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Chapter 1

Introduction

Over the last decades, the nonlinear optical properties of condensed matter systems
have been an attractive and fruitful field of research. While the linear response func-
tions of solids provide information about the elementary excitations of the systems
such as excitons and plasmons, nonlinear optical experiments give insight into the
dynamics of the fundamental many-body processes which are initiated by the exter-
nal excitations. Stimulated by the experimental results, new theoretical concepts and
methods have been developed in order to relate the observed phenomena to the micro-
scopic properties of the investigated materials. The present work deals with the study
of the nonlinear dynamics of pure semiconductors and n-doped semiconductors which
are excited by laser pulses whose central frequencies are tuned to the energies of the
electronic transitions between the highest valence bands and the lowest conduction
bands.

In Chapter2, the relaxation behavior of optically excited semiconductors under the
influence of the interaction between the electrons and longitudinal optical phonons is
studied. These studies are mainly motivated by measurements of the differential trans-
mission spectrum in pump-probe experiments [47] and the time-integrated four-wave-
mixing signals [39, 53] in Gallium-Arsenide (GaAs). The pump-probe spectroscopy
has especially initiated an intensive theoretical discussion, since it allows the direct ob-
servation of the dynamics of the spatial and spectral distribution of the excited carriers.
In a typical pump-probe experiment, a sample is excited by two pulses, a strong pump
pulse and a weak probe pulse, which propagate in different directions. The interplay
between these pulses is then studied by measuring an optical signal which is related
to the probe pulses (for example the reflection signal or the transmission signal) as a
function of the time delay between both pulses. Depending on the density distributions
of the excited conduction electrons and valence holes, the intensity of these signals is
either reduced or increased in relation to the signals which are measured in the ab-
sence of the pump pulse. In recent years, the development of ultrafast lasers pulses
with durations as short as 10 femtoseconds has made it possible to observe the nonlin-
ear dynamics of photoexcited semiconductors in the coherent regime with the help of
pump-probe experiments [57].
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The time behavior of semiconductors which are excited by external electro-magne-
tic fields is usually described within the framework of the semiclassical Boltzmann
equations. The different interaction processes between the electrons and phonons are
then described by means of collision terms where the energy is conserved in each
collision process. This description, however, can only be valid as long as the dynam-
ics is studied on a time scale which is larger than the characteristic collision times
(∼ 100 − 200 fs) [57] . Consequently, it is insufficient to describe the behavior of the
semiconductor with the help of the traditional Boltzmann equations if the dynamics is
studied on the femtosecond scale. A better description of the short-time behavior can
be achieved by using nonlinear quantum kinetic equations which take quantum phe-
nomena, as for example the energy-time uncertainty, into account. For their derivation,
two different theoretical approaches have been employed.

In the first approach, non-equilibrium two-time Green’s functions are used as a
starting point for the numerical and analytical studies [25, 26, 34, 43]. These functions
can be calculated with the help of approximation methods which are similar to the
approximation methods for equilibrium Green’s functions. The time dependence of
the non-equilibrium Green’s functions is then determined by the corresponding Dyson
equations, which are also denoted as Kadanoff-Baym equations if they are written in
a differential form. Since the Green’s functions depend on two time variables, it is
necessary to introduce an additional approximation method, the so-called Generalized
Kadanoff-Baym Ansatz [18], in order to transform the Kadanoff-Baym equations into
a system of differential equations for one-time functions. The second approach is based
on the Heisenberg equations-of-motion for products of field operators [21, 30, 36, 42,
41, 52, 56, 58]. As these equations are arranged in an infinite hierarchy, a truncation
scheme has to be applied in order to obtain a finite system of differential equations.
The truncation is achieved by neglecting correlation functions of higher order. The
whole procedure can be viewed as a partial resummation of Feynman diagrams within
the framework of the non-equilibrium Green’s function approach [37].

The use of the Green’s function method has the advantage that it is relatively easy
to include certain collective effects such as the screening of the interaction functions or
the renormalization of the one-particle propagators. On the other hand, the equations-
of-motion method makes it possible to obtain a numerically treatable system of differ-
ential equations directly without introducing a complex formalism.

When the quantum kinetic equations for electrons and phonons in a semiconductor
are derived with the help of one of the two approaches described above, the electron-
electron interaction, which is responsible for the formation of excitons, is often treated
in the time-dependent Hartree-Fock approximation, which leads to a renormalization
of single particle energies and Rabi frequencies [34, 43, 36]. If, however, the factoriza-
tion method is applied consequently within the framework of the equations-of-motion
method, as it has been done in References [21, 41, 52, 56], additional Coulomb terms
appear in the kinetic equations which can be interpreted as vertex corrections to the
electron-phonon interaction. Since the effect of these terms on the time behavior of
the optically excited semiconductor has not yet been studied in detail, the investiga-
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tions in Chapter2 will concentrate on the differences between the kinetic equations
with and without vertex corrections. For this purpose, the dynamics of the relevant
physical quantities, such as the interband polarization or the electron density, will be
calculated by using both versions of the kinetic equations.

In Chapter3, the attention is shifted to the nonlinear behavior of n-doped semi-
conductors where a non-vanishing density of negative carriers in the conduction band
already exists at zero temperature. If the doping is low, it is still possible to observe
bound systems of valence holes and conduction electrons in the linear and nonlin-
ear spectrum. In the high-doping regime, however, the picture changes qualitatively.
While the bound states vanish because of the presence of the Fermi sea in the conduc-
tion band, it is possible to detect an asymmetric algebraic singularity at the Fermi-edge
in the absorption spectrum.

The same phenomenon can also be observed in the absorption spectrum of met-
als and has initiated a considerable theoretical discussion about the different factors
which influence the behavior of the absorption spectrum near the threshold. Mahan
showed that the occurrence of this singularity can be attributed to the attractive in-
teraction between the conduction electrons and the valence holes which are created
by the external light pulses [10]. Detailed analytical calculations by Nozières and his
coworkers [13, 14, 12, 16] led to the realization that the power-law divergence at the
Fermi-edge can be reduced, or even suppressed, if the reaction of the entire Fermi sea
on the appearance of the valence holes is taken into account. It has been shown that
the algebraic singularity can be described by means of an exponentα whose value is
determined by the scattering phase shift for the conduction electrons in the presence
of the attractive potential of the valence holes. A comprehensive presentation of the
results can be found in Mahan’s textbook on many-body physics [19].

The different physical effects which determine the form of the Fermi-edge singu-
larity can already be understood within the framework of an exactly solvable, one-
dimensional model where the electrons in the conduction band are described with the
help of the Tomonaga-Luttinger Hamiltonian [1, 6]. The elementary excitations of the
Fermi sea can then be described in terms of density waves with a linear dispersion.
When this auxiliary model was introduced for the first time [15] the restriction to one
dimension was justified by the fact that the original three-dimensional problem can be
interpreted as an effective one-dimensional problem because the interaction between
the valence holes and the conduction electrons is dominated by s-wave scattering pro-
cesses, if the interaction potential is short-ranged. The investigation of semiconductor
quantum wire structures, which show pronounced Fermi-edge singularities in the lin-
ear optical absorption spectrum [22], has increased the interest in this model during
recent years [27, 29, 45, 46], since it can now be used for the description of real one-
dimensional systems.

Concerning the theoretical description of the valence band, it has usually been
assumed that the valence holes have an infinite mass [13, 14, 12, 16, 15, 19]. Then
the positions of the optically created holes remain fixed and the electrons only feel the
influence of a time-independent potential. In order to take the effect of a finite hole
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mass on the spectrum into account, a number of approximation methods have been
developed since the end of the 1960s [11, 20, 28, 33]. The results indicate that the
recoil of the valence holes can lead to a broadening, or even to a disappearance, of the
Fermi-edge singularity [11].

During the last decade, the investigation of modulation doped quantum wells using
pump-probe spectroscopy [44] has raised interest in the properties of the nonlinear
optical response of systems involving a Fermi sea of conduction electrons whose linear
absorption spectrum exhibits a threshold singularity. The first theoretical descriptions
of these experiments [35, 44, 59] were based on an approximation technique which
was already used successfully for the calculation of the linear response functions [23,
24, 33]. Within the framework of this approximation, the excitations of the Fermi
sea in the presence of the valence holes are described with the help of a noncanonical
transformation.

Motivated by these developments, the Tomonaga-Luttinger electron model is em-
ployed in Chapter3 in order to describe the general principles of the nonlinear optical
response of systems with a Fermi-edge singularity in the linear absorption spectrum
using a four-wave-mixing experiment as an example. Within the framework of a stan-
dard four-wave-mixing experiment, the sample is excited by three or two pulses with
different propagation directions. The interaction between these excitation pulses in
the sample leads to the generation of diffracted signals whose intensity can be mea-
sured as a function of the time delay between the ingoing pulses. As long as the delay
times do not exceed the life-time of the optical excitations, it is possible to observe
the coherent time evolution of the excited many-body states under the influence of the
interparticle scattering processes. In order to be able to solve the model exactly, the
calculations are based on the assumption that the valence holes have an infinite mass,
thereby neglecting the influence of the recoil processes.

Chapter4, contains a summary of the content of the two preceding chapters. In
addition to that, the prospects for possible further theoretical studies are given on the
basis of the results of this work.

Finally, two technical details concerning the presentation of the quantitative results
should be mentioned. All units are chosen in such a way that Planck’s constant is equal
to ~ = 1. Apart from that, all quantities are expressed with the help of characteristic
material constants.



Chapter 2

Phonon-Induced Relaxation in
Optically Excited Semiconductors

In this chapter the influence of the interaction between longitudinal optical phonons
and electrons on the relaxation of optically excited electron-hole pairs in semicon-
ductors is studied both analytically and numerically with the help of quantum kinetic
equations. The investigations are focused on the comparison of the different methods
of approximation which are used in order to take the electron-electron interaction into
account.

The content of the chapter is organized as follows. Section2.1 contains the pre-
sentation of the different components of the model Hamiltonian describing the semi-
conductor. In Section2.2 the quantum kinetic equations for the interacting electron-
phonon system are formulated on the basis of the Heisenberg equations-of-motion
where the interaction between the electrons and phonons is treated within the frame-
work of the second order self-consistent Born approximation. As far as the contribu-
tions which are due to the electron-electron interaction are concerned, it is possible to
distinguish between the mean field corrections to the one-particle Hamiltonian and the
vertex corrections to the electron-phonon interaction which have already been men-
tioned in Chapter1. Section2.3 contains the derivation of correction terms which
approximately take the impact of higher order electron-phonon scattering processes
into account. In Section2.4an alternative system of quantum kinetic equations, which
is derived with the help of non-equilibrium Green’s functions [43], is presented where
the electron-electron interaction is only treated within the framework of the Hartree-
Fock approximation. The following two sections are dedicated to the investigation
of the differences between the results which are obtained with the help of the kinetic
equations from Section2.2and Section2.4. In Section2.5 the linear optical response
of the system to an external laser field is studied by calculating the linear susceptibility
for excitonic and continuum excitations. In Section2.6the dynamics of the electronic
and phononic densities is calculated for different detunings of the excitation pulse in
the weak nonlinear regime.

6
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2.1 The Hamiltonian

In the following the electrons of the semiconductor are described by a one-dimensional
tight-binding model with two bands whose Hamiltonian is given by

H0
e =

∑
σ=c,v

∑
k

εσ;kψ
†
σkψσk (2.1)

whereψσk andψ†σk represent the fermionic destruction and creation operators for the
electrons of the valence band(σ = v) and the conduction band(σ = c). It is assumed
that the system consists ofN elementary cells whose length is chosen to be equal
to unity. If the one-electron eigenfunctions satisfy periodic boundary conditions, the
quasi-momentak are determined by the relation

k =
2π

N
n with n ∈ Z and − N

2
≤ n <

N

2
. (2.2)

If the hopping is restricted to the nearest neighbors, the free electron dispersions for
the two bands satisfy the equations

εv;k = 2tv(cos(k)− 1), (2.3)

εc;k = −2tc(cos(k)− 1) + ∆ (2.4)

wheretv andtc are the positive matrix elements for the intersite transitions while∆
represents the energy gap between the bands.

The interaction of the electron system with the external electrical field is described
by the operator

HI
e (t) = −E(t)

∑
σ1σ2

∑
k1k2

dσ1σ2
k1k2

ψ†σ1k1
ψσ2k2 (2.5)

within the framework of the dipole approximation [31]. If all intraband transitions
are neglected and if the system is excited homogeneously, the dipole matrix elements
satisfy the equations

dcvk1k2
= dvck1k2

= dδk1;k2 and dcck1k2
= dvvk1k2

= 0. (2.6)

During the first picoseconds after an external optical excitation the dynamics of
the polarization and the carrier distribution is mainly affected by the scattering of elec-
trons and longitudinal optical phonons whereas the interaction between electrons and
acoustical phonons only influences the time behavior of the system during a later stage
(∼ 2 − 100 ps). Since the studies in this chapter are focused on the relaxation of
optically excited semiconductors during the non-thermal regime [57], it is therefore
justified to neglect the acoustical phonons entirely. The contribution of the free longi-
tudinal optical phonons to the total Hamiltonian is taken into account by the operator

H0
ph =

∑
q

ωLOb
†
qbq (2.7)
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wherebq andb†q denote the bosonic field operators of the phonon system. The part of
the total Hamiltonian which describes the interaction between the electrons and the
longitudinal optical phonons is given by

Heph =
∑
σ

∑
k

∑
q 6=0

gσqψ
†
σk+qψσk

{
bq + b†−q

}
(2.8)

where the scattering processes which lead to electronic interband transitions have been
neglected since the energy balance of these processes is highly unfavorable. In the fol-
lowing it is assumed that the electron-phonon interaction is described by the Holstein
model [2, 3]. The matrix elementsgσq then satisfy the equation

gσq =
g√
N

(2.9)

whereg denotes the local interaction strength. The Hamiltonian which represents the
electron-electron interaction satisfies the following equation

Hee =
1

2!

∑
σ1σ2

∑
q

Vσ1σ2(|q|)
∑
k1k2

ψ†σ1k1+qψ
†
σ2k2−qψσ2k2ψσ1k1 (2.10)

where the scattering processes which lead to a change of the number of carriers in the
different bands have also been neglected for reasons of energy conservation. In this
chapter it is assumed that the electron-electron scattering matrixVσ1σ2(|q|) is given by

Vσ1σ2(|q|) =
U

N
+ 2π

Ũ

N2

n<N
2∑

n=1

cos(nq)

sin(nπ
N

)
. (2.11)

The first term is due to the on-site interaction while the second one represents the
contribution of the long-range part of the electron-electron interaction. In order to
avoid an instability of the semiconductor ground state with respect to charge density
waves, the inequality

U > Ũ
π
N

sin( π
N

)
2 ln 2 (2.12)

has to be satisfied [32]. The total Hamiltonian of the semiconductor can now be written
as follows

H(t) = He(t) +H0
ph +Heph +Hee (2.13)

where the different parts of the electronic Hamiltonian have been combined:

He(t) = H0
e +HI

e (t) =
∑
σ1σ2

∑
k

εσ1σ2;k(t)ψ
†
σ1k
ψσ2k. (2.14)
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Although the movement of the electrons is restricted to one dimension, the ex-
citation dynamics of this model should exhibit the same characteristic features as
two- or three-dimensional semiconductor models. This has been shown explicitly
for the relaxation dynamics of hot electrons where the time behavior of a simplified
one-dimensional model [40, 48] is in good qualitative agreement with the dynamics
of three-dimensional semiconductor models [25, 26, 36]. The restriction to a one-
dimensional model, however, is only justified as long as the attention is not focused on
the quantitative aspects of the dynamics. In this context it should be mentioned that
the results for the three-dimensional semiconductor were calculated neglecting the an-
gular dependence of all quantities since it would be impossible to treat the problem
numerically otherwise. Thus the original system was described by an effective one-
dimensional model. As a consequence thereof a number of effects (for example the
influence of the non-equilibrium dynamics of the phonons) was not taken into account
[36].

In the initial state, long before the system is excited by the external field, the elec-
trons completely fill the valence band while the phonons are described by a thermal
distribution with a lattice temperatureT . The state of the system is then determined by
the statistical operator

ρ = |Φ〉〈Φ| ⊗ 1

Zph
e
− 1
kBT

H0
ph with |Φ〉 := Πkψ

†
vk|0e〉 (2.15)

where|0e〉 denotes the electronic vacuum whileZph is the canonical partition function
for the phonon system.

Unless stated otherwise the electron-hole mass ratioκ = tv
tc

is chosen to be equal
to κ = 0.15 in the numerical calculations, this ratio is close to the ratio in GaAs. The
total width of both bands is always equal to4(tc + tv) = 5ωLO allowing the obser-
vation of real phonon emission and absorption processes. Concerning the electron-
electron interaction it is generally assumed that it only acts on-site where the local
interaction strength is always given byU = 1.5ωLO. The restriction to the on-site
interaction makes it possible to derive exact analytical expressions for the eigenstates
and eigenvectors of the subspace with one conduction electron and one valence hole
(see AppendixB). The numerical calculations in Section2.6 will show that an ad-
ditional long-range Coulomb interaction does not lead to a qualitative change of the
dynamics. The local interaction strength of the electron-phonon interaction always sat-
isfies the equationg = 0.25ωLO. The crystal temperature is chosen from the interval
0 ≤ kBT ≤ 1.5ωLO, the corresponding Bose factors are then located within the range
0 ≤ nB(ωLO) ≤ 1 with nB(ω) = (exp( ω

kBT
)− 1)−1.

2.2 Kinetic Equations

In this section the dynamics of the semiconductor is described with the help of the
Heisenberg equations-of-motions for the different sorts of density functions using an
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approximation scheme which was introduced by Fricke [42]. In a first step the density
functions are recursively expressed in terms of correlation functions starting with the
one-particle expectation values. The infinite hierarchy of equations-of-motions which
is formed by these new functions is then truncated by retaining only the correlation
functions up to a certain order. The remaining differential equations can either be
solved numerically or studied analytically in order to determine the time behavior of
the system after an optical excitation.

In the following the interest is focused on the dynamics of the interband polariza-
tion 〈ψ†vlψcl〉t and the distribution functions of the valence electrons and the conduction
electrons〈ψ†vlψvl〉t and〈ψ†clψcl〉t whose time behavior is reflected in the linear and the
nonlinear optical properties of the system. Since the HamiltonianH(t) conserves the
total number of electrons these one-particle densities coincide with their correlated
parts. Their dynamics is determined by the equation

i
d

dt
〈ψ†λ1l

ψλ2l〉t =
∑
σ

{
ε̃λ2σ;l(t)〈ψ†λ1l

ψσl〉t − ε̃σλ1;l(t)〈ψ†σlψλ2l〉t
}

+ δ〈ψ†λ1l
ψλ2l〉ep + δ〈ψ†λ1l

ψλ2l〉ee. (2.16)

The coefficients of the one-particle energy matrixε̃λ1λ2;l(t) which appear in Equation
2.16are composed of the corresponding coefficients of the bare energy matrixελ1λ2;l(t)
and the dynamical Hartree-Fock contributions of the electron-electron interaction:

ε̃λ1λ2;l(t) = ελ1λ2;l(t) + δλ1;λ2

∑
σ

Vλ1σ(0)
∑
k

〈ψ†σkψσk〉t (2.17)

−
∑
k

Vλ1λ2(|k − l|)〈ψ†λ2k
ψλ1k〉t.

The two additional contributions on the right-hand side of Equation2.16 represent
corrections to the Hartree-Fock approximation. The first contribution describes the in-
fluence of the electron-phonon interaction on the dynamics of the function〈ψ†λ1l

ψλ2l〉t.
It reads

δ〈ψ†λ1l
ψλ2l〉ep =

∑
q 6=0

gλ2
q

{
〈ψ†λ1l

ψλ2l−qbq〉t + 〈ψ†λ1l
ψλ2l+qb

†
q〉t
}

−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l−qψλ2lb

†
q〉t + 〈ψ†λ1l+q

ψλ2lbq〉t
}

(2.18)

where the new functions which appear on the right-hand side of Equation2.18 are
referred to as first order phonon-assisted densities. Strictly speaking, these phonon-
assisted densities should be expressed with the help of the corresponding correlation
functions, for example

〈ψ†λ1l+p
ψλ2lbp〉t = 〈ψ†λ1l+p

ψλ2lbp〉ct + 〈ψ†λ1l+p
ψλ2l〉t〈bp〉t, (2.19)
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if the kinetic equations are formulated within the framework of the formalism pre-
sented in Reference [42]. However, the expectation values〈bp〉t and〈b†p〉t vanish for
p 6= 0 since the HamiltonianH(t) guarantees the conservation of the total quasi mo-
mentum modulo a reciprocal lattice vector. For this reason the complete first order
phonon-assisted densities are identical with their correlated parts. The second contri-
bution in Equation2.16 is the collision term for the electron-electron scattering pro-
cesses. It satisfies the equation

δ〈ψ†λ1l
ψλ2l〉ee =

∑
σ

∑
k

∑
q

Vλ2σ(|q|)〈ψ†λ1l
ψ†σkψσk+qψλ2l−q〉ct

−
∑
σ

∑
k

∑
q

Vσλ1(|q|)〈ψ†λ1l+q
ψ†σk−qψσkψλ2l〉ct . (2.20)

The correlation functions with four electronic field operators which appear on the right-
hand side of Equation2.20are defined by the following relation

〈ψ†λ1l1+pψ
†
λ2l2−pψλ3l2ψλ4l1〉ct = 〈ψ†λ1l1+pψ

†
λ2l2−pψλ3l2ψλ4l1〉t (2.21)

− δp;0〈ψ†λ1l1
ψλ4l1〉t〈ψ

†
λ2l2

ψλ3l2〉t + δp;l2−l1〈ψ
†
λ1l2

ψ†λ3l2
〉t〈ψλ2l1ψλ4l1〉t

where the conservation of the total quasi momentum has already been taken into ac-
count. If both correction terms are neglected, the dynamics for one-particle densities
with different quasi momenta is decoupled and the time behavior is described by the
well-known semiconductor Bloch equations. If the electron-electron and the electron-
phonon collision terms are taken into account, it is possible to describe the dephasing
and relaxation processes which cause the decay of the initially excited state of the sys-
tem. While the formation of bound pairs of valence holes and conduction electrons
(excitons) in the low density limit can already be described within the framework of
the semiconductor Bloch equations the complete description of bound molecule-like
complexes of two valence holes and two conduction electrons (biexcitons) requires
the consideration of the higher order correlation functions fromδ〈ψ†λ1l

ψλ2l〉ee. These
functions are also necessary for the description of the screening of the electron-electron
interaction in the high density limit.

In the following the influence of the electron-phonon scattering processes on the
relaxation of the excited semiconductor is placed at the center of interest. For this
reason the electronic collision term in Equation2.16is neglected and the attention is
now focused on the time behavior of the first order phonon-assisted densities, which is
determined by the equation

i
d

dt
〈ψ†λ1l+p

ψλ2lbp〉t = ωp〈ψ†λ1l+p
ψλ2lbp〉t

+
∑
σ

{
ε̃λ2σ;l(t)〈ψ†λ1l+p

ψσlbp〉t − ε̃σλ1;l+p(t)〈ψ†σl+pψλ2lbp〉t
}

+ δ〈ψ†λ1l+p
ψλ2lbp〉ep + δ〈ψ†λ1l+p

ψλ2lbp〉ee. (2.22)
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It is obtained with the help of the same factorization scheme which has already been
applied above. As in Equation2.16the different contributions on the right-hand side of
Equation2.22can be assigned to two different groups. The terms in the first two lines
describe the renormalized one-particle dynamics within the framework of the Hartree-
Fock approximation while the two expressions in the last line contain the higher order
correction terms. The form of the correction term which is related to the electron-
phonon scattering processes is determined by the equation

δ〈ψ†λ1l+p
ψλ2lbp〉ep = gλ2

p 〈ψ
†
λ1l+p

ψλ2l+p〉t −
∑
σ

gσp 〈ψ
†
λ1l+p

ψσl+p〉t〈ψ†σlψλ2l〉t

+
{
gλ2
p 〈ψ

†
λ1l+p

ψλ2l+p〉t − gλ1
p 〈ψ

†
λ1l
ψλ2l〉t

}{
〈b†pbp〉t + 〈b−pbp〉t

}
+
∑
q 6=0

gλ2
q

{
〈ψ†λ1l+p

ψλ2l−qbqbp〉ct + 〈ψ†λ1l+p
ψλ2l+qb

†
qbp〉ct

}
−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l+p+q

ψλ2lbqbp〉ct + 〈ψ†λ1l+p−qψλ2lb
†
qbp〉ct

}
+
∑
σ

∑
k

gσp 〈ψ
†
λ1l+p

ψ†σkψσk+pψλ2l〉ct (2.23)

while the contribution which is due to the electron-electron interaction satisfies the
relation

δ〈ψ†λ1l+p
ψλ2lbp〉ee = −

∑
σ

〈ψ†λ1l+p
ψσl+p〉t

∑
k

Vλ2σ(|k − l|)〈ψ†σk+pψλ2kbp〉t

+
∑
σ

〈ψ†σlψλ2l〉t
∑
k

Vσλ1(|k − l|)〈ψ†λ1k+pψσkbp〉t

+ 〈ψ†λ1l+p
ψλ2l+p〉t

∑
σ

∑
k

Vλ2σ(|p|)〈ψ†σk+pψσkbp〉t

− 〈ψ†λ1l
ψλ2l〉t

∑
σ

∑
k

Vσλ1(|p|)〈ψ†σk+pψσkbp〉t

+
∑
σ

∑
k

∑
q

Vλ2σ(|q|)〈ψ†λ1l+p
ψ†σkψσk+qψλ2l−qbp〉ct

−
∑
σ

∑
k

∑
q

Vσλ1(|q|)〈ψ†λ1l+p+q
ψ†σk−qψσkψλ2lbp〉ct . (2.24)

The new functions which appear on the right-hand side of Equation2.23are the cor-
related parts of the so-called second order phonon-assisted densities. They are defined
by the relations

〈ψ†λ1l−p1+p2
ψλ2lb

†
p1
bp2〉ct = 〈ψ†λ1l−p1+p2

ψλ2lb
†
p1
bp2〉t − δp1;p2〈ψ

†
λ1l
ψλ2l〉t〈b†p1

bp1〉t (2.25)

and

〈ψ†λ1l+p1+p2
ψλ2lbp1bp2〉ct = 〈ψ†λ1l+p1+p2

ψλ2lbp1bp2〉t − δp1;−p2〈ψ
†
λ1l
ψλ2l〉t〈b−p1bp1〉t.

(2.26)
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The new sort of correlation function which has been introduced in Equation2.24 is
defined by the identity

〈ψ†λ1l1+p1+p2
ψ†λ2l2−p2

ψλ3l2ψλ4l1bp1〉ct = 〈ψ†λ1l1+p1+p2
ψ†λ2l2−p2

ψλ3l2ψλ4l1bp1〉t (2.27)

− δp2;0〈ψ†λ2l2
ψλ3l2〉t〈ψ

†
λ1l1+p1

ψλ4l1bp1〉t + δp2;l2−l1−p1〈ψ
†
λ1l2

ψλ3l2〉t〈ψ
†
λ2l1+p1

ψλ4l1bp1〉t
− δp2;−p1〈ψ

†
λ1l1

ψλ4l1〉t〈ψ
†
λ2l2+p1

ψλ3l2bp1〉t + δp2;l2−l1〈ψ
†
λ2l1

ψλ4l1〉t〈ψ
†
λ1l2+p1

ψλ3l2bp1〉t.

Apart from the electronic correlation functions the kinetic equations for the first or-
der phonon-assisted density functions contain purely phononic densities, namely the
phonon distribution function〈b†pbp〉t and the two phonon coherence〈b−pbp〉t, which is
also called phonon distortion [55]. The dynamics of these densities is determined by
the two kinetic equations

i
d

dt
〈b†pbp〉t =

∑
σ

∑
k

gσp

{
〈ψ†σkψσk+pb

†
p〉t − 〈ψ

†
σk+pψσkbp〉t

}
(2.28)

and

i
d

dt
〈b−pbp〉t = {ωp + ω−p} 〈b−pbp〉t (2.29)

+
∑
σ

∑
k

gσp

{
〈ψ†σk−pψσkb−p〉t + 〈ψ†σk+pψσkbp〉t

}
.

The number of one-particle density functions〈ψ†λ1l
ψλ2l〉t, 〈b†pbp〉t and 〈b−pbp〉t

which have to be taken into account when solving the kinetic equations increases lin-
early with the system sizeN . On the other hand, the number of first order phonon-
assisted density functions increases withN2 while the number of the other electronic
density functions which appear in Equations2.16to 2.29increases with an exponent
which is even larger. In order to keep the influence of the finite-size effects small, it
is therefore necessary to truncate the system of kinetic equations at the present level.
Consequently, the correlation functions in the last three lines of Equation2.23and the
last two lines of Equation2.24are not taken into account explicitly in the following
calculations. However, the influence of some of theses functions can be considered
approximately in the form of correction terms. This will be explained in Section2.3in
detail.

2.3 Higher Order Corrections

Several studies have shown that the one-particle densities can exhibit an unphysical
time behavior, if the approximated quantum kinetic equations which have been derived
in Section2.2 are used for the description of the dynamics [36, 38]. For example,
the electron distribution functions can become negative or larger than unity. In order
to avoid this, it is necessary to consider correlation functions of higher order. As
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mentioned above, however, the system of differential equations would become too
large for numerical calculations, if they were taken into account explicitly. For this
reason they are only included implicitly in Equation2.22with the help of correction
terms

i
d

dt
〈ψ†λ1l+p

ψλ2lbp〉t = · · · +
{
δελ2;l − δε∗λ1;l+p

}
〈ψ†λ1l+p

ψλ2lbp〉t (2.30)

where the functionsδεc;l andδεv;l will be defined below.
These correction terms are derived from the correlated parts of the second order

phonon-assisted density functions which appear in the complete kinetic equation for
the first order phonon-assisted densities:

i
d

dt
〈ψ†λ1l+p

ψλ2lbp〉t = · · ·+
∑
q 6=0

gλ2
q

{
〈ψ†λ1l+p

ψλ2l−qbqbp〉ct + 〈ψ†λ1l+p
ψλ2l+qb

†
qbp〉ct

}
−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l+p+q

ψλ2lbqbp〉ct + 〈ψ†λ1l+p−qψλ2lb
†
qbp〉ct

}
.

(2.31)

The kinetic equations for the functions which appear on the right-hand side of Equa-
tion 2.31are listed in AppendixA. If they were considered explicitly in the numerical
calculations, the computing time would increase with the third power of the size of
the system and it would become difficult to compute the dynamics of realistic models.
However, the qualitative influence of the correlated parts of the second order phonon-
assisted densities can be estimated, if their time behavior is calculated with the help
of simplified versions of the corresponding kinetic equations. In order to obtain these
simplified equations, the exact kinetic equations are approximated in three steps. First
the contributions which are due to the electron-electron interaction and the interac-
tion between the electrons and the external field are neglected entirely. In a second
step, all incoherent contributions are omitted. That means that only those terms which
are proportional to〈ψ†λ1l+p

ψλ2lbp〉t are taken into account. The approximated kinetic
equations for the functions which appear in the first line of Equation2.31then read

i
d

dt
〈ψ†λ1l+p

ψλ2l−qbqbp〉t ≈ {ωp + ωq + ελ2;l−q − ελ1;l+p} 〈ψ†λ1l+p
ψλ2l−qbqbp〉t (2.32)

+ gλ2
q

{
〈b†qbq〉t + 〈b−qbq〉t + 1− 〈ψ†λ2l−qψλ2l−q〉t

}
〈ψ†λ1l+p

ψλ2lbp〉t

and

i
d

dt
〈ψ†λ1l+p

ψλ2l+qb
†
qbp〉t ≈ {ωp − ωq + ελ2;l+q − ελ1;l+p} 〈ψ†λ1l+p

ψλ2l+qb
†
qbp〉t (2.33)

+ gλ2
q

{
〈b†qbq〉t + 〈b†qb

†
−q〉t + 〈ψ†λ2l+q

ψλ2l+q〉t
}
〈ψ†λ1l+p

ψλ2lbp〉t
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whereas the correlation functions in the second line of Equation2.31satisfy the equa-
tions

i
d

dt
〈ψ†λ1l+p+q

ψλ2lbqbp〉t ≈ {ωp + ωq + ελ2;l − ελ1;l+p+q} 〈ψ†λ1l+p+q
ψλ2lbqbp〉t (2.34)

− gλ1
q

{
〈b†qbq〉t + 〈b−qbq〉t + 〈ψ†λ1l+p+q

ψλ1l+p+q〉t
}
〈ψ†λ1l+p

ψλ2lbp〉t

and

i
d

dt
〈ψ†λ1l+p−qψλ2lb

†
qbp〉t ≈ {ωp − ωq + ελ2;l − ελ1;l+p−q} 〈ψ†λ1l+p−qψλ2lb

†
qbp〉t (2.35)

− gλ1
q

{
〈b†qbq〉t + 〈b†qb

†
−q〉t + 1− 〈ψ†λ1l+p−qψλ1l+p−q〉t

}
〈ψ†λ1l+p

ψλ2lbp〉t.

In the third step, the two-operator expectation values in Equations2.32 to 2.35 are
replaced by their initial values〈ψ†λlψλl〉t0 = δλ;v, 〈b†pbp〉t0 = nB(ωLO) and〈b−pbp〉t0 =
0. This approximation is justified, if the excitation of the semiconductor by the external
field does not lead to considerable changes of the electron and phonon distributions.
After the resulting differential equations have been integrated, the two expressions
which appear on the right-hand side of Equation2.31satisfy the following relations∑

q 6=0

gλ2
q

{
〈ψ†λ1l+p

ψλ2l−qbqbp〉ct + 〈ψ†λ1l+p
ψλ2l+qb

†
qbp〉ct

}
(2.36)

=

∫ t

t0

dτXλ2;l(t− τ)e−i{ωp+ελ2;l−ελ1;l+p}(t−τ)〈ψ†λ1l+p
ψλ2lbp〉τ

and

−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l+p+q

ψλ2lbqbp〉ct + 〈ψ†λ1l+p−qψλ2lb
†
qbp〉ct

}
(2.37)

= −
∫ t

t0

dτX∗λ1;l+p(t− τ)e−i{ωp+ελ2;l−ελ1;l+p}(t−τ)〈ψ†λ1l+p
ψλ2lbp〉τ

where the form of the memory functions is determined by the equation

Xλ;l(t) = (−i)
∑
q 6=0

gλq g
λ
q {nB(ωLO) + δλ;c} e−i{ελ;l+q−ελ;l+ωq}t (2.38)

+ (−i)
∑
q 6=0

gλq g
λ
q {nB(ωLO) + δλ;v} e−i{ελ;l+q−ελ;l−ωq}t.

If the thermodynamic limit is performed(N →∞), the functionXλ;l reads

Xλ;l(t) = (−i) {nB(ωLO) + δc;λ}
g2

2π

∫ π

−π
dqe−i{ελ;q−ελ;l+ωLO}t (2.39)

+ (−i) {nB(ωLO) + δv;λ}
g2

2π

∫ π

−π
dqe−i{ελ;q−ελ;l−ωLO}t.
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The integrals can be calculated explicitly and one obtains the following compact ex-
pressions

Xc;l(t) = (−i)g2e−i2tc cos(l)tJ0(2tct)
{
{nB(ωLO) + 1} e−iωLOt + nB(ωLO)e+iωLOt

}
(2.40)

and

Xv;l(t) = (−i)g2e+i2tv cos(l)tJ0(2tvt)
{
nB(ωLO)e−iωLOt + {nB(ωLO) + 1} e+iωLOt

}
(2.41)

whereJ0 denotes the Bessel function of the first kind of order0. For large values oft
the memory functionXλ;l(t) oscillates harmonicly with an amplitude which decreases
like the inverse square oft.

Each of the integrals in Equations2.36and2.37contains a fast oscillating expo-
nential factor which compensates the free oscillations of the first order phonon-assisted
densities. Consequently, the product of both terms is generally slowly variable in com-
parison with the functionXλ;l(t). Motivated by this fact, the Markov approximation
is applied and the slowly varying parts of the integrals are evaluated atτ = t. The
resulting expressions can be simplified by replacing the time-dependent integrals with
the time-independent constants

δελ;l = lim
t0→−∞

∫ t

t0

dτXλ;l(t− τ) (2.42)

since the first order phonon-assisted density functions only differ from zero fort & 0
whereast0 � 0. Forλ = c the time-independent correction term for the one-particle
energies satisfies the equation

δεc;l = θ(εc;l + ωLO −∆− 4tc)
g2nB(ωLO)√

(ωLO − 2tc cos(l))2 − 4t2c
(2.43)

− θ(ωLO + ∆− εc;l)
g2{1 + nB(ωLO)}√

(ωLO + 2tc cos(l))2 − 4t2c

− iθ(4tc + ∆− ωLO − εc;l)
g2nB(ωLO)√

4t2c − (ωLO − 2tc cos(l))2

− iθ(εc;l − ωLO −∆)
g2{1 + nB(ωLO)}√

4t2c − (ωLO + 2tc cos(l))2
.

The corresponding expression forδεv;l can be calculated easily sinceXv;l(t) has the
same structure as−X∗c;l(t).

In Figure2.1 the functionδεc;k has been plotted for the temperatureskBT = 0
andkBT = 0.4ωLO and different quasi momentak in order to obtain an impression of
its form. Since the only scattering processes at zero temperature are phonon emission
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processes the imaginary part ofδεc;k, which is responsible for the damping of the dy-
namics of the first order phonon-assisted densities, vanishes, if the one-particle energy
εc;k is smaller than the threshold energy∆ +ωLO where the absolute value of the func-
tion δεc;k diverges. If the temperature is nonzero, it is possible to observe an additional
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Figure 2.1: The correction termδεc;k for kBT = 0 andkBT = 0.4ωLO

threshold singularity at4tc + ∆ − ωLO which is due to the phonon absorption pro-
cesses. These processes are also responsible for the appearance of the small negative
imaginary part below the phonon emission threshold. Apart from these features the
form of δεc;k is still similar to the corresponding function forkBT = 0 since the Bose
factornB(ωLO) for kBT = 0.4ωLO is considerably smaller than unity.

The divergence of the functionδεc;k at the threshold energies for the emission and
absorption processes can be explained by the fact that the corresponding contributions
to Xc;k(t) contain no oscillating factor which could guarantee the convergence of the
integral in Equation2.42. If the one-particle energyεc;k is located in the vicinity of
one of the threshold singularities, the weight of the memory functionXc;k(t) is shifted
towardst = −∞ and the usage of the Markov approximation poses a fundamental
problem since the slowly varying factors which appear in the integrands in Equations
2.36and2.37cannot simply be evaluated att = τ anymore.

Numerical simulations, however, have shown that the behavior of the correction
terms near the thresholds has only a minor impact on the dynamics of the system,
as long as the real parts ofδεc;k and δεv;k are neglected. For this reason, only the
imaginary parts of the correction terms will be used in the following calculations in
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accordance with the usual procedure in the literature [36, 43, 58]. It will turn out that
they suffice to avoid the unphysical results mentioned at the beginning of this section.
A more consistent solution of the whole problem might be obtained, if the complete
Non-Markovian expressions in Equations2.36and2.37were used.

2.4 Green’s Function Approach

Non-equilibrium properties of many-body systems have been described with the help
of real-time Green’s function techniques since the beginning of the 1960s when Martin
and Schwinger [4], Keldysh [8] and Kadanoff and Baym [5] developed the underlying
formalism. During the last decade these techniques were employed extensively in or-
der to study the dynamics of the interband polarization and the carrier distribution in
semiconductors which are excited by strong ultrafast laser pulses [43]. In this section
the description of the ultrafast time behavior of semiconductors on the basis of the
non-equilibrium Green’s function theory is outlined. The kinetic equations which are
derived within the framework of this theory can then be compared with the approxi-
mated equations-of-motion from Section2.2.

The unitary time-evolution operator, which determines the dynamics of the system,
satisfies the differential equation

i
d

dt
U(t, t0) = H(t)U(t, t0) (2.44)

with the initial condition

U(t0, t0) = 1. (2.45)

where the Hamiltonian

H(t) = H̃(t) + V (2.46)

has already been presented in Section2.1. The first operator on the right-hand side of
Equation2.46

H̃(t) = He(t) +H0
ph (2.47)

contains all one-particle contributions while the second operator

V = Heph +Hee (2.48)

describes the interaction between electrons and phonons. Within the framework of
the time-dependent perturbation theory the time-evolution operator can be written as
follows

U(t, t0) = Ũ(t, t0)T
[
e
−i
∫ t
t0
dτṼ (τ)

]
(2.49)
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whereŨ(t, t0) is the time-evolution operator for the non-interacting particles whileṼ
denotes the operatorV in the interaction picture with respect tõH(t). The expression
T [...] represents the time-ordering operator which arranges the operators so that the
operator with the latest time stands farthest to the left. IfO is an arbitrary operator of
the many-body-system, the following equation

O(t) = U †(t, t0)OU(t, t0) = TC

[
Õ(t)e−i

∫
C dτṼ (τ)

]
(2.50)

holds. The integration is now performed along the Keldysh contourC which runs
parallel to the real time axis fromt0 to t and back (see Figure2.2). The contour-
ordering-operatorTC acts likeT , but here the order is based on the position of the time
variables on the Keldysh contour.

t

t
0

2

t1

Figure 2.2: The Keldysh contourC

The distribution functions for the electrons in the two bands and the inter-band
polarization can be calculated with the help of the electron Green’s function

Gλ1λ2;l(t1, t2) = (−i)〈TC[ψλ1l(t1)ψ†λ2l
(t2)]〉 (2.51)

while the phonon distribution function is related to the Green’s function

Dp(t1, t2) = (−i)〈TC[bp(t1)b†p(t2)]〉. (2.52)

If the field operators which appear in Equations2.51and2.52are expressed with the
help of the perturbative expansion from Equation2.50, the following two relations

Gλ1λ2;l(t1, t2) = (−i)〈TC[ψ̃λ1l(t1)ψ̃†λ2l
(t2)e−i

∫
C dτṼ (τ)]〉 (2.53)

and

Dp(t1, t2) = (−i)〈TC[b̃p(t1)b̃†p(t2)e−i
∫
C dτṼ (τ)]〉 (2.54)

are obtained. In general, the expectation values of the products of field operators which
appear on the right-hand sides of Equations2.53and2.54cannot be decomposed into
products of the two-time Green’s functions from Equations2.51and2.52because the
statistical operator which describes the state of the many-body system at the initial time
t0 does not allow the application of Wick’s theorem. In that case the initial values of the
higher order correlation functions have to be taken into account when calculating the
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different terms of the perturbation series [37]. Fortunately, a Wick decomposition of
all expectation values is possible within the framework of the model which is discussed
here. This is due to the fact that the statistical operator for the phonon subsystem from
Equation2.15is quadratic with respect to the operatorsbp andb†p while the initial state
of the electron system is the free many-body ground state. Consequently, all techniques
which have been developed for the calculation of equilibrium Green’s functions can
also be applied here.

The Green’s function for the electrons then satisfies the following Dyson equations

Gλ1λ2;l(t1, t2) = G̃λ1λ2;l(t1, t2) +
∑
σ1σ2

∫
C
dτG̃λ1σ1;l(t1, τ)Σδ

σ1σ2;l(τ)Gσ2λ2;l(τ, t2)

+
∑
σ1σ2

∫
C
dτ1

∫
C
dτ2G̃λ1σ1;l(t1, τ1)Σσ1σ2;l(τ1, τ2)Gσ2λ2;l(τ2, t2) (2.55)

and

Gλ1λ2;l(t1, t2) = G̃λ1λ2;l(t1, t2) +
∑
σ1σ2

∫
C
dτGλ1σ1;l(t1, τ)Σδ

σ1σ2;l(τ)G̃σ2λ2;l(τ, t2)

+
∑
σ1σ2

∫
C
dτ1

∫
C
dτ2Gλ1σ1;l(t1, τ1)Σσ1σ2;l(τ1, τ2)G̃σ2λ2;l(τ2, t2) (2.56)

whereG̃λ1λ2;l(t1, t2) denotes the free Green’s function for non-interacting electrons. If
the electron-hole interaction is taken into account within the framework of the Hartree-
Fock approximation, the singular part of the self-energy satisfies the equation

Σδ
λ1λ2;l(t) = δλ1;λ2

∑
σ

Vλ1σ(0)
∑
k

〈ψ†σkψσk〉t −
∑
k

Vλ1λ2(|l − k|)〈ψ†λ2k
ψλ1k〉t.

(2.57)

The two terms on the right-hand side of Equation2.57are already known from Section
2.2where they were introduced as Coulomb corrections to the one-particle energy ma-
trix in Equation2.17. If the electron-phonon interaction is treated in the self-consistent
second order Born approximation, the non-singular part of the self-energy reads

Σλ1λ2;l(t1, t2) =
∑
q 6=0

gλ1
q g

λ2
q iGλ1λ2;l−q(t1, t2) {Dq(t1, t2) +D−q(t2, t1)} . (2.58)

In Figure2.3 the diagrammatic representation of Equation2.55is depicted where
the thick solid lines and the thick dashed lines denote the complete Green’s functions
for the electrons and phonons respectively whereas the thin lines denote the corre-
sponding free Green’s functions. The second and the third diagram on the right-hand
side of the equation are the Hartree-Fock contributions of the electron-electron inter-
action, which is represented by the dotted lines. The fourth and the fifth diagram are
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Figure 2.3: The Dyson equation for the Green’s function of the electrons

due to the self-energy function from Equation2.58. The corresponding diagrammatic
representation for Equation2.56 is obtained by replacing the external free Green’s
functions in the interaction diagrams with complete ones and vice versa.

The dynamics of the Green’s function for the phonons can be determined by means
of the following Dyson equations

Dp(t1, t2) = D̃p(t1, t2) +

∫
C
dτ1

∫
C
dτ2D̃p(t1, τ1)Πp(τ1, τ2)Dp(τ2, t2) (2.59)

and

Dp(t1, t2) = D̃p(t1, t2) +

∫
C
dτ1

∫
C
dτ2Dp(t1, τ1)Πp(τ1, τ2)D̃p(τ2, t2) (2.60)

where the polarization functionΠp satisfies the relation

Πp(t1, t2) = −
∑
σ1σ2

gσ1
p g

σ2
p

∑
k

iGσ1σ2;k(τ1, τ2)Gσ2σ1;k−q(τ2, τ1) (2.61)

within the framework of the self-consistent Born approximation.The diagrams which
correspond to the two terms in Equation2.59are depicted in Figure2.4.

t2 t1
=

t2 t1
+

t2 τ2 τ1 t1

Figure 2.4: The Dyson equation for the Green’s function of the phonons

The differential form of the Dyson equations can now be used for the derivation
of a set of equations-of-motions for the density functions which is similar to the one
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which has been presented in Section2.2. In the case of the Green’s function of the
electrons the differential equations read

i
d

dt1
Gλ1λ2;l(t1, t2) = δλ1;λ2δC(t1, t2) +

∑
σ

ε̃λ1σ;l(t1)Gσλ2;l(t1, t2)

+
∑
σ

∫
C
dτΣλ1σ;l(t1, τ)Gσλ2;l(τ, t2) (2.62)

and

i
d

dt2
Gλ1λ2;l(t1, t2) = −δλ1;λ2δC(t1, t2)−

∑
σ

ε̃σλ2;l(t2)Gλ1σ;l(t1, t2)

−
∑
σ

∫
C
dτGλ1σ;l(t1, τ)Σσλ2;l(τ, t2). (2.63)

If Equations2.62 and 2.63 are combined, the following equation for the electronic
densities

i
d

dt
〈ψ†λ2l

ψλ1l〉t =
∑
σ

{
ε̃λ1σ;l(t)〈ψ†λ2l

ψσl〉t − ε̃σλ2;l(t)〈ψ†σlψλ1l〉t
}

(2.64)

+ (−i)
∑
σ

∫ t

t0

dτ
{

Σ>
λ1σ;l(t, τ)G<

σλ2;l(τ, t)− Σ<
λ1σ;l(t, τ)G>

σλ2;l(τ, t)
}

− (−i)
∑
σ

∫ t

t0

dτ
{
G>
λ1σ;l(t, τ)Σ<

σλ2;l(τ, t)−G<
λ1σ;l(t, τ)Σ>

σλ2;l(τ, t)
}

can be derived [43]. The corresponding equation for the density functions of the
phonons is given by

i
d

dt
〈b†pbp〉t = (−i)

∫ t

t0

dτ
{
D>
p (t, τ)Π<

p (τ, t)−D<
p (t, τ)Π>

p (τ, t)
}

(2.65)

− (−i)
∫ t

t0

dτ
{

Π>
p (t, τ)D<

p (τ, t)− Π<
p (t, τ)D>

p (τ, t)
}
.

Unfortunately, this system of differential equations for the one-particle densities is not
closed since the integrals on the right-hand sides of Equations2.64and2.65contain
two-time Green’s functions. In order to obtain a closed set of equations-of-motion
for the density functions, it is necessary to eliminate the two-point Green’s functions
by means of an approximation method which is usually called Generalized Kadanoff-
Baym Ansatz [18]. If this method is employed, the two-point Green’s functions for the
electrons are approximated with the help of the two relations

G<
λ1λ2;l(t1, t2) ≈

∑
σ

{
〈ψ†σlψλ1l〉t1Ga

σλ2;l(t1, t2)−Gr
λ1σ;l(t1, t2)〈ψ†λ2l

ψσl〉t2
}

(2.66)
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and

G>
λ1λ2;l(t1, t2) ≈

∑
σ

{
Gr
λ1σ;l(t1, t2)〈ψσlψ†λ2l

〉t2 − 〈ψλ1lψ
†
σl〉t1G

a
σλ2;l(t1, t2)

}
(2.67)

while the corresponding Green’s functions for the phonons are replaced by the expres-
sions

D<
p (t1, t2) ≈ Dr

p(t1, t2)〈b†pbp〉t2 − 〈b†pbp〉t1Da
p(t1, t2) (2.68)

and

D>
p (t1, t2) ≈ Dr

p(t1, t2)〈bpb†p〉t2 − 〈bpb†p〉t1Da
p(t1, t2). (2.69)

The retarded and advanced Green’s functions which appear in Equations2.66and2.67
satisfy the equations

Gr
λ1λ2;l(t1, t2) = (−i)θ(t1 − t2)

{
〈ψλ1l(t1)ψ†λ2l

(t2)〉+ 〈ψ†λ2l
(t2)ψλ1l(t1)〉

}
(2.70)

and

Ga
λ1λ2;l(t1, t2) = (+i)θ(t2 − t1)

{
〈ψλ1l(t1)ψ†λ2l

(t2)〉+ 〈ψ†λ2l
(t2)ψλ1l(t1)〉

}
. (2.71)

The corresponding definitions for the phonon propagatorsDr andDa read

Dr
p(t1, t2) = (−i)θ(t1 − t2)

{
〈bp(t1)b†p(t2)〉 − 〈b†p(t2)bp(t1)〉

}
(2.72)

and

Da
p(t1, t2) = (+i)θ(t2 − t1)

{
〈bp(t1)b†p(t2)〉 − 〈b†p(t2)bp(t1)〉

}
. (2.73)

The Generalized Kadanoff-Baym Ansatz gives the exact result, if the particles do not
interact with each other. Otherwise the expressions in Equations2.66to 2.69can be
interpreted as the first terms in a perturbative expansion of the exact Green’s functions
where the correction terms take additional memory effects into account [18, 43].

The time behavior of the retarded and the advanced Green’s function for the elec-
trons is determined by the following differential equations

i
d

dt1
Gr
λ1λ2;l(t1, t2) = δλ1;λ2δ(t1 − t2) +

∑
σ

ε̃λ1σ;l(t1)Gr
σλ2;l(t1, t2) (2.74)

+
∑
σ

∫ t1

t2

dτΣr
λ1σ;l(t1, τ)Gr

σλ2;l(τ, t2)

and

i
d

dt2
Ga
λ1λ2;l(t1, t2) = −δλ1;λ2δ(t1 − t2)−

∑
σ

ε̃σλ2;l(t2)Ga
λ1σ;l(t1, t2) (2.75)

−
∑
σ

∫ t2

t1

dτΣa
σλ2;l(τ, t2)Ga

λ1σ;l(t1, τ).
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The derivation of these equations proceeds in the same way as the derivation of the
corresponding expressions for the complete Green’s function in Equations2.62 and
2.63. Instead of solving the full equations self-consistently, however, the retarded
and the advanced self-energy, which appear as memory kernels in the integrals on the
right-hand sides of Equations2.74and2.75, are approximated by the corresponding
free expressions

Σr;0
λ1λ2;l(t1, t2) = θ(t1 − t2)δλ1;λ2e

−iελ1;l{t1−t2}Xλ1;l(t1 − t2) (2.76)

and

Σa;0
λ1λ2;l(t1, t2) = θ(t2 − t1)δλ1;λ2e

iελ1;l{t2−t1}X∗λ1;l(t2 − t1). (2.77)

Consequently, the integrals from Equations2.74and2.75, which describe the influence
of the phonons on the electron relaxation, satisfy the following equations∑
σ

∫ t1

t2

dτΣr
λ1σ;l(t1, τ)Gr

σλ2;l(τ, t2) ≈
∫ t1

t2

dτXλ1;l(t1 − τ)e−iελ1;l{t1−τ}Gr
λ1λ2;l(τ, t2)

(2.78)

and∑
σ

∫ t2

t1

dτΣa
σλ2;l(τ, t2)Ga

λ1σ;l(t1, τ) ≈
∫ t2

t1

dτX∗λ2;l(t2 − τ)eiελ2;l{t2−τ}Ga
λ1λ2;l(t1, τ).

(2.79)

They have a similar structure as the integrals in Equations2.36and2.37where the fast
oscillating exponential factors in the integrands compensate the free oscillating parts of
the retarded and the advanced Green’s function. It is now possible to perform the same
approximations as in Section2.3which lead to the renormalization of the one-electron
eigenenergies and the appearance of damping terms. As far as the retarded and the
advanced phonon Green’s function are concerned, it is assumed that the influence of
the electrons can be neglected entirely and that the full propagators can be replaced by
the free ones.

After having performed these approximations the kinetic equations for the elec-
tronic density functions have a similar form as the expression in Equation2.16, if the
electron-electron scattering corrections are neglected. However, the first order phonon-
assisted densities are now defined by the relation

〈ψ†λ1l+p
ψλ2lbp〉t =

∑
%1%2

∫ t

t0

dτDr
p(t, τ)Gr

λ2%2;l(t, τ)Ga
%1λ1;l+p(τ, t) (2.80)

× {g%2
p 〈ψ

†
%1l+p

ψ%2l+p〉τ − g%1
p 〈ψ

†
%1l
ψ%2l〉τ}〈b†pbp〉τ

+
∑
%1%2

∫ t

t0

dτDr
p(t, τ)Gr

λ2%2;l(t, τ)Ga
%1λ1;l+p(τ, t)

× {g%2
p 〈ψ

†
%1l+p

ψ%2l+p〉τ −
∑
σ

gσp 〈ψ
†
%1l+p

ψσl+p〉τ 〈ψ†σlψ%2l〉τ}.
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By differentiating both sides with respect tot the following kinetic equation

i
d

dt
〈ψ†λ1l+p

ψλ2lbp〉t = ωp〈ψ†λ1l+p
ψλ2lbp〉t (2.81)

+
∑
σ

{
ε̃λ2σ;l(t)〈ψ†λ1l+p

ψσlbp〉t − ε̃σλ1;l+p(t)〈ψ†σl+pψλ2lbp〉t
}

+
{
gλ2
p 〈ψ

†
λ1l+p

ψλ2l+p〉t − gλ1
p 〈ψ

†
λ1l
ψλ2l〉t

}
〈b†pbp〉t

+ gλ2
p 〈ψ

†
λ1l+p

ψλ2l+p〉t −
∑
σ

gσp 〈ψ
†
λ1l+p

ψσl+p〉t〈ψ†σlψλ2l〉t

+
{
δελ2;l − δε∗λ1;l+p

}
〈ψ†λ1l+p

ψλ2lbp〉t

can be obtained. The time behavior of the phonon distribution function which appears
on the right-hand side of Equation2.81is determined by the same differential equation
as in Section2.2.

The system of kinetic equations which has been derived in this section corresponds
to a system of kinetic equations which has been derived by means of the equations-
of-motion method, if the electron-electron interaction is treated within the framework
of the Hartree-Fock approximation [36]. In comparison with the results from Sec-
tion 2.2 two differences can be observed. First, the products of first order phonon-
assisted densities and ordinary electronic densities which appear in the collision term
δ〈ψ†λ1l+p

ψλ2lbp〉ee in Equation2.24do not appear on the right-hand side of Equation
2.81. In the language of Feynman diagrams these terms can be identified as corrections
to the electron-phonon interaction vertex which are due to multiple electron-electron
scattering processes [54]. In addition to that the two phonon coherence〈b−pbp〉t is
missing. However, the absolute value of this function is usually small in compari-
son with the phonon distribution function. Therefore the omission of the two phonon
coherence should not alter the dynamics of the system significantly. In this context
it should also be mentioned that the time behavior of the phonon functions is often
neglected completely by replacing the time dependent functions with their initial val-
ues [36, 43] without changing the results of the numerical calculations substantially.
The consequences of the neglect of the vertex corrections, however, have not been
the object of a closer investigation, yet. In the following, the dynamics of the system
will therefore be calculated by using the kinetic equations from Section2.2 with and
without vertex corrections in order to find out if significant differences exist between
them.

2.5 Linear Response

It turns out to be useful to linearize the kinetic equations from Section2.2with respect
toE(t) in order to achieve a better understanding of the influence of the vertex correc-
tions. Within this approximation only the off-diagonal elements of the density matrix
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are dynamical quantities. The time behavior of the polarization〈ψ†vlψcl〉t is determined
by the relation

i
d

dt
〈ψ†vlψcl〉t =

{
εc;l − εv;l +

∑
k

{Vvv(|k|) + Vcv(0)− Vvv(0)}
}
〈ψ†vlψcl〉t

−
∑
k

Vcv(|l − k|)〈ψ†vkψck〉t − dE(t)

+
∑
q 6=0

{
gcq〈ψ

†
vlψcl−qbq〉t − g

v
q 〈ψ

†
vl+qψclbq〉t

}
+
∑
q 6=0

{
gcq〈ψ

†
vlψcl+qb

†
q〉t − gvq 〈ψ

†
vl−qψclb

†
q〉t
}
. (2.82)

The first order phonon-assisted densities which appear as source terms on the right-
hand side of Equation2.82satisfy the equations

i
d

dt
〈ψ†vl−pψclb

†
p〉t = −ωLO〈ψ†vl−pψclb

†
p〉t (2.83)

+
{
εc;l − εv;l−p +

∑
k

{Vvv(|k|) + Vcv(0)− Vvv(0)}
}
〈ψ†vl−pψclb

†
p〉t

+ nB(ωLO)
{
gcp〈ψ

†
vl−pψcl−p〉t − g

v
p〈ψ

†
vlψcl〉t

}
−
∑
k

Vcv(|l − k|)〈ψ†vk−pψckb
†
p〉t

and

i
d

dt
〈ψ†vl+pψclbp〉t = ωLO〈ψ†vl+pψclbp〉t (2.84)

+
{
εc;l − εv;l+p +

∑
k

{Vvv(|k|) + Vcv(0)− Vvv(0)}
}
〈ψ†vl+pψclbp〉t

+
{

1 + nB(ωLO)
}{

gcp〈ψ
†
vl+pψcl+p〉t − g

v
p〈ψ

†
vlψcl〉t

}
−
∑
k

Vcv(|l − k|)〈ψ†vk+pψckbp〉t

where the correction terms have been omitted since they would not affect the results
of the following investigations. The optical states with no center-of-mass momen-
tum 〈ψ†vlψcl〉t are coupled to the two subspaces which are formed by the so-called
dark states〈ψ†vl+pψclbp〉t and 〈ψ†vl−pψclb†p〉t by phonon emission and absorption pro-
cesses respectively. While the Hartree-Fock contributions lead to a constant shift of
the free one-particle energies the vertex corrections are responsible for the last terms
on the right-hand sides of Equation2.83and Equation2.84which are necessary for
the correct description of the excitonic scattering dynamics in the two dark subspaces.
Without them the pairs of conduction electrons and valence holes with a non-vanishing
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center-of-mass momentum would be treated as non-interacting particles unlike the op-
tically excited electron-hole pairs.

The kinetic equations for the first order phonon-assisted densities are equivalent to
the following integral equations

〈ψ†vl+pψclbp〉t = (−i) g√
N

{
1 + nB(ωLO)

}
(2.85)

×
∑
k

∫ t

t0

dτ
{
G+
l;k−p(p; t− τ)−G+

l;k(p; t− τ)
}
〈ψ†vkψck〉τ

and

〈ψ†vl−pψclb
†
p〉t = (−i) g√

N
nB(ωLO) (2.86)

×
∑
k

∫ t

t0

dτ
{
G−l;k+p(p; t− τ)−G−l;k(p; t− τ)

}
〈ψ†vkψck〉τ .

The Green’s functions in Equations2.85and2.86describe the dynamics of the first or-
der phonon-assisted densities in the absence of the electron-phonon interaction. They
obey the following differential equation

i
d

dt
G±l1;l2

(p; t) =
∑
k

Ω±l1;k(p)G
±
k;l2

(p; t) (2.87)

with the initial condition

G±l1;l2
(p; 0) = δl1;l2 . (2.88)

If the long-range part of the electron-electron interaction in Equation2.11vanishes,
the matrix elements read

Ω±l1;l2
(p) = δl1;l2{E(l1,±p)± ωLO} −

U

N
. (2.89)

The functionE(l, p) is defined by the relation

E(l, p) = εc;l − εv;l+p + U (2.90)

= EG(U)− T (p) cos(l + ϕ(p))

and describes the energy of an excited electron-hole pair whose total momentum is
equal to−p where the band gap is shifted because of the electron-electron interaction.
The generalized hopping elementT (p) and the phase shift functionϕ(p) satisfy the
equations

T (p) = 2
√
t2v + t2c + 2tctv cos(p) (2.91)
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and

ϕ(p) = arctan

(
tv sin(p)

tc + tv cos(p)

)
(2.92)

while the functionEG(U), which determines the position ofE(l, p) in the energy spec-
trum, is given by

EG(U) = 2tc + 2tv + ∆ + U. (2.93)

In order to solve the differential equation forG±l1;l2
(p; t), it is sufficient to solve the

corresponding eigenvalue problem for a conduction electron and a valence hole in the
presence of an attractive interaction. If the interaction function has only an on-site
component, the eigenenergies and eigenstates can be calculated analytically and the
explicit form of the Green’s functions is known:

G+
l1;l2

(p; t) = e−iωLOtGl1;l2(p; t) = e−iωLOt〈l1, p|e−itH(p)|l2, p〉, (2.94)

G−l1;l2
(p; t) = e+iωLOtGl1;l2(−p; t) = e+iωLOt〈l1,−p|e−itH(p)|l2,−p〉. (2.95)

The definitions for the expressions which appear on the right-hand sides of Equations
2.94and2.95can be found in AppendixB together with the complete analytical so-
lution of the eigenvalue problem. If the long-range interaction parameterŨ did not
vanish, the differential equation for the Green’s functions could only be solved numer-
ically.

If the first order phonon-assisted densities in the differential equation for the in-
terband polarization are replaced by the expressions which appear on the right-hand
sides of Equations2.85 and2.86, the following integro-differential equation for the
components of the interband polarization

i
d

dt
〈ψ†vlψcl〉t = E(l, 0)〈ψ†vlψcl〉t −

U

N

∑
k

〈ψ†vkψck〉t − dE(t) (2.96)

+
∑
k

∫ ∞
−∞

dτS̄l;k(t− τ)〈ψ†vkψck〉τ

is obtained in the limitt0 → −∞ where the memory function̄Sl1;l2(t) satisfies the
relation

S̄l1;l2(t) = (−i)g
2

N

{
{1 + nB(ωLO)}e−iωLOt + nB(ωLO)eiωLOt

}
θ(t) (2.97)

×
∑
q 6=0

{Gl1;l2(q; t) +Gl1−q;l2−q(q; t)−Gl1−q;l2(q; t)−Gl1;l2−q(q; t)} .

The first three terms on the right-hand side of Equation2.96describe the undamped
dynamics of an optically excited electron-hole pair with a vanishing center-of-mass
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momentum while the last term is responsible for the decay of the excited state due to
phonon emission and absorption processes.

The expression in Equation2.96 could be used as a starting point for a detailed
numerical calculation of the linear response of the semiconductor. However, since the
interest is mainly focused on the effect of the vertex corrections, the integro-differential
equation for the interband polarization is now solved analytically by neglecting all
contributions to the polarization which come from the continuum states. Then the
dynamics of the components of the interband polarization only depends on the time
behavior of the excitonic state

〈ψ†vlψcl〉t = Φex
l Pex(t) (2.98)

where the definition for the vector components of the excitonic eigenstate can be found
in AppendixB. By means of Equation2.96 the following identity for the excitonic
polarization

Pex(t) = d
∑
k

Φex
k

∫ t

−∞
dτχ̄ex(t− τ)E(τ) (2.99)

can be derived. The excitonic susceptibilityχ̄ex(t) satisfies the differential equation

i
d

dt
χ̄ex(t) = ωex(0)χ̄ex(t) +

∫ ∞
0

dτS̄ex(t− τ)χ̄ex(τ) (2.100)

with the initial conditionχ̄ex(0) = −1. The explicit expression for the energy of
the exciton with no center-of-mass momentumωex(0) can be found in AppendixB.
The functionS̄ex(t) is the diagonal element of the matrix̄Sl1;l2(t) with respect to the
excitonic state. It is given by

S̄ex(t) = (−i)g
2

N

{
{1 + nB(ωLO)}e−iωLOt + nB(ωLO)eiωLOt

}
θ(t) (2.101)

×
∑
q 6=0

∑
k1k2

{
Φex
k1+q − Φex

k1

}{
Φex
k2+q − Φex

k2

}
Gk1;k2(q; t).

The integro-differential equation for the susceptibilityχ̄ex(t) can be solved easily with
the help of a Fourier transformation:

χex(ω) =

∫ ∞
0

dτeiωtχ̄ex(t) = − 1

ω + i0− ωex(0)− Sex(ω + i0)
. (2.102)

If the electrons and phonons did not interact with each other, the denominator in Equa-
tion 2.102would simply describe a resonance at the exciton energyωex(0). The in-
fluence of the electron-phonon scattering processes is taken into account by the self-
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energy functionSex(ω + i0) which is defined by the relation

Sex(ω + i0) =
g2

N

∑
q 6=0

∑
k1k2

{
Φex
k1+q − Φex

k1

}{
Φex
k2+q − Φex

k2

}
× {1 + nB(ωLO)}〈k1, q|Ĝ(q;ω − ωLO + i0)|k2, q〉

+
g2

N

∑
q 6=0

∑
k1k2

{
Φex
k1+q − Φex

k1

}{
Φex
k2+q − Φex

k2

}
× nB(ωLO)〈k1, q|Ĝ(q;ω + ωLO + i0)|k2, q〉. (2.103)

This self-energy function can be split up into the contributions of the phonon emission
and the phonon absorption processes. Both contributions have the same form, only
their prefactors and their positions in the spectrum with respect toωex(0) are different.
As the spectrum of the dark states〈ψ†vl+pψclbp〉t is located above the exciton energy
their influence on the form ofχex(ω) is negligible in comparison with the influence of
the dark states〈ψ†vl−pψclb†p〉t.

In Figures2.5and2.6the functionSex(ω) has been plotted using the kinetic equa-
tions with and without vertex corrections for a system withN = 2000 elementary
cells. The model parameters are those which have already been listed in Section2.1
and the energyω is measured with respect to the renormalized band gap∆̃ = ∆ + U .
The self-energy is only depicted in the vicinity of the energyωex(0) ≈ −0.4ωLO since
the form ofχex(ω) is mainly determined by the behavior of the denominator from
Equation2.102near the exciton energy. If the self-energy is calculated with the vertex
corrections, its imaginary part exhibits a sharp peak at the energyω ≈ −0.9ωLO. This
peak denotes the position of the upper edge of the excitonic band for the dark states
which are coupled to the optically excited exciton by phonon absorption processes.
For energies which are smaller than the energy of the lower edge of this excitonic
band (ω ≈ −1.4ωLO) the imaginary part vanishes because there exist no dark states
with a smaller energy. If the vertex corrections are not taken into account, this lower
threshold for the imaginary part is shifted toω = −ωLO since the spectrum of the dark
states〈ψ†vl−pψclb†p〉t is now similar to the spectrum of a free electron-hole pair with no
excitonic resonances. The peak atω ≈ −0.4ωLO is due to the upper band edge of the
valence band. It is conspicuous that the singularity at the lower edge of the excitonic
band is not visible in Figure2.5. This is due to the fact that the differenceΦex

k+q − Φex
k

which appears as a factor in the two sums of Equation2.103vanishes continuously in
the limit q → 0. Consequently, the contributions of the excitonic states with eigenen-
ergiesωx(q) near the lower band edge (q = 0) are suppressed. A similar explanation
can be used in order to understand the missing singularity atω = −ωLO in Figure
2.6where the lower band edge of the free spectrum of the dark states〈ψ†vl−pψclb†p〉t is
located.

The effect of the self-energy corrections on the form of the susceptibility function
χex(ω) can be studied in Figure2.7where its imaginary part is plotted with and with-
out vertex corrections for two different temperatures. For comparison, the imaginary
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Figure 2.5: The excitonic self-energySex(ω) in the vicinity ofωex(0) at the tempera-
turekBT = 0.8ωLO, calculated with vertex corrections
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Figure 2.6: The excitonic self-energySex(ω) in the vicinity ofωex(0) at the tempera-
turekBT = 0.8ωLO, calculated without vertex corrections
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Figure 2.7: The imaginary part of the excitonic susceptibilityχex(ω) at the tempera-
tures a)kBT = 0.4ωLO and b)kBT = 0.8ωLO, calculated with (solid line) and without
(dashed line) vertex corrections, the dotted line denotes the imaginary part ofχex(ω)
in the absence of the electron-phonon interaction

part of the susceptibility for a free exciton is also plotted where a small broadening has
been added. If no vertex corrections are taken into account, the formation of a double
peak structure at the shifted excitonic resonance can be observed with increasing tem-
perature. This is due to the fact that the energy for the exciton with no center-of-mass
momentum nearly coincides with the energy of the upper band edge of the valence
band in the spectrum for the dark states〈ψ†vl−pψclb†p〉t. If the vertex corrections are in-
cluded, the exciton peak broadens with increasing temperature, but no splitting can be
observed since the real and the imaginary part of the self-energy are only slowly vari-
able in the vicinity ofωex(0). The resonance structure which appears below the exciton
peak is due to the singularity of the self-energy at the upper edge of the excitonic band
of the dark states (confer Figure2.5).

The explanation for the resonance structure below the excitonic energy is corrob-
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orated, if the imaginary parts of the excitonic susceptibility functions for different
electron-hole mass ratiosκ are compared (Figure2.8). In agreement with analytical
results the upper band edge is shifted towardsω = −ωLO + ωex(0) for decreasing
κ. If the hole mass is infinite, the excitonic band has no dispersion and only a sharp
resonance atω = −ωLO + ωex(0) occurs.

−2 −1.5 −1 −0.5 0
ω/ωLO

−1.5 −1 −0.5

Figure 2.8: The imaginary part of the excitonic susceptibilityχex(ω) at the temper-
aturekBT = 1.2ωLO, calculated with vertex corrections forκ = 0.15 (dotted line),
κ = 0.05 (dashed line) andκ = 0 (solid line)

In Reference [56] the imaginary part of the excitonic susceptibility function has
been calculated for the same model and the same parameters which have been used
here by solving the complete system of linear differential equations numerically with
the help of the Lanczos algorithm. The resulting curves are in good agreement with
the approximated ones from Figures2.7and2.8apart from small additional resonance
structures below the upper edge of the excitonic band for the dark states〈ψ†vl−pψclb†p〉t.
The comparison shows that the qualitative features of the linear excitonic susceptibility
are reproduced well within the framework of the diagonal approximation. In general,
this is not true [21].

The phonon emission process which is responsible for the relaxation of highly
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Figure 2.9: The imaginary part of the susceptibilityχk(ω) at the temperaturekBT =
0.4ωLO for different continuum energiesδωk = ωk − ∆̃

excited electrons can be studied more closely by calculating the susceptibility

χk(ω) = − 1

ω + i0− ωk − Sk(ω + i0)
(2.104)

for a continuum state with energyωk (confer AppendixB). The self-energy function
Sk is defined in the same way as the self-energy for the exciton, only the coefficients
for the excitonic eigenvector,Φx

l , are replaced by the corresponding coefficients for
the continuum state with energyωk, Φk

l . In Figure2.9the imaginary part ofχk(ω) has
been plotted for different energiesωk. If ωk is smaller than a characteristic threshold
energyωt, the spectral function is peaked sharply atωk. This corresponds to a slow
decay of the initial state. For energiesωk which are in the vicinity ofωt one observes a
double peak structure which is due to the strong coupling between electron and phonon
modes. Forωk � ωt the spectrum exhibits a broad Lorentzian peak atωk indicating
a fast decay of the initial state. The existence of this threshold energy shows that the
life-time of the continuum states is mainly determined by the influence of the phonon
emission processes. A fast decay of excited continuum states can only be observed, if a
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scattering into continuum states with a lower energy by phonon emission is consistent
with the classical energy conservation. For this reason, one would expectωt to be equal
to ω = ωLO + ∆ + U . The observed threshold energy, however, is located above this
energy value. This discrepancy can be explained by the fact thatχk(ω) is the spectral
function for the electron-hole pairs. Consequently, the frequencyω refers to the pair
energy and not to the energy of the conduction electrons alone.

The phenomenon of the shifted threshold energy can be explained analytically by
calculating the susceptibilityχk(ω) for non-interacting electrons (U = 0 andŨ = 0)
at zero temperature. Since the external field only excites electron-hole pairs with even
parity the components of the eigenvector which describes the optically excited state
with energyωk = E(k, 0) are defined by

Φk
l =

1√
2
{δl;k + δl;−k} . (2.105)

If the self-energy function is evaluated at the resonanceω = ωk, the susceptibility is
approximately given by

χk(ω) ≈ − 1

ω + i0− ωk − Sk(ωk + i0)
. (2.106)

In the thermodynamic limitSk(ωk + i0) satisfies the equation

Sk(ωk + i0) =
g2

2π

∫ π

−π
dq

1

ωk + i0− ωLO − εc;k+q + εv;k

+
g2

2π

∫ π

−π
dq

1

ωk + i0− ωLO − εc;k + εv;k+q

(2.107)

and the imaginary part of the self-energy is only different from zero, if one of the two
following conditions

4tc + ∆ + ωLO ≥εc;k ≥ ∆ + ωLO (2.108)

⇔ 4 {tc + tv}+ ∆ + ωLO {1 + κ} ≥ ωk ≥ ∆ + ωLO {1 + κ}

and

4tv + ωLO ≥ −εv;k ≥ ωLO (2.109)

⇔ 4 {tc + tv}+ ∆ + ωLO
{

1 + κ−1
}
≥ ωk ≥ ∆ + ωLO

{
1 + κ−1

}
is met. If the parameters from Section2.1 are used, only the first relation can be
satisfied and the threshold energy is equal toωt = ωLO{1 + κ} in agreement with the
experimental results of Reference [39].
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2.6 Nonlinear Response

If the full nonlinear quantum kinetic equations are used to describe the response of
the system to an optical pulse, all electron and phonon densities have to be calculated
explicitly in contrast to the treatment within the framework of the linear response the-
ory where only the off-diagonal elements of the density matrix show a nontrivial time
behavior. After electron-hole pairs with zero center-of-mass momentum have been cre-
ated by the laser pulse the interaction of the electron-hole pairs with the lattice leads to
the creation and absorption of phonons with energyωLO and nonzero center-of-mass
momentum electron-hole pairs. These processes are reflected in the time behavior of
the distribution functions for the electrons and the phonons.
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Figure 2.10: The electron distribution〈ψ†ckψck〉t for δωP = −0.4ωLO, calculated with
(solid line) and without (dashed line) vertex corrections

When calculating the dynamics of the semiconductor it is assumed that the electric
fieldE(t) is given by a pulse with a Gaussian profile centered att = 0:

E(t) = E(t) cos(ωP t) =
2
√
π

σ
Ãe−

t2

σ2 cos(ωP t). (2.110)
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Figure 2.11: The hole distribution〈ψvkψ†vk〉t for δωP = −0.4ωLO, calculated with
(solid line) and without (dashed line) vertex corrections

As far as the interaction of the external field with the semiconductor is concerned,
only the resonant terms ofE(t) are taken into account (rotating wave approximation).
The Gaussian pulseE(t) has a full width at half maximum of∆ω = 0.3ωLO in the
frequency representation which corresponds to a full width at half maximum of∆t =
5.3πω−1

LO = 2
√

ln 2σ in the time representation. The strength of the pulse is chosen
such that the time integral fordE(t) gives 5% of a 2π pulse which means that the
dynamics is studied in the weak nonlinear excitation regime. In order to study the
effect of the vertex corrections, the nonlinear dynamics of the system is investigated
for different detuningsδωP = ωP − ∆̃ with respect to the renormalized band gap
∆̃ = ∆ + U whose value is only affected by the on-site component of the electron-
electron interaction while a possible long-range part has no impact of the shift of the
band gap. The quantum kinetic equations are solved using an explicit Runge-Kutta
method of order four. The number of sites is set equal toN = 450. Concerning the
lattice temperature it is assumed thatkBT = 0.4ωLO.

If the excitation is tuned to the excitonic resonance (δωP = −0.4ωLO ≈ ωex(0)−
∆̃), the formation of the exciton can be recognized in the distribution functions for
the conduction electrons〈ψ†ckψck〉t in Figure2.10and for the valence holes〈ψvkψ†vk〉t
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Figure 2.12: The phonon distribution〈b†pbp〉t for δωP = −0.4ωLO, calculated with
(solid line) and without (dashed line) vertex corrections, the dotted line represents the
equilibrium distribution before the excitation

in Figure 2.11. Due to the presence of phonons in the initial state the occurrence
of an absorption peak neark = 1

4
π for 〈ψ†ckψck〉t and neark = 3

4
π for 〈ψvkψ†vk〉t

can be noticed. They result from the transition of optically excited bound electron-
hole pairs with the energyωi = ωex(0) to scattering states with the energyωf =
ωLO+ωex(0) which corresponds approximately to the free energy of an electron (hole)
with a quasi momentum ofk = 1

4
π (k = 3

4
π). This strongly suggests that the dynamics

is dominated by phonon absorption processes in which electrons and holes with a
quasi momentum near zero are involved. For larger times it is possible to observe
the appearance of additional peaks in the distribution functions for the conduction
electrons. They are located abovek = 1

4
π and can be interpreted as indicators for

multi-phonon absorption processes. All absorption processes are also reflected in the
phonon distribution function〈b†pbp〉t. As it can be seen in Figure2.12, the number
of phonons decreases in the vicinity ofk = 1

4
π andk = 3

4
π in time. If the vertex

corrections are taken into account, the absorption peak of the exciton in the electron
distribution is more pronounced while the corresponding peak in the hole distribution
is almost entirely suppressed. These observations indicate the strong influence of the
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vertex corrections on the time behavior of bound electron-hole pairs in accordance
with the results for the linear response in Section2.5
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Figure 2.13: The electron distribution〈ψ†ckψck〉t for δωP = 4.5ωLO, calculated with
(solid line) and without (dashed line) vertex corrections

If continuum states are excited (δωP > 0), two different scenarios can be observed.
In Figure2.13the conduction electron distribution is plotted for an excitation far above
the band gap (δωP = 4.5ωLO). It is possible to recognize the successive formation of
three phonon replicas below the excitation peak which is located abovek ∼= 3

4
π. The

use of the quantum kinetic equations makes it possible to describe the development of
these replicas whose width decreases with increasing time. If the Boltzmann equations
were employed for the description of the dynamics, the width of the replicas would be
identical with the width of the original excitation peak [57]. In contrast to the elec-
tron distribution, the hole distribution (not plotted here) shows no replica structures.
This indicates that only the scattering of phonons and conduction electrons is respon-
sible for the decay of the excited state. The relaxation of holes by phonon emission
processes is suppressed since the width of the valence band4tv = κ4tc ≈ 0.7ωLO is
smaller than the phonon energy. Therefore the relaxation process for excitations far
above the band gap can be described well by using a one-band model [40, 48].

If δωP is chosen to be smaller thanωLO, the excited electron-hole pairs cannot scat-
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Figure 2.14: The electron distribution〈ψ†ckψck〉t for δωP = 0.6ωLO, calculated with
(solid line) and without (dashed line) vertex corrections

ter into continuum states with lower energy by phonon emission and the dynamics of
the system changes significantly. As an example, the conduction electron distribution
for the detuningδωP = 0.6ωLO ≈ ωLO + ωex(0) − ∆̃ is plotted in Figure2.14. After
the pulse has been turned off the electron distribution〈ψ†ckψck〉t changes only slowly.
Although a transition of the unbound electron-hole pairs to excitonic states with a fi-
nite center-of-mass momentum is allowed according to the rules of classical energy
conservation, the formation of an exciton distribution cannot be observed. The only
feature which indicates the presence of phonons is the small gain peak abovek ∼= 1

4
π.

The vertex corrections have no significant influence on the dynamics for continuum
excitation. This can be explained by the fact that the continuum states for interacting
electron-hole pairs differ only slightly from free electron-hole states. Therefore the
vertex corrections do not lead to qualitative changes of the time behavior and can
be neglected when calculating the optical response in the weak nonlinear regime. In
this context it should be mentioned that even the Hartree-Fock corrections are often
neglected entirely when describing the relaxation of highly excited electron-hole pairs
since the qualitative features can already be understood well within the framework of
the free-electron picture [43].
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Figure 2.15: The electron distribution〈ψ†ckψck〉t for δωP = −0.4ωLO andωLOt =
20π, calculated with the complete vertex corrections (solid line), the approximated
vertex corrections (dotted line) and without vertex corrections (dashed line)

The correction terms in the first four lines of Equation2.24contain sums over the
quasi momenta in the first Brillouin zone which have to be performed separately for
each phonon-assisted density〈ψ†λ1l+p

ψλ2lbp〉t. The Hartree-Fock contributions, how-
ever, are only calculated once for each timet. Consequently, if the nonlinear kinetic
equations with the vertex corrections are used for the description of the dynamics, the
required computation time is considerably larger than the computation time which is
needed, if the vertex corrections are neglected. Since the numerical calculations in
this section are restricted to the weak nonlinear regime it seems suggestive to use a
simplified version of the vertex corrections instead of the complete ones in order to
reduce the computation time. In the following, the vertex corrections are therefore
approximated by the expression

δ〈ψ†λ1l+p
ψλ2lbp〉ee =

∑
k

{δλ2;v − δλ1;v}Vλ1λ2(|k − l|)〈ψ†λ1k+pψλ2kbp〉t (2.111)

where the electronic densities which appear as factors in the vertex corrections have
been replaced by their initial values. If the new simplified kinetic equations were
linearized with respect to the external fieldE(t), the equations-of-motion for the inter-
band polarization and the off-diagonal elements of the phonon-assisted density matri-
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Figure 2.16: The absolute value of the interband polarizationN−1
∑

k〈ψ
†
vkψck〉t for

δωP = −0.4ωLO, calculated with the complete vertex corrections (solid line), the
approximated vertex corrections (dotted line) and without vertex corrections (dashed
line)

ces would be equal to the corresponding differential equations from Section2.5.
Figure 2.15 shows an enlarged version of the lowest graphic from Figure2.10

where the distribution function which is calculated with the approximated vertex cor-
rections from Equation2.111has been added in order to find out if the discrepancies
between the two different systems of kinetic equations which have been used for the
calculation of the curves in Figures2.10 to 2.14 are mainly due to the different de-
scription of the dynamics of electron-hole pairs with a non-vanishing center-of-mass
momentum as in Section2.5. A comparison of the three curves in Figure2.15shows
that the absorption peak atk = 1

4
π which belongs to the electron distribution which

is calculated with the approximated vertex corrections is in good agreement with the
corresponding absorption peak of the electron distribution which is calculated with the
help of the complete vertex corrections. However, differences between the two distri-
butions can be observed in the region above this absorption peak. If the approximated
vertex corrections are used in the numerical calculations, the occupation numbers for
electrons whose kinetic energy is larger than the energy of the conduction electron with
the quasi momentumk = 1

4
π and smaller than the threshold energy for absorption pro-
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Figure 2.17: The electron distribution〈ψ†ckψck〉t for δωP = −0.6ωLO in the presence
of a long-range Coulomb interaction2Ũ = U , calculated with (solid line) and without
(dashed line) vertex corrections

cesses in the continuum band (ω ≈ ωLO) are larger than the corresponding occupation
numbers of the electron distribution which has been calculated by using the complete
vertex corrections. For conduction electrons whose kinetic energy is larger than the
above-mentioned threshold energy this relation is reversed. The different behavior of
the two curves clearly shows the influence of the nonlinear terms in the complete ki-
netic equations. A convincing explanation for the differences is still lacking and would
certainly require a closer analysis of the specific impact of each individual term of the
vertex corrections.

The differences between the three systems of kinetic equations are also reflected
in the dynamics of extensive quantities such as the interband polarization of the probe.
The curves in Figure2.16depict the absolute value of the polarization which has been
calculated with the complete and the approximated vertex corrections and without ver-
tex corrections. It turns out that the polarization signal which has been calculated
without considering the vertex corrections decays much faster than the other polariza-
tion signals. This observation is in accordance with the results of the calculation of the
imaginary part of the excitonic susceptibility from Figure2.7where the curves which
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are calculated without considering the vertex corrections are considerably wider than
the curves which are calculated using the vertex corrections. If the curves in Figure
2.16are subjected to a closer examination, it emerges that the absolute value of the
polarization which has been calculated using the quantum kinetic equations without
vertex corrections oscillates weakly with a frequency which is considerably smaller
than the phonon frequencyωLO. This behavior can be related to the small side peak
in the curve in Figure2.7which depicts the imaginary part of the corresponding exci-
tonic susceptibility. The polarization signals which are calculated using the complete
or the approximated vertex corrections show an almost identical time behavior. This
indicates that the dynamics of the two polarization signals is dominated by the linear
contributions which coincide exactly.

If the electron-electron interaction contains a long-range part, the principal differ-
ences between the descriptions with and without vertex corrections remain the same
although the dynamics of a system with a long-range interaction differs considerably
from the dynamics of the system which has been studied until now. In Figure2.17the
distribution of the conduction electrons has been plotted where the parameter of the
long-range part of the electron-electron interactionŨ is half as large as the parameter
for the on-site interactionU while the other model parameters are the same as before.
The detuning with respect to the band edge∆̃ is chosen such that the density of the
excited carriers assumes its maximal value (δωP = −0.6ωLO). It turns out that the
differences between the distribution curves are even more pronounced than in Figure
2.10.



Chapter 3

Nonlinear Optical Dynamics of
Systems with a Fermi-Edge
Singularity

In this chapter, the properties of the nonlinear optical response of n-doped semicon-
ductors are at the center of interest. The underlying principles are discussed using a
one-dimensional two-band model with linear band dispersions. Within the framework
of this model the response functions can be calculated exactly, even if the particles
interact with each other.

The structure of the chapter will be outlined now. In Section3.1the different parts
of the Hamiltonian which describes the two-band model are presented and discussed.
In Section3.2 it is shown how the Hamiltonian can be diagonalized in the presence
of the electron-hole interaction by introducing a new representation for the elementary
excitations of the many-body system with the help of boson operators. All opera-
tors which are crucial for the description of the system are then expressed within the
framework of the new bosonic representation. In Section3.3 the optical response of
the many-body system to the excitation by an external electromagnetic field is studied
within the framework of the time-dependent perturbation theory. The first and third or-
der response functions are presented in their most general form. Section3.4 contains
a detailed investigation of the properties of the linear absorption spectrum. Particular
emphasis is put on studying how the interaction processes influence the exponent of the
algebraic singularity at the Fermi-edge in the absorption spectrum. In Section3.5 the
signals of a four-wave-mixing experiment with two excitation pulses are calculated for
varying time delays between the pulses. It is studied whether the algebraic behavior of
the linear absorption spectrum is reflected in the nonlinear signals. In addition to that,
the influence of the finite life-time of the excitations on both the time-resolved and the
time-integrated four-wave-mixing signals is investigated. In this context, it should be
mentioned that the details of the calculation of the nonlinear response functions will
be presented separately in AppendixC because of their complexity.

45
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3.1 The Hamiltonian

The physical system whose optical properties will be studied in this chapter is de-
scribed by a one-dimensional two-band model with a completely filled valence band
and a conduction band whose states are occupied up to a Fermi energyEf . This system
is excited by one or several light pulses creating pairs of valence holes and conduction
electrons.

If the energy of the additionally created conduction electrons is close toEf and
if the interaction between the particles does not lead to the transition of conduction
electrons into states whose energy is much larger or smaller thanEf , only the low-
energy excitations of the Fermi sea in the conduction band have a significant influence
on the physical properties of the system.

In this case, it is justified to employ the Tomonaga-Luttinger model [1, 6] for the
description of the electrons in the conduction band. Within the framework of this
model it is assumed that the electron system consists of two sorts of electrons whose
energy dispersions are obtained from the energy dispersion of the conduction band
electrons by linearizing it with respect to the two Fermi points atk = −kf andk = kf .
Following Luttinger’s approach in his article from 1963 [6], both sorts of electrons are
assumed to have an energy spectrum which is not bounded from below. The ground
state of the system is then characterized by two infinite Fermi seas (see Figure3.1) and
the free Hamiltonian for the electrons is given by

He
0 = vf

∫ L
2

−L
2

dx : ψ†er(x)

{
1

i

d

dx
− kf

}
ψer(x) : (3.1)

+ vf

∫ L
2

−L
2

dx : ψ†el(x)

{
−1

i

d

dx
− kf

}
ψel(x) :

where the field operators for the two sorts of electrons are defined by the two equations

ψer(x) = lim
α↘0

1√
L

∑
k

e−α|k|eikxckr (3.2)

and

ψel(x) = lim
α↘0

1√
L

∑
k

e−α|k|eikxckl. (3.3)

The colons in Equation3.1 denote that the field operators are ordered normally with
respect to the ground state. It should be pointed out that the energy of the electrons is
measured with respect to the Fermi energyEf = vfkf . In the following the electrons
whose energy dispersion has a positive gradient are referred to as right movers or right
moving electrons while the electrons of the other sort are called left movers or left
moving electrons.
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Figure 3.1: Graphical representation of the two-band model

In order to keep the model as simple as possible it is assumed that the valence holes
have an infinite mass. Then their free Hamiltonian has the following form

Hh
0 = Eh

∫ L
2

−L
2

dyψ†h(y)ψh(y) = Eh
∑
k

d†kdk. (3.4)

The description of the many particle system becomes both more complicated and
more interesting, if the repulsive interaction between the conduction electrons and the
attractive interaction between the conduction electrons and the valence holes is taken
into account. Since only the latter is responsible for the appearance of the Fermi-edge
singularity, the intraband interaction will be neglected in the following calculations.
The Hamiltonian for the electron-hole interaction satisfies the equation

V =

∫ L
2

−L
2

dx

∫ L
2

−L
2

dyv(|x− y|) : ψ†er(x)ψer(x) : ψ†h(y)ψh(y) (3.5)

+

∫ L
2

−L
2

dx

∫ L
2

−L
2

dyv(|x− y|) : ψ†el(x)ψel(x) : ψ†h(y)ψh(y)

where backward scattering processes, which would lead to transitions of conduction
electrons from the left branch to the right branch and vice versa, have been omit-
ted. This approximation can be made plausible by the argument that these processes
are accompanied by large momentum transfers of the order of2kf or −2kf whereas
the linearization of the electronic energy dispersion was based on the assumption that
electron-hole scattering processes with a much smaller momentum transfer are dom-
inant. As the holes do not change their position because of their infinite mass, the
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operatorV can be interpreted as a one-particle potential for the conduction electrons
whose form is determined by the hole density.

The interaction between the external electromagnetic field and the many-body sys-
tem is treated within the framework of the dipole approximation using the Hamiltonian

HF (t) = E(t)
{
P † + P

}
= E(t){P †r + Pr}+ E(t){P †l + Pl}. (3.6)

where the polarization operators are defined by the relation

Pσ =

∫ L
2

−L
2

dx

∫ L
2

−L
2

dyµσ(x− y)ψeσ(x)ψh(y) (3.7)

with σ = r, l. The coupling functionsµσ are directly related to the dipole matrix
elements for the interband transitions. These coupling functions only depend on on
the relative distance between the electron positionx and the hole positiony since it is
assumed that the system is excited homogeneously. Consequently, the electron-hole
pairs which are created or annihilated have a vanishing center-of-mass momentum and
the polarization operators are diagonal in thek-representation:

Pσ =
∑
k

∫ L
2

−L
2

dxµσ(x)eikxckσd−k =
∑
k

µ̃σ(k)ckσd−k. (3.8)

In the literature, thek-dependence of the dipole matrix elements is often neglected as
the excitation is usually restricted to a small region of the spectrum. This approxima-
tion, however, leads to the divergence of the total polarization signal. In order to avoid
this, the coupling functions are assumed to decrease exponentially for large positive
and negative values ofk:

µ̃r(k) = e−Λ|k−kf | = µ̃l(−k). (3.9)

If the thermodynamic limit is performed, the functionsµr andµl assume the shape of
Lorentzian curves whose width is given byΛ:

µr(x) = e−ikfx
1

π

Λ

x2 + Λ2
= e−ikfxd(x) = µ∗l (x). (3.10)

3.2 Bosonization

Due to the linear energy dispersion of the conduction electrons it is possible to calcu-
late the exact eigenstates of the many-body system in the presence of the electron-hole
interaction. To this end, the free electronic Hamiltonian

He
0 =

∑
k

vf (k − kf )
{
c†krckr − 〈n

0
kr〉
}
−
∑
k

vf (k + kf )
{
c†klckl − 〈n

0
kl〉
}

(3.11)
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is written with the help of the operators(q > 0)

bqr =

√
2π

Lq

∑
k

c†k−qrckr and bql =

√
2π

Lq

∑
k

c†k+qlckl, (3.12)

which obey bosonic commutation rules, and the number operators for the right movers
and the left movers

Nr =
∑
k

{
c†krckr − 〈n

0
kr〉
}

and Nl =
∑
k

{
c†klckl − 〈n

0
kl〉
}
. (3.13)

In the new representation the operatorHe
0 is given by the relation

He
0 =

∑
q>0

vfq
{
b†qrbqr + b†qlbql

}
+ vf

π

L

{
N2
r +N2

l

}
. (3.14)

As the bosonic operators commute with the number operators the two different terms
of which the free electronic Hamiltonian is composed can be discussed separately. The
first term can be interpreted as an infinite sum of harmonic oscillators and describes
the excitation spectrum for a system with a fixed number of particles. The second
term describes the change of the energy of the ground state, if particles are removed
or added. The advantage of the introduction of the bosonic operators becomes clear, if
the interaction Hamiltonian is written as follows

V =
∑
q 6=0

ṽ(q)

L

∑
k

c†k+qrckr

∫ L
2

−L
2

dye−iqyψ†h(y)ψh(y) (3.15)

+
∑
q 6=0

ṽ(q)

L

∑
k

c†k+qlckl

∫ L
2

−L
2

dye−iqyψ†h(y)ψh(y)

where the Fourier coefficients of the potential are defined by the equation

ṽ(q) =

∫ L
2

−L
2

dxv(|x|)e−iqx (3.16)

and it is assumed that the homogeneous partṽ(0) is compensated by the charge back-
ground. Obviously, the expression on the right-hand side of Equation3.15can be sim-
plified considerably, if the electronic densities are written with the help of the bosonic
operators. The new representation of the operatorV then reads

V =

∫ L
2

−L
2

dy
∑
q>0

vfq
{

Φ∗q(y)b†qr + Φq(y)bqr
}
ψ†h(y)ψh(y) (3.17)

+

∫ L
2

−L
2

dy
∑
q>0

vfq
{

Φq(y)b†ql + Φ∗q(y)bql

}
ψ†h(y)ψh(y)

=

∫ L
2

−L
2

dyVe(y)ψ†h(y)ψh(y)
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where the functionΦq(y) is defined by

Φq(y) =
ṽ(q)

2πvf

√
2π

Lq
eiqy. (3.18)

It has already been mentioned that the dynamics of the valence holes is not influ-
enced by the conduction electrons because of the infinite mass of the former. Therefore
it is justified to treat the positiony of a valence hole as a constant parameter, which
only determines the center of the potentialv(|x−y|) which is created by this hole. The
Hamiltonian for the conduction electrons then includes the potential operatorVe(y)
which consists of linear combinations of the bosonic operatorsbqσ andb†qσ.

In order to diagonalize the total electron Hamiltonian in the presence of an external
potential, it is necessary to introduce the following canonical transformation

S(y) = ei{χ
†
l (y)+χl(y)}ei{χ

†
r(y)+χr(y)} (3.19)

with the auxiliary operators

χr(y) = −i
∑
q>0

ṽ(q)

2πvf
eiqy
√

2π

Lq
bqr = −i

∑
q>0

Φq(y)bqr (3.20)

and

χl(y) = −i
∑
q>0

ṽ(q)

2πvf
e−iqy

√
2π

Lq
bql = −i

∑
q>0

Φ∗q(y)bql. (3.21)

The transformation behavior of the bosonic annihilation operators is given by

S†(y)bqrS(y) = bqr − Φ∗q(y), (3.22)

S†(y)bqlS(y) = bql − Φq(y). (3.23)

If the conduction electrons are exposed to the potential of a hole at the positiony,
the electronic HamiltonianHe

0 +Ve(y) can be reduced to the free electron Hamiltonian
He

0 by applying the canonical transformation from Equation3.19:

S†(y) {He
0 + Ve(y)} S(y) = He

0 − ε(0). (3.24)

The energy spectrum ofHe
0 + Ve(y) has the same structure as the free spectrum. Only

the energy of the ground state is shifted by the value−ε(0) where the energy function
ε(y) is determined by the equation

ε(y) = 2vf
∑
q>0

2π

L

ṽ2(q)

(2πvf )2
cos(qy). (3.25)
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In the presence of two holes at the positionsy andy′, two canonical transformations
are necessary to diagonalize the total electronic Hamiltonian. The result is then given
by

S†(y′)S†(y) {He
0 + Ve(y) + Ve(y

′)} S(y)S(y′) = He
0 − 2ε(0)− 2ε(y′ − y) (3.26)

where the energy shift of the ground state depends on the relative distance between the
two holes. The result can easily be generalized to the case of three or more holes. For
the following calculations, however, only the relations from Equations3.24and3.26
are needed.

If the optical response of the system to an external laser field is calculated, it is
necessary to evaluate spatial correlation functions containing products of two and four
electronic field operators. To this end, these field operators are expressed with the help
of the bosonic operators as follows

ψer(x) =
1√
L
eixkf ei

π
L
xNrUre

i π
L
xNreiϕ

†
r(x)eiϕr(x), (3.27)

ψel(x) =
1√
L
e−ixkf e−i

π
L
xNlUle

−i π
L
xNleiϕ

†
l (x)eiϕl(x) (3.28)

where the auxiliary fieldsϕr(x) andϕl(x) are defined by the equations

ϕr(x) = lim
α↘0
−i
∑
q>0

e−αqeiqx
√

2π

Lq
bqr (3.29)

and

ϕl(x) = lim
α↘0
−i
∑
q>0

e−αqe−iqx
√

2π

Lq
bql. (3.30)

The unitary operatorsUr andUl which appear on the right-hand sides of Equations
3.27and3.28obey the following commutator rules

[Uσ, Nσ′ ] = δσ;σ′Uσ, (3.31)

[Uσ, bqσ′ ] = [Uσ, b
†
qσ′ ] = 0 (3.32)

with σ, σ′ ∈ {r, l}. In addition to that they satisfy the anti-commutator relations

{Ur, Ul} = 0 and {Ur, U †l } = 0. (3.33)

Their introduction completes the operator algebra of the bosonic representation. A
more detailed discussion of the different aspects of the bosonization can be found in F.
D. Haldane’s comprehensive article [17].
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3.3 Time-Dependent Perturbation Theory

In the following the excitation of the many-body system by an external field will be de-
scribed within the framework of the time-dependent perturbation theory. It is assumed
that the system is in the ground state|Ω0〉 of the HamiltonianH̃ = He

0 + Hh
0 + V

at a given initial timet0. That means that the valence band is completely filled while
the electrons in the conduction band occupy all energy eigenstates up to the Fermi
energyEf . The dynamics of the system fort ≥ t0 is described by the Hamiltonian
H(t) = H̃ + HF (t). The corresponding time-development operatorU(t, t0) satisfies
the equations

i
d

dt
U(t, t0) =

{
H̃ +HF (t)

}
U(t, t0), (3.34)

U(t0, t0) = 1. (3.35)

If the operatorU is expanded in a Dyson series with respect to the operatorHF (t), the
following equation

U(t, t0) = e−i(t−t0)H̃T
[
e
−i
∫ t
t0
dτH̃F (τ)

]
(3.36)

can be derived (confer Equation2.49). The operatorH̃F (t) representsHF (t) in the
interaction picture with respect to the HamiltonianH̃. Equation3.36can be used as a
starting point for the calculation of the system’s linear and nonlinear response to the
excitation by the external field. IfO is an arbitrary operator of the many-body-system,
the following equation

〈Ω0|O(t)|Ω0〉 = 〈Ω0|U †(t, t0)OU(t, t0)|Ω0〉

= 〈Ω0|TC
[
Õ(t)e−i

∫
C dτH̃F (τ)

]
|Ω0〉 (3.37)

holds. The definitions for the contour-ordering-operatorTC and the Keldysh contourC
have already been given in Section2.4.

The optical response of the material is determined by the dynamics of the polar-
ization operatorP which can be calculated with the help of Equation3.37. Since
the number operators for valence holes and conduction electrons commute with the
HamiltonianH̃ and since there are no holes in the ground state|Ω0〉 the perturbation
series forP contains only terms which are proportional to odd powers of the external
fieldE. The linear part of the polarization is given by

P (1)(t) = (−i)
∫ t

t0

dτE(τ)〈Ω0|P̃ (t)P̃ †(τ)|Ω0〉 (3.38)

while the part of the polarization which is proportional to the cube of the external field
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satisfies the following equation

P (3)(t) (3.39)

= (−i)3

∫ t

t0

dτ1E(τ1)

∫ τ1

t0

dτ2E(τ2)

∫ τ2

t0

dτ3E(τ3)〈Ω0|P̃ (t)P̃ †(τ1)P̃ (τ2)P̃ †(τ3)|Ω0〉

+ (−i)3

∫ t

t0

dτ1E(τ1)

∫ τ1

t0

dτ2E(τ2)

∫ t

t0

dτ3E(τ3)〈Ω0|P̃ (τ2)P̃ †(τ1)P̃ (t)P̃ †(τ3)|Ω0〉

+ (−i)3

∫ t

t0

dτ1E(τ1)

∫ τ1

t0

dτ2E(τ2)

∫ τ2

t0

dτ3E(τ3)〈Ω0|P̃ (t)P̃ (τ1)P̃ †(τ2)P̃ †(τ3)|Ω0〉

− (−i)3

∫ t

t0

dτ1E(τ1)

∫ t

t0

dτ2E(τ2)

∫ τ2

t0

dτ3E(τ3)〈Ω0|P̃ (τ1)P̃ (t)P̃ †(τ2)P̃ †(τ3)|Ω0〉.

The two kinds of four-point response function which appear on the right-hand side
of Equation3.39 can be split up into connected and disconnected parts where the
connected parts are defined by the equations

〈Ω0|P̃ (t1)P̃ †(t2)P̃ (t3)P̃ †(t4)|Ω0〉c = 〈Ω0|P̃ (t1)P̃ †(t2)P̃ (t3)P̃ †(t4)|Ω0〉
− 〈Ω0|P̃ (t1)P̃ †(t2)|Ω0〉〈Ω0|P̃ (t3)P̃ †(t4)|Ω0〉

(3.40)

and

〈Ω0|P̃ (t1)P̃ (t2)P̃ †(t3)P̃ †(t4)|Ω0〉c = 〈Ω0|P̃ (t1)P̃ (t2)P̃ †(t3)P̃ †(t4)|Ω0〉
− 〈Ω0|P̃ (t1)P̃ †(t4)|Ω0〉〈Ω0|P̃ (t2)P̃ †(t3)|Ω0〉
− 〈Ω0|P̃ (t1)P̃ †(t3)|Ω0〉〈Ω0|P̃ (t2)P̃ †(t4)|Ω0〉.

(3.41)

By inserting Equations3.40and3.41in Equation3.39it can be shown that only the
connected parts of the four-point response functions contribute to the signal. In anal-
ogy to the two-point response functions they diverge with the length of the system
L in the thermodynamic limit. As a consequence thereof the polarization density
p(3)(t) = L−1P (3) gives a finite value forL→∞.

The theoretical model for the solid which has been introduced is incomplete since
a number of interaction processes, which are responsible for the finite lifetime of the
electronic excitations, have been neglected (spontaneous photon emission, electron-
phonon-scattering, ...). Their influence is taken into account by inserting phenomeno-
logical decay terms for the one-hole excitations (Γx), the two-hole excitations (Γxx)
and for the pure electronic excitations (Γ0) in Equations3.38and3.39. The resulting
new equations forP (1) andP (3) are

P (1)(t) = (−i)
∫ t

t0

dτe−Γx(t−τ)E(τ)〈Ω0|P̃ (t)P̃ †(τ)|Ω0〉 (3.42)
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and

P (3)(t) (3.43)

= (−i)3

∫ t

t0

dτ1e
−Γx(t−τ1)E(τ1)

∫ τ1

t0

dτ2e
−Γ0(τ1−τ2)E(τ2)

∫ τ2

t0

dτ3e
−Γx(τ2−τ3)E(τ3)

× 〈Ω0|P̃ (t)P̃ †(τ1)P̃ (τ2)P̃ †(τ3)|Ω0〉c

+ (−i)3

∫ t

t0

dτ1e
−Γ0(t−τ1)E(τ1)

∫ τ1

t0

dτ2e
−Γx(τ1−τ2)E(τ2)

∫ t

t0

dτ3e
−Γx(t−τ3)E(τ3)

× 〈Ω0|P̃ (τ2)P̃ †(τ1)P̃ (t)P̃ †(τ3)|Ω0〉c

+ (−i)3

∫ t

t0

dτ1e
−Γx(t−τ1)E(τ1)

∫ τ1

t0

dτ2e
−Γxx(τ1−τ2)E(τ2)

∫ τ2

t0

dτ3e
−Γx(τ2−τ3)E(τ3)

× 〈Ω0|P̃ (t)P̃ (τ1)P̃ †(τ2)P̃ †(τ3)|Ω0〉c

− (−i)3

∫ t

t0

dτ1e
−Γx(t−τ1)E(τ1)

∫ t

t0

dτ2e
−Γxx(t−τ2)E(τ2)

∫ τ2

t0

dτ3e
−Γx(τ2−τ3)E(τ3)

× 〈Ω0|P̃ (τ1)P̃ (t)P̃ †(τ2)P̃ †(τ3)|Ω0〉c.

3.4 Linear Response

The characteristic properties of the linear optical absorption spectrum of metals and
n-doped semiconductors have been the principal reason for the interest in the model
which has been presented in Section3.1. Within the framework of this model the
absorption spectrumA(ω) is related to the two-point response function through the
relation

A(ω) = lim
L→∞

Im

{
i

L

∫ ∞
0

dteiωte−Γxt〈Ω0|P̃ (t)P̃ †(0)|Ω0〉
}
. (3.44)

The total two-point response function is given by the sum of the corresponding re-
sponse functions for the left and right moving electrons. Due to the inversion symme-
try of the model these functions satisfy the equation

〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 = 〈Ω0|P̃l(t1)P̃ †l (t2)|Ω0〉. (3.45)

Therefore it is sufficient to calculate the two-point response function for the right mov-
ing electrons. It is related to the spatial correlation function of the corresponding field
operators by the following identity

〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 =

∫ L
2

−L
2

dx1

∫ L
2

−L
2

dy1

∫ L
2

−L
2

dx2

∫ L
2

−L
2

dy2µr(x1 − y1)µ∗r(x2 − y2)

× 〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)〉0 (3.46)



3.4. LINEAR RESPONSE 55

where the brackets〈· · · 〉0 denote the expectation value with respect to the non-inter-
acting ground state|Ω0〉. As the HamiltonianH̃ is diagonal with respect to the hole
states in the position representation the expectation value for the field operators of the
holes can be split off and the following equation

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)〉0 = 〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0
× 〈eit1He

0ψer(x1)e−i(t1−t2){He
0+Ve(y1)}ψ†er(x2)e−it2H

e
0 〉0 (3.47)

holds. With the help of the unitary operator which has been introduced in Section3.2
the above expression can be transformed in such a way that only the free bosonic and
fermionic fields are needed to describe the dynamics:

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)〉0
= ei(t1−t2)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0
× 〈eit1He

0ψer(x1)S(y1)e−i(t1−t2)He
0S†(y1)ψ†er(x2)e−it2H

e
0 〉0

= ei(t1−t2)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0
× 〈ψer;0(x1, t1)S0(y1, t1)S†0(y1, t2)ψ†er;0(x2, t2)〉0. (3.48)

By means of the Baker-Hausdorff formula and the commutator relations listed in Ap-
pendixD the following identity

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)〉0 = e2H∗(vf (t1−t2),0)

× eG∗(vf (t1−t2)−(x1−y1),−(x1−y1))eG
∗(vf (t1−t2)+(x2−y1),(x2−y1))

× ei(t1−t2)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0〈ψer;0(x1, t1)ψ†er;0(x2, t2)〉0 (3.49)

is derived. Consequently, the response function can be written as follows

〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 = e−i(t1−t2)(Eh−ε(0))e2H∗(vf (t1−t2),0)

×
∫ L

2

−L
2

dy

∫ L
2

−L
2

dx1

∫ L
2

−L
2

dx2µr(x1 − y)µ∗r(x2 − y)

× eG∗(vf (t1−t2)−(x1−y),−(x1−y))eG
∗(vf (t1−t2)+(x2−y),(x2−y))

× 〈ψer;0(x1, t1)ψ†er;0(x2, t2)〉0. (3.50)

Since all functions are invariant with respect to the spatial translations±L one inte-
gration can be carried out by means of a suitable substitution:

1

L
〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 = e−i(t1−t2)(Eh−ε(0))e2H∗(vf (t1−t2),0)

×
∫ L

2

−L
2

dx̃1µr(x̃1)

∫ L
2

−L
2

dx̃2µ
∗
r(x̃2)〈ψer;0(x̃1, t1)ψ†er;0(x̃2, t2)〉0

× eG∗(vf (t1−t2)−x̃1,−x̃1)eG
∗(vf (t1−t2)+x̃2,x̃2). (3.51)



56 CHAPTER 3. NONLINEAR OPTICAL DYNAMICS ...

As a consequence thereof, the thermodynamic limit can be performed easily and one
obtains

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 = e−i(t1−t2)(Eh−ε(0))e2H∗(vf (t1−t2),0)

∫ ∞
0

dk

2π
e−ikvf (t1−t2)

×
∫ ∞
−∞

dx̃1d(x̃1)eikx̃1eG(x̃1−vf (t1−t2),x̃1)

∫ ∞
−∞

dx̃2d(x̃2)e−ikx̃2eG
∗(x̃2+vf (t1−t2),x̃2).

(3.52)

By using the auxiliary functions

sX;r(t1, t2, x) = H∗(vf (t1 − t2), 0) +G∗(vf (t1 − t2)− x,−x), (3.53)

sX;l(t1, t2, x) = H∗(vf (t1 − t2), 0) +G∗(vf (t1 − t2) + x, x) (3.54)

Equation3.52can be written in a more compact form

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃ †r (t2)|Ω0〉 = 〈〈P̃r(t1)P̃ †r (t2)〉〉 = e−i(t1−t2)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t2−t1)

∫ ∞
−∞

dx̃1d(x̃1)eikx̃1esX;r(t1,t2,x̃1)

∫ ∞
−∞

dx̃2d(x̃2)e−ikx̃2es
∗
X;r(t2,t1,x̃2)

= e−i(t1−t2)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t2−t1)

∫ ∞
−∞

dx̃1d(x̃1)e−ikx̃1esX;l(t1,t2,x̃1)

∫ ∞
−∞

dx̃2d(x̃2)eikx̃2es
∗
X;l(t2,t1,x̃2).

(3.55)

Generally, the two-point response functions cannot be calculated exactly because it
is usually impossible to give the explicit solutions for the multi-dimensional integrals
which appear in Equation3.55. Therefore all exact expressions have to be approxi-
mated in order to obtain usable results.

If the auxiliary functions which appear in Equation3.55 are slowly varying in
comparison with the functionsd(x̃1) andd(x̃2), it is justified to evaluate them at the
positionsx̃1 = 0 and x̃2 = 0 respectively. The condition is met, if the interaction
potential is almost constant on the length scale which is determined byΛ. If the Fourier
transform of the potential satisfies the equationṽ(q) = ṽ0e

−λ|q|, this requirement is
equivalent to the relationλ � Λ. It should be pointed out that the approximated
versions of the response functions are still exact, if the interaction potential vanishes.

The approximated two-point response function for the right-moving electrons sat-
isfies the relation

〈〈P̃r(t1)P̃ †r (t2)〉〉 ≈ e−i(t1−t2)(Eh−ε(0))esX;r(t1,t2,0)es
∗
X;r(t2,t1,0)

× (2πi)−1(vf (t1 − t2)− 2Λi)−1 (3.56)

where the last two factors result from the integration with respect to the wave vectork.
All terms which are due to the electron-hole interaction can be combined in a factor in
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front of the non-interacting response function. As long as the difference between the
two external time variables is large compared with the width of the Lorentzian curve
(|t1 − t2| � v−1

f Λ) the form of the response function is hardly affected by the finite
extension of the dipole coupling function.

It has already been mentioned that the linear absorption spectrumA(ω) is directly
related to the two-point response function from Equation3.56. If the particles do not
interact with each other, the absorption function is given by

A(ω) = Θ(ω − ωT )
1

vf
e
−2 Λ

vf
(ω−ωT )

(3.57)

in the limit Γx → 0. The function exhibits an absorption edge at the threshold energy
ωT = Eh and decays exponentially forω > ωT . In the presence of the electron-hole
interaction the exact time behavior of the two-point response function depends on the
actual form of the interaction potentialv(|x|). However, it is possible to give a general
approximation for the response function with the help of the results from AppendixD,
if t� xṽv

−1
f . The approximated response function then satisfies the relation

〈〈P̃r(t)P̃ †r (0)〉〉 ≈ (2πi)−1z∗e−it(Eh−ε(0))(vf t)
−(1+α). (3.58)

For large times the interaction contribution to the response function exhibits a power-
law behavior with an exponentα, which satisfies the equation

α = 2
ṽ(0)

2πvf
+ 2

ṽ2(0)

(2πvf )2
= 2V0 + 2V 2

0 . (3.59)

The complex constant is given byz = e2cH+2cGei
π
2
α. As it is assumed that the electron-

hole interaction is attractive, the interaction amplitudeV0 = ṽ(0)
(2πvf )

is negative. Con-
sequently, the exponentα satisfies the relationα ≥ −0.5 where the minimal value is
assumed, ifV0 = −0.5. If the relations−1 < V0 < 0 are valid, the total response
function decays more slowly thant−1 and the expression forA(ω) exhibits an asym-
metric algebraic singularity at the shifted threshold energyωT = Eh−ε(0) in the limit
Γx → 0. If it is assumed that the approximated expression for the two-point response
function in Equation3.58is exact, the absorption function satisfies the relation

A(ω) = Θ(ω − ωT )
1

vf

e2cH+2cG

Γ(1 + α)

(
ω − ωT
vf

)α
(3.60)

whereΓ(...) denotes the gamma function [7]. It can be shown that the difference
between the exact absorption function and the expression on the right-hand side of
Equation3.60 remains finite in the vicinity ofωT . Therefore the above expression
offers a good description of the leading behavior ofA(ω) near the threshold.

If the interaction amplitudeV0 is smaller than−1, the integral in Equation3.44re-
mains finite for all frequenciesω, if the damping constantΓx is set equal to zero. Then
the absorption spectrum near the threshold depends on the dynamics of the two-point
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Figure 3.2: The linear absorption spectrumA(ω) for different interaction amplitudes
V0 ≥ −0.5, the excitonic damping constant is given byΓx = 2 × 10−8vfΛ

−1 and the
width of the interaction potential isλ = 1000Λ

response function for all values oft and it is impossible to derive a general approxi-
mation for the frequency behavior ofA(ω) near the threshold which only depends on
the interaction amplitudeV0.

The exponentα which determines the behavior of the absorption function near the
renormalized Fermi-edge atω = ωT is composed of two terms whose influences on
the sign ofα are diametrically opposed to each other.

The first term, which is proportional to the interaction amplitudeV0, is responsi-
ble for the singular behavior ofA(ω) for small negative values ofV0. It is due to the
interaction of the excited electron, which departs the valence band and becomes a con-
duction electron, and the hole which appears in the valence band as a consequence of
this transition. A closer analysis of the expression for the two-point response function
in Equation3.56shows that the term stems from the auxiliary functionG.

The second term, which is related to the auxiliary functionH, is proportional to the
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square of the interaction amplitudeV0 and leads to the suppression of the singularity
for large negative values ofV0. It is related to the exponent of the so-called orthogo-
nality catastrophe, the disappearance of the overlap between the free ground state of
the many-body system and the ground state in the presence of a hole potential in the
thermodynamic limit [9, 50]. Within the framework of the Tomonaga-Luttinger model
the overlap is given by

〈Ω0|S†(0)|Ω0〉 = e−
1
2

[χl(0),χ†l (0)]e−
1
2

[χr(0),χ†r(0)] = exp

{
−
∑
q>0

2π

Lq

ṽ2(q)

(2πvf )2

}
(3.61)

where it is assumed that the valence hole is located aty = 0. The behavior of the
overlap in the thermodynamic limit can be determined, if the expression on the right-
hand side of Equation3.61is written in the following way

〈Ω0|S†(0)|Ω0〉 = exp

{
−
∑
q>0

2π

Lq

ṽ2(q)− ṽ2(0)e−q

(2πvf )2

}{
1− e−

2π
L

} ṽ2(0)

(2πvf )2

. (3.62)

In the thermodynamic limit the value of the overlap satisfies the equation

〈Ω0|S†(0)|Ω0〉 = exp

{
−
∫ ∞

0

dq

q

ṽ2(q)− ṽ2(0)e−q

(2πvf )2

}{
2π

L

} ṽ2(0)

(2πvf )2

(3.63)

and vanishes likeL−V
2
0 .

In Figures3.2and3.3the absorption spectrumA(ω) is plotted for different values
of the interaction amplitude and a non-vanishing excitonic damping constant using the
expression on the left-hand side of Equation3.56. When calculating the curves it is
assumed that the interaction potentialv(|x|) satisfies the equation

v(|x|) =
ṽ0

π

λ

x2 + λ2
(3.64)

in the thermodynamic limit wherẽv0 < 0 andλ > 0. The Fourier transform of
the potential is then given bỹv(q) = ṽ0e

−λ|q|. The special form of the interaction
potential makes it possible to give the exact form of the auxiliary functionsG and
H (see AppendixD for details). The width of the interaction potential is chosen to
be much larger than the width of the dipole coupling functions (λ � Λ). This is
consistent with the assumption which has been made when approximating the exact
two-point response function from Equation3.55. The values ofV0 which are used
for the calculation of the curves in Figure3.2 are chosen from the interval[−0.5, 0]
whereas the functions in Figure3.3 have been calculated with values ofV0 which
are smaller or equal to−0.5. If the interaction amplitude approachesV0 = −0.5
from above, the absorption edge singularity atω = ωT becomes steeper. The trend is
reversed for smaller values ofV0 and the singularity is suppressed entirely, ifV0 = −1.
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Figure 3.3: The linear absorption spectrumA(ω) for different interaction amplitudes
V0 ≤ −0.5, the excitonic damping constant is given byΓx = 2 × 10−8vfΛ

−1 and the
width of the interaction potential isλ = 1000Λ

This behavior can be explained satisfactorily by means of the approximated expression
for A(ω) in Equation3.60 since the exponentα which determines the grade of the
singularity assumes a minimal value atV0 = −0.5 and is a symmetric function ofV0

with respect to this point. A comparison of the different absorption functions shows
that the curves in Figure3.2 do not have the same form as their counterparts with
the same exponentα in Figure3.3. This is due to the fact that the functione2cH+2cG

exhibits no inversion symmetry with respect toV0 = −0.5.
Finally, it should be pointed out that the general interpretation of the absorption

functionA(ω) with the help of Equation3.60is only possible, if the excitonic damp-
ing is weak enough to allow the observation of the algebraic decay of the two-point
response function in Equation3.44. In order to illustrate this, the functionA(ω) is plot-
ted for different values ofΓx in Figure3.4 where the form of the interaction function
is determined by Equation3.64and the interaction amplitude is given byV0 = −0.5.
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Figure 3.4: The linear absorption spectrumA(ω) for different excitonic damping
constantsΓx, the interaction amplitude is given byV0 = −0.5 and the width of the
interaction potential isλ = 1000Λ

As expected, the absorption edge is suppressed, if the value of the damping constant
is increased. If the model parameters are similar to those which have been used in
this section, the Fermi-edge singularity can be observed, provided that the excitonic
damping constant satisfies the relationΓx ≤ 10−7vfΛ

−1.

3.5 Nonlinear Response

The general expression for the part of the polarization which is proportional to the cube
of the external field (see Equation3.43) can be used for the description of different
kinds of nonlinear optical experiments. In this work it is employed in order to study
coherent transient effects in a four-wave-mixing experiment whose experimental setup
is shown in Figure3.5. It is assumed that the external fieldE(t) is composed of two
pulsesE1(t) andE2(t) with

E1(t) = E(t) cos(ωt− ~k1
~R) (3.65)
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and

E2(t) = E(t+ T ) cos(ωt− ~k2
~R). (3.66)

These pulses propagate into different directions which are determined by the wave
vectors~k1 and~k2. The vector~R denotes the macroscopic position of the electronic
system and determines the phase difference between two arbitrary points of the probe.
It should not be confused with the microscopic positions of the electrons or holes.
The central frequencyω is chosen to be equal to the threshold energyωT while the
envelope functionE(t) is assumed to have a sharp peak att = 0. If the rotating wave
approximation is applied, only the resonant terms inHF (t) are taken into account and
the following operator

HF (t) ≈ Ē∗(t)P † + Ē(t)P (3.67)

with

Ē(t) =
1

2
eiωt

{
E(t)e−i

~k1
~R + E(t+ T )e−i

~k2
~R
}

(3.68)

is used for the description of the matter-field interaction.

T

k

k2

1

k2 -1 k2

Figure 3.5: The standard setup for a four-wave-mixing experiment with two excitation
pulses

As long as the delay timeT is of the same order of magnitude as the decay times
of the system (ΓiT ≈ 1 with i = 0, x, xx) the coherent superposition of the two
pulses in the nonlinear regime leads to the generation of several additional outgo-
ing signals whose wave vectors and frequencies are determined by the corresponding
phase matching conditions. In the following the investigation is concentrated on the
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signal which propagates in the2~k1 − ~k2-direction. It is proportional to the following
contribution to the nonlinear polarization

P
(3)

2~k1−~k2
(t) =

(−i)3

23
e−i(ωt−(2~k1−~k2)~R) (3.69)

×
{∫ t

−∞
dτ1e

−Γx(t−τ1)E(τ1)

∫ τ1

−∞
dτ2e

−Γ0(τ1−τ2)E(τ2 + T )

∫ τ2

−∞
dτ3e

−Γx(τ2−τ3)E(τ3)

× eiω(t−τ1+τ2−τ3)〈Ω0|P̃ (t)P̃ †(τ1)P̃ (τ2)P̃ †(τ3)|Ω0〉c

+

∫ t

−∞
dτ1e

−Γ0(t−τ1)E(τ1)

∫ τ1

−∞
dτ2e

−Γx(τ1−τ2)E(τ2 + T )

∫ t

−∞
dτ3e

−Γx(t−τ3)E(τ3)

× eiω(t−τ1+τ2−τ3)〈Ω0|P̃ (τ2)P̃ †(τ1)P̃ (t)P̃ †(τ3)|Ω0〉c

+

∫ t

−∞
dτ1e

−Γx(t−τ1)E(τ1 + T )

∫ τ1

−∞
dτ2e

−Γxx(τ1−τ2)E(τ2)

∫ τ2

−∞
dτ3e

−Γx(τ2−τ3)E(τ3)

× eiω(t+τ1−τ2−τ3)〈Ω0|P̃ (t)P̃ (τ1)P̃ †(τ2)P̃ †(τ3)|Ω0〉c

−
∫ t

−∞
dτ1e

−Γx(t−τ1)E(τ1 + T )

∫ t

−∞
dτ2e

−Γxx(t−τ2)E(τ2)

∫ τ2

−∞
dτ3e

−Γx(τ2−τ3)E(τ3)

× eiω(t+τ1−τ2−τ3)〈Ω0|P̃ (τ1)P̃ (t)P̃ †(τ2)P̃ †(τ3)|Ω0〉c
}
.

In most cases the four-point response functions which appear on the right-hand side
of Equation3.69 are too complicated to allow the exact calculation of the multi-
dimensional integrals. However, if the response functions and the decay terms are
slowly variable in comparison withE(t), the envelope function can be treated as aδ-
function and the integrals can be performed exactly. If the delay timeT is positive, the
four-wave-mixing signal is then determined by the relation

P
(3)

2~k1−~k2
(t) = Θ(t)

(−i)3

23
e−i(ωT−(2~k1−~k2)~R)e−ΓxT (3.70)

×
{
e−{Γx+Γ0}t〈Ω0|P̃ (−T )P̃ †(0)P̃ (t)P̃ †(0)|Ω0〉c

− e−{Γx+Γxx}t1

2
〈Ω0|P̃ (−T )P̃ (t)P̃ †(0)P̃ †(0)|Ω0〉c

}
whereas the signal for negative delay times is given by

P
(3)

2~k1−~k2
(t) = Θ(t+ T )

(−i)3

23
e−i(ωT−(2~k1−~k2)~R)eΓxxT (3.71)

×
{
e−Γx(t+T ) 1

2
〈Ω0|P̃ (t)P̃ (−T )P̃ †(0)P̃ †(0)|Ω0〉c

− e−{Γx+Γxx}(t+T ) 1

2
〈Ω0|P̃ (−T )P̃ (t)P̃ †(0)P̃ †(0)|Ω0〉c

}
.

Generally, the detector which registers the four-wave-mixing signal only measures the
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time-integrated intensity, which is proportional to

W (T ) = lim
L→∞

1

L2

∫ ∞
−∞

dt|P (3)

2~k1−~k2
(t)|2. (3.72)

The only parameter of the experiment which will be varied in the following is the delay
time between the two pulses.

If the particles do not interact with each other, the exact four-point response func-
tions can be calculated easily since a system of free conduction electrons and valence
holes is only a collection of independent two-level systems with different transition
energies. In the thermodynamic limit the intensity of the polarization is given by

lim
L→∞

1

L2
|P (3)

2~k1−~k2
(t)|2 = Θ(T )Θ(t)

1

(2π)4

1

16

1

(vf t− vfT )2 + (4Λ)2
(3.73)

and the time-integrated four-wave-mixing signal is proportional to

W (T ) = Θ(T )
1

(2π)4

π

64

1

vfΛ

{
1

2
+

1

π
arctan

(
vfT

4Λ

)}
, (3.74)

if all decay terms are neglected. It is well known that the time-integrated signal for
free two-level systems vanishes completely, if the delay time is negative.

In the presence of an attractive electron-hole interaction the four-point response
functions which appear in Equations3.70and3.71can be calculated in a similar way
as the two-point response functions in Section3.4. It emerges that the most important
new feature which has to be taken into account is the influence of the relative distance
between the two valence holes which are created by the external pulses. In contrast to
that, the position of the valence hole which appears as a parameter in the expression
for the two-point response function in Equation3.50has no impact on the properties
of this response function due to the homogeneity of the external excitation. This fact
can justify the description of the valence hole as an object without a structure when
calculating the linear response of the system [13, 14, 12, 15, 16]. However, it should
be kept in mind that the nonlinear response functions for such systems [60] differ
essentially from the nonlinear response functions which are presented here.

Since the calculation of the four-point response functions is much more extensive
than the calculation of the two-point response functions the details of this calculation
are presented in AppendixC. The intensity of the four-wave-mixing signal is approx-
imately described by the relation

lim
L→∞

1

L2
|P (3)

2~k1−~k2
(t)|2 ≈ 1

(2π)4
|z|4

{
sin4(πV0) + 4 sin2(π(V0 + V 2

0 )) cos2(πV0)
}

× |vfT |−2(1+α)|vf t|−2αe−2Γx(t+T )e−2Γxxt (3.75)

in the thermodynamic limit, ift � |T | and |T | � xṽv
−1
f . If α is negative, the time

behavior of the signal intensity is determined by the diametrically opposed influences
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of the factort−2α, which increases algebraically, and the factore−{2Γx+2Γxx}t, which
decreases exponentially. The latter ensures the convergence of the time integrated
signal.

If it is assumed that the intensity of the four-wave-mixing signal is equal to the
expression on the right-hand side of Equation3.75, the time-integrated signal satisfies
the equation

W (T ) =
1

(2π)4
|z|4

{
sin4(πV0) + 4 sin2(π(V0 + V 2

0 )) cos2(πV0)
}

× |vfT |−2(1+α)(2Γx + 2Γxx)
2α−1v−2α

f

×
{

Θ(T )e−2ΓxTΓ(1− 2α) + Θ(−T )e2ΓxxTΓ(1− 2α,−(2Γx + 2Γxx)T )
}

(3.76)

whereΓ(..., ...) denotes the incomplete gamma function [7]. Although the approxi-
mated intensity of the signal from Equation3.75only depends on the absolute value
of the delay timeT , the functionW (T ) is not symmetric with respect toT = 0. This
is due to the fact that the lower boundary for the time integration in Equation3.72
depends on the delay timeT , if T is negative, while it is independent ofT for positive
delay times. As long asΓ−1

x � |T | andΓ−1
xx � |T | the behavior ofW (T ) is dominated

by the algebraic decrease with the exponent−2(1 + α) and the differences between
positive and negative delay times can be neglected. For larger delay times, however,
the influence of the exponential factorse−2ΓxT ande2ΓxxT becomes dominant.

Since the approximated expression for the time-resolved four-wave-mixing signal
from Equation3.75should only be used, ift is much larger than the absolute value of
T , the function on the right-hand side of Equation3.76can only be accepted as a good
approximation for the exact time-integrated signal, if the delay time is much smaller
than the excitonic and biexcitonic relaxation times. In order to illustrate this statement,
the complete time-resolved four-wave-mixing signal, which has been calculated with
the help of EquationsC.38 to C.43, is plotted for different damping constants and
fixed positive and negative delay timesT in Figures3.6 and 3.7. The form of the
interaction potential is the same as in Section3.4. Concerning the decay terms it is
assumed that the biexcitonic damping constantΓxx is twice as large as the excitonic
damping constantΓx [51] while the electronic damping constantΓ0 is set equal to zero.
Both assumptions could be modified without changing the results qualitatively. If the
inequalityΓxT � 1 holds, the time area where the signal shows a power-law increase
gives the dominant contribution to the time-integrated four-wave mixing signal for the
positive and the negative delay time. If the damping is stronger, the weight of the signal
for the positive delay time in Figure3.6is shifted towards the strong resonance peak at
t = |T |, which is already present in the case of non-interacting particles (see Equation
3.73). The weight of the signal for the negative delay time in Figure3.7is also shifted
towardst = |T |, but the shift is less pronounced due to the absence of a resonance
peak. In both cases the description of the time-integrated four-wave-mixing signal with
the help of the approximated expression from Equation3.76 becomes questionable
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Figure 3.6: The intensity of the time-resolved four-wave-mixing signal for the delay
time T = 16000v−1

f Λ and different excitonic damping constantsΓx, the parameters
for the interaction potential areV0 = −0.375 andλ = 1000Λ

since the signal is suppressed fort > |T |.
In Figure3.8the complete time-integrated four-wave-mixing signals are plotted for

the interaction amplitudeV0 = −0.375 and different damping constants. In the case
of a weak damping the function is symmetric with respect toT = 0 and its decrease
for large positive and negative values is described by a power law. If the damping
is stronger, the time-integrated four-wave-mixing signal for positive delay times de-
creases more slowly than the time-integrated signal for negative delay times since the
dominant contribution toW (T ) for T > 0 comes from the resonance peak mentioned
above whose amplitude does not depend on the delay timeT in the same way as the
total signal for large timest. If the delay time is negative, the most important contri-
bution to the time-integrated signal still comes from the part of the signal which can
be described by the approximated expression from Equation3.75because of the ab-
sence of a resonance peak. Consequently, the functionW (T ) still shows a power-law
decay. The total intensity, however, is reduced because of the stronger damping. If the
exponential decay has suppressed the algebraic decay entirely, the typical form of the
time-integrated four-wave-mixing signal is similar to the dotted curve in Figure3.8.
For negative delay times the logarithm ofW (T ) decreases linearly with the prefactor
2Γxx. This behavior can be related to the fact that the corresponding polarization signal
in Equation3.71contains a prefactoreΓxxT . As the four-wave-mixing signal for posi-
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Figure 3.7: The intensity of the time-resolved four-wave-mixing signal for the delay
timeT = −16000v−1

f Λ and different excitonic damping constantsΓx, the parameters
for the interaction potential areV0 = −0.375 andλ = 1000Λ

tive delay times in Equation3.70has an exponential prefactore−ΓxT , the logarithm of
the time integrated signal should decrease linearly with the prefactor−2Γx. However,
this behavior can only be observed for large positive delay times. For smaller positive
values ofT the functionW (T ) decreases likee−2{Γxx+2Γx}T . This can be put down to
the fact that the dominant contribution to the time-integrated four-wave-mixing signal
for small positive delay times comes from the signal in the vicinity of the resonance
peak att = T whose amplitude decreases likee−{2Γx+Γxx}T .

In Figures3.9 to 3.12the complete time-integrated four-wave-mixing signals for
different interaction amplitudes and different delay times are plotted together with the
corresponding approximated curves in order to illustrate the limits of validity of the
approximated expression from Equation3.76 in the case of weak damping. Since
the decay of the time-integrated signals for large positive and negative delay times
can be described by a power-law, double logarithmic plots are used for the graphical
representation of the data.

If the delay times are negative, the exact values for the time-integrated signals
agree very well with the approximated ones (see Figures3.9and3.10) although minor
differences can be observed for small negative delay times. However, these deviations
can be explained by the fact thatT was assumed to be considerably larger or smaller
than zero when deriving the approximated expression for the four-wave-mixing sig-
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Figure 3.8: The time-integrated four-wave-mixing signals for different delay times
T and different excitonic damping constantsΓx, the parameters for the interaction
potential areV0 = −0.375 andλ = 1000Λ

nal. The corresponding plots for positive delay times which are depicted in Figures
3.11and3.12also show a good agreement between the complete time-integrated sig-
nals and the approximated ones apart from the curves for the interaction amplitudes
V0 = −0.125 andV0 = −0.875. In both cases the damping is still too strong so
that the contributions to the time-integrated signals which are related to the short time
dynamics of the time-resolved four-wave-mixing signals cannot be neglected.
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Figure 3.10: The time-integrated four-wave-mixing signals for different negative de-
lay timesT and different interaction amplitudesV0 together with the corresponding
approximated curves,Γx = 8× 10−9vfΛ
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Figure 3.11: The time-integrated four-wave-mixing signals for different positive de-
lay timesT and different interaction amplitudesV0 together with the corresponding
approximated curves,Γx = 8× 10−9vfΛ
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Chapter 4

Summary and Outlook

In Chapter2, the relaxation behavior of optically excited electron-hole pairs in a one-
dimensional semiconductor, which are coupled to longitudinal optical phonons with
an initial lattice temperatureT ≥ 0, was studied with the help of quantum kinetic
equations. They were derived within the framework of the density matrix formal-
ism in the self-consistent Born approximation of second order (with respect to the
electron-phonon interaction). Apart from Hartree-Fock-like Coulomb contributions,
these equations contain additional Coulomb terms, the so-called vertex corrections, by
which the influence of the electron-electron interaction on the electron-phonon scat-
tering processes is taken into account. An alternative system of kinetic equations was
derived with the help of non-equilibrium Green’s functions following the presentations
which are found in the literature [43]. A comparison showed that the kinetic equations
which are formulated within the framework of the non-equilibrium Green’s function
formalism do not include the vertex corrections mentioned above.

The additional Coulomb terms are essential for a correct description of excitons
with finite center-of-mass momenta. This became clear when the imaginary part of the
linear susceptibility for excitonic excitations was calculated neglecting the influence
of the optically excited continuum states. When the vertex corrections were taken into
account, the imaginary part of the susceptibility was dominated by one resonance peak
whose width increased with temperature. When the vertex corrections were neglected
the width of this resonance peak became considerably broader, and it was possible to
observe the formation of a double peak structure with increasing temperature.

The differences between the results can be traced to the fact that the form of the
susceptibility function in the vicinity of the excitonic resonance is predominantly influ-
enced by phonon absorption processes. The two systems of kinetic equations provide
different descriptions of the energy spectra of electron-hole pairs after these absorption
processes in which the pairs, whose initial center-of-mass momenta after the optical
excitation are always zero, assume finite center-of-mass momenta. If the linear dy-
namics is described with the help of the kinetic equations without vertex corrections,
these electron-hole pairs are treated as free particles. In contrast to that, the kinetic
equations, which include the vertex corrections, allow the complete description of the
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interacting electron-hole pairs after the phonon absorption.
For comparison, the linear susceptibility functions for continuum excitations were

calculated using the quantum kinetic equations with vertex corrections. They exhib-
ited no significant differences from the susceptibility functions for non-interacting
electron-hole pairs. This indicates that all Coulomb terms have only a minor impact
on the dynamics of unbound electron-hole pairs in the model considered here.

The results of the investigation of the linear susceptibility were confirmed by cal-
culating the time behavior of electron and phonon densities for different detunings
in the weak nonlinear regime. When the excitation was tuned to the exciton reso-
nance, the additional Coulomb terms led to qualitative changes of the time behavior in
comparison with the results which were obtained within the framework of the ordinary
Hartree-Fock approximation. For continuum excitations, however, the additional terms
had no significant influence on the time behavior in accordance with the correspond-
ing results for the linear response. The nonlinear dynamics for excitonic excitations
was also calculated using a simplified version of the kinetic equations with vertex cor-
rections which had been adapted to the situation in the weak nonlinear regime. As
expected, these equations gave similar results as the kinetic equations with the com-
plete vertex corrections.

The numerical studies of the linear and nonlinear response indicate that the vertex
corrections have to be included in the kinetic equations if the time behavior of the
system is dominated by the excitonic excitations. On the other hand, it seems justified
to neglect their influence when describing continuum excitations, at least in the weak
nonlinear regime. Independent of that kind of optical excitation, however, it is always
necessary to take the vertex corrections into account if one intends to describe the
excitonic effects in a consistent way. It seems justified to assume that the results for the
one-dimensional semiconductor form a good basis for further studies, which could, for
example, deal with the role of the vertex corrections in the quantum kinetic equations
for higher dimensional systems.

The linear and nonlinear optical response of a one-dimensional n-doped semicon-
ductor with two bands was studied in Chapter3. While the energy dispersion of the
valence band was chosen to be constant, the dispersion of the conduction band was
linearized with respect to the two Fermi points. In the calculations, only the attrac-
tive interaction between the conduction electrons and the valence holes was taken into
account, whereas the repulsive interaction between the conduction electrons was ne-
glected in accordance with the approaches found in the literature [15, 19]. The intro-
duction of the linearized dispersion for the conduction electrons made it possible to
describe the eigenstates and eigenenergies of the free conduction electrons within the
framework of a bosonic representation. Within this bosonic representation, it was also
possible to describe the conduction electrons in the presence of the attractive potential
of one or several valence holes by mapping the Hamiltonian of the interacting system
on the free Hamiltonian with the help of a unitary transformation.

The optical response of the many-body system to the influence of an external elec-
tromagnetic field was then calculated by expanding the total polarization in a power
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series with respect to the intensity of the external field. The expressions for the lin-
ear contribution and the first nonlinear contribution, which is proportional to the third
power of the external field, were given explicitly. The influence of dissipative pro-
cesses was taken into account by introducing phenomenological damping constants
which ensured the convergence of the signals in the large-time limit.

When studying the linear response, attention was focused on the characteristics of
the absorption spectrum, which could be calculated exactly within the framework of
the bosonic representation. The calculations showed that the absorption spectrum in
the vicinity of the Fermi-edge is dominated by an asymmetric algebraic singularity
providing that the strength of the electron-hole interaction does not exceed a critical
value. These results are in good agreement with the results presented in the literature
[15].

The exact third-order response functions were calculated in a similar way as the lin-
ear response functions. They were used for the description of a degenerate four-wave-
mixing experiment with two excitation pulses. When calculating the time-integrated
four-wave-mixing signal for a specific propagation direction as a function of the delay
time between the pulses,T , it emerged that the decay of the time-integrated signal
is symmetric with respect toT = 0 and can approximately be described by a power
law providing that the delay times are small in comparison with the decay times. As
it turned out, the exponent which describes the algebraic decay of the time-integrated
signal is functionally dependent on the exponent of the algebraic singularity in the lin-
ear absorption spectrum reflecting the common origin of the different phenomena. If
the delay times are of the same order of magnitude as the life-times of the optical ex-
citations, the picture changes considerably and the decay of the time-integrated signal
is dominated by an exponential damping.

The investigation of the optical response of the exactly solvable one-dimensional
model showed that the well-known characteristic features of the linear response func-
tions can directly be related to features of the nonlinear response functions. Based
on the results of Chapter3, further studies can now deal with various subjects. For
example, one could calculate the response functions with the help of approximation
methods [35, 44, 59] and compare them with the corresponding exact expressions in
order to test the quality of the approximations. One could also study if the nonlinear
time behavior of higher dimensional models shows similar features as the dynamics
of the one-dimensional model presented here. Finally, the dissipative processes could
be incorporated in a way which goes beyond the phenomenological description which
was used in this work.



Appendix A

Kinetic Equations of Higher Order

The calculation of the correction terms in Section2.3 requires the knowledge of the
kinetic equations for the correlated parts of the second order phonon-assisted densities
from Equations2.25and2.26. They are given by

i
d

dt
〈ψ†λ1l+p+p′

ψλ2lbpbp′〉ct = {ωp′ + ωp} 〈ψ†λ1l+p+p′
ψλ2lbpbp′〉ct

+
∑
σ

{
ε̃λ2σ;l(t)〈ψ†λ1l+p+p′

ψσlbpbp′〉ct − ε̃σλ1;l+p+p′(t)〈ψ†σl+p+p′ψλ2lbpbp′〉ct
}

+ δ〈ψ†λ1l+p+p′
ψλ2lbpbp′〉cep + δ〈ψ†λ1l+p+p′

ψλ2lbpbp′〉cee (A.1)

and

i
d

dt
〈ψ†λ1l+p′−pψλ2lb

†
pbp′〉ct = {ωp′ − ωp} 〈ψ†λ1l+p′−pψλ2lb

†
pbp′〉ct

+
∑
σ

{
ε̃λ2σ;l(t)〈ψ†λ1l+p′−pψσlb

†
pbp′〉ct − ε̃σλ1;l+p′−p(t)〈ψ†σl+p′−pψλ2lb

†
pbp′〉ct

}
+ δ〈ψ†λ1l+p′−pψλ2lb

†
pbp′〉cep + δ〈ψ†λ1l+p′−pψλ2lb

†
pbp′〉cee, (A.2)

if the different contributions are arranged in the same way as in the case of the kinetic
equations for first order phonon-assisted densities. The collision terms are defined in
EquationsA.3 to A.6 (see below).

When deriving these equations it has to be taken into account that the expressions
on the right-hand sides of EquationsA.1 andA.2 do not contain all terms which appear
in the corresponding expressions for the complete second order phonon-assisted den-
sities after a factorization of the density functions. This is due to the fact that the latter
also contain terms which coincide with terms which appear in the kinetic equations
for the products of electron and phonon densities on the right-hand sides of Equations
2.25and2.26.

This phenomenon is characteristic for the kinetic equations of all correlation func-
tions which are not equal to their counterparts among the complete density functions.
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In Reference [42] it was interpreted as a consequence of the so-called linked-cluster
theorem.

The explicit form of the two collision terms which describe the influence of the
electron-phonon scattering processes is determined by the equations

δ〈ψ†λ1l+p+p′
ψλ2lbpbp′〉cep = gλ2

p′ 〈ψ
†
λ1l+p+p′

ψλ2l+p′bp〉t + gλ2
p 〈ψ

†
λ1l+p+p′

ψλ2l+pbp′〉t

+
{
gλ2

p′ 〈ψ
†
λ1l+p+p′

ψλ2l+p′bp〉t − gλ1

p′ 〈ψ
†
λ1l+p

ψλ2lbp〉t
}{
〈b−p′bp′〉t + 〈b†p′bp′〉t

}
+
{
gλ2
p 〈ψ

†
λ1l+p+p′

ψλ2l+pbp′〉t − gλ1
p 〈ψ

†
λ1l+p′

ψλ2lbp′〉t
}{
〈b−pbp〉t + 〈b†pbp〉t

}
−
∑
σ

gσp′
{
〈ψ†λ1l+p+p′

ψσl+p+p′〉t〈ψ†σl+pψλ2lbp〉t + 〈ψ†λ1l+p+p′
ψσl+p′bp〉t〈ψ†σlψλ2l〉t

}
−
∑
σ

gσp

{
〈ψ†λ1l+p+p′

ψσl+p+p′〉t〈ψ†σl+p′ψλ2lbp′〉t + 〈ψ†λ1l+p+p′
ψσl+pbp′〉t〈ψ†σlψλ2l〉t

}
+
{
gλ2

p+p′〈ψ
†
λ1l+p+p′

ψλ2l+p+p′〉t − gλ1

p+p′〈ψ
†
λ1l
ψλ2l〉t

}{
〈b−p−p′bpbp′〉t + 〈b†p+p′bpbp′〉t

}
+
∑
q 6=0

gλ2
q

{
〈ψ†λ1l+p+p′

ψλ2l−qbqbpbp′〉ct + 〈ψ†λ1l+p+p′
ψλ2l+qb

†
qbpbp′〉ct

}
−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l+p+p′+q

ψλ2lbqbpbp′〉ct + 〈ψ†λ1l+p+p′−qψλ2lb
†
qbpbp′〉ct

}
+
∑
σk

gσp′〈ψ
†
λ1l+p+p′

ψ†σkψσk+p′ψλ2lbp〉ct +
∑
σk

gσp 〈ψ
†
λ1l+p+p′

ψ†σkψσk+pψλ2lbp′〉ct (A.3)

and

δ〈ψ†λ1l+p′−pψλ2lb
†
pbp′〉cep = gλ2

p′ 〈ψ
†
λ1l+p′−pψλ2l+p′b

†
p〉t − gλ1

p 〈ψ
†
λ1l+p′

ψλ2lbp′〉t

+
{
gλ2

p′ 〈ψ
†
λ1l+p′−pψλ2l+p′b

†
p〉t − g

λ1

p′ 〈ψ
†
λ1l−pψλ2lb

†
p〉t
}{
〈b−p′bp′〉t + 〈b†p′bp′〉t

}
+
{
gλ2
p 〈ψ

†
λ1l+p′−pψλ2l−pbp′〉t − gλ1

p 〈ψ
†
λ1l+p′

ψλ2lbp′〉t
}{
〈b†pb

†
−p〉t + 〈b†pbp〉t

}
−
∑
σ

gσp′
{
〈ψ†λ1l+p′−pψσl+p′−p〉t〈ψ

†
σl−pψλ2lb

†
p〉t + 〈ψ†λ1l+p′−pψσl+p′b

†
p〉t〈ψ

†
σlψλ2l〉t

}
+
∑
σ

gσp

{
〈ψ†λ1l+p′−pψσl+p′−p〉t〈ψ

†
σl+p′ψλ2lbp′〉t + 〈ψ†λ1l+p′−pψσl−pbp′〉t〈ψ

†
σlψλ2l〉t

}
+
{
gλ2

p−p′〈ψ
†
λ1l+p′−pψλ2l+p′−p〉t − gλ1

p−p′〈ψ
†
λ1l
ψλ2l〉t

}{
〈b†pbp′bp−p′〉t + 〈b†p′−pb

†
pbp′〉t

}
+
∑
q 6=0

gλ2
q

{
〈ψ†λ1l+p′−pψλ2l−qb

†
pbp′bq〉ct + 〈ψ†λ1l+p′−pψλ2l+qb

†
qb
†
pbp′〉ct

}
−
∑
q 6=0

gλ1
q

{
〈ψ†λ1l+p′−p+qψλ2lb

†
pbp′bq〉ct + 〈ψ†λ1l+p′−p−qψλ2lb

†
qb
†
pbp′〉ct

}
+
∑
σk

gσp′〈ψ
†
λ1l+p′−pψ

†
σkψσk+p′ψλ2lb

†
p〉ct −

∑
σk

gσp 〈ψ
†
λ1l+p′−pψ

†
σk+pψσkψλ2lbp′〉ct . (A.4)



76 APPENDIX A. KINETIC EQUATIONS OF HIGHER ORDER

The sole contributions which are necessary for the calculation of the correction terms
δεc;l andδεv;l are those which are proportional to the first order phonon-assisted den-
sities. Therefore only the functions in the first five line of EquationsA.3 andA.4 have
to be considered. The remaining terms would become important, if the influence of
higher order corrections with respect to the phonon-coupling constantg was taken into
account.

The second collision term from EquationA.1, which satisfies the relation

δ〈ψ†λ1l+p+p′
ψλ2lbpbp′〉cee =

∑
σk

Vλ2σ(|p+ p′|)〈ψ†λ1l+p+p′
ψλ2l+p+p′〉t〈ψ

†
σk+p+p′ψσkbpbp′〉

c
t

−
∑
σk

Vσλ1(|p+ p′|)〈ψ†λ1l
ψλ2l〉t〈ψ

†
σk+p+p′ψσkbpbp′〉

c
t

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p+p′
ψσl+p+p′〉t〈ψ†σk+p+p′ψλ2kbpbp′〉ct

+
∑
σk

Vσλ1(|l − k|)〈ψ†σlψλ2l〉t〈ψ
†
λ1k+p+p′ψσkbpbp′〉

c
t

+
∑
σk

{
Vλ2σ(|p′|)〈ψ†λ1l+p+p′

ψλ2l+p′bp〉t − Vσλ1(|p′|)〈ψ†λ1l+p
ψλ2lbp〉t

}
〈ψ†σk+p′ψσkbp′〉t

+
∑
σk

{
Vλ2σ(|p|)〈ψ†λ1l+p+p′

ψλ2l+pbp′〉t − Vσλ1(|p|)〈ψ†λ1l+p′
ψλ2lbp′〉t

}
〈ψ†σk+pψσkbp〉t

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p+p′
ψσl+p′bp〉t〈ψ†σk+p′ψλ2kbp′〉t

+
∑
σk

Vσλ1(|l + p′ − k|)〈ψ†λ1k+pψσkbp〉t〈ψ
†
σl+p′ψλ2lbp′〉t

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p+p′
ψσl+pbp′〉t〈ψ†σk+pψλ2kbp〉t

+
∑
σk

Vσλ1(|l + p− k|)〈ψ†λ1k+p′ψσkbp′〉t〈ψ
†
σl+pψλ2lbp〉t

+
∑
σk

∑
q

Vλ2σ(|q|)〈ψ†λ1l+p+p′
ψ†σkψσk+qψλ2l−qbpbp′〉ct

−
∑
σk

∑
q

Vσλ1(|q|)〈ψ†λ1l+p+p′+q
ψ†σk−qψσkψλ2lbpbp′〉ct , (A.5)

describes those contributions of the electron-electron scattering processes to the dy-
namics of〈ψ†λ1l+p+p′

ψλ2lbpbp′〉c which cannot be written as corrections to the one-
particle energy matrix. When deriving the correction termsδελ;l these contributions
are neglected completely together with the dynamical Hartree-Fock contributions. In
order to describe at least the excitonic effects correctly, it would be necessary to con-
sider the terms in the first four lines which bear resemblance to the terms in the first
four lines of Equation2.24. This observation also applies to the corresponding colli-
sion term for the second order phonon-assisted density function〈ψ†λ1l+p′−pψλ2lb

†
pbp′〉c,
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which is defined by the equation

δ〈ψ†λ1l+p′−pψλ2lb
†
pbp′〉cee =

∑
σk

Vλ2σ(|p′ − p|)〈ψ†λ1l+p′−pψλ2l+p′−p〉t〈ψ
†
σk+p′−pψσkb

†
pbp′〉ct

−
∑
σk

Vσλ1(|p′ − p|)〈ψ†λ1l
ψλ2l〉t〈ψ

†
σk+p′−pψσkb

†
pbp′〉ct

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p′−pψσl+p′−p〉t〈ψ
†
σk+p′−pψλ2kb

†
pbp′〉ct

+
∑
σk

Vσλ1(|l − k|)〈ψ†σlψλ2l〉t〈ψ
†
λ1k+p′−pψσkb

†
pbp′〉ct

+
∑
σk

{
Vλ2σ(|p′|)〈ψ†λ1l+p′−pψλ2l+p′b

†
p〉t − Vσλ1(|p′|)〈ψ†λ1l−pψλ2lb

†
p〉t
}
〈ψ†σk+p′ψσkbp′〉t

+
∑
σk

{
Vλ2σ(|p|)〈ψ†λ1l+p′−pψλ2l−pbp′〉t − Vσλ1(|p|)〈ψ†λ1l+p′

ψλ2lbp′〉t
}
〈ψ†σk−pψσkb

†
p〉t

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p′−pψσl+p′b
†
p〉t〈ψ

†
σk+p′ψλ2kbp′〉t

+
∑
σk

Vσλ1(|l + p′ − k|)〈ψ†λ1k−pψσkb
†
p〉t〈ψ

†
σl+p′ψλ2lbp′〉t

−
∑
σk

Vλ2σ(|l − k|)〈ψ†λ1l+p′−pψσl−pbp′〉t〈ψ
†
σk−pψλ2kb

†
p〉t

+
∑
σk

Vσλ1(|l − p− k|)〈ψ†λ1k+p′ψσkbp′〉t〈ψ
†
σl−pψλ2lb

†
p〉t

+
∑
σk

∑
q

Vλ2σ(|q|)〈ψ†λ1l+p′−pψ
†
σkψσk+qψλ2l−qb

†
pbp′〉ct

−
∑
σk

∑
q

Vσλ1(|q|)〈ψ†λ1l+p′−p+qψ
†
σk−qψσkψλ2lb

†
pbp′〉ct . (A.6)



Appendix B

The Exciton Problem for a Separable
Interaction

The eigenvalue problem which has to be solved when describing the linear response of
the semiconductor in Chapter2 is equivalent to the eigenvalue problem of an excited
electron-hole pair in the presence of an attractive separable interaction. The corre-
sponding Hamiltonian reads

H =
∑
p

H(p) =
∑
p

{H0(p) + V (p)} . (B.1)

The form of the components of the free HamiltonianH0(p) is determined by the rela-
tion

H0(p) =
∑
k

|k, p〉E(k, p)〈k, p| (B.2)

where the vector|k, p〉 denotes the product state which is formed by a conduction
electron with quasi impulsek and a valence hole with quasi impulse−(k + p). The
operators which describe the electron-hole interaction are given by

V (p) = −|Φ(p)〉U〈Φ(p)| (B.3)

where the normalized vector which appears on the right-hand side of EquationB.3
satisfies the equation

|Φ(p)〉 =
1√
N

∑
k

|k, p〉. (B.4)

Due to the translational symmetry of the problem the subspaces for different center-
of-mass momenta decouple and the eigenvalue problem can be treated separately for
each subspace. The resolvent equation for the states with a total momentum−p reads

Ĝ(p; z) = Ĝ0(p; z) + Ĝ0(p; z)V (p)Ĝ(p; z) (B.5)

= Ĝ0(p; z)− Ĝ0(p; z)|Φ(p)〉U〈Φ(p)|Ĝ(p; z)
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where the resolvent operators are defined by the equations

Ĝ0(p; z) = {z −H0(p)}−1 , (B.6)

Ĝ(p; z) = {z −H(p)}−1 . (B.7)

Since the potential is separable in each subspace EquationB.5can be solved explicitly.
The solution satisfies the relation

Ĝ(p; z) = Ĝ0(p; z)− Ĝ0(p; z)|Φ(p)〉 U

1 + U〈Φ(p)|Ĝ0(p; z)|Φ(p)〉
〈Φ(p)|Ĝ0(p; z)

(B.8)

where the expectation value in the denominator of the second term is given by

〈Φ(p)|Ĝ0(p; z)|Φ(p)〉 =
1

N

∑
k

1

z − E(k, p)
. (B.9)

In the thermodynamic limit the sum is replaced by an integral and one obtains

〈Φ(p)|Ĝ0(p; z)|Φ(p)〉 =
1

2π

∫ π

−π
dk

1

z − EG(U) + T (p) cos(k + ϕ(p))
. (B.10)

In Section2.5 the resolvent has to be evaluated on the real axis withz = ω + i0.
The integral from EquationB.10 can then be calculated explicitly. Depending on the
position of the energyω in the spectrum, the value of the integral is either purely real
or purely imaginary:

〈Φ(p)|Ĝ0(p;ω + i0)|Φ(p)〉 =


T (p) < ω − EG(U) : 1√

(ω−EG(U))2−T 2(p)

T (p) > |ω − EG(U)| : −i√
T 2(p)−(ω−EG(U))2

T (p) < EG(U)− ω : −1√
(ω−EG(U))2−T 2(p)

.

(B.11)

At a certain pointω = ωex(p) below the lower band edge of the continuum states the
resolventĜ(p; z) shows a resonance which indicates the existence of a bound electron-
hole state (exciton). As the position of this resonance is determined by the equation

U〈Φ(p)|Ĝ0(p;ωex(p) + i0)|Φ(p)〉 = −1 (B.12)

the value ofωex(p) can be calculated explicitly with the help of EquationB.11and one
obtains the relation (confer Reference [49])

ωex(p) = EG(U)−
√
U2 + 4{tc + tv}2 − 16tctv sin2(

p

2
). (B.13)
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The excitonic energies for different center-of-mass momenta are arranged in a cosine
shaped band. If the model parameters from Section2.1are used, the distance between
the bottom of the exciton band atω = ωex(0) and the lower boundary of the continuum
states atω = ∆ + U is ωex(0) − ∆ − U = −0.4ωLO. The total width of the exciton
band is then given byωex(π)− ωex(0) = 0.5ωLO.

In order to calculate the susceptibility functions in Section2.5, it is necessary to
know the coefficients of the eigenstates of the HamiltonianH which belong to the
subspace of the electron-hole pairs with a vanishing center-of-mass momentum (p =
0). If the eigenenergyE of one of these eigenstates|χ〉 is not identical with one of the
eigenvaluesE(k, 0) of the operatorH0(0), the following equations

E|χ〉 = H0(0)|χ〉+ V (0)|χ〉 ⇔ |χ〉 = Ĝ0(0;E)V (0)|χ〉 (B.14)

and

Φχ
l = 〈l, 0|χ〉 = − U√

N
〈Φ(0)|χ〉 1

E − E(l, 0)
(B.15)

hold. The eigenenergiesE can then be determined by calculating the scalar product
〈Φ(0)|χ〉 with the help of EquationB.15:

〈Φ(0)|χ〉 = −U
∑
k

1

N

1

E − E(k, 0)
〈Φ(0)|χ〉 ⇔ (B.16)

− 1

U
=
∑
k

1

N

1

E − E(k, 0)
. (B.17)

The number of solutionsE for EquationB.17is equal to the number of different eigen-
values of the operatorH0(0). The smallest solution for the energyE is identical with
the energy of the excitonE = ωex(0) < E(0, 0) while each of the other solutions

E(k, 0) < E = ωk < E(k +
2π

N
, 0) (k ≥ 0) (B.18)

lies between two neighbouring eigenvalues ofH0(0). The coefficients for the eigenvec-
tor which describes the excitonic state,Φex

l = 〈l, 0|ωex(0)〉, and the coefficients for the
eigenvectors which describe the continuum states with the energiesωk, Φk

l = 〈l, 0|ωk〉,
are all invariant under an inversion of the system. The other eigenvectors of the opera-
torH(0) have an odd parity, their coefficients satisfy the simple equation

Φk,a
l =

1√
2
{δk;l − δk;−l} (k ≥ 0). (B.19)

These antisymmetric states are not excited by the external pulse and can therefore be
neglected.



Appendix C

The Four-Point Response Functions

In this chapter of the appendix the four-point response functions, which determine
the form of the four-wave-mixing signal, are calculated. In order to obtain a better
overview, this chapter has been divided into two sections. In the first section the exact
expressions for the different types of four-point response functions are derived. As
the derivation of these functions is similar to the derivation of the two-point response
functions in Section3.4, only the most important interim results are presented here. In
the second section it is shown that the exact expressions can be simplified considerably
by means of approximations, if the dipole coupling functiond(x) and the interaction
potentialv(|x|) meet certain requirements.

C.1 Exact Expressions

The four-point response functions which appear in Equation3.39can be split off into
32 different terms, if the total polarization operatorsP̃ and P̃ † are expressed with
the help of the corresponding operators for the right and left movers. Fortunately,
only twelve of these terms give a non-vanishing contribution since the HamiltonianH̃
conserves the number of both right and left moving electrons. Because of the inversion
symmetry of the system these twelve functions satisfy the following equations

〈Ω0|P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃ †l (t2)P̃l(t3)P̃ †l (t4)|Ω0〉, (C.1)

〈Ω0|P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃ †l (t2)P̃r(t3)P̃ †r (t4)|Ω0〉, (C.2)

〈Ω0|P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃ †r (t2)P̃r(t3)P̃ †l (t4)|Ω0〉 (C.3)

and

〈Ω0|P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃l(t2)P̃ †l (t3)P̃ †l (t4)|Ω0〉, (C.4)

〈Ω0|P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃r(t2)P̃ †l (t3)P̃ †r (t4)|Ω0〉, (C.5)

〈Ω0|P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)|Ω0〉 = 〈Ω0|P̃l(t1)P̃r(t2)P̃ †r (t3)P̃ †l (t4)|Ω0〉. (C.6)
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Therefore, it is sufficient to calculate the response functions on the left-hand sides of
EquationsC.1to C.6.

In the following the response functions which appear in EquationsC.1 to C.3 are
referred to as excitonic four-point response functions since they describe transitions
between the subspaces with no and one valence hole. Correspondingly, the functions
in EquationsC.4 to C.6 are called biexcitonic four-point response functions because
they describe processes in which two electron-hole pairs are created and annihilated. In
order to calculate the four-point response functions, it is necessary to know the expec-
tation values of the corresponding products of field operators which can be evaluated
exactly with the help of the auxiliary functions introduced in AppendixD.

The excitonic response function on the left-hand side of EquationC.1 describes
processes in which only pairs of valence holes and right moving electrons are cre-
ated and annihilated. The spatial correlation function which is related to this response
function satisfies the following equation

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)ψ̃er(x3, t3)ψ̃h(y3, t3)ψ̃†h(y4, t4)ψ̃†er(x4, t4)〉0
= esX;r(t1,t2,x1−y1)es

∗
X;r(t2,t1,x2−y1)esX;r(t3,t4,x3−y4)es

∗
X;r(t4,t3,x4−y4)

× eSX;rr(t1,t3,t2,t4;y1−y4;x1−y1,x3−y4,y1−y4)eS
∗
X;rr(t4,t2,t3,t1;y1−y4;x4−y4,x2−y1,−y1+y4)

× ei(t1−t2+t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0〈ψh;0(y3, t3)ψ†h;0(y4, t4)〉0
×
{
〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψ†er;0(x2, t2)ψer;0(x3, t3)〉0

+ 〈ψer;0(x1, t1)ψ†er;0(x2, t2)〉0〈ψer;0(x3, t3)ψ†er;0(x4, t4)〉0
}
. (C.7)

The auxiliary functionSX;rr has been introduced in order to obtain a compact expres-
sion. It is defined by the relation

SX;rr(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t3 − t2) + y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4)− y − x1, vf (t1 − t2)− y − x1)

+G∗(vf (t3 − t2)− y + x2, vf (t1 − t2)− y + x2).
(C.8)

The excitonic response functions on the left-hand sides of EquationsC.2andC.3rep-
resent processes which involve the creation and annihilation of both left and right
moving electrons. The corresponding spatial correlation functions are given by

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†er(x2, t2)ψ̃el(x3, t3)ψ̃h(y3, t3)ψ̃†h(y4, t4)ψ̃†el(x4, t4)〉0
= esX;r(t1,t2,x1−y1)es

∗
X;r(t2,t1,x2−y1)esX;l(t3,t4,x3−y4)es

∗
X;l(t4,t3,x4−y4)

× eSX;rl(t1,t3,t2,t4;y1−y4;x1−y1,x3−y4,y1−y4)eS
∗
X;lr(t4,t2,t3,t1;y1−y4;x4−y4,x2−y1,−y1+y4)

× ei(t1−t2+t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0〈ψh;0(y3, t3)ψ†h;0(y4, t4)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x2, t2)〉0〈ψel;0(x3, t3)ψ†el;0(x4, t4)〉0 (C.9)
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and

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃†h(y2, t2)ψ̃†el(x2, t2)ψ̃el(x3, t3)ψ̃h(y3, t3)ψ̃†h(y4, t4)ψ̃†er(x4, t4)〉0
= esX;r(t1,t2,x1−y1)es

∗
X;l(t2,t1,x2−y1)esX;l(t3,t4,x3−y4)es

∗
X;r(t4,t3,x4−y4)

× eSX;rl(t1,t3,t2,t4;y1−y4;x1−y1,x3−y4,y1−y4)eS
∗
X;rl(t4,t2,t3,t1;y1−y4;x4−y4,x2−y1,−y1+y4)

× ei(t1−t2+t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0〈ψh;0(y3, t3)ψ†h;0(y4, t4)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψ†el;0(x2, t2)ψel;0(x3, t3)〉0. (C.10)

The new auxiliary functions which have been introduced in EquationsC.9 andC.10
are defined by the two relations

SX;rl(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t3 − t2) + y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4)− y − x1, vf (t1 − t2)− y − x1)

+G∗(vf (t3 − t2) + y − x2, vf (t1 − t2) + y − x2)
(C.11)

and

SX;lr(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t3 − t2) + y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4) + y + x1, vf (t1 − t2) + y + x1)

+G∗(vf (t3 − t2)− y + x2, vf (t1 − t2)− y + x2).
(C.12)

Due to the structure of the excitonic response functions there exists only one way
to combine the hole operators. Therefore all spatial correlation functions share the
common factor

〈ψh;0(y1, t1)ψ†h;0(y2, t2)〉0〈ψh;0(y3, t3)ψ†h;0(y4, t4)〉0.

If all four electronic field operators belong to the same sort of electrons, two different
pairings of the operatorsψeσ andψ†eσ are possible, as can be seen in EquationC.7. On
the other hand, the expressions for the correlation functions in EquationsC.9andC.10
contain only one combination of electronic pair functions since field operators of both
sorts of electrons appear in the corresponding operator products.
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The biexcitonic response function on the left-hand side of EquationC.4 can be
calculated with the help of the spatial correlation function

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃er(x2, t2)ψ̃h(y2, t2)ψ̃†h(y3, t3)ψ̃†er(x3, t3)ψ̃†h(y4, t4)ψ̃†er(x4, t4)〉0
= ei(t2−t3)2ε(y1−y2)esX;r(t1,t4,x1−y1)esX;r(t2,t3,x2−y2)es

∗
X;r(t3,t2,x3−y2)es

∗
X;r(t4,t1,x4−y1)

× eSXX;rr(t1,t2,t4,t3;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;rr(t4,t3,t1,t2;y1−y2;x4−y1,x3−y2,y1−y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y4, t4)〉0〈ψh;0(y2, t2)ψ†h;0(y3, t3)〉0
×
{
〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψer;0(x2, t2)ψ†er;0(x3, t3)〉0
− 〈ψer;0(x1, t1)ψ†er;0(x3, t3)〉0〈ψer;0(x2, t2)ψ†er;0(x4, t4)〉0

}
+ ei(t2−t3)2ε(y1−y2)esX;r(t1,t3,x1−y1)esX;r(t2,t4,x2−y2)es

∗
X;r(t3,t1,x3−y1)es

∗
X;r(t4,t2,x4−y2)

× eSXX;rr(t1,t2,t3,t4;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;rr(t4,t3,t2,t1;y1−y2;x4−y2,x3−y1,−y1+y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y3, t3)〉0〈ψh;0(y2, t2)ψ†h;0(y4, t4)〉0
×
{
〈ψer;0(x1, t1)ψ†er;0(x3, t3)〉0〈ψer;0(x2, t2)ψ†er;0(x4, t4)〉0
− 〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψer;0(x2, t2)ψ†er;0(x3, t3)〉0

}
(C.13)

where the auxiliary functionSXX;rr is given by

SXX;rr(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t2 − t3)− y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4)− y − x1, vf (t1 − t2)− y − x1)

+G∗(vf (t2 − t3) + y − x2, y − x2)

+G∗(−y + x2, vf (t1 − t2)− y + x2). (C.14)

Unlike the case of the excitonic correlation function in EquationC.7, there are two
different ways to contract the four hole operators of the biexcitonic correlation function
in EquationC.13. Therefore the different terms on the right-hand side of EquationC.13
contain either the factor

〈ψh;0(y1, t1)ψ†h;0(y4, t4)〉0〈ψh;0(y2, t2)ψ†h;0(y3, t3)〉0

or the factor

〈ψh;0(y1, t1)ψ†h;0(y3, t3)〉0〈ψh;0(y2, t2)ψ†h;0(y4, t4)〉0.

The same is true for the biexcitonic response functions which describe mixed excita-
tion processes. For example, the spatial correlation functions for the response func-
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tions on the left-hand sides of EquationsC.5andC.6satisfy the following equations

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃el(x2, t2)ψ̃h(y2, t2)ψ̃†h(y3, t3)ψ̃†er(x3, t3)ψ̃†h(y4, t4)ψ̃†el(x4, t4)〉0
= ei(t2−t3)2ε(y1−y2)esX;r(t1,t3,x1−y1)esX;l(t2,t4,x2−y2)es

∗
X;r(t3,t1,x3−y1)es

∗
X;l(t4,t2,x4−y2)

× eSXX;rl(t1,t2,t3,t4;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;lr(t4,t3,t2,t1;y1−y2;x4−y2,x3−y1,−y1+y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y3, t3)〉0〈ψh;0(y2, t2)ψ†h;0(y4, t4)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x3, t3)〉0〈ψel;0(x2, t2)ψ†el;0(x4, t4)〉0
− ei(t2−t3)2ε(y1−y2)esX;r(t1,t4,x1−y1)esX;l(t2,t3,x2−y2)es

∗
X;r(t3,t2,x3−y2)es

∗
X;l(t4,t1,x4−y1)

× eSXX;rl(t1,t2,t4,t3;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;lr(t4,t3,t1,t2;y1−y2;x4−y1,x3−y2,y1−y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y4, t4)〉0〈ψh;0(y2, t2)ψ†h;0(y3, t3)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x3, t3)〉0〈ψel;0(x2, t2)ψ†el;0(x4, t4)〉0 (C.15)

and

〈ψ̃er(x1, t1)ψ̃h(y1, t1)ψ̃el(x2, t2)ψ̃h(y2, t2)ψ̃†h(y3, t3)ψ̃†el(x3, t3)ψ̃†h(y4, t4)ψ̃†er(x4, t4)〉0
= ei(t2−t3)2ε(y1−y2)esX;r(t1,t4,x1−y1)esX;l(t2,t3,x2−y2)es

∗
X;l(t3,t2,x3−y2)es

∗
X;r(t4,t1,x4−y1)

× eSXX;rl(t1,t2,t4,t3;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;rl(t4,t3,t1,t2;y1−y2;x4−y1,x3−y2,y1−y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y4, t4)〉0〈ψh;0(y2, t2)ψ†h;0(y3, t3)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψel;0(x2, t2)ψ†el;0(x3, t3)〉0
− ei(t2−t3)2ε(y1−y2)esX;r(t1,t3,x1−y1)esX;l(t2,t4,x2−y2)es

∗
X;l(t3,t1,x3−y1)es

∗
X;r(t4,t2,x4−y2)

× eSXX;rl(t1,t2,t3,t4;y1−y2;x1−y1,x2−y2,y1−y2)eS
∗
XX;rl(t4,t3,t2,t1;y1−y2;x4−y2,x3−y1,−y1+y2)

× ei(t1+t2−t3−t4)ε(0)〈ψh;0(y1, t1)ψ†h;0(y3, t3)〉0〈ψh;0(y2, t2)ψ†h;0(y4, t4)〉0
× 〈ψer;0(x1, t1)ψ†er;0(x4, t4)〉0〈ψel;0(x2, t2)ψ†el;0(x3, t3)〉0. (C.16)

Here, the auxiliary functions are defined by the two relations

SXX;rl(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t2 − t3)− y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4)− y − x1, vf (t1 − t2)− y − x1)

+G∗(vf (t2 − t3)− y + x2,−y + x2)

+G∗(y − x2, vf (t1 − t2) + y − x2) (C.17)

and

SXX;lr(t1, t2, t3, t4; y′;x1, x2, y) = H∗(vf (t1 − t4)− y′, vf (t1 − t2)− y′)
+H∗(vf (t2 − t3)− y′, vf (t1 − t2) + y′)

+G∗(vf (t1 − t4) + y + x1, vf (t1 − t2) + y + x1)

+G∗(vf (t2 − t3) + y − x2, y − x2)

+G∗(−y + x2, vf (t1 − t2)− y + x2). (C.18)
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As the number of the possible contractions of the electronic field operators in biexci-
tonic correlation functions is equal to the number of the possible contractions in the
corresponding excitonic correlation functions the former always consist of twice as
many terms as the latter.

The four-point response functions can be calculated by integrating the correspond-
ing spatial correlation functions with respect to all position variables. The connected
parts are then obtained by applying the definitions3.40and3.41. In the case of the
excitonic response function which is related to the spatial correlation function in Equa-
tion C.7the procedure yields the following formula

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)|Ω0〉c = 〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉c

= 〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉Ic + 〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉IIc (C.19)

in the thermodynamic limit where the two contributions on the right-hand side of Equa-
tion C.19are defined by the relations

〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉Ic = e−i(t1−t2+t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t2−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t2,x̃1)

∫ ∞
−∞

dx̃2e
−ikx̃2d(x̃2)es

∗
X;r(t2,t1,x̃2)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t3)

∫ ∞
−∞

dx̃3e
ik̄x̃3d(x̃3)esX;r(t3,t4,x̃3)

∫ ∞
−∞

dx̃4e
−ik̄x̃4d(x̃4)es

∗
X;r(t4,t3,x̃4)

×
∫ ∞
−∞

dy
{
eSX;rr(t1,t3,t2,t4;y;x̃1,x̃3,y)eS

∗
X;rr(t4,t2,t3,t1;y;x̃4,x̃2,−y) − 1

}
(C.20)

and

〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉IIc = e−i(t1−t2+t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t2,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t3,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃3e
ik̄x̃2d(x̃3)esX;r(t3,t4,x̃3)

∫ ∞
−∞

dx̃2e
−ik̄x̃3d(x̃2)es

∗
X;r(t2,t1,x̃2)

×
∫ ∞
−∞

dyei(k+k̄)yeSX;rr(t1,t3,t2,t4;y;x̃1,x̃3,y)eS
∗
X;rr(t4,t2,t3,t1;y;x̃4,x̃2,−y). (C.21)

The main difference between them consists in the form of the integrals with respect to
the variabley which can be identified as the relative distance between the two valence
holes which are created by the two polarization operatorsP †r (t2) andP †r (t4).

The integral with respect toy in the first contribution is independent of the wave
vectorsk andk̄ which are related to the free electronic two-point functions appearing
in EquationC.7. In addition to that, the integrand contains a term−1 which comes
from the product of two-point response functions which is subtracted from the total
four-point response function when calculating the connected part. This term is crucial
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for the convergence of the integral since the behavior of the first term in the integrand
for large positive or negative values ofy is described by the relation

lim
y→±∞

eSX;rr(t1,t3,t2,t4;y;x̃1,x̃3,y)eS
∗
X;rr(t4,t2,t3,t1;y;x̃4,x̃2,−y) = 1 +O(

1

y2
). (C.22)

The integral with respect toy in the second contribution depends on the wave vectors
k andk̄ because of the factorei(k+k̄)y which ensures the convergence of the integral. If
the particles do not interact with each other, both integrals vanish and the total response
function only consists of the disconnected part describing the successive creation and
annihilation of two pairs of free right moving electrons and valence holes.

The different character of the two contributions is a consequence of the fact that
the field operators of the particles can be paired in two different ways. The first con-
tribution corresponds to the case in which field operators of electrons and holes which
have the same time in common are always paired with field operators whose times
are also identical. If, for example,ψh;0(y1, t1) is paired withψ†h;0(y2, t2), the operator

ψer;0(x1, t1) has to be paired withψ†er;0(x2, t2). The second contribution corresponds
to the case in which field operators with the same time are paired with field operators
whose times are not identical.

The other connected four-point response functions are composed of contributions
which are similar to the two contributions which have already been discussed. In the
case of the excitonic response functions which are related to the spatial correlation
functions in EquationsC.9andC.10the following relations

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)|Ω0〉c = 〈〈P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)〉〉c (C.23)

and

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)|Ω0〉c = 〈〈P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)〉〉c (C.24)

with

〈〈P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)〉〉c = e−i(t1−t2+t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t2−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t2,x̃1)

∫ ∞
−∞

dx̃2e
−ikx̃2d(x̃2)es

∗
X;r(t2,t1,x̃2)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t3)

∫ ∞
−∞

dx̃3e
−ik̄x̃3d(x̃3)esX;l(t3,t4,x̃3)

∫ ∞
−∞

dx̃4e
ik̄x̃4d(x̃4)es

∗
X;l(t4,t3,x̃4)

×
∫ ∞
−∞

dy
{
eSX;rl(t1,t3,t2,t4;y;x̃1,x̃3,y)eS

∗
X;lr(t4,t2,t3,t1;y;x̃4,x̃2,−y) − 1

}
(C.25)
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and

〈〈P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)〉〉c = e−i(t1−t2+t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t2,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t3,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃3e
ik̄x̃3d(x̃3)esX;l(t3,t4,x̃3)

∫ ∞
−∞

dx̃2e
−ik̄x̃2d(x̃2)es

∗
X;l(t2,t1,x̃2)

×
∫ ∞
−∞

dyei(2kf+k−k̄)yeSX;rl(t1,t3,t2,t4;y;x̃1,x̃3,y)eS
∗
X;rl(t4,t2,t3,t1;y;x̃4,x̃2,−y) (C.26)

are obtained. The term on the right-hand side of EquationC.23 resembles the first
contribution in EquationC.19 while the response function in EquationC.24 is sim-
ilar to the second contribution of EquationC.19 with the factorei(2kf+k−k̄)y instead
of ei(k+k̄)y. If the particles are assumed to be free, the connected excitonic response
function in EquationC.23equals zero whereas the response function in EquationC.24
yields a non-vanishing contribution. The appearance of the wave vector2kf can then
be explained within the framework of a simple one-particle picture since the free ver-
sion of the connected response function in EquationC.24 describes the annihilation
and creation of left moving electrons in the Fermi sea whose distance to the Fermi
point of the left movers is larger than2kf .

The connected part of the biexcitonic response function on the left-hand side of
EquationC.4is calculated with the help of the spatial correlation function in Equation
C.13. The result is given by

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)|Ω0〉c = 〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉c

= 〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉Ic + 〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IIc
+ 〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IIIc + 〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IVc . (C.27)

The first two contributions on the right-hand side of EquationC.27, which are defined
by the identities

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉Ic = e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t4,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t1,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃2e
ik̄x̃2d(x̃2)esX;r(t2,t3,x̃2)

∫ ∞
−∞

dx̃3e
−ik̄x̃3d(x̃3)es

∗
X;r(t3,t2,x̃3)

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rr(t1,t2,t4,t3;y;x̃1,x̃2,y)eS

∗
XX;rr(t4,t3,t1,t2;y;x̃4,x̃3,y) − 1

}
(C.28)



C.1. EXACT EXPRESSIONS 89

and

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IIc = e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t3−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t3,x̃1)

∫ ∞
−∞

dx̃3e
−ikx̃3d(x̃3)es

∗
X;r(t3,t1,x̃3)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t2)

∫ ∞
−∞

dx̃2e
ik̄x̃2d(x̃2)esX;r(t2,t4,x̃2)

∫ ∞
−∞

dx̃4e
−ik̄x̃4d(x̃4)es

∗
X;r(t4,t2,x̃4)

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rr(t1,t2,t3,t4;y;x̃1,x̃2,y)eS

∗
XX;rr(t4,t3,t2,t1;y;x̃4,x̃3,−y) − 1

}
,

(C.29)

exhibit the same structure as the first contribution in EquationC.19whereas the third
and the fourth contribution, which satisfy the relations

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IIIc = −e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t3−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t4,x̃1)

∫ ∞
−∞

dx̃3e
−ikx̃3d(x̃3)es

∗
X;r(t3,t2,x̃3)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t2)

∫ ∞
−∞

dx̃2e
ik̄x̃2d(x̃2)esX;r(t2,t3,x̃2)

∫ ∞
−∞

dx̃4e
−ik̄x̃4d(x̃4)es

∗
X;r(t4,t1,x̃4)

×
∫ ∞
−∞

dyei(k−k̄)yei(t2−t3)2ε(y)eSXX;rr(t1,t2,t4,t3;y;x̃1,x̃2,y)eS
∗
XX;rr(t4,t3,t1,t2;y;x̃4,x̃3,y) (C.30)

and

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉IVc = −e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t3,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t2,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃2e
ik̄x̃2d(x̃2)esX;r(t2,t4,x̃2)

∫ ∞
−∞

dx̃3e
−ik̄x̃3d(x̃3)es

∗
X;r(t3,t1,x̃3)

×
∫ ∞
−∞

dyei(k−k̄)yei(t2−t3)2ε(y)eSXX;rr(t1,t2,t3,t4;y;x̃1,x̃2,y)eS
∗
XX;rr(t4,t3,t2,t1;y;x̃4,x̃3,−y),

(C.31)

are structured in the same way as the second contribution in EquationC.19. If the
particles do not interact with each other, the biexcitonic response function does not
vanish unlike the corresponding excitonic response function.

Finally, the biexcitonic response functions which are associated with the spatial
correlation functions in EquationsC.15andC.16satisfy the relations

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)|Ω0〉c = 〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉c

= 〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉Ic + 〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉IIc (C.32)
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and

lim
L→∞

1

L
〈Ω0|P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)|Ω0〉c = 〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉c

= 〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉Ic + 〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉IIc . (C.33)

The first contributions in both equations, which are defined by the relations

〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉Ic = e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t3−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t3,x̃1)

∫ ∞
−∞

dx̃3e
−ikx̃3d(x̃3)es

∗
X;r(t3,t1,x̃3)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t2)

∫ ∞
−∞

dx̃2e
−ik̄x̃2d(x̃2)esX;l(t2,t4,x̃2)

∫ ∞
−∞

dx̃4e
ik̄x̃4d(x̃4)es

∗
X;l(t4,t2,x̃4)

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rl(t1,t2,t3,t4;y;x̃1,x̃2,y)eS

∗
XX;lr(t4,t3,t2,t1;y;x̃4,x̃3,−y) − 1

}
(C.34)

and

〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉Ic = e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t4,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t1,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃2e
−ik̄x̃2d(x̃2)esX;l(t2,t3,x̃2)

∫ ∞
−∞

dx̃3e
ik̄x̃3d(x̃3)es

∗
X;l(t3,t2,x̃3)

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rl(t1,t2,t4,t3;y;x̃1,x̃2,y)eS

∗
XX;rl(t4,t3,t1,t2;y;x̃4,x̃3,y) − 1

}
,

(C.35)

resemble the excitonic response function in EquationC.23whereas the second contri-
butions in EquationsC.32andC.33, which satisfy the equations

〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉IIc = −e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t3−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t4,x̃1)

∫ ∞
−∞

dx̃3e
−ikx̃3d(x̃3)es

∗
X;r(t3,t2,x̃3)

×
∫ ∞

0

dk̄

2π
eik̄vf (t4−t2)

∫ ∞
−∞

dx̃2e
−ik̄x̃2d(x̃2)esX;l(t2,t3,x̃2)

∫ ∞
−∞

dx̃4e
ik̄x̃4d(x̃4)es

∗
X;l(t4,t1,x̃4)

×
∫ ∞
−∞

dyei(2kf+k+k̄)yei(t2−t3)2ε(y)eSXX;rl(t1,t2,t4,t3;y;x̃1,x̃2,y)eS
∗
XX;lr(t4,t3,t1,t2;y;x̃4,x̃3,y)

(C.36)
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and

〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉IIc = −e−i(t1+t2−t3−t4)(Eh−ε(0))

×
∫ ∞

0

dk

2π
eikvf (t4−t1)

∫ ∞
−∞

dx̃1e
ikx̃1d(x̃1)esX;r(t1,t3,x̃1)

∫ ∞
−∞

dx̃4e
−ikx̃4d(x̃4)es

∗
X;r(t4,t2,x̃4)

×
∫ ∞

0

dk̄

2π
eik̄vf (t3−t2)

∫ ∞
−∞

dx̃2e
−ik̄x̃2d(x̃2)esX;l(t2,t4,x̃2)

∫ ∞
−∞

dx̃3e
ik̄x̃3d(x̃3)es

∗
X;l(t3,t1,x̃3)

×
∫ ∞
−∞

dyei(2kf+k+k̄)yei(t2−t3)2ε(y)eSXX;rl(t1,t2,t3,t4;y;x̃1,x̃2,y)eS
∗
XX;rl(t4,t3,t2,t1;y;x̃4,x̃3,−y),

(C.37)

are similar to the excitonic response function in EquationC.24. If the particles do not
interact with each other, all contributions vanish and the biexcitonic response functions
in EquationsC.32andC.33are equal to zero.

C.2 Approximations

The exact calculation of the four-point response functions turns out to be a difficult
task since it requires the evaluation of seven-dimensional integrals. If, however, the
auxiliary functions vary slowly on the length scale which is determined by the width
of the Lorentzian curveΛ, the same approximation which has already been used to
simplify the two-point response functions in Section3.4 can be applied to eliminate
the integrations with respect to the variablesx̃i.

In the case of the excitonic response function of EquationC.19this approximation
leads to the following expression

〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉c
≈ e−i(t1−t2+t3−t4)(Eh−ε(0))esX;r(t1,t2,0)es

∗
X;r(t2,t1,0)esX;r(t3,t4,0)es

∗
X;r(t4,t3,0)

× (2πi)−2(vf (t1 − t2)− i2Λ)−1(vf (t3 − t4)− i2Λ)−1

×
∫ ∞
−∞

dy
{
eSX;rr(t1,t3,t2,t4;y;0,0,y)eS

∗
X;rr(t4,t2,t3,t1;y;0,0,−y) − 1

}
+ e−i(t1−t2+t3−t4)(Eh−ε(0))esX;r(t1,t2,0)es

∗
X;r(t2,t1,0)esX;r(t3,t4,0)es

∗
X;r(t4,t3,0)

×
∫ ∞
−∞

dyeSX;rr(t1,t3,t2,t4;y;0,0,y)eS
∗
X;rr(t4,t2,t3,t1;y;0,0,−y)

× (2πi)−2(vf (t1 − t4)− y − i2Λ)−1(vf (t2 − t3)− y − i2Λ)−1 (C.38)

with the number of integrations being reduced to one integration with respect to the
relative hole distancey. Since the electron-hole interaction affects the form of the
integrands the analysis of the result is more complicated than in the case of the two-
point response functions. If the same approximation is applied to the other excitonic



92 APPENDIX C. THE FOUR-POINT RESPONSE FUNCTIONS

four-point response functions from SectionC.1, one obtains the following identities

〈〈P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)〉〉c
≈ e−i(t1−t2+t3−t4)(Eh−ε(0))esX;r(t1,t2,0)es

∗
X;l(t4,t3,0)esX;l(t3,t4,0)es

∗
X;r(t2,t1,0)

× (2πi)−2(vf (t1 − t2)− i2Λ)−1(vf (t3 − t4)− i2Λ)−1

×
∫ ∞
−∞

dy
{
eSX;rl(t1,t3,t2,t4;y;0,0,y)eS

∗
X;lr(t4,t2,t3,t1;y;0,0,−y) − 1

}
(C.39)

and

〈〈P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)〉〉c
≈ e−i(t1−t2+t3−t4)(Eh−ε(0))esX;r(t1,t2,0)es

∗
X;r(t4,t3,0)esX;l(t3,t4,0)es

∗
X;l(t2,t1,0)

×
∫ ∞
−∞

dyei2kfyeSX;rl(t1,t3,t2,t4;y;0,0,y)eS
∗
X;rl(t4,t2,t3,t1;y;0,0,−y)

× (2πi)−2(vf (t1 − t4)− y − i2Λ)−1(vf (t2 − t3) + y − i2Λ)−1. (C.40)

The approximated version of the biexcitonic four-point function in EquationC.27sat-
isfies the relation

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉c
≈ e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t4,0)es

∗
X;r(t4,t1,0)esX;r(t2,t3,0)es

∗
X;r(t3,t2,0)

× (2πi)−2(vf (t1 − t4)− i2Λ)−1(vf (t2 − t3)− i2Λ)−1

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rr(t1,t2,t4,t3;y;0,0,y)eS

∗
XX;rr(t4,t3,t1,t2;y;0,0,y) − 1

}
+ e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t3,0)es

∗
X;r(t3,t1,0)esX;r(t2,t4,0)es

∗
X;r(t4,t2,0)

× (2πi)−2(vf (t1 − t3)− i2Λ)−1(vf (t2 − t4)− i2Λ)−1

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rr(t1,t2,t3,t4;y;0,0,y)eS

∗
XX;rr(t4,t3,t2,t1;y;0,0,−y) − 1

}
− e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t4,0)es

∗
X;r(t4,t1,0)esX;r(t2,t3,0)es

∗
X;r(t3,t2,0)

×
∫ ∞
−∞

dyei(t2−t3)2ε(y)eSXX;rr(t1,t2,t4,t3;y;0,0,y)eS
∗
XX;rr(t4,t3,t1,t2;y;0,0,y)

× (2πi)−2(vf (t1 − t3)− y − i2Λ)−1(vf (t2 − t4) + y − i2Λ)−1

− e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t3,0)es
∗
X;r(t3,t1,0)esX;r(t2,t4,0)es

∗
X;r(t4,t2,0)

×
∫ ∞
−∞

dyei(t2−t3)2ε(y)eSXX;rr(t1,t2,t3,t4;y;0,0,y)eS
∗
XX;rr(t4,t3,t2,t1;y;0,0,−y)

× (2πi)−2(vf (t1 − t4)− y − i2Λ)−1(vf (t2 − t3) + y − i2Λ)−1 (C.41)

whereas the biexcitonic four-point functions from EquationsC.32 andC.33 are ap-
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proximated by the following expressions

〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉c
≈ e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t3,0)es

∗
X;r(t3,t1,0)esX;l(t2,t4,0)es

∗
X;l(t4,t2,0)

× (2πi)−2(vf (t1 − t3)− i2Λ)−1(vf (t2 − t4)− i2Λ)−1

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rl(t1,t2,t3,t4;y;0,0,y)eS

∗
XX;lr(t4,t3,t2,t1;y;0,0,−y) − 1

}
− e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t4,0)es

∗
X;r(t3,t2,0)esX;l(t2,t3,0)es

∗
X;l(t4,t1,0)

×
∫ ∞
−∞

dyei2kfyei(t2−t3)2ε(y)eSXX;rl(t1,t2,t4,t3;y;0,0,y)eS
∗
XX;lr(t4,t3,t1,t2;y;0,0,y)

× (2πi)−2(vf (t1 − t3)− y − i2Λ)−1(vf (t2 − t4)− y − i2Λ)−1 (C.42)

and

〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉c
≈ e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t4,0)es

∗
X;r(t4,t1,0)esX;l(t2,t3,0)es

∗
X;l(t3,t2,0)

× (2πi)−2(vf (t1 − t4)− i2Λ)−1(vf (t2 − t3)− i2Λ)−1

×
∫ ∞
−∞

dy
{
ei(t2−t3)2ε(y)eSXX;rl(t1,t2,t4,t3;y;0,0,y)eS

∗
XX;rl(t4,t3,t1,t2;y;0,0,y) − 1

}
− e−i(t1+t2−t3−t4)(Eh−ε(0))esX;r(t1,t3,0)es

∗
X;r(t4,t2,0)esX;l(t2,t4,0)es

∗
X;l(t3,t1,0)

×
∫ ∞
−∞

dyei2kfyei(t2−t3)2ε(y)eSXX;rl(t1,t2,t3,t4;y;0,0,y)eS
∗
XX;rl(t4,t3,t2,t1;y;0,0,−y)

× (2πi)−2(vf (t1 − t4)− y − i2Λ)−1(vf (t2 − t3)− y − i2Λ)−1. (C.43)

Some of these functions can be simplified further since the width of the functiond is
assumed to be large in comparison with the inverse Fermi vector (Λ � k−1

f ). It is
then possible to neglect the response function in EquationC.40as well as the second
contributions in EquationsC.42andC.43because of the fast oscillating factorei2kfy

which appears in the respective integrals.
Unfortunately, the integrals in the approximated expressions for the four-point re-

sponse functions are still too complicated to allow a simple description of their dynam-
ics. Nevertheless, it is possible to estimate the leading time behavior for the four-wave
mixing signals from Equations3.70and3.71, if the external timet is large compared
with the delay timeT . To this end, the parts of the integrands in EquationsC.38to C.43
which are affected by the presence of the interaction potential have to be subjected to
a closer analysis.

The contributions of the excitonic response functions to the four-wave-mixing sig-
nal are obtained, if the time variablest2 andt4 in EquationsC.38andC.39are set equal
to zero while the values for the other two time variables are determined by the equa-
tions t1 = −T andt3 = t. In the case of the excitonic response function of Equation
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Figure C.1: The real and the imaginary part of the function from EquationC.44for
the parametersvf t = 4000λ, vfT = 50λ and ṽ0

2πvf
= −0.375

C.38this procedure yields the following term

eSX;rr(−T,t,0,0;y;0,0,y)eS
∗
X;rr(0,0,t,−T ;y;0,0,−y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(−vf t+y,−vf (t+T )+y)eH

∗(−vf t−y,−vf (t+T )−y)

× eG∗(−vfT−y,−y)eG
∗(−vfT−y,−y)eG

∗(−vf t−y,−vf (t+T )−y)eG
∗(−vf t−y,−vf (t+T )−y)

(C.44)

in the two integrands. The corresponding expression for the response function in Equa-
tion C.39is given by

eSX;rl(−T,t,0,0;y;0,0,y)eS
∗
X;lr(0,0,t,−T ;y;0,0,−y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(−vf t+y,−vf (t+T )+y)eH

∗(−vf t−y,−vf (t+T )−y)

× eG∗(−vfT+y,y)eG
∗(−vfT−y,−y)eG

∗(−vf t+y,−vf (t+T )+y)eG
∗(−vf t−y,−vf (t+T )−y).

(C.45)

Both functions show a similar structure and are approximately described with the help
of the formulaeD.30 andD.31 in AppendixD. It turns out that the expressions only
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differ from unity in three regions neary = 0, y = −vf t andy = vf t and that the
width of these regions is determined by the delay timeT . In order to illustrate this
statement, the function on the right-hand side of EquationC.44is depicted in Figure
C.1where it is assumed that the Fourier transform of the interaction potential is given
by ṽ(q) = ṽ0e

−λ|q|.
The biexcitonic contributions to the four-wave-mixing signal are calculated with

the help of the response functions in EquationsC.41to C.43where the time variables
t3 andt4 are set equal to zero while the valuest and−T are assigned to the first two
time variables.

If t1 = t andt2 = −T , the integrands which appear in EquationC.41contain the
functions

eSXX;rr(t,−T,0,0;y;0,0,y)eS
∗
XX;rr(0,0,t,−T ;y;0,0,y)e−iT2ε(y)

= eSXX;rr(t,−T,0,0;y;0,0,y)eS
∗
XX;rr(0,0,−T,t;y;0,0,−y)e−iT2ε(y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(vf t+y,vf (t+T )+y)eH

∗(vf t−y,vf (t+T )−y)

× eG∗(−vfT+y,y)eG
∗(−vfT+y,y)eG

∗(vf t−y,vf (t+T )−y)eG
∗(vf t−y,vf (t+T )−y)e−iT2ε(y)

(C.46)

whereas the corresponding terms in EquationsC.42andC.43are determined by the
relations

eSXX;rl(t,−T,0,0;y;0,0,y)eS
∗
XX;lr(0,0,−T,t;y;0,0,−y)e−iT2ε(y)

= eSXX;rl(t,−T,0,0;y;0,0,y)eS
∗
XX;rl(0,0,t,−T ;y;0,0,y)e−iT2ε(y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(vf t+y,vf (t+T )+y)eH

∗(vf t−y,vf (t+T )−y)

× eG∗(−vfT+y,y)eG
∗(−vfT−y,−y)eG

∗(vf t+y,vf (t+T )+y)eG
∗(vf t−y,vf (t+T )−y)e−iT2ε(y).

(C.47)

A comparison shows that the expressions in EquationsC.46andC.47are similar to
those in EquationsC.44andC.45. The sole qualitative difference is the factore−iT2ε(y)

which only influences the form of the functions neary = 0 sinceε(y) decays likey−2

for large absolute values ofy.
If t1 = −T and t2 = t, the integrands of the biexcitonic response function in

EquationC.41contain the following terms

eSXX;rr(−T,t,0,0;y;0,0,y)eS
∗
XX;rr(0,0,−T,t;y;0,0,y)eit2ε(y)

= eSXX;rr(−T,t,0,0;y;0,0,y)eS
∗
XX;rr(0,0,t,−T ;y;0,0,−y)eit2ε(y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(vf t+y,−vf (t+T )−y)eH

∗(vf t−y,−vf (t+T )+y)

× eG∗(−vfT−y,y)eG
∗(−vfT−y,y)eG

∗(vf t+y,−vf (t+T )−y)eG
∗(vf t+y,−vf (t+T )−y)eit2ε(y)

(C.48)

while the corresponding expressions for the biexcitonic functions in EquationsC.42
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andC.43are given by

eSXX;rl(−T,t,0,0;y;0,0,y)eS
∗
XX;lr(0,0,t,−T ;y;0,0,−y)eit2ε(y)

= eSXX;rl(−T,t,0,0;y;0,0,y)eS
∗
XX;rl(0,0,−T,t;y;0,0,y)eit2ε(y)

= eH
∗(−vfT+y,y)eH

∗(−vfT−y,−y)eH
∗(vf t+y,−vf (t+T )−y)eH

∗(vf t−y,−vf (t+T )+y)

× eG∗(−vfT+y,y)eG
∗(−vfT−y,−y)eG

∗(vf t+y,−vf (t+T )−y)eG
∗(vf t−y,−vf (t+T )+y)eit2ε(y).

(C.49)

It turns out that the structure of these functions differs considerably from the structure
of the functions in EquationsC.44to C.47. The absolute values of the expressions on
the right-hand sides of EquationsC.48andC.49are still approximately equal to unity
unlessy is located in the vicinities of the pointsy = 0, y = vf t andy = −vf t. In
the regions between these points, however, the phases of the functions approximately
assume constant values which are not necessarily equal to zero. This can be put down
to the fact that several of the exponents of the exponential functions on the right-hand
sides of EquationsC.48andC.49are similar to the functions inD.32 andD.33. The
behavior of the total functions can be described by the two equations

eSXX;rr(−T,t,0,0;y;0,0,y)eS
∗
XX;rr(0,0,−T,t;y;0,0,y)eit2ε(y)

= eSXX;rr(−T,t,0,0;y;0,0,y)eS
∗
XX;rr(0,0,t,−T ;y;0,0,−y)eit2ε(y)

≈ {θ(y − vf t) + θ(−y − vf t)}+ e
−2πi

{
2
ṽ(0)
2πvf

+
ṽ2(0)

(2πvf )2

}
{θ(y + vf t)− θ(y)}

+ e
−2πi

ṽ2(0)

(2πvf )2 {θ(y)− θ(y − vf t)} (C.50)

and

eSXX;rl(−T,t,0,0;y;0,0,y)eS
∗
XX;lr(0,0,t,−T ;y;0,0,−y)eit2ε(y)

= eSXX;rl(−T,t,0,0;y;0,0,y)eS
∗
XX;rl(0,0,−T,t;y;0,0,y)eit2ε(y)

≈ {θ(y − vf t) + θ(−y − vf t)}+ e
−2πi

{
ṽ(0)
2πvf

+
ṽ2(0)

(2πvf )2

}
{θ(y + vf t)− θ(y − vf t)}

(C.51)

outside of the vicinities of the three points mentioned above, if the timet is consider-
ably larger than the delay timeT . It is justified to neglect the termeit2ε(y) since it only
affects a decreasing fraction of the interval[−vf t, vf t], if t increases. This is due to the
quadratic decay ofε(y) for large values of|y|.

In FiguresC.2 andC.3 the real and imaginary part of the expression on the right-
hand side of EquationC.48have been plotted together with the corresponding approx-
imated curves where the interaction potential and all other parameters are the same as
in FigureC.1. A comparison shows that there exists a good agreement between the
exact functions and the approximated ones apart from the three regions where a phase
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Figure C.2: The real part of the function from EquationC.48and the corresponding
approximated curve for the parametersvf t = 4000λ, vfT = 50λ and ṽ0

2πvf
= −0.375

shift occurs. Near the origin the exact functions exhibit fast oscillations which are
caused by the factoreit2ε(y).

If the four-wave mixing signal is calculated with the help of the approximated
response functions, the functions from EquationsC.44to C.49appear in the integrands
of two different types of integrals.

Integrals of the first type can be found in the second contribution to the excitonic
response function in EquationC.38and in the third and the fourth contribution to the
biexcitonic response function in EquationC.41. All these integrals contain two linear
fractions as factors in their integrands which lead to two sharp peaks aty = vf t and
y = vfT or y = −vf t and y = −vfT . Because of these fractions the decay of
the integrands is proportional to the inverse square ofy for large positive or negative
values ofy. If t goes to infinity, the integrals converge towards zero liket−1 while the
complete contributions are proportional tot−(1+α) because of the factors in front of the
integrals.

Integrals of the second type appear in the first contribution to the excitonic response
function in EquationC.38and in the first two contributions to the biexcitonic response
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Figure C.3: The imaginary part of the function from EquationC.48 and the cor-
responding approximated curve for the parametersvf t = 4000λ, vfT = 50λ and
ṽ0

2πvf
= −0.375

function in EquationC.41. In addition to that, they can be found in the approximated
expressions for the four-point response functions in EquationsC.39, C.42andC.43.
Their integrands are given by the difference between one of the ten functions from
EquationsC.44to C.49and unity.

If the integrals of the different functions are compared, it emerges that there exists
a significant difference between the dynamics of the integrals which contain one of the
functions from EquationsC.44 to C.47and those integrals which contain one of the
functions from EquationsC.48 or C.49. The integrands for the integrals of the first
kind only differ from zero in the vicinities of the pointsy = vf t, y = 0 andy = −vf t
and the absolute values of these integrals are bounded as functions oft. In contrast
to that, the integrals which contain one of the functions from EquationC.48andC.49
show a linear increase for large values of the variablet.

This behavior can be explained by the fact that the integrands can approximately
be described with the help of the step functions from EquationsC.50andC.51. Con-
sequently, it is justified to approximate the exact integrals by using the following for-
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Figure C.4: The absolute value of the four-wave-mixing signal for the delay time
vfT = 100000Λ and the corresponding approximated signal with the interaction pa-
rameters ṽ0

2πvf
= −0.375 andλ = 1000Λ

mulae ∫ ∞
−∞

dy
{
eit2ε(y)eSXX;rr(−T,t,0,0;y;0,0,y)eS

∗
XX;rr(0,0,−T,t;y;0,0,y) − 1

}
=

∫ ∞
−∞

dy
{
eit2ε(y)eSXX;rr(−T,t,0,0;y;0,0,y)eS

∗
XX;rr(0,0,t,−T ;y;0,0,−y) − 1

}
≈ |vf t|

{
e
−2πi

{
2
ṽ(0)
2πvf

+
ṽ2(0)

(2πvf )2

}
+ e

−2πi
ṽ2(0)

(2πvf )2 − 2

}
(C.52)

and ∫ ∞
−∞

dy
{
eit2ε(y)eSXX;rl(−T,t,0,0;y;0,0,y)eS

∗
XX;lr(0,0,t,−T ;y;0,0,−y) − 1

}
=

∫ ∞
−∞

dy
{
eit2ε(y)eSXX;rl(−T,t,0,0;y;0,0,y)eS

∗
XX;rl(0,0,−T,t;y;0,0,y) − 1

}
≈ 2|vf t|

{
e
−2πi

{
ṽ(0)
2πvf

+
ṽ2(0)

(2πvf )2

}
− 1

}
(C.53)



100 APPENDIX C. THE FOUR-POINT RESPONSE FUNCTIONS

0 5000000 10000000
time vft/Λ

0.00

0.50

1.00

1.50

2.00

vfT=−100000Λ (exact)
vfT=−100000Λ (approx.)

Figure C.5: The absolute value of the four-wave-mixing signal for the delay time
vfT = −100000Λ and the corresponding approximated signal with the interaction
parameters ṽ0

2πvf
= −0.375 andλ = 1000Λ

provided that the external timet is considerably larger than the absolute value of the
delay timeT . All integrals of the second type have the same prefactor which is ap-
proximately given by

e−i(t−T )(Eh−ε(0))esX;r(t,0,0)es
∗
X;r(0,t,0)esX;r(−T,0,0)es

∗
X;r(0,−T,0)

= e−i(t−T )(Eh−ε(0))esX;l(t,0,0)es
∗
X;l(0,t,0)esX;r(−T,0,0)es

∗
X;r(0,−T,0)

≈ e−i(t−T )(Eh−ε(0))|vfT |−(1+α)|vf t|−(1+α){Θ(−T )z∗z∗ −Θ(T )zz∗}
(2πi)2

, (C.54)

provided thatt� |T | � xṽv
−1
f (confer AppendixD).

If all results of the analysis are combined, it turns out that the dominant contribution
to the four-wave-mixing signal for large timest comes from the first two terms of
the biexcitonic response function in EquationC.41 and from the first terms of the
biexcitonic response functions in EquationsC.42 andC.43, if t1 is set equal to−T
andt2 is set equal tot in all functions. Therefore the four-wave mixing signals from
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Equations3.70and3.71are approximately described by the following relation

lim
L→∞

1

L
P

(3)

2~k1−~k2
(t) ≈ e−i(ωt−(2~k1−~k2)~R)e−i(t−T )(Eh−ε(0)−ω)e−Γx(t+T )e−Γxxt

× |vfT |−(1+α)|vf t|−α
{Θ(T )zz∗ −Θ(−T )z∗z∗}

(2πi)2

× (−i)3

4

{{
e
−2πi

ṽ(0)
2πvf + 1

}2

e
−2πi

ṽ2(0)

(2πvf )2 − 4

}
, (C.55)

if t � T andT � xṽv
−1
f andΓx = Γxx = Γ0 = 0. In FiguresC.4 andC.5 the ab-

solute values of the four-wave-mixing signals for a positive and a negative delay time,
which are calculated with the help of EquationsC.38to C.43, are plotted together with
the corresponding approximated curves where the interaction function and all system
parameters are the same as those which have been used for the calculation of the other
figures in this section. As expected, a comparison of the different functions shows
that the expression on the right-hand side of EquationC.55 describes the dominant
behavior of the signals well, ift is considerably larger than the absolute value of the
delay time. However, ift andT are of the same order of magnitude, the signals differ
significantly from the approximated curves. One of the most important features of the
four-wave-mixing signals which is not reproduced by the approximated functions is
the sharp peak which appears att = T , if the delay time is positive. This peak is due to
the third contribution and the fourth contribution to the response function in Equation
C.41which have been neglected when deriving EquationC.55.



Appendix D

Operator Relations

According to the results of Section3.4 and AppendixC the time behavior of the re-
sponse functions is determined by the free dynamics of the auxiliary operators which
have been defined in Section3.2 when introducing the bosonic representation. In the
case of the bosonic and fermionic operators which are used for the representation of
the field operatorsψer(x) andψel(x) in Equations3.27and3.28the free time behavior
is described by the equations

ϕr;0(x, t) = ϕr(x− vf t) = lim
α↘0
−i
∑
q>0

√
2π

Lq
e−αqeiq(x−vf t)bqr, (D.1)

ϕl;0(x, t) = ϕl(x+ vf t) = lim
α↘0
−i
∑
q>0

√
2π

Lq
e−αqe−iq(x+vf t)bql (D.2)

and

Ur;0(t) = e−ivf t
π
L
{2Nr+1}Ur= e−ivf t

π
L
NrUre

−ivf t πLNr , (D.3)

Ul;0(t) = e−ivf t
π
L
{2Nl+1}Ul = e−ivf t

π
L
NlUle

−ivf t πLNl . (D.4)

The index0 denotes that the operators are calculated in the interaction picture with
respect to the free electron HamiltonianHe

0 . The dynamics of the free electronic field
operators is then determined by the relations

ψer;0(x, t) = ψer(x− vf t)eivfkf t, (D.5)

ψel;0(x, t) = ψel(x+ vf t)e
ivfkf t. (D.6)

These results can also be obtained without applying the bosonization technique. The
free time behavior of the generators for the unitary transformationS is described by
the equations

χr;0(y, t) = χr(y − vf t) = −i
∑
q>0

√
2π

Lq

ṽ(q)

2πvf
eiq(y−vf t)bqr (D.7)
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and

χl;0(y, t) = χl(y + vf t) = −i
∑
q>0

√
2π

Lq

ṽ(q)

2πvf
e−iq(y+vf t)bql (D.8)

which show a similar structure as the corresponding equations foreϕr;0 andϕl;0.
In order to calculate the response functions, it is necessary to evaluate the different

kinds of commutator for the bosonic field operators. If the particles do not interact
with each other, only the commutators

[ϕr;0(x, t), ϕ†r;0(x′, t′)] = lim
α↘0

∑
q>0

2π

Lq
e−2αqeiq{(x−x′)−vf (t−t′)} (D.9)

= − lim
α↘0

ln(1− e−{2α−i(x−x′)+ivf (t−t′)} 2π
L )

and

[ϕl;0(x, t), ϕ†l;0(x′, t′)] = lim
α↘0

∑
q>0

2π

Lq
e−2αqe−iq{(x−x′)+vf (t−t′)} (D.10)

= − lim
α↘0

ln(1− e−{2α+i(x−x′)+ivf (t−t′)} 2π
L ).

give a non-vanishing contribution. In the presence of the electron-hole interaction,
however, the following two additional types of commutators

[χr;0(y, t), χ†r;0(y1, t1)− χ†r;0(y2, t2)] = H(y − y1 − vf (t− t1), y − y2 − vf (t− t2)),

(D.11)

[ϕr;0(x, t), χ†r;0(y1, t1)− χ†r;0(y2, t2)] = G(x− y1 − vf (t− t1), x− y2 − vf (t− t2))

(D.12)

and

[χl;0(y, t), χ†l;0(y1, t1)− χ†l;0(y2, t2)] = H∗(y − y1 + vf (t− t1), y − y2 + vf (t− t2)),

(D.13)

[ϕl;0(x, t), χ†l;0(y1, t1)− χ†l;0(y2, t2)] = G∗(x− y1 + vf (t− t1), x− y2 + vf (t− t2))

(D.14)

have to be taken into account. The auxiliary functionsG andH are defined by the
following equations

G(x, x′) =
∑
q>0

2π

Lq

ṽ(q)

2πvf

{
eiqx − eiqx′

}
=

L→∞

∫ ∞
0

dq

q

ṽ(q)

2πvf

{
eiqx − eiqx′

}
(D.15)



104 APPENDIX D. OPERATOR RELATIONS

and

H(x, x′) =
∑
q>0

2π

Lq

ṽ2(q)

(2πvf )2

{
eiqx − eiqx′

}
=

L→∞

∫ ∞
0

dq

q

ṽ2(q)

(2πvf )2

{
eiqx − eiqx′

}
.

(D.16)

Unfortunately, explicit solutions for the two integrals in EquationsD.15andD.16
exist only for a limited number of interaction functionsṽ(q). Nevertheless, it is possi-
ble to determine the leading behavior of these functions for large values ofx andx

′
.

This is due to the existence of the two general relations∫ ∞
0

dqf(q)
sin(qx)

q
=
π

2
f(0) +

1

x
f
′
(0)− 1

x2
Rs
f (x) (D.17)

with

Rs
f (x) =

∫ ∞
0

dqf
′′′

(q)

{
(qx)2

2
si(qx) +

qx

2
cos(qx) +

1

2
sin(qx)

}
(D.18)

and∫ ∞
0

dqf(q)
cos(qx)− 1

q
= −f(0) ln(x) +

∫ ∞
0

dqf
′
(q) {ln(q) + Ce} −

1

x2
Rc
f (x)

(D.19)

with

Rc
f (x) =

∫ ∞
0

dqf
′′′

(q)

{
(qx)2

2
ci(qx)− qx

2
sin(qx) +

1

2
cos(qx)− 1

2

}
(D.20)

which are valid for positivex. Ce = 0.5772 . . . is the Euler constant and the functions
si and ci represent the sine and the cosine integral respectively [7]. The functionf is
integrable and can at least be differentiated three times where the derivatives up to the
third order are also integrable. These requirements are necessary since the integrals
on the left-hand sides of EquationsD.17andD.19have to be integrated partially three
times in order to obtain the expressions on the right-hand sides. The absolute values of
the expressions in the curved brackets which appear in EquationsD.18andD.20can be
estimated by means of a common boundary constantKR > 0 which is independent of
x. Consequently, the integrals in EquationD.17and EquationD.19are approximately
described by the relations∫ ∞

0

dqf(q)
sin(qx)

q
≈ π

2
f(0) (D.21)

and ∫ ∞
0

dqf(q)
cos(qx)− 1

q
≈ −f(0) ln(x) +

∫ ∞
0

dqf
′
(q) {ln(q) + Ce} (D.22)
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provided that

x� xf = max(
√
KR

√∫ ∞
0

dq|f ′′′(q)|, |f ′(0)|). (D.23)

The application of the above formulae to the auxiliary functions in EquationsD.15
andD.16yields the following approximations

G(x, 0) ≈ − ṽ(0)

2πvf
ln(x) + cG + i

ṽ(0)

2πvf

π

2
(D.24)

and

H(x, 0) ≈ − ṽ2(0)

(2πvf )2
ln(x) + cH + i

ṽ2(0)

(2πvf )2

π

2
(D.25)

for x � xṽ = max(xG, xH) where the constantscG andcH are defined by the equa-
tions

cG =

∫ ∞
0

dq {ln(q) + Ce}
d

dq

ṽ(q)

2πvf
(D.26)

and

cH =

∫ ∞
0

dq {ln(q) + Ce}
d

dq

ṽ2(q)

(2πvf )2
(D.27)

while the constantsxG andxH satisfy the relations

xG = max

(√
KR

√∫ ∞
0

dq

∣∣∣∣ d3

dq3

ṽ(q)

2πvf

∣∣∣∣, ∣∣∣∣ ddq ṽ(q)

2πvf

∣∣∣∣
q=0

)
(D.28)

and

xH = max

(√
KR

√∫ ∞
0

dq

∣∣∣∣ d3

dq3

ṽ2(q)

(2πvf )2

∣∣∣∣, ∣∣∣∣ ddq ṽ2(q)

(2πvf )2

∣∣∣∣
q=0

)
. (D.29)

The EquationsD.17 and D.19 can also be employed to derive the two general
relations

H(y − y1, y − y2) ≈ − ṽ2(0)

(2πvf )2
ln(
|y − y1|
|y − y2|

) + i
ṽ2(0)

(2πvf )2
π {θ(y − y1)− θ(y − y2)}

(D.30)

and

G(x− x1, x− x2) ≈ − ṽ(0)

2πvf
ln(
|x− x1|
|x− x2|

) + i
ṽ(0)

2πvf
π {θ(x− x1)− θ(x− x2)}

(D.31)
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Figure D.1: The functionH(y − y1, y − y2) with ṽ0

2πvf
= −0.375, y1 = 0.0 and

y2 = 50λ

which are valid, if|y − y1|, |y − y2| � xṽ and|x − x1|, |x − x2| � xṽ. It turns out
that these approximations are very useful for the calculation of the four-point response
functions in AppendixC. The same is true for the relations

H(y − y1,−y + y2) ≈ − ṽ2(0)

(2πvf )2
ln(
|y − y1|
|y − y2|

)

+ i
ṽ2(0)

(2πvf )2
π {θ(y − y1) + θ(y − y2)− 1} (D.32)

and

G(x− x1,−x+ x2) ≈ − ṽ(0)

2πvf
ln(
|x− x1|
|x− x2|

)

+ i
ṽ(0)

2πvf
π {θ(x− x1) + θ(x− x2)− 1} (D.33)

which can also be used, if|y − y1|, |y − y2| � xṽ and|x− x1|, |x− x2| � xṽ.
If the Fourier transform of the interaction potential is given byṽ(q) = ṽ0e

−λ|q|

with ṽ0 ∈ R andλ ∈ R+, the integrals can be performed exactly [7] and the following
equations

G(x, x′) = − ṽ0

2πvf
ln

√
x2 + λ2

x′2 + λ2
+ i

ṽ0

2πvf

{
arctan(

x

λ
)− arctan(

x′

λ
)

}
(D.34)
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Figure D.2: The functionH(y − y1,−y + y2) with ṽ0

2πvf
= −0.375, y1 = 0.0 and

y2 = 50λ

and

H(x, x′) = − ṽ2
0

(2πvf )2
ln

√
x2 + 4λ2

x′2 + 4λ2
+ i

ṽ2
0

(2πvf )2

{
arctan(

x

2λ
)− arctan(

x′

2λ
)

}
(D.35)

hold. With the help of the exact expressions forG andH, it is now possible to estimate
the quality of the approximated expressions on the right-hand sides of EquationsD.30
to D.33. In order to give an example, the real and the imaginary parts of the functions
H(y − y1, y − y2) andH(y − y1,−y + y2) have been plotted together with the corre-
sponding approximated curves for a specific choice ofλ andṽ0 in FiguresD.1andD.2.
As expected, the approximated curves differ from the exact ones only in the vicinities
of the pointsy = y1 andy = y2. The extension of the regions where the differences
between the exact and the approximated expressions forG andH cannot be neglected
is estimated with the help of the constant

xṽ = max(xG, xH) = λmax

(√
KR

√∣∣∣∣ ṽ0

2πvf

∣∣∣∣, ∣∣∣∣ ṽ0

2πvf

∣∣∣∣ ,√KR

∣∣∣∣ ṽ0

2πvf

∣∣∣∣ , ∣∣∣∣ ṽ0

2πvf

∣∣∣∣2
)
.

(D.36)
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Important Functions

The following list shows where the definitions for important auxiliary functions can be
found:

G(x, x′) in EquationD.15,

H(x, x′) in EquationD.16,

sX;r(t1, t2, x) in Equation3.53,

sX;l(t1, t2, x) in Equation3.54,

SX;rr(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.8,

SX;rl(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.11,

SX;lr(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.12,

SXX;rr(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.14,

SXX;rl(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.17,

SXX;lr(t1, t2, t3, t4; y′;x1, x2, y) in EquationC.18.

The following list shows where the definitions for important response functions and
the corresponding approximated expressions can be found:

〈〈P̃r(t1)P̃ †r (t2)〉〉 in Equations3.55and3.56,

〈〈P̃r(t1)P̃ †r (t2)P̃r(t3)P̃ †r (t4)〉〉c in EquationsC.19andC.38,

〈〈P̃r(t1)P̃ †r (t2)P̃l(t3)P̃ †l (t4)〉〉c in EquationsC.23andC.39,

〈〈P̃r(t1)P̃ †l (t2)P̃l(t3)P̃ †r (t4)〉〉c in EquationsC.24andC.40,

〈〈P̃r(t1)P̃r(t2)P̃ †r (t3)P̃ †r (t4)〉〉c in EquationsC.27andC.41,

〈〈P̃r(t1)P̃l(t2)P̃ †r (t3)P̃ †l (t4)〉〉c in EquationsC.32andC.42,

〈〈P̃r(t1)P̃l(t2)P̃ †l (t3)P̃ †r (t4)〉〉c in EquationsC.33andC.43.
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