Proteomanalyse lysosomaler Membranen: Identifizierung und Charakterisierung neuer lysosomaler Membranproteine

Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

> vorgelegt von Oliver Schieweck aus Wolfsburg

Göttingen 2008

D7

Referent: Prof. Dr. K. von Figura Institut für Biochemie II, Zentrum Biochemie und Molekulare Zellbiologie der Georg-August-Universität zu Göttingen

Korreferent: Prof. Dr. R. Ficner Institut für Mikrobiologie und Genetik der Georg-August-Universität zu Göttingen

Tag der mündlichen Prüfung: 02.07.2008

Für meine Familie

Inhaltsverzeichnis

Abkürzungei	n	viii
1 Einleitung		1
1.1 Lysoso	men - Die Recyclingmaschinerie der Zelle	1
1.2 Lysoso	men müssen mit lysosomalen Matrixproteinen und	3
Membra	anproteinen ausgestattet werden	
1.2.1	Lysosmale Matrixproteine werden direkt in die	3
	Zisternen des ER hinein synthetisiert	
1.2.2	Lysosomale Membranproteine werden während ihrer	4
	Synthese wie alle Membranproteine in die	
	Membranen der ER-Zisternen integriert	
1.2.3	Lysosomale Matrix- und Membranproteine werden	6
	innerhalb der Zisternen des ER posttranslational	
	modifiziert und kontrolliert	
1.2.4	Die Sortierung lysosomaler Matrix- und	9
	Membranproteine erfolgt über den sekretorischen	
	Weg	
1.2.5	Lysosomale Matrixproteine erreichen ihren Zielort mit	11
	Hilfe der Mannose-6-Phosphat-Rezeptoren	
1.2.6	Sowohl lysosomale Matrix- als auch lysosomale	12
	Membranproteine erreichen ihren subzellulären	
	Zielort entweder auf einem direkten oder auf einem	
	indirekten Weg	
1.2.7	Funktion der Adapterkomplexe	14
1.2.8	Adapterkomplexe besitzen eine unterschiedliche	15
	Spezifität für die unterschiedlichen Hüllproteine	
1.2.9	Die Bildung der Transportvesikel, und die Herkunft	16
	des für den Transport benötigen Energie	

i

	1.3 Lysoso	male Men	nbranproteine	16	
2.	2. Material und Methoden				
	2.1 Material			22	
	2.1.1	Laborau	sstattung	22	
		2.1.1.1	Verbrauchsmaterialien	24	
	2.1.2	Chemika	alien, Plastikware und Membranen	25	
	2.1.3	Kits und	Reagenzien	25	
	2.1.4	Bakterie	nstämme und Zelllinien	26	
		2.1.4.1	Bakterienstämme	26	
		2.1.4.2	Zelllinien in Zellkultur	27	
	2.1.5	Gene		27	
	2.1.6	DNA-Oli	gonukleotide	27	
	2.1.7	Vektorer	n und DNA-Standards	29	
	2.1.8	Antibioti	ka	29	
	2.1.9	Radioak	tive Substanzen	29	
	2.1.10	Enzyme	Enzyme und Nukleotide		
	2.1.11	Primärantikörper			
	2.1.12	Sekundärantikörper			
	2.1.13	Stocklösungen und Puffer			
	2.1.14	Medien zum Arbeiten mit Bakterienkulturen			
	2.1.15	Medien	und Lösungen für die Zellkultur	32	
	2.1.16	EDV-So	ftware		
	2.1.17	Online-F	Programme/Datenbanken	33	
	2.2 Method	len		34	
	2.2.1	Molekula	arbiologische Methoden	34	
	2.2.1.1	1	Kultivierung von <i>E. coli</i>	34	
		2.2.1.2	Transformation von chemisch-kompetenten	34	
			E. coli		
		2.2.1.3	Transformation von elektrokompetenten E.	35	
			coli durch Elektroporation		
		2.2.1.4	Herstellung elektrokompetenter DH5 α	35	
		2.2.1.5	Herstellung von Glycerinstocks von	35	
			Bakterienstämmen		
		2.2.1.6	Mini-Präparation von Plasmid-DNA	36	

	2.2.1.7	Midi-Präp	aration von Plasmid-DNA	36	
2.2.1.8		Bestimm	Bestimmung von DNA-Konzentration		
	2.2.1.9	Restriktio	nsendonuklease-Verdau von DNA	37	
	2.2.1.10	Agaroseg	elelektrophorese von DNA	38	
	2.2.1.11	Gelextrak	tion von DNA-Fragmenten	39	
	2.2.1.12	Klonierun	g der für das hypothetische	39	
		Protein L	oc17275 und der NCU-G1		
		kodierend	den cDNA		
	2.2.1.13	Isolierung	y von RNA aus Mausgeweben	40	
	2.2.1.14	Polymera	sekettenreaktion (PCR)	40	
	2.2.1.15	Reverse	Transkriptase-PCR	41	
	2.2.1.16	Mutagene	ese-PCR	43	
	2.2.1.17	Kolonie-F	PCR	44	
	2.2.1.18	Sequenzi	erungs-PCR	45	
	2.2.1.19	Isolierung	y von PCR-Produkten	46	
	2.2.1.20	Ligation		46	
	2.2.1.21	Durchmusterung von Transformanten		46	
2.2.1.22 Reinheitsko		Reinheits	kontrolle	47	
	2.2.1.23	Trübungs	messung	47	
	2.2.1.24	Northern	Blot	47	
		2.2.1.24.1	Herstellung der radioaktiv-	47	
			markierten Sonde		
		2.2.1.24.2	Hybridisierung der Blots mit	48	
			radioaktiv markierten DNA-		
			Sonden		
2.2.3	Zellkult	tur		49	
	2.2.3.1	Auftauen	und Revitalisieren eukaryotischer	49	
		Zellen			
	2.2.3.2	Kultivieru	ng eurkaryotischer Zellen	49	
	2.2.3.3	Passagie	ren und Trypsinisieren von	50	
		eukaryoti	schen Zellen		
	2.2.3.4	Transfekt	ion	50	
	2.2.3.5	Herstellu	ng stabiler Zellklone	51	
	2.2.3.6	Kryokons	ervierung eukaryotischer Zellen	52	

2.2.4

Biochemische Methoden			52
2.2.4.1 Präparation von Tritosomen durch			52
	fraktionel	le Zentrifuation	
2.2.4.2	Präparati	on tritosomaler Membranproteine	54
	durch Ult	razentrifugation	
2.2.4.3	Proteinbe	estimmung nach Bradford	54
2.2.4.4	BCA-Prot	teinbestimmung	54
2.2.4.5	SDS-Poly	vacrylamidgelelektrophorese	55
	(Laemmli	et al., 1970)	
2.2.4.6	16-BAC-F	Polyacrylamidgelektrophorese	57
	(Hartinge	r J, et al., 1996)	
2.2.4.7	CTAB-Pc	lyacrylamidgelelektrophorese	60
	(Buxbaur	n, 2003)	
2.2.4.8	Proteinge	elfärbung mit kolloidaler	63
	Coomass	ie (Neuhoff et al. 1988)	
2.2.4.9	Proteinge	elfärbung mit Silber (Schevchenko	64
	et al. 199	6)	
2.2.4.10	Western	Blot (semi-dry)	65
2.2.4.11	Indirekte	Immunfluoreszenz	67
2.2.4.11.1		Vorbereitungen	67
2	.2.4.11.2	Fixierung der Zellen durch	67
		Methanol	
2	.2.4.11.3	Einfache Immunfärbung	68
2	.2.4.11.4	Sequenzielle Immunfärbung	68
2.2.4.12	Immunpra	äzipitation	69
2.2.4.13	Deglykos	ylierung von Glykoproteinen in	70
	Membran	präparationen	
2.2.4.14	In-Gel-De	eglykosylierung von	70
	Glykopro	teinen	
2.2.4.15	Membran	proteinanreicherung durch	71
	MemPer®	PIERCE)	
2.2.4.16	Delipidier	ung durch PAGEprep [®] (PIERCE)	72
2.2.4.17	Delipidier	ung (Wessel und Flügge, 1983)	72
2.2.4.18	Reduktive	e Carbamidomethylierung und	73

	tr	vptische	er In-Gel-Verdau (Jahn, 2005)	
	2.2.4.19 A	nsetzer	von HCCA-Matrix	74
	2.2.4.20 N	lassens	pektrometrie	74
	2.2	.4.20.1	Waschen der AnchorChip-	74
			Targets	
3 Ergebnisse)			76
3.1 Proteon	nanalyse trit	osomale	er Membranproteine aus	76
Mäusele	eber			
3.1.1	Präparation	ר von Tr	itosomen aus Mäuseleber	76
3.1.2	Überprüfur	ng der Ly	ysosomenanreicherung in der F2-	78
	Fraktion	-	-	
3.1.3	Analyse de	er Effizie	nz der Anreicherung von	78
	Tritososom	ien in de	er F2-Fraktion mittels Enzymassay	
	und Weste	rn-Blot		
3.1.4	Präparation	n der trit	osomalen Membran	81
3.1.5	Auftrennun	g der tri	sosomalen Membranproteine und	82
	ihre Identif	zierung	mit MALDI-TOF-MS und -MS/MS	
	und Daten	banksud	he	
3.1.6	Präanalytis	che Tre	nnung der Proteine tritosomaler	82
	Membrane	n		
3.1.7	Trennung	tritosom	aler Membranproteine durch 1D-	83
	SDS-PAGE	Ξ		
3.1.8	Trennung t	ritosoma	aler Membranproteine durch 2D-	88
	16-BAC-SI	DS-PAG	E	
3.1.9	Trennung t	ritosoma	aler Membranproteine mit 2D-	96
	CTAB-SDS	S-PAGE		
3.1.10	Insgesamt	wurden	13 Proteine als mögliche	110
	Kandidater	n einges	tuft	
3.2 Charakt	erisierung v	on Loc7	2175	113
3.2.1	Bioinforma	tische A	nalyse	113
3.2.2	Klonierung	des Lo	c 72175-Genproduktes	119
3.2.3	Versuch de	er Analy	se der Quantifizierung des	119
	Loc72175 i	n verscl	hiedenen Geweben (Northern Blot)	
	und der We	estern-B	lot-Analyse nach Expression in	

	eukaryoten Z	Zellsystemen		
3.2.4	Lokalisation	des Loc72175-Protein durch	121	
	Immunfluoreszenz			
3.2.5	Untersuchungen zu intrazellulären			
	Sortierungsn	Sortierungsmotiven		
3.3 Chara	kterisierung vor	NCU-G1	127	
3.3.1	Bioinformatis	sche Analyse	127	
3.3.2	Klonierung d	es NCU-G1 Proteins	132	
3.3.3	Expression v	on NCU-G1-His6 und Charakterisierung	133	
	des NCU-G1	-His6-Proteins		
3.3.4	Untersuchun	g zur Glykosylierung des NCU-G1	134	
3.3.5	Intrazelluläre	Lokalisation von NCU-G1	136	
3.3.6	Untersuchun	gen zur intrazellulären Sortierung	142	
4 Diskussio	ion			
4.1 Die biologischen Funktionen der neu identifizierten			144	
lysosomalen Proteine				
4.1.1	Das Genprodukt des Loc17275 zählt zu einer großen 14			
	Familie von	Fransportproteinen. Ein Gendefekt führt		
	zu der türkise	che Variante der Neuronalen ceroiden		
	Lipofuscinos	e (vLINCL)		
4.1.2	Das Protein NCU-G1 besitzt keinerlei Homologie zu 14			
	anderen bekannten Proteinen			
4.1.3	Weitere identifizierte Kandidaten für lysosomale 1			
	Lokalisation			
4.2 Kritisc	he Diskussion o	der Methodik	152	
4.2.1	Reinheit der	tritosomalen Membranproteinpräparation	152	
	4.2.1.1	Lysosomale und nicht-lysosomale	152	
		Membranproteine		
	4.2.1.2	Die enzymatischen Aktivitäten	154	
		repräsentativer Markerenzyme deuten		
		auf einen geringen Anteil nicht-		
		lysosomaler Enzyme in der F2-Fraktion		
		hin		

Zusammenfassung (deutsch)

Inhalt	vii
Zusammenfassung	159
Literatur	161
Danksagung	182
Anhang	183
Lebenslauf	

Abkürzungen

16-BAC	16-Benzyldimethyl-
	hexadecylammoniumchlorid
Abb.	Abbildung
ATP	Adenosintriphosphat
AP	Adapterkomplex
APS	Ammoniumperoxidsulfat
ARF	ADP-Ribosylation-Factor
BLAST	Basic Local Alignment Search Tool
bp	Basenpaare
ĊĊV	Clathrin-Coated Vesicle
Ci	Curie (2,22 106 counts per
	minute)
CNL	Ceroide neuronale Lipofuscinose
COP	Coat Protein
cpm	counts per minute
°C	Grad Celsius
cDNA	Komplementäre DNA
СТАВ	Cetyltrimethylammoniombenzyl-
	bromid
Da	Dalton
DMEM	Dulbecco's Modified Eagle Medium
H ₂ O _{bidest}	Doppelt-destilliertes Wasser
D	Dimensional
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DTT	Dithiotreitol
dNTPs	2'-Deoxyribonucleosid-5'-Phosphat
E. coli	Escherichia <i>coli</i>
EDTA	Ethylendiamintetraacetat
EEA1	Early endolsomal Antigen 1
ER	Endoplasmatisches Reticulum
EST	Expressed sequence tag
et al.	et alii (lat. und andere)
FKS	fötales Kälberserum
GGA	Golgi-localized, □-ear containing,
	ARF-binding
GlcNAc	N-Acetylglucosamin

GSH GSSG GTP G6P h HAc IEF kb kDa I LAMP LB LIMP M MALDI	reduziertes Glutathion oxidiertes Glutathion Guanosintriphosphat Glucose-6-Phosphat Stunde(n) Essigsäure Isoelektrische Fokussierung Kilobasenpaare Kilo Dalton Liter Lysosome Associated Membrane Protein Luria Broth Lysosomal interacting membrane protein Molar Matrix unterstützte Laser- Desorption/Ionisierung
Man MEF MetOH MFS MgCl ₂ min M6P mM MPR mRNA μ MS MW n NPC 1 NSF OD PA	Mannose Embryonale Mausfibroblasten Methanol Major Facilitator Superfamily Magnesiumchlorid Minute(n) Mannose-6 Phosphat milliMolar Mannose-6-Phosphat-Rezeptor <i>messenger</i> RNA Micro (x10 ⁻⁶) Massenspektrometrie Molekulargewicht Nano (x10 ⁻⁹) Niemann Pick type C 1 n-maleinimide sensitive factor Optische Dichte Polyacrylamid
PAG PAGE PBS	Polyacrylamidgel Polyacrylamidgelelektrophorese Phosphat-gepufferte Kochsalzlösung
PCR PDI pH pl	Polymerase Ketten Reaktion Protein-Disulfid-Isomerase negativer dekadischer Logarithmus der Protonenkonzentration Isoelektrischer Punkt
PNGase F	Glykosidase Peptid-N-Glykosidase F
PNS RNA rpm	postnukleärer Überstand Ribonukleinsäure Umdrehungen pro Minute

RT RT-PCR s SDS SNARE SSC SP SRP Tab. TAE TAE TAE TAE TBS TE TEMED TGN TM TM Tris TOF	Raumtemperatur Reverse Transkriptase-PCR Sekunde Sodiumdodecylsulfat soluble NSF attachement proteins Standard Saline Citrate Signalpeptid signal recognition particle Tabelle Tris-Acetat-EDTA-Puffer Thermophilus <i>aquaticus</i> Tris-gepufferte Kochsalzlösung Tris-EDTA N,N,N,N-Tetramethylethylendiamin Trans-Golgi-Netzwerk Tansmembrandomäne Tris-(Hyroxymethyl)-aminomethan <i>time of flight</i>
UDP	Uridindiphosphat
USW.	und so weiter
UV	ultraviolett
V	Volt
VLINCL	late infantile neuronal ceroide lipofuscinosis
Vol.	Volumen
v/v	Volumenverhältnis
wt	Wildtyp
w/v	Gewicht zu Volumen
xg	-tache Erdbeschleunigung
z. B.	zum Beispiel
ZNS	Zentrales Nervensystem

1.1 Lysosomen - die Recyclingmaschinerie der Zelle

Lysosomen sind subzelluläre Organellen eukaryotischer Zellen, die von einer Phospholipidmembran umgeben sind und das spezifische Phospholipid Lyso-Bisphosphatsäure besitzen [1, 2]. Sie können als Teil einer Familie von Lysosomen-Verwandten betrachtet werden wie Melanosomen, Thrombozytenspezifische dichte und azurophile Granulae, oder Pinselsaumorganellen der Osteoklasten mit einer Bandbreite zellulärer Funktionen in verschiedenen Geweben [3, 4]. Neben ihrer Hauptfunktion, der intrazellulären Degradation, sind die Lysosmen auch an der Zellhomöostase beteiligt, da sie die Verbindung zwischen Zellplasma und dem degradativen Teil der Zelle liefern. Des weiteren sind diese hochdynamischen Strukturen involviert in die Regulation der Proteinsekretion durch Re-Endocytose sekretierter Proteine [5] und den turnover von Proteinen und Lipiden, was eine bedeutende Rolle beim Recycling beschädigter Zytoplasmamembranen [6] spielt. Des Weiteren sind Lysosomen auch an der Bildung der gekräuselten Zellgrenze von Osteoklasten beteiligt [7]. In erster Linie jedoch sind Lysosomen das Hauptkompartiment für allgemeine intrazelluläre Degradation und Recycling im endosomalen Vesikeltransportweg. Hierfür enthalten sie lösliche Glykoproteine, saure Hydrolasen, welche in der Lage sind, bei dem niedrigen pH, der in den Organellen herrscht (~pH 4,5), alle Makromoleküle einer Zelle zu hydrolisieren [8, 4]. Die abzubauenden Moleküle

1

gelangen über eine Reihe von Prozessen wie Phagozytose, Pinozytose und Autophagie in die Lysosomen. Der niedrige pH der späten Endosomen und Lysosomen wird durch eine integral membranlokalisierte Protonenpumpe erzeugt, welche aus mehreren Polypeptidketten besteht [9, 10]. Die bei der Hydrolyse entstehenden Abbauprodukte werden schließlich durch spezifische Transportsysteme aus den Lysosomen in das Cytoplasma transportiert, wo sie dann für die anschließenden Wiederverwertungsschritte zur Verfügung stehen. Der Import von Substratmolekülen in die Lysosomen sowie der Export der niedermolekularen Produkte (für die Wiederverwertung im Cytoplasma) sind oft abhängig von einer durch eine Protonenpumpe erzeugte protonenmotorische Kraft [11, 12, 13].

2

Die Bedeutung der Lysosomen in der Zelle im Organismus ist ersichtlich aus der Existenz von mehr als 40 verschiedenen Enzymopathien, bei denen Störungen im Katabolismus von neutralen, Phospho- und Glykolipiden, komplexen Kohlenhydraten und Proteinen auftreten und die entsprechenden unverdauten Makromoleküle in den Lysosomen akkumulieren [14]. Die gestörte Zellhomöostase führt schließlich zu den lysosmalen Speicherkrankheiten mit den jeweiligen Krankheitssymptomen, wie zum Beispiel der GM1- und GM2-Gangliosidose [8, 15-17], verschiedenen Mucopolysaccharidosen [18-20] und Lipofuscinosen [21-25].

Neben den Lysosmalen Speicherkrankheiten sind auch für andere Krankheiten wie Alzheimer [26, 27], Autoimmunerkrankungen [28], Krebs [29] und verschiedene Medikamentenresistenzen [30] Funktionsstörungen der beschrieben worden. Während bereits Lysosmen viele lysosomale Erkrankungen an denen lösliche Matrixproteine beteiligt sind charakterisiert wurden. nur wenige Krankheiten mit Defekten sind lysosomaler Membranproteine (LMPs) bekannt, so wie die Danon-Krankheit (durch Defekt des LAMP2) [31, 32, 33], die Sanfilippo C Krankheit [34], die Cobalamin F-(Vitamin B₁₂-) Transporterproteinkrankheit [35, 36], Niemann-Pick-Typ C1 (NPC1 (Cholesterin Transporter)) [37, 36, 38], Cystinose (durch Defekt des Cystinosin (Cysteintransporter)) [38, 39], und die Salla-Krankheit (Defekt des Sialin (Sialinsäuretransporter)) [34-36, 40] und einige neuronale ceroide Lipofuscinosen (Batten-Krankheit) [21-23]. In Patienten mit junger maligner Osteopetrose konnten Mutationen in dem Gen der A 3-U. E. der lysosomalen

H⁺-ATPase-Protonenpumpe identifiziert werden. Nur wenige lysosomale Membranproteine wie zum Beispiel LAMP1 / 2 und LIMP 2 konnten direkt untersucht werden, weil viele von ihnen multiple Transmembrandomänen besitzen, die ihnen einen sehr hydrophoben Charakter verleihen [8]. Es kann daher die Existenz von vielen weiteren bislang nicht charakterisierten Membranproteinen in den Lysosomen angenommen werden [14].

1.2 Lysosomen müssen mit lysosomalen Matrixproteinen und Membranproteinen ausgestattet werden.

Wie die Synthese sekretorischer Proteine, erfolgt auch die Synthese lysosomaler Matrix- und Membranproteinen am rauen endoplasmatischen Retikukum (ER). Dabei werden die Proteine durch die ER-Membran cotranslational in das ER integriert. Diese Proteine besitzen in der Regel Nterminal eine ER-Signalsequenz (topogene Sequenz). Bei diesen Proteinen erfolgt die anschließende Zielsteuerung zu den Lysosomen, wo die Proteine später ihre Funktion erfüllen, über den so genannten sekretorischen Weg.

1.2.1 Lysosmale Matrixproteine werden direkt in die Zisternen des ER hinein synthetisiert.

Proteine, die durch den sekretorischen Weg sortiert werden, besitzen in der Regel eine N-terminale ER-Signalsequenz. Bei Membranproteinen, deren N-Terminus im reifen Protein membranständig ist, kann diese auch durch eine mindestens 20 - 25 Aminosäuren lange hydrophobe Region am N-Terminus des Proteins ohne weitere Charakteristika einer Signalsequenz ersetzt werden. Die ER-Signalsequenz besteht aus mindestens einer positiv geladenen Aminosäure, auf die sechs bis 12 hintereinanderliegende hydrophobe Reste folgen. Nach der Synthese des Signalpeptidbereichs an den freien Ribososmen werden diese durch das Signalerkennungspartikel (SRP = *signal recognition particle*) zu dem Translocon-Komplex der ER-Membran geleitet. Es folgt die Durchquerung der ER-Membran, wobei die Hydrophobizität des hydrophoben Bereichs des Signalpeptids essenziell ist. Dabei bindet SRP spezifisch an die

3

Signalsequenz eines naszierenden Proteins an seinen in der ER-Membran verankerten, aus α - und β -Untereinheit bestehenden SRP-Rezeptor.

1.2.2 Lysosomale Membranproteine werden während ihrer Synthese wie alle Membranproteine in die Membranen der ER-Zisternen integriert.

Während des sekretorischen Weges behalten alle in die ER-Membran integrierten Membranproteine ihre Orientierung bis zur Zielposition in der entsprechenden Organelle bei. Membranproteine mit einer internen Transmembrandomäne und einer N-terminalen Signalsequenz werden so orientiert, dass der N-Terminus in das Lumen und der C-Terminus in das Cytosol ragt (Abb. 1.1). Die interne Sequenz der Transmembrandomäne fungiert hierbei als Stopp-Transfer-Membranankersequenz und verhindert den weiteren Durchtritt der Polypeptidkette durch das Translocon.

Abb. 1.1 Insertion von Typ-I-Membranproteinen in die ER-Membran.

Fehlt das N-terminale Signalpeptid, so dient die interne Sequenz der membrandurchspannenden Helix als Siegnalsequenz und diese Proteine werden dann in genau der umgekehrten Orientierung in die Membran integriert (Abb. 1.2).

Abb. 1.2 Insertion von Typ-II-Membranproteinen in die Membran des ER.

Hierbei hängt die Orientierung der Polypeptidkette innerhalb der Membran auch von der Art, der die interne Signalsequenz flankierenden Aminosäuren und der Länge der internen Signalsequenz ab. Besteht die interne Signalsequenz aus mehr als 20 hydrophoben Aminosäuren, so ragt der N-Terminus in das ER-Lumen. Ansonsten verbleibt in der Regel der flankierende Abschnitt mit den meisten positiv und selten negativ geladenen Aminosäuren auf der cytosolischen Seite.

Proteine mit mehreren Transmembran- α -Helices besitzen mehrfache topogene Sequenzen, wobei von jeweils zwei nebeneinander liegenden Sequenzen die erste als interne Signalsequenz dient, während die zweite als Stopp-Transfer-Membranankersequenz fungiert. So wird zum Beispiel der Glukosetransporter GLUT1, der die Membran mit 12 Transmembran- α -Helices durchspannt, in der Weise in der Membran orientiert, dass sowohl der N-Terminus, als auch der C-Terminus ins Cytosol ragen (siehe Abb. 1.3).

Abb. 1.3 Insertion von Typ-III-Membranproteinen in die ER-Membran.

1.2.3 Lysosomale Matrix- und Membranproteine werden innerhalb der Zisternen des ER posttranslational modifiziert und kontrolliert.

Nach Abschluss der Proteinsynthese werden die in der Membran eingebauten oder in das Lumen des ER überführten Polypeptide zu den jeweiligen Zielorten transportiert.

Während dessen erfolgen weitere postranslationale Modifikationen, wie die Ausbildung Disulfiden, das und Modifizieren von Anfügen von Kohlenhydratseitenketten und verschiedene proteolytische Spaltungen. Auch die korrekte Proteinfaltung und das Zusammenfügen von Proteinuntereinheiten zu mulitmeren Komplexen bedarf der Hilfe von speziellen Systemen. Viele nicht-cytoplasmatische Proteine werden durch Ausbildung von Disulfidbindungen in ihrer nativen Konformation stabilisiert oder überhaupt erst richtig gefaltet. Da innerhalb des Cytosols reduzierende Bedingungen herrschen, die durch ein Verhältnis von reduzierendem Glutathion (GSH) zu oxidiertem Glutathion (GSSG) von größer als 50:1 eingestellt werden, werden keine Disulfidbindungen ausgebildet. Die Ausbildung der im Cytosol Disulfildbindungen findet im ER statt in dem ein GSH/GSSG-Verhältnis von 4:1 herrscht, wobei spezielle Enzyme wie die Protein-Disulfid-Isomerase (PDI) und Chaperone wie Hsp70 für den korrekten Ablauf der Bildung der Disulfidbindungen benötigt werden. PDI kann dabei nicht korrekt gebildete

Disulfidbindungen wieder lösen und so umordnen, dass die jeweils energetisch günstigste Bindung entsteht. Hsp70 wiederum bindet Proteine, deren Disulfide nicht richtig gebildet worden sind und verhindert dadurch eine Fehlfaltung. Weitere Proteine, die für eine richtige Proteinfaltung sorgen, sind die Lectine Calnexin und Calretikulin und die oftmals Protein-spezifischen Peptidyl-Prolyl-Isomerasen. Calnexin und Calretikulin arrestieren Proteine im ER über die Bindung von Glucosemolekülen, die zuvor von Glykosyltransferasen an die nicht korrekt gefalteten Proteine angefügt wurden. Wird diese Interaktion von Zeit zu Zeit unterbrochen, so entfernen spezielle Glucosidasen die Glucosereste wieder. Nicht-korrekt gefaltete Proteine werden schließlich erneut glykosyliert und kurze Zeit später wieder von den Lectinen gebunden und weiter arrestiert, wobei diese Zeit für eine Umfaltung genutzt werden kann.

Peptidbindungen besitzen einen partiellen Doppelbindungscharakter, wodurch sie, im Gegensatz zu den anderen Bindungen des Polypeptidrückrates, nicht um die eigene Achse drehbar sind. Es kann eine cis- und eine trans-Konfiguration eingenommen werden, welche sich durch die Stellung der Seitenketten zueinander unterscheiden. Innerhalb des Polypeptidrückrates wird die trans-Konfiguration aufgrund sterischer Gründe bevorzugt. Von 1000 Peptidbindungen liegt statistisch nur eine in der cis-Konfiguration vor. Eine Aminosäure bildet hier allerdings eine Ausnahme. Die Peptidbindung zwischen Prolin und einer anderen Aminosäure weist nur eine geringe Präferenz für die trans-Konfiguration auf. Dies liegt daran, dass das Stickstoffatom im Prolin an zwei tetraedrische Kohlenstoffatome gebunden ist, so dass die sterischen Unterschiede zwischen den cis- und trans-Formen minimal werden. Da die trans-Konfiguration für die korrekte Proteinfaltung aber wichtig ist, existiert im ER ein Enzym, die Peptidyl-Prolyl-Isomerase, welche die in der cis-Konfiguration vorliegenden Pro-X-Bindungen löst und in die trans-Form isomerisiert.

Die Regulation der Expression der Proteine dieser Faltungsmaschinerie erfolgt durch das Membranprotein IRE-1, das in der inneren Kernmembran, bzw. den der Kernmembran nahen Bereichen der ER-Membran ansässig ist. IRE-1 hat die Fähigkeit ungefaltete Proteine zu erkennen und wird aktiv, indem es für eine rasche Expression des Transkriptionsfaktor HAC-1 sorgt, der wiederum die Expression verschiedener Faltungsproteine (*unfolded protein response*, UPR) einleitet.

O-glykosidisch gebundene Oligosaccharide sind immer über ein GalNAc mit den OH-Gruppen von Serin oder Threonin verbunden und häufig nur aus bis zu vier Monosacchariden aufgebaut. Die Synthese erfolgt am Protein durch die Übertragung UDP-aktivierter Zuckerreste über spezifische Transferasen. Während im ersten Schritt der O-Glykosylierung GalNAc von UDP-GalNAc auf einen Serin- oder / Threonin-Rest transfiziert wird, ist der letzte Zuckerrest an nicht reduzierenden Enden bei Vertebraten typischerweise ein Sialinsäurerestes (N-Acetylneuraminsäure, NANA).

N-glykosidisch gebundene Oligosaccharide sind immer über GlcNAc mit den Amidgruppen von Asparaginresten verbunden und sind vom high-Mannose-, Hybridoder -Komplextyp. An das hydrophobe Polyisoprenoid Dolicholphosphat, das in der ER-Membran steckt, werden an der cytosolischen Seite zwei N-Acetylglucosamin- und fünf Mannosereste gebunden. Die Zucker werden hierfür in Form von UDP-, bzw. GDP-Monosacchariden bereitgestellt. Daraufhin wechselt dieses Zucker-Dolicholdiphosphat-Konjugat katalysiert durch eine ebenfalls membranständige Flippase die Orientierung, wobei der Zuckerbaum nun in das ER-Lumen ragt. Im ER-Lumen werden nun noch weitere vier Mannose- und drei Glucosereste übertragen. Die vollständige Oligosaccharidvorstufe (GlcNAc₂-Man₉-Glc₃) wird schließlich über eine Oligosaccharidproteintransferase auf Asparaginreste innerhalb einer Konsensussequenz der Polypeptidkette des Proteins übertragen. Die Konsensussequenz lautet NXS / T, wobei "X" jede beliebige Aminosäure außer Prolin darstellen kann. Es werden allerdings nicht alle NXS / T-Erkennungssequenzen glykosyliert. Eine mögliche Glykosylierung kann zum Beispiel verhindert werden, wenn sich das Protein sehr rasch faltet. Nach Übertragung der Oligosaccharideinheit auf die naszierende Polypeptidkette werden die drei Glucosereste durch drei verschiedene Glucosidasen sowie ein Mannoserest durch eine Mannosidase wieder entfernt, wodurch eine Oligosaccharidseitenkette vom high-Mannosetyp entsteht. Ist das Protein jedoch nicht korrekt gefaltet, wird dies von einer spezifischen Glykosyltransferase erkannt, die wiederum einen Glucoserest anfügt, über den

8

das Protein von den Lectinen Calnexin oder Calreticulin gebunden und im ER zurückgehalten wird (siehe oben).

Im Golgi werden die Oligosaccharidseitenketten weiter prozessiert. Dabei kommt es durch die jeweils spezifische Proteinstruktur und der daraus resultierenden Zugänglichkeit der Oligosaccharidstrukturen für die beteiligten Enzyme zu heterogenen Oligosaccharidstrukturen (Kompextypen und Hybridtypen).

1.2.4 Die Sortierung lysosomaler Matrix- und Membranproteine erfolgt über den sekretorischen Weg.

Der Transport von endocytotischen und sekretorischen Proteinen, sowie Membranproteinen erfolgt in Vesikeln, die auf der cytosolischen Seite von Proteinen wie Clathrin, COP-I und COP-II umhüllt sind [41, 42]. Dabei vermitteln die Hüllproteine COP-I und COP-II den Transport zwischen ER und Golgi [43]. Nach der Synthese und dem Transport der Proteine in das ER-Lumen, bzw. der Integration der Membranproteine in die ER-Membran werden die für den Transort zum Golgi bestimmten Proteine in kleine mit dem Hüllprotein COPII umhüllten Vesikel eingeschlossen. Diese fusionieren zunächst miteinander zu Intermediärkompartimenten zwischen ER und Golgi oder mit dem cis-Golgi-Apparat, wo sie als cis-Golgi-Netz (CGN) bezeichnete Membranstapel bilden. Der weitere anterograde Transport erfolgt durch eine Wanderung der Zisternen des CGN in Richtung Plasmamembran, wobei sich aus den Zisternen des CGN zunächst Zisternen des cis-Golgi-Apparates, dann des medialen Golgi-Apparates, des weiteren des trans-Golgi-Apparates und schließlich des trans-Golgi-Netzes (TGN) bilden (Zisternenprogression) (siehe Abb. 1.4).

9

Bei diesem Prozess ist in jedem Stadium auch ein retrograder Transport von Proteinen möglich, zum Beispiel vom CGN oder cis-Golgi zurück zum ER. Hier sind zum Beispiel die Proteine betroffen, die lokale Funktionen ausführen und sollten. ihr Zellkompartiment nicht verlassen Diese retrograden Transportprozesse verlaufen in kleinen speziellen Transportvesikeln, die auf der cytosolischen Seite mit dem Hüllprotein COP I umhüllt sind. Ein Beispiel ist der retrograde Transport von ER-residenten Proteinen wie der PDI, welche die Cterminale Erkennungssequenz KDEL besitzen. Gelangen solche Proteine auf den sekretorischen Weg, werden sie vom KDEL-Rezeptor gebunden und über COP I-Vesikel in das ER zurücktransportiert.

Von den Zisternen des TGN aus erfolgt die weitere spezifische Sortierung der Proteine in mit Clathrin umhüllten Vesikeln zur Plasmamembran, in den extrazellulären Bereich oder zu den Lysosomen. Clathrin ist in Assoziation mit Adapterkomplexen wie AP1, AP2 und AP3 an vielen Transportschritten beteiligt [44, 45].

Vier Adapterkomplexe wurden bislang identifiziert, AP-1 bis AP-4 [44, 46-49]. Diese und eine weitere Art von Adapterkomplexen, die monomerischen im TGN lokalisierten GGAs (*γ-ear containing Arf binding proteins*), sind auf der cytosolischen Oberfläche von Vesikeln, TGN- und endosomalen Membranen lokalisiert [8].

Die vier bislang identifizierten AP-Adapterkomplexe besitzen alle einen ähnlichen Aufbau und beinhalten zwei große Untereinheiten (80 - 200 kDa): eine stark konservierte β - und eine variable Kette (γ , α , δ und ε). Diese sind mit einer mittelgroßen μ - (50 kDa) und einer kleinen 20 kDa großen σ -Untereinheit assoziiert [50-55]. So besteht zum Beispiel der Komplex AP-1 aus den Untereinheiten β 1, γ 1, μ 1A oder μ 1B und σ 1A oder σ 1B [51]. Von der AP-3 β -Kette sind bislang zwei unterschiedliche Isoformen bekannt, die ubiquitär exprimierte β 3A- und die neuro- (endokrin-) spezifische β 3B-Isoform. [56].

1.2.5 Lysosomale Matrixproteine erreichen ihren Zielort mit Hilfe der Mannose-6-Phosphat-Rezeptoren.

Hydrolasen, die für das Lumen der Lysosomen bestimmt sind, werden in das ER hinein synthetisiert, dort N-glykolysiert und gefaltet und im Golgi an den Oligosaccharidseitenketten TGN prozessiert [57]. Im werden die Zuckerseitenketten mit Mannose-6-Phosphatresten versehen. die eine Bindungsstelle für membranständige Mannose-6-Phosphatrezeptoren (M6PRs) bilden [8]. In den Zisternen des TGN werden die Mannose-6-Phosphat-Rezeptor-Hydrolase-Komplexe in *clathrin coated pits*, konzentriert, in Clathrinumhüllte Vesikel (clathrin coated vesicles) verpackt und nach Ausknospung aus den Golgi-Zisternen über verschiede Etappen in die Lysosomen transportiert. Die Mannose-Phosphat-Reste der Hydrolasen werden durch einen zweistufigen Prozess gebildet, indem zunächst ein N-Acetlyglucosaminphosphat durch eine Phosphotransferase an die 6-OH-Gruppe einer Mannose über eine Phosphodiesterbindung angefügt wird. Im zweiten Schritt entfernt dann eine Phosphodiesterase die angefügte GlcNAc-Einheit, so dass ein endständiger Mannose-6-Phosphat-Rest der Oligosaccharidseitenkette entsteht.

1.2.6 Sowohl lysosomale Matrix- als auch lysosomale Membranproteine erreichen ihren subzellulären Zielort entweder auf einem direkten oder auf einem indirekten Weg.

Nach dem Ausknospen der clathrin coated vesicles vom TGN verschmelzen diese Vesikel entweder direkt mit späten Endosomen oder innerhalb eines indirekten Weges erst einmal mit der Plasmamembran. Die auf dem indirekten Weg sekretierten lysosomalen Proteine werden anschließend erneut M6PRabhängig endocytiert und innerhalb der frühen Endosomen zu den späten Endosomen transportiert. In den späten Endosomen wird die Bindung der lysosomalen Proteine an die M6P-Rezeptoren durch den niedrigeren pH-Wert (~ pH 5,5) gelöst. Um zu verhindern, dass die Proteine erneut durch den M6P-Rezeptor gebunden werden, wird zusätzlich hier auch der Mannose-6-Phosphat-Rest des Proteins durch eine Phosphatase abgespalten. Anschließend knospen zwei verschiedene Arten von Vesikeln aus den späten Endosomen: Vesikel, welche die dephosphorylierten Proteine enthalten und mit den Lysosomen fusionieren [58], und Vesikel, welche die Mannose-6-Phophatrezeptoren enthalten und entweder wieder mit den Zisternen des TGN oder mit der Plasmamembran fusionieren. Die M6P-Rezeptoren, die zur Plasmamembran transportiert wurden, können so extrazelluläre lysosomale Proteine über clathrin coated vesicles endocytieren (Abb. 1.5).

Die auf diesem Wege transportierten lysosomalen sauren Hydrolasen werden als inaktive Proenzyme transportiert und erst bei dem niedrigen pH der Lysosmen (~ pH 4) proteolytisch aktiviert um nicht schon auf dem Transportweg aktiviert zu werden und Schaden anzurichten. Die Sortierung der lysosomalen Membranproteine zu den Lysosomen erfolgt auf ähnlichem Wege wie die der Mannose-6-Phosphat-Rezeptoren zu den Endosomen. Membranproteine besitzen in der cytoplasmatischen Domäne Sortierungssignale vom Dileucin-([DE]XXXL[LI], DXXLL) und / oder Tyrosin-Typ (YXXØ, NPXY) [52, 59-61] oder anderen Motiven wie zum Beispiel das MG-Motiv (MX₉G). Dabei stellt "X" irgendwelche Aminosäuren dar, " \emptyset " eine sperrige hydrophobe Aminosäure. Diese Signale sind häufig terminal lokalisiert und werden von cytoplasmatischen Adapterproteinkomplexen (APs oder GGAs) gebunden. Die Membranproteine werden dadurch an der Donormembran zum Beispiel der

TGN-Membran in *coated pits* konzentriert [10, 62, 63] und in Vesikel verpackt. Nach Transport zur Akzeptormembran, zum Beispiel der Plasmamembran, fusionieren die Vesikel mit dem Zielkompartiment [64]. Beispiele für Proteine, die über Tyrosin-basierte Signale sortiert werden, sind der LDL-Rezeptor [65], die lysosomale saure Phosphatase (LAP) [66] und LAMP-1 [67]. Ein Beispiel für eine Dileucin-basierte Sortierung von Membranproteinen ist der Transport der Mannose-6-Phosphatrezeptoren [68, 69, X70]. Die Zellhomöostase erfordert auch den Rücktransport von Proteinen zurück zum TGN [71]. Zum Beispiel wird Furin von der Zellmembran über die frühen und späten Endosomen wieder zurück zum TGN transportiert [72].

1.2.7 Funktion der Adapterkomplexe

Während DXXLL-Sortierungsmotive von den GGAs erkannt [59] und NPXY-Motive von Phosphotyrosinbindenden Domänen monomerischer Clathrinadaptoren wie z.B Disabled-2 erkannt werden [73], erfolgt die Erkennung von Dieleucin- und Tyrosin-basierten Sortierungsmotiven im Allgemeinen durch die β - und μ -Ketten aller Adapterkomplexe (AP-1 - AP-4) [59, 74-76]. Hierbei bevorzugen manche μ -Untereinheiten allerdings bestimmte YXXØ-Motive. So wird das YXXØ-Motiv von μ 3 beispielsweise besser erkannt als von $\mu 1$ [76], während Motive aus einem Methionin- und einem Glycin-Rest, die durch neun andere Aminosäuren getrennt sind, weitaus seltenere lysosomale Sortierungssignale sind [24, 25]. Welches Sortierungssignal jedoch von welchem Adapterkomplex erkannt wird und wohin schließlich ein Protein transportiert wird, hängt nicht allein von der Art des Sortierungsmotivs ab. Hierbei kann die gesamte Sequenz in dem Bereich des Sortierungssignals einen signifikanten Einfluss auf die Sortierung der Proteine ausüben [77-79]. Ein YXXØ-Motiv, das beispielsweise direkt auf einen Glycin-Rest folgt, kann bevorzugt von der μ 3-Untereinheit gebunden werden [76]. Ein solches Motiv ist zum Beispiel für den direkten, nicht über die Plasmamembran verlaufenden Transport des lysosomalen Membranproteins LAMP-1 vom TGN zum Lysosom notwendig [76]. Im Gegensatz dazu werden lysosomale Membranproteine zum Beispiel das humane CD1b und das ubiquitär exprimierte Sialomucin Endolyn/CD164 mit einem C-terminalen YXXØ, dem kein Glycin voraus geht,

über die Plasmamembran zu deren Zielkompartimenten transportiert [77, 78]. Darüberhinaus kann die Position des Sortierungssignals innerhalb des cytoplasmatischen Teils einen Einfluss auf die Sortierung haben [73, 80], wie posttranslationale Modifikationen wie Palmitoylierungen, genauso Phosphorylierungen und Ubiquitinierungen sowie Oligomerisierungen [81-85]. Da die intrazelluläre Sortierung der verschiedenen Proteine über die unterschiedlichen Transportmechanismen hochspezifisch durch die Adapterkomplexe erfolgt, sind diese auch nicht zufällig über die unterschiedlichen Membranen der Zelle verteilt [52]. So ist der AP-1-Rezeptor mit den coated pits in den Membranen des TGN assoziiert [84, 86], wo er beispielsweise für den anterograden Transport vom TGN zu den Endosomen (zum Beispiel von Furin, M6P-Rezeptoren und einigen viralen Membranglykoproteinen) [87-89] und den retrograden Transport des 300 kDa-M6P-Rezeptors und Syntaxin von den Endosomen zurück zum TGN verantwortlich ist [90-92]. Die AP-2-Rezeptoren sind dagegen verstärkt an der Plasmamembran zu finden, wo sie die Vesikelbildung während der Endozytose initiieren [86, 84, 61]. Die Hauptfunktion des AP-3-Adapterkomplexes, welcher mehr in den Endosomen lokalisiert, ist die Sortierung lysosomaler Membranglykoproteine von den frühen zu den späten Endosomen und weiter zu den Lysosomen sowie verwandten Organellen wie Melanosomen [8, 55, 71, 93]. Der AP-3-Komplex ist dabei sowohl in dem direkten als auch dem indirekten Transportweg für lysosomale Membranproteine zu den Lyosomen involviert [94].

Abb. 1.5 Die Rolle der Adapterkomplexe AP, 1, AP-2 und AP-3 bei der Sortierung von Proteinen. (Quelle: verändert nach Rohn et. al 2000)

1.2.8 Adapterkomplexe besitzen eine unterschiedliche Spezifität für die unterschiedlichen Hüllproteine.

Die Transportvesikel, die den antero- und retrograden Transport zwischem dem ER und Golgi leisten, sind mit den Hüllproteinen COP II, beziehungsweise COP I assoziiert, während die Transportvesikel, welche vom TGN ausknospen, von Clathrin umhüllt sind [95]. Doch nicht alle Transportvesikel des Weges zwischen TGN, Plasmamembran und dem endosomalen / lysosomalen Systems sind Clathrin-assoziiert. Die Spezifität der Vesikel zu dem Hüllprotein Clathrin ist abhängig von dem Adapterkomplex, welcher den Transport vermittelt. So assoziieren AP-1 und AP-2, mit Clathrin [95], während AP-3-Adapterkomplexe zwar in-vitro ebenfalls mit Clathrin assoziieren [56], der AP-3 vermittelte Transport aber auch bei Abwesenheit von Clathrin möglich ist [71, 72, 96]. Es wird angenommen, dass für diesen Transport auch andere Hüllproteine existieren. AP-4 ist eine Komponente von Nicht-Clathrin-Hüllproteinen [97], über die bislang nur wenig bekannt ist [8].

1.2.9 Die Bildung der Transportvesikel, und die Herkunft der für den Transport benötigen Energie.

Die Rekrutierung der COP I- und COP II-Hüllkomponenten für den ER-Golgi-Transport benötigt die kleinen G-Proteine Arf-1 für COP I und Sar1p für COP II [98, 96], welche die Energie für diese Prozesse durch GTP-Hydrolyse liefern und zudem deren Geschwindigkeit steuern. Vesikel, die an AP-3 assoziiert sind, benötigen ebenfalls Arf-1 [71, 99, 100]. Für die Abschnürung der Vesikel ist das G-Protein *Dynamin* erforderlich. Die Energie für den Transport der verschiedenen Vesikel wird durch GTP-Hydrolyse des kleinen G-Proteins Rab geliefert, wodurch auch die Geschwindigkeit des Vesikeltransportes reguliert wird. Für den Transport der verschiedenen Vesikelarten sind auch verschiedene Rab-Proteine nötig. So sind zum Beispiel für den Transport von *clathrin coated vesicles* bzw. den daraus nach Depolymerisation des Clathrinskeletts entstehenden frühen Endosomen das Rab5 nötig, während der Transport der COP-II-Vesikel von Rab1 vermittelt wird [101].

Die Fusion der Vesikel mit der Akzeptormembran erfolgt mithilfe der integralen Membranproteine V-SNARE in der Vesikelmembran und T-SNARE in der Akzeptormembran. Die Energie für die Vesikelfusion wird durch ATP-Hydrolyse an dem Protein NSF (*n-maleinimide sensitive factor*) geliefert. Die erfolgten Konformationsänderungen des NSF werden über die SNAP-Proteine (*soluble NSF attachement proteins*) an V-SNARE und T-SNARE übertragen.

1. 3 Lysosomale Membranproteine

Zur Ausübung ihrer Funktionen in der Zelle besitzen die Lysosomen eine komplexe Proteinausstattung. Im Innern des Lumens befinden sich lösliche Matrixproteine, wobei es sich hauptsächlich um saure Hydrolasen handelt, welche die verschiedenen Substrate, die in den Lysosomen abgebaut werden sollen, hydrolysieren können. In die Membranen sind Membranproteine integriert, denen verschiedene Funktionen zugesprochen werden wie zum Beispiel die Aufnahme und Membranintegration zahlreicher funktionaler Proteine wie Hydrolasen und Transportproteine, den Aufbau eines Protonengradienten über die Membran, den Export von Degradationsprodukten

wie Aminosäuren und Zucker aus dem lysosomalen Lumen in das Cytoplasma und die Vermittlung spezifischer Interaktionen und der Fusion mit anderen Zellorganellen [102-104]. Zwei der mengenmäßig am stärksten vertretenen lysosomalen Membranproteine sind die Membranglykoproteine LAMP-1 und LAMP-2 [110]. LAMP-2 spielt eine Rolle bei Vesikelfusionsprozessen, bei der Phagocytose und Autophagie und beim Enzymtransport, wobei gezeigt wurde. dass LAMP-2 und Hsp 73 an der Internalisierung lysosomaler Matrixproteine mit dem Strukturmotiv KFERQ beteiligt sind [123-125]. Die Phagocytose hat eine besondere Bedeutung bei der Bakterienabwehr durch immunkompetente Zellen wie den polymorphkernigen Neutrophilen (PMNs) [105, 106]. Neben LAMP-2 sind auch LAMP-1 und CD63 (LAMP-3 oder auch LIMP-1 genannt) in die Aufnahme von sekretorischen Proteinen nach der Phagozytose aus dem extrazellulären Raum involviert. Ein Beispiel ist das für die Formation von hoch-Hydroxylapatit mitverantwortliche geordnetem Amelogenin aus den Ameloblasten [109]. In LAMP-1- und LAMP-2-defizienten MEFs sind die Phagosomen nicht imstande das Protein RILP (Rab7-interacting lysosomal protein) zu rekrutieren. Dies führt dazu, dass Rab7 und damit auch das Dynein-/ Dynactin-vermittelte Mikrotubulinetzwerk zur intrazellularen Bewegung nicht genutzt werden kann und es zu einer Störung der Phagocytose kommt [113]. Der ABC-Transporter ABCB9, welcher funktionale und strukturelle Ähnlichkeit zum TAP (transporter associated with antigen expression) besitzt und von daher auch TAP-like (TAPL) bezeichnet wird, kolokalisiert ebenfalls mit LAMP-2 im lysosomalen Kompartement.

In *in-vitro*-Versuchen konnte gezeigt werden, dass durch TAPL eine mit ATP-Hydrolyse einhergehende Translokation von Peptiden in das lysosomale Lumen ermöglicht wird. Dies zeigt den Weg, wie Peptide in die Lysosomen für die spätere Antigenpräsentation transportiert werden [107]. LIMP-2 spielt eine bedeutende Rolle in der Aufrechterhaltung des endosomalen Transports und in der lysosomalen Biogenese [114]. Es konnte gezeigt werden, dass LIMP-2 mit dem lysosomalen Enzym β -Glucocerebrosidase interagiert und auch in dessen Transport über einen M6PR-unabhängigen Mechanismus in das lysosomale Kompartiment involviert ist. Ein Defekt der β -Glucocerebrosidase führt zu dem Krankheitsbild der Gaucher-Krankheit [115, 116]. Nicastrin und Presenillin sind Komponenten des γ -Sekretase-Komplexes, welcher an der Prozessierung des amyloiden Vorläuferproteins (APP) und damit an der Entstehung der Alzheimerkrankheit beteiligt ist [117].

Die Struktur von lysosomalen Membranproteinen kann im Allgemeinen recht unterschiedlich sein, so kommen Membranproteine vom Typ 1 oder 2 mit nur einer die membrandurchspannenden Helix, wie zum Beispiel LAMP1 und -2, vor. Auch Membranproteine, welche die Membran mit mehreren α -Helices durchqueren (Typ 3), sind bekannt. So durchquert LIMP-2 die Membran zweimal, während LIMP-1 (LAMP 3) die Membran viermal passiert (Abb. 1.6).

Abb. 1.6 Schematische Darstellung einiger lysosomaler Membranproteine. Die ausgefüllten Kreise entsprechen asparagingebundenen Polylactosaminoglykanen und komplexen N-Glykanen. Disulfidbrücken sind als Kurven in der Peptidstruktur kenntlich gemacht. Die Membran ist durch einen grauen Balken dargestellt, welcher das lysosomale Lumen vom Cytosol trennt. Quelle: Hunziker und Geuze, 1996.

Selbst hoch komplexe multimere Proteinkomplexe sind in der Lysosomenmenbran identifiziert worden, so die vakuoläre H+-ATPase, welche strukturell ähnlich aufgebaut ist wie die mitochondriale ATPase, die dort zur ATP-Bildung am Ende der Atmungskette Verwendung findet, während die lysosomale H⁺-ATPase für den Aufbau des Protonengradienten über die Lysosomenmembran benötigt wird. Die Struktur vieler lysosomaler

Membranproteine folgt dem Grundmuster des Typ-1-Membranproteins mit einem luminalen meist glykosylierten N-terminalen Teil, gefolgt von einer membrandurchspannenden α -Helix und einem kurzen cytoplasmatischem Cterminalem Abschnitt. Beispiele sind LAMP-1, LIMP-2, LAP- 2 und Nicastrin. Dadurch, dass lysosomale Membranproteine auf der luminalen Seite oft hoch glykosyliert sind, erhöht sich das Molekulargewicht, zum Beispiel das der LAMP-Proteine von ~ 40 auf ~ 90 bis ~ 120 kDa [118]. Diese Zuckerreste der LAMP- und auch anderer lysosomaler Membranproteine formen eine zur luminalen Seite gerichteten Glykokalyx, um die hydrolytisch empfindlichen Peptidbindungen der Membranproteine vor proteolytischer Aktivität innerhalb des Lumens der Lysosomen zu schützen [111, 112]. An LAMP-1 und -2 konnte gezeigt werden, dass solche Glykane und Polylaktosamine der lysosomalen Membranproteine deren Halbwertszeit erheblich erhöhen [121, 122]. Während die N-Glykane in lysosomalen Proteinen dominieren, wurden auch O-Glykane nachgewiesen [119]. Typisch für die Glykane lysosomaler Membranproteine sind terminale Sialinsäuren, die einen sauren pl der Proteine von 2 - 4 bewirken [120].

Einem anderen strukturellen Grundmuster folgen die Transportsysteme. Typische Strukturmotive membranständiger Transportproteine sind das β -Faltblatt [126-128] und die α -Helix [129, 130], wobei die meisten α -helikalen Transportproteine aus sechs, zehn oder 24 α -Helices bestehen [131]. Zu den Transportproteinen mit 12 Transmembranhelices gehören zum Beispiel die Proteine der MFS (major facilitator superfamily), welche eine Familie von sekundär-aktiven Transportern bilden. Der Export freier Aminosäuren aus den Lysosomen wurde erstmals von Reeves [132] nachgewiesen. Hierbei wurden radioaktiv markierte Aminosäuremethylester von isolierten Lysosomen aufgenommen und dort zu freien Aminosäuren gespalten, welche dann wieder in das Cytosol exportiert wurden. Kanalproteine, welche den Durchtritt von Molekülen durch die Membran lediglich als Pore ermöglichen, werden von den passiven und den aktiven Transportproteinen unterschieden, die ihre Substrate zum Transport spezifisch binden. Bei den passiven Transportproteinen verläuft der Transport immer mit dem Konzentrationsgradienten und damit unabhängig von zusätzlicher Energie, während die aktiven Transporter ihr Frachtgut unabhängig vom Konzentrationsgradienten aber abhängig von spezieller

Energiezufuhr durch die Membran schleusen. Der Transport sowohl der passiven als auch der aktiven Transportsysteme geht immer mit einer Konformationsänderung einher, während dies bei den Kanalproteinen nicht der Fall ist [133, 134]. Die Energie, die bei solchen Prozessen benötigt wird, wird häufig durch Hydrolyse energiereicher Moleküle wie Nukleosidtriphosphaten vom Transportprotein selbst erzeugt (primär-aktiver Transport). Andererseits kann auch ein Cotransport eines Metaboliten, welcher dabei mit dem Konzentrationsgradienten transportiert wird, genutzt werden, um einen anderen Metaboliten gegen das Konzentrationsgefälle zu transportieren (sekundäraktiver Transport). So ist die vakuoläre H⁺-ATPase ein Transportsystem, welches die benötigte Energie für den Import von Protonen in die Lysosomen aus der Hydrolyse von ATP gewinnt. Durch den Protonenimport wird der niedrige pH-Wert des lysosomalen und endosomalen Lumens erzeugt [135, 136]. Dieser Protonengradient wird nun von Cotransportern genutzt, um zum Beispiel Metabolite aus den Lysosomen zu schleusen. Zu den Metaboliten, welche von lysosomalen Transportproteinen transportiert werden, gehören zum Beispiel anorganische Ionen (wie zum Beispiel Protonen [135], Sulfat und Molybdat [137], Hydrogenphosphat und Ascorbat [138], Calcium-, Cadmium-, Quecksilber-, Zink-, Magnesium- [139], Chlorid- [140], sowie Kuper- und Silber-Ionen [141]). Auch der Transport von Aminosäuren wurde untersucht. So wurde der Transport von L-Lysin und L-Arginin, Cysteamin-Cystein, L-Glutamat und L-Aspartat, L-Alanin, L-Serin, L-Threonin L-Tryptophan, L-Phenylalanin und L-Prolin [142], L-Leucin und L-Valin [143], Cystin und Selenocystin [144, 145], L-Cystein [146, 147], Aminothiole und Aminosulfide [148], Taurin [149], Glycyl-Glutamin sowie verschiedener Tripeptide [150] untersucht. Zuckertransportprozesse wurden zum Beispiel von Mancini beschrieben (NANA und Glucuronsäure) [151, 152]. Auch der Transport von D-Glucose, D-Galactose und D-Manose [153] und GlcNAc [154] wurden beschrieben, sowie der von Nucleosiden (Ribose-Purine, Pyrimidine [155]). Der Transport von Vitaminen und deren Analoga wie Methotrexatpolyglutamat (MTXPG) als Folsäureanalogon [156], Cyanocobalamin [157] und Folypolyglutamat (FPG), die im Cytoplasma vorkommende Form des Folat (Vitamin B₉) konnte nachgewiesen werden. Des Weiteren wurde auch der Transport von Acetyl-CoA [158] in und Cholesterin [159] aus den Lysosomen beschrieben. Der

Abbau von Heparansulfat in den Lysosomen erfordert die Übertragung von Acetyl-CoA auf ein endständiges D-Glucosamin. Eine gestörte Transferase (Acetyl-CoA: α-Glucosaminid-N-Acetyltransferase) führt zum gestörten Abbau von Heparansulfat und schließlich zu den Symptomen des Sanfillippo C Syndroms. Hierbei reichert sich das sulfatierte Polysaccharid in den Lysosomen an. Der Defekt des Cholesterintransporters NPC-1 führt zur Anreicherung von Cholesterin in den Lysosomen, das aus der Proteolyse des aus dem Cytosol endocytierten LDL generiert wird [160]. Diese Störung führt bei Patienten zu den Symptomen des Niemann Pick Typ C Syndrom [161].

Alle diese Transportmechanismen wurden nachgewiesen und beschrieben, dennoch sind die meisten für die Transportvorgänge verantwortlichen Proteine und Systeme noch nicht identifiziert worden. Des Weiteren kann auch davon ausgegangen werden, dass viele membranständige Proteine ohne Transportfunktion ebenfalls bislang nicht identifiziert werden konnten.

2. Material und Methoden

2.1 Material

Alle hitzestabilen Geräte und Lösungen wurden zur Inaktivierung eventuell vorhandener Nukleasen bei 120 °C für 20 min autoklaviert, während nicht autoklavierbare Materialien vor Gebrauch mit 70% (v/v) Ethanol gespült wurden. Lösungen und Puffer mit hitzeempfindlichen Chemikalien wurden steril filtriert und Kleingeräte aus Metall mit Ethanol abgeflammt.

2.1.1 Laborausstattung

Targetbeschichtungsgerät	Werkstatt des Instituts
Pipettierroboter Genesis ProTeam 150	Tecan
Micrompatereader Model 680 Pro	BioRad, München
Scanner Epson Expression 1680 Pro	Epson
Ultraschallbad Branson 2200	Branson
Acrylamidgel-Elektrophoresekammer	Werkstatt des Instituts
Agarosegel-Elektrophoresekammer	Werkstatt des Instituts
Bio-Photometer	Eppendorf, Hamburg
Rührtisch MR3000	Heidolph
Thermomixer 5436	Eppendorf, Hamburg
µPrep Microcentrifuge	StatSpin [®]
Schwenktisch Rocky	Fröbel-Schütt, Göttingen
Schüttler KS 250 basic	

Thermomixer comfort	
Rührtisch IKAMAG _®	
Inkubator	
Centrifuge Micro 200	
Pipet aid	
Target MTP AnchorChipTM 600/384 TF	
Protean [®] II mini Elektrophoresekammer	
Protean® II XL	
Centrifuge universal 320	
Branson Sonifier 450	
Durchlicht-Mikroskop	
Flüssigkeitsszintillationszähler 1900TR	
Heizblock HTM 130	
Elektroporator 1000	
Thermostat 5320	
Microcomputer electrophoresis power	
supply E443	
Zentrifugen:	
Centrifuge 5810 P	

Microcomputer electrophoresis powerConsortsupply E443Zentrifugen:Zentrifugen:EppendCentrifuge 5810 REppendTisch-Ultrazentrifuge TL-100BeckmaUltrazentrifuge Modell Optima L90KBeckmaBiofuge picoHeraeuEppendorf Zentrifuge Typ 5415C und 5402EppendKühlzentrifuge J-21C und J2-MCBeckmaRotoren:EppendA-4-62EppendTLA45, TLA100.3BeckmaJA10, JA20BeckmaTLS55Beckma

TLA120.2

LAS-1000 Gel Dokumentation System

Eppendorf, Hamburg Reo Almedica AG, Gamitz Hettich Drummond Bruker BioRad, München BioRad, München Hettich Heinemann, Schwäbisch Zeiss, Göttingen Packard, Perkin Elmer, Überlingen HLC, Bovenden Stratagene, USA Eppendorf, Hamburg Consort

IKA Labortechnik

Eppendorf, Hamburg Beckmann, München Beckmann, München Heraeus Sepatech Eppendorf, Hamburg Beckmann, München

Eppendorf, Hamburg Beckmann, München Beckmann, München Beckmann, München Beckmann, München Beckmann, München Fujifilm, Düsseldorf

Laser Scan-Mikroskop LeicaTCS SP2	Leica, Heidelberg			
AOBS (Ar: 488, 514 nm; He/Ne: 543;				
63xÖl-Objektive)				
Modell TCS Sp2 AOBS				
Mastercycler Gradient	Eppendorf, Hamburg			
GeneAmp PCR-System 2400	Applied Biosystems			
Powersupply 2297 Makrodrive 5 constant	LKB Bromma			
Eis-Maschine	Ziegra, Isernhagen			
Phegasus Semi-Dry Western Blot Kammer	Phase, Lübeck			
Phosphoimager PMI	Biorad, München			
Ultraflex MALDI-TOF Massenspektrometer	Bruker Daltonik, Bremen			
Tecan Microplate Reader Model Spectra II	Tecan, SLT, Crailsheim			
Teflon Homogenisator	Braun, Melsungen			
UV-Handlampe (365/ 254 nm), Typ 5415	Bachofer, Reutlingen			
und 5402				
Vakuumkonzentrator	Bachofer, Reutlingen			
pH-Meter	Beckmann, München			
Inkubatoren Innova 4230 und 4330	New Brunswick Scintific			
Magnet-Mixer	IKA, Works, INC.			
Gel-Misch-Apparatur	Werkstatt			
Mikrowellenoven	Siemens, München			

2.1.1.1 Verbrauchsmaterialien

Einfrierröhrchen	Nunc, Wiesbaden
Einmalkanülen,-spritzen	Braun, Melsungen
Einmalpipetten 5, 10, 20 ml	Sarstedt, Nümbrecht
Gewebekulturflaschen, -schalen	Greiner, Nürtingen
Glaswaren für Labor	Schott, Mainz
Mouse MTN 8 Lane Blot	Clontech
Membran	
Objektträger und Deckgläschen	Menzel-Gläser, Braunschweig
Parafilm®M	American National, Chicago, USA

Pasteurpipetten	Schütt, Göttingen
Polyvinylidenfluorid (PVDF)	Whatman, Göttingen
Phospho-Imaging Plate	Fujifilm, Düsseldorf
Ultrazentrifugenröhrchen	Beckmann Coulter, Krefeld
UVetten	Eppendorf, Hamburg
Whatman-Filterpapier	Whatman, Göttingen
Plastikreaktionsgefäße	Sarstedt, Nümbrecht

2.1.2 Chemikalien, Plastikware und Membranen

Chemikalien	Boerhringer/Roche, Mannheim
	Merck, Darmstadt
	Roth, Karlsruhe
	Serva, Heidelberg
	Sigma, Dreisenhofen
	Bio-Rad, München
	Töpfer, Dietmannsried
PVDF Membran, 0,2 μ M	Schleich und Schüll, Dassel
Hybond-N Nylon Membran	Amersham, Biosciences, UK
Whatman GB Papier extra dick	Schleich und Schüll, Dassel
Zellkultur Plastikwaren	Greiner, Frickenhausen
	Nalge Nunc International, Dänemark

2.1.3 Kits und Reagenzien

DNA, RNA:

Rediprime II Random Prime Labelling	GE Healthcare,
Kits	München
Omniscript® Reverse Transcriptase Kit	Qiagen, Hilden
RNeasy® Midi Kit	Qiagen, Hilden
Platinum® Pfx-DNA-Polymerase Kit	Invitrogen, Karlsruhe
Taq DNA-Polymerase Kit	Roche
QIAquick [®] Gel Extraction Kit	Qiagen, Hilden

Sequencing Kit	
PCR purification kit	Qiagen, Hilden
Wizard [®] Plus SV Minipreps	Promega
QIAprep Spin MiniPrep Kit	Qiagen, Hilden
Pure Yield [™] Plasmid Midiprep System	Promega
Lipofectamine 2000	Invitrogen

Protein:

Supersign	al	West	Pico	Pierce,	Rockford,
Chemiluminescent		USA			
Roti-blue	Colloidal	Coomassie	Brillant	Roth	
Blue					
BCA-Prote	ein			PIERCE, USA	
MemPer				PIERCE, USA	
PAGEpre	С			PIERCE, US	SA
Protease	Inhibitor Co	octail		Sigma	
Bio-Rad Protien Assay		Bio-Rad, Mü	inchen		
Fluorescent Mounting Medium		Cytomation			
Bovine Serum Albumin		Serva			
Iodacetamid		Sigma			
Protein A Sepharose		Sigma			
Protein B Sepharose		Sigma			
Prestained Marker		Biorad, Mün	chen		
Molecular Weight Standard Unstained		Biorad, Mün	chen		
Protein LMW-Standard		Biorad, Mün	chen		

2.1.4 Bakterienstämme und Zelllinien

2.1.4.1 Bakterienstämme

Bakterienstamm	Genotype
DH5a	F ⁻ , recA1, endA1, hsdR17(r_k^- , m_k^+), supE44, λ^- , thi-
	1, <i>gyr</i> A96, <i>rel</i> A1

2.1.4.2 Zelllinien in Zellkultur

Zelllinie	Beschreibung	Quelle
HT1080	Humane Fibrosarkom-	Erworben bei
	Zelllinie	Stratagene, La Jolla,
		USA, (Roeser et al.
		2006)
HeLa	Humane epitheloid	European Collection
	cervix carcinoma	of Cell Cultures
	Zelllinie	(ECACC)
μ1Α-/- MEF	µ1A-Defiziente	erworben von einem
	Embryonale	μ1A-/- Mausstamm
	Mausfibroblasten	(gemischt C57
		BL/6J:129/Ola
		Hintergrund)

2.1.5 Gene

Gen	Accession Nr.
Loc72175	AK077957
NCU-G1	AB027141

2.1.6 DNA-Oligonukleotide

Oligonukleotidprimer für die Klonierung des Loc72175-His			
Loc72175-	GGGGTATAAGCTTATGGCGAACCTGGGAAGTGAGGCCGAGCG		
Hind3-Fw			
Loc72175-	GGGTATGCGGCCGCTTATCCGTGATGGTGATGGTGATGCGATC		
Not1-RGS-	CTCTTCCCTCCTGGATCCTCATATATCTGACAG		
H6_Rv			
Loc72175-	GGAGTGTTTTGACAGCTCCGGGC		
F1			
Loc72175-	CCATTCAAAGTCAAGTTACTCAGTG		
R1			

Loc72175-	GCAGCGCGCCTAGCGAGAG
F2	
Loc72175-	GAGATGAAGACAGTAGACAGCACAG
R2	
Oligonukleot	idprimer für die Klonierung des Loc72175-Myc
Loc72175-	GGGGTATGCTAGCATGGCGAACCTGGGAAGTGAGGCCGAGCG
Nhe1-Fw	
Loc72175-	GGGTATGATATCTTAGAGGTCCTCTTCAGAGATGAGCTTCTGCT
EcoRV-Myc	CCATACACTCCTGGATCCTCATATATCTGACAG
Oligonukleot	idprimer für die Klonierung des Loc72175L13A,L14A-His
Loc72175-	GAGCGGGAGCCCGCCGGGGCCCGGGATCA
LLAA-Fw	
Loc72175-	TGATCCCGGGCCGGCGGGCTCCCGCTC
LLAA-Rv	
Oligonukleot	idprimer für die Klonierung des Loc72175Y514A-His
Loc72175-	TCTGTCAGAGCTATGAGGATCCAGGAG
Ya-Fw	
Loc72175-	CTCCTGGATCCTCATAGCTCTGACAGA
YA-Rv	
Oligonukleot	idprimer für die Klonierung des NCU-G1-His6
NCU-G1-	GGGGTATGCTAGCATGTTTCGCTGTTGGGGACCTCACTGGGG
Fw-Nhe1	
NCU-G1-	GGGTATGCGGCCGCTTATCCGTGATGGTGATGGTGATGCGATC
Rv-Not1	CTCTTCCGTTTATGGACTGGTACTCAGAATACC
Oligonukleot	idprimer für die Klonierung des NCU-G1Y504A-His6
NCU-G1-Y-	GGTATTCTGAGGCCCAGTCCATAAACGG
A_Fw	
NCU-G1-Y-	CCGTTTATGGACTGGGCCTCAGAATACC
A-Rv	
Oligonukleot	idprimer für die Klonierung der GAP-DH-Sonden
GAPDH	CTCCCTGGTCCAGAGACGGC
mus F1	
GAPDH	CGCATCTTCTTGTGCAGTGC
mus F2	
GAPDH	GCCTCGTCCCGTAGACAAAATG
mus F3	
GAPDH	GGTGGTCCAGGGTTTCTTAC
mus R3	
GAPDH	GCCTCTCTTGCTCAGTGTCC
mue D2	

Die Primer wurden von IBA (Göttingen) und Metabion (Göttingen) bezogen. Sie wurden sowohl zur Herstellung der Loc72175- als auch der NCU-G1-cDNA-Konstrukte und zur Sequenzierung verwendet

2.1.7 Vektoren und DNA-Standards

pcDNA3.1 Hygro +	Invitrogen
1-kb DNA ladder	Gibco BRL

2.1.8 Antibiotika

Antibiotikum	Stocklösung	Endkonzentration
Ampicillin	25 mg/ml in H ₂ O _{bidest}	100 µg/ml

Die Antibiotika Stammlösung wurde sterilfiltriert und bei –20 °C gelagert. Die Verwendung erfolgte, falls nicht anders angegeben, nach Sambrock et al. (1989).

2.1.9 Radioaktive Substanzen

[32P]-dCTP,	10	mCi/ml,	3000	Hartmann	Analytic
mCi/mmol				GmbH, Brau	nschweig

2.1.10 Enzyme und Nukleotide

N-Glycosidase F	Roche	9	
Trypsin, modifiziert aus Rinderpankreas	Serva	, Heidelberg	9
Trypsin			
Restriktionsendonukleasen	NEB,	Frankfurt	am
	Main		
T4 DNALigase	NEB,	Frankfurt	am
	Main		

Taq Polymerase	Amersham
	Pharmacia
Platinum Pfx-Polymerase	Invitrogen, Karlsruhe
High Fidelity Taq-Polymerase	Invitrogen, Karlsruhe
Ultrapure dNTP Set	Amersham
	Pharmacia
Adenosin-5´-triphosphat (ATP)	Sigma
DNA-Ligase	NEB, Frankfurt am
	Main
Pfu-Polymerase	Promega

2.1.11 Primärantikörper

Antigen	Тур	WB	IF	Referenz
RGS-His6-Tag	Maus mAk	1:2000	1:100	Qiagen
Lamp 1 (Maus) 1D4B	Ratte mAk	-	1:100	Hybridoma
				Bank, USA
Lamp 2 (human) H4B4	Maus mAk	1:100	1:2000	BD
				Biosciences
Penta-His Alexa Fluor	Maus mAk	1:100	-	Qiagen
488 Conjugate				
EEA1 (Maus, human,	Kaninchen	1:100	-	Santa Cruz
Ratte), H-300	pAk			
GM130 (human)	Maus mAk	1:100	-	BD
(35/GM130)				Biosciences
PDI (human) (34)	Maus mAk	1:100	-	BD
				Biosciences
Cathepsin D (R-20):sc-	Ziege pAk	1:100	-	Santa Cruz
6487 (human)				
c-Myc (9E10):sc-40	Maus mAk	1:100	1:5000	Santa Cruz

2.1.12 Sekundärantikörper

Alexa Fluor[®] 546 goat α -mouse IgG Invitrogen, Karlsruhe (H+L) Alexa Fluor[®] 488 goat α -mouse IgG Invitrogen, Karlsruhe (H+L) Alexa Fluor[®] 546 goat α -rabbit IgG Invitrogen, Karlsruhe (H+L) Alexa Fluor[®] 546 goat α -rat IgG (H+L) Alexa Fluor[®] 546 goat α -rat IgG (H+L) Ziege α Ratte-Cy 3 konjugiert (IF 1:400) Ziege α Maus, HRP konjugiert

Zweitantikörper für die Immunfluoreszenz wurden standardmäßig in einer Verdünnung von 1:400 und für Western Blot-Analysen 1:5000 eingesetzt.

2.1.13 Stocklösungen und Puffer

10 × PBS:	80 g NaCl
	2g KCl
	14,4 g Na ₂ HPO4
	2,4 g KH ₂ PO4
	mit H ₂ O _{bidest} auf 1 I auffüllen, pH 6,8,
	autoklavieren
$10 \times TBS$:	100 mM Tris/HCl pH 7,4
	1,5 M NaCl
10 × TE-Puffer:	100 mM Tris/HCl pH 7,6
	10 mM EDTA

2.1.14 Medien zum Arbeiten mit Bakterienkulturen

LB-Medium:	10 g Pepton aus Casein
	5 g Hefeextrakt
	10 g NaCl
	mit H ₂ 0 _{bidest} auf 1 I auffüllen,
	pH 7,0 mit NaOH einstellen, autoklavieren
LB-Agarplatten:	7,5 g Agar
	in 1 I LB-Medium

Antibiotika wurden nach dem Autoklavieren erst nach Abkühlen auf 60° C zugesetzt und jeweils 30 ml in 10 cm-Platten gegossen. Nach dem vollsändigen Abkühlen wurden die Platten bei 4° C gelagert.

2.1.15 Medien und Lösungen für die Zellkultur

PBS (für Zellkultur):	40 g NaCl, 1 g KCl, 7,2
	Na ₂ HPO ₄ ⁺
	2 H ₂ O, 1 g KH ₂ PO ₄ und 0,1 g
	Phenolrot
	in 5000 ml H ₂ O _{bidest} pH 7,4

Screened Fetal Bovine Serum	
(10 mM Solution, 100 ×, liquid)	
L-Glutamin (200 mM) (100 × Stocklösung)) Gibco Invitrogen, Karlsruhe
Hygromycin B	Calbiochem, Frankfurt
0,05 % (w/v) Trypsin-EDTA-Lösung	Gibco Invitrogen, Karlsruhe
Dulbecco's Modified Eagle Medium	
(DMEM)	Gibco Invitrogen, Karlsruhe
Penicillin/Streptomycin (je 100.000 U/ml)	Gibco Invitrogen, Karlsruhe
MEM Non-Essential Amino Acids	Gibco Invitrogen, Karlsruhe
0,25 % (w/v) Trypsin/ 1mM EDTA	Gibco Invitrogen, Karlsruhe

Fötales Kälberserum (FKS) PAN, Aidenbach 2.1.16 EDV-Software Windows XP Media Center Edition Microsoft, Redmond, USA 2005 Microsoft internet explorer Microsoft, Redmond, USA Microsoft Office Standard Edition Microsoft, Redmond, USA 2003 Image J 1.37v NIH, Washington, USA Image Reader LAS FujiFilm, Düsseldorf Biotools v3.0 **Bruker Daltonics Biorad QuantityOne** BioRad, München FujiFilm, Düsseldorf AIDA Image analysing software Adobe-Photoshop 6.0 Adobe, San Jose, USA Adobe Reader 7.0 Adobe, San Jose, USA

2.1.17 Online-Programme/Datenbanken

ClustalW	http://www.ebi.ac.uk/Tools/clustalw2/index.html
BigGPI	http://mendel.imp.ac.at/sat/gpi/gpi_server.html
NetNGlyc v1.0	http://www.cbs.dtu.dk/services/NetNGlyc/
HNN	http://npsa-pbil.ibcp.fr/cgi-
	bin/npsa_automat.pl?page=npsa_nn.html
CSS-Palm	http://bioinformatics.lcd-ustc.org/css_palm/
TMHMM v 2.0	http://www.cbs.dtu.dk/services/TMHMM/
SignalP 3.0	http://www.cbs.dtu.dk/services/SignalP/
PFAM	http://www.sanger.ac.uk/Software/Pfam/
NCBI-Daten-	http://www.ncbi.nlm.nih.gov/
banken	
MASCOT	http://www.matrixscience.com/search_form_select.html
Search	
Blast	http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
EXPASY	http://www.expasy.ch/

2.2 Methoden

2.2.1 Molekularbiologische Methoden

Alle folgenden Methoden und Vorschriften zum Arbeiten mit DNA und RNA wurden, falls nicht anders angegeben, dem Laborhandbuch Molecular Cloning (Sambrook et al. 1989) entnommen.

2.2.1.1 Kultivierung von E. coli

E. coli wurde auf LB- (*Luria Bertani*-) Agarplatten [2.1.14] mit entsprechendem Antibiotikum-Zusatz bei 4 °C für die Stammhaltung gelagert und alle vier Wochen auf eine neue Platte überimpft. Für eine langfristige Stammhaltung wurde ein Glycerinstock [2.2.5] bei -70° C eingefroren.

2.2.1.2 Transformation von chemisch-kompetenten E. coli

50-100 μl chemisch-kompetente *E. coli* DH 5α-Zellen wurden auf Eis aufgetaut und in einem vorgekühlten 1,5 ml Reaktionsgefäß mit 10 bis 200 ng zyklische Plasmid-DNA versetzt. Nach vorsichtigem Vermischen wurde der Ansatz für 10 min auf Eis inkubiert, dann für 30 bis 60 s auf 42 °C erwärmt und anschließend weitere 15 min auf Eis inkubiert. Nach Zugabe von 500 μl LB-Medium folgte zur Regenerierung der Zellen eine Inkubation für 20 bis 60 min bei 37 °C auf einem Drehrad. Der Transformationsansatz wurde anschließend auf LB-Agar-Platten mit den entsprechenden Antibiotika ausplattiert und über Nacht bei 37 °C inkubiert. Die Kolonien, die sich über Nacht gebildet haben wurden anschließend in 4 ml LB-Flüssigmemdium (+ entsprechendes Antibiotikum) eingeimpft. Diese dienten beispielsweise der Plasmid-DNA-Isolierung [2.26, 2.2.7] oder wurden nach Zugabe von 300 μl sterilem Glycerin zu 700 μl Flüssigkultur als Glycerinstock bei -80° C gelagert.

2.2.1.3 Transformation von elektrokompetenten *E. coli* durch Elektroporation

Für jede Elektroporation wurden 80 μ l elektrokompetente Zellen, die zuvor auf Eis aufgetaut wurden, mit 0,5 ng DNA (in 1-5 μ l Volumen) versetzt und in eine auf Eis vorgekühlte sterile Elektroporationsküvette überführt. Die Küvette wurde in den Elektroporator gesetzt und die Zellen mit einem 1800 Volt-Puls geschockt. Sofort nach dem Schock wurden die Zellen mit 500 μ l eiskaltem LB-Medium versetzt und in ein steriles 1,5-ml-Reagiergefäß überführt, in dem sie 30 min bei 37° C unter Schütteln inkubiert und anschließend auf LB-Ampicillin-Platten ausplattiert wurden.

2.2.1.4 Herstellung elektrokompetenter DH5 α

Eine einzige *E. coli*-DH5 α -Kolonie wurde zunächst in 5 ml LB-Medium inokuliert und ca. 16 h bei 37° C unter Schütteln inkubiert. Anschließend wurden 2,5 ml dieser Vorkultur in 50 ml LB-Medium bei 37° C unter Schütteln so lange inkubiert bis die Zelldichte einen Wert von OD₆₀₀: 0,5-0,7 erreicht hatte. Die Zellen wurden in Eis 15 min lang gekühlt und anschließend mit 5000 rpm (SW-40) für 15 min bei 4° C pelletiert. Das Pellet wurde schließlich in 500 ml eiskalten sterilem Wasser resuspendiert, zweimal wie oben beschrieben zentrifugiert und in 2,5 ml 10% (v/v) Glycerin resuspendiert. 70-µl-Aliquots wurden zunächst durch flüssigen Stickstoff tief gefroren und anschließend bei -80° C gelagert.

2.2.1.5 Herstellung von Glycerinstocks von Bakterienstämmen

Bakterienkulturen wurden 16 h bei 37° C unter Schütteln inkubiert. 700 μ l davon wurden mit 300 μ l sterilem Glycerin vermischt, mit flüssigem Stickstoff Schock gefroren und bei -80° C gelagert.

2.2.1.6 Mini-Präparation von Plasmid-DNA

Zur Isolierung von Plasmid-DNA mit Mengen bis ca. 50 μ g diente das QIAprep Spin MiniPrep Kit (Qiagen, Hilden), bzw. das Wizard[®] Plus SV Minipreps [Promega], die prinzipiell auf dem Prinzip von Birnboim und Doly (1979) beruhen, verwendet. Die DNA adsorbiert dabei in Gegenwart chaotroper Salze, die die Wasserstruktur zerstören, an eine Silica-Membran und wird schließlich z.B. durch H₂O_{bidest} eluiert. Die Durchführung erfolgte wie in den entsprechenden Handbüchern beschrieben.

2.2.1.7 Midi-Präparation von Plasmid-DNA

Die Isolierung von Plasmid-DNA in größeren Mengen (ca. 500 µg) erfolgte durch das Pure YieldTM Plasmid Midiprep System [Promega]. Durch einen zusätzlichen Waschschritt wurden hierbei mikrobielle Endotoxine, die während der Transfektion eukaryonter Zelllinien mit Plasmid-DNA störend wirken können, effizienter entfernt als mit dem MiniPrep-System. Die Durchführung erfolgte wie im Handbuch des Herstellers angegeben.

2.2.1.8 Bestimmung von DNA-Konzentration

Zur Konzentrationsbestimmung doppelsträngiger DNA wurde diese in entsprechenden Verdünnungsstufen photometrisch bei einer Wellenlänge von 260 nm gegen H₂Obidest. in Kunststoffeinmal-Küvetten durchgeführt. Bei einer Schichtdicke von 1 cm gilt für gereinigte dsDNA: Δ E260 = 1 entspricht 50 µg dsDNA (Davis et al., 1980). Eine OD 260 nm von 1 entspricht einer DNA-Konzentration von 50 µg/ml oder einer RNA-Konzentration von 40 µg/ml.

Verunreinigungen z.B. durch Polysaccharide und Proteine konnten durch eine zusätzliche Messung bei 230 nm und 280 nm erfasst werden. Im Idealfall gilt für eine reine DNA-Lösung: Δ E230 (Polysaccharide) : Δ E260 (DNA) : Δ E280 (Proteine) verhält sich wie 0,45:1:0,515 (Marmur, 1961) bzw. Δ E260 (DNA) : Δ E280 (Proteine) wie 1,8:1 (Sambrock et al., 1989). Signifikante Abweichungen des DNA-Werts vom Polysaccharid- bzw. Protein-Wert erlaubten keine verlässliche Konzentrationsbestimmung. Die Messung wurde am Bio-Photometer (Eppendorf, Hamburg) in einer Eppendorf UVette[®] durchgeführt.

2.2.1.9 Restriktionsendonuklease-Verdau von DNA

DNA kann durch Restriktionsendonukleasen an spezifischen Basensequenzen gespalten werden. Dabei wird die Aktivität eines Restriktionsenzyms in Units (U) angegeben. Eine Unit entspricht dabei der Menge an Restriktionsenzym, die benötigt wird, um 1 µg Lambda-DNA in einer Stunde vollständig zu schneiden. Die hier verwendeten Restriktionsendonukleasen wurden von der Firma New English Biolabs (NEB, Frankfurt am Main) bezogen.

Für einen Restriktionsverdau wurde die in H₂Obidest. gelöste DNA mit 2-10 U/µg DNA der entsprechenden Restriktionsendonuklease in dem vom jeweiligen Hersteller des Enzyms angegebenen Puffer für 1 bis 18 h bei 37 °C inkubiert. Die entsprechenden Puffer wurden dabei in der Regel als 10-fach konzentrierte Stammlösungen geliefert und mit 0.1 Volumen zu den Ansätzen gegeben, deren Volumina zwischen 20 und 50 µl variierte. Restriktionsverdaue mit mehr als einem Enzym erfolgten, soweit möglich, im selben Puffersystem. War dies nicht möglich, wurden die Restriktionsverdaue nacheinander mit einer dazwischen geschalteten Ethanolfällung [2.2.18] vorgenommen.

Reaktionsansatz (20 μl)		
DNA	1 µg	
NEB 10 \times Puffer	2 µl	
Restriktionsenzym	2 U	
H ₂ O _{bidest}	auf 20 µl auffüllen	

Die DNA-Fragmente wurden anschließend durch Auftrennung im Agarosegel analysiert.

2.2.1.10 Agarosegelelektrophorese von DNA

Gelelektrophoretische Auftrennungen von Nukleinsäuren sowohl für analytische als auch für präparative Zwecke erfolgten in horizontalen Elektrophoresekammern. Die Gelvolumina betrugen zwischen 80 und 300 ml. Es wurden 1 bis 2% (w/v) Agarose in TAE-Puffer (Tris-Essigsäure-EDTA-Puffer) aufgekocht, nach Abkühlen auf maximal 60° C, dem Gelvolumen entsprechend mit 0.1 bis 0,5 µg/ml Ethidiumbromid zugesetzt und in eine Gelform gegossen, wo die Masse schließlich nach Abkühlung erstarrte. Das fertige Gel wurde für die Elektrophorese in eine Elektrophoresekammer gegeben und mit TAE-Puffer, der auch als Elektrophorese-Puffer diente, überschichtet. Vor dem Laden der DNA-Proben in die Geltaschen wurden diese mit 1/6 Volumen Schwerelösung versetzt. In der Regel wurde bei den analytischen Gelen eine Spannung von 100-120 V (Laufzeit 30-45 min) und bei präparativen Gelen eine Spannung von 100 V (Laufzeit ca. 1 h) angelegt.

Während der Elektrophorese interkaliert das Ethidiumbromid in die DNA und die aufgetrennten DNA-Fragmente können mit UV-Licht sichtbar gemacht werden. Das Gel wurde auf dem UV-Transilluminator analysiert und zur Dokumentation mit einem Video-System (Cybertech CS1) aufgenommen.

50 × TAE-Puffer:	2 M Tris/Essigsäure pH
	8,0
	100 mM EDTA
Schwerelösung:	0,25 % Bromphenolblau
	40 % Sucrose
	in $1 \times TAE$

Agarosekonzentration (%)	Trennbereich (kb)
0,6	20 – 1
0,9	7 – 0,5
1,2	6 – 0,4
1,5	4 – 0,2
2,0	3 – 0,1

2.2.1.11 Gelextraktion von DNA-Fragmenten

Die Isolierung von DNA Fragmenten aus Agarosegelen wurde mit Hilfe des QIAquick Gel-Extraktions-Kits (Qiagen, Hilden) nach Angaben des Herstellers durchgeführt. Dabei adsorbiert die DNA in Gegenwart chaotroper Salze, die die Wasserstruktur zerstören, an eine Silica Membran und wird anschließend durch z.B. H₂O_{bidest} eluiert. Dazu wurden die DNA-Fragmente nach Auftrennung durch eine Agarosegelelektrophorese unter UV Licht mit einem Skalpell aus dem Gel herausgeschnitten und nach dem Herstellerprotokoll (QIAQuick® Spin Handbook, 2006) isoliert.

2.2.1.12 Klonierung der für das hypothetische Protein Loc72175 und der NCU-G1 kodierenden cDNA

Die mRNA für das Loc72175 wurde nach Isolierung der Komplett-RNA durch das RNAeasy mini Kit [Qiagen] mithilfe des Omniskript RT-Kit [Qiagen] mit den Primern Loc72175-F1 und -R1 [2.1.6] reverstranskribiert. Die Amplifikation der cDNA erfolgte durch eine *nested* PCR unter Verwendung der Primerpaare Loc72175-F2 und -R2. In der letzten Amplifikationsrunde wurde durch Verwendung der Primer Loc72175-Hind3-Fw und Loc72175-Not1-RGS-H6-Rv die cDNA am 5'-Ende mit einer Hind-III-Schnittstelle, und am 5'-Ende mit einer Not-I-Schnittstelle und einer DNA-Sequenz für die G-RGS-His6Aminosäuresequenz versehen. Die NCU-G1-cDNA-Sequenz wurde als EST-Klon von dem Deutschen Ressourcenzentrum für Genomforschung GmbH-RZPD (AccNo: BC022547, 1563 bp, Quelle: Auge) im pCMV-SPORT6-Vektor erhalten und mit den Primern NCU-G1-Fw-Nhe1 und NCU-G1-Rv-Not1 [2.1.6] mit einer 5'-Nhe-I und einer 3'-Not-I, sowie einer DNA-Sequenz für die G-RGS-His6-Tag-Sequenz versehen. Die rekombinante Loc72175His6- und die NCU-His6-cDNA wurde schließlich direkt in den pcDNA 3.1 Hygro⁺-Vektor kloniert. Die in der Arbeit geschaffenen Mutationen der Proteine NCU-G1His und Loc72175His wurden durch Mutagenese-PCR unter Verwendung der Primer wie, sie in 2.1.6 dargestellt sind, erstellt.

2.2.1.13 Isolierung von RNA aus Mausgeweben

Die Isolierung von RNA aus Mausgewebe erfolgte durch Verwendung des RNeasy[®] Midi Kit der Firma Qiagen, Hilden nach den Angaben des Herstellers (RNeasy[®] Handbook, 2001). Für die Präparation der RNA wurde hier jeweils eine frisch entnommene Mäuseleber eingesetzt.

2.2.1.14 Polymerasekettenreaktion (PCR)

Die PCR ist eine *in-vitro*-Amplifikation eines definierten DANN-Fragmentes. Der Reaktion liegt folgendes Prinzip zugrunde: DNA wird durch Hitze (95 °C) in ihre Einzelstränge zerlegt (Denaturierung). Durch eine Temperaturerniedrigung z.B. auf 50 °C werden zwei chemisch synthetisierte Oligonukleotide (Primer) an die denaturierte DNA anhybridisiert (Annealing). Die Sequenz der 5'- und 3'-Primer ist so gewählt, dass sie komplementär zu jeweils einem der Bereiche ist, die die zu vermehrende DNA flankieren. Diese Bereiche doppelsträngiger DNA mit den in Richtung der zu amplifizierenden DNA weisenden 3'-OH-Enden der Primer sind Substrat für die DNA-Polymerase. Unter für das Enzym geeigneten Temperaturbedingungen werden die Primer mit dNTPs verlängert (Elongation) Die neu entstehenden DNA-Stränge können nun zusätzlich als Matrize dienen. So kommt es zur Anreicherung des gewünschten DNA-Fragmentes. Die Synthesereaktion wird durch Auswahl und Konzentration der Primer, Pufferbedingungen, Qualität des Templates , sowie durch Zeiten und Temperaturen der einzelnen Zyklusschritte beeinflusst. Als DNA-Template für die PCR dienten, Plasmid-DNA und cDNA. Zur analytischen PCR wurde die Taq DNA-Polymerase (Roche Applied Science, Indianapolis, USA), zur präparativen PCR-Reaktionen wurde entweder die Pfu (Promega) bzw. die High-Fidelity-Taq-Polymerase (Invitrogen, Karlsruhe) verwendet. Die benötigten Puffer und dNTPs wurden von den Firmen mitgeliefert.

Verwendeter PCR-Ansatz und Temperaturprofil:

Reaktionsansatz	Т	emperatu	rprofil
50 µl PCR-Ansatz	95 °C	180 s	
50 ng Templat-DNA	95 °C	60 s	
1 µM Primer forw/rev	55-60 °C	45 s	25 - 30 x
0.2 μM dNTPs	72 ° C	120 s	
5 μl Taq-Puffer (10x)	72 ° C	600 s	
1 µl Taq Polymerase			

x µl H2Obidest. (ad 50 ml)

2.2.1.15 Reverse Transkriptase-PCR

Zur Herstellung einer für ein Protein codierenden cDNA aus der zellulären mRNA kam die RT-PCR zum Einsatz. Dabei wird ein definierter Bereich der mRNA durch eine reverse Transkription mittels einer RNA-spezifischen, Primer-abhängigen DNA-Polymerase (Reverse Transkriptase) in cDNA umgeschrieben, die anschließend mittels PCR amplifiziert wird.

Zur Herstellung der gewünschten cDNA von wurde das Omniscript[®] Reverse Transcriptase Kit (Qiagen, Hilden) verwendet. Hierbei erfolgte die Reaktion in 20 µl-Ansätzen, wobei 1 µg Maus-RNA aus Leber eingesetzt wurde. Reverse Transkriptase, Puffer, dNTP-Mix und RNase-freies Wasser waren im Kit enthalten. Die Primer, die für die RT-

RT-Reaktionansatz		
RNA	1µg	
RT-Puffer (10x)	2 µl	
dNTP Mix (5 mM)	2 µl	
Primer (10 µM) (3'-terminal)	2 µl	
Omniscript® Reverse Transcriptase (4U)	1 µl	
RNase-freiem Wasser	auf 20 µl auffüllen	

Reaktion eingesetzt wurden, flankieren die zu amplifizierende cDNA 3'-terminal.

Nachdem der Ansatz 90 min bei 37° C inkubiert und 5 min bei 93° C gekocht wurde, um die Reverse Transkriptase zu inaktivieren, wurden 3 µl des RT-Ansatzes als Template zur anschließenden PCR eingesetzt. Die Amplifikation der cDNA des RT-Ansatzes erfolgte mittels PCR mit der Platinum[®] Pfx-DNA-Polymerase (Invitrogen, Karlsruhe), welche eine *proofreading* 3'-5'-Exonuklease-Aktivität und damit eine hohe Synthesegenauigkeit besitzt. Da die Pfx-Polymerase in einer inaktivierten Form vorliegt und erst während des initialen 94° C-Denaturierungsschritt aktiviert wird, wird auch die Spezifität und Genauigkeit der Reaktion erhöht. Die PCR-Reaktion erfolgte im 50-µl-Ansatz. 3 µl dienten der RT-Reaktion als Template.

PCR-Ansatz		Temperaturprofil		
RT-Reaktionsprodukt	3 µl	94° C	2 min	
Pfx-Amplifikationspuffer (10 ×)	5 µl	94° C	20 sec	
Enhancer Solution (10 ×)	1,5 µl	55° C	30 sec	25 x
dNTP Mix (10 mM)	1,5	68° C	180 sec	
MgSO₄ (50 mM)	1μ	68° C	10 min	
Primer (3'-terminal) (10 µM)	2 µl			
Primer (5'-terminal) (10 µM)	2 µl			
Pfx-DNA-Polymerase (1,5 U)	0,6 µl			
H ₂ O _{bidest}	auf 50 µl auffüllen			

Mit einer zweiten PCR-Reaktion, bei der 3 µl des eben entstandenen PCR-Produktes als Template eingesetzt wurden, wurden Primer verwendet,, die die zu amplifizierende cDNA ca. 20 bp vom 5'- und 3'-Terminus des PCR-Produkt binden. Mit dieser als *nested* PCR bezeichnete Reaktion wurde versucht die Spezifität der PCR zu erhöhen. Die PCR-Produkte der ersten und zweiten Reaktion wurden mithilfe eines Agarosegels analysiert.

2.2.1.16 Mutagenese-PCR

Die Mutagenese-Reaktion ist eine auf einer PCR basierenen Methode, mehrere Nukleotide um einzelne oder einer DNA-Sequenz auszutauschen, zu deletieren oder einzufügen und wurde hier verwendet um gezielt drei bis sechs Basenpaare der Insert-DNA-Sequenz innerhalb des Plasmids auszutauschen. Die dazu verwendeten Primer besaßen eine Länge von 28-32 Nukleotiden, von denen drei bis sechs aufeinander folgende Basen nicht mit der Zielübereinstimmten. Beide Primer zueinander Sequenz waren komplementär, wobei die Primer-Sequenz so gewählt war, dass die Basen-Fehlpaarungen (mit der Templat-DNA-Sequenz) möglichst in der Primer-Mitte waren. Die Elongation erfolgte so von der zu mutierenden Stelle aus an jedem Komplementärstrang in die entgegengesetzte Richtung. Die Elongationszeit während der PCR wurde so gewählt, dass innerhalb eines jeden Zyklus die vollständige Vektorsequenz inklusive Insert amplifiziert werden konnte. Während der folgenden PCR-Zyklen entstanden nur PCR-Produkte mit der veränderten Basensequenz, wobei diese im darauf folgenden Zyklus ebenfalls als Matrize dienten. Anschließend wurde die zuvor in E. coli amplifizierte und damit methylierte unveränderte Ausgangs-Plasmid-DNA durch das Restriktionsenzym Dnp I, das nur methylierte DNA abbaut, zerstört, wodurch schließlich die neue veränderte Plasmid-DNA für die weitere Amplifikation nach Transformation in E. coli verwendet wurde. Nach Picken Resistenzgen-tragender Kolonien, Aufreinigung der Plasmid-DNA durch geeignete Methoden wie zum Beispiel der Mini-DNA- Präparation [2.2.6] wurden die Konstrukte durch Sequenzierung überprüft. Für die PCR-Reaktion wurde hier die Pfu-Polymerase [Promega] wegen der niedrigen Fehleranfälligkeit durch der Proof-Reading-Eigenschaft verwendet.

Reaktion	nsansatz	Terr	nperaturpr	ofil
dNTP (1,25 mM)	8 μΙ	5 min	95° C	
Primer _(fw) (10 pmol/ml)	0,9 μl	30 s	95°	
Primer _(rev) (10 pmol/ml)	0,9 μl	30 s	60°	20 x
PCR-Puffer	2 μl	8 min	72° C	
BSA (10x)	2 μl	8 min	72° C	
DMSO	1,25 μl	∞	4° C	
MgSO₄ (25mM)	2 µl			
H ₂ O	2,45 μl			
Pfu	0,5 μl			

Der Verdau der Ausgangs-DNA erfolgte zunächst mit 0,5 μ l Dpn I direkt im PCR-Ansatz bei 37° C für 2 h. Anschließend wurden nochmals 0,5 μ l Dpn I zugegeben und weitere 2 bis 16 h bei 37° C inkubiert. Der Reaktionsansatz wurde durch Elektrophorese überprüft, da sich auch durch PCR neu entstandene Plasmide im Agarosegel wie lineare DNA verhalten und in einer Bande mit der erwarteten Größe zu sehen sind. 0,5 μ l des PCR-Ansatz wurden direkt für eine Transformation von 80 μ l elektrokompetenten *E. coli* DH5 α verwendet.

2.2.1.17 Kolonie-PCR

Eine Methode zur Durchmusterung von Transformanten, mit der man möglichst viele Transformanten in möglichst kurzer Zeit durchmustern kann ist die Kolonie-PCR. Dazu wurden ganze Zellen direkt von der *master-plate* mit einem sterilen Zahnstocher in den PCR-Ansatz gegeben. Die Zellen lysieren schließlich während des PCR-Vorgangs durch die hohe Denaturierungs-Temperatur und geben somit die Plasmid-DNA für die PCR frei.

2.2.1.18 Sequenzierungs-PCR

Die Sequenzierung von DNA erfolgte nach dem Sanger-Verfahren (Sanger, 1977) durch fluoreszenzmarkierte Nukleotide, die zugleich als Terminatoren dienten.

Dabei wurde zunächst eine Sequenzierungs-PCR durch Verwendung des BigDye[®] Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Darmstadt) durchgeführt. Die Reaktion erfolgte in einem 10 µl Ansatz.

Sequenzierungsansatz:		Temperatur	orofil
200 – 400 ng Template (dsDNA)	10 sec	96° C	
1,5 µl Sequenzierungspremix	5 sec	50° C	25 ×
2 µl Sequenzierungspuffer	4 min	60° C	
0,8 μl 10 μM Sequenzierungsprimer			
mit H ₂ O _{bidest} auf 10 µl auffüllen			

Die PCR-Produkte wurden anschließend nach Zugabe von jeweils 1 µl 125 mM EDTA und 1 µl 3 M Natriumacetat und 50 µl 100 % Ethanol nach 5-minütiger Inkubation gefällt und 15 min durch Zentrifugation bei 14000 rpm pelletiert. Anschließend wurde das Pellet mit 70 µl 70 %-igem Ethanol und 5-minütiger Zentrifugation bei 14000 rpm gewaschen. Abschließend wurde das Pellet bei 37° C getrocknet und in 30 µl HPLC- H_2O aufgenommen. Die Sequenzierung erfolgte in der Abteilung für Entwicklungsbiochemie (GZMB, Universität Göttingen) am ABI PRISM[®] 3100 DNA-Sequencer.

Die Sequenzen wurden mit Hilfe des online zur Verfügung stehenden Programms ClustalW mit der originalen Sequenz aus der Datenbank (2.1.1) verglichen und so auf ihre Richtigkeit analysiert.

2.2.1.19 Isolierung von PCR-Produkten

Die Reinigung von PCR Produkten wurde durch des QIAquick PCR Purification Kit (Qiagen, Hilden) nach Angaben des Herstellers durchgeführt.

2.2.1.20 Ligation

DNA-Fragmente können durch eine Verknüpfung freier 3'-Hydroxy- und 5'-Phosphat-Enden von Nukleinsäuren zu Phosphodiesterbindungen durch eine Ligation in linearisierte Vektoren integriert werden. Die Ligation von DNA-Fragmenten wurde mit Hilfe des T4-DNA-Ligase-(New England Biolabs, Frankfurt a. M.) bzw. T4-DNA-Ligase-Kits (Promega) in einem Gesamtvolumen von zwischen 5 und 20 μ l durchgeführt. Zur Ligation wurde die Insert-DNA nach der Auftrennung durch Agarosegelelektrophorese und Gel-Extraktion in einem drei- bis achtfachen molaren Überschuss zur verwendeten Vektor-DNA in 1-fach konzentriertem T4-DNA-Ligationspuffer und mit 1 μ l DNA-Ligase für 2 h bei RT , bzw. 16 h bei 16° C inkubiert. Anschließend wurde der Ansatz für Transformationen direkt eingesetzt.

2.2.1.21 Durchmusterung von Transformanten

Nach der Transformation von *E. coli* mit der Konstrukt-DNA wurden mehrere Kolonien isoliert voneinander in LB mit dem entsprechenden Antibiotikum bei 37° C ca. 16 h inkubiert und die Plasmid- DNA durch ein DNA-MiniPrep Kit isoliert. Durch Restriktionsverdau, mit den auch für die Klonierung eingesetzten Restriktionsenzymen wurde Größe der DNA-Inserts durch eine Agarosegelelektrophorese analysiert.

2.2.1.22 Reinheitskontrolle

Im Phasenkontrastmikroskop (Carl Zeiss, Oberkochen) wurden die *E. coli*-Zellen sowohl anhand der Zellmorphologie als auch anhand der Morphologie der Kolonien auf ihre Reinheit überprüft, wofür *E. coli*-Zellen auf LB-Agarplatten und entsprechendem Antibiotikum vereinzelt wurden.

2.2.1.23 Trübungsmessung

Die optische Dichte von Bakterienkulturen wurde bei einer Wellenlänge von 600 nm (OD₆₀₀) in einem Spektralphotometer (Eppendorf Biophotometer, Eppendorf, Hamburg) mit Einmalküvetten gegen steriles LB-Medium bestimmt. Proben mit hohen Zelldichten wurden dabei stets mit sterilem LB-Medium auf eine optische Dichte zwischen 0.07 und 0,7 verdünnt.

2.2.1.24 Northern Blot

2.2.1.24.1 Herstellung der radioaktiv-markierten Sonde

Eine qualitative und quantitative Analyse von RNA kann mithilfe des Northern Blots durchgeführt werden. Dabei hydridisiert eine radioaktiv markierte cDNA-Sonde mit der untersuchten mRNA womit durch Erfassung der radioaktiven Signale der quantitative Nachweis erfolgt. Bei der in dieser Arbeit verwendeten Membran handelte es sich um eine handesübliche Maus MTN 8 Lane Blot-Membran (Clontech) mit den Geweben Herz, Hirn, Milz, Lunge, Leber, Skelettmuskel, Niere und Hoden. Die mRNA auf der Blotmembran wurde zur Markierung mit radioaktiv markierten DNA-Sonden (300-500 bp lange cDNA-Abschnitte) hybridisiert. Zur radioaktiven Markierung diente das Amersham Rediprime II Random Prime Labelling System (HE

Healthcare, München). Dabei wurden etwa 50 ng DNA auf 45 ul mit TE-Puffer aufgefüllt, bei 95° C 5 min denaturiert und 5 min auf Eis abgekühlt. Anschießend wurde der Ansatz mit 50 µCi/5 µl 32P-dCTP (Hartmann Analytic, Braunschweig) versetzt und mit einem lyophylisierten Aliguot des Rediprime II Random Prime Labelling Kits vermischt. Anschließend wurde der Ansatz 15 min bei 37°C inkubiert und freie, nicht zur Markierung der Sonde benötigten Nucleotide durch Waschen der markierten Sonde mit dem QIAquick Nucleotide Removal Protokoll (QIAquick Spin Handbook 2006, QIAquick® Gel Extraction Kit, Qiagen, Hilden) nach Herstellerempfehlungen entfernt und die markierte Sonde mit 200 µl EB Puffer von der QIAquick Spin Säule eluiert. Anschließend wurden 10 µl des Eluats in einem neuen Gefäß zur Messung der Cerenkov-Strahlung am LS Flüssigkeitsszintillationszähler 6500 (Beckmann, München) eingesetzt um die Radioaktivität der Sonde zu bestimmen. Die spezifische Aktivität der 32P-markierten Sonden lag im Allgemeinen bei circa 110 cpm/µg DNA.

2.2.1.24.2 Hybridisierung der Blots mit radioaktiv markierten DNA-Sonden

Die getrocknete MTN-Membran wurde mit etwa 80 µl/cm² Amersham Rapid-hyb[™] Buffer (GE Healthcare, München) versetzt und bei 65° C 30 min vorinkubiert. Anschließend wurden ca. dreimal 106 cpm der radioaktiven Sonde pro ml Rapid-hyb[™] Buffer mit 100 µl Hering-Sperma-DNA gemischt und 5 min bei 95° C denaturiert. Anschließend wurde der DNA-Mix auf Eis abgekühlt und auf die Membran gegeben. Für die Hybridisierung wurde die Membran mit dem DNA-Mix bei 65°C ca. 16 h unter Rotation inkubiert. Nach abgeschlossener Hybridisierung wurde die Membran zweimal. 15 min mit 2 × SSC/0,1% SDS und zweimal 15 min mit 0,2 × SSC/0,1% SDS unter leichtem Schwenken bei RT gewaschen. Die Membran wurde schließlich zweimal 10 min bei 65° C in 0,2 × SSC/0,1% SDS geschwenkt und feucht in Folie eingeschweißt, sobald die gemessene Strahlung der Membran unter

2 Material und Methoden

einem Wert von etwa 30 cpm lag. Die radioaktiven Sonden auf der Membran wurden durch Exposition einer Phopho-Imaging Plate (FujiFilm, Düsseldorf) detektiert und schließlich mit dem Phosphoimager PMI (BioRad, München) analysiert.

Zur Entfernung der radioaktiven Sonde von der Blot Membran wurde die Membran mit einer 95° C heißen 0,1 %igen SDS Lösung durch Schwenken 15 min mit der abkühlenden Lösung gewaschen und anschließend mit 0,2 × SSC/0,1% SDS gespült. Die Membran kann anschließend für weitere Hybridisierung eingesetzt werden, da die RNA nicht durch die Wasch- und Spülschritte entfernt wurde.

300 mM Aatriumcitrat, pH 7,0

2.2.3 Zellkultur

2.2.3.1 Auftauen und Revitalisieren eukaryotischer Zellen

Die Zellsuspension wurde mit 1 ml aus einem 10 ml eiskaltem DMEM-Stock durch Auf- und Abpipettieren mit einer 1000 µl-Pipette aufgetaut, wobei frisch-aufgetaute Zellsuspension sofort mit dem 10ml-DMEM-Stock vermischt wurden. Anschließend wurden die Zellen in der Labofuge (1100 rpm, 5 min) pelletiert. Der Überstand wurde abgenommen, die Zellen in 5 ml frischem DMEM resuspendiert und in eine entsprechende (5 ml) Zellkulturflasche überführt. Nach 24-48 h wurden die Zellen in eine 15-ml-Zellkulturflasche überführt, wobei dem Medium, falls erforderlich, Antibiotikum zugesetzt wurde.

2.2.3.2 Kultivierung eurkaryotischer Zellen

Die Kultivierung der Zellen erfolgte in H₂O-gesättigter 5 % CO₂-haltiger Atmosphäre bei 37° C. Vor der Behandlung der Zellen mit Medien und Lösungen wurden diese auf 37° C im Wasserbad vorgewärmt. Für die Kultivierung der Zellen wurde DME-Medium verwendet, dem zum Beispiel zur Kultivierung stabiler Resistenzgen-tragender Zelllinien das entsprechende Antibiotikum beigemengt wurde (für pcDNA3.1 Hygro⁺tragende Zellen: Hygromycin, 400-600 U/I).

DMEM:	
FKS 10 %	
Penicillin/Streptomycin (1 % (v/v))	
Stocklösung (100 ×)	
Glutamin (100 \times Stocklösung) 1 % (v/v)	

2.2.3.3 Passagieren und Trypsinisieren von eukaryotischen Zellen

Die Zellen wurden durch Trypsinierung und Passagieren bei ca. 50-80% Konfluenz gehalten. Dafür wurde das Medium zunächst abgesaugt, die Zellen einmal mit PBS gewaschen und nach Entfernen des PBS etwa drei min mit 0,05 % (w/v) Trypsin-EDTA-Lösung (Gibco, Invitrogen, Karlsruhe) bei 37 °C inkubiert. Die Trypsin-Aktivität wurde durch Zugabe von Normalmedium gestoppt. Die Zellen wurden durch mehrfaches Auf- und Abpipettieren vereinzelt und dann auf die gewünschte Zelldichte mit DMEM und mit eventuell entsprechenden Zusätzen (z.B. Antibiotika) verdünnt in einer neuen Zellkulturflasche weiterkultiviert. Zum Pelletieren und Ernten der Zellen wurden sie in der Labofuge 5 min bei 1100 rpm zentrifugiert. Anschließend wurde das Zellpellet mit PBS gewaschen, erneut abzentrifugiert. Zellpellets und bei -20° C gelagert.

2.2.3.4 Transfektion

Für die Durchführung wurde das Transfektionsreagenz Lipofectamine[™] 2000 (Invitrogen) verwendet. Die Durchführung erfolgte dabei wie vom Hersteller angegeben.

2.2.3.5 Herstellung stabiler Zellklone

Zur Herstellung stabil transfizierter Zellklone wurden HT1080 und HeLa-Zellen mit dem Lipofectamine[™] 2000 Transfektionsreagenz und Insert-DNA im pcDNA3.1 Hygro⁺-Vektor transfiziert (2.3.4). Nach 24 h wurden die Zellen trypsiniert und 1:20 bis 1:40 in DMEM verdünnt auf eine 10 cm-Zellkulturschale ausplattiert. Die Selektion der transfizierten Zellen erfolgte mit DMEM mit zunächst 100U/ml Hygromycin B. Zur Kontrolle wurden zusätzlich nicht transfizierte Zellen unter gleichen Bedingungen kultiviert. Hierbei wurde die Konzentration an Hygromycin B alle 48 h um jeweils 100 U/ml bis zu einer Konzentration von 400-600 U/ml erhöht. Sobald auf der Kontrollplatte keine lebenden Zellen mehr gefunden werden konnten, wuchsen transfizierte Zellklone auf den 10 cm-Schalen heran, die innerhalb von 14 Tagen eine Größe erreicht hatten, mit der sie mit bloßem Auge gesehen werden konnten. Einzelne gut gewachsene Zellklone wurden mithilfe von Klonierungsringen von der Schale gepickt und in einer 24 well-Schale ausplattiert. Dabei wurde, nachdem die Zellen einmal mit PBS gewaschen wurden, zunächst der Klonierungsring am unteren Rand mit sterilem Silikon benetzt und um den Zellklon auf die Kulturschale gesetzt. Die Zellen des Klons wurden mit einem Tropfen Trypsinlösung aus der Pasteur-Pipette auf die vom Ring umschlossene Zellkolonie pipettiert und 3 min bei 37 °C inkubiert. Anschließend wurde die Trypsin-Aktivität durch Zugabe von DMEM gestoppt, die Zellen darin resuspendiert und in die 24 well-Platte überführt. Die Zellen eines Zellklons wurden schließlich kultiviert und nach Erreichen von ca. 70% Konfluenz in eine 6-well-Schale übertragen. Nach erneutem Erreichen von ca. 70% Konfluenz wurden die Zellen 1:1 geteilt und jede der beiden Fraktionen eines Klons innerhalb eines anderen Wells einer 6-well-Platte kultiviert. Die Zellen der einen Fraktion dienten zur Proteinexpressions-Analyse durch Western-Blot. Dafür wurde der Zellüberstand nach Erreichen von 70-100% Konfluenz durch Trypsinisieren, bzw. durch Verwendung eines Schabers geerntet. Nach Pelletierung der Zellen und Zugabe von Protease-Inhibitor (standardmäßig 1:100 verdünnt eingesetzt) wurden diese durch Ultraschall aufgeschlossen (5 mal 10 s Puls). Nach einer Proteinbestimmung durch Bradford wurden 100 µg Gesamtprotein für die SDS-PAGE eingesetzt. Die andere Zell-Fraktion wurde weitere kultiviert, bzw. kryokonserviert.

2.2.3.6 Kryokonservierung eukaryotischer Zellen

Die Zellen wurden mit einer Konfluenz von ca. 80-90% abtrypsiniert, in Normalmedium aufgenommen und in der Labofuge (1100 rpm, 5 min) pelletiert. Anschließend wurde der Überstand abgenommen und die Zellen in 1 ml eiskaltem Einfriermedium aufgenommen. Die Zellen wurden schließlich in Kryoröhrchen überführt, zunächst bei -80° C eingefroren und innerhalb von vier Wochen in flüssigen Stickstoff überführt.

Einfriermedium: 10 % DMSO in Normalmedium

2.2.4 Biochemische Methoden

2.2.4.1 Präparation von Tritosomen durch fraktionelle Zentrifuation

Die Isolierung von mit dem Detergenz Triton X-1339 (Tyloxapol) modifizierten Lysosomen (Tritosomen) durch fraktionelle Zentrifugation basiert auf den Dichteunterschieden der verschiedenen Zellbestandteile und damit deren Sedimentationseigenschaften während einer Zentrifugation. Dazu wurden Mäusen 3-4 Tage vor der Präparation 100 bis 150 µl Triton WR 1339 intraperitonal injeziert. Nachdem die Mäuse kurz vor der Präparation betäubt und dekaptiert wurden, wurde die Leber entnommen, mit ca. 2,5 Vol eiskalter 0,25 M Saccharose mit einem Teflon-Homogenisator [Braun] durch eine langsame Auf- und Abbewegung homogenisiert und durch weiterer Zugabe von Saccharoselösung auf ein sechsfaches Volumen gebracht und gemischt. Nach einem ersten 10-minütigen Zentrifugationsschritt bei (2.300 rpm, Labofuge [Eppendorf]) wurde ein erster Überstand

abgenommen und auf Eis aufbewahrt. Das Pellet wurde anschließend mithilfe des Vortex gemischt und nach Zugabe von 5 ml mit Saccharoselösung erneut dem Teflon-Homogenisator rehomogenisiert. Nach einem zweiten 10-minütigen Zentrifugationsschritt (2.300 rpm, Labofuge) wurde ein zweiter Überstand abgenommen und mit dem ersten vereinigt. Die vereinigten Überstände wurden mit E bezeichnet. Dieser enthielt alle Organellen und Komponenten des Zellplasmas, während das übrig gebliebene Pellet, das als N bezeichnet wurde, die Zellkerne und intakt gebliebene Zellen enthielt. Die Überstände E wurden anschließend durch eine weitere Zugabe von Saccharoselösung auf 20 ml Gesamtvolumen gebracht und 3 min durch Verwendung eines Ti-50-Rotor [Beckmann] mit 13.000 rpm zentrifugiert. Der Überstand wurde abgenommen und mit LPS 1 bezeichnet, während das Pelllet, mit M bezeichnet wurde. Die Fraktion **M** wurde erneut in 10 ml Saccharoselösung resuspendiert und 3 min bei 13.000 rpm (Ti-50) zentrifugiert. Der Überstand wurde mit LPS 1 vereinigt, als LPS bezeichnet und enthielt leichte Mitochondrien, Lysosomen und Mikrosomen. Das Pellet M enthielt die schwere Mitochondrienfraktion und Peroxisomen. Der vereinigte Überstand LPS wurde anschließend mit 25.000 rpm (Ti-50) 7 min lang zentrifugiert. Der Überstand wurde als PS 1 bezeichnet. Das als L 1 bezeichnete Pellet wurde nach Zugabe von 10 ml Saccharoselösung resuspendiert und nach einem erneuten 7-minütigen Zentrifugationsschritt mit 25.000 rpm von dem Überstand, der als PS 2 bezeichnet wurde getrennt. Die Überstände PS 1 und PS 2 wurden zu dem Überstand **PS** vereinigt, welcher noch Cytosol und Mikrosomen enthielt, während die leichten Mitochondrien und Lysosomen in dem L-Pellet zurück geblieben waren. Das L-Pellet wurde daraufhin mit einem Glasstab mit 2,39 M Saccharose auf ein Gesamtvolumen von 3,5 ml gebracht, darin resuspendiert und in ein SW-40-Zentrifugenröhrchen gegeben. Die Fraktion wurde daraufhin vorsichtig zunächst mit 1,47 M, dann mit 1,34 M und schließlich mit 0,49 M Saccharoselösung überschichtet, so dass sich diese Lösungen nicht miteinander vermischten. Die Probe wurde mit 25.000 rpm 159 min (SW-40-Rotor, slow acc. + slow decc.) zentrifugiert. Nach der Zentrifugation konnten vier verschiedene Fraktionen unterschieden werden: die oberste F1, eine zweite (F3), eine dritte (F4) und die erste Interphase (F2) (zwischen der F3 und der F4). Alle Schritte wurden bei 4° C durchgeführt.

2.2.4.2 Präparation tritosomaler Membranproteine durch Ultrazentrifugation

Die aus der diskontinuierlichen Saccharosegradientezentrifugation gewonnene F2-Fraktion wurde nach einmal einfrieren und auftauen mit 140 mM Na₂CO₃ (pH 11) 2 h auf Eis inkubiert und dreimal durch 1stündige Zentrifugation bei 4° C mit 100.000 x g in der Ultrazentrifuge [Beckmann] und anschließender Resuspendierung in H₂O gewaschen. Die Membranproteine wurden in 10 mM Tris (pH 7,4) / 50 mM NaCl aufgenommen und bei - 20° C bis zur weiteren Analyse gelagert.

2.2.4.3 Proteinbestimmung nach Bradford

Für die Proteinbestimmung wurde zunächst die Eichkurve, eine BSA-Konzentrationsreihe von 2-16 mg/ml, bzw 2 μ l der Probe mit Bradford /H₂O (1:5) (Gesamtvolumen: 1000 μ l) versetzt, gemischt und mindestens fünf min bei Raumtemperatur inkubiert. 200 μ l wurden jeweils für die Proteinbestimmung in die Wells einer ELISA-Mikrotiterplatte pipettiert. Die optische Dichte wurde bei 595 nm im ELISA-Lesegerät gemessen.

2.2.4.4 BCA-Proteinbestimmung

Für die Bestimmung der Proteinkonzentration von Detergenz-haltigen Proben wurde die kolorimetrische Bicinchoninsäure-Proteinbestimmung [PIERCE] durchgeführt. Diese Methode basiert zum einen auf der Eigenschaft von Proteinen Cu²⁺-Ionen in einer alkalischen Umgebung zu Cu¹⁺-Ionen zu reduzieren (Biuret-Reaktion) und blaufarbende Komplexe zu bilden und zum anderen auf der anschließenden Bildung von Cu¹⁺-BCA-Komplexen (mit jeweils zwei Bicinchoninsäuremoliekülen pro Cu¹⁺), die bei 562 nm (550-570 nm) absorbieren. Dabei besitzen die bei der BCA-Reaktion entstehenden Cu-BCA₂-Komplexe eine 100-fach höhere Sensitivität als die bei der Biuret-Reaktion entstehenden Protein-Cu¹⁺-Komplexe. Die Durchführung erfolgte nach Angaben des Herstellers.

2.2.4.5 SDS-Polyacrylamidgelelektrophorese (Laemmli et al., 1970)

Durch die SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) werden Proteine abhängig von deren Molekulargewichten aufgetrennt. Das SDS bindet über dessen hydrophoben Teil an die Proteine und verleiht ihnen schließlich eine stark-negative Ladung, womit die Eigenladung der Proteine überdeckt wird. Zugleich wird die dreidimensionale Struktur der Proteine aufgelöst. Dadurch können die Proteine nun unabhängig von ihrer Eigenladung und Form aufgetrennt werden. Als Matrix wurde polymeres Acrylamid verwendet, das als Trenngel (10-15% Acrylamid) und als Sammelgel (4% Acrylamid) zwischen zwei Glasplatten auspolymerisiert. Die einzelnen Komponenten des Trennbzw. Sammelgels wurden wie in der Tabelle 2.1 aufgeführt gemischt. Trenn- und Sammelgel wurden dabei nacheinander erstellt, indem zunächst das Trenngel nach Einfüllen zwischen die Glasplatten mit Isopropanol überschichtet wurde, um eine glatte Grenze zu schaffen das Trenngel nach Auspolymerisieren und Entfernen des und Isopropanol mit dem Sammelgel überschichtet wurde, in dem schließlich ein Kamm für die Probentaschen fixiert wurde. Nachdem das Gel vollständig auspolymerisiert war, wurde es in die Elektrophoresekammer eingesetzt, die anschließend mit Anoden- und Kathodenpuffer gefüllt. Die Proteinproben wurden mit 2 × Lämmli-Auftragspuffer versetzt und 15 min bei 60° C denaturiert. Anschließend wurden 20-50 µl Proteinprobe mit jeweils circa 100 µg Gesamtprotein 1 min bei 14000 rpm (Labofuge) zentrifugiert und die Überstände in die Proteingeltaschen geladen. Die Elektrophorese erfolgte schließlich für zwei bis drei Stunden bei 28 mA. Eine Parallelspur wurde mit 10 µl

Protein-Größenstandard beladen, um die Molekulargewichte der aufgetrennten Proteine nach der Elektrophorese abschätzen zu können.

Das Trenngel der SDS-PAGE wurde im Rahmen von 2D-PAG-Elektrophoresen [2.4.6, 2.4.7] auch mit kontinuierlichem Acrylamid-Gradienten eingesetzt. Dabei wurden zwei Trenngellösungen mit unterschiedlicher Acrylamidkonzentration (unterster Acrylamidkonzentrationsbereich: zwischen 6 und 8%, oberster Acrylamidkonzentrationsbereich: zwischen 12 und 16%) angesetzt und durch eine Gel-Misch-Apparatur (Werkstatt-Konstruktion) im Gradienten zwischen die Glasplatten der der Gelgießvorrichtung gegossen. Die Trenngele wurden bis zur vollständigen Polymerisation mit Isopropanol bedeckt und anschließend mit Trenngellösung ohne Acrylamid überdeckt bei 4° C gelagert.

2 × Lämmli-Auftragspuffer:

Bestandteile
125 mM Tris/ HCl pH 6,8
4 % SDS
20 % Glycerin
0,004 % Bromphenolblau
10 % β-Mercaptoethanol

Elektrophorese-Puffer:

Bestandteile	Menge
SDS (w/v)	10g/10Liter
Glycin (w/v)	144,27g/10 Liter
Tris (w/v)	60,53g/10 Liter
APS (20%) in	auf 10 Liter auffüllen
H_2O_{bidest}	

Sammelgel (5%):

Komponenten	Volumen
Acrylamid-Lösung (30%)	0,4 ml
Bisacrylamid-Lösung (1%)	0,275 ml
0,5 M Tris-HCl, pH6,8	0,625 ml
SDS (10%)	25 µl
H ₂ O _{bidest}	1,175 ml
TEMED	2,5 μl
APS (20%)	10 µl

Trenngel (15%)

Komponenten	Volumen
Acrylamid-Lösung (30%)	8,75 ml
Bisacrylamid-Lösung (1%)	2,75 ml
1,5 M Tris-HCl, pH8,8	4,3 ml
SDS (10%)	175 μl
H ₂ O _{bidest}	1,4 ml
TEMED	14,6 μl
APS (20%)	58,3 μl

Tab. 2.1 Zusammensetzung von SDS-Trenngelen verschiedener Polyacrylamid-konzentrationen und des SDS-Sammelgel

2.2.4.6 16-BAC-Polyacrylamidgelektrophorese (Hartinger J, et al., 1996)

Wie bei der SDS-PAGE werden bei der diskontinuierlichen 16-BAC-PAGE Proteine nach dem gleichen Prinzip ihrer Größe nach aufgetrennt. Als denaturierendes und ladungsgebendes Detergens wurde hier das 16-BAC (16- benzyldimethyl-n-hexadecylammoniumchlorid), ein kationische Detergens, eingesetzt. Aufgrund der unterschiedlichen chemischen Eigenschaften zu SDS weist dieses Detergens etwas andere Trennungseigenschaften auf, wodurch speziell Membranglykoproteine in Kombination mit einer SDS-PAGE im Rahmen einer 2D-16-BAC-SDS-PAGE effektiver getrennt werden können als durch eine gewöhnliche IEF- (isoelektrische Fokussierung)-SDS-PAGE oder durch eine SDS-PAGE allein [162, 163]. Als Gelmatrix dient hier ebenso wie bei der SDS-PAGE polymeres Acrylamid, wobei die Polymerisation allerdings nicht mithilfe von Ammoniumpersulfat und N,N,N',N'-Tetramethylendiamin gestartet wurde, sondern durch Wasserstoffperoxid. Ascorbinsäure, Eisensulfat und Die Zusammensetzung des 16-BAC-Gels ist in Tab.2.2 dargestellt.

Komponenten	Volumen oder Menge	
	Trenngel, 7,5%	Sammelgel, 4%
	(40 ml)	(10 ml)
Harnstoff [g]	7,2	1
Acrylamid (30%, 29,1) [ml]	10	1,33
16-BAC (250 mM) [μl]	400	70
Trenngelpuffer (pH 2,1)[ml]	10	-
Sammelgelpuffer (pH 4,1) [ml]	-	2,5
H ₂ O [ml]	ad 40	ad 10
Ascorbinsäure (80 mM) [ml]	2	0,5
FeS (5 mM)[µl]	64	8,5
H ₂ O ₂ (0,3%) [μl]	133	60

Tab. 2.2 Zusammensetzung des 16-BAC-Trenngel und des 16-BAC-Sammelgel.

Stammlösungen			
20,41 g/500 ml			
17,3 ml/500 ml			
2,31 g/10 ml			
0,05 g/ml			
_			
pH erreicht wurde.

10 x BAC-Laufpuffer (Anode):

Bestandteile	Menge oder Volumen
25 mM 16-BAC	9,9 g
1,5 M Glycin	112,61 g
500 mM H ₃ PO ₄ (85%)	57,6 ml
H ₂ O	Ad 1000 ml

10 x BAC-Laufpuffer (Kanthode):

Bestandteile	Menge oder Volumen	
1,5 M Glycin	112,61 g	
500 mM H ₃ PO ₄ (85%)	57,6 ml	
H ₂ O	Ad 1000 ml	

16-BAC-Probenpuffer:

Bestandteile	Menge oder Volumen		
Harnstoff	2,25 g		
16-BAC	0,5 g		
Glycerin	0,5 ml		
H ₂ O	4 ml		
\rightarrow Bei 60° C komplett oder in der Mikrowelle			
lösen			
DTT (1,5 M)	250 μl		
Pyronin Y (5%)	50 μl		
H ₂ O	Ad 10 ml		

Die Tritosomenmembranen wurden nach dem letzten Waschschritt (mit 150 mM NH₄HCO₃ und Zentrifugation mit 100.000 x g, 60 min [2.4.2]) für die 16-BAC-PAGE in 16BAC-Probenpuffer aufgenommen und bei 60° C 15 min denaturiert. Je nach Gel- und Taschengröße wurden bis zu 200 μ l Probe mit jeweils zwischen 30 und 500 μ g Protein auf die Gele geladen. Die Auftrennung der Proteine erfolgte wie bei der SDS-PAGE bei 120 V bis kurz vor Auslaufen der Farbfront.

Nach der Trennung wurden die Proteinspuren aus den 16-BAC-Gelen ausgeschnitten und die Gel-Streifen für die SDS-PAGE durch zwei Schritte mit den E-Puffern I und II jeweils 20 min bei 37° C und pH 6,8 äquilibriert und auf SDS-Gradiententrenngele mit SDS-Agarose (4% SDS/100 mM Tris, pH 6,8/2% Agarose) fixiert. Die Auftrennung erfolgte wie in [2.4.5] beschrieben.

Bei der 16-BAC-PAGE kam auch ein kontinuierlicher Gradient zum Einsatz. Die Herstellung erfolgte dabei wie bereits bei der SDS-PAGE [2.4.5] beschrieben.

Puffer E1	(200	ml):
-----------	------	------

Bestandteile	Menge oder Volumen
Tris-HCI (1M, pH 6,8)	10 ml
SDS (20%)	40 ml
DTT	0,5g
Glycerin (87%)	34,5 ml
H ₂ O	115, 5 ml

Puffer E1 (200 ml):

Bestandteile	Menge oder Volumen		
Tris-HCI (1M, pH 6,8)	10 ml		
SDS (20%)	40 ml		
lodacetamid	0,925g		
Glycerin (87%)	69 ml		
H ₂ O	81 ml		

2.2.4.7 CTAB-Polyacrylamidgelelektrophorese (Buxbaum, 2003)

Anstelle des 16-BAC wurde eine 2D-PAGE in Verbindung mit SDS auch mit dem ebenfalls positiven Detergens CTAB (Cetyltrimethylammoniumbromid) durchgeführt. Dieses System basiert auf dem gleichen Prinzip wie das des 2D-16-BAC-SDS-PAGE-Systems. Die Herstellung der Gele und Durchführung der Elektrophorese ist sehr ähnlich. Während für die Glättung des SDS- und 16-BAC-Trenngels für der Polymerisation mit Isopropanol überschichtet wurde, wurde für das CTAB-Gel ein Überschichtungspuffer verwendet. Die vollständige Polymerisation war nach circa 16 Stunden abgeschlossen. Für die CTAB-PAGE wurden die Proben zunächst in 15% CTAB-Wasser gelöst, in Detergens-freien Probenpuffer aufgenommen (CTAB-Endkonzentration: 10%), da die Proben sonst nicht zu lösen waren und schließlich für 30 min bei 37° C denaturiert bevor sie auf das CTAB-Gel geladen wurden.

Komponenten	Komponenten Volumen oder Menge	
	Trenngel (7,5%,	Sammelgel (4%,
	40 ml)	10 ml)
Harnstoff [g]	14,4	3,6
Acrylamid (30%, 29,1) [ml]		1,33
	10	
KOH (1 M) [ml]	1,72	0,43
Essigsäure (1 M) [ml]	11,2	2,8
CTAB (5%) [μl]	800	200
16-BAC (250 mM) [μl]	-	-
Trenngelpuffer (pH2,1)[ml]	-	-
Sammelgelpuffer (pH 4,1) [ml]	-	-
H ₂ O [ml]	ad 40	ad 10
Ascorbinsäure (80 mM) [ml]	2	0,5
FeS (5 mM)[µl]	64	8,5
H ₂ O ₂ (0,3%) [μl]	133	50

Tab. 2.2 Zusammensetzung des CTAB-BAC-Trenngel und des CTAB-BAC-Sammelgel.

Auch bei der CTAB-PAGE kam wie bei der 16-BAC- und der SDS-PAGE kam auch ein kontinuierlicher Gradient zum Einsatz. Die Herstellung erfolgte dabei wie bereits bei der SDS-PAGE [2.4.5] beschrieben. Um die Stauchung der Proteinspots zu optimieren wurden für das CTAB-PAGE-System Stufengradientengele eingesetzt. Hierbei wurde jede Schicht einzeln nach in Tab. 2.3 aufgeführtem Pippetierschema pippetiert.

Überschichtungspuffer (1L)

Bestandteile	Volumen
H ₂ O	157 ml
Isopropanol	500 ml
KOH (1M)	43 ml
Essigsäure (1M)	280 ml

10 x CTAB-Laufpuffer (Anode, pH 4, 1L):

Bestandteile	Volumen oder Menge
СТАВ	10 g
β-Alanin	35,6 g
Essigsäure (10M)	70 ml
H ₂ O	Ad 1000 ml

10 x Laufpuffer (Kathode, pH 5,7, 1L):

Bestandteile	Volumen oder Menge	
КОН	28 g	
Essigsäure (10M)	56 ml	
H ₂ O	Ad 1000 ml	

CTAB-Probenpuffer (pH 5,1, 1ml):

	Bestandteile	Volumen oder Menge 0,18 g 300 μl	
	Harnstoff		
	H ₂ O		
Rühren bis sich der Harnstoff gelöst hat.			
	CTAB (5%)	200 µl	
	KOH (1M)	64 μl	
	Essigsäure (1M)	94 μl)	
	DTT (1M)	10 μl	
	Glycerin (87%)	57,5 μl	
	Pyronin Y (5%)	5 μl	
	H ₂ O	ad 1 ml	

Stufe (%)	Acrylamid (m	ml) Stocklösung SG (ml)) H ₂ O (ml)	
4,5	-	1,34		0,66	
5,5	0,06	1,34		0,60	
6,5	0,13		1,34	0,53	
7,5	0,20		1,34	0,46	
8,5	0,26		1,34	0,40	
9,5	0,33		1,34	0,33	
10,5	0,40		1,34	0,26	
11,5	0,46	1,34		0,20	
12,5	0,53		1,34		
13,5	0,60	1,34		0,06	
14,5	0,66	1,34		-	
Stocklösung S	G				
Harnstoff	1	4,4 g (Gestartet wurde	e jede Stufe (a 2	
Acrylamid (30%	, 29,1) 6	,8 ml r	ml) mit		
KOH (1M)	1	,72 ml 🛛 /	Ascorbinsäure (80 mM): 100 μl		
Essigsäure (10N	/) 1	,12 F	FeS (5 mM): 3,2 μl		
CTAB (5%)	8	00 μl	H ₂ O ₂ (0,3%): 6,65 μl		
H ₂ O	6	,4 ml			

Tab. 2.3 Pipettierschema für die 4,5-14,5%-CTAB-Stufengradientengele.

2.2.4.8 Proteingelfärbung mit kolloidaler Coomassie(Neuhoff et al.1988).

Die Proteine in den Acrlyamidgelen wurden nach der Elektrophorese zunächst mit Fixier-Lösung mind. eine Stunde fixiert, zweimal für 10 min mit H_2O_{bidest} gewaschen und anschließend mit kolloidaler Coomassielösung (0,15% Coomassie blue R-250 in Fixierer) über Nacht gefärbt.

Fixierer (2000 ml):

Bestandteile	Volumen oder Menge
Ethanol	800 ml
Essigsäure	200 ml
Wasser	1000 ml

Coomassie-Stocklösung:

Bestandteile
0,1 % Coomassie Brilliant Blue G250
2 % (w/v) Phosphorsäure
10 % Ammoniumsulfat

Coomassie-Gebrauchslösung:

Bestandteile 80 % Coomassie-Stocklösung 20 % Methanol

2.2.4.9 Proteingelfärbung mit Silber (Schevchenko et al. 1996)

Für gewöhnlich werden Proteingele mit Coomassie (2.4.8) gefärbt. Die Proteinnachweisgrenze dieser Färbemethode reicht in Bereiche bis 0, 3 µg. Eine weitere Methode der Proteinfärbung basiert auf einem Sensitivierungsschritt von im Gel eingeschlossenem Protein mit Natriumthiosulfat $(Na_2S_2O_3),$ einem Imprägnierungsschritt mit Silbernitrat und schließlich einer Entwicklung mit Natriumcarbonat (NaCO₃). Die Nachweisgrenze reicht in Bereiche bis unter 10 pg und ist damit deutlich sensitiver als die Coomassiefärbemethode. Hierzu wurde das Gel zunächst wie auch für die Coomassiefärbung eine Stunde durch 40% Ethanol / 10% Essigsäure / H₂O fixiert und anschließend 2 x 20 min mit 30%-igem Ethanol / H₂O und einmal mit H₂O gewaschen. Für die Sensitivierung wurde das Gel zunächst eine min in 0,8 mM Natriumthiosulfat inkubiert und dann dreimal 20 s mit H₂O gewaschen. Des Weiteren wurde das Gel für die Imprägnierung 20 min in einer 0,2%-igen Silbernitratlösung geschüttelt und anschließend wieder dreimal 20 s lang mit H₂O gewaschen. Die Entwicklung des Gels erfolgte schließlich durch Verwendung einer 3%-igen Natriumcarbonatlösung, bei der das Gel solange in der Lösung geschwenkt wurde, bis die gewünschte Farbintensität erreicht wurde. Die Reaktion wurde abschließend mit 5%-iger Essigsäure circa 10 s lang abgestoppt. Alle Schritte wurden bei Raumtemperatur ausgeführt.

2.2.4.10 Western Blot (semi-dry)

Die Proben wurden zur Immundetektion nach ihrer Auftrennung durch eine SDS-PAGE im Semidry-Western Blot Verfahren auf eine PVDF-Membran übertragen und anschließend durch Chemilumineszenz-Nachweis mit HRP-konjugierten Sekundärantikörpern detektiert. Dafür wurde zunächst das Sammelgel des SDS-Gels entfernt und das Trenngel zum Equilibrieren 10 min in Semidry-Kathodenpuffer inkubiert, während die PVDF-Membran durch kurzes Schwenken in Methanol aktiviert und anschließend ebenfalls in Kathodenpuffer equilibriert wurde. Zeitgleich wurden auch jeweils drei Lagen Filterpapier einmal in Kathodene, bzw. in Anodenpuffer geschwenkt bis diese tropfnass waren. Anschließend wurden die Filterpapierlagen (aus Kathodenpuffer) das Gel, die Membran und die Filterpapierlagen aus dem Anodepuffer in der Phegasus Blotkammer (Phase, Lübeck) in dieser Reihenfolge aufeinander geschichtet. Dabei wurde darauf geachtet, dass in diesem Blot keine Luftblasen eingeschlossen waren. Der Aufbau ist in A. 2.1 nochmals schematisch dargestellt. Der Transfer der Proteine auf die Membran erfolgte mit einer Stromstärke von 1 mA/cm² für 70 Minuten.

Kathodenpuffer:

Bestandteile

40 mM ε-Aminocapronsäure 20 mM Tris/HCl pH 9,0 20 % Methanol

Anodenpuffer:

Bestandteile

75 mM Tris/HCl pH 7, 4 20 % Methanol

Abb. 2.1 Schematischer Aufbau eines Semidry-Western Blots

Die PVDF-Membranwurde zum Blocken von Antigenbindungsstellen eine Stunde in Blotto inkubiert. Dann folgte eine Inkubation mit dem in Blotto verdünnten Primärantikörper ca. 16 h bei 4° C. Die Membran wurde anschließend viermal 10 min mit PBS und einmal fünf min mit PBST gespült. Im Anschluss folgte eine einstündige Inkubation mit HRP-konjugiertem (horseradish peroxidase) Sekundärantikörper und weitere vier Male zehnminütiges Waschen mit PBS und einmal fünfminütiges mit PBST. Die verwendeten Primärantikörper und ihre Verdünnung sind in Abschnitt 2.1.11 angegeben.

PBST:

Bestandteile
$1 \times PBS$
0,1 % Tween-20

Blotto:

Bestandteile

 $1 \times PBS$

5 % Magermilchpulver

Für die Detektion der Proteine wurde das Supersignal West Pico Chemiluminescent Detection Kits (Pierce, Rockford, USA) verwendet. Die dem Kit beiliegende Peroxidase- und Enhancer-Lösung des Kits wurden 1:1 gemischt und auf der Membran ca. drei min lang verteilt. Anschließend wurde die Membran in eine Folie eingeschlagen und die Chemilumineszenz durch die CCD-Kamera LAS-1000 (FujiFilm, Tokyo, Japan) detektiert, wobei die Expositionszeit je nach Signalstärke variiert wurde.

Die gebundenen Antikörperkomplexe können von der PVDF-Membran durch "Strippen" entfernt werden ohne Qualität und Quantität der gebundenen Proteine zu verändern, damit kann die Blot-Membran anschließend für die Immundetektion weiterer Proteine eingesetzt werden. Die Membran wurde zum Strippen zweimal fünf min mit H₂O_{bidest} gewaschen, zweimal fünf min mit 0,2 M NaOH inkubiert und anschließend nochmals zweimal fünf min mit H₂O_{bidest} gewaschen. Danach konnte die Membran wieder für weitere Immundetektionen eingesetzt werden.

2.2.4.11 Indirekte Immunfluoreszenz

2.2.4.11.1 Vorbereitungen

Proteine können intrazellulär durch Antikörper markiert werden. Die hier durchgeführten Immunfluoreszenzversuche wurden mit eukaryotischen auf Oberflächen adsorbierenden Gewebszellen (HeLa, HT1080, MEF) durchgeführt. Zur Vorbereitung wurden die entsprechenden Zellen unter der Sterilbank zunächst auf Deckgläschen, welche zuvor durch Ziehen durch die Bunsenbrennerflamme sterilisiert wurden, in 24-well-Zellkulturplatten ausplattiert. Durch regelmäßiges sanftes Schütteln der Platten (dreimal ca. alle 20 Minuten) wurde gewährleistet, dass die Zellen gleichmäßig über die Glasoberfläche der Deckgläschen verteilt, an den Glasuntergrund adsorbierten. Die Zellen wurden anschließend bei 37° C inkubiert und mit einer Konfluenz von circa 50 bis 80% transfiziert [2.3.4]. Nach einer Wachstumszeit von 12 bis 48 h wurden die Zellen auf den Deckgläschen mit Methanol fixiert.

2.2.4.11.2 Fixierung der Zellen durch Methanol

Um die Zellen an den Glasuntergrund der Deckgläschen zu fixieren wurden sie nach Abschluss der Wachstumszeit einmal mit PBS bei

Raumtemperatur gewaschen, fünf Minuten mit 100% -20° C-kaltem Methanol fixiert und anschließend zwei weitere Male mit PBS gewaschen.

2.2.4.11.3 Einfache Immunfärbung

Die fixierten Zellen wurden 15 Minuten lang mit 200 μ l 1% BSA in PBS und anschließend eine Stunde mit 50 μ l des 1:25 bis 1:200 in PBS/1% BSA verdünnten ersten Antikörpers bei 37° C inkubiert. Die Antikörperlösung wurde schließlich abgezogen und die Zellen dreimal 5 Minuten mit PBS gewaschen bevor 50 μ l des in 1% BSA in PBS verdünnten zweiten Antikörper (Verdünnung: 1:400) auf die Zellen pipettiert wurden. Die Bindung erfolgte bei 37° C für eine Stunde im Dunkeln. Nach der Bindung wurde fünfmal zwei Minuten lang mit PBS gewaschen und anschießend dreimal mit H₂O_{bidest} gespült. Schließlich wurden die Zellen mit einem Tropfen Fluoromount-Einbettungsharz (Biacore) eingebettet und über Nacht im Dunkeln bei Raumtemperatur ausgehärtet. Die fluoreszenzmarkierten Zellen wurden bei 4° C im Dunkeln gelagert und mit dem konfokalen Laser-Scan Mikroskop (Leica, Heidelberg) untersucht.

2.2.4.11.4 Sequenzielle Immunfärbung

Für eine Immunfluoreszenz, bei der zwei Primärantikörper, die aus der gleichen Spezies stammen, gleichzeitig gegen unterschiedliche Proteine verwendet wurden, wurde die Immunfluoreszenz sequenziell durchgeführt. Die Vorraussetzung dafür ist, dass einer der Antikörper direkt an einen Chromatohor kovalent gekoppelt ist (und damit keinen Sekundärantikörper benötigt). Allerdings ist auszuschließen, dass beide Antikörper durch den verwendeten zweiten Antikörper unerwünscht erkannt werden. Um gewährleisten, erfolgte dies zu die Immunfluoreszenz wie oben beschrieben. Allerdings erfolgte zunächst nur die Zugabe des nicht-konjugierten Primärantikörpers, nach Inkubation, Entfernen des Primärantikörpers durch dreimal 5-minütiges

2 Material und Methoden

Waschen konnten die Zellen mit dem dafür vorgesehenen Sekundärantikörper inkubiert werden. Nach entfernen des Sekundärantikörpers nach dreimal 5-minütigem Waschen und einer erneuten Blockierung freier unspezifischer Bindestellen durch eine fünfzehnminütige Inkubation mit 1% BSA in PBS erfolgte die Inkubation der Zellen mit dem konjugierten Primärantikörper. Nach einstündiger Inkubation, Abnehmen der Antikörperlösung und Waschen wie in 2.4.11.3 angegeben, wurden die Zellen mit in Fluoromount (Biacore) eingebettet und ausgehärtet. Als Kontrolle diente ein Ansatz bei dem nur der Sekundärantikörper und der konjugierte Primärantikörper und ein Ansatz bei dem nicht-transfizierte Zellen verwendet wurden.

2.2.4.12 Immunpräzipitation

Zur Anreicherung eines bestimmten Proteins aus Zellsuspension wurde hier eine Immunpräzipitation verwendet. Dafür wurde zunächst Zelllysat nach Resuspendierung von Zellkulturzellen in PBS/Protease-Inhibitor (1:100) nach Zugabe von Ocylglykosid (1% Endkonzentration) und einer einstündigen Inkubation gewonnen. Die Zellsuspension wurde mit der Ultrazentrifuge abzentrifugiert (TLS-55; 1 h, 55.000 rpm). Zu dem Überstand wurden die Antikörper (1:200) pipettiert (Zur Kontrolle wurden Antikörper gegen ein Markerprotein verwendet) und zwei Stunden bei 4° C unter auf dem Drehrad inkubiert. Anschließend wurde nach Zugabe von jeweils 0,1 Vol Protein-A-, bzw. Protein-Ggekoppelten Agarose-Beads (Bettvolumen) eine Stunde bei 4° C auf dem Drehrad inkubiert. Die Beads wurden anschließend zwei min pellettiert (Labofuge, 2.800 rpm) und sechsmal mit PBS/Octylglykosid (1%) durch Resuspendieren und abzentrifugieren in der Labofuge gewaschen. Schließlich wurden die Agarose-Beads in zweifach Laemmli-Probenpuffer (nicht reduzierend) aufgenommen, fünf min bei 60° C erhitzt, 5 min mit der Labofuge abzentrifugiert und für eine SDS-PAGE auf das Gel geladen.

Die Detektion der Proteinbanden erfolgte durch Western-Blot [2.4.10].

2.2.4.13 Deglykosylierung von Glykoproteinen in Membranpräparationen mit TCA-Fällung.

N-glykosidisch verknüpfte Zuckerreste können durch Verdau mit Glykosidase PNGase F enzymatisch entfernt werden. Hierzu wurden Zellkulturzellen wie HeLa und HT1080 durch Trypsinisierung [2.3.3] oder durch Verwendung eines Schabers geerntet, durch Zentrifugation mit 1100 rpm (Labofuge) und Wiederaufnahme der Zellen in PBS gewaschen und schließlich in PBS mit Protease-Inhibitor-Coctail bei 0° С durch Ultraschallbehandlung [3.2.5] aufgeschlossen und homogenisiert. Die Proteinkonzentration des frischen Zellhomogenats wurde auf 5 µg/ml eingestellt (Proteinbestimmung: Bradford [2.4.3]) und 100 μ g (20 μ l) Proteinprobe wurde mit 1,25 μ l 1 M β -Mercaptoethanol/10% SDS versetzt. Und 5 min bei 95° C denaturiert (Membranprotein-reiche Proben wurden 10 min bei 60° C denaturiert). Zu dem Ansatz wurden nach der Proteindenaturierung folgende Lösungen zupepettiert:

1 M Tris-HCl/100 mM EDTA	5 μl
0,1M Phenantrolin	10 µl
50% Nonidet P-40	0,7 μ
PNGase F (1U/μl, (Roche)	2 μl

Anschließend wurde der Ansatz 16 h bei 37° C inkubiert und vor dem Versetzen mit 4-fachem Laemmli-Probenpuffer für die SDS-PAGE 1:5 mit H₂O verdünnt.

2.2.4.14 In-Gel-Deglykosylierung von Glykoproteinen

Die In-Gel-Deglykosylierung besitzt den Vorteil, dass sie nach einer PAGE abläuft und dadurch keinen negativen Einfluss auf die elektrophoretische Auftrennung der Glykoproteine ausüben kann. Zum anderen liegen die Proteine nach einer SDS-PAGE bereits im denaturierten Zustand vor, wodurch sie nicht mehr mit SDS denaturiert werden müssen. So kann das SDS aus dem Gel durch entsprechende Waschschritte entfernt werden und muss nicht durch weitere Zugabe Das von Detergens kompensiert werden. In-Gel-Deglykosylierungsprotokoll basiert auf dem In-Gel-Verdau-Protokoll mit Trypsin, wobei die Schritte bis zur Trypsin-Zugabe identisch sind [2.4.19]. Anstelle der Trypsin-Zugabe erfolgte aber die Zugabe von 0,12 U PNGase F in 2 µl 12,5 mM NH₄HCO₃ pro Proteingelspot und circa 2 µg Glykoprotein. Diese wurden anschließen 15 min auf Eis zum Quellen inkubiert und nach Zugabe von 5 µl 12,5 mM NH₄HCO₃ über Nacht bei 37° C inkubiert. Zum Entfernen der PNGase F wurde die Lösung abpipettiert und die Gelstückchen insgesamt dreimal mit 100 µl 0,1% SDS/100 mM NH₄HCO₃ pro Proteingelspot jeweils eine Stunde bei Raumtemperatur geschüttelt. Zum Entfernen des SDS wurde die Lösung abgezogen und die Gelstückchen nach Zugabe von 100 ml Methanol:H₂O:Essigsäure (50:45:5) 30 min bei Raumtemperatur geschüttelt. Anschließend wurden die Gelstückchen nach Abnahme der Lösung insgesamt zweimal 30 min in 100 µl 50% Acetonitril/100 mM NH₄HCO₃ bei Raumtemperatur unter Schütteln inkubiert. Abschließend wurden die Gelspots nach Abnahme der Lösung 2 min mit 50 ml 50% Acetonitril/50 mMNH₄HCO₃ und 10 min in 50 µl 100% Acetonitril inkubiert. Nachdem die 100%-ige Acetonitrillösung bei 37° C abgedampf wurde, wurde im Anschluss mit der Zugabe von Trypsin wieder an das In-Gel-Verdau-Protokoll angeknüpft [2.4.19].

2.2.4.15 Membranproteinanreicherung durch MemPer (PIERCE)

Das Mem-PER[®]-Membranprotein-Extraktionsreagenz-Kit dient der Anreicherung integraler Membranproteine von Säuger- und Hefe-Zellen durch Verwendung eines milden Detergenz-basierten Protokolls. Die Anreicherung erfolgt durch die Verwendung des Detergenz Triton X-114, das sich bei Raumtemperatur in wässriger Umgebung löst, während des Erhitzens auf 37° C aus der Lösung tritt und eine eigene von der wässrigen zu unterscheidende Phase bildet. In dieser Phase werden hauptsächlich hydrophobe Bestandteile wie Lipide und hydrophobe Proteine angereichert, die so von den hydrophileren Bestandteilen isoliert werden können. Die Durchführung erfolgte nach den Angaben des Herstellers.

2.2.4.16 Delipidierung durch PAGEprep[®] (PIERCE)

Membranproteine werden durch das Mem-PER®-Membranprotein-Extraktionsreagenz-Kit in der Triton X-114 angereichert. Da das Detergenz Triton X-114 wie auch Lipide während einer Polyacrylamidgelelektrophorese zu Interferenzen und damit zu einer Reduktion von Auflösung und Trennleistung führt, sollten diese störenden Substanzen wieder entfernt werden Hierzu wurde das PAGE-prep[®] Advance Kit [PIERCE] verwendet. Das Prinzip basiert auf der speziellen Eigenschaft des PAGEprep[®]-Granulat, Proteine spezifisch in Anwesenheit von mindestens 50% DMSO (Dimethylsulfoxid) zu binden, wodurch andere Substanzen durch Waschen mit entsprechenden Puffern entfernt und die Proteine anschließend durch Verwendung eines DMSO-freien Puffers wieder eluliert werden können. Die Versuchdurchführung erfolgte nach Herstellerprotokoll.

2.2.4.17 Delipidierung (Wessel und Flügge, 1983)

Lipide können die Laufeigenschaften von Proteinen während einer denaturierenden Polyacrylamidgelelektrophorese mit ladungsgebenden Detergenzien wie SDS und 16-BAC negativ beeinflussen. Für eine Reduktion des Lipidanteils wurden Membranprotein-Proben nach dem letzten Waschritt mit NH₄HCO₃ (150 mM) und Zentrifugation (100.000 x g) in 20 μ l 5% Triton X-100 resuspendiert, 15 min bei Raumtemperatur, 3 min im Ultraschallbad und erneut 15 min. bei Raumtemperatur inkubiert. Die Probe wurde mit 80 μ l TBS verdünnt (Endkonzentration des Tritons: 1%) Anschließend folgten die Zugaben von 400 μ l Methanol, 200 μ l Chloroform und 300 μ l Wasser wobei die Probe nach jeder Zugabe kurz mithilfe des Vortex gemischt wurde. Anschließend wurde 1 min. bei 9000 x g zentrifugiert und die obere Phase verworfen. Nach einer weiteren Zugabe von 300 μ l Methanol wurde die Probe kurz gemischt, 2 min. zentrifugiert (9000 x g) und der Überstand verworfen. Das Pellet wurde anschließend mit Stickstoff getrocknet.

2.2.4.18 Reduktive Carbamidomethylierung und tryptischer In-Gel-Verdau (Jahn, 2005)

Mithilfe der MS-Massenspektrometrie wurden die Proteine anhand des proteinspezifischen Peptidfingerabdruckes (MS) und der Peptid-Fragment-Spektren (MS/MS) identifiziert. Dazu wurden die Proteine zunächst proteolytisch abgebaut und die Peptidmasse durch das Massenspektrometer erfasst. Die Proteine wurden hier durch die Serinprotease Trypsin nach einer 1D-SDS- bzw. 2D-16-BAC-/CTAB-SDS-PAGE verdaut. Dazu wurden Protein-Gel-Spots aus den Acrylamid-Gelen durch eine Stanze mit einem Durchmesser von 2 mm ausgestanzt und diese mit 100 µl 50 mM NH4HCO3 / 30% Acetonitril / H₂O bei 37° C 5 min inkubiert. Nach Abnahme der Lösung wurden die Gel-Spots 10 min in 50 µl 100%-igem Acetonitril bei Raumtemperatur inkubiert. Nach einem 10-minütigenTrocknungsschritt bei 52° C wurden die Proteine in den Gel-Spots in 20 μ l 5 mM DTT / NH₄HCO₃ / 30% Acetonitril / H₂O eine Stunde bei 45° C reduziert. Anschießend wurden 20 μ l 22,5 mM lodacetamid / NH₄HCO₃ / 30% Acetonitril / H₂O 11,25 (lodacetamidendkonzentration: mM) für eine spontane Alkylierung von Mercapto-Gruppen zugegeben und 30 min unter Lichtausschluss bei Raumtemperatur inkubiert. Anschließend wurden die Gel-Spots mit 100 µl 50 mM NH₄HCO₃ / 30% Acetonitril / H₂O zwei min bei Raumtemperatur inkubiert. Nach Abzug der Lösung wurden die Spots in 100 µl 100% Acetonitril 15 min bei Raumtemperatur und nach Abnahme der Lösung schließlich 10 min bei 37° C inkubiert. Für die Verdaureaktion wurden die Spots mit 2 µl Trypsingebrauchslösung (25 µg/ml Trypsin [Promega] / 0,125 mM HCl / 5 mM Tris (pH 8,0) / 0,1% OGP (Octylglucopyranosid) / 5 mM CaCl₂ / H₂O) zunächst 15 min auf Eis, damit die Gelstückchen guellen können und schließlich nach

Zugabe von 5 μ l Verdaupuffer (5 mM Tris (pH 8,0) / 0,1% OGP / H₂O) bei 37° C zwischen 2 und 20 Stunden entweder bei 37 oder 45° C inkubiert.

Die Peptide wurden nach abgeschlossenem Verdau nach Zugabe von 5 μ l 1% TFA (Trifluoressigsäure)/0,2% OGP/H₂O durch 15 min schütteln und weiteren 15 min durch ruhende Inkubation extrahiert. Anschließend wurden die Proben mit den extrahierten Peptiden nach dem tryptischen Verdau auf mit α -Cyano-4-Hydroxyzimtsäure (HCCA) für die Kokristallisation mit den Proben beschichtete AnchorChip-Targets in folgender Weise aufgetragen: 2 μ l Probe wurden auf den mit Matrix beschichteten Probenfelder des Target 3 min bei Raumtemperatur inkubiert und wieder abgezogen. Die nun mit Probe und Matrix beschichteten Probenfelder wurden daraufhin ein- bis dreimal durch auftragen und abziehen des Waschpuffer (1% TFA / 0,5% OGP / H₂O) gewaschen und anschließend mit N₂ getrocknet.

2.2.4.19 Ansetzen von HCCA-Matrix

Zu 5 mg HCCA wurden 1 ml 50% Acetonitril / 0,1% TFA / H₂O gegeben, alles durch einen Vortex gemischt und nach 5-minütiger Inkubation im Ultraschallbad 5 min bei 10.000 x g und Raumtemperatur zentrifugiert. Die Beschichtung der Targets erfolgte automatisch durch eine Matrixbeschichtungsanlage [Werkstatt].

2.2.4.20 Massenspektrometrie

MALDI-TOF-MS und –MS/MS-Analyse zur Identifikation von Proteinen

Zur Identifizierung der Proteine aus den Polyacrylamid-Gelen wurden die Proteine zunächst durch proteolytischen Abbau zu Peptiden abgebaut. Hierzu wurde die Protease Trypsin verwendet, welche Proteine spezifisch nach Lysin oder Arginin spaltet, so dass jedes durch den Abbau entstandene Peptid entweder mit einem Lysin oder Arginin endet. Die einzelnen Massen der so entstandenen Peptide wurden schließlich durch MALDI-TOF-MS gemessen und anschließend zu proteinspezifischen Massenlisten zusammengefasst, den Peptide Mass Fingerprints (PMFs). Nach Isolierung einzelner Peptide innerhalb des Analysators wurden die auf der Driftstrecke entstandenen Zerfallsprodukte dieser Peptide nach Anhebung ihrer kinetischen Energie in einer sogenannten LIFT-Zelle im Reflektron-Detektor analysiert. Sowohl der Protein-spezifische PMF, als auch die Peptidspezifischen Fragmentspektren wurden schließlich mit theoretischen Massenlisten aus Online-Datenbanken verglichen, um die analysierten Proteine zu identifizieren. Die Identifizierungen erfolgten mithilfe des MASCOT Suchalgorithmus (Perkins et al. 1999) in der NCBI nr (nonredundant) Protein-Datenbank. Hierfür wird unter Berücksichtigung bestimmter Parameter wie Massengenauigkeit (abhängig von Peptidgröße), Anzahl der Massenübereinstimmungen und Massennicht-Übereinstimmungen, sowie der Gesamtgröße des identifizierten Proteins und der Anzahl und Wahrscheinlichkeit möglicher Alternativzuordnungen (p-Wert) ein repräsentativer Score ermittelt. Dieser Wert wird nach komplexen mathematischen Formeln berechnet (Betriebsgeheimnis der Firma MASCOT), und definiert die Signifikanz einer möglichen Identifizierung.

2.2.4.20.1 Waschen der AnchorChip-Targets

Zum entfernen der Proben und alten Matrix wurden die Targets zunächst mit 100% Ethanol, dann mit HPLC-H₂O gespült. Anschließend wurden die Targets in einem 50% Methanol / 1% Essigsäure / H₂O-Ultraschallbad für maximal 5 min inkubiert, nochmals mit H₂O gespült und mit N₂ getrocknet.

3. Ergebnisse

3.1 Proteomanalyse tritosomaler Membranproteine aus Mäuseleber

Das Ziel dieser Arbeit war es, neue lysosomale Membranproteine aus Mäuseleber zunächst mit Hilfe von Massenspektrometrie in Proteindatenbanken zu identifizieren und anschließend die lysosomale Lokalisation von Kandidatenproteinen durch eine zellbiologische Charakterisierung zu überprüfen. Um dieses Ziel zu erreichen wurden zunächst Lysosomen aus der Mäuseleber durch eine Kombination aus fraktioneller Zentrifugation und Zentrifugation mit diskontinuierlichem Dichtegradienten isoliert. Nach Reinigung der lysosomalen Membranen durch Waschen mit einem Natriumcarbonatpuffer mit stark alkalischen pH wurden die Membranproteine durch verschiedene Polyacrylamidgelelektrophoresesysteme vorgetrennt, nach Abbau der Proteine mit Trypsin die Peptide aus dem Gel extrahiert und durch MALDI-TOF-MS und -MS/MS analysiert. Die Identifizierung erfolgte durch Abgleich von Proteinspezifischen Peptidmassenlisten mit Proteindatenbanken.

3.1.1 Präparation von Tritosomen aus Mäuseleber.

Um Lysosomen von den anderen Organellen zu trennen und aufzureinigen, wurde hier eine Strategie verfolgt, die auf Dichteunterschiede der verschiedenen Organellen und ihrem Verhalten im gravimetrischen Feld während der Zentrifugation basiert. Durch unterschiedliche Zentrifugationsschritte konnte zunächst die Kernfraktion (N) von dem postnukleären Überstand (E) getrennt werden. Dieser ließ sich in die M-Fraktion und Peroxisomen) und (leichte (schwerere Mitochondrien die LPS Mitochondrien, Lysosmen, Mikrosomen, Membranfragmente und Cytosol) auftrennen. Mit einem weiteren Zentrifugationsschritt wurden Lysosomen, leichtere Mitochondrien und andere Vesikel ähnlicher Dichte (L-Fraktion) von den anderen Membranfragmenten cvtosolischen Mikrosomen, und Bestandteilen (PS-Fraktion) getrennt. Probleme traten schließlich bei dem Versuch auf, die Lysosomen von den leichteren Mitochondrien und anderen Vesikeln ähnlicher Dichte aufzutrennen. Dies liegt daran, dass die geringen Dichteunterschiede der verschiedenen Vesikelarten der L-Fraktion für eine weitere Auftrennung durch die fraktionelle Zentrifugation nicht ausreichen [167, 175]. Für die Analyse lysosomaler Membranproteine wurde daher Mäusen das Detergens Triton WR 1339 (Tyloxapol) injiziert. Dieses Detergens gelangt nach Injektion auf physiologischem Wege über rezeptorvermittelte Endoytose in die Lysosomenmembranen der Leber in ihrer Funktion als Entgiftungsorgan, akkumuliert dort und verringert schließlich die Dichte dieser Lysosomen (von >0.8 g/cm³ auf ~ 0,3 g/cm³) [167, 175]. Um unbehandelte Lysosomen von denen, die durch eine Ansammlung von Triton WR 1339 modifiziert wurden, namentlich zu unterscheiden, wurde für diese modifizierten Organellen der Name Tritosomen eingeführt. Durch die Verringerung der Lysosomendichte durch die Aufnahme des Tritons war nun eine Anreicherung von Tritosomen auch gegenüber der leichteren Mitochondrienfraktion möglich.

Im Folgenden wurden Lysosomenfraktionen aus mit Triton WR 1339 behandelter Mäuseleber gewonnen, indem zunächst die Organellen aus Mäuseleberzelllysat grob durch die unterschiedlichen bereits oben besprochenen Trennschritte getrennt wurden [2.2.4.1]. Dadurch konnten Kerne, Mikrosomen und andere Membranfragmente sowie größere Vesikel wie Peroxisomen und die schwereren Mitochondrien größtenteils entfernt werden. In dieser so präparierten Rest-Fraktion, der L-Fraktion, verblieben nun außer den Tritosomen auch andere Organellen ähnlicher Dichte wie zum Beispiel die leichteren Mitochondrien. Zur weiteren Isolierung der Tritosomen wurde schließlich eine Zentrifugation mit einem diskontinuierlichen SaccharoseGradienten durchgeführt [2.2.2.4.2]. Dazu wurde die L-Fraktion, die während der fraktionellen Zentrifugation erhalten wurde, im Zentrifugenröhrchen mit insgesamt vier verschiedenen Saccharoselösungen (Phasen) unterschiedlicher Dichte überschichtet, die mit 1,06 ρ bis 1,21 ρ bezeichnet wurden (1,06 ρ : 0,167 g/cm³, 1,14 ρ : 0,459 g/cm³, 1,15 ρ : 0,503 g/cm³ und 1,21 ρ : 0,817 g/cm³). Nach der Zentrifugation sammelte sich der Hauptanteil der Tritosomenfraktion schließlich an dem Grenzbereich zwischen 1,06 ρ und 1,14 ρ und wurde durch Abpipettieren isoliert und mit F2 bezeichnet. Die Präparation der Tritosomen wurde in Zusammenarbeit mit Frau Ellen Eckermann von der Arbeitsgruppe von Jun.-Prof. Dr. Torben Lübke der Abteilung Biochemie II.

3.1.2 Überprüfung der Tritosomenanreicherung in der F2-Fraktion.

Die Effizienz der Tritosomenanreicherung nach der Zentrifugation im diskontinuierlichen Saccharosegradienten wurde durch die Analyse der Aktivität von Markerenzymen und der Präsenz anderer Markerproteine für Lysosomen und Mitochondrien in der L-Fraktion (Ausgangswert) und in der F2-Fraktion (nach der Anreicherung) durch Western-Blot untersucht. Die hier vorgestellten Untersuchungen, sowohl die Enzymassays als auch die Western-Blots, wurden von Dr. Katrin Kollmann und anderen Mitarbeitern der Arbeitsgruppe von Jun.-Prof. Dr. Torben Lübke der Abteilung Biochemie II durchgeführt.

3.1.3 Analyse der Effizienz der Anreicherung von Tritososomen in der F2-Fraktion mittels Enzymassay und Western-Blot.

Der Anteil der Tritosomen und der der Mitochondrien wurde in den verschiedenen Fraktionen, die während der Aufreinigungsschritte erhalten wurden, und nach Anreicherung der Tritosomen durch die Zentrifugation im diskontinuierlichen Saccharosegradienten in den F-Fraktionen anhand von Enzymaktivitätsbestimmungen repräsentativer Markerenzyme ermittelt. Für eine vollständige analytische Beurteilung der fraktionellen Zentrifugation wurde hier auch die PS-Fraktion [3.1.1] durch einen weiteren Zentrifugationsschritt in die Fraktionen P (Mikrosomen) und S (cytosolische Komponenten) aufgetrennt. Für die Ermittlung der repräsentativen Enzymaktivitäten fanden die β -N-Acetyl-

Hexosaminidase und die β -Glucosidase als Markerenzyme für Lysosomen und die Succinat-Dehydrogenase als Markerenzym für Mitochondrien Verwendung Nach den ersten vier Zentrifugationsschritten war die (siehe Tab. 3.1.1). höchste Aktivität der beiden lysosomalen Markerenzyme in der Fraktion L mit circa 40% der Gesamtaktivität am größten. In einem fünften Zentrifugationsschritt im Saccharose-Gradienten wurde die L-Fraktion nochmals in die Fraktionen F1 bis F4 aufgetrennt. Hierbei konnte die höchste lysosomale Enzymaktivität mit circa 60% für die *β*-Glucosidase und rund 70% der *β*-Acetyl-Hexosaminidaseaktivität in der F2-Fraktion gemessen werden. Für einen besseren Überblick über die jeweilige Anreicherung der lysosomalen Enzymaktivitäten gegenüber der mitochondrialen Aktivität wurden die Quotienten der β -N-Acetyl-Hexosaminidase beziehungsweise β -Glucosidase und der Succinat-Dehydrogenase ermittelt. Innerhalb der Schritte der fraktionellen Zentrifugation wurden hierbei Werte zwischen 0,1 und 7,2 ermittelt. Dabei entsprechen hohe Werte einer hohen lysosomalen Aktivität im Verhältnis zur mitochondrialen Enzymaktivität. Für die Fraktion L wurden die Werte 2,8 für die N-Acetyl- β -Hexosaminidase und 2,4 für die β -Glucosidase ermittelt. Im Vergleich dazu wurden für die M-Fraktion noch Werte von 0,3 beziehungsweise 0.1 ermittelt. Das größte Verhältnis lysosomaler zu mitochondrialer Enzymaktivität zeigte allerdings die Fraktion S, also der cytosolische Überstand mit 7.2, was wahrscheinlich auf die gute Wasserlöslichkeit der lysosomalen Markerenzyme zurückzuführen ist, wogegen die Succinat-Dehydrogenase in den Mitochondrien mit der inneren Mitochondrienmembran assoziiert ist.

Nach dem Zentrifugationsschritt mit dem diskontinuierlichen Saccharose-Gradienten wurden in der F2-Fraktion mit 68,9 (β -Hex.) und 57,1 (β -Gluc.) die höchsten Enzymaktivitätsquotientenwerte ermittelt, was auf eine hohe Anreicherung lysosomaler, beziehungsweise tritosomaler Enzymaktivität hin deutet.

Zentrifugations	Fraktionelle Zentrifugation						Dichtegradient			
-schritt		1	2	3	2	1	5			
Ausgangs-	Leberh	omogenat		Fraktion E Fraktion		Fraktion L				
material										
Fraktion	N	Е	М	L	Р	S	F1	F2	F3	F4
β-Hex (%)	9,6	90,4	18,1	40,4	13,7	18,2	1,2	68,9	4,7	25,2
β-Gluc (%)	3,3,	96,7	6,8	38,4	22,6	28,9	1,1	57,1	7,0	34,8
SDH (%)	9,1	90,9	64,1	14,3	8,5	4,0	0,3	1,0	1,8	97,0
β-Hex:SDH	1,1	1,0	0,3	2,8	1,6	4,6	4	68,9	1,8	0,3
β-Gluc:SDH	0,4	1,1	0,1	2,4	2,7	7,2	3,7 57,1 2,7		0,4	

Tab. 3.1.1 Enzymaktivitäten der β -N-Acetyl-Hexosaminidase, β -Glucosidase und Succinat-Dehydrogenase der Fraktionen nach den verschiedenen Reinigungsschritten der Tritosomenreinigung in Prozent. Fraktionen der differenziellen Zentrifugation: N: nukleäre Fraktion; E: post-nukleärer Überstand; M: mitochondriale und peroxisomale Hauptfraktion; L: leichtere Organellen wie leichtere Mitochondrien und Tritosomen; P: mikrosomale Hauptfraktion; S: Überstand (Cytosol). Die Enzymaktivitäten von N und E bzw. von N, M, L, P und S entsprechen hier jeweils 100%. F1 bis F4: Fraktionen der Saccharose-Gadienten-Zentrifugation. Innerhalb der F-Fraktionen entspricht die Summe der Aktivitäten 100%. Die untersten beiden Reihen zeigen das jeweilige Verhältnis der β -Hex-Aktivität, bzw. der β -Gluc-Aktivität zur SDH-Aktivität. Diese Werte sind Bezugswerte und von daher ohne Einheiten.

Des Weiteren wurden die verschiedenen Fraktionen im Western-Blot mit Antikörpern gegen Cathepsin D und LAMP-1 als Iysosomale Marker und Porin als Marker für mitochondriale Proteine untersucht (Abb.3.1.1). Hierbei konnte gezeigt werden, dass die Signale sowohl für Cathepsin D als auch für LAMP-1 nach den ersten drei Reinigungsschritten in der L-Fraktion am stärksten waren. Das stärkste Signal des mitochondrialen Markerproteins Porin wurden in der M-Fraktion gefunden. Nach dem letzten Reinigungsschritt, also der Saccharose-Gradienten-Zentrifugation, wurden die stärksten Signale für Cathepsin D und LAMP-1 in der F2-Fraktion, für Porin in den Fraktionen F3 und F4 gefunden. Diese Ergebnisse bestätigen die Resultate der Enzymaktivitätsbestimmungen.

80

Abb. 3.1.1 Western-Blot-Analyse verschiedener Fraktionen der Aufreinigung von Tritosomen. Gleiche Anteile der Fraktionen N, E, M, L, P und S, die nach differentieller Zentrifugation erhalten wurden, und der Fraktionen F1 bis F4 nach diskontinuierlicher Dichtegradientenzentrifugation wurden durch SDS-PAGE aufgetrennt, auf eine Nitrozellulosemembran geblottet und darin die enthaltene Mengen von Cathepsin D, LAMP-1 und Porin mit den entsprechenden Antikörpern im Western-Blot sichtbar gemacht. Rechts sind die Molekulargewichte der Standardproteine in kDa angegeben.

3.1.4 Präparation der tritosomalen Membran.

Da die Anreicherung von Tritosomen in der F2-Fraktion unter isotonischen Bedingungen durchgeführt wurde, konnte davon ausgegangen werden, dass es sich bei den auf diesem Wege angereicherten Vesikeln zum großen Teil noch um intakte Tritosomen handelte, die schließlich auch noch die luminalen Matrixproteine enthielten. Um nun die Membranen mit den enthaltenen Membranproteinen einerseits von den lysosomalen Matrixproteinen und andererseits von den anderen cytosolischen Membran-assoziierten Proteinen zu trennen, wurde die F2-Fraktion nach Inkubation mit Na₂CO₃/OH⁻ in einem basischen Milieu (pH 11) präzipitiert [2.2.4.2]. Der stark alkalische pH des Na₂CO₃-Puffers bewirkt bei einer solchen Behandlung zum einen eine Öffnung der tritosomalen Membran, wodurch ermöglicht wird, dass die Matrixproteine aus den Vesikeln in die Umgebung entlassen werden, und zum anderen eine Schwächung der Protein-Proteinwechselwirkungen, die zur Abdissoziation der Membran-assoziierten Proteine führt [161].

3.1.5 Auftrennung der trisosomalen Membranproteine und ihre Identifzierung mit MALDI-TOF-MS und -MS/MS und Datenbanksuche.

Nach der Präparation der Tritosomenmembranen sollten die enthaltenen Membranproteine identifiziert werden. Für diese Proteinidentifizierung war zunächst eine Auftrennung der Proteine erforderlich, die auf einem Acrylamidgelelektrophorese-System basierte und in einer Versuchsreihe (Abschnitte 3.1.7-3.1.9) entwickelt und optimiert wurde. Nach der gelelektrophoretischen Trennung wurden die Proteine jeweils im Gel mit Trypsin verdaut (In-Gel-Verdau) [2.2.4.19], die Peptide nach Extraktion aus dem Gel mit MALDI-TOF-MS und -MS/MS analysiert und die Peptidund NCBI-Peptidfragmentmassen für die Proteinidentifikation in der Proteindatenbank mit dem Programm Mascot eingesetzt.

3.1.6 Präanalytische Trennung der Proteine tritosomaler Membranen.

Das erste Ziel, das in dieser Arbeit verfolgt wurde, war eine möglichst effiziente Trennung der Proteine, die für die nachfolgende massenspektrometrische möglichst optimale Proteinpräparate liefert. Der Analyse Erfolg der Identifizierung der tritosomalen Proteine über MALDI-TOF-MS und -MS/MS und Datenbanksuchen hängt von der Anzahl der verschiedenen Proteine in der zu untersuchenden Probe ab. Mit der Komplexität der Proteinmischung nehmen neben den Problemen bei der MALDI-TOF-MS und -MS/MS auch die Probleme bei der nachfolgenden Datenbanksuche zu. Zum Beispiel nimmt die Anzahl der Massen-Übereinstimmungen für ein Protein relativ zur Gesamtzahl der Massen ab, während die Anzahl nicht zuzuordnender Massen und der p-Wert [2.2.4.21] steigen. Daher musste versucht werden, die Proteine der F2-Fraktion vor der Analyse möglichst sauber und effizient zu trennen. Zur Trennung der Proteine wurden verschiedene Methoden ausprobiert. Die Wahl fiel hier auf eine Trennung durch Polyacrylamidgelelektrophorese (PAGE), da diese als relativ unempfindlich gegenüber der Anwesenheit von Lipiden gilt und die Trennung von Proteinen im denaturierten Zustand ermöglicht. Es stellte sich jedoch rasch heraus, dass die Trennung der Membranproteine durch eine eindimensionale SDS-(Natriumdodecylsulfat-) -PAGE niedrigen nur zu einem

Auflösungsvermögen (Anzahl der Proteinspots) sowie niedriger Trennschärfe (klare Abgrenzbarkeit der Proteinspots pro Fläche), führte. Durch einen zusätzlichen Trennschritt mit kationischen Detergenzien wie 16-BAC (16-Benzyldimethyl-hexadecylammoniumchlorid) oder CTAB (Cetyltrimethylammoniombenzyl-bromid) im Rahmen einer 2D-PAGE und der Verbesserung der Präparation für die massenspektrometrische Analyse durch Entfernung störender Lipide konnte die Trennungseffizienz der die Membranproteine erheblich verbessert werden. So konnte zum Beispiel die Menge von anfänglich 11 identifizierten Proteinen durch die 1D-SDS-PAGE auf zwischenzeitlich 41 Proteine durch die 2D-SDS-16BAC-PAGE und schließlich auf 174 Proteine durch die 2D-CTAB-SDS-PAGE und die Entfernung Nglykosidisch gebundener Zuckerreste gesteigert werden. Insgesamt wurden 188 verschiedene Polypeptide identifiziert. In den folgenden Abschnitten (3.1.6 -3.1.9) wird nun im Detail auf die Durchführung der verschiedenen Trennmethoden und die Resultate der Proteinidentifizierungen eingegangen.

3.1.7 Trennung tritosomaler Membranproteine durch 1D-SDS-PAGE.

Die Analyse der lysosomalen Membranproteine erfolgte zunächst mittels eindimensionaler SDS-PAGE (Abb. 3.1.2). Die verschiedenen Proteine konnten hier jedoch nur schlecht getrennt werden. Einzelne Proteinbanden waren nur schwer zu erkennen und stark verschwommen. Für eine erste Analyse wurden aus den mit "1" bis "17" markierten Proteinbanden Probenspots mit einer Probenstanze (Durchmesser 2 mm) ausgestanzt und mit Trypsin nach Protokoll verdaut. Das entstandene Peptidgemisch wurde mittels MALDI-TOF-MS und – MS/MS analysiert (Tab. 3.1.2).

Abb. 3.1.2 1D-SDS-PAGE tritosomaler Membanen. a: insgesamt wurden 100 μ g Gesamtprotein tritosomaler Membranfraktion nach Aufnahme in Laemmli-Puffer [2.4.5] auf ein 12,5% iges SDS-PAG aufgetragen. Die Färbung erfolgte mit Coomassie Blau nach Fixierung in 45% Methanol und 5% Essigsäure. Das Sammelgel wurde für die Abbildung entfernt. b: Die Nummern 1 – 17 markieren die Positionen der Probenentnahme für die Analyse, sonst wie a). Rechts: Größenstandart in kDa.

Insgesamt konnten 17 verschiedene zum Teil nur schwer sichtbare Proteinbanden von einander unterschieden werden. Nach In-Gel-Verdau mit Trypsin konnten in diesen Proteinbanden insgesamt 11 Proteine identifiziert werden [Tab. 1], davon vier bekannte lysosomale Membranproteine. Ein Protein (Arl 10c) zählt zu den membranadhäsiven Proteinen, welche für gewöhnlich am Vesikeltransport beteiligt sind. Sechs Proteine sind Bestandteile der mitochondrialen Membran und werden damit als Kontaminanten angesehen.

Nr.	Protein	gI:Nummer	Score
Lyso			
01	lysosomal integral membrane protein 2) (Limp2)	6680878	149/63 (28/19)
02	Niemann Pick Typ 1 (NPC1)	89242146	67/63
03	Vacuolar type H+-transporting ATPase Subunit A2	83627707	149/63
04	V-type ATPase subunit D	3955100	127/64 (121/24)
Vesikel-assoziierte Proteine			
05	Arf-like (Arl) 10	109732127	283/63 (269/24)
Mito	chondriale Membranproteine		
06	ATP-Synthase F0 subunit B	59809077	53/49
07	ATP-binding cassette (MDR/TAP) member 5	149263569	271/63
			260/24
08	p2x4d Rezeptor	7739961	64/63

						(40/23)
09	Mitochondrial aspartate	glutamate	carrier	2(Slc25a13	13124085	78/24
	(Citrin))					
10	Prohibitin (BAP32)				54038837	123/23 (77/19)
11	Prohibitin 2 (BAP37)				6005854	55/49 (34/19)

Tab. 3.1.2 Identifizierte Proteine tritosomaler Membranen nach Trennung durch eine 1D-SDS-PAGE. Die 17 Proteinbanden (siehe Abb. 3.1.2) wurden nach In-Gel-Verdau mit Trypsin mit MALDI-TOF-MS und -MS/MS untersucht und die Daten für eine Datenbanksuche in der NCBI-Datenbank eingesetzt. Die Scores als Maß für die Signifikanz der Mascot-Suchergebnisse sind zusammen mit dem jeweiligen *cut-off*-Score als Signifikanzgrenzen angegeben (für MS/MS-Analysen in Klammern).

Lysosomale Membranproteine sind in vielen Fällen mit Zuckerresten verknüpft. Diese Zuckerketten, die sehr komplexe Strukturen annehmen können, werden zunächst als Grundform entweder im ER (N-glykosidisch) oder später im Golgi (O-glykosidisch) an die entsprechenden Proteine gebunden und im Golgi weiter modifiziert [siehe 1.2.3]. Häufig sind Oligosaccharidketten von Glycoproteinen die Ursache für eine schwache Auflösung und Trennschärfe bei der Proteinreinigung in SDS-PA-Gelen. Des Weiteren können diese Zuckerstrukturen durch ihre komplexe Struktur die Trypsin-Spaltstellen an bestimmten Stellen maskieren, was zur Folge hat, dass diese Spaltstellen nicht genutzt werden können und der Abbau durch Trypsin unvollständig bleibt. Zur Identifizierung in den Proteindatenbanken können solche unvollständigen Spaltungen zwar berücksichtigt werden, haben aber zur Folge dass sich die Anzahl der Freiheitsgrade bei der Suche erhöht und dadurch letztendlich die Signifikanz der Suchergebnisse erniedrigt. Zum anderen erhöhen Zuckerstrukturen, die kovalent an Peptide gebunden sind deren Eigenmasse. Da die theoretischen Peptidmassen, die mit den experimentell bestimmten Massen bei einer Datenbanksuche verglichen werden. von Aminosäuresequenzen herrühren, die von den Genen abgeleitet sind, berücksichtigen sie keine modifizierenden Glykosylierungen. Da es sich um komplexe Modifikationen handelt, können solche Zuckerketten auch nicht als mögliche Variabeln bei der Suche angegeben werden. Von daher erschien es sinnvoll zu versuchen, die Membranproteinfraktion vor der Trennung zu deglykosylieren. Die Deglykosylierung erfolgte enzymatisch durch Verdau der Probe mit der Glykosidase Peptid-N-Glykosidase F (PNGase F) [2.2.4.14], die N-glykosidische (mit Asparaginresten gebundene) Zuckerreste entfernt,

während die Effizienz der Deglykosylierungsreaktion mit einem Parallelansatz mit dem Glykoprotein Ovalbumin in äquivalenter Proteinkonzentration kontrolliert wurde. Nach der Verdaureaktion und nach Trennung der Proteine durch 1D-SDS-PAGE konnte keine Verbesserung der Trennschärfe erzielt werden. Hier wurde sogar eine drastische Verschlechterung der Auflösung und Trennschärfe beobachtet (Daten nicht gezeigt).

Um die Membranproteine in der Probe spezifisch anzureichern, wurde eine Extraktion mit Triton X-114 [PIERCE, USA] durchgeführt. Triton X-114 befindet sich in wässriger Umgebung bei Raumtemperatur in Lösung, nach Erhitzen auf über 36° C jedoch tritt es aus der Lösung und bildet eine eigeneTriton-X-114-Phase [2.2.4.16]. In dieser Phase befinden sich aufgrund der erhöhten Hydrophobizität in erhöhtem Ausmaß die Membranproteine. Da hohe Konzentrationen von Lipiden und Detergenzien die Trennschärfe von SDS-PA-Gelen beeinträchtigen, wurde anschließend versucht, störende Lipide und Detergenzienreste mithilfe von PAGEprep[®]-Granulat [PIERCE, USA] zu entfernen. PAGEprep[®]-Granulat bindet in Anwesenheit von \geq 50% DMSO (Dimethylsulfoxid) spezifisch Proteine. Diese können so, an dem Granulat gebunden, gewaschen und anschließend in Abwesenheit von DMSO wieder eluiert werden können [2.2.4.17]. Die Probe wurde daraufhin wieder auf ein 1-D-SDS-PA-Gel geladen und getrennt (siehe Abb. 3.1.3). Hier wurden insgesamt 22 Proteinbanden voneinander unterschieden und analysiert. Dabei wurden 21 Proteine identifiziert (Tab. 3.1.3). Davon fünf bekannte lysosomale Proteine, ein membranassoziiertes Protein mit Beteiligung an vesikulären Transportvorgängen, elf mitochondriale Membranproteine und drei Proteine, welche im Cyto- beziehungsweise im Karyoplasma lokalisiert sind.

Abb. 3.1.3 SDS-PAGE tritosomaler Membranen nach Triton X-114-Extraktion und Delipidierung mit PAGEprep[®]. a: Nach spezifischer Membranproteinanreicherung mit Triton X-114 und Delipidierung mittels PAGEprep[®]-Granulat wurden 200 µg Gesamtprotein in Laemmli-Probenpuffer aufgenommen und auf ein 12,5% iges SDS-PAG geladen. Die Färbung erfolgte nach MetOH-HAc-Fixierung durch Coomassie Blau [2.4.8]. b: Die Nummern 1 - 22 markieren die Positionen der Probennahme für die Analyse. Links: Größenstandard in kDa.

Da bei den verschiedenen Versuchen zur Optimierung der Proteintrennung häufig die gleichen Proteine immer wieder identifiziert wurden, sind, um die Übersichtlichkeit zu bewahren, in der Tabelle 3.1.3 und allen weiteren Proteinlisten der noch folgenden Analysen nur neu hinzu gekommene Proteine aufgelistet. Insgesamt wurden dabei durch die zusätzliche Membranproteinpräparation durch Triton X-114 und PAGEprep[®]-Granulat 10 Proteine mehr identifiziert als durch die vorherige Analyse. Darunter befindet sich auch ein lösliches Iysomales Protein, das Cathepsin D und ein Cytoskelettprotein (β -Actin).

Nr.	Protein	gI:Nummer	Score			
Lyso	somale Proteine					
01	Cathepsin D	6753556	147/63			
Vesi	kel-assoziierte Proteine					
02	β-Actin	6671509	147/62			
Mito	Mitochondriale Membranproteine					

03	ATP-Synthase F1-Complex, s.u. α	6680748	151/64
04	ATP-Synthase F1-Complex, s.u. β	31980648	244/64
05	Carnitin-O-Palmytoyltransferase 2	1706111	58/62
06	electron transfering flavoprotein dehydrogenase (eftdh)	15214778	161/62
07	Carbamoylphoshate-Synthase	73918911	237/62
08	3-Hydroxybutyrat-Dehydrogenase Typ 2	31982169	68/62
And	ere Proteine (Cytoplasma, Plasmamembran, Kern,)		
09	Annexin A2, Lipocortin 2	113951	70/61
10	Sestrin	33585625	68/62

Tab. 3.1.3 Proteine der tritosomalen Membranenfraktion, die nach spezifischer Membranproteinanreicherung und Delipidierung durch Triton X-114 und PAGEprep[®]-Granulat und nach Trennung durch eine 1D-SDS-PAGE identifiziert werden konnten. 22 Proteinbanden wurden hier als Ganze ausgeschnitten und für den folgenden In-Gel-Verdau verwendet. Nach Analyse durch MALD-TOF-MS und –MS/MS und Datenbanksuche in der NCBI-Datenbank konnten die in der Tabelle aufgeführten Proteine identifiziert werden. Um der großen Redundanz entgegenzutreten zeigt die Tabelle nur zu vorigen Analysen hinzu gekommene Proteine. Die Scores sind zusammen mit dem jeweiligen *cut-off*-Score als Signifikanzgrenzen angegeben (für MS/MS-Analysen in Klammern).

3.1.8 Trennung tritosomaler Membranproteine durch 2D-16-BAC-SDS-PAGE.

Um noch mehr Proteine zu identifizieren, wurde versucht, mit einem 2D-PAGE-System eine höhere Trennleistung zu erreichen. In der klassischen 2D-PAGE wird in der ersten Dimension eine isoelektrische Fokussierung (IEF) und in der zweiten Dimension eine SDS-PAGE durchgeführt. Da jedoch Membranproteine aufgrund ihrer schlechten Löslichkeit im Bereich des jeweiligen isoelektrischen Punktes im Gel zur Präzipitation neigen, sollte für die Trennung in der ersten Dimension eine Alternative gefunden werden.

Gute Trennleistungen von Membranproteinen im 2D-PAGE-System mit SDS in der zweiten Dimension wurden in der Literatur für die Verwendung des positivgeladenen Detergens 16-BAC (16-Benzyldimethylhexadecyl-ammoniumchlorid) in der ersten Dimension beschrieben [162, 163]. Aufgrund der unterschiedlichen chemischen Eigenschaften der beiden Detergenzien werden Proteine in der ersten Dimension durch 16-BAC zwar mit schlechterer Auflösung getrennt, die unterschiedlichen Mobilitätseigenschaften der Proteine in der 16-BAC-PAGE und der SDS-PAGE haben jedoch auch zur Folge, dass in Kombination beider Systeme insgesamt eine Steigerung der Trennleistung und der Auflösung erreicht werden kann.

Hierbei wurden nun zuerst tritosomale Membranen ohne weitere Zwischenschritte auf ein 2D-16-BAC-SDS-PAGE-System geladen [Abb. 3.1.4].

1. Dimension: 16BAC-SDS-PAGE

1. Dimension: 16BAC-SDS-PAGE

Abb. 3.1.4 Trennung tritosomaler Membranproteine durch eine Maxi-2D-16-BAC-SDS-PAGE. a) Insgesamt wurden 400 µg Gesamtprotein in 16-BAC-Probenpuffer aufgenommen und auf ein Maxi-16-BAC-PAGel mit 15% Acrylamid [2.4.6] geladen. Nach Beeindigung des Laufes wurde die proteinhaltige Laufspur ausgeschnitten und auf ein SDS-Gradienten-PAGel (8-14% Acrylamid) und nach 2 x 20-minütiger Equilibrierung in SDS-Laufpuffer mit SDS-Laufpuffer-Agarose fixiert [2.4.5]. Nach Elektrophorese und MetOH-HAc-Fixierung wurde mit Coomassie Blau gefärbt [2.4.8]. b) Gleiches Gel mit Markierung der ausgestanzten Gelstücke. Insgesamt wurden 263 Probenspots mit einem Durchmesser von 2 mm für die folgende massenspektrometrische Analyse ausgestochen. (Die Auftrennung erfolgte durch die Verwendung von Maxi-Gelen (ProteaII, XL, BioRad).

Für die zweite Dimension wurde zunächst ein einfaches 15%-iges SDS-PAG mit 4%-igem Sammelgel [2.2.4.5] verwendet. Allerdings wurden dabei große Mengen der Probenproteine in dem Sammelgel zurückbehalten, die sich der anschließenden Auftrennung durch das Trenngel entzogen (nicht gezeigt). Von daher wurde von nun an ein SDS-Acrylamidgradientengel mit Gradienten von sechs und acht bis 12 und 16% Acrylamidkonzentration verwendet um den Übertritt der Proteine in das Trenngel zu erleichtern. Das Sammelgel wurde hierbei durch 16-BAC-Gelstreifen, der die Proben enthielt, nach entsprechender Equilibrierung ersetzt [2.2.4.6]. Durch Trennung der Proteine mit der 2D-16-BAC-SDS-PAGE waren kaum klare Proteinspots zu erkennen, vielmehr wurden

teils verschwommene Bereiche, die in den höheren Molekulargewichtsbereichen eher als punktförmig, in den unteren als bandenförmig zu beschreiben sind, erhalten [Abb. 3.1.4]. Mitunter gab es auch schärfere Bereiche an denen Proteine hoch konzentriert vorlagen. Insgesamt konnten so jedoch mehr unterschiedliche Proteinbereiche voneinander abgegrenzt werden als noch nach der 1D-SDS-PAGE und es wurden 263 Proteinspots ausgestochen [Abb. 3.1.4b] und massenspektrometrisch analysiert. Hierbei konnten insgesamt 41 verschiedene Proteine identifiziert werden, von denen 29 bisher noch nicht in dieser Arbeit identifiziert worden waren [Tab. 3.1.4]. 10 davon sind bekannte lysosomale Membranproteine, neun membranassoziierten Proteinen zugeordnet konnten werden, welche hauptsächlich am Vesikeltransport beteiligt sind, vier sind Membranproteine mitochondrialen Ursprungs und drei mitochondriale Matrixproteine. Zusätzlich konnten zwei hier bisher noch nicht identifizierte Plasmamembranproteine und ein Protein, dessen intrazelluläre Lokalisation bisher nicht geklärt wurde, identifiziert werden. Für das unbekannte Protein mit dem Synonym DC2 wurde in der ExPASy-Datenbank ein Eintrag für ein integrales Membranprotein gefunden. Insgesamt wurden neun Proteine, die während früherer Analysen identifiziert wurden, nicht gefunden.

Nr.	Protein	gI:Nummer	Score		
Lysosomale Membranproteine					
01	Cd1 chain C	2624797	208/63		
02	Dipeptidylpeptidase IV	6753674	327/63		
03	Nicastrin	31981205	279/63		
04	lysosomal associated membrane protein 1 (LAMP 1)	18091799	139/63		
			(110/31)		
05	Lysosomal acid phosphatase	52871	80/61		
			(70/11)		
06	Lysosomal acid phosphatase 2	29150253	92/63		
			(51/13)		
07	Lysosomal accessory protein 1	9055172	84/63		
			(24/19)		
08	V-ATPase 40 kDa accessory protein	1226235	(70/64)		
09	V-Typ-ATPase 100 kDa subunit a3	7329158	70/64		
10	V-Typ-ATPase 116 kDa subunit	12643966	298/63		

3.1 Ergebnisse: Proteomanalyse tritosomaler Membranen

01	Cathepsin D	6753556				
02	Vacuolar type H+-transporting ATPase Subunit A2	83627707				
mit Vesikel-und Cytoskelett assoziierte Proteine/Membranproteine						
11	GES 30 (interaction with t-snare 1 B homolog)	51330862	161/63			
			(116/21)			
12	Glial fibrillary acidic protein (gfap)	51066	67/63			
			(47/22)			
13	MOCO sulphurase C-terminal domain containing 2	19526848	110/63			
			(170/24)			
14	Myosin Leichte Kette-Kinase	82999143	67/63			
15	Phosphatidylinositol 4-kinase type II like	18381130	184/63			
			(100/23)			
16	Rab 2	34849826	92/63			
17	Rab 7	1050551	398/63			
			(298/32)			
18	Rab 14	63087695	65/63			
			(200/21)			
19	Snx8 protein	9055356	380/63			
			(280/34)			
03	β-Aktin	6671509				
Mite	ochondriale Membranproteine					
20	Adenin Nucleotid Transporter (ANT) member 5 (ANT T2)	423368	78/63			
			(99/24)			
21	MDR/TAP subfamily, member 6	74185389	219/62			
			(158/31)			
22	Monoaminoxidase Typ B	26327655	118/63			
23	Voltage dependent anion chanel 1 (VDAC 1)	74212025	220/63			
			(100/24)			
04	3-Hydroxybutyrat-Dehydrogenase	31982169				
05	Carbamoylphoshate-Synthase	73918911				
06	Carnitin-O-Palmytoyl-transferase II*	1706111				
07	electron transfering flavoprotein dehydrogenase (eftdh)	15214778				
Mite	ochondriale Matrix Proteine					
24	AcetylCoA-Transferase 2	20810027	217/63			
25	Argininosuccinat-Snthetase	74146278	116/63			
			(78/31)			
26	Glutamat-Dehydrogenase 1	30931187	113/63			
			(31/33)			
Andere Proteine (Cytoplasma, Plasmamembran, Kern,)						

27	Flotillin 1	13435540	188/63
28	Stomatin (Erythrocyte band integral membrane protein 7)	26346296	152/63
			(200/21)
08	Annexin A2, Lipocortin 2	113951	
09	Sestrin	33585625	
Loka	lisation unklar		
29	DC2 protein (hydrophobic protein hsf 28	13384930	68/63
			(35/32)

Tab. 3.1.4 Zusammenstellung der identifizierten Proteine der F2-Membranen nach Trennung durch eine 2D-16-BAC-SDS-PAGE. 263 ausgestanzte PAG-Spots wurden nach In-Gel-Verdau und Peptidextraktion massenspektrometrisch durch MALDI-TOF-MS und -MS/MS analysiert. Die Datenbanksuche erfolgte in der NCBI- und der SwissProt-Datenbank. Der Score ist ein Wert für die relative Qualität der Identifizierung. Um der großen Redundanz entgegenzutreten zeigt die Tabelle nur zu vorigen Analysen hinzu gekommene Proteine. Die Scores sind zusammen mit dem jeweiligen *cut-off*-Score als Signifikanzgrenzen angegeben (für MS/MS-Analysen in Klammern). In früheren Analysen gefundene, hier nicht identifizierte Einträge sind grau eingefärbt.

In der 1D-SDS-PAGE konnte die Trennschärfe durch eine Proteinextraktion mit Triton X-114 [PIERCE, USA] und anschließender Delipidierung mit PAGEprep[®]-Granulat und DMSO [PIERCE, USA] gesteigert werden (siehe Abb. 3.1.3). Um zu testen, ob so die Proteintrennung auch in der 2D-16-BAC-SDS-PAGE zu verbessern sei, wurden die Membranen auch hier mit Triton X114 und anschließender Delipidierung durch PAGEprep[®] vorbereitet [2.2.4.16, 2.4.17] und durch 2D-16-BAC-SDS-PAGE getrennt (siehe Abb. 3.1.5a). Obwohl hierbei einige Proteinbereiche erhalten wurden, die schärfer umrissen waren als bei der vorigen Trennung durch 2D-16-BAC-SDS-PAGE (Abb. 3.1.4) und dabei auch die Intensität der Hintergrundfärbung reduziert werden konnte, wurde das Auflösungsvermögen der Gelelektrophorese durch diese Präparation hier nicht nennenswert gesteigert.

Parallel zu dem Versuch, die Trennschärfe des 2D-16-BAC-/SDS-Gelsystems durch Delipidierung der Proben mit Triton X-114 und PAGEprep[®]-Granulat zu wurde untersucht. Deglykosylierung erhöhen. wie sich eine der Membranproteinfraktion vor der elektrophoretischen Trennung durch eine 2D-16-BAC-SDS-PAGE auf die Trennleistung auswirkt. Tritosomale Membranproteine, die durch Inkubation mit PNGase F deglykosyliert wurden, konnten durch eine 1D-SDS-PAGE nicht befriedigend aufgetrennt werden. Die Ursache dafür könnte der Einsatz von Detergenz beim PNGase F-Verdau sein, kombiniert mit der ohnehin hohen Konzentration an Lipiden in der Membranproteinpräparation. Da aber in dem hier verwendeten 2D-System die deglykosylierten Membranproteine nicht zuerst mit SDS sondern mit 16-BAC in Kontakt kommen und sich 16-BAC durch eine höhere Toleranz gegenüber Lipid- und membranproteinreichen Proben im Vergleich zu SDS auszeichnet [163], schien es sinnvoll, das Verhalten einer solchen deglykosylierten Membranfraktion auch in diesem System zu testen (zur Durchführung der Deglykosylierung siehe 2.4.14). Hierbei wurde allerdings ein ähnlich unbefriedigendes Ergebnis erhalten, wie auch von der Trennung von PNGase F deglykosylierten tritosomalen Membranproteinen durch eine 1D-SDS-PAGE. Die die 2D-16-BAC-SDS-PAGE Trennleistung durch wurde durch Deglykosylierung drastisch reduziert (Abb. 3.1.5b), wobei ein anschließender Versuch, eine Erhöhung der Elektrophorese-Trennleistung durch eine Kombination von Deglykosylierung und anschließender Delipidierung und Entfernung weiterer Detergenzienreste des Deglykosylierungsansatzes mit PAGE-prep®-Granulat [2.2.4.17] zu erzielen, ebenfalls keine Verbesserung von Auflösungsvermögen und Trennschärfe mit sich brachte (Abb. 3.1.5c).

Proteine reichern sich bei der Delipidierung nach Wessel und Flügge nach einem ersten Zentrifugationsschritt in der Interphase zwischen der oberen wässrigen Methanol-Phase und der unteren Chloroformphase an. Nach Präzipitation der Proteine mit dieser Methode wurden diese wieder in 16-BAC-Probenpuffer aufgenommen und durch 2D-16-BAC-SDS-PAGE getrennt (siehe Abb. 3.1.5d). Dabei konnte eine Erhöhung sowohl der Anzahl der voneinander abgrenzbaren Proteinspots, als auch der Trennschärfe gegenüber den Vorversuchen (Abb. 3.1.4 und 3.1.5a-c) erhöht werden. Allerdings erschienen hauptsächlich die Proteinspots der Proteine niedrigerer Molekulargewichte dadurch, dass die 16BAC-PAGE eine gegenüber der SDS-PAGE niedrigere Trennschärfe aufweist und sich die Proteinbanden während der 1D-16-BAC-PAGE (ersten Dimension) vor allem im unteren Gel-Abschnitt über einen großen Bereich verteilen, nach der SDS-PAGE (zweite Dimension) verstärkt in länglichen Elipsen [3.1.5d]. Diese Eigenschaft der Proteinspots ist für eine Analyse durch MALDI-TOF-MS und -MS/MS von Nachteil, da hierfür eine hohe Proteinkonzentration pro Spot maßgeblich ist. Um zu versuchen, eine höhere

Proteinkonzentration pro Fläche der Proteinbanden im 16-BAC-Gel während der ersten Dimension zu erreichen, wurde ein 16-BAC-Polyacrylamidgel mit einem kontinuierlichen Acrylamid-Gradienten von 8 bis 12% Acrylamid erstellt. Das dichtere Polyacrylamidnetzwerk im unteren Teil des Gels sollte zu einer Abbremsung und somit Konzentrierung der Proteine führen. Durch diesen so erzielten Staucheffekt der Proteinbanden vor allem niedermolekularer Proteine konnte die Breite der ellipsenförmigen Proteinspots schätzungsweise um die Hälfte reduziert und damit auch die Trennleistung der Elektrophorese gesteigert werden (Abb. 3.1.6). Da allerdings die bisher durchgeführten Versuche, mit dem 16-BAC-SDS-System eine gute Auftrennung der tritosomalen Membranproteine zu erzielen, nicht im befriedigenden Umfang erreicht wurden, wurde nach möglichen Alternativen zu diesem System gesucht.

Abb. 3.1.5 Übersicht der verschiedenen Ansätze zu den Versuchen der Auftrennung lysosomaler Membranproteine durch ein Mini-2D-16-BAC-SDS-PAGE-System. a. Nach Behandlung der Membranen mit Triton X-114 und PAGEprep[®] wurden insgesamt 15 µg Gesamtprotein in 16-BAC-Probenpuffer aufgenommen und durch eine Mini-2D-16-BAC-SDS-PAGE getrennt (8-14% PA-Gradient im SDS-PAG). Die Färbung erfolgte mit Silbernitrat [2.4.9]. **b.** 150 µg Membranprotein wurden nach Denaturierung mit 0,6%-SDS (10 Minuten bei 60° C) und anschließender Kompensation des SDS mit 0,9% Nonidet P-40 in doppeltem Volumen mit PNGase F über Nacht bei 37° C inkubiert. Nach 1:2 Verdünnung wurden 15 µg Membranprotein durch ein 2D-16BAC-SDS-PAG (8-14% PA-Gradient im SDS-PAG) aufgetrennt. Die Fixierung erfolgte mit Methanol-Essigsäure-Wasser und die Färbung mit Silber, c. 150 µg Membranprotein wurden wie oben beschrieben mit PNGase F deglykolysiert und anschließend durch PAGEprep von Lipiden und Detergenzien befreit. Schließlich wurden 15 µg Membranprotein durch ein 2D-16BAC-SDS-PAGel (8-14% PA-Gradient im SDS-PAG) aufgetrennt. Die Färbung erfolgte nach Fixierung wie oben beschrieben durch Silber. d. Zur Delipidierung nach Wessel und Flügge wurde 50 µg Membranproteinpellet in 5%-igem Triton-Wasser-Gemisch mit Ultraschall gelöst, in TBS verdünnt und einer Phasentrennung mit Methanol- Chlorophorm- und Wasser unterzogen [2.4.18]. Anschließend wurden 50 µg Gesamtprotein in 16-BAC-Probenpuffer aufgenommen und durch eine Mini-2D-16-BAC-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) getrennt, die Proteine im Gel mit MetOH-HAc-Wasser-Gemisch fixiert und mit Coomassie Blau angefärbt. Die Auftrennung erfolgte durch die Verwendung von Mini-Gelen (Protean II Mini, BioRad).

1. Dimension: 16BAC-SDS-PAGE

Abb. 3.1.6 Trennung der tritosomalen Membranproteinfraktion nach Delipidierung nach Wessel und Flügge durch eine 2D-16BAC-SDS-PAGE mit kontinuierlichem Acrylamidgradienten. 20 µg Membranprotein wurden nach der Delipidierung nach Wessel und Flügge [2.4.18] durch ein Mini-2D-16BAC-SDS-PAG (8-12% PA-Gradient im SDS-PAG) mit einem kontinuierlichen Acrylamidgradienten von 8-14% in der ersten Dimension aufgetrennt. Die Proteine wurden mit Methanol-Essigsäure-Wasser fixiert und durch Silberfärbung gefärbt.

3.1.9 Trennung tritosomaler Membranproteine mit 2D-CTAB-SDS-PAGE.

Eine Alternative zu dem 2D-16-BAC-SDS-System stellt das 2D-CTAB-SDS-System dar, indem 16-BAC durch das ebenfalls positiv geladene Detergens namens Cetyltrimethylammoniumbenzylbromid (CTAB) ersetzt wurde. Um die Trenneigenschaften eines solchen Systems zu testen, wurde zunächst direkt die tritosomale Membranproteinfraktion nach Waschen mit Na₂CO₃ und NH₄HCO₃ über dieses System aufgetrennt [2.2.4.7] und die Proteine anschließend mit Silbernitrat gefärbt (Abb. 3.1.7a). Im Gegensatz zur 2D-16-BAC-SDS-PAGE konnte mit dem 2D-CTAB-SDS-PAGE-System auch ohne vorbereitende Präparationsschritte, wie zum Beispiel eine Delipidierung, eine gute Auftrennung der tritosomalen Membranproteine mit hoher Auflösung erzielt werden. Allerdings kam es auch hier zu dem Phänomen verbreiterter Proteinspots, die aber stets ein Zentrum höherer Proteinkonzentration aufwiesen.

Um durch eine weitere Stauchung der Proteinbanden während der CTAB-PAGE (erste Dimension) die Flächen der Proteinspots weiter auch innerhalb dieses Systems zu verkleinern und die Proteine verstärkt im inneren Zentrum der Proteinspots zu konzentrieren, wurde zunächst wie auch bei dem letzten Auftrennungsversuch mit 16-BAC, ein kontinuierlicher Acrylamid-Gradient (8-14%) verwendet (Abb. 3.1.7b).

Durch den Acrlyamid-Gradienten konnte die Form der Proteinbanden vor allem im mittleren Gel-Bereich verbessert werden. Insgesamt betrachtet, lieferte die Trennung der tritosomalen Membranproteine mit CTAB und die Verwendung eines kontinuierlichen Gradienten eine hohe Trennleistung und damit eine gute Auftrennung der Membranproteine in Form scharfer Proteinspots, verglichen mit der Leistung diesbezüglich durch die Verwendung des 16-BAC (Abb. 3.1.8).

Abb. 3.1.7 Auftrennung tritosomaler Membranproteine durch das 2D-CTAB-SDS-PAGE-System mit und ohne kontinuierlichen Gradienten in der ersten Dimension. a. Membranen der F2-Fraktionen (20 μg Protein) wurden hier direkt nach der Inkubation im Na₂CO₃-Puffer und der Präzipitation im NH₄HCO₃-Puffer direkt in 15-%igem CTAB gelöst und nach Aufnahme in CTAB-freiem Probenpuffer direkt durch eine Mini-2D-CTAB-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) aufgetrennt. Die Färbung erfolgte durch Verwendung von AgNO₃ [2.4.9]. **b.** 80 μg Membranprotein wurden direkt in 15-%iger CTAB-Lösung aufgenommen und nach der Trennung durch eine 2D-CTAB-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) mit kontinuierlichem 8-12%-igen Acrylamidgradienten im CTAB-Gel mit MetOH-HAc-Wasser-Fixierungslösung fixiert und anschließend mit Coomassie Blau gefärbt. Die Trennung erfolgte in beiden Fällen durch Verwendung von Mini-Gelen.

Abb. 3.1.8 Vergleich von CTAB und 16BAC. a) Ingesamt wurden hier 20 μ g Gesamtprotein für die Trennung eingesetzt. Die Proben wurden nach Waschen der Membranen mit Na₂CO₃ und NH₄CO₃ [2.4.2] und Delipidierung nach Wessel und Flügge durch eine Mini-2D-16BAC-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) mit kontinuierlichem Acrylamid-Gradienten (8-12%) vorgetrennt. Die Färbung erfolgte mit Silber. b) 80 μ g Membranprotein wurden direkt nach der Reinigung der F2-Membranen mit Na₂CO₃ in CTAB-Probenpuffer [2.4.7] aufgenommen und durch eine 2D-CTAB-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) mit kontinuierlichem Acrylamid-Gradienten (8-12%) aufgetrennt. Anschließend wurde mit Coomassie Blau gefärbt. Die Trennung erfolgte in beiden Fällen durch Verwendung von Mini-Gelen.

Um die Proteintrennung weiter zu verbessern wurde der kontinuierliche Acrylamidgradient durch einen steileren (4,5-14,5%) diskontinuierlichen Stufengradienten ersetzt. Durch die Wanderung durch Bereiche verschiedener Acrylamidkonzentrationen in Form von 1%-Stufen sollten die Proteine im Gel stets am Übergang von einer Schicht zur Nächsten abgebremst und damit fokussiert werden (Abb. 3.1.9).

Abb. 3.1.9 Trennung tritosomaler Membranproteine durch Maxi-2D-CTAB-SDS-PAGE und 4,5-14,5% Acrylamid-Stufengradienten. a) Insgesamt 500 µg Gesamtprotein wurden nach Lösung in 15-%iger CTAB-Lösung und Verdünnung in CTAB-freiem Probenpuffer [2.4.7] durch Maxi-2D-CTAB-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) mit 4,5-14,5% Stufengradienten in der ersten Dimension getrennt. Nach der Trennung wurde mit MetOH-HAc-Wasser-Fixierungslösung fixiert und mit Coomassie Blau gefärbt. b) Das gleiche Gel mit den Markierungen der ausgestanzten Gelstücke. Insgesamt wurden 388 Proteinspots ausgestochen.

Anhand der einzelnen Streifen, die sich noch in der zweiten Dimension des Gelsystems abzeichnen, sind die Acrylamid-Gradientenzonen gut zu erkennen. Die Auflösung des Gels war hoch, so dass insgesamt 97 verschiedene Proteinspots voneinander unterschieden und daraus 388 Gel-Spots für die Analyse gestochen werden konnten. Wie bereits oben beschrieben, können Zuckerstrukturen die massenspektrometrische Analyse von Proteinen nach tryptischen Abbau aus verschiedenen Gründen stören. Während es nicht gelungen war, die Proteine der Membranproteinfraktion vor der Trennung im Gel zu deglykosylieren (siehe Abschnitt 3.1.7), war eine Deglykosylierung im Gel erfolgreich. Die Methode hierzu basierte auf dem In-Gel-Verdau-Protokoll zur proteolytischen Spaltung der Proteine. Vor dem tryptischen Verdau wurde unter den gleichen Bedingungen mit PNGase F inkubiert und anschließend mehrfach gewaschen um den SDS-haltigen Puffer des PNGase-Verdaus zu entfernen [2.2.4.15]. Die Effizienz der Deglykosylierung wurde anhand der Masselisten der Mascot-Suchergebnisse kontrolliert. nachdem eine Deamidierung von Asparaginen zu Asparaginsäuren als Resultat der

Deglykosylierung als Seitenkettenmodifikation bei der Datenbanksuche zugelassen worden war. In Abb 3.1.10 ist ein Beispiel für eine MS-Massenliste eines ursprünglich stark glykosylierten Membranproteins nach Deglykosylierung im Gel dargestellt. Bei diesem Protein, das hier im Suchergebnis mit *unamed protein product* bezeichnet ist, handelt es sich um das lysosomale Membranglykoprotein 1 (LAMP 1).

	gi 128359	945 1	Mass: 4436	4 Sco	re: 351				Peptides matched: 15
	unnamed p	protein pr	oduct [Mus	musculu	IS]				
1	Observed	Mr(expt)	Mr(calc)	Delta	Start	End I	Miss	Ions	Peptide
	1151.68	1150.67	1150.60	0.07	317 -	327	0		ALQATVGNSYK
	1152.68	1151.68	1151.58	0.10	317 -	327	0		<pre>kLQATVG<u>NSYK</u> + Deamidation (N)</pre>
	1170.70	1169.69	1169.63	0.06	92 -	101	0	61	GYLLTL <u>NFTK</u> + Deamidation (N)
	1363.71	1362.71	1362.62	0.08	328 -	338	0	68	CNTEEHIFVSK
	1535.86	1534.85	1534.76	0.09	78 -	91	0	70	ENVSDPSLTITFGR
	1536.83	1535.83	1535.75	0.08	78 -	91	0		ENVSDPSLTITFGR + Deamidation (N)
	1602.87	1601.86	1601.76	0.10	167 -	181	0		DATIQAYLSSGNFSK + Deamidation (N)
	1711.01	1710.01	1709.92	0.09	339 -	353	0		MLSLNVFSVQVQAFK
•	1727.02	1726.01	1725.91	0.10	339 -	353	0	72	MLSLNVFSVQVQAFK + Oxidation (M)
	2296.23	2295.22	2295.11	0.11	247 -	268	0		AFNISPNDTSSGSCGINLVTLK + Deamidation (N)
	2300.27	2299.26	2299.18	0.09	296 -	316	0		LNMTLPDALVPTFSISNHSLK + 2 Deamidation (N)
•	2316.27	2315.26	2315.17	0.09	296 -	316	0		LNMTLPD&LVPTFSISNHSLK + 2 Deamidation (N); Oxidation (N)
•	2332.24	2331.23	2331.16	0.08	275 -	295	0		ALELQFGMNASSSLFFLQGVR + Deamidation (N); Oxidation (M)
	2893.37	2892.36	2892.31	0.06	106 -	129	0		YSVQHMYFTYNLSDTEHFPNAISK + Deamidation (N)
٠	2909.43	2908.42	2908.30	0.12	106 -	129	0		YSVQHMYFTYNLSDTEHFPNAISK + Deamidation (N); Oxidation (M)
	No match	to: 803.9	3, 882.57,	927.43,	930.59,	991.	59,	996.6	1, 1003.57, 1007.00, 1016.62, 1036.57, 1084.13, 1090.53, 1115.65, 1118.56,
	1134.60,	1165.71,	1179.66, 1	195.71,	1201.69,	1277	.78,	1307	.72, 1320.65, 1338.63, 1346.70, 1354.66, 1365.83, 1383.78, 1434.82, 1475.86
	1493.84,	1518.82,	1573.84, 1	657.90,	1673.93,	1707	.86,	1716	.95, 1765.84, 1791.84, 1838.02, 1891.04, 1941.02, 1949.06, 1985.04, 1987.14
	1994.06,	2083.06,	2106.34, 2	137.12,	2228.08,	2230	.28,	2279	.06, 2343.06, 2367.32, 2384.04, 2565.28, 2691.34, 2720.35, 2748.37, 2855.85
	3013.60,	3077.64,	3094.63, 3	346.64					

Abb. 3.1.10 Mascot-Suchergebnis für LAMP-1 nach Analyse einer In-Geldeglykosylierten Proteinprobe. Nach Aufreinigung der tritosomalen Membranproteine wurde diese durch eine 2D-CTAB-SDS-Stufengradienten-PAGE (4,5-14,5%) (8-14% PA-Gradient im SDS-PAG) aufgetrennt. Die Proben wurden im Spotting-Verfahren ausgestochen, mit PNGase F deglykosyiert und schließlich mit Trypsin verdaut. Nach Analyse mit MALDI-TOF-MS und -MS/MS erfolgte die Identifizierung mit Mascot unter Zulassung folgender Seitenkettenmodifikationen: Fest: Carbamidomethylierung, Variabel: Oxidation, Deamidierung. Zugelassen waren Massenabweichungen von 100 ppm und eine fehlende Schnittstelle. Die Protein-gi-Nummer ist in blau dargestellt, der Score in rot. Die beobachteten Massen der gefundenen Peptide, die keine Seguon-Seguenz enthalten, sind blau gerahmt, die Peptide, die solche Sequenzen enthalten und im Suchergebnis auch mit der entsprechenden Deamidierung gefunden wurden, sind rot gerahmt. Das Peptid, dem eine Deamidationsmodifikation zugeordnet wurde, ohne dass es eine Consensussequenz für Glykosylierung besitzt ist grün gerahmt. Das Peptid, welches eine Sequon-Sequenz besitzt, aber ebenfalls nicht deamidiert gefunden wurde, ist von einer pinkfarbenen Box umgeben. Oxidierte Peptide (Massen) sind mit einem roten Punkt vor der Massenzahl gekennzeichnet.

LAMP-1 besitzt 20 NXS/T-Sequons (Abb. 3.1.11), von denen hier acht durch die Analytik erfasst werden konnten. Von den insgesamt zehn verschiedenen zugeordneten Massen konnten sechs Massen infolge der Deglykosylierung zugeordnet werden (Tab.3.1.5).

```
001-MAAPGARRPL LLLLLAAGLA HGASALFEVK NNGTTCIMAS FSASFLTTYE-050
051-TANGSQIVNI SLPASAEVLK NGSSCGKENV SDPSLTITFG RGYLLTLNFT-100
101-KNTTRYSVQH MYFTYNLSDT EHFPNAISKE IYTMDSTTDI KADINKAYRC-150
151-VSDIRVYMKN VTVVLRDATI QAYLSSGNFS KEETHCTQDG PSPTTGPPSP-200
201-SPPLVPTNPT VSKYNVTGNN GTCLLASMAL QLNITYLKKD NKTVTRAFNI-250
251-SPNDTSSGSC GINLVTLKVE NKNRALELQF GMNASSSLFF LQGVRLNMTL-300
301-PDALVPTFSI SNHSLKALQA TVGNSYKCNT EEHIFVSKML SLNVFSVQVQ-350
351-AFKVDSDRFG SVEECVQDGN NMLIPIAVGG ALAGLVLIVL IAYLIGRKRS-400
401-HAGYQTI
```

Abb. 3.1.11 Aminosäuresequenz des LAMP-1 mit möglichen und wahrscheinlichen Glykosylierungsstellen. Die Aminosäuresequenz Asn-X-Ser/Thr beschreibt eine Consensussequenz für mögliche N-Glykosylierungsstellen. "X" ist hierbei eine beliebige Aminosäure ausgenommen der Aminosäure Prolin. Oben ist die gesamte Sequenz des LAMP-1-Proteins mit den gefundenen Sequons gezeigt. Die Asparaginreste, die sich innerhalb eines Sequons befinden sind rot, die restlichen Aminosäurereste des Sequons blau markiert.

Drei Peptide (Mr 1711 (1724), Mr 2300 (2316) und Mr 2893 (2909)) konnten aufgrund des Vorliegens einer reduzierten und einer oxidierten Form eines Methioninrestes ieweils zweimal detektiert Da bei werden. diesen Datenbanksuchen zur Identifizierung eines Proteins hauptsächlich die Peptidmassen eingehen, sind auch immer Fehlzuordnungen möglich. So wurde beispielsweise das Peptid mit der Mr 1535 ein zweites Mal mit der Masse 1536, seiner deamidierten, also der deglykosylierten Form zugeordnet (Abb. 3.1.10). Der hier betroffene Asparaginrest befindet sich zwar innerhalb eines NXS/T-Sequons, da aber auch die nicht-deamidierte Form gefunden wurde, die auch durch einen Ionen-Score von 70 bestätigt werden konnte, kann davon ausgegangen werden, dass es sich bei dem Peptid mit der Masse 1535 wahrscheinlich um ein anderes Peptid, handelt, das aufgrund der Massenähnlichkeit hier zugeordnet wurde. Die Möglichkeit, dass ein Teil der Moleküle im ER nicht glykosyliert wurde, ist eher unwahrscheinlich, da es sich hier um kein rekombinantes hoch exprimiertes Protein handelt, für das eine Überlastung der Glykosylierungskapazität angenommen werden könnte. Ein weiteres Beispiel fehl interpretierter Massen stellt das Peptid mit der Masse 1151 (Abb. 3.1.10) dar. Zu diesem Peptid wurde von dem Programm Mascot auch eine Masse einer möglichen deamidierten Peptidform zugeordnet, obwohl dieses Peptid über kein NXS/T-Sequon verfügt (der Asparaginrest in diesem Peptid befindet sich in der Sequenz NSYK). Insgesamt konnten allerdings über die Hälfte der für die Identifizierung zugeordneten Peptide nur nach Deglykosylierung und Berücksichtigung der entsprechenden

Asparaginseitenkettenmodifikation gefunden und zugeordnet werden (Abb. 3.1.10), was die Identifizierung dieses hoch-glykosylierten Proteins erst ermöglichte.

32 NGTT	98 NFTK	208 NPTV	249 NISP
53 NGSQ	102 NTTR	215 NVTG	253 NDTS
59 NISL	116 NLSD	220 NGTC	283 NASS
71 NGSS	160 NVTV	233 NITY	297 NMTL
79 NVSD	178 NFSK	241 NKTV	312 NHSL

Tab. 3.1.5 Während der Datenbanksuche erfolgreich zugeordnete Sequons des LAMP-1. Hier sind alle Sequons des LAMP-1 aufgelistet. Diejenigen, die in den Peptiden nach der Deglykosylierung zugeordnet werden konnten, sind rot hinterlegt. Sequons, die nicht gefunden wurden sind schwarz, während das Sequon, für das keine Deglykosylierung nachgewiesen werden konnte, blau gefärbt ist.

Insgesamt konnten bei der Analyse der In-Gel-deglykosylierten Proben 160 Proteine identifiziert werden, davon 132 zusätzlich zu den hier bisher identifizierten Proteinen (Tab. 3.1.6). Darunter wurden sechs bekannte lysosomale Membranproteine gefunden. 15 der Proteine sind Vesikelassozierte Proteine mit speziellen Aufgaben am Vesikeltransport. 16 Proteine können zu Komponenten des Cytoskeletts gezählt werden, die auch an Vesikeltransportprozessen beteiligt sein könnten. Zusätzlich konnten noch weitere 29 bekannte mitochondriale Membranproteine, fünf mitochondriale Matrixproteine und 18 Proteine, bei denen eine Lokalisation in anderen Organellen wie Peroxisomen, endoplasmatischem Retikulum und Golgi beschrieben worden sind, identifiziert werden. Des Weiteren wurden 19 Proteine identifiziert, welche in Plasmamembran, Cytoplasma, Extrazellulärem Raum oder im Kern lokalisiert sind. Schließlich konnten 23 noch unbekannte Proteine, beziehungsweise Proteine deren intrazelluläre Lokalisation noch weitgehend unbekannt ist identifiziert werden. Darunter befinden sich sieben Proteine, für die nach einer Analyse mit dem Programm TMHMM Transmembrandomänen vorhergesagt werden konnten. Von einem Protein wurde in der Datenbank der Eintrag "peripheres Membranprotein" gefunden, ohne dass mit dem Programm TMHMM eine Transmembrandomäne vorhergesagt werden konnte. Für neun Proteine wurden durch das Programm CSS-Palm Consensussequenzen für mögliche Palmitoylierungen vorhergesagt, für drei Proteine mit dem Programm SignalP 3.0 ein Signalpeptid mit Spaltstelle. 13 Proteine, die in anderen Versuchen identifiziert werden konnten, wurden nicht identifiziert.

Nr.	Protein	gI:Nummer	Score
Lyso	somale Membranproteine		
01	LAMP 2	74215327	68
02	Vacuolar protein sorting 54	56202398	65
03	vacuolar protein sorting-associated	157169505	63
04	VATPase B2	74177659	99
05	VATPase E1	45504359	86
06	VATPase E2	20799123	76
01	Cathepsin D	6753556	
02	Cd1 chain C	2624797	
03	V-ATPase 40 kDa accessory protein	1226235	
Vesi	kel-assoziierte Proteine		
07	RAB6	200715	72
08	RAB4a	1122929	67
09	N-ethylmaleimide sensitive fusion protein	31543349	82
10	RAB39b	46577034	61
11	RAB 31-like	19526850	69
12	DNAJ C 13	7418936	69
13	Sorting nexin 5	18034769	72
14	vesicle-associated membrane protein 8	31980629	62
15	RAB GTPase activating protein 1-like	148877871	69
16	early endosome antigen 1, isoform CRA_b	148689671	63
17	centaurin, beta 2 (GAP for ARF6,)	62079289	67
18	ADP-ribosylation factor-like protein 8B	74181576	79
19	seminal vesicle antigen-like 2, isoform CRA_a	148681548	62
20	Weakly similar to RAB6 GTPase activating protein	26329621	70
21	Phosphatidyl-Inositol 4 kinase type α	21703986	145
04	GES 30 (interaction with t-snare 1 B homolog)	51330862	
05	Snx8 protein	9055356	
Cyto	skelettkomponenten		
22	Mikrotubuli organisierendes Zentrum (Tubgcp5)	20071895	71
23	PREDICTED: microtubule-actin crosslinking factor 1	20071895	62
24	testis-specific protein (Mikrotubuli-/-Dynein-assoziiert)	201923	65

25	Rho interacting protein 3	74185186	61
26	actin-activating protein 2-like 1, may function as adaptor	148687071	64
27	Mtap7d1 protein (microtubuli associated protein)	16359231	68
28	FYVE, RhoGEF and PH domain-containing protein 6	114325429	69
29	FYVE, RhoGEF and PH domain-containing protein 5	27769269	66
30	vinculin	309533	73
31	Advillin (p92) (Actin-binding protein DOC6)	6857753	69
32	spectrin alpha 1	148681274	61
33	Citron Rho-interacting kinase (CRIK) (Rho-interacting, serin5)	81175168	63
34	Clasp-1 protein	124007127	72
35	CLIP-115	3850794	64
36	cytoplasmic linker 2 isoform a	85662410	63
37	Cytoplasmic linker 2 isoform h	85662406	60
06	B-Altin	6671509	00
07	Clial fibrillary acidic protein	51066	
07	MOCO subhurasa C terminal domain containing 2	10526949	
00	Moco suphurase C-terminal domain containing 2	19320848	
09	Myosin Leichle Kelle-Kinase	02999145	
	ATD surflage II - transmission E1 - complementary	100000070	05
38	ATP synthase, H+ transporting, F1 complex, gamma	122889678	85
39	ATP synthase, H+ transporting, mitochondrial F0 complex, sub54	/8214312	64
40	ATP Synthase F0 D	21313679	88
41	Cytochrom Cl	52350626	100
42	Cytochrom C OX 4	6753498	90
43	Cytochrom C OX SU II	148707168	152
44	NADH-Q-OR 3	58037117	124
45	NADH-Q-OR 8	54611544	97
46	Cytochrom P 27a1 (Cyp27a1)	12805421	79
47	QH-Cytochrome c-Reductase core protein 1	14548301	131
48	QH-Cytochrome c-Reductase core protein 2	22267442	153
49	NADH-Q-DH 1 α 9 (Ndufa 9 protein)	37231685	207
50	NADH-ubiquinone oxidoreductase 1 beta subcomplex 10	58037109	84
51	PREDICTED: similar to Solute carrier family 25	149258501	69
52	Slc25a3 protein	148689580	61
53	Mitochondrial aspartate glutamate carrier (Slc25a13)	12849571	193/63
54	NAD(P) Transhvdrogenase	51338804	75
55	Ndufa5	148703063	67
56	NADH ₂ -O-DH 2 (Ndufa 2)	110625954	99
57	Ndufa1 a subunit 12	47117166	83
58	Ornithin-Transcarbamovlase isoform CRA f	148703731	67
59	Mitochondrial ornithine transporter 1 (Slc25a15)	20139296	87
60	adenine nucleotide translocase-?	82880803	78
61	ATP synthese H+ transporting mitochondrial F0 complex	02000005	149
01	sub1/8	1/0266312	147
62	solute carrier family 25 c63	19200312	64
63	ΔTP synthese H+ transporting mitochondrial F0 complex	17520010	1/15
05	aub 145	140266212	145
61	SUD143	149200312	61
04 (5	weakly similar to ACY L-COA DEHY DROGENASE	12840107	04 (9
05	adenine nucleotide transiocase-1	902008	68
66 1.0	Solute carrier family 25 member 3, Phosphate carrier protein	148689582	68
10	3-Hydroxybutyrat-Denydrogenase	31982169	
11	Carnitin-O-PalmytoyI-transferase II*	1/06111	
Mitoc	hondriale Matrixproteine		
67	Dihydroliponmide branched chain transacylase E2	6753610	82
68	adenylate kinase 3	4760606	69
69	Nitrogen fixation gene 1	14714866	62
70	RNA (guanine-9-)-methyltransferase domain-containing protein 1	74201578	75
71	ornithine transcarbamylase, isoform CRA_f	148703731	57
Perox	isomale, Golge-, ER-Proteine		
72	Carbo-hydrate-sulfo-transferase 2	61211803	85
73	Vrk2 protein (Serine/threonine-protein kinase)	15488768	73

74	ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50	148679530	100
75	epoxide hydrolase 1, microsomal	6753272	182
76	Catalase	174204830	111
77	11-β-OH-Steroid-Dehydrogenase 1	11368066	62
78	hect (homologous to the E6-AP (UBE3A) carboxyl terminus)		130
	dom43 (ARF GAP)	51764932	
79	SERCA 2a	4678581	52
80	SERCA 1	36031132	64
81	PREDICTED: similar to Sec61-complex gamma-subunit	149266348	70
82	peroxisomal membrane protein 2, isoform CRA_b	148688082	69
83	Mea2/Golga3	31982330	69
84	male-enhanced antigen-2	27372823	69
85	mannosidase 1, alpha, isoform CRA_b	148673152	68
86	Peptidyl-prolyl cis-trans isomerase	148674489	66
87	Cytochrom b 5	148677405	75
88	Prostacyclin-Synthase	2308984	73
89	Diaphorase 1	19745150	68
Ande	re Proteine (Cytoplasma, Plasmamembran, Kern,)		
90	Exocyst complex component 7	26393485	68
91	G-Nucleotid-binding protein $\alpha 2$	1730229	69
92	Homogentisat-1, 2-Dioxygenase	32822737	70
93	Flotillin 2	6679809	92
94	P2rx4	13542788	234
95	Betaine-homocysteine methyltransferase	7709990	121
96	Probable tubulin polyglutamylase (Tubulin polyglutamylase co58	20455352	82
97	Psmc2	13529470	74
98	huntingtin-interacting protein 1, phospholipid-binding	26352614	70
99	Erb2 interacting protein	54607112	71
100	DOCK 9 protein (GAP)	32469704	69 107
101	Ferritin leichte Kette 2	130485277	187
102	Apolipoprotein E	192005	156
103	Mikrotubuli organisierendes Zentrum (Tubgcp5)	200/1895	/1
104	Spats1 (Spermatogenesis-associated serine-rich protein 1)	124297551	/8
105	LIMKI Chain A. Dasamhinant Mausa I. Chain Familia	/4202526	130
105	Unam A, Recombinant Mouse L-Unam Ferritin	149204343	8U 01
107	pericentrin [Ivius musculus] (Centriole)	11/380/14	ð1 71
108	Signal-induced promeration-associated 1-like protein 3	21/0/628	/ 1
12	Destina down I abalization right habarrat harish	33383023	
100	ere rroteine, ueren Lokalisation nicht dekannt, deziehungsweise u	OMAD2008	70
109	L rrad (laugin rich repeat containing 0)	74403708 21212120	70
110	Archaemetzin 2	21313428 85540614	17 01
112	hypothetical protein LOC72175	31541076	9 4 65
112	Gm382	85701740	95
115	011502	05/01/40))
114	Hypothetical peptidase M20*	26324834	80
115	Aldo-Keto-Reductase family 1 C13	7304870	73
116	uncaracterized singlenass membrane protein	29244450	74
117	carbohydrate sulfotransferase 12	74201087	67
118	nrotein-arginine deiminase activity*	60360556	62
119	PREDICTED: hypothetical protein LOC320706	149250085	82
120	PREDICTED: similar to hydroxyindole-O-methyltransferase 51	94373034	67
120	unamed protein product	74184106	63
122	Putative uncharacterized protein	148707571	66
123	PREDICTED: hypothetical protein	94402060	65
123	Solute carrier organic anion transporter family member 21 member	21102000	62
т 🖌 т	1A1	148678681	<u>.</u>
125	Flavin-containing amine oxidase domain-containing protein 1*	26347623	65
126	hypothetical protein LOC211208	85701740	85

127	hypothetical protein LOC231296	23956358	65	
128	natriuretic peptide receptor 2	74196566	65	
129	E130309D14Rik	62000658	71	
130	Stomatin like protein 2	60415940	92	
131	M6PR domain containing protein [Fragment]	54300270	65	
13	DC2 protein (hydrophobic protein hsf 28	13384930		

Tab. 3.1.6 Ergebnisse der Analyse der Membranproteinfraktion nach Trennung durch eine 2D-CTAB-SDS-PAGE und In-Gel-Deglykosylierung mit PNGse F. 388 ausgestanzte Proteinspots wurden nach In-Gel-Verdau und Peptidextraktion mit MALDI-TOF-MS und -MS/MS analysiert. Die Datenbanksuche erfolgte in der NCBI- und der SwissProt-Datenbank. Die Tabelle zeigt nur im Vergleich zu vorigen Analysen zusätzlich identifizierte Proteine. MS/MS-Scores sind in Klammern angegeben. Proteine bei denen durch TMHMM eine oder mehrere integrale Membranbereiche vorhergesagt wurden sind rot gefärbt, Proteine bei denen CSS-Palm Palmitoylierungssequenzen gefunden wurden grün. durch periphere Membranproteine blau und Proteine, bei denen durch SignalP ein Signalpeptid vorhergesagt wurde sind mit einem Stern markiert. In früheren Analysen gefundene, hier nicht identifizierte Einträge sind grau eingefärbt.

Um zu testen, ob sich die Auflösung des CTAB-Gelsystems, ähnlich wie die des 16-BAC-Systems durch eine Delipidierung der Probe nach Wessel und Flügge erhöhen lässt, wurde vor der Elektrophorese eine entsprechende Proteinfällung durchgeführt. Ebenso wie für die Separation zuvor, wurde auch hier in der ersten Dimension ein Stufengradient von 4,5-14,5% angelegt. Dabei zeigten sich Proteinspots, welche durch eine bessere Auflösung klarer zum Vorschein kamen. Insgesamt jedoch konnte eine Abnahme der Proteinspots beobachtet werden, von 97 aus der Trennung ohne vorherige Delipidation auf nun nur noch 59 verschiedene Proteinspots (Abb. 3.1.12).

Abb. 3.1.12 Trennung tritosomaler Membranproteine nach Delipidierung nach Wessel und Flügge durch Maxi-2D-CTAB-SDS-PAGE mit Stufengradienten. a) 300 µg Gesamtprotein wurden nach Delipidierung [2.4.18] durch 2D-CTAB-SDS-PAGE (8-14% PA-Gradient im SDS-PAG) mit 4,5-14,5% Stufengradienten in der ersten Dimension getrennt. Die Proteinspots wurden nach Fixierung mit Coomassie Blau angefärbt. b) zeigt die Probeentnahmestellen. Hier wurden 214 Probenspots ausgestochen.

Insgesamt wurden 214 Proben ausgestochen und analysiert. Bei der Analyse nach In-Gel-Deglykosylierung der Proben mit PNGase F konnten keine weiteren Proteine mit bekannter intrazellulärer Lokalisation identifiziert werden, die nicht bereits im Rahmen der vorigen Analysen identifiziert wurden. Es konnten allerdings 13 Proteine, deren intrazellulare Lokalisation nicht geklärt ist, gefunden werden (Tab. 3.1.7). Darunter waren vier Proteine, für die nach TMHMM-Analyse eine oder mehrere Transmembrandomänen vorhergesagt Für identifizierten wird werden. neun der Proteine weder eine Transmembrandomäne noch ein Signalpeptid vorhergesagt. Fünf von diesen wiesen jedoch Consensussequenzen für Palmitoylierungen auf. Insgesamt konnten 65 der bei vorherigen Versuchen identifizierten Proteine nicht identifziert werden, woraus geschlossen werden kann, dass während der Delipidierungsprozedur Proteine selektiv verloren gingen.

Nr.	Protein	gI:Nummer	Score
lysos	omale Membranproteine		
01	Vacuolar protein sorting 54	56202398	
02	vacuolar protein sorting-associated	157169505	
03	Cathepsin D	6753556	
04	Cd1 chain C	2624797	
05	V-ATPase 40 kDa accessory protein	1226235	

Vesi	kel assoziierte Proteine	
06	RAB39b	46577034
07	RAB 31-like	19526850
08	DNAJ C 13	7418936
09	vesicle-associated membrane protein 8	g1 31980629
10	RAB GIPase activating protein 1-like	gi 148877871
11	early endosome antigen 1, isoform CRA_b	gi 148689671
12	seminal vesicle antigen-like 2, isoform CRA_a	g1 148681548
13	hect (homologous to the E6-AP (UBE3A) carboxyl	51/64932
C 1.	terminus) dom43	
	Skelett-Komponenten	7/105106
14	Rho interacting protein 5	14163160
15	Mtan7d1 protein (microtubuli associated protein)	14000/0/1
17	Citron Rho interacting kinase (CRIK) (Rho interacting	ail81175168
1 /	serin51	gi 011/J100
18	Clasp-1 protein	124007127
19	CLIP-115	gi 3850794
20	cytoplasmic linker 2 isoform a	gi 85662410
21	Cytoplasmic linker 2 isoform b	85662406
22	B-Aktin	6671509
23	Glial fibrillary acidic protein	51066
24	MOCO sulphurase C-terminal domain containing 2	19526848
25	Myosin Leichte Kette-Kinase	82999143
Mito	chondriale Membranproteine	
26	NADH-ubiquinone oxidoreductase 1 beta subcomplex 10	58037109
27	Mitochondrial aspartate glutamate carrier (Slc25a13)	12849571
28	NADH ₂ -Q-DH 2 (Ndufa 2)	110625954
29	Ndufa1 a subunit 12	47117166
30	Ornithin-Transcarbamoylase, isoform CRA_f	148703731
31	ATP synthase, H+ transporting, mitochondrial F0 complex,	gi 149266312
2.2	sub148	11050(010
32	solute carrier family 25 c63	gi 19526818
33	A I P synthase, H+ transporting, mitochondrial F0 complex, sub145	g1 149266312
34	weakly similar to ACYL-COA DEHYDROGENASE	gi 12846107
35	3-Hydroxybutyrat-Dehydrogenase	31982169
36	Carnitin-O-Palmytoyl-transferase II*	1706111
Mito	chondriale Matrixproteine	
37	adenylate kinase 3	gi 4760606
38	Nitrogen fixation gene 1	gi 14714866
39	ornithine transcarbamylase, isoform CRA_f	gi 148703731
Pero	xisomale, Golge-, ER-Proteine	11.40 (50.500)
40	S13 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50	g1 148679530
41	male-enhanced antigen-2	gil27372823
42	Diaphorase 1	19745150
And	ere Proteine (Cytoplasma, Plasmamembran, Kern,)	
43	G-Nucleotid-binding protein $\alpha 2$	1730229
44	Homogentisat-1, 2-Dioxygenase	32822737
45	huntingtin-interacting protein 1, Phospholipid-bindend	26352614
46	Nuclear membrane binding protein	9120795
47	ribosomal protein L13	gi 33186863
48	Limk1	gi 74202526
49	Signal-induced proliferation-associated 1-like protein 3	gi 21707628
50	Serine/threonine-protein kinase PLK4	gi 121114285
51	Erbb2 interacting protein isoform 2	gi 54607112
52	Sestrin	33585625
Weit	ere Proteine, deren Lokalisation nicht bekannt, beziehungsw	veise unsicher ist
01	PREDICTED: hypothetical protein LOC320706	94367385

3.1 Ergebnisse: Proteomanalyse tritosomaler Membranen

02	Gcn1/1	26006117	68
03	TSGA10	47047249	66
04	Uncharacterized protein C20orf85 homolog	27734251	78
05	MDR/TAP (ABC-Transporter subfamily C isoform 5)	66932954	123
06	Uncharacterized protein C4orf15 homolog	23271770	66
07	p90 autoantigen homolog, single-pass membrane	gi 30851263	64
08	hypothetical Cysteine-rich flanking region	51829389	65
09	alkB, alkylation repair homolog 4	110625894	67
10	Ppp3ca protein (Proteinphosphatase 3 Katalytisceh	66911213	88
	Untereinheit)		
11	Ellis van Creveld syndrome 2 homolog	gi 74228130	63
12	Unbekanntes Protein	12839169	68
13	LOC320706	94367385	70
53	Hypothetisches Protein	94403908	
54	hypothetical protein LOC72175	31541926	
55	Ellis van Creveld syndrome 2 homolog	gi 74228130	
56	uncaracterized singlepass membrane protein	gi 29244450	
57	protein-arginine deiminase activity	60360556	
58	PREDICTED: hypothetical protein LOC320706	149250085	
59	PREDICTED: similar to hydroxyindole-O-methyltransferase	94373034	
60	31	74104106	
60	unamed protein product	/4184100	
61	PREDICTED: hypothetical protein	94402060	
62	Solute carrier organic anion transporter family member 21	148678681	
63	member 1A1 Flavin-containing amine oxidase domain-containing protein	26347623	
05	1	203 17025	
64	hypothetical protein LOC211208	85701740	
65	DC2 protein (hydrophobic protein hsf 28	13384930	

Tab. 3.1.7 Analyse der tritosoalen Membranproteine nach Delipidierung, Trennung durch eine 2D-CTAB-SDS-PAGE und In-Gel-Deglykosylierung. Für die Analyse wurden 388 Proteingel-Spots ausgestanzt und die Peptidextrakte nach In-Gel-Verdau durch MALDI-TOF-MS und -MS/MS analysiert. Die Tabelle zeigt nur im Vergleich zu vorigen Analysen zusätzlich identifizierte Proteine. MS/MS-Scores sind in Klammern angegeben. Proteine bei denen durch TMHMM eine oder mehrere integrale Membranbereiche vorhergesagt wurden sind rot gefärbt, Proteine bei denen durch CSS-Palm Palmitoylierungssequenzen gefunden wurden grün, periphere Membranproteine blau und Proteine, bei denen durch SignalP ein Signalpeptid vorhergesagt wurde sind mit einem Stern markiert. In früheren Analysen gefundene, hier nicht identifizierte Einträge sind grau eingefärbt.

Werden die Ergebnisse aller Versuche zur Identifizierung der Proteine in der Fraktion der tritosomalen Membranen zusammengenommen, konnten 125 (65%) integrale Membranproteine beziehungsweise bekannte periphere Membranproteine, 21 Proteine (10%), die an das intrazelluläre Cytoskelett assoziiert sind und 48 Proteine (25%), bei denen eine Membranassoziation bisher nicht beschrieben wurde, identifiziert werden.

3.1.10 Insgesamt wurden 13 Proteine als mögliche Kandidaten eingestuft.

Nach ersten bioinformatischen Analysen der Proteine, deren intrazelluläre Lokalisation nicht schon in der Literatur beschrieben ist, wurden 13 der insgesamt 194 identifizierten Proteine als Kandidaten für eine Lokalisation in oder an der lysosomalen Membran eingestuft (Tab. 3.1.8). Davon können 10 zu den integralen Membranproteinen gezählt werden. Bei den drei übrigen Proteinen können integralen Membranbereiche, iedoch keine eine Signalsequenz und Consensussequenzen für Palmitoylierungen vorhergesagt werden (Tab. 3.1.10). Des Weiteren wurden bei integralen Membranproteinen nach Sequenzmotiven für eine lysosomale Sortierung gesucht. Dabei konnte festgestellt werden, dass sechs Proteine einen, beziehungsweise mehrere Sequenzabschnitte besitzen, die den lysosomalen Sortierungsmotiven dem Dileucin-, Tyrosin- oder NPXY-Typ entsprechen (Tab. 3.1.9). Da die Scores, mit denen die Proteine identifiziert wurden meistens nicht hoch waren und in einzelnen Fällen nur knapp unter der Signifikanzschwelle blieben, kann deren Identifikation nicht ohne Zweifel bleiben. Eine Bestätigung der lysosomlen Lokalisation durch Klonierung und zellbiologischer Analyse des einzelnen Proteins ist daher in jedem Fall notwendig.

Nr.	Proteinname	gi Nummer	Score	Quelle
1	DC2 protein (hydrophobic protein hsf 28	13384930	68/63 (35/32)	Т
2	hypothetical protein LOC72175	31541926	65/63	Т
3	Ellis van Creveld syndrome 2 homolog	74228130	63/63	Т
4	uncaracterized singlepass membrane protein	29244450	74/62	Т
5	carbohydrate sulfotransferase 12	74201087	67/61	E
6	p90 autoantigen homolog, single-pass membrane	30851263	64/63	E
7	Solute carrier organic anion transporter family	148678681	62/63	
	member 21 member 1A1			
8	hypothetical protein LOC231296	23956358	75/63	Т
9	unamed protein product	74184106	63/62	Т
10	hypothetical Cysteine-rich flanking region	51829389	65/63	Т
11	Hypothetical peptidase M20	26324834	80/62	-
12	protein-arginine deiminase activity	60360556	62/61	-
13	Flavin-containing amine oxidase domain- containing protein 1	26347623	65/63	-

Tab. 3.1.8 Mögliche Kandidaten für eine lysosomale Lokalisation. Nach Isolierung lysosomaler Membranen durch fraktionelle und Saccharose-Gradienten-Zentrifugation, zum Teil spezieller Probenvorbereitung wie Delipidierung nach Wessel und Flügge und In-Gel-Deglykosylierung und Vortrennung der Membranproteine durch verschiedene 2D-PAGE-Systeme mit 16-BAC, CTAB und SDS, konnten durch Analyse mit MALDI-TOF-MS und - MS/MS und Datenbanksuche in der NCBI-Datenbank die in der Tabelle aufgeführten Proteine identifiziert und nach erster bioinformatischer Analyse als Kandidaten eingestuft werden. Die Scores sind zusammen mit dem jeweiligen *cut-off*-Score als Signifikanzgrenzen angegeben (für MS/MS-Analysen in Klammern). Transmembrandomänen wurden durch das Programm TMHMM v.2.0 (Quelle:T) vorhergesagt. bzw. Hinweise auf eine integrale Membranständigkeit durch ExPASy (Quelle:E) erhalten. Kandidaten, für die weder durch TMHMM noch durch ExPASy Hinweise auf eine integrale Membranständigkeit erhalten wurden, sind blau markiert

Nr.	Proteinname	LL	Y	Ν
1	hypothetical protein LOC72175	-9	-6	
2	Ellis van Creveld syndrome 2 homolog	-257, -168	-120	
3	carbohydrate sulfotransferase 12	-41		
4	p90 autoantigen homolog, single-pass membrane	-39		
5	Solute carrier organic anion transporter family member 21 member 1A1		-9	
6	hypothetical protein LOC231296	-295, -305		-33

Tab. 3.1.9 Mögliche funktionelle lysosomale Sortierungsmotive der integralmembranständigen Kandidaten. Sortierungsmotivsequenzen wurden manuell mit der Aminosäuresequenz gesucht und mit den Ergebnissen der TMHMM-Analyse verglichen. Hierbei sind nur Motive aufgeführt, die sich bei Typ I- und Typ II-Membranproteinen in cytosolischen Proteinabschnitten und bei Typ III-Membranproteinen in terminalen cytosolischen Abschnitten befinden. Da lysosomale Sortierungsmotive für gewöhnlich terminal lokalisiert sind, sind hier bei Proteinen, bei denen nur durch ExPASy Hinweise auf eine membranständige Lokalisation erhalten wurden (siehe Abb. 3.1.8), nur die Sortierungsmotiv-Sequenzen aufgeführt, die sich innerhalb der hier willkürlich festgelegten Distanz zum N-, bzw. C-Terminus von 100 Aminosäuren befinden. LL: Dileucin-, Y: Tyrosin-basiertes, N: NPXY-Sortierungsmotiv. Die Positionen der Sortierungsmotive (Entfernung zum nächst gelegenen Terminus) sind durch die Zahlen angegeben.

Nr.	Proteinname	Signalpeptid	CSS
11	Hypothetical peptidase M20	24-25	432
12	protein-arginine deiminase activity	36-37	20,615,616
13	Flavin-containing amine oxidase domain-containing protein 1	23-24	230

Tab. 3.1.10 Signalpeptid-Sequenzen und Palmitoylierungssequenzen der nicht-integralen lysosomalen Membranproteinkandidaten. Signalpeptide und Spaltstellen wurden durch das Programm SignalP v3.0 und Consensussequenzen für Palmitoylierungen durch das Programm CSS vorhergesagt (CSS). Die Position im Protein der Palmitoylierungssequenzen und Signalpeptide sind durch die Zahlen angegeben.

3.2 Charakterisierung von Loc72175

Nach Auswertung der bioinformatischen Daten [3.2.1] schien ein Protein mit besonders hoher Wahrscheinlichkeit für eine Iysosomale Lokalisation in Frage zu kommen, das hypothetische Protein Loc72175 (*accession number: AK077957, gl: 31541926*). Daher wurde das Loc72175-Protein rekombinant unter Einfügen eines C-terminalen His6-Tags kloniert, die Iysosomale Lokalisation durch Immunfluoreszenz überprüft und das Protein weiter biochemisch charakterisiert.

3.2.1 Bioinformatische Analyse.

Das Loc72175-Protein kann, wie eine Homologiesuche mit Blast in der NCBI-Datenbank zeigte, der großen Proteinfamilie der *Major Facilitator Superfamily* (MFS) zugeordnet werden, die sich durch den Besitz von 12 Transmembrandomänen und die allen Proteinen dieser Familie gemeinsamen Funktion als sekundärer Transporter auszeichnet. Zu einem Bereich des Loc72175 konnte eine besonders starke Homologie zu einer Domäne gefunden werden, der eine Transportfunktion von Zuckern oder Aminosäuren zugeordnet wird. Der kodierende Bereich des *Loc-72175*-Gens umfasst eine 1560 bp lange Nukleotidsequenz, die für 519 Aminosäuren kodiert (Abb. 3.2.1).

```
001-MANLGSEAER EPLLGPGSPG SREWSEIETQ EHYKSRWKSV RILYLTMFLS-050
051-SVGFSIVIMS IWPYLQKIDQ TADASFLGWV IASYSLGQMV ASPLFGLWSN-100
101-YRPRKEPLIV SISISVAANC LYAYVHVPAA HNKYYMLIAR GLVGFGAGNV-150
151-AVVRSYIAGA TSLQERTNAM ANTSTCQALG FILGPVFQTC FALIGEKGVT-200
201-WDIIKLQVNM YTAPVLLAAF LGILNIILIL FILREHRVDD LGRQCKSVNF-250
251-QEENTDEPQI PEGSIDQVAV VATNIVFFVV LFIFAVYETI LTPLTLDMYA-300
301-WTQEQAVLYD GILLVAFGVE AVLVFMGVKL LSKKIGERAI LLGGFVVVWV-350
351-GFFILLPWGN QFPKIQWEDL HNSSTPNTTF GEIIIGLWNS SREDHSEQPT-400
401-GCPIEQTWCL YTPVIHLAQF LTAAVLIGTG YPACSVMSYT LYSKVLGPKP-450
451-QGIYMGWLTT SGSAARILGP VFISHVYTYL GPRWAFSLVC GIVVLTILLI-500
501-GAVYKRLVAF SVRYMRIQE
```

```
Abb. 3.2.1 Aminosäuresequenz des Loc 72175-Protein.
```

Die theoretische Molekülmasse des Proteins von knapp 60 kDa (57569,28 Da) und ein theoretischer pl von 6,47 wurde mithilfe des Programms Compute pl/MW ermittelt. Durch Verwendung des Programms TMHMM konnte die Anwesenheit der für die Familie typischen 12 Transmembrandomänen bestätigt

Abb. 3.2.2 Transmembrandomänenvorhersage für die Proteinsequenz des Loc72175-Proteins mit TMHMM. Gezeigt ist die nach dem TMHMM-Algorithmus berechnete Wahrscheinlichkeit für die Lokalisation einer Transmembrandomäne in der NCU-G1-Polypeptidkette (rot), für Bereiche des Proteins im Cytosol (pink) und im Lumen eines vesikulären Zellkompartiments oder Extrazellularraum (blau). Die Balken im oberen Abschnitt der Grafik fassen das Ergebnis als Vorhersage für die Lokalisation zusammen.

Die erste der 12 Transmembrandomänen beginnt schon kurz hinter dem N-Terminus an Position 42. Nur zwei Transmembrandomänen haben eine geringere Größe als 22 Aminosäurereste, die Transmembrandomäne fünf 17 die Aminosärereste und letzte Transmembrandomäne (12)19 Aminosäurereste. Der größte intermembranöse Zwischenbereich (10) hat außen 53 Aminosäurereste und ist im lysosomalen Lumen lokalisiert, während der größte dem Cytosol zugewandte Bereich mit 40 Aminosäureresten den zweitgrößten intermembranösen Bereich des Proteins darstellt. Insgesamt sind Analyse zufolge 103 Reste im lysosomalen Lumen der und 135 Aminosäurereste im Cytosol lokalisiert, wobei Loc72175 dadurch, dass die terminalen Bereiche stets dem Cytoplasma zugewandt sind, einen zusätzlichen cytosolischen Bereich besitzt (Tab. 3.2.1). Ein Signalpeptid konnte nach Analyse mit dem Programm SignalP 3.0 nicht gefunden werden (siehe Abb. 3.2.3).

Domänenstruktur	Position	Erste Aminosäure	Letzte Aminosäure	Δ
01. Zwischenbereich	innen	1	41	40
01. Intramembranbereich	Membran	42	64	22

02Zwischenbereich	außen	65	78	13
02. Intramembranbereich	Membran	79	101	22
03. Zwischenbereich innen	innen	102	107	5
03. Intramembranbereich	Membran	108	130	22
04. Zwischenbereich	außen	131	134	3
04. Intramembranbereich	Membran	135	157	22
05. Zwischenbereich innen	innen	158	177	19
05. Intramembranbereich	Membran	178	195	17
06. Zwischenbereich	außen	196	209	13
06. Intramembranbereich	Membran	210	232	22
07. Zwischenbereich	innen	233	268	35
07. Intramembranbereich	Membran	269	291	22
08. Zwischenbereich	außen	292	305	13
08. Intramembranbereich	Membran	306	328	22
09. Zwischenbereich	innen	329	339	10
09. Intramembranbereich	Membran	340	362	22
10. Zwischenbereich	außen	363	416	53
10. Intramembranbereich	Membran	417	439	22
11. Zwischenbereich	innen	440	451	11
11. Intramembranbereich	Membran	452	474	22
12 Zwischenbereich	außen	475	483	8
12. Intramembranbereich	Membran	484	503	19
13. Zwischenbereich	innen	504	519	15
	02Zwischenbereich 02. Intramembranbereich 03. Zwischenbereich innen 03. Intramembranbereich 04. Zwischenbereich 04. Intramembranbereich 05. Zwischenbereich innen 05. Intramembranbereich 06. Zwischenbereich 06. Intramembranbereich 07. Intramembranbereich 08. Zwischenbereich 08. Intramembranbereich 08. Intramembranbereich 09. Zwischenbereich 10. Zwischenbereich 10. Intramembranbereich 11. Zwischenbereich 11. Intramembranbereich 12. Intramembranbereich 12. Intramembranbereich	02Zwischenbereichaußen02. IntramembranbereichMembran03. Zwischenbereich inneninnen03. IntramembranbereichMembran04. Zwischenbereichaußen04. IntramembranbereichMembran05. Zwischenbereich inneninnen05. IntramembranbereichMembran06. Zwischenbereichaußen06. IntramembranbereichMembran07. Zwischenbereichinnen07. IntramembranbereichMembran08. Zwischenbereichaußen08. IntramembranbereichMembran09. IntramembranbereichMembran09. IntramembranbereichMembran10. Zwischenbereichaußen11. IntramembranbereichMembran12. IntramembranbereichMembran12. IntramembranbereichMembran13. Zwischenbereichaußen13. Zwischenbereichinnen	02Zwischenbereichaußen6502. IntramembranbereichMembran7903. Zwischenbereich inneninnen10203. IntramembranbereichMembran10804. Zwischenbereichaußen13104. IntramembranbereichMembran13505. Zwischenbereich inneninnen15805. IntramembranbereichMembran17806. Zwischenbereichaußen19606. IntramembranbereichMembran21007. Zwischenbereichinnen23307. IntramembranbereichMembran26908. Zwischenbereichaußen29208. IntramembranbereichMembran30609. Zwischenbereichinnen32909. IntramembranbereichMembran34010. Zwischenbereichaußen34010. IntramembranbereichMembran41711. IntramembranbereichMembran44011. IntramembranbereichMembran45212. Zwischenbereichaußen45212. IntramembranbereichMembran48413. Zwischenbereichinnen504	02. Zwischenbereichaußen657802. IntramembranbereichMembran7910103. Zwischenbereich inneninnen10210703. IntramembranbereichMembran10813004. Zwischenbereichaußen13113404. IntramembranbereichMembran13515705. Zwischenbereich inneninnen15817705. IntramembranbereichMembran17819506. Zwischenbereichaußen19620906. IntramembranbereichMembran21023207. Zwischenbereichinnen23326807. IntramembranbereichMembran26929108. Zwischenbereichaußen29230508. IntramembranbereichMembran30632809. Zwischenbereichinnen32933909. IntramembranbereichMembran34036210. Zwischenbereichaußen34036210. IntramembranbereichMembran41743911. Zwischenbereichinnen44045111. IntramembranbereichMembran45247412. Zwischenbereichaußen45247412. Zwischenbereichaußen45247413. ZwischenbereichMembran48450313. Zwischenbereichinnen504519

Tab 3.2.1 Zuordnung von Sequenzabschnitten des Loc72175-Genproduktes zu den intramembranös lokalisierten Helices auf der Basis der TMHMMTransmembrandomänvorhersage. In der Tabelle sind die verschiedenen Bereiche (Intramembran- und Zwischenbereiche) des Loc72175 der intrazellulären Lokalisation (innen: cytosolisch, außen: luminal oder in der Membran) zugewiesen. Die jeweilige erste Aminosäure eines Proteinabschnittes ist in der dritten, die letzte in der vierten Spalte aufgeführt, während die Größen der jeweiligen Abschnitte in der letzten Spalte (Δ) aufgeführt sind.

Abb. 3.2.3 Signalpeptidvorhersage durch das Programm SignalP 3.0. Die Grafik verwendet drei verschiedene Scores um die Wahrscheinlichkeit für ein Signalpeptid und dessen Spaltstelle zu beschreiben. Der S-Score (grün) gibt dabei die Wahrscheinlichkeit für eine Proteinsequenz innerhalb eines Signalpeptids an während der C-Score (rot) die Wahrscheinlichkeit für die Funktion einer Spaltstelle zwischen Signalpeptid und Protein jeder Aminosäure zeigt. Für den Y-Score (blau) werden die Ergebnisse der ersten beiden Scores kombiniert. Dieser beschreibt so das endgültige Ergebnis der Vorhersage.

Um Hinweise für mögliche Glykosylierungsstellen zu erhalten, wurde das Programm NetNGlyc verwendet und dabei vier mögliche Positionen gefunden, welche die Konsensussequenz für N-Glykosylierungen Asn-X-Ser/Thr (Sequon) aufweisen (siehe Abb. 3.2.4). Alle Sequons (172, 372, 377 und 389) liegen außerhalb der Transmembrandomänen, wobei die erste Position (172) im Cytoplasma, die drei weiteren aber im Vesikellumen lokalisiert sind, was dafür spricht, dass nur die drei letzten auch wirklich glykosyliert werden.

3.2 Ergebnisse: Charakterisierung des Loc72175

		172 NTST		
501-GAVYKRLVAF	SVRYMRIQE			
451-QGIYMGWLTT	SGSAARILGP	VFISHVYTYL	GPRWAFSLVC	GIVVLTILLI-500
401-GCPIEQTWCL	YTPVIHLAQF	LTAAVLIGTG	YPACSVMSYT	LYSKVLGPKP-450
351-GFFILLPWGN	QFPKIQWEDL	HNSSTPNTTF	GEIIIGLW <mark>NS</mark>	SREDHSEQPT-400
301-WTQEQAVLYD	GILLVAFGVE	AVLVFMGVKL	LSKKIGERAI	LLGGFVVVWV-350
251-QEENTDEPQI	PEGSIDQVAV	VATNIVFFVV	LFIFAVYETI	LTPLTLDMYA-300
201-WDIIKLQVNM	YTAPVLLAAF	LGILNIILIL	FILREHRVDD	LGRQCKSVNF-250
151-AVVRSYIAGA	TSLQERTNAM	ANTSTCQALG	FILGPVFQTC	FALIGEKGVT-200
101-YRPRKEPLIV	SISISVAANC	LYAYVHVPAA	HNKYYMLIAR	GLVGFGAGNV-150
051-SVGFSIVIMS	IWPYLQKIDQ	TADASFLGWV	IASYSLGQMV	ASPLFGLWSN-100
001-MANLGSEAER	EPLLGPGSPG	SREWSEIETQ	EHYKSRWKSV	RILYLTMFLS-050

172 NTST	
372 NSST	
377 NTTF	
389 NSSR	

Abb. 3.2.4 Vorhersage für mögliche Glykosylierung von asparaginbasierenden Sequons innerhalb des NCU-G1-Proteins durch NetNGlyc. Die Aminosäuresequenz Asn-X-Ser/Thr beschreibt eine Konsensussequenz für mögliche N-Glykosylierungsstellen. "X" ist hierbei eine beliebige Aminosäure ausgenommen der Aminosäure Prolin. Oben ist die Sequenz des Loc72175-Proteins mit den gefundenen Sequons gezeigt. Insgesamt besitzt das Loc72175-Protein vier Asparaginreste innerhalb einer Konsensussequenz (blau). In der Tabelle unten sind die vier Sequons noch einmal zusammengefasst.

Des Weiteren wurden an einigen Stellen innerhalb der Sequenz des Loc72175-Proteins Abschnitte entdeckt, welche typische Eigenschaften für lysosomale Sortierungsmotive aufweisen (siehe Tab. 3.2.2), [1.2.6 ff.].

Aminosäure-Position	Sequenz	Art des Sortierungsmotivs	
13	EREPLL	Dileucin-basiert	
337	ERAILL	Dileucin-basiert	
134	YYML	Tyrosin-basiert	
287	YETI	Tyrosin-basiert	
411	YTPV	Tyrosin-basiert	
442	YSKV	Tyrosin-basiert	
477	YTYL	Tyrosin-basiert	
504	YKRL	Tyrosin-basiert	
514	YMRI	Tyrosin-basiert	
136	MLIARGLVGFG	Methionin-Glycin-basiert	
170	MANTSTCQALG	3 Methionin-Glycin-basiert	
326	MGVKLLSKKIG	KIG Methionin-Glycin-basiert	
437	MSYTLYSKVLG	Methionin-Glycin-basiert	

Tab. 3.2.2 Positionen und Tvp der in Loc72175 gefundenen Sortierungssignale.

3.2 Ergebnisse: Charakterisierung von Loc72175

Die allerdings meisten dieser Sequenzen liegen innerhalb von Membrandomänen, beziehungsweise sehr dicht daran oder sind der lysosomalen Matrix-Seite zugewandt, so dass diese für Adapterproteine und eine Sortierung des Loc72175 in die Lysosomen nicht, oder nur schwer zugänglich sind (an den Positionen 134, 136, 287, 326, 337, 411, 437, 442 und 504). Außerdem sind solche Signalmotive für gewöhnlich terminal lokalisiert diesen Vorraussetzungen [1.2.6, 177]. Unter wären nur zwei der Sortierungsmotive relevant. Am N-Terminus wurde der Sequenzabschnitt EREPLL (Aminosäure 9-14) gefunden, der dem Dileucin-basierten Typ nach dem Schema [E/D]XXX[LL/LI] entspricht, am C-Terminus die Sequenz YMRI (Aminosäure 514 - 517), die dem Tyrosin-basierten Typ vom Schema YXXO entspricht. Hierbei steht X für eine hydrophile Aminosäure, wogegen Θ für eine große sperrige Aminosäure mit hydrophober Seitenkette steht. In Abb. 3.2.5 ist die nach den ersten Ergebnissen der bioinformatischen Analyse erwartete Struktur des Loc72175-Proteins schematisch dargestellt.

Abb. 3.2.5 Schematische Abbildung des Loc72175-Proteins. Die lysosomale Membran ist leicht gelblich dargestellt, die grauen Zylinder stellen die 12 Transmembrandomänen dar. Nicht weiter spezifizierte Sequenzabschnitte sind als graue Fäden zu erkennen. Die ersten und letzen beiden Aminosäuren des Proteins sind als Kugeln dargestellt. Die speziellen Sortierungsmotive sind in farbigen Boxen gestellt, das Dileucin-basierte Motiv blau, das Tyrosin-basierte Motiv rot. Die Aminosäurerestpositionen der Sequons, an denen das Protein glykosyliert sein kann, sind als schwarze Zahlen zu erkennen.

118

3.2.2 Klonierung des Loc 72175-Genproduktes.

Die Herstellung der Loc72175-cDNA erfolgte durch eine Reverse Transkriptase-(RT-) RCR [2.2.1.15] und RNA, die zuvor aus Mausleber aufgereinigt wurde [2.2.1.13]. Für die weitere Amplifikation wurde eine nested PCR mit drei Primerpaaren verwendet, wobei das erste Primerpaar weiter außen an der cDNA ansetzt und die Folgenden an immer näher an dem für das Protein codierenden Bereich. Mit dem letzten Primerpaar wurde in einem dritten PCR-Schritt das Loc72175 rekombinant am 3'-Ende mit einer Not I-Schnittstelle, mit einer Sequenz für einen RGS-His6-Tag, beziehungsweise Myc-tag, und am 5'-Ende mit einer Hind III-Schnittstelle versehen. Das so erhaltene PCR-Produkt mit einer Größe von circa 1,5 kb wurde nach weiteren molekularbiologischen Schritten wie PCR-Produkt-Aufreinigung [2.2.1.19], Restriktionsverdau [2.2.1.9], Gelextraktion [2.2.1.11] und Ligation in den pcDNA3.1-Hygro⁺-Vektor über die Not I- und die Hind III-Schnittstellen kloniert [2.2.1.20]. Nach einer anschließenden Amplifikation, nach Transformation in E. coli DH5a [2.2.1.2, 2.2.1.3] und der Gewinnung der Plasmid-DNA durch DNA-Mini- und Midipreparation [2.2.1.6, 2.2.1.7], wurde diese für Transfektionen der humanen Zelllinien HeLa und HT1080 [2.2.3.4] verwendet.

3.2.3 Versuch der Analyse der Quantifizierung des Loc72175 in verschiedenen Geweben (Northern-Blot) und der Western-Blot-Analyse nach Expression in eukaryotischen Zellsystemen.

Zur Untersuchung der physiologischen Genexpression von Loc72175 wurde eine MTN-RNA-Blotmembran [2.2.1.24] verwendet. Diese Membran enthält gereinigte mRNA aus den Mausgeweben: Herz, Hirn, Milz, Lunge, Leber, Skelettmuskel, Niere und Hoden. Für die Detektion von Loc72175-spezifischer mRNA wurden drei DNA-Sonden durch PCR mithilfe der klonierten cDNA mit einer Länge von circa 300 bp [2.2.1.14] sowie [die Volllängen-DNA (1225 Nukleotide) hergestellt. Die Sonden wurden radioaktiv (³²P-ADP) markiert. Markierung, Bindung der Sonden an die Blotmembran, sowie Entwicklung des Photoscreens erfolgte wie im Methodenteil beschrieben. Die Entwicklungszeiten variierten zwischen 12 bis 48 Stunden. Die Effizienz der Methode und die

Qualität wurde durch auf dem gleichen Wege hergestellte cDNA-Sonden für die auf der Membran fixierte GAP-DH-mRNA (Glycerinaldehyd-3-Phosphat-Dehydrogenase-mRNA) kontrolliert. Bei keinem der Versuche konnten jedoch Signale detektiert werden. Um die Expression in Loc72175His6überexprimierenden emryonalen Maus-Fibroblasten (MEFs), HeLa- und HT100-Zellen zu analysieren, wurde versucht, das rekombinante Protein mittels SDS-PAGE [2.2.4.5] und Western-Blot [2.2.4.10] über α -His-Antikörper zu detektieren. Dafür wurde einerseits versucht das Protein aus transient transfizierten Zellen. die nachweislich die Proteinexpression in der Immunfluoreszenz [2.2.4.11] zeigten, andererseits das Protein aus einer Loc72175-Protein stabil exprimierenden HeLa- und HT1080-Zelllinie zu detektieren. Bei den embryonalen Mausfibroblasten, die hier zum Einsatz kamen, handelte es sich um eine μ 1-defiziente Zelllinie (μ 1-/-), die das μ 1-Polypeptid ektopisch exprimierte und damit keinen abnormen Phänotypus, jedoch eine weitaus höhere Kompetenz aufwies. Dadurch konnte die Transfektionseffizienz im Vergleich zu der Wildtyp-Zelllinie erheblich gesteigert werden. Die transient beziehungsweise stabil exprimierenden Zellen wurden mit einem Schaber geerntet, in PBS/Protease-Inhibitor-Mix (Roche) resuspendiert, durch Ultraschall lysiert und in Laemmli- (SDS-) -Probenpuffer aufgenommen. Schließlich wurden circa 100 µg Gesamtzellprotein durch eine SDS-PAGE getrennt, auf eine Nitrozellulosemembran geblottet und mit monoklonalen α -His-Antikörpern inkubiert. Die Entwicklung erfolgte schließlich nach Inkubation mit HRP-konjugierten α-Maus-Antikörpern mit Peroxid-haltiger Entwicklerlösung. Dieses Vorgehen führte jedoch zu keinem sichtbaren Proteinsignal.

Auch der Einsatz von mehr als 300 µg Gesamtzellprotein, eine Anreicherung von 100 µg Membranprotein durch Ultrazentrifugation [2.2.4.2] oder der Versuch, das Protein durch Immunpräzipitation [2.2.4.12] anzureichern führte zu keinem Erfolg. Um einem möglichen Proteinverlust während der Lyse der Zellen durch Ultraschall zu vermeiden wurde dieser Schritt durch eine Lyse der Zellen direkt in Laemmli-Probenpuffer ersetzt, doch auch hier war das Loc72175His6-Protein weder in HeLa- noch in HT1080-Zellen nach unterschiedlichen Wachstumszeiten von sechs bis 52 Stunden in transient tranfizierten Zellen oder in das Protein stabil exprimierenden Zellen durch

Western-Blot detektierbar. Parallel wurde diese Versuchsreihe auch mit dem Loc72175Myc jedoch ebenfalls ohne Erfolg durchgeführt.

3.2.4 Lokalisation des Loc72175-Protein durch Immunfluoreszenz.

Zur Untersuchung der zellulären Lokalisation des Loc72175-Proteins wurden HeLa- und HT1080-Zellen mit dem Plasmidkonstrukt Loc72175His6-, beziehungsweise Loc72175Myc-pcDNA3.1Hygro⁺ transfiziert und nach 24 bis 48 Stunden Wachstumszeit nach Abschluss des Transfektionsvorgangs (nach 6 Stunden), mittels Methanol-Fixierungsmethode [2.2.4.11.2] fixiert. Die Immunfluoreszenz erfolgte wie im Methodenteil beschrieben [2.2.4.11]. Zur Proteins wurden monoklonale Markierung des Maus-*a*-His-Antikörper verwendet, welche entweder direkt mit dem FITC-ähnlichen Chromatophor Alexa 488 konjugiert waren oder noch, wie auch die ebenfalls verwendeten Maus- α -c-Myc-Antikörper, durch einen an Alexa 488 konjugierten Ziege- α -Maus-Sekundärantikörper markiert werden mussten. Zur Gegenfärbung wurden Lysosomen spezifisch entweder mithilfe monoklonaler α -LAMP-2- oder polyklonaler a-Cathepsin-D-Antikörper und Alexa 546-konjugiertem Ziege-a-Kaninchen-α-Ziege-Antikörper Mausbeziehungsweise angefärbt. Die Markierung mit α -Myc-, als auch mit α -His-Antikörpern zeigt das Loc72175-Protein in intrazellulären Vesikeln, in denen es mit LAMP-2 kolokalisiert (siehe Abb. 3.2.6, 3.2.7).

Abb. 3.2.6 Intrazelluläre Lokalisation des Loc72175His6 in HT1080-Zellen. 32 Stunden nach der transienten Transfektion von HT1080-Zellen mit Loc72175His6 wurden die mit Methanol fixierten Zellen mit polyklonalen Antikörpern gegen humanes Cathepsin D (hCD) (α -Ziege IgGAlexa 546 (rot; A, D)) und monoklonalen Antikörpern gegen His-tag (α -Maus IgG-Alexa 488 (grün; B, E)) inkubiert (C und F: Überlagerung). Die beiden Reihen (A-C) und (D-F) zeigen hier unterschiedliche Zellen.

Abb. 3.2.7 Intrazelluläre Lokalisation des Loc72175His6/-Myc in HeLa-Zellen. 36 Stunden nach transienter Transfektion von HeLa-Zellen mit Loc72175His6 wurden die Zellen nach Fixierung mit Methanol mit Antikörpern gegen LAMP-2 (α -Maus IgG-Alexa 546 (rot; A, D und G)) und Maus- α -His-IgG-Alexa 488 (grün; B, E und H) inkubiert (C, F und I: Überlagerung). Hierbei zeigt die Reihe A-C eine Übersicht und die beiden Reihen D-F und G-I jeweils einen der markierten Bereiche vergrößert. Des Weiteren wurden HeLa-Zellen mit Loc72175Myc transfiziert und nach 36 Stunden Wachstumszeit nach der Fixierung mit Methanol mit polyklonalen Antikörpern gegen humanes Cathepsin D (α -Ziege IgG-Alexa 546 (rot; J)) und mit monoklonalen Antikörpern gegen c-Myc (α -Maus IgG-Alexa 488 (grün; (K)) inkubiert (L: Überlagerung).

Um sicher zu stellen, dass im Falle der Färbung von Loc72175-His durch den direkt an den Chromatophor gekoppelten Maus- α -His-Antikörper (bei gleichzeitiger Verwendung des Maus- α -LAMP-2-Antikörpers) der sekundäre Ziege- α -Maus-Antikörper nur den monoklonalen Antikörper für das Markerprotein (Maus- α -LAMP-2) bindet und nicht den Maus- α -His-Antikörper, wurde eine sequenzielle Immunfluoreszenz durchgeführt. Hierbei wurden zunächst die Antikörper gegen das Markerprotein verwendet, die dann von dem sekundären α -Maus-Antikörper gebunden wurden. Der His-tag wurde anschließend nach der vollständigen Entfernung von nicht gebundenem Sekundärantikörper mit dem Maus- α -His-Antikörper markiert [2.2.4.11.4].

3.2.5 Untersuchungen zu intrazellulären Sortierungsmotiven.

Die Aminosäuresequenz des Loc72175-Proteins enthält zwei Sortierungsmotive für den Transport in die Lysosomen [3.2.1]. Um zu untersuchen, ob diese Sequenzen für die Lokalisierung in den Lysosomen essentiell sind, wurden sie durch Mutagenese [2.2.1.16] an einzelnen kritischen Aminosäurepositionen mutiert. So wurden beide Leucine der Sequenz EREPLL, die einem der Dileucin-basierten Motive ähnelt, durch Alanine ersetzt (EREPAA). In der Sequenz YMRI, die dem Tyrosin-basierten Sortierungsmotiv ähnelt, wurde das Tyrosin gegen Alanin ausgetauscht (AMRI). Hierbei wurden sowohl die an den einzelnen Motiven (L13A,L14A und Y514A) mutierten Proteine, als auch das beiden Sortierungmotiven (L13A,L14A,Y514A) gleichzeitig an mutierte Loc72175His6 hergestellt. Die Präparation der DNA-Konstrukte und die Transfektion der Zellen erfolgten auf dem gleichen Wege wie bei den Untersuchungen des Wildtypproteins. Die Färbung des mutierten Proteins zeigte auch hier eine intrazelluläre Vesikelfärbung. Allerdings kolokalisierten sowohl die beiden einzeln mutierten (Abb. 3.2.8 und 3.2.9A-F), als auch das doppelt mutierte Loc72175His (Abb. 3.2.9G-L) nun nicht mehr mit dem Lysosomenmarkerprotein LAMP-2. Zusätzlich zu der veränderten Lokalisation wurde auch beobachtet, dass einerseits die Expression der mutierten Varianten des Loc72175His, bewertet anhand der Intensität der Fluoreszenzsignale, sowie auch die Zahl der proteinexprimierenden Zellen drastisch gegenüber dem Wildtyp reduziert war. Ob diese Phänomene mit einer schlechteren

124

Tranfektionseffizienz, einer verminderten Proteinexpression, einer reduzierten Überlebenszeit der tranzfizierten Zellen und/oder aber durch einen gesteigerten intrazellulären Abbau des Proteins einherging, konnte nicht geklärt werden.

Abb. 3.2.8 intrazelluläre Lokalisation des Loc72175L13A,L14AHis. HeLa-Zellen wurden nach transienter Transfektion, 36-stündiger Wachstumszeit und Fixierung mit Methanol mit Antikörpern gegen LAMP-2 (α -Maus IgG-Alexa 546 (rot; A und D)) und Maus- α -His-IgG-Alexa 488 (grün; B und E) inkubiert (C und F: Überlagerung). In der Reihe A, B und C ist eine Übersicht dargestellt, während in der Reihe D, E und F eine transfizierte Zelle vergrößert dargestellt ist.

Abb. 3.2.9 intrazelluläre Lokalisation der Loc72175-Mutanten Loc72175Y514AHis und Loc72175L13A,L14A,Y514AHis. Nach Transfektion von HeLa-Zellen mit Loc72175Y514AHis (A-F), bzw. Loc72175L13A,L14A,Y514AHis (G-L) und 36-stündiger Wachstumszeit wurden die Zellen mit Methanol fixiert und mit Antikörpern gegen LAMP-2 (α-Maus IgG-Alexa 546 (rot; A, D, G und J)) und Maus-α-His-IgG-Alexa 488 (grün; B, E, H und K) inkubiert (C, F, I und L: Überlagerung). In den Reihen A-C und G-I ist jeweils wieder eine Übersicht dargestellt, während in den Reihen D-F und J-L daraus stammende Detailaufnahmen gezeigt sind.

3.3 Charakterisierung von NCU-G1

Zur Identifizierung weiterer unbekannter lysosomaler Membranproteine wurde eine Kooperation mit der Arbeitsgruppe von Andrej Hasilik vom Institut für physiologische Chemie der medizinischen Fakultät der Universität Marburg eingegangen. Diese Gruppe hatte lysosomale Membranen aus humaner Plazenta gereinigt und die Proteine durch eindimensionale SDS-PAGE aufgetrennt. Anschließend wurden die Proteinbanden des Gels durch die Arbeitsgruppe von Matthias Mann von der Abteilung für Proteomics und Signaltransduktion am Max Planck Institut für Biochemie in München massenspektrometrisch analysiert. Hierbei wurde unter anderen ein Protein namens uncharacterized protein C1orf85 unter der gl-Nummer 15079485 identifiziert. Nach erster bioinformatischer Analyse der Maus-Variante namens kidney predominant protein NCU-G1 (accession number: AB027141) wurde das Protein (gi]7242875) als möglicher Kandidat für eine Lokalisation in der Lysosomenmembran eingestuft [3.3.1]. In der Abteilung Biochemie II in Göttingen wurde nun im Rahmen der vorliegenden Arbeit das NCU-G1-Gen kloniert. die intrazelluläre Lokalisation des Proteins durch indirekte Immunfluoreszenz [2.2.4.11] untersucht und das Protein weiter biochemisch charakterisiert.

3.3.1 Bioinformatische Analyse.

Die Aminosäuresequenz des NCU-G1-Proteins (Abb. 3.3.1) wurde wie die des Loc17275-Protein bioinformatisch charakterisiert, um Hinweise auf die Proteinstruktur und eine mögliche Zugehörigkeit zu einer bekannten Proteinfamilie, eine Lokalisation in der Membran und die intrazelluläre Lokalisation und Sortierung zu erhalten. Die von der Basensequenz des Gens abgeleitete Amisosäuresequenz des NCU-G1 besteht aus 404 Aminosäuren (entsprechend 1215 Nukleotiden inklusive Stop-Codon).

001-MFRCWGPHWG	WVPCAPTPWL	LLSLLVCSAP	FGLQGEETRQ	VSMEVISGWP-050
051-NPQNLLHIRA	VGSNSTLHYV	WSSLGPPAVV	LVATNTTQSV	LSVNWSLLLS-100
101-PDPAGALMVL	PKSSIQFSSA	LVFTRLLEFD	STNASEGAQP	PGKPYPPYSL-150
151-AKFSWNNITN	SLDLANLSAD	FQGRPVDDPT	GAFANGSLTF	KVQAFSRSGR-200
201-PAQPPRLLHT	ADVCQLEVAL	VGASPRGNHS	LFGLEVATLG	QGPDCPSVNE-250
251-RNSIDDEYAP	AVFQLNQLLW	GSSPSGFMQW	RPVAFSEEER	ARESALPCQA-300
301-STLHSTLASS	LPHSPIVQAF	FGSQNNFCAF	NLTFGAPTGP	GYWDQYYLCW-350
351-SMLLGMGFPP	VDIFSPLVLG	IMAVALGAPG	LMFLGGGLFL	LLRHRRYSEY-400
401-QSIN				

Abb. 3.3.1 Aminosäuresequenz des NCU-G1-Proteins

Das Protein besitzt eine theoretische Masse von circa 40 kDa und einen theoretischen pl von 5,73 (berechnet mit dem Programm Compute pl/MW, ExPASy proteomics tools). Zur Suche nach möglichen Transmembrandomänen wurde das Programm TMHMM Version 2.0 verwendet. Hierbei wurde dass sich mit hoher Wahrscheinlichkeit festgestellt. eine solche Transmembrandomäne über eine Distanz von 22 Aminosäuren im Bereich der Aminosäuren 370 bis 392 (siehe Abb. 3.3.2) befindet. Der N-terminale hydrophobe Bereich (Aminosäure 1 bis 35) kann mit hoher Wahrscheinlichkeit Signalpeptid zugeordnet werden, das stets einem auch hydrophobe Eigenschaften besitzt um die ER-Membran gut passieren zu können.

Abb. 3.3.2 Vorhersage von Transmembran-Helices im Protein NCU-G1 mithilfe von TMHMM Version 2.0. Gezeigt ist die nach dem TMHMM-Algorithmus berechnete Wahrscheinlichkeit für die Lokalisation einer Transmembrandomäne in der NCU-G1-Polypeptidkette (rot), für Bereiche des Proteins im Cytosol (pink) und im Lumen eines vesikulären Zellkompartiments oder Extrazellularraum (blau). Die Balken im oberen Abschnitt der Grafik fassen das Ergebnis als Vorhersage für die Lokalisation zusammen.

Eine Sekundärstrukturanalyse mit dem Prgramm HNN lieferte zudem eine weitere Bestätigung dafür, dass es sich bei der Membrandurchspannenden Domäne tatsächlich um eine Domäne mit Helix-Struktur handeln könnte (siehe Abb. 3.3.3). Hier wird ein großer α -helikaler Bereich aus zwei Abschnitten mit jeweils 15 Aminosäuren und nur einer Unterbrechung durch vier Aminosäuren für den Bereich der Aminosäuren 370 bis 394 vorrausgesagt. Die Vorhersage für eine Transmembrandomäne durch den TMHMM-Algorithmus zeigt diese in fast dem gleichen Bereich (Aminosäure 370 bis 392) an.

Position der Aminosäuren im Protein

Abb. 3.3.3 Sekundärstrukturvorhersage durch das HNN-Programm. Die Grafik zeigt die Proteinstruktur des NCU-G1 differenziert in α -helikale Bereiche (blau), Loop-Regionen (rot) und zufällige Windungen (pink). Die Aminosäuresequenz des C-terminalen α -helikalen Abschnitts ist angegeben.

Die Existenz eines Signalpeptids konnte mithilfe des Programms SignalP 3.0 vorhergesagt werden, mit der höchsten Wahrscheinlichkeit für eine mutmaßliche Spaltstelle durch die ER-ständige Signalpeptidsequenz zwischen den Aminosäuren 35 und 36 (siehe Abb. 3.3.4).

Abb. 3.3.4 Signalpeptidvorhersage durch den SignalP 3.0. Die Wahrscheinlichkeit für die Existenz eines Signalpeptids wird durch drei verschiedene Scores und dessen Spaltstelle angegeben. Der S-Score (grün) zeigt die Wahrscheinlichkeit für die Lokalisation der Aminosäuresequenz innerhalb eines Signalpeptids an, während der C-Score (rot) die Wahrscheinlichkeit für die Funktion als Aminosäuren einer Signalpeptid-Spaltstelle zeigt. Für den Y-Score (blau) werden die Ergebnisse der ersten beiden Scores kombiniert, um das endgültige Ergebnis der Vorhersage einer Signalpeptid-Spaltstelle anzuzeigen.

Im Bereich des C-Terminus des Proteins wurde des Weiteren eine Sequenz gefunden, die auf das Muster eines für eine lysosomale Lokalisation charakteristischen Sortierungsmotivs vom Tyrosin-basierten Typ YXXØ passt, mit der Sequenz YQSI (Aminosäuren 400 - 403). Das Programm NetNGyc wurde dazu verwendet, mögliche asparaginabhängige Glykosylierungsstellen zu ermitteln. Hierbei wurden in der Aminosäuresequenz des NCU-G1 neun Glykosylierungskonsensussequenzen vom Typ NXS/T, so genannte Sequons, gefunden, die alle im Bereich zwischen der Signalpeptidsspaltstelle und der membrandurchspannenden Domäne liegen (siehe Abb. 3.3.5). Das Programm gibt zusätzlich Sequons mit hoher Wahrscheinlichkeit für eine mögliche Glykosylierung gesondert an. Die Wahrscheinlichkeit wird dabei durch Verwendung verschiedener artifizieller Netzwerke ermittelt. Dabei wurden sechs dieser neun Sequons des NCU-G1-Proteins als sehr wahrscheinlich glykosyliert von dem Programm gesondert angegeben.
001~MFRCWGPHWG	WVPCAPTPWL	LLSLLVCSA	P FGLQGEETRQ	VSMEVISGWP~050
051~NPQNLLHIRA	VGS <mark>NST</mark> LHYV	WSSLGPPAV	V LVAT <mark>NTT</mark> QSV	LSVNWSLLLS~100
101~PDPAGALMVL	PKSSIQFSSA	LVFTRLLEF	D STNASEGAQP	PGKPYPPYSL~150
151~AKFSWNNITN	SLDLA <mark>NLS</mark> AD	FQGRPVDDP	I GAFA <mark>NGS</mark> LTF	KVQAFSRSGR~200
201~PAQPPRLLHT	ADVCQLEVAL	VGASPRG <mark>NH</mark>	S LFGLEVATLG	QGPDCPSVNE~250
251~RNSIDDEYAP	AVFQLNQLLW	GSSPSGFMQ	W RPVAFSEEER	ARESALPCQA~300
301~STLHSTLASS	LPHSPIVQAF	FGSQNNFCA	F NLTFGAPTGP	GYWDQYYLCW~350
351~SMLLGMGFPP	VDIFSPLVLG	IMAVALGAP	G LMFLGGGLFL	LLRHRRYSEY~400
401~QSIN				
	64	NSTL 16	6 NLSA	
	85	NTTQ 18	5 NGSL	
	94	NWSL 22	8 NHSL	
	133	NASE 33	1 NLTF	
	157	NITN		

Abb. 3.3.5 Vorhersage für mögliche Glykosylierungen von asparaginbasierten Sequons innerhalb des NCU-G1-Proteins durch NetNGlyc. Das Sequenzmotiv Asn-X-Ser/Thr beschreibt eine Consensussequenz für mögliche N-Glykosylierungsstellen. "X" ist hierbei eine beliebige Aminosäure ausgenommen der Aminosäure Prolin. Consensussequenzen für Glykosylierungen, die mit hoher Wahrscheinlichkeit glykosyliert sind, sind rot, die restlichen blau angefärbt. In der Tabelle unten sind die neun Sequons zusammengefasst.

Die Suche nach anderen mit NCU-G1 strukturverwandten Proteinen und nach Proteinfamilien, denen das NCU-G1 angehören könnte mit dem Programm Pfam-Blast gegen die Datenbank der NCBI lieferte das Ergebnis, dass NCU-G1 zu keinem bekannten Protein und keiner der Proteinfamilien der NCBI-Datenbank strukturelle Ähnlichkeiten oder Sequenz-Homologien aufweist.

Die Abb. 3.3.6 zeigt eine grafische Zusammenfassung der Ergebnisse der bioinformatischen Untersuchungen.

Abb. 3.3.6 Domänenstruktur des NCU-G1-Proteins nach bioinformatischer Sequenzanalyse. Die grafische Zusammenfassung der Ergebnisse der bioinformatischen Untersuchungen zeigt die Orientierung des Proteins in der Membran, alle neun möglichen glykosylierten Asparagine im Bereich 64-331, das Signalpeptid (1-35), die Transmembrandomäne (370-392) und das aus vier Aminosäuren bestehende Tyrosinbasierte Motiv mit der Sequenz YQSI, das vermutlich für eine Sortierung in die lysosomale Membran dient (zusammen mit dem C-terminalen Asparagin 404 durch eine Box hervorgehoben). Das reife Protein enthält kein Signalpeptid und beginnt N-terminal mit Asparagin 36.

3.3.2 Klonierung des NCU-G1 Proteins.

Die NCU-G1-cDNA wurde in Form eines in den pCMV-SPORT6-Vektor klonierten EST-Klons (AccNo: BC022547, 1563 bp, Quelle: Auge) in E. coli von Deutschen Ressourcenzentrum für Genomforschung GmbH-RZPD dem erhalten. Mit Hilfe Ampicillinresistenz der wurden nach einem Verdünnungsausstrich resistente Kolonien gepickt und die Plasmid-DNA wurde schließlich mithilfe eines Mini-Prep-Plasmid-Aufreinigungskits [2.2.1.6] isoliert. Die NCU-G1-DNA wurde unter Verwendung geeigneter Primer [2.1.6] durch PCR amplifiziert und dabei gleichzeitig mit den 5'-Nhe-I- und 3'-Not-I-Restriktionsschnittstellen und einer später im Protein C-terminalen lokalisierten G-RGS-*His6-tag*-Sequenz versehen, um es später mit einem α -His-Antikörper detektieren zu können (siehe Abb. 3.3.7). Durch einen Restriktionsverdau, einer Gel-Extraktion und Ligation wurde die NCU-G1-cDNA-His6-Sequenz in den pcDNA 3.1 Hygro⁺ ligiert [2.2.1.20]. Das Konstrukt wurde schließlich in E. coli DH5 α amplifiziert und durch eine Plasmid-DNA-Miniprep isoliert. Eine Kontrolle entsprechende wurde im Rahmen analytischen eines Restriktionsverdaus anschließender [2.2.1.18] und Sequenzierung durchgeführt. Durch eine weitere Amplifikation in E. coli und Isolierung der Plasmid-Konstrukt-DNA durch ein Palsmid-Midi-Preparations-Kit [Promega] ließen sich bei einer Transfektion in eukaryotische Zelllinien störende mikrobielle Endotoxine durch einen zusätzlichen Endotoxin-Entfernungsschritt effizienter entfernen. Die Konstrukt-DNA war so für die Transfektion in eukaryotische Zelllinien verwendbar.

H_2N-	Signalpeptid	luminaler Bereich des NCU-G1	Transmembrandomäne	YQSI	G-RGS-His	-соон

Abb. 3.3.7. Schematische Proteinstruktur des NCU-G1-His6. Die Struktur des NCU-G1His-Konstruktes ist in Blockform dargestellt. Das Signalpeptid ist gelb dargestellt, der luminale Bereich des Proteins blau. Der grüne Block stellt den Abschnitt dar, der die Transmembrandomäne enthält, während der blaue Block die Verbindung zwischen der Transmembrandomäne und dem Sortierungsmotiv (pink) darstellt. Der orange Abschnitt zeigt die auf einen Glycinrest folgende RGS-His6-Sequenz.

3.3.3 Expression von *NCU-G1-His6* und Charakterisierung des NCU-G1-His6-Proteins.

Nach Expression in HeLa-Zellen konnte das NCU-G1-His6-Protein im Western-Blot mit α -His-Antikörpern nachgewiesen werden. HeLa-Zellen wurden mit NCU-G1-His6-cDNA im Vektor pcDNA3.1Hygro⁺ transfiziert. Konfluente Zellen wurden mit Trypsin geerntet und durch Ultraschall aufgeschlossen. 100 µg Gesamtzellprotein wurden auf ein SDS-Polyacrylamidgel geladen und die Proteine nach der Trennung auf eine Nitrocellulose-Membran geblottet. Das NCU-G1-His6-Protein wurde selektiv mithilfe monoklonaler α -His-Antikörper und anschließend HRP-gekoppelter α -Maus-Antikörper detektiert. Die detektierte Proteinbande befindet sich im Verhältnis zum Größenmarker auf der Höhe von circa 70 kDa und war von diffuser Gestalt (siehe Abb. 3.3.8).

Abb. 3.3.8 Expression von NCU-G1His6 in HeLa-Zellen nach Tranfektion. HeLa-Zellen wurden mit dem NCU-G1HIS-pcDNA3.1Hygro-Konstrukt transient transfiziert und mit 400 U/ml Hygromycin für circa eine Woche selektiert. Die Zellen wurden mit Trypsin geerntet. Nach dem Zellaufschluss durch Ultraschall in PBS und in Gegenwart von Proteaseinhibitor [Roche] wurden 100 μ g Gesamtzellprotein durch eine 1D-SD-PAGE (15% Polyacrylamid) aufgetrennt. Anschließend wurden die Proteine vom Gel auf eine Nitrozellulosemembran geblottet und die NCU-G1-His6-Bande spezifisch mit Maus- α -His- und Ziege- α -Maus-HRP-Antikörpern im Western-Blot detektiert.

Stabile Zellklone ließen sich nicht herstellen, da die Zellen nach spätestens zwei Wochen nach Transfektion die Expression des NCU-G1-His6-Proteins soweit eingestellt hatten, dass es weder im Western-Blot noch in der Immunfluoreszenz nachgewiesen werden konnte.

3.3.4 Untersuchung zur Glykosylierung des NCU-G1.

Um zu untersuchen, ob die Abweichung der experimentell im Western-Blot bestimmten Masse von der theoretischen Masse durch eine Glykosylierung des Proteins bedingt ist, wurde Zelllysat direkt nach dem Zellaufschluss mit PNGase F deglykosyliert und im Western-Blot untersucht (siehe Abb. 3.3.9). Hierbei konnte nach Deglykosylierung mit PNGase F eine Reduktion des Molekulargewichts von circa 30 kDa beobachtet werden. Zudem ist die nun bei einer Größe von circa 40 kDa sichtbare NCU-G1-His6-Proteinbande nicht mehr diffus sondern schmal und scharf umrissen.

Abb. 3.3.9 Deglykosylierung des NCU-G1-His6-Proteins mit PNGase F. HeLa-Zellen wurden wie bereits beschrieben mit NCU-G1-His6-cDNA transfiziert exprimiert und das Zelllysat nach Zellaufschluss durch Ultraschall gewonnen. 100 μ g Gesamtprotein wurden wie im Methodenteil beschrieben [2.4.14] mit PNGase F über Nacht bei 37° C deglykosyliert und der gesamte Ansatz durch SDS-PAGE (15-%iges Acrylamidgel) aufgetrennt. Die Banden wurden durch einen Western-Blot mit Maus- α -His- und Ziege- α -Maus-HRP-Antikörpern detektiert. 1) Ohne Degklykosylierung. 2) Nach Deglykosylierung mit PNGase F. Der Standard ist in kDa angegeben.

Molekülmasse des mit PNGase behandelten und Die relative des unbehandelten NCU-G1-His6-Proteins wurde mithilfe eines Größenstandards grafisch bestimmt (Abb. 3.3.10). Durch die grafische Molekulargewichtsbestimmung wurde die relative Molekülmasse des glykosylierten NCU-G1-His-Proteins mit 68 kDa, des durch PNGase F deglykosylierten Proteins mit 39 und damit ein Zuckeranteil mit 29 kDa ermittelt

Abb. 3.3.10 Molekulargewichtsbestimmung des NCU-G1 vor und nach Deglykosylierung mit PNGase F. Anhand der Standardkurve wurden mithilfe der RF-Werte der Proteinbanden der glykosylierten Form (RF:0,27) und der deglykosylierten Form (RF:0,44) des NCU-G1-His6-Proteins die relative Molekülmasse und mit der Differenz (Z) die relative Molekülmasse des Zuckeranteils des NCU-G1 ermittelt.

3.3.5 Intrazelluläre Lokalisation von NCU-G1.

Um die intrazelluläre Lokalisation des NCU-G1-Proteins untersuchen zu können, wurden mit NCU-G1His6-cDNA transfizierte HeLa-Zellen nach 12 bis 24 Stunden Wachstum mit Methanol fixiert [2.2.4.11.2] und NCU-G1-His6-Protein durch sequenzielle Immunfluoreszenz detektiert [2.2.4.11.4]. Hierfür wurde ein monoklonaler Maus- α -His-Antikörper verwendet, an welchen bereits kovalent der zu FITC äquivalente Chromatophor Alexa 488 gekoppelt war. Zur Bestimmung der Lokalisation des NCU-G1-His6 wurden Markerproteine für verschiedene Zellorganellen verwendet. α -LAMP-1 beziehungsweise α LAMP-2-Antikörper dienten als Iysosomale Marker, α -PDI-Antikörper wurden zur Markierung des Endoplasmatischem Retikulums (ER) verwendet, während α -GM130-Antikörper zu Markierung von frühen Endosomen verwendet wurden. Zur Fluoreszenzmarkierung der Markerproteine wurden die aus der Maus, aus

dem Kaninchen oder aus der Ratte stammenden monoklonalen Antikörpern mit Ziege- α -Maus-, - α -Kaninchen oder - α -Ratte-Antikörper gebunden, an denen kovalent der Chromatophor Alexa 546 gekoppelt war. Um Kreuzreaktionen zu vermeiden, wurde die Immunfluoreszenz wieder sequenziell durchgeführt [2.2.4.11.4]. Durch diese Experimente konnte gezeigt werden, dass NCU-G1 (grün) weder mit PDI noch mit GM-130 kolokalisierte (siehe Abb. 3.3.11 A-L). Mit LAMP-1, beziehungsweise LAMP-2 konnte jedoch eine eindeutige Kolokalisation gezeigt werden (Abb. 3.3.12 A-F). Um zusätzlich zu den HeLa-Zellen eine weitere Referenz mit einer anderen Zelllinie zu erhalten, wurde die Kolokalisation auch in embryonalen Maus-Fibroblasten (MEF) durchgeführt (Abb. 3.3.13 A-F)). Hiermit wurde das NCU-G1His auch auf eine mögliche Kolokalisation des mit EEA1 untersucht, die allerdings nicht bestätigt wurde (Abb. 3.3.13 G-L). Da sich Wildtyp-MEFs nur mit geringer Effizienz transfizieren lassen, wurden hierfür AP1-defiziente Zellen (μ 1A -/-) verwendet, die μ 1A ektopisch exprimieren und dadurch keinen veränderten Phänotyp aufweisen, jedoch hohe Transfektionsraten zulassen.

3.3.11 Intrazelluläre Lokalisation des NCU-G1-Proteins in HeLa-Zellen. HeLa-Zellen wurden mit NCU-G1-His6-cDNA transient transfiziert und nach 18 Stunden Wachstumszeit auf Deckgläschen mit Methanol fixiert. Die Zellen wurden entweder mit Antikörpern gegen PDI (α -Maus IgG-Alexa 546 (rot; A, D)) und Maus- α -His-IgG-Alexa 488 (grün; B, E), beziehungsweise in der Überlagerung (C, F) oder mit Antikörpern gegen GM130 (α -Maus IgG-Alexa 546 (rot; G, J)) und Maus- α -His-IgG-Alexa 488 (grün; H, K) und Überlagerung (I, L) inkubiert. Die Reihen A-C und G-I zeigen jeweils die Übersicht, während die Reihen D-F und J-L die Detailaufnahmen der markierten Bereiche zeigen.

3.3.12 Intrazelluläre Lokalisation des NCU-G1-Proteins in HeLa-Zellen. 18 Stunden nach der transienten Transfektion von HeLa-Zellen mit NCU-G1His6-cDNA wurden die Zellen mit Methanol fixiert und mit Antikörpern gegen LAMP-2 (α -Maus IgG-Alexa 546 (rot; A, D)) und Maus- α -His-IgG-Alexa 488 (grün; B, E), beziehungsweise in der Überlagerung (C, F); inkubiert. Die Reihe A-C zeigt jeweils Übersichten, während die Reihe D-F die durch eine Box markierten Bereiche vergrößert darstellt.

3.3.13 Intrazelluläre Lokalisation des NCU-G1-Proteins in embryonalen Maus-Fibroblasten. 23 Stunden nach der transienten Transfektion von embryonalen Maus-Fibroblasten mit NCU-G1-His6-cDNA wurden die mit Methanol fixierten Zellen entweder mit Antikörpern gegen LAMP-1 (α -Rat IgG-Cy 3 (rot; A, D)) und Maus- α -His-IgG-Alexa 488 (grün; B, E) und in der Überlagerung (C, F) oder gegen EEA1 (α -Hase IgG-Alexa 546 (rot; G, J)) und Maus- α -His-IgG-Alexa 488 (grün; H, K) (Überlagerung: I, L) inkubiert. Die Reihen A-C und G-I zeigen jeweils Übersichten, während die Reihen D-F und J-L die durch eine Box markierten Bereiche vergrößert darstellen.

Neben Zellen mit der für Lysosomen typischen Vesikelfärbung wurden jedoch auch immer wieder Zellen beobachtet, die eine diffusere intrazelluläre Verteilung von NCU-G1 zeigten, das nur partiell mit LAMP-2 kolokalisierte und auch an der Cytomembran lokalisiert zu sein scheint (Abb. 3.3.14). Durch Reduktion der Zellwachstumszeiten nach der Transfektion konnte die Anzahl dieser Zellen reduziert, das Auftreten dieses Phänomens aber niemals vollständig verhindert werden. Da mit der Reduktion der Wachstumszeiten der Zellen auch eine Reduktion der NCU-G1-Expressionslevel einhergeht, kann ungewöhnlich vermutet werden. dass dieses Phänomen auf hohe Expressionslevel zurückzuführen ist und somit als Artefakt einer gestörten Proteinsortierungsmaschinerie aufgefasst werden kann.

3.3.14 Partielle intrazelluläre Fehllokalisation des NCU-G1-Proteins durch Überexpression HeLa-Zellen. 24 Stunden nach der transienten Transfektion von HeLa-Zellen mit der NCU-G1His6-cDNA wurden die Zellen mit Methanol fixiert und mit Antikörpern gegen LAMP-2 (α -Maus IgG-Alexa 546 (rot; A, D)) und Maus- α -His-IgG-Alexa 488 (grün; B, E), beziehungsweise in der Überlagerung (C, F) inkubiert. Die Reihe A-C zeigt eine Übersicht, während die durch eine Box markierten Bereiche der Reihe D-F Detailaufnahmen darstellen.

3.3.6 Untersuchungen zur intrazellulären Sortierung.

Die Aminosäuresequenz des NCU-G1 enthält am C-Terminus ein Tyrosinbasiertes Sortierungssignal mit der Sequenz YQSI. Für viele lysosomale Membranproteine, wie zum Beispiel das humane CD1b oder Endolyn/164 ist beschrieben worden, dass ein solches Sortierungssignal, bei dem wie in der NCU-G1-Sequenz kein Glycin vorangestellt ist, für den indirekten Transport vom TGN über die Plasmamembran zu den Lysosomen verantwortlich ist [177]. Um zu untersuchen, ob diese Sortierungssequenz auch für die Sortierung von NCU-G1 in die Lysosomen essenziell ist, wurde Tyrosin Y400 innerhalb des Sortierungsmotivs durch Mutagenese [2.2.1.16] durch ein Alanin Ala400 ersetzt. Mit der mutierten cDNA wurden HeLa-Zellen transfiziert und die Kolokalisation des Proteins NCU-G1-Y400A-His6 zusammen mit LAMP-2 und PDI durch Immunfluoreszenz untersucht. Hierbei wiesen alle Zellen eine diffuse intrazelluläre Verteilung des NCU-G1-Y400A-His6 auf, das weder mit LAMP-2 noch mit PDI kolokalisierte (Abb. 3.3.15). Im Gegensatz zum wt-NCU-G1, das in manchen Fällen auch an der Zellmembran gefunden wurde (siehe Abb. 3.3.14), ist die Mutante NCU-G1-Y400A-His6 eher netzartig in der Zelle verteilt.

3.3.15 Intrazelluläre Lokalisation der NCU-G1-Mutante NCU-G1Y400A in HeLa-Zellen. 18 Stunden nach der transienten Transfektion von HeLa-Zellen mit der NCU-G1His6-cDNA wurden die Zellen mit Methanol fixiert und mit Antikörpern gegen LAMP-2 (α -Maus IgG-Alexa 546 (rot; A, D)) und Maus- α -His-IgG-Alexa 488 (grün; B, E) und in der Überlagerung (C, F) oder mit Antikörper gegen PDI (α -Maus IgG-Alexa 546 (rot; G, J)) und Maus- α -His-IgG-Alexa 488 (grün; H, K) und Überlagerung (I, L) inkubiert. Die Reihen A-C bzw. G-I zeigen eine Übersicht, während die die Reihen D-F und J-L die durch eine Box markierten Detailaufnahmen zeigen.

4. Diskussion

4.1 Die biologischen Funktionen der neu identifizierten lysosomalen Proteine.

4.1.1 Das Genprodukt des Loc72175 zählt zu einer großen Familie von Transportproteinen. Ein Gendefekt führt zu der türkischen Variante der neuronalen ceroiden Lipofuscinose (vLINCL).

Das Loc72175-Protein enthält im vorderen Abschnitt eine Transporter-Domäne, wie sie beispielsweise bei Zuckertransportern vorkommt und im hinteren Abschnitt eine Domäne, welche zu einer großen Familie von 12- bis 14-Transmembrandomänen-Transportproteinen [177] gezählt wird, der MFS (Abb. 4.1). Diese Transporterfamilie stellt eine Gruppe von sekundär-aktiven Uni-, Symund Antiportern dar, die kleine Moleküle wie Monosaccharide [178, 179], Oligosaccharide, Inositole. Medikamente (Xenobiotika), Metabolite des Citratzyklus [180-182], Aminosäuren, Nukleotide, Organophosphatester und eine große Anzahl organischer und anorganischer Ionen [177, 183-185] in oder aus einem Kompartiment im Austausch gegen einen anderen Metaboliten oder Ion schleust [185]. Zu dieser Familie zählen zum Beispiel der Oxalat/Formiat-Antiporter, der Lactose/H⁺- Symporter, der P_i/Glycerol-3-Phosphat-Antiporter [186] und der Na-Phosphat-Symporter [184]. MFS ist eine der zwei größten Familien von Membrantransportern und wird ubiquitär in Bakterien, Archaen und eukaryotischen Zellen exprimiert [177]. Die MFS wurde im Jahr 2002 von bis dahin 17 beschriebenen Familien [187] um weitere 29 Familien erweitert [188]. Zum MFS-Protein Loc72175 existieren viele Orthologe in verschiedenen Organismen. So besitzt das humane Loc-72175 beispielsweise 82% Identität zu dem Mausprotein und 62% zu dem Ortholog aus Zebrafisch (Abb. 4.2). Die nächst ähnlichen Proteine im Menschen sind das *MFS domain 9 containing protein* (MFSD9, MGC11332) und das *tetracyclin transporter-like protein*, welches Ähnlichkeiten zum Tetracyclintransporter besitzt.

Abb. 4.1 Funktionelle Domänen der Loc-72175-Aminosäresequenz nach Pfam-Analyse. Für die Analyse wurde die Aminosäuresequenz des Proteins Loc72175 mit der gi|-Nummer 31541926 im FASTA-Format für eine BLAST-Homologiesuche gegen die NCBI-Pfam-Datenbank verwendet.

Abb. 4.2 Alignment de MFS-Protein (Loc72175) -Orthologen aus Zebrafisch, Krallenfrosch, Mensch und Maus. Zur Erstellung der Grafik wurde das Programm MAFFT Version 5.8 verwendet. Identische Aminosäuren sind gekennzeichnet durch blaue Färbung, die in drei Abstufungen gegliedert ist (das dunkelste Blau bedeutet Übereinstimmung in allen vier Spezies, während das hellste Blau Übereinstimmung in nur zwei Spezies markiert). Die schwarzen Boxen kennzeichnen die 12 Transmembranhelices für das humane Polypeptid.

In den in dieser Arbeit durchgeführten bioinformatischen Untersuchungen der Aminosäuresequenz des Loc72175-Proteins [3.2.1] wurden die N-terminalen Dileucin- beziehungsweise C-terminalen Tyrosin-basierten lysosomalen Sortierungsmotive EREPLL und YMRI gefunden, ein weiterer Hinweise für eine intrazelluläre Lokalisation in den Lysosomen. Die lysosomale Lokalisation konnte schließlich durch die Klonierung, rekombinante Expression in eukayotischen Zelllinien und anschließende Immunfluoreszenzuntersuchungen bestätigt werden.

4. **DISKUSSION**

Wie auch den löslichen lysosomalen Hydrolasen kommt den lysosomalen Transportproteinen auch eine bedeutsame Rolle bei der Aufrechterhaltung der Lysosomenfunktion zu. Können beispielsweise die Abbauprodukte, die bei der lysosomalen Degradation der verschiedensten Makromoleküle entstehen, aufgrund eines Transportdefektes das Kompartiment nicht mehr verlassen, so kommt es zur Akkumulation dieser Produkte und damit zum Anschwellen des Lysosoms begleitet vom Funktionsverlust, was schließlich zu den zellbiologischen Symptomen der zahlreichen lysosomalen Speicherkrankheiten führt. Da die Gene einer ganzen Reihe lysosomaler Transportproteine, deren Defekt zu Krankheiten führen, noch nicht identifiziert wurden, war es auch bei dem hier identifizierten MFS-Protein wahrscheinlich, dass es sich um ein Protein handelt, welches im Falle eines Defektes pathogene lysosmal assoziierte Befunde hervorruft. Als in der vorliegenden Arbeit das MFS-Protein als lysosomales Protein identifiziert wurde, gab es noch keinerlei veröffentlichte experimentelle Befunde zur Funktion, noch Hinweise für eine Assoziation des Genlokus zu einer bestimmten Krankheit. Im Laufe dieser Arbeit erschien jedoch eine Veröffentlichung von Eija Siintola et. al. vom Institut für Genetik der Universität Helsinki, Finnland, in der das Loc72175 (aufgrund der Familienzugehörigkeit zur MFS unter dem neuen Namen MFSd8) als lysosomales Membranprotein bestätigt und verschiedene Mutationen des Gens als Ursache für die türkische Variante der neuronalen ceroiden Lipofuscinose vLINCL (late infantile neuronal ceroide lipofuscinosis) identifiziert wurde [193].

Die neuronale œroide Lipofuscinose (NCL, Batten-Krankheit) ist eine autosomal rezessive lvsosomale Speicherkrankheit, die charakterisiert ist durch autofluoreszierende Speichermaterialien in vielen Zelltypen [189]. Diese Krankheit tritt für gewöhnlich bereits in der Kindheit oder in der frühen Jugend auf und verursacht Symptome wie schwere Hirnatrophie, Blindheit, epileptische Krämpfe, progressive Abnahme psychomotorischer Fähigkeiten und führt zum frühzeitigen Tod [190]. Bisher konnten zehn verschiedene Formen unterschieden und sieben verursachende Gene identifiziert werden (PPT1/CLN1 [MIM600722], TPP1/CLN2 [MIM607998], CLN3 [MIM607042], CLN5 [MIM608102], CLN6 [MIM606725], CLN8 [MIM607837], CTSD/CLN10 [MIM116840]) [189]. Die Gene der im Erwachsenenalter einsetzenden NCL (CLN4) [MIM204300], die der türkischen Variante (CLN7) [191], der im späten Kindesalter einsetzenden NCL (LINCL) [192] und die der CLN9-Variante [MIM609055] blieben noch unerkannt [189]. Bei türkischen Patienten werden ungefähr die Hälfte aller NCL-assoziierten Symptome von einer unterschiedlichen Variation der LINCL (vLINCL) verursacht. Diese Variation unterscheidet sich von den klassischen NCL-Formen einmal in dem durchschnittlich höheren Ausbruchalter (zwischen zwei und sieben Jahren), während der Verlauf der epileptischen Krampfanfälle für gewöhnlich weit schwerer ist als bei den klassischen NCLs [189]. Kurz nach der in der vorliegenden Arbeit gelungenen Identifizierung des MFS-Proteins in tritosomalen Membranpräparaten, der Klonierung, dem Nachweis der lysosomalen Lokalisation und den Untersuchungen den cytoplasmatischen zu Sortierungsmotiven erschien die Arbeit der finnischen Arbeitsgruppe (Siintola et. al., 2008) über das humane Orthologe des MFS-Proteins, Loc72175 [MGC33302, NM152778, humaner Chromosomen-Locus 4g28.1-g28.2]. Die Veröffentlichung beschreibt eine Homozygotizitätskartierung einer Gruppe von Patienten aus zehn Familien der türkischen Variante vLINCL, bei mit welchen durch Haplotypanalyse unter Ausschluss aller bekannten NCL-Loci Mutationen im humanen MFS-Gen zugeordnet werden konnten. Die Gruppe konnte neben der Identifikation der sechs verschiedenen Krankheit-auslösenden Mutationen der türkischen vLINCL eine ubiquitäre schwache Expression in verschiedenen Geweben [193] durch Northern-Blot Analyse zeigen. Außerdem konnte sie das humane HA-getagte MFSD8 in COS-1- und in HeLa-Zellen exprimieren und dessen lysosomale Lokalisation mithilfe von a-HA-Antikörpern in der Immunfluoreszenz nachweisen. Zur Kontrolle wurden hier Antikörper gegen die lysosomalen Markerproteine LAMP-1, CTSD und LBPA, das frühe endosomale Antigen (EEA-1), das ER-Markerprotein PDI und die golgispezifischen Markerproteine Giantin und MPR46 verwendet. In anderen Zellkompartimenten (Endoplasmatisches Retikulum, Golgi und frühe Endosomen) wurde das MFS-Protein nicht gefunden. Die Gruppe war trotz zahlreicher Versuche unter verschiedenen Bedingungen nicht imstande, die Expression des HA-getagten MFSD8 in transfizierten Zelllysaten im Western-Blot zu detektieren. Erst nach invitro-Translation war es möglich, im Western-Blot das Protein mit der erwarteten Größe von ~60 kDa nachzuweisen. Diese Daten bestätigen die Ergebnisse der vorliegenden Arbeit in Bezug auf die Lokalisation des MFS-Proteins in den Lysosomen, der Annahme, dass ein Gendefekt mit einer lysosomalen Krankheit assoziiert sein kann und nicht zuletzt auch die Probleme, ein solches Membranprotein biochemisch zu charakterisieren.

4.1.2 Das Protein NCU-G1 besitzt keinerlei Homologie zu anderen bekannten Proteinen.

Das Protein NCU-G1 ist das zweite Protein, dessen lysosomale Lokalisation in der vorliegenden Arbeit zellbiologisch untersucht wurde. Die Gen-Beschreibung NCU-G1 stammt von einer Genetik-Gruppe aus Japan um Hidechika Okada [194] aus der Abteilung Molekulare Biologie der Universität Nagoya City, die dieses Gen zufällig bei dem Versuch, ein potenzielles Prototypmolekül des Komplementfaktors C_3 aus embryonalen Mäusekarzinomzellen zu isolieren, kloniert haben. Diese Gruppe fand dabei durch intensive Northern-Blot Analysen heraus, dass das Protein ubiquitär, allerdings am stärksten in der Niere und in speziellen Bereichen des Gehirns exprimiert wird, wodurch das NCU-G1 auch den Namen kidney predominant protein 1 bekam. Durch Homologievergleiche der Aminosäure- und Nukleotidsequenzen konnte gezeigt werden, dass das NCU-G1-Protein ebenso wie das MFSD8-Protein konserviert ist und in vielen anderen Vertebraten Orthologe dazu existieren (Abb. 4.3). Gefunden wurden hierbei wie auch beim MFSD8 Orthologe aus Maus, Mensch, Krallenfrosch und Zebrafisch. Gerade der Abschnitt im Bereich der Transmembrandomäne und das Sortierungsmotiv scheinen hoch konserviert.

Spezifische Eigenschaften, Lokalisation und Funktion wurden in dieser Veröffentlichung nicht beschrieben. Die in der vorliegenden Promotionsarbeit durchgeführten Untersuchungen zeigen, dass das von der Arbeitsgruppe von Andrej Hasilik identifizierte NCU-G1 ein N-glykosyliertes Typ-1-Membranprotein ist, das unter Beteiligung eines C-terminalen Tyrosin-basierten Sortierungsmotivs in die Lysosomen transportiert wird. Das Protein scheint keinerlei Homologie zu bereits bekannten Proteinen oder einzelnen Proteindomänen zu besitzen. Dadurch werden Vorraussagen über dessen mögliche Funktion erheblich erschwert. Während die Rolle eines Transporters, wie sie aufgrund der 12-Transmembrandomänenstruktur für das MFSD8 wahrscheinlich ist, für NCU-G1 kaum in Frage kommt, wäre eine Funktion ähnlich den LAMP-Proteinen oder dem Nicastrin als Bindungspartner und Teil eines größeren membranassoziierten Komplexes, wie zum Beispiel des y-Secretase-Komplexes oder als Anker für Protein-Import-Aktivitäten der Lysosomen, Vesikeltransportoder oder als Erkennungssignal Vesikelfusionsvorgänge beispielsweise für Autophagosomen denkbar. Auch eine katalytische Enzymaktivität, wie bei der lysosomalen sauren Phosphatase wäre denkbar. Chromosomenanalysen von Patienten-DNA, welche Abnormalitäten in dem NCU-G1-Gen aufweisen, würden zu einer möglichen Assoziation des Gens zu einer bestimmten Krankheit führen. Ebenso könnten Knock-out-Modelle Aufschluss über wahrscheinliche pathologische Erscheinungsbilder bei Verlust des Proteins liefern.

			10	20	30		40	50	60	70	
mouse human xenopus zebrafish	1 1 1 1	MFRCWGPH MRGSVEC1 KTEAAA MS	NWGWVPCA WGWGHCA -GEMSCT	PTPWLLLS PSPLLLWT RGWRLILL IFKVSLICS	LLVCSA LLLFAA GLLCV LLLVVFGA	PFGLQG PFGLLG GLLGTR ARGFLG-R	EETRQV EKTRQV GQDESRKV GDAFRRKV	SMEVISG- SLEVIPN SVQYNPG SVELNPGL/	WPNP - QN WLGPLQN SSDTSVN APPLSLPPGV0	ILLHIRAVGSNST ILLHIRAVGTNST IVVHVRAVGDGNT SLVHLRGLGDNDT	66 67 65 65
	-	80	90	100		110	120	130	140	150	
mouse human xenopus zebrafish	67 68 66 66	LHYWSSL LHYWSSL IHYWSTL LHFVLCN4	.GPPÁVVL .GPLAVVM .GTPTVLL .GAPALLL	VATNTTOS VATNTPHS IYTHSETS VHSNSTRS	VLS <mark>VNW</mark> SL TLSVNWSL QLQVNWTK AVT <mark>V</mark> DWPE	LLSPDPAG LLSPEPDG LLSPAPQG FINSSSAG	ALMVLPKS GLMVLPKD ALRVEPEE SLRVEPES	SIQFSSALV SIQFSSALV SVSYATALL SVTYSSALV	/FTRLLÉFDS1 /FTRLLEFDS1 -FTRIFEYQD\ /FTRLWEYDD\	N - ASE - GAQPPO N - VSDTAAKPLO (NNTANF SGTDEK (NNTADPQKAAES	5 142 5 144 6 143 6 143 6 143
		160	170)	180	190	200	210	220	230	
mouse human xenopus zebrafish	143 145 144 144	KP <mark>YPPY</mark> SL RPYPPYSL YFYPPYNL SF <mark>YPPY</mark> EL	AKFSWNN ADFSWNN SEFLWEN QNFVWSE	II TNSLDLA II TDSLDPA ANATVNAT LNTT <mark>L</mark> NQS	NLSADFQG TLSATFQG SLSANLTG EHTVVLCG	RPVDDPTG HPMNDPTR SNTTDPSG GEK <mark>T</mark> Q	AF ANGSL TI TF ANGSL AI SF HNGSVSI SF SNGSL CI	FKVQAFSR FRVQAFSR FRISAYNT QVSVFESC	SGRPAQPPRLL SSRPAQPPRLL SGRDSSPPRLF QGRDEAWPSLL	HTADVCQLEVAL HTADTCQLEVAL HTANCTKLEFLV HNANSSQLRVWI	220 222 221 218
		240		250	260	270	280	2	290 3	00 310	
mouse human xenopus zebrafish	221 223 222 219	VGASPRGN I GASPRGN SGVRPRGN NGVTPRGN	IHSLFGLE IRSLFGLE INSRFALE INSRFILE	VATLGQGP VATLGQGP MVTI-EKE FQSV <mark>G</mark> DAG	DCPSVNER DCPSMQEQ GRRKMKSV FQSRVDMR	NSIDDEYA HSIDDEYA LSIDDEYT SSIDDEYT	PAVFQLNQI PAVFQLDQI PTIFEMMQI PSIFKVSEV	LWG LWG VAVAPNS WSSPVNS	SSPSGFMQWRF SLPSGFAQWRF SHARGFLQWKS SSVWGFSQWKF	VAFSEEERARES VAYSQKPGGRES VAYGSPSGSRAE VAYRKARPVFEE	5 294 5 296 0 298 0 296
		3	20	330	340	350) :	360	370	380 I	
mouse human xenopus zebrafish	295 297 299 297	ALPCQAST ALPCQASF LLPCQLYF ATACRHSE	LHSTLAS LHPALAY LQP - LNA L VFVN	SLPHSPIV SLPQSPIV TFTATSIA IGTPPSAVI	Q <mark>AFFGSQ-</mark> RAFFGSQ- HAYFGDDL QAYFTHN-	NNFCA NNFCA ADAYNLEA TRIYG	FNLTFGAP FNLTFGAS FNISFGIAI INISFGLAI	TGPGYWD - C TGPGYWD - C DGD - FYDKH EDPVFYDA1	QYYLOWSMLLO QHYLSWSMLLO HEFLSWSALIO FK <mark>YISWTVLM</mark> O	MGF PP VD I F SPL VGF PP VDGL SPL VGD PPRD SF S I L LGD PP SD SF SPL	367 369 374 368
			400	410	420	Signalmot	tiv				
mouse human xenopus zebrafish	368 370 375 369	VLGIMAVA VLGIMAVA VICIMAVA IIIIIITVC	LGAPGLW LGAPGLW LGTPLLL LVTPLVF	IFLG <mark>G</mark> GLFL ILLG <mark>G</mark> GLVL LIIGTVLV IIL <mark>G</mark> GVFV	- L L RHR - L L HHK T AVRHK - C VRKRT S	RYSEYQSI KYSEYQSI VYPNYQPI QSTAYEPI	N N N N				404 406 412 407

Abb. 4.3 Alignment der Orthologen des NCU-G1-Proteins aus Zebrafisch, Krallenfrosch, Mensch und Maus. Für diese Untersuchung wurde das Programm MAFFT Version 5.8 verwendet. Identische Aminosäuren sind durch blaue Färbung gekennzeichnet, die in drei Abstufungen gegliedert ist (das dunkelste Blau bedeutet Übereinstimmung in allen vier Spezies, während das hellste Blau Übereinstimmung in nur zwei Spezies markiert). Die schwarze Box kennzeichnet die Transmembranhelix im Maus-Protein und ist durch eine "I" gekennzeichnet. Das C-terminale tyrosinbasierte Signalmotiv ist ebenfalls durch eine Box eingefasst.

150

4.1.3 Weitere identifizierte Kandidaten für lysosomale Lokalisation.

Durch die in dieser Arbeit durchgeführte Analyse der tritosomalen Membranpräparationen konnten insgesamt 37 Proteine identifiziert werden, deren intrazelluläre Lokalisation bisher nicht genau beschrieben wurde. Aufgrund von Sequenzanalysen könnten 10 dieser Proteine eine Intramembrandomäne und drei eine Palmitoylierungsstelle enthalten und kommen daher als Kandidaten für eine membranassoziierte lysosomale Lokalisation in Frage. Das in dieser Arbeit zellbiologisch weiter charakterisierte Loc72175-Protein ist eines von ihnen. Es wurde kloniert und in eukaryotischen Zelllinien rekombinant mit einem His6-Tag markiert exprimiert. Die lysosomale Lokalisation dieses Proteins konnte nachgewiesen und die Bedeutung der am N- und C-Terminus lokalisierten lysosomalen Sortierungsmotive vom Dileucin- beziehungsweise Tyrosin-basierten Typ für den Transport zu den Lysosomen bestätigt werden. Auch bei einigen weiteren im Rahmen dieser Arbeit identifizierten Proteinen wurden mögliche lysosomale Sortierungsmotive gefunden. Diese waren aber stets weiter vom jeweiligen Terminus entfernt, wodurch Loc72175 als das Protein mit der höchsten Wahrscheinlichkeit für eine lysosomale Lokalisation eingeschätzt wurde. Ob es sich bei den anderen Proteinen ebenfalls um funktional lysosomale Proteine handelt, bleibt zu klären. Auch für die drei identifizierten Proteine, bei denen keine Transmembrandomäne vorhergesagt werden konnte und die möglicherweise über Palmitoylierungen in der Membran verankert sind, besteht die Möglichkeit einer lysosomalen Lokalisation. Zur weiteren Untersuchung wäre zunächst durch cDNA-Klonierungen, Zelltransfektionen und zellbiologische Untersuchungen die Frage zu klären, ob die Proteine mit lysosomalen Markerproteinen (zum Beispiel LAMP-1 oder -2) in der Zelle kolokalisieren.

4.2 Kritische Diskussion der Methodik

4.2.1 Reinheit der tritosomalen Membranproteinpräparation.

4.2.1.1 Lysosomale und nicht-lysosomale Membranproteine.

Das Ziel der Arbeit war es lysosomale Membranproteine zu identifizieren. Daher stellt sich die Frage nach der Reinheit der Proteinpräparation, die für die Analyse eingesetzt wurde, das heißt die Frage, wie viele Proteine der Präparation integrale Proteine der Lysosomenmembran sind. Wie viele dagegen stammen aus kontaminierenden Membranen wie denen von Mitochondrien, Mikrosomen und anderen Vesikeln? Wie hoch ist der Anteil membranassoziierter oder löslicher nicht membranassoziierter Proteine? Hier ist zunächst zu klären, welche Proteine als membranständig angesehen und daher Ziel der Reinigung innerhalb der Untersuchung waren.

Das Lysosom ist ein von einer Membran umhülltes Kompartiment, in dessen Membran aber auch in dessen Inneren, der Matrix, zahlreiche Proteine existieren (Abb. 4.4). Neben den integralen Membranproteinen, welche die Membran mit einer oder mehreren Transmembandomänen durchspannen (Abb. 4.4 (1)), können auch nicht integrale Membranproteine, die der Membran durch eine hydrophobe Proteindomäne nur angelagert (4.4 (2)) oder durch einen hydrophoben nichtproteinogenen Anker wie zum Beispiel Glykosylphosphatidylinositol-Anker, S-Palmitoylcysteinylreste oder C-terminale S-Farnesylcysteinmethylester in der Membran verankert sind, mit der Membran assoziiert sein (Abb. 4.4 (3)). Wieder andere Proteine, die wie die Proteine mit nicht proteinogenen Ankern keine hydrophoben Bereiche aufweisen müssen, sind durch Interaktion mit anderen Membranproteinen mit der Membran assoziiert und von daher als periphere Membranproteine zu betrachten (Abb. 4.4 (4)). Transmembranproteine besitzen in der Regel hydrophobe Helix- oder β -Faltblattbereiche, welche die Membran durchspannen und recht zuverlässig mit spezieller Software auf Basis der Aminosäuresequenz vorhergesagt werden können. Periphere Membranproteine, die allein über Protein-Protein-Interaktionen mit der Membran assoziiert sind, sind allein durch bioinformatische Analysen nicht als membranassoziiert zu erkennen. Zu den peripheren Membranproteinen werden zum Beispiel viele

4. **DISKUSSION**

cytosolische Proteine gezählt, die ihre Rolle bei Aktionen ausführen wie zum Beispiel dem Vesikeltransport, der Vesikelfusion oder auch der Ausknospung von Vesikeln aus Donormembranen wie der Plasmamembran bei der AP-2vermittelten Endocytose. Die in der vorliegenden Arbeit angewandte Methodik zur Reinigung tritosomaler Membranen wurde gewählt, um bevorzugt integrale Membranproteine und Proteine mit direkter Wechselwirkung mit der Lipidschicht über hydrophobe Anteile der Proteine zu konzentrieren. Schwach assoziierte lösliche Proteine oder Proteine, die über Protein-Protein-Wechselwirkungen an Membranproteinen haften, sollten durch den Waschschritt mit Na₂CO₃ bei alkalischem pH entfernt werden [161].

Ein Problem bei der Reinigung spezifisch lysosomaler Membranproteine beruht darauf, dass die lysosomale Matrix nicht ausschließlich Lysosomen-spezifische Enzyme beinhaltet, sondern auch zahlreiche Substrate enthält, die in das Lysosom geschleust werden, darunter viele zelluläre und extrazelluläre Proteine, die daher jederzeit in den Lysosomen gefunden werden können (Abb. 4.4 (5)). Darunter können sich auch integrale Membranproteine befinden, die nun keine spezifische Funktion für die Lysosomen erfüllen sondern lediglich als Substratproteine für den Abbau in die Lysosomen transportiert wurden. Diese integralen Membranproteinsubstrate sind nun meistens im lysosomalen Lumen wiederum Teil von kleinen Vesikeln, die unter dem Begriff Lipofuscin beschrieben wurden (Abb. 4.4 (6)) [195]. Bei einer Lysosomenreinigung und anschließenden Isolierung der Membranen werden solche Membranproteinsubstrate mitgereinigt und tragen somit zur Kontamination der Präparation bei. Des Weiteren wird wohl nie ganz auszuschließen sein, dass auch andere Organellen und verschiedene Transportvesikel wie Phagosomen, Sekretvesikel, Golgi-Vesikel, Mikrosomen und Peroxisomen aber auch größere Organellen wie Mitochondrien und sogar Kernund Plasmamembran-Fragmente und damit auch deren Membran- und Membran-assoziierte Proteine mit isoliert werden (Abb. 4.4 (7)). Die Frage nach der Qualität der Präparationen stellt sich hier in der Anreicherung spezifisch lysosomaler Proteine im Gegensatz zur Abreicherung von Proteinen anderer Organellen.

Abb. 4.4 Schematische Übersicht über die in einer Lysosomenfraktion zu erwartenden Proteine. 1: integrale lysosomale Membranproteine; 2: nicht-integrale lysosomale Membranproteine; 3: lysosomale Membranproteine, die über nichtproteinogene Molekülreste (z. B. GPI- und S-Palmitoyl-Anker) in der Membran verankert sind: 4: periphere lysosomale Membranproteine, die über Wechselwirkungen mit anderen membranständigen Proteinen mit der Membran assoziiert sind; 5: lösliche lysosomale Matrix- und Substratproteine; 6: Membranproteine, die als Substrat in als Lipofuscin bezeichneten intralysosomalen Membrankompartimenten lokalisiert sind; 7: Proteine anderer Organellen wie Golgi-Vesikel, Mikrosomen und Mitochondrien.

4.2.1.2 Die enzymatischen Aktivitäten repräsentativer Markerenzyme deuten auf einen geringen Anteil nicht-lysosomaler Enzyme in der F2-Fraktion hin.

Die Ergebnisse der Untersuchung der Aktivität verschiedener Markerenzyme deuten auf einen geringen Anteil mitochondrialer Kontaminanten in der Lysosomenpräparation hin. Sie zeigen gegenüber dem postnukleären Überstand eine Erhöhung des Verhältnisses der Aktivität der lysosomalen Markerproteine β -N-Acetyl-Hexosaminidase und β -Glucosidase gegenüber der Aktivität der mitochondrialen Succinat-Dehydrogenase um den Faktor 70 beziehungsweise 60. Im Western-Blot konnte sowohl zunächst in der L-Fraktion als auch später in der F2-Fraktion eine deutliche Anreicherung der lysosomalen Markerproteine Cathepsin D und LAMP-1 als auch eine Abreicherung des mitochondrialen Markerproteins Porin beobachtet werden. Sowohl durch die Bestimmung der Enzymaktivitäten als auch durch die Western-Blot-Analyse der verschiedenen

Fraktionen der verschiedenen Reinigungsschritte konnte gezeigt werden, dass die lysosomalen Markerproteine stellvertretend für die Lysosomen als Organellen gegenüber den mitochndrialen effizient angereichert werden konnten. Allerdings lassen diese Daten nur Schlüsse auf relative und keine absoluten Proteinmengen zu.

Nach der Reinigung der Lysosomen wurden die Membranen durch Zentrifugation bei 100.000 x g und Waschen mit Na₂CO₃-Puffer (pH 11) und NH₄CO₃-Puffer (pH 8) gewonnen [2.2.4.2]. Hierbei wurde keine direkte quantitative Analyse zur Anbeziehungsweise Abreicherung von Membranproteinen gegenüber nicht-Membranproteinen beziehungsweise lysosomalen Proteinen gegenüber nichtlysosomalen Proteinen durchgeführt. Eine Abschätzung der Reinheit erlauben die Ergebnisse der Massenanalyse der Membranproteinfraktion nur sehr begrenzt, da die Anzahl der gefundenen bekannten Proteine pro Organell, und die Anzahl der gefundenen Proteine mit möglicher Lokalisation in der Membran und die Häufigkeit der Identifizierung eines bestimmten Proteins keine quantitativen Aussagen über die relative oder absolute Proteinkonzentration und damit die Qualität der Präparation erlauben. Durch eine Identifizierung beispielsweise eines mitochondrialen Proteins kann zwar eine qualitative Aussage über eine mitochondriale Kontamination gemacht werden, eine guantitative Analyse ist aber aufgrund von Variablen wie Größe des Proteins, der Konzentration im jeweiligen und der Analysierbarkeit der zugehörigen Peptide bei der Organell massenspektrometrischen Analyse nicht möglich. Des Weiteren bleibt unklar, ob eine Kontaminate als Substratmolekül aus der lysosomalen Matrix oder aber aus einem anderen Organell stammt.

In der vorliegenden Arbeit wurde daher qualitativ eine Identifizierung der Proteine in der Präparation der lysosomalen Membran durchgeführt, nicht aber eine Bestimmung der Proteinkonzentrationen in der Probe. Insgesamt wurden dabei 125 Membranproteine und membranassoziierte Proteine identifiziert. Nur 69 der gefundenen Proteine waren lösliche Proteine, deren bekannte Funktion nicht in Verbindung mit Membranen stand, darunter 20 an das Cytoskelett und möglicherweise darüber an Membranen assozierte Proteine. Damit konnten 65% der identifizierten Proteine Membran- bzw. membranassoziierten Proteinen zugerechnet werden. In der Tabelle 4.1 sind diese Ergebnisse noch einmal zusammen gefasst.

intrazelluläre	Anzahl verschiedener	Anteile in %		
Lokalisation	identifizierter Polypeptide			
Lysosomen	21	11		
Transportvesikel/	42	22		
Cytoskelett				
Mitochondrien	53	27		
ER / Golgi	18	9		
Peroxisomen	1	0,5		
Plasmamembran /	22	11		
Cytosol/Extrazellularraum				
Kern / Kernmembran	1	0,5		
unklar	37	19		
Insgesamt	194	100		
Reziehung zu				
Mambuan an				
Membranen				
integrale und periphere	125	63,5		
Membranproteine				
lösliche Proteine oder				
nicht bekannt	69	36,5		
membranassoziiert				

Tab. 4.1 Intrazelluläre Lokalisation und Membranassoziation der identifiziertenProteine.

4.2.1.3 Durch die Präparation und Proteinanalyse der tritosomalen Membran mit MALDI-TOF-MS und -MS/MS wurden auch viele nicht lysosomenspezifische Proteine identifiziert.

Eine Schwierigkeit bei der massenspektrometrischen Untersuchung von bevorzugt integral membranständigem Proteinmaterial ist, dass diese Proteine einen relativ hohen Anteil an hydrophoben Bereichen aufweisen. Da diese Bereiche meist einer komplexen Faltung unterliegen und gerade in nicht delipidierten Präparationen noch von Lipiden umgeben sind, können sie für die tryptische Spaltung schwer zugänglich sein. Die Folge ist, dass die entsprechenden Proteine schlechter abgebaut werden als andere lösliche Proteine. In den zugehörigen Massenlisten der Membranproteine finden sich daher relativ wenige Peptidmassen, wodurch sich die Identifizierung schwieriger gestaltet. Eine weitere Schwierigkeit, der man gerade bei massenspektrometrischen Analysen von komplexen Proben mit MALDI-TOF-MS begegnet, resultiert aus der unterschiedlichen Anzahl von Peptidmassen für Proteine verschiedener Größe und unterschiedlichem Modifizierungsgrad. Je größer ein Polypeptid ist, umso mehr Peptidmassen können nach Abspaltung erfasst und für die Datenbanksuche eingesetzt werden. Kleine Proteine sind daher schwerer zu identifizieren als große Proteine. Eine auswertbarer weitere Reduktion Peptidmassen ergibt sich durch Peptidmodifikationen wie N-Glykosylierungen, Acetylierungen, Phosphorylierungen, Lipidierungen, Farnesylierungen oder Palmitoylierungen. Da solche Modifikationen in den Sequenz-Einträgen der Proteindatenbanken nicht berücksichtig sind, gelten die entsprechend modifizierten Peptide als nicht zum Protein zugehörig. Da die Glykosylierung eine häufige Modifikation lysosomaler Proteine darstellt, wurde im Rahmen dieser Arbeit eine Deglykosylierung der Proteinproben mit PNGase F vor dem Verdau mit Trypsin durchgeführt, wodurch die Ausbeute an Peptiden wesentlich gesteigert werden konnte. Eine weitere Problematik ergibt sich aus der Komplexität der Proben. Durch die Verwendung des 2D-16BAC- und des 2D-CTAB-SDS-PAGE-Systems konnten die Proteine zum Teil aufgetrennt und damit die Komplexität der Probe erniedrigt werden. Durch die Delipidierung der Probe vor der Trennung gingen jedoch viele Proteine selektiv verloren. Da zum anderen die Proteinspots eine immer noch große Zahl verschiedener Proteine enthielten, Identifizierung war die der stark unterrepräsentierten Proteine, die jedoch von besonderem Interesse waren, immer noch problematisch. Die Folge einer hohen Komplexität der Proben ist eine ebenfalls hohe Komplexität auf Peptidebene und damit der Massenlisten nach In-Gel-Verdau und massenspektrometrischer Analyse. Diese Komplexität kann beispielsweise zu Überlagerungen ähnlicher Peptidmassen, die aber unterschiedlichen Peptiden zugrunde liegen, führen. Da die Peptide bei der Ionisierung um die Protonen konkurrieren, beobachtet man das Phänomen, dass manche Peptide besser, manche schlechter und viele bei großer Komplexität der

Probe überhaupt nicht ionisieren und daher für die Analyse verloren gehen. Die Massengenauigkeit, die bei der Datenbanksuche und der Proteinidentifizierung eine entscheidende Rolle spielt, nimmt mit der Komplexität der Probe ab, die Anzahl der artifiziellen Massen und damit das Hintergrundrauschen dagegen zu. Eine wesentliche Verbesserung bei der Identifizierung vieler Proteine wurde durch die MS/MS-Technik erreicht, wodurch die Fragmentdaten einzelner Peptide ermittelt werden konnten, die in der Datenbanksuche in den meisten Fällen zu einer Erhöhung der Signifikanz der Proteinidentifikationen führte. Allerdings konnten bei dem hier verwendeten MALDI-TOF-Gerät (Ultraflex 2, Bruker) nur die MS/MS-Spektren von den vier am stärksten repräsentierten Peptiden erstellt werden, wodurch von vermutlich fünf bis 20 Proteinen pro Probe hauptsächlich die Identifikation des am stärksten repräsentierten Proteins bestätigt werden konnte. Aufgrund dieser Schwierigkeiten war es notwendig, eine manuelle Nachbearbeitung der Mascot-Suchergebnisse durchzuführen, die verschiedene Kriterien wie zum Beispiel Deamidierungen von Asparaginen in N-Seguons innerhalb der Peptide von deglykosylierten Proteinen [3.1.9] mit in die Auswertung einbezog.

Vor kurzem wurde von der Gruppe von Andrej Hasilik in Marburg eine eigene lysosomale Proteom-Studie veröffentlicht, welche mit hohem technischen Aufwand ausgeführt wurde [196]. In dieser Studie wurden durch LC-MS/MS insgesamt weit über tausend Proteine identifiziert (1565), welche nach umfangreicher statistischer Auswertung auf 86 mögliche neue und 58 bekannte lysosomale Membran- oder membranassozijerte Proteine reduziert werden konnten. Von in dieser Studie identifizierten Proteinen wurden bislang auch zwei kloniert und Immunfluoreszenzuntersuchungen zum Nachweis der intrazellulären Lokalisation durchgeführt. Dabei wurde für beide Proteinen eine lysosomale Lokalisation nachgewiesen.

Zusammenfassung

Lysosomen sind intrazelluläre vesikuläre Kompartimente, die begrenzt von einer Membran und definiert durch ein saures Milieu eine Vielzahl verschiedener löslicher und Membran-gebundener Proteine wie Hydrolasen und Transportsysteme enthalten. Sie existieren in allen kernhaltigen eukaryotischen Zelltypen und sind vor allem für die Degradation und das Recycling aller zellulären Makromoleküle verantwortlich. Die lysosomale Matrix enthält wahrscheinlich mehr als fünfzig verschiedene Hydrolasen wie Proteasen, Nukleasen, Glykosidasen, Sulfatasen und Lipasen, während die lysosomale Membran viele Transportsysteme zum Export der verschiedenen durch die Abbauvorgänge entstehenden Abbauprodukte, zum Import von Protonen zur Erhaltung des sauren pH und Rezeptorproteine für die verschiedenen Protein-Sortierungsvorgänge enthält. Viele Defekte lysosomaler Membranproteine führen zu lysosomalen Speicherkrankheiten, wie zum Beispiel die verschiedenen Formen der ceroiden neuronalen Lipofuscinose (CNL). Da davon ausgegangen werden kann, dass der Großteil der in der lysosomalen Membran integrierten Proteine noch nicht identifiziert wurde, war das Ziel dieser Arbeit, neue lysosomale Membranproteine durch eine Proteomics-Analyse zu identifizieren und anschließend die lysosomale Lokalisation durch Immunfluoreszenz zu überprüfen. Hierfür wurde die Leber von Mäusen präpariert, die mit dem Detergens Tyloxapol (Triton WR1339) behandelt waren. Die durch den Einbau des Detergens in die Lysosomen gebildeten Tritosomen niedriger Dichte ließen sich durch verschiedene Zentrifugationsschritte zum großen Teil von den anderen Zellorganellen abtrennen. Nach Offnung der

Tritosomen und Reinigung der tritosomalen Membran durch Behandlung mit Natriumcarbonat wurden die Membranproteine durch die Verwendung verschiedener PAGE-Systeme gereinigt, deglykosyliert um störende Zuckermodifikationen der Proteine zu entfernen und nach In-Gel-Verdau mit Trypsin mit MALDI-TOF-MS und -MS/MS analysiert. Dadurch wurden insgesamt 193 verschiedene Proteine identifiziert, von denen nach einer bioinformatischen Untersuchung 13 als Kandidaten für eine Lokalisation in der lysosomalen Membran eingestuft wurden. Von diesen Kandidaten wurde das Protein mit dem Namen hypothetisches Protein Loc17275 und ein weiteres Protein (NCU-G1), das in einer Kooperation mit der Arbeitsgruppe von Prof. Dr. Andrej Hasilik identifiziert wurde, kloniert und rekombinant in den eukaryotischen Zelllinien HeLa, HT1080 und MEF exprimiert. Bei dem Loc17275-Protein handelt es sich um ein Typ-3-Membranprotein, welches der MFS Proteinfamilie zugeordnet werden kann, während es sich bei dem NCU-G1 um ein Typ-1-Membranprotein handelt. Für beide Proteine konnte eine lysosomale Lokalisation durch die Kolokalisation mit dem lysosomalen Markerprotein Lamp-2 bestätigt werden, während in Versuchen mit anderen Markerproteinen eine Lokalisation in anderen intrazellulären Komparimenten wie dem ER, Golgi und den frühen Endosomen nicht gezeigt werden konnte. Darüber hinaus wurden terminale lysososomale Sortierungsmotive vom Tyrosin- und vom Dileucin-basierten Typ in beiden Proteinen auf ihre Bedeutung bei der intrazellulären Sortierung zu den Lysosomen untersucht, indem kritische Aminosäuren innerhalb dieser Seguenzen mutiert wurden. Dabei zeigte sich, dass alle der hier untersuchten Motive für eine Sortierung in die Lysosomen essentiell sind.

[1] Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, Griffiths G. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes.

macrophages. Enforment of cathepsin in in early endo

J Biol Chem. 1998 Apr 17;273(16):9842-51.

[2] Kauppi M, Simonsen A, Bremnes B, Vieira A, Callaghan J, Stenmark H, Olkkonen VM.

The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking.

J Cell Sci. 2002 Mar 1;115(Pt 5):899-911.

- [3] Dell'Angelica EC, Mullins C, Caplan S, Bonifacino JS.
 Lysosome-related organelles.
 FASEB J. 2000 Jul;14(10):1265-78.
- [4] De Duve C. (1973)
 Lysosomes in Biology and Pathology,
 Vol. 1, Dingle J. T. and Fell H. B. , eds., Amsterdam: North-Holland, pp. 3-40.
- Jaiswal JK, Andrews NW, Simon SM.
 Membrane proximal lysosomes are the major vesicles responsible for calcium- dependent exocytosis in nonsecretory cells.
 J Cell Biol. 2002 Nov 25;159(4):625-35. Epub 2002 Nov 18.
- [6] Reddy A, Caler EV, Andrews NW.
 Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes.

Cell. 2001 Jul 27;106(2):157-69.

[7] Stenbeck G.

Formation and function of the ruffled border in osteoclasts.

Semin Cell Dev Biol. 2002 Aug;13(4):285-92.

[8] Bagshaw RD, Mahuran DJ, Callahan JW.

Lysosomal membrane proteomics and biogenesis of lysosomes. Mol Neurobiol. 2005 Aug;32(1):27-41.

- [9] Kornfeld S, Mellman I.The biogenesis of lysosomes.Annu Rev Cell Biol. 1989;5:483-525.
- [10] Kornfeld S.

Lysosomal enzyme targeting.

Biochem Soc Trans. 1990 Jun;18(3):367-74.

- [11] Eskelinen EL, Tanaka Y, Saftig P.At the acidic edge: emerging functions for lysosomal membrane proteins.Trends Cell Biol. 2003 Mar;13(3):137-45.
- [12] Finbow ME, Harrison MA.The vacuolar H+-ATPase: a universal proton pump of eukaryotes.Biochem J. 1997 Jun 15;324 (Pt 3):697-712.
- [13] Forgac M.Regulation of vacuolar acidification.Soc Gen Physiol Ser. 1996;51:121-32.
- Bagshaw RD, Mahuran DJ, Callahan JW.
 A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle.
 Mol Cell Proteomics. 2005 Feb;4(2):133-43. Epub 2004 Dec 2.
- [15] Callahan JW.

Molecular basis of GM1 gangliosidosis and Morquio disease, type B. Structure-function studies of lysosomal beta-galactosidase and the nonlysosomal beta-galactosidase-like protein.

Biochim Biophys Acta. 1999 Oct 8;1455(2-3):85-103.

[16] Mahuran DJ.

Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):105-38.

[17] Misasi R, Dionisi S, Farilla L, Carabba B, Lenti L, Di Mario U, Dotta F. Gangliosides and autoimmune diabetes.Diabetes Metab Rev. 1997 Sep;13(3):163-79.

[18] Clarke LA.

The mucopolysaccharidoses: a success of molecular medicine.

Expert Rev Mol Med. 2008 Jan 18;10(1):e1.

[19] Jansen AC, Cao H, Kaplan P, Silver K, Leonard G, De Meirleir L, Lissens W, Liebaers

I, Veilleux M, Andermann F, Hegele RA, Andermann E.

Sanfilippo syndrome type D: natural history and identification of 3 novel mutations in

the GNS Gene.

Arch Neurol. 2007 Nov;64(11):1629-34.

- Jakóbkiewicz-Banecka J, Wegrzyn A, Wegrzyn G.
 Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases.
 J Appl Genet. 2007;48(4):383-8.
- [21] Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet. 1998 Jul;19(3):286-8.
- [22] Pearce DA.

Localization and processing of CLN3, the protein associated to Batten disease: where is it and what does it do? J Neurosci Res. 2000 Jan 1;59(1):19-23.

[23] Haskell RE, Carr CJ, Pearce DA, Bennett MJ, Davidson BL.Batten disease: evaluation of CLN3 mutations on protein localization and function.

Hum Mol Genet. 2000 Mar 22;9(5):735-44.

- [24] Kyttälä A, Ihrke G, Vesa J, Schell MJ, Luzio JP.
 Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells.
 Mol Biol Cell. 2004 Mar;15(3):1313-23. Epub 2003 Dec 29.
- [25] Kyttälä A, Yliannala K, Schu P, Jalanko A, Luzio JP.
 AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif.
 J Biol Chem. 2005 Mar 18;280(11):10277-83. Epub 2004 Dec 13.
- Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ,
 Callahan JW, Mahuran DJ.Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane.
 J Biol Chem. 2003 Jul 18;278(29):26687-94. Epub 2003 May 7.
- [27] Pasternak SH, Callahan JW, Mahuran DJ.
 The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox

from a lysosomal perspective.

J Alzheimers Dis. 2004 Feb;6(1):53-65.

- [28] Misasi R, Dionisi S, Farilla L, Carabba B, Lenti L, Di Mario U, Dotta F.
 Gangliosides and autoimmune diabetes.
 Diabetes Metab Rev. 1997 Sep;13(3):163-79.
- Künzli BM, Berberat PO, Zhu ZW, Martignoni M, Kleeff J, Tempia-Caliera AA, Fukuda M, Zimmermann A, Friess H, Büchler MW.
 Influences of the lysosomal associated membrane proteins (Lamp-1, Lamp-2) and Mac-2 binding protein (Mac-2-BP) on the prognosis of pancreatic carcinoma.
 Cancer. 2002. Jap 1:94(1):228-39

Cancer. 2002 Jan 1;94(1):228-39.

- [30] Cabrita MA, Hobman TC, Hogue DL, King KM, Cass CE.
 Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes.
 Cancer Res. 1999 Oct 1;59(19):4890-7.
- [31] Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M.
 Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease).
 Nature. 2000 Aug 24;406(6798):906-10.

[32] Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ,

Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M.

Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease).

Nature. 2000 Aug 24;406(6798):906-10.

[33] Tuñón T, Guerrero D, Urchaga A, Nishino I, Ayuso T, Matsuda Y, Caballero MC, Berjón J, Imizcoz MA.
 Danon disease: A novel Lamp-2 gene mutation in a family with four affected members.

Neuromuscul Disord. 2007 Nov 29.

[34] Wreden CC, Wlizla M, Reimer RJ.

Varied mechanisms underlie the free sialic acid storage disorders.

J Biol Chem. 2005 Jan 14;280(2):1408-16. Epub 2004 Oct 29.

[35] Aula N, Salomäki P, Timonen R, Verheijen F, Mancini G, Månsson JE, Aula P, Peltonen L.

The spectrum of SLC17A5-gene mutations resulting in free sialic acid-storage diseases

indicates some genotype-phenotype correlation.

Am J Hum Genet. 2000 Oct;67(4):832-40. Epub 2000 Aug 17.

[36] Gahl WA.

Disorders of lysosomal membrane transport--cystinosis and Salla disease. Enzyme. 1987;38(1-4):154-60.

 [37] Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ.
 Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene.
 Science, 1007, Jul 11:277(5222):222.5

Science. 1997 Jul 11;277(5323):232-5.

- [38] Kalatzis V, Cherqui S, Antignac C, Gasnier B.
 Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter.
 EMBO J. 2001 Nov 1;20(21):5940-9.
- [39] Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van't Hoff W, Antignac C.
 A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis.
 Nat Genet. 1998 Apr;18(4):319-24.
- [40] Wreden CC, Wlizla M, Reimer RJ.
 Varied mechanisms underlie the free sialic acid storage disorders.
 J Biol Chem. 2005 Jan 14;280(2):1408-16. Epub 2004 Oct 29.
- [41] Mellman I.Endocytosis and molecular sorting.Annu Rev Cell Dev Biol. 1996;12:575-625.
- [42] Rothman JE, Wieland FT.Protein sorting by transport vesicles.Science. 1996 Apr 12;272(5259):227-34.

Literaturverzeichnis

- [43] Schekman, R. and Orci, L. (1996). Coat proteins and vesicle budding. Science 271, 1526-1533.
- [44] Hirst J, Robinson MS.Clathrin and adaptors.Biochim Biophys Acta. 1998 Aug 14;1404(1-2):173-93.
- [45] Smith CJ, Pearse BM.Clathrin: anatomy of a coat protein.Trends Cell Biol. 1999 Sep;9(9):335-8.
- [46] Boehm M, Bonifacino JS.Adaptins: the final recount.Mol Biol Cell. 2001 Oct;12(10):2907-20.
- [47] Reusch U, Bernhard O, Koszinowski U, Schu P.AP-1A and AP-3A lysosomal sorting functions.Traffic. 2002 Oct;3(10):752-61.
- [48] Le Borgne R, Planque N, Martin P, Dewitte F, Saule S, Hoflack B. The AP-3-dependent targeting of the melanosomal glycoprotein QNR-71 requires a di-leucine-based sorting signal. J Cell Sci. 2001 Aug;114(Pt 15):2831-41.
- [49] Boehm M, Bonifacino JS.Genetic analyses of adaptin function from yeast to mammals.Gene. 2002 Mar 20;286(2):175-86.
- [50] Hirst J, Robinson MS.Clathrin and adaptors.Biochim Biophys Acta. 1998 Aug 14;1404(1-2):173-93.
- [51] Scales SJ, Gomez M, Kreis TE.Coat proteins regulating membrane traffic.Int Rev Cytol. 2000;195:67-144.
- [52] Kirchhausen T.Adaptors for clathrin-mediated traffic.Annu Rev Cell Dev Biol. 1999;15:705-32.
- [53] Dell'Angelica EC, Mullins C, Bonifacino JS.AP-4, a novel protein complex related to clathrin adaptors.J Biol Chem. 1999 Mar 12;274(11):7278-85.
- [54] Hirst J, Bright NA, Rous B, Robinson MS.
Characterization of a fourth adaptor-related protein complex.

Mol Biol Cell. 1999 Aug;10(8):2787-802.

- [55] Jackson T.Transport vesicles: coats of many colours.Curr Biol. 1998 Aug 27;8(17):R609-12.
- [56] Dell'Angelica EC, Klumperman J, Stoorvogel W, Bonifacino JS.
 Association of the AP-3 adaptor complex with clathrin.
 Science. 1998 Apr 17;280(5362):431-4.
- [57] Ellgaard L, Helenius A.Quality control in the endoplasmic reticulum.Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91.
- [58] Mellman I.Endocytosis and molecular sorting.Annu Rev Cell Dev Biol. 1996;12:575-625.
- [59] Bonifacino JS, Traub LM.Signals for sorting of transmembrane proteins to endosomes and lysosomes.Annu Rev Biochem. 2003;72:395-447. Epub 2003 Mar 6.
- [60] Bonifacino JS, Dell'Angelica EC.Molecular bases for the recognition of tyrosine-based sorting signals.J Cell Biol. 1999 May 31;145(5):923-6.
- [61] Schmid SL.

Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem. 1997;66:511-48.

- [62] Robinson MS.Adaptable adaptors for coated vesicles.Trends Cell Biol. 2004 Apr;14(4):167-74.
- [63] Reitman ML, Kornfeld S.
 Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes.
 J Biol Chem. 1981 Dec 10;256(23):11977-80.
- [64] Hunziker W, Geuze HJ.Intracellular trafficking of lysosomal membrane proteins.Bioessays. 1996 May;18(5):379-89.
- [65] Kirchhausen T, Bonifacino JS, Riezman H.

Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol. 1997 Aug;9(4):488-95.

- [66] Obermu[°] Iler S, Kiecke C, von Figura K, Ho[°] ning S. The tyrosine motifs of Lamp 1 and LAP determine their direct and indirect targetting to lysosomes. J Cell Sci 2002;115:185–194.
- [67] Rohrer J, Schweizer A, Russell D, Kornfeld S. The targeting of lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J Cell Biol 1996;132:565–576.
- [68] Tikkanen R, Obermüller S, Denzer K, Pungitore R, Geuze HJ, von Figura K, Höning S.

The dileucine motif within the tail of MPR46 is required for sorting of the receptor in endosomes.

Traffic. 2000 Aug; 1(8):631-40.

- [69] Wick DA, Seetharam B, Dahms NM.Basolateral sorting signal of the 300-kDa mannose 6-phosphate receptor.Am J Physiol Gastrointest Liver Physiol. 2002 Jan;282(1):G51-60.
- [70] Storch S, Braulke T.
 Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3.
 J Biol Chem. 2001 Feb 9;276(6):4298-303. Epub 2000 Nov 8.
- [71] Rohn WM, Rouillé Y, Waguri S, Hoflack B.
 Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system.
 J Cell Sci. 2000 Jun;113 (Pt 12):2093-101.
- [72] Mallet WG, Maxfield FR.
 Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.
 J Cell Biol. 1999 Jul 26;146(2):345-59.
- [73] Trowbridge IS, Collawn JF, Hopkins CR.Signal-dependent membrane protein trafficking in the endocytic pathway.Annu Rev Cell Biol. 1993;9:129-61.
- [74] Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I, Miyatake S, Saito T,Gallusser A, Kirchhausen T, Bonifacino JS.Interaction of tyrosine-based sorting signals with clathrin-associated proteins.

Science. 1995 Sep 29;269(5232):1872-5.

- [75] Rapoport I, Chen YC, Cupers P, Shoelson SE, Kirchhausen T.
 Dileucine-based sorting signals bind to the beta chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif-binding site.
 EMBO J. 1998 Apr 15;17(8):2148-55.
- [76] Harter C, Mellman I.
 Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol. 1992 Apr;117(2):311-25.
- [77] Briken V, Jackman RM, Dasgupta S, Hoening S, Porcelli SA.
 Intracellular trafficking pathway of newly synthesized CD1b molecules.
 EMBO J. 2002 Feb 15;21(4):825-34. Erratum in: EMBO J 2002
 Mar15;21(6):1504.
- [78] Ihrke G, Bruns JR, Luzio JP, Weisz OA.
 Competing sorting signals guide endolyn along a novel route to lysosomes in MDCK cells.
 EMBO J. 2001 Nov 15;20(22):6256-64.
- [79] Le Borgne R, Alconada A, Bauer U, Hoflack B.
 The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins.
 J Biol Chem. 1998 Nov 6;273(45):29451-61.
- [80] Dell'Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999 Jan;3(1):11-21.
- [81] Dell'Angelica EC, Aguilar RC, Wolins N, Hazelwood S, Gahl WA, Bonifacino JS.

Molecular characterization of the protein encoded by the Hermansky-Pudlak syndrome type 1 gene.

J Biol Chem. 2000 Jan 14;275(2):1300-6.

[82] Rous BA, Reaves BJ, Ihrke G, Briggs JA, Gray SR, Stephens DJ, Banting G, Luzio JP.

Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes.

Mol Biol Cell. 2002 Mar;13(3):1071-82.

- [83] Yang W, Li C, Ward DM, Kaplan J, Mansour SL.
 Defective organellar membrane protein trafficking in Ap3b1-deficient cells.
 J Cell Sci. 2000 Nov;113 (Pt 22):4077-86.
- [84] Simpson F, Peden AA, Christopoulou L, Robinson MS.
 Characterization of the adaptor-related protein complex, AP-3.
 J Cell Biol. 1997 May 19;137(4):835-45.
- [85] Rohrer J, Schweizer A, Russell D, Kornfeld S.
 The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane.
 J Cell Biol. 1996 Feb;132(4):565-76.
- [86] Robinson MS.

100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies. J Cell Biol. 1987 Apr;104(4):887-95.

- [87] Huang F, Nesterov A, Carter RE, Sorkin A.
 Trafficking of yellow-fluorescent-protein-tagged mu1 subunit of clathrin adaptor AP-1 complex in living cells.
 Traffic. 2001 May;2(5):345-57.
- [88] Le Borgne R, Hoflack B.Protein transport from the secretory to the endocytic pathway in mammalian cells.

Biochim Biophys Acta. 1998 Aug 14;1404(1-2):195-209.

 [89] Molloy SS, Anderson ED, Jean F, Thomas G.
 Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis.
 Tranda Call Biol. 1000, Jan 0(1):28–25.

Trends Cell Biol. 1999 Jan;9(1):28-35.

- [90] Zizioli D, Meyer C, Guhde G, Saftig P, von Figura K, Schu P.Early embryonic death of mice deficient in gamma-adaptin.J Biol Chem. 1999 Feb 26;274(9):5385-90.
- [91] Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, von Figura K, Schu P. mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors

EMBO J. 2000 May 15;19(10):2193-203.

- [92] Valdivia RH, Baggott D, Chuang JS, Schekman RW.
 The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins.
 Dev Cell. 2002 Mar;2(3):283-94.
- [93] Dell'Angelica EC, Ohno H, Ooi CE, Rabinovich E, Roche KW, Bonifacino JS.
 AP-3: an adaptor-like protein complex with ubiquitous expression.
 EMBO J. 1997 Mar 3;16(5):917-28.
- [94] Ihrke G, Kyttälä A, Russell MR, Rous BA, Luzio JP.Differential use of two AP-3-mediated pathways by lysosomal membrane proteins.

Traffic. 2004 Dec;5(12):946-62.

- [95] Pearse BM, Robinson MS.Clathrin, adaptors, and sorting.Annu Rev Cell Biol. 1990;6:151-71.
- [96] Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S, Schekman R, Yeung T.

COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes.

Cell. 1998 Apr 17;93(2):263-75.

- [97] Janvier K, Bonifacino JS.
 Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins.
 Mol Biol Cell. 2005 Sep;16(9):4231-42. Epub 2005 Jun 29.
- [98] Schekman R, Orci L.Coat proteins and vesicle budding.Science. 1996 Mar 15;271(5255):1526-33.
- [99] Ooi CE, Dell'Angelica EC, Bonifacino JS.
 ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes.
 J Cell Biol. 1998 Jul 27;142(2):391-402.

[100] Takatsu H, Sakurai M, Shin HW, Murakami K, Nakayama K.Identification and characterization of novel clathrin adaptor-related proteins.J Biol Chem. 1998 Sep 18;273(38):24693-700.

Zhu Y, Drake MT, Kornfeld S.
 ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes.
 Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5013-8.

[102] Fukuda, M.: Lysosomal membrane glycoproteins: Structure, biosynthesis, and intracellular trafficking.

J. Biol. Chem 266, 21327-330 (1991).

- [103] Peters C, von Figura K.Biogenesis of lysosomal membranes.FEBS Lett. 1994 Jun 6;346(1):108-14.
- [104] Hunziker, W. & Geuze, H.J.: Intracellular trafficking of lysosomal membrane proteins.

BioEssays 18, 379-89 (1995).

[105] Beertsen W, Willenborg M, Everts V, Zirogianni A, Podschun R, Schröder B, Eskelinen EL, Saftig P.
Impaired phagosomal maturation in neutrophils leads to periodontitis in lysosomal-associated membrane protein-2 knockout mice.
J Immunol. 2008 Jan 1;180(1):475-82.

- [106] Eskelinen EL, Tanaka Y, Saftig P.At the acidic edge: emerging functions for lysosomal membrane proteins.Trends Cell Biol. 2003 Mar;13(3):137-45.
- [107] Demirel O, Waibler Z, Kalinke U, Grünebach F, Appel S, Brossart P, Hasilik A, Tampé R, Abele R.
 Identification of a lysosomal peptide transport system induced during dendritic cell development.
 J Biol Chem. 2007 Dec 28;282(52):37836-43. Epub 2007 Oct 31.
- Zou Y, Wang H, Shapiro JL, Okamoto CT, Brookes SJ, Lyngstadaas SP, Snead ML, Paine ML.
 Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1.
 Biochem J. 2007 Dec 15;408(3):347-54.
- [109] Eskelinen EL, Tanaka Y, Saftig P.At the acidic edge: emerging functions for lysosomal membrane proteins.

Trends Cell Biol. 2003 Mar;13(3):137-45.

- [110] Kundra R, Kornfeld S.
 Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis.
 J Biol Chem. 1999 Oct 22;274(43):31039-46.
- [111] Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 2007 Jan 24;26(2):313-24.
- Binker MG, Cosen-Binker LI, Terebiznik MR, Mallo GV, McCaw SE, Eskelinen EL, Willenborg M, Brumell JH, Saftig P, Grinstein S, Gray-Owen SD.
 Arrested maturation of Neisseria-containing phagosomes in the absence of the lysosome-associated membrane proteins, LAMP-1 and LAMP-2.
 Cell Microbiol. 2007 Sep;9(9):2153-66. Epub 2007 May 15.
- [113] Eskelinen EL, Tanaka Y, Saftig P.At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003 Mar;13(3):137-45.
- [114] Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P.
 LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase.
 Cell. 2007 Nov 16;131(4):770-83.
- [115] Griffiths GM.Gaucher disease: forging a new path to the lysosome.Cell. 2007 Nov 16;131(4):647-9.
- [117] Selivanova A, Winblad B, Dantuma NP, Farmery MR.
 Biogenesis and processing of the amyloid precursor protein in the early secretory pathway.
 Biochem Biophys Res Commun. 2007 Jun 15;357(4):1034-9. Epub 2007 Apr 19.
- [118] Carlsson, S.R., Roth, J., Piller, F. & Fukuda, M.: Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. J. Biol. Chem. 263, 18911-19 (1988).
- [119] Carlssson, S. R., Lycksell, P.-O. & Fukuda , M.: Assignment of O-glycan attachment sites to hinge-like regions of human lysosomal membrane

glycoproteins lamp-1 and lamp-2. Arch. Biochem. Biophys. 304, 65-73(1993).

- [120] Granger, B.L., Green, S.A., Gabel, C.A., Howe, C. L., Mellman, I. & Helenius,
 A.: Characterization and cloning of lgp110, a lysosomal membrane
 glycoprotein from mouse and rat cells. J. Biol. Chem. 265, 12036-43 (1990).
- [121] Fukuda, M.: Lysosomal membrane glycoproteins: Structure, biosynthesis, and intracellular trafficking. J. Biol. Chem 266, 21327-330 (1991).
- [122] Lee, N., Wang, W.C. & Fukuda, M.: Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J. Biol. Chem. 265, 20476-87 (1990).
- [123] Chiang, H.-L. & Dice, J.F.: Peptide sequences that taget proteins for enhanced degradaion during serum withdrawl. J. Biol. Chem. 263, 6797-805 (1988).
- [124] Terlecky, S.R. & Dice, J.F.: Polypeptide import and degradation by isolated lysosomes. J. Biol. Chem. 267, 23490-5 (1993).
- [125] Cuervo, A.M. & Dice, J.F.: A receptor for selective uptake and degradation of proteins by lysosomes. Science 273, 501-3 (1996).
- [126] Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N. & Rosenbusch, J.P.: Crystal structures explain functional properties of two E. coli porins. Nature 358, 727-33 (1992).
- [127] Mannella, C.A., Forte, M. & Colombini, M.: Toward the molecular structure of the mitochondrial channel, VDAC. J. Bioenerg. Biomembr. 24, 7-19 (1992).
- [128] Nikaido, H. & Saier, M.H. Jr.: Transport proteins in bacteria: common themes in their design. Science 258, 936-42 (1992).
- [129] Saier, M.H. Jr.: Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol. Rev. 58, 71-93 (1994).
- [130] Paulsen, I.T., Sliwinski, M.K. & Saier, M.H. Jr.: Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277, 573-92 (1998).
- [131] Saier, M.H. Jr.: Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol. Rev. 58, 71-93 (1994).
- [132] Reeves, J.P.: Accumulation of amino acids by lysosomes incubated with

amino acid methyl esters. J. Biol. Chem. 254, 8914-21 (1979).

- [133] Mitchell, P.: Translocations through natural membranes. Adv. Enzymol. Relat. Areas Mol. Biol. 29, 33-87 (1967).
- [134] Saier, M.H. Jr.: Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 40, 81-136 (1998).
- [135] Schneider, D.L.: ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J. Biol. Chem. 256, 3858-64 (1981).
- [136] Ohkuma, S., Moriyama, Y. & Takano, T.: Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc. Natl. Acad. Sci. U S A 79, 2758-62 (1982).
- [137] Jonas, A.J. & Jobe, H.: Sulfate transport by rat liver lysosomes. J. Biol. Chem.265, 17545-9 (1990).
- [138] Pisoni, R.L.: Characterization of a phosphate transport system in human fibroblast lysosomes. J. Biol. Chem. 266, 979-85 (1991).
- [139] Lemons, R.M. & Thoene, J.G.: Mediated calcium transport by isolated human fibroblast lysosomes. J. Biol. Chem. 266, 14378-82 (1991).
- [140] Tilly, B.C., Mancini, G.M., Bijman, J., van Gageldonk, P.G., Beerens, C.E., Bridges, R.J., de Jonge, H.R., Verheijen, F.W.: Nucleotide-activated chloride channels in lysosomal membranes. Biochem. Biophys. Res. Commun. 187, 254-60 (1992).
- [141] Havelaar, A.C., Mancini, G.M., Beerens, C.E., Souren, R.M. & Verheijen,
 F.W.: Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter. J. Biol. Chem. 273, 34568-74 (1998).
- [142] Pisoni, R.L., Flickinger, K.S., Thoene, J.G. & Christensen, H.N.: Characterization of carrier-mediated transport systems for small neutral amino acids in human fibroblast lysosomes. J. Biol. Chem. 262, 6010-7 (1987b).
- [143] Stewart, B.H., Collarini, E.J., Pisoni, R.L. & Christensen, H.N.: Separate and shared lysosomal transport of branched and aromatic dipolar amino acids. Biochim. Biophys. Acta. 987, 145-53 (1989).
- [144] Gahl, W.A., Bashan, N., Tietze, F., Bernardini, I. & Schulman, J.D.: Cystine transport is defective in isolated leukocyte lysosomes from patients with

cystinosis. Science 217, 1263-5 (1982).

- [145] Jonas, A.J., Smith, M.L. & Schneider, J.A.: ATP-dependent lysosomal cystine efflux is defective in cystinosis. J. Biol. Chem. 257, 13185-8 (1982).
- [146] Pisoni, R.L. & Thoene, J.G.: Detection and characterization of a nucleoside transport system in human fibroblast lysosomes. J. Biol. Chem. 264, 4850-6 (1989).
- [147] Pisoni, R.L. & Velilla, V.Q.: Evidence for an essential histidine residue located in the binding site of the cysteine-specific lysosomal transport protein. Biochim. Biophys. Acta. 1236, 23-30 (1995).
- [148] Pisoni, R.L., Park, G.Y., Velilla, V.Q. & Thoene, J.G.: Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives. J. Biol. Chem. 270, 1179-84 (1995).
- [149] Vadgama, J.V., Chang, K., Kopple, J.D., Idriss, J.M. & Jonas, A.J.:
 Characteristics of taurine transport in rat liver lysosomes. J. Cell Physiol. 147, 447-54 (1991).
- [150] Thamotharan, M., Lombardo, Y.B., Bawani, S.Z. & Adibi, S.A.: An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J. Biol. Chem. 272, 11786-90 (1997).
- [151] Mancini, G.M., de Jonge, H.R., Galjaard, H. & Verheijen, F.W.: Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. J. Biol. Chem. 264, 15247-54 (1989).
- [152] Mancini, G.M., Beerens, C.E., Aula, P.P. & Verheijen F.W.: Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides. J. Clin. Invest. 87, 1329-35 (1991).
- [153] Mancini, G.M., Beerens, C.E. & Verheijen, F.W.: Glucose transport in lysosomal membrane vesicles. Kinetic demonstration of a carrier for neutral hexoses. J. Biol. Chem. 265, 12380-7 (1990).
- [154] Jonas, A.J., Speller, R.J., Conrad, P.B. & Dubinsky, W.P.: Transport of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine by rat liver lysosomes. J. Biol. Chem. 264, 4953-6 (1989).
- [155] Pisoni, R.L. & Thoene, J.G.: Detection and characterization of a nucleoside transport system in human fibroblast lysosomes. J. Biol. Chem. 264, 4850-6

(1989).

- [156] Barrueco, J.R. & Sirotnak, F.M.: Evidence for the facilitated transport of methotrexate polyglutamates into lysosomes derived from S180 cells. Basic properties and specificity for polyglutamate chain length. J. Biol. Chem. 266, 11732-7 (1991).
- [156] Idriss, J.M. & Jonas, A.J.: Vitamin B12 transport by rat liver lysosomal membrane vesicles. J. Biol. Chem. 266, 9438-41 (1991).
- Bame, K.J. & Rome, L.H.: Acetyl coenzyme A: alpha-glucosaminide Nacetyltransferase. Evidence for a transmembrane acetylation mechanism. J. Biol. Chem. 260, 11293-9 (1985).
- [159] Pentchev, P.G., Blanchette-Mackie, E.J. & Liscum, L.: Biological implications of the Niemann-Pick C mutation. Subcell Biochem. 28, 437-51 (1997).
- [160] Liscum, L., Ruggiero, R.M. & Faust, J.R.: The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J. Cell Biol. 108, 1625-36 (1989).
- [161] Fujiki Y, Hubbard AL, Fowler S, Lazarow PB.
 Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum.
 J Cell Biol. 1982 Apr;93(1):97-102.
- [162] Macfarlane DE.

Two dimensional benzyldimethyl-n-hexadecylammonium chloride----sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures.

Anal Biochem. 1989 Feb 1;176(2):457-63. Erratum in: Anal Biochem 1989 Jul;180(1):194.

- [163] Hartinger J, Stenius K, Högemann D, Jahn R.
 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins.
 Anal Biochem. 1996 Aug 15;240(1):126-33.
- [164] Buxbaum E.Cationic electrophoresis and electrotransfer of membrane glycoproteins.Anal Biochem. 2003 Mar 1;314(1):70-6.
- [165] Hughes, E. N. and J. T. August (1981). "Characterization of plasma

membrane proteins identified by monoclonal antibodies." J Biol Chem 256(2): 664-71.

- [166] Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." Nature 227(5259): 680-5.
- [167] Leighton, F., B. Poole, et al. (1968). "The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions." J Cell Biol 37(2): 482-513.
- [168] Lowry, O. H., N. J. Rosebrough, et al. (1951). "Protein measurement with the Folin phenol reagent." J Biol Chem 193(1): 265-75.
- [169] Neuhoff, V., N. Arold, et al. (1988). "Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250." Electrophoresis 9(6): 255-62.
- [170] Perkins, D. N., D. J. Pappin, et al. (1999). "Probability-based protein identification by searching sequence databases using mass spectrometry data." Electrophoresis 20(18): 3551-67.
- [171] Peterson, G. L. (1979). "Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall." Anal Biochem 100(2): 201-20.
- [172] Sambrook, J., T. Maniatis, et al. (1989). Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory.
- [173] Thomas, S. M., R. A. Lamb, et al. (1988). "Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5." Cell 54(6): 891-902.
- [174] Washburn, M. P., D. Wolters, et al. (2001). "Large-scale analysis of the yeast proteome by multidimensional protein identification technology." Nat Biotechnol 19(3): 242-7.
- [175] Wattiaux, R., M. Wibo, et al. (1963). "[Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat.]." Arch Int Physiol Biochim 71: 140-2.
- [176] Shevchenko A, Wilm M, Vorm O, Mann M.Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.Anal Chem. 1996 Mar 1;68(5):850-8.

- [177] Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jähn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS. The major facilitator superfamily.
 J Mol Microbiol Biotechnol. 1999 Nov;1(2):257-79. Review. Erratum in: J Mol Microbiol Biotechnol 2000 Apr;2(2):255.
- [178] Henderson, P. J. F., and M. C. J. Maiden. 1990. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes.

Philos. Trans. R. Soc. London Ser. B 326:391–410.

- [179] Henderson, P. J. F. 1991. Sugar transport proteins. Curr. Opin. Struct. Biol. 1:590–601.
- [180] Griffith, J. K., M. E. Baker, D. A. Rouch, M. G. P. Page, R. A. Skurray, I. T. Paulsen, K. F. Chater, S. A. Baldwin, and P. J. F. Henderson. 1992.
 Membrane transport proteins: implications of sequence comparisons. Curr. Opin. Cell Biol. 4:684–695.
- [181] Paulsen, I. T., and R. A. Skurray. 1994. The POT family of transport proteins. Trends Biochem. Sci. 18:404.
- [182] Marger, M. D., and M. H. Saier, Jr. 1993. A major superfamily of transmembrane facilitators catalyzing uniport, symport and antiport. Trends Biochem. Sci. 18:13–20.
- [183] Westh Hansen, S. E., N. Jensen, and A. Munch-Petersen. 1987. Studies on the sequence and structure of the Escherichia coli K-12 nupG gene, encoding a nucleoside-transport system. Eur. J. Biochem. 168:385–391.
- [184] Maloney, P. C. 1992. The molecular and cell biology of anion transport by bacteria. Bioessays 14:757–762.
- [185] Maloney, P. C., S. V. Ambudkar, V. Anantharam, L. A. Sonna, and A.
 Varadhachary. 1990. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54:1–17.
- [186] Abramson J, Iwata S, Kaback HR.Lactose permease as a paradigm for membrane transport proteins (Review).Mol Membr Biol. 2004 Jul-Aug;21(4):227-36.
- [187] Pao SS, Paulsen IT, Saier MH Jr.

Major facilitator superfamily.

Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34.

[188] De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martín C, Aínsa JA, Guglierame P, Riccardi G.

The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis.

Mol Med. 2002 Nov;8(11):714-24.

- [189] Santavuori P (1988) Neuronal ceroid-lipofuscinoses in childhood.Brain Dev 10:80–83
- [190] Santavuori P (1988) Neuronal ceroid-lipofuscinoses in childhood.Brain Dev 10:80–83
- [191] Wheeler RB, Sharp JD, Mitchell WA, Bate SL, Williams RE, Lake BD, Gardiner RM (1999) A new locus for variant late infantile neuronal ceroid lipofuscinosis—CLN7. Mol Genet Metab 66:337–338
- [192] Schulz A, Dhar S, Rylova S, Dbaibo G, Alroy J, Hagel C, Artacho I, Kohlschutter A, Lin S, Boustany RM (2004) Impaired cell adhesion and apoptosis in a novel CLN9 Batten disease variant. Ann Neurol 56:342–350
- [193] Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD, Liu XQ, Wilson C, Lahtinen U, Anttonen AK, Lehesjoki AE.
 The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter.
 Am J Hum Genet. 2007 Jul;81(1):136-46. Epub 2007 May 14.
- [194] Kawamura T, Kuroda N, Kimura Y, Lazoura E, Okada N, Okada H.
 cDNA of a novel mRNA expressed predominantly in mouse kidney.
 Biochem Genet. 2001 Feb;39(1-2):33-42.
- Schröder B, Elsässer HP, Schmidt B, Hasilik A.
 Characterisation of lipofuscin-like lysosomal inclusion bodies from human placenta.
 FEBS Lett. 2007 Jan 9;581(1):102-8. Epub 2006 Dec 12.
 PMID: 17174955 [PubMed indexed for MEDLINE]
- [196] Schröder B, Wrocklage C, Pan C, Jäger R, Kösters B, Schäfer H, Elsässer HP, Mann M, Hasilik A.

Integral and associated lysosomal membrane proteins. Traffic. 2007 Dec;8(12):1676-86. Epub 2007 Sep 26.

- [197] Davis RW, Botstein D, Roth JR, (1980): Advanced bacterial genetics: a manual for genetic engineering: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- [198] Marmur J, (1961): A procedure for the isolation of desoxyribonucleic acid from microorganism. J. Bol. Biol, 53, 159-162
- [199] Sanger F, Nickler S, Coulson AR, (1977): DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad, Sci. USA, 74; 5463-5467
- [200] Perkins, D. N., D. J. Pappin, et al. (1999). "Probability-based protein identification by searching sequence databases using mass spectrometry data."
 Electrophoresis 20(18): 3551-67.

Danksagung

An dieser Stelle möchte ich Herrn Prof. Dr. K. von Figura danken, für die Möglichkeit, in diesem Institut tätig zu sein.

Ich danke Herrn Prof. Dr. Ralf Ficner für die Bereitschaft, sich als Korreferent zur Verfügung zu stellen.

Ganz besonders danke ich Dr. Bernhard Schmidt für die engagierte Betreuung, die rege Diskussionsbereitschaft, seine Offenheit und die freundliche Unterstützung im Verlauf der Arbeit.

Zusätzlich danke ich Herrn Jun.-Prof. Dr. Torben Lübke für die freundliche Unterstützung, die ständige Hilfsbereitschaft und für die wertvollen Tipps bezüglich experimenteller Arbeiten.

Ganz besonderer Dank gilt meiner Arbeitsgruppe, für all die lustigen Augenblicke mit Nicole Eiselt, Malayialam Mariappan, Santosh Lakshmi Gande, Radhakrishnan Karthikeyan und Klaus Neifert Es hat sehr viel Spaß und Freude bereitet, mit Euch zu arbeiten und zu lachen.

Außerdem möchte ich mich für das nette Arbeitsklima, die tatkräftige Unterstützung und stetige Hilfsbereitschaft bei Katrin Kollmann, Markus Damme, Jennifer Baltes, Olaf Bernhard, Martina Balleiniger, Tanja Benkert, Jutta Wollenweber und Peter Schu bedanken.

Weiterhin bedanke ich mich bei meiner Freundin Sabine für das Vertrauen und das unerschöpfliche Durchhaltevermögen. Meiner Familie und besonders meiner Schwester Yasmin danke ich, die mich über all die Jahre während des Studiums und der Promotion unterstütz haben

Für die nötige Abwechslung danke ich meinen besten Freunden Heiko, Martin und Stefan, die stets wissen ließen

Anhang

Abb. A1 Auftrennung der tritosomalen Membranproteine durch 2D-16-BAC-SDS-PAGE (vergleiche 3.1.8).

1. Dimension: CTAB-SDS-PAGE

Abb. A2 Auftrennung der tritosomalen Membranproteine durch 2D-CTAB-SDS-PAGE (vergleiche 3.1.9).

Abb. A3 Auftrennung der tritosomalen Membranproteine durch 2D-16-BAC-SDS-PAGE (vergleiche 3.1.9).

Bande	Protein	gi No	Mr	Methode	Ion- score	Protein- Score
	Limp 2 (scavengerreceptor type 2					
1	member b	6680878	54.466	MS/MS	28	
1	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158		MS		81
2	100 kDa subunit A3	7329158		MS		149
2	Limp 2 (scavengerreceptor type 2 member b	6680878	54.466	MS	28	149
3	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158		MS		74
4	Limp 2 (scavengerreceptor type 2 member b	6680878		MS	28	100
5	P2x4d	4019304	38.859	MS+MS/MS	40	62
5	Arlar (Ca2+-binding carrier protein)			MS		78
6	ABC-Transporter MDR/TAP	17647117		MS		109
6	P2x4d	4019304	38.859	MS+MS/MS	42	64
7	Niemann Pick type C 1 (NPC-1)	6679104	145.475	MS+MS/MS	37	64
8	Niemann Pick type C 1 (NPC-1)	6679104	145.475	MS+MS/MS	39	67
9	V-type ATPase subunit D			MS+MS/MS	121	127
10	receptor)			MS+MS/MS	34	113
11						
12	Prohibitin (BAP32)			MS+MS/MS	77	123
12	ANT			MS		123
13						
14	ADP ribosylation factor like 10 c	12285518	21753	MGTWG /MG	1 2 8	157
т. т .		13303310	21/33	113 (113 / 113	120	157
16						
17	Niemen Diele terre (1.1. (NDC 1.)	6670104	145 495	NG . NG /NG	21	47
1/	Osteoclast specific V-Type ATPase	00/9104	145.4/5	MS+MS/MS	31	4 /
17	100 kDa subunit A3	7329158		MS		67

Tab. A1 Identifizierte Proteine durch MALDI-TOF-MS und –MS/MS durch 1D-SDS-PAGE (3.1.7). Die Proteinmassen [Da] sind nicht für alle Proteine angegeben. Die Tabelle zeigt die gi|Nummern, die Proteinnamen, einen kombinierten Score, der sich sowohl aus den MS- als auch aus den MS/MS-Ergebnissen zusammensetzt und die Probennummer. Die Massen sind nicht für alle Proteine angegeben.

Bande	Protein	gi Nr.	Masse	Methode	Ton-Score	Protein- Score
1	Limp 2 (scavengerreceptor type 2 member b	6680878	54,466	MS/MS	28	20020
1	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158	511100	MS	20	81
2	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158		MS		149
2	Limp 2 (scavengerreceptor type 2 member b	6680878	54.466	MS	28	149
3	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158		MS		74
4	Limp 2 (scavengerreceptor type 2 member b	6680878		MS	28	100
5	P2x4d	4019304	38.859	MS+MS/MS	40	62
5	Arlar (Ca2+-binding carrier protein)			MS		78
6	ABC-Transporter MDR/TAP	17647117		MS		109
6	P2x4d	4019304	38.859	MS+MS/MS	42	64
7	Niemann Pick type C 1 (NPC-1)	6679104	145.475	MS+MS/MS	37	64
8	Niemann Pick type C 1 (NPC-1)	6679104	145.475	MS+MS/MS	39	67
9	V-type ATPase subunit D			MS+MS/MS	121	127
10	D-Prohibitin (BAP37) (estrogen receptor)			MS+MS/MS	34	113
11						
12	Prohibitin (BAP32)			MS+MS/MS	77	123
12	ANT			MS		123
13						
14	ADP ribosylation factor like 10 c (ARL)	13385518	21753	MS+MS/MS	128	157
5						
16						
17	Niemann Pick type C 1 (NPC-1)	6679104	145.475	MS+MS/MS	31	47
17	Osteoclast specific V-Type ATPase 100 kDa subunit A3	7329158		MS		67
1	Limp 2 (scavengerreceptor type 2 member b	6680878	54.466	MS+MS/MS	116	108
2	subunit	74146998	59830	MS		151
3						
4	Annexin 2 / Lipocortin 2	ANXA2_MOUSE	38806	MS		70
5	CPT II	CPT2_MOUSE	73880	MS		66
б		15214778	68903	MS		161
7	ATP synthase, H+ transporting mito. F1 complex, beta	21000649	EGOGE	MC INC /MC	100	244
י ד	Suburit	31900040	50205	MS+MS/MS	109	100
, 8	Sestim 1	33363023	572554	MB		100
0 0	Cathensin D	6753556	45300	MC		182
9	put beta-actin	49868	40099	MG		146
10	P-cell recentor associated protein 37 (PAD 37)	6671622	33053	MG		109
11	CDS1 protein	73018011	165711	MG		237
12	Crbi piotein	73910911	103/11	MB		237
13	3-04-buturate DH	31982169	38603	MC		68
1 A	Prohibitin	13037353	20003	MS		68
15		5001000	29009	110		00
16						
±0 17						
18	Arl10c	13385518	21753	MS+MS/MS	41	65

Tab. A2 Identifizierte Proteine durch MALDI-TOF-MS und –MS/MS nachMembranproteinanreicherung durch MemPer® [PIERCE], Delipidierung durch PAGEprep®[PIERCE] und nach Trennung tritosomaler Membranproteine durch 1D-SDS-PAGE (3.1.7). DieProteinmassen [Da] sind nicht für alle Proteine angegeben. Die Tabelle zeigt die gi|Nummern, dieProteinnamen, einen kombinierten Score, der sich sowohl aus den MS- als auch aus den MS/MS-Ergebnissen zusammensetzt und die Probennummer. Die Massen sind nicht für alle Proteineangegeben.

Gi Nr.	Proteinname	Methode	21539	Score	Ion- Score	Probe
71060003 13384930	Arl 10c DC2 protein (hydrophobic	MS + MS/MS MS/MS	21539 17516	100 58	35	1 2
	protein hsf 28)					2
						3
						5
						6
						7
						8
						9
						10
						11
						12
74189730	Mitochondrial ATPase F0-	MS + MS/MS	29044	120	67	13 14
71060003	complex Arl 10c	MS + MS/MS	21539	102		15
71060003	Arl 10c	MS + MS/MS	21539	98		16
74189730	Mitochondrial ATPase F0-	MS + MS/MS	29044	97	35	17
74189730	complex Mitochondrial ATPase F0-	MS + MS/MS	29044	100	83	18
24040000	complex	MO I MO /MO	00F 4 T	0.0		1.0
34849826	Rad Z	MS + MS/MS	23547 22547	89 92		19 19
34049826 9055356	rau 2 Syntavin 8	MG + MG/MG MG + MG/MG	⊿354/ 27126	28U 23	280	∠∪ 21
9055356	Syntaxin 8	MS + MS/MS	27136	254	200 217	22
9055356	Syntaxin 8	MS + MS/MS	27136	38	116	22
9055356	Syntaxin 8	MS + MS/MS	27136	211	89	24
9055356	Syntaxin 8	MS + MS/MS	27136	197	67	25
9055356	Syntaxin 8	MS + MS/MS	27136	163	101	26
	-					27
						28
						29
26346296	stomatin	MS + MS/MS		152	76	30
26346296	stomatin	MS + MS/MS		123	56	31
26346296	stomatin	MS + MS/MS		78	35	32
26346296	stomatin	MS + MS/MS		78	4.77	33
26346296	stomatin	MS + MS/MS		96	4 /	34
26346296	stomatin	MS + MS/MS		175	60	35
26346296	stomatin	MS + MS/MS		104	68	30
1050551	Pab 7	MS + MS/MS MS + MS/MS	23490	722	298	38
1050551	Rab 7	MS + MS/MS MS + MS/MS	23490	312	290	30
1050551	Rab 7	MS + MS/MS	23490	225	67	40
63087695	Rab 14	MS + MS/MS	23910	89	63	41
63087695	Rab 14	MS + MS/MS	23910	67		42
63087695	Rab 14	MS + MS/MS	23910	65		43
						44
						45
						46
22094075	Solute carrier family 25 , member 5	MS	33138	88		47
423368	ADP/ATP-carrier protein T2	MS + MS/MS	33289	154		48
22094075 +	Mixture : Solute carrier family 25 , member 5 +	MS	33138 /	89		49
13937353	prohibitin		29859			
22094075	Solute carrier family 25 , member 5	MS	33138	63		50
423368	ADP/ATP-carrier protein T2	MS + MS/MS	33289	73		51
22094075 +	Mixture : Solute carrier family 25 , member 5 +	MS	33138 /	187		52
13937353	prohibitin		29859			
22094075	Solute carrier family 25 , member 5	MS	33138	62		53
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	79		54
74189730	Mitochondrial ATPase F0-	MS + MS/MS	84	100	83	55

74189730	Mitochondrial ATPase F0-	MS + MS/MS	29044	181		56
74189730	Complex Mitochondrial ATPase F0- complex	MS + MS/MS	29044	161	83	57
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	79	83	58
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	76	83	59
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	83		60
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	82	83	61
74189730	Mitochondrial ATPase F0-	MS + MS/MS	29044	76		62
74189730	Mitochondrial ATPase F0-	MS + MS/MS	29044	96	83	63
74189730	Mitochondrial ATPase F0-	MS + MS/MS	103	74	83	64
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	99		65
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	75		66
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	120		67
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	87		68
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	99		69
74189730	Mitochondrial ATPase F0- complex	MS + MS/MS	29044	79		70
51330862	GES 30, vesicle transport through interaction with t-snare 18 homolog	MS + MS/MS		156	76	71
51330862	GES 30, vesicle transport through interaction with t-spare 18 homolog	MS + MS/MS		165		72
51330862	GES 30, vesicle transport through interaction with	MS + MS/MS		188	134	73
51330862	GES 30, vesicle transport through interaction with t-snare 1B homolog	MS + MS/MS		132	97	74
22094075	ANT, solute carrier family 25 member 5	MS + MS/MS		89		75
22094075	ANT, solute carrier family 25 member 5	MS + MS/MS		99		76
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	123		77
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	161		78
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	114		79
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	102		80
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	78		81
13937353	Prohibitin (rattus norvegicus)	MS + MS/MS	29859	99		82
74212025 +	VDAC 1 + Prohibitin 2 (BAP 37)	MS	30852 +	91		83
74185199 6005854	Prohibitin 2 (human)		33276 33276	74		84
0005051	(BAP 37)		55270	, 1		01
18381130	Phosphatidylinositol 4- kinase type II-like	MS + MS/MS	54737	56		85
18381130	Phosphatidylinositol 4- kinase type II-like	MS + MS/MS	54737	67		86
18381130	Phosphatidylinositol 4- kinase type II-like	MS + MS/MS	54737	65		87
19526848	MOCO sulphurase C- terminal domain containing 2	MS	38797	63		88
19526848	MOCO sulphurase C- terminal domain containing 2	MS + MS/MS	38797	31		89
18381130	Phosphatidylinositol 4-	MS	54737	169		90
18381130	Phosphatidylinositol 4-	MS + MS/MS	54737	67		91

Kinase type II-like No. 54737 186 18381130 Phosphaidylinoitol 4- NS 54737 186 18381130 Phosphaidylinoitol 4- NS 54737 75 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 74142943 Vacuolar adenosin MS 40731 93 74142943 Vacuolar adenosin MS 40749 87 74142943 Vacuolar adenosin MS 40749 87 74146278 Vacuolar adenosin MS 40749 88 74146278 Argininocuccinate synthetase I MS 46840 153 30 6005854 Prohibitin 2 MS + MS/MS 33276 103 217 74146278 Argininocuccinate synthetase MS + MS/MS 42260 145 6005854 Prohibitin 2 MS + MS/MS 32276 103 74146278 ArcetylCoA-Transferase 2 MS + MS/MS <td< th=""><th>2</th><th>74185389</th><th>MDR/TAP, ABC, member 6</th><th>MS + MS/MS</th><th>94224</th><th>378</th><th>64 63 75 145 130 13</th><th>134</th></td<>	2	74185389	MDR/TAP, ABC, member 6	MS + MS/MS	94224	378	64 63 75 145 130 13	134
Kinase type II-like L. L. <thl.< th=""> L. L. <thl.< th=""></thl.<></thl.<>	7	74185389	MDR/TAP, ABC, member 6	MS + MS/MS	94224	68		133
Hinse type II-like MS 54737 186 18381130 Phosphatiqlinositol 4- MS 54737 186 18381130 Phosphatiqlinositol 4- MS 40731 143 74142943 Vacualar adenosin MS 40731 143 74142943 Vacualar adenosin MS 40731 76 71142943 Vacualar adenosin MS 40749 87 71142943 Vacualar adenosin MS 40749 87 71142943 Vacualar adenosin MS 40749 88 71146278 Argininosuccinat-synthetase 1 MS 46840 153 30 74146278 Argininosuccinat-synthetase 1 MS 46840 86 13 74146278 Argininosuccinate synthetase MS 46840 13 3276 89 74146278 Argininosuccinate synthetase MS MS + MS/MS 32876 89 13488 30 6005854 Prohibitin 2 (human) (human) 142260	7	74185389	MDR/TAP, ABC member 6	MS + MS/MS	94224	219	36 51 71	132
Hinse type II-like II- II- II- 18381130 Phosphatidylinositol 4- kinase type II-like NS 54737 186 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 98 71142943 Vacuolar adenosin MS 40749 87 714142743 Vacuolar adenosin MS 40749 88 71146278 VPP MS 46840 86 30 74146278 Argininosuccinat-synthetase MS 46840 86 133 74146278 Prohibitin 2 (human) MS + MS/MS 33276 103 26 74146278 Argininosuccinate synthetase MS + MS/MS 32428 30 9 74146278 Argininosuccinate synthetase MS + MS/MS 32428 317 74198556 Acety	5	52871	- Lysosomal acid phosphatase 1/ 2	MS/MS	48705	92	41	131
kinase type II-like III IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	75	74185389 52871	MDR/TAP, ABC member 6 Lysosomal acid phosphatase 1/ 2	MS + MS/MS MS/MS	94224 48705	278 59	41	125 126 127 128 129 130
kinase type II-like 111 111 111 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 17142943 Vacuolar adenosin MS 40731 98 17142943 Vacuolar adenosin MS 40731 98 17142943 Vacuolar adenosin MS 40749 87 17142943 Vacuolar adenosin MS 40749 87 17142943 Vacuolar adenosin MS 40749 87 17146278 Argininosuccinat-synthetase MS 46840 153 30 26 139 33276 103 26 133 9 Y4146278 Argininosuccinat-synthetase MS + MS/MS 33276 103 6005854 Prohibitin 2 (human) MS + MS/MS 33276 89 (human) (BAP 37) MS + MS/MS 33276 89 1217 74186256 AcetylCoA-Transferase 2	2	293692	Lysosomal glycoprotein A (LAMP 1)	MS + MS/MS	41936	100		123 124
kinase type II-like 111 111 111 18381130 Phosphatidylinositol 4 - MS 54737 186 18381130 Phosphatidylinositol 4 - MS + MS/MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 triphosphatase subunit D 143 143 74142943 Vacuolar adenosin MS 40731 76 17142943 Vacuolar adenosin MS 40731 76 17142943 Vacuolar adenosin MS 40749 87 17146278 Vacuolar adenosin MS 40749 87 17146278 Argininosuccinat-synthetase 1 MS 46840 153 30 26 133 9 1348 30 26 74146278 UPP MS 46840 153 30 74146278 UPP MS 46840 86 133 74146278 UPP MS HMS 40840 86 74146278 Argininocuccinate synthetase MS HS HS/HS 13488 30	2	293692	Lysosomal glycoprotein A (LAMP 1)	MS + MS/MS	41936	150		120 121 122
kinase type II-like 100 100 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 triphosphatase subunit D 1443 143 74142943 Vacuolar adenosin MS 40731 76 17142943 Vacuolar adenosin MS 40731 98 171905phatase subunit D 111 74 98 111 74142943 Vacuolar adenosin MS 40749 87 triphosphatase subunit D 111 113 113 113 74146278 Mrgininosuccinat-synthetase 1 MS 46840 153 30 74146278 UPP MS 46840 153 30 74146278 UPP MS 46840 163 30 6005854 Prohibitin 2 (human) P MS 33276 89 113 174196256 AcetylCoA-Transferase 2 MS + MS/MS 42260 123 2	2	293692	Lysosomal glycoprotein A (LAMP 1)	MS + MS/MS	41936	145		119
kinase type II-like http://withouting.com/picture http://withouting.com/picture http://withouting.com/picture 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 75 18381130 Phosphatidylinositol 4- MS 40731 143 triphosphatase subunit D triphosphatase subunit D 40731 98 74142943 Vacuolar adenosin MS 40731 98 triphosphatase subunit D triphosphatase subunit D 3955100 Vacuolar adenosin MS 40749 87 3955100 Vacuolar adenosin MS 40749 88 133 26 3955100 Vacuolar adenosin MS 40749 88 133 74146278 Mrgininosuccinat-synthetase 1 MS 46840 153 30 74146278 Mrgininosuccinat synthetase MS + MS/MS 33276 103 26 133 9 13488 30 26 133 9 74146278 Argininosuccinat synthetase MS + MS/MS 13488 10	2	293692	Lysosomal glycoprotein A (LAMP 1)	MS + MS/MS	41936	87		118
kinase type II-like MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 71442943 Vacuolar adenosin MS 40731 98 triphosphatase subunit D triphosphatase subunit D 74142943 87 74142943 Vacuolar adenosin MS 40749 87 triphosphatase subunit D 3955100 Vacuolar adenosin MS 40749 88 triphosphatase subunit D MS 46840 86 153 30 74146278 UPP MS 46840 86 139 9 74146278 UPP MS 46840 86 139 9 74146278 UPP MS + MS/MS 33276 103 148 30 6005854 Prohibitin 2 MS + MS/MS 33276 89 10 13 <td>2</td> <td>293692</td> <td>Lysosomal glycoprotein A (LAMP 1)</td> <td>MS + MS/MS</td> <td>41936</td> <td>199</td> <td></td> <td>117</td>	2	293692	Lysosomal glycoprotein A (LAMP 1)	MS + MS/MS	41936	199		117
kinase type II-like NS 54737 186 18381130 Phosphatidylinositol 4- kinase type II-like MS 54737 75 18381130 Phosphatidylinositol 4- kinase type II-like MS 40731 143 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 17142943 Vacuolar adenosin MS 40731 98 17142943 Vacuolar adenosin MS 40749 87 17142943 Vacuolar adenosin MS 40749 87 18381100 Vacuolar adenosin MS 40749 88 1711bosphatase subunit D 10 40749 88 113 9 74146278 Argininosuccinat-synthetase MS 46840 153 30 26 133 9 32276 103 26 139 Pahibitin 2 MS MS MS/MS 32376 103 (BAP 37) Pohibitin 2 MS + MS/MS 32276 103 </td <td>2</td> <td>293692</td> <td>Lysosomal glycoprotein A (LAMP</td> <td>MS + MS/MS</td> <td>41936</td> <td>86</td> <td></td> <td>117</td>	2	293692	Lysosomal glycoprotein A (LAMP	MS + MS/MS	41936	86		117
kinase type II-like NS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 75 18381130 Phosphatidylinositol 4- MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 714142943 Vacuolar adenosin MS 40731 76 7142943 Vacuolar adenosin MS 40731 76 7142943 Vacuolar adenosin MS 40731 98 triphosphatase subunit D Triphosphatase subunit D 3055100 Vacuolar adenosin MS 40749 87 74146278 Argininosuccinat-synthetase 1 MS 46840 153 30 74146278 UPP MS 46840 86 133 9 74146278 UPP MS 46840 86 133 9 74146278 Prohibitin 2 MS + MS/MS 13488 30 26 10 B37)	2	293692	Lysosomal glycoprotein A (LAMP	MS + MS/MS	41936	113		116
Hinage type II-like HS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 triphosphatase subunit D Triphosphatase subunit D 98 1074142943 Vacuolar adenosin MS 40749 87 sys5100 Vacuolar adenosin MS 40749 88 113 rtiphosphatase subunit D 10 1074146278 46840 153 30 74146278 Argininocuccinat-synthetase MS 46840 86 133 9 74146278 MPP MS 46840 86 133 30 6005854 Prohibitin 2 MS + MS/MS 33276 89	2	74198556 293692	AcetylCoA-Transferase 2 Lysosomal glycoprotein A (LAMP	MS MS + MS/MS	42260 41936	145 132		114 115
kinase type II-like NS 54737 186 18381130 Phosphatidylinositol 4- kinase type II-like MS 54737 75 18381130 Phosphatidylinositol 4- kinase type II-like MS + MS/MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 74142943 Vacuolar adenosin MS 40731 98 1111 Triphosphatase subunit D 10 143 74142943 Vacuolar adenosin MS 40731 98 111 Triphosphatase subunit D 10 10 10 10 3955100 Vacuolar adenosin MS 40749 87 74146278 Argininosuccinat-synthetase 1 MS 46840 153 30 74146278 UPP MS 46840 86 13 9 74146278 Prohibitin 2 (human) P MS 33276 103 13 6005854 Prohibitin 2 (human) MS + MS/MS 32280	7 1	74198556 L8381130	AcetylCoA-Transferase 2 Phosphatidylinositol 4-kinase	MS MS + MS/MS	42260 54737	145 74	21	112 113
kinase type II-like NS 54737 186 18381130 Phosphatidylinositol 4- kinase type II-like MS 54737 75 18381130 Phosphatidylinositol 4- kinase type II-like MS + MS/MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 74142943 Vacuolar adenosin MS 40731 98 74142943 Vacuolar adenosin MS 40749 87 171phosphatase subunit D 171phosphatase subunit D 183 183 183 3955100 Vacuolar adenosin MS 40749 87 171phosphatase subunit D 173 30 26 13 3955100 Vacuolar adenosin MS 46840 153 30 74146278 Argininosuccinat-synthetase 1 MS 46840 86 13 9 74146278 UPP MS 46840 86 13 9 74146278 Prohibitin 2 <	2	20810027 74198556	AcetylCoA-Transferase 2 AcetylCoA-Transferase 2	ms + ms/ms Ms	42288 42260	217 110		111
kinase type II-like NS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 74142943 Vacuolar adenosin MS 40731 143 74142943 Vacuolar adenosin MS 40731 76 74142943 Vacuolar adenosin MS 40731 98 triphosphatase subunit D 74142943 Vacuolar adenosin MS 40749 87 3955100 Vacuolar adenosin MS 40749 87 26 13955100 Vacuolar adenosin MS 40749 88 133 74146278 Argininosuccinat-synthetase MS 46840 153 30 74146278 Argininocuccinate synthetase MS + MS/MS 13488 30 6005854 Prohibitin 2	7	74198556	AcetylCoA-Transferase 2	MS	42260	123		109
kinase type II-likeKinase type II-likeKinase type II-like18381130Phosphatidylinositol 4-MS5473718618381130Phosphatidylinositol 4-MS + MS/MS547377518381130Phosphatidylinositol 4-MS + MS/MS547377518381130Phosphatidylinositol 4-MS + MS/MS547377518381130Phosphatidylinositol 4-MS + MS/MS547377518381130Phosphatidylinositol 4-MS + MS/MS547377518381130Yacuolaradenosin MS407311431842943Vacuolaradenosin MS40731981842943Vacuolaradenosin MS40749871842943Vacuolaradenosin MS40749871855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100Vacuolaradenosin MS40749881855100VacuolarMS + MS/MS13488301855100Yen <t< td=""><td>7</td><td>74198556 20810027</td><td>(BAP 37) AcetylCoA-Transferase 2 AcetylCoA-Transferase 2</td><td>MS MS + MS/MS</td><td>42260 42288</td><td>193 217</td><td></td><td>106 107 108</td></t<>	7	74198556 20810027	(BAP 37) AcetylCoA-Transferase 2 AcetylCoA-Transferase 2	MS MS + MS/MS	42260 42288	193 217		106 107 108
kinase type II-likeKinase type II-likeKinase type II-like18381130Phosphatidylinositol 4- kinase type II-likeMS5473718618381130Phosphatidylinositol 4- kinase type II-likeMS + MS/MS547377574142943Vacuolar triphosphatase subunit D4073114374142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D407498774142943Vacuolar triphosphatase subunit D407498774142943Vacuolar triphosphatase subunit D40749873955100Vacuolar triphosphatase subunit D407498874146278Argininosuccinat-synthetase 1 PMS468401533074146278UPP Prohibitin 2 (human)MS + MS/MS13488306005854Prohibitin 2 (human)PMS33276103	6	5005854	(BAP 37) Prohibitin 2 (human)	MS + MS/MS	33276	89		105
kinase type II-like5473718618381130Phosphatidylinositol 4- kinase type II-likeMS5473718618381130Phosphatidylinositol 4- kinase type II-likeMS + MS/MS547377574142943Vacuolar triphosphatase subunit D4073114374142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D407498774142943Vacuolar triphosphatase subunit D40749873955100Vacuolar triphosphatase subunit D40749883955100Vacuolar adenosin MS4074988triphosphatase subunit D926303955100Vacuolar triphosphatase subunit D30263955100Vacuolar triphosphatase subunit D30263955100Vacuolar triphosphatase subunit D303074146278Argininosuccinat-synthetase 1MS4684015330261392639303930303030303930 <td>7 7 6</td> <td>/4146278 /4146278 5005854</td> <td>UPP Argininocuccinate synthetase Prohibitin 2 (human)</td> <td>MS MS + MS/MS P MS</td> <td>46840 13488 33276</td> <td>86 30 103</td> <td></td> <td>102 103 104</td>	7 7 6	/4146278 /4146278 5005854	UPP Argininocuccinate synthetase Prohibitin 2 (human)	MS MS + MS/MS P MS	46840 13488 33276	86 30 103		102 103 104
kinase type II-like5473718618381130Phosphatidylinositol 4- kinase type II-likeMS5473718618381130Phosphatidylinositol 4- kinase type II-likeMS + MS/MS547377574142943Vacuolar triphosphatase subunit D4073114374142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D40749873955100Vacuolar triphosphatase subunit D40749883955100Vacuolar triphosphatase subunit D4074988	7	74146278	Argininosuccinat-synthetase 1	MS	46840	153	30 26 13 9	101
kinase type II-like5473718618381130Phosphatidylinositol 4- kinase type II-likeMS5473718618381130Phosphatidylinositol 4- kinase type II-likeMS + MS/MS547377574142943Vacuolar triphosphatase subunit D4073114374142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D407319874142943Vacuolar triphosphatase subunit D40749873955100Vacuolar triphosphatase subunit D4074987	17	3955100	Vacuolar adenosin MS triphosphatase subunit D		40749	88		100
kinase type II-like5473718618381130Phosphatidylinositol 4- kinase type II-likeMS5473718618381130Phosphatidylinositol 4- kinase type II-likeMS + MS/MS547377574142943Vacuolar triphosphatase subunit D4073114374142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D407317674142943Vacuolar triphosphatase subunit D4073198	3	3955100	Vacuolar adenosin MS triphosphatase subunit D		40749	87		99
18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS 54737 76 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Phosphatidylinositol 4- MS + MS/MS 40731 143 1442943 Vacuolar adenosin MS 40731 76 1442943 Vacuolar adenosin MS 40731 76	7	74142943	Vacuolar adenosin MS		40731	98		98
kinase type II-like 18381130 Phosphatidylinositol 4- MS 54737 186 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75 18381130 Vacuolar adenosin MS 40731 143	7	74142943	triphosphatase subunit D Vacuolar adenosin MS		40731	76		97
kinase type II-like 18381130 Phosphatidylinositol 4- MS 54737 186 kinase type II-like 18381130 Phosphatidylinositol 4- MS + MS/MS 54737 75	7	74142943	kinase type II-like Vacuolar adenosin MS		40731	143		95 96
kinase type II-like 18381130 Phosphatidylinositol 4- MS 54737 186	1	L8381130	kinase type II-like Phosphatidylinositol 4- MS	+ MS/MS	54737	75		94
	1	18381130	kinase type II-like Phosphatidylinositol 4- MS		54737	186		93
kinase type II-like 18381130 Phosphatidylinositol 4- MS 54737 184	1	L8381130	kinase type II-like Phosphatidylinositol 4- MS		54737	184		92

7/105200	ATT binding apagette gub	MC	95165	110		125
/4185389	family B (MDR/TAD) member 6	MS	82102	112		135
74185389	MDR/TAP, ABC, member 6	MS + MS/MS	94224	76		136
74185389	MDR/TAP, ABC, member 6	MS + MS/MS	94224	613	64	137
	, , , , , , , , , , , , , , , , , , , ,				63	
					75	
					145	
					130	
					13	
26343955	МАО Тур В	MS	59020	76		138
26327655	МАО Тур В	MS	59052	119		139
26343955	МАО Тур В	MS	59020	96		140
26327655	МАО Тур В	MS	59052	112		141
26343955	МАО Тур В	MS	59020	95		142
26327655	МАО Тур В	MS	59052	104		143
26343955	МАО Тур В	MS	59020	89		144
20810083	LIMP 2	MS	54466	97		145
20810083	LIMP 2	MS + MS/MS	54466	154		146
20810083	LIMP 2	MS	54466	134		147
20810083	LIMP 2	MS + MS/MS	54466	149	2.7	148
20810083	LIMP 2	MS + MS/MS	54400	298	37	149
					47	
					47	
20810083	T.TMD 2	MS	54466	78	50	150
20810083	LIMP 2	MS + MS/MS	54466	96		151
20810083	LIMP 2	MS + MS/MS	54466	176	87	152
20020000		110 110,110	51100	270	15	101
20810083	LIMP 2	MS	54466	66	10	153
20810083	LIMP 2	MS + MS/MS	54466	187		154
20810083	LIMP 2	MS + MS/MS	54466	123	50	155
20810083	LIMP 2	MS	54466	165		156
20810083	LIMP 2	MS + MS/MS	54466	123		157
20810083	LIMP 2	MS	54466	147		158
20810083	LIMP 2	MS + MS/MS	54466	174		159
20810083	LIMP 2	MS + MS/MS	54466	277	37	160
					47	
					47	
					96	
20810083	LIMP 2	MS	54466	86		161
20810083	LIMP 2	MS + MS/MS	54466	94		162
20810083	LIMP 2	MS + MS/MS	54466	199	87	163
20010002		MO	FAACC	60	15	1.64
20010003	LIMP 2 LIMP 2	MG + MG/MG	54400	100		165
20810083	LIMP 2 LIMP 2	MS + MS/MS MC + MC/MC	54466	158	50	166
74185389	MDR/TAP ABC member 6	MS + MS/MS	94224	143	50	167
52871	Lysosomal acid phosphatase 1/	MS/MS	48705	71	51	168
02072	2	110,110	10,00		01	100
52871	Lysosomal acid phosphatase 1/	MS/MS	48705	80	51	169
	2					
74185389	MDR/TAP, ABC member 6	MS + MS/MS	94224	133	60	170
74185389	MDR/TAP, ABC member 6	MS + MS/MS	94224	143		171
52871	Lysosomal acid phosphatase 1/	MS/MS	48705	71	51	172
	2					
52871	Lysosomal acid phosphatase 1/	MS/MS	48705	72	51	173
	2					
74185389	MDR/TAP, ABC member 6	MS + MS/MS	94224	133	60	174
20810083	LIMP 2	MS	54466	66 175		175
20810083	TIME 3	MS + MS/MS	54466	175 17	FO	170
20810083	LIMP 2	MS + MS/MS	54466	85	50	178
20810083	LIMP 2 LIMD 2	MS + MC/MC	54400	166		190
20810082	T.TMD 2	см / см т см МS	54400	178		1.80 1.81
20810083	TITMP 2	MS + MS/MS	54466	149		182
7140942	116-kDa V-ATPase	MS	94084	225		183
7140942	116-kDa V-ATPase	MS + MS/MS	94084	98		184
7140942	116-kDa V-ATPase	MS + MS/MS	94084	365	98.	185
					68,	
					92,	
					100,	
					105	
7140942	116-kDa V-ATPase	MS	94084	267		186
7140942	116-kDa V-ATPase	MS	94084	277		187
7140942	116-kDa V-ATPase	MS	94084	196		188
7140942	116-kDa V-ATPase	MS	94084	101		189
7140942	116-kDa V-ATPase	MS	94084	78		190

8134596	NPC 1	MS	145475	156		191
8134596	NPC 1	MS + MS/MS	145475	186	46	192
8134596	NPC 1	MS + MS/MS	145475	165	64	193
					61	
					33	
						194
						195
						196
						197
						198
						100
						200
						200
27250060	UDD (Niccotain)	MO	70000	76		201
3/359868	UPP (NICastrin)	MS MG /MG	79203	76		202
3/359868	MKIAA0253 protein (Nicastrin)	MS + MS/MS	80479	202	100	203
3/359868	mkIAAU253 protein (Nicastrin)	MS + MS/MS	804/9	144	122	204
3098526	Macrosialin / CD68 (LAMP)	MS + MS/MS	35322	102	4.0	205
3098526	Macrosialin / CD68 (LAMP)	MS + MS/MS	35322	74	42	206
3098526	Macrosialin / CD68 (LAMP)	MS + MS/MS	35322	80	69	207
3098526	Macrosialin / CD68 (LAMP)	MS + MS/MS	35322	96	41	208
					69	
26324986	Solute carrier family 25 (ANT)	MS	74691	85		209
+	(Citrin) + MDR / TAP,		+			
74185389			85165			
109788	Peptidyl-peptidase IV	MS/MS	88065	47	46	210
109788	Peptidyl-peptidase IV	MS/MS	88065	97	79	211
109788	Peptidyl-peptidase IV	MS/MS	88065	102	84	212
109788	Peptidyl-peptidase IV	MS/MS	88065	57	38	213
109788	Peptidyl-peptidase IV	MS/MS	88065	327	79	214
	-				85	
					38	
109788	Peptidyl-peptidase IV	MS/MS	88065	60	46	215
82999143	Similar to M-phase	MS	201238	63		216
01////10	phosphoprotein 1 isoform 3	110	202250	05		210
51066	Glial fibraillary acidic	MS/MS	46555	67	47	217
51000	protoin	1107110	10333	07	1/	217
0002000	mKIAA0252 protoin (Nicastrin)	MC + MC/MC	90470	151		210
9992000	(Micasciiii)	CM/GM + CM	004/9	101		210
00000140	Cimilar to Markens	200	001000	0.6		010
82999143	Similar to M-phase	MS	201238	86		219
	phosphoprotein 1 isoform 3			~ -		
82999143	Similar to M-phase	MS	201238	65		220
	phosphoprotein 1 isoform 3					
82999143	Similar to M-phase	MS	201238	75		221
	phosphoprotein 1 isoform 1					
82999143	Similar to M-phase	MS	201238	61		222
	phosphoprotein 1 isoform 1					
82999143	Similar to M-phase	MS	201238	63		223
	phosphoprotein 1 isoform 1					
82999143	Similar to M-phase	MS	201238	59		224
	phosphoprotein 1 isoform 1					
82999143	Similar to M-phase	MS	201238	60		225
	phosphoprotein 1 isoform 1					
82999143	Similar to M-phase	MS	201238	60		226
	phosphoprotein 1 isoform 1		_01200			220
8134596	NPC 1	MS + MS/MS	145475	176		227
8134596	NDC 1	MG + MG/MG	145475	165		22/
913/E0C	NDC 1	MG א שמ/שמ MG אמ/שמ	1/5/75	160		220 220
012/506	NDC 1	MG + MG/MG	1/5/1/5	150		229
0134590	NFC 1	M3 + M3/M3	1454/5	150		230
0134596	NPC 1	MS + MS/MS	145475	159		231
8134596	NPC 1	MS + MS/MS	145475	97		232
8134596	NPC 1	MS + MS/MS	145475	88		233
8134596	NPC 1	MS + MS/MS	145475	91		234
8134596	NPC 1	MS + MS/MS	145475	73		235
8134596	NPC 1	MS + MS/MS	145475	105		236
8134596	NPC 1	MS + MS/MS	145475	167		237
8134596	NPC 1	MS + MS/MS	145475	103		238
8134596	NPC 1	MS + MS/MS	145475	97		239
8134596	NPC 1	MS + MS/MS	145475	83		240
8134596	NPC 1	MS + MS/MS	145475	69		241
8134596	NPC 1	MS + MS/MS	145475	65		242
8134596	NPC 1	MS + MS/MS	145475	71		2.43
82936828	Similar to CG18255-PA isoform	MS	318139	64		244
52/30020	Δ		5-5-59	<u> </u>		217
82926828	Similar to CC18255-DA isoform	MS	212120	68		245
02000000	A	GIN	210123	00		240
	n					
82026020	Similar to CC10255 DA isofarm	MC	210120	50		$\gamma \wedge c$

82936828	Similar to CG18255-PA, isoform	MS	318139	58	247
	A				
8134596	NPC 1	MS + MS/MS	145475	179	248
8134596	NPC 1	MS + MS/MS	145475	79	249
8134596	NPC 1	MS + MS/MS	145475	142	250
8134596	NPC 1	MS + MS/MS	145475	89	251
8134596	NPC 1	MS + MS/MS	145475	76	252
8134596	NPC 1	MS + MS/MS	145475	82	153
8134596	NPC 1	MS + MS/MS	145475	98	254
8134596	NPC 1	MS + MS/MS	145475	68	255
8134596	NPC 1	MS + MS/MS	145475	86	256
8134596	NPC 1	MS + MS/MS	145475	84	257
8134596	NPC 1	MS + MS/MS	145475	96	258
8134596	NPC 1	MS + MS/MS	145475	63	259
8134596	NPC 1	MS + MS/MS	145475	65	260
8134596	NPC 1	MS + MS/MS	145475	86	261
8134596	NPC 1	MS + MS/MS	145475	97	262
8134596	NPC 1	MS + MS/MS	145475	67	263

Tab. A3 Identifizierte Proteine durch MALDI-TOF-MS und –MS/MS nach Trennung tritosomaler Membranproteine durch 2D-16-BAC-SDS-PAGE (siehe Abb. A3). Die Proteinmassen [Da] sind nicht für alle Proteine angegeben. Die Tabelle zeigt die

gi|Nummern, die Proteinnamen, einen kombinierten Score, der sich sowohl aus den MS- als auch aus den MS/MS-Ergebnissen zusammensetzt und die Probennummer. Die Massen sind nicht für alle Proteine angegeben.

Gi Nr.	Protein	Gesamt-	Masse	Probe
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	85	21753.00	2
gi 149264343	PREDICTED: hypothetical protein [Mus musculus]	80		2
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	127	21753.00	3
gi 148688082	peroxisomal membrane protein 2, isoform CRA b [Mus musculus]	68	15767.00	3
gi 13278465	Arl8a protein [Mus musculus]	95		3
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	99	21753.00	4
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	74		4
gi 13278465	Arl8a protein [Mus musculus]	69		4
- gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	79	21753.00	5
gi 149266312	PREDICTED: hypothetical protein [Mus musculus]	149	18667.00	5
54300270	M6PR domain containing protein [Fragment]	65		5
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	166	21753.00	6
gi 13278465	Arl8a protein [Mus musculus]	108		6
- gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	101		7
gi 74184106	unnamed protein product [Mus musculus]	83		7
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	140	21753.00	8
gi 13278465	Arl8a protein [Mus musculus]	92		8
60415940	Stomatin like protein 2	92		8
gi 148877871	RAB GTPase activating protein 1-like [Mus musculus]	59		8
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	85		9
200715	RAB6	72		9
gi 74201087	unnamed protein product [Mus musculus]	73		9
gi 26329621	unnamed protein product [Mus musculus]	70		9
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	152	21753.00	10
gi 13278465	Arl8a protein [Mus musculus]	97		10
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	90		10
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	172	21753.00	11
19526850	RAB 31-like	69		11
gi 13278465	Arl8a protein [Mus musculus]	125		12
gi 149266312	PREDICTED: hypothetical protein [Mus musculus]	65		12
46577034	RAB39b	61		12
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	119		13
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	115	21753.00	14
gi 149250085	PREDICTED: hypothetical protein LOC320706 [Mus musculus]	72		14
1122929	RAB4a	67		14
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	160	21753.00	15
gi 13278465	Arl8a protein [Mus musculus]	112		15
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	105		15
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	83	20685.00	16
gi 148677405	cytochrome b-5, isoform CRA_a [Mus musculus]	72		16
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	69		17
124007127	Clasp-1 protein	72		17
27769269	FYVE, RhoGEF and PH domain-containing protein 5	66		17
gi 148703063	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, isofor84	85		17
gi 123244272	microtubule-actin crosslinking factor 1 [Mus musculus]	62		18
gi 148689671	early endosome antigen 1, isoform CRA_b [Mus musculus]	53		18
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	132	20685.00	18
gi 13385268	cytochrome b-5 [Mus musculus]	100	15232.00	19
gi 14714684	Mfsd8 protein [Mus musculus]	65		19
gi 47117166	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	91	17133.00	19
gi 47117166	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	99	17133.00	20
gi 94395498	PREDICTED: similar to Ferritin light chain 1 (Ferritin L sub	163	28535.00	20
gi 94395498	PREDICTED: similar to Ferritin light chain 1 (Ferritin L sub	170	28535.00	21
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	77	20685.00	21

gi 148703063	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, isofor84	68		21
gi 26352986	unnamed protein product [Mus musculus]	61		22
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	134	20685.00	22
gi 31981068	microsomal glutathione S-transferase 1 [Mus musculus]	75	17597.00	22
gi 47117166	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	107	17133.00	23
gi 47117166	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	102	17133.00	23
26393485	Exocyst complex component 7	68		23
gi 45504359	vacuolar H+ ATPase El [Mus musculus]	86	26198.00	23
gi 148681548	seminal vesicle antigen-like 2, isoform CRA a [Mus musculus]54	62		24
gi 6753498		100	19575.00	24
gi 74185186	unnamed protein product [Mus musculus]	51		24
gi 1372988	cytochrome c oxidase subunit IV	88		25
gi 20799123	V-ATPase E2 subunit [Mus musculus]	76		25
gi 94369349	PREDICTED: similar to NADH dehydrogenase (ubiquinone) 1 beta	78	20618.00	26
gi 10946940	RAB2, member RAS oncogene family [Mus musculus]	65		26
gi 21313679	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	143	18795.00	27
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	100		27
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	83		28
gi 18390323	RAB14, member RAS oncogene family [Mus musculus]	91		29
gi 63087691	RAB14 protein [Mus musculus]	78		30
gi 18390323	RAB14, member RAS oncogene family [Mus musculus]	115	24110.00	31
gi 94373034	PREDICTED: similar to hydroxyindole-0-methyltransferase [Mus5]	73		31
gi 18390323	RAB14. member RAS oncogene family [Mus musculus]	82		32
gi 174212149	unnamed protein product [Mus musculus]	63		32
gi 58037117	NADH dehydrogenase (ubiguinone) Fe-S protein 3 [Mus musculus	104	30302.00	32
gi 58037117	NADH dehydrogenase (ubiguinone) Fe-S protein 3 [Mus musculus	143	30302.00	33
gi 82880803	PREDICTED: similar to adenine nucleotide translocase isoform65	87	30302.00	34
gi 194381000	PREDICTED: dynein, ayonemal, heavy chain 3 [Mus musculus]	63		34
gi 18390323	RAB14, member RAS oncogene family [Mus musculus]	65		34
gi 13385168	ubiguinol-cytochrome c reductase. Rieske iron-sulfur polymen	64	29634 00	35
gi 81175168	Citron Pho-interacting kinase (CPIK) (Pho-interacting serin51	53	29034.00	35
gi 423368	ADP ATP carrier protein T2 - mouse	91		36
gi 6679299	prohibitin [Mus musculus]	61		36
gi 34538601	cutochrome c oxidase subunit II [Mus musculus]	79	26130 00	37
g1 34330001	Tubger5 protoin [Mus musculus]	61	20130.00	37
g1 20071095	autochrome a exidence subunit II [Mus musculus]	64	26130 00	30
g1 34J30001	Chain A Decembinant Mouse L Chain Ferritin	70	20130.00	20 20
g1 13/0/1/3	Chain A, Recombinant Mouse L-Chain Ferricin	145	10705 00	20
g1 21313679	whigh the energiation of the energy of t	145	18/95.00	30
g1 12848152	ubiquitin specific peptidase 25	01 1.40	20051 00	39
g1 0/55963	Cituan Pha interaction binance (CPIK) (Pha interaction cominE1	148	30851.00	40
g1 811/5168	Duck hit is a (DDDDDD)	12		40
g1 /4185199	Promibilin-2 (BAPS7)	95 112	22502 00	41
g1 10/20404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	113	32502.00	41
g1 149258501	PREDICTED: Similar to Solute carrier family 25 (mitochondria92	92		42
gi 20455352	Probable tubulin polyglutamylase (Tubulin polyglutamylase co52	87		42
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	92	32502.00	42
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	163	32502.00	43
g1 6005854	prohibitin 2 [Homo sapiens]	97		43
gi 74185199	unnamed protein product [Mus musculus]	93		44
g1 /4201578	unnamed protein product [Mus musculus]	65		44
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	169	32502.00	45
32822737	Homogentisat-1, 2-Dioxygenase	70		45
gi 6755967	voltage-dependent anion channel 3 [Mus musculus]	117	31061.00	46
gi 60360556	mKIAA4171 protein [Mus musculus]	67		46
gi 14714866	Nitrogen fixation gene 1 (S. cerevisiae) [Mus musculus]	76		46
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	164	32502.00	47

gi 62000658	hypothetical protein LOC432582 [Mus musculus]	75		47
gi 148689580	mCG10343, isoform CRA_b [Mus musculus]	82		48
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	200	32502.00	48
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	156	32502.00	49
gi 148689580	mCG10343, isoform CRA_b [Mus musculus]	69		49
gi 13543186	Ndufa9 protein [Mus musculus]	146		50
gi 6005854	prohibitin 2 [Homo sapiens]	263	33276.00	50
gi 6005854	prohibitin 2 [Homo sapiens]	288	33276.00	51
gi 149258501	PREDICTED: similar to Solute carrier family 25 (mitochondria92	77		51
gi 20071895	Tubgcp5 protein [Mus musculus]	70		51
gi 6755963	voltage-dependent anion channel 1 [Mus musculus]	143	30851.00	52
gi 74139733	unnamed protein product [Mus musculus]	129		53
gi 192005	apolipoprotein E	84		54
gi 6755963	voltage-dependent anion channel 1 [Mus musculus]	148	30851.00	54
gi 6005854	prohibitin 2 [Homo sapiens]	127		55
gi 10048462	carnitine/acylcarnitine translocase [Mus musculus]	65	33347.00	56
gi 58037117	NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus	152	30302.00	56
gi 10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	89	32502.00	57
gi 3850794	CLIP-115 [Mus musculus]	61		57
- gi 6755963	voltage-dependent anion channel 1 [Mus musculus]	198	30851.00	58
- gi 6755963	voltage-dependent anion channel 1 [Mus musculus]	175	30851.00	59
- gi 148681274	spectrin alpha 1 [Mus musculus]	51		59
- gi 74195489	unnamed protein product [Mus musculus]	105	29044.00	60
- gi 110625954	NADH dehydrogenase (ubiquinone) flavoprotein 2 [Mus musculus47	71		61
- gi 74195489	unnamed protein product [Mus musculus]	137	29044.00	62
gi 3850794	CLIP-115 [Mus musculus]	64		62
gi 74195489	unnamed protein product [Mus musculus]	187	29044.00	63
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	153	40731.00	63
gi 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	159	53420.00	63
gi 22267442	ubiguinol cytochrome c reductase core protein 2 [Mus musculu	159	48262.00	64
gi 22267442	ubiguinol cytochrome c reductase core protein 2 [Mus musculu	173	48262.00	65
ai 22094075	solute carrier family 25. member 5 [Mus musculus]	105	33138.00	65
gi 85662410	cvtoplasmic linker 2 isoform a [Mus musculus]	67		65
gi 6679299	prohibitin [Mus musculus]	102		66
ai 423368	ADP.ATP carrier protein T2 - mouse	92		66
gi 6679599	RAB7. member RAS oncogene family [Mus musculus]	84	23829.00	67
gi 8922601	ADP-ribosvlation factor-like 100 [Homo samiens]	105	21753 00	67
gi 13278465	Arl&a protein [Mus musculus]	£00 62	21,00.00	67
gi 74195489	mt ATP Synthase B	64	29044 00	68
gi 13385168	ubiquinol-cytochrome c reductase. Bieske iron-sulfur nolynen	68	29634 00	68
gi 6753498	cytochrome c ovidese subunit IV isoform 1 [Mus musculus]	106	19575 00	69
gi 6755963	voltage-dependent anion channel 1 [Mus musculus]	1/1	30851 00	69
gi 6005854	prohibitin 2 [Homo espiene]	115	50051.00	70
g1 6753499	gutochrome a ovidere suburit IV isoform 1 [Mus musculus]	117	19575 00	70
g1 0755490	which includes a reductage are protein 2 [Mus musculus]	126	19373.00	70
gi 22207442	abiquinoi cycochiome c reductase core protein 2 [Mus musculus]	120	40202.00	71
g1 140/03/31	whiming cutochange a volution care ruttein 2 [Mus musculus]	170	42313.00	71
g1 22267442	ubiquinoi cytochrome c reductase core protein 2 [Mus musculu	170	48262.00	72
g1 22267442	ubiquinoi cytochrome c reductase core protein 2 [Mus musculu	174	48262.00	73
g1 22267442	ubiquinoi cytochrome c reductase core protein 2 [Mus musculu	1 4 7	48262.00	74
g1 2226/442	ubiquinoi cytochrome c reductase core protein 2 [Mus musculu	147	48262.00	75
y1 2226/442	ubiquinoi cylochrome c reductase core protein 2 [Mus musculu	140	40202.UU	/6
y113935100	vacuotar adenostne tripnosphatase subunit D [Mus musculus]	00 110	40/31.00	//
911/414369U	Detaine-nomocysteine metnyitransierase [Mus musculus]	110	443/3.00	//
g1 13543186	Naulay protein [Mus musculus]	218	39511.00	11
g1 13543186	Nauray protein [Mus musculus]	242	39511.00	78
gı 31981304	ATPase, H+ transporting, VO subunit D isoform 1 [Mus musculu	167	40731.00	78

gi 54607112	Erbb2 interacting protein isoform 2 [Mus musculus]	71		78
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	235	40731.00	79
7304879	Aldo-Keto-Reductase family 1 C13	73		79
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	219	40731.00	80
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	163	40731.00	81
gi 22267442	ubiquinol cytochrome c reductase core protein 2 [Mus musculu	217	48262.00	81
gi 22267442	ubiquinol cytochrome c reductase core protein 2 [Mus musculu	261	48262.00	82
gi 22267442	ubiquinol cytochrome c reductase core protein 2 [Mus musculu	213	48262.00	83
- gi 22267442	ubiquinol cytochrome c reductase core protein 2 [Mus musculu	222	48262.00	84
- gi 13278096	Ndufs2 protein [Mus musculus]	175		84
gi 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	159	53420.00	85
gi 74212014	unnamed protein product [Mus musculus]	187		86
gi 20988752	Ugcrc1 protein [Mus musculus]	117		86
gi 17390954	Ugcrc1 protein [Mus musculus]	77		87
ai 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1. mit	158	53420.00	88
ai 19526814	NADH dehvdrogenase (ubiguinone) flavoprotein 1 [Mus musculus	65	51486.00	89
gi 19526814	NADH dehvdrogenase (ubiguinone) flavoprotein 1 [Mus musculus	62	51486.00	90
gi 6753762	epoxide hydrolase 1. microsomal [Mus musculus]	62	01100.00	90
gi 74143690	betaine-homocysteine methyltransferase [Mus_musculus]	121	44373 00	90
gi 74143690	betaine homocysteine methyltransferase [Mus musculus]	78	44373 00	91
gi 74142353	Ndufa2 protein [Mus musculus]	174	52945 00	91
gi 74142353	Ndufs2 protein [Mus musculus]	158	52945 00	92
gi 6753762	apovide hudrolase 1 microsomal [Mus musculus]	171	52545.00	92
gi 7/1/3690	uppared protein product [Mus musculus]	£7.1	14373 00	92
gi 7700000	beteine-bemegusteine methultransforage [Mus musculus]	63	11373.00	93
g1 7 / 1 / 3 6 9 0	betaine-homocysteine methyltransferase [Mus musculus]	00	11373 00	94
g1 74143090	Ndufe2 protein [Mus musculus]	111	44373.00 52045 00	95
gi 74142333	waarsz protein [Mas musculus]	74	52945.00	95
g1 0755702	ubiminel subschume a reductore complex control note in 1 mit	101	E2420 00	95
g1 14548301	buildinoi-cytochrome-c reductase complex core protein 1, mit	131	53420.00	96
23936338	nypothetical protein LOC231296	63		90
	The second se	015		07
gi 31980648	ATP synthase, H+ transporting mitochondrial F1 complex, beta	215	56265.00	97
gi 31980648 gi 111183380	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus]	215 89	56265.00 38261.00	97 97
gi 31980648 gi 111183380 gi 29244114	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874	215 89 69	56265.00 38261.00	97 97 98
gi 31980648 gi 111183380 gi 29244114 gi 111183380	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus]	215 89 69 104	56265.00 38261.00 38261.00	97 97 98 98
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus]	215 89 69 104 65	56265.00 38261.00 38261.00 58811.00	97 97 98 98 99
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1	215 89 69 104 65 65	56265.00 38261.00 38261.00 58811.00 58811.00	97 97 98 98 99 100
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26)	215 89 69 104 65 65 105	56265.00 38261.00 38261.00 58811.00 58811.00 57224.00	97 97 98 98 99 100 100
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp	215 89 69 104 65 65 105 138	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00	97 97 98 98 99 100 100 100
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus]	215 89 69 104 65 65 105 138 76	56265.00 38261.00 38261.00 58811.00 58811.00 57224.00 59830.00	97 97 98 98 99 100 100 100
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus]	215 89 69 104 65 65 105 138 76 65	56265.00 38261.00 38261.00 58811.00 58811.00 57224.00 59830.00	97 97 98 99 100 100 100 101 101
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp	215 89 69 104 65 65 105 138 76 65 161	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00	97 97 98 99 100 100 100 101 101
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748 gi 74202526	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00	97 97 98 98 99 100 100 100 101 101 102 102
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748 gi 74202526 gi 6680748	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp	215 89 69 104 65 65 105 138 76 65 161 130 150	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00	97 97 98 98 99 100 100 100 101 101 102 102 102
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 7417659 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130 150 78	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00	97 97 98 98 99 100 100 100 101 101 101 102 102 103
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823	<pre>ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus]</pre>	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00	97 97 98 99 100 100 100 101 101 102 102 103 103
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748	<pre>ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp</pre>	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00	97 97 98 99 100 100 100 101 101 102 102 103 103 103
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00	97 97 98 98 99 100 100 100 101 101 102 102 103 103 103 104 104
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 27734110	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00	97 97 98 98 99 100 100 100 101 101 102 102 103 103 103 104 104
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 117586714	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00	97 98 98 99 100 100 100 101 101 101 102 102 103 103 103 104 104 105
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 117586714 gi 14548301 gi 14548301	<pre>ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit</pre>	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00	97 97 98 98 99 100 100 100 101 101 102 103 103 103 103 104 104 105 105
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 7417659 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 117586714 gi 14548301 gi 14548301 gi 7710018	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit Ubiquinol-cytochrome-c reductase complex core protein 1, mit erythrocyte protein band 7.2 [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92 104	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00	97 97 98 98 99 100 100 100 101 101 102 102 103 103 103 104 104 105 105 106
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74177659 gi 74196566 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 117586714 gi 127734110 gi 14548301 gi 14548301 gi 7710018 gi 85701740	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit Ubiquinol-cytochrome-c reductase complex core protein 1, mit erythrocyte protein band 7.2 [Mus musculus]	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92 104 85	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00	97 97 98 98 99 100 100 100 101 101 102 102 103 103 103 104 104 105 105 106 106
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 27734110 gi 14548301 gi 14548301 gi 14548301 gi 14548301 gi 7710018 gi 85701740 gi 21313679	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit Ubiquinol-cytochrome-c reductase complex core protein 1, mit erythrocyte protein band 7.2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F0 complex, sub	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92 104 85 89	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00 53420.00	97 97 98 98 99 100 100 100 101 101 102 102 103 103 103 104 104 105 105 106 106 106
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 27734110 gi 14548301 gi 14548301 gi 14548301 gi 7710018 gi 85701740 gi 21313679 94402060	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit Ubiquinol-cytochrome-c reductase complex core protein 1, mit erythrocyte protein band 7.2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F0 complex, sub PREDICTED: hypothetical protein	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92 104 85 89 65	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00 53420.00	97 97 98 98 99 100 100 100 101 101 102 103 103 103 103 103 104 104 105 105 106 106 106
gi 31980648 gi 111183380 gi 29244114 gi 111183380 gi 74142612 gi 74142612 gi 81914477 gi 6680748 gi 7417659 gi 74196566 gi 6680748 gi 74202526 gi 6680748 gi 31982330 gi 27372823 gi 6680748 gi 117586714 gi 27374100 gi 14548301 gi 21313679	ATP synthase, H+ transporting mitochondrial F1 complex, beta cytochrome P450 2E1 [Mus musculus] hypothetical protein LOC231874 cytochrome P450 2E1 [Mus musculus] chaperonin subunit 3 (gamma) [Mus musculus] phosphoglycerate kinase 1 Cytochrome P450 2D26 (CYPIID26) ATP synthase, H+ transporting, mitochondrial F1 complex, alp vacuolar H+ATPase B2 [Rattus norvegicus] unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp unnamed protein product [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp Golgi autoantigen, golgin subfamily a, 3 [Mus musculus] male-enhanced antigen-2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F1 complex, alp pericentrin-250 [Mus musculus] nuclear receptor interacting protein 1 [Mus musculus] Ubiquinol-cytochrome-c reductase complex core protein 1, mit Ubiquinol-cytochrome-c reductase complex core protein 1, mit erythrocyte protein band 7.2 [Mus musculus] ATP synthase, H+ transporting, mitochondrial F0 complex, sub PREDICTED: hypothetical protein ATP synthase, H+ transporting, mitochondrial F0 complex, sub	215 89 69 104 65 65 105 138 76 65 161 130 150 78 72 98 71 61 101 92 104 85 89 65 84	56265.00 38261.00 38261.00 58811.00 57224.00 59830.00 59830.00 59830.00 59830.00 127172.00 53420.00 53420.00 18795.00	97 97 98 98 99 100 100 100 101 101 102 103 103 103 103 103 104 104 105 105 106 106 106 107 107

gi 110625954	NADH dehydrogenase (ubiquinone) flavoprotein 2 [Mus musculus	99	27610.00	109
gi 78214312	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	150	29044.00	110
gi 7710018	erythrocyte protein band 7.2 [Mus musculus]	123	31527.00	111
gi 31543349	N-ethylmaleimide sensitive fusion protein [Mus musculus]	82		111
gi 14714684	Mfsd8 protein [Mus musculus]	101		112
gi 7710018	erythrocyte protein band 7.2 [Mus musculus]	89	31527.00	112
gi 85701740	hypothetical protein LOC211208 [Mus musculus]	85		112
gi 3747064	stomatin [Mus musculus]	73		113
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	127	33138.00	113
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	140	33138.00	114
- gi 62079289	centaurin, beta 2 [Mus musculus]	57		114
- gi 22094075	solute carrier family 25, member 5 [Mus musculus]	159	33138.00	115
gi 423368	ADP, ATP carrier protein T2 - mouse	115		117
gi 21707628	Sipall3 protein [Mus musculus]	61	28132.00	117
51338804	NAD(P) Transhydrogenase	75		120
16359231	Mtap7d1 protein (microtubuli associated protein)	68		121
7418936	DNAJ C 13	69		124
gi 423368	ADP, ATP carrier protein T2 - mouse	127		125
gi 137231685	NADH dehvdrogenase (ubiguinone) 1 alpha subcomplex, 9 [Mus m107	114		125
gi 6679299	prohibitin [Mus musculus]	76		126
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	187	33138.00	127
gi 82880803	PREDICTED: similar to adenine nucleotide translocase isoform65	87		127
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	117	33138.00	128
gi 6679299	prohibitin [Mus musculus]	159	29859.00	128
gi 423368	ADP, ATP carrier protein T2 - mouse	113		129
gi 6679299	prohibitin [Mus musculus]	161	29859.00	129
gi 148703731	ornithine transcarbamylase, isoform CRA f [Mus musculus]	57	42313.00	130
gi 19526818	solute carrier family 25 (mitochondrial carrier, phosphate c	86	40063.00	130
2				
gi 122889680	ATP synthase, H+ transporting, mitochondrial F1 complex, gam	81	16808.00	130
gi 122889680 gi 148679530	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50	81 100	16808.00	130 131
gi 122889680 gi 148679530 gi 21263432	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor	81 100 78	16808.00	130 131 131
gi 122889680 gi 148679530 gi 21263432 gi 67464233	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid	81 100 78 101	16808.00 30697.00	130 131 131 132
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein	81 100 78 101 55	16808.00 30697.00	130 131 131 132 132
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus]	81 100 78 101 55 110	16808.00 30697.00 33138.00	130 131 131 132 132 133
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429</pre>	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus]	81 100 78 101 55 110 59	16808.00 30697.00 33138.00 106870.00	130 131 131 132 132 133 133
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299</pre>	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus]	81 100 78 101 55 110 59 83	16808.00 30697.00 33138.00 106870.00	130 131 131 132 132 133 133 133
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304</pre>	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 20094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158</pre>	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus]	81 100 78 101 55 110 59 83 87 72	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134 134
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932</pre>	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43	81 100 78 101 55 110 59 83 87 72 130	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134 134 134
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu</pre>	81 100 78 101 55 110 59 83 87 72 130 121	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134 134 134 135 135
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158</pre>	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134 134 134 135 135
<pre>gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 7428545</pre>	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62	16808.00 30697.00 33138.00 106870.00 40731.00	130 131 132 132 133 133 133 134 135 135 135 135
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74185245 gi 31981068	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00	130 131 132 132 133 133 133 134 134 135 135 135 136 136
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74185245 gi 31981068 gi 74213069	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus]	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00	130 131 132 132 133 133 133 134 134 135 135 135 135 136 136 137
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74185245 gi 74185245 gi 31981068 gi 74213069 gi 74213069	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00	130 131 132 132 133 133 133 134 134 134 135 135 135 136 136 137 138
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 20094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74207158	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus]	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00	130 131 132 132 133 133 133 134 134 135 135 135 136 136 137 138 138
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] cyc1 protein [Mus musculus]	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00	130 131 132 132 133 133 133 134 135 135 135 136 136 137 138 138 138
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] cunnamed protein product [Mus musculus] unnamed protein product [Mus musculus] context [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132 142	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00	130 131 132 132 133 133 133 134 134 135 135 135 135 136 136 137 138 138 138 138
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74207158 gi 74185245 gi 31981068 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299	ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] cunnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus]	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132 142 168	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29859.00 29859.00	130 131 132 132 133 133 133 134 134 134 135 135 135 136 136 137 138 138 138 138 138 138
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 20094075 gi 114325429 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299 31541926	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 124 191 132 142 168 65	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00	130 131 132 132 133 133 133 134 134 135 135 135 136 136 137 138 138 138 138 139 139
gi 122889680 gi 148679530 gi 21263432 gi 67464233 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 742845 gi 742845 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299 31541926 gi 6679299	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] arPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UEE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132 142 168 65 255	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00 29859.00 29859.00	130 131 132 132 133 133 133 134 135 135 135 136 136 136 137 138 138 138 138 138 139 140
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299 gi 6679299 gi 6679299 gi 6679299	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] arPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UEE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] hypothetical protein LOC72175 prohibitin [Mus musculus] prohibitin [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132 142 168 65 255 84	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00 29859.00 29859.00	130 131 131 132 133 133 133 133 134 134 135 135 135 135 136 136 137 138 138 138 138 138 139 140 141
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 20094075 gi 114325429 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 2094075 gi 6679299 gi 6679299 gi 6679299 gi 58037117	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] prohibitin [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] hypothetical protein LOC72175 prohibitin [Mus musculus] NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 124 191 132 142 168 65 255 84 99	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00 29859.00 29859.00 30302.00	130 131 131 132 133 133 133 133 134 134 134 135 135 135 136 137 138 138 138 138 138 139 140 141 141
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 20094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74207158 gi 74207158 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299 gi 6679299 gi 6679299 gi 6679299 gi 6679299 gi 58037117 gi 148678681	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] hypothetical protein LOC72175 prohibitin [Mus musculus] NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus mCG6998, isoform CRA_a [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 124 191 132 142 168 65 255 84 99 69	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00 29859.00 29859.00 30302.00	130 131 132 132 133 133 133 134 134 135 135 136 136 137 138 138 138 138 138 138 139 140 141 141
gi 122889680 gi 148679530 gi 21263432 gi 201923 gi 201923 gi 22094075 gi 114325429 gi 6679299 gi 31981304 gi 74207158 gi 51764932 gi 31981304 gi 74207158 gi 74213069 gi 74213069 gi 74213069 gi 74213069 gi 6679299 gi 52350626 gi 22094075 gi 6679299 gi 6679299 gi 6679299 gi 6679299 gi 58037117 gi 148678681 gi 22094075	<pre>ATP synthase, H+ transporting, mitochondrial F1 complex, gam ST3 beta-galactoside alpha-2,3-sialyltransferase 2, isoform 50 ATP synthase gamma chain, mitochondrial precursor Chain A, The Crystal Structure Of Murine 11b-Hydroxysteroid testis-specific protein solute carrier family 25, member 5 [Mus musculus] Fgd6 protein [Mus musculus] ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculus] unnamed protein product [Mus musculus] hect (homologous to the E6-AP (UBE3A) carboxyl terminus) dom43 ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu unnamed protein product [Mus musculus] microsomal glutathione S-transferase 1 [Mus musculus] unnamed protein product [Mus musculus] monamed protein product [Mus musculus] prohibitin [Mus musculus] cycl protein [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] prohibitin [Mus musculus] solute carrier family 25, member 5 [Mus musculus] prohibitin [Mus musculus] hypothetical protein LOC72175 prohibitin [Mus musculus] NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus mCG6998, isoform CRA_a [Mus musculus] solute carrier family 25, member 5 [Mus musculus]</pre>	81 100 78 101 55 110 59 83 87 72 130 121 62 62 90 124 124 124 191 132 142 168 65 255 84 99 69 195	16808.00 30697.00 33138.00 106870.00 40731.00 40731.00 17597.00 29707.00 29707.00 29859.00 29859.00 29859.00 30302.00 33138.00	 130 131 132 133 133 133 134 135 135 136 136 137 138 138 138 138 138 139 140 141 141 142

gi 423368	ADP,ATP carrier protein T2 - mouse	180		142
gi 58037117	NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus	82	30302.00	142
gi 6679299	prohibitin [Mus musculus]	107		143
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	157	33138.00	144
gi 122889678	ATP synthase, H+ transporting, mitochondrial F1 complex, gam	74	32864.00	144
gi 6679299	prohibitin [Mus musculus]	70		144
gi 13543186	Ndufa9 protein [Mus musculus]	321	39511.00	144
gi 149266348	PREDICTED: similar to Sec61-complex gamma-subunit [Mus muscu55	69		144
gi 13543186	Ndufa9 protein [Mus musculus]	337	39511.00	145
gi 12849571	Slc25al3 protein [Mus musculus]	94	74691.00	145
gi 148673152	mannosidase 1, alpha, isoform CRA_b [Mus musculus]	58		145
gi 13543186	Ndufa9 protein [Mus musculus]	305	39511.00	146
6753610	Dihydroliponmide branched chain transacylase E2	82		151
2308984	Prostacyclin-Synthase	73		154
61211803	Carbo-hydrate-sulfo-transferase 2	85		159
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	237	40731.00	166
gi 85540614	Archaemetzincin-2 (Archeobacterial metalloproteinase-like pr55	75		166
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	231	40731.00	167
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	233	40731.00	168
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	263	40731.00	169
gi 6857753	advillin [Mus musculus]	59		169
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	177	40731.00	170
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	156	40731.00	174
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	144	40731.00	175
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	121	40731.00	177
gi 31541926	hypothetical protein LOC72175 [Mus musculus]	65	57569.28	179
13529470	Psmc2	74		182
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	180	54737.00	196
gi 3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	61		197
gi 12963591	stomatin-like protein 2 [Mus musculus]	61		198
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	110	54737.00	199
gi 74213069	unnamed protein product [Mus musculus]	74		202
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	77	40731.00	203
gi 6005854	prohibitin 2 [Homo sapiens]	131	33276.00	204
gi 6005854	prohibitin 2 [Homo sapiens]	144	33276.00	205
gi 4760606	adenylate kinase 3 [Mus musculus]	81		205
gi 26347623	unnamed protein product [Mus musculus]	63		206
gi 6005854	prohibitin 2 [Homo sapiens]	149	33276.00	208
gi 148689582	mCG10343, isoform CRA_d [Mus musculus]	69		208
gi 6005854	prohibitin 2 [Homo sapiens]	138	33276.00	209
gi 6005854	prohibitin 2 [Homo sapiens]	240	33276.00	211
gi 19526818	solute carrier family 25 (mitochondrial carrier, phosphate c92	92		213
gi 31981304	ATPase, H+ transporting, V0 subunit D isoform 1 [Mus musculu	77	40731.00	216
gi 27370154	amine oxidase (flavin-containing) [Mus musculus]	113	59020.00	217
gi 26352614	unnamed protein product [Mus musculus]	78		217
gi 74219421	purinergic receptor P2X, ligand-gated ion channel 4	64		218
gi 27370154	amine oxidase (flavin-containing) [Mus musculus]	162	59020.00	219
gi 6678175	steroid sulfatase [Mus musculus]	83		220
gi 15004258	mutant catalase [Mus musculus]	72	59986.00	221
gi 6753272	catalase [Mus musculus]	182	59982.00	221
gi 26324834	hypothetical protein LOC212933 (Peptidase M20 family)	80		222
gi 74204326	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	65		222
gi 6679809	flotillin 1 [Mus musculus]	79	47769.00	223
gi 6679809	flotillin 1 [Mus musculus]	74	47769.00	224
gi 94536791	flotillin 2 isoform 1 [Mus musculus]	61		225
gi 94536791	flotillin 2 isoform 1 [Mus musculus]	61		225

gi 7739959	P2X4c receptor subunit [Mus musculus]	74		225
gi 61097906	actinin, alpha 1 [Mus musculus]	61		226
gi 27370154	amine oxidase (flavin-containing) [Mus musculus]	129	59020.00	227
gi 74177659	vacuolar H+ATPase B2 [Rattus norvegicus]	99	56726.00	228
gi 117676374	purinergic receptor P2X, ligand-gated ion channel 4 [Mus mus	106	44262.00	229
gi 27370154	amine oxidase (flavin-containing) [Mus musculus]	83	59020.00	230
gi 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	146	53420.00	234
gi 148707168	NADH dehydrogenase (ubiquinone) Fe-S protein 2, isoform CRA_	149	50179.00	234
gi 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	104	53420.00	235
gi 30851481	Pfkfb3 protein [Mus musculus]	64		240
gi 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	99	53420.00	243
15488768	Vrk2 protein (Serine/threonine-protein kinase)	73		247
58037109	NADH-ubiquinone oxidoreductase 1 beta subcomplex 10	84		248
gi 19526814	NADH dehydrogenase (ubiquinone) flavoprotein 1 [Mus musculus	66	51486.00	252
gi 74143690	betaine-homocysteine methyltransferase [Mus musculus]	64	44373.00	253
gi 19526798	cytochrome P450, family 2, subfamily a, polypeptide 12 [Mus	102	56314.00	254
gi 6679809	flotillin 1 [Mus musculus]	63		255
- gi 26346068	PFK-2	61		256
36031132	SERCA 1	64		257
gi 14548301	Ubiguinol-cytochrome-c reductase complex core protein 1, mit	128	53420.00	258
gi 148707571	mCG146337 [Mus musculus]	74		258
gi 74185389	MDR/TAP ATP-binding cassette	152	85165.00	261
gil148707168	NADH dehvdrogenase (ubiguinone) Fe-S protein 2. isoform CRA	146	50179.00	2.61
gi 7739959	P2X4c receptor subunit [Mus musculus]	111		2.61
gi 74185389	MDR/TAP ATP-binding cassette	2.01	85165.00	2.62
gi 74185389	MDR/TAP ATP-binding cassette	127	85165.00	2.63
gi 174219421	ATP receptor P2X4 subunit isoform a [Mus musculus]	94	00100.00	263
gi 17647117	ATP-binding cassette, sub-family B (MDR/TAP), member 6 [Mus	130	94224.00	263
gil12849571	Slc25al3 protein [Mus musculus]	157	74691 00	264
gi 74219421	puripergic receptor P2X, ligand-gated ion channel 4	£9,	,1031.00	264
gi 12849571	Slc25al3 protein [Mus musculus]	154	74691 00	265
gil6678788	mannosidase alpha class 11 member 1 [Mus musculus]	61	14091.00	200
gi 12849571	Slo ²⁵ al3 protein [Mue muculue]	100	74691 00	266
gi 52871	lucocomal acid phoephatace [Mus musculus]	70	74051.00	267
56202309	Vagualar protain garting 54	65		207
ai 152971	lucocompl acid phoephotoco [Mus musculus]	64		207
g1 J20/1	mcc1028044 icoform CDA a [Mus musculus]	70		200
g1 1400/4409	McG1020044, ISOIOTH CKA_a [Mus musculus]	70		209
g1 J20/1	arine evidence (flowin containing) [Mus musculus]	160	50020 00	209
g1 2/3/0154	amine oxidase (ilavin-containing) [Mus musculus]	100	59020.00	270
g1 /422/532	NADU debuduererere (whi mirere) De Constein 2 iceferr (DD	63	E0170 00	271
g1 148/0/168	NADH denydrogenase (ubiquinone) Fe-S protein 2, isoform CKA_	67	50179.00	271
g1 2/3/0154	amine oxidase (flavin-containing) [Mus musculus]	237	59020.00	272
g1 528/1	lysosomal acid phosphatase [Mus musculus]	/4		273
g1 528/1	lysosomal acid phosphatase [Mus musculus]	70	05165 00	274
gi /4185389	MDR/TAP ATP-binding cassette sub family B	227	85165.00	276
gi 74219421	ATP receptor P2X4 subunit isoform a [Mus musculus]	75		276
gi 74185389	MDR/TAP ATP-binding cassette	234	85165.00	277
gi 18034769	sorting nexin 5 [Mus musculus]	72		277
gi 74147276	similar to proteasome 26 S subunit	61		277
gi 74185389	MDR/TAP ATP-binding cassette	245	85165.00	278
gi 7739959	P2X4c receptor subunit [Mus musculus]	69		278
gi 74185389	MDR/TAP ATP-binding cassette	225	85165.00	279
gi 7739959	P2X4c receptor subunit [Mus musculus]	80		279
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	103	54466.00	280
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	129	54466.00	281
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	111	54466.00	282

gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	182	54466.00	282
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	257	54466.00	283
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	287	54466.00	284
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	182	54466.00	285
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	137	54466.00	286
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	156	54466.00	287
gi 7739959	P2X4c receptor subunit [Mus musculus]	92		288
13542788	P2rx4	234		289
gi 34784638	Etfdh protein [Mus musculus] Electron transfer flavoprot. Qn OR	99		289
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	90	54466.00	290
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	71	54466.00	291
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	65	54466.00	292
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	71	54466.00	293
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	75	54466.00	294
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	191	54466.00	295
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	229	54466.00	296
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	321	54466.00	297
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	266	54466.00	298
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	105	94130.00	299
gi 74215327	unnamed protein product [Mus musculus]	58		299
gi 293692	lysosomal membrane glycoprotein A	143	41936.00	300
gi 293692	lysosomal membrane glycoprotein A	62	41936.00	301
157169505	vacuolar protein sorting-associated	63		303
gi 293692	lysosomal membrane glycoprotein A	77	41936.00	304
gi 293692	lysosomal membrane glycoprotein A	82	41936.00	305
gi 293692	lysosomal membrane glycoprotein A	77	41936.00	306
19745150	Diaphorase 1	68		307
94403908	Hypothetisches Protein	70		309
1730229	G-Nucleotid-binding protein 2	69		313
gi 74190108	dipeptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	102	84404.00	317
gi 74142419	ATPase, H+ transporting, lysosomal V1 subunit A	70	84404.00	318
gi 74190108	ptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	253	84404.00	322
gi 74190108	dipeptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	212	84404.00	325
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	122	94130.00	318
- gi 12835945	lysosomal membrane glycoprotein 1 [Mus musculus]	64	84404.00	316
- gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	119	94130.00	319
gi 74192605	Nicastrin	63	79203.00	325
- gi 12846107	unnamed protein product [Mus musculus]	71	70608.00	326
gi 74192605	Nicastrin	106	79203.00	328
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	65	94084.00	335
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	89	94130.00	338
gi 29244450	hypothetical protein LOC329659 [Mus musculus]	81		338
- gi 32469704	Dedicator of cytokinesis protein 9 (Cdc42 quanine nucleotide51	79		338
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	81	94084.00	339
gi 31980629	vesicle-associated membrane protein 8 [Mus musculus]	52		339
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	71	94084.00	342
gi 74178457	Niemann-Pick C1 protein precursor	68	124727.00	343
gi 85662410	cytoplasmic linker 2 isoform a [Mus musculus]	58		343
gi 8134596	Niemann-Pick C1 protein precursor	96	124727.00	344
gi 74178457	Niemann Pick type C1 [Mus musculus]	79	124727.00	356
gi 85662406	cytoplasmic linker 2 isoform b [Mus musculus]	68		356
qi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	139	94084.00	359
gi 309533	vinculin [Mus musculus]	63	117303.00	359
gi 74178457	Niemann Pick type C1 [Mus musculus]	65	124727.00	363
gi 8134596	Niemann-Pick C1 protein precursor	68	124727.00	367
gi 4678581	SERCA2a isoform [Mus musculus]	67		367
	-			
gi 8134596	Niemann-Pick C1 protein precursor	79	124727.00	377
------------	---	----	-----------	-----
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	65	94084.00	378
gi 8134596	Niemann-Pick C1 protein precursor	84	124727.00	381
gi 8134596	Niemann-Pick C1 protein precursor	87	124727.00	382
gi 8134596	Niemann-Pick C1 protein precursor	68	124727.00	385

Tab. A4: Identifizierte Proteine nach MALDI-TOF-MS-und MS/MS nach Trennung der tritosomalen Membranproteine durch 2D-CTAB-SDS-PAGE mit 4,5-14,5%(PA)-

Stufengradienten-CTAB-Trenngel und 8-14%-(PA)-SDS-Trenngel (Abb A4). Die Tabelle zeigt die gi|Nummern, die Proteinnamen, einen kombinierten Score, der sich sowohl aus den MS- als auch aus den MS/MS-Ergebnissen zusammensetzt und die Probennummer. Die Massen sind nicht für alle Proteine angegeben.

Gi Nr.	Protein	Gesamt-	Masse	Probe
		Score		
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	87	21753.00	1
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	94	21753.00	2
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	88	21753.00	3
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	65	21753.00	4
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	90		5
60415940	Stomatin like protein 2	101		6
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	87	21753.00	7
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	64	21753.00	8
60415940	Stomatin like protein 2	78		9
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	120		10
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	143	21753.00	11
gi 13278465	Arl8a protein [Mus musculus]	133		12
gi 23956194	ADP-ribosylation factor-like 10B [Mus musculus]	129		13
200715	RAB6	84		14
200715	RAB6	93		15
200715	RAB6	72		16
1122929	RAB4a	83		17
gi 148688082	peroxisomal membrane protein 2, isoform CRA_b [Mus musculus]	98	15767.00	18
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	78	21753.00	18
gi 110625894	alkB, alkylation repair homolog 4	67		18
gi 13278465	Arl8a protein [Mus musculus]	87		19
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	220	20685.00	20
34849826	Rab 2	65	23547	21
gi 74228130	Ellis van Creveld syndrome 2 homolog	63		21
34849826	Rab 2	72	23547	22
gi 148677405	cytochrome b-5, isoform CRA_a [Mus musculus]	118		22
gi 8922601	ADP-ribosylation factor-like 10C [Homo sapiens]	124		22
9055356	Syntaxin 8	83		23
9055356	Syntaxin 8	90		24
27769269	FYVE, RhoGEF and PH domain-containing protein 5	65		25
gi 148703063	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, isofor84	120		26
9055356	Syntaxin 8	67		26
gi 123244272	microtubule-actin crosslinking factor 1 [Mus musculus]	72		27
gi 13787175	Chain A, Recombinant Mouse L-Chain Ferritin	132	20685.00	28
gi 30851263	p90 autoantigen homolog, single-pass membrane	64		28
9055356	Syntaxin 8	76		28
9055356	- Syntaxin 8	68		29
gi 13385268	- cytochrome b-5 [Mus musculus]	102	15232.00	29
gi 47117166	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	114	17133.00	30
gi 47047249	TSGA10	66		30
gi 47117166	NADH dehydrogenase [ubiguinone] 1 alpha subcomplex subunit 1	97	17133.00	31
gi 10946940	RAB2, member RAS oncogene family [Mus musculus]	67		32
gi 94395498	PREDICTED: similar to Ferritin light chain 1 (Ferritin L sub	105	28535.00	33
gi 66911213	Ppp3ca protein (Proteinphosphatase 3 Katalytisceh Untereinheit)	88		33
gi 94395498	PREDICTED: similar to Ferritin light chain 1 (Ferritin L sub	72	28535.00	34
gi 7710018	erythrocyte protein band 7.2 [Mus musculus]	143	31527.00	35
gi 51829389	hypothetical Cysteine-rich flanking region	65		35
gi 26006117	Gen1/1	68		35
ai 31543340	N-ethylmaleimide sensitive fusion protein [Mus musculus]	121		35
26393485	Execust complex component 7	- <u>-</u> -		35
ai 7710010	ervthrogyte protein hand 7.2 [Mus musculus]	98	31507 00	36
9055356	Syntavin 8	50 67	51521.00	37
ai 18200222	PARIA member RAS oncogene family [Mus musculus]	75		37
gi 12707175	Chain A Recombinant Mouse I Chain Formitin	, <u>,</u>	20605 00	20
AT173/0/T/2	Chain A, Recombinant Mouse L-Chain Ferritin	22	∠0005.00	20

	205

gi	31981068	microsomal glutathione S-transferase 1 [Mus musculus]	87	17597.00	38
gi	3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	104	40731.00	39
gi	3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	103	40731.00	40
gi	3955100	vacuolar adenosine triphosphatase subunit D [Mus musculus]	86	40731.00	41
gi	18390323	RAB14, member RAS oncogene family [Mus musculus]	70		41
gi	6753498	cytochrome c oxidase subunit IV isoform 1 [Mus musculus]	71	19575.00	42
gi	18390323	RAB14, member RAS oncogene family [Mus musculus]	70		42
gi	20799123	V-ATPase E2 subunit [Mus musculus]	98		43
gi	18390323	RAB14, member RAS oncogene family [Mus musculus]	90		43
gi	13787175	Chain A, Recombinant Mouse L-Chain Ferritin	83		44
gi	13787175	Chain A, Recombinant Mouse L-Chain Ferritin	78		45
gi	10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	85	32502.00	45
gi	6755963	voltage-dependent anion channel 1 [Mus musculus]	95	30851.00	46
gi	81175168	Citron Rho-interacting kinase (CRIK) (Rho-interacting, serin51	97		46
gi	20455352	Probable tubulin polyglutamylase (Tubulin polyglutamylase co52	71		47
gi	10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	104	32502.00	48
gi	31543349	N-ethylmaleimide sensitive fusion protein [Mus musculus]	129		48
gi	18390323	RAB14, member RAS oncogene family [Mus musculus]	88	24110.00	49
gi	21313679	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	150	18795.00	50
qi	21313679	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	156	18795.00	51
qi	149258501	PREDICTED: similar to Solute carrier family 25 (mitochondria92	103		52
qi	27734251	Uncharacterized protein C20orf85 homolog	78		52
qi	58037117	NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus	110	30302.00	53
qi	111183380	cvtochrome P450 2E1 [Mus musculus]	79	38261.00	54
ai	21313679	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	81	18795.00	55
qi	21313679	ATP synthase, H+ transporting, mitochondrial F0 complex, sub	86	18795.00	56
ai	94381000	PREDICTED: dvnein, axonemal, heavy chain 3 [Mus musculus]	78		56
ai	82880803	PREDICTED: similar to adenine nucleotide translocase isoform65	89		57
ai	423368	ADP.ATP carrier protein T2 - mouse	76		56
ai	423368	ADP.ATP carrier protein T2 - mouse	89		57
ai	13385168	ubiguinol-cytochrome c reductase. Rieske iron-sulfur polypep	97	29634.00	58
ai	6679299	prohibitin [Mus musculus]	90	29031.00	59
ai	34538601	cytochrome c oxidase subunit II [Mus musculus]	66	26130 00	60
g± ai	20071895	Tubaan5 protein [Mus musculus]	59	20130.00	61
gi	34538601	cytochrome c ovidese subunit II [Mus musculus]	62	26130 00	62
gi	10720404	Voltage-dependent anion-selective channel protein 1 (VDAC-1)	111	20130.00	63
gi	10720404	Voltage dependent anion selective channel protein 1 (VDAC-1)	07		64
gi	13787175	Chain A Recombinant Mouse L-Chain Ferritin	76		64
gi	121212670	ATD symthese Ut transporting mitochondrial E0 complex sub	102	19795 00	65
gi	6005954	prohibitin 2 [Homo appiona]	102	18795.00	66
gi	10526709	gutochrome DAE0 family 2 cubfamily 2 polymontide 12 [Muc	100		66
gı	19920190	respectively provide the second secon	70		60
gı	10005654	visitin aposifia portidoso 25	79		60
gi si	12040152	Ndufel mustain [Mus mustulus]	70		00
gı		Naulay protein [Mus musculus]	92		68
gı	6005854	flatillin 1 [Mus musculus]	87	47760 00	70
gı.	6679809	flotillin 1 [Mus musculus]	91	47769.00	70
gı	6679809	flotillin I [Mus musculus]	85	47769.00	71
36	031132	SERCA I	73		71
gı	1192005	apolipoprotein E	97	40001 00	72
gi	3955100	vacuoiar adenosine triphosphatase subunit D [Mus musculus]	93	40731.00	73
gi	3955100	vacuoiar adenosine tripnosphatase subunit D [Mus musculus]	87	40731.00	74
gi	21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	79	54737.00	75
gi	20071895	Tubgcp5 protein [Mus musculus]	86		75
gi	6678788	mannosidase, alpha, class 1A, member 1 [Mus musculus]	65		75
gi	62000658	hypothetical protein LOC432582 [Mus musculus]	67		75
gi	148689580	mCG10343, isoform CRA_b [Mus musculus]	64		76

gi 117586714	pericentrin-250 [Mus musculus]	70		77
gi 192005	apolipoprotein E	72		78
gi 149258501	PREDICTED: similar to Solute carrier family 25 (mitochondria92	99		78
gi 20071895	Tubgcp5 protein [Mus musculus]	95		79
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	71	54737.00	80
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	94	54737.00	81
gi 30851481	Pfkfb3 protein [Mus musculus]	93		81
gi 19526798	cytochrome P450, family 2, subfamily a, polypeptide 12 [Mus	78		81
gi 74142612	chaperonin subunit 3 (gamma) [Mus musculus]	84	58811.00	82
gi 6678788	mannosidase, alpha, class 1A, member 1 [Mus musculus]	90		82
gi 6679809	flotillin 1 [Mus musculus]	93	47769.00	83
gi 6679809	flotillin 1 [Mus musculus]	86	47769.00	84
gi 10048462	carnitine/acylcarnitine translocase [Mus musculus]	67	33347.00	85
gi 58037117	NADH dehydrogenase (ubiquinone) Fe-S protein 3 [Mus musculus	92	30302.00	86
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	87	54737.00	86
gi 6679809	flotillin 1 [Mus musculus]	89	47769.00	87
gi 148673152	mannosidase 1, alpha, isoform CRA_b [Mus musculus]	70		87
gi 21703986	phosphatidylinositol 4-kinase type 2 alpha [Mus musculus]	95	54737.00	87
gi 148681274	spectrin alpha 1 [Mus musculus]	67		87
gi 3850794	CLIP-115 [Mus musculus]	61		88
gi 22094075	solute carrier family 25, member 5 [Mus musculus]	92	33138.00	89
gi 6753762	epoxide hydrolase 1, microsomal [Mus musculus]	88		90
gi 6753272	catalase [Mus musculus]	90	59982.00	90
gi 26324834	hypothetical protein LOC212933 (Peptidase M20 family)	68		90
gi 20321031	testis-specific protein	73		90
ai 74195489	unnamed protein product [Mus musculus]	69	29044.00	91
gi 74185389	MDR/TAP ATP-hinding cassette	68	85165 00	91
gi 18034769	sorting nexin 5 [Mus musculus]	72	05105.00	91
ai 31981304	ATPase. H+ transporting. V0 subunit D isoform 1 [Mus musculu	107	40731.00	92
gi 22267442	ubiquinol avtochrome a reductase core protein 2 [Mus musculu	98	48262 00	92
61211803	Carbo-hydrate-sulfo-transferase 2	77	10202.00	92
ai 74185389	MDR/TAD ATD-hinding cassette	91	85165 00	93
gi 67464233	Chain A The Crystal Structure Of Murine 11h-Hydrovysteroid	91	30697 00	93
gi 27370154	amine ovidese (flevin-containing) [Mus musculus]	73	59020 00	94
gi 74177659	waguolar HANTDase P2 [Pattus porvegious]	78	56726 00	95
$g_1 117676274$	vacuotar n+Arrase B2 [Kattus horvegicus]	02	44262 00	95
gi 12205160	ubiguinel gutegbrome a redugtage. Bigske iron-gulfur polymon	92	29624 00	90
gi 13305100	Ndufal protain [Mua muanulua]	97	29034.00	90
gi 13270090	maursz protern (Mus muscurus)	0/ 71	20044 00	90
gi /4195469	autochrome a cuideae cubunit IV iceform 1 [Muc mucculus]	71	29044.00	90
12520470	Dama?	69	19575.00	97
	PSHCZ	00	20511 00	97
gi 13543100	Madray protein [Mus musculus]	02	39511.00	90
g1 2//34251	Uncharacterized protein C200r185 homolog	78		98
g1 12839169	ondekannies Protein	00		98
g1 /3048/9	Aldo-Keto-Reductase family 1 Cl3	96	05165 00	98
g1 /4185389	MDR/TAP ATP-binding cassette	95	85165.00	99
g1 14548301	Ubiquinol-cytochrome-c reductase complex core protein 1, mit	97	53420.00	100
g1 2308984	Prostacyclin-Synthase	82		100
gi 111183380	cytochrome P450 2EI [Mus musculus]	73	38261.00	101
g1 29244114	nypotnetical protein LOC231874	78	50011 00	102
g1 74142612	pnospnoglycerate kinase l	90	58811.00	103
g1 26346068		92		103
gi 12849571	SIC25aI3 protein [Mus musculus]	99	74691.00	103
gi 114325429	Fgd6 protein [Mus musculus]	69	106870.00	104
gi 6678175	steroid sulfatase [Mus musculus]	82		105
~1 7/10E200	MDR/TAD ATD-hinding cassette	127	85165 00	106

gi 74219421	ATP receptor P2X4 subunit isoform a [Mus musculus]	94		107
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	81	54466.00	108
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	120	54466.00	109
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	139	54466.00	110
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	397	54466.00	111
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	205	54466.00	112
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	102	54466.00	113
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	134	54466.00	114
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	259	54466.00	115
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	290	54466.00	116
gi 7739959	P2X4c receptor subunit [Mus musculus]	109		117
13542788	P2rx4	98		118
gi 34784638	Etfdh protein [Mus musculus] Electron transfer flavoprot. Qn OR	114		119
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	145	54466.00	120
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	178	54466.00	121
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	249	54466.00	123
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	290	54466.00	124
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	214	54466.00	125
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	174	54466.00	126
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	139	54466.00	127
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	135	54466.00	128
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	200	54466.00	129
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	99	94130.00	130
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	143	54466.00	131
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	98	54466.00	132
gi 6680878	scavenger receptor class B, member 2 [Mus musculus]	129	54466.00	133
gi 293692	lysosomal membrane glycoprotein A	78	41936.00	138
gi 293692	lysosomal membrane glycoprotein A	137	41936.00	139
gi 293692	lysosomal membrane glycoprotein A	124	41936.00	140
gi 293692	lysosomal membrane glycoprotein A	105	41936.00	143
gi 293692	lysosomal membrane glycoprotein A	97	41936.00	145
gi 74190108	dipeptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	102	84404.00	149
gi 293692	lysosomal membrane glycoprotein A	89	41936.00	145
gi 74142419	ATPase, H+ transporting, lysosomal V1 subunit A	116	84404.00	146
gi 74190108	ptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	107	84404.00	146
gi 74190108	dipeptidyl-peptidase IV (EC 3.4.14.5) alpha chain - mouse	115	84404.00	150
gi 23271770	Uncharacterized protein C4orf15 homolog	66		150
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	97	94130.00	151
gi 12835945	lysosomal membrane glycoprotein 1 [Mus musculus]	98	84404.00	151
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	119	94130.00	152
gi 74192605	Nicastrin	150	79203.00	153
gi 74192605	Nicastrin	112	79203.00	154
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	103	94084.00	155
gi 7329158	vacuolar proton-translocating ATPase 100 kDa subunit isoform	89	94130.00	157
gi 32469704	Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide51	91		157
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	92	94084.00	160
gi 74192605	Nicastrin	78	79203.00	161
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	137	94084.00	162
gi 74192605	Nicastrin	105	79203.00	164
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	86	94084.00	166
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	98	94084.00	167
gi 74192605	Nicastrin	102	79203.00	170
gi 74192605	Nicastrin	116	79203.00	171
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	106	94084.00	172
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	152	94084.00	173
gi 66932954	MDR/TAP (ABC-Transporter subfamily C isoform 5)	123		173
	- · · · · ·			

gi 8134596	Niemann-Pick C1 protein precursor	68	124727.00	185
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	156	94084.00	175
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	178	94084.00	176
gi 94367385	LOC320706	70		176
gi 74178457	Niemann-Pick C1 protein precursor	87	124727.00	177
gi 85662410	cytoplasmic linker 2 isoform a [Mus musculus]	76		178
gi 8134596	Niemann-Pick C1 protein precursor	81	124727.00	179
gi 74178457	Niemann Pick type C1 [Mus musculus]	69	124727.00	180
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	114	94084.00	181
gi 309533	vinculin [Mus musculus]	67	117303.00	181
gi 74178457	Niemann Pick type Cl [Mus musculus]	70	124727.00	182
gi 8134596	Niemann-Pick C1 protein precursor	72	124727.00	183
gi 4678581	SERCA2a isoform [Mus musculus]	60		184
gi 7140942	osteoclast-specific 116-kDa V-ATPase subunit [Mus musculus]	101	94084.00	174

Tab. A5: Identifizierte Proteine nach MALDI-TOF-MS-und MS/MS nach Delipidierung nach Wessel und Flügge und Trennung der tritosomalen Membranproteine durch 2D-CTAB-SDS-PAGE mit 4,5-14,5% (PA)-Stufengradienten-CTAB-Trenngel und 8-14%-(PA)-SDS-Trenngel (Abb. A5). Die Tabelle zeigt die gi|Nummern, die Proteinnamen, einen kombinierten Score, der sich sowohl aus den MS- als auch aus den MS/MS-Ergebnissen zusammensetzt und die Probennummer. Die Massen sind nicht für alle Proteine angegeben.

Lebenslauf

Name: Oliver Schieweck
Vater: Wolfgang Sportmann
Mutter: Edelgard Schieweck
Geburtstag: 24.09.1973
Geburtsort: Wolfsburg
Staatangehörigkeit: deutsch
1995: Allgemeine Hochschulreife, Heinrich-Nordhoff-Gesamtschule,
Wolfsburg
1996 – 1997: Zivildienst, Caritas-Verband, Wolfsburg
1997-1999: Berufsausbildung zum Gärtner, Fachrichtung Zierpflanzenbau
1999-2005: Studium der Biologie, Georg-August-Universität, Göttingen
2005-2008: Promotion unter der Leitung von Dr. Bernhard Schmidt,
Institut für Biochemie und molekulare Zellbiologie, Abteilung Biochemie II,
Universität Göttingen.