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“Es gibt ein grofies und doch ganz alltdgliches Geheimnis. Alle Menschen haben daran teil,
jeder kennt es, aber die wenigsten denken je dariiber nach. Die meisten Leute nehmen es
einfach so hin und wundern sich kein bisschen dariiber. Dieses Geheimnis ist die Zeit [’

— Michael Ende, “Momo”, 1973

1« ife holds one great but quite commonplace mystery. Though shared by each of us and known to all, seldom
rates a second thought. That mystery, which most of us take for granted and never think twice about, is
time.”
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Abstract

The way how humans perceive the passage of time is one of the greatest mysteries both
in neuroscience and psychology. Compared to other perceptual quantities, relatively little is
known about the neural basis and the psychophysical laws of time perception. In this thesis,
we seek to contribute to the understanding of human time perception by combining knowledge
from neuroscience and psychology into a neurocomputational modeling approach. The first
two studies concentrate on timing errors, i.e. the variability in duration estimation, and its
relation to physical duration, while the latter two are concerned with the issue of integrating
temporal information from different sources into a unique representation of time.

Regarding timing errors, it is well known that the variability of durations estimates increases
with the duration of the interval to be estimated. In the first study, we present a model based
on neuronal networks called synfire chains which explains the functional form of the relation of
these errors relative to interval duration. This form emerges from a constrained optimization
involving a number of different chains, and can be implemented by means of a competitive
plasticity rule applied to the synaptic connections from the chains onto a readout network.
Previous models could only explain a linear increase of timing errors with duration (Weber’s
law), without providing a neural basis of this behavior. In the second study, we extend the
modeling approach into a more general stochastic framework based on Fisher information.
This approach follows from the idea that not only systematic changes in brain processes
may be used as a source of temporal information, but also features of the stochastic “noise”.
We compute the scaling of the minimal timing errors on the interval duration, and found a
hierarchy of temporal information, i.e. the scaling is best for estimates based on the systematic
changes, and worst for correlations-based estimates. Specifically, we find that Weber’s law can
only be reproduced if variability is the only available source of temporal information.

In the third study, we investigate how the subjective duration of an auditorily presented
interval is affected by motion that is either actively performed or visually observed. In a series
of psychophysical experiments, human participants performed a rotor tracking task and an
interval discrimination task with intervals of 100 ms at the same time. We find that subjective
duration is affected by the speed, but not by the curvature of visually presented motion.
Active performance of the motion does not contribute to this effect, but impairs discrimination
performance acting as interference. The results show a direct cross-modal interaction between
auditory and visual time perception, and a separation of the mechanisms from those underlying
continuous motor timing.Attention is shown to modulate time perception even in the range
of hundreds of milliseconds, but does not interact with the duration distortion by visual
motion. Finally, the forth study is concerned with the integration of temporal information
from multiple intervals presented within a sequence. We describe a model of an adaptive
memory unit which is capable of computing an average over these presentations. The model
explains the observation that an interval with a deviating duration can be more easily detected
within a sequence of standard intervals if it is presented at a later position within the sequence.

Taken together, the results of these four studies suggest a framework of temporal processing
where temporal representations of different durations and from different sensory modalities
are integrated into a centralized “temporal hub”, with relative weights determined by the
reliability of their information (Bayesian integration), and are then processed by cognitive
processes such as averaging in short-term memory.
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1. Introduction

When thinking about time, one observes that it seems to lead a strange dual life: On the one
hand, time is so ubiquitous in our daily life that everybody has a clear intuition about what it
is: Calendars and clocks of ever-increasing precision constantly remind us that time is flying
by, and that everything we do takes a certain amount of this time. Thus, time is regarded
as precious, and often, it is running out when we are late on an appointment or a deadline
is approaching. Even in the language of all these examples, one sees how intimately time is
inwoven in our lives. We have the feeling that time passes, and we are capable to interact with
an outer world which is also changing in time. This is most obvious when our sense of time
deviates from physical time, when time seems to fly by when we enjoy ourselves, or to stand
still when we are anxious or bored. And we are also aware about an apparent directionality
of time: It seems to flow from future to past, allowing for development and the evolution of
events, but also leading to decay, aging, and ultimately death, the end of a limited life time.

On the other hand, beyond this intuitive and natural understanding, time poses itself as one
of the most enigmatic phenomena of existence. The seemingly simple question “What is time?”
has ignited fierce disputes among scientists and philosophers of all times [I18]. In Western
history, this dispute begins which the ancient Greek philosophers Heraclitus and Parmenides,
who formulated two fundamentally different views on time. For Heraclitus, the world is
in a constant state of change, thus time and evolution are of the essence of the existence.
Parmenides, on the other hand, perceived the world as static and considered time, motion and
change as mere illusions. Both of these views on time remained influential in modern times.
While Newton, Leibniz and many other philosophers considered time an aspect of actual
reality, Kant regarded both space and time as “a priori” notions that allow us to comprehend
reality, but not necessarily as aspects of reality itself. McTaggart [125] took an even more
radical view and provided a strictly logical chain of arguments to show that time does not
exist. Science also provides evidence for both views on time. The Parmenidian view of a static
and constant world is reflected in the fact that the basic equations of motion in classical,
relativistic, statistical and quantum mechanics are actually invariant to transformations of
time. In Einstein’s theory of special relativity, time even degenerates to one out of four
dimensions of space-time. On the other hand, notions of change and evolution, which comply
with the Heraclitian view on time, manifest themselves in irreversible processes, such as the
global increase of entropy and the self-organization of complex systems such as life itself
[32]. To date, neither science nor philosophy has succeeded to resolve this and many other
controversies about the nature of time.

The apparent discrepancy between the intuitive understanding of time and the continuing
lack of a thorough understanding of its nature is concisely reflected upon in the words of the
philosopher and church father Augustinus: “What then is time? If no one asks me, I know
what it is. If I wish to explain it to him who asks, I do not know.”



1. Introduction

A specific aspect of time is the question how temporal information is processed by the
human observer. This topic is of particular interest, as it allows to investigate the basis of
our everyday perception of time in a scientific way, and may thus act as a bridge between
the intuition and the philosophy of time. The human brain has to deal with a wide variety
of temporal information at time scales that reach from hundreds of microseconds to hours,
days, and beyond: Our sense for the “flow of time” is based on the perception of the duration
of events on all of these time scales. The planning and execution of any directed motor act
requires precisely timed patterns of activation in large sets of muscles. The notion of the
“present” results from our ability to decide whether two events happened simultaneously or
in close succession [144]. The perception of complex temporal stimuli such as speech or music
demands for discrimination of temporal sequences and rhythm perception. And as a final
example, our sense of causality is based on correct judgments of temporal order.

Traditionally, investigations on all these abilities have been conducted by psychologists,
who seek to relate subjective time and physical time by means of psychophysical laws. More
recently, also neuroscientists gained interest into the brain mechanisms that enable the rep-
resentation of time. However, many of the most fundamental questions of time perception
are still open in both disciplines. From the literature (cf. Chapter [2), one can extract the
following five basic questions which are recurring in the current debate:

1. Transfer function: How does subjective time relate to physical time? Subjective time
is considered in a statistical sense here, based on the stochastic responses of a human
to a temporal task. One asks what is the mean and the standard deviation of a human
time estimate, as a function of the actual duration. While it is generally accepted that
both the mean and the standard deviation increase monotonically with physical interval
duration, the exact shape of these relations is debated (see Sections Z.IT.2.T] and 2.1.2.2]).

2. Non-temporal factors: How can non-temporal factors influence time perception?
Subjective duration stretches and dilates in relation to many features of a stimulus or
states of the brain that have nothing to do with physical time itself (see Section 2Z.1.2.3]).
Examples are the increased subjective duration of a moving stimulus compared to a
static one, and the effect that diminished attention induced by a secondary task de-
creases subjective duration. The mechanisms of most of these duration distortions are
not understood, although there are attempts to incorporate them into psychophysical

theories. (Section 2.1.3.2]).

3. Neural code: Which temporal properties of neural networks in the brain are used to
encode time? Any brain process that evolves in time would be a feasible candidate
for this code, given that its temporal information is accessible. Accordingly, many
neurocomputational models of time perception have been proposed, but it is not clear
whether any of them is a valid model of time perception of the brain, or whether they
are mutually exclusive. (see Section 2.2.3)).

4. Localization: Which brain structures are involved in the representation of time? The
rich repertoire of neuroscience methods has revealed a wide range of brain regions that
are likely to be involved in time perception. However, none of them could be proven to
be critical for temporal processing, and the respective function of each region is strongly
debated. (see Section 2.2.1]).



5. Unity vs. Diversity: Is there a common representation of time for a) different sen-
sory modalities, b) time perception and motor timing and c¢) second and millisecond
intervals? And if there are different representations for any of these dimensions, in what
respects do they differ from each other, and are they completely disjoint, or are there
interactions? There is some evidence that different mechanisms exist for time perception
in the range of milliseconds and seconds (see Sections Z.1.2.3] 2.2.T] and 2.2.3]), and that
continuous motor timing is disjoint from both time perception and discrete motor timing
(Section ZT.1.T]), but the evidence for both proposals is ambiguous. The same is true for
time perception in different modalities, where both evidence for a centralized “internal
clock” and for modality-specific timing mechanisms was provided (see Section 2.T.2.3]

and 2.1.3.2)).

While question 1 and 2 about the transfer function and the role of non-temporal factors
were traditionally pursued by psychophysical researchers, question 3 and 4 about the neural
localizations and mechanisms originate from neuroscience research. These separate sets of
questions are also reflected in the theoretical models that are proposed by the two disciplines:
Psychophysical theories are rarely grounded on neural mechanisms, and most neurocompu-
tational models do not make predictions about psychophysical experiments. This separation
has only recently begun to be overcome. Question 5 of whether time is represented by a single
or multiple mechanism is one of the examples where both research communities investigate
the same questions with different means. At any rate, the above list demonstrates how little
definite knowledge exists in the field of time perception, compared to other fields of neuro-
science and psychology. “The field of temporal processing is still at its infancy.”, stated Dean
Buonomano in his 2002 review on the perception of time [28]. The enigma of the nature of
time seems to reflect itself in the enigmas of its perception.

In this work, we attempt to contribute to answer the five questions stated above by means
of an integrative investigation that links psychophysical and neuroscientific approaches in the
framework of computational neuroscience and information theory. We focus on mechanisms
for the representation of interval duration in the range of hundreds of milliseconds, although
many of our results are also applicable to intervals in the range of seconds to minutes. For
much longer and much shorter intervals, in the range of a day or several hundred microsec-
onds, temporal information is represented by fundamentally different mechanism compared to
the intermediate range we investigate [28| 24], and we do not consider these extreme cases.
Likewise, we do not explicitly consider order judgment or the discrimination between simulta-
neous and successive events. However, we do show how the representation of sequences may
emerge from single-interval representations. In general, our work is guided by the assumption
that the brain follows the principle of constrained optimality: Given its resources and limita-
tions, the brain attempts to extract as much information as possible out of a given stimulus.
If this principle holds for time perception, it should be possible to see traces of optimality
in the psychophysical responses, and to identify constraints within the details of the neural
implementation.

The thesis is organized as follows: After a review of the literature and the introduction of
important concepts of psychophysics, neurocomputational modeling, and information theory



1. Introduction

in Chapter 2 Chapter B to [0 present our original work on different aspects of temporal
processes. Chapter B and [6 contains material that has been previously published in slightly
modified form. The thesis is concluded by a discussion in Chapter [{] which shows how the
results from all of the chapters converge into a unified framework.

Chapter [l and [ of the thesis are concerned with the representation of duration of intervals
that are presented within a single modality. In order to constrain our choice of neurobiologi-
cal models, we demand that it must be able to reproduce psychophysical observations about
the errors of duration estimate in humans. In this way, we combine question 1 about the
psychophysical transfer function with question 3 about the neural code. In accordance with
neurobiological findings, we assume that single-interval durations are represented by cortical
networks. In Chapter [B] we consider a specific computational model of cortical function, the
synfire chain. The model consists of a number of pools of neurons with feed-forward connec-
tions. It has been shown that neural activity may stably propagate through a synfire chain
with a reliable transmission speed and small temporal jitter in each pool. These properties
make the synfire chain a well-suited candidate for the neural representation of time by means
of a quasi-spatial code. Using this model, we aim to reproduce the experimentally observed
dependency of timing errors on duration. Current experiments suggest that the standard
deviation of a time estimate increase linearly with duration at intermediate interval length
(a dependency called Weber’s law), sub-linearly for shorter intervals, and super-linearly for
longer intervals. This form of the error function is not easy to be modeled, as the accumulation
of independent noise in neural system only predicts timing errors that increase with the square
root of duration. We show that the experimentally observed error function can be obtained as
a result of constrained optimization: If the chain is considered to be of a finite length, longer
intervals can only be represented when a chain with a slower transmission is used. This leads
to the assumption of multiple synfire chains with different transmission speeds: We show that
slower propagation of synfire activity leads to a superlinear increase in the variability in the
propagation, no matter which model parameter is used to modify the propagation speed. In
this way, the need for slower propagation introduces an additional error source, which leads
to the experimentally observed profile of timing errors. Finally, we show how the selection of
the optimal chain for each time interval could be achieved when the individual synfire chains
project to a centralized read-out network. A plasticity rule combining spike-timing dependent
plasticity (STDP) and homeostatic plasticity enables the detection of differences in the vari-
ability of the different chains, and a synaptic competition that is won by the optimal chain
for each duration.

In Chapter M, we generalize the idea of predicting the psychophysical error function from
neurobiological models and introduce a statistical framework that enables to compare the
ability of arbitrary models to make such predictions. The framework is based on information
theory and considers any brain process that attempts to extract temporal information from a
noisy environment as an inherently stochastic process, and a psychophysical judgment about
time as an estimation problem. Within this framework, it is possible to compute the lowest
possible timing error for a given stochastic process, which is the Cramer-Rao bound, the
inverse of the Fisher information. In this sense, an estimate can be considered optimal when
its variance reaches this lower bound. Under quite general assumptions, we find a hierarchy
of temporal information in the mean, the variance and the covariance of such a process: The
lower bound for the timing errors scales with the square root of the duration of the estimated



interval if only the information from the mean is used, but is linear in the duration when relying
on the variance alone, and even increases exponentially with the interval duration when using
only the covariance. Furthermore, we extend this framework to the case where information
from multiple processes is available at the same time. By interpreting of the synfire model
from Chapter [ as set of multiple stochastic processes, we show that the optimal time estimate
we obtained is also the optimal solution in the mathematical sense. We also consider another
model which represents time solely by exponentially decaying covariance. Contrary to the
claim of the authors [5], we show that the timing errors in this model increase exponentially
with the interval length .

In Chapter Bl we turn to question 5 and study the interaction of different modes of temporal
processing, namely time perception in different sensory modalities and continuous motor tim-
ing. Different from previous research, which mainly used correlational evidence to link these
different modes, we employ a distortion approach, exploiting the fact that time perception
can be manipulated by non-temporal factors (question 2). More specifically, we conducted a
series of psychophysical experiments comprising a time perception task and a simultaneously
performed motor task to study the effects of visually observed and actually performed mo-
tion on auditory time perception. Participants were required to perform an arm movement
following an elliptic trajectory that was prescribed by a moving target on a screen. At spe-
cific segments of the motion, namely the apices of the ellipse, they were presented with two
successive auditory stimuli, which they had to discriminate according to their duration. We
find that the observation of the motion of the visual target distorted subjective duration, such
that duration was perceived as longer when the observed motion was faster. Such a distortion
is well described for visual intervals, but our study is the first to show that this effect carries
over to the auditory domain. On the other hand, control experiments showed that the actual
performance of the motion does not contribute to this effect, suggesting a separation of the
mechanisms for time perception and continuous motor timing. Furthermore, we show that the
distortion effect does not depend on a global change of attention. However, the concurrent
performance of a secondary motor task together with the time perception task is shown to
decrease the performance to discriminate the two intervals. Such dual-task interference has
mostly been studies for interval durations in the seconds range, but our results support the
notion that this distortion is also possible in the milliseconds range. Overall, the results are
best explained by Bayesian integration of temporal information from the different sensory
modalities into a centralized “temporal hub”, which may be subject of attentional modula-
tion, but is independent from the mechanisms that govern the timing of continuous motion.
Again, this form of integration is the optimal solution given the problem to extract temporal
information from independent sources with different variability.

Finally, Chapter [l extends the scope of our work from single intervals to sequences of
intervals. Experiments that were conducted by our collaborator Stefan Blaschke showed that
the ability to detect a deviant interval in an isochronous sequence of identical standard intervals
depends on the position of the deviant within the sequence: The more standard intervals are
presented prior to the deviant, the easier is the detection task. This observation suggests that
the brain uses the information that is contained in a sequence to build a more robust overall
representation of the standard duration of the single intervals. We present a simple formal
model which explains this phenomenon as a result of an averaging process over the intervals
presented in the sequence. This averaging takes place within a serial memory stack system
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with two components, one that provides a short-term storage of a single interval, and a second
one which integrates over all the intervals that were previously presented. We present a formal
derivation of how this architecture lead to increasing detection performance at later positions
of the deviant, and discuss predictions of the model for further sequence experiments.

The combination of our results with previous neuroanatomical and physiological evidence
suggests a specific flow of temporal information through a network of brain regions (question
4): Sensory stimuli are primarily processed in the cortical areas that correspond to their
respective modality, such as the primary visual or auditory cortex. As a by-product of these
principle computations, the temporal information in the stimulus is also extracted (Chapter [3]).
Whenever the task at hand contains a temporal component, the temporal representations from
all available cortical processes are projected onto a central brain site, which takes the function
of weighting all incoming input by their respective reliability (Chapter Bland [5)). Following the
converging evidence from neuroscience studies, this “temporal hub” is likely to be located in
the striatum (cf. Section 2.2.T]). When an integrated representation of an interval duration has
been formed in this way, it is projected back into the neocortex, where it is stored in working
memory circuits in the prefrontal cortex, and may be used to make temporal decisions or
be subject of further cognitive manipulations (Chapter ). In the discussion in Chapter [7]
we consider this framework in more detail, discuss predictions and limitations, and suggest
further experiments which can be used to test the validity of our propositions.



2. Fundamentals

2.1. Psychophysics of Time

Studies of temporal processing have a long tradition in psychophysics and were already con-
ducted by one of the founders of this discipline, Fechner [47], and his contemporaries Horing
[74], Mach [115] and Vierordt [I77]. The general aim of psychophysics is to study the relation
between the physical properties of a stimulus, such as duration, and measurable correlates of
the subjective impression of that property, such as subjective duration. Usually, the subjective
quantity will not solely depend on the physical stimulus property, but may be influenced by
various other factors. As an example from auditory perception, the impression of the loudness
of a tone does not only depend on the sound pressure the ear is exposed to, but also on the
frequency at which the tone is presented [100]. Such non-intuitive dependencies allow insight
into the mechanisms of perception, without using the more sophisticated neuroscience meth-
ods that are frequently used today. The advantage of psychophysics over these methods is that
the experiments are relatively simple and inexpensive and do not require specific knowledge
about the location and nature of brain circuits involved in the task to be studied. This method
thus constitutes an ideal starting point for a field like temporal processing where these details
are largely unknown (cf. Section [2.2]).

2.1.1. Objective measurement of subjective time perception
2.1.1.1. Experimental paradigms

To objectively assess the perception of time in humans, psychologists ask participants to per-
form behavioral tasks in which the dimension of time plays a critical role. These experiments
allow the calculation of estimators of temporal performance (dependent variables), and to
relate them to parameters that can be experimentally manipulated (independent variables).
Here, we describe a number of experimental paradigms that are used to assess the estima-
tion of the duration of an interval, and explain how one can derive two estimators that are
of particular relevance to our studies: The mean and the standard deviation of a duration
estimate.

Important classes of experiments include interval discrimination, interval reproduction, fin-
ger tapping and arm movement tasks, although this list is by no means Complet. In interval
discrimination, participants are presented with two stimuli of similar duration and their task

"More comprehensive overviews over the various types of experiments for studying temporal processing can
be found in [7, [186] (time perception in humans), [I08] (time perception in animals) and [190] (human
experiments related to motor timing).
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Figure 2.1.: Response rates in a interval reproduction task for different target times given in
the legend [I12]. The distributions can be well fitted by Gaussians with differ-
ent means and variances for all interval durations. With kind permission from
Springer Science+Business Media: Experimental Brain Research, “Activation of
the supplementary motor area and of attentional networks during temporal pro-
cessing”, 142 (2002) 475-485, F. Macar et al., figure 1.

is to judge which of them appeared longer to them. One of those stimuli is usually of con-
stant duration (standard), while the other is systematically changed (comparison). From the
fraction of false and correct judgments for different durations of the comparison, one can ex-
tract the just noticeable difference (jnd) between the two stimuli, which is also referred to as
difference limen (DL), and the point of subjective equality (PSE), the duration at which the
comparison appears to be as long as the standard (details of this procedure are given below).

The point of subjective equality and the difference limen are of central interest for the
psychophysics of time because they can be seen as the mean (PSE) and the standard deviation
(DL) of an estimate of interval duration in the brain. PSEs close to the actual standard
duration indicate a high accuracy of the estimate, i.e. a small estimation bias. Distortions of
subjective time lead to an over- or underestimation of duration. In interval discrimination,
an overestimation of the comparison compared to the standard is reflected in a PSE below
the standard, as the overestimated comparison must be shortened to be perceived as equal
to the standard. In the same way, underestimation of the comparison leads to a PSE abve
the standard. The DL reflects the temporal jitter in the internal representations of time and
constitutes a measure of the reliability of the time estimate, which is reflected in the just
noticeable difference in interval discrimination. However, the DL must be interpreted with
care, as there may be different sources of variability, some of which being related to non-
temporal factors such as response variability or memory limitations. We will elaborate on this
issue in Section ZT.3l



2.1. Psychophysics of Time

Measures that are equivalent to PSE and DL can be obtained in the paradigm of interval
reproduction. Participants are presented with a standard interval and have to reproduce this
interval afterwards, e.g. by pressing a button as long as they think the standard interval was.
The result is a histogram of reproduced intervals, which can usually be fitted by a Gaussian
distribution (Fig. 2ZJ]). The mean and the standard deviation of this distribution correspond
to the PSE and the DL, respectively.

In finger tapping experiments, a rhythm is presented, usually by auditory beats similar to a
metronome, which participants have to reproduce by tapping with a finger onto a plate where
each tap is recorded. The mean and the standard deviation of the interval between successive
taps (inter-tap interval) can then be interpreted similarly as the PSE and DL, respectively.
Furthermore, as this experiment is based on a rhythms rather than single intervals, one can
apply higher-order measures such as the spectrum of tapping frequencies and correlations
between successive inter-tap intervals [190].

Finally, arm movement tasks comprise experiments in which participants have to follow a
target which their hand (tracking tasks) or to reach for a target at a distance (reaching task).
In the former class of experiments, the time lag between target and actual motion is used
as a measure of temporal performance, whereas for latter one, the time in which the target
is reached can be used. The mean and standard deviation of these measures can be seen as
analogons to PSE and DL, respectively.

The precise relation between time perception and motor timing tasks is currently debated.
Studies that link those two domains show that measures of performance are correlated for time
perception and motor timing tasks [93] [51] [78], and that training in the perceptual domain
entails increased performance in motor timing [I32]. On the other hand, other studies have
reported differences between time perception and motor control by showing that reaching
relies on state-dependent rather than temporal representations [91} [35]. Recently, the notion
of “emergent”
contradiction [I90]. According to this hypothesis, continuous motor timing does not rely
on explicit representations of time, but emerges from self-organizing control of non-temporal
parameters of motion, such as velocity [103]. Time perception and discrete motion that relies
on a temporal event structure, on the other hand, requires an explicit timekeeper which may
be the same for the perceptual and the motor domain. Support of this hypothesis has been
drawn from correlations in performance that are present between time perception and tapping
[189], but neither between continuous circle drawing and tapping [155} [189] nor circle drawing
and time perception [I89]. However, results from pure correlation studies are not sufficient to

vs. “event” timing has been introduced as an attempt to resolve this apparent

confirm or deny a common mechanism for two modes of temporal processing, as it is always
possible that an observed correlation in performance is due to commonly used resources beyond
the actual timing mechanism, or that an existing correlation is not observed because of a large
variability in the data (c.f. [28]). In Chapter Bl we provide causal support for the “emergent”
vs. “event” timing hypothesis.

2.1.1.2. Measuring subjective duration and discrimination performance

In this work, we focus on the PSE and the DL as dependent variables, and employ the
interval discrimination task to measure them. While any of the other methods could be
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used as well, we chose this one because it minimizes the role of motor responses. This is of
particular importance for the experiments described in Chapter Bl where we assess possible
relations between time perception and motor timing. A strong motor component in the time
perception task could constitute a confoundation for this relation. Furthermore, interval
discrimination is believed to be more suited for studying time perception in the range of
hundreds of milliseconds compared to interval reproduction, because the production of such a
short interval is a demanding task and may introduce additional error sources [I51].

In the following, we describe how one can extract the PSE and the DL from an interval
discrimination task. The two major procedures available are the method of constant stimuli
and the weighted up-down method. The method of constant stimuli attempts to estimate the
complete psychometric function of a duration estimate, i.e. the probability of a given response
as a function of the duration of the comparison interval. If the participant responds according
to both his perception and the instructions he was given, the probability of responding “interval
two was longer” approaches one if the second interval is actually much longer than the first
one. Conversely, this probability will approach zero if the second interval is much shorter than
the first. For durations between these extremes, the probability of this particular response
will gradually change from zero to. This shape of the psychometric function corresponds to
the class of sigmoid functions, and it can often be well described by a cumulative Gaussian
distribution, confirming the implicit assumption that the distribution of time estimates is
Gaussian (cf. Fig. 22]) [53].

The method of constant stimuli [46] 53] attempts to reconstruct this psychometric function
by using a number of different (constant) durations for the comparison interval, and estimates
the probability of the above response by presenting comparisons a number of times for each
duration and calculating the frequency of this response. The result of a typical experiment is
shown in Fig. 2.2l upper panel. Based on these probability estimates, a cumulative Gaussian
distribution can be fitted the data (Fig. 22 lower panel). The DL and PSE can be directly
calculated from this fit. By definition, the point of subjective equality is the comparison
duration at which standard and comparison are perceived as being of equal duration. In the
fitted curve, this is the point where the probability is equal to 50 % (Fig. 22l lower panel).
Similarly, the DL can be calculated from the inclination of the psychometric function around
the PSE. As the function is non-linear, this inclination is approximated by using two points
which lie symmetrically around the PSE (usually the 25th and 75th percentile 755 and T75H)
and the formula
~ Trs — T

2

DL (2.1)

These percentiles also offer an alternative way of calculating the PSE by the formula

T7s5 + Tos

PSE
T

(2.2)

2The choice of Ths and Ts is a historical one and makes the DL equivalent to the so-called semi-interquantile
range. When choosing Ts4 and Ti6 instead, the DL equals the standard deviation, cf. [15].
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Figure 2.2.: Upper panel: Psychometric function in a typical interval discrimination task per-
formed by a macaque monkey for two different base durations [109]. Dots show the
frequency at which the monkey judges a visual interval as longer as the memorized
base duration. Lines represent the cumulative Gaussian distributions to the data.
Lower panel: Model the the psychometric function by a cumulative Gaussian dis-
tribution with mean 25 ms and variance 7.5 ms. Tb5, T59 and 175 denote the
times at which the psychometric function has its 25th, 50th and 75th percentile,
respectively. Reprinted from Neuron, 38, M. I. Leon and M.N. Shadlen, “Rep-
resentation of time by neurons in the posterior parietal cortex of the macaque”,
317-327., Copyright (2003), with permission from Elsevier.
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Figure 2.3.: Evolution of T75 (red curve) and 755 (blue curve) in an adaptive procedure [86].
The data is from our own experiment we describe in Chapter Bl The average over
the two runs starting from 130 and 70 ms (dotted lines) can be used as estimates
of percentiles T75 and Tb5 of the psychometric function, respectively (cf. Fig. 2.2).
See text for details.

A more direct way to access PSE and DL is given by adaptive procedures [106] such as
the weighted up-down method [86]. Here, no attempt is made to approximate the entire
psychometric function, but the comparison duration is adapted such that it converges to two
defined percentiles of the above response, from which both DL and PSE can be computed
according to Eq. 2] and This is accomplished by presenting the stimulus-comparison
pair in two independent runs. In one run, the initial comparison duration is well above the
standard duration, in the other, it is well below. In both runs, the duration of the comparison
is changed such that it is closer to the standard (“step-down”) if the participant makes a
correct response, such that the discrimination task becomes harder. Conversely, the distance
between comparison and standard is increased (“step-up”) if the participant elicits a wrong
response, which makes the task easier. By choosing the ratio of the step-up and step-down sizes
appropriately, this procedure makes the comparison converge to any prescribed percentile of
the response “tone two was longer”. To see how this works, consider we want the comparison
to converge to the 75% percentile of the above answer, given that we chose a standard of
100 ms and a comparison well above this value. If the comparison duration is precisely at
the 75% percentile, the probability of the correct judgment that “tone two was longer” is
three to one, by definition of the percentile. Thus, to keep the comparison duration at that
value, the step-up value that follows a wrong response must be three times higher than the
step-down value following a correct response. At this ratio, the changes add up to zero in
the mean, and the comparison duration stays constant. By the same logic, if the comparison
duration is at a value higher than the 75% percentile, using the three to one ratio of step-up
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and step-down sizes will decrease the comparison duration on average, and a value below the
75% percentile will increase. Thus, the comparison duration either oscillates around the true
75% percentile, or it converges to it. Other percentiles such as the 25% one can be reached by
changing the step size ratio accordingly. Fig. 2.3l shows a typical evolution of the comparison
durations for two runs starting at 130 ms and 70 ms, respectively, and a standard of 100 ms.
The percentiles can be computed by averaging the comparison durations across trials, while
discarding a number of initial values that reflect the transient phase.

Adaptive procedures like the weighted up-down method offer several advantages over the
method of constant stimuli [I06]. Given appropriate step sizes, the comparison durations
converge relatively fast to the desired percentiles, such that they can be computed within less
trials then would be needed for a reliable estimate of the psychometric function. Furthermore,
the method can be beneficial for the motivation of the participants. During an experiment
using the method of constant stimuli, participants might spend a lot of time in a regime
where the task is too easy or too hard for them. This possibility is excluded by the fact
that task difficulty is adapted to the participant’s performance. For the same reason, the
method is suitable even if the psychometric function differs a lot across participants, without
major adjustments of parameters. An obvious disadvantage of the method is the fact that the
information about the full psychometric function is discarded, so no statements beyond the
PSE and the DL can be made. Furthermore, some studies suggest that the weighted up-down
method does not produce exactly the same results than the method of constant stimuli [106].
However, evidence for this is ambiguous, and results from a recent study [104] suggest that
adaptive procedures and the method of constant stimuli produce identical results for both DL
and PSE. In any case, this would only be an issue when comparing absolute values of the
results of studies using different methods.

2.1.2. Relating subjective and physical time
2.1.2.1. The psychophysical law

The psychophysical law describes how the subjective magnitude of a stimulus features changes
as a function of the physical magnitude of that feature. The general form of this relation is
nowadays accepted to be described by a power law [163]

E = kR +b, (2.3)

which is also known as Steven’s law. The exponents vary a lot between different stimulus
features. Stevens reported o = 0.67 for loudness, o = 0.33 for brightness and a value as high
as a = 3.5 for electric shock [163]. For time perception, Stevens reported a to be 1.1 [163].
Eisler, however, performed an extensive review of over hundred studies, spanning the range
of 3 ms to 300 sec, and reported that the mean exponent was about 0.9 [43]. The fact that
exponents do not deviate much from unity in many cases has lead researchers to believe that
the relation between subjective time and physical time is linear

E =kR+b. (2.4)

For instance, Allan [7] argued that that a linear function (Eq. 2.4) would actually fit some
of the data better than a power function, and that some of the studies in favour of a power
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Figure 2.4.: Models of the psychophysical law by a linear and a power law function, together
with the identity function [I122]. Both models incorporate Vierordt’s law [177],
which states that short intervals are overestimated, but longer intervals are under-
estimated. An indifference interval at 600 ms is also reproduced by both models.

function with a # 1.0 may have used questionable methodology. This view is supported
by Fraisse [50] and more recently by Lejeune and Wearden, who reviewed a number of both
animal [I08] and human [I86] time perception studies. However, there are several cases where
exponents deviate substantially from unity (o ranged from 0.53 to 1.36 in [43], even if several
problematic cases are excluded), so this issue is still debated.

Regarding the steepness k of the function, there is a frequent observation, predominantly
in interval reproduction tasks, which some researchers call Vierordt’s law (after its discoverer
Karl Vierordt [I77], a pioneer in the psychophysics of time perception): Duration is perceived
as longer than physical duration when intervals are short, but underestimated when intervals
are long (Fig. 24)) [186 (50l [7, [49]. The notion of long and short intervals is highly ambiguous
here, as the so-called indifference interval at which subjective duration and physical duration
coincide (Fig. [2.4)) varies as lot between individuals and experimental conditions. However, the
average value is close to 600 ms [49] [74]. Vierordt’s law supports the notion that the steepness
k should be smaller than one and the offset b should be larger than zero. However, the law
can not be used to distinguish between linear and power functions for the psychophysical law,
as both can be used to fit the data with the same indifference interval (Fig. 2.4)).

2.1.2.2. Weber’s law for temporal variability, and its deviations

Apart from the functional relation between the mean of the temporal estimates and the ob-
jective duration, the change of temporal variability with duration has also been extensively
studied. This variability is consistently found to monotonically increase with the duration
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Figure 2.5.: Tllustration of the scalar property of time perception [56]. Left panel: Psychomet-
ric functions in a bisection task performed by rats. The animals had to categorize
intervals as “short” or “long” according to two memorized reference intervals S
and L. Curves show the probability that subjects judge an interval of duration 7'
as “long” as a function of T for different values of S and L. Right panel: When
T is scaled with the duration of the short interval S, the psychometric functions
collapse onto a single one, showing that the entire psychometric functions scales
with S. Reprinted from Learning and Motivation, 22, J. Gibbon, “Origins of
scalar timing”, 3-38., Copyright (1991), with permission from Elsevier.

of the physical interval increases. However, experimental evidence for the exact functional
relation between duration and measures of temporal variability is much more ambiguous. A
prominent proposal is that time perception follows Weber’s law [46]. In its original form, this
laws states that the just noticeable difference AR between two nearby values of the physical
quantity increases linearly with the absolute value of that quantity R, resulting in a constant
ratio

A
W = ?R = const, (2.5)

where W is called the Weber fraction. This law implies that the variability of the estimate
of the physical quantity increases linearly with this quantity. A related way of stating Weber’s
law is to demand that the coefficient of variation (cov) it constant, which relates standard
deviation (o) to the mean (u) of the estimate of R, rather than to R itself

o(R)
cov(R) = ——. (2.6)

(R)
Finally, a stronger version of Weber’s law states that the entire probability distribution
function (PDF) scales with the intensity of the physical stimulus dimension. That is, one can
superimpose the PDF's if one scales the corresponding x-axis such that all PDFs are centred
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Figure 2.6.: Weber fraction as a function of the interval duration from a classical interval
discrimination study by Getty [54], reprinted by Bizo and coworkers [15]. Apart
from the data from two participants, two fits of the underlying Weber function are
shown, one to the generalized Weber law (dotted line, cf. Eq. 277), and another
one to a polynomial of the order 3/2. The nonlinear function provides a better
account for the data, as it captures the increasing Weber fraction at longer inter-
vals. Reprinted from Behavioural Processes, 71, L. A. Bizo et al., “The failure of
webers law in time perception and production”, 201-210., Copyright (2006), with
permission from Elsevier.

at the same mean (Fig. 20]). This “scalar property” [55] is reflected in psychometric functions
and other derived distributions that scale in the same way.

It has been shown that Weber’s law holds for many perceptual dimensions, such as bright-
ness, loudness, pitch, weight and temperature over a varying range of the corresponding phys-
ical intensities [46], and it has been a major guidance for psychophysics since its origins.
However, many of the dimensions where Weber’s laws holds are based on stimulus energy,
such as the intensity of light or sound of the mass of an object. For such energy-based stim-
ulus features, Weber’s law is often caused by low-level adaptation. For instance, the fact
that the just noticeable difference in light intensity increases approximately linear with the
intensity over three orders of magnitude can be explained with an adaptation as early as in
the retinal cone cells [139]. Such a simple explanation is not available for time perception, as
time is no energy-based quantity.

Still, a number of studies report that Weber’s law is fulfilled in time perceptionﬁ. This
result was originally most frequently reported in animal studies [55, 56, 108, but numerous

3For brevity, we restrict ourselves to review articles and representative original articles, as there is a vast
literature on the topic.
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Figure 2.7.: Collection of Weber fractions from a wide range of different studies [58]. The
Weber fraction takes the form of the coefficient of variation (Eq.[2.6]). Both scales
are logarithmic, and the time scale reaches from hundreds of milliseconds to thou-
sands of seconds. The numbers in the legend refer to the citation of each study.
Variation between studies is very high, but the Weber fraction roughly decreases
at short durations, stays constant at intermediate durations, and increases again
at longer and very long durations. These four regimes are separated by horizontal
lines. Reprinted from Current Opinion in Neurobiology, 7, J. Gibbon et al., “To-
ward a neurobiology of temporal cognition: advances and challenges”, 170-184.,
Copyright (1997), with permission from Elsevier.

human studies also support Weber’s law [61],[186]. Deviations of Weber’s law are, however, also
very often reported. These deviations can be put into three categories: (1) Weber fractions
that decrease as duration increases, (2) Weber fractions that increase with duration and (3)
variability that is independent from duration. The first deviation, decreasing Weber fractions,
are often reported at short interval durations below 100 ms. Deviations in this range are readily
explained by a straightforward extension of Weber’s law, namely allowing for a non-zero offset
b in the linear increasing standard deviation (o)

o(t) = Wt+b. (2.7)

This relation has been termed the generalized Weber law (see [169], Getty [54] published a
similar relation under the same name), and has gained support from a large number of studies
[611 [7, 97, [54]. The generalized Weber law is currently the most accepted expression of the
relationship between variability and duration. However, the other two forms of deviation also
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occur. While constants variability has only been observed in a small number of studies (see
[7] for a review), increases in Weber fractions are frequent at longer durations [15], [61] [107].
The duration at which this increase begins varies a lot. For instance, the classical data of
Getty [54], which has been frequently cited as reference for the generalized Weber law, shows
an increase starting at about 2 sec (Fig. [26). Other studies, mainly involving sequences of
stimuli, report minimal Weber fractions in the range between 300 and 500 ms, and an increase
in Weber fractions at longer durations [39]. These findings can not be easily reconciled with
Weber’s law.

So to conclude, Weber’s law is found to hold at best in a limited range of interval durations.
This range largely depends on the details of the respective studies, but as decreasing Weber
fractions are most common below 100 ms and Weber fractions start to increase at durations
from 500 ms [39] to 2 s [54], the range of durations where Weber’s law holds seems to be
relatively narrow. Overall, the Weber fraction follows a U-shape rather than a flat line. This
form is also reflected in a review by Gibbon and co-workers [58], where he plotted the coefficient
of variation for a large range of interval duration. The plot exhibits large variability, but the
overall pattern does look much like a U-shape (Fig. 2.7, cf. [15]).

In Section 2.1.3] and 2.2.3] we will discuss psychological and neuronal models of time per-
ception, respectively, which attempt to incorporate or even explain the origins of both the
psychophysical law and Weber’s law. In Chapter Bl we develop a neurocomputational model
that explains both Weber’s law and its deviations for a time scale limited to the sub-second
range, and in Chapter 4] we present a more general information-theoretical account for the
different behaviors of the Weber fraction.

2.1.2.3. Distortion of subjective time by non-temporal factors

Apart from objective duration itself, temporal estimates have been shown to be influenced
by a large number of non-temporal factors [42] 611 [7]. This results both in altered variability
and distortions of subjective durations. Here, we review a number of these factors which are
relevant for our studies.

Attentional resources. The perception of time has been recurrently found to be modulated
by the allocation of cognitive resources such as attention [137, 22} [173] 21]. Drawing resources
away from time perception decreases perceived duration and increases variability, whereas
additional resources allocated towards time perception have the opposite effect. This has
been mainly studies using the oddball paradigm [171], 176, 29] and the dual task paradigm
[166, 167, 21, 22]. In a dual task experiment, a secondary task is performed concurrently
to the time perception task. A number of perceptual, verbal and cognitive tasks have been
shown to interfere with time perception. Most consistently, this interference is reflected in a
subjective shortening of time, and increasing variability is also frequently reported. In the
oddball paradigm, on the other hand, the saliency of a specific stimulus (the oddball) in a
series of standards is increased to draw attention to that particular stimulus. This kind of
manipulation results in an increased subjective duration of the salient stimulus, and in an
increased performance in discriminating it from the standards.
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Effects of task difficulty have also sometime been attributed to resource allocation. An
example comes from the bisection task (see [7] or [186] for details) where participants have to
classify a stimulus as being closer to a long or a short standard which have both been presented
previously. In this task it has been found that the variability of the stimulus representation
actually gets lower as the difference between the long and the short standard become smaller,
which makes classification more difficult [I84] [I86]. This was explained with an increased
allocation of resources in the more difficult case.

Traditionally, attention and resource allocations were believed to occur only for intervals in
the range of seconds [I50} 110} [80]. Shorter intervals were considered to be processes in a more
automatic way that is inaccessible for cognitive interference. However, this view is challenged
by more recent experiments (e.g. [I51]), including our own (see Chapter [), which show that
dual tasks also interfere with time perception in the milliseconds range.

Motion and dynamic stimulus change. When visual stimuli are judged according to their
duration, they are perceived as longer when they are moving, compared to stationary stimuli
[19, 156, 59, 20]. This long-know illusion of time has been termed “(subjective) time dilation”,
and the magnitude of this effect increases with the speed of the motion. More recently, Kanai
and co-workers [87] have shown that this illusion also occurs when the stimulus is dynamically
changing, while being stationary in space. They also showed that the effect of motion speed
could be replaced by the rate of change of the stimulus. Johnson and coworkers [84] performed
similar experiments, using stimuli in localized parts of the visual field, but they observed the
opposite effect of shorter durations as the frequency of the change increases. All these effects
of motion and dynamic stimulus have been observed exclusively for visually presented stimuli
so far. In Chapter Bl we show that this illusion may carry over to intervals presented in an
auditory domain, providing strong support for an interaction of time perception in different
modalities.

Modality. Time perception also differs when the stimuli are presented in different modalities.
Consistently, auditory stimuli are found to by judged longer than visual ones, and the temporal
variability of time estimates is higher for visual compared to auditory stimuli (see [61] and [7]
for reviews). Furthermore, when an interval is marked by two brief stimuli at its beginning and
end (an empty interval), variability in time estimates is increased when the two markers are
presented in different modalities (e.g. a flash of light to mark the beginning and a brief tone
to mark the end of the interval), compared to a condition where both markers are presented
in the same modality (these studies are also reviewed in [61] and [7]).

They interaction of simultaneously presented stimuli in different modalities has only rarely
been studied. In such a situation, auditory stimuli are also considered as longer then visual
ones [I81]. For further discussions of these of studies, see Chapter [Gl

Adaptation. The final non-temporal effect to be discussion in this section occurs when a
comparison interval is presented within an entire series of isochronous standards. The position
of the comparison within such a sequence of intervals affects perception of its duration in two
ways. First, when presented at the first position of the sequence, the comparison is judged
to be longer than the standards [I57, [73, [88], a phenomenon that occurs both in the visual
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stimulus
response N S+N
(noise only) (signal and noise)
No P(No|N) P(No|S+N)
“Correct rejection” “Miss”
Yes P(Yes|N) P(Yes|S+N)
“False alarm” “Hit”

Table 2.1.: Possible combinations of stimuli configuration and responses in a signal detection
task, together with the probability for each combination. Participants respond
“yes” when they think a stimulus was present, and “no” otherwise. Note that the
probabilities for the two responses add up to one for each stimulus condition, i.e.
P(No|N) + P(Yes|N) = 1 and P(No|S+N) + P(Yes|S+N) = 1.

and the auditory modality and has been termed “chronostasis” [75]. Second, performance in
discriminating of the comparison from the standards or detecting its presence is increased when
the comparison is presented at later positions within the sequence, resulting in an increased
number of standards presented previous to the comparison (e.g. [11],[39, 78 [123]. Evidence for
this adaptation effect is mixed, however, as there are also studies which report no such effect
[141), 164]. In Chapter [6] we present a series of experiments where we control for factors like
habituation, neural fatigue and memory effects by using a constant sequence length. While
most of this experimental work has been done by our collaborator Stefan Blaschke [16], we
also present an information-processing model with accounts for this adaptation.

2.1.3. Information-processing models of time perception

The observations reviewed above have led to a multitude of information-processing models
of time perception. We use the term information-processing model to differentiate this class
of models from neurocomputational or information-theoretical models which are described in
Section and 23], respectively. Information-processing models usually postulate a hierarchy
of several processing stages which are described by relatively simple mathematical equations.
The aim is to account for the experimental data with a minimal set of assumptions. We
describe here the most influential of these models for time perception.

2.1.3.1. Signal detection theory

Signal detection theory (SDT) is a general theory of perception rather than a specific model
of time perception. We include it here because we make extensive use of this framework in
Chapter [6l and because the pacemaker-accumulator model described in the following section
also borrows some aspects of signal detection theory.

In its original form, the theory offers a formal description of the task of detecting a stimulus
in the presence of noise [69]. Consider, for instance, an experiment in a dark room where in
some trials, a dim flash of light is presented, and in others, the room remains dark, and after
each trial, the participant has to report whether he has seen a light or not. Because the visual
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Figure 2.8.: Illustration of the probability distribution of internal responses for the noise-only
(left curve) and signal plus noise case (right curve) [69]. Both distributions are
Gaussian with identical variance. Note that the distributions overlap to some ex-
tent. Reprinted from http://www.cns.nyu.edu/ david/handouts/sdtadvanced.pdf
with kind permission from David Heeger

system is not working perfectly and is prone to several sources of noise, you would expect
that in some trials, the participant would report to have seen a stimulus although it was not
there (called “false alarm”), and in others, he would miss a stimulus that was actually present
(called “miss”). In many other trials, however, he can be expected to either correctly detect
the stimulus (“hit”) or to correctly report that there was none (“correct rejection”). These
four outcomes are summarized in Table 2.1l The relative frequencies of each outcome can be
seen as estimates of response probabilities. Under the assumptions of SDT, one can use the
probabilities P(Yes|S+N) for a hit and P(Yes|N) for a false alarm (see Table 2.1]), to infer (1)
about the variability of the underlying processing system and (2) about a decision criterion k
that describes how conservative or progressive the participants acts in detecting the stimulus.

These assumptions of SDT are the following (cf. Fig. [Z8):

1. The stimulus dimension in question (e.g. light intensity, but any other prothetic quan-
tity can be used) can be mapped onto a one-dimensional “internal response” axis with
arbitrary units.

2. The statistics of the internal representation of the stimulus can be described by a proba-
bility distribution on that axis, centered on the actual value d of the stimulus (biases and
other accuracy problems as discussed in Section 2.1.2.T] and 2.1.2.3] are not considered
here).

3. In case there is no stimulus, there is also a “noise distribution” with the same variance

o2 as the stimulus distribution, centered on zero.

4. A stimulus is detected if the value of the internal response in a given trial exceeds a
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Figure 2.9.: Illustration of the probability distribution of internal responses for the noise-only
(left curve) and signal plus noise case (right curve) [69]. The shaded regions are
the probabilities for a each of the four outcomes in Table2.1]in the noise-only case
(upper panel) and in the signal plus noise case (lower panel). It is apparent that
both the miss and hit probability and the correct rejection and false alarm prob-
ability add up to one (cf. Table [Z1]). Reprinted from http://www.cns.nyu.edu/
david/handouts/sdtadvanced.pdf with kind permission from David Heeger

certain criterion value k, which lies between zero and d.

Most often, the PDFs for both the noise and the stimulus distributions are chosen to be
Gaussian, N(u, 02), with meany and standard deviation o. The finite variance of the stimulus
distribution reflects the uncertainty in mapping the physical stimulus property into an internal
representation. The noise distribution, on the other hand, represents the finite probability of
reacting to a “phantom stimulus” that was not there, and is also due to the imperfection
of the internal representation. Thus, the variances of both distributions are the same. The
criterion k£ adds another degree of freedom, reflecting a trade-off between hit rate and false
alarm rate: If k is set to a value close to zero, it is frequently crossed because of random
events from the noise distribution, so the false alarm rate is high. On the other hand, the
probability that an event from the stimulus distribution falls below the criterion is very low
in this situation, so the hit rate is also high (see Fig. 2.9 lower panel). Clearly, the opposite
is true when the criterion is set closer to d (Fig. 2.9] upper panel). Thus, a participant may
either use a strategy which promises lots of hits, or another one which minimized the number
of false alarms. Which strategy he adopts reflects both the relative reward (or punishment)
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of hits and false alarm, and to some degree also general personality features such as shyness
or risk-seeking behavior [60].

The above statements can be quantified by calculating the area under each of the corre-
sponding probability distribution functions, as in Fig. 2.9l As we assumed that the variances
of the two distributions are the same, we can rescale the axis such that both variances are
equal to one. Then, the rate of correct rejections P(No|N) is given by the integral under the
noise distribution up to the criterion k:

P(No|N) = /_ ' N(0,1), (2.8)

so k can be inferred from the measured estimate of P(No|N). Likewise, the mean of the scaled
signal distribution can be calculated from the area under that distribution that is bounded
from below by the criterion value on, which gives the hit rate P(Yes|S+N):

o
P(Yes|S+ N) = / N(d',1). (2.9)
k
We call the mean d’ because the distribution is scaled by the variance, so that d’ is given by
d
d=—. 2.10
: (2.10)

As an estimate of P(Yes|S+N) is measured from the hit trial and k is inferred from Eq. 28]
Eq. 29 yields d’, and with the experimentally set d, Eq. 210 gives the variance of the internal

representation o2.

Note that this model is not restricted to the paradigm of stimulus detection. For instance,
if two stimuli are presented which differ in a certain dimension, the discrimination of these
stimuli can be modeled by replacing the noise distribution be the distribution of the stimulus
that has the smaller actual value, e.g. the shorter duration. Discrimination is then considered
to be accomplished by evaluating the difference d between the two internal response values,
and SDT can be applied as described above. This framework will be used in Chapter
to evaluate the detection of a deviant interval of prolonged duration in a series of standard
durations. There, the SDT framework will also be extended to include distributions of different
variances.

2.1.3.2. Pacemaker-accumulator models

The pacemaker-accumulator model (PAM) is by far the most popular modeling framework
for time perception, and has been modified and extended in countless ways. In its simplest
form, which is due to Creelman [33], this model assumes two components: A pacemaker
generating pulses at some frequency f, which are counted by an accumulator (also simply
called counter). The internal representation of an interval ¢ is then given by the number of
pulses counted during the interval n = ft. Creelman assumed the pacemaker to be a Poisson
process to account for temporal variability. For the discrimination of interval durations, he
applied the framework of signal detection theory to the differences between the two intervals
(see previous Section [Z.1.3]).
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Figure 2.10.: Sketch of the pacemaker-accumulator architecture [8]. See text for details.
Reprinted from Behavioural Processes, 44(2), L. Allan, “The influence of the
scalar timing model on human timing research”, 101-117, Copyright (1992),
with permission from Elsevier.

Later, the pacemaker-accumulator model was extended by more explicit modeling of the
processes that govern the storage and comparison of the intervals, and which may influence
the flow of the generated pulses into the accumulator. Such a more general version of the
PAM [8] is shown in Fig. 210l Regarding the transmission of pulses to the accumulator,
there must be a switch which closes at the beginning of an interval that has to be timed to
start accumulation of the pulses, and opens again at the end of that interval to terminate
accumulation. In the model of Block and Zakay [I8], this switch is also accompanied by a
gate (not shown in Fig. 2.10)), which may open more or less widely due to different levels of
attention, resulting in a larger or smaller number of pulses being accumulated. This allows for
a gradual control of the pulse flow, compared to the binary open/closed state of the switch.

After being accumulated, the pulses which represent interval duration are stored in a working
memory stage for further processing. This processing frequently involves comparison with
earlier presented intervals, that are stored in a reference memory. The comparison itself,
finally, is done by a comparator unit.

The reason why all these units are added to the pacemaker-accumulator model is that
their function can be formalized by equations, which makes it possible to derive more specific
experimental predictions compared to more simple models. Furthermore, each component
constitutes a possible point of attack for variability and non-temporal modulation. Indeed,
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the various PAMs mainly differ in a) the nature of the pacemaker-accumulator system, b)
the specific stages they explicitly model and c) the assumed sources of temporal variability.
Here, we review a representative selection of these models, although it must be noted that not
all of explicitly assume a pacemaker-accumulator system. However, all of them can be easily
mapped onto a PAM, and we do so to emphasize their similarities.

As mentioned earlier, the earliest PAM [33] assumed a Poisson process with a fixed rate.
Because there were no other sources of variability, the standard deviation of the time estimates
were predicted to increase with the square root of the interval duration (decreasing Weber
fraction). One year later, Treisman published a model with explicit memory and comparator
units [169]. His pacemaker was based on a deterministic oscillator, the frequency of which was
not fixed, but assumed to vary with the level of general arousal. Divenyi and Danner combined
features of these two models [38], assuming a Poisson process with variable frequency, and the
possibility to turn the pacemaker on and off (as a functional alternative to the switch). In most
later models, the Poisson pacemaker hypothesis was maintained (see [I70] for an exception),
and the notion of a variable pacemaker frequency has also gained considerable support (e.g.
[95, 116]. The switch has also been attributed with variability, as well as a latency in its
opening and closing [10].

Arguably the most influential among the pacemaker-accumulator variants is Gibbon’s scalar
expectancy theory (SET), which he developed in the context of reward-based animal exper-
iments [55], and later applied to time perception in humans [57, [56]. He discussed each of
stages mentioned above as a potential source of variance, where scalar variance (e.g. variance
increasing linearly in time, complying with Weber’s law, cf. Section 2.1.2.2) dominates the
entire variance. Roughly speaking, Gibbon located the source of this scalar variance in the
reference memory and attributed the pacemaker with Poisson and the switch with a constant
variability, respectively. Adding all these error sources results in a total variability o?(T')
following an equation like

o*(T) = AT? + BT + C, (2.11)

where A, B and C are the variability of the reference memory, the pacemaker and the switch,
respectively (see [57] for a more detailed discussion of the different sources of variability).

A strong competitor of SET in the field of animal timing is the Behavioral Theory of Time
(termed BeT), developed by Killeen and Fetterman [95], building on earlier work by Killeen
and Weiss [97]. Here, the duration representation from the pacemaker-accumulator unit is not
directly read out, but used to drive the animal through a series of behavioral states which can
be directly observed. For Killeen, the source of scalar variability of the accumulator, which he
interprets explicitly as a counter of pulses. The pacemaker and the switch add Poisson and
constant variability, respectively, resulting in an equation like Eq. 211l The behavioral nature
of BeT, and the fact that it does not comprise cognitive stages like memory and comparison
may have contributed to the fact that this theory had little impact on studies human time
perception. However, Killeen’s ideas of optimal counting mechanisms in the presence of various
error sources are still influential (see e.g. [96]).

In the following, we briefly discuss how pacemaker-accumulator models address the various
non-temporal factors that have been shown to affect time perception (cf. Section 2I.2.3]).
Attention has long been modeled by affecting the switch (or the gate in the models of Block
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and Zakay): Attention that is drawn away from a timing task results in a later and more
variable closing of the switch [167, [126], [§] or a less wide and also more variable opening of the
gate [I8]. This general proposal has become known as the attentional allocation model [21]
and both possibilities result in a shorter and more variable estimate of duration. However, this
model can not account for the fact that subjective duration increases when a salient stimulus
draws attention to it, since the total number of pulses is independent of attention. An obvious
modification is to allow the pacemaker speed to be modulated by attention [I71], which may
account for both observed attention effects.

The effect of motion speed and dynamic change can be implemented in a PAM in a very
similar way, namely by assuming the pacemaker speed to follow the rate of changes in an
environment [48] [146] 20]. Modality effects are also partly accounted for by means of the
pacemaker: Visual intervals are processed at a lower pacemaker rate compared to auditory
ones. Differences in variability are attributed to the switch, which is assumed to open and close
in a more unreliable fashion when visual intervals are involved [142], (185 [174]. Alternatively,
separate PAM units may exist for the different modalities, which the above specifications. We
further discuss these proposals in Chapter Bl

Finally, adaptation effects are modeled on the stage of memory. The increasing number of
standard presentations prior to the comparison can be explained as an effective averaging of
the observed standard durations in the reference memory. Due to this averaging, variability
decreases. This notion has been followed by Drake and Botte under the name “multiple look
model” [39]. In Chapter [6] we provide a quantitative formalization of that model. Finally,
the subjective lengthening of the first stimulus in a sequence has been explained as a change
in pacemaker rate, again, presumably as an effect of increased attention at the beginning of
a new sequence [75]. This view is supported by the fact that the lengthening effect can be
attenuated by training.

In summary, changes in subjective duration are usually attributed to a manipulation of
the pacemaker speed, while variability effects are modeled at the stage of the switch or the
memory components.

From the above, it is clear that pacemaker-accumulator models provide an extremely flexible
framework which can incorporate virtually any feature of time perception. However, this
flexibility comes at a high cost: PAM can not really be seen as a scientific theory, as it can
hardly be falsified [145]: Any new finding which does not fit into the framework may simply be
included by adding another stage or changing or reinterpreting an existent one. An example for
this procedure (apart from the above ones) is the reaction of the SET community to findings
that violate the scalar properties they built on, the linear increase of both the mean and the
standard deviation of time estimates with duration. When faced with the critical deviations
from these scalar properties, Wearden [I83] included random responses in his SET variant,
which terminated the waiting phase prematurely, and were not related to actual time. This
resulted in a power law increase of subjective duration in subjective time, and in some cases
also increasing Weber fractions at very long durations [I07]. Therefore, SET was declared not
to be at odds with observations of non-scalar behavior. Also, one can observe a marked bias
in the literature by SET supporters in favor of studies reporting scalar behavior (e.g. compare
[186] with the present review).
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While attempting to save a theory by modification is a valid endeavor, these examples
still illustrate the problem that is posed by the extreme flexibility of pacemaker-accumulator
models. Attempts to match the respective units to appropriate functional circuits in the
brain may help to constrain pacermaker-accumulator models, and help making more specific
predictions.

2.1.3.3. Pacemaker-free models

As discussed above, many theoretical models of time perception can be mapped onto a
pacemaker-accumulator architecture. However, there are also some exceptions to this rule.
For instance, Staddon and Higa [162] proposed a model that was based on a cascade of de-
caying memory traces. The time course of the decay, which differs between the traces, is the
source of temporal information in this model. Staddon and Higa developed this model as an
opponent to Gibbon’s scalar expectancy theory. They argued that instead of separating the
actual representation of time and its storage into a memory component, it is more parsimo-
nious to consider memory processes as the basis of time perception in the first place. Indeed
their model accounts for a number of psychophysical results, including the U-shaped from of

the Weber fraction (cf. Section 2.1.2.2]).

A second example is given by the dynamic attention model by Jones and co-workers [85] 122]
11,123]. This model is mainly designed to account for the perception of rhythms and sequences
of time intervals rather than single intervals. It fundamentally differs from PAMs models in its
basic assumptions: The model is built upon a set of oscillators with variable frequencies. An
external rhythmic stimulus is represented by means of entrainment of the frequencies. In this
way, the oscillators synchronize with the rhythm and constitute an “attentional rhythm” [122]:
Any following interval is expected to have the same duration as the ones presented within the
rhythm. In this sense, time is represented by means of phase information. Therefore, the
model predicts very sensitive responses to distortions in the phase of a rhythm, compared to
manipulations that comply with its basic frequency. This prediction was tested with ambigious
results (see [16]). In a series of experiments performed by our collaborator Stefan Blaschke
[16], we did not confirm this sensitivity on phase information. Therefore, we propose that the
representation of sequences of time intervals can be better explained with an extension of the
existing PAM architecture, based on the multiple look hypothesis (cf. Chapter [@) [39].

2.2. (Computational) Neuroscience of Time

Compared to the progress in the psychology of time perception, there is relatively little defi-
nite knowledge about the neural underpinnings of temporal processing. Lesion experiments,
imaging studies and electrophysiology in behaving animals have provided lots of data that is
compatible with a plethora of timing mechanisms at various brain sites. Likewise, there exists
a zoo of theoretical models which show how each of these mechanisms can be exploited to
encode time. Here, we provide a brief overview over the neurobiological findings and compu-
tational models for temporal processing. We focus on time perception in the range of hundreds
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of millisecondﬂ, with occasional detours to the seconds range, and no reference at all to times
shorter than a millisecond or longer than minutes (see [28], 24] for references on these time
ranges). We also discuss some basics in the theoretical modeling of biological networks of
neurons.

2.2.1. Brain regions involved in temporal processing

There are at least three ways of accessing the neural underpinnings of temporal processing.
First, one may employ the psychophysical procedures that we discussed in Section ZI.T]
and simultaneously monitor brain activity. This can be done by electrical of magnetical
recordings on the scull (EEG or MEG), by measuring the blood flow inside the brain which is
correlated with neural activity (fMRI), or by tracking certain types of neurotransmitters which
are marked by weakly radioactive substances (PET). The most invasive of these methods is
electrophysiology, where electrodes or pipettes of micrometers in diameter are used to record
either the voltage of individual neurons (intracellular or single-unit extracellular recording) or
the local field potential (LFP) generated by the collective activity of many neurons. All these
techniques make it possible to correlate the measured brain activity with the behavioral task.
The simplest way to do this is to compare activity measurements in trials containing a time
perception task to those with a control task or no task at all. In more sophisticated setups,
it is also possible to correlate activity measures with measures of behavioral performance,
such as the DL and PSE in a time perception task (cf. Section 2-I.T]). However, correlational
evidence is always indirect in nature, so even when a certain brain region specifically activates
during a time perception task, one can not be entirely certain that this region is functionally
relevant for the task.

The second way to assess biological mechanisms of temporal processing is to manipulate
certain brain functions and to study their effect on time perception. These manipulations
include lesion studies, where certain brain regions are either temporally inactivated or perma-
nently removed and pharmacological studies which alter the neurotransmitter balance in the
brain. The field of studying of the effects of neuropathological diseases also broadly belongs to
this categoryﬁ. If any of these manipulations abolishes the sense of time, or effects behavioral
performance in a specific way (i.e. impairments of more general functions such as low-level
perception or motor response can be excluded), causal evidence is provided that the manip-
ulated brain structure or transmitter system plays an important role in temporal processing.
In most cases, however, the manipulation is less specific than desired and also alters the global
state of the brain.

Finally, in vitro studies with tissue extracted from animal brains allow to study the biological
mechanisms in greater detail. This method provides the highest degree of control over the
system, but also at the cost of the farthest deviation from the original situation of the awake,
behaving animal. While the relation to behavioral performance can not be studied in such
experiments, it is still possible to learn more about specific neural mechanisms that have been
identified by one of the above methods.

4As in Section P21l we restrain ourselves to review articles and representative studies, and do not attempt to
review the entire literature here.
5In animal studies, it is also possible to induce the disease of interest e.g. using genetic mutations.
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Note that all the procedures outlined above are not restricted by any means to the inves-
tigation of temporal processing, but are routinely used to assess any kind of brain function.
But unlike other functions such as spatial vision [89], this rich arsenal of methods so far did
not provide evidence for a single mechanism or brain site which is generally accepted as the
neural substrate of temporal processing. In imaging studies, a large network of brain regions
specifically activates during time perception tasks (Fig. ZI1]), and studies of diseases and
brains lesions did not find any brain region that disables temporal processing when inacti-
vated [28], although many of these manipulations decrease acuity and increase variability in
temporal estimates [28] 24 8I]. Nevertheless, there is a number of brain structures which
repeatedly occur in these studies, including the cerebellum, the basal ganglia, and a number
of regions in the neocortex such as the Supplemental Motor area (SMA) and the prefrontal
cortex (PFC). Additionally, there exist specialized timing systems that are restricted to cer-
tain animal species. For instance, neurons in the auditory midbrain of frogs and toads exhibit
“temporal tuning curves”, or rather frequency tuning curves at low frequencies (about 80 Hz).
Similar phenomena have been found in bats (review in [121]). Furthermore, the temporal
structure of birdsongs seems to be sparsely represented in specific feed-forward structures in
the songbird’s brain [65]. These structures bear similarities with cortical synfire chains [2],
which we study in detail in Chapter 3]

It is currently strongly debated which brain region contributes to which specific function
in temporal processing. Traditionally, it was believed that the cerebellum is responsible for
encoding brief intervals in the milliseconds range, while longer intervals in the seconds range
were represented in the basal ganglia. However, a large number of more recent studies clearly
shows that this dichometry is oversimplified, as we will discuss in the following. To the end of
understanding the function of the different brain regions, two studies are particularly worth
mentioning. The first is a review about fMRI and PET studies of time perception by Lewis
and Miall [I10]. They categorized the imaging studies according to three dimensions: 1)
Whether the task involved a motion component, 2) whether short or long intervals were used
(a distinction that is made at about 700 ms), and 3) whether continuous and predictable
stimuli, such as rhythms, were used. The results of this categorization are shown in Fig. 2. 111
Apart from the fact that all of the listed brain regions are specifically active for at least some of
the time perception tasks, one can see that the regions on the left side are more often activated
in tasks with long intervals and non-motor, discontinuous task, while the regions of the left
are more selective for short-interval motor task with continuous stimuli. Based on these task
characteristics, Lewis and Miall termed the two classes “automatic” and “cognitive” timing.
The brain regions that fall into each of these classes are mentioned in the following paragraphs,
but one important result to be mentioned here is that the cerebellum and the basal ganglia
do no follow the functions they were classically assigned to: The left lateral cerebellum and
the right basal ganglia both fall into the “automatic” cluster, whereas the left basal ganglia
and the medial and right lateral cerebellum can not be assigned to any of these classes.

The second study that is interesting in this context is another imaging study by Rao, Mayer
and Harrington [I54]. The authors compared brain activation for an interval discrimination
task (1200 ms base duration), and two control tasks. The investigation is of special interest as
the authors recorded brain activity by fMRI imaging in four subsequent intervals of 2.5 seconds
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imaging from the Lewis and Miall 2003 review [I10]. The studies are ordered
according to three task categories (see text for details). The columns represent
the brain regions were specific activity was reported for a time perception task
(gray cells), where such specific activity was absent (white cells), or which were
not reported (x cells) in a given study. The columns are ordered to reflect the
affinity of activation of each region to one of the two clusters that are defined by
the task dimensions (see text). Reprinted from Current Opinion in Neurobiology,
13, P. A. Lewis and R. C. Miall, “Distinct systems for automatic and cognitively
controlled time measurement: evidence from neuroimaging”, 250-255, Copyright
(2003), with permission from Elsevier.
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each, so they could observed at least the coarse evolution of activity over time. The results
showed an early activation (first 2.5 seconds after stimulus presentation) of the left ventral
premotor cortex and right putamen, mid-term activation (5 to 7.5 seconds) of the medial
caudate, the thalamus, the premotor, prefrontal and temporal cortex, and late activation (10
seconds) of many areas in the basal ganglia, the cerebellum, the right dorsal premotor and
prefrontal cortex, and the parietal prenucleus. Furthermore, there was a steady activation
of the parietal cortex. From these results, the authors conclude that structures of the basal
ganglia, which were activated during the entire time course, plays an important role for time
perception, while the lately activated cerebellum is concerned with other tasks then explicit
timing. The prefrontal and parietal cortex activation were charged with working memory and
attentional processes, respectively, and the thalamus may bridge the interactions between the
cortex and the basal ganglia.

2.2.1.1. Cerebellum

The cerebellum is a subcortical structure located at the inferior posterior portion of the head
(the hindbrain), and contains about 50% of the neurons in the central nervous system. The
cerebellum is widely accepted to contribute to fine-tuning and feedback control of movement,
and to procedural memory and learning [89]. In this function, it has first been linked to motor
timing [28] and its role in time perception became apparent through clinical and lesion studies
(see [T7], [58], [81] and [24] for reviews). As these studies were predominantly conducted
using intervals in the millisecond range, the notion developed that the cerebellum governed
the perception of such short intervals below one second, while the basal ganglia was charged
with temporal processing in the seconds range (also called “interval timing”, see next section)
[79, [77, 24].

However, more thorough reviews of clinical [58] and imaging studies [110, [112] revealed the
participation of the cerebellum both in time perception and motor timing for a wide range
of durations (Macar [112] specified a range of 0.3 to 20 sec), although there are individual
imaging studies that show no specificity to time perception (e.g. [154]). Lewis and Miall
[110] attribute the left lateral cerebellum to cognitive timing, and the medial and right lateral
cerebellum to be in between of the two clusters (cf. Fig. 2IT]).

Clinical studies consistently show increased variability in time estimates following cerebel-
lar injury [77, 8], but no systematic change in subjective duration [58]. The fact that the
scalar property (cf. Section 2.1.2.2]) is preserved in cerebellar lesions (as opposed to other
lesion sites, see below) has led researchers who are guided by scalar expectancy theory (SET,
cf. Section 2.1.3.2)) to conclude that the cerebellum is only of marginal importance for time
perception, and that the increased variability stems from less specific deficits such as increased
motor variability or impaired error correction [58], [24]. To date, the precise role of the cere-
bellum in general temporal processing is still debated ([154] 113}, 1211 [80].

Despite of this debate, the cerebellum clearly plays an important role in specific temporal
processing tasks. For instance, the cerebellum accurately times the so-called eye blink reflex.
In the experimental paradigm of eye blink conditioning, an animal learns to associate a neural
stimulus with a an unpleasant air puff on the eyelid, to which it reacts with an blink to
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protect the eye (cf. Capter Bl for more details on the timing of classical conditioning). After
lesioning the cerebellum, this reflex is still present, but its precise timing is abolished [143],
99]. The cerebellum is also clearly involved in certain forms of motor timing. Cerebellar
patients have problems with discontinuous movements, but not with continuous ones, and
electrophysiological studies have revealed that cerebellar Purkinje cells in the monkey encode
saccade duration in the duration of burst activity [165].

2.2.1.2. Basal ganglia

The basal ganglia is a set of sub-cortical nuclei at the base of the forebrain, including the
striatum, the substantia nigra and the nucleus accumbens. These structures are involved in
motor control and learning, and in many aspects of cognition and motivation. Specifically, the
substantia nigra is one of the main sources of dopamine in the brain, a neurotransmitter which
is involved in the encoding of reward and plays a role many neurodegenerative diseases [89].
In the context of temporal processing, the basal ganglia is mostly studied by clinical studies
(mostly Parkinson’s disease), and by pharmacological manipulations involving dopaminergic
drugs.

Parkinson’s disease and focal lesions in the basal ganglia have been reported to result in
underestimation of short durations (below one second), overestimation of longer durations
[58, 24], and increased variability of time estimates [58], 28] 81]. However, this evidence is not
without ambiguity, as there are counterexamples for all these phenomena. [58, 81]. Other
neurodegenerative diseases of the basal ganglia, such as Huntington’s disease and schizophre-
nia, have similar effects (Fig. 2Z12)[24]. The evidence is much clearer regarding lesion studies
in rats. After striatal lesions of dopaminergic lesions in the substantia nigra pars compacta,
rats are unable to press a lever at the right time to get a reward [119] [129] 24].

As all the abovementioned diseases affect the dopamine balance in the brain, researchers
have investigated whether dopaminergic drugs induce similar effects in healthy humans and
non-human animals. Indeed, dopamine agonists, such as methamphetamine prolong subjective
duration, whereas dopamine antagonists shorten subjective duration in rats [127) 58, 28] 119,
24]. In the framework of the pacemaker-accumulator model (cf. Section 2Z1.3.2]), this would
correspond to a speeding-up and slowing-down of the pacemaker, respectively. At least for
antagonists, the strength of this effect correlates with the affinity of the drug for the D2
receptor type [127]. The distortion is transient and disappears with training, and there are
also rebound effects when the drug administration is stopped (consistent with a clock effect
and a slowly adapting criterion in the decision stage) [58], 119]. Similar effects have been
observed in humans with dopamine antagonists (see [148] for a review).

Imaging studies have revealed specific activity of the basal ganglia in a wide range of tem-
poral tasks [110, [112]. In most cases, these structures co-activate as part of a cortico-striatal
loop (see next section) [I53} 112 130]. According to the categorization of Lewis and Miall
[110], the right basal ganglia is involved in cognitive timing, while the left basal ganglia can
not be allocated in any of the two clusters.

Finally, electrophysiological studies have reported that activity of spiny neurons in the
striatum peaks around times which correspond to trained intervals, which could constitute a
direct representation of the the corresponding interval durations [120] [30].
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Figure 2.12.: Effect of dopaminergic drugs on time perception in rats as a function of their
affinity to the D2 receptor [24]. The y axis shows the dose of each drug that
is necessary to induce a 15 to 20% rightward shift of the psychometric function
for a temporal bisection task, which corresponds to a subjective lengthening
of subjective time. Reprinted by permission from Macmillan Publishers Ltd:
Nature Reviews Neuroscience 6:755-765, C. V. Buhusi and W. H. Meck, What
makes us tick? functional and neural mechanisms of interval timing, Copyright
(2005)

Classically, the basal ganglia has mostly been charged with time perception in the second
range [28) [81]. This view is challenged by the fact that basal ganglia activity is specifically
increased for time perception in a wide range of intervals [110} 112], and that clinical studies
show impairments of time perception both above and below one second [58]. The dichometry
between the cerebellum (subsecond range) and the basal ganglia (seconds range) has been
established by Richard Ivry in his influential review in 1996 [77], but eight years later, he
concludes himself that “a clear dissociation between the cerebellar and the basal ganglia
contributions on temporal processing tasks remains elusive” [R1].

2.2.1.3. Neocortical structures

The neocortex is the outermost layer of the cerebral hemispheres, the largest part of the human
brain. It can be functionally divided in a number of regions which are mostly responsible for
a particular brain functions, such as early vision (primary visual cortex) or motor control
(primary motor cortex), although this division is partly artificial. Most knowledge about
time perception in the neocortex stems from imaging studies (fMRI, PET and EEG), and
electrophysiology.
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Figure 2.13.: Evolution of the Contingent Negative Variation (CNV) component of EEG
recordings [I13]. The slope of the increasing negativity predicts the behavioral
outcome of an interval production task: The three traces are averages over all
trials where participants produced intervals that where too long (L), too short
(S) or correct (C). Reproduced by permission from the Journal of Neurophys-
iology, Vol. 18 (2-3), on pp. 89-104, DOI 10.1027/0269-8803.18.2-3.89 (©)2004
Federation of the European Psychophysiology Society.

fMRI and PET imaging typically shows activation of an entire network of structures during
time perception, including the prefrontal cortex (PFC), the supplemental motor area (SMA),
the premotor, parietal and insula cortex, and the thalamua@ [153, [154] 112, 110, 130]. The SMA
and the thalamus are often co-activated together with the striatum, forming a striato-cortical
loop (see preceding section) [153] 112, [130]. Lewis and Miall [I10] categorize the dorsolateral
and the right ventrolateral PFC, the insula and premotor cortex, and the intraparietal succulus
as cognitive timing structures, and assign the SMA | the right superior temporal gyrus, the left
primary motor and somatosensory cortex as well as the occipital lobe to automatic timing.
The parietal cortex can not be allocated in one of the clusters.

EEG studies have focused on a specific component called Contingent Negative Variation
(CNV), which is believed to be an index of slowly increasing firing rates (“ramping activity”).
CNYV increases during an interval to be estimated, in its slope is correlated with behavioral per-
formance (Fig.[2.12) [114,[113]. The origin of CNV at median fronto-central region (FCz), most
likely from the SMA (consistent with the above fMRI studies) [113] [130]. Electrophysiology
has revealed populations of neurons in a variety of regions that directly encode interval time
by either showing elevated activity around the interval in question (PFC [52], premotor and
cingulate cortex [120]), or, more frequently reported, by slowly ramping firing rates that peak

Swhich is categorized as a subcortical structure, but mentioned here for completeness
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at that time (motor and premotor cortex [105], 58], lateral interpariatal cortex [109], SMA
and preSMA [134] and PFC [138]). This ramping activity in single neurons coincides with
the increase of the CNV in EEG recordings. In Section 2.2.3, we discuss a model of time
perception which is based on this kind of activity.

Less frequently, results of clinical and pharmacological studies of the neocortex are reported
with respect to temporal function. Clinical studies report parietal cortex lesions to result in
impaired millisecond timing [28], and right PFC lesions to impair interval timing the seconds
range [81]. More specifically, temporal estimates are more variable after such injuries, and
both short and long intervals are underestimated [58]. Furthermore, cholinergic drugs cause
a distortion in the memory of estimated durations [128] 58| 24].

Finally, in vitro studies report spikes in cortical slices that occur in reaction to distant
stimulation at latencies up to 300 ms after the stimulation [12] 26]. These findings suggest a
functional connectivity within slices which propagates neural activity over times that is much
longer than the synaptic transmission times of a few milliseconds.

2.2.2. Modelling local brain circuits

Before we discuss some of the neurocomputational models that have been proposed to explain
time perception, we briefly review some basics about the modeling of single neurons, synapses
and small neural networks1.

Neuron models. The main dynamic variable that is considered in simulation of single neurons
is the membrane potential V. In the real cell, V' is governed by the differences of charged ions
inside and outside the membrane of the nerve cell, mainly sodium (Na'), potassium (K™)
and chloride (C17), and to a lesser extend, calcium (Ca?*). The membrane itself is mostly
impermeable for these ions, but they can diffuse through small pores in the membrane, the
ion channels. The channels are selective for the different kinds of ions, and their permeability
may change as another dynamic variable. When ions can freely diffuse through the channels,
they settle into a dynamic balance that is given by both the concentration and the electrical
gradient over the membrane. Both driving forces are captured by the Nernst equation, which
yields the reversal potential Ex for each ion X

RT [(Xin —61.54mV [Xin

= log

Ex = lo .
X zo F & [X]out Ze [X] out

(2.12)

R and F' are the universal gas constant and the Faraday constant, respectively, T is the
temperature of the cell, z, the charge of the ion and [X];;, and [X],,; are the concentrations of
the ion inside and outside the membrane, respectively. The second equality holds for T' = 37°
Celsius, which is the temperature of the human body. The relative concentrations of the
mentioned ions inside and outside the membrane lead to approximate reversal potentials of
Eng+ = 60 mV, Eg+ = —90 mV, Eg- = —80 mV and Egg.2+ = 125 mV. The resting
potential of the entire cell is mostly governed by the KT ions, and lies around —70 mV. At

"These basic facts and modeling approaches can be found in standard textbooks of neuroscience [89] and
computational neuroscience [1]
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such low voltages, most of the other ion channels are closed. This resting potential can be
computed using the Goldman-Hodgkin-Katz equation, which generalizes the Nernst equation
to more than one ion and different permeabilities of the respective ion channels.

The dynamic interplay of the ion channels and the membrane potentials can be formalized
the Hodgkin-Huxley equation. It is a differential equation which relates the currents across
the membrane that are elicited by each of the channels, and the change of the membrane
potential which is equal to the sum of all these currentﬂ. The most general form (also termed
Hodgkin-Huxley type model) of this equation reads

7—% = ZQX(V - EX) + Lext, (2'13)
X

where gx is the conductance and Ex the reversal of each ion channel, 7 is the time constant
at which the membrane potential relaxes to its net reversal potential, and I.,; combines
externally applied currents, as they would be induced by current injection by an experimenter,
and synaptic currents (see below). In its original form, Eq. 213 comprised only sodium and
potassium channels, and a passive “leak channel” to account for current leaks in the membrane

T— =g(V — Er) + ggn*(V — Ex) + gnam®h(V — Eng) + Leat, (2.14)

where L stands for the leak current and n, m and h are gating variables with values between 0
and 1 which govern the activation of the K+ channel and the activation and inactivation of the
Nat channel, respectively. The gating variables are both time- and voltage-dependent and
constitute an additional set of dynamic variables which are governed by differential equations
of the form

dn
dt
The voltage dependence of both the steady-state value n., and the time constants 7, can
be directly fitted to the results of electrophysiological experiments. At the resting potential,
both my, and ns are close to zero, while ho is close to one. As voltage increases due to an
excitatory input .., both my, and n increase, but the activation of the sodium channel has
a smaller time scale (7, < 1 ms) than the activation of the potassium channel (7,, between
2 and 6 ms). Thus, the net sodium influx is dominant shortly after the depolarization. If
the membrane potential exceeds a certain threshold valucﬁ, this triggers a positive feedback
loop: Sodium influx increases the membrane potential (as En, is at a positive value), and
the the increasing voltage further opens the sodium channel. Thus, the voltage quickly rises
to a large positive value (about 50 mV). Two mechanisms prevent the membrane potential
to remain at this value: First, the slower activation of the potassium channel (with a reversal
potential at a negative value) and second, the inactivation of the sodium channel at higher

(V)= = neo — 1. (2.15)

8In its single-compartment version, the Hodgkin-Huxley equations does not account for currents within the
cell. This spatial extension is introduced by cable theory, which is not discussed here.

9Note that this threshold does not necessarily given by a single number. Rather, it is a function of all the
dynamic variables in the system. This state-dependence of the threshold is also seen in electrophysiological
experiments.
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voltages, modeled by a decrease of ho,. Both processes are slower than the activation of the
sodium channel (75, between 1 and 9 ms), and lead to a decrease of the voltage after the initial
increase that was triggered by the positive feedback loop. The result is a short pulse (about
1 ms) of positive voltage of uniform shape, called an action potential or spike, followed by a
somewhat longer phase of hyperpolarization which prevents spiking at arbitrarily high rates
(refractoriness).

For many modeling purposes, the sub-threshold dynamics of the neuron is more important
than the detailed modeling of a spike. Recognizing that the active sodium and potassium
channels only become relevant when the membrane potential approaches the firing threshold,
modelers have proposed simplified models in which the explicit spike generation is not modeled
but replaced by a built-in threshold potential: Whenever the voltage crosses this threshold
from below, the neuron is considered to spike, and the voltage is set to some reset value (which
is typically lower then the resting potential to mimic refractoriness). In its simplest form, the
leaky integrate and fire model, only the leak current is explicitly modeled

av

7 = 90(V = Ep) + Leay. (2.16)

Without any input, V relaxes exponentially to E, with the time constant 7. This dynamics
is sufficient to model temporal integration of synaptic inputs. The simplicity of the integrate
and fire model makes it possible to derive analytical statements about its dynamics. On the
other hand, many of the dynamical features of the Hodgkin-Huxley model are lost by these
simplifications. Some of them, such as bursting, spike-frequency adaptation or rebound spikes
following inhibitory input, can be recovered by a slightly more complicated class of models
that incorporate a second dynamic variable which mimics e.g. the slow n gating variable for
potassium channels. These modeldd are still simple enough to be analyzed by dynamical
systems theory (e.g. phase plane analysis), but are suited to model a much broader range of
neural phenomena [83].

Modeling synaptic connections. Some ion channels do not react to the membrane potential
within the cell, but to the binding of chemical substances from the extracellular medium
at so-called receptors outside the cell. This is the way how neurons exchange information
via chemical synapses: An action potential in the presynaptic neuron triggers the release
of neurotransmitters in the synaptic cleft, which is only about 20 nanometers away from
the postsynaptic site, so the transmitter can reliably reach the other neuron via diffusion,
and elicit postsynaptic potentials by opening a specific ion channel. The most prominent
receptors are the AMPA, GABA and NMDA receptor. AMPA and NMDA receptors both
respond to glutamate and selectively transmit sodium, calcium and potassium. With a reversal
potential at zero, opening these channels results in a depolarization of the cell, so these
receptors are called excitatory. GABA receptors, on the other hand, respond to gamma-
aminobutyric acid (GABA) and the corresponding channels are selective for cloride, with a
negative reversal potential. Thus, opening GABA-dependent channels hyperpolarizes the cell,
and this receptor is called inhibitory. Note that the NMDA receptor does not exclusively

Oguch as the Morris-Lecar model and the Izhikevich model
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depend on the binding of glutamate, but also on the membrane potential of the postsynaptic
cell: If the membrane potential is too low, a magnesium block prevents the opening of the
channel. Furthermore, postsynaptic potentials elicited by NMDA channels have a much longer
time constant compared to AMPA.

These synaptic channels are typically modeled in the same way as voltage-dependent chan-
nels, by incorporating another term in Eq. 213l for each synaptic input and assuming the
conductance of each respective channel to depend on the concentration of a neurotransmitter.
The dynamics of this concentration is usually modeled using single- or double-exponential
functions, or an alpha function (see Chapter [3]), with the time relative to the last spike as the
argument. This kind of model accounts for the experimental observation that postsynaptic
potentials quickly rise and decay again after a spike from a presynaptic cell has arrived. More
sophisticated models of synaptic conductances treat the transmitter concentration as an ad-
ditional dynamic variable that is governed by a differential equation. In this way, dynamic
phenomena such as short-term synaptic plasticity (cf. Section 2:2.3]) can be incorporated into
the model.

Connectivity and synaptic plasticity. The models of time perception we discuss in the fol-
lowing section are based on small networks of neurons with neocortical properties. While the
exact connectivity of neurons in these networks is not known, local circuits are well modeled
as randomly connected networks, with about 80% of excitatory “pyramidal cells” and 20%
of inhibitory “interneurons”. Interneurons fire at higher spontaneous frequencies compared
to pyramidal cells, so there is a balance of net excitation and inhibition in such a network,
leading to a high variability in the sub-threshold membrane potential in a given cell, which is
of the same order as the mean of the potential. Cortical networks are most often recurrently
connected, meaning that it is possible to find directed loops in the connections, so that the
network can not be segregated into layers which transfer neural activity from one layer to the
next. However, it is possible that such layered structures, called feed-forward networks, are em-
bedded in a larger recurrent network. In the limit case that the feed-forward network is much
smaller than recurrent network, one can treat the recurrent network as a source of stochastic
input to the embedded feed-forward network, neglecting the effects of the feed-forward onto
the recurrent network. This case is considered in Chapter Blfor a specific feed-forward network,
the synfire chain [2] (see below).

The efficiency of synaptic connections between the cells of a cortical network can be modified
by activity-dependent synaptic plasticity. Many of these modifications are of the Hebbian type,
meaning that an increase of synaptic efficiency requires both the pre- and the postsynaptic
cell to depolarize within a short time window (or, more concisely, “cells that fire together, wire
together”). A candidate neural mechanism for this kind of plasticity is the NMDA-mediated
calcium influx into a cell, which is believed to potentiate the efficiency of AMPA receptors. As
the NMDA receptor needs both glutamate binding (elicited by the firing of the presynaptic
cell) and depolarization of the postsynaptic cell, this receptor fulfills the basic requirements
for Hebbian learning. A more specific form of Hebbian plasticity is spike-timing dependent
plasticity (STDP). As the name suggests, not only the coincidence of spikes in the pre- and
postsynaptic cell is important for this kind of plasticity, but also the relative timing of the
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spikes. We elaborate on STDP in Chapter [B] where we show how this kind of plasticity can
select the optimal input to a discrimination network based on the spike time variability of the
inputs.

Synfire chains. A particular neural architecture that is frequently used as a model for the
cortical microcolumn [89] is the synfire chain [2]. It is a feed-forward network consisting of
many layers (or pools) with strongly converging and diverging connectivity from one pool to
the next, i.e. each neuron receives activity from many neurons in the preceding pool and also
projects onto many neurons in the next pool. This type of connectivity favors synchronous
firing within each pool: It has been shown that activity that is injected into the first pool
of synfire chains stably propagates through the entire chain, and that the temporal jitter of
the spike times within each pool converges to a fixed point as values below one millisecond
[70,37]. This synchronous transmission is maintained for a wide range of parameters and initial
condition of the model. Theoretical considerations have shown that the synfire architecture
is well suited for the storage of stimulus patterns [70], which makes it a favorable model
for cortical computations. It was also proposed as the neural substrate of binding different
stimulus features together by means of weak synchronization of different chains [68], and for
a precise temporal code (see below).

It is an experimental hard task to observe a synfire chains in the brain, as the pools are not
necessarily spatially organized, so the current multi-electrode recordings of about 100 neurons
at a time are likely to capture a only very few neurons within the same chain. However,
indirect evidence comes from the observation of precisely timed spike patterns (see [2] [3], 14} 63]
for reviews): Statistical analysis of recorded spikes shows reliable spatio-temporal patterns
with a precision that is hard to be explained with any model except a synfire chain. However,
these results have also been challenged by the argument that these patterns may also occur
by chance, and that the null hypotheses of the statistical tests of pattern significance may be
flawed ([124], see also [3]). Thus, the existence of synfire chains, or rather their necessity to
explain precise spike patterns, is debated (see [3] and [63] for current arguments). Nevertheless,
it is suggestive to study synfire chains in the context of temporal processing, as their favorable
temporal precision make these structures idealy suited for such a task. In Chapter Bl we
analyze the synfire chain model in more detail and show how it can be used as the basis of
neural model of time perception that complies with psychophysical observations.

2.2.3. Computational models of time perception

Based on the neurobiological findings we reviewed above, theoretical neuroscientists have at-
tempted to formulate models that are capable of representing temporal information. Virtually
any process in the brain that evolves in time could be used for this purpose. Consequently,
there exists many computational models of time perception which exploit a wide range of
these mechanisms (see [77, 58, 28] 1211 119, 24] and Chapter Bl for reviews).

A plausible model of temporal processing is not only required to be based on neurobio-
logical findings, but also to reproduce as many of the psychophysical phenomena as possible
(cf. Section 2.1]). Unfortunately, many neurobiological models do not make predictions about
psychophysical experiments, but are exclusively designed as a mechanistic account for tempo-
ral processing. An exception is the scalar property of temporal variability (cf. Section 2.1.2.2]),
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which has been attempted to be explained by a number of models (cf. Chapter [3).

Here, we present three of the mostly discussed models to date, all of which are based on
neurobiological findings. Only one of them is directly concerned with reproducing a psy-
chophysical observation, the scalar property, but it does so by ad hoc assumptions rather
than generic properties of the model. In Chapter Bl we discuss a model from with the more
complex, U-shaped Weber fraction of the timing error emerges.

State-dependent networks. The first of these model has been proposed by Dean Buonomano
and coworkers [25] 28 00]. This model assumes that time is encoded in spatio-temporal
patterns of activity generated by cortical networks. The main time-dependent processes in
the model are short-term synaptic plasticity and slow inhibitory synaptic currents (modeling
GABA, receptor dependent ion channels are used. Paired-pulse facilitation (PPF) increases
the excitatory postsynaptic potential (EPSP) elicited by an excitatory input that occurs within
a certain time after a previous stimulation. This amplification peaks at about 50 ms and
decreases to baseline about 300 ms after the first input. Conversely, paired-pulse depression
(PPD) decreases the strength of an inhibitory postsynaptic potential (IPSP) elicited by an
inhibitory neuron that has fired before. The depression is strongest at 200 ms after the first
input and decreases to baseline after about 400 ms. Finally, the slow synaptic input from
inhibitory neurons follows the same time course as paired-pulse depression.

In its simplest form, the model comprises only two neurons, an excitatory and an inhibitory
one (called E and I in the following), and five synapses (Fig. 214l upper left panel): An
excitatory synapse provides external input to both neurons, I projects to both itself and the
E via a slow GABA, synapse, and additionally, to F via a fast GABA, synapse (with a time
course that is negligible compared to the slower time scales). To test for interval selectivity,
these neurons are stimulated both at the beginning and the end of an interval of varying
length. Because the synaptic delay of the input to I is shorter compared to E, only I fires
in response to the first stimulus, cutting off the spike of E. During the interval between the
two stimulations, the slow processes change the state of this small network and determine
the strength that is needed to activate both neurons as a function of time. In this simple
example, this is most easily seen if one considers PPF and the slow IPSP alone, which govern
the excitability of both neurons alike: Around 50 ms after the first pulse, PPF is dominant
over the slow IPSP, so even a small input will make the neuron fire. At later times, however,
PPF decays and the slow IPSP becomes dominant, so stronger input is needed to explicit a
spike. In this way, the longer the interval between the two pulses, the higher the second input
must be to be effective. In this setup, the £ can be easily made selective for an interval T
by tuning the weights of the input to both neurons: To prevent E from firing too late, its
input weight is set such that it can only fire up to time 7. And to prevent E from firing too
early, the input weight to I is set such that it can fire up to a time slightly before the T
This will cut off the firing of E at all times before T because of the fast GABA, inhibition.
In effect, only a narrow window of intervals around 7" remains at which F can fire, so F is
made selective for the interval T. Fig. 214l shows how the weights must be chosen to make
E selective for three different intervals (lower panel), and how the two neurons react to the

Y ATl of the mechanisms and parameters used in the model are based on neurobiological findings in cortical
neurons.
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Figure 2.14.: Two-neuron state-dependent network that is capable of interval discrimination
[25]. Upper left panel: The circuit consists of an excitatory (E) and an inhibitory
neuron (/) and five synapses, two excitatory ones from external input and three
inhibitory ones which project from the I neuron onto itself and onto the E
neuron (see text for details). Upper right panel: Membrane potential of the E
(upper traces) and I neuron (lower traces) as a function of time. The neurons
respond to an initial stimulation (open arrow) and a second stimulus 50, 100 or
200 ms after the first one (closed arrows). The responses for all three cases are
overlaid. From left to right, three different configurations of synaptic weights
are shown, which lead to selective responses of the F neuron to one of the
three intervals. Lower panel: Parameter space of the two variable synaptic
weights. The color represents the intervals to which the E neuron is selective (see
colour legend at lower right). Larger input to the E neuron make it respond to
longer intervals, while larger input to the I neuron prevents responses to earlier
intervals. Reproduced from the Journal of Neuroscience 20(3):1129-1141, D.
V. Buonomano, “Decoding temporal information: A model based on short-term
synaptic plasticity” with permission from the Society for Neuroscience, Copyright
(2000).
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inputs at these times (upper right panel).

To show that interval selectivity can emerge without fine-tuning of parameters, Buonomano
uses a larger network of 400 excitatory and 100 inhibitory neurons with random connections
of low probability, and synaptic weights drawn from a Gaussian distribution. In this larger
network, the individual neurons are no longer selective for a specific interval. However, when
the overall activity of the network is monitored by a discrimination network that is trained to
associate the activity of the network with one out of six interval durations between 50 and 300
ms by supervised learning, this discrimination is successful, and also generalizes to intervals
that are in between of the trained ones, leading to gradually decreased responses. This shows
that the network as a whole contains the temporal information, even in the presence of synaptic
noise. This resembles the kind of computation performed by a liquid-state machine [IT1].

Note that the temporal range of the model is limited by the time constants of the slow
processes to intervals up to 200-300 ms. Intervals above this range must be represented by
other mechanisms, which are not specified in the model. If the model implemented in the brain,
this limited range may be the cause for the separations some researchers observe between long
and short intervals, although both this separation and the interval length at which it may
occur are debated (cf. Section 2.1.2.3 and 2.2.1). Apart from explaining this separation, the
model does not address any of the psychological effects reviewed in Section 2.1l Instead, it
predicts one of its own, namely the context-sensitivity of duration estimates. According to the
model, the representation of a given interval depends on the state the network was in at the
beginning of that interval. Thus, if another interval was presented shortly before, this should
influence the representation of the second interval. In a recent psychophysical study, this effect
seems to be confirmed [90]. Because of this context-sensitivity, the model is equally well suited
to account for the representation of sequences, and for order judgments [25]. This flexibility,
and the fact that does not rely on mechanisms that are specialized for the perception of time,
make the model interesting, despite of its currently limited account for psychophysical effects.

Self-organized climbing activity. The second model also focuses on time perception in the
neocortex, but assumes that temporal estimates are realized in the form of slowly increasing
firing rates during the interval to be encoded. This kind of activity is frequently observed
in cortical recordings (cf. Section ZZZT.3]). Daniel Durstewitz has proposed a model for the
neural basis of ramping activity that is based on the dynamics of single neurons with cortical
properties [40]. According to the model, the dynamical basis of ramping activity is a positive
feedback loop between the firing rate of the neuron, and spike-based calcium influx. The
neuron is modeled as an integrate and fire unit with an after-hyperpolarizing (AHP) current,
which ensures a realistic refractoriness period, and a calcium-dependent after-depolarizing
(ADP) current. The ADP current is triggered by calcium influx into the neuron after each
spike, and can be seen as a source of input into the neuron: The higher the firing rate
of the neuron, the higher the calcium influx, and thus the depolarization after each spike.
This positive feedback loop generates persistent activity if there is a sufficiently strong initial
input to the neuron'3. Ramping activity is produced in the model when the system is in a

2Tnput is modeled both by synaptic currents resembling AMPA, NMDA and GABA receptor dependent ion
channels, and by direct electrical stimulation
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Figure 2.15.: Illustration of the dyanamics in a model of ramping activity [40] (see text for de-
tails). Left panels: Nullclines in the f and (ADP) phase space for three different
parameter configurations which lead to increasing separation of the two parallel
nullclines. Right panels: Ramping firing rates for these three configurations. The
slope of the ramping becomes steeper as the two nullclines move further apart.
Reproduced from the Journal of Neuroscience 23(12):5342-5353, D. Durstewitz,
“Self-Organizing Neural Integrator Predicts Interval Times through Climbing
Activity” with permission from the Society for Neuroscience, Copyright (2003).
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configuration close to a line attractor [182) [I17], in which the transition to the high-rate fixed
point is slow. This can be seen by looking at the phase portrait of the model in the space of
the instantaneous firing rate f and (ADP), the ADP current averaged over one inter-spike
interval (T7sr = 1/f). In this phase space, one can compute the f nullcline, which represents
the average amount of ADP input necessary to maintain a given firing rate f, and the (ADP)
nullcline, which is the amount of ADP that is produced at a given firing rate f (Fig. 2.I5]).
Where these nullclines intersect, demand and supply of ADP is in balance, so there is a fixed
point of the system, which is stable if the slope of the (ADP) nullcline is no steeper than the
slope of the f nullcline. Thus, if the two nullclines lie on top of each other, they constitute a
line attractor, a series of stable fixed points at a range of values of f and (ADP). Ramping
activity now arises at configurations where the nullclines are very close to a line attractor:
Because of the mismatch between the nullclines, both firing rate and the average ADP current
move towards the fixed point. But when the mismatch is small, this transient phase can
be quite long, because the system state changes slowly in the vicinity of what is called the
“ghost of a line attractor”. In this way, different ramping speeds can be achieved by changing
the mismatch between the nullclines (cf. Fig. ZI5]). The can be regulated by the amount of
recurrent synaptic input into the neuron: The higher this input, the lower the ADP input
needed to maintain a given rate, so the f nullclines shifts down parallely to its initial position.
This is exactly how the different panels in Fig. were generated [40], and in a real neuron,
this can be achieved by means of synaptic plasticity.

The question remains how the parameters of a real neuron could be adjusted such that the
two nullclines are almost in parallel over a wide range of firing rates, which is a prerequisite
for ramping activity. Durstewitz proposes that this could be achieved by a self-organization
process that monitors long-term fluctuations of the calcium concentration: In the line-attractor
configuration, transients are long and pronounced and thus, also the reaction of the system to
synaptic noise is strongest. So, the system can drive itself into a line attractor configuration
adjusting its parameters (here, the steepness of the (ADP) nullcline) such that the variance
in the calcium concentration is maximized.

Regarding the possible ranges on durations, the model could in principle represent arbi-
trary long intervals, as the transition to the fixed point can be made arbitrarily slow when
approaching the line attractor further and further. Still, it is hard to predict to what precision
the self-organizing process could actually adjust the system. On the other hand, while a large
separation of the nullclines results in a very fast transient, there is probably a lower bound
that is given by the intrinsic time constants in the model. So, although not explicitly discussed
in the paper, the model seems to be best suited for relatively long interval between several
hundred millisecond and several seconds.

In its original form, the model does not address any of the psychophysical phenomena dis-
cussed in Section Il However, it has recently been shown [I61] that the scalar property
(cf. Section 2 1.2.2]) could emerge from a more simplified ramping activity model, when com-
bined with a set of readout neurons, and some further assumptions. Furthermore, we recently

13The longest relevant time scale in the model is about 100 ms [40]
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re-analyzed Durstewitz’ model and preliminary results show that its representation of dura-
tion shows sensitivity to non-temporal features such as stimulus intensity (cf. Section 2.T.2.3]).
Furthermore, we could reproduce the distortion in subjective duration induced by the D2
dopamine receptor (cf. Section [Z2.T.2]). These results and its biological plausibility make the
climbing activity model a promising candidate for the representation of intervals in the seconds
range.

Striatal beat model. The final model to be discussed in this section also assigns a role of the
neocortex for time perception, but puts its emphasis on the interaction between cortical and
striatal networks, in accordance with neuroimaging results (cf. Section and 2.2.1.3)).
It has been proposed by Matell and Meck [119], based on earlier work by Miall [133]. In this
model, the representation of time is based on cortical oscillators of different frequencies, which
are read out by converging projections to striatal spiny neurons (Fig. 2.16]). If the oscillators
differ only slightly in frequency, the sum of their activity exhibits beats of much larger periods
than the original oscillations. In this way, oscillators with frequencies in a biological range
(5-15 Hz) are capable of representing intervals of much longer duration (up to 20 seconds).

While these oscillations could be represented by periodically changing firing rates, the ac-
tual simulation was performed using simple cosine oscillators which represent the membrane
potential of individual neurons. To generate spikes, a threshold was introduced which de-
clared a neuron as spiking whenever the membrane potential was above this threshold. This
model resembles a very simple version of the integrate and fire neuron which is known as
the theta neuron [44], with the difference that these oscillators were considered as spiking (or
bursting) during a finite fraction of their oscillation, and not at a single phase as the theta
neuron. The original simulations by Christopher Miall [I33] also comprised an output neuron
where the oscillators project to, with synaptic strengths that were adjusted according to a
Hebbian learning rule such that a specific criterion time was stored. As a result, the output
neuron fired at a high frequency at that specific criterion time. Matthew Matell and Warren
Meck generalized these simulation by incorporating noise into the model and studied its effects
on the timing errors to compare the simulation with the performance measures obtained in
psychophysical experiments (cf. Section [2]). Specifically, they introduced global variability
in the frequencies of the oscillators, and set the synaptic connections as they would result
from repeating exposure to a joint input following a Gaussian distribution with a standard
deviation that scales with the criterion time. Together with a number of other extensions, the
model reproduces the scalar property, i.e. the distributions of spikes in the output neurons
superimpose when scaled by the base duration (cf. Section 2 1.2.2)). Of course, this is a direct
consequence of the scalar variance that was introduced at the level of the oscillator frequencies
and the synaptic weights.

Matell and Meck conceptually embedded this model in a review of neurobiological findings
by interpreting the convergence site as the striatal spiny neurons, showing that their anatom-
ical and electrophysiological properties are well suited for coincidence detection of cortical
oscillations. Furthermore, they hypothesized that phasic bursts of dopamine from the sub-
stantia nigra pars compacta served both as a learning signal to associate certain patterns of
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Figure 2.16.: Basic structure of the striatal beat model [I19]. Upper panels: Neural activity
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of three oscillators with different frequencies (without threshold) and the sum of
these three oscillations, which exhibits beat at much longer periods compared to
the individual oscillators. Lower panel: Neural instantiation of the components of
the model. The oscillators are located in the cortex and their activity is read out
by striatal spiny neurons, which are further influenced by dopaminergic modula-
tion (substantia nigra) and indirect pathways which enable associative learning
of the oscillator pattern that correspond to a given interval. Reprinted from
Cognitive Brain Research, 21, M. S. Matell and W. H. Meck, “Cortico-striatal
circuits and interval timing: coincidence detection of oscillatory processes”, 139—
170, Copyright (2004), with permission from Elsevier.
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cortical activity with specific intervals, and as a “starting gun” which resets the phase of the

oscillator.

This model is currently very popular (see e.g. [24], 130]), as it strives to combine neurobio-
logical and psychophysical findings. However, it must be emphasized that the scalar property
does not emerge from the model in a generic was, but is explicitly built in at the level of the
individual oscillators and also reflected in the synaptic weights. Consequently, the model is
very sensitive to variations in the frequencies of the oscillators: Unless all of the frequencies are
varied in the same way, even small variations abolish the ability to discriminate between inter-
vals. In consequence, the model only allows a certain type of noise, namely scalar variability
in the phase of the spike times, a restriction that is unlikely to be fulfilled in the brain.

2.3. Information Theory of Time

From a mathematical point of view, the models of time perception we discussed in the previous
section were based on deterministic differential and algebraic equations. Although some of
them included terms of synaptic background activity or a distribution of parameters, the
temporal processing is based on the deterministic dynamics, and the stochastic elements are
either seen as a nuisance that impairs robust and precise time perception, or as way to generate
heterogeneity of parameters in a network.

Recognizing the inherent presence of noise and variability both in the brain and in the
external world, one could also take a different perspective and treat all dynamics in the brain
as stochastic processes in the first place, and analyze their probability distribution functions
(PDF). This leads to the well-established theory of stochastic inference, which is based on
information theory. The deterministic picture can be retained by estimating the mean of the
probability distribution. But the advantage of the stochastic approach is that the dynamics of
higher moments, such as the variance and covariance, are more easily accessible. Furthermore,
the framework of stochastic inference allows to formalize the concept of optimality in a very
straightforward way, a concept that is of central importance for the present investigation.

2.3.1. Stochastic inference

Here, we review some basic concepts and definitions of stochastic inference which are relevant
to our studied!d. A stochastic process is defined as a family of stochastic variables X; in
a common probability space {2, F, P} which are parameterized by a time index @ The
condition of a common probability space implies that the variables are distributed by a joint
probability distribution P(X;) which may depend on time itself. Now, assume that a set
of data x; is given that can be seen as a specific realization of such a stochastic process.
In such a situation, stochastic inference is used to gather information about the probability
distribution of this stochastic process from the data. In the most extreme case, there is no a
priori knowledge about P(X}), so the entire probability distribution must be estimated from

14The dopaminergic modulation of the clock speed could not be explained, however.
5These fundamentals can be found in standard textbooks of information theory, e.g. [92]
164 can be both discrete or continuous
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the data. We restrict ourselves to the somewhat easier case of parametric estimation, where
the functional form (P(X¢|6)) of the PDF is known, but depends on some unknown parameters
f which must be estimated. When the probability distribution is regarded as a function of
these parameters, and the values of the random variables are given by the data, it is also
called the likelihood to obtain the data x, given the parameter value 0: L(0) = P(x|0). The
Gaussian distribution is a prominent example of a case where only two parameters, mean and
variance, determine the distribution, and thus the stochastic process.

To approximate the true value of such a parameter, one constructs an additional stochastic
variable which is a function of Xy, a so-called estimator. Using the actual realizations of X;
that is given by the data, one can compute an estimate of the actual parameter from this
function. An example is the arithmetic mean over a data set, which is an estimator for the
true expectation value of the underlying distribution. As for any other stochastic variable,
there is a probability distribution assigned to an estimator which allows to define measures
of its quality. First, the distribution of an estimator should be centered on the true value of
the parameter. According to this demand, an estimator 6 of a parameter 6 is called unbiased
if and only if B(f) = E(6 — 0) = 0. B(0) is called the bias of the estimator. Similarly, is is
desirable that the distribution of 6 has a small variance, such that any representative data
set yields similar estimates. It can be shown that the lowest possible variance of an unbiased
estimator is given by the Cramer-Rao bound, which is the inverse of the Fisher information

s 1
Var(0) > (@)

The Fisher information is the expectation value of the squared derivative of the log-likelihood

function
9 2

where E{X} is the expectation value of X. An estimator is called efficient if its variance is a
low as theoretically possible, that is, equal to the Cramer-Rao bound.

. (2.17)

Ip(0) = E , (2.18)

To make more sense out of the concept of Fisher information, we consider another quantity
derived from L(#), the score V = 0y ln L(0). It can be shown that the mean of the score is zero.
Thus, this random variable is expected at the value of § where the likelihood function has an
extremum. This is interesting in the context of constructing an estimator for the parameter:
Using a value of 8 where the likelihood is maximal appears to be a good estimation of the real
value of . Indeed, this mazximum likelihood estimator

Onir, = argmaxy {L(6)} (2.19)

can be shown to be both unbiased and efficient in the limit of a large number of observations
(also called asymptotically unbiased and efficient). Now, it can be seen that the Fisher infor-
mation is the variance of the score at the point of the maximum-likelihood 0ys1,. Furthermore,
the Fisher information can also be written as

2

Ir(0) = —E [% lnL(H)] , (2.20)
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if certain general conditions apply. In this form, the Fisher information measures the (ex-
pected) sharpness of the likelihood function close to its maximum: A sharper likelihood curve
near the maximum implies that the maximum is more clearly separated from its environment.

In its definition, the likelihood function is technically written as a conditional probability
of the observed data, given a certain parameter value 6 (L(0) = P(x¢|f)). It is possible to
rewrite the likelihood function as a probability distribution of €, given the data (P(0|x;)),
using Bayes’ rule

z|0))P(0) _ L(6)P(6)
P(xy) P(xy)

P@)my) = 2 o L(6)P(6). (2.21)

P(x;) does not depend on the parameter 6 and can be considered as a constant normalization
factor. P(0) is called the prior distribution of the parameter. Thus, using P(6|z;) as the basis
of parameter estimation allows to formalize a priori knowledge about the parameter, and to
use it in order to improve the estimate. The analogue to the maximum-likelihood estimator
using P(0|x;) is the mazimum a posteriori estimator

Oniap = argmax, {P(0]zy)} . (2.22)

Examples of prior knowledge about 6 include an eligible range of parameter values (reflected in
a rectangular-shaped prior distribution), or an certain value that is expected due to previous
experience (which may modeled by a Gaussian distribution centered on the expected value,
with a variance reflecting the uncertainty of the prior estimate). This approach is also applied
to estimation problems in the brain, where the prior reflects top-down information such as
memory or expectation which modulates sensory information.

2.3.2. Fisher information and time estimation

The framework of stochastic inference can also be applied to time perception. In this per-
spective, time-dependent processes such as spatio-temporal spike patterns or firing rates are
seen as stochastic processes. The time interval between two stimuli that influence the state of
the brain can then be estimated from observing the realizations of these processes at the two
points in time. One advantage of this approach is that the mean and the variance of a dura-
tion estimate directly correspond to the PSE and the DL of the psychophysical experiments,
and that the mathematical framework of estimation theory can thus be used to predict the
outcome of such experiments, given that the probability distribution underlying the stochastic
processes in the brain follows the assumed form. Conversely, the psychophysical results can
also be used to constrain the probability distribution, and thus the classes of models that can
be used for time perception.

Ahrens and Sahani [5] were the first to use this approach for a simple Gaussian process y(t)
with an exponentially decaying covariance as the only time-dependent process. They showed
that even such a simple process that does not change with time in the mean, can still be used
for time perception, based on the noise correlations only. To estimate an interval At, they
used the observations of the process at the two points in time ¢ and ¢ + At, and the likelihood
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L(At) = P({y(t),y(t + At}|At) to estimate At. As the process is stationary (the covariance
only depends on At), this estimate is the same for all values of ¢. Ahrens and Sahani calculated
the Fisher information with respect to At from this process, and concluded that the lower
bound for the estimation error obeys Weber’s law when multiple processes with different time
scales are used simultaneously for estimation. In Chapter 4l we extend this framework to
more complex Gaussian processes which may contain temporal information in the mean, the
variance and the covariance. We study the relative contributions from each of these moments,
and conclude that Weber’s law only holds exactly if only the (linearly increasing) variance of
a process is used for the estimation of time, in contrast to the claims of the previous study.

2.3.3. Baysian integration of temporal multi-sensory information

The Bayesian framework also provides a formal optimization criterion for the integration of
multi-sensory integration: If there is information about a perceptual quantity, such as the
position of an object in space or the duration of a stimulus which comes from different sensory
modalities, how should this information be integrated to yield the optimal estimate about
that quantity? This question is of particular importance in situations where the reliability of
perception varies between modalities. For instance, it is much easier to judge the position of
a light compared to the position of a tone [34], whereas duration estimates are more reliable
in the auditory compared to the visual domain (cf. Section ZT.2.3]). Intuitively, one would say
that the estimates from the two modalities should be weighted with their respective reliability
to result in an optimal total estimate. Indeed, estimation theory allows for a formalization
of this intuition. If there is sensory input r4 from modality A and rp from modality B, and
the likelihood functions for an estimated parameter 6 (such as position or interval duration)
based on the two modalities are given by L4(0) = P(r4|0) and Lp(0) = P(rp|0), respectively,
it can be shown that the information content of a combined likelihood Lap(f) is maximal
when the two individual likelihoods are multiplied, Lap(0) = La(0)Lp(#). Furthermore, an
optimal estimate 045 from both modalities is given by a linear combination of the estimates
04 and 05 from the individual modalities [152]

L)+ PO
HAB = A B
Ii(0) + 15 ()

I(0) and IB(0) is the Fisher information about # which is computed from the likelihood of
modality A and B, respectively. This complies with the intitive picture given above: The
individual estimates are weighted with the relative information from each modality. If the
likelihood takes the form of a Gaussian distribution for both modalities, the Fisher information
is given by I#(0) = 1/0% and IB(0) = 1/0%, where 02 and 0% are the variances of the estimate
from modality A and B, respectively. Using a maximum-likelihood estimator, the estimates
from the individual modalities are equal to the respective means of the two likelihoods, 64
and O, and the common estimate simplifies to [34]

6 :9_14/0124%—5,4/0]23
AB /0% +1/0% °

The concept of Bayesian multi-sensory integration has been shown to hold for several tasks
and modalities [34] [101]. For instance, when a visual and an auditory cue are considered to

(2.23)

(2.24)
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originate from a common source in space, information from both modalities are combined
to localize this source. Alais and Burr [6] tested whether this integration is optimal in the
Bayesian sense by measuring the distribution of the localization estimate based on the visual
or the auditory information alone, and on both cues combined. They also manipulated the
reliability of the visual source by blurring it in a systematic way. For each level of visual
reliability, Eq. 2241 was found to hold. Other examples include the localization of one’s
hand based on a combination of visual and proprioceptive cues, and the inference of depth
information from visual and haptic information [34].

However, Bayesian integration has not yet been directly tested for the multi-sensory inte-
gration of temporal information. In the only study were are aware of [I74], the authors made
participants discriminate between two intervals presented in different (visual and auditory)
modalities, and compared both DL and PSE with experiments where both intervals were in
the same modality. They also compared the results of their experiment with a variant of the
PAM model (cf. Section 2.1.3.2]), which allowed the combination of probability distributions
from individual modalities. Regarding subjective duration, the experiments tended to confirm
the predictions of the model. However, this experiment is different from the scenario where
two pieces of sensory information are presented at the same time. In their model, the mean
of the combined probability distribution does not depend on the variance of the individual
probability distributions, but only on its mean.

In Chapter B, we investigate direct cross-modal interaction of time perception between the
visual and the auditory modality, and between time perception and motor timing, using a
distortion approach.
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3. Time perception by optimal synaptic
selection of synfire chains

As mentioned in the introduction of the thesis, the theoretical investigations of time percep-
tion are often quite separated in the fields of psychology and neuroscience, in the sense that
psychophysical theories most often lack a discussion about their neural basis, and most neuro-
computational models do not make predictions about psychophysical experiments. However,
combining the predictive power of both approaches may lead to progress in both fields at the
same time: Psychophysical experiments may be used to constrain the choice of a neurocompu-
tational model of time perception, and such a model may in turn provide a generic explanation
for psychophysical phenomena that would require ad hoc assumptions otherwise.

In this chapter, we present an example for such a joint modeling approach. We show that
a neurocomputational model based on a set of synfire chains (cf. Section 2.2.2]) with different
speeds of transmission can account for the U-shaped form of the Weber fraction that was
observed in several experiments (Section 2Z.1.22]). To see how this comes about, we first show
that an increase in the transmission time corresponds to a superlinear increase of the timing
errors. The experimentally observed error function then emerges from optimal selection of
chains for each given interval, if the length of the chain is assumed to be finite. Furthermore, we
show how this optimal selection could be implemented by competitive spike-timing dependent
plasticity in the connections from the chains to a readout network, and discuss implications of
our model on selective temporal learning and possible neural architectures of interval timing.
This model constitutes our first example of how constrained optimization in neural processes
leads to psychophysical results. A slightly modified version of this chapter has been published
in the Journal of Computational Neuroscience in 2008 [66].

3.1. Introduction

Our world changes in time, and our brain faces the challenge to cope with these changes.
Sequences of stimuli often convey information in their order and timing, e.g. in speech or
music. Our sense of causality requires knowledge about the natural temporal order in which
events happen. Our brain can use this knowledge together with information about the typical
duration of events to predict the evolution of sequences of events. Also on the level of behavior,
timing is obviously crucial, as a given action can be right or wrong based only on the time of
its execution.

Recognizing this importance, many researchers have posed the question of how time is
represented in the brain. For some time-related stimulus features such as the speed of motion in
the visual field or the frequency of a tone, such representations could be found in distinct brain
areas such as the middle temporal region (MT) of visual cortex for speed and the inner hair
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cells for tone frequency. For the duration of a stimulus or the interstimulus interval, however,
no single neural correlate has been identified [28]. Instead, lesion and imaging studies have
revealed the possible participation of a whole network of structures such as the cerebellum,
the basal ganglia, the thalamus and various cortical regions such as prefrontal cortex (PFC)
and the supplementary motor area (SMA) [28| 110} [81]. This spectrum of brain structures is
accompanied by a variety of possible timing mechanisms. Basically, any process in the brain
could be used to represent the time that has elapsed while the process unfolds. Models of
temporal processing have exploited neural structures that range from single neurons [168] 62],
neural oscillators read out by coincidence detectors [I119] and short-term synaptic plasticity
[25] to reverberating loops within the cerebellum [131] [188], slowly climbing activity in PFC
neurons during working memory tasks [40] and stochastic decay of memory traces [98].

These neurobiological models focus on the ability of a given neuronal circuit to represent
temporal information. However, most of them are not sufficient to explain behavioral perfor-
mance in timing tasks, as they do not discuss errors in the representation. Temporal precision
and the change of timing performance under various conditions are one major subject of psy-
chological experiments in both animal and man [61], 58]. Results from such experiments can
constrain neuronal models regarding their predictions on timing errors. A typical class of
experiments is given by the task of interval reproduction [9]. The participants are presented
with an interval of duration T, e.g. a continuous tone or a series of flashes of light. After-
wards, they are asked to reproduce this interval for example by pressing a button as long as
they think the interval was. This experiment results in a set of reproduced intervals, usually
clustered around some mean m with a standard deviation o. These two measures are used to
characterize the participant’s ability to reproduce the interval T. To explain the results from
such experiments, information-processing models are used. They are composed from a set of
functional processing stages which interact with each other and provide some understanding
of the mechanisms behind the experimental results. The most popular of these models is
the pacemaker-accumulator system [33]: An oscillating or random process (the pacemaker)
generates pulses with a fixed frequency, while another system (the accumulator) counts the
number of these pulses. The number of pulses accumulated during an interval is used to esti-
mate the duration of thet interval. This theory has been formalized in several ways [55, 95]
and can explain a wide range of phenomena [61, 58]. Another widely used concept is called
interval timers [77] or labeled lines [28]. Models within this framework assume a number of
units which operate with different time constants, such that each of these units is tuned to a
specific interval of time.

While information-processing models are designed to explain timing errors in behavioural
experiments, they are only rarely connected to some neural substrate and thus can not iden-
tify the source of these errors. To connect the experimental results with a proposed timing
mechanism in the brain, it is useful to assume that the brain performs an estimation of the
time elapsed since the press of a button, such that the participant releases the button when
the memorized duration of the target interval is reached. The estimation will be subject to
timing errors o and possibly also some bias m — T if the participant responds systematically
too early or too late. Taking this view, a neuronal model of temporal processing is supported
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by psychophysical experiments if its estimation statistics are compatible with the response
statistics found in the experiment.

One prominent finding of timing experiments is that timing errors increase monotonically
with the duration of the interval to be processed. This increase is characterized by the Weber
fraction, defined by o/m. The shape of this fraction as a function of the interval T is then
to be reproduced by a neuronal model. According to “scalar expectancy theory” (SET, [55]),
temporal perception obeys Weber’s law, which means that the Weber fraction does not depend
on T. Indeed, many studies were conducted that seem to confirm this “scalar property” [58].
However, a model that tries to explain a constant Weber fraction faces an inherent problem:
If the timing errors arise from noise affecting the timing units without correlations, or with
a finite correlation length, these timing errors will increase as /T, as the variances o2 add
up linearly over time. Thus, the observed linear increase of the timing error needs another
error source. SET, and also some other information-processing theories solve this problem by
assuming that the observed scaling of the errors is built in one of the processing stages such
as the counter [95] or a memory stage [55]. Some of the neuronal models also use ad hoc
assumptions about scalar variability, e.g. in the distribution of synaptic weights [I119] or in the
rise times of firing rates [62], to generate the scalar property. Others assume special properties
of the noise, such as a low-pass filtered frequency band [I68] or independence of the stimulus
duration [162]. There are also a few attempts to explain Weber’s law by inherent properties of
the model [140]. However, none of these studies discusses the relation of the steeply increasing
errors with the principle of optimality: If it is possible to represent time with an error of
the order of the square root of the interval duration, why should a brain under evolutionary
pressure use some mechanism that is worse than that? Moreover, there is also evidence that the
scalar property is not universally valid in temporal processing. The Weber fraction increases
both at short and long intervals, with a minimum in between [I5] [39] 54]. While the increase
at short intervals can be explained by an additional, time-independent error (“generalized
Weber’s law”), the increase at longer intervals was mostly ignored in information-processing
models (but see [162]), because it is not compatible with the predictions from SET. To date,
there is no neurocomputational model that accounts for the entire Weber fraction with its
decreasing, constant, and also increasing parts.

In this chapter, we offer a model in which the U-shaped form of the Weber function emerges
directly as a result of an optimization process. The model consists of a number of timing
units with different time constants. These units project onto a set of readout neurons, which
show a unique spike pattern for each interval to be represented. In this framework, synaptic
plasticity implements an optimal selection of timing units under limited resources. For the
units itself, we demand high temporal precision and reliability to obtain optimal results, and
also a sufficiently wide range of time constants. In a noisy brain, arguably the most precise
temporal code is provided by synfire chains [2]. A synfire chain is a feed-forward network with
strongly converging and diverging connectivity. Such a network is able to stably propagate a
wave of neural activity from pool to pool at a precision in the range of milliseconds [70}, 37] even
in the presence of usual biological inaccuracies. This property makes synfire chains exquisite
timing devices: If an activity volley is injected at stimulus onset, the time elapsed after the
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onset is reliably converted into the position of the volley in the chain. In this way, synfire
chains can integrate two of the main concepts of timing: If each of the pools is used, the chain
is equivalent to a delay line and can be compared to a pacemaker-accumulator system, in the
sense that each pool corresponds to a pulse that is accumulated and the transmission speed
from one pool to the next corresponds to the pulse frequency. On the other hand, it is also
possible to use several chains as interval timers, if they have different transmission speeds and
only the last pool of each chain is used for time estimation. And finally, it is also possible to
connect the final pool of a chain with the first one, which results in a neural oscillator with a
frequency dependent on the number of pools and the transmission speed.

For a single synfire chain, timing errors again increase like the square root of the interval
length. However, we arrive at the result that the timing errors increase super-linearly with
the delay of transmission from one pool to next. As the number of pools in a chain can
be assumed to be limited, this constitutes an additional error source for longer intervals, as
they can only be represented by chains with a larger delay. Under these conditions, we show
that the observed U-shaped form of the Weber fraction arises from optimal selection of the
chain with the lowest possible timing error for any given interval to be represented. Finally,
we propose a combination of spike-timing dependent plasticity (STDP [13]) and homeostatic
plasticity [I72] for the connections from the chains to the readout neurons which implements
an optimal and unique selection of chains. This selection is based on the fact that the effective
learning rate of STDP depends on the temporal distribution of the input pattern.

The chapter is organized as follows: In Section B.2] we describe the model structure and
provide the equations that are used to simulate the neurons, synapses and plasticity rules.
Section defines the notions of transmission delay and timing error and demonstrates how
the temporal statistics of synfire chains affect temporal processing. Furthermore, we discuss
the effect of variations in the model parameters, especially the rise time of the postsynaptic
potentials (PSPs) on the delay and the timing error. In Section 3.4l we combine these results
to a theory of optimal temporal processing and show how the U-shaped form of the Weber
fraction emerges. Section discusses the implementation of the optimal and unique selection
of chains by synaptic plasticity. Finally, in Section the results are discussed regarding
their implications for selective learning, effects of attention, and also possible extensions of
the model.

3.2. Neuron and network model

3.2.1. Network structure

The model consists of neurons which are described by their membrane potential V;, and
connected by synapses of strength w;;, where ¢ denotes the postsynaptic and j the presynaptic
neuron. The neurons are organized in different networks (see Fig. Bl): Synfire chains consist
of L pools denoted by P; which contain N neurons each. Each neuron in a pool P; has a
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Figure 3.1.: Left: Ilustration of the model structure. A readout network M receives con-
vergent connections to from different synfire chains such as C; and C,. By the
competition between the respective weights, w; and ws, the network determines
which chain is the optimally responds at a time interval represented by the output
unit in M. Right: Raster plot showing the spikes in the readout network M and
selected pools from the chains C; and Cy. Each dot corresponds to a spike. In Cq,
activity propagates faster and with smaller jitter cp compared to Cs.

probability of pg to be connected to any neuron in the subsequent pool Py 1 with strength wg

) ps for Wij = Wg . .
p(w”)— { 1—175 fOI‘U)Z'j:O VZGPlJrl,j Gpl. (31)

If all neurons in pool P; fire nearly synchronously with a small temporal jitter, this induces
on average Nwg inputs in each neuron in the subsequent pool Py 1. Thus, the firing times
from the preceding pool are averaged and the jitter is reduced in the firing times of pool P4 1.
As each neuron in pool P41 in turn projects on average to Nwg neurons, the activity in pool
Prro will be even more synchronized. If all neurons in the chain are disturbed by synaptic
noise, the temporal jitter will not decrease to zero, but converge to a near-synchronized fixed
point where the effect of the connectivity and the noise are balanced [70}, 37].

Apart from the synfire chains, there is a readout network M consisting of M neurons with no

connections among each other (w;; =0 Vi,j € M), but which connections from the synfire
chains. A pool P, is connected to a readout neuron ¢ € M by the rule

N DM for w;; = wg .
plwij) = { 1= oy for wy, = 0 ViemP. (3.2)
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network parameters | neuron and synapses | synaptic plasticity
L 120 Viet ~—60 mV A, 02
N 100 T 30 mV A; 0.21
M 20 Vinr —40 mV Tp 5 ms
Ps 0.345 Vieset —65 mV T4 D ms
wg  0.375 At 96.9 gp 0.1
py 0.1 A 92.29 gr 0.015
w m 0.3 €+ 0.1
€_ 0.1
o 0.5 ms

Table 3.1.: Values of all model parameters that are used unless otherwise stated.

The set of all neurons in a given synfire chain is denoted by C,, as all the parameters are
identical across chains except for «, which is defined below. The values of all parameters
regarding network connectivity are listed in the left column of Table. 3.1l

3.2.2. Neuron model and synapses

The neurons are modeled as leaky integrate-and-fire units embedded in a stochastic back-
ground network. While the membrane potential V; stays below a threshold V;y,, the time
evolution of V; is given by

Sk
dV; sp
Tt = (Vi Vi) + Y D PSP(t — £57) + Inoise + Lext (3:3)

(%

Wik

The first term models the leakiness of the neuron, while the others describe its input. Without
any input (Ineise = lext = 0, Sx = 0 Vk), V; relaxes exponentially to the resting potential Viest
with time constant 7. The second term is a sum over all Sy spikes in all neurons k which the
neuron is connected to. tzlj. denote the times of each of these spikes, where j the number of
the spike. I, oice Tepresents synaptic input from the stochastic background network, which is
collapsed into an excitatory and an inhibitory part

Toise = €+N()‘+v )‘+) - G—N()‘—7 )‘+)7 (3'4)

where €,, e_ > 0 and N(m, 02) denotes a random variable with a Gaussian distribution
with mean m and standard deviation . In this form, the Gaussians approximate two Poisson
processes with rates Ay and A_, respectively. Using the standard parameter values (see Ta-
ble Bl middle column), ignoring the threshold Vi, and without further input, the membrane
potential converges to a mean of (V) = —46.4 mV and a standard deviation of oy = 1.4 mV.

Whenever the membrane potential V; crosses the threshold V;p, from below, the neuron ¢
fires a spike. V; is then set to the reset potential Vieset and the current time ¢ is included in
the set of firing times of neuron i by increasing the number of spikes S; by one (S; — S; + 1)
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3.3. Temporal statistics of synfire chains

and setting t?%i =t. A spike in neuron j influences the membrane potential V; of all neurons
it w;; # 0 it is connected to presynaptically. The time evolution of the induced PSP in neuron
1 is described by an « function

PSP(t) — éexp <_é> , (3.5)

where o is the rise time of the PSP. The synaptic weights w;; in Eq. B.3] are normalized by
« to ensure that the total impact of a single spike on the postsynaptic membrane potential
does not change with a. As mentioned before, different synfire chains denoted by C, will
differ only in this parameter. No additional synaptic delays are incorporated, so « is the only
parameter that determines the time course of the PSP. Introducing a distribution of delays
does not qualitatively change the results.

3.2.3. Synaptic plasticity

The connections from the chains to the readout neurons {w;; : i € M} are subject to two
forms of synaptic plasticity: STDP [13] and homeostatic plasticity [172]. STDP is applied
after each spike ¢}; in neuron 4. For all spikes t;? in neurons that are connected to neuron i
{tj.ll:’ D wiy 0V owy; # 0}, the time ¢ = tj.lz — tj.’f is calculated and the respective weights are
updated by adding
Apexp(—t/7,) ift>0
Aw = P P (3.6)
—Agexp(—t/1g) ift<0
Thus, the synapse between two neurons is strengthened if the presynaptic spike occurs earlier
than the postsynaptic spike (¢ > 0), but if this order is reversed (¢ < 0), the synapse is
weakened. This introduces the notion of causality into the learning rule.

Synaptic weights under control of the STDP learning rule either decays to zero or diverges,
depending on the network’s activity [175]. One way to prevent this is to complement STDP
by a homeostatic learning rule, which adjusts the synaptic weights such that the network
achieves a certain mean firing rate agea. A simple model of this mechanism is given by a
proportional-integral feedback controller [175]

dw

t
= = gpw(agoal — @) + glw/ dt(agoal — @). (3.7)
0

This equation is applied to update w after each trial based on the actual mean firing rate a of
all readout neurons. This seems more appropriate then using it every time step, as homeostatic
plasticity is believed to act slowly [I72]. Parameter value for both forms of plasticity are listed
in Table B.1], right column.

3.3. Temporal statistics of synfire chains

3.3.1. Quasi-spatial representation of time

An interval can be represented by a synfire chain if the stimulus onset triggers a volley of
activity in the first pool Py of the chain. This volley can be characterized by the number of
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3. Time perception by optimal synaptic selection of synfire chains

spikes a(1) in the first pool and the temporal jitter op(1) of these spikes around the mean
t(1), which is defined to be zero. We assume that the volley follows a Gaussian distribution
N (t(i), op(i)?), which turns out to be a good approximation for the simulated data. For
a large range of initial conditions (a(1), op(1)), activity will then stably propagate through
the pools, approaching a fixed point (a, op) in both parameters [37]. The time at which the
activity wave has reached pool P; can be estimated by the mean spike times of the neurons
in that pool

N Sp
t(i) = % Zl z;tig, with a(i) = [{£;F : n € P;}|. (3.8)
n=1 j=

a(7) is the number of spikes in pool Pi, which may also be larger than N if there are neurons
that spike more than once. As we only look at the firing statistics of neurons averaged over
pools, S, denotes the number of spikes in the pool n, rather than in an individual neuron.
For practical calculation in simulations, only those spikes enter this equation which give rise
to a firing rate above a threshold value defined from the background firing rate. The rate is
calculated by counting the number of spikes in a time bin of 0.1 ms.

From (i), we define the transmission delay At(7) from pool P; to pool P;y1 as
At(i) =t(i + 1) — t(3). (3.9)

An interval can only be reliably estimated if At¢(7) has a robust relation to i. For a synfire
chain, one would expect that At(i) converges to a fixed point value At, as a(i) and op(i) do.
In Fig. (left panel), At(7) is shown for initial conditions (a(1), op(1)) = (100, 4 ms), which
is close to the border of the basin of attraction of the fixed point (a, op). As expected, the
mean of At(7) converges to a fixed point after a short transient, establishing an approximately
linear transformation of time into the position of the volley in the chain. This representation
does not need to be literally spatial, as the pools are defined only by the topology of their
connections and not their spatial position.

The exact form of the transient depends on the initial conditions. For instance, starting
close to the border of the basin of attraction that surrounds the fixed point results in an
overshoot of At(4) in the first pools (Fig. B:2] left). In the following, we suppress the effect of
the transients by choosing initial conditions that are close to the fixed point.

3.3.2. Timing errors

While the mean of At(i) converges to a constant A¢, fluctuations in the actual realizations of
At(i) remain. They can be considered Gaussian random variables

At(i) = N(At,03,) (3.10)

with mean and standard deviation independent of . The temporal jitter oa; can be derived
directly from the parameters a and op for the steady state. Adding two random variables
with a Gaussian distribution results in a Gaussian variable where mean and variance are the
sum of those from the two original variables. AT is the sum of two random variables ¢(i + 1)
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3.3. Temporal statistics of synfire chains
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Figure 3.2.: Left: Transmission delay At(i) as a function of the pool number i. After a
transient, the mean of At(i) converges to a constant At, while some finite jitter
oa¢ remains. Right: Timing error o as a function of the stimulus duration T' for
PSP rise times a = 0.5ms (lower curve) and o = 1.5ms (upper curve). The dots
represent the simulation data and the line is a plot of Eq. B.14] with oa; fitted to
the data. The coefficient o is fitted to 0.035067 (£28) for a = 0.5 and 0.13093
(£15) for o = 1.5.

and —t(i) which are themselves the sum of a variables tif;- each, divided by a. The spike times,
in turn, have a Gaussian distribution with standard deviation op (cf. Sec. B.3.1]). As a and op
are constant in the steady state, both (i + 1) and —t(¢) have a standard deviation of op/+/a,
and oay, so that we find

0d; = = 0% = const. (3.11)

IS

The estimate of an interval T' can now be written as
i
T(i) =Y At(l) = At-i+N(0, 07) (3.12)
=1

The second equality results from Eq. BI0l o is the timing error which appears in psy-
chophysical experiments. Again, the variances of At(:) add up and the timing error results
in

or(i)* =) oAl) = ok, -4, (3.13)
=1

where the second equality holds at the fixed point value of oa; (Eq. BII)). Using Eq. BI2]
one sees that the timing error increases with /7'

or(T) = oay - VT. (3.14)
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3. Time perception by optimal synaptic selection of synfire chains

parameter | A B C explained variance
a -1.298 1.21 98.20 | 83.8%
At 0.1739 1.504 0.113 | 96.9%
op 0.01625 0.522 0.0348 | 92.5%

| oar | 26771073 | -8.833 -1073 [ 0.0486 | 82.4% |

Table 3.2.: Coefficients of Eq. BIH fitted to the data sets of a, At and op (first three rows),
and coefficients of Eq. B0 fitted to the data set of oa¢ (final row).

Note that the timing error op and the spike time jitter op refer to two quite different
concepts. op denotes the standard deviation of the spike times within a pool and also within
the same trial. This jitter must not increase with time, or else activity can not be stably
propagated. On the other hand, o7 is the accumulated error of the estimating the transmission
delay At across trials. Increase of or means that the temporal information encoded in the
synfire chain is gradually lost at longer times, although it may still stably propagate activity
in each individual trial.

In Fig. (right panel), we have plotted the estimate of o for two different synfire chains
Co.5 and Cq 5, based on 1000 simulations each. One sees that both curves can be fitted with a
VT-law, with 94.7% of the total variance explained for Cp.5, and 95.2% for Cy 5.

Linear representation of time and a /T law for timing errors are also key properties of a
pacemaker-accumulator system (cf. Section [2.1.3.2]), so in this sense a synfire chain is equivalent
to this class of models.

3.3.3. Parameter variations

A synfire chain can be seen as a timing device with a time constant of LAt. In this section,
we examine how we can increase At to obtain different time scales without changing the pool
number L.

3.3.3.1. Effect of varying «

The position of the fixed point in @ and op, and thus, AT and oa7r depends strongly on the
parameters of the synfire chain. The easiest way to change AT is to vary the rise time « of the
postsynaptic potential. If the time until each spike fully affects the postsynaptic membrane
potential increases, the transmission time of the entire volley will also be delayed. Moreover,
this parameter has already been studied in its influence on the fixed point in a and op [36].

We assess the effect of o by running simulations with 20 trials each, raising o by 0.05 ms
after each set of trials. The dependency of At, a and op on « turns out to be well fitted by a
polynomial of second order

f(x) = Az* + Bz + C. (3.15)
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3.3. Temporal statistics of synfire chains
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Figure 3.3.: Left: The variance in the transmission delay oa; as a function of the PSP rise
time . Right: oa; as a function of mean transmission delay At. The dots are
data from the simulation. In the left panel, the line is a plot of Eq. B.11] with the
values of a and op from the simulation. In the right panel, the line is a fit to
Eq. using the parameters in Table 3.2} final row.

As seen from the coefficients in Table B2 At and op increase mostly linear with «. As
A < B, the quadratic term only becomes relevant as a small correction at higher . a, on the
other hand, decreases quadratically over the whole range of a, but only moderately in total
(A, B < C). For oay, a fit to Eq. only works well for small values of a. Furthermore,
when we check whether Eq. BI1] holds for the simulated data, it turns out that it does only
for a < 2 (Fig. B3l left panel). As we are interested in the relationship between oa; and
At, we fit a curve to the data points in these two dimensions. As a boundary condition, we
demand oa.(0) = 0, as it makes no sense to assume a timing error if activity travels through
the chain infinitely fast. With this constraint, the data turns out the be fitted very well with
a third-order polynomial

oat(At) = AAL® + BAE? + CAt. (3.16)

The coefficients are listed in the final row of Table Once again, the dependency is mostly
linear, as A, B < C, with a nonlinear correction is of the order of At3. The fit explains 82.4%
of the variance in the data (Fig. B3l right panel).

What is the reason for the nonlinearities in At, op and oa; that become relevant at higher
values of a? Note that o has an upper limit at 2.7 ms. At this point, a bifurcation occurs,
i.e. the fixed point becomes unstable or even collides with the saddle point at the border of the
basin of attraction, making them both vanish (see [36] for a discussion of these scenarios). We
propose that the nonlinearities occur as « approaches the bifurcation point. This also explains
why the effect of « is stronger for At compared to the other parameters: Close to a bifurcation
point, the transients that lead to the fixed point become longer and more variable. That does
not affect the jitter of individual pools, nor the mean transmission delay, but it makes the
time that the volley spends in the first few pools highly unpredictable, which increases the
total timing error op, and thus, indirectly also oa;.
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Figure 3.4.: Effect of the variation of the model parameters on the chain transmission char-
acterized by At and oa;. The common starting point of each line corresponds
to the combination of standard parameters listed in Table B.Jl Only one single
parameter is varied at a time. Each line is drawn up to the point where the syn-
fire chain becomes unstable. The only exception is the line for a, which actually
extends up to At = 5.44 ms and oa; = 0.44 ms.

3.3.3.2. Effect of other parameters

While the focus of this study is on the influence of a, here we briefly discuss how other
model parameters affect At and oa;. Although oa; increases with At as « is increased, it is
conceivable that these two measures are anticorrelated as another parameter is changed. We
checked whether this is possible, with all those parameters that directly affect the dynamics
of the network. Individual parameters to be changed are, apart from «, the synaptic weights
wg, the connection probability pg, the number of neurons in a pool N and the membrane time
constant 7. While changing pg and N, wg is normalized to 0.345/pg and 100/N, respectively.
Without this normalization, pg and N would have similar effects as wg, as the total number
of presynaptic synapses of a neuron is changed.

Furthermore, the statistics of the membrane potential is important for the dynamics, de-
scribed by (V) and oy . (V) enters the dynamics only by its distance from the firing threshold
Vine — (V). This distance is most easily changed by modifying Vi,. oy, on the other hand,
can only be modified by jointly changing A\; and A_ such that (V) stays constant. This is
guaranteed if there is a certain linear relationship between the two rates [36].

We increased and decreased each parameter individually until the chain either breaks down
(synchronizing effect too weak) or activity volleys form spontaneously without external stimu-
lation (synchronizing effect too strong). Then, we calculated At and oa; at parameter values
slightly before one of the two events occur. Fig. [3.4] shows the results for all cases where At
increased. In all these cases, oa¢ increases as well. We also included « in the analysis for
comparison. From Fig. B3l as well as from Eq. BI6] the coefficients in Table and the
upper limit of o at 2.9 ms, one can see that changing « increases At up to 5.44 ms and oy
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Figure 3.5.: Left: Timing error, e.g. variance of the total runtime of a chain o7 as a function of
T for various values of o. The solid curves depict simulation data and the dotted
line represents the optimal timing error ¢.(7') from Eq. BI9 It is close to the
lower envelope of the simulation data. Right: Weber fraction o7 /T as a function
of T calculated from the lower envelope in Fig. The U-shaped form of the
Weber fraction that is known from the psychophysical experiments is reproduced.

up to 0.44 ms. Thus, changing o makes it possible to increase At much more than any of the
other parameters, and, as seen from fig. .4l also at the lowest relative error.

Note that this analysis does not exclude the possibility of increasing At without an increase
of oa;. For instance, one could increase @ and also increase the number of neurons in a pool
N to compensate for the increase in oa:. However, such a compensation would always result
in a decrease of At as well, limiting its possible range. Furthermore, Fig. [3.4] illustrates that
the effect of any other individual parameter then « is rather limited. We conclude that one
can only attenuate the increase of oa;, but not abolish it completely over the full range of At.

Nevertheless, different combinations of parameters may still extent our results. For instance,
it was shown in [I87] that At could be increases by a factor of 2 to 5 by changing the membrane
time constant 7 and the external input Iy (and thus, Vi, — (V)), compared to an increase
of merely 25% which we report here. What we have shown is that « is the most efficient
parameter in changing 7 in the sense that it induced the largest dynamic range for 7 with the
least relative increase in oa;.

3.4. Optimal temporal processing

If there are different synfire chains C, with different transmission delays At, a given interval T
could be potentially represented by each of these chains. This redundancy opens the possibility
to optimize the representation of time, in the sense of minimizing the timing error op for each
interval T. The principle of optimization has already been used before in a more abstract
pacemaker-accumulator system [97].
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3. Time perception by optimal synaptic selection of synfire chains

An interval T is represented by a pool 7 in the chain C, with transmission delay At. Only
one of these parameters can be freely varied, the other one is fixed by the implicit equation
T = T(i, At). or depends on both parameters, but much stronger on At (o7 = O(At3),
Eq. and Eq. BI3) than on i (o7 = O(v/4), Eq. BI3). Thus, minimization of o7 requires
using the lowest possible transmission delay min(At) and represent all intervals by the different
pools 7 of the fastest chain Cyin(a)-

This optimization results in a timing error that increases as o = O(\/T ). This explains only
part of the experimental results, namely the decreasing Weber fraction for short intervals. At
longer times, optimization must be constrained such that a linear or faster-than-linear increase
of o results. We propose that this constraint is given by a limited chain length. If a chain
has a maximum of L pools, the range of intervals that can be represented by the fastest chain
Crnin(a) has an upper limit of T = min(At) - L. For longer intervals, a chain with a higher At
and thus, a higher o must be used. As the timing errors are dominated by the third-order
dependency on At, the constraint optimization problem can be formulated as

At*(T) = min{(At) | T < At- L. (3.17)

where At*(T) is the optimal choice of At for representing the interval 7. In the simplest
case, assuming a smooth distribution of At, every interval can be exactly represented by an
individual synfire chain, and Eq. 317 simplifies to

A (T) = % (3.18)

Taken together, Eqs. BI4l B.16l and B.I8] yield the optimal form of the timing error

T
oar(min(At)) -y | ————— for T < min(At) - L
=1 N mm(cm) (3.19)
3 g2 ~ :
L5/2T + L3/2T + \/ET otherwise

with the coefficients A, B, and C from Eq.B.16land Table 3.2] (final row). For T' > min(At)- L,
the timing error is entirely dominated by oa;. To minimize oy, always the final pool L of
each chain is used (Eq.[BI8]), so the VT dependency degenerates into v/L, which is constant
for all T and enters the coefficients of the third-order polynomial. o7 depends mostly linear
on T, with small nonlinear corrections of the order of T3, just as oa;.

In Fig. (left), we have plotted or(T') for a number of different C, from simulations
together with the optimal o7.(T") from Eq. BI9, which is close to the lower envelope of the
simulation data. Both from Fig. and Eq. B.19] one sees the three regimes that are found
in the experiments: or o« VT for T < min(At) - L, o7 increasing faster than linear for
T > min(At) - L, and an intermediate regime where the linear term in Eq. B9 dominates
and op/T is approximately constant. Consequently, the Weber fraction o7 /T calculated from
Eq. B9 follows the experimentally observed U-shaped form (Fig. B35l right).
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Figure 3.6.: Illustration of the STDP learning curve (top panel), alinged to two spike time
distributions from chains of different speed. ¢ denotes the relative time between
the presynpatic and postsynaptic spike (cf. Eq. B:6]). If the means are aligned,
the different standard deviations cause a relative advantage for the narrower dis-
tribution. This is because the peaked distribution has a larger overlap within the
area in between the dashed lines than the broader one.

3.5. Optimization by competitive STDP learning

In the preceding section, we have shown how the observed timing errors can be explained
by an optimal selection of synfire chains. In this section, it remains to be shown how this
selection is neuronally implemented and a unique representation of time is formed from the
different chains. Here we show how both issues can be resolved if the chains project to a set
of readout neurons and the synaptic weights of these projections are subject to both STDP
and homeostatic plasticity.

To see how the representation of an interval 1" can be learned in this framework, consider
the following experiment (cf. Fig. B.8 top panel). At time ¢¢, a stimulus Sy (called initiation
stimulus) is given that activates the first pool of all chains and makes the volleys travel along
the chains with their respective speeds. At a second time t; = tg + T, another stimulus Sp
(training stimulus) activates the readout neurons. Around this time, inputs from the chains
also arrive. If this experiment is repeated, the connections to those pools of the chains will
grow that were active slightly before the stimulus S;. Eventually, a certain set of readout
neurons will fire at time ¢; even in the absence of stimulus S; if the stimulus Sy is given at
time .
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Figure 3.7.: Mean synaptic weights (wys) of the connections from a pool (shown is pool number
50) to a readout neuron after 50 presentations of the corresponding interval. The
graph is obtained by varying the PSP rise time « used in the chain connections.
All weights were initialized by the valus 0.3.

Using this paradigm, we first show in Sec. B.5.1] that the effective learning rate of STDP
is higher for inputs from a fast synfire chain with a peaked spike time distribution compared
to the input from a slower one, meaning that the mean synaptic weight of the connection is
higher after a given number of trials. Second, we consider a set of readout neurons that is
connected to two different chains, one with a low « (C,,) and one with a higher one (Ca,).
If the input from the two chains arrives at the same time, we can test the optimal selection
of chains (Sec. B.5.2): The timing errors o7 in the readout neuron should be comparable to
the smaller errors in chain C,,. If the inputs arrive at different times, we can test for the
unique representation (Sec. B5.3]): Even if a training stimulus is given at both arrival times,
the readout neurons should learn to fire only once. Both of these properties are confirmed and
can be extended to a scenario with several input chains.

3.5.1. Effective learning rate depending on timing errors

Before we explain the mechanism that brings about optimality and uniqueness of the repre-
sentation, we elaborate on how the effective learning rate of STDP depends on the temporal
distribution of the presynaptic spikes. For this purpose, we consider only connections from a
single synfire chain and neglect homeostatic plasticity. Furthermore, we assume for simplicity
that the postsynaptic spikes in the readout neurons (i.e. the training stimulus S;) occur at a
fixed time t; without any jitter. Assuming for example a Gaussian distribution of S; around
t1 does not change the following argument, as it only increases the variance of the relative
time between the pre- and postsynaptic spikes.
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To illustrate the effects of different temporal spreads in the presynaptic spike times, consider
two Gaussian firing time distributions with the same mean spike time ¢*, but different variances
(Fig. B6). The temporal asymmetry in STDP, and the exponential decrease of its efficiency
with increasing |¢| (cf. Eq. and Fig. B.6, top panel) are the reasons why the width of the
input distribution influences the effective learning rate: The trial average of this rate is given
by the convolution of the weight increase at a given value of ¢ and the distribution of ¢. From
Fig. B.6l one can see that the area under a peaked distribution largely overlaps with the area
under the positive branch of the learning curve up to its half width at half maximum, marked
by the two dotted lines. The mean learning rate is therefore larger for a more strongly peaked
input distribution than for a broader one, as the latter overlaps more with areas of less positive
increase, and even with the negative branch of the STDP curve.

In Sections and B.4] we have shown that the temporal spread of the firing times in
synfire chains increases with a. Thus, by the preceding argument, the mean weight from
chain neurons to a readout neuron after a given number of learning trials should decrease with
increasing a.. To test this assumption, we fully connected all neurons in the pool number 50 of
a chain to all the readout neurons and performed the simulated learning experiment 50 times
for each different value of a. S; was presented 3 ms after the mean firing time of the chain
neurons in pool 50. Fig. B.7] shows that the synaptic weights after the learning trials indeed
decrease for increasing «. This result is independent of the pool number and of the « used in
the connections to the readout units.

3.5.2. Optimal selection of synfire chains

If a readout neuron is connected to two synfire chains C,, and C,, (Fig. Bl), its firing pattern
may be shaped by the input from both of them. The combination of STDP and homeostatic
plasticity introduces synaptic competition among the chains: The weights are increased by
STDP with a different effective rate (cf. Sec. B50l), but the rate of compensation by home-
ostasis is the same for both chains (cf. Eq. B1). Thus, the faster chain C,, with the higher
STDP rate will win the competition and dominate the firing pattern of the readout neuron.
First, we study the effect of this competition for the case that both inputs arrive at the
same time. This means that the neurons which are connected to the readout neuron have the
same mean firing time in both chains, marked by the dotted line in Fig. B8] (top panel). S
is given slightly before this mean. If the input from chain C,, dominates the firing pattern of
the readout neuron, its timing error o7 should be lower compared to the case where it only
receives input from the slower chain C,,. This corresponds to a selection of the optimal chain

Ca,.

To test if this selection takes place, we connected the readout neurons to one pool of chain
Co, and to another pool of C,,, chosen such that the mean firing times of the two pools are
at 68 ms, which is the largest interval in the chain Cy3. a1 was fixed to 0.5 ms, while ay was
varied from 0.3 to 2.5 ms. If there is no pool which is activated exactly at 68 ms, we chose the
one that is closest to this time and shift the starting time of the respective chain. This shift is
always less than a millisecond. Without such a shift, the deviations of the means from 68 ms
would be another source of timing errors. For every s, we performed 10 sets of trials with
300 trials each. The first 200 trials were used to modify the synaptic weights to the readout
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Figure 3.8.: Top: Illustration of the activation pattern in the readout neurons M that are
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driven by the synfire chain C,, and C,,, cf. Fig. B.Il At time tp, the initiation
stimulus Sy activates the first pool of each chains and causes volleys along all the
chains with their respective speeds. At time t; = tg+ 71, another stimulus S; that
indicates the termination of the temporal interval activates the readout neurons.
Around this time, inputs from the chains also arrive. The learning rule (see
Fig. B.0) increases the connections to those pools that were active slightly before
the stimulus S;j. Bottom: Mean synaptic weight (wjs) of all connections from
Co.5 (black curve) and Cy 5 (gray curve) to the readout neurons M as a function
of the number of trials. During the first 200 trials, the weights are modified by
STDP and homeostatic plasticity, while the final 100 trials are used to calculate
O'é\! . Ultimately, the connections to the faster chain Cy 5 are much stronger than
those to the slower chain Cq 5.
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Figure 3.9.: Timing error 07]‘51 in the readout neurons M as a function of ay (cf. Fig. B.6]).

The grey curve shows aé‘! for ov; = 0.5 and the black curve for «; = a. For the
case of a1 = 0.5, the timing error is dominated by the input from C,, and much
lower compared to oy = ag for an > 0.5.

neurons by STDP and homeostatic plasticity, while in the last 100 trials, the timing error a%/[

in the readout neurons was calculated without any further learning. O'é\! is defined in the same
way as o for the synfire chains (cf. Sec B.3.2]), just using the neurons in the readout network
instead of those in a pool. The target rate is set to agoa = 2 spikes per neuron and trial,
one spike from 57, and another from the chain input. The chain input always arrives before
stimulus 57, which is set to be strong enough to make the neurons fire even shortly after a
spike induced by the chain input.

Fig. B.8 (bottom panel) shows the synaptic competition between the two chains. Initially,
STDP dominates the learning dynamics and increases the two types of connections according
to the speed of the input chain (cf. Sec. B.5J]). This produces an overshoot over the firing
rate over the target rate ago.1, and homeostatic plasticity is finally strong enough to bring
the weights down again. Different from STDP, the homeostatic learning rule is blind to the
different speeds of the input chains, but reduces the weights only according to their current
strength (cf. Eq. B.7). Thus, the difference between the connections from C,, and C,, remains
as the mean firing rate approaches ag,a1, resulting in partial suppression of the input from the
slower chain Cy,.

In Fig. B9, we show the timing error a%/[ resulting from this synaptic competition as a
function of ay. For comparison, we conducted another simulation where a; = a9, instead of
being fixed to 0.5 ms. In this case, the timing error is fully determined by the input from C,,.
One sees that the error is much lower in the case of synaptic competition for all & > 0.5. For
a = 0.3, on the other hand, the errors in both cases are comparable, as C,, is the faster chain

now and thus dominates aé‘! .

3.5.3. Unique representation in readout neurons

We now study the second case that is possible with the connectivity depicted in Fig. Bl Cqy,
having an different mean firing time from C,,. In this case, the question is how to prevent
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3. Time perception by optimal synaptic selection of synfire chains

the readout neuron to respond to two different time intervals. If the system is exposed to two
training stimuli S7 and Ss slightly before each of the chain firing means, both intervals could
be trained to the same neuron (see Fig. B0, top panel). Thus, one could not tell which of
the two times has elapsed upon firing of this neuron.

Such a double training of the same neuron is also prevented by synaptic competition. If the
same neuron fires two times responding to a single training stimulus, the firing rate is higher
than the target rate agoa1. This leads to a compensation that weakens the connections to both
chains, but finally leads to a suppression of the input from the slower one, as its connection
was weaker in the first place (cf. Sec. B.5.0]). The readout neurons only responds to the interval
represented by the faster chain and the unique representation is restored.

As a test of this reasoning, we use the same simulation as in Sec. B.5.2] with the only
difference that the connecting pool of C,, is chosen to match a certain mean firing time
different from the one of C,,. This interval between the two mean firing times is now varied
instead of the «, which are kept constant to a; = 1.5 ms and as = 0.5 ms.

Fig. 310 (bottom panel) shows the mean firing time of the readout neurons Ty as a function
of the varied mean firing time 7, in C,,. For a unique representation, 7, should either be
identical to T,, (gray dotted diagonal) or to the fixed firing time of C,, (black horizontal line).
The figure shows that such a unique representation is maintained for all 7T,,, < T,,. For Ty,
after the mean firing time of Cy,, the situation is less clearly described. While T}, faithfully
follows Ty, for 20 ms after T, , it jumps between 7T, and values between T,,, and Ty, for higher
T,,, indicating a significant number of spikes at both of these times. This can be explained if
one considers that the timing error increases with V7T (Eq. B.I4)). If T,,, stays constant while
T, increases, the difference in the timing errors decreases, and thus, the synaptic weights
from both chains will be more similar. We conclude that a unique representation is possible
for all T, < T,,. For ay | a1, however, this will be the most common situation, as the range
of time intervals in C,, is smaller than C,, (cf. Fig. Bl and thus, T,, > T, rarely occurs.

3.6. Discussion

At first glance, the VT dependency of the timing errors in a synfire chain seems to be incom-
patible with the experimental results of a constant or even increasing Weber fraction, which is
a problem shared by many other models of timing. However, we identified a mechanism that
makes the additional error plausible, namely the superlinear increase of the timing error with
the transmission delay. Thus, we do not need to postulate any ad hoc assumptions about the
scalar property, but could explain both the linear and faster-than-linear error increase from
a constraint optimization process. Moreover, we found a neuronal implementation of this op-
timization by synaptic plasticity that also solved the problem of combining output from the
various synfire chains to a unique representation of time.

A central assumption of our work is the limitation of the number of pools in a synfire chain.
One possible reason why such a limit should apply is provided by a capacity argument. Synfire
chains have been proposed to model the function of the cortical column [70] [14], a structure
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0 50 100 150 200 250 300
# trials

Figure 3.10.: Top: Illustration of the activation pattern in the readout neurons M. Same
as in Fig. 3.8 (top panel), except for the different mean firing times of C,, and
Ca, and two training stimuli occurring at ¢; and ¢y, which are slightly before
the temporal means of the two chains. Bottom: Mean firing time of the readout
neurons T as a function of the mean firing time 7y, in C,,. The firing time of
Ca, is kept constant to T, = 140.2 ms. For T,, < Ty, the readout neurons fire
at about the same time as the neurons in chain C,,.
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containing 10% to 10° neurons. A pool size of the order of 10, comparable to the size of a
minicolumn, has been shown to be necessary for stable propagation of the chain [70, 14} [37].
Thus, the number of pools in the chain is constrained to the order of 102 to 103. Of course, each
of the neurons in a column could participate in multiple chains, but the capacity of network
for synfire chains has been found to be limited [70} [I4], and it has been proposed that this
capacity only allows for representation of events of durations up to 1s [70]. However, all these
studies assume a transmission delay of about 1 ms, which is true only for the fastest chains in
our framework. Possible delays up to 6 ms do not seem to enable computations much above
the range of one second, due to the increase in timing errors. In order to compensate these
errors, an increase of the width of the chain were necessary which in turn reduces capacity.
The one second range has also been found in physiological experiments with precise spiking
patterns [76], although the results of this study are disputed.

Another argument for a constrained pool number relates to the formation of synfire-like
structures with a distribution of transmission delays. It has been shown that such structures
might emerge from STDP learning in recurrent networks [82]. In this study, the number of
neurons in each of the “polychronous groups” was less than 20 in the mean, in a network of 1000
neurons. Much larger networks tended to become unstable. Although it seems to be possible
to stabilize such groups by external guidance [82, 27], problems of unstable connections are
likely to put a further constraint on the length of a chain.

Apart from the limited chain length and the general connectivity of several synfire chains
projecting onto readout neurons, many of the assumptions used in this model can be relaxed.
First of all, the synfire chains are allowed to contain a certain amount of recurrent connections,
which introduce an additional source of error, but do not destabilize the propagation of activity
[70]. Second, it is not necessary to prewire the connections to the readout neurons in the way
we have used here. Rather, this connectivity will arise spontanously from an initally random
wiring because of the synaptic competition. Consider each readout neuron being initially
connected randomly to a certain fraction of the pools in a single chain. STDP will then
only enhance the connections to those pools that are active slightly before the stimulus. But
at the same time, homeostasis weakens all the connections, including those which were not
enhanced. As a result, connections which does not fit into the scheme we have proposed for
learning temporal representations end up to be very weak, and might also be removed by
means of synaptic turnover. Finally, the model is also robust to changes in the properties
of the noise. Introducing a finite correlation length into the noise only adds a constant to
the timing error and does not change the form of the error function. And even if the vT'
law in the timing errors of the individual chains changed due to some properties of the noise,
one would expect that this affected all of the synfire chains alike. So the selection of optimal
chains would still work in this case and the U-shaped form of the Weber fraction would be
preserved.

The combination of synfire chains and the readout network with plastic connections opens
the possibility to explain some further phenomena of temporal processing. For instance, it has
been shown that the subjective length of an interval depends on attention: If a timing task
has to be performed in parallel with a second, non-temporal task, the duration of the interval
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is systematically underestimated [6I]. This can be explained by our model if attention is
modeled by the level of activation in the synfire neurons. The mean membrane potential (V')
is increased, and thus, the difference (V') — Vi, is decreased. This decreases At (cf. Sec.
and [I87]). Conversely, decreased attention due to a parallel task decreases (V) and slows
down the chain, resulting in an underestimation of intervals.

Moreover, temporal representations are subject to selective learning: If a participant is
trained with stimuli of a certain duration, discrimination of that duration is improved after
training, but this effect does not generalize to different intervals [28]. This is also readily
explained in the framework of our model: Training of a specific duration strengthens the con-
nections of the responsible readout neurons with the pools that are active at this time, and
suppresses the random connections to other pools by means of synaptic competitions. The
learning experiment described in Sec. can also be related to the paradigm of classical con-
ditioning, where the initiating stimulus Sy corresponds to the conditioned stimulus (e.g., the
ring of a bell or a flash of light) which can be learned to predict the unconditioned stimulus
(e.g., food or an airpuff), corresponding to the training stimulus S; in our case. This may also
solve the problem that learning seems to occur on time scales that are much longer than those
of the STDP learning rule [I59]. Note that there is no need to assume that Sy only activated
the synfire chains and S only the readout network. If there is no such distinction, S; would
both mark the end of a first interval and the beginning of another, starting off a new volley
of synfire activity. In this way, the apparent “reset” of the timing system could be explained
[28].

Based on our results and earlier descriptions of neuronal structures and connections that
might be relevant for temporal processing [24], we sketch a hypothetical architecture of our
model in the brain: Synfire chains are present in all areas of the neocortex, performing compu-
tational tasks like pattern storage [70), [I4] or compositional binding [68]. They have different
transmission delays that might have been shaped during their formation by the time scale of
the task they perform. As a by-product of their usual computation, the chains encode the
temporal information of a real or imagined event. These distributed time representations are
then projected onto a central readout network that is located in the striatum [24]. Distortions
in the level of dopamine, as induced by certain drugs or Parkinson’s disease will strongly
affect the function of the readout neurons and thus, also the timing performance [24] [14§].
The connections from the chains to the readout neurons are initially randomly distributed
and are shaped by synaptic plasticity to implement an optimal, unique representation of time.
Nevertheless, input from suboptimal chains will not be entirely suppressed, so the random
connectivity remains an additional source of errors that can be further reduced by training.

Note that within this framework, it is improbable that there is a separate chain for each
conceivable time interval, as we have assumed in Sec. B4 More likely, there will we a finite
set of chains that represents an entire range of durations by using more than just their final
pool. Of course, this violates the optimality condition Eq. B8 to some extent, introducing
another error source. More specifically, the timing errors will not increase as smoothly as
Eq. BI9 implies, but there will be jumps in the error whenever a certain chain has reached its
final pool and longer intervals must resort to the next chain. Interestingly, such jumps have
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indeed been observed in psychophysical experiments after excessive training [102]. It seems
that those jumps are normally masked by noise that is reduced by training. One possible
source of this noise might be the random connectivity to the readout neurons, which can be
refined by plasticity (see above). Furthermore, it is conceivable that the transmission delay of
the chains can be fine-tuned by slightly changing the activity level [I87]. This might explain
short-term adaptation effects which occur at the presentation of sequences [17]. Mechanisms
that are not contained in the current form of the model include memory and decision.

A quantitative view on the Weber fraction calculated from our simulation data (cf. Fig. B3]
left) reveals that its value of 0.5 to 4% of the represented interval is too low compared to the
psychological experiments, which report values between 2 and 20% [68, B9, [54]. This is due
to a relatively low level of synaptic noise (oy = 1.4 mV in our study compared to e.g. 2.85
mV in [37]). We conducted tests of whether this level can be increased while maintaining
stable propagation of chains. Preliminary results show that this is possible by compensation
of the increased noise with increasing both synaptic weights wg and the firing threshold V;y,..
Using these measures, the Weber fraction is increased to values between 3 and 9%. A full
exploration of the synfire parameter space is beyond the scope of this research, but it seems
that at least the lower range of the Weber fractions experimentally observed can be obtained
within the biologically realistic range of parameters. Some additional error sources have been
mentioned in this section.

Finally, we note that our framework is not necessarily limited to synfire chains. Any timing
system with a limited dynamic range will show a similar effect, given that this range can be
extended at the cost of a superlinear increase in the timing error. The optimization scheme
and readout network will be the same in this case. It seems worthwhile to check this properties
for neurocomputational models of timing such as state-dependent networks [25] 27], ramping
activity [40] or the striatal beat model [I19]. The convergence of evidence from psychology
and neuroscience is likely to decide which classes of models are able to explain how our brain
tells time.
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4. Information-theoretical analysis of time
perception

In Chapter Bl we described a neurocomputational model which is capable of reproducing an
experimentally observed error function when subject to constrained optimization. Here, we
present a statistical framework which can be used to test this predictive property for arbitrary
models of time perception: The optimal, i.e. minimal error of a time estimate can be computed
as the Cramer-Rao bound when the underlying process is interpreted as a stochastic process
(cf. Section [2Z3]). We study here the case of Gaussian stochastic processes with temporal
information in the mean, the variance, and the covariance structure. For single processes, we
find a hierarchy of temporal information in the moments, under quite natural assumptions for
their temporal evolution: The lower bound for the timing errors scales with the square root
of the duration of the estimated interval if only the information from the mean is used, but
is linear in the duration when relying on the variance alone, and even increases exponentially
with the interval duration when using only the covariance.

Furthermore, two case studies of multiple stochastic processes suggest that the scaling be-
havior of the timing error is not changed when there is more then one process available at the
same time. We also formulate the synfire chain model in terms of a stochastic process, and
show that the optimal results we obtained in the preceding chapter are also optimal in this
more mathematical sense.

4.1. Introduction

Precise representations of time are of crucial importance for a wide range of brain functions
such as speech recognition and the planning and execution of coordinated movements. To
psychologists, the estimation of time has been a major subject of the study of qualitative
properties of information in the brain. A recurring result of the experiments was that the
just noticeable difference between two temporal intervals increases linearly with the duration
of the intervals, which is referred to as the Weber-Fechner law, or the “scalar property” [5§]
(cf. Section ZT.22]). This is a result that was originally obtained for directly observable
sensory inputs such as sound intensity. This analogy between the perception of time and
the perception of other physical quantities point to shared statistical properties between the
different domains. However, the origin of this law for time perception remains unknown
and has been subject to modeling approaches such as scalar expectancy theory [55]. More
recently, also neuroscientists became interested in the topic and proposed models for the neural
substrate of temporal processing, such as ramping firing rates [117, [40] 41], neural oscillators
read out by coincidence detectors [119] or synfire chains [66] (cf. Section 2.2.3]).
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4. Information-theoretical analysis of time perception

While the underlying neural mechanisms and the conceptual questions on temporal infor-
mation still remain subject of an ongoing debate, more abstract viewpoints from statistical
estimation theory have recently been added. They allow the formulation of the underlying
question with a precision and simplicity so far unseen in this field [5]. From this point of view,
the stochasticity of brain processes is not merely a source of noise which obscures temporal
information of the underlying deterministic process, but may also be an actual source for this
information. To show this, Ahrens and Sahani [5] used a process with zero mean, where the
only time-dependent properties was an exponentially decaying covariance. They showed that
the interval between two points in time can be estimated from such a process. This is an
example how the transition from a computational towards a mathematical model increases
explanatory power, while inheriting features of models that were developed empirical and
computational psychology during the last decades.

However, while Ahrens and Sahani constrained themselves to the temporal information in
the covariance, general neural processes will also contain such information in the mean and the
variance. This complies with the intuitive notion of time as a Janus face of both progress and
decay: The systematic change of states in the brain such as spike patterns or firing rates in
response to external stimuli or ongoing thoughts contains information about elapsed time. But
such information is also contained in the decay of such neuronal signals, or signal correlations
over time. Here, we extend the stochastic framework [5] by these dimensions and compare
the relative information content from the first and second moments of a stochastic process.
By analyzing the scaling of the minimal obtainable timing errors with the duration, we can
compare the optimal estimations to psychophysical results.

First, we study the case of single Gaussian process with temporal changes in both the mean
and the variance and covariance and use Fisher information to compute the theoretical lower
bound of timing errors which gives rise to a finite just noticeable difference. Under quite
generic assumptions (mean and variance linearly increasing in time, exponentially decaying
correlations), we find a hierarchy of temporal information in those three moments: The lower
bound for the timing errors scales with the square root of the duration of the estimated interval
if only the information from the mean is used, but is linear in the duration when relying on
the variance alone, and even increases exponentially with the interval duration when using
only the covariance.

Second, we extend this framework to the case where multiple processes with different time
scales are available. This allows to re-analyze the studies of Ahrens and Sahani [5], as well as
our own model based on multiple synfire chains [66] (cf. Chapter 3] in greater detail. We find
that also in the case of multiple processes, the standard deviation of the time estimate increases
exponentially when based on exponentially decreasing covariance. This is irrespective of the
details of the model and implies that estimation from covariance alone can only be successful
for times that are small compared to the time scales of the used processes. Furthermore,
we confirm that the optimal selection for time perception based on multiple synfire chains
(cf. Section [B4) is also optimal in the sense that the resulting timing errors are minimal.
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This approach may lay a ground for a comparison of the performance of the many competing
models and thus experimentally constrain the class of plausible models of timing. Furthermore,
seemingly different neural processes, such as synfire chains [66] and ramping activity [117]
40, [41], appear much more similar in the light of estimation theory. In this way, common
optimality principles underlying temporal perception become apparent that may otherwise be
masked by the neuronal details.

4.2. Estimation of temporal intervals

For the estimation of the length of a temporal interval between two successive times ¢1 and t1+
At a Gaussian process y(t) provides a sufficiently abstract model of the cerebral mechanisms
for time estimation [5]. It may find realizations e.g. in a sequence of subsets of neurons that
are maximally active [66], or a randomly increasing firing rate [I17]. The values of y(¢) can
both be discrete or continuous.

Given the observation of two states y; and 9, the likelihood of the time At to have elapsed
from the first to the second observation is

P ()i 80) o [O(AO] 2 exp (=53 = (A0 CAN = p(80)) . (01

where y = [y1, yo] is the vector of the two observations, p the mean, and C the covariance
matrix of the stochastic process. Both p and C are generally time-dependent and must be
estimated form the observations or the analysis of a neural dynamics. In the following, we
only consider processes that are constructed such that the time dependency is restricted to
the relative time At between the two events (see below for details).

Given P ({y1,y2}; At), At can be estimated using a maximum-likelihood (ML) estimator

(cf. 23.1))

Ay, = argmaxa; P ({y1,y2}; At) . (4.2)

The variance of this estimator is bounded from below by the Cramer-Rao bound, which is
given by the inverse Fisher information

Var(z\tML) > (4'3)

Tr(AL)

For a Gaussian process, the Fisher information Ir(At) = [ p(y|At) (Oa¢ Inp(y|At))? dy is given
by
opT L op 1 _,0C . ,0C
Ir(At)=— C ' '—+4+=-Tr (C"'— — | . 4.4
FAD =55 € ane T2T\C aaC o (44
The first term of the right-hand side is the information contained in the mean and will be

denoted with I% in the following. The second term is the information in the covariance and
will be called Il,g
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4.3. Single Gaussian processes

We consider a single Gaussian process y(t) of the form given by Eq.[AJ]l To incorporate tempo-
ral information in the the process, we chose its moments as follows. First, the mean increases
linearly in time, u(y) = mt. This choice complies with the psychophysical observation of a
linear relation between physical time and subjective time (cf. Section 2Z-T.2.1]), and is also re-
flected in several time-dependent neural processes, such as ramping activity (cf. Section 222,13
and [2.2.3]) or propagation of neural activity in synfire chains (cf. Chapter [3)).

Second, the variance of the process increases linearly in time, with a finite variance o at
t =0, Var(y) = ot+0p. This simply reflects the linear accumulation of timing errors according
to the law of large numbers. And finally, the autocorrelation of process decreases exponentially
with the interval between the two points in time that are correlated, K (y(t),y(t + At)) =
exp(—At?/21%), where 12 is the timescale of the decrease. This form of decrease is typical
for many types of stochastic processes [147]. In the following, we abbreviate the correlation
K(y(t),y(t + At)) with K.

With these assumptions on the moments, we construct the mean vector p

uan = (5%, ) (45)

and covariance matrix C

od oo/ 02 At + oK
C(At) = (4.6)

oo\/ 02 At + oK o2 At + o}

for two observations of the process, the first at time t = 0 and the second at t = At.

Note that the choice for the time of the first observation is not arbitrary: The fact that some
of the moments both change with absolute time ¢ make the process non-stationary. Thus, we
assume that the process is reset at time zero. Such a reset is built-in, explicitly or implicitly,
in several models of time perception, including the striatal beat model (synchronization of
oscillators), models of ramping activity (decrease of firing rates to baseline) and the synfire
chain model (ignition of an activity volley), cf. Section 2:23] and Chapter Bl Only when all
temporal information is contained in the autocorrelation, the process becomes stationary and
the need for a reset is relieved (see below).

Using Eq. [£.4] we can now compute the information contained in the mean

o (Bt)?
(02At 4 03)(1 — K(At)?)

I (AL) = (4.7)
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and in the covariance matrix

(At)!)

2)2

19an = ot (2— 3K(At22 +§ (48)

4 (0'2At + 00)2 1

o’ K (At)K'(At)?
(2At—|—a)(1 K( t)2)

(1+ K(At)?) K'(A
(1 K(At)?)”

To point out the implications of these results, we study three special cases where only the
information from one of the moments is available. First, we set m and o to zero, so all
temporal information is in the correlation K. This is similar, but not identical to the process
used by Ahrens and Sahani [5] (see Section FEZ.T]). I’ is zero in this case, and Ig reduces to
the contribution of the third term in Eq. 48] so the Cramér-Rao bound is

N (e (OB
o T T+ K(AD?) K'(AH)?’

(4.9)

which does only depend on K (At) and its derivative. For large At, K is much smaller than
unity, so this expression can be approximated by 1/K’(At)2. The minimal standard deviation
of the corresponding estimator then scales like the inverse absolute slope of the correlation

function )

[K' (A

Exponentially decaying correlations as described by K (At) = exp(—At?/21?) then yield the
minimal standard deviation of the corresponding estimator

(A1) > (4.10)

12 At?
At — . 4.11
580> oo 5z ) (111)
Thus, for At < [, the minimal timing errors scale like a squared exponential in At.

Next, we study the drift-diffusion process, which we obtain by setting K = 0, and consider
the information in the mean and the variance, captured by I} and Il(j:, respectively. For
simplicity, we also set o9 = 0, which does not qualitatively change the results. Then, the
minimal errors follow from Eq.[£7and 438l For using the temporal information in the variance,

o5 (At) > V2At, (4.12)

This corresponds to Weber’s law, as the resulting standard deviation is linear in time. On the
other hand, if the mean is used as a basis of the time estimate, the minimal variability reads

o5 (Al) > @\/ﬂ. (4.13)

yielding a standard deviation that increases with the square root of time.
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4.4. Multiple processes

In the following, we study two models which make use of multiple Gaussian processes with
different time scales to see whether the additional information provided by multiple processes
changes the scaling behavior of the Cramer-Rao bound.

4.4.1. The covariance-based model

The model studies by Ahrens and Sahani [5] is completely described by its covariance structure.
The covariance matrix C; of a single Gaussian process y; is given by

a? + o a?exp(—At?/212)
Ci(At) = < aZexp(—At?/21?) a? + o2 ) ’

where «; is the weight of each process and I; is its time constant. This covariance matrix slightly
differs from the one used in the preceding section, as it also contains an instantaneous variance
o which models time-independent variations around to underlying covariance structure. From
Eq. 44 the Fisher information of process ¥; then results in

2] A (af + exp(At?/17)(af + 0°)?)
1 (oz;1 — exp(A2/i2)(a? + 02)2)2 '

19 (At) (4.14)

To estimate a broad range of times At, a maximum-likelihood estimator is used that has
access to the joint likelihood of all processes y;, and parameters o and [ which are assumed
to have an explicit functional relation to 7. A large set of those functions can be summarized
by the power-law expressions o = 7 and [ = iP. The total Fisher information is then given
by the sum of the individual II(;Z), and Ahrens and Sahani studied these expressions and the
resulting CRBs by numerical methods. They concluded that summing the information from
exponentially decaying correlations with different time constant results in a duration estimate
with a standard deviation that follows Weber’s law.

Here, we attempt to obtain an analytical expression for the sum of the Fisher information
terms. To do so, we approximate the sum with an integral over a continuum of processes with
an integration variable ¢, and the parameters expressed as o = ¢? and [ = ¢P. The integration
is taken from 0 to the upper limit ®, which sets the largest timescale of the system to T' = ®P.
For a special case, p =1/2 and ¢ = 0, the integral can be solved analytically

2
(Al = /OCI’ 2At2(1 4 (14 0?) exp(At2/¢))d¢ (4.15)

(1 — (14 02)? exp(At2/¢))?
= 2ln (1 - 5 ! > + 4 .
(1+ 02)exp(At2/T?) (1+02)exp(At2/T?) -1

The information only depends on the exponential fraction of At? and T?. As this faction goes
to infinity, the information vanishes, whereas for exp(At?/T2) N\ H%’ it approaches infinity.
In each case, Ir is dominated by the second term. If we approximate Ir by this term alone,
the minimal standard deviation of the time estimate results in

o (At) > %\/(1 + 02) exp(At?/T?) — 1. (4.16)
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120 160 At[ms]

Figure 4.1.: Square roots of the Cramér-Rao bound obtained from integrating the Fisher in-
formation (Eq. EI4]) over ¢ between zero to ® = 50, with Iy = ¢P and ay = ¢9.
The exponents were ¢ = 0 and p = 1/2 (black curve), p = 1 (dark gray curve)
and p = 2 (light gray curve). In all cases, 0 = 0.3. The dots are results from
numerical integration and the lines are fits to Eq. EI7l For p = 1/2 an p = 1,
the exponential deviation from linearity can be seen as soon as At approaches the
maximal time scale T = ®P.
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Figure 4.2.: Square roots of the Cramér-Rao bound obtained from integrating the Fisher in-
formation (Eq. B4]) over ¢ between zero to ® = 50, with I, = ¢P and ay = ¢9.
The exponents are p = 2 and ¢ = 0 (black curve), ¢ = 1 (dark gray curve) and
q = 2 (light gray curve). In all cases, 0 = 0.3. « affects the offset and inclination
of the curves, but only for small At compared to the maximal time scale T' = ®P.
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Consistent with the analysis for single processes in Sec. 1.3, the minimal standard deviation
of the time estimate At increases like a squared exponential in At, with a timescale that is
identical to the largest timescale T' = ®1/2 in the system. Thus, only for At < T, the increase
of the standard deviation can be approximated as being linear.

For other values of ¢ and p, our analysis has to resort to numerics. These exponents have
been claimed not to change the qualitative behavior of the CRB [5]. However, if an equation of
the form (Eq.[d.6]) holds approximately also for different exponents p and ¢, one would expect
that at least p has a major influence on the time scale where the CRB can be considered to
increase linearly.

To test this, we integrate Eq. .14l numerically for different values of ¢ and p and fitted the
resulting minimal timing errors to an equation of the form

AV/(1 4 02)exp(At2/T2) — 1+ B. (4.17)

The results are shown in Fig. 1] for ¢ = 0 and different p, and in Fig. for p = 2 and
different values of q. The results turn out to be very well matched by Eq. [dTI7] for all values of
p. This implies that it is the time scale T' = ®P that governs the scaling of the CRB, and not
the details of the different integrals. The exponent ¢ which governs «, on the other hand, only
affects the form of the curves for times that are much shorter than 7. This limited influence
is not surprising, as the behavior of the Fisher information is dominated by the exponential
terms and « has only a linear influence.

In summary, the Gaussian process with the largest timescale available determines the range
of intervals that can be estimated with a variance approximately obeying Weber’s law. For
larger times, deviations from linearity are ultimately exponential. Consequently, such large
durations are not well estimated by these Gaussian processes but must rely on a different
mechanism. This can be shown analytically only for p = 1/2 and ¢ = 0, but is confirmed
numerically also for other values of p and ¢. In particular, the claim that the combination
of the information from processes with exponentially decaying correlations results in Weber’s
law [5] is disproved.

4.4.2. The synfire chain model

In Ref. [66], we have presented a neurocomputational model based on multiple synfire chains
which is capable of reproducing an experimentally observed error function when it is subject to
constrained optimization. Here, we use this model as an example of how a neurocomputational
model can be formulated in terms of a stochastic process. Then, we use the present framework
to show that the optimal results we obtained are also optimal in this more mathematical sense.

A synfire chain consists of a sequence of layers of neurons {P;}, i = 1,..., N that are con-
nected in a feed-forward manner. It has been shown that neural activity can stably propagate
through such a network even in presence of biological noise [70l 37]. So the position of such
an activity “volley” within the chain can be used as an estimator of the time At that has
elapsed from the beginning of the propagation. The basic unit of the timer is the transmission
time 7 from one pool to the next. Despite the precise transmission, however, a finite temporal
jitter o of the activation profile remains, which causes an intrinsic imprecision of the timing
results. An estimator of time then takes the form At(At) = 7j(At). Here, we consider 7
to be constant and j(At) as a stochastic variable which denotes the index of the layer that

84



4.4. Multiple processes

o, [ms]
6r o
sl i
4 |

0 100 200 300 400 500 600 700 At[ms]

Figure 4.3.: Square-root Cramér-Rao bounds of synfire chains with different mean transmis-
sion times 7 obtained as the sum of the information from mean and the full
covariance information. The estimation error increases with 7 and the values of
o, have been taken from Ref. [66]. [ is determined by simulations of synfire chains
to be 0.8. The dotted line represents the optimal standard deviations for all trans-
mission times (cf. their Eq. 19). This minimal error increases linearly with At
only for a limited range, and super-linearly for large At.

is maximally active at time At. This estimator obviously relies on the mean changes in the
stochastic process j(At), so one can also write the process itself in terms of the estimator
J(At) = g (4.18)
T
The advantage of this formulation lies in the fact that most of the statistics of the estimator
At have already been extracted from the neural dynamics in the previous study, and can thus
be directly transferred to j(At).

Note that the process j(At) takes only a discrete set of values corresponding to the number
of layers of neurons. It can be naturally extended to a continuous-valued process, because
the activity at any given time is spread over several layers. Thus, one could include all layers
into the process at once and average over layers with weights determined from the number of
active neurons a(j, At) in layer j at time At. The resulting process is given by

s(Af) = xR atk, A (4.19)

Zk a(k7 At) ’
where a(k, At) is the stochastic variable and k is an index denoting layers. For simplicity, we
will restrict ourselves to the discrete process j(At) in the following.
From the statistical evaluation of the neural dynamics and Eq. I8, we can now compute
the moments of a single propagation process j(At). The mean is given by u(At) = At/T,
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as At was shown to be unbiased [66]. Similarly, the variance of the process is Var(j) =
Vaur(ﬁ\t)/T2 = 02/73(At +1). Thus, it follows that o = o, /7/?). Also, we have introduced
03 as the variance at time zero, which was not considered in the previous study, and we
assumed that it takes the same value as the time-dependent variance o2. Violation of this
assumption would lead to a transient phase where the variance converges to o,. To deal with
this case, one would take the first observation at the first point in time where the transient
phase is over. Finally, the correlations of j(At) decreases exponentially with At¢, which can be
described by the correlation function K(At) = exp(—At?/212). Numerical evaluations of the
process indicate that the time constant [ does depend on the layer, but not on 7. As [ does
not change much between layers, we used the numerically obtained mean value [ = 0.8 ms.

With these specifications, the minimal standard deviation for the estimator At can be
computed from Eqs. [£13] and L ITl The estimator introduced above is mean-based, thus
its minimal standard deviation (cf. Eq. 413)) is

At+1
o5 (At) > ToVAt+1 =0, 1 (4.20)

T

Up to the term from oy, this is exactly the scaling of the error that was found to be opti-
mal [66], so the estimator At used there was indeed optimal in terms of information-theory.
Furthermore, one could also try to exploit the additional information in the variance and the
correlation by using e.g. a maximum-likelihood estimator (cf. Eq. £2]). To judge how much
additional information one could gain in this way, we examine the values of the parameters of
the synfire process. From the numerical evaluations in the previous study, the range of values
for o and p = 1/7 can be determined. Within a range of parameters where the propagation
of activity within the synfire chain is stable, 7 ranges from 0.5 to 5.5 ms and o takes values
between 0.03 and 0.45 ms. Thus, o/pu, the scaling factor of the increase of the timing error,
lies between 0.042 and 0.19 ms. Both of these values are much less than v/2, the scaling factor
of the minimal error from the variance. So it can be expected that the variance will not add
much information (cf. Sec. B4]). Similarly, the time scale of the correlation, [ = 0.8 ms, is
extremely short compared to the interval durations of a few hundreds of milliseconds. Thus,
the information from the covariance will also be small. These theoretical considerations are
confirmed when plotting the minimal standard deviations from a number of processes together
based on all available information sources, with the same parameters as used in Ref. [66] (their
Fig. 5). Indeed, this figure is virtually identical to the one which is only based on the mean.

4.5. Discussion

We have presented a statistical framework for optimal estimation of time based on the first
and second moments of a stochastic process and compared the contributions of temporal
information in the mean, the variance and the covariance. Of course, the combination of all
these sources of information always yields best results. However, given a forced choice between
different contributions, relying on the mean evolution of the process gives best results, in the
sense that the minimal timing error scales with v/At. This is the approach taken by most of
the present models of temporal processing,. If the process has zero mean, or a mean that is too
much obscured by noise to be reliably read out, the second-best choice would be the variance,

86



4.5. Discussion

which yields and increase of errors linear in At. This would be possible whenever there is
a sufficient amount of independent noise in the system. Relying solely on the covariance,
on the other hand, is less favorable because of the exponential increase of timing errors. As
such a scaling is not seen in any psychophysical experiments, it can be concluded that either
this mechanism is not used in the brain, or the time scales of the covariance decay are very
long. A more recent model [25] places itself somewhat in between deterministic and stochastic
approaches and may actually exploit both sources of information. It relies on slow processes of
the single neuron level such as short-term synaptic plasticity, but also on a broad distributions
of parameters and the joint, state-dependent response of a whole network (cf. Section 2:2.3)). It
would be interesting to assess the statistical properties of this model and analyze it stochastic
terms. More generally, the framework we presented here is suitable to test arbitrary neural
models according to their compliance with psychophysical results. Of course, this is only true
under the assumption that the brain computes an estimate of time that is optimal in the
Bayesian sense.

Given the favorable property of the information in the mean of the process that it results in
a v At scaling of errors, one may ask why there is a need for any other source of information.
In the case of a synfire chain, the optimal choice appears to be a single chain containing a
very large number of pools and very fast transmission. There are several arguments against
such a construction. The most obvious one is the massive parallel computing architecture of
the brain, as opposed to a single, very fast CPU that is used in a computer. The advantage of
parallel evaluation of multiple computations (here: chains) are twofold: On the one hand, it
allows for parallel computation of time and various other sensory information. On the other
hand, many short chains allow for a much larger robustness against catastrophic, i.e. the
failure of neural transmission in a given pool. In a single large system, the probability of such
a failure increases with the number of pools, and can not be compensated. Both of these
problems are resolved by many parallel chains.

Another argument especially for parallel chains with different time constants may lie in the
a priori information about the common distribution of time intervals. For instance, a prior
for the distribution of time scales such as

P(At) = Bexp(—BAO(AL), (4.21)

with 8 < 1, can be assumed to assert an over-linear excess of small time intervals. Suppression
of errors on these small time scales is achieved precisely by using a large number of chains
that are capable to represent these times (cf. Fig. [£3]). Finally, the underlying structures are
also subject to certain limitations with respect to their evolvability [71] (see Section for
further discussion of this issue).

The parallel use of multiple Gaussian processes with different time scales does not qualita-
tively change the scaling behavior of the timing errors. However, information from multiple
processes can be combined to reduce the total error or to extend the range of intervals that
can be encoded.

In summary, although specialized structures may not be needed for temporal processing,
best estimation results are obtained when there is process that changes with time in the mean.
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4. Information-theoretical analysis of time perception

However, this may also be a process that carries out some other computation in parallel, so the
idea of a distributed, non-specific perception of time [28] is not contradicted by our results. On
the other hand, noise can even enhance the precision of the estimate if it contains a temporal
structure itself that can be decoded and that has a reasonable magnitude that does not blur
out the information in the mean. This phenomenon is know as stochastic resonance [136]. To
establish such an optimal balance of noise may be a goal for self-organization in the brain.
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5. Cross-modal interaction of time perception
and motor timing

As we discussed in Chapter [l and ] it is currently debated whether the perception of time
relies on a centralized internal clock or on modality- and task-specific mechanisms. In this
chapter, we describe four psychophysical experiments comprising a time perception task and
a concurrently performed motor task with visual feedback. Time appeared as longer when
visually observed movement was faster. The execution of the tracking motion did not con-
tribute to this effect, but impaired discrimination performance by dual-task interference. This
study demonstrates direct integration of temporal information from different modalities and
provides causal support for the notion that time perception and continuous motor timing rely
on separate mechanisms. The results are consistent with Bayesian integration of modality-
specific temporal information into a centralized “temporal hub”, which may be subject to
attentional modulation.

5.1. Introduction

Time is a perceptual quantity that abstracts from sensory modality. Humans can assess the
temporal dimension of visual, auditory and multidimensional stimuli such as motion, speech,
or music. Similarly, any directed motor act relies on precisely timed coordination of a large
set of muscles. Yet, it is unclear how temporal information is integrated in all these situations.
Early proposals of a centralized clock that governs all temporal computations [33] 55] have
been challenged by recent findings of modality-specific timing processes, e.g. in early vision
[84, 135], and it is also a nontrivial task to disentangle the integrated perception of time from
low-level sensory processes when being considered within a single modality [80].

A suitable way to resolve this issue is to study cross-modal distortions of time perception.
Subjective duration is easily manipulated by a wide range of non-temporal factors, some of
which are modality-specific [42]. For instance, moving visual stimuli have been shown to be
judged as longer in duration compared to static ones [20, 19], and this effect increases as
the velocity of the moving stimuli gets faster. Thus, if a manipulation of a stimulus feature
in one modality results in the distortion of subjective duration in another modality, this
provides evidence that time perception is closely interlinked between these two modalities. In
the same way, one can assess the connections between time perception and motor timing by
manipulating temporal characteristics of a motor task and looking for resulting distortions in
a concurrently performed time perception task.

Existing studies that employed the distortion approach rely on stimulus factors that are
related to attentional resources [I76l 29]. Subjective duration is directly affected by the
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allocation of these resources [22], 2I], so it may be that the observed distortions are the
product of changes in global attention rather than direct interaction between modalities.
These possible confounds currently defy a straightforward account for cross-modal interactions
in time perception, as well as inconsistencies in the results (see below). Furthermore, the
approach of cross-modal distortion has not been applied yet in linking time perception with
motor timing. Results that link those two domains are currently restricted to the analysis of
correlations in measures of performance for time perception and motor timing tasks [93, [78]
1551 [189].

We assessed causal links between auditory time perception of durations of about 100 ms, and
both continuous motor timing and a comparable visual tracking task. We combined a visually
guided motor task with a concurrently performed auditory time perception task, within series
of four experiment. Participants were required to perform an arm movement to follow an
elliptic trajectory prescribed by a moving target on a screen. At specific segments of the ellipse,
two auditory stimuli were presented in sequence and should be discriminated according to their
duration. By manipulating speed and curvature of the target motion during the presentation of
each interval, we studied whether subjective duration (point of subjective equality, PSE) and
discrimination performance (difference limen, DL) was influenced by changes in these motion
parameters, and whether this influence is caused by visual observation or actual performance
of the motion. Each participant also performed two single-task experiments, in which either
the motion or the time perception task was performed alone.

In Experiment 1, we configured the target motion such that the tangential velocity and the
curvature of the target motion followed a power law with an exponent of —1/3. This relation
is naturally fulfilled in voluntary continuous motion [I79]. Because of this manipulation, the
movement differed both in curvature and in angular velocity at the times where the first
and the second tone was presented. The first auditory stimulus was given at one of the
apices of the ellipse, and the second one at the subsequent apex. This yields four conditions
for stimulus presentation, two of which are identical regarding curvature and velocity. We
averaged all performance measures over those identical states and considered only differences
between conditions where the motion is more curved at the second tone compared to the first
one (called curves) and the conditions where this order is reversed (stmz’ghts.

5.2. Results

If the duration distortion induced by visual motion |20} [19] carries over to the auditory domain,
one would expect the PSE to decrease from straights to curves. This was indeed the case
(Fig. &1 t(19) = —2.35, P < 0.030, Cohen’s d = 0.31). We confirmed that participants

1See Section [Adlin the appendix of the thesis for more details on methods and materials

2To ensure that the observed effects are really due to differences between straights and curves and not to
differences of the individual positions, we performed a control experiment in with we rotated the ellipse by
90 degrees, so that the curves were at the top and bottom of the screen, and the straights to the left and
the right. The results found in Experiment 1 were reproduced. For more details, see supplemental text in
Section [A.2] in the appendix (Experiment 1b).
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Figure 5.1.: Subjective duration (PSE) for the straights and curves condition, respectively, in
Experiment 1 to 4. Error bars are standard errors; brackets with stars depict sig-
nificant differences (* P < 0.05). In Experiment 1, 3 and 4, the PSE is significantly
lower in curves compared to straights, indicating that durations were perceived as
longer at the upper and lower straight compared to the left and right curve. In
Experiment 2, there was no such effect.

actually followed the trajectory we prescribed by measuring the motion parameters of the
actual motion (see methods in Section [AI]). As expected, curvature increased (¢(39) = 94.7,
P < 0.001, Cohen’s d = 20.3) and velocity decreased (¢(39) = —74.1, P < 0.001, Cohen’s
d = 25.1) from straights to curves (Fig. [A.3]). The relation between curvature and tangential
velocity could be well fitted to a power law with a mean exponent of —0.279 (SD 0.024), which
is close to —1/3.

From Experiment 1 alone, it is hard to determine the cause of the distortion in subjective du-
ration, as both velocity and curvature varied between conditions, and the PSE was correlated
with both of them (see supporting text in Section [A.2]). In Experiment 2, we kept the tan-
gential velocity constant along the trajectory, so only curvature changed between conditions.
Straights and curves no longed showed a PSE difference (Fig. B, ¢(19) = 0.37, P = 0.72,
Cohen’s d = 0.02). However, participants did not accurately follow the motion of the target.
Tangential velocity still decreased from straights to curves (t(39) = —22.7, P < 0.001, Cohen’s
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d = 6.2), while curvature increased from straights to curves (t(39) = 40.2, P < 0.001, Cohen’s
d = 14.0), as expected (Fig. [A.3). The relation between curvature and tangential velocity
was again well fitted by a power law, although its exponent now deviated strongly from —1/3
(mean —0.144, SD 0.059). It is frequently reported that people tend to stick to the —1/3
power law relation [179], even when instructed otherwise [I80, [I78]. Our results are consistent
with a strategy where participants compromised between the demands of the instructions and
the internal constraints of the movement.

The key difference between Experiment 1 and 2 was in the speed of the observed target
motion. Experiment 3 directly compares the effects of motion that is perceived and motion
that is actually performed. We followed the same protocol as in Experiment 1, but changed
the single-task time perception experiment such that it comprised the same four conditions
as in the dual-task experiment. Here, the conditions were defined according to the position
of the target (see methods in Section [A.1]). The PSE decreased from straights to curves both
in the single task (¢(19) = —2.40, P < 0.027, Cohen’s d = 0.27) and the dual task experiment
(t(19) = —3.16, P < 0.005, Cohen’s d = 0.30) with comparable effect size (Fig. B.I]). Fur-
thermore, there was no significant difference of the distortion effects between the single- and
dual-task condition (F(1,19) = 1.3, P = 0.26), neither were there any significant differences
between the motion parameters in Experiment 1 and 3 (data not shown). Collectively, Exper-
iment 1-3 show that duration distortion is caused by the speed of the perceived motion, and
that performed motion does not contribute to this effect.

Could the distortion reflect a change in global attention rather than a direct multi-modal
interaction? To test this, we first compared both DL and PSE for the dual-task experiments
1-3 and their respective single-task experiments where only the time perception task was
performed. Both a decrease in discrimination performance (increased DL, Fig. [5.2] F'(1,19) =
43.5, P < 0.001, 7712, = 0.70) and in subjective duration (PSE, Fig. 521 F(1,19) = 10.1,
P < 0.005, 775 = 0.35) were present in the dual task condition in Experiment 1—3@, which are
both signs of attentional interference [22]. To our best knowledge, this is the first report of
dual task interference in the milliseconds range induced by a motor task.

To show that the duration distortion effect is independent from this dual-task interference,
we conducted Experiment 4, where we included an extended training of the motor task prior to
the actual experiments. Training of the secondary task has been shown to diminish dual-task
interference on time perception [23]. Participants practiced the motor task until they reached
a defined target deviation averaged over two minutes (see methods in Section[A.T]). Consistent
with former studies, neither the DL difference (Fig. 5.2 ¢(19) = 1.69, P = 0.11) nor the PSE
difference (Fig. B.2] ¢(19) = 1.03, P = 0.31) between single- and dual-task conditions was
significant any more. On the other hand, the PSE difference between straights and curves
remained (Fig. Bl #(19) = —2.39, P < 0.027, Cohen’s d = 0.28). As additional evidence
for independence of duration from attentional resources, note that the effect sizes were the

3These effects were also significant for DL when experiments were analyzed individually, whereas the PSE
only showed trends of differences for Experiment 2 and 3.
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Figure 5.2.: Discrimination performance (DL) and subjective duration (PSE) compared for
single-task (time task only) and dual-task experiments in Experiment 1 to 4.
Error bars are standard errors; brackets with stars depict significant differences
(*P < 0.01, **P < 0.001). Both DL and PSE increase from single- to dual-task

in Experiments 1 to 3, but not in Experiment 4.
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same for the single- and dual-task condition in Experiment 3, and that the DL did not change
between straights and curves consistently for all experiments (¢(79) = 0.96, P < 0.34).

5.3. Discussion

In three out of four experiments (Experiment 1,3 and 4), auditory time perception was consis-
tently distorted by visually observed motion (Fig. 5.1]). This distortion depends on the speed
of the observed motion - intervals are perceived as longer when motion is faster, and this effect
vanishes when observed motion speed is constant (Experiment 2), but is still present when
participants did not perform active motion (Experiment 3). These results indicate that the
well-documented duration distortion induced by visual motion speed [20] [19] carries over to
the auditory domain. Unlike former studies [176], 29], we controlled for attentional factors by
comparing the distortion effect with dual-task interference [22]. Distortion was the same in the
single- and dual-task experiment (Experiment 3) and the distortion effect was not diminished
when the motor task was subject to additional training (Experiment 4), in contrast to inter-
ference effects on discrimination performance. From these results, we conclude that duration
distortion is not based on cognitive resources. The fact that we did find dual-task interfer-
ence for intervals in the range of 100 ms contributes to the emerging view that attentional
factors affect temporal processing for intervals both above and below 1 sec [I51], challenging
the notion of distinct mechanisms for time perception in these two domains [I50, [110].

We did not find evidence that active performance of motion contributed to duration distor-
tion. Performing the motor task did not strengthen the effect compared to purely observed
motion (Experiment 3), and when visual motion speed was constant, changes in the speed of
the actually performed motion did not induce any distortion (Experiment 2). These results
suggest a largely separated set of mechanisms for the timing of continuous motor acts and the
perception of time. Former studies that made the same proposal only reported lack of corre-
lations between perception and continuous motor timing [155, 189]. Our results are consistent
with the distinction between “emergent” and “event” timing which governs continuous motor
timing and both time perception and discrete motor acts, respectively [190].

Regarding the nature of the explicit representations of time, we propose that the multi-
modal interaction comes about by integration of temporal information in a “temporal hub”,
which is consistent with the recent notion of Bayesian integration of general multi-sensory
information [34]. Within this framework, a stimulus is perceived independently in different
modalities and then integrated into a single percept. The magnitude of the contribution from
each modality is weighted by the information or reliability of the respective channel which may
vary in different situations. Taking this view on time perception [I76], temporal information is
gathered simultaneously in all modalities available, possibly as a by-product of other sensory
computations [66], and then converges into a central brain site where an integrated judgment
about the temporal stimulus is generated according to the relative reliability of each modality.
A possible anatomical location for this temporal hub could be the basal ganglia, where many
cortical nerve fibers converge and which has been discussed previously as a brain site to
orchestrate temporal information [24]. Within this framework, several phenomena of time
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perception can be readily explained: Dual-task interference with time perception [21] 22]
corresponds to an impaired transmission of the temporal information to the hub, caused by
decreased reliability of the temporal signal due to diminished attention. The conflicting results
according asymmetries in cross-modal interaction [176] 29] are reflections of different degrees
of salience and reliability in the visual and auditory modality, owing to difference in the nature
of the stimuli used in both studies (static stimuli [29] vs. dynamically changing stimuli [176]).
And finally, observed beneficial or distorting effects of congruent or incongruent visual and
auditory rhythms, respectively [64] can be seen as the result of an average of temporal stimuli
from both domains, which decreases variability when information from both channels is the
same, but increases it when the information is conflicting. Such averaging effects have been
studied before in purely auditory sequences [67, [39].

In summary, our results demonstrate a direct interaction between visual and auditory time
perception, while no connection between the timing of continuous motor acts and the percep-
tion of time can be found. The cross-modal interaction in the perceptual domain is consistent
with Bayesian integration of temporal information from different sources into a temporal hub,
according to the relative reliability of these sources. This kind of integration may be the
brains’ solution to the problem of constructing unique and reliable representations of time de-
spite of the fact that duration could be distorted by a large number of non-temporal stimulus
features in each individual modality.
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6. Cognitive aspects of time perception in
temporal sequences

In this chapter, we extend our research from single intervals to sequences of intervals. Com-
bining experiments and modeling, we study how the discrimination of time intervals depends
both on the interval duration and on contextual stimuli. Participants judged the temporal
regularity of a sequence of standard intervals that contained a deviant interval. We find that
the performance to detect the deviant increases with the number of standards preceding the
deviant and decreases with the duration of the standard. While the effect of the standard
duration can be explained by an neural network model that realizes the concept of multiple
synfire chains (cf. Chapter B]), the position effect is incorporated into the model by an in-situ
averaging process. Furthermore, experiments are discussed that are critical for the predictions
of the model. In conclusion, the model shows that sequence processing may rely on the same
mechanisms as the processing of individual intervals.

A slightly modified version of this chapter has be published in the proceedings of the Neural
Computation and Psychology Workshop 2008 (NCPW11) [67]. We gratefully acknowledge the
work of our collaborator Stefan Blaschke, who designed and performed the experiments and
provided the original idea of the adaptive memory system. Our contribution to this chapter
mainly lies in the formalization of this model, and in contributions to the conception of the
experimental paradigm.

6.1. Introduction

Whenever we listen to somebody talking, or to a piece of music, we are presented with a
sequence of stimuli that contain information in their duration and timing. For instance, the
phonemes /ba/ and /pa/ differ by only 25 to 50 ms in their onset time but can still be reliably
discriminated. This discrimination is even better when the phonemes are embedded in a
sequence that forms natural speech.

While speech is a quite complex example of a sequence including semantic information, the
neural mechanisms that enable discrimination of interval durations are not well understood
even for much simpler sequences with purely temporal context, or even single intervals. Despite
of numerous experimental and theoretical studies on the topic [61], 58], [149], many ambiguities
even about the psychophysical regularities remain. For instance, it is established that vari-
ability of time estimates op increases as the intervals T to be estimated get longer[61], but it
is debated whether this increase is linear in 7' (Weber’s law)[55], even steeper[15] or less steep
than linear[54]. Similarly, for the question of whether context information enhance discrimi-
nation performance, there is both supporting[39] [78] and contradicting evidence[164), 141].
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We approach these two questions with an experimental paradigm (Sec. [6.2)) where partic-
ipants discriminate the duration of a variable interval from the constant standard durations
of a number of previously presented intervals. The more standards are presented before the
variable interval, the more context information is available. Varying the standard duration
between blocks, we can simultaneously assess the decrease of discrimination performance with
the interval duration. This experiment can be seen as a critical test between two classes of
models: Static models like the classical pacemaker-accumulator system [33] predict no context
effects at all, while dynamic models such as the multiple look model [39] predict an improved
performance with increasing context information. Our results support the latter class, as
performance increases at later positions of the variable interval.

In Sec. [6:3] we formalize the concept of the multiple look model [39] that improved perfor-
mance results from averaging previous temporal information to reduce discrimination errors.
The model provides a statistical framework for perception of both single intervals and se-
quences of intervals, as judgments about sequences are based on comparison of the individual
intervals it is composed of. The model can be readily extended to account for more complex
aspects of time perception and has partly been implemented as a biological neural network
[66]. This implementation is based on general connection principles in the neocortex and does
not depend on any modality-specific properties. Finally, Sec. discusses the results and
gives an outlook on further experiments.

6.2. Sequence experiment

6.2.1. Method

23 psychology undergraduates (mean age 23 years, 17 female) participated in the experiment
for partial fulfillment of course requirements. They were naive to the purpose of the exper-
iment, but were debriefed afterwards, including feedback about their performance. In each
trial, a sequence of seven intervals filled with white noise was presented via headphones. Six
of these intervals were standard intervals (STI) with a constant duration, while the seventh
was a variable interval (VTI). All intervals were separated by an inter-stimulus interval (ISI)
with a duration identical to the STI. Participants were instructed that a deviating interval
could be presented at any of the seven positions in the sequence and that if there was a devi-
ating interval in the sequence, it would be the only one. The task was to decide whether the
presented sequence was regular or irregular. As independent variables, we used the position
of the VTT within the sequence (position 1 to position 7), which was randomized from trial
to trial, and three different STI durations (50 ms, 150 ms and 250 ms), which were tested
in separate blocks. The duration of the VTI was adjusted by a weighted up-down method
[86]. Starting from an initial value, the duration was increased (step-up) if the participant had
judged the sequence as “regular” and decreased (step-down) after an “irregular” judgment.
The adjustments were done independently for each position of the variable interval. We chose
the step sizes such that the VTI converged to the .75 percentile of the answer “irregular”. As
the dependent variable, we used the 75% detection threshold V75, which can be computed from
the percentile by subtracting the respective standard duration. The smaller the threshold, the
better is the performance in detecting a deviant interval.
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Figure 6.1.: 75% detection thresholds as a function of the position of the variable interval for
three standard durations. The dots are means over participants with standard
error bars. (Left) Data for all seven positions. (Right) Data for position one to
six. The lines are fits of this data to Eq. (see Sec. [6.3.2.4]). The color map is
the same in both figures.

6.2.2. Results

Fig. shows the mean values of V75 as a function of both the position of deviant and the
duration of the STI. Three effects are apparent: The threshold increases with the standard
duration, decreases from position one to six, and finally, increases again at the last position. To
confirm these effects statistically, we performed a two-way ANOVA with the factors position
and standard duration (levels as indicated above). The ANOVA showed highly significant
effects for both factors, F(6,132) = 35.61, p < .001, n = 0.62 and F'(2,44) = 68.97, p < .001,
n = 0.76, respectively, and also an interaction, F'(12,264) = 8.02, p < .001, n = .27 (n is short
for partial eta-squared). These results did not qualitatively change when the seventh position
was excluded from the analysis (data not shown).

To further analyze the increase of V75 with the STI duration, we take the mean over all
seven positions within an STI duration and calculate the Weber fraction Vzs/ST1T for each STI
duration. The values were 1.18, 0.64 and 0.49 for S = 50 ms, 150 ms and 250 ms, respectively.
Decreasing Weber fractions are in accordance with standard theories of temporal perception
[61] within this range of relatively short durations.

The significant decrease of the detection threshold from position one to six established that
the number of STIs presented before a VTI indeed improves the performance to detect the
deviant. This rules out static models of time perception [33] that would predict no such effect.
However, also adaptive models that predict improved performance with increasing number of
standards do not predict the decrease in performance at the final position.
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Figure 6.2.: Illustration of the model structure.

6.3. Serial memory model

We now develop a model that aims to explain the findings in the present experiment. The
model composes the representation of a temporal sequence from the representations of the
individual intervals. The basic structure of this model (Fig. [6.2) is similar to the classical
pacemaker-accumulator system [33], although its elements include mechanisms of adaptivity.
Each interval is first encoded in a single-interval representation. We proposed a neural model
for this encoding [66], which we briefly present in the next section.

The second stage in the model is a memory system with two units (MU). These units also
exist in the original model, but we make two modifications. First, the units are arranged
in serial, e.g. the representation of interval one is first stored in MU1, but as the second
interval is encoded, interval one is shifted to MU2 and interval two is stored in MU1 and so
on (cf. Fig. [62). And second, while MU1 always contains a representation of the individ-
ual intervals, in MU2 the representations of all presented intervals are averaged to decrease
variability.

Finally, in the third stage, the intervals represented in the two units are compared, and
whenever the difference between the two exceeds a certain criterion, a deviant interval is
detected. In this respect, the framework is similar to classical signal detection theory.

6.3.1. Single interval representations by synfire chains

A neural correlate of an interval representation should consist of a neural network that is able
to store a wide range of time intervals with high precision. A neural structure that fulfills these
requirements is the synfire chain [2], a layered network of spiking neurons with feed-forward
connectivity. This type of network has been shown to enable stable propagation of neuronal
activity: If a sufficient number of neurons in the first layer is activated, neurons in the second
layer also start spiking after some time, and this activation in turn is transmitted to the third
pool, and so on. It has been shown that under broad conditions on the strength and timing
of the initial activation [70, 37] and the model parameters [66], this propagation is stable,
and activity travels along the layers like a wave. The propagation is linear in time and the
temporal spread oy, of the wave at each layer converges to a constant fixed point value in the
range of milliseconds [70), [37], even in the presence of synaptic background noise. Therefore,
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Figure 6.3.: Timing error, e.g. standard deviation or of the total runtime of an activity wave
as a function of time T for various transmission speeds of the chains. The solid
curves depict simulation data and the dotted line represents the optimal timing
error o (T) from Eq. It is close to the lower envelope of the simulation data.

the system is able to translate temporal information into a precise quasi-spatial code: The
time elapsed since the initiation of the wave is represented in the position of the layer that is
currently most active [66].

Variability in the representation arises from the remaining temporal spread oy, in the spikes.
This constant error in each layer accumulates to smear the arrival time 1" of the wave at layer
1 to a standard deviation op proportional to the square root of i. Therefore, the Weber
fraction o7 /T decreases with the interval length like 1/4/T, consistent with the results of our
experiment.

For short intervals up to a few hundred milliseconds, this result of a decreasing Weber
fraction has also been found previous experiments [54, 61]. However, the steeper increase
found at longer intervals (linear or even superlinear with duration [61} 149 55 [15]) is not
easily reconciled with the accumulation of neuronal noise. For the steeper increase at longer
intervals, there must be an additional constraint. In a synfire chain, the most obvious of such
constraints is a finite chain length L. With a given mean transmission delay At from one
pool to the next, the maximal interval to be represented is T'= At - L. For longer intervals, a
chain with a higher value of At must be used. We could show that the speed of the activity
wave can be manipulated by various model parameters[66], but that any change in the synfire
model that increases At also increases the spread of the spike times o; and thus, results in
a larger timing error op (Fig. [63)[66]. From Fig. [6.3] it is also apparent that there exists
an optimal chain for each interval of time to be encoded, meaning that the timing error op
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is minimal. As the increase of this error with At is much larger (order 3) than the increase
along the layers (order 1/2), it is always optimal to use the entire length of the chain with the
lowest AT that is able to encode the current interval. The form of the optimal timing error
is [66]

.7 O min(At) * VT +D for T'< min(At) - L 61)
or = .
AT3+BT*>+CT+D otherwise,
where Uiﬁn( At) is the variance of the minimal transmission delay At. The dotted line in Fig.

shows a fit of the simulated data to Eq. [6.1], which is close to the lower envelope of all chains.

The data in our experiment shows a decreasing Weber fraction, so all intervals can be
assumed to be encoded by the fastest synfire chain available. We thus use the first column of
Eq.[B.1lto fit the data, resulting in values of opnina) = 7.13 ms and D = 6.87 ms. The fit gives
a very good description of the data averaged over participants (97.5% of variance explained).

6.3.2. Memory and decision stage
6.3.2.1. Stochastic framework

We now formalize the adaptation in the serial memory system as an information processing
model. A neural implementation of this system is in progress. The central stochastic variable
is the difference X;(I) between the contents of the first and the second unit, where I is the
time index of the intervals and ¢ is the position of the deviant interval within the sequence.
We use a general number of N intervals (set to seven to fit the present data). The intervals are
presented during the first N time steps, while the computation of the difference X;(I) starts
with the arrival of the second interval (I = 2) and is finished after I = N + 1 to complete a
total of N comparisons.

Each interval represented by the spike patterns of the synfire chains is denoted by S; and
can be considered as a Gaussian random variable with the actual interval duration as the
mean and the variance determined by the timing error o (cf. Sec.[6.3.1]). Assuming the same
ot for both standard and deviant interval, the VTI is given by

S; =S, = N(S,,0%) (6.2)

and the STI is
S; = Ss = N(Ss,0%), j . (6.3)

With these definitions, we can write X;(/) in the general form
I g
. -9, — e}
Xi(I) =St Z; 7 (6.4)
]:

The first term is the content of MU1 (the interval presented at position I), and the second
term is the average in MU2 over all intervals presented before position I.
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The difference X;(I) between the two units can now be used to evaluate the current interval
in MU1 based on the information accumulated in MU2: If the difference exceeds a decision
criterion K, the interval is judged to be irregular, otherwise it is judged to be regular. The
probability for an “irregular” judgment is thus given by

‘ B Xi(I) - K
PX,(I) > K) = ® <—Var(X,~(I))> , (6.5)

where ® is the standard normal distribution function and X;(I) and Var(X;(I)) are the mean
and the variance of X;([I), respectively.

In the framework of signal detection theory, the probability of a “irregular” response given
the VTT in MU1 would correspond to the hit rate, while the probability of the same response,
given an STT in MU1 would be the false positive rate. However, we are more interested in the
joint probability to judge the entire sequence of N intervals as “irregular”, since this response
determines the 75% detection thresholds S, in the experiment. This probability is given by

N+1 N+1
P(“rreg”) =1—P ( ) (Xi(I) < K)) =1- ] P(xu(I) < K). (6.6)
1=2

1=2

The second equality holds under the assumption that all events are statistically independent.
Note that Eq. gives an implicit equation for the 75% detection thresholds S, at each of
the positions of the VTI, given the probability P(“irreg”), and the set of parameters{or, K}.
P(“irreg”) is set to 0.75 in the current experiment, and the parameter set {or, K} can be
used to fit the model to the experimental data.

6.3.2.2. Results

To use Eq. for determining the S, values, we must calculate the probabilities P(X;(I) >
K) for each value of i and I, and thus, the means and variances of the respective variables
X;(I). However, we can divide all possible combinations of ¢ and I in three groups, each of
which have the same mean and variance for all its respective members:

1. The VTI has not yet been presented at position I (i > I). In this case, both MU1 and
MU2 contain only STIs. Thus,

I
x=8,->" ST xP1 =o. (6.7)
et

2. The VTI is presented at time I (i = I). Now MU1 contains the VTI, while MU2 is the
same as in 1):

I
x(1) = Z ST x@ =8, -3, (6.8)
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Figure 6.4.: Distributions of X;(I) for the three cases (see text) and two values of I.

3. The VTI has already been presented at an earlier position than I (i < I'). MU1 contains
an STI, again, but one of the intervals in MU2 is the VTI. Thus,

S; S, _ Ss— Sy
xP(y=8-3 = -2 XP (=2 (6.9)
j=1

The variance of the X;(I) does is the same in all three cases, because the variance op does
not differ for the STIs and the VTI:

I2+7

Var(x( (D)) = Var(X{? (1)) = Var (X (1)) = o1~

. (6.10)

Additionally, it must be noted that the criterion K can not be entirely freely chosen. Specif-
ically, it must be ensured that the probability of an “irregular” judgment is below the defined
P(“irreg”) if the sequence does not contain a deviant interval, or Sy — S, = 0. Otherwise,
the adaptive method would make the detection thresholds converge to zero, as a sequence of
regular intervals would be sufficient to elicit “irregular” responses with the defined probability.

Together with Eq. and [6.7], this requirement results in the following condition on K:
«: /" 1/N
K > op (1— P(“irreg”)) " ~ 0.915 o7, (6.11)

where the second equality holds for P(“irreg”) = 0.75 and N = 7.

6.3.2.3. Approximation

Plugging the results Eqs. [6.7 [6.8] and into Eq. yields an equation that only
depends on o7, K and the detection thresholds S, — Ss. This equation can be used to fit
op and K to the experimentally obtained thresholds. However, the relative contributions of
the two parameters to the data will not be apparent in these equations. Here, we derive an
approximation where these contributions can be more clearly seen.
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Table 6.1.: Fit parameters for Eqn. (and others, see text).

STI duration [ms| o7 [ms] K/op variance explained [%]

50 45 0.923 87
150 90 0.965 97
250 110 1.0 89

Fig. illustrates the three distributions of differences X;(I) for two values of 1. All distri-
butions become more peaked for later Is as a result of the averaging process. Furthermore, the
mean value of Xi(Q) always reflects the actual difference between the VTI and the STI, while
the mean of Xi(s) is the negative of this difference for I = 1 and decreases in its absolute value
for later I. Therefore, it is apparent that the false positive rate e = P(X;(I) < K |S; = S;s)
(shaded area in Fig. [6.4)) is maximal for Xi(l).

Now assume that we have chosen the criterion K such that € never exceeds a certain value
€* for Xi(l). Then, from the above observations, we see that €* is also the upper bound for

the false positive rate for XZ-(?’)7 so we can consider € < €* for all N — 1 false positive cases and
approximate Eq. by

P(“rreg”) > 1 — (1 — )N 1 (1 -9 (&;:’7&)—1(» : (6.12)

where O'%(I ) is the position-dependent variance common to all three cases, as given in Eq. [6.10)

Thus, the detection threshold is given for each i by

_ _ a 1 — P(“rreg” rP+1
S,— S, >® 1<1_¥> T 7

(Erore —— + K. (6.13)

From this equation, one can see that the threshold decreases with I like /1 + 1/T", while the
steepness of the decrease is governed by o7 and a factor depending on €*, P(“irreg”) and the
number of intervals N. Additionally, there is an offset that is equal to the criterion K.

6.3.2.4. Fit to data

We use Eq. together with the results on mean and variance Eqs. [6.7] [6.8] and [6.10
and the constraint on K, Eq. to fit the parameters o7 and K to the data set of the three
different standard durations. The fits are depicted as solid lines in Fig. The model gives
a good description of the data averaged over participants. (see Table [6.1).

6.4. Discussion
We presented a model that can explain context effects on interval discrimination performance

that we observed in a sequence experiment, and also the decrease of performance with increas-
ing standard interval durations. Apart from the individual effects, the model also explains the
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interaction of the two: op increases with the STI durations and enters as a factor in Eq. [6.13]
Thus, longer STI durations increase the steepness of the adaptation curve, and thus enhances
the position effect.

Fitting Eq. to the data suggested a very high temporal spread, oyinay = 7.13 ms.
This is about one order of magnitude higher than the values that we found to be realistic[66].
However, this may be a specificity of sequence experiments, as the Weber fractions (0.49 to
1.18) are also very high compared to interval discrimination, where fractions between 0.05 and
0.2 are typical. A possible explanation lies in the rapid presentation of the stimuli: The ISI of
maximally 250 ms might not be long enough to allow the intervals to be completely processed,
causing an additional error.

The detection thresholds decrease with the position I of the variable interval like \/1 4 1/1.
Therefore, even for very long sequences, the variability will not be eliminated, but only de-
creased to a value close to o (cf. Eq. [6.13]), the variability of a single interval. Therefore, the
model could be falsified by data showing a drastically different form of decrease, e.g. linear
or superlinear. Moreover, the model predicts that i) the saturation of the detection threshold
should be apparent in longer sequences, and ii) that there should only be a limited effect in
single-interval task such as interval production. We already confirmed the first prediction in
an experiment with nine intervals [17].

On the other hand, the model is not directly falsified by the fact that it does not explain the
end effect. Like other more complex effects [17], this could be included by introducing a decay
of the representations in the MUs. At the final time step, no new interval is represented in
MUT1, so the comparison has to rely on the partly decayed memory trace of the second-to-last
interval. Because of the decay, the variability of this representation will be increased, which
explains the poor discrimination performance at the final position.
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In this thesis, we attempted to extend the knowledge about the processing of temporal informa-
tion in the brain into three directions. First, we investigated how neurocomputational models
could be constrained by psychophysical findings regarding the relation between interval length
and timing errors. By means of introducing a general stochastic framework (Chapter @), we
identified the optimal scaling behaviors of timing errors, given that the underlying stochastic
processes in the brain are governed by their first and second moments, respectively. Further-
more, we proposed a neurocomputational model based on multiple synfire chains (Chapter [3])
which is capable of reproducing the experimental finding of a U-shaped Weber fraction in the
range of hundreds of milliseconds, by means of constrained optimization. Optimal selection of
the chains could be accomplished by projections onto readout network which is subject to a
specific plasticity rule. Second, we studied the possible connections between different modes
of temporal processing, namely time perception in different sensory modalities and continuous
motor timing (Chapter[Hl). Unlike previous studies which provided only correlational evidence,
we used distortions of subjective duration by non-temporal factors to see if manipulations of
temporal processing in one mode affected the other. We found an interaction between time
perception in the visual and auditory domain, but no such links between time perception and
continuous motor timing. Furthermore, we showed that a secondary motor task could impair
discrimination of intervals in the range of hundreds of milliseconds. And finally, we studied
the case of isochronous sequences of intervals and proposed a simple model that could account
for our experimental observation that a deviant interval could be more easily detected when
preceded by a larger number of standard intervals (Chapter [G]).

7.1. A general framework for temporal processing

In Chapter [I we briefly described the outlines of a general framework which could account
for these and several other findings in temporal processing. Here, we discuss this framework
in more detail, show how each of our results fit in, and which predictions could be derived
from it.

The framework (Fig. [[I]) resembles the classical pacemaker-accumulator model (PAM,
cf. Section ZT.3.2) in the sense that it comprises separate processing stages for the actual
representation of interval durations, memory storage, and comparison. However, the individ-
ual stages are more complex in our model, and partly also grounded in neural dynamics. The
key conceptual differences to the PAM are the following:

1. There are multiple timing processes which are specific to sensory modalities, and also to
a specific range of interval durations.

2. The temporal information from the individual processes are integrated in a centralized
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Figure 7.1.: Tllustration of the general framework of temporal processing which emerges from
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our results. In the top part, multiple timing processes from different modalities
are shown. As in Chapter B they are modeled as synfire chains. The time
values correspond to chains that are optimized for that specific interval duration
(cf. Section 34]). The middle part depicts the temporal hub, a recurrent network
where the timing processes project to (cf. Chapter Bl). The synaptic weights
(illustrated by the strength of the arrows) are determined by the reliability of
each source. Here we show the case that auditory processes carry more temporal
information than visual ones (cf. Section 2.1.2.3]). Dotted lines denote recurrent
connections within the hub which form cell assemblies for different intervals (100
and 300 ms, here). Finally, the lower part of the figure shows the memory and
comparator stage, which is identical to the classical PAM, with the exception
that the reference memory integrates over intervals, forming a basis for averaging
effects (cf. Chapter [@).
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“temporal hub” in a Bayesian way, i.e. they are weighted according to the respective
reliability of each source.

3. The second memory unit (called “reference memory” in the PAM) is adaptive and inte-
grates temporal information over a longer period of time.

In the following, we discuss each of these three components of the model in the light of our
own results.

Multiple timing processes. In Chapter[Bl we showed how the multiple timing processes could
be neurally realized as synfire chains: The quasi-spatial position of an activity volley encodes
the time since the activation of the first pool. As the timing errors increase super-linearly
with the transmission delay within the chain, timing is optimal if only the last pool is used
for each chain. However, the model is more flexible compared to other proposals of multiple
timing processes, because the chains are not restricted to a single interval (as e.g. in the model
proposed by Ivry [77]), but may also represent shorter intervals by using a number of pools
near the end of the chain.

Despite of the favorable timing properties of synfire chains, we do not claim that they
are the only possible mechanism that underlies temporal processing. This is most obvious
when looking at the limitation of the range of intervals that can be represented with this
model: Due to dynamical limitations of stability, this limit is around 700 ms, although it may
be probably be extended to more than a second with different parameter combinations. At
longer intervals, other mechanisms of time perception have to take over, e.g. ramping activity
(cf. Section 2.2.3)). This may be one source of the recurrently observed differences between
millisecond and second timing (cf. Section 211 and 22)). But even in within the millisecond
range, we assume that all the various sources of temporal information, such as oscillations,
short-term synaptic plasticity, or slow ion channels may be exploited (see Section 223 and
Chapter ). As the only constraining factor, we demand that the sum of the temporal infor-
mation obtained in this way complies with the scaling behavior of the psychophysical timing
error. Under the assumption of an ideal observation, the stochastic framework we presented
(Chapter M) provides a useful tool for testing this constraint: The information from each of
the processes used can be quantified by the Fisher information, and the sum of these infor-
mation measures constitute the net Cramer-Rao bound, which would be reached in an ideal
observation. Thus, the proposed combination of sources provides a valid model for temporal
processing when the Cramer-Rao bound scales in the same way as the psychophysical timing
error. This analysis is further simplified by the fact that the optimal scaling behavior is gov-
erned by the best process involved for each interval of time (cf. Section B.4] and Section [4.4)):
When adding another timing mechanism to a number of existing ones which produce the
correct scaling behavior, all one needs to show is that the new process does show the same,
or a worse (i.e. steeper) scaling. Note, however, that even if the new process does not affect
the scaling behavior of the error, it may still contribute valuable information that reduces the
absolute value of the error, i.e. the prefactors of the scaling law.

The key element for any given model to reproduce a U-shaped Weber curve is a superlinear
component of the timing error which becomes relevant at longer intervals. In the synfire
model, the constraint was given by a finite chain length and a steeply increasing timing error
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with the transmission delay. So far, no other neurocomputational model has been shown to
have such a superlinear error component. Weber’s law, on the other hand, can be reproduced
more simply by using a stochastic process which evolution is governed by its variance only
(cf. Chapter [). Using this form of temporal information may be necessary when the mean
of the process is not changing with time, or if the noise is so strong that its information
is obscured. Moreover, recent investigations show that stimulus properties encoded in the
variance of neural activity may lead to a more rapid transmission, as needed for certain fast
ecological decisions [I60]. In this case, accuracy of the time estimate would be traded off for
transmission speed. Further electrophysiological investigations could clarify the exact role of
variance-encoding for temporal processing.

Temporal hub. The temporal hub is the key element in our framework, as it constitutes
a centralized site where all temporal cues about a given (potentially multi-modal) stimulus
converge and form an integrated estimate of the duration of an interval. The hub takes the
form of a recurrent neural network with input projections from all the respective sources of
temporal information. This information is optimally integrated when the respective means
are weighted with the reliability, or inverse variance of each source (cf. Section [Z3.3]). This
weighting could be realized at least in two ways. One possibility is to use variance-encoding
inhibitory neurons ([160], see above), which perform the division in Eq. directly by means
of shunting inhibition [72]. As the reliability of each source is computed online, this constitutes
a very flexible way of implementing Bayesian integration, which is necessary in cases where
the variability of sources changes rapidly [45]. On the other hand, it may also be beneficial
to store long-term tendencies in the reliability of the sources. For instance, as we have shown
in Chapter Bl the input from a faster synfire chain at a given interval duration is always
more reliable than the input from a slower one. For such cases, the weighting can be directly
translated into synaptic weights of the projections into the hub. In Section BB we have
shown how such are variance-dependent scaling of synaptic weights could be achieved by a
combination of STDP and homeostatic plasticity. It may be rewarding to further explore the
possible applications of this kind of long-term variance encoding outside the field of temporal
processing.

Note that in Fig. [[.1] there are projections from the inputs at 100 and 300 ms from both
modalities onto the same regions in the temporal hub, respectively, but no other connections
(e.g. from both 100 and 300 ms inputs in the same modality onto the same region in the hub).
This connectivity does not require ad hoc pre-wiring, but may follow from competitive synaptic
plasticity (cf. Section B.5]), if we assume that the recurrent connections within the hub are
plastic as well: When the configuration starts with all-to-all connections, initially all regions
in the hub will be activated alike by the inputs. However, due to fluctuations and synaptic
competition within the hub, this symmetry will eventually break and cell assemblies [1] form
which lead to a stronger response to an input within the assembly compared to cells outside
of it. Because of the Hebbian synaptic competition of the projections into the hub, only those
connections into a cell assembly will be strengthened. Other connections will be weakened by
homeostatic plasticity, and may disconnect entirely by means of synaptic turnover. The exact
dynamics of these plasticity rules should be investigated in further modeling studies.

The assumed plasticity within a hub also provides an explanation for the effect of cross-
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modal training: Several studies report that training e.g. of an interval discrimination task
within one modality also improves discrimination in another modality, but these effects do not
generalize to other interval durations (see [0, 28] for reviews). The second observation was
already discussed in Section Assuming competitive plasticity of connections also within
the hub, the observation of cross-modal generalization can also be explained: Training within
one modality does not only strengthen the input connection of the corresponding process into
the hub, but also the recurrent connections of the cell assembly that encodes the respective
interval. So when the same interval is presented in another modality after the training phase,
it will profit from the strengthened connections within the hub. From this logic, we could draw
the experimental prediction that the performance differences between pre- and post-training
test would be stronger when tests are conducted in the trained modality compared to another
modality. This is because in the training modality, both the connections of the input and
within the hub are enhanced. To our knowledge, this comparison has not been made so far.

While the model of the temporal hub is a quite general one, it is still specific enough to be
tested, and potentially, to be falsified: An alternative explanation for cross-modal interaction
is given by direct synaptic interactions between modality-specific temporal representations.
A critical experiment to decide between these two explanations would be to present intervals
within two modalities at the same time and distort the subjective duration in one of the
modalities. Within our experimental setup (Chapter [l), this distortion could be induced by
observed motion in the visual modality. If the temporal information from the two sources is
integrated into a temporal hub, subjective duration would be the same in both modalities for
all levels of distortion. But if the two modalities directly interact with each other, the two
duration estimates may migrate towards each other, but will stay different, at least for some
level of distortion.

Adaptive memory system. The memory system in our model is the same as in the classi-
cal PAM, with the exception that the reference memory unit integrates over all previously
presented intervals instead of storing a single interval. In Chapter [6l we have shown that
this architecture provides an explanation for adaptation effects in detecting a deviant interval
within an isochronous sequence. Further experiments by our collaborator Stefan Blaschke have
also shown more complex effects [17), [16] which could be explained by extending the model.
For instance, he presented participants with sequences comprising three different standard
durations, and investigated the differences between the a presentation where the different du-
rations were either blocked or randomized. For 50 and 250 ms, he found that the randomized
presentation yielded worse detection results, as one might expect. But interestingly, for 150
ms, which is the arithmetic mean between the other two standard durations, no such dif-
ference was observed. We concluded that the individual intervals are not directly compared
with one another, but that participants develop a long-term standard that averages over the
entire set of trials that were presented during the experiment. This effect can be incorporated
into the model by assuming a longer time constant of the integration. The details of these
modifications are currently being investigated.

So far, we did not make any statements about the anatomical locations of each of the
components of the model. From previous neuroscience studies (cf. Section 2.2.7]), it seems
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reasonable to assume that the individual timing processes are located in modality-specific
regions of the neocortex. However, it may also well be possible that other structures such
as the cerebellum contribute their potential to encode temporal information. In this view,
the cerebellum would not have an exclusive role in temporal processing, but could still be
dominant for tasks which are well suited for its specific architecture, such as the eyeblink
reflex (cf. Section Z2.]). In other tasks, the role of the cerebellum may be of more general
nature, such as the correction of motor errors [89].

A series of reviews by Meck and coworkers [119] 24] 142] provide strong evidence that the
basal ganglia is involved in temporal processing in a way that temporal information from
various cortical areas converges to the striatum. While Meck assumes that the striatal spiny
neurons perform coincidence detection of cortical oscillations (cf. Section [Z2.3]), we propose
that these neurons constitute an ideal neural basis for the temporal hub, which performs
similar computations as in the Meck model, but with more general input. The proposal that
the basal ganglia acts as a temporal hub could be tested in clinical and lesion studies: Lesions
in the spiny neurons should lead to impaired performance when multi-modal stimuli or stimuli
from very different ranges of durations are combined.

We do not have any strong evidence for the exact neural instantiation of the memory and
decision components, other than the common proposal that such executive functions reside
within the prefrontal cortex [89]. This view is supported by the observation that activity from
cortico-striatal pathways are eventually fed back into the cortex [154].

7.2. Conclusion

In the beginning of this thesis, we formulated five questions that we considered central for
the current research on temporal processing: What is the transfer function between physical
and subjective time, what role do non-temporal factors plays, what are the neural codes and
the brain structures used for temporal processing, and finally, are all these aspects common
to all variants of temporal processing? We conclude this thesis with a discussion of how our
work may have contributed to answer any of these questions.

In Chapter Bland ] we showed that the question about the transfer function and the neural
code are best answered together. We both proposed a neural mechanism from which the
experimentally observed error function emerges, and identified constraints of the neural model
that were necessary to account for these experimental findings. Furthermore, we showed how
non-temporal factors such as attention and training could modify temporal estimates within
the model. In Chapter Bl we used the non-temporal factors motion and attention to assess
the question of whether temporal processing relies on centralized or distributed mechanisms.
We found evidence for a third option: Bayesian integration of temporal information from
distributed sources into a centralized temporal hub. And finally, in Chapter[6] we showed that
the representation of sequences can be reduced to the representation of single intervals, so no
separate mechanism is necessary for this task. Only the timing of continuous motion seems
to rely on a such a separate mechanism, as we showed in Chapter Bl The only question we
could not directly address is the one about the anatomical localization of temporal processing,
but we still were able to deduce some likely locations for each of the components of our new
architecture (see above).

112



7.2. Conclusion

This works favors a view onto temporal processing and time perception which may be
novel in some respects: The processing of temporal information is as ubiquitous in brain as
processes that are changing in time in the outer world. The brain can not afford to waste
any of these information, but has to integrate all of them as well as it can. Only such an
integrated judgment about time allows to coordinate our senses and actions with a world that
is constantly changing. In this sense, the sense of time emerges from multiple sources, unlike
the sense of sound or the sense of touch, which is represented in more specific way. Conversely,
time can not be seen as an “a priori notion” that enables all sensation, as Kant believed, but
time is a percept itself that is shaped and manipulated by these very sensations. Taking this
view may not reduce the number of questions that need to be answered about the nature of
time perception, but hopefully allows to ask some them in a more specific way.
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A. Supplemental material for Chapter 5

A.1. Materials and Methods

Participants. 20 adult volunteers took part in Experiment 1 to 4, and Experiment 1b com-
prised 10 participants (90 participants in total, 76 women and 14 men, mean age 23.3 years,
ranging from 19 to 40 years). All had normal or corrected-to-normal vision and normal hear-
ing. They were naive to the purpose of the experiment.

Apparatus and Stimuli. All experiments were controlled by a C/C++ program running on a
computer operating on SuSE Linux 9.0 (SuSE Linux) and a haptic device (Phantom Premium
3.0L 6DOF, SensAble Technologies) connected by a parallel port. The internal clock of the
haptic device, which updates the state of the robotic arm every millisecond (update frequency
1000 Hz), controlled the timing of the experiments.

All experiments were performed standing 50 cm away from of a computer screen (Fujitsu-
Siemens Computers, Scenicview P19-2), holding the end effector of the haptic device in the
right hand, and wearing headphones (Technics RP-FT30). In experiments containing a motion
task, arm motion was performed in the sagittal plane, and recorded in 3D by the manipu-
landum (Fig. [A.1)). In experiments containing a time perception task, participants listened
to white-noise bursts generated with an external sound generator and presented binaurally
through the headphones with an intensity of 65 dB(A). To avoid interference of the arm
movements with a motor response, the participants articulated their responses to the time
perception task verbally. The experimenter recorded each response by pressing the corre-
sponding button on a keyboard.

In all experiments, the participants were presented with an OpenGL 3D environment on
the screen (Fig. [A2). They watched a blue sphere (0.8 ¢cm of width and height in screen
coordinates) moving clockwise on an elliptic trajectory (called “target”). The length of the
main axes of the ellipse on the screen were 20 and 10 cm, respectively. In all experiments
except Experiment 2, the angular velocity of the sphere was constant at 2 rad/sec. This results
in a tangential velocity that varies periodically, with a maximum of 20 cm/sec at the upper
and lower apices and a minimum of 10 cm/sec at the left and right apices. In Experiment
2, the tangential velocity was kept constant to 15 cm/sec. The total time for one revolution
was 3.14 sec in all experiments. There were also two static ellipses drawn in yellow which
surround the trajectory (main axes 22 cm and 12 cm for the larger ellipse, 18 cm and 8 cm for
the smaller ellipse), and finally, a red sphere (“proxy”) of the same size of the target sphere,
which could be controlled by moving the end effector of the robotic arm (Fig. [A.2]).

General procedure. All participants performed a series of three experiments: One with a
time perception task only (¢ime), another with a motor task only (motion), and a third one
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Ellipse on screen: 20 x 10 cm Manipulandum
Plane of
visual motion T T T T T T TTC —
Distance
50cm
Areaof performed
Planeof - motion: 60 x 30 cm
performed
motion

Participant with headphones

Figure A.1.: Setup of the experiment. Participants stand in front of a screen wearing head-
phones. They moved the end effector of a robotic manipulandum in order to
move a proxy on the screen. Setup of the experiment. Participants stand in
front of a screen wearing headphones. They moved the end effector of a robotic
manipulandum in order to move a proxy on the screen.

with both tasks combined (time_motion or tm). The order in which these experiments were
performed was balanced over participants. There was a brief training phase for the time and
the motion task before the actual experiments started. Breaks of one minute duration were
taken after every five minutes of performing each experiment, or earlier if the participants
requested it.

Time experiment. A trial consisted of two white-noise stimuli, the first one with a standard
interval of 100 ms (SI) between the onset and the offset of the stimulus, and the second one
with a comparison interval (CI). The stimuli were always presented at one of the four apices
of the ellipse trajectory of the target sphere. More specifically, the onsets of a stimulus of
duration T" were timed such that the sphere passed one of the apices of the elliptic trajectory
at T'/2 (see Fig.[A.2]). The four possible positions of the first stimulus (upper, lower, left and
right apex) constitute four different conditions, and the second stimulus is always presented at
the following apex (see Fig.[A.2]for an example). In two of the conditions, the first stimulus is
presented in one of the less curved apices (called straights) and the second stimulus in one of
the more curved ones, and in the other two conditions, this order was reversed (called curves).
These four conditions were assigned to the individual trials with equal probability, and no
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2

Figure A.2.: Screen contents for visual feedback during the motor task. The blue sphere
(target) moves along an elliptic trajectory at a prescribed speed. The red sphere
(proxy) can be moved with a robotic manipulandum. The two ellipses surround
the trajectory of the blue sphere to mark an area that should not be left by
the red sphere. Numbers depict the four possible positions of the first auditory
stimulus for the interval discrimination task. The second stimulus followed at the
subsequent apex. Position 1 and 3 are termed straights throughout this chapter,
position 2 and 4 curves. As an example, the white patches depict the case that
the first stimulus is presented at the upper straight. The arrows depict direction
and magnitude of tangential velocity of the blue sphere in Experiment 1. The
numbers, patches and the arrows were not actually shown on the screen, and the
ellipses were shown in yellow against a black background.

distinction was made between the conditions for data analysis (see below).

The participants were instructed to decide which of the two stimuli was longer and say “first”
if they perceived the first stimulus as longer and “second” if the second one appeared longer
to them (two alternative forced choice). The duration of the CI was adjusted according to an
adaptive rule [86] to estimate the mean CI time at which the participants answer correctly
with a probability of 0.75. There were two separate runs in which the CI was initialized
at 130 or 70 ms, respectively. In both runs, the distance of the CI to the SI was increased
after a wrong judgment (“step-up”), and decreased after a correct one (“step-down”). More
specifically, a judgment was considered as wrong whenever the participant answered “first” in
the run starting at 130 ms, or “second” in the run starting at 70 ms. Based on the results
of a pilot study we chose a step-up size of 15 ms and a step-down size of 5 ms. There was
a number of 32 trials for both runs, and trials from both runs were presented in randomized
order, resulting in a total number of 64 trials. No feedback was given. The participants were
instructed not to follow the target sphere with the proxy, but to keep the proxy in the centre
of the ellipses.
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Motion experiment. Different from the time experiment, there were no acoustical stimuli
and the participants were now instructed to follow the target sphere with the proxy by moving
the end effector of the haptic device in the sagittal plane (Fig. [A1]). They were instructed to
follow the trajectory of the target as closely as possible, but also to keep the proxy between
the two yellow ellipses which surround this trajectory at all times, and to move smoothly.
After a few revolutions, when the participants felt comfortable with the motion, a countdown
of 5 min was started during which the trajectory of the proxy sphere, its velocity and the
distance from the target sphere was recorded. There were no constraints on the motion, but
measurements of all three coordinates of the movement confirmed that participants largely
confined their movements to two dimensions. The dimensions of the ellipse in motion space
were approximately 60 cm in width and 30 c¢m in height (Fig. [A.T)).

Time_motion experiment. In the time_motion experiment, participants were required to
perform both of the above tasks simultaneously, i.e. to follow the target sphere with the
proxy and to respond to the acoustic stimuli. Both parts of the experiment were set up
similarly to the conditions in time and motion, with some exceptions: First, the onset of the
acoustic stimuli was now determined by the position of the proxy sphere, and not by the
position of the target sphere as it was the case in the time experiment. The onset angle was
calculated in the same way as in time, and the stimulus was started as soon as the proxy
sphere passed this angle, and stopped again after the stimulus duration T. Second, the time
task was run independently for each of the four conditions of motion (see time experiment),
and each of these conditions was analyzed individually (see below). Each condition comprised
64 trials, which results in a total number of 256 trials. Finally, a response to a trial in the time
task was recorded only if the distance of the proxy from the target did not exceed a certain
value, which we set to 7.5 cm of screen coordinates based on the results of a pilot study. If
this distance was exceeded during the presentation of one of the two stimuli, the current trial
of the time task was repeated. The participants were instructed to do both tasks with the
same priority, and that a bad performance in any of the two would prolong the duration of
the total experiment.

Procedures for the different experiments.

Ezxperiment 1. This experiment was performed according to the general procedure in all
respects.

Ezxperiment 1b. The elliptic trajectory of the target sphere and the yellow ellipses were
rotated by 90 degrees such that the absolute positions of straights and curves were reversed.

Ezperiment 2. The angular velocity of the target sphere was manipulated such that its
tangential velocity was kept constant to 15 cm/sec.

Ezxperiment 3. The time experiment was changed such that the time perception task was
performed and analyzed independently for the four different conditions (i.e. the four apices
at which the first stimulus could appear). There were 64 trials for each condition, resulting
in a total number of 256 trials. In this respect, the time experiment was matched to the
time_motion experiment.

Ezxperiment 4. The training phase for the motion task was prolonged such that all partic-
ipants reached a common level of performance. We measured the target deviation Ar (see
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below) at each millisecond and updated a measure of the accumulated target deviation Ar,
in each time step t according to the following formula

Arttl = aAr + (1 —1/7)Art (A.1)

A; started at an initial value of A? = 333 cm (screen coordinates) and the training phase
was run until Ar. falls below half this initial value. Being updated by the above rule, Ar,
increases in each time step with the currently measured target deviation, weighted by an
increase rate a (set to 2.5E-5 cm), and decays exponentially with a time constant 7 (set to 2
min). At these values Ar, decays to its half value (and stops the training phase) in 2 min if the
participant keeps the target deviation at zero at all times. Non-zero target deviations increase
Ar, according to the weighting factor . The value of results in a training phase that is not
much longer than 2 min if the distance from the proxy to the target is kept below 7.5 cm at
all times. That value was also used as a performance threshold in the time_motion experiment
(see above). Applying this procedure resulted in training phases with a mean length of 4.4
min (SD 2.3 min), as compared to 2.6 min (SD 0.9 min) in Experiment 1.

Data analysis. We used Microsoft Excel 2003 (Microsoft Cooperation) for collection and
basic analysis of the data, MATLAB R2008b (The MathWorks) for calculation of the motion
parameters and R 2.8.0 (The R Foundation for Statistical Computing) for statistical analysis
of all the data. Effect sizes of statistical effects were computed by Cohen’s d [31] for t tests
and by partial n? [94] for analysis of variance, abbreviated as 7712, in the text.

Time task. The adaptive procedure used in the time task was designed to let the duration of
the CI converge to the value where the participant judges the comparison interval as the longer
one in 75% and 25% of all cases for the CI starting above and below the SI, respectively. We
calculated the mean CI for both of these runs in each condition (time and the four positions
in time_motion) based on the 20 last trials to exclude transient effects. From these values Clzs
and Clgs, we calculated the difference limen (DL)

_ Clys — Clyg

DL (A-2)
2
and the point of subjective equality (PSE)
I I
PSE — % (A3)

Motion task. We analyzed the trajectories of the motion experiments in two ways. First,
we averaged over all points in the trajectory that correspond to a given angular position of
the target. The target sphere took the finite number of 3142 such angular positions. For each
of these angles, we calculated the mean and standard deviation of the deviation of the actual
trajectory from the target trajectory Ar (“target deviation”), measured by the Euclidean
distance

Ar= /@ - 2P+ (y — §)° (A.4)

where x and y are the Cartesian coordinates of the proxy sphere and & and § are those of the
target sphere.
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The second way to analyze the trajectories was to cut them into pieces that correspond
to individual revolutions, or laps. For constructing a lap, the angular position of the target
sphere is not suitable, as the movement of the proxy is usually faster or slower than the target
sphere, so no given set of 3142 subsequent data points could be expected to yield an exact
lap. Instead, we determined the laps based to the variable radius of the ellipse. The first lap
started at the first point where the radius was minimal with the y position greater than zero
(upper apex), and ended at the next point where this condition was met again. For each data
point of one of these laps, we calculated the curvature

1o o13/2
H:M (A.5)
% + 2

and the tangential velocity
v =12+ 9?2 (A.6)

where & and y are the approximated time derivatives of the x and y coordinate, respectively,
and z’and 1/ are the approximated derivatives with respect to the angle 6 around the origin
of the ellipse, relative to the upper straight apex. In this way, the values of k and v are given
as functions of the radius r of the trajectory of the proxy rather than the angular position of
the target sphere. For each value of r, we average curvature and tangential velocity over all
laps. Specifically, the values at the apices are determined by the four extreme values of the
radius.

A.2. Supporting text

Data on individual conditions. In Table [A ] to [A.4l we present the mean and variance of
the PSE and DL computed for each individual condition (Table [AT] for PSE and Table [A.3]
for DL), and the pooled values of PSE and DL over the two straights and curves conditions,
respectively, and over all conditions within the time and ¢tm experiment, respectively (Table[A.2]
for PSE and Table [A4] for DL). We also included Experiment 1b (see below), and presented
the time and tm condition in Experiment 3 separately. Note that in some experiments, namely
Experiment 1 and Experiment 3 (time condition), the PSE is somewhat larger in the upper
straight compared to the lower straight, violating the implicit assumption in our analysis
of both straights and curves being identical. To resolve this possible issue, we performed
Experiment 1b.

Experiment 1b. The PSE difference between upper and lower straight in some experiment
raises the concern that the observed PSE differences between straights and curves may be
related to the absolute position of the target on the screen, rather than differences in visual
motion speed as we concluded. To exclude this possibility, we performed a control experiment
with 10 additional participants where we rotated the elliptic trajectory by 90 degrees such
that the position of the target shifted for all conditions: The two straights were now to the
left and the right of the screen, and the curves were positioned at the upper and lower part. If
the position of either the visual target or of the arm movement during the auditory stimulus
presentations affected subjective duration, the PSE would change in opposite way in this
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setup compared to the original experiment, or at least show a less pronounced distortion. In
contrast to this hypothesis, the PSE decreased from straights to curves, just as in Experiment
1 (¢(19) = —3.1, P < 0.006, Cohen’s d = 0.46). From this result, we conclude that absolute
spatial position has no notable effect on the PSE compared to visual motion speed.

Correlations between time and motion data. To directly correlate time and motion data, we
extracted those pieces from the trajectories which were passed during the presentation of the
two auditory stimuli of each trial in Experiment 1. We calculated the average of curvature and
tangential velocity for the trajectory piece corresponding to the first and the second stimulus,
respectively. Then, we correlated the difference in these measures between to first and second
tone with the PSE and the DL. The PSE was significantly correlated with the differences of
both parameters of motion between the first and the second stimulus (curvature: r = —0.33,
t(68) = 3.1, P < 0.003, tangential velocity: r = 0.32, t(68) = 3.0 P < 0.004), but there was no
significant correlation of the DL with neither the curvature (r = 0.16, t(68) = 1.4, P = 0.16)
nor the velocity differences (r = —0.16, ¢(68) = 1.5, P = 0.15).
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Figure A.3.: Curvature and tangential velocity for the straights and curves conditions, re-
spectively, in Experiment 1 and 2. Error bars are standard errors. All motion
parameters changed significantly from straights to curves (P < 0.05). These
changes were less pronounced in Experiment 3 compared to Experiment 2. In
Experiment 3 and 4, the motion parameters showed the same qualitative behavior
as in Experiment 1 (data not shown).
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Exp upper right lower left
straight curve straight curve

1 108.7 (8.2)  105.5 (9.7)  104.8 (8.3)  102.6 (10.1)
1b 108.6 (12.1) 101.1 (12.6) 107.7 (11.6) 105.1 (9.9)
2 110.1 (12.9) 109.7 (11.3) 109.7 (12.0) 110.8 (11.1)
3, time || 102.9 (6.1)  102.1 (5.5) 104.5 (5.0) 102.4 (6.2)
3, tm 109.5 (9.1)  104.9 (10.0) 106.3 (10.6) 105.2 (9.7)
4 105.7 (11.6) 103.2 (12.9) 104.1 (11.2) 100.1 (11.7)

Table A.1.: PSE (in ms) for each individual condition and experiment. Each cell contains the
average over all participants, and standard deviation in brackets. In Experiment

3, the time and tm condition are reported separately.

Exp H tm time H straights curves

1 105.4 (8.3) 103.5 (8.3) 106.8 (7.9) 104.0 (9.4)

1b 105.6 (10.8) 104.6 (8.0) 108.1 (11.6) 103.1 (10.4)
2 110.1 (11.3) 106.6 (10.6) || 109.9 (11.8) 110.2 (11.0)
3, time || 106.4 (9.3) 103.0 (5.3) 103.7 (5.3) 102.2 (5.5)

3, tm 106.4 (9.3) 103.0 (5.3) 107.9 (9.5) 105.0 (9.4)

4 103.3 (11.0) 101.3 (10.8) || 104.9 (10.8) 101.7 (11.9)

Table A.2.: PSE (in ms) for each experiment averaged for time, tm, straights and curves condi-
tion. Each cell contains the average over all participants, and standard deviation
in brackets. In Experiment 3, the time and ¢m condition are reported separately.
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Exp upper right lower left
straight curve straight curve

1 13.1 (6.2) 14.3 (5.4) 124 (5.0) 14.2 (7.3)
1b 14.3 (5.1) 13.7(6.4) 16.5(7.6) 11.4 (3.8)
2 14.7 (6.6) 16.1 (8.7) 15.3(7.3) 129 (6.9)
3, time || 9.2 (3.9) 8.9 (3.0) 10.2(3.6) 8.8 (4.4)
3, tm 14.2 (6.8) 14.0 (8.1) 14.9 (10.3) 12.3 (4.6)
4 14.3 (7.8) 12.2 (5.8) 14.5(9.2) 13.0 (6.2)

Table A.3.: DL (in ms) for each individual condition and experiment. Each cell contains the
average over all participants, and standard deviation in brackets. In Experiment
3, the time and tm condition are reported separately.

Exp H tm time H straights curves

1 13.5 (4.6) 10.5 (3.3) || 12.8 (5.0) 14.2 (5.5)
1b 13.9 (4.4) 109 (4.4) | 154 (5.6) 12.5 (3.6)
2 14.8 (6.0) 10.9 (3.4) || 15.0 (6.4) 14.5 (6.4)
3. time || 13.8 (6.4) 9.3 (2.1) 9.7 (3.0) 8.8(3.2)
3. tm 13.8 (6.4) 9.3 (2.8) 14.5 (8.2) 13.1 (5.9)
4 13.5 (6.4) 11.0 (4.8) || 14.4 (7.9) 12.6 (5.6)

Table A.4.: PSE (in ms) for each experiment averaged for time, tm, straights and curves condi-
tion. Each cell contains the average over all participants, and standard deviation
in brackets. In Experiment 3, the time and ¢m condition are reported individually.
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