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Introduction

Non-commutative topology studies C∗-algebras by regarding them as generalizations of
topological spaces. This often means trying to use ideas from algebraic topology, in
particular, by constructing invariants, which associate simpler objects such as abelian
groups, rings or modules with a given C∗-algebra. Probably the most prominent example
of a generalization of a topological invariant is K-theory [44]. It associates a Z/2-graded
abelian group K∗(A) with a C∗-algebra A.
A great advancement in non-commutative topology was the classification of AF al-

gebras via K-theory by Elliott in 1976 [14]. Today, K-theory is still one of the most
important tools for the classification of C∗-algebras. Another subject was the study of
extensions of C∗-algebras, which led to the development of the Ext-functor, which is
known to agree with K-homology in the commutative (unital) case. Both K-theory and
its dual, K-homology, are closely connected to index theory of elliptic pseudo-differential
operators.
A big step up the ladder was Kasparov’s construction of bivariant K-theory in 1980

[22], which contains both K-theory and K-homology as special cases. It associates a Z/2-
graded abelian group KK∗(A,B) with separable C∗-algebras A and B. A remarkable
feature of KK-theory is that it comes with the so called Kasparov product

KK∗(A,B)⊗KK∗(B,C)→ KK∗(A,C).

Besides its importance as a very flexible and conceptually satisfactory invariant of C∗-
algebras, KK-theory also yields results outside pure non-commutative topology. The
most prominent example is probably the verification of the Novikov conjecture by ap-
plications of KK-theory to the Baum-Connes conjecture for a large class of groups ([2]
and [17]).
K- and KK-theory are related by the Universal Coefficient Theorem (UCT) of Rosen-

berg and Schochet [41], which states that for separable C∗-algebras A and B with A
belonging to a certain bootstrap class, there is a short exact sequence

Ext1(K∗(SA),K∗(B)) � KK∗(A,B) � Hom(K∗(A),K∗(B)).

Here SB := C0(R, B) denotes the suspension of B. This short exact sequence splits in
a non-natural manner. Since K-theory, due to its more explicit definition in terms of
projections and unitaries, is easier to calculate than KK-theory, the UCT proves to be
very useful in order to calculate the KK-groups. Apart from that, it plays an important
role in the classification of C∗-algebras by K-theoretic invariants: The corresponding
sequence for A = B is an extension of rings with the product in Ext1(K∗(A),K∗(A))
being zero, therefore, KK∗(A,A) is a nilpotent extension of Hom(K∗(A),K∗(A))–this
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Introduction

shows that isomorphisms in K-theory lift to isomorphisms in KK-theory. Further results
by Kirchberg and Phillips then show that every KK-equivalence between A and B,
which sends [1A] in K0(A) to [1B] ∈ K0(B), actually comes from an actual isomorphism
of C∗-algebras, provided that A and B are unital, nuclear, separable, purely infinite,
in the bootstrap class and simple [34]. Both facts together give the following strong
classification result: C∗-algebras A with the above mentioned properties are completely
classified by (K∗(A), [1A]).
C∗-algebras may carry additional structures such as a group action, which encodes

a certain symmetry or the structure of a C∗-algebra over a space, which encodes a
given ideal structure. In these cases there are so called equivariant versions of KK-
theory, generalizations of usual KK-theory, which capture these additional pieces of
information. It is very interesting to ask for a UCT in these generalized contexts: It
serves as a valuable tool for computing equivariant KK-groups. Moreover, a UCT in
a generalized context is closely connected to further classification results. The task is
to find an invariant F, which takes values in an abelian category and is relatively easy
to understand, and then to derive a short exact sequence, which computes equivariant
KK-theory in terms of F.
Take for instance the classification result of Kirchberg and Phillips: Trying to remove

the condition of A being simple means having to deal with a C∗-algebra A over its
primitive ideal space Prim(A). Similarly, one way to classify group actions on C∗-
algebras would be to derive a universal coefficient theorem for equivariant KK-theory
and then to prove a theorem similar to the result of Kirchberg and Phillips, which allows
for lifting equivariant KK-equivalences to equivariant isomorphisms of C∗-algebras. The
aim of this thesis is to examine in which contexts a universal coefficient theorem can be
derived.
There are three main results, which we will explain in more detail in the following.

1 The Action of a Cyclic Group of Prime Order

We will prove an equivariant Universal Coefficient Theorem for C∗-algebras equipped
with an action of a cyclic group of prime order p, in the following denoted by C(p). A
naïve generalization of the usual UCT, where one replaces K- and KK-theory by their
C(p)-equivariant versions, has no chance to hold. This is due to the fact that C(p) has
infinite homological dimension. In [40], an article concerning C∗-algebras with an action
of a compact Lie group G satisfying the Hodgkin condition, Rosenberg and Schochet
obtain merely a spectral sequence which relates KKG and KG. This relation is not as
strong as in the non-equivariant case, for example isomorphisms in KG can in general
not be lifted to KKG-equivalences.
Therefore, we choose a different approach and replace C(p)-equivariant K-theory by

an invariant, which carries more information. Let us denote this invariant by EKC(p)

for extended K-theory. It consists of the usual K-theory, the K-theory of the crossed
product and KKC(p)(Cu,_) – here, Cu is the mapping cone of the unital embedding of
C into C(C(p)). It has a canonical module structure over a ring R, which consists of all
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2 The Action of a Finite Cyclic Group

KKC(p)-morphisms between C, C(C(p)) and Cu. We also define a bootstrap class BC(p)

analogous to the bootstrap class of Rosenberg and Schochet in [40]. The main theorem
reads as follows:

Theorem 1.1. Let A be a separable C(p)-C∗-algebra in BC(p). Then for every separable
C(p)-C∗-algebra B, there is a natural short exact sequence

Ext1
R(EKC(p)(SA),EKC(p)(B)) � KKC(p)

∗ (A,B) � HomR(EKC(p)(A),EKC(p)(B)).

We will prove the theorem by using a certain exactness property of R-modules of the
form EKC(p)(A) to show that these modules have a projective resolution of length 1. At
a crucial point, a classification result for lattices over the integral group ring of C(p)
will be used in order to understand modules over the more complicated ring R. To the
author’s knowledge, there are no classification results of this kind for, say, general finite
groups. This seems to be the main obstacle to derive a UCT short exact sequence for
more general groups.

2 The Action of a Finite Cyclic Group

We will prove a Universal Coefficient Theorem for C∗-algebras equipped with an action
of a finite cyclic group G, which allows us to compute equivariant KK-groups in terms
of a K-theoretic invariant after inverting the group order. Let G be a finite cyclic
group of order o. We will define an invariant LKG taking values in an abelian category.
Furthermore we will define a bootstrap class BG[o−1] as a subcategory of all separable
G-C∗-algebras. The main theorem reads as follows

Theorem 2.1. Let G be a finite cyclic group of order o and A and B separable G-C∗-
algebras with A in BG[o−1]. Then there is a natural short exact sequence

Ext1
A(LKG(SA),LKG(B)) � KKG

∗ (A,B)[o−1] � HomA(LKG(A),LKG(B)).

Hom and Ext are taken in the abelian category A = Mod(CG[o−1])Z/2c .

Here, CG[o−1] denotes KKG[o−1] restricted to {C(G)H |H ≤ G} and Mod(CG[o−1])Z/2c
is the category of countable Z/2-graded modules over CG[o−1]. The reason for inverting
the group order is mainly of technical nature: As mentioned before, the nonexistence of
classification results for lattices over the rings ZG and Rep(G) for a general finite group
G appears to be the main obstacle to a UCT of the form

Ext1
A(F (SA), F (B)) � KKG

∗ (A,B) � HomA(F (A), F (B))

for some homological invariant F taking values in an abelian category A. We can over-
come this difficulty by inverting the group order o since Z[o−1]G is isomorphic to a direct
sum of Dedekind domains of the form Z[o−1, θm] for m|o and θm a primitive m-th root
of unity (see Theorem 22.8 in the appendix). Hence modules over Z[o−1]G are easier to
understand. Although the result is meant to generalize the UCT for actions of a cyclic
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group of prime order (up to the inversion of the group order), the means by which we
prove it are quite different. No exactness properties of modules over CG[o−1] will be
used, we will rather show that the category of modules over CG[o−1] is equivalent to the
category of modules over a certain direct sum of Dedekind domains. This will show that
every module over CG[o−1] has a projective resolution of length 1.

3 C∗-algebras over Finite Topological Spaces

As indicated above, in order to proceed in the C∗-algebra classification programme, one
is strongly interested in removing the simplicity condition in the classification result
of Kirchberg and Phillips. The aim here is to compute KK∗(X;A,B) by a Universal
Coefficient Theorem for a topological space X and C∗-algebras A and B over X for A
being in a certain bootstrap class B(X). In [28], Ralf Meyer and Ryszard Nest tried to
derive a UCT short exact sequence, which computes KK(X;A,B) for a finite T0 space
X by filtrated K-theory (in the following denoted by FK). They derive the desired short
exact sequence in the case of the totally ordered space On with n points, i.e.

On = {1, 2, . . . , n}, τOn = {{1}, {1, 2}, . . . , X} .

A C∗-algebra A over this space is essentially the same as a C∗-algebra A together with
a finite increasing chain of ideals

{0} = I0 / I1 / I2 / I3 / · · · / In−1 / In = A.

On the other hand they give an example of a finite T0 space Y , for which the following
strong non-UCT statement holds: There are A and B in B(Y ) with isomorphic filtrated
K-theory which are not KKY equivalent.
In his diploma thesis [4], Rasmus Bentmann showed that there is a more general type

of spaces, for which there is a UCT short exact sequence, which computes KK(X;A,B)
by filtrated K-theory. Let us say that these spaces are of type A (for a definition see
20.1).
We will complete the picture by showing the converse, i.e. that spaces of type A are

indeed the most general type of spaces, for which there is a UCT short exact sequence,
which computes KK(X;A,B) by filtrated K-theory. The resulting theorem reads as
follows:

Theorem 3.1. Let X be a finite T0 space. The following statements are equivalent:

(1) Let A ∈ B(X) and B be a separable C∗-algebra over X. Then there is a short exact
UCT sequence

ExtNT X
(
FK(SA),FK(B)

)
� KK∗(X;A,B) � HomNT X

(
FK(A),FK(B)

)
.

Here, the subscript NT X denotes that Ext and Hom are taken in Mod(NT X)Z/2c ,
the target category of FK.
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4 Homological Algebra in Triangulated Categories

(2) Let A,B ∈ B(X). Then FK(A) ∼= FK(B) implies that A is KKX-equivalent to B.

(3) X is of type A.

We will use that the negation of statement (2) in the theorem above is an obstruction
to the existence of a UCT, which computes equivariant KK-theory in terms of filtrated
K-theory. We prove that only spaces of type A allow for a UCT by using functoriality
of KK(X; _,_) in the space variable to derive embedding results, which basically state
that if a space X has a subspace (or a retract) Y , for which there is no UCT then the
same holds for X itself. This shows that it is sufficient to check that there is no UCT
for a small number of “bad apple” spaces. For these, it is known that the negation of
statement (3) in the theorem above holds.

4 Homological Algebra in Triangulated Categories

The classical UCT of Rosenberg and Schochet is derived by using so called geometric res-
olutions of C∗-algebras. This technique of constructing ad hoc resolutions can be put in
a more conceptual framework by regarding KK-theory as a triangulated category, where
morphisms are given by KK-elements and the composition is given by the Kasparov
product. This point of view has been introduced by R. Meyer and R. Nest in [27] to
give an alternative description of the Baum-Connes conjecture. In [29], R. Meyer and R.
Nest describe how homological algebra in triangulated categories can be approximated
by homological algebra in usual abelian categories. In particular, they show that every
“good” invariant has a unique modification that takes values in an abelian category–
with a little more work this allows for reducing the question whether there is a UCT
short exact sequence for a given invariant to a simpler question: Do all objects arising
as values of the modified invariant have projective dimension 1?
It seems to be more clear (at least to the author) how to construct the right resolutions

in the algebraic world of abelian categories than in the C∗-algebraic world itself. This
is the advantage of this approach as one moves on to more complicated versions of KK-
theory for C∗-algebras with additional structure. The crux of the matter is to choose an
invariant, which captures enough information but whose corresponding abelian category
is still sufficiently tractable to construct the desired projective resolutions of length 1.
Since this approach is the basis of all four results explained above, we will first work

in the quite general context of triangulated categories with countable coproducts and
(essential) idempotent suspension automorphisms. We will show for a large class of
representable invariants how to reduce the question whether there is a UCT to a question
about resolutions in a certain abelian category. We will then move on to the individual
results, show how they fit in the general framework and give detailed explanations and
proofs.
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Background

5 Triangulated Categories and the Construction of
Invariants

Originally, triangulated categories were introduced as a concept to formalize structures
which appear in stable homotopy theory and derived categories of abelian categories in
homological algebra. A good general reference for triangulated categories is [31]. To
the author’s knowledge, their first explicit applications in non-commutative topology
appeared in Andreas Thom’s Thesis [45]. Having applications to KK-theory in mind,
R. Meyer and R. Nest formulated the theory of homological algebra in triangulated
categories building on work of D. Christensen [10], A. Beligiannis [3] and on earlier work
in the context of relative homological algebra by S. Eilenberg and J. C. Moore [13].
We will assume the reader to be familiar with the definition and basic properties of

triangulated categories. Let us just state that a triangulated category T is a preadditive
category, which is equipped with two pieces of extra data: A suspension automorphism
S and a class of so called exact triangles.
Let us now explain the prototypical example of a triangulated category as it will be

used in this thesis: non-equivariant KK-theory. Here, the suspension automorphism is
given by SA := C0(R, A) for a separable C∗-algebra A. Bott periodicity shows that S
is an equivalence of categories, the small defect that S is not an automorphism in the
strict sense can be repaired by passing to a thickened category K̃K, in which KK sits as
a full essential subcategory (see [27] 2.1 for details). For a ∗-homomorphism φ : A→ B,
one may form the mapping cone

Cφ := {(f, a) ∈ C0 ((0, 1], B)⊕A | f(1) = φ(a)}

and the corresponding mapping cone triangle

SB
ιφ−→ Cφ

εφ−→ A
φ−→ B, ιφ(g) = (g, 0), εφ (f, a) = f(1).

A diagram SB′ → C ′ → A′ → B′ in KK is an exact triangle if and only if it is isomorphic
(in KK) to a mapping cone triangle. This is equivalent to the statement that C ′ → A′ →
B′ is isomorphic to a c.c.p. split extension of C∗-algebras (see[27] 2.2).
Also in the case of a general triangulated category T, we will write exact triangles in

the form SB → C → A→ B. Note that this differs only in notation from the standard
notation in triangulated categories: S is the inverse of the suspension automorphism,
which is used for instance in [31]. We introduce and follow this convention since exact
triangles in this form show up naturally when working with KK-theory.
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Background

As mentioned in the introduction our approach of deriving a UCT short exact sequence
relies on the machinery of homological algebra in triangulated categories. At this point
we could spend a few pages to introduce the theory. But since there are already articles,
such as [29], where this theory is nicely explained, we decided to outsource the explana-
tion of the machinery. All statements in this section should be understandable without
any knowledge about homological algebra in triangulated categories. For some proofs,
however, we assume familiarity with the notions of [29].
We will write C ∈∈ C, if C is a category and C is an object in C. For a ∈ C(A,B) and

b ∈ C(B,C), the composition b ◦ a will sometimes also be denoted by a · b ∈ C(A,C).
Let us assume that T has countable coproducts. We would like to study T by in-

variants, which take values in an abelian category A, i.e. by functors F : T → A. A
functor F is called stable if A is equipped with a suspension automorphism Σ such that
FS = ΣF holds. A covariant functor F is called homological if it maps an exact triangle
SB → C → A→ B to a long exact sequence

. . .→ ΣF (A)→ ΣF (B)→ F (C)→ F (A)→ F (B)→ Σ−1F (C)→ . . .

Similarly, a contravariant functor F is called cohomological if it maps an exact triangle
SB → C → A→ B to a long exact sequence

. . .← ΣF (A)← ΣF (B)← F (C)← F (A)← F (B)← Σ−1F (C)← . . .

Our aim in this chapter is to clarify what conditions on F we really need in order to
obtain a UCT short exact sequence, which computes the morphism groups of T in terms
of F , i.e. under which condition we can expect a short exact sequence of the form

Ext1
Ab(F (A),ΣF (B)) � T(A,B) � HomAb(F (A), F (B)).

An obvious example will be given by Hom-functors. First, we need a definition.

Definition 5.1. Let T∗ be the category with the same objects as T, Z-graded morph-
ism groups T∗(A,B), where Tn(A,B), n ∈ N is given by Tn(A,B) := T(SnA,B) and
composition given by

a · b := Sma · b

for a ∈ Tn(A,B) and b ∈ Tm(B,C).

Definition 5.2. A ∈∈ T is called ω-compact, if T(A,_) commutes with direct sums.
A countable family A of ω-compact objects in T such that for all A ∈ A, T(A,B) is
countable for all B ∈∈ T, is called a c-family in T.

Let A be a c-family in T. We want to construct a functor FA, which takes values
in an abelian category. Let us first describe the target category. Let TA∗ be the full
subcategory of T∗ with objects A. TA∗ is a small, preadditive category.

Definition 5.3. Let AbZc denote the category of countable Z-graded abelian groups. Let
Mod(TA∗ )Zc be the category of countable Z-graded TA∗ -modules, i.e., the category whose

12



5 Triangulated Categories and the Construction of Invariants

objects consist of contravariant additive functors M : TA∗ → AbZc , which are grading
preserving in the sense that for a ∈ Tn(A,B), M(a) : M(B) → M(A) sends M(B)[m]
to M(A)[m + n]. Morphisms in Mod(TA∗ )Zc are given by grading preserving natural
transformations M ⇒M ′.

Performing pointwise constructions, it is not hard to check that Mod(TA∗ )Zc is abelian.
Remark 5.4. Let RA be the graded category ring of TA∗ . RA is unital if and only if A
is finite. In this case, the category of modules over TA∗ is equivalent to the category of
RA-modules.

Definition 5.5. Define FA : T→Mod(TA∗ )Zc by FA(B)(A)[n] := Tn(A,B).

Composition on the left equips FA(B) with the structure of a module over TA∗ . Com-
position on the right shows that FA is a covariant functor. Mod(TA∗ )Zc is equipped with
a suspension automorphism Σ, which is given by ΣM(A)[n] := M(A)[n− 1] . It is clear
that FA is stable, Lemma 1.1.10 in [31] shows that FA is homological. Thus for every
c-family A in T, we have constructed an additive stable homological functor

FA : T→Mod(TA∗ )Zc .

Lemma 5.6. Let A be a c-family in T, n ∈ N and A ∈ A. Then FA(SnA) ∈∈Mod(TA∗ )Zc
is projective. Mod(TA∗ )Zc has enough projective objects.

Proof. Let M,N ∈∈Mod(TA∗ )Zc , then by Yoneda’s Lemma

Mod(TA∗ )Zc (FA(SnA),M)→M(A)[n], Φ 7→ Φ (idSnA) ,

is an isomorphism. Since Ψ ∈ Mod(TA∗ )Zc (N,M) is an epimorphism if and only if
Ψ(A) : N(A) → M(A) is onto for all A ∈ A, this shows that FA(SnA) is projective.
Furthermore, for every A ∈ A, n ∈ N and m ∈ M(A)[n], there is Φm : FA(SnA) → M
such that Φm (idSnA) = m. Therefore⊕

A∈A,n∈N,m∈M(A)[n]
Φm :

⊕
A∈A,n∈N,m∈M(A)[n]

FA(SnA)→M

is an epimorphism. This shows that Mod(TA∗ )Zc has enough projective objects.

As mentioned in the introduction, our aim is to translate homological algebra in the
triangulated category T to homological algebra in a suitable abelian category. Ho-
mological algebra in a triangulated category is always relative, that is we have to
specify an ideal – a subclass J of all morphisms in T, which is closed under com-
position [29]. We will only be concerned with ideals of the form J := kerF , where
kerF (A,B) := {f ∈ T(A,B) | F (f) = 0} for some stable homological functor F . In
good cases, homological algebra in T with respect to J can be completely translated
to homological algebra in an abelian category by means of a so called universal stable
homological J-exact functor.

13
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Definition 5.7. Let A be an abelian category, J an ideal in T and F : T → A a stable
homological functor. F is the universal stable homological J-exact functor if for any
other stable homological functor G : T → A′ with G(f) = 0 ∀f ∈∈ J, there is a unique
additive functor G̃ : A→ A′ such that G = G̃ ◦ F .

Lemma 5.8. Let A be a c-family in T. Then FA is the universal stable homological
kerFA-exact functor.

Proof. By [29] Theorem 3.39 and Remark 3.40 and our last Lemma (5.6), we only have
to check that for every A ∈ A and every n ∈ Z there is an object F⊥A (FA(SnA)) ∈∈ T
such that

1. For every B ∈∈ T, there is an isomorphism

ΘB : Mod(TA∗ )Zc (FA(SnA)), FA(B)) ∼= T((F⊥A (FA(SnA)), B).

2. FA
(
ΘSnA

(
idFA(SnA)

))
induces an isomorphism FA

(
F⊥A (FA(SnA))

)
∼= FA(SnA).

Set F⊥A (FA(SnA)) := SnA.
(1): Recall that Mod(TA∗ )Zc (FA(SnA),M) → M(A)[n], Φ 7→ Φ (idSnA) is an isomorph-
ism, therefore, ΘB is given by

Mod(TA∗ )Zc (FA(SnA)), FA(B)) ∼= FA(B)(A)[n] = T(SnA,B), Φ 7→ Φ (idSnA)

(2): We have FA
(
F⊥A (FA(SnA))

)
= FA(SnA) and FA

(
ΘSnA

(
idFA(SnA)

))
= FA (idSnA).

This proves the lemma.

Corollary 5.9. Let A be a c-family in T and P ∈∈Mod(TA∗ )Zc projective, then there is
B ∈∈ T such that FA(B) ∼= P .

Proof. This follows from Theorem 3.41 in [29], since FA is the universal stable homolo-
gical kerFA-exact functor.

6 The Bootstrap Class

Recall that we are looking for the general conditions, under which we can expect the
existence of a UCT short exact sequence, i.e. of a short exact sequence of the form

Ext1
Ab(F (A),ΣF (B)) � T(A,B) � HomAb(F (A), F (B)).

As in the case of the usual UCT, we can expect this to hold only for objects A in a
certain bootstrap class.

Definition 6.1. Let A be a family of objects in T. The Bootstrap class BA is the
localizing subcategory generated by A, i.e., the smallest subclass C of objects of T which
is closed under the following operations:

14



6 The Bootstrap Class

1. (suspension) If A is in C, then SA and S−1A are in C.

2. (exact triangles) If SB → C → A → B is an exact triangle and two of the three
objects A,B and C are in C, then so is the third.

3. ( direct sums) If (Ai)i∈I is a countable family of objects in C, then so is
⊕

I Ai.

4. (retracts) If B is in C and there are f : A→ B and g : B → A such that f ·g = idA,
then A is in C.

If A consists only of one object A, we will also write BA instead of BA.

Lemma 6.2. Let A be a c-family of objects in T. Then B⊕
A∈A A

= BA.

Proof. We obviously have that B⊕
A∈A A

is a subclass of BA. The other direction
follows by the fact that BA as a localizing subcategory is automatically thick [31], i.e.
that B ⊕ C ∈∈ BA implies B ∈∈ BA.

The next lemma tells us that the objects in the bootstrap class BA are “orthogonal”
to the class of objects on which FA vanishes.

Lemma 6.3. Let A be a countable family of objects in T and B in BA. Then B has
the following property: If C ∈∈ T such that FA(C) = 0 then T∗(B,C) = 0.

Proof. Let B′ be the class of of objects B ∈∈ T such that FA(C) = 0 implies T(B,C) =
0. B′ is closed under taking suspensions, exact triangles (five lemma), retracts and
countable direct sums and obviously contains A, hence it contains BA.

Under a certain regularity condition on the objects in A, the property of the last
lemma completely characterizes the bootstrap class.
Note that the five lemma implies that the full subcategory of ω-compact objects is

thick, i.e. is closed under suspensions, exact triangles and countable coproducts.

Proposition 6.4. Let A be a c-family in T and B ∈∈ T. The following statements are
equivalent:

(1) B is in BA.

(2) If C ∈∈ T such that FA(C) = 0 then T(B,C) = 0.

Proof. We only have to show (2) ⇒ (1). [27] Theorem 6.1, shows that T(_, B) re-
stricted to the triangulated subcategory BA is representable, i.e. there is a B̃ in
BA and an isomorphism of (restricted) functors T : T(_, B)|BA ∼= T(_, B̃)|BA . Set
φ := TB(idB) ∈ T(B, B̃) and let Cφ be the mapping cone of φ. Since φ is an FA-
equivalence by construction, FA(Cφ) = 0. Therefore, T∗(B,Cφ) = 0. We also have
T∗(B̃, Cφ) = 0. Since T∗(_, Cφ) is cohomological, this shows that T∗(Cφ, Cφ) = 0, i.e.
that Cφ ∼= 0 in T. Therefore, φ is an isomorphism.

In applications to KK-theory, it is often desirable to have a more explicit character-
ization of the objects in the corresponding bootstrap class. This can be done in most
cases of interest as the reader will see once we are dealing with applications.

15
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7 A General UCT Criterion

We present a general criterion for the existence of a UCT short exact sequence for
invariants of the form FA, which only involves the bootstrap class BA and projective
resolutions in the target category of FA.

Theorem 7.1. Let A be a c-family of objects in T and B ∈∈ T. Assume that

(1) B ∈∈ BA;

(2) FA(B) has a projective resolution of length 1 in Mod(TA∗ )Zc .

Then, for every C ∈∈ T, there is a grading preserving short exact UCT sequence:

Ext1
Mod(TA∗ )Zc

(ΣFA(B), FA(C)) � T(B,C) � HomMod(TA∗ )Zc (FA(B), FA(C)).

Proof. Set J := ker(FA), i.e. J(A,B) = {f ∈ T(A,B)|FA(f) = 0}, then J is a homolo-
gical ideal in the sense of Definition 2.20 of [29]. By definition of J, FA is J-exact.
We already know that FA is the universal kerFA-exact stable homological functor.

By [29] Theorem 3.41, assumption (2) implies that B has a kerFA-projective resolution
of length 1. The same theorem states that there are natural isomorphisms

ExtnMod(TA∗ )Zc
(FA(B), FA(C)) ∼= ExtnT,kerFA(B,C) for all n ∈ N.

[29] Lemma 3.2 and Lemma 6.3 of the present chapter tell us that assumption (1) implies
that T(B,C) = 0 for all kerFA-contractible C. Therefore, the statement follows by [29]
Theorem 4.4.
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Equivariant KK-theory and the UCT for
the Action of a Cyclic Group of Prime
Order

The main aim of this chapter is to prove an equivariant Universal Coefficient Theorem
for C∗-algebras equipped with an action of C(p). More precisely, we will define EKC(p)

as the invariant associated with the family A := {C, C(C(p)), Cu} in KKC(p). Where Cu
denotes the mapping cone of the unital embedding of C into C(C(p)). EKC(p) takes values
in the category of countable Z/2-graded modules over R–the category ring of KKC(p)

restricted to A. For separable C(p)-C∗-algebras A and B with A being in a certain
bootstrap class BC(p), we will prove the existence of a short exact UCT sequence

Ext1
R(EKC(p)(SA),EKC(p)(B)) � KKC(p)

∗ (A,B) � HomR(EKC(p)(A),EKC(p)(B)).

We will also show that at least all C(p)-C∗-algebras of type I are in BC(p).
This chapter is organized as follows: In Section 8, we explain for a locally compact

group G how to view KKG as a triangulated category with countable coproducts. We
furthermore derive some properties of the Hom-like invariants FA such as a Connes–
Thom isomorphism and a Pimsner–Voiculescu exact sequence. Then in 9, we compare
our definition of the bootstrap class with the definition of Rosenberg and Schochet and
show that in the case G = C(p) all type I algebras are in the corresponding bootstrap
class. In Section 10, we introduce the invariant EKC(p) as a module over a category ring
R as a special case of the general construction. In Section 11, we will calculate the ring
R in terms of generators and relations and use this description in Section 12 to show
that there is a UCT short exact sequence for EKC(p) by proving that every module of
the form EKC(p)(A) has projective dimension 1.

8 Equivariant KK-theory as a Triangulated Category

8.1 The Categories KKG and KKG∗

For a locally compact group G, let KKG denote the category, which has separable G-C∗-
algebras as objects and in which the set of morphisms from A to B is equal to KKG(A,B).
Composition is given by the Kasparov product. KKG is a preadditive category, which
has countable coproducts, it also carries the structure of a triangulated category (for a
proof consult the Appendix of [27]).
As in the non-equivariant case, the suspension automorphism S of KKG is given by

taking the outer tensor product with C0(R). A triangle is exact if and only if it is

17
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isomorphic to a mapping cone triangle. This is equivalent to the statement that it is
isomorphic to a G-equivariantly c.c.p. split extension ([27] Section 2.1.).
Following Definition 5.1, we may form KKG∗ . Due to Bott periodicity, it suffices to

work with a slightly simpler Z/2-graded variant: Define

KKG
∗ (A,B) := KKG

0 (A,B)⊕KKG
1 (A,B)

Let B ∈ KKG(C, S2) and D ∈ KKG(S2,C) denote the usual Bott and Dirac element
and for a G-C∗-algebra A define isomorphisms BA := B ⊗C 1A ∈ KKG(A,S2A) and
DA := D ⊗C 1A ∈ KKG(S2A,A).

Definition 8.1. Let A, B and C be separable (trivially graded) G-C∗-algebras, i, j ∈
{0, 1} and x ∈ KKG

i (A,B), y ∈ KKG
j (B,C). Set k = i+ j mod 2. Define a product

KKG
i (A,B)⊗KKG

j (B,C)→ KKG
k (A,C)

by

x · y :=


x⊗B y if j = 0
Sx⊗SB y if i = 0, j = 1
BA ⊗S2B Sx⊗SB y if i = 0, j = 1

Using that 1S ⊗C B = B ⊗C 1S (which follows from the fact that R3 → R3, (x, y, z) 7→
(z, x, y) is homotopic to the identity), it is easy to check that this product is associative.
Of course 1A acts as the identity on A. We obtain a category, which is equivalent to the
Z-graded version of definition 5.1. It will also be denoted by KKG∗ .

8.2 Properties of the Hom-like Invariants in the G-equivariant Case

Let A be a c-family of objects in KKG. In 5.5, we constructed an invariant FA. For
instance, if G is compact and we set A = {C} with the trivial grading, we obtain
equivariant K-theory with its module structure over the complex representation ring
R(G).
Thanks to Bott periodicity, the long exact sequence is 6-periodic, i.e., if SA → C →

A→ B is an exact triangle (for example, if C → A→ B is an equivariantly c.c.p. split
extension) then there is a 6-term exact sequence

FA(C) // FA(A) // FA(B)

��
ΣFA(B)

OO

ΣFA(A)oo ΣFA(A).oo

Recall that K-theory is exact, even if it is applied to non c.c.p. split extensions. If we
restrict to compact G and a family A consisting of nuclear C∗-algebras, the same holds
for FA:
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Lemma 8.2. Let G be compact and all A ∈ A nuclear. If B1 � B2 � B3 is a
G-equivariant extension, then there is a natural 6-term exact sequence

FA(B1) // FA(B2) // FA(B3)

��
ΣFA(B3)

OO

ΣFA(B2)oo ΣFA(B1).oo

Proof. This follows from the main result of [24] and is also contained in [42] .

The statement of the lemma is true in the more general context of G being strongly K-
amenable and A being nuclear in equivariant K-theory, for example if G is discrete and
amenable, then it is strongly K-amenable (see [24] for an explanation of these notions
and a proof of this result).
Next we will derive analogues of the Thom isomorphism and the Pimsner–Voiculescu

exact sequence. Let G1 and G2 be locally compact groups. If B ∈∈ KKG1×G2 , then
taking the partial crossed product ([23] 3.11) yields G2nA ∈∈ KKG1 . Let furthermore
η : KKG1×G2 → KKG1 denote the functor which is given by forgetting the G2-action.

Proposition 8.3 (Thom isomorphism). Let B ∈∈ KKG×R, then there is a KKG-
equivalence

ηSB ∼= BnR.

This isomorphism passes to any functor, which is defined on KKG, for example by
applying FA, we obtain a Thom isomorphism ΣFA(B) ∼= FA(RnB).

Proof. Equip C0(R) ∈∈ KKG×R with an R-action by translation and trivial G-action.
First consider C0(R) as an R-algebra by forgetting the G-action. By [23] Theorem 5.7
and Theorem 5.9 applied to R, we obtain a KKR-equivalence C ∼= Cτ (R) = C1 ⊗ C0(R),
where C1 denotes the first Clifford algebra with trivial R-action. Usual Bott periodicity
yields C ∼= SC0(R) in KKR, or equivalently, S ∼= C0(R). Pullback via the projection
G × R � R gives S ∼= C0(R) in KKG×R. Applying the exterior product with 1B yields
a KKG×R-equivalence SB ∼= C0(R, B) (Here, G× R acts on C0(R, B) diagonally via the
the identification C0(R, B) ∼= C0(R) ⊗ B). Let B̃ denote B with G acting as before but
with trivial R-action. Then

C0(R, B̃)→ C0(R, B), f 7→ (t 7→ (e, t) · f(t))

yields G×R-equivariant ∗-isomorphism. Hence we obtain a chain of KKG×R-equivalences

SB ∼= C0(R, B) ∼= C0(R, B̃) ∼= SB̃

or, equivalently, B ∼= B̃ in KKG×R. Now applying the partial crossed product with R
yields the claim since C∗R ∼= S.

Proposition 8.4 (Pimsner–Voiculescu exact triangle). Let B ∈∈ KKG×Z, then there is
an exact triangle

ηB → ηB → ZnB → ηSB
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Applying FA or any other (co-)homological functor yields a Pimsner–Voiculescu type
exact sequence.

Proof. Let G × Z act on C0(R, B) diagonally with G acting trivially and Z acting by
translation on R and similarly for C0(Z, B). Restriction provides a surjection C0(R, B) �
C0(Z, B), whose kernel may be identified with SC0(Z, B). The resulting extension

SC0(Z, B) � C0(R, B) � C0(Z, B)

is Z × G-equivariantly c.c.p. split and hence provides an exact triangle in KKZ×G.
Restricting the KKG×R-equivalence S ∼= C0(R) from the proof of Proposition 8.3 to
G×Z and tensoring with 1B yields a KKG×Z-equivalence C0(R, B) ∼= SB. Let B̃ denote
B with G acting as before but with trivial Z-action.

C0(Z, B̃)→ C0(Z, B), f 7→ (n 7→ (e, n) · f(n)) ,

yields a G× Z-equivariant ∗-isomorphism. Hence there is an exact triangle

SC0(Z, B̃) � SB � C0(Z, B̃).

Now we can apply the partial crossed product with Z and shift the resulting exact
triangle to an exact triangle of the desired form.

9 A close Look at the Bootstrap Class

Recall that BA is the localizing subcategory of KKG generated by A ∈ A. As an
example, consider F = (C0(G/H))H closed subgroup of G. Then BF can be thought of as a
KK-analogue of the category of (pointed) G-CW -complexes (as for instance introduced
in [25]), i.e., all separable G-C∗-algebras which can be constructed from basic building
blocks of the form C0(G/H) via the operations of KKG-equivalence, countable direct
sums, suspensions and exact triangles. Taking suspensions is the direct analogue of the
topological suspension functor, countable direct sums and exact triangles correspond
to the gluing procedure for G-CW-complexes. Of course, since we are including KKG-
equivalences, the bootstrap class contains much more than just (continuous functions
on) G-CW-complexes.
Let us now connect our notion of a bootstrap class to the one of Rosenberg and

Schochet defined in [40]. Note that Rosenberg and Schochet only consider nuclear G-
C∗-algebras. A useful property of the subclass of nuclear G-C∗-algebras is that for a
compact G we do not have to distinguish between extensions and admissible extensions, a
fact that is well known for the non-equivariant case and easily extends to the equivariant
setting if G is compact.

Lemma 9.1. Let G be a compact topological group,

J � A� Q

a G-equivariant extension and Q a nuclear G-C∗-algebra, then there is a G-equivariant
c.c.p. splitting σ.
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Proof. By [9], there is a (not necessarily equivariant) c.p. splitting section s : Q→ A of
norm at most 1. An equivariant splitting is given by

σ(q) :=
∫
G
g−1s(gq) dµG.

Let C be a class of nuclear G-C∗-algebras. Consider the following closure properties:

1. Let 0 → A → B → C → 0 be a short exact sequence of G-C∗-algebras. If two of
the three algebras are in C, then the third is also in C.

2. If (An, αmn ) is a countable inductive system of G-C∗-algebras in C, then A∞ :=
lim−→(An, αmn ) is in C.

3. If (A,α) is in C and (A,α) is exterior equivalent to (A,α′), then (A,α′) is in C.

4. If A is in C and A is G-stably isomorphic to B, then B is in C.

5. If A in C admits an action of R (or Z) that commutes with the G action, then RnA
(or ZnA, respectively) is in C

Definition 9.2. Let F be a family of nuclear G-C∗-algebras. Define 〈〈F〉〉 to be the
smallest subclass of all subclasses of nuclear G-C∗-algebras that contain F and have the
closure properties (1)–(5).

Proposition 9.3. Let G be a compact group and F be a family of nuclear G-C∗-algebras.
Then

〈〈F〉〉 ⊆ BF .

Proof. Let C be the class of all nuclear G-C∗-algebras in BF . We have to show that
C has the closure properties (1)–(5). This is true for (3) and (4), since BF is closed
under KKG-equivalence and stabilization preserves nuclearity. Since crossed products
by Z and R preserve nuclearity, C is closed under (5) by Propositions 8.4 and 8.3. (1)
holds by Lemma 9 and since nuclearity passes to quotients, ideals and is preserved under
extensions ([35], the remark following efinition 11.7). To prove (2), let (An, αmn ) be a
countable inductive system of G-C∗-algebras in C. Recall from [27] Section 2.4., that
there is a homotopy limit ho- lim−→(An, αmn ), which is, by definition, part of an exact
triangle

S(ho- lim−→(An, αmn ))→
⊕
N
An →

⊕
N
An → ho- lim−→(An, αmn )

and that ho- lim−→(An, αmn ) is KKG-equivalent to A∞ if the extension of G-C∗-algebras

T (An, αmn ) � T̃ (An, αmn ) � A∞

is admissible, i.e., has a G-equivariant c.c.p. split. Here, T (An, αmn ) and T̃ (An, αmn )
are mapping telescope constructions, for the exact definition see [27] p. 11–12. Since
a direct limit of nuclear C∗-algebras is again nuclear ([7], remark to Exercise 2.3.7.),
we see that T (An, αmn ) � T̃ (An, αmn ) � A∞ is admissible by Lemma 9. This gives a
KKG-equivalence A∞ ∼= ho- lim−→(An, αmn ). Since BF is closed under direct sums, exact
triangles and KKG-equivalences, this shows that A∞ is in C.
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As in [40], let AG be the class of all separable abelian G-C∗-algebras. Rosenberg
and Schochet’s version of the bootstrap class is 〈〈AG〉〉. They prove the following useful
theorem:

Theorem 9.4. Let G be a compact Lie group and F a collection of G-C∗-algebras such
that for all closed subgroups H of G and all continuous trace G-C∗-algebras A with
spectrum Â = G/H (G acting by translation), A ∈ F . If B is a type I C∗-algebra and
β a G-action on B, then (B, β) is in 〈〈F〉〉.

Proof. See [40], Theorem 2.8.

The same techniques as in the proof of the last theorem may be used to connect
Rosenberg’s and Schochet’s notion of a bootstrap class with our definition.

Theorem 9.5. Let G be a compact (not necessarily connected) Lie group and

FG := (C0(G/H))H closed subgroup of G.

Then
〈〈AG〉〉 ⊆ BFG .

Proof. By Proposition 9.3 it is sufficient to show that every separable abelian G-C∗-
algebra is contained in 〈〈FG〉〉, i.e., that 〈〈FG〉〉 = 〈〈AG〉〉. The arguments in the proof of
Theorem 2.8. p. 19 in [40] can be applied verbatim, just replace “type I” and “continuous
trace” by ”abelian.”

Note that 〈〈AG〉〉 6= BFG just because 〈〈AG〉〉 consists of nuclear C∗-algebras by defin-
ition, and BFG also contains non-nuclear C∗-algebras, which are KK-equivalent to 0.
Let us now consider the case G = C(p). Let BC(p) denote the bootstrap class

B{C,CC(p)}. We will use the Theorem of Rosenberg and Schochet to show that at least
all type I C∗-algebras are in BC(p).

Corollary 9.6. Let A be a type I C∗-algebra and α a C(p)-action on A. Then (A,α)
is in BC(p).

Proof. In view of Lemma 9.3, Theorem 9.4 and the fact that 〈〈〈〈F〉〉〉〉 = 〈〈F〉〉, we only
have to show that F := 〈〈{C, CC(p)}〉〉 fulfills the assumption of Theorem 9.4. If A
is a continuous trace C(p)-C∗-algebra with spectrum a point, then A ⊗ (K, τ) is outer
equivalent to (K, τ) since all automorphisms of K are given by a conjugation with a
unitary. Here, (K, τ) denotes the compact operators on l2(N) equipped with the trivial
action. Hence A is in 〈〈{C, CC(p)}〉〉. If A is a continuous trace C(p)-C∗-algebra with
spectrum C(p), then there are automorphisms αg ∈ Aut(K), g ∈ C(p) such that A ⊗
(K, τ) is isomorphic to

(⊕GK, α), α(a0, . . . , ap−1) =
(
α[p−1](ap−1), α[0](a0), α[1](a1), . . . , α[p−2](ap−2)

)
.

Hence A⊗ (K, τ) is outer equivalent to CC(p)⊗ (K, τ).
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10 Definition of EKC(p)

Let u be the unital embedding of (C, τ) into (CC(p), λ), where λ denotes the action of
C(p) on CC(p) by left translation.

Cu = {a ∈ C ([0, 1), CC(p)) | a(0) ∈ Im(u)}

is the mapping cone of u.

Definition 10.1. Let A := {C, CC(p), Cu} and

R := RA = KKC(p)
∗ (C⊕ CC(p)⊕ Cu,C⊕ CC(p)⊕ Cu),

define
EKC(p) := FA : KKC(p) →Mod(R)Z/2c .

We will calculate R in terms of generators and relations in Section 11.
Let B be a C(p)-C∗-algebra. Note that there is an isomorphism

EKC(p)(B) ∼= KKC(p)
∗ (C, B)⊕KKC(p)

∗ (CC(p), B)⊕KKC(p)
∗ (Cu, B),

which is natural in B.
KKC(p)

∗ (C, B) is isomorphic to the C(p)-equivariant K-theory group of B [33]. By the
Green–Julg Theorem, there is an isomorphism of abelian groups

KKC(p)
∗ (C, B) ∼= K∗(C(p)nB).

Since CC(p) ∼= C∗Ĉ(p) = C∗C(p) (Baaj–Skandalis Duality) the Green–Julg Theorem
and Takesaki–Takai duality give an isomorphism of abelian groups

KKC(p)
∗ (CC(p), B) ∼= K∗(B).

If p = 2, then the third summand can be interpreted in terms of K-theory of graded C∗-
algebras: Recall that in [23], Kasparov defines KK-theory for Z/2-graded C∗-algebras.
If B1 and B2 are Z/2-graded C∗-algebras, let us denote the corresponding KK-group in
the sense of [23] by K̂K∗(B1, B2). Recall that there is also a graded (minimal) tensor
product B1⊗̂B2 with tensor unit C (C is of course trivially graded). We could also define
graded K-theory by

K̂∗(B1) := K̂K∗(C, B1).

This agrees with the elementary definition of K-theory for graded Banach algebras as
defined for example in [46], for a proof of this fact see [15] 4.5. Of course, every Z/2-
C∗-algebra B gives rise to a Z/2-graded C∗-algebra B̂, where B̂ = B as a C∗-algebra
and the grading involution on B̂ is given by action of the generator of Z/2. This gives
an isomorphism of the categories of (separable) Z/2-graded C∗-algebras and (separable)
Z/2-C∗-algebras. Let us denote the inverse of (̂_) by γ. In [15], U. Haag studies
the relation between KK-theory of graded C∗-algebras and Z/2-equivariant KK-theory.
Proposition 3.8 in [15] can be rephrased as follows:
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Proposition 10.2. Let A and B be separable Z/2-algebras. There is a isomorphism

K̂K∗(Â, B̂) ∼= KKZ/2∗ (γ(Ĉu⊗̂Â), B),

which is natural with respect to Z/2-equivariant ∗-morphisms.

This shows that
KKZ/2∗ (Cu, B) ∼= K̂∗(B̂)

i.e., that, as an abelian group, the third summand is isomorphic to the graded K-theory
of B̂.

Theorem 10.3. EKC(p) has the following properties:

(1) EKC(p) is exact, i.e., if B1 � B2 � B3 is a (not necessarily admissible) extension
of G-C∗-algebras, then there is a a natural 6-term exact sequence

EKC(p)(B1) // EKC(p)(B2) // EKC(p)(B3)

��
ΣEKC(p)(B3)

OO

ΣEKC(p)(B2)oo ΣEKC(p)(B1)oo

.

(2) EKC(p) commutes with countable direct limits, i.e., if (An, αmn ) is a countable in-
ductive system of G-C∗-algebras, then the canonical map

lim−→
(
EKC(p)(An),EKC(p)(αmn )

)
→ EKC(p)(A∞)

is an isomorphism.

(3) EKC(p) has a Thom-isomorphism, i.e., if B is a C(p)-C∗-algebra with a commuting
R-action, then there is a natural isomorphism

EKC(p)(SB) ∼= EKC(p)(RnB).

(4) EKC(p) has a Pimsner–Voiculescu exact sequence, i.e., if B is a C(p)-C∗-algebra
with a commuting Z-action, then there is a natural 6-term exact sequence

EKC(p)(B) // EKC(p)(B) // EKC(p)(ZnB)

��
ΣEKC(p)(ZnB)

OO

ΣEKC(p)(B)oo ΣEKC(p)(B).oo

Proof. (1), (3) and (4) are covered by the results of the last section. To prove (2), first
note that K∗ ∼= KK∗(C,_) commutes with direct limits. Using universal properties, it
is also not hard to see that

C(p)nA∞ ∼= lim−→(C(p)nAn,C(p)nαmn ).
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Hence KKC(p)
∗ (C,_) commutes with direct limits by the Green–Julg Theorem. Since by

Baaj–Skandalis Duality

KKC(p)
∗ (CC(p), A) ∼= KKC(p)

∗ (C(p)nCC(p),C(p)nA) ∼= KKC(p)
∗ (C,C(p)nA),

KKC(p)
∗ (CC(p),_) also commutes with direct limits. Since Cu is the mapping cone of

the unital embedding of C into CC(p), the Five Lemma shows that KKC(p)
∗ (CC(p),_)

commutes with direct limits as well.

Theorem 7.1 specializes to

Theorem 10.4. Let A be a separable C(p)-C∗-algebra such that

(1) A ∈ BC(p),

(2) EKC(p)(A) has a projective resolution of length 1 in Mod(R)Z/2c .

Then, for all separable C(p)-C∗-algebras B, there is a natural short exact sequence

Ext1
R(EKC(p)(SA),EKC(p)(B)) � KKC(p)

∗ (A,B) � HomR(EKC(p)(A),EKC(p)(B)).

We have just seen that every type I G-C∗-algebra is in BC(p). In Section 12 we
will show that condition (2) is always fulfilled. This will prove Theorem 1.1 from the
introduction.

11 Computation of R
The aim of this section is to compute R. Recall that R is the category ring of the full
subcategory of KKC(p)

∗ with objects {C, CC(p), Cu}.
First we will set up some notation and give explicit formulas for the two main tools

which are used to compute R, namely the Green–Julg Theorem and Baaj–Skandalis
duality. Then we will start with computing a subring of R, the category ring of KKC(p)

∗
restricted to {C, CC(p)}. The third step is to show that besides the obvious exact triangle
coming from the definition of Cu as a mapping cone, there is another exact triangle in
the opposite direction. Finally, we will include Cu in our calculation and determine R
in terms of generators and relations.

11.1 Preparation

Let µ be the Haar measure on C(p), normalized such that the total mass is p1/2. Let us
fix the isomorphism

χ : C(p)→ Ĉ(p), χk(l) = e2πikl/p.

Fourier transformation gives an equivariant ∗-isomorphism

F : (CC(p), λ)→ (C∗C(p), τ̂) , F(f)(k) =
∫

C(p)
χk(l)f(l) dµ(l),
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where λ is the action by left translation and τ̂ is the dual of the trivial action.
Let (A,α) be a C(p)-C∗-algebra. Let V be a vector space. We will write A =vs V

(E =vs V ) if a C∗-algebra A (Kasparov module E) is equal to V as a vector space.
We have C(p)nαA =vs C(C(p), A). Since C(p) is abelian, there is a dual action α̂ of
Ĉ(p) ∼= C(p) on C(p)nA given by α̂l(f)(k) := χl(k)f(k). By the universal property of
KKC(p) ([26], Theorem 50) we obtain an endofunctor

C(p)n(_): KKC(p) → KKC(p).

11.2 Baaj–Skandalis Duality

In [1], S. Baaj and G. Skandalis examine Gn (_) for a general Hausdorff topological
group G. We can derive the following explicit description of C(p)n(_) from [1] 6.6 and
6.17:
Let x = [(E , T, γ)] ∈ KKC(p)(A,B). Then C(p)nx is represented by (C(p)nE , T̂ , γ̂),

where C(p)nE =vs C(C(p), E) and the expressions for inner product, left and right
multiplication specialize to:

(aξ)(k) =
∫

C(p)
a(l)γl (ξ(k − l)) dµ(l), (ξb)(k) =

∫
C(p)

ξ(l)βl (b(k − l)) dµ(l)

and
〈ξ, η〉(k) =

∫
C(p)

β−l (〈ξ(l), η(k + l)〉) dµ(l).

for ξ, η ∈ C(p)nE , b ∈ C(p)nB and a ∈ C(p)nA. The operator T̂ is given by(
T̂ (ξ)

)
(k) = T (ξ(k)) and the action γ̂ by γ̂l(ξ)(k) = χl(k)ξ(k).

Applying the crossed product twice yields a C(p)-C∗-algebra (C(p)nα̂C(p)nαA, ̂̂α),
which is naturally KKC(p)-equivalent to A by the Takai Duality Theorem [43]. Thus
C(p)n(_) is an autofunctor of KKC(p) which is involutive up to a natural isomorphism

T : C(p)nC(p)n(_)⇒ idKKC(p) .

This observation will be used to simplify the computation of R. It will be useful to
explicitly describe the natural transformation T .
Let

(
K(L2(C(p), A)),Adρ⊗α

)
be the compact operators on the Hilbert A-module

L2(C(p), A) equipped with the adjoint action, where C(p) acts on L2(C(p), A) via

(ρ⊗ α)l(f)(k) = αl(f(k + l)), f ∈ L2(C(p), A).

Lemma 11.1. There is an equivariant ∗-isomorphism

ΦA :
(
C(p)nα̂C(p)nαA, ̂̂α)→ (

K(L2(C(p), A)),Adρ⊗α
)
,

which is given by

ΦA(F )(f)(r) =
∫

C(p)

∫
C(p)

α−1
r (F (t, s))χt(s− r)f(r − s)dµ(t) dµ(s)

for F ∈ C(p)nα̂ C(p)nα A =vs C(C(p)×C(p), A) and f ∈ L2(C(p), A).
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Proof. This is a standard result, see for example [48], Theorem 7.1.

Let us denote by EA ∈ KKC(p)(K(L2(C(p), A)), A) the KK-element which is given
by the Morita-Rieffel imprimitivity bimodule (L2(C(p), A), ρ ⊗ α). Then the natural
transformation

T : C(p)nC(p)n(_)⇒ id

is given by the KKC(p) equivalence TA = [ΦA] · EA. That T is indeed a natural trans-
formation, i.e., that for C(p)-C∗-algebras A and B and x ∈ KKC(p)(A,B),

C(p)nC(p)nx · TB = TA · x

follows from [1], Théorème 6.20.

Lemma 11.2. Let A be a C(p)-C∗-algebra, then

C(p)nTA = TC(p)nA in KKC(p)(C(p)nC(p)nC(p)nA,C(p)nA).

Proof. C(p)nTA = [(C(p)nL2(C(p), A))] and TC(p)nA = [(L2(C(p), (C(p)nA)))] with
left-module structure given by C(p)nφA and φC(p)nA. Note that both C(p)nL2(C(p), A)
and L2(C(p), (C(p)nA)) are equal to C(C(p)×C(p), A) as vector spaces.

Ψ: C(p)nL2(C(p), A)→ L2(C(p),C(p)nA), Ψ(F )(s, t) = F (t, s),

is clearly bijective. Straightforward calculations show that Ψ intertwines left and right
multiplication and the inner products. Therefore, Ψ is an isomorphism of Kasparov
C(p)nC(p)nC(p)nA-C(p)nA-modules.

We will use Baaj–Skandalis duality to construct an honest involution on KK
C(p)
∗ re-

stricted to C and CC(p). This has the advantage of reducing the amount of necessary
calculations by a factor of two.
There are KKC(p)-equivalences

φ0 := [F−1] : C(p)nC→ CC(p) and φ1 := [C(p)nF ] · TC : C(p)nCC(p)→ C

For notational reasons, let us set A0 := C and A1 := CC(p).

Definition 11.3. Define an autofunctor I on objects by I(Ai) = Ai+1 and on morphisms
by

I(x) = φ−1
i · (C(p)nx) · φj for x ∈ KKC(p)

∗ (Ai, Aj)

for i, j ∈ {0, 1} (addition is taken modulo 2).

Lemma 11.4. I is an involution.

Proof. Since I2(x) = φ−1
i+1 ·(C(p)nφ−1

i ) ·(C(p)nC(p)nx) ·(C(p)nφj) ·φj+1, it is sufficient
to show that (C(p)nφi) · φi+1 = TAi for i ∈ {0, 1}. For i = 0, the statement is obvious
and for i = 1, it follows from Lemma 11.2 and naturality of TA.
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11.3 The Green–Julg Theorem

Another useful tool is the Green–Julg Theorem [21]. A KK-theoretic formulation appears
in [12].

Theorem 11.5 (Green–Julg Theorem). Let G be a compact group and A a G-C∗-
algebra. Then there is a natural isomorphism

ν : KKG(C, A)→ KK(C, GnA).

Let us give explicit formulas for the present case G = C(p): Let A be a C(p)-
C∗-algebra and x = [(EA, T, γ)] an element in KKC(p)(C, A). Then ν(x) is given by
[(EC(p)nA, T )]. Here, EC(p)nA is equal to EA as a vector space and carries the operations

ξ · f =
∫

C(p)
γl(ξ)f(−l) dµ(l) and 〈ξ, η〉C(p)nA(l) = 〈ξ, γl(η)〉A

for ξ, η ∈ EA and f ∈ C(p)nA. The operator T remains unchanged.

11.4 A Subring of R

Our first aim is to calculate the category ring of KKC(p)
∗ restricted to C and CC(p).

Definition 11.6. Let e denote the class of 1 in C(p) and define 0t0 := [χe] ∈ KKC(p)(C,C),
in other words, 0t0 is given by the class of the character χe ∈ Ĉ(p).

A representing Kasparov triple of 0t0 is given by (C, 0, χe).

Lemma 11.7.
Z[t]/〈tp − 1〉 ∼= KKC(p)

0 (C,C), t 7→ 0t0

is an isomorphism of rings and KKC(p)
1 (C,C) ∼= {0}.

Proof. This is a standard result: For a compact group G, KKG
∗ (C,C) is canonically

isomorphic to the complex representation ring concentrated in degree 0, see for example
[23], the remark following Corollary 2.15.

Definition 11.8. Let 1s1 := I(0t0) ∈ KKC(p)
0 (CC(p), CC(p)).

Corollary 11.9.

Z[s]/〈sp − 1〉 ∼= KKC(p)
0 (CC(p), CC(p)), s 7→ 1s1

is an isomorphism of rings and KKC(p)
1 (CC(p), CC(p)) ∼= {0}.

Note that
[F−1] · 1s1 · [F ] = C(p)n[χe] = [τ̂e] = [F−1] · [λe] · [F ]

by equivariance of F . This shows that 1s1 is given by translation by the generator of
the action on CC(p).
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Definition 11.10. Let u : C→ CC(p) be the unital embedding and set

0α1 := [u] ∈ KKC(p)(C, CC(p)).

Lemma 11.11. KKC(p)
∗ (C, CC(p)) ∼= Z[0] with generator 0α1.

Proof. The Green–Julg isomorphism ν and the equivariant ∗-isomorphism ΦC◦(C(p)nF)
induce an isomorphism

KKC(p)
∗ (C, CC(p)) ∼= KK∗(C,C(p)nCC(p)) ∼= KK∗(C,K(L2(C(p)))) ∼= Z[0].

Let ν ([u]) be represented by [(E , 1, 0)], then E =vs CC(p). Define a projection P ∈
C(p)nCC(p) by P (k, l) := cp ∀k, l ∈ C(p). A calculation using the formulas following
Theorem 11.5 shows that

Ψ: E → imP, Ψ(f)(k, l) = f(l − k),

is an isomorphism of Hilbert modules. Another calculation using the expression of ΦC
given in Lemma 11.1 shows that ΦC ◦C(p)nF maps P to the 1-dimensional projection
|δ0〉〈δ0| ∈ K(L2(C(p))). This shows the claim.

Definition 11.12. Let 1α0 := I(0α1) ∈ KKC(p)
0 (CC(p),C).

Corollary 11.13. KKC(p)
∗ (CC(p),C) ∼= Z[0] with generator 1α0.

Recall that EC denotes the imprimitivity bimodule between K(L2(C(p))) and C. By
definition 1α0 = [F ] · [C(p)nu] · [C(p)nF ] · TC = [ΦC ◦ (C(p)n(F ◦ u)) ◦ F ] · EC. A
computation shows that the ∗-homomorphism ΦC ◦ (C(p)n(F ◦ u)) ◦ F is equal to

m : CC(p)→ K(L2(C(p))), m(f)(h) = f · h.

Hence 1α0 = [m] · EC.

Definition 11.14. LetR be a unital ring and t ∈ R with tp = 1. DefineN(t) :=
∑p−1
k=0 t

k.

Lemma 11.15.

0α1 · 1α0 = N(0t0) ∈ KKC(p)(C,C).

1α0 · 0α1 = N(1s1) ∈ KKC(p)(CC(p), CC(p)).

Proof. Since 0α1 · 1α0 = [m ◦ u] · [EC], the first product is equal to the class of the
representation [(L2(C(p)), λ)] ∈ KKC(p)

∗ (C,C). The Peter–Weyl theorem implies 0α1 ·
1α0 = [(L2(C(p)), λ)] =

∑
k∈C(p)[χk] = N(0t0). The second equality follows by applying

I.

Lemma 11.16.

0t0 · 0α1 = 0α1 · 1s1 = 0α1 ∈ KKC(p)(C, CC(p)).

1s1 · 1α0 = 1α0 · 0t0 = 1α0 ∈ KKC(p)(CC(p),C).
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Proof. 0t0 ·0α1 = 0α1 · [χe]⊗C1CC(p) and [χe]⊗C1CC(p) is represented by (C(C(p)), 0, χe⊗
λ). Since

(CC(p), λ)→ (CC(p), χe ⊗ λ), f 7→ χef,

is an isomorphism of Kasparov CC(p)-CC(p) bimodules, we conclude [χe] ⊗C 1CC(p) =
1CC(p). Hence 0t0 · 0α1 = 0α1. Furthermore, we have 0α1 · 1s1 = [u] · λe = τe · [u] = [u] =
0α1. This shows the first equalities. 1s1 · 1α0 = 1α0 · 0t0 = 1α0 follows by applying I.

11.5 The First Exact Triangle

Let φ be the C(p)-action on the complex plane given by rotation by an angle of 2π/p.
Throughout the next two subsections, every C(p)-invariant subset of C is tacitly assumed
to be equipped with the action given by the restriction of φ. Recall that Cu is the
mapping cone of the unital embedding u : C→ CC(p). Let

X := {te2πil/p ∈ C | t ∈ [0, 1) l = 0, . . . , p− 1}.

We may identify Cu with C0(X) as C(p)-C∗-algebras. Evaluation at 0 yields an evalu-
ation morphism

εu : Cu → C.

We may identify SCC(p) with the kernel of εu, this gives an inclusion morphism

ιu : SCC(p)→ Cu.

Definition 11.17. Let 2α0 := [εu] ∈ KK0(Cu,C) and 1α2 := [ιu] ∈ KK1(CC(p), Cu).

Cu sits in the exact triangle

SCC(p) 1α2 // Cu
2α0 // C 0α1 // CC(p).

We will refer to this exact triangle as the first exact triangle.

11.6 The Second Exact Triangle

There is another exact triangle, which will be derived by working with a homotopy
equivalent model of Cu. Define a subset of the closed unit ball D1 in C by

Y := D1 \ {e2πil/p | l = 0, . . . , p− 1}.

It is easy to see that X is a C(p)-equivariant deformation retract of Y — there are
∗-homomorphisms r : C0(Y ) → C0(X) and i : C0(X) → C0(Y ) such that r ◦ i = idC0(X)
and i ◦ r is C(p)-equivariantly homotopic to idC0(Y ). Let

A := T1 \ {e2πil/p | l = 0, . . . , p− 1}.

C0(A) is C(p)-equivariantly isomorphic to SCC(p) via

ψ : C0(A)→ SCC(p), ψ(f)(t, k) = f(e2πi(k−t)/p), k ∈ C(p), t ∈ (0, 1).
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Since A is closed in Y , this yields a restriction morphism q : C0(Y ) → SCC(p). Let
U = D1 \ T1 be the complement of A in Y . U is C(p)-equivariantly homeomorphic to
C. Let j : C0(C)→ C(Y ) be the morphism corresponding to the inclusion of U in Y . We
obtain an exact triangle

S2CC(p) δ // C0(C)
[j] // C0(Y )

[q] // SCC(p).

Since the action φ on C comes from the restriction of the action of S1 on C, which
is spinor, there is a C(p)-equivariant Bott element Bφ ∈ KKC(p)(C, C0(C)) and a C(p)-
equivariant Dirac element Dφ ∈ KKC(p)(C0(C),C) such that Bφ ·Dφ = 1C,C and Dφ ·Bφ =
1C0(C) ([22] Section 5, especially Theorem 7).

Lemma 11.18. We have BC(C(p)) · δ · Dφ = 1α0 ∈ KKC(p)
0 (CC(p),C).

Proof. Since 1α0 is a generator of KKC(p)
0 (CC(p),C) ∼= Z, there is an m ∈ Z such that

BC(C(p)) · δ · Dφ = m · 1α0.

We have to show that m = 1. Let ϑ : KKC(p) → KK denote the forgetful functor.
ϑ(Dφ) = D implies

ϑ(δ) = mDC(C(p)) · ϑ(1α0) · B = mS2ϑ(1α0) · D · B = mS2ϑ(1α0).

Of course ϑ(CC(p)) ∼= ⊕pi=1C. Let ιi and πi denote the inclusion and projection of the
ith summand. Pullback of the extension representing ϑ(δ) along Sι1 yields an extension,
which is homotopic to

S2 � SC0((0, 1]) � S.

The latter is well known to represent the unit in KK(S2, S2) = KK1(S, S2) ([6] 19.2).
This shows [S2ι1] · ϑ(δ) = 1S2 . On the other hand ϑ(1α0) =

∑
i[πi], which implies that

[S2ι1] · S2ϑ(1α0) = 1S2 . This shows m = 1.

So far, we have constructed a diagram in KKC(p)

S2CC(p) δ //

DCC(p)




C0(C)
[j] //

Dφ
		

C0(Y )
[q] //

[r]
		

SCC(p)

=




CC(p)

BCC(p)

JJ

1α0 // C

Bφ

JJ

Cu

[i]

JJ

SCC(p)

=

JJ

with the following properties

1. the upper row is an exact triangle,

2. each pair of vertical arrows in one column consists of isomorphisms which are
mutual inverses,

3. the left square commutes.
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Definition 11.19. Set

0α2 := Bφ · [j] · [r] ∈ KK0(C, Cu) and 2α1 := S[i] · S[q] · DCC(p) ∈ KK1(Cu, CC(p)).

Remark 11.20. We define 2α1 as S[r] · S[q] · DCC(p) instead of simply [r] · [q] due to our
convention that KK1(A,B) = KK(SA,B).

Corollary 11.21.
SCu

−2α1 // CC(p) 1α0 // C 0α2 // Cu

is an exact triangle.

Proof. The triangle in the statement of the corollary is isomorphic to

SC0(Y )
−S[q] // S2CC(p) δ // C0(C)

[j] // C0(Y ).

We will refer to this exact triangle as the second exact triangle.
Remark 11.22. In the case p = 2, the second exact triangle already appears in a different
setup in [15].

11.7 Morphisms from and into Cu

Proposition 11.23. Let k ∈ {0, . . . p− 1} and I := {0, . . . p− 1} \ {k}. Then

KKC(p)
∗ (Cu,C) ∼= Zp−1[0] with basis

(
2α0 · (0t0)i

)
i∈I

.

KKC(p)
∗ (C, Cu) ∼= Zp−1[0] with basis

(
(0t0)i · 0α2

)
i∈I

.

KKC(p)
∗ (Cu, CC(p)) ∼= Zp−1[1] with basis

(
2α1 · (1s1)i

)
i∈I

.

KKC(p)
∗ (CC(p), Cu) ∼= Zp−1[1] with basis

(
(1s1)i · 1α2

)
i∈I

.

Proof. Applying KKC(p)
0 (_,C) to the first exact triangle yields a 6-term exact sequence

KKC(p)
0 (CC(p),C)

(0α1)∗ // KKC(p)
0 (C,C)

(2α0)∗ // KKC(p)
0 (Cu,C)

��

KKC(p)
1 (Cu,C)

OO

KKC(p)
1 (C,C)

(2α0)∗oo KKC(p)
1 (CC(p),C).

(0α1)∗oo

We already know that KKC(p)
1 (CC(p),C) = {0}. Furthermore we know that (0α1)∗ is

one-to-one by Lemma 11.15 and Lemma 11.13. Hence KKC(p)
1 (Cu,C) = {0} and we

obtain a short exact sequence

0 // KKC(p)
0 (CC(p),C)

(0α1)∗ // KKC(p)
0 (C,C)

(2α0)∗ // KKC(p)
0 (Cu,C)) // 0.
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We have KKC(p)
0 (C,C) ∼= Z[0t0]/〈0tp0 − 1〉 with im(0α1)∗ being the ideal generated by

N(0t0). This shows the first statement. The remaining statements are proven analog-
ously: For the second statement, apply KKC(p)

0 (C,_) to the second exact triangle, for
the third statement apply KKC(p)

1 (_, CC(p)) to the second exact triangle and for the
last statement apply KKC(p)

1 (CC(p),_) to the first exact triangle.

Proposition 11.24.
0α2 · 2α0 = 1− 0t0 ∈ KKC(p)

0 (C,C).

Proof. By definition,

0α2 · 2α0 = Bφ · [j] · [r] · [εu] = Bφ[εu ◦ r ◦ j].

εu ◦ r ◦ j is the ∗-homomorphism given by evaluation at 0:

εu ◦ r ◦ j : C0(C)→ C, f 7→ f(0).

Let us describe Bφ ∈ KKC(p)
0 (C, C0(C)) in more detail ([22] Section 5): Under the iden-

tification R2 ∼= C, the action φ of C(p) on R2 is given by rotation by the angle 2π/p.
Let S2 = C2 be the 2-dimensional complex spinors, graded by S

(0)
2 = C · (1,−i) and

S
(1)
2 = C · (1, i). Pointwise application of the standard scalar product on S2 endows
C0(R2, S2) with the structure of a graded Hilbert C0(C)-module. Define an action of
C(p) on S2 by

ρk := eπik/p

(
cos(πk/p) sin(πk/p)
− sin(πk/p) cos(πk/p)

)
.

C(p) acts on C0(R2, S2) by φ⊗ ρ(f) = ρ ◦ f ◦ φ−1. Set

σ1 :=
(

0 i
i 0

)
, σ2 :=

(
i 0
0 −i

)
.

Define an adjoinable operator F on C(R2, S2) by

F (f)(x, y) = (1 + x2 + y2)−1/2(xσ1 + yσ2)f(x, y).

Then
Bφ =

[
(C0(R2, S2), F, φ⊗ ρ)

]
.

Therefore

Bφ · [j] · [i] · [εu] = (εu ◦ i ◦ j)∗(Bφ) = [(S2, 0, ρ)] ∈ KKC(p)
0 (C,C).

But since ρk ((1,−i)) = (1,−i) and ρk ((1, i)) = e2πik/p(1, i), we have

[(S2, 1, 0, ρ)] = 1− 0t0 ∈ KKC(p)
0 (C,C).

This proves the proposition.
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Proposition 11.25.

1α2 · 2α1 = 1− 1s1 ∈ KKC(p)
0 (C0(C(p)), C0(C(p))).

Proof. By definition, 1α2 · 2α1 = BCC(p) · S[ιu] · S[i] · S[q] · DCC(p) (the BCC(p) on the left
comes from our convention on the composition in KKG∗ ). It is not hard to see that the
equivariant ∗-homomorphism

q ◦ i ◦ ιu : SCC(p)→ SCC(p)

is given by

q ◦ i ◦ ιu(f)(t, k) =


f(2t, k) if 0 < t < 1

2 ,

0 if t = 1
2 ,

f(2− 2t, k − e) if 1
2 < t < 1,

for all k ∈ C(p).
Standard homotopy arguments show that ifA andB areG-C∗-algebras and φ0, φ1 : A→

SB are equivariant ∗-homomorphisms, then

[φ0] + [φ1] = [φ01] ∈ KKG(A,SB),

where φ01 is the ∗-homomorphism given by

φ01(a)(t) =


φ0(a)(2t) if 0 < t < 1

2 ,

0 if t = 1
2 ,

φ1(a)(2t− 1) if 1
2 < t < 1

,

for a ∈ A. Hence we have

[q ◦ i ◦ ιu] = 1SCC(p) + [υ ⊗C λe],

where υ : S → S is given by υ(f)(t) = f(1− t). Using the fact above again we see that
[υ] + 1S = [ψ], where ψ is given by

ψ(f)(t) =


f(2t) if 0 < t < 1

2
0 if t = 1

2
f(2− 2t) if 1

2 < t < 1

for t ∈ (0, 1) and f ∈ S. But ψ is clearly homotopic to zero. Therefore, [υ] = −1S and

[q ◦ i ◦ ιu] = 1SCC(p) − S1s1.

Therefore,

1α2 · 2α1 = BCC(p) · S2(1CC(p) − 1s1) · DCC(p) = 1− 1s1.
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Let φ denote the action of C(p) on Cu. Recall that e = [1] denotes our favorite
generator of C(p).

Definition 11.26. Set

2s2 := [φe] ∈ KK(Cu, Cu) and 2t2 := [χe]⊗C 1Cu ∈ KK(Cu, Cu).

Lemma 11.27. We have

(1) 0α2 · 2s2 = 0α2, 2s2 · 2α0 = 2α0;

(2) 1α2 · 2s2 = 1s1 · 1α2, 2s2 · 2α1 = 2α1 · 1s1;

(3) 1α2 · 2t2 = 1α2, 2t2 · 2α1 = 2α1;

(4) 1α2 · 2t2 = 1t1 · 1α2, 2t2 · 2α1 = 2α1 · 1t1.

Proof. An elementary calculation shows that if (A,α), (B, β) are C(p)-C∗-algebras and
x ∈ KKC(p)

0 (A,B), then [α] · x = x · [β]. This shows (1) and (2). Also, the exterior
product over C commutes with every KK-element. Furthermore, in the proof of Lemma
11.16, we have seen that [χe]⊗C 1CC(p) = 1CC(p), this shows (3) and (4).

11.8 The Subring KKC(p)
0 (Cu, Cu)

An immediate consequence of the definition of 2t2 and 2s2 is that (2s2)p = (2t2)p = 1Cu
and that 2s2 and 2t2 commute. Applying KKC(p)

0 (Cu,_) to the first and the second exact
triangle and using the results of Lemma 11.23, we conclude that KKC(p)

1 (Cu, Cu) = {0}
and obtain two short exact sequences:

0 // KKC(p)
1 (Cu, CC(p))

(1α2)∗ // KKC(p)
0 (Cu, Cu)

(2α0)∗ // KKC(p)
0 (Cu,C) // 0

and

0 // KKC(p)
0 (Cu,C)

(0α2)∗ // KKC(p)
0 (Cu, Cu)

(2α1)∗ // KKC(p)
1 (Cu, CC(p)) // 0.

Corollary 11.28. KKC(p)
∗ (Cu, Cu) ∼= Zp−2[0] as an abelian group.

I1 := im(1α2)∗ = ker(2α0)∗ and I0 := im(0α2)∗ = ker(1α2)∗ are left ideals in KKC(p)
0 (Cu, Cu).

Lemma 11.29. For i = 0, 1,

Ii → HomZ(Ii, Ii), a 7→ (b 7→ a · b),

is one-to-one.
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Proof. Let us show the statement for i = 1, for the case i = 0 just repeat the proof with
the indices 1 and 0 interchanged. We have

N(2t2) · 2α0 = 2α0 ·N(0t0) = (2α0 · 0α1) · 1α0 = 0

by Lemma 11.27. Therefore, N(2t2) ∈ I1. If a ∈ I1, then a = x · 1α2 for some x ∈
KKC(p)

1 (Cu, CC(p)). Again by Lemma 11.27,

a ·N(2t2) = x ·
p−1∑
k=0

1α2 · (2t2)k = p · a.

Since I1 is torsion-free, the claim follows.

Lemma 11.30. One has

(1) 2α1 · 1α2 = 1− 2s2;

(2) 2α0 · 0α2 = 1− 2t2.

Proof. We only show the first statement, the second follows by interchanging 1 and 0. If
y ∈ I1, then y = x′ ·1α2 for x′ ∈ KKC(p)

1 (Cu, CC(p)), by Proposition 11.23 x′ = 2α1 ·x′′ for
some x′′ ∈ KKC(p)

0 (CC(p), CC(p)), therefore, y = 2α1·x for some x ∈ KKC(p)
1 (CC(p), Cu).

Hence

2α1 · 1α2 · y = 2α1 · (1α2 · 2α1) · x = 2α1 · (1− 1s1) · x = (1− 2s2) · 2α1 · x = (1− 2s2) · y

by Lemma 11.27. By Lemma 11.29, 2α1 · 1α2 = 1− 2s2.

Note that Lemma 11.29, Lemma 11.27 and Proposition 11.23 imply that KKC(p)(Cu, Cu)
is generated by 2t2 and 2s2 (hence commutative) and that

I0 = 〈1− 2t2〉, I1 = 〈1− 2s2〉.

Lemma 11.31. One has

(1) (1− 2t2) · (1− 2s2) = 0;

(2) N(2t2) +N(2s2) = p.

Proof. By Lemma 11.27,

2t2 · (1− 2s2) = (2t2 · 2α1) · 1α2 = 2α1 · 1α2 = 1− 2s2.

This shows the first statement.
For the second statement, first calculate

p−1∑
k=0

(p− k)(1− 2s2) · (2s2)k =
p−1∑
k=0

(p− k)(2s2)k −
p−1∑
k=0

(p− k)(2s2)k+1 = p−N(2s2).
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This shows that p−N(2s2) is in I1. Since N(2s2) · (1− 2s2) = 0, we have

(p−N(2s2)) · (1− 2s2) = p(1− 2s2).

This implies that (p−N(2s2)) y = py for all y ∈ I1. Recall that N(2t2) ∈ I1. Since
2t2 · (1− 2s2) = (1− 2s2), one has N(2t2) · y = py for all y ∈ I1. Therefore,

N(2t2) · y = (p−N(2s2)) · y

for all y ∈ I1. This shows (2) by Lemma 11.29.

Proposition 11.32.

Z[s, t]/〈N(t) +N(s)− p, (1− s)(1− t)〉 → KKC(p)
0 (Cu, Cu), t 7→ 2t2, s 7→ 2s2,

is an isomorphism of rings.

Proof. The previous lemma shows that t 7→ 2t2, s 7→ 2s2 gives a well-defined ring
homomorphism. Since both rings are free Z-modules of dimension 2p − 2 it suffices to
see that the map is surjective. But we have already observed that KKC(p)(Cu, Cu) is
generated by 2t2 and 2s2, this shows the claim.

11.9 Summary

Set
A0 := C, A1 := CC(p), A2 := Cu.

Let R be the category ring of the full subcategory of KKC(p)
∗ with objects A0, A1 and

A2. In the following ixj will always denote an element in KKC(p)
∗ (Ai, Aj). Recall that

by definition of a category ring we have kxi · jxl = 0 if i 6= j. Let i1i = 1Ai denote the
unit of Ai. R is generated by

iti, i = 0, 2, isi, i = 1, 2 and iαj , i, j = 0, 1, 2.

We have the following relations

1. 1 = 010 + 111 + 212;

2. iαj · jαk = 0 if i 6= k;

3. 0α1 · 1α0 = N(0t0), 1α0 · 0α1 = N(1s1);

4. 0α2 · 2α0 = 010 − 0t0 , 1α2 · 2α1 = 111 − 1s1;

5. 2α0 · 0α2 = 212 − 2t2 , 2α1 · 1α2 = 212 − 2s2;

6. N(2t2) +N(2s2) = p.
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The grading is given by R = R(0) ⊕ R(1), where R(0) is the subring generated by
0t0, 1s1, 2t2, 2s2, 0α1, 1α0, 2α0, 0α2 and R(1) is the free Z-submodule generated by 1α2 ·
(2t2)k and (2t2)k · 2α1 for k = 0, . . . p− 2.
Moreover, the triangles

SCC(p) 1α2 // Cu
2α0 // C 0α1 // CC(p)

and
CC(p) 1α0 // C 0α2 // Cu

2α1 // SCC(p)

are exact.
For convenience of the reader and for later reference, we list some more relations,

which can easily be derived from the relations above.

1. (iti)p = i1i, (jsj)p = j1j , i = 0, 2, j = 1, 2;

2. 0t0 · 0α1 = 0α1 · 1s1 = 0α1;

3. 1s1 · 1α0 = 1α0 · 0t0 = 1α0;

4. 0α2 · 2s2 = 0α2, 2s2 · 2α0 = 2α0;

5. 1α2 · 2s2 = 1s1 · 1α2, 2s2 · 2α1 = 2α1 · 1s1;

6. 1α2 · 2t2 = 1α2, 2t2 · 2α1 = 2α1;

7. 1α2 · 2t2 = 1t1 · 1α2, 2t2 · 2α1 = 2α1 · 1t1.

12 Projective Resolutions of R-Modules

The aim of this section is to show the following theorem:

Theorem 12.1. Let A be a separable C(p)-C∗-algebra, then the R-module EKC(p)(A)
has a projective resolution of length 1.

Since at first sight, R seems to be a rather unfamiliar and complicated ring, a first ap-
proach is to understand R-modules by looking at certain subrings of R and decomposing
R-modules into modules over these subrings.
To be more precise, let us introduce some notation: Recall that we defined 010

(111, 212) to be the class of the identity of C (CC(p), Cu respectively). Define

iR := i1iR, Ri := Ri1i, and iRj := i1iRj1j .

Since the i1i’s are idempotents in R and 1R = 010 + 111 + 212, every R-module M
has a decomposition as abelian groups

M = 0M ⊕ 1M ⊕ 2M with iM := i1iM = iR⊗RM.
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Note that every x ∈ iRj yields a morphism jM
x∗−→ iM , in particular iM is a left module

over iRi.
It is not true that all R-modules have projective dimension 1. Fortunately, we are only

interested in modules of the form EKC(p)(A) and these modules have an extra property.
The decomposition for these modules looks as follows

0EKC(p)(A) = KKC(p)
∗ (C, A), 1EKC(p)(A) = KKC(p)

∗ (CC(p), A),

2EKC(p)(A) = KKC(p)
∗ (Cu, A).

Since the triangles

SCC(p) 1α2 // Cu
2α0 // C 0α1 // CC(p), CC(p) 1α0 // C 0α2 // Cu

2α1 // SCC(p)

are exact, EKC(p)(A) is exact in the following sense:

Definition 12.2. An R-module M is called exact if the sequences

2M

1α2

""

2M

0α2

||
0M

2α0
<<

1M0α1
oo 0M 1α0

// 1M

2α1
bb

are exact.

In particular, R is exact.

Definition 12.3. If R is a ring and M is a module over R, which is free as an abelian
group, let us call M a lattice.

Note that we do not assume M to be finitely generated.
We will prove that every exact R-lattice is projective. This implies that every exact
R-module has a projective resolution of length 1 by the following argument: If M �
M ′ � M ′′ is a short exact sequence of R-modules, of which two modules are exact,
then the long exact sequence for homology of a short exact sequence of chain complexes
shows that the third module is exact as well. If M is an R-module, there is a projection⊕
I R�M from a free R-module onto M . Its kernel K is an R-lattice, furthermore K

is exact if and only if M is exact. If K is projective, then of course M has a projective
resolution of length 1. In fact we will prove Theorem 12.1 by showing the following
statement:

Theorem 12.4. Let L be a countably generated, exact R-lattice, then L is projective.

Note that it is easy to see that projective R-modules are exact lattices since direct
summands of exact lattices are exact lattices and R is an exact lattice itself.
As indicated above, we will analyze exact R-lattices by first investigating lattices over

the subrings 0R0, 1R1 and 2R2. We have

0R0 ∼= 1R1 ∼= ZC(p) ∼= Z[t]/〈tp − 1〉
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and
2R2 ∼= Z[t, s]/〈N(t) +N(s)− p, (1− t)(1− s)〉.

There is a classical structure result on finitely generated ZC(p)-lattices by I. Reiner
[38], which was extended to the countably generated case by M. C. R. Butler, J. M.
Campbell and L. G. Kovács [8]. It uses that multiplication by N(t) and t − 1 induces
ring extensions

Z[θp] � ZC(p) � Z and Z� ZC(p) � Z[θp],

where Z[θp] denotes Z with a pth root of unity adjoint. Z[θp] is a Dedekind ring, and
lattices over these rings have a good structure theory. This can be used to analyze
lattices over ZC(p). We will first recall some basic theory of Dedekind rings and lattices
over them and then move on to lattices over ZC(p). The main result here is that every
ZC(p)-lattice can be decomposed into a direct sum of a projective lattice and lattices
which are pullbacks of the projections ZC(p) � Z and ZC(p) � Z[θp]. Furthermore, we
characterize projective ZC(p)-modules as lattices satisfying a certain exactness property.
Fortunately, many ideas from the classification results can be carried over to lattices over
2R2. We obtain a similar characterization of projective 2R2-modules as in the case of
modules over ZC(p). Finally, we show thatR-lattices, which are induced from projective
lattices over one of the subrings iRi, are again projective and that every exact R-lattice
can be decomposed as a direct sum of projective lattices of this kind. This will then
prove Theorem 12.1.

12.1 Conventions and Generalities on Rings and Modules

Throughout this subsection, let R be a ring. Let r ∈ R and M be an R-module. Set

Mr := {m ∈M | rm = 0}.

Definition 12.5. Let M be an R-module, M is called torsion-free if Mr 6= {0} implies
r = 0. Let N a submodule of M . N is called a pure submodule if for every r ∈ R

rN = N ∩ rM.

We will need an elementary linear algebra fact which we state as a separate lemma.
Let A ∈ Mn(R) and S ∈ Mn(Z), we define the product SA ∈ Mn(R) by regarding R as
a left Z-module.

Lemma 12.6. Let R be a ring, φ : R→ Z/p an epimorphism of rings and φn : Mn(R)→
Mn(Z/p) its amplification. If A ∈ Mn(R) is such that φn(A) ∈ GLn(Z/p) then there
is S ∈ GLn(Z) such that φn(SA) ∈ GLn(Z/p) is diagonal with non-zero entries on the
diagonal.

Proof. We obviously have φn(SA) = Sφn(A), therefore, it suffices to show the statement
for φ = idZ/p. Let A ∈ GLn(Z/p). First note that the elementary row operations of
changing rows and adding an integral multiple of one row to another can be realized by
multiplication by matrices S ∈ GLn(Z) from the left. Using the gaussian elimination
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algorithm, we find S′ ∈ GLn(Z) such that S′A is upper triangular with non-zero entries
on the diagonal. (Note that we do not have to multiply rows by integers during the
gaussian elimination algorithm since we are working over Z/p.) Performing further
elementary row operations, we find S′′ ∈ GLn(Z) such that S′′S′A is diagonal with
non-zero entries on the diagonal.

12.2 Preliminaries on Dedekind Domains

Recall that a Dedekind domain is an integral domain D which satisfies

1. D is noetherian,

2. every prime ideal in D is maximal,

3. D is integrally closed in in its quotient field K.

Throughout this subsection, let D denote a Dedekind domain with quotient field K.
Let us state two classical facts about ideals in Dedekind domains.

Theorem 12.7. Every proper non-zero ideal in D factors as a product of prime ideals,
which are unique up to reordering.

Proof. [11] 18.6.

Lemma 12.8. Let I1 and I2 be ideals in D, then I1 ⊆ I2 if and only if there is an ideal
J such that I1 = JI2.

Proof. [11] 18.11.

Let us collect some facts about modules over a Dedekind domain.

Definition 12.9. A fractional ideal A is a finitely generated D-submodule of K. The
D-rank of a D-module M is given by dimK K ⊗DM .

Note that every ideal is a fractional ideal since D is noetherian.

Theorem 12.10. Let L be a torsion-free D-module of D-rank n, then L is the direct
sum of n fractional ideals.

Proof. [11] 22.5.

Lemma 12.11. Let P be a finitely generated torsion-free D-module, then P is projective.

Proof. There is a D-module epimorphism ρ : Dn � P . Since P is torsion-free, ker ρ is
a pure submodule of Dn. Hence ker ρ is a direct summand of Dn by [11] 22.15. This
shows that P is a direct summand of Dn.

In particular, fractional ideals are projective.
Let θp be a primitive pth root of unity. The cyclotomic field Q[θp] is the finite field

extension of Q by θp. Let Z[θp] be the subring generated by Z and θp. As noted above,
Z[θp] is a quotient of ZC(p).
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Theorem 12.12. Z[θp] is a Dedekind domain with quotient field Q[θp].

Proof. By [11] Theorem 21.13, Z[θp] is the ring of algebraic integers of Q[θp], hence Q[θp]
is the quotient field of Z[θp] ([11] 17.8) and Z[θp] is a Dedekind domain ([11] 17.12, 12.13
and 18.3).

The following statements will be used at some points.

Lemma 12.13. Let A be a non-zero fractional ideal of Z[θp], then

(1) A/(θp−1)A 6= {0},

(2) A has Z-rank p− 1,

(3) there is n ∈ N, n ≥ 2 and fractional ideals A2, . . . ,An such that

A⊕
n⊕
i=2

Ai ∼= Z[θp]n.

Proof. It is easy to see that for every fractional ideal A ⊆ Q[θp], there is r ∈ Z[θp] such
that r · A ⊆ Z[θp]. Now (θp−1)rA 6= rA by Theorem 12.7. This shows A 6= (θp−1)A
and thereby (1). Note that (.) ⊗Z[θp] Q[θp] = (.) ⊗Z Q. Hence the Z-rank of A is equal
to dimQ(A⊗Z Q) = dimQ(Q[θp]) = p− 1. This shows (2).
(3) follows from Lemma 12.11 and Theorem 12.10.

Finally, we will prove a useful characterization of projective Z[θp]-modules.

Theorem 12.14. Let M be a countably generated Z[θp]-module, then the following are
equivalent:

(1) M is projective.

(2) M is a lattice.

(3) M is a direct sum of fractional ideals.

Proof. (1)⇒ (2): A direct summand of
⊕

I Z[θp] is of course a lattice.
(2)⇒ (3): Let us first show that a lattice L is torsion-free: For x ∈ L, the annihilator

of x
Ann(x) = {r ∈ Z[θp] | rx = 0}

is an ideal in Z[θp] and r 7→ rx induces a monomorphism

Z[θp]/Ann(x) � L

Let us assume that Ann(x) 6= {0}. Then Ann(x) is a non-zero fractional ideal. Since
the Z-rank of Ann(x) is p− 1, Z[θp]/Ann(x) is finite. Hence the fact that L is a lattice
implies that Ann(x) = Z[θp], which shows that x = 0.
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Claim 12.15. Let L be a Z[θp]-lattice and x ∈ L. Then there is a projective submodule
L′ such that x ∈ L′ and L/L′ is a lattice.
Define L′ to be the pure Z-closure of Z[θp]x, i.e.,

L′ = {y ∈ L | ∃n ∈ Z : ny ∈ Z[θp]x}.

Then of course x ∈ L′. Since L′ is a lattice it is torsion-free. L is free as an abelian
groups, therefore, there is a countable index set I and an isomorphism of abelian groups
φ : L ∼=

⊕
I Z. Since Z[θp]x is finitely generated, there is a finite index set I0 ⊆ I

such that Φ(Z[θp]x) ⊂
⊕
I0 Z, hence also Φ(L′) ⊆

⊕
I0 Z. This shows that L′ is finitely

generated and therefore, a projective Z[θp]-module by Lemma 12.11. By assumption
there is an isomorphism of abelian groups φ : L ∼=

⊕
I Z. Since L′ is pure as Z-module

in L, a base change in
⊕

I0 Z shows that L/L′ is a lattice as well. This shows the claim.
Now let (xn)n∈N be a sequence such that {xn | n ∈ N} generates L. By the previous

claim, there is an increasing sequence of finitely generated submodules (Ln)n∈N with
xn ∈ Ln such that L/Ln is a lattice. L1 and Ln+1/Ln for n ∈ N are finitely generated
lattices, therefore, direct sums of fractional ideals. Using the exact sequences

Ln � Ln+1 � Ln+1/Ln

and the fact that fractional ideals are projective, we see that there is a sequence of
fractional ideals Ai, i ∈ N and a monotone map f : N→ N ∪ {0} such that

Ln ∼=
f(n)⊕
i=1

Ai.

Since L =
⋃
n∈N Ln, this shows (2)⇒ (3).

(3)⇒ (1) follows from the fact that fractional ideals are projective.

12.3 Lattices over ZC(p)
A Z[θp]-moduleM can always be viewed as a ZC(p)-module by setting t·m := θpm. This
is just the pullback via the quotient map ZC(p) � Z[θp]. Another way of constructing
ZC(p)-modules from Z[θp]-modules is the following: Let M be a Z[θp]-module and m :=
(m1, . . .mn) ∈Mn. Define a ZC(p)-module (M,m) via

(M,m) := M ⊕ Zn as abelian groups , t · (m, k) = (θpm+ k ·mT , k),

here k ·mT denotes matrix multiplication of the row vector k with the column vector
mT . (M,m) is well-defined since

tp · (m, k) = ((θp)pmT +N(θp)k ·mT , k) = (m, k).

Note that N(θp) = 0 in Z[θp]. It is clear that (M,m) is a lattice (finitely generated
lattice) if and only if M is a lattice (finitely generated lattice, respectively).
I. Reiner [38] showed that every indecomposable, finitely generated ZC(p)-lattice is of

one of the following types:
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1. Z with trivial ZC(p)-action;

2. A for a fractional Z[θp]-ideal A with a ZC(p)-action given by a pullback as above;

3. (A, a0) for a fractional Z[θp]-ideal and a0 ∈ A \ (θp − 1)A.

Furthermore, I. Reiner showed that every finitely generated ZC(p)-lattice decomposes
into a direct sum of these indecomposables.
In [8], M. C. R. Butler, J. M. Campbell and L. G. Kovács extend this result to infinitely

generated ZC(p)-lattices:

Theorem 12.16. Let L be a countably generated ZC(p)-lattice, then there are countable
index sets I1, I2, I3, fractional Z[θp]-ideals Ai for i ∈ I2 t I3 and ai ∈ Ai \ (θp − 1)Ai for
i ∈ I3 such that

L ∼=
⊕
I1

Z⊕
⊕
I2

Ai ⊕
⊕
I3

(Ai, ai).

Next we will characterize projective ZC(p)-modules. But first we need a preliminary
lemma.

Lemma 12.17. Let x1, . . . xn ∈ Z[θp]n and set x = (x1, . . . xn). Assume that [x1], . . . [xn]
is a Z/p-basis of

Z[θp]n/(θp − 1)Z[θp]n ∼= (Z/p)n.

Then
(Z[θp]n, x) ∼= (ZC(p))n

as ZC(p)-modules.

Proof. View elements x ∈ Z[θp]n as column vectors and x = (x1, . . . xn) as an element
in Mn (Z[θp]). For M ∈ Mn (Z[θp]), let [M ] denote the corresponding element in the
quotient ring

Mn (Z[θp]/(θp − 1)Z[θp] ∼= Mn(Z/p).

By Lemma 12.6, there is S ∈ GLn(Z) such that [S · x] ∈ Mn(Z/p) is diagonal with
non-zero entries on the diagonal. Then

S : Z[θp]n → Z[θp]n, x 7→ S · x

is an isomorphism of Z[θp]-modules, and there are ci ∈ Z, ci 6= 0 mod p and zi ∈ Z[θp]n
such that

x′ := (S(x1), . . . , S(xn)) = (c1e1 + (θp − 1)z1, . . . , cnen + (θp − 1)zn) .

Her, ei ∈ Z[θp]n denotes the column vector with 1 in the ith entry and zeros elsewhere.
Then

(S, 1) : (Z[θp]n, x)→ (Z[θp]n, x′), (S, 1)(x, y) := (S(x), y)

is an isomorphism. This shows that it suffices to consider the case xi = ciei + (θp− 1i)zi
with ci, ei and zi as above.
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Set z := (z1, . . . , zn) and c = (c1e1, . . . cnen) and define

Ψ: (Z[θp]n, c)→ (Z[θp]n, x), Ψ(a,m) = (a−mT · z,m).

The calculation

Ψ (t · (a,m)) = Ψ(θpa+mT · c,m) = (θpa+mT · (c− z),m)
= (θpa+mT · (x− θpz),m) = (θp(a−mT · z) +mT · x,m)
= t ·Ψ(a,m)

shows that Ψ is an isomorphism of ZC(p)-modules. For c ∈ Z, c 6= 0 mod p, there is
an isomorphism (Z[θp], c) ∼= (Z[θp], 1) ([11], Lemma 74.2.) and (Z[θp], 1) is isomorphic
to ZC(p) via

ZC(p)→ (Z[θp], 1), tk 7→
(
k−1∑
i=0

θi, 1
)
.

This shows
(Z[θp]n, x) ∼= (Z[θp]n, c) ∼=

n⊕
i=1

(Z[θp], ci) ∼= ZC(p)n

and proves the claim.

Definition 12.18. Let M be a ZC(p)-module. M is called exact if MN(t) = (t − 1)M
and Mt−1 = N(t)M .

Theorem 12.19. Let M be a countably generated ZC(p)-module. Then the following
are equivalent:

(1) There is a countable index set I and for all i ∈ I, there are fractional Z[θp]-s ideals
Ai and ai ∈ Ai \ (θp − 1)Ai such that

L ∼=
⊕
I

(Ai, ai).

(2) M is projective.

(3) M is an exact ZC(p)-lattice.

Proof. (1)⇒ (2): Let A1 be a fractional ideal and a1 ∈ A1 \ (θp− 1)A1, we have to show
that (A1, a1) is a projective ZC(p)-module.
By Lemma 12.13, there are n ∈ N, n ≥ 2, fractional ideals A2, . . . ,An and an iso-

morphism

T :
n⊕
i=1

Ai ∼= Z[θp]n

of Z[θp]-modules. By Lemma 12.13, we may choose ai ∈ Ai such that [ai] 6= 0 ∈
Ai/(θp−1)Ai. {[a1], . . . , [an]} is a basis of the Z/p-vector space

n⊕
i=1

Ai

∣∣∣∣ (θp−1)
n⊕
i=1

Ai ∼= (Z/p).

45



Equivariant KK-theory and the UCT for the Action of a Cyclic Group of Prime Order

Set xi := T (ai), a := (a1, . . . , an) and x = (x1, . . . , xn), then

(T, 1) :
(

n⊕
i=1

Ai, y

)
→ (Z[θp]n, x), (a, b) 7→ (T (a), b).

is an isomorphism of ZC(p)-modules and (Z[θp]n, x) is isomorphic to (ZC(p))n by Lemma
12.17. This finishes the proof of (1)⇒ (2).

(2) ⇒ (3): Note that ZC(p) is an exact lattice. This implies the claim since direct
summands of exact ZC(p)-lattices are again exact ZC(p)-lattices.

(3)⇒ (1): Let
L ∼=

⊕
I1

Z⊕
⊕
I2

Ai ⊕
⊕
I3

(Ai, ai)

be a decomposition as in Theorem 12.16. It is easy to check that indecomposable modules
of the type Z or A are not exact. This finishes the proof.

We can draw the following conclusion from Theorem 12.16:

Theorem 12.20. Let L be a ZC(p)-lattice, then there are ZC(p)-sublattices L1, L2 and
L3 such that L = L1 ⊕ L2 ⊕ L3 and

(1) L1 ⊆ Lt−1 ⊆ L1 ⊕ L3;

(2) L2 ⊆ LN(t) ⊆ L2 ⊕ L3;

(3) L3 is projective and exact.

Proof. Let
φ : L ∼=

⊕
I1

Z⊕
⊕
I2

Ai ⊕
⊕
I3

(Ai, ai)

be a decomposition as in Theorem 12.16. Set L1 := φ−1(
⊕

I1 Z) L2 := φ−1(
⊕

I2 Ai)
and L3 := φ−1(

⊕
I3(Ai, ai)). Obviously L1 ⊆ Lt−1 and L2 ⊆ LN(t). We have Lt−1 =⊕3

i=1 Lt−1 ∩ Li and LN(t) =
⊕3

i=1 LN(t) ∩ Li. Since LN(t) ∩ Lt−1 = {0}, we get Lt−1 ⊆
L1 ⊕ L3 and LN(t) ⊆ L2 ⊕ L3. (3) follows by the previous results of this section.

12.4 Lattices over 2R2

Recall that there is an isomorphism

2R2 ∼= Z[t, s]/〈N(t) +N(s)− p, (1− t)(1− s)〉.

For ease of notation, let us denote the ring on the right-hand-side by R. There is an
involution γ on R, which is given by s 7→ t. In other words, R is symmetric in t and s.

Lemma 12.21. Let M be an R-module, then Ms−1 ∩Mt−1 ⊆ Mp. In particular, if M
is torsion-free, then Ms−1 ∩Mt−1 = {0}.

Proof. If m ∈ M with m = tm = sm, then pm = N(t)m + N(s)m = 2pm, hence
pm = 0.
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Lemma 12.22. We have

(t− 1)R = Rs−1 and (s− 1)R = Rt−1

and (t− 1)R and (s− 1)R are isomorphic to Z[θp].

Proof. A Z-basis of R is given by {1, s, . . . , sp−1, (t − 1), t(t − 1), . . . , tp−3(t − 1)} (by
{1, s} if p = 2). Hence, if r ∈ R with (s − 1)r = 0, we can write r as a Z-linear
combination with respect to this basis to see that there is n ∈ N and r′ ∈ R such that
r = nN(s) + (t− 1)r′. But

nN(s) = n(N(t)− p) = n(t− 1)
p−1∑
i=0

(p− i)ti.

This shows (t−1)R = Rs−1. Since R is symmetric in t and s, we see that (s−1)R = Rt−1.
Therefore, we have (t − 1)R ∼= R/〈s − 1〉 ∼= Z[t]/〈N(t)〉 ∼= Z[θp] and similarly for
(s− 1)R.

We will use this decomposition of R into Dedekind rings to find a convenient charac-
terization of projective R-modules.

Definition 12.23. An R-module M is called exact if

(t− 1)M = Ms−1 and (s− 1)M = Mt−1.

Note that s(t− 1) = (t− 1) implies that (t− 1)M is a module over R/〈s− 1〉 ∼= Z[θp].
Our aim is to show that a countably generated module over R is projective if and only

if it is an exact lattice. R is an exact lattice and direct summands of exact lattices are
exact lattices, this shows the “only if” part. The proof of the other direction follows
ideas of [11] and also [8].
We begin with analyzing lattices over R, which are finitely generated. We will first

show that a finitely generated, exact lattice L with isomorphisms (s− 1)L ∼= Z[θp]n and
(t − 1)L ∼= Z[θp]n is isomorphic to Rn. The structure of L as it will be encountered is
sufficiently complicated to be explained beforehand:
Let c ∈ N, we construct an R-moduleNc as follows: LetNc be the free abelian group on

generators {q0, . . . , qp−2, r0, . . . rp−2}. Define s and t on the Z-basis {q0, . . . , qp−2, r0, . . . rp−2}
via

1. t · qi := qi + cr0,

2. t · ri := ri+1 for i < p− 2 and t · rp−2 := −
∑p−2
k=0 rk,

3. s · qi := qi+1 for i < p− 2 and s · qp−2 := −c
∑p−2
k=0(p− 1− k)rk −

∑p−2
k=0 qk,

4. s · rk = rk.

Straightforward, but lengthy calculations show that Nc is a well-defined R-module
(Lemma 23.6 in the appendix).
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Lemma 12.24. Let c ∈ N, c 6= 0 mod p, then Nc
∼= R as R-modules.

Proof. Since c 6= 0 mod p, there are b ∈ N \ {0}, a ∈ Z such that bc − 1 = ap. Set
u :=

∑c−1
k=0 t

k, γ :=
∑c−2
k=0(c− 1− k)tk. A calculation shows that u− c = (t− 1)γ. Define

Φ: N1 → Nc, Φ(ri) := u · ri, Φ(qi) := qi + γr0.

Straightforward calculations show that Φ commutes with t and s. Therefore, it is a
well-defined morphism of R-modules. Set v :=

∑b−1
k=0 t

ck, then u · v = 1 + aN(t). Since
N(t) · ri = 0 for all i = 0, . . . , p − 2, we conclude Φ(v · ri) = v · u · ri = ri. Hence
Φ is surjective. Since both, Nc and N1, are free Z-modules of the same finite rank we
conclude that Φ is an isomorphism. Finally,

Θ: N1 → R, Θ(qi) := si, Θ(ri) := ti(t− 1),

defines an isomorphism of left R-modules.

Proposition 12.25. Let L be an exact R-lattice such that there are n ∈ N and iso-
morphisms

φs : (s− 1)L ∼= Z[θp]n and φt : (t− 1)L ∼= Z[θp]n

of Z[θp]-modules, then L ∼= Rn.

Proof. For i = 1, . . . , n, let ei ∈ Z[θp]n be the column vector with 1 in the ith summand
and 0 elsewhere. Set

bi := φ−1
t (ei) ∈ (t− 1)L

Furthermore, choose x1, . . . , xn ∈ L such that (s− 1)xi = φ−1
s (ei). Let

X := 〈{sjxi | 0 ≤ j ≤ p− 2, 1 ≤ i ≤ n}〉Z ⊆ L

be the Z-submodule of L which is generated by {sjxi | 0 ≤ j ≤ p− 2, 1 ≤ i ≤ n}. Since
{(θp)j · ei | 0 ≤ j ≤ p − 2, 1 ≤ i ≤ n} is a basis of Z[θp]n as a Z-module, the restricted
multiplication (s − 1)|X : X → (s − 1)L is an isomorphism. Since L is exact, we have
L = (t− 1)L⊕X as Z-modules.
Set

Q := (t− 1)L/(t− 1)2L

and let π : (t− 1)L→ Q denote the quotient map. Then there is an isomorphism

q : (Z/p)n ∼= Z[θp]n/(1−θp)Z[θp]n ∼= Q.

Define
Ψ: L→ Q, x→ (1− t)x+ (1− t)2L, and ψ := Ψ|X .

Since (s−1)(t−1) = 0, ψ : X → Q is surjective. Therefore, {ψ(sjxi) | 0 ≤ j ≤ p−2, 1 ≤
i ≤ n} generates Q. Since s(1 − t) = (1 − t), {ψ(xi) | 1 ≤ i ≤ n} already generates Q.
Since dimZ/p(Q) = n, {ψ(xi) | 1 ≤ i ≤ n} is a basis of Q. {π(bi) | 1 ≤ i ≤ n} is also a
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basis of the Z/p-vector space Q, namely, the one that corresponds to the standard basis
under the isomorphism q : (Z/p)n ∼= Q.
By regarding (q−1ψ(x1), . . . , q−1ψ(xn))T as a matrix inGLn(Z/p), Lemma 12.6 provides

us with S = (sij)i,j=1,...,n ∈ GLn(Z) and c1, . . . , cn ∈ N, ci 6= 0 mod p such that

S(q−1 ◦ ψ(x1), . . . , q−1ψ(xn)) = diag([c1], . . . , [cn]) ∈ GLn(Z/p).

This implies ψ(
∑n
k=1 skjxk) = cjπ(bj) for j = 1, . . . , n. Define an automorphism of

Z[θp]n by

S : Z[θp]n → Z[θp]n, (ξ1, . . . , ξn) 7→
(

n∑
k=1

sk1ξk, . . . ,
n∑
k=1

sknξk

)
.

Then, by replacing φs by φs ◦ S−1 and xi by
∑n
k=1 skjxk, we may assume that

∃c1, . . . , cn ∈ N, [ci] 6= 0 ∈ Z/p such that ψ(xi) = ciπ(bi).

Therefore, there are ui ∈ (t− 1)L such that

(t− 1)xi = cibi + (t− 1)ui for i = 1, . . . , n.

Set
yi := xi − ui, then tyi = cibi + yi for i = 1, . . . , n.

Let
Y := 〈{sj · yi | 0 ≤ j ≤ p− 2, 1 ≤ i ≤ n}〉Z ⊆ L.

Since (s− 1)xi = (s− 1)yi, there is a direct sum decomposition

L ∼= (t− 1)L⊕Z Y

as Z-modules. Furthermore, {sjyi | 0 ≤ j ≤ p − 2, 1 ≤ i ≤ n} is a basis of Y as a free
Z-module and {tjbi | 0 ≤ j ≤ p− 2, 1 ≤ i ≤ n} is a basis of (t− 1)L as a free Z-module.
Set

Li := 〈{tjbi, sjyi | 0 ≤ j ≤ p− 2}〉Z, i = 1, . . . , n.

Note that {tjbi, sjyi | 0 ≤ j ≤ p− 2, } is a free Z-basis of Li.
Claim 12.26. Li is an R-submodule of L and Li ∼= Nci as R-modules.
Define an isomorphism of abelian groups φ : Li ∼= Nci by sending tjbi to rj and sjyi

to qj for j = 0, . . . , p − 2. The following calculations show that Li is closed under
multiplication by t and s (hence an R-submodule) and that φ is an isomorphism of
R-modules: Since bi ∈ (t− 1)L, we have sbi = bi and N(s)bi = pbi. Therefore,

tp−1bi = pbi −N(s)bi − (N(t)− tp−1)bi = −
p−2∑
k=0

tk · bi

and
tsjyi = sjyi + cibi.
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Another straightforward calculation yields N(t)yi = pyi +
∑p−2
k=0(p− 1− k)tkcibi. There-

fore,

sp−1yi = pyi −N(t)yi − (N(s)− sp−1)yi = −
p−2∑
k=0

(p− 1− k)tkcibi −
p−2∑
k=0

skyi

and also
stjbi = tjbi.

By construction, L ∼=
⊕n
i=1 Li as abelian groups. By the last claim, L =

⊕n
i=1 Li

∼=⊕n
i=1Nci as R-modules. This implies that L ∼= Rn by Lemma 12.24.

Proposition 12.27. Let L be a finitely generated, exact lattice over R, then L is pro-
jective.

Proof. We will show that L is a direct summand of Rn for some n ∈ N. (t − 1)L and
(s− 1)L are lattices over Z[θp] via the identifications R/〈s− 1〉 ∼= Z[θp] and R/〈t− 1〉 ∼=
Z[θp]. By considering L⊕ γ∗(L) instead of L, we may assume that (t− 1)L ∼= (s− 1)L
as Z[θp]-modules (recall that γ is the involution on R that interchanges s and t).
We will now construct a finitely generated, exact R-lattice L′ such that there are iso-

morphisms (t−1) (L⊕ L′) ∼= Z[θp]n ∼= (s−1) (L⊕ L′) as Z[θp]-modules. By Proposition
12.25, this will show the claim.
Define an R-Z[θp]-bimodule Λ by defining a right action of Z[θp] on R via the ring

homomorphism:
λ : Z[θp] ↪→ R, θp 7→ s+ t− 1

To check that λ is well-defined compute (s+t−1)k = sk+tk−1 for all k ∈ N. This shows
that N(s+ t−1) = N(t)+N(s)−p = 0. It is also straightforward to check that (1− t)Λ
and (1−s)Λ are isomorphic to Z[θp] as Z[θp]-bimodules (Recall that every left R-module
M gives rise to left Z[θp]-modules (1− t)M and (1− s)M). Since Λ⊗Z[θp] Z[θp] ∼= R as
left R-modules we obtain an additive functor

Λ⊗Z[θp] (_): Mod(Z[θp])→Mod(R),

which maps projectives to projectives. Since (t − 1)L ∼= (s − 1)L are Z[θp]-lattices,
there is a Z[θp]-module P such that (t − 1)L ⊕ P ∼= (s − 1)L ⊕ P ∼= Z[θp]n. This
shows that (t − 1)

(
L⊕ Λ⊗Z[θp] P

)
∼= (s − 1)

(
L⊕ Λ⊗Z[θp] P

)
∼= Z[θp]n. Therefore,

L⊕ Λ⊗Z[θp] P ∼= Rn by Proposition 12.25.

Lemma 12.28. Let L be an R-lattice of Z-rank ≤ 2p−2, then either L is exact or there
is a decomposition L ∼= Lt−1 ⊕ Ls−1.

Proof. If (t − 1)L = {0} or (s − 1)L = {0}, then L ∼= Lt−1 ⊕ Ls−1 holds. So we may
assume that (t − 1)L and (s − 1)L are non-zero. As Z[θp]-lattices they decompose into
fractional ideals by Theorem 12.10. Since both are non-zero, they have Z-rank at least
p − 1 by Lemma 12.13, since Lt−1 ∩ Ls−1 = {0} their Z-rank is exactly p − 1, so there
are fractional ideals A and B such that Lt−1 ∼= A and Ls−1 ∼= B as Z[θp]-modules. If
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L is not exact, then (t − 1)L 6= Ls−1 or (s − 1)L 6= Lt−1. Let us first assume that
(t− 1)L 6= Ls−1:
Since (t − 1)Ls−1 ⊆ (t − 1)L ⊆ Ls−1 and Ls−1/(t − 1)Ls−1 ∼= B/(θp − 1)B ∼= Z/p,

(t− 1)L = (t− 1)Ls−1. Write L = Ls−1⊕ZX, where X is a free Z-submodule of L such
that multiplication by s − 1 induces an isomorphism (s − 1)|X : X → (s − 1)L. Since
Ls−1 ∼= B, multiplication by (t−1) induces an isomorphism (t−1) : Ls−1 → (t−1)Ls−1.
Let φ be the composition

φ : X
(t−1) // (t− 1)L = (t− 1)Ls−1

(t−1)−1
// Ls−1 ↪→ L.

Set Y := (id−φ)(X). Since φ(X) ⊂ Ls−1, we still have a decomposition L = Ls−1⊕ZY .
We will show that Y is equal to Lt−1. Let x ∈ X. Set z := φ(x), i.e. then(t−1)x = (t−1)z
and t(x−φ(x)) = t(x− z) = (x− z) = x−φ(x), hence t|Y = id|Y . Therefore, Y ⊆ Lt−1.
If x ∈ Lt−1, x = z + y with z ∈ Ls−1 and y ∈ Y , then (t− 1)x = (t− 1)z, which shows
that z ∈ Ls−1 ∩ Lt−1 = {0}. Hence Lt−1 ⊆ Y . Therefore, L ∼= Ls−1 ⊕ Lt−1.
If (s − 1)L 6= Lt−1 then we can apply the argument above to γ∗L to see that L ∼=

Ls−1 ⊕ Lt−1. Hence we have shown that if L is not exact then there is a decomposition
L ∼= Ls−1 ⊕ Lt−1. This shows the lemma.

Proposition 12.29. Let L be an exact R-lattice, and x in L, then there is a finitely
generated, exact R-sublattice L′ ⊆ L such that x ∈ L and L/L′ is an exact R-lattice.

Proof. Let us first show that
⋂
n∈N(t − 1)nL = {0}. Note that (t − 1)L = Ls−1 is a

Z[θp]-lattice and therefore, by Theorem 12.14, projective. Hence it suffices to show that⋂
n∈N(t− 1)nZ[θp] = {0}. Assume y ∈

⋂
n∈N〈θp− 1〉n were non-zero then 〈y〉 would have

a unique factorization into a (finite) product of prime ideals. But since 〈θp − 1〉n ⊆ 〈y〉
for all n ∈ N, Lemma 12.8 yields a contradiction.
Case 1: x ∈ Ls−1. Since

⋂
n∈N(t−1)nL = {0}, there is x′ ∈ L such that x′ /∈ (t−1)L =

Ls−1 and x = (t−1)kx′. Therefore, we may assume that x /∈ (t−1)Ls−1. Let y ∈ L\Ls−1
such that x = (t− 1)y and let L′ be the pure closure of Ry, i.e.,

L′ := {z ∈ L | ∃n ∈ Z : nz ∈ Ry}.

L′ is obviously anR-module. Since L is a lattice there is an index set I and Z-isomorphism
φ : L ∼=

⊕
I Z, therefore, there is a subset I0 ⊆ I such that φ(Ry) ⊆

⊕
I0 Z. Since R

is free of rank 2p − 2 as an abelian group, we may, after a base change, assume that
|I0| ≤ 2p− 2. This shows that L′ has Z-rank ≤ 2p− 2. L′ cannot have a decomposition
L′ = L′s−1 ⊕ L′t−1, because this would imply x ∈ (t − 1)L′s−1 ⊆ (t − 1)Ls−1. Hence, by
Lemma 12.28, L′ is exact.
Since L′ is pure, a base change in

⊕
I0 Z shows that L/L′ is a lattice as well. The long

exact sequence of a short exact sequence of chain complexes shows that L/L′ is exact.
Case 2: x ∈ Lt−1. Apply the involution γ, which interchanges t and s.
Case 3: x /∈ Ls−1, x /∈ Lt−1. Apply Case 1 to (t − 1)x ∈ Ls−1 to see that there

is a finitely generated, exact sublattice L1 ⊆ L such that (t − 1)x ∈ L1 and L/L1
is an exact lattice. Let π1 be the projection from L onto L/L1. By Case 2, there
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is a finitely generated, exact sublattice L2 ⊆ L/L1 such that (s − 1)π(x) ∈ L2 and
(L/L1)/L2 is a lattice. Let π2 be the projection from L/L1 onto (L/L1)/L2. We have
(s − 1)π2π1(x) = (t − 1)π2π1(x) = 0, hence π2π1(x) = 0 by Lemma 12.21. Thus
x ∈ π−1

1 (L2). The restriction of π1 to π−1
1 (L2) yields an exact sequence of R-lattices

L1 � π−1
1 (L2) � L2. The long exact sequence in homology again shows that π−1

1 (L2) is
an exact R-lattice, moreover L/π−1

1 (L2) ∼= (L/L1)/L2 is a lattice and of course π−1
1 (L2)

is finitely generated. Therefore, setting L′ := π−1
1 (L2) yields the claim.

Theorem 12.30. Let M be a countably generated R-module, then M is projective if and
only if it is an exact R-lattice.

Proof. We only have to show the “if” direction. Assume thatM is a countably generated,
exact R-lattice and let (xn)n∈N be a sequence of generators. We will define inductively a
sequence of finitely generated, exact R-sublattices (Mn)n∈N ofM such thatMn ⊆Mn+1,
xn ∈ Mn and M/Mn is an exact lattice. Use Proposition 12.29 to choose a finitely
generated, exact R-lattice M0 such that x0 ∈ M0 and M/M0 is an exact R-lattice.
Assume that M0, . . . ,Mn as above have been constructed, let πn be the projection from
M ontoM/Mn. Again by Proposition 12.29, there is a finitely generated, exact R-lattice
Pn+1 ⊆ M/Mn+1 such that πn(xn+1) ∈ Pn+1 and (M/Mn)/Pn+1 is an exact R-lattice.
Mn+1 := π−1

n (Pn+1) has the desired properties.
Define P0 := M0, we have Pn ∼= Mn/Mn−1 for n ≥ 1. By Proposition 12.27, all Pn are

projective R-modules. For every n ∈ N, there is an exact sequence

Mn �Mn+1 � Pn.

By induction, there are isomorphisms φn : Mn
∼=
⊕n
i=0 Pi such that

Mn
ιn //

φn
��

Mn+1

φn+1
��⊕n

i=0 Pi
ι′n //⊕n+1

i=0 Pi

commutes (here ιn and ι′n denote the obvious inclusions). Since M =
⋃
n∈NMn, this

shows that
M ∼=

⊕
n∈N

Pn

is projective.

12.5 Lattices over R and the Proof of Theorem 12.1

Let us first explain how to induce R-modules from modules over one of the subrings iRi,
i ∈ {0, 1, 2}.
Let M be an iRi-module and set IndiM := Ri ⊗iRi M . Using iR ⊗R Ri = iRi, we

see that i(IndiM) = M .
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The easiest example of an induced R-module is given by Ri = Indi iRi, i = 0, 1, 2.
Note that these modules are projective and that for every R-module M ,

HomR(Ri,M)→ iM, φ 7→ φ(i1i)

is an isomorphism of iRi-modules.
Indi is left adjoint to the restriction functor M 7→ iM , i.e., for an iRi-module M and

an R-module N , there is a natural isomorphism

HomR(IndiM,N) ∼= HomiRi(M,HomiRi(Ri, N)) ∼= HomiRi(M, iN).

Lemma 12.31. Let P be a projective iRi-module. Then Indi P is projective.

Proof. There is Q and an index set I such that P ⊕ Q ∼=
⊕

I iRi. Since Ri = Indi iRi
and Ri is projective, this shows that Indi P is projective.

Note that this implies that Indi P is an exact R-lattice. Recall that we want to
show that every exact countably generated R-lattice is projective. We will do this by
decomposing a countably generated R-lattice L into a direct sum of lattices, which are
induced from projective lattices over the iRi.

Theorem 12.32. Let L be a countably generated, exact R-lattice, then L is projective.

Proof. 0L is a 0R0-lattice. By Theorem 12.20, there are 0R0-sublattices 0L1, 0L2 and
0L3 such that 0L = 0L1 ⊕ 0L2 ⊕ 0L3 and

1. 0L1 ⊆ (0L)0t0−1 ⊆ 0L1 ⊕ 0L3;

2. 0L2 ⊆ (0L)N(0t0) ⊆ 0L2 ⊕ 0L3;

3. 0L3 is projective and exact.

Let P0 be the sublattice of L generated by 0L3, i.e.,

P0 := R0 · 0L3 ⊆ L.

Claim 12.33. P0 ∼= Ind0(0L3), in particular, P0 is projective.
Set

Φ: Ind0(0L3) = R0 ⊗0R0 0L3 → R0 · 0L3, r ⊗ l 7→ r · l.

Φ is surjective. Note that i Ind0(0L3) = iR0 ⊗0R0 0L3. Let Φi := Φ|i Ind0(0L3). It is clear
that Φ0 is an isomorphism. Let k ∈ {1, 2} and x ∈ k Ind0(0L3) such that Φk(x) = 0,
since kR0 = kα0 · 0R0, we can write x = kα0⊗ y for a y ∈ 0L3. Hence Φk(x) = 0 implies
that kα0 · y = 0 in L. Therefore, 0αk · kα0y = 0 in L3. Since L3 is an exact 0R0-module,
0α1 · 1α0 = N(0t0) and 0α2 · 2α0 = 0t0 − 1, there is z ∈ L3 such that y = 0αl · lα0 · z for
l ∈ {1, 2}, l 6= k. But then

x = kα0 ⊗ y = kα0 · 0αl · lα0 ⊗ z = 0.

This shows that Φk is one-to-one and proves the claim.

53



Equivariant KK-theory and the UCT for the Action of a Cyclic Group of Prime Order

Claim 12.34. L/P0 is an exact lattice.
Since P0 is exact, we only have to show that L/P0 is a lattice. Since iP0 = iα0 · 0L3

for i = 1, 2, it suffices to show that iL/iα0 · 0L3 is a lattice for i = 1, 2. We will show
it only for i = 2, since the other case follows by exactly the same arguments. First
observe that exactness of L implies that 2L ∼= im 2α0 ⊕Z im 1α2 decomposes as a direct
sum of Z-lattices. Let us show that im 2α0 = 2α0 · 0L2⊕ 2α0 · 0L3 since this implies that
2L/2α0 · 0L3 is a lattice. Let x ∈ 0L1, since 0L1 ⊆ (0L)0t0−1, 0α2 · 2α0x = (0t0− 1)x = 0.
By exactness of L, there is y ∈ 1L such that 2α0x = 2α1y, therefore, (2t2 − 1)2α0x =
(2s2 − 1)2α0x = 0. By Lemma 12.21, 2α0x = 0. This shows 2α0 · 0L1 = {0}. Hence
im 2α0 = 2α0 · 0L2 + 2α0 · 0L3. Now assume that there is a x ∈ 2α0 · 0L2∩ 2α0 · 0L3. Then
there are y2 ∈ 0L2 and y3 ∈ 0L3 such that x = 2α0 ·y2 = 2α0 ·y3. Since 2α0 ·(y2−y3) = 0,
there is z ∈ 1L such that 2α1z = y2 − y3. But im 2α1 ⊆ (0L)0t0−1 ⊆ 0L1 ⊕ 0L3, this
shows that y2 = 0. Therefore, x = 2α0 · y2 = 0. Hence im 2α0 = 2α0 · 0L2 ⊕ 2α0 · 0L3.
This finishes the proof of the claim
Set

L′ := L/P0.

L′ is an exactR-lattice such that 0L
′ ∼= 0L1⊕0L2 (Note that 0L

′ = 0L/0L3). This implies
that 0L

′ = 0L
′
N(0t0) ⊕ 0L

′
(0t0−1). Again by Theorem 12.20, there are 1R1-sublattices

1L
′
1, 1L

′
2 and 1L

′
3 of 1L

′ such that 1L
′ = 1L

′
1 ⊕ 1L

′
2 ⊕ 1L

′
3 and

1. 1L
′
1 ⊆ (1L

′)1s1−1 ⊆ 1L
′
1 ⊕ 1L

′
3;

2. 1L
′
2 ⊆ (1L

′)N(1s1) ⊆ 1L
′
2 ⊕ 1L

′
3;

3. 1L
′
3 is projective and exact.

Set
P1 := R1 · 1L′3.

By exactly the same arguments as above, P1 is a projective R-module. The quotient

L′′ := L′/P2

is an exact R-lattice such that

1L
′′ = 1L

′′
N(1s1) ⊕ 1L

′′
(1s1−1).

Since 0P1 = 0α11L
′
3 ⊆ 0L

′
(0t0−1), we also have

0L
′′ = 0L

′′
N(0t0) ⊕ 0L

′′
(0t0−1).

If x ∈ 0L
′′
(0t0−1) and 1α0 · x = 0, then 0 = N(0t0)x = px. This implies x = 0, hence

(1α0)|0L′′(0t0−1)
is one-to-one. If y ∈ 1L

′′
(1s1−1), then 2α1 · y ∈ 2L

′′
(2t2−1) ∩ 2L

′′
(2s2−1) = {0}

hence y ∈ im 1α0. On the other hand im 1α0 is clearly contained in 1L
′′
(1s1−1). This shows

that
(1α0)|0L′′(0t0−1)

: 0L
′′
(0t0−1) → 1L

′′
(1s1−1)
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is an isomorphism. By exactly the same arguments,

(0α1)|1L′′(1s1−1)
: 1L

′′
(1s1−1) → 0L

′′
(0t0−1)

is an isomorphism as well. Therefore, multiplication by 0α11α0 = N(0t0) is an auto-
morphism of 0L

′′
(0t0−1). But N(0t0)|0L′′(0t0−1)

is just multiplication by p. Therefore,
0L
′′
(0t0−1) = 1L

′′
(1s1−1) = {0}.

Claim 12.35. 1α0 · 0L′′ = 0α1 · 1L′′ = {0}.
We have 1α0 · 0t0 = 1α0. Now let x ∈ 0L

′′
N(0t0), then p · 1α0 · x = 1α0 · N(0t0)x = 0,

hence 1α0 · x = 0, this shows that 1α0 · 0L
′′
N(0t0) = 0. Similarly 0α1 · 1L

′′
N(1s1) = {0}.

Since 1L
′′ = 1L

′′
N(1s1) and 0L

′′ = 0L
′′
N(0t0), this implies the claim.

Claim 12.36. L′′ is projective.
By the previous claim and exactness of L, 2α1 : 1L

′′ → 2L
′′ and 2α0 : 0L

′′ → 2L
′′ are

one-to-one and 1α2 : 2L
′′ → 1L

′′ and 0α2 : 2L
′′ → 0L

′′ are onto. Since 2t2 − 1 = 2α0 · 0α2
and 2s2−1 = 2α1 · 1α2, this implies that 2L

′′ is an exact 2R2-lattice. By Theorem 12.30,
2L
′′ is a projective 2R2-module. Hence Ind2(2L

′′) is a projective R-module. Note that
R22 · L′′ = L′′. Set

Φ: Ind2(2L
′′)→ L′′, r ⊗ x 7→ rx.

By exactly the same arguments as in the proof of Claim #1, we see that φ is an iso-
morphism, this proves Claim #4.
So far we have two short exact sequences of R-modules, namely

P0 � L� L′

and
P1 � L′ � L′′

with P0, P1 and L′′ being projective. Since L′′ is projective, the second sequence splits,
therefore, L′ ∼= P1⊕L′ is projective. Hence also the first sequence splits and we see that
L ∼= P0 ⊕ P1 ⊕ L′′ is projective as well.

Proof. (of Theorem 12.1)
Let A be a separable C(p)-algebra, then theR-module EKC(p)(A) is countably generated
and exact. Let ρ :

⊕
NR� EKC(p)(A) be an epimorphism of R-modules and L := ker ρ.

Then L is an exact, countably generated R-lattice, hence projective. Hence we have a
projective resolution

L�
⊕
N
R� EKC(p)(A)

of length 1.
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A UCT for Actions of Finite Cyclic
Groups

13 Introduction

The aim of this chapter is to prove a Universal Coefficient Theorem for C∗-algebras
equipped with an action of a finite cyclic group G. The main theorem reads as follows:

Theorem 13.1. Let G be a finite cyclic group of order o and A and B separable G-C∗-
algebras with A in BG[o−1]. Then there is a natural short exact sequence

Ext1
A(LKG(SA),LKG(B)) � KKG

∗ (A,B)[o−1] � HomA(LKG(A),LKG(B)).

Here, Hom and Ext are taken in the abelian category A = Mod(CG[o−1])Z/2c .

In Section 14 we apply our general framework: We will first define the invariant LKG

by specifying a family A of objects in KKG[o−1] for a general finite group G. We define
the relevant bootstrap class in Section 14.2. The outcome is that in order to derive a
UCT, we have to show that modules over CG[o−1] have a projective resolution of length
1.
In Section 15, we develop tools to calculate CG–the restriction of KKG to objects of the

form C(G)H , H ≤ G for a finite abelian group G. In order to simplify calculations, we
will first establish an involution on CG coming from Pontrijagin Duality (Section 15.1).
We will then describe a set of generating morphisms of CG in Section 15.2 and their
relations in Section 15.3.
The aim of Section 16 is to show that for a finite cyclic group G, modules over

CG[o−1] indeed have a projective resolution of length 1. We will start by introducing the
concept of a split category over a family of Dedekind domains in Section 16.1. There,
we will also show that modules over such categories have projective dimension 1 and
that tensor products of split categories are again split. After having introduced these
formal concepts, we focus on the case of G being a cyclic group of prime power order
and show that in this case CG[o−1] is split. Finally, in Section 16.3, we show that for
G finite cyclic, CG[o−1] is the tensorproduct

⊗
i C

Gi [pi
−1] with Gi finite cyclic of prime

power order and thereby split over a family of Dedekind domains. This will finish the
proof.
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14 The Framework

14.1 The Invariant

Throughout this section let G denote a finite group. We have already introduced KKG

and stated that the suspension functor S and triangles isomorphic to mapping cone
triangles turn it into a triangulated category in Section 8.1.

Definition 14.1. Let C be a preadditive category and R be a unital ring. Define C⊗R
to be the category with the same objects as C and morphisms given by

C⊗R(A,B) := C(A,B)⊗Z R for A,B ∈∈ C.

Composition is given by

C(A,B)⊗Z R⊗Z C(B,C)⊗Z R ∼= C(A,B)⊗Z C(B,C)⊗Z R⊗Z R→ C(A,C)⊗Z R,

where the last arrow is the tensor product of composition in C and multiplication in R.

In general, T being triangulated does not imply that T⊗R is triangulated. But in the
special case R = Z[n−1], this is true. For a preadditive category C, we will write C[n−1]
for C⊗ Z[n−1].

Theorem 14.2. Let n ∈ Z \ {0}. Then KKG[n−1] is triangulated and

(_)⊗ Z[n−1] : KKG → KKG[n−1]

is a triangulated functor.

Proof. This follows from Theorem 2.13. of [19].

Let G be a finite abelian group of order o. Set

A := {C(G)H | H subgroup of G}.

Note that C(G)H is isomorphic to C(G/H) as a G-C∗-algebra.

Definition 14.3. Let CG denote the full subcategory of KKG with objects A and CG[o−1]
the full subcategory of KKG[o−1] with objects A.

Definition 14.4. Define an invariant

LKG : KKG[o−1]→Mod(CG[o−1])Z/2c

by LKG := FA (Definition 5.5).

Here, we write LK to abbreviate localized K-theory. Let RG[o−1] denote the category
ring of CG[o−1]. There is an isomorphism of abelian categories

Mod(CG[o−1])Z/2c
∼= Mod(RG[o−1])Z/2c , M 7→

⊕
A∈A

M(A)
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Under this isomorphism, we obtain the following description of LKG:

LKG(A) =
⊕

H subgroup of G
KKG

∗ (C(G/H), A)[o−1] ∼=
⊕

H subgroup of G
K∗(HnA)[o−1]

for a G-algebra A.
Here the last isomorphism comes from the fact that IndGH is left adjoint to ResHG ([27]

Section 3.2) and the Green–Julg Theorem (Theorem 11.5). Hence on the level of abelian
groups, the invariant is the direct sum of K-groups of crossed products with subgroups
of G tensored with Z[o−1].
All properties of the Hom-like invariants constructed for non-localized G-equivariant

KK-theory also hold for LKG (compare Section 8.2):

Lemma 14.5. If B1 � B2 � B3 is a G-equivariant extension, then there is a natural
6-term exact sequence

LKG(B1) // LKG(B2) // LKG(B3)

��
ΣLKG(B3)

OO

ΣLKG(B2)oo ΣLKG(B1).oo

Proof. Follows from Lemma 8.2 since Z[o−1] is flat ([47], 3.2.2).

Proposition 14.6 (Thom isomorphism). Let B be a separable G× R-algebra, then there
is an isomorphism

ΣLKG(B) ∼= LKG(RnB).

Proof. Follows from Proposition 8.3.

Proposition 14.7 (Pimsner–Voiculescu exact sequence). Let B be a separable G× Z-
algebra, then there is a natural 6-term exact sequence

LKG(B) // LKG(B) // LKG(ZnB)

��
ΣLKG(ZnB)

OO

ΣLKG(B)oo ΣLKG(B).oo

Proof. Follows from Proposition 8.4 since Z[o−1] is flat.

14.2 The Bootstrap Class

Definition 14.8. Define the bootstrap class BG as the localizing subcategory of KKG
which is generated by A. Let BG[o−1] be the localizing subcategory of KKG[o−1] which
is generated by A.

Note thatBG is contained inBG[o−1]. By Theorem 9.5, every commutative G-algebra
is in BG.
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Remark 14.9. By our general framework (Theorem 7.1), in order to prove Theorem 13.1,
we have to show that LKG(A) has projective dimension 1 in Mod(CG[o−1])Z/2c for all
A ∈∈ BG[o−1]. In fact, we will show that for a finite cyclic group G, all objects in
Mod(CG[o−1])Z/2c have a projective resolution of length 1.

15 Basic Calculations in CG

15.1 Duality

In the following, let G denote a finite abelian group. H and K will always denote
subgroups of G.
Recall that C(k) = Z/kZ denotes the cyclic group of order k. Define

χk : C(k)×C(k)→ S1, ([m], [n]) 7→ exp
(

2πimn
k

)
By a well-known classification result for finitely generated abelian groups ([16] The-

orem 10.3), there is an isomorphism

Φ: G ∼=
n⊕
j=1

C(kj)

for j = 1, . . . , n and kj ∈ N. Let φj denote the projection onto the jth component.
Define

χ : G×G→ S1, χ(g, h) =
∏
j

χkj (φj(g), φj(h)).

χ is a group homomorphism, which depends on the choice of the isomorphism Φ. Let us
fix Φ and thereby χ once and for all. We have χ(g, h) = χ(h, g).

Definition 15.1. Set

H⊥ := {g ∈ G | χ(g, h) = 1 ∀h ∈ H}.

H⊥ is a subgroup of G.

Proposition 15.2.
G/H⊥ → Ĥ, [g] 7→ (h 7→ χ(g, h)),

is an isomorphism.

Proof. For [g] ∈ G/H⊥, let χ[g] ∈ Ĥ denote the character h 7→ χ(g, h). Let us first
check that g 7→ χg gives an isomorphism G ∼= Ĝ. Recall that there is an isomorphism
Φ: G ∼=

⊕n
j=1 C(kj). Since the sum is finite, we have Ĝ ∼=

⊕n
j=1 Ĉ(kj). By definition of

χ, the diagram
G

χ //

∼=
��

Ĝ

∼=
��⊕n

j=1 C(kj)
⊕iχk //⊕n

j=1 Ĉ(kj)
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commutes, hence it suffices to show that

C(k)→ Ĉ(k), [n] 7→
(

[m] 7→ exp
(

2πimn
k

)
)
)

is an isomorphism. But this is elementary.
The short exact sequence H � G � G/H induces a short exact sequence Ĝ/H �

Ĝ� Ĥ since G is finite ([39] Proposition 2). This already shows that

G
χ−→ Ĝ� Ĥ

is surjective. By definition, H⊥ is the kernel of this map, this shows the claim.

Lemma 15.3. (H⊥)⊥ = H.

Proof. Let h ∈ H and g ∈ H⊥, then χ(h, g) = χ(g, h) = 1, hence H ⊆ (H⊥)⊥. Since
H ∼= Ĥ ∼= G/H⊥, we have |G| = |H| · |H⊥|. Therefore, |H| = |(H⊥)⊥|, this shows that
H = (H⊥)⊥.

If H is a subgroup of G, then the normalization of the Haar measure on H is chosen
such that points have mass 1. Let (A,α) and (B, β) be G-algebras. Note that the crossed
product GnαA as a vector space is given as C(G,A). We will omit the index α if there
is no danger of confusion. Since G is abelian, there is a dual action α̂ of Ĝ on GnA,
which we will interpret as an action of G via the isomorphism Ĝ ∼= G. α̂ is then given
by α̂l(f)(k) := χ(l, k)f(k). By the universal property of KKG ([26], Theorem 50) we
obtain an endofunctor

Gn(_): KKG → KKG.

In [1], S. Baaj and G. Skandalis examine Gn(_) for a general Hausdorff topological
group G. We can derive the following explicit description of Gn(_) for an abelian G
from [1] 6.6 and 6.17: Let x = [(E , T, γ)] ∈ KKG(A,B). Then Gnx is represented by
(GnE , T̂ , γ̂), where GnE = C(G,E) as a vector space and the expressions for inner
product, left and right multiplication specialize to:

(aξ)(k) =
∫
G
a(l)γl (ξ(k − l)) dl, (ξb)(k) =

∫
G
ξ(l)βl (b(k − l)) dl (15.4)

〈ξ, η〉(k) =
∫
G
β−l (〈ξ(l), η(k + l)〉) dl (15.5)

for ξ, η ∈ GnE , b ∈ GnB and a ∈ GnA. The operator T̂ is given by
(
T̂ (ξ)

)
(k) = T (ξ(k))

and the action γ̂ by γ̂l(ξ)(k) = χ(l, k)ξ(k).
Applying the crossed product twice yields a G-algebra (Gn α̂Gn αA, ̂̂α), which is

naturally KKG-equivalent to A by the Takai Duality Theorem [43]. Thus Gn(_) is
an autofunctor of KKG, which is involutive up to a natural isomorphism, the natural
transformation T . This observation will be used to simplify the computation of CG. It
will be useful to explicitly describe T .
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Let
(
K(L2(G,A)),Adρ⊗α

)
be the compact operators on the Hilbert A-module L2(G,A)

equipped with the adjoint action, where G acts on L2(G,A) via

(ρ⊗ α)l(f)(k) = αl(f(k + l)), f ∈ L2(G,A).

Lemma 15.6. There is an equivariant ∗-isomorphism

ΦA :
(
Gnα̂GnαA, ̂̂α)→ (

K(L2(G,A)),Adρ⊗α
)
,

which is given by

ΦA(F )(f)(r) =
∫
G

∫
G
α−1
r (F (t, s))χ(t, r − s)f(r − s) dt ds

for F ∈ Gnα̂GnαA =vs C(G×G,A) and f ∈ L2(G,A).

Proof. This is a standard result, see for example [48], Theorem 7.1.

Let us denote by EA ∈ KKG(K(L2(G,A)), A) the KK-element, which is given by the
Morita-Rieffel imprimitivity bimodule (L2(G,A), ρ⊗ α). Then the natural transforma-
tion

T : GnGn(_)⇒ id
is given by the KKG-equivalence TA = [ΦA] ·EA. That T is indeed a natural transform-
ation, i.e., that for G-algebras A and B and x ∈ KKG(A,B), we have

GnGnx · TB = TA · x,

follows from [1], Théorème 6.20.
For calculations, it will be useful to turn Gn(_) into an actual involution on CG.
We are especially interested in the crossed product GnC(G)H , which, as a vector

space, will be identified with C(G×G){0}×H .
There is an embedding

ι : C∗H ↪→ C∗G, ι(f)(g) :=
{
f(g) if g ∈ H,
0 otherwise

.

We will regard C∗H as a subalgebra of C∗G via this embedding.
Fourier transformation gives an equivariant isomorphism

F : (C(G), λ)→ (C∗G, τ̂), F(f)(g) = 1
|G|

∫
G
χ(g, g′)f(g′) dg′

Lemma 15.7. F(C(G)H) = C∗H⊥.

Proof. Let g ∈ G \H⊥, f ∈ C(G)H and (gi)i∈I a set of representatives of G/H. Then
χ[g] ∈ Ĥ is non-trivial in Ĥ, hence

∑
h∈H χ[g](h) = 0, hence

F(f)(g) = 1
|G|

∑
i

∑
h∈H

χ(g, gi + h)f(gi) = 1
|G|

∑
i

χ(g, gi)f(gi)

∑
h∈H

χ[g](h)

 = 0.

This shows F(C(G)H) ⊆ C∗H⊥. Counting dimensions shows equality.
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Let us denote the restriction F|C(G)H : C(G)H ∼= C∗H⊥ by FH .
Recall that GnC(G)H = GnIndGH C is Morita-Rieffel equivalent to C∗H ([48], Theorem

4.22). Composing the corresponding imprimitivity bimodule with F−1
H⊥

on the right, we
obtain an imprimitivity bimodule XH , which gives a Morita-Rieffel equivalence between
GnC(G)H and C(G)H⊥ .

Definition 15.8. Define the involution I : CG → CG by

I(C(G)H) = C(G)H⊥ , I(x) = [XH ]−1 · (Gnx) · [XK ]

for x ∈ KKG(C(G)H , C(G)K).

I is obviously a functor. A computation shows that Gn [XH ] · [XH⊥ ] = TC(G)H
(Proposition 23.1 in the appendix). Together with (GnGnx) · TB = TA · x for x ∈
KKG(A,B), it is easy to check that I is an involution: Let x ∈ KKG(C(G)H , C(G)K),
then

I2(x) = [XH⊥ ]−1 ·Gn[XH ]−1 · (GnGnx) ·Gn[XK ] ·XK⊥

= T−1
C(G)H · (GnGnx) · TC(G)K

= T−1
C(G)K · TC(G)K · x = x.

15.2 Generators of CG

In this subsection we will introduce some morphisms in CG and then show that they
serve as basic building blocks of generators of CG.

Definition 15.9. For g ∈ G, let us define elements in KKG(C(G)H , C(G)H) by

tHg :=
[
(λg)|C(G)H

]
and rHg := [χg]⊗C 1C(G)H

In words, tHg is given by translation by the group element g and rHg by the outer tensor
product with the character χg.

Lemma 15.10. Let g ∈ G and K,H be subgroups of G and x ∈ KKG
∗ (C(G)K , C(G)H),

then tHg · x = x · tHg and rKg · x = x · rHg .

Proof. The first equality follows since [αg] · x = x · [βg] for G-algebras (A,α), (B, β),
g ∈ G and x ∈ KKG(A,B) and the second since the outer tensor product with elements
in KKG(C,C) is commutative.

Definition 15.11. Let K ≤ H ≤ G, let ιKH ∈ KKG(C(G)H , C(G)K) be the class of the
inclusion C(G)H ↪→ C(G)K .

Still assuming K ≤ H ≤ G, the right module structure over C(G)H and an inner
product given by

〈x, y〉(s) =
∫
H
x(s+ t)y(s+ t) dt, x, y ∈ C(G)K (15.12)

turn C(G)K into a Kasparov-C(G)K-C(G)H -module, which will be denoted by RHK .
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Definition 15.13. Let ρHK = [(RHK , 0, λ)] ∈ KKG(C(G)K , C(G)H) denote the corres-
ponding KK-element.

Recall that forH ≤ G, there are induction and restriction functors IndGH : KKH → KKG

and ResHG : KKG → KKH (see [23] Definition 3.1 and Section 3.6 or [27], Section 3.6 for
a more functorial approach). ResHG is given by restricting the action to the subgroup
H. If (B, β) is an H-algebra, then in our case (of G being finite abelian), IndGH(B, β) is
given as a C∗-subalgebra of C(G,B):

IndGH(B, β) = {f ∈ C(G,B) | f(g + h) = β−h (f(g))},

where G acts by left translation. There is an isomorphism of functors IndGH ResHG =
(_)⊗C C(G)H ([27], Equation (18)). Furthermore we will use the adjointness relations

KKG(A, IndGH B) ∼= KKH(ResHG A,B) and KKG(IndGH B,A) ∼= KKH(B,ResHG A)

for a G-algebra A and an H-algebra B ([27], Equations (19) and (20)).

Definition 15.14. Let H and L be arbitrary subgroups of G. Set

µLH := ρH+L
H · ιLH+L.

Proposition 15.15. Let L and H be arbitrary subgroups of G. Let (gi)i∈I be a set of
representatives of G/(H +L) and (sj)j∈J a set of representatives of G/(H ∩L)⊥. Then
KKG

∗ (C(G)H , C(G)L) is a free Z-module, concentrated in degree 0 with basis(
tHgi · µ

L
H · rLsj

)
(i,j)∈I×J

.

Proof. We have

ρH+L
H · tL+H

gi · ιLH+L · rLsj = tHgi · ρ
H+L
H · ιLH+L · rLsj = tHgi · µ

L
H · rLsj

by Lemma 15.10. Hence it is sufficient to show that KKG
∗ (C(G)H , C(G)L) is a free

Z-module, concentrated in degree 0 with basis(
ρH+L
H · tL+H

gi · ιLH+L · rLsj
)

(i,j)∈I×J
.

The unital embedding u : C ↪→ C(H)H∩L = IndHH∩L ResH∩LH C is the unit of the adjoint-
ness relation

KKH∩L(C,ResH∩LH (_)) ∼= KKH(IndHH∩LC,_).

The counit of the adjointness relation

KKG(IndGH(_), C(G)L) ∼= KKH(_,ResHG C(G)L)

will be denoted by c : IndGH ResHG C(G)L → C(G)L. c is given by [τ ] · (ρGH ⊗C 1C(G)L),
where

τ : IndGH ResHG C(G)L ∼= C(G)H ⊗C C(G)L, τ(f)(g, g′) = f(g)(g′ − g).
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Note that in KKH , there is an isomorphism

C(G)L ∼=
⊕
I

C(−gi +H + L)L ∼=
⊕
I

C(H)H∩L.

Its inverse is given by
⊕
I jgi , where

jgi : C(H)H∩L ↪→ C(G)L, jgi(f)(g) =
{
f(h) if g = −gi + h+ l, h ∈ H, l ∈ L,
0 otherwise

.

Following the chain of isomorphisms
⊕
I

KKH∩L(C,C)
u∗◦IndHH∩L−−−−−−−→

⊕
I

KKH(C, C(H)H∩L)⊕
I
(jgi )∗−−−−−−→ KKH(C, C(G)L)

c∗◦IndGH−−−−−→ KKG(C(G)H , C(G)L),

we see that KKG(C(G)H , C(G)L) is a free Z-module, concentrated in degree 0 with basis(
IndGH

(
u · IndHH∩L([φ]) · [jgi ]

)
· c
)
i∈I, φ∈Ĥ∩L

.

Note that J → Ĥ ∩ L, j 7→ ResH∩LG (χsj ) is a bijection. Since

IndGH
(
IndHH∩L ResH∩LG ([χsj ]) · [jgi ]

)
·c = ([χsj ]⊗C1IndGH C(H)H∩L)·IndGH [jgi ]·c = IndGH [jgi ]·c·rLsj ,

it suffices to show that

IndGH u · IndGH [jgi ] · c = ρH+L
H ·mL+H

gi · ιLH+L ∈ KKG(C(G)H , C(G)L).

Calculating the composition

Ti := C(G)H
IndGH u
−−−−→ IndGH C(H)H∩L

IndGH jgi−−−−−→ IndGH C(G)L τ−→ C(G)H ⊗C C(G)L

yields

Ti : C(G)H → C(G)H ⊗C C(G)L, T (f)(g, g′) = f(g)1H+L−gi(g − g′),

where 1H+L−gi denotes the characteristic function of the set H +L− gi. Hence we have
to show that there is an isomorphism of Kasparov C(G)H -C(G)L-modules

(Ti)∗
(
RGH ⊗C 1C(G)L

)
∼= (ιLH+L ◦ λgi)∗RH+L

H .

In the following, we will identify C(G)H⊗CC(G)L with C(G×G)H×L. Since (Ti)∗
(
RGH ⊗C 1C(G)L)

)
=vs

Ti · C(G)H ⊗C C(G)L, the left-hand-side is given as a vector space by

Ti(1) · C(G)H ⊗ C(G)L =vs {f ∈ C(G×G)H×L | f(g, g′) = 1H+L−gi(g − g′)f(g, g′)}.
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The left module structure is given by Ti, the right module structure by 1⊗ idC(G)L and
the inner product by 〈f, f ′〉(g′) =

∫
G f(g, g′)f ′(g, g′) dg.

To describe (ιLH+L ◦ λgi)∗R
H+L
H , let us first set

Λi := ιLH+L ◦ λgi : C(G)H+L → C(G)L, Λi(f)(g) = f(g − gi).

Then (ιLH+L ◦λgi)∗R
H+L
H = C(G)H⊗Λi C(G)L. Left and right module structure are given

by idC(G)H ⊗Λi 1 and 1⊗Λi idC(G)L , respectively, and the inner product is given by

〈f0 ⊗Λi f
′
0, f1 ⊗Λi f

′
1〉(g) = f ′0(g)

∫
H+L

f0(g − gi + r)f1(g − gi + r) drf ′1(g).

Hence (ιLH+L ◦ λgi)∗R
H+L
H as a vector space is a quotient and (Ti)∗

(
RGH ⊗C 1C(G)L

)
is a subspace of C(G × G)H×L. Using the description of the inner products above, a
straightforward calculation show that

φ : C(G×G)H×L → C(G×G)H×L, f 7→
(
(g, g′) 7→ 1H+L−gi(g − g′)f(g, g′)

)
factors through an injective map Φ: C(G)H ⊗Λi C(G)L → C(G)H ⊗C C(G)L, which inter-
twines the inner products. It is also easy to check that im Φ = Ti(1) · C(G)H ⊗ C(G)L
(i.e., that Φ is surjective) and that it intertwines left and right multiplication. Therefore,
Φ is an isomorphism of Kasparov C(G)H -C(G)L-modules

(ιLH+L ◦ λgi)∗RH+L
H

∼=−→ (Ti)∗
(
RGH ⊗C 1C(G)L

)
.

15.3 Relations in CG

In this subsection we will derive some properties of the basic building blocks for gener-
ators of CG.

Lemma 15.16. One has I(rHg ) = tH
⊥

g and I(tHg ) = rH
⊥

g .

Proof. By definition, I(rHg ) = [XH ]−1 ·
(
Gn

(
[χg]⊗C 1C(G)H

))
· [XH ]. Let λH denote the

translation action restricted to C(G)H . Using the formulas on Baaj-Skandalis duality
(formula (15.4) and (15.5)), it is easy to check that

Gn
(
[χg]⊗C 1C(G)H

)
= [(λ̂H)g] ∈ KKG(GnC(G)H , GnC(G)H),

where λ̂H is the dual action of G on GnC(G)H . Since [αg] · x = x · [βg] for G-algebras
(A,α), (B, β), g ∈ G and x ∈ KKG(A,B), we obtain the first equality. Applying I yields
the second equality.

Lemma 15.17. Let h ∈ H, then tHh = 1C(G)H and rH⊥h = 1C(G)H⊥ .

Proof. tHh = 1C(G)H for h ∈ H is trivial, the other equality follows by applying I.
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Lemma 15.18. One has I(ιKH) = ρK
⊥

H⊥ and I(ρHK) = ιH
⊥

K⊥.

Proof. By definition, I(ιHK) = (XH)−1 · (GnιKH) · (XK). Hence we have to show that the
Kasparov GnC(G)H -C(G)K⊥-modules (GnιKH)∗XK andXH⊗C(G)H⊥R

K⊥

H⊥ are isomorphic.
Recall that XK = XH = C(G) and RK

⊥

H⊥ = C(G)H⊥ as vector spaces. A lengthy
computation using the description of XK and XH given by the formulas (23.2) - (23.5)
and (15.12) shows that

(GnιKH)∗XK → XH ⊗C(G)H⊥ R
K⊥

H⊥ , f 7→ f ⊗C(G)H⊥
1

|K⊥|1/2
,

is a well-defined isomorphism of Kasparov GnC(G)H -C(G)K⊥-modules. This shows
I(ιKH) = ρK

⊥

H⊥ . The other equality follows by applying I.

Lemma 15.19. Let K ≤ H ≤ L ≤ G. We have ιHL · ιKH = ιKL and ρHK · ρLH = ρLK .

Proof. The first equality is obvious, the second one follows by applying I.

In the next lemma, we will show that ιKH and ρHK behave nicely under induction.
Recall that IndGH is a functor from KKH to KKG. To avoid confusion, we will denote the
morphisms ιKH and ρHK of KKH by ιKH(H) and ρHK(H), respectively, and similarly for the
corresponding morphisms in KKG.

Lemma 15.20. Let K ≤ H ≤ G. Under the identification

IndGH C(H)K ∼= C(G)K , f 7→ (g 7→ f(g, 0))

we have
IndGH(ιKH(H)) = ιKH(G) and IndGH(ρHK(H)) = ρHK(G)

Proof. The first equality follows straight from the definition. For the second equality,
recall that ρHK(H) = [RHK(H)] and that the Kasparov bimodule RHK(H) is equal to
C(H)K as a vector space. The isomorphism IndGH C(H)K ∼= C(G)K , regarded as an
isomorphism of vector spaces, can be applied to the Kasparov bimodule representing
IndGH ρHK(H) and yields an isomorphism of Kasparov C(G)K-C(G)H -bimodules RHK(G) ∼=
IndGH RHK(H).

Proposition 15.21. Let K ≤ H ≤ G, then

ιKH · ρHK =
∑

g∈K⊥/H⊥
rHg ∈ KKG(C(G)H , C(G)H).

Proof. Note that ι{0}G ·ρG{0} ∈ KKG(C,C) is the class of the representation of G on L2(G)
via left translation. Hence, by the Peter–Weyl Theorem [32], we have

ι
{0}
G · ρG{0} =

∑
φ∈Ĝ

[φ].
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Pullback via the quotient map π : H � H/K yields π∗ : KKH/K → KKH . Applying π∗
to the equality above (for G = H/K) and using the identification C(H/K) ∼= C(H)K ,
we obtain

ιKH · ρHK =
∑

φ∈Ĥ/K

[φ ◦ π] ∈ KKH(C(H)H , C(H)H).

Applying IndGH and Lemma 15.20, we obtain

ιKH · ρHK =
∑

φ∈Ĥ/K

IndGH [φ ◦ π] ∈ KKG(C(G)H , C(G)H).

The exact sequence H � G � G/H induces an exact sequence Ĝ/H � Ĝ � Ĥ.
Therefore,

∑
φ∈Ĥ/K

IndGH [φ ◦ π] =
∑

ψ∈Ĥ, ψ|K=1

IndGH [ψ] = 1
|Ĝ/H|

∑
γ∈Ĝ, γ|K=1

IndGH ResHG [γ].

= 1
|H⊥|

∑
g∈K⊥

IndGH ResHG [χg] = 1
|H⊥|

∑
g∈K⊥

[χg]⊗C C(G)H = 1
|H⊥|

∑
g∈K⊥

rHg .

Corollary 15.22. Let K ≤ H ≤ G, then

ρHK · ιKH = 1
|K|

∑
g∈H

tKg ∈ KKG(C(G)K , C(G)K).

Proof. This follows by applying I to the statement of the last proposition.

16 Projective Resolutions of Length 1

From now on let G denote a finite cyclic group G of order o. The aim of this section is
to show that every module over CG ⊗ Z[o−1] has projective dimension 1.
Let us first give an outline of the argument: For every finite cyclic group G, there

is a decomposition G =
⊕
Gi, where each Gi is a finite cyclic group of prime power

order pεi . CG⊗Z[o−1] can be decomposed into the tensor product of categories CGi [p−1
i ].

We will introduce the notion of a split category over a family of rings {Ri}i∈I , which
basically means that the category of modules over this category is equivalent to modules
over

⊕
I Ri. If every Ri is a direct sum of Dedekind domains, modules over

⊕
I Ri have

projective dimension 1. The same is true for modules over a category which is split
over {Ri}i∈I . We will then calculate CGi ⊗ Z[pi−1] explicitly in terms of hand-selected
generators and relations to show that it is indeed split over a family of Dedekind domains.
Together with the fact that tensor products of split categories are again split, this implies
the claim.
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16.1 Split Categories and Tensor products

Definition 16.1. Let C be a finite preadditive category and {Ri}i∈I a finite family of
unital commutative rings. Let 1i denote the unit in Ri. C is called split over {Ri}i∈I if
and only if:

(1) For all A,B ∈∈ C, there are subsets I(A,B) ⊆ I such that

I(A,B) = I(B,A), I(A,B) ∩ I(B,C) ⊂ I(A,C) and I =
⋃

A∈∈C
I(A,A).

(2) For A,B ∈∈ C , there is an isomorphism of abelian groups

γBA :
⊕

i∈I(A,B)
Ri ∼= C(A,B).

(3) If i ∈ I(A,B), j ∈ I(B,C), r ∈ Ri, s ∈ Rj , then composition in C is given by

γBA (r1i) · γCB (s1j) = δi,jγ
C
A (rs1i).

A trivial example of a split category over {Ri}i∈I is the category C with objects I and
morphisms

C(i, j) :=
{
Ri if i = j,

0 otherwise.
.

Note that the morphism groups of a finite preadditive category C, which is split over
{Ri}i∈I carry a module structure over R :=

⊕
i∈I Ri: For i ∈ I, A,B ∈∈ C, j ∈ I(A,B)

and r ∈ Ri, s ∈ Rj set
r1i · γBA (s1j) := δi,jγ

B
A (rs1j).

This module structure is compatible with composition in the sense that for A,B,C ∈∈ C,
r, s ∈ R and x ∈ C(A,B) and y ∈ C(B,C),

(r · x) · (s · y) = (rs) · (x · y) .

Lemma 16.2. Let C be split over {Ri}i∈I and set R :=
⊕

I Ri. Then there are equival-
ences of categories.

Mod(C) 'Mod(R), Mod(C)c 'Mod(R)c

Proof. We have to define additive functors

Mod(C) F−→Mod(R) G−→Mod(C)

and show that there are isomorphisms F ◦ G ∼= idMod(R) and G ◦ F ∼= idMod(C). Let us
first define G : Mod(R) → Mod(C): For A ∈∈ C and M ∈∈ Mod(R), set G(M)(A) :=⊕

i∈I(A,A) 1iM and for A,B ∈∈ C, j ∈ I(A,B) and r ∈ Rj , let

G(M)
(
γBA (r1j)

)
: G(M)(A)→ G(M)(B)
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be given by the composition

G(M)(A) =
⊕

i∈I(A,A)
1iM � 1jM

r1j−−→ 1jM �
⊕

i∈I(B,B)
1iM = G(M)(B).

It is easy to check that this gives a well-defined additive functor. For the definition of
F , choose a map σ, which assigns to i ∈ I an object σ(i) ∈∈ C such that i ∈ I(σ(i), σ(i))
for all i ∈ I and define an idempotent

pi := γ
σ(i)
σ(i)(1i) ∈ C (σ(i), σ(i)) .

For N ∈∈Mod(C), let =N(pi) denote the image of N(pi) : N(σ(j))→ N(σ(j)) and set

F (N) :=
⊕
i∈I
=N(pi).

For j ∈ I and r ∈ Rj , define multiplication by r1j by the composition

⊕
i∈I
=N(pi) � =N(pj)

N(rpj)−−−−→ =N(pj) �
⊕
i∈I
=N(pi).

It is not hard to check that this gives a well-defined additive functor.
For M ∈∈ Mod(R), compute F ◦ G(M) =

⊕
i∈I =G(M)(pi) =

⊕
i∈I 1i ·M . Since

for every R-module M , there is a natural isomorphism M ∼=
⊕

i∈I 1i · M , we ob-
tain a natural isomorphism F ◦ G ∼= idMod(R). For N ∈∈ Mod(C), we compute G ◦
F (N)(A) =

⊕
i∈I(A,A)=N(pi). For i ∈ I(A,A), N(γσ(i)

A (1i)) yields an isomorphism
=N(pi) ∼= N

(
gAA(i)

)
N(A) with inverse N(γAσ(i)(1i)). This gives a natural isomorphism

ΦN,A : G ◦ F (N)(A) =
⊕

i∈I(A,A)
=N(pi) ∼=

⊕
i∈I(A,A)

N
(
gAA(i)

)
N(A) ∼= N(A).

We obtain a natural isomorphism ΦN := (ΦN,A)A∈∈C : G ◦ F (N) ∼= N and Φ :=
(ΦN )N∈∈Mod(C) gives the desired natural isomorphism G ◦ F ∼= idMod(C). This shows
that F and G implement an equivalence Mod(C) ' Mod(R). It is clear that F and G
preserve the countability condition. Therefore, we also obtain an equivalence Mod(C)c '
Mod(R)c.

Corollary 16.3. Let C be split over {Ri}i∈I such that every Ri is isomorphic to a
countable direct sum of countable Dedekind domains. Then every object in Mod(C)c has
a projective resolution of length 1.

Let J be a finite index set and for j ∈ J , Cj a finite preadditive category. In the
following, a tensor product without subscript will always denote the algebraic tensor
product over Z (of rings, categories or modules).
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Definition 16.4. Let D be a preadditive category. A functor F :
∏
J Cj → D is called

multilinear, if for all (Cj)j∈J , (C ′j)j∈J ∈∈
∏
J Cj the map

F(Cj)j∈J ,(C′j)j∈J :
∏
J

Cj(Cj , C ′j)→ D
(
F ((Cj)j∈J), F ((C ′j)j∈J)

)
is multilinear over Z.

Definition 16.5. A tensor product of (Cj)j∈J is a pair (
⊗

J Cj ,
⊗

J), where
⊗

J Cj is
a preadditive category and

⊗
J :
∏
J Cj →

⊗
J Cj is a multilinear functor such that for

every multilinear functor F :
∏
J Cj → D, there is a unique additive functor F̃ :

⊗
J Cj →

D such that
F̃ ◦

⊗
J

= F.

Lemma 16.6. (
⊗

J Cj ,
⊗
J) exists.

Proof. Let the objects of
⊗
J Cj be equal to the objects of

∏
J Cj . For Cj ∈∈ Cj , j ∈ J

we will write
⊗
J Cj to denote the object (Cj)j∈J . Let additionally Dj ∈∈ Cj for j ∈ J

and define ⊗
J

Cj

(⊗
J

Cj ,
⊗
J

Dj

)
:=
⊗
J

Cj(Cj , Dj).

For j ∈ J , let Cj , Dj , Ej ∈∈ Cj and fj ∈ Cj(Cj , Dj) and gj ∈ Cj(Dj , Ej). Composition
is given by ⊗

J

fj ·
⊗
J

gj :=
⊗
J

fj · gj

It is elementary to check that this product is associative. Let
⊗

J :
∏
J Cj →

⊗
J Cj

be given by (Cj)j∈J 7→ ⊗JCj on objects (which is just a change in notation) and by
(fj)j∈J 7→

⊗
J fj on morphisms. It is easy to check that (

⊗
J Cj ,

⊗
J) has the required

universal property.

The tensor product is associative up to an isomorphism of categories.

Lemma 16.7. Let J be a finite index set and for j ∈ J let {Ri,j}i∈Ij be a finite family
of commutative unital rings. For j ∈ J , let Cj be split over {Ri,j}i∈Ij . Set I :=

∏
j∈J Ij.

Then
⊗
J Cj is split over

{⊗
J Rij ,j

}
((ij)j∈J)∈I .

Proof. For A :=
⊗
J Aj , B :=

⊗
J Bj ∈∈

⊗
J Cj , define

I(A,B) :=
∏
J

I(Aj , Bj).

Define γBA by commutativity of the following diagram

⊕
((ij)j∈J)∈I(A,B)

⊗
J Rij ,j

∼=
��

γBA // C(A,B)

⊗
J

⊕
ij∈I(Aj ,Bj)Rij ,j

⊗
J
γ
Bj
Aj //⊗

J Cj(A,B).

=

OO
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This endows
⊗
J Cj with the structure of a category, which is split over

{⊗
J Rij ,j

}
(ij)j∈J∈I

.

16.2 A Special Case

Let us consider the case G = C(pn), n ∈ N and p prime. Our aim is to show that CG[p−1]
is split over a family of Dedekind domains. We will be using facts about cyclotomic
polynomials and decompositions of certain rings into Dedekind domains. For better
readability, we collected these purely algebraic statements in the appendix, Section 22.
To simplify notation, let C denote the category with objects {0, 1, . . . , n} and morph-

isms
C(k, l) := KKC(pn)

(
C(C(pn)C(pk)), C(C(pn)C(pl))

)
[p−1].

C is obviously isomorphic to CG[p−1], G = C(pn).

Definition 16.8.

I := {(u, v) | ∃k, 0 ≤ k ≤ n such that 0 ≤ u ≤ n− k, 0 ≤ v ≤ k}.

For (u, v) ∈ I, define

R(u,v) :=
(
Z[p−1][t]/〈Φpu(t)〉

)
⊗
(
Z[p−1][r]/〈Φpv(r)〉

)
,

where Φm denotes the mth cyclotomic polynomial

Φm(t) :=
∏

ω mth primitive root of unity
(t− ω).

Having made these definitions, we can be more precise about what we want to prove
in this subsection:

Theorem 16.9. C is split over
{
R(u,v)|(u, v) ∈ I

}
.

Note that this implies that all countable Z/2-graded modules over C have a pro-
jective resolution of length 1: Z[p−1][t]/〈Φpu(t)〉 is isomorphic to the Dedekind domain
Z[p−1, θpu ] by Lemma 22.2, and Proposition 22.11 yields an isomorphism of rings

R(u,v) ∼= Z[p−1, θpu ]⊗ Z[p−1, θpv ] ∼=
⊕

0<k<pmin(u,v), gcd(p,k)=1

Z[p−1, θpmax(u,v) ].

Therefore, all objects in Mod(C)Z/2c have projective dimension 1 by Corollary 16.3.
The verification of conditions (1)–(3) in the definition of a split category or equival-

ently, the proof of Theorem 16.9 will occupy the remainder of this section.

Definition 16.10. For 0 ≤ k, l ≤ n, set

I(k, l) := {(u, v) | 0 ≤ u ≤ n− k ∨ l, 0 ≤ v ≤ k ∧ l}.

Here k ∨ l := max(k, l) and k ∧ l := min(k, l).
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It is immediate that I(k, l) = I(l, k), I(k, l)∩I(l,m) ⊂ I(k,m) and I =
⋃
k=0,...,n I(k, k).

Hence condition (1) in Definition 16.1 holds.
The next step is to define the isomorphisms of abelian groups, which are part of

condition (2) in Definition 16.1:

γlk :
⊕

(u,v)∈I(k,l)
R(u,v) ∼= C(k, l).

γlk will be constructed by using the basic building blocks for generators in C (see
Definitions 15.9 and 15.14). To further simplify notation, let us make the following
definitions

Definition 16.11. Let e denote the class of 1 in C(pn). For 0 ≤ k, l ≤ n, define

ktk := tC(pk)
e ∈ C(k, k), krk := rC(pk)

e ∈ C(k, k), kµl := µ
C(pl)
C(pk) ∈ C(k, l).

Define polynomials ψn,m ∈ Z[n−1][t] by

ψn,m(t) := 1
n
· t · ddtΦm(t) ·

∏
m′|n, m′ 6=m

Φm′(t) ∈ Z[n−1][t].

The relevance of the ψn,ms is that they allow for a decomposition of Z[n−1]/〈tn−1〉 into
a direct sum of Dedekind domains (Proposition 22.8 in the appendix). Let us abbreviate
ψpk,pu by Ψk,u.

Lemma 16.12. Let k ≤ l, u ∈ N and x ∈ C(k, l). For 0 ≤ u ≤ n− k, we have

Ψn−k,u(ktk) · x =
{
x ·Ψn−l,u(ltl) if u ≤ n− l,
0 otherwise.

For 0 ≤ v ≤ l, we have

x ·Ψl,v(lrl) =
{

Ψk,v(krk) · x if v ≤ k
0 otherwise.

Proof. Note first that ktk · x = x · ltl. Hence Ψn−k,u(ktk) · x = x · Ψn−k,u(ltl). Since
(ktk)p

n−k = 1, the first statement follows by Lemma 22.7. The second statement is
proven analogously.

Let us set

ck,l :=
{
pk−l if k ≥ l
1 otherwise.

Proposition 16.13. Let 0 ≤ k, l ≤ n, then there is an isomorphism of abelian groups

γlk :
⊕

(u,v)∈I(k,l)
R(u,v) ∼= C(k, l),

which is given by

γlk(p⊗ q1(u,v)) 7→ ck,l · p(ktk) ·Ψn−k,u(ktk) · kµl · q(lrl) ·Ψl,v(lrl).
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Here, p and q are polynomials representing elements in Z[p−1][t]/〈Φpu(t)〉 and Z[p−1][r]/〈Φpv(r)〉.

Proof. Let 0 ≤ k, l ≤ n, then{
(ktk)a · kµl · (lrl)b | 0 ≤ a < pn−k∨l, 0 ≤ b < pk∧l

}
is a basis of C(k, l) as a free Z[p−1]-module by Proposition 15.15. In other words, there
is an isomorphism of abelian groups

Z[p−1][t]/〈tpn−k∨l − 1〉 ⊗ Z[p−1][r]/〈rpk∧l − 1〉 ∼= C(k, l), p⊗ q 7→ p(ktk) · kµl · q(lrl).

By Proposition 22.11, for 0 ≤ k, l ≤ n, there is an isomorphism⊕
(u,v)∈I(k,l)

R(u,v) ∼= Z[p−1][t]/〈tpn−k∨l−1〉 ⊗ Z[p−1][r]/〈rpk∧l−1〉,

which is given by p ⊗ q 7→ p · Ψn−k∨l,u ⊗ q · Ψk∧l,v for p ⊗ q ∈ R(u,v). We obtain an
isomorphism of abelian groups

γ̃ :
⊕

(u,v)∈I(k,l)
R(u,v) ∼= C(k, l)

given by
γ̃(p⊗ q) = p(ktk) ·Ψn−k∨l,u(ktk) · kµl · q(lrl) ·Ψk∧l,v(lrl)

for p⊗ q ∈ R(u,v) = Z[p−1][t]/〈Φpu(t)〉 ⊗ Z[p−1][r]/〈Φpv(r)〉. Set γlk := ck,lγ̃.

The last step is to show condition (3) in Definition 16.1, i.e., to show the following
statement: If (u, v) ∈ I(k, l), (u′, v′) ∈ I(l,m), r ∈ R(u,v), s ∈ R(u′,v′), then composition
in C is given by

γlk(r1(u,v)) · γml (s1(u′,v′)) = δu,u′δv,v′γ
m
k (rs1(u,v)).

For p ∈ Z[p−1][t] and x ∈ C(k, l), Lemma 15.10 implies

p(ktk) · x = x · p(ltl) and p(krk) · x = x · p(lrl).

Therefore, it is sufficient to show the following slightly weaker statement:

Proposition 16.14. Let (u, v) ∈ I(k, l), (u′, v′) ∈ I(l,m), then composition in C is
given by

γlk(1(u,v)) · γml (1(u′,v′)) = δu,u′δv,v′γ
m
k (1(u,v)).

We will prove this proposition by a series of lemmas.

Lemma 16.15. Let 0 ≤ k ≤ n and (u, v), (u′, v′) ∈ I(k, k), then

γkk (1(u,v)) · γkk (1(u′,v′)) = δu,u′δv,v′γ
k
k (1(u,v)).
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Proof. In the special case k = l, the isomorphism of abelian groups

Z[p−1][t]/〈tpn−k − 1〉 ⊗ Z[p−1][r]/〈rpk − 1〉 ∼= C(k, k), p⊗ q 7→ p(ktk) · q(krk)

from Proposition 15.15 as well as the isomorphism⊕
(u,v)∈I(k,l)

R(u,v) ∼= Z[p−1][t]/〈tpn−k−1〉 ⊗ Z[p−1][r]/〈rpk−1〉

from Proposition 22.11 are isomorphisms of rings. Since γkk is defined as the composition
of both, γkk is an isomorphism of rings as well. This shows the claim.

Lemma 16.16. Let 0 ≤ k ≤ l ≤ m ≤ n, (u, v) ∈ I(k, l), (u′, v′) ∈ I(l,m), then

γlk(1(u,v)) · γml (1(u′,v′)) = δu,u′δv,v′γ
m
k (1(u,v)).

If (u, v) ∈ I(m, l), (u′, v′) ∈ I(l, k), then

γlm(1(u,v)) · γkl (1(u′,v′)) = δu,u′δv,v′γ
k
m(1(u,v)).

Proof. Lemma 15.18 implies that µlk · µml = µmk . Note also that ck,lcl,m = ck,m since
k ≤ l ≤ m. Now compute

γlk(1(u,v)) · γml (1(u′,v′))
= ck,m ·Ψn−k,u(ktk) · µlk ·Ψl,v(lrl) ·Ψn−l,u′(ltl) · µml ·Ψm,v′(mrm)
= ck,m · µlk ·Ψn−k,u(ltl) ·Ψn−l,u′(ltl) ·Ψl,v(lrl) ·Ψm,v′(lrl) · µml
= δ(u,u′) · δ(v,v′) · ck,m · µlk ·Ψn−l,u(ltl) ·Ψl,v(lrl)µml ,

where the last equality uses Lemma 22.7 and Lemma 22.6. By Corollary 16.12, the last
expression is equal to

δ(u,u′) · δ(v,v′) · ck,m ·Ψn−k,u(ktk) · µlk · µml ·Ψm,v(mrm)
= δ(u,u′) · δ(v,v′) · ck,m ·Ψn−k,u(ktk) · µmk Ψm,v(mrm)
= δu,u′δv,v′γ

k
m(1(u,v))

Lemma 16.17. Let 0 ≤ k ≤ l ≤ n, then

µlk · µkl =
n−k∏

i=n−l+1
Φpi(ktk) and µkl · µkl =

l∏
i=k+1

Φpi(lrl).

Proof. By Corollary 15.22, we have

µlk · µkl = p−k
pl−1∑
i=0

(ktk)ip
n−l
.
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Since (ktk)p
n−k = 1, we obtain

µlk · µkl = p−k
pl−1∑
i=0

(ktk)p
n−li =

pl−k−1∑
i=0

(ktk)p
n−li

=
l−k∏
i=1

Φpi

(
(ktk)p

n−l) =
n−k∏

i=n−l+1
Φpi (ktk) ,

where the last two equalities used the explicit description Φpk(t) =
∑p−1
i=0 t

pk−1i from
Lemma 22.2 and the fact that

∏n
i=1

∑p−1
j=0 t

pi−1j =
∑pn−1
j=0 ti . Similarly, one computes

with the help of Proposition 15.21 and the relation (lrl)p
l = 1

µkl · µkl = pl−n
pn−k−1∑
i=0

(lrl)p
ki

=
pl−k−1∑
i=0

(lrl)p
ki =

l∏
i=k+1

Φpi(lrl).

Lemma 16.18. Let 0 ≤ k ≤ l ≤ n and (u, v) ∈ I(k, l), (u′, v′) ∈ I(l, k), then

γlk(1(u,v)) · γkl (1(u′,v′)) = δu,u′δv,v′γ
k
k (1(u,v))

and
γkl (1(u′,v′)) · γlk(1(u,v)) = δu,u′δv,v′γ

l
l(1(u,v)).

Proof. First note that by definition of Ψn−k,u, for 0 ≤ u′ ≤ n− l, we have

pl−kΨn−l,u′(ktk) ·
n−k∏

i=n−l+1
Φpi(ktk) = Ψn−k,u′(ktk)

in C(k, k). Now compute

γlk(1(u,v)) · γkl (1(u′,v′))
= pl−k ·Ψn−k,u(ktk) · µlk ·Ψl,v(lrl) ·Ψn−l,u′(ltl) · µkl ·Ψk,v′(krk)
= pl−k ·Ψn−k,u(ktk) ·Ψn−l,u′(ktk) · µlk · µkl ·Ψl,v(krk) ·Ψk,v′(krk)
= δv,v′p

l−k ·Ψn−k,u(ktk) ·Ψn−l,u′(ktk) · µlk · µkl ·Ψk,v(krk)

= δv,v′p
l−k ·Ψn−k,u(ktk) ·Ψn−l,u′(ktk) ·

n−k∏
i=n−l+1

Φpi(ktk) ·Ψk,v(krk)

= δv,v′ ·Ψn−k,u(ktk) ·Ψn−k,u′(ktk) ·Ψk,v(krk)
= δu,u′δv,v′γ

k
k (1(u,v)),

76



16 Projective Resolutions of Length 1

where we used Lemma 22.7 and Lemma 22.6 in the third equality. Similarly, using
pl−k

∏l
i=k+1 Φpi(lrl) ·Ψk,v′(lrl) = Ψl,v′(lrl), one computes

γkl (1(u′,v′)) · γlk(1(u,v))
= pl−k ·Ψn−l,u′(ltl) · µkl ·Ψk,v′(krk) ·Ψn−k,u(ktk) · µlk ·Ψl,v(lrl)
= δu,u′ · pl−k ·Ψn−l,u(ltl)µkl · µlk ·Ψk,v′(lrl) ·Ψl,v(lrl)

= δu,u′ · pl−k ·Ψn−l,u(ltl) ·
l∏

i=k+1
Φpi(lrl) ·Ψk,v′(lrl) ·Ψl,v(lrl)

= δu,u′δv′,v ·Ψn−l,u(ltl) ·Ψl,v(lrl)
= δu,u′δv′,vγ

l
l(1(u,v)).

Now we are able to prove Proposition 16.14. Let us first recall the statement:
Let 0 ≤ k, l,m ≤ n and (u, v) ∈ I(k, l), (u′, v′) ∈ I(l,m), then composition in C is

given by
γlk(1(u,v)) · γml (1(u′,v′)) = δu,u′δv,v′γ

m
k (1(u,v))

Proof. After ordering k, l and m, there are six cases to consider:

1. k ≤ l, l ≤ m;

2. k ≤ l, k ≤ m ≤ l;

3. k ≤ l, m ≤ k;

4. l ≤ k, m ≤ l;

5. l ≤ k, l ≤ m ≤ k;

6. l ≤ k, l ≤ m.

These cases are not mutually exclusive but still exhaustive. We already dealt with cases
(1) and (4) in Lemma 16.16. Consider case (2): Since k ≤ m ≤ l, we know that
I(k,m) ∩ I(m, l) = I(k, l). Using Lemma 16.16 and Lemma 16.18, one computes

γlk(1(u,v)) · γml (1(u′,v′)) = γmk (1(u,v)) · γlm(1(u,v)) · γml (1(u′,v′))
= δu,u′δv,v′γ

m
k (1(u,v)) · γmm(1(u,v))

= δu,u′δv,v′γ
m
k (1(u,v)).

Similarly, we compute in case (3)

γlk(1(u,v)) · γml (1(u′,v′)) = γlk(1(u,v)) · γkl (1(u′,v′)) · γmk (1(u′,v′))
= δu,u′δv,v′γ

k
k (1(u,v)) · γmk (1(u′,v′))

= δu,u′δv,v′γ
m
k (1(u,v)).

Case (5) and case (6) can be dealt with in a completely analogous manner.

77



A UCT for Actions of Finite Cyclic Groups

16.3 The General Case

In this subsection, we will show that for a finite cyclic group G of order o, every graded
countable module over CG[o−1] has projective dimension 1.
We will do so by showing that CG[o−1] is the tensor product of split categories over a

family of Dedekind domains and thereby itself is split over a family Dedekind domains.
Let G be a finite cyclic group, then

G = ⊕i=1,...,nGi

with Gi cyclic of prime power order pεii and pi 6= pj for i 6= j. Every subgroup H of G
decomposes as H =

⊕
iHi, with Hi ≤ Gi.

The next theorem shows that CG is isomorphic to
⊗n

i=1 C
Gi .

Theorem 16.19. Let Gi, i = 1, . . . , n be finite abelian groups and G :=
⊕

iGi. For each
i, let Gi be a class of subgroups of Gi. Define G to be the class of subgroups of G of the
form H =

⊕
iHi for Hi ∈ Gi. Let C be the full subcategory of KKG with objects C(G)H ,

H ∈ G. Analogously let Ci be the full subcategory of KKGi with objects C(Gi)Hi, Hi ∈ Gi.
Then there is an isomorphism

n⊗
i=1

Ci ∼= C.

Proof. Let us show the statement for the case n = 2, the general case follows by induc-
tion. We have to define

F : C1 ⊗ C2 → C.

Note that pullback via the projections πi : G� Gi induces additive functors π∗i : KKGi →
KKG. Restriction to Ci and taking the tensor product yields

π∗1 ⊗ π∗2 : C1 ⊗ C2 → KKG ⊗ KKG.

On the other hand, the exterior tensor product in KKG induces

T : KKG ⊗ KKG → KKG.

We would like to define F as the composition of the last two functors, but we cannot quite
do so since the target objects only match up to a natural isomorphism: For C(G1)H1⊗
C(G2)H2 ∈∈ C1 ⊗ C2 and H := H1 ⊕H2, there is a natural isomorphism

ΨH : C(G)H ∼= π∗1C(G1)H1⊗C π∗1C(G2)H2 ,

where on the right-hand-side we have the exterior products in KKG, which on the object
level is just the spatial tensor product of C∗-algebras with the diagonal action.
Let us define F on objects by

F
(
C(G1)H1⊗ C(G2)H2

)
:= C(G)H , Hi ∈ Gi, H = H1 ⊕H2.
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For Hi,Ki ∈ Gi, H = H1 ⊕H2 and K = K1 ⊕K2, define F on morphisms by

FH,K : C1 ⊗ C2
(
C(G1)H1⊗ C(G2)H2 , C(G1)K1⊗ C(G2)K2)

)
→ C

(
C(G)H , C(G)K

)
FH,K(x) = [ΨH ] · (T ◦ (π∗1 ⊗ π∗2)(x)) · [ΨK ]−1.

F is a functor and clearly a bijection on the set of objects. Hence, to verify that F is an
isomorphism, we only have to check that each FH,K is an isomorphism. By Proposition
15.15, both domain and target of FH,K are free abelian groups, hence it suffices to check
that FH,K maps generators to generators. By definition, the domain of FH,K is equal to

KKG1
(
C(G1)H1 , C(G1)K1

)
⊗KKG2

(
C(G2)H2 , C(G2)K2

)
and the target is given by

KKG
(
C(G)H , C(G)K

)
.

The following three statements are easily verified using the definitions of t, r and µ: Let
gi ∈ Gi, then

1. FH,H(tH1
g1 ⊗ t

H2
g2 ) = [ΨH ] ·

(
π∗1t

H1
g1 ⊗C π

∗
2t
H2
g2

)
· [ΨH ]−1 = tH1⊕H2

(g1,g2)

2. FH,H(rH1
g1 ⊗ r

H2
g2 ) = [ΨH ] ·

(
π∗1r

H1
g1 ⊗C π

∗
2r
H2
g2

)
· [ΨH ]−1 = rH1⊕H2

(g1,g2)

3. FH,K(µK1
H1
⊗ µK2

H2
) = [ΨH ] ·

(
π∗1µ

K1
H1
⊗C π∗2µ

K2
H2

)
· [ΨK ]−1 = µK1⊕K2

H1⊕H2
.

This, together with the description of the generators of domain and target of FH,K given
by Proposition 15.15, tells us that FH,K maps generators to generators and finishes the
proof.

Finally, we will show that every countable graded CG[o−1]-module has a projective
resolution of length 1. First we prove an auxiliary lemma:

Lemma 16.20. Let C and D be equivalent finite preadditive graded categories. If all
objects in Mod(C)Z/2c have projective dimension 1, then the same holds for all objects in
Mod(D)Z/2c .

Proof. Let α : C → D and β : D → C be grading preserving additive functors such that
there are isomorphisms T : α ◦β ∼= idD and S : β ◦α ∼= idD. Let M be a D-module, then
α∗(M) := M ◦ α is a C-module. We obtain preadditive functors

β∗ : Mod(C)Z/2c →Mod(D)Z/2c and α∗ : Mod(C)Z/2c →Mod(C)Z/2c .

T and S induce isomorphisms α∗ ◦ β∗ ∼= id and β∗ ◦ α∗ ∼= id. α∗ and β∗ are exact and
preserve the property of being projective.

Theorem 16.21. Let G be finite cyclic group of order o−1. Then every countable graded
CG[o−1]-module has a projective resolution of length 1.
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Proof. Note that we can ignore the grading: CG[o−1] is ungraded, therefore, the category
of (countable) graded CG[o−1]-modules is the direct sum of two copies of the category
of (countable) CG[o−1]-modules. Let G = ⊕i=1,...,nGi with Gi cyclic of prime power
order pεii and pi 6= pj for i 6= j. In Theorem 16.19, we showed that CG is isomorphic
to
⊗n
i=1 C

Gi . Since o =
∏
|Gi| =

∏
pεii , we have Z[o−1] =

⊗n
i=1 Z[p−1

i ], this implies
that CG,Φ[o−1] is isomorphic to

⊗n
i=1 C

Gi [p−1
i ]. Hence it suffices to show that count-

able
⊗n
i=1 C

Gi [p−1
i ]-modules have a projective resolution of length 1. By Theorem 16.9,

CGi [p−1
i ] is split over{

Z
[
p−1
i , θpui

]
⊗ Z

[
p−1
i , θpvi

]}
{(u,v)∈N0×N0|∃k∈N0:k≤εi,u≤εi−k,v≤k}

.

Therefore, Lemma 16.7 shows that
⊗n

i=1 C
Gi [p−1

i ] is split over{
n⊗
i=1
Z
[
p−1
i , θpuii

]
⊗ Z

[
p−1
i , θpvii

]}
{(ui,vi)i=1,...,n∈(N0×N0)n|∀i∃ki∈N0:ki≤εi,ui≤εi−ki,vi≤ki}

.

In the appendix, we prove the following two facts:

1. Lemma 22.9: Let m,n ∈ Z be coprime. Then there is an isomorphism of rings

Z[θn]⊗ Z[θm] ∼= Z[θmn].

2. Proposition 22.11: Let m,n ∈ N, n ≤ m and p a prime number. Then there is an
isomorphism of rings

Z[p−1, θpn ]⊗ Z[p−1, θpm ] ∼=
⊕

0<k<pn,gct(p,k)=1
Z[p−1, θpm ].

Both statements together imply that
⊗n

i=1 Z[p−1
i , θpui ] ⊗ Z[p−1

i , θpvi ] is isomorphic to a
finite direct sum of countable Dedekind domains. Hence Corollary 16.3 shows that every
object in Mod(

⊗n
i=1 C

Gi [p−1
i ])c has a projective resolution of length 1.
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Universal Coefficient Theorems for
C∗-algebras over Topological Spaces

The aim of this chapter is to describe explicitly the class of finite topological spaces for
which there is a UCT short exact sequence, which computes KK(X;A,B) in terms of
the filtrated K-theory of A and B.
We will first review the notion of a C∗-algebra over a (possibly non-Hausdorff) finite

topological space X and give an alternative description of X by a finite directed graph
in Section 17. In Section 18 we will explain how KK-theory for C∗-algebras over X can
be interpreted as a triangulated category with countable coproducts, introduce filtrated
K-theory and show that this invariant arises as a special case of our general construction.
We will then review alternative characterizations of the bootstrap class and state the
UCT criterion in Section 19. Then, in Section 20, we will define spaces of type A and
review some spaces, for which there is no UCT in terms of filtrated K-theory available.
Finally, in Section 21, we will show that spaces of type A are indeed the most general
type of finite topological spaces, for which there is a short exact UCT sequence, which
computes KK(X,_,_) in terms of filtrated K-theory.

17 C∗-algebras over Finite Topological Spaces

17.1 Basic Notions

Throughout this chapter, let X be a finite topological T0 space. A C∗-algebra over X is
a pair (A,ψ) consisting of a C∗-algebra A and a continuous map ψ : Prim(A)→ X.
Let O(X) denote the set of open subsets of X, partially ordered by ⊆ and let I(A)

be the set of closed ∗-ideals in A, partially ordered by ⊆. (O(X),⊆) and (I(A),⊆) are
complete lattices, that is, any subset S has both an infimum

∧
S and a supremum

∨
S.

ψ induces a map ψ∗ : O(X)→ I(A), which commutes with infima and suprema. By [30],
Lemma 2.25, ψ can be recovered from ψ∗. Hence we obtain an equivalent description of
a C∗-algebra over X as a pair (A,ψ∗) where

ψ∗ : O(X)→ I(A), U 7→ A(U),

commutes with infima and suprema.
A ∗-homomorphism f : A → B between two C∗-algebras over X is X-equivariant if

f
(
A(U)

)
⊆ B(U) for all U ∈ O(X). A subset Y ⊆ X is locally closed if and only if

Y = U \ V for open subsets V,U ∈ O(X) with V ⊆ U . We define A(Y ) := A(U)/A(V )
for a C∗-algebra A over X; this does not depend on the choice of U and V by [30] Lemma
2.16.

81



Universal Coefficient Theorems for C∗-algebras over Topological Spaces

We adopt the following notations from [30].

O(X) set of open subsets of X, partially ordered by ⊆;

LC(X) set of locally closed subsets of X;

LC(X)c set of connected, non-empty locally closed subsets of X;

(A,ψ) C∗-algebra over X;

A(Y ) the subquotient of (A,ψ) associated with Y ∈ LC(X);

Prim(A) primitive ideal space of A with hull-kernel topology;

I(A) set of closed ∗-ideals in A, partially ordered by ⊆;

C∗alg(X) category of C∗-algebras over X with X-equivariant ∗-homomorphisms

C∗sep(X) full subcategory of separable C∗-algebras over X.

17.2 Functoriality

A continuous map f : X → Y induces a functor

f∗ : C∗alg(X)→ C∗alg(Y ).

f∗ is given by (A,ψ) 7→ (A, f ◦ ψ). We have g∗f∗ = (gf)∗ whenever it makes sense. If
f : X → Y is the embedding of a subset with the subspace topology, we also write iYX
instead of f∗ and call it induction. Y ∈ LC(X) induces a restriction functor

rYX : C∗alg(X)→ C∗alg(Y ),

which is given by rYXB(Z) := B(Z) for all Z ∈ LC(Y ) ⊆ LC(X). We have rZY ◦ rYX = rZX
if Z ⊆ Y ⊆ X and rXX = id.
Induction and restriction are related by rYX ◦iXY = id and various adjointness properties

(see [30] Definition 2.19 and Lemma 2.20 for a discussion of induction and restriction).

17.3 Specialization Order

There is the specialization preorder on X, defined by x � y ⇐⇒ {x} ⊆ {y}. A subset
Y ⊆ X is locally closed if and only if it is convex w.r.t. �, i.e., if and only if

x � y � z, x, z ∈ Y ⇒ y ∈ Y

holds.
Let X be a space and Y ⊆ X, there is a locally closed hull, defined as

LC(Y ) := {x ∈ X | ∃y1, y2 ∈ Y : y1 � x � y2}.
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17 C∗-algebras over Finite Topological Spaces

Lemma 17.1. LC(LC(Y )) = LC(Y ). LC(Y ) is the smallest locally closed set contain-
ing Y .
Proof. Obviously Y ⊆ LC(Y ), let y ∈ LC(LC(Y )), then there are y1, y2 ∈ LC(Y ) such
that y1 � y � y2. By definition, there are z1, z2, z3, z4 ∈ Y such that z1 � y1 � z2,
z3 � y2 � z4, hence z1 � y1 � y � y2 � z4, therefore, y ∈ Y . Using the characterization
of locally closed sets as convex sets, the second statement is obvious.

A map f : X1 → X2 between two finite topological spaces is continuous if and only if
it is monotone with respect to �, i.e. if

x � y ⇒ f(x) � f(y)

holds. Note that � is a partial order if and only if X is T0. By [30] 2.33, this yields
a bijection of partial orders and T0-topologies on a given finite set. Let us denote the
topology associated with ≺ by τ≺.

17.4 Representation of Finite Topological Spaces as Directed Graphs

A useful way to represent finite partially ordered sets and hence finite T0 spaces is via
finite directed acyclic graphs.
To establish notation, we have collected a few elementary notions of graph theory: A

directed graph is a pair Γ = (V,E), where V is a set and E ⊆ V × V \∆(V ). Elements
of V are called vertices and elements of E are called edges. We will also write E(Γ)
and V (Γ) to denote the edges and vertices associated with Γ. Hence we are neither
allowing loops nor multiple edges to exist. A graph (V ′, E′) is a subgraph of (V,E) if
and only if V ′ ⊆ V and E′ = {(a, b) ∈ E | a, b ∈ V ′}. A directed path ρ is a a sequence
ρ = (vi)i=0,...,n such that (vi, vi+1) ∈ E for i = 1, . . . , n with all (vi)i=1,...,n being pairwise
distinct, the length of ρ = (vi)i=0,...,n is n. A directed circle is a directed path of length
larger than 0 such that v0 = vn. For two paths ρ1 = (vi)i=0,...,n and ρ2 = (wi)i=0,...,m,
we define sets

ρ1 ∩ ρ2 := {vi | i = 0, . . . , n} ∩ {wi | i = 0, . . . ,m}
and

ρ1 ∪ ρ2 := {vi | i = 0, . . . , n} ∪ {wi | i = 0, . . . ,m}.
An edge (v0, v1) is called an outgoing edge of v0 and an incoming edge of v1. The oriented
degree do(v) of v ∈ V is defined via

do(v) := #{e ∈ E | e outgoing edges of v} −#{e ∈ E | e incoming edges of v}

A directed graph is called acyclic if it has no circles. A path is a sequence (vi)i=0,...,n such
that for i = 1, . . . , n (vi, vi+1) ∈ E or (vi+1, vi) ∈ E with all (vi)i=1,...,n being pairwise
distinct. We say that ρ is a path from a to b if v0 = a and vn = b. A circle is a path
ρ = (vi)i=0,...,n of length greater than 0 such that v0 = vn. The degree d(v) of v ∈ V is
defined as

d(v) := #{e ∈ E | e outgoing edge of v}+ #{e ∈ E | e incoming edge of v}

With a partial order � on X, we associate a finite directed acyclic graph Γ(X).
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Definition 17.2. Let X be a finite T0 space. Let Γ(X) be the directed graph with
vertex set X and with an edge x ← y if and only if x ≺ y and there is no z ∈ X with
x ≺ z ≺ y.

We can recover the partial order from this graph by letting x � y if and only if the
graph contains a directed path from y to x. Note that we cannot obtain every finite
directed graph in this way. Although the statements are elementary, we will list the
restrictions on Γ(X) for later reference.

Lemma 17.3. Let X be a finite T0 space. Γ(X) is acyclic as a directed graph. Let x, y
be vertices in Γ(X). If ρ1 and ρ2 are two distinct directed paths from x to y, then ρ1
and ρ2 have length ≥ 2.

Proof. Follows straight from the definition.

Let S be a finite set. If Γ is a directed graph with vertex set S, then we can define a
preorder on S by setting s1 �Γ s2 if and only if there is a directed path from s2 to s1.
Note that �Γ is a partial order if and only if Γ is acyclic. Let E(S) be the set of acyclic
directed graphs with vertex set S such that all Γ ∈ E(S) have the following property: If
ρ1 and ρ2 are two distinct directed paths in Γ from x to y, then ρ1 and ρ2 have length
≥ 2. It is easy to check that (S,≺) 7→ Γ(S, τ≺) and Γ 7→�Γ yields a bijection between
the set of partial orders on S and E(S).

Lemma 17.4. X is connected if and only if Γ(X) is connected as an undirected graph.

Proof. Assume first that X is connected. Let x0 ∈ X and set

X1 := {x ∈ X | ∃ path from x0 to x in Γ(X)}.

Note that if y ∈ {x}, then there is an undirected path from x to y. Hence, if x ∈ X1,
then {x} ⊆ X1. Therefore,

⋃
x∈X1 {x} = X1 and X1 is closed. On the other hand, if

x /∈ X1, then {x} ⊆ X \X1, hence X1 =
⋂
x/∈X1 X \ {x} is open. Since X is connected

and X1 is non-empty, we have X = X1.
Now assume that Γ(X) is connected as an undirected graph and that X = X1 tX2

can be written as a disjoint union of non-empty clopen sets X1 and X2. Let xi ∈ Xi,
i = 1, 2 and ρ an undirected path from x1 to x2. We find neighbouring vertices y1 and
y2 on the path ρ such that yi ∈ Xi i = 1, 2. Wl̇ȯġẇe may assume that y2 ∈ {y1}. Since
X1 is closed, we have y2 ∈ {y1} ⊆ X1, which is a contradiction.

18 KK(X) and Filtrated K-theory

18.1 X-equivariant KK-theory

As explained in [30] 3.1, there is a version of bivariant K-theory for C∗-algebras over X.
Let A,B ∈∈ C∗sep(X), a cycle in KK(X;A,B) is given by (E, T ), where (E, T ) is a cycle
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for KK(A,B), which is X-equivariant, that is, A(U) · E ⊆ E · B(U) for all U ∈ O(X).
There is also a Kasparov product

KK(X;A,B)⊗KK(X;B,C)→ KK(X;A,C).

Thus we may define the category KK(X) whose objects are separable C∗-algebras over
X and morphisms from A to B are given by KK(X;A,B). As shown in [30] 3.2, KK(X)
carries all basic structures we would expect from a bivariant K-theory. In particular, it
is additive, has countable coproducts, exterior products, satisfies Bott periodicity and
has six term exact sequences for semi-split extensions of C∗-algebras over X. Here,
I � A � Q is an extension of C∗-algebras over X if I, A and Q are C∗-algebras over
X and I(U) � A(U) � Q(U) is an extension for all U ∈ O(X). It is called semi-split
if and only if there is a c.c.p. split section s, which is X-equivariant in the sense that
s(Q(U)) ⊆ A(U) for all U ∈ O(X).
KK(X) carries the structure of a triangulated category ([30] 3.3). The suspension

functor is given by the exterior product with C0(R) and a sequence SB → C → A→ B
is an exact triangle if and only if it is isomorphic to a mapping cone triangle SB′ →
Cφ → A′ → B′ for some X-equivariant ∗-homomorphism φ : A′ → B′. (Note that the
mapping cone has a canonical structure of a C∗-algebra over X given by Cφ(U) :=
Cφ|A′(U)). Equivalently, one could define the exact triangles to be those triangles which
are isomorphic to the extension triangle of a semi-split extension of C∗-algebras over
X (again, see ([30] 3.3). KK(X) is a triangulated category with countable coproducts.
Following Definition 5.1, we may form KK(X)∗. As in the case of KKG (8.1), it suffices
to work with the simpler Z/2-graded variant, which we will also denote by KK(X)∗.

18.2 Filtrated K-theory

For a locally closed subset Y ⊆ X, one defines a functor

FKX
Y : KK(X)→ AbZ/2, FKX

Y (A) := K∗
(
A(Y )

)
.

For each Y ∈ LC(X), the functor FKX
Y is stable and homological, that is, it intertwines

the suspension on KK(X) with the translation functor on AbZ/2.
Let NT X be the Z/2-graded category whose object set is LC and whose morphism

space Y → Z is NT X∗ (Y, Z)–the Z/2-graded Abelian group of all natural transform-
ations FKX

Y ⇒ FKX
Z . A module over NT X is a grading preserving, additive functor

G : NT X → AbZ/2. Let Mod(NT X) be the category of NT X -modules. The morphisms
in Mod(NT X) are the natural transformations of functors or, equivalently, families of
grading preserving group homomorphisms GY → G′Y that commute with the actions
of NT X . Let Mod(NT X)c be the full subcategory of countable modules.
Filtrated K-theory is the functor

FKX = (FKX
Y )Y ∈LC(X) : KK(X)→Mod(NT )c, A 7→

(
K∗
(
A(Y )

))
Y ∈LC(X)

.

We will drop the superscript X in FKX if there is no danger of confusion.
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If Y ∈ LC(X) is not connected, that is, Y = Y1 t Y2 with two disjoint relatively open
subsets Y1, Y2 ∈ O(Y ) ⊆ LC(X), then any NT -module has GY ∼= GY1 ⊕ GY2 . Since X
is finite, any locally closed subset is a disjoint union of its connected components. This
corresponds to a direct sum decomposition Y ∼=

⊕
j∈π0(Y ) Yj in NT . Therefore, we lose

no information if we replace LC(X) by the subset LC(X)c of non-empty, connected,
locally closed subsets.

18.3 The Representability Theorem

We want to show that filtrated K-theory is a special case of the Hom-like invariants
constructed in 5. Recall the representability theorem from [28]:
Theorem 18.1. Let X be a finite topological space. The covariant functors FKY for
Y ∈ LC(X) are representable, that is, there are objects RY ∈∈ KK(X) and natural
isomorphisms

KK∗(X;RY , A) ∼= FKX
Y (A) = K∗

(
A(Y )

)
for all A ∈∈ KK(X), Y ∈ LC(X).
For a description of the objectsRY , see [28], 2.1. LetR(X) be the family (RY )Y ∈LC(X)

in KK(X). The Yoneda lemma yields a natural isomorphismNT X∗ (Y, Z) ∼= KK∗(X;RZ ,RY )
and an isomorphism of categories

NT X ∼=
(
KK(X)R(X)

∗
)op

.

Note that we definedNT X -modules to be covariant functors, whereas KK(X)R(X)
∗ -modules

are contravariant functors. Thus the representability theorem shows that filtrated K-theory
is isomorphic to FR(X), where

FR(X) : KK(X)→Mod(KK(X)R(X)
∗ )Zc

denotes the Hom-like invariant associated with the family R(X).

18.4 Functoriality

The canonical functor C∗sep(X)→ KK(X) is the universal split exact C∗-stable functor
([30], Theorem 3.7). Using this universal property, we may extend the functoriality
results for C∗alg(X) in the space variable to KK(X): A continuous map f : X → Y
induces a functor f∗ : KK(X) → KK(Y ). In particular, this yields an extension functor
iYX for a subspace X ⊆ Y . For Y ∈ LC(X), the restriction functor descends to a functor
rYX : KK(X)→ KK(Y ).
Our next aim is to construct an algebraic variant of f∗, i.e. a functor f∗ : Mod(NT X)c →

Mod(NT Y )c such that

KK(X) FKX //

f∗
��

Mod(NT X)c

f∗
��

KK(Y ) FKY //Mod(NT Y )c
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commutes. Let us do this by first constructing a functor f∗ : NT Y → NT X : For
Z ∈∈ NT Y = LC(Y ), set f∗(Z) = f−1(Z). A morphism τ ∈ NT Y (Z,Z ′) is a natural
transformation τ : FKY

Z → FKY
Z′ , i.e. a collection {τA}A∈∈KKY of morphisms of abelian

groups
τA : FKY

Z (A) = K∗(A(Z))→ K∗(A(Z ′)) = FKY
Z′(A),

which is natural with respect to morphisms in C∗alg(Y ). Since for B ∈∈ KK(X) and
Z ∈ LC(Y ), we have

FKY
Z (f∗B) = K∗(B(f−1(Z))) = FKX

f−1(Z)(B),

τf∗B is also a morphism from FKX
f−1(Z)(B) to FKX

f−1(Z′)(B) and it makes sense to define

f∗(τ) := {τf∗B}B∈∈KKX .

Hence we have constructed an additive grading preserving functor

f∗ : NT Y → NT X

This gives rise to an additive, grading preserving functor

f∗ : Mod(NT X)c →Mod(NT Y )c, f∗(M) := M ◦ f∗.

Lemma 18.2. Let X, Y , f and f∗ be as above, then the diagram

KK(X) FKX //

f∗
��

Mod(NT X)c

f∗
��

KK(Y ) FKY //Mod(NT Y )c

commutes.
Proof. Recall that there is a canonical functor KK(X) : C∗alg(X) → KK(X). By the
universal property of KK(X) ([30], Theorem 3.7.), we see that it suffices to check that

f∗ ◦ FKX ◦KK(X) = FKY ◦ f∗ ◦KK(X).

On objects, there is no difference anyway: Let A ∈∈ KK(X) and Z ∈ LC(Y ), then

f∗ ◦ FKX(A)(Z) = K∗(A(f−1(Z)) = FKY ◦ f∗(A)(Z).

Let φ : A → B be a morphism of C∗-algebras over X and Z ∈ LC(Y ). Passing to
subquotients, φ induces ∗-homomorphisms φ(Z ′) : A(Z ′) → B(Z ′) for all Z ′ ∈ LC(X).
f∗(φ) : f∗(A) → f∗(B) is a morphism of C∗-algebras over Y , which is given by φ as
a ∗-homomorphism from A to B if we forget the structure over X (or Y ). Note that
f∗(φ)(Z) = φ(f−1(Z)) as a ∗-homomorphism. Now the equalities

f∗ ◦ FKX ◦KK(X)(φ)(Z) = f∗ ◦ FKX([φ])(Z) = FKX([φ])(f−1(Z)) = K∗(φ(f−1(Z)))

and

FKY ◦ f∗ ◦KK(X)(φ)(Z) = FKY ([f∗(φ)])(Z) = K∗(f∗(φ)(Z)) = K∗(φ(f−1(Z)))

yield the desired result.
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19 The Bootstrap Class and the UCT Criterion

19.1 Comparing Bootstrap Classes

In [30], R. Meyer and R. Nest define the bootstrap class B(X) to be the localizing
subcategory of KK(X) generated by the objects ixC for all x ∈ X. That is, it is the
smallest class of objects containing these generators that is closed under suspensions,
KK(X)-equivalence, semi-split extensions, and countable direct sums.
Our general framework would tell us to define the bootstrap class as the localizing

subcategory generated by the RY , Y ∈ LC(X). A natural question to ask is whether
both definition agree and in fact, they do:

Lemma 19.1. B(X) is equal to the localizing subcategory generated by RY , Y ∈ LC(X).

Proof. Let B(X)′ denote the localizing subcategory generated by RY , Y ∈ LC(X). X
is finite, therefore, every x ∈ X has a minimal open neighbourhood Ux. In [28], proof of
Theorem 2.5, it is shown that ixC is isomorphic to RUx in KK(X) for all x ∈ X. This
shows that B(X) is contained in B(X)′. For the other direction, let Good be the set
of locally closed subsets Y such that RY ∈∈ B(X). Let Y ∈ LC(X), U ∈ O(Y ). The
existence of the exact triangle

SRU → RY \U → RY → RU

shows that Y,U and Y \U are in Good if two of them are. Since (U∪V )\U = V \(U∩V )
we have

U, V ∈ O(X), U, V, U ∩ V ∈ Good⇒ U ∪ V ∈ Good.

Induction over the cardinality of U ∈ O(X) shows that O(X) ⊆ Good. Since every
locally closed set is the difference of two open sets, this implies the claim.

Corollary 19.2. Let f : X → Y be continuous and A ∈∈ B(X), then f∗(A) ∈∈ B(Y ).

Proof. f∗(ιxC) = ιf(x)C, therefore, generators of B(X) are sent to generators of B(Y ).
Since f∗ : KK(X)→ KK(Y ) is triangulated, this shows the claim.

19.2 The UCT Criterion and Embedding Results

Our general UCT criterion (Theorem 7.1) and the representability theorem (Theorem
18.1) show what is actually needed to obtain a UCT short exact sequence, which com-
putes KK(X,_,_) in terms of filtrated K-theory:

Theorem 19.3. Let A,B ∈∈ KK(X). Suppose that FKX(A) ∈∈ Mod(NT X)c has a
projective resolution of length 1 and that A ∈∈ B(X). Then there are natural short exact
sequences

Ext1
NT X

(
FKX(A)[j + 1],FK(B)

)
� KKj(X;A,B) � HomNT X

(
FKX(A)[j],FKX(B)

)
for j ∈ Z/2, where HomNT X and Ext1

NT X denote the morphism and extension groups
in the Abelian category Mod(NT X)c and [j] and [j + 1] denote degree shifts.
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Since we are asking which spaces have the property of having a UCT s.e.s. for filtrated
K-theory, it makes sense to view the crucial assumption in the Theorem above as a
property of the space X.
Definition 19.4. Let X be a finite T0 space. We say that UCT (X) holds if for all
A ∈∈ KK(X), FKX(A) ∈∈Mod(NT X)c has a projective resolution of length 1.
As stated above we may restrict attention to connected spaces:

Lemma 19.5. Let X be a finite T0 space, which is a disjoint union of spaces X1, . . . Xn,
then UCT (X) holds if and only if UCT (Xi) holds for i = 1, . . . , n.
Let us also mention an important conclusion, which can be drawn from the existence

of a UCT short exact sequence (this is Corollary 4.9 of [28]):
Corollary 19.6. Let A,B ∈∈ B(X) and suppose that both FK(A) and FK(B) have pro-
jective resolutions of length 1 in Mod(NT )c. Then any morphism FK(A)→ FK(B) in
Mod(NT )c lifts to an element in KK0(X;A,B), and an isomorphism FK(A) ∼= FK(B)
lifts to an isomorphism in B(X).
The possibility of lifting isomorphisms in filtrated K-theory to isomorphisms in KK(X)

is one of the main reasons why one is interested in a UCT short exact sequence. On the
other hand, the impossibility of lifting isomorphisms in FKX is an obstruction to the
existence of a UCT short exact sequence.
Definition 19.7. Let X be a finite T0 space. We say that ¬UCT (X) holds if there are
A,B ∈∈ B(X) such that A � B in KK(X) and FKX(A) ∼= FKX(B) in Mod(NT X)c.
It is clear that there is no finite T0 space such that both UCT (X) and ¬UCT (X)

hold. Moreover, as suggested by notation, we will show that for every such X either
UCT (X) or ¬UCT (X) holds.
The next proposition tells us, roughly, that if X has a subspace for which there is no

UCT, then there cannot exist a UCT for X as well.
Proposition 19.8. Let X be a space, Y ∈ LC(X) such that ¬UCT (Y ) holds, then
¬UCT (X) holds as well.
Let X and Y be topological spaces, f : X → Y and g : Y → X continuous with f ◦ g =

idY . Assume that ¬UCT (Y ) holds, then ¬UCT (X) holds as well.
Proof. By assumption, there are A,B ∈∈ KK(Y ) such that A � B in KK(Y ) and
FKY (A) ∼= FKY (B). As already noted above, we have rYX ◦ iXY = idY (see also [30]
Lemma 2.20 (c)), therefore, iXY (A) � iXY (B) in KKX , furthermore iXY (A), iXY (B) ∈∈ B(X)
by Corollary 19.2. Recall that iXY is just ι∗ for the embedding ι : Y ↪→ X. Hence

FKX(iXY (A)) = ι∗(FKY (A)) ∼= ι∗(FKY (B)) = FKX(iXY (B))

by Lemma 18.2. This shows the first statement.
By assumption, there are A,B ∈∈ KK(Y ) such that A � B in KK(Y ) and FKY (A) ∼=

FKY (B). Since f∗◦g∗ = idKK(Y ) we have that g∗(A) � g∗(B), furthermore g∗(A), g∗(B) ∈∈
B(X) by Corollary 19.2. g∗◦FKY = FKX ◦g∗ implies FKX(g∗(A)) ∼= FKX(g∗(B)) (again
by Lemma 18.2). This shows the second statement.
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20 Positive Results and Counterexamples

In this section we introduce spaces of type A and some spaces, which will serve as
generic counterexamples for a classification of C∗-algebras over finite spaces via filtrated
K-theory.

Definition 20.1. Let X be a finite T0 space. We say that X is of type A (for accordion)
if exactly two vertices in Γ(X) have degree 1 and all other vertices have degree 2.

The following picture shows the graph associated with a space of type A:
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Theorem 20.2. Let X be a finite T0 space of type A, then UCT (X) holds.

Proof. This is shown in [4].

Following R. Bentmann, we will now introduce some spaces, for which there is no
UCT short exact sequence for filtrated K-theory. If X is a space, let Xop denote its dual
space, i.e. Xop = X as a set and the open sets in Xop are exactly the closed sets in X.

Definition 20.3. Let us define the following spaces:

1. X1 = {1, 2, 3, 4}, τX1 = {∅, X1, {1}, {2}, {3}};

2. X2 = Xop
1 ;

3. X3 = {1, 2, 3, 4}, τX3 = {∅, X3, {1}, {2}, {1, 2, 3}};

4. X4 = Xop
3 ;

5. S = {1, 2, 3, 4}, τS = {∅, S, {1}, {1, 2}, {1, 3}, {1, 2, 3}};

6. Cn = C(n)× {a, b}, a basis of τCn is given by {(k, a), (k, b), (k + [1], a)}k∈C(n) for
n ≥ 2.

The associated directed graphs look as follows:

Γ(X1) : Γ(X2) : Γ(X3) : Γ(X4) :

•
((

• •
((

•
• // • • //

((

66

• • // • • // •
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•
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Γ(S) : Γ(Cn) :

•
##

• •oo // • . . . • •oo // •
•

77

''
• •

77

''
•

cc

{{•
;;

• •oo // • . . . • •oo // • .

Theorem 20.4. Let X be a space of the form X1, X2, X3, X4, S or Cn for n ≥ 2. Then
¬UCT (X) holds.

Proof. This is shown in [5] for X1 and X3 and in [4] for the rest.

21 The Complete Description

We already know that if X is of type A, then UCT (X) holds. The aim of this section
is to prove the converse. We want to show that if X is not of type A, then we can
“embed” one of the counterexamples from Section 20 in X. Knowing that ¬UCT holds
for the counterexample, we will use the embedding result from Section 19 to conclude
that ¬UCT (X) holds.

Definition 21.1. A topological subspace X ′ of a finite T0 space X is tight if

y → x in X ′ ⇔ y → x in X.

If X ′ is a topological subspace of X then X ′ is tight in X if and only if every arrow in
Γ(X ′) is also an arrow in Γ(X). If Y is another finite T0 space such that there exists an
embedding Γ(Y ) ↪→ Γ(X) as directed graphs, then Y may be viewed as a tight subspace
of X.

Lemma 21.2. Let X be a finite T0 space such that Γ(X) contains either Γ(X1) or Γ(X2)
as a subgraph, then ¬UCT (X) holds.

Proof. Γ(X1) ⊆ Γ(X) allows us to view X1 as a tight subspace of X. Let y ∈ LC(X1),
then there are x1, x2 ∈ X1 such that x1 � y � x2. Without loss of generality, we may
assume that x1 = 1 and x2 = 4. Since 1 → 4 we have y = 1 or y = 4 by Lemma 17.3.
Therefore, X1 is locally closed in X. Similarly, we see that X2 is locally closed in X
if Γ(X2) ⊆ Γ(X). Therefore, ¬UCT (X) holds by Theorem 20.4 and Proposition 19.8
(b).

Proposition 21.3. Let X be a space such that Γ(X) contains Γ(X3) as a subgraph. Set

π3 : LC(X3)→ X3, π3(x) =
{
x if x ∈ X3

3 otherwise.

Then π3 is continuous.
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Proof. Let us first show the following claim:
Claim #1: If x ∈ LC(X3) \X3, then x � 4, x � 3, x � 3, x � 1, x � 2.

Let x ∈ LC(X3) \ X3, then there are x1, x2 ∈ X3 such that x1 ≺ x ≺ x2. Since
1 → 3, 2 → 3, 3 → 4, Lemma 17.3 shows that x1 = 4 and x2 ∈ {1, 2}, w.l.o.g. we
may assume that x2 = 1. This implies that x � 1 and x � 4. Assume x � 2, then
1 � x � 2 � 3 and since x /∈ X3, by Lemma 17.3, this is a contradiction to 1 → 3. By
the same argument, x � 3 leads to a contradiction. Assume x � 3, then 4 ≺ x ≺ 3 this
is a contradiction to 3→ 4. This shows the claim.
To show that π3 is continuous we have to check that it is monotone. Let x, y ∈ LC(X3),

if x, y ∈ X3 then x � y clearly implies π3(x) � π3(y). If x, y ∈ LC(X3) \ X3 then
π3(x) = 3 = π3(y). If x ∈ LC(X3) \X3, y ∈ X3 and y ≺ x, then y = 4 by Claim #1.
Therefore, π3(4) = 4 ≺ 3 = π3(x). If y ∈ X3, x ∈ LC(X3) \X3 and y � x, then either
y = 1 or y = 2 by Claim #1 and in both cases π3(y) = y � 3 = π3(x). This shows that
π3 is continuous.

Proposition 21.4. Let X be a space such that Γ(X) contains Γ(X4) as a subgraph. Set

π4 : LC(X4)→ X4, π4(x) =
{
x if x ∈ X4

3 otherwise.

Then π4 is continuous.

Proof. This is proven completely analogously to Proposition 21.3, just switch ≺ and �
in the proof.

Corollary 21.5. Let X be a space such that Γ(X) contains either Γ(X3) or Γ(X4) as a
subgraph, then ¬UCT (X) holds.

Proof. Assume Γ(X3) ⊆ Γ(X) and let Y = LC(X3). There is an inclusion ι3 : X3 ↪→
LC(X3) and π3 : LC(X3)→ X3 from Proposition 21.3. By construction, π3 ◦ ι3 = idX3 .
This shows that ¬UCT (LC(X3)) holds by Proposition 19.8 (2) , hence ¬UCT (X) holds
by Proposition 19.8 (1). The same arguments using ι4 : X4 ↪→ LC(X4) and π4 from
Proposition 21.4 show the corresponding statement for X4.

Corollary 21.6. Let X be a finite T0 space such that Γ(X) has a vertex of degree ≥ 3,
then ¬UCT (X) holds.

Proof. Γ(X) must contain either Γ(X1), Γ(X2), Γ(X3) or Γ(X4) as a subgraph.

Proposition 21.7. Let X be such that every vertex of Γ(X) has degree 2. Then
¬UCT (X) holds.

Proof. The assumption means that Γ(X) as an undirected graph consists of a circle.
Recall the definition of the oriented degree do from Section 17.4. By assumption, we
have

do(x) ∈ {−2, 0, 2} ∀x ∈ X and
∑
x∈X

do(x) = 0,
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This means that there are as many vertices with oriented degree 2 as vertices with
oriented degree −2. Let n be the number of vertices with oriented degree 2. Since Γ(X)
cannot be a directed circle, n is at least 1.
Case (a): n = 1. There is exactly one vertex a with oriented degree 2, one vertex

b with oriented degree −2 and two directed paths ρ = (vi)i=0,...,n and σ = (wi)i=0,...,m
from a to b such that

ρ ∩ σ = {a, b}, ρ ∪ σ = X.

Define maps f : X → S and g : S → X via

f(x) =


1 if x = a

2 if x = vi for i = 1, . . . , n− 1
3 if x = wi for i = 1, . . . ,m− 1
4 if x = b

and g(s) =


a if s = 1
v1 if s = 2
w1 if s = 3
b if s = 4

,

f and g are continuous since they are monotone. It is clear that f ◦ g = idS , therefore,
¬UCT (X) holds by Theorem 20.4 and Proposition 19.8 (b).
Case (b): n > 1. We will basically proceed as in case (a), only notation becomes

slightly more complicated. Let C(n) denote the cyclic group of order n. Ordering
the vertices of oriented degree 2 and −2 clockwise, we obtain sequences (ak)k∈C(n) and
(bk)k∈C(n) in X such that do(ak) = 2 and do(bk) = −2 for all k ∈ C(n). Analogously to
case (a), there is a sequence of directed paths

(
ρk = (vki )i=1,...,nk

)
k∈C(n)

, where ρk is a

path from ak to bk and a sequence of directed paths
(
σk = (wki )i=1,...,mk

)
k∈C(n)

, where

σk is a path from ak to bk−[1] such that

ρk ∩ ρl = σk ∩ σl = ∅ if k 6= l, ρk ∩ σl =


ak if k = l

bk if k = l − [1]
∅ otherwise.

and ⋃
k∈C(k)

ρk ∪
⋃

k∈C(k)
σk = X.

Define maps f : X → Cn and g : Cn → X via

f(x) =


(k, a) if x = ak,

(k, b) if x = vki for i = 1, . . . , nk,
(k − [1], b) if x = wki for i = 1, . . . ,mk − 1,

and g((k, y)) =
{
ak if y = a,

bk if y = b.

f and g are continuous since they are monotone. It is clear that f ◦ g = idCn , therefore,
¬UCT (X) holds by Theorem 20.4 and Proposition 19.8 (b).

Theorem 21.8. Let X be a finite T0 space. Then UCT (X) holds if and only if X is a
disjoint union of spaces of type A.
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Proof. That UCT (X) holds if X is a disjoint union of spaces of type A follows from
Theorem 20.2 and Lemma 19.5. Now let X be a space such that UCT (X) holds, by
Lemma 19.5, it suffices to show that X is of type A under the assumption that X is
connected (and hence, by Lemma 17.4, that Γ(X) is connected as an undirected graph).
By Corollary 21.6, all vertices x of Γ(X) have degree less than 3. By the last remark
and Proposition 21.7, there is at least one vertex of degree less than 2. Since Γ(X) is
connected as an undirected graph and finite, there are exactly two vertices of degree 1
and all other vertices have degree 2, therefore, X is of type A as claimed.

94



Appendix

22 Facts about Cyclotomic Polynomials

Definition 22.1. For n ∈ N, let Φn denote the nth cyclotomic polynomial, i.e. the
monic polynomial which is given by

Φn(t) =
∏

ωnth primitive root of unity
(t− ω).

Theorem 22.2. Let n be an integer, then

(1)
tn − 1 =

∏
m|n

Φm(t);

(2) Φn(t) ∈ Z[t];

(3) We have
deg Φn = dimZ(Z[θn]) = φ(n),

where φ denotes Euler’s totient function.

(4) Let p be a prime number and n ∈ N, then

Φpn(t) =
p−1∑
i=0

tp
n−1i.

Proof. See [36], Section 3.3.

Lemma 22.3. Let θn denote a primitive nth root of unity, then there is an isomorphism
of rings

Z[θn] ∼= Z[t]/〈Φn〉.

Proof. [18] p. 172.

The relevance of cyclotomic polynomials in our context is that they allow for a decom-
position of the of Z[n−1]C(n) into a direct sum of Dedekind domains. Before proving
this, let us collect a few basic definitions and facts, which we state separately since they
will be of use later on.
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Definition 22.4. Let n ∈ N. For m|n, define

ψn,m(t) := 1
n
· t · ddtΦm(t) ·

∏
m′|n, m′ 6=m

Φm′(t) ∈ Z[n−1][t].

We will sometimes state polynomial identities in quotient rings of Z[n−1][t] such as
Z[n−1][t]/〈tn − 1〉. If q(t), p(t) ∈ Z[n−1][t] such that their residual classes are equal in
a quotient ring R, we will say p(t) = q(t) in R instead of talking about the residual
classes.

Lemma 22.5. Let n ∈ N. Then
∑
m|n ψn,m(t) = 1 in Z[n−1][t]/〈tn − 1〉.

Proof. Differentiate tn − 1 =
∏
m|n Φm(t) and multiply by 1

n · t.

Lemma 22.6. Let n ∈ N and m, k|n. Then

ψn,m · ψn,k = δk,mψn,m in Z[n−1][t]/〈tn − 1〉

Proof. Let k 6= m. By Theorem 22.2 (1), tn− 1 divides ψn,m(t) ·ψn,k(t) if k 6= m. Hence
ψn,m(t) · ψn,k(t) = 0 in Z[t]t/〈tn − 1〉 in this case. If k = m, multiply

∑
m|n ψn,m(t) = 1

with ψn,k(t) to get ψ2
n,m = ψn,m.

For a prime p, let us abbreviate ψpk,pu by Ψk,u.

Lemma 22.7. Let 0 ≤ k, u ≤ l, then

Ψl,u =
{

Ψk,u if u ≤ k
0 otherwise

in Z[p−1][t]/〈tpk−1〉.

Proof. The explicit description of φpu in Theorem 22.2 (4) shows that Φpu(t) = p in
Z[p−1][t]/〈tpk−1〉 if u > k. Now calculate

Ψl,u(t) = p−l · t · ddtΦpu(t) ·
∏

0≤u′≤l, u′ 6=u
Φpu′ (t)

=
{
p−l · t · d

dtΦpu(t)
∏

0≤u′≤k, u′ 6=u Φpu′ (t)
∏
k+1≤u′≤l Φpu′ (t) if u ≤ k

p−l · t · d
dtΦpu(t)

∏
0≤u′≤k Φpu′ (t)

∏
k+1≤u′≤l, u′ 6=u Φpu

′ (t) if u > k

=
{
p−l · t · d

dtΦpu(t)
∏

0≤u′≤k, u′ 6=u Φpu′ (t)pl−k if u ≤ k
p−l · t · d

dtΦpu(t)(tpk − 1)
∏
k+1≤u′≤l, u′ 6=u Φpu′ (t) if u > k

=
{
p−k · t · d

dtΦpu(t)
∏

0≤u′≤k, u′ 6=u Φpu′ (t) if u ≤ k
0 if u > k

.

This shows the lemma.
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Proposition 22.8. Let n be an integer. Then there is an isomorphism of rings

Z[n−1][t]/〈tn − 1〉 ∼=
⊕
m|n
Z[n−1, θm].

In particular, Z[n−1][t]/〈tn − 1〉 is direct sum of Dedekind domains.

Proof. Define a ring homomorphism

ιm : Z[n−1][t]/〈Φm〉 → Z[n−1][t]/〈tn − 1〉, [p(t)] 7→ [p(t) · ψn,m(t)].

This is well-defined since Φm(t)·ψn,m(t) = 0 in Z[n−1][t]/〈tn−1〉. Let πm : Z[n−1][t]/〈tn−
1〉 → Z[n−1][t]/〈Φm〉 be the quotient map. Since

∑
m|n ψn,m(t) = 1 and πm(ψn,m′(t)) = 0

for m 6= m′, we have πm(ψn,m(t)) = 1. Therefore, πm ◦ ιm = id. Φm | ψn,k for k 6= m
implies πk ◦ ιm = δk,mid.

∑
m|n ψn,m(t) = 1 also implies

∑
m|n ιm ◦ πm = id. This shows

Z[n−1][t]/〈tn − 1〉 ∼=
⊕
m|n
Z[n−1][t]/〈Φm〉.

By Lemma 22.3, there is an isomorphism Z[θm] ∼= Z[t]/〈Φm〉, which shows the first claim.
By [11] Theorem 21.13, Z[θm] is equal to the algebraic integers of the algebraic number

field Q[θm] and hence a Dedekind domain. By [20], Theorem 29.6, an integral domain is
Dedekind if and only if every non-zero ideal is invertible. Now let S ⊆ D be multiplicative
subset of a Dedekind domain D and I an ideal in S−1D. Then I ∩D is a non-zero ideal
of D and hence there is a fractional ideal J of D such that I · J = D. Let S−1J be the
fractional ideal of S−1D, which is generated by J . It is easy to show that S−1J is an
inverse of I. This shows that localizations of Dedekind domains are again Dedekind. In
particular, Z[n−1][θm] is a Dedekind domain

Lemma 22.9. Let m,n ∈ Z be coprime. Then there is an isomorphism of rings

Z[θn]⊗Z Z[θm] ∼= Z[θmn].

Proof. Claim: Let m,n ∈ Z be coprime, then Φm(tn) =
∏
d|n Φmd(t). We will prove

the statement by induction over m. The case m = 1 follows since Φ1(t) = t − 1 and
tn − 1 =

∏
d|n Φd(t) by Theorem 22.2. For the induction step, let us assume that the

statement is true for all m′ < m. Then

Φm(tn)
∏

m′|m, m′<m
Φm′(tn) = tmn − 1 =

∏
d|mn

Φd(t) =
∏
m′|m

∏
n′|n

Φm′n′(t)

=
∏
n′|n

Φmn′(t)
∏

m′|m, m′<m
Φm′(tn),

where the last equality uses the induction hypothesis. Now the claim follows since Z[t]
is a unique factorization domain.
The isomorphism Z[θn] ∼= Z[t]/〈Φn〉 and the fact that Φmn(t) divides Φm(tn) shows

that fm,n : Z[θm] → Z[θmn], θm 7→ θnm is a well-defined ring homomorphism. Let
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µn : Z[θn]⊗Z Z[θn]→ Z[θn] be the ring homomorphism which is given by multiplication.
Define Fm,n : Z[θn]⊗Z Z[θm]→ Z[θmn] as the composition Fm,n := µmn ◦ (fn,m⊗Z fm,n).
Since m and n are coprime, there are a, b ∈ Z such that an + bm = 1. Therefore,
Fm,n(θbn ⊗Z θam) = θmn, which shows that Fm,n is surjective. Recall from Lemma 22.2
that φ denotes Euler’s totient function. Since

dimZ Z[θmn] = φ(mn) = φ(n)φ(m) = dimZ Z[θn]⊗Z Z[θm],

Fm,n is an isomorphism.

Lemma 22.10. Let n, j ∈ N and p a prime number. Then

pn−1∑
i=0

θijpn =
{
pn if pn | j
0 otherwise

in Z[θpn ]

Proof. If pn | j, then the statement is clear. Hence let us assume that pn does not divide
j. Since θi(j

′+rpn)
pn = θij

′

pn we may assume that 0 < j < pn. There are s,m ∈ N with
0 ≤ m < n, s 6= 0 and p 6 |s such that j = pm · s. Then

pn−1∑
i=0

θijpn =
pn−1∑
i=0

θispn−m = pm
pn−m−1∑
i=0

(
θspn−m

)i
= 0

since θspn−m is a pn−mth primitive root of unity.

Proposition 22.11. Let m,n ∈ N, n ≤ m and p a prime number. Then there is an
isomorphism of rings

Z[p−1, θpn ]⊗Z Z[p−1, θpm ] ∼=
⊕

0<k<pn,gct(p,k)=1
Z[p−1, θpm ].

Proof. For 0 < k < pn, p 6 |k, define

qk := 1
pn

pn−1∑
j=0

θkjpn ⊗ θ
pm−nj
pm .

Note that by Lemma 22.10, we have

∑
0<k<pn,gct(p,k)=1

θjkpn = −
pn−1−1∑
i=0

(
θppn
)ji
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for 0 < j < pn. Hence we may compute

∑
0<k<pn,gct(p,k)=1

qk = 1
pn

pn−1∑
j=0

 ∑
0<k<pn,gct(p,k)=1

θjkpn

⊗ θpm−njpm

= 1
pn

pn − pn−1 −
pn−1∑
j=1

pn−1−1∑
i=0

(
θppn
)ji⊗ θpm−njpm


= 1
pn

pn − pn−1 − pn−11⊗
p−1∑
j=1

θp
m−1j
pm


= 1
pn

(
pn − pn−1 + pn−1

)
= 1.

Again by lemma 22.10, we have the following identity in Z[θpn ] for 0 ≤ k, l < pn and
j ∈ N:

pn−1∑
i=0

θ
ki+l(j−i)
pn = θljpn

pn−1∑
i=0

θ
i(k−l)
pn = pnθljpnδk,l.

Therefore

qk · ql = 1
p2n

pn−1∑
j=0

pn−1∑
i=0

θ
ki+l(j−i)
pn

⊗ θpn−mjpm = δk,lqk.

This shows that the qk for 0 < k < pn, gct(p, k) = 1 are orthogonal idempotents in
Z[p−1, θpn ]⊗Z Z[p−1, θpm ] that sum up to 1.
For 0 < k < pn, gct(p, k) = 1, define

ιk : Z[p−1, θpm ]→ Z[p−1, θpn ]⊗ Z[p−1, θpm ], θpm 7→ 1⊗ θpm · qk.

Furthermore, for every 0 < k < pn, gct(p, k) = 1, let a(k) ∈ N such that [a(k)] is the
multiplicative inverse of k in Z/pn. Define

ea(k) : Z[p−1, θpn ]→ Z[p−1, θpn ], θpn 7→ θ
−a(k)
pn

and
fpn,pm : Z[p−1, θpn ]→ Z[p−1, θpm ], θpn 7→ θp

m−n

pm .

Finally, let µpm : Z[p−1, θpm ] ⊗ Z[p−1, θpm ] → Z[p−1, θpm ] be the ring homomorphism
which is induced by multiplication and set

πk := µpm ◦
(
(fpn,pm ◦ ea(k))⊗ idZ[p−1,θpm ]

)
: Z[p−1, θpn ]⊗Z Z[p−1, θpm ]→ Z[p−1, θpm ].

For 0 < k, l < pn, p 6 |k, we have

πk(ql) = 1
pn

pn−1∑
j=0

(
θp
m−n

pm

)(1−a(k)l)j
= δk,l.
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Therefore, πl ◦ ιk = δk,lidZ[p−1,θpm ]. This shows that⊕
0<k<pn,gct(p,k)=1

πk : Z[p−1, θpn ]⊗ Z[p−1, θpm ]→
⊕

0<k<pn,gct(p,k)=1
Z[p−1, θpm ]

is surjective. Since Z[p−1] is a principal ideal domain and Z[p−1, θpm ] is a free Z[p−1]-module,
the equality

dimZ[p−1]

 ⊕
0<k<pn,gct(p,k)=1

Z[p−1, θpm ]

 = pn−1(p− 1) dimZ[p−1]
(
Z[p−1, θpm ]

)
= dimZ[p−1]

(
Z[p−1, θpn ]⊗ Z[p−1, θpm ]

)
shows that

⊕
0<k<pn,gct(p,k)=1 πk is an isomorphism.

23 Miscellaneous Results

Proposition 23.1. Gn[XH ] · [XH⊥ ] = TC(G)H ∈ KKG(GnGnC(G)H , C(G)H)

Proof. Let us first describeXH . We are using the description of a imprimitivity bimodule
implementing the Morita–Rieffel equivalence between GnC(G)H = GnIndGH C and C∗H
given in [48], Theorem 4.22 composed with the isomorphism F−1

H⊥
: C∗H ∼= C(G)H⊥ from

the right. As a vector space, XH is given by C(G), the left and right Hilbert module
structure is given by the following formulas: Let x, y ∈ XH =vs C(G), e ∈ GnC(G)H =vs

C(G×G){0}×H and b ∈ C(G)H⊥ , then

e · x(r) =
∫
G
e(t, r)x(r − t) dt; (23.2)

x · b(r) = 1
|G|

∫
G

∫
G
x(r − t)χ(t, s)b(s) ds dt; (23.3)

GnC(G)H 〈x, y〉(t, r) =
∫
H
x(r + s)y(r + s− t) ds; (23.4)

〈x, y〉C(G)H⊥ (r) =
∫
G

∫
H
χ(r, s)−1x(−t)y(s− t) dt ds. (23.5)

The action of G on XH is given by γlx(s) = χ(s, l)x(s). Recall that by definition
TA = [ΦA]·EA. The inverse of EA as a KK-element is given by the class of the equivariant
∗-homomorphism

µA : A→ K(L2(G,A)), µA(a)(f)(s) = a
1
|G|

∫
G
f(t) dt.

Hence it is sufficient to show that
(
Φ−1
C(G)H ◦ µC(G)H

)∗
GnXH is the dual Morita–Rieffel

imprimitivity bimodule of XH⊥ . First let us check that

Φ−1
C(G)H ◦ µC(G)H : C(G)H → GnGnC(G)H
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is equal to

ι : C(G)H → GnGnC(G)H , ι(F )(t, s) = χ(t, s) 1
|G|2

∫
G
λw(F )χ(t, w) dw :

ΦC(G)H (ι(F )) (f)(r) =
∫
G

∫
G
λ−r (ι(F )(t, s))χ(t, r − s)f(r − s) dt ds

= 1
|G|2

∫
G

∫
G

∫
G
λw−r(F )χ(t, r − w)f(r − s) dw dtds

= 1
|G|

∫
G

∫
G
λw−r(F )δ0(r − w)f(r − s) dw ds

= F
1
|G|

∫
G
f(r − s) ds

= µC(G)H (F )(f)(r).

This shows ΦC(G)H ◦ ι = µC(G)H . Therefore, Φ−1
C(G)H ◦ µC(G)H = ι.

ι∗
(
GnXH

)
as a KK-element is equal to the Kasparov C(G)H -GnC(G)H⊥-module

ι(1C(G)H ) ·GnXH with the zero operator. GnXH as a vector space is given by C(G×G).
Let ξ ∈ GnXH and F ∈ C(G)H then

(ι(F ) · ξ)(v, u) =
∫
G

(ι(F )(t) · γt(ξ(v − t))) (u) dt

=
∫
G

∫
G
ι(F )(t, s, u)γt(ξ(v − t))(u− s) dsdt

= 1
|G|2

∫
G

∫
G

∫
G
χ(t, s)F (u− w)χ(t, w)χ(t, u− s)ξ(v − t, s− u) dw ds dt

= 1
|G|2

∫
G

∫
G

∫
G
F (u− w)χ(t, u− w)ξ(v − t, s− u) dw dsdt

= 1
|G|2

∫
G

∫
G

∫
G
F (w)χ(v − t, w)ξ(t, s) dw ds dt

=
∫
G
F(F )(v − t)

(∫
G

1
|G|

ξ(t, s) ds
)

dt.

In particular

(ι(1C(G)H ) · ξ)(v, u) = 1
|G|

∫
G
ξ(v, s) ds.

This shows that as a vector space, ι(1C(G)H ) ·GnXH is isomorphic to C(G) via

j : C(G)→ ι(1C(G)H ) ·GnXH , j(f)(t, s) = f(t).

Recall from [37] the definition of the dual Morita–Rieffel imprimitivity bimodule: Let
Y H denote the dual of XH⊥ . Then there is a antilinear bijection β : C(G) → Y H . Left
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and right multiplication and the GnC(G)H⊥-valued inner product are given by the
formulas

β−1 (b · β(x)) (r) = x · b∗(r) = 1
|G|

∫
G

∫
G
x(r − t)χ(t, s)b(s) ds dt;

β−1 (β(x) · e) (r) = e∗ · x(r) =
∫
G
e(−t, r − t)x(r − t) dt;

〈β(x), β(y)〉
GnC(G)H⊥ (t, r) = 〈x, y〉 =

∫
H
x(r + s)y(r + s− t) ds,

for b ∈ C(G)H , e ∈ GnC(G)H⊥ , x, y ∈ XH = C(G)
Claim:

ηH : Y H → ι(1C(G)H ) ·GnXH , η (β(f)) (t, s) = f(−t)√
(|G||H⊥|)

gives an isomorphism of Kasparov C(G)H -GnC(G)H⊥-modules. It is clear that η is a
bijection, hence we only have to show that it intertwines left and right multiplication
and the inner product. Let us abbreviate 1√

(|G||H⊥|)
by cH .

η(b · β(x))(r, u) = η(β(x · b∗))(r, u) = cH
|G|

∫
G

∫
G
x(−r − t)χ(−t, s)b(s) ds dt

= cH

∫
G
x(t− r)F(b)(t) dt = cH

∫
G
F(b)(r − t)x(−t) dt

= ι(b) · η(β(x))(r, u)

η(β(x) · e)(r, u) = cH

∫
G
e(−t,−r − t)x(−r − t) dt

= cH

∫
G
x(−l)e(r − l,−l) dl

= cH
|G|

∫
G

∫
G

∫
G
x(−l)χ(t, s)e(r − l, s− l) dl ds dt

= 1
|G|

∫
G

∫
G

∫
G
η(β(x))(l, u− t)χ(t, s)e(r − l, s− l) dl dsdt

=
∫
G

(η(β(x))(l) · λl(e(r − l))) (u) dl

= η(β(x)) · e(r, u).
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〈η(β(x)), η(β(y))〉(t, r) =
∫
G

(〈η(β(x))(l), η(β(y))(t+ l)〉) (r + l) dl

=
∫
G

∫
G

∫
H
χ(r + l, v)−1η(β(x))(l,−u)η(β(y))(t+ l, v − u) dl dudv

= c2
H

∫
G

∫
G

∫
H
χ(r + l,−v)x(−l)y(−t− l) dl dudv

= c2
H |G|

∫
G

∫
H
χ(r + l,−v)x(−l)y(−t− l) dl dv

= c2
H |G||H|

∫
G

1H⊥(r + l)x(−l)y(−t− l) dl

=
∫
G

1H⊥(l)x(r − l)y(r − t− l) dl

=
∫
H⊥

x(r + s)y(r + s− t) ds

= 〈β(x), β(y)〉(t, r).

This shows that ι∗
(
GnXH

)
is isomorphic to Y H–the dual of XH⊥–as a Kasparov

C(G)H -GnC(G)H⊥-module.

Lemma 23.6. Let R = Z[t, s]/〈(t− 1)(s− 1), N(t) +N(s)− p〉, c ∈ N and define Nc to
be the free abelian group on generators {q0, . . . , qp−2, r0, . . . rp−2}. Define s and t on the
Z-basis {q0, . . . , qp−2, r0, . . . rp−2} via

1. t · qi := qi + cr0,

2. t · ri := ri+1 for i < p− 2 and t · rp−2 := −
∑p−2
k=0 rk,

3. s · qi := qi+1 for i < p− 2 and s · qp−2 := −c
∑p−2
k=0(p− 1− k)rk −

∑p−2
k=0 qk,

4. s · rk = rk.

Then Nc is a well-defined R-module.

Proof. Let us first check that ts = st on Nc: We have tsqi = tqi+1 = qi+1 + cr0 = stqi
for 0 ≤ i < p− 2 and

tsqp−2 = t(−c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

qk)

= −c
p−2∑
k=1

(p− k)rk + c
p−2∑
k=0

rk −
p−2∑
k=0

qk − (p− 1)cr0

= −c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

qk + cr0

= s(qp−2 + cr0) = stqp−2.
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Furthermore, we have stri = sri+1 = ri+1 = tsri+1 for 0 ≤ i < p − 2 and strp−2 =
s(−

∑p−2
k=0 rk) = −

∑p−2
k=0 rk = tsrp−2. This shows that Nc is a Z[t, s]-module. The next

step is to verify that the relations (t− 1)(s− 1) = 0 and N(t) +N(s) = p hold. We have
(st+ 1)qi = qi+1 + cr0 + qi = (s+ t)qi for 0 ≤ i < p− 2 and

(st+ 1)qp−2 = −c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

qk + cr0 + qp−2 = (s+ t)qp−2.

Similarly, we compute (st+ 1)ri = ri+1 + ri = (s+ t)ri and (st+ 1)rp−2 = −
∑p−2
k=0 rk +

rp−2 = (s+ t)rp−2. Therefore, we are left with the verification of N(t) +N(s) = p. First
compute

s2qp−2 = s(−c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

qk) = −c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

sqk

= −
p−2∑
k=1

qk +
p−2∑
k=0

qk = q0.

This shows that

N(s)qi = N(s)q0 =
p−2∑
k=0

qk − c
p−2∑
k=0

(p− 1− k)rk −
p−2∑
k=0

sqk = −c
p−2∑
k=0

(p− 1− k)rk

for all i = 0, . . . p− 2. Furthermore we have

tkqi = tk−1qi + ctk−1r0 = tk−1qi + crk−1 = . . . = qi + c
k−1∑
j=0

rj .

Therefore, N(t)qi = pqi + c
∑p−2
k=0(p − 1 − k)rk. This shows that (N(t) + N(s))qi = pqi

for all i = 0, . . . p− 2.
Since t2rp−2 = r0 , we have N(t)ri = N(t)r0 =

∑p−2
k=0 rk −

∑p−2
k=0 rk = 0. On the other

hand, N(s)ri = pri. This shows that (N(t) +N(s))ri = pri and finishes the proof.

104



Bibliography

[1] S. Baaj and G. Skandalis. C∗-algèbres de Hopf et théorie de Kasparov équivariante.
K-Theory, 2(6):683–721, 1989.

[2] P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-
theory of group C∗-algebras. In C∗-algebras: 1943–1993 (San Antonio, TX, 1993),
volume 167 of Contemp. Math., pages 240–291. Amer. Math. Soc., Providence, RI,
1994.

[3] A. Beligiannis. Relative homological algebra and purity in triangulated categories.
J. Algebra, 227(1):268–361, 2000.

[4] R. Bentmann. Filtrated K-theory and classification of C∗-algebras. Master’s thesis,
Georg-August Universität Göttingen, 2010.

[5] R. Bentmann and M. Köhler. Universal coefficient theorems for C∗-algebras over
finite topological spaces. to appear.

[6] B. Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences
Research Institute Publications. Cambridge University Press, Cambridge, second
edition, 1998.

[7] N. P. Brown and N. Ozawa. C∗-algebras and finite-dimensional approximations,
volume 88 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2008.

[8] M. C. R. Butler, J. M. Campbell, and L. G. Kovács. On infinite rank integral
representations of groups and orders of finite lattice type. Arch. Math. (Basel),
83(4):297–308, 2004.

[9] M. D. Choi and E. G. Effros. The completely positive lifting problem for C∗-
algebras. Ann. of Math. (2), 104(3):585–609, 1976.

[10] J. D. Christensen. Ideals in triangulated categories: phantoms, ghosts and skeleta.
Adv. Math., 136(2):284–339, 1998.

[11] C. W. Curtis and I. Reiner. Representation theory of finite groups and associative
algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division
of John Wiley & Sons, New York-London, 1962.

[12] S. Echterhoff. The Green-Julg theorem, 2000. Available online at:
http://wwwmath.uni-muenster.de/u/paravici/Focused-
Semester/lecturenotes/green-julg-Echterhoff.pdf.

105



Bibliography

[13] S. Eilenberg and J. C. Moore. Foundations of relative homological algebra. Mem.
Amer. Math. Soc. No., 55:39, 1965.

[14] Elliot. On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras. Journal of algebra, 38(1):29, 1976.

[15] U. Haag. On Z/2Z-graded KK-theory and its relation with the graded Ext-functor.
J. Operator Theory, 42(1):3–36, 1999.

[16] B. Hartley and T. O. Hawkes. Rings, modules and linear algebra. Chapman &
Hall, London, 1980. A further course in algebra describing the structure of abelian
groups and canonical forms of matrices through the study of rings and modules, A
reprinting.

[17] N. Higson and G. Kasparov. E-theory and KK-theory for groups which act properly
and isometrically on Hilbert space. Invent. Math., 144(1):23–74, 2001.

[18] J. A. Hillman. Polynomials determining dedekind domains. Bulletin of the Aus-
tralian Mathematical Society, 29:167 –175, 1984.

[19] H. Inasaridze, T. Kandelaki, and R. Meyer. Localisation and colocalisation of KK-
theory at sets of primes. available online at: http://arxiv.org/abs/1003.0278, March
2010.

[20] I. M. Isaacs. Algebra: a graduate course, volume 100 of Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI, 2009. Reprint of the 1994
original.

[21] P. Julg. K-théorie équivariante et produits croisés. C. R. Acad. Sci. Paris Sér. I
Math., 292(13):629–632, 1981.

[22] G. G. Kasparov. The operator K-functor and extensions of C∗-algebras. Math.
USSR Izv., 16:513–572, 1981.

[23] G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math.,
91(1):147–201, 1988.

[24] M. Maghfoul. Semi-exactitude du bifoncteur de Kasparov équivariant. K-Theory,
16(3):245–276, 1999.

[25] J. P. May. Equivariant homotopy and cohomology theory, volume 91 of CBMS
Regional Conference Series in Mathematics. Published for the Conference Board of
the Mathematical Sciences, Washington, DC, 1996. With contributions by M. Cole,
G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr.,
R. J. Piacenza, G. Triantafillou, and S. Waner.

[26] R. Meyer. Categorical aspects of bivariant K-theory. In K-theory and noncom-
mutative geometry, EMS Ser. Congr. Rep., pages 1–39. Eur. Math. Soc., Zürich,
2008.

106



Bibliography

[27] R. Meyer and R. Nest. The Baum-Connes conjecture via localisation of categories.
Topology, 45(2):209–259, 2006.

[28] R. Meyer and R. Nest. C*-algebras over topological spaces: Filtrated K-theory,
2008. Preprint, available online at: http://arxiv.org/abs/0810.0096.

[29] R. Meyer and R. Nest. Homological algebra in bivariant K-theory
and other triangulated categories, 2008. Preprint, available online at:
http://arxiv.org/abs/math/0702146.

[30] R. Meyer and R. Nest. C∗-algebras over topological spaces: the bootstrap class.
Münster J. Math., 2:215–252, 2009.

[31] A. Neeman. Triangulated categories, volume 148 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2001.

[32] F. Peter and H. Weyl. Die Vollständigkeit der primitiven Darstellungen einer
geschlossenen kontinuierlichen Gruppe. Math. Ann., 97(1):737–755, 1927.

[33] N. C. Phillips. Equivariant K-theory and freeness of group actions on C∗-algebras,
volume 1274 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.

[34] N. C. Phillips. A classification theorem for nuclear purely infinite simple C∗-
algebras. Doc. Math., 5:49–114 (electronic), 2000.

[35] G. Pisier. Similarity problems and completely bounded maps, volume 1618 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, expanded edition, 2001. Includes
the solution to “The Halmos problem”.

[36] V. V. Prasolov. Polynomials, volume 11 of Algorithms and Computation in Math-
ematics. Springer-Verlag, Berlin, 2004. Translated from the 2001 Russian second
edition by Dimitry Leites.

[37] I. Raeburn and D. P. Williams. Morita equivalence and continuous-trace C∗-
algebras, volume 60 of Mathematical Surveys and Monographs. American Math-
ematical Society, Providence, RI, 1998.

[38] I. Reiner. Integral representations of cyclic groups of prime order. Proc. Amer.
Math. Soc., 8:142–146, 1957.

[39] D. W. Roeder. Category theory applied to Pontryagin duality. Pacific J. Math.,
52:519–527, 1974.

[40] J. Rosenberg and C. Schochet. The Künneth theorem and the universal coeffi-
cient theorem for equivariant K-theory and KK-theory. Mem. Amer. Math. Soc.,
62(348):vi+95, 1986.

[41] J. Rosenberg and C. Schochet. The Künneth theorem and the universal coefficient
theorem for Kasparov’s generalized K-functor. Duke Math. J., 55(2):431–474, 1987.

107



Bibliography

[42] G. Skandalis. Une notion de nucléarité en K-théorie (d’après J. Cuntz). K-Theory,
1(6):549–573, 1988.

[43] H. Takai. On a duality for crossed products of C∗-algebras. J. Functional Analysis,
19:25–39, 1975.

[44] J. L. Taylor. Banach algebras and topology. In Algebras in analysis (Proc. Instruc-
tional Conf. and NATO Advanced Study Inst., Birmingham, 1973), pages 118–186.
Academic Press, London, 1975.

[45] A. B. Thom. Connective E-theory and bivariant homology. PhD thesis, Univ.
Münster, Mathematisch-Naturwissenschaftliche Fakultät, 2003.

[46] A. Van Daele. K-theory for graded Banach algebras. I. Quart. J. Math. Oxford Ser.
(2), 39(154):185–199, 1988.

[47] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

[48] D. P. Williams. Crossed products of C∗-algebras, volume 134 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI, 2007.

108


	Acknowledgements
	Introduction
	1 The Action of a Cyclic Group of Prime Order
	2 The Action of a Finite Cyclic Group
	3 C*-algebras over Finite Topological Spaces
	4 Homological Algebra in Triangulated Categories

	Background
	5 Triangulated Categories and the Construction of Invariants
	6 The Bootstrap Class
	7 A General UCT Criterion

	Equivariant KK-theory and the UCT for the Action of a Cyclic Group of Prime Order
	8 Equivariant KK-theory as a Triangulated Category
	8.1 The Categories KKG and KKG
	8.2 Properties of the Hom-like Invariants in the G-equivariant Case

	9 A close Look at the Bootstrap Class
	10 Definition of EKC(p)
	11 Computation of R
	11.1 Preparation
	11.2 Baaj–Skandalis Duality
	11.3 The Green–Julg Theorem
	11.4 A Subring of R
	11.5 The First Exact Triangle
	11.6 The Second Exact Triangle
	11.7 Morphisms from and into Cu
	11.8 The Subring KK0C(p)(Cu, Cu)
	11.9 Summary

	12 Projective Resolutions of R-Modules
	12.1 Conventions and Generalities on Rings and Modules
	12.2 Preliminaries on Dedekind Domains
	12.3 Lattices over ZC(p)
	12.4 Lattices over 2R2
	12.5 Lattices over R and the Proof of Theorem 12.1


	A UCT for Actions of Finite Cyclic Groups
	13 Introduction
	14 The Framework
	14.1 The Invariant
	14.2 The Bootstrap Class

	15 Basic Calculations in CG
	15.1 Duality
	15.2 Generators of CG
	15.3 Relations in CG

	16 Projective Resolutions of Length 1
	16.1 Split Categories and Tensor products
	16.2 A Special Case
	16.3 The General Case


	Universal Coefficient Theorems for C*-algebras over Topological Spaces 
	17 C-algebras over Finite Topological Spaces
	17.1 Basic Notions
	17.2 Functoriality
	17.3 Specialization Order
	17.4 Representation of Finite Topological Spaces as Directed Graphs

	18 KK(X) and Filtrated K-theory
	18.1 X-equivariant KK-theory
	18.2 Filtrated K-theory
	18.3 The Representability Theorem
	18.4 Functoriality

	19  The Bootstrap Class and the UCT Criterion
	19.1 Comparing Bootstrap Classes
	19.2 The UCT Criterion and Embedding Results

	20 Positive Results and Counterexamples
	21 The Complete Description

	Appendix
	22 Facts about Cyclotomic Polynomials
	23 Miscellaneous Results


