth order and neglect all terms O(L), yielding a simple harmonic oscillator as in
the nonrotating case, or to go one order higher and use Eq. (4.64), depending on
the initial conditions and whether the higher order calculation is computationally
feasible.

4.5.3. Change of the tensor of inertia due to vibrations

For completeness, the change of the tensor of inertia due to vibrations shall be given
here. It is a necessary ingredient in order to explicitly write down Eqs. (4.45) and
(4.64).

Since this entire work uses merely linear elasticity, it only makes sense to go to
first order in the excitations qiν . From the definition of the tensor of inertia one gets
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in the comoving frame

(I ′)kl =

∫
Object

ddx′ ρ

(x′ +∑
ν

qνu
′
ν

)2

δkl −

(
x′ +

∑
ν

qνu
′
ν

)
k

(
x′ +

∑
ν

qνu
′
ν

)
l


= (I ′0)kl +

∑
ν

qν

(
d∑

m=1

M ′
νmmδkl −M ′

νkl

)
+O(q2

ν),

(4.65)

where

M ′
νkl =

∫
Object

ddx′ ρ ((x′)k (u′ν)l + (x′)l (u
′
ν)k) (4.66)

is a constant2, depending only on the normal modes and the mass density of the
objects. It is a tensor of second rank with respect to its last two indices.

It is in fact necessary to know how the inverse of the tensor of inertia, (I ′)−1,
behaves due to vibrations. To first order, this is

(I ′)−1 = (I ′0)−1 −
∑
ν

qν(I
′0)−1 (Tr(M ′

ν) 1−M ′
ν) (I ′0)−1 +O(q2

ν). (4.67)

This result can directly be applied to Eq. (4.45). Additionally, after translation from
the comoving frame into the inertial frame, it can be differentiated with respect
to qν and inserted into Eq. (4.64), yielding a term independent of the qν but time
dependent through the rotation matrix T .

4.6. Consequences of the finite set of modes

One difference of the method presented here to a continuum description is the fol-
lowing: If the colliding bodies approach very slowly, one expects only a small area of
contact (in a quasistatic calculation). However, in order to mimick such a small flat
area, modes with a fine surface structure are required. For spheres, such modes have
high indices n (see Sec. 5.1 for details on the vibrational modes of a sphere). Thus
paradoxically, situations with small velocities require more modes and are thus more
difficult to compute than situations with high velocities. This fact is expressed by
non-Hertzian behaviour in the simulations as will be shown in the next chapter.

2For homogeneous spheres, it seems that only a few modes have M ′νkl 6= 0, namely those with
ν = (0,m, l) and ν = (2,m, l). See Sec. 5.1 for details of the modes of spheres and their indexing
scheme. This result, however, derives from explicit calculation for the first few modes and is not
a proof.
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4.7. Summary

This observation can even be be made more precise by the following analysis: If
the initial velocity is small enough, two identical, initially nonvibrating spheres will
touch at exactly the same point at each δ-collision, which lies on the line connecting
the two centres of mass, or in other words at the origin if the frame of reference is
properly chosen. The excitation of the modes after the first δ-collision is proportional
to the velocity (since no rotations and vibrations are present at that time, cf. also
Eq. (4.38)), but if this velocity is so small that the centres of mass of the spheres
hardly move until the next δ-collision, the time at which this next contact occurs
is unaffected by the degree of excitation. This is perhaps clarified by looking at
the motion of the point on the first sphere which is nearest to the other sphere,
the supposed only point of contact: After the first contact, the next one will occur
when this point comes back to the origin. Since the modes are harmonic, however,
this return time is independent of the absolute strength of excitation of the modes,
provided they are all excited in the same relative degree. But this is exactly what
happens by varying the initial velocity: All modes are excited in the same relative,
albeit not absolute degree. Thus one can convince oneself by induction that the same
holds for all following contacts as well. Therefore the times at which the spheres touch
and the relative degrees of excitation are unaffected by the initial velocity. Because
the momentum transfer also scales with velocity, the duration of a complete collision
process is independent of velocity!

There is only one potential that allows the duration of a period to be independent
of velocity, which is the harmonic potential. Thus if one considers the motion of
the centres of mass of the two spheres, they behave as if they exerted the force of a
harmonic potential on each other. Confirmation of this conjecture is given in the next
chapter by simulation results. This is of course quite different from what one would
expect from Hertz’ law of contact where the force is proportional to the separation
to the power 3/2 (see App. C).

This result can have implications for fullerenes, e.g. C60 molecules: These molecules,
consisting of 60 carbon atoms in a sphere-like structure, have a finite set of 174 vi-
brational modes [AZ00]. If the interaction potential between two such molecules can
be approximated by a hard-core potential, and if quantum effects can be neglected,
it is predicted here that slow collisions of two fullerenes are harmonic.

4.7. Summary

In this chapter, the equations of motion for colliding, elastically vibrating bodies in
one, two, and three dimensions were solved exactly under the assumption of an arbi-
trary but finite set of vibrational modes. The problem of collisions is thereby reduced
from a set of continuum equations for each body plus hard-core interaction potentials
between the bodies to the much simpler problem of finding the next points in space
and time where the vibrating bodies will touch. Thus the time evolution is governed
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4. From one to three dimensions

by simple rules on how to update linear and angular momenta and vibrations upon
contacts, and by the equations for the free motion of the bodies inbetween contacts.
The latter were derived for the case of arbitrary vibrating and rotating bodies. Such
a scheme can easily be handled numerically, as will be demonstrated in the next
chapter.
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5. Three-dimensional particles:
Simulations

Using the results from the previous chapter, one can now perform simulations of the
two particle collision process. With these simulations, it is finally possible to estimate
the influence of the elastic vibrations on the collision properties of the particles and
to test the influence of parameters like kinetic energy Ekin, angular momenta Li,
impact parameter b, or the initial excitation of the modes Ti (analogously defined
as the bath temperatures of the rods in Ch. 2). Thus one can in principle calculate
the analogue of pβ(ε) from Sec. 2.2 in three dimensions, if only numerically. This
analogue is more complicated here since it is a function of (at least) two variables
and with several parameters:

pEkin,L1,L2,T1,T2,b(ε, β) =

{
Probability density of finding a restitution coef-
ficient ε and a roughness coefficient β, given the
initial conditions Ekin, Li, Ti, and b

.

(5.1)

The effective roughness parameter β1 is the analogue of ε for the tangential velocity
component: In many publications on these topics (see e.g. [JR85b, Lun91, GS95,
HZ97, LHMZ98, ML98, HAZ99, AHZ00]), collisions are modelled as instantaneous
using the collision laws

V ′n = −εV n and

V ′ × n = −βV × n,
(5.2)

where V is the relative velocity of the points of contact at the time of contact and
n is the surface normal at the point of contact2. The primed quantities on the lhs
refer to the values after the collision, while the unprimed quantities on the rhs refer

1Unfortunately, the standard notation in the literature for this parameter is the same symbol that
was used in Ch. 2 for the inverse bath temperature of the rods. In this chapter, I will use β for
the roughness parameter.

2Eq. (5.2) is enough to determine the collision completely if one also takes into account conservation
of linear and angular momentum. The resulting equations and a discussion thereof with regards
to statistical mechanics of granular particles can be found in [AHZ00].
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5. Three-dimensional particles: Simulations

to the values before collision. Thus in the same way that the coefficient of restitution
became a stochastic variable in Ch. 2, the roughness parameter β becomes stochastic
in this context. In principle one could even formulate Eqs. (5.1) and (5.2) in terms
of two roughness parameters by introducing a basis in the plane defined by n and
using two different parameters β1 and β2 along these basis vectors [Bro96]. However,
this will not be done here.

The computation of the complete probability distribution is beyond the scope
of this work, but the purpose of this chapter is to introduce the algorithm and
to show some first results of the simulations. The simulations are performed on a
system of two homogeneous spheres since the normal modes of spheres are known
and comparison with experiments is easiest.

5.1. Vibrational modes of a sphere

In this section, I will summarize the main results of [Lam82] for the vibrational modes
of a homogeneous sphere.

Consider a homogeneous sphere of radius R and mass M (and resulting density
ρ = 3M/4πR3) which is made of a material with Poisson number σ and transversal
sound velocity ct (see e.g. [LL91a] for a definition of σ and ct). The second elastic
modulus besides σ that is needed to completely specify the elastic properties of a
homogeneous, isotropic solid, e.g. Young’s modulus Y , is contained in the definition
of ct =

√
Y/2ρ(σ + 1). The actual shape of the modes of such a sphere depends

exclusively on σ while R, M , and ct serve only as scaling factors. The modes fall into
two distinct classes, the toroidal ones, utor

nml(x), and the spheroidal ones, unml(x)
(without any superscript for notational ease). The former are purely transversal
vibrations, the displacement utor

nml(x) being everywhere orthogonal to the vector x
that points from the center of the sphere to a point within the undeformed sphere.
The toroidal modes appear to be less important than the spheroidal ones because
Eq. (4.33) shows that the excitation of the modes by a collision is proportional to
nu(x) which is usually small for the transversal vibrations since the surface normal
n is almost parallel to x for small deformations. In the simulations, I will therefore
concentrate on spheroidal modes only.

The explicit form of the modes is too long to be included here. A few remarks
are in order for the indices n, m, and l: n = 0, 1, 2, . . . is the order of the mode,
analogous to the angular quantum number. It determines the degree of fineness of
the structure on the surface, see Fig. 5.1. m = −n,−n+ 1, . . . , n− 1, n is analogous
to the magnetic quantum number. The numbers n and m appear as index of the
well known spherical harmonics Ynm(θ, φ). The index l = 1, 2, 3, . . . enumerates the
infinitely many positive zeroes knl of a certain function Pn(k)3. The frequency of a
mode is given by ωnml = knlct/R and thus does not depend on m.

3For easier reference, this function is Pn = Bn/An −Dn/Cn in Lamb’s notation in [Lam82].
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Figure 5.1.: The surface of a sphere with Poisson number σ = 1/3 where the mode
u521 is strongly excited. Note the five-fold symmetry which is due to
n = 5.

In the simulations, one must restrict oneself to a subset of the infinite set of
modes. It proved useful to choose an upper limit ωmax for the frequencies and to
use all modes with ωnml ≤ ωmax. For ease of reference, such a set of modes will be
denoted as Ωωmax , i.e.

Ωωmax = {(n,m, l) |ωnml ≤ ωmax}. (5.3)

Sometimes there will also be a limit on n, i.e. n ≤ nmax; such a set of modes will
analogously be denoted by Ωωmax,nmax . I used a value of σ = 1/3 (which is close to
the value for steel) for the Poisson number and ωmax up to 25ct/R in the simulations.
Fig. 5.1 shows for illustration how the surface of a sphere is deformed if one particular
mode is excited.

5.2. Computational methods

As always, it is useful to use dimensionless units for the computations. Let the two
spheres whose collision is going to be simulated have radii R1 and R2, masses M1

and M2 and transversal sound velocities ct1 and ct2, respectively. From these input
parameters one can construct the following system of units: Lengths will be measured
in units of

L =
2R1R2

R1 +R2

, (5.4)
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the unit of velocity is

c =
2ct1ct2

ct1 + ct2

, (5.5)

hence the unit of time is L/c. Finally, the unit of mass M is twice the effective mass
µ,

M = 2µ =
2M1M2

M1 +M2

. (5.6)

All simulation results presented below will be given in these units.
The algorithm to simulate a collision process is now straightforward:

1. Specify initial conditions: distance, relative velocitiy, angular momenta, excita-
tion of the modes. It was already remarked earlier that under special symmetric
conditions there may be more than one point of contact at one time. In order to
avoid this (as the method can only handle single points of contact), the spheres
must be initialised with tiny random excitations already before the collision.

2. Numerically solve the differential equations for the freely flying, vibrating spheres
for a small time interval. These equations were derived in Sec. 4.5.

3. Find the minimum distance between the two deformed surfaces by picking two
starting points, one on each surface, and moving them on their respective sur-
faces until their distance reaches a minimum. Repeat a few times for different
starting points in order to increase the probability of finding the global mini-
mum. Since there is no known algorithm that is guaranteed to find the global
minimum of a complicated function, one has to resort to this rather unsatisfac-
tory method. On the other hand, the space over which to find the minimum is
only four-dimensional (two points on two-dimensional surfaces) and compact
such that the structure of the minima is expected to be much less complicated
than e.g. the energy landscape of structural glasses (see e.g. [Bha99]). There-
fore one can hope that this simple method yields reasonable results. In fact,
the simulations show that indeed it works very well if the starting points are
chosen from a regular grid which is centered around the contact area.

4. If the minimum distance calculated in the previous step is smaller than a suit-
ably chosen threshold (O(10−6) proved to be useful), consider the particles as
overlapping. The minimum distance is never negative, therefore it is no use
trying to look for the point where it is exactly zero: due to numerical errors
this will never be the case. Hence the threshold has to be introduced.

5. If the particles are overlapping, go backwards in time by solving the equations
for the freely flying particles for a small negative time interval. Again, calculate
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the minimum distance at this time and check if it is above or below the thresh-
old. Thus by going backward and forward in time by ever smaller amounts,
one can “bracket” (see [PTVF92] for the method of bracketing e.g. the root of
a function) the point in time where the particles first touch. This can be done
up to a specified tolerance (e.g. O(10−5)).

6. When the point in time has been identified where the particles touch for the
first time, Eqs. (4.20), (4.21) and (4.33) derived in the previous chapter can
be applied to update the current values of linear and angular momenta and
the excitations of the modes. The vector n, the surface normal at the point of
contact, is needed for this purpose. It has to be calculated by differentiating
the surface (given by setting the radial coordinate r = 1) with respect to the
spherical coordinates θ and φ: n ∝ ∂(x′+u′(x′))/∂θ|r=1×∂(x′+u′(x′))/∂φ|r=1

where u′(x′) is the present displacement of the point x′.

7. Continue with step 2.

There exists the possibility to overlook a collision if the two spheres pass through
each other during step 2 and have seperated again at the end of it. The only way to
minimise this risk is to choose a small enough time interval. It has proved useful to
choose about 1/10 of the period of the fastest mode that is used.

The algorithm outlined above is the general procedure for simulations of colli-
sions. Due to the fact that rotations are only extremely weakly excited, as will be
demonstrated below, their mutual interaction with the vibrations has been neglected
in the simulations that were actually performed. To be more precise, only the zeroth
order approximation, Eq. (4.32), has been used. This results in a much simplified
and accelerated code. In principle, however, one could follow Sec. 4.5 and couple
rotations and vibrations.

5.3. Simulation results

5.3.1. Preliminary observations

The general geometry of a collision in a center of mass frame is shown in Fig. 5.2. The
spheres collide with relative velocity v. In a head-on collision, the impact parameter
b equals zero, otherwise b differs from zero.

Fig. 5.3 shows a sample collision process of two identical, initially only weakly
vibrating (in order to break the symmetry, as mentioned above) spheres in a head-on
collision. The coefficient of restitution is very close to one in this run (the velocity
curve comes up to almost its negative starting value). The number of modes used
was rather small (see figure caption), therefore one might expect that the arguments
given in Sec. 4.6 apply. There it was argued that for too small a number of modes no
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v2

v1

2

b

1

α

α

Figure 5.2.: Geometry of a collision and definition of the impact parameter b. The
relative velocity is given by the difference of the individual velocities,
v = v2 − v1.

contact face develops; instead the spheres always touch at the same point, resulting in
not Hertzian but harmonic behaviour. This is indeed the case, as shown in Fig. 5.4.
The figure shows the approximately linear relationship between the square of the
operlap, δ2 := (2 − R)2 (only defined when the center of mass distance R = |R| is
less than the sum R1 + R2 = 2 of the radii of the two spheres), and the “potential”
energy. Potential energy here means Etot −Ekin, i.e. the energy that is missing from
the centre of mass kinetic energy. It is written in quotes to indicate that it is a
truly potential energy only in the quasistatic case while in general it also contains
the kinetic energy of the vibrations. A linear relationship as shown in this figure is
what one expects for a harmonic potential while for instance Hertz’ law of contact
would result in the elastic energy being proportional to δ5/2 (refer to App. C for a
short overview over the results of Hertz’ contact theory). Thus the conjecture made
in Sec. 4.6 that for low velocities the spheres behave harmonically is verified by this
simulation.

It was stated in Sec. 4.6 that the duration of a collision should be independent
of velocity for small velocities. Thus an additional test of the arguments brought
forward in Sec. 4.6 is the calculation of the duration of collisions at different initial
velocities. This is exemplified in Fig. 5.5 for two initial velocities which differ by a
factor of 10. Note that there is no fitting involved; the only scaling that was required
to obtain matching curves was the scaling of velocities by their initial value. If Hertz’
law were valid here, the durations would differ by a factor of 101/5 ≈ 1.58.

Fig. 5.6 shows how one of the two spheres is deformed at the time of closest
approach. It is only very slightly indented on the right and retains an almost spherical
shape which again confirms that contact of the two spheres only occurs at one point.

The observations made so far indicate that a) the arguments in Sec. 4.6 were
correct and b) that either the number of modes or the initial velocity has so far
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Figure 5.3.: Head-on collision process of two identical, initially barely vibrating
spheres. Modes with n ≤ 10 and ω ≤ 25 (dimensionless units), i.e.
the set Ω25,10 (cf. Eq. (5.3) and following text), were used for this run.
The solid curve shows velocity vs. time (left axis). The small steps that
can be identified in the velocity curve are due to the δ-collisions. The
distance of the centers of mass is shown by the dashed curve (right axis).

been too small to yield results comparable to a continuum theory such as Hertz’.
Therefore I will now turn to higher velocities and/or larger numbers of modes.

5.3.2. Simulations with more modes and higher velocities

Comparison with Hertz’ contact law

In order to test whether the simulations show better agreement with continuum
theory when the number of modes is increased, head-on collisions with v(0) = −0.02
using three different sets of modes were carried out. Fig. 5.7 shows the potential
energy as a function of the overlap for these three sets of modes Ω15, Ω20, and Ω25,
along with the theoretical curve from Hertz’ calculation (see App. C, Eq. (C.4)).
Evidently, the spheres become softer when the number of modes is increased and the
curves seem to approach the Hertzian result, even though the agreement is not yet
very good.

However, there is a qualitative difference between the Ω15-curve in Fig. 5.7 and
the other two: While the upper curve is approximately quadratic in δ (just as the
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Figure 5.4.: The linear relationship between the sqare of the overlap, δ2 = (2− R)2,
and the normalised potential energy for the same run as in Fig. 5.3. The
straight line is a best fit for illustration. Evidently the spheres behave
as if in a harmonic potential. See text for details.

one in Fig. 5.4), the other curves start to cross over to a higher power. This can best
be seen on a logarithmic plot, Fig. 5.8. While the upper curve is well parallel to the
δ2 line, clearly the curve for Ω25 deviates from it and develops a slope which is more
like 5/2 as in Hertz’ law. The Ω20-curve moves between these two, starting off like
the upper one but then deviating from it and coming closer to the lower one. At
the end, its slope seems to be slightly higher than 2. Of course such a logarithmic
plot can only give a hint of the true exponents since there are far too few decades
available in order to draw a decisive conclusion. It shows, however, that the results
are consistent with Hertz’ theory.

The fact that there is a qualitative difference between the three curves is also
indicated by the “fine structure” of the curves: While the upper curve has very
regularly spaced steps, the lower two are much more irregular. This is due to the
development of the contact face since collisions on different parts of the contact face
can occur in very rapid and irregular succession. In contrast, the collisions are very
regularly spaced if no contact face develops (due to a small number of modes) and
the spheres always touch at the same point.

For further comparison with Hertz’ theory, the contact durations for two4 of

4The third was not yet available at the time of this writing.
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Figure 5.5.: Head-on collisions of identical spheres with different initial velocities.
The solid line is for an initial velocity of v(0) = −0.01, the dashed
line for v(0) = −0.001. The two curves are basically indistinguishable,
confirming the indepence of the duration of the collision of initial velocity.
The same set of modes as in Fig. 5.3 was used.

the three sets of modes and the quasistatic case according to Eq. (C.5) have been
computed and collected in Table 5.1. The durations were calculated by taking the
difference of the two times at which the centre of mass distance is equal to the sum
of the radii. Again, increasing the number of modes shifts the contact durations
towards the expected Hertzian result but agreement is still not very good.

It remains to be tested if Hertzian behviour should have been expected at the
chosen impact velocity of 0.02 or if the kinetic energy of the vibrations is so high
during the collision that it invalidates the assumptions of the quasistatic calculation.
Fig. 5.9 shows, however, that the collision is basically quasistatic since the kinetic
energy of the vibrations fluctuates around zero.

Effects of increasing impact velocity

As was shown in the previous section, a velocity of v = 0.02 is small enough to lead
to a quasistatic collision behaviour. The question arises, what happens if the impact
velocity is increased such that non-negligible vibrational kinetic energies occur. In
order to answer this question, simulations of head-on collisions with impact velocities
0.04, 0.08, 0.1, and 0.16 were carried out. To keep the computational burden low,
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Figure 5.6.: Deformation of one sphere at the time of closest approach (the initial
velocity was v = −0.01). The other sphere would be to the right of this
one. On that side, a very slight deformation is visible. For this run, the
set of modes Ω20 was used.

Table 5.1.: Contact times at impact velocity v = 0.02 for two different sets of modes
and according to Hertz’ contact theory, Eq. (C.5).

Set of modes Contact duration (approx.)
Ω15 6.77
Ω20 7.08
Hertz 8.23

the set Ω15 was used for all collisions. It will be seen below that this set is large
enough at these velocities to escape the harmonic behaviour. It is probably not large
enough to produce quantitatively reliable results since for v = 0.02, even Ω25 was not
enough, but it allows for comparisons between the different runs. For illustration,
Fig. 5.10 shows how a sphere is deformed at the point of closest approach for v = 0.1.
The contact face can be clearly distinguished.

First, let’s look at the vibrational kinetic and potential energy during the col-
lisions. The vibrational kinetic energy is an indicator for whether the collision is
quasistatic or not. Fig. 5.11 shows that for all of the chosen impact velocities, the
collision is not quasistatic since all the kinetic energy curves lie clearly above zero.
Note the evident difference to the case where the impact velocity is 0.02, Fig. 5.9:
there, the potential energy is indeed zero on average. However, even though there is
a non-zero kinetic energy here, it is still small compared to the potential energy.
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“potential” energy is shown vs. the overlap δ. The upper three curves
correspond to three different sets of modes, Ω15 (containing a total of 393
modes), Ω20 (860 modes), and Ω25 (1555 modes). Only the approach of
the spheres up the point of smallest distance is shown since the way back
looks essentially identical. For comparison, Hertz’ law is also shown.
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5/2, showing that it starts off as the former and then crosses over to the
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Figure 5.9.: The same collision as the one using Ω25 in Fig. 5.7. The seemingly neg-
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Figure 5.10.: Deformation of a sphere at the point of closest approach with impact
velocity v = 0.1. Note the clearly developed contact face.
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Figure 5.11.: Vibrational kinetic and potential energy as a function of the overlap δ
for four different impact velocities: 0.04 (a), 0.08 (b), 0.1 (c), and 0.16
(d). In all runs, Ω15 was used. Note the difference in scales on both
axes in all four plots. Again, only the approach of the spheres is shown.
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Figure 5.12.: The vibrational energy gain as a function of the overlap for impact
velocity 0.16. The curves for approach and recession differ.

While the potential energy looks fairly similar in all four plots, the kinetic en-
ergy develops a more and more pronounced bump as the impact velocity increases.
Surprisingly, and unlike the potential energy, the maximum of the kinetic energy (at
least for Figs. 5.11 (b)–(d)) does not lie at the point of closest approach but at about
three quarters along the way. The reason for this is not known.

Another clear indicator that the collisions analysed in this section have left the
quasistatic regime is the fact that the collisions are beginning to become unsymmetric:
the approach of the spheres is different from their recession. This is exemplified by
Fig. 5.12 which shows the vibrational energy as a function of the overlap δ. The curves
for approach and recession differ slightly, not only at around δ = 0, the beginning
and end of the collision, but also during almost the entire process. Additionally, this
figure shows the first hint of a collision where vibrations persist after the collision is
over: The vibrational energy at the end of the recession curve is substantially higher
than zero, meaning that the spheres are still vibrating. More of this is to follow
below.

It was mentioned before that the kinetic energy of the vibrations is still small
compared to the potential energy. This suggests that the quasistatic theory should
still give reasonable results. In order to test this, the contact durations of the four
runs analysed above were computed and compared with the theoretical ones. It can
not be expected that they agree quantitatively since even at low impact velocities
and using a large set of modes there is still a discrepancy (see Table 5.1). However,
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Figure 5.13.: The duration of a collision as a function of impact velocity. While all
contact durations are too small compared to the theoretical result, they
still nicely obey a power law v−1/5, as the fitted line shows. The data
points for v = 0.02 lie off the curve since at that velocity, the number
of modes is either too small (Ω15) and the spheres behave harmonically
or too large (Ω25) such that the data is not comparable to the other
points.

it can be tested if the contact duration is proportional to the impact velocity to the
power -1/5 as predicted by Hertz’ theory, Eq. (C.5). This is shown in Fig. 5.13. Of
course there are not enough decades available for a thorough testing of the exponent
-1/5, but the data is very well compatible with it.

Even though the vibrational kinetic energy is still small, it is surprising that Hertz’
law (at least the exponent, if not the prefactor) describes the data so well. However, a
similar phenomenon has been found experimentally [BL71] where the authors report
good agreement of their measurements of contact durations of colliding spheres with
Hertz’ theory even well outside its expected range of validity. They find exponents
of -0.232 and -0.221, depending on the material of the spheres.

It was seen in Fig. 5.12 that the vibrational energy gain is not zero at the end
of a collision. This shows that collisions outside the quasistatic regime can indeed
be inelastic in the sense that vibrations are excited by the collision. Fig. 5.14 shows
the resulting coefficients of restitution ε as a function of impact velocity. While
the ε-values are still fairly close to 1, they are nevertheless noticable. As expected,
they decrease with impact velocity. Furthermore, it can be inferred from the two
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Figure 5.14.: The coefficient of restitution ε as a function of impact velocity v.

data points obtained with larger sets of modes that they seem to decrease with the
number of modes used. This is particularly evident at v = 0.02: The run with Ω15

was shown above to behave harmonically, thus it has a coefficient of restitution very
close to 1, but the run using Ω20, which is more realistic, shows a significantly smaller
ε ≈ 0.9925. This is in contrast to [GZ99] where it is found that the coefficient of
restitution increases with the number of modes for elastic two-dimensional disks.

Non-head-on collisions

Apart from the head-on collisions described in the last section, it is also possible to
look at impact parameters b 6= 0.

First, it has to be checked if non-head-on collisions produce rotations of the
spheres. If so, this would amount to an effective mechanism of friction. An example
is shown if Fig. 5.15 for b = 1.5 and impact velocity v = 0.1. During the collision,
rotations are produced since the spheres touch at various points on the contact face,
each time generating a non-zero angular momentum. However, towards the end of the
collision, the rotations cancel almost completely. Thus there is no effective friction.
This behaviour is found for all b, and Fig. 5.15 is not special for grazing collisions:
the respective curves look very similar for any b, even b = 0.

Since there is no effective friction, it is enough to consider only the coefficient of
normal restitution ε, while the coefficient of tangential restitution, β, equals −1. The
coefficient of normal restitution as a function of the impact parameter is shown in
Fig. 5.16. The variation in ε shows a peak at intermediate b. This is not very intuitive
but is explained by looking at the ratio of translational kinetic energies before and
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Figure 5.15.: Rotational energy of two colliding spheres (impact velocity v = 0.1, im-
pact parameter b = 1.5) as a function of time. Rotations start to build
up shortly after the collision has begun but cancel almost completely
towards the end of the collision.
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after the collision. This ratio monotonically increases with b, which is understandable
since grazing collisions should have a less severe impact on the spheres than head-
on collisions. The coefficient of restitution ε, being the ratio of the initial and final
normal velocity components, is first influenced by the decreasing energy loss, resulting
in increasing ε. For larger b, the initial normal velocity component becomes so small
that even a small energy loss causes it to be greatly reduced.

Spheres of unequal size

The case of two identical spheres provides a good testing ground for the simulations
but physically more interesting situations arise when the spheres have different sizes.
It is known from the one-dimensional particles that a length ratio γ smaller than
one results in a coefficient of restitution ε = γ (see Sec. 2.2.2). Thus it might be
conjectured that the coefficient of restitution will decrease for spheres of unequal
size. The effect will be less pronounced in three dimensions than it is in one since
in the low velocity limit it is known from Hertz’ law that there is no energy loss in
the quasistatic regime. A simulation of a head-on collision of two spheres using Ω20

with radii which differ by a factor of two is shown in Fig. 5.17. The impact velocity
is v = 0.1 (note that according to Sec. 5.2, changing the ratio of radii from 1 to 1/2
changes the units of length L and time L/c but not the unit of velocity c). The larger
of the two spheres gains more kinetic and potential energy during the collision than
the smaller one, and it continues to vibrate after the collision is over. There seems
to be essentially only one excited mode since the curve appears to be very much like
a single sin-function. The period of vibration can be extracted from the figure and
yields T ≈ 3.54 which agrees very well with the period of the mode having the lowest
frequency: The period of this mode turns out to be Tslow = 3.556 . . . . Thus it is
primarily this mode which is excited in the simulation, a result which might have
been expected since this lowest mode is the one which contracts (resp. expands) the
sphere in the direction of approach and dilates (resp. contracts) it in the directions
perpendicular to it, giving it a pancake-like (resp. cigar-like) appearance, depending
of the phase of the oscillation. Fig. 5.18 shows the same data as Fig. 5.17 as a function
of the overlap. This plot emphasizes the unsymmetric and non-quasistatic nature of
the collision. Note that during a certain phase of the collision the vibrational kinetic
energy of the larger sphere becomes actually larger by a factor of about two than the
potential energy, indicating that the quasistatic approximation is definitely invalid
for this situation.

The coefficient of restitution and the fractional translational energy loss which
result from this simulation run are

ε = 0.9645 and 1− ε2 = 0.06974.

These values are decidedly more inelastic than for identical spheres with the same
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Figure 5.17.: Time evolution of the vibrational energy gains of two spheres of different
radii (R2 = 2R1) using Ω20 in a head-on collision. The larger sphere
gains more potential and kinetic energy than the smaller one, and there
is a considerable fraction of energy that it retains after the collision is
over. The smaller one shows no visible vibration after the collision.
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Figure 5.18.: The vibrational kinetic and potential energy gain as a function of the
overlap for a ratio of radii of 1/2. The collision is extremely unsymmet-
ric with respect to time (or overlap), contrary to a quasistatic calcula-
tion. Although the impact velocity is even less than in Fig. 5.12, the
unequal sizes change the behaviour drastically.
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5. Three-dimensional particles: Simulations

impact velocity, where

ε = 0.9848, 1− ε2 = 0.03017

was found (see Fig. 5.14). Rayleigh calculated [Ray06] that the excitation of vibra-
tions by collisions should be small for equal spheres. The simulations show, however,
that his arguments can not simply be extended to the case of unequal spheres since
the energy loss shown here for spheres of different radii is significantly higher than
for equal spheres.

5.4. Summary

In this chapter, the simulation method that was made possible by the calculation in
Ch. 4 has been described in detail. It provides a tool to compute the macroscopic
collision behaviour (e.g. coefficients of restitution) of two bodies, based on a micro-
scopic model. Some first results of applying the method to collisions of spheres have
been presented.

The main findings are that the method works, that it produces results which can
be compared to Hertz’ theory of contact (although the quantitative agreement is not
quite satisfactory when using small numbers of modes), and that it can be used to
go beyond Hertz’ theory. The functional dependence of the contact duration on the
impact velocity, τ ∝ v−1/5, has been verified in the simulation.

It has been shown that a small but noticeable amount of translational energy is
converted into vibrations even at relatively small impact velocities of the order of
1/10 of the transversal sound velocity, and that this amount is likely to increase if
the accuracy, i.e. the number of modes, is increased.

The elastic deformation of the spheres does not lead to an effective friction mech-
anism upon grazing collisions, at least not up to impact velocities of v = 0.1. This
simplifies the discussion of the coefficients of restitution since only normal restitution
is present. The coefficient of normal restitution is found to depend on the impact
parameter in a non-trivial way, having a maximum at intermediate impact parame-
ters.

The collision of spheres of unequal size shows strong deviations from the qua-
sistatic case, namely a highly unsymmetric collision, a vibrational kinetic energy
which is at times considerably higher than the potential energy, and a decreased
coefficient of restitution as compared to a collision of equal spheres with the same
impact velocity. This indicates that the energy loss mechanism through excitation
of vibrations by collisions is particularly important for spheres which differ in size.
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6. Conclusions and outlook

6.1. Conclusions

The analysis of a two particle system with internal, vibrational degrees of freedom
in Ch. 2 resulted in an explicit solution of the equations of motion which allowed
for a detailed investigation into the properties of the probability density for the co-
efficient of restitution in two-particle collisions with unspecified (“thermal”) initial
conditions. Though no exact analytical expression could be found, an approximation
was constructed which fulfilled all of the known exact properties of the probability
density and which could very well be fitted to results from Monte Carlo simulations.
Using this analytic, albeit approximate, probability density, many particle simula-
tions were performed in Ch. 3. As a result, it was shown that the system does not
run into an inelastic collapse, so that the method is well suited to long simulation
runs. Complex cluster dynamics take place during the approach to equilibrium in
a system with total energy conservation (the equilibrium being a state where the
total energy is uniformly distributed among all degrees of freedom, translational and
vibrational). The equilibrium state itself was characterised by its dynamic struc-
ture factor and complete agreement with hydrodynamical calculations was observed,
somewhat surprising for a one-dimensional system but explained by the stochastic
nature of the collision which destroys memory and asserts the molecular-chaos as-
sumption which is a central prerequisite for hydrodynamic theories. The approach
to equilibrium is dominated by the slowest decaying mode which is the one with the
largest wavelength. Finally, a system with damped vibrations was simulated which
showed that the final state of such a system without total energy conservation is
one where basically all particles are clumped together and all kinetic energy is lost.
The dynamics of this system consisted of a formation of clusters in the initial stage,
followed by “coarsening” in the sense that colliding clusters interacted completely
inelastically, thus forming one larger cluster, until only one big cluster was left. The
energy decay could of course not be described by anything like Haff’s law [Haf83] but
instead followed a succession of steps, each corresponding to a cluster collision.

Starting from the one-dimensional model including only a finite but arbitrary
number of vibrational modes, a solution of the equations of motion in the hard-core
limit was given by two methods: The first involved the explicit solution of a non-
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linear integral equation, the second arrived at the same result using simple energy
conservation arguments. While the first is more convincing from a fundamental point
of view, the latter is much simpler and could also be generalised to two and three
dimensions. This generalisation allowed for a relatively efficient numerical simulation
of a complete collision process of two elastic spheres. The simulations showed that
the production of vibrations for colliding identical spheres is weak but noticeable for
impact velocities around 1/10 of the transversal sound velocity. Comparison with
Hertz’ theory showed qualitative agreement for almost quasistatic collisions. Quan-
titative agreement could not be achieved due to computational limitations on the
number of vibrational modes used. Collisions of spheres of unequal size but with
the same impact velocity as before, however, are qualitatively different: The qua-
sistatic assumption breaks down, collisions are unsymmetric in time, and excitation
of vibrations becomes important. Thus one central question that was posed in the
introduction, namely if Rayleigh’s estimate [Ray06] of the relative unimportance of
vibrations remains valid for the case of unequal spheres, can be answered negatively.

6.2. Outlook

While the one-dimensional system may not be of chief experimental relevance, it
provides a simple testing ground for various theories. Since the cluster geometry as
seen in the simulations is naturally simple in one dimension, it might be possible
to make progress by trying to analyse the coarsening of clusters as it was described
above. Thus one might arrive at a theory describing the energy decay in a situation
which is far away from the homogeneous cooling state for which Haff’s law applies
(see also [BE98a, vNE99]). Other possible extensions of the one-dimensional systems
are investigations of particles with a different set of vibrational modes; this is made
possible (at least numerically) by the general solution of Ch. 4. One could for in-
stance consider particles which do not only vibrate longitudinally but which also have
transversal vibrations which could become weakly excited upon slightly non-central
collisions. Numerous other variations are conceivable, e.g. particles consisting of a
small number of “atoms” connected by springs, or particles containing defects. The
main question would be if the modified microscopic details result in different macro-
scopic behaviour or if the macroscopic system is independent of such modifications
and is universal in this respect. The same question could be addressed by using
different expressions for the probability density pβ(ε) than the one given here.

The general method for collisions of three-dimensional objects being set up, one
could ask a large number of further questions; simulations could be done for all
conceivable values of the parameters. However, there are also some more fundamental
questions that one might attempt to answer:

• It might be possible to solve the collision process of two spheres under special
conditions exactly, using only a limited set of vibrational modes. An example
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6.2. Outlook

where this is possible under certain conditions was given in Sec. 4.7. There
it was argued that for slow velocities two colliding spheres can be regarded
as if they were in a (half-sided) harmonic potential. Connected with this is
the question if it is possible to carry out the limit of infinitely many modes
in order to obtain a closed expression (but containing memory terms) for the
three-dimensional system like Eq. (2.18) for the one-dimensional case. While
such an expression would most likely still be unsolvable in practice (just as
Eq. (2.18)), perhaps one could derive some exact results from it.

• In experiments it is found that elastic vibrations of solids are always damped by
internal friction through various different mechanisms (see e.g. [Kol63], Ch. 5).
These effects could be incorporated into the theory and simulations and thus
one could try to reach quantitative agreement with experiments and other the-
ories of viscoelastic impact [Pao55, KK87, HSB95, BSHP96]. This amounts to
combining two of the three loss mechanisms (plastic deformation and fracture,
viscoelastic behaviour, and elastic vibrations) into one general framework.

• Simulations of many particle systems using stochastic coefficients of restitution
(normal and tangential) based on the model presented here can be performed.
It is expected that they do not show inelastic collapse (for the same reason that
it doesn’t appear in one dimension) which would make them good candidates
for long runs into the clustering regime, while at the same time being based on
a microscopic model. Comparisons of this method with other methods (e.g. the
TC model from [LM98] or the rotation of rebound velocities by a small random
angle as proposed in [DB97]) could help decide whether such differences are
important for macroscopic properties.
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A. Details concerning the probability
distribution pβ(ε)

A.1. Implications of the non-negativity of the
probability density

In Sec. 2.3.1 use was made of a real, symmetric function c(x, y) which was written
as

c(x, y) =
1

2
e−x−y−f(x,y) (A.1)

with a real, symmetric function f(x, y). This is a priori not the most general ansatz
and may even lead to negative valued p(x, y).

Hence we will argue in App. A.1.1 that a c(x, y) that has negative values generates
a negative-valued p(x, y) and is thus unsuited. One can therefore restrict oneself to
non-negative functions c(x, y), which in turn can be written as in Eq. (A.1). The
additional properties of c(x, y), Eq. (2.48), are satisfied if f(0, y) = y and limx→∞(x+
f(x, y)) = ∞. In App. A.1.2 it is shown that further restrictions on f(x, y) follow
from the non-negativity of p(x, y).

A.1.1. Proof that c(x, y) is non-negative

Suppose that c(x, y) has negative values, i.e. c(x1, y1) < 0 for some x1, y1. Since
c(∞, y) = 0, there exists an x2 > x1 such that ∂c/∂x(x2, y1) > 0. For every ra-
tional γ = p/s we must have c(x, y) = e−2y/2 for all y > ξ−2x, where ξ is defined
in Eq. (2.35) (by the same argument that was used for Eq. (2.53)). This implies
∂c/∂x(x2, y2) = 0 for any y2 > x2ξ

−2. But we already had that ∂c/∂x(x2, y1) > 0,
from which we can see that y1 < y2 and therefore there must exist a y0 ∈ (y1, y2)
where ∂2c/(∂x∂y)(x2, y0) < 0. Eq. (2.47) shows that this is equivalent to a negative
value of the probability density: p(x2, y0) < 0.
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A.1. Implications of the non-negativity of the probability density

A.1.2. Proof that ∂f/∂x ≥ −1 and ∂f/∂y ≥ −1

It is possible to deduce some restrictions on f(x, y) from the non-negativity of p(x, y).
Suppose there were some x0, y0, such that

∂f

∂x
(x0, y0) < −1. (A.2)

It follows from Eq. (2.53) that for any ỹ > ξ−2x0, ∂f/∂x(x0, ỹ) = −1. Thus there
exists a y∗ ∈ (y0, ξ

−2x0] such that for any y from a small neighbourhood of y∗

∂f

∂x
(x0, y) < −1 for y < y∗ (A.3)

and

∂f

∂x
(x0, y) ≥ −1 for y > y∗. (A.4)

holds. If we suppose that the leading non-constant term of ∂f/∂x(x0, y) as y tends
to y∗ from below is of the order n ≥ 1, i.e.

∂f

∂x
(x0, y) = −1− α(y∗ − y)n +O((y∗ − y)n+1) for y < y∗, (A.5)

α > 0 being the coefficient, then we have

∂2f

∂x∂y
(x0, y) = αn(y∗ − y)n−1 +O((y∗ − y)n). (A.6)

Here we see that at least in a small interval left of y∗, ∂2f/(∂x∂y)(x0, y) > 0. (By
inversion of this argument we can conclude that ∂2f/(∂x∂y)(x, y) ≤ 0 for all x, y
implies ∂f/∂x(x, y0) ≥ −1 for all x, y. This will be needed below.) Plugging this
into Eq. (2.52) we get

p(x0, y) =
ey−x0−f(x0,y)

2

((
−α(y∗ − y)n +O((y∗ − y)n+1)

)(
1 +

∂f

∂y
(x0, y)

)
−

(
αn(y∗ − y)n−1 +O((y∗ − y)n)

))

=
ey−x0−f(x0,y)

2
(−α(y∗ − y)n−1)

(
O(y∗ − y)

(
1 +

∂f

∂y
(x0, y)

)
+ n

)
,(A.7)

which is bound to become negative in a small interval left of y∗. So unless ∂f/∂x(x0, y)→
−1 faster than any power of y∗ − y as y → y∗ (a case which we will ignore), the as-
sumption Eq. (A.2) will lead to a non-acceptable p(x, y).
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A. Details concerning the probability distribution pβ(ε)

Therefore, we must restrict ourselves to those f(x, y) which satisfy ∂f/∂x(x, y) ≥
−1 for all x, y. We will, however, be even a bit more restrictive and demand that
∂2f/(∂x∂y)(x, y) ≤ 0 for all x, y. As we have seen above, this implies ∂f/∂x(x, y) ≥
−1 and because of the symmetry of f(x, y) we also have ∂f/∂y(x, y) ≥ −1. Thus all
terms on the rhs of Eq. (2.52) are non-negative so this restriction guarantees a non-
negative p(x, y). By a similar argument as above it can be seen that this condition
also implies the additional property ∂f/∂x(x, y) ≤ 1 and ∂f/∂y(x, y) ≤ 1 for all x, y.

Thus we have proved that a function f(x, y) that satisfies ∂2f/(∂x∂y) ≤ 0 not
only generates a non-negative probability distribution but also has the useful prop-
erties |∂f/∂x| ≤ 1 and |∂f/∂y| ≤ 1.

A.2. Evaluation of the low temperature limit

In order to motivate Eq. (2.60), let’s evaluate Eq. (2.54) a little further:

〈x〉
y

=
ey

2y

∫ ∞
0

(
1 +

∂f

∂y
(zy, y)

)
e−zy−f(zy,y)y dz with z =

x

y

=
1

2

(∫ 1

0

(
1 +

∂f

∂y
(zy, y)

)
ey(1−z)−f(zy,y) dz +∫ ∞

1

(
1 +

∂f

∂y
(zy, y)

)
︸ ︷︷ ︸

≥0,≤2

ey(1−z)−f(zy,y) dz

︸ ︷︷ ︸
−→0 as y→∞

)
(A.8)

The estimate for the bracket in the second integral in Eq. (A.8) follows from
|∂f/∂y| ≤ 1 which implies 0 ≤ 1 + ∂f/∂y(zy, y) ≤ 2.

The limit of the second integral as y →∞ follows from |∂f/∂x| ≤ 1 and f(x, y) =
x− y for x > ξ−2y because these two conditions together ensure that f(x, y) ≥ x− y
for all x (see Fig. A.1). Thus the integral is bounded from above by 2

∫∞
1

exp(2y(1−
z)) dz = 1/2y → 0.

In order to evaluate the first integral in Eq. A.8, we first note that f(zy, y) =
y(1 − z) for z ≤ ξ2 and f(zy, y) ≥ y(1 − z) for z > ξ2, which implies limy→∞ y(1 −
z) − f(zy, y) = 0 for z ≤ ξ2 and limy→∞ y(1 − z) − f(zy, y) ≤ 0 for z > ξ2. Now
suppose that there is some ζ ∈ (ξ2, 1) such that

lim
y→∞

y(1− z)− f(zy, y) =

{
0 if 0 ≤ z < ζ
−∞ if ζ < z ≤ 1

. (A.9)

Provided the convergence is fast enough, we can evaluate the first integral in Eq. A.8
as y → ∞ by interchanging the limit with the integral and with ∂

∂y
(note that
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A.3. Evaluation of the high temperature limit

0

ξ-2y

f(
x,

y)

x

Figure A.1.: Sketch of the possible range of f(x, y) as a function of x for fixed y.
f(x, y) = x − y for x > ξ−2y and due to |∂f/∂x| ≤ 1, f(x, y) can only
reside in the region between the dashed lines for x < ξ−2y. Thus it
follows that f(x, y) ≥ x− y for all x, y.

∂y(1−z)
∂y

= 1 because z = x/y):

lim
y→∞

〈x〉
y

= lim
y→∞

1

2

∫ 1

0

(
1 +

∂f

∂y
(zy, y)

)
ey(1−z)−f(zy,y) dz

=
1

2

∫ 1

0

lim
y→∞

(
1 +

∂f

∂y
(zy, y)

)
ey(1−z)−f(zy,y) dz

=
1

2

∫ ζ

0

2 dz = ζ. (A.10)

Additionally, we can compute 〈
√
x〉√
y

according to Eq. 2.55 in the same way, which

gives

lim
y→∞

〈
√
x〉
√
y

=
√
ζ. (A.11)

In other words: A sufficient condition for the low temperature limit, Eq. (2.41), is
just Eq. (A.9) with ζ = γ2.

A.3. Evaluation of the high temperature limit

In the high-temperature limit, the right hand side of Eq. (2.63) must be a constant.
From this and the symmetry condition for f̃(z, y) we can conclude that

f̃(z, 0) = c1

√
z + c2(z + 1) (A.12)

with some constants c1 and c2. We know that outside this range for ε, when z ≤ ξ2

or z ≥ ξ−2, f̃(z, 0) = |1− z|. f̃(z, y) must be continuously differentiable with respect
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A. Details concerning the probability distribution pβ(ε)

to z at least once, otherwise pβ(ε) would have a δ-peak due to the ∂2f̃
∂z2 term that

appears in Eq. (2.62).
Thus we have the requirements that at the endpoint of the range, i.e. at z = ξ2,

1− ξ2 = c1ξ + c2(ξ2 + 1) and

∂(1− z)

∂z

∣∣∣∣
z=ξ2

= −1 =
∂

∂z

(
c1

√
z + c2(z + 1)

)∣∣∣∣
z=ξ2

=
c1

2ξ
+ c2. (A.13)

These two equations fix c1 and c2:

c1 = − 4ξ

1− ξ2

c2 =
1 + ξ2

1− ξ2
. (A.14)

f̃(z, 0) is thus completely determinded by the high temperature limit:

f̃(z, 0) =


1− z for z ≤ ξ2

− 4ξ
1−ξ2

√
z + 1+ξ2

1−ξ2 (z + 1) for ξ2 < z < ξ−2

z − 1 for z ≥ ξ−2

. (A.15)

A.4. “Proof” for a uniform distribution at β = 0

As indicated by the quotation marks in the heading, we will only outline the basic
ideas of the proof for the sake of shortness.

We start from Eq. 2.18 and take some realization of the stochastic process q(τ).
Then we vary the amplitude of this realization by multiplying it with some α, which
we let tend to ∞. This is in accordance with Eq. (2.21), which states that the
covariance of q(τ) goes to infinity as β goes to 0. We also have to scale τ0 with α in
order to assure that τ − ατ0 + αq(τ) ≤ 0 for all τ < 0. This is simply the condition
that at τ = 0 the particles are still well separated and haven’t touched before in this
collision event.

Consider now a rescaled version of eq. (2.18):

w′(τ) = max(0, f(τ)), where

f(τ) = max
τ ′∈[0,τ ]

{
τ ′

α
− τ0 −

∑
i,ν

w′(τ ′ − νΓi) + q(τ ′)

}
(A.16)

with w′(τ) = w(τ)/α. When γ is a rational number, γ = p/s, we know that q(τ) is
periodic with period p+ s (see Sec. 2.2.3). Hence there exists a τ̃ in the period from
0 to p + s where q(τ) takes on its maximum value. This will be the only point in
this period where q(τ) assumes this value because the probability for a degenerate
maximum is vanishingly small.

92



A.4. “Proof” for a uniform distribution at β = 0

When α → ∞, it is clear that the smallest τ ∗ where τ∗

α
− τ0 + q(τ ∗) crosses the

axis (this marks the beginning of the collision) is very close to the position of the
maximum of q(τ) in a particular period, i.e. τ ∗ ≈ τ̃+n(p+s) with some n ∈ N. Also,
provided that α is large enough, the next time when the axis is crossed from below will
be approximately one period later, namely at around τ̃+(n+1)(p+s). Therefore we
see that w′(τ) reaches a plateau very shortly after the beginning of the collision, the
height of the plateau being given approximately by z = (τ̃ +n(p+ s))/α− τ0 + q(τ̃).
This height can be varied continuously from 0 to (p + s)/α by using a different
realisation of the stochastic process (but with the same statistical weight), namely
q′(τ) = q(τ + ∆τ). This is because q′(τ) has a different position of the maximum,
τ̃ ′ = τ̃ − ∆τ mod p + s, possibly a different period n′ = n − 1, n or n + 1 of the
beginning of the collision, τ ∗ ≈ τ̃ ′ + n′(p+ s) and it thus leads to the plateau height
z = (τ̃ ′+n′(p+s))/α− τ0 + q′(τ̃ ′) = (τ̃ −∆τ +n(p+s))/α− τ0 + q(τ̃) mod (p+s)/α.

Since this is true for any realisation of q(τ), we can conclude that the height z of
the initial plateau is uniformly distributed between 0 and (p+ s)/α.

We have just seen that τ
α
− τ0 + q(τ) < 0 for τ̃ +n(p+ s) + δ < τ < τ ∗+ p+ s− δ′

with some small δ, δ′ > 0. Therefore any additional contributions (if any) to w′(τ)
must come from times τ ∗ + p + s − δ′ < τ < τ ∗ + p + s (remember the maximum
collision time is p + s). When we let τ ↗ τ ∗ + p + s, we can evaluate Eq. (A.16)
because then all the p+ s− 2 non-zero memory terms are equal to z. Thus we get:

w′(τ ∗ + p+ s) = max

(
z,
p+ s

α
− (p+ s− 2)z

)
. (A.17)

Here, we must distinguish two cases: z < 1+ξ
α

and z > 1+ξ
α

(ξ was defined in
Eq. (2.35)). In the former case, the first argument of the max-function in Eq. (A.17)
is smaller than the second, in the latter case it is the second argument that is smaller
than the first. This means that for z > 1+ξ

α
, ε+1 = w(τ ∗+p+s) = αw′(τ ∗+p+s) =

αz ∈ (1 + ξ, p + s] and for z < 1+ξ
α

, ε + 1 = p + s − (p + s − 2)αz ∈ (1 + ξ, p + s].
Since z is uniformly distributed over its range, we conclude that ε is also uniformly
distributed between 1/(p+ s− 1) and p+ s− 1.
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B. On the hard-core limit of the
generalised one-dimensional
collision equation

In the first part of this appendix, Eq. (2.12) is solved in the hard-core limit α→∞.
Some calculational details are postponed to Apps. B.2 and B.3.

B.1. Solution of the equation of motion (2.12) in
the hard-core limit

Without loss of generality it can be assumed that the time of first contact (in the
true hard-core limit, or, equivalently, if the potential were switched off) is at t = 0.
In this limit, the end-to-end distance r(t) = R(T0)+(t−T0)Ṙ(T0)+(G̃∗ R̈)(t)+Q(t)
thus equals 0 for t = 0 (as in Sec. 2.1.1, the convolution integral extends over the
interval from T0 < 0 to t). If the potential were zero, the acceleration R̈(t) would be
zero for all t, thus the convolution integral would vanish and the end-to-end distance
would be given by R(T0) + (t − T0)Ṙ(T0) + Q(t) only. Thus choosing the time of
first contact to be at t = 0 amounts to requiring R(T0) + (t − T0)Ṙ(T0) + Q(t) = 0
for t = 0 and R(T0) + (t − T0)Ṙ(T0) + Q(t) > 0 for T0 ≤ t < 0. The expression
R(T0) + (t − T0)Ṙ(T0) + Q(t) can be split in two parts, the linear approach to zero
around t = 0 and the rest (denoted by φ(t)),

R(T0) + (t− T0)Ṙ(T0) +Q(t) = −vt+ φ(t). (B.1)

Here, v = − d
dt

(R(T0) + (t− T0)Ṙ(T0) +Q(t))
∣∣∣
t=0

> 0. With this definition of v,

φ(t) obeys φ(0) = φ̇(0) = 0.
Eq. (2.12) can now be rewritten as

R̈(t) =
αB

µ
e−α(−vt+φ(t)+(G̃∗R̈)(t)). (B.2)

Eq. (B.2) can be solved exactly under the condition that φ(t) ≡ 0 and G̃(t) =
tγΘ(t). The latter condition amounts to approximating G̃(t) = tγΘ(t) +G1(t) by its
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B.1. Solution of the equation of motion (2.12) in the hard-core limit

initial slope γ = G̃′(0+), i.e. setting G1 ≡ 0. In this approximation, Eq. (B.2) reads
(renaming R̈ to Ẍα for later reference)

Ẍα(t) =
αB

µ
exp

(
−α
(
−vt+ γ

∫ t

T0

dτ (t− τ)Ẍα(τ)

))
. (B.3)

It can be checked by a simple integration that

Ẍα(t) =
αv2

α

2γ
cosh−2

(αvα
2
t+ ηα

)
(B.4)

with vα =
√
v2 + 2BγeαvT0/µ and ηα = −αvαT0/2−artanh(v/vα) is indeed a solution

of Eq. (B.3). It is easy to see that vα → v and ηα → η = ln(Bγ/2µv2) exponentially
fast as α→∞.

Returning to the full equation (B.2), one can write, without loss of generality, the
acceleration R̈ in terms of the solution Ẍα from Eq. (B.4) and an unknown function
fα(t) as

R̈(t) = Ẍα(t)e−α(φ(t)+(G1∗Ẍα)(t)efα(t) (B.5)

and insert this ansatz into Eq. (B.2). Thus one obtains an equation for the newly
introduced function fα(t). After a few manipulations, the result is given by

fα(t) = −α
[
G̃ ∗

(
Ẍα

(
e−αFα+fα − 1

))]
(t) (B.6)

with the abbreviation Fα(t) = φ(t)+(G1 ∗ Ẍα)(t). The function Fα has the following
properties (see App. B.3):

lim
α→∞

α3Fα(0) = C1

lim
α→∞

α2Ḟα(0) = C2

lim
α→∞

F̈α(0) = φ̈(0)

|F (3)
α (x)| < C3(K) for all α and x ∈ K,

(B.7)

with certain constants |C1|, |C2|, C3(K) <∞ and any compact subset K ⊂ R.
If one should find that fα converges to a continuous function f∞ as α→∞, the

task of finding the hard-core limit of Eq. (B.2) is solved: Since vα → v, ηα → η,
it is easily seen that Ẍα → 2vδ(t)/γ. The properties given in Eqs. (B.7) ensure
that the term αFα(t) is regular enough in order not to spoil the convergence of
R̈(t) = Ẍα(t)e−αFα(t)+fα(t) to a δ-function, hence it follows that R̈(t) converges to
2vef∞(0)δ(t)/γ.
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B. On the hard-core limit of the generalised one-dimensional collision equation

Therefore I will proceed to argue that f∞ exists, that it is continuous and that
f∞(0) = 0. To this end, a change of variables ξ = ατ is performed in the convolution
integral in Eq. (B.6) and the exponential is expanded:

fα(t) = −αv
2
α

2γ

∫ αt

αT0

dξ G̃

(
t− ξ

α

)
cosh−2

(
vαξ

2
+ ηα

) ∞∑
k=1

(
fα
(
ξ
α

)
− αFα

(
ξ
α

))k
k!

(B.8)

= −v
2
α

2γ

∫ αt

αT0

dξ G̃

(
t− ξ

α

)
cosh−2

(
vαξ

2
+ ηα

) ∞∑
k=1

(
αfα

(
ξ
α

)
− α2Fα

(
ξ
α

))k
αk−1k!

.

(B.9)

By introducing the function f̃α(ζ) := αf
(
ζ
α

)
, this can be written as

f̃α(ζ) = −αv
2
α

2γ

∫ ζ

αT0

dξ G̃

(
ζ − ξ
α

)
cosh−2

(
vαξ

2
+ ηα

) ∞∑
k=1

(
f̃α(ξ)− α2Fα

(
ξ
α

))k
αk−1k!

.

(B.10)

This equation now allows an expansion in 1/α. By Taylor expanding G̃(t) = Ḡ(t)Θ(t)
(where Ḡ(t) is the analytic continuation of G̃(t)) and α2Fα(ξ/α) one obtains

f̃α(ζ) = −αv
2
α

2γ

∫ ζ

αT0

dξ
∞∑
n=0

Ḡ(n)(0)

n!

(ζ − ξ)n

αn
cosh−2

(
vαξ

2
+ ηα

)

×
∞∑
k=1

(
f̃α(ξ)− α2Fα(0)− α2Ḟα(0) ξ

α
− α2F̈α(0)

2

(
ξ
α

)2 − · · ·
)k

αk−1k!
. (B.11)

Exploiting again the properties of Fα from Eqs. (B.7) and keeping only the zeroth
order terms (the term proportional to α vanishes since Ḡ(0) = 0), one gets

f̃α(ζ) = − v
2

2γ

∫ ζ

−∞
dξ Ḡ′(0)(ζ − ξ) cosh−2

(
vξ

2
+ η

)(
f̃α(ξ)− φ̈(0)

2
ξ2

)
+O

(
1

α

)
(B.12)

= −v
2

2

∫ ζ

−∞
dξ (ζ − ξ) cosh−2

(
vξ

2
+ η

)(
f̃α(ξ)− φ̈(0)

2
ξ2

)
+O

(
1

α

)
.

(B.13)
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This is a linear integral equation which can be solved exactly. By differentiating
Eq. (B.13) twice with respect to ζ, it is transformed into an ordinary differential
equation,

f̃ ′′∞(ζ) = −v
2

2
cosh−2

(
vζ

2
+ η

)(
f̃∞(ζ)− φ̈(0)

2
ζ2

)
. (B.14)

Here, the index has been changed to ∞ since omitting the higher-order corrections
in 1/α amounts to setting α =∞. The solution f̃∞(ζ) of this equation satisfying the
boundary conditions limζ→−∞ f̃∞(ζ) = 0 and limζ→−∞ f̃

′
∞(ζ) = 0 (which follow from

Eq. (B.10)) can be found in App. B.2, Eqs. (B.29) and (B.30). Corrections to this
solution are expected to be of order O(1/α).

The function f̃∞ itself does not contain enough information to reconstruct the
original function fα in the limit α → ∞ since the higher-order corrections may
also become relevant in the limiting process. However, the missing information is
contained in Eq. (B.9): In order to find fα, the solution for f̃α = f̃∞ + O(1/α) can
be inserted into the rhs of Eq. (B.9) instead of the term αf(ξ/α). The integral that
appears in the zeroth-order term of this equation can then be performed exactly,
yielding 4G̃(t)φ̈(0)(η + η2 + π2/12)/(γv). The final result for fα is thus:

fα(t) =
4φ̈(0)

γv

(
η + η2 +

π2

12

)
G̃(t) +O

(
1

α

)
. (B.15)

The limit α→∞ is now simply

f∞(t) =
4φ̈(0)

γv

(
η + η2 +

π2

12

)
G̃(t). (B.16)

Thus the limit exists, is continuous, and takes on the value 0 at t = 0.
Returning to the original problem, this means that the acceleration R̈ is indeed

given by

R̈ =
2v

γ
δ(t) (B.17)

in the hard-core limit. It must be mentioned that this result for R̈ is only valid in
a time interval around t = 0 that is small enough to exclude the (possibly existing)
next contact of the particles. This next contact, however, can be treated by exactly
the same method, yielding another δ-function, and so on. Thus the whole collision
process consists of a (finite) succession of small δ-collisions.
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B. On the hard-core limit of the generalised one-dimensional collision equation

B.2. Solution of the differential equation (B.14)

Eq. (B.14) can be simplified by introducing a new function g(ξ) defined by

g(ξ) = f̃∞

(
2

v
(ξ − η)

)
. (B.18)

This results in the following differential equation for g(ξ),

g′′(ξ) = −2 cosh−2(ξ)

(
g(ξ)− φ̈(0)

2

(
2

v
(ξ − η)

)2
)
. (B.19)

The corresponding homogeneous equation,

g′′hom(ξ) + 2 cosh−2(ξ)ghom(ξ) = 0, (B.20)

can be transformed into a first order differential equation by the ansatz

ghom(ξ) = h(ξ) tanh(ξ) (B.21)

which yields

tanh(ξ)h′′(ξ) + 2 cosh−2(ξ)h′(ξ) = 0. (B.22)

The general solution of this differential equation can be found by separation of the
variables and is given by

h′(ξ) = c1 tanh−2(ξ), (B.23)

where c1 is an arbitrary constant. The function ghom(ξ) can then be obtained by
integrating h′(ξ) (and adding an arbitrary constant of integration c2),

ghom(ξ) = h(ξ) tanh(ξ) =

(∫
dξ c1 tanh−2(ξ) + c2

)
tanh(ξ) (B.24)

= c1(ξ tanh(ξ)− 1) + c2 tanh(ξ). (B.25)

The inhomogeneous equation, Eq. (B.19), can now be solved by the method of
variation of the constants, i.e. by assuming a ξ-dependence of c1 and c2. A straight-
forward calculation results in the following expression for a particular solution of
Eq. (B.19), where

I(ξ) =
4φ̈(0)

v2
cosh−2(ξ)(ξ − η)2 (B.26)
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is the inhomogeneity:

gpart(ξ) = (ξ tanh(ξ)− 1)

∫ ξ

0

dξ′ I(ξ′) tanh(ξ′)− tanh(ξ)

∫ ξ

0

dξ′ I(ξ′)(ξ′ tanh(ξ′)− 1).

(B.27)

The integrals appearing in this equations can be solved exactly but are omitted here
for the sake of shortness.

The solution satisfying the boundary conditions g(−∞) = g′(−∞) = 0 is given
by the sum of the particular solution gpart(ξ) and a suitable homogeneous solution,
i.e. some ghom(ξ) from Eq. (B.24) with a suitable choice of the constants c1 and c2

(which really are constants for the homogeneous case). By evaluating the integrals
in Eq. (B.27) and analysing the limit ξ → −∞ it is found that asymptotically

gpart(ξ)  
ξ→−∞

−4φ̈(0)

v2

(
ln 2 + η +

η2

2

)
ξ − 4φ̈(0)

v2

(
ln 2 + η +

π2

24

)
+O

(
1

ξ

)
.

(B.28)

The homogeneous solution must cancel the two terms which do not tend to zero for
ξ → −∞. This condition fixes the coefficients c1 and c2 for the homogeneous solution.
It is easy to verify that c1 = −4φ̈(0)(ln 2+η+η2/2)/v2 and c2 = 2φ̈(0)(η2−π2/12)/v2

do the job; thus the complete solution of Eq. (B.19) satisfying the appropriate bound-
ary conditions is given by

g(ξ) =

(∫ ξ

0

dξ′ I(ξ′) tanh(ξ′)− 4φ̈(0)

v2

(
ln 2 + η +

η2

2

))
(ξ tanh(ξ)− 1)−(∫ ξ

0

dξ′ I(ξ′)(ξ′ tanh(ξ′)− 1)− 2φ̈(0)

v2

(
η2 − π2

12

))
tanh(ξ). (B.29)

Finally, this result can be converted into the function f̃∞(ζ) by

f̃∞(ζ) = g

(
vζ

2
+ η

)
. (B.30)

B.3. Properties of the function Fα

The function Fα posseses some properties, summarised in Eqs. (B.7), which were
needed in order to solve the equations of motion. In this appendix, these properties
are going to be derived. The results of this appendix are due to [Mül99].

The function Fα is given by

Fα(t) = φ(t) + (G1 ∗ Ẍα)(t), (B.31)
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B. On the hard-core limit of the generalised one-dimensional collision equation

with φ(t), G1(t), and Ẍα(t) as defined in App. B.1. In particular, the definition of
G1 implies that

G1(0) = Ġ1(0) = G̈1(0) = 0 (B.32)

and that G
(3)
1 (t) is bounded. Thus a Taylor expansion of G1(t) up to second order

around t = 0 only consists of the remainder term,

G1(t) =
G

(3)
1 (utt)

3!
, (B.33)

where ut depends on t and takes on some value between 0 and 1. This implies, since
G

(3)
1 (t) is bounded,

α3Fα(0) = α3

∫ 0

T0

dt′G1(−t′)Ẍα(t′) (B.34)

=

∫ 0

T0

dt′
α3(−t′)3

3!
G

(3)
1 (ut′t

′)Ẍα(t′) (B.35)

= − v2
α

12γ

∫ 0

αT0

dξ ξ3 cosh−2

(
vαξ

2
+ ηα

)
G

(3)
1

(
uξ/α

ξ

α

)
(B.36)

−→
α→∞

−v
2G

(3)
1 (0)

12γ

∫ 0

−∞
dξ ξ3 cosh−2

(
vξ

2
+ η

)
=: C1. (B.37)

The last two lines follow if Ẍα(t) from Eq. (B.4) is inserted.
A analogous calculation for Ḟα yields

α2Ḟα(0) −→
α→∞

v2G
(3)
1 (0)

4γ

∫ 0

−∞
dξ ξ2 cosh−2

(
vξ

2
+ η

)
=: C2. (B.38)

By the same token the limit of the second derivative can be calculated, but since
in this case the term φ̈(0), which is in general nonzero, becomes important, it follows
that

F̈α(0) −→
α→∞

φ̈(0). (B.39)

Finally, the third derivative is given by

F (3)
α (t) = φ(3)(t) +

∫ 0

T0

dt′G
(3)
1 (t− t′)Ẍα(t′) (B.40)

(since G1(0) = Ġ1(0) = G̈1(0) = 0, the third derivative of the convolution integral
consists only of the one term shown). This expression converges for all t. Therefore,
for all compact subsets K ⊂ R, there exists a constant C3(K) < ∞ such that

|F (3)
α (t)| ≤ C3(K) for all t ∈ K. C3(K) can be chosen to be independent of α since

G
(3)
1 (t) is continuous and bounded and Ẍα(t) simply converges to a δ-function. This

concludes the derivation of the properties given in Eqs. (B.7).
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C. Summary of Hertz’ contact theory

A detailed treatment of Hertz’ quasistatic contact theory [Her82] can be found in
standard textbooks, e.g. in [LL91a] or [Gol60]. Here, only a short list of the essential
results shall be given for reference.

Consider two spheres with radii R1 and R2, masses M1 and M2, transversal sound
velocities ct1 and ct2, and Poisson numbers σ1 and σ2. As in Sec. 5.2, Eqs. (5.4) –
(5.6), the quantities L, c, and M can be introduced as units of length, velocity, and
mass, respectively. The “overlap” δ of the two spheres is defined as the distance by
which their centres of mass are closer than the sum of their radii, and 0 if they are
further apart than this, i.e.

δ = max(0, R1 +R2 − |R2 −R1|). (C.1)

In the quasistatic approximation, the contact face which exists when the spheres
touch is perpendicular to the vector connecting the centres of mass for symmetry
reasons. The force between the spheres thus acts in the same direction as this vector.
The magnitude of the force is given by

F =

(
δ

L

)3/2
L2

√
2D

, (C.2)

where D is the following constant,

D =
π

2

(
(1− σ1)

R3
1

M1ct1

+ (1− σ2)
R3

2

M2ct2

)
. (C.3)

For two identical spheres, this simplifies to D = π(1− σ) in dimensionless units (i.e.
L = c = M = 1).

Accordingly, the potential energy of the elastic deformation of the spheres reads

Epot =

(
δ

L

)5/2 √
2L3

5D
(C.4)

since differentiating Eq. (C.4) with respect to Ri yields the force whose modulus is
given in Eq. (C.2).
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The duration τ of a collision is given in terms of the impact velocity v by

τ =
4
√
πΓ(2/5)

5Γ(9/10)

(
25

32
· M

2D2

Lc

)1/5 (v
c

)−1/5

, (C.5)

where Γ(x) denotes the usual Gamma function.
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