Identifikation von Genen und Mikroorganismen die an der dissimilatorischen Fe(III)-Reduktion beteiligt sind

Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

vorgelegt von

Baris Özyurt

aus Esslingen am Neckar

Göttingen, 2008

D 7 Referent: PD. Dr. Rolf Daniel Korreferent: PD. Dr. Michael Hoppert Tag der mündlichen Prüfung: 21.01.2009

Inhaltsverzeichnis

Inhaltsverzeichnis	Ι
Tabellenverzeichnis	V
Abbildungsverzeichnis	VII
Abkürzungsverzeichnis	VI

1	EINLEITUNG	1
1.1	Dissimilatorische Fe(III)-Reduktion	1
1.2	Zellulare Strategien des dissimilatorischen Elektronentrans- fers auf Fe(III)	3
1.3	Metagenomik	4
1.4	Zielsetzung	6
2	MATERIAL UND METHODEN	7
2.1	Verwendete Organismen, Plasmide und Oligonukleotide	7
2.2	Nährmedien und Lösungen	8
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7	LB-Medium Fe-PP(Eisen-Pyrophosphat)-Medium SOB-Medium M9-Mineralmedium Spurenelementelösung SL-9 Vitaminlösung Antibiotika und andere Medienzusätze	8 8 9 9 10 10 10
2.3	Zellanzucht	11
2.3.1 2.3.2 2.3.3	Anzucht von Flüssigkulturen Aerobe Anzucht Anaerobe Anzucht	11 12 12
2.4	Stammhaltung und Reinheitskontrolle	12
2.5	Zellernte	13
2.6	Anreicherungskulturen	13
2.7	Isolierung von Einzelkolonien	13
2.8	Bestimmung von Wachstumsparametern	14
2.8.1 2.8.2 2.8.3 2.8.3.1 2.8.3.2 2.8.4	Bestimmung der optischen Dichte Bestimmung des pH-Wertes Bestimmung des Zellwachstums <i>Mikroskopische Bestimmung der Zellzahl</i> <i>Proteinbestimmung an ganzen Zellen</i> Bestimmung von Fe(II)	14 14 14 14 14 15
2.9	Standardtechniken für das Arbeiten mit Nukleinsäuren	15
2.9.1 2.9.2 2.9.3 2.9.3.1	Behandlung von Geräten und Lösungen Puffer und Lösungen Fällung, Reinigung und Konzentration von Nukleinsäuren <i>Fällung von Nukleinsäuren</i>	15 15 16 <i>16</i>

2.9.3.2	DNA-Fällung nach Saccharose-Dichtegradientenzentrifugation			
2.9.3.3	Dialyse von Umwelt-DNA			
2.9.3.4	Gelfiltration von DNA-Lösungen			
2.9.3.5	Konzentrations- und Reinheitsbestimmung von DNA			
2.9.3.6	Isolierung von DNA-Fragmenten mittels "QIAquick Gel Extration"-Kit			
2.9.3.7	Reinigung von DNA-Fragmenten mittels "QIAquick PCR Purification"-Kit	18		
2.10	Isolierung von Nukleinsäuren	18		
2.10.1	Isolierung von DNA aus Umweltproben	18		
2.10.2	Reinigung von Umwelt-DNA	19		
2.10.3	Isolierung von chromosomaler DNA	19		
2.10.4	Isolierung von Plasmid-DNA	20		
2.10.4.1	"Cracking" von Plasmiden	20		
2.10.4.2	Plasmidschnellpräparation	21		
2.10.4.3	Minipräparation von Plasmiden mittels "WizardTM Plus Minipreps DNA Purification System"	21		
2.10.4.4	Minipreps DIVAT ungleanon System Minipräparation von Plasmiden mittels "QIAprep Spin Miniprep Kit"			
2.10.4.5	Präparative Plasmidisolierung über Anionenaustausch- Chromatographie	22		
2.11	Gelelektrophorese von Nukleinsäuren	23		
2.11.1 2.11.2	Standard-Agarose-Gelelektrophorese Größenbestimmung von Nukleinsäuren	23 24		
2.12	Enzymatische Modifikation von DNA	24		
2.12.1	Schneiden von DNA durch Restriktionsendonukleasen	24		
2 12 2	Dephosphorylierung von DNA-Fragmenten	24		
2.12.3	Ligation von DNA-Fragmenten	24		
2 12 3 1	Ligation mit T4-DNA-Ligase	24		
2.12.3.1	Ligation mit dem "TOPO-TA-Cloning "-Kit	25		
2.13	Saccharose-Dichtegradientenzentrifugation			
2.14	Übertragung von DNA in E. coli und Selektion rekombinan- ter Klone			
2 14 1	Hocheffiziente Transformation in E-coli	26		
2.14.2	Der X-Gal-Test zur Selektion rekombinanter Klone	20		
2.11.2	Screening-Strategie zum Auffinden von dissimilatorischen	27		
2.17.3	Fe(III)-Reduktasen aus Umweltgenbanken	27		
2.15	Polymerase-Kettenreaktion (PCR)	28		
2.16	DNA-Sequenzierung	29		
2.16.1	Analyse von Sequenzdaten	29		
2.17	16S-rDNA-Analyse	30		

2.18	Elektronenmikroskopische Methoden	31
2.18.1	Elektronenmikroskopische Trägernetze	31
2.18.2	Trägerfolien	31
2 18 2 1	Kohlefolien	31
2.18.2.1	Formvarfolien	31
2.10.2.2	Nagativkontractiorung	21
2.10.5	Flektronenmikrographie	31
2.10.4		20
2.19	Chemikalien, Enzyme und Gase	32
3	EXPERIMENTE UND ERGEBNISSE	33
3.1	Strategie für die Suche nach dissimilatorischen Fe(III)- reduzierenden Mikroorganismen und terminalen Fe(III)- Reduktasen	33
3.2	Konstruktion von Genbanken und Metagenombanken	35
3.2.1	Isolierung von Gesamt-DNA aus verschiedenen Umweltproben und Isolaten	35
3.2.2	Klonierung der DNA	36
3.2.3	Vergleich der hergestellten Genbanken	37
3.3	Screening der Genbanken auf Gene die für Fe(III)- Redukta- sen kodieren	
3.4	Sequenzierung und molekulare Analyse der Plasmid-Inserts die eine dissimilatorische Fe(III)-Reduktase-Aktivität vermitteln	40
3 4 1	Analyse der Insertsequenz von nDIR01	41
3 1 2	Analyse der Insertsequenz von pDIR07	12
2.4.2	Analyse der Insertsequenz von pDIR02	42
3.4.3	Analyse der Insertsequenz von pDIR03	43
3.4.4	Analyse der Insertsequenz von pDIR04	45
3.4.5	Analyse der Insertsequenz von pDIR05	46
3.4.6	Analyse der Insertsequenz von pDIR06	46
3.4.7	Zusammenfassung der Eigenschaften der identifizierten ORFs	47
3.5	Isolierung von dissimilatorisch Fe(III)-reduzierenden Bakterien	50
3.5.1	Fe(III)- reduzierende Stämme in den Anreicherungskulturen	51
3.5.2	Isolierung und Charakterisierung der Fe(III)-reduzierenden Bakterien aus der Thermalquelle bei Izmir	52
3.5.2.1	Aggregatbildung bei den Isolaten aus Izmir	53
3.5.2.2	Untersuchung der Isolate zur Chemotaxis	55
3.5.2.3	Empfindlichkeit der neu isolierten Stämme gegenüber verschiede- nen Antibiotika	55
3.5.2.4	Substratspektrum der dissimilatorischen Fe(III)-reduzierenden Isolate	56
3.5.2.5	16S rRNA Geneanalyse der isolierten Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y	58

4.	DISKUSSION	60
4.1	Die Verbreitung der dissimilatorischen Fe(III)-Reduktion	60
4.2	Extrazelluläre Einflüsse auf die dissimilatorische Fe(III)- Reduktion	61
4.2.1	Selektive Bedingungen zur Anreicherung von dissimilatorischen Fe(III)-Reduzenten	63
4.2.2	Die Isolate aus Izmir beherbergen eine große Atmungsvielfalt	66
4.3	Metagenomische Analyse der dissimilatorischen Fe(III)- Reduktion	68
4.3.1	Funktionelles Screening von Umweltgenbanken auf Gene für Fe(III)-Atmung	68
4.3.2	Durch die Umwelt-DNA verursachte Fe(III)-Atmung	70
4.4	Hinweise auf bisher unbekannte dissimilatorische Fe(III)- Reduzenten	76
4.5	Chemotaxis und Biofilm-Bildung können die dissimilatorische Fe(III)-Reduktion beeinflussen	
5.	ZUSAMMENFASSUNG	80
6.	LITERATURVERZEICHNIS	82
7.	ANHANG	99

Tabellenverzeichnis

Tabelle 1	Verwendete Organismen
Tabelle 2	Vektoren und rekombinante Plasmide
Tabelle 3	Verwendete Oligonukleotide
Tabelle 4	Verwendete Medienzusätze und Konzentrationen
Tabelle 5	Eigenschaften der untersuchten Genbanken aus Umweltproben, aus Anreicherungskulturen und den Stämmen
Tabelle 6	Screening der Genom- und Metagenombanken auf Gene für dissimilatorische Fe(III)- Reduktion
Tabelle 7	Übersicht über die Plasmide aus den E. coli-Klonen mit einer Fe(III)-Reduktase Aktivität
Tabelle 8	Eigenschaften der identifizierten offenen Leserahmen und davon abgeleiteten Aminosäuresequenzen aus der Insertsequenz des Plasmids pDIR01
Tabelle 9	Eigenschaften der identifizierten offenen Leserahmen und davon abgeleiteten Aminosäuresequenzen aus der Insertsequenz des Plasmids pDIR02
Tabelle 10	Eigenschaften der identifizierten offenen Leserahmen und davon abgeleiteten Aminosäuresequenzen aus der Insertsequenz des Plasmids pDIR03
Tabelle 11	Eigenschaften der identifizierten offenen Leserahmen und davon abgeleiteten Aminosäuresequenzen aus der Insertsequenz des Plasmids pDIR05
Tabelle 12	Eigenschaften der identifizierten offenen Leserahmen und davon abgeleiteten Aminosäuresequenzen aus der Insertsequenz des Plasmids pDIR06
Tabelle 13	Annotation der auf den Plasmiden pDIR01, pDIR02, pDIR03, pDIR04, pDIR05 und pDIR06 identifizierten Gene
Tabelle 14	Wachstum der Isolate bei Zugabe von Antibiotika
Tabelle 15	Anaerobes Wachstum der Isolate Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y auf verschiedenen C-Quellen mit Fe(III) als terminalen Elektronenakzeptor
Tabelle 16	Dissimilatorische Fe(III)-Reduktion der isolierten Stämme mit verschiedenen Aminosäuren als einzige C-Quellen
Tabelle 17	Nutzung von alternativen Elektronenakzeptoren der Isolate aus Izmir
Tabelle 18	Vergleich der 16S-rDNA-Sequenzen der Isolate mit 16S-rDNA-Sequenzen aus anderen Organismen
Tabelle 19	Bestandteile der dissimilatorischen Fe(III)-Atmung von Shewanella - und Geobacter- Stämmen

Abbildungsverzeichnis

Abbildung 1	Schematische Darstellung der TOPO-TA-Klonierung
Abbildung 2	Grundlage des Screening-Verfahrens
Abbildung 3	Schematische Darstellung der Strategie zur Suche nach dissimilatorischen Fe(III)- Reduktasen und Organismen, die zur Fe(III)-Atmung befähigt sind
Abbildung 4	Isolierung von chromosomaler DNA zur Konstruktion von Metagenombanken
Abbildung 5	Formel zur Berechnung einer statistisch vollständigen Genbank
Abbildung 6	Darstellung der Restriktionskarte des Inserts von pDIR01
Abbildung 7	Darstellung der Restriktionskarte des Inserts von pDIR02
Abbildung 8	Darstellung der Restriktionskarte des Inserts von pDIR03
Abbildung 9	Darstellung der Insertsequenz von pDIR04
Abbildung 10	Darstellung der Insertsequenz von pDIR05
Abbildung 11	Darstellung der Insertsequenz von pDIR06
Abbildung 12	Elektronenmikroskopische Aufnahmen der in der Anreicherungskultur TQIS vorkommenden Zellformen
Abbildung 13	Elektronenmikroskopische Aufnahmen einer möglichen Eisen-Anhaftung der Zellen in der Anreicherungskultur TQIS
Abbildung 14	Elektronenmikroskopische Aufnahmen der makromolekularen Anhäufungen an den Zellen in der Anreicherungskultur TQIS
Abbildung 15	Kugel-ähnliche Kolonien mit Vivianit-Bildung auf der Oberfläche (weiße Flecken auf den Kolonien), die zu Isolation des Stammes Izmir Y geführt haben
Abbildung 16	Wachstum der isolierten Fe-reduzierenden Stämme im FePP-Medium unter anaeroben Bedingungen
Abbildung 17	Der auf 16S-rDNA-Gensequenzen basierende phylogenetische Stammbaum der bekannten Gattungen mit Vertretern, die zur dissimilatorischen Fe(III)-Reduktion befähigt sind
Abbildung 18	Eisenkreislauf in aquatischen Umgebungen
Abbildung 19	Vor- und Nachteile zwischen funktions- und sequenzbasierten Screeningverfahren
Abbildung 20	Respirative Flexibilität von E. coli (modifiziert von Richardson, 2000)

Abkürzungsverzeichnis

α	alpha
Abb.	Abbildung
AG	Aktiengesellschaft
Ap ^r	Ampicillin-Resistenz
APS	Ammoniumpersulfat
AS	Aminosäure
ATP	Adenosin-5´-triphosphat
β	beta
Bp	Basenpaare
bzw.	beziehungsweise
°C	Grad Celsius
ca	circa
Ci	Curie
cm	Zentimeter
C-Quelle	Kohlenstoffauelle
CTAB	Cetyl-Trimethyl-Ammoniumbromid
C-terminal	Carboxyterminal
Da	Dalton
DDH	Diol-Dehydratase
dATP	Desoxvadenosin-5'-trinhosnhat
dCTP	Desoxycytidin-5'-triphosphat
dest	destilliert
dGTP	Desovyguanosin-5'-triphosphat
dh	das heisst
DH	Dehydrogenase
	Dihydroxyaceton
Dht	Dahydrotasa
DMSO	Dimothylsulfovid
DMSO	DifficultyIsuffoxia
ANTD	Desoxynuklaatid 5' trinhaanhat
	Desoxynukieotid-5 -uipiiospilat
	Each arishin
<i>E</i> .	Escherichia Estimisti angle officient
	Ethylendiamintetraessigsaure
ed(s).	Herausgeber
et al.	et alteri (und andere)
Fa.	Firma
Fp	Flavoprotein
g	Gramm
xg	-fache Erdbeschleunigung (9,81 m/s ²)
γ	gamma
GmbH	Gesellschaft mit beschränkter Haftung
GWDG	Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen
h	Stunde
Hrsg.	Herausgeber
IPTG	Isopropyl-β-thiogalaktosid
k	Kilo
Κ	Kalium
kDa	Kilodalton
K _m	Michaelis-Menten Konstante

КР	Kaliumphosphat
KU	(siehe S. 43)
1	Liter
LB	Luria Bertani
М	molar (Mol pro Liter); Mega-
m	Meter
MacA	?
Mg	Magnesium
11	Mikro-
MBTH	3-Methyl-2-benzothiazolinonhydrazon
min	Minute
N ₂	Stickstoff
n	Nano-
NAD ⁺	Nikotinamidadenindinukleotid
NADH	Nikotinamidadenindinukleotid reduziert
Nr	Nummer
ΝΤΔ	Nitrilotriessigsäure
N_terminal	Aminoterminal
	Ohm
00	ontische Dichte
orf OPE	offener Lesershmen
DCD	nolymoroso abain reaction"
DEC	"porymerase chain reaction Delyethylonglykel
reu nu	Polyeuryleugykor nagatiwar dakadigahar Lagarithmus dar Drotononkonzentration
рп	Chinempeel
KINA "DNIA	ribonukieinsaure
	ribosomale KNA
IDNA DT	noosomale DNA
KI G	
5	Svedberg-Einneit
S	Sekunde
S.	siene
SSC	Standard Saline-Citrat
SDS	Natriumdodecylsulfat
S.O.	siene oben
sp.	species
	Temperatur
Tab.	labelle
Taq	Thermus aquaticus
TEMED	N, N, N, N - I rimethylethylendiamid
I _m	Schmelztemperatur
IM	Trademark
TMAO	Trimethylamin-N-Oxid
Tris	Tris(hydroxmethyl)-aminomethan
U	Unit (Einheit der Enzymaktivtät)
Upm	Umdrehugen pro Minute
V	Volt
Vol.	Volumen
v/v	Volumen pro Volumen
W	Watt
w/v	Masse pro Volumen

x g	-fache Erdbeschleunigung (9,81 m/s ²)
X-Gal	5-Brom-4-Chlor-3-Indolyl-D-Galaktosid
z.B.	zum Beispiel

Abkürzungen für Aminosäuren

А	Ala	Alanin	М	Met	Methionin
С	Cys	Cystein	Ν	Asn	Asparagin
D	Asp	Aspartat	Р	Pro	Prolin
E	Glu	Glutamat	Q	Gln	Glutamin
F	Phe	Phenylalanin	R	Arg	Arginin
G	Gly	Glycin	S	Ser	Serin
Н	His	Histidin	Т	Thr	Threonin
Ι	Ile	Isoleucin	V	Val	Valin
K	Lys	Lysin	W	Trp	Tryptophan
L	Leu	Leucin	Y	Tyr	Tyrosin

1 Einleitung

<u>1.1</u> Dissimilatorische Fe(III)-Reduktion

Eisen ist das vierthäufigste Element auf der Erde und ein essentieller Bestandteil vieler biologischer und biochemischer Reaktionen (Anbar, 2004). Bei Prokaryoten hat Eisen eine zusätzliche Funktion als Elektronenakzeptor innerhalb der anaeroben Atmung. Elektronenakzeptoren, welche in der anaeroben Atmung benutzt werden, können dabei sowohl anorganische Verbindungen wie z.B. Nitrat (NO⁻³), Sulfat (SO₄⁻²), Schwefel (S₀), Carbonat (CO₃⁻²), Chlorite (ClO⁻³), Mangan (Mn⁺⁴), Eisen (Fe⁺³) oder auch organische Substanzen sein.

Die dissimilatorische Fe(III)-Reduktion ist einer der erdgeschichtlich frühen biologischen Prozesse und findet generell im Boden, in aquatischen Sedimenten und in tieferen Erdschichten statt (Vargas et al., 1998). Geologische und mikrobiologische Befunde zeigen weiter, dass Fe(III) auf der früheren Erde in großen Mengen vorhanden war und die biologische Reduktion von Fe(III) die erste, weit verbreitete Atmungsform war (Lovley, 2000). Diese Beobachtung stimmt auch mit der Annahme überein, dass der respiratorischen Stoffwechsel früh in der biologischen Evolution entstanden sein muss (Castresana & Moreira, 1999).

Die durch mikrobielle Fe(III)-Reduktion entstehenden Fe(II)-Mineralien sind zum Beispiel wichtige geologische Indikatoren für eine mikrobielle Aktivität. Die Typen und Muster von sekundären mineralischen Bildungen (z.B. Magnetit), die während der dissimiatorischen Fe(III)-Reduktion entstehen, sind Gegenstand von Untersuchungen (Ehrlich, 1999). Die Beobachtungen an Magnetitanhäufungen in 6-7 km Tiefe können mit der Fe(III)/H₂-Atmung einiger hyperthermophiler Mikroorganismen erklärt werden (Gold, 1992; Liu et al., 1997; Kashefi & Lovley, 2000). Magnetit ist unter anderem auch ein Bestandteil vom Marsmeteoriten ALH84001 (McKay et al., 1996; Gibson et al., 1996).

Die Mechanismen der Energiegewinnung durch Fe(III)-Reduktion unter anaeroben Bedingungen hat in den letzten zwei Jahrzehnten eine wachsende Bedeutung gewonnen. Bis zu diesem Zeitpunkt waren nur fermentative Bakterien bekannt, welche zur Unterstützung ihrer anaeroben Stoffwechsel einen geringen Anteil der Elektronen an den zusätzlichen Elektronenakzeptor Fe(III) weiterleiteten und diesen dissimilatorisch reduzieren konnten (Lovley, 1991; Ehrlich, 1996). Die ersten Mikroorganismen die unter anaeroben Bedingungen mit Eisen als Elektronenakzeptor wachsen konnten, wurden bereits am Ende des vorletzten Jahrhunderts entdeckt (Adeney, 1894). Erst die Isolierung von Bakterien aus weltweit unterschiedlichen anaeroben Standorten, die Elektronendonatoren wie z.B. Acetat, H₂, Propionat, Laktat, Alkohole und aromatische Verbindungen vollkommen bis zu Wasser und CO₂ oxidieren, und dabei die erhaltenen Elektronen ausschließlich auf Fe(III) übertragen, hat neue Einblicke in die Atmungsdiversität von Mikroorganismen gegeben. Spätere Untersuchungen über die Stöchiometrie von Elektronendonatoren und -akzeptoren aus Schlammproben zeigten, dass diese respirativen Prokaryoten für die Fe(III)-Reduktion deutlich wichtiger sind als fermentative Bakterien (Peters & Conrad, 1996). Neuere Erkenntnisse zeigen auch, dass sowohl bei Bakterien, als auch bei Archaeen die Eigenschaft der Fe(III)-Dissimilation mehr verbreitet ist, als die Fähigkeit Sauerstoff, Nitrat, Sulfat oder CO_2 als Elektronenakzeptoren zu nutzen (Kashefi et al., 2000 und 2004).

Die bisher beschriebenen Fe(III)-reduzierenden Spezies zeichnen sich durch eine hohe Diversität aus. Obwohl sich die Fe(III)-Atmung möglicherweise ursprünglich in hydrothermalen Umgebungen auf der frühen Erde entwickelt hat und bereits einige hyperthermophile Archaeen mit dieser respiratorischen Fähigkeit identifiziert werden konnten, ist dieser Atmungsprozess auch unter einer Anzahl von Bakterien in unterschiedlichen Phyla verbreitet (Lonergan et al., 1996). *Shewanella putrifaciencs, Geobacter metallireducens, G. sulfurreducens, Desulfuromonas acetoxidans, Thermotoga maritima* und einige *Bacillus*-Spezies sind als Vertreter zu nennen, die eine dissimilatorische Fe(III)-Reduktion betreiben (Caccavo et al., 1994; Slobodkin et al., 1997).

Dissimilatorische Fe(III)-Reduzierer sind metabolische Spezialisten (Anderson & Lovley, 2000). Sie können eine Vielzahl organischer Verbindungen wie Acetat, Pyruvat, Butyrat, Propionat, Lactat, Valerat und Glycerin sowie auch aromatische Verbindungen wie z.B. Phenol, Toluol und Benzoat als Elektronendonatoren für die Fe(III)-Reduktion verwenden und zu CO₂ oxidieren (Lovley, 1997). Ferner wurde ebenfalls über die Oxidation von langkettigen Fettsäuren wie Palmitat und Stearat berichtet (Coates et al., 1995, 1999; Kashefi & Lovley, 2002). Eine Anzahl von Fe(III)-reduzierenden Mikroorganismen kann sogar Peptide und einzelne Aminosäuren als Elektronendonatoren für die dissimilatorische Fe(III)-Reduktion nutzen. Es wurde in wenigen Fällen nachgewiesen, dass Aminosäuren vollkommen zu CO₂ oxidiert wurden (Caccavo et al., 1996).

Die Aktivität von Fe(III)-reduzierenden Bakterien kann eine Auswirkung auf die Population von Sulfat- und Nitrat-reduzierenden Bakterien haben, und somit auch einen Einfluss auf den Stickstoff- und Schwefelzyklus bewirken. Dies ist besonders bedeutsam, da dieser Einfluss möglicherweise zur biogeochemischen Entwicklung einer Vielzahl von mesophilen und anaeroben Lebensräumen beigetragen hat (Lovley, 1991). Außerdem tragen diese Lebensgemeinschaften zum Kohlenstoffzyklus in aquatischen Sedimenten bei, indem sie die Oxidation von organischen Verbindungen mit der Reduktion von Fe(III) verbinden (Canfield et al., 1993). Die dissimilatorischen Metallreduzierer und somit auch die Fe(III)-Reduzierer sind an Biokorrosions- und Bioremediations-Prozessen, die für den biogeochemischen Kreislauf von Metallen und Metalloiden eine zentrale Rolle spielen, beteiligt (DiChristina et al., 2005). Studien über mit Erdöl verunreinigte Gewässer haben demonstriert, dass Fe(III)-Reduzierer wirksame Agenzien zur Entfernung von aromatischen Kohlenwasserstoffen aus Grundwasser sein können (Wilson et al., 1986; Major et al., 1988; Gibson & Subramani, 1984; Rooney-Varga et al., 1999). Ferner hat die Reduktion von toxischen Metallen durch

dissimilatorische Fe(III)-Reduzierer eine wichtige Bedeutung (Fredrickson et al., 2000; Liu et al., 2002). Die bisher bekannten Metallreduktasen sind in der Lage, die oxidierten Formen von einigen Schwermetallen (z.B. As, Hg, Cr, Co, Mn) und radioaktiven Metallen (U, Tc) zu reduzieren und damit auch zu detoxifizieren. Es konnte bereits gezeigt werden, dass die Reduktion einiger dieser Metalle durch Fe(III)-Reduzenten und deren Metall-Reduktasen ein großes Potential zur Dekontamination von Trinkwasser und Abwässern darstellt (Holmes et al., 2002; Anderson et al., 1997, 2003). Die Aktivität bakterieller Gemeinschaften, die dissimilatorische Fe(III)-Reduzierer enthalten, hat auch einen Einfluss auf die Stahlkorrosion. Durch Biokorrosion entstandene Schäden bringen besonders in Einrichtungen der Öl- und Gasindustrie hohe Kosten mit sich (Jan-Roblero et al., 2004). Allerdings sind die genauen Mechanismen der Prozesse, welche in diesem Biofilm ablaufen noch unklar (Jan-Roblero et al., 2004; Lee & Newman, 2003; Dubiel et al., 2002).

1.2 Zellulare Strategien des Elektronentransfers auf Fe(III)

In der Fe(III)-Atmung ist der Aufbau einer Elektronentransportkette von der C-Quelle bis zu dem terminalen Elektronenakzeptor Fe(III) in löslicher oder oxidierter Form für die Energiegenerierung und somit für das Überleben der Mikroorganismen essentiell. Molekularbiologische Untersuchungen ermöglichten z.B. bei *Shewanella frigidimarina* und *Shewanella oneidensis* MR-1 die Identifizierung von einigen Oxidoreduktasen, die ein direkter Bestandteil der dissimilatorischen Fe(III)-Atmung sind oder deren Funktion beeinflussen. Die Bestandteile der Elektronentransportkette erstrecken sich grundsätzlich von der inneren Membran bis zur äußeren Membran. Diese beginnen mit einer Substratoxidierenden Dehydrogenase und enden mit einer terminalen Fe(III)-Reduktase. Sowohl die zelluläre Lokalisation, als auch die Zuordnung der terminalen Fe(III)-Reduktase-Aktivität in der Elektronentransferkette ist in den meisten der Fe(III)-Atmern noch nicht aufgeklärt (Lovley et al., 2004, Richardson, 2000).

Zellfremde, externe Bestandteile wie z.B. Huminsäuren können ebenfalls unter bestimmten Verhältnissen eine Fe(III)-Atmungskette vervollständigen und das Fe(III) außerhalb der Zelle reduzieren. Diese elektronentransferierenden Substanzen können von dem Fe(III)-Reduzierer selbst, von anderen Organismen oder aber auch aus bioorganischem Material aus der Umgebung stammen. Diese Substanzen agieren zwischen der Fe(III)-Reduktase und dem unlöslichen Fe(III)-Oxid in einem "Zwei-Stufen-Prozess", so dass ihre enzymatische Reduktion gefolgt von der chemischen Oxidation durch das Fe(III) erfolgt (DiChristina et al., 2005). Reduzierte Huminsäuren ändern ihre chinon-ähnliche Struktur in eine Hydrochinon-ähnliche Struktur und können somit Elektronen an unterschiedliche Fe(III)-Formen weiterleiten. Diese durch das Fe(III) reoxidierten Huminsäuren, sind wiederum fähig von den dissimilatorisch Fe(III)-reduzierenden Mikroorganismen Elektronen aufzunehmen (Lovley et al., 1989, 1996, 1998).

Somit kann die terminale Fe(III)-Reduktion auch durch einen direkten Kontakt der terminalen Oxidoreduktase oder indirekt durch elektronentransferierende Substanz stattfinden (Lovley et al., 2004, Richardson, 2000).

Shewanella und *Geobacter* können in nährstoffreichen Kulturen oder in Biofilmen Fe(III)-Oxide durch niedere molekulare Substanzen reduzieren. Bei geringem Nährstoffgehalt hingegen wird eine direkte Fe(III)-Reduktion zwischen dem Eisen und der terminalen Fe(III)- Reduktase vermutet (Lies et al., 2005). In einem geschlossenen Biofilmsystem müssen die elektronentransferierenden Substanzen nur eine kurze Strecke bis zum terminalen Elektronenakzeptor zurücklegen und können durch den externen Elektronenakzeptor effizient regeneriert werden (Hernandez & Newman, 2001).

Durch Mikroorganismen synthetisierte oder sich im Habitat natürlich befindende, chelatierende Substanzen dienen dazu, unlösliches Fe(III)-Oxid in lösliche Formen umzuwandeln und diese für den Elektronentransfer leichter zugänglich zu machen (Nevin & Lovley, 2000). Somit kann eine einfache terminale bzw. eine direkte Fe(III)-Reduktion stattfinden. *Shewanella putrefaciens* produziert zum Beispiel unter anaeroben Bedingungen einen Siderophor. Eine Synthese von chelatierenden Substanzen ist jedoch nicht bei allen dissimilatorischen Fe(III)-Reduzierern möglich (Ledyard & Butler 1997). Bei den Fe(II)-reduzierenden *S. alga*-Stämmen konnten Substanzen identifiziert werden, die Fe(III)-Oxide in lösliche Formen umwandeln. *Geobacter metallireducens* hingegen produziert weder elektronentransportierende Substanzen noch Fe(III)-Chelatoren (Nevin & Lovley, 2002).

1.3 Metagenomik

Mikroorganismen besiedeln mit ihrem immensen genetischen Potential nahezu alle ökologischen Nischen der Erde. Durch 16S-rRNA-Gensequenzanalysen wurden viele faszinierende neue Organismen entdeckt, welche z.T. in extremen Umgebungen wie hydrothermalen Quellen, im Wüstensand, in antarktischen Gewässern oder hypersalinen Gewässern leben (Ward, 2002). Es wurden Mikroorganismen an Orten isoliert, die auf Grund ihrer physikalischen Bedingungen zunächst als abiotisch galten (Schleper et al., 1995). Vergleichende Analysen von ribosomalen 16S- oder 18S-rRNA-Sequenzen und anderen Gensequenzen der kultivierten Mikroorganismen zeigten, dass das Leben in drei Domänen untergliedert werden kann: Archaeen, Bakterien und Eukaryoten. Diese phylogenetische Klassifizierung basiert auf Carl Woeses Untersuchungen zur mikrobiologischen Evolution (Woese, 1987; Woese et al., 1990). Die 16S-rDNA-Analyse isolierter Umwelt-DNA zeigte, dass ca. 99% der in der Natur vorkommenden Prokaryontenarten bis heute nicht kultivierbar sind (Hugenholtz et al., 1998). Es wurde belegt, dass mit klassischen Kultivierungsmethoden nur 0,1 bis 1 % aller in einer 1 g Bodenprobe vorkommenden Arten angereichert werden können (Kellenberger, 2001). Zusätzlich werden bei wiederholten Anreicherungen häufig die gleichen Mikroorganismen isoliert. Ein immenser Teil der mikrobiellen Diversität und des genetischen Potentials von

Mikroorganismen bleibt somit bei kultivierungsabhängigen Methoden unerschlossen (Daniel, 2004).

Dies stimmt auch mit der Erkenntnis überein, dass die Kultivierung von Bakterien von vielen komplexen Faktoren abhängt. Fehlen z.B. notwendige Nährstoffe oder herrscht eine ungünstige Kombination aus Temperatur, Druck und atmosphärischer Gaszusammensetzung gelingt eine Kultivierung von Mikroorganismen häufig nicht. Weiterhin kann eine Anhäufung von giftigen Abfallprodukten des eigenen Metabolismus eine langsame Wachstumsrate und eine zerstörte Symbiose die Kultivierung von bestimmten Arten unmöglich machen. Dabei kommt es häufig zur Konkurrenz von verschiedenen mikrobiellen Arten. Zusätzlich kann die rasche Ausbreitung von konkurrierenden Stämmen in der Anreicherungskultur andere Mikroorganismen verdrängen (Simu & Hagstrom, 2004).

Erst die Entwicklung der kultivierungsunabhängigen und molekularen Methoden wie die Entwicklung der Metagenomik ermöglichte den Zugang zu den Genominformationen von bisher nicht kultivierbaren Mikroorganismen (Short, 1997). Unabhängig von deren Kultivierbarkeit werden die in einem Gemisch und in einem Habitat lebenden Mikroorganismen als "Metaorganismus" und deren kollektives Genom als "Metagenom" definiert (Rodriguez-Valera, 2004). Die Erschließung des Metagenoms durch z.B. direkte Klonierung von aus Umweltproben isolierter DNA wird als Metagenomik bezeichnet (Handelsman et al., 2004).

Der Weg zur Metagenomik führte ebenfalls über Entwicklungen in der mikrobiologischen Genomforschung. Seit dem ersten veröffentlichten prokaryotischen Genom von *Haemophilus influenzae* im Jahr 1995 ist die Zahl der vollständig sequenzierten bakteriellen Genome kontinuierlich gestiegen. In der "Genomes OnLine Database (GOLD)" befinden sich 4207 Genomprojekte (Stand Dezember 2008), welche zurzeit durchgeführt werden oder bereits abgeschlossen sind (Bernal et al., 2001). Es ist zu berücksichtigen, dass mit der hohen prokaryotischen Diversität eine enorme Vielfalt an physiologischen, metabolischen und genetischen Eigenschaften einhergeht, die jene der Tiere und Pflanzen um ein Vielfaches übersteigt (Pace, 1997). Das Substratspektrum von Mikroorganismen entspricht dabei in seiner Gesamtheit der Vielfalt der natürlich vorkommenden Verbindungen und geht sehr wahrscheinlich noch darüber hinaus (Gottschalk & Knackmuss, 1993).

Durch die Anwendung der Metagenomik wurde der Zugang zu den nicht kultivierbaren mikrobiellen Konsortien durch sequenz- oder funktionsbasierte Methoden ermöglicht und bereits neue Gene für komplexe Biosynthesen entdeckt. Darunter befinden sich z.B. Gene für die Biotin- (Entcheva et al., 2001) und Antibiotika-Synthese (Gillespie et al., 2002; Nagaya et al., 2005) sowie Gene für neuartige biologisch wirksame Metabolite (Courtois et al., 2003). Die Metagenomik hat sich zu einer der wichtigsten Methoden bei der Suche nach neuartigen industriell relevanten Enzymen und pharmazeutisch wichtigen Naturstoffen etabliert. Neue Enzyme mit biotechnologischem Potential werden grundsätzlich von der

Chemie-, Nahrungsmittel,- Reinigungsmittel- und der Kosmetikindustrie benötigt. Diese werden sowohl zur Verbesserung vorhandener Prozesse und Anwendungen, als auch zur Entwicklung neuer Prozesse benötigt (Patrick, 2003). Die Metagenomik führte z.B. zur Entdeckung von neuartigen Amidasen (Gabor et al., 2004), Cellulasen (Voget et al., 2006), Amylasen (Voget et al., 2003; Yun et al., 2004), Alkohol- Dehydrogenasen (Knietsch et al., 2003), Na^{+/}H⁺ -Antiporter (Majernik et al., 2001), Lipasen und Esterasen (Henne et al., 2000; Rees et al., 2003) und Chitinasen (LeCleir et al., 2004). Diese Beispiele zeigen, dass der biotechnologische Nutzen der Metagenomik sehr vielseitig, und die Zahl der neu zu entdeckenden Gene scheinbar unbegrenzt ist.

1.4 Zielsetzung

Die Kenntnisse über die dissimilatorische Fe(III)-Reduktion im Vergleich mit anderen anaeroben Atmungsprozessen ist gering und entstammen aus kultivierungsabhängigen Untersuchungen. Es kann davon ausgegangen werden, dass die bisher durch klassische mikrobiologische Methoden identifizierten dissimilatorischen Fe(III)-Reduzierer nur ein geringer Teil der tatsächlich existierenden Vielfalt dieser Organismen sind. Ebenso ist im Gegensatz zu der Vielzahl der bereits beschriebenen Fe(III)-reduzierenden Mikroorganismen wenig über die dissimilatorischen Fe(III)-Reduktasen bekannt, die den terminalen Elektronenübergang auf das Fe(III) im Zuge der Energiegewinnung katalysieren.

Bisher wurden mehrere Proteine, die an der dissimilatorischen Fe(III)-Reduktion beteiligt sind, isoliert. Den meisten wurde eine Funktion als intermediärer Elektronentransporter zugewiesen und einigen der identifizierten Oxidoreduktasen wird eine Fe(III)-Reduktase-Aktivität zugeschrieben (Lovley et al., 2004). Die terminalen Fe(III)-Reduktasen, welche die Fe(III)- Reduktion katalysieren, konnten jedoch bis heute nicht genauer identifiziert werden. Die zelluläre Lokalisation, die Struktur und die Funktion dieser Enzyme wird in erster Linie von den biophysikalischen Eigenschaften des in der Umwelt vorhandenen Fe(III) determiniert. Es ist bereits bekannt, dass die löslichen Fe(III)-Formen im periplasmatischen Raum oder aber an der äußeren Membran oder sogar außerhalb der Zelle reduziert werden. Unlösliche Fe(III)-Oxide werden hingegen in der Zelloberfläche durch einen Zell-Fe(III)-Kontakt oder mittels eines indirekten Elektronentransfers durch elektronentransportierende Substanzen außerhalb der Zelle reduziert (Nevin & Lovley, 2000; Lovley et al., 2004).

Ein Ziel dieser Arbeit war es Gene für terminale dissimilatorische Fe(III)-Reduktasen zu identifizieren. Das dabei eingesetzte funktionelle Screening ermöglichte eine gezielte Suche nach dissimilatorische Fe(III)-Reduktasen. Ein weiteres Ziel dieser Arbeit war die Isolierung und Charakterisierung von neuen dissimilatorischen Fe(III)-Reduzierern und deren Analyse.

2 Material und Methoden

2.1 Verwendete Organismen, Plasmide und Oligonukleotide

Die im Rahmen dieser Arbeit verwendeten Organismen sind in Tabelle 1, die Plasmide in Tabelle 2 aufgeführt. Tabelle 3 gibt eine Übersicht über die verwendeten Oligonukleotide.

Tabelle 1	Verwendete	Organismen
-----------	------------	------------

Stamm	relevanter Geno- oder Phänotyp	Herkunft / Referenz
Escherichia coli DH5α	F endA1, ϕ 80lacZ Δ M15 Δ (lacZY- argF)U169, endA1, recA1, hsdR17(r _K -m _K +), deoR, thi-1, supE44, λ -, gryA96, relA1	Hanahan D, 1983
Shewanella putrefaciens		MacDonell et al., 1985

1 abelie 2 vektoren und rekombinante riasinide	Tabelle 2	Vektoren und	rekombinante	Plasmide
--	-----------	--------------	--------------	----------

Plasmid	relevantes Merkmal	Herkunft / Referenz
pBluescript [®] SK+	Ap ^r , <i>lacPOZ</i> ^c , pMB1-Replikon	Stratagene, San Diego, USA
pCR2.1-TOPO	Amp ^r , Kan ^{r,} pMB1-Replikon	Invitrogen, Carlsbad, USA

Tabelle 3 Verwendete Oligonukleotide

Bezeichnung	Sequenz	
27f	5'-AGACTTTGATCCTGGCTCAG -3'	
1522rN	5'-CATGCGGCCGCAAGGAGGTGATCC-3'	
16S-8	5'-AGAGTTTGATCATGGC-3'	
168-1504	5'-TACCTTGTTACGACTT-3'	

2.2 Nährmedien und Lösungen

Alle aufgeführten Medien wurden durch 30-minütiges Autoklavieren bei 121°C sterilisiert. Die C-Quellen für Mineralmedien wurden separat autoklaviert und erst unmittelbar vor dem Animpfen steril zugegeben. Zur Herstellung von Agarplatten wurde dem Medium vor dem Autoklavieren 1,5 % (w/v) Agar zugefügt. Anaerobe Medien wurden nach der von Costilow (1981) beschriebenen Methode unter Begasung mit sauerstofffreiem Stickstoff hergestellt.

2.2.1 LB (Luria-Bertani) -Medium (Sambrook et al., 1989)

Trypton	10	g
Hefeextrakt	5	g
NaCl	10	g
H ₂ O _{dest.}	ad 1000	ml

2.2.2 Fe-PP(Eisen-Pyrophophat)-Medium (Caccavo et al., 1994)

KCl	100	mg
NaH ₂ PO ₄ x2H ₂ O	600	mg
NH ₄ Cl	1.5	g
MgSO ₄ x7H ₂ O	100	mg
MgCl ₂ x6H ₂ O	100	mg
Na ₂ MO ₄ x4H ₂ O	1	mg
NaCl	100	mg
Spurenelementlösung (siehe 2.2.5)	3	ml
Vitaminlösung nach Wolin (siehe 2.2.6)	10	ml
FePP	10	g
H ₂ O _{dest.}	ad 1000	ml

рН 7,0-7,5

Dem Medium wurde Mannitol in einer Endkonzentration von 100 mM und Thiamin-HCl in einer Konzentration 10 mM zugesetzt. Für die Anzucht von rekombinanten *E. coli*-Stämmen enthielt das Medium zusätzlich Thiamin-HCl (10 mM).

Der Eisengehalt des Fe(III)-Pyrophosphats betrug je nach Präparation 10,5 bis 12,5 %. Daher konnte bei 10 g FePP/l eine Konzentration an Fe(III) von 15 bis 20 mM erreicht werden. Das Fe(III)-Pyrophosphat wurde erst beim Auskochen vollständig gelöst. Dies führte zu einer leichten Absenkung des pH-Wertes. Aus diesem Grund wurde das Medium vor dem Autoklavieren auf einen leicht alkalischen pH-Wert eingestellt. Bei einem zu niedrigen pH-

Wert nach dem Autoklavieren wurde mit anaerober 0,1 N NaOH-Lösung titriert. Anschließend wurde das Medium für 25 min. mit einem N₂/CO₂ Gasgemisch (80 % /20 %, (v/v)) durchgast, mit einem Butyl-Gummistopfen verschlossen und für 30 min. bei 121 °C autoklaviert.

Für die Überprüfung rekombinanter *E. coli*-Stämme auf die Reduktion von Fe(III) wurden FePP-Agarplatten benutzt. Dafür wurde dem FePP-Medium zzgl. 15 g Agar hinzugegeben. Die Weiterbearbeitung des FePP-Agarmediums erfolgte wie die des Mediums ohne Agar. Anschließend wurde das Medium autoklaviert und auf 45 °C abgekühlt. Die Screening-Platten wurden in der Anaerobenkammer durch Abgießen des FePP-Agarmediums in Petrischalen hergestellt.

2.2.3 SOB-Medium (Hanahan, 1983)

Trypton	20	g
Hefeextrakt	5	g
NaCl	0,58	g
KCl	0,18	g
MgCl ₂	2,0	g
MgSO ₄	2,5	g
H ₂ O dest.	ad 980	ml

2.2.4 M9-Mineralmedium (Miller, 1972; modifiziert)

KH ₂ PO ₄	3,0	g
Na ₂ HPO ₄	6,0	g
NH ₄ Cl	3,0	g
NaCl	0,5	g
MgSO ₄ x 7 H ₂ O	0,05	g
$CaCl_2 \ge 12 H_2O$	0,002	g
FeSO ₄	0,02	g
Hefeextrakt	0,2	g
SL4	1	ml
Vitaminlösung nach Wolin (siehe 2.2.6)	1	ml
pH-Wert einstellen auf	7,4	

Dem Medium wurde Mannitol in einer Endkonzentration von 100 mM und Thiamin-HCl in einer Konzentration von 10 mM zugesetzt.

Titriplex	12,8	g
FeCl ₂ x 4 H ₂ O	2,0	g
CoCl ₂ x 6 H ₂ O	190	mg
$MgCl_2 \ge 2 H_2O$	100	mg
ZnCl ₂	70	mg
H ₃ BO ₃	6	mg
NiCl ₂ x 6H ₂ O	24	mg
CuCl ₂ x 2 H ₂ O	2	mg
$Na_2MoO_4 \ge H_2O$	36	mg
H ₂ O _{dest.}	ad 1000	ml

2.2.5 Spurenelementelösung SL-9 (Tschech & Pfennig, 1984)

2.2.6 Vitaminlösung (Wolin et al., 1964, modifiziert)

2	mg
2	mg
10	mg
15	mg
5	mg
5	mg
5	mg
10	μg
5	mg
1	mg
ad 1000	ml
	2 2 10 15 5 5 5 5 10 5 1 1 ad 1000

2.2.7 Antibiotika und sonstige Medienzusätze

Für die Anzucht rekombinanter *E. coli*-Stämme und für den Antibiotikaresistenztest der Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurden die in Tabelle 4 aufgeführten Medienzusätze verwendet.

Medienzusatz	Stammlösung	Arbeitskonzentration
Ampicillin	50 mg/ml 50 % Ethanol	50 bis 100 µg/ml
Chloramphenicol	25 mg/ml Ethanol	25 bis 50 µg/ml
Bacitracin	25 mg/ml Ethanol	50 bis 600 µg/ml
Neomycin	25 mg/ml Ethanol	50 bis 600 µg/ml
Vancomycin	25 mg/ml Ethanol	50 bis 600 µg/ml
Penicillin G	25 mg/ml Ethanol	50 bis 600 µg/ml
Streptomycin	25 mg/ml Ethanol	50 bis 600 µg/ml
Chloramphenicol	25 mg/ml Ethanol	50 bis 600 µg/ml
Kanamycin	25 mg/ml Ethanol	50 bis 600 µg/ml
Tetracyclin	25 mg/ml Ethanol	50 bis 600 µg/ml
IPTG	25 mg/ml H ₂ O _{dest.}	50 μg/ml
X-Gal	20 mg/ml Dimethylformamid	40 µg/ml

Tabelle 4 Verwendete Medienzusätze und Konzentrationen

Die IPTG Stammlösung wurde gegebenenfalls steril filtriert und für 20 min. steril mit N_2 durchgast. Die Zugabe der Komponenten erfolgte erst nach dem Abkühlen der autoklavierten Medien auf mindestens 60 °C. Die Lagerung erfolgte bei -20 °C.

2.3 Zellanzucht

2.3.1 Anzucht von Flüssigkulturen

Die Anzucht von den Flüssigkulturen erfolgte in Reagenzgläsern oder Erlenmeyerkolben, mit 10 bis 30 % Kulturvolumen. Kulturen von *E. coli* wurden bei 37°C, Kulturen von den Stämmen Izmir A, Izmir B, Izmir C, Izmir D, Izmir Y und FW1 bei 30°C unter Schütteln angezogen. Vorkulturen wurden mit Einzelkolonien und Hauptkulturen mit 1 % (v/v) einer Vorkultur beimpft.

2.3.2 Aerobe Anzucht

Die aerobe Anzucht von *E. coli* erfolgte in Reagenzgläsern oder Erlenmeyerkolben. Das Kulturvolumen betrug ca. 20% des Füllvolumens der Reagenzgläser bzw. Erlenmeyerkolben. Die Kulturen wurden unter Schütteln bei 30°C oder 37°C inkubiert.

2.3.3. Anaerobe Anzucht

Anaerobe Kulturen wurden mit einem 1 bis 10 % igen (v/v) Inokulum aus einer Stammkultur (siehe 2.3.3) oder aus einer aeroben bzw. anaeroben Vorkultur beimpft. Die Inkubation erfolgte bei 30°C. Für Kulturen mit einem Volumen von bis zu 10 ml wurden Hungate-Röhrchen (Anaerobe Test Tubes, Hungate Type, 16×125 mm, Fa. Bellco Glass Inc., Vineland, New Jersey, USA) und für Anzuchten bis 50 ml 125-ml-Serumflaschen ("Hypovials", Fa. Pierce, Rockford, England) verwendet. Bei einem Kulturvolumen von bis zu 500 ml fanden 1-l-Serumflaschen (Fa. Müller und Krempel AG, Bülach, Schweiz) Verwendung. Für das Überimpfen wurden sterile Einwegspritzen benutzt.

2.4. Stammhaltung und Reinheitskontrolle

Die verwendeten E. coli-Stämme wurden zur Überprüfung der Reinheit einer makroskopischen Prüfung der Koloniemorphologie nach Vereinzelungsausstrich auf geeignetem Medium unterzogen. Ständig benötigte E. coli-Stämme wurden auf Selektionsplatten kultiviert und bis zu 8 Wochen bei 4°C gelagert. Zur Konservierung wurden Glycerinkulturen nach Yanisch-Perron et al. (1985) angelegt. Dazu wurden 5 ml LB-Medium (s. Kapitel 2.1.1) angeimpft und inkubiert. Zuvor wurde das Vorhandensein der gewünschten Plasmide durch Anzucht der Zellen auf selektiven Medien, sowie Isolierung und Restriktion des Plasmids überprüft. In der logarithmischen Wachstumsphase wurden dann 0,75 ml Zellsuspension entnommen, mit 0,25 ml Glycerin (87 %, (v/v)) versetzt und bei -70°C gelagert. Stichproben wurden unter dem Mikroskop auf die Einheitlichkeit der Zellen hin überprüft. Falls es notwendig war, wurden die Stämme auf Mineralmedium angezogen und wie beschrieben aufbewahrt. Vorkulturen konnten dann mit einer Impföse oder 20 bis 50 µl der entsprechenden Stammkultur beimpft werden. Für die Reinheitskontrolle wurde die Morphologie und das Verhalten der Stämme während des Wachstums durch Phasenkontrastmikroskopie (Carl-Zeiss, Oberkochen) überprüft. Die Pools aus den Genbanken wurden auf folgende Weise hergestellt: 1 bis 3 ml LB-Medium wurden der über Nacht gewachsenen Platte zugegeben und bis zu 30 min. geschwenkt. Danach wurden Aliquots 1:1 mit 87 % (w/v) Glycerin vermischt und bei -70°C aufbewahrt. Die Stammhaltung von FW1, Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y erfolgte in 5 ml Mineralmedium (siehe 2.2.7) bei 4°C. Zur Dauerkonservierung wurden die Kulturen in der logarithmischen Wachstumsphase geerntet und durch Zentrifugation vom Medium getrennt. Nach der Zugabe von frischem FePP-Medium und 0,25 ml Glycerin (87 % (v/v)) wurden die Zellen bei -70°C aufbewahrt.

2.5 Zellernte

Bei kleineren Volumina von bis zu 5 ml wurden die Zellen in einer Kühlzentrifuge (Biofuge, Heraeus) pelletiert (4°C, 2 min., 13 000 Upm). Die Ernte größerer Volumina erfolgte in einer Sorvall-Zentrifuge (Sorvall RC5C, DuPont de Nemours, Bad Homburg) in SS 34-, GSA-oder GS3-Polyallomerröhrchen (4°C, 10 bis 30 min., 2000 bis 13 000 Upm).

2.6 Anreicherungskulturen

Für die Anreicherung eines dissimilatorischen Fe(III)-Reduzierers mit Mannit als einziger extern zugesetzter Energiequelle wurde Impfmaterial aus vier verschiedenen Standorten verwendet. Die Proben wurden aus einer Wiese in Northeim (WN), einem Zukerrübenboden bei Göttingen (ZB), einem Flussufer der Nieme bei Dransfeld (NTL) und einer Thermalquelle bei Izmir (Türkei) (TQIS) entnommen.

Die Anreicherungskulturen wurden in 500 ml-Müllerkrempelflaschen aus Duranglas (Fa. Schott, Mainz) angesetzt, die mit 200 ml FePP-Minimalmedium gefüllt waren. Diese waren vor dem Autoklavieren mit sauerstofffreiem N₂-CO₂ (80 % N₂ und 20 % CO₂) für 0,5 h begast. Das Medium enthielt 50 mM FePP als Elektronenakzeptor und Mannitol als Elektronendonor (10 mM Endkonzentration). Das Mannitol wurde nach dem Autoklavieren in das FePP-Medium unter anaeroben und sterilen Bedingungen zugegeben. In das Medium wurde in einer Anaerobenkammer 50 g Probenmaterial gegeben. Anschliessend wurde die Müllerkrempelflasche mit einem Gummistopfen verschlossen. Es wurden jeweils zwei Ansätze bei 30°C und bei 37°C in einem Schüttler inkubiert.

Nach 24 h wurden die Zellen pelletiert, mit frischem Medium überschichtet und für weitere Tage bis zur Bildung von Vivianit stehend ohne zu schütteln weiter inkubiert.

2.7 Isolierung von Einzelkolonien

Die Isolierung von dissimilatorischen Fe(III)-Reduzenten wurde in Agar-Hungateröhrchen (25 x 142 mm, Fa. Bellco Glass Inc., Vineland, New Jersey) vorgenommen. Die Hungateröhrchen enthielten 3 ml vitaminfreies FePP-Medium und Bacto-Agar (FA. Difco Laboratories, Detroid Michigan). Sie waren mit einem schwarzen Gummistopfen No. 4 (FA. Bellco Glass Inc., Vineland, New Jersey) veschlossen und wurden mit sauerstofffreiem N₂- CO_2 (80 % N₂ und 20 % CO_2) für 1 h begast und bei 121°C für 20 min autoklaviert. Bis zum Beimpfen wurden die Kulturen in einem 50°C Wasserbad aufbewahrt.

Ausgehend von der Anreicherungskultur mit Mannit als einziger Energiequelle wurde in der Anaerobenkammer eine Verdünnungsreihe im FePP-Medium in Schritten von 1:10 bis zu einer Verdünnungsstufe von 10⁻⁶ hergestellt. Von jeder Verdünnungsstufe, 10⁻¹ bis 10⁻⁶, wurden mit einer 1 ml Plastikspritze 0,1 ml in ein Hungateröhrchen mit FePP-Medium und Weichagar überführt und anschließend in einem Eisbad abgekühlt. Auf diese Weise wurden für jede Verdünnungsstufe drei Parallelansätze hergestellt und anschließend senkrecht stehend bei 30°C inkubiert.

Die Isolierung von Einzelkolonien erfolgte in einer Anaerobenkammer mit Hilfe einer sterilen Pasteurpipette. Die Reinheitskontrollen erfolgten wie unter 2.4 beschrieben.

2.8 Bestimmung von Wachstumsparametern

2.8.1 Bestimmung der optischen Dichte

Die Bestimmung der optischen Dichte (OD) erfolgte anhand von Trübungsmessungen bei einer Wellenlänge von 600 nm gegen sterile Nährlösung in einem Spektralphotometer (UV-VIS Spektrophotometer V-550, Fa. Jasco, Jena) in Plastikküvetten mit einer Schichtdicke von 1 cm. Bei Zelldichten $E_{600} > 0,3$ wurden die Proben mit steriler Nährlösung entsprechend verdünnt. Die Messungen erfolgten gegen das Medium als Leerwert.

Die OD von Kulturen in Hungateröhrchen konnte direkt im Röhrchen mit Hilfe eines Photometers der Fa. Milton Roy (Spectronic 21, Rochester, New York, USA) bei 600 nm in einem Extinktionsbereich zwischen 0 und 2,0 verfolgt werden. Als Referenz dienten Röhrchen mit unbeimpftem Medium.

2.8.2 Bestimmung des pH-Wertes

Der pH-Wert wurde mit einem WTW pH-Meter (pH 526, Fa. WTW GmbH, Weilheim) mit einer Glas-Calomel-Elektrode (Fa. Cahn-Ingold, Frankfurt) bestimmt. Vor den Messungen wurde das Gerät für den entsprechenden Meßbereich mit Eichlösungen (pH 4,0 und pH 7,0 der Fa. Riedel de Haen AG, Hannover) geeicht.

2.8.3 Bestimmung des Zellwachstums

2.8.3.1 Mikroskopische Bestimmung der Zellzahl

Die Gesamtzellzahl einer Kultur wurde mit einem Phasenkontrast-Mikroskop (Fa. Carl Zeiss, Oberkochen) und mit Hilfe einer Zählkammer bestimmt.

2.8.3.2 Proteinbestimmung an ganzen Zellen (Bradford, 1976)

Die Bestimmung der Proteinkonzentration erfolgte in modifizierter Form nach der Methode von BRADFORD (1976). Da die Konzentration in anaeroben Kulturen aufgrund der geringen Zelldichte niedrig war, wurde eine konzentrierte Bradford-Reagenz angesetzt.

Es wurden 20 μ l einer Probe zu 1 ml Bradford-Reagenz gegeben. Wenn nötig, konnte die Probe mit H₂O_{dest.} verdünnt werden. Nach einer Inkubation für 10 min. bei RT wurde die Absorption bei einer Wellenlänge von 580 nm gegen einen Leerwert gemessen. Zur Konzentrationsbestimmung wurde eine Eichgerade mit Rinderserumalbumin in einem Bereich von 0 bis 10 μ g/ml aufgenommen.

Bradford-Reagenz

Serva Blau G-250	70	mg
Ethanol (96 %, v/v)	ad 50	ml
H ₃ PO ₄ (85 %, v/v)	100	ml
H ₂ O _{dest.}	ad 500	ml

Nach vollständigem Lösen des Farbstoffs in Ethanol und Zugabe der übrigen Bestandteile erfolgte eine Filtration durch einen Faltenfilter. Die Reagenz wurde lichtgeschützt gelagert und war ca. 1 Jahr haltbar.

2.8.4 Bestimmung von Fe(II)

Das Vorhandensein von Fe(II) im Medium wurde durch die Zugabe der Ferrozinlösung, eine 0,1 % (w/v) des 3-(2-Pyridyl)-5,6-Diphenyl-1,2,4-Triazine-4,4-Disulfonsäure, bestimmt. Das sich im Medum befindende Fe(II) bzw. die Reduktion des Fe(III) wurde durch die Violettfärbung des Ferrozins bestätigt. Diese Farbe entsteht durch das vorhandene Fe(II).

2.9 Standardtechniken für das Arbeiten mit Nukleinsäuren

2.9.1 Behandlung von Geräten und Lösungen

Alle hitzestabilen Lösungen und Geräte wurden zur Inaktivierung von Nukleasen für 20 min bei 121°C autoklaviert. Hitzelabile Geräte wurden mit 70 % (v/v) Ethanol gewaschen und Metalloberflächen abgeflammt. Hitzelabile Biochemikalien wurden sterilfiltriert.

2.9.2 Puffer und Lösungen

Im Folgenden sind die Zusammensetzungen einiger Puffer und Lösungen aufgeführt, die im nachfolgenden Text nicht näher erläutert werden. Die Herstellung niedrigerer Pufferkonzentrationen erfolgte durch Verdünnung des Puffers mit H₂O_{dest}.

10 x TE-Puffer			20 x SSC-Puffer		
1 M Tris-Puffer (pH 8,0)	100	ml	NaCl	175	g
0,5 M EDTA (pH 8,0)	10	ml	Na ₃ Citrat	88	g
H ₂ O _{dest.}	ad 1000	ml	H ₂ O _{dest.}	ad 1000	ml
50 x TAE-Puffer					
Tris	242	g			
Eisessig	57	ml			
0,5 M EDTA (pH 8,0)	100	ml			
H ₂ O _{dest.}	ad 1000	ml			

2.9.3 Fällung, Reinigung und Konzentration von Nukleinsäuren

2.9.3.1 Fällung von Nukleinsäuren

Die Konzentration von Nukleinsäuren erfolgte durch Fällung mit Ethanol oder Isopropanol. Durch Zugabe von 3 M Na-Acetat (pH 5,5) wurde, falls notwendig, die Ionenstärke erhöht (Endkonzentration 0,3 M). Zur Präzipitation der Nukleinsäuren erfolgte die Zugabe von 2 Vol. Ethanol (96 %) bzw. 1 Vol. Isopropanol (96 %). Die Ethanolfällung erfolgte durch Inkubation bei -70°C für mindestens 20 min., bei Isopropanol wurde mindestens 5 min bei Raumtemperatur inkubiert. Die Nukleinsäuren wurden durch Zentrifugation (13000 bis 16000 x g, 4°C oder RT, 30 min.) pelletiert. Das Pellet wurde mit 1 ml eiskaltem Ethanol (70%, v/v) gewaschen, getrocknet und in dem gewünschten Volumen sterilem H₂O oder TE-Puffer (siehe 0) aufgenommen.

2.9.3.2 DNA-Fällung nach Saccharose-Dichtegradientenzentrifugation

Ziel dieser Fällung war die Abtrennung von Saccharose nach der Saccharose-Dichtegradientenzentrifugation (siehe 2.13). Dazu wurde jedes Aliquot aus dem Gradienten mit 0,5 Vol. PEG-NaCl-Lösung (20 % PEG 6000, 2,5 M NaCl) versetzt und über Nacht bei RT inkubiert. Anschließend erfolgte eine Zentrifugation der Lösungen (30 min., 22650 x g, RT). Der Überstand wurde abgenommen, das Pellet mit 0,5 ml Ethanol (70 % (v/v), RT) versetzt und nochmals unter den gleichen Bedingungen zentrifugiert. Wiederum wurde der Überstand abgenommen, das Pellet getrocknet und in 20 bis 30 μ l sterilem H₂O aufgenommen. Alle Schritte wurden bei RT durchgeführt, da bei Einsatz niedrigerer Temperaturen das Polyethylenglykol ausfällt.

2.9.3.3 Dialyse von Umwelt-DNA

Enthielt die aus den Standort-Proben isolierte DNA zu hohe Salzkonzentrationen, mußte sie vor einer weiteren Reinigung zunächst einer Dialyse unterzogen werden.

Zu diesem Zweck wurden 20 bis 30 cm lange Dialyseschlauchstücke in TE-Puffer autoklaviert. Anschließend wurde die DNA-Lösung in die Schläuche eingefüllt, die an beiden Enden mit Dialyseschlauch-Klammern verschlossen wurden. Die DNA-Lösung wurde dann 24 h gegen TE-Puffer dialysiert. Nach etwa 4 bis 5 h wurde der Puffer ausgewechselt. Anschließend erfolgte eine Fällung der DNA mit Ethanol (siehe 2.9.3.1).

2.9.3.4 Gelfiltration von DNA-Lösungen

Die Abtrennung niedermolekularer Bestandteile, wie z.B. einzelner Nukleotide von DNA-Fragmenten, erfolgte durch eine Gelfiltration mit NAP-5-Säulen (Fa. Amersham Pharmacia LKB GmbH, Freiburg). Die Säulen wurden mit 10 ml H₂O_{dest.} äquilibriert. Danach wurde 0,5 ml DNA-Lösung aufgetragen und mit 1,0 ml H₂O eluiert.

2.9.3.5 Konzentrations- und Reinheitsbestimmung von DNA

Die Konzentration von DNA-Lösungen wurde durch Messung ihrer Absorption bei 260 nm gegen H₂O dest. bestimmt. Eine OD₂₆₀ von 1,0 bestimmt in einer Quarzküvette von 1 cm Schichtdicke, entspricht etwa 50 μ g/ml doppelsträngiger DNA, 40 μ g/ml einzelsträngiger DNA oder 30 μ g/ml einzelsträngiger Oligonukleotide (Sambrook et al., 1989).

Die Reinheit von Nukleinsäure-Lösungen konnte durch das Verhältnis OD_{260} zu OD_{280} bestimmt werden. Bei reinen DNA-Lösungen sollte dieser Wert zwischen 1,8 und 2,0 liegen (Sambrook et al., 1989), niedrigere Werte weisen auf Verunreinigungen mit Proteinen hin. Die Lösungen wurden je nach Konzentration 50 bis 300- fach verdünnt und nach sorgfältiger Durchmischung in Mikroquarzküvetten gemessen.

2.9.3.6 Isolierung von DNA-Fragmenten mittels "QIAquick Gel Extraction"-Kit

Zur Isolierung von DNA-Fragmenten wurde das "QIAquick Gel Extraction"-Kit (Fa. Qiagen GmbH, Hilden) herangezogen. Die Methode beruht auf der Bindung der DNA an eine Silica-Membran in Gegenwart von hohen Salzkonzentrationen. Das Kit kann zur Extraktion von DNA-Fragmenten von einer Größe von 0,1 bis 10 kBp aus Agarosegelen in TAE-Puffer genutzt werden. Die Extraktion erfolgte nach den im Herstellerprotokoll beschriebenen Arbeitsschritten. Die DNA wurde mit H_2O_{dest} eluiert und bis zur weiteren Verwendung bei - 20°C aufbewahrt. Falls die Konzentration der DNA-Lösung nicht ausreichend für eine Ligation war (unter 100 ng/µl), wurde diese mit Hilfe einer Zentrifuge (SpeedVac Plus SC110A, Savant) konzentriert.

2.9.3.7 Reinigung von DNA-Fragmenten mittels "QIAquick PCR Purification"-Kit

Zur Reinigung von PCR-Produkten und anderen linearen DNA-Fragmenten wurde das "QIAquick PCR Purification"-Kit (Fa. Qiagen GmbH, Hilden) genutzt. Wie auch beim "QIAquick Geleextraction"-Kit (siehe 2.9.3.6) wird die DNA bei hohen Salzkonzentrationen an eine Silica-Membran gebunden. Die Reinigung wurde nach den Anweisungen des Herstellers durchgeführt. Die Elution der DNA erfolgte mit $H_2O_{dest.}$. Die so gereinigten PCR-Produkte wurden bis zu ihrer weiteren Verwendung bei –20°C gelagert.

2.10 Isolierung von Nukleinsäuren

2.10.1 Isolierung von DNA aus Umweltproben (Zhou et al., 1996)

Zur Konstruktion der Umwelt-Genbanken wurden aus unterschiedlichen Standorten entnommene Proben und deren Anreicherungskulturen (siehe 0) als Ausgangsmaterial für die DNA-Isolation verwendet. Für die Konstruktion der Metagenombanken wurden zwei verschiedene Standorte ausgewählt. Es handelte sich dabei um eine Sedimentprobe von einer Thermalquelle aus Izmir (TQSI) und um eine Bodenprobe aus einem Zuckerrübenfeld in der Nähe von Göttingen (ZB).

Diese Methode der DNA-Isolierung aus Umweltproben beruht auf der direkten Lyse der Zellen, so dass sie vor dem Aufschluß nicht von den Matrixpartikeln abgetrennt werden müssen. Weiterhin wird so die zusätzlich im Boden frei vorliegende DNA gewonnen.

Zur DNA-Isolierung wurden 50 g Boden mit 135 ml DNA-Extraktionspuffer (DEP) und 1 ml Proteinase K (10 mg/ml) versetzt und für 30 min. bei 37°C horizontal geschüttelt (225 Upm). Nach der Zugabe von 15 ml 20 % SDS (oder 30 ml 10 %) wurde das Gemisch für 2 h bei 65°C inkubiert und dabei alle 15 bis 20 min. vorsichtig geschüttelt.

Zur Trennung der bereits gelösten DNA von der Matrix wurde anschließend zentrifugiert (10 min, 7000 Upm, RT Rotor GS3, Sorvall Zentrifuge, Fa. Du Pont Instruments, Newton, USA) und der Überstand in einen GS3-Zentrifugenbecher überführt. Das Pellet wurde noch zweimal in je 45 ml DEP und 5 ml 20 % SDS suspendiert und nach einer 10-minütigen Inkubation bei 65°C wie oben beschrieben zentrifugiert.

Zur Extraktion der DNA wurde den gesammelten Überständen 1 Vol. Chloroform/Isoamylalkohol (24:1) zugesetzt und für 10 min. bei 7000 Upm (Rotor GS3, Sorvall Zentrifuge, Fa. Du Pont Instruments, Newton, USA) und RT zentrifugiert.

Die Fällung der DNA erfolgte durch Zugabe von 0,6 Vol. Isopropanol für 1 h bei RT. Nach einer Zentrifugation bei 9000 Upm für 20 min. bei RT wurde das Pellet mit eiskaltem Ethanol (70 % v/v) gewaschen und in 4 bis 5 ml sterilem H₂O aufgenommen.

DNA-Extraktionspuffer	(DEP)	
Tris	100	mM
EDTA	100	mM
Na ₂ HPO ₄	100	mM
NaCl	1,5	М
СТАВ	1	%
pH 8.0		

2.10.2 Reinigung von Umwelt-DNA (Henne et al., 1999)

Bei der verwendeten Methode zur Isolierung von DNA aus Standortproben (siehe 0) wurden neben der DNA auch Huminsäuren gewonnen, die in nachfolgenden Klonierungsschritten Restriktionsenzyme und Ligase inhibieren können. Durch Reinigung über das "WizardTM *Plus* Minipreps DNA Purification System" (Fa. Promega Deutschland GmbH, Mannheim) und eine anschließende Anionenaustauschchromatographie (Qiagen-tip-100 Säulen, Fa. Qiagen GmbH, Hilden) konnten die Huminsäuren zum größten Teil abgetrennt werden. Jedoch ist diese Methode mit einem hohen Verlust an DNA verbunden.

Der erste Reinigungsschritt erfolgte nacheinander über zwei Minisäulen. Dazu wurden 150 µl DNA-Lösung mit 150 µl H₂O verdünnt, mit 1 ml "DNA Purification Resin" versetzt und auf den Säulenkörper gegeben. Nach dem Waschen mit 2 ml "Wash"-Puffer wurde zum Trocknen des Säulenmaterials bei 2000 Upm für 2 min. zentrifugiert. Die Elution der DNA aus der Säulenmatrix erfolgte mit jeweils 50 µl TE-Puffer (65 – 70°C). Da bei dieser Methode die Bindekapazität des Säulenmaterials stark überschritten wird, wurde die Elution sechsmal wiederholt. Das vereinigte Eluat wurde wieder mit 1 ml Resin versetzt und auf die zweite Säule aufgetragen. Die Elution wurde viermal wiederholt. Eluate aus mehreren Ansätzen wurden wiederum vereinigt und mit 1 Vol. eines MOPS/NaCl-Puffers (1,5 M NaCl, 100 mM MOPS, pH 7,0) versetzt, um eine effiziente Bindung an die nachfolgende Anionenaustauschchromatographie-Säule zu gewährleisten. Die verwendeten Qiagen-tip-100-Säulen wurden mit 4 ml QBT-Puffer äquilibriert und die DNA-Lösung aufgetragen, und entsprechend der mitgelieferten Vorschrift mit dem Puffer QC gewaschen, mit QF eluiert und mit Isopropanol gefällt. Die Puffer QBT, QC und QF wurden vom Hersteller mitgeliefert.

2.10.3 Isolierung von chromosomaler DNA (Ausubel et al., 1987)

Zur Isolierung der chromosomalen DNA aus den Stämmen *Shewanella* FW1 und Izmir Y wurde eine 500-ml-Kultur bis zur stationären Phase bei 30°C inkubiert und die Zellen anschließend geerntet.

Das Pellet wurde in 9,5 ml TE-Puffer (siehe 0) und 0,5 ml SDS (10 %, (w/v)) suspendiert. Anschließend erfolgte die Zugabe von 50 μ l Proteinase K (20 mg/ml) und eine Inkubation

für 1 h bei 37°C. Danach wurden 1,8 ml 5 M NaCl-Lösung und 1,5 ml CTAB/NaCl-Lösung zugefügt, durch Schwenken des Gefäßes gemischt und für 20 min. bei 65°C inkubiert. Zur Abtrennung der Proteine erfolgte eine Extraktion mit 1 Volumen Chloroform/Isoamylalkohol (24:1, (v/v)). Der Überstand wurde abgenommen und zweimal mit 0,5 Volumen Phenol/Chloroform/Isoamylalkohol (24:24:1, (v/v)) extrahiert.

Die Fällung der DNA erfolgte durch Zugabe von 0,6 Volumen Isopropanol und anschließende Zentrifugation für 15 min. bei 13000 Upm (Rotor SS34, Sorvall, Fa. Du Pont Instruments, Newton, USA). Das Pellet wurde mit 1 ml Ethanol (70 %, (v/v)) gewaschen, getrocknet und in sterilem H₂O suspendiert.

CTAB/NaCl-Lösung

NaCl	700 mM
СТАВ	275 mM

Die DNA-Isolierung von kleineren Probenmengen erfolgte durch Verwendung des "Aquapure Genomic DNA Isolation Kit" (Fa. Biorad Laboratories, USA). Als Ausgangsmaterial dienten 3 bis 4 Kolonien vom Stamm Izmir Y, die aus dem FePP-Agar Medium mit einem Skalpell ausgeschnitten wurden. Die Kolonien wurden in einem Eppendorf-Reaktionsgefäß gesammelt, mit 300 µl DNA-Lyselösung durchmischt und anschließend bei 80 °C für 5 min. inkubiert. Es erfolgte die Zugabe von 1,5 µl RNase A Lösung und die Inkubation bei 37°C für 45 min. Für die Proteinpräzipitations-Lösung wurde auf die Probe 100 µl "protein prezipitations" Lösung gegeben. Nach Vortexen wurde die Probe bei 13,000 bis 16,000 x g für 3 min. zentrifugiert. Der Überstand, der die DNA beinhaltete wurde in ein neues Eppendorf-Reaktionsgefäß mit 300 µl Isopropanol (2-Propanol) gegeben und gemischt. Nach der Zentrufigation bei 13,000 bis 16,000 x g für 1 min. wurde die Flüssigkeit aus dem Eppendorf-Reaktionsgefäß verworfen und 15 Minuten luftgetrocknet. Für die Resuspendierung wurde dem Eppendorf-Reaktionsgefäß 100 µl DNA-Hydrations-Lösung zugegeben und bei 65°C für 5 Minuten inkubiert. Die Lagerung der isolierten DNA erfolgte bei 4°C.

2.10.4 Isolierung von Plasmid-DNA

2.10.4.1 "Cracking" von Plasmiden

Für die schnelle Analyse einer großen Anzahl von Plasmiden wurde die Methode des "Crackings" eingesetzt.

Die Kolonien wurden direkt von der Agarplatte mit einem Zahnstocher abgenommen und in 50 μ l 10 mM EDTA-Lösung suspendiert. Es folgte die Zugabe von 50 μ l frisch angesetztem "Cracking"-Puffer und eine Inkubation bei 70°C für 5 min. Nach dem Abkühlen auf Raumtemperatur wurden 1,5 μ l 4 M KCl und 2 μ l Stopp-Mix (siehe 2.11.1) zugegeben und die Proben für 3 min auf Eis inkubiert. Im Anschluß erfolgte eine Zentrifugation bei 16000

xg und 4°C. Es wurden ca. 20 bis 25 μ l des Überstandes durch Standard-Agarose-Gelelektrophorese (siehe 0) analysiert.

"Cracking"-Puffer		
NaOH-Lösung (2 N)	100	μl
SDS-Lösung (10 % (w/v)	50	μl
Saccharose	0,2	g
H ₂ O	ad 1000	μl

2.10.4.2 Plasmidschnellpräparation (Holmes & Quigley 1981)

Diese Methode diente vor allem zum schnellen Nachweis und zur Charakterisierung von Klonierungsergebnissen.

1,5 ml einer über Nacht gewachsenen Kultur wurden geerntet (5000 x g, 5 min., RT) und in 350 μ l STET-Puffer suspendiert. Nach Zugabe von 25 μ l Lysozym-Lösung (10 mg/ml 10 mM Tris-HCl, pH 8,0) und einer kurzen Inkubation des Ansatzes bei RT erfolgte anschließend eine Denaturierung für 1 min. bei 100°C. Zellreste und denaturierte Proteine wurden nach Zentrifugation (16000 x g, 10 min) mit einem sterilen Zahnstocher entfernt. Nach der Zugabe von 40 μ l Na-Acetat (2,5 M, pH 5,2) und 420 μ l Isopropanol wurde das Plasmid durch Zentrifugation (16000 x g, 5 min) pelletiert. Das enthaltene Pellet wurde mit Ethanol (70 %, (v/v)) gewaschen, getrocknet und in 50 μ l H₂0 dest. suspendiert.

STET-Puffer

NaCl	100	mМ
Tris-HCl	10	mМ
EDTA	1	mМ
Triton X-100	5	%

pH 8,0

2.10.4.3 Minipräparation von Plasmiden mittels "WizardTM Plus Minipreps DNA Purification System"

Eine schnelle Plasmidisolierung zum Erhalt sehr sauberer DNA erfolgte unter anderem durch Verwendung des "WizardTM *Plus* Minipreps DNA Purification System" (Fa. Promega Deutschland GmbH).

1,5 ml einer 5-ml-Übernachtkultur wurden für 5 min. bei 6000 x g zentrifugiert und das Zellpellet in 200 μ l "Cell Resuspension Solution" suspendiert. Nach Zugabe von 200 μ l "Cell Lysis Solution" wurde der Ansatz bis zum Aufklaren der Lösung geschwenkt und dann

mit 200 µl "Neutralization Solution" versetzt. Die Probe wurde anschließend 10 min. bei 13000 x g zentrifugiert und der Überstand mit 1 ml "DNA-Purification Resin" gemischt. Das DNA-Resin-Gemisch wurde dann auf eine vom Hersteller mitgelieferte Minisäule gegeben und mit 2 ml "Column Wash Solution" gewaschen und durch Zentrifugation (2 min., 10000 x g) getrocknet. Die Elution der DNA von der Matrix erfolgte durch Zugabe von 50 µl H_20_{dest} , 1-minütiger Inkubation bei Raumtemperatur und anschließender Zentrifugation (30 s, 12000 x g). Bei der Isolierung von Plasmiden > 7 kBp erfolgte die Inkubation bei 65°C. Das Resin und alle verwendeten Puffer wurden vom Hersteller mitgeliefert.

2.10.4.4 Minipräparation von Plasmiden mittels "QIAprep Spin Miniprep Kit"

Bei der Isolierung von sehr sauberer Plasmid-DNA wurde alternativ zum "WizardTM *Plus* Minipreps DNA Purification System" das "QIAprep Spin Miniprep Kit" (Fa. Qiagen) genutzt.

1,5 ml einer 5-ml-Übernachtkultur wurden für 5 min. bei 6000 x g zentrifugiert und das Zellpellet in 250 μ l Puffer P1 suspendiert. Es folgte die Zugabe von 250 μ l Puffer P2, Schwenken bis zum Aufklaren der Lösung und Neutralisation durch Zusatz von 350 μ l Puffer N3. Durch Zentrifugation (10 min., 13000 x g) wurden die ausgefällten Proteine und Zelltrümmer sedimentiert. Der Überstand wurde anschließend auf eine QIAprep Säule aufgetragen, die eine Silica-Gel-Membran für die selektive Adsorption von Plasmid-DNA enthält. Durch Zentrifugation (1 min., 13000 x g) erfolgte die Bindung der DNA an die Membran, der Durchfluß wurde verworfen. Nach einem Waschschritt mit 750 μ l Puffer PE und dem Trocknen durch Zentrifugation (1 min., 13000 x g) wurde die Plasmid-DNA mit 30 bzw. 50 μ l H₂O_{dest} eluiert. Alle verwendeten Puffer wurden vom Hersteller mitgeliefert.

2.10.4.5 Präparative Plasmidisolierung über Anionenaustausch-Chromatographie

Die Isolierung größerer Mengen an Plasmid-DNA erfolgte nach alkalischer Lyse mit den Puffern P1, P2 und P3 über Anionenaustausch-Chromatographie (Qiagen Plasmid Midi-Kit, Fa. Qiagen).

25 ml Zellkultur wurden bei einer OD_{600} von 1 bis 1,5 geerntet und in 4 ml P1-Puffer suspendiert. Es folgte die Zugabe von 4 ml P2-Puffer und eine Inkubation für 5 min. bei RT. Anschließend wurden 4 ml P3-Puffer zugefügt und für 30 min. auf Eis inkubiert. Nach Zentrifugation (30 min., 16000 x g, 4°C) wurde der Überstand abgenommen und zur vollständigen Aufklarung erneut für 15 min. zentrifugiert.

Der dabei erhaltene Überstand konnte dann auf eine mit 4 ml QBT-Puffer äquilibrierte Qiagen-tip-100 Säule aufgetragen werden. Es folgte ein Waschschritt mit 20 ml QC-Puffer und die Elution der Plasmid-DNA durch Zugabe von 5 ml QF-Puffer. Die DNA wurde mit 0,7 Vol. Isopropanol gefällt und durch Zentrifugation (30 min., 16000 x g, 4°C) pelletiert. Das Pellet wurde anschließend mit Ethanol (70 %, v/v) gewaschen und getrocknet und in 100 bis 200 μ l H₂O aufgenommen.

Für die Isolierung von Plasmid-DNA aus größeren Kulturvolumina als 100 ml wurde die Menge an P1, P2 und P3 entsprechend erhöht. Die Anionenaustauschchromatographie erfolgte dann in mehreren Durchgängen, wobei die Säule nach jeder Elution mit 4 ml QBT-Puffer neu äquilibriert wurde. Auf diese Weise wurde Plasmid-DNA aus Kulturvolumina bis 250 ml isoliert. Alle verwendeten Puffer wurden vom Hersteller mitgeliefert.

2.11 Gelelektrophorese von Nukleinsäuren

2.11.1 Standard-Agarose-Gelelektrophorese

Zur analytischen Auftrennung von DNA-Fragmenten diente die Standard-Agarose-Gelelektrophorese (Sambrook et al., 1989). Es wurden Gele mit einem Volumen von 10 bis 25 ml gegossen. Die Agarosekonzentration variierte zwischen 0,8 und 1,5 %. Die Proben wurden vor dem Auftragen mit 0,2 Volumen Stopp-Mix versetzt, um sie zu beschweren und um die Lauffront zu markieren. Als Elektrophoresepuffer wurde 1-fach TAE-Puffer verwendet. Die Elektrophorese wurde bei einer konstanten Spannung zwischen 25 und 120 V durchgeführt, wodurch sich je nach Gelgröße eine Laufzeit von 1 bis 7 h ergab. Nach Beendigung der Elektrophorese wurden die Agarosegele in einem Ethidiumbromidbad (1 μ g/ml H₂O) für 10 bis 30 min. angefärbt. Nach kurzem Entfärben im Wasserbad konnten die Gele auf der Gel Doc 2000-Anlage (Fa. Biorad, München) bei Licht der Wellenlänge 254 nm begutachtet werden. Zur Dokumentation diente ein Videoprinter (Intas Video Graphic Printer UP-890 CE, Fa. Sony Corporation, Japan), der eine Bildübertragung auf Thermopapier ermöglichte.

Stopp-Mix

Saccharose	50	% (w/v)
Harnstoff	7	М
EDTA	1	mM
Bromphenolblau	0,1	% (w/v)

2.11.2 Größenbestimmung von Nukleinsäuren

Als Größenstandard für lineare DNA-Fragmente wurde der "Ladder-Mix" (Fa. MBI Fermentas, St. Leon-Rot) eingesetzt. Als Längenstandard für lineare DNA dienten die 100 bp- bzw. 1 kBp- Ladder. Dabei traten folgende Fragmente auf:

1kb-DNA-Leiter: 10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 800, 500 und 100 bp

2.12 Enzymatische Modifikation von DNA

2.12.1 Schneiden von DNA durch Restriktionsendonukleasen

Die Sequenz-spezifische Spaltung von DNA mit Restriktionsendonukleasen lieferte lineare DNA-Fragmente mit definierten Enden. Die Spaltung erfolgte in den vom Hersteller mitgelieferten Puffersystemen bei den empfohlenen Temperaturen. Die Ansätze wurden mit einem Gesamtvolumen von mindestens 15 μ l für 2 bis 15 h durchgeführt. Zur Vermeidung einer zu hohen Glycerinkonzentration im Reaktionsansatz durfte das Volumen der zugegebenen Enzymlösung höchstens 1/10 des Gesamtvolumens betragen.

Die partielle Spaltung von chromosomaler bzw. von Standort-DNA wurde zeitlimitiert durchgeführt. Es wurde routinemäßig mit 1 U Restriktionsenzym gearbeitet. Die Verdauung wurde in bestimmten Zeitabständen durch Zugabe von EDTA (20 mM) und Inkubation auf Eis gestoppt.

2.12.2 Dephosphorylierung von DNA-Fragmenten

Zur Erhöhung der Effizienz einer Ligationsreaktion zwischen Insert-DNA und Vektor-DNA wurde die Vektor-DNA an den 5'-Enden dephosphoryliert. Auf die Weise sollte eine Rezirkularisierung des Vektors verhindert werden. Es wurde die alkalische Phosphatase der Fa. MBI Fermentas GmbH eingesetzt. Nach vollständiger Spaltung des Vektors wurde 1 U alkalische Phosphatase pro µg DNA zugesetzt und für 30 min. bei 37°C inkubiert.

2.12.3 Ligation von DNA-Fragmenten

2.12.3.1 Ligation mit T4-DNA-Ligase

Zur Verknüpfung von linearisierter, dephosphorylierter Vektor- und Insert-DNA wurde T4-DNA-Ligase eingesetzt, die in Anwesenheit von ATP eine Phosphodiesterbindung zwischen 3'-OH- und 5'-PO₄-Enden von Nukleinsäuren katalysiert. Die Ligationen wurden in einem Volumen von 20 µl durchgeführt. Es wurden jeweils 0,2 bis 1 µg Vektor- bzw. Insert-DNA eingesetzt. Der Ansatz enthielt weiterhin 1 U T4-DNA-Ligase und in 1-facher Konzentration den vom Hersteller mitgelieferten Reaktionspuffer. Die Ligationsansätze mit kohäsiven Enden wurden über Nacht bei 16°C, für 2 bis 4 h bei Raumtemperatur oder für 48 h bei 4°C
inkubiert. Zur Ligation glatter Enden wurden 2 U Ligase eingesetzt und die Ansätze für 1 h bei 37°C inkubiert.

2.12.3.2 Ligation mit dem "TOPO-TA-Cloning ®"-Kit

Für eine besonders effektive Klonierung von PCR-Produkten, die mit der *Taq*-DNA-Polymerase in einer Polymerasekettenreaktion (siehe 2.15) amplifiziert wurden, wurde das "TOPO-TA-Cloning®"-Kit (Fa. Invitrogen, Carlsbad, USA) verwendet. Für diese Art der Ligation wird keine Ligase benötigt.

Abbildung 1 Schematische Darstellung der TOPO-TA-Klonierung.

Die *Taq*-DNA-Polymerase besitzt eine von der Matrize unabhängige, terminale Transferase-Aktivität und hängt an die 3'-Enden von PCR-Produkten einzelne Desoxyadenosine (A) an. Der im Kit vorhandene, bereits linearisierte Vektor pCR2.1-TOPO besitzt analog dazu an den 3'-Enden einzelne Desoyxthymidin-Reste (T). Dies erlaubt eine Ligation nach der sogenannten TA-Methode.

Des Weiteren besitzt der Vektor die kovalent gebundene Topoisomerase I des *Vaccinia*-Virus. Die Topoisomerase I bindet an spezifische Sequenzen doppelsträngiger DNA und spaltet dort das Phosphodiester-Gerüst stromabwärts der Sequenz 5'-CCCTT in einem Strang (Shuman, 1991). Die Energie dieser Spaltungsreaktion wird durch Ausbildung einer kovalenten Bindung zwischen dem 3'-Phosphat des gespaltenen Stranges und dem Tyrosin-274 der Topoisomerase I konserviert. Die Reaktion zwischen DNA und Protein kann durch den Angriff des 5'-Hydroxyl-Restes umgekehrt werden, was dann zur Abspaltung der Topoisomerase I führt (Shuman, 1994). Dieses Prinzip wird zur effizienten Klonierung von PCR-Produkten genutzt (siehe Abbildung 1).

2.13 Saccharose-Dichtegradientenzentrifugation (Sambrook et al., 1989; modifiziert)

Die Größenfraktionierung von Fragmenten partiell verdauter, chromosomaler DNA, die zur Klonierung eingesetzt werden sollte, erfolgte mittels einer Saccharose-Dichtegradientenzentrifugation. Bei dieser sehr schonenden Methode werden die verschiedenen Fragmentgrößen entsprechend ihrer Schwebedichte im Saccharosegradienten getrennt. Zunächst wurde ein Saccharose-Stufengradient (10 - 40 %) in 10 ml-Zentrifugenröhrchen (Sorvall Polyallomer 3699, Fa. Du Pont de Nemours Deutschland GmbH, Dreieich) hergestellt. Dazu wurden je 1,9 ml 40, 32,5, 25, 17,5 und 10 % Saccharose (jeweils w/v in 1 M NaCl, 20 mM Tris-HCl, 5 mM EDTA, pH 8,0) beginnend mit der höchsten Konzentration übereinandergeschichtet und nach jeder Stufe eingefroren. Auf den fertigen Gradienten wurde 100 bis 200 µg partiell verdaute chromosomale DNA aufgetragen. Die Zentrifugation erfolgte in einem "swing-out"-Rotor (Sorvall TH641, Fa. Du Pont de Nemours) in einer Ultrazentrifuge (Sorvall OTD 55 B, 27000 Upm, 24 h, 20 °C). Zur Ernte des Gradienten wurden vorsichtig je 400 µl von oben beginnend abgenommen. Anschließend erfolgte eine DNA-Fällung mit PEG/NaCl aus Saccharose (siehe 0). 10 µl jeder dritten Fraktion wurden durch Agarosegelelektrophorese (siehe 0) auf Größe und Qualität hin überprüft.

2.14 Übertragung von DNA in E. coli und Selektion rekombinanter Klone

2.14.1 Hocheffiziente Transformation in E. coli (Inoue et al., 1990)

Zur Herstellung hocheffizienter Transformanten wurde *E. coli* aus einer Stammkultur auf eine LB-Agar-Platte ausgestrichen und über Nacht bei 37°C inkubiert. Aus 10 bis 12 Einzelkolonien wurde eine 5 ml Vorkultur angeimpft. Diese diente als Inokulum für 250 ml SOB-Medium (siehe 0). Diese Kultur wurde bei 16°C schüttelnd bis zu einer OD₆₀₀ von 0,6 inkubiert. Nach einer Inkubation für 10 min. auf Eis wurden die Zellen zentrifugiert (10 min., 2500 x g, 4°C), in 80 ml eiskalter TB-Lösung suspendiert und für 10 min. auf Eis abgekühlt. Es folgte eine Zentrifugation der Zellen (10 min., 2500 x g, 4°C) und Suspension in 20 ml TB-Lösung mit DMSO (Endkonzentration 7 %, v/v). Nach einer Inkubation für 10 min. auf Eis wurden Aliquots von 200 µl in flüssigem N₂ eingefroren und direkt zur Transformation eingesetzt oder bei - 70°C gelagert.

Zur Transformation wurden 200 µl Zellsuspension auf Eis aufgetaut und nach der Zugabe von 1 bis 20 µl DNA-Lösung (ca. 10 bis 500 ng) für 30 min. auf Eis inkubiert. Es folgte ein Hitzeschock für 1 min. bei 42°C, eine kurze Inkubation auf Eis und die Zugabe von 0,8 ml LB-Medium. Zur Ausprägung der plasmidkodierten Antibiotikaresistenz wurden die Ansätze für 60 min. bei 37°C inkubiert und anschließend die Suspension auf LB-Agarplatten mit entsprechendem Antibiotikum ausplattiert.

TB-Lösung

10	mМ
55	mМ
15	mМ
250	mМ
	10 55 15 250

PH 6,7

Das MnCl₂ wurde ungelöst und separat autoklaviert.

2.14.2 Der X-Gal-Test zur Selektion rekombinanter Klone

Bei Klonierungen ist es entscheidend, Klone, die nach Übertragung von DNA nur den Vektor enthalten, von denjenigen die ein Plasmid mit Insert tragen, zu unterscheiden. Aus diesem Grund wurde ein zusätzliches Screeningsystem neben der plasmidkodierten Antibiotikaresistenz benutzt. Plasmide der pBluescript-Reihe enthalten neben dem Promotorund Operator-Bereich des *lac*-Operons auch das 5'-Ende des *lacZ*-Gens (Vieira & Messing, 1982). Dieses kodiert für das sogenannte α -Peptid, welches die inaktive β -Galaktosidase von Wirtsstämmen wie *E. coli* DH5 α komplementieren kann. Da sich die multiple Klonierungsstelle der verwendeten Vektoren innerhalb des aminoterminalen Bereichs des *lacZ*-Gens befindet, ist eine α -Komplementation nur möglich, wenn das Plasmid kein Insert besitzt. Der Nachweis der aktiven β -Galaktosidase auf Agarplatten erfolgte durch Zugabe des Induktors IPTG (Isopropyl- β -thiogalaktopyranosid) und des Substrats X-Gal (5-Brom-4-chlor-indoyl- β -D-galaktosid), welches durch das Enzym gespalten wurde. Dabei entstand in Anwesenheit von Sauerstoff der blaue Farbstoff 5-Brom-4-Chlor-indigo, welcher der Indikator für rekombinante *E. coli*-Stämme ist, die ein Plasmid ohne Insert tragen.

2.14.3 Screening Strategie zum Auffinden von dissimilatorischen Fe(III)-Reduktasen aus Umweltgenbanken

Die Überprüfung rekombinanter *E. coli*- Stämme auf die Reduktion von Fe(III) wurde auf FePP-Agar Platten durchgeführt. Der Test basiert auf der Unfähigkeit von *E. coli* in Abwesenheit von externen Elektronenakzeptoren wie O_2 mit Mannit als einziger C- und Energiequelle wachsen zu können. Ferner besitzt *E. coli* keine eigene dissimilatorische Fe(III)-Reduktase. Für den Test wurden Agarplatten hergestellt, die Mannit als C-Quelle und Fe(III)-PP als Elektronenakzeptor enthielten (siehe 2.2.2). Inkubiert man diese Platten anschließend unter anaeroben Bedingungen, können nur diejenigen rekombinanten *E. coli*-Stämme wachsen, die Gene für eine dissimilatorische Fe(III)-Reduktase enthalten und heterolog produzieren (siehe Abbildung 2). Ferner ließ sich die Fe(III)-Reduktion durch Bildung eines weißen Präzipitats (Vivianit) im Bereich positiver Kolonien auf dem FePP-

Agar und in FePP-Flüssigkulturen verfolgen. Die Reduktion des Fe(III) wurde durch die von Fe(II) verursachte Violettfärbung von Ferrozin bestätigt.

Abbildung 2 Grundlage des Screening-Verfahrens

2.15 Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion (PCR) wurde zur Herstellung spezifischer DNA-Fragmente für Klonierungen verwendet. Als Enzyme wurde die Taq-DNA-Polymerase (Fa. MBI Fermentas) eingesetzt. Die Reaktionen wurden entsprechend den Herstellerempfehlungen in einem Volumen von 50 bzw. 100 µl durchgeführt und enthielten folgende Bestandteile:

DNA	0,5 - 1	μg
Oligonukleotide	je 100	pmol
dNTP-Gemisch	200	μΜ
DNA Polymerase	1	U
Reaktionspuffer (10x)	10	μl
MgCl ₂ oder MgSO ₄	1,5	mM
H ₂ O _{dest.}	ad 100	μl

Die Temperaturzyklen wurden den jeweiligen Anforderungen in Bezug auf die Hybridisierungstemperatur (x) und die Dauer der Kettenverlängerung (y) angepasst. Sie wurden nach folgendem Schema durchgeführt:

Denaturierung	95°C	2 min.
30 Zyklen		
Denaturierung	95°C	1 min.
Hybridisierung	x °C	1 min.
Kettenverlängerung	72 o. 75°C	y min.
Ende der Zyklen		
Kettenverlängerung	72 o. 75°C	10 min.

Für die Einstellung der Parameter waren die zu erwartende Fragmentlänge und die Schmelztemperatur T_m der verwendeten Oligonukleotide entscheidend. Für die Hybridisierung wurde entsprechend der zu erwartenden Fragmentlänge eine Zeit von ca. 1 min./1000 Bp gewählt. Die optimale Hybridisierungstemperatur wurde nach der Schmelztemperatur T_m der Oligonukleotide festgelegt, die über folgende Formel errechnet wurde:

 $T_m = 69,3 + 0,41$ (% GC-Gehalt) – 650/L L = Länge des Oligonukleotids % GC-Gehalt = prozentualer GC-Gehalt des Oligonukleotids

Durch Verkürzung der Hybridisierungsdauer, Verringerung der Oligonukleotidkonzentration und Variation der MgCl₂-Konzentration konnte die Spezifität der PCR optimiert werden. Die Temperaturzyklen wurden mit einem Primus-Cycler (Fa. MWG AG-Biotech, München) oder dem "Mastercycler Gradient" (Fa. Eppendorf, Hamburg) durchgeführt. Die PCR-Produkte wurden durch Agarose-Gelelektrophorese (siehe 0) analysiert.

2.16 DNA-Sequenzierung

Die Isolierung der zu sequenzierenden Plasmide erfolgte unter Verwendung des "WizardTM *Plus* Miniprep DNA Purification Systems" (Fa. Promega) (siehe 2.10.4.3) bzw. des "QIAprep Spin Miniprep Kits" (Fa. Qiagen) (siehe 0). Die Sequenzierungen wurde durch das "Göttingen Genomics Laboratory" (Institut für Mikrobiologie und Genetik, Universität Göttingen) am ABI PRISM 337 DNA-Sequencer durchgeführt.

2.16.1 Analyse von Sequenzdaten

Die Auswertung der Sequenzdaten erfolgte mit dem Programm "ARTEMIS" (Rutherford K., 2000). Hiermit konnten offene Leserahmen (ORF) gefunden, Proteinsequenzen abgeleitet und allgemeine Informationen zu Sequenzeigenschaften (z.B. GC% Gehalt) ermittelt

werden. Bei der Vorhersage der offenen Leserahmen in prokaryontischen DNA-Sequenzen wurden die Start- (ATG, GTG, TTG) und Stoppkodons (TAA, TGA, TAG) auf allen insgesamt sechs möglichen Leserahmen durchsucht. Sequenzbereiche, die sich zwischen den Start- und Stoppkodons befanden und eine minimale Größe von 100 bp hatten, wurden als offene Leserahmen bezeichnet, die ein potentielles Gen darstellten. Die aus diesen Leserahmen abgeleitete Aminosäuresequenz wurde mit den in der NCBI-Datenbank (Madden et al., 1996) vorhandenen Daten mit dem BlastP-Programm abgeglichen. Die Aminosäuresequenzen wurden mittels der "Conserved Domain Database, CDD" nach konservierten Domänen durchsucht (Marchler-Bauer et al., 2007). Die CDD ist in der NCBI-Web Seite verlinkt (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). Konnten keine signifikanten Sequenzähnlichkeiten gefunden werden, wurde die Bezeichnung "hypothetisches Protein" gegeben.

Weitergehende Analysen wurden mit dem GCG-Paket ("Wisconsin Genetics Computer Group Sequence Analysis Software Package") (GWDG, Göttingen) und dem im Internet angebotenen Service der NCBI (http//:www.ncbi.nlm.nih.gov) durchgeführt. Alignments von zwei Proteinsequenzen wurden mit dem im GCG-Paket vorhandenen BestFit Programm in voller Aminosäurelänge abgeglichen. Dieses Programm ermittelt neben den ähnlichen Aminosäuren auch den Anteil der identischen Aminosäuren (Senger et al., 1998).

Die aus der Sequenzierung erhaltenen (siehe 3.4.) Nukleotidsequenzen wurden sowohl mit molekularen Techniken als auch mit bioinformatischen Methoden analysiert. Das Ziel war die Identifizierung der für die dissimilatorische Fe(III)-Reduktaseaktivität zuständigen Gene und die Untersuchung möglicher Ähnlichkeiten zu in den Datenbanken vorhandenen Sequenzdaten. Dazu wurden die Nukleotidsequenzen aller ORFs der rekombinanten Plasmide in die jeweilige Aminosäuresequenz übersetzt und mit den in der NCBI-Datenbank vorhandenen Proteindaten verglichen.

2.17 16S-rDNA-Analyse

Die Amplifizierung des 16S-rDNA-Gens erfolgte durch PCR (siehe 2.15) mit spezifischen Primern (siehe 2.1). Als Template wurde entweder die chromosomale DNA oder Zellmaterial eingesetzt. Die PCR-Produkte wurden mittels Agarose-Gel-Elektrophorese (siehe 2.11.1) getrennt und anschliessend aus dem Gel mit Hilfe des "QIAquick Gel Extraction"-Kit (Siehe 0) gereinigt. Die Klonierung der 16S-rDNA in den Vektor pCR2.1 aus dem "TOPO-TA-Cloning®"-Kit (Fa. Invitrogen) erfolgte wie in 2.12.3.2 beschrieben. Nach der Sequenzierung (siehe 2.16) wurden die erhaltenen Sequenzen mit den 16S-rDNA Sequenzdaten der der NCBI-Datenbank abgeglichen.

2.18 Elektronenmikroskopische Methoden

2.18.1 Elektronenmikroskopische Trägernetze

Es wurden Kupfer- und Nickelgrids der Typen 300 und 400 mesh mit einem Durchmesser vom 3,05 mm verwendet (Fa. Science Service, München).

2.18.2 Trägerfolien

2.18.2.1 Kohlefolien (Robinson et al., 1985)

Die Kohlefolie für die Negativkontrastierung wurde durch Widerstandsverdampfung konisch angespitzter Kohlestäbe /Spektralkohle höchster Reinheit (Fa. Ringsdorf, Bonn-Bad Godesberg) in einer Hochvakuum-Bedampfungsanlage (E 306, Fa. Edwards High Vakuum Ltd., Crawley, Sussex, England) indirekt, auf frisch gespaltenen Glimmer (Fa. Balzers, Liechtenstein), aufgedampft. Die Schichtdicke betrug in Abhängigkeit von der Bedampfungsdauer etwa 10 bis 20 nm.

2.18.2.2 Formvarfolien (Mahl & Mödler, 1971)

Zur Aufnahme von Ultradünnschnitten wurden die Nickelgrids mit Formvarfolie befilmt. Eine 0,5 %ige (w/v) Formvar-Lösung wurde in wasserfreiem Chloroform angesetzt und durch einen Papierfilter in einen Tropftrichter gefüllt. Ein über einer Heizplatte getrockneter Glassobjektträger wurde in die Formvar-Lösung gestellt. Dann wurde die Lösung durch den Filter abgelassen. Der befilmte Glasobjektträger wurde getrocknet und der anhaftende Film auf einer Wasseroberfläche abflottiert, mit Nickelgrids belegt, von der Wasseroberfläche abgenommen und im Bedarfsfall durch eine dünne Kohlefolie verstärkt (siehe 0).

2.18.3 Negativkontrastierung (Valentine et al., 1968; modifiziert)

Von einem mit Kohle bedampften Glimmerstück (siehe 2.18.2.1.) wurde ein etwa 4 x 4 mm großes Stück abgeschnitten und in einem Winkel von 45° in eine Zellsuspension eingetaucht, so dass die Kohlefolie partiell auf der Oberfläche abflottierte. Die in der Lösung befindlichen Proteinmoleküle konnten so an der Kohlefolie adsorbieren. Die Adsorptionszeit (5-20) richtete sich nach der Konzentration und Größe der Partikel (Mayer & Spiess, 1976). Anschließend wurde der Kohlefilm vollständig auf einer 4 %igen (w/v) Uranylacetat-Konzentrastierungslösung in H₂O dest. (pH 4.5) abflottiert und mit einem Kupfergrid aufgenommen; mit einem Filterpapier wurde die Uranylacetat-Lösung teilweise vorsichtig abgesaugt.

2.18.4 Elektronenmikrographie

Die negativkontrastierten Präparate wurden im Transmissionselekronenmikroskop Typ EM 902 (Fa. Carl Zeiss, Oberkochen) bei einer Beschleunigungspannung von 80 kV elektronenoptisch auf einem Leuchtschirm abgebildet (Zeiss EM 902, Zeiss Germany). Für die Mikrographien wurden Planfilme 6,5 x 9 cm (Scienta 23 D-56, Agfa Gevaert,

Leverkusen, Abmessungen 8,3 x 10,2 cm für das EM 902) als Negativmaterial verwendet. Die genaue Vergrößerung wurde mit einer Replika eines Kreuzgitters bestimmt (Balzers Union, Balzerd ,Lichtenstein)

2.19 Chemikalien, Enzyme und Gase

Es wurden Chemikalien des handelsüblichen Reinheitsgrades der Firmen Boehringer (Mannheim), Fluka (Buchs, Schweiz), Merck (Darmstadt), Riedel de Haen (Hannover), Serva (Heidelberg) und Sigma (Taufkirchen) verwendet. Des Weiteren wurde mit Biochemikalien, Enzymen etc. folgender Firmen gearbeitet:

- Eurogentec, Seraing, Belgien: Agarose
- Gerbu Biotechnik GmbH, Gaiberg: IPTG, X-Gal, Ampicillin, Proteinase K
- Invitrogen, Carlsbad, CA, USA pET Directional TOPO Expression Kit, TOPO TA Cloning Kit, Platinum *Pfx*-DNA-Polymerase
- MBI Fermentas GmbH, St. Leon-Rot: *Taq*-DNA-Polymerase, T4-DNA-Ligase, Ladder-Mix, Nukleotide, Restriktionsendonukleasen
- Messer Griesheim GmbH, Kassel: Gase (N₂, H₂, N₂/CO₂)
- Metabion, Martiensried Oligonukleotide
- Millipore, Eschborn: Mikrodialyse-Filter
- Promega, Deutschland GmbH, Mannheim: WizardTM Plus Minipreps DNA Purificaton System, *Pfu*-DNA-Polymerase
- Qiagen GmbH, Hilden: Plasmid Midi-Kit, QIAprep Spin Miniprep Kit, Qiaquick PCR-Purification-Kit; Qiaquick Gel Extraction Kit, RNA/DNA Maxi Kit
- Sartorius AG, Göttingen: Sterilfilter

3 Experimente und Ergebnisse

3.1 Strategie für die Suche nach dissimilatorischen Fe(III)-reduzierenden Mikroorganismen und terminalen Fe(III)-Reduktasen

In dieser Arbeit wurde die mikrobielle Verbreitung der Fe(III)-Atmung durch die Suche nach disimilatorisch Fe(III)-reduzierenden Mikroorganismen und nach Fe(III)-Reduktasen untersucht. Die terminale Fe(III)-Reduktion wurde dabei in kultivierbaren Mikroorganismen und in mikrobiellen Gemeinschaften analysiert. Ferner wurden die neu isolierten dissimilatorischen Fe(III)-Reduzierer phylogenetisch und biochemisch charakterisiert.

Dafür wurden aus diversen Umweltproben Metagenombanken konstruiert und diese in einem Funktions-basierten Screeningverfahren auf das Vorhandensein von Genen für dissimilatorische Fe(III)-Reduktasen durchmustert. Weiterhin wurden in dieser Arbeit Metagenombanken aus Anreicherungskulturen hergestellt. Die Anreicherungskulturen dienten darüber hinaus auch der Isolation einzelner Fe(III)-reduzierender Stämme. Die Isolate wurden mit phylogenetisch nah verwandten dissimilatorischen Fe(III)-Reduzierern verglichen. Neben einem neu isolierten Stamm wurden ebenfalls von dem dissimilatorisch Fe(III)-reduzierenden Stamm *Shewanella* FW1 (Daniel R., 1999) Genbanken hergestellt (siehe Abbildung 3).

Die nach dem Screening-Verfahren erhaltenen positiven Klone wurden sequenziert und anschließend analysiert. Die erhaltenen Sequenzdaten dienten zur Identifizierung von ORFs, die für eine dissimilatorische Fe(III)-Reduktase-Aktivität kodieren könnten.

Putative Fe(III)-Reduktase-Aktivität vermittelnde Genprodukte wurden molekular analysiert (siehe Abbildung 3).

Abbildung 3 Schematische Darstellung der Strategie zur Suche nach dissimilatorischen Fe(III)-Reduktasen und Organismen, die zur Fe(III)-Atmung befähigt sind

3.2 Konstruktion von Genbanken und Metagenombanken

Als Ausgangsmaterial für die Konstruktion der Metagenombanken dienten zwei verschiedene Standortproben und eine Anreicherungskultur. Es handelte sich dabei um eine Sedimentprobe von einer Thermalquelle aus Izmir (Türkei) (TQIS) und um eine Bodenprobe aus einem Zuckerrübenfeld in der Nähe von Göttingen, mit der Bezeichnung ZB. TQIS diente als Probe bei der Anreicherungskultur aus der eine weitere Genbank hergestellt wurde. Umweltgenbanken, die aus Proben einer Wiese in Northeim, einem Feld in der Nähe von Göttingen, dem Niemetal bei Göttingen und einem Zuckerrübenfeld bei Göttingen stammen, wurden bereits zuvor in unserer Arbeitsgruppe konstruiert und für Durchmusterungsverfahren verwendet (Henne et al., 1999). Des Weiteren wurden Teilgenbanken aus Shewanella FW1 und dem im Rahmen dieser Arbeit isolierten Stamm Izmir Y hergestellt.

3.2.1 Isolierung von Gesamt-DNA aus verschiedenen Umweltproben und Isolaten

Sowohl bei den Anreicherungskulturen als auch bei den Umweltproben wurden die gleichen Methoden für die DNA-Isolation und -Reinigung benutzt (siehe 0 und 0). Die DNA für die Umweltgenbanken wurde aus dem natürlichen Standort-Material nach der Methode der direkten Lyse der Zellen von Zhou et. al. (1996) isoliert. Bei dieser Methode kann sowohl die DNA aus den in der Probe vorhandenen Organismen, als auch frei in der Umweltprobe vorliegende extrazelluläre DNA isoliert werden (siehe 0). Es wurden neben der im Boden vorliegenden DNA gleichzeitig je nach Probenzusammensetzung unterschiedliche Mengen an Matrix-Bestandteilen, wie z.B. Huminsäuren, koextrahiert. Dies machte sich durch eine bemerkbar. Die Braunfärbung der DNA-Lösung Huminsäuren inhibieren bei molekularbiologischen Arbeiten die Restriktionsenzyme, Polymerasen und Ligasen (Tebbe C.C., 1993). Huminsstoffe waren in der isolierten DNA aus den Bodenproben und der Thermalquelle vorhanden. Zur Entfernung der Huminsäuren wurde die Umwelt-DNA durch Chromatographie an Silikasäulen gereinigt (siehe 2.10.2). Anschließend wurde die DNA-Konzentration, wie in 0 beschrieben, durch Abschätzen der Intensität von Banden im Agarosegel bestimmt. Demnach konnten von der Probe aus dem Zuckerrübenboden 26 µg/g, von dem aus der Thermalquelle 17 µg/g DNA und dessen Anreicherung 20 µg/g DNA isoliert werden. Bei dem Stamm Izmir Y und bei Shewanella FW1 lag die DNA-Ausbeute bei $15 \,\mu g/g$.

Nach der Isolierung der Gesamt-DNA aus der Sedimentprobe von der Thermalquelle in Izmir (TQIS), ergaben sich Schwierigkeiten bei der Herstellung der Genbank. Die isolierte DNA ließ sich zumeist nicht partiell verdauen. Die wiederholt durchgeführte chromatographische Reinigung der DNA führte zu keiner wesentlichen Verbesserung, so dass aus diesen Sandortproben keine Genbank hergestellt werden konnte. Die Ineffizienz bei den

enzymatischen Reaktionen ist wahrscheinlich auf das Vorhandensein von Huminstoffen, die zusammen mit der DNA isoliert wurden, zurückzuführen.

Diese Verunreinigungen waren ein zusätzlicher Grund, Anreicherungkulturen aus der Probe TQIS herzustellen und diese zur DNA-Isolierung zu verwenden. Hierdurch konnte die Huminsäure-Verunreinigung der DNA minimiert werden, und die DNA zur Herstellung einer Genbank genutzt werden (siehe 2.6). Nach 48 Stunden Inkubation in FePP-Medium mit Mannit als C-Quelle unter anaeroben Bedingungen wurde die Probe in frisches FePP-Medium überimpft und inkubiert. Innerhalb von 4 bis 5 Tagen waren am Boden der Anreicherungkultur weiße Fe(II)-Präzipitate sichtbar. Diese Fe(II)-Bildungen sind Vivianit-Kristalle (Fe₃²⁺(PO₄)₂ • 8 H₂O) und deuten auf ein Wachstum von dissimilatorischen Fe(III)-Reduzenten hin. Anschließend wurde aus dieser Anreicherungskultur die Genbank TQISA hergestellt. Die Genbanken WN, FN, NTL und SZB wurden in den vorherigen Arbeiten konstruiert und direkt für die Durchmusterung eingesetzt. Die Anreicherungskulturen aus dem Zuckerrübenboden (ZB), der Wiese in Northeim (WN), dem Sediment der Nieme (NTL) und der Thermalquelle (TQIS) wurden auch zur Isolierung von neuen Fe(III)-Reduzenten eingesetzt. Bei dem isolierten Stamm Izmir Y diente das Zellmaterial als Ausgangsmaterial für die DNA-Isolierung und zur Herstelllung der Genbank (siehe 3.5). Zur Klonierung der Fe(III)-Reduktasegene aus dem Shewanella-Stamm FW1 und dem neuen Isolat Izmir Y wurden repräsentative Genbanken angelegt. Hierbei wurde die DNA nach der Methode von Ausubel et al. (1987) isoliert (siehe 0).

3.2.2 Klonierung der DNA

Bei den Klonierungsarbeiten wurde angestrebt DNA-Fragmente zu erhalten, welche größer als 3 KBp waren. Für die Konstruktion der Genbanken wurde der Vektor pBluescript SK+ und *Escherichia coli* als Wirt ausgewählt. DNA-Fragmente bis zu einer Größe von 10 kBp können in diesen Plasmid kloniert werden, welcher wiederum in *E. coli* in hoher Kopienzahl gebildet werden kann. Die Selektion der transformierten Zellen erfolgt durch das auf dem Vektor kodierte Ampicillin-Resistenzgen (Amp^R). Ein ebenfalls vorhandenes *lacZ*-Gen ermöglichte die Identifizierung von rekombinanten Plasmiden durch den X-Gal-Test (siehe 0). Für die Herstellung der Genbanken wurde die gereinigte Umwelt-DNA, die DNA aus der Anreicherungskultur oder die genomische DNA der einzelnen Isolate partiell verdaut. Um eine gleichmäßige Verteilung aller vorkommenden DNA-Fragmente zu gewährleisten wurde die DNA zeitlimitiert mit dem Restriktionsenzym *Bsp*143I partiell verdaut (siehe 0).

Die DNA-Spaltung wurde dabei in einem Zeitraum von 10 min. durch 6 bis 8 Probennahmen und anschließender Analyse mittels Agarose-Gelelektrophorese (siehe Abbildung 4B) überprüft (siehe 0). Ein erfolgreicher DNA-Verdau war im Agarose-Gel durch einen Schmier unterhalb der unverdauten DNA zu erkennen. Danach wurde die DNA durch Saccharose-Dichtegradientenzentrifugation größenfraktioniert (siehe 0) und anschließend gefällt. Die Größe der erhaltenen DNA-Fragmente wurde ebenfalls mittels Agarose-Gelelektrophorese überprüft (siehe Abbildung 4C). In Abbildung 4A ist die unverdaute chromosomale DNA zu sehen. Die DNA-Fragmente mit einer Größe zwischen 2 und 15 kBp, wurden in den Plasmidvektor pBluescript SK+ kloniert. Nach der Transformation in *E. coli* DH5 α (siehe 0) wurden die Transformanten auf LB-Ampicillin-Agar, der mit X-Gal und IPTG versetzt war, ausplattiert. Die auf diesen Agarplatten gewachsenen Klone wurden von den Platten abgeschwemmt und die Plasmide isoliert. Die Konservierung der so erstellten Genbanken erfolgte bei -20 °C.

Abbildung 4 Isolierung von chromosomaler DNA zur Konstruktion von Metagenombanken

A) Spur 2 und 3: Unverdaute chromosomale DNA; B) Spuren 1 - 8: partiell verdaute Proben Standort-DNA (partieller Verdau bis 10 min., Restriktionsenzym *Bsp*143I); C) Spuren 1-10: DNA-Aliquots ausgewählter Fraktionen nach Auftrennung im Saccharosedichtegradienten. Der Längenstandard ist in den Spuren 1(A), 9(B), 11(C) aufgetragen.

3.2.3 Vergleich der hergestellten Genbanken

Charakterisierung der hergestellten Genbanken wurden Parameter Zur wie die Inserthäufigkeit, die durchschnittliche Insertgröße und die Gesamtzahl der rekombinanten Plasmide bestimmt (siehe Tabelle 5). Die Insertgrößen wurden durch Isolierung (siehe 0) und Restriktionsverdau (siehe 0) von Plasmiden ermittelt. Dazu wurden von jeder Genbank 30 E. coli- Klone in LB-Medium (siehe 2.2.1) angezogen, die Plasmide isoliert und mittels Restriktionsverdau mit verschiedenen Enzymen untersucht. Die Bestimmung des Anteils der Plasmide mit Inserts bzw. die Inserthäufigkeit erfolgte durch den X-Gal-Test (siehe 0). Für diesen Test wurde je Genbank 1 µl Plasmid-DNA in E. coli DH5a transformiert (siehe 0). Die Transformanten wurden anschließend auf LB-Agar, der mit Ampicillin, X-Gal und IPTG versetzt war, ausplattiert. Die Gesamtzahl der abgeschwemmten, Insert-tragenden E. coli-Klone betrug für die Genbank von Stamm Izmir Y 1800, für Shewanella FW1 10000 und für die Genbank von der Anreicherungskultur aus der Probe TQIS 4500. Die Genbank ZRB hatte 60000 Klone. Für den Standort Wiese in Northeim (WN) wurden insgesamt 43200, für die Bodenproben Feld (FN) 72000, für den Standort Zuckerrübenboden (SZB) 192000 und für den Standort Niemetal (NTL) 270000 rekombinante Plasmide bestimmt. Der Anteil der Insert-tragenden Plasmide war je nach Standort sehr unterschiedlich und lag bei 34 bis 85 %. Das größte Insert-Fragment hatte eine Länge von 11,8 kBp, wobei die ermittelten durchschnittlichen Insertgrößen zwischen 3,1-6,8 kBp lagen (siehe Tabelle 5).

Die Genbanken aus den Bodenproben waren für die Durchmusterung auf das Vorhandensein terminaler dissimilatorischer Fe(III) Reduktase-Gene geeignet. Dazu waren im Gegensatz die Genbankgrößen der Stämme Izmir Y und *Shewanella* FW1 sowie die, der Anreicherungskultur für eine erfolgreiche Durchmusterung nicht ausreichend und müssten erweitert werden. Diese Aussage basiert auf eine Berechnung. Die statistische Vollständigkeit einer Genbank wurde mithilfe der in Abbildung 5 dargestellten Formel berechnet (Blattner et al., 1997).

N=
$$\frac{\ln (1-P)}{\ln (1-f)}$$

Abbildung 5 Formel zur Berechnung einer statistisch vollständigen Genbank

N= Zahl der Plasmid-Klone

P= Wahrscheinlichkeit des Vorkommens eines Gens in der Genbank

F= Verhältnis der durchschnittlichen Größe der eingebauten DNA zur Größe des Gesamtgenoms

Als Berechnungsgrundlage diente in Anlehnung an das *E. coli*-Genom eine Größe von 4,7 KBp. Dabei geht die Formel von einer Gengröße von 1 kBp aus. Die durchschnittliche Insertgröße war bei der Genbank von *Shewanella* FW1 6 kBp und bei der Genbank von IzmirY 4,2 kBp. Die Berechnung ergab, dass bei der angelegten Genbank aus *Shewanelle* FW1 23000 Klone und der Genbank aus IzmirY 33000 Klone durchmustert werden mußten, um mit einer 99,99 %igen Wahrscheinlichkeit davon ausgehen zu können, dass das gesuchte Gen innerhalb der Genbank vorlag. Die bereits erhaltenen Klone aus diesen Genbanken waren jedoch niedriger (siehe Tabelle 5) als die erforderliche Mindestanzahl.

Tabelle 5 Eigenschaften der untersuchten Genbanken aus Umweltproben, aus Anreicherungskulturen und den Stämmen.

Der Anteil der Insert-tragenden Plasmide wurde durch den X- Gal-Test bestimmt (siehe 0). Dazu wurde je Genbank 1 μ l Plasmid-DNA in *E. coli* DH5 α transformiert (siehe 0) und die Transformanten wurden auf LB-Agar, der mit Ampicillin, X-Gal und IPTG versetzt war, ausplattiert. Die durchschnittliche Insertgrößen wurden durch Isolierung (siehe 0) und Restriktionsverdau (siehe 0) von 30 Plasmiden ermittelt.

	Genbank Bezeichnung	Anzahl rekombinanter Plasmide	Durchschnittliche Insertgröse [kb]	Inserthäufigkeit [%]
Organismus				
Shewanella FW1	GBFW1	10000	6000	52,3
Isolat Izmir Y	GBIzmirY	1800	4200	64,1
Anreicherungskultur				
Thermalquelle bei Izmr	GBTQIS	4500	3145	34,7
Bodenprobe				
Standort Zuckerrübenboden (Henne, 2000)	SZB	192000	6165	84,6
Wiese in Northeim (Henne, 2000)	WN	43200	4756	69,6
Feld (Henne, 2000)	FN	72000	5345	71,5
Niemetal (Henne, 2000)	NTL	270000	3860	54,6
Zuckerrübenboden	ZRB	60000	4012	49

3.3 Screening der Genbanken auf Gene die für Fe(III)- Reduktasen kodieren

Die Klone der jeweiligen Umweltgenbanken wurden in einem Schnelltestverfahren auf Fe(III)-Reduktase-Aktivität untersucht. Auf diese Weise wurden insgesamt 6 Standortgenbanken durchmustert und ca. 4,0 Millionen rekombinante *E. coli*-Klone getestet. Dabei wurden zunächst 14 Klone mit der Fähigkeit zur Fe(III)-Reduktion unter anaeroben Bedingungen identifiziert. Nach Isolierung und Retransformation der Plasmide zeigten 6 Klone einen stabilen Phänotyp. Die Plasmide wurden mit pDIRO1-06 bezeichnet und anschließend durch Restriktionsverdau charakterisiert. Die erhaltenen Daten sind in Tabelle 6 zusammengefasst.

Das Screening der Genbank des Stammes *Shewanella* FW1 wurde analog zur Durchmusterung der Standortgenbanken durchgeführt. Auf diese Weise wurden 6200 Kolonien auf ihre dissimilatorische Fe(III)-Reduktase-Aktivität durchmustert. Die durchschnittliche Insertgröße der Genbank lag bei 6000 Bp. Keine dieser Klone aus dem Stamm FW1 zeigte allerdings die gewünschte Aktivität.

Tabelle 6 Screening der Genom- und Metagenombanken auf Gene für die dissimilatorische Fe(III)-Reduktion

Das Screening wurde durch Transformation von je 1 µl Plasmid in *E. coli*-Zellen durchgeführt. Die Transformanten wurden bei 30 °C unter anaeroben Bedingungen auf FePP-Minimalmedium (siehe 2.2.2) mit 100 mM Mannitol als C- und Energiequelle inkubiert.

Standort/ Organismus	Zahl der durchmusterten Klone	Zahl der positiven Klone	Zahl der Klone mit einem stabilen Phenotyp
Wiese in Northeim	2250000	6	4 (pDIR01, pDIR02, pDIR04 und pDIR06)
Feld	600000	4	2 (pDIR03 und pDIR05)
Niemetal	620000	-	-
Zuckerrübenboden	500000	3	-
Thermalquelle bei Izmir	4000	-	-
Izmir Y	800	-	-
Shewanella FW1	6200	-	-
	3.981 mio	13	6

3.4 Sequenzierung und molekulare Analyse der Plasmid-Inserts, die eine dissimilatorische Fe(III)-Reduktase Aktivität vermitteln

Die Sequenzierung der DNA erfolgte wie bereits unter 0 beschrieben nach der Methode von Sanger (1977) in beiden Richtungen der Doppelhelix. Die Inserts der rekombinanten Plasmide pDIRO1 bis pDIR06 wurden nach dem Verfahren des "primer walking" durch das "Göttingen Genomics Laboratory" (Institut für Mikrobiologie und Genetik, Universität Göttingen) sequenziert. Es erfolgte zunächst eine Ansequenzierung der betreffenden Genregionen mit Oligonukleotiden, die sich stromabwärts und stromaufwärts der multiplen Klonierungsstelle des verwendeten Vektors pSK⁺ anlagerten. Aus den erhaltenen Sequenzdaten wurden anschliessend neue Oligonukleotide (21mere) abgeleitet, die dann wiederum in der Sequenzierung eingesetzt wurden. Die Inserts der Plasmide pDIR01 bis pDIRO6 wurden vollständig sequenziert. Die erhaltenen Daten aller Plasmide sind in Tabelle 7 zusammengefasst.

Plasmid	Standort	Insertgröße (bp)	GC Gehalt (%)
pDIR01	Wiese in Northeim	1739	63,4
pDIR02	Wiese in Northeim	2749	63,5
pDIR03	Feld	3807	65
pDIR04	Feld	2259	70,5
pDIR05	Wiese in Northeim	3908	64,6
pDIR06	Wiese in Northeim	2493	62,3

Tabelle 7 Übersicht über die Plasmide aus den E. coli- Klonen mit einer Fe(III)-Reduktase-Aktivität

3.4.1 Analyse der Insertsequenz von pDIR01

Die Insertsequenz von pDIR01 umfasst 1739 bp und hat einen GC Gehalt von 65.09 %. Es konnten insgesamt drei ORFs (*orf*01, *orf*01 und *orf*03) identifiziert werden, die für unterschiedliche Proteine kodieren (siehe Tabelle 8). Die genetische Organisation des Inserts von pDIR01 ist in der Abbildung 6 dargestellt.

Tabelle8EigenschaftenderidentifiziertenoffenenLeserahmenunddavonabgeleitetenAminosäuresequenzen aus der Insertsequenz des Plasmids pDIR01

ORF	GC-Gehalt [%]	Genlänge [bp]	Anzahl Aminosäuren	Molekularmasse [Da.]
<i>orf</i> 01	55,8	267	88	9668,2
orf 02	65,41	561	186	20332,4
orf 03	61,73	426	141	15840,9

Zur Identifizierung der DNA-Bereiche, die den rekombinanten *E. coli*-Klonen eine dissimilatorische Fe(III)-Reduktase-Aktivität verleihen, wurden Subklonierungsversuche und anschließende Aktivitätstests im selektiven FePP-Agar Medium mit Mannitol durchgeführt.

Nach einem Verdau mit *PstI* wurden ein 207 bp und ein 973 bp langes Fragment subkloniert. Die so erhaltenen Plasmide wurden mit pDIR0101 und pDIR0102 bezeichnet. Ein 568 bp langes Fragment der Insertsequnez wurde religiert. Der dadurch entstandene Subklon wurde mit pDIR0103 bezeichnet (siehe Abbildung 6).

Abbildung 6 Darstellung der Restriktionskarte des Inserts von pDIR01

Die Position der analysierten ORFs und deren Orientierung sind mit schwarzen Pfeilen dargestellt. Die nach der Subklonierung erhaltenen Plasmide und deren Insertgrößen sind mit pDIR0101, pDIR0102 und pDIR0103 bezeichnet.

Zur Überprüfung des Phänotyps auf eine dissimilatorische Fe(III)-Reduktase-Aktivität wurden diese Plasmide anschließend einzeln in *E. coli* DH5 α transformiert. Die Transformanden wurden auf FePP-Testagar-Platten unter anaeroben Bedingungen inkubiert. Nach acht Tagen zeigte sich in den *E. coli* Stämmen mit pDIR0102 (mit *orf*02), die für eine Fe(III)-Reduktase-Aktivität typische Präzipitation von Vivianit. Die Subklone pDIR0101 (mit einem verkürzten Teil des *orf*01) und pDIR0103 (mit *orf*03) zeigten hingegen auf den anaeroben FePP-Indikatorplatten keine Vivianit-Bildung. Daher wird die Fe(III)-Reduktase-

Aktivität durch das von *orf*02 kodierte Protein verursacht. Jedoch ist zu berücksichtigen, dass sich in dem Subklon pDIR0102 neben *orf*02 noch ein verkürzter Teil des *orf*01 befindet.

Das von *orf*01 kodierte Protein zeigte keine signifikanten Sequenzähnlichkeiten zu bekannten Proteinen aus dieser Datenbank. Das von *orf*02 kodierte Protein zeigte dagegen 32,2 % Identität und 51% Ähnlichkeit zu einem hyphotetischen Protein (YP_825465) aus *Solibacter usitatus* Ellin6076. Das aus *orf*03 abgeleitete Protein zeigte 30,8 % Identität und 53,1 % Ähnlichkeit zu dem 277 AS langen hyphotetischen Protein (YP_590917) aus dem Acidobakterium *Ellin345* welches zu den *Acidobacteria* gehört.

3.4.2 Analyse der Insertsequenz vom pDIR02

Auf dem 2749 bp- großen Insert des Plasmids pDIR02 konnten die ORFs *orf*04, *orf*05, *orf*6, *orf*07 und *orf*08 identifiziert werden. Eigenschaften der identifizierten offenen Leserahmen und deren Genprodukte werden in Tabelle 9 aufgeführt.

Tabelle9EigenschaftenderidentifiziertenoffenenLeserahmenunddavonabgeleitetenAminosäuresequenzen aus der Insertsequenz des Plasmids pDIR02

ORF	GC-Gehalt [%]	Genlänge [bp]	Anzahl Aminosäuren	Molekularmasse [Da.]
orf04	63,23	321	106	11581.2
orf05	63,72	306	101	10915,4
<i>orf</i> 06	59,1	357	118	13235,3
orf07	60,29	204	67	7877,3
orf08	65,75	549	182	19776,9

Zur Identifizierung des Leserahmens, welcher die dissimilatorische Fe(III)- Reduktase Aktivität vermittelt, wurde der Plasmid mit dem Restriktionsenzym *PstI* geschnitten. Die resultierenden 520 bp und 1231 bp-großen Fragmente wurden in einem mit *PstI* geschnittenen pSK⁺ Vektor ligiert. Ein weiteres Fragment, welches den Klonierungsvektor und ein 1007 bp Insert beinhaltete, wurde religiert. Die erhaltenen Plasmide wurden pDIR021, pDIR022 und pDIR023 genannt (siehe Abbildung 7) und in *E. coli* DH5α transformiert. Die erhaltenen rekombinanten Stämme wurden auf FePP-Agar Indikatorplatten mit Mannit als einziger C-Quelle unter anaeroben Bedingungen inkubiert. Der Plasmid pDIR022 vermittelte den *E. coli* Zellen die Fähigkeit mit Fe(III)- dissimilatorisch zu atmen. Bei den Klonen mit pDIR021 und pDIR023 konnte keine Vivianit-Bildung beobachtet werden. Es ist daher wahrscheinlich, dass die dissimilatorische Fe(III)- Fähigkeit durch die von *orf*05, *orf*06 oder *orf*07 kodierten Proteinen verliehen wird.

Abbildung 7 Darstellung der Restriktionskarte des Inserts von pDIR02

Die schwarzen Pfeile zeigen die identifizierten offenen Leserahmen. pDIR021, pDIR022 und pDIR023 sind die durch die Subklonierung entstandenen Plasmide.

Das aus *orf*04 abgeleitete 106 Aminosäuren langes Protein zeigte bei einem Sequenzabgleich mit der NCBI Datenbank keine signifikante Verwandtschaft zu bekannten Proteinen.

In dem NCBI-Datenbankabgleich zeigte das aus *orf*05 abgeleitete Protein zu dem KU-Domänen-Protein aus *Caulobacter sp.* K31 (NCBI-Accession:YP_001683400.1), in einem Bereich von 74 Aminosäuren eine Ähnlichkeit von 68,9% und eine Identität von 45,9%. Die sich in mehreren archaeellen und bakteriellen Genomen befindenden KU-Domänen-Proteine sind Homologe des eukaryotischen DNA-Binde-Proteins KU. Diese Proteine sind in erster Linie an der Reparatur von DNA- Doppelstrangbrüchen beteiligt (Aravind & Koonin, 2001).

Das Genprodukt von *orf*06 zeigte bei der Strukturanalyse die Eigenschaften eines cytoplasmatischen Proteins. Beim NCBI-Datenbankabgleich konnte keine signifikante Verwandschaft zu bekannten Proteinen festgestelllt werden.

Der *orf*07 kodiert für ein intrazelluläres Protein, das über einen 60 AS langen Bereich eine 51,7%ige Identität und eine 71,7%ige Ähnlichkeit zu dem 50S-ribosomalen Protein L29 aus *Thermoanaerobacter tengcongensis* MB4 (NP_623823.1) besitzt.

Das aus *orf*08 abgeleitete Protein zeigte beim NCBI-Datenbankabgleich eine Verwandtschaft zu dem 50S-ribosomal L14 Protein von *Corynebacterium efficiens* YS-314 (NP_737143). Beide Proteine zeigten über einen 122 AS langen Bereich eine 76,2%ige Ähnlichkeit und 86,1%ige Identität.

3.4.3 Analyse der Insertsequenz vom pDIR03

Das Plasmid pDIR03 umfasste mit 3807 bp eines der größeren Inserts der identifizierten rekombinanten Plasmide. Die auf der Insertsequenz identifizierten ORFs wurden mit *orf*09, *orf*10 und *orf*11 bezeichnet (siehe Abbildung 8).

Durch Subklonierung und anschließende Bestimmung der dissimilatorischen Fe(III)-Reduktase-Aktivität konnten die identifizierten ORFs näher untersucht werden. Hierbei wurde das Plasmid pDIR03 mit *SmaI* verdaut. Da sich eine *SmaI*-Schnittstelle in der multiplen Klonierungsstelle und zwei weitere auf der Insertsequenz des pDIR03 befanden, konnten aus dem 3807 bp langem Insert zwei Fragmente erhalten werden (siehe Abbildung 10). Diese 602 bp und 1194 bp großen *Smal*-Fragmente wurden in einen entsprechend geschnittenen Vektor (pSK^+) ligiert. Die resultierenden Plasmide wurden pDIR0301 und pDIR0302 benannt. Der restliche 2014 bp lange Teil des Inserts des Plasmids pDIR03 wurde religiert und ergab den Plasmid pDIR0303 (siehe Abbildung 8). Die Plasmide pDIR0301, pDIR0302 und pDIR0303 wurden anschließend in *E. coli* DH5 α -Stämme transformiert. Die erhaltenen Klone wurden auf der FePP-Agar-Indikatorplatte mit Mannitol als einziger Kohlenstoff- und Energiequelle, auf Fe(III)-Reduktase-Aktivität getestet. Keine der rekombinanten Stämme zeigte ein Wachstum und somit auch die ursprüngliche dissimilatorische Fe(III)-Reduktase-Aktivität, die durch den Plasmid pDIR03 verursacht wurde. Höchstwahrscheinlich werden daher mehrere ORFs für die Fe(III)-Reduktion benötigt.

Abbildung 8 Darstellung der Restriktionskarte des Inserts von pDIR03

Die Position der näher analysierten ORFs wurden jeweils in deren Orientierung durch einen Pfeil wiedergegeben. Die nach den Subklonierungsversuchen erhaltenen Plasmide pDIR0301, pDIR0302 und pDIR0303 wurden jeweils mit deren entsprechender Insertlänge wiedergegeben.

Die Eigenschaften der identifizierten ORFs und den aus ihnen abgeleiteten Proteinen wurden in der Tabelle 10 zusammengefasst.

Tabelle	10	Eigenschaften	der	identifizierten	offenen	Leserahmen	und	davon	abgeleiteten
Aminosä	urese	quenzen aus der	Inser	tsequenz des Pla	smids pD	IR03			

ORF	GC-Gehalt [%]	Genlänge [bp]	Anzahl Aminosäuren	Molekularmasse [Da.]
orf 09	64,17	1002	333	36304
<i>orf</i> 10	66,8	711	236	24911
orf 11	66,34	921	306	32553

Die aus *orf*09 abgeleitete Aminosäuresequenz zeigte beim Abgleich mit den Proteinsequenzen aus der NCBI-Datenbank die größte Ähnlichkeit zu einem membrangebundenden Dehydrogenase-Domänen-Protein (ZP_02967853.1) aus dem Isolat Ellin514. Dieser Stamm gehört zu der Familie *Verrucomicrobia* und ist unter anderem mit den Namen

Chthoniobacter flavus Ellin514 und *Pedosphaera parvula* Ellin514 bekannt. Dabei zeigten beide Proteine über einen Bereich von 275 Aminosäuren 64,7 % Ähnlichkeit und 45,8% Identität.

Das Genprodukt von *orf*09 zeigte bei den strukturellen Sequenzanalysen einen transmembranen Bereich (zwischen den Aminosäuren 278-295) und ein TAT-Signalpeptid. Im Vergleich zu dem TAT-segretierten transmembranen Protein des *orf*09 zeigte das membrangebundene Dehydrogenase-Domänen-Protein (ZP_02967853) aus dem Isolat Ellin514 mehrere transmembrane Bereiche und ein Signalpeptid für Gram-negative Mikroorganismen, jedoch kein TAT-Signalpeptid.

Bei dem Abgleich mit der NCBI-Datenbank konnte ebenso eine Verwandtschaft zu dem Klasse I Cytochrom C (ZP_01776633.1) aus dem dissimilatorisch Fe(III)-reduzierenden Organismus *Geobacter bemidjiensis* Bem(Ähnlichkeit: 51,2 % ; Identität: 28,4 %) in einem 88 AS langen Bereich identifiziert werden.

Die aus *orf*10 abgeleitete Aminosäuresequenz zeigte in dem NCBI-Datenbankabgleich zu dem lipolytischem Protein der G-D-S-L Familie aus dem Isolat Ellin514 (ZP_02968915.1) in einem 165 AS langen Bereich 47,9% Ähnlichkeit und 38,2% Identität.

Es ist davon auszugehen, dass der Umweltorganismus, aus dem die in dem Screeningverfahren eingesetzte DNA stammt, in näherer Verwandtschaft zu einem *Verrucomicrobia* steht, da die Proteinprodukte von *orf*09 und *orf*10 die höchste Ähnlichkeit und Identität zu Proteinen aus dem Isolat Ellin514 zeigen.

Das aus dem *orf***11** abgeleitete Protein zeigte beim Vergleich mit den Proteinsequenzen aus der NCBI-Datenbank keine Ähnlichkeit zu bekannten Proteinen.

3.4.4 Analyse der Insertsequenz von pDIR04

Auf dem 2259 bp langen Insert des Plasmids pDIR04 konnte ein ORF identifiziert werden, der mit *orf*12 bezeichnet wurde (siehe Abbildung 9). Das aus dem 1458 bp langem *orf*12 (GC-Wert 72,01%) abgeleitete Protein ist 485 Aminosäuren lang und hat eine Molekularmasse von 52,4 kDa. Die Aminosäuresequenz des Proteins zeigte beim Vergleich mit den Proteinsequenzen aus der NCBI-Datenbank keine signifikante Verwandtschaft zu bekannten Proteinen.

Abbildung 9 Darstellung der Insertsequenz von pDIR04

Der identifizierte ORF, orf12, wurde in dessen Orientierung durch einen Pfeil markiert.

3.4.5 Analyse der Insertsequenz von pDIR05

Auf der Insertsequenz des Plasmids pDIR05 (3908 bp) konnten vier offene Leserahmen identifiziert werden, die als *orf*13, *orf*14, *orf*15 und *orf*16 bezeichnet wurden (siehe Abbildung 10).

Abbildung 10 Darstellung der Insertsequenz von pDIR05

Die identifizierten ORFs, orf13, orf14, orf15 und orf16, wurden jeweils in deren Orientierung durch einen Pfeil markiert.

Die allgemeinen Eigenschaften, der aus den identifizierten ORFs abgeleiteten Proteine, sind in Tabelle 11 aufgeführt.

Tabelle	11	Eigenschaften	der	identifizierten	offenen	Leserahmen	und	davon	abgeleiteten
Aminosä	urese	equenzen aus der	· Inser	rtsequenz des Pla	asmids pD	IR05			

ORF	GC-Gehalt [%]	Genlänge [bp]	Anzahl Aminosäuren	Molekularmasse [Da.]
orf 13	63,54	609	202	22163,38
orf 14	66,89	444	147	15384,43
orf 15	66,29	801	266	28787,19
orf 16	67,06	1002	333	35884,05

*Orf*13 kodiert für ein Protein, das im NCBI- Datenbankabgleich eine Verwandtschaft zu dem membrangebundenen Dehydrogenase-Domänen-Protein (ZP_02967853) aus dem Isolat Ellin514 aufwies. Dabei zeigten beide Proteine über einen 202 AS langen Bereich 63,9 % ähnliche und 41,6% identische Aminosäuren. Das Genprodukt von *orf*13 zeigte eine entfernte Verwandtschaft zu dem Cytochrom C- ähnlichen Protein (ZP_01090688) aus *Blastopirellula marina* DSM 3645 (Ähnlichkeit: 41,7%; Identität: 25,7%; 218 AS langer Bereich). Die aus *orf*15 abgeleitete Aminosäuresequenz zeigte in dem NCBI-Datenbankabgleich zu dem lipolytischen Protein der G-D-S-L Familie aus dem Isolat Ellin514 (ZP_02968915) in einem 213 AS langen Bereich eine 63,8%ige Ähnlichkeit und eine 48,8%ige Identität. Die aus *orf*14 und orf16 abgeleiteten Aminosäuresequenzen zeigten bei dem NCBI-Datenbankabgleich keine Verwandtschaft zu bekannten Sequenzen.

3.4.6 Analyse der Insertsequenz von pDIR06

Auf der 2493 bp langen Insertsequenz des Plasmids pDIR06 konnten drei ORFs identifiziert werden, die als *orf*17, *orf*18 und *orf*19 bezeichnet wurden (siehe Abbildung 11).

Abbildung 11 Darstellung der Insertsequenz von pDIR06

Die identifizierten ORFs, orf17, orf18 und orf19, wurden jeweils in deren Orientierung durch einen Pfeil markiert.

Die Eigenschaften der ORFs und der daraus abgeleiteten Proteine sind in der Tabelle 12 zusammengefasst.

Tabelle12EigenschaftenderidentifiziertenoffenenLeserahmenunddavonabgeleitetenAminosäuresequenzen aus der Insertsequenz des Plasmids pDIR06

		Anzani Aminosaut	en Molekularmasse [Da.]
orf 17 63,61	459	152	16884,3
orf18 65,77	675	224	24734
orf 19 66,66	594	197	20866,6

Der Abgleich des aus dem *orf*17 abgeleiteten Proteins mit bekannten Proteinsequenzen aus anderen Organismen ergab über einen 107 Aminosäure langen Bereich eine Ähnlichkeit von 57% und eine Identität von 39,3% zu einer Acetyl-CoA-Carboxylase, ein Biotin-Carboxyl-transportierendes Protein (YP_748097) aus *Nitrosomonas eutropha* C9. Die Acetyl-CoA-Carboxylase befindet sich in allen Pflanzen, Tieren und Bakterien, und katalysiert den ersten Schritt der Fettsäuresynthese. Das Mehrkomponenten-Enzym beinhaltet eine Biotin-Carboxyl-Transport-Protein (Waldrop et al., 1994).

Die aus orf18 abgeleitete Aminosäuresequenz zeigte im NCBI-Datenbankabgleich über einen 121 AS langen Bereich, eine 49,6%ige Ähnlichkeit und eine 35,5%ige Identität mit der Peptidase M24 (YP_001738937) *aus Thermotoga sp.* RQ2. Peptidasen oder Proteasen katalysieren die Hydrolyse von Peptid-Bindungen und sind, unabhängig von der Komplexität der Organismen, für jede einzelne Zelle essentiell (Potempa & Pike, 2005).

Im Vergleich zu den Genprodukten aus orf17 und orf18, zeigte die Aminosäuresequenz des aus *orf*19 abgeleiteten Proteins keine signifikante Verwandtschaft zu bekannten Proteinen.

3.4.7 Zusammenfassung der Eigenschaften der identifizierten ORFs

In der Tabelle 13 wurden die identifizierten ORFs der Inserts von pDIR01, pDIR02, pDIR03, pDIR04, pDIR05 und pDIR06 mit ihren nächsten verwandten Proteinen aus der NCBI-Datenbank aufgeführt. Die Bestimmung der Sequenzähnlichkeiten und Sequenzidentitäten (in %) wurde mit Hilfe des BestFit Programmes des GCG-Pakets durchgeführt (Senger et al., 1998). Ferner befinden sich in dieser Tabelle die Ergebnisse der Analyse indem die Genprodukte mit Daten der "Conserved Domäin Database, CDD" abgeglichen wurden. Tabelle 13 Annotation der auf den Plasmiden pDIR01, pDIR02, pDIR03, pDIR04, pDIR05 und pDIR06 identifizierten Gene (Ähnlichkeiten zu bekannten Proteinen und deren Accession-Nummer sind angegeben)

Gen	Annotation	Verwandte Proteinsequenz	Organismus	ldentität (%)	Ähnlichkeit (%)	Accession
orf01	Hypothetisches Protein	keine signifikanten Übereinstimmungen	_	_	_	_
orf02	Hypothetisches Protein	Hypothetisches Protein Acid_4216	Solibacter usitatus Ellin6076	32,2	51	YP_825465
orf03	Hypothetisches Protein	Hypothetisches Protein Acid345_1842	Acidobakterium Ellin345	30,8	53,1	YP_590917
orf04	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	_	_	_
orf05	Ku Protein	Ku Protein	Caulobacter sp. K31	45,9	68,9	YP_001683400
orf06	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	-	-	-
orf07	50S ribosomales Protein L29	50S ribosomales Protein L29	Thermoanaerobacter tengcongensis MB4	51,7	71,7	NP_623823
orf08	50S ribosomales Protein L14	50S ribosomales Protein L14	Corynebacterium efficiens YS-314	86,1	76,2	NP_737143
orf09	Membrangebundenes Dehydrogenase-Domänen-Protein	Membrangebundenes Dehydrogenase- Domänen-Protein	Isolat Ellin514	45,8	64,7	ZP_02967853
	Klasse I Cytochrom C	Klasse I Cytochrom C	<i>Geobacter bemidjiensis</i> Bem	28,4	51,2	ZP_01776633
orf10	Lipolytisches Protein der G-D-S-L Familie	Lipolytisches Protein der G-D-S-L Familie	Isolat Ellin514	38,2	47,9	ZP_02968915
orf 11	Hypothetisches Protein	keine signifikanten Übereinstimmungen		-	-	_

49

Fortsetzung Tabelle 13

Gen	Annotation	Verwandte Proteinsequenz	Organismus	ldentität (%)	Ähnlichkeit (%)	Accession
orf 12	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	-	_	-
orf 13	Membran-gebundenes Dehydrogenase- Domänen-Protein	Membran-gebundenes Dehydrogenase- Domänen-Protein	Isolat Ellin514	41,6	63,9	ZP_02967853
	Cytochrom C-ähnliches Protein	Cytochrom C-ähnliches Protein	Blastopirellula marina DSM 3645	25,7	41,7	ZP_01090688
orf 14	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	-	-	-
orf 15	Lipolytisches Protein der G-D-S-L Familie	Lipolytisches Protein der G-D-S-L Familie	Isolat Ellin514	48,8	63,8	ZP_02968915
orf16	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	-		-
orf 17	Acetyl-CoA-Carboxylase, Biotin- Carboxyl-transportierendes Protein	Acetyl-CoA-Carboxylase, Biotin-Carboxyl- transportierendes Protein	Nitrosomonas eutropha C91	39,3	57	YP_748097
orf 18	Peptidase M24	Peptidase M24	Thermotoga sp. RQ2	35,5	49,6	YP_001738937
orf 19	Hypothetisches Protein	keine signifikanten Übereinstimmungen	-	-	_	-

3.5 Isolierung von dissimilatorisch Fe(III)-reduzierenden Bakterien

3.5.1 Fe(III)- reduzierende Stämme in den Anreicherungskulturen

Für die Isolierung eines Fe(III)-reduzierenden Bakteriums wurde von anaeroben Anreicherungen einer Probe (Sediment-Quellwasser Mixtur) aus einer Thermalquelle in Izmir, Türkei (TQIS), aus Sedimentenproben von Zuckerrübenboden (ZB), einer Wiese in Northeim (WN) und dem Nieme Flussufer bei Göttingen (NTL) ausgegangen. Zu diesem Zweck wurden jeweils 50 g der jeweiligen Probe mit 500 ml Minimal-Medium (Fe-PP-Medium, 0) überschichtet, welches je 50 mM Mannitol als einzige Kohlenstoff- und Energiequelle enthielt. Die Kulturen wurden nach 20 Minuten Durchgasung mit N₂ unter anaeroben Bedingungen, in einen Schüttler bei 30° C und 37 °C inkubiert. Nach 24 h wurden die Proben pelletiert, mit frischem anaeroben Medium überschichtet und bis zur Vivianit-Bildung weiter inkubiert.

Die Anreicherung der dissimilatorisch Fe(III)-reduzierenden Organismen konnte durch eine leichte Trübung des Mediums verfolgt werden. Die Anreicherungskulturen WN und TQIS wiesen in den anaeroben Kolben nach ca. 3-4 Tagen eine dissimilatorische Fe(III)-Reduktion auf, welche durch eine Vivianit-Bildung erkennbar war. Sobald ein Wachstum zu verzeichnen war, wurden diese Anreicherungskulturen durch wiederholtes Überimpfen in frisches FePP-Medium weiter gereinigt. Die Anreicherungskulturen aus den Proben ZB und NTL zeigten in diesem Zeitraum weder bei 30 °C noch bei 37 °C eine sichtbare Vivianit-Bildung.

Die Mikroorganismen aus der bei 30 °C inkubierten Anreicherungskultur TQIS wurden durch Elektronenmikroskopie (EM) näher untersucht. Dabei konnte eine hohe Zahl an unterschiedlichen Zell-Formen beobachtet werden. In Abbildung 12 sind die Zelltypen abgebildet, die am häufigsten vorkamen. Die Zellen mit einer deformierten birnenähnlichen Form standen untereinander mittels Flagellen in Kontakt. Neben spirillenförmigen Zellen konnten lange Stäbchen mit und ohne Flagellen beobachtet werden. Ferner konnten Pili-Strukturen beobachtet werden. In den Abschnitten IA und IB der Abbildung 13 sind Pili-Strukturen zu sehen, die sich scheinbar an Eisen-ähnliche Moleküle angeheftet haben. Diese Moleküle könnten, durch die Reduktion des löslichen Fe(III)-PP entstandene, Vivianit-Kristalle sein. Im Abschnitt II ist eine Zelle mit einer eventuellen intrazellulären Fe(II)-Häufung und einer Flagelle (links auf dem Bild) zu sehen. In Abschnitt III ist eine Zelle mit Flagellen zu sehen.

Abbildung 12 Elektronenmikroskopische Aufnahmen der in der Anreicherungskultur TQIS vorkommenden Zellformen

Zellen mit einer birnenähnlichen Form (I); spirillenförmige Zellen (II); stäbchenförmige Zellen mit (IV) und ohne Flagellen (III).

Abbildung 13 Elektronenmikroskopische Aufnahmen einer möglichen Eisen-Anhaftung der Zellen in der Anreicherungskultur TQIS

Eine eventuelle Eisen-Anhäufung an den Flagellen (durch Pfeile markiert) ist in IA und IB zu sehen; in der Abbildung II befindet sich eine Zelle mit einer intrazellulären Anhäufung (auf der rechten Seite des Bildes), auf den Flaggellen der selben Zelle befinden sich jedoch keine Anhäufungen; in der Abbildung III befindet sich eine Zelle mit Flaggelen.

In Abschnitt I (Abbildung 14) ist ein Bakterium abgebildet, das an ein entfernt liegendes Makromolekül mittels seiner Flagellen angeheftet ist. In den Abschnitten I, IIa und III ist eine direkte Anbindung der Zellen an Anhäufungen zu sehen, welche ein Metall bzw. Fe(II) sein könnten. In den Abschnitten IV ist die Zelle in eine matrixähnliche Struktur eingebettet. Abschnitt IIb zeigt ebenfalls eine ähnliche Struktur, die sich in einem Teilbereich einer Zelle befindet. In Abschnitt V ist eine Zelle zu sehen, die ohne direkten Konntakt in Verbindung mit einer nicht definierbaren Struktur steht.

Abbildung 14 Elektronenmikroskopische Aufnahmen der makromolekularen Anhäufungen an den Zellen in der Anreicherungskultur TQIS

Indirekte Anbindung der Zellen an Makromoleküle (I), (V); direkte Anbindung an Makromoleküle (III), (II); Einbettung der Zellen in makromolekulare Strukturen (IV), (IIb); Flagellen sind durch Pfeile gekennzeichnet.

3.5.2 Isolierung und Charakterisierung der Fe(III)-reduzierenden Bakterien aus der Thermalquelle bei Izmir

Zur Isolierung von Reinkulturen wurde wie in 0 beschrieben vorgegangen. Ausgehend von der Anreicherungskultur wurden Verdünnungsreihen vorbereitet und diese in Hungate-Röhrchen mit Fe-PP-Agarmedium inkubiert. Nach 4-tägiger Inkubation bei 30° C waren vereinzelte Kolonien in der TQIS-Anreicherungskultur erkennbar. Die Fe(II)-Produzenten waren anhand einer Vivianit-Bildung zu erkennen. Diese reduzierte Eisenform (Vivianit) vergrößerte sich kugelförmig. Die Einzelkolonien wurden unter anaeroben Bedingungen mit einer Pasteur-Pipette aus den Röhrchen entnommen. Nach mehreren Vereinzelungsausstrichen unter anaeroben Bedingungen konnten so Reinkulturen von Fe(III)-reduzierenden Mikroorganismen erhalten werden. Bei der Anreicherung aus den Verdünnungsreihen der WN- Proben, konnten keine Zellen im Hungate-Röhrchen mit Fe-PP Agarmedium isoliert werden.

Während von den Anreicherungskulturen WN keine Einzelkolonie isoliert werden konnte, gelang es, aus der vorhandenen Anreicherungskultur TQIS insgesamt 5 verschiedene Stämme zu isolieren. Diese Stämme wurden im Folgenden als Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y bezeichnet.

Anders als die Stämme Izmir A, B, C und D, wurde Stamm Izmir Y nicht direkt aus Verdünnungsreihen der Anreicherungskultur TQIS, sondern aus FePP-Agarplatten, die direkt mit der Anreicherungskultur TQIS beimpft wurden, isoliert. Letztere zeigten eine besondere Kolonieform. Diese Kolonien hatten eine kugelähnliche Form, an deren Oberfläche Vivianit ausgefallen war. Dies wurde durch eine Ferrozinfärbung bestätigt (siehe Abbildung 15).

Abbildung 15 Kugel-ähnliche Kolonien mit Vivianit-Bildung des Stammes Izmir Y

Die Übertragung dieser Kolonien auf neue FePP-Platten erzeugte ebenfalls die gleiche Kolonieform. Die 16S-rDNA-Analyse (siehe 0) dieser Kolonien zeigte, dass diese aus einer heterogenen bakteriellen Gemeinschaft entstanden. Zur Isolation von Reinkulturen wurden aus diesen Kolonien Verdünnungsreihen hergestellt. Dazu wurden jeweils 4 bis 5 der Kolonien aus den FePP-Agarplatten unter anaeroben Bedingungen entnommen und in einem Hungate-Röhrchen mit FePP-Flüssigmedium dispensiert. Dieses Gemisch diente zur Herstellung der Verdünnungsreihen. Die Verdünnungsreihen, die mit Fe-PP-Agarmedium inkubiert wurden, führten wie in 0 beschrieben zur Isolation des Stammes Izmir Y.

3.5.2.1 Aggregatbildung bei den Isolaten aus Izmir

Während des Wachstums im anaeroben FePP-Flüssigmedium mit Mannitol als einziger C-Quelle zeigten die Isolate Izmir A, Izmir B, Izmir C und Izmir D in den Hungate-Röhrchen eine Aggregatbildung (siehe Abbildung 16). Die am Anfang homogen grüne Farbe des FePP- Mediums teilte sich in eine farblose und eine grüne Phase. Die Zellaggregate befanden sich dabei im unteren Teil der Hungate-Röhrchen und hatten eine grüne Matrix-ähnliche Struktur, welche vom restlichen farblosen Mineralmedium umgeben war. Die unter Schütteln durchgeführte Inkubation im anaeroben FePP-Medium hatte keinen Einfluß auf die Aggregatbildung.

Abbildung 16 Wachstum der isolierten Fe-reduzierenden Stämme im FePP-Medium unter anaeroben Bedingungen.

A) Aufnahme nach der Inokulation; B) Wachstum und Aggregate; C) Zellaggregate am Boden der Hungate-Röhrchen; D) Vivianit-Anhäufung

Mit fortschreitender Inkubationszeit änderte sich die Farbe des Zellaggregats von grün zu weiß. Am Ende der Inkubation war nur noch das Fe(II)-Präzipitat Vivianit am Boden des Hungates sichtbar, was sich mittels der Ferrozin-Färbung bestätigen ließ (siehe 2.8.4). Bei dem Stamm Izmir Y hingegen fand die Vivianit-Bildung in flüssigen Kulturen ohne eine Aggregatbildung statt.

Ferner wurden die Fe(III)-reduzierenden Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y auf Beweglichkeit, Zelldichte, Fe(II)-Bildung, Zellform und Sporen-ähnliche Einschlüsse hin untersucht. Keiner der Stämme zeigte sporenähnliche Einschlüsse.Es konnte festgestellt werden, dass die Stämme Izmir A, Izmir B, Izmir C und Izmir D Stäbchen sind. Der isolierte Stamm Y zeigte dagegen einen kokkoiden Zelltyp. Die Zellen vom Stamm Izmir Y zeigten keine Beweglichkeit, wobei alle anderen Isolate beweglich waren.

Bei mikroskopischen Untersuchungen der in Hungate-Röhrchen wachsenden Kulturen von Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurden polymerähnliche Strukturen beobachtet. Nach dem ersten Inkubationstag war ein Zellwachstum zu beobachten, was durch die Trübung des FePP-Mediums zu erkennen war. Ferner konnte durch den Ferrozintest die Bildung von Fe(II) bestätigt werden. In dieser Phase konnten keine polymerähnlichen Strukturen beobachtet werden. Alle Zellen außer Izmir Y zeigten ab dem 3. Wachstumstag eine Polymerbildung. Eine hohe Zahl der Zellen war in einer polymerähnlichen Struktur eingebettet, wobei auch einige frei schwimmende Zellen zu beobachten waren. Am 7. Tag der Inkubation bei 30 °C veränderte sich die Farbe des Mediums von grün zu weiß. Daher kann davon ausgegangen werden, dass das gesamte Fe(III) zu Vivianit reduziert wurde. In dieser Phase waren im mikroskopischen Bild nur noch weiße Flocken zu erkennen, wobei die Polymerstrukturen verschwunden waren.

Der Stamm Izmir Y bildete unter anaeroben Bedingungen auf FePP-Agar-Platten, mit Mannitol als einzige C-Quelle, eine außergewöhnliche Kolonieform. In der von Stamm Izmir Y gebildeten kugellähnlichen Kolonie konnte auf der Oberfläche eine Ansammlung von weißen Strukturen beobachtet werden. Der Ferrrozintest zeigte, dass es sich bei diesen Substanzen um ein Fe(II)-Präzipitat handelte. Bei der Aerobisierung der Petrischalen änderte sich die Farbe dieser Strukturen von weiß auf grün. Dies deutet auf eine Reoxidierung des Fe(II) hin.

3.5.2.2 Untersuchung der Isolate zur Chemotaxis

Die Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurden auf ihre chemotaktischen Eigenschaften gegenüber Fe(III)-Pyrophosphat, Fe(III)-Citrat und Fe-Oxid unter anaeroben Bedingungen untersucht.

Dazu wurde die "Chemical-in-Plate"-Methode (Tso & Adler, 1974) in einer modifizierten Form verwendet. Es wurden 20 ml Chemotaxis-Medium mit 3% Agar vermischt und mit der entsprechenden Fe(III)-Quelle (siehe oben) in Petrischalen gegossen. Nach Aushärtung des Agars wurden 6 Löcher mit einem Durchmesser von 10 mm in das Testmedium gestanzt. Die zu testenden Bakterien (Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y) wurden in 5-ml FePP-Medium anaerob gezogen. Bei einer optischen Dichte von 0.6 bis 0.8 wurden diese Zellen pelletiert. Die Bakterienpellets wurden mit Chemotaxismedium (0.3% Agar und 0.5 MM Mannitol) bis zu einer optischen Dichte von 0.06 verdünnt und in die ausgestanzten Löcher gefüllt. Keiner der untersuchten Stämme zeigte jedoch eine Bewegung hin zu Fe(III)-Citrat, FePP und Fe(III)-Oxid.

3.5.2.3 Empfindlichkeit der neu isolierten Stämme gegen überverschiedenen Antibiotika

Die Isolate Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurden auf ihre Antibiotikaresistenzen hin untersucht (siehe Tabelle 14). Es ergab sich, dass alle Stämme außer Stamm Izmir B gegen "Bacitracin" resistent sind. Izmir Y war der einzige Stamm der eine Resistenz gegenüber Neomycin (50 μ g/ml) zeigte. Gegenüber Penicillin G zeigten die Stämme Izmir D und Izmir A die höchste Resistenz, wobei die Stämme Izmir C und Izmir Y die höchste Empfindlichkeit zeigten. Die minimale inhibitorische Konzentration bei Stamm Izmir B betrug 150 μ g/ml. Die Stämme Izmir A, B und D waren gegenüber einer Streptomycin-Konzentration von 50 μ g/ml resistent, höhere Konzentrationen hatten wachstumshemmende Wirkung. Kanamycin wirkte bei den Stämmen Izmir D, Izmir B, Izmir A und Izmir Y ab einer Konzentration von 25 μ g/ml, bei dem Stamm Izmir C ab 50 μ g/ml wachstumshemmend. Stamm Izmir D war gegenüber Ampicilin ab einer Konzentration von 25 μ g/ml empfindlich.

	Ampicilin	Chloramphenicol	Tetracyclin	Kanamycin	Neomycin	Bacitracin	Penicillin G	Streptomycin
Izmir C	-	50 µg/ml	-	50 µg/ml	-	+	-	-
Izmir D	25 µg/ml	50 µg/ml	-	25 µg/ml	-	+	+	50 µg/ml
Izmir A	+	-	-	25 µg/ml	-	+	+	50 µg/ml
Izmir B	+	50 µg/ml	-	25 µg/ml	-	-	150 µg/ml	50 µg/ml
Izmir Y	-	-	-	25 μg/ml	50 µg/ml	+	-	-

Tabelle 14 Wachstum der Isolate bei Zugabe von Antibiotika

-: Empfindlich gegenüber einer minimalen Antibiotika-Konzentration von 12,5 µg/ml

+: Antibiotika-resistent, Wachstum bei einer maximalen Antibiotika-Konzentration von 250 μ g/ml

Alle Werte geben die minimale wachstumshemmende Antibiotika-Konzentration an.

3.5.2.4 Substratspektrum der dissimilatorische Fe(III)-reduzierenden Isolate

Aus Anreicherungskulturen einer Bodenprobe einer Thermalquelle in Izmir konnten unterschiedliche dissimilatorisch Fe(III)-reduzierende Stämme isoliert werden. Um das Substratspektrum der neuen Isolate zu bestimmen, wurde die Verwertung von verschiedenen C-Quellen in dem FePP-Medium unter anaeroben Bedingungen getestet. Einige Stämme konnten die Oxidation der C- Quellen mit der Fe(III)-Reduktion koppeln und vollständig reduzieren. Die Ergebnisse der Wachstumsversuche sind in Tabelle 15 dargestellt. Mannitol, Fruktose und Xylose konnten von allen Stämmen unter Fe(III)-Reduktion oxidiert werden. Methan, Chitin und Cellobiose konnten gar nicht, andere Substrate wie Saccharose, Laktose und Benzol nur von einem Teil der Stämme umgesetzt werden. Weiterhin wurde die anaerobe Oxidation verschiedener Aminosäuren (5 M, Anfangskonzentration) mit Fe(III) als terminalen Elektronenakzeptor untersucht. Die Ergebnisse sind in Tabelle 16 wiedergegeben. Ferner wurde die Atmungsvielfalt der Isolate untersucht. Allgemein zeichnen sich Mikroorganismen durch eine Vielfalt von terminalen Oxidasen aus, die die Elektronen aus dem Abbau von Kohlenstoffquellen außer mit O₂ auch auf andere Elektronenakzeptoren übertragen können.

	Fe(III)- atmendes Isolat						
C- Quelle	Izmir C	Izmir A	Izmir D	Izmir B	Izmir Y		
Mannitol	+	+	+	+	+		
Saccharose	-	-	+	-	+		
Fruktose	+	+	+	+	+		
Raffinose	-	-	-	-	-		
Maltose	+	+	+	+	+		
Dextran	-	-	-	-	-		
Xylose	+	+	+	+	+		
Lactose	+	-	+	-	+		
Arabinose	+	-	+	+	+		
Methan	-	-	-	-	-		
Toluol	+	+	-	-	-		
Benzol	+	+	-	-	-		
Chitin	-	-	-	-	-		
Cellobiose	-	-	-	-	-		
Succinat	+	+	-	-	-		
Citrat	-	-	-	-	-		
Glycerin	+	+	-	+	+		
Uracil	-	+	+	-	-		

Tabelle 15 Anaerobes Wachstum der Isolate Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y auf verschiedenen C-Quellen mit Fe(III) als terminalen Elektronenakzeptor

+: Vollständige Reduktion des Fe(III), Vivianit-Bildung

-: Keine Fe(III)- Reduktion unter anaeroben Bedingungen

nb.: nicht bestimmt

Um diesbezügliche Fähigkeiten der einzelnen Isolate aus Izmir zu bestimmen, wurden diese zusätzlich auf Mineralmedien mit Sulfit, Sulfat, Nitrat, Nitrit, kristallinem Fe(III)-Oxid und Fe(III)-Citrat als einzige Elektronenakzeptoren angezogen. Hefeextrakt, Pepton, Mannit und Wasserstoff dienten als Elektronendonoren (siehe Tabelle 17).

Tabelle 16 Dissimilatorische Fe(III)-Reduktion der isolierten Stämme mit verschiedenen Aminosäuren als einzigen C-Quellen

_	Bezeichnung des Isolates							
C-Quelle	Izmir C	Izmir A	Izmir D	Izmir B	Izmir Y			
L-Histidin	-	-	-	-	-			
L-Lysin	-	-	-	-	-			
L-Cystein	+	+	+	+	+			
L-Glycin	-	-	-	-	-			
L-Asparagin	-	-	-	-	-			
L-Prolin	-	-	-	-	-			
L-Valin	-	-	-	-	-			
L-Serin	-	+	-	-	-			
L-Glutaminsäure	+	-	-	-	-			
L-Phenylalanin	+	-	-	-	-			
L-Leucin	+	-	-	-	-			
L-Arginin	-	-	-	-	-			

+: Vollständige Reduktion des Fe(III), Vivianit-Bildung

-: Keine Fe(III)- Reduktion unter anaeroben Bedingungen

In Tabelle 17 ist zu erkennen, dass die Isolate aus Izmir unterschiedliche Atmungsfähigkeiten besitzen. Die Stämme Izmir A und Izmir Y zeigten dabei das geringste Atmungsspektrum. Die Isolate Izmir C, Izmir D und Izmir B konnten die Oxidation des Mannit auf mehrere Elektronenakzeptoren koppeln. Keines der Isolate zeigte ein fermentatives Wachstum mit Mannit, Pepton oder Hefeextrakt.

Elektronen-	Elektronen-	Izmir		Izmir	Izmir	
donor	akzeptor	С	Izmir A	D	В	Izmir Y
Mannit	Fe(III)-citrat	+	+	+	+	+
Mannit	Fe(III)-oxid	+	+	+	+	-
Mannit	Sulfat	+	-	-	+	-
Mannit/H ₂ /CO ₂	Sulfat	-	-	+	-	-
Mannit	Sulfit	+	-	+	+	-
Mannit	Nitrat	+	-	+	+	-
Mannit	Nitrit	+	-	+	-	-
Pepton	Sulfit	+	-	-	+	-
Pepton	Nitrit	-	-	+	+	-
Pepton	Nitrat	+	-	+	-	-
Hefeextrakt	Nitrit	-	+	-	+	-
Hefeextrakt	Nitrat	+	-	-	+	-
Hefeextrakt	Sulfit	-	-	+	+	-
Mannit	kein	-	-	-	-	-
Mannit/H ₂ /CO ₂	kein	-	-	-	-	-
Pepton	kein	-	-	-	-	-
Hefeextrakt	kein	-	-	-	-	-

Tabelle 17 Nutzung von alternativen Elektronenakzeptoren der Isolate aus Izmir

-: kein Wachstum

+: Wachstum

3.5.2.5 16S-rRNA-Genanalyse der isolierten Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y

Die isolierten Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurden anhand der 16SrDNA-Sequenzanalyse klassifiziert. Die aus den isolierten dissimilatorischen Fe(III)-Reduzierern extrahierte DNA diente als Template für die Amplifizierung des 1,5 kB umfassenden 16S-rRNA-Gens (siehe 2.17). Die Oligonukleotid-Primer wurden aus dem gesamten 1508 Bp umfassenden 16S-rRNA-Gen von *E. coli* abgeleitet (Muyzer et al. 1995). Die bei der PCR eingesetzte chromosomale-DNA der Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y wurde nach AUSUBEL et al., 1987 isoliert (siehe 0). Ferner wurden auf FePP-Medien wachsende Kolonien dieser Stämme direkt für die PCR eingesetzt. Die erhaltenen PCR-Produkte wurden nach der Auftrennung im Agarosegel und nach deren Reinigung in den Vektor pCR2.1-TOPO kloniert und anschließend sequenziert (siehe 0). Die 16S-rDNA-Sequenzen waren sowohl bei der PCR mit Kolonien, als auch mit aufgereinigter DNA identisch. Dies zeigte, dass es sich um Reinkulturen handelte. Die 16S-rDNA-Gene der neu isolierten Stämme wurden mit 16S-rDNA-Sequenzen in der NCBI-Datenbank verglichen.

Beim BLAST Vergleich der 16S-rDNA-Gen-Sequenzen mit den NCBI-Datenbank-Sequenzen wurden die Mikroorganismen mit der höchsten Ähnlichkeit als die am nächsten verwandten

Organismen angenommen. Die 16S-rDNA-Sequenz des Stammes Izmir A zeigte die nächste Verwandtschaft zu einer 16S-rDNA-Sequenz aus einer nicht kultivierbaren Enterobacteriaceae (EF562210). Die 16S-rDNA-Sequenzen der Stämme Izmir B, Izmir C und Izmir D zeigten ebenso eine Verwandschaft zu 16S-rDNA-Sequenzen aus nicht kultivierbaren Bakterien. Izmir Y hingegen zeigte eine Verwandschaft zu *P. macarens* (AB073196) (siehe Tabelle 18).

Tabelle 18 Vergleich der 16S-rDNA-Sequenzen der Isolate mt 16S-rDNA-Sequenzen aus anderen Organismen

16S rDNA	nächst ähnliches 16S- ribosomal-RNA-Gen, Teilsequenz	NCBI- Accession	ldentität (%)
Izmir A	nichtkultivierte Enterobacteriaceae Klon COREB24	EF562210	99
Izmir B	nichtkultiviertes Bakterium <i>Klone B4_130</i>	EU790050	90
lzmir C	nichtkultiviertes Bakterium <i>Klone RPSD_1aaa03g04</i>	EU472829	99
lzmir D	nichtkultiviertes Bakterium Klone TS55_a03g03	FJ370038	99
lzmir Y	Paenibacillus macerans	AB073196	97

Stamm Izmir Y wurde aus einer kugelähnlichen Kolonieform isoliert, an deren Oberfläche Vivianit ausgefallen war. Die direkte 16S-rDNA-Sequenzanalyse der kugelähnlichen Kolonieformen ergab, dass hier auch *P. macarens* vorhanden war.

4 Diskussion

4.1 Die Verbreitung der dissimilatorischen Fe(III)-Reduktion

In dieser Arbeit wurden unterschiedliche Habitate (siehe 3.2 und 3.5.1) nach dissimilatorischen Fe(III)-Atmern und/oder nach Genen für die dissimilatorische Fe(III)-Reduktion durchsucht. Die dissimilatorische Fe(III)-Reduktion wurde bisher an geographisch unterschiedlichsten Orten und in phylogenetisch diversen Mikroorganismen beobachtet. Ferner kommt hinzu, dass Eisen ein Übergangsmetall ist und dessen biologische Reduktion in einem der ersten respirativen Systeme in der Zeit der Entstehung der Biosphäre existierte (Lovley, 1991). Dass die dissimilatorische Fe(III)-Reduktion einer der ersten mikrobiellen Atmungstypen sein könnte wird auch durch die nahen Verwandten des "last common ancestor" unterstützt, da die meisten dieser Archaeen und Bakterien die Fähigkeit Fe(III) dissimilatorisch zu reduzieren, besitzen. *Thermotoga maritima*, welches ursprünglich als Organismus nur mit einem fermentativen Metabolismus angenommen wurde, erwies sich ebenfalls als ein dissimilatorischer Fe(III)-Reduzierer (Vargas et al., 1998).

Einige bekannte Habitate der dissimilatorischen Fe(III)-reduzierenden Mikroorganismen befinden sich in Böden (Müller & Friedrich, 2007), in den Basaltschichten der Meeresböden (Lysnes et al., 2004), in mit Kohlenwasserstoff verschmutzten Meeressedimenten (Coates et al., 1995), im Produktionswasser bei der Erdölgewinnung (Nazina et al., 1995; Semple & Westlake, 1987), in industriellen Wassersystemen (Potekhina et al., 1999), Süßwasserseen (DiChristina & DeLong, 1993), in mit Erdöl kontaminierten Grundwasserhorizonten (Aquifer) (Anderson et al., 1998; Rooney-Varga et al., 1999), auf Edelstahloberflächen (Obuekwe et al., 1981) oder in biologischen Brennstoffzellen (Kim et al., 2004; Kim et al., 2008). Die in dieser Arbeit verwendeten Proben entstammen hingegen Habitaten wie landwirtschaftliche Böden, Flusssedimenten und Thermalquellen.

In allen der oben genannten unterschiedlichen Umweltbedingungen sind die Fe(III)–atmenden Mikroorganismen der Herausforderung ausgesetzt, die Oxidation von diversen C-Quellen an die terminale Fe(III)-Reduktion zu koppeln und mit der gewonnenen Energie zu wachsen. Dass diese Mikroorganismen dabei nicht zu einer phylogenetisch homogenen Gruppe gehören und in unterschiedlichen Familien der Bakterien und Archaeen vorhanden sind (Slobodkin, 2005), ist in dieser Hinsicht äußerst interessant (siehe Abbildung 17). Phylogenetisch befinden sich die bekannten bakteriellen dissimilatorischen Fe(III)-Reduzierer sowohl in den γ - und δ -Subklassen der *Proteobakterien*, als auch in den *Firmicute* (Boone et al., 1995; Park et al., 2001; Luu Y et al., 2003). Einige in dieser Arbeit identifizierten Aminosöuresequenzen zeigten keine Verwandschaft zu bekannten Proteinen. Diese stammen von bisher unbekannten dissimilatorisch Fe(III)-reduzierenden Mikroorganismen und deuten auf eine bisher unbekannte Vielfalt hin.

Die dissimilatorische Fe(III)-Reduktion hat sich mutmaßlich in unterschiedlichen Evolutionslinien und mit unterschiedlichen Elektronentransfermechanismen entwickelt
(Lonergan et al., 1996). Ferner zeigen die phylogenetischen Stammbäume, der am Energiemetabolismus beteiligten Proteinfamilien, komplexe Muster die keine lineare Korrelation mit 16S-rRNA-Stammbäumen der einzelnen Spezies zeigen (Castresana, 2001).

Abbildung 17 Der auf 16S-rDNA-Gensequenzen basierende phylogenetische Stammbaum der bekannten Gattungen mit Vertretern, die zur dissimilatorischen Fe(III)-Reduktion befähigt sind (Lovley et. al., 2004)

4.2 Extrazelluläre Einflüsse auf die dissimilatorische Fe(III)-Reduktion

Der größte Unterschied der Anreicherungskultur im Vergleich zu der Umwelt ist, dass in dieser kein Eisenkreislauf existiert. Somit befindet sich in der Umwelt bzw. in einem offenen System, im Gegensatz zu einen geschlossenes System (z.B. Anreicherungskulturen), theoretisch immer reduzierbares Fe(III). In der Anreicherungskultur endet die mikrobielle Fe(III)-Atmung nach der Reduktion des letzten Fe(III)- Moleküls.

Die Sedimentproben aus der Thermalquelle Izmir entstammen einer Umgebung, in der eine kontinuierliche Fe(III)-Zufuhr durch aus geologischen Schichten stammendem Wasser vorhanden ist. In den meisten Habitaten hängt der Fe(III)-Gehalt hauptsächlich mit der Regenerierung von Fe(II) und nicht mit der externen Fe(III)-Zufuhr zusammen. In Feuchtgebieten findet die Fe(III)-Regenerierung durch die Oxidation des Fe(II), in den Wassersedimenten und Übergangsschichten, in von Tieren gebauten Erdlöchern und in der Umgebung von makrophyten Wurzeln statt (King & Garey, 1999). Somit kann man den vorhandenen Eisenkreislauf in der Thermalquelle nicht außer Acht lassen. Im Wasser bewegt sich das Eisen zwischen anaeroben und aeroben Umgebungen (siehe Abbildung 18). Die sich in flüssiger Umgebung befindenden Fe(III)-Oxide sind unlöslich und für die dissimilatorischen Fe(III)-Reduzenten schwer zugänglich. Diese Oxide setzen sich im aeroben Bereich ab und bilden

manchmal Komplexe mit Phosphaten und anderen Spurenelementen. Im anaeroben Bereich angelangt, werden diese von den vorhandenen dissimilatorischen Fe(III)-reduzierenden Bakterien zu einer Fe(II)-Form, z.B. zu Siderit (FeCO₃), Pyrit (FeS₂), Vivianit [Fe3 (PO4)²] oder Magnetit, reduziert (Luu et al., 2003). Die entstandenen Fe(II)-Präzipitate lagern sich im Sediment ab, während andere wieder in aeroben Zonen diffundieren. Diese Fe(II)-Moleküle können die reduktive Solubilisierung der Fe(III)-Oxide katalysieren und es somit wieder den dissimilatorisch Fe(III)-verwendenden Bakterien leichter zugänglich machen (Hansel et al., 2003). Außerdem können die Fe(II)-Präzipitate in Übergangsregionen zwischen den aeroben und anaeroben Zonen, in denen ein niedriger Sauerstoffgehalt vorhanden ist, durch bestimmte chemolithoautotrophe Bakterien oxidiert werden (Emerson & Moyer 1997). Es sind keine chemischen und physikalischen Daten zu den in dieser Arbeit untersuchten Umweltproben bekannt.

Abbildung 18 Eisenkreislauf in aquatischen Umgebungen (Modifiziert von Luu et al., 2003)

Es ist nachzuvollziehen, dass in den Standorten, aus denen die Proben für die Umweltgenbanken SZB, WN, FN, NTL und ZRB stammen, ein unterschiedlicher Eisenkreislauf existiert. Die Proben aus dem Zuckerrübenboden, aus der Wiese in Northeim, aus einem Feld und aus dem Niemetal enthalten einen hohen Anteil an pflanzlichen Resten. In der Rhizosphäre der makrophyten Wurzeln kann eine Fe(II)-Oxidierung im Vergleich zu den anaeroben Sedimenten abiotisch und biotisch stattfinden. Die sich auf der Wurzeloberfläche anlagernden Fe(III)-Oxihydroxide können durch den aus der Zelle diffundierenden Sauerstoff oxidiert werden. Ferner kann es durch pflanzliche redoxaktive Enzyme oder aber durch sich in der Nähe der Pflanzen befindenden Mikroorganismen zur Oxidation von Fe(II) kommen (King & Garey, 1999). Der größte Unterschied zu dem Standort der Thermalquelle Izmir ist hierbei die Reoxidation des Fe(II), da sich in dem Fliesbett der Thermalquelle keine Pflanzen befanden.

4.2.1 Selektive Bedingungen zur Anreicherung von dissimilatorischen Fe(III)-Reduzenten

Sowohl die biophysikalischen, als auch die chemischen Bedingungen eines natürlichen Habitates sind, im Vergleich zu denen im Anreicherungsmedium, für einen dissimilatorischen Fe(III)-Reduzierer erheblich komplexer. Somit stehen in einer Anreicherungskultur die diversen metabolischen Fähigkeiten einer Zelle, den begrenzten biophysikalischen Variablen eines Mediums gegenüber. Die einzige C-Quelle Mannitol, der terminale Elektronenakzeptor FePP und eventuell von der Probe stammende elektronentransferierende Substanzen sind die Hauptbestandteile des in der Anreicherungskultur TQIS wurden aus einer bakteriellen Population mit unterschiedlichen Atmungsfähigkeiten dissimilatorische Fe(III)-Reduzierer isoliert. Von diesen wurden speziell diejenigen angereichert, die eine Oxidation des Mannitols mit einer Reduktion des Fe(III) verbinden konnten.

Im Vergleich zu dem bei der Isolierung von Fe(III)-reduzierenden Mikroorganismen am häufigsten verwendeten Acetat, wurde Mannitol als Elektronen- und C-Quelle in Anreicherungskulturen selten eingesetzt. Bei den meisten der in der Literatur beschriebenen angereicherten Fe(III)-Reduzenten handelt es sich um Zellen, welche die Oxidation der kurzkettigen Fettsäure Acetat, das in der anaeroben Nahrungskette eine zentrale Rolle spielt, mit der Reduktion des Fe(III) verbinden (Lovley et al., 2004).

Mannitol ist ein Polyol, das von vielen Pilzen, Mikroorganismen und von über hundert Pflanzenarten als Speichersubstrat synthetisiert wird. Es kann von einer Vielzahl von Mikroorganismen eines Habitates verwertet werden. Die fortlaufende Kohlenhydratausschüttung der Pflanzen ist eine treibende Kraft für die Entwicklung und Diversifikation der mikrobiellen Gemeinschaften in Rhizosphären. Somit ist Mannitol eine geeignete C-Quelle für die Anreicherung eines breiten Spektrums von Mikroorganismen (Varma, A. 2004). Ferner spielt es eine Rolle bei der pflanzlichen und fungalen Stresstoleranz. Neben der osmotoleranten Wirkung zeigt es seine antioxidative Wirkung zum Beispiel bei der Inaktivierung von Hydroxylradikalen (OH) (Smirnoff & Cumbes, 1989; Stoop et al., 1996; Jennings et al., 1998, Ruijter et al., 2003). Es ist bereits bekannt, dass Anreicherungskulturen mit antioxidativen Chemikalien und mit O₂-limitierten, bzw. mit CO₂-angereicherten Inkubationsatmosphären zur Isolation von bislang unkultivierten Mikroorganismen führen können (Stevenson et al., 2004). Ebenfalls konnte durch die Zugabe von einer H₂O₂-elimierenden Katalase oder Pyruvat nach einer Hungerphase von E. coli und Vibrio vulnificus deren Kultivierung erheblich verbessert werden (Krieg & Hoffman, 1986). Die antioxidativen und osmotoleranten Eigenschaften von Mannitol könnten ebenfalls in den anaeroben Anreicherungskulturen einen mildernden Effekt auf den Sauerstoffstress ausgelöst haben. Dieses kann zu einer Isolation von sauerstoffempfindlichen, strikt anaeroben Stämmen führen.

Elektronentransferierende Substanzen wie Huminverbindungen können ein weiterer selektiver Faktor bei den Anreicherungskulturen sein. Huminverbindungen kommen sowohl in unterschiedlichen Meeres- und Seesedimenten, als auch in unberührten und kontaminierten Feuchtlandsedimenten vor und können pflanzlichen, tierischen oder mikrobiologischen Ursprungs sein (Moran & Hodson, 1994; Coates et al., 1998; Mendez et al., 2005). In Hinblick auf die phylogenetische Diversität konnten alle dissimilatorischen Fe(III)-Reduzierer Huminsäuren und deren Analoge reduzieren. Sowohl hyperthermophile, als auch im neutralen pH-Bereich wachsende Fe(III)-reduzierende Mikroorganismen gehören zu diesen (Straub et al., 2001; Lovley & Anderson, 2000). Nahe Verwandte dieser dissimilatorischen Fe(III)-Reduzierer zeigten keine dissimilatorische Fe(III)-Reduktase-Aktivität und konnten keine Huminsubstanzen reduzieren (Lovley, 1999).

Die Zusammensetzung der Huminverbindungen ist in Abhängigkeit von dem Habitat sehr unterschiedlich. Es ist zu erwarten, dass die in dieser Arbeit eingesetzten Proben von Zuckerrübenboden, der Wiese in Northeim, vom Flussufersediment der Nieme und von einer Thermalquelle in Izmir unterschiedliche Anteile an Huminverbindungen beinhalten. Dies wurde bei der aus der Sedimentprobe TQIS isolierten Gesamt-DNA deutlich, da diese sich im Vergleich zu den anderen Proben nicht partiell verdauen ließ. Gleichzeitig könnten die entnommenen Proben und deren Aufbewahrung zu Veränderungen in den Huminverbindungen führen. Bei der Isolierung von Fe-Reduzierern (siehe 2.7) war jedoch durch die hergestellten Verdünnungsreihen kein Einfluss der Huminsäuren zu erwarten.

Ferner sind Substanzen, wie das chinonähnliche Anthrachinon-2,6-Disulfonat (AQDS) und das Anthrahydrochinon-2,6-Disulphonat (AHQDS) lösliche Huminsäureanaloge. Diese oxidieren von der Zelloberfläche der dissimilatorischen Fe(III)-reduzierenden Stämme Elektronen ab und leiten diese an die Fe(III)-Oxide weiter (Lovley et al., 1996,1998; Coates et al., 1998; Newman & Kolter, 2000). Diese benannten Chinone sind bei den physiologischen Untersuchungen der dissimilatorischen Fe(III)-Reduzierer die am meisten eingesetzten elektronentransferierenden Substanzen (Lovley et al., 2004). In den Anreicherungskulturen mit FePP-Minimalmedium wurden in dieser Arbeit keine chinonenähnlichen Verbindungen (AQDS) hinzugefügt (siehe 2.6).

Das FePP-Medium kann nach einer Inokulation mit einer Umweltprobe sowohl aus Mikroorganismen, als auch aus den Bodenproben stammende elektronentransferierende Substanzen beinhalten. Da die Huminsäuren langlebig sind und bei der dissimilatorischen Reduktion wiederverwertet werden können, war es zu erwarten, dass in den Anreicherungskulturen auch Stämme angereichert worden sind, die Elektronen extrazellulär an die Huminsäuren weitergeben können.

Neben den Huminsäuren könnten auch in der Umweltprobe vorhandene Signalmoleküle wie z.B. Acylhomoserinlacton, oder aber auch die niedrige exogene Hyperoxydkonzentration zu einer Anreicherung von unterschiedlichen Stämmen führen. In der Literatur wurde berichtet,

dass die Zugabe von solchen Substanzen zur Isolierung von vorher nicht kultivierbaren Mitgliedern der *Acidobacteria* und *Verrucomicrobia* sowohl aus landwirtschaftlichen Bodenproben, als auch aus Holz-Termiten führe (Stevenson et al., 2004).

Da nicht alle Mikroorganismen mit Standardmethoden kultivierbar sind, wurden innovative und Technologie-intensive Koloniekultivierungs- und Isolationsmethoden entwickelt. Methoden wie Hochdurchsatz-Isolierung (Connon & Giovannoni, 2002), Verkapselung von Zellen in speziellen Gelen (Manome et al., 2001) und veränderte Plattierungsmethoden (Eilers et al., 2001; Janssen et al., 2002) sollen die Bedingungen des ursprünglichen Habitats simulieren (Kaeberlein et al., 2002).

Eine Kultivierung und Isolation von bisher nur durch molekularbiologische Methoden detektierbare Bakterien ist weiterhin auch mit unkomplizierten Verfahren möglich. Durch den Einsatz von neuen oder modifizierten Anreicherungsmedien und Inkubationsbedingungen war in dieser Arbeit eine selektive Kultivierung von dissimilatorischen Fe(III)-Reduzierern aus einer Umweltprobe möglich. Eine erfolgreiche Anreicherung, Isolierung und Kultivierung von anaeroben Prokaryonten hängt vor allem von der Wahl des passenden Mediums und den Inkubationsparametern ab (Plugge, 2005). Minimale Änderungen in der Kultivierungsstrategie können zu einer Isolation von phylogenetisch bisher unbekannten Bakterien führen (Sait et al., 2002). Die Isolierung von bis zu 350 phylogenetisch neuen Bakterien mit Ähnlichkeiten zu nicht kultivierbaren Gruppen der *Gammaproteobakterien* aus Bodenproben ist ein Beispiel hierfür (Joseph et al., 2003).

In dieser Arbeit wurden ebenfalls durch den erstmaligen und gezielten Einsatz des FePP-Minimalmediums mit Mannitol als einzige C-Quelle bisher unbekannte dissimilatorische Fe(III)-Reduzierer isoliert. Somit konnte gezeigt werden, dass ein auf einem jeweiligen Atmungsprozess angepasstes Medium mit entsprechenden terminalen Elektronenakzeptoren und Inkubationsbedingungen die Anreicherung von Mikroorganismen fördert, die eine bestimmte Atmungsfähigkeit besitzen. In Anreicherungskulturen aus Küstensedimenten mit unterschiedlichen Kohlenstoffquellen und Elektronenakzeptoren, wie z.B. Eisen- und Manganoxiden wurden Gruppen von Mikroorganismen mit einem gemeinsamen Atmungstyp isoliert. Diese isolierten Stämme gehörten zu den *Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria* und *Firmicutes*. Diese Stämme konnten unter anaeroben Bedingungen durch Fermentation oder durch anaerobe Atmung mit Nitraten, Sulfaten, Ferrihydriten oder Mangan– Oxiden wachsen (Köpke, B; 2005).

Aus der anaeroben Anreicherungskultur TQIS konnten in dieser Arbeit fünf Stämme isoliert werden. Diese Mikroorganismen besitzen in ihrem Atmungspektrum die Fähigkeit die Oxidation des Mannitols an die Reduktion des Fe(III) zu koppeln. Aus den Anreicherungskulturen der Bodenprobe einer Wiese in Northeim (WN) konnten trotz der Vivianitbildung in der Anreicherungskultur keine dissimilatorischen Fe(III)-Reduzierer im Hungateröhrchen mit Fe-PP-Medium wachsen. Aus den Proben ZB und NTL konnte hingegen

nichts angereichert werden. Dies schließt jedoch die Existenz von Fe(III)-reduzierenden Mikroorganismen nicht aus. Die Ursache für das Ausbleiben der Fe(III)-Reduktion, sowohl in den Anreicherungskulturen "Zuckerrübenboden" und "Niemetal" als auch in den Hungateröhrchen mit einer Inokulation aus der Anreicherungskultur "Wiese Northeim" kann in einem Wechselspiel mehrerer biophysikalischer Faktoren begründet liegen. Auf die Anzahl der auf Agarplatten gebildeten unterschiedlichen Kolonien und deren phylogenetische Gruppen können verschiedene Faktoren Einfluß nehmen. Es gilt als erwiesen, dass sowohl fehlende Nährstoffe oder Symbionten, die falsche Kombination von Temperatur, Druck und atmosphärischer Gaszusammensetzung, eine Anhäufung giftiger Metaboliten aus dem mikrobiellen Metabolismus, eine verlängerte Inkubationszeit, als auch eine erhöhte Menge an Inokulat und die Zusammensetzung des Mediums diese Faktoren sein können (Simu & Hagstrom, 2004; Davis et al., 2005).

4.2.2 Die Isolate aus Izmir beherbergen eine große Atmungsvielfalt

Unter den dissimilatorischen Fe(III)-reduzierenden Stämmen wurde eine Atmungsfähigkeit mit dem terminalen Elektronenakzeptor FePP bei den folgenden Stämmen festgestellt: *Geovibrio ferrireducens* (Caccavo et al., 1994, 1996), *Geobacter sulfurreducens* (Caccavo et al., 1994), *Ferribacterium limneticum* (Cummings et al., 2000), *Geopsychrobacter electrodiphilus* (Holmes et al., 2004), *Pantoea agglomerans* SP1 (Francis et al., 2000), *Trichlorobacter thiogenes* (Snoeyenbos-West et al., 2001), *Clostridium butyricum* (Park et al., 2001), *Desulfitobacterium* Stamm GBFH, *Desulfitobacterium hafniense* (Niggemyer et al., 2001), *Desulfitobacterium frappieri* G2 (Shelobolina et al., 2003) und *Shewanella frigidimarina* sp (Bowman et al., 1997).

Unterschiedliche dissimilatorische Fe(III)-reduzierende γ -*Proteobakterien* können mit mehr als einer Eisenform einen Elektronentransport durchführen. Die Stämme *Shewanella oneidensis* (Lovley et al., 1989), *Aeromonas hydrophila* (Knight & Blakemore, 1988), *Ferrimonas balearica* (Rosselló-Mora et al., 1995), *Pantoea agglomerans* (Francis et al., 2000) können wie die Isolate Izmir A, Izmir B, Izmir C und Izmir D auch Fe(III)-Citrat und Fe(III)-Oxid als terminalen Elektronenakzeptor verwenden. Die Isolate wurden aus Anreicherungskulturen mit FePP als Elektronenakzeptor isoliert. Stamm Izmir Y hingegen kann mit Fe(III)-Citraten wachsen, jedoch nicht mit dem unlöslichen Fe(III)-Oxid. Das zeigte, dass bei diesem Stamm sowohl eine direkte Reduktion des extrazellulären Fe(III)-Oxids, als auch eine Synthese von Elektronentransferierenden Substanzen ausgeschlossen war.

Die aus der Anreicherungskultur TQIS isolierten Stämme besitzen neben der dissimilatorischen, mikrobiellen Fe(III)-Atmung auch weitere Atmungswege.

In dieser Arbeit wurden bezüglich der isolierten Stämme sowohl die Fähigkeiten zur Sulfat- und Nitratatmung, als auch zur Methanogenese untersucht. In anaeroben Umgebungen ist die Fe(III)-Reduktion thermodynamisch gesehen, im Vergleich zur Sulfatreduktion und Methanogenese, vorteilhafter. Jedoch ist die generierte Energie niedriger als die von der O₂- und Nitratereduktion. In den meisten anaeroben Umgebungen findet die Fe(III)-Reduktion vor der Sulfatreduktion und der Methanogenese statt, wird jedoch durch das Vorhandensein von Nitrat inhibiert (Y.S. Luu, 2003). Neuere Untersuchungen von mit Erdöl kontaminierten Flächen zeigten eine gleichzeitige Existenz von Nitrat-, Mangan-, Eisen- und Sulfatatmung, wobei die letzten beiden sich als dominierende metabolische Wege erwiesen (Roychoudhury & Merrett, 2006).

Die Fähigkeit bei Sauerstoffmangel zur Nitratreduktion wurde bei vielen unterschiedlichen Archaeen, γ -, α -, β -, ϵ - *Proteobakterien*, Gram-positiven Bakterien mit hohem und niedrigem GC-Gehalt festgestellt (Philippot, 2005). Dissimilatorische Fe(III)- Reduzierer, wie *Shewanella putrefaciens* 200, können ebenfalls Nitrat reduzieren (DiChristina, 1992).

Der in dieser Arbeit isolierte Stamm Izmir C konnte Nitrat mit Mannit, Pepton und Hefeextrakt als einziger C-Quelle reduzieren. Ebenfalls kann der Stamm Izmir D die Oxidation von Mannit und Pepton mit der Nitratreduktion koppeln (siehe Tabelle 17). Der Stamm Izmir B konnte mit Mannit und Hefextrakt als C- Quelle Nitrat reduzieren, wobei mit Pepton eine Reduktion nicht möglich war. Die Isolate Izmir B, Izmir C und Izmir D konnten somit mit einigen C-Quellen Nitrat reduzieren und ähnelten teilweise den dissimilatorischen Fe(III)-reduzierenden *Shewanella*-Stämmen. Im Genom von *Shewanella oneidensis* MR-1 konnte eine periplasmische Nitratreduktase identifiziert werden. Die vorhandene Atmungskette der dissimilatorischen Nitratreduktion kann gleichzeitig in Wechselbeziehung mit der dissimilatorischen Fe(III)-Reduktion stehen. Zum Beispiel kann das, in der Fe(III)-Atmung von *Shewanella putrefaciens* teilnehmende, tetrahäme Cytochrom C (CymA), was an der inneren Membran lokalisiert ist, gleichzeitig beim Elektronentransport auf die periplasmischen Fe-Citrat-, MnO₂-, Fumarat- und Nitratreduktasen beteiligt sein. Sowohl bei der Nitratreduktion, als auch in der anaeroben Fe(III)-Atmung in *Shewanella* Stämmen werden die Elektronen über Chinone in der Membran in den periplasmatischen Raum weitergeleitet (Richardson, 2000).

Stamm Izmir Y zeigte bei den 16S-rDNA-Analysen eine Ähnlichkeit mit dem Stamm *Paenibacillus macerans. Paenibacillus macerans* ist zusammen mit den Stämmen *Paenibacillus polymyxa* und *Paenibacillus azotofixans* ein Bakterium, das N₂ fixiert (Ash et al., 1993). Es sind bisher keine denitrifizierenden *Paenibacillus macerans*-Stämme bekannt. Denitrifizierende Stämme aus anderen *Paenibacillus*-Arten wurden dagegen bereits in unterschiedlichen Umweltproben mittels kultivierungsunabhängigen Studien identifiziert (Wang & Skipper, 2004; North et al., 2004). Die Stämme *Paenibacillus anaericanus sp. nov.* und *Paenibacillus terrae* MH72 aus dem intestinalen Trakt des Bodenwurmes *Aporrectodea caliginosa* gehörten zu den isolierten N₂O Produzenten (Horn et al., 2005).

Unter den aus der Arbeit isolierten Stämmen konnten Izmir C und Izmir B die Oxidation des Mannitols an die Sulfatreduktion koppeln. Viele Sulfat-Atmer können Fe(III) enzymatisch reduzieren, jedoch wachsen die meisten von ihnen nicht mit Fe(III) als terminalem Elektronenakzeptor (Lovley, 1993). Der einzige Sulfatreduzierer, der neben Sulfat auch mit anderen terminalen Elektronenakzeptoren wie Fe(III), Mn(IV), U(VI) und Cr(VI) wachsen kann, ist *Desulfito*- *maculum reducens* (Tebo & Obraztsova, 1998). Die Stämme Izmir A, Izmir D und Izmir Y hingegen könnten jedoch nicht mit Sulfat und Mannitol oxidieren.

Die in dieser Arbeit untersuchten unterschiedlichen Atmungsfähigkeiten der Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y geben einen allgemeinen Überblick über deren Metabolismus. Diese Kenntnisse sind jedoch für erweiterte Voraussagen über die metabolischen Wechselwirkungen in deren Habitat nicht ausreichend.

4.3 Metagenomische Analyse der dissimilatorischen Fe(III)-Reduktion

In dieser Arbeit wurde für die Identifizierung von dissimilatorischen Fe(III)-Reduktasen ein aktivitätsbasierendes Screeningsystem eingesetzt, in dem *E. coli* als Wirtsstamm für die Umwelt-DNA diente. Die für das Screening bzw. für die Identifizierung der terminalen Fe(III)-Reduktasen ausschlaggebende Eigenschaft der *E. coli* Stämme ist, dass diese aerob oder unter respiratorischen Bedingungen mit Mannitol als einziger C-Quelle wachsen können, anaerob jedoch nicht. Die durch die Umwelt-DNA verursachte dissimilatorische Fe(III)-Reduktase-Aktivität von *E. coli* konnte in anaeroben FePP-Medien anhand der Vivianit-Bildung beobachtet und identifiziert werden. In diesem Screeningverfahren wurden sowohl die Atmungsflexibilität, als auch die metabolischen Eigenschaften des *E. coli* K12-Stammes ausgenutzt. Wie bekannt, könnten Genbanken aus den phylogenetisch von *E. coli* sehr unterschiedlichen Mikroorganismen in diesen transformiert und exprimiert werden (Rondon et al., 2000). Allein die Diversität der *Proteobakterien*, zu denen auch *E. coli* gehört, zeigt, dass eine nur aus unkultivierten *Proteobakterien* bestehende Umwelt-Genbank neue Ergebnisse liefert (Handelsman et al., 1998). *E. coli* hat sich in dieser Arbeit bei der Genexpression von Genbanken aus diversen Ressourcen nochmals als ein geeigneter Stamm erwiesen.

4.3.1 Funktionelles Screening von Umweltgenbanken auf Gene für Fe(III)-Atmung

In dieser Arbeit wurden Gene, die eine dissimilatorische Fe(III)-Reduktaseaktivität vermitteln, in Plasmid–Genbanken aus Umweltproben, Anreicherungs- und Reinkulturen gesucht. Mit dieser Methode konnten, unabhängig von der Kultivierbarkeit eines Bakteriums, neue Gene für eine spezielle mikrobielle Atmung gefunden werden. Es wurden von Umweltgenbanken aus 5 Standorten ungefähr 3.970 Mio. Klone durchmustert. Der Umfang der durchmusterten Metagenombanken ist im Vergleich zu einzelnen Genomen enorm. Allein der menschliche Magen-Darm-Trakt beinhaltet beispielsweise 10¹³ bis 10¹⁴ Mikroorganismen, deren kollektive Genome mindestens 100-mal mehr Gene als das menschliche Genom beinhalten (Gill et al., 2006). Es konnten aus den Genbanken insgesamt 6 Klone mit einer dissimilatorischen Fe(III)-Reduktaseaktivität isoliert werden. Somit konnte bei der Durchmusterung der nicht angereicherten Genbanken ein Verhältnis von ungefähr 1:400000 erzielt werden. Obwohl die Proben aus dem Zuckerrübenboden (ZB) bei der Anreicherungskultur im FePP-Minimalmedium kein Wachstum zeigten, konnten aus den Umweltgenbanken dieses Standortes drei Klone mit einer instabilen dissimilatorische Fe(III)-Reduktaseaktivität isoliert werden, die von

den Proben aus der Wiese aus Northeim hergestellt wurden, lieferten sechs Klone, die eine dissimilatorischen Fe(III)-Reduktase-Aktivität vermittelten. Vier von diesen sechs Klonen zeigten einen stabilen Phenotyp. Die Proben aus demselben Standort zeigten in den Anreicherungskulturen eine Fe(III)-Reduktase-Aktivität, wobei keine einzelnen Fe(III)-Reduzenten isoliert werden konnten. Diese Diskrepanz zeigt wiederum, dass nicht alle in einem Habitat existierenden Fe(III)-Reduzenten angereichert bzw. isoliert werden können, obwohl Gene für eine dissimilatorische Fe(III)-Reduktase-Aktivität vorhanden sind. Ferner konnte aus den Genbanken, die aus dem Standort Feld hergestellt wurden, 4 Klone mit einer dissimilatorischen Fe(III)-Reduktaseaktivität isoliert werden, zwei dieser Klone zeigten einen stabilen Phenotyp. Die Untersuchung der Standortproben vom Niemetal ergab weder Klone, noch Isolate mit einer dissimilatorischen Fe(III)-Reduktaseaktivität.

Sowohl die Durchmusterung der Genbanken der Stämme *Shewanella* und Izmir Y, als auch die der Genbank aus der Anreicherungskultur TQISA, ergab ebenfalls keinen Klon mit einer dissimilatorischen Fe(III)-Reduktaseaktivität. Eine Ursache dafür kann die Zahl (11000 Klone) an durchmusterten Klonen sein, die im Vergleich zu den Umweltgenbanken sehr gering war.

Die Umwelt-Genbibliotheken aus den Standorten Wiese und Feld, aus denen die Klone mit einer dissimilatorischen Fe(III)-Reduktase-Aktivität isoliert wurden, könnten durch weitere Methoden der Metagenomik, z.B. mit dem sequenzbasierten Screening, untersucht werden. Jedoch ist das funktionsbasierte Screening der Genbanken unter diesen unterschiedlichsten metagenomischen Analysemethoden die Einzige, die vollkommen neue Gene zu einer bestimmten Funktion liefern kann. Während bei dem funktionsbasierten Screening nach einer bestimmten, im Wirt exprimierten Eigenschaft gesucht wird, wird bei der sequenzbasierten Methode nach bestimmten DNA- Sequenzen gesucht (Schloss & Handelsman, 2003).

Beim sequenzbasierten Screening werden grundsätzlich die Techniken der PCR und Kolonie-Hybridisierung genutzt, die für unterschiedliche Durchmusterungsziele eingesetzt werden können. Eine Expression im Wirt ist keine Bedingung, jedoch können nicht funktionelle partielle Gene erhalten werden. Die erhaltenen Gene haben Ähnlichkeiten mit bisher bekannten Sequenzen, da die DNA-Proben oder Primersequenzen von bisher bekannten konservierten Genregionen oder Proteinfamilien abgeleitet werden (Daniel, 2004) (siehe Abbildung 19).

Abbildung 19 Vor- und Nachteile zwischen funktions- und sequenzbasierten Screeningverfahren (nach Daniel, 2004)

Komplettsequenzierung der in dieser Langfristig könnte eine Arbeit eingesetzten Umweltgenbanken, aus denen eine dissimilatorische Fe(III)-Reduktase-Aktivität identifiziert wurde, in Frage kommen. Damit könnten andere im Habitat vorhandene metabolische Prozesse identifiziert werden. Jedoch macht die Heterogenität der vorhandenen Gene die Sequenzidentifizierung eine Rekonstruktion eines einzigen mikrobiellen Genoms aus komplexen mikrobiellen Gemeinschaften praktisch unmöglich (Allen & Banfield 2005). Die Komplettsequenzierung ist deshalb eher für Habitate mit geringer Populationsdichte geeignet (Venter et al., 2004; Tyson et al., 2004).

4.3.2 Durch die Umwelt-DNA verursachte Fe(III)-Atmung

Auf den Umweltsequenzen bzw. den Insertsequenzen der im Screeningverfahren erhaltenen 6 Plasmide konnten insgesamt 19 offene Leserahmen vorhergesagt werden. Die aus diesen ORFs abgeleiteten Genprodukte zeigten in Datenbankabgleichen zum Teil Ähnlichkeiten zu bekannten Proteinen aus Mikroorganismen. Einige hingegen zeigten eine Verwandtschaft zu hypothetischen Proteinen und bei anderen konnte keine Übereinstimmung mit bereits bekannten Proteinen gefunden werden. Die Heterogenität der identifizierten ORFs zeigt wiederum, dass die nicht kultivierbaren Fe(III)-Reduzenten sehr diverse Bestandteile der dissimilatorischen Fe(III)-Atmung beinhalten können, die biochemisch weiter untersucht werden müssten (siehe Tabelle 13).

Die nach dem funktionellen Screening identifizierten und aus Umweltsequenzen stammenden ORFs kodieren für Proteine, die das modulare Atmungssystem von *E. coli* entweder durch eine zusätzliche Redoxfunktion oder durch die Veränderung der vorhandenen Bestandteile der Elektronentransferkette strukturell auf die mikrobielle Fe(III)-Atmung erweitert haben.

Es ist sinnvoll, vorweg zu unterstreichen, dass die Analyse der Insertsequenzen aus den Plasmiden der rekombinanten Klone mit einer dissimilatorischen Fe(III)-Reduktase-Aktivität weder Synthesegene für chelatierende Substanzen, noch für elektronentransferierende chemische Substanzen zeigte. Durch die Eigenschaften des im Screeningverfahren eingesetzten Minimal-Mediums mit löslichem FePP war der Zugang zum Fe(III) für eine dissimilatorische Fe(III)-Reduktion kein limitierender Faktor. Bei einem Screeningverfahren mit unlöslichem Fe(III)-

Oxid als terminalen Elektronenakzeptor hingegen würde theoretisch die Identifizierung von Umweltsequenzen, die für eine extrazelluläre Oxidoreduktaseaktivität kodieren oder aber auch Sequenzen die für chelatierende und/oder elektronentransferierende Substanzen kodieren, forciert werden.

Es ist bekannt, dass in rekombinanten E. coli-Stämmen durch die Zugabe von elektronentransferierendem Neutralrot eine Fe(III)-Reduktase-Aktivität beobachtet werden kann. Bei wasserstoffproduzierenden, fermentativen E. coli-Stämmen diente Neutralrot als elektronentransferierende Substanz und reduzierte Fe(III) oder Anoden (McKinlay & Zeikus, 2004). In dieser Hinsicht war vor der Analyse der Insertsequenzen der positiven Klone, theoretisch eine durch elektronentransferierende Metabolite verursachte dissimilatorische Fe(III)-Reduktion am Anfang der Versuche nicht ausgeschlossen. In der Umwelt sind diese Metabolite ein Bestandteil des Elektronenflusses in der dissimilatorischen Fe(III)-Reduktion. Es ist bekannt, dass sowohl Pyocyanin, ein lösliches Pigment und ein natürlich vorkommendes Phenazin, das von Pseudomonas aeruginosa synthetisiert wird, als auch andere redoxaktive Substanzen an der Fe(III)-Reduktion teilnehmen können (Hernandez & Newman, 2001; Rabaey et al., 2005; Hernandez et al., 2004). Ferner agiert, z.B. bei dem dissimilatorisch Fe(III)-reduzierenden Stamm Shewanella algae BrY, Melanin mit seiner polychinonen Struktur als löslicher Elektronentransporter (Turick et al., 2002, 2003). Unter den analysierten Plasmidsequenzen, die eine dissimilatorische Fe(III)-Reduktase-Aktivität verleihen, konnten keine Ähnlichkeiten zu Genen des sekundären Metabolismus identifiziert werden.

Die aus dem Umweltorganismus stammenden Gene konnten nach der Klonierung erfolgreich im Wirtsstamm exprimiert werden. Die entstandenen Proteine nutzten die Atmungsflexibilität des Wirtsstammes, und erweiterten diesen auf die im Ursprungsstamm nicht vorhandene Fe(III)-Reduktaseaktivität. Hierbei zeigte sich *E.coli* als ein geeigneter Screeningstamm. Es konnte bereits ein decahämes Cytochrom (MtrA) von dem dissimilatorisch Fe(III)reduzierenden *Shewanella oneidensis* MR-1 in *E. coli* erfolgreich exprimiert werden (Pitts et al., 2003). Im Hinblick auf Elektronendonoren und -akzeptoren beinhaltet *E. coli* ein sehr flexibles und diverses Atmungssystem (Lovley et al., 2004).

Eine wichtige Eigenschaft der Atmungskette von *E. coli* ist, dass diese eine Atmungsfähigkeit ohne den Cytochrom bc1-Komplex besitzen. *E. coli* kann dennoch Sauerstoff, Nitrat, Nitrit, Dimethylsulfoxide (DMSO), Trimethylamin-N-Oxid (TMAO) und Fumarat als terminale Elektronenakzeptoren benutzen (siehe Abbildung 20) (Richardson, 2000). Die modulare Elektronentransportkette des *E. coli* startet mit einem Dehydrogenasekomplex, welcher über einen in der Membran löslichen Chinon-Pool (Q) mit dem terminalen Reduktasekomplex verbunden ist. Der Dehydrogenasekomplex kann abhängig vom Elektronendonor unterschiedlich sein und leitet die Elektronen aus der Kohlenstoffquelle auf eine Serie von membrangebundenen Elektronentransportproteinen. Neben einigen Flavoproteinen (Fp) befinden sich in der Cytoplas-

mamembran einige FeS-Proteine, die Protonen in den periplasmatischen Raum transportieren (DiChristina et al., 2005).

Abbildung 20 Respirative Flexibilität von E. coli (modifiziert von Richardson, 2000)

Die Fe(III)-Atmung des Wirtes kann in dieser Arbeit in erster Linie durch eine Ergänzung oder Veränderung der *E. coli*-eigenen Elektronentransferkette oder durch das Zusammenspiel von mehreren der identifizierten ORFs ermöglicht worden sein.

Proteine die essentiell im Elektronentransport sind können sehr klein sein, ein Beispiel dafür ist der offene Leserahmen ycf6(petN), der in fast allen photosynthetischen Organismen einschließlich der Cyanobakterien vorkommt. Dieser offene Leserahmen kodiert für das bisher kleinste bekannte funktionelle Protein mit einer Länge von 29 Aminosäuren. Es ist für die Stabilität und den Zusammenbau des Cytochrom b6f-Komplexes zuständig. Eine "Knockout"-Mutation des ycf6 führt zum Verlust des b6f-Komplexes und zum Abbruch der Photosynthese (Hager et al., 1999; Bock & Khan, 2004). In dieser Arbeit wurde, mit Hinblick auf dieses funktionelle Protein, bei der Identifizierung der ORFs die minimale Länge als 100bp definiert. Ferner wurden bei der Herstellung von Umweltgenbanken DNA-Fragmente eingesetzt, die eine Größe zwischen 2 und 15kBp hatten. Daher konnte gewährleistet werden, dass ein breites Spektrum von Aminosäuresquenzen auf ihre Funktionen in der mikrobiellen Fe(III)-Atmung untersucht werden. Tatsächlich konnten in dieser Arbeit mittels des funktionellen Screeningverfahrens Gene identifiziert werden, die für Proteine mit unterschiedlichen molekularen Eigenschaften kodieren, welche bei der dissimilatorische Fe(III)- Atmung eine Rolle spielen könnten. Der kleinste ORF der identifiziert wurde, orf07, ist 204bp lang und kodiert für ein 67 Aminosäuren langes Protein mit einer Molekularmasse von 7877,3 Da (Siehe 3.4.1.2.2). Dagegen kodierte orf09 für das größte Protein (siehe 3.4.1.2.3). Dieses hat eine Länge von 333 Aminosäuren und eine Molekularmasse von 36304 Da.

Bei den Fe(III)-reduzierenden Mikroorganismen sind die Charakteristika der an der dissimilatorischen Fe(III)-Reduktion beteiligten redoxaktiven Proteine sehr unterschiedlich. Während das an der anaeroben Fe(III)-Atmung beteiligte Protein *FerA* (Molekulare Masse

89kDa) in *G. sulfurreducens* von einem 1378bp langem Gen kodiert wird und in der äußeren Membran lokalisiert ist (Magnuson et al., 2001), wird das periplasmatische PpcA Protein (Molekulare Masse 9,6kDa) von einem 213bp langen Gen kodiert (Lloyd et al., 2003). Die redoxaktiven Proteine der Fe(III)-Atmung von *Shewanella oneidensis* MR-1, MtrA (89kDa), MtrB (74kDa) und OmcB (42kDA) haben ebenfalls eine unterschiedliche zelluläre Lokalisation und bestehen aus 333 bis 697 Aminosäuren (Beliaev et al., 1998, 2001; Heidelberg et al., 2002). Auch aus diesem Grund wurde bei den Klonierungsarbeiten angestrebt, DNA-Fragmente zu erhalten, welche größer als 2kBp waren.

In dem Datenbankabgleich zeigten die Genprodukte aus *orf*09 und *orf*13 eine Verwandtschaft zu einem membrangebundenen Dehydrogenase-Domänen-Protein aus dem Isolat Ellin514. Die abgeleiteten Proteine zeigten eine weitere Verwandtschaft zu unterschiedlichen Cytochromen. Während *orf*09 eine geringere Verwandtschaft zu dem Klasse I Cytochrom C (ZP_01776633.1) aus *Geobacter bemidjiensis* Bem zeigte, wies das Genprodukt von *orf*13 eine Verwandtschaft zu dem Cytochrom C ähnlichen Protein aus *Blastopirellula marina* DSM 3645 auf.

Die abgeleiteten Proteine können, im Hinblick auf die Ähnlichkeit zu dem membrangebundenen Dehydrogenase-Domänen-Protein und zu den Cytochromen, mehrere Funktionen indem beherbergen, sie die Dehydrogenaseaktivität gleichzeitig mit der elektronentransferierenden Fähigkeit verbinden. Proteine mit mehreren Funktionen sind bereits bekannt. In einer anderen Arbeit wurde ein Enzym entdeckt, das gleichzeitig die Funktion zur primären Oxidation der C- Quelle und der terminalen Reduktion beinhaltete. Bei Geobacter sulfurreducens konnte eine heterotrimere Fumarat-Reduktase (FrdCAB) identifiziert werden, die Homologien zur Fumarat-Reduktase von Wolinella succinogenes und der Succinat-Dehydrogenase von Bacillus subtilis hat. Dieses Enzym wird wahrscheinlich auch von G. metallireducens benutzt (Butler et al., 2006). Ferner konnten bei dem an der Fe(III)- Atmung teilnehmenden MacA von Geobacter sulfurreducens Homologien zu einem bekannten Protein festgestellt werden, die eine Peroxidase-Aktivität aufwiesen. Jedoch konnte durch die Mutation von MacA keine veränderte Antwort festgestellt werden, die einen oxidativen Stress verursacht. Es wird vermutet, dass MacA auch beim Elektronentransport von der inneren zur äußeren Membran beteiligt ist (Butler et al., 2004).

In Verbindung mit den Genprodukten aus *orf*09 und *orf*13 ist es wichtig zu erwähnen, dass Cytochrome bei bekannten dissimilatorisch Fe(III)-reduzierenden Mikroorganismen sehr häufig vorkommen. Im Genom von *Geobacter sulfurreducens* sind z.B. die C-Typ Cytochrome die am häufigsten vorkommenden Elektronentransportproteine (Methé et al., 2003; Kim et al., 2006). Auch das Genom von *Shewanella oneidensis* enthält eine hohe Anzahl von unterschiedlichen Genen, die für respiratorische Proteine kodieren (z.B. Cytochrome, Reduktasen, FeS-Proteine und Chinone), was wiederum auf eine hohe Atmungsflexibilität des Organismus hindeutet. Im Vergleich zu den anderen bisher sequenzierten mikrobiellen Genomen, befindet sich die größte Anzahl an C-Typ Cytochromen im *Shewanella oneidensis* Genom (Heidelberg et al., 2002). In der Tabelle 19 sind die an der dissimilatorischen Fe(III)-Atmung beteiligten Proteine von *Shewanella-* und *Geobacter-* Stämmen gelistet.

Tabelle 19 Bestandteile der dissimilatorischen Fe(III)-Atmung von Shewanella- und Geobacter- Stämmen.IM: innere Membran, AM: äußere Membran, PR: periplasmatischer Raum, ND: nicht definiert

Genus	Protein	Größe (kDa)	Struktur	Lokalisation	Referenz
Shewanella					
	CymA	21	Tetra-Häm	IM, PR	Myers and Myers, 1997a, 2000
	MtrA	38	Dekahäm c-Typ Cytochrom	PR	Pitts et al. 2003
	MtrB	76	nicht definiert	AM	Beliaev and Saffarini, 1998, Myers and Myers, 2002
	MtrC	75	Dekahäm c-Typ Cytochrom	AM	Pitts et al., 2003
	OmcA	83	Dekahäm c-Typ Cytochrom	AM	Myers and Myers, 2003
	OmcB	75.	Dekahäm c-Typ Cytochrom	AM	Beliaev et al., 2001 Myers and Myers, 2003
	<i>lfc</i> A	63,9	Flavocytochrom	PR	Dobbin et al., 1999
	Cyt c3	nicht definiert	Tetra-Häm	PR	Gordon et al., 2000
Geobacter					
	РрсВ	36	Di-Häm	PR	Butler et al., 2004
	PpcA	9,6	Tri-Häm	PR	Lloyd et al., 2003
	OmcB	87	12 Häm/cTyp Cytochrom	AM	Leang C. et al., 2003
	OmcC	nicht definiert	12 Häm / c Typ Cytochrom	AM	Leang C. et al., 2003
	OmcS	50	Hexahäm c-Typ Cytochrom	AM	Mehta et al., 2005
	OmcE	30	Tetra-Häm c-Typ Cytochrom	AM	Mehta et al., 2005
	OmcD	48	Tetra-Häm	AM	Mehta et al., 2005
	OmpJ	nicht definiert	Porin	AM	Afkar et al., 2005
	MacA	36	Di-Häm	PR	Butler et al., 2004

Demnach sind die Multi-Häm-Cytochrome in Gram-negativen dissimilatorischen Fe(III)-Reduzierern als eine elektronentransferierende Brücke zwischen der inneren und äußeren Membran zu sehen (Richardson D.J., 2000). Wie bekannt, erfordert die bakterielle Atmung eine Vielzahl von komplexen, Kofaktor-beinhaltenden Redoxenzymen mit mehreren Untereinheiten, die in der Membran eingebettet sind oder sich auf der extrazellulären Seite der Membran befinden. Die Biosynthese der Atmungsenzyme benötigt sowohl eine kontrollierte Expression der Gene, als auch einen Zusammenbau und gezielten Transport zu deren Bestimmungsort in der Zelle (Sargent, 2007). Wahrscheinlich werden die Genprodukte aus *orf*09 und *orf*13 über einen unbekannten Weg in die Membran bzw. in die Elektronentransportkette von *E. coli* eingebaut, indem sie anschließend als elektronentransferierende Proteine die Fe(III)-Atmung ermöglichen. Dabei ist es wichtig zu erläutern, dass das Hinzukommen von Genen für Cytochrome in einem Wirtsorganismus ebenfalls Veränderungen auf der Transkriptionsebene verursachen kann. Bei dissimilatorischen Fe(III)-reduzierenden Mikroorganismen wurde festgestellt, dass Veränderungen der Cytochrom-Zusammensetzung in der Fe(III)-Atmungskette solche Prozesse hervorrufen (Kim et al., 2005).

Der Mehrzahl der in der dissimilatorischen Fe(III)-Atmung teilnehmenden Proteine wird eine redoxaktive Rolle zugeteilt. Jedoch kommt es vor, dass einige der an der mikrobiellen Fe(III)-Atmung beteiligten Proteine keine redoxaktive Funktion haben. Diese beeinflussen die Funktion der Elektronentransportketten bei der Fe(III)-Atmung, ohne selbst am Elektronentransport und somit an der Energieproduktion teilzunehmen. Das MtrB in Shewanella-Stämmen ist z.B. solch ein Protein, dessen Grundfunktion an der strukturell richtigen Lokalisation der OmcA- und OmcB-Proteine in der äußeren Membran gesehen wird (Myers & Myers, 2002). Die hohe Zahl der an der dissimilatorischen Fe(III)-Reduktion Cytochrome ist nicht in allen Vertretern der Fe(III)-reduzierenden beteiligten Mikroorganismen enthalten. Im Vergleich zu G. sulfurreducens mit über 100 C-Typ Cytochrome, enthalten die dissimilatorisch Fe(III)-reduzierenden Pelobacter- Stämme bisher keine bekannten C-Typ Cytochrome (Lovley et al., 1995; Methé et al. 2003). Viele Studien weisen den C-Typ Cytochromen eine zentrale Rolle bei Fe(III)-reduzierenden, mesophilen Organismen zu. Jedoch ist unter den Fe(III)-atmenden Hyperthermophilen, Pyrobaculum islandicum der einzige Stamm, der trotz seiner phylogenetischen Nähe zu Desulfuromonas und Geobacter keine C- Typ Cytochrome beinhaltet. Im Vergleich zu den NADH-verbrauchenden, mesophilen Bakterien benötigte dieser NADPH (Childers & Lovley, 2001). Das zeigte wiederum erstmals, dass unter den dissimilatorisch Fe(III)-reduzierenden Mikroorganismen mehrere Strategien bzw. alternative Elektronentransportketten zur Fe(III)-Reduktion existieren können

Unter den in dieser Arbeit identifizierten ORFs kodierten *orf*01, *orf*04, *orf*06, *orf*11, *orf*12, *orf*14, *orf*16 und *orf*19 für Proteine, die keine signifikante Ähnlichkeit zu bekannten Proteinen haben. Da diese Genprodukte als hypothetische Proteine annotiert wurden, konnte keine Vorhersage über deren Funktion gemacht werden. Während die aus den *orf*02 und *orf*03 abgeleiteten Aminosäuresequenzen eine Verwandtschaft zu hypothetischen Proteinen aus *Solibacter usitatus* Ellin6076 und aus dem Acidobakterium *Ellin345* zeigten, kodierten die verbleibenden ORFs für Aminosäuresequenzen, die eine Ähnlichkeit zu bekannten Proteinen zeigten.

In dieser Arbeit konnte gezeigt werden, dass *E. coli* als Screeningstamm sowohl durch elektronentransferierende Proteine, als auch durch nicht redoxaktive Bestandteile zur dissimilatorischen Fe(III)-Reduktion befähigt werden kann. Dabei sind die durch die Klonierung in dem Wirtstamm verursachten Veränderungen zum größten Teil ungeklärt. In

zweiter Linie bestand die Möglichkeit, dass durch die Klonierung der Umwelt-DNA im Wirtsstamm chelatierende oder elektronentransferierende Substanzen synthetisiert werden. Die Auswertung der Ergebnisse zeigte jedoch, dass unter den in dieser Arbeit identifizierten ORFs keiner für chelatierende oder elektronentransferierende Substanzen kodiert. Eine zukünftige Herausforderung bleibt die Einordnung der identifizierten nicht redoxaktiven Proteine in diesem Modell.

4.4 Hinweise auf bisher unbekannte dissimilatorische Fe(III)-Reduzenten

Neben den aus dieser Arbeit isolierten dissimilatorisch Fe(III)-reduzierenden Bakterien, deuten auch die ORFs bzw. deren Genprodukte, die aus Umweltsequenzen identifiziert wurden, auf eine bisher unbekannte Vielfalt an dissimilatorisch Fe(III)-reduzierenden Mikroorganismen hin.

Einige Genprodukte der sich auf den Insertsequenzen von **pDIR03** und **pDIR05** befindenden ORFs zeigten eine Verwandtschaft zu Proteinen aus dem Isolat Ellin514. Aus diesem Grund kann davon ausgegangen werden, dass der ursprüngliche Umweltorganismus eventuell ein enger Verwandter von Isolat Ellin514 ist. Dabei ist es wahrscheinlich, dass die Insertsequenzen aus pDIR03 und pDIR05 aus unterschiedlichen Umweltorganismen stammen. Im Vergleich zu der Insertsequenz des pDIR03, auf dem drei ORFs identifiziert wurden, ist die Insertsequenz von pDIR05 101 bp länger und beinhaltet vier ORFs. Ferner zeigten die Insertsequenzen der Plasmide pDIR03 und pDIR05 eine unterschiedliche Genorganisation. Unter den identifizierten ORFs zeigten zwei in der NCBI-Datenbank vorhandene Proteinsequenzen eine Verwandtschaft zu gleichen Proteinen. Während *orf*10 und *orf*15 eine Verwandtschaft zum lipolytischen Protein der G-D-S-L Familie aus dem Isolat Ellin514 (ZP_02968915.1), und die Genprodukte aus *orf*09 und *orf*13 eine Verwandtschaft zu dem Dehydrogenase-Domänen-Protein (ZP_02967853.1) aus dem Isolat Ellin514 zeigten.

Die Ergebnisse des Datenbankabgleichs ließen Rückschlüsse auf den hypothetischen Ursprung des bisher unbekannten Umweltorganismus geben. Wie bereits im Kapitel 3.4.1. erwähnt, kann *orf*01 aus einem Umweltorganismus stammen, der dem Phylum *Acidobacteria* angehört. Insbesondere, weil die Genprodukte von *orf*02 und *orf*03 Verwandtschaft zu Proteinen aus dem Acidobakterium *Ellin345* und *Solibacter usitatus* Ellin6076, welcher ebenfalls zu den *Acidobacteria* gehört, zeigten, .

Phylogenetische Analysen, die auf der 16S-rRNA-Gensequenz basieren, zeigten, dass diese Gene aus *Acidobacteria* in unterschiedlichen Habitaten, wie z.B. Böden, Ozeanen, Warmwasserquellen und säurehaltigen Erzabbauseen, vorkommen. Die Mehrzahl der *Acidobacteria*-Stämme wurde bisher nichtkultiviert (Meisinger et al., 2007). Ferner ist über deren Funktion in der Umwelt sehr wenig bekannt. Die phylogenetische Diversität und die ubiquitäre Verbreitung der *Acidobacteria* deuten auf eine wichtige ökologische Funktion in der Umwelt und auf eine metabolische Vielfalt hin. Genetische und physiologische Daten über

Acidobacteria sind jedoch selten (Quaiser et al., 2003). Eine Fe(III)-Atmungsfähigkeit bei *Acidobacteria* war bisher nicht bekannt. In einer kürzlich erschienenen Arbeit wurde jedoch gezeigt, dass die dissimilatorische Fe(III)-Reduktion unter *acidophilen* Bakterien verbreitet ist. Bei einem Screening unterschiedlicher Stämme in anaerobem Fe(III)-Medium konnte erstmals *Acidocella*- und den moderat acidophilen *Acidobacterium*-Stämmen die Fähigkeit, Fe(III) dissimilatorisch zu reduzieren, zugeschrieben werden (Coupland & Johnson, 2008).

Die Subgruppen der Acidobacteria beinhalten Bakterien, die unterschiedliche metabolische Fähigkeiten beherbergen können. Isolat Ellin345 gehört, zusammen mit dem chemoorganotrophen Acidobacterium capsulatum, zu der Subgruppe 1 der Acidobacterien und nicht zu der Subgruppe 8, in dem sich auch der dissimilatorische Fe(III)- Reduzierer Geothrix fermentans (Coates et al., 1999; Hugenholtz et al., 1998; Kishimoto et al., 1991) befindet. Neben den chemoorganotrophen und den Fe(III)-atmenden Acidobacterien weist Holophaga foetida (Liesack et al., 1994), welcher homoacetogenische, methoxylierte, aromatische Verbindungen abbaut, auf eine dritte metabolische Gruppe. Es ist bekannt, dass aromatische Verbindungen exzellente Elektronenressourcen für Fe(III)-Reduzenten sind. In dieser Hinsicht könnte das Umweltbakterium, das aus dem orf01 stammt, eventuell eine besondere phylogenetische Position zwischen Holophaga foetida, Geothrix fermentans und Acidobacterium capsulatum einnehmen, in der es die genetischen Ressourcen für die Fe(III)-Atmung beinhaltet.

4.5 Chemotaxis und Biofilm-Bildung können die dissimilatorische Fe(III)-Reduktion beeinflussen

Die Biofilm-Bildung, die Beweglichkeit zu Eisenmolekülen, oder auch die Solubilisierung von Fe(III)-Oxiden durch chelatierende Substanzen können zu zellulären Prozessen gezählt werden, die indirekt einen Einfluss auf die dissimilatorische Fe(III)-Reduktion haben können. Durch diese Prozesse kann der dissimilatorische Fe(III)-Reduzierer eine vorhandene Distanz zu dem terminalen Elektronenakzeptor überwinden, und die durch den Metabolismus entstandenen Elektronen durch direkten Kontakt oder mittels elektronentransferierenden Substanzen weiterleiten.

Die in dem anaeroben FePP-Flüssigmedium beobachtete Aggregation der Stämme Izmir A, Izmir B, Izmir C, Izmir D zeigt eine eventuelle Fähigkeit zur Biofilm-Bildung an. Das Aggregat kann eventuell als ein Ort für optimalen Elektronentransport auf den terminalen Elektronenakzeptor FePP dienen.

Im Vergleich zu den anderen Isolaten aus Izmir zeigte Stamm Izmir Y die höchste phylogenetische Ähnlichkeit zu *Paenibacillus macerens* und bildete eine kugelförmige Kolonie auf dem soliden FePP-Agar-Medium. Es ist bekannt, dass die Biofilm-Bildung von der C-Quelle und der Energiequelle abhängig ist, z.B. konnte bei *P. aeruginosa* festgestellt werden, dass die Bildung von pilzähnlichen Strukturen im Fe(III)-Minimalmedium mit Glukose gefördert wird (Banin E., 2005). *Paenibacillus amylolyticus* ist bisher der einzige *Paenibacillus*-Stamm, der zusammen mit Stenotrophomonas maltophilia, Bacillus cereus und Citrobacter freundii in einem quecksilberreduzierenden Biofilm identifiziert worden ist (Wagner-Dobler et al., 2000). Die Bedingungen in einem Biofilm ermöglichen den mikrobiellen Gemeinschaften der Fe(III)-Reduzierer die Anhaftung an das unlösliche Fe(III)-Oxid und die Vervollständigung eines elektrochemischen Kreislaufs zwischen der Zelle und dem Elektronenakzeptor, mittels elektronentransportierender Substanzen (Hernandez & Newman, 2001). In einem Biofilmreaktor konnte gezeigt werden, dass die Elektronen, aus den sich im Biofilm befindenden Shewanella oneidensis MR-1 und Shewanella SD. MR-4. auf die elektronenakzeptierende Elektrodenoberfläche mittels Riboflavin transferiert werden (Marsili et

^{al} 2008) Stamm Izmir Y bildet jedoch seine besondere Koloniestruktur in einem Minimalmedium, wo das lösliche und somit auch für die Elektronen leicht zugängliche FePP als Elektronenakzeptor eingesetzt wurde. Es ist ebenso unbekannt wieso die durch die dissimilatorische Fe(III)-Reduktion entstandenen Fe(II)-Vivianit-Moleküle nicht im Inneren des Biofilms, sondern an der Oberfläche angehäuft werden. Es ist somit möglich, dass die Zellen sich in einem Biofilm-System von den negativen Effekten des Fe(II) schützen. Fe(II)-Kristalle haben eine gewisse Toxizität, ferner entstehen bei der Oxidation des Fe(II) mit Sauerstoff schädliche reaktive Zwischenprodukte (Svoboda P., & Harms, 2002).

Weiterhin wurde lange Zeit ein Zusammenhang zwischen den Flagellen und der Biofilm-Bildung untersucht. In den Biofilmen von *P. aeruginosa* (Whiteley et al., 2001) und bei *Bacillus subtilis* (Stanley et al., 2003) konnte die Repression der Motilitätsgene in unterschiedlichen Stadien eines Biofilmwachstums festgestellt werden. Bei *E. coli*-Stämmen hingegen konnte eine Korrelation zwischen der Zellmotilität und der Biofilmstruktur entdeckt werden. Demnach bilden die *E. coli*-Stämme ATCC 25404 und MG1655 mit der höchsten Beweglichkeit strukturell die besten Biofilme. Der *E. coli*-Stamm BW25113 mit einer beeinträchtigten Motilität bildete dagegen, in Hinsicht auf die Oberflächenabdeckung und der Dicke, den schlechtesten Biofilm (Wood et al., 2006).

Wie bekannt ist, reagieren motile Bakterien auf die Konzentrationsveränderungen, der sich in der Umwelt befindenden Verbindungen, mit einem Verhalten, welches als Chemotaxis definiert wurde. Lichtmikroskopische Untersuchungen zeigten, dass alle im Rahmen dieser Arbeit isolierten Stämme, außer Y, beweglich waren.

Die Stämme Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y haben bei der "Chemical-in-Plate"- Methode keine Chemotaxis gegenüber Fe- Citrat, FePP und Fe- Oxid gezeigt. Neuere Untersuchungen zeigen, dass *Shewanella oneidensis* MR-1-Stämme, von denen keine chemotaktischen Antworten auf Metalle bekannt waren, auf Mn(II), Fe(II) und sogar auf das Huminsäure-Analogon Anthraquinon-2,6-disulfonat reagierten. Diese Reaktion dient in erster Linie zur Lokalisierung von Mn(III/IV) und Fe(III) für die dissimilatorische Atmung. Ferner können sich die *Shewanella oneidensis* MR-1-Stämme auf die löslichen Formen der oxidierten Metalle mittels "Energietaxis" bewegen (Bencharit & Ward, 2005). Die zelluläre Bewegung ist bei den dissimilatorischen Fe(III)-Reduzierern insbesondere für die Suche und für die Annäherung an das Fe(III) bedeutend.

5 Zusammenfassung

Die dissimilatorische Fe(III)-Reduktion ist eines der erdgeschichtlich frühesten Atmungsprozesse. Die mikrobielle Fe(III)-Atmung kommt in phylogenetisch unterschiedlichen Prokaryonten vor. Bis jetzt konnten nur einige der Elektronentransportproteine der Fe(III)-Atmung von wenigen Mikroorganismen identifiziert werden. In dieser Arbeit wurde sowohl nach Genen, als auch nach Mikroorganismen gesucht, die an der Fe(III)-Atmung beteilgt sind.

Für die Isolierung von dissimilatorischen Fe(III)-reduzierenden Bakterien wurden anaerobe Anreicherungen aus Proben von den Standorten Thermalquelle in Izmir, Türkei (TQIS), Zuckerrübenfeld in der Nähe von Göttingen (ZB), einer Wiese in Northeim (WN) und dem Nieme-Flussufer bei Göttingen (NTL) hergestellt. Das hierfür eingesetzte FePP-Minimalmedium beinhaltete Mannitol als einzige Kohlenstoff- und Energiequelle. Die Anreicherungskultur mit der Probe aus einer Thermalquelle in Izmir, Türkei (TQIS), führte zur Isolierung von fünf verschiedenen dissimilatorischen Fe(III)-reduzierenden Bakterien, die im Folgenden als Izmir A, Izmir B, Izmir C, Izmir D und Izmir Y bezeichnet wurden. Aus den Proben ZB, NTL und WN konnten hingegen keine Fe(III)-reduzierenden Bakterien isoliert werden.

Die elektronenmikroskopischen Aufnahmen der Anreicherungskultur mit der Probe aus TQIS zeigte eine große mikrobielle Vielfalt. Zelltypen, die am häufigsten vorkamen, waren spirillenförmige Zellen, lange Stäbchen und Zellen mit einer deformierten birnenähnlichen Form. Im Weiteren konnten eventuelle intrazelluläre Fe(II)-Häufungen beobachtet werden.

Die 16S-rDNA-Sequenz des Stammes Izmir A zeigte die nächste Verwandtschaft zu einer 16SrDNA-Sequenz aus einem nicht-kultivierten Enterobakterium. Die Stämme Izmir B, Izmir C und Izmir D zeigten ebenso eine Verwandtschaft zu nicht-kultivierten Bakterien. Izmir Y hingegen zeigte eine Verwandtschaft zu *P. macarens*.

Obwohl alle isolierten Izmir-Stämme als Ausgangsmaterial die Anreicherungskultur TQIS hatten, wurde der Stamm Izmir Y im Vergleich zu den Stämmen Izmir A, Izmir B, Izmir C und Izmir D nicht direkt aus den Verdünnungsreihen, sondern aus einer kugelähnlichen Kolonieform auf den FePP-Agarplatten isoliert. Auf der Oberfläche war Vivianit ausgefallen, was durch eine Ferrozinfärbung bestätigt wurde. Im Gegensatz zu Stamm Izmir Y, zeigten die Isolate Izmir A, Izmir B, Izmir C und Izmir D in den Hungateröhrchen eine Aggregatbildung. Die Isolate konnten, unter anaeroben Bedingungen im FePP-Minimalmedium, die Oxidation von unterschiedlichen Kohlenstoffquellen an die Reduktion von Eisen koppeln. Dabei war die Anzahl der oxidierbaren Aminosäuren, im Gegensatz zu den anderen Kohlenstoffquellen, gering.

Aus den Proben "Zuckerübenboden" und aus der Anreicherungskultur mit der Probe aus TQIS wurden Metagenombanken hergestellt. Sowohl bei den Anreicherungskulturen, die aus den Proben aus der Thermalquelle in Izmir hergestellt wurden, als auch bei den Umweltproben aus den Standorten "Zukerrübenboden" und "Thermalquelle" wurden die gleichen Methoden für die DNA-Isolation und Reinigung benutzt. Die DNA wurde nach der Reinigung partiell verdaut und

in den Vektor pSK^+ ligiert. Anschließend erfolgte die Transformation in *E. coli*. Der Anteil der Insert-tragenden Plasmide lag bei 34% bis 85%, wobei die ermittelten durchschnittlichen Insertgrößen zwischen 3,1 – 6,8 kBp lagen. Die erhaltenen Metagenombanken wurden zusammen mit anderen Genbanken, die in den vorherigen Arbeiten konstruiert wurden, auf das Vorhandensein von Genen für dissimilatorische Fe(III)-Reduktasen durchmustert.

Es wurden circa 4,0 Millionen rekombinante *E. coli*-Stämme getestet. Sechs von diesen zeigten einen stabilen dissimilatorisch Fe(III)-reduzierenden Phänotyp. Die Plasmide wurden mit pDI-RO1-06 bezeichnet und anschließend charakterisiert. Auf den Insertsequenzen konnten insgesamt 19 ORFs identifiziert werden. Unter diesen identifizierten ORFs kodierten acht (*orf*01, *orf*04, *orf*06, *orf*11, *orf*12, *orf*14, *orf*16 und *orf*19) für Aminosäuresequenzen, die keine Ähnlichkeit zu bekannten Proteinen zeigten. Bei den aus *orf*02 und *orf*03 abgeleiteten Amniosäuresequenzen konnten Verwandtschaften zu hypothetischen Proteinen aus *Solibacter usitatus* Ellin6076 und aus dem *Acidobacterium* Ellin345 festgestellt werden. Die verbleibenden ORFs kodierten aufwiesen.

Durch Subklonierungen konnte *orf*02 (pDIR01) als der ORF identifiziert werden, der für den Fe(III)-reduzierenden Phänotyp der entsprechenden *E. coli*-Klone verantwortlich ist. Das Genprodukt von *orf*02 zeigte eine Verwandtschaft zu dem hypothetischen Protein Acid_4116 aus *Solibacter usitatus* Ellin6076. Die Molekularmasse des abgeleiteten Proteins (186 Aminosäuren) betrug 20332 Da.

Die Subklonierungsarbeiten auf der Insertsequenz des Plasmids pDIR02 führten zu der Identifizierung von *orf*05, *orf*06 und *orf*07. Die Genprodukte führen gemeinsam oder einzeln zu der Fe(III)-Atmung in dem Wirtsstamm. Das Genprodukt von *orf*06 zeigte keine signifikante Verwandtschaft zu bekannten Proteinen und hatte eine kalkulierte Molekularmasse von 13235 Da. Dagegen zeigte das Genprodukt von *orf*05 (10915 Da) eine Ähnlichkeit zu dem KU-Domänen-Protein aus *Caulobacter sp.*, und das Genprodukt von *orf*07 (7877 Da) eine Ähnlichkeit zu einem 50S ribosomalen Protein L29 aus *Corynebacterium efficiens*.

Unter den auf der Insertsequenz von pDIR03 identifizierten ORFs wurde die oxidoreduktive Funktion dem *orf*09-Genprodukt zugeordnet. Dieses hat eine kalkulierte Molekularmasse von 36304 Da und zeigt eine Verwandtschaft sowohl zu einem Dehydrogenase-Domänen-Protein aus dem Isolat Ellin514, als auch zu dem Klasse I Cytochrom C aus *Geobacter bemidjiensis*. Durch Subklonierungen konnte jedoch festgestellt werden, dass die dissimilatorische Fe(III)-Reduktaseaktivität im Wirtsstamm durch das Zusammenspiel der Genprodukte von *orf*09, *orf*10 und *orf*11, und nicht allein durch das Genprodukt von orf09 verursacht wird.

6 Literaturverzeichnis

- Adeney W.E. (1894): On the reduction of manganese peroxide in sewage. Sci. Proc. R. Dublin Soc. 8: 247-251.
- Afkar E., Reguera G., Schiffer M., Lovley D.R. (2005). A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. BMC Microbiol. 5:41.
- Akoh C.C., Lee G.C., Liaw Y.C., Huang T.H., Shaw J.F. (2004). GDSL family of serine esterases/lipases. Prog. Lipid. Res. Nov; 43(6):534-52.
- Allen E.E., Banfield, J.F. (2005). Community genomics in microbial ecology and evolution. Nature Reviews Microbiology. 3, 489-498.
- Amann R.I., Ludwig, W., and Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169.
- Anbar A. D. (2004). Iron stable isotopes: beyond biosignatures. Earth and Planetary Science Letters Vol. 217, Issues 3-4, 223-236
- Anderson R. T., Lovley D. R. (1997). Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microb. Ecol. 15:289-350
- Anderson R. T., Rooney-Varga J., Gaw C. V., Lovley D. R. (1998). Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleumcontaminated aquifers. Environ. Sci. Technol. 32:1222–1229.
- Anderson R.T., Lovley D.R. (2000). Anaerobic Bioremediation of. Benzene under Sulfate Reducing Conditions in a Petroleum-Contaminated Aquifer. Environmental science & technology. 34, no11, pp. 2261-2266.
- Anderson R.T., Vrionis H.A., Ortiz-Bernad I., Resch C.T., Peacock A., Dayvault R., Marutzky S., Metzler D.R., Karp K., Lowe M., White D.C., Long P.E., Lovley D.R., (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884–5891.
- **Aravind L.**, Koonin E.V. (**2001**). Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel Domäins in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. **11**(8):1365-74.
- Ash C., Priest F. G., Collins M. D. (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. *Antonie van Leeuwenhoek* 64, 253-260.
- Ausubel F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A., Struhl, K. (1987). Current protocols in molecular biology. Green Publishing Associates and Wiley-Interscience. J. Wiley & Sons, New York.
- Banin E., Vasil M.L., Greenberg E.P. (2005). Iron and *Pseudomonas aeruginosa* biofilm formation. Proc. Natl. Acad. Sci U S A. 102(31):11076-81.
- **Beliaev A.S.**, Saffarini D.A. (**1998**). *Shewanella putrefaciens* mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. **180**(23):6292-7.
- Beliaev A.S., Saffarini D.A., McLaughlin J.L., Hunnicutt D. (2001). MtrC, an outer membrane decahaem c cytochrome required for metal reduction in *Shewanella putrefaciens* MR-1. Mol Microbiol. 39(3):722-30.

- Bencharit S., Ward M.J. (2005). Chemotactic responses to metals and anaerobic electron acceptors in *Shewanella oneidensis* MR-1. J. Bacteriol. 187(14):5049-53.
- Bernal A., Ear U., Kyrpides N. (2001) Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. NAR. 29:126-127.
- Blattner F..R., Plunkett G. 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. (1997). The complete genome sequence of Escherichia coli K-12. Science. 277(5331):1453-74.
- Bock R., Khan M.S. (2004). Taming plastids for a green future. Trends Biotechnol. 22(6):311-8
- Bond D. R., and Lovley D. R. (2003). Electricity production by *Geobacter sulfurreducens* attached to electrodes. Appl. Environ. Microbiol. 69:1548-1555.
- Boone D.R., Liu Y., Zhao Z.-J., Balkwill D.L., Drake G.R., Stevens T.O., Aldrich H.C. (1995). *Bacillus infernus* sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol 45, 441–448.
- **Bowman J.P.**, McCammon S.A., Nichols D.S., Skerratt J.H., Rea S.M., Nichols P.D., McMeekin T.A. (**1997**). *Shewanella gelidimarina* sp. nov. and *Shewanella frigidimarina* sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. **47**:1040-7.
- Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
- Brim H., Venkateswaran A., Kostandarithes H.M., Fredrickson J.K., Daly M.J. (2003). Engineering *Deinococcus geothermalis* for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol. 69(8):4575-82.
- **Burgos J.M.**, Ellington B.A., Varela M.F. (2005). Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. J .Dairy Sci. 88(4):1391-8.
- Butler J.E., Kaufmann F., Coppi M.V., Núñez C., Lovley D.R. (2004). MacA, a diheme c-type cytochrome involved in Fe(III) reduction by *Geobacter sulfurreducens*. J. Bacteriol. 186(12):4042-5.
- Butler J.E., Glaven R.H., Esteve-Núñez A., Núñez C., Shelobolina E.S., Bond D.R., Lovley D.R. (2006). Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in *Geobacter sulfurreducens* and engineering of fumarate reduction in *Geobacter metallireducens*. J. Bacteriol. 188(2):450-5.
- Caccavo F. Jr., Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. (1994). *Geobacter sulfurreducens* sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752-3759.
- Caccavo F. Jr., Coates J.D., Rossello-Mora R.A., Ludwig W., Schleifer K.H., Lovley D.R., McInerney M.J. (1996). Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol. 165(6):370-6.
- Canfield D. E., Thamdrup B., Hansen J. W. (1993). The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57, 3867–3883.
- Castresana J., Moreira, D. (1999). Respiratory chains in the last common ancestor of living organisms. J. Mol. Evol. 49: 453-460.

- Castresana J. (2001). Comparative genomics and bioenergetics. Biochim. Biophys. Acta. 1506(3):147-62.
- Childers S.E., Lovley D.R. (2001). Differences in Fe(III) reduction in the hyperthermophilic archaeon, *Pyrobaculum islandicum*, versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol. Lett. 195(2):253-8.
- Childers S.E., Ciufo S., Lovley D.R. (2002). *Geobacter metallireducens* accesses insoluble Fe(III) oxide by chemotaxis. Nature. 416(6882):767-9.
- Coates J. D., Lonergan D.J., Philips E.J., Jenter H., Lovley D.R. (1995). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 164 (6):406-13.
- Coates J.D., Ellis D.J., Blunt-Harris E.L., Gaw C.V., Roden E.E., Lovley D.R. (1998). Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol. 64(4):1504-9.
- Coates J.D., Ellis D., Gaw, C.W., Lovley D.R. (1999). *Geothrix fermentans* gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49: 1615–1622.
- Connon S. A., Giovannoni S. J. (2002). High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:3878-3885.
- Costilow R. N. (1981). Biophysical factors in growth. In: Gerhardt P., Murray G. E., Costilow N. R., Nester E. W., Wood W. A., Krieg R., Philips G. B. (Hrsg.) (1981). Manual of methods for general bacteriology, 66-78. American Society for Microbiology, Washington D.C., USA.
- Coupland K., Johnson D.B. (2008). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.FEMS Microbiol Lett. 279(1):30-5.
- Courtois S., Cappellano C.M., Ball M., Francou F.X., Normand P., Helynck G., Martinez A., Kolvek S.J., Hopke J., Osburne M.S., August P.R., Nalin R., Guerineau M., Jeannin P., Simonet P., Pernodet J.L. (2003). Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69(1):49-55.
- Cronan J.E. Jr., (1992). The gene encoding the biotin carboxylase subunit of *Escherichia coli* acetyl-CoA carboxylase. J. Biol. Chem. 267(2):855-63.
- Cronan J.E. Jr. (2002). Interchangeable enzyme modules. Functional replacement of the essential linker of the biotinylated subunit of acetyl-CoA carboxylase with a linker from the lipoylated subunit of pyruvate dehydrogenase. J. Biol. Chem. 277(25):22520-7.
- Cummings D.E., March A.W., Bostick B., Spring S., Caccavo F. Jr., Fendorf S., Rosenzweig R.F. (2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho). Appl Environ Microbiol. 66(1):154-62.
- Cummings D.E., Fendorf S., Singh N., Sani R.K., Peyton B.M., Magnuson T.S. (2007). Reduction of Cr(VI) under acidic conditions by the facultative Fe(lll)-reducing bacterium Acidiphilium cryptum. Environ. Sci. Technol. 41(1):146-52.

- Daniel R., Warnecke F., Potekhina J.S., Gottschalk G. (1999). Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction. FEMS Microbiol. Lett. 180(2):197-203.
- **Daniel R.** (2004). The soil metagenome—a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15(3):199-204.
- Davies G., Fataftah A., Cherkasskiy A., Ghabbour E.A., Radwan A., Jansen S. A., Kolla S., Paciolla M. D., Sein L. T., Buermann W., Balasubramanian M., Budnick J., Xing B. (1997). Tight metal binding by humic acids and its role in biomineralization . J. Chem. Soc., Dalton Trans., no 21 Pages 4047–4060.
- **Davis K.E.**, Joseph S.J., Janssen P.H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71(2):826-34.
- Diaz-Torres M.L., McNab R., Spratt D.A., Villedieu A., Hunt N., Wilson M., Mullany P. (2003). Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother. 47(4):1430-2.
- DiChristina T.J. (1992). Effects of nitrate and nitrite on dissimilatory iron reduction by *Shewanella putrefaciens* 200. J. Bacteriol. 174(6):1891-6.
- DiChristina T. J., DeLong E. F. (1993). Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium *Shewanella putrefaciens*. Appl. Environ. Microbiol. 59(12): 4152–4160.
- DiChristina T J., Fredrickson J. K., Zachara J. M. (2005). Enzymology of Electron Transport: Energy Generation With Geochemical Consequences. Rev. Mineral. Geochemistry; 59: 27 - 52.
- **Dobbin P.S.,** Butt J.N., Powell A.K., Reid G.A., Richardson D.J. (**1999**). Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3+ by Shewanella frigidimarina NCIMB400. Biochem J. **342** (Pt 2):439-48.
- Dubiel M., Hsu C. H., Chien C. C., Mansfeld F., Newman D. K. (2002). Microbial iron respiration can protect steel from corrosion. Applied and Environmental Microbiology. Vol. 68, No. 3 1440-1445.
- **Dynan W.S.**, Yoo S. (**1998**). Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. **26**(7):1551-9.
- Ehrlich H.L. (1996). Geomicrobiology. New York: Marcel Dekker.
- Ehrlich H. L. (1999). Microbes as geologic agents: Their role in mineral formation. Geomicrobiology 16:135-153.
- Eilers H., Pernthaler J., Peplies J., Glockner F. O., Gerdts G., Amann R. (2001). Isolation of novel pelagic bacteria from the German Bight and their seasonal contribution to surface picoplankton. Appl. Environ. Microbiol. 67:5134-5142.
- **Emerson D.**, Moyer C. (**1997**). Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. **63**(12):4784-92.
- **Entcheva P.**, Liebl W., Johann A., Hartsch T., Streit W.R. (2001). Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl. Environ. Microbiol. 67(1):89-99.
- Francis C.A., Obraztsova A.Y., Tebo B.M. (2000). Dissimilatory metal reduction by the facultative anaerobe *Pantoea agglomerans* SP1. Appl. Environ. Microbiol. 66(2):543-8.

- Fredrickson J.K., Kostandarithes H.M., Li S.W., Plymale A.E., Daly M.J. (2000). Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by *Deinococcus radiodurans* R1. Appl. Environ. Microbiol. 66(5):2006-11.
- Frohlich J., Konig H. (2000). New techniques for isolation of single prokaryotic cells. FEMS Microbiol. Rev. 24:567–572.
- Fuerst J.A., Gwilliam H.G., Lindsay M., Lichanska A., Belcher C., Vickers J.E., Hugenholtz P. (1997). Isolation and molecular identification of *planctomycete* bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl. Environ. Microbiol. 63(1):254-62.
- **Gabor E.M.**, de Vries E.J., Janssen D.B. (**2004**). Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ. Microbiol. **6**(9):948-58.
- Gibson D. T., Subramani V. (1984). Microbial degradation of aromatic hydrocarbons, p: 181-252. In D. T. Gibson (ed.), Microbial degradation of organic compounds. Marcel Dekker, Inc., New York.
- Gibson E. K. Jr., Thomas-Keprta K. L., Vali H., Romanek C. S., Clemett S. J., Chillier X. D. F., Maechling C. R. & Zare R. N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924-930.
- Gill S.R., Pop M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., Nelson K.E. (2006). Metagenomic analysis of the human distal gut microbiome.Science. 312(5778):1355-9.
- Gillespie D.E., Brady S.F., Bettermann A.D., Cianciotto N.P., Liles M.R., Rondon M.R., Clardy J., Goodman R.M., Handelsman J. (2002). Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68(9):4301-6.
- Glöckner F.O., Kube M., Bauer M., Teeling H., Lombardot T., Ludwig W., Gade D., Beck A., Borzym K., Heitmann K., Rabus R., Schlesner H., Amann R., Reinhardt R. (2003). Complete genome sequence of the marine planctomycete *Pirellula* sp. strain 1. Proc. Natl. Acad. Sci. U S A. 100(14):8298-303.
- Gold T. (1992). The deep, hot biosphere.Proc. Natl. Acad.Sci. USA. 89, 6045-6049.
- **Gordon E.H.**, Pike A.D., Hill A.E., Cuthbertson P.M., Chapman S.K., Reid G.A. (2000). Identification and characterization of a novel cytochrome c(3) from Shewanella frigidimarina that is involved in Fe(III) respiration. Biochem J. 349 (Pt 1):153-8.
- Gottschalk G., Knackmuss H.-J. (1993). Bacteria and the Biodegradation of Chemicals Achieved Naturally, by Combination, or by Construction. Angewandte Chemie International Edition in English. 32(10):1398-1408.
- Hager M., Biehler K., Illerhaus J., Ruf S., Bock R. (1999). Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO. 18(21):5834-42.
- Halic M., Becker T., Pool M., Spahn C., Grassucci R., Frank J., Beckmann R. (2004). Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature.427:808–813.
- Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmid. J. Mol. Bol. 166: 557-580.

- Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5(10):R245-9.
- Handelsman, J. (2004). Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Molec. Biol. Rev. 68: 669-684.
- Hansel C.M., Benner S.G., Neiss J., Dohnalkova A., Kukkadapu R.K., Fendorf S. (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. *Geochim. Cosmochim. Acta* 67, 2977-2992.
- Heidelberg J.F., Paulsen I.T., Nelson K.E., Gaidos E.J., Nelson W.C., Read T.D., Eisen J.A., Seshadri R., Ward N., Methe B., Clayton R.A., Meyer T., Tsapin A., Scott J., Beanan M., Brinkac L., Daugherty S., DeBoy R.T., Dodson R.J., Durkin A.S., Haft D.H., Kolonay J.F., Madupu R., Peterson J.D., Umayam L.A., White O., Wolf A.M., Vamathevan J., Weidman J., Impraim M., Lee K., Berry K., Lee C., Mueller J., Khouri H., Gill J., Utterback T.R., McDonald L.A., Feldblyum T.V., Smith H.O., Venter J.C., Nealson K.H., Fraser C.M. (2002). Genome sequence of the dissimilatory metal ion-reducing bacterium *Shewanella oneidensis*. Nat. Biotechnol. 20(11):1118-23.
- Henne A., Daniel, R., Schmitz, R.A., Gottschalk, G. (1999). Construction of environmental DNA libraries in *Escherichia coli* and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl. Evironm. Microbiol. 65: 3901-3907.
- Henne A., Schmitz R.A., Bömeke M., Gottschalk G, Daniel R. (2000). Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on *Escherichia coli*. Appl. Evironm. Microbiol. **66**:3113-3116.
- Henne A. Konstruktion von Standort-Genbanken in Escherichia coli und Untersuchung auf die Anwesenheit von 4-Hydroxybutyrat-verwertenden oder lipolytischen Genprodukten (2000). Umfang: VIII, 185 S.Hochschulschrift: Göttingen, Univ., Diss., 2000. Signatur: DISS 2001 B 9356
- Hernandez M.E., and Newman D.K., (2001). Extracellular electron transfer: Cellular and Molecular Life Sciences, v. 58, p. 1562-1571.
- Hernandez M.E., Kappler A., Newman D.K. (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70(2):921-8.
- Holmes D.E., Finneran K.T., O'Neil R.A., Lovley D.R., (2002). Enrichment of members of the family *Geobacteraceae* associated with stimulation of dissimilatory metal reduction in uranium contaminated aquifer sediments. Appl. Environ. Microbiol. 68, 2300–2306.
- Holmes D.E., Bond D.R, O'Neil R.A, Reimers C.E, Tender L.R., Lovley D.R. (2004). Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol. 48(2):178-90.
- Holmes D.S., Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193-197.
- Horn M. A., Ihssen J., Matthies C., Schramm A., Acker G., Drake H. L. (2005). Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N₂O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int. J. Syst. Evol. Microbiol. 55:1255-1265.
- Hoster F., Schmitz J.E, Daniel R.(2004). Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopatho-

genic fungi from a novel *Streptomyces* strain. Appl. Microbiol. Biotechnol. **66** (4), 434-442.

- Hugenholtz P., Goebel B. M., Pace N.R. (1998). Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity. Journal of Bacteriology. 180(18):4765-4774.
- Inoue H., Nojima, H., Okayama, H. (1990). High efficiency transformation of *Escherichia coli* with plasmids. Gene 96: 23-28.
- Jan-Roblero J., Romero J.M., Amaya M., Le Borgne S. (2004). Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Appl. Microbiol. Biotechnol. 64(6):862-7.
- Janssen P. H., Yates P. S., Grinton B. E., Taylor P. M., Sait M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68:2391-2396.
- Jennings D.B., Ehrenshaft M., Pharr D.M., Williamson J.D. (1998). Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. USA. 95:15129-15133.
- Joseph S.J., Hugenholtz P., Sangwan P., Osborne C.A., Janssen P.H. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69(12):7210-5.
- Kaeberlein T., Lewis K., Epstein S.S. (2002). Isolating "uncultivable"microorganisms in pure culture in a simulated natural environment. Science 296:1127-1129.
- **Kashefi K.**, Lovley D.R. (**2000**). Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees °C by *Pyrobaculum islandicum*. Appl. Environ. Microbiol. **66**(3):1050-6.
- Kashefi K., Tor J.M., Holmes D.E., Gaw Van Praagh C.V., Reysenbach A.L., Lovley D.R. (2002). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int. J. Syst. Evol. Microbiol. 52 (Pt 3):719-28.
- Kashefi K., Holmes D.E., Lovley D.R., Tor J.M. (2004). Potential importance of dissimilatory Fe(III)-reducing microorganism in hot sedimentary environments. at Mid-Ocean Ridges, Geophysical Monograph Series (144).
- **Kellenberger E.** (2001). Exploring the unknown. The silent revolution of microbiology. EMBO Rep. 2(1):5-7.
- Kim B.C., Leang C., Ding Y.H., Glaven R.H., Coppi M.V., Lovley D.R. (2005). OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in *Geobacter sulfurreducens*. J. Bacteriol. 187(13):4505-13.
- **Kim B.C.**, Qian X., Leang C., Coppi M.V., Lovley D.R. (**2006**). Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in *Geobacter sulfurreducens*. J Bacteriol. **188**(8):3138-42.
- **Kim B.H.**, Park H.S., Kim H.J., Kim G.T., Chang I.S., Lee J., Phung N.T. (**2004**). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. **63**(6):672-81.

- Kim J. R., Dec J., Bruns M. A., Logan B. E. (2008). Removal of Odors from Swine Wastewater by Using Microbial Fuel Cells Applied and Environmental Microbiology. Vol. 74(8): 2540-2543,
- King G.M., Garey M.A. (1999). Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. Appl. Environ. Microbiol. 65(10):4393-8.
- Kishimoto N., Kosako Y., Tano T. (1991). *Acidobacterium capsulatum* gen. nov., sp. nov. an acidophilic, chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22: 1–7.
- Knietsch A., Waschkowitz T., Bowien S., Henne A., Daniel R. (2003). Construction and screening of metagenomic libraries derived from enrichment cultures: Generation of a gene bank for genes conferring alcohol oxidoreductase activity on *Escherichia* coli. Appl. Environ. Microbiol. 69:1408-1416.
- Knight V., Blakemore R. (1998). Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch. Microbiol. 169(3):239-48.
- Köpke B., Wilms R., Engelen B., Cypionka H., Sass H. (2005). Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71(12):7819-30.
- Kramer G., Rauch T., Rist W., Vorderwülbecke S., Patzelt H., Schulze-Specking A., Ban N., Deuerling E., Bukau B. (2002). L23 protein functions as a chaperone docking site on the ribosome. Nature. 419(6903):171-4.
- Krieg N. R., Hoffman P. S. (1986). Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40:107-130.
- Lang B.F., Burger G., O'Kelly C.J., Cedergren R., Golding G.B., Lemieux C., Sankoff D., Turmel M., Gray M.W. (1997). An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. M387(6632):493-7.
- Leang C., Coppi M.V., Lovley D.R. (2003). OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol. 185(7):2096-103.
- Leang C., Lovley D.R. (2005). Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens. Microbiology. 151(Pt 6):1761-7.
- LeCleir G.R., Buchan A., Hollibaugh J.T. (2004). Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microbiol. 70(12):6977-83.
- Ledyard K.M. and Butler A. (1997). Structure of Putrebactin, a New Dihydroxamate Siderophore Produced by *Shewanella putrefaciens*, J. Biol. Inorg. Chem., 2, 93-97.
- Lee A.K., Newman D.K. (2003). Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol. 62(2-3):134-9.
- Levin J.D., Johnson A.W. (1988). Demple B. Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem. 263(17):8066-71.
- Lies D.P., Hernandez M.E., Kappler A., Mielke R.E., Gralnick J.A., Newman D.K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Appl. Environ. Microbiol. 71(8):4414-26.

- Liesack W., Bak F., Kreft U., Stackebrandt E. (1994). *Holophaga foetida* gen. nov., spec. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol. 162: 85–90.
- Liu C., Gorby Y.A., Zachara J.M., Fredrickson J.K., Brown C.F. (2002). Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 80(6):637-49.
- Liu S.V., Zhou J., Zhang C., Cole D.R., Gajdarziska-Josifovska M., Phelps T.J. (1997). Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications. Science 277: 1106-1109
- Lloyd J.R., Leang C., Hodges-Myerson A. L., Coppi M. V., Ciufo S., Methe B., Sandler S. J., Lovley D. R. (2003). Biochemical and genetic characterization of PpcA, a periplasmic cc-type cytochrome in *Geobacter* sulfurreducens*Geobacter* sulfurreducens. Biochem. J. 369:153-161.
- Lonergan D.J., Jenter, H. L., Coates, J. D., Phillips, E. J., Schmidt, T. M. & Lovley, D. R. (1996). Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178, 2402-2408.
- Lovley D.R., Baedecker M.J., Lonergan D.J. (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339, 297 300
- Lovley D.R., Lonergan D.J. (1990). Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl. Environ. Microbiol. 56(6):1858-1864.
- Lovley D.R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55(2):259-87.
- Lovley D.R. (1993). Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263-290.
- Lovley D.R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol. 14(2):85-93
- Lovley D.R., Coates J.D., Woodward J.C., Phillips E. (1995). Benzene Oxidation Coupled to Sulfate Reduction. Appl. Environ. Microbiol. 61(3):953-958.
- **Lovley D.R.**, Phillips E.J., Lonergan D.J., Widman P.K. (**1995**). Fe(III) and S⁰ reduction by Pelobacter carbinolicus. Appl Environ Microbiol. **61**(6):2132-8.
- Lovley D.R., Coates J. D., Blunt-Harris E. L., Phillips E.J. P., Woodward J. C. (1996). Humic substances as electron acceptors for microbial respiration. Nature. 382:445-448
- Lovley D.R., Coates J.D., Saffarini D., Lonergan D.J. (1997). Dissimilatory iron reduction. In Winkelmann G, Canamo CL, editors. Transition Metals in Microbial Metabolism. The Netherlands: Harwood Academic Publishers. p 187–215.
- Lovley, D.R. (1997). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305-313.
- Lovley D.R., Fraga J. L., Blunt-Harris E. L., Hayes L. A., Phillips E. J. P., Coates J. D. (1998). Humic Substances as a Mediator for Microbially Catalyzed Metal Reduction. Acta hydrochimica et hydrobiologica. Vol 26 (3), Pages 152 157.
- Lovley D.R. (1999). Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65, 3056–3063.
- Lovley D.R., Anderson R. T. (2000). Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol. J. 8, 77–88.

- Lovley, D.R. (2000). Fe(III) and Mn(IV) reduction. In Environmental Microbe Metal Interactions. Lovley, D.R. (eds). Washington, DC: American Society for Microbiology Press, pp. 330.
- Lovley D.R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1(1):35-44.
- Lovley D.R., Holmes D.E., Nevin K.P. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219-86.
- Luu Y., Ramsay B.A., Ramsay J.A. (2003). Nitrilotriacetate stimulation of anaerobic Fe(III) respiration by mobilization of humic materials in soil. Appl. Environ. Microbiol. 69(9):5255-62.
- Lysnes K., I.H. Thorseth, B.O. Steinsbu, L. Øvreas, , Torsvik T. , Pedersen R. B. (2004). Microbial community diversity in seafloor basalt from the Arctic spreading - FEMS microbiology ecology. 50 (3), pp. 213-230.
- MacDonell M.T., Colwell R. R. (1985) Title Phylogeny of the Vibrionaceae, and recommendation for two new genera, *Listonella* and *Shewanella*. Journal. Syst. Appl. Microbiol. 6 (2):171-182
- Madden T.L., Tatusov R.L., Zhang J. (1996). Applications of network BLAST server. Methods Enzymol. 266:131-41.
- Magnuson T.S., Isoyama N., Hodges-Myerson A.L., Davidson G., Maroney M.J., Geesey G.G., Lovley D.R. (2001). Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens.Biochem J. 359(1):147-52.
- Mahl H., Mödler K. (1971). Herstellung von Formvar-Objektträger-Filmen nach dem Eintauchverfahren. In: SchimmeL, G., Vogell, W. (Hrsg.), Methodensammlung der Elektronenmikroskopie, Wissenschaftliche Verlagsanstalt, Stuttgart.
- Majernik A., Gottschalk G., Daniel R. (2001). Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on *Escherichia* coli: characterization of the recovered genes and the corresponding gene products. J. Bacteriol. 183:6645-6653.
- Major D.W., Mayfield C. I., Barker J. F. (1988). Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26:8-14.
- Manome A., Zhang H., Tani Y., Katsuragi T., Kurane R., Tsuchida T. (2001). Application of gel microdroplet and flow cytometry techniques to selective enrichment of non-growing bacterial cells.FEMS Microbiol Lett. 197(1):29-33.
- Marchler-Bauer A., Anderson J.B., Derbyshire M.K., DeWeese-Scott C., Gonzales N.R., Gwadz M., Hao L., He S., Hurwitz D.I., Jackson J.D., Ke Z., Krylov D., Lanczycki C.J., Liebert C.A., Liu C., Lu F., Lu S., Marchler G.H., Mullokandov M., Song J.S., Thanki N., Yamashita R.A., Yin J.J., Zhang D., Bryant S.H. (2007). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35: D237-40.
- Marsili E., Baron D.B., Shikhare I.D., Coursolle D., Gralnick J.A., Bond D.R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A. 105(10):3968-73.
- Mayer F., Spiess E. (1976). Elektronenmikroskopische Präperationsmethoden: Negativ-Kontrastierung. Begleitveröffentlichung C1191, Inst.wiss. Film, Göttingen

- McKay D.S., Thomas-Keptra K.L., Romanek C.S., Gibson E.K. Jr. and Vali H. (1996). Evaluating the evidence for past life on Mars. Science 274, 2123-2124.
- McKinlay J.B., Zeikus J.G. (2004). Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microbiol. 70(6):3467-74.
- Mehta T., Coppi M.V., Childers S.E., Lovley D.R. (2005). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol. 71(12):8634-41.
- Meisinger D.B., Zimmermann J., Ludwig W., Schleifer K.H., Wanner G., Schmid M., Bennett P.C., Engel A.S., Lee N.M. (2007). In situ detection of novel *Acidobacteria* in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ. Microbiol. 9(6):1523-34.
- Mendez E., Havel J., Patocka J. (2005). Humic substances compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed.; 3(1):13-24
- Methe B.A., Nelson K.E., Eisen J.A., Paulsen I.T., Nelson W., Heidelberg J.F., Wu D., Wu M., Ward N., Beanan M.J., Dodson R.J., Madupu R., Brinkac L.M., Daugherty S.C., DeBoy R.T., Durkin A.S., Gwinn M., Kolonay J.F., Sullivan S.A., Haft D.H., Selengut J., Davidsen T.M., Zafar N., White O., Tran B., Romero C., Forberger H.A., Weidman J., Khouri H., Feldblyum T.V., Utterback T.R., Van Aken S.E., Lovley D.R., Fraser C.M. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. (2003). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science. 302(5652):1967-9.
- Miller J.H. (1972). Experiments in molecular genetics. Cold Spring Habor Laboratory, Cold Spring Habor, New York.
- Monferran S., Paupert J., Dauvillier S., Salles B., Muller C. (2004a). The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J. 23(19):3758-68.
- Monferran S., Muller C., Mourey L., Frit P., Salles B. (2004b). The Membrane-associated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin. J. Mol. Biol. 337(3):503-11.
- Moran M.A., HodsonR. E. (1994). Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnology and oceanography, 39 (4), 762-771
- Müller A., Friedrich M.W. (2007). Identification of dissimilatory iron-reducing bacteria inanoxic rice soil microcosms by stable isotope probing of RNA. Geophysical Research Abstracts, Vol. 9, 07017
- Muller C., Paupert J., Monferran S., Salles B. (2005). The double life of the Ku protein: facing the DNA breaks and the extracellular environment. Cell Cycle. 4(3):438-41.
- Muyzer G., De Waal E.C., Uitterlinden A.G. (1992). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
- Muyzer G., Teske A., Wirsen C.O., Jannasch H.W. (1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16 S rDNA fragments. Archives of Microbiology. 164:165-172.

- Myers C. R., & Myers, J. M. (1997). Cloning and sequence of *cymA*, a gene encoding a tetraheme cytochrome *c* required for reduction of iron(III), fumarate, and nitrate by *Shewanella putrefaciens* MR-1.*J Bacteriol* 179, 1143-1152.
- Myers J.M., Myers C.R. (2000). Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol. 182(1):67-75.
- Myers C.R., Myers J.M. (2002). MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of *Shewanella putrefaciens* MR-1. Appl. Environ. Microbiol. 68(11):5585-94.
- Myers J.M., Myers C.R. (2003). Overlapping role of the outer membrane cytochromes of Shewanella oneidensis MR-1 in the reduction of manganese(IV) oxide. Lett Appl Microbiol. 37(1):21-5
- Nagaya A., Takeyama S., Tamegai H. (2005). Identification of aminotransferase genes for biosynthesis of aminoglycoside antibiotics from soil DNA. Biosci. Biotechnol. Biochem. 69(7):1389-93.
- Nazina T.N., Ivanova A.E., Goulbeva O.V., Ibatullin R.R., Belyaev S.S., Ivanov M.V. (1995). Occurrence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Relation. Microbiology (New York); 64 (2) 203-208; Translated from Mikrobiologiya; 64: No. 2, 245-251(1995)
- Nealson K.H., Cox B.L. (2002). Microbial metal-ion reduction and Mars: extraterrestrial expectations? Curr Opin Microbiol. 5(3):296-300
- Nevin K.P., Lovley D.R. (2000a). Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by *Geobacter metallireducens*. Appl. Environ. Microbiol. 66, 2248-2251.
- Nevin, K.P., Lovley, D. R. (2002). Mechanisms for Accessing Insoluble Fe(III) Oxide during Dissimilatory Fe(III) Reduction by *Geothrix fermentans*. Appl. Environ. Microbiol. 68: 2294-2299.
- Newman D.K., Kolter R. (2000). A role for excreted quinones in extracellular electron transfer. Nature. 405(6782):94-7.
- Niggemyer A., Spring S., Stackebrandt E., Rosenzweig R.F. (2001). Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 67(12):5568-80.
- North N.N., Dollhopf S.L., Petrie L., Istok J.D., Balkwill D.L., Kostka J.E. (2004). Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Microbiol. 70(8):4911-20.
- **Obuekwe C.O.**, Westlake D.W., Cook F.D., William Costerton J. (**1981**). Surface Changes in Mild Steel Coupons from the Action of Corrosion-Causing Bacteria Appl Environ Microbiol. **41**(3):766-774.
- Pace N.R. (1997). A molecular view of microbial diversity and the biosphere. *Science*. 276(5313): 734-40.
- Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K. et al. (2001). A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to *Clostridium butyricum* isolated from a bacterial fuel cell. Anaerobe 7, 297–306.

- Patrick L. (2003). Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev. 8(2):106-28.
- **Peters V.**, Conrad R. (**1996**). Sequential reduction processes and inhibition of CH₄ production upon flooding of oxic upland soils. Soil Biol. Biochem. **28**:371–382.
- Philippot L. (2005). Tracking nitrate reducers and denitrifiers in the environment. Biochem. Soc. Trans. 33(1):200-4.
- Pitts K.E., Dobbin P.S., Reyes-Ramirez F., Thomson A.J., Richardson D.J., Seward H.E. (2003). Characterization of the *Shewanella oneidensis* MR-1 decaheme cytochrome MtrA: expression in *Escherichia coli* confers the ability to reduce soluble Fe(III) chelates. J. Biol. Chem. 278:27758-65.
- Plugge C.M. (2005). Anoxic media design, preparation, and considerations. Methods Enzymol. 397:1-16.
- **Ponting C.P.** (2002) Novel Domäins and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res. **30**(17):3643-52
- Potekhina J.S., Sherisheva N.G., Povetkina L.P., Pospelov A.P., Rakitina T.A., Warnecke F., Gottschalk G. (1999). Role of microorganisms in corrosion inhibition of metals in aquatic habitats Applied Microbiology and Biotechnology. 52 (5), 639-646.
- Potempa J., Pike R.N. (2005). Bacterial peptidases. Contrib. Microbiol.12:132-80.
- Quaiser A., Ochsenreiter T., Lanz C., Schuster S.C., Treusch A.H., Eck J., Schleper C. (2003). Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol. Microbiol. 50(2):563-75.
- Rabaey K., Boon N., Siciliano S.D., Verhaege M., Verstraete W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol. 70(9):5373-82.
- **Rees H.C.**, Grant S., Jones B., Grant W.D., Heaphy S. (**2003**). Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles. **7**(5):415-21.
- Reguera G., Nevin K. P., Nicoll J. S., Covalla S. F., Woodard T. L., Lovley D. R. (2006). Biofilm and nanowire production lead to increased current in microbial fuel cells. Appl. Environ. Microbiol. 72:7345-7348
- Reid G.A., Gordon E.H. (1999). Phylogeny of marine and freshwater Shewanella: Reklassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina. Int. J.Syst. Bacteriol. 49 Pt 1:189-91
- **Richardson D.J.** (2000). Bacterial respiration: a flexible process for a changing environment. Microbiology. **146**(3):551-71.
- **Riesenfeld C.S.**, Goodman R.M., Handelsman J. (2004). Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6(9):981-9.
- Robinson D.G., Ehlers U., Herken R., Herrmann B., Mayer, F., Schürmann F.-W. (1985). Präparationsmethodik in der Elektronenmikroskopie, Springer Verlag, Berlin, Heidelberg, New York, Tokio.
- Rocha E.P., Cornet E., Michel B. (2005). Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 1(2):e15.
- Rodriguez-Valera F. (2004). Environmental genomics, the big picture? FEMS Microbiol. Lett. 231:153-158.

- Rondon M.R., August P.R., Bettermann A.D., Brady S.F., Grossman T.H., Liles M.R., Loiacono K.A., Lynch B.A., Macneil I.A., Minor C., Tiong C.L., Gilman M., Osburne M.S., Clardy J., Handelsman J., Goodman, R.M. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541-2547.
- **Rooney-Varga J.N.**, Anderson R.T., Fraga J.L., Ringelberg D., Lovley D.R. (**1999**). Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. **65**, 3056–3063.
- Rosselló-Mora R., Ludwig W., Kämpfer P., Amann R., Schleifer K.H. (1995). *Ferrimonas* balearica gen. nov., sp. nov., a new marine facultative Fe(III)-reducing bacterium. *Syst. Appl. Microbiol.*, 18, 196-202.]
- **Roychoudhury A.N.**, Merrett G.L. (2006). Redox pathways in a petroleum contaminated shallow sandy aquifer: Iron and sulfate reductions. Sci. Total Environ. 366(1):262-74.
- Ruebush S.S., Brantley S.L., Tien M. (2006). Reduction of soluble and insoluble iron forms by membrane fractions of *Shewanella oneidensis* grown under aerobic and anaerobic conditions. Appl. Environ. Microbiol. 72(4):2925-35.
- Ruijter G.J., Bax M., Patel H., Flitter S.J., van de Vondervoort P.J., de Vries R.P., vanKuyk P.A., Visser J. (2003). Mannitol is required for stress tolerance in *Aspergillus niger* conidiospores. Eukaryot. Cell. 2(4):690-8.
- Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M-A.; Barrell B. (2000). Artemis: sequence visualisation and annotation." Bioinformatics 16 (10) 944-945.
- Sait M., Hugenholtz P., Janssen P. H. (2002). Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4:654-666.
- Sambrook, J., Fritsch, E., Maniatis, T. (1989). Molecular cloning: a laboratory manual (2.Aufl.). Cold Spring Harbor Laboratory, Cold Spring Habor, New York, USA.
- Sanger F., Nicklen S., Coulson A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74(12):5463-7.
- Sargent F. (2007). Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology. 153(Pt 3):633-51.
- Schleper C., Puehler G., Holz I., Gambacorta A., Janekovic D., Santarius U., Klenk H.P., Zillig W. (1995). *Picrophilus* gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol. 177(24):7050-9.
- Schloss P.D., Handelsman J. (2005). Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol. 6(8):229.
- Svoboda P., Harms-Ringdahl M. (2002). Kinetics of phosphate-mediated oxidation of ferrous iron and formation of 8-oxo-2'-deoxyguanosine in solutions of free 2'-deoxyguanosine and calf thymus DNA. Biochim. Biophys. Acta. 1571(1):45-54.
- Semple K.M., Westlake D.W.S. (1987). Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Canadian Journal of Microbiology. 33:5, 366-371.
- Senger M., Flores T., Glatting K., Ernst P., Hotz-Wagenblatt A., Suhai S. (1998). W2H: WWW interface to the GCG sequence analysis package. Bioinformatics. 14(5):452-7.

- Shelobolina E.S., Vanpraagh C. G., Lovley D. R. (2003). Use of ferric and ferrous iron containing minerals for respiration by *Desulfitobacterium frappieri*. Geomicrobiology Journal, 20 (No. 2) 143-156.
- Shi Y., Fan D.J., Li S.X., Zhang H.J., Perrett S., Zhou J.M. (2007). Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Sci. 16(6):1165-75.
- Short, J.M. (1997). "Recombinant approaches for accessing biodiversity." Nat. Biotechnol. 15(13): 1322-3.
- Shuman S. (1991). Recombination mediated by vaccinia virus DNA topoisomerase I in Escherichia coli is sequence specific. Proc Natl Acad Sci U S A. 88(22) 10104-8.
- Shuman S. (1994). Novel Approach to Molecular Cloning and Polynucleotide Synthesis Using Vaccinia DNA Topoisomerase. J. Biol. Chem. 269, 32678-32684.
- Simu K., Hagstrom A. (2004). Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 70:2445–2451.
- Slobodkin A., Reysenbach A. L., Strutz N., Dreier M., Wiegel J. (1997). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)reducing bacterium from a continental hot spring. Int. J. Syst. Bacteriol. 47, 541-547.
- Slobodkin A.I. (2005). Thermophilic microbial metal reduction. Mikrobiologiia. 74(5):581-95.
- Smirnoff N., Cumbes Q.J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:612–619.
- Smith T.F., Lee J.C., Gutell R.R., Hartman H. (2008). The origin and evolution of the ribosome. Biol. Direct. 3:16.
- Snoeyenbos-West O., Van Praagh C.G., Lovley D.R. (2001). Trichlorobacter thiogenes should be renamed as a *Geobacter* species. Appl. Environ. Microbiol. 67(2):1020-2.
- Stanley N.R., Britton R.A., Grossman A.D., Lazazzera B.A. (2003). Identification of catabolite repression as a physiological regulator of biofilm formation by *Bacillus subtilis* by use of DNA microarrays. J. Bacteriol. 185(6):1951-7.
- Stein L.Y., Arp D.J., Berube P.M., Chain P.S., Hauser L., Jetten M.S., Klotz M.G., Larimer F.W., Norton J.M., Op den Camp H.J., Shin M., Wei X. (2007). Whole-genome analysis of the ammonia-oxidizing bacterium, *Nitrosomonas eutropha* C91: implications for niche adaptation. Environ. Microbiol. 9(12):2993-3007.
- Stevenson B.S., Eichorst S.A., Wertz J.T., Schmidt T.M., Breznak J.A. (2004). New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70(8):4748-55.
- Stoop J.M.H., Williamson J. D., Pharr D.M. (1996). Mannitol metabolism in plants: A method for coping with stress Trends Plant Sci. 1:139-144.
- Straub K.L., Benz M., Schink B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 34(3):181-186.
- **Tebbe C.C.**, Vahjen W. (**1993**). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. **59**(8):2657-65
- **Tebo B.M.**, Obraztsova. A.Y. (**1998**). Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett. **162**:193-198.
- **Thony-Meyer L.** (1997). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev. 61(3):337-76.
- Tschech A., Pfennig N. (1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Archives of Microbiology. 137(2):163-167
- **Tso W.W.**, Adler J. (1974). *Several methods for detecting or measuring* negative. J Bacteriol. 118(2):560-76. Negative chemotaxis in Escherichia coli.
- **Turick C.E.**, Tisa L.S., Caccavo, Jr. F. (**2002**). Melanin Production and Use as a Soluble Electron Shuttle for Fe(III) Oxide Reduction and as a Terminal Electron Acceptor by *Shewanella algae* BrY. Appl. Environ. Microbiol. May; **68**: 2436-2444.
- **Turick C.E.**, Caccavo F., Tisa L.S. (2003). Electron transfer from *Shewanella* algae BrY to hydrous ferric oxide is mediated by cell-associated melanin. FEMS Microbiology Letters 220:99-104.
- Tyson G.W., Chapman J., Hugenholtz P., Allen E.E., Ram R.J., Richardson P.M., Solovyev V.V., Rubin E.M., Rokhsar D.S., Banfield J.F. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 428 (6978):37-43.
- Valentine R.C., Scarpio B.M., Stadtman E.R. (1968): Regulation of glutamine synthetase, XII.Electron microscopy of the enzyme from *Escherichia* coli. Biochem. 7:2143-2152.
- Vargas M., Kashefi K., Blunt-Harris E.L., Lovley D.R. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature. 395(6697):65-7
- Varma A., Young K.D. (2004). FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J Bacteriol. 186(20):6768-74.
- Venter J.C., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.H., Smith H.O. (2004), Environmental genome shotgun sequencing of the Sargasso Sea. Science. 304(5667):66-74.
- Vieira, J., Messing, J. (1982). The pUC plasmids, a M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259-268.
- Voget S., Leggewie C., Uesbeck A., Raasch C., Jaeger K.E., Streit W.R. (2003). Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69(10):6235-42.
- Voget S., Steele H.L., Streit W.R. (2006). Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126(1), 26-36.
- Wagner-Dobler I., Lünsdorf H., Lübbehüsen T., von Canstein H.F., Li Y. (2000). Structure and species composition of mercury-reducing biofilms. Appl. Environ. Microbiol. 66(10):4559-63.
- Waldrop G.L., Rayment I., Holden H.M. (1994). Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry. 33(34):10249-56.
- Wang G., Skipper H.D. (2004). Identification of denitrifying rhizobacteria from bentgrass and bermudagrass golf greens.: J. Appl. Microbiol.;97(4):827-37.
- Ward B.B. (2002). How many species of prokaryotes are there? PNAS 99(16): 10234 10236.
- Whiteley M., Bangera M.G., Bumgarner R.E., Parsek M.R., Teitzel G.M., Lory S., Greenberg E.P. (2001). Gene expression in *Pseudomonas aeruginosa* biofilms.: Nature. 413 (6858):860-4

- Wilson B.H., G. B. Smith, and J. F. Rees. (1986). Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ. Sci. Technol. 20:997-1002
- Woese C.R. (1987). Bacterial evolution. Microbiol. Rev. 51:221–271.
- Woese C.R., Winker S., Gutell R. R. (1990). Architecture of ribosomal RNA: constraints on the sequence of tetra-loops. Proc. Natl. Acad. Sci. USA 87:8467-8471.
- Wood T.K., González Barrios A.F., Herzberg M., Lee J. (2006). Motility influences biofilm architecture in *Escherichia coli*. Appl Microbiol Biotechnol. 72(2):361-7.
- Wolin E.A., Wolfe R. S., Wolin M. J. (1964). Viologen dye inhibition of methane formation by *Methanobacillus omelianskii*. J Bacteriol. 87(5): 993-998
- Yanisch-Perron C., Vieira J., Messing J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequencing of the M13mp18 and pUC9 vectors. Gene 33:103-119.
- Yun J., Kang S., Park S., Yoon H., Kim M.J., Heu S., Ryu S. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol. 70(12):7229-35.
- Zhou J., Bruns M. A., Tiedje J.M. (1996). DNA Recovery from soils of diverse composition. Appl. Environm. Microbiol. 62: 316-322.

7 Anhang

7.1 Insertsequenzen der Plasmide pDIR01-pDIR06

7.1.1 Nukleotidsequenz des Inserts von pDIR01

	maaaamaaaa			талааатааа		60
GATCCCCTIG	IGGCCIGCCA	GCCACICGCC	GAAGAIGCGA	ICACGGICGC	IGIAGCACGC	60
TCTCCTTCTT	CCTGTTGTCA	GCGTTAGAGC	GCTGAGCGAG	TCTCTTCTTA	CAGGCTAAGC	120
GCGGACCGTA	TGGGCCTGTA	AGAAAAGTGC	GGGCGCTCGC	GACTAATGGG	ACAGAAATGA	180
ATAGGAGGAC	TGAATGTCTG	CAGACCGATA	CGTGAAGGTC	GTTCTAACGG	TGATCGCGAT	240
GTGCCTCGTG	TGGCTCTCGA	TTGGCGGGCC	CTCCGTCACG	CCGCCAGTGC	AGGCGCAAGG	300
CGGCAGGCAA	ACCGAGGTCA	AACAGGTGAC	CGTGAGTTCG	GGACAAGTGA	CAACCCAGAC	360
TCTCGGAGTC	CCGACTGGGA	TTTCATGCTT	CGAAAGAAAT	AACGCGATCC	AGTGTTTCGT	420
TGTCAGCACC	CGCTGACTGC	TCACTCCTCG	GCCGCTACGC	GGCCATTAAC	GTGACGAGTC	480
TGACCAGGCC	ATCCCGGCCT	ATCATGTGCT	CATGCGCGCT	CCAGTAGCAG	CGAGCCTCAT	540
GGTCGCCGGC	GTGTCGACTC	TGTTTGCGCA	AGGCGCCGCA	CCGGCTTTTC	GAGGTCGCGT	600
CCGTCAGGGA	GAACACATCC	GCCAGCCTGG	TCTCCTCGAT	ATCCGGACCC	CGGCCCGGTC	660
GATTCACCAT	CACCAATGTG	CCGCTGCGCT	TCATCGTGCT	CGAAGCGTTC	GGTGTGCTCG	720
ACCACCAGCT	CGTTGGCGGG	CAGAACTGGA	TCGAGTCCGC	ACGCTACGAC	ATCGCCGCCA	780
CGTTCCCACA	GGGGAGCGTC	CCGGAACGCG	ACTGGCGTCC	GATGCTCCAG	CGGGTGCTCG	840
TCGATCGATT	CGGCCTCATG	GTCCATCGCG	AAACACGGGA	GGTCCCGACG	TATGACCTGG	900
TGCTCGCACG	CAGGGACGGA	ACCCTCGGCG	CACAGATCAA	GCGCACGGAC	GGAAGTTGTG	960
AGACACCTCC	CGCGTGCACG	CTGCTGGGTG	AACCCGACAG	AGCCTCCGGG	CACGGACACA	1020
CCGATCCAGA	AGAATCACCC	CGGGCCGCTT	GCAAAAGCCT	TGACGGGCCG	GGCCTTGTTC	1080
GCCGACCCGC	ACCGGGGGCTG	TCCGGCACCT	TGATGTCGAT	CTGAAATGGG	TCAGCGATCG	1140
GGACGAACGG	TCCCGTCGAT	CTTCACCGCG	CTGCAGGAGC	AGCTCGCGCT	GAAGCTCGAG	1200
CCGTCCAAAG	GCCCGTTCGA	CGTCGTTGTG	ATCGATGCGA	TCCGGCGGCC	GGCGCCTGAC	1260
TGACAACTGC	TTACTTCGCC	TTCGGTGCGT	CGGCGCCCGA	GATGTCGGGC	AGCGCGATCG	1320
CGGCGTCCGT	GTCGACGGTG	AACTTCTTGT	AGTCGGAAAA	CTGGAGTGAG	CTGAAGAACA	1380
TGGCGAGGTT	GCCGAACGCG	AAGCTCTGAC	GCATGTTCAG	GTCGGACCGC	GACGGCAGCC	1440
AGATTTCGCC	GTTGATCAGC	GCCCGTTCGA	CTCGCAACGA	CGAGCCCTCA	ACGGTTCGGT	1500
GGTAGTCGTC	ACGGAAGTGT	GACTCCATTC	GAATCACCTG	CTGCGATGCC	TCGTCTATCC	1560
AGAGCGCACC	GGCCATCGTG	CCGGCCTGTC	GCTCGAAGTC	ATCGTCCGGC	GACACGCCGC	1620
CTTTGGGCTG	GAACTCCACA	ACGAAGACCG	GGCGTCCTCC	ATTCCGTTCA	CGGCGCAGCT	1680
TGCTGAACGT	GGACATCCGC	AGATACCTGG	GCAACCAGTC	GGCGCTGAGC	AGCGGGATC	1739

7.1.2 Nukleotidsequenz des Inserts von pDIR02

GATCGAAGTC	GCGGGTTCGA	TCCCCGTCAT	CCACCCCAGT	CAACACCGTC	TGCGTGCGCG	60
ACGCGCGCCT	TTCACTTTGC	ATCTATCCGA	GGGACCGTTG	ACACAGCAGG	ATCTCGAACG	120
TATCGCGCGC	TCCACGCTGA	AGGAATTCGG	CATCACCGCG	GCAGAACTCA	CGATCGTCCC	180
GGTGGCAGGC	CAGCCCGGCC	AGTGGCGCAT	CGAGATTCCG	GGCGTGCACG	GAATCAAGAT	240
CAAGTGCGGG	GAGGGTTCGT	CTCCCCAGTG	GGTGCGGGAA	CAGATCTTCG	AACAGTATCT	300
GGCGCAGCGC	TAGCCGCGCG	CGCGCTTCTT	CGGGGCGACG	GCTTTCGCGG	GTTTCTCGAA	360
ATCGGCCTTG	GCGGCTTTCT	TTTTCCCTGT	GCTGACGCGA	TCGAGGCTCT	GGCGCAGCGC	420
GTCCATCAGG	TTGACGACCT	TCGGCGGCGC	CTCTTCGCTC	GTCGCCACCA	CCTCTTCGCC	480
GGCGATTTTC	GTCGTGCGAT	GATGCGCTGC	AGCTCTTGCT	GATACTCGTC	GCGGTACTCC	540
GAGAGATCGA	GCTCAGCCTT	CGGGAATGTG	TGCCGATCAC	CTGCTTGGCG	AGCTTGATCT	600
CTTCAGGGCT	TGACCTTCGA	CGGCACGCCG	CCCAGTTCGT	CAATGTTGTT	CATCGAGCGC	660
ACTTCCCGGG	CGTGACGCAG	CGTGTACATG	ACGAGGCCGT	TTTCTCTCGG	CTGCACCGCC	720
ACCAGGTATT	TCACGACCGT	ATAGCGCGAG	CTTGCCGATG	CCGGCCTTTC	CCTTCATGCC	780
CTCGCGGACG	ACGGCGAACG	CATCGTGCGC	CATCGCCCCG	TCCGGCGCGA	GGTAGTACGG	840
ACGCTCGACG	TAGATCGGGT	CGATGGCCGA	CGCGTCGGTG	AACTGCACGA	GATCGATCAC	900
GCGCGTCGAC	TCCGCCCGCA	CCTTGGCGAC	ATCCTCTTCG	GTCATCACCA	CGTAGCGGCC	960
TTTCTCGAAC	TCGTAGCCTT	TGGCGATCTC	CGAGATCGGG	AATCTCGCGC	TCGCACTTGG	1020
GACACCAGCG	GTTTCTGCTG	GATGCGCGTC	TGGCACTCGG	CGTGAAGCTG	GTTGAAGCTG	1080
ATGCTCGCCG	CCGCATCCGT	CGCCGGAAAC	ACCCGGACCG	GGATGTTGAC	GAGGCTGATC	1140
TTGAGAAACC	CTTTCCAGGT	CGGACGAGCG	GCCATTATCC	AGTCTCCTTG	CTAACGCGCC	1200
CCCTGATTAT	CGGCTGTTCC	ACAGCATTCC	GCACACGTGC	ACATATTTGC	AAGGGCGGTC	1260
CGGCTGAAGC	CGGACACTAC	GAATCGAGGT	GCGACACTAT	ACCAGCGACG	TCCAGACGTG	1320
CGCGCAAACC	TTGGCACTTT	GGCCCTTTGG	CCCTCTATGC	TGGCACATTA	TGAAGTGGCG	1380
AGAGGATCCG	CATCTTTCCG	GACAAGCCGA	TCACCAAGAA	GCCGGCGGAG	ACGCGGATGG	1440
GGAAGGGCAA	GGGGAATCCC	GAGGGGTGGG	TGGCCGTCGT	GAAGCCGGGG	CGCGTGCTGC	1500
TCGAGCTCGA	CGGCATCGAA	GAGCCGCTCG	CACGAGTGGC	GCTCGAGCTC	GCCGCGGCGA	1560
AGCTGCCCGT	CCGGTCCAAG	TTCGTACGCC	GGGAGGACCG	CTGACATGCC	AAAGGCCATC	1620
AAGGCTGAAG	GGTTGCGGGA	ACTGAAGACC	GAGGAGCTCG	AGCAGAAGCT	СТСССТССТТ	1680
CAGGAAGAGC	CGTTCCGTTT	GGCGTTCCGC	CGCGGTACCG	AGGCGATTAC	CAACCCACTG	1740
CAGTTCCCCC	CGATCCCCCC	CGAAATCCCC	CCCCTCAAAA	ССАТТСТССА	TGAGAGGGCA	1800
TCCCCATCAC	САСТССТСТС	ACTCCTCAAC	СССТССТСАС	CCCCCCCCCCC	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1860
CCCCCCCCCCC	CCTCACCCAC	ADIOCICARO	ACACCCTTAC	CCTCACCCTC	AAAGIGCGCA	1020
TTCCCCACCC	CTTCTACCCC	AAAAIGCAGA	TCCCCACCAA	CCACCTCCAC	ACGCGCCGCI	1000
AACAACCCCC	GIIGIACGGC	CACACCOCTCC		GLACGICCAC	GUUCAUGAUG CTCTCCAACA	2040
	CCCTCTCCCC	GACACGGIGC	JCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GACACGGCCG	CIGICGAAGA	2040
	ACCARACCAT	GAAAICGICG			GGACGGAACC	2100
GIGGIACAGC	AGGAAACGAI		GCCGACAACI			2100
GICAICCGCG		GICGAAGCGC	CGCIACGCGG	GGCIGGGCGA		2220
GTCACGATCA	AGCACGCCAT	TCCCACCGGC	CAGGTCAAAA	AGGGCGAGGT	GGTTAAGGCC	2280
GIGATCGIGC	GGACCGCCAA	GGAGACCCGG	CGACGGGGATG	GCTCCTACAT	CCGGTTCGAC	2340
GAGAACGCCG	CGGTGGTGAT	CACCGACACA	GGCGAGCCTC	GCGCCACGCG	CATCTTCGGG	2400
CCGGTCGCCC	GTGAGCTGCG	GGAGAAGAAG	TTCATGAAGA	TCGTGTCGCT	CGCGCCGGAG	2460
GIGATCTGAC	ATGAAGCCGC	TGGTCTATAA	GAAGAGCCGC	CGTGTCCGCG	GCACCAAGCC	2520
CGTGCGCCAC	AAGCTGCATA	TGGCCAAGGG	CGACACGGTG	CGGGTCATTC	GCGGCGAGCA	2580
CCGCGGCCGC	GAGGGGAAGA	TCGTGGAGGT	GTTCCCGAAG	AAGTTCCGGG	TCATCGTCGA	2640
GGGGATCAAT	CTCCTGAAGA	AGCACAAGCG	CGCCACGACC	GCTCAGGGGG	AGAGCGGCAT	2700
CATCGAGATT	CCCGGCCCGA	TCGCGGCGTC	CAACGTGATG	CTGCTGATC		2749

7.1.3 Nukleotidsequenz des Inserts von pDIR03

GATCCCGTGC	TGGCCAAGGG	CGCGCCGCCG	CCGGTGCAGA	AGGCGGTGGT	CACGGAATTG	60
GGCCGCTCCA	CCAACCTTAC	CGCGGCCGGG	GTGCTGGTCC	GGAATTTCAG	CAAGTTCAAC	120
ACGGAGAATC	GGCAGCTGGC	GCTGGGCACC	CTGGTGAAGC	GCCCCGCCTG	GGCGCTGGCC	180
CTGCTGGATG	CCGTGGAGGC	CAAGTCGATC	AAGATTACCG	ACCTCGGCGT	GTCGGGTCCC	240
CACCCCCTCC	CCACCCATCC	CCATCCCCCC	CTCACCCCTC	CCCCCCTCCCA		300
GACCGGCIGC	GGACGCAIGG	CGAICCOGCG	GICAGCCGIC	ADDCCICGGA	AGIGIICGAI	200
GACIIGCAGG	GCCGGIGCGC	GAAAGGACGA	GCIGAICGCG	AAATICCGCA	AGGCCIICGA	300
CCAGCCGGCG	GACCTGAAAA	ACGGCAAGGA	GCAGTTCGAG	AAACAATGCG	CCGTCTGCCA	420
CCGCTTCGCC	GACAAGGGGA	AGGACTTCGG	TCCGGAGTTG	ACCGGCGTGG	GGCTGCATGG	480
CCCGAACGTG	TTGCTGACCC	ACATCCTCGA	TCCGAACCGC	GTGGTGGAAG	GCAACTTCAT	540
CCCCTACAAC	ATCACCACCA	AGAAGGACGA	GGACTACACC	GGCCTCATCA	AGACCGAGAA	600
TCGCGACAGC	GTCACCCTCA	AGAATCTGGA	GGGTGAGATT	GAGCTGAGGC	GCACCGATAT	660
CGCCTCGCTC	CGCCCGAGCG	GGCTTTCCTT	CATGCCGGAG	GGACTTGAGG	CGCTCGGCTC	720
CAAGAATATC	CGCGATATTG	TGGGCTACCT	GGTTTCCGCC	ACGCCCAAGG	GATTGCGCAC	780
CCTCCACCTC	ACCCCCCCCC	TCACCCCCCA	CACCCCCCCCC	CCCTTCTTCC	ACCCCACCAA	840
GCIGGACCIG	TCCCGGCGCCI	TCACCGCGCGA		A TCCTCCACA	AGGCCACCAA	010
	ICGCICICCI		CGGAAICGIC	AIGGIGGACA	TGIICCCIA	900
CAACATCGTC	AACCCGGCTG	CGGTTCCCGGG	AGGTCGCAAT	GTCATCGTGT	TGCGGGGCGG	960
TTCGGGCTAT	GCCAGCACCC	TGCCCCAGCG	CGTCGAGTTC	ACCGCCGGCA	CCAAGGCCGC	1020
CAAGCTCTAC	GTGCTCGGTG	GCGTCGCGGG	GTGGGGCTTC	CCCTACGGCA	CGCCGGAGAT	1080
GCACCACGTG	CCGGCCGCGC	GCATCACGCT	GCACTACGCC	GATGGGCAGC	AAGGAGGAAG	1140
TCCTCCTCCA	CAACGGCGAG	CAAATCGCCG	ACGCTGCCCA	TCCCAGTGAA	GTCCCGGGCA	1200
GCCGCCCCAC	CGGCGACCTG	GTCACCACCG	GACAGCTGCG	CTGGTTCACT	GTGGTCCCGC	1260
ACCGATCCGC	GGTCATCGAC	AAGATCACGT	TGGAGAGCTT	CAACAACCAC	GTCGCCCCTG	1320
COTTCOTCC	CATCACCCCC	СЛССТССЛЛТ	CATCCCACAT	CCCATCACCC		1380
CCTICGICGC	A A COTTCOTTC	CAGGIGGAAI	GAICCCACAI	CCCCTCCTCT	CACGCCCTIC	1440
GGCCGGAIII	AACCIGCIIG		GGGCCACGCC	CGCGIGCICI		1 5 0 0
GIGCCICGCC	GGGCCGCTCC	TTGCGGTCGG	ACCGCTGGTT	CGAGCGGCGG	TCGCCGACGC	1500
CGCCGCCCCG	GCTCCGGGCA	AACCGGCCAC	CAATGCGCTG	CCGTTCGAGA	AGGAAATCCT	1560
CGCCTTCGAG	GCCTCGGACA	AAACGAACCC	GCCCCCGTCG	GGCGCAATCC	TGTTCGTCGG	1620
CTCGTCGAGC	ATCCGGCTCT	GGAAAACGCT	GGCGGAGGAT	TTTCCCAAAC	ACCGCGTGGT	1680
CAACCGCGGC	TTCGGAGGCT	CGCAGGCAAC	GATTCCGTCC	GCTACGCGCC	CCGCATCGTG	1740
CTGCCCTACC	GGCCGCGCCA	AATCGTCCTC	TACGCGGGCG	GCAACGACAT	CAACCCCGGG	1800
AAGACGCCCG	GCGGTGTTGT	ACCGAATTTG	TCCGCACCGT	GCACGCGTGC	TGCCGAAGAC	1860
GTGCCATCGC	тасатстсса	TCGCGCCCAA	CCCCGCCCGC	TGGGCCCAGT	GTTCGATCGC	1920
GTGCGGGAGG	CCAATGGGCT	CATCGAGGCC	CACACCCCCA	CCCACCCCCCC	CCTCCCTTTC	1980
ATCA ACCTCT		CATCOAGGCC	CATCCCCAAAC	CCCCCCCCCC		2040
AICAACGIGI	TICCGAAAAI	GCIIGGACCG	GAIGGCCAAC			2040
AGCGAICGCC	ICCACAIGAA	IGCCGAGGGC	TACAAGCIII	GGACCGGCAI	CGIGGCACCG	2100
TTCCTGGATC	GGTGAGCACG	GATTCAGAGC	CGGTCTAGAC	TGGGGTCTCG	CCCTTCAGGG	2160
TTAGTTCATT	TTGAACCGGC	TCCACCACGG	GCTTTAACAT	TACAGGACTT	CGGCCTACCG	2220
AGGGTTTAGG	ATGAGTAGAG	GATGAGCGAA	CGGAGTGGGT	TAGGAGTGGG	TTAGGAGTCT	2280
CGAGTGGGAG	GCAGGGCTTT	AACGTTACGT	TCATCAATCA	GTCACACTGC	GGCTAGCATT	2340
GTGATTAGCC	CTGCCGGGCT	TGCCGCCCTA	GAGCATTGCA	TCCACTGAAA	ACAGAAAACC	2400
GCAAGTGTTT	ACGGAGAAGG	GAAAAGCCAT	GGCCTTCCTT	GTAACCGTAC	ACCGGGCAGA	2460
AGTGAAGCCA	GATGACTTGG	ACGCGCTTCT	CTAGAGGGCA	TCTGTTGCGC	CGCCGTAGCC	2520
AGCTTGGGGT	TGTTGGTGGC	CGGTCCGCGG		TCAATCGATC	CCAGAACGCC	2580
CCCACCTCCT	TCCCCCCCCC	CCCCANATCC	TTCTCCCCCC	CCACCCCCCC	CCTCTCCACC	2500
					GGIGICCACC	2040
GGIIGAIGCA	GCCGCICCIG	GICAACCIGC	ICGAAAAIGG	GCICCIGAAA	GGGCGAGGCG	2700
GCCAGGGGCG	TGGGGCCAAT	GGGCCGGATG	GTGGACCGCA	ATCTGGGTCG	TGGGGAGGGC	2760
GCGGGGTTGA	AGGGAGTCAG	CGTCGCCGAT	GGGGACGTTG	CGGGAGTGGC	GGGAGTGGCG	2820
GGCGGTGGGG	AGGGCCGCGC	GCCCGGCGGC	GGGGCGGCGG	GCTCCTGCTC	GCTCAACTCG	2880
CGGATCTGCG	CCTCAATCGC	GGCGATCTGG	TTTTTGAGGT	CCGCGGCGCG	CTGCGAAAAG	2940
GGGTCGCGTT	GTCTACACAT	CCCATGCCAA	ACGGCTCAAC	GTCGCAGCAG	GACCAGGAAG	3000
ATGGCCAGCG	CCGCCAGGGC	GATGGGCCAG	GTCAGGGCCA	GCCCCAGCTT	GCACAGCTCG	3060
CCGTAGCTTT	TCCGATGGAG	AAAATTTTCT	CCAGCGTTTC	GCCGGGCACG	GGCGTGGCCC	3120
CGACCCCCCC	GGCCCCCCTCC	AGGACTCCCC		GAGCACAATC	GAACTTTCAC	2120
		AMCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		COTONOCOON		2210
GCGGCGCCGA	ATTCCATICC	MICCGGGCGT				JZ4U
CCGIGIIAGA	TTGTCCTTGG	TCCAGGAA'I'C	CICGIGCACG	CICIGCAACT	IGGICAGCGC	3300
CTCCCGCAGA	TCCGCCAGGG	CCTTGGCCAT	CTGTTCGGCG	TCACGGCGGG	TGGCAAATTC	3360
GGCTTCCTCG	AGCAACCCCA	CGCCGCGGGT	GAGGTGCTGT	TCCATCTCCT	GCCGGCCGCG	3420
GAGAAGCTCG	GCCTGGCGGC	GCGCGTTTCC	TCCAGCTCGG	TGCGTTCGCG	CTCCAGTTCC	3480
TGCTGGACCC	GCTTGAGCTC	CGCCAGCTTG	CTCTGCATGT	CGCCCACGCG	CGCATCCATC	3540

TCCTCGCGCGTCGGCGCCGCGGGCGTCGCCGATGCGGCGCCACCGCGGTG3600CCCCCAGCGCGTCGCCCGCCGCGTTGAAAGTCGTCATCGACGGGTCAAAT3660TCTGTAGCCATGCGAGCGACTTTAGTGTCCGTGATCCGGCGTGTAAAGGTCGTGATTTC3720CCTGACTTTCGAGTGCCCCGGCGGCCGGTGTCATTTCCGGTGCGCCTGCGGCGCCTCCGT3780CGGCACGCCAGAATACGATGTCGGATC3807

7.1.4 Nukleotidsequenz des Inserts von pDIR04

GATCGTTTAA	CCCCTTCGCG	GGGCGCGCGA	GCGGGCTCGC	GGCGAAGAAG	AAGCGCGTCC	60
CGTCGAGCTC	GAAGTTCAGG	AAGATCTGGG	CGCCGGTGCT	GTGGTCGAAG	TCGCGCGTGC	120
GCAGGCGGAC	CCGGTCGTGC	TCGACCCGCT	CGACGGTCGC	CGTCCGCGGA	TCGTTGCGAC	180
GGTTGATGCC	GCTGCCGAGC	GGGTGGGCGG	CACGGCGTCA	TCTGCCTGGT	AGGAAACGGC	240
GGACGGCGGG	GGGGCCGGGC	ACGCTTCTCC	CGGTGCAGGC	GCCGCAGAAC	TGTGGGAACG	300
TCACGCGGTT	GGAGCGGGGG	GGAGCGACCT	GGGAGCCCCC	CGGGGGGCGCA	AGTGTATGGG	360
GATCCCGCCT	GTCACCCGCA	ACGACGCTCA	TAAGCGGCTG	AAAAACGCG	GAAAAAGGC	420
CGAGACGGCG	TTTGGGCCGC	TAGGGGGAGG	CGCCGGCCTT	CGCGCGGTCC	CGCTCGGGGC	480
TGCCCACCTC	GAGATTCCAG	GTCGAGAAGA	GCTCCTCCGG	GATCTCGGCC	CGCAGGTCGT	540
AGCTCTCGGT	CACGACGCGC	GTCTCGGAGC	GCCGGGACGG	GGTCGTGAAG	GTCATGACGG	600
AAGGGGATCT	GGCGGCTCCC	GATGGCGCGG	ATGCTGGCGG	GGTCGATCTC	GAGACGCTTC	660
ACGAGCCGAC	CCCGGTGGTA	GAAGTCGCTC	CACAGCATCA	CGCCGCGCGC	CACCTCGATG	720
CAGGCGTCGA	GCCGCTCGTA	GCTCGACTCG	AAGCCCGGCC	CCGGCCGGAT	CTCGACCCGC	780
GCGCAGCGCA	GCCCCTCGTG	CTCGCCCAG	CCGGCCTCGC	GCGCGACCCA	GTTCTCCCCG	840
CGCTTCGGCT	CGACGTCCTC	GTACGAGAGG	TCGGTGCCGA	AGAAGGAGTC	CGAGCGCTGG	900
GCCGCCCCGA	GATGGCGCGT	GAGCCTGGCT	GCCGGAAGGT	ACACGTAGAG	GTCGTCGGCG	960
CGATCGACGT	TCTCGAGCAC	GAGCACCGAC	GTGCGGCGGA	TGTCGGGGGG	CTCGAGGAAT	1020
CGCAGCAGCG	CGCGACCGGG	CCCCTTGCTG	CGCTTGCGGG	TGACCTGGAG	CCGCCGGCGA	1080
GAGCGACGAG	CCGCGCATGC	GCGTGTCGAA	GCGGAGCGTC	TGGACTTAGT	CGAGCGCGTA	1140
GAGGTTGTGA	AAGGCGCGCG	CGAGCAGTTC	CTGCGCGGAG	GGAGGCTCCG	GGAGCGCGTC	1200
CTGTGCGGGG	GCGCGCGCGG	CGGCGAGGCA	CAGGGTGGCG	ACCCCGAGGG	CCACCCGGGC	1260
GGCGCGCGCG	GGACTCAGCC	GTCGCTCGGG	AGCTGCACCT	GCCGGACCTT	CACGCCCGCC	1320
TCGCGCAGCA	GCGCCAGCGA	CACCTCGCCG	AGCGGATAGG	CCGCGTTGTA	GGCGACCTCC	1380
TCGATGCCGG	CGTTGATGAT	CATCTTCGTG	CACATGAGGC	AGGGCGAGAA	GGTCGAGTAG	1440
AGCGTGCCAC	CGCGCACCGA	GACCCCGTGA	AAGGCCGCCT	GCGTGATGGC	GTTCTCTTCG	1500
CCGTGCGAGC	AGAGGCACTC	GTCGAGGCGC	GTGCCCCCT	CCGCGAAGGC	GTTGCAGCGC	1560
GGGCAACCCC	CCTCGTTGCA	GTTGCGCGTT	CCGCGCGGCG	TCCCGTTGTA	ACCGGTATAG	1620
ATAATCGGGC	GGTGTTGGGA	TGGGGACCGC	CGCCCACCTT	GCGCTTCACG	CAGTTGCTGC	1680
GCGAGGCCAC	CACCCGCGCG	ATCGACAGGA	AGTACTCGTC	CCAGCTCGGC	CGCTCGAAGC	1740
CGAGGCTCCG	CTCGAGGACC	TCCTGGAGCG	CCGCGTGGAG	CTCGGCCAGG	CTCGCGTCGT	1800
TGTGGACGCG	CAGGTCCGCG	AGGTCGCGGA	CTGCGAGCAG	CTGCTGCGCG	GCCGGGTCTG	1860
CGCTGCCGAG	CTCCTGGCCC	TCGAGGCGCC	GGAGCTCCTC	GAGGCTCGTC	GGGTCGCCGG	1920
GGCGAGCGCG	CTCGCGGATG	CGCGCGAGTC	GCGTCGCTTC	GGCTGCCTCG	ACCCACAGCA	1980
GACGGAAGCG	GCCGGTGCGC	GCGCGCAGCG	CCTGCACCTC	GGCCGGGTGG	CGCACCGAGT	2040
CGATCACGTA	GTTGCGGTCG	GCGACGAGCC	GGCGCGCGAG	GCGCTCCGCG	AGGGCGCCGG	2100
GGCCCTCGCC	CGCGCGCAGC	TCCCGGCCCG	TCGCGATCAT	GCGCTCGCGG	GTCTCCTCGA	2160
GCCCGCGGGC	GCGGAGCTCG	TCGCGAATCA	CGTCCGAGAG	GGACAAGGCG	TAGAAGCTGC	2220
GCGCCTCGAG	GAAGCGCACG	ACCTCGCCCT	TGCCCGATC			2259

7.1.5 Nukleotidsequenz des Inserts von pDIR05

	TCCCCANACCC	acacacaca	adaamaanan	ACCCCCTCCT		60
GAICCCGIGC	IGGCCAAGGG			AGGCGGIGGI	CACGGAATIG	00
GGCCGCTCCA	CCAACCTTAC	CGCGGCCGGG	GIGCIGGICC	GGAA'I"I"I'CAG	CAAG1"I CAAC	120
ACGGAGAATC	GGCAGCTGGC	GCTGGGCACC	CTGGTGAAGC	GCCCCGCCTG	GGCGCTGGCC	180
CTGCTGGATG	CCGTGGAGGC	CAAGTCGATC	AAGATTACCG	ACCTCGGCGT	GTCGGGTCCC	240
GACCGGCTGC	GGACGCATGG	CGATCCGGCG	GTCAGCCGTC	GGGCCTCGGA	ΔĠͲĠͲͲĊĠϪͲ	300
						260
GACIIGCAGG	GGCCGCCGGI	GCGCGAGAAG	GACGAGCIGA	ICGCGAAAII		300
TTCGACCAGC	CGGCGGACCT	GAAAAACGGC	AAGGAGCAGT	TCGAGAAACA	ATGCGCCGTC	420
TGCCACCGCT	TCGCCGACAA	GGGGAAGGAC	TTCGGTCCGG	AGTTGACCGG	CGTGGGGCTG	480
CATGGCCCGA	ACGTGTTGCT	GACCCACATC	CTCGATCCGA	ACCGCGTGGT	GGAAGGCAAC	540
TTCATCCCCT	ACAACATCAC	CACCAAGAAG	GACGAGGACT	ACACCGGCCT	CATCAAGACC	600
CACAATCCCC	ACACCCTCAC	ССТСААСААТ	TOTCACCT	CACATTCACC	TCACCCCAC	660
	magamagaga					720
CGATAICGCC		CGAGCGGGCI	TICCTICATG	CCGGAGGGAC	IIGAGGCGCI	720
CGGCTCCAAG	AATATCCGCG	ATATTGTGGG	CTACCTGGTT	TCCGCCACGC	CCAAGGGATT	780
GCGCACGCTG	GACCTGACCG	GCGCCTTCAC	CGCGGACACG	CGGCGGGGGT	TGTTCGAGGC	840
CACCAACGGC	ACGCCGTCGC	TCTCCTTCCG	GCAATTCGGA	ATCGTCATGG	TGGACAATGT	900
TCCCTACAAC	ATCGTCAACC	CGGCTGCGGT	TCCGGGAGGT	CGCAATGTCA	TCGTGTTGCG	960
CCCCCCCTTCC	CCCTATCCCA	CCACCCTCCC	CCACCCCCTC	CACTTCACCC	CCCCCACCAA	1020
	GGCIAIGCCA	GCACCCIGCC		GAGIICACCG		1020
GGCCGCCAAG	CICIACGIGC	TCGGTGGCGT	CGCGGGGGIGG	GGCTTCCCCCT	ACGGCACGCC	T080
GGAGATGCAC	CACGTGCCGG	CCGCGCGCAT	CACGCTGCAC	TACGCCGATG	GGCAGCAGGA	1140
GGAAGTCCTC	CTCCACAACG	GCGAGCAAAT	CGCCGACGCT	GCCCATCCCA	GTGAAGTCCC	1200
GGGCAGCCGC	CCCACCGGCG	ACCTGGTCAC	CACCGGACAG	CTGCGCTGGT	TCACTGTGGT	1260
CCCGCACCGA	TCCGCGGTCA	тссасаасат	CACGTTGGAG	AGCTTCAACA	ACCACGTCGC	1320
						1200
CCCIGCCIIC	GICGCCAIGA	CCGCGCAGGI	GGAAIGAICC	CACATOGOAT	GAGCCCACGC	1380
CCTTCGGCCG	GATTTAACCT	GCTTGCGACC	ACGCTGGGCC	ACGCCCGCGT	GCTCTCGCTC	1440
TGGCTGTGCC	TCGCCGGGCC	GCTCCTTGCG	GTCGGACCGC	TGGTTCGAGC	GGCGGTCGCC	1500
GACGCCGCCG	CCCCGGCTCC	GGCCAAACCG	GCCACCAATG	CGCTGCCGTT	CGAGAAGGAA	1560
ATCCTCGCCT	TCGAGGCCTC	GGACAAAACG	AACCCGCCCC	CGTCGGGCGC	AATCCTGTTC	1620
CTCCCCTCCT	CCACCATCCC	CCTCTCCAAA	ACCOTCCCCC		CAAACACCCC	1690
GICGGCICGI	CGAGCAICCG	GCICIGGAAA		AGGAIIIICC	CAAACACCGC	1740
GIGGICAACC	GCGGCTTCGG	AGGCTCGCAG	GICAACGAIII	CCGTCCGCTA	CGCGCCCCCGC	1/40
ATCGTGCTGC	CCTACCGGCC	GCGCCAAATC	GTCCTCTACG	CGGGCGGCAA	CGACATCAAC	1800
GCCGGGAAGA	CGCCCGGGCA	GGTGTTTGCG	GATTACCGGG	AATTTGTCCG	CACCGTGCAC	1860
GCCGTGCTGC	CGAAGACGTC	CATCGCCTAC	ATCTCCATCG	CGCCCAACCC	CGCCCGCTGG	1920
GCCCAGGTCG	ATCGCGTGCG	GGAGGCCAAT	GGGCTCATGG	AGGCCCACAC	CCGGCACGGA	1980
			CAAATCOTT	CCACCCATC	CCCARCCCCC	2040
	CGITICATCA	ACGIGITICC	GAAAAIGCII	GGACCGGAIG	GCCAACCGCG	2040
CCCGGATATC	TACGTCAGCG	ATCGCCTCCA	CATGAATGCC	GAGGGCTACA	AGCTTTTGGAC	2100
CGGCATCGTG	GCACCGTTCC	TGGATCGGTG	AGCACGGATT	CAGAGCCGGT	CTAGACTGGG	2160
GTCTCGCCCT	TCAGGGTTAG	TTCATTTTGA	ACCGGCTCCA	CCACGGGCTT	TAACATTACA	2220
GGACTTCGGC	CTACCGAGGG	TTTAGGATGA	GTAGAGGATG	AGCGAACGGA	GTGGGTTAGG	2280
AGTGGGTTAG	GAGTCTCGAG	TGGGGAGGCA	GGGCTTTAAC	GTTACCGTTC	атсаатсаст	2340
CACACTCCCC	CTACCAATTC		CTCCCCCCTT	CCCCCCCCTAC	CACCATTCCA	2/00
CACACIGCGG	CIAGCAAIIG	AIGAIIAGCC		GUUGUUUIAG	GAGCATIGCA	2400
TTCCACTGAA	AACAGCGAAG	AAACCGTCTA	AGITIGITICIG	GACGCGAAGG	AAAGGCGAAA	2460
AGCCATTGGG	CCTACTTCCT	TGAAATCATC	ACGATCAAGA	CCCACAGCGC	GAGGGCCAGG	2520
AAGATGAAGA	GCACGATGAA	CCGGTTGCGG	GCCACGCGCT	TCTCGTAGCG	CAGCGGACGT	2580
AATCCCTGGA	TGCTGCCGGC	CGCCAGGTAG	CTCACCAGCT	TGGGGTTGTT	GGTGGCCGGT	2640
CCGCGGAAAT	GGTTCTTCAA	TCGATCCCAG	AACGCCCCTC	AGGTCGTTGC	GGCGGGTCCC	2700
	TCCCCCTCCA	CCCCCCCCCC		TCATCCACCC	COTOTO	2760
CAAAICGIIC	ICGGGCICGA		GICGACGGII	IGAIGCAGCC	GCICCIGGIC	2700
AACCTGCTCG	AAAA'I'GGGC'I'	CCTGAAAGGG	CGAGGCGGCC	AGGGGGCGTGG	GGCCAATGGG	2820
CCGGATGGTG	GACCGCAATC	TGGGTCGTGG	GGAGGGCGCG	GGGTTGAAGG	GAGTCAGCGT	2880
CGCCGATGGG	GACGTTGCGG	GAGTGAGCGG	GAGTGGCGGG	CGGTGGGGAG	GGCCGCGCGC	2940
CCGGCGGCGG	GGCGGCGGGC	TCCTGCTCGC	TCAACTCGCG	GATCTGCGCC	TCAATCGCGG	3000
ССАТСТССТТ	тттсасстсс	GCGGCGCGCT	GCAAAAGGG	GTCGCGTTGT	ттсттсааса	3060
				ACATCOCOLICI		2120
GICCCAIGCC	AAACGGCICA	ACGICGCAGC	AGGACCAGGA	AGAIGGULAG		2120
GCGATGGGCC	AGGTCAGGGC	CAGCCCCAGC	TTGCACAGCT	CGCCGTAGCT	TTTTTCCGATG	3180
GAGAAAATTC	TCCAGCGTTT	CGCCGGGCAC	GGGCGTGGCC	CCGACGGCGG	CGGCCGCCTG	3240
GAGGACTGCG	GCTTCCGGGT	TGAGCACATC	GAACTTCAGG	CGCGCCGAAT	TCCATTCCAT	3300
CCGGGCGTTC	TCGACAATCG	TCAGGGCACG	GGTCAAGTTC	CGTGTTGAGA	TTGTCCTTGG	3360
TCCAGGAATC	CTCGTGCACC	СТСТССАЗСТ	TGGTCACCCC	CTCCCGCZCZ	TCCGCCAGCC	3420
		TOTOCOCOCO		COOTTOOT	ACCACCCCCOG	2100
CCIIGGCCAT		TCACGGCGGG	IGGCAAATIC	GGCTICCICG	AJJJJUAULLUA	3480
GGCGGCGGGT	GAGGTGCTGT	TCCATCTCCT	GCCGGCGCGCG	GAGAAGCTCG	GCCLGGCGGC	3540
GGCGCGTTTC	CTCCAGCTCG	GTGCGTTCGC	GCTCCAGTTC	CTGCTGGACC	CGCTTGAGCT	3600

CCGCCAGCTTGCTCTGCATGTCGCCCACGCGCGCATCCATCTCCTCGCGCGTCGGCGCCCG3660CGGGCGTCGCCGATGCGGCTGGCGGGGGGGGCCACCGCGGTGCCCCCAGCGCGTCGCCCGC3720CGCGTTGAAAGTCGTCATCGACGAACTCCGTCGGGTCAAATTCTGTAGCCATGCGAGCGA3780CTTTAGTGTCCGTGATCCGGCGTGTAAAGGTCGTGATTTCCCTGACTTTCGAGTGCCCC3840GGCGGCCGGTGTCATTTCCGGTGCGCCTGCGGCGCCTCCGTCGGCACGCCAGAATACGAT3900GTCGGATC3908

7.1.6 Nukleotidsequenz des Inserts von pDIR06

GATCCCGGAC	CGATGAACCG	GATGTGACAG	GCCTCGCAGA	CTTCGGCCAG	ATACGCGCTC	60
TCGGACAGGA	AACCGTAGCC	GGGATGAATG	GCGTCGGCGC	CCGTGATCTC	GGCGGCGCTG	120
ATGATGGCGG	GGACGTTCAG	GTAGCTCTCG	GCGCTGCGCG	GCGGACCGAT	GCACACGTCC	180
TCGTCGGCGA	ACCGGACGTG	CAGGGAATTC	TCGTCGGCCT	CTGAGAACAC	CGCGACGGTC	240
TTGATACCGA	GCTCGCGGCA	CGCATGGATG	ATGCGGAGCG	CGATCTCACC	GCGATTGGCG	300
ATCAAGATCT	TCTTAAACAT	TGGGTTTGAT	GGCGAAGAGC	CGCTCGCCGT	AGTGGACGGC	360
CTGGCCGTTC	TCCACGTAGA	CCTTGACGAT	CTCTCCGTCG	CAATCCGAAT	TGATCTCGTT	420
CATCAGCTTC	ATCGCTTCGA	GAGGGGCAGA	GCACCTGCCC	CTTCTTCACG	GTCTGTCCGA	480
CGTCCGCAAA	CGGCTTGGCG	CCCGGTTCCG	ACTGGCGATA	GAACGTGCCG	ACGATCGGCG	540
ACTTGACGAT	GGCGAGATCG	ATGTCCTCGT	TGGCGGGCGC	GAGGACCGGG	GACGCCGGAG	600
CGCCGTCATT	GCCCATCGGC	GCCGCGGCCG	CCTGCGGGAC	GAACGTGACC	TGCGGCAGCG	660
GCGAGGACCC	GTTCCACTGC	TGCCCGGTGT	TCTTGCGGAG	CCGCAACTTG	ACGCCGTCCC	720
GCTCGAGCTC	GAACTCGGAC	AGGTCATGCT	CGCGCATCAT	TTCCAGAACC	AGCTTGATCT	780
CGTCTAGAAT	CCATTCCGAT	GGTTCTATCC	GCACGCCCGC	AAAGTCACGG	GGCCACAGAC	840
GTCAGAACTT	CGCATCCCAG	TCTCGGTCAC	CAAGATATCG	TCTTCTTATC	CGGACACCGC	900
CAAAAGCCAG	GCAGATACGC	GCCTGGCTCG	ATGGTGAAGA	CCATTCCCGG	CTCGAGCCGC	960
ACCGGCGGGA	CATCTGACCG	CGGCTTCGAG	AGGCGGAGGT	TCTTCGTGGA	CGTCGAGCCC	1020
CAGGCCATGA	CCCGTGCCGT	GCCCGAACGC	CTCTCCCAAT	CCATGCGCGA	CGAGCACCTG	1080
ACGGGCGGCG	GCGTCCACGT	CGGTCGTCGC	TCTCCCAGGT	CTGACGGCCT	CGATTTGCCT	1140
CCGCCTTTGC	AAGCTTCCCG	AACCGCTCAC	TAAAGGGAAC	AAAAGTCTGG	GGGCATCCAG	1200
CGCCTGACGG	CTGGCCGACT	CTAGACACGG	TCCGAGTGAG	ATCCCCCGGA	TTGCAGTAAT	1260
CCGTGCAAGA	CCGCTCCAAA	GTCCAGCACC	ACCAGGTCAA	CCTCGAGTGT	GCAGGGCCCG	1320
ATCCCCGGCC	CGGTAGTGGG	GCAAGGCCGC	ATTCGGCCCC	GGAAGCGACA	ATCGTGTCGA	1380
AGGCGGGGCG	TTCGTAACCG	GCCTTTCTCA	AGGCCCCTTC	GATCGCCGCG	GCAACCTCCC	1440
GTTCGGTGAC	TTCGGGCCGA	ACGGCGGGGA	AGGCGGCGTC	CGCCACGCCG	GTCAGCCGGG	1500
CGGCGGCCTC	GCGCATGACC	AACACTTCCT	CGGCGTCTTT	GACCAGTCTG	AACTGTTCGA	1560
TCGTCCGCTC	GGTGGAACGC	AGCGTGATCG	CCACACCGCG	GGCCGTCCAC	GCGCGAACCA	1620
AACCATTCGA	TGCCGGTGCC	ACCGGGTCAA	ATCGCGCAAG	CCTCGGAATG	CCAAGGACGG	1680
CCACGCACCA	AAGCGTGAAT	GACCGCCGAC	ACCCAGCCCC	TGGTTGTAGC	TGTCGGGGCA	1740
CATCCCACGA	TCCGCAGTCC	CGGACACGCC	CGCCGGCGAT	TCCTGAAGCG	CACCGCACCC	1800
GCCTCCTTGT	ATCGAAAGTC	GATCAGGGAC	GGTGGATGTC	GCTCGGTGTG	ACGAGCTAGT	1860
GTCCCCGCGG	TCCCCACGTG	ATTCGCGAGG	TACCGGAGAT	TGGCGGGCCG	TGGTGACGAT	1920
CAGGCCGTCC	AGCCCGAGCG	CCTCGAGGGC	ACGCCGTACG	CGAAGGTGCC	TGGCAGCGAC	1980
GGACGCTAGA	TCCGGGGCAG	GCCCGAGAAT	CACGCTCTTC	GGGCAAGGAC	TGACAACCAG	2040
GCTTCGAGGC	TCGGCGATTA	CTGTATCTGG	CTGCCCGGCC	TCGACTGCCG	CCGGGCGCGA	2100
TGGAGCCGAC	GTACGCCGAC	GCTGCTCGAT	GTCAGCAAGC	TCCCGAACGG	CGGTCAGGTT	2160
GTCGGGATCC	GCCTTCAGGA	CGTACTCGAA	CTCGGTGGCC	GCTTCATCGT	ACTTCGCCAT	2220
CTCCAGGAGG	GTGCGGGCCG	AGCGTGATGC	GGGCCGAGAG	ATACGCGGGG	TGCTGCGCCA	2280
GACCGGTCCG	GCAGACGCGC	ACGGCGTCTT	CGACGCTGGC	CGGCCCGGCC	GATGCTCCTC	2340
CGCGAGCTGC	GCAAAAGCGA	TCGACGCCGG	ATCCGGTCGG	AGGCTGCAGC	GAATTCGGAT	2400
ATCAAGGATT	ATCGATAGCC	TTTGAGCCTT	GCGGGGGGGG	CCCGTCTAGT	TGAATTCGCC	2460
CTATAGTGAG	TAGTTAATAG	GGTCTATAAG	ATC			2493

7.2 Sequenzen der identifizierten ORFs

Nukleotidsequenz des orf01

GTGCTGACAA	CGAAACACTG	GATCGCGTTA	TTTCTTTCGA	AGCATGAAAT	CCCAGTCGGG	60
ACTCCGAGAG	TCTGGGTTGT	CACTTGTCCC	GAACTCACGG	TCACCTGTTT	GACCTCGGTT	120
TGCCTGCCGC	CTTGCGCCTG	CACTGGCGGC	GTGACGGAGG	GCCCGCCAAT	CGAGAGCCAC	180
ACGAGGCACA	TCGCGATCAC	CGTTAGAACG	ACCTTCACGT	ATCGGTCTGC	AGACATTCAG	240
TCCTCCTATT	CATTTCTGTC	CCATTAG				257

Nukleotidsequenz des orf02

	- *					
TTGCGCAAGG	CGCCGCACCG	GCTTTTCGAG	GTCGCGTCCG	TCAGGGAGAA	CACATCCGCC	60
AGCCTGGTCT	CCTCGATATC	CGGACCCCGG	CCCGGTCGAT	TCACCATCAC	CAATGTGCCG	120
CTGCGCTTCA	TCGTGCTCGA	AGCGTTCGGT	GTGCTCGACC	ACCAGCTCGT	TGGCGGGCAG	180
AACTGGATCG	AGTCCGCACG	CTACGACATC	GCCGCCACGT	TCCCACAGGG	GAGCGTCCCG	240
GAACGCGACT	GGCGTCCGAT	GCTCCAGCGG	GTGCTCGTCG	ATCGATTCGG	CCTCATGGTC	300
CATCGCGAAA	CACGGGAGGT	CCCGACGTAT	GACCTGGTGC	TCGCACGCAG	GGACGGAACC	360
CTCGGCGCAC	AGATCAAGCG	CACGGACGGA	AGTTGTGAGA	CACCTCCCGC	GTGCACGCTG	420
CTGGGTGAAC	CCGACAGAGC	CTCCGGGCAC	GGACACACCG	ATCCAGAAGA	ATCACCCCGG	480
GCCGCTTGCA	AAAGCCTTGA	CGGGCCGGGC	CTTGTTCGCC	GACCCGCACC	GGGGCTGTCC	540
GGCACCTTGA	TGTCGATCTG	A				561

Nukleotidsequenz des orf03

ATGTCCACGT	TCAGCAAGCT	GCGCCGTGAA	CGGAATGGAG	GACGCCCGGT	CTTCGTTGTG	60
GAGTTCCAGC	CCAAAGGCGG	CGTGTCGCCG	GACGATGACT	TCGAGCGACA	GGCCGGCACG	120
ATGGCCGGTG	CGCTCTGGAT	AGACGAGGCA	TCGCAGCAGG	TGATTCGAAT	GGAGTCACAC	180
TTCCGTGACG	ACTACCACCG	AACCGTTGAG	GGCTCGTCGT	TGCGAGTCGA	ACGGGCGCTG	240
ATCAACGGCG	AAATCTGGCT	GCCGTCGCGG	TCCGACCTGA	ACATGCGTCA	GAGCTTCGCG	300
TTCGGCAACC	TCGCCATGTT	CTTCAGCTCA	CTCCAGTTTT	CCGACTACAA	GAAGTTCACC	360
GTCGACACGG	ACGCCGCGAT	CGCGCTGCCC	GACATCTCGG	GCGCCGACGC	ACCGAAGGCG	420
AAGTAA						426

Nukleotidsequenz des orf04

GTGGCGCATC	GAGATTCCGG	GCGTGCACGG	AATCAAGATC	AAGTGCGGGG	AGGGTTCGTC	60
TCCCCAGTGG	GTGCGGGAAC	AGATCTTCGA	ACAGTATCTG	GCGCAGCGCT	AGCCGCGCGC	120
GCGCTTCTTC	GGGGCGACGG	CTTTCGCGGG	TTTCTCGAAA	TCGGCCTTGG	CGGCTTTCTT	180
TTTCCCTGTG	CTGACGCGAT	CGAGGCTCTG	GCGCAGCGCG	TCCATCAGGT	TGACGACCTT	240
CGGCGGCGCC	TCTTCGCTCG	TCGCCACCAC	CTCTTCGCCG	GCGATTTTCG	TCGTGCGATG	300
ATGCGCTGCA	GCTCTTGCTG	A				321

Nukleotidsequenz des orf05

ATGACCGAAG	AGGATGTCGC	CAAGGTGCGG	GCGGAGTCGA	CGCGCGTGAT	CGATCTCGTG	60
CAGTTCACCG	ACGCGTCGGC	CATCGACCCG	ATCTACGTCG	AGCGTCCGTA	CTACCTCGCG	120
CCGGACGGGG	CGATGGCGCA	CGATGCGTTC	GCCGTCGTCC	GCGAGGGCAT	GAAGGGAAAG	180
GCCGGCATCG	GCAAGCTCGC	GCTATACGGT	CGTGAAATAC	CTGGTGGCGG	TGCAGCCGAG	240
AGAAAACGGC	CTCGTCATGT	ACACGCTGCG	TCACGCCCGG	GAAGTGCGCT	CGATGAACAA	300
CATTGA						306

Nukleotidsequenz des orf06

TTGGGACACC	AGCGGTTTCT	GCTGGATGCG	CGTCTGGCACT	CGGCGTGAAG	CTGGTTGAA	60
GCTGATGCTC	GCCGCCGCAT	CCGTCGCCGG	AAACACCCGGA	CCGGGATGTT	GACGAGGCT	120
GATCTTGAGA	AACCCTTTCC	AGGTCGGACG	AGCGGCCATTA	TCCAGTCTCC	TTGCTAACG	180
CGCCCCTGA	TTATCGGCTG	TTCCACAGCA	TTCCGCACACG	TGCACATATT	TGCAAGGGC	240
GGTCCGGCTG	AAGCCGGACA	CTACGAATCG	AGGTGCGACAC	TATACCAGCG	ACGTCCAGA	300
CGTGCGCGCA	AACCTTGGCA	CTTTGGCCCT	TTGGCCCTCTA	TGCTGGCACA	TTATGA	306

Nukleotidsequenz des orf07

ATGCCAAAGG	CCATCAAGGC	TGAAGGGTTG	CGGGAACTGA	AGACCGAGGA	GCTCGAGCAG	60
AAGCTCTCGC	TGCTTCAGGA	AGAGCGGTTC	CGTTTGGCGT	TCCGCCGCGG	TACCGAGGCG	120
ATTACCAACC	CACTGCAGTT	CCGCGCGATG	CGCCGCGAAA	TCGCGCGCGT	CAAAACGATT	180

CTGCATGAGA GGGCATCGGC ATGA

Nukleotidsequenz des orf08

TTGCCCACGC	GTTGTACGGC	AAACAGGTGG	TCCGCACCAA	GCACGTCCAC	GCCCACGACG	60
AACAAGGGGC	GAAGGCGGGC	GACACGGTGC	GCATTATGGA	GACACGGCCG	CTGTCGAAGA	120
CCAAGCGGTG	GCGTGTCGTC	GAAATCGTCG	AGCGGGCCCG	CTGAGGAAGG	GGACGGAACC	180
GTGGTACAGC	AGGAAACGAT	TCTCAAGATC	GCCGACAACT	CGGGTGCGCG	CGACGCGCTC	240
GTCATCCGCG	TGCTCGGCGG	GTCGAAGCGC	CGCTACGCGG	GGCTGGGCGA	CGTGGTCGTC	300
GTCACGATCA	AGCACGCCAT	TCCCACCGGC	CAGGTCAAAA	AGGGCGAGGT	GGTTAAGGCC	360
GTGATCGTGC	GGACCGCCAA	GGAGACCCGG	CGACGGGATG	GCTCCTACAT	CCGGTTCGAC	420
GAGAACGCCG	CGGTGGTGAT	CACCGACACA	GGCGAGCCTC	GCGCCACGCG	CATCTTCGGG	480
CCGGTCGCCC	GTGAGCTGCG	GGAGAAGAAG	TTCATGAAGA	TCGTGTCGCT	CGCGCCGGAG	540
GTGATCTGA						549

Nukleotidsequenz des orf09

ATGCCGTGGA	GGCCAAGTCG	ATCAAGATTA	CCGACCTCGG	CGTGTCGGGT	CCCGACCGGC	60
TGCGGACGCA	TGGCGATCCG	GCGGTCAGCC	GTCGGGCCTC	GGAAGTGTTC	GATGACTTGC	120
AGGGCCGGTG	CGCGAAAGGA	CGAGCTGATC	GCGAAATTCC	GCAAGGCCTT	CGACCAGCCG	180
GCGGACCTGA	AAAACGGCAA	GGAGCAGTTC	GAGAAACAAT	GCGCCGTCTG	CCACCGCTTC	240
GCCGACAAGG	GGAAGGACTT	CGGTCCGGAG	TTGACCGGCG	TGGGGCTGCA	TGGCCCGAAC	300
GTGTTGCTGA	CCCACATCCT	CGATCCGAAC	CGCGTGGTGG	AAGGCAACTT	CATCCCCTAC	360
AACATCACCA	CCAAGAAGGA	CGAGGACTAC	ACCGGCCTCA	TCAAGACCGA	GAATCGCGAC	420
AGCGTCACCC	TCAAGAATCT	GGAGGGTGAG	ATTGAGCTGA	GGCGCACCGA	TATCGCCTCG	480
CTCCGCCCGA	GCGGGCTTTC	CTTCATGCCG	GAGGGACTTG	AGGCGCTCGG	CTCCAAGAAT	540
ATCCGCGATA	TTGTGGGCTA	CCTGGTTTCC	GCCACGCCCA	AGGGATTGCG	CACGCTGGAC	600
CTGACCGGCG	CCTTCACCGC	GGACACGCGG	CGGGGGTTGT	TCGAGGCCAC	CAACGGCACG	660
CCGTCGCTCT	CCTTCCGGCA	ATTCGGAATC	GTCATGGTGG	ACAATGTTCC	CTACAACATC	720
GTCAACCCGG	CTGCGGTTCC	GGGAGGTCGC	AATGTCATCG	TGTTGCGGGG	CGGTTCGGGC	780
TATGCCAGCA	CCCTGCCCCA	GCGCGTCGAG	TTCACCGCCG	GCACCAAGGC	CGCCAAGCTC	840
TACGTGCTCG	GTGGCGTCGC	GGGGTGGGGC	TTCCCCTACG	GCACGCCGGA	GATGCACCAC	900
GTGCCGGCCG	CGCGCATCAC	GCTGCACTAC	GCCGATGGGC	AGCAAGGAGG	AAGTCCTCCT	960
CCACAACGGC	GAGCAAATCG	CCGACGCTGC	CCATCCCAGT	GA		1002

Nukleotidsequenz des orf10

ATCGCATGAG	CCCACGCCCT	TCGGCCGGAT	TTAACCTGCT	TGCGACCACG	60
CCCGCGTGCT	CTCGCTCTGG	CTGTGCCTCG	CCGGGCCGCT	CCTTGCGGTC	120
TTCGAGCGGC	GGTCGCCGAC	GCCGCCGCCC	CGGCTCCGGG	CAAACCGGCC	180
TGCCGTTCGA	GAAGGAAATC	CTCGCCTTCG	AGGCCTCGGA	CAAAACGAAC	240
CGGGCGCAAT	CCTGTTCGTC	GGCTCGTCGA	GCATCCGGCT	CTGGAAAACG	300
ATTTTCCCAA	ACACCGCGTG	GTCAACCGCG	GCTTCGGAGG	CTCGCAGGCA	360
CCGCTACGCG	CCCCGCATCG	TGCTGCCCTA	CCGGCCGCGC	CAAATCGTCC	420
CGGCAACGAC	ATCAACCCCG	GGAAGACGCC	CGGCGGTGTT	GTACCGAATT	480
GTGCACGCGT	GCTGCCGAAG	ACGTGCCATC	GCTACATCTC	CATCGCGCCC	540
GCTGGGCCCA	GTGTTCGATC	GCGTGCGGGA	GGCCAATGGG	CTCATCGAGG	600
CACGGACCCG	CGCCTGCGTT	TCATCAACGT	GTTTCCGAAA	ATGCTTGGAC	660
ACCGCGCCCG	GATATCTACG	TCAGCGATCG	CCTCCACATG	A	711
	ATCGCATGAG CCCGCGTGCT TTCGAGCGGC TGCCGTTCGA CGGGCGCAAT ATTTTCCCAA CCGCTACGCG CGGCAACGAC GTGCACGCGC GCTGGGCCCA CACGGACCCG ACCGCGCCCG	ATCGCATGAGCCCACGCCCTCCCGCGTGCTCTCGCTCTGGTTCGAGCGGCGGTCGCCGACTGCCGTTCGAGAAGGAAATCCGGGCGCAATCCTGTTCGTCATTTTCCCAAACACCGCGTGCGGCAACGCGCCCCGCATCGCGGCAACGACATCAACCCCGGTGCACGCGTGCTGCCGAAGGCTGGGCCCAGTGTTCGATCCACGGACCCGCGCCTGCGTTACCGCGCCCGGATATCTACG	ATCGCATGAGCCCACGCCCTTCGGCCGGATCCCGCGTGCTCTCGCTCTGGCTGTGCCTCGTTCGAGCGGCGGTCGCCGACGCCGCCGCCCTGCCGTTCGAGAAGGAAATCCTCGCTTCGCGGCGCAATCCTGTTCGTCGGCTGCGCGACCGCTACGGCCCCCGCATCGTGCTGCCCTACGGCAACGACATCAACCCCGGGAAGACGCCGTGCACGCGAGCTGCCGAAGACGTGCCATCGCTGGGCCCAGTGTTCGATCGCGTGCGGAACACGGACCGCGACTCTCGATCTCATCAACGTACCGCGCCGGATATCTACGTCAGCGATCG	ATCGCATGAGCCCACGCCCTTCGGCCGGATTTAACCTGCTCCCGCGTGCTCTCGCTCTGGCTGTGCCTCGCCGGGCCGCTTTCGAGCGGCGGTCGCCGACGCCGCCCGCGCGGCTCCGGGTGCCGTTCGAGAAGGAAATCCTCGCCTTCGAGGCCTCGGACGGGCGCAATCCTGTTCGTCGGCTCGTCGAGCATCCGGAGGCCGCTACGGCCCCGCATCGGCTACACGCGCCGCCGCGCCGGCAACGACACACCGCGAGCTACACCCCCGGCCGCGCGCGGCAACGACATCAACCCGGGAAGACGCCGGCGGTGTTGTGCACGCGAGTGTCGAAGACGTGCCGAAGCCAATGGGCACGGACCCGCGCTGCGGTTCATCAACGTGTTTCCGAAAACCGCGCCCGGATATCTACGTCAGCGATCGCCTCCACATG	ATCGCATGAGCCCACGCCCTTCGGCCGGATTTAACCTGCTTGCGACCACGCCCGCGTGCTCTCGCTCTGGCTGTGCCTCGCCGGGCCGCTCCTTGCGGTCTTCGAGCGGCGGTCGCCGACGCCGCCGCCCCGGCTCCGGGCAAACCGGCCTGCGGTTCGAGAAGGAAATCCTCGCCTTCGAGGCCTCGGACAAAACGAACCGGGCGCAATCCTGTTCGCGGCTCGTCGAGCATCCGGCGCTGGAAAACGATTTTCCAAACACCGCGTGTCAACCGCGCTTCGGAGGCTCGCAGGCACCGCTACGGCCCCGCATCGTGCTGCCCAACCGGCGGCGTGTACCGAATTGTGCACGCGTGCTGCCGAAGACGTGCCACCCGCCGCGCGCACTCCGCCCGCTGGGCCCAGCTTCGAAAGCGTGCGGAAGGCCAATGGGCTCATCGAGGCACGGACCGCGCTGCGTTTCATCAACGTGTTTCCGAAAATGCTTGGACACCGCGCCCGGATATCTACGTCACCAATGGCTCACCGACGACGCTGGAC

Nukleotidsequenz des orf11

	-					
ATGACTTGGA	CGCGCTTCTC	TAGAGGGCAT	CTGTTGCGCC	GCCGTAGCCA	GCTTGGGGTT	60
GTTGGTGGCC	GGTCCGCGGA	AATGGTTCTT	CAATCGATCC	CAGAACGCCC	CCAGGTCGTT	120
GCGGCGGGTC	CCCAAATCGT	TCTCGGGCTC	GACCGGCGCG	GTGTCCACCG	GTTGATGCAG	180
CCGCTCCTGG	TCAACCTGCT	CGAAAATGGG	CTCCTGAAAG	GGCGAGGCGG	CCAGGGGCGT	240
GGGGCCAATG	GGCCGGATGG	TGGACCGCAA	TCTGGGTCGT	GGGGAGGGCG	CGGGGTTGAA	300
GGGAGTCAGC	GTCGCCGATG	GGGACGTTGC	GGGAGTGGCG	GGAGTGGCGG	GCGGTGGGGA	360
GGGCCGCGCG	CCCGGCGGCG	GGGCGGCGGG	CTCCTGCTCG	CTCAACTCGC	GGATCTGCGC	420
CTCAATCGCG	GCGATCTGGT	TTTTGAGGTC	CGCGGCGCGC	TGCGAAAAGG	GGTCGCGTTG	480
TCTACACATC	CCATGCCAAA	CGGCTCAACG	TCGCAGCAGG	ACCAGGAAGA	TGGCCAGCGC	540
CGCCAGGGCG	ATGGGCCAGG	TCAGGGCCAG	CCCCAGCTTG	CACAGCTCGC	CGTAGCTTTT	600
CCGATGGAGA	AAATTTTCTC	CAGCGTTTCG	CCGGGCACGG	GCGTGGCCCC	GACGGCGGCG	660
GCCGCCTGGA	GGACTGCGGC	TTCCGGGTTG	AGCACAATCG	AACTTTCAGG	CGGCGCCGAA	720
TTCCATTCCA	TCCGGGCGTT	CTCGACAATC	GTCAGGGCAC	GGGTCAGTTC	CGTGTTAGAT	780
TGTCCTTGGT	CCAGGAATCC	TCGTGCACGC	TCTGCAACTT	GGTCAGCGCC	TCCCGCAGAT	840

CCGCCAGGGC	CTTGGCCATC	TGTTCGGCGT	CACGGCGGGT	GGCAAATTCG	GCTTCCTCGA	900
GCAACCCCAC	GCCGCGGGTG	A				921

Nukleotidsequenz des orf12

ATGACGGAAG	GGGATCTGGC	GGCTCCCGAT	GGCGCGGATG	CTGGCGGGGT	CGATCTCGAG	60
ACGCTTCACG	AGCCGACCCC	GGTGGTAGAA	GTCGCTCCAC	AGCATCACGC	CGCGCGCCAC	120
CTCGATGCAG	GCGTCGAGCC	GCTCGTAGCT	CGACTCGAAG	CCCGGCCCCG	GCCGGATCTC	180
GACCCGCGCG	CAGCGCAGCC	CCTCGTGCTC	GCCCCAGCCG	GCCTCGCGCG	CGACCCAGTT	240
CTCCCCGCGC	TTCGGCTCGA	CGTCCTCGTA	CGAGAGGTCG	GTGCCGAAGA	AGGAGTCCGA	300
GCGCTGGGCC	GCCCCGAGAT	GGCGCGTGAG	CCTGGCTGCC	GGAAGGTACA	CGTAGAGGTC	360
GTCGGCGCGA	TCGACGTTCT	CGAGCACGAG	CACCGACGTG	CGGCGGATGT	CGGGGGGGCTC	420
GAGGAATCGC	AGCAGCGCGC	GACCGGGCCC	CTTGCTGCGC	TTGCGGGTGA	CCTGGAGCCG	480
CCGGCGAGAG	CGACGAGCCG	CGCATGCGCG	TGTCGAAGCG	GAGCGTCTGG	ACTTAGTCGA	540
GCGCGTAGAG	GTTGTGAAAG	GCGCGCGCGA	GCAGTTCCTG	CGCGGAGGGA	GGCTCCGGGA	600
GCGCGTCCTG	TGCGGGGGCG	CGCGCGGCGG	CGAGGCACAG	GGTGGCGACC	CCGAGGGCCA	660
CCCGGGCGGC	GCGCGCGGGA	CTCAGCCGTC	GCTCGGGAGC	TGCACCTGCC	GGACCTTCAC	720
GCCCGCCTCG	CGCAGCAGCG	CCAGCGACAC	CTCGCCGAGC	GGATAGGCCG	CGTTGTAGGC	780
GACCTCCTCG	ATGCCGGCGT	TGATGATCAT	CTTCGTGCAC	ATGAGGCAGG	GCGAGAAGGT	840
CGAGTAGAGC	GTGCCACCGC	GCACCGAGAC	CCCGTGAAAG	GCCGCCTGCG	TGATGGCGTT	900
CTCTTCGCCG	TGCGAGCAGA	GGCACTCGTC	GAGGCGCGTG	CCCCCCTCCG	CGAAGGCGTT	960
GCAGCGCGGG	CAACCCCCCT	CGTTGCAGTT	GCGCGTTCCG	CGCGGCGTCC	CGTTGTAACC	1020
GGTATAGATA	ATCGGGCGGT	GTTGGGATGG	GGACCGCCGC	CCACCTTGCG	CTTCACGCAG	1080
TTGCTGCGCG	AGGCCACCAC	CCGCGCGATC	GACAGGAAGT	ACTCGTCCCA	GCTCGGCCGC	1140
TCGAAGCCGA	GGCTCCGCTC	GAGGACCTCC	TGGAGCGCCG	CGTGGAGCTC	GGCCAGGCTC	1200
GCGTCGTTGT	GGACGCGCAG	GTCCGCGAGG	TCGCGGACTG	CGAGCAGCTG	CTGCGCGGCC	1260
GGGTCTGCGC	TGCCGAGCTC	CTGGCCCTCG	AGGCGCCGGA	GCTCCTCGAG	GCTCGTCGGG	1320
TCGCCGGGGC	GAGCGCGCTC	GCGGATGCGC	GCGAGTCGCG	TCGCTTCGGC	TGCCTCGACC	1380
CACAGCAGAC	GGAAGCGGCC	GGTGCGCGCG	CGCAGCGCCT	GCACCTCGGC	CGGGTGGCGC	1440
ACCGAGTCGA	TCACGTAG					1458

Nukleotidsequenz des orf13

GTGCAGAAGG	CGGTGGTCAC	GGAATTGGGC	CGCTCCACCA	ACCTTACCGC	GGCCGGGGTG	60
CTGGTCCGGA	ATTTCAGCAA	GTTCAACACG	GAGAATCGGC	AGCTGGCGCT	GGGCACCCTG	120
GTGAAGCGCC	CCGCCTGGGC	GCTGGCCCTG	CTGGATGCCG	TGGAGGCCAA	GTCGATCAAG	180
ATTACCGACC	TCGGCGTGTC	GGGTCCCGAC	CGGCTGCGGA	CGCATGGCGA	TCCGGCGGTC	240
AGCCGTCGGG	CCTCGGAAGT	GTTCGATGAC	TTGCAGGGGC	CGCCGGTGCG	CGAGAAGGAC	300
GAGCTGATCG	CGAAATTCCG	CAAGGCCTTC	GACCAGCCGG	CGGACCTGAA	AAACGGCAAG	360
GAGCAGTTCG	AGAAACAATG	CGCCGTCTGC	CACCGCTTCG	CCGACAAGGG	GAAGGACTTC	420
GGTCCGGAGT	TGACCGGCGT	GGGGCTGCAT	GGCCCGAACG	TGTTGCTGAC	CCACATCCTC	480
GATCCGAACC	GCGTGGTGGA	AGGCAACTTC	ATCCCCTACA	ACATCACCAC	CAAGAAGGAC	540
GAGGACTACA	CCGGCCTCAT	CAAGACCGAG	AATCGCGACA	GCGTCACCCT	CAAGAATTCT	600
GGAGGGTGA						609

Nukleotidsequenz des orf14

ATGTTCCCTA	CAACATCGTC	AACCCGGCTG	CGGTTCCGGG	AGGTCGCAAT	GTCATCGTGT	60
TGCGGGGCGG	TTCGGGCTAT	GCCAGCACCC	TGCCCCAGCG	CGTCGAGTTC	ACCGCCGGCA	120
CCAAGGCCGC	CAAGCTCTAC	GTGCTCGGTG	GCGTCGCGGG	GTGGGGCTTC	CCCTACGGCA	180
CGCCGGAGAT	GCACCACGTG	CCGGCCGCGC	GCATCACGCT	GCACTACGCC	GATGGGCAGC	240
AGGAGGAAGT	CCTCCTCCAC	AACGGCGAGC	AAATCGCCGA	CGCTGCCCAT	CCCAGTGAAG	300
TCCCGGGCAG	CCGCCCCACC	GGCGACCTGG	TCACCACCGG	ACAGCTGCGC	TGGTTCACTG	360
TGGTCCCGCA	CCGATCCGCG	GTCATCGACA	AGATCACGTT	GGAGAGCTTC	AACAACCACG	420
TCGCCCCTGC	CTTCGTCGCC	ATGA				444

Nukleotidsequenz des orf15

ATGATCCCAC	ATCGCATGAG	CCCACGCCCT	TCGGCCGGAT	TTAACCTGCT	TGCGACCACG	60
CTGGGCCACG	CCCGCGTGCT	CTCGCTCTGG	CTGTGCCTCG	CCGGGGCCGCT	CCTTGCGGTC	120
GGACCGCTGG	TTCGAGCGGC	GGTCGCCGAC	GCCGCCGCCC	CGGCTCCGGC	CAAACCGGCC	180
ACCAATGCGC	TGCCGTTCGA	GAAGGAAATC	CTCGCCTTCG	AGGCCTCGGA	CAAAACGAAC	240
CCGCCCCGT	CGGGCGCAAT	CCTGTTCGTC	GGCTCGTCGA	GCATCCGGCT	CTGGAAAACG	300
CTGGCGGAGG	ATTTTCCCAA	ACACCGCGTG	GTCAACCGCG	GCTTCGGAGG	CTCGCAGGTC	360
AACGATTCCG	TCCGCTACGC	GCCCCGCATC	GTGCTGCCCT	ACCGGCCGCG	CCAAATCGTC	420
CTCTACGCGG	GCGGCAACGA	CATCAACGCC	GGGAAGACGC	CCGGGCAGGT	GTTTGCGGAT	480

TACCGGGAAT	TTGTCCGCAC	CGTGCACGCC	GTGCTGCCGA	AGACGTCCAT	CGCCTACATC	540
TCCATCGCGC	CCAACCCCGC	CCGCTGGGCC	CAGGTCGATC	GCGTGCGGGA	GGCCAATGGG	600
CTCATGGAGG	CCCACACCCG	GCACGGACCC	GCGCCTGCGT	TTCATCAACG	TGTTTCCGAA	660
AATGCTTGGA	CCGGATGGCC	AACCGCGCCC	GGATATCTAC	GTCAGCGATC	GCCTCCACAT	720
GAATGCCGAG	GGCTACAAGC	TTTGGACCGG	CATCGTGGCA	CCGTTCCTGG	ATCGGTGAGC	780
ACGGATTCAG	AGCCGGTCTA	G				801
Nullootideo	auonz dos ort	16				
Nukleouuse	quenz des orj		aaaaaaaaa		al coomoodo	C 0
AIGGIGGACC	GCAAICIGGG		GGCGCGGGGGI		CAGCGICGCC	100
GAIGGGGACG		GAGCGGGGAGI	GGCGGGGGGGG			100
		GCICGCICAA				180
CIGGIIIIIG	AGGICCGCGG	CGCGCIGCAA	AAAGGGGICG	CGIIGIIICI		240
	GGCICAACGI			GGCCAGCGCC	GCCAGGGCGA	300
				GIAGCIIIII		300
	GCGIIICGCC	GGGCACGGGC	GIGGCCCCGA			420
ACIGCGGCII	CCGGGIIGAG	CACATCGAAC				480
GCGTTCTCGA	CAATCGTCAG	GGCACGGGTC	AAGTTCCGTG	TIGAGATIGI	CCTTGGTCCA	540
GGAATCOTCG	TGCACGCTCT	GCAACTTGGT		CGCAGATCCG		600
GGCCATCIGT	TCGGCGTCAC	GGCGGGTGGC	AAATTCGGCT	TCCTCGAGGA	GCCCCAGGCG	660
GCGGGTGAGG	IGCIGIIICCA	TCTCCTGCCG	GCCGCGGAGA	AGCICGGCCT	GGCGGCGGCG	720
CGITTCCTCC	AGCTCGGTGC	GITCGCGCTC	CAGITICCIGC	TGGACCCGCT	TGAGCTCCGC	/80
CAGCITIGCTC	TGCATGTCGC	CCACGCGCGC	ATCCATCTCC	TCGCGCGTCG	GCGCCGCGGG	840
CGTCGCCGAT	GCGGCTGGCG	GGGGGCGCCAC	CGCGGTGCCC	CCAGCGCGTC	GCCCGCCGCG	900
TTGAAAGTCG	TCATCGACGA	ACTCCGTCGG	GTCAAATTCT	GTAGCCATGC	GAGCGAC-1°1°1°	960
AGIGICCGIG	ATCCGGCGTG	TAAAGGTCGT	GATTITTCCCCT	GA		1002
		_				
Nukleotidse	quenz des <i>orf</i>	17				
ATGATGCGCG	AGCATGACCT	GTCCGAGTTC	GAGCTCGAGC	GGGACGGCGT	CAAGTTGCGG	60
CTCCGCAAGA	ACACCGGGCA	GCAGTGGAAC	GGGTCCTCGC	CGCTGCCGCA	GGTCACGTTC	120
GTCCCGCAGG	CGGCCGCGGC	GCCGATGGGC	AATGACGGCG	CTCCGGCGTC	CCCGGTCCTC	180
GCGCCCGCCA	ACGAGGACAT	CGATCTCGCC	ATCGTCAAGT	CGCCGATCGT	CGGCACGTTC	240
TATCGCCAGT	CGGAACCGGG	CGCCAAGCCG	TTTGCGGACG	TCGGACAGAC	CGTGAAGAAG	300
GGGCAGGTGC	TCTGCCCCTC	TCGAAGCGAT	GAAGCTGATG	AACGAGATCA	ATTCGGATTG	360
CGACGGAGAG	ATCGTCAAGG	TCTACGTGGA	GAACGGCCAG	GCCGTCCACT	ACGGCGAGCG	420
GCTCTTCGCC	ATCAAACCCA	ATGTTTAAGA	AGATCTTGA			459
	-					
Nukleotidse	quenz des <i>orf</i>	18				
ATGCGCGAGG	CCGCCGCCCG	GCTGACCGGC	GTGGCGGACG	CCGCCTTCCC	CGCCGTTCGG	60
CCCGAAGTCA	CCGAACGGGA	GGTTGCCGCG	CCCATCCAAC	aaaaammaaaa	A A A C C C C C C T	120
TACGAACGCC	~~~~~~~		GCGAICGAAG	GGGCCIIGAG	AAAGGCCGGI	120
	CCGCC'I"I'CGA	CACGATTGTC	GCGATCGAAG	CCGAATGCGG	CCTTGCCCCA	180
CTACCGGGCC	GGGGGATCGGG	CACGATTGTC CCCTGCACAC	GCTTCCGGGG TCGAGGTTGA	CCGAATGCGG CCTGGTGGTG	CCTTGCCCCA CTGGACTTTG	180 240
GAGCGGTCTT	GGGGATCGGG GCACGGATTA	CACGATTGTC CCCTGCACAC CTGCAATCCG	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA	CCGAATGCGG CCTGGTGGTG CTCGGACCGT	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC	180 240 300
GAGCGGTCTT GGCCAGCCGT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG	180 240 300 360
GAGCGGGTCTT GGCCAGCCGT AAGCTTGCAA	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT	180 240 300 360 420
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG	180 240 300 360 420 480
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GGCCTGGGGC	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT	120 180 240 300 360 420 480 540
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGCGG GCCGGTGCGG	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT	180 240 300 360 420 480 540 600
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGCGG GCCGGTGCGG CTTTTGGCGG	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG	180 240 300 360 420 480 540 600 660
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCCGGTGCGG CTTTTGGCGG TCTGA	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG	180 240 300 360 420 480 540 600 660 675
GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGCGG GCCGGTGCGG CTTTTGGCGG TCTGA	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG	180 240 300 360 420 480 540 600 660 675
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGGGC GCCCGGTGCGG CTTTTGGCGG TCTGA	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG	180 240 300 360 420 480 540 600 660 675
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GGCCTGGGGC GCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG	GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA	TTCGCGAGGT	180 240 300 360 420 480 540 600 660 675
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC	GCCATCCGGGG GCTTCCGGGG GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCCGCGGT AGGCCGTCCA	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGCGC	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGT CTCGCGAGGT	180 240 300 360 420 480 540 600 660 675 60 120
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT CGCCGTACGC	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG	GCGATCCGAAG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCGCGGGT AGGCCGTCCA GACGCTAGAT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGCGC CCGGGGCAGG	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGT CTCGAGGGCA CCCGAGAATC	180 240 300 360 420 480 540 600 660 675 60 120 180
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidsed GTGGATGTCG ACCGGAGATT CGCCGTACGC ACGCTCTTCG	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GGCAAGGACT	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG	GCGATCCGAAG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCCGCGGT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CTCGGACCGT CCTTTAGTGA GGGAGAGGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGCGC CCGGGGCAGG CGGCGATTAC	CCTTGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGCGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGGT CTCGAGGGCA CCCGAGAATC TGTATCTGGC	180 240 300 360 420 480 540 600 660 675 60 120 180 240
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT CGCCGTACGC ACGCTCTTCG TGCCCGGCCT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GGCAAGGACT CGACTGCCGC	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG CGGGCGCGAT	GCCATCCGAGG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCCGCGGT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT GGAGCCGACG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGCGC CCGGGGCAGG CGGCGATTAC TACGCCGACG	TTCGCGAGGT CCTGGACTTG GCGGTTCGGG CGACCGACGT CCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGGT CTCGAGGGCA CCCGAGAATC TGTATCTGGC CTGCTCGATG	180 240 300 360 420 480 540 600 660 675 60 120 180 240 300
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidsee GTGGATGTCG ACCGGAGATT CGCCGGACGT TCGCCGGCCT TCAGCAAGCT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GGCAAGGACT CGACTGCCGC CCCGAACGGC	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC TCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG CGGGCGCGAT GGTCAGGTTG	GCCATCCGAAG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCGCGGGT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT GGAGCCGACG TCGGGATCCG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGGCGC CCGGGGCAGG CGGCGATTAC TACGCCGACG CCTTCAGGAC	TTCGCGAGGT CCTGGACTTG GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGGT CTCGAGGGCA CCCGAGAATC TGTATCTGGC CTGCTCGATG GTACTCGAAC	180 240 300 360 420 480 540 600 660 675 60 120 180 240 300 360
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT CGCCGGAGATT CGCCGTACGC ACGCTCTTCG TGCCCGGCCT TCAGCAAGCT	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGTCAGG GCCCGGTGCGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GGCAAGGACT CGACTGCCGC CCCGAACGGC CTTCATCGTA	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC CTCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG CGGCCGCGAT GGTCAGGTTG CTTCGCCATC	GCCATCCGAGG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCCGCGGT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT GGAGCCGACG TCCGGGATCCG TCCAGGAGGG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGGCGC CCGGGGCAGG CGGCGATTAC TACGCCGACG CCTTCAGGAC TGCGGGCCGA	TTCGCGAGGT CCCGAGGCCCCA CTGGACTTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGGCA CCCGAGAATC TGTATCTGGC CTGCTCGATG GTACTCGAAC GCGTGATGCG	180 240 300 360 420 480 540 600 660 675 60 120 180 240 300 360 420
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT CGCCGGAGATT CGCCGGCCT TCAGCAAGCT TCGGTGGCCG GGCCGAGAGA	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GCCCGGTGGGG CTTTTGGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GGCAAGGACT CGACTGCCGC CTCCATCGTA TACGCGGGGT	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC CTCGACGTCCA CTCGAGCCGG TGTCCGGATA 19 CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG CGGCCGCGAT GGTCAGGTTG CTTCGCCATC GCTGCGCCAG	GCCATCCGAGG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT GGAGCCGACG TCCAGGAGGG ACCGGTCCGG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCCACGTGA GCCCGAGCGC CCGGGGCCAGG CGGCGATTAC TACGCCGACG CCTTCAGGAC TGCGGGCCGA	TTCGCGAGGT CCTGGACTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGT CCAGGCGCGT CCGAGACTGG TTCGCGAGGGCA CCCGAGAATC TGTATCTGGC CTGCTCGATG GTACTCGAAC GCGTGATGCG CGGCGTCTTC	180 240 300 360 420 480 540 600 660 675 60 120 180 240 300 360 420 480
CTACCGGGCC GAGCGGTCTT GGCCAGCCGT AAGCTTGCAA GGACGCCGCC CACGGGTCAT CAGATGTCCC ATCTGCCTGG GATGCGAAGT Nukleotidse GTGGATGTCG ACCGGAGATT CGCCGGAGATT CGCCGGACGC TCAGCAAGCT TCAGCAAGCT TCGGTGGCCG GGCCGAGAGA GACGCTGGCC	CCGCCTTCGA GGGGATCGGG GCACGGATTA CAGGCGCTGG AGGCGGAGGC GCCCGTCAGG GGCCTGGGGC GCCGGTGCGG TCTGA quenz des orf CTCGGTGTGA GGCGGGCCGT GAAGGTGCCT GAAGGTGCCT GGCAAGGACT CGACTGCCGC CCCGAACGGC CTTCATCGTA TACGCGGGGT	CACGATTGTC CCCTGCACAC CTGCAATCCG ATGCCCCCAG AAATCGAGGC TGCTCGTCGC CTCGACGTCCA CTCGAGCCGG TGTCCGGATA CGAGCTAGTG GGTGACGATC GGCAGCGACG GACAACCAGG CGGGCGCGAT GGTCAGGTTG CTTCGCCATC GCTGCGCCAG ATGCTCCTCC	GCGATCCGAAG GCTTCCGGGG TCGAGGTTGA GGGGATCTCA ACTTTTGTTC CGTCAGACCT GCATGGATTG CGAAGAACCT GAATGGTCTT AGAAGACGAT TCCCCCGCGGT AGGCCGTCCA GACGCTAGAT CTTCGAGGCT GGAGCCGACG TCCAGGAGCG ACCGGTCCGG GCGAGCTGCG	CCGAATGCGG CCTGGTGGTG CTCGGACCGT CCTTTAGTGA GGGAGAGCGA GGAGAGGCGT CCGCCTCTCG CACCATCGAG ATCTTGGTGA CCCCGAGCGC CCGGGGCAGG CGGCGATTAC TACGCCGACG CCTTCAGGAC TGCGGGCCGA CAGACGCGCA	TTCGCGAGGT CCTGGACTTG GTCTAGAGTC GCGGTTCGGG CGACCGACGT TCGGGCACGG AAGCCGCGGT CCAGGCGCGGT CCAGGCGCGGT CCGAGACTGG TTCGAGGGCA CCCGAGAATC TGTATCTGGC CTGCTCGATG GTACTCGAAC GCGTGATGCG CGGCGTCTTC CGACGCCGGA	180 240 300 360 420 480 540 600 675 60 120 180 240 300 360 420 480 540

ATPRRG

Aminosäuresequenz des Genproduktes von orf01

VLTTKHWIAL TRHIAITVRT	FLSKHEIPVG TFTYRSADIQ	TPRVWVVTCP SSYSFLSH	ELTVTCLTSV	CLPPCACTGG	VTEGPPIESH	60 88
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 02			
LRKAPHRLFE	VASVRENTSA	SLVSSISGPR	PGRFTITNVP	LRFIVLEAFG	VLDHOLVGGO	60
NWIESARYDI	AATFPQGSVP	ERDWRPMLQR	VLVDRFGLMV	HRETREVPTY	DLVLARRDGT	120
LGAQIKRTDG	SCETPPACTL	LGEPDRASGH	GHTDPEESPR	AACKSLDGPG	LVRRPAPGLS	180
GTLMSI						186
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 03			
MSTFSKLRRE	RNGGRPVFVV	EFQPKGGVSP	DDDFERQAGT	MAGALWIDEA	SQQVIRMESH	60
FRDDYHRTVE	GSSLRVERAL	INGEIWLPSR	SDLNMRQSFA	FGNLAMFFSS	LQFSDYKKFT	120
VDTDAAIALP	DISGADAPKA	K				141
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 04			
VAHRDSGRAR	NQDQVRGGFV	SPVGAGTDLR	TVSGAALAAR	ALLRGDGFRG	FLEIGLGGFL	60
FPCADAIEAL	AQRVHQVDDL	RRRLFARRHH	LFAGDFRRAM	MRCSSC		106
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 05			
MTEEDVAKVR	AESTRVIDLV	QFTDASAIDP	IYVERPYYLA	PDGAMAHDAF	AVVREGMKGK	60
AGIGKLALYG	REIPGGGAAE	RKRPRHVHAA	SRPGSALDEQ	Н		101
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 06			
LGHQRFLLDA	RLALGVKLVE	ADARRRIRRR	KHPDRDVDEA	DLEKPFPGRT	SGHYPVSLLT	60
RPLIIGCSTA	FRTRAHICKG	GPAEAGHYES	RCDTIPATSR	RARKPWHFGP	LALYAGTL	118
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 07			
MPKAIKAEGL	RELKTEELEQ	KLSLLQEERF	RLAFRRGTEA	ITNPLQFRAM	RREIARVKTI	60
LHERASA						67
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 08			
LPTRCTANRW	SAPSTSTPTT	NKGRRRATRC	ALWRHGRCRR	PSGGVSSKSS	SGPAEEGDGT	60
VVQQETILKI	ADNSGARDAL	VIRVLGGSKR	RYAGLGDVVV	VTIKHAIPTG	QVKKGEVVKA	120
VIVRTAKETR	RRDGSYIRFD	ENAAVVITDT	GEPRATRIFG	PVARELREKK	FMKIVSLAPE	180
VL						182
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 09			
MPWRPSRSRL	PTSACRVPTG	CGRMAIRRSA	VGPRKCSMTC	RAGARKDELI	AKFRKAFDQP	60
ADLKNGKEQF	EKQCAVCHRF	ADKGKDFGPE	LTGVGLHGPN	VLL'I'HILDPN	RVVEGNFIPY	120
NTURKDEDY	ATTELLKTENRD	SVILKNLEGE	LELRRIDIAS	LRPSGLSFMP	EGLEALGSKN	180
IRDIVGILVS	AIPKGLRILD	LIGAFIADIR VACTI DODVE	RGLFEAINGI	PSLSFRQFGI		240
VNPAAVPGGR VDAAPTTLUV	NVIVLRGGSG	DOPRANDROC	PIAGIKAAKL DGO	IVLGGVAGWG	FPIGIPEMAA	222
VIAARIIDIII	ADOQQOODII	I QIUCHIWIUUC	150			555
Aminosäure	sequenz des (Genprodukte	s von <i>orf</i> 10			
MIPHRMSPRP	SAGFNLLATT	LGHARVLSLW	LCLAGPLLAV	GPLVRAAVAD	AAAPAPGKPA	60
TNALPFEKEI	LAFEASDKTN	PPPSGAILFV	GSSSIRLWKT	LAEDFPKHRV	VNRGFGGSQA	120
TIPSATRPAS	CCPTGRAKSS	STRAATTSTP	GRRPAVLYRI	CPHRARVLPK	TCHRYISIAP	180
NPARWAQCSI	ACGRPMGSSR	PTPARTRACV	SSTCFRKCLD	RMANRARIST	SAIAST	236
Aminosäure	esequenz des (Genprodukte	s von <i>orf</i> 11			
MTWTRFSRGH	LLRRRSQLGV	VGGRSAEMVL	QSIPERPQVV	AAGPQIVLGL	DRRGVHRLMQ	60
PLLVNLLENG	LLKGRGGQGR	GANGPDGGPQ	SGSWGGRGVE	GSQRRRWGRC	GSGGSGGRWG	120
GPRARRRGGG	LLLAQLADLR	LNRGDLVFEV	RGALRKGVAL	STHPMPNGST	SQQDQEDGQR	180
RUGDGPGQGQ	PULAULAVAF	PMEKLFSSVS	PGTGVAPTAA	AAWRTAASGL	STIELSGGAE	240
LUSTKALSIT	VKAKVSSVLD	CEMORNERAR	SAIWSAPPAD	FFGFWFSVKK	NGGWUIKLPK	300

306

Aminosäuresequenz des Genproduktes von *orf*12

MTEGDLAAPD	GADAGGVDLE	TLHEPTPVVE	VAPQHHAARH	LDAGVEPLVA	RLEARPRPDL	60
DPRAAQPLVL	APAGLARDPV	LPALRLDVLV	REVGAEEGVR	ALGRPEMARE	PGCRKVHVEV	120
VGAIDVLEHE	HRRAADVGGL	EESQQRATGP	LAALAGDLEP	PARATSRACA	CRSGASGLSR	180
ARRGCERRAR	AVPARREAPG	ARPVRGRARR	RGTGWRPRGP	PGRRARDSAV	ARELHLPDLH	240
ARLAQQRQRH	LAERIGRVVG	DLLDAGVDDH	LRAHEAGREG	RVERATAHRD	PVKGRLRDGV	300
LFAVRAEALV	EARAPLREGV	AARATPLVAV	ARSARRPVVT	GIDNRAVLGW	GPPPTLRFTQ	360
LLREATTRAI	DRKYSSQLGR	SKPRLRSRTS	WSAAWSSARL	ASLWTRRSAR	SRTASSCCAA	420
GSALPSSWPS	RRRSSSRLVG	SPGRARSRMR	ASRVASAAST	HSRRKRPVRA	RSACTSAGWR	480
TESIT						485

Aminosäuresequenz des Genproduktes von orf13

VQKAVVTELG	RSTNLTAAGV	LVRNFSKFNT	ENRQLALGTL	VKRPAWALAL	LDAVEAKSIK	60
ITDLGVSGPD	RLRTHGDPAV	SRRASEVFDD	LQGPPVREKD	ELIAKFRKAF	DQPADLKNGK	120
EQFEKQCAVC	HRFADKGKDF	GPELTGVGLH	GPNVLLTHIL	DPNRVVEGNF	IPYNITTKKD	180
EDYTGLIKTE	NRDSVTLKNS	GG				202

Aminosäuresequenz des Genproduktes von orf14

MFPTTSSTRL	RFREVAMSSC	CGAVRAMPAP	CPSASSSPPA	PRPPSSTCSV	ASRGGASPTA	60
RRRCTTCRPR	ASRCTTPMGS	RRKSSSTTAS	KSPTLPIPVK	SRAAAPPATW	SPPDSCAGSL	120
WSRTDPRSST	RSRWRASTTT	SPLPSS				146

Aminosäuresequenz des Genproduktes von orf15

MIPHRMSPRP	SAGFNLLATT	LGHARVLSLW	LCLAGPLLAV	GPLVRAAVAD	АААРАРАКРА	60
TNALPFEKEI	LAFEASDKTN	PPPSGAILFV	GSSSIRLWKT	LAEDFPKHRV	VNRGFGGSQV	120
NDSVRYAPRI	VLPYRPRQIV	LYAGGNDINA	GKTPGQVFAD	YREFVRTVHA	VLPKTSIAYI	180
SIAPNPARWA	QVDRVREANG	LMEAHTRHGP	APAFHQRVSE	NAWTGWPTAP	GYLRQRSPPH	240
ECRGLQALDR	HRGTVPGSVS	TDSEPV				266

Aminosäuresequenz des Genproduktes von orf16

MVDRNLGRGEGAGLKGVSVADGDVAGVSGSGGRWGGPRARRRGGGLLLAQLADLRLNRGD60LVFEVRGALQKGVALFLEQSHAKRLNVAAGPGRWPAPPGRWARSGPAPACTARRSFFRWR120KFSSVSPGTGVAPTAAAAWRTAASGLSTSNFRRAEFHSIRAFSTIVRARVKFRVEIVLGP180GILVHALQLGQRLPQIRQGLGHLFGVTAGGKFGFLEEPQAAGEVLFHLLPAAEKLGLAAA240RFLQLGAFALQFLLDPLELRQLALHVAHARIHLLARRRRGRRCGWRGRHRGAPSASPAA300LKVVIDELRRVKFCSHASDFSVRDPACKGRDFP333

Aminosäuresequenz des Genproduktes von orf17

MMREHDLSEF	ELERDGVKLR	LRKNTGQQWN	GSSPLPQVTF	VPQAAAAPMG	NDGAPASPVL	60
APANEDIDLA	IVKSPIVGTF	YRQSEPGAKP	FADVGQTVKK	GQVLCPSRSD	EADERDQFGL	120
RRRDRQGLRG	ERPGRPLRRA	ALRHQTQCLR	RS			152

Aminosäuresequenz des Genproduktes von orf18

MREAAARLTG	VADAAFPAVR	PEVTEREVAA	AIEGALRKAG	YERPAFDTIV	ASGAECGLAP	60
LPGRGSGPAH	SRLTWWCWTL	ERSCTDYCNP	GDLTRTVSRV	GQPSGAGCPQ	TFVPFSERFG	120
KLAKAEANRG	RQTWESDDRR	GRRRPSGARR	AWIGRGVRAR	HGSWPGARRP	RRTSASRSRG	180
QMSRRCGSSR	EWSSPSSQAR	ICLAFGGVRI	RRRYLGDRDW	DAKF		224

Aminosäuresequenz des Genproduktes von orf19

VDVARCDELV	SPRSPRDSRG	TGDWRAVVTI	RPSSPSASRA	RRTRRCLAAT	DARSGAGPRI	60
TLFGQGLTTR	LRGSAITVSG	CPASTAAGRD	GADVRRRCSM	SASSRTAVRL	SGSAFRTYSN	120
SVAASSYFAI	SRRVRAERDA	GREIRGVLRQ	TGPADAHGVF	DAGRPGRCSS	ASCAKAIDAG	180
SGRRLQRIRI	SRIIDSL					197

7.3 16S rDNA-Sequenzen

Teil-Nukleotidsequenz des 16S-rRNA-Gens aus dem Stamm Izmir A

	_					
CACGATTACT	AGCGATTCCG	ACTTCATGGA	GTCGAGTTGC	AGACTCCAAT	CCGGACTACG	60
ACGCACTTTA	TGAGGTCCGC	TTGCTCTCGC	GAGGTCGCTT	CTCTTTGTAT	GCCCCATTGT	120
AGCACGTGTG	TAGCCCTCGT	CGTAAGGGCC	ATGATGACTT	GACGTCATCC	CCACCTTCCT	180
CCAGTTTATC	ACTGCCAGTC	TCCTTTGACT	TCCCCGCCCG	ACCGCTCGCA	ACAAAGGATA	240
AGCCTTGCGC	TCGTTGCCGG	ACTTAACCCA	ACATTTCACA	ACACGACCTG	ACGACAGCCA	300
TCCACCACCT	GTCTCACGCT	TCCCGAAGCC	ACATTCTCAT	CTCTGAAAAC	TTCCGTCCAT	360
GTCAAGACCA	GGTAAGGTTC	TTCGCGTTGC	ATCGAATTAA	ACCACATCCT	CCACCGCTTG	420
TGCGCGCCCC	CGTCAATTCA	TTTGAGTTTT	AACCTTGCGC	CCGTACTCCC	CACGCGGTCG	480
ACTTAACGCG	TTAGCTCCGG	AAGCCACGCC	TCAAGCGCAC	AACCTCCAAG	TCGACATCGT	540
TTACGGCGTC	GACTACCAGG	GTATCTAATC	CTGTTTGCTC	CCCACGCTTT	CGCACCTGAC	600
CGTCAGTCTT	CGTCCACCGC	CCCGCCTTCG	CCACCGCTAT	TCCTCCA		657

Teil-Nukleotidsequenz des 16S-rRNA-Gens aus dem Stamm Izmir B

TTNNNNTNNT	NAAGCCCATT	AAAACNACCG	CNNNAAAATA	AGTTANGTGG	CCTAANGTGT	60
TGGANTTGCG	AGTGCNNTGN	AGTGTCAGAC	AGGTAANCAC	AANGCGCCTG	GGAACGTATA	120
TGNNGGGNGG	TTATTCTNAT	CACACNGATT	ACTANNCNAT	GTCCTGACTT	CATGGAAGTC	180
GAGNNTGCAA	TACATCCAAT	CCGGTACTAC	NACGCACTTT	ATGAGGNCCG	CTTGCTCTCG	240
CGAGGTCGCT	TCTCTTTGTA	TGCGCCATTG	TAGCACGTGT	GTAGCCCTGG	NNGNAAGNNC	300
CATNANGACT	TGACGTCATC	CCCACCTTCC	TNCAGNTNAT	CACTGNCAGN	CTNCTTTGAN	360
TNCCCGGNCG	GACCNCTGGC	AACAAAGGAT	AAGGGTNGCG	CTCGTTGCGG	GACTTAACCC	420
AACATTTCAC	AACACGAGCT	GACGACAGCC	ATGCANCACC	TGTCTCACGG	TTCCCGAAGG	480
CACATTCTCA	TCTCTGAAAA	CTTCCGTGGA	TGTCAAGACC	AGGNAAGGTT	CTTCGCGTTG	540
CATCGAATTA	AACCACATGC	TCCACCGCTT	TGTGCGGGCC	CANNGNNAAT	TCATTTGAGT	600
TTTAACCTTG	CGGAGCGNAC	TCCCCAGGCG	GTCGACTTAA	CGCGTTAGCT	NCGGAAGCCA	660
CNCCTNAAAG	GGCACAACCT	CNCAAAGTCG	ACATCCGTTT	ACGGCGNNGA	CTACCCAGGG	720
TATCTTAATC	CTGTTTGCTC	CCCACNCCTT	TCGAACCTGA	GCGTCAAGTC	TTCNNTCCAG	780
GGGGCCCNCC	TTCGCCACCG	GTATTTCCTC	CAA			

Teil-Nukleotidsequenz des 16S-rRNA-Gens aus dem Stamm Izmir C

CACGATTACT	AGCGATTCCG	ACTTCATGGA	GTCGAGTTGC	AGACTCCAAT	CCGGACTACG	60
ACGCACTTTA	TGAGGTCCGC	TTGCTCTCGC	GAGGNCGCTT	CTCTTTGTAT	GCGCCATTGT	120
AGCACGTGTG	TAGCCCTGGT	CGTAAGGGCC	ATGATGACTT	GACGTCATCC	CCACCTTCCT	180
CCAGTTTATC	ACTGGCAGTC	TCCTTTGAGT	TCCCGGCCGG	ACCGCTGGCA	ACAAAGGATA	240
AGGGTTGCGC	TCGTTGCGGG	ACTTAACCCA	ACATTTCACA	ACACGAGCTG	ACGACAGCCA	300
TGCAGCACCT	GTCTCACGGT	TCCCGAAGGC	ACATTCTCAT	CTCTGAAAAC	TTCCGTGGAT	360
GTCAAGACCA	GGTAAGGTTC	TTCGCGTTGC	ATCGAATTAA	ACCACATGCT	CCACCGCTTG	420
TGCGGGCCCC	CGTCAATTCA	TTTGAGTTTT	AACCTTACGG	CCGTACTCCC	CAGGCGGTCG	480
ACTTAACGCG	TTAGCTCCGG	AAGCCACGCC	TCAAGGGCAC	AACCTCCAAG	TCGACATCGT	540
TTACGGCGTG	GACTACCAGG	GTATCTAATC	CTGTTTGCTC	CCCACGCTTT	CGCACCTGAG	600
CGTCAGTCTT	CGTCCAGGGG	GCCGCCTTCG	CCACCGGTAT	TCCTCCA		657

Teil-Nukleotidsequenz des 16S-rRNA-Gens aus dem Stamm Izmir D

CACNATTACT	ANCGATTCCG	ACTTCATGGA	GTCGAGTTGC	AGACTCCAAT	CCGGACTACG	60
ACGCACTTTA	TGAGGTCCGC	TTGCTCTCGC	GAGGTCGCTT	CTCTTTGTAT	GCGCCATTGT	120
AGCACGTGTG	TAGCCCTGGT	CGTAAGGGCC	ATGATGACTT	GACGTCATCC	CCACCTTCCT	180
CCAGTTTATC	ACTGGCAGTC	TCCTTTGAGT	TCCCGGCCGG	ACCGCTGGCA	ACAAAGGATA	240
AGGGTTGCGC	TCGTTGCGGG	ACTTAACCCA	ACATTTCACA	ACACGAGCTG	ACGACAGCCA	300
TGCAGCACCT	GTCTCACGGT	TCCCGAAGGC	ACATTCTCAT	CTCTGAAAAC	TTCCGTGGAT	360
GTCAAGACCA	GGTAAGGTTC	TTCGCGTTGC	ATCGAATTAA	ACCACATGCT	CCACCGCTTG	420
TGCGGGCCCC	CGTCAATTCA	TTTGAGTTTT	AACCTTGCGG	CCGTACTCCC	CAGGCGGTCG	480
ACTTAACGCG	TTAGCTCCGG	AAGCCACGCC	TCAAGGGCAC	AACCTCCAAG	TCGACATCGT	540
TTACGGNGTG	GACTACCAGG	GTATCTAATC	CTGTTTGCTC	CCCACGCTTT	CGCACCTGAG	600
CGTNAGTCTT	CGNCCAGGGG	GCCGCCTTCN	CCACCGGTAT	TCCTCCA		657

Teil-Nukleotidsequenz des 16S-rRNA-Gens aus dem Stamm Izmir Y

	_					
CCGCGATTAC	TAGCAATTCC	GACTTCATGC	AGGCGAGTTG	CAGCCTGCAA	TCCGAACTGA	60
GACCGGCTTT	TCTAGGATTC	GCTCCATCTC	GCGACTTCGC	TTCCCGTTGT	ACCGGCCATT	120
GTAGTACGTG	TGTAGCCCAG	GTCATAAGGG	GCATGATGAT	TTGACGTCAT	CCCCACCTTN	180
CTCCGGTTTG	TCACCGGCAG	TCACTCTANA	GTGCCCATCA	CTACATGCTG	GCAACTAAAG	240
TCAAGGGTTG	CTCTCGTTGN	GGGACTTACC	CANCATNTNA	CGACACGAGC	TGACGACAAC	300
CATGCACCAC	CTCTCTCCTC	TGTCCCGAAG	GAAAGGCACA	TCTCTGNACC	GGNCANAGGG	360
ATGTTAAAGA	CCTGTNTNAG	GTTCTTCGCG	TTGCTTCNNA	ATTAAACCAC	ATACTCCACT	420
GCTTGGGCGG	GTCCCCCGTC	AATTNCTTTG	AGTTTCAGTC	TTGCGACCGT	ACTCCCCAGG	480
CGGAGNGCTT	AATGTGTTTA	CTTCTGCACC	CAAGGGTATC	NAAAACCCCC	TAACACCTAA	540
NNNCTCATCG	NTTACGGCNN	AGGACNNACC	AGGGNANNCN	NAATCCTGTT	TGNTTCCCCA	600
CNCCTTTTCN	CCGCCNTAAN	AGTNNANTTA	CAGCCCNCAA	GAGNCCCCTT	TCCCCACTGG	660
NNGTGTCNTC	CACAAC					676