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Introduction

Some time ago, Plato developed his concept of the world of ideas. Wherever
two phenomena in the real world were similar, these supposedly represented a
common idea. This notion of an abstract classification scheme for real world
objects has underlied science ever since and stimulated developments such as
the periodic table of the elements, the marxist idea of patterns in history or
the conception of elementary particles.

Nowadays, the problem to identify entities as members of some class con-
stantly arises in a practical sense. Important examples are image recognition,
fingerprint assignment or earthquake prediction.

Manifold instances of this problem occur in the life sciences. An example
of current interest is the challenge of taxonomic identification. It is highly
desirable to tackle this on the fundamental level that governs the functioning
of living cells, i. e. based on the genomic information. In the following,
we concentrate on prokaryotic species. These single-cellular organisms are
characterised by the absence of cell nuclei and by reproduction through binary
fission. They usually possess a single chromosome carrying their genomic
information.

This can be seen as a sequence consisting of the nucleotides Adenine, Cyto-
sine, Guanine and Thymine, short A, C, G and T . Genes are subsequences
which encode proteins, that is sequences of amino acids. Each of those corre-
sponds to a triple of nucleotides termed the codon. This representation is not
one-to-one, rather there is a characteristic coding redundancy where several
codons lead to the same amino acid (39).

A statistical analysis can exploit such redundancy. This is the basis of se-
quence measures like codon usage, mono- or oligonucleotide bias.
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page 2 Introduction

In the present work, we focus on modelling the dinucleotide bias in prokary-
otic genomes. To this end, we construct a biased urn model based on the
noncentral hypergeometric distribution by Wallenius (112). Our method is
sufficiently general to capture either dinucleotide with respect to the positions
in the codon and combinations thereof. However, our emphasis is mostly on
the intercodon transition for its complementarity to existing codon usage
approaches.

The work is composed of the following parts: The initial chapter 1 defines the
biological background and clarifies the terminology. Chapter 2 investigates
important stochastic properties for the genomic data under consideration.
Subsequently, the model is layed out in chapter 3 with an introduction to
the application of the underlying distribution. Afterwards, it is time to feed
the model with real world data. This is done in chapter 4, using various test
scenarios and comparing to exising literature results.

We also consider the possibility of extending the applicability of our model
towards metagenomics, to be defined later. Finally, our conclusions are pre-
sented in chapter 5.



1 Biological Background

In this chapter, the biological background of macrobial and bacterial evolution
is introduced. It ought to provide enough basic information to understand the
problem and its history as well as our idea to solve it which will be presented
later on.

1.1 Definition of Species and Phylogeny

Since the beginning of the evolution theory biologists have used the metaphor
of the ‘tree of life’ to describe how the variety of organisms has evolved whose
essence is the vertical inheritance of traits through generations from an in-
dividuum to its descendants. Charles Darwin proposed this idea and the
concept of common descent behind it in his book ‘On the Origin of Species’
in 1859 (17). Ever since, evolution has been envisioned as a bifurcating pro-
cess whose imprints on the map of life would thus display a tree.

Classical Phenotypical Approach to Taxonomy

Having the theory, it still has not been easy to set the different stages on
the tree, or, putting it in biological terms, to define the taxonomy of life.
In fact, there are no stages in nature. Every distinction on the evolutionary
steps as well as the separation into species is man-made and as such open
to discussion. For higher organisms, this endeavour has led to an agreement
upon some taxonomic categories. Although the concept of species is backed
up by evolutionary processes, nature has not left niches between variations
for us to set the taxonomical boundaries in. Thus there is still space for
interpretation, in Darwin’s words “in determining whether a form should
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page 4 Biological Background

be ranked as a species or a variety, the opinion of naturalists having sound
judgement and wide experience seems the only guide to follow.”(17, Chapter
2) When it comes to unknown grounds, like classifying organisms from new
regions, new experience has to be acquired first before one can rely on it. The
problem has not more than maybe shifted since Darwin’s time.

This is all the more the case at the level of unicellular organisms consider-
ing that here the species demarcation according to classical phenotypes is
not defined by a theory-based concept and tends to be more arbitrary, an-
thropocentric or rooted in practical necessity (38). This might have been a
grouping by the natural habitat or by the symptoms the organisms caused by
pathogenic behaviour in other organisms. A pathogenic and a non-pathogenic
individuum of the same species cause very different effects, yet they are closely
related. Thus, a mapping on these criteria could have been, if at all, only
poor.

Broader Molecular View

Hence, a different, deeper approach was indeed inevitable. That is when
scientists started looking at the genetic level of relations and organisms. “It
is deep down on the level of molecules and molecular sequences where the
evolutionary process demonstrates its workings” (118). Unsurprisingly, the
attempt to construct a taxonomical tree using molecular characteristics led
to a breakthrough.

To cover a broad spectrum of the species and their interrelation, a molecule
common to all of them was required. This necessity comes hand in hand
with the problem of balance. The molecule has to be conserved enough such
that it can be found in all species, and it also has to have evolved making
building of a tree based on these alterations possible. In their pioneering work
(115), Woese and Fox made use of the fact, that all self-replication in the cell
involves ribosomal RNA (rRNA). The structure of the 16S rRNA molecule
had already been characterised in a variety of organisms such that Woese and
Fox could utilise it for their purpose.

Their work resulted in the division of unicellular organisms into the three
primary domains Eucaryota (also referred to as eucaryotes), Archaea and
Bacteria (116). Since then this tree has been endetailed and adjusted as
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soon as new genetic sequences and their 16S rRNA characterisation became
available.

More and more genetic data was published in the 1980s and new research
on them stumbled upon irregularities in some genetic information which per-
forated the fundamental division between the domains. The anomalies did
not stop there, instead, they happened to occur at all levels of relatedness.
Suddenly, different branches became uninterpretable in the old fashion since
the analysed microbial genomes were much more intermixed than anticipated
(22; 65).

When Darwin mapped out the theory of evolution, he was inspired by his
discoveries in animals and plants. However, these are very complex organ-
isms.

Due to the high degree of organisation in a variation of cells, cell types and
organs that they show, only subtle alterations are possible without the loss of
functionality in the new organism. It was these little changes which Darwin
and other saw and that made the tree of life plausible. Now however, a
modified metaphor is needed for the new findings (64).

1.2 Horizontal Gene Transfer

Looking at microbial organisms, the variation in their metabolic properties,
lifestyles and cellular structures is extraordinary. Point mutation and inher-
itance, which would go along with Darwin’s ideas, causing modification or
inactivation of existing genes, cannot be the only explanation for the diver-
sity among even closely related species (65; 92). The exceptional ability of
microbes to adapt to new environments calls for a different interpretation.

In the microbial world vertical inheritance of genes is not the only factor of
evolution. Genetic information cannot only be exchanged among individu-
ums, but also among different species and even between species belonging to
different domains (23; 47; 3; 79).
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Lateral Gene Transfer or Horizontal Gene Transfer 1, as the propagation of
genetic information among contemporaries is called, has had and still has a
major impact on microbial evolution (4; 53).

Therefore, some other metaphors instead of the tree of life have been sug-
gested. On the one hand, the net or reticulated tree metaphor (24) takes the
ongoing horizontal gene transfer into account. However, it still assumes some
kind of rooting or beginning. This “universal ancestor is not a discrete entity.
It is, rather, a diverse community. . . ” (114). The metaphor which makes al-
lowance to the ancient gene transfer of the mentioned diverse community is
the Ring of Life as proposed by Rivera and Lake in (94) and discussed in
(5; 74). It offers a solution to the difficulties encountered when trying to look
for a root of the tree. Still, a solution is far from being found due to the fact
that the incidence of past events has not been and cannot be fully analysed.
These metaphors are “. . . not an answer to a question, [they are] a picture of
a problem.” (73) Furthermore, a metaphor taking care of all effective events
has not yet been formulated.

Mechanisms of Horizontal Gene Transfer

As the HGT events are not self-explanatory, both their existence as well the
mechanisms inducing them were discovered rather late and could bear some
description.

Compared to the modification of existing sequences, where no prerequisites
other than the replication are needed, the acquisition of new traits through
horizontal gene transfer necessitates certain mechanisms. The organism in
question needs to be able to acquire DNA, to keep it and to use it.

First of all, the DNA must be transferred from the donor cell to the recipient
cell. Once it is there, it needs to be embedded into the recipient’s repli-
cation element, e. g. the genome (83). These requirements are indifferent
to the transferred genes or their properties and are met by transformation,
transduction or conjugation, which, however, do not work with all genes.

1In the following and the subsequent chapters, these events will be referred to as HGT

events.
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Transformation: This is the process whereby naked DNA from the mi-
crobe’s surroundings is taken up. This event relies on the exposure to ex-
tracellular DNA, which is released into the environment from decomposing
cells (86; 36), disrupted cells, viral particles or excretion from living cells
(68; 76). Extracellular DNA degradation varies considerably in different en-
vironments, whereby the exact rates need yet to be determined. In human
serum and plasma the present DNases have been found to degrade DNA
within between a few minutes (15) and a couple of hours (96), the latter
one providing enough time for transformation. In other environments, the
rates have been reported to be similarly diverse. Extracellular DNA has been
found in soil (67; 84) fresh and sea water (19; 59) bacterial cultures (67) the
mammalian intestinal system (27; 98; 14) and as an important component in
biofilm formation (113). Active excretion from living cells has been reported
for many kind of bacteria (108; 68; 76; 85).

Yet, the exposure to DNA is not enough for transformation to happen. The
bacteria also have to develop a state of competence, which is the ability to bind
and take up extracellular DNA. It involves several proteins and is usually a
response to specific conditions in the environment such as growth conditions,
nutrient access, cell density and starvation (108). This has been detected in
approximately 1% of the described bacterial species (55) so far, forming a
wide variety, including pathogenic bacteria (68).

Finally, the DNA needs to be incorporated into the genome. If the sequence
of an incoming DNA strand contains regions that are highly similar to a host
sequence, the former may be integrated therein by homologous recombination
(108).

The occurance of the ability of transformation in such various organisms
suggests its value in many different environments (108). It has first been dis-
covered when actually looking at horizontal gene transfer. Some observations
indicate that unicellular organisms take up DNA less as a source of informa-
tion than as an energy-efficient source of nucleotides, to be used as such for
DNA repair or components of them (90; 91).

Transduction: In this process, a virus is utilised in the transfer of bacterial
DNA from one bacterium to another. Hereby, the transfer deploys a possible
flaw in the viral strategy. When bacteriophages, which are the bacterial
viruses, infect a bacterial cell, they harness the DNA replication system of
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the host by employing it to produce numerous copies of their own genetic
information. These are then packaged into new bacteriophage copies (66,
Chapter 14), ready to infect new bacterial cells.

At the stage of this packaging process two mistakes occur at a low frequency:
either too much or too little of the genetic material is packaged; some bac-
terial genetic information might be incorporated into a copy of the phage
(generalised transduction) or some phage genes might be left behind in the
bacteria (specialised transduction) (58; 107).

The first mistake leads to a noninfectious phage. Nevertheless, being a phage
it tries to infect a bacteria and thereby inserts the newly acquired DNA into
it. The phage’s replication might not work anymore, but a recombination
of the recipients genetic information integrating the donated DNA may take
place. In the second case the viral DNA itself can get incorporated into the
bacterial DNA (12; 9). This mechanism enables viruses with a broad range of
possible hosts to transfer genetic information across enormous phylogenetic
distances (58).

Conjugation: This kind of transfer of genetic material involves the physical
contact between two organisms. Therefore, it is also known as bacterial sex.
However, this term is a bit misleading since the transfer does not involve any
of the mechanisms defining sexual replication (91). It is merely the transfer of
genetic information from one cell to another. The donating cell must host a
conjugative or mobilisable genetic strain, often a conjugative plasmid some of
which can integrate themselves into the bacterial chromosome later on (108).
This transfer occurs between distantly related organisms (54; 117; 31), even
between domains (47; 6).

Reason for Horizontal Gene Transfer

While all three of these mechanisms appear to have evolved because of ad-
vantages they serve to other traits, they repeatedly were and are utilised for
the transfer of genes. As the layout suggests, larger strains of DNA can be
acquired when a transfer happens. Furthermore, this event might take place
more than once and the recombination leads to a mosaic structure, where the
genes originate from a variety of organisms (102; 80). Therefore, the term of
genetic islands has developed (44; 43; 35).
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However, the replication of DNA is costly and thus information that does not
provide a selective advantage accounts negatively. Hence, the genome often
loses these parts again (82; 72; 46).

The effect of HGT is a fast adaptation to a change in and of environment,
since genes and the traits they represent do not have to be developed all over
again but are instantaneously transferred.

1.3 Detection of Horizontal Gene Transfer

Events

To reveal HGT one can either look at the genome and the information within
or take other information into account. Both approaches have their advan-
tages and disadvantages.

Extrinsic information may exist in the form of a database of gene and/or
protein families in related species. The occurance or absence of genes is
used in a phylogenetic tree to reconstruct gene transfer and gene loss events.
If enough related species are sequenced and the gene families known, this
method detects the HGT events that contradict the phylogeny. As accurate as
this systematic analysis is, the drawbacks are also apparent. The considered
taxon has to be well studied and the gene families known. This is usually
not the case for the majority of genes in question. Therefore, the result
depends highly on the currently available databases and may change as more
known information is taken into account (83). Furthermore, as horizontal
gene transfer contradicts a pure tree structure, it is always an ambiguous
task to build a phylogenetic tree that contains this event, with the outcome
depending on the specific algorithm.

A different approach is based on genome intrinsic information only. In this
case, taxonomic “identity” is contained in redundancies in the genetic coding.
Clearly, this can be any expoitable redundancy in the genetic coding that is,
any variability in a certain feature that is not based on underlying biochemical
imperatives. HGT events manifest themselves in significant differences of that
feature in genomic subsequences.
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There are several features that can be considered, i. e.

• G-C content (105; 95; 18)

• codon usage (40; 100; 111)

• nucleotide and various oligonucleotide (88; 32; 25; 10) and

• dinucleotide bias (45; 50; 11; 60).

Comparative studies can be found in (61; 75; 97).

The distinctive characteristic of each feature lies in its complexity which al-
lows for a deeper insight at the price of more computational effort, more
parameters to be taken into account and more detail knowledge necessary for
the application. Therefore, an optimal trade-off between complexity and ver-
satility has to be chosen depending on a specific application and aim. While
a combination of several features might yield insight in specific situations, it
would be conceptually desirable to work with one standard feature.

It is intuitively clear, that these statistical methods have their strength in de-
tecting HGT between very remotely connected species while it will be harder
for them to deal with HGT in neighbouring species. On the other hand, phy-
logenetic methods work best for species that are very closely related. Yet,
they can only handle HGT within the considered set of genes. Therefore, the
choice of methods largely depends on whether broad panoramic view involv-
ing a variety of species or a close-up look through a magnifying glass on a
small taxonomic unit is desired.

This work concentrates on the statistical broad view approach, specifically
the dinucleotide feature which we will demonstrate to have equivalent per-
formance as the codon usage approach while the underlying model is smaller
and easier to handle.



2 Stochastic View on the Data

The position of a nucleotide within a codon is the main emphasis of the model
that we will introduce later. Therefore, only protein coding sequences are
considered as genes and, moreover, genes are seen as sequences of codons.

2.1 Dinucleotides

Given this sequence, pairs of nucleotides, which are called dinucleotides, might
be formed. Having the underlying structure of the codons, nucleotides are
not just grouped, but rather their positions within a codon are taken into
account. However, the nucleotides do not have to be neighbours and can be
part of one or more codons. While this dismantles most boundaries in the
building of pairs we will focus on the three cases where the nucleotides are
adjacent. These cases are

1-2 dinucleotide and 2-3 dinucleotide: Here, the first and second or the
second and third nucleotide, respectively, build a tupel. Since the dinucleo-
tides are parts of codons their number in a gene is the same as the number
of codons in the gene.

3-1 dinucleotide: The tupel building is across two sequential codons. The
third nucleotide of the first codon and the first nucleotide of the second codon
are paired. Then, the number of dinucleotides in a gene is the number of
transitions between codons and therefore one less than their number.

page 11
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2.1.1 Dinucleotides as Random Variables

To be able to look at the data with a stochastic eye, some formalisation needs
to be faced. As we consider only coding sequences, there are always multiples
of 3 nucleotides in a gene and we define a stochastic process

X1, X2, X3, . . . , X3n−1, X3n,

where Xi ∈ {A, C, G, T} are random variables taking values in the nucleic
alphabet and n is the length of the sequence, measured in codons. In this
notation the dinucleotides are

Y
(12)
i = (X3i−2, X3i−1), for i = 1, . . . , n,

Y
(23)
i = (X3i−1, X3i), for i = 1, . . . , n,

Y
(31)
i = (X3i, X3i+1), for i = 1, . . . , n − 1,

for the 1-2, the 2-3 and the 3-1 dinucleotide, respectively. If the type of the
dinucleotide is clear or if general properties are discussed, the specifying index
will be dropped and Yi ∈ {A, C, G, T}2 for all i and we speak of the random
process {Yi : i ∈ N}.

Later, we would like to model this process based on certain assumptions.
The validity of those assumptions for the given data is investigated in the
following. Before we can do this, we need to define a few more random
variables that we can work with.

Definition of Sums

Let h be a bijection between {1, 2, . . . , 16} and {A, C, G, T}2. First, we define
a vector of the partial sums of the sequence as

Sm :=

(
m∑

i=1

1{Yi=h(k)}

)

(k=1,...,16)

, (2.1)

this way Sm takes values in N16. Dividing by m we get

Zm :=
1

m
· Sm =

1

m

(
m∑

i=1

1{Yi=h(k)}

)

(k=1,...,16)

(2.2)
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the normalised partial sums. Additionally, we want to consider blocks of the
sequence. To this means, let

Ss,l :=

(
s+l−1∑

i=s

1{Yi=h(k)}

)

(k=1,...,16)

(2.3)

be the sum of a block of the sequence of length l starting at s. Again, we can
normalise by the block length and obtain

Zs,l :=
1

l
· Ss,l , (2.4)

analogously. In this notation, we have the relation to the previous two equa-
tions 2.1 and 2.2 by Sm = S1,m and correspondingly similar with Zm.

2.1.2 Genes as Paths

Looking at the data, we come across genes in genomes that can be understood
as realisations or sample paths of the process {Yi : i ∈ N} of a given length,
which can be either the length of the gene or the length of the genome.

As we assume the genome G being the sequence of the genes g of the length
ng, we can further define

SG :=
∑

g∈G

Sng
(2.5)

and

ZG :=
1

∑

g ng

∑

g∈G

Sng
, (2.6)

where g runs over all genes in the genome. 1

1If a gene g is from a genome G, we use the notation g ∈ G. Stricly speaking, we could

argue that g ⊂ G as it is a subsequence. However, the former sloppy notation is more

intuitive in the context of summation where it will be mostly used.
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2.2 Properties of the Data

In the following, we turn towards the genomic data and study their stochastic
properties in more detail.

The considered data are 420 bacterial genomes from the EMBL Nucleotide
Sequence Database (28), consisting mostly of 1000 to 6000 genes each, though
some shorter genomes can be found. Thereby, the length of a gene varies
between about 50 up to 1500 and more codons, the genome mean of the gene
length being between 250 and 350.

In a fixed genome G, we expect the Zng
to be identically distributed for all

genes g ∈ G. We further assume that ZG follows the same distribution.

The given showcases are randomly picked out of the dataset. Similar results
can be obtained for all genomes.

Convergence

First, the convergence of the Yi is examined. By the Law of Large Numbers,
Zm should converge to a random variable Z.

However, it is not a priori clear, if the individual genes are long enough for
this to happen. Therefore, the behaviour of Zm for increasing m is studied.
If our assumption about the distributions of ZG and Zng

for all g ∈ G being
identical is true, E (Z) can be approximated by ZG.

For each coordinate Zk
m of Zm we have, as Zk

m
m→∞−→ E (Zk) and E (Zk) 6= 0,

that
Zk

m

E (Zk)
≈ Zk

m

Zk
G

m→∞−→ 1

which we examine more closely.

As an example, figure 2.1 on the facing page shows Zk
m/Zk

G for coordinates k1

and k2 with h(k1) = AC and h(k2) = GT as well as max
k

Zk
m/Zk

G, min
k

Zk
m/Zk

G,

whereby g is the gene tagged SSON 1747 ydbK in the organism Shigella
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Figure 2.1: Corridor of the dinucleotide frequencies relative to their expected

value, given by max
k

Zk
m

Zk
G

and min
k

Zk
m

Zk
G

. (The values are taken

from the 3-1 dinucleotide of the gene tagged SSON 1747 ydbK
of Shigella sonnei, strain Ss046.)

sonnei (strain Ss046). For practical reasoning, convergence can be assumed
as fast as n ≈ 200.

The values to which the Zk
m converge can differ significantly for individual k.

This can be seen in figure 2.2 on the next page in the gene tagged TBFG 01212
of Mycobacterium tuberculosis (strain F11) looking at the 2-3 dinucleotide.
These values also vary in different genomes. The figure also shows that for
some k the partial sums Sk

m are rather small, which results in discrete jumps
in Zk

m. These need to be taken care of in the modelling later.

Next, we consider the normality character of the partial sums. By the central
limit theorem, we expect their distribution to approach the normal distribu-
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Figure 2.2: Individual dinucleotide frequency curves for all the dinucleotides,
grouped by four. Additionally, the genome wide frequencies are
shown as the circles on the right hand side for each plot. (The
values are taken from the 2-3 dinucleotide of the gene tagged
TBFG 01212 of Mycobacterium tuberculosis, strain F11.)

tion with mean µ and variance σ2 as n → ∞. The mean and variance depend
on the data under consideration.

To this end, we examine Ssb,l as defined in 2.3 with sb = b(l − 1) + 1 and b
the number of the block, where the length l is chosen such that convergence
of Yi within the blocks Ssb,l can be assumed.
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The distribution of the Ssb,l is investigated in a Quantile-Quantile-Normality
Plot in 2.3 on the following page. Additionally, we perform a Shapiro-Wilk
Test (99) and present the obtained p-values in the same graph. In general,
very good agreement is found for all k. The data in figure 2.3 are taken from
the organism Pseudoalteromonas haloplanktis (strain TAC125, chromosome
I) from the 1-2 dinucleotide of gene tagged PSHAa2216 hrpB. Though the
results here are typical, some rare genes might behave pathologically as seen
in 2.4 on page 19.

Stationarity

In the following, we want to see if our data shows any stationary behaviour.

As defined in (42), a stochastic process X = {X(t) : t ∈ T} is strongly
stationary if the families {X(t1), X(t1), . . . , X(tm)} and {X(t1 + l), X(t1 +
l), . . . , X(tm + l)} have the same joint distribution for all t1, t2, . . . , tm ∈ T
and l > 0.

A weakly stationary process has the property, that E (X(t1)) = E (X(t2)) and
cov (X(t1), X(t2)) = cov (X(t1 + h), X(t2 + h)) for all t1, t2 ∈ T and h > 0.

However, both these definitions are not very well applicable in our data. The
best criterion is a look at the behaviour of the sample means.

We sampled m timepoints t1, . . . , tm from the first half of a gene to avoid any
kind of implication of the property in the setup. We then defined a random
variable

N(a) :=
1

m

(
m∑

i=1

1{Yti+a=h(k)}

)

(k=1,...,16)

,

that sums up the values of the random process at the timepoints for a = 0 and
shifts the timepoints by a for a > 0, respectively. In order to investigate the
gene g we evaluate N(a) on g. If the process is stationary, a horizontal line
with some noise is expected for the plot of each of the coordinates of N(a)(g).
These plots can be seen for Nitrosococcus oceani (strain ATCC 19707) and
the gene Noc 0602 in figure 2.5 on page 20. Here, m was chosen to be 160.
Plots with m = 70 and m = 100, that are not presented, were also generated
and showed similar trends, with higher noise as the only difference.



page 18 Stochastic View on the Data

Figure 2.3: Quantile-Quantile Normality Plots of all 16 dinucleotides. In the
lower right corner of each plot the p-value of the corresponding
Shapiro-Wilk test is given. (The values are taken from the 1-2
dinucleotide of the gene tagged PSHAa2216 hrpB of Pseudoal-
teromonas haloplanktis (strain TAC125, chromosome I).)

Encouraged by the plots, we now try a closer look at the distribution of the
data. To this means, we compute Ssb,l as defined in 2.3 with sb = (b−1) l+1.
If the distribution of the Ssb,l is the same for different b we can assume that
the distribution of our sequence is independent of the starting index sb. This
can now be verified using Pearson’s χ2-test (87).
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Figure 2.4: Quantile-Quantile Normality Plots with the p-values of the
Shapiro-Wilk test of all 16 dinucleotides as an example of a patho-
logically behaving gene. (The values are taken from the 2-3 dinu-
cleotide of the gene tagged LBA1966 copA of Lactobacillus aci-
dophilus, strain NCFM.)

We have chosen the block length l = n
3
, where n is the gene length and sb

for b = 1, 2, 3 as the start indices of the three thirds of the gene sequence.
Next, we test for pairwise independence of Ssb,l for all three dinucleotide
sequences. A histogram of the resulting p-values in all genes of all organisms
is presented in 2.6 on page 21 and shows that 92% of all 10636011 tests return
a p-value below α = 5%. As we did not exclude any genes, especially not
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Figure 2.5: Evaluation of N(a) presenting the behaviour of the sample means
of the dinucleotides when shifting along the gene. (The values are
taken from the 2-3 dinucleotide of the gene tagged Noc 0602 of
Nitrosococcus oceani (strain ATCC 19707).)

short ones which constitute about one third of all genes, this result is better
than anticipated.

Ergodicity

A weakly ergodic process is defined as a weakly stationary process {Xi : i ∈
N} and a random variable Y with E (Y ) = E (X1) and 1

n

∑n
i=1 Xi −→ Y in

mean square.
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Figure 2.6: Histogram of p-values of the stationarity χ2 test as described in
detail in the main text. The data contain 10636011 individual test
runs.

This property is difficult to show in individual genetic sequences as these rep-
resent paths and which in general are too short for any subdivisions. However,
what is relevant in our case, is the ergodicity across the genome.

To test this, we combined the genes to a long sequence which we cut into
n pieces of length n, not taking care of gene ends and beginnings. This
way, we avoid any effects of a potential gene starting distribution, that might
show in the first two dinucleotides (110; 89). We then again computed the
contingency tables of the dinucleotides for each of this blocks as Ssb,n with
sb = (b−1) n+1. Additionally, we computed the sum of all block beginnings
Ysb

as

Sbeg :=

(
b·n∑

i=sb

1{Yi=h(k)}

)

(i=1,...,16)
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and compare it to all Ssb,n. Hereby, we can again perform Pearson’s χ2-test
of independence.

Figure 2.7: Histogram of the rejection ratio for all organisms. The rejection
ratio is the fraction of tests on an individual organism which reject
the hypothesis of ergodicity at a confidence level of α = 5%. The
results for all three dinucleotides have been added up. The overall
rejection ratio considers the individual dinucleotides summarised
over all organisms.

The test results are given in 2.7. The average rejection ratio over all organisms
and dinucleotides at a confidence level of α = 5% is 51%, where the variation
for the different dinucleotides is small compared to the variation over the dif-
ferent organisms. The rejection rate for individual organisms ranges between
13% for Sinorhizobium meliloti (strain 1021) and 83% for Xylella fastidiosa
(strain 9a5c).
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Markov Property

A stochastic process X has the Markov property, if

P (Xn = s|X0 = s0, X1 = s1, . . . , Xn−1 = sn−1)

= P (Xn = s|Xn−r = sn−r, . . . , Xn−1 = sn−1)

and is homogeneous if

P (Xn = s|Xn−r = sn−r, . . . , Xn−1 = sn−1)

= P (Xr = s|X0 = s0, . . . , Xr−1 = sr−1)

and is then called a homogeneous Markov chain of order k (42; 30). These
processes are well-studied and a lot of standard methodology is at hand for
them (93; 81). Therefore, it would be interesting to demonstrate Markov
property for our genome data.

We assume Markov property and test for the order of the chain as introduced
in (1) and implemented in (106) with the hypotheses

H0 : Markov chain of order k vs. H1 : Markov chain of order k + 1.

Starting at k = 0, we test independence against first order Markov chain,
whereby the test results in Pearson’s χ2-test for independence.

Upon rejection of the null hypothesis, we repeat the test for k = 1 and so
forth until either the order k of the chain is found or k + 1 becomes too large
for the test to be performed in practice.

In a genome, we summarise the transition counts of the dinucleotides in a
gene over all genes in order to get numbers that enable us to test for orders
up to k = 3. As an average gene length is ≈ 270, already the transition count
table for independence against first order with its 162 = 256 entries would
not be sufficient for the estimation of transition probabilities if only one gene
was considered.

After the data preparation, we perform the test up to the order k = 3. If our
data happen to follow the Markov property, but for a higher order than k,
the property is still not useful for the purpose of data analysis because of the
typical data length.
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dinucleotide 1-2 2-3 3-1
order 0 0.00 · 100 0.00 · 100 0.00 · 10+0

order 1 1.08 · 10−300 7.39 · 10−171 8.28 · 10−75

order 2 9.71 · 10−267 1.10 · 10−107 1.49 · 10−67

order 3 0.00 · 100 0.00 · 100 0.00 · 100

Table 2.1: The p-values of the Markov test for orders 0 to 3 for all three
dinucleotides. All gene sequences in a organism are used to per-
form this test. (The values are taken from the organism Bertonella
basilliformis (strain KC583).)

As can be seen in the examplary table 2.1, the hypothesis of independence is
rejected in favour of more dependence, here order 1. Next, the hypothesis of
order 1 is rejected in favour of even more dependence, order 2. But the same
happens to orders 2 and 3. This is shown for all three dinucleotides. In fact,
the rejection happens on any confidence level as the p-values are (close to)
vanishing.

Therefore, we conclude that either the Markov chain is of higher order than 3
or our assumption of the Markov property in the genetic sequence was wrong
in the first place. In both cases, we cannot make use of the Markov property
in our data.

Conclusion

The sequences of genomic data that we would like to analyse display conver-
gence. Furthermore, we can assume stationarity within them with confidence.
The assumption of ergodicity is somewhat more problematic with some vari-
ation over the different organisms. Still, a reasonable fraction of the tests do
not reject ergodicity. Therefore, we can safely make use of this assumption
for practical purpose, especially, since we do not heavily rely on it.

On the other hand, the data do definitely not satisfy the Markov property.
Although many models assume it nonetheless, we decided against it and build
a model with a higher dependence structure. This model is introduced in the
next chapter.



3 Model

This chapter is meant to introduce the developed model. First, the distribu-
tion of interest is presented. In the second part, our model is developed and
the application of the distribution is demonstrated.

3.1 Noncentral Hypergeometric Distribution

Before describing the noncentral hypergeometric distribution, some basic
properties of the central hypergeometric distribution1 ought to be recalled.

3.1.1 Urn Model

Assume an urn with balls of k different colours C1, . . . , Ck, whereby there
urn contains mj balls of colour Cj with a total of m =

∑k
j=1 mj and written

as m = (m1, . . . , mk). Then, n balls are drawn without replacement. The
arising questions are

1. How many balls of each colour have been drawn after n steps?

2. What is the probability of a given set of ball colours to be drawn?

The answers are provided by the hypergeometric distribution which represents
this urn model.

1This distribution is usually called the hypergeometric distribution. The adjective central

is only used to emphasise the difference.
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Hypergeometric Distribution

The known standard hypergeometrical distribution shows no dependance be-
tween the colour of a ball in an urn and its probability to be drawn. The
only influencing paramater is the number of balls of the different colours in
the urn.

The probability to draw a ball of colour Ci is its relative frequency in the urn.
Is xj the number of balls of colour Cj for j = 1, . . . , k in the urn at a certain
time, the relative frequency for the next step is

P (ball of colour Ci drawn) =
xi

∑k
j=1 xj

for i = 1, . . . , k.

Noncentral Hypergeometric Distribution

Does one want to model the preferences in drawing balls of different colours,
weight parameters are introduced. The resulting distribution is then called
the noncentral hypergeometric distribution and was developed by Wallenius
in (112) for the bivariate case and extended to a multivariate distribution by
Chesson in (13), an alternative formulation was given in (69).

The set-up remains the same. What changes, is the probability to draw a
ball in a single step. Instead of the relative frequency we have the weighted
relative frequency for i = 1, . . . , k,

P (ball of colour Ci drawn) =
βixi

∑k
j=1 βjxj

,

where the parameters βj ≥ 0 are normed such that
∑k

j=1 βj = 1.

After n steps, the closed-form expression for the outcome n = (n1, . . . , nk)
is

P (n) = A ·
1∫

0

(
k∏

j=1

(1 − tβjc)nj

)

dt (3.1)

= A ·
n1∑

l1=0

. . .

nk∑

lk=0

(
k∏

j=1

(
nj

lj

))

(−1)
Pk

j=1 lj

c
∑k

j=1 βj lj + 1
(3.2)
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where A =
(
∏k

j=1

(
mj

nj

))

and c = (
∑k

j=1 βj(mj−nj))
−1. With β = (β1, . . . , βk)

the distribution is noted as

hyp (m, β, n) (3.3)

with k − 1 parameters β1, . . . , βk−1 and βk = 1 −∑k−1
j=1 βj.

3.1.2 Computation of the Probabilities

As satisfying as it is to have expression 3.2, one can see that its usage might
be difficult, or at least limited, if the data m and n take large values.

The R-package BiasedUrn by Agner Fog provides a computational solution
to this problem using various numerical concepts (33; 34). However, it was
not available when we started working with the distribution. Therefore, we
developed our own solution that is presented below. It provides identical
performance in terms of accuracy and run time.

The numbers that are dealt with are tiny, particularly for larger n, but already
for smaller ones too, we had to make use of a special precision arithmetic
library. Here, both multiplication and division are not computable in linear
time but in O(n2).

Exact Sums

The use of the summation formula 3.2 on the facing page is not recommended
for larger data. Its running time can be bounded by the following argument.
The number of summands is largest if all ni for i = 1, . . . , k are of similar size,

which would be n
k
. Then, we have approximately

(
n
k

)k
summands. For each

summand we need to compute the binomial coefficient and the fraction. These
are O(n2) operations each in the precision arithmetic library. Multiplying by
the number of summands, this yields to O(nk+2).

However, for smaller data this formula is perfectly fine as it is exact and not
slower than any approximation.
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Larger data need to be considered differently. Here, we use the integral
formula 3.1 and approach it numerically.

Numerical Integration

To this means, we have a closer look at the functions

f(t) =

k∏

j=1

(1 − tβjc)nj

︸ ︷︷ ︸

=:fj(t)

to be integrated. Examples can be seen in figures 3.2 on page 30 through 3.4
on page 32 as the left upper functions for different data sizes.

Independently of the values of m and n, we have f(0) = 1 and f(1) = 0
for all parameters β. For most parameter settings, the function f is stricly
monotonic, convex and very close to the axes. As we exploit the monotony
later, we now look at the first derivative

f ′(t) =
k∑

j=1

f ′
j(t)

k∏

i=1
i6=j

fi(t)

=
k∑

j=1




−βjcnj

︸ ︷︷ ︸

>0

tβjc−1(1 − tβjc)nj−1

︸ ︷︷ ︸

>0

k∏

i=1
i6=j

(1 − tβic)ni

︸ ︷︷ ︸

>0




 < 0

for t ∈ (0, 1) which shows the claim.

Integration Approach

Hereby, a direct quadrature of f is impractical for t → 0. Therefore, we
divide the area into three parts and make use of the inverse function f−1.

Let tx be the fix point of f with f(tx) = tx. Then, we have

1∫

0

f(t) dt = A + B + t2x
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with

A :=

1∫

tx

f(t) dt and B :=

1∫

tx

f−1(ξ) dξ

as shown in figure 3.1.

0 1
0

1

(tx, tx)

t

ξ

B

A

Figure 3.1: Division of the integral area into three parts.

Additionally, using a doubly logarithmic transform we reduce the range of the
values. We define τ := ln(t) and F (ln(t)) := ln(f(t)), which in combination
yield to

F (τ) = ln f(exp(τ)) =
k∑

j=1

nj ln(1 − exp(βjcτ)).

Because of the Taylor approximation, we have ln(1 − t) ≈ −t for t close to 0
and 0 < t < δ, and thus obtain for exp(βjcτ) ≪ 1 the approximation

F (τ) ≈ −
k∑

j=1

nj exp(βjcτ),

which we use for computation.
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f F

g h

Figure 3.2: This and the following two figures show graphs of the functions
f, F, g and h that play a role in the integration. Here, the func-
tions are shown for small data sizes m = (10, 5, 15, 10), n =
(7, 1, 3, 5). We obtain τx = −14.78.

Now, we approach the integral. Because of t = exp(τ) we have dt = exp(τ)dτ .
For the point tx we define τx = ln(tx) and get F (τx) = τx. By substitution of
these transforms into A we have

A =

1∫

tx

f(t) dt

=

0∫

τx

f(exp(τ)) exp(τ)
︸ ︷︷ ︸

=:g

dτ

=

0∫

τx

exp

[
k∑

j=1

nj ln(1 − exp(βjcτ))

]

exp(τ) dτ

where g(τ) = exp[F (τ)] exp(τ). Analogously, we proceed with the inverse
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f F

g h

Figure 3.3: Integration with intermediate data sizes m = (75, 56, 90, 68), n =
(24, 10, 35, 11), result in τx = −98.49.

function f−1. Here, we substitute ξ = exp(ζ). As tx = ξx, we have

B =

1∫

ξx

f−1(ξ) dξ

=

0∫

ζx

f−1(exp(ζ)) exp(ζ)
︸ ︷︷ ︸

=:h

dζ ,

Since f−1 is unknown, values needed for the computation of the integral
cannot be obtained directly. To this end, we rewrite h in terms of F as h(ζ) =
exp(F−1(ζ)) exp(ζ) and compute the values using Newton’s algorithm.

We evaluate both integrals using the trapezoidal rule. However, for smaller
data sizes, special care needs to be taken here when approaching 0. Hereby,
the Romberg-method could be applied (20).

Last, we compute the square t2x as t2x = exp(2τx).
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f F

g h

Figure 3.4: Integration with large data sizes m = (195, 141, 237, 116), n =
(57, 26, 76, 30), leads to τx = −210.69.

The functions f, F, g and h are shown in figures 3.2 through 3.4 for different
sizes of m and n. Although the general behaviour of the functions remains
similar, the obtained values differ significantly as can be seen on the axis. The
lower two graphs also show, that the proportion of the integral contributed
by h decreases as the data sizes increase. The parameter k is always 4 as this
is the value which shall be used later for our model.

Implementation

As mentioned above, we use both computational methods, the summation
formula as well as the numerical integration, in our implementation. The
summation formula is applied to smaller data, an approximate urn size of

k∑

i=i

mi ≤ 15 · k ,

whereas the numerical integration finds its use for larger urns.

This way, we have one’s cake and eat it too. We get the exact values if they
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are fast to compute, we avoid the use of the Romberg-method for smaller data
sizes which would slow down our computation and we have a fast method and
good approximation for larger data.

3.1.3 Estimation of the Parameters

Because of the complexity of the distribution, it is not known how the max-
imum likelihood estimators could be computed. Nevertheless, a suitable ap-
proximation using the Newton-Raphson method was presented by Manly in
(70). The estimators are given as

β̂i =
log(mi−ni

mi
)

∑k
j=1 log(

mj−nj

mj
)

(3.4)

for all i = 1, . . . , k.

As Manly mentioned, these estimators are almost accurate with vanishing
biases given that the numbers of balls nj as well as mj − nj are larger than
five.

However, for our purpose it is important to get a quantitative idea of the
behaviour of the estimators depending on the urn and sample size.

Convergence of the Estimators

In our model, we will be using k = 4 and therefore this is the case that
we constrain our analysis to. We choose an arbitrary but realistic urn com-
position and an arbitrary set of parameters, namely m = (5, 8, 5, 2) and
β = (0.2, 0.15, 0.2, 0.45). This urn composition is then gradually scaled by a
common factor. The number n of balls drawn from the urn is chosen as a
constant fraction of the total urn size and scaled accordingly.

Explicitely, we look at the fractions 1/4, 1/3 and 1/2 as these naturally occur
when our model is defined in part 3.2.
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Figure 3.5: Histograms of an estimated parameter in urns of three given sizes.
The graph in the lower right corner shows the sample variance of
the estimator as a function of the urn sizes. Those sizes used
for the histograms are highlighted. The shrinking variance of the
estimators is clearly visible and manifests itself also in the width
of the histograms. The displayed curves are (1: orange) empirical
density estimation, (2: red) normal density with empirical mean
and variance and (3: blue) normal density with theoretical mean
and variance as given in (70, Manly). The theoretical normal
density is systematically shifted towards higher values. All graphs
refer to βi = 0.2 as marked and mi/urn size = 1/4. The fraction
of balls drawn from the urn is 1/4.
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For a given urn we simulate 1000 times the scenario of drawing n balls and
estimate the parameters β using the formula 3.4 defined above. The key
quantity to judge their variability is the sample variance. In figure 3.5 on the
facing page the histograms of one estimated parameter for different urn sizes
are displayed. Additionally, its sample variance is shown as a function of all
evaluated urn sizes. These simulations allow in principle for a rough estimate
of the expected variance in the application to real world data which we shall
come back to in chapter 4.

With respect to applications, it is interesting to consider the effect of more
extreme urn and weight parameter configurations. An example of such a
situation is given in figure 3.6.

Extreme Urn Events

In extreme cases, estimating the βi by formula 3.4 is not possible. These cases
are, in general, those where one of the involved numbers nj or mj −nj equals
0 for at least one j. Hereby, the estimator is 0 or log(0) appears, respectively.
In the following, we are going to look at these cases more closely and propose
some alterations. Though it is clear, that they do not approximate the real
parameters too well, their advantage is visible on the second glance, the
practical one. Since these cases are rare but real events in our data, they need
to be taken care of in one way or the other. Without doing so, a program
would just stop at such an incident which definitely is undesired behaviour.
Excluding these data from the data set also constitutes an objectionable
distortion.

We have considered the following possibilities of dealing with the log(0)
issue:

• Adding an integer pseudo count to all cases. This brute force method
circumvents the problem by increasing all mi to mi + 1. The price to
pay is a degradation of the estimators even in non-critical cases.

• Adding an integer pseudo count to critical values. In case the urn is
exhausted in at least one colour, say i, one can either increase mi to
mi +1 or decrease ni to ni−1. In practice, the difference between these
two choices is negligible. The ad hoc character of this method might
cause some concern.
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Figure 3.6: Histogram of the estimated parameters in case of an almost ex-
treme urn composition with m = (50, 80, 10, 20) and n = 50 where
the third value (lower left graph) is highly critical and the fourth
(lower right graph) slightly. It demonstrates that on average the
estimation is correct. However, the individual cases can result
in very different parameter estimators. The estimators for the
non-critical ball colours in the urn are basically unaffected.

• Using a small fractional pseudo count p in all cases. Here, all mi are
increased to mi +p. In contrast to the previous two methods, the effect
on non-critical values is insubstantial.
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• Neutralising the critical cases. First, the non-critical estimators are
calculated as if the critical ones were not there. The critical estimators
are then assigned the same weight as the sum of the weights of the non-
critical ones. Finally, all estimators are renormalised. This method
provides the least bias and a tolerable variance. Therefore, it will be
used in the following.

bias variance
method critical non-critical critical non-critical
always integer pseudo 0.0721 0.0209 0.04289 0.00587
critical integer pseudo 0.2367 0.0583 0.00235 0.00115
fractional pseudo 0.0660 0.0191 0.04688 0.00610
neutralising 0.0653 0.0189 0.04736 0.00612

Table 3.1: Table of the alternative procedures in dealing with extreme events
as described in main text. The biases and variances are shown
examplaryly for a critical estimator and a non-critical one.

3.2 Modelling

In this part, we develop our model. Hereby, we design a new view on the
dinucleotides and combine it with the noncentral multivariate hypergeometric
distribution. Firstly, we define a probability space for the dinucleotides.

3.2.1 The Probability Space and Random Variables

Given n ∈ N, let

Ω = {ω = (ω1, ω2, . . . , ωn)|ωi ∈ {A, C, G, T}2 for i = 1, . . . , n}
= ({A, C, G, T}2)n

denote the set of all possible sequences of dinucleotides of length n. Further-
more, let Y = (Y1, Y2, . . . , Yn) be a random variable on Ω with the mapping

Yi : Ω −→ {A, C, G, T}2

ω 7−→ ωi
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for all i ≤ n. One should note that ωi itself is twodimensional. Strongly
speaking, we have ωi = ((ωi)1, (ωi)2) and Yi = ((Yi)1, (Yi)2), analogously.

In addition, let S0, S1, . . . , Sn be the sequence of matrices

Sm
g := (Sm

i,j;g)(i,j) :=

(
m∑

k=1

1{Yk=(g(i),g(j))}

)

(i,j)

(3.5)

for m = 0, . . . , n with i, j ∈ {1, 2, 3, 4} and g being any bijection between
{1, 2, 3, 4} and {A, C, G, T}. Next, we define the ith rows and jth columns
of Sm

g as

Rm
i;g =

(
m∑

k=1

1{Yk=(g(i),g(j))}

)

(j=1,...,4)

Cm
j;g =

(
m∑

k=1

1{Yk=(g(i),g(j))}

)

(i=1,...,4)

for i, j = 1, 2, 3, 4.

The definition of the summation 3.5 is similar to the sums introduced in 2.1
on page 12. However, the difference is the twodimensional structure.

Looking at the rows or columns of the matrices allows fixing a dimension of ωi

and with it a nucleotide on the first or the second position of the dinucleotides,
respectively, and concentrate on its partner nucleotide. The effect is the basis
of the definition of the rows and columns and is visible therein. Furthermore,
the rows and columns will be used to exploit this trait.

In the following, we rarely need all indices and reduce the notation to Sg

where appropriate. Similarly, we use Ri;g and Cj,g.

Probability

We want to have a measure for the pair building behaviour and not the single
counts. Therefore, we define the probability of Sg conditional on row and
column sums.
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To this means, we note that

Ω = Ω′ ∪ Q,

where for given row and column sums r = (r1, r2, r3, r4) and c = (c1, c2, c3, c4)
the path ω ∈ Ω′, if its respective sums match r and c. Otherwise, we have
ω ∈ Q.

Clearly, we want to set the whole measure on those paths which have the
correct row and column sums. We thus define P (Q) = 0.

On Ω′ we define the probability of Sg in terms of its four rows Ri;g using the
conditional probabilities

P (Sg) = P (R1;g, R2;g, R3;g, R4;g)

= P (R1;g) · P (R2;g|R1;g) · P (R3;g|R1;g, R2;g) · P (R4;g|R1;g, R2;g, R3;g)

and the noncentral hypergeometric distribution for each of its rows which we
set to

PR1;g
∼ hyp (c, β(1), r1)

PR2;g|R1;g
∼ hyp (c − R1;g, β(2), r2)

PR3;g|R1;g,R2;g
∼ hyp (c − R1;g − R2;g, β(3), r3)

PR4;g|R1;g,R2;g,R3;g
∼ hyp (c − R1;g − R2;g − R3;g, β

(4), r4).

This way, we have defined a probability on all of Ω.

Model Parameters

It is important to note, that since c is fixed, the distribution of the fourth
row is fully determined by the first three rows and therefore

hyp (c − R1;g − R2;g − R3;g, β
(4), r4) ≡ 1

yielding to

P (Sg) = P (R1;g) · P (R2;g|R1;g) · P (R3;g|R1;g, R2;g). (3.6)

Consequently, the parameters of the model are given by β = (β(1), β(2), β(3)),
each of length 4 as defined in 3.3 on page 27, resulting in 9 parameters.
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Well-Definedness

There are two more points that need to be taken into account. Firstly, we
could have defined the probability in terms of the columns instead of the
rows.

Additionally, we have so far defined Sg with a particular bijection g. Making
use of a different bijection would result in an altered matrix.

In both cases, the definition of the probability would yield to different model
parameters. We have to ensure that different choices would have negligible
effects. First, we will consider the effect of a change of bijection and let the
transposed approach follow.

3.2.2 Equivalence of the Different Models

In the following, we want to look at the influence of the choice of the bijection
g on the models.

When defining the matrix S in 3.5 on page 38 we used an arbitrary bijection

g : {1, 2, 3, 4} −→ {A, C, G, T}.

We have then set the probability of the matrix S as the product of the prob-
abilities of its rows.

However, the probabilities of the rows depend on their order in S, which is
given by g. Therefore, we need to show that for two different bijections g1 and
g2 the resulting models with the matrices Sg1

and Sg2
and their probabilities

are equivalent and our model is indeed well-defined. The figure 3.8 on page 43
displays this for special cases as discussed below.

There are 4! = 24 different choices for g which yield to (24− 1)! ≈ 2.59 · 1022

pairwise comparisons of the models, or at least 23 when comparing one model
to all the others. We do not have to perform this tedious task. Instead, we
first analyse the bijections more closely.
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Figure 3.7: A truncated octahedron whose vertices represent the 24 equivalent
models. The edge between two vertices stands for a swap of two
sequential steps in the process of model building.

Bijections

The differences between two bijections g1 and g2 can be described by a per-
mutation on the set {1, 2, 3, 4} yielding to

g2 = g1 ◦ π

We define two bijections g1 and g2 as neighbouring if there exists a neighbour
transposition τ such that

τ(j) = j + 1 and τ(j + 1) = j for some j ∈ {1, 2, 3, 4}
τ(i) = i for i ∈ {1, 2, 3, 4}\{j, j + 1}

Connecting neighbouring bijections, we can draw a truncated octahedron
whose edges are all 24 bijections as in figure 3.7. In fact, we have just mapped
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the permutation group S4 on the 24 different models {Sg| g : {1, 2, 3, 4} −→
{A, C, G, T} bijection}.

{1, 2, 3, 4} Sg2

{1, 2, 3, 4} Sg1

g2

π edge of the octahedron

g1

Therefore, any two bijections are connected by a path of transpositions. Since
every permutation in S4 is the product of neigbouring transpositions, we only
have to scrutinise the equivalence of neigbouring bijections, i. e. adjacent
edges on the truncated octadedron.

Hereby, the necessary comparisons of the models are reduced to the following
three cases of the three possible transpositions

τ1 : τ1(1) = 2 τ2 : τ2(2) = 3
τ1(2) = 1 τ2(3) = 2
τ1(i) = i for i ∈ {3, 4} τ2(i) = i for i ∈ {1, 4}

τ3 : τ3(3) = 4
τ3(4) = 3
τ3(i) = i for i ∈ {1, 2}

that correspond to the matrix changes as shown in the upper two diagrams
in figure 3.8 on the facing page.
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Figure 3.8: The first diagram shows the effect of the transition τ1 on the mod-
els. As the last row of the matrix does not play any role, it could
be removed. Then, the boxes can be placed over the 2nd through
4th row, and we get the description of the transition τ2. The dia-
grams in the middle display the effect of transition τ3, where only
one set of parameters is involved. The third diagram represents
the model change if the matrix is transposed. Hereby, the prob-
abilities are set to the columns instead of the rows of the matrix
and we have vertical sets of parameters.
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Equivalence

In the following, we want to scrutinise these transpositions and their effect
on the probability of the matrix as defined in formula 3.6. Here, the first
three rows provide a set of parameters for the noncentral hypergeometric
distribution each, whereas the last row does not.

Therefore, the first observation is that τ1 and τ2 yield to the same case. They
both affect two sets of parameters. Indeed, any previous or following rows
and their parameters stay untouched.

Let g2 = g1 ◦ τ1. Then

R1;g1
= R2;g2

R2;g1
= R1;g2

R3;g1
= R3;g2

R4;g1
= R4;g2

and with equation 3.6 yielding to

P (Sg1
) = P (R1;g1

) · P (R2;g1
|R1;g1

) · P (R3;g1
|R1;g1

, R2;g1
)

= P (R2;g2
) · P (R1;g2

|R2;g2
) · P (R3;g2

|R1;g2
, R2;g2

)

≃ P (R1;g2
) · P (R2;g2

|R1;g2
) · P (R3;g2

|R1;g2
, R2;g2

)

= P (Sg2
)

we have

P (Sg1
) ≃ P (Sg3

)

⇔ P (R1;g1
) · P (R2;g1

|R1;g1
) ≃ P (R1;g2

) · P (R2;g2
|R1;g2

).

Analogously, we get for g3 = g1 ◦ τ2 that P (Sg1
) ≃ P (Sg2

) is equivalent to

P (R2;g1
|R1;g1

) · P (R3;g1
|R1;g1

, R2;g1
) ≃ P (R2;g3

|R1;g3
) · P (R3;g3

|R1;g3
, R2;g3

).

Therefore, we observe that τ1 and τ2 indeed represent the same case.

The transposition τ3 however is different as there is only one set of parameters
in one of the exchanged rows involved. Following the same arguments with
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g4 = g1 ◦ τ3 as above, equation 3.6 results in

P (Sg1
) ≃ P (Sg4

)

⇔ P (R3;g1
|R1;g1

, R2;g1
) ≃ P (R3;g4

|R1;g4
, R2;g4

).

Thus, these two cases will be analysed separately, yet the setting is similar.
We apply an equivalence test as introduced below.

In the following, we distinguish the models by the names of their respective
parameters. We present the first model as β-model with parameters β, while
the notation is γ and γ-model for the second set of parameters and the model,
respectively.

It should be noted that the model parameters are indeed different, not simply
interchanged, as could be thought at a first glance.

Procedure for the Equivalence Test

Before we can start testing for the equivalence, we need two actually corre-
sponding models that are going to be compared, i. e. we need corresponding
sets of β and γ.

Let β be any arbitrary set of possible parameters and m the size of the urn.
First, we sample n = 1000 times a submatrix of S out of an urn of size 1000·m.
In each of the n repetitions we apply the transposition τ on the matrix and
estimate parameters γ̃i for i = 1, . . . , n in the corresponding model. Finally,
we define γ := 1

n

∑n
i=1 γ̃i.

We can now proceed with the equivalence test.

Let m be the size of the urn which we sample independently n = 100 times
from a submatrix si of S according to the β-model. The parameters β̂i and
γ̂i are estimated from si and the log-likelihood ratio

λi := log
Lβ̂i

(si)

Lγ̂i
(si)

for i = 1, . . . , n, is computed, where Lβ̂i
(si) = P (S = si| β̂i) = Pβ̂i

(S = si) is
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the likelihood function in the submatrix si under the model given by β̂i, and
Lγ̂i

(si), analogously.
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Figure 3.9: The graphs on the left hand side show the histogram of λi of the
equivalence test in case 1 as described in the main text and their
quantile-quantile plot against the normal distribution. The p-
value of the Shapiro-Wilk normality test is also given. On the
right hand side the roles of β and γ were exchanged.
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In the following, λi are assumed to be normally distributed. This is backed up
by a Quantile-Quantile plot and a Shapiro-Wilk test of normality, see lower
left graph in figure 3.9. Furthermore, their variance σ2 is unknown.

Having the basics settled, we can proceed by using the equivalence test with
the confidence interval procedure as defined in (8). Our test statistic on
λ = {λ1, . . . , λn} is

T (λ) =

√
n λ̄

Sn(λ)

and the hypotheses are

H0 : T (λ) 6∈ A
H1 : T (λ) ∈ A

where A := [−ε, ε] is the equivalence region for a given ε.

Furthermore, let Kα be the (1−α) confidence interval of T (λ). The hypothesis
H0 will be rejected if Kα ⊂ A.

Case 1: τ1 and τ2

In these two settings both models, which are compared, consist of two sets of
parameters, e. g. (β(1), β(2)) or (β(2), β(3)). This is shown in the upper dia-
gram of figure 3.8. For the equivalence region A, we choose ε = log(1+0.01) ≈
0.00995 and α = 0.0001. Using these values, we perform the equivalence test
and receive Kβ

α = [−0.00261, 0.00383]. The obtained values λi are shown in
a histogram in the upper left graph of figure 3.9. With this result, we can
reject the hypothesis H0 of non-equivalence.

Thereafter, we exchanged the roles of β and γ for a consistency check and
performed the test again. The results were indeed similar with the confidence
interval Kγ

α = [0.00178, 0.00423]. The histogram of the values λi as well as a
quantile-quantile plot against the normal distribution can be admired in the
right half of figure 3.9. It can be noted that while the λi in the β-model are
biased towards negative values, in the γ-model the opposite is the case. This
can be explained by the slight bias of the estimators which had to be used to
compute the γ-model.
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Case 2: τ3

The results were very similar and comparable to those in case 1. Using the
same ε = log(1 + 0.01) ≈ 0.00995 and α = 0.0001, we obtain the confidence
intervals Kβ

α = [−0.00223,−0.0008824] and Kγ
α = [0.00625, 0.00910] for sam-

pling in the β and γ-model, respectively. In both cases the hypothesis H0 are
rejected.

Case 3: Transposed model

The effect of the columnwise model definition still needs to be considered. A
diagram is shown in figure 3.8. Here, the situation is slighly more com-
plicated due to the bias in the estimators. With the same values for ε
and α as used above, the test with sampling in the β-model does not re-
ject, while with sampling in the γ-model it does. With a less conserva-
tive choise for ε = log(1 + 0.05) ≈ 0.0488 the hypotheses H0 are rejected
in both directions. The confidence intervals are Kβ

α = [0.0392, 0.0422] and
Kγ

α = [0.00644, 0.00788], respectively. As the confidence interval of the sam-
pling β-model test indicates, the values of λi are indeed biased towards posi-
tive values.

It should be pointed out, that in the cases 1 and 2 we looked at the same
urn, the difference in the models was only in the order of sampling. In case
3 however, the γ-model is the dual urn to the one in the β-model. Therefore,
the bias in the estimators becomes more relevant. Emphatically, this demon-
strates the limitations set by the estimators rather than the non-equivalence
of the transposed model.

Conclusion

We have presented the noncentral hypergeometric distribution and its appli-
cation to dinucleotide sequences. Moreover, we have demonstrated that the
developed model is well-defined. In the next chapter, we evaluate the perfor-
mance of the model applied to the real world data presented in the previous
chapter.



4 Bridging Model and Data

In this chapter we combine the real world data and our model from the pre-
vious chapter. First, we approach only a few distantly related organisms
but do this in detail. Thereafter, organisms are investigated that have pre-
viously been studied in literature. The classification capability of the model
is evaluated. As a highlight, an overall pairwise distinction rate is computed
before a scenario based on confidence regions providing an insight into genetic
neigbourhoods is introduced.

4.1 Principal Component Analysis on Selected

Organisms

In the following, we want to investigate the parameters of our model on real
world data. Hereby, we want to keep two points in mind. Firstly, we need to
demonstrate that the full number of parameters is indeed indispensible and
cannot be reduced to a subset that contains the full information.

Besides that, we would like to take a first glance on the parameters for differ-
ent organisms. The arising questions are if these really vary across the species
and, in case they do, if this variation does manifest itself in the individual
genes strongly enough to allow for classification.

To this end, we use a principal component analysis (71; 29) and concentrate
on the 3-1 dinucleotide.

page 49
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org A-A A-C A-G C-A C-C C-G G-A G-C G-G
b. s. 0.319 0.172 0.251 0.312 0.202 0.252 0.312 0.317 0.195
m. l. 0.245 0.232 0.177 0.296 0.145 0.288 0.377 0.268 0.208
t. t. 0.573 0.099 0.234 0.225 0.303 0.111 0.304 0.230 0.356
p. t. 0.364 0.176 0.125 0.318 0.229 0.169 0.264 0.355 0.215

Table 4.1: The nine genome wide parameters of the 3-1 dinucleotides of the
organisms bacillus subtilis (as b. s.), mesorhizibium loti (as m. l.),
thermus thermophilus (as t. t.) and picrophilus torridus (as p. t.).

Selected Organisms

For this analysis, we have chosen three different bacteria from very non-similar
environments that belong to three different phyla, namely Bacillus subtilis
(strain 168) (63), Mesorhizibium Loti (strain MAFF303099) (57) and Ther-
mus Thermophilus (strain HB27) (48), as well as the archaeon Picrophilus
Torridus (strain DSM 9790) (37) for comparison.

We first have a look at the nine genome wide parameters of these organisms
in table 4.1. It can clearly be seen, that the organisms differ in all nine
parameters. Nonetheless, it is not easy to picture the situation in more detail
due to the high dimensionality.

Number of Parameters and its Reduction

Our parameters are defined to model the pair building behaviour of dinucleo-
tides. As there are |{A, C, G, T}|2 = 16 dinucleotides one could argue that
the same amount of parameters is necessary. However, in chapter 3.2.1 we
have assigned our model conditional on the single nucleotide counts. On both
positions of the dinucleotide the single nucleotides can be counted yielding
to four numbers on the first and four on the second position. Yet, their sums
are equal and therefore, we condition our model on seven quantities with nine
free parameters remaining.

At this point, it is not a priori clear that all of these are in fact necessary.
Therefore, we analyse the eigenvalues in the principal component analysis.
These are shown in figure 4.1 on the next page for all four organisms. The
decreasing eigenvalues do not offer space for a canonical cut-off. Furthermore,



Bridging Model and Data page 51

organism

b. subtilis

organism

m. loti

organism
t. thermophilus

organism
p. torridus

va
ria

nc
es

 −
 e

ig
en

va
lu

es

Figure 4.1: Eigenvalues obtained in the principal component analysis of the
3-1 dinucleotide for the organisms b. subtilis, m. loti, t. ther-
mophilus and p. torridus. The progression in the eigenvalues does
not yield to a canonical cut-off. The analysis of the corresponding
eigenvectors will reveal a dissimilar underlying structure for the
different organisms (see main text).

the principal components consist of different loadings of the parameters, i. e.
correspond to different directions in the 9-dimensional space. This can be seen
exemplarily for the case of the largest component in table 4.2. In fact, these
directions may even be orthogonal. In figure 4.2 on the following page, we
have a closer look at the relative directions of all eigenvectors of two pairs of
organisms. It can be seen, that no lower dimensional subspace occurs. Even
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b. s. m. l. t. t. p. t.
b. s. 0.96 0.33 0.74
m. l. 16 0.54 0.69
t. t. 71 57 0.21
p. t. 42 48 78

Table 4.2: Relative directions of largest principal components for the different
organisms. The upper diagonal part presents the scalar product
of the eigenvectors, while the lower diagonal part gives the corre-
sponding angles. (The abbreviations of the organisms are the same
as in table 4.1.)
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Figure 4.2: Relative directions of eigenvectors for two pairs of organisms. The
angles between two vectors are shown in the colour coding given
on the right hand side. While p. torridus provides the columns in
both cases, it is paired with different organisms. The pairing with
b. subtilis shows similarity of the directions in the components,
although with different ordering. However, the pairing with m. loti
demonstrates that this finding cannot be generalised.

more clearly, no such structure persists equivalently in both cases. Together,
these results reveal that the nine parameters of our model all contribute
significantly to the distribution.

We have so far focussed on the 3-1 dinucleotide. In figure 4.3 the eigenvalues
obtained in the principal component analyses for all three dinucleotides as well
as their combination are displayed exemplarily for t. thermophilus. The lower
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Figure 4.3: Eigenvalues obtained for the different dinucleotides as well as
their combination when concentrating on the organism t. ther-
mophilus. Their decrease does not show any characteristic pat-
tern. The most remarkable observation is the vanishing of the
eigenvalues beyond the first 9 in the combined dinucleotides anal-
ysis. This is due to the circular structure of the dinucleotides in
the genomic sequence (see main text).

graph on the right hand side shows that all but 9 eigenvalues vanish. This can
be explained by the circular structure of the 1-2, 2-3 and 3-1 dinucleotides,
e. g. a certain given 1-2 dinucleotide already contains information about the
following 2-3 dinucleotide. The high degree of dependency in our model makes
it hard to reveal the effect in detail. While each of the dinucleotides is found to
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contribute equally to the resulting eigenvectors, it is still desirable to consider
them separately because of the different roles they play in biology.1

Comparison of Organisms in the Components

The results of the principal component analysis are also used for a first com-
parison of the genes of the organisms. The full 9-dimensional space can never
be visualised. Therefore, we have to resort to some kind of projection. The
principal component analysis provides a hierarchy of relevance of the different
components which can serve as a guide in this process.

First, we choose an organism arbitrarily, whose components will provide a
basis for our visualisation. Subsequently, we perform a transformation of
bases of the genes of all organisms under consideration. We now project the
9-dimensional data onto the plane spanned by the first two components and
obtain figure 4.4 on the facing page. Obviously, the reference organism shows
the highest variance as its genes are projected on the plane defined by the
two vectors of highest variance. However, this may or may not coincide with
components of highest variance of the other organisms. In fact, table 4.1
on page 50 has shown, that this is not the case for the organisms in our
example.

Clearly, the regions occupied by the different organisms overlap, at least in
the projected view. The overlap is enhanced by the projection itself, since we
have neglected a possibly large part of the information available. However,
it is apparent from figure 4.4, that the notion of each organism occupying
a certain region does make sense. Indeed, the centers of those regions are
clearly apart from each other.

Conclusion

Using the principal component analysis, we have demonstrated that the num-
ber of parameters in our model cannot be reduced any further. The computed
eigenvalues did not provide a justification for a cut-off. Additionally, the com-
ponents were dependent on the organism and no common subspace could be
identified. The above holds for all three dinucleotides.

1See also figure 4.6 on page 65.
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Figure 4.4: Genes from several organisms, shown in the components of the
organism t. thermophilus and projected on the first two. The con-
sidered feature was the 3-1 dinucleotide. In each of the four or-
ganisms described in the legend, 750 genes were randomly selected
for the figure to maintain clarity. Although they are projected on
a 2-dimensional space, a separation is already visible.

Furthermore, we have considered a projection onto the leading two compo-
nents, whereby we have shown that regions manifest themselves for different
organisms. Although these regions show overlap and will therefore not yet
allow for a single gene to be uniquely identified, they provide a characterisa-
tion of the organism. For example, it seems conceivable to identify a group of
genes based on these regions. We expect the separation between organisms
to be more pronounced in higher dimensions, which will be investigated in
section 4.3.

Most importantly, the PCA has established that our model outlined in chapter
3.2 has proven its ability to distinguish different organisms.
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4.2 Benchmarking against the Literature

Dinucleotide bias has been investigated previously using various signatures
(88; 11). However, the signatures were computed on the whole sequences
and no distinction of the positions of the dinucleotides was made. In cod-
ing regions, requirements caused by the coded amino acids conflict with this
mix-up procedure. Nevertheless, dinucleotides on the different positions were
compared against each other (45), and first interorganism comparisons based
on this distinction were attempted (78; 50). The latter paper focusses on
prokaryotic organisms and therefore lends itself for benchmarking of our
model.

We shall first give a short outline of the procedure used in the work of Hooper
and Berg (50). Based on the observation that in the absence of dinucleotide
bias a hypergeometric distribution arises, they calculate the mean and vari-
ance within this model. Thereafter, they measure the discrepancy between
the observed and expected dinucleotide counts obtaining a 16-dimensional
distance vector. This vector can be computed for individual genes and com-
pared to genome wide mean for different organisms using Hotelling’s T 2 test
(51). This way, the dinucleotide bias is exploited to identify the source of the
genes, assumed to be the organism to which the T 2 distance is minimal.

Before actually comparing the results, we would like to express concern about
some steps and arguments used in the procedure outlined above.

• The reduction of the 16-dimensional parameter space to 15 dimensions
is not fully justified. Particularly, the arbitrary reduction by omitting
a parameter without consideration of its variance or the information
within bears the risk of producing uneven distance bias.

• Hotelling’s T 2 test requires independence which clearly is not available
in this case. The authors are aware of this problem. Yet, their way
of dealing with it is purely empirical and might thus not work with
different data.

• Moreover, there is some confusion about the meaning of confidence.
The confidence level of a test and the proportion of genes for which the
test rejects are used quasi-synonymously. This has no consequences for
the pairwise comparison.
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• Finally, the model consists of 135 parameters, given in the mean vector
of length 15 as well as the corresponding covariance matrix. Although,
the number of independent parameters remains unclear, the application
to genes whose length is not considerably longer than that value leads
to overfitting.

For a performance comparison we choose the same organisms as the authors.
These include besides the prokaryotes Escherichia coli (strain K-12) (7),
Bacillus subtilis (strain 168) (63), Chlamydia trachomatis (strain D/UW-
3/CX) (103), Chlamydophila pneumoniae (strain CWL 029) (56) and Rick-
ettsia prowazekii (strain Madrid E) (2) also the archaea Aeropyrum pernix
(strain K1) (62) and Methanobacterium thermoautotrophicum (strain Delta
H) (101), as well as the chromosomes IV and VI from the yeast genome
Saccharomyces cerevisiae (strain S288C) (52; 77).

As the authors reduced the considered genes to those of a minimal length
larger than 400 nucleotides, i. e. 133 dinucleotides, we proceed analogously.
However, it can not be guaranteed that the very same set of genes was used
for the comparison, as the state of the published genome might have changed
considerably since the original work by Hooper and Berg. Moreover, as the
authors did not cite the full source of the genomes, we could only guess the
exact organisms on the sub-species level according to the date of publica-
tion.

Starting with one genome, we compute the likelihood of all n genes under
consideration in the parameter model β of this source genome as well as the
models γk of the other genomes for k = 1, . . . , 7. Then, a likelihood ratio for
each of the 7 pairs of organisms is calculated as

Lk(gi) :=
Lβ(gi)

Lγk
(gi)

for the genes gi for i = 1, . . . , n. Finally, the normalised count

Λk :=
1

n

n∑

i=1

1{Lk(gi)≥1}(gi)

is considered. This proportion is computed for each organism serving as
source organism against the models of the others. The results are presented
in table 4.3 on the following page.
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e. coli 86.2 96.5 94.9 83.5 95.7 98.6 85.0
b. subtilis 87.1 95.3 92.8 92.0 97.4 98.1 89.5
c. trachomatis 91.6 88.5 65.4 91.5 91.9 97.8 91.8
c. pneumoniae 94.8 93.5 56.4 93.7 90.3 98.0 94.4
r. prowazekii 91.9 94.5 96.2 95.8 96.0 99.3 95.6
a. pernix 93.5 94.0 86.9 89.4 86.5 97.8 94.3
m. thermoauto. 98.4 96.8 99.5 99.0 97.0 98.8 96.6
s. cerevisiae 82.4 82.6 96.1 93.0 89.1 93.7 94.9

e. coli 88.2 96.5 94.9 83.5 95.8 98.8 85.1
b. subtilis 88.9 95.3 92.8 92.0 97.3 98.3 89.6
c. trachomatis 92.5 90.6 65.4 91.5 91.8 98.0 91.9
c. pneumoniae 95.7 95.2 56.4 93.8 90.3 98.2 94.4
r. prowazekii 92.5 95.8 96.2 95.8 96.1 99.4 95.7
a. pernix 94.7 95.9 86.9 89.4 86.5 98.0 94.3
m. thermoauto. 99.4 98.1 99.5 99.0 97.0 98.8 96.7
s. cerevisiae 86.9 85.6 96.1 93.0 89.1 93.6 95.2

Table 4.3: Pairwise separation of genes, the structure of the table is analogous
to Table 1 in Hooper and Berg (50) to allow direct comparison.
(Λ1, . . . , Λ7) is shown as a column vector for each source organ-
ism. All values are percentages. In the upper half all genes were
taken into account while in the lower half the genes were restricted
to those not classified as alien by Colombo. The name of the or-
ganism methanobacterium thermoautotrophicum was abbreviated
for clarity. Particularly, e. coli and b. subtilis show systematically
larger values.
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As can be seen, our model is able to reproduce approximately the same iden-
tification rates for most pairs of organisms while variations to either side
occur. It is worth mentioning, that in the present case the parameters for
our model were always obtained from all genes of the genome, while Hooper
and Berg calculate the mean bias vectors as well as the covariance matrix,
which together constitute their model, only from the gene-set of restricted
length. Following this approach, we obtain an increase in the identification
rate percentages of 0.5 to 5 for some pairs while others remain unaffected.

It should be pointed out, that in the presence of horizontal gene transfer, a
level of 100% is not necessarily a desirable result as it can only be achieved if
alien genes are not detected. Clearly, in the present case, the optimum value
to be reached is unknown.

However, codon usage is independent of the 3-1 dinucleotide as it models
the complementary transitions only. Therefore, we can reduce the set of
considered genes by those, which have been found to be alien by a codon
usage model. To this means, we use the tool Colombo (111).

Alien genes found by Colombo which do not have their source in the compar-
ison organism affect the number of considered genes. This yields to a slight
decrease in the values of Λk of order 10−3. Genes identified by Colombo as
alien which can be regarded as a HGT event between the two genomes under
consideration result in removal of the gene from the numerator in the cal-
culation of 1 − Λk. Therefore, the fraction given in the table 4.3 increases,
possibly by a large amount, as

n∑

i=1

1{Lk(gi)<1}(gi)

is small. If the ratio on the reduced gene set still does not reach 100%, this
can be explained as an additional detection event beyond the results given
by Colombo, which of course can be either a false positive or a successfully
identified HGT event.

It can be seen in table 4.3 that in e. coli and b. subtilis the values of Λk

systematically increase after the Colombo preprocessing.
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A general characteristic of statistical identification methods is their weekness
in distinguishing very closely related species. This effect is visible in the
organisms c. trachomatis and c. pneumoniae as these both belong to the tax-
onomic family Chlamydiaceae. In this case, the increase in the identification
rate was phenomenal when computing the model parameters only from the
longer genes of minimal length 134. The value obtained for comparison of
the genes of c. trachomatis against the c. pneumoniae model changes from
56.4% to 73.0%.

Hooper and Berg set 134 dinucleotides as the minimal gene length in their
work. We have so far adapted this number. Still, for application purposes it is
very interesting to investigate the sensitivity of the method to this gene length
cut-off. We therefore consider the generic case of minimum gene lengths
between 0 and 500 dinucleotides. Examplarily, we present the results for
e. coli in figure 4.5. The identification rate by our model typically displays
an increase between approximately 100 and 200. Above this length, most
curves show saturation. Four out of seven curves exceed the values given by
Hooper and Berg for cut-off lengths below or in the vicinity of their magic
cut-off of 134. However, our model gives a lower identification rate in the
case of s. cerevisiae independent of the cut-off length. As we have observed
a large effect of alien genes for this pair, when comparing to the Colombo-
filtered genomes, and we expect that our method identifies further alien genes
beyond Colombo, it seems plausible that the low identification rates computed
with our model reflect the biological situation.

Conclusion

Our benchmark has shown that the performance of our model is comparable
to the results of Hooper and Berg, when applied to their test organisms.
Furthermore, by applying it to Colombo preselected genes, we have identified
additional suspects for HGT events. A minor increase in the gene length cut-
off to approximately 200 could result in identification rates which are typically
superior to those given by Hooper and Berg. Finally, it should be kept in
mind that all these comparisons were made directly, without penalising the
135 parameters of the Hooper and Berg approach against our 9 parameter
model.
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Figure 4.5: Identification rate of the genes of e. coli. The scenario is similar
to the one in table 4.3, except for the minimal length of the genes
taken into consideration. Each curve corresponds to the pairwise
comparison with a specific organism as given in the legend. On
the right hand side, we show the values obtained by Hooper and
Berg in (50), which were calculated for the minimal gene length
134 marked by the vertical grey line. Additionally, we indicate the
minimum gene length at which our model exceeds the Hooper and
Berg values by the dashed lines, where appropriate.

4.3 Global Pairwise Distinction

In the following, we want to scrutinise the separation qualities of our model
between organisms of different taxonomic branches. Hereby, we concentrate
our analysis on the phylum level. First, we evaluate the capability to identify
the origin of a gene when two phyla are compared. Next, we use a related
scenario, in which we determine a gene’s origin between all available phyla.
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Implications of Hoeffding’s Inequality

Before we proceed with the actual test, we need to assess the classification
risk R, which is the expectation value of the comparison outcome function X,
a random variable to be defined later. Upon frequent independent repetition
of the test, we obtain a random process {Xi : i ∈ N} of the individual
outcomes.

For any n ∈ N, the risk R can be bounded in probability using the estimated
mean of X via

P

(

1

n

n∑

i=1

Xi − R > ε

)

< δ

for the error ε with uncertainty δ.

A useful functional form of δ can be obtained using Hoeffding’s Inequality
(49, Theorem 1), yielding

δ = e−2 n ε2

given that X ∈ [0, 1].

Assume that we have set ε. In this case, Hoeffding’s inequality relates the
number of repetitions of the test and the uncertainty. Due to the monotonicity
of the logarithm, we can derive the necessary number of repetitions, if a given
uncertainty level should be guaranteed, namely

n =

⌈

− ln δ

2 ε2

⌉

.

For the purpose of our tests, we have set ε = 0.0025 and δ = 5 · 10−6 and
obtain n = 976486. Therefore, we work with n = 106.

Binary Decision Scenario

We shall first focus on a scenario where we are given a gene and two organisms
from different phyla and have to decide to which of the two organisms the
gene belongs.

More specifically, a test phylum and a comparison phylum are randomly cho-
sen from the set of available phyla. Subsequently, a representing organism is
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picked for each of the two with uniform probability. From the two organisms,
we obtain the models parametrised by β and γ for the test and comparison
organism, respectively. The test gene g is sampled from the set of the allowed
genes of the test organism, again uniformly. In order to assign the gene to
one of the two organisms, its likelihood ratio

L(β, γ; g) :=
Lγ(g)

Lβ(g)
(4.1)

is computed. It should be pointed out that this definition differs from the one
used in part 4.2. Clearly, an assignment of the gene to its own organism is
equivalent to a low value of L(β, γ; g). The outcome of the test is then given
by the outcome function

λ(L(β, γ; g)) := 1{L(β,γ;g)<1},

taking values 0, for successful identification, and 1, in case of failure.

This gives rise to a random variable

X := λ ◦ L

with values in [0, 1] on the probability space

Ω := T 2 ⊗
(

# T
⋃

i=1

{G | G ∈ ti}
)2

⊗





# G̃
⋃

i=1

{g | g ∈ Gi}



 ,

where T = {t1, . . . , tk} is the set of the taxonomic units on a given level,
e. g. phyla, and the set of all genomes in the different taxonomic units is
G̃ = {G | G ∈ ti for ti ∈ T }.

For an element ω = (t′, t′′,G′,G′′, g) ∈ Ω we define the probability

P (ω) := uT (t′) · u{T \t′}(t
′′) · ut′(G′) · ut′′(G′′) · uG′(g)

for t′ 6= t′′,G′ ∈ t′,G′′ ∈ t′′, g ∈ G′, and

P (ω) := 0

otherwise, where uA denotes the uniform distribution on the finite set A.
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feature X
1-2 dinucleotide 11.5 %
2-3 dinucleotide 5.6 %
3-1 dinucleotide 7.1 %
1-2 and 2-3 3.5 %
1-2 and 3-1 4.0 %
2-3 and 3-1 3.0 %
1-2, 2-3 and 3-1 2.2 %
codon usage 1.5 %
codon usage and 3-1 1.2 %

Table 4.4: Classification risk of the binary decision for different likelihood
functions. In the case of two-fold dinucleotide combinations, the
likelihood is given by the product of the individual likelihoods, ex-
amplarily Lβ(1−2,2−3) = Lβ(1−2) · Lβ(2−3). The three-fold likelihood
is defined analogously. The codon usage is computed as in (111,
equation 3).

In the present case, T consists of 11 phyla containing different numbers of
organisms. We only consider genes from the reduced gene set restricted to
those not classified as alien by Colombo. Due to this restriction the influence
of known alien genes on the classification risk is avoided.

Led by the considerations at the beginning of this section, we sample n = 106

elements ωi ∈ Ω. From these, we obtain realisations of X after fixing a likeli-
hood function. In addition to the different dinucleotide features, we can also
use combinations of those as well as take codon usage (111, equation 3) into
account. The resulting X = 1

n

∑n
i=1 Xi are compared in table 4.4. As can

be seen, the classification risk can be quite different for the different dinu-
cleotide features. This can be understood, if the relation of the dinucleotide
features to codon usage is taken into account, see also figure 4.6 on the facing
page. Specifically, the 2-3 dinucleotide partially profitates from the codon
usage bias associated with the use of the Colombo preselection of genes. The
combination of two dinucleotides yields to an improvement. Making use of all
three dinucleotides, the classification is comparable to the one based on codon
usage. However, the residual difference is influenced by the starting condi-
tions which are strongly favourable for codon usage. Therefore, a decisive
statement cannot be made regarding the superiority in the classification risk
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3 1 2 3 1
codon

translates to

amino acid:
Alanine
G C A

G C C

G C G

G C Ttransition

Figure 4.6: Relation between codon and dinucleotides on the different po-
sitions. While the transient 3-1 dinucleotide complements the
codon, the 1-2 and 2-3 dinucleotides lie within. As can examplar-
ily be seen in the table for Alanine, the 1-2 dinucleotide remains
mostly constant for the several codons translating into the same
amino acid. The 2-3 dinucleotide on the other hand varies with
the occurances depending on the codon usage. Therefore, they can
be considered as amino acid usage light and codon usage light,
respectively.

of the dinucleotide versus the codon usage approach. In any case, a strong
point of dinucleotide bias is the ability to trade between accuracy and the
number of parameters in a controllable way.

Full Decision Scenario

Encouraged by the results obtained in the previous part, we will now consider
a slightly more general case. In most conceivable applications, a test will
not involve a single binary comparison but rather multiple comparisons with
organisms from different phyla. In order to quantify the classification risk in
such a situation, we shall make use of a modified version of the test scenario
outlined earlier.

The adapted procedure, which we apply in this case, consists of the following
steps:

• From each phylum an organism is sampled according to the uniform
distribution.
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• One of these organisms is picked as the test organism, again uniformly.
The others will serve as comparison organisms.

• A test gene is chosen in the genome of the test organism.

• Pairwise binary comparison is carried out for the test gene between the
models of the test organism and each of the comparison organisms.

• The test is successful if each comparison is in favour of the test organism.

The test result is then again expressed by an outcome function

λ(L(β, γ1; g), . . . , L(β, γm; g)) := 1{L(β,γ1;g)<1,...,L(β,γm;g)<1}

where L is defined as in equation 4.1 and m denotes the number of available
phyla for comparison, i. e. the total number of phyla under consideration is
k = m + 1. Analogously to the binary decision scenario and making use of
L = (L1, . . . , Lm), we can now define the random variable

X := λ ◦ L

on the probability space

Ω := T ⊗
# T
⊗

i=1

{G | G ∈ ti} ⊗





# G̃
⋃

i=1

{g | g ∈ Gi}



 ,

where T = {t1, . . . , tk} is the set of the taxonomic units on a given level,
here again chosen to be the phylum level, and the set of all genomes in the
different taxonomic units is G̃ = {G | G ∈ ti for ti ∈ T }.

The probability for an element ω = (t,G1, . . . ,Gk, g) ∈ Ω is defined as

P (ω) := uT (t) ·
(

k∏

i=1

uti(Gi)

)

· uG′(g)

for g ∈ G′ and G′ ∈ t, and

P (ω) := 0

otherwise, where uA denotes again the uniform distribution on A.
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feature X upper bound
1-2 dinucleotide 54 % 71 %
2-3 dinucleotide 31 % 44 %
3-1 dinucleotide 36 % 52 %
1-2 and 2-3 22 % 30 %
1-2 and 3-1 25 % 34 %
2-3 and 3-1 19 % 26 %
1-2, 2-3 and 3-1 15 % 20 %
codon usage 11 % 14 %
codon usage and 3-1 9 % 11 %

Table 4.5: Classification risk for the full decision scenario. For comparison,
the bound given by the assumption of independent and identically
distributed individual binary comparisons based on formula 4.2 and
the values from table 4.4 on page 64 are shown in the right most
column. The definition of the likelihood functions for combination
of features is analogous to the binary decision scenario.

Hoeffding’s inequality can be used to determine the necessary number of
repetitions. However, it should be noted that in the present scenario the
computational effort for a given number of repetitions is higher by roughly
a factor of 5 as the most costly operation is the calculation of the likelihood
function. Therefore, it would be desirable to reduce the number of repeti-
tions. On the other hand, the classification risk is supposed to be larger. For
instance, if we assume the individual likelihood ratios to be independent and
identically distributed, the classification risk would be given by

R = 1 −
m∏

i=1

(1 − R′) (4.2)

where R′ is the classification risk in the binary decision case obtained before.
Exemplarily, for R′ = 2.2% we find R = 20%, while R′ = 7.1% leads to
R = 52%. This suggests that an accuracy on the sub-percent level will not
be needed in this scenario allowing us to lower the number of repetitions to
n = 250000 for ε = 0.005 and δ = 5 · 10−6. The results for this case are given
in table 4.5.

As a central result, we conclude that our model is capable of distinguishing
the genetic signature of organisms from different phyla. In this context, one
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should first note that if a feature was incapable of such a distinction,

1 −
m∏

i=1

(1 − 0.5) = 1 − 0.510 = 0.999 .

On the other hand, assume that a single pair of phyla was indistinguish-
able. In that case, at least 0.5 · 2

11
= 0.091 of all tests would fail, even if all

other phyla would be perfectly distinguished. Although our results exceed
this value, the assumption of perfect distinction is violated for any pair of
phyla. We therefore conclude that, using the combination of the different
dinucleotide features, we can tell apart all phyla.

Furthermore, it should be noted that in both scenarios the combination of
codon usage and the 3-1 dinucleotide displays an improvement over codon
usage alone. This shows that our dinucleotide model is capable of additional
detection of genes and works in a complementary way, as anticipated. There-
fore, we are indeed able to use the dinucleotide bias for detection of alien
genes.

Conclusion

The results obtained in this section indicate the applicability of our model
in alien gene detection. Several methodological variants are conceivable and
each have their own advantages. The decision for a specific variant will there-
fore have to be based on the biological question to be investigated. The most
promising options are the combination of all three dinucleotides or the com-
bination of codon usage together with the 3-1 dinucleotide as its complement.
Furthermore, it might be interesting to work with a single dinucleotide for
drastic reduction in parameter number. At this point, the 3-1 or 2-3 dinucleo-
tides recommend themselves due to their biological role.

4.4 Genetic Neighbourhoods

If we concentrate on a particular dinucleotide, the 9 parameters of the model
for a specific organism can be thought of as a point in the hypercube [0, 1]9

assigned to that organism. As we have a large number of genes for each
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organism, we can also think of all the points corresponding to their individual
models. Based on the properties of the genetic data investigated in chapter
2, we expect those points to lie within a region around the organism center.
We are now going to give a possible definition of such regions and study the
implications.

To this end, consider a genome G and its set of genes2. We then make use of
the following bootstrap procedure.

From this gene set we draw with replacement a collection (gi)i=1,...,N . To each
gi, we apply the β-estimator and obtain a collection (βi)i=1,...,N . It should be
noted, that the β-estimator as defined in 3.4 and used according to 3.6 yields
to a 9-tupel.

We estimate the genome mean by the sample mean β̂ of (βi)i=1,...,N and the

covariance matrix Σ̂ analogously.

Confidence Ellipsoids

As the matrix Σ̂ is symmetric, it can be used to define an ellipsoid E centered
around β̂, given by

E := {p | (p− β̂)T Σ̂−1 (p − β̂) ≤ c2} (4.3)

with c2 = (χ2)−1(1 − α), where α is the confidence level. Note that these
ellipsoids are not necessarily contained in [0, 1]9. We therefore consider the
intersection region, where appropriate.

The ellipsoid E defined above has a volume given by

V(E) = (c2)9/2 · D9 ·
9∏

i=1

1√
λi

= c9 · D9
√

det Σ̂−1
= c9 · D9 ·

√

det Σ̂ (4.4)

where λ1, . . . , λ9 are the eigenvalues of Σ̂−1, related to the radii ri via λi =
1/r2

i , and the dimensional constant

D9 =

√
π 9

Γ(9
2

+ 1)
=

π4 · 2 9 · 4!

9!
.

2In the following, we restrict ourselves to those genes not classified as alien by Colombo.
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Furthermore, the ratio
mini ri

maxi ri

=

√

mini λi

maxi λi

defines the ellipticity.

Using these definitions, we can now start to explore the geometric configura-
tion of the ellipsoids for all organisms.

Heuristic Determination of Ellipsoids

As a starting point, we need to fix the bootstrap procedure. To this end,
we repeat the bootstrapping k times at fixed parameters and compare the
resulting confidence ellipsoids. We take into account both the center points
and the volumes at a given confidence level. We then look for a size of
the bootstrap sample for which the run-to-run variation becomes acceptable.
This is illustrated for 5 different organisms in figure 4.7.

We can proceed with the evaluation of the confidence level α to set the sizes
of the ellipsoids. Figure 4.8 displays the parameters obtained for all genes of
the organism Escherichia Coli (strain K12). As can be seen, those correspond
nicely to the genome-wide parameters. Although the center is clearly defined,
considerable variation over the genes is visible. In figure 4.9, we show the
fraction of genes of an organism which are actually contained within the
corresponding ellipsoid. In order to avoid large overlap between the ellipsoids,
we choose a rather large α = 0.67 and obtain 21% to 25% of genes within the
ellipsoid. With these parameters, we can now compute the volumes according
to equation 4.4 for all ν = 284 organisms under consideration3. We obtain
the vast majority of volumes bounded by 1.0 · 10−7 and set a cut-off at 2.0 ·
10−7. The histogram of the volumes is shown in figure 4.10. We observe that
the total volume occupied by the ellipsoids of all organisms can be bounded
according to

V
(

ν⋃

i=1

Ei

)

≤
ν∑

i=1

V(Ei),

yielding a total volume below 1.3 · 10−5. Therefore, essentially all of the
hypercube can be considered empty. Using this knowledge, we are now ready

3We have excluded multiple strains of the same organism from the dataset to prevent

misleading collisions of their ellipsoids.
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Figure 4.7: Determination of bootstrap sample size. For each sample size,
k = 20 repetitions of the draw procedure were evaluated. The up-
per graph shows the average distance of the centers of two such
instances. The lower graph presents the standard deviations of
their volumes. In both graphs, the chosen sample size of 1750
genes is highlighted. The organisms used are Escherichia coli
(strain K12), Thermus thermophilus (strain HB27), Shigella son-
nei (strain Ss046), Lactobacillus plantarum (strain WCFS1) and
Chlamydia trachomatis (strain D/UW-3/CX).

to interpret the results shown on the right hand side of figure 4.9. Clearly, the
fraction of genes within the ellipsoid of their own organism suggests that most
genes from a genome are localised within a region. Examplarily, this claim
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Figure 4.8: The genewise parameter estimates of Escherichia Coli (strain
K12) together with the estimates from the genome. The centers
are clearly visible and correspond nicely to the genomewide pa-
rameters. The centers extend from 0.1 to 0.4.

is supported by figure 4.4 on page 55. Imagine that we add a few uniformly
distributed ellipsoids to the scenario. In that case, we do not expect to
increase the total number of genes contained within all of them considerably.
On the other hand we have observed that this number increases by more than
a factor of 2 for approximately 50 ellipsoids. This can only be understood if
many of those are located close to one another.
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Figure 4.9: Fraction of genes within the ellipsoid for different confidence levels
α. On the left hand side, only the organisms own ellipsoid is
taken into account, while on the right hand side, all ellipsoids
corresponding to organisms of the same phylum are considered.
The organisms are the same as in figure 4.7. The orange lines
at α = 0.67 indicate our choice of confidence level, with the ver-
tical lines showing the minimal and maximal fraction of genes
within this confidence level, respectively. While the fraction of
genes contained in their organism’s own ellipsoid lie between 21%
and 25%, the fraction of genes within any ellipsoid of their own
phylum is highly dependent on the size of the respective phylum
and can reach up to 55%.

This consideration motivates a change of focus from an organism’s own ellip-
soid to the union of ellipsoids of its own phylum. This will be of particular
importance in the next section 4.5. Moreover, it would be interesting to check
to which degree the proximities in the β-hypercube can be traced back to bi-
ology. Or, putting it the other way around, if exploration of the β-hypercube
can help to answer biological questions.
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Figure 4.10: Histogram of the volumes of the confidence ellipsoids for α =
0.67. The green area contains the organisms with large volumes
above 2.0 · 10−7.

In addition to the volumes, we also compute the ellipticities of the ellipsoids.
These can be seen in figure 4.11, again as a histogram. Most ellipsoids are
only moderately elliptic, with an ellipticity ratio around 0.25. We consider an
ellipsoid as extremely elliptic if its ellipticity is below 0.15, and set a cut-off
at this value. It turns out that the organisms which are beyond the cut-off
for either the volume or the ellipticity mostly coincide.

Computing the Overlap

Finally, it is interesting to ask to which extent the ellipsoids corresponding to
the different organisms overlap. While it might be easy to exclude overlap in
some situations, the actual computation of non-vanishing overlap volumes is
demanding. We will therefore first reduce the number of suspects before we
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Figure 4.11: Histogram of the ellipticities of the organisms under considera-
tion. The green area contains the organisms with extreme ellip-
ticity below 0.15.

actually perform this computation. Moreover, we leave out those organisms
that lie beyond one of the cut-offs defined before. Given two ellipsoids E1 and
E2, we consider spheres S1 and S2 in which they are fully contained, given
by

S1,2 = { p | (p− β̂1,2)
2 ≤ c2 · R2

1,2 } ,

where R = 1/
√

mini λi is the largest radius of the respective ellipsoid and c2

is defined as before. Obviously, from

c2 ·
(
R2

1 + R2
2

)
≤
(

β̂1 − β̂2

)2

we can conclude

S1 ∩ S2 = ∅ =⇒ E1 ∩ E2 = ∅.
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The above condition, which is computationally easy to check, allows us to
exclude pairwise overlap in all but 80 out of ν·(ν−1) / 2 ≈ 4·104 possible cases.
For the remaining cases, we really have to compute the overlap. This task
can be performed using Monte Carlo integration. To this end, we compute
bounding boxes containing B1 ⊃ E1 and B2 ⊃ E2 of the form

9⊗

i=1

[xi,min, xi,max]

with 0 ≤ xi,min ≤ xi,max ≤ 1 for i = 1 . . . 9. Clearly, we then have

E1 ∩ E2 ⊂ B1 ∩ B2,

where the right hand side is straightforward to calculate. Subsequently, we
uniformly sample N = 5 · 105 points pi inside this box intersection, which
typically has a volume of V(B1 ∩ B2) ≈ 1 · 10−5. For each of those points,
we verify whether or not it is contained within the two ellipsoids E1,2 using
equation 4.3. It should be noted that the application of the equation 4.3
involves matrix multiplication and is therefore computationally expensive,
thus limiting the number of points we were able to calculate. The volume of
the intersection is then approximated by

V(E1 ∩ E2) ≈
∑N

i=1 1E1
(pi) · 1E2

(pi)

N
· V(B1 ∩ B2)

We did not find any common points for either pair of organism in the inte-
gration procedure. However, the box intersection volume is fairly large with
respect to the expected intersection volumes, so that typically only around
ten points come to lie in either ellipsoid alone. We can therefore bound the
intersection volumes to a few percent of the ellipsoid volumes. We have ex-
amplarily carried out the integration procedure with N = 2.5 · 105 points
for two pairs of organisms, namely Synechocystis (strain PCC 6803) ver-
sus Pseudoalteromonas haloplanktis (strain TAC125) and Mycoplasma pneu-
moniae (strain M129) versus Leptospira borgpetersenii serovar Hardjo-bovis
(strain L550). Still, we have not found any common points, yet, we can now
give an upper bound for the intersection volume in those particular cases of
approximately 1% of the individual volumes.

Conclusion

Our investigation of the geometry arising from the definition of confidence
ellipsoids has shown that organisms can be seen as separate regions with a
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typical range of volumes and shapes. Our choice of parameters has enabled
us to keep their overlap small. From these properties, one can expect that
gene identification based on position in the β-hypercube should be feasible,
although with a limited identification rate for each individual case due to the
chosen confidence level. Moreover, our findings suggest geometrical neigh-
bourhoods of organisms from the same phylum. This property can then be
exploited to map biological questions to geometrical problems in the in the
hypercube.

4.5 Metagenomics

Metagenomics is a biological setup that is used if the organisms in question
cannot be sequenced and if some information can be given up. It is not
uncommon for microbes that they cannot be multiplied under lab conditions
or that they interfere with the sequencing techniques (41; 104). Instead of
sequencing the organisms individually, everything from a certain environment
is taken and short sequences are obtained (109). The aim is to give a profile of
these sequences based on phyla in percentage (16; 21). It is thus not necessary
to identify each sequence individually. This compensates for the fact that
little information is given, in particular, no predefined codon structure is
available.

These specifications resemble the properties which we have found for the iden-
tification based on the confidence ellipsoids in the previous section. There-
fore, it is peculiarly interesting to explore the potential of this geometrical
procedure for the application of metagenomics.

Sampling Procedure

Our starting point is a set S of genomic sequences; in the first step, they
will be genes. These are drawn from the reduced set of genomes used for the
confidence ellipsoids according to a prescribed distribution. For simplicity,
we first consider the case where the distribution corresponds to the numbers
of organisms contributing the phylum.
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For each sequence s ∈ S, we try to identify the source phylum, using the
following prescription:

• If s ∈ E for a single confidence ellipsoid E, it is counted for the phylum
to which the ellipsoid belongs.

• If s 6∈ ⋃i Ei, i. e. s does not lie in any of the given ellipsoids, then s is
considered as unknown.

• If s ∈ Ei ∩Ej for Ei, Ej in the same phylum, we can again count it for
this phylum. The same applies for more than two ellipsoids, as long as
all of them belong to the same phylum.

• Otherwise, s is disputed between several phyla. This situation can be
dealt with in several ways, here we consider the possibilities of either
classifying s as unidentifiable and not counting it for either phylum
(exclusive approach), or to count it for all matching phyla, with a weight
equal to the inverse of their number (sharing approach).

Finally, we obtain a profile consisting of the relative frequencies of counts for
all phyla, as well as the fraction of unknown and unidentifiable sequences.
The results of a test run using a confidence level α = 0.67 with 20 genes
sampled from each organism can be seen in table 4.6.

Slightly more than half of the genes are unknown, if we decide to share
sequences falling within more than one phylum. Those are found to constitute
about ohne quarter of the total sample. Both values are consistent with
our findings from the previous section, although the overlap volume of the
ellipsoids suggested slightly less disputed sequences. It is interesting to note
that some phyla, like Actinobacteria or Firmicutes give good results if the
profiles are renormalised according to the number of identified sequences,
while others, like Chlorobi give satisfying results without normalisation. A
possible explanation for the latter observation could be that this phylum lives
in an otherwise sparse region of the parameter space. Exclusive profiling
seems biased towards large phyla, which can be understood geometrically, as
few double-classification events strongly reduce the counts of a small phylum,
while having negligible influence on the large phyla.

We have also performed first tests with initial profiles strongly deviating from
the relative phylum sizes, and have found evidence for a volume bias effect:
Genes that are not classified in their own organism’s ellipsoid will have an
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shared profiling exclusive profiling
phylum input profile

raw norm. raw norm.
Acidobacteria 0.7 % 0.7 % 1.4 % 0.0 % 0.0
Actinobacteria 10.0 % 5.5 % 11.7% 2.0 % 10.1
Aquificae 0.4 % 0.1 % 0.2 % 0.1 % 0.5
Bacteroidetes 2.2 % 1.9 % 4.0 % 0.2 % 1.0
Chlamydiae 2.6 % 1.1 % 2.3 % 0.3 % 1.6
Chlorobi 1.5 % 1.4 % 3.0 % 0.1 % 0.6
Chloroflexi 0.7 % 0.2 % 0.5 % 0.0 % 0.3
Cyanobacteria 3.3 % 2.3 % 4.9 % 0.4 % 1.8
Deinococcus-Th 0.7 % 1.3 % 2.7 % 0.1 % 0.4
Firmicutes 18.2 % 9.6 % 20.3% 3.3 % 17.3
Proteobacteria 56.5 % 21.2 % 44.8% 12.1 % 62.5
Spirochaetes 2.6 % 1.9 % 4.0 % 0.7 % 3.4
Thermotogae 3.7 % 0.1 % 0.2 % 0.1 % 0.4
unknown – 52.7 % – 80.7 % –

Table 4.6: Results of profiling runs on sample data using either a sharing or
an exclusive approach to the final profiling step. The raw columns
show the result counting the unknown sequences as their own class,
while for the normalised columns, the phyla add up to 100%.
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increased probability to fall into the larger volume spanned by the ellipsoids
of large phyla. The output profiles are therefore driven in the direction of the
relative phylum sizes. This effect needs to be dealt with when formulating
the biological question one wants to answer using this model. Finally, we
composed sequences dropping the codon structure. Of course, the fraction
of unknown sequences rises strongly in this situation. However, the resulting
profiles for the rest of the sample still give reasonable results. The significance
of these profiles remains unclear due to the smallness of the sample.

Conclusion

The results obtained on the sample data provide a framework for the analysis
of real-world data. As the true profile for these is not known, and the se-
quence composition is supposedly biased against those organisms which can
be sequenced and whose data and information is therefore available, metage-
nomic analysis has so far only been feasible on reduced datasets for narrow
questions. This kind of narrowing-down appears also in our results, therefore,
we see a potential for application of our model in this context. However, it
is very important to get a deeper understanding of systematic uncertainties,
which is beyond the scope of this work.



5 Conclusion

In this work, we have constructed a model for dinucleotide bias in genomic
sequences, based on a biased urn described by the noncentral hypergeometric
distribution by Wallenius. We have analysed the prerequisites in the data,
and examined the applicability of the model in a broad range of scenarios.

Our model improves on existing work in terms of its well-defined stochasti-
cal basis, which also provides a lot of flexibility for application even in yet
not foreseen scenarios. Especially, it can be applied to each dinucleotide fea-
ture and also allows for combinations of these, which enhance its predictive
power. These combinations may be motivated by and adapted to biological
questions.

There is a freedom of choice in the construction of the model. We have shown
the mathematical equivalence of the resulting models. However, they need
not be equivalent on the biological side. In particular, it is conceivable that
the four-step models starting with the nucleotides G and C can be more
accurate. This is due to the fact, that the estimators perform best for large
urns, i. e. in the first two steps. Thus, they favour a precise value for the GC
bias which is known to be biologically important.

The model is optimal in the number of parameters as demonstrated by a
principal component analysis. We have evaluated the performance of our
model in the identification of the origin of individual genes and have obtained
results that are comparable to existing methods using literature data as a
benchmark. We have also verified that the model predicts alien genes beyond
those identified by a codon usage approach. Using a binary decision scenario,
involving a large number of organisms and codon usage based preselection,
we have verified that the different dinucleotides indeed correlate differently
with the codon usage. Moreover, this scenario demonstrates that the model
is sensitive also with respect to the phylum.
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We have constructed confidence ellipsoids for all organisms using a bootstrap
technique. These give rise to a geometrical view and a notion of neighbour-
hood and proximity. The concepts so obtained seem to hold also on the
phylum level. Therefore, an application to metagenomics comes into reach.
We have thus performed first tests using verifiable sample data finding rea-
sonable agreement with the known input profile. Still, further investigations
will be necessary to get an understanding of the potentials of the method.
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