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Abstract

How does the brain work? This very broad and yet, very crucial and interesting
question appealed scientists from various disciplines to itself. The fact that the op-
eration of a system of neurons can not be understood without the collaboration of
different sciences gave rise to the multi-disciplinary nature of neurosciences. For all
the neuroscientists, the most basic question to deal with is how an individual neuron
contributes to the rest of the system. Considering the brain as a computational unit,
this question becomes as the understanding of the individual neuron as an informa-
tion processor.

The focus of this thesis project is understanding the mechanisms underlying the
initiation of action potentials, which are the units of communication in a neural
network, and the relation of these mechanisms with the important characteristics ob-
served in real neurons, such as rapid action potential onsets and threshold variability.
These characteristics are crucial and unique, and are in close relation with the linear
response properties of neurons: For instance, the first few hundred microseconds of
an action potential might reflect important properties of neural response, such as the
ability of a neuron to respond efficiently to fast-changing time-varying inputs.

The thesis is organized in three parts. In the first part, a detailed background for
the project is given. In this background, information from macro-scale (e.g. the en-
vironment that a neuron operates in) to micro-scale (e.g. the molecular organization
of the action potential initiation site in the neuron), as well as a brief introduction
to the neural transfer functions and neuron models can be found. The information
given in this part is quite general and more specific introductions are given for each
of the following parts.

In the second part, a multi-compartmental model and the methods of utilizing it
to investigate the effect of threshold variability on the somatic spike-triggered statis-
tics are described. The model was constructed modifying Rall’s Ball-and-Stick model
and its response to noisy inputs were analyzed using spike-triggered average and vari-
ance.

In the third part, a recently introduced hypothesis, the existence of cooperative
Na+ channel gating kinetics in the axon initial segment of a neuron and its con-
tribution to the neural response and action potential waveform, is explained. This
hypothesis was investigated on two separate models : a single-compartment model
and a multi-compartmental model. Both of these models were conductance-based and
the multi-compartmental model was constructed using the real morphological data
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from cortical neurons. The cooperative gating kinetics were implemented in both
models, and only in the axon initial segment in the multi-compartmental model.

The results of the models were discussed at the end of each respective part, how-
ever, at the end of the thesis, a broader perspective about the results and possible
future projects is given.
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Abstract

The ionic channels are the main elements of the excitable membranes. Most of
the ionic channels are not always in the open state but usually depend on the ex-
istence of a certain stimulant (e.g. voltage difference, chemical binding, mechanical
stretches and so on) to get activated. An important fraction of these channels, the
voltage-gated ionic channels, sense the voltage changes on the excitable membranes
and open or close in response. Their activity further changes the membrane poten-
tial and the electrical signal is amplified or degraded. Therefore, the voltage-gated
ionic channels are extremely important for spreading a local excitation on the whole
membrane surface.

The governing principles of electrical invasion on the neuronal membrane is, there-
fore, closely related to the principles of voltage-gated ion channel gating. It is only
possible with the accurate activity of these channels that an impulse from the presy-
naptic neuron can be translated into an electrical message, which is then carried along
the dendritic, somatic and axonal membranes to the synapse and then to the post-
synaptic neuron. A specific presynaptic input is delivered to the cortical neuron in a
noisy background, due to the simultaneous bombardment of excitatory and inhibitory
inputs. Therefore, the accurate recognition of a certain input in the noisy background
and the precise timing of the response becomes crucial.

The capability of a neuron to elucidate precisely-timed action potentials (APs)
in response to the very small fluctuations in the noisy input can be indirectly inter-
preted using the steepness of the AP onset (Naundorf et al. [132]; Köndgen et al.
[100]; Fourcaud-Trocme et al. [63]). In this study, we utilized this indirect tool to ex-
plore the dynamic response properties of conductance-based neuron models, in which
stochastically non-independent sodium channel gating kinetics were implemented.
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1
The smallest processors of world’s most

complicated computer

Cognitive functions of the brain, such as in the visual or in the auditory system re-
quire fast, precise and reliable processing of the information about the surrounding
environment. For instance, the recognition of a natural image by the human visual
system requires less than 150 ms (Thorpe et al. [177]; Hopfield [85]). It was also shown
that, for instance, the accuracy and the reliability of auditory responses in locust are
highly sensitive to the stimulus statistics (Machens and Zador [115],Machens et al.
[114]). How does the neural system achieve this fast and sensitive response? Does
the fine-tuning of information processing occur in population level or in single-neuron
level? In the next sections, I will summarize some of the previous studies on neuronal
computation and its fine-tuning in noisy environment.

1.1 Macro- to micro-scale neuronal computation

The individual neurons, e.g. of the visual cortex, are silent most of the time and have
a spontaneous firing rate of only 1-2 Hz (Greenberg et al. [70]; Destexhe and Parè
[49]). Then, how can the brain respond to fast-changing stimuli? The answer lies
in the population coding. The coordinated activity of a group of neurons allows
to track down and phase-lock to the fast-changing stimuli with temporal frequencies
much higher than the firing rate of an individual neuron. The population coding has
a number of advantages. For instance, the uncertainty due to neuronal variability is
reduced and a number of different stimulus attributes can be simultaneously repre-
sented (Rieke et al. [152]).

The population activity can be recorded as local field potentials. The recordings
from cerebral cortex revealed that the population firing rate is much higher than the
firing rate of individual neurons (Buzsaki and Draguhn [29]). When instantaneous

5



6 Chapter 1: The smallest processors of world’s most complicated computer

firing rates of individual neurons are averaged over a neuronal ensemble, the fast os-
cillation patterns could be observed in the response.

Although it is the collective behavior that produces the required phase-locking re-
sponse, it is crucial to understand the action potential (AP) generating mechanisms
underlying the individual responses to understand the collective response, and, when
a realistic explanation is aimed, time-varying inputs must be used to test the tempo-
ral precision of the individual neuronal output.

1.2 High precision decoding / encoding on a noisy

background

Understanding the neural code would necessarily mean making sense out of massive
information flow among the brain and the sensory organs in the form of arrays of spike
trains. Any meaningful explanation would require some boundaries on the definition
of stimulus. In many psychophysical discrimination experiments (Green and Swets
[69]), the stimulus defines a world of two choices. This kind of binary decision prob-
lems are useful in investigating the reliability of neurons; however, it is not enough
or, as in many cases, realistic. The natural stimulus, as it would be expected, is
anything but binary or stationary (Rieke et al. [152]). Under natural conditions, the
properties of the stimulus in the next brief time window can not be fully predicted.
Therefore, the natural stimulus could be best represented as picked from an infinite
set of alternatives that are not equally probable (Rieke et al. [152]).

Even though having this stochastic characteristics, the natural stimulus also con-
tains an underlying structure or regularity.

To sum up, the natural signals will be randomly presented to the organism, al-
though they will have origins in deterministic processes.

The phenomena explained above is one of the reasons for using random but corre-
lated time-dependent signals in in vitro and theoretical studies. Other reasons come
from the background activity in the brain and intrinsic noise of the neuron due to
ionic channels.

Neurons in vivo are continuously bombarded by excitatory and inhibitory synaptic
inputs, which strongly affect their response properties (Silberberg et al. [166]; Arsiero
et al. [10]; Brunel et al. [23]; Chance et al. [36]; Fourcaud-Trocme and Brunel [62];
Destexhe and Parè [49]; Hô and Destexhe [81]; Anderson et al. [5]). This effect might
be due to, e.g., the increase in the overall conductance (Borg-Graham et al. [19]; Des-
texhe and Parè [49]) or in the neuronal response variability (Softky and Koch [168];
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Holt et al. [84]; Stevens and Zador [171]; Shadlen and Newsome [162]). Therefore, this
background activity should be taken as a constant source of noise in the input that
neuron receives. The resulting barrage of background synaptic input increases the to-
tal conductance of the neuron by 2-3 times its resting value (Borg-Graham et al. [19];
Destexhe and Parè [49]) and the fluctuations in the input induce fluctuations in mem-
brane potential that have an amplitude of a few mVs (Anderson et al. [5]). The spike
time pattern may also change as a response to the driving current (Chance et al. [36]).

The in vitro and theoretical studies will lack the contribution of background noisy
input. To compensate, artificially generated noisy currents are often used.

It was shown that the statistics of noise affect the precision, reliability and also the
amplitude of the response (Svirskis [174]; Arsiero et al. [10]; Brunel et al. [23]; Chance
et al. [36]; Fourcaud-Trocme and Brunel [62]; Wiesenfeld and Moss [186]; Herrmann
and Gerstner [78]; Svirskis and Rinzel [175]; Allen and Stevens [3]). For instance,
stronger noise will force the membrane potential to fluctuate near the threshold quite
often. It is obvious that this will increase the probability of threshold crossing very
sharply at the arrival of a signal.

To sum up, neurons actually need the noisy background activity to generate fast
and precise response to the incoming stimulus. The noise can help detecting rapid
and/or small subthreshold signals. Additionally, the fluctuations in the membrane
potential keeps the neuron ready for the fast response to incoming stimuli. However,
the statistics of the input noise affect the response properties both in favor of and
against the accurate and reliable response, as it also presents boundaries for the abil-
ity of a neuron to respond. As will be explained in chapter 3, the frequency of the
fluctuations in the input is probably the most important constraint on linear neuronal
response.
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2
Initiation of the individual electrical signals

Considering the information flow through the elaborately wired circuits of the brain,
the APs are the units of information. The electric signal is produced as APs in the
individual neurons and conveyed as information with their timings, or spike trains.
Obviously, to understand the neural code and the information it contains, it is essen-
tial to understand the generation of individual signals.

2.1 Action Potential Generation

A neuron elicits an AP when its membrane potential is depolarized above the thresh-
old potential, which is the minimum for the activation and opening of voltage-
gated Na+ channels (Figure 2.1). This supra-threshold depolarization triggers an
avalanche-like process : opening of Na+ channels further depolarizes the membrane
and thus, triggers the opening of more Na+ channels and also different types of
voltage-dependent ionic channels. In some cases, the term spike can be used instead
of the AP, however, it especially means the portion of AP with the most rapidly
changing voltage. It is also very commonly used to mean solely the signal represen-
tation of an AP and even in some cases, the full AP waveform may not be needed to
define a spike (see section 5.1).

2.1.1 The Waveform

The shape of the AP varies considerably for different types of neurons (Figure 2.2).
The invertebrate and vertebrate AP are proven to have especially different at their
onset (Volgushev et al. [182]; Sengupta et al. [161]). The mammalian brain cells still
exhibits a broad variety of AP shapes. Although the firing behavior of neurons in-
clude many different patterns and frequencies with little or no obvious relation with
AP shape, there are still cases, such as that a neuron eliciting “narrow” APs usually
exhibit an ability to fire at high frequencies with a little decrease in the frequency
for prolonged stimulations (Connors and Gutnick [42]; McCormick et al. [122]). The

9
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Figure 2.1: Anatomy of an action potential: The action potential in the figure
is recorded from a pyramidal neuron in CA1 region of a rat hippocampus and illus-
trates commonly measured parameters. The action potential (purple) was elicited
by the injection of a just-suprathreshold current (black) and also the response to a
subthreshold is given in the figure (red). (Vrest:resting potential; Vthresh: voltage
threshold; upstroke:“depolarizing” or “rising” phase. Its maximum is given at 0 mV;
overshoot: peak relative to 0 mV; spike height: peak relative to either resting po-
tential or the most negative potential reached during afterhyperpolarization; AHP:
afterhyperpolarization; spike width: width at half-maximal spike amplitude. repo-
larizing phase: “falling phase” or “downstroke”. It has a much more slower velocity
than rising phase.) Adapted from Bean [15]



2.1 ACTION POTENTIAL GENERATION 11

shape of AP are generally more significant for the presynaptic terminals, where small
changes in the onset rapidness, amplitude or width can trigger drastic changes in the
timing of calcium entry and therefore, in the postsynaptic currents.

The AP shape may also change for different regions of the neuron. The initiation
site of the APs and its generation dynamics are critical parameters to understand the
reason of this variability in the shape. The initiation site is commonly accepted to be
30-50 µm away from soma (Coombs et al. [44],Coombs et al. [45]; Häusser et al. [75];
Colbert and Johnston [38]; Stuart et al. [173]; Martina et al. [119]; Colbert and Pan
[39]; Palmer and Stuart [139]; Khaliq and Raman [94]; Shu et al. [164]; Kole et al.
[97]; Kole and Stuart [99]; Clark et al. [37]; Schmidt-Hieber and Bischofberger [159])
and this distance is enough for the shape of AP in the soma to show clear effects due
to non-uniformity of potential (Shu et al. [164]). Also, the threshold potential for an
AP shows variability (see section 2.2.2) for different neuronal regions.

2.1.2 The Onset

Considering the AP as a tool to transmit information, probably the most important
one of its phases would be the onset, which give an indirect measure of the capability
of a neuron to respond to fast-changing fluctuations in the stimulus (Fourcaud-Trocme
et al. [63]; Naundorf et al. [132]). A very sharp onset, or a “kink”, would mean that
the delay between the trigger and the generation of the AP as the response is very
small. Therefore, this neuron can phase-lock with fast-changing stimuli.

As the underlying dynamics of the AP has a time course of less than a ms, I will
here mention only the currents that are activated at the initial phase of an AP and
at the subthreshold potentials.

The Subthreshold Currents and Na+ Current at the Onset

The membrane potential fluctuations at the subthreshold level are most significant
when responding to the rapid fluctuations in the stimulus. The underlying ionic
currents in the central neurons include A-type K+ current (IA), Kv1-mediated K+

currents (ID), the current known as Ih carried by hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels, steady-state “persistent” Na+ currents (INaP ), and
the current mediated by T-type (low-voltage-activated) Ca2+ channels.

A-type current was described in molluscan neurons in the classic papers by Con-
nor and Stevens [40],Connor and Stevens [41]. This currents are both activated and
inactivated at subthreshold potentials and they support repetitive firing at low fre-
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Figure 2.2: Diversity of APs in central neurons.(a) Spontaneous APs in an
acutely dissociated mouse cerebellar Purkinje neuron; (b) AP in a hippocampal CA1
pyramidal neuron in brain slice; (c) spontaneous APs in a midbrain dopamine neuron;
(d) illustration of APs from fast-spiking and regular-spiking cortical neurons; (e)
different AP widths in the soma of dentate gyrus granule neurons and in the mossy
fiber bouton, a presynaptic terminal made by a granule neuron. Adapted from Bean
[15].
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quencies. ID produces a subthreshold current that function similarly to IA. T-type
Ca2+ originate from CaV3 family channels, and their most significant function is the
production of rebound bursting following hyperpolarization.

Fast-inactivated, transient Na+ currents display a significant function in the initi-
ation and propagation of APs (Hodgkin and Huxley [83]; Stuart and Sakmann [172]).
In addition to these currents, at the subthreshold potential range, another more slowly
inactivating, TTX-sensitive “persistent” Na+ current (INaP ) is found in most neurons
(Gutnick and Crill [74]; Astman et al. [11]). As the location of origin for INaP , the re-
gions near soma and axon in layer V pyramidal neurons (Stuart and Sakmann [172])
and in CA1 pyramidal neurons (Andreasen and Lambert [6];Yue et al. [188]) were
suggested. However, it was shown that the dendrites also contain the channels that
generate INaP (Lipowsky et al. [111]; Mittmann et al. [126]; Magistretti et al. [116]).

INaP is mainly generated in the axon (Astman et al. [11]). However, it is not clear
whether this reflects higher channel density, higher probability of late openings of the
individual channels, or both. If it is assumed that the somatic and axonal channels
have the same properties, then the experimentally observed INaP magnitude would
require the axonal channel density to be 500-1000-fold higher than the somatic density
(Astman et al. [11]). However, these channel densities are proven to be unrealistic
by experimental studies (Catterall [35]; Colbert and Johnston [38]; Colbert and Pan
[39]; Engel and Jonas [55]; Schmidt-Hieber and Bischofberger [159]) as also explained
below. Therefore, the altered biophysical properties of Na+ channels in that region
becomes more reasonable. Indeed, INaP exhibits some unique properties, such as
failing to exhibit fast inactivation, and this may be due to the differences in channel
subunit composition. Caldwell et al. [30] showed that predominately axonal NaV 1.6
channels enter the non-inactivating gating mode more frequently and produce more
persistent current than their relatives localized in soma and dendrites (Raman and
Bean [148]; Rush et al. [154]). Still, the possibility that regional specificity of local
regulatory systems (Cantrell and Catterall [32]) or distinctive channel arrangement
relative to intracellular and extracellular matrices (Srinivasan et al. [169]). Indeed,
recent studies reported that different NaV channels, that are abundantly found in the
AIS, do not necessarily co-localize (Hu et al. [86]; Rush et al. [154]). Furthermore, it
was suggested that this distinct localization contributes to the AIS function. These
results will be discussed in more detail in section 2.2.

It was also shown that there is a 6-7 mV shift in the voltage-dependence of gNa
in axon compared to somatodendritic gNa (Colbert and Pan [39]; Fleidervish et al.
[60]).

Alternatively to the high channel density hypothesis, the sudden onset of phase-
plot at threshold can be interpreted to suggest cooperative Na+ gating (Naundorf
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et al. [132]). It was also shown that classic Hodgkin-Huxley models (see section
4.3) fail to reproduce the fast onset slopes of > 1/20 ms−1 at 10-15 V/s in cortical
neurons. However, this hypothesis was strongly rejected by some researchers who
suggested the distal, axonal initiation combined with the back-propagation into the
soma could explain the phenomenon (Shu et al. [164]; McCormick et al. [123]; Bean
[15]; Kress et al. [101]). A recent study shows, however, that this does not necessarily
explain the fast onset slopes (Baranauskas et al. [14]). The cooperative gating hy-
pothesis will be discussed in detail in chapter 7.

2.1.3 The Energy Budget

The generation and transmission of the electrical signals constitute the largest part
of the overall energy budget in the mammalian brain. It was shown in the previous
studies that AP initiation is an important part of the total energy consumption and
even, for invertebrates, e.g., the squid, it requires much more ATP then the actual
synaptic transmission of the information. There are three basic reasons for such
high energy consumption during an AP generation (Hodgkin [82]; Crotty et al. [46];
Sengupta et al. [161]):

• A robust signal often requires a charging of the membrane capacitance by more
than 50 mV up to the AP peak.

• The overall distance and the area that the AP should travel and invade is large
and in some areas, such as very thin dendrites and the axon, densely packed.
This also increases the amount of potential required to charge the membrane
capacitance.

• Due to the overlapping Na+ and K+ currents in the opposite directions, the
minimum flux required to charge the membrane is exceeded and the energy
efficiency decreases.

Therefore, the structure of the neural code and circuit is affected in a way to opti-
mize the energy usage to transmit APs. The sparse codes and redundancy reduction
to transmit more information with less energy, the more efficient wiring of the circuit
so that the AP does not need to travel for longer distances, and the reduction in
the energy consumption for the production of APs by evolution of required biophys-
ical properties are some of the examples of such biological optimizations (Niven and
Laughlin [135]; Alle et al. [2]; Carter and Bean [34]).

Na+ efficiency (or in other words, the ratio between the capacitive minimum Na+

load and the total Na+ load) is an important factor in the AP energy cost. Carter
and Bean [34] suggested that AP shape is a primary determinant of the differences
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in Na+ entry efficiency; however, Sengupta et al. [161] pointed the Na+ gating ki-
netics, more specifically the inactivation of Na+ channels, as a more effective factor.
Their studies on various single-compartment models representing a range from in-
vertebrate to vertebrate neurons showed that shifting the core parameters such as
the total conductance, activation time constant and inactivation time constant of
voltage-gated Na+ conductance and activation time constant of the voltage-gated K+

yields to move the models to the minima in their physiological conditions. These
shifts in the parameters commonly led to a reduction in the overlap of Na+ and K+

currents, which was thought to be responsible of the high energy consumption during
AP generation. On the other hand, the amplitudes of changes required in the model
parameters varied, which was also in agreement with the fact that the physiological
efficiency of the neurons also vary (Figure 2.3). For example, the squid axon was
shown to have an efficiency around 25% (Hodgkin [82]) and by comparison, some of
the mammalian neurons approach to the ideal efficiency of 100 % by approaching the
theoretical minimum Na+ load (Alle et al. [2]; Carter and Bean [34]).

The high energy consumption during the AP generation puts a constraint on the
amount of energy that will be spared for the information processing by synapses and
prevents higher rates of processing. As an example, one can think of the axonal mass
in the cerebral cortex (Attwell and Laughlin [12]; Sengupta et al. [161]). In a cubic
millimeter of gray matter, there is approximately 3 km of excitable axons, most of
which are pyramidal neurons. Each pyramidal neuron uses approximately 4 cm of 0.3
µm diameter axon collateral to transmit information via its 10,000 output synapses.
It was estimated that, when a neuron fires an AP to drive these synapses, it acquires
a minimum capacitive load of 2.36*108 Na+ ions, that would require approximately
8*107 ATP molecules to eject (Attwell and Laughlin [12]). Considering that this cal-
culation is only for one AP, the rest of the calculations for the massive number of
neuronal extensions and synapses underlines the cost of information processing in the
brain.

The parameters used in the calculations mentioned above were adopted for squid
axon, which is only 25% efficient and the result was that AP generation should con-
sume significantly more energy than the synaptic transmission. However, in the study
by Sengupta et al. [161], this value was calculated again using the parameters from
mouse cortical pyramidal neurons, which are 80% efficient, and it was revealed that
the level of synaptic trafficking that can be supported by the specific metabolic rate of
gray matter was 60% larger, which would mean the increase in the supported average
firing rate from 4 Hz to 6.8 Hz, and that AP efficiency shifted the balance of energy
expenditure from AP generation to synaptic transmission (Figure 2.4).
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Figure 2.3: AP energy usage in seven models from vertebrates and inver-
tebrates .The shape of APs in single compartment Hodgkin-Huxley type models
from (A) the squid giant axon (SA), (b) crab motor neuron axon (CA), (c) mouse
fast-spiking neuron (MFS), (d) honeybee Kenyon cell (BK), (e) rat hippocampal
interneuron (RHI), (f) rat granule cell (RG) and (g) mouse thalamo-cortical relay
neuron (MCTR). The dashed line indicates the resting potential of each model. (h)
The efficiency of AP from each model. Error bars show the effect of changing the peak
conductances of the voltage-gated ion channel by ±5% on AP energy co-efficiency (see
Sengupta et al. [161]). Adapted from Sengupta et al. [161].

Figure 2.4: Energy budget for signaling in the gray matter of the rat brain.
(For details, see Sengupta et al. [161]). Adapted from Sengupta et al. [161].
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2.2 Unique Properties of Initiation Site

As briefly mentioned above, the AP is commonly accepted as initiated at the axon
initial segment (AIS) of the neuron (Palmer and Stuart [139]; Coombs et al. [44],[45];
Häusser et al. [75]; Colbert and Johnston [38]; Stuart et al. [173]; Martina et al. [119];
Colbert and Pan [39]; Palmer and Stuart [139]; Khaliq and Raman [94]; Shu et al.
[164]; Kole et al. [97]; Kole and Stuart [99]; Clark et al. [37]; Schmidt-Hieber and
Bischofberger [159]). The first time that AIS was hypothesized to be site of AP initi-
ation was in the paper by Araki and Otani [9]. At that time, other locations such as
the axon hillock (Bishop [17]) or soma (Fatt [58]) were also suggested as the initiation
site. Later on, Coombs et al. [44],[45] also hypothesized that the AP initiates at the
AIS; but still, the first direct evidence came from the study by Edwards and Ottoson
[54] on the neuron of lobster stretch receptor. They also showed for the first time that
AP propagates orthodromically and antidromically. With the application of electron
microscopy, Conradi [43] and Palay et al. [138] provided the first detailed anatomical
description of AIS. An up-to-date list of reports on the axonal initiation sites is given
in Figure 2.5.

Previous studies suggested that the APs are locally initiated at dendritic com-
partments when exposed to strong depolarizations, which then propagate to soma
and AIS (Gasparini et al. [65]; Golding and Spruston [68]; [108]; Losonczy and Magee
[113]; Schiller et al. [158]). However, Shu et al. [164] claimed oppositely that during
epileptiform activity after disinhibition in vitro, fast APs were always initiated in
AIS of neocortical pyramidal cells, followed by back-propagation into the soma and
apical dendrites. This seemingly contradictive results might be explained by the fact
that the basal and nearby oblique apical dendrites of cortical pyramidal cells receive
75-95% of their excitatory of their synaptic inputs in neocortex, within 200 µm from
soma (Larkman [105],[106],[107]). These extensions are electrotonically closer to AIS
then to the distal apical dendrites, which may result in the AIS initiation of AP after
the arrival of large EPSPs. Still, the dendritic initiation can not be ruled out as that
may be physiologically important, e.g., in the modulation of the overall pattern of
discharge. However, nearly all of the fast spikes are generated in AIS (Shu et al. [164]).

The AP initiation AIS has a number of functional implications. For instance
(Clark et al. [37])

• the AP generating mechanisms may be electrically isolated from soma/dendrite,
allowing the AIS to serve as the single site of synaptic integration of all the
inputs arriving to different parts of dendrites (Mainen et al. [117]);

• the localization AP generating machinery to a small subcellular compartment
may allow for targeted and potentially powerful modulation of AP initiation by
local influences such as inhibition as in the case of Chandelier cells;
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Figure 2.5: A brief summary of Literature on AP initiation site. The ta-
ble gives examples from the literature about the AP initiation sites of various cell
types and organisms. AIS = axon initial segment, NR = Node of Ranvier, y =
yes(myelinated), N = no(unmyelinated). Notes : 1) under long threshold stimuli, 2)
under brief stimuli.
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Figure 2.6: Axon initial segments staining.(Left) Specific enrichment of phospho-
rylated Iκ-βα (red) in the AIS of neurons in the rat cerebral cortex and (Middle) in
a primary neuronal culture. The green labeling depicts the somatodendritic neuronal
compartment. (Right) Specific enrichment of phosphorylated Iκ-βα (red) in the AIS
of an organotypic hippocampal slice culture. Adapted from Schultz et al. [160].

• charging the soma enough to promote back-propagation into the dendritic tree
(Stuart et al. [173]).

2.2.1 Molecular Structure of Axon Initial Segment

As my project on cooperative AIS model (Part III) focus on the gating kinetics of the
voltage-gated Na+ channels in AIS, I will give a very brief picture of the molecular
structure of this region. This underlying structure is very important for its unique
functional implications.

The conical-like region between the soma and the axon was named as the axon
hillock. This part was generally assumed as 5-15 µm length (Shu et al. [164]). AIS
follows the axon hillock and it has a typical length of 17- 40 µm (Palmer and Stu-
art [139]; Shu et al. [164]). The distal end of AIS, which is marked with the loss
of submembraneous structures typical of the AIS and extracellular matrix level (Shu
et al. [164]), was commonly associated with the beginning of myelination (Farinas
and DeFelipe [57]; Inda et al. [90]; Palay et al. [138]).

AIS region of the neuron was proven to develop using elaborated molecular mech-
anisms to construct the formation of subdomains and the unique composition of ionic
channels. This molecular mechanism is briefly given in Figure 2.7 (Grubb and Burrone
[72]). This dense molecular structure was also observed as dense granular material
underneath the membrane, microtubules in cytoplasm and scattered clusters of ribo-
somes (Farinas and DeFelipe [57]; Inda et al. [90]; Palay et al. [138]). This packed
construction might serve as a barrage for large particles between soma and axon.
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Figure 2.7: Simplified stages in AIS development.(a) During and shortly after
axon specification, phosphorylated Iκβα in the proximal axon is needed for localiza-
tion of AnkG. (b) AnkG, now localized to a single band in the proximal axon, binds
to and localizes βIV-spectrin, NaV and KV channels and transmembrane proteins,
among other molecules. (c) NF186 is then required for the development of a special-
ized brevican-containing AIS ECM and for the formation of AIS-specific GABAergic
synapses.Adapted from Grubb and Burrone [72].
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Two most important candidates for the specific functional role of AIS as the site
of AP initiation are the biophysical characteristics and the density of the NaV chan-
nels in that region. Recent studies suggested the existence of at least three isoforms
: NaV 1.6, NaV 1.1 and NaV 1.2 (Clark et al. [37]; Grubb and Burrone [72]; Hu et al.
[86]; Rush et al. [154]). A recent study also investigates the sublocalized distribution
of yet another isoform NaV 1.2 (Hu et al. [86]). NaV 1.6, which is the most common
Na+ channel isoform in the nervous system, is also probably the most predominant
isoform at the AIS (Boiko et al. [18]; Ogawa and Rasband [136]). In the AIS re-
gions of fast-spiking, GABAergic inhibitory interneurons of cortex, NaV 1.1 isoform
can also be found (Yu et al. [187]; Ogiwara et al. [137]). The loss-of-function mu-
tation in the gene encoding this channel protein produce epilepsy (Ragsdale [143]),
which makes the channel also a target for drug research.The NaV 1.1 channels are
usually tightly localized at a small band on the very proximal edge of the AIS (Van
Wart et al. [181]; Lorincz and Nusser [112]; Duflocq et al. [51]). On the other hand,
NaV 1.6 distribution does not co-localize with NaV 1.1 isoforms and instead, increase
in density towards the distal end of the AIS (Van Wart et al. [181]; Lorincz and
Nusser [112]). A recent study described a similar sublocalization between proximal
NaV 1.2 and distal NaV 1.6 isoforms in the AIS of cortical pyramidal neurons (Hu et al.
[86]). Hu et al. [86] combined patch-clamp recording and mathematical simulations to
show that the NaV 1.2-containing and NaV 1.6-containing portions of the AIS display
distinct functional roles. However, the patch-clamp recording was performed on a
bleb, which might disrupt the cytoskeletal structure underneath the AIS membrane.
The authors justified their results with the claim that the recordings from this bleb,
indeed, indicate the real profile of AIS APs and channel densities according to the
results of their immunohistochemistry experiments. It was also shown in this study
that the low voltage threshold of NaV 1.6 channels makes the distal AIS the site of
AP initiation. This role of distal AIS was supported by the findings from other recent
imaging, recording and modeling studies (Kole et al. [97]; Hu et al. [86]; Palmer and
Stuart [139]; Meeks and Mennerick [125]).

The rich KV 1 subfamily composition on AIS suggest the possibility of complex
local modulation of AP generation and properties by these channels (Grubb and Bur-
rone [72]). Members of this channel subfamily are particularly interesting because
they are activated at subthreshold membrane potentials and thus, can influence AP
initiation. Recent immunohistochemical evidence revealed that in certain cell types,
KV 1.1. and KV 1.2 channels also preferantially target the distal AIS. At this subdo-
main, they always co-localize with each other, and with NaV 1.6 (Lorincz and Nusser
[112]). This important finding suggests that these channels can play a specialized role
in the control of AP initiation.

KV 2-mediated currents accounted for a large proportion of the delayed rectifier
current measured at the soma and immunohistochemical staining for KV 2.2 isoforms
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revealed their enrichment at AIS. These channels are localized at a more proximal
region of AIS relative to the KV 1 channels (Johnston et al. [92]). It was also recently
suggested that KV 2.1, the other known member of the KV 2 subfamily, is expressed
at the AIS of hippocampal and neocortical neurons (Sarmiere et al. [156]).

KCNQ (KV 7) subfamily of K+ channels are also found as clusters at the AIS
of several cell types (Clark et al. [37]). These channels, like KV 1, operate in sub-
threshold potentials and mediate the current known as “M-type K+ current”. These
slow-activating, noninactivating and voltage-dependent currents are commonly ac-
credited as predominant regulators of neuronal excitability in many neuron types
(Clark et al. [37]; Shah et al. [163]) and are shown to contribute to stabilizing of the
resting potential and to limiting repetitive firing (Clark et al. [37]). KCNQ2 (KV 7.2)
and KCNQ3 (KV 7.3) isoforms are abundant at the AIS in several neuronal popula-
tions including hippocampal and neocortical pyramidal cells (Pan et al. [140]).

Bender and Trussell [16] found in their study on dorsal cochlear nucleus neurons
that T- and R-type voltage-gated Ca2+ are the underlying transient calcium currents
that are evoked by repetitive firing. These currents were significantly larger in AIS
than soma. Similar currents were also observed in other cell types, such as layer 5
pyramidal cells and cerebellar Purkinje neurons (Bender and Trussell [16]).

The structural properties of AIS makes it a more favorable site of initiation. For
instance;

• The large capacity and conductance load of the soma and dendrites decrease
with increased distance down the axon, thereby, decreasing the amount of cur-
rent required to initiate an AP (Shu et al. [164]).

• This region is strongly affected by the summated membrane potential arriving
from dendritic branches and soma (Shu et al. [165],[164]), and by its passive
and active electrical properties.

2.2.2 Threshold Potential

The difficulty in estimating the threshold is primarily due to the variations in the
methods of measuring. This methods include “by-eye” estimates to methods based
on first, second or third order derivatives (Henze and Buzsaki [77]; Naundorf et al.
[132]; Meeks and Mennerick [125]; Shu et al. [164]). Therefore, estimates of threshold
potential differ from -43 mV to -63 mV (Kress et al. [101]). The value of threshold
varies significantly also for different types of neurons, such as -52 mV for dentate
granule neurons, which is 10 mV less than the threshold measured in the same study
for CA3 pyramidal neurons (Kress et al. [101]).



2.2 UNIQUE PROPERTIES OF INITIATION SITE 23

The first suggestion of a lower threshold potential (Vthr) at AIS came from the
pioneering work of Coombs et al. [44],[45]. They predicted a 15 mV lower (more
hyperpolarized) Vthr at AIS than soma. Many following studies also predicted a
lower threshold and lower voltage-dependence in the activation of voltage-gated Na+

channels in axon compared to soma (Colbert and Johnston [38]; Colbert and Pan
[39]; Fleidervish et al. [60]). On the other hand, a recent study by Kole and Stuart
[99] reported a Vthr at AIS that was higher than the soma. They also underlined
that, opposite to Vthr, the current threshold (Ithr) was significantly lower at AIS. For
a reasonable explanation of “low-Ithr-but-high-Vthr” phenomenon, they further tested
the effect of TTX. They suggested that the effect they observed were due to the high
Na+ density, but not the shifted voltage dependence; and, in result, they claimed
that the membrane potential in AIS is boosted in prior to AP initiation by the same
Na+ channel that underly the AP generation. This leads to a seemingly higher Vthr
at AIS. When the Vthr at soma was measured isolatedly, it was found that Vthr at
soma was 20 mV higher than Vthr at AIS.

In many cases, the threshold at the soma was taken as Vthr; however, a realistic
Vthr value can be obtained only if the threshold is measured at the site of initiation.

2.2.3 Channel Density

As also mentioned by Colbert and Johnston [38], there is a requirement of some
critical assumptions previous to the estimation of the channel densities, i.e. at the
axonal regions. For instance, the following features are assumed to be known in
advance (Colbert and Johnston [38]; Fleidervish et al. [60]):

• The area of the patch,

• The probability of opening,

• The number of activable channels,

• Uniformity of density in the membrane (no clustering),

• Statistically independent gating of ionic channels,

• The specific binding of labeling to the ionic channel (in case of immunohisto-
chemistry and confocal microscopy studies) .

Therefore, instead of a direct measure, a relative measure of channel densities for
different regions of a neuron would be more reasonable, though not exactly precise.

Colbert and Pan [39] also suggested that the biophysical properties of axonal Na+

channels rather than a high density of those channels in the initial segment, are most
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likely to determine the lowest threshold for AP initiation. The required densities
would be as high as 100-fold. Such very high densities, up to 500-1000-fold densities
as required by the results of Astman et al. [11], were hypotesized in a theoretical study
(Mainen et al. [117]); however, the experimental studies did not confirm such high
densities. For instance, immunohistochemical studies indicate that Na+ conductance,
gNa, may be as high as 10-fold than in AIS compared to soma (Catterall [35]; An-
gelides et al. [7]). A freeze-fracture found that the total number of particals in initial
segment is only 3-fold of that in soma (Matsumoto and Rosenbluth [121]). Further
studies approved this early finding (Colbert and Johnston [38]; Colbert and Pan [39];
Kole et al. [97]; Fleidervish et al. [60]). Fleidervish et al. [60] showed the ratio of
somatic and axonal Na+ channel densities measurements on Na+ flux density. This
measure give a ratio of 3:1 axon-to-soma. However, it was not possible to directly
take this ratio as the channel density ratios in two regions, as that would require the
shape of APs and the temporal kinetics of underlying channels to be the same. They
showed that the time to peak is 20-30% briefer in AIS, which means there will be a
Na+ flux residue at the same time window compared to soma. Therefore, the ratio
would be even less than 3-fold channel density in AIS compared to soma.

It is essential to mention that when measuring channel density using immunohis-
tochemistry, the probability of overestimation due to non-specific binding can not be
ruled out (Fleidervish et al. [60]).

2.2.4 Plasticity and Modulation of Excitability

It is known that the wiring of the brain is altered with experience. Up to date, most
of these changes were known to occur in the synaptic regions. Recent studies also
reported a more direct regulation : the plasticity of the AIS region also contributes
to the overall rearrangement and this contribution is very important considering that
any modulation on the excitability of this region would directly affect the generation
dynamics of the response.

Two of the recent studies provided very important information on AIS plasticity.
On the hippocampal neurons, it was shown in vitro that the increased input density
decreases the excitability of AIS region by translocating it more distally (Grubb and
Burrone [71]). This results were obtained from two different experimental designs:
(1) To mimic increased neuronal activity, the extracellular K+ levels were chronically
elevated. This approach provided evidence on the distal movement of AIS and all
the AIS-specific molecular structure, creating a non-excitable “spacer” region. This
spacer region was 21 µm long. (2) To manipulate the neuronal activity with a more
precise temporal control, they tranfected the culture to express Channelrhodopsin-2
(ChR2), which is a light activated ion channel (Boyden et al. [21]).The use of light
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stimuli provided the opportunity to directly trigger spiking in the desired region. The
results obtained with the high-frequency bursts of light further supported the first
finding - the distal translocation of AIS by increasing neuronal activity- whereas the
long-term, regular, low-frequency light stimuli at 1 Hz did not have an impact. Grubb
and Burrone [71] also showed that blocking of L- and T-type Ca2+ channels prevent
AIS from moving, sugggesting an activity-dependent Ca2+-control on AIS plasticity.

The in vitro findings were justified by the in vivo studies of Kuba et al. [103]. Pre-
viously, they showed that auditory coincidence detection is enhanced by the axonal
site of spike initiation (Kuba et al. [102]). Using immunohistochemistry on the chick
brainstem slices, they provided evidence about the dependency of AIS length on the
characteristic sound frequency that each neuron processes. AIS extension towards
soma was shown using Pan-NaV staining on the neurons with low characteristic fre-
quency (0.4-1 kHz). On the other hand, NaV channel expression started more distally
in the neurons with middle (1.0-2.5 kHz) or high (2.5-4.0 kHz) characteristic frequency
(Figure 2.8). Next, they tested the effects of hearing loss on AIS location (Kuba et al.
[103]). Removing the cochlea from one-day-old-chicks led to loss of synaptic input to
neurons in nucleus magnocellularis. Following the hearing loss, these neurons exhib-
ited an elongation of AIS by up to 70%. As these neurons lack dendrites, it was aso
confirmed that the excitability change was limited to axon. The authors also showed
that there is an increase in the total Na+ current in the axon although there is no
change in the channel density or subtype composition. Therefore, they suggested that
this increase was due to the expansion of AIS. This kind of change would obviously
imply that smaller current input would be sufficient to trigger response and therefore,
the reduced synaptic drive would be compensated after hearing loss.

Analyzing the two studies, Gründemann and Häusser [73] pointed also some unan-
swered questions in the studies. For instance, both studies were restricted to either de-
velopmental or pathological long-term manipulations and it is still not known whether
the AIS plasticity is a normal phyiological mechanism that could dynamically regu-
late excitability. If so, the individual preference of neurons in specific network states
and brain areas on either the expansion or displacement of AIS is still to be inves-
tigated. Furthermore, both of these groups left an unanswered question about the
effect of AIS changes on integration of synaptic inputs. This is particularly important
as the AIS region is known to be modulated by GABAergic synapses. It is yet to be
answered whether these synapses also displace with AIS. Although the Ca2+-related
mechanisms seem to be responsible, the details of the underlying molecular dynamics
of this kind of plasticity is also still unknown.
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Figure 2.8: The location of NaV channel clustering in the axon for neurons
with different characteristic frequencies. Left: Distance D and Length L of NaV
channel clusters as revealed by Pan-NaV staining for high, middle and low characteris-
tic frequencies. Error bars indicate standard errors and. Asterisk, P<0.01 compared
with moddle characteristic frequency. Numbers in parentheses are the numbers of
cells. Adapted from Kuba et al. [102].
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Figure 2.9: Intrinsic plasticity on AIS. (a) Grubb and Burrone [71] showed that,
in cultural hippocampal neurons expressing light-activated ChR2, bursts of activity
triggered by light lead to a calcium-dependent movement of AIS away from soma.
Consequently, neuronal excitability is reduced. (b) Kuba et al. [103] found that, in
neurons from the nucleus magnocellularis of chicks, deafness - and thus loss of sensory
input - caused by removal of the cochlea increases the length of AIS, leading to corre-
sponding compensatory increase in neuronal excitability. Adapted from Gründemann
and Häusser [73].
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3
Individual Neuronal Output as Linear

Response

3.1 Linear Response Theory

Each individual neuron serves as a unit in a complex signal processing system, which
filters and transmits the input as output to the other neurons. This signal processing
is complicated and non-linear in most cases, however, when the neuron is driven with
nominal parameters, it acts as a linear time-invariant unit. Therefore, its character-
istic response functions can be treated as transfer functions and analyzed accordingly.

The principle of coding in a population, which consists of neurons with low aver-
age firing rates, was formulated as the linear response theory of neuronal populations
by Knight [95],[96]. This theory in general explained how these populations could
encode in response to fast-changing stimuli. Later on, Gerstner [66] generalized the
theory by the application of artificial noise models. More sophisticated cortical neuron
models with the application of more realistic synaptic input currents then followed
(Brunel et al. [23]; Lindner and Schimansky-Geier [110]; Fourcaud and Brunel [61];
Fourcaud-Trocme et al. [63]; Naundorf et al. [131]). When constructing such synaptic
input, one should consider the Poisson-like distribution of individual realizations that
each neuron of a certain population receives. Therefore, the input can be considered
as two parts: a mean input current and a Gaussian noise in addition, which can be
time-correlated (colored noise) or not (white noise). Although synaptic filtering could
be ignored , e.g., for an instantaneous synapse (as in white noise), a finite correlation
time is more useful to construct a realistic noisy synaptic input (Fourcaud and Brunel
[61]; Fourcaud-Trocme et al. [63]). As it is described later, both the mean and the
variance of this noisy input was proven as significant determinants of linear response
properties (Brunel et al. [23]; Lindner and Schimansky-Geier [110]; Fourcaud and
Brunel [61]; Fourcaud-Trocme et al. [63]; Silberberg et al. [166]; Naundorf et al. [131];
Köndgen et al. [100]; Boucsein et al. [20]).

29
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3.2 Determinants of Cutoff Frequency

The input-output transformation performed by a neuron is classically characterized
by its frequency-current (f-I) relationship. As important as the dependence of firing
rate on the mean injected current, the neural response can be represented by terms
of its gain of modulation of the firing rate as a function of the input frequency. This
type of response were proven to have a low-pass characteristic with a decay 1/fα

when plotted in the double logaritmic plane (Fourcaud-Trocme et al. [63]; Fourcaud-
Trocme and Brunel [62]; Naundorf et al. [131]; Köndgen et al. [100]; Boucsein et al.
[20]). Until the inflection point, the response remains more or less stable. This input
frequency, after which the response ability of a neuron decays sharply, is called as the
cutoff frequency (fcut).

As explained in the next chapter, simple models such as linear integrate-and-fire
(LIF) models were commonly used to study the dynamic response properties of real
neurons. In the presence of white noise, LIF neurons behave as low-pass filters, with
a fcut depending on the passive membrane time constant and the average firing rate
of the neuron (Gerstner [66]; Brunel et al. [23]; Fourcaud and Brunel [61]). The gain
of the filter decays as 1/

√
fI , where fI is the frequency of the input current, and

its phase shift reaches 45 at sufficiently large fI . Additionally, in these studies, it
was shown that the time correlations in the input noise improve the accuracy model
response. However, Fourcaud-Trocme et al. [63] found that LIF model does not re-
produce the response the conductance based models. The most significant finding
of this study was the relationship between the cutoff frequency and the sharpness of
the action potential onset. The effect of onset sharpness or the so-called threshold

width (∆T) becomes more pronounced for increasing time correlation in the noise.
Besides, the cutoff frequency was shown to have a linear dependence on the average
steady-state firing rate (ν0).

It is already known that the activation of Na+ channels play a crucial role at the
onset and upstroke of an action potential. Intuitively, the activation kinetics of Na+

channels should be one of the major determinants of the cutoff frequency. Their effect
can be indirectly measured using the onset rapidness (or the so-called threshold width
∆T ). For instance, using the measurements from several in vitro studies (Fleidervish
and Gutnick [59]; Martina and Jonas [118]), Fourcaud-Trocme et al. [63] estimated
a ∆T in the range of 3-6 mV. This would correspond to a fcut in the range of 40-50
Hz (Figure 3.1) for the results obtained from a more realistic integrate-and-fire (IF)
model (exponential IF, EIF).

To sum up, the relations of fcut that are confirmed by both experimental and
theoretical studies are

1. The neuronal gain decays as 1/fα, with α > 1, at high frequency, independently
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Figure 3.1: Cutoff frequency of the EIF filter in the high-noise regime as
a function of the firing rate.The parameters of the EIF model were chosen to
match the conductance-based Wang-Buzsaki model (∆T = 3.48 mV, σV = 8 mV).
The cutoff frequency is approximately proportional to the average firing rate ν0 in
the simulations with white noise. Adapted from Fourcaud-Trocme et al. [63].

Figure 3.2: Cutoff frequency of the EIF filter in the high-noise regime as a
function of threshold width, ∆T . The cutoff frequency depends weakly on the
slope factor ∆T for white noise but strongly increases when ∆T decreases for colored
noise (ν0 = 24 Hz,σV = 8 mV. Values of the synaptic time constants are indicated in
the legend). Adapted from Fourcaud-Trocme et al. [63].
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of the characteristics of the input (Fourcaud-Trocme et al. [63]; Köndgen et al.
[100]; Boucsein et al. [20]).

2. fcut increases with increasing ν0 (Fourcaud-Trocme et al. [63]).

3. fcut is linearly dependent on the onset sharpness (or inversely dependent on
∆T ) in the presence of temporally correlated noise (Fourcaud-Trocme et al.
[63]; Naundorf et al. [130], [131]).

On the other hand, there are some important points about the cut-off frequency
that are still missing, such as (1) the method and the theory of extracting the pop-
ulation cut-off frequency from the single neuron response properties (i.e. the average
firing rate and passive electrical parameters such as membrane time constant) and (2)
the knowledge about the point, at which the population response can be dissociated
from the single neuron response.

3.3 Experimental Approach

Various in vitro studies were performed previous to Köndgen et al. [100] and Bouc-
sein et al. [20] for low frequency inputs (<20 Hz). Carandini et al. [33] found that
the regular-spiking cortical cells exhibit a linear response to the injection of a broad-
band noisy input and this response is flat up to 100 Hz. In some of these studies,
the response properties of cortical neurons to stationary fluctuating inputs have been
characterized over a limited range of frequencies (Chance et al. [36]; Rauch et al. [149];
Higgs et al. [80]; La Camera et al. [104]; Arsiero et al. [10]). However, Köndgen et al.
[100] and Boucsein et al. [20]) provided a further extended experimental framework
and presented striking findings as mentioned in the following sections.

The question of whether the neurons respond better to the stimuli, which are
encoded in the mean input current, or to the stimuli, which modulate the variance of
the input current is strongly debated. Silberberg et al. [166] addressed this question
and presented a surprising finding that the average output rate could adapt almost
instantly, with a time constant of 1 ms, when the amplitude of the fluctuating input
current was changed in a step-like fashion. In contrast, a step change in the mean
input generated a slow response, with the time constant of ≈20 ms.

The study adapted a direct approach to inject an in vivo-like current into the in
vitro neuron : First, they obtained realistic synaptic currents from whole-cell voltage-
clamp in vivo using different levels of excitation. Then, they injected these fluctuating
currents into the somata of pyramidal neurons in vitro. At a certain time point, ei-
ther the mean or the variance of the input current was changed instantaneously.
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Figure 3.3: Response of neocortical neurons to abrupt changes in input
parameters µ and σ2. In each case, 4,000 different virtually white noise current
traces (sampling interval in all of the experiments is τsample = 0.25 ms) were injected
into a pyramidal neuron sequentially. (A) Bottom: An example of a single current
trace injected. The arrow indicates the moment at which the amplitude of the mean
current was increased. Middle: Histogram of the ”population” response with a time
bin of 1 ms. At the transition point, the mean current was increased from 120 to 200
pA. Top: Raster plot of spike trains for 10 randomly chosen trials. Solid red lines
show the stationary levels of the response before and after the transition. B: same as
in A, but the set of current time courses featured a change in the population variance
from 22.5 to 90 pA2.s. Histogram binning is 1 ms. Adapted from Silberberg et al.
[166].



34 Chapter 3: Individual Neuronal Output as Linear Response

Intuitively, their predictions could be justified considering a population of neurons si-
multaneously receiving a redundant excitation. The neurons in the population would
be driven towards the threshold. Some of these neurons would fire and immediately
afterwards would synchronously enter in the refractory period. For a rapid response,
where the excitation amplitude would be massive, the population activity would be
saturated temporarily. Therefore, the authors claimed that this can not be the way
to transmit an analog signal. On the contrary, the increase in both excitation and
inhibition, which would imply an increased population variance of the inputs, would
trigger response only in a fraction of neurons. Thus, a large proportion of neurons
would not reach to the threshold, although their membrane potential may remain
fluctuating close to the threshold. This mechanism would both avoid the saturation
of the population activity and maintain a certain level of subthreshold activity that
can keep the neurons ready for continuous signals.

Köndgen et al. [100] confirmed the predictions of the theoretical studies Fourcaud-
Trocme et al. [63] and Naundorf et al. [131]. A power law decay was observed after
fcut as in previous studies, however, the decay was in the form of 1/fα with α >
1. This value was less than or equal to 1 in the previous studies (Brunel et al. [23];
Fourcaud-Trocme et al. [63]; Fourcaud-Trocme and Brunel [62]; Naundorf et al. [130]).

Recently, it was shown that the modulations in the noise variance can be tracked
significantly faster than the modulations in the main input (Boucsein et al. [20]). If
the stimulus amplitudes are sufficiently high, extremely fast stimuli up to 1000 Hz
can be tracked by the neuron.

The conclusions of Köndgen et al. [100] and Boucsein et al. [20] disproved the find-
ings of Silberberg et al. [166] as well as the theoretical conclusions of [95],Gerstner [66]
and Brunel et al. [23]. Although the background noise affects the neuronal dynamics
at intermediate and low frequencies, neither the noise density nor the correlation time
have an impact on the low-pass filtering profile (Köndgen et al. [100]). This conclu-
sion was in aggreement with Fourcaud-Trocme et al. [63] and Naundorf et al. [130].
However, the in vitro estimates of cutoff frequencies were still higher than what was
suggested by the conductance-based models (Köndgen et al. [100]; Boucsein et al.
[20]; Fourcaud-Trocme et al. [63]).

Naundorf et al. [130] and Boucsein et al. [20] both found that neurons with finite
action potential onset speed exhibit low-pass behavior for both additive and multi-
plicative modulation. Boucsein et al. [20] further confirmed these results for colored
noise and a variety of stimulus amplitudes. In contrast to the study by Silberberg et al.
[166], that used white noise and broad-band stimuli, Boucsein et al. [20] performed a
frequency resolved analysis, that provided them with a more direct comparison for the
theoretically predicted additive and multiplicative transfer functions. Furthermore,



3.3 EXPERIMENTAL APPROACH 35

Figure 3.4: Modulation depth (r1/r0) and phase-shift (φ) of the response to
a noisy oscillatory input. The instantaneous firing rate r(t) evoked by small sinu-
soidal currents over a noisy background revealed sinusoidal oscillations with amplitude
r1 and phase-shift φ, around a mean r0. Surprisingly, pyramidal neurons can relay
fast input modulations, up to several hundred cycles per second. The high-frequency
response behavior matches a power-law relationship with a linear phase-shift. Popula-
tion (n = 67 cells) response was averaged across available repetitions and distinguish-
ing between offset-currents above (suprathreshold regime) and below (subthreshold
regime) the DC rheobase of the corresponding cell. Data points corresponding to
distinct input modulation frequencies were pooled together in nonoverlapping bins
with size 0.1 -10 Hz (low frequencies) and 100-200 Hz (high frequencies). Error bars
represent the standard error across the data points available (32- 25) for each bin.
Markers shape and color identify the suprathreshold or weak-noise regime (black) and
the subthreshold or strong-noise regime (red). r0 ∼= 20 Hz (i.e., 19.7 Hz). Adapted
from Köndgen et al. [100].
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they observed that the response amplitude grew sublinearly with stimulus amplitude.
That notion, however, was contradictive to the theoretical studies that predicted lin-
ear response for a large range of amplitudes (Brunel and Hakim [25]; Brunel et al.
[23]; Fourcaud and Brunel [61]; Fourcaud-Trocme et al. [63]; Naundorf et al. [130]).

3.4 Theoretical Approach

Previous theoretical studies (e.g. Knight [95]; Gerstner [66]) emphasized the role of
background noise in simplifying the neuronal response dynamics under physiological
conditions and allowing arbitrarily fast-changing time-dependent inputs to be en-
coded undistorted (Köndgen et al. [100]).

Ensembles of LIF models were shown to act low-pass filter when treated with
additive white noise (Brunel and Hakim [25]; Brunel et al. [23]). Adversely, tem-
porally correlated noise as the input current triggers a response that remains finite
even for high frequencies (Brunel et al. [23];Fourcaud and Brunel [61]). These prop-
erties of LIF was, however, an oversimplification, while the realistic neuron models
exhibit same characteristics of response without a dependence on time correlation of
noise. The main parameter for the cutoff frequency seems to be the onset rapidness
(Fourcaud-Trocme et al. [63]; Naundorf et al. [130]).

The findings of Köndgen et al. [100] can be reproduced using a nonlinear integrate-
and-fire (NLIF) model with very small ∆T and a nonlinearity which is intermediate
between exponential and quadratic.The studies on NLIF and conductance-based mod-
els further predicted that the linear response of a neuron is always dominated by a
low-pass filter behavior (Fourcaud-Trocme et al. [63]; Fourcaud-Trocme and Brunel
[62]; Naundorf et al. [130]).
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Imitation of Reality : Neuron Models

The recognized physicist Yakov Frenkel once mentioned that a theoretical model of
a complex system should be like a good caricature. He meant that an ideal model
should emphasize the features that are most important and should downplay the de-
tails that are inessential. However, as he also mentioned, the dilemma about this
argument is that a researcher is almost always unacquainted on which feature is es-
sential and which is not until the phenomenon that is under study is understood well
enough.

The single-neuron modeling would be a fine example for this dilemma. One must
consider the details such as the relevant ionic conductances, neuron morphology and
realistic input properties when modeling a particular aspect of its individual dynam-
ics. What is more, one must also present predictions about the possible contributions
of these dynamics to the information processing of the neuron in its physiological
environment. However, such details are often unknown until they are explored in a
theoretical or experimental framework. Also, only the understanding of how a single
neuron operates as a part of a network reveals the facts about its coding and the level
of details required for its modeling. To overcome the problem, associating the results
of theoretical and experimental studies, even from different disciplines, can be more
helpful than it is anticipated.

4.1 Levels of Modeling

The earliest Integrate-and-Fire (IF) model was proposed more than a hundred years
ago (Lapicque, 1907). The model generates an AP when the integrated sensory or
synaptic inputs to the model reach a threshold value. It still remains as a commonly
referred model as it provides a simple mechanistic explanation for basic neural oper-
ations, e.g. encoding of stimulus amplitude in spike frequency (Herz et al. [79]). How
the single neuron properties contribute to (in micro-scale) information processing and
(in macro-scale) behavior is an intriguing question that directed scientists’ interest
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Figure 4.1: Model Comparison. The effiency of a model is defined under the
purpose of the theoretical framework that it will be used in. Therefore, some more
realistic and computationally expensive methods can be chosen over more simple
methods. Figure adapted from Izhikevich [91].

further into theoretical studies. The neuron models can serve for a variety of purposes
if only they can be fine-tuned to meet the respective needs of the study. Therefore,
there must be a balance between implementing sufficiently detailed mechanisms that
can account for the complex single neuron dynamics and reducing the complexity to
only essential details to make the model tractable. Herz et al. [79] employed a classifi-
cation of models according to their levels of complexity and mentioned the respective
functional implications and weaknesses of each level (Figure 4.2). In my study, I will
utilize a multi-compartmental model, which would stand somewhere between level I
and II , and a single-compartment model as would be in level III.

4.2 Realistic Approach

The models with morphologically realistic geometry are based on the experimental
findings. The anatomical reconstruction of a real neuron as a model provides infor-
mation on the contribution of spatial structure of a neuron to its functions. The
Rall model and the cable theory (Rall [144]) provided a basis for the more extended
multi-compartmental models. Rall [147] showed mathematically that the dendritic
voltage attenuation spreads asymmetrically. When voltage-dependent ionic conduc-
tances are also considered, the need for the multi-compartmental models emerge as
the numerical integration over the spatially discretized dendrites will be required to
solve the high-dimensional system of equations (Rall [145]). These models can be
quite complicated when modeling complex structures. For instance, more than 1000
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Figure 4.2: Examples of five levels of modeling. Level I: Detailed compartmen-
tal model of a Purkinje cell. The dendritic tree is segmented into electrically coupled
Hodgkin-Huxley-type compartments (level III). Level II: Two-compartment model as
mentioned in the text. The dendrite receives synaptic inputs and is coupled to the
soma where the neuron’s response is generated. Level III: Hodgkin-Huxley model, the
prototype of single-compartment models- the cell’s inside and outside are separated
by a capacitance Cm and ionic conductances in series with batteries describing ionic
reversal potentials. Na+ and K+ potassium conductances (gNa,gK) depend on voltage,
the leak gleak is fixed. Level IV: Linear-nonlinear cascade. Stimuli S(t) are convolved
with a filter and then fed through a nonlinearity to generate responses R(t), typi-
cally time-dependent firing rates. Level V: Black-box model. Neglecting biophysical
mechanisms, conditional probabilities p(R|S) describe responses R for given stimuli
S. Adapted from Herz et al. [79].
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Figure 4.3: A general scheme of a conductance-based (CB) model. The model
includes only Na+, K+ and leak currents, as also in Wang-Buz̀saki (WB) model.

compartments are required to model the dendritic tree of a pyramidal neuron when
simulating the spike back-propagation (Golding et al. [67]).

Obviously, the high dimensionality and elaborated geometry of the models men-
tioned above are serious drawbacks as their emergent properties are not completely
mathematically tractable. However, more reduced and still multi-compartmental
models can also serve as realistic models. For instance, two-compartment models
were used to indicate that homeostatic plasticity can follow from cellular learning
rules to recalibrate the channel densities on the dendrites (Stemmler and Koch [170])
and to optimize the spike encoding of synaptic inputs.

The more complicated models also often include the equations for gating kinetics
of ionic channels. The types of ionic conductances vary for almost each CB model.
The general expression for a CB model can be given as

CmV̇ (t) = −im + Iinj/A (4.1)

where Cm is the membrane capacitance, im is the membrane current that includes
various ionic conductances, Iinj/A is the injected current per surface area.

To produce a full AP waveform, at least one Na+ and one K+ conductances are
required. Therefore, I used a model with instantaneous Na+ current, a K+ current
and leak current by modifying the model given by Wang and Buzsàki [183] (Figure
4.3).



4.3 SIMPLISTIC APPROACH 41

4.3 Simplistic Approach

The demanding and time-consuming nature of realistic but complicated neuron mod-
els led to a search for simpler models that can still account for the neuronal dynamics.
As the first simplification, the spatial structure of the neuron is discarded and the ionic
conductances and their contribution to the AP generation and subthreshold response
behavior are targeted instead. The models, such as the classic single-compartment
Hodgkin-Huxley (HH) model ([83]), are still useful in understanding, e.g., the firing
pattern and spike frequency adaptation. However, it was also shown that some clas-
sical assumptions and utilization of HH model should be reconsidered as they can not
fully reproduce the onset dynamics of cortical neurons (Naundorf et al. [132]).

4.3.1 IF and Other Idealized Models

Although, the embodiment of the ionic conductances into the model is crucial when
the biophysical properties of a single neuron is investigated, the modeling on a
more conceptual level allows direct addressing to its computation. Therefore, linear-
nonlinear cascade systems and black-box approach are other simplified yet useful tools
(Herz et al. [79]). Also, further mathematical reductions and bifurcation analysis of
HH models (Rinzel and Ermentrout [153]; Izhikevich [91]) provided insight for the
observed response properties of IF and also resonate-and-fire (RF) neuron models.

The general form of IF models is

C (̇V ) = −gL(V − EL) + Ψ(V ) + Isyn(t) (4.2)

where C is the membrane capacitance, gL is the leak conductance,EL is the reversal
potential for leak conductance and Isyn(t) is the synaptic current. The Ψ(V) compo-
nent determined the characteristics of the IF model. The simplest form of IF models,
leaky IF (LIF), takes Ψ(V) = 0. LIF was used to study the linear response properties
in the following years; however, it was also shown that this model does fully reproduce
the response of neither the more complicated conductance-based (CB) models nor the
real neurons (Fourcaud-Trocme et al. [63]; Brunel et al. [23]; Fourcaud-Trocme and
Brunel [62]; Naundorf et al. [130], [131], [132]). Therefore, instead of this model,
other extended yet simple models were proposed. For instance:

• LIF models can be expanded to include a threshold potential where Ψ′(VT ) = gL;
a constant, ∆T = gL/Ψ

′′(V ) , that is in inverse relation with onset slope and the
threshold current for tonic firing, IT = gL(VT − VL) − Ψ(VT ) as in exponential
IF (EIF),

Ψ(V ) = gL∆T exp

(
V − VT

∆T

)
(4.3)
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MODEL METHOD AUTHOR(S)

LIF (a) additive white noise Tuckwell [178];
Brunel and Hakim [25];

Brunel [22];
Lindner and Schimansky-Geier [110]

(b) multiplicative white noise Tuckwell [178], Richardson [150]
(c) colored noise, short τI limit Brunel and Sergi [27];

Brunel et al. [23];
Fourcaud and Brunel [61]

(d) colored noise, long τI limit Moreno-Bote and Parga [128]
RF (e) low sub-subthreshold Richardson et al. [151];

frequency limit Brunel et al. [24]
QIF Lindner et al. [109];

Brunel and Latham [26]
EIF Fourcaud-Trocme et al. [63];

Fourcaud-Trocme and Brunel [62]

Table 4.1: A general overview for integrate-and-fire models in the literature.

or in quadratical IF (QIF)

Ψ(V ) =
gL

2∆T

(V − VT )2 + gL(V − VL)− IT exp

(
V − VT

∆T

)
(4.4)

Fourcaud-Trocme et al. [63]; Fourcaud-Trocme and Brunel [62]) or they can be
expanded to generate more nonlinear characteristics as in nonlinear IF (NLIF)
(Fourcaud-Trocme and Brunel [62]).

• Naundorf et al. [131] utilized the theta-neuron (θ-neuron) with a technique that
allows to compute the response at arbitrary frequencies.

• Another simple yet very efficient model to study the relationship between input
statistics and the neuronal output is the threshold model (Burak et al. [28];
Jung [93]; Naundorf [129]). This model was also further developed as the Gaus-
sian neuron model in a study by Tchumatchenko et al. [176].

In my studies, I will adapt the threshold model to use on a more complicated
multi-compartmental model in Part II. I will also compare my results on dynamic
linear response in CB models with IF models in discussion of Part II and Part III.



Part II

The effect of threshold variability
on somatic spike statistics in
multi-compartmental models
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Abstract

In most of the studies dealing with action potential initiation, electrophysiological
recordings on neurons are conducted at the soma instead of the actual initiation site.
The reason behind this design is the technical difficulties of recording from thin ex-
tension like axon. The actual action potential (AP) initiation site in cortical neurons
is the axon initial segment (AIS), which is 30-100 µm away from the soma. Therefore,
it is a topic of current interest whether somatic recordings faithfully reflect the prop-
erties of AP initiation at AIS initiation site. In this study, a multi-compartmental
conductance-based model, which is a modified version of Rall’s Ball-and-stick model
(Rall [144]), was used together with a statistical framework to analyze the somatic
potential fluctuations at a threshold-crossing time point in an axonal compartment.
This study provides information about whether the onset potential for spike genera-
tion in soma and AIS are identical or can strongly differ.
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5
Spike Concept and Threshold

The studies on the information encoding in neural networks or in a single neuron will
need complicated models when they are focused on the spike1 generating mechanisms
(Meeks and Mennerick [125]; Mainen et al. [117]; Kole et al. [97]). However, topics
such as relating the neuronal response to the input characteristics do not demand
such complexity. Even in some of the very early studies, simpler models of firing
behavior of neurons were described , for instance, by using a binary sequence of silent
and firing states (McCulloch and Pitts [124]). A recent simplistic threshold model is
proved to be sufficient to study the correlations between the input and the neuronal
response (Tchumatchenko et al. [176]). Still the response given by a threshold model
strongly depends on the varying threshold. Therefore, we used a slightly more com-
plex model (Rall [147]) to explore the effect of the threshold variability (or the choice
of threshold) on spike statistics and dynamic response properties.

The spike statistics are carried on using Spike-Triggered Average (STA) and
Spike-Triggered Variance (STV). Our results suggest that STA is linearly depen-
dent on the threshold and increases by distance from somatic end. On the other hand,
STV is not dependent on threshold, or STA.

5.1 Concept of Threshold

A neuron spikes only when it is sufficiently excited to cross a certain potential, namely
the voltage threshold, and no spikes can occur below this threshold.

The criterion to determine the threshold is usually defined to fulfill the particular
needs of individual experimental designs. For instance in in vitro studies, the thresh-
old might be defined over a certain parameter in the stimulus. This excitability

1To avoid confusion with the definitions that follows in this chapter, the term spike will be used
instead of action potential. A spike might differ in definition with action potential, when there
is not an actual waveform (section 5.1).

47



48 Chapter 5: Spike Concept and Threshold

threshold represents the minimal values of the chosen parameter, which is needed to
trigger a spike. Then, the membrane potential that corresponds to this excitability
threshold will be taken as the voltage threshold. However, it is obviously impos-
sible to choose such a stimulus parameter in an in vivo study, as the input to the
neuron can not be controlled. In these cases, the voltage threshold is defined at the
value at the onset of a spike (Platkiewicz and Brette [141]).

5.2 Spike-Triggered Statistics

When Vx(ti) > Ψ, which means that there is a spike at location x and time t, the
somatic potential Vs at spike time t can be stored and averaged over total num-
ber of threshold-crossings, n, to get what is called as the somatic Spike-Triggered

Average (STA), and the variance can be estimated to get the somatic Spike-Triggered

Variance (STV).

STA =
1

n

n∑
i=1

Vs(ti) (5.1)

STV =
1

n− 1

n∑
i=1

(Vs(ti)− STA)2 (5.2)

For a comparison to the numerical results, the analytical STA and STV were cal-
culated with the following assumptions (Wei et al.- submitted) :

• The soma is a point (x=0) and the axon is long-enough to treat as a semi-infinite
cable.

• The membrane potential fluctuations at the soma can be represented by Gaus-
sian noise.

Therefore, the model soma acts as a simple low-pass filter and

STA =

(√
π

2
σ−1
V̇x
C2
VsV̇x

(0)

)
+ Ψσ−2Vx CVsVx(0) (5.3)

STV = σ2
V − σ−2Vx C

2
VsVx(0)−

(
(
π

2
− 1)σ−2

V̇x
C2
VsV̇x

(0)
)

(5.4)
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where for a time lag τ

CVsVx(τ) = 〈Vs(t)Vx(t+ τ)〉 (5.5)

CVsV̇x(τ) =
〈
Vs(t)V̇x(t+ τ)

〉
(5.6)

and σ2
Vx

is the variance of Vx,σ
2
V̇x

is the variance of V̇x and σ2
V is the variance of

Vs.

More detailed calculations are given in chapter 6. The near-threshold potential
average and variance in the soma is used as a tool of somatic detection of the ax-
onal action potential initiation. Therefore, when a spike was detected at time ti at
a location x on the axon, somatic STA and STV were estimated at Vs(ti), meaning
τ = 0. For this reason,the covariances CVsVx(0) and CVsV̇x(0) were used instead of
the correlation functions CVsVx(τ) and CVsV̇x(τ) in equations 5.4 and 5.3. As given in
equations 5.1 and 5.2, the numerical STA and STV were also estimated with τ = 0.
An example for the numerical results of covariances CVsVx(0) and CVsV̇x(0) is given in
Figure 6.6.

From the analytical formulations, STV of the model is expected to be independent
of the threshold whereas a linear dependence on the threshold is expected for STA.
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6
Multi-compartmental (Ball-and-Stick)

Threshold (BST) Model

Spike-triggered statistics were obtained by using either passive (section 6.2) or partially-
active (section 6.3.2) BST model as will be described in the following sections. In a
passive threshold model, a spike is defined as the positive threshold crossing of V (t)
or ∆V (t) = V (t) - Vrest (Figure 6.1), where Vrest is the resting potential. If the trace
exhibits plateau-like formations above the threshold, Ψ, successive negative crossing
of the threshold may also be included in the criteria to distinguish a spike. Therefore,
these so-called spikes do not need to exhibit a full action potential waveform in our
numerical simulations, which enables us to work with a passive model. During a trial,
the threshold can remain constant throughout the neuron (constant threshold) or
change as a function of time and/or distance (dynamic threshold). In this study, a
constant threshold was used.

6.1 Model Methods

In BST model, the soma was not single-compartment, but was divided into 10 com-
partments with 1 µm each. Therefore, the radius of the sphere-like soma was 5 µm
and the surface area of the soma was approximately 150 µm2. Each somatic compart-
ment was homogeneous in passive electrical properties and in channel densities. The
axon had a radius of ra = 0.5µm. The first 10 µm after the soma was divided into 10
compartments with 1 µm each. After this point,each compartment had a length of
10 µm and the overall L ∼= 2000 µm. Therefore, the axon was long enough to treat
as a semi-infinite cable. The axonal compartments were also homogeneous in passive
electrical properties and in channel densities. λ ∼= 410 µm and τm = 10 ms.
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Figure 6.1: Passive BST Model: Upper figure gives a representation of the
passive ball-and-stick model. On the model, the compartments at x = 15 µm (red),
x = 120 µm (green) and x = 320 µm (blue) were marked. In the lower figure, the
subthreshold membrane potential traces of the marked compartments were given with
corresponding colors. The solid black line represents the constant threshold, Ψ = 5
mV. The colored ticks above the traces represent the time points of positive threshold
crossings, or spike times, for the trace with corresponding color.

Figure 6.2: The ball-and-stick model was used as a multi-compartmental threshold
model in our studies. The model had two parts: a sphere-like soma (d = 10 µm) and
a cylindrical axon, that is thin (d = 1 µm) and long (L ∼= 2000 µm ∼= 5λ) enough to
treat as an infinite cable.
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6.1.1 The Cable Theory

The probability that the neuron will fire an action potential or not strongly depends
on the attenuation and the delay of electrical signals through the thin and long exten-
sions of the neuron: dendrites and axon. These extensions can be treated as cable-like
structures when investigating the response (i.e. subthreshold) dynamics of spatially
extended neuron models. Therefore, the so-called cable theory provides a useful
theoretical framework.

In the cable theory, the ion flux through and out the membrane is estimated first
to construct the equation for the change in membrane potential in time t and dis-
placement x domains.

Due to the voltage gradient over x, a longitudinal current Il flows within a neuron.
For a section on the cylindrical extension that has a radius a and a length ∆x, the
longitudinal resistance Rl is estimated as :

Rl =
rL∆x

πa2
(6.1)

where rl is the intracellular resistivity. Then, the longitudinal current Il, that
flows in the direction of x will lead to a voltage drop of ∆V , such that

∆V = −IlRl = −Il
rl∆x

πa2
. (6.2)

Thus, for any point along the cable, Il is given as

Il = −πa
2

rl

∂V

∂x
. (6.3)

To determine the membrane potential V (x, t), the cable equation is derived as
a partial differential equation using the currents that flow through and out a com-
partment of length ∆x.

cm
∂V

∂t
=

a

2rl

∂2V

∂x2
− im + ie. (6.4)

where a is the radius of the cable and independent of x, and ie is the external
current. The equation itself implies certain boundary conditions. For instance (Dayan
and Abbott [47]):

• At the branching nodes, V (x, t) must be continuous, which means that the
functions V (x, t) defined along each of the segments must give the same results
at the node x. Also,at a node, the sum of entering or leaving longitudinal
currents must be zero.
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• Another boundary condition is imposed at the end of the cable : No current
should flow out of the end. This means that the spatial derivative must vanish
at a terminal point.

A more detailed mathematical analysis of the Ball-and-Stick model and the bound-
ary conditions is given in Appendix A.

6.1.2 Application of Cable Equation to the Ball-and-Stick
Model

A model that is a highly simplified, yet still captures some of the important features
of passive neuronal properties, was presented by Rall [144],[146]. In this model, a
single-compartment, compact soma region is connected to a single equivalent cylin-
drical cable. In the original model, this extension represents the entire dendritic region
of the neuron. The effect of critical passive neuron parameters, such as membrane
time constant and electrotonic length constant, on the unique neuronal response can
be analyzed using this simplistic model.

The cable equation for semi-infinite and non-branching cable-like extensions can
be adapted by the simple ball-and-stick (BS) model, where the model has only pas-
sive conductance and the same passive electrical parameters for both soma and axon.
Multiplying the equation 6.4 with rm (the membrane resistance), another repre-
sentation of cable equation that uses the membrane time constant (τm = rm.cm)

and the electrotonic length constant (λ =
√

arm
2rl

) as constant coefficients :

τm
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− im(t)rm + ie(t)rm. (6.5)

where im.rm gives V (x, t).

The subthreshold dynamics at soma can be represented as

τm
dVs(t)

dt
= −Vs(t) + ierm

τm
dVs(t)

dt
= −Vs(t) + rmil0 + rmiin (6.6)

where

il0 =
1

A
Il = −πa

2

2rl

∂V (x, t)

∂x
|x=0, (6.7)

iin = g2Lχ(t). (6.8)
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χ(t) is a Gaussian random input current in units of mV. Also, rm = 1/gL .

Thus, after the substitutions, the equation 6.6 becomes

τm
dVs(t)

dt
= −Vs(t) +

πa2

2ArlgL

∂V (x, t)

∂x
|x=0 + gLχ(t). (6.9)

Here, by defining a dimensionless constant

Z =
πa2

2ArlgLλ
(6.10)

and

µ(t) = gLχ(t), (6.11)

the equation 6.9 takes the final form of :

τm
dVs(t)

dt
= −Vs(t) + Zλ

∂V (x, t)

∂x
|x=0 + µ(t). (6.12)

Treating the axon as a semi-infinite cable (as in BST model), Wei [184] calcu-
lated the transfer of voltage fluctuations in the axon using Green’s function method.
Then, in the framework of Gaussian neuron model (Tchumatchenko et al. [176]),
he calculated analytically STA at soma. Here, I used his analytical framework as
a comparison to numerical results I obtained from BST model. For this purpose, I
briefly mention here the calculation of Vs(t) and its dependence on current µ(t). The
analytical formulations of STA and STV are as given in equations 5.3 and 5.4. The
detailed explanations and derivations are given in Wei [184].

The same approach can be used when the BS model is not passive but has at least
one compartment with active conductances (see section 6.3.2). However, this type
of BS model can not be represented using a one-dimensional cable equation as there
will be at least two distinct parts with different longitudinal resistances. Still, it is
possible to adapt a two-dimensional cable equation for such systems Wei [184].

The Vs(t) - µ(t) Relation

To have a better understanding of the somatic potential Vs(t) as a function of input
current µ(t), first, Wei [184] used the Laplace transform to cable equation on time
domain as follows :

∂2V (x, s)

∂x2
− (1 + τms)V (x, s) = 0. (6.13)

Assuming that voltage at infinity has a finite value and applying the Green’s
function,

V (x, s) ≡ Vs(s)G̃1(x, s) = Vs(s)e
−
√
τms+1x/λ (6.14)
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where G̃1(x, s) is the Laplace transform of Green’s function G1(x, t) in time domain.

Now, taking the Laplace transform of equation 6.12 over the time domain

τmsVs(s) = −Vs(s) + Zλ
∂V (x, s)

∂x
|x=0 + µ(s) (6.15)

and substituting V (x, s)

τmsVs(s) = −Vs(s) + Zλ
∂

∂x

(
Vs(s)e

−
√
τms+1x/λ

)
|x=0 + µ(s)

= −Vs(s) + Zλ

(
−
√
τms+ 1

λ

)
Vs(s) + µ(s)

= −Vs(s)− Z
√
τms+ 1Vs(s) + µ(s)

= −(1 + Z
√
τms+ 1)Vs(s) + µ(s)

µ(s) = (τms+ 1 + Z
√
τms+ 1)Vs(s)

V (s) =
1

τms+ 1 + Z
√
τms+ 1

µ(s) (6.16)

6.1.3 Analysis of Gaussian Neuron Model

A more simplified version of our threshold model was built by Tchumatchenko et al.
[176]. Using the analytical analysis given in this study, the spike measure (s(t)) of
a threshold model, which takes a stationary continuous random Gaussian process as
the membrane potential trace V(t), can be defined as:

s(t) =
∑
i

δ(t− ti) = δ(V (t)−Ψ0)θ(V̇ (t))
∣∣∣V̇ (t)

∣∣∣) (6.17)

Then, the stationary firing rate is estimated as:

ν0 = 〈s(t)〉 =
1

2πτs
exp

(
− Ψ2

0

2σ2
V

)
(6.18)

where

τs =
σV
σV̇
. (6.19)

Two important conclusions can be drawn from this formula :
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1. The term Ψ0 / σV determines the probability of threshold crossings. A decrease
in Ψ0 / σV will automatically lead to a decrease in ν0.

2. The faster fluctuations lead to a higher rate of threshold crossings. This is
represented in the equation as an increase in ν0 as τs decrease.

Also, the equation implies that it can only be used in fluctuation driven, low firing
rate regime, as the maximum value of ν0 is limited by the term 1/2πτS.

The analytical work (Wei [184]) utilized the Gaussian neuron model as the theoret-
ical framework. The theoretical results of the model was presented as the correlation
function of the membrane potential C(τ) and its derivatives, therefore, the implicit
form of C(τ) can be determined by choice. In the study by Wei [184], a difference of
two exponentials was chosen as the correlation function of the framework, such that :

CVs(τ) = 〈Vs(t)Vs(t+ τ)〉

CVs(τ) =
σ2
V

τD − τR

(
τDexp

(
−|τ |
τD

)
− τRexp

(
−|τ |
τR

))
. (6.20)

Then, STA and STV were estimated as given in equations 5.3 and 5.4.

6.1.4 Numerical Methods

The model was implemented using C++ in Linux environment (see Figure 6.3 for a
detailed scheme of the contents of the code). The implicit backward Euler integration
method was used with a 10 µs time step. The membrane capacitance ( Cm) was 0.1
nF / mm2. The membrane resistance (rm) was 1 MΩ.mm2, longtidunal membrane
resistance, rl, was 1.5 MΩ.mm and the membrane time constant was estimated as 10
ms.

6.1.5 Designing the Input Current

Depending to their functional roles, many neurons are intrinsically very noisy, there-
fore, exhibit spontaneous firing even in the absence of an external stimulus and the
outgoing spike train was considered as a random process even in the presence of a
stimulus. Both the stimulus and intrinsic noise trigger the spike trains in a cooper-
ative fashion (Wiesenfeld and Moss [186]). Therefore, in a realistic simulation, the
input must be presented with a noisy component in addition to the deterministic part.

1. µ(t)
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Figure 6.3: The contents of the model in C++ code. The parameters p and
KJ , the concept of cooperativity and the implementation of cooperativity in the model
(red box) is explained in Part III.
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To obtain an analytical comparison to the numerical results of BST model, the
analytical framework of Wei [184] was used as described in section 6.1.2 and
6.1.3. The equation 6.16 implies method of producing the input current to have
the somatifc membrane potential Vs(t) in a desired form. The desired Vs(t) in
our analytical and numerical frameworks was an Ornstein-Uhlenbeck process.
Using the correlation functions for Vs(t) and Fourier transforms, a current µ(t)
was obtained, such that it has a variance σ2

I as

σ2
I = 2

(
1 +

τR
τD

)
σ2
V . (6.21)

The current was produced by a custom-written MATLAB procedure that uses
Runger-Kutta integration method with a time step of 10 µs. Then, this current
was fed into the source code of BST model.

2. Ornstein-Uhlenbeck (OU) Process as Injected Current

In the brain, neurons receive information under a bombardment of excitatory
and inhibitory synaptic inputs. The activity of numerous synapses in the cortex
creates a noisy background for the information processing of a single neuron.
This background noise can be characterized by Gaussian statistics and by an
autocorrelation function exponentially decaying with the time constant τI .

As a part of my simulations, I used a noisy current (Inoisy) that was generated
as a realization of an Ornstein-Uhlenbeck stochastic process with zero mean
and variance σ2

I to mimic the synaptic noisy input as following :

τI ˙Inoisy = −Inoisy + κζt. (6.22)

where ζt is a random variable drawn at every time step from a Gaussian dis-
tribution with a zero mean, called white noise; κ = X/∆t and ζt = ξt/∆t.
Integrating the deterministic part gives us

Inoisy(t+ ∆t) = Inoisy(t)exp

(
−∆t

τI

)
+Xξt (6.23)

and X can be set as

X = σI

√
1− exp

(
2∆t

τI

)
(6.24)

where σI is the variance of Inoisy.
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The value of τI corresponds the decay time constants of synaptic currents. In a
range of 5-20 ms fast synaptic currents such as AMPA- and GABAA-mediated
currents. The current was injected at the middle compartment of the soma (e.g.
5th compartment).

3. Sinusoidal Noisy Input Current

To probe the dynamic response properties of the PA-BST model under in vivo-
like conditions, independent realizations of noisy current were synthesized in
the source code of BST model and were injected at the soma .

Iinj = Inoisy + Isin (6.25)

where Inoisy is as in section 8.1.4 and

Isin = I1sin(2πfIt). (6.26)

6.1.6 Passive and Active Model Parameters

The conductances of each compartment was adjusted as a modified version of Wang-
Buzsaki model (Table 6.1). Each compartment had K+ current, instantaneous Na+

current and leak current. If the model was set as passive, then all the active conduc-
tances (Na+ and K+) are discarded and the membrane current is modeled only by
leak current.

The conductance-based BST model is expressed using classical channel gating
mechanisms as suggested by Hodgkin and Huxley [83]. The dynamical changes in the
membrane potential, V(t), is determined by integrating the equation

cmV̇ (t) = −im +
Iinj
A
, (6.27)

where the membrane current im is

im = iNa + iK + iL (6.28)

and Iinj , the injected current, is divided by the surface area, A.

Using Ohm’s Law and defining the channel conductance as the product of maximal
conductance and the opening probability of individual channels, the ionic currents are
estimated as

Instantaneous Sodium Current :

iNa(t) = ḡNam
3
∞(t)h(t)(V (t)− ENa) (6.29)
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Channel Type Channel Density (ḡ) (pS/µm2) Reversal Potential (mV)

Na+ channel 350 55
K+ 150 -90

Leak 1 -65

Table 6.1: The maximal conductance per unit surface (or channel density) and rever-
sal potential in Wang-Buzsaki model (Wang and Buzsàki [183]).

Potassium Current :
iK(t) = ḡKn

4(t)(V (t)− EK) (6.30)

Leak Current :
iL(t) = ḡL(V (t)− EL) (6.31)

where ENa, EK and EL are the reversal potentials; ḡNa,ḡK and ḡL are the maximal
conductances (Table 6.1) and m,n and h are the gating particles.

6.1.7 Data Analysis

Data were obtained from the simulation as either potential traces, spike times or both.
Data analysis were performed in MATLAB v.7.0.0 and v7.2.0 using custom-written
functions and procedures.

The number of repetition for same set of current parameters (µI ,σI ,τI ,I1 and fI)
were at least 3000. An example of the sinusoidally modulated response is given as
raster plot of 1000 spike train repetitions in Figure 6.27. The explored range of
frequency was 1-500 Hz. The noisy current parameters were not varied. I1 value was
set to 10% of the µI value. The spikes were pooled with respect to the spike times
and then, were binned into a Peristimulus Time Histogram (PSTH). The bin size
was 1/30 of 1/fI , where fI is the frequency of the injected sinusoidally oscillating
current. The spike count average over repetitions were fit using a least-squares
method with the equation

ν(t) = ν0 + ν1sin(2πfIt+ φ). (6.32)

Gain of the modulation was obtained as ν1/ν0 for frequency fI . ν0 was chosen as ≈
10 Hz. The confidence interval for α = 0.05 was given as error bars on ν1/ν0 - fI curve.

To compare the analytical results with the numerical results, a two-way ANOVA
test was used and the p-values were given in parenthesis in the text, where necessary.
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Figure 6.4: 3-D representation of subthreshold potential response (∆V = V
- Vrest) in passive BST model. The response was obtained under noisy current
injection (σI = 9 pA,τI = 20 ms, µI = 0).

6.2 Response Properties in Passive Model

The subthreshold potential changes (∆ V = V - Vrest) (Figure 6.4) as a response to
the noisy current was treated with a constant threshold approach. The subthreshold
response was expressed in a passive linear model, consisting of only the leak current :

cmV̇ = −gl(Erev − V ) + Iinj. (6.33)

The attenuation in ∆V became visible only approximately after 60 µm, with more
attenuation at higher frequency fluctuations (Figure 6.5).

6.2.1 Threshold Dependence of Spike Statistics

Threshold variability in this model was computed as described in the previous sections
by choosing threshold values on the axonal subthreshold fluctuations. The positive
threshold crossings (∆Vx(ti) > Ψ) were considered as a spike. Then, the somatic STA
and STV were estimated for ∆Vs(ti).

A typical analysis set for the passive BST model under OU input current injection
is given in Figure 6.7 (σI = 6 pA, τI = 5ms, µI = 0). At σI = 6 pA, σV ∼= 3.3 mV. The
same data analysis was also performed for µ(t) as input current (see section 8.1.4) .
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Figure 6.5: The current injection and the voltage response in passive BST
model. The current is injected at x = 5 µm in the soma and the voltage traces at
different compartments are shown with the colors as given in the figure. Attenuation
of the subthreshold fluctuation amplitude was visible at x = 120 µm and x = 320 µm

Figure 6.6: The normalized soma-axon correlation. The correlations CVsVx(0)
and CVsV̇x(0) were normalized as CVsVx(0)/σ2

V and CVsV̇x(0)/σV σV̇s and plotted against
the distance in units of λ (Csvx = CVsVx ;Csdvx = CVsV̇x ;σdv = σV̇s). The statistics
were obtained under noisy current injection (σI = 9 pA,τI = 20 ms, µI = 0).
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Figure 6.7: A typical analysis set for passive BST model. Upper left : The
change in variance of the membrane potential at compartment x, Vx, and its deriva-
tive, V̇x by increasing distance. Upper right : Numerical and analytical STA results
for Ψ = -1 mV (red), Ψ = 0 mV (green) and Ψ = 1 mV (blue). Dots represent
the numerical results whereas the solid lines represent the analytical results. Lower
left : Numerical STV results for the same threshold values. Lower right : Numerical
STV/σV results for the same threshold values.
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Figure 6.8: Dependence of STA on threshold variability and distance from
somatic end in passive BST model under correlated current injection. Nu-
merical and analytical results of STA/Ψ for threshold values Ψ = 1 mV (black), Ψ =
2 mV (blue) and Ψ = 3 mV (red). Solid lines represent the analytical results whereas
the dots represent the numerical results. (τR = 10, τD = 2).

STA results for both type of input currents the passive model were linearly de-
pendent on the choice of Ψ and on the distance from somatic end. For OU process
as current, the analytical results were in match with the numerical results (p > 0.05;
Figure 6.9). However, the results obtained by µ(t) as input current exhibited some
differences. For instance, the linear dependence on distance almost disappeared after
x = 400µm. The analytical and numerical results also exhibited some discrepancy
when x > 400µm, but up to this point, they matched as in the previous case (p > 0.05)

On the other hand, STV was completely independent from the threshold values
and was exponentially dependent on the distance from somatic end. STV exhibited
slight dependence on threshold under µ(t) as input current. Until 200 µm away from
soma, the analytical and numerical results were coherent, however, after this point,
they did not match (p < 0.002).

6.2.2 Impact of Current Statistics

The current statistics, i.e. the variance, σI and the time correlation, τI , of the cur-
rent affect the response properties of BST model. As σI increases, the variance of
the membrane potential, σV , is also expected to increase. As the analytical calcula-
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Figure 6.9: Dependence of STA on threshold variability and distance from
somatic end in passive BST model under OU current injection. Numerical
and analytical results of STA/Ψ for threshold values Ψ = 2 mV (red) and Ψ = 3 mV
(green). Solid lines represent the analytical results whereas the dots represent the
numerical results. (σI = 9 pA, τI = 20 ms, µI = 0).

Figure 6.10: Dependence of STV on threshold variability and distance from
somatic end in passive BST model under correlated current injection. Nu-
merical and analytical results of STV/σV for threshold values Ψ = 2 mV (red) and
Ψ = 3 mV (green). Dots represent the numerical results and the solid blue line
represents the analytical result. (τR = 10, τD = 2).
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Figure 6.11: Dependence of STA on σI values in passive BST model. Ψ =
0 mV. Dashed lines represent the analytical results whereas the dots represent the
numerical results. red : σI = 6 pA; green: σI = 8 pA; blue: σI = 10 pA.

tions of the STA and STV also point out, an increase in σV will also lead to higher
STA and STV values. Indeed, this phenomenon was observed both for numerical
analytical results (Figure 6.11 and 6.12 ). Setting Ψ = 0, τI= 5 ms and I0 =0, it
was shown that the numerical and analytical STA increases more sharply by distance
as σI increases, and the numerical and analytical results still perfectly match for Ψ
= 0 (The match when Ψ > 0 was not as accurate as it is when Ψ = 0.). On the
other hand, the numerical and analytical values for STV also increases more sharply
when σI increases, but the discrepancy between the numerical and analytical STV
also increases. This discrepancy is more pronounces after 75 µm. σv values for σI =
6 pA, 8 pA and 10 pA were 3 mV, 4 mV and 5 mV respectively.

The analytical relationship between τI and the statistics of the membrane potential
was not as obvious as for σI . However, τI was expected to be inversely proportional
to STV. σv values for τI = 5 ms, 10 ms and 20 ms were 3 mV, 3.4 mV and 3.7 mV
respectively. An increase in τI was expected to result in lower values of STA and
STV. Both the numerical and analytical results agreed with this prediction (Figure
6.13 and 6.14). For Ψ = 0, σI= 6 pA and I0 =0, the increase in τI led to decrease in
the STA and STV values, and therefore in the slopes of their relation with distance,
x. Moreover, for larger τI , the analytical and numerical STA results didn’t match so
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Figure 6.12: Dependence of STV on σI values in passive BST model. Ψ =
0 mV. Dashed lines represent the analytical results whereas the dots represent the
numerical results. red : σI = 6 pA; green: σI = 8 pA; blue: σI = 10 pA.
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Figure 6.13: Dependence of STA on τI values in passive BST model. Ψ
= 0 mV. Solid lines represent the analytical results whereas the dots represent the
numerical results. green: τI = 5 ms; red : τI = 10 ms; blue: τI = 20 ms.

well,which was also the case with STV. Also the dependence on τI for both STA and
STV is rather indicated a nonlinear pattern when compared to the dependence on σI .

6.2.3 Impact of Somatic Geometry

The soma diameter was 10 µm in the simulations mentioned in the other sections
and the axonal diameter was 1 µm in all cases. For measuring the impact of somatic
geometry on the spike statistics, the diameter of the soma is altered in a range of
10µm to 1µm. It is obvious that when the soma diameter is 1 µm, the model be-
comes simply a homogeneous cable.

The change in the somatic surface area did not have an effect on STA values. On
the other hand, the increase in the soma diameter led to a decrease in STV values.
However, this decrease occured only when the compartment x, on which the threshold
Ψ was set, was more than 200 µm away (Figure 6.15).
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Figure 6.14: Dependence of STV on τI values in passive BST model. Ψ
= 0 mV. Solid lines represent the analytical results whereas the dots represent the
numerical results. green: τI = 5 ms; red : τI = 10 ms; blue: τI = 20 ms.

6.3 Response Properties in the Active Model

All the active conductances were enabled for the active model. Two modes were
alternatingly used for the following simulations :

1. The all-active model : All the compartments had active conductances. However,
this model was not useful for the analysis of spike-triggered statistics.

2. The partially-active model : Only one compartment had active conductances
and the rest of the model was passive. This model was used to study the
passive propagation of action potentials and the action potential generation
without active contribution from neighboring compartments.

6.3.1 All-Active Model

In Figure 6.16 and 6.17, the propagation of an action potential from somatic end to
the axonal end of the model could be seen. The peak value of the action potentials
increased by distance from somatic end. The action potentials were initiated at the
soma, exactly at the site of current injection.
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Figure 6.15: Dependence of numerically estimated STA and STV on the
somatic geometry. STA and STV values for the model with varying somatic diam-
eters ( d = 1 µm (green), d = 1.5 µm (red), d = 10 µm (blue) ) were estimated for
noisy current injection (σI = 6 pA, τI = 5 ms, µI = 0) in passive BST model.
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Figure 6.16: 3-D representation of the action potential propagation in all-
active BST model. The action potentials were generated under noisy current
injection (σI = 5.5 pA, τI = 20 ms, µI = 1 pA).
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Figure 6.17: Contour plot representation of a single action potential propa-
gation in all-active BST model. The action potential was generated under noisy
current injection (σI = 5.5 pA, τI = 20 ms, µI = 1 pA).



74 Chapter 6: Multi-compartmental (Ball-and-Stick) Threshold (BST) Model

Figure 6.18: Attenuation of σVx by distance from somatic end in all-active
BST model. The decay is exponentially dependent on the distance and σVx decreases
to approximately 0.5*σVs after 670 µm. The action potentials were generated under
noisy current injection (σI = 5.5 pA, τI = 20 ms, µI = 1 pA).

As it could also be concluded from Figure 6.16, the standard deviation for the sub-
threshold oscillations in a compartment x on the axon, σVx , decreased as the distance
from somatic end increased. σVx/σVs showed an exponential decay with increasing
distance and σVx decreased to approximately the half of σVs after 670 µm (Figure
6.18).

For the simulations in all active ball-and-stick model, the channel densities were
homogeneous and ḡNa was 300 pS/µm2 for all the compartments. Therefore, the
action potential were always initiated at the site of current injection and then prop-
agated to the other compartments. On the other hand, the estimation of somatic
spike-triggered statistics demands an action potential initiation at the chosen com-
partment x. Hence, the all active ball-and-stick model can not be used for the nu-
merical estimations of STA and STV. This problem was solved by creating a partially
active model, such that only the compartment x is active and therefore, the action
potentials are initiated at this compartment.

6.3.2 Partially-Active Model

In the partially active model, each time a compartment i was chosen in the model
to be active and all the other compartments were left passive. This type of model
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Figure 6.19: The graphical explanation of partially-active BST model. On
the ball-and-stick model, a compartment i that is x µm away from soma was chosen to
have Na+, K+ and leak conductances (active compartment). All the other compart-
ments remained to have only the leak conductance (passive compartments). When
the noisy current was injected into the soma, the action potentials were generated
only at the active compartment and then back-propagated to the soma and forward-
propagated to the axon. (The active compartment is represented with orange color
in the figure.) Since each compartment that is more than 10 µm away from soma
had a length of 10 µm (Figure 6.2), the active compartment was actually an active
region of 10 µm length. (Please note that if a compartment in the axon hillock or
in the soma was chosen to be active, then the active region was only of 1 µm length
(Figure 6.2).)

allowed us to study

• Passive propagation of real action potentials;

• Action potential generation without active contribution from neighboring com-
partments;

• Isolated response properties of a single active compartment.

For all the reasons mentioned above, the partially active ball-and-stick model is
appropriate to study the spike-triggered statistics.

Action Potential Propagation in the Partially-Active Model

The action potentials were generated in the active compartment i, that is at xi µm
distance from the somatic end of the model (Figure 6.19). The attenuation of the
action potentials were visible at the soma for xi ≥ 40 µm (Figure 6.21). For xi ≥
380 µm, there were no more action potentials in the soma. This value is close to the
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Figure 6.20: 3-D representation of the action potential propagation in
partially-active BST model. The action potentials were generated under noisy
current injection (σI = 11 pA, τI = 5 ms, µI = 0 pA).
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Figure 6.21: Contour plot representation of the action potential propagation
from the active compartment in partially-active BST model. The white
line indicates the site of active conductance, and therefore, of the action potential
initiation. The action potential was generated under noisy current injection (σI = 11
pA, τI = 5 ms, µI = 0 pA).
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electrotonic length constant (λ ∼= 412 µm), therefore it might be concluded that the
real action potential can not propagate on a passive model more than the electrotonic
length constant, which is as expected.

The action potentials are initiated at xi = 120 µm. The antidromic conduction ve-
locity was 2.5 m/s (Figure 6.23) and 500 V/m (Figure 6.22). The axonal electrotonic
length constant was measured as 400 µ from Figure 6.22. This value is very close to λ
= 412 µm of the passive BST model. The orthodromic conduction velocity for x < λ
was 3.45 m/s whereas it was 2.04 m/S for x ≥ λ. This high conduction velocities are
not comparable to the real (e.g. cortical) neurons, which have a conduction velocity
in the range of 1 m/s. However, as action potentials in the partially-active BST model
propagate on a fully passive membrane and as the model has a very simple geometry,
a higher conduction velocity was anticipated. The two-piece orthodromic conduction
velocity stems from the passive conduction on the cable-like axon. It was known that
action potentials can not propagate further away from λ on a passive cable by def-
inition, which was also supported by our results. Therefore, a lower velocity for the
conduction of membrane potential fluctuations (caused by the real action potential in
active compartment) towards the axonal compartments at x > λ was also anticipated.

Spike-Triggered Statistics in Partially-Active Model

As also in the all-active model, σVx/σVs decreases by increasing distance from the
initiation site, which is located at xi = 120 µm. Due to the different geometry
between soma and axon, this decrease on antidromic and orthodromic directions can
not be symmetrical (Figure 6.25) and

σVxi = 1.35 ∗ σVs
σVxi+λ = 0.25 ∗ σVs

The numerical STA and STV estimations for the partially-active BST model are
given in Figure 6.26. As in the passive BST model, STA is dependent on threshold.
STV values are identical for all threshold values until 75 µm. Even after this point,
the difference between STVs for different threshold values is negligible. These results
also agree with the passive BST model.

6.4 Dynamic Response in Partially-Active BST Model

The response to the sinusoidally modulated input current (see section 6.1.7) was ob-
tained from the partially-active BST model at x = 4 µm and x = 40 µm away from
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Figure 6.22: The conduction of maximum potential in partially-active BST
model. The active compartment was located at xi = 120 µm. The dashed gray lines
indicate the distance from soma-axon meeting point to xi. The fit lines were obtained
by linear regression of y1 = vad ∗ x + b1 (blue) and y2 = a2∗exp(x/λ)− b2 (red). vad
was 500 V/m and λ was 400 µm. The action potential was generated by noisy current
injection into the soma (σI = 11 pA, τI = 5 ms, µI = 0 pA).
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Figure 6.23: Onset latency in partially-active BST model. The active com-
partment was located at xi = 120 µm. The action potential then propagated from xi
in antidromic and orthodromic directions. The fit lines were obtained by the linear
regression of yad = vad ∗x+b1 (blue), yod,1 = vod,1 ∗x+b2 (red) and yod,2 = vod,2 ∗x+b3
(light blue). vad was 2.5 m/s whereas vod,1 was 3.45 m/s and vod,2 was 2.04 m/s. The
action potential was generated by noisy current injection into the soma (σI = 11 pA,
τI = 5 ms, µI = 0 pA).

Figure 6.24: The normalized soma-axon covariance in partially-active BST
model. The covariance CVsVx(0) was normalized as CVsVx(0)/σ2

V . The statistics were
obtained under noisy current injection into the soma (σI = 11 pA, τI = 5 ms, µI =
0).
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Figure 6.25: Attenuation of σVx by distance from active compartment in
partially-active BST model. The active compartment was located at xi = 120
µm. The decay was exponentially dependent on the distance and was not symmetrical
in antidromic or orthodromic directions. σVxi was 1.35*σVs and σVxi+λ was 0.25*σVs .

The action potential was generated by noisy current injection into the soma (σI = 11
pA, τI = 5 ms, µI = 0 pA).

soma. Data were collected in separate trials where each time only one compartment
was active.

It was expected that BST model exhibits a low-pass filter characteristic as in the
real (e.g. cortical) neuron. The results supported the predictions (Figure 6.28).

The steady state firing rate, ν0, was 10 Hz in both cases. This also corresponds
to the cut-off frequency, fcut, for both compartments (Figure 6.28). Although passive
electrical properties, geometry and channel denstities are same for both compart-
ments, because of their distance from soma, x = 4 µm was considered as the axon
hillock and x = 40 µm was considered as the axon initial segment. With this consid-
eration, it was expected that axon hillock should have a slightly slower decay in the
gain compared to axon initial segment. The resulting curves supported this predic-
tion.

To sum up, although the gain for axon hillock was slightly higher for axon hillock
than axon initial segment after fcut, the difference in ν1/ν0-fI curves of two compart-
ments that are proximal to the soma and 36 µm away from each other was very small.
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Figure 6.26: Dependence of STA (upper figure) and STV (lower figure) on
threshold variability and distance from somatic end in partially-active BST
model. Upper figure: Numerical results of STA for threshold values Ψ1

∼= -48 mV
(green), Ψ2

∼= -49 mV (red) and Ψ3
∼= -50 mV (blue). Lower figure: Numerical results

of STV is normalized with σV and shown for the threshold values given above. The
arrow and the dashed line indicates the point where the results for different threshold
values are no longer identical (x = 75 µm).The traces were obtained by noisy current
injection (σI = 5 pA, τI = 20 ms, µI = 0).
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Figure 6.27: Typical examples of Raster Plot (uppermost), PSTH (middle)
and ν(t)-t plot(lowermost). The graphs are obtained from axon initial segment
(x=40 µm) by injecting a sinusoidally fluctuating noisy current (fI = 1 Hz, II = 10
pA , σI = 11 pA, τI = 5 ms, µI = 0) to the soma. The steady state firing rate was
10 Hz. The method is explained in more detail in section 6.1.7
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Figure 6.28: Gain modulation under sinusoidally modulated input. Blue:
axon hillock, black: axon initial segment. σI = 11 pA, τI = 5 ms, µI = 0 pA, I1 =
10 pA, ν0 = 10 Hz
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6.5 Summary and Discussion

The most important implication of the results presented in this chapter is that the so-
matic and axonal potentials at the action potential onset does not differ significantly
if the distance from soma x is less than 100 µm.

The results presented in this chapter indicates some important aspects of the
implications of spike-triggered statistics in multi-compartmental neuron models:

1. Spike-triggered average (STA) is linearly dependent on the choice of
threshold. This conclusion was expected from the definition of STA, and it
can be used to validate the implementation of the model.

2. Spike-triggered variance (STV) is independent of the choice of thresh-
old. The numerical and analytical results matched until 200 µm from soma and
the measured STV was always lower than the analytically estimated STV. This
implies that the potential in the soma and in the axon until 200 µm away from
soma does not differ significantly at the time of threshold crossing.

A recent paper reported intriguing findings about the adjustment of neuronal ex-
citability by relocation of AIS either more proximal or more distal to soma (Grubb
and Burrone [71]). In this study, it was claimed that even very small distances such
as 5 µm could have a significant affect on the neuronal response and the firing rate.
However, the results of the simulations discussed in this chapter contradict with this
finding. The dynamic response properties of BST model suggest that even 35 µm dis-
tance is not far enough to generate a significant difference in the dynamic response,
e.g. in the cut-off frequency (Figure 6.28).
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Numerical Analysis of Cooperative
Na+ Channel Gating in the Axon

Initial Segment
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Abstract

Ion channels are the building blocks of of the information processing in neurons.
Therefore, any realistic neuron model should include effective and reliable ion channel
components.Most biophysical models are typically designed to study one particular
aspect of channel gating in detail, on the other hand, the neuron modelers require
broad coverage of the entire range of channel behavior. To achieve that, the approx-
imate representations of the channel structure-function relationship that omit the
structural features of the channels, which can not be properly constrained, are more
commonly used. The most popular representation of this type, the Hodgkin-Huxley
model, assumes the statistically independent gating of ionic channels. However, re-
cent studies pointed out that synchronous activity of Na+ are also observed for various
cell types. This synchronous activity means that the activity (e.g. opening) of one
channel triggers the activity (e.g. opening) of a certain fraction of its neighbors and
hence, these group of channels behave as a unit. Although there is no direct biological
proof that this type of cooperative Na+ channel activity is also existent in the axon
initial segment of cortical neurons, our estimations indicate that such mechanism
could be responsible for the high onset rapidness and the action potential waveforms
observed in cortical neurons, which can not be explained by the canonical Hodgkin-
Huxley type models. In this study, we explored the cooperative gating hypothesis on
two related models : a single-compartment conductance-based model with coopera-
tive Na+ channel gating kinetics (SC-COOP, chapter 8) and a multi-compartmental
conductance-based model with cooperative gating kinetics at the axon initial segment
(MCCAIS, chapter 9).
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7
Cooperative gating of voltage-gated ionic

channels

The cell membrane contains many subpopulations of ionic channels that are hetero-
geneously distributed.Although the distance between the channels of a certain type is
most of the time far enough to exclude a possibility of interaction, it was also shown
that some of the ionic channels tend to form clusters. For different cell types from
Archea to mammalian neurons, inter-channel coupling was shown to exist in these
clusters (Molina et al. [127]; Dekker and Yellen [48]; Saito et al. [155]; Marx et al.
[120]; Undrovinas et al. [179]; Huang [87])

The concept of inter-channel coupling contradicts with the basic assumption in
the classical Hodgkin-Huxley type models that the channels act statistically indepen-
dently. However, recent findings indicated that the predictions of classical Hodgkin-
Huxley type formulations for the AP onset and threshold variability do not satisfy the
findings for in vivo and in vitro (Naundorf et al. [132]) cortical neurons. Although it
is yet to be confirmed by the single channel experiments, recent macroscopic findings
suggested that cooperative gating of Na+ channels in cortical neurons is a plausible
explanation for the generation of such sharp AP onsets and threshold variability in
cortical neurons (Naundorf et al. [132]).

The collective behavior of individual neurons in a neural circuit, e.g. synchroniza-
tion, strongly depends on the AP generating dynamics of a neuron (Ermentrout et al.
[56]). Therefore,how this cooperative gating mechanism contribute to the individual
neural response and to the large-scale dynamics is yet another intriguing question.

To test the cooperative gating hypothesis using numerical and theoretical tools,
a single-compartment and a multi-compartment neuron model was constructed such
that Hodgkin-Huxley type conductance algorithms with the implementation of co-
operative Na+ channel gating kinetics form the skeleton of the models. To further
understand the impact of cooperative gating on large-scale dynamics, I analyzed the
linear response properties of each model in comparison to the non-cooperative models.
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The single-compartment cooperative (SC-COOP) model maintained a preliminary
step for my simulations. I investigated the characteristics of cooperatively gating
Na+ channels and its effect on the action potential generating mechanisms and on
the stationary and dynamic response properties in this simple theoretical framework.
The more realistic multi-compartmental cooperative axon initial segment (MCCAIS)
model provided with grounds to investigate some important aspects of real neurons,
such as :

• The action potential initiation dynamics and the site of initiation,

• The Na+ channel density distribution in different parts and the effect of varia-
tions in the channel densities,

• The action potential propagation and the conduction velocity,

• The effect of cooperative gating on the characteristics given above.

In this chapter, I will give a brief background on the experimental findings about
inter-channel coupling. Then, I will emphasize the possible outcomes of cooperative
gating hypothesis, that are relevant to the neural transfer functions and to the effi-
cient neural encoding.

7.1 Experimental Evidence

7.1.1 K+ channels

Simple homologue of mammalian ion channels, that can be found on the extremo-
phyle bacteria and that are significantly resistant to tough experimental conditions
provided an insight about the channel structures ad function. For instance, a K+

channel from the soil bacteria Streptomyces lividans, KcsA, was shown to exhibit
unexpectedly complicated opening and closing patterns, although it has the simplest
K+ channel structure known up to date (Doyle et al. [50] ; Molina et al. [127]). The
channel exhibits two distinct patterns : Low-opening-probability (LOP) and high-
opening-probability (HOP), where the low or high probability was defined upon the
probability of finding channel opening events in the recordings. A single channel
current was measured as 4 pA. In LOP pattern, both 4 and 8 pA closing and open-
ing events with single channel-like appearance were observed. The peak amplitude
histogram would display a binomial distribution if all the events were due to inde-
pendent opening of single channels. However, the histogram gave two peaks at 4 and
8 pA, suggesting the positive coupling of two channels. In HOP pattern, a positive
coupling of up to 5 channels was observed and was statistically confirmed using the
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Figure 7.1: Coupled gating of KcsA channels in the LOP pattern. Upper
figure: a recording containing only the minimal 4-pA single channel currents seen at
+150 mV; Lower figure: a recording obtained under identical conditions but contain-
ing predominant 8-pA currents resulting from coupling of two KcsA channels. The
peak amplitude histograms of each of the above recordings are shown to the right.
The latter 8-pA currents were the predominant events in most recordings of KcsA
taken in LOP patterns. The dashed lines in the two recordings (labeled ‘1’ and ‘2’)
indicate the 4- and 8-pA current levels. Adapted from Molina et al. [127].

same method. This study was performed on excised membrane patches from recon-
stituted giant liposomes containing purified KcsA. To show the clustering on the lipid
membrane, the authors performed also confocal microscopy and FRET measurements
(Molina et al. [127]). The results indicated clusters of KcsA channels on homogeneous
lipid membrane.

Inter-channel coupling was also shown for yet another K+ channel : hyperpolarization-
activated cyclic nucleotide-gated (HCN) channel (Dekker and Yellen [48]). The study
on HEK 293 cells showed that the single channel recordings in respond to a voltage
step resulted in variable delays with no channel openings which appeared highly corre-
lated in time. This coupled activity was also evident when the stochastic fluctuations
in microscopic currents were analyzed. The authors suggested some explanations for
the correlated channel openings. They claimed that the possibility of intra-channel
(or inter-subunit) coupling rather than inter-channel (or inter-protein) coupling was
unlikely due to the independent observations of single channel openings as well as
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Figure 7.2: Coupled gating of KcsA channels in HOP patterns. Uppermost
figure: a representative recording taken at +150 mV illustrating three successive
closings of 20-pA current levels in a HOP pattern similar to that shown in Figure 7.1.
I and II, some regions of the above recording in more detail, in which, in addition to
the main 20-pA current level, openings and closings of a smaller 4-pA current could
also be observed, along with other currents whose intensities are integer multiples of
the smaller 4-pA currents. The main gating event, however, corresponds to the 20-pA
currents, which seemingly result from the positive coupling of five of the smaller 4-pA
current levels. The amplitude histograms of each of the above recordings are shown
to the right. Dashed lines in B and C (flanked by numbers ‘1’ through ‘5’) are solely
to indicate the 4-, 8-, 12-, 16-, and 20-pA current levels.Adapted from Molina et al.
[127].
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Figure 7.3: Reconstructed giant liposome under confocal microscopy. A:
fluorescence microscopy images of KcsA clusters in a confocal cross-section of a giant
liposome containing Alexa 546-labeled KcsA. Large and highly fluorescent array-like
protein complexes of variable sizes are seen over a more homogeneous protein flu-
orescence background. In contrast to the marked heterogeneity in the distribution
of the KcsA protein from above, B shows that the fluorescence of a phospholipid
probe (NBD-DMPE) recorded in the same liposome is distributed much more homo-
geneously.Adapted from Molina et al. [127].
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multiple-channel openings in the recordings. Furthermore, a common sensing of the
fluctuation of an exogenous messenger was also ruled out as the cooperativity was
observed even in the absence of important messenger such as cAMP, PIP2 and Ca2+.
They suggested allosteric communication between channels as a simpler hypothesis
(Dekker and Yellen [48]).

The hypothesis of allosteric communication would easily be adapted for other
channels that were shown to act cooperatively. Therefore, I will mention this aspect
once again in the end of this chapter.

7.1.2 Ca2+ channels

The early studies on Ca2+ release channels (or ryanodine receptors) of the endoplasmic
and sarcoplasmic reticulum characterized the structure and kinetics of this channel
(Saito et al. [155]; Franzini-Armstrong and Protasi [64]). In one of those studies, the
ryanodine receptors were shown to form clusters using electron micrography (Saito
et al. [155]). As mentioned previously, the clustering of membrane proteins may leas
to functional inter-protein coupling (Huang [87]). Therefore, such interaction could
also be expected from ryanodine receptors. This prediction was confirmed by another
study that came ten years later. In ≈10% of the experiments performed in the study,
RyR1 channels exhibited single channel-like openings with two-fold (8 pA) of single
channel current amplitudes (4 pA) (Marx et al. [120]). This familiar phenomenon
was statistically analyzed again using the peak amplitude histograms, which failed
to show binomial distribution (see section 7.1.1). This and the results of previous
studies that confirmed the single channel current measurement of 4 pA approved the
suggestion that ≈10% of ryanodine receptors act as functionally coupled. It was also
intriguing that the electron micrographs of purified RyR1 homotetramers, that were
obtained in the previous study (Saito et al. [155]), showed that ≈10% of the struc-
tures are physically connected to form contacting pairs.

7.1.3 Na+ channels

The only study that showed cooperative activity for NaV channels was performed on
cardiomyocytes of rat and rabbit (Undrovinas et al. [179]). The study indicated that
lysophosphatidylcholine (LPC)-treated NaV channels exhibit opening patterns that
can only be explained by inter-channel coupling.

The results of the study indicated that LPC reduces the opening probability and
induces sustained open channel activity at depolarized potentials. LPC modification,
that caused a shift in activation, did not affect single channel conductance or reversal
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Figure 7.4: Ryanodine receptor clustering observed by thin-layer electron
microscopy. Left : The computer averaged top view of the ryanodine receptors,
obtained by averaging 240 negatively stained images.Middle and Right : After negative
staining, the purified receptor feet structures can be observed to connect. In the
middle, two cross-like structures connect via the legs of the cross, and the distance
between the white arrowheads is 12 nm. On the right, the square-like structures
associate approximately at the corners, giving an overlap of 8 nm (between white
arrows). Adapted from Saito et al. [155].

potential. The activation threshold shifted towards more negative potentials and the
midpoint of Boltzmanian conductance transforms shifted by 26 mV in cell-attached
patch-clamp and by 17 mV in inside-out patch-clamp. Most importantly, multi-level
openings were observed as superimposed opening of one channel on another. Syn-
chronous activity was evident in single channel current traces.

The authors also utilized the peak amplitude histogram to confirm the coupling of
Na+ channels. Non-binomial histograms provided further evidence for stochastically
non-independent channel gating.

Undrovinas et al. [179] suggested some possible mechanisms that can be respon-
sible for LPC-modified gating, such as :

• Changes in the membrane fluidity,

• Changes in the lipid protein interaction,

• The activation of mechanisms, that are activated infrequently in non-LPC-
treated cells (e.g. increase in cAMP due to increasing levels of LPC at heart
tissue (Ahumada et al. [1])),

• Disruption of cytoskeleton due to LPC-induced ischemia, which leads to further
changes in the membrane structure (Cantiello et al. [31]).
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Figure 7.5: Amplitude analysis of LPC-modified Na+ channel current and
examples of channel activities from an inside-out patch at a membrane
potential Vmem = -70 mV. The numbers 1,2,3 at the left each dotted line indicate
the single, double or triple unitary conductance levels. The channel current amplitude
distribution histograms are given on the right. At Vmem = -70 mV, the triple the
single channel current amplitude openings are more frequent than double amplitude
openings. Single amplitude events were observed rarely. The openings and closings
to double and triple levels were synchronized. The probabilities for a triple amplitude
opening (P3) and a double amplitude opening (P2) are given above the histogram.
Adapted from Undrovinas et al. [179].
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Figure 7.6: Amplitude analysis of LPC-modified Na+ channel current and
examples of channel activities from an inside-out patch at a membrane
potential Vmem = -80 mV. The numbers 1,2,3 at the left each dotted line indicate
the single, double or triple unitary conductance levels. The channel current amplitude
distribution histograms are given on the right. At Vmem = -180 mV, the triple the
single channel current amplitude openings are less frequent than double amplitude
openings. Single amplitude events were observed rarely. The openings and closings
to double and triple levels were synchronized. The probabilities for a triple amplitude
opening (P3) and a double amplitude opening (P2) are given above the histogram.
The zero current peak of the histogram was truncated at 6000 counts.Adapted from
Undrovinas et al. [179].
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The last mechanism was also observed for the clustering of ryanodine receptors
by freeze-fracture method (Post et al. [142]) and , although seemingly contradictory,
it can account for some levels of clustering. Therefore, it will be mentioned also in
7.1.4.

7.1.4 How do the neighboring channels couple?

Although some biological evidence about the cooperative activity of ionic channels
are provided, details of the underlying molecular mechanisms for such phenomena
are still unknown. However, to have synchronous activity in a population of ionic
channels, it is clear that the gating state changes of one channel must be transmitted
to the neighboring channels in some way. For this type of allosteric communication
between ionic channels, several mechanisms are possible candidates :

1. A protein-protein interface between channels, i.e. due to dimer, trimer or
tetramer formations (Neumcke and Stämpfli [134]; Angelides and Nutter [8];
Almers and Stirling [4]),

2. Reconciliation by an adaptor protein,

3. Allosteric changes in a linking cytoskeleton (Post et al. [142]; Undrovinas et al.
[179]; Grubb and Burrone [72]),

4. Interactions between subdomains of channel proteins, e.g. that are the binding
sites of cytosolic secondary messengers like cAMP, Ca2+ or PIP2 (Dekker and
Yellen [48]).

Other than allosteric communication, the coupling through the changes in the local
electric field is yet another possibility. The excess charges that flow through the open
channels may be also acting as cytosolic modulators for the neighboring channels
up to certain concentrations. Furthermore, the voltage-dependent or -independent
elastic changes of the lipid membrane may also lead to conformational changes in
the ionic channels, that may contribute to inter-channel coupling (Ursell et al. [180];
Silberberg and Magleby [167]).

Taking the specific molecular structure of AIS into account, an allosteric commu-
nication through linking cytoskeletal structures seems as a plausible mechanism to
coordinate cooperative NaV channel gating in this region. As mentioned in Part I,
the cytoskeleton of AIS, especially AnkyrinG and βIV-spectrin, are shown to be es-
sential in the recruitment and localization of specific NaV channels. However, further
investigation is required to prove inter-channel coupling in AIS experimentally.
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7.2 Functional relevance to neural encoding

Voltage-gated Na+ channels play the major role in the onset and the upstroke of the
action potentials. Therefore, the cooperative gating of these channels would results in
significant changes at the action potential initiation timescale. It was shown that the
onset rapidness could be an indirect measure of cut-off frequency (Fourcaud-Trocme
et al. [63]). Furthermore, the recent in vitro studies provided information about high
cut-off frequencies of real neurons (Köndgen et al. [100]; Boucsein et al. [20]) and a
recent theoretical work reported that smaller timescales at the AP onset help to re-
produce such high cut-off frequencies (Wei and Wolf [185]). Combining these results,
it can be concluded that very rapid onsets, such as the ones observed in cortical neu-
rons (Naundorf et al. [130],[132]), may lead to high cut-off frequencies in physiological
conditions. It is also reported that cooperative gating kinetics, when implemented
in classical Hodgkin-Huxley formulations, can indeed reproduce two most important
effects of the cortical neuron dynamics: rapid AP onsets and threshold variability
(Huang et al. [89]). Therefore, it is alluring to test this hypothesis on a more realistic
neuron model, and i.e. implementing the dynamics in AIS.
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8
Single-Compartment Conductance-Based
Cooperative Channel Gating (SC-COOP)

Model

The functional and the dynamical consequences of the cooperative channel gating was
first examined using spherical conductance-based single-compartment neuron model.

It was assumed that only a fraction p of Na+ channels exhibit the cooperative
channel gating. The inter-channel coupling strength (KJ) and cooperativity per-
centage (p) was introduced in the model construction, such that it could be varied
from statistical independence (p = 0 and/or KJ = 0) to very strong coupling (KJ
> 300 mV) in small (p < 30%) or large (p = 30%-50%) fractions of channel population.

The SC-COOP model was especially useful for the characterization of the activa-
tion kinetics and of the impact of the cooperativity on action potential waveforms and
response properties for a wide range of cooperativity fraction and coupling strengths.
The predictions of the model supported the hypothesis that introducing cooperative
gating kinetics instead of the canonical gating kinetics reproduce the rapid onsets ob-
served in cortical neurons (Naundorf et al. [130], [132]), with increasing steepness as
the coupling strength and coupling fraction increase. For a small range of KJ and p,
the model exhibited the biphasic action potential waveform, which is often observed
in the neurons of central nervous system (Eccles et al. [53]; Bean [15]). This finding
points out that steep action potential onsets and biphasic action potential waveforms
might be triggered by the simultaneous opening of a group of Na+ channels.

8.1 Model Methods

The SC-COOP model was implemented using C++ in Linux environment. The im-
plicit backward Euler integration method was used with a 10 µs time step. The
membrane capacitance ( Cm) was 1 µF / cm2. The radius of the sphere was 1 µm, if
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Figure 8.1: The spherical single compartment model

not mentioned otherwise. Therefore, the surface area was 12.6 µm2. The membrane
resistance (Rm) was 10 KΩ.cm2 and the membrane time constant was estimated as
10 µs.

8.1.1 Conductance-Based Model

We used a slightly modified version of the conductance-based that was proposed by
Wang and Buzsàki [183] (WB model) as described in section 6.1.6. This Hodgkin-
Huxley type model served as the backbone of our construction as we implemented
the cooperative sodium channel gating (Huang et al. [89]).

In WB model, Na+ channels respond to a voltage step by instantaneous activation.
This model exhibits type-I excitability and therefore, it has been employed in various
theoretical studies to explore the dynamical response properties of cortical neurons
(Wang and Buzsàki [183]; Fourcaud-Trocme and Brunel [62]; Naundorf et al. [131];
Fourcaud-Trocme et al. [63]).

8.1.2 Channel Gating Kinetics I : Statistically Independent
Gating

A widely accepted explanation for the gating kinetics of the voltage-gated ionic chan-
nels was provided by Alan Lloyd Hodgkin and Andrew Fiedling Huxley in 1952 after
their electrophysiology experiments on the giant axon of squid. One essential assump-
tion of their model was that the activity of individual channels is independent from
its neighboring channels.
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Channel Type Gating Particle V-dependence

Na+ channel m αm = 0.1(V+35)
1−exp[−0.1(V+35)]

βm = 4exp
(
−(V+60)

18

)
h αh = 0.35exp

(
−(V+58)

20

)
βh = 5

1+exp[−0.1(V+28)]

K+ channel n αn = 0.05(V+34)
1−exp[−0.1(V+34)]

βn = 0.625exp
(
−(V+44)

80

)
Table 8.1: The voltage dependence of Na+ and K+ type channels in Wang-Buzsaki
model (Wang and Buzsàki [183]).

The channel gating kinetics for a gating particle z is modelled by the equation

τz
dz

dt
= z∞ − z(t) (8.1)

where τz is the time constant and z∞ is the steady-state opening probability (or the
limiting value).

Each gating particle is assumed to switch between open and close states with an
opening rate, α(V ), and a closing rate, β(V ). The dynamics of the time constant and
the steady-state probability is governed by the equations utilizing these rates, such
that

τz =
Φ

α(V ) + β(V )
, (8.2)

z∞ =
α(V )

α(V ) + β(V )
, (8.3)

where Φ is a constant. To maintain a maximum activation time constant of
50 s, which is suggested by the sodium current measurements on cortical neurons
(Baranauskas and Martina [13]), Φ was set to 0.1.

The activation of Na+ channel is instantaneous, therefore m is substituted by the
steady-state function, m∞.

The opening and closing rates are dependent only on local membrane potential,
V, as given in Table 8.1.
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8.1.3 Channel Gating Kinetics II : Cooperative Gating

The cooperative gating model assumes that a single channel is coupled to K neighbor
channels, such that the opening of one channel increases the opening probability of its
neighbors. It might also be assumed that this cooperative activity will have similar
effects with a voltage shift in the membrane potential. Therefore, a unit coupling
strength in mV, J , can be defined such that it represents a voltage shift in the mem-
brane potential that results in the same amount of increase in the opening probability
of a single channel. Then, cooperativity can be implemented in the classical model,
by giving the voltage shift

Vshift = KJ(mcoop)
xhcoop (8.4)

and adding it in the canonical equations,

τ coopm

dmcoop

dt
= mcoop

∞ −mcoop(t), (8.5)

τ coopm (V ) = τm(V + Vshift), (8.6)

mcoop
∞ (V ) = m(V + Vshift), (8.7)

and

τ cooph

dhcoop
dt

= hcoop∞ − hcoop(t), (8.8)

τ cooph (V ) = τh(V + Vshift), (8.9)

hcoop∞ (V ) = h(V + Vshift). (8.10)

The opening of individual channels are modeled as a Markov process; and the
equations 8.5 and 8.8 represent the mean field approximation of cooperative channel
gating among a coupled population (Naundorf et al. [132]).

(Note : From now on, KJ will be referred together as the coupling strength for
simplicity.)

It is also assumed that only some fraction p of the channel population in a certain
area couple. Therefore, the cooperative gNa can be rewritten as

gNa =
[
(1− p)m3h+ pmx

cooph
]
ḡNa (8.11)

and p represents the percentage of coupling channels in the population.
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Note that, x = 1 for a part of the voltage clamp simulations (Figure 8.3) and
x = 3 for the rest of the simulations. We could simplify our analytical tests by using
x = 1 as it was suggested by in vitro recordings of Na+ currents in cortical neurons
(Baranauskas and Martina [13]).

8.1.4 Current Injection

The current templates, that mimic the in vivo synaptic currents, were generated in
C++ environment as embedded in the source code of the model. The noisy current
(Inoisy) was generated as a realization of an Ornstein-Uhlenbeck stochastic process
with zero mean and variance σ2

I to mimic the synaptic noisy input as following :

τI ˙Inoisy = −Inoisy + κζt. (8.12)

where ζt is a random variable drawn at every time step from a Gaussian distribution
with a zero mean, called white noise; κ = X/∆t and ζt = ξt/∆t. Integrating the
deterministic part gives us

Inoisy(t+ ∆t) = Inoisy(t)exp

(
−∆t

τI

)
+Xξt (8.13)

and X can be set as

X = σI

√
1− exp

(
2∆t

τI

)
(8.14)

where σI is the variance of Inoisy.

The value of τI corresponds the decay time constants of synaptic currents. In a
range of 5-20 ms fast synaptic currents such as AMPA- and GABAA-mediated cur-
rents. The current was injected at the middle compartment of the soma (e.g. 5th

compartment).

8.1.5 Data analysis

Data were obtained from the simulation as either potential traces, spike times or both.
Data analysis were performed in MATLAB v7.0.0 and v7.2.0 using custom-written
functions and procedures.
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Measuring Onset Rapidness

Comparing the onset rapidness of action potentials that are generated by different
mechanisms (i.e. canonical and cooperative channel gating kinetics) demands a solid
way of measuring these values. First of all, a threshold for the onset must be set.
Although there are several methods to describe a threshold, V̇ (ti) = V/s is chosen to
define an onset. Then, the slope of the phase plot (V vs V̇ ) at V̇ (ti) is measured to
obtain the onset rapidness, Γ.

8.2 Activation Kinetics of Cooperatively Gating Sodium

Channels

The steady state solution of mcoop
∞ is obtained from the intersection points of two

curves
y = m; (8.15)

y = f(m) =
1

1 + exp
[
−V+λam+V1/2

kA

] , (8.16)

where λa = KJH0. The details of this solution will be given in Appendix A of the
chapter. There is only one intersection point, m0, that can be obtained from

1− λm0 + λm2
0 = 0, (8.17)

where

λ =
KJH0

kA
. (8.18)

The solution has real roots only for

∆ = λ2 − 4λ,

λ ≥ 4.

(8.19)

Therefore, there will be a finite jump in the collective activation curve only when

KJ ≥ 4kA
H0

. (8.20)

To see the impact of cooperativity on the activation of Na+ channels, m3
inf and

τm were plotted against the membrane potential and also against each other (Fig-
ure 8.2). The step-function-like activation curve for strong coupling of channels (KJ
= 400 mV) implies that the opening of these channel occur instantly after crossing
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Figure 8.2: The activation kinetics of Na+ channels in cooperative and non-
cooperative model. The red line represents the cooperative model with strong
coupling (KJ = 400 mV) and the black line represents the non-cooperative model

the threshold potential, almost as an all-or-none event. On the other hand, non-
cooperative activation has a sigmoidal dependence on the voltage. Activation time
constants for cooperative and non-cooperative models display the same pattern : For
potential higher than -20 mV, strong coupling results in almost ten-fold smaller acti-
vation time constant compared to the non-cooperative model, which also implies an
abrupt opening of the channels.

The collective activation curves for different λ values are depicted in Figure 8.3.
The slopes of the sigmoidal activation curves increase by increasing λ. After the criti-
cal coupling strength, (λ∗ = 4 ), the curve exhibits a discontinuity at critical threshold
voltage, V ∗th. This behavior stems from an abrupt opening at threshold potential. The
threshold voltage shifts to more negative values (Vth < V ∗th) for stronger coupling (λ
> λ*) and the activation curve approaches to a step function. This implies a jump
from a state that almost all the channels are closed (mcoop

∼= 0) to a state that almost
all the channels are open (mcoop

∼= 1).
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Figure 8.3: The collective activation curves for x = 1 (upper figure) and x =
3 (lower figure). The color ligand is also given with the upper figure. The arrows
in both figures indicate the curves for critical coupling strength (λ∗). The dashed line
in the upper figure corresponds to the critical voltage threshold, which is V1/2 of the
curve for λ∗.
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The opening probability of finding NaV channels with cooperative gating kinetic at
a time t is calculated as Popen = mx

cooph. At Vmem < V ∗th, a smaller percentage of NaV
channels open more slowly compared to Vmem > V ∗th. However, they also inactivate
more slowly at lower voltage values therefore the duration that they remain open
lasts longer. The effective coupling strength strongly affects V ∗th and the duration
that the channels remain open. V ∗th shifts to more negative values as λ increases and
Popen decrease more slowly, meaning that the number of channels that remain open
decreases more slowly.

8.3 Action Potential Waveforms

The first few µs of an action potential give us an insight about the inherent action
potential generation mechanisms of a neuron. It is almost impossible to have a quan-
titative measure of this very small scale onset using a classical V-t plot. On the other
hand, the graphs of V̇ vs V, or the phase plots, are useful tools of measuring action
potential onsets because they clearly depict the rate of potential change at a certain
point membrane potential. A more detailed explanation of phase plots is given in
Figure 8.4.

8.3.1 Impact of Cooperativity on Action Potential Waveform
and Onset Rapidness

In response to a constant current injection, the action potential waveforms f the
model are scanned in a 2-D parameter space of cooperativity percentage p and cou-
pling strength KJ . The resulting phase plots were very sensitive to both of the
parameter (Figures 8.5 and8.6). In response to a large fraction of this parameter
space, the rising phase of action potentials were monophasic, however, biphasic rising
phases were also observed. Both regimes were highly sensitive to cooperative activity
(Figure 8.5 and 8.6).

For weak inter-channel coupling (KJ < 200 mV), action potentials exhibit a grad-
ual rising phase. For strong coupling in a small percentage of the channel population,
the action potentials exhibit biphasic rising with an initial phase of cooperative chan-
nel activation followed by a slower rising phase with canonical channel activation.
This type of action potentials are frequently observed in neurons of mammalian cen-
tral nervous system (Eccles et al. [53]; Bean [15]). On the other hand, strong coupling
in a large percentage of channel population induces action potentials with steep and
monophasic rising phases (Figures 8.5 and8.6).

Onset rapidness, Γ, increases monotonically with increasing coupling strength
(Figure 8.7). Action potentials of cortical neurons under physiological conditions
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Figure 8.4: The upper figure is the phase-plot representation of the action
potential in the lower figure. Same color and shaped arrows indicate same time
points.
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Figure 8.5: Phase plots for different coupling strengths and coupling per-
centages. A) KJ = 20 mV, B) KJ= 100 mV, C) KJ = 150 mV, D) KJ = 200 mV.
p values were altered for each trace from 0 (blue) to 50%(uppermost light blue). The
p values increase by 5% for each trace and the peak of V̇ vs V increase by increasing
p values (as shown with the arrow on the right-bottom).
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Figure 8.6: Phase plots for different coupling strengths and coupling per-
centages. A) KJ = 650 mV, B) KJ= 700 mV, C) KJ = 750 mV, D) KJ = 800 mV.
p values were altered for each trace from 0 (blue) to 50%(uppermost light blue). The
p values increase by 5% for each trace and the peak of V̇ vs V increase by increasing
p values (as shown in Figure 8.5).
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Figure 8.7: The change in onset rapidness (Γ) with increasing coupling
strength for p =10% (blue), p=20% (red) and p=30% (green). Γ is not
affected with the coupling percentage for KJ<400 mV and show deviations for higher
values of KJ. On the other hand, Γ increases for KJ> 150 mV. This finding suggests
that the coupling strength is a more critical parameter for onset rapidness measure-
ments compared to the coupling percentage.

exhibit a minimum Γ of 20 1/ms. Total coupling strength to obtain such an action
potential onset in our model is at least 400-450 mV. In other words, if it is assumed
that a channel is coupled with 10 neighboring channels, opening of each channel
would be equivalent to a voltage shift of approximately 40 mV. Such strong inter-
channel coupling would trigger highly synchronized channel openings and the coupled
channels would behave as a single unit. In the previous studies that provided evidence
of inter-channel coupling, exactly this type of highly synchronized channel activity
was reported (Marx et al. [120]; Undrovinas et al. [179]; Molina et al. [127]).

8.4 Impact of Current Statistics on Non-Cooperative

Model

The properties of the injected current may greatly affect the properties of neuronal
response. Therefore, the input parameters σI and τI of noisy current were altered
in successive trials before testing the model further with cooperative gating kinetics,
and the impact on characteristics of the neuronal response in the non-cooperative
single-compartment model was analyzed.
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Figure 8.8: Effect of σI on model firing rate. Noisy current with µI = 0,τI = 5
ms and with varying σI was injected into the model. The firing rate increased with
increasing σI as continuously, as for µI .

8.4.1 Firing Rate

The firing rate of the model with classical gating kinetics was almost linearly de-
pendent on σI (Figure 8.8). As it will be seen in the following sections, the model
represents a type-I neuron (Figure 3.17), therefore, the continuous and gradual in-
crease of ν with increasing σI was as predicted. On the other hand, the effect of τI
was not that obvious as in Figure 8.9. The slight increase in ν only occurred under
high σI (2 µA/cm2). Therefore, it could be concluded that σI has a greater impact
on the firing rate of the model compared to τI and the relationship between ν and σI
is almost linear.

8.4.2 Maximum Amplitude of Action Potentials

As for the firing rate, the maximum value of the action potentials were almost linearly
dependent on σI (Figure 8.10). Although a slight decrease was observed for increasing
τI under high σI (2 µA/cm2), the change was less than 10 mV (Figure 8.11). This
decrease might be due to the fact that there will be faster oscillations in the membrane
potential by small τI , which might decrease the time between two spikes and hence,
the peak amplitude of action potentials . However,for σI = 1 µA/cm2, the peak values
remained constant by increasing τI . This might be due to the fact that the changes
were too small to detect. In both cases, the values were very close.

8.4.3 Subthreshold Membrane Potential Oscillations

The subthreshold oscillations in the model were analyzed using standard deviation of
the membrane potential,σV . σV was positively dependent on σI and the relationship
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Figure 8.9: Effect of τI on model firing rate. Noisy current with µI = 0,σI = 1
µA/cm2 (blue) and 2 µA/cm2 (black) and with varying τI was injected into the model.
The firing rate increased increased slightly with increasing τI for σI = 2 µA/cm2 and
was independent of τI for σI = 1µA/cm2.

Figure 8.10: Effect of σI on action potential peak values. Noisy current with
µI = 0,τI = 5 ms and with varying σI was injected into the model.
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Figure 8.11: Effect of τI on model action potential peak values. Noisy current
with µI = 0,σI = 1 µA/cm2 (blue) and 2 µA/cm2 (black) and with varying τI was
injected into the model.

Figure 8.12: Effect of σI on subthreshold membrane potential deviations.
Noisy current with µI = 0,τI = 5 ms and with varying σI was injected into the
model.

was almost exponential(Figure 8.12). On the other hand, the effect of τI was not as
obvious as σI . A slight positive dependency on τI was observed with high values of
σI , however, for smaller σI , σV was independent of τI (Figure 8.13).



8.4 IMPACT OF CURRENT STATISTICS ON NON-COOPERATIVE MODEL
119

Figure 8.13: Effect of τI on subthreshold membrane potential deviations.
Noisy current with µI = 0,σI = 1 µA/cm2 (blue) and 2 µA/cm2 (black) and with
varying τI was injected into the model.



120 Chapter 8: Single-Compartment Conductance-Based Cooperative Channel
Gating (SC-COOP) Model

8.5 Impact on Frequency-Current (ν-I) Relation-

ship

Neurons are categorized as type-I or type-II according to the relationship between
their firing rate and the electrode current. Type-I neurons exhibit a firing rate that
rises continuously from zero as a function of the current. On the other hand, the firing
rate of type-II neurons jumps discontinuously to a non-zero value around threshold
potentials. The original WB model represents a type-I neuron, therefore, it was ex-
pected that our model is also a type-I neuron model. The results (Figures 8.14)
support our predictions. The difference between the firing rates for current values
higher than 2 µA/cm2 can be explained by the fact that SC-COOP model used a
modified version of membrane currents given in the study and it does not include
synaptic current contributions(Wang and Buzsàki [183]).

The frequency-current curves were highly sensitive to the activation of cooper-
ativity (Figure 8.15). Increase in coupling strength and cooperativity percentage
induce increase in the slope of ν-I curves under constant current injection. The dif-
ference between the maximum and minimum slopes is on the range of 3.5 Hz.cm2/µA.

The frequency-current relationship in response to noisy current injection (σI =
0.08 µA/cm2, τI = 5 ms) also exhibits sensitivity to variations in the coupling
strength and cooperativity percentage (Figure 8.17). Though slightly (maximum
2.5 Hz.cm2/µA), the slopes of the curves increase with increasing coupling strength.
This is more pronounced when a larger fraction of the channel population is coupled
(Figure 8.18). Compared to the constant current injection, the phase diagram pattern
for noisy current injection exhibits smooth borders between increasing steps and a
continuous and gradual increase for increasing coupling strength and cooperativity
fraction after p = 10 %.
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Figure 8.14: The comparison of ν-I relationship in SC-COOP and original
WB models. Upper figure: ν-I curve for SC-COOP model. The black lines are the
error bars for ν at the corresponding current values. The error under constant current
injection is very close to 0 for all measured values. Lower figure: Comparison of
SC-COOP and WB model (Wang and Buzsàki [183]). The red line represents the
modified WB (non-cooperative SC-COOP) model. The green line represents the
original WB model. The black arrow indicates the difference between the two curves.
Both models are type-I neuron models, as expected.
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Figure 8.15: The ν-I curves for KJ = 800 mV under constant current in-
jection. Gray: statistically independent (classical) channel gating, p = 0; cyan: p
= 5%; blue: p = 10%; magenta: p = 15%; red: p = 20%; black: p = 25%; yellow:
p = 30%; dark blue:p = 35%; dark green: p = 40%; light green: p = 45%; purple: p
= 50%. Some curves may not be visible due to overlapping. The error bars are not
indicated as the error is negligible in all cases.

Figure 8.16: The ν-I curves for p = 10% under constant current injection.
purple:KJ = 20 mV; cyan: KJ = 100 mV; blue:KJ = 200 mV; magenta:KJ =
300 mV; red:KJ = 400 mV; black:KJ = 500 mV; dark green:KJ = 600 mV; light
green:KJ = 800 mV. Some curves may not be visible due to overlapping. The error
bars are not indicated as the error is negligible in all cases.



8.5 IMPACT ON FREQUENCY-CURRENT (ν-I) RELATIONSHIP 123

Figure 8.17: The ν-I curves for KJ = 600 mV under noisy current injection.
Black: statistically independent (classical) channel gating, p = 0; magenta: p = 10%;
cyan: p = 20%; light green: p = 30%; red: p = 40%; blue: p = 50%. Some curves
may not be visible due to overlapping. The error bars for the frequencies at the
corresponding current values are estimated as 2*σf .

Figure 8.18: The phase diagram for ν-I curves under noisy current injection
(σI = 0.08 µA/cm2, τI = 5 ms). The diagram shows the increase in the slope of
ν-I curves with increasing coupling strength and cooperativity percentage. The slope
is estimated for the part of the curves that correspond to 0.6 - 1.3 µA/cm2 interval.
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8.6 Summary and Discussion

Single-compartment cooperative (SC-COOP) model was first developed by Min Huang
in MATLAB. Here, I implemented the model in C++ to test the implementation of
cooperative gating kinetics in a classical conductance-based model, which has the
same code structure with more complicated and more realistic models (see Chapter
9), but which is much simpler as it lacks the complicated geometry. I also used the
previous results as control groups.

The results described in this chapter and by Huang et al. [89] provided us insight
about the effect of inter-channel coupling on single channel activation and inacti-
vation (Figure 8.3). For higher values than critical coupling strength, the critical
potential threshold shifted towards more negative values and the activation curve for
NaV took the form of a step function instead of a Boltzmanian, which means that
the activation became simply an all-or-none event. Same type of behavior (a negative
shift in threshold potential for activation and an abrupt opening) was also reported
by Undrovinas et al. [179]. To sum up, the effective coupling strength is a significant
factor for the determination of critical activation threshold and of the duration that a
channel remains open, due to the changes in the opening and closing rates (Undrov-
inas et al. [179]).

Additionally, the cooperative activity affects the AP waveform, especially at the
onset. The onset rapidness strongly depends on the value of coupling strength, ad-
versely, the cooperativity percentage does not play a significant role as long as p <
30% and KJ < 400 mV (Figure 8.7). Furthermore, the biphasic action potentials as
observed frequently in cortical neurons (Eccles et al. [53]; Naundorf et al. [130],[132];
Bean [15]) were also observed for p < 35% and KJ > 400 mV.

Considering the relationship between onset rapidness and cut-off frequency (Fourcaud-
Trocme et al. [63]), the rapid AP onsets due to cooperative activity of Na+ channels
should imply high cut-off frequencies that were already reported for cortical neurons
(Köndgen et al. [100]; Boucsein et al. [20]). The proceeding step of this research,
therefore, should be the investigation of this relationship.

In conclusion, SC-COOP model serves well to the purpose of testing the imple-
mentation of cooperative gating kinetics and its effects. The results obtained from
the model suggest the possibility of having cooperative activity of Na+ channels in-
stead of stochastically independent activity in neuronal AP generating mechanisms.
To test the hypothesis further, one needs the utilization of a more realistic model
of AP initiation. Therefore, next, I used a multi-compartmental conductance-based
model which includes the axon initial segment (AIS) as the initiation site of the ac-
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tion potentials. As AIS should be the host to AP generating mechanisms, cooperative
channel gating was implemented only in this region. Also, the debates about the Na+

channel density distribution was considered and the possible contribution with or
without cooperativity was also investigated.
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9
Multi-compartmental Cooperative Axon

Initial Segment (MCCAIS) Model

The cooperative model was first implemented as a spherical single compartment model
as described in the previous chapter. However, neuron models with more complex,
multi-compartmental geometry would be needed for a more precise approach to the
actual effects of cooperative channel gating on AP generation of a cortical neuron
in its physiological environment, since the spatial heterogeneity of electrical proper-
ties might significantly affect the dynamics of AP generation and propagation. In
addition to the geometry and heterogeneous electrical properties, the heterogeneous
distribution of channel densities (i.e. for NaV channels) along the neuronal membrane
is particularly important. The recent studies pointed out an increased NaV channel
density at the proximity of the site of AP initiation (see Section 2.2), which is AIS in
the myelinated neurons. But:

• Which parameters determine the site of AP initiation?

• What is the most realistic range of NaV channel density at the site of initiation?

• Could a model with cooperative activity of sodium channels reproduce the AP
shape and onset rapidness as observed in the cortical neurons?

In this chapter, we address these critical questions and investigate their answers
on a multi-compartmental conductance-based model. The model consists of

• a thin cable-like extension with homogeneous thickness and homogeneous elec-
trical properties to represent the dendritic assembly,

• an octagon-shaped ball with homogeneous electrical properties to represent
soma,

• a thin cable-like extension with heterogeneous thickness and heterogeneous elec-
trical properties to represent the axon,

• a small octagon-shaped bleb to end the axon.

127



128 Chapter 9: Multi-compartmental Cooperative Axon Initial Segment
(MCCAIS) Model

The myelinated axon itself can be divided into further subgroups as the axon
hillock (AH), the axon initial site (AIS), the myelinated compartments and the nodes
of Ranvier (NR).

First multi-compartmental model that included AIS as a separate part with re-
alistic features was constructed by Mainen et al. [117]. Since then, many of the
multi-compartmental models included this segment, i.e. to investigate the AP ini-
tiation dynamics. However, there is no model up to now (to our knowledge) that
incorporated cooperative channel gating kinetics in AIS. The fact that there is still
no experimental evidence about the cooperative activity of Na+ channels in neurons
may be the underlying reason. Obviously, this type of experimental design is a difficult
one. However, the existence of Na+ channel coupling in cardiomyocytes (Undrovinas
et al. [179]) and the very fast onset dynamics observed in cortical neurons (Naundorf
et al. [132]) may imply the possible existence of such activity in AIS.

When similar ion gating properties are assumed, a greater density of sodium
channels in AIS should lead to a significantly larger Na+ current in this site. This
expectation is challenged with the electrophysiological studies with the cell-attached
and outside-out patch clamp mode, which revealed that there is only a small difference
in Na+ current between soma, proximal dendrites and AIS (Colbert and Pan [39]; Kole
et al. [97]). These findings are incompatible with what should be expected from large
density differences.

9.1 Model Methods

9.1.1 Numerical Methods

The model was implemented using C++ in Linux environment. The implicit back-
ward Euler integration method was used with a 10 µs time step. To maintain a
constant ν0 between trials for specific experimental designs, a current adapter was
also included in the code such that it changes µI of the injected current (see section
9.1.5) until the desired ν0 is obtained.

9.1.2 Model Geometry

The morphology of the MCCAIS neuron model was based on the experimental data
from pyramidal neurons (data kindly provided by Michael J. Gutnick, Koret School of
Veterinary Medicine, The Hebrew University of Jerusalem, Israel). A similar model
with only canonical gating kinetics was also used to study the AP onset and propaga-
tion by Huang [88] and the findings from this study provided a second control group
for our simulations (data not submitted).
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PART Ncomp lcomp (µm) a∗in (µm) a∗out (µm) Cm (nF/µm2)

Dendrite 1 6 50 0.5 0.5 10−5

Dendrite 2 10 10 0.5 1 10−5

Soma 20 2 1 1.5 10−5

Axon Hillock n 2 1.5 1.5 - ax 10−5

Axon Initial Segment 25 - n 2 1.5- ax 0.5 10−5

Myelinated Segment 5 10 0.5 0.5 2*10−6

Node of Ranvier 1 2 0.5 0.5 10−5

Bleb 5 2 0.5 0.5 10−5

Table 9.1: The parameters of Multi-Compartmental Cooperative AIS (MC-
CAIS) Model. Please also see Figure 9.1 and text.

The details of the model are given in Figure 9.1 and Table 9.2.

9.1.3 Passive Electrical Parameters

The membrane capacitance ( Cm) was 0.1 nF / mm2. The membrane resistance (rm)
was 1 MΩ.mm2, longitudinal membrane resistance, rl, was either 3 or 5 MΩ.mm and
the membrane time constant was estimated as 10 ms. A summary of the passive
parameters for each part is given in Table 9.2.

9.1.4 Ionic Channel Density Distribution and Gating Kinet-
ics

As in single-compartment cooperative (SC-COOP) model, MCCAIS model was also
built by modifying the conductance-based Wang-Buzsaki (WB) model. The details
of the model and, the classical and cooperative channel gating kinetics were given in
Chapter II. Furthermore, cooperative channel gating was implemented also for MC-
CAIS model, and as the name implies, only the Nav channels of AIS were assumed to
act cooperatively . Therefore, the cooperativity parameters (cooperativity percentage
p and coupling strength KJ) were set to zero in the remaining compartments.

The different views on the sodium channel density of AIS was discussed in Part I in
detail. Considering the broad variety of experimental findings and model assumptions,
the sodium channel conductance gNa in the different parts of MCCAIS model varied
from 300 pS/µm2 to 3000 pS/µm2. Somatic gNa, gsoma, was equal to 300 pS/µm2

and remained constant. The conductance in the the dendrites (gdend), axon hillock
(gAH), myelinated parts (gmye) and terminal bleb (gbleb) also remained constant and
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Figure 9.1: The geometry of Multi-Compartmental Cooperative AIS (MC-
CAIS) model.
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PART gNa gNa gK gLeak
(pS/µm2) (gsoma) (pS/µm2) (pS/µm2)

Dendrite 100, 300 0.3 ,1 150 1
Soma 300 1 150 1

Axon Hillock 300, 3000 1, 10 150 1
Axon Initial Segment 300 - 3000 1 - 10 150 1
Myelinated Segment 0 0 150 0.2

Node of Ranvier 300 - 3000 1 -10 150 1
Bleb 300 1 150 1

Table 9.2: The channel density distribution for MCCAIS. A dash between
two values means that the value of parameter was chosen in this interval. A comma
between two values means that the parameter took either the first or the second value.

were set as shown in Table 9.2. The conductances in the other parts, namely in AIS
(gAIS) and nodes of Ranvier (gNR) were varied from 1-10-fold gsoma.

9.1.5 Current Injection and Data Analysis

The design of the current injection was the same as used for SC-COOP model.

Data were obtained from the simulation as either potential traces, spike times or
both. Data analysis were performed in MATLAB v.7.0.0 and v7.2 .0 using custom-
written functions and procedures.

V̇ (ti) = 10 V/s is chosen to define the threshold as in the previous models (Part
II, Chapter II and Part III, Chapter II). Then, the slope of the phase plot (V vs V̇ )
at V̇ (ti) is measured to obtain the onset rapidness, Γ.

9.2 Action Potential Waveform in MCCAIS Model

The single-compartment cooperative (SC-COOP) model was used previously to char-
acterize the effect of cooperative in a simpler model, and the results indicated that
the cooperativity reproduced the sharp AP onsets that Hodgkin-Huxley model failed
to reproduce. Therefore, a similar behavior was expected for MCCAIS model.

The results from MCCAIS model also confirmed that, APs with high Γ (as in cor-
tical neurons (Naundorf et al. [132])) can be generated when cooperative Na+ channel
gating is implemented in a classical Hodgkin-Huxley type model (Figure 9.2). This
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Figure 9.2: AP waveforms in MCCAIS Model (gsoma = gdend). The APs were
obtained from the simulations on non-cooperative and cooperative MCCAIS models.
The cooperativity parameters are as given in the figure. gAIS = gNR = 3*gsoma =
3*gdend. A noisy current with τI = 5 ms and an automatically adjusted µI was
injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mVThe arrows indicate
the ”kink”s.

behavior was evident without the need of unrealistically high Na+ channel density at
AIS (Mainen et al. [117]). For instance, the ”kink” in Figure 9.2 was obtained at gAIS
= 3*gsoma with a strong (KJ = 1000 mV) coupling of a small fraction (p = 10%) of
channels. The ”kink”s were also evident in the phase plots of non-cooperative and
cooperative models (Figure 9.3).

The simulations were performed for both gsoma = gdend and gsoma = 3*gdend. In
both cases, the AP waveforms and phase plots were similar (Figure 9.4 and 9.5)
and cooperative models reproduced the ”kink”s that were observed for the onset of
cortical APs (Naundorf et al. [132]).

9.3 Initiation Site in MCCAIS Model

The site of action potential initiation was always topic of interest since 1950s. The
experimental findings up to date supported the view that AIS is the initiation site in
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Figure 9.3: Phase Plot Diagrams (gsoma = gdend). The phase plot diagrams of
the APs given in Figure 9.2 are used for quantitative and quantitative (see section
9.5) comparison of non-cooperative and cooperative model AP onsets. Left : Phase
plots for soma. Right :Phase plots for AIS. Black traces indicate the non-cooperative
model, red traces indicate the cooperative model (p = 10%, KJ = 800 mV). gAIS
= gNR = 3*gsoma = 3*gdend. A noisy current with τI = 5 ms and an automatically
adjusted µI was injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV
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Figure 9.4: AP waveforms in MCCAIS Model (gsoma = 3*gdend). The APs
were obtained from the simulations on non-cooperative and cooperative MCCAIS
models. The cooperativity parameters are as given in the figure. gAIS = gNR =
3*gsoma = 9*gdend. A noisy current with τI = 5 ms and an automatically adjusted
µI was injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV The arrows
indicate the ”kink”s.
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Figure 9.5: Phase Plot Diagrams (gsoma = 3*gdend). The phase plot diagrams of
the APs given in Figure 9.4 are used for quantitative and quantitative (see section
9.5) comparison of non-cooperative and cooperative model AP onsets. Left : Phase
plots for soma. Right :Phase plots for AIS. Black traces indicate the non-cooperative
model, red traces indicate the cooperative model (p = 10%, KJ = 1000 mV). gAIS
= gNR = 3*gsoma = 9*gdend. A noisy current with τI = 5 ms and an automatically
adjusted µI was injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV
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most of the myelinated neurons of the central nervous system (see section 2.2). The
experimental and theoretical studies emphasized the importance of ionic, i.e. Na+,
channel density distribution to locate the action potential initiation in a neuron (see
section 2.2 for more detail). Therefore, parameters, such as Na+ channel density,
longitudinal resistance, rl, and channel gating kinetics, i.e. the cooperativity param-
eters (cooperativity percentage p and coupling strength KJ), in a compartment were
altered systematically to investigate their impact on the site of initiation.

The results indicated that the only factor that affected the site of initiation is the
channel distribution (Figure 9.10 and 9.8) .

9.4 Action Potential Propagation and Conduction

Velocity

The orthodromic and antidromic propagation of action potentials were analyzed us-
ing the first action potential onset latencies (∆tonset) or peak latencies(∆tpeak). The
conduction velocities were estimated from the plots of onset latency versus the dis-
tance that the action potential travels on both directions.

The conduction velocity was highly sensitive to the changes in the parameters
given above.

A trivial prediction for the effect of rl on the conduction velocity would be that
as the rl increases, the conduction velocity should decrease. This prediction was
approved by the simulation results (Figure 9.8). For the non-cooperative model, the
conduction velocity for rl = 3 KΩ.mm was 0.9 m/s and for rl = 5 KΩ.mm was 0.5 m/s.

The cooperativity parameters (p and KJ) were surprisingly ineffective on the
conduction velocity for rl = 3 KΩ.mm. However, the coupling strength had a clear
impact on the somatic onset latency and a slight impact on the conduction velocity
for rl = 5 KΩ.mm .

The changes in the Na+ channel density of soma (gsoma, AIS (gAIS) and NR (gNR)
also affected the conduction velocity both at rl = 3 KΩ.mm (Figure 9.10) and at rl
= 5 KΩ.mm. The results obtained for different combinations of channel densities are
given in Table 9.3 and 9.4.
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Figure 9.6: Action potential initiation and propagation. Upper : The contour
plot for the propagation of an action potential on MCCAIS model. Lower : The onset
latency-distance plot, that was obtained from the same simulation. The somatic onset
latency is around 200 µs, which is in agreement with previous studies (Palmer and
Stuart [139]; Kole et al. [97]; Hu et al. [86]). A constant current was injected at the
soma to produce a steady-state firing rate ν0 = 10 Hz. gAIS = gNR = 10*gsoma= 3000
pS/µm2, rL = 5 KΩ.mm. The model was non-cooperative, and dendritic conductances
were set as same with soma.
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Figure 9.7: Action potential initiation and propagation in 3D.A constant cur-
rent was injected at the soma to produce a steady-state firing rate ν0 = 10 Hz. gAIS =
gNR = 10*gsoma= 3000 pS/µm2, rL = 5 KΩ.mm. The model was non-cooperative, and
dendritic conductances were set as same with soma.The seemingly saltatory move-
ment at the dendrites stem from increased compartment length (50 µm).

Figure 9.8: AP propagation in MCCAIS model for non-cooperative and
cooperative model. The light colored dots represent the numerical results. These
results were fit using a linear function of latency and distance (solid blue line) and
the conduction velocity of each case was estimated from the slopes of the fitting
functions (as given next to the solid line). The conduction velocities for both cases
were the same.Red : cooperative (p = 10 %, KJ = 400 mV) and rL = 5 KΩ.mm;
black : non-cooperative and rL = 5 KΩ.mm. A noisy current with τI = 5 ms and an
automatically adjusting µI was injected to maintain ν0 = 10 Hz. σI was set to give
σV ∼= 5 mV.
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Figure 9.9: AP waveforms for Figure 9.8. Upper : non-cooperative model with
rl = 5 KΩ.mm; lower : cooperative model with rl = 5 KΩ.mm, p =10%, KJ = 400
mV. Blue : AIS, black : soma. A noisy current with τI = 5 ms and an automatically
adjusting µI was injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV.

Channel Density gNR = gsoma gNR = 3*gsoma

gAIS = gsoma 0.48 m/s 0.48 m/s
gAIS = 3*gsoma 1 m/s 0.9 m/s

Table 9.3: Axonal conduction velocities with respect to channel densities
in AIS and NR. The axonal conduction velocities were estimated with the slope of
increase in the onset latency between x1 = 102 µm and x2 =362 µm (Figure 9.10) for
the combinations of channel densities in AIS and NR. The model was non-cooperative.
A noisy current with τI = 5 ms and an automatically adjusting µI was injected to
maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV.
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Figure 9.10: AP propagation in MCCAIS model for varying channel dis-
tributions in non-cooperative MCCAIS model. The AP onset latencies, for
different combinations of channel densities in soma, AIS and NR, are depicted as
function of distance, x at rL = 3 KΩ.mm. A noisy current with τI = 5 ms and an
automatically adjusting µI was injected to maintain ν0 = 10 Hz. σI was set to give
σV ∼= 5 mV.

Channel Density gNR = gsoma gNR = 3*gsoma

gAIS = gsoma 0.58 m/s 0.63 m/s
gAIS = 3*gsoma 0.67 m/s 0.56 m/s

Table 9.4: Dendritic conduction velocities with respect to channel densities
in AIS and NR. The dendritic conduction velocities were estimated with the slope
of decrease in the onset latency between x1 = -400 µm and x2 =-100 µm (Figure
9.10) for the combinations of channel densities in AIS and NR. The model was non-
cooperative. A noisy current with τI = 5 ms and an automatically adjusting µI was
injected to maintain ν0 = 10 Hz. σI was set to give σV ∼= 5 mV.
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9.5 Onset Rapidness of Axonal and Somatic Action

Potentials

The AP waveforms (Figure 9.2) of MCCAIS model clearly indicated the difference in
Γ between canonical and cooperative models : In cooperative model the onset grows
piecewise-linearly (”kinky onset”), opposite to the canonical models, where the onset
is growing exponentially (”smooth onset”). The phase plots also revealed this pattern
(Figure 9.3). To obtain quantitative results, Γ was defined as the phase plot slope at
V̇ (x, ti) > 10 mV/ms and was obtained for increasing values of cooperativity param-
eters (coupling strength, KJ , and cooperativity percentage, p ). The results (Figure
9.11) indicated an increasing onset rapidness with increasing coupling strength be-
tween x = -200 µm and x = 150 µm. Γ as a function of x displayed two peak points
one closer to or in the soma (somatic peak) and one in the axon (axonal peak). As
the coupling strength increased both peaks moved closer to the AIS, where the coop-
erative channel gating was implemented. Additionally, the axonal peaks were higher
than somatic peaks when KJ < 800 mV. After this value, the somatic peak shifted to
AIS and exceeded the axonal peak (∆ ∼= 35 ms−1). The spatial shift of the maximum
Γ towards AIS was not affected by the cooperativity percentage p (Figure 9.12). On
the other hand, it was linearly dependent on KJ (shift rate = 0.14 µm/mV).

9.6 Linear Response in MCCAIS Model

The realistic neuron models provides researchers the opportunity to connect micro-
scopic events (e.g. ionic channel gating) to macroscopic events (e.g. population
coding). Additionally, MCCAIS model provides a valuable tool to test an alternative
hypothesis for channel gating kinetics and to interpret its possible effects on popula-
tion level response properties, by investigating the effect of implementing cooperative
channel gating on the individual neural response.

9.6.1 Stationary Response to Current Injection

The frequency-current (f-I) curves for constant and noisy current injection were given
in Figure 9.13. The subthreshold fluctuations due to noisy current injection is likely
the explanation for the offset of this curve, as these fluctuations lead to a steady-
state firing rate and they keep the membrane potential very close to the threshold
to enable fast responses. Both curves represent a typical type-I neuron model, as
predicted from Wang-Buzsaki model.
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Figure 9.11: Onset Rapidness, Γ, as a function x. gAIS = gNR = 3*gsoma =
3*gdend. A noisy current with σI = , τI = 5 ms and an automatically adjusted µI was
injected to maintain ν0 = 10 Hz. p = 10%.
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Figure 9.12: The location of maximum Γ as a function KJ . The red dashed
lines indicate the interval that corresponds to AIS. The spatial shift of maximum Γ
is linearly dependent on KJ and the slope of the fit line is same for both p = 10 %
and p = 20 %. gAIS = gNR = 3*gsoma = 3*gdend. A noisy current with σI = , τI = 5
ms and an automatically adjusted µI was injected to maintain ν0 = 10 Hz.

9.7 Summary and Discussion

The MCCAIS model was first tested for the parameters without the contribution of
cooperativity, such as AP propagation and conduction velocity, AP waveform and
onset rapidness and the effects of spatially varying Na+ channel densities. Only after
the characterization of the non-cooperative model, the contribution of cooperative
channel gating was investigated and was compared to the non-cooperative case.

The findings of the MCCAIS model emphasize some intriguing points. First of
all, the classical Hodgkin-Huxley type model failed to reproduce the ”kinky” onset
that was frequently observed in cortical neurons (Naundorf et al. [130], [132]; Volgu-
shev et al. [182]; Bean [15]; Baranauskas et al. [14]). This result was also previously
reported by Naundorf et al. [132] and in this study, the contribution of cooperative
gating kinetics in AIS was suggested as a possible mechanism to reproduce the corti-
cal AP onset and threshold variability. This suggestion is opposed by the argument
that the rapid AP onset in cortical neurons can be explained well with the back-
propagation of axonal APs (McCormick et al. [123]; Shu et al. [164]; Kole et al. [97];
Yu et al. [187]). The flaws in these arguments have been recently discussed by the
Naundorf et al. [133] and Baranauskas et al. [14]. Especially, the measurements that
are performed on the axonal cut ends or ”blebs” are not reliable enough to exclude
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Figure 9.13: The Frequency-Current (f-I) relationship for non-cooperative
MCCAIS model. The f-I curves were obtained under noisy (blue dots) and constant
(black dots) current injection. Under noisy current injection, f-I curve started with
an offset (see text). The model indicated a Type-I firing pattern as expected from
a modified Wang-Buzsaki model. The numerical results were further fit either with
a simple linear function (red solid line) or with a cubic polynomial function (purple
solid line). Both predicted good at low frequency values (p < 0.05).
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a possibility for inter-channel coupling (McCormick et al. [123]). The arguments are
discussed in more detail in section 9.7.1. The MCCAIS model simulation results indi-
cated that the cooperative model indeed reproduces the rapid AP onsets, i.e. without
the need of unrealistically high Na+ channel densities or a distortion in the actual
neuron geometry (Mainen et al. [117]; McCormick et al. [123]).

To sum up, the results mentioned in this chapter indicate that the replacement
of classical channel gating kinetics with cooperative gating kinetics results in the
generation of APs with very rapid onsets in response to noisy inputs. The fact that
this propeerty is one of the critical characteristics that are also observed for cortical
neurons and that can so far not be reproduced by using classical gating and realistic
channel densities, supports the hypothesis that cooperative channel gating can indeed
be a key element of the AP generating mechanisms located in AIS. The second critical
characteristic of cortical neurons in vitro is the high cut-off frequency, which is also
indirectly related to the onset rapidness as mentioned before. Therefore, the next
step of the research should be the investigation of this relationship.

9.7.1 A detailed look to the counter-arguments

Although the cooperative Na+ channel gating hypothesis lacks direct biological evi-
dence, there is also no direct evidence to disprove the hypothesis. The most important
examples of inter-channel coupling in clusters of ionic channels were mentioned in sec-
tion 7.1. It is clearly an open question whether this level of interaction is possible
in a neuronal segment, i.e. in the AIS. That is yet to be investigated. However, the
studies claiming that there is no need to look for alternative explanations instead of
canonical Hodgkin-Huxley type formulations (McCormick et al. [123]) actually pro-
vided more evidence that there is a need to look for other plausible models to explain
the dynamics of cortical AP generators (Naundorf et al. [133]; McCormick et al.
[123]). Furthermore, their Hodgkin-Huxley type model included unrealistically high
Na+ channel density, opposing to what is reported experimentally (Baranauskas and
Martina [13], Colbert and Pan [39], Fleidervish et al. [60]), and yet did not completely
fit with their results.

The use of blebs as the site of axonal recordings , although it has become common
in the literature on AP initiation and propagation (McCormick et al. [123]; Shu et al.
[164]), is not reliable to interpret the real Na+ channel densities or interactions. It
is well-known that, in the case of such injuries, the axonal cytoskeleton rearranges
itself (Schafer et al. [157]). This is a very crucial point, since the cytoskeletal pro-
teins, especially of the ankyrin and spectrin families, is known to be important for the
recruitment and localization of the ionic channels on the neuronal membrane (An-
gelides et al. [7];Pan et al. [140],Grubb and Burrone [72];Boiko et al. [18];Duflocq et al.
[51];Ogawa and Rasband [136];Hedstrom et al. [76];Dzhashiashvili et al. [52]). Indeed,
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it was shown that neuronal injury can cause rapid and irreversible proteolysis of the
AIS cytoskeleton and loss of ion channel clusters (Schafer et al. [157]). It is, then,
obvious that the studies performed on such blebs can be useful for many purposes
but not for investigating the possible contribution of inter-channel coupling. Also for
this reason, the probability of cooperative channel gating can not be excluded with
the findings obtained by this experimental design. Another important aspect is that
axonal cuts or injuries trigger cellular mechanisms that cope with infections (Schafer
et al. [157]). Under these circumstances, it should not be claimed that the results are
obtained under healthy physiological conditions and should not be compared to the
ones that are obtained by comparably intact cellular morphology.

9.7.2 Perspectives from MCCAIS model

The onset rapidness of action potentials strictly depend on the NaV channel gat-
ing kinetics. Between the cooperativity parameters, the coupling strength exhibited
stronger impact on onset rapidness for small coupling percentages.

The models that were used to investigate the cooperativity hypothesis do not pro-
vide direct hints about the underlying mechanisms of inter-channel coupling. How-
ever, among other possibilites, the special cytoskeletal structure of the AIS may serve
as a network that connect NaV channels and, therefore, may create the grounds for
cooperative activity. Further experimental investigation is needed to prove this hy-
pothesis.

The results obtained so far provide an idea about how cooperative gating ki-
netics could contribute to individual neuron response. However, in the simulations
described in this chapter, only realistic channel densities (lower than 10-fold of soma)
were used. Therefore, another aspected that should be tested is the effect of ex-
tremely high channel densities. Additionally, the implementation of some other ionic
channels that came to the focus in the recent years, e.g. the KV 1 channels in the AIS
(Kole et al. [98]; Lorincz and Nusser [112];Inda et al. [90]), could provide new insights.
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In this thesis, I investigated two unique and critical properties of action poten-
tials of cortical neurons: the threshold variability and the rapid onset. I performed
simulations on three different models for this purpose.

In chapter 6 , the focus was mainly to test an analytical method that can pro-
vide information about the changes in the somatic membrane potential at the time of
threshold crossing at the axonal initiation site, independent from the chosen thresh-
old value. For this purpose, I presented a modified conductance-based Ball-and-Stick
model (Rall [144]) and a statistical framework to analyze the somatic membrane
potential fluctuations with respect to the potential changes at a given axonal com-
partment. Furthermore, I compared my numerical results with the an analytical
framework (Wei [184]). My results indicated three points: First, the somatic and ax-
onal potentials at the action potential onset do not differ significantly if the distance
from soma x is less than 100 µm. Second, the spike-triggered average was linearly de-
pendent on the choice of the threshold. On the other hand, spike triggered variance
was independent from the threshold and was virtually invariant for compartments
less than 100 µm away from soma. Considering that the action potential initiation
site is in the range of 30-40 µm in most cortical neurons, spike-triggered variance
can be a valuable indirect tool to interpret action potential generation dynamics at
an axonal site using somatic voltage statistics. Secondly, my results on the partially
active ball-and-stick threshold model indicated that even 35 µm distance was not
far enough to generate a significant difference in the dynamic response, e.g. in the
cut-off frequency. A recent paper reported interesting findings about the adjustment
of neuronal excitability by relocation of AIS either more proximal or more distal to
soma (Grubb and Burrone [71]). In this study, it was claimed that even very small
distances such as 5 µm could have a significant effect on the neuronal response and
the firing rate. However, a reorganization of molecular interactions in the AIS was not
investigated. Therefore, this study does not provide enough proof for the hypothesis
that the repositioning of the AIS is the origin of the observed effect. The results of my
simulations also confirm that the repositioning alone is unlikely to be the explanation.

In chapter 8 , I further characterized a previously constructed single-compartment
conductance-based model (Huang et al. [89]) with cooperative Na+ channel gating ki-
netics, to provide grounds for comparison with a following more sophisticated multi-
compartmental model. This simple single-compartment model was a useful tool to
understand the possible outcomes of the cooperativity hypothesis in a restricted sin-
gle segment. My results independently confirmed the validity of several predictions
of cooperative channel gating hypothesis by proving that the implementation of such
gating kinetics instead of canonical Hodgkin-Huxley type kinetics can indeed repro-
duce the rapid action potential onsets as observed in cortical neurons (Huang et al.
[89]; Naundorf et al. [132]).
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In chapter 9 , I presented a multi-compartmental conductance-based model, with
realistic morphological features and cooperative gating kinetics at the axon initial
segment. Using this model, I was able to show the contribution of cooperative gating
kinetics in a more realistic morphology. The results from this model also further
confirmed that cooperative channel gating might be involved in the cortical action
potential generating mechanisms, that are located in axon initial segment.

The last two chapters provided information on the possible outcomes of the im-
plementation of cooperative Na+ channel gating in the action potential generating
mechanisms. The results of the simulations indicated that the effective coupling
strength is a significant factor for the determination of activation threshold and of
the duration that a channel remains open, due to the changes in the opening and
closing rates, as also mentioned in previous studies (Huang et al. [89]; Undrovinas
et al. [179]).

The results mentioned in chapter 8 and 9 pointed out the strong dependence of
onset rapidness on the value of coupling strength (KJ). On the other hand, the co-
operativity percentage (p) did not play a significant role as long as p < 30% and KJ
< 400 mV. The classical Hodgkin-Huxley type model failed to reproduce the ”kinky”
onset that was frequently observed in cortical neurons (Naundorf et al. [130], [132];
Volgushev et al. [182]; Bean [15]; Baranauskas et al. [14]) and that was reproduced
by the cooperative model. The results, therefore, implied that the cooperative gating
kinetics in the AIS can be a possible mechanism to reproduce the cortical AP onset
and threshold variability.

What would be the importance of cooperativity for a neuronal population? The
functional relevance of the cooperative gating hypothesis for the population response
stems from its possible role in the action potential generating mechanisms. As shown
earlier, the individual neuronal response, i.e. the cut-off frequency, exhibits a di-
rect relation with the action potential onset rapidness (Fourcaud-Trocme et al. [63],
Naundorf et al. [130], Wei and Wolf [185]). In other terms, high cut-off frequencies
are likely to be achieved with rapid onsets. The importance of cooperative gating
becomes clear when taken together with the results mentioned in this thesis : if the
cooperative gating is leading to rapid onsets, then it must also lead to higher cut-off
frequencies. Therefore, the most urgent step following this research should be in ex-
amining this relationship with the current methods.

What would high cut-off frequencies imply? The cut-off frequency, by defini-
tion, gives the critical frequency after which the ability of neuron to respond the
fast-changing time-varying input declines sharply. Therefore, high cut-off frequency
implies that the neuron can detect a fast oscillation in the input and respond by lock-
ing its response phase to the phase presented in the stimulus. Cortical neurons exhibit
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a cut-off frequency at least 10-fold higher than their average firing rate. This means
that the cortical neurons are able to detect and respond the very rapid oscillations in
the input they are exposed to. This property is crucial when considering population
response that usually requires the detection of the signals in the micro-second scale.
Therefore, if the cooperative gating kinetics can reproduce the high onset rapidness
and also the high cut-off frequencies, the possible contribution of such kinetics in the
action potential generating mechanisms should not be ignored.

The key questions and answers of this thesis provide various suggestions for future
studies. For instance, the use of spike-triggered variance as a statistical tool to gather
information from soma about the threshold crossing at an axonal site still requires
further testing. One interesting and computationally cheap method would be using
the already available models, such as the one mentioned in chapter 9, to investigate
the maximum distance that would still have similar potential with soma at the action
potential onset. In addition to this, the cooperativity hypothesis clearly presents a
new perspective on the impact of channel gating kinetics on neuronal function. Still,
there are many open questions about this hypothesis. For instance, the direct biolog-
ical evidence of cooperativity in axon initial segment is still missing. Also, another
intriguing aspect of the subject would be to prove that it is also energetically plausible
to have cooperative kinetics in the axon initial segment. In my simulations, I only
investigated one type of dynamic stimulation, which was the sinusoidally oscillating
current injection. Other methods are also mentioned in the previous studies (Silber-
berg et al. [166];Boucsein et al. [20]) and would be interesting to study these type of
stimulations, especially with the multi-compartmental cooperative axon initial seg-
ment model. In summary, the project and the results present many points that can
be investigated further to get one step closer to the complete understanding of the
relation between the properties of action potential generating mechanisms and the
neural transfer functions.

In conclusion, my opinion about the results of my thesis project is that they
provide only introductory steps to new horizons towards the ultimate goal of under-
standing how the brain operates.
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[75] Häusser, M., Stuart, G., Racca, C., and Sakmann, B. (1995). Axonal initiation
and active dendritic propagation of action potentials in substantia nigra neurons.
Neuron, 15(3):637–647.

[76] Hedstrom, K., Ogawa, Y., and Rasband, M. (2008). Ankyrin g is required
for maintenance of the axon initial segment and neuronal polarity. J Cell Biol,
187(4):635–640.

[77] Henze, D. and Buzsaki, G. (2001). Action potential threshold of hippocam-
pal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience,
105(1):121–130.

[78] Herrmann, A. and Gerstner, W. (2002). Noise and the psth response to cur-
rent transients: Ii. integrate-and-fire model with slow recovery and application to
motoneuron data. J Comput Neurosci, 12 (2):83–95.

[79] Herz, A., Gollisch, T., Machens, C., and Jaeger, D. (2006). Modeling single-
neuron dynamics and computations: a balance of detail and abstraction. Science,
314(5796):80–85.



BIBLIOGRAPHY 159

[80] Higgs, M., Slee, S., and Spain, W. (2006). Diversity of gain modulation by noise
in neocortical neurons: regulation by the slow afterhyperpolarization conductance.
J Neurosci, 26(34):8787–8799.
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(2008). The dynamical response properties of neocortical neurons to temproally
modulated noisy inputs in vitro. Cereb Cortex, 18 (9):2086–2097.

[101] Kress, G., Dowling, M., Meeks, J., and Mennerick, S. (2008). High threshold,
proximal initiation, and slow conduction velocity of action potentials in dentate
granule neuron mossy fibers. J Neurophysiol, 100(1):281–291.

[102] Kuba, H., Ishii, T., and Ohmori, H. (2006). Axonal site of spike initiation
enhances auditory coincidence detection. Nature, 444(7122):1069–1072.

[103] Kuba, H., Oichi, Y., and Ohmori, H. (2010). Presynaptic activity regulates na+

channel distribution at the axon initial segment. Nature, 465(7301):1075–1078.

[104] La Camera, G., Rauch, A., Thurbon, D., Lscher, H., Senn, W., and Fusi, S.
(2006). Multiple time scales of temporal response in pyramidal and fast spiking
cortical neurons. J Neurophysiol, 96(6):3448–3464.

[105] Larkman, A. (1991a). Dendritic morphology of pyramidal neurones of the visual
cortex of the rat: I. branching patterns. J Comp Neurol, 306(2):307–319.



BIBLIOGRAPHY 161

[106] Larkman, A. (1991b). Dendritic morphology of pyramidal neurones of the visual
cortex of the rat: Ii. parameter correlations. J Comp Neurol, 306(2):320–331.

[107] Larkman, A. (1991c). Dendritic morphology of pyramidal neurones of the visual
cortex of the rat: Iii. spine distributions. J Comp Neurol, 306(2):332–343.

[108] Larkum, M., Zhu, J., and Sakmann, B. (2001). Dendritic mechanisms under-
lying the coupling of the dendritic with the axonal action potential initiation zone
of adult rat layer 5 pyramidal neurons. J Physiol, 533(Pt 2):447–466.

[109] Lindner, B., Longtin, A., and Bulsara, A. (2003). Analytic expressions for
rate and cv of a type i neuron driven by white gaussian noise. Neural Comput,
15(8):1760–1787.

[110] Lindner, B. and Schimansky-Geier, L. (2001). Transmission of noise coded
versus additive signals through a neuronal ensemble. Phys Rev Lett, 86(14):2934–
2937.

[111] Lipowsky, R., Gillessen, T., and Alzheimer, C. (1996). Dendritic na+ channels
amplify epsps in hippocampal ca1 pyramidal cells. J Neurophysiol, 76:2181–2191.

[112] Lorincz, A. and Nusser, Z. (2008). Cell-type-dependent molecular composition
of the axon initial segment. J Neurosci, 28(53):14329–14340.

[113] Losonczy, A. and Magee, J. (2006). Integrative properties of radial oblique
dendrites in hippocampal ca1 pyramidal neurons. Neuron, 50(2):291–307.

[114] Machens, C., Schütze, H., Franz, A., Kolesnikova, O., Stemmler, M., Ronacher,
B., and Herz, A. (2003). Single auditory neurons rapidly discriminate conspecific
communication signals. Nat Neurosci, 6(4):341–342.

[115] Machens, C. and Zador, A. (2003). Auditory modeling gets and edge. J Neu-
rophysiol, 90(6):3581–3582.

[116] Magistretti, J., Ragsdale, D., and Alonso, A. (1999). High conductance sus-
tained single-channel activity responsible for the low-threshold persistent na+ cur-
rent in entorhinal cortex neurons. J Neurosci, 19:7334–7341.

[117] Mainen, Z., Joerges, J., Huguenard, J., and Sejnowski, T. (1995). A model of
spike initiation in neocortical pyramidal neurons. Neuron, 15(6):1427–1439.

[118] Martina, M. and Jonas, P. (1997). Functional differences in na+ channel gating
between fast-spiking interneurones and principal neurones of rat hippocampus. J
Physiol, 505(Pt 3):593–603.



162 Bibliography

[119] Martina, M., Vida, I., and Jonas, P. (2000). Distal initiation and active propa-
gation of action potentials in interneuron dendrites. Science, 287(5451):295–300.

[120] Marx, S., Ondrias, K., and Marks, A. (1998). Coupled gating between in-
dividual skeletal muscle ca2+ release channels (ryanodine receptors). Science,
281(5378):811–821.

[121] Matsumoto, E. and Rosenbluth, J. (1985). Plasma membrane structure at the
axon hillock, initial segment and cell body of frog dorsal root ganglion cells. J
Neurocytol, 14(5):731–747.

[122] McCormick, D., Connors, B., Lighthall, J., and Prince, D. (1985). Comparative
electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex.
J Neurophysiol, 54(4):782–806.

[123] McCormick, D., Shu, Y., and Yu, Y. (2007). Neurophysiology: Hodgkin and
huxley model - still standing? Nature, 445:1–2.

[124] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. Bull Math Biophysics, 5:115–133.

[125] Meeks, J. and Mennerick, S. (2007). Action potential initiation and propaga-
tionin ca3 pyramidal axons. J Neurophysiol, 97:3460–3472.

[126] Mittmann, T., Linton, S., Schwindt, P., and Crill, W. (1997). Evidence for
persistent na+ current in apical dendrites of rat neocortical neurons from imaging
of na+-sensitive dye. J Neurophysiol, 78:1188–1192.
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A
Rall Model

Thin extensions of neuron, such as axons and dendrites, are often idealized as cylin-
ders. The cytoplasm and the extracellular fluid are both ionic media that conduct
electric currents. Therefore, the neuronal extensions are also called as “core conduc-
tors (Rall [147]). More importantly, for distances shorter than the electrotonic length
constant, the resistance across the surface is much higher than the resistance along
the (both intracellular and extracellular) surface. This leads the current to flow in
parallel to the cylinder axis for a considerable distance ( ≈ λ) before a large fraction
of the current is lost due to the leakage across the membrane.

For these reasons, the cable theory is commonly used for the mathematical rep-
resentation of the neuronal extensions, i.e. when only a one-dimensional problem is
confronted.

Gradient of the intracellular potential can be expressed as

∂Vi
∂x

= −iiri,

∂2Vi
∂x2

= −ri
∂ii
∂x

(A.1)

where ii is the intracellular current and ri is the intracellular resistance. One impor-
tant assumption here is that ri does not change for a value of x, or in other words, the
cable is uniform. Otherwise, the equation A.1 should include the term −ii ∂ri∂x as well,
which implies that the usual cable equation is not valid anymore. This assumption
also points to the necessity of defining and analyzing the boundary conditions of the
cable equation. These conditions should be stated to provide for the continuity of
current and voltage, i.e. in the case of branching.

Until here, only Vi was considered, but it can also be replaced with V = Vi−Ve−Er,
where Ve is the external potential and Er is the membrane battery, while neither Ve
nor Er is dependent on x or t. In addition to this, the right hand side of the equation
is equal to the current that flows through the cable. So, equation A.1 becomes

1

ri

∂2V

∂x2
= im. (A.2)
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The passive neuronal membrane has a unit capacitance cm (F/cm), a unit con-
ductance gm (S/cm) and a unit resistance rm (Ω.cm). A simple equivalent circuit can
represent the membrane potential dynamics for a unit distance ∆x, such that

im = cm
∂V

∂t
+
Vi − Er − Ve

rm
,

rmim = τm
∂V

∂t
+ V (A.3)

A.1 Boundary Conditions

Some useful boundary conditions are (Rall [147])

1. Finite cable (sealed-end) boundary condition:

∂V (x, t)

∂x
|x=xend = 0

where xend is one of the end points of the cable. Usually the starting point x0
is taken as 0.

2. Voltage-clamp boundary condition: At a certain point xi, the voltage V (t)
= Vc. For instance, V (t) = 0 ⇒ Vi − Ve = Er (the potential difference across
the membrane is clamped to its resting value); V (t) = −Er ⇒ Vi = Ve (there
is no voltage difference between extracellular and intracellular surface).

3. Leaky end boundary condition:

±
(
∂V (x, t)

∂x

)
/ri = V (x, t)GL.

4. Current injection at xend:

±
(
∂V (x, t)

∂x

)
/ri = I(t).

where I(t) is the injected current.
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5. Branching at xi: For n cables that are connecting, n− 1 boundary conditions
should be applied to provide for the continuity of V and one boundary condition
for conservation of I. These boundary conditions can be defined as above or a
more complex boundary condition can be stated, e.g. an injected current at a
leaky end.

6. Infinite end boundary condition: V (t) remains bounded as x −→ +∞ and
x −→ −∞.

7. Semi-infinite end boundary condition: V (t) remains bounded as x −→
+∞ or x −→ −∞.

A steady-state solution for the semi-infinite end boundary condition can be ob-
tained by the following assumptions:

• x0 = 0 and xf = +∞;

• Voltage-clamp at x0 = 0, such that V (t) = V0;

• Cable is uniform;

• There is no current injection.

The general solution for equation A.1 can be formulated as

V (x) = A1e
x
λ + A2e

− x
λ . (A.4)

For x −→ xf ⇒ A1 = 0 ; and at x0 = 0 ⇒ A2 = V0. Therefore,

V (x) = V0e
− x
λ . (A.5)

This implies that the voltage decrements to 1/e after a distance of λ (V (x, t)/V (x) =
1/e) .When a termination point xf is more than four times λ distant from an initial
point x0, there is negligible difference from semi-infinite cable. Therefore, when a
neuronal extension is idealized as a cylindrical cable, it should have a length greater
than 4λ. The Ball-and-Stick model that was described in chapter 6 satisfies this con-
dition.
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