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1 Introduction

Unveiling the mystery of the brain is one of the most compelling fields of recent research. It has
come a long way, dating back centuries and has made considerable progress especially in the last
few decades. Although a great deal of detailed physiological and theoretical knowledge is now
established, many fundamental questions still remain, and new ones arise with every step forward
towards a better understanding of the functioning of the brain.

Information about the outside world is encoded by the sensory organs into electrical pulses
and further sent to the brain. These almost unitary events called action potentials (AP) or simply
spikes are the fundamental bits of information in the brain. They are processed in large networks
of various types of neurons that are highly interconnected by different types of synapses. One
purpose of this huge dynamical system is to extract, sort and store the incoming information and
provide feedback to the outside world.

Finding the underlying principles of the information processing in the brain—the neural code—
is the primary goal for a thorough understanding of the brain. An important aspect in this respect
is the collective dynamics of neural networks, as they set the boundary conditions for the neural
code. In this thesis, a novel approach for the theoretical characterization of the dynamical nature
of neural networks is introduced. It is based on methods and tools from dynamical systems theory
applied to models of spiking neuron networks.

One can easily think of three main factors that play a fundamental role in the dynamics of neural
networks: (i) the individual neuron dynamics (e.g. details of the action potential generation), (ii)
the individual synapse dynamics (e.g. action potential transmission) and (iii) the network topology
(the detailed pathways of action potentials through the networks). The impact of all these factors
on the network dynamics can be examined with the here introduced approach. It can directly be
applied to arbitrary network topologies and different types of neurons described by their phase-
response curves. An extension from synaptic δ pulse coupling to temporal synaptic transmission
is discussed as well.

Particular emphasis is placed on the influence of the action potential generation in single neurons
on the collective network dynamics. It was shown recently that cortical neurons exhibit a much
sharper AP initiation than predicted from standard neuron models [1]. This fact, accompanied
by controversial results of stable and chaotic dynamics in the balanced state of cortical networks
depending on the single neuron dynamics [2–7], inspired an in-depth analysis of the effect of single
neuron dynamics on the collective network dynamics.

The background of the controversy over the dynamical nature of the balanced state and what
exactly the balanced state is will be discussed in the next section. This follows a brief summary
of simple single neuron models and the relation of their action potential generation to that of real
cortical neurons. A discussion of previous work on the analysis of neural network dynamics and
the theoretical nonlinear dynamics background for the here-introduced approach is provided in
Section 1.3 and 1.4. The chapter is finished with a brief overview of spike correlations.
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1. Chapter Introduction

In Chapter 2, the general approach for an exact characterization and quantification of the collec-
tive dynamics of spiking neuron networks is derived. This approach is based on exact closed-form
expressions of the single neuron dynamics that allow us to run fast and precise event-based sim-
ulations and calculate the complete spectrum of Lyapunov exponents. As a first example, this
approach is demonstrated in a comprehensive analysis of networks of theta neurons, the standard
form of type I excitable membranes. These results establish that networks of such neurons exhibit
extensive deterministic chaos. The derived rate of entropy production and attractor dimension are
strikingly high. While such neural networks thus exhibit a huge repertoire of possible network
states, information processing is restricted by the dynamical entropy production and appears to be
limited to the immediate stimulus response. Parts of these results were published in Ref. [8].

The theta neuron model shares the low AP onset rapidness of other standard neuron models. To
thoroughly investigate the influence of the much larger AP onset rapidness of real cortical neu-
rons [1], we developed a new neuron model with variable action potential onset rapidness—the
rapid theta neuron model. The collective network dynamics of such rapid theta neurons is com-
prehensively analyzed in Chapter 3. The results demonstrate that the network dynamics strongly
depends on the detailed dynamics of the action potential generation. For low AP onset rapidness,
the results indicate qualitatively similar chaos as in theta neuron networks discussed in Chapter
2. For large AP onset rapidness, the network dynamics changes qualitatively and in the limit of
instantaneous AP generation, the results indicate stable dynamics similar to leaky integrate and fire
neuron networks (see Ref. [4–7] and Chapter 5). Between these contrary dynamics, we were able
to quantify the edge of chaos depending on the network parameters. Towards the edge of chaos,
with increasing AP onset rapidness of the neurons, the entropy production rate is strongly reduced,
implying an enhanced capability for information processing. At the same time, the dimensional-
ity of the network’s attractor is reduced, reflecting the emergence of higher order correlations and
entangled statistics in such models of cortical networks.

In Chapter 4, the introduced approach is extended to incorporate temporal synaptic transmis-
sion. Instead of δ pulse coupling as before, we analogously derive the approach for exponentially
decaying postsynaptic currents in networks of leaky integrate and fire neurons. Our results show
that such temporal postsynaptic currents can render the collective network dynamics chaotic. This
chaos, however, is much weaker compared to the chaos in theta neuron networks with an active
AP generation. Nevertheless, it shows that the stable dynamics of inhibitory leaky integrate and
fire networks, referred to as stable chaos, is quite fragile.

To further investigate stable chaos in cortical networks and motivated by the recent experimen-
tal observation of high sensitivity of cortical networks to single spike perturbations, we studied
finite size perturbations in inhibitory leaky integrate and fire networks, detailed in Chapter 5.
Surprisingly, these networks, although exhibiting stable dynamics with respect to infinitesimal
perturbations, are highly sensitive to the failure of individual spikes. Single spike failures lead
to rapid decorrelation of the network’s microstates which we quantified with a pseudo Lyapunov
exponent. The pseudo Lyapunov exponent appears to increase to infinity in the large network and
connectivity limit. This result of stable dynamics on the one hand and extremely unstable dynam-
ics on the other hand bridges the gap between the previously contradictory results of binary and
leaky integrate and fire neuron networks [2–7]. The analysis of finite size perturbations clarifies
that these opposed results arise depending on the order in which the weak perturbation limit and
the large network limit are taken. Our analysis also reveals the complex structure of the underlying
phase space, which is composed of tangles of exponentially separating flux tubes around unique
stable trajectories.

2



1.1 The Balanced State of Cortical Networks

1.1 The Balanced State of Cortical Networks

Yin and Yang: “Yin in its high-
est form is freezing while Yang in
its highest form is boiling. The
chilliness comes from heaven
while the warmness comes from
the earth. The interaction of these
two establishes He (harmony), so
it gives birth to things. Perhaps
this is the law of everything yet
there is no form being seen.”

Zhuangzi, Ch. 21 [9]

The cerebral cortex plays a key role in information processing
in the mammalian brain. Surprisingly, cortical neurons embed-
ded in intact cortical circuits emit action potentials (spikes) in a
seemingly random fashion [10, 11]. The collective state of corti-
cal neurons is thus described as an asynchronous irregular state—
asynchronous in terms of the firing activity of different neurons
across the network, and irregular in terms of the firing activity of
individual neurons over time. The prevailing hypothesis of the
origin of this asynchronous, irregular state is a dynamic balance
between excitation and inhibition called the balanced state of cor-
tical networks [2, 3, 12, 13].

The balance of excitation and inhibition has been demonstrated
experimentally in vitro and in vivo in various parts of the nervous
system, for example in the cortex [14–17], the hippocampus [18],
the superior colliculus [19], the brain stem [20] and even the spinal
cord [21]. As the Zhuangzi from 300 BC claims: “Perhaps this is
the law of everything.”

Cortical neurons are permanently bombarded with synaptic in-
puts. A large fraction of these inputs, however, are received from
neurons of different brain areas, and can be assumed to be un-
correlated. It thus results in a temporally constant input to the
neurons. The temporally constant input would lead to periodic
regular firing of the neurons, as the spike generating process was found to be highly reliable [22].
The observed irregular firing is therefore thought to arise from fluctuations in the synaptic in-
puts [23]. Interestingly, these fluctuations are the result of a cooperative network effect due to the
dynamic balance of excitation and inhibition [2, 3].

A steady state with finite average firing rate in a recurrent neural network requires a balance
of excitation and inhibition. If all neurons were excitatory coupled, the positive feedback would
quickly lead to an explosion of the firing rates. Thus the excitation must be compensated by
inhibition. This dynamically drives the network into a responsive state at a low average firing rate.
A great deal of theoretical work has been devoted to the characteristics of this balanced state and
has established that it emerges robustly without the need for fine-tuning of parameters or stochastic
sources in sparse random networks with relatively strong synapses [2, 3, 5–7, 24–33]. Relatively
strong synapses yield large input fluctuations of the same order of magnitude as the mean current,
which is important in explaining the irregular activity. A possible correlation in the inputs would
then lead to a synchronized state. To rule out this possibility, it was originally necessary to consider
sparse networks in which neurons are expected to be uncorrelated [34].

More recently it was shown that the balanced state also emerges dynamically in dense net-
works [32, 33]. In dense networks, the number of synapses per neuron increases proportional to
the network size, the connection probability held constant. In sparse networks, the number of
synapses per neuron is held constant with increasing network size. The emergence of the balanced
state in sparse networks is due to weak correlations. In dense networks, the current correlations
in the excitatory and in the inhibitory populations are positive and large. Because the inhibitory
population tracks the excitatory population with a small time lag (vanishing in the large network
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1. Chapter Introduction

Figure 1.1 – The balanced state in densely connected networks. (Figures from Ref. [32]) (A) Shared
inputs from either excitatory or inhibitory neurons contribute positively to the input current correla-
tion c but correlations between excitatory and inhibitory inputs contribute negatively (green: excitatory,
red:inhibitory). (B) The balance of input correlations leads to the asynchronous irregular state in densely
connected networks (spike patterns (top), synaptic currents (middle) and membrane potentials (bottom)),
asterisks mark cancellation of simultaneous fluctuations in excitatory and inhibitory input current. (C) Self-
consistent circle of correlations leading to the asynchronous balanced state (top) and weak but broadly
distributed pairwise spike correlations (bottom).

limit), the positive excitatory and negative inhibitory currents are negatively correlated and balance
the positive current correlations [32]. Thus, in dense networks, positive and negative current cor-
relations are dynamically balanced, leading to the asynchronous irregular network state with low
spike correlations (Fig. 1.1).

A question arising is what are the advantages of the asynchronous irregular balanced state. There
are several reasons. It emerges without fine-tuning and can thus easily adapt to different scenarios.
An increase in the external input leads to a controlled increase of the firing rate. The tracking
of small input fluctuations is important in separating the information from the input streams. It is
unlikely that information is provided by large fluctuations in the overall input, but rather is encoded
in small variations of a few inputs. Fast tracking of small input variations is a key feature of the
balanced state [3, 24, 32] and certainly fundamental for the performance of cortical networks. The
likely chaotic nature of the balanced state would be beneficial for this process but also implies
constraints on the neural code due to a dynamic entropy production.

It is therefore of fundamental importance for the understanding of information processing to
clarify whether the balanced state exhibits chaotic or stable dynamics. A network with chaotic
dynamics exhibits sensitivity to initial conditions. On the one hand, this is beneficial for distin-
guishing small differences in the network’s microstate that reflect variations of the input stream.
On the other hand, due to the sensitivity, information is also gained about irrelevant microscopic
processes such as stochastic ion channel openings. This produces entropy that overwrites the actual
input information provided to the network and thus limits information processing. Another advan-
tage of chaotic dynamics is the permanent exploration of different states on the chaotic attractor
without getting locked into spurious states. This could in principle occur in the case of stable
dynamics. A network with stable dynamics is not sensitive to initial conditions. The input infor-
mation provided to the network is thus not degraded over time by a dynamic entropy production.
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1.2 Single Neuron Dynamics

It would also be more noise-resistant, but at the potential cost of possibly untracked changes of
small input variations and possibly long transients after strong input variations. These two oppos-
ing scenarios, stable or chaotic dynamics, require completely different strategies for information
processing. Therefore, one can conclude that the dynamical nature of cortical networks sets the
boundary conditions of the underlying neural code.

Previous studies have shown that the dynamical nature of the balanced state strongly depends
on the neuron model and network architecture used. Originally, the balanced state was reported
to be strongly chaotic [2, 3]. This strong chaos, characterized by an infinite largest Lyapunov
exponent, was found in excitatory-inhibitory networks of binary neurons. In contrast, balanced
inhibitory networks of leaky integrate and fire neurons were demonstrated to generally exhibit a
peculiar form of stable dynamics in the limit of vanishing synaptic time constants [5–7]. This type
of dynamics, characterized by a negative largest Lyapunov exponent despite an irregular network
activity shares similarities with a type of aperiodic dynamics termed stable chaos [35]. It seems
to be robust in balanced leaky integrate and fire networks, in the sense that small changes in the
network model, e.g., adding a few excitatory neurons, does not destabilize the network dynamics
[7]. Including a finite decay time of synaptic currents, however, turns inhibitory leaky integrate
and fire networks chaotic in the conventional sense of positive Lyapunov exponents [5]. This will
also be addressed in Chapter 4 The leaky integrate and fire neuron and the binary neuron models,
however, lack the active spike-generating mechanism of real neurons and physiologically detailed
neuron models. The influence of this single neuron instability on the collective network dynamics
will be investigated in detail in Chapters 2 and 3.

1.2 Single Neuron Dynamics
Neurons are highly interconnected cells in the brain. They are
composed of dendrites, the cell body called the soma and an
axon. The connections between axons and dendrites of differ-
ent neurons are established at synapses. Information is com-
municated in terms of electrical pulses, called action poten-
tials or spikes. The neurons receive electrical signals through
their tree of dendrites and send out action potentials to other
neurons through their axon. The detailed dynamics of action
potential generation plays a central role in the information
processing of neural networks as will be worked out in this
thesis.

Action potentials are short events of fast depolarization of
the neuron’s membrane potential. We will give a very sim-
plified description of an action potential generation. The cell
membrane of a neuron is a phospholipid bilayer that is imper-
meable to ions. It can be thought of as a capacitor, insulating
the inside of the cell from the outside. The most important
ions involved in the generation of an action potential are sodium NA+ and potassium K+. The dif-
ference of the ion concentration between the inside and the outside of the cell defines the voltage
across the membrane and is usually referred to as the membrane potential relative to the outside of
the cell. A typical resting potential of a neuron is−60mV. If the membrane potential becomes de-
polarized, voltage-gated ion-specific channels are triggered. They are complex proteins embedded
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1. Chapter Introduction

in the cell membrane and responsible for the generation of action potentials. At a certain threshold
of the membrane potential, typically around −50mV, fast sodium channels open abruptly, leading
to an influx of sodium ions into the cell. This depolarizes the membrane further and more channels
open, leading to an overshoot of the membrane potential. The sodium channels then deactivate and
the slower potassium channels open. They induce an outward potassium current that hyperpolar-
izes the membrane potential and terminates the overshoot. This short overshoot in the membrane
potential time course is called an action potential. The action potential is generated at the axon
hilloc and then propagates down the axon as the inward currents provoke action potentials in the
adjacent sections of the membrane.

Neuron models describe the membrane potential in terms of differential equations of the mem-
brane potential, or voltage. The membrane acts as a capacitor with voltage dependent currents.
The governing equation of the membrane potential V is

C
dV
dt

= Im + Is

with the membrane capacitance C, the voltage dependent membrane current Im and the synaptic in-
put current Is. Different neuron models differ in the details of the membrane current Im. Generally,
they are written down in the form

Im =−∑
i

gi(V −Ei),

where the sum runs over all types of ion channels to be considered, gi is the conductance of the ion
channel and Ei is its reversal potential. The number and types of ion channels depend on the type of
neuron and the level of physiological detail of the neuron model. Important to mention here is the
Hodgkin-Huxley model, the first model to quantitatively describe action potential generation [36].
Developed to describe action potential generation in the giant squid axon, this fundamental model
incorporates a leakage, sodium and potassium current and is still the standard for the explanation
of action potential generation. Hodgkin and Huxley received the “Nobel Prize in Physiology or
Medicine” in 1963 for this breakthrough in biophysics. For the description of cortical neurons,
however, it might be less suitable because it exhibits type II firing.

Neuron models are divided into two main types, type I and type II (Fig. 1.2). They are dis-
tinguished by the relationship between the injected current I and their firing rate F captured in
the FI-curve. Type I excitable neurons are characterized by a continuous onset of firing above
a certain current threshold IT . This behavior is associated with a saddle node on invariant circle
(SNIC) bifurcation F ∝

√
I− IT or a homoclinic bifurcation F ∝ 1/ log(I− IT ). Type II excitable

neurons are characterized by a discontinuous onset of firing, a jump in the FI-curve. This behavior
is associated with a Hopf-bifurcation.

The Hodgkin-Huxley model is a type II model, but the majority of cortical neurons are type I
excitable neurons. Connor and Stevens modified and extended the Hodgkin-Huxley model such
that their model would reproduce the type I behavior of gastropod neurons [39]. In addition to
the sodium and potassium currents, they included a transient potassium current called A-current.
Another important standard model is the Wang-Buzsáki model developed to describe interneurons
in the hippocampus [38]. It is a type I model without the need of an additional A-current and
the close association of the hippocampus with the cerebral cortex makes it quite suitable for cor-
tical neurons. We will, however, discuss below that cortical neurons exhibit a much faster action
potential onset than predicted by these and other standard models.
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1.2 Single Neuron Dynamics

Figure 1.2 – Firing rate functions of type I and type II excitable membranes. (Figures from Ref. [37])
(A) Type II, subcritical Hopf bifurcation. (B) Type I, saddle-node limit cycle bifurcation. (C) Type I, regular
homoclinic bifurcation. (Full circles are stable, open circles are unstable nodes, and grey circles are saddles)

0 100 200 300
time (ms)

-60

-40

-20

V
 (

m
V

)

Connor-Stevens model
Wang-Buzsàki model

Rapid theta neuron model (r = 3)

Theta neuron model (r = 1)

Figure 1.3 – Standard neuron models of noncortical neurons. Standard neuron model such as the Wang-
Buzsáki model [38] and the Connor-Stevens model [39] exhibit low AP onset rapidness. They are compared
with the theta neuron model and the rapid theta neuron model with AP onset rapidness r = 3.
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1. Chapter Introduction

In computational neuroscience, another class of neuron models is very important which are
physiologically less realistic but can quantitatively well-describe the action potential generation.
These are the integrate and fire models: the perfect integrator (PIF) where the membrane current is
zero, the leaky (also linear) integrate and fire model (LIF) where only a leak current is considered,
the quadratic integrate and fire model (QIF) where the membrane current is a quadratic function of
the voltage, and the exponential integrate and fire model (EIF) where a leak term and an exponential
function constitute the membrane current. The theta neuron model is a phase representation of the
QIF model and will be described in more detail in Section 2.5. To study the effect of rapid action
potential onset on the network dynamics we will introduce another one-dimensional neuron model,
the rapid theta neuron model with variable spike onset rapidness in Section 3.1. A comparison with
the conductance-based Connor-Stevens and the Wang-Buzsáki models is shown in Fig. 1.3. It can
be seen that these neuron models exhibit a rather slow spike onset rapidness corresponding to an
r between 1 and 3. A comparison with the EIF model and more details on the integrate and fire
models are provided in Appendix A.

1.2.1 Action Potential Generation in Cortical Neurons

Cortical neurons were found to exhibit an action potential (AP) generating mechanism, that could
not be reproduced by Hodgkin-Huxley type models [1]. They exhibit a much sharper AP on-
set than predicted from standard single compartment neuron models (Fig. 1.4(a)). An intriguing
explanation of this sharper depolarization is that the positive feedback between the opening of
sodium channels and the increased depolarization through the inward flux of sodium is addition-
ally boosted by a cooperative opening of adjacent sodium channels [1]. Although a fascinating
idea, questioning the supposedly well-understood process of AP initiation in neurons has triggered
a heated debate [41, 42].

Another explanation for the observed discrepancy between the AP generation in standard models
and in real cortical neurons is the backpropagation of the spike from its site of initiation at the axon
initial segment (AIS) into the soma [40]. The experiments reported in Ref. [40], however, confirm
that the AP onset rapidness is already strongly increased in the AIS (Fig. 1.4(b)). As demonstrated
with a multicompartment model, it further increases due to the backpropagation into the soma, but
the initial high AP onset rapidness in the AIS could only be obtained with a high sodium density ten
times larger in the AIS than in the soma [40]. While the backpropagation hypothesis is supported
by different types of sodium channels in the AIS [43], the assumed sodium density for the initial
sharp AP generation seems unphysiologically high. Recent fluorescence imaging revealed that this
ratio is maximally three to one [44]. The origin of sharp AP onset thus still remains an open and
interesting question.

Here, we will discuss the influence of the AP onset rapidness on the collective network dynam-
ics. The developed rapid theta neuron model allows us to vary the AP onset rapidness arbitrarily.
In the rapid theta neuron model, the AP onset rapidness is measured relative to the membrane time
constant τm. At the resting potential, the rapidness is−1/τm and at the AP onset it is r times larger,
namely r/τm. For noncortical neuron models, we can see in Fig. 1.3 that r is in the range 1 to 3.
From the experiments in cortical neurons by Yu et al. [40] and Naundorf et al. [1], we can estimate
the slope at AP initiation to be between 7ms−1 and 20ms−1. Thus following the current literature
and assuming a membrane time constant of τm = 10ms which will be used throughout this thesis,
the AP onset rapidness r of cortical neurons lies in the range of 10 to 100. In our analysis of the
effect of the AP onset rapidness on the collective network dynamics in Chapter 3, we will thus

8



1.2 Single Neuron Dynamics

(a) (Figures from Naundorf et al. [1]) left: voltage trace of a cortical neuron in vivo
showing the characteristic kink at action potential onset, right: phase plot of the action
potential.

(b) (Figures from Yu et al. [40]) left: cortical layer 5 pyramidal cell, middle: voltage trace recorded in the soma (top)
and in the axon initial segment (bottom), right: phase-plot of the action potentials.

Figure 1.4 – Action potential generation in cortical neurons. They exhibit a very large AP onset rapidness
in the soma and at the sight of initiation in the axon initial segment.
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1. Chapter Introduction

mostly use the representative values r = 1,3,10,100.

1.3 Chaotic Neural Network Dynamics
Much theoretical work has been devoted to the characteristics of the emerging firing patterns of
neural networks, leading to important implications and insight towards an understanding of the
neural code. Studying the dynamical nature of neural networks has always been an important
aspect in this endeavor. The idea of chaotic dynamics in neural circuits is not new per se [45] and
its detailed investigation has been approached several times.

The first study of high dimensional neural networks in a mean-field description showed a direct
transition from a stationary to a chaotic state [46]. This transition depended on the gain parameter
of the nonlinear input-output function of the single neurons. The authors of this study already
surmised that the number of positive Lyapunov exponents would scale proportional to the system
size. Analogous to spin glasses, the connectivity in the networks was assumed to be dense and
random but asymmetric. Biologically more realistic is a network topology with an excitatory and
inhibitory population of neurons. Then, Dale’s law, stating that a neuron always sends either
excitatory or inhibitory signals independent of target neuron is fulfilled. The dynamics of such
excitatory-inhibitory networks of binary neurons in the balanced state was investigated in a seminal
mean-field analysis and found to be strongly chaotic [2, 3]. The extreme form of chaos in such
networks was characterized by an infinite Lyapunov exponent. The authors ascribe this to the
discreteness of the degrees of freedom due to the binary neuron model used because it implies
an infinitely high gain of microscopic changes. A related work studied networks of conductance-
based neurons with a spatially structured connectivity as a model of a hypercolumn in the visual
cortex [47]. Unlike networks in the balanced state, this network resulted in correlated synaptic
inputs leading to a synchronous but temporally irregular state. This state was also characterized by
chaotic dynamics. In a different approach, based on an abstract dynamical system representation
for neural networks, it was proposed that cortical networks are quite generally chaotic and that
reproducible precise spike timing in cortical networks is unlikely [48, 49].

A recent series of studies based on leaky integrate and fire neurons and their generalizations
reported various phenomena in the collective dynamics that strongly depended on the networks’
details and require an analysis of the network dynamics keeping track of every individual spike
[50–59]. Globally coupled networks of leaky integrate and fire neurons for example show rapid
convergence to stable periodic spike sequences when inhibitory coupling is dominant [60]. In
diluted inhibitory networks of leaky integrate and fire neurons, the synchronous state is still sta-
ble and the time to synchronization obeys a speed limit, depending on the topology of the net-
works [61–63]. Diluted leaky integrate and fire networks with excitatory coupling on the other
hand show long and chaotic transients [64], and allowed for an analytical approximation of the
largest Lyapunov exponent. This was recently complemented by numerical results for fully cou-
pled networks with time dependent stimuli [65]. Diluted leaky integrate and fire networks with
inhibitory coupling also show long transients, but are characterized by stable dynamics [4–7]. It
was further suggested that leaky integrate and fire networks with excitatory and inhibitory popu-
lations exhibit high dimensional chaos but the time series analysis used was inconclusive in this
case [66].

The approach introduced in this thesis provides a controlled method beyond the calculation
of the largest Lyapunov exponent, for the characterization of spiking neuron network dynamics.
Based on exact solutions of the single neuron dynamics, it allows for the numerically exact calcula-
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1.4 Lyapunov Exponents, Entropies, Dimensions

tion of the full spectrum of Lyapunov exponents, providing detailed information about the network
dynamics.

1.4 Lyapunov Exponents, Entropies, Dimensions

A dynamical system can be described by differential equations:

d~x
dt

= ~F(~x), ~x ∈ RN (1.1)

where~x describes the state of the system, t denotes time and RN is called the phase space (also state
space). The solutions of (1.1) given an initial condition are called trajectories and typically settle
after a transient on a subset of the phase space called the attractor. This can be a fixed point with
zero-dimension, a periodic orbit with one-dimension, a quasi-periodic orbit with integer dimen-
sion (torus) or a strange attractor with chaotic dynamics and fractal dimension. In chaotic systems,
the sensitive dependence on initial conditions leads to exponentially separating trajectories. This
stretching of phase-space volume in some directions is accompanied by contraction in other direc-
tions, such that the overall volume is preserved (conservative systems) or compressed (dissipative
systems as in the following). Folding of the stretched trajectories leads to the fractal, self-similar
structure of strange attractors and assures that it is bounded. Given the attractor being compact and
invariant under the dynamical system, there exists an invariant probability measure with compact
support on the attractor [67]. This measure can be chosen to be ergodic, call it a physical mea-
sure (e.g. Kolmogorov measure, SRB measure), which has far-reaching consequences for studying
such dynamical systems.

Ergodic theory allows us to study the long-term behavior of a dynamical system using the er-
godic measure as it represents time averages. The ergodic theorem states that the time average of a
continuous function ϕ can be substituted by the average with respect to the measure ρ for almost
all initial conditions:

lim
t→∞

1
t

ˆ t

0
ϕ(x(t ′))dt ′ =

ˆ
ϕ(x)ρ(dx). (1.2)

Crucial in the analysis of the dynamics is the sensitivity to initial conditions. A system exhibits
sensitivity to initial conditions if the distance between two originally infinitesimal close points
~x1 and ~x2 =~x1 + εδ~x grows exponentially. The time evolution of the infinitesimal perturbation
εδ~x with strength ε → 0 and normalized direction δ~x is given by the solution ~x(t) of Eq. (1.1).
In linear order of the perturbation size, one gets ~x2(t) ≈~x1(t)+ εTtδ~x with the derivative Tt =
d~x(t)/d~x(0) also called the Jacobian matrix. The Jacobian matrix thus determines the growth rate
of infinitesimal perturbations. The average exponential growth rate is captured by the Lyapunov
exponent λ = lim t→∞

1
t log ||Ttδ~x||.

Lyapunov exponents are the centerpiece in our investigation of the dynamics of spiking neuron
networks. They capture the exponential growth rate of infinitesimal perturbations. This, however,
depends on the direction of the perturbation δ~x. Therefore, in an N-dimensional system there
exists a spectrum of N Lyapunov exponents λ1 ≥ . . . ≥ λN . The largest Lyapunov exponent λ1
plays an important role in characterizing the dynamical nature of a system, as it determines the
growth of perturbations applied in a random direction (see Eq. (1.4)). If perturbations grow ex-
ponentially (positive largest Lyapunov exponent) the system displays a sensitive dependence to
initial conditions and is considered to be chaotic. If perturbations decay exponentially (negative
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1. Chapter Introduction

largest Lyapunov exponent) the system is called stable. The full spectrum of Lyapunov exponents
captures additional important information about the dynamics of the system.

The foundation of the existence and the computation of the complete spectrum of Lyapunov
exponents builds the multiplicative ergodic theorem, also known as Oseledec theorem [67]. Briefly,
it states that for the product of matrices Tt = Ds · · ·D0 with s≤ t the Oseledec matrix Λ exists for
almost all initial conditions:

Λ = lim
t→∞

(T∗T)
1
2t , (1.3)

where T∗ denotes the transpose of T and the logarithms of the eigenvalues of the Oseledec matrix
(1.3) are the Lyapunov exponents λ1 ≥ ·· · ≥ λN . However, because of the ill-conditioning of the
Oseledec matrix (1.3), due to the exponential growth and decay of the eigenvalues, the standard
procedure for the numerical calculation of the Lyapunov exponents [68, 69] exploits a different
part of the Oseledec theorem. Namely, the fact that the growth rate of a volume element spanned
by vectors of different subspaces is given by the sum of the corresponding Lyapunov vectors. The
exact Lyapunov exponents are equivalently defined for almost all initial conditions by the limits:

λi = lim
t→∞

1
t

log ||Tδ~x|| ifδ~x ∈ Ei \Ei+1, (1.4)

where the Ei’s are a valid decomposition of the phase space corresponding to subspaces spanned
by the eigenvectors associated to the eigenvalues ≤ exp(λi) of the Oseledec matrix. The vectors
δ~x are normalized vectors in the corresponding subspace Ei. In particular, Eq. (1.4) means that
for almost all vectors, namely δ~x /∈ E2, the limit is the largest Lyapunov exponent. Even though
the multiplicative ergodic theorem at first sight seems less strong than the ergodic theorem, the
existence of the limit is remarkable since it deals with non-commuting matrices. Another important
point is that the Lyapunov exponents are topological invariant. Thus, one can say that they do not
change under moderate changes of coordinates.

The full spectrum of Lyapunov exponents enables us to derive the entropy production rate and
the attractor dimension. In chaotic systems, information flows from microstates to macrostates due
to the sensitivity to initial conditions [70]. This creation of information about initial conditions is
captured by the Kolmogorov-Sinai entropy, also called metric entropy or just entropy production
rate. An upper bound to the Kolmogorov-Sinai entropy HKS≤H is given by the sum of the positive
Lyapunov exponents [71]:

H = ∑
λi>0

λi. (1.5)

For smooth densities ρ of the physical measure along the unstable directions the Pesin identity
HKS = H holds. The validity of the Pesin identity is equivalent with ρ being a Sinai-Bowen-Ruelle
(SRB) measure [72]. Keeping this in mind, we will call H the entropy production rate throughout
this thesis.

The ordered Lyapunov exponents additionally yield the Kaplan-Yorke dimension, also known
as Lyapunov dimension via

D = d +
∑

d
i=1 λi

|λd+1|
d = max

{
n :

n

∑
i=1

λi ≥ 0

}
. (1.6)

This is an upper bound to the information dimension D1 ≤ D [73], where the equality was orig-
inally conjectured by Kaplan and Yorke for SRB measures [74]. If the Kaplan-Yorke conjecture
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holds, then ρ is an SRB measure and thus the Pesin identity holds as well [72]. Keeping this in
mind, we will call D the attractor dimension throughout this thesis. These fundamental quantities,
derived from the Lyapunov spectra, are topological invariants of the dynamical system and play
the central role in our analysis of the dynamics of neural networks.

For an intuition of Eq. (1.5) and (1.6), consider that each positive Lyapunov exponent stands for
the exponential rate of separation of initial conditions in one direction. This leads to distinguishable
macroscopic states, thus producing entropy. The sum of all positive Lyapunov exponents yields
the overall rate of entropy production, Eq. (1.5). Each negative Lyapunov exponent stands for the
exponential rate of contraction of initial conditions in one direction. The number of directions d
in Eq. (1.6) symbolizes a balance of separation and contraction, as it counts the number of ordered
Lyapunov exponents for which the sum remains nonnegative. It can be seen as an estimate of the
dimensionality of a hypersphere representing possible perturbations along the trajectory, whose
volume is preserved. The second term in Eq. (1.6) is a linear interpolation for the general case
where the sum ∑

d
i=1 λi is not exactly equal to zero.

The relation to different definitions of entropies and dimensions is best seen using the Rényi
entropy formalism (more details can be found in, e.g., [67, 75]). Assuming a finite partition with
length scale α of the support of the physical measure with the probability distribution pi assigned
to each partition i, the Rényi entropies of order q are

Hq =
1

1−q
log2

Nα

∑
i=1

pq
i , (1.7)

where q > 0, q 6= 1 and the total number of non-empty partitions with length scale α is denoted
Nα . The order-0 Rényi entropy recovers the Hartley entropy H0 = log2 Nα and the limit q→ 1,
using L’Hôpital’s rule, yields the Shannon entropy H1 = −∑i pi log2 pi. With the Rényi entropy
definition (1.7) and length scale α , one can generalize the definition of dimensions [75]:

Dq = lim
α→0

Hq

log2(1/α)
. (1.8)

Then, q = 0 represents the attractor dimension (a.k.a. capacity, box-counting or Hausdorff dimen-
sion): D0 = limα→0

log2 Nα

log2(1/α) , q→ 1 represents the information dimension and q= 2 the correlation
dimension (the spatial correlation between the distance of points on the attractor). Generally, for
any q1 < q2, one gets Dq1 ≥ Dq2 and in the case of true inequality one speaks of multifractality of
the physical measure.

The entropy production rate H quantifies the uncertainty in predicting the future, conditioned
on knowing the present. In a stable deterministic system, knowledge of the present state fully with
a certain precision determines all future states, and there is no uncertainty left. This is displayed
in Fig. 1.5A. The present state at t = 0 is identified as a square in the symbolic phase space.
In this stable system, small differences in the initial conditions decay exponentially over time,
characterized by a negative Lyapunov exponent λ−< 0. Thus, future states are fully predictable. In
a chaotic system, this is different (Fig. 1.5B). Future states still remain uncertain when the present
state is known with a certain precision, due to the sensitivity to initial conditions. Besides a stable
direction, there is also an unstable direction in which small perturbations increase exponentially
at a rate λ+ > 0. After some time, a microscopic perturbation below the precision leads to a
different macroscopic future state. Because the initial conditions cannot be known with indefinite
precision, the future is not fully predictable. The uncertainty left in a future state is given by the
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1. Chapter Introduction

BA C

Figure 1.5 – Information loss in chaotic systems. (A) Stable system: future states are fully predictable
after measuring the present state (states correspond to squares in the symbolic phase space). (B) Chaotic
system: future states remain uncertain due to the sensitivity to initial conditions. (C) The mutual information
between future and present decreases over time at the entropy production rate H. The maximal information
in one measurement is I0 ∼ D logS where D is the attractor dimension and S is the signal to noise ratio or
precision of the measurement. The maximal predictive time can be estimated to tp ≈ I0/H = D logS/H.

entropy production rate H, Eq. (1.5), as the sum of all positive Lyapunov exponents. Measuring the
future state then yields additional information about the initial conditions of the present state. This
additional information in the macrostate about the microstate is created by the chaotic dynamics
and captured in the entropy production rate.

Knowledge of the attractor dimension D, Eq. (1.6), allows us to estimate the maximal informa-
tion gained in one measurement. The entropy production rate H, Eq. (1.5), allows us to estimate
the rate of entropy production in subsequent measurements. Since they are related quantities, one
should discuss them together [76, 77]. Suppose that the information in the network is encoded in
the networks’ states with a certain precision α . This can also be thought of as the inverse of a
signal-to-noise ratio S. The information theoretic capacity, the upper bound of information gained
by one measurement of the network state, is then given by I0 ∼ D logS. The information about
the present state decreases over time, as it is overwritten by the entropy produced at rate H. The
mutual information between the future and present state therefore decreases proportional to the
entropy production rate (I = I0−Ht, Fig. 1.5C). The actual time after which the initial informa-
tion is lost due to the chaotic dynamics depends on the amount of the initial information and the
entropy production rate, but even the maximal input information is lost after the typical predictive
time tp ≈ I0/H = D logS/H ∼ D/H.

This demonstrates that the attractor dimension D and entropy production rate H derived from
the Lyapunov spectra of models of cortical circuits provide valuable insight for the understanding
of information processing in cortical networks. Accurately calculating the full Lyapunov spectra
of large spiking neuron networks is thus of fundamental importance for the characterization of
information preservation and decay in models of cortical circuits. In the following chapter, we
present a general approach only requiring the precise knowledge of the neurons’ spike times and
their phase-response curves (a.k.a. phase-resetting curves), applicable to networks with arbitrary
topologies. We also derive a random matrix approximation of the mean Lyapunov exponent. This
approach permits a comprehensive and precise analysis of the dynamics of neural networks.

1.5 Weak Pairwise Correlations in Strongly Correlated
Network States

We have mentioned in Section 1.1 that the balanced state is characterized by weak pairwise spike
correlations in sparse and even densely coupled network [3, 32]. Weak pairwise spike correlations
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Figure 1.6 – Weak pairwise correlations imply strongly correlated network states. (Figures from
Ref. [78]) (A) The distribution of observed 10-cell patterns in the spike trains of retinal ganglion cells in
response to a natural movie does not agree with the result of assuming independence of the cells (P1). The
maximum entropy model fitted with the pairwise correlations of the cells largely resolves this discrepancy
(P2). (B) 90% of the multi-information in such cell patterns in different species and cortical cultures can be
explained by the maximum entropy model. (C) Pairwise interactions Ji j between the cells (matrix) and the
local field at each cell hi (row) in the maximum entropy model, the distributions are displayed on the right.

can easily be mistaken to mirror the absence of higher order correlations. This is not the case [78].
Weak pairwise correlations imply that higher order correlations lead to the collective behavior

observed in populations of neurons. This was demonstrated by the success of maximum entropy
models in predicting quite accurately the collective behavior of neural populations in the retina
[78, 79] and in cortical networks in vitro [78, 80] and in vivo [81].

We would like to recall the argumentation for the success of the maximum entropy model in-
troduced in Ref. [78] (Fig. 1.6). It was observed that weak pairwise correlations coexist with a
collective behavior indicated by a strong discrepancy between the distribution of observed firing
patterns of 10 cells in a retinal patch with the results obtained from assuming the cells to be inde-
pendent (Fig. 1.6A). The discrepancy was largely resolved when comparing the true distribution
with the one obtained from the prediction of the maximum entropy model. Interestingly, for the
maximum entropy model it is sufficient to use the measured pairwise spike correlations which are
weak but widespread throughout the population (Fig. 1.6C). These weak pairwise correlations are
used to model the strengths of pairwise interactions in an Ising model which is the exact map-
ping for a maximum entropy model consistent with at most pairwise correlations. Considering
only pairwise interactions does not mean that higher order correlations are suppressed. In fact,
this minimally structured model was able to predict about 90% of the multi-information in the real
population (Fig. 1.6B). Therefore, the authors conclude that “although the pairwise correlations are
small and the multi-neuron deviations from independence are large, the maximum entropy model
consistent with the pairwise correlations captures almost all of the structure in the distribution of
responses from the full population of neurons. Thus the weak pairwise correlations imply strongly
correlated states.” [78]

A recent study has confirmed that higher order correlations are not weak [82], despite the suc-
cess of the maximum entropy model fitted with only the weak pairwise correlations. The authors
developed a perturbation theory of the entropy of Ising systems up to fourth order and reanalyzed
the data from Ref. [78]. They show that “even though all pairwise correlations are weak, the fact
that the correlations are widespread means that their impact on the network as a whole is not cap-
tured in the leading orders of perturbation theory.” [78] This means that the success of maximum
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entropy models lies in the fact that the pairwise interactions considered in this model are sufficient
to capture higher order correlations, but not that higher order correlations are negligible. In their
study there is no sign of saturation for increasing order of the perturbation theory. A relevant ques-
tion is therefore how many orders of higher correlations must be taken into account in realistic
neural networks. We believe that the calculation of the attractor dimension D with our approach
helps to answer this question. This will be discussed in Section 3.6.
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2 Networks of Theta Neurons
The Standard Model of Type I Membranes

In this chapter, we will develop the general approach for the characterization and quantification
of spiking neuron networks. This approach can be applied to arbitrary network topologies and
single neuron phase-response curves. As a typical model of neural networks we will study random
networks of theta neurons in the balanced state. The balanced state is the prevailing explanation
of the asynchronous irregular firing activity of cortical networks [2, 3, 12, 13]. The theta neuron
model is the standard form of type I excitable neurons [83–85]. Hence, it is expected that the
derived results are representative of a wide class of neural network models.

The characterization and quantification of spiking neuron networks developed here is based
on the numerically exact calculation of the complete spectra of Lyapunov exponents. For high-
dimensional dynamical systems such as neural networks, this requires highly precise methods.
Our approach is based on exact closed-form expressions for the time evolution of all neurons’
states. These form a map that iterates the neurons’ states from one spike event in the networks
to the next. This map is evaluated iteratively in event-based simulations following Ref. [51, 54,
58]. Its derivative called the single spike Jacobian is also obtained analytically, and builds the
foundation for the numerical computation of the Lyapunov spectra in the standard Gram-Schmidt
reorthonormalization procedure described in Ref. [68, 69].

In the first section, the general class of models is described to which the approach for the calcula-
tion of the Lyapunov spectra can be straightforwardly applied. This is followed by the derivation of
the iterative map and the single spike Jacobian in a general form and for arbitrary phase-response
curves in particular. Then, we discuss the neuron model-independent characteristics of the bal-
anced state in inhibitory and excitatory-inhibitory networks. A specific parametrization of the
coupling strengths in the excitatory-inhibitory networks preserves the statistics of the inhibitory
networks, enabling a quantitative comparison of the two types of networks.

In Section 2.5, the introduced approach is then applied to sparse networks of theta neurons,
completed with a derivation of the mean Lyapunov exponent in a random matrix approximation
and a discussion of the numerical procedure and the convergence of the Lyapunov spectra.

After the introduction of the general approach and the methodological details of theta neuron
networks, we present a comprehensive analysis of theta neuron networks starting in Section 2.6.
This includes the discussion of two phase transitions from the asynchronous state to synchronous
states and most importantly the analysis of the dynamics of inhibitory and excitatory-inhibitory
networks based on their Lyapunov spectra. The chapter ends with an analysis of the Lyapunov
vectors and an analogy of the observed type of chaos with spatiotemporal chaos. Some of these
results are published in letter form in Ref. [8].
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2.1 General Neural Network Model

We consider pulse-coupled neural networks without synaptic delays. The neurons are arranged
on directed graphs, such that each neuron has a defined set of pre- and postsynaptic neurons. At
each spike time of a neuron, a current pulse is immediately received by its postsynaptic neurons,
changing their states instantaneously. These networks of N coupled neurons are described by a
system of differential equations of the neurons’ membrane potentials (voltages) Vi, with i = 1 . . .N:

τm
dVi(t)

dt
= F

(
Vi(t)

)
+ Ii(t). (2.1)

The integration time constant (or membrane time constant) is denoted τm. The single neuron dy-
namics are described by the function F(Vi) and the connections between the neurons are captured
in the synaptic input current Ii(t). The synaptic input currents to the neurons are:

Ii(t) = IT + Iext
i + ∑

j∈pre(i)
∑
s

Ji jτmδ
(
t− t(s)j

)
. (2.2)

Without loss of generality but for an easy comparison of different neuron models, the synaptic
input currents compensate an intrinsic rheobase current IT of the individual neuron model. Then
the second term, the constant external excitatory current Iext

i > 0 is always a suprathreshold input
current. The compensation of the rheobase current in Eq. (2.2) is not crucial, it can also be set to
zero if wanted. The only difference then is that the external current Iext

i must be larger than IT for
tonic firing and this value depends on the considered neuron model.

The important last term in the synaptic input currents (2.2) describes the connections in the
network. The neurons receive nondelayed δ -pulses of strength Ji j at the spike times

{
t(s)j
}

of their
presynaptic neurons j ∈ pre(i). This induces a step-like change in the spike-receiving neuron’s
voltage Vi

(
t(s)j + ε

)
=Vi

(
t(s)j − ε

)
+ Ji j for ε → 0.

This formalism allows the connectivity between neurons to be chosen arbitrarily. Furthermore,
single neuron properties such as external currents and synaptic coupling strengths can differ be-
tween neurons without restrictions, allowing for heterogeneous networks.

We are focusing on nondelayed synaptic couplings, because the networks’ phase space is then
of fixed and finite dimensionality. This has the advantage of well-defined Lyapunov spectra. In-
cluding synaptic delays would increase the networks’ phase spaces at best to a varying dimension-
ality [86]. Consequently, the calculation of the complete Lyapunov spectra as proposed here would
become difficult, and is for now avoided by considering nondelayed synaptic couplings.

2.2 Iterative Map

For the general class of neural network models, we now introduce the map that iterates all neurons’
states from one spike time in the network to the next. The neurons’ states are described by their
voltages or phases, denoted xi here. Successive spikes in the whole network are denoted {ts}. The
iterative map that iterates the neurons’ states in the interval (ts, ts+1] consists of two parts described
by the functions f and g. First the states of all neurons i = 1, . . . ,N are evolved with

f
(
xi(ts), ts+1− ts

)
= xi(t−s+1),
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from the time ts just after the last spike to the time t−s+1 just before the spike considered in this
iteration. The spiking neuron in this iteration is denoted j∗. For the neurons i /∈ post( j∗) that do
not receive a spike in this interval we take xi(t−s+1) = xi(ts+1). The neurons i∈ post( j∗) that receive
this spike are then updated with the function

g
(
xi(t−s+1)

)
= xi(ts+1).

The spiking neuron is reset from the threshold xT to the reset value xR. The functions f and g
are derived from the governing equation (2.1) with Eq. (2.2) and the facts that between spikes the
neurons only receive constant external currents and receiving a spike results in an instantaneous
change in the neurons’ voltages.

The composition of f and g thus yields the map that iterates the neurons’ states

xi(ts+1) =

{
f
(
xi(ts), ts+1− ts

)
if i /∈ post( j∗)

g
(

f
(
xi(ts), ts+1− ts

))
if i ∈ post( j∗).

(2.3)

For true event-based simulations an exact expression of the next spike time is also necessary to
obtain. The next spike time ts+1 is implicitly given from the evolution function f between spikes,
since for the spiking neuron j∗ holds f (x j∗(ts), ts+1− ts) = xT with xT denoting the threshold to
spike. If f is invertible with respect to time, this leads directly to an exact expression of the next
spike time in the network:

ts+1 = ts +min
i

{
f−1(xT− xi(ts)

)}
. (2.4)

The neuron j∗ with the minimal time to its next spike f−1(xT−xi(ts)
)

will fire next in the network
at time ts+1. The exact expressions (2.3) and (2.4) are the ingredients for fast and precise event-
based simulations. The event-based simulation is then iterating the procedure of first calculating
the next spike time with Eq. (2.4) and second evolving all neurons’ states with the map (2.3) and
resetting the spiking neuron from xT to xR.

2.3 Single Spike Jacobian

Essential for our approach is the derivation of the derivative of the map (2.3), called the single spike
Jacobian. It describes the linear evolution of infinitesimal perturbations of the neurons’ states and
will be used to numerically calculate the Lyapunov spectra. We will first derive the single spike
Jacobian for an arbitrary map (2.3) composed of the function f and g. The function f descsribes
the evolution of the neurons’ states between two spike events when only the constant external
currents are received and function g describes the updates of the neurons’ states when they receive
a spike of a presynaptic neuron.

Since infinitesimal perturbations are considered here, the spike-order in the networks is pre-
served. This is true as long as there are no exactly synchronous spike events which generally
should not occur in the considered asynchronous networks. If the perturbation of the spiking neu-
ron was finite, its spike time could change in the considered interval. For illustration and clarity,
we will therefore shift the time interval of the map (2.3) by a fixed amount δ in the derivation of the
single spike Jacobian. This is to guarantee that the possibly altered spike time, denoted τs+1, re-
mains in the considered interval of the map. With a suitably large time shift δ the map thus evolves
all states from ts 7→ ts + δ through ts+1 7→ ts+1 + δ . The only difference is that with this shift the
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spike in the considered interval does not occur exactly at the end of the interval ts+1 as before but
within the interval at τs+1 < ts+1. Because the actually considered perturbations are infinitesimally
small, the actual spike time of neuron j∗ cannot change and at the end of the derivation of the
Jacobian the limit δ → 0 will be taken and ts+1 identified with τs+1.

The map with the shifted but fixed time interval (ts, ts+1] and the spike of neuron j∗ occurring
within this interval at time τs+1 reads:

xi(ts+1) =

 f
(
xi(ts), ts+1− ts

)
if i /∈ post( j∗)

f
(

g
(

f
(
xi(ts),τs+1− ts

))
, ts+1− τs+1

)
if i ∈ post( j∗).

(2.5)

The important derivative of the map, the single spike Jacobian matrix is:

D(ts) =
d~x(ts+1)

d~x(ts)
. (2.6)

The Jacobian elements of the neurons i0 /∈ post( j∗) that do not receive the spike of the spiking
neuron j∗ in the considered interval are:

Di0, j(ts) =
dxi0(ts+1)

dx j(ts)
= ∂x f

(
xi0(ts), ts+1− ts

)
δi0 j, (2.7)

where ∂x f = ∂ f (x,t)
∂x denotes the derivative of f with respect to the state x, and δi0 j is the Kronecker

delta. Thus, all but the diagonal elements vanish in the part of the Jacobian corresponding to the
neurons that do not receive the spike in the considered interval.

The diagonal Jacobian elements of the spike receiving neurons i∗ ∈ post( j∗) are also straight-
forwardly derived using the chain rule:

Di∗,i∗(ts) =
dxi∗(ts+1)

dxi∗(ts)
= ∂x f

(
xi∗(τ

+
s+1), ts+1− τs+1

)
∂xg
(
xi∗(τ

−
s+1)

)
∂x f
(
xi∗(ts),τs+1− ts

)
, (2.8)

where we denoted the state just before spike reception by xi∗(τ
−
s+1) = f

(
xi∗(ts),τs+1− ts

)
and the

state just after spike reception by xi∗(τ
+
s+1) = g

(
xi∗(τ

−
s+1)

)
.

There are also nondiagonal elements since the spike receiving neurons are influenced by the
possibly changed spike time τs+1 that results from a perturbation of the spiking neuron. All other
nondiagonal elements vanish, see Eq. (2.7). The nonzero nondiagonal Jacobian elements are:

Di∗, j∗(ts) =
dxi∗(ts+1)

dx j∗(ts)

= ∂x f
(
xi∗(τ

+
s+1), ts+1− τs+1

)
∂xg
(
xi∗(τ

−
s+1)

)
∂t f
(
xi∗(ts),τs+1− ts

) ∂τs+1

∂x j∗(ts)
−

∂t f
(
xi∗(τ

+
s+1), ts+1− τs+1

) ∂τs+1

∂x j∗(ts)
, (2.9)
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with the partial derivative ∂t f = ∂ f (x,t)
∂ t .

The dependence of the spike time on the spiking neuron’s state ∂τs+1
∂x j∗(ts)

might be obtained directly
from the inverse of function f , Eq. (2.4). For the derivation of the Jacobian, it is however not
required that f is invertible, since the necessary derivative can also be obtained from the implicit
definition of the next spike time f

(
x j∗(ts),τs+1−ts

)
= xT. Thus, other numerically precise methods

to find the next spike time can be used in the network simulations, while the single spike Jacobian
can still be evaluated exactly as long as f and g are differentiable. From the implicit definition of
the next spike time, one gets

d f
(
x j∗(ts),τs+1− ts

)
dτs+1

= 0 = ∂x f
(
x j∗(ts),τs+1− ts

)∂x j∗(ts)
∂τs+1

+∂t f
(
x j∗(ts),τs+1− ts

)
∂τs+1

∂x j∗(ts)
= −∂x f

(
x j∗(ts),τs+1− ts

)
∂t f
(
x j∗(ts),τs+1− ts

) . (2.10)

Inserting this in Eq. (2.9) yields the nondiagonal elements

Di∗, j∗(ts) = ∂x f
(
x j∗(ts),τs+1− ts

)(∂t f
(
xi∗(τ

+
s+1), ts+1− τs+1

)
∂t f
(
x j∗(ts),τs+1− ts

) −

∂x f
(
xi∗(τ

+
s+1), ts+1− τs+1

)
∂xg
(
xi∗(τ

−
s+1)

) ∂t f
(
xi∗(ts),τs+1− ts

)
∂t f
(
x j∗(ts),τs+1− ts

)). (2.11)

This equation can also be used for the last remaining term, the diagonal element corresponding
to the spiking neuron j∗. The spiking neuron is reset from xT to xR at its spike time τs+1, thus
g
(
x j∗(τ

−
s+1)

)
= xR and therefore ∂xg

(
x j∗(τ

−
s+1)

)
= 0. This leads to the following diagonal element

of the spiking neuron j∗:

D j∗, j∗(ts) = ∂x f
(
x j∗(ts),τs+1− ts

)∂t f
(
x j∗(τ

+
s+1), ts+1− τs+1

)
∂t f
(
x j∗(ts),τs+1− ts

) (2.12)

Equations (2.7), (2.8), (2.11) and (2.12) constitute the single spike Jacobians for arbitrary func-
tions f and g, where f determines the time evolution for constant input currents between spike
events and g determines the update of the states when a spike is received. Taking the limit of
infinitesimal perturbations, thus τ

+
s+1→ ts+1 we arrive at:

Di j(ts) = ∂x f
(
x j(ts), ts+1− ts

)(
δi jδii0 +

∂t f
(
x j∗(ts+1),0+

)
∂t f
(
x j∗(ts), ts+1− ts

)δi jδi j∗+

∂x f
(
xi∗(ts+1),0+

)
∂xg
(
xi∗(t−s+1)

)
δi jδii∗+

∂t f
(
xi∗(ts+1),0+

)
∂t f
(
x j∗(ts), ts+1− ts

)δii∗δ j j∗−

∂x f
(
xi∗(ts+1),0+

)
∂xg
(
xi∗(t−s+1)

) ∂t f
(
xi∗(ts), ts+1− ts

)
∂t f
(
x j∗(ts), ts+1− ts

)δii∗δ j j∗

)
.
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2. Chapter Networks of Theta Neurons

In matrix form the single spike Jacobian reads

D(ts) =



ei,s . . . 0
. . . ...

ei∗,sei∗,s+1di∗ e j∗,s

(
vi∗,s+1
v j∗,s
− ei∗,s+1di∗

vi∗,s
v j∗,s

)
. . . ...

e j∗,s
v j∗,s+1

v j∗,s

... . . .
0 . . . ei,s



← rows i∗

(2.13)

↑
column j∗

with the abbreviations

ei,s = ∂x f
(
xi(ts), ts+1− ts

)
ei,s+1 = ∂x f

(
xi(ts+1),0+

)
di = ∂xg

(
xi(t−s+1)

)
vi,s = ∂t f

(
xi(ts), ts+1− ts

)
vi,s+1 = ∂t f

(
xi(ts+1),0+

)
.

The single spike Jacobians (2.13) are composed of three different parts. One part constitutes the
diagonal elements ei,s related to the neurons that are not postsynaptic to the spiking neuron. These
neurons only contribute diagonal elements since only perturbations of their own states have an
effect. Then, there are the elements related to the postsynaptic neurons i∗ ∈ post( j∗) of the spiking
neuron j∗. Their diagonal elements ei∗,sei∗,s+1di∗ also reflect the consequence of perturbations of
their own state. The nonzero nondiagonal elements e j∗,s(

vi∗,s+1
v j∗,s
−ei∗,s+1di∗

vi∗,s
v j∗,s

) reflect the influence
of a perturbation of the spiking neuron. If the spiking neuron is perturbed, its spike time changes
and the postsynaptic neurons receive the current pulse at a different time. This leads to a different
state of the postsynaptic neurons that is seen as an effective perturbation.

2.3.1 Single Spike Jacobian from Phase Response Curves

Importantly, the single spike Jacobians can be conveniently expressed using the single neuron
phase-response curves. In the phase description, neurons are described by their state relative to an
equivalent, uncoupled, free-running neuron. We denote this phase φi. The phase-response curve
Z(φi), also called phase-resetting curve, quantifies the change of a neurons phase in response to a
perturbation received at a certain phase (see, e.g., [87]).

Assuming a constant phase velocity ωi between spikes the functions f and g are simply f (φi, t)=
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2.3 Single Spike Jacobian

φi +ωi t and g(φi) = φi +Z(φi). Thus the iterative map, Eq. (2.3), reads

φi(ts+1) = φi(ts)+ωi(ts+1− ts)+Z
(
φi(ts)+ωi(ts+1− ts)

)
δi∈post( j∗), (2.14)

where δi∈post( j∗) is one if i is a postsynaptic neuron of the spiking neuron j∗ and zero otherwise.
The derivatives are ei = ∂φ f = 1, vi = ∂t f = ωi and di = ∂φ g = 1+Z′(φi), where Z′(φi) denotes

the derivative of the phase-response curve with respect to the phase. Thus, the single spike Jacobian
(2.13) reads

Di j(ts) =


1+Z′(φi∗(t−s+1)) for i = j = i∗

−ωi∗
ω j∗

Z′(φi∗(t−s+1)) for i = i∗ and j = j∗

δi j otherwise,

(2.15)

where j∗ denotes the spiking neuron in the considered interval, firing at time ts+1, i∗ ∈ post( j∗)
are the spike receiving neurons and δi j is the Kronecker delta. The derivatives of the phase-
response curves Z′(φ) are evaluated at the phases of the spike receiving neurons φi∗(t−s+1) =
φi∗(ts)+ωi∗(ts+1− ts) just before spike reception.

In cases when the single neuron model cannot be solved analytically, the expression of the sin-
gle spike Jacobian in terms of the phase-response curves (2.15) can still be used to calculate the
Lyapunov spectrum. An example of a one-dimensional single neuron model is the exponential in-
tegrate and fire model [88], whose phase-response curve can be calculated numerically. This needs
to be done only once. Then, either a numerical fit or a look-up table of the derivative of the phase-
response curve can be used for the single spike Jacobians (2.15). The network simulations should
be performed with high-precision algorithms, leading to the necessary spike times and neurons’
phases. With this procedure, the Lyapunov spectra can be obtained with very high precision despite
the lack of an exact derivation of the phase-response curve. In the case of higher-dimensional sin-
gle neuron models, the phase-response curves and network simulations could also be obtained with
high-precision integration schemes. There is however an additional approximation whose validity
should be addressed. In the calculation of the Lyapunov spectra as proposed here, one would use
an approximated one-dimensional phase description with the numerically obtained phase-response
curve. Since this does not capture the full dynamics precisely, one needs to consider how crucial
this approximation would be for higher dimensional neuron models.

2.3.2 From Single Spike Jacobians to Lyapunov exponents

The product of the single spike Jacobians (2.13) asymptotically leads to the Lyapunov exponents
(see Section 1.4). The foundation of the existence and the computation of the Lyapunov exponents
builds the multiplicative ergodic theorem, also known as Oseledec theorem [67]. Briefly, it states
that for the product of the single spike Jacobians D(ts), the long term Jacobian T = D(ts) · · ·D(0)
and ts > 0 the Oseledec matrix Λ exists for almost all initial conditions:

Λ = lim
t→∞

(T∗T)
1
2t , (2.16)

where T∗ denotes the transpose of T and the logarithms of the eigenvalues of the Oseledec matrix
(2.16) are the Lyapunov exponents λ1 ≥ ·· · ≥ λN . However, because of the ill-conditioning of the
Oseledec matrix (2.16), due to the exponential growth and decay of the eigenvalues, the standard
procedure for the numerical calculation of the Lyapunov exponents [68, 69] exploits a different
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2. Chapter Networks of Theta Neurons

part of the Oseledec theorem. The exact Lyapunov exponents are equivalently defined for almost
all initial conditions by the limits:

λi = lim
t→∞

1
t

log ||Tδ~x|| if δ~x ∈ Ei \Ei+1, (2.17)

where the Ei’s are a valid decomposition of the phase space corresponding to subspaces spanned
by the eigenvectors associated to the eigenvalues≤ exp(λi) of the Oseledec matrix. The vectors ~δx
are normalized. In particular, Eq. (2.17) means that for almost all perturbations, namely δ~x /∈ E2,
the limit is the largest Lyapunov exponent.

An analytic estimation of the largest Lyapunov exponents should be possible for some special
cases, such as a fully synchronous periodic network state. In this case, the symmetric Oseledec
matrix (2.16) can be written down and the logarithms of the eigenvalues can be assessed with, e.g.,
the Gershgorin theorem [89].

In the more general case, including partially synchronous, quasiperiodic and chaotic states, a
further analytic calculation of even the largest Lyapunov exponent is very difficult. For example,
in an irregular asynchronous network state, like the balanced state studied in this paper, the spiking
neuron differs for every spike in the network. Since the structure of the single spike Jacobians
depends on the spiking neuron, already the structure will change considerably for every spike. The
Oseledec matrix (2.16), is then determined by the product of (generally) noncommuting single
spike Jacobians (2.13). This makes a further analytic calculation of the Lyapunov exponents in
general rather difficult. They can typically only be computed numerically. We were, however, able
to derive a random matrix approximation of the mean Lyapunov exponent in the balanced state, as
discussed below.

This completes the derivation of the general approach to calculate the full spectrum of Lya-
punov exponents in spiking neuron networks. We will now continue with the discussion of the
balanced state and the theta neuron model before we can present the results of this approach for
such networks in Section (2.6).

2.4 The Balanced State in Sparse Random Networks

We will study networks of N spiking neurons arranged on directed Erdös-Rényi random graphs
with average indegree K. This means that a connection between any pair of neurons is established
with the probability p = K/N, where 1� K� N. Such random networks are intended to model,
e.g., small units of cortical networks in which a spatially organized topology can be neglected.

These networks can exhibit a balanced state that resembles many features of cortical spiking
activity. In the balanced state, asynchronous irregular firing activity of the neurons arises from
strong input fluctuations that are of the same order of magnitude as the mean input current. This
is a result of the dynamic balance of excitation and inhibition. It emerges robustly in random
networks if the coupling between neurons exhibits a specific square root scaling Ji j ∝ 1/

√
K [2,3].

This scaling assures that the input fluctuations do not vanish in the large connectivity limit. The
constant external currents Iext

i were chosen to obtain a target average firing rate ν̄ . From the
balance of excitation and inhibition, this target firing rate can be well estimated if the external
currents scale as Iext

i ∝
√

K. With these scaldings, neuron model-independent characteristics of
the balanced state can be well approximated. We will derive these next for networks with just one
population of inhibitory neurons and for networks consisting of excitatory and inhibitory neurons.
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2.4 The Balanced State in Sparse Random Networks

2.4.1 Inhibitory Networks

In inhibitory networks, the balanced state emerges from the recurrent inhibition balancing the ex-
ternal excitation. The existence of a balanced state fixed point follows from the network-averaged
input current. The input currents (2.2) are composed of constant external currents Iext

i =
√

KI0 and
inhibitory pulses of strength Ji jτm = −J0τm/

√
K. In the asynchronous balanced state, these are

received at an average input rate Kν̄ , from K presynaptic neurons with an average firing rate ν̄ that
is constant in time. Thus the mean input current can be written as

Ī ≈
√

K(I0− J0ν̄τm). (2.18)

In the large connectivity limit, self-consistency requires the balance of excitation and inhibition:
If limK→∞(I0− J0ν̄τm) > 0 the mean current Ī would diverge to ∞ and the neurons would fire
at their maximal rate. The resulting strong inhibition would break the inequality, leading to a
contradiction. If limK→∞(I0−J0ν̄τm)< 0 the mean current Ī would diverge to−∞ and the neurons
would be silent. The resulting lack of inhibition again breaks the inequality. The large K-limit is
self-consistent if limK→∞(I0− J0ν̄τm) = 0. Thus, the average firing rate in the balanced networks
is approximately given by the balance equation:

ν̄ =
I0

J0τm
+O

(
1√
K

)
. (2.19)

The magnitude of current fluctuations in sparse inhibitory networks can also be well approxi-
mated. Assuming that inputs from different presynaptic neurons are weakly correlated, the com-
pound input spike trains can be modeled by a Poisson process with rate Kν̄ . The input current
auto-correlation then reads

C(τ) = 〈δ I(t)δ I(t + τ)〉t

≈
(

J0τm√
K

)2

Kν̄

ˆ
δ (t− s)δ (t + τ− s)ds

= J2
0 ν̄τ

2
mδ (τ) (2.20)

Thus, the fluctuations can be described as delta-correlated white noise of magnitude σ2 = J2
0 ν̄τm.

This is independent of K and therefore does not vanish in the large K-limit.

2.4.2 Excitatory-Inhibitory Networks

In excitatory-inhibitory networks, the balanced state with finite firing rates in both populations can
be inferred from a matrix equation of the mean currents, similar to Eq. (2.18):

Ī =
√

K (I+J · ν̄)(
ĪE
ĪI

)
=
√

K
[(

E0
I0

)
+

(
JEE −JEI
JIE −JII

)
·
(

ν̄Eτm
ν̄Iτm

)]
. (2.21)

Here, we denoted ĪA the mean input current, A0 > 0 the external currents and ν̄A > 0 the average
firing rate of neurons in population A = {E, I}. For the coupling strengths from neurons in popu-
lation A to B we used JBA > 0. All neurons were assumed to have an equal number of incoming
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connections K from both populations. In the large K-limit, self-consistency requires the term in
brackets in Eq. (2.21) to vanish, limK→∞ I+Jν̄ = 0, for the same arguments as above for inhibitory
networks. The difference to inhibitory networks is that there is an additional dynamic excitatory
term. Therefore, the inhibitory coupling must balance the excitatory external currents plus the
excitatory coupling term, yielding the following constraint:

JEE ν̄E < JEI ν̄I and JIE ν̄E < JII ν̄I. (2.22)

Two additional cases compared to the inhibitory networks are possible here: i) an exploding solu-
tion ν̄E → ∞, ν̄I → ∞ and ii) a silent excitatory population ν̄E = 0 but an active inhibitory popu-
lation ν̄I 6= 0. We want to exclude both cases which yields additional constraints on the coupling
matrix. The exploding solution can be excluded if the inhibitory couplings are stronger than the
excitatory ones

JEE < JEI and JIE < JII. (2.23)

A silent excitatory population would be a possible solution if E0 < JEI ν̄Iτm and I0 = JII ν̄Iτm. To
exclude this, we require

JEI

JII
<

E0

I0
. (2.24)

The self-consistent solution limK→∞ I+Jν̄ = 0 again defines the population-averaged firing rates
ν̄ = −J−1I. For the coupling matrix to be invertible, it is required that the determinant does not
vanish, |J| 6= 0. Then the unique solution of the firing rates in the balanced state is

ν̄E = −JEII0− JIIE0

|J|τm
(2.25a)

ν̄I = −JEEI0− JIEE0

|J|τm
. (2.25b)

From Eq. (2.24) follows that the numerator in (2.25a) is negative. From the fact that the firing rate
of the excitatory population should be positive, we find that the determinant of the coupling matrix
must be positive: |J|=−JEEJII + JIEJEI > 0, thus

JEEJII < JIEJEI. (2.26)

From (2.25b) and the fact that rate of the inhibitory population must be positive as well follows
that

JEE

JIE
<

E0

I0
. (2.27)

Summarizing Eq. (2.22)-(2.24), (2.26) and (2.27), the balanced state emerges self-consistently if

JEE

JEI
<

JIE

JII
< min

{
1,

ν̄I

ν̄E

}
and

JEE

JIE
<

JEI

JII
<

E0

I0
. (2.28)

Putting this in words means that the ratio of the magnitudes of the incoming excitatory to inhibitory
coupling must be smaller in the excitatory population than in the inhibitory population with an
upper limit given by the minimum of 1 and the ratios of the population firing rates. The ratio of the
outgoing excitatory to inhibitory coupling must also be smaller in the excitatory population than in
the inhibitory population with an upper limit given by the external currents of the two populations.
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2.5 Networks of Theta neurons

In our investigation, we want to compare the dynamics of the balanced state in excitatory-
inhibitory and inhibitory networks. For a quantitative comparison, the firing statistics in both
types of networks should be identical. This is accomplished if the fluctuations of the input currents
have the same magnitude. Analogously to the derivation of the auto-correlation of the input cur-
rents in inhibitory networks, Eq. (2.20), the input currents in excitatory-inhibitory networks also
display delta-correlated white noise with variance σ (2) = J(2)ν̄ , where ·(2) denotes the square of
the elements. We have chosen identical population-averaged firing rates ν̄E = ν̄I = ν̄ , which yield

σ
2
E = (J2

EE + J2
EI)ν̄τm (2.29a)

σ
2
I = (J2

II + J2
IE)ν̄τm. (2.29b)

In order to satisfy identical magnitudes of input fluctuations σ2
E = σ2

I = σ2 = J2
0 ν̄τm in both types

of networks, we require

J2
0 = J2

EE + J2
EI = J2

II + J2
IE . (2.30)

This is fulfilled by

J =
J0√
K

(
ηε −

√
1− (ηε)2

ε −
√

1− ε2

)
, (2.31)

where ε activates the excitatory-inhibitory feedback loops in the networks and η = JEE/JIE defines
the ratio of the excitatory coupling of the excitatory and the inhibitory neurons. Note that for η = 1
the determinant of the coupling matrix vanishes and the there is no unique solution of the firing
rates (2.25). The derived balance condition for the coupling matrix, (2.28), requires:

ηε√
1− (ηε)2

<
ε√

1− ε2
< 1

1
ηε
−1 >

1
ε
−1 > 1

ηε < ε <

√
1
2
, (2.32)

which is satisfied for η < 1 and ε < 0.7. Finally, this sets the appropriate coupling matrix (2.31)
to study excitatory-inhibitory networks with the same statistics as in inhibitory networks.

2.5 Networks of Theta neurons

As an example, our approach is applied to sparse networks of theta neurons. The theta neuron
model, also known as the Ermentrout-Kopell model is the normal form of saddle-node bifurca-
tions on limit cycles (SNIC) and the canonical model of type I excitable membranes [83–85].
Incorporating a dynamic action potential generation as in real neurons, the theta neuron model is
biologically quite realistic despite its simple mathematical form.

The theta neuron model is the phase representation of the quadratic integrate and fire model. The
quadratic integrate and fire model obeys F(Vi) =V 2

i in Eq. (2.1) and has finite reset and threshold
values. The theta neuron model is obtained by the transformation Vi = tan(θi/2) with θi ∈ [−π,π].
The phases θi describe the neurons’ phases defined on the unit circle. Spikes are emitted whenever
the phases cross π → −π (Fig. 2.1A). The governing differential equation of the theta neuron
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Figure 2.1 – The theta neuron model: (A) Schematic picture in the excitable state for negative input
current, the two fixed points coalesce for increasing input current and the neuron oscillates, action poten-
tials (spikes) occur when theta crosses pi, (B) phase plane in the excitable state for negative input current,
Eq. (2.33), (C) periodic action potential generation in the oscillatory state for positive input current, (D)
infinitesimal phase-response curve Z(φ)/C = 1+ cosφ with C→ 0, Eq. (2.39).

model reads
τm

dθi

dt
=
(
1− cosθi

)
+
(
Ii(t)− IT

)(
1+ cosθi

)
, (2.33)

with the rheobase current IT = 0.25. It is depicted in Fig. 2.1B for a negative input current and
a representative action potential trace of a free-running neuron receiving a constant positive input
current is displayed in Fig. 2.1C.

In the studied networks, the synaptic input current Ii(t), Eq. (2.2), can be rewritten without the
explicit time dependence. The transformation δ (θ j(t)−π) = ∑s δ (t− t(s)j )/|θ̇ j(t

(s)
j )| and the fact

that τmθ̇ j(t
(s)
j ) = 1− cosπ = 2 at the spike times lead to

Ii(t) = IT +
√

KIext
i +2 ∑

j∈pre(i)

Ji j√
K

δ
(
θ j(t)−π

)
. (2.34)

Thus, networks of theta-neurons are conveniently described by an autonomous system of or-
dinary differential equations. Furthermore, they allow for a mathematically sound description of
networks with excitatory coupling. In networks with excitatory coupling, a natural problem arises
with threshold neurons that are sensitive to inputs close to their own spike. Then, an excitatory in-
put pulse can result in a suprathreshold state and the question about the extra suprathreshold charge
arises. It was for example proposed to introduce a partial reset in this case [90]. However, neuron
models with a phase-response approaching zero near the spike, such as the theta neuron model, cir-
cumvent this problem (Fig. 2.1C). Then the study of excitatory networks is straightforward from
inhibitory networks without mathematical difficulties.

Another equivalent phase representation of the theta neuron model can be even more convenient,
namely the phi-representation. In this representation, obtained by Vi(t) = (K

1
2 Iext

i )
1
2 tan(φi(t)/2)

with φi ∈ [−π,π], the neurons’ phases have constant phase velocities between spike events. The
phase updates at spike reception are described by the phase transition curve, respectively the phase-
response curve. This representation of the theta neuron model is used in the numerical simulations.

The theta neuron model has the big advantage of being exactly solvable. Between two spikes ts
and ts+1 in the network, all neurons only receive constant external inputs and the evolution func-
tions in the voltage representation Vi, theta representation θi = 2arctan(Vi) and phi representation
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φi = 2arctan
(
Vi/(K

1
2 Iext

i )
1
2
)

with the phase velocity ωi = 2(K
1
2 Iext

i )
1
2 are

f
(
Vi(ts), ts+1− ts

)
=

ωi

2
tan
(

arctan
(

Vi(ts)
ωi/2

)
+

ωi

2
ts+1− ts

τm

)
(2.35a)

f
(
θi(ts), ts+1− ts

)
= 2arctan

(
ωi

2
tan

(
arctan

(
tan
(
θi(ts)/2

)
ωi/2

)
+

ωi

2
ts+1− ts

τm

))
(2.35b)

f
(
φi(ts), ts+1− ts

)
= φi(ts)+ωi

ts+1− ts
τm

. (2.35c)

When receiving a spike of strength Ji∗ j∗/
√

K from the spiking neuron j∗ the postsynaptic neu-
rons i∗ are updated with

g(Vi∗) = Vi∗+
Ji∗ j∗√

K
(2.36a)

g(θi∗) = 2arctan
(

tan
θi∗

2
+

Ji∗ j∗√
K

)
(2.36b)

g(φi∗) = 2arctan

(
tan

φi∗

2
+

Ji∗ j∗

(K
3
2 Iext)

1
2

)
. (2.36c)

In the simulations we used the phi representation with constant phase velocity ωi = 2(K
1
2 Iext

i )
1
2 and

the phase transition curve g(φi), respectively the phase response curve Z(φi) = g(φi)− φi. With
these, the single spike Jacobian (2.15) for theta neuron networks reads

Di j(ts) =


di∗(t−s+1) for i = j = i∗√

Iext
i∗

Iext
j∗

(
1−di∗(t−s+1)

)
for i = i∗ and j = j∗

δi j otherwise,

(2.37)

where j∗ denotes the spiking neuron in the considered interval firing at time ts+1, i∗ ∈ post( j∗) are
the spike receiving neurons, δi j is the Kronecker symbol. The elements di∗(t−s+1) expressed in the
three equivalent representations are:

di∗(t−s+1) =

(
tan
(
φi∗(t−s+1)/2

))2
+1(

tan
(
φi∗(t−s+1)/2

)
+ Ji∗ j∗/

(
K

3
2 Iext

i∗
) 1

2
)2

+1
(2.38a)

=

(
tan
(
θi∗(t−s+1)/2

))2
+
√

KIext
i∗(

tan
(
θi∗(t−s+1)/2

)
+ Ji∗ j∗/

√
K
)2

+
√

KIext
i∗

(2.38b)

=

(
Vi∗(t−s+1)

)2
+
√

KIext
i∗(

Vi∗(t−s+1)+ Ji∗ j∗/
√

K
)2

+
√

KIext
i∗

. (2.38c)

They are evaluated at the neurons states just before spike reception xi∗(t−s+1) = f
(
xi∗(ts), ts+1− ts

)
.
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2. Chapter Networks of Theta Neurons

The single spike Jacobians (2.37) of the theta neuron networks will be used to numerically calculate
the spectrum of Lyapunov exponents in the standard procedure as explained below.

The phi representation draws the connection back to the more general description of our method
using the phase-response curve. The phase response curve Z(φi) can also be expressed with the
infinitesimal phase-response curve for arbitrarily small coupling strength (Fig. 2.1D). In our case,
this would correspond to the large-K limit, where the effective coupling Ci j = Ji j/(K

3
2 Iext

i )
1
2 be-

comes vanishingly small. The Taylor expansion of the phase-response curve is

Z(φi) = 2arctan
(

tan
φi

2
+Ci j

)
−φi

Ci j→0
' Ci j(1+ cosφi)+O(C2

i j), (2.39)

and the derivative Z′(φi)'−Ci j sinφi +O(C2
i j). The Jacobian (2.15) expressed with the infinitesi-

mal phase-response curve of the theta neuron model thus reads

Di j(ts) =


1−Ci∗ j∗ sin

(
φi∗(t−s+1)

)
for i = j = i∗

ωi∗
ω j∗

Ci∗ j∗ sin
(
φi∗(t−s+1)

)
for i = i∗ and j = j∗

δi j otherwise.

(2.40)

2.5.1 Random Matrix Approximation of Mean Lyapunov Exponent

From the single spike Jacobian (2.37), we derived a random matrix approximation of the mean
Lyapunov exponent λ̄ = 1

N ∑
N
i=1 λi. The mean Lyapunov exponent describes the rate of phase

space compression, captured by the determinant of the long term Jacobian T = D(ts) · · ·D(0):

λ̄ =
1
N

lim
s→∞

1
ts

ln
(

detT
)

=
1
N

lim
s→∞

1
ts

s

∑
p=1

ln
(

detD(tp)
)
. (2.41)

The random matrix approximation is obtained by assuming the single spike Jacobians to be ran-
dom matrices of the form (2.37) with independent and identically distributed random elements
obtained from the function d(V ), Eq. (2.38c). The probability distribution of the random elements
is determined by the stationary membrane potential distribution P(V ) in the network.

For inhibitory networks, the determinant of the random matrices can be approximated by detD=

∏i∗ di∗ ≈ d(V )K , since on average there are K diagonal elements di∗ , one for each postsynaptic
neuron. We assume homogeneous coupling strengths Ji j ≡ −J0 between connected neurons and
identical external currents Iext

i ≡ I0 for all neurons in Eq. (2.34). The number of spike events per
unit time is lims→∞

1
ts ∑

s
p=1 1=Nν̄ . Thus, in the random matrix approximation, the mean Lyapunov

exponent for inhibitory networks becomes

λ̄ ≈ 1
N

Nν̄

ˆ
ln
(
d(V )K)P(V)dV

= Kν̄

ˆ
ln

(
V 2 +

√
KI0(

V − J0/
√

K
)2

+
√

KI0

)
P
(
V
)
dV. (2.42)
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2.5 Networks of Theta neurons

In the large K-limit, the approximations d(V )
K→∞' 1+ 2V J0

KI0
+O

( 1√
K

)
and the balance equation

(2.19) lead to

λ̄
K→∞' 2〈V 〉

τm
+O

(
1√
K

)
, (2.43)

where 〈V 〉 denotes the average membrane potential.

For excitatory-inhibitory networks, the determinant of the random matrices can be approxi-
mated by detD ≈ dII(V )Kout

II dEI(V )Kout
EI at spike times of inhibitory neurons, and at spike times of

excitatory neurons by detD ≈ dEE(V )Kout
EE dIE(V )Kout

IE . The Jacobian elements are denoted dXY and
the mean outdegrees (average number of postsynaptic neurons) are Kout

XY with X and Y represent-
ing the excitatory (E) and inhibitory (I) populations. On average there are NX ν̄X spikes in each
population. This leads to the random matrix approximation of the mean Lyapunov exponent in
excitatory-inhibitory networks

λ̄ =
NI ν̄I

N

(
Kout

II

ˆ
ln
(
dII(V )

)
PI(V )dV +Kout

EI

ˆ
ln
(
dEI(V )

)
PE(V )dV

)
+

NE ν̄E

N

(
Kout

IE

ˆ
ln
(
dIE(V )

)
PI(V )dV +Kout

EE

ˆ
ln
(
dEE(V )

)
PE(V )dV

)
, (2.44)

where PX(V ) denotes the membrane potential distributions of either population. In our simulations,
the coupling strengths were chosen such that the input current statistics in both populations were
identical in the balanced state. This led to identical membrane potential distributions PE(V ) =
PI(V ) ≡ P(V ). The number of inhibitory neurons was NI = 0.2N and the number of excitatory
neurons NE = 0.8N. The average firing rates were identical in both populations ν̄E = ν̄I ≡ ν̄ . The
average indegrees were all K, leading to the outdegrees Kout

XY = KNX/NY . This can be summarized
in the approximated mean Lyapunov exponent for the excitatory-inhibitory networks

λ̄ = Kν̄

ˆ (
0.2lndII(V )+0.8lndEI(V )+0.8lndEE(V )+0.2lndIE(V )

)
P(V )dV, (2.45)

with the elements

dXY (V ) =
V 2 +

√
KIX(

V + JXY/
√

K
)2

+
√

KIX
. (2.46)

Taking the large K-limit leads to

λ̄
K→∞' −2〈V 〉ν̄

(
0.2

JII + JIE

II
+0.8

JEI + JEE

IE

)
=

2〈V 〉
τm

+O

(
1√
K

)
. (2.47)

In the last step we used the balance equation ν̄ = ν̄X = −IX/(∑Y={E,I} JXY τm). With the above
assumptions, the mean Lyapunov exponent in excitatory-inhibitory networks is the same as in
inhibitory networks.

We have tested the derived random matrix approximations of the mean Lyapunov exponent in
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Figure 2.2 – Comparison of mean Lyapunov exponent in random matrix approximations and from
numerical simulations in balanced theta neuron networks. (A) Inhibitory networks with N = 2000, (B)
excitatory-inhibitory networks with NI = 2000, NE = 8000, η = 0.9, ε = 0.3, straight lines: numerical sim-
ulations, dashed lines: random matrix approximations with full membrane potential distributions Eq. (2.42)
and Eq. (2.45), dotted lines: random matrix approximation in the large K-limit Eq. (2.43) and Eq. (2.47),
(other parameters: ν̄ = 1Hz, K = 100, J0 = 1, τm = 10ms).

inhibitory networks Eq. (2.42) and in excitatory-inhibitory networks Eq. (2.45) and the large-K
limits, Eq. (2.43) and (2.47), with the results from simulations (Fig. 2.2). They are in very good
agreement, indicating the validity of the random matrix approximation. This is probably the case
because of the commutativity of the determinants of the Jacobians, a property that is not expected to
hold for the product of the Jacobians in general, which eigenvalues define the individual Lyapunov
exponents.

2.5.2 Numerical Procedure and Convergence

All simulations were run in an event-based fashion following Ref. [51, 54, 58], where the exact
map (2.3) was iterated from spike to spike in the phi representation of the theta neuron model
with homogeneous coupling strengths and homogeneous external currents for all neurons in each
population. To calculate the next spike time in the network it was sufficient to find the neuron with
the largest phase in either population and then calculate its next spike time

ts+1 = ts +min
i

{
π−φi(ts)

ωi

}
, (2.48)

since the external currents of the neurons were identical in either population. In the case of two
populations, the minimum of the two calculated next spike times would be the next spike time in
the network. Then, all neurons’ phases were evolved until the next spike time using Eq. (2.35c)
and the spike receiving neurons updated with Eq. (2.36c). These three steps compose one iteration
and give numerically exact spike times and phases of the neurons.

With the exact phases of the neurons before spike reception, the single spike Jacobians (2.37)
were evaluated using Eq. (2.38a). These were used to numerically calculate all Lyapunov ex-
ponents in the standard procedure [68, 69]. After a warmup of the network dynamics, of typ-
ically 100 spikes per neuron on average, we started with a random N-dimensional orthonor-
mal system that was evolved in each iteration with the single spike Jacobian. After some itera-
tions of about N/K spikes, the evolved vectors were reorthonormalized with the Gram-Schmidt-
orthonormalization procedure, yielding the norms of the orthogonalized vectors ni(ts) and the or-
thonormal system to be used in the next iteration. After a short warmup of the orthonormal system
of about one spike per neuron, these norms were used to calculate the N Lyapunov exponents
λi = limp→∞

1
tp

∑
p
s=1 logni(ts).

32



2.5 Networks of Theta neurons

0.01 0.1 1 10
t (s)

-80

-40

0

40

λ
i (

s
-1

)

0.01 0.1 1 10
t (s)

-80

-40

0

40

λ
i (

s
-1

)

λ
1

λ
200

λ
600

λ
1200

λ
1800

λ
2000

CBA

Figure 2.3 – Convergence of Lyapunov spectra versus time in inhibitory networks. (logarithmic time
scale) (A) Convergence of Lyapunov spectrum for one initial condition, (B) grey lines: some Lyapunov
exponents for ten different initial phases, straight color lines: averages, dotted color lines: averages ±
double standard errors, (C) as in (B) but for different network realizations in each run (parameters: N = 2000,
ν̄ = 1Hz, K = 100, J0 = 1, τm = 10ms).

An example code for MATLAB® illustrating the principle steps to calculate the Lyapunov spec-
tra is provided Appendix B. All full calculations were performed in custom code written in C++
with double precision. The GNU Scientific Library (GSL) was used for the random number gener-
ator (Mersenne-Twister), the Automatically Tuned Linear Algebra Software (ATLAS) for matrix
multiplications in the Gram–Schmidt procedure and the Message Passing Interface (MPI) for the
parallel implementation of the simulations. The sparseness of the networks was efficiently used for
the storage of the coupling matrices, the updates of the postsynaptic neurons and the matrix mul-
tiplications of the orthonormal system with the sparse single spike Jacobians. For the reorthonor-
malization, we chose a parallel recursive blocked version of the Gram–Schmidt procedure [91].

The Lyapunov spectra converged rather quickly over time to their asymptotic shape (Fig. 2.3).
One should note that the non-converged Lyapunov exponents are meaningless (they do not reflect
the local or finite-time Lyapunov exponents). The converged Lyapunov exponents capture the
asymptotic network dynamics. Figure 2.3A displays the convergence towards the full Lyapunov
spectrum on logarithmic time scale. This calculation was repeated for different initial phases.
Figure 2.3B shows the results of ten such runs for six of the Lyapunov exponents (grey lines),
together with their averages λi =

1
10 ∑

10
η=1 λi,r (straight color lines) and confidence intervals (dotted

color lines) of the double standard error 24λi = 2
√

1
10 ∑

10
η=1(λi,r−λi)2. Figure 2.3C shows the

results of ten runs with different initial phases and different network realizations. The Lyapunov
spectrum was independent of the initial phases as well as network realizations. Generally, all
calculations of the Lyapunov spectra were repeated ten times with different initial phases and
network realizations. Numerical errors were smaller than the symbol sizes in the presented figures.

The convergence of the largest Lyapunov exponents for different parameter sets in inhibitory
and excitatory-inhibitory networks is depicted in Fig. 2.4 and Fig. 2.5, respectively. The evo-
lution of the largest Lyapunov exponent was plotted versus the logarithm of the average number
of spikes per neuron S (the number of all spikes in the network divided by the number of neu-
rons). S = 1 means that every neuron has spiked approximately once. A characteristic scale is
SD = log(N)/ log(K), corresponding to the diameter of the random graph (the largest number of
neurons on the shortest paths between any pair of neurons). In excitatory-inhibitory networks, the
neurons have K inhibitory presynaptic neurons and K excitatory presynaptic neurons. Therefore
we used SD = log(N)/ log(2K) in the excitatory-inhibitory networks. SD is the approximate num-
ber of spikes after which a perturbation of any neuron has influenced all others. This quantity is
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Figure 2.4 – Convergence of largest Lyapunov exponent in inhibitory networks versus average number
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Figure 2.5 – Convergence of largest Lyapunov exponent in excitatory-inhibitory networks versus aver-
age number of spikes per neuron S ≈ ν̄t. (logarithmic time scale) (A)-(C) Different excitatory-inhibitory
feedback loop activation ε (K = 100, ν̄ = 1Hz), (D)-(F) different mean indegrees K (ε = 0.3, ν̄ = 1Hz),
(G)-(I) different average firing rates ν̄ (ε = 0.3, K = 100), (grey lines: ten runs with different network re-
alizations, black straight lines: averages of these ten runs, dotted lines: averages ± double standard errors,
SD = log(N)/ log(2K), other parameters: NE = 8000, NI = 2000, J0 = 1, τm = 10ms).
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2.6 Asynchronous States and Transitions to Synchrony

a reasonable scale for the convergence of the Lyapunov exponents in inhibitory and excitatory-
inhibitory networks. The fluctuations of the largest Lyapunov exponents decreased similarly for
varying parameters, e.g., number of synapses K, average firing rates ν̄ and excitatory loop activa-
tions ε (Fig. 2.4, 2.5).

For increasing network sizes N, we observed decreasing fluctuations (Fig. 2.4A-C). This, to-
gether with the independence of the Lyapunov spectra of the network realizations, indicates self-
averaging of the Lyapunov spectra. Quantities that are self-averaging converge for large system
sizes to the ensemble average. The Lyapunov spectrum of one realization of a large network is thus
representative for the whole ensemble. Hence, averaging over many different network realizations
is not necessary for large networks.

2.6 Asynchronous States and Transitions to Synchrony

So far, we have introduced the general approach for the numerically exact simulation and charac-
terization of the dynamics of spiking neuron networks and discussed the methodological details of
the balanced state and theta neuron networks in particular. Now, we are ready to present the re-
sults of a comprehensive analysis of the dynamics of theta neuron networks in the balanced state.
These simple models provide valuable insight of the nature of real cortical circuits. We discuss
the neurons’ spike characteristics and their complex collective dynamics in both inhibitory and
excitatory-inhibitory networks.

The balanced state of cortical networks is characterized by asynchronous irregular firing activity
of the neurons. We measured the irregularity of individual neurons’ spike sequences with the
coefficient of variation

cvi =
STD(T isi

i )

MEAN(T isi
i )

. (2.49)

Here T isi
i denotes the interspike intervals of neuron i, STD(. . .) =

√
〈. . .2〉−〈. . .〉2 is the standard

deviation and MEAN(. . .) = 〈. . .〉 is the mean. The angular brackets 〈. . .〉 denote the time average.
The asynchrony/synchrony of the neurons’ firing activity across the population was determined
with a synchrony measure following Ref. [92]

χ =
STD([φi])

[STD(φi)]
. (2.50)

The brackets [. . . ] = 1
N ∑

N
i=1 . . . denote the ensemble average over the whole population of neurons.

The synchrony measure (2.50) measures the variation of a macroscopic quantity (here the average
of all neurons’ phases) normalized with the average of the variations of the microscopic quantity
(single neuron’s phases). It ranges from 0 (full asynchrony) to 1 (full synchrony). Important for
an asynchronous state is that the synchrony measure χ goes to zero as 1/

√
N. This was indeed the

case in both types of networks in the balanced state as can be seen in Fig. 2.10 and 2.19, where the
average cv = [cvi] and χ are presented along with the results of the network dynamics.

Figure 2.6 displays the general characteristics of the firing activity of neurons in both inhibitory
and excitatory-inhibitory networks in the balanced state. Characteristic of the balanced state is
the asynchronous and irregular spike activity of the neurons, visualized in the representative spike
patterns of 40 randomly chosen neurons. The voltage traces of single neurons indicate the typi-
cal strong subthreshold fluctuations in the balanced state. Hence, the voltage distributions in the
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Figure 2.6 – Identical firing characteristics in inhibitory networks (left) and excitatory-inhibitory
networks (middle) in the balanced state. (A),(C) Spike patterns of 40 randomly chosen neurons, (B),(D)
voltage traces of one random neuron, (E) firing rate distributions, (F) coefficient of variation distributions
and (G) stationary voltage distributions for both types of networks, (parameters: N = 10000, K = 100,
ν̄ = 1Hz, J0 = 1, τm = 10ms, η = 0.9, ε = 0.3, NE = 4NI).

networks were broad. The distributions of firing rates νi and coefficients of variation cvi indicate
substantial heterogeneities in the balanced networks. Moreover, these distributions were identical
in both types of networks, due to the specific choice of coupling strengths, Eq. (2.31), that lead to
identical input current statistics in the balanced state. This allows for a quantitative comparison of
the dynamics of the two types of networks.

Although the balanced state emerged for a broad parameter range, two different transitions from
the asynchronous to synchronous states were also observed in the theta neuron networks. In in-
hibitory networks, the neurons’ activity synchronized upon increasing the connectivity K. Even
though the spike sequences of individual neurons remained irregular, the population activity re-
vealed a partially synchronous state for K >Kc≈ 200 (Fig. 2.7). In excitatory-inhibitory networks,
the activity of neurons synchronized and became regular upon increasing the excitatory-inhibitory
feedback loop strength ε above a critical value εc (Fig. 2.8). The latter depended on the ratio of
the excitatory coupling η = JEE

JIE
between the excitatory and inhibitory neurons (Fig. 2.9). The

excitatory interpopulation coupling JIE promoted this transition, whereas the excitatory intrapopu-
lation coupling JEE hindered it. Since we here focus on the analysis of the asynchronous irregular
balanced state, a high ratio η = 0.9 is used throughout the rest of the paper. For this value, the
transition to the synchronous state occurred at εc ≈ 0.5.

2.7 Dynamics of Inhibitory Networks

Sparse inhibitory networks of theta neurons in the balanced state exhibit conventional determinis-
tic chaos that is furthermore extensive (Fig. 2.10). We first examined the collective dynamics of
sparse networks with fixed number of synapses per neuron K and increasing network size (number
of neurons) N. The spike statistics was independent of N. The decreasing synchrony measure
χ ∼ 1/

√
N and the high coefficient of variation cv ≈ 0.8 demonstrate the typical asynchronous

and irregular firing activity in these balanced networks (Fig. 2.10A,B). Importantly, the dynamics
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in excitatory-inhibitory networks. (A) Spike patterns of 1000 randomly chosen neurons for ε = 0.3, (B)
voltage traces of one random neuron for ε = 0.3 (C),(D) as (A),(B) but for ε = 0.6 (other parameters:
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is conventionally chaotic, indicated by positive and finite largest Lyapunov exponents (Fig. 2.10C).
Interestingly, the Lyapunov spectra were invariant to the network size. Plotting the Lyapunov expo-
nents {λi} versus their indices i rescaled with the network size N, they converged to a unique shape
for large N (Fig. 2.10C). Consequently, the number of positive Lyapunov exponents, the entropy
production rate H, Eq. (1.5), and the attractor dimension D, Eq. (1.6), increased linearly with N
(Fig. 2.10D,E). This indicates extensive chaos and it is well justified to define the relative attractor
dimension d = D/N and the average entropy production rate per neuron h = H/N (Fig. 2.10F,G).
Both quantities were surprisingly high, symbolizing a high dimensional chaotic attractor in these
networks and a rapid entropy production. To show that extensive chaos is a robust phenomenon
in the studied networks, additional network size invariant Lyapunov spectra for different average
firing rates ν̄ are presented in Fig. 2.10H-K.

Increasing the network-averaged firing rate ν̄ intensified the chaos in the balanced networks
(Fig. 2.11). Although the irregularity in the neurons’ spiking activity decreased, the largest Lya-
punov exponent, the number of positive Lyapunov exponents, attractor dimension and entropy pro-
duction rate increased with increasing firing rate. We plotted the entropy production rate divided
by the average firing rate in Fig. 2.11G, providing an estimate of the average entropy production
per spike per neuron. The surprisingly high rate of entropy production of up to 1 bit per spike per
neuron should be contrasted with the actual information content in cortical neurons supplied by
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√
N), (B) average coefficient of variation cv, (C) full Lyapunov spectra
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Figure 2.11 – Deterministic chaos in balanced inhibitory networks for varied average firing rates
ν̄ . (A) Synchrony measure χ , (B) average coefficient of variation cv, (C) full Lyapunov spectra {λi}, (D)
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10ms; displayed are averages of 10 runs with different network realizations).
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Figure 2.12 – Deterministic chaos in balanced inhibitory networks for varied coupling strengths J0.
(see Fig. 2.11 for description)
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Figure 2.13 – Deterministic chaos in balanced inhibitory networks for varied number of presynaptic
neurons K. A transition from the asynchronous irregular balance state to a synchronous irregular state
occurs at a network size independent Kc ≈ 200 (see Fig. 2.11 for description).

sensory input streams. This was experimentally estimated to be of order 1 bit per spike per neuron
as well [93, 94]. Our results thus imply a rapid loss of input information in such chaotic networks.

Does the result of a rapid information loss strongly depend on other parameters in our model?
The membrane time constant τm is set to 10ms throughout this paper, which is the physiological
relevant time scale for membrane time constants. Since it is ’just’ the unit of any time-related
quantity in our model, changing τm would just change the time-related quantities accordingly.
For example, doubling τm to 20ms, would result in half the average firing rates and Lyapunov
exponents in Fig. 2.11. The attractor dimension and the average entropy production rate per spike,
however, would not be affected by a change of the membrane time constant.

The influence of the coupling strength J0 is displayed in Fig. 2.12. A vanishing J0 would cor-
respond to the uncoupled case, in which these fully deterministic systems would exhibit stable
regular dynamics. Increasing J0 led to the asynchronous, irregular, chaotic balanced state. While
the quantitative values of the Lyapunov exponents depended on the coupling strength, the syn-
chrony measure, coefficient of variation, attractor dimension and entropy production rate appeared
to saturate at J0 of the order of one.

Surprisingly, a large number of synapses per neuron K led to a transition from the asynchronous
chaotic state to a synchronous chaotic state in inhibitory networks (Fig. 2.13). This behavior was
rather unexpected, as the statistics of the balanced state should be independent of K in the large
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Figure 2.14 – Chaotic dynamics in balanced excitatory-inhibitory networks while activating the
excitatory-inhibitory feedback loops with ε . (values of inhibitory networks as dotted lines for compari-
son) (A) Synchrony measure χ , (B) average coefficient of variation cv, (C) full Lyapunov spectra {λi}, (D)
largest Lyapunov exponent λmax = λ1, (E) mean Lyapunov exponent λmean =

1
N ∑i λi, (F) attractor dimension

in percent of phase space dimension d = D/N and (G) entropy production rate per neuron h = H/N, (pa-
rameters: NI = 2000, NE = 8000, K = 100, ν̄E = ν̄I = 1Hz, J0 = 1, τm = 10ms, η = 0.9, ε = 0.3; displayed
are averages of 10 runs, with different network realizations, in (C) averages of 3 runs).

K-limit, due to the specific square root scaling of the external currents and coupling strengths.
However, increasing K while assuring the same connection probability between neurons p = K/N,
destabilized the asynchronous state. The occurrence of this transition at a critical connectivity Kc≈
200 that was independent of N as indicated by the results shown in Fig. 2.13A for p = 0.05 (filled
circles) and p = 0.01 (open circles). The asynchrony for K < 200 was confirmed by a decreasing
synchrony measure χ for increasing N. Such a transition, with a network size independent critical
connectivity was previously reported in networks of inhibitory hippocampal interneurons [38].
One should note that the irregularity of the individual spike trains was insensitive to the transition.
The asynchronous and the synchronous state displayed identical, high coefficients of variation.
The collective dynamics of the inhibitory networks were only slightly influenced by the transition
from asynchrony to synchrony as well. In the asynchronous state, the largest Lyapunov exponent
and the entropy production rate slowly increased, the attractor dimension slightly decreased with
increasing K. In the synchronous state, the largest Lyapunov exponent continued to increase and
the information dimension continued to decrease, whereas the entropy production rate changed to
slowly decrease with increasing K.

2.8 Dynamics of Excitatory-Inhibitory Networks

Realistic cortical networks typically consist of 20% inhibitory and 80% excitatory neurons [95].
We therefore investigated the influence of excitatory coupling on the dynamics of the balanced
state (Fig. 2.14). For a quantitative comparison with inhibitory networks, the coupling strengths
were chosen as explained above, Eq. (2.31),

J =
J0√
K

(
0.9ε −

√
1− (0.9ε)2

ε −
√

1− ε2

)
. (2.51)

With this parametrization, the magnitude of input current fluctuations remained unchanged while
increasing the strength of the excitatory-inhibitory feedback loops with ε . Thus the firing statistics
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Figure 2.15 – Stable dynamics during transition from asynchronous irregular to synchronous regular
state for strong excitatory couplings ε . (values of inhibitory networks as dotted lines for comparison) (A)
Synchrony measure χ , (B) average coefficient of variation cv, (C) largest Lyapunov exponent, (D) mean
Lyapunov exponent, (E) attractor dimension in percent of phase space dimension, (F) entropy production
rate per neuron, (G) actual population-averaged firing rates, (parameters: NI = 2000, NE = 8000, K = 100,
J0 = 1, τm = 10ms, η = 0.9, the input currents were here chosen to fulfill the balance equation (2.25) for a
certain target average firing rate ν̄bal; displayed are averages of 3 runs with different network realizations).

remained unchanged while increasing ε (Fig. 2.14A,B). For ε = 0, all excitatory neurons were
passive, in the sense that they did not provide any feedback to the network and their dynamics was
dominated by the inputs from the inhibitory neurons. The Lyapunov spectrum was therefore very
similar to an equivalent spectrum of a network of exclusively inhibitory neurons of one fifth size
(dotted line in Fig. 2.14C). In fact, the positive part was identical, which suggests that the unstable
modes were due to the active inhibitory neurons. Consequently, the largest Lyapunov exponent was
identical to the value of the inhibitory networks (Fig. 2.14D), while the attractor dimension and
entropy production rate at ε = 0 were one fifth of the inhibitory values (Fig. 2.14F,G). Upon acti-
vation of the excitatory-inhibitory feedback loops with ε > 0, the chaos in the networks increased.
Although the largest Lyapunov exponent hardly increased in magnitude, the attractor dimension
and entropy production showed a strong dependence on the excitatory coupling. The increasing
attractor dimension seemed to saturate below the inhibitory value, while the entropy production
increased linearly, but did not exceed the values of inhibitory networks (dotted lines), because the
aforementioned transition to the synchronous state occurred beforehand. It is thus interesting to
see, how this is affected by the transition to the synchronous state.

During the transition from the asynchronous irregular state to a synchronous regular state in
excitatory-inhibitory networks the firing statistics and the collective dynamics changed consider-
ably (Fig. 2.15). The sudden change to χ = 1 and cv = 0 indicate the synchronous and regular
firing activity above εc, whose precise value depended on the average firing rate ν̄ . During the
transition to the synchronous state, the actual population-averaged firing rates increased abruptly,
and strongly deviated from the expected firing rates ν̄bal from the balance equation (2.25). The
largest Lyapunov exponent and entropy production rate vanished, and the attractor dimension be-
came one. This indicates stable periodic dynamics during this transition. Note, that the entropy
production rate and attractor dimension never increased the values of inhibitory networks (dotted
lines). We will now continue with the description of the dynamics of the asynchronous irregular
balanced state.

Increasing the number of excitatory neurons in networks with a fixed number of inhibitory neu-
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Figure 2.16 – Chaotic dynamics in balanced excitatory-inhibitory networks for varied number of
excitatory neurons NE . (values of inhibitory networks as dotted lines for comparison) (A) Synchrony
measure χ , (B) average coefficient of variation cv, (C) largest Lyapunov exponent, (D) mean Lyapunov
exponent, (E) attractor dimension in percent of phase space dimension and (F) entropy production rate per
neuron, (parameters: NI = 2000, NE = 8000, K = 100, ν̄E = ν̄I = 1Hz, J0 = 1, τm = 10ms, η = 0.9, ε = 0.3;
displayed are averages of 10 runs with different network realizations).

rons NI = 2000 reduced the intensity of the chaos (Fig. 2.16). We increased the number of excita-
tory neurons from NE = 0 to NE = 10000. The excitatory-inhibitory feedback loop strength was set
to ε = 0.3. Again, the spike statistics did not change, while the dynamics changed in a way that the
attractor dimension and entropy production decreased with increasing number of excitatory neu-
rons. The largest Lyapunov exponent was rather unaffected. The high ratio of excitatory neurons
in realistic cortical networks might thus be beneficial in terms of an reduced entropy production
and hence a slower loss of input information.

The variation of the average firing rate revealed a qualitatively similar dependence of the dy-
namics in excitatory-inhibitory networks as observed in inhibitory networks (Fig. 2.17). Varying
the population-averaged firing rates ν̄E = ν̄I = ν̄ did not change the firing statistics in excitatory-
inhibitory networks compared to the inhibitory networks. This was expected from the construction
of the coupling matrix that led to the same input current statistics in the balanced state in both types
of networks. The largest and the mean Lyapunov exponent were also independent of the type of
network. Nevertheless, the Lyapunov spectra changed slightly in excitatory-inhibitory networks,
such that the attractor dimension and entropy production rate were slightly reduced as discussed
above, but showed qualitatively the same dependence on the average firing rate.

Increasing the number of incoming connections per neuron K led to similar dynamics in both
types of networks as well, although the transition to the synchronous irregular state occurred at
much higher Kc in excitatory-inhibitory networks (Fig. 2.18). We checked two ratios NI = 20K
(filled circles) and NE = 20K (open squares), while 80% of the neurons were excitatory and
20% were inhibitory (NE = 4NI) in both cases. The synchronous irregular state emerged for
K >Kc≈ 1000, which is a five times higher critical connectivity compared to exclusively inhibitory
networks. In the asynchronous irregular state, the firing statistics, Lyapunov exponents, attractor
dimension and entropy production rate were merely independent of the number of synapses K.
This was expected since the statistics of the balanced state is independent of K.

Investigating the dependence of the network dynamics on the number of neurons N, we observed
extensive chaos in excitatory-inhibitory networks (Fig. 2.19). The firing statistics, captured in the
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Figure 2.17 – Chaotic dynamics in balanced excitatory-inhibitory networks for varied population-
averaged firing rates ν̄E = ν̄I = ν̄ . (see Fig. 2.16 for description).

decreasing synchrony measure χ ∼ 1/
√

N and constant high coefficients of variation cv, indicate
the typical asynchronous irregular balanced state. The Lyapunov spectra converged to a system size
independent shape. Hence the number of positive Lyapunov exponents, attractor dimension and
entropy production rate scaled linearly with the number of neurons. This suggests a well-defined
thermodynamic limit of the dynamics of excitatory-inhibitory networks in the balanced state and
confirms the results from inhibitory networks. Altogether, one can conclude that inhibitory net-
works of theta neurons already captured the dynamics of excitatory-inhibitory networks very well.
Both types of networks exhibit extensive deterministic chaos in the balanced state.

2.9 Temporal Network Chaos

Are all neurons involved equally and at all times in the chaotic dynamics despite their substantial
firing heterogeneities? To answer this question, we studied the first Lyapunov vector ~v(t) (with
∑

N
i=1 vi(t)2 = 1). At each point in time, ~v aligns with the direction in which initial perturbations

exponentially grow with maximal asymptotic rate λmax. The Lyapunov vector’s elements can be
assigned to the neurons in the networks. Therefore, they can be used to investigate which neurons
were the most sensitive to perturbations. To understand when the neurons were the most sensitive
to state perturbations, we examined the voltage distribution of neurons when exhibiting the largest
Lyapunov vector element. This distribution compared to the stationary distribution was shifted
towards the spike generating instability, marking it as an important source of instability of the
collective dynamics (Fig. 2.20C and Fig. 2.21F,G).

The Lyapunov vector in both types of networks was dominated by relatively small subsets of
neurons that changed strongly over time (Fig. 2.20, 2.21A). We analyzed the composition of these
groups with two quantities: the participation ratio quantifying the size of a group at a certain time,
and the chaos index quantifying the time-averaged participation of individual neurons.

The participation of individual neurons in the chaotic dynamics is captured by the chaos index

ci =
√

N〈vi(t)2〉t , (2.52)

the root mean square of the Lyapunov vector elements. If a neuron never participates in the chaotic
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Figure 2.22 – Average participation ratio P̄ versus network size N in balanced theta neuron networks
with different average firing rates ν̄ . (A) Inhibitory networks (B) Excitatory-inhibitory networks, (dotted
line: guide to the eye for P̄ ∼ N), (parameters: NI = 0.2N, NE = 0.8N, K = 100, J0 = 1, τm = 10 ms,
ε = 0.3).

dynamics (vi(t) ≡ 0), its chaos index is ci = 0. If only one neuron participates (vi(t) ≡ 1), only
its chaos index does not vanish and is ci =

√
N. If all neurons contribute equally to the chaotic

dynamics (vi(t) ≈ 1/
√

N), all chaos indices are ci ≈ 1. Although neurons with low firing rates
and high variability had slightly reduced chaos indices, all neurons had a similar chaos index of
approximately one (Fig. 2.20, 2.21D,E). This indicates that all neurons participated almost equally
in the chaotic dynamics.

The number of neurons participating in the chaotic dynamics at any single point in time is
captured by the participation ratio

P(t) = 1/
N

∑
i=1

vi(t)4. (2.53)

Two limiting cases are interesting for the understanding of the participation ratio: (i) Delocalized
(extended) states, where the Lyapunov vector is spread out over the entire network. Each vector
element is then vi(t) ≈ 1/

√
N and the participation ratio P(t) = 1/(N/N2) = N. (ii) Localized

states, where the Lyapunov vector is localized to a few neurons. Then, only a few vector elements
do not vanish and the participation ratio is P(t)� N. The participation ratio exhibited substantial
fluctuations indicating strongly varying group sizes (Fig. 2.20, 2.21B). For the considered rates
1Hz ≤ ν̄ ≤ 10Hz, the time-averaged participation ratio P̄ = 〈P(t)〉t obeyed a sublinear scaling
P̄∼ Nα , with 0.25≤ α ≤ 0.5 (Fig. 2.22). This behavior neither clearly indicates localized states,
for which P̄ would be independent of N, nor delocalized states, where P̄ would depend linearly on
N. One should, however, note that the groups are generally small relative to the network sizes, the
fraction of most unstable neurons decreased algebraically as Nα−1.

These results of the chaos index and the participation ratio can be summarized in the following.
Although at one point in time only a small group of neurons participated in the chaotic dynamics,
the neurons composing these groups constantly changed over time such that in the long run all
neurons participated almost equally in the chaotic dynamics.

2.10 Covariant Lyapunov Vectors and Hyperbolicity

While the largest Lyapunov vector yielded interesting results about the active participation of the
neurons in the chaotic dynamics, the N− 1 other Lyapunov vectors yield additional insight into
the collective dynamics of neural networks. The standard algorithm for the computation of the
Lyapunov spectra evolves an orthonormal system (ONS) with the single spike Jacobians. The
norms of the evolved ONS asymptotically yield the Lyapunov spectrum. The ONS itself is spanned
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by vectors of the subspaces Ei related to the Lyapunov exponents λ<i (see section 2.3.2).
The eigenvectors of the Oseledec matrix that span the subspaces Ei related to the Lyapunov ex-

ponents are the covariant Lyapunov vectors (CLVs). Only the first vector of the ONS is equivalent
with the first CLV. All other vectors in the ONS are not the CLVs—the corresponding eigenvectors
to the exponents. Interestingly the CLVs are accessible from the information contained in the ONS.
A procedure to obtained the CLVs from the ONS was introduced in Ref. [96]. This vastly extends
the approach for the characterization of the dynamics of spiking neuron networks.

Here, we discuss the hyperbolicity of the studied systems to validate the use of the Lyapunov
exponents for the derivation of the attractor dimension and entropy production rate. A dynamical
system is called hyperbolic if the stable and unstable manifolds are everywhere transversal to each
other [96]. This will be tested by determining the angles between all CLVs. In case of transversality
of the manifolds, thus hyperbolicity of the system, it can be shown that the system is an Axiom
A dynamical system and then an SRB measure exists [67]. The existence of an SRB measure
is sufficient for the Pesin identity and the Kaplan-Yorke conjecture to hold [72, 73]. Therefore,
proving hyperbolicity of the studied systems validates the use of the Pesin identity and the Kaplan-
Yorke conjecture to derive the entropy production rate H and the information dimension (attractor
dimension) D form the spectrum of Lyapunov exponents. If hyperbolicity is violated then H and
D and provide upper bounds to the entropy production rate and information dimension.

The angles of all CLVs in both inhibitory and excitatory-inhibitory networks are displayed in
Fig. 2.23. The computation of the CLVs requires saving the projection matrices obtained in the
Gram-Schmidt orthogonalization procedure at all time steps. This restricts the use of the algorithm
to moderately large networks up to N = 1000 so far1. As a health check for the computation of the
Lyapunov spectra with the ONS and CLVs, respectively, the spectra obtained from both methods
are compared in Fig. 2.23A. In inhibitory networks, where longer simulations were possible they
show excellent agreement. In excitatory-inhibitory networks, with shorter simulation due to the
memory restrictions, there were slight differences. We should therefore focus on the results of the
inhibitory networks for which longer and converged calculations can be presented.

At each time step s, the CLVs point in different directions {~vi,s}. The angles between different
CLVs i and j are

αi j,s = arccos(~vi,s ·~v j,s).

We used circular statistics2 to calculate their averages ᾱi j and variances σ2
i j. The cosine of the

average angle cos(ᾱi j) between all pairs of CLVs is plotted in the lower right triangle and the
circular variance σ2

i j is plotted in the upper left triangle of Fig. 2.23B. One can see that CLVs
with quite differing indices (far away from the diagonal) are orthogonal to each other, the cosine
of the average and the variance are zero. CLVs with similar indices (close to the diagonal) have
nonvanishing cos(ᾱi j) and nonvanishing σ2

i j. A closer look at the first offdiagonal reveals that
adjacent CLVs can in fact be almost tangential (Fig. 2.23C). However, it seems that this is the case
for larger indices, thus negative Lyapunov exponents. The CLVs corresponding to the positive
Lyapunov exponents seem to be transversal. The angles between Lyapunov vectors further apart
in their indices become more and more transversal as depicted in Fig. 2.23C and indicated by the

1The projection matrix of N2/2 doubles is stored for each of the O(10N) time steps. Thus, the necessary memory for
these computations quickly reaches the order of gigabytes and hence the limit of available RAM (e.g. N = 1000
needs 8B ·5N3 ≈ 40GB RAM). This restricts the method to networks with N ≤ 1000 so far.

2The averages over all considered time steps s = 1 . . .Ns called Ci j =
1

Ns
∑s cosαi j and Si j =

1
Ns

∑s sinαi j lead to the

circular average ᾱi j = arctan(Si j/Ci j) and circular variance σ2
i j = 1−

√
C2

i j +S2
i j.
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corresponding histograms in Fig. 2.23D.
Finally, we want to hint at the interesting fact that cos(ᾱi j) and σ2

i j both vanish for all CLVs
with the CLV corresponding to the near zero Lyapunov exponent i = 43 (see the white hair line
in Fig. 2.23B). Any component of a perturbation in the direction of the trajectory would just cor-
respond to a time-shift and thus have a vanishing Lyapunov exponent. Therefore, all CLVs with
nonvanishing Lyapunov exponent must be orthogonal to the CLV with vanishing Lyapunov expo-
nent pointing in the direction of the trajectory. This is reflected in the white hair line in Fig. 2.23B.

The index with the vanishing Lyapunov exponent is also important for the test of hyperbolicity
as it separates the stable and unstable manifold. The CLVs with larger indices (negative Lya-
punov exponents) span the stable manifold E+

s , whereas the CLVs with smaller indices (positive
Lyapunov exponents) span the unstable manifold E−s . The minimal angle between the stable and
unstable manifold determines the hyperbolicity of the studied systems. At each time step, this
angle Φs is obtained from the minimal angle between all pairs of CLVs from the stable and the
unstable manifold, the least transversal pair of CLVs [96]:

Φs = min{αi j,s|~vi,s ∈ E+
s ,~v j,s ∈ E−s }. (2.54)

In Fig. 2.24A are shown the angles Φs between the stable and unstable manifold at each time step
s (spikes in the networks) for different network sizes N. The histogram of these angles shown in
Fig. 2.24B indicates some hyperbolicity-violations, especially for small networks with N = 100.
From data in Fig. 2.24 it is difficult to conclude that the higher-dimensional the systems get the
fewer hyperbolicity-violations occur. This is, however, generally expected [96] and our simulations
do not disprove it. We can thus carefully consider the large networks studied to be hyperbolic
systems. Then the Pesin identity for the entropy production rate HKS = ∑λi>0 λi and the Kaplan-

Yorke conjecture for the information dimension D1 = d + ∑
d
i=1 λi
|λd+1| with d = max{n : ∑

n
i=1 λi ≥ 0}

hold, and validate the presented approach to quantify the dynamical entropy production rate in
neural networks based on the Lyapunov spectra.

49



2. Chapter Networks of Theta Neurons

0 100 200 300 400 500
i

-50

-25

0

25

λ
i (

s
-1

)

ONS

CLV

0 100 400 500i

0

0.5

1

c
o

s
(α

ij)

0 0.5 1
cos(α

ij
)

0

35

70

h
is

to
g

ra
m

i-j =   1

i-j =   2

i-j =   5

i-j = 10

A B C

D

(a) Inhibitory networks N = 500 (calculation with 25000 spikes).
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(b) Excitatory-inhibitory networks NE = 500, NI = 500 (calculation with 10000 spikes, ε=0.2).

Figure 2.23 – Covariant Lyapunov vectors in balanced theta neuron networks. (A) Lyapunov spec-
trum obtained in the standard procedure with an orthonormal system (ONS) in the forward Gram-Schmidt-
reorthogonalization procedure [69] and obtained with the covariant Lyapunov vectors (CLV) from the back-
ward calculation [96], (B) Angles between covariant Lyapunov vectors cos(αi j) =~vi ·~v j (cosine of circular
mean ᾱi j in lower right triangle, circular variance σ2

i j in upper left triangle), (C) cosine of the offdiagonal el-
ements i− j = 1,2,5,10 of the circular mean ᾱi j, (D) histogram of the offdiagonal ᾱi j from (C), (parameters:
ν̄ = 1Hz, K = 100, J0 = 1, τm = 10ms).
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Figure 2.24 – Minimal angle between stable and unstable manifold. (A) Minimal angle Φs of the least
transversal pair of CLVs versus time step s, Eq. (2.54), (B) histogram of points in (A) (parameters: ν̄ = 1Hz,
K = 50, J0 = 1, τm = 10ms).
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2.11 Summary
In this chapter we introduced a novel approach for a thorough characterization and quantification
of the dynamics of spiking neuron networks. This approach allows for the numerically exact
simulation of neural network dynamics and the calculation of the complete Lyapunov spectra of
networks with arbitrary topologies and single neuron phase-response curves. As a fundamental
example, we analyzed networks of theta neurons in the balanced state. The theta neuron model is
the canonical form of type I excitable neurons and the balanced state, the prevailing explanation of
the asynchronous irregular firing activity observed in the cortex. We therefore expect these results
to be representative of a wide class of models of neural networks.

The balanced state emerged for a wide parameter range in both exclusively inhibitorily coupled
networks and networks with excitatory and inhibitory populations. We also observed two phase
transitions from the asynchronous balanced state to a synchronous state. Beyond a critical connec-
tivity, that was independent of the networks’ size, the networks settled into a synchronous irregular
state and for very strong excitatory coupling, the networks settled into a synchronous regular state.

The presented results of the collective network dynamics show that theta neurons in the asyn-
chronous irregular balanced state exhibit:

• Deterministic chaos, characterized by positive and finite Lyapunov exponents.

• Extensive chaos, characterized by network size-invariant Lyapunov spectra and a linear in-
crease of the number of positive Lyapunov exponents, attractor dimension and entropy pro-
duction rate with the number of neurons.

• Fat chaotic attractors of 20-60% of the phase space dimension, implying large capacity for
information processing and a huge repertoire of possible network states.

• High entropy production rates of 0.5-1 bit per spike per neuron. Compared to real sensory
information provided to cortical neurons of about 1 bit per spike per neuron [93, 94], this
implies that sensory information is overwritten at a similar rate as it is encoded.

• Activation of excitatory-inhibitory feedback loops intensifies the chaos, yet the dynamics in
inhibitory and excitatory-inhibitory networks are qualitatively very similar.

• Temporal network chaos similar to spatiotemporal chaos. While a small fraction of neurons
participated in the chaotic dynamics at one point in time, almost all neurons participated
equally in the chaotic dynamics over time.
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3 Networks of Rapid Theta Neurons
Variable Action Potential Onset Rapidness

Cortical neurons were found to exhibit a much higher action potential (AP) onset rapidness than
expected from standard biophysical neuron models [1]. This has raised fundamental physiological
questions about the origin of this phenomenon (see Section 1.2). Another important issue regarding
the understanding of information processing in the cortex is the impact of rapid AP initiation on
the collective dynamics of cortical networks. This will be addressed in this chapter.

In the first section, we will introduce the rapid theta neuron model. Derived from the theta neu-
ron model, the rapid theta neuron model combines the advantage of being exactly solvable with a
variable AP onset rapidness. Thus, the approach developed in Chapter 2 can be directly applied to
investigate the influence of AP onset rapidness on the collective network dynamics. The AP onset
rapidness r can be arbitrarily chosen in the rapid theta neuron model. As discussed in Section
1.2, reasonable values for standard neuron models like the Wang-Buzsáki model or the Connor-
Stevens model correspond to r ≈ 1 . . .3. The theta neuron model is by construction equivalent to
r = 1. From experiments on cortical neurons, we expect a range between r≈ 10 . . .100 for cortical
neurons. A comprehensive analysis of the dynamics of both inhibitory and excitatory networks
of rapid theta neurons follows in Sections 3.3 and 3.4. We will demonstrate that the network dy-
namics strongly and qualitatively depends on the AP onset rapidness of the single neurons. For
low r, the network dynamics are qualitatively similar to that of theta neurons studied in the pre-
vious chapter. An increase of r, however, can drive the network dynamics to the edge of chaos
and in the large r limit the networks exhibit stable chaos similar to that in leaky integrate and fire
networks. Surprisingly, the firing statistics do not reflect this dramatic change in the network dy-
namics, including the pairwise spike correlations. In fact, the pairwise spike correlations are very
weak independent of the AP onset rapidness of the neurons. Nevertheless, we will demonstrate
that the statistics becomes entangled at the edge of chaos. This will be discussed in Sections 3.5
and 3.6.

3.1 Rapid Theta Neuron Model
In order to examine the impact of the AP onset rapidness on the collective dynamics of cortical
networks, a new neuron model with variable AP onset rapidness was developed, called the rapid
theta neuron model (Fig. 3.1). The rapid theta neuron model combines the advantage of the theta
neuron model of an analytic derivation of the phase-response curve with a freely variable AP onset
rapidness r. For r = 1, the rapid theta neuron model is equivalent to the theta neuron model and all
results discussed in Chapter 2 hold. Increasing r increases the time constant at the unstable fixed
point VU leading to a larger instability and sharper AP initiation. The membrane time constant τm,
the time constant at the stable fixed point VS remains unchanged. This is achieved by ’glueing’ two
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Figure 3.1 – Rapid theta neuron model. (A) Phase plot of the rapid theta neuron model, Eq. 3.1 and (B)
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parabolas smoothly together at VG.In the dimensionless voltage representation, the resulting rapid
theta neuron model is described by the differential equation

τm
dV
dt

=

{
aS(V −VG)

2− IT + I(t) V ≤VG

aU(V −VG)
2− IT + I(t) V >VG.

(3.1)

In this equation, IT denotes the rheobase current and I(t) is the synaptic input current. The cur-
vatures aS,U depend on the AP onset rapidness r and together with VG and IT define the positions
of the two branches of the parabolas. The glue point, denoted VG, divides the phase space into a
subthreshold (V ≤ VG) and a suprathreshold (V > VG) part. At the stable fixed point VS, the slope
of the subthreshold parabola is set to −1/τm and at the unstable fixed point VU the slope of the
suprathreshold is r/τm. This leads to the expressions

∂V̇ (VS)

∂V
=−1 = 2aS(VS−VG)

aS =
1
2

1
(VG−VS)

∂V̇ (VU)

∂V
= r = 2aU(VU −VG)

aU =
r
2

1
(VU −VG)

.

The derivative of the voltage vanishes at the two fixed points for zero synaptic inputs (I(t) ≡ 0).
This defines the glueing point VG and the rheobase current IT :

V̇ (VS) = 0 = aS(VS−VG)
2− IT

IT =
VG−VS

2
V̇ (VU) = 0 = aU(VU −VG)

2− IT

=
rVU −VG(r+1)+VS

2

VG =
rVU +VS

r+1
.
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Without loss of generality, the stable and unstable fixed points are set to VS = −0.5 and VU =
+0.5, yielding:

VG =
1
2

r−1
r+1

(3.2)

IT =
1
2

r
r+1

(3.3)

aS =
r+1

2r
(3.4)

aU =
r(r+1)

2
= r2aS. (3.5)

With Eq. (3.2)-(3.5) the governing equation of the rapid theta neuron model (3.1) becomes

τm
dV
dt

=

{
r+1
2r

(
V − 1

2
r−1
r+1

)2− IT + I(t) V ≤ 1
2

r−1
r+1

r(r+1)
2

(
V − 1

2
r−1
r+1

)2− IT + I(t) V > 1
2

r−1
r+1 .

(3.6)

A phase representation of the rapid theta neuron model similar to the classical theta neuron
model is obtained with the transformation tan θ

2 =V −VG and θ ∈ [−π,π], yielding

τm
dθ

dt
=

{
r+1
2r

(
1− cosθ

)
+
(
I(t)− IT

)(
1+ cosθ

)
θ ≤ 0

r(r+1)
2

(
1− cosθ

)
+
(
I(t)− IT

)(
1+ cosθ

)
θ > 0.

(3.7)

It can be seen that for r = 1, the theta neuron model, Eq. (2.33), is recovered.

The exact solutions of the rapid theta neuron model for constant external currents and δ pulse
coupling allow us to write down a phase representation with constant phase velocity similar to the
one obtained for the theta neuron model. The solution of the governing differential equation in the
dimensionless voltage representation (3.1) for constant synaptic currents I(t)≡ IT + I is

1
I

dx

1+

(
V −VG√

I/aS,U

)2 =
1

τm
dt

1
I

√
I/aS,U

[
arctan

(
V −VG√

I/aS,U

)]V2

V1

=
t2− t1

τm

arctan

(
V2−VG√

I/aS,U

)
= arctan

(
V1−VG√

I/aS,U

)
+
√

I aS,U
t2− t1

τm
. (3.8)

This equation represents the solution for both branches of Eq. (3.1) separated by VG as before. For
the subthreshold part (V ≤VG), the curvature is aS =

r+1
2r and for the suprathreshold part (V >VG),

the curvature is aU = r(r+1)
2 . In the phase representation with phase φ ∈ [−π,π] and constant phase

velocity, the phase evolution is given by

φ2 = φ1 +ω
t2− t1

τm
. (3.9)
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Identifying Eq. (3.8) and (3.9), enables us to derive the constant phase velocity ω and the ’glue-
ing’ point φG to define the transformation between the two representations

φ −φG

ω
= arctan

(
V −VG√

I/aS,U

)
1√

I aS,U
. (3.10)

During one complete cycle, the time TS spent in the subthreshold part (V2 =VG and V1→−∞) and
the time TU spent in the suprathreshold part (V2→ ∞ and V1→VG) can be taken from Eq. (3.8):

TS =
πτm√

2I(r+1)/r
and TU =

πτm√
2I(r+1)r

.

The time spent in the subthreshold part is thus TS/TU = r times as long as the one in the suprathresh-
old part. The total cycle length, or interspike interval, is thus

T free = (r+1)TU

=
πτm√

I

√
r+1

2r
. (3.11)

The constant phase velocity is then

ω =
2π

T free

=
2
√

I
τm

√
2r

r+1
=

2
τm

√
I/aS (3.12)

The phase corresponding to the glueing point is

φG = −π +ωTS

= π
r−1
r+1

. (3.13)

The constant phase velocity (3.12) and the glueing point (3.13) define the transformation (3.10)
between the voltage representation and the phase representation:

φ = φG +


2
aS

arctan
(

V−VG√
I/aS

)
V ≤VG

2
raS

arctan
(

r V−VG√
I/aS

)
V >VG

(3.14)

V = VG +


√

I/aS tan
(

aS
φ−φG

2

)
φ ≤ φG√

I/r2aS tan
(

raS
φ−φG

2

)
φ > φG.

(3.15)

This transformation between the two equivalent representations is now used to calculate the
phase-transition curve g(φ), respectively the phase-response curve Z(φ). Receiving a δ pulse of
strength J leads to a step like change of the neuron’s voltage V+ =V−+J. If this change does not
lead to a change from the subthreshold to the suprathreshold part or vice versa, the calculation of
the phase-transition curve is straightforward. Some care needs to be taken, if the δ pulse does lead
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to such a change.

An inhibitory pulse J < 0 can lead to a change from the suprathreshold to the subthreshold part.
This happens if the neuron’s phase is between φG and φ−. The phase-transition curve for inhibitory
δ pulses of strength J and constant external currents I with the effective coupling C = J/

√
I and

φ− = φG + 2
raS

arctan
(
r(VG− J−VG)/

√
I/aS

)
= φG− 2

raS
arctan

(
r
√

aSC
)

is

g−(φ) = φG +


2
aS

arctan
(

tan
(

aS
φ−φG

2

)
+
√

aSC
)

−π < φ ≤ φG

2
aS

arctan
(

1
r tan

(
raS

φ−φG
2

)
+
√

aSC
)

φG < φ < φ−
2

raS
arctan

(
tan
(

raS
φ−φG

2

)
+ r
√

aSC
)

φ− ≤ φ < π.

(3.16)

For excitatory δ pulses of strength J > 0, the phase can change from the subthreshold to the
suprathershold part if the phase is between φ+ and φG. The phase-transition curve for excitatory
δ pulses of strength J and constant external currents I with the effective coupling C = J/

√
I and

φ+ = φG− 2
aS

arctan(
√

aSC) is

g+(φ) = φG +


2
aS

arctan
(

tan
(

aS
φ−φG

2

)
+
√

aSC
)

−π < φ ≤ φ+

2
raS

arctan
(

r tan
(

aS
φ−φG

2

)
+ r
√

aSC
)

φ+ < φ < φG

2
raS

arctan
(

tan
(

raS
φ−φG

2

)
+ r
√

aSC
)

φG ≤ φ < π.

(3.17)

The phase-response curve is Z±(φ) = g±(φ)−φ . Thus, the infinitesimal phase-response curve
is the same for both excitatory and inhibitory pulses, since φ±→ φG for C→ 0:

Z(φ)
C→0' C


2
√

aS
aS

1

1+tan
(

aS
φ−φG

2

)2 =
1+ cos(aS(φ −φG))√

aS
−π < φ ≤ φG

2r
√

aS
raS

1

1+tan
(

raS
φ−φG

2

)2 =
1+ cos(raS(φ −φG))√

aS
φG ≤ φ < π.

(3.18)

To investigate the collective dynamics of networks of rapid theta neurons, the derivative d(φ) of
the phase-transition curve is needed for the single spike Jacobians, Eq. (2.15). The derivative in
case of inhibitory pulses is

d−(φ) =



tan
(

aS
φ−φG

2

)2
+1(

tan
(

aS
φ−φG

2

)
+
√

aSC
)2

+1
−π < φ ≤ φG

tan
(

raS
φ−φG

2

)2
+1(

1
r tan

(
raS

φ−φG
2

)
+
√

aSC
)2

+1
φG < φ < φ−

tan
(

raS
φ−φG

2

)2
+1(
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Figure 3.2 – Phase-transition curve (PTC), phase-response (PRC) and infinitesimal phase-response
(iPRC) of the rapid-theta neuron model with AP onset rapidness r. The PTC (left panel) and PRC=PTC-
φ (middle panel) are shown for inhibitory coupling C =−1 (dashed lines, Eq. (3.16)) and excitatory coupling
C = +1 (solid lines, Eq. (3.17)). In the right panel are displayed the iPRC (Eq. (3.18)) and its derivative
(Eq. (3.21)).

The derivative of the phase-transition curve in the case of excitatory pulses is
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The derivative of the phase-response curve is Z′±(φ) = d±(φ)−1 and the derivative of the infinites-
imal phase-response curve is

Z′(φ)
C→0' −C

{√
aS sin(aS(φ −φG)) −π < φ ≤ φG

r
√

aS− sin(raS(φ −φG)) φG ≤ φ < π.
(3.21)

The phase-transition curves (PTC, g(φ), Eq. (3.16) and (3.17)), the phase response curves (PRC,
Z(φ) = g(φ)−φ ) and the infinitesimal phase-response curves (iPRC, Eq. (3.18)) of the rapid theta
neuron model are displayed in Fig. 3.2. The iPRC of the theta neuron (r = 1) is fully symmetric,
whereas for increasing AP onset rapidness r the iPRC becomes more and more asymmetric. In the
limit r→ ∞ it becomes monotonously increasing/decreasing and one might expect that this can
qualitatively change the collective network dynamics.

3.2 Balanced State in Rapid Theta Neuron Networks
The derived exact expressions of the phase-transition curves, Eq. (3.16), (3.17), and their deriva-
tives, Eq. (3.19), (3.20) allow for the direct application of the approach introduced in Chapter 2 for
precise simulations and the quantification of the collective dynamics of rapid theta neurons.
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Figure 3.3 – Characteristics of the balanced state in rapid theta neuron networks. (A,C) spike trains
of 40 randomly chosen neurons, (B,D) voltage trace of first randomly chosen neuron, (E) firing rate dis-
tributions for different AP onset rapidness r and their excitatory-inhibitory counterparts (dotted lines), (F)
coefficients of variation distributions as in E, (G) suprathreshold external current I0 in relation to estimated
balanced current Ibal = ν̄J0τm from balance equation (2.19) versus target average firing rate ν̄ (I0/Ibal = 1
would be perfect fit), (parameters: N = 10000, K = 100, ν̄ = 10Hz, τm = 10ms; all simulation with identical
network realizations).

We will study the exact same networks as in Chapter 2 but now composed of rapid theta neurons
with variable AP onset rapidness. An AP onset rapidness r = 1 is equivalent to the theta neuron
model, thus the results of Chapter 2 are recovered. In these theta neuron networks, we have ob-
served two phase transitions from the asynchronous balanced state to a synchronous state. One
transition to a synchronous irregular state occurred at a critical connectivity Kc and one to syn-
chronous regular state at a critical excitatory-inhibitory feedback loop strength εc. In rapid theta
neuron networks with larger AP onset rapidness, both phase transitions were shifted to much higher
critical parameters and disappeared entirely for large r & 10 (Fig. 3.4). This indicates that a higher
AP onset rapidness, increases the parameter range in which inhibitory and excitatory-inhibitory
networks exhibit the balanced state.

The firing statistics of the studied networks exhibited the characteristic features of the balanced
state and were basically insensitive to the AP onset rapidness r of the single neurons (Fig. 3.3). The
seemingly random firing patterns of 40 neurons in Fig. 3.3A,C display the typical asynchronous
irregular state independent of r. Two individual voltage traces represent the characteristic strong
voltage fluctuations of the neurons (Fig. 3.3B,D). Furthermore, the firing rate distributions and
coefficient of variation distributions were broad indicating strong heterogeneity in the networks
independent of r (Fig. 3.3E,F). Due to the specific parametrization of the coupling strengths in
excitatory-inhibitory networks, Eq. (2.31), they were also identical in both types of networks. This
allows for a quantitative comparison of the two network types.
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Figure 3.4 – Phase diagrams of excitatory-inhibitory networks for different ratios η = JEE/JIE . (see
coupling matrix (2.31) and Fig. 2.9 for r = 1) Columns from left to right: η = 1, 0.9, 0, from top to bottom:
average firing rate ν̄ , coefficient of variation cv and synchrony measure χ; on the x-axis is plotted the
target average firing rate according to the balance equation (2.25) and on the y-axis the excitatory-inhibitory
feedback loop activation ε , (parameters: NE = 8000, NI = 2000, K = 100, J0 = 1, τm = 10ms; displayed
are averages of 10 runs with different network realizations).
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Figure 3.5 – Extensive dynamics in balanced inhibitory networks of N rapid theta neurons with vari-
able AP onset rapidness r. (A) Synchrony measure χ (straight line: χ ∼ 1/

√
N), (B) average coefficient

of variation cv, (C) full Lyapunov spectra {λi} for different network sizes N, (D) largest Lyapunov expo-
nent λmax = λ1, (E) mean Lyapunov exponent λmean =

1
N ∑i λi, (F) attractor dimension in percent of phase

space dimension d =D/N, (G) average entropy production rate per neuron h =H/N, (H)-(K) full Lyapunov
spectra for different firing rates ν̄ , (K = 100, J0 = 1,τm = 10ms; averages of 10 runs with different network
realizations).

3.3 Dynamics of Inhibitory Networks

An interesting feature of randomly connected theta neuron networks in the balanced state is the
extensivity of the dynamics (Fig. (2.10)). Figure 3.5 shows that this extensivity is insensitive to
the AP onset rapidness of the single neurons. The decreasing synchrony measure χ ∼ N−1/2 with
network size N and the constantly high coefficient of variation cv≈ 0.8 indicate the typical asyn-
chronous irregular balanced state in the networks which was independent of the AP onset rapidness
r of the single neurons (Fig. 3.5A,B). The dynamics of the networks, however, showed a strong
dependence on r indicated by completely different Lyapunov spectra (Fig. 3.5C). Nevertheless, for
all r the Lyapunov spectra were invariant to the number of neuron in the networks N. They all
converged to a unique shape when plotting the Lyapunov exponents {λi} versus the rescaled index
i/N (Fig. 3.5C,H-K). Therefore, the number of positive Lyapunov exponents, the entropy produc-
tion rate H, Eq. (1.5), and the attractor dimension D, Eq. (1.6), increased linearly with number of
neurons. They are thus extensive quantities and it is well justified to define the relative attractor
dimension d = D/N and the average entropy production rate per neuron h = H/N (Fig. 3.5F,G).

A difference in the collective dynamics of neurons with higher AP onset rapidness compared to
theta neurons (r = 1) emerged for the largest Lyapunov exponent (Fig. 3.5D). The largest Lyapunov
exponent λmax increased with an increasing number of neurons N and converged only slowly for
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Figure 3.6 – Critical AP onset rapidness rc between stable and chaotic dynamics in balanced inhibitory
networks. (A) Largest Lyapunov exponent λmax = λ1 vanishes at rc (lin-log plot, N = 2000, K = 100), (B)
second Lyapunov exponents λ2 crosses zero at rc (lin-log plot, N = 2000, K = 100), (C) the critical AP
rapidness rc separating chaotic dynamics (below) from stable dynamics (above) versus number of neurons
N for K = 100, versus number of synapses per neuron K for N = 10000 and versus average firing rate ν̄ for
N = 10000 and K = 100, dashed lines: numerical calculations with double precision, solid lines: numerical
calculations with quadruple precision, (D) filled circles: quadruple precision data from (C) in log-log plots,
solid lines: fitted curves with given power law, (other parameters: J0 = 1, τm = 10ms; averages of 10 runs
with different network realizations).

extremely large networks.
Conversely, the increase of λmax with N raises the question whether it can also vanish for small

N. This would correspond to a phase transition from stable to chaotic dynamics. This occurred
indeed for very large AP onset rapidness r. In Fig. 3.5D, for example, it can be seen that for
r = 100, the largest Lyapunov exponent vanishes for networks with less than about 2000 neurons.
In Figure 3.6A,B are displayed the first and the second Lyapunov exponent in such a network for
increasing AP onset rapidness. At the critical AP onset rapidness of rc ≈ 100 in this example,
the first Lyapunov exponent vanishes and the second Lyapunov exponent changes from positive to
negative. This indicates a phase transition from chaotic to stable dynamics. Such networks are at
the edge of chaos.

A large critical AP onset rapidness rc, setting the networks at the edge of chaos, was found
for all parameters in balanced inhibitory networks (Fig 3.6C). It appears to exhibit the scaling
behavior rc ∼ N0.6K0.4ν̄0.8 (Fig 3.6D). Because the critical AP onset rapidness can become very
large, the results of the numerical calculations with double precision (dashed lines) were verified
with calculations using quadruple precision (solid lines). If there does exist stable dynamics for
(possibly very large) AP onset rapidness, this implies that the information in the spike pattern could
actually be maintained because there is no loss of information. Theta neuron networks (r = 1), on
the other hand, exhibit a strikingly high loss of information, as was demonstrated in Chapter 2. So,
how does the rate of information loss in the chaotic dynamics depend on the AP onset rapidness of
the neurons in detail?

Increasing the AP onset rapidness of the neurons reduced the intensity of the chaos in balanced
networks (Fig. 3.7). The synchrony measure χ slightly decreased and the coefficient of variation
cv slightly increased for moderate increases of the AP onset rapidness (Fig. 3.7A,B). In the same
range up to r ≈ 10 the largest Lyapunov exponent λmax increased (Fig. 3.7C). Further increasing
r, however, led to a reduction of λmax while χ and cv were constant. The observed peak in the
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largest Lyapunov exponent λmax = λ1, (D) mean Lyapunov exponent λmean =

1
N ∑i λi, (E) attractor dimension

in percent of phase space dimension d = D/N, (F) average entropy production rate per neuron h = H/N,
(G) attractor dimension in log-log plot, (H) average entropy production rate per neuron per spike in log-log
plot, (I) maximal predictive time tp ∝ D/H, (parameters: N = 2000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms;
averages of 10 runs with different network realizations).

largest Lyapunov exponent depending on r will find an explanation in the investigation of the
dynamics on the connectivity K. As opposed to the largest Lyapunov exponent exhibiting a peak,
the attractor dimension and the entropy production rate decreased monotonously with increasing
r (Fig. 3.7E-H). A decreasing attractor dimension indicates a reduced information capacity of
the networks. Assuming that the input information provided to the network does not exceed the
maximal capacity, the reduced entropy production rate then means that the information is depleted
more slowly in networks with larger AP onset rapidness.

The transition from the asynchronous irregular to a synchronous irregular state while increasing
the connectivity K disappeared for AP onset rapidness r > 1. We increased the average number
of synapses per neuron K while keeping the probability p = K/N of a connection between two
neurons fixed. Theta neuron networks (r = 1) exhibit a transition from the asynchronous to a
synchronous state as discussed in Chapter 2. For r > 1, this transition did not occur or was at
least shifted to much higher values of K. In the asynchronous state, the firing statistics were
largely insensitive to an increase of K (Fig. 3.8A,B) as expected from the mean-field theory of the
balanced state. The attractor dimension and entropy production rate seemed to converge for large
K (Fig. 3.8F,G). An interesting behavior showed the largest Lyapunov exponent. It first increased
linearly with K and then at some K, depending on r, it converged to a constant. This change in
the dynamics was not reflected in the network statistics, as the synchrony measure and coefficient
of variation do not vary at these values of K. Also, for higher r the range expanded in which the
largest Lyapunov exponent increased with K. This change of the network dynamics will be studied
further.

The transition to the synchronous state was shifted to much higher K for larger r (Fig. 3.9(a)).
Extending the observed range of K up to 10000 synapses per neuron reveals the onset of this
transition for r = 3 at around Kc ≈ 2000, which is a ten times higher critical connectivity. For
r≥ 10, the transition to synchrony could not be observed in the considered parameter range. These
observations imply that the transition to synchrony at a critical connectivity Kc was shifted to
extremely high values for large r and might even disappear.

The analysis of networks with fixed number of neurons and increasing number of synapses
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Figure 3.8 – Dynamics of dense networks for different AP rapidness r and varied number of synapses
K. (A) Synchrony measure χ , (B) average coefficient of variation cv, (C) full Lyapunov spectra {λi}
for different network sizes N, (D) largest Lyapunov exponent λmax = λ1, (E) mean Lyapunov exponent
λmean =

1
N ∑i λi, (F) attractor dimension in percent of phase space dimension d = D/N, (G) average entropy

production rate per neuron h = H/N, (H)-(K) full Lyapunov spectra for different number of synapses K,
(parameters: N = 20K, ν̄ = 1Hz, J0 = 1, τm = 10ms; averages of 10 runs with different network realiza-
tions).

further proves that the transition to synchrony disappears for large r (Fig. 3.9(b)). The number of
synapses per neuron K was varied up to the all-to-all coupled case for K = N = 10000. Networks
of theta neurons (r = 1) showed a very similar dependence on K compared to Fig. 3.9(a). It
indicates that at around Kc ≈ 200, theta neuron networks begin to act similar to the all-to-all-
coupled networks. They are in a synchronous irregular state. For rapid theta neuron networks
there are two differences: (i) the critical connectivity increases strongly with increasing AP onset
rapidness, and (ii) all-to-all coupled network are in a partially synchronous or asynchronous regular
state.

One can suspect from Fig. 3.9(b) that for r = 100, the fully coupled networks are in a stable
splay state. This demonstrates that the AP onset rapidness qualitatively changes the dynamics of
inhibitory balanced networks.

This qualitatively different dynamics depending on the AP onset rapidness explains the observed
peak in the largest Lyapunov exponent versus AP onset rapidness. We have found two different
scaling regimes of the largest Lyapunov exponent λmax with respect to the number of synapses K
per neuron in Fig. 3.9. For clarity, this is shown again in Fig. 3.10A. Increasing K first leads to a
linear increase of λmax(K) up to a typical Kr that depends on r. A further increase of K leads to a
plateau in λmax(K). Interestingly, the largest Lyapunov exponent scales like λmax(K < Kr) ∼ 1/r
in the first (increasing) regime and scales like λmax(K > Kr) ∼ r in the second (plateau) regime.
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Figure 3.9 – Transition from asynchronous irregular to synchronous irregular state shifted with in-
creasing AP onset rapidness r: (A) Synchrony measure χ , (B) average coefficient of variation cv, (C)
largest Lyapunov exponent λmax = λ1, (D) mean Lyapunov exponent λmean =

1
N ∑i λi, (E) actual network-

averaged firing rate ν̄ (parameters: K = 100, J0 = 1, τm = 10ms; the input currents were here chosen to
fulfill the balance equation (2.19) for the target average firing rate ν̄bal = 1Hz; averages of 10 runs with
different network realizations).
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65



3. Chapter Networks of Rapid Theta Neurons

Now Kr also increases with r. Therefore, keeping K fixed as in Fig. 3.7, leads to a transition from
the second (plateau) to the first (increase) regime and λmax first increases with r, then saturates and
finally decreases as 1/r. The numerical fits displayed in Fig. 3.10 agree very well with the two
different regimes. Thus, the peak in λmax(r) results from a qualitative change of the dynamics for
increasing AP onset rapidness.

Even though the largest Lyapunov exponent changes its scaling behavior which indicates a qual-
itative change in the network dynamics, one should note that the firing statistics as well as the
entropy production rate and attractor dimension did not change their qualitative characteristics
(Fig. 3.7). The entropy production rate and attractor dimension decreased monotonously with in-
creasing AP onset rapidness and were hardly affected by an increase of the number of synapses or
number of neurons in the networks.

3.3.1 The Limit of Instantaneous AP Initiation

In the limit of infinitely fast AP onset rapidness r→ ∞, the AP initiation becomes instantaneous
and the rapid theta neuron model in this limit is similar to the leaky integrate and fire (LIF) model.
The difference is that, as opposed to the LIF model, there is no finite reset and threshold value in
the rapid theta neuron. More importantly, the LIF model neglects the dynamic AP generation since
a spike is emitted (virtually) when the voltage crosses the threshold potential. This is similar to the
case of r→ ∞ in the rapid theta neuron model.

The limit of instantaneous AP initiation (r→ ∞) can be approached in different ways. On the
one hand, we showed for finite inhibitory networks of size N and connectivity K that the dynamics
becomes stable upon increasing the AP onset rapidness beyond a finite but large value rc (Fig. 3.6).
Thus, in the limit of r→ ∞, the dynamics would be stable even when taking the limit of large N
and K afterwards. On the other hand, we showed that taking the limit of large N and K first, yields
a scaling of the largest Lyapunov exponent λmax ∼ r (Fig. 3.9). Thus, taking then the limit r→ ∞

appears to yield a largest Lyapunov exponent that approaches infinity.
We conclude that the dynamics in the large network and connectivity limit strongly depends on

the order in which this limit and the limit of instantaneous AP initiation are taken. Depending on
the order of these limits, the collective network dynamics would either be characterized as stable
(λmax = 0) or as extremely chaotic (λmax = ∞).

3.4 Dynamics of Excitatory-Inhibitory Networks

Increasing the excitatory coupling in balanced networks of rapid theta neurons intensified the chaos
(Fig. 3.11). The balanced state was again characterized by low synchrony measure χ and a high
coefficient of variation cv. Upon activating the excitatory-inhibitory feedback loops with ε , the
largest Lyapunov exponent λmax and the attractor dimension d increased and exceeded the values
from inhibitory networks for large ε (dotted lines). The entropy production rate h increased linearly
with ε and exceeded that of inhibitory networks for large ε as well. The difference in the dynamics
of excitatory-inhibitory rapid theta neurons (r > 1) compared to theta neurons (r = 1) is that the
largest Lyapunov exponent increased strongly with ε , and the attractor dimension and entropy
production could exceed the values of inhibitory networks. In theta neurons, the largest Lyapunov
exponent was hardly affected by increasing ε and the attractor dimension and entropy production
remained below the values of inhibitory networks.
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Figure 3.11 – Dynamics of excitatory-inhibitory networks with different AP onset rapidness r, while
activating the excitatory-inhibitory feedback loops with ε . (values of inhibitory networks as dotted lines
for comparison): (A) Synchrony measure χ , (B) average coefficient of variation cv, (C) largest Lyapunov
exponent λmax = λ1, (D) mean Lyapunov exponent λmean = 1

N ∑i λi, (F) attractor dimension in percent of
phase space dimension d = D/N, (G) average entropy production rate per neuron h = H/N, (C-F) dashed
lines: values from isolated inhibitory networks (NE = 0), (G) actual network-averaged firing rate ν̄ , (param-
eters: NE = 8000, NI = 2000, K = 100, J0 = 1, τm = 10ms, η = 0.9; the input currents were here chosen
to fulfill the balance equation (2.25) for the target average firing rate ν̄bal = 1Hz; averages of 10 runs with
different network realizations).

The transition from the asynchronous irregular state to a synchronized regular state disappeared
for high AP onset rapidness r. In theta neuron networks (r = 1), we observed this transition in
which the dynamics changed from chaotic to stable at a critical excitatory-inhibitory feedback
loop strengths εc. The transition is characterized by an abruptly increasing synchrony measure χ ,
an increasing mean firing rate ν̄ , and a decreasing coefficient of variation cv . This appeared in
theta neuron networks (r = 1) at a critical excitatory-inhibitory feedback loop strength εc ≈ 0.5.
When increasing the AP onset rapidness, this transition is shifted to larger εc. For r = 3 it is
approximately εc ≈ 0.6 and for r > 10 the transition completely disappears and the balanced state
is stable in the entire parameter range.

In inhibitory networks, we observed a transition from chaotic to stable dynamics with increas-
ing AP onset rapidness. Such networks near the edge of chaos are always driven into the chaotic
regime when increasing the excitation. This can be seen for r = 100 in Fig. 3.11. Equivalent
inhibitory networks and excitatory-inhibitory networks with passive excitatory neurons (ε = 0)
exhibit a zero largest Lyapunov exponent and are at the edge of chaos for r = 100. Upon acti-
vating the excitatory-inhibitory feedback loops with ε > 0, a chaotic dynamics sets in, character-
ized by positive Lyapunov exponents, attractor dimension and entropy production rate. Thus, the
excitatory-inhibitory feedback loops can set a dynamic edge of chaos in rapid theta neuron net-
works. This might serve as a dynamic mechanism for switching between the two computationally
highly interesting regimes—stable and chaotic dynamics.

The dynamics of chaotic excitatory-inhibitory networks was qualitatively very similar to the
dynamics of inhibitory networks (Fig. 3.12). For various excitatory-inhibitory feedback loop
strengths ε and average firing rates ν̄ , the largest Lyapunov exponent exhibited a pronounced
peak and the attractor dimension and entropy production rate decreased monotonously for increas-
ing r. This was also observed in inhibitory networks as discussed in the previous section. The
influence of the AP onset rapidness on the dynamics of both inhibitory and excitatory-inhibitory
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Figure 3.12 – AP onset rapidness r strongly influences the dynamics of excitatory-inhibitory balanced
networks with excitatory-inhibitory feedback strength ε . (AP rapidness on logarithmic scale): (A) Syn-
chrony measure χ , (B) average coefficient of variation cv, (C) largest Lyapunov exponent λmax = λ1, (D)
mean Lyapunov exponent λmean = 1

N ∑i λi, (E) attractor dimension in percent of phase space dimension
d = D/N, (F) average entropy production rate per neuron h = H/N, (G) attractor dimension in log-log
plot, (H) average entropy production rate per neuron per spike in log-log plot, (parameters: NE = 8000,
NI = 2000, K = 100, J0 = 1, η = 0.9, τm = 10ms; averages of 10 runs with different network realizations).

networks is summarized in Fig. 3.13. Networks of exclusively inhibitory neurons and networks of
20% inhibitory and 80% excitatory neurons share the same largest Lyapunov exponent when the
excitatory neurons are passive (ε = 0). The average entropy production rate per neuron per spike is
reduced accordingly to one fifth in excitatory-inhibitory networks. Upon activating the excitatory-
inhibitory feedback loops (ε > 0), the chaos becomes more intense resulting in a higher Lya-
punov exponent and entropy production rate. Qualitatively, however, the dynamics of excitatory-
inhibitory networks is very similar to inhibitory networks. The only difference in the excitatory-
inhibitory networks is that for increased excitation the networks seem to stay in the chaotic regime
even for very larger AP onset rapidness (Fig. 3.12 and 3.13). We were therefore wondering how
the critical AP onset rapidness rc changes with increasing excitation in the networks.

The strength of the excitatory-inhibitory feedback loops exponentially increased the critical AP
onset rapidness defining the edge of chaos (Fig. 3.14). For networks with an average firing rate of
ν̄ = 1Hz, one can suspect from Fig. 3.12(a) that the transition to stable dynamics might disappear
for strong excitatory-inhibitory feedback loops. This is indeed the case, indicated by a diverging
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Figure 3.15 – Extensive chaos in excitatory-inhibitory balanced networks for varied network sizes
N. (values of inhibitory networks as dotted lines for comparison) (A) Synchrony measure χ (straight line:
χ ∼ 1/

√
N), (B) average coefficient of variation cv, (C) largest Lyapunov exponent λmax = λ1, (D) mean

Lyapunov exponent λmean =
1
N ∑i λi, (E) attractor dimension in percent of phase space dimension d = D/N

and (F) entropy production rate per neuron h = H/N, (NE = 4NI and N = NE +NI , K = 100, ν̄E = ν̄I = 1Hz,
J0 = 1, η = 0.9, ε = 0.3, τm = 10ms; averages of 10 runs with different network realizations).

critical AP onset rapidness rc for networks with an average firing rate ν̄ = 1Hz at excitatory-
inhibitory feedback loop strength ε ≈ 0.3 (Fig. 3.14A). For larger firing rates, rc also increased
seemingly exponentially but stayed finite for larger excitatory-inhibitory feedback loop strength.
Nevertheless, one could conclude that when the excitatory-inhibitory feedback loops are strong
enough, these networks seem to generally exhibit chaotic dynamics. The scaling of the critical AP
onset rapidness rc with the number of neurons was identical with that in exclusively inhibitory net-
works rc ∼ N0.6. This is demonstrated for different average firing rates ν̄ and excitatory-inhibitory
feedback loop strength ε in Fig. 3.14B-G.

To complete the picture of the dynamics of excitatory-inhibitory networks, we examined the
influence of the network size N and number of incoming connections K (Fig. 3.15, 3.16). This
revealed a behavior qualitatively similar to inhibitory networks (dotted lines) as we have also
observed in theta neuron networks. The synchrony measure χ decreased with N−1/2 indicating
asynchronous states. The coefficient of variation was constant and high indicating irregular fir-
ing activity. Although the largest Lyapunov exponent λmax increased with N and K, the relative
attractor dimension h = H/N and the average entropy production rate per neuron h = H/N were
constant. This reveals extensive chaos in excitatory-inhibitory networks and a well-defined ther-
modynamic limit.

We also observed the same behavior as in theta neuron networks, when increasing the number
of synapses K further. In dense networks of increasing size, the transition from the asynchronous
irregular state to a synchronous irregular state was shifted to larger K for r = 1 (Fig. 3.17(a)).
Because the transition is also shifted to larger K for increasing AP onset rapidness, it was actually
not visible for r > 1 in the observed parameter range up to N = 200000. In networks of fixed size,
an increase of K led to a gradual transition towards the state of a fully coupled network which was
here reached at K = 2000 (Fig. 3.17(b)).

So far, for low AP onset rapidness we have found similar extensive chaotic dynamics as in
theta neuron networks in both inhibitory and excitatory-inhibitory networks. Increasing the AP
onset rapidness, however, decreases the chaos in such balanced networks and can even lead to
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Figure 3.17 – Occurrence of transition from asynchronous irregular to synchronous irregular state
depends on AP rapidness r. (A) Synchrony measure , (B) average coefficient of variation, (C) largest
Lyapunov exponent, (E) mean Lyapunov exponent, (F) actual network-averaged firing rate (parameters:
K = 100, ν̄E = ν̄I = 1Hz, J0 = 1, η = 0.9, ε = 0.3, τm = 10ms; input currents chosen to fulfill balance
equation (2.25) for target firing rate ν̄bal = 1Hz).
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Figure 3.18 – Scaling of the average participation ratio in rapid theta neuron networks. (A-D) Aver-
age participation ratio P̄ versus network size N for different AP onset rapidness r, (E) power law scaling
exponents α from fits P̄∼ Nα to data in (A-D), (parameters: K = 100, J0 = 1, τm = 10ms).

a transition to stable dynamics. We called this the edge of chaos. What can we say about the
spatiotemporal aspect in the chaotic regime.

In theta neuron networks, we have found a form of chaos called temporal network chaos with an
interesting scaling regime of the fraction of neurons participating in the chaotic dynamics (Section
2.9). The number of neurons quantified by the average participation ratio P̄ scaled sublinearly with
the network size N. Although this meant that the fraction of neurons decreased algebraically with
N, it differs from classical spatiotemporal chaos with strongly localized chaotic degrees of freedom
for which P̄ is expected to be independent of N.

The participation ratio was strongly affected by the AP onset rapidness (Fig. 3.18). With increas-
ing AP onset rapidness starting from r = 1, the power law exponent α of the scaling of the par-
ticipation ratio P̄∼ Nα decreased logarithmically and vanished at AP onset rapidness r = O(10).
This coincides with the transition between the different regimes of the chaotic dynamics depending
on the connectivity K which is responsible for the peak in the largest Lyapunov exponent λmax(r)
as explained above (see Fig. 3.10). In the plateau regime (λmax = const) the participation ratio
obeyed a power law scaling but the exponent decreased with increasing r and was independent
of the number of neurons in the increasing regime (λmax ∼ K). We would expect such a network
size-independent participation ratio for localized chaotic degrees of freedom. This is the case in
chaotic rapid theta neuron networks in both inhibitory and excitatory-inhibitory networks.

The different scaling of the average participation ratio in the two regimes below and above
approximately r = O(10) confirms the observation of two qualitatively different chaotic dynamics
depending on the AP onset rapidness of the single neurons.
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3.5 Weak Pairwise Spike Correlations

We have discussed in the introduction that pairwise spike correlations are expected to be weak
and broadly distributed in the balanced state (Section 1.1), but this may still imply strongly cor-
related network states (Section 1.5). Therefore, we were wondering if pairwise correlations are
indeed weak in balanced rapid theta neuron networks and what can be inferred about higher order
correlations.

Renart et al. [32] and Schneidman et al. [78] use two different correlation measures to mea-
sure the pairwise spike correlations between two neurons i and j. Renart et al. use the Pearson
coefficient

ρi j(τ) =
COV(ni(t),n j(t + τ))√

σ2
i σ2

j

, (3.22)

where COV denotes the covariance and σ2 the variance of the spike counts. Schneidman et al. use
the correlation coefficient

ci j(τ) =
COV(ni(t),n j(t + τ))

ν̄iν̄ j
. (3.23)

An overview of different correlation measures used in the literature is provided in Appendix C.
The difference between the Pearson and the correlation coefficient is the normalization of the
spike correlations with the standard deviation of the neurons’ firing rates or the average neurons’
firing rates, respectively. Thus, the Pearson coefficient is bounded between ρi j ∈ [0,1] and the
correlation coefficient ci j ∈ [0,∞]. Usually, the spike counts are calculated by binning the time
series, equivalent of using a box-kernel. We will calculate the spike counts using a Gauss-kernel.
The width of the kernels must be chosen carefully and should be in the order of the correlation time
in the networks (Appendix C). This is found to be in the order of 10ms in the studied networks.

The correlation coefficients ci j(0) and the Pearson coefficients ρi j(0) of 150 theta neurons and
their histograms of inhibitory and excitatory-inhibitory networks are compared in Fig. 3.19. The
150 neurons are ordered in decreasing firing rate and grouped in three blocks. The first block
consists of 50 neurons with average firing rates of ±10% around the network-averaged rate plus
one standard deviation of the rate distribution, the second block consists of 50 neurons with aver-
age firing rates of ±10% around the network-average, and the third block consists of 47 neurons
with average rates of ±10% around the network-average rate minus one standard deviation. After
each block is one additional random postsynaptic neuron. In the excitatory-inhibitory networks,
excitatory neurons are grouped in the first part (80%) and inhibitory neurons in the second part
(20%). It can be seen that the pairwise spike correlations are basically identical in both types
of networks. In excitatory-inhibitory networks the correlations are furthermore identical between
excitatory neurons, between inhibitory neurons and between excitatory and inhibitory neurons.

The temporal characteristics of the correlation coefficient c(τ) and the Pearson coefficients ρ(τ)
of balanced inhibitory networks reveal a typical correlation time scale of τc ≈ 10ms. Figure 3.20
presents the temporal spike correlations of the three blocks of neurons described above in inhibitory
and excitatory-inhibitory networks. Theta neuron networks (r = 1) exhibit weak oscillatory spike
correlations that indicate the proximity of these networks with K = 100 to the transition to syn-
chrony at Kc ≈ 200. Networks of neurons with larger AP onset rapidness and leaky integrate and
fire (LIF) neurons are not close to this transition for this parameter set as discussed above and
therefore do not show this oscillation. In excitatory-inhibitory networks, the qualitative behavior
of the pairwise spike correlations is similar to the one in inhibitory networks. The pairwise spike
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(a) Inhibitory networks.
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(b) Excitatory-inhibitory networks with 80% excitatory and 20% inhibitory neurons.

Figure 3.19 – Comparison of correlation coefficient, Eq. (3.23), and Pearson coefficient, Eq. (3.22), in
theta neuron networks. The neurons are ordered with decreasing firing rates. The first block is composed of
neurons with firing rates around the mean plus one standard deviation of the rate distribution in the network
(from 1.8 . . .1.5Hz), the second of neurons around the mean firing rate (from 1.1 . . .0.92Hz) and the third
of neurons around the mean minus one standard deviation (from 0.39 . . .0.32Hz). After each block comes
one random postsynaptic neuron. In (b) the first 80% of the plot are excitatory neurons and the second 20%
inhibitory neurons. (Length of time series is 10000 spikes per neuron (about 2.8h), the standard deviation
of the Gauss-Kernels is T = 10ms, other parameters: NI = 1000, NE = 4000, K = 100, ν̄ = 1Hz, J0 = 1,
τm = 10ms, η = 0.9, ε = 0.3).
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(c) Correlation coefficient in excitatory-inhibitory networks (NE = 4000, ε = 0.3, η = 0.9).
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(d) Pearson coefficient in excitatory-inhibitory networks (NE = 4000, ε = 0.3, η = 0.9).

Figure 3.20 – Averaged pairwise spike correlations of 50 neurons in three different firing rate intervals.
(Length of time series is 10000 spikes per neuron (about 2.8h), the standard deviation of the Gauss-Kernels
is T = 10ms, other parameters: N = 1000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms).
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(b) Number of synapses K in inhibitory networks varied.
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(c) Network-firing rate ν̄ in inhibitory networks varied.
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(d) Activation of excitatory-inhibitory feedback loops in excitatory-inhibitory networks with ε .

Figure 3.21 – Pairwise spike correlations of neurons with approximately the average firing rate in
balanced inhibitory networks. (Length of time series is 10000 spikes per neuron (about 2.8h), the standard
deviation of the Gauss-Kernels is T = 10ms, other parameters: N = 1000, K = 100, ν̄ = 1Hz, J0 = 1,
τm = 10ms; in excitatory-inhibitory networks NE = 4000, NI = 1000, η = 0.9).
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Figure 3.22 – Average and standard deviation of the distributions of Pearson coefficient of 150 ran-
domly chosen neurons in rapid theta neuron networks. (A) absolute values of the averages ρ̄ of the
distributions of Pearson coefficients versus network size N (dashed line: guide for the eye for ρ̄ ∼ 1/N),
number of synapses per neuron K, network-averaged firing rate ν̄ and excitatory-inhibitory feedback loop
strength ε , (B) standard deviation σρ of the distributions of Pearson coefficients (dashed lines: guide for the
eye for σρ ∼ 1/

√
N and σρ ∼

√
ν̄), (length of time series is 10000 spikes per neuron, the standard deviation

of the Gauss-Kernels is T = 10ms, other parameters: NI = 1000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms, in
excitatory-inhibitory networks NE = 4000, η = 0.9).

correlations are generally very weak in the studied networks and quite similar for neurons with dif-
ferent average firing rates. We can therefore continue to study the correlations of neurons around
the network-averaged firing rate which is representative for all other neurons.

The pairwise spike correlations for the second block of neurons with firing rates around the
network-averaged firing rate are displayed for various network parameters in Fig. 3.21. It can
be seen that the magnitude of the pairwise correlations decreased with increasing network size N
(Fig. 3.21(a)). This is characteristic for the asynchronous state. The typical correlation time was
independent of the network size about τc≈ 10ms. Increasing the connectivity K increased the pair-
wise correlations in theta neuron networks as expected for the transition to synchrony but hardly
affected the pairwise correlations in networks with larger AP onset rapidness (Fig. 3.21(b)). The
typical correlation time was insensitive to the connectivity. An increase of the average firing rate ν̄

in the networks reduced the strength of pairwise correlations in theta neuron networks but increased
the correlations in networks with larger AP onset rapidness (Fig. 3.21(c)). In excitatory-inhibitory
networks, the pairwise correlations were hardly affected by the activation of excitatory-inhibitory
feedback loops in theta neuron networks but generally increased with increased excitatory coupling
in networks with larger AP onset rapidness (Fig. 3.21(d)). We also observe that the magnitude of
the averaged pairwise correlations decreased with increased AP onset rapidness. The opposite was
the case for the width of the distribution of pairwise correlations, as will become clear in the fol-
lowing. As a final remark on the temporal pairwise spike correlations: all studied networks exhibit
the typical correlation time τc ≈ 10ms of the order of the membrane time constant, which justifies
the used width of the Gauss-kernels of T = 10ms in the calculation of the correlation coefficients.

The distributions of pairwise spike correlation of 150 randomly chosen neurons in inhibitory and
excitatory-inhibitory networks are presented in Fig. 3.23. The mean and width of the distribution
are summarized in Fig. 3.22. As predicted for the asynchronous balanced state [32], the average
pairwise correlation goes to zero for large networks as ρ̄ ∼ 1/N, but the width of the distribution,
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(d) Activation of excitatory-inhibitory feedback loops in excitatory-inhibitory networks with ε .

Figure 3.23 – Distribution of pairwise spike correlations of 150 randomly chosen neurons in balanced
inhibitory networks. (Length of time series is 10000 spikes per neuron, the standard deviation of the
Gauss-Kernels is T = 10ms, other parameters: N = 1000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms; in
excitatory-inhibitory networks NE = 4000, NI = 1000, η = 0.9).
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the standard deviation goes to zero as σρ ∼ 1/
√

N, indicating broadly distributed pairwise corre-
lations. One might speculate whether this fact of a broad distribution might imply higher order
correlations. Another interesting observation is the increase of the width of the pairwise correla-
tions with the square root of the network-averaged firing rate σρ ∼

√
ν̄ . In excitatory-inhibitory

networks, the activation of the excitatory-inhibitory feedback loops with ε slightly increased the
average correlations but did not change the width of the distributions. Altogether, this analysis of
the pairwise spike correlations confirmed the prediction of weak and broadly distributed pairwise
spike correlations in the balanced state.

3.6 Entangled Statistics
Weak pairwise correlations do not necessarily imply vanishing higher order correlations (see Sec-
tion 1.5). Can we deduce more about the strength of higher order correlation from our analysis?
We have shown that rapid theta neuron networks undergo a transition from chaotic to stable dynam-
ics at a parameter dependent critical AP onset rapidness rc. Networks with chaotic dynamics for
r < rc exhibit strange attractors with fractal dimensions D > 1. Networks with stable dynamics for
r > rc exhibit one-dimensional attractors D = 1 which implies periodic orbits. One would expect
that lower dimensional attractors imply strongly correlated network states, but the pairwise spike
correlations were generally weak independent of this dramatic change of the collective networks
dynamics.

In fact, the attractor dimension can be related to the highest order n of nonvanishing correlations
between n neurons C(n) = 〈si(t)s j(t ′) . . .〉. The first order correlations describe the average firing
rates of the neurons, the second order the pairwise spike correlations and so on. In a network of
N independent or non-interacting neurons, the attractor dimension would be D = N. The indepen-
dence means that there are no higher order correlations, thus n = 1. In a stable periodic network
state, the attractor dimension is D = 1 and all neurons would be statistically dependent, thus n = N.
If the network state was quasiperiodic with x incommensurable frequencies, the attractor dimen-
sion would be D = x and correlations of order n≥ N−x+1 would vanish. We can thus conjecture
that generally correlations of higher order than n = N−D+1 vanish.

The decreasing attractor dimension for increasing AP onset rapidness (Fig. 3.13) thus implies
that the neurons become more entangled for larger AP onset rapidness despite weak pairwise
correlations. We will demonstrate this in an example of a small network for different values of
AP onset rapidness r (Fig. 3.24). Displayed are the spike trains of 10 out of 20 neurons and the
Poincaré-sections of the phases of neuron 1 and 2 at times when neuron 3 spikes. The Poincaré-
sections represent a cut through the attractor. All spike trains show the asynchronous and irregular
firing activity in these networks. Below the critical AP onset rapidness rc = 12, the Poincaré-
sections are a chaotic cloud. The dimensionality of the attractor is D ≈ 12.5 for r = 1 and stays
D & 3 up to the transition to stable dynamics at rc = 12. With r = 12, one can see that the firing
pattern of the entire network becomes periodic as expected in the regime of stable dynamics. The
Poincaré- sections for r = 12 and r = 100 display a cut through the one-dimensional attractors,
thus dots. The number of dots represents the period length which is larger than one. We can thus
conclude that despite weak pairwise spike correlations and asynchronous firing of the neurons, the
statistics or neural networks becomes more entangled with higher AP onset rapidness.

The period length indicated by the number of dots in the Poincaré-sections for r > rc increased
exponentially with the number of neurons, together with the transient lengths to the periodic states.
This characteristic of balanced networks with very fast AP onset rapidness is similar to leaky
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Figure 3.24 – Entangled statistics in rapid theta neuron networks. Upper panels spike trains of 10
randomly chosen neurons, lower panels: Poincaré-sections of the phases of neurons 1 and 2 when neuron
3 emits a spike, the AP onset rapidness r was increased from left to right in otherwise identical networks,
(parameters: N = 20, K = 10, ν̄ = 10Hz, J0 = 1, τm = 10ms; data from 100 spikes per neuron on average).

integrate and fire networks and should be investigated further for a thorough understanding of the
balanced state in the stable regime.
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3.7 Summary
In this chapter we investigated the influence of the action potential (AP) onset rapidness of the
individual neurons on the collective network dynamics. A new exactly solvable neuron model with
variable AP onset rapidness, called the rapid theta neuron model, allowed for the direct application
of the approach to study neural network dynamics introduced in Chapter 2. The presented results
show that the AP onset rapidness strongly affects the collective network dynamics.

Networks of rapid theta neurons in the balanced state undergo a phase transition from chaotic
to stable dynamics at a parameter-dependent critical AP onset rapidness rc. We call this the edge
of chaos. The general properties of the balanced state such as the macroscopic firing statistics and
the weak pairwise spike correlations are basically independent of the AP onset rapidness and fail
to capture the dramatic change of the underlying network dynamics.

The AP onset rapidness also influences the dynamics within the chaotic regime qualitatively.
We have observed two different dynamic regimes indicated by a peak in the largest Lyapunov
exponent with respect to the AP onset rapidness r. For low r < 10, the network dynamics is very
similar to the dynamics of theta neurons (r = 1) studied in Chapter 2. For large r > 10, the network
dynamics shows qualitative differences to the dynamics of theta neurons. Both phase transitions to
a synchronous state disappear and the intensity of the chaos decreases leading to the edge of chaos
and stable dynamics for very large r. Because we expect cortical neurons to exhibit such a large
AP onset rapidness, we can conclude that the collective dynamics of cortical neurons qualitatively
differs from the collective dynamics of neurons with low AP onset rapidness.

The network dynamics of rapid theta neurons is characterized by:

• Deterministic chaos, characterized by positive and finite Lyapunov exponents. A peak in the
largest Lyapunov exponent for increasing AP onset rapidness indicates a qualitative change
of the network dynamics.

• Extensive chaos, characterized by network size-invariant Lyapunov spectra and a linear in-
crease of the number of positive Lyapunov exponents, attractor dimension and entropy pro-
duction rate with the number of neurons.

• Monotonously decreasing attractor dimension with increasing AP onset rapidness, implying
entangled statistics towards the edge of chaos despite generally weak pairwise spike corre-
lations in the balanced state.

• Monotonously decreasing entropy production rate with increasing AP onset rapidness, im-
plying reduced loss of information in cortical networks through larger AP onset rapidness of
the single neurons.

For very large AP onset rapidness, the AP initiation becomes basically instantaneous similar to the
leaky integrate and fire model. Our results demonstrate that the characterization of the dynamics
of inhibitory networks in the limit of instantaneous AP initiation (r→ ∞) depends on the order in
which this limit and the large system limit are taken. It can either be characterized as extremely
chaotic (λmax = ∞) or stable (λmax = 0). Such inhibitory networks of leaky integrate and fire
neurons were previously shown to exhibit stable chaos [4–7]. How stable this form of irregular
dynamics is with respect to finite perturbations and temporally extended synaptic transmission will
be the topic of the next two chapters.
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4 Networks of Correlated Leaky
Integrate and Fire Neurons
Temporal Synaptic Transmission

The approach presented in Chapter 2 for the characterization and quantification of neural network
dynamics can be applied to a wide class of neuron models and network topologies. In this chapter,
we introduce an extension to incorporate temporal postsynaptic currents. Whereas the synaptic
coupling was composed of δ pulses so far, we will here use exponentially decaying postsynaptic
currents. The incorporation of such biologically more realistic synaptic waveforms yields further
insight into the dynamics of real neural networks. We will develop this extension for networks of
leaky integrate and fire (LIF) neurons.

Previously, randomly coupled LIF networks with exclusively inhibitory neurons and δ pulse
coupling were shown to exhibit stable dynamics with respect to infinitesimal perturbations [4–7].
An analysis of up to the first three Lyapunov exponents of LIF networks with exponentially de-
caying synaptic pulses recently revealed that such networks can exhibit chaotic dynamics [5]. The
authors of this study also showed that whether the dynamics of these networks is stable or chaotic
depends on the the synaptic time constant, the temporal delay and the connectivity. To develop
chaotic dynamics these networks require a high connectivity, and considerably large synaptic time
constants with respect to the delay time [5].

The extension of the approach developed in Chapter 2 to LIF networks with exponentially de-
caying synaptic pulses allows for the calculation of the complete Lyapunov spectra, which yields
additional information beyond the first Lyapunov exponents. The derivation of the attractor dimen-
sion and the dynamical entropy production rate in such networks provide a detailed quantification
of the chaotic dynamics. The comparison of these results with the ones from the previous chapters
allow us to relate the effect on the information loss due to the incorporation of temporal synaptic
transmissions to the effect of the incorporation of a dynamic AP generation in the single neurons.

4.1 Correlated Leaky Integrate and Fire Model

We here consider the same random topology as in Chapter 2 and 3 with the difference of leaky inte-
grate and fire neurons which are coupled with exponentially decaying synaptic currents (Fig. 4.1).
Because the temporal synaptic currents induce temporal current correlations, the model is called
correlated leaky integrate and fire (cLIF) model.
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Figure 4.1 – The correlated leaky integrate and fire model. (A) Exponentially decaying postsynaptic
currents with time constant τI, (B) voltage trace of a leaky integrate and fire model, (C) gain function (FI-
curve) ν = 1/(τm log(1+1/Iext))of a leaky integrate and fire neuron for suprathreshold input current Iext.

The N leaky integrate and fire (LIF) neurons in the networks are described by their voltages Vi
with i = 1 . . .N, obeying the differential equation (2.1) with the linear term F(Vi) =−Vi, thus

τm
dVi(t)

dt
=−Vi(t)+ Ii(t). (4.1)

This is complemented with a reset to VR ≡ 0 whenever the voltage crosses the threshold VT ≡ 1.
At the time t(s)i of the threshold crossing, a spike is said to be emitted and sent to the postsynaptic
neurons. Instead of δ pulses, the postsynaptic neurons receive exponentially decaying currents.
The equation of the synaptic input currents (2.2) thus reads

Ii(t) = IT + Iext
i + ∑

j∈pre(i)
∑
s

Ji j
τm

τI
exp

(
−

t− t(s)j

τI

)
Θ

(
t− t(s)j

)
. (4.2)

The synaptic time constant is denoted τI, whereas the membrane time constant is τm as before.
Θ(t) denotes the Heaviside step function.

The exponentially decaying currents are normalized with the factor γ = τm/τI such that the
integrated postsynaptic current for one input is equivalent to the case of δ pulse coupling:

Ji j

ˆ
τm

τI
exp
(
− t

τI

)
= Ji jτm.

To investigate the dynamics of the balanced state, the external currents and the synaptic coupling
strengths exhibit the same scaling relation with the average number of synapses K as before: Iext

i 7→√
KIext

i and Ji j 7→ −Ji j/
√

K. Then the average input to the neurons in the asynchronous state leads
to the balance equations derived for inhibitory and excitatory-inhibitory networks, Eq. (2.19) and
(2.25), respectively.

The variance of the synaptic inputs depends on the synaptic time constant τI. Analogously to
Eq. (2.20), the input current auto-correlation in balanced inhibitory networks is

C(t ′) = 〈δ I(t)δ I(t + t ′)〉t

≈
(

J0τm√
KτI

)2

Kν̄

ˆ
∞

0
exp
(
− t

τI

)
exp
(
−t + t ′

τI

)
dt

= J2
0 ν̄

τ2
m

2τI
exp
(
− t ′

τI

)
. (4.3)
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This shows that the currents are temporally correlated with a magnitude σ2 = J2
0 ν̄τ2

m/(2τI). In the
case that will be studied mostly in the next sections (τI = τm/2) the magnitude of input fluctuations
is identical to those in δ pulse coupled networks discussed in the previous chapters.

To yield the same magnitude of input fluctuations as in δ pulse coupled networks for any synap-
tic time constant τI, the postsynaptic currents (4.4) should be normalized with

√
2τm/τI instead of

τm/τI. The problem then would be that the integrated current per input would not be normalized
and the balance equation (2.19), thus the average network firing rate would depend on the synap-
tic time constants ν̄ = I0/(J0

√
2τmτI). Again, in the case τI = τm/2, this would yield the same

equation as for δ pulse coupled networks. However, we decided to use the normalization factor
τm/τI.

4.2 Iterative Map

In the cLIF model, the iterative map introduced in Section 2.2 becomes two dimensional. The
states of the neurons are described by~xi(t) = (Vi(t), Ii(t)). Both the voltage and the synaptic input
currents are time-dependent quantities in the entire iteration of the map f (~xi(t)).

For clarity in the derivation of the iterative map, we will separate the synaptic input current (4.2)
into the constant external currents Ic

i = IT +
√

KIext
i (with IT ≡VT ≡ 1) and the recurrent currents

Irec
i (t), such that

Ii(t) = Ic
i + Irec

i (t).

The evolution of the recurrent current can be written down in a differential equation:

τI
dIrec

i (t)
dt

=−Irec
i (t)+ ∑

j∈pre(i)
∑
s

Ji j√
K

τmδ
(
t− t(s)j

)
. (4.4)

The solution yields the evolution of the recurrent current between two successive spikes ts and ts+1
in the network:

f (Irec
i (ts), ts+1− ts) = Irec

i (ts)exp
(
−ts+1− ts

τI

)
. (4.5)

If neuron i∗ ∈ post( j∗) receives a pulse from the spiking neuron j∗ in this interval at ts+1, the
recurrent current is updated with

g(Irec
i∗ (t−s+1)) = Irec

i∗ (t−s+1)+
Ji∗ j∗√

K
τm

τI
. (4.6)

The voltage Vi∗(t) does not change immediately when a spike is received

g(Vi∗(t−s+1)) =Vi∗(t−s+1). (4.7)

The evolution of the voltage between two spikes is derived from the solution of Eq. (4.1) and the
synaptic input (4.2) rewritten as Ii(t) = Ic

i + Irec
i (t). The inhomogeneous differential equation (4.1)

is solved using the propagator method (see Appendix (E)).
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f (Vi(ts), ts+1− ts) = exp
(
− ts+1− ts

τm

)
Vi(ts)+

1
τm

ˆ ts+1

ts
exp
(
− ts+1− t ′

τm

)(
Ic
i + Irec

i (t ′)
)

dt ′

= exp
(
−ts+1− ts

τm

)
Vi(ts)+

[
exp
(
−ts+1− t

τm

)
Ic
i

]ts+1

ts
+

1
τm

ˆ ts+1

ts
exp
(
−ts+1− t ′

τm

)
Irec
i (ts)exp

(
−t ′− ts

τI

)
dt ′

= Ic
i − (Ic

i −Vi(ts)) e−4ts +

Irec
i (ts)exp

(
−ts+1− γ ts

τm

)
1

τm

ˆ ts+1

ts
exp
(

t ′

τm
(1− γ)

)
dt ′

= Ic
i − (Ic

i −Vi(ts)) e−4ts +

Irec
i (ts)
1− γ

exp
(
−ts+1− γ ts

τm

)[
exp
(

t
τm

(1− γ)

)]ts+1

ts

= Ic
i −
(

Ic
i −Vi(ts)

)
e−4ts +

Irec
i (ts)
1− γ

(
e−γ4ts− e−4ts

)
= Ic

i +
Irec
i (ts)
1− γ

e−γ4ts−
(

Ic
i +

Irec
i (ts)
1− γ

−Vi(ts)
)

e−4ts, (4.8)

with the abbreviations 4ts =
ts+1−ts

τm
and γ = τm

τI
. Equations (4.5)-(4.8) define the map (2.3) that

iterates the neurons states~xi(t) = (Vi(t), Ii(t)) between successive spikes {ts} in the networks:

~xi(ts+1) =

{
f
(
~xi(ts), ts+1− ts

)
if i /∈ post( j∗)

g
(

f
(
~xi(ts), ts+1− ts

))
if i ∈ post( j∗).

For true event-based simulations it is necessary to be able to calculate the next spike times
analytically. Eq. (4.8) can be solved for the next spike time for 4 different ratios of the time
constants γ = 1

3 ,
1
2 ,2,3. In theses cases, the known expressions of the roots of quadratic and cubic

equations yield closed form expressions for the next spike times, which completes the iterative
map, Eq. (2.3). This is shown exemplary for the ratio γ = 2 next.

4.2.1 Example of Fast Synapses

Fast synapses with a synaptic time constant of half the membrane time constant (τI = τm/2) are
one of the special cases in which the voltage evolution function (4.8) can be inverted to yield an
exact expression of the next spike time of the neuron. Neuron i is said to emit a spike when its
voltage crosses the threshold VT . The time to the next spike 4ti from time t, given the neuron’s
state~xi(t) and γ = 2 is thus implicitly defined by requiring:

f (Vi(t),4ti) = VT = Ic
i +

Irec
i (t)
1− γ

e−γ4ti−
(

Ic
i +

Irec
i (t)
1− γ

−Vi(t)
)

e−4ti

0 = −Irec
i (t)e−24ti−

(
Ic
i − Irec

i (t)−Vi(t)
)

e−4ti + Ic
i −VT . (4.9)
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Abbreviating Ti = e−4ti , the roots of Eq. (4.9) can be obtained from the standard solution of a
quadratic equation 0 = aT 2

i + bTi + c. Identifying this standard quadratic equation with Eq. (4.9)
returns a =−Irec

i (t), b =−(Ic
i − Irec

i (t)−Vi(t)) and c = Ic
i −VT with the standard solution obtained

from completing the square:

T± =
−b±

√
b2−4ac

2a
, (4.10)

The possible subtraction of equally large numbers in the numerator of Eq. (4.10) incorporates
a loss of significance. This should be avoided in the computer simulations using the alternative
robust solutions T1 =

d
a and T2 =

c
d with d =−1

2

(
b+ sgn(b)

√
b2−4ac

)
[97].

The time to the next spike is then 4ti = − lnTi and the smallest next spike time of all neurons
defines the next spike time in the network

ts+1 = ts +min
i
{4ti}. (4.11)

This equation for the next spike time in the network, and the iterative map (2.3) defined with
Eq. (4.5)-(4.8) can be used in true event-based simulations. The derivative of the iterative map
furthermore yields the single spike Jacobian necessary to apply the approach for the calculation of
the Lyapunov spectra.

4.3 Single Spike Jacobian

The derivative of the iterative map, the single spike Jacobian is derived similar to Section 2.3. The
difference is that each neuron is described by a two dimensional state ~xi(t) = (Vi(t), Ii(t)) in the
cLIF model. Therefore, the single spike Jacobian will be a 2N× 2N matrix. While the explicit
expression for the next spike time in the network was necessary for the event-based simulations,
this restriction does not occur in the derivation of the single spike Jacobian. The implicit definition
of the next spike time is sufficient and the single spike Jacobian is derived for arbitrary ratios
γ = τm/τI.

The single spike Jacobian has the following form in cLIF networks:

D(ts) =

 d~V (ts+1)

d~V (ts)
d~V (ts+1)

d~I(ts)
d~I(ts+1)

d~V (ts)
d~I(ts+1)

d~I(ts)

 . (4.12)

In the derivation of the single spike Jacobian, the iterative map will be shifted by a small amount δ

as discussed in Section 2.3. Then the possibly perturbed spike time of neuron j∗, denoted τs+1, lies
in the considered interval (ts→ ts +δ , ts+1→ ts+1 +δ ]. Whenever appropriate in the derivation of
the single spike Jacobian, the final limit δ → 0 will be taken and τs+1 identified with ts+1.
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The shifted map reads

xi(ts+1) =

 f
(
xi(ts), ts+1− ts

)
if i /∈ post( j∗)

f
(

g
(

f
(
xi(ts),τs+1− ts

))
, ts+1− τs+1

)
if i ∈ post( j∗).

(4.13)

For clarity, the important Eq. (4.5)-(4.8) defining the shifted map (4.13) are rewritten using the ab-
breviations Tδ = exp(−(ts+1− τs+1)/τm) with ∂Tδ/∂τs+1 = 1/τm and Ts = exp(−(τs+1− ts)/τm)
with ∂Ts/∂τs+1 =−1/τm.

The evolution of the neurons’ voltages follows:

f
(
Vi(τ

+
s+1),Tδ

)
≡ Vi(ts+1) = Ic

i +
Irec
i (τ+s+1)

1− γ
T γ

δ
−
(

Ic
i +

Irec
i (τ+s+1)

1− γ
−Vi(τ

+
s+1)

)
Tδ

g
(
Vi(τ

−
s+1)

)
≡ Vi(τ

+
s+1) = Vi(τ

−
s+1)

f
(
Vi(ts),Ts

)
≡ Vi(τ

−
s+1) = Ic

i +
Irec
i (ts)
1− γ

T γ
s −

(
Ic
i +

Irec
i (ts)
1− γ

−Vi(ts)

)
Ts,

The evolution of the recurrent currents follows:

f
(
Irec
i (τ+s+1),Tδ

)
≡ Irec

i (ts+1) = Irec
i (τ+s+1)T

γ

δ

g
(
Irec
i (τ−s+1)

)
≡ Irec

i (τ+s+1) = Irec
i (τ−s+1)+

γ Ji∗ j∗√
K

δ ii∗

f
(
Irec
i (ts),τs+1− ts

)
≡ Irec

i (τ−s+1) = Irec
i (ts)T

γ
s .

The velocities of the neurons in terms of the membrane time constant just before and after the
spike events, respectively, will be important below. They are

v−i,s+1 = Ic
i + Irec

i (t−s+1)−Vi(t−s+1) (4.14)

v+i,s+1 = Ic
i + Irec

i (t+s+1)−Vi(t+s+1) (4.15)

v+i,s+1− v−i,s+1 = δi j∗+
γ Ji∗ j∗√

K
δii∗. (4.16)

The first term in the last equation results from the reset of the spiking neuron j∗ from Vj∗(t−s+1) =

VT ≡ 1 to Vj∗(t+s+1) =VR ≡ 0, thus the δi j∗ . The second term in Eq. (4.16) results from the update
of the synaptic currents of the postsynaptic neurons i∗ ∈ post( j∗) at the spike reception Irec

i∗ (t+s+1)−
Irec
i∗ (t−s+1) = γ Ji∗ j∗/

√
K.
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4.3.1 The Voltage-Voltage Block

We start with the derivation of the upper left block in the single spike Jacobian (4.12) similar to
the derivation in Section 2.3. The following partial derivatives will be used in the derivation:

∂ f
(
Vi(ts+1),Tδ

)
∂Vk(ts+1)

= Tδ δik→ δik (4.17)

∂ f
(
Vi(τ

+
s+1),Tδ

)
∂ Irec

k (τ+s+1)
=

T γ

δ
−Tδ

1− γ
δik→ 0 (4.18)

∂ f
(
Vi(τ

+
s+1),Tδ

)
∂τs+1

=
Irec
i (τ+s+1)

1− γ

γ T γ

δ

τm
−
(

Ic
i +

Irec
i (τ+s+1)

1− γ
−Vi(τ

+
s+1)

)
Tδ

τm

→ −
(

Vi(t+s+1)− Ic
i −

Irec
i (t+s+1)

1− γ
(1− γ)

)
1

τm

= −
v+i,s+1

τm
(4.19)

∂g
(
Vi(τ

−
s+1)

)
∂Vk(τ

−
s+1)

= δik (4.20)

∂ f (Vi(ts),Ts)

∂Vj(ts)
= Tsδi j (4.21)

∂ f
(
Vi(ts),Ts

)
∂τs+1

= −Irec
i (ts)
1− γ

γ T γ
s

τm
+

(
Ic
i +

Irec
i (ts)
1− γ

−Vi(ts)

)
Ts

τm

→
(

Vi(t−s+1)− Ic
i −

Irec
i (t−s+1)

1− γ
(1− γ)

)
1

τm

=
v−i,s+1

τm
(4.22)

Furthermore, we will need derivative dτs+1
dV j(ts)

, which is obtained from the implicit definition of
the next spike time (4.9), solved for the voltage of the spiking neuron:

Vj∗(ts) =
1− Ic

j∗

Ts
−

Irec
j∗ (ts)

1− γ
T γ−1

s + Ic
j∗+ Irec

j∗ (t).

The necessary derivative dτs+1
dV j(ts)

is calculated as follows:

dVj∗(ts)
dτs+1

= −
1− Ic

j∗

T 2
s

−Ts

τm
−

Irec
j∗ (ts)

1− γ

γ−1
−τm

T γ−1
s

= −
Ic

j∗+ Irec
j∗ (ts)T

γ
s −1

Tsτm

(4.14)
= −

v−j∗,s+1

Tsτm
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dτs+1

dVj∗(ts)
= − Tsτm

v−j∗,s+1
. (4.23)

With these prerequisites, the explicit derivation of the upper right block in (4.12) goes:

dVi(ts+1)

dVj(ts)
=

∂Vi(ts+1)

∂Vk(τ
+
s+1)︸ ︷︷ ︸

(4.17)→ δik

dVk(τ
+
s+1)

dVj(ts)
+

∂Vi(ts+1)

∂ Irec
k (τ+s+1)︸ ︷︷ ︸

(4.18)→ 0

dIrec
k (τ+s+1)

dVj(ts)
+

∂Vi(ts+1)

∂τs+1︸ ︷︷ ︸
(4.19)→ −

v+i,s+1
τm

dτs+1

dVj(ts)

=
∂Vi(τ

+
s+1)

∂Vk(τ
−
s+1)︸ ︷︷ ︸

(4.20)
= δik

dVk(τ
−
s+1)

dVj(ts)
−

v+i,s+1

τm

dτs+1

dVj(ts)

=
∂Vi(τ

−
s+1)

∂Vj(ts)︸ ︷︷ ︸
(4.21)
= Tsδk j

+

(
∂Vi(τ

−
s+1)

τs+1︸ ︷︷ ︸
(4.22)→

v+i,s+1
τm

−
v+i,s+1

τm

)
dτs+1

dVj(ts)︸ ︷︷ ︸
(4.23)
= − Tsτm

v−j∗,s+1
δ j j∗

dVi(ts+1)

dVj(ts)
= Ts

(
1+

1
v−j∗,s+1

δi j∗δ j j∗+
γ Ji∗ j∗

v−j∗,s+1

√
K

δii∗δ j j∗

)
, (4.24)

where Eq. (4.16) was used in the last step. The first two terms in the bracket constitute the diagonal
elements and the third term the offdiagonal elements of the spike receiving neurons. Note that the
diagonal element of the spiking neuron can also be written as Tsv+j∗,s+1/v−j∗,s+1 (Eq. (4.16)). The
other parts of the single spike Jacobian (4.12) are derived accordingly.

4.3.2 The Current-Voltage Block

For the lower left block in the single spike Jacobian (4.12), the following additional partial deriva-
tives are used:

∂ f
(
Irec
i (ts+1),Tδ

)
∂ Irec

k (τ+s+1)
= T γ

δ
δik→ δik (4.25)

∂ f
(
Irec
i (τ+s+1),Tδ

)
∂τs+1

=
γ

τm
Irec
i (τ+s+1)T

γ

δ
→ γ

τm
Irec
i (τ+s+1) (4.26)

∂ f
(
Irec
i (ts),Ts

)
∂τs+1

= − γ

τm
Irec
i (ts)T

γ
s =− γ

τm
Irec
i (τ−s+1) (4.27)

Irec
i (t+s+1)− Irec

i (t−s+1) =
γ Ji∗ j∗√

K
δii∗ . (4.28)

The last equation results from update of the synaptic currents of the postsynaptic neurons i∗ ∈
post( j∗) at the spike reception. With these additional partial derivatives, the lower left part of the
single spike Jacobian (4.12) can be derived as follows:
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dIrec
i (ts+1)

dVj(ts)
=

∂ Irec
i (ts+1)

∂ Irec
k (τ+s+1)︸ ︷︷ ︸
(4.25)→ δik

dIrec
k (τ+s+1)

dVj(ts)
+

∂ Irec
i (ts+1)

∂τs+1︸ ︷︷ ︸
(4.26)→ γ

τm Irec
i∗ (τ+s+1)

dτs+1

dVj(ts)

=
∂ Irec

i (τ+s+1)

∂ Irec
k (τ−s+1)︸ ︷︷ ︸
=δik

dIrec
k (τ−s+1)

dVj(ts)
+

γ

τm
Irec
i (τ+s+1)

dτs+1

dVj(ts)

=

(
∂ Irec

i (τ−s+1)

∂τs+1︸ ︷︷ ︸
(4.27)→ − γ

τm Irec
i (τ−s+1)

+
γ

τm
Irec
i (τ+s+1)

)
dτs+1

dVj(ts)︸ ︷︷ ︸
(4.23)
= − Tsτm

v−j∗,s+1
δ j j∗

dIrec
i (ts+1)

dVj(ts)
= −γ Ts

γ Ji∗ j∗

v−j∗,s+1

√
K

δii∗δ j j∗, (4.29)

where Eq. (4.28) was used in the last step. The lower left part of the Jacobian (4.12) thus consists of
just the nondiagonal elements of the spike receiving neurons. We will continue counterclockwise
with the derivation of the lower right part of the Jacobian.

4.3.3 The Current-Current Block

To derive the lower right block of the single spike Jacobian (4.12), it is necessary to calculate the
derivative dτs+1

dIrec
j∗ (ts)

, which is obtained from the implicitly defined next spike time (4.9) solved for

the recurrent current of the spiking neuron:

Irec
j∗ (ts) =

(
Ic

j∗−Vj∗(ts)
)

Ts−
(
Ic

j∗−1
) 1− γ

T γ
s −Ts

.

The necessary derivative ∂τs+1
∂ Irec

j∗ (ts)
is calculated as follows:

dIrec
j∗ (ts)

dτs+1
=

(
Ic

j∗−Vj∗(ts)
)(

T γ
s −Ts

)
(1− γ)− Irec

j∗ (ts)
(
T γ

s −Ts
)(

γT γ−1
s −1

)
(T γ

s −Ts)2

Ts

−τm

=

(
−
(

Ic
j∗+

Irec
j∗ (ts)

1− γ
−Vj∗(ts)

) Ts

τm
+

Irec
j∗ (ts)

1− γ

γ T γ
s

τm

)
1− γ

T γ
s −Ts

(4.22)
= −

v−j∗,s+1

τm

1− γ

T γ
s −Ts

dτs+1

dIrec
j∗ (ts)

= − τm

v−j∗,s+1

T γ
s −Ts

1− γ
, (4.30)
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We also need one more partial derivative:

∂ f
(
Irec
i (ts),Ts

)
∂ Irec

j (ts)
= T γ

s δl j (4.31)

With these prerequisites, the lower right part of the single spike Jacobian (4.12) is derived as
follows:

dIrec
i (ts+1)

dIrec
j (ts)

=
∂ Irec

i (ts+1)

∂ Irec
k (τ+s+1)︸ ︷︷ ︸
(4.25)→ δik

dIrec
k (τ+s+1)

dIrec
j (ts)

+
∂ Irec

i (ts+1)

∂τs+1︸ ︷︷ ︸
(4.26)→ γ

τm Irec
i∗ (τ+s+1)

dτs+1

dIrec
j (ts)

=
∂ Irec

i (τ+s+1)

∂ Irec
k (τ−s+1)︸ ︷︷ ︸
=δik

dIrec
k (τ−s+1)

dIrec
j (ts)

+
γ

τm
Irec
i (τ+s+1)

dτs+1

dIrec
j (ts)

=
∂ Irec

i (τ−s+1)

∂ Irec
j (ts)︸ ︷︷ ︸

(4.31)
= T γ

s δl j

+

(
∂ Irec

i (τ−s+1)

∂τs+1︸ ︷︷ ︸
(4.27)→ − γ

τm Irec
i (τ−s+1)

+
γ

τm
Irec
i (τ+s+1)

)
dτs+1

dIrec
j (ts)︸ ︷︷ ︸

(4.28)
= − τm

v−j∗,s+1

T γ
s −Ts
1−γ

δ j j∗

dIrec
i (ts+1)

dIrec
j (ts)

= T γ
s δi j−

γ(T γ
s −Ts)

1− γ

γ Ji∗ j∗

v−j∗,s+1

√
K

δii∗δ j j∗, (4.32)

where Eq. (4.28) was used in the last step.

4.3.4 The Voltage-Current Block

The remaining upper right block of the single spike Jacobian (4.12) is derived analogously to the
previous blocks, with one additional partial derivative:

∂ f (Vi(ts),Ts)

∂ Irec
j (ts)

=
T γ

s −Ts

1− γ
δi j (4.33)

The upper right block of the single spike Jacobian is:

dVi(ts+1)

dIrec
j (ts)

=
∂Vi(ts+1)

∂Vk(τ
+
s+1)︸ ︷︷ ︸

(4.17)→ δik

dVk(τ
+
s+1)

dIrec
j (ts)

+
∂Vi(ts+1)

∂ Irec
i (τ+s+1)︸ ︷︷ ︸

(4.18)→ 0

dIrec
i (τ+s+1)

dIrec
j (ts)

+
∂Vi(ts+1)

∂τs+1︸ ︷︷ ︸
(4.19)→ −v+i,s+1/τm

dτs+1

dIrec
j (ts)

=
∂Vi(τ

+
s+1)

∂Vk(τ
−
s+1)︸ ︷︷ ︸

(4.20)
= δik

dVk(τ
−
s+1)

dIrec
j (ts)

−
v+i,s+1

τm

dτs+1

dIrec
j (ts)
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=
∂Vi(τ

−
s+1)

∂ Irec
j (ts)︸ ︷︷ ︸

(4.33)
=

T γ
s −Ts
1−γ

δi j

+

(
∂Vi(τ

−
s+1)

τs+1︸ ︷︷ ︸
(4.22)→ v−i,s+1/τm

−
v+i,s+1

τm

)
dτs+1

dIrec
j (ts)︸ ︷︷ ︸

(4.28)
= − (T γ

s −Ts)/(1−γ)

v−j∗,s+1/τm
δ j j∗

dVi(ts+1)

dIrec
j (ts)

=
(T γ

s −Ts)

1− γ

(
δi j +

1
v−j∗,s+1

δi j∗δ j j∗+
γ Ji∗ j∗

v−j∗,s+1

√
K

)
δii∗δ j j∗, (4.34)

where Eq. (4.28) and (4.28) were used in the last step.
Finally, Eq.(4.24),(4.29),(4.34) and (4.34) can be combined to the full single spike Jacobian of

the correlated leaky integrate and fire model:

D(ts) =



Ts 0 TΓ 0
. . . Ts

γ Ji∗ j∗

v−j∗,s+1

√
K

. . . TΓ

γ Ji∗ j∗

v−j∗,s+1

√
K

Ts
v+j∗,s+1

v−j∗,s+1
TΓ

v+j∗,s+1

v−j∗,s+1
. . . . . .

0 Ts 0 TΓ

0 0 T γ
s 0

. . . −γ Ts
γ Ji∗ j∗

v−j∗,s+1

√
K

. . . −γ TΓ

γ Ji∗ j∗

v−j∗,s+1

√
K

0 . . .
. . . . . .

0 0 0 T γ
s



, (4.35)

where the terms TΓ = (T γ
s −Ts)/(1− γ) and 1+1/v−j∗,s+1 = v+j∗,s+1/v−j∗,s+1 are used for a compact

presentation. The non-diagonal elements are in the j∗-th and N + j∗-th column and i∗ ∈ post j∗

rows.
The derivation of the single spike Jacobian (4.35) for cLIF networks paves the way for the

calculation of the complete Lyapunov spectra in the same procedure discussed in Chapter 2. The
only difference is that there are two dimensions per neuron, and the phase space is therefore 2N
dimensional. The single spike Jacobian is ordered in a way that in a vector ~g evolved with the
single spike Jacobian D(ts), the first N elements g1 . . .gN represent a perturbation of the voltages
of the neurons and the second N elements gN+1 . . .g2N represent a perturbation of the currents of
the neurons.
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4.3.5 Mean Lyapunov Exponent

The mean Lyapunov exponent can be derived in a random matrix approximation, using the single
spike Jacobian (4.35) similar to the derivation in Section 2.5.1. With the long term Jacobian T =
D(ts) · · ·D(0), the mean Lyapunov exponent λ̄ = 1

2N ∑
2N
i=1 λi is defined as

λ̄ =
1

2N
lim
s→∞

1
ts

ln
(

detT
)

=
1

2N
lim
s→∞

1
ts

s

∑
p=1

ln
(

detD(tp)
)
.

Assuming the single spike Jacobians to be random matrices of the form (4.35) with indepen-
dent and identically distributed random elements d(I∗) = v+/v−, the determinant of the random
matrices is detD = T N (d(I∗))T γ N with T = exp(−4t/τm). Here and in the following, we also
assume an asynchronous state in which the average time between two spikes in the network is
4t = 1/(Nν̄). The random elements d(I∗) depend on the current distribution at the times when
neurons emit a spike. From Eq. (4.15) and (4.14) follows for the spiking neuron j∗:

d(I∗) =
v+

v−
= 1+

1
Ic

j∗+ Irec
j∗ (ts+1)−1

= 1+
1

I∗−1
,

where I∗ = Ic
j∗+ Irec

j∗ (ts+1) denotes the current of the spiking neuron at the spike time, with proba-
bility distribution P(I∗).

The number of spike events per unit time is lims→∞
1
ts ∑

s
p=1 1 = Nν̄ . Thus, in the random matrix

approximation, the mean Lyapunov exponent for inhibitory networks becomes

λ̄ ≈ 1
2N

Nν̄

ˆ
ln
(
T N(γ+1)d(I∗)

)
P
(
I∗
)

dI∗

=
ν̄

2

(
ln
(
T N(γ+1))+ˆ ln

(
d(I∗)

)
P
(
I∗
)

dI∗
)

=
(γ +1)Nν̄

2Nν̄τm
+

ν̄

2

ˆ
ln
(

1+
1

I∗−1

)
P
(
I∗
)

dI∗

≈ γ +1
2τm

=
1
2

(
1
τI
+

1
τm

)
. (4.36)

In the last approximation we assumed that the neurons’ currents I∗ at times when they emit a spike
are considerably above the rheobase current IT = 1, such that the integral vanishes because of
1/(I∗−1)≈ 0. Interestingly, the mean Lyapunov exponent (4.36) is then fully determined by the
inverse of the harmonic mean of the membrane time constant τm and the synaptic time constant
τI. In fact, the random matrix approximation (4.36) agrees excellently with the mean Lyapunov
exponent calculated from the numerical simulations (Fig. 4.5E).
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Figure 4.2 – Firing statistics in inhibitory correlated integrate and fire neuron networks with differ-
ent synaptic time constants τI. (A,C) spike trains of 40 randomly chosen neurons for two synaptic time
constants τI = 5ms and τI = 20ms, (B,D) voltage trace of first randomly chosen neuron, (E) firing rate
distributions of cLIF networks and LIF networks with δ pulse coupling (dashed line), (F) coefficients of
variation distributions as in E, (G) suprathreshold external current I0 in relation to estimated balanced cur-
rent Ibal = ν̄J0τm from balance equation (2.19) versus target average firing rate ν̄ for synaptic time constants
τI = 5ms and two different connectivities K, (parameters: N = 10000, K = 1000, ν̄ = 10Hz, τm = 10ms;
all simulation with identical network realizations).

4.4 Balanced State in Correlated Leaky Integrate and
Fire Networks

The exact expressions for the evolution of the voltage and currents of each neuron in the network,
Eq. (4.5)-(4.8) and the next spike time in the network, Eq. (4.11) are used for numerically exact
simulations and with the derived single spike Jacobians (4.35), we will calculate the complete Lya-
punov spectra in the standard procedure [68, 69]. We will study random networks in the balanced
state as in Chapter 2 and 3 but now composed of leaky integrate and fire neurons with exponentially
decaying postsynaptic currents. Four different synaptic time constants τI relative to the membrane
time constant τm will be considered: τI/τm = 1

3 ,
1
2 ,2,3. Because τm can be chosen differently, these

ratios should represent different types of synapses with fast or slow GABA receptors (inhibitory),
fast AMPA or slow NMDA receptors (both excitatory). Realistic values of synaptic time constants
can range from few milliseconds to hundreds of milliseconds. We will mostly focus on τm = 10ms
and τI = 5ms, which are realistic values for GABA and AMPA receptors.

An overview of the firing activity in inhibitory cLIF networks is given in Fig. 4.2. It shows
two representative spike patterns for cLIF networks with fast and slow synapses (Fig. 4.2A,C). In
both cases the networks exhibit the typical asynchronous irregular activity in the balanced state.
A longer synaptic time constant, however, led to a more burst-like firing of the neurons. This
is also visible in the represented voltage traces of the same neuron but with different synaptic
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Figure 4.3 – Phase diagrams of excitatory-inhibitory networks for different ratios η = JEE/JIE . (see
coupling matrix (2.31)) Columns from left to right: η = 1, 0.9, 0, from top to bottom: average firing rate ν̄ ,
coefficient of variation cv and synchrony measure χ; on the x-axis is plotted the target average firing rate
according to the balance equation (2.25) and on the y-axis the excitatory-inhibitory feedback loop activation
ε , (parameters: NE = 8000, NI = 2000, K = 1000, J0 = 1, τm = 10ms; displayed are averages of 10 runs
with different network realizations).
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4.5 Dynamics of Inhibitory Networks

time constants (Fig. 4.2B,D) and reflected in the shifted distribution of coefficients of variation
(Fig. 4.2F). For fast synapses, the distribution was identical with the one in LIF networks with
δ coupling, but slow synapses resulted in average cv values larger than one, which is typical for
burst-like firing activity. From the spike pattern, one can infer that there were more neurons that
did not spike at all. This is also reflected in the distribution of firing rates in the networks which
showed a considerable peak at very low firing rates (Fig. 4.2E). For large synaptic time constants
this can even lead to a singularity at zero frequency. This is an interesting phenomenon of a state
with mostly silent neurons and referred to as the dark matter in the brain [98, 99].

A difference in the emergence of the balanced state in cLIF networks compared to theta neuron
networks is the need for strong recurrent inhibition. In Fig. 4.2G are plotted the suprathreshold
external currents I0 relative to the expectation from the balanced equation (2.19) Ibal = J0ν̄τm for
a given target network-averaged firing rate ν̄ . A ratio of one corresponds to perfect agreement.
In cLIF networks with low connectivity or low average firing rate the external currents strongly
deviated from the expected value. We suspect that this reflects the logarithmic onset of firing in the
FI-curve (Fig. 4.1C). If the recurrent inhibition is weak, the external currents must be extremely
low to yield a low networks-average firing rate. Therefore, the recurrent inhibition should be
sufficiently strong to result in a balanced state. Our observations indicate that this is the case for
Kν̄ > 1000Hz (Fig. 4.2G).

In excitatory-inhibitory cLIF networks we chose the coupling strengths according to Eq. (2.31)
to yield identical firing statistics as in inhibitory networks. This enables a quantitative compari-
son of the two types of networks. Consequently, the balanced state in excitatory-inhibitory cLIF
networks emerged broadly in the entire parameter range and with the expected asynchronous ir-
regular firing statistics (Fig. 4.3). The observed phase transition to a synchronous regular state
with increasing excitatory-inhibitory feedback loop strength ε in theta neuron networks did not
occur in cLIF networks. This agrees with the observation in rapid theta neuron networks, where
this phase transition already disappeared for moderately large AP onset rapidness, because LIF
neurons correspond to an infinite AP onset rapidness.

4.5 Dynamics of Inhibitory Networks
Although we are studying a completely different neuron and synapse model in this chapter, a
unique shape of the Lyapunov spectra that is independent of the network size N also characterizes
the dynamics of cLIF networks in the balanced state and implies extensive dynamics (Fig. 4.4).
The balanced state in such networks is again characterized by a decreasing synchrony measure
χ ∼ 1/

√
N and a high network size-independent coefficient of variation cv (Fig. 4.4A,B). Because

each neuron contributes two dimensions (current and voltage) to the networks phase space, 2N
Lyapunov exponents now describe the network dynamics of cLIF neurons. The complete spec-
tra of Lyapunov exponents for inhibitory networks are displayed in Fig. 4.4C. Compared to the
Lyapunov spectra in Chapters 2 and 3, the spectra of cLIF networks discussed here exhibit two
main differences: (i) The smallest Lyapunov exponent λmin was isolated from the rest of the Lya-
punov exponents, (ii) the Lyapunov spectra exhibited two distinct branches. The largest Lyapunov
exponent was positive and did not seem to saturate with increasing network size N, even though
it increased very slowly as λmax ∼ logN (Fig. 4.4D). Nevertheless, with increasing network size
the complete spectrum of Lyapunov exponents converged to a unique shape. This is indicated by
the inset in Fig. 4.4C and the fact that the entropy production rate H, Eq. (1.5), and the attractor
dimension D, Eq. (1.6), increased linearly with the number of neurons N (Fig. 4.4F,G). Thus the
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Figure 4.4 – Extensive dynamics in balanced inhibitory networks of N correlated integrate and fire
neurons. (A) Synchrony measure χ (straight line: χ ∼ 1/

√
N) , (B) average coefficient of variation

cv, (C) full spectra of Lyapunov exponents {λi} for K = 100 (inset: first few Lyapunov exponent for
N = 2048 . . .65536), (D) largest Lyapunov exponent λmax = λ1 (straight lines: λmax ∼ logN), (E) mean
Lyapunov exponent λmean =

1
N ∑i λi (dotted line from random matrix approximation, Eq. (4.36)), (F) infor-

mation dimension in percent of phase space dimension d = D/(2N), (G) average entropy production rate
per neuron per spike h = H/(Nν̄), (parameters: N = 10000, ν̄ = 10Hz, τm = 10ms, τI = 5ms; averages of
10 runs with different network realizations).

introduction of the relative attractor dimension d = D/(2N) and average entropy production rate
per neuron h = H/N as in the previous chapters is well-justified. One might speculate that such
extensive dynamics is the general case in random neural network in the balanced state.

Positive and finite Lyapunov exponents indicating deterministic chaos in inhibitory cLIF net-
works are in fact a surprising result, because LIF networks with δ pulse coupling exhibit stable
dynamics despite the irregular spiking activity [4–7]. This is called stable chaos. The Lyapunov
spectra of LIF networks with δ pulse coupling are negative definite (see dashed line in Fig. 4.5C
and Chapter 5). With finite synaptic time constants τI, the Lyapunov spectra were different, such
that the largest Lyapunov exponent, attractor dimension and entropy production rate were positive,
hence the dynamics chaotic. The Lyapunov spectra split into two branches. These two branches are
related to the inverse of the two time constants—the membrane time constant τm and the synaptic
time constant τI (indicated by the dotted and dashed-dotted lines in Fig. 4.5C, respectively). This is
also supported by the fact that in the random matrix approximation, Eq. (4.36), the mean Lyapunov
exponent is approximated by the inverse of the harmonic mean of τI and τm. Indeed, the random
matrix approximation of the mean Lyapunov exponent agrees excellently with the numerical re-
sults (Fig. 4.5E).

Although chaotic, the entropy production rate in cLIF networks was much lower than for ex-
ample in theta neuron networks (see Chapter 2). The dynamics of cLIF networks were hardly
sensitive to a variation of the synaptic coupling strength J0 despite an increased spike variability
indicated by an increased coefficient of variation (Fig. 4.6). With an increasing number of synaptic
inputs K the largest Lyapunov exponent, attractor dimension and entropy production rate increased
and converged in the large K-limit (Fig. 4.7). This also holds for an increase of the average firing
rate ν̄ . It should be noted here that the networks with K = 100 and ν̄ < 10Hz, which exhibit neg-
ative definite Lyapunov spectra, are not in a balanced state as discussed above. It can be seen in
Fig. 4.8C that the first part of the Lyapunov spectra of the cLIF networks (τI = 5ms) for K = 100
and ν̄ = 1Hz overlaps with the spectra of LIF networks (δ pulses). Increasing the average fir-
ing rate towards the balanced state led to a considerable change of the Lyapunov spectra of cLIF
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of 10 runs with different network realizations).
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Figure 4.7 – Dynamics for varied number of synapses per neuron K. (see Fig. 4.6 for description,
ν̄ = 10Hz).

networks such that the largest Lyapunov exponent was positive for ν̄ > 6Hz. However, for large
K = 1000 the largest Lyapunov exponent and the entropy production rate converged and the at-
tractor dimension increased with the average firing rate. These results imply that the overall rate
of entropy production due to the temporal synaptic transmission does not exceed a value of 0.02
bit per spike per neuron and was thus orders of magnitudes lower than in theta neuron networks.
Compared to rapid theta neuron networks, the very low entropy production rate in cLIF networks
would only be comparable in magnitude very close to the transition to stability—the edge of chaos.

4.6 Dynamics of Excitatory-Inhibitory Networks
Similar to the results in Chapters 2 and 3, the chaotic dynamics of cLIF networks intensified with
the activation of excitatory-inhibitory feedback loops (Fig. 4.9). Due to the specific parametriza-
tion of the coupling matrix (2.51), the asynchronous and irregular firing statistics were insensi-
tive to the activation of the excitatory-inhibitory feedback loops ε (Fig. 4.9A,B). The Lyapunov
spectra of excitatory-inhibitory cLIF networks changed in a way that the largest Lyapunov expo-
nent, attractor dimension and entropy production rate increased with ε (Fig. 4.9C-G). The entropy
production rate, however did not increase by orders of magnitude such that the observation of a
much lower entropy production rate in cLIF networks compared to theta neuron networks holds in
excitatory-inhibitory networks as well.

The Lyapunov spectra showed the particular splitting into two branches as observed in inhibitory
networks before. We varied the synaptic time constant τI at a fixed excitatory-inhibitory feedback
loop strength (Fig. 4.10). The effect of the synaptic time constant is identical with that in inhibitory
networks, which strengthens the observation in Chapter 2 and 3 that inhibitory networks already
capture the dynamics of excitatory-inhibitory networks quite well.

The precise quantification of the chaos in cLIF networks, however, depends on the specific net-
works’ parameters, including the number of excitatory neurons (Fig. 4.11). It occurs that at fixed
excitatory-inhibitory feedback loop strength, an increased number of excitatory neurons reduced
the chaos in the networks. The reduction converges and implies an optimal value in terms of
reduced entropy production at NE/NI = 4, which surprisingly agrees with the realistic ratio of
excitatory and inhibitory neurons in cortical networks [95].
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Figure 4.8 – Dynamics for varied firing rate ν̄ : (A) Synchrony measure χ , (B) average coefficient of
variation cv, (C) full spectra of Lyapunov exponents {λi} (for N = 2000, K = 100), (D) largest Lyapunov
exponent λmax = λ1, (E) mean Lyapunov exponent λmean =

1
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(parameters: N = 10000, τm = 10ms; averages of 10 runs with different network realizations).
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Figure 4.9 – Dynamics of balanced excitatory-inhibitory networks while activating the excitatory-
inhibitory feedback loops with ε . (A) Synchrony measure χ , (B) average coefficient of variation cv, (C)
full spectra of Lyapunov exponents {λi} (for N = 2000, K = 100), (D) largest Lyapunov exponent λmax = λ1,
(E) mean Lyapunov exponent λmean =

1
N ∑i λi (dotted line from random matrix approximation, Eq. (4.36)),

(F) information dimension in percent of phase space dimension d =D/(2N), (G) average entropy production
rate per neuron per spike h = H/(Nν̄), (parameters: NE = 4NI , N = 10000, ν̄ = 10Hz, τm = 10ms, τI =
5ms, η = 0.9; averages of 10 runs with different network realizations).
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Figure 4.10 – Dynamics for different synaptic time constants τI. (see Fig. 4.9 for description, ε = 0.3).
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Synchrony measure χ , (B) average coefficient of variation cv, (C) largest Lyapunov exponent λmax = λ1, (D)
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1
N ∑i λi, (E) information dimension in percent of phase space dimension

d = D/(2N), (F) average entropy production rate per neuron per spike h = H/(Nν̄), (parameters: N =
10000, K = 1000, ν̄ = 10Hz, τm = 10ms, τI = 5ms, η = 0.9; averages of 10 runs with different network
realizations).
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4.7 Summary
In this chapter we investigated the influence of temporal synaptic transmission on the collective
network dynamics. Because the approach introduced in Chapter 2 is based on one-dimensional
δ pulse coupled neurons, it was here extended to the necessary two-dimensional neuron model.
This also illustrates possible extensions to other exactly solvable similar neuron models. Here, we
started from the exactly solvable leaky integrate and fire (LIF) model. Networks of LIF neurons
with inhibitory δ pulse coupling exhibit stable dynamics. It is therefore an ideal candidate to study
the effect of temporally extended postsynaptic currents.

The results presented in this chapter reveal that LIF networks with exponentially decaying post-
synaptic currents exhibit:

• Deterministic chaos in the balanced state (the observed transition from stable to chaotic
dynamics coincides with the transition from unbalanced to balanced networks).

• Extensive dynamics, indicated by a unique shape of the Lyapunov spectrum in the large
network limit and linearly increasing number of positive Lyapunov exponents, attractor di-
mension and entropy production rate with increasing number of neurons.

• Low dimensional attractors, at most 1% of the phase space dimension, and two orders of
magnitude lower than in comparable theta neuron networks.

• Low entropy production rate, at most 0.02 bit per spike per neuron, and two orders of mag-
nitude lower than in comparable theta neuron networks.

• Activation of excitatory-inhibitory feedback loops intensifies the chaos and renders the dy-
namics of LIF networks chaotic in general.

The observed chaotic dynamics in inhibitory networks of balanced LIF networks is entirely a
consequence of the incorporation of temporal synaptic transmission. Equivalent LIF networks
with δ pulse coupling have been shown to exhibit stable dynamics with respect to infinitesimal
perturbations. The fragility of this stable dynamics to temporal synaptic transmission raises the
question how fragile this stability is in general.
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5 Stable Chaos in Networks of Leaky
Integrate and Fire Neurons
Instantaneous Action Potential Generation

In this chapter, we will continue to study δ pulse synaptic coupling, for which inhibitory leaky
integrate and fire (LIF) networks exhibit stable chaos [4–7]. This form of dynamics, originally
discovered in coupled map lattices [35], is characterized by stable dynamics despite an erratic net-
work activity. The result of stable dynamics in inhibitory networks of LIF neurons in the balanced
state is in contrast to the dynamics of binary neuron networks, found to exhibit an extremely strong
form of chaos with an infinite Lyapunov exponent [2, 3]. Both neuron models in these studies are
highly simplified descriptions of the single neuron dynamics.

The binary neuron model is a discrete model in which neurons can either be active or inactive.
It originates from the analogy of spins with the states up and down allowing for the application of
meanfield theory developed in spin glass theory. The authors in Ref. [3] suspected that the infinite
Lyapunov exponent in their analysis was a results of the discreteness of the binary neuron model
as a consequence of an infinite gain of the smallest perturbations, but they expected the balanced
state to be generally chaotic.

The LIF model is a continuous neuron model with spikes being virtually emitted when the
membrane potential crosses a threshold and then reset to the resting potential. It thus neglects the
active AP generation of real neurons. The special case of inhibitory LIF networks as models of
cortical circuits is interesting because one can then study the effect of different mechanisms that
destabilize the dynamics.

In Chapter 4 it was demonstrated that temporal synaptic coupling is one mechanism that desta-
bilizes the collective dynamics of LIF neurons. We have shown that such cLIF networks exhibit
chaotic dynamics in the balanced state, although the strength of this form of chaos was much lower
than when incorporating the single neuron instability leading to an active AP generation.

In Chapters 2 and 3 we demonstrated the strong influence of active AP generation in the dynam-
ical nature of neural networks. The simplest neuron model incorporating an active AP generation
is the theta neuron model. Inhibitory networks of theta neurons in the balanced state generally ex-
hibit chaotic dynamics (Chapter 2). A shift of the membrane potential distribution of the neurons
when they were the most sensitive to perturbations towards the AP generating instability suggested
that this feature of single neuron dynamics renders the collective dynamics of balanced networks
robustly chaotic. Networks of rapid theta neurons revealed a transition of the dynamical nature
from chaotic to stable upon increasing the AP onset rapidness r (Chapter 3). In the limit r→ ∞,
corresponding to an instantaneous AP initiation, finite inhibitory networks exhibit stable dynamics.
The limit of r→ ∞ is related to the leaky integrate and fire (LIF) model, in which a dynamic AP
generation is neglected but the spike is virtually instantaneously emitted when the membrane po-
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tential crosses a threshold. Because the LIF model is widely used in computational neuroscience
and because it corresponds to the case of infinite AP onset rapidness, it is important to further
understand the collective dynamics of this special neuron model.

In the first section of this chapter, we will derive the necessary exact closed form expressions
of the LIF model to directly apply the approach developed in Chapter 2. This will allow for
numerically exact simulations and the calculation of the full Lyapunov spectra of LIF networks
completed with a random matrix approximation of the mean Lyapunov exponent. The analysis
of the collective network dynamics is in this chapter extended to the firing rate response of the
networks to single spike failures and distance measurement between such a perturbed trajectory
and its reference trajectory. This reveals the occurrence of a positive pseudo Lyapunov exponent,
in contrast to negative definite Lyapunov spectra. The exploration of the evolution of finite size
perturbations then reveals an exotic phase space structure of exponentially separating flux tubes
around unique stable trajectories consistent with the two seemingly contradictory observations.
These results are currently under review at Physical Review Letters. In the last section of this
chapter we will draw the connection to neurons with finite AP onset rapidness.

5.1 Leaky Integrate and Fire Model

We studied the dynamics of the balanced state in inhibitory networks of N leaky integrate and fire
(LIF) neurons following the approach introduced in Chapter 2. The neurons membrane potentials
Vi ∈ (−∞,VT) with i = 1 . . .N follow the differential equation (2.1) with a linear term F(Vi) =−Vi,
thus

τm
dVi(t)

dt
=−Vi(t)+ Ii(t). (5.1)

This is complemented with the condition that whenever the membrane potential Vi reaches the
threshold VT ≡ 1, the neuron is said to emit a spike and Vi is reset to VR ≡ 0. The leaky integrate
and fire model has an intrinsic rheobase current IT ≡ VT . This is the minimally required input
current for tonic firing. The neurons integrate the synaptic input current (2.2):

Ii(t) = IT +
√

KI0−
J0τm√

K ∑
j∈pre(i)

∑
s

δ (t− t(s)j ), (5.2)

composed of constant external excitatory currents
√

KI0 and nondelayed inhibitory δ pulses of
strength −J0/

√
K received at the spike times {t(s)j } of the presynaptic neurons j ∈ pre(i). The

neurons were arranged on directed sparse Erdös-Rényi random graphs of fixed mean indegree K.
Thus, all neurons are connected to K presynaptic neurons on average. At the spike times of the
presynaptic neurons, the membrane potential of the spike receiving neuron immediately changed
by an amount−J0/

√
K. The resulting recurrent inhibition balanced the constant external excitation

in the networks leading to a balanced state (see Section 2.4).
With the exact solutions of the leaky integrate and fire model we form the iterative map, Eq. (2.3).

Between successive spikes events ts and ts+1, the neurons integrate the constant current Ic =
IT +

√
KI0 and the membrane potentials follow the solution of Eq. (5.1) with Ii(t) ≡ Ic. This

solution is given by

f
(
Vi(ts), ts+1− ts

)
≡Vi(ts+1) = Ic− (Ic−Vi(ts))e−(ts+1−ts)/τm . (5.3)
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Receiving a δ -pulse at the spike time of a presynaptic neuron leads to a step-like change of the
membrane potential

g
(
Vi∗(t−s+1)

)
≡Vi∗(t+s+1) =Vi∗(t−s+1)−

J0√
K
, (5.4)

where t∓s denotes time just before/after the spike reception.

More convenient, however, is the phase representation with constant phase velocity and the
phase-transition curve of the LIF neurons. In this representation, the phases φi ∈ (−∞,1) describe
the states of the neurons relative to their unperturbed free-running interspike intervals, which is
obtained from Eq. (5.3) as the time between reset and threshold without any inhibitory inputs. The
free interspike intervals are

T free
i = −τm ln

(
VT − Ic

VR− Ic

)
(5.5)

= τm ln
(

Ic

Ic−1

)
(5.6)

= τm ln
(

1+
1√
KI0

)
. (5.7)

In the large K-limit the free interspike interval (5.5) becomes T free
i

K→∞' τm√
KI0

+O
( 1

K

)
. The phase

of the neuron, describing its state relative to the unperturbed cycle then reads

φi = − τm

T free
i

ln
(

V − Ic

VR− Ic

)
=

τm

T free
i

ln
(

Ic

Ic−V

)
(5.8)

and the reverse transformation

Vi = Ic

(
1− exp

(
−φiT free

i /τm
))

. (5.9)

In the large K-limit, the transformations (5.8) and (5.9) become φi
K→∞' Vi +O

(
1√
K

)
.

Thus, between successive spikes events ts and ts+1, the neurons’ phases evolve with constant
phase velocity 1/T free

i and the phase evolution reads

f
(
φi(ts), ts+1− ts)≡ φi(t−s+1) = φi(ts)+(ts+1− ts)/T free

i . (5.10)

When receiving a spike, the step-like change in the membrane potential transforms in the phase
representation to the phase-transition curve

g
(
φi∗(t−s+1)

)
≡ φi∗(ts+1) =−

τm

T free
i∗

ln
(

exp
(
−φi∗(t−s+1)T

free
i∗ /τm

)
+

J0√
KIc

)
. (5.11)
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Hence, the phase-response curve of the LIF model is

Z
(
φi∗(t−s+1)

)
= g

(
φi∗(t−s+1)

)
−φi∗(t−s+1)

= − τm

T free
i∗

ln
(

exp
(
−φi∗(t−s+1)T

free
i∗ /τm

)
+

J0√
KIc

)
−φi∗(t−s+1). (5.12)

In the large K-limit, the phase-response curve becomes

Z(φ)
K→∞' − J0√

K
+

J0 (0.5−φ)

I0K
+O

(
1

K
3
2

)
= − J0√

K
+

0.5−φ

Kν̄τm
+O

(
1

K
3
2

)
, (5.13)

where the balance equation (2.19) was used in the last step. The derivative of the phase-response
curve used for the single spike Jacobians reads

Z′(φi∗(t−s+1)) =
exp
(
−φi∗(t−s+1)T

free
i /τm

)
exp
(
−φi∗(t−s+1)T

free
i /τm

)
+ J0/(

√
KIc)

−1. (5.14)

In the large K-limit, the derivative of the phase-response curve becomes

Z′(φ)
K→∞' − J0

I0K
+

J0(1−φ)

I2
0 K

3
2

+O

(
1

K2

)
= − 1

Kν̄τm
+

1−φ√
KI0Kν̄τm

+O

(
1

K2

)
.

The last ingredient for true event-based simulations is an explicit equation for the time of the
next spike occurring in the network, which is obtained from Eq. (5.10) with φi(t−s+1) = 1:

ts+1 = ts +min
i

{
(1−φi(ts))T free

i

}
. (5.15)

Altogether, with Eq. (5.10), (5.11) and (5.15), the iterative phase map, Eq. (2.14), is defined and
the derivative of the phase-response curve, Eq. (5.14), yields the single spike Jacobians, Eq. (2.15).
These are all prerequisites for true event-based simulations and the numerically exact calculation
of the Lyapunov spectra. Before we present the results though, we adapt the derivation of the mean
Lyapunov exponent in random matrix approximation from Section 2.5.1 for LIF networks.

5.2 Mean Lyapunov Exponent

We derived a random matrix approximation of the mean Lyapunov exponent λ̄ = 1
N ∑

N
i=1 λi for theta

neuron networks in Section 2.5.1. Analogously to this derivation, the mean Lyapunov exponent
for homogeneous inhibitory LIF networks in the balanced state reads

λ̄ = Kν̄

ˆ
ln(d(V ))P(V )dV, (5.16)
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with d(V ) denoting the derivative of the phase transition curve in the voltage representation. This
derivative can be read off from Eq. (5.14) and the voltage-phase transformation, Eq. (5.8), written
as exp(−φT free/τm) = (Ic−V )/Ic. The derivative then reads

d(V ) =
IT +
√

KI0−V
IT +
√

KI0−V + J0/
√

K
.

In the large K-limit the derivative becomes

d(V )
K→∞' 1− J0

I0K
+

J0(1−V )

I2
0 K

3
2

+O

(
1

K2

)
≈ 1− 1

Kν̄τm
+

1−V√
KI0Kν̄τm

+O

(
1

K2

)
, (5.17)

where the approximation of the average firing rate Eq. (2.19) was used in the last step. Eq. (5.17)
inserted in the equation of the mean Lyapunov exponent in random matrix approximation (5.16)
leads to

λ̄
K→∞' − 1

τm
+

1−〈V 〉√
KI0τm

+O

(
1
K

)
. (5.18)

Here, 〈V 〉=
´

V P(V )dV denotes the average of the membrane potential. Thus, in the large K-limit,
the mean Lyapunov exponent becomes λ̄ ≈−1/τm.

5.2.1 Meanfield Approximation of the Membrane Potential
Distribution

The meanfield theory developed by Brunel and Hakim [100] for sparse networks in the asyn-
chronous (balanced) state allows for the self-consistent calculation of the membrane potential dis-
tribution P(V ). We will use the membrane potential distribution to estimate the mean Lyapunov
exponent, Eq. (5.16). The membrane potential distribution is given in Ref. [100] as

P(V ) = 2
ν̄

σ
exp
(
−(V −µ)2

σ2

)ˆ VT−µ

σ

V−µ

σ

Θ

(
W − VR−µ

σ

)
exp(W 2)dW

=
√

π
ν̄

σ
exp
(
−(V −µ)2

σ2

)erfi
(

VT−µ

σ

)
− erfi

(
V−µ

σ

)
V ≥ 0

erfi
(

VT−µ

σ

)
− erfi

(
VR−µ

σ

)
V < 0.

(5.19)

where we use for the magnitude of the input fluctuations σ2 ≈ J2
0 ν̄τm (Eq. (2.20)) and for the mean

input current µ ≈ IT +
√

K(I0− J0ν̄τm) (Eq. (2.19)). The integral was solved using the imaginary
error function erfi(x) = erf(ıx)

ı = 2√
π

´ x
0 exp(t2)dt. The parameters in Eq. (5.19) are ν̄ , K, I0 and J0.

We have set J0 = 1, varied ν̄ and K and chose I0 selfconsistently such that the membrane potential
distribution was normalized (

´
P(V )dV = 1). Self-consistency was checked with the equation of
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Figure 5.1 – Membrane potential distributions and mean Lyapunov exponents from meanfield ap-
proximation.
(A) Membrane potential distribution P(V ) and (B) external currents I0 for different connectivities K and av-
erage firing rates ν̄ ; straight lines: meanfield Eq. (5.19), dotted lines and open circles: simulations, dashed
lines: balance equation Eq. (2.19)),
(C) mean Lyapunov exponent λ̄ ; straight lines: random matrix approximation Eq. (5.16) with membrane-
potential distributions from A, dotted lines and open circles: simulations, dash-dotted lines: large K-
approximation Eq. (5.18), (parameters: N = 10000, K = 1000, ν̄ = 10Hz, J0 = 1, τm = 10 ms).
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Figure 5.2 – The balanced state in inhibitory LIF networks. (A) Asynchronous irregular spike pattern
of 30 randomly chosen neurons, (B) fluctuating voltage trace of one neuron (voltage increased to V = 2 at
spikes), (C,D) broad distributions of individual neurons’ firing rates ν and coefficients of variation cv, (E)
network-averaged firing rate ν̄ and synchrony measure χ versus predicted rate ν̄bal = I0/(J0τm) (dotted line:
guide for the eye for ν̄ = ν̄bal, χ = STD([φi])

[STD(φi)]
where [·] denotes population average), (parameters: N = 10000,

K = 1000, ν̄ = 10Hz, J0 = 1, τm = 10ms).

the firing rate ν̄ provided in Ref. [100]

ν̄ =

(
√

πτm

ˆ VT−µ

σ

VR−µ

σ

(
1+ erf(W )

)
exp
(
W 2)dW

)−1

.

Representative membrane potential distributions and the external currents are displayed for var-
ious parameters in Fig. 5.1A. They agree very well with the simulations (dotted lines). The self-
consistent membrane potential distributions were then used to approximate the mean Lyapunov
exponent, derived in the previous section. The results, displayed in Fig. 5.1C, showed excellent
agreement between the random matrix approximation (5.16) using the self-consistent membrane
potential distribution (5.19) and our results from the simulations. The large K-limit appears quite
valid for very large K, as expected.

The self-consistent membrane potential distributions were furthermore used to estimate the dis-
tance between uncorrelated states DV =

´ ´
|V −W |P(V )P(W )dV dW , as given in Ref. [5]. In the

phase representation this becomes

D =

ˆ ˆ
|φ −ϕ|P(φ)P(ϕ)dφ dϕ, (5.20)

with P(φ) = P(V )IcT free exp(−φT free). The Eq. (5.19) of the distance between uncorrelated states
will be used below in the Fig. 5.8(a) and Fig. 5.9(a).
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5.3 Stable Chaos in the Balanced State
Similar to cLIF networks studied in Chapter 4, the dynamics of LIF networks converged to the
balanced state for large recurrent inhibition. Figure 5.2 shows a representative spike pattern and
voltage trace illustrating the irregular and asynchronous firing activity and strong membrane poten-
tial fluctuations. A second characteristic feature of balanced networks is a substantial heterogeneity
in the spike statistics across neurons, indicated by broad distributions of coefficients of variation
(cv) and firing rates (ν). An important source for this heterogeneity are quenched fluctuations from
the binomial-distributed indegrees in the studied random networks. Independent of model details,
the network-averaged firing rate ν̄ in the balanced state can be predicted as ν̄bal ≈ I0/(J0τm),
Eq. (2.19). The good agreement of this prediction with the numerically obtained firing rate con-
firms the dynamical balance of excitation and inhibition in the studied networks.

Although the voltage trajectory of each neuron and the network state were very irregular, the col-
lective dynamics of the networks was apparently completely stable (Fig. 5.3). For all firing rates,
coupling strengths and connection probabilities, the whole spectrum of Lyapunov exponents (dis-
regarding the zero exponent for perturbations tangential to the trajectory) was negative, confirming
the occurrence of stable dynamics in LIF networks with respect to infinitesimal perturbations [4–7].
Our analysis furthermore shows the invariance of the Lyapunov spectra to the network size N (see
inset in Fig. 5.3A and more examples in Fig. 5.4). This demonstrates, to our knowledge for the
first time, that this type of dynamics is extensive. With increasing connectivity K all Lyapunov ex-
ponents approached a constant λi ≈−1/τm. This is deduced from the mean Lyapunov exponent in
random matrix approximation and the numerical observation that the largest exponent approached
λmean in the large K-limit (see Section 5.2 and Fig. 5.3B). These results suggest that in the thermo-
dynamic limit arbitrary weak perturbations decay exponentially on the single neuron membrane
time constant. As will become clear in the following, however, this issue is quite delicate.

5.4 Firing Rate Response After Single Spike Failures
Experimentally realizable and well-controlled state perturbations to the dynamics of cortical net-
works are the addition or suppression of individual spikes [101–104]. Such minimalistic neu-
rostimulation can elicit complex behavioral responses [102–104] and can trigger a measurable rate
response in intact cortical networks [101]. We therefore examined how such single spike perturba-
tions affected the collective dynamics of our networks. Here, the simplest single spike perturbation
is the suppression of a single spike. Figure 5.5 illustrates the firing rate response if one spike is
skipped at t = 0. The missing inhibition immediately triggered additional spikes in the K post-
synaptic neurons such that the network-averaged firing rate increased abruptly by δ ν̄ ∼ Kν̄/N.
Since the induced extra spikes inhibited further neurons in the network, the overshoot in the firing
rate quickly settled back to the stationary state within a time of order δ t ∼ 1/(Kν̄). The overall
number of additional spikes in the networks therefore was Nδ ν̄δ t ≈ 1 and the one skipped spike
was immediately compensated by a single extra spike. This might even be the general case if the
following neuron model-independent meanfield approximation holds.

5.4.1 Meanfield Approximation of Firing Rate Response

The weak rate response to single spike perturbations in balanced networks can also be derived
in a meanfield approximation. Without loss of generality, time will be measured in terms of the

112



5.4 Firing Rate Response After Single Spike Failures

0 0.2 0.8 1i / N

-1
τ

m

-50

0

λ
i (

s
-1

)

K=  100
K=  200
K=  500
K=1000
K=2000

0 10000K

-1
τ

m

-50

λ
 (

s
-1

)

λ
max

λ
mean

RMT

N=  2000

N=10000

N=50000

0 20ν (Hz)

-1
τ

m

-50

λ
 (

s
-1

)

A B

C

K

Figure 5.3 – Extensive stable dynamics with respect to infinitesimal perturbations. (A) Spectrum of
Lyapunov exponents {λi} of networks of N = 10000 LIF neurons for different connectivities K, inset: close-
up of spectra for K = 100 and different network sizes N, (B,C) largest Lyapunov exponent λ2 = λmax and
mean Lyapunov exponent λmean =

1
N ∑

N
i=1 λi versus connectivity K and average firing rate ν̄ (dashed lines:

random matrix theory for λmean, see Section 5.2), (parameters: N = 100000, K = 1000, ν̄ = 10Hz, J0 = 1,
τm = 10ms; averages of 10 initial conditions).

0 0.2 0.4 0.6 0.8 1
i / N

-100

-80

-60

λ
i (

s
-1

)

K = 100

ν = 10Hz

0 0.2 0.4 0.6 0.8 1
i / N

-100

-80

-60

λ
i (

s
-1

)

K = 1000

ν = 10Hz

0 0.03

-70

-60

-50

N = 20000
N = 10000
N =   5000
N =   2000

0 0.03
i / N

-70

-60

-50

0 0.03
i / N

-70

-60

-50

λ
i (

s
-1

)

0 0.03

-100

-90

-80

0 0.03
i / N

-100

-90

-80

λ
i (

s
-1

)

0 0.03
i / N

-100

-90

-80ν = 5Hz ν = 20Hz ν = 5Hz ν = 20Hz
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(rescaled with average input rate Kν̄), (parameters: ν̄ = 10Hz, J0 = 1, τm = 10ms; averages of 100 initial
conditions with 10000 calculations each).

membrane time constant for simplicity in this derivation t 7→ t/τm. Two coding channels contribute
to the rate response δν(t), one due to the change in the mean input current µ(t) and one due to the
change in the variance of the input current σ(t).

The mean input current µ =
√

K(I0− J0ν̄) changes in the wake of a single spike failure by

δ µ =

√
K

N
J0δ (t)−

√
KJ0δν(t). (5.21)

The first term reflects the instantaneous effect of the one missed spike at t = 0, equivalent to
a positive current pulse of strength J0/

√
K in K postsynaptic neurons averaged over the entire

population. The second term reflects the change in the recurrent inhibition due to the change in the
average firing rate. The average additional and missed spikes captured in the rate response δν(t)
each lead to K current pulses of strength −J0/

√
K.

Additionally, the change in the average firing rate δν(t) leads to the following magnitude of in-
put current fluctuations σ̃(t) = J0

√
ν̄ +δν(t). The differences of the fluctuations to the stationary

state σ(t) = J0
√

ν̄ is thus

δσ = J0
√

ν̄ +δν(t)− J0
√

ν̄

δν(t)→0' J0
1

2
√

ν̄
δν(t)+O(δν(t)2). (5.22)

Here we have assumed a weak rate response. This needs to be validated at the end.
The rate response is given by the convolutions of (5.21) and (5.22) with the response functions

in linear response theory for the mean ν
µ

1 (t) and variance νσ
1 (t):

δ ν̄(t) = ν
µ

1 (t)?δ µ(t)+ν
σ
1 (t)?δσ(t). (5.23)

These might be derived for the specific neuron model but in fact we will use self-consistency
arguments without the explicit expressions for ν

µ

1 (t) and νσ
1 (t). After a Fourier transformation of
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(5.23), the convolutions become products such that

δ ν̃(ω) = ν̃
µ

1 (ω)δ µ(ω)+ ν̃
σ
1 (ω)δσ(ω).

= ν̃
µ

1 (ω)

(√
K

N
J0−
√

KJ0δ ν̃(ω)

)
+ ν̃

σ
1 (ω)

J0

2
√

ν̄
δ ν̃(ω)

Solving this for δ ν̃(ω) yields

δ ν̃(ω) =
1
N

√
KJ0ν̃

µ

1 (ω)

1+
√

KJ0ν̃
µ

1 (ω)− J0
2
√

ν̄
ν̃σ

1 (ω)

=
1
N

ν̃
µ

1 (ω)

ν̃
µ

1 (ω)+ 1√
KJ0
− 1

2
√

Kν̄
ν̃σ

1 (ω)
.

As expected, the single spike rate response vanishes in the large N limit. For large K (with
1� K� N), the rate response becomes

δ ν̃(ω) ' 1
N

(
1−
(

1
J0ν̃

µ

1 (ω)
− 1

2
√

ν̄

ν̃σ
1 (ω)

ν̃
µ

1 (ω)

)
1√
K
+O

(
1
K

))

δν(t) ' 1
N

(
δ (t)+O

(
1√
K

))
.

The number of extra spikes in networks with high connectivity is therefore

Sextra = N
ˆ

δν(t)dt = 1.

Hence, the one missed spike is just compensated by one extra spike in the balanced network con-
firming the numerically obtained result displayed in Fig. 5.5.

5.5 Exponential State Separation After Single Spike
Failures

Even though the failure of one individual spike resulted in very weak and brief firing rate re-
sponses, it nevertheless induced rapid state decoherence. We analyzed the distance Dφ (t) =
1
N ∑i |φ̃i(t)−φi(t)| between the perturbed trajectory with an individual spike failure at t = 0 and the
reference trajectory. After a single spike failure, all trajectories separated exponentially fast from
the reference trajectory at a surprisingly high rate. The averages of several calculations with dif-
ferent initial conditions are summarized in Fig. 5.6. Because this exponential separation of nearby
trajectories is reminiscent of deterministic chaos, we call its separation rate the pseudo Lyapunov
exponent λp. The pseudo Lyapunov exponent was network size invariant, but showed a completely
different behavior compared to the classical Lyapunov exponents. With increasing connectivity, it
appears to diverge linearly λp ∼ Kν̄ . It is thus expected to grow to infinity in the high connectiv-
ity limit, reminiscent of binary neuron networks exhibiting an infinite Lyapunov exponent in the
thermodynamic limit [2, 3].
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Figure 5.6 – Sensitivity to single spike failures. (A) Average distance Dφ between trajectory after spike
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versus connectivity K and average firing rate ν̄ , (C) distance-evolution of all parameter sets (rescaled with
approximate perturbation strength KJ0/
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K) versus time (rescaled with average input rate Kν̄) collapse

to characteristic exponential state separation with rate λp ∼ 0.9Kν̄ (inset: different network sizes N for
K = 100), (parameters: N = 100000, K = 1000, ν̄ = 10Hz, J0 = 1, τm = 10ms; averages of 10 initial
conditions with 100 calculations each).

5.6 Exponentially Separating Flux Tubes Around Stable
Trajectories

In the same balanced LIF networks, we thus find stable dynamics in response to infinitesimal
perturbations and unstable dynamics in response to single spike failures. To further analyze the
transition between these completely opposite behaviors, we applied finite perturbations of variable
size perpendicular to the state trajectory (Fig. 5.7). Depending on the perturbation strength ε and
direction δ~φ (with ∑i δφ 2

i = 1), the perturbed trajectory either converged back to the reference
trajectory or diverged exponentially fast. The probability Ps(ε) that a perturbation of strength ε

induced exponential state separation was very well fitted by Ps(ε) = 1− exp(−ε/εft). Hence, εft
is a characteristic phase space distance separating stable from unstable dynamics. Intriguingly,
this distance decreased as εft ∼ N−0.5K−0.4ν̄−1 (Fig. 5.8). For large K and N the dynamics in the
thermodynamic limit (N→ ∞) would thus be unstable even to infinitesimal perturbations (ε → 0).
Contrary, the analysis of the Lyapunov spectra has shown that taking the limit ε → 0 first and
then N → ∞ yields stable dynamics. Thus, the order of the limits appears crucial in defining the
dynamical nature of balanced LIF networks in the thermodynamic limit.

The evolution of finite perturbations suggests an exotic phase space structure of stable flux tubes
around unique trajectories (Fig. 5.7(d)). Perturbations within these flux tubes decayed exponen-
tially, whereas perturbations greater than the typical flux tube radius εft induced exponential state
separation. Single synaptic failures correspond to small perturbations of size εsyn ≈ J0/

√
KN and

therefore had an N indpendent and almost K independent probability of inducing exponential state
separation (Fig. 5.9). This probability increased linearly with the average firing rate ν̄ .
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5.7 Single Spike Perturbation in Rapid Theta Neuron
Networks

Because the LIF model is a special case of single neuron dynamics with instantaneous AP ini-
tiation, we wanted to compare the results of the networks dynamics with respect to single spike
failures with networks of neurons with finite AP onset rapidness. We therefore repeated the calcu-
lations of the distance between reference trajectories and trajectories after single spike failures in
rapid theta neuron networks with variable AP onset rapidness (Fig. 5.10-5.12).

We start with repeating the results of LIF networks completeness. These networks with instant
AP generation, comparable with r→ ∞ in the rapid theta neuron model, exhibit a scaling of the
pseudo Lyapunov exponent with the connectivity K and average firing rate ν̄ as λp ∼ K0.95ν̄0.95

(Fig. 5.10(a)). The pseudo Lyapunov exponent thus seems to grow to infinity in the large connec-
tivity limit.

Networks of rapid theta neurons and an extremely high AP onset rapidness r = 1000 exhibit
a similar scaling law as LIF networks. The pseudo Lyapunov exponent seems to scale as λp ∼
K0.85ν̄0.93 (Fig. 5.10(b)) and would thus tend to infinity in the high connectivity limit. Decreasing
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the AP onset rapidness to r = 100 leads to a similar scaling λp ∼ K0.85ν̄0.92 (Fig. 5.11(a)).
Further decreasing the AP onset rapidness to r = 10 breaks this trend and it is clearly visible

that the pseudo Lyapunov exponent converges with K (Fig. 5.11(b)). This is also the case for low
AP onset rapidness r = 3 and r = 1 (Fig. 5.12). We can thus conclude that for low AP onset
rapidness, the pseudo Lyapunov exponent with respect to finite perturbations converges to the
standard Lyapunov exponent with respect to infinitesimal perturbations.

We have seen a gradual change between the results of LIF networks (r→∞) towards the results
of theta networks (r = 1) with decreasing AP onset rapidness r. This suggests that the exotic phase
space structure of stable flux tubes around unique stable trajectories is a result of instantaneous AP
initiation and demonstrates how crucial the AP generation of single neurons is in determining the
collective network dynamics.
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Figure 5.10 – Sensitivity to single spike failures in networks with (almost) instantaneous AP genera-
tion. (A,C) Average distance Dφ between trajectory after spike failure and reference trajectory versus time
in log-lin plots for different connectivities K and average firing rates ν̄ , (B,D) pseudo Lyapunov exponent
λp from exponential fits Dφ ∼ exp(λpt) before reaching saturation versus connectivity K and average firing
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each).
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Figure 5.11 – Sensitivity to single spike failures in networks with high AP onset rapidness. (A,C)
Average distance Dφ between trajectory after spike failure and reference trajectory versus time in log-lin
plots for different connectivities K and average firing rates ν̄ , (B,D) pseudo Lyapunov exponent λp from
exponential fits Dφ ∼ exp(λpt) before reaching saturation versus connectivity K and average firing rate ν̄ ,
(parameters: N = 100000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms; averages of 10 initial conditions with
100 calculations each).
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Figure 5.12 – Sensitivity to single spike failures in networks with low AP onset rapidness. (A,C)
Average distance Dφ between trajectory after spike failure and reference trajectory versus time in log-lin
plots for different connectivities K and average firing rates ν̄ , (B,D) pseudo Lyapunov exponent λp from
exponential fits Dφ ∼ exp(λpt) before reaching saturation versus connectivity K and average firing rate ν̄ ,
(parameters: N = 100000, K = 100, ν̄ = 1Hz, J0 = 1, τm = 10ms; averages of 10 initial conditions with
100 calculations each).
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5.8 Summary
Motivated by the recent observation that real cortical networks are highly sensitive to single spike
perturbations [101], we examined in this chapter how single spike perturbations evolve in the
formally stable dynamics of inhibitory LIF networks. Our analysis revealed the cooccurence of
dynamical stability to infinitesimal state perturbations and sensitive dependence on single spike
and even single synapse perturbations in the dynamics of such networks.

Networks of inhibitory LIF neurons exhibit a negative definite extensive Lyapunov spectrum
that at first sight suggests a well-defined thermodynamic limit of the network dynamics character-
ized by stable chaos as previously proposed [4–7]. In this dynamics, single spike failures induce
extremely weak firing rate responses that become basically negligible for large networks. Never-
theless, such single spike perturbations typically put the network state on a very different dynami-
cal path that diverges exponentially from the original one. The rate of exponential state separation
was quantified with the so-called pseudo Lyapunov exponent λp. The scaling of λp ∼ Kν̄ im-
plies extremely rapid, practically instantaneous, decorrelation of network microstates, which is
reminiscent of the results obtained in binary neuron networks in the balanced state [2, 3].

Our results suggest that the seemingly paradoxical coexistence of local stability and exponential
state separation reflects the partitioning of the networks’ phase space into a tangle of flux tubes.
States within a flux tube are attracted to a unique, dynamically stable trajectory. Different flux
tubes, however, separate exponentially fast. The decreasing flux tube radius in the large system
limit suggests that an unstable dynamics dominates the thermodynamic limit. The resulting sen-
sitivity to initial conditions is described by the rate of flux tube separation, the pseudo Lyapunov
exponent, that showed no sign of saturation. These findings suggest that the previously reported in-
finite Lyapunov exponent on the one hand [2,3] and local stability on the other hand [4–7] resulted
from the order in which the weak perturbation limit and the thermodynamic limit were taken.

For finite networks, the phase space structure revealed here may provide a basis for insensi-
tivity to small perturbations (e.g. noise or variations in external inputs) and strong sensitivity to
larger perturbations. In the context of reservoir computing, the flux tube radius defines a border
between the fading property (variations of initial conditions smaller εft die out exponentially) and
the separation property (input variations larger εft cause exponentially separating trajectories). Ap-
plications of LIF neuron networks in reservoir computing may thus strongly benefit if the flux tube
structure of the network phase space is taken into account. Our results of a very high pseudo Lya-
punov exponent also reveal that the notion of an ’edge of chaos’ is not applicable in these leaky
integrate and fire networks.

The investigation of the pseudo Lyapunov exponent in rapid theta neuron networks suggested a
convergence of the scaling of the pseudo Lyapunov exponent to that of LIF networks in the limit
of instantaneous AP onset rapidness. This indicates that these results are not just an artifact of the
instantaneous AP initiation in the LIF model but might be relevant in real cortical networks with
finite but very large AP onset rapidness.
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6 Discussion

In this thesis, we introduced a novel approach to precisely characterize and quantify the collective
dynamics of spiking neuron networks. Based on numerically exact event-based simulations and
the calculation of the complete spectrum of Lyapunov exponents of neural networks, it allows
for the clear differentiation between stable and chaotic dynamics and provides a measure of the
dynamical entropy production in chaotic neural networks. This approach can be directly applied to
a wide range of δ pulse coupled neural networks with arbitrary network topology, heterogeneous
single neuron parameters and single neuron phase-response curves. Here, we investigated the
dynamics of large neural networks of different integrate and fire neurons in the balanced state
with special focus on the influence of the single neuron action potential (AP) generation on the
collective network dynamics. The balanced state is the prevailing model for the emergence of
asynchronous irregular activity as observed in cortical networks.

The presented results indicate that a chaotic dynamics in neural networks in the balanced state
is rather the standard than the exception. This is less surprising from a nonlinear dynamics per-
spective since chaos could be expected in such high-dimensional deterministic nonlinear systems.
From a biological perspective this is more of a surprise, as chaos in neural networks seems at first
sight quite counterintuitive to the sophisticated performance of the brain. Whether such models
of neural networks as studied here exhibit chaotic or stable dynamics is therefore an important
question, the answer to which yields profound insight for the understanding of the functioning of
the brain.

Previous efforts to characterize the dynamics of neural networks in the balanced state have led
to controversial results. Originally, it was discovered that networks of binary neurons exhibit an
extreme form of chaos characterized by an infinite Lyapunov exponent [2,3]. More recently, it was
shown that networks of leaky integrate and fire neurons display so-called stable chaos character-
ized by negative Lyapunov exponents [4–7]. Here, we have examined in detail how the dynamics
of neural networks in the balanced state depends on the specific properties of the single neurons
dynamics and have found AP initiation to play a fundamental role in the collective network dy-
namics.

As opposed to binary neurons and leaky integrate and fire neurons used in previous studies, the
theta neuron model used here incorporates a dynamic AP generation comparable to other standard
conductance-based neuron models. It is furthermore the canonical form of type I excitable neu-
rons. We therefore believe that our results are representative of a wide class of neural networks.
A comprehensive analysis of the dynamics of theta neuron networks in the balanced state with the
here-developed approach demonstrates that such networks composed of exclusively inhibitory or
excitatory and inhibitory theta neurons both exhibit extensive deterministic chaos (Chapter 2). This
conventional form of chaos is characterized by positive and finite Lyapunov exponents, fat chaotic
attractors and rapid dynamical entropy production. Upon activation of the excitatory-inhibitory
feedback loops, the chaos intensifies, but in principle, the dynamics of excitatory-inhibitory net-
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works is already very well captured by inhibitory theta neuron networks in which the recurrent in-
hibition balances excitatory external currents. Our results indicate that the instability incorporated
in the theta neuron model that is responsible for the AP initiation renders the collective dynamics
of balanced networks robustly chaotic.

These findings, along with the recent observation that cortical neurons exhibit a much sharper
AP initiation than expected from standard neuron models [1], motivated a thorough investigation of
the influence of the AP onset rapidness of the single neurons on the collective network dynamics.
In order to apply the here-presented approach, we developed a new exactly-solvable neuron model
with variable AP onset rapidness called the rapid theta neuron model. It is based on the theta
neuron model but allows for an arbitrary choice of the AP onset rapidness. This includes the limit
of instantaneous AP initiation and thus also bridges the gap between the theta neuron model and
the leaky integrate and fire neuron model.

Applying the approach introduced in Chapter 2 to rapid theta neuron networks revealed a strong
effect of the AP onset rapidness of the single neurons. The network dynamics qualitatively change
upon increasing the AP onset rapidness of the single neurons (Chapter 3). Networks of neurons
with low AP onset rapidness up to about r = 10 exhibit dynamics similar to theta neuron networks
characterized by strong extensive chaos. Networks of neurons with larger AP onset rapidness
also exhibit extensive chaos, but with increasing AP onset rapidness the strength of chaos strictly
decreases. This is quantified by a monotonously decreasing largest Lyapunov exponent, attractor
dimension and entropy production rate. A very large AP onset rapidness led to a transition to stable
dynamics at the so-called edge of chaos. Neural networks at the edge of chaos are expected to be
optimal for complex computations [105]. The critical AP onset rapidness in rapid theta neuron
networks defining the edge of chaos varied with the network parameters. Nevertheless, the order
of magnitude of the critical AP onset rapidness lies in the physiologically realistic range of the AP
onset rapidness of real cortical neurons. It is therefore an interesting question whether this large
AP onset rapidness of cortical neurons might have evolved in order to tune cortical networks near
the edge of chaos.

Benefits and Drawbacks of a Chaotic Dynamics

A chaotic state is characterized by a permanent flow of information from the microstate to the
macrostate due to the sensitivity to initial conditions [70]. This information flow is here quantified
by the dynamical entropy production. Whether this entropy production is advantageous or disad-
vantageous for the information representation and processing in neural networks depends on the
context.

Information in neural networks is encoded in the specific states of the composing neurons. The
amount of information in these networks depends on the precision with which the state of the neu-
rons can be read out. The maximal information capacity is then related to the attractor dimension
D as discussed above. Whether the entropy production in these networks overwrites the actual in-
formation or yields additional information depends on the precision of the read out of the network
states.

On the one hand, if the network’s precision is not optimal to encode all important information
about the input, additional information can be gained due to the sensitivity to initial conditions.
This can be thought of as a learning process about the network state, with increasing precision
over time. Due to the sensitivity to initial conditions, differences in the network’s microstate
smaller than the given network precision separate exponentially over time and can be distinguished

126



with the given precision at a later time. This creates information about a past microstate that
would otherwise be inaccessible. We have provided a measure of this information gain with the
rate of entropy production H. In fact, this mechanism could be physiologically relevant for odor
discrimination in the olfactory bulb. Originally observed in zebrafish [106], it was discovered that
while chemically evoked different odors initially lead to similar firing activity in mitral cells, such
activity becomes progressively more distinct and hence more informative about the different odors
over time [107].

On the other hand, if the network’s precision is more or less optimal for encoding the input
information, additional trivial information about the network’s microstate would overwrite the
more important information over time. Due to the information flow from the microstate to the
macrostate, information would then be gained about irrelevant aspects of past microstates, e.g., ion
channel noise. This gain of irrelevant information is also captured by the rate of entropy production
H. Because we observed extensive dynamics in which the entropy production increases linearly
with the number of neurons, it is well justified to define the average entropy production rate per
neuron.

The strikingly high entropy production in networks of neurons with low AP onset rapidness
described here suggests a rapid loss of input information in such neural networks. The average
rate of entropy production in these chaotic neural networks is about 1 bit per spike per neuron.
Interestingly, sensory input information provided to cortical networks is estimated to be about 1
bit per spike per neuron as well [93, 94]. Therefore, if we assume the precision of the networks to
be optimal for their task, this input information is overwritten by the intrinsic entropy production as
quickly as it is encoded. Consequently, it would be difficult to maintain this information in cortical
spike patterns for longer than a few spikes per neuron after stimulus onset. This suggests that
maintaining relevant information in detailed network microstates beyond the immediate stimulus
response would be quite unlikely. Such a picture is in agreement with a study of spike timing in
rat barrel cortex [93], in which it was found that 83% of the information about whisker deflection
is encoded in the first spike after the stimulus, and this information is reduced by two thirds with
each successive spike.

Here again, it is a matter of debate whether a similar rate of incoming information and dynamic
entropy production is advantageous or disadvantageous for the information processing in neural
networks. On the one hand, a fast decorrelation of the input information at a similar rate as it is
provided to the network would be advantageous for fast real time information processing where
shadows from information about the past are only hindering optimal performance. On the other
hand, the rapid loss of information at a similar rate as the incoming information would be disad-
vantageous if the network’s task is to integrate information contained in longer spike sequences.

Importantly, we have found that the entropy production in chaotic networks decreases with in-
creasing AP onset rapidness of the single neurons. In the experimentally expected relevant range
for cortical neurons with a very large AP onset rapidness, this suggests a strongly decreased loss
of information in such chaotic networks. Thus, the high AP onset rapidness of cortical neurons
surprisingly reduces the information loss in chaotic cortical networks, which might be a strong
reason why cortical neurons have evolved such a sharp AP initiation.

Stable chaos

The result of an edge of chaos in rapid theta neuron networks implies that in the limit of instan-
taneous AP initiation (r→ ∞) the network dynamics can be stable. This is similar to networks of
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leaky integrate and fire neurons that exhibit stable chaos [4–7]. Such a form of stable dynamics
despite an irregular network activity was shown to be fragile in terms of temporal synaptic trans-
mission and finite size perturbations [5]. Because cortical neurons are expected to exhibit a very
large AP onset rapidness, the further understanding of this stable chaos is of strong interest for the
understanding of the functioning of cortical networks.

We therefore extended the introduced approach to precisely characterize the dynamics of leaky
integrate and fire networks with temporally extended synaptic transmission. Our analysis re-
veals that incorporating temporally extended synaptic transmission, namely exponentially de-
caying synaptic currents, leads to a transition to extensive deterministic chaos (Chapter 4). The
strength of chaos in such networks, however, is much weaker compared to the chaotic dynamics
due to the active AP generation of theta neurons. The entropy production rate and attractor dimen-
sion are orders of magnitude smaller. Even though the activation of excitatory-inhibitory feedback
loops in the networks intensifies the chaos, this intensification is quite moderate.

Our findings of a chaotic dynamics in the balanced state agree with accumulating evidence
suggesting a highly sensitive dynamics in cortical networks, revealed by several in vivo exper-
iments [101–104]. They showed that inducing one extra spike in a cortical neuron triggered a
cascade of additional spikes in the network. The extra spikes are assumed to also induce missed
spikes such that the network settles back to the previous statistically steady state. Nevertheless,
the theoretically predicted stimulus-independent variations in the membrane potential, due to the
ongoing missed and extra spikes, are predicted to be large and can be viewed as pure noise. This
questions the use of a precise spike-timing code in cortical networks and suggests the use of a rate
code [101].

Although the experimentally observed sensitivity to an extra spike is in line with our findings
of a strongly chaotic dynamics in cortical networks, care must be taken when comparing the two
scenarios. We investigated the dynamics with respect to infinitesimal spike-order preserving per-
turbations. Therefore, our results are expected to be representative of the impact of small enough
perturbations. It is not obvious per se that this is the case for the single spike perturbations applied
in the experiments. Such perturbations could in principle lead to different behavior. On the other
hand, it is also not self-evident that systems that are insensitive to infinitesimal perturbations do
not show sensitivity to single spike perturbations. Networks of neurons with instantaneous AP
initiation were shown to exhibit stable dynamics for small enough spike-order preserving pertur-
bations. Adding or removing single spikes, however, breaks this assumption. We therefore studied
the dynamics in this interesting case in more detail.

Our analysis of inhibitory leaky integrate and fire networks with δ pulse coupling revealed that
the local stability to infinitesimal perturbations coexists with a high sensitivity to single spike per-
turbations (Chapter 5). We have confirmed that the complete Lyapunov spectrum of such networks
is negative definite, indicating stable dynamics with respect to infinitesimal perturbations. Addi-
tionally, we have shown that the Lyapunov spectra are also invariant to the network size, indicating
extensive dynamics, and that in the large network and connectivity limit perturbations decay as
fast as in uncoupled neurons. Surprisingly, the application of single spike perturbations revealed
a completely unexpected behavior. Despite the stable dynamics to infinitesimal perturbations and
despite a very weak rate response after single spike failures, such single spike perturbations lead to
exponential state separation, causing complete decoherence of the network’s microstate within a
few milliseconds. The rate of exponential state separation was quantified with the so-called pseudo
Lyapunov exponent that scales proportional to Kν̄ and thus appears to grow to infinity in the large
network and connectivity limit. How can such an extreme sensitivity to single spike perturbations
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coexist with the local stability indicated by the negative definite Lyapunov spectrum?
The extended analysis of the dynamics of inhibitory leaky integrate and fire networks with re-

spect to finite size-perturbations suggests the partitioning of the network’s phase space into a tan-
gle of stable flux tubes. States within these flux tubes are attracted to a unique, dynamically stable
trajectory. Different flux tubes, however, separate exponentially fast. Interestingly, the flux tube ra-
dius (as a measure of the basin boundary that separates stable from unstable dynamics) decreases
with the network size. This indicates that an unstable dynamics dominates the thermodynamic
limit. The resulting sensitivity to initial conditions is then described by the pseudo Lyapunov
exponent that showed no sign of saturation in the large connectivity limit.

These findings clarify the origin of the previous contradictory findings of local stability with
negative Lyapunov exponents on the one hand [4–7] and extremely unstable dynamics with an
infinite Lyapunov exponent on the other hand [2,3]. They arise in the limit of an instantaneous AP
generation in the single neuron dynamics and result from a different order in which the limit of
large network size and the limit of weak perturbations are taken. Taking the weak perturbation limit
first results in a decaying perturbation within the flux tube around the current trajectory, even when
taking the large network limit afterwards. Thus the thermodynamic limit would be characterized
by negative Lyapunov exponents. In contrast, taking the large network limit first implies that
vanishingly thin flux tubes and even infinitesimal weak perturbations would lead to an exponential
state separation quantified by the pseudo Lyapunov exponent that shows no sign of saturation.
Thus the thermodynamic limit would be characterized by an infinite Lyapunov exponent.

The picture of flux tubes in the phase space of such stable networks provides a basis for insensi-
tivity to small perturbation (e.g. for noise or small input variations) and strong sensitivity to larger
perturbations. This is interesting in terms of an error correcting code in neural networks and in
the context of reservoir computing. Reservoir computing is the unifying term for the bottom-up
attempt to construct classification and discrimination systems on the basis of such neural networks.
The founding models of reservoir computing are the liquid-state machine [108] and the echo-state
machine [109]. In this context, the flux tube radius defines a border between the fading property
(variations of smaller initial conditions die out exponentially) and the separation property (larger
input variations cause exponentially separating trajectories). Since leaky integrate and fire neurons
are widely used in reservoir computing, these applications may strongly benefit if the flux tube
structure of the network’s phase space is taken into account.

Weak Pairwise Correlations

Interestingly, each of the networks studied here were found to exhibit extensive dynamics in the
balanced state. Extensive dynamics is classically expected in spatially extended systems that can
be decomposed into weakly interacting subsystems whose number grows linearly with the sys-
tem size [110]. The union of the Lyapunov spectra of the subsystems then yields the spectrum
of the whole system and a well-defined spectrum per unit volume exists in the thermodynamic
limit [110]. Our analysis shows that such a limit and an extensive nature of the dynamics exists in
the balanced state. This extensivity in contrast to the classical case has no trivial explanation, as we
have studied networks with random graph topology. Classically, it is observed in systems exhibit-
ing spatio-temporal chaos [111–114] characterized by fast spatial and temporal decorrelation. In
systems with random graph topology, a spatial structure is difficult to define since all neurons are
potentially neighbors and the size of the system (the graph diameter) scales only logarithmically
with the number of elements. A possible explanation of the extensivity in balanced networks is the
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lack of pairwise correlations between neurons. Weak pairwise correlations imply weak pairwise
interactions, such that all neurons can be considered equal and the collective network dynamics
becomes invariant with respect to the number of neurons.

These weak pairwise correlations, however, do not imply vanishing higher order correlations.
We have given heuristical arguments that the attractor dimension derived from the Lyapunov spec-
trum provides an estimate of the order of nonvanishing higher order correlations between the neu-
rons. The fat chaotic attractors in networks with low AP onset rapidness then imply that these
neurons are largely uncorrelated. Stimulus-dependent correlated activity of small groups of neu-
rons after stimulus onset would then be very informative. Within a short time, the strong chaos in
these networks would quickly lead back to the decorrelated responsive state. For large AP onset
rapidness, the attractor dimension is strongly reduced, implying higher order correlations between
the neurons. With increasing AP onset rapidness towards the edge of chaos, the neurons states
are then more and more entangled. In this entangled state, correlated activity of only a few neu-
rons would not yield information about the stimulus unless a certain sequence of spikes encodes
a certain stimulus. Encoding information in precise, long complex spike sequences is in principle
possible in a stable dynamics. This ability should, however, be contrasted or complemented with
the sensitivity to single spike perturbations that we observed in such formally stable dynamics. It
seems more plausible that such neural networks use a rate code.

Transition from Asynchrony to Synchrony
Beyond characterizing the dynamics of the balanced state, we also observed two phase transi-
tions from the asynchronous state to a synchronous state in networks of neurons with low AP
onset rapidness. In inhibitory networks, synchronous oscillations emerge when increasing the
number of recurrent connections K beyond a network size-independent critical connectivity. In
the synchronous state, single neurons fire irregularly such that the network-averaged coefficient
of variation was unaffected by this transition. The dynamics in this synchronous irregular state
also remain chaotic. The critical connectivity Kc ≈ 200 at which this phase transition occurs is
seemingly insensitive to the number of neurons in the networks but increases strongly with the
AP onset rapidness r, such that it disappears for already moderately large r. Such a transition at
a network size-independent critical connectivity was previously observed in inhibitory networks
of hippocampal interneurons modeled by the conductance-based Wang-Buzsáki model [38] and
further investigated in leaky integrate and fire neuron networks [92]. We found that this transition
also occurs in excitatory-inhibitory networks but at an even higher critical connectivity.

Additionally, we observed a different phase transition to a synchronous regular state while in-
creasing the strength of the excitatory-inhibitory feedback loops in networks of neurons with low
AP onset rapidness. This transition is characterized by stable dynamics and resembles a transi-
tion previously studied in networks of quadratic integrate and fire neurons but with all-to-all cou-
pling [115]. For the sparse networks studied here, the characteristics of the oscillatory synchronous
state was also described in networks of leaky integrate and fire neurons, conductance based Wang-
Buzsáki neurons and exponential integrate and fire neurons [116, 117]. For moderately large AP
onset rapidness, this transition also disappears.
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6.1 Outlook

We have mentioned in the introduction that three main factors play a fundamental role in the
dynamics of neural networks: (i) the individual neuron dynamics, (ii) the individual synapse dy-
namics and (iii) the network topology. In this thesis the influence of single neuron properties and
synaptic transmission were addressed. All studied networks had a random graph topology.

Network Topology

The presented approach can be directly applied to arbitrary network topologies and heterogeneous
synaptic strengths. It thus lays the foundation for an investigation of the collective network dy-
namics depending on different graph structures, e.g., small world graphs or scale free graphs, but
also any other local graph structure, e.g., with realistic spatially-extended structures and different
subgraphs. Interesting in such future studies will be not only the dependence of the dynamical
nature and the rate of entropy production but also the structure of the covariant Lyapunov vectors
that might yield insight into the information flow in such networks. The influence of the flux tube
radii on the local network structure should also be considered in this context. An increased flux
tube radius for some specific firing sequences would indicate favored spike patterns depending on
the local graph structure and synaptic strengths.

Our approach could therefore yield potential insight in terms of signal propagation modulated by
underlying feed-forward substructures in otherwise random networks. This can be realized in the
topology [118] or synaptic strengths [119]. It has been shown that the resulting non-normal net-
works exhibit extended memory capacity compared to normal networks [120]. The quantification
of the information loss with the current approach may provide additional insight about the lifetime
of memory traces in such networks. Completely different topologies, such as layered network
structures can, of course, also be studied. The hierarchical organization of feedforward networks,
for instance, has recently been accounted for the possibility of combining both sequential and si-
multaneous compositions of primitives through synfire chains [121]. The dynamical nature of such
networks in which information is apparently reliably encoded in precise spike times remains to be
precisely determined.

Synaptic Transmission

To further increase the physiological relevance of the studied networks, the effect of synaptic
delays should be addressed. Leaky integrate and fire networks with [4–7] and without delays
(Chapter 5) both exhibit a seemingly similar form of stable chaos. This suggests that a synaptic
delay in these random networks with asynchronous activity might play a less important role than
in, for example, all-to-all coupled networks with synchronous activity. This should be analyzed in
future research. Including synaptic delays in the proposed approach must be executed carefully, as
the phase space is then of varying dimensionality [86]. It should also be noted that the finite time
blowup in the theta neuron model can be considered as an effective delay because the neurons are
basically insensitive during this state. This effective delay is in the order of 1ms.

We have already analyzed the effect of temporally extended synaptic currents in leaky integrate
and fire (LIF) networks. Because δ pulse coupled LIF networks exhibit stable dynamics, the aris-
ing chaos in LIF networks with exponentially decaying synaptic currents can be attributed to the
temporally-spread synaptic currents. It would be interesting to investigate whether the incorpora-
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tion of exponentially decaying synaptic currents in theta neuron networks leads to a comparable
increase of the chaos which would then be negligible or leads to a different effect. Existing analytic
solutions of the theta neuron model with exponentially decaying synaptic currents [122] provide a
good starting point for such an extension of our approach.

Single Neuron Models

Another important topic for future studies is to continue the investigation of the effect of different
single neuron models on the collective dynamics. To this end, our approach is especially simple
to apply if the phase-response curves of the single neurons are known exactly, as the single spike
Jacobians are obtained in terms of their derivatives. A detailed analysis of the information loss
depending on the neurons’ phase-response curves related to the calculated information rate in
Ref. [123] would further quantify the advantages and disadvantages of different single neuron
dynamics for information processing.

If the phase-response curves cannot be derived analytically, e.g., for higher dimensional conduct-
ance-based neuron models or the exponential integrate and fire model, our approach can still be
used. The phase-response curves should then be computed numerically. Their derivatives, used
in the single spike Jacobians, could be provided in the form of numerical fits or lookup tables.
High precision network simulations should be used to return the spike times and phases of the
neurons. The Lyapunov spectra could be approximately calculated with the numerically obtained
phase-response curves in the general procedure presented here.

It is, however, not clear how precise the characterization of the network dynamics would be with
this procedure, because using only the phase-response of the first spike after a perturbation might
be a poor approximation. The incorporation of higher order phase response curves would be one
possible and quite challenging future extension of our approach. Studying the network dynamics
with the approximation of only considering the response to the first spike after the perturbation
can be attacked right away. This subject, however, requires further critical examination before
networks of multidimensional single neuron models can be characterized solely based on their
phase-response curve.

Other Applications, Extensions and Implementations

The presented approach should certainly be applied to network models that are known to accurately
describe aspects of real cortical networks. The comparison of the dynamical entropy production in
such networks to the actual sensory information content would yield fundamental insight for the
understanding of such networks. An example for such a network model is the ring model [124]. A
model accurately describing the rat barrel cortex would also be highly interesting because of the
parallel conclusion drawn here of a rapid information loss in theta neuron networks and that from
experimentally measured information loss in the rat barrel cortex [93]. Finding an appropriate
model of the rat barrel cortex, however, will be a challenging initial task. Once this model is
established, the application of our approach can be applied to compare the dynamical entropy
production rate to the real information content in such networks.

Further analytical steps towards a better understanding of the network dynamics should also be
taken into account. This is quite a challenging task for random graphs with an asynchronous ac-
tivity. Further analysis of, e.g., the stability of the asynchronous splay state in all-to-all coupled
networks could potentially explain the qualitatively different dynamical regimes of neural networks
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with different AP onset rapidness (see Appendix D). In order to address the network dynamics of
random networks in the asynchronous balanced state, we have taken a semianalytic approach. The
single neuron model was solved analytically leading to the exact single spike Jacobian. Then, we
numerically calculated the Lyapunov spectra of such networks. It was also possible to derive a
random matrix approximation of the mean Lyapunov exponent analytically. A similar approach
or a generalization of the dynamical mean-field theory studied in Ref. [46] might be used to de-
rive an upper bound of the largest Lyapunov exponent. With such a result the dynamics in the
thermodynamic limit could be rigorously analyzed, complementing our numerical findings. The
understanding of the scaling of the largest Lyapunov exponent with the number of neurons in rapid
theta networks or the numerically observed logarithmic increase in correlated leaky integrate and
fire networks is not yet exhausted, and would strongly benefit from an analytic derivation.

Other important aspects in terms of nonlinear dynamics are a extension of the analysis of the
covariant Lyapunov vectors. Here, we started to investigate the hyperbolicity of the studied systems
and introduced the characteristics of temporal network chaos in random theta neuron networks.
This should be further examined together with the temporal and spatial correlation of the covariant
Lyapunov vectors and local Lyapunov exponents.

Small theta neuron networks also provide an interesting type of conservative chaos. For example
three neuron motifs can exhibit stable, quasiperiodic or chaotic dynamics depending on the topol-
ogy and coupling strength. This should be analyzed in more detail, numerically and analytically.
The route to chaos in such three neuron motifs but also in random networks of rapid theta neuron
at the edge of chaos (see Fig. 3.24) should be characterized as well.

A demonstration of how large neural networks with a chaotic dynamics would perform under
real conditions is another fundamentally important aspect that should be addressed in future re-
search. Other work has already made considerable progress in this respect, such as the FORCE
algorithm [125] and the promising research of reservoir computing [108,109]. Besides quantifying
the dynamical entropy production and analyzing the information flow in such networks, taking into
account the flux tube picture in networks of neurons with instantaneous AP initiation may strongly
benefit these applications.

The edge of chaos is a recurrent theme in neural computation. A similarly famous aspect is
chaos control. Whether realistic computations can be achieved on short time scales on existing
stable modes in a stable or chaotic state, or unstable modes are dynamically stabilized in a chaotic
state remains an open and fascinating field of research.

A final point is the computational neuroscience aspect. The calculation of the Lyapunov spectra
requires formidable computational power because the computation time of the necessary matrix
orthogonalizations scales proportional to the cube of the system size. We have developed a highly
performant parallel algorithm that allows for the calculation of the Lyapunov spectra of moderately
large networks. This algorithm appears to be an ideal candidate to be used on graphics processing
units (GPU). Such an implementation would enable a large community of scientists to use the
proposed approach to accurately characterize the network dynamics without the need of a high-
performance cluster.
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Appendix A

Integrate and Fire Neuron Models

The membrane of a neuron can be thought of as capacitor with voltage-dependent membrane cur-
rents. The membrane potential, or voltage, is then described by the differential equation

C
dV
dt

= Im + Is (A.1a)

with the membrane capacitance C, the voltage-dependent membrane current Im and the synaptic
input current Is. The family of integrate and fire neuron models differs from standard conductance-
based neuron models, in that they do not describe the dynamics of different ion channels in detail
but try to capture the essential dynamics of the membrane potential in a one-variable model.

There are four different integrate and fire models:the perfect integrator (PIF) where the mem-
brane current is zero, the leaky (also linear) integrate and fire model (LIF) where only a leak
current is considered, the quadratic integrate and fire model (QIF) where the membrane current
is a quadratic function of the voltage, and the exponential integrate and fire model (EIF) where
a leak term and an exponential function constitute the membrane current. The voltage-dependent
membrane currents of the integrate and fire models are [88]

IPIF
m (V ) = 0 (A.1b)

ILIF
m (V ) = −gL (V −VL) (A.1c)

IQIF
m (V ) =

gL

24T
(V −VT )

2− IT (A.1d)

IEIF
m (V ) = −gL (V −VL)+gL4T exp

(
V −VT

4T

)
, (A.1e)

where gL is the leak conductance, and VL the leak potential. The rheobase current, the minimal
input current for the neuron start firing is denoted IT , the voltage at the minimum of the membrane
current is VT = VL +4T with the spike slope factor 4T . (Fig. A.1). The passive membrane time
constant is τm =C/gL. These models are complemented with reset and threshold conditions. At a
certain threshold, the neuron is said to fire an action potential. Afterwards, the membrane potential
is reset to VR, possibly after a refractory period τr. Setting the reset and threshold potential to
±∞ in the QIF model leads to the theta neuron. The above equations have physiologically correct
dimensions.
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Figure A.1 – Integrate and fire neuron models. (Figures from Ref. [88]) A) Voltage traces for WB, EIF,
QIF, and LIF neurons for the same realization of the noisy input current, B) shows a higher resolution for
a short time interval in which a spike has been generated in all models. The subthreshold traces are similar
for all models; however, the dynamics of the spike are different on a ms time scale. When the fluctuation
leads to a spike in all models, the LIF neuron spikes first. The EIF neuron spikes almost exactly at the spike
onset of the WB. The QIF neuron fires much later, C) IV curve of the EIF (solid line) and WB (dotted line)
neurons. The threshold VT is defined as the minimum of the curve. The spike slope factor4T is proportional
to the radius of the curvature of the IV curve at its minimum.
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The stable fixed point of the LIF model is at VS =VL. It does not incorporate an action potential
generating unstable fixed point. For the neuron to fire, the stable fixed point needs to be pushed by
the rheobase current above the threshold.

The QIF model has two fixed points

dV
dt

= 0 =
gL

24T
(V ∗−VT )

2− IT

V ∗ = VT ±
√

IT
24T

gL
.

The fixed point at VS = VT −
√

IT 24T/gL is stable and the one at VU = VT +
√

IT 24T/gL is
unstable. The derivative of the voltage is set to−1/τm as in the LIF model, which sets the rheobase
current IT in the QIF model:

d
dV

dVS

dt
=− 1

τm
=

gL

C4T
(VS−VT )

= − 1
τm4T

√
IT

24T

gL

IT =
gL4T

2
,

and sets the stable and unstable fixed point VS,U =VT ∓4T .

The above equations are in physiologically correct dimensions. The transformation to a dimen-
sionless voltage representation is obtained by

Ī =
I

24T gL
(A.2)

V̄ =
V −VT

24T
(A.3)

This transformation with τm =C/gL leads to

τm
dV̄
dt

= Īm + Īs (A.4a)

ĪLIF
m = −V̄ − 1

2
(A.4b)

ĪQIF
m = V̄ 2− ĪT with ĪT =

1
4

(A.4c)

ĪEIF
m = −V̄ − 1

2
+

1
2

exp(2V̄ ). (A.4d)

This corresponds to the stable and unstable fixed point in the QIF model at VS,U = ∓1/2. In the
LIF model, the stable fixed point is also VS =−1/2 and the threshold would be set to +1/2. In the
main part of the thesis, this was for simplicity shifted to 0 and 1, respectively.
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A. Chapter Integrate and Fire Neuron Models

Another commonly used representation is obtained by a transformation of the currents only:

Ĩ =
I
C

=
I

τmgL
. (A.5)

This leads to a representation in which the voltage is still measured in mV but the currents are
measured in mV/ms:

dV
dt

= Ĩm(V )+ Ĩ

ĨLIF
m (V ) = − 1

τm
(V −VL)

ĨQIF
m (V ) =

1
24T τm

(V −VT )
2− ĨT

ĨEIF
m (V ) = − 1

τm
(V −VL)+

4T

τm
exp
(

V −VT

4T

)
.

Fitting the Rapid Theta Neuron Model to the EIF

In Chapter 3 the rapid theta neuron model with variable AP onset rapidness r was introduced.
It was built to yield the membrane time constant at the stable fixed point VS = −1/2 and an r
times more rapid AP initiation at the unstable fixed point VU = 1/2. In the dimensionless voltage
representation the rapid theta neuron model is defined as

τm
dV̄
dt

=

{
aS(V̄ −V̄G)

2− ĪT + Ī(t) V ≤VG

aU(V̄ −V̄G)
2− ĪT + Ī(t) V >VG,

(A.7)

with

V̄G =
1
2

r−1
r+1

ĪT =
1
2

r
r+1

aS =
r+1

2r

aU =
r(r+1)

2
= r2aS.

FI-curves

In this section, we investigate how the rapid theta neuron model can be fit to the exponential
integrate and fire model (EIF). Originally, the EIF model was introduced by Fourcaud-Trocmé
et al. [88] to fit the Wang-Buzsáki model of hippocampal interneurons [38]. It was, however,
necessary to introduce a refractory period to fit the EIF to the Wang-Buzsáki model. They also
fit the QIF model (r = 1) with almost identical parameters but without a refrectory period to the
Wang-Buzsáki model. The parameters obtained by Fourcaud-Trocmé et al. are summarized in
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EIF (Fourcaud-Trocmé [88]) QIF (Fourcaud-Trocmé [88]) EIF (Badel [126])
τm 10ms 10ms 17.2ms
gL 0.1mS/cm2 0.1mS/cm2 -
VL −65mV - −57.0mV
VT −59.9mV −59.9mV −42.0mV
4T 3.48mV 3.48mV 1.51mV
τr 1.7ms - 10ms
VR −68mV −63.8mV −55mV

Table A.1 – Model parameters of the exponential integrate and fire (EIF) model and the quadratic
integrate and fire (QIF) model given in Ref. [88, 126]. The EIF and QIF models in the second and third
column are fit to the Wang-Buzsáki model. The EIF model in the fourth column is fit to a measure IV -curve
of a cortical neuron (see Fig. A.3).
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Figure A.2 – Tonic firing rates versus suprathreshold input current (FI-curves) of different integrate
and fire models. The EIF model with refractory period and the QIF model with finite reset are fit to the
Wang-Buzsáki model in Ref. [88] (parameters in Table A.1). Additionally is shown the EIF model without
refractory period and the theta neuron model and rapid theta neuron model with AP onset rapidness r = 2.

Table A.1. Because the QIF model had a finite reset, it does not perfectly correspond to the theta
neuron model used in Chapter 2. In fact, these subthreshold properties, such as refractory period
and reset voltage strongly influence the FI-curve, to which the models were fit. In Figure A.2 are
compared the models from Ref. [88] with two additional FI-curves of the EIF model without the
refractory period and the QIF model with reset to −∞ equivalent to the theta neuron model. We
have also displayed the FI-curve of a rapid theta neuron with AP onset rapidness r = 2. It can be
seen, that the FI-curves of the different models and with different parameters differ considerably
and it is questionable to use the FI-curve to obtain a good fit. The authors in Ref. [88] have used
other measures for a comparison of the ability of a neuron to track fast changes in the input and
came to the conclusion that the speed with which neurons can track changes in inputs is related to
the spike slope factor determining the AP onset rapidness. These methods are, however, beyond
the scope of this thesis but were applied to a similar neuron model in Ref. [127].

Another possibility for a fit is to look at the onset of the FI-curve. This is characteristic of
the bifurcation that the neuron undergoes at the threshold to tonic firing. For type I excitable
neurons this onset is ν ≈ β

√
I− IT . The parameter β for the EIF model is given in Ref. [88] and

confirmed by the data in Fig. A.2 to β = 0.038ms−1µA−1/2cm. For the rapid theta neuron model,

139



A. Chapter Integrate and Fire Neuron Models

Figure A.3 – Experimentally obtained membrane current versus membrane potential (IV -curve) of a
cortical neuron and the fit to the EIF model from Ref. [126]. The parameters of the exponential integrate
and fire (EIF) model are given in Table A.1.

the interspike interval, Eq. (3.11), and the conversion to the voltage representation, Eq. (A.2), yield

β =
1

πτm
√4T gL

√
r

r+1
.

This solved for the AP onset rapidness r yields

r
r+1

= 4T gLπ
2
τ

2
mβ

2

r =
4T gLπ2τ2

mβ 2

1−4T gLπ2τ2
mβ 2 .

The parameters yield r = 1, not too surprisingly because the EIF model and the QIF model share
the same parameters in Ref. [88]. But we can check this with another EIF model that was fit to the
experimentally obtained IV -curve of a cortical neuron.

Badel et al. measure the membrane current of a real cortical neuron and fit the parameters of the
EIF model to match the data [126]. Their parameters are given in Table A.1. Because they use the
third representation obtained by (A.5), we get

β =
1

π
√

24T τm

√
r

r+1
.

This solved for the AP onset rapidness r yields

r =
4T τmπ2β 2

1−4T τmπ2β 2 .
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Figure A.4 – Tonic firing rates versus suprathreshold input current (FI-curves) of the EIF model fit to
the Wang-Buzsáki model [88] and to a cortical neuron [126]. The parameters of the exponential integrate
and fire (EIF) model are given in Table A.1.

A numerical fit to the FI curve of the EIF model with the parameters from Ref. [126] yields
β = 0.040mV−1/2ms−1/2, comparable to an AP onset rapidness r = 0.7 (Fig. (A.4)).

IV-curves
Another possibility to fit the rapid theta neuron model to the EIF models from Ref. [88] and [126]
is to use the membrane current directly. Because in the EIF model the membrane current Im grows
exponentially with the voltage V , and in the rapid theta neuron model it grows quadratic, this is
only representative at one specific voltage. We therefore measured the slope of the IV -curve at the
stable and unstable fixed point. With the parameters from Fourcaud-Trocmé et al. [88], we get a
ratio of r = 1.9, whereas with the parameters from Badel et al. [126], we get r = 12.

Blowup time
A third possibility to compare the different models is the finite time blowup from the unstable
fixed point to threshold. This was measured with the neuron receiving the rheobase current, thus
being just at the threshold to excitability. The blowup time of the rapid theta neuron model can be
derived from Eq. (3.8) Tb = 2τm/r. Comparing this with the numerically obtained blowup time of
the two EIF models yields a corresponding AP onset rapidness of r = 2.7 for the parameters from
Fourcaud-Trocmé et al. [88] and r = 21 for the parameters from Badel et al. [126].
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Appendix B

Minimal example for MATLAB

The following code for MATLAB® demonstrates the event-based simulations and the calculation
of the Lyapunov spectrum from the single spike Jacobians for random inhibitory theta neuron
networks. Without including warmups, convergence etc., it is intended to illustrate the principle
idea.

clear all;
rand(’twister ’, 1);

%%%%%%%%%%%%%%
% parameters %
%%%%%%%%%%%%%%

N = 200; %number of neurons
K = 20; %number of synapses
J0 = 1; %coupling strength
tauM = 10/1000; %membrane time constant (seconds)
I0 = 0.5* tauM; %external current
Ncalc = 10*N; %number of spikes in calculation

%%%%%%%%%%%%%%%%%%
% initialization %
%%%%%%%%%%%%%%%%%%

w = 2*sqrt(I0*sqrt(K)); %phase velocity
C = -J0/sqrt(K)/sqrt(I0*sqrt(K)); %effective coupling in PRC

A = rand(N) < (K/N); %ER random graph
diagElm = (1:N:N*N) + (0:N-1); %indices of diagonal elements
A(diagElm) = 0; %no self -loops (autapses)

phi = pi*(2* rand(1,N) - 1); %neurons ’ phases

[Q R] = qr(rand(N)); %orthonormal system (ONS) Q
time = 0; LS = zeros(1,N);

%%%%%%%%%%%%%%%
% calculation %
%%%%%%%%%%%%%%%

for s = 1:Ncalc
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[phiMax , j] = max(phi); %find next spiking neuron j

dt = (pi - phiMax )/w; %calculate next spike time
phi = phi + w*dt; %evolve phases till next spike time
time = time + dt*tauM; %update time

post = A(:,j); %postsynaptic neurons

D = eye(N); %single spike Jacobian
d = (tan(phi(post )./2).^2 + 1)./(( tan(phi(post )./2) + C).^2 + 1);
D(diagElm(post)) = d; %diagonal elements
D(post ,j) = 1 - d; %off -diagonal elements

[Q R] = qr(D*Q); %evolve ONS and reorthonormalize
LS = LS + log(abs(R(diagElm ))); %log of norms yield Lyapunov spectrum

phi(post) = 2.* atan(tan(phi(post )./2) + C); %update postsynaptic neurons
phi(j) = -pi; %spiking neuron crosses pi to -pi

end

%%%%%%%%%%
% output %
%%%%%%%%%%

disp([’network -averaged firing rate: ’ num2str(Ncalc/N/time) ’ Hz’]);
plot (1:N, LS/time);
title(’Lyapunov spectrum ’);
xlabel(’i’);
ylabel(’\lambda_i (s^{ -1})’);
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Appendix C

Pairwise Spike Correlations

Mathematically, the cross-correlation of two real functions f and g is defined as(
f (t)?g(t)

)
(τ) =

ˆ
f (t)g(t + τ)dt. (C.1)

It is closely related to the convolution of two functions:(
f (t)∗g(t)

)
(τ) =

ˆ
f (t)g(−t + τ)dt =

ˆ
f (−t + τ)g(t)dt. (C.2)

While the cross-correlation (C.1) involves a shift and a multiplication, the convolution (C.2) in-
volves reversing, then shifting and multiplying. If X and Y are two independent random variables
with probability density functions f and g then the probability density of the difference Y −X
is given by the cross-correlation (C.1). In contrast, the convolution (C.2) yields the probability
density function of the sum X +Y .

The pairwise spike correlation of two neurons i and j with the spike trains {ti} and {t j} and the
probability density functions si(t) = ∑i δ (t− ti) and s j(t) = ∑ j δ (t− t j) is

C(τ) =
(
si(t)? s j(t)

)
(τ)

= 〈si(t)s j(t + τ)〉t
=

ˆ
δ (t− ti)δ (t− t j + τ)dt

= ∑
i, j

δ (ti− t j + τ). (C.3)

Influence of Different Kernels

Usually the calculation of pairwise spike correlations involves some kernel KT with a characteristic
time scale T , that renders the probability density functions measurable. This kernel is convolved
with the probability density functions leading to s(t)→ KT (t) ∗ s(t). Typically used kernels are
the box-function and the Gauss-function. The convolution with the Kernel around the spike times
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leads to

CT (τ) =
(
(KT (t)∗ si(t))? (KT (t)∗ s j(t))

)(
τ
)

= ∑
i j

(
KT (t− ti)?KT (t− t j)

)(
τ
)
,

where we evaluated the convolution of the kernels and the δ functions from the probability density
function of the spike trains i and j.

More generally the relationship between the δ correlation function C(τ) and the one obtained
with finite kernels CT (τ) will be derived using the following identities. The relation between
correlation and convolution of two real functions f , g is(

f (t)?g(t)
)
(τ) =

ˆ
f (t)g(t + τ)dt t→−t

=

ˆ
f (−t)g(−t + τ)dt

=
(

f (−t)∗g(t)
)
(τ). (C.4)

From Eq. (C.4) follows that for an even function h with h(−t) = h(t), the convolution and correla-
tion are identical: (

h(t)?g(t)
)
(τ) =

(
h(t)∗g(t)

)
(τ). (C.5)

and(
h(t)∗g(t)

)
(−τ) =

ˆ
h(t)g(−t− τ)dt t→t−τ

=

ˆ
h(t− τ)g(−t)dt =

ˆ
h(−t + τ)g(−t)dt

=
(
h(t)∗g(−t)

)
(τ) (C.6)

Using these identities and associativity of the convolution A∗ (B∗C) = (A∗B)∗C yields:

CT (τ) =
(
(KT ∗ si)? (KT ∗ s j)

)
(τ)

(C.4)
=

(
(KT ∗ si)(−t)∗ (KT ∗ s j)(t)

)
(τ)

(C.6)
=

(
(KT (t)∗ si(−t))∗ (KT (t)∗ s j(t))

)
(τ)

=
(
KT (t)∗ (KT (t)∗ si(−t))∗ s j(t))

)
(τ)

=
(
(KT (t)∗KT (t))∗ (si(−t)∗ s j(t))

)
(τ)

=
(
(KT ∗KT )∗C

)
(τ) (C.7)

where the time-dependence was dropped for simplicity when identical for all functions. One can
see from Eq. (C.7) that the correlation of the kernels used in the spike trains influence the cross-
correlation.

The box-kernel is composed of two Heaviside step functions Θ centered at zero with width T:

Kbox
T (t) = Rect(T ) =

{
1
T for − T

2 < t < T
2

0 otherwise.
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The Gauss-kernel is a Gaussian centered at zero with variance σ2 = T .

KGauss
T (t) = N (0,T ) =

1√
2πT

exp
(
− t2

2T

)
.

The corresponding convolutions (and cross correlations because they are even functions) are the
triangle function and a Gaussian with twice the width:

(Kbox
T ∗Kbox

T )(t) = Tri(2T ) =

{
1−|t|

T for −T < t < T
0 otherwise

(KGauss
T ∗KGauss

T )(t) = N (0,2T ) =
1√
4πT

exp
(
− t2

4T

)
.

The correlation functions with finite time bins thus relate to the δ correlation functions C(τ) as

Cbox
T (τ) = [Tri(2T )∗C](τ)

=
1
T

ˆ T

−T
(1−|t|)C(−t + τ)dt (C.8)

CGauss
T (τ) = [N (0,2T )∗C](τ)

=
1√
4πT

ˆ
∞

−∞

exp
(
− t2

4T

)
C(−t + τ)dt. (C.9)

The minus sign in C(−t + τ) could be dropped since the convolved kernels are even functions.
Summarizing, the finite time kernels thus lead to an integration of the δ correlation functions

around τ which is an effective smoothing of the functions. One should choose the width of the
kernels smaller than the correlation time to avoid an over-averaging.

Different Coefficients

The most common correlation coefficient is the Pearson correlation coefficient ρ , which measures
the linear relationship between two variables X and Y . It is defined as

ρ =
COV(X ,Y )√

σ2
X σ2

Y

, (C.10)

where COV(X ,Y ) = 〈(X − X̄)(Y − Ȳ )〉 denotes the covariance and σ2
X = 〈(X − X̄)2〉 the variance.

The angular brackets 〈. . .〉 =
´
. . . dt denote time average. The Pearson correlation coefficient is

bound between ±1 (+1 for perfect linearly increasing relation, −1 for a perfect linearly decreasing
relation).

Also often used in neuroscience is a variant of the Pearson coefficient:

c =
COV(X ,Y )

X̄Ȳ
. (C.11)

This correlation coefficient has a lower bound at 0 but no upper bound due to the different normal-
ization compared to Pearson coefficient by the means X̄ , Ȳ .
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The relationships between these two correlation measures (C.10) and (C.11) and the aforemen-
tioned correlation C = X ?Y are:

ρ =
C− X̄Ȳ
σX σY

c =
C− X̄Ȳ

X̄Ȳ

ρ = c
X̄Ȳ

σX σY
. (C.12)

where we used the expression of the covariance COV(X ,Y ) = 〈(X − X̄)(Y − Ȳ )〉 = X ?Y − X̄Ȳ .
Because the variances are the autocorrelations at zero (σ2

X = 〈(X − X̄)2〉 = X ?X − X̄2), the two
correlation measures (C.10) and (C.11) can both be evaluated from the correlation C.

Evaluated with a box-kernel they are usually referred to as count-correlations. The counts of the
spikes in a time bin of size T are

ni = Kbox
T ∗ si.

Since the box-kernel is normalized here, the mean spike count is identical to the average firing rate
n̄i = ν̄i. Hence, the count correlation coefficient (C.11) becomes

c(τ) =
〈(ni(t)− ν̄i)(n j(t + τ)− ν̄ j)〉

ν̄iν̄ j

=
〈ni(t)n j(t + τ)〉

ν̄iν̄ j
−1

=
Cbox

T (τ)

ν̄iν̄ j
−1. (C.13)

The count Pearson coefficient (C.10) with Eq. (C.12) becomes

ρ(τ) =
Cbox

T (τ)

σiσ j
− ν̄iν̄ j

σiσ j
.
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Appendix D

Analytic Stability Analysis

In this section we will examine the stability of some special firing patterns in all-to-all coupled
networks based on the phase response curve of the single neurons (see, e.g., [87] for a review).
For simplicity, all neurons are identical and couplings between neurons are homogeneous and
inhibitory. A single neuron is purely deterministic and described by a phase defined on the unit
circle φ ∈ [−π,π]. When the neuron crosses π → −π , the neuron is said to fire and emits a
spike. The phase of the neuron describes its relative state compared to the unperturbed free-running
neuron. Let us denote the interspike interval of the free-running neuron T free. Then, the phase
of the neuron is φ = T free−T

T free where T denotes the potential time to its next spike based on the
current state. If a neuron receives an input, the next spike time will be delayed or advanced1. This
change, corresponding to a phase-change of the neuron, is captured by the phase-response curve
Z(φ) = T−T ′

T free , where T ′ denotes the shifted next spike time of the neuron due to the received input.
The phase-response curve is positive if the next spike time is advanced and negative if the next
spike time is delayed. The phase-transition curve g(φ) = φ +Z(φ) describes the updated phase
of the neuron after receiving an input. Figure D.1 shows an example of the phase-response and
phase-transition curves of theta neurons, respectively.

1If the input has a temporal form, it might also influence successive spike times. This defines higher phase-response
curves, but we will not be considering this case here. For δ pulse inputs the higher phase-response curves would
vanish, for other temporal transmission functions their contribution can generally be assumed to be small.
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Figure D.1 – Example phase-response curve Z(φ) = 1+ cosφ and phase-transition curve g(φ) = φ +
Z(φ) of type I excitable neurons. The dashed lines are their derivatives.
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Stable Periodic Firing of Two Theta Neurons

The periodic firing of two mutually coupled neurons is one of the exactly solvable special cases.
The following derivation can be similarly found in Ref. [128]. The two neurons are described by

φ̇1 = ω +Z(φ1)δ (π−φ2)

φ̇2 = ω +Z(φ2)δ (π−φ1).

The neurons phases evolve with constant phase-velocity ω between spike-events. Thus their phases
evolve according to f (φi, t) = φi+ωt, which also defines the time to the next spike4t(φi) =

π−φi
ω

.
When receiving a spike from the other neuron, the spike-receiving neuron’s phase shifts by an
amount given by the phase response-curve Z(φ), respectively the phase is updated with the phase-
transition curve g(φ). The spike times of the neurons are denoted {t(s)1 } and {t(s)2 }. The evolution
of the neurons’ phases is summarized in the following table (we start with neuron 2 having just
emitted a spike and neuron 1 at an initial phase φ ):

t φ1(t) φ2(t)

t(1)2 = 0 φ −π

t(1)1 = t(1)2 + π−φ

ω
π →−π −φ → g(−φ)

t(2)2 = t(1)1 + π−g(−φ)
ω

−g(−φ)→ g(−g(−φ)) π →−π

Assuming a periodic spike sequence of period 1 leads to the condition that φ = g(−g(−φ)).
Higher order periods of order n are also possible and would lead to the condition−φ = (−g)2n(φ).
The following analysis focuses on the period 1 case but the generalization to higher periods would
be straightforward.

We define the function G(φ) = g(−g(−φ)). The fixed points of this function are possible solu-
tions of a periodic spike sequence. The phase-transition curve is generally invertible (monotoni-
cally increasing g′(φ)> 0). The periodic solutions can thus be obtained from

G(φ∗) = φ
∗

−g(−φ
∗) = g−1(φ∗). (D.1)

Further analysis needs an explicit phase-transition curve. For the theta neuron the phase-transition
curve is

g(φ) = 2arctan(tan
φ

2
+C)

g−1(φ) = 2arctan(tan
φ

2
−C)

= −g(−φ).

This means that for the theta neuron the condition for the existence of a periodic solution (D.1) is
fulfilled for any initial phase φ . It also means that any phase difference of the two neurons is a
periodic solution, not only for example the synchronous case. Next, the stability of this solution
will be analyzed.
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The fixed point φ∗ of G is linearly stable if the derivative of G is smaller than one. Then a
perturbation from φ∗ will decay. The condition for stability is

G′(φ∗) = g′(−g(−φ
∗)) ·g′(−φ

∗)< 1.

It is the product of the phase-transition curve evaluated at the phases of the two neuron at the times
when they receive the spike from the other neuron. For the theta neuron, the derivatives are

g′(φ) =
(tan φ

2 )
2 +1

(tan φ

2 +C)2 +1

g′(−g(φ)) =
(− tan φ

2 −C)2 +1

(− tan φ

2 )
2 +1

=
1

g′(φ)
.

Therefore, G′(φ) = 1 for all phases. We conclude that all periodic solutions are neutrally stable in
the case of two mutually coupled theta neurons.

Synchronous State in All-To-All Coupled Networks

Another exactly solvable case is the synchronous state in all-to-all coupled networks. The deriva-
tion is similar to the two neuron case of the last section and can also be found in Ref. [128]. We
start with the assumption that N−1 neurons are already synchronized and look at the one neuron
that is not part of the synchronized cluster. The following table summarizes the evolution of the
phase of the one not-synchronized neuron φ1 and all other already synchronized neurons φN−1:

t φ1(t) φN−1(t)

t(1)2 = 0 φ −π

t(1)1 = t(1)2 + π−φ

ω
π →−π −φ → g(−φ)

t(2)2 = t(1)1 + π−g(−φ)
ω

−g(−φ)→ gN−1(−g(−φ)) π →−π

We see, that the difference to the two-neuron case is the phase update of the not-synchronized
neuron due to the N−1 synchronized inputs. Its phase update is the composition of N−1 succes-
sive updates, as we assume that the spikes are still received in a specific order gN−1 = g ◦ . . . ◦ g.
Another possibility would be that the received N − 1 spikes at the same time result in a N − 1
times higher coupling strength. For the theta neuron, these two interpretations are in fact identical
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gN = 2arctan(tan φ

2 +NC) 2. A periodic solution exists if

G(φ∗) = gN−1(−g(−φ
∗)) = φ

∗

−g(−φ
∗) = (gN−1)−1(φ∗).

For general phase-response curves, including theta neurons, this will be fulfilled for φ∗ = ±π ,
where the phase-response curve should vanish. This corresponds to the fully synchronous state
since the one not yet synchronous neuron will approach the synchronous group from either behind
or ahead. The question remains, whether the synchronous state with φ∗ =±π is stable.

If the derivative of G is smaller than one, the synchronous state is stable:

G′(φ∗) = (gN−1)′(−g(−φ
∗)) ·g′(−φ

∗)< 1.

This depends on the derivative of the phase transition curves. For the theta neuron model, one gets

(gN−1)′(φ)) =

(
tan φ

2

)2
+1(

tan φ

2 +(N−1)C
)2

+1

(gN−1)′(−g(−φ)) =

(
tan φ

2 −C
)2

+1(
tan φ

2 +(N−2)C
)2

+1

g′(−φ
∗) =

(
tan φ

2

)2
+1(

tan φ

2 −C
)2

+1

G′(φ) =

(
tan φ

2

)2
+1(

tan φ

2 +(N−2)C
)2

+1
.

At the synchronous fixed point φ∗ = ±π , we find G′(φ∗) = 1. Thus, the synchronous state in
all-to-all coupled theta neuron networks is neutrally stable. This result can be generalized if the
synchronous input of several neurons merely leads to an increase of the coupling strength, and the
slope of the phase-response curve at ±π vanishes. In these quite general cases, the synchronous
state in all-to-all coupled networks is neutrally stable. For other cases, see Ref. [128]. To further
understand whether the synchronous state appears when neutrally stable, one should study the
stability of the asynchronous state. If the asynchronous state is stable, the network will not reach a
synchronous state. The stability of the asynchronous state is, however, much more complicated as
will become clear in the next section.

2which can be shown by complete induction:

g = 2arctan(tan
φ

2
+C) = g1

g◦gN−1 = 2arctan(tan
φ

2
+(N−1)C+C) = gN .

152



Splay State in All-To-All Coupled Networks

An asynchronous state in all-to-all coupled networks is the so-called splay state, characterized by
identical time intervals between successive spikes in the networks. The existence and stability of
the splay state was investigated in Ref. [129, 130]. It was shown in Ref. [130] that the splay state
is stable in networks of neurons with a phase-response curve of negative slope Z′(φ) < 0 for all
phases. Then perturbations around the splay state decay. If the phase-response curve has positive
slope Z′(φ)> 0 for all phases, then perturbations around the splay state would grow and the splay
state would be unstable. If the phase response curve has both positive and negative slope, like
for theta neurons, one might conclude that the sum of expanding and contracting perturbations of
the splay state determines its stability [131]. We will explain this idea for all-to-all coupled theta
neuron networks.

In the splay state, the time between successive spikes in the networks is 4t = T/N, where N
is the number of neurons and T = ω/(2π) is the interspike interval of one neuron. If the neurons
were indistinguishable, the network’s state would be identical at all spike times. We can assume
the neurons to be ordered in increasing phase such that just after spike time ts the phases are
φi(ts)< φi+1(ts) for i= 1 . . .N−1 and the N-th neuron has just spiked, thus it was reset to φN =−π .
After the next spike time ts+1 the phases have evolved to φi(ts+1) = φi+1(ts) for i = 1 . . .N−1 and
φN(ts+1) = φ1(ts+1). For N = 3 this is demonstrated in the follwing table:

t φ1(t) φ2(t) φ3(t)
0 φ1 φ2 −π
T
3 g

(
φ1 +

ωT
3

)
= φ2 −π g

(
−π + ωT

3

)
= φ1

2T
3 −π g

(
−π + ωT

3

)
= φ1 g

(
φ1 +

ωT
3

)
= φ2

T φ1 φ2 −π

It can be seen that this is a consistent solution. The splay state is characterized by the fixed
point ~φ∗ = (φ1, . . . ,−π) and the stability of this fixed point is determined by the slopes of the
phase-transition curve at ~φ∗. Expressing the phase-transition curve g(φ) in terms of the phase-
response curve Z(φ) we get g′(φ) = 1+Z′(φ). If the slopes of the phase-response curve at ~φ∗ are
all negative, the splay state would be stable and if they are all positive it would be unstable. In the
generic case of positive and negative slopes, perturbations would grow and shrink along the splay
cycle and the splay state would only be stable if the sum of the slopes was negative [131].

With the infinitesimal phase-response curve of the theta neuron model Z(φ) =C(1+cosφ), thus
g(φ) = φ +C(1+ cosφ), we get the splay state in all-to-all coupled networks of three neurons:

φ1 = g
(
−π +

ωT
3

)
= −π +

ωT
3

+C
(

1+ cos
(
−π +

ωT
3

))
C→0' −π

3
+

3C
2

+O(C2)
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φ2 = g
(

φ1 +
ωT
3

)
≈ g

(
π

3
+

3C
2

)
=

π

3
+

3C
2

+C
(

1+ cos
(

π

3
+

3C
2

))
C→0' π

3
+3C+O(C2)

φ3 = −π,

where we assumed ωT
3 → 2π

3 for C→ 0. The derivative of the phase-response curve is Z′(φ) =
−C sinφ , thus

Z′(φ1) = −C sin
(
−π

3
+

3C
2

)
≈ C

(√
3

2
− 3C

4

)
Z′(φ2) = −C sin

(
π

3
+3C

)
≈ −C

(√
3

2
+

3C
2

)
g′(φ3) = 0.

In the case of excitatory coupling (C > 0) we get φ1 &−π/3 and φ2 & π/3 and thus 0 < Z′(φ1)<
−Z′(φ2). This means, that perturbations around φ1 increase less than perturbations at φ2 decrease
and the splay state in the case of excitatory coupling would be stable. In the case of inhibitory
coupling (C < 0), we get φ1 . −π/3 and φ2 . π/3 and thus 0 < −Z′(φ1) < Z′(φ2). This means,
that perturbations around φ1 decrease less than perturbations at φ2 increase and the splay state in
the case of inhibitory coupling would be unstable.

This analysis should be extended to the rapid theta neuron model which hopefully provides more
insight into the observed qualitatively different dynamics. The shape of the phase-response curve
of the rapid theta neuron model (Fig. 3.2) exhibit a shift of the peak towards the spike at φ = π .
This suggests that for large AP onset rapidness the asynchronous splay state might become stable
in all-to-all coupled networks. The critical value between an unstable and stable splay state might
depend on the number of neurons in the networks as this determines the phases for which the splay
state exists.
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Appendix E

Propagator Method

The propagator method is used to solve the inhomogeneous differential equation

ẋ(t) = A(t)x+B(t),

with the initial condition x(t0). The corresponding homogeneous equation has the solution (prop-
agator):

P(t, t ′) = e
´ t

t′ A(τ)dτ .

Using the propagator, the inhomogeneous equation is solved with

x(t) = P(t, t0)x(t0)+
ˆ t

t0
P(t, t ′)B(t ′)dt ′. (E.1)
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List of Symbols
ν̄ The network-averaged firing rate.

χ The synchrony measure, Eq. (2.50).

η The ratio of inter-population excitatory coupling, Eq. (2.31).

λi The i-th Lyapunov exponent.

D The single spike Jacobian.

ω The constant phase velocity of a neuron.

φ The phase of a neuron.

τI The synaptic time constant.

τm The membrane time constant.

ε The excitatory-inhibitory feedback loop strength, Eq. (2.31).

cv The coefficient of variation, Eq. (2.49).

D The attractor dimension, Eq. (1.6).

Dφ The phase-distance between trajectories.

H The entropy production rate, Eq. (1.5).

I0 The strength of the constant external currents.

IT The rheobase current.

J0 The strength of the synaptic coupling.

K The average number of synapses per neuron.

N The number of neurons in the networks.

NE The number of excitatory neurons.

NI The number of inhibitory neurons.

r The action potential onset rapidness.

V The membrane potential (voltage) of a neuron.

Z(φ) The phase-response curve.

AP Abbreviation for action potential.

cLIF The correlated leaky integrate and fire model.

LIF The leaky integrate and fire model.
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