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Abstract

Applications of statistical multiresolution techniques in regression problems have attracted a

lot of attention recently. The main reason for this is that the resulting statistical multiresolu-

tion (SMR) estimators are locally and multiscale adaptive, meaning that they automatically

adjust to the smoothness of the true object on different scales and in different locations. In

this dissertation, we introduce a novel algorithmic framework to compute SMR-estimators

in practice.

On a theoretical level, we take a rigorous and general approach to SMR-estimators

by defining them as the solution of a constrained optimization problem. We present a

derivation of this approach and show a consistency result. The actual computation is carried

out via an Augmented Lagrangian method by means of which the problem is decomposed

into an unconstrained minimization problem and a large-scale projection problem. The

latter is tackled by Dykstra’s algorithm, a method which computes the projection onto the

intersection of closed and convex sets by successively projecting onto single sets. These

individual projections can be stated explicitly in our context which turns Dykstra’s algorithm

into a particularly fast and hence appealing solution method.

As a result, our methodology allows for treatment of comparatively large datasets. Espe-

cially two-dimensional datasets can be processed while most publications on the subject so

far were restricted to a one-dimensional setting. When applied to regression problems, our

method gives better results than state of the art methods in the field of SMR-estimation.

Furthermore, our algorithm is the first that allows for computation of SMR-estimators for

(possibly ill-posed) inverse problems. It can also be combined with a variety of penalty

functions.

We demonstrate the performance of SMR-estimators computed by our algorithmic frame-

work by presenting numerical examples. Apart from processing synthetic test objects to

assess the quality of the estimators in different settings, we also give a practical application

from biophotonic imaging in which a large-scale deconvolution problem needs to be solved.
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1 Introduction

1.0.1 Data model

In this thesis, we are concerned with the solution of (possibly ill-posed) linear operator

equations. For a known linear operator K : H1 → H2 acting between Hilbert spaces H1 and

H2, an unknown object u
∗ is to be reconstructed (or estimated in statistical terms) given

its image Ku∗ = g under K. In many applications, g cannot be observed directly; only a

perturbed observation Y of the form

Y = Ku∗ + σε (1.1)

is available. Here, ε : H2 → L2(Ω,A,P) is a white noise process, i.e. (Ω,A,P) is a
probability space, ε is linear and for v , w ∈ H2 one has

ε(v) ∼ N (0, ‖v‖2) and Cov (ε(v), ε(w)) = 〈v , w〉 . (1.2)

This problem formulation is very common in the theory of statistical inverse problems (see

e.g. [8; 79; 87]) and covers numerous models arising in many applications. We illustrate

the rather abstract formulation by the following example which will be of central importance

for the algorithmic aspects treated in this thesis.

Example 1.0.1. Consider the case where H1 = H2 = R
X and X = {1, . . . , n}2 for some

n ∈ N is a finite lattice in R2. Put simply, we assume a two-dimensional dataset Y of size
n × n to be given. Such datasets can be visualized as grayscale images. According to this
interpretation, we will refer to (i , j) ∈ X as pixels. In view of (1.1), the value of Y in each
such pixel is given as

Yi ,j = (Ku)i ,j + σεi ,j (1.3)

where εi ,j
i .i .d.∼ N (0, 1). We note that while we assume the lattice X to be square for ease

of notation, the analysis and algorithms in this thesis can easily be extended to rectangular

lattices.

Remark 1.0.2. We will assume the noise level σ > 0 to be known throughout the thesis.

Estimating the variance of a perturbed observation Y is a subject of its own and clearly

beyond the scope of this work. For the sake of completeness, we refer to [31] and [85] and

the references therein for robust estimators of the noise level in the setting at hand.
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1.0.2 Inverse problems and regularization

We will now specify further which operators K in (1.1) are of special interest. The easiest

case of a perturbed operator equation is given for K = Id and leads to so-called denoising

problems. An example of such a problem with synthetic data in the two-dimensional setting

of Example 1.0.1 is given in Figure 1.1.

Figure 1.1: Left: synthetic test object “circles and bars” of size 256 × 256 with values
scaled in [0, 1]. Right: object perturbed with noise, yielding an observation Y

as in (1.3) with σ = 0.1 and K = Id.

While we also treat denoising in the methodology that will be introduced in this thesis,

especially ill-posed operators are of central importance. Considering this class of operators

leads to the field of inverse problems, a mathematical discipline that has attracted a lot of

attention in the past decades. We illustrate such a problem in Figure 1.2. There are many

journals and numerous monographs ([3; 41; 70; 84; 102] to name but a few) dedicated

to the subject, showing the vast amount of research in this field done recently. We give a

formal definition of ill-posed operators which traces back to J. Hadamard.

Definition 1.0.3. An operator K : H1 → H2 is said to be well-posed if

1. a solution u ∈ H1 of Ku = g exists for every g ∈ H2;

2. the solution u is unique;

3. the solution u depends continuously on g.

In particular, the inverse K−1 of K is well-defined and continuous. An operator that is not

well-posed is called ill-posed.

11



1 Introduction

Remark 1.0.4. In the discrete setting of Example 1.0.1, no discontinuous operators K−1

exist in a strict sense. Calling an invertible discrete operator K ill-posed (by a slight abuse

of notation) hence rather refers to its condition number κK defined as

κK := lim sup
u→v

‖Ku −Kv‖
‖u − v‖

being large. For a detailed treatment of discretized ill-posed problems, we refer to [56].

Figure 1.2: Left: image of “circles and bars” under a convolution operator with circular

Gaussian kernel (see Section 4.2). Right: corresponding observation Y as in

(1.3) with σ = 0.1.

When dealing with ill-posed operator equations, we always have to act on the assumption

that small deviations in the image domain may lead to arbitrarily large errors when simply

trying to invert K. Hence, computing a reconstruction û of u∗ by solving Kû = Y will lead

to an unstable and hence useless solution due to the perturbation of Y by the white noise

process ε.

We therefore need to impose some notion of regularity on our estimator. In order to

do so, we have to make some assumption on the unknown object. Making use of prior

knowledge if available, one might for example assume that it varies slowly from pixel to

pixel, that it exhibits sharp edges, or that it has a sparse representation with respect to

some fixed basis. Such formulations are usually referred to as smoothness assumptions.

After such an assumption has been specified, the reconstruction of the object is forced to

fulfill it up to a certain degree by construction of the method being used for its computation.

In order to establish this property of the estimator, this thesis focuses on penalizing

complexity, a popular approach that can be applied to various problem settings (see e.g.

12



[16; 39; 72; 76; 103]). In this technique, the smoothness assumption is formalized via a

so-called penalty function J : H1 → R∪{∞} which is chosen in a way that it becomes large
for reconstructions that exhibit a behaviour which is considered unlikely for the true object

u∗. Put differently, it gives a certain measure of complexity of elements in H1 which is

assumed to take a small value at u∗. In this thesis, we will frequently impose the following

assumption on J.

Assumption 1.0.5. J : H1 → R∪{∞} is convex, lower semi-continuous and proper. Recall
that J is called lower semi-continuous if for all u ∈ H1 and every ε > 0, there exists a
neighborhood U of u such that J(v) ≥ J(u) − ε for all v ∈ U. Furthermore, J is called
proper if the domain of J defined by

D(J) := {u ∈ H1 : J(u) 6=∞}

is nonempty and J(u) > −∞ for all u ∈ H1.

After a penalty function J has been fixed, the computation of the actual reconstruction

û is carried out by solving a constrained minimization problem of the form

J(u)→ inf! subject to D(Y,Ku) ≤ q. (1.4)

In this formulation, D : H2 × H2 → R denotes some notion of distance to measure the
deviation of Ku from the data Y . While a certain degree of smoothness is required for the

estimator û, its image under K should not be too far from the actual data Y at the same

time. We will frequently refer to D as the data-fit function. A well-known example of such

a function is the so-called least-squares data-fit given by

D(Y,Ku) =
1

2
‖Y −Ku‖22 . (1.5)

For this specific choice of D and a penalty function J that meets assumption 1.0.5, a

solution û of (1.4) might also be computed by minimizing a variational scheme of the form

ûa = argmin
u∈H1

1

2
‖Y −Ku‖22 + aJ(u). (1.6)

Remark 1.0.6. In general, such a reformulation of (1.4) is possible if G(u) := D(Y,Ku)−q
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1 Introduction

satisfies the so-called Slater condition, i.e. there exists a ū ∈ H1 such that

D(Y,Kū)− q < 0.

This can be derived e.g. from [40, Chapter 3, Proposition 5.1].

1.0.3 The regularization parameter

The scalar q > 0 in (1.4) (a > 0 in (1.6) respectively) regulates the balance between the

data-fit and the penalty function and is usually referred to as the regularization parameter.

The smaller q is chosen, the closer the image of the estimator under K will be to the

data Y as the data-fit is emphasized more, yet the estimator will become unstable if q is

chosen too small. This will lead to estimators which we will call undersmoothed. On the

other hand, the larger q is chosen, the smoother the estimator will be, but the data-fit

of the image under K will become poor if q is chosen too large. In this case, we will

call the estimator oversmoothed. In summary, q controls the trade-off between smoothing

and data-fit. Different choices of the regularization parameter may result in quite different

estimators. We illustrate this in Figure 1.0.3 where solutions of (1.6) for different choices

of the regularization parameter are presented.

Figure 1.3: Results of (1.6) for J = TV (see Section 2.4) and different parameters a where

Y is as in Figure 1.1. Left: undersmoothed estimator, a = 0.01 was chosen too

small. Right: oversmoothed estimator, a = 1 was chosen too big.

While it is of course crucial to choose D and J appropriately to the situation at hand,

the choice of q remains critical and has to be done separately for each dataset as different

objects exhibit different degrees of smoothness. This gets even more involved as the true
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object is usually unknown in practical applications. It is hence desirable to formulate esti-

mation schemes that are data-driven in the sense that no degree of freedom like q in (1.4)

is present for each individual dataset.

Many techniques to approach such schemes have been introduced already, for example

the discrepancy principle, generalized cross validation, the L-curve method or the unbiased

predictive risk estimator, to name but a few. A summary and analysis of these methods is

given in [104, Chapter 7]. Moreover, we also mention the Lepskij principle, first introduced

in [75], and the risk hull method, see [20].

The major drawback of these methods is that they all aim at choosing a global parameter

to regulate the influence of a global data-fit function (like the least-squares data-fit (1.5))

on the estimator. Smoothness, however, is not a global feature at all and may vary from

location to location and from scale to scale within one fixed object. This can for example

be seen in the test object u∗ displayed in Figure 1.1 which consists of smoother (big circle

in the top left; background) and less smooth regions (dots in the bottom right) of different

sizes. When computing an estimator given a perturbed version of u∗, those regions would

hence require different balancing of smoothing and data-fit; a task that a global scheme

like (1.6) simply cannot cope with.

1.0.4 Objectives of the thesis

These considerations lead to the starting-point of this dissertation. We give a survey

of its objectives in the following. In view of the challenges just described, the key issue

of this thesis is the derivation of a fully data-driven estimation scheme that establishes

balance between smoothing and data-fit locally and multiscale adaptive, meaning that it

automatically adapts to the local smoothness of the unknown object on different scales.

Rather than by automatically determining a regularization parameter for given data-fit and

penalty function, this goal is reached by formulating an appropriate data-fit function D for

the optimization problem (1.4) which at the same time allows for automatic determination

of an upper bound q.

This specific data-fit function is based on properties of the white noise process ε. We will

use an extreme-value statistic of a projection of the residuals - the so-called multiresolution

statistic and the related multiresolution criterion - to formulate the function. In short,

this criterion decides whether or not the residuals Y − Kû of a given estimator û still
contain nonrandom structures by performing a statistical test on them. For this reason,
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our estimation scheme may be regarded as statistically sound.

At the same time, we aim at keeping our estimation framework as general as possible.

In particular, it should not be too restrictive about possible smoothness assumptions on the

object and hence combinable with a wide range of penalty functions J. This flexibility should

not only be guaranteed on a theoretical level, but also be reflected in a certain modularity

of the computation method, meaning that replacements of J can be done without changing

the surrounding framework.

In major parts of the thesis, special emphasis is placed on algorithmic aspects that arise

from this data-driven estimation scheme. The actual computation of the corresponding

estimators amounts to the solution of a constrained optimization problem. This problem

includes a vast number of inequality constraints and is therefore hard to tackle numerically.

Establishing a novel algorithmic framework that guarantees computability of the estimators

in practical applications should hence be regarded as the main achievement of this disserta-

tion. We reach this goal by applying an Augmented Lagrangian method (cf. [43]) which we

combine with Dykstra’s algorithm [38] for computing projections onto the intersection of

closed and convex sets. The resulting algorithm turns out to be very efficient and enables

computation of the estimators, especially for the numerically involved two-dimensional set-

ting of Example 1.0.1. However, the methodology is so versatile that it could be employed

in arbitrary dimensions, in particular to one-dimensional datasets, too. Nonetheless, we

focus on the two-dimensional setting in this work.

Figure 1.4: Results of our methodology for J = TV (see Section 2.4). Left: denoising

problem of Figure 1.1. Right: inverse problem of Figure 1.2.

In Figure 1.4, we demonstrate the performance of our methodology by showing its results

for the observations of Figures 1.1 and 1.2. We remark once more that these estimators

16



were computed in a completely data-driven manner. By visual inspection we find that

the estimators exhibit the desired locally adaptive behavior. Small features are preserved

(at least those which are not completely lost in the observation Y ), while flat areas are

well-smoothed at the same time. As the inverse problem is substantially harder to tackle

numerically, it is not surprising that the resulting estimator is obviously further from the true

object than the estimator for the denoising problem illustrated in Figure 1.1. Nonetheless,

our method gives good and convincing results in both situations.

All in all, the thesis brings together elements from various mathematical disciplines. In

order to apply the statistically sound estimation scheme to the inverse problem at hand,

we will make use of optimization techniques. When applying these techniques, Dykstra’s

projection algorithm will be used in order to solve a large-scale quadratic program. Further-

more, the resulting algorithms were implemented in Matlab and C++, respectively. This

needed to be done very carefully to keep computation times within reason in spite of the

expansive algorithms being performed.

1.0.5 Outline

The thesis is organized as follows. We will start with a formal definition of the multiresolu-

tion statistic and describe how it can be used to characterize the desired statistically sound

estimators in Chapter 2. There, we will also state segmentation techniques and a method

to compute penalized least-squares estimators when J is chosen as total variation, both

of which will be needed in later chapters. In Chapter 3, we will present our methodology

to compute estimators based on the multiresolution statistic. We will illustrate its perfor-

mance by showing results of numerical experiments and give some extensions including an

application to photonic imaging in Chapter 4. The thesis is concluded by a discussion of

the results achieved and an outlook on possible future work in Chapter 5.
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2 Basic concepts

In this chapter, we will give basic definitions and core ideas needed to reach our goal

of computing an estimator of the unknown object u∗ in (1.1) in a statistically sound way.

We will start with a formal definition of the multiresolution (MR) statistic, a description of

its properties and an interpretation of the resulting multiresolution criterion in Section 2.1.

Afterwards, basic ideas on how to apply the MR-statistic to the problem at hand will be

presented in Section 2.2. There, we will also lay theoretical foundations for the resulting

statistical multiresolution estimator, namely conditions for its existence and a consistency

result.

As we aim at computing an estimator which is not only statistically sound but also locally

adaptive, meaning that it adapts to the locally varying smoothness of the true object,

certain segmentation techniques are needed. Those will be given in Section 2.3. Finally,

we will introduce the total variation semi-norm which we used as an example of a penalty

function J in our experiments and state a method for computation of the corresponding

minimizers of (1.6) in Section 2.4.

2.1 Definition of the multiresolution statistic

As briefly mentioned in the introduction, the basic idea behind the multiresolution statistic

can be summarized as follows: given an observation Y as in (1.1), an estimator û is

considered satisfactory as long as the resulting residuals

r = σ−1(Y −Kû) (2.1)

behave like white noise in a certain sense. If the estimator depicts all features of the true

object u∗ well, r will only consist of noise. If, on the other hand, there is some structure of

u∗ left in r , the estimator must have missed some of the object’s essential features and is

hence considered unacceptable.

In order to decide whether or not the residuals still contain some nonrandom structure,

we perform a statistical test on them. This test makes use of a set of test functions. To

this end, we start by giving the following definition.

Definition 2.1.1. A set

Φ := {φ1, φ2, . . .} ⊂ ran(K) \ {0}

20



2.1 Definition of the multiresolution statistic

of test functions φi with ‖φi‖ ≤ 1 will be called a dictionary.

While this definition is rather abstract at first glance, a dictionary might for example

correspond to the choice of a certain segmentation of the image domain H2 in the discrete

case of Example 1.0.1. We refer to Section 2.3 where different choices of Φ in this setting

are presented. For now, we continue by defining the actual statistic.

Definition 2.1.2. Assume that r ∈ H2 and Φ is a given dictionary. We define the average
function over φ ∈ Φ as

µφ(r) :=
|〈r, φ〉|
‖φ‖ . (2.2)

For an additional function f : [0, 1]→ R and N ∈ N, the multiresolution (MR) statistic TN
is defined as

TN(r) := sup
1≤i≤N

µφi (r) − f (‖φi‖). (2.3)

We provide an outline of the history of the MR-statistic. It was first introduced in [98] to

detect change points, [99] extended this application to the detection of a signal against a

noisy background. The MR-statistic was also used to formulate a stopping rule for the EM

algorithm in [9] and [10], therefore applying it to positron emission tomography. In [36] and

[37], the authors introduced the statistic to the context of testing qualitative hypotheses

in non-parametric regression. In [29] it was first used for non-parametric regression of

one-dimensional functions, focusing on local extremes. There, the authors employed it

to determine a localized form of the regularization parameter in (1.6) where the penalty

function J is chosen to be the total variation semi-norm. This approach was extended

to two dimensions in [100] where inhomogeneous diffusion was used as a reconstruction

method; a methodology which was later refined in [64]. Confidence regions for the MR-

statistic were given in [30] where the resulting estimation scheme was first formulated as a

constrained optimization problem.

In this thesis, we introduce the MR-statistic as a tool to perform a statistical test which

we motivate in the following. If an estimator û failed to recover features of u∗, the mean

of some of the residuals will no longer be 0. In order to detect such residuals by means of

a dictionary Φ, we test the null hypothesis

H0 : E (µφ(r)) = 0 for all φ ∈ Φ (2.4)
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2 Basic concepts

against the alternative

H1 : E (µφ(r)) 6= 0 for some φ ∈ Φ.

This concept was first introduced in [99]. In order to use the MR-statistic TN to perform

this test, we note that if r deflects from H0 along some φ ∈ Φ, the residuals there are
no longer distributed around zero. Hence, the absolute values of the projections of the

residuals onto this φ will be significantly larger than one would expect for pure white noise.

In other words, if we choose a proper dictionary Φ, the average function µφ(r) will become

large for at least one φ ∈ Φ in this case and so will TN(r). Consequently, we will reject H0
if TN(r) exceeds a certain threshold value q.

While asymptotic behaviour of the statistic was used e.g. in [29] and [100] in order to

derive a choice of the critical value q, we propose to choose q = qN(α) according to the

(1− α)-quantile of TN(ε), that is

q = qN(α) := inf {q ∈ R : P(TN(ε) ≤ q) ≥ 1− α} (2.5)

for some α ∈ (0, 1). In practice, this quantile may be estimated by performing Monte Carlo
simulations of TN(ε).

This approach leads to an additional degree of freedom, namely the choice of the signif-

icance level α: the probability that a given instance of the white noise process ε is bigger

than qN(α) is at most α. In other words, α constitutes an upper bound on the error of

the first kind when testing a given r ∈ H2 for the null hypothesis H0. Note that α is a
significance level in the sense just described for the statistical test using all test functions

φ1, . . . , φN simultaneously. Multiple testing on each individual φi (which would result in a

drastically reduced significance level over all N test functions due to multiplicity) is there-

fore avoided. Despite the fact that α may be chosen at will, the estimator resulting from

our theoretical considerations may still be called fully data-driven as we will see in the next

section. For now, we summarize our considerations so far in a formal definition.

Definition 2.1.3. We say that an estimator û to a given observation Y as in (1.1) fulfills

the multiresolution (MR) criterion with respect to a dictionary Φ, N ∈ N and a significance
level α > 0 if

TN(σ
−1(Y −Kû)) ≤ qN(α).
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2.1 Definition of the multiresolution statistic

Otherwise, û is said to violate the multiresolution criterion.

In summary, our statistical test will hence be performed in the following way: for given

observation Y and estimator û, we will reject H0 with respect to the residuals r = σ−1(Y −
Kû) and hence the estimator itself if û violates the MR-criterion. If, on the other hand, û

fulfills the MR-criterion, we will not reject the hypothesis that r only contains white noise

and will therefore accept the estimator û. Note that the MR-criterion hence subdivides H1

into acceptable and unacceptable estimators. We have therefore only characterized a set of

estimators which are feasible in terms of the MR-statistic so far. We postpone the question

of how to pick a suitable estimator from this set to Section 2.2.

Up to now, we have focused our analysis on the average function µφ. Yet the second

component of the MR-statistic, namely the function f , has not been discussed. For now,

just note that it depends on the norm of the test functions φi only and is not related to the

residuals r being tested. It therefore rather modifies the design of the test itself and not

the way that the residuals influence its outcome. The interpretation of the test as given in

this section is hence independent of the particular choice of f . Put differently, f allows for

control of the extent to which test functions with equal norm contribute to the statistic

and hence balances φi ’s of different norms. A more detailed treatment of this function will

be given in Sections 2.2 and 2.3 where a sound choice of f in the discrete two-dimensional

setting of Example 1.0.1 will be stated.
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2.2 The statistical multiresolution estimator

An important remark about the multiresolution criterion is related to its one-sidedness.

While we could have established a lower bound on the statistic in Definition 2.1.3 as well

(e.g. by choosing a quantile which is smaller than TN(ε) with a certain probability, anal-

ogously to (2.5)), we only limited its value from above by the critical value qN(α). As a

consequence, an estimator û will only violate the MR-criterion if the corresponding residu-

als r become large in absolute value. This will happen if the estimator û is oversmoothed

which will for example be the case if û = ûq is computed as a solution of (1.4) and the

regularization parameter q is chosen too big. If, on the other hand, û is undersmoothed,

the residuals will get small in absolute value and so will TN(r) and û is likely to fulfill the

MR-criterion.

Consider for example the case of denoising where K = Id. If we simply take the obser-

vation Y as an estimator in this setting (e.g. by choosing a = 0 in (1.6)), the residuals

r will all be zero and the multiresolution criterion will trivially be fulfilled although the es-

timator is certainly far from being satisfactory. While this is an exaggerated example, it

nonetheless reveals an essential drawback of the MR-criterion: it is not capable of detecting

undersmoothing.

2.2.1 Definition and interpretation

After this insight, we are now ready to specify how to pick an estimator from all those

that are feasible in the sense of Definition 2.1.3. As the MR-criterion does not guarantee

acceptable estimators to exhibit any smoothness at all, we will consequently choose our

estimator according to the paradigm that we pick the smoothest estimator which fulfills the

MR-criterion. We formalize this in the following definition.

Definition 2.2.1. For a dictionary Φ, a significance level α ∈ (0, 1) and a penalty function
J : H1 → R ∪ {∞}, a solution ûN(α) of the optimization problem

J(u)→ inf! subject to TN(σ
−1(Y −Ku)) ≤ qN(α) (2.6)

will be called statistical multiresolution (SMR) estimator.

At this point, the connection between SMR-estimators and the estimation scheme (1.4)

becomes obvious. In terms of the general framework presented there, we have used the MR-
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2.2 The statistical multiresolution estimator

criterion of Definition 2.1.3 to formulate a data-fit function which leads to the automated

estimation scheme we claimed in the introductory Chapter 1. Moreover, we also point out

the similarity between the SMR-estimator for J = L1 and the Dantzig selector introduced

in [19]. The fundamental difference between these two, however, is the fact that the

constraints on the residuals for the latter are formulated with respect to the L∞-norm

instead of the SMR-statistic used here.

In view of (2.5) and (2.6), we see that an SMR-estimator is the smoothest estimator

which lies within a (1−α) confidence region of the data, also see [30]. While α may still be
chosen at will and can be regarded as a regularization parameter by itself (and so can the

number N of test functions taken into account), the resulting value of qN(α) can be used

independently of the particular observation Y at hand as long as H1, H2, Φ and N remain

unchanged. We will therefore continue to call the SMR-estimator data-driven.

In a statistical interpretation of Definition 2.2.1, the true object is an element of the

feasible region of the optimization problem defined by the first N test functions with a

probability of (1 − α). This makes the parameter selection rule q := qN(α) in (2.5)

(which could in general be used in combination with any data-fit function of the form

D(Y,Ku) = d(Y −Ku) for some d : H2 → R) meaningful in a statistical sense, especially
in contrast to simply regarding q as a tuning parameter that has no more subtle meaning.

From an algorithmic point of view, note that the number of side constraints of the

optimization problem (2.6) becomes extremely large in a two-dimensional setting if the

underlying dictionary is chosen in one of the ways that will be suggested in Section 2.3.

Tackling this numerically challenging problem is therefore one of the key issues of this thesis.

The corresponding methodology will be introduced in Chapter 3.

2.2.2 Theoretical background

For the remainder of this section, we will focus on theoretical issues, giving sufficient con-

ditions for the existence of an SMR-estimator and a consistency result. In this respect, we

will also explain how the function f in Definition 2.3 can be chosen appropriately from a

theoretical perspective, an open question which was postponed in Section 2.1. As this thesis

mainly deals with practical application and algorithmic aspects, we will skip the proofs of

the following theorems and refer to [44] for a solid theoretical background of these results.

Theorem 2.2.2. Assume that J : H1 → R ∪ {∞} satisfies Assumption 1.0.5 and that in
addition:
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1. There is a N0 ∈ N such that for all c ∈ R the sets
{

u ∈ H1 : sup
1≤n≤N0

µφn(Ku) + J(u) ≤ c
}

are sequentially weakly pre-compact.

Then an SMR-estimator exists for all N ≥ N0 and α ∈ (0, 1).

We comment on how the assumptions of this theorem translate to the setting being

treated in this thesis. First, note that Assumption 1.0.5 imposes a rather weak restriction

on J, allowing many popular choices of J with the total variation semi-norm as introduced

in Section 2.4 and used in our numerical examples among them. Assumption 1 in the

theorem is rather technical and aims at a certain interaction between Φ, K and J: for a

given operator K, the dictionary Φ and the penalty function J must be chosen in a way that

a deviation in H1 can either be measured in its image under K by means of Φ or detected

due to an increment in the complexity J. In Section 2.4, we will state a sufficient condition

for this assumption to hold which allows for an easy verification in the special case where J

is chosen to be the total variation semi-norm. For general penalty functions, however, one

would have to verify the assumption in a different way.

Let us now investigate the asymptotic behaviour of ûN(α) as the noise level σ in (1.1)

tends to zero, therefore giving consistency results for the estimator. As N and α serve

as regularization parameters of the SMR-estimator, they have to be chosen in a way that

α→ 0 and N →∞ at appropriate speed when considering the asymptotic case. Since we
imposed only rather weak restrictions on the penalty function J in Theorem 2.2.2, it would

be too optimistic to expect norm-convergence of ûN(α) to a solution of the equation Ku = g

independently of the concrete choice of J. In fact, our result establishes convergence in

Bregman-divergences (first introduced in [13]) which we formally define here.

Definition 2.2.3. For u, v ∈ H1 and J : H1 → R, we define the Bregman-divergence of u
and v with respect to J as

DJ(u, v) = J(u)− J(v)− J ′(v)(u − v)

where J ′(v)(u − v) denotes the directional derivative of J at v in direction (u − v).

Remark 2.2.4. Clearly, the Bregman-divergence does not define a (quasi-)metric on H1:

It is non-negative but in general not symmetric. Moreover, it does not satisfy the triangle
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2.2 The statistical multiresolution estimator

inequality. The advantage of formalizing asymptotic results like consistency or convergence

rates with respect to the Bregman-divergence, however, is the fact that the regularizing

properties of the penalty function J being used are incorporated automatically. If, for

example, J is slightly more than strictly convex, it was shown in [93] that convergence with

respect to the Bregman-divergence already implies convergence in norm. If, however, J

fails to be strictly convex (e.g. if it is of linear growth) it is in general hard to establish

norm-convergence results, yet convergence results with respect to the Bregman-divergence,

though weaker, may still be at hand. The concept of Bregman-divergence has attracted

much attention recently, especially in the inverse problems community (cf. [17; 18; 27; 45;

94]).

After these preparations, we are now ready to state the consistency result for the SMR-

estimator ûN(α) of Definition 2.2.1.

Theorem 2.2.5. Under the assumption that

g ∈ span {Φ} and sup
n∈N

µφn(ε)− f (‖φn‖) <∞ a.s. (2.7)

one can choose appropriate parameters α = α(σ) and N = N(σ) such that

lim sup
σ→0+

‖ûN(α)‖ <∞ and lim
σ→0+

DJ(u
†, ûN(α)) = 0 a.s. (2.8)

for all J-minimizing solutions u† of (1.1) which are characterized by Ku† = g and

J(u†) = inf
u∈H1
{J(u) : Ku = g} .

Proof. See [44, Theorem 3.6].

In order to guarantee consistency of the SMR-estimator, we hence need to verify (2.7).

Closer examination shows that Φ must be chosen sufficiently rich to guarantee the first

assumption made there. For the second assumption to hold, the function f in Definition

2.1.2 must be chosen appropriately. General conditions have been formulated in [36] and

[37] for the particular choice

f (x) =
√

−γ log x where γ > 0 (2.9)
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in terms of the ε-covering number Nε of Φ, that is the minimal number of ε-balls needed

to cover Φ. According to [37, Theorem 7.1], we find that whenever there exist constants

A,B > 0 with

Nst({φ ∈ Φ : ‖φ‖ ≤ t}) ≤ As−Bt−γ for all s, t ∈ (0, 1], (2.10)

the choice of f in (2.9) results in the second assumption in (2.7) to hold and hence in the

SMR-estimator to be consistent in the sense of (2.8). Obviously, γ needs to be chosen

dependent on the dictionary Φ for (2.10) to be fulfilled. When discussing possible choices

of Φ in a discrete two-dimensional setting in Section 2.3, we will state the corresponding

values of γ and therefore reveal how f was chosen in our numerical experiments.

We conclude our theoretical considerations by summarizing that the SMR-estimator and

the statistic it is based on have a solid background not only due to the heuristics formulated

in the last and at the beginning of this section but also from a theoretical point of view. It

is hence worthwhile to make an effort to develop efficient numerical methods to solve the

optimization problem (2.6) despite the fact that it is extremely large-scale. We once more

refer to Chapter 3 where such methods will be derived.
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2.3 Choice of dictionary Φ

By now, our considerations about the MR-statistic TN were rather abstract as the dictionary

Φ was only formally defined in Definition 2.1.1. In this section, we will give two concrete

examples of possible choices of Φ in a discrete two-dimensional setting and connect them

to the consistency result presented in Theorem 2.2.5. We will also indicate methods to

quickly evaluate the MR-statistic for these specific choices of Φ. The dictionaries presented

here will later be used in order to apply our theory and actually compute SMR-estimators

in practice.

2.3.1 Characteristic functions of subsets

We start out by relating the dictionary from Definition 2.1.1 to subsets of the image domain

in the discrete two-dimensional case.

Example 2.3.1 (cont. Example 1.0.1). In the setting of Example 1.0.1, we will choose our

test functions as

φ = φS := n
−2χS

where S ⊂ X = {1, . . . , n}2 for all φ ∈ Φ throughout the remainder of this thesis. Here,
χS : X → {0, 1} denotes the characteristic function of S which takes the value 1 in S and
0 everywhere else. For this choice of Φ, the MR-statistic (2.3) transforms to

TN(r) = sup
1≤k≤N

∣

∣

∣

∑

(i ,j)∈Sk
ri ,j

∣

∣

∣

√
#Sk/n

− f (
√

#Sk/n). (2.11)

According to this formula, we will frequently identify ‖φ‖ with the scale of φ in the
following. This relates our SMR-estimator to the multiscale property which we claimed in

the introduction. It can be established by choosing subsets of different sizes and adding

their characteristic functions to the dictionary Φ. Furthermore, we will sometimes identify a

subset S ⊂ X with the test function χS in a slight abuse of notation if it increases simplicity.
In particular, we will say that a set S yields a violation for given û ∈ H1 and critical value
q if

∣

∣

∣

∑

(i ,j)∈S ri ,j

∣

∣

∣

√
#S/n

− f (
√

#S/n) > q where r = σ−1(Y −Kû),
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i.e. if χS ∈ Φ causes the estimator û to violate the MR-criterion in the sense of Definition
2.1.3.

2.3.2 Examples of partitionings

We will now describe how to choose a system of subsets

P = {S1, S2, . . .} ⊂ X

and therefore a dictionary Φ appropriately for our purpose. In this thesis, such a system

will frequently be called a partitioning although it not necessarily constitutes what is usually

called a partition in image processing, i.e. a disjoint decomposition of X. Nevertheless, the

term partitioning will be used for the sake of brevity.

Clearly, such a partitioning should contain sets of different sizes in order to achieve the

desired multiscale property of the SMR-estimator. In addition, the partitioning should be

rich enough to detect deviations from H0 in different locations and therefore consist of
enough sets to at least cover the whole domain X. On the other hand, it should not

be chosen too rich either, as the consistency result of Theorem 2.2.5 would break down

otherwise (cf. Subsection 2.3.3). Another important issue is the one of computability. The

algorithms we will derive in Chapter 3 require numerous evaluations of TN(r). We should

hence make sure that the average function µχS(r) in (2.2) can be computed quickly for all

S ∈ P when choosing our partitioning.
We will now state two partitionings which meet all of these requirements. In fact, these

are the partitionings we used for our experiments. The first one is the so-called dyadic

squares partitioning used e.g. in [35] and [71]. By splitting the image recursively into four

equal subsquares until some pre-specified lowest scale smin is reached (see Figure 2.1 for an

illustration), one receives a partitioning that covers many different scales with comparatively

few subsets. We will denote this partitioning by PD.
A second approach to create a partitioning that consists of squares is to fix a certain set

of scales {s1, . . . , sm} ⊂ N and let P comprise all squares with such side lengths in the image
domain. Such a partitioning will be called all squares partitioning and denoted by PA in this
thesis. Clearly, this partitioning is a superset of PD (at least if the corresponding side lengths
were considered) containing much more elements than the latter. As a consequence, it is

more involved computationally, but allows for a better detection of nonrandom structures
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Figure 2.1: Different scales of a dyadic squares partitioning.

in the residuals as the model that the null hypothesis H0 in (2.4) is based on is refined.
Although we assume the subsets in the partitioning to be squares in order to simplify

notation, rectangles could be used as well.

We remark that prior information about the geometry of features of the unknown object

u∗ may be used to individually choose a partitioning. If u∗ is believed to consist of, say,

long and narrow features, long and narrow subsets should be taken into account in the

partitioning. On the other hand, subsets which are shaped in a way that is considered unlikely

for features of u∗ could be left out in order to speed up computation time. Nonetheless,

partitionings that consist of squares like the two presented here are rather general and

adequate to many situations as they cover a lot of different geometric features that a test

object might exhibit. At the same time, the structure of these partitionings is rather simple

and easy to implement in contrast to more advanced segmentation techniques.

2.3.3 Covering number

At this point, we return to the theoretical background of SMR-estimators as established

in Subsection 2.2.2. The partitionings PA and PD allow for a theoretically sound choice
of γ > 0 in the formula (2.9) of the function f in Definition 2.3 of the MR-statistic. In

fact, it was proved in [44, Proposition A.6] that for the setting treated in this section and

a dictionary consisting of characteristic functions of squares, γ = 2 guarantees (2.10) to

hold true and hence the SMR-estimator to be consistent in the sense of (2.8). We will

therefore choose

31



2 Basic concepts

f (x) =
√

−2 log x (2.12)

throughout the thesis when dealing with the two-dimensional setting at hand.

In general, however, the covering number in (2.10) constitutes an upper bound on the

complexity of partitionings that may be used in SMR-estimation. The partitioning may not

be chosen too rich in order to preserve consistency of the SMR-estimator. If for example P
is chosen as the system of all closed and convex sets in {x ∈ R2 : ‖x‖ ≤ 1}, no γ will exist
to guarantee (2.10) according to a result shown in [15, Theorem 6] and the estimator’s

consistency will break down. This corresponds to the heuristic argument that when looking

at a random signal on arbitrarily many subsets, one will always find some subset on which

the signal appears to be nonrandom, even if it is in fact a realization of a white noise

process. This restriction should always be kept in mind when choosing a partitioning.

2.3.4 Fast summation

Both partitionings presented in Subsection 2.3.2 allow for fast computation of the average

function µφ as required, i.e. according to (2.11) for a method to quickly compute sums over

all squares in the partitioning. We outline the corresponding method which we used in our

implementation. This method makes use of the so-called matrix of cumulative sums. Put

simply, entry (i , j) of this matrix holds the sum of the residuals r over the discrete rectangle

[1, i ]× [1, j ] ⊂ X.

Definition 2.3.2. For a given r ∈ Rn×n, the matrix of cumulative sums R is defined by

Ri ,j =

i
∑

k=1

j
∑

l=1

rk,l

and the additional convention that R0,0 = Ri ,0 = R0,j = 0 for all i , j = 1, . . . , n.

After the matrix R was precomputed, we readily obtain the sum of r over a square

S = [i1, i2]× [j1, j2] ⊂ {1, . . . , n}2 via

∑

(i ,j)∈S

ri ,j = Ri2,j2 −Ri1−1,j2 − Ri2,j1−1 + Ri1−1,j1−1. (2.13)

This formula corresponds to “cutting” the square from the image domain X. When evalu-

ating (2.11) for a fixed r and a large number of test functions, this approach is clearly faster
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than summing up over each individual square S ∈ P directly. When incorporating further
partitionings into the framework of SMR-estimation, one would have to come up with a

similar method that allows for fast summation over the sets contained in the partition-

ing. Otherwise, the methodology presented in Chapter 3 is likely to become too expansive

computationally.
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2.4 Total variation

As explained in the introduction, some assumption on the smoothness of the true object u∗ is

indispensable when dealing with operator equations like (1.1). The actual reconstruction is

then carried out in a way that guarantees the resulting estimator to exhibit this smoothness

up to a certain level. One idea to achieve this goal is the formulation of a penalty function

J : H1 → R ∪ {∞} as in (1.6) which takes large values for elements in H1 that lack the
expected smoothness. So far, we have only treated J on this abstract level. If SMR-

estimators are to be computed in practice, however, some concrete J will have to be

specified. In this section, we give a definition of a popular choice of such a penalty function,

the total variation semi-norm or TV for short, study its properties and state a method how

to compute TV-penalized least-squares estimators. As in the previous section, we will

restrict our algorithmic considerations to the discrete two-dimensional setting of Example

1.0.1.

Before we start our analysis of total variation, we emphasize that it is not the objective

of this thesis to propagate this or any other specific choice of J but to depict how the

amount of smoothing needed can be chosen in a data-driven way. It is in fact an advantage

of our methodology that it can be combined with a wide range of possible choices of J. We

therefore treat J on the abstract level as described above for most of the thesis and only use

total variation as an exemplary choice of J in order to demonstrate the performance of our

techniques in practical applications. Which specific J to choose depends on the particular

situation and aim of the reconstruction and is not the key issue of this thesis. For this

reason, we only outline how the computation of TV-penalized least-squares estimators was

performed in our experiments and abstain from a more detailed treatment of the method

and its background as this is beyond the scope of this thesis.

2.4.1 Definition and properties

Total variation can be defined rigorously in a continuous setting (see e.g. [48]). To this

end, let Ω ⊂ R2 be an open subset. For u ∈ L1(Ω), we then define

TV(u) :=

∫

Ω

|∇u|2 dx
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which in turn stands symbolically for

∫

Ω

|∇u|2 dx := sup(
∫

Ω

u(x) div ξ(x) dx : ξ ∈ C1c (Ω;R2), |ξ(x)| ≤ 1 for all x ∈ Ω)

where C1c (Ω;R
2) denotes the set of continuously differentiable R2-valued functions of com-

pact support in Ω and |v |2 :=
√

v 21 + v
2
2 is the Euclidean norm on R

2.

TV was introduced as a penalty function in image processing by Rudin, Osher and Fatemi

in [97] and has become quite popular ever since. The original total variation denoising

problem proposed in [97] is

TV(u)→ inf! subject to
∫

Ω

Ku =

∫

Ω

Y and

∫

Ω

|Y −Ku|2 = σ2.

In a statistical interpretation of this formulation, the side constraints correspond to the

assumption that the noise has zero mean (first constraint) and standard deviation σ (second

constraint). It was later proved in [24] that this problem is equivalent to

TV(u)→ inf! subject to ‖Y −Ku‖2 ≤ σ2

under fairly mild assumptions.

For the algorithmic aspects covered by this thesis, we need to formulate a discretized

version of total variation for the setting of Example 1.0.1. Considering u ∈ Rn×n, we define
the discrete gradient operator ∇u = ((∇u)1i ,j , (∇u)2i ,j)i ,j for i , j = 1, . . . , n via the forward
difference operator:

(∇u)1i ,j :=







ui+1,j − ui ,j if i = 1, . . . , n − 1
0 if i = n

and

(∇u)2i ,j :=







ui ,j+1 − ui ,j if j = 1, . . . , n − 1
0 if j = n

.

The total variation of u is then defined as

TV(u) =

n
∑

i=1

n
∑

j=1

|(∇u)i ,j |2 .

When closer examining this definition, we find that TV(u) is likely to become large if u
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exhibits large amplitude oscillations. While this is a property it shares with other penalty

functions that take into account the differential of u, total variation is particularly suitable

for reconstruction of sharp edges in two-dimensional objects (which correspond to jumps

in one-dimensional objects) when used as a penalty function. On the other hand, TV

performs rather poorly in regions where the intensities of u vary slowly from pixel to pixel.

In such regions, TV is known to cause the typical “staircasing artifacts”. The smoothness

assumption under which TV is usually considered a good choice of a penalty function is

hence that the true object consists of piecewise constant values with sharp edges between

them. Such objects are frequently referred to as being “blocky”.

In the following, we give a brief overview of how to compute TV-penalized least-squares

estimators in different situations and state the finite element approach we used in our

numerical simulations.

2.4.2 Computation of TV-penalized least-squares estimators

Finding TV-penalized least-squares estimators for the problem at hand, i.e. a solution û ∈ H1
of

1

2
‖Y −Ku‖2 + aTV(u)→ inf!, (2.14)

is computationally rather easy in a one-dimensional setting for the case of denoising where

K = Id. It was shown in [77] (see also [51]) that the taut-string algorithm can then be

used as a fast solution method. Unfortunately, this result can be extended neither to higher

dimensions nor to nontrivial operators in the model (1.1).

In two dimensions, particularly efficient algorithms have been introduced for the case

of denoising, too. We just mention the primal-dual approach in [23] which proves to be

remarkably fast. However, just like the one-dimensional approach via taut strings, it cannot

be extended to non-trivial operators either and is hence not suitable for our purpose.

For the two-dimensional inverse problem case at hand, for example fixed point algorithms

for solving the Euler-Lagrange equations of (2.14) could be applied. We refer to [104,

Chapter 8] (see also [105] and the references therein) where several algorithms are derived

from this ansatz. Nonetheless, we took a different approach in our implementation, namely

the one of a finite element method which we will describe in the following.

Just as the specific choice of J = TV, we use a finite element method to solve (2.14)
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only as an exemplary approach in order to illustrate the performance of our algorithms

and compute SMR-estimators in practice. In particular, we do not claim that it should be

used preferably whenever TV-penalized least-squares estimators need to be computed. Any

method that solves (2.14) would be fine for our purpose and could easily be incorporated

into our SMR-methodology as we will see in Chapter 3.

In order to derive the method we used in our experiments, we return to the continu-

ous setting. Due to the nondifferentiability of the Euclidean norm at the origin, the TV

functional as defined above causes problems when numerical methods are applied to it.

To overcome this difficulty, we will hence use an approximation TVβ rather than the TV

functional itself. While there are several options to formulate such an approximation (see

e.g. [104, Chapter 8]), we stick to

TVβ(u) =

∫

Ω

√

|∇u|22 + β2 dx (2.15)

for a small positive parameter β. In our numerical experiments, we fixed β = 10−4. On the

basis of this approximation, the problem to be solved can be stated as

û = argminu∈H1
1

2

∫

Ω

|Y −Ku|2 dx + a
∫

Ω

√

|∇u|22 + β2 dx. (2.16)

We will approach this problem by solving the corresponding weak Euler-Lagrange equa-

tion, that is

∫

Ω

(Kû − Y )Kv + a ∇û∇v
√

|∇û|22 + β2
dx = 0 for all v ∈ L2(Ω). (2.17)

This equation will be tackled by means of a finite element method, an approach which

we will briefly describe in the following. For a very detailed description of finite element

methods, we refer to [108], naming just one of the many textbooks on the subject.

The general idea behind finite element methods can be summarized as follows: instead

of solving a variational scheme analytically in the continuous setting, an approximation of

the solution in some subset VN ⊂ L2(Ω) of finite dimension N is computed. To this end, a
set of so-called ansatz functions {ψ1, . . . , ψN} which form a basis of VN is chosen and used
to represent elements v ∈ L2(Ω) by the approximation v ≃∑N

i=1 viψi .

Keeping in mind that the resulting method is supposed to be applied to discrete two-

dimensional datasets of size n × n, we choose N = n2 and one bilinear ansatz function
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ψi = ψk,l centered at pixel (k, l) for all (k, l) ∈ {1, . . . , n}2. Substituting this into (2.17),
we get

N
∑

i=1

K∗Kûi

∫

Ω

ψiψj dx +

N
∑

i=1

ûi

∫

Ω

a
∇ψi∇ψj

√

|∇û|22 + β2
dx =

N
∑

i=1

K∗Yi

∫

Ω

ψiψj dx (2.18)

where we set û =
∑N
i=1 ûiψi . In order to simplify notation in this equation, we define the

mass matrix M ∈ Rn2×n2 as

Mi ,j =

∫

Ω

ψiψj dx (2.19)

and the stiffness matrix S[u] ∈ Rn2×n2 as

S[u]i ,j =

∫

Ω

∇ψi∇ψj
√

|∇u|22 + β2
dx (2.20)

and compute a solution of (2.17) and therefore the desired TV-penalized least-squares

estimator û via

MK∗Kû + aS[û]û = MK∗Y. (2.21)

This gets done by a fixed point iteration. Starting with some initial u0, we iteratively set

uk+1 to a solution of this system where the stiffness matrix is formulated with respect to

uk until we receive a good approximation to the solution. We summarize this approach

in pseudocode in Algorithm 1. The integrals needed for M and S[u], respectively, are

computed numerically. In our implementation, we use the midpoint rule for this purpose.

For a proof of convergence of this fixed point iteration (independent of the initial guess

being used), we refer to [33, Theorem 4.1].

2.4.3 Existence of TV-penalized SMR-estimators

Having answered the question of how to tackle the problem of computing TV-penalized

least-squares estimators numerically, we conclude this section by returning to the sufficient

conditions for the existence of SMR-estimators as stated in Theorem 2.2.2. The TV

functional is convex and proper. Moreover, it was proved in [1, Theorem 2.3] to be lower
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Algorithm 1 Finite element method for TV-penalized least-squares estimation

Require: Y ∈ Rn×n (data); a > 0 (regularization parameter); u0 ∈ Rn×n (initial guess);
τ > 0 (tolerance).

Ensure: ûa[τ ] is an approximate solution of (2.21) with tolerance τ in the breaking condi-

tion.

1: u ← u0.

2: Compute M as in (2.19).

3: S ← S[u] as in (2.20).

4: R← MK∗Y .

5: while ‖R − (MK∗Ku + aSu)‖ ≥ τ do
6: u ← ũ where ũ satisfies

(MK∗K + aS)ũ = R.

.

7: S ← S[u] as in (2.20).

8: end while

9: ûa[τ ]← u.

semi-continuous, too. It therefore satisfies Assumption 1.0.5.

As explained in Section 2.2, Assumption 1 in Theorem 2.2.2 does not allow for a straight-

forward verification for general penalty functions J. The specific choice of J = TV, how-

ever, leads to the following lemma taken from [44] that gives a sufficient condition for the

assumption to hold.

Lemma 2.4.1. If J = TV and there exists a φ ∈ Φ such that

|〈K1, φ〉| > 0, (2.22)

then Assumption 1 in Theorem 2.2.2 holds. Here, 1 denotes the constant 1-function on

H1.

Proof. See [44, Lemma 4.9].

Interpreting this result, we find that the dictionary Φ being used to compute an SMR-

estimator has to be chosen in a way that misalignment by a constant in H1 can still be

detected in the image under K by means of Φ. Note that this does not only imply an

assumption on the dictionary but on the operator K as well. Fortunately, this assumption

appears to be rather weak. In particular, it holds true for the two-dimensional setting of
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Example 1.0.1 if we choose Φ in one of the ways proposed in Section 2.3 combined with

any of the operators K used in our numerical experiments later in this thesis.
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The SMR-estimator as derived in the previous chapter exhibits all properties which we

formulated as our goals in the introduction. Its statistical interpretation and theoretical

background give rise to the question of how to actually compute SMR-estimators in practice.

A corresponding method is introduced in this chapter.

The computation of SMR-estimators is challenging as it amounts to solve the constrained

optimization problem (2.6) which is extremely large-scale, especially in the two-dimensional

setting of Example 1.0.1. In present publications on the subject, the authors therefore

circumvent an explicit solution method for this problem. Instead, they approach SMR-

estimators via an automatic parameter selection method for a modified version of the

estimation scheme (1.6) where the scalar parameter is “localized” to a matrix of the same

size as the dataset. This parameter is initialized to a constant large enough to guaran-

tee oversmoothing and then reduced locally until the estimator fulfills the criterion. This

technique is employed to one-dimensional datasets in [29] and to two-dimensional datasets

in [64] and [100]. Moreover, the methodology presented there is restricted to denoising

problems.

In this thesis, however, we present a more rigorous approach to the computation of SMR-

estimators. The problem (2.6) is tackled directly by means of a technique from optimiza-

tion, namely an Augmented Lagrangian method. Several refinements of this methodology

guarantee computability of the desired estimator despite the problem’s vast number of in-

equality constraints. At the same time, our methodology allows for non-trivial operators

in the model (1.1) and can be used for all penalty functions J that meet the assumptions

made in Theorem 2.2.2. In addition, the resulting method is appealingly modular and allows

for an easy replacement of single components.

The chapter starts out with a description of the method which we use for our purpose in

Section 3.1. Apart from stating the algorithmic, we also give a convergence result for our

setting. When closer examining the Augmented Lagrangian method, we will find that one

intermediate step of it consists in a large-scale quadratic program. This program is tackled

in Section 3.2 by means of a projection algorithm. In Section 3.3, we demonstrate how the

methodology can be extended to the case of Poisson noise instead of white noise in the

data model (1.1) as well as discuss a possible modification of the MR-statistic defined in

(2.3). Furthermore, an optional nonnegativity constraint is introduced.
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In what follows, we provide a brief derivation of an Augmented Lagrangian method for

the optimization problem (2.6) at hand. Augmented Lagrangian methods were originally

introduced in [62] and [91] for equality-constrained problems and extended to inequality

constraints in [95]. Ever since then, they have become quite popular in optimization as can

be seen by the numerous text books and articles on the subject in which different versions

of these methods are applied to diverse problem settings (cf. [2; 6; 43; 49; 65; 66; 69],to

name but a few).

In the present situation, we start to approach the computation of SMR-estimators by

rewriting (2.6) to the equivalent problem

J(u) + G(v)→ inf! subject to Ku + v = Y. (3.1)

Here, G : H2 → {0,∞} denotes the characteristic function of the feasible region C of (2.6),
i.e.

G(v) =







0 if v ∈ C
∞ else

(3.2)

where

C :=
{

v ∈ H2 : TN(σ−1(v)) ≤ qN(α)
}

. (3.3)

For an exhaustive analysis of this technique (which is often referred to as the decomposition-

coordination approach), see [43, Chapter III] where Lagrangian multipliers are used to solve

(3.1). Recall the definition of the Lagrangian function L:

L(u; v ; p) = J(u) + G(v)− 〈p,Ku + v − Y 〉 .

The Lagrangian function is modified to the Augmented Lagrangian function Lλ by adding

a quadratic penalty term to it:

Lλ(u; v ; p) = J(u) + G(v)− 〈p,Ku + v − Y 〉+
1

2λ
‖Ku + v − Y ‖2 (3.4)

for some λ > 0. An Augmented Lagrangian method consists in computing a saddle point
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(û, v̂ , p̂) of Lλ, that is

Lλ(û; v̂ ; p) ≤ Lλ(û; v̂ ; p̂) ≤ Lλ(u; v ; p̂) for all (u, v , p) ∈ H1 × H2 ×H2.

We note that each saddle point (û, v̂ , p̂) of the Augmented Lagrangian Lλ is already a

saddle point of L and vice versa. Furthermore, for any such saddle point the pair (û, v̂) is

a solution of (3.1) meaning that û is a solution of (2.6) and therefore the desired SMR-

estimator. This result was originally proved in [96]; the formulation stated here can be

found e.g. in [43, Chapter III, Theorem 2.1].

Sufficient conditions for the existence of saddle points are usually harder to come up with.

An (abstract) equivalent condition is formulated in the Karush-Kuhn-Tucker Theorem.

Theorem 3.1.1 (Karush-Kuhn-Tucker). There exists a saddle point (û, v̂ , p̂) of Lλ if and

only if

Kû + v̂ = Y, K∗p̂ ∈ ∂J(û) and p̂ ∈ ∂G(v̂). (3.5)

Proof. See [40, Chapter III, Proposition 4.1].

Remark 3.1.2. According to [40, Chapter III, Theorem 4.1], condition (3.5) is for instance

satisfied if there exists an element u0 ∈ H1 such that J(u0) < ∞ and G is continuous at
Ku0. The function G is the indicator function on the nonempty convex polyhedron C ⊂ H2
(cf. (3.3)) and is hence continuous on the interior C◦ of C. Thus, a sufficient condition for
the existence of a saddle point of Lλ can be formulated as follows:

There exists u0 ∈ K−1 {C◦} ∩D(J) (3.6)

where D(J) is the domain of J as defined in Assumption 1.0.5. This is often referred to

as Slater’s constraint qualification (cf. [40, Chapter III, Section 5]). Note that in our case

0 ∈ C◦ and therefore also 0 ∈ K−1 {C◦} due to the linearity of K. Hence we find that under
the rather weak condition 0 ∈ D(J) which is equivalent to J(0) <∞, existence of a saddle
point of (3.4) is already guaranteed.

After these preparations, we are now ready to formulate the Augmented Lagrangian

method we use to compute a saddle point of Lλ and thus a solution of (2.6). We present

the form described in [43, Chapter III, Section 3.2] in Algorithm 2. It consists in successively

performing minimization of Lλ with respect to the first and second variable, respectively,

and an explicit update step for maximization with respect to the third variable.

44



3.1 Decomposition-coordination approach

Algorithm 2 Augmented Lagrangian method

Require: Y ∈ H2 (data); λ > 0 (step length); τ > 0 (tolerance).
Ensure: (u[τ ], v [τ ]) is an approximate solution of (3.1) computed in k [τ ] iteration steps

with tolerance τ in the breaking criterion.

1: u0 ← 0H1 and v0 = p0 ← 0H2.
2: r ← ‖Ku0 + v0 − Y ‖ and k ← 0.
3: while r > τ do

4: k ← k + 1.

5: vk ← ṽ where ṽ ∈ C satisfies

‖ṽ − (Y + λpk−1 −Kuk−1)‖2 ≤ ‖v − (Y + λpk−1 −Kuk−1)‖2 (3.7)

for all v ∈ C.
6: uk ← ũ where ũ satisfies

1

2
‖Kũ − (Y + λpk−1 − vk)‖2 + λJ(ũ) ≤

1

2
‖Ku − (Y + λpk−1 − vk)‖2 + λJ(u)

(3.8)

for all u ∈ H1.
7: pk ← pk−1 − (Kuk + vk − Y )/λ.
8: r ← max(‖Kuk + vk − Y ‖ , ‖K(uk − uk−1)‖).
9: end while

10: u[τ ]← uk and v [τ ]← vk and k [τ ]← k .

The method described here reduces (3.1) to the unconstrained least-squares problem

(3.8) and the quadratic program (3.7). Note that (3.7) is independent of the choice of

the penalty function J, while (3.8) is independent of the multiresolution statistic. This

modularity makes the method appealing: replacing J is particularly easy. The same holds

for a possible replacement of the statistic TN in (2.3) under certain restrictions as we will

see in Section 3.2 (see also Section 3.3 for an example of a modification of the statistic).

We establish convergence of the Augmented Lagrangian method as stated in Algorithm

2 by the following theorem which is the analogue of [43, Chapter III, Theorem 4.1] adapted

to our setting.

Theorem 3.1.3. Under the same assumptions as made in Theorem 2.2.2, every sequence

{(uk , vk , pk)}k≥1 that is generated by Algorithm 2 is bounded in H1 × H2 × H2 and every
weak cluster point is a saddle point of Lλ. Moreover,

‖Kuk + vk − Y ‖ = o(k−1/2) and ‖K(uk − uk−1)‖ = o(k−1/2).
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In particular, Algorithm 2 terminates for each outer tolerance τ > 0 and step length λ > 0.

Proof. Let us assume that (û, v̂ , p̂) is a saddle point of the Augmented Lagrangian Lλ(u, v , p)

as defined in (3.4) and that {(uk , vk , pk)}k∈N is a sequence generated by Algorithm 2. Fur-
ther, we introduce the notation

ūk := uk − û, v̄k := vk − v̂ and p̄k := pk − p̂. (3.9)

From now on, we assume that k ≥ 1. By repeating the steps (5.6)-(5.25) in the proof of
[43, Chapter III, Theorem 4.1], it follows that

(

‖p̄k−1‖2 + λ−2 ‖Kūk−1‖2
)

−
(

‖p̄k‖2 + λ−2 ‖Kūk‖2
)

≥ λ−2
(

‖Kūk + v̄k‖2 + ‖Kūk−1 −Kūk‖2
)

.

(3.10)

Summing over k and keeping in mind that Kūk + v̄k = Kuk + vk − Y and Kūk−1 −Kūk =
Kuk−1 −Kuk shows

∞
∑

k=1

‖Kuk + vk − Y ‖2 + ‖Kuk−1 −Kuk‖2 ≤ λ2 ‖p̂‖2 + ‖Kû‖2 <∞ (3.11)

where we have used that u0 = p0 = 0. As the sum on the left-hand side is finite, both

summands must be asymptotically dominated by k−1 which leads to

lim
k→∞

‖Kuk + vk − Y ‖
k−1/2

= lim
k→∞

‖Kuk−1 −Kuk‖
k−1/2

= 0.

Using Bachmann-Landau notation, we rewrite this to

‖Kuk + vk − Y ‖ = o(k−1/2) and ‖Kuk−1 −Kuk‖ = o(k−1/2).

Furthermore, it follows from (3.10) that ‖p̄k‖2 + λ−2 ‖Kūk‖2 is nonincreasing and hence
bounded. This together with ‖Kuk + vk − Y ‖ = o(k−1/2) implies that

max(‖Kuk‖ , ‖vk‖ , ‖pk‖) = O(1).

Together with the optimality condition for (3.8) this in turn implies that for an arbitrary

u ∈ D(J)

J(uk) ≤ J(u) + λ−1 〈Kuk + vk − Y − λpk−1, Ku −Kuk〉 = O(1). (3.12)
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Summarizing, we find that

sup
1≤n≤N

µφn(Kuk) + J(uk) ≤ ‖Kuk‖+ J(uk) ≤ c <∞

for a suitably chosen constant c ∈ R. Thus, it follows from Assumption 1 of Theorem
2.2.2 that {uk}k∈N is sequentially weakly compact. Now, let (ũ, ṽ , p̃) be a weak cluster
point of {(uk , vk , pk)}k∈N and recall that (û, v̂ , p̂) was assumed to be a saddle point of the
Augmented Lagrangian Lλ. Setting u = û in (3.12) thus results in

J(uk) ≤ J(û) + λ−1 〈Kuk + vk − Y,Kû −Kuk〉+ 〈pk−1, Kuk −Kû〉
= J(û) + 〈pk−1, Kuk −Kû〉+ o(k−1/2). (3.13)

Using the relation Kû + v̂ = Y we further find

〈pk−1, Kuk −Kû〉 = 〈pk−1, Kuk − Y + v̂〉
= 〈pk−1, Kuk + vk − Y 〉 − 〈pk−1, vk − v̂ 〉 = o(k−1/2)− 〈pk−1, vk − v̂〉 . (3.14)

From the definition of vk in (3.7) it follows that

〈Y + λpk−1 − (Kuk−1 + vk), v̂ − vk〉 ≤ 0

which in turn implies that

− 〈pk−1, vk − v̂〉 ≤ λ−1 〈Y − (Kuk−1 + vk), vk − v̂〉
= λ−1 〈Y − (Kuk + vk), vk − v̂〉+ λ−1 〈Kuk −Kuk−1, vk − v̂〉 = o(k−1/2). (3.15)

Combining (3.13), (3.14) and (3.15) gives

lim sup
k→∞

J(uk) ≤ J(û).

Now, choose a subsequence
{

uρ(k)
}

k∈N
such that uρ(k) ⇀ ũ. Then, it follows from the

lower semi-continuity of J and the previous estimate that

J(ũ) ≤ lim inf
k→∞

J(uρ(k)) ≤ J(û).
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Moreover, we have that vρ(k) ∈ C for all k ∈ N. Since C is closed and convex it is also
weakly closed and we conclude that ṽ ∈ C. Since Kũ+ ṽ = Y this shows that (ũ, ṽ) solves
(3.1) and thus J(ũ) = J(û).

For a given tolerance τ > 0, Theorem 3.1.3 implies that Algorithm 2 terminates and

outputs an approximate solution (u[τ ], v [τ ]) of (3.1). However, the breaking condition in

Algorithm 2 merely guarantees that the linear constraint in (3.1) is approximated sufficiently

well. Moreover, we know from construction that v [τ ] ∈ C which implies G(v [τ ]) = 0. All
in all, it remains to estimate the value of J(u[τ ]). This is done in the following corollary.

Corollary 3.1.4. Let (û, v̂ , p̂) ∈ H1 × H2 ×H2 be an arbitrary saddle point of Lλ. Then,

J(u[τ ]) − J(û) ≤
(

τ + ‖Kû‖
λ

+ 2 ‖p̂‖
)

τ

for all τ > 0.

Proof. We again use the notation introduced in (3.9). Observe that the estimate in (3.10)

implies that the sequence ‖p̄k‖2+λ−2 ‖Kūk‖2 is nonincreasing. Since u0 = p0 = 0, we have
that

‖pk‖ ≤ 2 ‖p̂‖+ λ−1 ‖Kû‖ .

Now assume that τ > 0 and that k = k [τ ] is such that

max(‖Kuk + vk − Y ‖ , ‖Kuk−1 −Kuk‖) ≤ τ.

Then, it follows from (3.13) that

J(uk) ≤ J(û) + λ−1τ2 + (2 ‖p̂‖+ λ−1 ‖Kû‖)τ

which proves the assertion.

The results in Theorem 3.1.3 and Corollary 3.1.4 show that the accuracy of the approxi-

mate solution (u[τ ], v [τ ]) depends linearly on τ . Furthermore, the choice of the step length

λ does not affect the asymptotic behaviour of the algorithm according to Theorem 3.1.3

but influences its accuracy as well: it follows from the definition of Lλ in (3.4) and Corollary

3.1.4 that a small value of λ fosters the linear constraint in (3.1) but may result in slow

decay of the objective function J. On the other hand, a large value of λ yields additional
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precision of the result but also leads to longer computation times due to more time being

spent in (3.7) as the linear constraints are somewhat neglected.

In order to overcome this difficulty and choose λ in a way that balances this trade-off

between the runtime of the method and the accuracy of its output, we consider the function

E(λ) =

(

τ + ‖Kû‖
λ

+ 2 ‖p̂‖
)

τ

which gives the upper bound on the error in Corollary 3.1.4 dependent on λ. We propose

to choose λ according to the point of maximal curvature of the graph of E. Setting

C := (τ + ‖Kû‖)τ , this curvature is given by

κE(λ) :=

∣

∣

∣

∣

E ′′(λ)

(1 + E ′(λ)2)3/2

∣

∣

∣

∣

=
2Cλ−3

(1 + C2λ−4)3/2
.

By simple calculus, we find that κE takes its maximum value for λ0 =
√
C. As Kû and

therefore also C are typically unknown in practical applications, we further propose to use

‖Y ‖ as an approximation of ‖Kû‖. This is motivated by the fact that the observation Y is
perturbed by white noise. In summary, we choose

λ =
√

(τ + ‖Y ‖)τ.

We close this section by comparing the Augmented Lagrangian method and the local

approach of adaptive parameter selection as presented in [64] on an algorithmic level. In

contrast to the algorithm stated in [64], the Augmented Lagrangian method solves a penal-

ized least-square problem with a global (i.e. scalar) regularization parameter only, namely

λ in (3.8). Local adaptivity is established by modifying the input Y + λpk−1 − vk to the
least-squares problem variably in each iteration step rather than by locally modifying the

actual parameter. The additional term λpk−1 − vk in the input of (3.8) influences the
resulting penalized least-squares estimator in a way that it locally “corrects” areas which

were considered as badly estimated according to the MR-criterion before by adjusting Y in

these regions. In Section 4.1, we give an illustration of how this correction is carried out

depending on the choice of the step length λ. All in all, complications that occur when

discretizing the regularization parameter while keeping the input constant at the actual

data Y are avoided. Indeed, the Augmented Lagrangian method therefore leads to better

results than can be achieved by means of the local parameter selection presented in [64] as

indicated by the numerical results presented in Section 4.1.
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3.2 The quadratic program

Algorithm 2 as derived in the previous section provides a method to compute the desired

SMR-estimators. The method decomposes the original optimization problem (2.6) into the

unconstrained optimization problem (3.8) and the quadratic program (3.7).

Note that a solution method for (3.8) depends largely upon the penalty function J. As

it is not the goal of this thesis to advertise any specific choice of J but to demonstrate a

data-driven and statistically sound way of choosing the amount of smoothing needed, we

abstain from discussing such solution methods any further. In our numerical simulations,

however, we stick to the finite element method derived in Section 2.4 for the choice of

J = TV. Nonetheless, other methods might still be more suitable for the specific choice

of J = TV, too. We remark once more that such methods could easily be incorporated in

Algorithm 2.

The only step in Algorithm 2, however, in which the MR-criterion comes into play is the

optimization problem (3.7). By providing a method to efficiently solve it, the statistical part

of SMR-estimation within the Augmented Lagrangian framework would already be covered.

Observe that the feasible region C of (3.7) as defined in (3.3) can be written as

C =
{

v ∈ H2 :
〈v , φi〉
‖φi‖

≤ ci and −
〈v , φi〉
‖φi‖

≤ ci for all i = 1, . . . , N
}

where ci := qN(α) + f (‖φi‖). From this formulation, it becomes obvious that C is a
polyhedron and (3.7) is in fact a quadratic program with an overall number of 2N linear

inequality constraints. As N is usually large in practical applications (in particular in the

discrete two-dimensional setting of Example 1.0.1 where Φ is chosen in one of the ways

suggested in Section 2.3), the program is likely to be extremely large-scale and hence

numerically challenging. How to solve it is the subject of this section.

3.2.1 The projection problem and Dykstra’s algorithm

In order to tackle the problem

‖v − (Y + λpk−1 −Kuk−1)‖2 → inf! subject to v ∈ C, (3.16)

we first tried to use an interior point method (see e.g. [86, Chapter 14]). In fact, we used the

C++ software package OOQP (“Object-Oriented software for Quadratic Programming”,
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[47]) and adapted it to our situation. The method implemented there consists in a Mehrotra

predictor-corrector algorithm as introduced in [81] with additional Gondzio projections as

suggested in [50]. Unfortunately, this approach was not successful. The resulting method

failed to compute solutions of (3.16) for comparatively small two-dimensional datasets like

n = 256 already. For smaller n, solutions could be computed but the runtime was far from

practical.

The reason for the interior point method to fail is the vast number of inequalities in

the side constraints of (3.16) in the two-dimensional setting at hand. For an image of

size 256 × 256 and an all squares partitioning PA including scales from 1 through to 25,
for example, we already get an overall number of 2, 979, 400 side constraints. In view of

this huge number, approaching the problem via an optimization method that covers a wide

range of problems simply seems to be too general to be efficient. For this reason, we need

to find a method which is better matched for the problem (3.16).

To this end, we closer examine the problem, focusing on the side constraints first. Due

to the supremum taken in the definition (2.3) of the MR-statistic TN, the inequality

|〈v , φi〉|
‖φi‖

− f (‖φi‖) ≤ qN(α)

holds for all v ∈ C, for all i = 1, . . . , N. In other words, v is an element of all N feasible
regions that would be defined by a dictionary that only consists of the single test function

φi . This specific structure of (3.16) can be exploited in order to establish computability

of a solution despite the vast number of inequality constraints involved. We rewrite the

definition (3.3) of the feasible region C to

C =
N
⋂

i=1

Ci where Ci = {v ∈ H2 : µφi (v) ≤ ci} . (3.17)

According to this representation, we may formulate the quadratic program (3.16) as the

following projection problem:

‖v − Yk‖2 → inf! subject to v ∈
N
⋂

i=1

Ci (3.18)

where Yk := Y + λpk−1 − Kuk−1. It is straightforward to show that all Ci are closed and
convex. We have therefore derived a formulation in which the computation of a solution vk

of (3.16) amounts to compute the projection of Yk onto the intersection C of closed and
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convex sets Ci . This situation is illustrated in Figure 3.2.1.

Yk

PC(Yk )

C

Ci

φi

ci

Figure 3.1: The admissible set C as intersection of the sets Ci as in (3.17).

In order to cope with this problem, we apply Dykstra’s algorithm as introduced in [11]

(not to be confused with Dijkstra’s algorithm from graph theory). This algorithm takes

an element v ∈ H2 and closed and convex sets D1, . . . , DM ⊂ H2 as arguments. It then

creates a sequence converging to the projection of v onto the intersection
⋂M
m=1Dm by

successively performing projections onto individual Dm’s. An exact version of the algorithm

is noted in pseudocode in Algorithm 3. There, PD(·) denotes the projection onto D ⊂ H2
and SD = PD − Id is the corresponding projection step.
Closer examination of the algorithm shows that for each Dm, the projection step taken

in the last iteration for that very same Dm gets reversed on hk,m−1. The resulting element

is then projected onto Dm giving the updated iterate hk,m. The corresponding projection

step gets saved in Qk,m as it will be reversed when the algorithm reaches Dm again in the

next cycle. All in all, this procedure is not very intuitive at first glance, but it nevertheless

works as expected according to the convergence result presented in Theorem 3.2.1 below.

We provide an outline of the background of the algorithm.

Dykstra’s algorithm is based on a modification of the classical alternating projection

method first established in [106]. It was introduced to projections onto the intersection of

closed and convex cones in Rn in [38] and generalized to a Hilbert space setting in [11].

The algorithm was re-discovered in [52] where it was derived in a primal-dual framework,

see also [46]. This different approach to the algorithm leads to a more natural derivation

of it and a resulting simpler proof of convergence.

An interesting approach to solving the best approximation problem with Bregman projec-
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Algorithm 3 Dykstra’s algorithm

Require: h ∈ H2 (element to be projected); D1, . . . , DM ⊂ H2 (closed and convex sets).
Ensure: {hk}k∈N is a sequence that converges strongly to PD(h) where D =

⋂

m=1,...,M Dm.

1: h0,0 ← h

2: for m = 1 to M do

3: h0,m ← PDm(h0,m−1)

4: Q0,m ← SDm(h0,m−1)

5: end for

6: h1 ← h0,M
7: k ← 1
8: for k ≥ 1 do
9: hk,0 ← hk
10: for m = 1 to M do

11: hk,m ← PDm(hk,m−1 −Qk−1,m)
12: Qk,m ← SDm(hk,m−1 −Qk−1,m)
13: end for

14: hk+1 ← hk,M
15: k ← k + 1

16: end for

tions by combining them with Dykstra’s algorithm was proposed in [22]. For further analysis

and generalizations of this approach, we also refer to [5] and [12]. Another modification of

Dykstra’s algorithm that deals with projections onto half-spaces was introduced in [14].

Applications of Dykstra’s algorithm include signal recovery (cf. [25]) as well as finding a

nearest diagonally dominant or symmetric matrix as described in [42; 82; 83; 92]. A rather

general approach to applications of projection algorithms in image reconstruction was taken

in [21].

For the polyhedral case at hand in our application, Dykstra’s algorithm was proved in [68]

to coincide with Hildreth’s method introduced in [63]. Therefore, the following theorem

taken from [32] that establishes linear convergence of Dykstra’s algorithm in the polyhedral

case can be seen as a different formulation of the theorem proved in [67] for Hildreth’s

method. The theorem as stated here was further improved in [88] and [107] where estimates

of the constants on the right-hand side were given.

Theorem 3.2.1. Let {hk}k∈N be the sequence generated by Dykstra’s algorithm and PD(h)
be the projection of the input h onto D. Then there exist constants ρ > 0 and 0 ≤ c < 1
such that
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‖hk − PD(h)‖ ≤ ρck

for all k ∈ N.

Proof. See [32, Theorem 3.8].

Remark 3.2.2. The constant c on the right-hand side increases with the number M of

convex sets which intersection form the set D that h is to be projected on. This is not
surprising as the complexity of D increases with the number of sets it is formed from. The
convergence rate therefore improves with decreasing M. For further details and estimates

for the constants ρ and c, we again refer to [88] and [107].

Note that Dykstra’s algorithm needs to be modified to an inexact version before applying

it in practice. As the desired projection is in general achieved asymptotically only, some

notion of a breaking criterion needs to be formulated in order to stop the algorithm once a

sufficiently exact solution was computed. In our application, we use the criterion

TN(hk)− qN(α) ≤ τ

where τ > 0 is some given tolerance. In other words, we stop the algorithm as soon as the

MR-statistic of the current iterate is sufficiently close to the critical value. Since Dykstra’s

algorithm always approaches the projection of h onto D from outside of D, measuring the
distance from the current iterate to the feasible region and using it for a stopping criterion

is a natural approach.

In general applications, however, such a measure might no be available. We refer to

[7] for a robust criterion which is only based on previous iterates and projection steps of

the algorithm. There, the authors especially prove that stopping the algorithm once the

difference between two iterates hk and hk−1 gets sufficiently small does not necessarily result

in trustable solutions by giving a counter-example. As the stopping criterion suggested in [7]

did not result in additional precision in the context of the Augmented Lagrangian method

in our experiments though, we decided to stick to the criterion formulated above.

3.2.2 Increasing efficiency

Note that application of Dykstra’s algorithm is particularly appealing if the projections PDm

can be easily computed or even stated explicitly, as it is the case within the Augmented
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Lagrangian framework. This fact turns the algorithm into the method of choice for the

problem at hand. A first approach to use Dykstra’s algorithm to solve (3.18) is to set

M = N and Dm = Cm for all m = 1, . . . ,M. The required projection step onto a fixed Cm

is then given by

SCm(h) =







− sign (〈h, φm〉) |〈h,φm〉|−cm‖φm‖
if µφm(h) > cm

0 else
. (3.19)

In view of Remark 3.2.2, however, it is clearly desirable to decrease the number M of

convex sets that enter Dykstra’s algorithm. In order to do so, we take a more sophisticated

approach than the one just presented. We subdivide the index set {1, . . . , N} into I1, . . . , IM
where

〈φi , φj〉 = 0 for all i , j ∈ Im, for all m = 1, . . . ,M, (3.20)

and regroup C1, . . . , CN into D1, . . . , DM via

Dm =
⋂

i∈Im

Ci . (3.21)

Due to the pairwise orthogonality of {φi : i ∈ Im} for all m = 1, . . . ,M, the projection
step from some h onto each Dm can still be computed easily: Identify the set

Vm = {i ∈ Im : µφi (h) > ci}

of indices in Im for which h violates the side condition of (3.18) and set

SDm(h) = −
∑

i∈Vm

sign (〈h, φi〉)
|〈h, φi〉| − ci
‖φi‖

. (3.22)

To keep M small, we choose I1 ⊂ {1, . . . , N} as the biggest set such that 〈φi , φj〉 = 0 holds
for all i , j ∈ I1. We then choose I2 ⊂ {1, . . . , N} \ I1 with the same property and continue
in this way until all indices are utilized. While this procedure does not necessarily result into

M being minimal with the desired property, it still yields a distinct reduction of N.

We substantiate this approach for the discrete two-dimensional setting of Example 1.0.1

and dictionaries consisting of characteristic functions of the squares in the partitionings PA
and PD as described in Section 2.3. In what follows, we will sometimes identify a test
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function φi = n
−2χSi with the square Si in a slight abuse of notation.

First, note that 〈φi , φj〉 = 0 in this setting means that the corresponding squares Si and
Sj are disjoint. Consequently, if a dyadic squares partition PD is used, all squares of the same
size will be grouped into one Dm as they are disjoint by construction of the partitioning.

For a dataset Y ∈ Rn×n, we will hence get an amount of M = ⌈log2 n⌉ sets that enter
Algorithm 3 in this case. This rather small number of sets makes the algorithm particularly

fast if combined with a dyadic squares partitioning.

If, on the other hand, an all squares partitioning PA is used, we proceed as follows: we
loop over all scales involved in increasing order. For each scale s, we start out by grouping

[1, s] × [1, s] and all consecutive squares that fit into the image domain into one system
Ds,(1,1). Next, we misalign [1, s] × [1, s] by one pixel and form the corresponding Ds,(1,2).
Iterating this procedure, we hence loop over all

(k, l) ∈ {1, . . . ,min(n − s + 1, s)}2

and form the system

Ds,(k,l) = {S ∈ PA : S = [i s + k, (i + 1)s + k − 1]× [js + l , (j + 1)s + l − 1]
and i = 0, . . . , ⌊(n − k)/s⌋ and j = 0, . . . , ⌊(n − l)/s⌋}

for each such pair. The minimum taken in the limit of k and l corresponds to distinguishing

whether or not s is bigger than n/2. By this restriction, empty systems are avoided.

Indeed, the procedure just described severely reduces the number of sets that enter

Algorithm 3. If all possible scales {1, . . . , n} are taken into account for PA, we will get an
overall number of

N = N(n) =

n
∑

j=1

(n − j + 1)2 =
n

∑

j=1

j2 =
n(n + 1)(2n + 1)

6

squares in PA. Put differently, the admissible set C in (3.17) is the intersection of N(n)
sets in H2. For a digital image with resolution 256×256, for example, this results in a vast
number of N ∼ 5 · 107 squares in (3.16).
If we group independent side-conditions, that is side-conditions corresponding to squares

in X with empty intersection as described above, however, we will receive min(n− s+1, s)2
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sets on each scale s and therefore an overall of

M = M(n) =

n
∑

j=1

min(n − j + 1, j)2 = n(n + 1)(2n + 1)

6
− (n + 1)n

2

4
.

In the 256 × 256 example, the number of sets is thereby reduced to M ∼ 107. While this
number is still too big in practical applications, prior information about the true object u∗

might be used in order to allow only Dm of specific sizes to enter the algorithm. By such a

restriction, M can be ensured to be of reasonable size. In fact, we restricted our partitioning

as used in our simulations to all squares of side lengths from 1 through to 25 pixels. This

further reduced the number of sets to M = 5, 525 for 256 × 256 images and guarantees
computability of the SMR-estimator by means of our methodology within reasonable time

while covering all 2, 979, 400 inequality constraints mentioned earlier. We remark that the

restriction to the scales named above is justified by the fact that most of the features we

expect our test objects to exhibit occur on the scales taken into account. Leaving out

the computationally involved larger scales does therefore not result in considerably worse

reconstruction quality.

3.2.3 Implementation

Having demonstrated how to reduce the number of sets that enter Dykstra’s algorithm to

a reasonable level, we now add a few remarks about some details of our implementation of

the algorithm. First of all, note that the projection steps in (3.22) are constant over a fixed

square S ∈ P. For this reason, only one scalar per square needs to be saved and subtracted
pointwise when the corresponding projection gets reversed in the next cycle. By proceeding

this way, a lot of memory can be saved. When using an all squares partitioning PA, we
identify each Dm = Ds,(k,l) ∈ PA by its scale s and the pair (k, l) as described above. For
each such triple, we save a matrix Πk,l,s ∈ R⌊(n−k)/s⌋×⌊(n−l)/s⌋ holding the projection steps
for all S ∈ Dm. As only the projection performed in the last cycle needs to be saved, these
matrices can be overwritten in each cycle of Dykstra’s algorithm.

A second remark is concerned with the subtraction of the projection steps taken in

the previous iteration as needed in line 11 of Algorithm 3. In our implementation, we

made sure that this subtraction is performed only if an actual projection took place for

the corresponding set in the previous cycle, i.e. the corresponding Πk,l,s is not all-zero. We

therefore save a vector of booleans of lengthM (which is the number of systems Dm that PA
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is subdivided into) and keep track of the Ds,(k,l) for which a nontrivial projection was carried

out in the last iteration. This prevents from looping over all-zero matrices for nothing and

saves runtime, especially in later iterations when the iterate is already an element of most

of the Dm’s and hence many projections are trivial.

All in all, we paid close attention to carefully translate the methodology of this chapter

into program code, but do not claim that our implementation is particularly efficient in

all details. Certainly, there is still room for improvements. We hence abstain from more

detailed simulations to test the runtime of our program and profiling it.

We conclude this section by pointing out that an employment of parallel versions of

Dykstra’s algorithm would lead to a drastic acceleration of it in practice. For simultaneous

versions of the algorithm, we refer to [53] (in Rn), [46] (in general Hilbert spaces) and

[26]. By using multiple processors or a graphics processing unit (GPU), implementations

of these algorithms could save a huge amount of runtime in comparison to the sequential

version stated here in Algorithm 3. In our experiments, however, we did not push this

idea any further as our main goal was to deliver a proof of concept rather than a perfectly

tuned implementation. The runtime of our framework including the improvements in the

algorithmic as given in this section is within reason for moderately large images, too, and

hence allows for experimenting with our methods satisfactorily.
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3.3 Some Extensions

The approach of combining Augmented Lagrangian techniques with Dykstra’s algorithm

for the solution of (3.1) proves to be remarkably versatile. In particular, substantial mod-

ifications in the model (1.1) on the one hand and in the MR-statistic (2.3) on the other

hand are possible without changing the algorithmic methodology. We indicate this by three

examples with special appeal for applications.

First, we demonstrate how modifications of the original MR-statistic can be incorporated

into our Augmented Lagrangian framework in Subsection 3.3.1. Afterwards, an alteration

of our methodology to handle an alternative data model in which the noise is assumed to

be Poisson distributed is suggested. Finally, we provide a modification of Algorithm 2 which

allows for imposing an additional nonnegativity constraint in Subsection 3.3.3.

3.3.1 Transformed Residuals

In some employments (as e.g. image denoising, cf. Subsection 4.1.4), it is useful to study

transformations of the residual r = σ−1(Y − Kû) where û is some estimator of the true
solution of Ku = g rather than r itself. To this end, we consider a given transformation

Λ : H2 → H2 and introduce

µΛ,φ(r) =
|〈Λ(r), φ〉|
‖φ‖

as a modified version of the average function (2.2). Here, we require that Λ is continuous

and that

Λφ : v 7→ 〈Λ(v), φ〉

is convex for all φ ∈ Φ. Then, the feasible sets (3.17) in the projection problem (3.18) are
replaced by

CΛ =
N
⋂

i=1

CΛ,i where CΛ,i = {v ∈ H2 : µΛ,φi(v) ≤ ci} . (3.23)

Due to the convexity and continuity assumptions on Λ, all CΛ,i are closed and convex. We

can therefore still apply Dykstra’s algorithm in order to compute the projections needed in

the Augmented Lagrangian method. One should make sure though that a particular choice
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of Λ still allows for an explicit statement of the projection onto all single CΛ,i ’s (like (3.22)

for Λ = Id) as numerous of these projections are performed in Dykstra’s Algorithm 2. The

method is hence likely to become computationally infeasible otherwise. We give an example

of a function Λ that enables such explicit projections.

Example 3.3.1 (cont. Example 1.0.1). Let H1 = H2 and X be as in Example 1.0.1. We

consider the mapping defined by

(Λ(v))(x) = v(x)2 for all x ∈ X. (3.24)

Then, Λ is continuous and the mappings v 7→ Λφ(v) = 〈Λ(v), φ〉 are convex for all φ ∈ H2.

Yk

PCΛ(Yk )
CΛ

CΛ,i

φi

Figure 3.2: The admissible set CΛ as intersection of the sets CΛ,i as in (3.23).

Thus, the admissible set CΛ is the intersection of the elliptic cylinders CΛ,n in the (finite-
dimensional) space H2 (cf. Figure 3.2). We finally note that for the case where Φ consists of

characteristic functions of measurable subsets of X, the sets CΛ,n take the form of circular

cylinders, and the projections PDm can be computed explicitly in a similar fashion as in

(3.22). Just observe that in contrast to the projections given there, the resulting projection

steps are not necessarily constant over a fixed square S ∈ P any more when dealing with
transformed residuals Λ(r). As a consequence, not only one scalar per square S ∈ P needs
to be saved (as described in Subsection 3.2.3), but a matrix of the same size as S. This

increases the amount of memory needed by the algorithm.
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3.3.2 Poisson Noise

Some applications give rise to the question whether SMR-estimation might be extended to

situations in which the underlying data model differs from (1.1). Especially a perturbation

with Poisson noise instead of a white noise process is of interest. Let us therefore assume

that H2 is as in Example 1.0.1 and that (Ku
∗)i ,j ∈ N for all (i , j) ∈ X and u ∈ H1. We

consider the model

Yi ,j ∼ Pois((Ku∗)i ,j) for all (i , j) ∈ X. (3.25)

In order to apply our methodology to this situation, we make use of a variance-stabilizing

transformation. For sufficiently large values of (Ku∗)i ,j the central limit theorem states that

Zi ,j :=
Yi ,j − (Ku∗)i ,j

√

(Ku∗)i ,j
(3.26)

is approximately standard normally distributed.

Note that the true object u∗ is usually not accessible in practical applications. Hence

we cannot apply the transformation as stated above directly. When performing Algorithm

2, we therefore use uk−1 as an approximation of u
∗ in iteration step k . This ansatz leaves

the Augmented Lagrangian framework unchanged while Dykstra’s Algorithm 3 needs to be

slightly modified. Instead of projecting onto the intersection C of the sets Cn as described
in (3.17), we now project in the k-th step of Algorithm 2 onto

CP [k ] =
N
⋂

i=1

CP,i [k ] where CP,i [k ] =
{

v ∈ H2 : µφi
(

v/
√

Kuk−1

)

≤ ci
}

with a pointwise division by the square root of Kuk−1. Note that all CP,i [k ] are closed

and convex. Furthermore, projections onto single CP,i [k ]’s can still be stated explicitly.

Dykstra’s algorithm thus remains a feasible method to compute the desired projections for

these modified sets, too.

We note that with this modification, the projection problem (3.7) changes in each iter-

ation step of Algorithm 2 and Theorem 3.1.3 does not hold anymore. So far, we have not

come up with a similar convergence analysis. However, it follows from the proof of Theorem

3.1.3 that each stationary point (û, v̂ , p̂) is a saddle point of the Augmented Lagrangian

function Lλ(u, v , p) in (3.4), where G is the indicator function on the set
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CP =
N
⋂

i=1

CP,i where CP,i =
{

v ∈ H2 : µφi (v/
√
Kû) ≤ ci

}

.

Put differently, û is a solution of

J(u)→ inf! subject to µφi

(

Y −Ku√
Ku

)

≤ ci , for all 1 ≤ i ≤ N.

Furthermore, we stress that the assumption that (Ku∗)i ,j is sufficiently large is crucial for

the transformation (3.26) to work as expected. If this value drops below a level of about 10,

the transformed variable Zi ,j is far from being standard normally distributed. Nonetheless,

the method presented here still works surprisingly well even if some observations Yi ,j exhibit

lower intensities, see Section 4.2.

3.3.3 Nonnegativity

In some applications, the true object u∗ is a priori known to exhibit nonnegative values only.

Hence, when dealing with such problems, one would like to constrain the SMR-estimator to

be pointwise nonnegative, too. We show how our method can be extended to allow for this

additional constraint. Throughout this subsection, u ≥ 0 for some u ∈ Rn×n will denote
pointwise nonnegativity, i.e. that ui ,j ≥ 0 for all i , j = 1, . . . , n.
In order to introduce the modified version of Algorithm 2, we proceed analogously to

Section 3.1 where the original Augmented Lagrangian method was derived. We start out

by stating the extended version of the optimization problem (2.6):

J(u)→ inf! subject to TN(σ
−1(Y −Ku)) ≤ qN(α) and u ≥ 0. (3.27)

Taking the decomposition-coordination approach, the equivalent equality constrained prob-

lem (i.e. the analogue of (3.1)) is given by

J(u) + G(v) + H(w)→ inf! subject to Ku + v = Y and u = w (3.28)

with G as in (3.2) and
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H(w) =







0 if w ≥ 0
∞ else

.

Next, we state the Augmented Lagrangian function (3.4) with the additional constraint

added:

Lλ,ν(u; v ;w ; p; q) = J(u) + G(v) +H(w)− 〈p,Ku + v − Y 〉
− 〈q, u − w〉+ 1

2λ
‖Ku + v − Y ‖2 + 1

2ν
‖u − w‖2

for some λ, ν > 0. After these preparations we are now ready to state the modified

version of Algorithm 2 that additionally imposes nonnegativity in Algorithm 4. Just as

the unmodified version, it aims at computing a saddle point of the Augmented Lagrangian

function by alternately minimizing and maximizing with respect to the different variables.

Note that the computational effort per iteration step is not significantly increased if

nonnegativity is additionally imposed. Updating wk in (3.30) amounts to simply setting

negative values of (uk − νqk−1) to zero, while qk is updated explicitly. Moreover, the
modification of the input in (3.29) does not lead to a problem that is harder to solve than

(3.8). Nonetheless, Algorithm 4 is likely to perform a bigger number of iteration steps than

Algorithm 2 when started on the same input which results in a longer overall runtime.

Remark 3.3.2. While we focused on nonnegativity here, a generalization to a constraint of

the form u ≥ l for some lower bound l in (3.27) is straightforward. In addition, u could in
a similar way be constrained to exhibit values in a certain interval only by also imposing an

upper bound on it.
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Algorithm 4 Nonnegatively Constrained Augmented Lagrangian Method

Require: Y ∈ H2 (data); λ > 0, ν > 0 (step lengths); τ ≥ 0 (tolerance).
Ensure: (u[τ ], v [τ ], w [τ ]) is an approximate solution of (3.28) computed in k [τ ] iteration

steps with tolerance τ in the breaking criterion.

1: u0 = w0 ← 0H1 and v0 = p0 = q0 ← 0H2.
2: r ← ‖Ku0 + v0 − Y ‖ and k ← 0.
3: while r > τ do

4: k ← k + 1.

5: vk ← ṽ where ṽ ∈ C satisfies

‖ṽ − (Y + λpk−1 −Kuk−1)‖2 ≤ ‖v − (Y + λpk−1 −Kuk−1)‖2

for all v ∈ C.
6: uk ← ũ where ũ satisfies

1

2
‖Kũ − (Y + λpk−1 − vk)‖2 + λJ(ũ) +

λ

2ν
‖ũ − (wk−1 + νqk−1)‖2

≤ 1
2
‖Ku − (Y + λpk−1 − vk)‖2 + λJ(u) +

λ

2ν
‖u − (wk−1 + νqk−1)‖2 (3.29)

for all u ∈ H1.
7: wk ← w̃ where w̃ ≥ 0 satisfies

‖w̃ − (uk − νqk−1)‖2 ≤ ‖w − (uk − νqk−1)‖2 (3.30)

for all w ∈ H1 with w ≥ 0.
8: pk ← pk−1 − (Kuk + vk − Y )/λ.
9: qk ← qk−1 − (uk − wk)/ν.
10: r ← max(‖Kuk + vk − Y ‖ , ‖uk − wk‖ , ‖K(uk − uk−1)‖).
11: end while

12: u[τ ]← uk and v [τ ]← vk and w [τ ]← wk and k [τ ]← k .
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We now demonstrate the performance of SMR-estimators computed by the Augmented

Lagrangian method of Chapter 3 by presenting numerical results. Throughout the chapter,

we will focus on the discrete two-dimensional setting of Example 1.0.1. In order to indicate

the versatility of the method, we will apply it to different operators, noise distributions and

true objects in the underlying model (1.1). The presentation of the material is divided into

two sections: denoising problems are treated in Section 4.1, deconvolution problems as an

exemplary class of ill-posed inverse problems in Section 4.2.

4.1 Denoising

In this section, we will present SMR-estimators computed by our Augmented Lagrangian

methodology for two-dimensional denoising problems. Throughout the section, we will

hence assume that the data Y is given as

Yi ,j = u
∗
i ,j + σεi ,j where εi ,j

i .i .d.∼ N (0, 1) for all i , j = 1, . . . , n. (4.1)

First, we will present results for datasets which were simulated using synthetic test objects

u∗ in Subsection 4.1.1. One of the objects processed there will be used to illustrate how

local adaptivity is established within our algorithm in Subsection 4.1.2. In order to assess

the quality of the SMR-estimators, we will compare them to the results of adaptive weights

smoothing, a state of the art method for denoising problems in Subsection 4.1.3. Finally,

we will demonstrate in Subsection 4.1.4 how our algorithmic framework can also be applied

to denoising of natural images by using transformed residuals as indicated in Section 3.3.

4.1.1 Synthetic test objects

Testing our algorithmic on synthetic test objects allows for a good evaluation of its per-

formance as the underlying true object u∗ is known and can be used as a reference for

the result. In our experiments, we used four different objects. One of them is the “circles

and bars” object which we presented along with its noisy counterpart in the introduction in

Figure 1.1. The other three objects - which we will call “shapes”, “squares” and “sticks”

in the following - are given in Figure 4.1. There, we also show the corresponding noisy

observations Y which we used in our experiments. Note that these objects exhibit different

degrees of smoothness, varying locally and from scale to scale. They can hence be regarded
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as well-suited to test the SMR-estimators for the desired properties which we formulated

as our goals in the introduction.

Figure 4.1: Synthetic test objects of size 256×256. From left to right: “squares”, “shapes”
and “sticks”. Top: original object, scaled in [0, 1]. Bottom: perturbed obser-

vation Y as in (4.1) with σ = 0.1.

Our experiments were carried out for both the dyadic squares partitioning PD (where the
minimum scale was fixed to smin = 4) and the all squares partitioning PA (taking into account
scales from 1 through to 25). Furthermore, we used J = TV for all results given in this

subsection. The corresponding results of the Augmented Lagrangian method are depicted

in Figures 4.2 and 4.3. Visual inspection of the results reveals that both partitionings deliver

good results and especially exhibit the desired locally adaptive behaviour. Note that small

features like the nine dots in the bottom-right of “circles and bars” are preserved, while

larger areas like the two big circles in the top-left are well smoothed at the same time. For

the “sticks” object, the decreasing intensities from left to right are well reconstructed and

all edges are particularly sharp, independent of the size of the feature.
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Figure 4.2: Results of Augmented Lagrangian method. Left: noisy data Y = u + σε,

σ = 0.1. Middle: result using dyadic squares partitioning. Right: result using

all squares partitioning.

The results also show that by means of an all squares partitioning, more details can

be resolved than by a dyadic squares partitioning which can especially be observed in the

reconstructions of the “circles and bars” object. This results from the fact that #PA ≫
#PD and the SMR-estimator hence locally adapts on more regions if the former is used.
On the other hand, the higher complexity of PA also has a drawback: using PA instead of
PD drastically increases the runtime of the Augmented Lagrangian method. In fact, the
results shown in Figures 4.2 and 4.3 were computed about ten times faster on average for

PD than for PA. This is an immediate consequence of the larger number of sets Dm that
enter Dykstra’s Algorithm 3. According to the formulae derived at the end of Section 3.2,

the number M of those sets is given by 8 for a dyadic squares partitioning in contrast to

5, 525 for an all squares partitioning. In summary, we have to decide between reconstruction

quality and runtime according to the practical application at hand and the related goal of
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Figure 4.3: Results of Augmented Lagrangian method (contd.)

the reconstruction when choosing one of these partitionings.

In Figure 4.4, we compare the SMR-estimators computed by the Augmented Lagrangian

method for “circles and bars” and “shapes” to those computed by the automatic local

parameter adjustment presented in [64], a method which we briefly described at the end of

Section 3.1. As a dyadic squares partitioning was used in [64], we draw the comparison to

our method for both the dyadic and the all squares partitioning. Clearly, the Augmented

Lagrangian method presented in this thesis outperforms the local parameter adjustment in

these examples already if a dyadic squares partitioning is used. While keeping edges sharp

and reconstructing intensities well, the results of the Augmented Lagrangian method also

preserve smoothness in the background and on top of flat features. The results of the local

parameter adjustment look quite undersmoothed in contrast. Computing SMR-estimators

rigorously by solving the constrained optimization problem (2.6) instead of circumventing

the problem and reducing the regularization parameter locally is hence worthwhile as it

seems to lead to additional precision of the results.
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Figure 4.4: Comparison of results. Left: local parameter adjustment (cf. [64]). Middle:

Augmented Lagrangian method using dyadic squares partitioning. Right: Aug-

mented Lagrangian method using all squares partitioning.

According to the results shown here, we have found our method of choice for the compu-

tation of SMR-estimators in denoising problems. The results of the Augmented Lagrangian

method exhibit an appealing locally and multiscale adaptive nature and can still be computed

within reasonable time. Moreover, the theoretical background provided in Sections 2.1 and

2.2 makes the estimator statistically sound. The goals formulated in the introduction have

hence been reached for denoising problems.

4.1.2 Illustration of local adaptivity

We will now illustrate how local adaptivity is established within the Augmented Lagrangian

method. As we already mentioned in Section 3.1, this is done by locally modifying the input

Zk := Y + λpk−1 − vk
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to the J-penalized least-squares problem (3.8) which is solved in iteration step k of Algo-

rithm 2 rather than by locally modifying the regularization parameter as in the methodology

presented in [64]. To illustrate this, we processed the noisy version of “circles and bars” as

displayed in Figure 1.1 with different choices of the step length λ. In order to clarify the ef-

fects we would like to demonstrate, we restrict our illustrations to column 230 of the object

which runs through the last column of the nine little dots and the highest “bar”. Choosing

this one-dimensional slice of the dataset especially avoids confusing rescaling effects.

In Figure 4.5, we illustrate intermediate results of the Augmented Lagrangian method

presented in Algorithm 2. In the top row, the step length was chosen as λ = 1. The left

column shows the data Y (red) and the input Zk to the TV-penalized functional (blue) in

the last iteration step of the Augmented Lagrangian method before the stopping condition

was fulfilled. The right column displays the true object (green), the SMR-estimator ûN(0.9)

as computed by the Augmented Lagrangian method (blue) and the global estimator ûλ (red)

computed via (1.6) with regularization parameter λ. In the bottom row, the same quantities

are displayed, but this time for λ = 0.01.
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Figure 4.5: Illustration of local adaptivity; one-dimensional cut through “circles and bars”

in column 230. Top: λ = 1. Bottom: λ = 0.01.
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As λ = 1 is a rather large choice of a step length for the dataset Y at hand, we see that

the global estimator in the top right is clearly oversmoothed, especially for the leftmost dot.

In the Augmented Lagrangian method, this gets corrected locally by drastically increasing

intensities in the corresponding regions of Zk while the impact on better reconstructed

regions is smaller, see top left. Although this modified input to (3.8) in the last iteration

step still gets smoothed heavily as the parameter λ remains unchanged, the increased

intensities lead to a much better approximation of the final result to the true object.

For the small step length λ = 0.01, the global estimator almost matches the observation

as the data-fit is strongly emphasized. The smoothing of the algorithm’s outcome hence

gets done to the Zk ’s already, yielding an input to (3.8) in the last iteration which almost

coincides with the final SMR-estimator. During the first iteration steps of the Augmented

Lagrangian method, the image of the solution uk of (3.8) under K is close to the data due

to the small regularization parameter λ used there. As a consequence, the residuals of uk

are small in absolute value and little to no projections at all are performed by Dykstra’s

algorithm during the quadratic program step (3.7). It is therefore rather the update of the

dual variable pk in each step that leads to the modification of the input Zk .

As expected, the final outcome of the algorithm is identical within a small tolerance for

both choices of the step length. Independently of this parameter, the algorithm converges

to the same result asymptotically according to Theorem 3.1.3.

4.1.3 Comparison to AWS

In order to evaluate the quality of the SMR-estimators shown in Subsection 4.1.1, we will

now draw a comparison to a state of the art method in the field of denoising. Adaptive

weights smoothing (AWS) as introduced in [90] is a natural choice of such a method. The

estimators computed by AWS exhibit a locally adaptive nature, just as SMR-estimators,

and are hence particularly well-suited for such a comparison. To process our datasets, we

used the R-package “aws” [89].

We performed a simulation study in which we compared SMR-estimators for J = TV

to estimators computed via AWS for three different noise levels σ. We simulated 100

observations according to the data model (4.1) and processed them with both methods.

As the underlying true object u∗, we used “circles and bars” of size 256 × 256 as shown
in Figure 1.1. For both reconstruction methods, we computed the average of two different

distance measures between the respective estimator and the true object. To be exact, we
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used the mean squared error (MSE)

MSE(u, v) :=
1

#X

∑

(i ,j)∈X

(ui ,j − vi ,j)2

and the mean symmetric Bregman divergence (MSB) with respect to J = TV where the

symmetric Bregman divergence is defined for general functions J as

DsymJ (u, v) :=
1

2
〈J ′(u)− J ′(v), u − v〉 . (4.2)

As such scalar values are often insufficient to reliably classify the similarity between two

images due to their complexity, we also show exemplary plots of the estimators resulting

from the datasets used in Subsection 4.1.1. By combining the interpretation of the distance

measures received from the simulations with simple visual inspection of the plots, a good

assessment of the overall quality of the estimators is guaranteed.

Figure 4.6: Comparison between SMR-estimation and AWS for σ = 0.1, observations Y

are as in Figures 1.1 and 4.1. Top: SMR-estimators. Bottom: AWS.
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σ = 0.1 σ = 0.25 σ = 0.5

MSE MSB MSE MSB MSE MSB

ûN(0.9) 0.001 0.003 0.004 0.004 0.009 0.005

ûAWS 0.002 0.009 0.003 0.011 0.005 0.016

Table 4.1: Comparison between SMR-estimators and AWS for different noise levels in the

model (4.1), simulation study. True object was “circles and bars” of size 256×
256. Numbers are averaged over 100 simulations.

We provide the estimators resulting from the datasets shown in Figures 1.1 and 4.1 (at

a noise level of σ = 0.1) in Figure 4.6. Visual inspection reveals that the SMR-estimator as

computed by our methodology is superior to the result of AWS in most regions. Observe

that sharp edges as in “squares”, “shapes” and the bottom right of “circles and bars”

are clearly better reconstructed by the SMR-estimator. AWS tends to oversmooth such

edges as can e.g. be seen for the smaller “squares” in the bottom right. On the other

hand, smooth transitions like those in the bottom left of “circles and bars” are particularly

well reconstructed by AWS. The SMR-estimator in this region looks slightly oversmoothed

in contrast. The visual impression that SMR-estimation yields better reconstructions than

AWS for this noise level coincides with the results of our simulation study given in Table 4.1.

Both quantities evaluated there are smaller for SMR-estimators. All in all, SMR-estimation

outperforms AWS for this noise level.

Observe that the ratio of the distance measures in Table 4.1 changes with increasing

noise level σ. For the maximum value of σ = 0.5, the MSB is still distinctly lower for

SMR-estimators, but the MSE is now smaller for estimators computed via AWS. The

corresponding exemplary plots provided in Figure 4.7 yet reveal that SMR-estimators yield

a reconstruction quality that is competitive with AWS in this rather extreme setting, too.

Especially the smoothing of flat features in “shapes” and “squares” is convincing, while

on the other hand the intensities of the little dots in “circles and bars” are much better

reconstructed by the estimators computed via AWS.

In summary, we find that for the smaller noise level of σ = 0.1, SMR-estimators exhibit

a higher reconstruction quality than estimators computed via AWS, especially for blocky

features. This is remarkable as AWS is usually considered an excellent state of the art

technique for denoising applications. According to our simulation study, the difference in

the MSE between the two estimation schemes compared here gets smaller with increasing
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Figure 4.7: Comparison between SMR-estimation and AWS for σ = 0.5. Top: observations

Y . Middle: SMR-estimators. Bottom: AWS.

noise level σ, with AWS giving better results from a certain level on. Nonetheless, the

reconstructions for a high noise level of σ = 0.5 as shown in Figure 4.7 suggest that SMR-

estimators are competitive in this setting, too. A substantial drawback of our method in

comparison to AWS, however, is its computation time which is disproportionately longer.
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4.1.4 Natural images

Concluding our presentation of results for denoising problems, we will now give an example

on how the transformed residuals introduced in Section 3.3 might be used in practice. As

described in [99] (see also Section 2.1), the multiresolution statistic TN on H2 in combination

with a dictionary Φ consisting of systems of subsets of X (such as PD or PA) can be
considered as a likelihood-ratio statistic. By means of the MR-statistic, the null hypothesis

that a given signal is a realization of a white noise process is tested against the alternative

that the underlying Gaussian process has non-zero but constant mean on some S ∈ P.
Clearly, the power of this test increases with the size of S in the alternative. In the context

of image denoising, this means that it is particularly powerful for images which contain large

areas with constant gray values.

Figure 4.8: Standard test images. Left: “cameraman”. Middle: “lena”. Right: “roof”.

Natural images such as photographs, however, are seldom composed of such areas.

Instead, a substantial part of these images consists of oscillating patterns as these often

occur in textures as e.g. fabric, wood, hair or grass. This becomes obvious in the standard

test images depicted in Figure 4.8 (at a resolution of 256×256 and scaled in [0, 1]). Here,
as expected, the statistical test as formulated so far performs rather poorly.

In order to illustrate this, we simulate noisy observations Y of the test images in Figure

4.8 according to (4.1) with σ = 0.1 (cf. left column of Figure 4.10) and compute a TV-

penalized least-squares estimator ûa via (1.6) with a = 0.1 (cf. middle column of Figure

4.10). We intend to examine how well oversmoothed regions in ûa are detected by the

statistic TN(Y − ûa): the left picture in Figure 4.9 depicts the local averages of the residuals
r = Y − ûa for the “roof”-image, that is
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µS(r) =

∣

∣

∣

∑

(i ,j)∈S ri ,j

∣

∣

∣

√
#S

for all 5 × 5-squares S ⊂ X. Large values indicate locations where, according to the MR-
statistic TN(r), the residual fails to resemble white noise (i.e. where the estimator û is

considered oversmoothed). Although some relevant parts are detected (e.g. parts of the

roof), it becomes visually clear that the localization is rather poor.

Figure 4.9: Local averages of the residuals for “roof” image on 5×5-squares. Left: ordinary
µS(r). Right: using squared residuals µs(r

2).

The performance can be improved significantly by applying the multiresolution statistic

to the pointwise squared residuals as described in Example 3.3.1. The right image in Figure

4.9 depicts the corresponding local averages µS(r
2) and indicates that the localization of

oversmoothed regions in û at the scale 5× 5 is substantially improved. This is a good mo-
tivation for incorporating the local averages of the squared residuals in the SMR-estimator

model (2.6). The resulting estimation procedure constitutes a multiscale generalization of

the model suggested in [34].

Since εi ,j
i .i .d.∼ N (0, 1) for all (i , j) ∈ X, the statistic

√

#SµS(ε
2) =

∑

(i ,j)∈S

ε2i ,j

is χ2-distributed with #S degrees of freedom. Therefore, the statistics

1√
2

(

µS(ε
2)−

√

#S
)
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have mean zero and variance one, though are not identically distributed for different scales

#S. As a consequence, the statistic TN(ε) in (2.3) (in the present situation with f (s) = s

and rescaled by 1/
√
2) is not necessarily a good choice since it corresponds to the extreme-

value statistic of non-identically distributed random variables. This constitutes a substantial

drawback of this modified version.

Figure 4.10: Global reconstructions and SMR-estimators. Left: noisy data Y = u+σε with

σ = 0.1. Middle: global TV -penalized least-squares reconstruction û. Right:

SMR-estimators ûN(0.9).
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A possible modification of the SMR-estimator approach consists in considering the indi-

vidual scales separately. To be precise, we set for all φi = χSi with #Si = s
2 the threshold

value ci in (3.17) to ci = cs := σ
2(
√
2qs(α) + s), where qs(α) is the (1− α)-quantile of

ts(ε) = sup
S∈P
#S=s2

(

1√
2

(

µS(ε
2)− s

)

)

.

In other words, we perform a scale-wise test instead of handling all scales involved at once.

By modifying the SMR-estimator paradigm in this way, a different statistical interpretation

arises: for the true image u∗ the residual r = σ−1(Y − u∗) satisfies ts(r) ≤ qs(α) for a

fixed scale s = #S with probability of at least 1 − α. However, this does not imply that
this holds for all scales simultaneously. Put differently, the probability that the true solution

lies in the admissible domain of the convex problem (3.17) is in general significantly smaller

than 1 − α due to the multiple tests being performed (one for each scale involved). This
means that the feasible region of (3.17) does not constitute a (1 − α)-confidence region
for the SMR-estimator ûN(α) as it was the case for the original approach (2.3).

Despite these problems, we illustrate the applicability of this modified approach by study-

ing some examples. Figure 4.10 shows the noisy counterparts Y of the test images in Figure

4.8 simulated according to the model (4.1) with σ = 0.1 (left column), global estimators ûa

as in (2.14) where J = TV and a = 0.1 (middle column) and the SMR-estimator ûN(0.9).

We note that this specific choice of a is rather arbitrary but already shows the benefit of

our method. While smooth regions like the sky in “cameraman” are still undersmoothed

by the global estimators, they also exhibit a significant oversmoothing in textured regions.

Both of these disadvantages could not be removed at the same time when increasing and

decreasing the global parameter a, respectively.

The SMR-estimators as depicted in Figure 4.10, however, exhibit good reconstructions

in all regions, independent of the local smoothness of the true object. Textured regions like

the feather in “lena” or the shingles in “roof” are well reconstructed and so are smoother

regions like sky and background. The SMR-estimator hence shows the desired locally adap-

tive nature which we formulated as our goal and clearly outperforms the global estimator.

Moreover, it is still statistically sound, although we changed our original paradigm as de-

scribed above. In summary, the methodology presented in this subsection is well-suited for

denoising of natural images. As its theoretical background deflects from the one presented

in the rest of the thesis, we abstain from studying this approach any further.
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4.2 Deconvolution

In contrast to the algorithms presented in [64] and [100], the Augmented Lagrangian method

of Chapter 3 also allows for computation of SMR-estimators if the operator K in the

underlying model (1.1) is non-trivial or even ill-posed. We will now therefore turn our

attention to such inverse problems, focusing on the class of convolution operators. In the

discrete two-dimensional setting of Example 1.0.1, these operators take the form

(Ku)i ,j = (k ∗ u)i ,j :=
∑

(k,l)∈Z2

ki−k,j−luk,l (4.3)

where k is a square-summable kernel on the lattice Z2 and u ∈ H1 is extended by zero-
padding. A kernel which is of special interest is the circular Gaussian kernel

ki ,j =
1

2πσ2K
e
− i
2+j2

2σ2
K (4.4)

with standard deviation σK. Applying a convolution operator to an object u ∈ Rn×n has a
certain blurring effect on the object (as can be seen in the first line of Figures 4.11 and

4.12). The corresponding class of inverse problems is therefore frequently referred to as

deblurring problems in image processing.

As we did in our presentation of denoising results, we start out by showing SMR-

estimators computed by our methodology for synthetic test objects. Afterwards, we com-

pare our results to those of other data-driven estimation schemes for inverse problems and

to so-called oracles in Subsections 4.2.2 and 4.2.3. An application of our methodology in

the field of fluorescence microscopy in 4.2.4 concludes the section.

4.2.1 Synthetic test objects

In order to test our methodology on deconvolution problems in which the operator is defined

via a circular Gaussian kernel, we created synthetic test data using the objects “circles and

bars”, “shapes” and “squares” at a resolution of 256 × 256 as shown in Figure 4.1. The
standard deviation of the kernel of the convolution operator was set to σK = 4 and the

noise level to σ = 0.1.

We computed SMR-estimators using our Augmented Lagrangian methodology and chose

J as total variation (cf. Section 2.4) and the L2-norm, respectively. The latter choice of J
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Figure 4.11: Results of deconvolution. Top: convolved objects Ku∗ where σK = 4. Second:

observations Y , noise level σ = 0.1. Third: SMR-estimator uN(0.9) where

J = TV. Bottom: SMR-estimator uN(0.9) where J = L
2.
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leads to the well-known Tikhonov-Philips-regularization introduced in [101]:

ûa = argmin
u∈H1

1

2
‖Y −Ku‖2 + a ‖u‖2 .

It is a standard fact in inverse problems that a solution to this scheme is given by

ûa = (K
∗K + aI)−1K∗Y.

This alternative choice of J is meant to illustrate the versatility of our approach with respect

to the option of using different penalty functions. As Tikhonov-Philips-regularization results

in simple rescaling when used for denoising problems, we did not employ it in Section 4.1

already.

The convolved objects, datasets and results are given in Figure 4.11. Visual inspection

of these reveals that - just as in the case of denoising - SMR-estimators exhibit the desired

locally adaptive nature for deconvolution problems, too. Moreover, the different choices of J

lead to good reconstructions in regions which match the underlying smoothness assumption

corresponding to the penalty function being used (blocky structures for TV, low intensities

for L2), as expected. The deconvolution effect itself is satisfactory, but some smaller

features of the original objects could not be reconstructed by the SMR-estimators (like e.g.

the little dots in “circles and bars” and some of the “squares”). In view of the datasets in

the second row of the figure, this is not surprising though. These features are literally lost

in the observations.

To test our methodology in even more involved situations, we repeated our experiments

for a convolution operator with a kernel of bigger variance. To be exact, we set σK = 10

and reduced the noise level to σ = 0.05. The datasets and results for this setting are

given in Figure 4.12. In this rather extreme situation, it would be unrealistic to expect an

estimator that is as close to the true object as e.g. those shown in the denoising examples

of Section 4.1. Nonetheless, the SMR-estimators are still capable of reconstructing at least

some of the objects’ features which are hard to detect visually in the datasets, especially

the triangles in “shapes” and some of the “squares”. When comparing these results to

those of other automatic estimation schemes in the next subsection, we will see that these

results can be regarded as satisfactory, too.
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Figure 4.12: Results of deconvolution. Top: convolved objects Ku∗ where σK = 10. Sec-

ond row: observations Y , noise level σ = 0.05. Third row: SMR-estimator

uN(0.9) where J = TV. Bottom: SMR-estimator uN(0.9) where J = L
2.
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4.2.2 Comparison to other methods

As a reference for the SMR-estimators for deconvolution problems shown in the previous

subsection, we now present the results of two data-driven parameter selection schemes for

the regularization parameter, namely the L-curve method and the Lepskij principle.

Both of these approaches are based on the choice of a global regularization parameter

in the reconstruction scheme (1.6) and are therefore not locally adaptive at all (and so are

the oracles which we will present in Subsection 4.2.3). As local adaptivity is one of the

central advantages of SMR-estimators, a fair comparison should be drawn to other locally

adaptive estimation techniques. To the author’s knowledge, the only works that deal with

such techniques in an inverse problems setting are [28], [73] and [74]. The framework

treated therein is restricted to linear first-kind integral equations though and can therefore

not be used for a comparison to our general linear inverse problem setting. For this reason,

we stick to the methods of comparison named above.

We start out with a brief derivation of the L-curve method. When plotting the logarithm

of the squared norm of the residuals Y −Kûa against the logarithm of the squared norm of
the estimator ûa for different values of a, the resulting graph is usually L-shaped (see e.g.

[104, Chapter 7]). The L-curve method aims at choosing the regularization parameter aLC

that corresponds to the “corner” of this curve. In [58], it was proposed to use the point

of maximum curvature. For an analysis and further details of the L-curve method, we also

refer to [54; 55; 57]. Following the lines of [104, Chapter 7], we set R(a) := ‖Y −Kûa‖2

and S(a) := ‖ûa‖2. By simple calculus we obtain that the curvature of the graph of
(logR(a), logS(a)) is then given by

κ(a) = −R(a)S(a)(aR(a) + a
2S(a)) + (R(a)S(a))/S′(a)

(R2(a) + a2S2(a))3/2
.

We fix a set of candidate parameters {a1, . . . , aM} and choose the L-curve method para-
meter aLC := aj̃ according to

j̃ := max
j=1,...,M

κ(aj).

This parameter is then used to compute a solution ûLC = ûaLC of (1.6).

In our simulations, we applied the L-curve method to TV-penalized least-squares estima-

tion and compared the results to SMR-estimators computed via our Augmented Lagrangian

methodology. As we did in Subsection 4.1.3, we combine visual inspection and averaged

distance measures from a simulation study to compare the quality of the reconstructions.
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Figures 4.13 and 4.14 show the SMR-estimators and the results of the L-curve method for

the datasets processed in Subsection 4.2.1 for the objects “circles and bars” and “squares”

of size 256 × 256 and the different convolution kernels and noise levels used there (i.e.
σK = 4 combined with σ = 0.1 and σK = 10 combined with σ = 0.05). Table 4.2 shows

the results of our simulation study in which we used the “circles and bars” object resized

to 128 × 128. Consequently, we also halved the kernels’ standard deviations to σK = 2
and σK = 5, respectively, in this study. We combined both kernels with two different noise

levels each (σ = 0.1 and σ = 0.05), performed 100 simulations and evaluated the same

quantities as in 4.1.3, namely MSE and MSB.

Interpreting the results in Figure 4.13, we find that the SMR-estimators shown there

are clearly superior to the corresponding results of the L-curve method. In particular, the

desired local-adaptivity of the SMR-estimators we already mentioned in our interpretation

in Subsection 4.2.1 is convincing, while the results of the L-curve method look severely

undersmoothed in comparison. This leads to the MSB of the latter being much larger than

the one of the SMR-estimator, see Table 4.2. Note, however, that the MSE’s shown there

are distinctly larger for the SMR-estimator. Nonetheless, visual inspection of Figure 4.13

undoubtedly shows that the SMR-estimator outperforms the L-curve method in this setting.

This indicates that the MSE should not always be regarded as a particularly trustable

measure for the similarity of images. When applied to the datasets for the kernel with

σK = 10, the L-curve method performs almost as good (or even slightly better) than SMR-

estimators, see Figure 4.14. However, the visual difference between the corresponding

estimators is not as big as the numbers in Table 4.2 suggest.

σ = 0.05 σ = 0.1

MSE MSB MSE MSB

σK = 2
ûN(0.9) 0.006 0.008 0.008 0.009

ûLC 0.004 0.011 0.006 0.013

σK = 5
ûN(0.9) 0.028 0.019 0.031 0.020

ûLC 0.020 0.014 0.021 0.019

Table 4.2: Comparison between SMR-estimation and L-curve method, simulation study.

True object was “circles and bars” resized to 128× 128. Numbers are averaged
over 100 simulations.

Our second method of comparison, the Lepskij principle, was first introduced in [75]

and is based on the idea to choose the estimator which balances bias and variance in its
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Figure 4.13: Comparison between SMR-estimation (left) and L-curve method (right) for

datasets of Figure 4.11, i.e. σK = 4 and σ = 0.1. Top: “circles and bars”.

Bottom: “squares”.

mean integrated square error (MISE). For this reason, it is also referred to as the balancing

principle. We provide an outline of the principle and present a formulation of it in the

stochastic noise setting at hand. For further details of the method and an analysis of it in

different settings, we refer to [4; 8; 59; 78; 80].

For fixed penalty function J and data Y , let u† denote the J-minimizing solution of (1.1)

which we introduced in Theorem 2.2.5. Furthermore, let Ra : H2 → H1 denote the operator

that maps Y onto the J-penalized least-squares estimator with regularization parameter a,

i.e. ûa = RaY where ûa is a solution of (1.6). According to [8], the MISE of ûa satisfies

the bias-variance decomposition

E
(

∥

∥ûa − u†
∥

∥

2
)

= E
(

‖Raε‖2
)

+
∥

∥E (ûa)− u†
∥

∥

2
.

While the bias term
∥

∥E (ûa)− u†
∥

∥

2
on the right-hand side of this equation is typically not

accessible as u† is unknown, the variance term E
(

‖Raε‖2
)

can be estimated by simulations.

To actually apply the Lepskij principle, we again fix a candidate set of regularization

parameters {a1, . . . , aM} where ai+1 = qai for some q > 1, for all i =, 1 . . . ,M − 1, and

86



4.2 Deconvolution

Figure 4.14: Comparison between SMR-estimation (left) and L-curve method (right) for

datasets of Figure 4.12, i.e. σK = 10 and σ = 0.05. Top: “circles and bars”.

Bottom: “squares”.

estimate

Ψ(j) := 2E
(

∥

∥Rajε
∥

∥

2
)

for all j = 1, . . . ,M by Monte Carlo simulations. Using the notation of [78], we then choose

the Lepskij parameter aLEP = aj̄ according to

j̄ := max
j=1,...,M

{

∥

∥ûαj − ûαk
∥

∥

2 ≤ 2Ψ(j) for all k ≤ j
}

.

We applied the Lepskij principle to Tikhonov regularization and compared its results to the

SMR-estimators for the choice of J = L2. As for the L-curve method, we provide both

images and a simulation study. Note, however, that we abstain from giving the MSB in this

study as Dsym
L2
(u, v) = 1

2
‖u − v‖2 and the MSB hence coincides with the MSE for J = L2.

By visual inspection of the results shown in Figure 4.15, it becomes obvious that for the

kernel with the rather small standard deviation of σK = 4, the SMR-estimator outperforms

the Lepskij principle. In particular, the local-adaptivity in the reconstruction of “circles and

bars” is convincing and leads to a much better reconstruction than achieved by means of
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the Lepskij principle. This visual impression coincides with the results of our simulation

study provided in Table 4.3.

Figure 4.15: Comparison between SMR-estimation (left) and Lepskij principle (right) for

datasets of Figure 4.11, i.e. σK = 4 and σ = 0.1. Top: “circles and bars”.

Bottom: “squares”.

σ = 0.05 σ = 0.1

MSE MSE

σK = 2
ûN(0.9) 0.006 0.008

ûLEP 0.010 0.012

σK = 5
ûN(0.9) 0.025 0.027

ûLEP 0.027 0.029

Table 4.3: Comparison between SMR-estimators and Lepskij principle, simulation study.

True object was “circles and bars” resized to 128× 128. Numbers are averaged
over 100 simulations.

For the datasets corresponding to the choice of σK = 10, the Lepskij principle delivers

results which are quite similar to the SMR-estimators, see Figure 4.16, yet the results of

the Lepskij principle visually appear to be a bit smoother than the SMR-estimators. The
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4.2 Deconvolution

Figure 4.16: Comparison between SMR-estimation (left) and Lepskij principle (right) for

datasets of Figure 4.12, i.e. σK = 10 and σ = 0.05. Top: “circles and bars”.

Bottom: “squares”.

corresponding simulation study, however, shows that the MSE of the SMR-estimator is

smaller than the one of the result of the Lepskij principle.

In summary, we see that SMR-estimation clearly outperforms the two methods we used

for our comparison when applied to the datasets corresponding to the standard deviation

σK = 4 of the convolution kernel. For the kernel with σK = 10, the differences to the results

of the other methods are rather small. We conjecture that this is due to the rather extreme

blurring operator being used there. As many of the objects’ features are irretrievably lost in

the observation Y , the different approaches we applied all fail to reconstruct them and only

deliver a result which is rather far from the true object u∗. For this reason, SMR-estimation

techniques cannot significantly add to the quality of the reconstruction in this setting.

4.2.3 Comparison to oracles

All datasets used for illustrations in this section so far are of synthetic nature. In particular,

the underlying true objects u∗ are known in contrast to practical applications. This knowl-

edge allows for explicit computation of so-called oracles which correspond to a solution of
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(1.6) with a regularization parameter that is optimal in a certain sense. This subsection

starts out with a formal definition of oracles. Afterwards, such oracles will be compared to

the SMR-estimators computed by our Augmented Lagrangian methodology.

In order to compute an oracle for a known object u∗, a certain number of observations

Y1, . . . , Ym is simulated according to the model (1.1). For each Yi , the regularization pa-

rameter ai in (1.6) is chosen such that some prefixed notion of distance D : H1 ×H1 → R
between the resulting estimator ûai and u

∗ is minimized. The oracle with respect to D is

then defined as ûD := ûaD where the oracle parameter aD =
1
m

∑m
i=1 ai is the average of the

parameters ai . Oracles hence correspond to a choice of the regularization parameter a in

Figure 4.17: Comparison between SMR-estimators and oracles for the datasets of Figure

4.11, i.e. σK = 4 and σ = 0.1. Left: SMR-estimator. Middle: L
2-oracle.

Right: Bregman-oracle.
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(1.6) which is approximately optimal with respect to D. For our comparisons, we computed

SMR-estimators for the choice of J = TV. As distance measures, we used the L2-norm

D = L2 and D = DsymTV , where the latter is the symmetric Bregman-divergence defined for

general functions J in (4.2).

Figure 4.18: Comparison between SMR-estimators and oracles for the datasets of Figure

4.12, i.e. σK = 10 and σ = 0.05. Left: SMR-estimator. Middle: L
2-oracle.

Right: Bregman-oracle.

In our experiments, we fixed m = 10 which appears to be sufficiently large in order to

achieve stable results of aD and computed the L
2- and Bregman-oracles for the datasets of

Figures 4.11 and 4.12. The comparisons to the corresponding SMR-estimators are given in

Figures 4.17 and 4.18. Visual inspection reveals that the SMR-estimators of the datasets

corresponding to the smaller variance of the kernel (i.e. σK = 4 in (4.4)) in Figure 4.17
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perform almost as good as or even better than the oracles. Especially the locally adaptive

nature of the SMR-estimator for the “squares” object is convincing: While the L2-oracle

is considerably undersmoothed on larger features but catches most of the small squares

in the bottom right, the Bregman-oracle is well smoothed on the bigger squares but fails

to recover most of the small squares. The SMR-estimator, however, combines both of

these advantages and is clearly superior to the (already globally optimal) oracles. For the

“shapes” object, a similar effect - yet far less strong - becomes visible. Finally, for the

reconstructions of the “circles and bars” object, the L2-oracle is strongly undersmoothed,

yet the Bregman-oracle performs slightly better than the SMR-estimator. For the kernel

with bigger variance (i.e. σK = 10), the SMR-estimator looks quite similar to the oracles for

the “shapes” object. The SMR-estimators for “squares” and “circles and bars”, however,

are inferior to the L2- and Bregman-oracle, respectively.

At this point, we emphasize that when comparing a given estimator to oracles, one

should always keep in mind that computation of the latter is based on the true object u∗.

Choosing the regularization parameter optimal in the sense described above would not be

possible if u∗ was not accessible. Oracles therefore do not correspond to what is usually

called an estimator. For this reason, we abstain from a comparison of SMR-estimators with

oracles based on simulations and stick to visual inspection of the images. The use of prior

knowledge about u∗ makes oracles unrealistically strong in comparison to estimators that

do not exploit this prior information. The quality of the SMR-estimators should hence still

be considered as satisfactory despite their inferiority to oracles in some of our comparisons.

4.2.4 Fluorescence microscopy

In order to illustrate the performance of our approach in practical applications, we give an

example from confocal microscopy. When recording images with this kind of microscope,

the original object gets blurred by a Gaussian kernel and perturbed with Poisson noise.

Moreover, the true object is always known a priori to exhibit nonnegative values only. In

other words, the observations can be modelled according to (3.25) with the additional

assumption that u∗ ≥ 0 holds pointwise. Therefore, combining the modification of the
Augmented Lagrangian method to Poisson distributed noise and the incorporation of a

nonnegativity constraint as described in Section 3.3 allows for the computation of SMR-

estimators for such datasets.

The images depicted in the left column of Figure 4.19 show two recordings of PtK2 cells
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Figure 4.19: Confocal microscopy data. Left: fluorescence microscopy data of PtK2 cells

in potorous tridactylus kidney. Right: SMR-estimator ûN(0.90).

taken from the kidney of potorous tridactylus. These datasets were kindly made available

to us by the Department of NanoBiophotonics, Max Planck Institute for Biophysical Chem-

istry, Göttingen, Germany. Before the recording, the protein β-tubulin was tagged with a

fluorescent marker such that it can be traced by the microscope. The images in Figure 4.19

show an area of 18×18 µm2 at a resolution of 798×798 pixels. The point spread function
of the optical system (i.e. the kernel k in (4.3)) can be modelled as a Gaussian kernel with

full width at half maximum of 230nm which corresponds to σ = 4.3422 in (4.4). The

SMR-estimators as computed by the Augmented Lagrangian method for these datasets are

shown in the right column of the figure.

In the present situation we are in the delicate position to have a reference image at

hand by means of which we can evaluate the result of our method: STED (STimulated

Emission Depletion) microscopy constitutes a relatively new method that is capable of
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Figure 4.20: STED microscopy data. Left: STED microscopy recording of the PtK2 cell

data sets. Right: detail comparisons between confocal recording (left), SMR-

estimator ûN(0.90) (middle) and STED recording (right).

recording images at a remarkably high resolution. This method was first introduced by

Hell and Wichmann in [61] (see also [60]) and research is currently advanced e.g. at the

Department of NanoBiophotonics of the Max Planck Institute for Biophysical Chemistry

in Göttingen. The left column of Figure 4.20 depicts STED recordings of the PtK2 cell

data sets in Figure 4.19. Comparison of the SMR-estimator with the STED recordings

in the right column of Figure 4.20 shows that our SMR-estimator technique chooses a

reasonable amount of regularization: no artifacts due to undersmoothing are generated

and on the other hand almost all (multiscale) geometrical features that are present in the

high-resolution STED recording become visible in the reconstruction. The reconstruction

quality of the SMR-estimator can hence be considered as satisfactory.
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This concluding chapter starts out with a summary of the results we have achieved. We

will go through Chapters 2, 3 and 4, examining to which degree we reached the goals

we set ourselves in the introductory Chapter 1. Afterwards we will give some ideas about

possible future research in the field of multiresolution statistics focusing on extensions and

improvements of the Augmented Lagrangian method introduced in Chapter 3.

5.1 Summary

In the introduction, we formulated the goal of finding an automated estimation scheme for

the inverse problem model (1.1) which meets the following requirements:

1. fully data-driven,

2. statistically sound,

3. combinable with a wide range of penalty functions J,

4. locally and multiscale adaptive,

5. computationally feasible (especially for two-dimensional datasets).

Indeed, the MR-criterion and the resulting SMR-estimator as introduced in Sections 2.1

and 2.2 have a background which already establishes most of the desired attributes on a the-

oretical level. According to the interpretation given in Section 2.1, it is statistically sound.

Moreover, the only degrees of freedom when computing SMR-estimators lie in the choice

of a significance level α for the critical value qN(α) in (2.5) and a dictionary Φ. Once these

two choices have been fixed, arbitrarily many datasets on the same grid may be processed

without changing any parameters individually. For this reason, we are justified in calling the

SMR-estimator fully data-driven. Theorem 2.2.2 gives conditions on the penalty function

J under which existence of the SMR-estimator is guaranteed. Unfortunately, verification of

Assumption 1 made there is not straightforward for a given J. Nonetheless, it holds at least

if J was chosen as total variation under fairly mild assumptions as we show in Theorem

2.4.1. Apart from this restriction, we also reached our goal of finding an estimator that is

combinable with different penalty functions J.

All in all, the theoretical foundations laid in Chapter 2 are quite solid and motivate the

development of a methodology which allows for numerical computation of SMR-estimators
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in order to study how well the theoretical background translates into practical applications.

Such an algorithmic approach to the actual computation of SMR-estimators is taken in

Chapter 3.

There, we directly tackle the constrained minimization problem (2.6) by means of a

technique from optimization theory, namely an Augmented Lagrangian method. We decided

to use such a method for the reason that it is appealingly modular. In case one would like to

use a different penalty function J or modify the statistic TN, the method only needs to be

altered in parts while the framework itself may be kept. This results from the corresponding

intermediate steps (3.8) and (3.7) in Algorithm 2 being independent of the statistic and

the penalty function being used, respectively.

On a theoretical level, we prove convergence of the method in Theorem 3.1.3 if combined

with penalty functions J which fulfill the assumptions of Theorem 2.2.2. By means of this

result, we found a method which theoretically enables us to compute SMR-estimators in a

rather broad framework, especially allowing to use any penalty function J for which existence

of SMR-estimators is guaranteed by means of Theorem 2.2.2.

In order to establish numerical computability, however, we still faced the problem of

having to solve the quadratic program (3.7) within each iteration step of the Augmented

Lagrangian method. As mentioned in Section 3.2, this problem is too large-scale to be

successfully tackled by means of a general optimization method. The breakthrough to-

wards computability of SMR-estimators was hence the application of Dykstra’s algorithm

to this problem. The option of explicitly projecting onto the single sets Ci in (3.17) in

our framework makes the algorithm an efficient method to handle the huge number of side

constraints in (3.7). In summary, application of Dykstra’s algorithm in the context of the

Augmented Lagrangian method guarantees computability of SMR-estimators in practice,

for denoising problems as well as for inverse problems with non-trivial operators.

In Section 3.3, we indicated the versatility of the Augmented Lagrangian approach by

presenting some possible extensions of the methodology. How to replace the statistic within

the framework was indicated by using transformed residuals. As these still allow for explicit

projections within Dykstra’s algorithm, the resulting estimators were kept computable within

reasonable time. As some applications assume an underlying data model which differs from

the one stated in (1.1), we also studied how to employ our algorithmic to observations that

are perturbed by Poisson rather than Gaussian distributed noise. By a simple transformation,

we were able to adapt our framework to this situation. Nonetheless, the transformed
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variables are only asymptotically normally distributed. Furthermore, as the true object is

not accessible in practical applications, we use the current iterate as an approximation of it.

These additional sources of possible errors show that the case of Poisson distributed noise

still needs more research in order to come up with more sound approaches. Apart from

the Poisson noise extension, we also demonstrated how our algorithm can be extended by

an additional nonnegativity constraint; an extension that proves to be quite useful in many

applications.

In Chapter 4, we presented results of our methodology which clearly show that SMR-

estimators as computed by the Augmented Lagrangian method exhibit all attributes which

were formulated as our goals before. Especially, the discretization of the parameter as an

essential drawback of the methodology in [64] is avoided while the desired local adaptivity

is improved. In Subsection 4.1.2, we also illustrated how this local adaptivity is established

within the Augmented Lagrangian method. Moreover, we used additional applications -

namely the denoising of natural images and the deconvolution of fluorescence microscopy

recordings - to indicate how the algorithmic extensions of Section 3.3 may be employed in

different situations.

To sum up, we see that the algorithmic of Chapter 3 guarantees for translation of the

good theoretical properties of SMR-estimators into practice. Apart from the restrictions

mentioned above, we have therefore achieved all goals which we set ourselves in the intro-

duction.
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5.2 Future work

We will now indicate how research on SMR-estimators might be carried on in the future.

Several ideas to modify and extend the algorithmic framework presented in this thesis will

be given in the following.

First of all, the rather general framework should be tested in additional practical situa-

tions. As integrating different penalty functions into the Augmented Lagrangian method-

ology is quite easy, experiments with such varying choices of J should be carried out. This

should not only be done by performing tests on synthetic objects, but in practical situations

as well. Apart from the application to fluorescence microscopy presented in this thesis,

there are more situations in which linear inverse problems occur in practice and which hence

allow for straightforward application of our algorithmic.

A second idea which would require minor modifications of our framework only is the use

of alternative dictionaries. By restricting our considerations to characteristic functions of

subsets and choosing these subsets from systems of squares, we already made a certain

assumption on the geometry of features within the unknown object that are to be recon-

structed. When creating systems of differently shaped geometric objects, however, prior

information about the object may be exploited in special situations. Moreover, choosing a

dictionary that consists of isotropic functions could even result in a certain independence

of the shapes within the object. In both cases, one would have to come up with a method

which guarantees fast evaluation of the MR-statistic (like the one for squares given in Sec-

tion 2.3) in order to keep the runtime of the Augmented Lagrangian method - in particular

of Dykstra’s algorithm as a part of it - within reason. In addition, a decomposition of the

resulting dictionaries into subsets which allow for simultaneous projections onto the feasible

sets (as presented for the partitioning PA in Subsection 3.2.2) should be provided.
Another starting-point for improvement and generalization is the MR-statistic itself. Us-

ing the statistic to test convex transformations of the residuals rather than the residuals

themselves (see Section 3.3) can be quite useful in some situations as we illustrated by

processing natural images in Section 4.1. Further transformations Λ could be developed

and easily integrated into our framework by providing explicit projections onto the resulting

sets CΛ,i in (3.23). In addition to such simple modifications, completely re-designed statis-

tics for noise models which differ from (1.1) would also be desirable. While we adapted

our methodology to the case of Poisson distributed noise in Section 3.3, the underlying

transformation used for this purpose is clearly not satisfactory as it will be quite inexact
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if the image of the true object under the operator K exhibits low intensities. Moreover,

it leads to an additional approximation error as the true object is usually not accessible in

practical situations. In order to cope with Poisson or other distributions, one would have to

formulate a different idea on how to detect nonrandom structures in the residuals that is

more sophisticated than simply linking it to the normal distribution by a variance stabilizing

transformation.

Furthermore, applying the methodology to datasets of dimensions higher than two is an

interesting idea. While the extension of the methodology itself to this case is straightfor-

ward, numerical and implementation details need special attention. In fact, we already made

a first attempt to apply the Augmented Lagrangian method to three-dimensional datasets,

but abstained from pushing our experiments any further as computation of SMR-estimators

with our implementation simply took too long in this case. Nonetheless, a generalization

to higher dimensions is possible and might be an issue in future work.

Improving the runtime of our algorithm not only for a possible application in higher di-

mensions but also for the two-dimensional case discussed in this thesis is another subject in

this context. Improvements on an algorithmic level might for example be achieved by em-

ploying one of the parallelized versions of Dykstra’s algorithm mentioned in Section 3.2 or

by developing parallelized algorithms which compute the penalized least-square estimators

as needed within the Augmented Lagrangian method in (3.8). The corresponding imple-

mentation might make use of multiple processors or of a graphics processing unit and save

a vast amount of runtime. Apart from that, computation times might also be improved

on a rather technical level by implementing the algorithmic more efficiently than we did for

our experiments. As mentioned in several places, we paid close attention to write a solid

implementation which is efficient enough to guarantee runtimes that allow for convenient

numerical experiments. We do not claim, however, that our implementation could not be

outperformed in terms of runtime. Still, our work primarily served as a proof of concept

and did not aim at the development of a perfectly implemented software.

In summary, the methodology established in this thesis can be considered as a break-

through in terms of computability and runtime in the field of SMR-estimation to a certain

extent. Yet there are still open questions and further ideas which might be subject to future

research.
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