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Chapter 1

Introduction

1.1 Motivation and objective of the thesis

The modeling and simulation of large-scale vortices in the onflow conditions and
their interaction with airplanes pose an immense challenge in today’s air traffic.
Such vortices – whose length scales range from microscopically small up to several
magnitudes of an airplane – can evolve naturally in the atmosphere due to certain
weather conditions. Another source for the creation of dangerous disturbances lies
in the airplanes themselves: During take–off and landing huge counter-rotating wake
vortices evolve. Both types of disturbances pose a great danger for oncoming air-
planes and can cause fatal accidents. The status quo of avoiding the risks of wake
vortices lies in waiting several minutes (depending on the size of the planes and other
factors) before allowing the next airplane to take-off or land on the same runway.
In times of worldwide increasing air traffic, this limitation becomes more and more
problematic.
The aim of this thesis lies on the development and application of a numerical simu-
lation method that allows to generate a realistic vortex, to transport it towards an
airfoil and to simulate the vortex-airfoil interaction to predict the forces and mo-
ments acting on the wing. Especially the question whether airfoil stall occurs due
to the vortex-airfoil interaction is of major interest. Airfoil stall is hereby defined
as massive flow separation at the wing resulting in a loss of lift, which forces the
aircraft to drop and possibly makes control of the airplane impossible.
In order to develop and evaluate the simulation method, several preliminary investi-
gations are performed. One examination deals with the turbulence model used: As
it is well-known that standard URANS-methods are not capable of resolving small-
scale structures (which occur at the wing during a vortex-airfoil interaction), the use
of a hybrid RANS/LES method is advisable. Therefore the performance of a hybrid
RANS/LES model is examined in Chapters 5 and 6, where the model is applied to
a testcase including massive flow separation and respectively used to simulate the
flow around an airfoil at stall, where only a mild trailing edge separation occurs.
Whether the approach is capable of transporting vortices over large distances with-
out losing them due to numerical dissipation is investigated in Chapter 7. At the
end of this chapter also two vortex-airfoil interactions are presented.
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CHAPTER 1. INTRODUCTION 5

Having performed the preliminary investigations, the simulation method can be in-
troduced and applied in Chapter 8. We propose the following approach, which makes
use of the so-called Chimera technique and is illustrated in Fig. 1.1. The upper pic-
ture of Fig. 1.1 shows the initial setting at the beginning of the computation. Em-
bedded within a background grid (”orange”) lie a ”vortex generation grid” (”red”)
containing an airfoil to generate the vortex, a ”vortex transport grid” (”green”) to
preserve and tranport the vortex and a ”vortex interaction grid” (”blue”) contain-
ing an airfoil that in the end interacts with the vortex. While the three local grids
should be chosen sufficiently fine to preserve the vortex, the background grid cover-
ing most of the computational domain can be relatively coarse, thus minimising the
numerical costs. First the vortex generation grid is flapped upwards relative to the
background grid, which is indicated in Fig. 1.1 (middle). As a result, the realistic
vortex evolves from the trailing edge of the airfoil and moves with the free stream
velocity onto the vortex transport grid. Having been interpolated onto the latter,
both the vortex and the vortex transport grid are moved simultaneously with the
free stream velocity towards the vortex interaction grid. As the vortex transport
grid and the airfoil of the vortex interaction grid must not overlap, the vortex trans-
port grid is stopped sufficiently far away from the airfoil, which can be seen in Fig.
1.1 (lower). The vortex continues to move to the right and is finally interpolated
onto the vortex interaction grid, where the vortex-airfoil interaction eventually takes
place.

Figure 1.1: Relative position of the four Chimera grids at the beginning of the
computation (upper picture), after the red ”vortex generation grid” has been flapped
upwards (middle) and after the green ”vortex transport grid” has been stopped
(lower).

The work presented in this thesis was performed in the framework of a subproject
of the DFG PAK 136 project and of the DFG FOR 1066 Forscherguppe. The DFG
PAK 136 project, which consisted of five subprojects, was started in september 2006
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and had a project duration of two years. The subsequent Forschergruppe, which was
initiated in december 2008, consists of eight subprojects and is supposed to run for a
total of six years. The major aim is the numerical investigation of wing and nacelle
stall caused by disturbed onflow conditions and the experimental validation of the
numerical results. Institutions in the Forschergruppe are the TU Braunschweig,
the university of the armed forces in München, the German Aerospace Center in
Braunschweig and Göttingen, the LU Hannover, the University Tübingen, Rolls-
Royce Germany in Berlin-Dahlewitz and Airbus in Bremen. During the performance
of this thesis, several cooperations with other subprojects have been realised: One
such cooperation can be found in the backward facing step computations shown in
Chapter 5 and of the HGR01 airfoil simulations presented in Chapter 6, which were
realised in close cooperation with Axel Probst from DLR Braunschweig (see [89] for a
comparison of the results shown here and the ones obtained by Axel Probst). David
Hahn and Peter Scholz from TU Braunschweig currently perform the experimental
validation of the numerical results shown in Chapter 8 - an FNG airfoil near stall
with disturbed onflow conditions. Silvia Reuss from the German Aerospace Center
in Göttingen performed DES simulations of the starting procedures of a F15 wing in
[92]. Finally Torsten Auerswald from the University Tübingen applies the numerical
simulation method presented in this thesis to transport a synthetically generated
atmospheric turbulence field towards an airfoil, where the interaction eventually
takes place (see [4]). He later plans to generate realistic turbulence by applying the
tool Meteogen, which in combination with the simulation method would allow to
numerically simulate realistic vortex-airfoil interactions.

1.2 Overview of the literature

This section provides an overview of the relevant literature for this thesis. As impor-
tant topics air vortices and their interaction with solid bodies, hybrid RANS/LES
methods and the Chimera technique have been identified. The major goal is to
determine, whether a similar approach as the proposed simulation method has been
introduced before or whether this is a truly new approach that has not been consid-
ered in literature yet. This question is adressed at the end of this section.

1.2.1 Air vortices and vortex-body interactions

At first literature considering experimental and numerical investigations of air vor-
tices is presented. Fields of interest are particularly creation, merging and decay of
vortices. Also papers concerned with vortex-body interactions are discussed at the
end of Subsection 1.2.1.

Introductions

The following three sources provide good introductions into the topic of wake vor-
tices and are therefore recommended as starting points. Gerz et al. [37] present a
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”state of the art” in the field of wake vortices caused by commercial aircrafts. Im-
portant aspects are the characterisation and control of wake vortices, prediction and
monitoring of vortex decay, vortex detection and warning and wake vortex safety as-
sessment. In Holzäpfel et al. [49] a comprehensive overview of all relevant aspects of
aircraft wake vortices can be found. Important issues are how these disturbances can
be minimised, predicted, characterised, observed, detected and attenuated. Another
introduction into the field of wake vortices and the resulting flight safety problems
is given by Bobylev et al. [12]. The authors also introduce a mathematical model of
wake vortices in the turbulent atmosphere, which accounts for wake evolution and
destruction.

Experimental investigations

In this paragraph literature considering experimental vortex examination is pro-
vided. Whale et al. [125] experimentally investigate the vortex wake behind a
two-blade wind turbine rotor by means of Particle Image Velocimetry (PIV). It is
shown that the identified wake structures are in good agreement with additionally
performed numerical simulations. Streamwise vortex structures in the wake of a
stack, which is standing normal to the ground, are examined experimentally using a
seven-hole pressure probe by Adaramola et al. [2]. Depending on the velocity, up to
three pairs of counter-rotating vortex structures can be identified in the wake of the
stack. How multiple-vortex systems in aircraft wakes can be detected experimentally
is described by Carmer et al. [17]. The authors use PIV to obtain time-resolved
velocity fields normal to the wake axis and use several vortex identification crite-
ria for the detection of co-rotating and counter-rotating vortex pairs. Williamson
[129] experimentally examines three-dimensional vortex structures in the wake of
bluff bodies. Several vortex dynamics phenomena including vortex shedding, phase
shocks, phase expansions, vortex dislocations, vortex loops and streamwise vortices
are detected. Turbulent instabilities in the near- and far-wake of a delta wing are
experimentally investigated by Miller et al. [80]. The experiments, which are per-
formed both in a water tunnel and in a wind tunnel, reveal that in the near-wake
small-scale structures evolve, which trigger large-scale vortices far downstream of
the wing. Allen et al. [3] study vortex generation and evolution in the wake of a
wing-tail configuration by means of hot-wire anemometry. They show that a four
vortex system consisting of counter-rotating neighbored vortices evolves behind the
generic airfoil model. Wu et al. [133] perform digital PIV measurements to detect
shear layer vortices and longitudinal vortices in the wake of a circular cylinder. The
experiments, which are carried out both in a wind tunnel and in a water tunnel,
indicate that both types of disturbances evolve independently from each other. Ad-
ditionally, longitudinal vortices appear already at much lower Reynolds numbers
than shear layer vortices.

Numerical simulations

We proceed by papers dealing with numerical simulations of vortices. Ehrenstein et
al. [29] compute a co-rotating vortex pair as equilibrium state of the Euler equations
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to examine the influence of the two vortices on each other. By comparing to the
case of a single vortex in an external deformation field it is shown that the influence
of one vortex on the relative other can be approximated by an external rotating
strain field whose characteristics are given by a point-vortex model, if both vortex
centers are far enough away from each other. The merging of two analytical co-
rotating vortices is examined numerically by means of Direct Numerical Simulation
by Josser et al. [58]. By using a large range of Reynolds numbers (from Re = 103 to
Re = 106) the effect of the Reynolds number on each of the three stages of merging
is illustrated. The interaction of a two-dimensional trailing vortex-pair with a shear
layer of surface air is examined numerically in [73]. While one vortex intrudes into
the shear layer, the other one rebounds. Frech et al. [33] present and examine a
probabilistic prediction scheme for wake vortex evolution in a convective boundary
layer. A wake vortex warning system for Frankfurt Airport is introduced by Frech
et al. [34]. As the runways of this airport lie relatively close to each other, the
scheme especially aims to predict the horizontal winds caused by wake vortices of
landing and starting airplanes. The last papers of this ”numerics” paragraph are
all provided by Holzäpfel et al. In [51] the evolution and decay mechanisms of wake
vortices in the atmosphere are investigated numerically. While different initial con-
ditions are applied, in all cases coherent secondary vortex structures evolve, which
deform and weaken the primary vortex and in some cases lead to its rapid decay.
[52] deals with methodologies, benefits and limitations of numerical simulations of
evolution and decay of aircraft wake vortices in idealized and real environments.
Several LES-results show that complex real scenarios can be accurately predicted.
The decay of wake vortex pairs of a B-747 aircraft in an evolving and convectively
driven atmosperic boundary layer is examined by means of LES-simulations in [50].
The authors especially propose an approach to adequately represent both the wake
vortices and the convective boundary layer - despite the difficulty that their rel-
atively characteristic length scales vary by a factor of 1000. In [48] the influence
of stable stratifications on wake vortices are examined numerically in two dimen-
sions, where the variations in time of descent height and speed, vortex spacing and
circulation are of interest. The results provide an overview and detailed insight in
two-dimensional wake vortex physics. In [47] a probabilistic real-time wake vortex
decay and transport model is presented, which takes the effects of wind, turbulence,
stable stratification and ground proximity into account.

Vortex-body interactions

At the end of Section 1.2.1 we present literature adressing vortex-body interactions,
because this phenomenon is of major importance for this thesis. First investigations
concerning a vortex-airfoil interaction are presented by Abate [1], where the collision
of a single sinusoidal gust and a NACA 0012 airfoil is examined numerically in two
dimensions. As this simulation requires a globally fine grid, the extension to a
complex three-dimensional configuration seems hard to achieve. Svard et al. [115]
numerically simulate the interaction of an analytical vortex with a NACA 0012
airfoil by means of high-order finite difference methods. The vortex is inserted into
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the flow field at the left domain boundary and then transported towards the airfoil,
where the vortex-airfoil interaction leads to a significant change in lift, drag and
moment. The interaction of vortices emerging from the main and tail rotors of a
helicopter with the flight vehicle are studied both experimentally and numerically
by Coton et al. [22]. The interaction of a prismatic bluff body with a vortex wake
is investigated theoretically, experimentally and numerically by Leclercq et al. [66].
The aim is to predict the lift and drag forces and the noise caused by the collision.
A numerical simulation of the interaction of a pair of counter-rotating vortices and
a rigid sphere is performed by Kim et al. [61], where both the vortices and the body
are of comparable size. It is shown that the change in lift and drag of the sphere
caused by the interaction with a single vortex is almost identical to the one due
to the interaction with a vortex pair, if both vortex centers are located far enough
away from each other.

1.2.2 Hybrid RANS/LES methods

The idea of hybrid RANS/LES methods is to combine the robustness and low nu-
merical costs of RANS models with the high-resolution capabilites of LES methods.
Ideally, the result should be comparably good as the outcome of an LES simulation,
but with significantly reduced costs. While a variety of hybrid RANS/LES methods
exist, we want to focus on Detached Eddy Simulation (DES, see also Subsection
3.4), because it is arguably the most popular approach and because it is used in this
thesis. At the end of Subsection 1.2.2 also several zonal hybrid RANS/LES methods
are presented.

Detached Eddy Simulation (DES)

DES is a nonzonal hybrid RANS-LES model that can be based on all commonly used
RANS models. The idea is to compute attached boundary layers in RANS-mode and
switch to LES as soon as the flow separates. The term ”nonzonal” implies that the
RANS-LES distribution is determined internally by the model and not by the user.
As the ”Detached” in ”DES” already suggests, this model (and its modifcations) has
been designed to simulate flows containing a vast separation region. While applied
to these testcases the model performs well, problems arise for cases with no or only
mild separation. This model behaviour could also be observed within this thesis:
As the testcase considered in Chapter 5 includes a large detached part, the use of
DES leads to a convincing outcome. In contrast, the only small separation region
in the example shown in Chapter 6 results in an inferior behaviour of DES.
The original concept of DES has been introduced 1997 by Spalart et al. [110],
where the underlying RANS model is the Spalart-Allmaras model (see Subsection
3.3.1). One major drawback of the orginal DES-formulation turned out to be that
the RANS-LES distribution is solely based on grid properties but not on the re-
sulting flow field. As the attached boundary layer thickness is highly dependent
on the Reynolds number and the Mach number, DES can only be reasonably used
within a certain range of Reynolds and Mach number, if the underlying grid remains
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unchanged. To overcome this flaw, the concept of Delayed DES (DDES) has been
introduced by Spalart et al. [109] in 2006. As in DDES the RANS-LES distribution
is also based on flow properties as the viscosity, the strain rate and the wall distance,
this model can be applied for a wide range of Mach numbers and Reynolds numbers
even if the grid remains the same. In 2008 Mikhail et al. [79] introduced a further
modification called Improved DDES (IDDES). This model either operates as nor-
mal DDES or alternatively switches to a wall modelled LES (WMLES)-behaviour.
IDDES was developed, because for certain testcases the use of DES or DDES leads
to a mismatch between the modelled log layer and the resolved log layer, resulting
in a wrong skin friction prediction. The concept of IDDES is to treat the large outer
part of the attached boundary layer in LES-mode and only model a thin near-wall
region by RANS.
An informative introduction into DES is given by Squires [111], where also several
applications are shown. As all testcases considered include a vast region of separated
flow, the results obtained by DES are superior to the ones obtained by URANS-
computations. Spalart [107] provides a review of the first ten years of DES-methods
The author examines weaknesses and strengths of DES and its modifications and
provides insight into the concepts of DES, DDES, IDDES and zonal DES. The
response of DES to ambiguous grids, in which the wall-parallel grid spacing is of
the order of the boundary layer thickness, is stated as main model weakness. The
problem of high grid sensitivity is further discussed by Spalart [106], where basic
principles of appropriate DES grid construction are provided. The use of DES can
in particular lead to problems in the ”grey area” of the grid, which is located in the
interface of the RANS part and the LES part. Useful guidelines of how to implement
DES methods based on different RANS models within a numerical code is described
by Bunge et al. [15]. Morton [82] applies DES to compute vortex breakdown over
a 70-degree delta wing. As the outcome is highly sensitive to the grid density, an
adaptive mesh refinement is performed until good agreement with experimental data
is obtained. The weakly nonlinear k − ω RANS model ”WD+”, DES and DDES
(where both are based on WD+) are utilised by Fu et al. [36] to simulate wing-body
junction flows. Only DDES is capable of resolving the large eddies detaching from
the leading edge of the wing.
At this point we want to mention that the DLR AS-C2A2S2E-department in Göttin-
gen performed and took part in several DES-examinations of one-and multiele-
ment airfoils with beginning trailing edge separation: After an extensive and time-
consuming investigation the author of this thesis and Axel Probst from the German
Aerospace Center in Braunschweig showed in [89] that problems can arise when us-
ing SA-DDES applied to the flow around a stalling HGR01 airfoil including a strong
adverse pressure gradient. These limitations of SA-DDES, which are also subject
to Chapter 6 of this thesis, are an important and new observation. In the projects
ATAAC (Advanced turbulence simulation for aerodynamic application challenges)
and GARTEUR (Group for aeronautical research and technology in Europe) AG
49, in which the DLR AS-C2A2S2E-department takes part, DES is applied to mul-
tielement airfoils. The need for these projects can be seen in the existence of many
open questions when applying DES methods to multielement airfoils. Jakubek [55],
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who performed her diploma thesis in the DLR AS-C2A2S2E-department, applied
DDES to a three-element F15 airfoil. It was hypothesized that turbulent three-
dimensional structures evolved in the slat-cove, which then moved along the main
wing and intruded into the boundary layer, which distorted the RANS-part at the
wing. The same probably occured in the wake of the main wing, where turbulent
structures distorted the attached boundary layer of the flap. Indeed this hypothesis
still requires a much deeper investigation.
To sum it up, it can be stated that the use of nonzonal DES methods applied to
multielement (and partly even one-element) airfoils near stall has not been fully
understood yet even in the case of undisturbed onflow conditions. This task can
therefore be considered as an open problem in literature that still contains many
challenges. One idea to overcome these problems is the use of zonal DES methods
(e. g. Deck [24] successfully performed a zonal DES to simulate the flow around a
high-lift three-element configuration), which will be presented next.

Zonal hybrid RANS/LES approaches

Besides nonzonal DES methods, several zonal hybrid RANS/LES approaches have
been introduced, in which the RANS/LES domains are explicitly prescribed. Fröhlich
et al. [35] provide an extensive overview of different kinds of hybrid RANS/LES
models including DES and its derivatives, two-layer models (in which the region be-
tween the wall and the LES domain is computed by a RANS-layer) and other zonal
hybrid RANS/LES methods. As the various approaches are tested upon several
testcases, an assessment of relative advantages and disadvantages of the methods
can be obtained. A zonal hybrid RANS/LES method is applied to predict the flow
over a high-lift configuration of a two-element airfoil at large Reynolds numbers by
Zhang et al. [135]. Compared to a full LES computation, this approach allows a
reduction of almost 50% of computational time. Richez et al. [93] investigate the
stall mechanism of the flow around a helicopter fan blade profile by means of a zonal
hybrid RANS/LES coupling method. The stall behaviour turns out to be highly sen-
sitive to the correct prediction of a laminar separation bubble near the leading edge.
While the hybrid approach minimises the numerical costs, the results are compara-
bly good to the ones obtained by an LES simulation. Turbulent flow separation in a
three-dimensional diffuser is modelled both by LES and a zonal hybrid RANS/LES
method by Jakirlic et al. [56]. While the grid used for the hybrid computation
contains only half the number of grid points as the one of the LES simulation, both
results agree equally well with experimental data. Li et al. [67] apply a zonal hybrid
RANS/LES method to simulate free surface flow through a vegetated channel. At
the interface of the upstream RANS region and the downstream LES region artifical
turbulent velocity fluctuations are superimposed to trigger instabilities. Benarafa
et al. [8] present a zonal hybrid RANS/LES coupling approach, in which a forcing
term is applied on the LES mean velocity field. By testing this method upon sev-
eral examples, the authors show that this model performs well even if the Reynolds
number is large and the grid relatively coarse.
We want to finish this subsection with the mentioning of the paper by Sanchez-Rocha
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et al. [97], where a formal derivation of the compressible governing equations for
the hybrid RANS/LES model is performed. As in most papers hybrid RANS/LES
models are motivated by the need to simulate high Reynolds number flows with
reasonable computing resources, the models are mostly constructed and examined as
engineering models. Therefore this formal mathematical examination is uncommon
and of great value.

1.2.3 The Chimera technique

This part considers literature dealing with the Chimera (or overset grid) technique
(see Section 4.3), which is a type of domain decomposition method. When per-
forming numerical simulations by means of Chimera, the computation is carried out
not on a single but on several grids that can overlap and may be moved relative to
each other. The flow data must be exchanged between the grids by an appropriate
interpolation.
After a brief overview of papers first mentioning the overset grid technique, literature
dealing with the two major fields of application are presented: While in most works
the Chimera technique is used to simplify grid generation for complex geometries,
more seldom overset grids are utilised to move solid objects or flow entities (such as
vortices) relative to each other during unsteady simulations.

The first Chimera works

Composite grids were first used by Volkow [122, 123] (1966 and 1968) to solve the
Laplace equation on regions with piecewise smooth boundaries separated by cor-
ners. Polar grids are fitted around every corner to handle potential singularities. It
was not before 1977 and 1980 that the overset grid technique is again mentioned in
literature, where Starius [112, 113] applied it to solve elliptic and respectively hyper-
bolic problems. The term ”Chimera” was probably introduced by Benek et al. [9] in
1983, where the method was used to compute two-dimensional flow around a two-
element airfoil. The name hereby refers to the mythical Chimera beast consisting
of a human face, a lion’s mane and legs, a goat’s body and a dragon’s tail and was
chosen because the Chimera approach allows to combine highly differently shaped
grids to a single overset grid. 1985 Benek et al. [10] used the Chimera technique to
simplify grid generation by independently meshing wings, fuselage and elevator of a
simplified airplane configuration. The component grids are finally embedded into a
background grid.

Chimera applied to complex configurations

Next we consider literature, in which the Chimera technique is used to simplify grid
generation for complex geometries. While the first three papers contain methods
how to efficiently generate high-quality Chimera grids, the next sources adress solver
issues. At the end of this ”complex configuration”- part we present literature, in
which the Chimera technique is applied to several testcases.
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How the quality of Chimera grids for complex geometries can be improved by mak-
ing use of genetic algorithms is stated by Carlsson et al. [16]. The approach is
validated upon the outcome of a simple two-dimensional Poisson problem. Zheng et
al. [136] provide an alternative to the standard Chimera grid generation for complex
geometries, where large parts of the computational domain are covered by unstruc-
tured grids. The idea of the ”DRAGON methodology” is to use structured grids
in the main part of a domain and only fill small remaining gaps with unstructured
Chimera grids. Overall this approach minimises the required memory and allows
the use of more efficient solvers on the increased structured grid part. Chan et al.
[19] describe an efficient approach to generate surface grids for complex geometries.
The method, which makes use of hyperbolic partial differential equations and an
algebraic marching scheme, significantly reduces the grid generation time.
The following sources provide insight into questions regarding the flow solver. Schwarz
[99] introduces and implements a block structured method to simulate viscous flow
around complex configurations. Validation testcases include a three-element airfoil,
a helicopter fuselage and an airplane in landing configuration. It is shown that the
grid generation by means of Chimera is easier and results in less deformed grid cells
compared to the creation of a single grid. Banks et al. [6] present a high-resolution
Godunov method for high-speed multi-material flow including shocks. While the
Chimera technique is utilised to describe complex geometries, also a block structured
adaptive mesh refinement algorithm is used to capture fine flow structures such as
shocks and material interfaces. A method to efficiently parallelize complex three-
dimensional flow problems, which include overlapping grids and an adaptive mesh
refinement is presented by Henshaw et al. [45]. Several applications of an overset-
adaptive grid method used to compute compressible flow around complex geometries
are given by Matsuno et al. [70]. Banks et al. [5] introduce a flux-corrected trans-
port algorithm for high-speed flows on structured overlapping Chimera grids. The
latter are required to represent complex geometries as well as ensure an appropri-
ate mesh regularity. The approach is successfully tested and validated upon several
testcases such as a shock impingement on a stationary cylinder and irregular Mach
reflection on an inclined ramp. A theoretical investigation and two applications of a
high-order overlapping grid method that allows to couple cartesian and curvilinear
grids are performed by Desquesnes et al. [25]. The method is based on Lagrange
interpolation polynomials and is successfully validated upon the simulation of noise
generated by vortex shedding behind a cylinder and of a three-element high-lift air-
foil. Henshaw et al. [43] give a robust numerical method to solve the reactive Euler
equations, which allows to consider high-speed reactive flows including generation,
propagation and failure of detonation waves. Overset grids and a block structured
adaptive mesh refinement are used to represent the complex geometry and locally
increase the resolution in the thin reaction part of the domain. Tang et al. [118]
employ overset grids to discretise highly complex geometries for three-dimensional
unsteady incompressible flows. Also a new interface algorithm that simplifies data
exchange between neighboring Chimera grids and that guarantees global mass con-
servation is introduced.
In the next five papers overset grids are used to compute flow around complex
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configurations. As both the wing-body-aileron-spoiler configurations examined by
Mertins et al. [78] and the satellite launcher configuration used by Basso et al.
[7] are highly sophisticated, the generation of adequate single grids seems almost
impossible. Therefore in both papers a Chimera approach is used to account for
the complex geometries. The resulting numerical outcomes agree well with experi-
mental data. The time-dependent Maxwell’s equations in a complex geometry are
solved using a high-order accurate parallel solver by means of overlapping grids by
Henshaw [42]. The interface between materials with different electric and magnetic
properties are accounted for by using Chimera grids that align with the interface.
Liao et al. [68] generate block structured Chimera grids to compute the flow around
sophisticated three-element airfoils and wing-body configurations. Numerical simu-
lations of high-lift multi-element airfoils are presented by Rogers [94]. The Chimera
technique is here utilised to simplify the grid generation of a three-element airfoil,
which is either in takeoff or landing configuration. Simonsen et al. [102] simulate
manoevers of the tanker ”Esso Osaka”, where overset grids are used to simplify the
grid generation and the realisation of a grid convergence study.

Movement of bodies or flow entities

As mentioned earlier, the Chimera technique is less frequently used to move bodies
or flow entities relative to each other. While this task is mostly performed by
translating or rotating Chimera grids, in the last two mentioned sources the positions
of all Chimera grids remain unchanged throughout the complete simulation.
Dietz et al. [26] conserve and transport tip vortices of a helicopter main rotor by
means of moving vortex-adapted overset grids that lie embedded within a back-
ground grid containing the helicopter. The Chimera technique is used to simulate
the separation of the Apollo Launch Escape Vehicle from a rocket booster by Pandya
et al. [85]. An overview of the development of overset grid technologies at NASA
Ames Research Center to model complex geometries and simulate multiple bodies
in relative motion is presented by Chan [18]. Henshaw et al. [44] utilise overset grids
in combination with adaptive mesh refinement to solve the chemical reactive and
non-reactive Euler equations to model high-speed flow. This approach is required
because the geometry evolves in time and also fine-scale structures such as shocks
and detonations can occur. The four main possibilites to simulate flow around
moving bodies - the ”sliding mesh” technique, the ”fictitious domain” method, the
”arbitrary-Lagrangian-Eulerian” technique and the Chimera approach - are illus-
trated and compared by Houzeau et al. [54]. In Section 4.2 of this thesis these
alternatives are examined in more detail. Togashi et al. [119] perform a simulation
of a rocket booster separation from a supersonic airplane using overset grids. An
unstructured grid representing the rocket booster is hereby moved in time relative
to a stationary airplane grid. Zhang et al. [134] introduce and apply a pressure-
correction method to compute the incompressible flow around rotating circular and
elliptic cylinders. The rotation is realised by moving a Chimera grid containing the
body relative to a steady unstructured background grid. A method to parallely
solve large aerodynamic problems containing Chimera grids to track moving objects
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is presented by Prewitt et al. [88]. The approach is successfully validated upon a
complex testcase, in which three bombs are released from an airfoil. Pahlke et al.
[84] perform Chimera computations of multibladed helicopter rotors in high-speed
forward flight by the DLR codes S4 and FLOWer. To simulate the circular rotor
movement, four grids that each contain one of the four blades are embedded and
rotated within a cartesian background grid. Numerical simulations of flows around
helicopters at DLR and ONERA are shown by Sides et al. [101]. While the ONERA
method uses a deforming grid strategy to accomplish the rotational movement of the
blades, the DLR approach is realised by overset blade grids that are moved relative
to a background grid. Both approaches provide comparably good results compared
to experimental data. Sitaraman et al. [103] introduce a module to support overset
grid assembly to perform time-dependent and adaptive moving body simulations of
external aerodynamic flows. The approach is validated upon a testcase of a three-
element airfoil, where the full retraction of both slat and flap is realised by means
of the Chimera technique. Hariharan [41] captures and transports the tip vortex of
a NACA 0015 airfoil within the wing wake. To resolve the vortex both high-order
accurate spatial discretisations and a wing grid - vortex grid overset system are used.
The fine vortex grid, which extends 18 chord lengths behind the airfoil, is required
because the use of structured grids prohibits a grid adaptation in the wake region.
It is important to note that - contrary to the simulations in Chapters 7 and 8 of
this thesis - the vortex grid does not move. It therefore has to cover the complete
vortex transport distance, which is highly inefficient.
We want to finish with the mentioning of the paper by Struijs et al. [114], where
a similar experimental setup to the one presented in Chapter 8 of this thesis is
examined. First a wake vortex generating airplane model is used to create a pair
of counter-rotating wing tip vortices, which are transported with the freestream
velocity to the right. The vortices finally interact with a model airplane, which
is approximately half the size of the upstream model. To compare the results of
this experiment, which has been performed in the German-dutch wind tunnel large
low-speed facility (DNW-LFF) with a numerical simulation, the vortices are mod-
elled by simple analytical functions that are used as inflow boundary conditions.
The simulation therefore only consists of a stationary Chimera grid containing the
downstream airplane which lies embedded within a background grid. The results of
the simulation agree comparably well with the experimental data, although the lift
is found to be overestimated. The authors constitute this discrepancy to the use of
an inviscid solver as well as an unphysical vortex dissipation caused by too coarse
grids.

1.3 Structure and main results of the thesis

This subsection provides an overview of the structure of this thesis, which is divided
into two parts: While Chapters 2 - 4 consider mathematical methods, in Chapters
5 - 8 these methods are applied to numerical applications. Also the main results of
this thesis are adressed in Section 1.3.
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Subject of Chapter 2 are numerical methods in the DLR TAU-code. First the math-
ematical model consisting of the governing partial differential equations describing
compressible flow - the compressible Navier-Stokes equations - and the boundary
conditions are introduced. When performing numerical simulations these equations
must be discretised both in space and time, which is examined next. Finally two
convergence acceleration techniques - preconditioning methods and multigrid meth-
ods - are described. Throughout the chapter a testcase of a decaying analytical
vortex at rest is presented several times, where the spatial refinement, the time step
size, the use of low Mach number preconditioning and the application of different
multigrid methods are varied. The aim is to study the effects of choosing different
parameter settings on the vortex dissipation and the convergence rate.
For high Reynolds numbers the compressible Navier-Stokes equations become tur-
bulent. This makes a direct numerical simulation (DNS) of these equations unaf-
fordable in terms of computer resources, because in a DNS all flow scales have to be
resolved, which requires an extremely fine grid and a very small timestep to capture
all small turbulent structures. To avoid this problem, the concept of turbulence
modeling is introduced, which is subject of Chapter 3. The idea lies in performing
a scale separation into small and large scales, which is adressed at the beginning of
this Chapter. Then the following three approaches are possible:

• The compressible Navier-Stokes equations can be averaged, which results in
the Unsteady Reynolds Averaged Navier Stokes (URANS) equations. In this
approach no scales are resolved, but all are modeled by turbulence models.

• The compressible Navier-Stokes equations can be filtered, which leads to the
concept of Large Eddy Simulation (LES). While the large scales are resolved,
the small scales are modeled by a subgrid scale model.

• Hybrid RANS/LES models, which are adressed at the end of Chapter 3, are
a combination of URANS and LES.

As in this thesis only URANS and hybrid RANS/LES models are applied, LES
models are not explicitly adressed in this chapter.
One major component of the simulation method considered in this thesis is the
Chimera technique, which is a sort of domain decomposition (DD) method. In
Chapter 4 first a general introduction into DD methods is provided. The concept
lies in dividing a computational domain into several subdomains and perform the
solution algorithm independently on each part. The solution must then be ade-
quately exchanged at the domain interfaces, where the latter can be overlapping
or non-overlapping. As in this thesis solid objects as well as vortices have to be
transported relative to each other, next the four main alternatives to perform this
task are presented. At the end of this Chapter the implementation of the Chimera
technique in the DLR TAU-code is considered.
In Chapter 5 the three-dimensional flow over a backward facing step is examined
by means of the Spalart-Allmaras Delayed Detached Eddy Simulation (SA-DDES)
model, which is a hybrid RANS/LES turbulence model. As this setup comprises
a large region of small-scale detached flow, this is a standard testcase for hybrid
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RANS/LES models. A grid convergence study is performed, in which three SA-
DDES simulations on a coarse, medium and respectively fine grid are carried out.
The results are compared to experimental data and a steady two-dimensional SA-
RANS computation on the medium grid. One important variable is the skin friction
coefficient, because it determines the reattachment point behind the step. Figure 1.2
(left) shows that both the SA-DDES simulation on the medium and fine grid (indi-
cated by letters ”M” and respectively ”F”) lie in good agreement with experimental
data, while the SA-RANS result and especially the coarse SA-DDES outcome (”C”)
are far from being accurate. Another important question is whether the SA-DDES
model is capable of resolving three-dimensional small-scale structures and which grid
refinement is required to obtain them. It turns out that both the SA-DDES compu-
tations on the medium and on the fine grid result in three-dimensional structures,
while the SA-DDES computation on the coarse grid does not. Figure 1.2 (right),
which shows isosurfaces of the instantaneous Q-criterion at a value of Q = 200 1

s2

based on the fine SA-DDES computation, visualises this observation. In the sec-
ond part of Chapter 5 two sensors are introduced and evaluated for this testcase.
While the first sensor indicates, in which regions the flow tends to become unsteady,
the second sensor shows, if the grid is fine enough to resolve a sufficient amount of
turbulent kinetic energy in the LES-region.

Figure 1.2: Backward facing step testcase in Chapter 5: Skin friction coefficients
of all performed computations and comparison with experimental data (left) and
isosurfaces of the instantaneous Q-criterion at Q = 200 1

s2 based on the fine SA-
DDES computation (right).

In Chapter 6 an HGR01-airfoil in the range of stall is considered. As in this testcase
only a small trailing edge separation occurs, first the reliability of the SA-DDES-
model for the flow at α = 12◦ is tested. When using the standard SA-DDES
model, the RANS-part at the wing does not cover the complete attached boundary
layer, leading to modeled stress depletion and grid induced separation. Therefore a
model modification called SA-DDES16 is performed, which results in a larger RANS-
part. Figure 1.3 (left) shows the resulting RANS-LES distribution and the velocity
streamlines of the SA-DDES16 computation, where ”red” indicates RANS-mode,
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while in the ”blue” area LES-mode is activated. Compared to the boundary layer
thickness, which is indicated by the Mach number in Fig. 1.3 (right), one can see
that only the outer boundary layer part is computed in LES-mode. As a result the
velocity streamlines are almost fully attached, which is desirable. The SA-DDES16

model is applied to the whole range of stall angles at α = 12◦−16◦ and the results are
compared both to steady two-dimensional SA-RANS simulations and experimental
data.

Figure 1.3: HGR01 testcase in Chapter 6: RANS-LES distribution and velocity
streamlines (left) and boundary layer thickness indicated by Mach number (right).
Both pictures are based on the SA-DDES16 model at α = 12◦.

Figure 1.4: HGR01 testcase in Chapter 6: Lift coefficients (left) and isosurfaces of
the instantaneous Q-criterion at Q=10−5 1

s2 of SA-DDES16 computation at α = 12◦

(right).

Figure 1.4 (left), which shows the lift coefficient of both models and of the experi-
mental data, reveals that both models behave similar and clearly overestimate Cl.
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As in this testcase the separation region is relatively small, no three-dimensional
turbulent structures can be obtained. This is indicated in Fig. 1.4 (right), in which
isosurfaces of the instantaneous Q-criterion at Q=10−5 1

s2 based on the SA-DDES16

simulation at α = 12◦ can be seen.
In Chapter 7 vortex transports and vortex-airfoil interactions are simulated by means
of two-dimensional URANS computations. In all examples first one or more analyt-
ically defined vortices are interpolated onto a fine cartesian vortex transport grid,
which is then moved relative to a background grid by means of the Chimera tech-
nique. In the first example it is tested, if a single vortex can be transported over a
large distance when both a fine vortex transport grid and a fine background grid are
combined. In the second and third example it is examined whether the vortex dissi-
pation significantly increases, if a coarse background is used and when not one but
three vortices are transported. Only the fourth and fifth example contain a vortex-
airfoil interaction, where a vortex collides with a NACA 0012 airfoil at α = 0◦ and
an ONERA-A airfoil at α = 13.3◦, respectively. Figure 1.5 (left) shows the local
velocity (defined as the absolute value of the velocity relative to the freestream ve-
locity) of the vortex and around the airfoil before the vortex-airfoil interaction of the
ONERA-A testcase. Also the boundary of the vortex transport grid is displayed.
One can see in Fig. 1.5 (right) that the subsequent vortex-airfoil interaction has
a massive effect on Cl, Cd and Cm. The immense breakdown in Cl indicates wing
stall.

Figure 1.5: ONERA-A testcase in Chapter 7: Vortex transport grid and local ve-
locity before vortex-airfoil interaction (left) and effect of vortex interaction on Cl,
Cd and Cm (right).

Applications of the complete simulation method introduced at the end of Section 1.1
are given in Chapter 8. While a NACA 0021 airfoil is used to generate the vortex,
the latter eventually interacts with a two-element FNG airfoil at α = 10◦, which
is close to stall. Beforehand, stationary two-dimensional RANS simulations of the
FNG airfoil at undisturbed onflow conditions are shown, where both the effect of
the turbulence model and the angle of attack resulting in stall are examined. Also
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a grid convergence study is performed. In Section 8.2 four two-dimensional URANS
simulations of vortex generation, vortex transport and vortex-FNG interaction by
means of the simulation method are presented. Both the effect of varying the tur-
bulence model and the use of a small or alternatively large airfoil-to-airfoil distance
is analysed. While it turns out that in the two ”small distance” computations the
breakdown in Cl caused by the vortex interaction is significantly larger than in the
two ”large distance” simulations, in neither case stall occurs. The two turbulence
models result in qualitatively similar results. The last two Subsections each contain
a three-dimensional application of the simulation model, where an SA-URANS and
alternatively SA-DDES model are used to perform a ”small distance” computation,
respectively. Figure 1.6 (left), which is based on the SA-DDES result, shows the
three-dimensional setup before the vortex-airfoil interaction. Also the isosurfaces
of the vorticy at a value of 100, which are additionally colored by the Mach num-
ber, are shown. One can identify the vortex located on the cuboid vortex transport
grid. Figure 1.6 (right) displays the isosurfaces of the Q-criterion at a value of
100 1

s2 during the vortex-airfoil interaction at the trailing edge of the FNG airfoil.
While a large separation region containing three-dimensional turbulent structures
has evolved, it remains unclear whether this is due to the vortex interaction. As
in the two-dimensional testcases of Section 8.2 and in the three-dimensional SA-
URANS simulation, no stall caused by the vortex-airfoil interaction can be verified.

Figure 1.6: SA-DDES testcase in Chapter 8: Isosurfaces of the vorticity at a value of
100 (colored with Mach number) before vortex-airfoil interaction (left) and isosur-
faces of the instantaneous Q-criterion at a value of 100 1

s2 (colored with y-velocity)
during vortex-airfoil interaction (right).

At the end of this thesis a summary of the results and open questions for future
work are provided in Chapter 9.

1.4 New aspects of the thesis

At this point we want to compare the topics covered by the literature introduced
in Section 1.2 with the methods and results shown in this thesis. The aim is to
determine, what has been done before in a similar way and what is truly new.
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Regarding Chapter 5 it is stated that similar SA-DDES results of the flow over a
backward facing as the ones shown in Section 5.2 are manifold in literature; see for
example the paper by Spalart et al. [109]. Turning to Section 5.3 it can be said that
the idea to use the von Kármán length scale as sensor to detect flow instationarities
is similarly applied in the SST-SAS turbulence model introduced by Menter et al.
[76]. The second sensor Indicator has been introduced and tested by Knopp et al.
[64]. Overall, no truly new content can be found in Chapter 5.
In Chapter 6 some new aspects are present. While DES models have been applied
before to simulate flow around airfoils at stall (see for example the papers by Spalart
et al. [107, 109]), we are not aware of any sources in literature adressing the observed
problems of the standard SA-DDES model. Also the proposed modified SA-DDES16

model is a new approach, although this modification is admittedly rather an ad-hoc
fix, which can not expected to be valid in general. The results, the observed problems
of the standard SA-DDES model and the model modification applied within this
testcase have been published in [89].
Almost all results shown in Chapters 7 and 8 are based on truly new approaches. To
the authors’s knowledge no comparable simulation method to generate and transport
realistic vortices and to model their interaction with solid bodies has been introduced
and applied in literature yet. Also the combination of the simulation method and
a hybrid RANS/LES model, which is performed in Section 8.4, has not been done
before.



Part I

Mathematical methods
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Chapter 2

Numerical methods in the DLR
TAU-code

This chapter considers the numerical methods of the DLR TAU-code [98], which is a
compressible flow solver based on the finite volume method for the three-dimensional
flow equations in integral form. Besides a variety of one- and two-equation turbu-
lence models to solve the Reynolds Averaged Navier-Stokes (RANS) equations, also
Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) can be applied.
As all flow variables are stored at the cell vertices (or respectively at the cell cen-
ters with respect to the dual grid cells) the code is independent of the type of grid
cells, which allows the use of unstructured, structured or hybrid grids. For the dis-
cretization of the convective fluxes, several upwind or central discretization methods
are available. Multigrid methods and preconditioning can be used for convergence
acceleration.

2.1 The mathematical model for compressible flow

The mathematical model for compressible flow consists of the governing equations,
which are valid in the interior of a domain Ω, and boundary conditions that have to
be fullfilled at the boundary of Ω. We begin by considering the governing equations.

2.1.1 The compressible Navier-Stokes equations

The starting point are the compressible Navier-Stokes equations, which can be writ-
ten in conservative form as follows. Note, that we use the Einstein notation, in
which a summation is performed, if two indices are identical in an expression.

Definition 2.1.1 (Compressible Navier-Stokes equations)
For a bounded domain Ω ⊂ R3 and time t ∈ (0, τ) we seek density ρ(x, t), velocity
~u(x, t), and temperature T (x, t) such that:

∂

∂t
ρ+

∂

∂xi

(ρui) = 0 (2.1)
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∂

∂t
(ρui) +

∂

∂xj

(ρujui) = − ∂
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p+
∂
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tji (2.2)

∂
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∂xj

[
ρuj

(
h+

1

2
uiui

)]
=

∂

∂xj

(uitij) −
∂

∂xj

qj (2.3)

Equations (2.1), (2.2) and (2.3) are the continuity equation, momentum equation
and energy equation.
For a Newtonian fluid the viscous stress tensor is given by:

tij = 2µSij −
2

3
µ
∂uk

∂xk

δij , (2.4)

where µ is the molecular viscosity, δij denotes the Kronecker delta and the strain-rate
tensor Sij is given by:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
− 1

3

∂uk

∂xk

(2.5)

p(ρ, T ) denotes the pressure and E(x, t) is the energy density defined by:

E = ρ

(
e+

1

2
uiui

)
(2.6)

We are assuming that the fluid is calorically perfect, meaning that its specific-heat
coefficients are constant, such that the specific internal energy e and the specific
enthalpy h are given by:

e = cvT and h = cpT = e+
p

ρ
, (2.7)

where cv and cp are the specific-heat coefficients for constant volume and pressure
processes, respectively.
Using Fourier’s law, the heat flux qj can be written as:

qj = −κ ∂

∂xj

T (2.8)

where κ is the thermal conductivity.
To close Eqs. (2.1) – (2.3), we also need an equation of state, which is typically the
perfect gas law:

p = ρRT (2.9)

where R = cp − cv is the perfect gas constant.

2.1.2 Boundary conditions

This part considers boundary conditions that have to be fullfilled at the boundary
∂Ω of domain Ω. Note, that we focus on those conditions that are actually used in
part II of this thesis. As the boundary condition within the Chimera technique will
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be explained in Section 4.3, we will not consider it at this point. Besides the ones
shown here, a variety of additional boundary conditions to choose from is available
in the DLR TAU-code As the exact definition of each boundary conditions varies
for different turbulence models, the description provided here is far from complete
and should rather be seen as an overview.

Viscous wall

We want to start with the viscous wall condition, which is applied at the boundary
of a solid body or a wall, where both viscous and inviscid effects are accounted
for. For temperature and density the adiabatic wall condition is chosen. Overall,
the following conditions for velocity, density and temperature are prescribed when
choosing the viscous wall condition:

~u = 0, (~∇T )·~n = 0, (~∇ρ)·~n = 0

Inviscid/Euler wall

When utilising the inviscid/Euler wall condition, only the inviscid parts are con-
sidered, while all viscous effects are neglected. This condition is achieved by setting:

~u·~n = 0, (~∇T )·~n = 0, (~∇ρ)·~n = 0

Farfield

The farfield condition (see [126]) should be used in the case of undisturbed onflow.
Here one has to distinguish between the inflow part and the outflow part. According
to the theory of characteristics for hyperbolic partial differential equations, four
variables have to be specified at the inflow boundary and the remaining variable
has to be taken from the first inner field point. At the outflow boundary it is the
other way around. To illustrate this, we consider Fig. 2.1, which shows a simple
computational domain. For simplicity we assume a flow direction from left to right
and set ~u·~n = 0 both at the upper and lower boundary C and D. When choosing
the farfield condition at boundary A and B, then A belongs to the inflow part,
wheras B corresponds to the outflow part.
At the inflow plane A we prescribe:

~u = ~u∞, T = T∞

and ρ gets a value extrapolated from the first inner grid point of the domain.
At the outflow plane B we set:

ρ = ρ∞

and both ~u and T get values extrapolated from the first inner grid point of the
domain.
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Figure 2.1: Simple computational domain. For simplicity we consider a flow direc-
tion from left to right and prescribe ~u·~n = 0 at C and D.

Dirichlet

The Dirichlet condition can be used at the inflow to prescribe user-defined flow
variables ~uu and Tu. Analogous to the farfield condition, the Dirichlet condition
(and also the following subsonic outflow condition) is based on the theory of char-
acteristics, which implies that four variables must be set and one is be taken from
the interior of the domain. The prescribed values, which have to be obtained from
experimental data, may vary along the boundary but should be constant in time.
Within this thesis the Dirichlet condition is used for the backward facing step com-
putations shown in Chapter 5 to guarantee a correct boundary layer thickness at
the step.
If in Fig. 2.1 the Dirichlet condition is chosen at the inflow plane A, then the
following must be specified:

~u = ~uu, T = Tu

and ρ is extrapolated from the interior of the domain.

Subsonic outflow

When using the Dirichlet boundary condition at the inflow, the subsonic outflow
condition should be used at the outflow.
Referring to Fig. 2.1, this is realised by setting

ρ = ρu

at all points of plane B. ~u and T are extrapolated from the interior of the domain. ρu

is a user-prescribed density, which can vary for each grid point along the boundary
but is constant in time. Within the unsteady backward facing step computations
ρu was taken from the result of a previously performed steady computation.

Symmetry planes

When using the symmetry plane condition, all fluxes in wall-normal direction are
zero, i. e.

~u·~n = 0, ρ·~n = 0, T ·~n = 0, (~∇T )·~n = 0, (~∇ρ)·~n = 0
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Periodic planes

Using the periodic plane condition is only possible for two (axis or point) sym-
metric boundary planes simultaneously. The principle is illustrated in Fig. 2.2: If
the periodic plane condition is applied for boundaries A and B, artifical planes A−1

and B−1 are introduced. All primitive variables and gradients at A−1 are copied
from plane B1, which is the first inner plane left of plane B. Similarily the values
from plane A1 are copied to the new plane B−1. By performing this procedure the
original boundary planes A and B must not be treated as boundaries anymore, but
can be considered as part of the interior of the domain.

Figure 2.2: Simple computational domain to illustrate the principle of the periodic
plane condition.

A global existence result of the Navier-Stokes-Fourier system
Having introduced the model, we want to state an important existing result that
has been published by Feireisl et al. [31] in 2009. The existence of a weak solution
globally in time for the Navier-Stokes-Fourier system was proven. While the theorem
and complete proof can be found in [31] (theorem 3.1 on p. 50 ff.), we present the
theorem in Appendix A. As the Navier-Stokes-Fourier system is a generalisation of
the compressible Navier-Stokes equations defined in Eqs. (2.1) – (2.3) (this is shown
in Appendix A), this existence result is also valid for the system of equations used
in the DLR TAU-code.

2.2 Spatial discretisation

The next step to perform numerical simulations lies in discretising Eqs. (2.1)-(2.3)
both in space and in time. We first consider the spatial discretisation.

2.2.1 Primary grid and dual grid

First a suitable discretisation of the computational domain Ω is needed, the so–called
primary grid. It consists of a set of n grid points xi (i = 0, ..., n− 1). The primary
grids of the DLR TAU-code can contain four different types of volume elements:
tetrahedrons, pyramids, prisms and hexahedrons. These are obtained by connecting
the grid points xi by means of faces, such that the unification of all elements form
a non-overlapping decomposition of Ω.
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Figure 2.3 shows a two-dimensional sketch of a primary grid consisting of triangles,
which are the analogon to tetrahedrons in two dimensions. The faces are indicated
by solid lines. Equations (2.1) – (2.3) are then solved on the so-called dual grid,
which is established during the preprocessing routine of the DLR TAU-code. By
connecting the center points of the cells of the primary grid, one obtains the dual
grid consisting of dual cells (or control volumes) Vi around grid point xi of the
primary grid. The shape of two dual cells V0 and V1 around grid points x0 and x1

are indicated by dashed lines in Figure 2.3.

X X

V V

0 1

10

Figure 2.3: Two-dimensional sketch of primary grid cells (solid lines) and the cor-
responding dual grid cells (dashed lines).

Figure 2.4 shows a larger cutout of a primary grid (red lines) and the correspond-
ing dual grid (grey lines). By using the primary and the corresponding dual grid,
geometries of unrestricted complexity can by discretised.

Figure 2.4: Primary grid (red lines) and corresponding dual grid (grey lines).

2.2.2 Upwind scheme

Equations (2.1)–(2.3) can now be discretised in space on the dual grid. Depending
on the order of the discretisation this is realised by an upwind scheme or a central
scheme. Note, that for simplicity both schemes are only explained for cartesian
grids. To illustrate the principle of upwind schemes, we consider the continuity
equation (2.1), where the indices are omitted for better readability:
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∂

∂t
ρ+

∂

∂x
(ρu) = 0

If the velocity u is regarded constant, Eq. (2.1) becomes a linear convection equation,
which describes the transport of mass ρ by a flow of velocity u:

∂

∂t
ρ+ u

∂

∂x
ρ = 0 or abbreviated : ρt + uρx = 0 (2.10)

Now let Vi be the control volume around grid point xi. Then ρi is given by:

ρi =
1

|Vi|

∫

Vi

ρ dV (2.11)

When now applying a backward (or upwind) differencing scheme in space, one ob-
tains the following first order upwind scheme for Vi:

∂

∂t
ρi = − u

∆x
(ρi − ρi−1) (2.12)

This procedure is valid, if u > 0 and constant.
Note, that the upwind scheme is not applied in the examples shown in part II of
this thesis, because the central scheme is much more accurate.

2.2.3 Central scheme with artificial dissipation

While the upwind scheme is a spatial discretisation of first order, the central scheme
[71] includes a second order spatial discretisation. We again start with Eq. (2.10).
When now applying a second order difference formula for the spatial derivative on
Vi, one obtains the following second-order central scheme in space:

∂

∂t
ρi = − u

2∆x
(ρi+1 − ρi−1) (2.13)

For the momentum equation (2.2) and energy equation (2.3) the spatial discretisa-
tion can be done similarly either with an upwind scheme or a central scheme.

Artificial dissipation

Unfortunately the just described central scheme leads to unphysical oscillations and
hereby makes the scheme numerically unstable. Therefore a modification is required,
which lies in adding an additional term to the flow equations, the so-called artif-
ical dissipation [116]. To illustrate this procedure, consider the one-dimensional
compressible Navier-Stokes equations (2.1)–(2.3) in semi-discrete form:

∂

∂t
~wj + L~wj = 0, (2.14)
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where

~wj =
1

|Vj|

∫

Vj

~W dV, ~W =




ρ
ρu
E


 (2.15)

~wj denotes the averaged conservative variables at the dual cell Vj . The spatial
discretisation operator L can be split into:

L = LC + LD + LAD (2.16)

where the indices stand for ”convection”, ”diffusion” and ”artificial dissipation”.
If the spatial dicretisation is performed by an upwind scheme, LAD ≡ 0. In the
case of a central scheme, one has to choose between scalar dissipation and matrix
dissipation. The first one is numerically more stable, while the latter results in more
accurate results.

Scalar dissipation

In the scalar dissipation scheme (see [59]) LAD is given by:

LAD ~wj = −(D2 −D4)~wj , (2.17)

where
D2 ~wj = ∇[(λj+ 1

2
ǫ
(2)

j+ 1
2

)△]~wj (2.18)

D4 ~wj = ∇[(λj+ 1
2
ǫ
(4)

j+ 1
2

)△∇△]~wj (2.19)

Here ∇ and △ denote the forward- and backward differencing operator, respectively.
λj+ 1

2
is given by

λj+ 1
2

=
1

2
[λj + λj+1], (2.20)

where λj = uj + a with speed of sound a. The coefficients ǫ
(2)

j+ 1
2

and ǫ
(4)

j+ 1
2

contain a

pressure-based sensor for large gradients:

ǫ
(2)

j+ 1
2

= κ(2)max(νj−1, νj , νj+1, νj+2), (2.21)

where

νj =

∣∣∣∣
pj−1 − 2pj + pj+1

pj−1 + 2pj + pj+1

∣∣∣∣ (2.22)

ǫ
(4)

j+ 1
2

= max
[
0, κ(4) − ǫ

(2)

j+ 1
2

]
(2.23)

κ(2) and κ(4) are constants, which must be suitably chosen. Standard values are
κ(2) = 1

2
and κ(4) = 1

64
.

The sensor ν in Eq. (2.22) works as follows: In regions of smooth flow the pressure

gradient is near zero, making ν small. This results in ǫ
(4)

j+ 1
2

being much larger than
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ǫ
(2)

j+ 1
2

(unless κ(4) is chosen very small, which is not advisory). Overall the linear

fourth order dissipation term D4 dominates the operator LAD, which results in a
damping of high frequencies that are not damped by the original unmodified central
scheme. This behaviour of LAD is helpful for achieving a steady state solution.
Contrarily ν becomes large in regions of shocks, resulting in a dominant position of
D2. This is necessary to introduce an entropy condition to reduce overshoots near
discontinuities and to choose the correct shock relationships.

Matrix dissipation

When using matrix dissipation, the scalar values λi in Eq. (2.20) are replaced by
the matrix

A = diag(|λ(1)
i |, |λ(2)

i |, |λ(3)
i |), λ

(1)
i = ui − a, λ

(2)
i = ui, λ

(3)
i = ui + a, (2.24)

The scalar λj+ 1
2

in Eqs. (2.18) and (2.19) hereby also becomes a matrix.

2.2.4 Testcase in space and with varying dissipation type

In order to compare scalar and matrix dissipation when applying the central scheme,
a numerical testcase has been performed. We consider the decay over time of a
two-dimensional vortex resting in the center of the computational domain. At the
same time these simulations can be regarded as preliminary investigations for the
simulations shown in Chapter 7 of this thesis.

Derivation of the finite vortex

First we require an initial analytical vortex that is only defined on a finite domain
is required. As all analytical vortices found in literature [32] spread infinitely wide
in space, first the derivation of such a finite vortex is presented.
We start with the potential vortex, which is one of the simplest structured ones.
Its tangential velocity vφ is defined by:

vφ = Γ0

2·Π·r
(2.25)

where Γ0 describes the constant circulation of the vortex and r is its radius.
Unfortunately, the potential vortex is highly unphysical because of two reasons:
Firstly, vφ becomes unbounded as r tends to zero. Secondly, the vortex ranges
infinitely wide, which can - due to dissipation - not be expected in reality.
One idea to overcome the first problem is to split the vortex into two zones, which is
done by introducing a core radius rc. While for r > rc the formular of the potential
vortex remains unchanged, the fluid is supposed to rotate as a solid body if r ≤ rc.
The result is the so-called Rankine vortex:

vφ = Γ0·r
2·Π·r2

c
if r < rc

vφ = Γ0

2·Π·r
if rc ≤ r

(2.26)
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The Lamb-Oseen vortex [30] goes one step further. Not only the first unphysical
behaviour of the potential vortex is corrected, but also the second one is adressed.
This is achieved by multiplying the formular of the potential vortex with a function
β, which both bounds the values of vφ in the center of the vortex and at the same
time damps the tangential velocity, if the radius becomes large. Choosing β =
(1 − exp(−r2

r2
c
)) turns out to be appropriate for these purposes. The result looks

therefore as follows:
vφ = Γ0

2·Π·r
· β (2.27)

Despite all efforts, the Lamb-Oseen vortex still spreads infinitely wide in space.
In order to overcome this remaining obstacle, we introduce a new vortex model,
which uses the ideas of all three models shown above. As this vortex only covers
a finite area, we call it the finite vortex from this point on. It consists of four
zones, which are defined by choosing a core radius rc, a medium radius rm and an
outer radius ro. While the finite vortex consists of a Rankine vortex in the two
inner zones, the principle of the Lamb-Oseen vortex is applied in zone three. As
the original function β damps the values of vφ too slowly for increasing radius, we
replace it by a function β∗, that meets our demands better. In zone four the values
of vφ are prescribed as zero, which finally results in a vortex of finite size. The
complete finite vortex looks herewith:

Definition 2.2.1 (Finite vortex)
Choose core radius rc, middle radius rm, outer radius ro, circulation Γ0 and decay

constant δ and let β = e−
(r−rm)2

δ . Then the corresponding finite vortex is defined by:

zone 1 : vφ = Γ0·r
2·Π·r2

c
if r < rc

zone 2 : vφ = Γ0

2·Π·r
if rc ≤ r < rm

zone 3 : vφ = Γ0

2·Π·r
· β if rm ≤ r < ro

zone 4 : vφ = 0 if ro ≤ r

Performance of the testcase

Having derived the finite vortex, the simulation to compare scalar and matrix dis-
sipation can be described as follows: First a single finite vortex is initialised in the
center of a structured quadratic grid. The size of the computational domain equals
100m×100m. We consider four differents cartesian grids, which contain 512, 1012,
2012 and 3012 grid points. The grids are adapted both along the x- and the z-axis
around the origin. Figure 2.5 shows the grid containing 2012 grid points.
A time step size of ∆t = 10−2 s is chosen. The finite vortex is defined by the
properties Γ0 = 60, rc = 2m, rm = 4m, ro = 10m, δ = 10m2 and its center is located
at (x, z) = (0m, 0m). As v∞ is prescribed as zero, the vortex rests in the center of
the grid throughout the whole computation, which is performed until 10s of physical
time have elapsed.
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Figure 2.5: Structured adapted grid containing 2012 points.

Figure 2.6: Tangential velocity at t=0s (left) and t=10s (right) on the grid containing
2012 points.

Figure 2.6 (left) shows vφ at t = 0s on a cutout of the computational domain. This
is the result of the computation on the grid containing 2012 points. One can clearly
identify the core radius at r = 2m, where vφ reaches its peak. Figure 2.6 (right)
shows the same cutout at t = 10s. Size and magnitude of the vortex remain almost
unchanged.
Figures 2.7-2.10 show vφ at times t = 0s, 1s, 3s and 10s on the various grids, where
only the values at (x, z) ∈ [0m, 10m] × {0m} are displayed. While on the left hand
sides the results obtained by applying scalar dissipation are shown, the right hand
sides illustrate the decay of vφ when using matrix dissipation.
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Figure 2.7: Decay of tangential velocity using scalar dissipation (left) and matrix
dissipation (right) on the grid containing 512 points.

Figure 2.8: Decay of tangential velocity using scalar dissipation (left) and matrix
dissipation (right) on the grid containing 1012 points.

Figure 2.9: Decay of tangential velocity using scalar dissipation (left) and matrix
dissipation (right) on the grid containing 2012 points.
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Figure 2.10: Decay of tangential velocity using scalar dissipation (left) and matrix
dissipation (right) on the grid containing 3012 points.

The following two conclusions can be made:

• As expected the vortex sustains the longer the finer the grid is chosen. While
the two coarsest grids result in rapid vortex dissipation, the grid containing
2012 points seems to be sufficently fine.

• Matrix dissipation is superior to scalar dissipation. While the differences are
not as obvious as the ones due to the choice of different grids, they are still
clearly visible.

To sum it up, the result obtained by matrix dissipation on the grid containing
2012 grid points seems to be the most convincing one regarding the trade-off of an
adequate vortex preservation and numerical costs.

2.3 Time discretisation

Having successfully completed the spatial discretisation within one physical time
step, one is left with a system of coupled ordinary differential equations of the form

∂

∂t

~wi + ~R( ~wi) = 0 (2.28)

The residual ~R( ~wi) contains all terms arising due to the spatial discretisation and
~wi is given in Eq. (2.15), where the extension of the definition to three dimensions
is canonically.
In the case of steady state problems ∂

∂t
~wi = 0 and Eq. (2.28) becomes:

~R( ~wi) = 0 (2.29)

This problem is then solved by considering the corresponding time-dependent prob-
lem with fictious pseudo time t∗ and seek its steady-state solution:

∂

∂∗t
~wi + ~R( ~wi) = 0 (2.30)
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In the case of time-accurate computations, one can choose between global and dual
time stepping.

2.3.1 Dual time stepping

When using dual time stepping a backward difference formula (BDF) is applied to
Eq. (2.28). In the DLR TAU-code this BDF can be chosen of order one, two or
three. The second order BDF is given by:

3

2∆t
~wi

n+1 − 4

2∆t
~wi

n +
1

2∆t
~wi

n−1 + ~R( ~wi
n+1) = 0 (2.31)

Here ~wi
ν denotes the solution at time tν on dual cell Vi. n+1 denotes the current

time level and n and n-1 the two previous levels. For each time step the nonlinear
steady-state problem from Eq. (2.31) is solved by using the following dual-time
stepping (DTS) scheme for pseudo time t∗:

∂
∂∗

t

~wn+1
i + ~RDTS( ~wi

n+1) = 0,

~RDTS( ~wi
ν) = ~R( ~wi

ν) + 3
2∆t

~wi
ν − 4

2∆t
~wi

n + 1
2∆t

~wi
n−1

(2.32)

One possibility of solving Eq. (2.30) or Eq. (2.32) lies in applying the following
k-step low storage Runge-Kutta scheme [57, 59]:

~wi
(0) = ~wi

n

~wi
(1) = ~wi

(0) − α1 ∆t ~R( ~wi
(0))

...

~wi
(k) = ~wi

(0) − αk ∆t ~R( ~wi
(k−1))

~wi
n+1 = ~wi

(k)

(2.33)

where α1, . . . , αk are the Runge-Kutta coefficients.
Alternatively a lower-upper symmetric Gauss-Seidel (LUSGS, [28, 60]) scheme can
be used to solve Eq. (2.30) or Eq. (2.32). By means of the generalized trapezoid
scheme one obtains the following A-stable scheme, which is first order accurate for
β = 1 and second order accurate for β = 0.5:

~wi
n+1 − ~wi

n

∆t
= −β ~R( ~wi

n+1) − (1 − β)~R( ~wi
n) (2.34)

Equation (2.34) is then linearised:

~R( ~wi
n+1) = ~R( ~wi

n) + ∂ ~R( ~wi
n)

∂t
∆t + O(∆t2)

= ~R( ~wi
n) +

∑
j∈N(i)

∂ ~R( ~wi
n)

∂ ~wj

∂ ~wj

∂t
∆t + O(∆t2)

(2.35)

where N(i) is the set of grid points in the stencil of ~R( ~wi
n). Furthermore, the

relation
∂ ~wi

∂t
=

~wi
n+1 − ~wi

n

∆t
+O(∆t2) (2.36)
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is used, which altogether results in the following linear system:

∑

j∈N(i)

(
1

∆t
δij + β

∂ ~R( ~wi
n)

∂ ~wj

)
∆ ~wj

n = −~R( ~wi
n) (2.37)

where ∆ ~wj
n = ~wj

n+1 − ~wj
n.

Instead of solving Eq. (2.37) directly, the aim of the LUSGS scheme is to provide

an explicit formula for ∆ ~wj
n. For this purpose the matrix Aij = 1

∆t
δij + β ∂ ~R( ~wi

n)
∂ ~wj

is

approximately factorised by:

A
′

= (L+D)D−1(U +D) ≈ (L+D)D−1(U +D) − LD−1U = A (2.38)

where U,D,L are the block lower triangular, diagonal and upper triagonal parts of
matrix A, respectively. This procedure allows to solve the modified Eq. (2.37) by
two Gauss-Seidel sweeps [72], which is equivalent to two triangular systems solves,
one lower and one upper. The advantage of the LUSGS scheme lies in the fact that
the underlying system matrix needs not to be stored explicitly and hereby reducing
the memory requirements to that of an explicit scheme.
Both in the Runge-Kutta scheme and in the LUSGS scheme the pseudo time step
∆t is determined by the CFL-number.

2.3.2 Global time stepping

In the case of global time stepping the original system (2.28) is solved by applying
the just described Runge-Kutta or LUSGS scheme. The global time step ∆t is then
chosen as the minimum time step of all dual cells. When applying the Runge-Kutta
scheme in combination with global time stepping, the number of Runge-Kutta steps
must be 1 or 2, because a higher number of steps would violate the time accuracy.
Also the multigrid cycle must be set to ”sg” in the DLR TAU-code because multigrid
is not time-accurate in TAU.

2.3.3 Testcase in time

As in global time stepping the chosen minimum time step of all dual cells can become
extremely small, the use of global time stepping is in general to expensive. Therefore
only dual time stepping is used in this testcase and in all computations within in
this thesis.
To investigate the effect of different time step sizes, the same testcase as in Subsec-
tion 2.2.4 has been performed, where all computations are realised on the grid with
2012 grid points and matrix dissipation activated. While in Subsection 2.2.4 a fixed
time step size ∆t = 10−2s was used, now additionally the values ∆t = 10−1s, 10−3s
and 10−4s are tested.
Figures 2.11-2.12 show vφ at times t = 0s, 1s, 3s and 10s using the various time step
sizes, where again only the values at (x, z) ∈ [0m, 10m] × {0m} are shown. As the
computation using a time step size of ∆t = 10−1s crashed after approximately 5s of
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pyhsical time, Fig. 2.11 (left) does not contain a result at t = 10s. Besides that the
simulation shown in Fig. 2.11 (left) turned out to be unstable, also the dissipation
is much larger compared to the other results. While the outcome shown in Fig. 2.11
(right), which is based on ∆t = 10−2s, looks satisfactory, the use of ∆t = 10−3s even
minimes the dissipation slightly more. Comparing the results utilising ∆t = 10−3s
and 10−4s no improvement regarding the vortex preservation can be noticed.
To sum it up, the result obtained by using a time step size of ∆t = 10−2s is advisable
with regard to both minimising vortex dissipation and numerical costs.

Figure 2.11: Decay of tangential velocity using a time step size of ∆t = 10−1s (left)
and 10−2s (right).

Figure 2.12: Decay of tangential velocity using a time step size of ∆t = 10−3s (left)
and 10−4s (right).

2.4 Preconditioning methods

The aim of preconditioning methods (see e.g. [11, 121, 65]) is both to achieve
convergence acceleration and to minimise the numerical dissipation.
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2.4.1 Motivation: The idea of preconditioning methods

To get a basic idea of the principle of these methods, we first consider the following
problem:

Definition 2.4.1 (n× n system of linear equations)
For A ∈ Rn×n and b ∈ Rn find x ∈ Rn such that:

Ax = b

If A is symmetric and positive definite, the condition cond(A) of matrix A is given
by:

cond(A) :=
|λmax|
|λmin|

where λmax and λmin are the largest and respectively smallest eigenvalues of A. If
cond(A) becomes large, problem (2.4.1) is ill posed, meaning that small variations in
A can result in strongly varying solutions of x. As a result problem (2.4.1) cannot
be easily solved numerically because of the naturally involved rounding errors. To
avoid this problem, we instead consider the following equivalent problem to (2.4.1):

Definition 2.4.2 (Preconditioned n× n system of linear equations)
For M, A ∈ Rn×n and b ∈ Rn find x ∈ Rn such that:

MAx = Mb

The goal is then to find a matrix M , such that cond(MA) becomes small. The
perfect choice is obviously M = A−1, resulting in cond(MA) = 1. Unfortunately,
the exact determination of A−1 is too costly for most relevant problems. The aim of
preconditioning methods lies in choosing matrices M that are good approximations
of A−1.

2.4.2 Low Mach number preconditioning

To illustrate the principle of low Mach number preconditioning, consider the three-
dimensional compressible Euler equations in primitive variables w := (p, u1, u2, u3, T ),
which can be written as:

∂w

∂t
+

3∑

i=1

∂f (i)(w)

∂xi

= 0 (2.39)

As the exact definitions of functions f (i) are space-consuming and not strictly re-
quired in this context, they are omitted here. For low Mach numbers system (2.39)
is stiff (i.e. its condition is large), which can be shown by a spectral analysis. As a
result the admissible time step size to compute an approximate steady state solu-
tion of Eqs. (2.39) is extremely small, thus making numerical simulations virtually
impossible.
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Therefore the concept of low Mach number preconditioning is introduced, which is
based on the following idea: We seek a steady state solution w of Eq. (2.39):

3∑

i=1

∂f (i)(w)

∂xi

= 0 (2.40)

Hence, we can multiply the second summand of (2.39) with a matrix valued precon-
ditioner P (w) ∈ R5×5, which aims to reduce the stiffness. Instead of Eqs. (2.39) we
then must solve the following equations:

∂w

∂t
+ P (w)

3∑

i=1

∂f (i)(w)

∂xi

= 0 (2.41)

While several preconditioners can be found in literature, we want to focus on
P (w) := P (α, β, δ, w) ∈ R5×5, which has been introduced in [91] and is a gener-
alization of a large range of preconditioners. α, β, and δ are parameters that have
yet to be specified. P (w) is given by:

P (w) :=




m2g 0 0 0 −m2 γp

T
δ

−αu1g

ρa2 1 0 0 αu1

ρa2
γp

T
δ

−αu2g

ρa2 0 1 0 αu2

ρa2
γp

T
δ

−αu3g

ρa2 0 0 1 αu3

ρa2
γp

T
δ

(γ−1)
γρ

(m2g − 1) 0 0 0 1 − (γ − 1)m2δ



, (2.42)

where

m2 :=
β

a2
and g := 1 + (γ − 1)δ

and γ denotes the ratio of specific heats and a is the speed of sound. As a necessary
condition that P (w) remains nonsingular we prescribe β 6= 0. As the formulation
of a sufficient condition is impossible for most problems, P (w) becoming singular
cannot be prevented in general. Therefore one has to use experience-based ad-hoc
methods.
One can show that the eigenvalues of P (w)∂f(i)(w)

∂xi
(i=1,2,3) are given by:

Λ
(i)
0 = diag

(
ui, ui, ui, µ

(i)
+ , µ

(i)
−

)
(2.43)

where

µ
(i)
+,−(α, β) :=

1

2

(
(1 − α +m2)ui ±

√
(1 − α +m2)2u2

i + 4β

(
1 − u2

i

a2

))

Ideal choices of α and β would result in a clustering of the eigenvalues, i.e.:

|µ(i)
+ (α, β)| ≈ |ui| ≈ |µ(i)

− (α, β)| (i = 1, 2, 3) (2.44)

To satisfy (2.44) the following optimisation problem must be solved:

1

2

3∑

i=1

[(
µ

(i)
+ (α, β) − ui

)2

+
(
µ

(i)
− (α, β) + ui

)2
]

= min
α,β

! (2.45)
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Note that the parameter δ does not occur in (2.44) and (2.45), because it is not part
of the eigenvalues but of the corresponding eigenvectors. As we have six conditions
for only two unknowns and because the eigenvalues depend on the velocities ui, which
are functions of space and time, it is unrealistic to find perfect values of α and β in
reasonable time. Therefore in practice only heuristic parameter approximations are
used, such that the following three conditions are met:

a) For low Mach numbers the parameters α, β and δ should be chosen such that
(2.44) is fullfilled as good as possible.

b) For transonic and supersonic flows the parameters α, β and δ should be chosen
such that the preconditioner P (w) is mostly switched off.

c) To ensure that the preconditioner P (w) is nonsingular and to avoid numerical
instabilities, m2 should be significantly larger than zero, i.e.

m2 =
β

a2
> ε > 0, ε > 0

At the end of Subsection 2.4 the parameter choices in the DLR TAU-Code are given.
As the effect of α in general is hard to predict and also not well understood, α = 0
is prescribed. β is determined by the following formula, which was introduced in
[91]:

β(u) = min
{
max

{
‖u‖2

2, K‖u∞‖2
2

}
, a2
}

(2.46)

where ‖u∞‖2 is the speed of the inflowing fluid. In the supersonic case Eq. (2.46)
results in β = a2, thus precondition is switched off. The parameter K is a cut-off
value that has to be set a-priori such that the numerical scheme does not become
unstable. For most flow problems, K ∈ [1, 4] should be chosen.
Two alternatives for δ are available:

a) δ = 1. While this choice works well for most flows, numerical instabilites can
occur for transonic and supersonic cases.

b) δ := δ(Ma) where

δ(Ma) :=

{
0, Ma2 ≥ 1,
1, Ma2 < 1.

and Ma is the Mach number. While this definition of δ is identical to a) in
the case of subsonic flow, it results in a numerically more stable algorithm for
transonic and supersonic problems.

2.4.3 Testcase with regard to low Mach number precondi-
tioning

To illustrate the effect of low Mach number preconditioning on the dissipation, the
testcase shown in Subsections 2.2.4 and 2.3.3 is performed again.
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While all simulations in Subsections 2.2.4 and 2.3.3 were realised with low Mach
number preconditioning actived, now additionally a simulation with low Mach num-
ber preconditiong deactivated is presented. Based on the best-practice results ob-
tained in Subsections 2.2.4 and 2.3.3, both shown computations are based on a time
step size of ∆t = 10−2s on the grid with 2012 grid points and matrix dissipation
activated.
Figures 2.13 (left) and (right) show that the decay of the tangential velocity is much
faster, if preconditioning is deactivated. Therefore the use of low Mach number
preconditioning is clearly advisable.

Figure 2.13: Decay of tangential velocity with low Mach number preconditioning
actived (left) and deactivated (right).

2.5 Multigrid methods

In multigrid methods the flow solutions are obtained by using a hierarchy of discreti-
sations. The main idea is to accelerate the convergence by correcting the solution
globally by solving a problem on a set of coarse grids. This is achieved by applying
restriction operators (allowing the transfer of solutions and residuals from a fine
grid to the next coarser grid), prolongation operators (transfer from a coarse grid
to the next finer grid) and smoothing operators (which perform a smoothing of the
residuals and corrections to improve convergence).

2.5.1 Motivation: Correction scheme for linear problems

As a motivation for the multigrid scheme for nonlinear problems used in the DLR
TAU-code (the so–called full approximation scheme), the well-known multigrid scheme
for linear problems referred to as correction scheme (see [13, 63]) is introduced first.
Consider the linear problem

L w = f (2.47)

We introduce the following notation: Solving (2.47) on grid level k is written as

Lk wk = fk (2.48)
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We seek w1 s.t. on the finest grid level 1

L1w1 = f 1 (2.49)

Next restriction and prolongation operators have to be specified. The restriction
operator Ik+1

k restricts a solution on level k to the next coarser level k + 1. The
prolongation operator Ik

k+1 prolongates a solution from level k + 1 to the next finer
level k.
On each coarse grid level k > 1 and given an approximation w̃k−1 from the next
finer level, we seek the correction ck s.t.

Lk(Ik
k−1w̃

k−1 + ck) = fk ⇔ Lk ck = rk ≡ Ik
k−1(f

k−1 − Lk−1w̃k−1) (2.50)

where the approximation w̃k−1 is from the next finer level and the linearity of L
is used. After having solved Eq. (2.50), ck is used as correction to obtain a new
fine-grid solution

wk−1 = w̃k−1 + Ik−1
k ck (2.51)

When performingN relaxation smoothing steps on level k, starting with wk
0 and with

right hand side term being fk, we write JN(wk
0 , f

k). Additionally, wk
N = JN(wk

0 , f
k)

indicates the smoothed solution.
The correction scheme then reads

INPUT: wk
0

OUTPUT: MGC(k, wk
0 , f

k) is defined by the recursion

IF k = IC THEN

(1) Determine (exact) solution ck of Lkck = fk

(2) RETURN ck

ELSE

(1) Initial guess : wk
0 = 0

(2) Perform N1 relaxation/smoothing steps : wk
a = JN1(w

k
0 , f

k)

(3) DO Recursion : Compute correction on next coarser grid
ck+1 = MGC(k + 1, wk+1

0 , Ik+1
k (fk − Lkwk

a)).

(4) Correction : wk
b = wk

a + Ik
k+1c

k+1

(5) Perform N2 relaxation/smoothing steps : wk
c = JN2(w

k
b , f

k)

(6) RETURN wk
c
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2.5.2 The full approximation scheme

The full approximation scheme (see [13, 63]) does not require the operator L in Eq.
(2.47) to be linear. It is therefore directly applicable to Eqs. (2.1)–(2.3) and can be
described as follows: On the finest grid level 1 we seek w1 s.t.

L1w1 = f 1 (2.52)

On each coarse grid level k > 1 and given an approximation w̃k−1 from the finer
level, we seek ŵk = Ik

k−1w̃
k−1 + ck s.t.

Lkŵk = f̂k ≡ Lk(Ik
k−1w̃

k−1) + Ik
k−1(f

k−1 − Lk−1w̃k−1) (2.53)

where the approximation w̃k−1 is given from the finer level and L needs not to be
linear. Having solved Eq. (2.53), the new fine-grid solution is obtained by

wk−1 = w̃k−1 + Ik−1
k (ŵk − Ik

k−1w̃
k−1) (2.54)

Note, that the full approximation scheme reduces to the correction scheme, if L is
a linear operator. To see this, we rearrange (2.53) as

Lkŵk − Lk(Ik
k−1w̃

k−1) = Ik
k−1(f

k−1 − Lk−1w̃k−1)

⇔ Lkck = Ik
k−1(f

k−1 − Lk−1w̃k−1) , ck ≡ ŵk − Ik
k−1w̃

k−1

given that L is linear. Moreover, the fine grid updated solution becomes

wk−1 = w̃k−1 + Ik−1
k ck . (2.55)

The recursion form of the full approximation scheme can be written as follows:

INPUT: wk
0

OUTPUT: MGC(k, wk
0 , f

k) is defined by the following recursion

IF k = IC THEN

(1) Determine exact solution ŵk of Lkŵk = fk

(2) RETURN ŵk

ELSE

(1) Initial guess : wk
0 = 0

(2) Perform N1 relaxation/smoothing steps : wk
a = JN1(w

k
0 , f

k)

(3) DO Recursion : Compute solution ŵk+1 on next coarser grid
ŵk+1 = MGC(k + 1, wk+1

0 , Lk+1(Ik+1
k wk

a) + Ik+1
k (fk − Lkwk

a)).

(4) Correction : wk
b = wk

a + Ik
k+1(ŵ

k+1 − Ik+1
k wk

a)

(5) Perform N2 relaxation/smoothing steps : wk
c = JN2(w

k
b , f

k)

(6) RETURN wk
c
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Note, that (2.53) can be rewritten as

Lkŵk = fk + τk
k−1 , τk

k−1 ≡ Lk(Ik
k−1w̃

k−1) − Ik
k−1(L

k−1w̃k−1) (2.56)

with fk = Ik
k−1(f

k−1).
Finally the relaxation/smoothing operation JN(wk

0 , f
k) and the solution operation

on the coarsest grid level IC have to be specified.
In principle, each iterative solver of problem (2.47) can be used as a smoother for
a multigrid scheme, if it damps the high frequency components of the error on
the corresponding grid level. In the DLR TAU-code, smoothing is performed by
applying an explicit K-stage low storage Runge-Kutta scheme as iterative solver to
the pseudo-instationary problem given by

∂

∂t∗
w + Lw = f (2.57)

with pseudo time t∗. Only one smoothing step before the recursion is performed,
i.e. N1 = 1, and moreover N2 = 0 is used. Thus J1(w

k
w, f

k) is defined as follows:

Smoothing/ relaxation J1(w
k
0 , f

k)

INPUT: wk
0

OUTPUT: J1(w
k
0 , f

k)

FOR j = 1, . . . , K DO wk
j = wk

0 − αj∆t
∗(L(wk

j−1) − fk)

RETURN J1(w
k
0 , f) = wk

K

On the coarsest grid level k = IC , we define MGC(IC , w
IC

0 , f IC) also by applying
one step of an explicit K-stage low storage Runge-Kutta scheme, i.e.

Solution on coarsest grid level MGC(IC , w
IC

0 , f IC)

INPUT: wIC

0

OUTPUT: MGC(IC , w
IC

0 , f IC)

FOR j = 1, . . . , K DO wIC

j = wIC

0 − αj∆t
∗(L(wIC

j−1) − f IC)

RETURN MGC(IC , w
IC

0 , f IC) = wIC

K

2.5.3 Testcase with regard to multigrid

While the use of different multigrid methods has no effect on the vortex dissipation,
the same testcase already shown in Subsections 2.2.4, 2.3.3 and 2.4.3 is nevertheless
performed at this point, where now the influence of varying multigrid methods on
the convergence rate is examined.



CHAPTER 2. NUMERICAL METHODS IN THE DLR TAU-CODE 46

The computations were all realised using a time step size of ∆t = 10−2s on the grid
with 2012 grid points and matrix dissipation and low Mach number preconditioning
activated. Three compuations have been performed: While the green line in Fig.
2.14 shows the convergence rate of the computation using singlegrid, the blue and
red line indicate the result when a multigrid method with two and alternatively
three grid levels is activated.
For better comparison only 200 inner iterations have been performed in each time
step within all three compuations. Note additionally, that the results shown in Fig.
2.14 are only based on the first five time steps of each simulation and that the
residual is renormalised to one at the beginning of each time step.

Figure 2.14: Convergence rates when using singlegrid (sg), multigrid with two grid
levels (2v) and multigrid with three grid levels (3v).

Looking at Fig. 2.14 it can be stated that the use of multigrid clearly improves
the convergence acceleration. The use of multigrid is therefore advisable in order to
minimise the numerical costs.



Chapter 3

Turbulence modeling

Recall the compressible Navier-Stokes equations defined by Eqs. (2.1) – (2.3):

∂

∂t
ρ+

∂

∂xi

(ρui) = 0 in Ω

∂

∂t
(ρui) +

∂

∂xj

(ρujui) = − ∂

∂xi

p+
∂

∂xj

tji in Ω

∂

∂t
E +

∂

∂xj

[
ρuj

(
h+

1

2
uiui

)]
=

∂

∂xj

(uitij) −
∂

∂xj

qj

When the Reynolds number gets large, this system becomes turbulent, meaning
that the solution is three-dimensional, time-dependent and includes a large range of
timescales and lengthscales. As a Direct Numerical Simulation (DNS) to solve Eqs.
(2.1) – (2.3) must take all occuring scales into account, realistic flow problems with
high Reynolds numbers would exceed today’s computer power resources.
One approach to overcome this limitation is to suitably average the original equa-
tions. In the case of compressible flow this averaging procedure is performed by
applying so-called Reynolds averaging and Favre averaging.

3.1 Reynolds averaging and Favre averaging

Definition 3.1.1 (Reynolds averaging)
Let f(x, t) be any instantaneous flow variable. f can then be decomposed into

f(x, t) = f(x) + f
′

(x, t)

where the Reynolds-Averaged (or time-averaged) variable f(x) is given by:

f(x) = lim
T−→∞

1

T

∫ t+T

t

f(x, t)dt

and f
′

is the fluctuating part. This decomposition is also referred to as ”Reynolds
decomposition”.

47
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Reynolds averaging fulfills the following properties:

Lemma 3.1.2 (Properties of Reynolds averaging)
Let f(x, t) and g(x,t) be instantaneous flow variables and let c, d ∈ R. Then the
following identites hold:

Linearity : c· f + d· g = c· f + d· g

Commutativity of differentiation w.r.t. x : ∂
∂x
f = ∂

∂x
f

Commutativity of differentiation w.r.t. t : ∂
∂t
f = ∂

∂t
f

Projection identity : f = f

Due to the projection identity, f ′(x, t) equals zero.

When dealing with incompressible flow, only velocity and pressure need to be aver-
aged, which can be realised by the just described Reynolds averaging. In the case
of a compressible fluid, also density and temperature must be considered. Unfor-
tunately Reynolds averaging Eqs. (2.1) – (2.3) would then lead to the creation of
additional terms, which have no couterpart in the laminar equations.
To understand this problem in more detail, consider the Reynolds decomposition of
the velocity ui(x, t) and density ρ:

ui(x, t) = ui(x) + u
′

i(x, t) (3.1)

ρ(x, t) = ρ(x) + ρ
′

(x, t) (3.2)

Substituting (3.1) and (3.2) into continuity equation (2.1) results in:

∂

∂t

(
ρ+ ρ

′

)
+

∂

∂xi

(
ρ ui + ρ

′

ui + ρu
′

i + ρ
′

u
′

i

)
= 0 in Ω (3.3)

Reynolds averaging Eq. (3.3) yields the Reynolds averaged continuity equation for
compressible flow:

∂

∂t
ρ+

∂

∂xi

(
ρ ui + ρ′u

′

i

)
= 0 in Ω (3.4)

Compared to the original Eq. (2.1), Eq. (3.4) now contains the additional term

ρ′u
′

i, resulting in additional variables. This leads to the problem, that additional
approximations would have to be found to model these variables.
In order to avoid this problem, an alternative averaging procedure is introduced, the
so-called Favre averaging.

Definition 3.1.3 (Favre averaging)
Let f(x, t) be any instantaneous flow variable. f can then be decomposed into

f(x, t) = f̃(x) + f
′′

(x, t)
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where the Favre averaged (or mass averaged) variable f̃(x) is given by:

f̃(x) =
1

ρ(x)
lim

T−→∞

1

T

∫ t+T

t

ρ(x, t)f(x, t)dt

and f
′′

(x, t) is the corresponding fluctuating part. This decomposition is also referred
to as ”Favre decomposition”.

Note that Favre averaging yields the same properties as the ones for Reynolds aver-
aging described in lemma 3.1.2 except for the projection identity. As a consequence,

also f̃ ′′(x, t) does not vanish in general.
In order to realise, why Favre averaging is useful in the current context, consider
the following identity:

ρũi = ρui = ρ ui + ρ′u
′

i (3.5)

Inserting Ey. (3.5) into Eq. (3.4) results in

∂

∂t
ρ+

∂

∂xi

(ρ ũi) = 0 in Ω (3.6)

which is clearly a simplification compared to Eq. (3.4).

3.2 The Favre averaged Navier-Stokes equations

As now all required mathematical techniques have been introduced, the compressible
Navier-Stokes equations (2.1) – (2.3) can be averaged. First the following decom-
positons are performed:

ui = ũi + u
′′

i ρ = ρ+ ρ
′

p = p+ p
′

h = h̃+ h
′′

e = ẽ+ e
′′

T = T̃ + T
′′

qj = qLj
+ q

′′

j

(3.7)

where qLj
is the laminar mean heat-flux vector. Inserting the decompositions from

(3.7) into Eqs. (2.1), (2.2), (2.3) and (2.4) and performing the Favre averaging
operations results in the following Favre averaged mean conservation equations and
the equation of state:

Definition 3.2.1 (Favre averaged mean Navier-Stokes equations)

∂

∂t
ρ+

∂

∂xi

(ρũi) = 0 in Ω (3.8)

∂

∂t
(ρũi) +

∂

∂xj

(ρũjũi) = − ∂

∂xi

P +
∂

∂xj

[
tji + ρτij

]
in Ω (3.9)

∂

∂t

(
ρẼ
)

+
∂

∂xj

(
ρũjH̃

)
=
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∂

∂xj

[
−qLj

− qTj
+ tjiu

′′

i − ρu
′′

j

1

2
u

′′

i u
′′

i

]
+

∂

∂xj

[
ũi

(
tij + ρτij

) ]
(3.10)

P = ρRT̃ (3.11)

Again, these equations are completed by Eq. (3.11). The turbulent mean heat-flux
vector qTj

is given by:

qTj
= ρu

′′

jh
′′ (3.12)

The Favre averaged Reynolds-stress tensor is defined by:

ρτij = −ρu′′

i u
′′

i (3.13)

Ẽ and H̃ are the total energy and total enthalpy:

Ẽ = ẽ+
ũiũi

2
+ k (3.14)

H̃ = h̃+
ũiũi

2
+ k (3.15)

At this point is is important to note that Eqs. (3.8) - (3.10) and (3.11) are not
closed, meaning that more variables than equations exist. In order to close this
system of equations, additional approximations for the mean heat-flux vector qTj

,

the term tjiu
′′

i − ρu
′′

j
1
2
u

′′

i u
′′

i , the Favre averaged Reynolds-stress tensor ρτij and the
turbulent kinetic energy k must be found.
qTj

can be modeled by a gradient-diffusion approximation, meaning that the variable
is proportional to the mean temperature gradient:

qTj
= −µT cp

PrT

∂

∂xj

T̃ = − µT

PrT

∂

∂xj

h̃ (3.16)

where the turbulent Prandtl number PrT is usually considered as constant. De-
pending on the type of flow, a value between 0.5 and 0.9 is chosen. µT denotes the
eddy-viscosity.

tjiu
′′

i and ρu
′′

j
1
2
u

′′

i u
′′

i are the molecular diffusion and the turbulent transport, respec-
tively. In most turbulence models, these terms are simply ignored. Alternatively,
they can be modeled by:

tjiu
′′

i − ρu
′′

j

1

2
u

′′

i u
′′

i =

(
µ+

µT

σk

)
∂

∂xj

k (3.17)

Here µ denotes the molecular viscosity. In almost all turbulence models ρτij is
modeled by the famous Boussinesq approximation for compressible flow:

ρτij = 2µT

(
Sij −

1

3

∂

∂xk

ũkδij

)
− 2

3
ρkδij (3.18)
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3.3 URANS models

By using the approximations from Section 3.2, the only elements missing to close
Eqs. (3.8) - (3.10) and (3.11) are models to obtain µT and k. How these variables
are obtained depends on the type of turbulence model used.
Before introducing them we want to note, that the commonly used abbreviation for
the Favre averaged Navier-Stokes equations is denoted by ”(U)RANS”. The letter
”U” stands hereby for ”unsteady” and is used, if the time derivates are included in
the equations; in case of steady-state equations (i.e. the time derivatives are omitted)
also the ”U” is excluded. Note furthermore, that the letter ”R” (”Reynolds”) and
not ”F” (”Favre”) is used in the literature even in the case of compressible flow.

3.3.1 The Spalart-Allmaras (SA(O)) model)

In the Spalart-Allmaras Favre averaged Navier-Stokes (abbreviated by ”SA(0)”
where the sometimes used ”0” stands for ”original”) model k is set to zero, such that
only one transport equation for the eddy viscosity µT is required. The model was
introduced by Spalart et al. [108] and calibrated and validated upon free shear flow,
near-wall flow at high Reynolds numbers, near-wall flow at finite Reynolds numbers,
laminar flow of shear layers and zero-pressure gradient boundary layer flow.
µT is obtained by:

µT = ρfv1ν̃, fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
(3.19)

A sketch of fv1 can be seen in Fig. 3.1 (left). ν is the kinematic viscosity and ν̃
satisfies the following transport equation:

∂

∂t
(ρν̃) +

∂

∂xi

(ρuiν̃) −
∂

∂xk

[
ρ(ν + ν̃)

σ

∂

∂xk

ν̃

]
− ρ

cb2

σ

(
∂

∂xk

ν̃

)2

= P −D (3.20)

The production and destruction terms P and D are given by

P = cb1ρS̃ν̃, D = cw1fwρ

(
ν̃

d

)2

(3.21)

with wall distance d and

S̃ = Ω +
ν̃

κ2d2
fv2, fv2 = 1 − χ

1 + χfv1
(3.22)

The shape of fv2 is illustrated in Fig. 3.1 (left) and the magnitude of the vorticity
Ω is defined by:

Ω =
√

2ΩijΩij , Ωij =
1

2

(
∂

∂xj

ui −
∂

∂xi

uj

)
(3.23)

The function fw (see Fig. 3.1 (right)) equals

fw = g

[
1 + c6w3

g6 + c6w3

] 1
6

, g = r + cw2

(
r6 − r

)
, r =

ν̃

S̃κ2d2
(3.24)
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Figure 3.1: Sketch of the functions fv1(χ), fv2(χ) (left) and fw(r) (right) used in the
Spalart-Allmaras model.

The constants are given by:

cb1 = 0.1355, cb2 = 0.622, cv1 = 7.1, σ =
2

3
(3.25)

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, κ = 0.41 (3.26)

3.3.2 k-ω models

The Wilcox (2006) k-ω model

The Wilcox (2006) k-ω model is a modification of the original Wilcox k-ω model
introduced by Wilcox [127]. While the testcases upon which the 2006-version was
calibrated are not explicitly stated by Wilcox [128], it is mentioned that this new
model version improves the accuracy for free shear flows and strongly separated
flows. The eddy viscosity is obtained by

µT =
ρk

ω̃
, ω̃ = max


ω,Clim

√
2Sij Sij

β∗


 , Sij = Sij −

1

3

∂

∂xk

ũkδij , Clim =
7

8

(3.27)
The turbulent kinetic energy k and the specific dissipation rate ω are the solutions
of the following two coupled nonlinear transport equations:

∂

∂t
(ρk) +

∂

∂xj

(ρũjk) = ρτij
∂

∂xj

ũi − β∗ρkω +
∂

∂xj

[(
µ+ σ∗ρk

ω

)
∂

∂xj

k

]
(3.28)

∂

∂t
(ρω) +

∂

∂xj

(ρũjω) = α
ω

k
ρτij

∂

∂xj

ũi − βρω2

+ σd

ρ

ω

∂

∂xj

k
∂

∂xj

ω +
∂

∂xj

[(
µ+ σ

ρk

ω

)
∂

∂xj

ω

]
(3.29)
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The closure constants are given by:

α =
13

25
, β = β0fβ , β∗ =

9

100
, σ =

1

2
, σ∗ =

3

5
, σd0 =

1

8
, (3.30)

β0 = 0.0708, P rT =
8

9
, σd =

{
0 if ∂

∂xj
k ∂

∂xj
ω ≤ 0

σd0 else
(3.31)

fβ =
1 + 85χω

1 + 100χω

, χω =

∣∣∣∣∣
ΩijΩjkS̃ki

(β∗ω)3

∣∣∣∣∣ , S̃ki = Ski −
1

2
∂∂xmũmδki (3.32)

The linearized explicit algebraic stress (LEA) model

The k-ω turbulence model LEA, which was introduced by Rung et al. [96], is a
modification of the Wilcox k-ω model. k and ω are the results of Eqs. (3.28) and
(3.29). The eddy viscosity is then obtained by:

µT =
C∗

µ

Cµ

ρk

ω
(3.33)

C∗
µ =

β1

1 − 2
3
η2 + 2ζ2

, Cµ = 0.09 (3.34)

where

η2 =
β2

3T
2

8
, ζ2 =

β2
2G

2

2
, β1 =

4
3
− C2

2g
, β2 =

2 − C4

2g
, β3 =

2 − C3

g
(3.35)

g = f1(C1 − 1) +
T 2

4 + 1.83
√

0.8G2 + 0.2T 2
(3.36)

f1 = 1 + 0.95

(
1 − tanh

(
T 2

4.6625

))
(3.37)

C1 = 2.6, C2 = max

(
0.4,

1.5T 1.7

17.1 + 1.875T 1.7

)
, C3 = 1.25, C4 = 0.45 (3.38)

T =
1

Cµω

√
2tr (S2), G =

1

Cµω

√
−2tr (Ω2) (3.39)

S is the strain-rate tensor defined in Eq. (2.5), Ω is given in Eq. (3.23) and tr
denotes the trace of a tensor.
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The Menter-SST model

The idea of the Menter-SST (”shear stress transport”) model, which was introduced
and reviewed by Menter et al. [74, 77], is to use a k − ω–formulation in the inner
part of a boundary layer and to switch to a k − ǫ-like behaviour farther away from
the wall. By doing so, the accuracy in the near-wall region of the Wilcox k–ω model
is guaranteed. On the other hand the commonly known problem of k−ω models of
being too sensitive to inlet-free-stream turbulence properties can be avoided. The
Menter-SST model is especially useful when dealing with adverse pressure gradients
and separated flows. According to Menter [74] the model was originally calibrated
and validated upon the following testcases: flat plate boundary layer flow, free shear
layers, adverse pressure gradient flows and the backward facing step. The equations
for k and ω are given by:

∂

∂t
(ρk) +

∂

∂xj

(ρũjk) = ρPk − β∗ρkω +
∂

∂xj

[(
µ+ σk

ρk

ω

)
∂

∂xj

k

]
(3.40)

∂

∂t
(ρω) +

∂

∂xj

(ρũjω) = γ
ω

k
ρτij

∂

∂xj

ũi − βωρω
2+

∂

∂xj

[(
µ+ σω

ρk

ω

)
∂

∂xj

ω

]
+ 2σω2(1 − F1)

1

ω

∂k

∂xi

∂ω

∂xi

(3.41)

where

Pk = min(ρτij
∂

∂xj

ũi, 10β∗kω)

The last term in in Eq. (3.41) is the so-called cross-diffusion term, which controls
the blending between k − ω and k − ǫ. The coefficients φ ∈ {σk, σω, γ, βω} of the
model are interpolated using the blending function

φ = F1φ1 + (1 − F1)φ2

between those of the k-ω model, φ1 ∈ {σk1, σω1, γ1, βω1} (inner layer), and those
of the k/ǫ model, φ2 ∈ {σk2, σω2, γ2, βω2} (outer layer), which are given by:

Inner layer : σk1 = 0.85, σω1 = 0.5, γ1 = 0.555556, βω1 = βk

(
γ1 +

σω1κ
2

√
βk

)

Outer layer : σk2 = 1.0, σω2 = 0.857, γ2 = 0.44, βω2 = βk

(
γ2 +

σω2κ
2

√
βk

)

with κ = 0.41, βk = 0.09.
The blending function F1 (see Fig. 3.2) has to be one in the near-wall region and
in the logarithmic layer and has to become zero rapidly at the outer edge of the
boundary layer in order to prevent the freestream dependence of the k-ω model. F1

is therefore defined by:
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F1 = tanh(arg4
1) , arg1 = min

(
max

( √
k

βkωy
;
500ν

y2ω

)
;

4ρσω2k

CDkωy2

)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi

, 10−20

)

where βω1 = 0.07522 and βω2 = 0.08282.
Finally µt is obtained by introducing the so-called shear-stress correction:

µt = min

(
ρk

ω
;
a1ρk

ΩF2

)
(3.42)

with

F2 = tanh(arg2
2) , arg2 = max

(
2

√
k

βkωy
;

500ν

y2ω

)
(3.43)

Ω =
√

2Ω : Ω , Ωij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
(3.44)

where a1 = 0.31 is the Bradshaw constant and the blending function F2 is illustrated
in Fig. 3.2. The underlying idea of limiting µt is to restrict the tendency of two-
equation models to overestimate the shear stress, which can especially be observed
for flows including adverse pressure gradients.

Figure 3.2: Sketch of the blending functions F1 and F2 in the Menter-SST model.
Note, that the arguments ”arg” of the two functions are not identical but are ab-
breviations for arg1 and alternatively arg2.

3.4 Hybrid RANS/LES models

3.4.1 Spalart-Allmaras Detached Eddy Simulation (SA-DES)

Detached Eddy Simulation is a nonzonal hybrid RANS/LES model and was intro-
duced and reviewed by Spalart et al. [110, 107]. The idea is to use the model as a
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RANS-model in boundary layers and to switch to a Large Eddy Simulation (LES,
[87])-like behaviour in the rest of the computational domain. If it is based on the
SA-RANS model described in Subsection 3.3.1, the starting point is Eq. (3.20):

∂

∂t
(ρν̃) +

∂

∂xi

(ρuiν̃) −
∂

∂xk

[
ρ(ν + ν̃)

σ

∂

∂xk

ν̃

]
− ρ

cb2

σ

(
∂

∂xk

ν̃

)2

= P −D

where again production and destruction P and D are given by

P = cb1ρS̃ν̃, D = cw1fwρ

(
ν̃

d

)2

The SA-DES model is then obtained by replacing the original length scale d in the
destruction term by d̃:

d̃ = min(d, CDES∆), ∆ = max[∆x,∆y,∆z], CDES = 0.65 (3.45)

Within a boundary layer d̃ = d, resulting in the normal SA-RANS model introduced
in Subsection 3.3.1.
Farther away from a wall d̃ = CDES∆. NowP and D are balanced:

cb1ρS̃ν̃ = cw1fwρ

(
ν̃

d̃

)2

(3.46)

If for simplicity fw = const is assumed, one obtains

ν̃ ∼ S̃d̃2 (3.47)

This is analogous to the Smagorinsky model, which is an LES model, in which the
kinematic eddy viscosity is given by:

νT = (CS∆)2
√

SijSij (3.48)

Here the resolved strain-rate tensor Sij is defined by:

Sij =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− 1

3

∂〈uk〉
∂xk

(3.49)

and Cs is a constant which can be problem-dependent.

The operator 〈.〉 denotes a filtering procedure applied in LES. The idea lies in
computing the resolvable large eddies, while the smaller subgrid-scale eddies are
modeled.
As both the filtering procedure used in LES and Favre averaging applied in RANS
contains the same properties regarding linearity and commutativity, the governing
equations used in LES take the same form as Eqs. (3.8) - (3.10) - with the only
difference that the equations contain the Favre averaged and filtered variables, re-
spectively.
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3.4.2 SA-Delayed Detached Eddy Simulation (SA-DDES)

One problem of the just described SA-DES is, that the filter ∆ is only based on grid
properties but not on the actual flow. If a fine grid is used, the LES-part of the SA-
DES model extends into the boundary layer (this is called ”underresolved LES”),
which can lead to grid induced flow separation. Another problem of the SA-DES
model lies in the fact, that the RANS-LES partition differs for varying grids. A
grid convergence study is therefore almost impossible, because different grids then
operate in different turbulence models on parts of the computational domain.
In order to adress these problems, the SA-DDES model, which is an adjustment of
the SA-DES model, has been introduced by Spalart et al. [109]. SA-DDES was
originally calibrated and validated upon flat plate boundary layer flow, flow around
circular cylinders, flow around a single airfoil and the flow of a backward facing step.
The length scale d̃ is here defined by:

d̃ = d− fd·max(0, d− ΨCDES∆), ∆ = max[∆x,∆y,∆z] (3.50)

fd = 1 − tanh(8r3
d), rd = ν+νt

Sijκ2d2 , κ = 0.41 (3.51)

As the function fd defined in Eq. (3.51) is subject to a detailled research in Section
6, it’s definition is highlighted by a surrounding box.
Within a boundary layer fd ≡ 0, leading to d̃ = d and hereby ensuring normal SA-
RANS-mode. Farther away from the wall fd ≡ 1, resulting in d̃ = min(d, CDES∆),
which is the original SA-DES model.
The term Ψ in Eq. (3.50) is the so-called low-Reynolds modification, which is
required to obtain an Smagorinsky-like behaviour at locally low eddy-viscosity levels.
It is defined by:

Ψ2 =
1 − cb1fv2/(cw1κ

2f ⋆
w)

fv1
(3.52)

Here fv1 and fv2 are functions already used in the SA-RANS model (they are defined
in Eqs. (3.19) and (3.22), respectively), and f ⋆

w = 0.427 .



Chapter 4

The Chimera technique: a domain
decomposition method

A major focus of this thesis lies on the Chimera technique, which is a special kind
of domain decomposition (DD) method. The aim of this chapter is to examine both
the underlying ideas and classifications of DD methods in general and take a closer
look at the Chimera technique in more detail. This chapter is organised as follows:

• Firstly an introduction into DD methods is given in Section 4.1 by consid-
ering a simple one-dimensional Poisson problem. The aim is to provide an
understanding of the basic principles applied in these techniques.

• The main reason, why the Chimera technique is used within this thesis lies in
its ability to move grids relative to each other during a computation. Therefore
secondly the different possibilities to position domains (not necessarily grids)
relative to each other are examined in Section 4.2. As we will see, the Chimera
technique will turn out to be the most useful method for the applications within
this thesis.

• Thirdly the Chimera technique is presented in detail in Section 4.3. At the
beginning an algorithm to solve the one-dimensional Poisson problem from
Section 4.1 using the Chimera technique is shown. Then the implementation
of the Chimera technique in the DLR TAU-code is examined for unsteady
two-dimensional problems.

Within this chapter, especially the papers of Houzeau et al. [53, 54] and Toselli
et al. [120] have been extensively used within Sections 4.1 and 4.2. DD methods
are farther examined by Smith et al. [105]. The description of the implementation
in the DLR TAU-code in Section 4.3 is based on the work by Schwarz [99].

58
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4.1 An introduction into domain decomposition

methods

The very basic idea of DD methods is to split a boundary value problem defined on a
domain Ω ⊂ Rn, n = 1, 2, 3, into smaller boundary value problems defined on subdo-
mains Ωi ⊂ Ω, i = 1, . . . , n, where ∪iΩi = Ω. To do so in a consistent way, adequate
boundary conditions must be prescribed at the interfaces of the subdomains.
Having solved the local problems, the resulting local solutions ui on subdomains Ωi

must then be united appropriately to obtain the global solution u of the original
boundary value problem defined on Ω.
The major advantage of DD methods is that the local problems on subdomains
Ωi can be solved independently from each other. This enables four major fields of
applications for DD methods:
Firstly DD methods can be used as an easy and straightforward way to parallelize
a numerical code.
Secondly the meshing of complex geometries can be simplified by the help of DD
methods: Instead of generating one single grid for the complete configuration (which
can be very hard to achieve and often leads to strongly deformed grid cells), the
domain is split into several subdomains such that the meshing can be performed
independently on each part. This can simplify the meshing process immensely.
Thirdly DD methods can be used within zonal methods, meaning that different
models are used on the various subdomains. While in the SA-DDES model described
in Subsection 3.4.2 the RANS-LES switch is based on the length scale d̃ (implying
that SA-DDES is a nonzonal method), in zonal DES (or ZDES) [93] the RANS-zone
and the LES-zone are defined explicitly, where at the interface of the two zones the
flow variables of one zone are used as boundary condition for the relatively other
zone. ZDES can therefore be considered as a DD method. Another example of zonal
methods is the so-called GOALS (Goal oriented adaptive local solution)-algorithm
[83, 131]. Here firstly a homogenised problem is solved globally on Ω, where the
underlying grid can be relatively coarse. Then another model, the so-called fine-
scale model, is solved on a subdomain ΩL ⊂ Ω by using the homogenised solution as
Dirichlet boundary condition at the boundary of Ω. For the fine-scale problem a very
fine grid must be chosen within ΩL. The principle of the GOALS-algorithm is to use
the cheap but less accurate homogenised model in regions where it is sufficent and
only to switch to the more expensive but at the same time more accurate fine-scale
model, where it is necessary in order to minimise a prescribed local error.
The fourth field of DD methods is the most important one for the applications of
this thesis: DD methods allow to comfortably move solid bodies or flow properties
such as vortices relative to each other within Ω.
Despite the variety of DD methods, they can be divided into only two classes:
1) In nonoverlapping DD methods the interior of all subdomains Ωi are disjoint,
i.e. Ω̊i ∩ Ω̊j = ∅ ∀i, j, where Ω̊k denotes the interior of Ωk. A special class of non-
overlapping DD methods are the so-called Mortar methods, which are discretization
methods for partial differential equations, where different discretizations on the var-
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ious Ωi are used. As the grids of the subdomains in general do not match at the
interface, Lagrange multipliers are used in that region, which enforces equal solutions
on all adjacent subdomains.
2) In overlapping DD methods neighbouring subdomains are not disjoint, i.e. ∃i, j :
Ω̊i ∩ Ω̊j 6= ∅. This class of DD methods include the additive Schwarz method (see
Subsection 4.1.3) and the alternating Schwarz method [62].
To present a more detailled examination of these two different types of DD methods
we regard the following simple one-dimensional Poisson problem:

−∂u2

∂x2 = f if x ∈ Ω := (−1, 1)
u = 0 if x = −1, 1

}
(4.1)

Next Ω is divided into subdomains Ω1 and Ω2 (disjoint or overlapping) by setting
Ω1 = (−1, δ) and Ω2 = (−δ, 1), where 0 ≤ δ ≤ 1.
In order to construct well-defined local boundary value problems with unique so-
lutions on Ω1 and Ω2, an additional consistent boundary condition at x = δ and
x = −δ, respectively, must be prescribed. Note that in general this is a necessary
but not sufficient condition to recover the global solution u from the local solutions
ui. The following three choices of boundary conditions are possible: Either the
variable u itself can be prescribed (which is a so-called Dirichlet condition), its first
derivative can be set (which is called Neumann condition) or most generally a linear
combination of both can be chosen (Robin condition).
By using a Robin condition, one obtains the following boundary value problem on
subdomain Ω1:

−∂u2
1

∂x2 = f if x ∈ Ω1

u1 = 0 if x = −1
α1u1+ β1

∂u1

∂x
= g1 if x = δ



 (4.2)

where α1 and β1 are constants such that α1 6= 0 or β1 6= 0. Similarily, the following
boundary value problem is considered on subdomain Ω2:

−∂u2
2

∂x2 = f if x ∈ Ω2

u2 = 0 if x = 1
α2u2+ β2

∂u2

∂x
= g2 if x = −δ



 (4.3)

where α2 and β2 are constants such that α2 6= 0 or β2 6= 0. The coefficients α1 and α2

are called Robin coefficients. The aim of decomposition methods lies in recovering
the global solution u of problem (4.1) from solutions u1 and u2. For this we must
specify functions g1 and g2 such that:

u1 = u|Ω1

u2 = u|Ω2

We first consider the case of nonoverlapping subdomains Ω1 and Ω2, i.e. δ = 0:
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4.1.1 Nonoverlapping subdomains

Let δ = 0. Then for f ∈ L2(Ω), problem (4.1) can be transformed into the following
coupled problem:

−∂u2
1

∂x2 = f if x ∈ Ω1

u1 = 0 if x = −1
u1 = u2 if x = 0
∂u1

∂x
= ∂u2

∂x
if x = 0

−∂u2
2

∂x2 = f if x ∈ Ω2

u2 = 0 if x = 1





(4.4)

It is now straightforward to see that problem (4.4) is equivalent to problems (4.2)
and (4.3) for the following choices of g1 and g2:

g1 = α1u2 + β1
∂u2

∂x
(4.5)

g2 = α2u1 + β2
∂u1

∂x
(4.6)

where the coefficients α1, α2, β1, β2 must be chosen such that

|α1β2 − α2β1| 6= 0 (4.7)

Note, that in system (4.4) both the continuity of u and of ∂u
∂x

is strictly required at
x = 0 . Imposing only the continuity of u by setting α1 = α2 = 1 and β1 = β2 = 0
may lead to ∂u1

∂x
6= ∂u2

∂x
at x = 0, which is indicated in Fig. 4.1 (left). If on the

other hand only the continuity of ∂u
∂x

is prescribed at x = 0 (which is achieved by
choosing α1 = α2 = 0 and β1 = β2 = 1), u in general is not continuous at x = 0,
which is shown in Fig. 4.1 (right). In both cases u can not be recovered from the
local solutions u1 and u2, i.e. u1 6= u|Ω1 and u2 6= u|Ω2.

Figure 4.1: Nonoverlapping subdomains: Local solutions u1 (”green”) and u2 (”red”)
if only u1 = u2 is imposed at x = 0 (left) and if only ∂u1

∂x
= ∂u2

∂x
is imposed at x = 0

(right).
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Only if both boundary conditions are fullfilled at x = 0, the global solution u of
problem (4.1) can be regained be setting:

u =

{
u1 in Ω1

u2 in Ω2
(4.8)

which is shown in Fig. 4.2.

Figure 4.2: Nonoverlapping subdomains: Local solutions u1 (”green”) and u2 (”red”)
if both u1 = u2 and ∂u1

∂x
= ∂u2

∂x
are imposed at x = 0 .

In particular we have shown in this subsection that neither a Dirichlet/Dirichlet
coupling nor a Neumann/Neumann coupling is admissible in order to recover u
from u1 and u2.

4.1.2 Overlapping subdomains

Now the case of overlapping subdomains is considered, i.e. δ > 0. We will show that
choosing the same functions g1 and g2 as in the case of nonoverlapping subdomains
is sufficient to recover the global solution u of problem (4.1) by the local solutions
u1 and u2. We first proof that u1 and u2 are identical on the overlap of Ω1 and Ω2.

Lemma 4.1.1 (Equality of u1 and u2 in Ω1 ∩ Ω2)
For δ > 0 let u1 and u2 be the solutions to problems (4.2) and (4.3), respectively,
where g1 and g2 are given by Eqs. (4.5) and (4.6) such that condition (4.7) holds.
Then u1 ≡ u2 in Ω1 ∩ Ω2.

Proof: Let w = u1 − u2. By subtracting Eq. (4.2)1 from Eq. (4.3)1 and Eq. (4.2)3

from Eq. (4.3)3 using Eqs. (4.5) and (4.6) we obtain the following boundary value
problem for w on Ω1 ∩ Ω2:

∂w2

∂x2 = 0 if x ∈ Ω1 ∩ Ω2 = (−δ, δ)
α2w + β2

∂w
∂x

= 0 if x = −δ
α1w + β1

∂w
∂x

= 0 if x = δ



 (4.9)
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Due to condition (4.7) (which in particular guarantees either α1 6= 0 or α2 6= 0)
problem (4.9) is well-defined and therefore has a unique solution w ≡ 0. �

As u1 and u2 are the solutions to problems (4.2) and (4.3), respectively, the continu-
ity of the derivates of u1 at x = −δ as well as u2 at x = δ is furthermore guaranteed.
We therefore can recover the global solution u of problem (4.1) by setting:

u =

{
u1 in Ω1

u2 in Ω \ Ω1
(4.10)

or alternatively by

u =

{
u1 in Ω \ Ω2

u2 in Ω2
(4.11)

which is indicated in Fig. 4.3.

Figure 4.3: Overlapping subdomains: Local solutions u1 (”green”), u2 (”red”) and
identical solution on Ω1 ∩ Ω2 (”blue”).

Note that in the case of α1 = α2 = 0, β1 6= 0 and β2 6= 0 (which is an overlapping
Neumann/Neumann coupling) the solution w of problem (4.9) is defined up to an
additive constant.

4.1.3 Relation between nonoverlapping and overlapping DD
methods

We again consider problems (4.2) and (4.3), where δ > 0. The additive Schwarz
method is then obtained by choosing the following boundary conditions:

u1 = u2 if x = δ
u2 = u1 if x = −δ (4.12)

When now performing a forward and backward Taylor-expansion at x = 0, these
two Dirichlet conditions can be transformed to the following Robin/Robin coupling
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at x = 0:
u1 + δ ∂u1

∂x
= u2 + δ ∂u2

∂x

u2 − δ ∂u2

∂x
= u1 − δ ∂u1

∂x

(4.13)

It is hereby shown that a DD method on overlapping subdomains using a Dirich-
let/Dirichlet coupling is equivalent to a DD method on nonoverlapping subdomains
using a Robin/Robin coupling. The latter DD method is therefore also referred to
as fictitious overlapping method [117].

4.1.4 An iterative algorithm to solve DD methods

To solve local problems (4.2) and (4.3) numerically, the following iterative algorithm
can be used:

Definition 4.1.2 (Iterative algorithm for DD methods)
Choose initial guesses u0

1 and u0
2 as solutions for the local problems (4.2) and (4.3).

Then for all k 6= 0 successively solve the following two problems:

−∂2uk+1
1

∂x2 = f if x ∈ Ω1

uk+1
1 = 0 if x = −1

α1u
k+1
1 + β1

uk+1
1

∂x
= α1u

k
2+ β1

uk
2

∂x
if x = δ





(4.14)

−∂2uk+1
2

∂x2 = f if x ∈ Ω2

uk+1
2 = 0 if x = 1

α2u
k+1
2 + β2

uk+1
2

∂x
= α2u

k
′

1 + β2
uk

′

1

∂x
if x = −δ





(4.15)

The index k
′

is hereby given by:

k
′

=

{
k if problems (4.14) and (4.15) are solved parallelly

k + 1 if problems (4.14) and (4.15) are solved sequentially
(4.16)

This iterative procedure is performed until ||uk+1
1 − uk

1|| ≤tol and ||uk+1
2 − uk

2|| ≤ tol,
where tol> 0 is an error tolerance parameter and ||.|| a suitably chosen norm.

4.2 Moving subdomains

In several applications presented in part II of this thesis solid bodies or vortices have
to be moved within the computational domain Ω. This subsection aims to examine
the different ways to move domains relative to each other.
Mainly four different approaches are possible:

1) In the sliding mesh technique different meshes can be moved along their common
interfaces, which is illustrated in Fig. 4.4. This technique is mainly applied when
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Mortar methods are combined with moving subdomains, where Mortar methods
use separate finite element discretizations on nonoverlapping subdomains. As the
different grids by definition are disjoint, this approach can not be comfortably used
when more than one entity (which can be a solid object or a vortex) has to be
tracked. As in the numerical applications in this thesis up to three entities are
moved relative to each other, the use of the sliding mesh technique is not adivsable
here.
The sliding mesh technique is a nonoverlapping DD method.

2) The fictitious domain technique [38, 39] enables to track solid bodies inside a
single background mesh, which is shown in Fig. 4.5. The boundary conditions
at the body are hereby enforced directly into the flow equations with the help of
Lagrange multipliers. As the fictitious domain technique can only be applied to
track solid bodies but not vortices, this method obviously cannot be used for the
applications of this thesis.
The fictitous domain method is no DD method, because the computation is only per-
formed on one domain.

3) The arbitrary-Lagrangian-Eulerian (ALE) technique [40] combined with an adap-
tive remeshing technique adapts the mesh in time to track the specified entity (see
Fig. 4.6). This technique works well, if the displacements are small, because then
only a minor grid adaptation is required. While the ALE-approach in principle also
allows to move both solid objects and vortices over large distances, in practice this
leads to several problems. The main drawback of this technique is that the complete
mesh has to be remeshed after every timestep, which is numerically very expensive,
if the adaptation includes large parts of the domain. Additionally the adaption can
lead to a deformed grid with badly shaped grid cells, leading to an increased numer-
ical error. If the underlying numerical code furthermore does not allow the use of
hanging grid nodes (which holds true for the DLR TAU-code), the ALE approach
can only be performed on unstructured grids. In the case of tracking a vortex this
can result in an increased vortex dissipation rate, which is undesirable.
The ALE technique is no DD method, because the computation is only performed on
one domain.

4) The Chimera technique, which is also called overset grid technique, uses mul-
tiple grids for each moving component and couples them by interpolation. This
technique, which is illustrated in Fig. 4.7, comfortably allows to move both solid
objects and vortices relative to each other. A farther advantage is that the use of
structured subgrids is problem-free. One disadvantage of the Chimera technique lies
in the overlapping part of two grids: In this area the underlying equations have to
be solved twice, which increases the computational cost. Nevertheless the Chimera
technique seems to be the most useful and flexible of all presented methods for the
performed applications in this thesis.
The Chimera technique is an overlapping DD method.
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Figure 4.4: Visualisation of the sliding mesh technique

Figure 4.5: Visualisation of the fictitious domain technique

Figure 4.6: Visualisation of the ALE technique

Figure 4.7: Visualisation of the Chimera technique
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4.3 The Chimera technique

The Chimera technique allows flow solutions on overlapping grids, where the grids
can be in relative motion to each other during a simulation.
First we want to demonstrate how the Chimera technique can be used to numerically
solve the one-dimensional Poisson problem defined in equations (4.1). Identical as
in Subsection 4.1.2 Ω is divided into two overlapping subdomains Ω1 = (−1, δ)
and Ω2 = (−δ, 1), where δ > 0. Figure 4.8 shows the Chimera setting, where the
indicated green points belong to a grid g1 that covers Ω1, while the red points are
part of a second grid g2 covering Ω2.

Figure 4.8: Overlapping subdomains using the Chimera technique: Local solutions
u1 (”green”) on grid g1 (indicated by green points) and u2 (”red”) on grid g2 (indi-
cated by red points). The local solution on Ω1 ∩Ω2 (”blue”) is identical on both g1

and g2 except for a second order spatial error, if the algorithm from definition 4.3.1
has converged.

If a second order spatial discretisation scheme (e.g. the central scheme introduced in
Subsection 2.2.3) is applied, a linear Dirichlet interpolation on respectively two grid
points is required on both grids to maintain the scheme’s second order consistency
in space. In the setting shown in Fig. 4.8 the two grid points at x = x6 and x = δ,
which belong to grid g1, and the two points at x = −δ and x = x3, which are part
of g2, are interpolation points that obtain their values by a linear interpolation from
the relative other grid. The modified iterative algorithm to solve problem (4.1) is
then given by:

Definition 4.3.1 (Modified iterative algorithm using Chimera)
Choose initial guesses u0

1 and u0
2 as solutions for the local problems (4.2) and (4.3).

Then for all k 6= 0 successively solve the following two problems:
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−∂2uk+1
1

∂x2 = f if x ∈ Ω1

uk+1
1 = 0 if x = −1

uk+1
1 = uk

2(x7) + x7−x6

x7−x5
(uk

2(x5) − uk
2(x7)) if x = x6

uk+1
1 = uk

2(x8) + x8−δ
x8−x7

(uk
2(x7) − uk

2(x8)) if x = δ





(4.17)

−∂2uk+1
2

∂x2 = f if x ∈ Ω2

uk+1
2 = 0 if x = 1

uk+1
2 = uk

′

1 (x2) + x2−(−δ)
x2−x1

(uk
′

1 (x1) − uk
′

1 (x2)) if x = −δ
uk+1

2 = uk
′

1 (x4) + x4−x3

x4−x2
(uk

′

1 (x2) − uk
′

1 (x4)) if x = x3





(4.18)

The index k
′

is hereby given by:

k
′

=

{
k if problems (4.17) and (4.18) are solved parallelly

k + 1 if problems (4.17) and (4.18) are solved sequentially
(4.19)

This iterative procedure is performed until ||uk+1
1 − uk

1|| ≤tol and ||uk+1
2 − uk

2|| ≤ tol,
where tol> 0 is an error tolerance parameter and ||.|| a suitably chosen norm.

As in Chapters 7 and 8 of this thesis unsteady two- and three-dimensional applica-
tions of the Chimera technique are presented, we next consider the implementation
of the Chimera technique in the DLR TAU-code for these cases. The major differ-
ence to the one-dimensional Poisson problem just shown is that now additionally a
hole must be cut into one of the grids. Hole cutting is required, if one of the grids
contains a solid body, if a grid lies fully embedded within another grid or if the
overlappping region of two grids is large.
To explain the principle of the implementation it is sufficient to examine the two-
dimensional case of a small cartesian grid (SG) that lies embedded within a large
cartesian grid (LG). The extension to three dimensions, the use of more than two
grids, unstructured or hybrid grids and grids that contain solid bodies is then
straightforward.
The algorithm can be divided into grid generation, hole cutting, interpolation &
solution computation and grid movement and can be stated as follows:

1. Grid generation
Generate the SG and the LG and specify their initial relative position. Figure 4.9
(left) shows the SG (solid blue lines) placed within the LG (dashed red lines). The
solid black lines belong to a so-called ”hole definition grid (HDG)”, which is required
in step 2.

2. Hole cutting
As the SG lies fully embedded within the LG, those grid points of the LG that lie
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Figure 4.9: Small cartesian grid (”SG”, solid blue lines) and boundary of a hole
definition grid (”HDG”, solid black lines) placed within the large cartesian grid
(”LG”, dashed red lines) (left) and corresponding grid points with iblank-values 0
or 2 (right)

within the region covered by the center of the SG must be excluded from the com-
putation. This action is commonly referred to as ”hole cutting”. For this purpose
first an Integer-variable ”iblank” is asigned to each grid point of both the SG and
the LG. If ”iblanki” denotes the value of grid point i, then this variable can take
the following values:

• iblanki = 0: Grid point i is located in the interior of a hole and is therefore
excluded from the computation.

• iblanki = 1: On grid point i the computation is performed normally.

• iblanki = 2: Grid point i belongs to a Chimera boundary and obtains its data
by interpolation from the respectively other grid.

Initially all iblank-values are set to 1. Next a HDG is generated and placed in the
middle of the SG, see Fig. 4.9 (left). A HDG usually consists of only one or very
few cells (in the case of cutting a hole around a complex geometry, one is possibly
forced to use a more elaborated HDG) and should be significantly smaller than the
SG to ensure a sufficiently large overlapping region of the SG and the active part of
the LG. Now the hole is cut: If a grid point of the LG lies within the domain covered
by the HDG, its iblank-value is set to 0. How these points can be determined even
in complex geometries is described by Petersson [86].

3. Interpolation and solution computation
Next the boundary conditions both at the inner boundary of the LG and at the
outer boundary of the SG have to be specified. The former boundary consists of
those points of the LG, whose spatial discretisation operator would access data from
points with an iblank-value of 0. In the case of using a central scheme for the spatial
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discretisation, this boundary is composed of a two point layer around the hole. Due
to the same argumentation, the latter boundary is also comprised of a layer of two
points. The points lying in either of these two boundaries are marked by setting
their iblank-values to 2. Figure 4.9 (right) shows all grid points containing an iblank-
value of 0 or 2, where the points with a value of 1 are omitted for better visibility.
In the inner block - which is made up of points of the LG - the hole consisting of
9 points (iblank–value 0) is surrounded by the points of the inner boundary of the
LG (iblank–value 2). The points in the outer frame (iblank–value 2) belong to the
outer boundary of the SG.
The concept of the boundary condition introduced lies in interpolating data from the
respectively other grid, while it is a priori not clear, which data should be chosen.
As Wu [132] shows that the interpolation of the numerical fluxes leads to problems,
the conservative variables are used instead. The accuracy of the interpolation is
prescribed as trilinear (for a 3D–computation), as this is sufficient for maintaining
the numerical scheme’s second order consistency in space according to Chesshire
[20]. The task of finding appropriate donor grid points, from which the data can be
obtained for interpolation, is discussed in detail in by Schwarz [99] and Holst [46].
When using dual time stepping, the original k-step low storage Runge-Kutta scheme
defined in Eq. (2.33) is replaced by the following modified Runge-Kutta scheme:
IF (iblanki ≡ 2)
Obtain ~wi

n+1 by interpolation
ELSE
~wi

(0) = ~wi
n

~wi
(1) = ~wi

(0) − iblanki · α1 ∆t ~R( ~wi
(0))

...

~wi
(k) = ~wi

(0) − iblanki · αk ∆t ~R( ~wi
(k−1))

~wi
n+1 = ~wi

(k)

where α1, . . . , αk are the normal Runge-Kutta coefficients.

4. Grid movement
If the computation has not terminated yet, optionally move simultaneously the SG
and HDG relative to the LG and go back to 2. It is important to emphasize that
the HDG remains attached to the SG during the complete computation, meaning
that their relative position never changes.
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Chapter 5

Flow over a backward facing step

As the flow over a backward facing step comprises a large region of massively sep-
arated flow, it is considered a standard testcase for DES models. For this testcase
the separation point is determined be the geometry. The aim of this section is to
show that the use of DES leads to reliable results for setups with massive separa-
tion. This model validation is necessary with regard to Chapter 8 of this thesis,
where the flow around a two-element FNG airfoil near stall both at undisturbed
and disturbed onflow conditions is considered. As one can see in Figs. 5.1 (left)
and (right), where the velocity streamlines of the backward facing step testcase and
alternatively of the flow around the FNG airfoil at undisturbed onflow conditions
is shown, both testcases include a vast separation region and can in this spirit be
regarded as similar. Both results are based on steady two-dimensional SA-RANS
simulations and the angle of attack of the FNG-airfoil is α = 10◦, which is close to
stall.

Figure 5.1: Comparison of velocity streamlines obtained by steady two-dimensional
SA-RANS simulations of backward facing step testcase (left) and of flow around
two-element FNG airfoil at α = 10◦ (right).

72
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5.1 Description of the testcase

Due to the availability of a variety of experimental data to compare with, the testcase
of Driver et al. [27] is considered in this chapter.
Let us first define the computational domain: Based on a step height of h = 0.0127m,
a length of 4h is prescribed before the step; behind the step the domain covers 25h.
The domain height is given by 8h upstream, and 9h downstream of the step, respec-
tively. In the three-dimensional computations a spanwise extension of 4h is applied.
Figure 5.2 shows a sketch of the three-dimensional domain, where additionally the
main flow direction in the center of the domain is indicated by an arrow. Viscous
walls are chosen both at the top and the bottom of the domain.

Figure 5.2: Three-dimensional computational domain.

As inflow condition a mean velocity profile based on experimental data is prescribed
by using the Dirichlet boundary condition (see Fig. 5.3 (left)). This guarantees
a correct boundary layer thickness at the complete upper wall and at the lower
wall before the step, which is essential to obtain reliable results in the region below
the step. At the outflow the subsonic outflow condition is chosen, where in the
unsteady computations the prescribed pressure is taken from the result of previously
performed steady computations. Periodic planes are assigned in spanwise direction
in the three-dimensional cases.
Results based on three structured grids are presented: While a two-dimensional
plane of the coarse grid (which is illustrated in Fig. 5.3 (right)) contains 6617 grid
points, the number of grid points of the medium grid is twice that of the coarse grid
both in x- and in z-direction, resulting in 25168 points. The fine grid is obtained
by again uniformly doubling the number of points both in x- and in z-direction
(so an x-z-plane of the fine grid contains 101861 points). All grids are adapted in
z-direction both at the upper and the lower wall to resolve the area containing the
boundary layer. Starting from the step the grids are also adapted in x-direction
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both to the left and the right in order to guarantee a sufficiently fine mesh in the
region before and after the step, which is the main region of interest. In spanwise
direction, both the coarse and the medium grid contain 33 equidistant planes, while
the fine grid is comprised of 65 equidistant planes.

Figure 5.3: Mean velocity inflow profile (left) and x-z-plane of the coarse grid (right).

The Reynolds number Reh, which is based on the the step height h and the mean
inflow velocity u∞ = 44.2 m

s
, equals 37500, and a time step size of ∆t = 1e − 5s

is chosen. From similar BFS-computations (see [64]) it could be concluded, that a
further time step reduction does not yield any accuracy improvement even on the
fine grid. Therefore the chosen time step is regarded as sufficient.
Four computations have been performed: One steady two-dimensional SA-RANS
simulation on the medium grid and three SA-DDES computations on all three grids.
The SA-DDES computations have been computed for a minimum of 10 convective
time units first. Then the flow variables u/u∞, Cf and Cp, which are presented in
Section 5.2 and the two sensors, which are subject to Section 5.3, have been averaged
in time for not less than another 10 convective time units. Finally these variables
have also been averaged in homogenous spanwise direction, such that they can be
regarded as statistically converged.

5.2 Numerical results

To get a first impression on the basic shape of the flow within this testcase, Figs.
(5.4) - (5.7) show the resulting velocity streamlines of the steady two-dimensional
SA-RANS computation on the medium grid and the three SA-DDES simulations
on the coarse grid, the medium grid and the fine grid, respectively. In the case of
the three latter results the streamlines are based on the time-averaged x- and z-
velocity. Coming from the left, the flow separates at the step and reattaches further
downstream at the lower wall. With the exception of the SA-DDES simulation on
the coarse grid, which predicts reattachment too far downstream, the other three
results look quite similar and all seem to be in relatively good agreement with the
experimentally given reattachment point of x/h = 6.38.
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Figure 5.4: Velocity streamlines of the steady two-dimensional SA-RANS computa-
tion on the medium grid.

Figure 5.5: RANS-LES distribution and mean velocity streamlines of the SA-DDES
computation on the coarse grid. Blue indicates LES-mode and red RANS-mode.

Figure 5.6: RANS-LES distribution and mean velocity streamlines of the SA-DDES
computation on the medium grid. Blue indicates LES-mode and red RANS-mode.

Figure 5.7: RANS-LES distribution and mean velocity streamlines of the SA-DDES
computation on the fine grid. Blue indicates LES-mode and red RANS-mode.
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In Figs. (5.5) - (5.7) additionally the RANS-LES distributions are illustrated, where
red indicates that the model operates in RANS-mode, while blue stands for an
LES-like behaviour. In all three figures the model operates as expected: While
the boundary layer before the step is computed in RANS-mode, the SA-DDES
model switches to LES just behind the step - which is desired, because here the
flow separation takes place. Almost the complete area behind the step is then
computed in LES-mode - which is proof that the SA-DDES model correctly detects
the separation region. The reason why the SA-DDES model switches back to a
RANS-like behaviour farther away from the wall in the SA-DDES computations
on the medium grid and on the fine grid is due to the usage of the low-Reynolds
modification defined in Eq. (3.52).

Figure 5.8: Mean velocity profiles of all performed computations at various x-
coordinates and comparison with experimental data. The letters C, M, F indicate
computations on the coarse, medium and fine grid, respectively. The lower picture
shows a zoom on the region below the step.

Next the prediction of the nondimensionalised mean velocity u1/u∞ in x-direction
is considered at various x-coordinates of the computational domain. The letters
C,M, F indicate computations on the coarse, medium and fine grid, respectively.
Figures 5.8 (upper) and (lower) show the results of all computations in comparison
with experimental data with special emphasis on the region below the step in the
latter figure. Most obvious is the insufficient velocity prediction of the SA-DDES
computation on the coarse grid. This grid is clearly too coarse to enable a realistic
flow prediction and can therefore not be recommended for further usage. The SA-
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DDES computations on the medium and on the fine grid result in similar outcomes,
where the fine SA-DDES computation is slightly superior (this is especially visible
at x/h = 4 and x/h = 8). Nevertheless a slight difference to the experiment is
still obvious even in the case of the fine SA-DDES computation. While the steady
two-dimensional SA-RANS computation on the medium grid clearly results in more
realistic mean velocity profiles than the SA-DDES computation on the coarse grid,
it is inferior to the SA-DDES simulation on the medium grid (and hereby also to
the one on the fine grid). This is already a hint, that when simulating on the same
grid the SA-DDES model is a better choice than SA-RANS within this testcase.

Figure 5.9: Skin friction coefficients of all performed computations and comparison
with experimental data. The letters C, M, F indicate computations on the coarse,
medium and fine grid, respectively. The right picture shows a zoom on the region
below the step.

One of the most important aspects within this testcase is the correct prediction of
the reattachment point, which the experiment sets at x/h = 6.38. Figures 5.9 (left)
and (right) show the skin friction coefficient on the whole domain and in the region
below the step, respectively. The SA-DDES computation on the coarse grid predicts
reattachment too far downstream, which is due to the fact that this simulation fails
to generate enough turbulent content. The SA-RANS model sees reattachment at
x/h = 6.6, which is a convincing result, although the rest of the cf -distribution does
not match the experiment as good as the SA-DDES simulations on the medium
grid and on the fine grid. Comparing the two latter simulations, a rather surprising
observation can be made: The SA-DDES computation on the medium grid seems
to be superior to the SA-DDES computation on the fine grid. Also the prediction of
the reattachment point worsens when regarding the fine computation, which gives
reattachment at about x/h = 5.2, while in the medium SA-DDES simulation the
reattachment point is predicted at about x/h = 5.9.
In order to give a possible explanation for this at first glance unexpected supremacy
of the medium SA-DDES computation over the fine SA-DDES simulation, the pres-
sure distribution is illustrated in Fig. 5.10. Here one can see that the SA-DDES
computation on the medium grid underperforms compared to the SA-DDES sim-
ulation on the fine grid: Firstly in the region starting from the step (x/h = 0) to



CHAPTER 5. FLOW OVER A BACKWARD FACING STEP 78

about x/h = 4 the medium SA-DDES computation differs vastly from the experi-
ment and secondly oscillations in the area ranging from x/h = 9 to x/h = 25 are
visible. The unexpectedly good result of SA-DDES on the medium grid regarding
cf should therefore regarded with caution -the good prediction of the reattachment
point might be due to the wrong reasons, namely differences to the experiment just
behind the step. With regard to the pressure distributions of the other two computa-
tions shown in Fig. 5.10, one can see that the SA-DDES computation on the coarse
grid once more differs immensely compared to the experiment, while the SA-RANS
computation here surprisingly seems to be even slightly superior to SA-DDES on
the fine grid.

Figure 5.10: Pressure coefficients of all performed computations and comparison
with experimental data. The letters C, M, F indicate computations on the coarse,
medium and fine grid, respectively.

The last variable to look at is the instantaneous Q-criterion, which is an indicator
for turbulent structures. In Figs. 5.11 (upper), (middle) and (lower) isosurfaces
of the SA-DDES computations at a value of Q = 200 1

s2 on the respectively coarse
grid, medium grid and fine grid are plotted. Figure 5.11 (upper) again reveals that
the coarse grid is too coarse to resolve turbulence: Almost no three-dimensional
structures can be seen and the resulting two-dimensional rolls are similar to the
typical outcome of a three-dimensional SA-RANS computation. In the case of the
SA-DDES computations on the medium grid and on the fine grid cleary three-
dimensional structures can be observed, while the scales seem to be smaller in the
fine SA-DDES computation. This outcome is hereby as expected: The finer the
grid, the smaller the resolvable turbulent structures.
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Figure 5.11: Isosurfaces of the instantaneous Q-criterion at a value of Q = 200 1
s2 .

Shown are the results of SA-DDES on the coarse grid (upper), on the medium grid
(middle) and on the fine grid (lower).

Overall the results of the backward facing step computations can be summarized
as follows: Despite some numerical instabilities observed in the pressure distribu-
tion of the medium SA-DDES computation and a reattachment prediction too far
upstream of the fine SA-DDES simulation, both computations agree comparably
well with the experimental data. This is expected, because the SA-DDES model
(and other DES models likewise) has originally been designed for testcases with
massive flow separation. The SA-DDES computation on the coarse grid performs
less accurately, because not enough turbulent content is produced, resulting in too
late reattachment and overall large differences to the experimental data. The SA-
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RANS model predicts reattachment comparably well, while it is overall inferior to
the SA-DDES computation on the medium grid and especially to the SA-DDES
simulation on the fine grid. As the fine SA-DDES computation additionally results
in the greatest amount of turbulent small-scale structures, this computation overall
can be regarded as the most reliable and accurate one.

5.3 Examination of two sensors

Additionally to the results presented in Section 5.2 two sensors have been imple-
mented and examined within this testcase. Both sensors have been averaged in
time and also in homogenous spanwise direction at the end of the computations to
guarantee statistically converged mean values.
The aim of the first sensor, which is the von Kármán length scale Lvk, is to de-
tect small–scale turbulent structures. The second sensor Indicator can be used to
guarantee a sufficiently high grid refinement in LES–regions.

5.3.1 First sensor: The von Kármán length scale

Based on Rotta’s equation for the integral length scale [95], Menter and Egorov
deduce a formulae for the von Kármán length scale [75]. They then use Lvk to modify
the Menter-SST URANS model, which results in the so-called SST-based Scale-
Adaptive Simulation (SST-SAS) model [76]. In contrast to the original Menter-
SST model the SST-SAS model is capable of adjusting to resolvable small-scale
structures, resulting in an LES-like behaviour in unsteady flow regions.
Unless higher order methods are used, the resolvable structures within a computation
cannot be smaller than the grid cell sizes. Therefore Lvk should scale with a certain
grid cell size ∆ in regions with small turbulent structures, namely flow separation
regions. As the backward facing step includes a vast region of separated flow, this
testcase is considered to be ideal with regard to test the performance of Lvk. Lvk is
given by:

LvK = κ
S

U
′′
, κ = 0.41 (5.1)

S =
√

2SijSij , U
′′

=

√√√√
d∑

i=1

d∑

j,k=1

∂2ui

∂2xj

∂2ui

∂2xk

(5.2)

where the strain-rate tensor Sij has been defined in Eq. (2.5) and d=1,2,3 denotes
the spatial dimension.
Figures 5.12 (upper), (middle) and (lower) show Lvk of the SA-DDES computations
on the relatively coarse, medium and fine grid, where especially the region below the
step is significant, because here flow separation and small-scale structures occur. Lvk

behaves as desired: The finer the grid the smaller the structures and Lvk become.
It hereby can be stated that Lvk truly is capable of detecting small–scale structures.
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Figure 5.12: Von Kármán length scale Lvk of the SA-DDES computations on the
coarse grid (upper), medium grid (middle) and fine grid (lower).

In order to use Lvk as an enhancement of the SA-DDES model (by manually switch-
ing to LES-mode in regions with massive flow separation), an adequate scaling of
Lvk with a grid parameter ∆ is required. Ideally Lvk

∆
should look similar for a set of

different grids with varying fineness.
By dx, dy, dz we denote the grid cell sizes in respectively x−, y−, and z− direction.

In [69] it was shown that ∆ := (dxdz)
1
2 leads to similar results of Lvk

∆
for grids of

different refinement in the case of isotropic grids, where the testcase considered was
an LES-simulation of a turbulent channel flow.
Unfortunately the grids used within the backward facing step computations are

highly anisotropic in large parts of the domain (see Fig. 5.3 (right)). ∆ = (dxdz)
1
2

therefore does not seem to be the correct scaling parameter. This is indicated in
Figs. 5.13 (upper), (middle) and (lower), which show Lvk

(dxdz)
1
2

on the relatively coarse,

medium and fine grid. Clearly, the values of the three computations vary immensely.
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Figure 5.13: Lvk

(dxdz)
1
2

of the SA-DDES computations on the coarse grid (upper),

medium grid (middle) and fine grid (lower).

Another approach is to choose ∆ := (V ol)
1
3 , where V ol denotes the volume of a grid

cell given by V ol = dx· dy· dz. As one can see in Figs. 5.14 (upper), (middle) and
(lower) also in this case Lvk

∆
does not look similar below the step when comparing

the different computations.
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Figure 5.14: Lvk

V ol
1
3

of the SA-DDES computations on the coarse grid (upper), medium

grid (middle) and fine grid (lower).

As a summary regarding the reliability of the first sensor Lvk it can be stated that
this sensor truly is able to detect small–scale turbulent structures. Unfortunately no
scaling parameter ∆ could be identified, such that the computations on the different
grids result in comparable outcomes of Lvk

∆
. Although it can not be ruled out that

such a parameter ∆ exists, it seems unlikely due to the use of strongly stretched grid
cells: If dx, dy and dz vary immensely within a region it is by no means straightfor-
ward to decide which size of a turbulent structure can be resolved. It therefore is
also unclear how small Lvk becomes. As the answers regarding these issues are also
highly testcase dependent, it cannot be expected to find a universal ∆ such
that Lvk

∆
looks similar for computations on differently refined anisotropic

grids for a vast set of testcases.
This leads to two possible solutions when one wants to utilize Lvk: Either mainly
isotropic grids are used or one has to find an appropriate scaling parameter ∆
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independently for each testcase. As it has been shown, finding such a ∆ can be hard
even when restricting to a single testcase.

5.3.2 Second sensor: Indicator

Another major issue when performing LES or DES computations lies in guaranteeing
a sufficiently fine grid within the LES-part. This is not only of major importance
in order to resolve small-scale structures but also with regard to the problem of so-
called modelled stress depletion, which can occur due to the use of a too coarse grid,
leading to unphysical flow separation. The phenomena of modelled stress depletion
and grid induced separation are explained and examined in detail in Section 6.2.
To overcome the just mentioned flaws, a sensor Indicator was proposed by Knopp
et al. [64], which estimates the amount of resolved turbulent kinetic energy relative
to the overall kinetic energy. If this value is sufficiently high, the grid is considered
fine enough to allow for a fully resolved LES-computation in that region. If not, the
grid has to be refined there. Indicator is defined by:

Indicator =
kres

kres + ksgs

(5.3)

where
kres = 0.5· (ui − ui)2 , ksgs = 0.5· (ui − u∆

i )2

u∆
i (x, t) =

∫

R

g∆(x− y)ui(y, t)dy

Here f again denotes the average of f in time and g∆ is the top hat filter function.
Due to its construction, Indicator can only take values within [0,1].
In [64] it has been proposed that Indicator > 0.9 suggests a sufficiently fine grid,
while Indicator < 0.8 indicates that the grid is too coarse. Values between 0.8 and
0.9 do not allow an unambiguous decision regarding the grid quality.
Figures 5.15 (upper), (middle) and (lower) show that Indicator behaves grid conver-
gent, i.e. the finer the grid the higher the values of Indicator. One can especially
see that Indicator highlights the coarse grid as insufficient for an LES-computation
in the region below the step - an assumption that is clearly supported by the results
presented in Section 5.2. While the medium grid is regarded as adequate in the area
just behind the step, Indicator shows that it needs refinement farther downstream.
The fine grid seems to be sufficiently fine everywhere. Overall the behaviour of Indi-
cator lies in very good agreement with the results shown in Section 5.2. Nevertheless
Indicator should still be tested for different testcases to evaluate its reliability in a
more general context.
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Figure 5.15: Sensor Indicator of the SA-DDES computations on the coarse grid
(upper), medium grid (middle) and fine grid (lower).

Summary of the chapter and implications on the simulation method

At the end of this and of the next two chapters we want to give a short summary
of the relatively results, where especially the implications on the applications of the
complete simulation method in Chapter 8 shall be investigated.
It has been shown that the use of the SA-DDES model leads to reliable results with
regard to mean velocity profiles, prediction of reattachment point and development
of three-dimensional turbulent structures, if the grid is fine enough. As expected,
SA-DDES is superior to SA-RANS because of the large separation region. While
the first sensor Lvk shows an overall reasonable behaviour, its practical use is limited
because no correct grid scaling parameter ∆ could be identified. The second sensor
Indicator behaves as expected and even grid convergence could be achieved.
Based on the results in this chapter, the use of the SA-DDES turbulence
model can be strongly recommended for the applications in Chapter 8.



Chapter 6

An HGR01 airfoil at stall

As the testcase considered in Chapter 5 includes a vast region of massively sepa-
rated (”detached”) flow, the SA-DDES model performed satisfactory. This could be
expected, because DES models have been designed for these kinds of flow scenarios.
In the case of mainly attached flow around a stalling airfoil, the performance of
SA-DDES is not so straightforward to predict. As in the final numerical example
shown in Section 8.4 SA-DDES is applied to the flow around a two-element airfoil
at stall, the stalling behaviour of an HGR01 airfoil is subject of this chapter. For
this testcase the separation point is not determined be the geometry. As one can
see in Figs. 5.1 (left) and (right), where the velocity streamlines of the flow around
the HGR01 airfoil and alternatively around the FNG airfoil at undisturbed onflow
conditions is shown, the separation region in the latter example is larger than in the
former testcase. Nevertheless, both testcases can be considered as similar in large
parts of the domain, because of the mainly attached flows at the relatively main
wings. Both results are based on steady two-dimensional SA-RANS simulations,
where the angle of attack of the HGR01 airfoil is α = 14◦, while the incidence angle
of the FNG-airfoil is α = 10◦. In both cases the airfoils are close to stall.

Figure 6.1: Comparison of velocity streamlines obtained by steady two-dimensional
SA-RANS simulations of flow around HGR01 airfoil at α = 14◦ (left) and of flow
around two-element FNG airfoil at α = 10◦ (right).

86
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6.1 Description of the testcase

The HGR01 is a research airfoil which has been designed to investigate the stall
process of a typical tail plane airfoil at relatively low Reynolds numbers. It has
been experimentally investigated at Re = 0.65 · 106 and Ma = 0.073 in the low-
speed wind tunnel of the Institute of Fluid Mechanics, TU Braunschweig, using static
pressure probes, oil visualization and PIV measurement techniques [130]. Although
the stall is of mixed type, i.e. a combination of laminar leading-edge separation and
turbulent separation from the trailing edge, the experiments indicate that the flow
is dominated by the trailing edge separation up to angles of attack clearly beyond
maximum lift (α = 16◦), which is the range of interest within this simulation.
In accordance with the experiments, the SA-DDES simulations are performed at
Re = 0.65·106 andMa = 0.073 and cover the stall process from almost fully attached
flow at α = 12◦ up to clear lift breakdown induced by trailing edge separation at
α = 16◦. The computational grid for the three-dimensional computations (which
is called ”original grid” from this point on) is based on a two-dimensional hybrid
RANS grid obtained from a mesh convergence study [130]. To meet the requirements
of a DES it has been further refined in the expected separation region above the
trailing-edge and the wake, yielding 650 x 112 points in the near-wall structured
part of the x-z plane, where x denotes the streamwise variable, y is associated with
the spanwise direction and z points in wallnormal direction.

Figure 6.2: Plot of the computational domain and the hybrid grid (which is also
called ”original grid”) used in the HGR01 simulation. The right picture shows a
zoom at the center, where the airfoil is located.

This two-dimensional grid, which is shown in Figs. 6.2 (left) and (right), is uni-
formly extruded in spanwise direction with an extent of 20 % chord length using
33 two-dimensional planes, resulting in 3.5· 106 grid points. In spanwise direction
periodic planes are applied and at the airfoil viscous walls are chosen. In- and
outflow is modeled by the farfield boundary condition in a distance of 100 chord
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lengths away from the airfoil, thus neglecting the effects of wind tunnel walls and
installations throughout this study. At the beginning of the computation a steady
three-dimensional SA-RANS simulation at α = 12◦ is performed, which is then used
as restart solution for the following SA-DDES computations. After having reached
a convergent behaviour of the aerodynamic coefficients cl, cd and cm, the grid is ro-
tated to increase the angle of attack by 1◦. This procedure is performed repeatedly
until the maximal angle of α = 16◦ has been reached. The chosen physical timestep
∆t = 1 · 10−4s within the dual-timestepping method is based on the expected max-
imum velocity and the target grid resolution in the LES region according to [106].
The results are compared to SA-RANS computations and experimental data.

6.2 An examination of the reliability of SA-DDES

at α = 12
◦ and necessary model modifications

Since large parts of the boundary layer are expected to remain attached even at
higher angles of attack, it is advisable to verify, if the problem of modelled stress
depletion and grid-induced separation is actually cured by the use of SA-DDES.
Modelled stress depletion can be observed frequently in SA-DES computations and
occurs when the underlying grid is fine enough too force the model into LES-mode
in large parts of the boundary layer but still is too coarse to enable a fully resolved
LES (this is also called ”underresolved” LES). As a result the eddy viscosity and
hereby also the Reynolds stresses are depleted in this part of the boundary layer:
The modelled part of them is lower compared to computing in RANS-mode and the
resolved part is too small to compensate since the grid is too coarse. The vanishing
of the Reynolds stresses then leads to unphysical grid induced flow separation.
An appropriate test case is the flow at α = 12◦, since the trailing edge separation
computed with SA-RANS is so small here, that it is safe to expect the LES region
in SA-based DDES computations to be limited to the wake region. Therefore, the
results obtained with SA-DDES should be very similar to SA-RANS along the airfoil.

6.2.1 fd functions and RANS-LES distributions

Recall, that the RANS-LES distribution in SA-DDES is based upon the function
fd, where fd ≡ 0 results in RANS-mode, while fd ≡ 1 forces the model to operate
in LES-mode. fd has been defined in Eq. (3.51):

fd = 1 − tanh(8r3
d), rd =

ν + νt

Sijκ2d2
, κ = 0.41

fd function of SA-RANS computation

As it is used as restart for the subsequent SA-DDES computations, the SA-RANS
solution is taken a closer look at first. Although fd is not used within the SA-
RANS simulation, it still can be computed and analysed. This allows to determine
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a priori, if the complete boundary layer will stay in RANS-mode when switching to
SA-DDES.
Figure 6.3 (left) and Fig. 6.4 (left) show fd of the SA-RANS simulation in the
middle of the upper surface and at the trailing edge, respectively. For comparison,
Fig. 6.3 (right) and Fig. 6.4 (right) illustrate the boundary layer thickness indicated
by the Mach number (recall that the freestream Mach number equals 0.073). In the
last picture mentioned, the approximate boundary layer thickness is additionally
indicated by a black line. One can clearly see, that fd already becomes 1 well inside
the boundary layer, which is a hint that problems may arise when switching to
SA-DDES.

Figure 6.3: Plot of fd based on the SA-RANS computation on the original grid (left)
and boundary layer thickness indicated by Mach number (right) in the middle of
the upper surface.

Figure 6.4: Plot of fd based on the SA-RANS computation on the original grid (left)
and boundary layer thickness indicated by Mach number (right) at the trailing edge.

To further study the reliability of fd, the velocity profiles of u1/u∞ (indicating the
boundary layer thickness), the eddy viscosity ratio νt/ν and fd are plotted in Fig.
6.5, where the profiles are taken in wall-normal direction at x/c = 0.9 on the upper
airfoil surface. Again, it becomes obvious that the LES-part (where fd ≡ 1) will
intrude deeply into the boundary layer when switching to SA-DDES. As expected
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the values of νt/ν coincide strongly with the boundary layer and vanish outside of
it.
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Figure 6.5: Profiles in wall-normal direction of u1/u∞, νt/ν and fd of the SA-RANS
computation at x/c = 0.9 on the upper surface.

fd functions of SA-DDES and SA-DDES16 computations

When now activating the SA-DDES model, fd should take a value of zero in the
complete attached boundary layer. Instead, only about 50 % of the strongly decel-
erated boundary layer is covered, apparently not enough to retain the required eddy
viscosity level to preserve the boundary layer shape. On the other hand, the grid
in the outer boundary-layer region is too coarse to possibly compensate the lacking
Reynolds-stress by directly resolved turbulent fluctuations.
Moreover, as fd itself depends on νt, the “shielded” part of the boundary layer that
is computed in RANS-mode becomes smaller and smaller with reduced νt, which
hereby reduces νt even further. A stable solution with fixed RANS-LES distribution
therefore cannot be reached even after a very long computational time. Figure 6.6
(left) shows the result after the simulation has been performed for three convective
time units in SA-DDES mode, where the SA-RANS solution has been taken as
restart. Due to the dysfunctional behaviour of fd, νt/ν already has been vastly
diminished and the shape of the boundary layer also has changed compared to Fig.
6.5.
As these observations are consistent with the concept of ”ambiguous” grids, which
lead to modelled stress depletion in SA-DES, it is clearly illustrated that the counter-
measures introduced with SA-DDES are not sufficient with regard to this testcase.
In particular, the empirical factor 8 in Eq. (3.50), which mainly governs the extent
of fd inside the boundary layer, is derived from a calibration based on the flat-plate
flow [109]. It therefore seems not too surprising that the original formulation partly
fails its purpose in flows, which strongly deviate from a constant pressure flow, such
as the adverse-pressure boundary layer on the HGR01 airfoil at stall.
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Figure 6.6: Profiles in wall-normal direction of u1/u∞, νt/ν and fd of the SA-DDES
computation (left) and of the SA-DDES16 computation (right) at x/c = 0.9 on the
upper surface. Both simulations were started with the same SA-RANS restart and
have then been further computed for three convective time units.

Since applying a grid coarse enough to avoid modelled stress depletion by itself is not
considered an option, a modification of fd seems inevitable. It is found that raising
the factor 8 to 16 is necessary to shield enough of the boundary layer to obtain a
solution close to SA-RANS at α = 12◦. This modified version of SA-DDES will
be referred to as ”SA-DDES16” henceforth and has been confirmed by application
to higher angles of attack, which are subject of the next section. Note, that the
standard SA-DDES model (i. e. a factor of 8 is used in the fd-formulation) is
unchanged called ”SA-DDES” and not ”SA-DDES8”.
Figure 6.6 (right) illustrates the results obtained by SA-DDES16 after three convec-
tive time units. The range, where fd ≡ 0 is notably increased compared to the left
picture and now covers most of the boundary layer. As a result, the conservation
of νt/ν is comparably good as in the SA-RANS computation. Also the shape of the
boundary layer seems not to be affected by the use of SA-DDES16.

Effect of grid modification on fd

Although the first result presented by using SA-DDES16 seems to be promising, the
increase of the factor from 8 to 16 in the fd-formulation is rather an ad-hoc fix
than a general solution to the failure of SA-DDES. Therefore also another approach
has been tested, which lies in using an alternative grid. This grid will be called
”modified grid” from now on.
The idea of using a second grid evolved from the observation, that fd is also based on
the velocity gradients. An accurate gradient approximation is numerically a difficult
task, especially when performed on unstructured grids. A modified grid could allow
an improved gradient approximation, which might then result in a correct behaviour
of fd and hereby leading to RANS-mode within the complete boundary layer.
Based on the original grid, the following modifications have been performed:



CHAPTER 6. AN HGR01 AIRFOIL AT STALL 92

In the structured part the number of wall-normal lines was increased firstly, resulting
in more quadratic cells. Secondly, the transition from the structured part to the
unstructured part – which is a highly sensitve area – was improved. Thirdly, the
unstructured part was gobally refined. All of the performed modifications were the
result of discussion with experts of grid generation and of SA-DDES within the
DLR-C2A2S2E-department and also the final modified grid was approved by them.
Figure 6.7 shows a cutout of the original grid (left) and of the modified grid (right).

Figure 6.7: Cutout of the original grid and of the modified grid.

To save computational time, all performed computations on the modified grid were
performed two-dimensionally. Again, first a steady SA-RANS simulation was ob-
tained that was then used as restart for the forthcoming SA-DDES computations,
which were performed for another three convective time units. Although operating
the SA-DDES model two-dimensionally does not make sense from a physical point
of view - turbulence is always three-dimensional - the results still allow to decide, if
the change in grids improves the shape of fd.
To examine the impact of the two modifications closer, Fig. 6.8 (left) and Fig. 6.9
(left) show fd resulting from SA-DDES16 on the original grid, while Fig. 6.8 (right)
and Fig. 6.9 (right) are based on the two-dimensional SA-DDES computation on
the modified grid. While the area, where fd ≡ 0 is clearly thicker and covers most
of the boundary layer (see Fig. 6.3 (right) and Fig. 6.4 (right)) in the SA-DDES16

simulation, fd based on the two-dimensional SA-DDES computation on the modified
grid does not seem to be changed compared to Fig. 6.3 (left) and Fig. 6.4 (left).
It therefore can already be concluded at this point, that the grid modification does
not solve the problems caused by the use of SA-DDES.
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Figure 6.8: Plot of fd of the SA-DDES16 computation on the original grid (left)
and of the two-dimensional SA-DDES simulation on the modified grid (right) in the
middle of the upper surface. Both computations were started with an SA-RANS
restart and have then been further computed for three convective time units.

Figure 6.9: Plot of fd of the SA-DDES16 computation on the original grid (left)
and of the two-dimensional SA-DDES simulation on the modified grid (right) at the
trailing edge. Both computations were started with an SA-RANS restart and have
then been further computed for three convective time units.

RANS-LES distributions of various computations

Figures 6.10 (left) and (right) and Fig. 6.11 show the resulting RANS-LES dis-
tributions and velocity streamlines of the SA-DDES computation on the original
grid, the SA-DDES16 solution on the original grid and the SA-DDES computation
on the modified grid, respectively, in the middle of the upper surface. All of these
computations were started with an SA-RANS restart and have then been further
computed for another three convective time units. While the change in grids does
not yield any improvement, the use of SA-DDES16 clearly enlarges the RANS-part
near the airfoil. In each case the reason for the model switching back into RANS-
mode farther away from the airfoil (which can be seen at the relative upper part of
the figures) is due to the use of the low-Reynolds modification.
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Figure 6.10: RANS-LES distribution and streamlines of SA-DDES (left) and SA-
DDES16 (right) on the original grid in the middle of the upper surface. Both compu-
tations were started with an SA-RANS restart and have then been further computed
for three convective time units.

Figure 6.11: RANS-LES distribution and streamlines of the two-dimensional SA-
DDES simulation on the modified grid in the middle of the upper surface. The
computation was started with an SA-RANS restart and has then been further com-
puted for three convective time units.

In Figs. 6.12–6.13 the RANS-LES distributions and streamlines of the same compu-
tations as in Figs. 6.10–6.11 can bee seen, where the focus now lies on the trailing
edge. Again, Fig. 6.12 (left) and Fig. 6.13 (left) look almost identical, which further
provides evidence that the modified grid does not improve matters. Although the
flow separation is still moderate in both computations, it already has visibly grown
larger than the one resulting from the SA-DDES16 computation on the original grid,
where the larger RANS-part prevents grid induced separation. Figure 6.13 (right)
shows that the separation even grows much larger when the SA-DDES computa-
tion on the original grid is performed for 8 convective time units. Here one can
also see that the turbulent structures on the upper surface already have vastly di-
minished the RANS-part, while νt on the lower surface has become so small, that
the low-Reynolds modification is active, resulting in a thickening of the RANS-part
there.
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Figure 6.12: RANS-LES distribution and streamlines of SA-DDES (left) and SA-
DDES16 (right) on the original grid at the trailing edge. Both computations were
started with an SA-RANS restart and have then been further computed for three
convective time units.

Figure 6.13: RANS-LES distribution and streamlines of the two-dimensional SA-
DDES computation on the modified grid (left) and SA-DDES on the original grid
(right) in the middle of the upper surface. While the left figure shows the result
after three convective time units in SA-DDES mode, the right figure is the outcome
after 8 convective time units were performed with the SA-DDES model.

6.2.2 Examination of Reynolds stress distribution

The final investigation in this section concentrates on the non-dimensionalised Reynolds
stress UW/U2

∞ resulting from the various computations. Within this testcase this
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variable ideally should be similar in the SA-DDES and SA-DDES16 computations
compared to the one obtained by SA-RANS.
As UW cannot be obtained directly, it is approximated as follows:

UW = −στ13, τ13 = τmodelled
13 + τ resolved

13 (6.1)

τmodelled
13 = −〈νt(

∂

∂x
u3 +

∂

∂z
u1)〉

≈ −〈νt〉〈(
∂

∂x
u3 +

∂

∂z
u1)〉 ≈ −〈νt〉(

∂

∂x
〈u3〉 +

∂

∂z
〈u1〉) (6.2)

τ resolved
13 =

{
− 〈u

′

1u
′

3〉

σ
if SA − DDES or SA − DDES16 computation

0 if SA − RANS computation
(6.3)

The operator 〈.〉 denotes averaging in time, ui is the i-th component of the velocity,
τ13 is one of the components of the Reynolds stress tensor, τmodelled

13 is its modelled
part, τ resolved

13 its resolved part and u
′

i is the fluctuation of the i-th velocity component
according to Eq. (3.1).

Figure 6.14: Normalised Reynolds stress UW/U2
∞ of SA-RANS (left) and SA-DDES

(right) on the original grid in the middle of the upper surface. The SA-DDES
computation was started with the SA-RANS restart and has then been further
computed for three convective time units.

Figure 6.15: Normalised Reynolds stress UW/U2
∞ of SA-DDES16 on the original

grid (left) and of the two-dimensionl SA-DDES computation on the modified grid
(right) in the middle of the upper surface. Both computations were started with the
SA-RANS restart and have then been further computed for three convective time
units.

Figures 6.14 – 6.15 show UW/U2
∞ based on the steady SA-RANS computation,

the SA-DDES simulation on the original grid, the SA-DDES16 simulation on the
original grid and the SA-DDES simulation on the modified grid, respectively, in the
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middle of the upper surface. Note, that Fig. 6.15 (right) must be treated with
caution, because a two-dimensional SA-DDES computation can not be expected
as physically correct. Besides the SA-RANS simulation, all three figures are the
outcome after three convective time units. Although Fig. 6.14 (right) and Fig. 6.15
(right) differ slightly, in both cases a loss of UW/U2

∞ starting from about x/c = 0.4
can be observed. Only the SA-DDES16 simulation conserves the Reynolds stress
comparably well as SA-RANS and hereby avoids modelled stress depletion.

Figure 6.16: Normalised Reynolds stress UW/U2
∞ of SA-RANS (left) and SA-DDES

(right) on the original grid at the trailing edge. The SA-DDES computation was
started with the SA-RANS restart and has then been further computed for three
convective time units.

Figure 6.17: Normalised Reynolds stress UW/U2
∞ of SA-DDES16 on the original grid

(left) and of the two-dimensionl SA-DDES computation on the modified grid (right)
at the trailing edge. Both computations were started with the SA-RANS restart
and have then been further computed for three convective time units.
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This observation is consistent with the results presented in Figs. 6.16 – 6.17, where
UW/U2

∞ of the same computations as in Figs. 6.14 – 6.15 are shown with focus
on the trailing edge. Again, Fig. 6.17 (right) must be treated with caution. While
the values indicated in Fig. 6.16 (right) and Fig. 6.17 (right) are almost zero, the
SA-DDES16 computation is comparably good as the one obtained by SA-RANS.

Summary of the section

Overall the results presented in this section have proven that within this testcase the
standard version of SA-DDES leads to modelled stress depletion and a subsequent
grid induced separation. Also the use of a modified grid did not overcome this flaw
of the model. As only the SA-DDES16 modification enabled a stable and reasonable
computation, only SA-DDES16 was used for the further simulations at higher angles
of attack within this testcase. The results are subject to the next section.

6.3 Results with SA-DDES16 of the HGR01 airfoil

at stall

In this section the results of the SA-DDES16 computation on the original grid at
α = 12◦ − 16◦ are presented.

Figure 6.18: RANS-LES distribution and streamlines of SA-DDES16 on the original
grid at α = 14◦ (left) and α = 16◦ (right) at the trailing edge.

As already described at the beginning of this chapter, first a steady three-dimensional
SA-RANS simulation at α = 12◦ is performed, which is then used as restart solution
for the following SA-DDES16 computations. After having reached a convergent be-
haviour of the aerodynamic coefficients cl, cd and cm, the grid is rotated to increase
the angle of attack by 1◦. This procedure is performed repeatedly until the maximal
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angle of α = 16◦ has been reached. Figures 6.18 (left) and (right) show the RANS-
LES distributions and velocity streamlines at α = 14◦ and α = 16◦, respectively.
Compared to Fig. 6.12 (right) it is obvious, that the trailing edge separation be-
comes larger with increased angle of attack. As a result also the RANS-part thickens
such that it completely contains the grown separation bubble.

6.3.1 Pressure and skin friction distributions

In Figs. 6.19 – 6.23 the pressure distributions and skin friction distributions of vari-
ous computations at different angles of attack are presented. The variables resulting
from SA-DDES16 have been averaged both in time and in spanwise direction such
that the shown results are statistically converged mean values.
For comparison, steady two-dimensional SA-RANS computations were performed
at each angle of attack. While in all figures both the results of SA-RANS and SA-
DDES16 are shown, Fig. 6.19 (left) and Fig. 6.19 (right), which are based on the
results at α = 12◦, also contain the outcome of SA-DDES both on the original grid
and on the modified grid. Here the former is based on the result after 8 convective
time units and the latter adverts to the computation after three convective time
units. As it was shown in Chapter 6.2 that these computations did not lead to
a stable and reasonable outcome, they were not perpetuated at higher angles of
attack. As no statistically converged solution could be obtained, the shown values
are based on the spanwise average of the instantaneous flow fields at the end of the
two simulations.
To evaluate the quality of the computations, also experimental data of the pressure
distributions are included in the respectively left figures. The first four figures of
the skin friction distributions additionally contain experimental data regarding the
separation point. As in the experiments this point was not fixed - it varied both
in time and in spanwise direction – both the minimum and maximum values are
shown.
In Figs. 6.19 (left) and (right) one can see that both SA-RANS and SA-DDES16

lead to similar results (the red and blue line lie on top of each other), whereas the
two SA-DDES computations predict a larger flow separation due to modelled stress
depletion. While in Fig. 6.19 (left) both SA-RANS and SA-DDES16 agree well with
the experimental data throughout most of the airfoil, some slight differences can be
observed at the upper surface near the leading edge, where the laminar separation
bubble is located. Figure 6.19 (right) again shows that SA-RANS and SA-DDES16

lead to the same outcome, while the two SA-DDES computations differ. Especially
the SA-DDES computation on the original grid, which has been performed for much
longer than all other simulations, includes a large region of flow separation. Although
the separation point predicted by SA-DDES on the original grid seems to be in good
agreement with the experimentally obtained values of the minimum and maximum
separation, it must be emphasized that this is only coincidence and should not be
regarded as a sign of model soundness.
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Figure 6.19: Pressure (left) and skin friction (right) distributions of SA-RANS,
SA-DDES16, SA-DDES on the original grid, SA-DDES on the modified grid and
comparison with experimental data at α = 12◦.

Figure 6.20: Pressure (left) and skin friction (right) distributions of SA-RANS and
SA-DDES16 on the original grid and comparison with experimental data at α = 13◦.

In Fig. 6.20 and Fig. 6.21 it is revealed that SA-RANS and SA-DDES16 also
produce almost the same results at higher angles of attack, while the differences
to the experimental data increase: Especially when looking at Fig. 6.21 (left), the
experimentally obtained Cp-values flatten out much earlier on the upper surface
than indicated by the numerical computations, which is a sign that the trailing edge
separation within the experiment is larger than in the simulations. This assumption
is further supported by Fig. 6.20 (right) and Fig. 6.21 (right): While the separation
points predicted by the numerical simulations are shifted towards the leading edge
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with increasing angle of attack, they still are located much too far downstream the
airfoil compared to the experiment.

Figure 6.21: Pressure (left) and skin friction (right) distributions of SA-RANS and
SA-DDES16 on the original grid and comparison with experimental data at α = 14◦.

Figure 6.22: Pressure (left) and skin friction (right) distributions of SA-RANS and
SA-DDES16 on the original grid and comparison with experimental data at α = 15◦.

When looking at even higher angles of attack, SA-RANS and SA-DDES16 start to
behave in a slightly different way. While the pressure distributions of the two models
still look very similar for α = 15◦ and α = 16◦ (see Fig. 6.22 (left) and Fig. 6.23
(left)), the skin friction distributions shown in Fig. 6.22 (right) and Fig. 6.23 (right)
differ slightly. This unequal behaviour of the two models is due to the fact that the
trailing edge separation increases vastly at higher angles of attack, while the RANS-
part resulting from the SA-DDES16 computation does not thicken enough to contain
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the complete boundary layer. This leads to a partially modelled stress depletion.
Compared to the experiment, both models again fail to reproduce the increased flow
separation.

Figure 6.23: Pressure (left) and skin friction (right) distributions of SA-RANS and
SA-DDES16 on the original grid and comparison with experimental data at α = 16◦.

6.3.2 Detection of three-dimensional structures

The last investigation within this chapter is concerned with the question, whether
the use of SA-DDES16 leads to the creation of three-dimensional structures at the
trailing edge and in the wake, which is highly desirable when using DES models.
As indicator to detect such structures, the instantaneous Q-criterion is referred to.
Figures 6.24 (left) and (right) and Fig. 6.25 (left) show isosurfaces of the Q-criterion
at a value of Q = 10−5 1

s2 at α = 12◦, α = 14◦ and α = 16◦, respectively. Although
the illustrated value is extremely small, still only two-dimensional rolls can be seen,
which is typical for RANS computations. It therefore can be concluded that the SA-
DDES16 model does not lead to three-dimensional structures within this testcase.
As in literature it is well-known that the use of a too coarse grid (especially in
streamwise direction), of a too small spanwise extension and a too large timestep
size can supress the evolving of three-dimensional structures within DES simulations,
all of these three parameters have been varied to examine their influence. Recall,
that all SA-DDES16 computations shown in this chapter so far were based on a
spanwise extension of 0.2c and contained 33 planes in spanwise direction. Firstly,
three simulations including a spanwise extension of 0.2c, 0.4c and 0.8c and 65 planes
in spanwise extension, respectively, were performed for 10 convective time units at
α = 14◦ with fixed timestep size ∆t = 1 · 10−4s. As restart for these simulations the
SA-DDES16 result of the original computation at α = 14◦ was doubled in spanwise
extension and - if necessary- stretched to meet the respectively spanwise extension.
Figure 6.25 (right) and Figs. 6.26 (left) and (right) show the resulting isosurfaces
of the three computations at a value of Q = 10−5 1

s2 . As still no three-dimensional
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structures can be observed, it can be concluded that neither an increase of the
spanwise extension nor a spanwise grid refinement lead to the creation of three-
dimensional structures. Additionally, all three computations were performed for
three more convective time units at a decreased timestep size of ∆t = 2.5 · 10−5s,
which also did not result in structures. As the figures of the instantaneous Q-
criterion look identical to the ones obtained at a timestep size of ∆t = 1 · 10−4s,
they are not illustrated here.

Figure 6.24: Isosurfaces of the instantaneous Q-criterion of SA-DDES16 at a value
of 10−5 1

s2 at α = 12◦ (left) and α = 14◦ (right).

Figure 6.25: Isosurfaces of the instantaneous Q-criterion of SA-DDES16 at a value
of 10−5 1

s2 at α = 16◦ (left) and α = 14◦ (right). The right figure is based on the
grid with a spanwise extension of 0.2c and 65 planes in spanwise extension.
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Figure 6.26: Isosurfaces of the instantaneous Q-criterion of SA-DDES16 at a value
of 10−5 1

s2 at α = 14◦. Shown are the results based on the grid with a spanwise
extension of 0.4c and 65 planes in spanwise extension (left) and of the grid with a
spanwise extension of 0.8c and 65 planes in spanwise extension (right).

Figure 6.27, which shows the instantaneous Cf distribution of the SA-DDES16 com-
putation at α = 16◦ on the upper airfoil surface, implies that even at the highest
angle of attack considered, the separation point does not vary in spanwise direction.
(The result is based on the grid with a spanwise extension of 0.2c and 65 planes in
spanwise extension.) This is one more proof that no three-dimensional structures
have evolved.

Figure 6.27: Instantaneous Cf distribution of SA-DDES16 at α = 16◦ based on the
grid with a spanwise extension of 0.2c and 65 planes in spanwise extension.

At this point we want to mention that an alternative scheme to discretise the con-
vectives fluxes has been implemented into the DLR TAU-code (see [124]), which
leads to the creation of turbulent three-dimensional structures in similar testcases
as the one shown here. As this scheme has not been included into the official TAU-
release at the time the HGR01 simulations were performed, it has not been used
here. Nevertheless, in the future this scheme should be applied for the flow around
the HGR01 airfoil to test, if this approach can trigger turbulent structures.
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Figure 6.28: Comparison of the lift coefficients of SA-RANS, SA-DDES16 and ex-
perimental data.

Figure 6.28 shows the Cl values given by SA-RANS, SA-DDES16 and the experiment.
While SA-RANS and SA-DDES16 predict similar values at α = 12◦−14◦, the use of
SA-DDES16 leads to a Cl breakdown at higher angles of attack, which is due to the
already mentioned beginning modelled stress depletion. As it was already shown in
Figs. 6.19 – 6.23 that the trailing edge separation is vastly underpredicted by both
models compared to the experiment, it comes with no surprise that the experimental
Cl values strongly differ from the ones resulting from the two numerical models.

Summary of the chapter and implications on the simulation method

As conclusion of Chapter 6 it has been shown that the use of the standard SA-DDES
model applied to the HGR01 airfoil at stall leads to a diminished RANS part. As
a consequence, modelled stress depletion and grid induced flow separation occurs,
which prevents the performance of a stable and reasonable computation. Also a
modification of the underlying grid was not capable of eliminating these flaws in the
model. Only the use of a modified version of SA-DDES (”SA-DDES16”) prevented
the loss of the Reynolds stresses and resulted in similar outcomes as SA-RANS com-
putations. Despite the variation of several parameters- spanwise extension, spanwise
grid refinement and timestep size - the use of the SA-DDES16 model did not result
in desirable three-dimensional structures in the region of the trailing edge separation
and the wake.
Based on the results in this chapter, the use of the SA-DDES turbulence
model can be restrictedly recommended for the applications in Chapter
8. If the RANS part is ensured to cover the complete attached boundary
layer at the wing, the model can be expected to perform satisfactory.



Chapter 7

Transport and collision of vortices

The aim of this chapter is to verify and validate the Chimera technique applied
to two-dimensional simulations of transported large-scale vortices and vortex-airfoil
interactions. The principle can be described as follows: Firstly, one or more ana-
lytical vortices are interpolated onto a fine cartesian vortex transport grid, which
lies embedded within a background grid. Both the vortex and the vortex transport
grid are then simultaneously moved with the freestream velocity to the right. In the
case of a subsequent vortex-airfoil interaction the vortex transport grid is stopped
just before reaching the airfoil, while the vortex continues to move to the right. The
vortex-airfoil interaction eventually takes place on the background grid.
The investigations in this chapter are especially significant with regard to Chapter
8, where a vortex has to be transported through a coarse background grid. Also the
vortex-airfoil interactions are an important part of the simulations in Chapter 8. As
one can see in Figs. 7.1 (left) and (right), where the vorticity of the NACA 0012
testcase in Section 7.3 and alternatively of the testcase in Section 8.4 is shown, both
setups are highly similar.

Figure 7.1: Vorticity of NACA 0012 testcase in Section 7.3 (left) and isosurfaces of
the vorticity at a value of 100 of testcase in Section 8.4 (right).
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7.1 Description of the testcases

In this section a short overview of the presented testcases is provided. The first three
examples in Section 7.2 consider the transport of analytical finite vortices due to
an external convection field, where especially the vortex decay in time is examined.
Firstly, a vortex is resolved on a fine vortex transport grid that is moved together
with the vortex relative to a background grid by applying the Chimera technique.
In the second example a much coarser background grid is used instead. In the third
example the convection of three finite vortices (who are almost not interacting due
to their sufficiently large mutual distance) is examined numerically. In Section 7.3
the collision of a finite vortex and a NACA 0012 airfoil at α = 0◦ is simulated.
The final example shown in Section 7.4 examines the interaction of a vortex and an
ONERA-A airfoil at α = 13.3◦, leading to flow separation at the trailing edge.
In all cases the farfield boundary condition is applied at the inflow and outflow.
Farfield is also chosen at the upper and lower wall in the first three examples.
Viscous wall are prescribed at the two bodies in the two final testcases.
In all numerical examples shown one or more finite vortices, which were defined in
definition 2.2.1, are initialised onto a vortex transport grid and then moved together
with the latter through the background grid. The velocity relative to the background
grid is denoted by v and its x- and z-components by vx and vz, respectively.
To be precise, one has to distinguish between v∞ and the velocity vvg by which the
vortices are transported through the domain. As in all examples both velocities are
equal in magnitude and direction, only v∞ will be specified in order to keep the
notation simple. Also the so-called local velocity

vlocal = ((vx − v∞,x)
2 + (vz − v∞,z)

2)
1
2 (7.1)

is helpful when dealing with moving grids, where v∞,x and v∞,z are the x- and z-
components of v∞, respectively. Note, that vlocal is identical to vφ on the vortex
transport grid (with respect to the local coordinates xlocal and zlocal of the vortex
transport grid), if vvg equals v∞. This holds always true with the exception of the
final parts of the two examples in Section 7.3 and 7.4, where the vortex transport
grid is stopped, while v∞ remains nonzero.

7.2 Examinations of vortex transport

This section considers two-dimensional simulations of transported analytical vor-
tices. The aim is to determine, whether the vortices can be preserved without
loosing them due to numerical dissipation. Also the influence of using a coarse
background grid and the simultaneous transport of more than one vortex is subject
of this section.
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Figure 7.2: Relative position of the background grid and the vortex transport grid
at beginning (left) and end (right) of examples 7.2.1, 7.2.2 and 7.2.3.

7.2.1 Transport of a finite vortex within a fine background
grid

In this first Chimera example the transport of a finite vortex is simulated, where
both the background grid and the vortex transport grid are fine. The equidis-
tant background grid covers the rectangular area given by (x, z) ∈ [−50m, 150m] ×
[−50m, 50m] and it contains 601×201 grid points. The vortex transport grid, which
is adapted similar as in Fig. 2.5, covers the domain (xlocal, zlocal) ∈ [−25m, 25m] ×
[−25m, 25m] and contains 201 × 201 grid points. The cells of the background grid
and of the outer edge of the vortex transport grid are of approximately equal
size, which allows a reasonable interpolation. At the beginning of the computa-
tion xlocal equals x, which results in a relative position of both grids at t = 0s as
shown in Fig. 7.2 (left). The hole definition grid covers the area (xlocal, zlocal) ∈
[−23m, 23m] × [−23m, 23m] and the finite vortex is defined by the properties Γ0 =
60, rc = 2m, rm = 4m, ro = 10m, δ = 10m2 and its center is located at (xlocal, zlocal) =
(0m, 0m). Both v∞,x and vvg,x are prescribed as 50 m/s. A time step size of
∆t = 10−2s is chosen and the computation is performed until 2s of physcial time
have elapsed. At the end of the simulation both the vortex transport grid and the
vortex have moved 100m to the right. Figure 7.2 (right) shows the relative position
of both grids at the end of the computation.
Figure 7.3 (left) shows vlocal at various times, where again only the values at points
(xlocal, zlocal) ∈ [0m, 10m] × {0m} are displayed. Comparing Fig. 7.3 (left) with the
results obtained in Subsections 2.2.4, 2.3.3 and 2.4.3 vlocal seems to sustain longer
in the Chimera example shown here.
So the most important result of this first Chimera example is the observation that
the use of the Chimera technique does not increase the dissipation of the vortex in
an unphysical way.

7.2.2 Transport of a finite vortex within a coarse background

grid

The goal of this example is to examine whether the good resolution in exam-
ple 7.2.1 can be retained when choosing a background grid that is much coarser
than the vortex transport grid. The equidistant background grid now contains
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Figure 7.3: Local velocity at various times and (xlocal, zlocal) ∈ [0m, 10m]× {0m} in
example 7.2.1 using a fine background grid (left) and example 7.2.2 using a coarse
background grid (right).

101 × 51 grid points. The area covered by the hole definition grid is reduced to
(xlocal, zlocal) ∈ [−18m, 18m] × [−18m, 18m], which is necessary to ensure a suffi-
ciently large overlapping region of the vortex transport grid and the active part of
the background grid. All other data remain unchanged compared to example 7.2.1.
Figure 7.3 (right) shows vlocal displayed at the same time and space coordinates as
in Fig. 7.3 (left). Comparing both figures, no significant differences can be noticed.
This shows that a coarse background grid does not noticeably increase the numerical
dissipation.

7.2.3 Transport of three finite vortices within a coarse back-

ground grid

The aim of this third Chimera example is to demonstrate that the method can be
used for the transport of more than one vortex. Compared to example 7.2.2, only
two changes are accomplished. Firstly, three finite vortices are initialised at the
beginning. The first vortex is defined by the properties Γ0 = 160, rc = 3m, rm =
6m, ro = 12m, δ = 10m2 and its center is located at (xlocal, zlocal) = (−8m, 8m), the
second vortex is defined by Γ0 = 63, rc = 2m, rm = 4m, ro = 10m, δ = 10m2 and its
center is located at (xlocal, zlocal) = (10m, 10m), whereas the third vortex is defined
by Γ0 = 37, rc = 1.6m, rm = 3.2m, ro = 8m, δ = 10m2 and its center is located at
(xlocal, zlocal) = (3m,−10m).
As an adaption of the vortex transport grid does not seem reasonable when trans-
porting more than one vortex, the vortex transport grid that again consists of
201 × 201 grid points is secondly chosen as equidistant.
Figures 7.4 (left) and (right) show vlocal at start and end of the computation, re-
spectively, on a cutout of the computational domain. One can see that the three
vortices have been conserved satisfactory. Noticeable is also the very limited inter-
action between the vortices due to their relatively large mutual distance.
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Figure 7.4: Local velocity at beginning (left) and end (right) of example 7.2.3.

Overall this third Chimera example shows that the transport of more than one finite
vortex does not cause additional problems.

To sum up Section 7.2 we have shown that the Chimera technique allows to preserve
transported vortices. Also the use of a coarse backgorund grid and the transport of
more than one vortex does not result in an increased numerical dissipation.

7.3 Vortex interaction with a NACA 0012 airfoil

at α = 0
◦

In this example the interaction between a finite vortex and a NACA 0012 airfoil is
simulated.

Figure 7.5: Relative position of the background grid, the vortex transport grid and
the airfoil at t = 0s in example 7.3.

As one can see in Fig. 7.5 the background grid describes a circular area of ra-
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dius 100m. It consists of 55558 grid points and contains the airfoil in its center.
The chord length is prescribed as 1m and the angle of attack is α = 0◦. The
Reynolds number and Mach number are Re = 3.8 × 106 and Ma = 0.15. v∞,x

and vvg,x are prescribed as 50 m/s. The background grid is of hybrid type and
is composed of prismatic elements in the boundary layer and tetrahedral cells in
the outer domain. At t = 0s the vortex transport grid, which contains 151 × 151
points, covers the domain (x, z) ∈ [−65m,−35m] × [−15m, 15m] or accordingly
(xlocal, zlocal) ∈ [−15m, 15m] × [−15m, 15m]. Due to reasons explained in the third
part of this example an equidistant vortex transport grid is chosen. Figure 7.5
shows the relative position of the vortex transport grid and the background grid at
the beginning of the computation. The airfoil can hardly be seen in the center of
the background grid.
As the background grid is finer towards the airfoil, the hole definition grid is not
placed in the center of the vortex transport grid, but is shifted 1m to the right. This
results in a hole definition grid covering the area (xlocal, zlocal) ∈ [−9m,−11m] ×
[−10m, 10m].
The computation is divided into three parts. First a steady computation is per-
formed in order to obtain a stable restart solution. Note that at this stage the finite
vortex has not been inserted into the flow field yet.
Only at the beginning of the second part of the computation the finite vortex is
initialised in the center of the vortex transport grid. It is defined by the properties
Γ0 = 60, rc = 1.5m, rm = 3m, ro = 7m, δ = 5m2 and its center is located at
(xlocal, zlocal) = (0m, 0m).
Figures 7.6 (left) and (right) show vlocal on the vortex transport grid and around
the airfoil, respectively, after the initialisation of the vortex. Note that the distance
of the finite vortex and the airfoil is chosen sufficiently large so that initially the
presence of the vortex does not influence the flow around the airfoil.

Figure 7.6: Local velocity after the initialisation of the finite vortex at t = 0s in
example 7.3.
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A time step size of ∆t = 10−4s is chosen. The simulation is then performed until
0.66s of physical time have passed, which marks the end of the second part of the
computation. At this time the distance of the right boundary of the vortex transport
grid to the airfoil is only 2m. Figure 7.7 (left) shows vlocal on a domain of interest
at t = 0.66s; the boundary of the vortex transport grid is displayed, too. In Fig.
7.7 (right) vlocal is presented in more detail around the airfoil. Comparing Fig. 7.7
(right) with Fig. 7.6 (right), no major differences can be noticed except to the right
of the trailing edge. This indicates that the flow fields of the vortex and around the
airfoil have not interacted directly yet.

Figure 7.7: Local velocity at t = 0.66s in example 7.3. The vortex transport grid is
stopped at this stage.

While the vortex continues to move to the right, the vortex transport grid is stopped
at the beginning of the third part of the computation. This is due to two reasons:
Firstly the vortex transport grid and the airfoil must not overlap, as in this case no
donor grid cells which are required for the Chimera interpolation onto the vortex
transport grid, are existent in the region covered by the airfoil. Secondly the grid
cells of the background grid close to the airfoil are much finer than the cells of the
vortex transport grid. Therefore the vortex is better resolved on the background
grid in this region.
As the computation proceeds, the vortex passes the area covered by the hole defini-
tion grid and reaches the artificial boundary around the hole of the background grid.
Here it is then successively interpolated completely onto the background grid. At
this stage the reason for choosing an equidistant vortex transport grid becomes obvi-
ous: Whereas an adapted vortex transport grid, as it is shown in Fig. 2.5, is advanta-
geous when using a single vortex resting in the center, such a grid is not appropriate
in the case of a vortex moving across the coarser grid part at the boundary. The
interpolation is further improved by increasing the hole definition grid 2.5m towards
the right at the beginning of the third part of the computation, which leads to finer
grid cells in the right part of the artificial boundary of the background grid. The new
hole definition grid covers the area (xlocal, zlocal) ∈ [−9m,−13.5m] × [−10m, 10m].
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This approach is mathematically correct, because it is uncritical to increase the set
of grid points that are excluded from the computation.
Figure 7.8 (left) shows vlocal after 1s of physical time has elapsed. The major part of
the vortex has already been interpolated onto the background grid, which is empha-
sized by showing the right boundary of the vortex transport grid (the interpolation
is performed somewhat left of this boundary). Comparing Fig. 7.8 (right), which
shows vlocal near the airfoil, with Fig. 7.7 (right), one can see that the vortex is
intensely interacting with the flow around the airfoil. The vortex core has split into
two halves.

Figure 7.8: Local velocity at t = 1s in example 7.3.

Figure 7.9: Local velocity at t = 1.3s in example 7.3.

The computation is continued until 1.3s of physical time have passed. Figure 7.9
(left) shows that the vortex core, which is located approximately 15m to the right
of the airfoil, has reunited. Although the shape of the vortex has been mostly
recovered, the magnitude of vlocal has noticeably decreased. Comparing the flow
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around the airfoil before (see Fig. 7.7 (right)) and after the interaction of the vortex
and the airfoil (see Fig. 7.9 (right)), one can see that both velocity distributions
look very similar. This indicates that the flow around the airfoil has normalised
again after 1.3s. As continuing the computation would move the vortex onto cells
too coarse to reasonably resolve it, the simulation is stopped at this stage.

Figure 7.10: Time history of force, drag and moment coefficients (left) and compar-
ison of Cp distributions (right) in example 7.3.

Figure 7.10 (left) shows the time history of Cl, Cd and Cm. The results can be
interpreted as a change in the effective incidence angle. During the first half period
the effective α is increased, which results in positive values of Cl and Cm. Then α
is effectively decreased in the second half period, leading to negative Cl and Cm–
values. At t = 0.981s the lift coefficient reaches its maximal value of Cl = 0.4097
and the associated moment coefficient equals Cm = 0.0966.

Comparison to steady computation and flapping wing simulation

At this point it is interesting to study which values of α and Cm correspond to a
Cl–value of 0.4097 in the case of undisturbed onflow conditions. For this purpose
the first part of example 7.3 – a steady computation without vortex initialisation –
is performed again with the difference that a target Cl–value of 0.4097 is prescribed.
Starting with α = 0◦, the angle of attack is then iteratively increased by rotating the
wing upwards around the quarter point until the target Cl–value has been obtained.
The resulting values are α = 3.704◦ and Cm = 0.1012, which is a good agreement
with the Cm–value in example 7.3. Another analogy of both computations can
be seen when looking at the pressure distributions, which are shown in Fig. 7.10
(right). The solid lines belong to the computation with a prescribed Cl–value of
0.4097, whereas the dashed lines correspond to example 7.3 at t = 0.981s. Except
at the leading edge of the airfoil, both curves almost coincide.
Finally a simulation of a flapping NACA 0012 airfoil is performed with an amplitude
of the pitching motion of ∆α = 3.704◦ and a period of 0.25s. Figure 7.11, which
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shows the Cl time histories of the Chimera simulation and of the flapping airfoil,
indicates that the two curves vary by about 25% in magnitude and that the flapping
wing computation results in a phase transition compared to the Chimera outcome.
From an engineering point-of-view the flapping wing simulation can be regarded as
satisfactory because of the simpler computational setup and the less computational
time required. In contrast, the Chimera simulation is more complex and time-
consuming, but also leads to more reliable and detailled results.

Figure 7.11: Time history of lift coefficient of Chimera simulation and of flapping
wing computation in Section 7.3.

7.4 Vortex interaction with an ONERA-A airfoil

at α = 13.3◦

In this final example within this section the collision of a vortex and an ONERA-
A airfoil with chord length c = 1m at α = 13.3◦ is simulated. At this angle of
attack the airfoil is already close to stall even at undisturbed onflow conditions.
The subsequent collision with a vortex is therefore expected to result in stall. The
setting is described by Re = 2.0 × 106,Ma = 0.15, v∞,x = vvg,x = 51.5m/s and
∆t = 2.5· 10−4s. The finite vortex is defined by exactly the same properties as in
example 7.3 and also an equidistant vortex grid is chosen here. The background
grid constitutes of 38668 grid points. As the previous examples have shown that
the vortex transport over a large distance does not have a significant impact on the
simulation, the distance is shortened in order to reduce CPU-time. The computation
is therefore only performed for 0.42s.
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Figure 7.12: Vortex grid and vlocal at t = 0s (left) and t = 0.16s (right) in example
7.4.

Figures 7.12 (left) and (right) show the relative position of the vortex grid, the
vortex and the airfoil at t = 0s and t = 0.16s, respectively. The vortex grid is
halted then. Figure 7.13 (left) shows vlocal after 0.3s of physical time has elapsed.
The vortex has been mostly interpolated onto the background grid and is intensely
interacting with the airfoil flow. As after 0.42s the vortex has passed the airfoil (see
Fig. 7.13 (right)), the computation is stopped.

Figure 7.13: Vortex grid and vlocal at t = 0.3s (left) and t = 0.42s (right) in example
7.4.

Contrary to the previous example, flow separation occurs at the trailing edge of
the airfoil due to the vortex interaction. This is indicated in Fig. 7.14 (left), which
shows the pressure distribution at t = 0.3s. Figure 7.14 (right), which illustrates the
time history of the force and moment coefficients, shows that the vortex interaction
can again be interpreted as a change of the effective incidence angle.
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Figure 7.14: Pressure distribution at t = 0.3s (left) and time history of force and
moment coefficients (right) in example 7.4.

Summary of the chapter and implications on the simulation method

As conclusion of Chapter 7 we have shown in examples 7.2.1-7.2.3 that the Chimera
technique minimises the numerical dissipation of transported vortices, even in the
case of a coarse background grid or the simultaneous transport of more than one
vortex. The subsequent vortex-airfoil interactions in Sections 7.3 and 7.4 performed
problem-free and in both cases a large impact on Cl could be verified due to the
collision of the vortex. In contrast to example 7.3, flow separation at the trailing
edge could be observed in example 7.4 due to the vortex interaction. Both the NACA
0012 and the ONERA-A testcase have shown that the vortex-airfoil interaction can
be interpreted as a change of the effective angle of attack. While the computation
of a flapping NACA 0012 airfoil at the end of Section 7.3 was capable of predicting
the correct trend of a vortex-airfoil interaction, the Chimera simulation in Section
7.3 lead to more accurate results. Overall, this proves that the Chimera technique
is essential for the regarded applications.
Based on the results in this chapter, the use of the Chimera technique
can be strongly recommended for the applications in Chapter 8.



Chapter 8

Applications of the simulation
method

The aim of this last chapter of the numerical applications is to combine both the
SA-DDES model and the Chimera technique to simulate the interaction of a real-
istic vortex with a two-element FNG(”Flügel neuer Generation”–”new generation
airfoil”) airfoil near stall.
The principle is illustrated in Fig. 8.1: Situated within a wind tunnel grid (”orange”)
lies a NACA0021-airfoil grid (”red”) just behind the inflow boundary. The wing
is flapped upwards, resulting in a realistic vortex evolving from the trailing edge,
which is interpolated onto a fine equidistant cartesian vortex transport grid (”blue”).
Both the vortex and the vortex transport grid are then moved with the freestream
velocity towards the FNG grid (”green”). Just before reaching the latter the vortex
transport grid is stopped and the vortex is interpolated onto the FNG grid, where
the interaction can be studied. As the incidence angle of the FNG airfoil before the
arrival of the vortex is already chosen close to stall, the effect of the vortex-FNG
interaction is expected to result in detectable flow separation at the FNG airfoil.
The three-dimensional setup shown in Fig. 8.1 is used both in Section 8.3 and in
Section 8.4, where the SA-URANS and alternatively SA-DDES model are applied.

Figure 8.1: Three-dimensional setup including grids to create and transport a real-
istic vortex and to simulate its interation with a two-element airfoil near stall.
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Beforehand, several preexaminations are presented in this chapter:
In Section 8.1 steady two-dimensional RANS computations of an FNG airfoil situ-
ated in a wind tunnel are shown. The simulations have been performed at various
angles of attack at undisturbed onflow conditions and both the SAO model and the
Menter-SST model have been applied. The aim is twofold: Firstly the influence of
the turbulence model is examined and secondly the angle of attack leading to stall
is detected. Additionally, a grid convergence study is performed.
In Section 8.2 two-dimensional URANS simulations to generate and transport a
realistic vortex and to simulate the vortex-FNG interaction are shown, where the
principle is identical to the one just described. Again, both the SAO model and the
Menter-SST model have been applied. Additionally, both a small and a large airfoil-
to-airfoil distance (defined as distance between the trailing edge of the NACA0021
airfoil and the leading edge of the FNG airfoil) of 2m and alternatively 4m has
been used, resulting in an overall of four simulations. Besides identifying the most
promising numerical setting for the three-dimensional simulations performed in Sec-
tion 8.3 and 8.4, the major goal of Section 8.2 is to check whether stall occurs due
to the vortex-airfoil interaction.
In Fig. 8.2 and Fig. 8.3 two-dimensional cutouts of the four Chimera grids used in
this chapter are shown. For better comparison of the varying grid refinements, all
cutouts are of an equal size of 0.4m × 0.4m. The NACA0021 grid (containing ap-
proximately 33000 grid points per two-dimensional plane) and the FNG grid (45000
points) cover a circular area of radius 0.5m and respectively 0.6m and are of hybrid
type. The two airfoils are positioned in the center of their relative grid, where the
NACA0021 airfoil has a chord length of 0.3m and the FNG airfoil one of 0.6m. (The
chord length of the FNG airfoil corresponds to cruise configuration, whereas in this
chapter take-off configuration is considered. Therefore the actual length of the FNG
airfoil is larger than its chord length.) While the quadratic vortex transport grid
(1512 ≈ 23000 points) of size 1m × 1m looks relatively coarse in comparison, it is
considered fine enough to conserve the vortex, because the grid is equidistant and
cartesian and the transport distance is much shorter than in all previous simulations
shown in Chapter 7. The three Chimera grids lie embedded in the coarse wind tun-
nel grid (12000 points), which is also equidistant and cartesian and covers an area
of 1.3m × 6m. Overall a two-dimensional plane containing all four Chimera grids
(as is used in Section 8.2) contains approximately 114000 grid points.
In all simulations in this chapter Re = 2.0×106 (with respect to c=0.6m) and Ma =
0.15 have been used. At the in- and outflow of the wind tunnel the farfield boundary
condition is applied, while at the upper and lower end of the wind tunnel inviscid
walls are utilised, thus neglecting the viscous effects of the wind tunnel walls. At the
two airfoils viscous walls are chosen. For the three-dimensional computations a two-
dimensional plane containing the four Chimera grids has been uniformly extruded
in spanwise direction with an extent of 40 % chord length using 49 two-dimensional
planes, resulting in 5.6· 106 grid points. As the periodic plane condition can not be
combined with the Chimera technique in the DLR TAU-code, the symmetry plane
condition has been used instead for the boundaries in spanwise direction.
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Figure 8.2: Cutout of size 0.4m × 0.4m of NACA0021 grid (left) and of vortex
transport grid (right)

Figure 8.3: Cutout of size 0.4m× 0.4m of FNG grid (left) and of wind tunnel grid
(right)

8.1 Two-dimensional (U)RANS simulations of an

FNG airfoil at undisturbed onflow conditions

The aim of this section is to determine the angle of attack leading to stall at the
FNG airfoil at undisturbed onflow conditions. Based on this information an angle
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just before stall is chosen in Sections 8.2- 8.4, such that the subsequent vortex-airfoil
interaction should lead to massive flow separation at the FNG airfoil. Additionally,
the effect of different turbulence models is examined in this section by using both
the SAO and the Menter-SST model.
Figure 8.4 shows the numerical setup utilised in this section, where the origin re-
garding the x-z coordinates is set at the lower left wind tunnel corner. At α = 0◦

the left boundary of the FNG grid is located at an x-position of 2.85m and the lower
boundary at a z-position of 0.05m. All simulations have been performed stationary
and both multigrid and low Mach number preconditioning have been used.

Figure 8.4: Numerical setup used in Section 8.1

Figures 8.5–8.9 show the pressure distributions of both the SAO and the Menter-
SST model at various angles of attack, where the results at the wing and the flap are
colored differently to enable distinction. Besides slight differences in the hight of the
suction peak, in the levels on the upper wing surface and the behaviour on the upper
side of the flap, both turbulence models result in very similar Cp-distributions in
the range of α = 0◦−8◦. The differences of the two models become more significant
at 10◦ and 11◦. At 12◦ the Menter-SST model predicts complete flow separation on
the wing and also looks somewhat unsteady on the upper flap side, where it must
be stated that this computation was the only one in this section that did not fully
converge to a steady state solution. In contrast, the SAO model still results in fully
attached flow at 12◦. To determine the incidence angle leading to stall when using
SAO, α is further increased to 13◦. This finally results in stall as can been seen in
Fig. 8.9.

Figure 8.5: Pressure distributions of the SAO model and the Menter-SST model at
α = 0◦ (left) and α = 2◦ (right).
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Figure 8.6: Pressure distributions of the SAO model and the Menter-SST model at
α = 4◦ (left) and α = 6◦ (right).

Figure 8.7: Pressure distributions of the SAO model and the Menter-SST model at
α = 8◦ (left) and α = 10◦ (right).

Figure 8.8: Pressure distributions of the SAO model and the Menter-SST model at
α = 11◦ (left) and α = 12◦ (right).
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Figure 8.9: Pressure distribution of the SAO model at α = 13◦.

To further investigate the phenomena occuring at stall, Fig. 8.10 shows the skin
friction coefficients of both models in the case of their relative ”stall” angles. In-
dependently of the model the wing completely detaches, while the flow at the flap
remains attached.

Figure 8.10: Skin friction distributions of the SAO model and the Menter-SST model
at the angles of attack leading to stall.

Figure 8.11, which shows the lift coefficients of the two models at all investigated
angles of attack, supports the observations made from the pressure and skin friction
distributions. Despite slight differences in the level of Cl, both models show a similar
behaviour in the range of α = 0◦ − 8◦. At higher angles of attack the differences
become more obvious and Cl,max is reached at α = 8◦ when using the Menter-SST
model, whereas only at α = 10◦ with the SAO model. Due to stall a large lift
breakdown can be observed at 12◦ with the Menter-SST model and at 13◦ with
SAO.
Based on the results obtained so far we choose – independently of the turbulence
model – an angle of attack of 10◦ before the arrival of the vortex in Sections 8.2- 8.4.
This incidence angle is considered close enough to stall, such that the vortex-airfoil
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Figure 8.11: Comparison of the lift coefficients in the stationary RANS simulations.

interaction should result in massive flow separation. It is also easier to compare the
performance of both models, if the same original angle is selected.

Grid convergence study

When using a converged steady solution as restart for a subsequent simulation util-
ising dual time stepping, it is expected that the solution and therefore also Cl does
not change in time. Surprisingly, this proved to be wrong in this testcase for α = 10◦

when using a time step size of 10−4s. Independently of the turbulence model, strong
Cl-oscillations occured almost immediately after switching to dual time stepping.
The resulting Cl based on SAO is shown as solid black line (”Coarse w. Pr.” in the
legend) in Fig. 8.12.

Figure 8.12: Lift coefficients of various unsteady SAO simulations at α = 10◦ in the
grid convergence study.
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This unsteadiness causes serious problems when performing simulations including a
vortex-airfoil interaction, because the Cl-oscillations superimpose the effect of the
vortex. One should therefore aim to dampen Cl, but only if the unsteadiness is due
to numerical reasons. If on the other hand the Cl-oscillations are based on an actual
physical phenomenon, one has to accept Cl as it is. The rest of this section is devoted
to examine this question, whereas it is obvious that a solid proof of such a physical
phenomenon can only be provided by performing wind tunnel experiments and not
by means of numerical simulations. Nevertheless, a numerical investigation can still
give hints regarding the nature of the Cl-oscillations by systematically investigating
all possible numerical reasons causing the unsteadiness. As both turbulence models
result in similar magnitudes and periods regarding the Cl-oscillations, only the SAO
model will be used from this point on.
The following variations in the numerical setup had no significant impact on Cl:

• Instead of inviscid walls at the upper and lower ends of the wind tunnel grid
the farfield boundary condition was chosen to check whether reflections at
these walls are the source of the unsteadiness.

• The time step size was reduced to 10−5s.

• The angle of attack was varied to 2◦ and 6◦.

• To check, whether reflections from the outflow boundary are responsible, the
outflow boundary condition was changed to ”exit pressure outflow”.

• To furthermore exclude the outflow boundary as source of the oscillations,
a simulation using a wind tunnel grid enlarged by 100m to the right was
performed. If the outer boundary, where again farfield was utilised, was the
cause of the unsteadiness, the period of the oscillations should have increased.

One parameter that did turn out to have a huge impact on Cl was low Mach number
preconditioning (see Subsection 2.4).
While all computations performed to this stage included preconditioning, the dashed
black line (indicated as ”Coarse wo. Pr.”) in Fig. 8.12 shows the behaviour of Cl

when this parameter is switched off. As restart a steady-state solution without
preconditiong was used at t = 0s. While still not resulting in a constant Cl-value,
the oscillations have decreased immensely.
How can this strong effect of low Mach number preconditioning be explained? It
is well-known that the use of preconditioning reduces the numerical dissipation.
Turning off preconditioning may therefore lead to a dissipation of the flow structures
responsible for the Cl-oscillations.
To further investigate this assumption, a grid convergence study of the FNG grid
has been performed. As the magnitude of numerical dissipation decreases with finer
grids, also the two Cl-curves should coincide the better the finer the grid when
comparing the solutions with and without using preconditioning.
Based on the so-far used ”coarse” FNG grid (45000 points per two-dimensional
plane) a medium and a fine grid have been built by performing the following refine-
ments:
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• While the coarse grid contains 30 structured prismatical layers at the body,
both the medium and the fine grid comprise 45. As additionally the stretching
ratio in wall-normal direction was drastically reduced, the domain covered by
the structured grid part is nevertheless smaller than in the coarse grid.

• The number of surface points has been increased, resulting in a higher resolu-
tion in streamwise direction.

• The unstructured part in the area starting from the middle of the main wing
to just behind the flap was refined both below and above the body, because
this is the region where instationarities are expected to evolve.

A two-dimensional plane of the medium FNG grid contains 84000 grid points, while
the fine grid is made up of 128000 points. Figure 8.13 shows the same cutouts of
the medium and respectively fine grid that was already illustrated in Fig. 8.3 (left)
for the coarse grid. Especially the reduced domain size of the structured parts and
the refined unstructured areas are clearly visible.

Figure 8.13: Cutout of size 0.4m× 0.4m of the medium FNG grid (left) and of the
fine FNG grid (right) used in the grid convergence study.

The position of both the medium and the fine FNG grid relative to the wind tunnel
grid is identical to the one shown in Fig. 8.4. In all computations the incidence
angle of the FNG airfoil is 10◦. Due to the use of three grids and utilising or alter-
natively switching off low Mach number preconditiong, a total of six simulations was
performed. Before changing to dual time-stepping, a steady-state restart solution
was computed at the beginning of all simulations.
Figure 8.12 shows the resulting Cl-distributions, which look surprising at first glance.
The three solid lines, which are based on the results utilising preconditioning, almost
concide and show a large variation in Cl. As already mentioned above, the almost
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constant dashed black curve is the result of the coarse grid when preconditioning is
switched off. The dashed red and blue curve, which are based on the computations
on the medium and respectively fine grid without usage of preconditiong, are almost
identical and vary stronger than the dashed black line but less than the three solid
curves.
The results are interpreted as follows:

• As the computation on the fine grid with preconditioning switched on should
be the most accurate one, the Cl-oscillations are considered numerically correct
and should not be damped out.

• When using low Mach number preconditioning, the coarse grid is sufficient.

• The computation on the coarse grid without utilising preconditioning is too
dissipative.

Nevertheless, the simulations in Section 8.2 are performed utilising the coarse grid
with preconditioning switched off. The reason for deactivating preconditioning is,
that these two-dimensional simulations should be considered as preexaminations
for the forthcoming three-dimensional computations and not as valid simulations
aiming to accurately predict the vortex-airfoil interaction. The main goal is hereby
to determine, whether the interaction does have a significant effect on Cl and possibly
leads to stall. This is easier to examine when the Cl-curve does not oscillate before
the arrival of the vortex; therefore preconditioning is switched off.
In contrast, the three-dimensional computations shown in Section 8.3 and 8.4 are
performed using the coarse FNG grid and low Mach number preconditioning acti-
vated. This choice is considered as both sufficiently accurate and numerically cheap.

8.2 Two-dimensional URANS simulations

In this section two-dimensional URANS simulations to generate and transport a
realistic vortex and to simulate the vortex-FNG interaction are shown, where both
the SAO model and the Menter-SST model have been applied. Both a small and a
large airfoil-to-airfoil distance of 2m and alternatively 4m has been used, resulting
in an overall of four simulations.
Figure 8.14 and Fig. 8.15 show the small and respectively large numerical setup.
The origin of the x-z coordinates is set at the lower left wind tunnel corner. At
the beginning of all simulations the left boundary of the NACA0021 grid of radius
0.5m is located at an x-position of 0.25m and the lower one at a z-position of 0.15m,
where originally α = 0◦ is chosen at the NACA0021 airfoil. The left edge of the
quadratic vortex transport grid of size 1m is located at x=1m, while the lower
edge is situated at z=0.15m. The only difference between the small and the large
setup is due to the location of the FNG grid of radius 0.6m. Based on α = 0◦

the lower boundary of the FNG grid is situated at z=0.05m in both setups, while
the left boundary is located at x=2.55m in the small setup and at x=4.55m in
the large setup. The incidence angle of the FNG airfoil is held constant at α = 10◦
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Figure 8.14: Numerical setup including the small airfoil-to-airfoil distance of 2m.

Figure 8.15: Numerical setup including the large airfoil-to-airfoil distance of 4m.

throughout all simulations. As already mentioned at the beginning of this chapter, a
two-dimensional plane including all four Chimera grids contains 114000 grid points.
For convergence acceleration, multigrid is applied. During the upward rotation of
the NACA0021 airfoil a time step size of ∆t = 1.5· 10−5s is chosen; afterwards it is
increased to ∆t = 5· 10−5s.
One goal of this section is to identify the most promising numerical setting regarding
the turbulence model and the airfoil-to-airfoil distance for the three-dimensional
simulations performed in Sections 8.3 and 8.4.
The second aim is to check whether the vortex-airfoil interaction has a significant
effect on Cl and leads to stall. As the vortex impact on Cl is easier to examine when
Cl does not oscillate, low Mach number preconditioning is switched off, even though
this results in less exact solutions. The computations shown in this section should
therefore be regarded as preliminary investigations, while only the three-dimensional
results in Sections 8.3 and 8.4 aim to obtain accurate physical solutions.
Figures 8.16–8.22 show the vorticity based on the SAO-computations at various
times of the simulations, where on the left the small numerical setup is considered,
while the figures on the right are based on the large numerical setup. As the vorticity
looks almost identical with Menter-SST, only the SAO-results are shown.
Before switching to dual time stepping, steady restart solutions have been performed
at the beginning of all four simulations. Figure 8.16 shows the vorticity on cutouts
of the small and relatively large setup based on these restart solutions at t=0s.
Focusing on the area of the NACA0021 grid and the vortex transport grid, both
results look almost identical. At the right boundary of the vortex transport grid the
vorticity vanishes, which is a hint that the wind tunnel grid is too coarse to conserve
it, while both the NACA0021 grid and the vortex transport grid are sufficiently fine.
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Figure 8.16: Vorticity based on SAO computations at t = 0s in the small numerical
setup (left) and in the large numerical setup (right).

Next the NACA0021 airfoil is rotated 10◦ upwards within 1.5· 10−2s. The resulting
vorticity plots are shown in Fig. 8.17. In both simulations the vortex has evolved
from the trailing edge and has already been interpolated partly onto the vortex
transport grid. Furthermore, the vortex has started to split up into several subvor-
tices. This effect is caused by discretisation errors including the ones due to the
Chimera interpolation. In physics this phenomenon can also be observed behind an
airfoil, where it emerges due to geometrical unevenness.

Figure 8.17: Vorticity based on SAO computations at t = 1.5· 10−2s in the small
numerical setup (left) and in the large numerical setup (right).

After 1.9· 10−2s the vortex has been interpolated onto the vortex transport grid,
which is shown in Fig. 8.18. Now the vortex transport grid is moved with the
freestream velocity of 50m

s
to the right.

Figure 8.18: Vorticity based on SAO computations at t = 1.9· 10−2s in the small
numerical setup (left) and in the large numerical setup (right).

At t = 2.5· 10−2s the vortex transport grid has moved 0.3m towards the FNG airfoil,
which is indicated in Fig. 8.19. The results based on the small and the large setup
still look identical and the vortex has continued to split into subvortices.
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Figure 8.19: Vorticity based on SAO computations at t = 2.5· 10−2s in the small
numerical setup (left) and in the large numerical setup (right).

The vortex transport grid is further transported to the right, until it reaches its final
position at t = 3.1· 10−2s in the small setup and at t = 7.1· 10−2s in the large one.
At this stage, which is indicated in Fig. 8.20, the vortex transport grid is stopped,
while the vortex continues to move to the right. Due to the longer physical time
passed in the simulation of the large setup, the vortex has dissipated more than in
the small setup.

Figure 8.20: Vorticity based on SAO computations at t = 3.1· 10−2s in the small
numerical setup (left) and at t = 7.1· 10−2s in the large numerical setup (right).

After t = 3.9· 10−2s and alternatively t = 7.9· 10−2s the vortex has been partly
interpolated onto the FNG grid, which is shown in Fig. 8.21. While the vortex in
the small setup still contains higher maximal vorticity values than in the large setup,
it has also become weaker. One possible explanation for this relatively fast vortex
decay might be, that the vortex is interpolated several times onto different Chimera
grids. In combination with low Mach number preconditioning switched off, this can
lead to an increase in dissipation.

Figure 8.21: Vorticity based on SAO computations at t = 3.9· 10−2s in the small
numerical setup (left) and at t = 7.9· 10−2s in the large numerical setup (right).
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While the simulations were continued for an even longer time, Fig. 8.22 shows the
vorticity plots at t = 4.7· 10−2s and respectively t = 8.7· 10−2s. In both cases a main
vortex has evolved at the right of the longitudinal vortex above the FNG airfoil.

Figure 8.22: Vorticity based on SAO computations at t = 4.7· 10−2s in the small
numerical setup (left) and at t = 8.7· 10−2s in the large numerical setup (right).

Judging by the vorticity plots, all simulations performed satisfactory, whereas the
vortex dissipation seems to be more severe in the large setup due to the longer
physical time.
Next the effect of the vortex-FNG interaction on Cl is examined. Figure 8.23 shows
the Cl-distributions of all four computations, where in the left picture the curves
are based on the two simulations on the small setup, while in Fig. 8.23 (right) the
large setup is considered. Note the different time scales in both pictures.
The following observations can be made:
Firstly, the effect of the vortex-airfoil interaction on Cl is much stronger in the
small setup, independently of the turbulence model. Only in the small setup a lift
breakdown occurs.
Secondly, both turbulence models result in similar Cl-curves, but the values based
on the SAO computations are larger by ∆Cl ≈ 0.2.

Figure 8.23: Time-dependent lift coefficients based on the SAO and Menter-SST
models on the small numerical setup (left) and on the large numerical setup (right).
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The final question examined in this section is whether stall occurs due to the vortex-
airfoil interaction. This is obviously not the case in the two simulations using the
large setup, because no lift breakdown can be observed.
As furthermore both turbulence models behave qualitatively similar, it is sufficient
to look at the results obtained by SAO on the small setup. (The results of Menter-
SST on the small setup were also examined and turned out to be similar to SAO.)
Figure 8.24 (left) and (right) and Fig. 8.25 show Cf at t = 4.1· 10−2s, t = 4.5· 10−2s
and t = 4.9· 10−2s. These are the points in time, when Cl reaches a local minimum,
a local maximum and again a local minimum.

Figure 8.24: Skin friction coefficients based on SAO computation on the small nu-
merical setup at t = 4.1· 10−2s (left) and t = 4.5· 10−2s (right).

Figure 8.25: Skin friction coefficient based on SAO computation on the small nu-
merical setup at t = 4.9· 10−2s.

The flap remains fully attached in all cases. As additionally also the flow at the main
wing does not detach, it is hereby proven that in this computation no stall occurs.
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This is consistent with the SAO results shown in Section 8.1, where the ”stall angle”
was identified at α = 13, causing a lift breakdown to Cl = 2.1 (compare with Fig.
8.23 (left)). In contrast, the vortex-airfoil interaction in the SAO simulation on the
small setup only results in a much higher minimum Cl-value of 2.8, which clearly
contradicts the occurance of stall.
Based on the results in this section the small setup is chosen for the three-dimensional
computations performed in Sections 8.3 and 8.4. As neither SAO nor Menter-SST
proved to be superior, only the SAO model and SA-DDES will be used, because
these models are numerically more stable and the author of this work is also more
experienced in them.

8.3 A three-dimensional SA-URANS simulation

Based on the results in the previous sections a three-dimensional SA-URANS simula-
tion is performed, where now low Mach number preconditioning is activated to min-
imise the numerical dissipation. The three-dimensional grid is obtained by uniformly
extruding a two-dimensional plane of the small numerical setup (see Fig. 8.14) in
spanwise direction with an extent of 40 % chord length using 49 two-dimensional
planes, resulting in 5.6· 106 grid points.
While the applied boundary conditions have been specified at the beginning of this
chapter, all other data like time step size, Mach number, Reynolds number and exact
procedure of the computation remain unchanged with regard to the simulations
performed in Section 8.2.
Figures 8.26-8.29 show the results at various times, where in the relatively left picture
isosurfaces of the vorticity at a value of 100 are presented, while the right pictures
show isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 in the area of
the FNG airfoil. The isosurfaces in the left pictures are additionally colored with the
Mach number and the ones in the right pictures show the spanwise velocity. While
the vorticity, the Q-criterion and the y-velocity contain important information and
are examined in detail, the illustration of the Mach number is only added to show
that this variable looks similar in the three-dimensional SA-URANS computation of
this section and in the three-dimensional SA-DDES simulation presented in Section
8.4.
After t = 1.5· 10−2s the upward rotation of the NACA0021 airfoil has been finished
and the vortex has been partly interpolated onto the vortex transport grid. Fig.
8.26 (left) shows that the vortex is completely homogeneous in spanwise direction.
No three-dimensional structures have evolved at the FNG airfoil and the spanwise
velocity remains small except for the region in the cove and directly at the upper flap
surface (see Fig. 8.26 (right)). This lack of three-dimensional structures both at the
vortex and at the FNG airfoil, which will remain throughout the whole simulation,
is expected due to the use of SA-URANS.
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Figure 8.26: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 1.5· 10−2s.

At t = 1.9· 10−2s the vortex has been fully interpolated onto the vortex transport
grid, which is then transported to the right (not shown).
After t = 2.5· 10−2s the vortex transport grid has been moved 0.3m towards the
FNG airfoil, which is indicated in Fig. 8.27 (left). Figure 8.27 (right) looks almost
identical to Fig. 8.26 (right).

Figure 8.27: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 2.5· 10−2s.

At t = 3.1· 10−2s the vortex transport grid has reached its final position and is
stopped (not shown), while the vortex continues to move to the right.
After t = 3.9· 10−2s the vortex has been partly interpolated onto the FNG grid.
Figure 8.28 shows that similar to the two-dimensional simulations of Section 8.1 the
vortex splits into subvortices and both the vortex and the flow around the FNG
airfoil remain two-dimensional.
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Figure 8.28: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 3.9· 10−2s.

After t = 4.7· 10−2s the vortex has moved above the FNG airfoil, where a main
vortex has demerged from the rest of the longitudinal vortex, see Fig. 8.29 (left).
No effect of the vortex-airfoil interaction regarding stall can be identified in Fig.
8.29 (right).

Figure 8.29: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 4.7· 10−2s.

The Cl-curve, which is shown in Fig. 8.30, oscillates significantly less than in the
two-dimensional simulations utilising low Mach number preconditioning, which were
examined in the grid convergence study in Section 8.1. Still, only a small effect on
Cl due to the vortex-airfoil interaction can be observed and no lift breakdown takes
place. The times just before and during the vortex interaction are additionally
highlighted in Fig. 8.30 by solid lines.
Again no stall occurs, which can be seen in Fig. 8.31, where the skin friction
coefficients at two times before the arrival of the vortex (t = 3.9· 10−2s) and during
the vortex-airfoil interaction (t = 4.7· 10−2s) are presented. As both Cf -curves are
almost identical, the effect of the vortex-airfoil interaction seems to be small with
respect to flow separation at the FNG airfoil.
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Figure 8.30: Time-dependent lift coefficient.

Figure 8.31: Skin friction coefficients at t = 3.9· 10−2s and t = 4.7· 10−2s.

As a summary of this section it can be stated, that the simulation performed success-
fully. Also a small effect of the vortex-airfoil interaction could be verified, although
just as in the two-dimensional simulations no stall occured. As expected, the re-
sults remained almost fully two-dimensional because of the choice of the turbulence
model.

8.4 A three-dimensional SA-DDES simulation

The final example of the numerical applications consists of a three-dimensional SA-
DDES computation.
We want to emphasize that the simulation shown in this section should only be
regarded as first attempt to apply the Chimera technique in combination with a
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DES model to the creation, transport and interaction of realistic vortices with an
airfoil. The result should therefore not be considered as final statement regarding
the reliability of DES models for this kind of setup. The aim of this section is rather
to compare the outcomes obtained with SA-DDES to the ones by SA-URANS, which
possibly allows conclusions regarding necessary model modifications for forthcoming
simulations. As the SA-DDES computation shown in this section has been computed
for four months on 48 processors of the computer cluster ENIGMA of the DLR
Göttingen, it becomes obvious that the development and validation of these model
modifications would vastly exceed the scope of this thesis. After all, the focus of
this thesis lies on the application and validation of the simulation method and not
on an improved DES modeling.
Note, that we use the standard SA-DDES model and not the modified SA-DDES16

version introduced in Chapter 6. Before looking at the simulation in detail, we want
to briefly discuss the reasons for and against this choice. While it is shown at the
end of this section that the RANS-part is slightly too thin to contain the complete
attached boundary layer, the occuring separation at the wing is modest compared
to the HGR01-testcase. As at some points in time the flow reattaches, it is unclear,
if this small separation is caused by modeled stress depletion at all. Therefore the
use of the original SA-DDES turbulence model seems acceptable for this testcase.
The reason against using the SA-DDES16 version is, that a thickened RANS-part
at the FNG airfoil might suppress three-dimensional turbulent structures. As a
consequence the SA-DDES16 outcome could be similar to the result obtained by SA-
URANS from Section 8.3, which is undesirable. Nevertheless, it would be interesting
to compare the result shown in this section with the outcome of an SA-DDES16

computation. The performance of an SA-DDES16 simulation is therefore suggested
as an important next step in Section 9.2.
Besides of the change in the turbulence model, the complete flow setup (Mach num-
ber, Reynolds number, boundary conditions, three-dimensional grid, time step size
during the NACA0021 rotation, usage of low Mach number preconditioning and pro-
cedure of the computation) remains unchanged compared to the three-dimensional
SA-URANS simulation in Section 8.3 – with the exception of the following two
modifications:
Firstly, the time step size after the upward rotation of the NACA0021 airfoil is fur-
ther decreased to 2.5· 10−5s to meet the requirements of an SA-DDES computation.
Secondly, the vortex transport grid is kept 0.2· 10−2s longer at its original position,
before it is transported towards the FNG airfoil. This turned out to be necessary,
because at t = 1.9· 10−2s the vortex had not been fully interpolated onto the vortex
transport grid.
Similar to the three-dimensional SA-URANS simulation, the relatively left pictures
of Fig. 8.32-8.35 show the isosurfaces of the vorticity at a value of 100 colored by the
Mach number, while in the relatively right pictures isosurfaces of the instantaneous
Q-criterion at a value of 100 1

s2 in the area of the FNG airfoil can be seen, which
additionally contain the streamwise velocity.
After t = 1.5· 10−2s the NACA0021 airfoil has been rotated upwards by 10◦ and the
vortex, which is homogeneous in spanwise extension, has evolved from the trailing
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edge (see Fig. 8.32 (left)). Compared to the result of the three-dimensional SA-
URANS simulation shown in Fig. 8.26 (left), the vortex seems to be moving slower
to the right. It turned out impossible to determine, whether this vortex deceleration
really takes place or if alternatively the right vortex part seen in Fig. 8.32 (left) is
actually not part of the vortex but belongs to the wake flow of the NACA0021 airfoil,
which in the three-dimensional DDES simulation has vanished due to dissipation.
The vorticity at the trailing edge of the wing looks more detached than in the three-
dimensional SA-URANS computation, which hints to an increased flow separation.
Figure 8.32 (right) reveals that no three-dimensional structures have evolved yet,
although the two-dimensional rolls at the flap of the FNG airfoil are more numerous
than in the three-dimensional SA-URANS simulation.

Figure 8.32: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 1.5· 10−2s.

At t = 2.1· 10−2s the vortex interpolation onto the vortex transport grid has been
finished and the vortex transport grid is transported to the right (not shown).
After t = 2.6· 10−2s the vortex transport grid has moved 0.25m towards the FNG
airfoil, which is seen in Fig. 8.33 (left). While the vortex remains homogenous
in spanwise extension and contains no small-scale turbulent structures, the flow at
the FNG airfoil looks more attached than at t = 1.5· 10−2s. Figure 8.33 (right)
proves that three-dimensional structures have emerged, which is indicated both by
the shape of the Q-isosurfaces and by the increased spanwise velocities.
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Figure 8.33: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 2.6· 10−2s.

At t = 3.3· 10−2s the vortex transport grid has reached its final position and is
stopped (not shown), while the vortex continues to move to the right.
The vortex interpolation onto the FNG grid has started at t = 3.7· 10−2s, which
is indicated in Fig. 8.34 (left) and intense three-dimensional structures with large
spanwise velocities have evolved in the cove and behind the FNG flap, see Fig. 8.34
(right).

Figure 8.34: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 3.7· 10−2s.

At t = 4.7· 10−2s the vortex interpolation has been finished and the vortex has
moved above the FNG airfoil, see Fig. 8.35 (left). Contrary to the three-dimensional
SA-URANS simulation at this time, no visible main vortex has split from the lon-
gitudinal vortex. While Fig. 8.35 (right) reveals that the area containing three-
dimensional content is still very large and includes large spanwise velocities, it is
hard to tell, whether the vortex-airfoil interaction has a significant impact on the
separation region at the flap.
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Figure 8.35: Isosurfaces of the vorticity at a value of 100 (colored with Mach number)
(left) and isosurfaces of the instantaneous Q-criterion at a value of 100 1

s2 (colored
with y-velocity) (right) at t = 4.7· 10−2s.

Next we want to investigate, if the vortex has an effect on Cl. Figure 8.36 shows
that a significant lift breakdown long before the arrival of the vortex takes place.
Also no clear vortex effect on Cl can be identified (the times just before and during
the vortex interaction are again marked by horizontal lines). The straightforward
assumption regarding the cause of the lift breakdown is - identical as in the HGR01-
testcase examined in Chapter 6 - a too thin RANS-part at the FNG airfoil, leading
to modeled stress depletion and grid induced separation. To check whether this
holds true, Fig. 8.37 shows the RANS-LES distribution and the streamlines at
t = 3.7· 10−2s, which is the time just before the arrival of the vortex. While the
RANS-part at the trailing edge of the wing looks relatively thin, only a modest flow
separation at the end of the wing can be observed. As desired, both the region in
the cove and behind the flap are treated in LES-mode. As a consequence, turbulent
structures have evolved here.

Figure 8.36: Time-dependent lift coefficient.
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Figure 8.37: RANS-LES distribution at t = 3.7· 10−2s.

Figure 8.38 (left) shows the Mach number of the three-dimensional SA-DDES com-
putation at t = 3.7· 10−2s to further check, whether the thickness of the RANS-part
is sufficient. Compared to Fig. 8.37 it is obvious, that the RANS-part does not
contain the complete attached boundary layer. Also at the trailing edge of the wing
a small separation can be seen. For comparison, Fig. 8.38 (right) shows the Mach
number of the three-dimensional SA-URANS computation from Section 8.3 at the
same time of the simulation. Clearly, the flow at the wing is more attached than in
the three-dimensional SA-DDES computation.

Figure 8.38: Mach number of three-dimensional SA-DDES simulation (left) and of
three-dimensional SA-URANS computation (right) at t = 3.7· 10−2s.

Figure 8.39 shows the skin friction coefficients both at t = 3.7· 10−2s and t =
4.7· 10−2s, where the right picture focuses on the trailing edge of the wing. While
at t = 4.7· 10−2s (during the vortex-airfoil interaction) no flow separation neither at
the wing nor at the flap can be observed, surprisingly the flow has slightly detached
at t = 3.7· 10−2s. This leads to the following two conclusions:
Firstly, it is unclear whether grid induced separation occurs or not. While the
skin friction coefficient at t = 3.7· 10−2s and the lift breakdown suggest this being
the case, the reattachment at t = 4.7· 10−2s stands in contrast to this assumption.
Secondly, no stall occurs due to the vortex-airfoil interaction.
Furthermore it is unclear, why the two skin friction coefficients vary that immensely.
It is assumed that this is due to instationarities independent of the vortex.
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Figure 8.39: Skin friction coefficients at t = 3.7· 10−2s and t = 4.7· 10−2s at the
trailing edge of the wing and the flap (left) and with zoom on the trailing edge of
the wing (right).

As a summary of Section 8.4 is can be stated that the three-dimensional SA-DDES
computation performed only partly successful. On the positive side it can be noted
that the vortex was successfully transported towards the FNG airfoil without losing
it by means of numerical dissipation. Also strong three-dimensional structures in
the cove and behind the flap evolved for the first time due to the use of SA-DDES.
Still, the following open questions arose, which must be adressed in the future:

• Has modeled stress depletion at the FNG airfoil occured, resulting in grid in-
duced separation and lift breakdown?
While the RANS-part at the main wing was relatively thin and at some times
during the simulation a slight detachment occured, the flow reattached at sub-
sequent points in time. The question can therefore not be answered definitively
at this stage.

• How can the Cl-breakdown (see Fig. 8.36) long before the arrival of the vortex
be explained?
One explanation could be modeled stress depletion, but as just explained it is
unclear if this phenomenon actually occurs.

• Have turbulent structures from the cove and the wake of the main wing in-
truded into the RANS-part at the attached boundary layer of the flap, resulting
in a depletion of the RANS-part there? (A similar hypothesis was constructed
by Jakubek [55], where SA-DDES simulations of a three-element F15 airfoil
possibly lead to these problems.)
While this question can not be negated for sure, we want to mention that the
flow directly at the flap remains attached throughout the whole computation,
which can be seen when looking at the Cf distributions. As - in constrast to
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the outcome shown in [55] - the resulting flow shown in this thesis contains
a large recirculation region between the attached boundary layer of the FNG
flap and the wake of the main wing, both flows are highly different and should
therefore not be compared directly.

• Why does the vortex from the NACA 0021 airfoil remain two-dimensional?
It is assumed that the short distance of 0.6m between the two airfoils is too
small to allow three-dimensional structures to evolve. Nevertheless, it remains
an open task to show that these turbulent structures do occur, if the airfoil-
to-airfoil distance is increased.

• Why does the vortex-airfoil interaction not result in stall?
This question is especially hard to answer, because the behaviour of DES
models applied to the flow around stalling multielement airfoils is so little un-
derstood. Possible ideas are that the original angle of attack of α = 10◦ at
the FNG airfoil is still too small or that the oncoming vortex already has dis-
sipated too much. Also the longitudinal vortex structure and the observation
that the vortex does not actually collide with the FNG airfoil, but instead
moves above the wing, may play a role.

Summary of the chapter

As conclusion of Chapter 8 we have shown that the simulation method allows to
generate and transport a realistic vortex and to model its interaction with an airfoil
near stall. While in the two-dimensional simulations the use of low Mach num-
ber preconditioning led to strong Cl-oscillations, this problem was less severe when
switching to three-dimensional. Section 8.2 showed that a small airfoil-to-airfoil dis-
tance of 2m is superior to a large distance of 4m with respect to vortex preservation
and its effect on Cl. While in the three-dimensional SA-URANS compution in Sec-
tion 8.3 the vortex-airfoil interaction still resulted in a small effect on Cl, no clear
impact on the lift could be observed in the three-dimensional SA-DDES simulation
in Section 8.4. While strong turbulent three-dimensional structures evolved at the
FNG airfoil, the SA-DDES computation possibly included a mild form of modeled
stress depletion and grid induced separation.



Chapter 9

Conclusion

9.1 Summary of the results

At the end of this thesis we want to give an overview of the results. As stated in
Section 1.1 the objective of this thesis lies on the development and application of a
numerical simulation method that allows to generate a realistic vortex, to transport
it towards an airfoil and to simulate the vortex-airfoil interaction to predict the
forces and moments acting on the wing. The following classes of testcases have been
performed:

• flow over a backward facing step

• an HGR01 airfoil at stall

• transport and airfoil interaction of vortices

• applications of the simulation method

Flow over a backward facing step

The aim of the backward step testcase in Chapter 5 is to test the performance of
the SA-DDES turbulence model for a problem with massive flow separation. Also
the required grid refinement to obtain reliable results is investigated by means of a
grid convergence study. By comparing to experimental data and a two-dimensional
SA-RANS simulation it can be said that the use of the SA-DDES model leads to good
results on the medium and fine grid. Both the reattachment point indicated by the
skin friction coeficient and the pressure distribution agree well with the experimental
data and also three-dimensional small-scale turbulent structures evolve. In contrast,
the simulation on the coarse grid is not capable of resolving a sufficient amount of
turbulent content, leading to a poor outcome. Overall it is verified that the SA-
DDES model performs well for this testcase, if the grid is sufficiently fine.

While they are not further used within the simulation method, Chapter 5 addi-
tionally examines the reliability of two sensors obtained from the SA-DDES com-
putations. The first sensor Lvk shows, in which regions the flow tends to become
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unsteady, whereas the aim of the second sensor Indicator is too guarantee a suf-
ficiently fine grid in the LES-region. While the performances ob both sensors are
convincing, it remains an open problem to find an appropriate grid scaling parameter
∆ for Lvk.

As a summary of Chapter 5 it can be said that the SA-DDES model performs well
for this testcase, if the grid is chosen sufficiently fine.

An HGR01 airfoil at stall

In Chapter 6 the three-dimensional flow around an HGR01 airfoil at stall is
simulated by means of the SA-DDES turbulence model. As in this testcase only a
mild trailing edge separation occurs, the standard SA-DDES model is not capable
of predicting the correct attached boundary layer thickness. This results in a too
thin RANS-part, leading to modeled stress depletion and grid induced separation.

To overcome this flaw, a model modification named SA-DDES16 is introduced, in
which the RANS-part at the airfoil is thick enough to allow for stable simulations.
The full range of stall angles of α = 12◦−16◦ is simulated by means of SA-DDES16.
It is shown that the SA-DDES16 results are comparably good as stationary SA-
RANS simulations regarding prediction of skin friction and pressure coefficients.
On the other hand, both SA-DDES16 and SA-RANS strongly overestimate the ex-
perimentally determined lift coefficient. The reason for this mismatch lies in a strong
underprediction of the trailing edge separation by both models. The SA-DDES16

model is also not capable of producing three-dimensional turbulent structures in the
wake, because the separation region is too small.

As a summary of Chapter 6 it is stated that the SA-DDES model can be used
to perform stable computations of the flow around an stalling airfoil, if the RANS-
layer at the wing covers a sufficient part of the attached boundary layer (which is
guaranteed by using SA-DDES16 in this testcase). As the trailing edge separation is
too small to trigger turbulent structures, the SA-DDES16 results are not superior to
SA-RANS outcomes.

Transport and airfoil interaction of vortices

The goal of Chapter 7 is to determine, if the proposed simulation method allows
to transport analytical vortices over large distances without losing them due to
numerical dissipation. Additionally it is tested, if the simulation method can be
used to simulate vortex-airfoil interactions. All problems are two-dimensional and
always URANS turbulence models are utilised.

At the beginning three testcases of varying complexity are shown, in which one
or more analytical vortices are interpolated onto a fine cartesian vortex transport
grid, which is moved relative to a background grid. In all three simulations the
vortices can be maintained. Also the use of more than one initial vortex or a coarse
background grid are problem-free.

The last two testcases prove that the simulation method can be applied to sim-
ulate vortex-airfoil interactions. First the collision of a vortex and a NACA 0012
airfoil at α = 0◦ is examined, which results in a massive change in lift, drag and



CHAPTER 9. CONCLUSION 146

moment. While the vortex collision can be interpreted as a change in the incidence
angle, it is shown that the simulation of a flapping NACA 0012 airfoil at undisturbed
onflow conditions is an insufficient approximation of the vortex-airfoil interaction.
The use of the Chimera technique is therefore proven to be mandatory. In the last
example, in which a vortex interacts with an ONERA-A airfoil at α = 13.3◦, wing
stall is successfully simulated.

Chapter 7 proves that the simulation method allows to transport vortices over
large distances and to model vortex-airfoil interactions. All simulations are very
robust and also the use of coarse or hybrid background grids are unproblematic.

Applications of the simulation method

In Chapter 8 applications of the complete simulation method are presented. While
a NACA 0021 airfoil is used to generate the vortex, the latter eventually interacts
with a two-element FNG airfoil at α = 10◦, which is close to stall. A fine cartesian
vortex transport grid is used to transport and preserve the vortex and both airfoils
are located within a windtunnel.

At first, stationary two-dimensional RANS simulations of the FNG airfoil at
undisturbed onflow conditions are shown, where both the effect of the turbulence
model and the angle of attack resulting in stall are examined. It turns out that the
Menter-SST turbulence model more accurately predicts the correct stall angle than
the SA-RANS model, which is validated by comparing to experimental data. For
both turbulence models the incidence angle of α = 10◦ is close to stall, such that
this angle of attack is used within all subsequent computations.

Next four two-dimensional URANS simulations including vortex generation, vor-
tex transport and vortex-FNG interaction by means of the simulation method are
presented. Both the effect of varying the turbulence model and the use of a small
or alternatively large airfoil-to-airfoil distance is analysed. While it turns out that
in the two ”small distance” computations the breakdown in Cl caused by the vortex
interaction is significantly larger than in the two ”large distance” simulations, in
neither case stall occurs. The two turbulence models result in qualitatively similar
results.

In the following example a three-dimensional SA-URANS simulation of the sim-
ulation method is performed using the small airfoil-to airfoil distance of 2m. As
expected, no three-dimensional turbulent structures evolve. While a small effect on
Cl due to the vortex-airfoil interaction is visible, no stall can be verified.

The final testcase consists of a three-dimensional SA-DDES computation, where
again a small distance between the airfoils is utilised. A slight form of grid induced
separation at the FNG main wing is assumed, because the RANS-part looks rela-
tively thin compared to the attached boundary layer. As at some points in time
the flow detaches and reattaches again, it is impossible to decide, if the thickness
of the RANS-part is actually the cause of the separation, or if physically correct
flow instationarities are present. While a large separation region with high spanwise
velocities and small-scales structures in the cove and the wake of the FNG-airfoil
evolves, it remains unclear whether this is due to the vortex interaction. Again, no
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clear stall behaviour can be seen.
To sum up Chapter 8 we have shown that the proposed simulation method allows

to generate and transport a realistic vortex and to model its interaction with an airfoil
near stall. In all computations the vortex could be preserved without losing it due
to numerical dissipation. Nevertheless, no stall could be verified in the simulations.
While in the three-dimensional SA-URANS compution the vortex-airfoil interaction
has an effect on Cl, no clear impact on the lift coefficient can be observed in the three-
dimensional SA-DDES simulation. The use of the latter results in the development
of strong turbulent three-dimensional structures at the FNG airfoil and also possibly
a mild form of grid induced separation.

An overview of the computational time to perform the simulations

At the end of the summary we want to give a quick overview of the computational
time required to perform the most expensive (three-dimensional) simulations shown
in this thesis. While the two-dimensional simulations were mostly realised using
a single processor, all three-dimensional computations have been performed on the
computer cluster ENIGMA of the DLR Göttingen.

• Chapter 5:
While the computation of the backward facing step on the coarse grid (2.2×105

points) was performed for approximately 10 days using 16 CPUs on ENIGMA,
the computation on the medium grid (8.8× 105 points) took 40 days utilising
the same number of CPUs. By far the most expensive computation was the
simulation on the fine grid (6.6 × 106 points), which had to be performed for
120 days using 32 CPUs on ENIGMA.
For comparison: When using the incompressible solver THETA of the DLR
TAU-code an LES simulation using wall-functions on a grid, which in the
middle of the domain was comparably fine as the fine grid used within this
thesis, only took 21 days on a single processor (see [64]).

• Chapter 6:
The performance of the complete SA-DDES16 simulation shown in Section 6.3
required approximately seven months using 64 processors on ENIGMA.

• Chapter 8:
While the realisation of the SA-URANS computation from Section 8.3 took
four months on 32 processors of ENIGMA, the SA-DDES simulation shown in
Section 8.4 even had to be performed for four months on 48 processors.

Overall, the computations turned out to be comparably expensive, which was due to
a large number of up to 300 inner iterations per timestep and the choice of a small
timestep size in many simulations. This was often necessary to achieve convergence
and allow for stable simulations.
It also can be stated that the DLR TAU-code is much slower than the incompressible
solver THETA of the DLR TAU-code. It seems that a pressure-based method to
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solve the incompressible Navier-Stokes equations is more efficient than solving the
compressible equations, which is done in TAU.

9.2 Future work

There is still work that is worth considering in the future:

• The backward facing step computations from Chapter 5 can be performed on
hybrid grids, which simplifies the grid adaptation.

• The two sensors shown in Section 5.3 can be utilised to improve the simulation
method. While the first sensor Lvk may be applied to switch to LES-mode in
regions with massive flow separation, the second sensor Indicator guarantees
a sufficiently fine grid in the LES-part. When using hybrid grids the grids can
easily be refined in regions, where Indicator suggests that the grid is locally
too coarse. A main issue is indeed to find a correct grid scaling parameter ∆
for the first sensor.

• The flow around the HGR01 airfoil can be performed using an alternative
scheme to discretise the convective fluxes, which might trigger three-dimensional
turbulent structures.

• The simulation method can be applied in combination with SA-DDES16.

• The simulation method can be performed by means of the Menter-SST URANS
model and the SST-DES model. To do so successfully, a deep investigation of
the SST-DES model is required.

• Instead of considering a vortex-FNG interaction, the FNG airfoil can be sub-
stitued by another aerodynamical object, e. g. a nacelle.

• When performing the simulation method, the FNG airfoil could be set at a
slightly higher initial incidence angle (e. g. α = 11◦). This ”closer-to-stall-
angle” might finally result in stall due to the vortex-airfoil interaction. Yet
it remains unclear, if this setup allows for a robust computation, because
simulations that close to stall are more sensitive to small changes and tend
therefore to become numerically unstable.

• The numerical outcomes shown in this thesis will be validated upon several
experiments of the DFG 1066 Forschergruppe, which are performed by other
subprojects.

• The numerical results shown in this thesis should be compared to computa-
tions performed with the incompressible solver THETA of the DLR TAU-code.
Especially a comparison of the computational times of both codes applied to
comparable setups should be performed.
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• The impact of the underlying discretisation on the development of three-
dimensional turbulent small-scale structures must be investigated. This would
allow to decide, if a forcing procedure is required for turbulent structures to
evolve.



Appendix A

A global existence result of the
Navier-Stokes-Fourier system

The existence result shown in this section has been presented by Feireisl et al.
[31] (theorem 3.1 on p. 50). The starting point is the Navier-Stokes-Fourier system,
which can be written as follows, where all definitions are identical to the ones defined
in Section 2.1:

Definition A.0.1 (Navier-Stokes-Fourier system)
For a bounded domain Ω ⊂ R3 and time t ∈ (0, τ) we seek density ρ(x, t), velocity
~u(x, t), and temperature T (x, t) such that:

∂

∂t
ρ+

∂

∂xi

(ρui) = 0 (A.1)

∂
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∂
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(Euj) +
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(qj − uitij + puj) = ρfiui + ρΘ (A.3)

Here f(x, t) denotes the volume force acting on a fluid and Θ(x, t) is the production
of internal energy.
Besides Eqs. (A.1), (A.2) and (A.3) the following entropy production equation shall
be valid: Find specific entropy s(ρ, T ) such that :
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with entropy production rate σ given by:
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1
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)
(A.5)

Also Gibbs’ equation shall be fullfilled, which is given by:

TDs = De+ pD

(
1

ρ

)
(A.6)
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and D denotes the differential with respect to the variables ρ, T .
Next we introduce the weak formulation of Eqs. (A.1)-(A.3) and (A.4):

Continuity equation

The weak formulation of Eq. (A.1) is given by:

τ∫

0

∫

Ω

ρB(ρ)

(
∂

∂t
ϕ+ u∇xϕ

)
dxdt

=

τ∫

0

∫

Ω

b(ρ)∇x· uϕdxdt−
∫

Ω

ρ0B(ρ0)ϕ(., 0)dx (A.7)

where ρ0 = ρ(., 0) and for the admissible test functions we demand:

b ∈ L∞ ∩ C[0,∞), B(ρ) = B(1) +

ρ∫

1

b(z)

z2
dz (A.8)

ϕ ∈ C1
c (Ω × (0, τ); R) (A.9)

As minimum regularity of the solutions we require:

ρ ≥ 0, ρ ∈ L1(Ω × (0, τ); R), (A.10)

ρu ∈ L1(Ω × (0, τ); R3),∇x· u ∈ L1(Ω × (0, τ); R) (A.11)

u·n|∂Ω = 0 (impermeability of the boundary ∂Ω) (A.12)

Momentum equation

The weak formulation of Eq. (A.2) is given by:

τ∫

0

∫

Ω

(
ρu· ∂

∂t
ϕ+ ρ(u⊗ u) : ∇xϕ+ p∇x·ϕ

)
dxdt

=

τ∫

0

∫

Ω

(t : ∇xϕ− ρf ·ϕ) dxdt−
∫

Ω

(ρu)0·ϕ(., 0)dx (A.13)

where (ρu)0 = (ρu)(., 0) and for the admissible test functions we demand:

ϕ ∈ C1
c (Ω × (0, τ); R3) (A.14)

and either
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ϕ·n|∂Ω = 0 (in the case of slip boundary conditions) (A.15)

or

ϕ|∂Ω = 0 (in the case of no-slip boundary conditions) (A.16)

As minimum regularity of the solutions we require:

ρu ∈ L1(Ω × (0, τ); R3), ρ|u|2 ∈ L1(Ω × (0, τ); R) (A.17)

p ∈ L1(Ω × (0, τ); R), t ∈ L1(Ω × (0, τ); R3×3), ρf ∈ L1(Ω × (0, τ); R3) (A.18)

∇xu ∈ L1((0, τ);Lq(Ω; R3×3)) for a q > 1 (A.19)

and either

u·n|∂Ω = 0 (in the case of slip boundary conditions) (A.20)

or

u = 0 (in the case of no-slip boundary conditions) (A.21)

Energy equation

The weak formulation of Eq. (A.3) is given by:
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0

∫

Ω
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E(t)dx· ∂
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)
dt

= −
τ∫

0

∫

Ω

(
ρu· f(t) + ρΘ(t)

)
ψ(t)dxdt− ψ(0)E0 (A.22)

where E0 =
∫
Ω

E(., 0)dx and for the admissible test functions we demand:

ψ ∈ C1
c ([0, τ); R) (A.23)

As minimum regularity of the solutions we require:

E, ρu· f, ρΘ ∈ L1(Ω × (0, τ); R) (A.24)
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Entropy production equation

The weak formulation of Eq. (A.4) is given by:
τ∫

0

∫

Ω

ρs

(
∂

∂t
ϕ+ u· ∇xϕ

)
dxdt+

τ∫

0

∫

Ω

( q
T
∇xϕ

)
dxdt+ 〈σ;ϕ〉M+;C

= −
∫

Ω

(ρs)0ϕ(., 0)dx−
τ∫

0

∫

Ω

( ρ
T

Θϕ
)
dxdt (A.25)

where (ρs)0 = (ρs)(., 0), 〈.; .〉X∗;X is the duality pairing between a vector space
X and its dual space X∗ and M+ denotes the positive measures. Furthermore,
σ ∈M+(Ω × [0, τ ]; R) such that

σ ≥ 1

T

(
t : ∇xu−

q

T
∇xT

)
(A.26)

For the admissible test functions we demand:

ϕ ∈ C1
c (Ω × (0, τ); R) (A.27)

As minimum regularity of the solutions we require:

T > 0, T ∈ Lq(Ω × (0, τ); R), ∇xT ∈ Lq(Ω × (0, τ); R3) for a q > 1 (A.28)

ρs ∈ L1(Ω × (0, τ); R), ρsu,
q

T
∈ L1(Ω × (0, τ); R3) (A.29)

ρ

T
Θ ∈ L1(Ω × (0, τ); R) (A.30)

1

T
(t : ∇xu),

q

T 2
∇xT ∈ L1(Ω × (0, τ); R) (A.31)

Having introduced the weak formulations of Eqs. (A.1)–(A.3) and (A.4) we are
now in the position to state the following global existence result. Note, that the
domain Ω, the initial data ρ0, (ρu)0, E0 and (ρs)0 as well as the source terms f
and Θ have to fullfill a number of additional constraint qualifications. Also p, e and
s and additionally introduced transport coefficients must obey several structural
hypotheses. While all of theses conditions are stated by Feireisl [31], it is important
to note that none of these conditions impose any restriction on the time t.

Theorem A.0.2 (Global existence of the Navier-Stokes-Fourier system)
Let all aboved mentioned constraint qualifications be fullfilled. Then for any time τ
the Navier-Stokes-Fourier system has a weak solution (ρ, u, T ) on Ω × (0, τ), i. e.
(ρ, u, T ) fullfill Eqs. (A.7) - (A.31).

The complete proof can be found in [31], p 50 ff., and is based on the following
concept: Firstly, the original weak formulation is replaced by an approximate sys-
tem, which is then proven to possess a weak solution locally in time. By using
uniform estimates this result can be extended to the complete time intervall (0, τ).
Finally, the limit of the approximate system is performed, which enables to recover
the original weak formulation.
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Validity of theorem A.0.2 for the compressible Navier-Stokes equations

We want to note, that theorem A.0.2 is also valid for the compressible Navier-Stokes
equations defined in Eqs. (2.1) – (2.3) in combination with the equation of state
given in Eq. (2.9): By choosing both the volume force f and the production of
internal energy Θ as zero, it is easy to see that Eqs. (A.1) – (A.3) and Eqs. (2.1) –
(2.3) are identical, i. e. the Navier-Stokes-Fourier system is a generalisation of the
compressible Navier-Stokes equations. One can also show (see Feireisl et al. [31],
p. 14 ff.) that the perfect gas law from Eq. (2.9) is a special case of the Gibbs’
equation defined in Eq. (A.6).
As overall the Navier-Stokes-Fourier system with Gibbs’ equation is a
generalisation of the compressible Navier-Stokes equations closed with
the perfect gas law, theorem A.0.2 is also valid for the latter system of
equations used in the DLR TAU-code.



Appendix B

Nomenclature

Symbols and notations

Ω bounded domain Ω ⊂ Rd

∂Ω boundary of Ω
t time, viscous stress
ρ density
~u velocity
T temperature
p pressure
E energy density
S strain-rate tensor
δij Kronecker delta
µ molecular viscosity
e specific internal energy
h specific enthalpy
q heat-flux
R molecular gas constant
∇u(x) gradient of a function u
∇xu(x, y) gradient of u with respect to x
∇· u(x) divergence of u
∇x· u(x, y) divergence of u with respect to x
~n normal vector
~u∞ reference freestream velocity
T∞ reference freestream temperature
ρ∞ reference freestream density
a speed of sound
vφ tangential velocity
Γ0 constant circulation of a vortex
r radius of a finite vortex
rc core radius of a finite vortex
rm middle radius of a finite vortex
ro outer radius of a finite vortex
δ decay constant of a finite vortex
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β damping function of a finite vortex
∆t time step size
Ma Mach number
Re Reynolds number
c chord length of an airfoil

f(x) Reynolds average of instantaneous f(x, t)
f

′

(x, t) fluctuating part of instantaneous f(x, t)

f̃(x) Favre average of instantaneous f(x, t)
f

′′

(x, t) (Favre) fluctuating part of instantaneous f(x, t)
µT eddy viscosity
ν kinematic viscosity
ν̃ variable of the transport equation in the SAO model
P production term in the SA0 model
D destruction term in the SA0 model
d wall distance
Ω magnitude of the vorticity
κ von Kármán constant, κ = 0.41
k turbulent kinetic energy
ω specific dissipation rate

d̃ modified length scale used in DES
CDES DES constant
∆ grid spacing
fd blending function used in SA-DDES
Ψ low-Reynolds modification
α angle of attack
h step height of the BFS
Cd drag coefficient
Cl lift coefficient
Cm moment coefficient
Cp pressure coefficient
Cf skin friction coefficient
Q instantaneous Q-criterion
Lvk von Kármán length scale
Indicator sensor examined in the BFS computations
∆ grid scaling parameter to scale Indicator
kres resolved part of the turbulent kinetic energy
kres modeled part of the turbulent kinetic energy
UW/U2

∞ non-dimensionalised Reynolds stress
〈.〉 operator to perform time averaging
v velocity relative to a background grid
vx, vz x-and z-components of v
v∞ freestream velocity
v∞,x, v∞,z x-and z-components of v∞
vlocal local velocity, vlocal := ((vx − v∞,x)

2 + (vz − v∞,z)
2)

1
2

vvg velocity of a vortex grid relative to a background grid
vvg,x, vvg,z x- and z-components of vvg
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A : B scalar product of tensors A and B
a⊗ b tensor product of vectors a and b
〈a; b〉 scalar product between vector a and b
Lq Lebesgue function space
C1

c space of continous functions with compact support

Abbreviations

(U)RANS (Unsteady) Reynolds averaged Navier-Stokes
LES Large Eddy Simulation
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
SA(O) Spalart-Allmaras (Original) model
LES Linearized Explicit Algebraic Stress model
Menter-SST Menter-Shear Stress Transport model
SA-DES Spalart-Allmaras Detached Eddy Simulation
SA-DDES Spalart-Allmaras Delayed Detached Eddy Simulation
SA-DDES16 modified SA-DDES model
SA-IDDES Spalart-Allmaras Improved Delayed Detached Eddy Simulation
DD Domain Decomposition
ZDES zonal DES
ALE arbitrary-Lagrangian-Eulerian technique
SG small grid
LG large grid
HDG hole definition grid
FNG Flügel neuer Generation (new generation airfoil)
BFS backward facing step
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[37] Gerz T., Holzäpfel F., Darracq D.: ”Commercial aircraft wake vortices”,
Progress in Aerospace Sciences, Vol. 38, No. 3, pp. 181-208, 2002.

[38] Glowinski, R., Pan, T.-W., Periaux, J.: ”Fictitious domain methods for the
Dirichlet problem and its generalisation to some flow problems”, In: Finite
Element in Fluids, New Trends and Applications, pp. 347-368, Pineridge Press,
Barcelona, 1993.

[39] Glowinski, R., Pan, T.-W., Periaux, J.: ”A fictitous domain method for Dirich-
let problems and applications”, Comp. Meth. Appl. Mechan. Eng., Vol. 111,
pp. 203-303, 1994.

[40] Hagland, B., Skaflestad, B.: ”A survey of some methods for moving grid
and grid adaptation”, Numerics No. 2, Norwegian University of Science and
Technology, 2002.

[41] Hariharan, N.: ”Rotary-wing wake capturing: high-order schemes towards
minimizing numerical vortex dissipation”, Journal of Aircraft, Vol. 39, No. 5,
2002.

[42] Henshaw, W. D.: ”A high-order accurate parallel solver for Maxwell’s equa-
tions on overlapping grids”, SIAM Journal of Scientific Computing, Vol. 28,
pp. 1730-1765, 2006.

[43] Henshaw, W. D., Schwendeman, D. W.: ”An adaptive numerical scheme
for high-speed reactive flow on overlapping grids”, Journal of Computational
Physics, Vol. 191, pp. 420-447, 2003.

[44] Henshaw, W. D., Schwendeman, D. W.: ”Moving overlapping grids with adap-
tive mesh refinement for high-speed reactive and non-reactive flow”, Journal
of Computational Physics, Vol. 216, pp. 744-779, 2006.

[45] Henshaw, W. D., Schwendeman, D. W.: ”Parallel computation of three-
dimensional flows using overlapping grids with adaptive mesh refinement”,
Journal of Computational Physics, Vol. 227, pp. 7469-7502, 2008.

[46] Holst, T. L.: ”Chimera donor cell search algorithm suitable for solving the full
potential equation”, Journal of Aircraft, Vol. 37, No. 1, pp. 76-84, 2000.
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