
Quality Assessment and

Quality Improvement

for UML Models

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Akhtar Ali Jalbani

aus Larkana (Sindh) - Pakistan

Göttingen 2011

Referent: Prof. Dr. phil. nat. Jens Grabowski,

Georg-August Universität Göttingen.

Koreferent: Prof. Dr. Helmut Neukirchen,

University of Iceland.

Tag der mündlichen Prüfung: 28 Februar 2011

Abstract

Models defined using the Unified Modeling Language (UML) are nowadays a common

part of software documentation, specification and sometimes even implementation.

However, there is a broad variety in how UML is used. Reasons can be found, for

example, in the lack of generally accepted modeling norms and guidelines, in the

semi-formal semantics of UML, or in the complexity of the language. In practice, these

factors inevitably lead to quality problems in UML models that need to be addressed.

In this research, we present an integrated continuous quality assessment and improve-

ment approach for UML models. The approach is based on a novel quality model for

UML models and the exemplary instantiation of the quality model. A prototypical

tool that implements the quality assessment and improvement approach for UML

models has been developed. To demonstrate the applicability of our approach, a case

study based on a UML practical course was conducted. UML models developed in the

practical course were evaluated with our prototypical tool. The quality assessment

and improvement results of the case study indicated that our approach is practically

feasible and applicable.

Zusammenfassung

UML-Modelle sind heutzutage Teil der Dokumentation, der Spezifikation und manch-

mal sogar der Implementierung von Softwaresystemen. Allerdings kann UML sehr

unterschiedlich benutzt werden. Die Gründe hierfür sind vielfältig. So fehlen zum

Beispiel allgemein akzeptierte Normen und Richtlinien für die Verwendung von UML.

Des Weiteren ist die Sprache UML sehr komplex und Teile der Sprache besitzen nur

eine semi-formale Semantik. All diese Faktoren führen zu Qualitätsproblemen bei

UML-Modellen, die untersucht und bearbeitet werden müssen.

In der vorliegenden Arbeit wird ein Verfahren für eine integrierte und kontinuierliche

Qualitätsbewertung und -verbesserung von UML-Modellen vorgestellt. Das Verfahren

basiert auf einem neuen Qualitätsmodell für UML-Modelle, dessen exemplarische

Instanziierung in der Arbeit beschrieben wird. Es wurde ein prototypisches Werkzeug

entwickelt, mit dessen Hilfe die Qualitätsbeurteilung und die -verbesserung von UML-

Modellen automatisiert durchgeführt werden kann.

Zum Nachweis der Anwendbarkeit des vorgestellten Verfahrens wurde eine Fallstudie

im Rahmen eines UML-Praktikums durchgeführt. Die Qualität der während des

Praktikums entwickelten UML-Modelle wurde kontinuierlich bewertet und identifizierte

Qualitätsprobleme mussten von den Teilnehmern des Praktikums fortlaufend beseitigt

werden. Die Ergebnisse der Fallstudie unterstreichen die praktische Anwendbarkeit und

das hohe Potential des vorgestellten Verfahrens zur automatisierten Qualitätsbewertung

und -verbesserung von UML-Modellen.

Acknowledgments

First of all, I would like to thank to almighty Allah, who gave me courage and

patience in the entire duration of the research project. I am thankful to my supervisor

Professor Dr. Jens Grabowski for his continuous guidance, help and support through-

out my research work. He was always kind to listen patiently to my raw ideas and

gave shapes to those raw ideas with his wide vision and experience.

I would like to thank my thesis committee members Prof. Dr. Stephan Waack,

Prof. Dr. Helmut Neukirchen, Prof. Dr. Carsten Damm, Prof. Dr. Wolfgang May

and Prof. Dr. Winfried Kurth for taking valuable time from their busy schedule to

provide valuable suggestions. I specially thank to Prof. Dr. Helmut Neukirchen for

our telephone conferences to provide feedback on the contents of my thesis from

Iceland. I would like to thank to my colleagues Dr. Wafi Dahman, Dr. Benjamin Zeiss,

Dr. Edith Werner, Philip Makedonski, Thomas Rings, Patrick Harms, Xin Jin and

Gunnar Krull who all helped me a lot during my research period, and also I would like

to thank Annette Kadziora for translation of German into English, whenever I needed.

I am thankful to Dr. Benjamin Zeiss for his valuable suggestions during discussions

on the Quality Model, and I also want to thank Dr. Edith Werner for managing the

UML practical course and providing feedback about the case study.

I would like to express my gratitude to the following people who I think should be

mentioned here: Ayaz Ali, Zeeshan Hassan, Dr. Nazeer Hussain Kalhoro, Mustafa Junejo,

Ali Raza Shah and Mansoor Hyder Depar.

Last but not least, I would like to thank my parents for their continuous support and

for making it possible for me to pursue my professional goals. I would like to thank

my dear wife Dr. Aneela Yasmin for her understanding and continuous support of my

research endeavors. I could not forget the patience of my beloved children Yomna

and Ali Saad during my research work.

vii

Contents

Contents i

List of Figures v

List of Tables vii

List of Symbols and Abbreviations ix

1 Introduction 1

1.1 Continuous Quality Assessment and Improvement Process for UML

Models . 2

1.2 Contributions . 3

1.3 Thesis Structure . 3

2 Foundations 5

2.1 UML and Associated Technologies 5

2.1.1 The UML Architecture . 6

2.1.2 UML Models vs. UML Diagrams 6

2.1.3 Object Constraint Language (OCL) 7

2.1.4 Rational Unified Process (RUP) and UML 9

2.1.5 Model Driven Architecture (MDA) 10

2.2 UML Model for a Bakery System 12

2.2.1 Description of a Bakery System 12

2.2.2 Partial UML Model for the Bakery System 13

2.2.3 Relationship of the UML Diagrams 17

2.3 Software Quality and Quality Models 18

2.4 Software Metrics . 20

2.5 Smells . 20

2.6 Refactoring . 21

2.6.1 Rename Refactoring . 21

2.6.2 Pull Up Method Refactoring 22

i

ii CONTENTS

3 Related Work 25

3.1 Quality Models for UML . 25

3.2 Metrics for UML . 28

3.2.1 Model Metrics . 29

3.2.2 Graphical Metrics . 30

3.3 Smells for UML . 30

3.3.1 Model Smells . 31

3.3.2 Graphical Smells . 31

3.4 Refactorings for UML . 32

3.4.1 Model Refactorings . 32

3.4.2 Graphical Refactorings . 33

3.5 Tool Support . 34

3.6 Discussion . 35

4 A Quality Model for UML and its Instantiation 37

4.1 Description of the Quality Model for UML Models 37

4.2 Model Completeness Types and Quality Attributes 40

4.2.1 Model Completeness Types 40

4.2.2 Quality Attributes . 41

4.3 Towards an Instantiation of the Quality Model 44

4.4 Selection of UML Subset Notations 44

4.5 Classification of Rules and Guidelines 45

4.5.1 Analyzability for Incomplete Models 46

4.5.2 Changeability for Incomplete Models 47

4.5.3 Understandability for Incomplete Models 48

4.5.4 Analyzability for Complete Models 51

4.5.5 Changeability for Complete Models 52

4.5.6 Understandability for Complete Models 53

4.6 Metric Selections for Quality Assurance 55

5 Implementation 57

5.1 Eclipse and Associated Technologies 57

5.1.1 The Eclipse Modeling Project (EMP) 57

5.1.2 The Eclipse Modeling Framework (EMF) 57

5.1.3 The XPand Project . 58

5.1.4 Modeling Workflow Engine (MWE) 60

5.2 Tool Implementation . 61

5.2.1 Common Infrastructure . 62

5.2.2 Implementation of the Quality Assessment Approach . . . 62

5.2.3 Implementation of the Quality Improvement Approach . . 65

CONTENTS iii

6 Case Study 69

6.1 Academic Context and Learning Objectives 69

6.2 Quality Assessment Results for the Bakery System 70

6.2.1 Quality Assessment Results for Incomplete Model 70

6.2.2 Quality Assessment Results for Complete Model 80

6.3 Size and Ratio Metrics . 90

6.3.1 Size Metrics for Incomplete Model 90

6.3.2 Size Metrics for Complete Models 94

6.4 Student Feedback and Problems Faced by the Students 98

6.5 Concluding Remarks . 100

7 Conclusion 103

7.1 Summary . 103

7.2 Outlook . 104

Bibliography 105

A Description of the Bakery System 115

A.1 Das Bäckerei-System . 115

A.1.1 Verkauf . 116

A.1.2 Personalverwaltung . 116

A.1.3 Lagerverwaltung . 117

B Rules and Guidelines 121

B.1 Rules and Guidelines for Incomplete Models 121

B.2 Rules and Guidelines for Complete Models 123

C Case Study Model 125

C.1 Incomplete Model of Group BLUE for Iteration 1 125

C.2 Incomplete Model of Group RED for Iteration 1 130

C.3 Complete Model of Group BLUE for Iteration 1 135

C.4 Complete Model of Group RED for Iteration 1 139

D OCL Component 145

E Rules for Incomplete Models 147

F Rules for Complete Models 153

G HTML Report Generation for Incomplete Model 157

H Html Report Generation for Complete Model 171

I MWE for Report Generation 183

iv CONTENTS

J Model-to-Model (M2M) Templates and Workflow 185

K QA Reports for the Bakery System 187

K.1 Report of Group BLUE for Incomplete Model 187

K.2 Report of Group RED for Incomplete Model 188

K.3 Report of Group BLUE for Complete Model 191

K.4 Report of Group RED for Complete Model 193

List of Figures

1.1 Continuous Quality Assessment and Improvement Process 3

1.2 Contributions for Continuous Quality Assessment and Improvement

Process . 4

2.1 The UML Architecture . 6

2.2 Graphical and XMI Representation of a UML Model 8

2.3 Rational Unified Process [64] . 10

2.4 The Model Driven Architecture [66] 11

2.5 MDA Model Transformation Process 12

2.6 General Overview of the Bakery System Components 13

2.7 Use Case Diagram for Sales Ordering 14

2.8 Activity Diagram for Make Payment 15

2.9 Class Diagram for the Bakery System 16

2.10 Sequence Diagram for Place Order . 17

2.11 Flow of the Developed Model . 18

2.12 ISO/IEC 9126 Quality Model for Internal and External Quality 19

2.13 Rename Refactoring . 22

2.14 Pull Up Method Refactoring . 22

3.1 Lange-Chaudron Quality Model [48] 26

3.2 Quality Model for Testability of Models [90] 28

4.1 Proposed Quality Model for UML Models 38

6.1 BLUE Group’s Use Case Diagram of Incomplete Model Type 74

6.2 BLUE Group’s Class and Sequence Diagram of Incomplete Model Type 75

6.3 BLUE Group’s Class Diagram of Incomplete Model Type 76

6.4 RED Group’s Use Case Diagram of Incomplete Model 79

6.5 RED Group’s Class Diagram of Incomplete Model 79

6.6 BLUE Group’s Extracted Classes of Complete Model Type 84

v

vi LIST OF FIGURES

6.7 BLUE Group’s Sequence Diagram of Complete Model Type 84

6.8 BLUE Group’s Activity Diagram of Complete Model Type 85

6.9 RED Group’s Class Diagram of Complete Model Type 89

6.10 RED Group’s Sequence Diagram of Complete Model Type 89

C.1 BLUE Group’s Verkauf Subsystem for the Bakery System 126

C.2 BLUE Group’s Activity Diagram for Verkaufsubsystem the Bakery

System . 127

C.3 BLUE Group’s LagerKlassen Package for the Bakery System 128

C.4 BLUE Group’s Sequence Diagram for Use Case Geld Kassieren for the

Bakery System . 129

C.5 RED Group’s Lagerverwaltung Subsystem for the Bakery System . . . 131

C.6 RED Group’s Activity Diagram for the Bakery System 132

C.7 RED Group’s Lagerverwaltung Package for the Bakery System 133

C.8 RED Group’s Sequence Diagram for Use Case Backplan Editieren for

the Bakery System . 134

C.9 BLUE Group’s Verkaufsystem Package for the Bakery System 136

C.10 BLUE Group’s Sequence Diagram for BackwareDatenEingeben for the

Bakery System . 137

C.11 BLUE Group’s State Machine Diagram for PersonalverwaltungsGUI

for the Bakery System . 138

C.12 RED Group’s Verkauf Package for the Bakery System 140

C.13 RED Group’s Activity Diagram for Verkauf for the Bakery System . . 141

C.14 RED Group’s Sequence Diagram for Backware Spenden for the Bakery

System . 142

C.15 RED Group’s State Machine Diagram for PersonalverwaltungsGUI for

the Bakery System . 143

List of Tables

4.1 UML Subset Selection . 45

6.1 BLUE Group’s Violations of Rules for Analyzability of Incomplete

Model Type . 72

6.2 BLUE Group’s Violations of Rules for Understandability of Incomplete

Model Type . 73

6.3 RED Groups’s Violations of Rules for Analyzability of Incomplete Model 77

6.4 RED Group’s Violations of Rules for Understandability of Incomplete

Model Type . 78

6.5 BLUE Group’s Violations of Rules for Analyzability of Complete Model

Type . 81

6.6 BLUE Group’s Violations of Rules for Understandability of Complete

Model Type . 82

6.7 RED Group’s Violations of Rules for Analyzability of Complete Model

Type . 86

6.8 RED Group’s Violations of Rules for Understandability of Complete

Model Type . 88

6.9 Size Metrics for Incomplete Model Type of BLUE and RED Group . . 90

6.10 Analyzability Ratio Metrics for BLUE and RED Group of Incomplete

Model Type . 92

6.11 Understandability Ratio Metrics for BLUE and RED Group of Incom-

plete Model Type . 93

6.12 Size Metrics for Complete Model Type of BLUE and RED Group . . . 94

6.13 Analyzability Ratio Metrics for BLUE and RED Group of Complete

Model Type . 95

6.14 Understandability Ratio Metrics for BLUE and RED Group of Com-

plete Model Type . 97

6.15 Student Feedback . 98

B.1 Rules and Guidelines for Incomplete Models 122

vii

viii LIST OF TABLES

B.2 Rules and Guidelines for Complete Models 124

K.1 First Partial Report for Incomplete Model of BLUE Group 188

K.2 First Partial Report for Incomplete Model of RED Group 191

K.3 First Partial Report for Complete Models of BLUE Group 192

K.4 First Partial Report for Complete Model of RED Group 194

List of Symbols

and Abbreviations

AGG Attributed Graph Grammar

AST Abstract Syntax Tree

ATL ATLAS Transformation Language

CIM Computation Independent Model

CMOF Complete Meta Object Facility

CWM Common Warehouse Model

DSL Domain Specific Language

EMF Eclipse Modeling Framework

EMOF Essential Meta Object Facility

EmpAnADa Empirical Analysis of Architecture and Design Quality Project

EMP Eclipse Modeling Project

EMT Eclipse Modeling Technology

FCM Factor-Criteria-Metrics

GQM Goal Question Metric

M2M Model-to-Model

M2T Model-to-Text

MDA Model Driven Architecture

MDD Model Driven Development

ix

x LIST OF SYMBOLS AND ABBREVIATIONS

MDE Model Driven Engineering

MDSD Model Driven Software Development

MOF Meta Object Facility

MWE Modeling Workflow Engine

OCL Object Constraint Language

OMG Object Management Group

oAW openArchitectureWare

PIM Platform Independent Model

PSM Platform Specific Model

SDL Forum System Design Languages Forum

QVT Query/View/Transformation

RUP Rational Unified Process

TTCN-3 Testing and Test Control Notation version 3

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Xtensible Mark-up Language

xUML Executable UML

xi

Chapter 1

Introduction

When the Unified Modeling Language (UML) [72] was introduced in the late

90s, its primary application was to support the communication among software

engineers. UML provided a standardized way to describe software artifacts. There

were only limited and rarely successful attempts to reuse UML artifacts for the

implementation phase of a software product. Therefore, the notion of quality

regarding these early UML models primarily affected questions on the diagram

layouts, i.e., the aesthetics and understandability of the diagrams.

With the advent of methodologies like Model Driven Architecture (MDA) [66]

and the Model Driven Software Development (MDSD) [85] and platforms like

Eclipse Modeling Technology (EMT) [20], a new wave of code generation tools

emerged [3, 21, 86]. The focus of these technologies is on the design of abstract

models that avoid implementation details, which can automatically be transformed

into code by means of intelligent code generators. As a result of EMT, we are con-

fronted with new technologies such as the Eclipse Modeling Framework (EMF) [86].

The EMF provides a practical and mature software framework that simplifies

intelligent and customizable code generation.

This new situation and its associated demands, also changes the quality require-

ments on UML models. On the one hand, software development still deals with

UML for communication purposes and on the other hand, the intention is to reuse

these efforts to speed up the implementation phase. However, these models may

still be expressed on different levels of abstraction and completeness.

Quality problems in the design of UML models that are used for code genera-

tion may lead to problems in the generated code. To overcome these type of

problems, rules and guidelines for the development of a UML models could be

1

2 CHAPTER 1. INTRODUCTION

employed. However, a fixed, generally accepted catalog of modeling guidelines

and constraints does not exist yet. The success of UML can be seen by its use in

the industry [80]. The widespread usage of UML indicates that modeling is one of

the key elements in many software development projects. The evolution of MDA

and its associated technologies drastically altered software development processes.

There is no restriction regarding a specific programming language, instead the

focus lies on developing UML models based on the requirements and translating

them into an executable software system in general.

This work has been inspired by research about the quality engineering for the

Testing and Test Control Notation version 3 (TTCN-3) [59, 60, 61, 62, 93].

That approach is adopted to UML models, to investigate whether an integrated

continuous quality assessment and improvement approach for UML models is

possible and feasible.

1.1 Continuous Quality Assessment and Improvement

Process for UML Models

The main objective is to setup a framework to measure the quality for UML

models. The framework allows modeler’s to establish a quality assessment and

improvement process. The working process of this approach is illustrated in

Figure 1.1, where the UML models are considered as the key artifact of this process.

The quality assessment is performed by applying metrics, rules and guidelines

to UML models. The violations of these rules are considered to be issues of the

UML model. The detected issues are then removed to improve the quality of the

UML model based on refactoring.

The process described above is performed in a continuous way by observing the

quality assessment results (i.e., detected issues) and taking actions (i.e., removing

issues) to improve the quality of models. This cycle is performed repeatedly until

the quality assessment results can be considered satisfactory.

1.2. CONTRIBUTIONS 3

Assessment

Improvement

UML
Model

Figure 1.1: Continuous Quality Assessment and Improvement Process

1.2 Contributions

The contributions of this research are as follows and are also illustrated in Figure

1.2.

1. A novel quality model for UML, which examines the different quality

characteristics for UML models based on an inclusion relationship between

three types of model completeness types.

2. A prototypical instantiation of UML quality model for three quality

attributes is presented. In this instantiation, we present how the Goal

Question Metric (GQM) approach is applied to determine the rules and

guidelines for each quality attribute. Furthermore, we also present ratio

metrics to compare the different kinds of models.

3. A prototype tool for quality assessment and improvement for UML models,

that provides a methods for both issue detection and issue removal.

4. A Case study of our approach has been performed during a UML practical

course offered to the students. A bakery system is used as an exemplary

model in the UML practical course. The results of the case study show the

applicability and the feasibility of our approach.

1.3 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we discuss the foundations

of this thesis that are needed across all chapters. Chapter 3 presents a state-of-

the-art analysis of the most important work related to the quality of UML models.

4 CHAPTER 1. INTRODUCTION

Assessment

Improvement

UML
Model

- Issue Detection
- Issue Removal

- Quality Model
- Metrics & Rules

Figure 1.2: Contributions for Continuous Quality Assessment and Improvement
Process

A novel quality model for UML model including its prototypical instantiation is

proposed in Chapter 4. The implementation of a prototype tool and OCL based

rules and guidelines are described in Chapter 5. A proof-of-concept case study is

presented in Chapter 6. A summary of the work and directions for future research

are discussed in Chapter 7.

Chapter 2

Foundations

This chapter presents the foundations on which this thesis is built. We present

an overview of UML and associated technologies, afterword’s, the UML diagrams

are introduced and exemplified using the example of a UML model for a bakery

system. The example of a bakery system is given in the foundation because it is

used through out the thesis. The brief description of software quality and quality

models is given. For software quality assessment and improvement, we discuss

software metrics, code smells and refactorings.

2.1 UML and Associated Technologies

UML [72] is a general purpose modeling language, which provides a collection of

graphical notations [29]. It provides only descriptive rules and graphical notations

but no official way to model the structure and behavior of a system. Hence, UML

leaves it open to the modeler to select an appropriate UML notation to describe

their systems.

UML is classified into structural and behavioral diagrams. The structural

diagrams are used to model the software structure, for example, classes,

components and their relationships. The behavioral diagrams are used to model

the behavior of the software.

Since the release of UML 1.0 in 1997, UML evolved adding more notations to the

language and this makes the language more complex. The current UML version

is 2.3 [74]. Our research is based on the UML 2.0 [72].

5

6 CHAPTER 2. FOUNDATIONS

M3: MOF

M2: UML Metamodel

M0: UML Model Instance

Instance of

Instance of

Instance of

M1: UML Model

Figure 2.1: The UML Architecture

2.1.1 The UML Architecture

The UML architecture is composed of four layers (Figure 2.1). The M3 layer,

the foundation of UML, is called the Meta Object Facility (MOF) [69]. In

essence, MOF is a language that is used to model itself as well as other models

or metamodels. In the context of UML, the MOF is used to define the UML

metamodel (the M2 layer). MOF can be considered a meta-metamodel in this

case. The MOF is used to specify the UML metamodel that consists of the

Infrastructure [71] and Superstructure [72] standards. These standards define the

abstract syntax of the language, i.e., basic UML modeling concepts, attributes,

relationships, as well as the semantics of each modeling concept. The M1 layer is

again an instance of the M2 layer. On the M1 layer, we find those models that we

typically create for requirements or design specifications. The instance of a UML

model is then finally found on the M0 layer, which describes instantiated objects.

The UML models we deal with everyday are typically the ones found on the

M1 layer, i.e., we create instances of the UML metamodel. One common way

to create such a model is to use the graphical notation provided by the UML

Superstructure standard.

2.1.2 UML Models vs. UML Diagrams

It is crucial to understand that a UML model and a UML diagram are two different

things. It is easy to draw a set of diagrams conforms to the UML notation on

paper. However, on paper these cannot be validated, transformed, or used for

code generation. Even if we transfer our diagrams as they are into a digital

form, they are missing important pieces of information that is not part of the

diagrams, for example, how the diagrams relate to each other and where the

2.1. UML AND ASSOCIATED TECHNOLOGIES 7

definitions to model references can be found. If the graphical notation is used to

create a UML model (i.e., by using a UML tool), each diagram represents only

a partial view of the complete model. Thus, a UML model may be described

by multiple diagrams or no diagram at all, a UML model may still contain all

elements we know from the commonly used graphical notation without including

a single diagram. However, there is no common and unified notation that can

represent a UML model completely, but attempts to solve this problem exist, e.g.,

TextUML [1]. One way, although not entirely human-readable, to represent a

complete UML model is the XML Metadata Interchange (XMI) format [67] which

is, however, an exchange format rather than a useful notation for modeling.

To illustrate the difference between a model and diagrams, we present a simple

specification of a weather information system in Figure 2.2. At the top of the

figure, we have the graphical notation of a UML model consisting of a class

and a sequence diagram. At the bottom part of the figure, we present the XMI

representation of the same model. Figure 2.2 illustrates two things. First, a

complete model can represent multiple diagrams may be part of a single UML

model. In this case, the model contains the definitions from both class diagram

and the sequence diagram. Second, the XMI representation explicitly references

the previously defined UML classes. Such an explicit reference is not possible

when we deal with diagrams in UML notation (that are created using pencil and

paper or a diagramming tool) rather than UML models. The UML diagrams used

in this thesis are described in Section 2.2.2.

2.1.3 Object Constraint Language (OCL)

OCL [70] is a UML standard maintained by Object Management

Group (OMG) [73]. The information, which can not be expressed with

the graphical means by UML that can be expressed by OCL. OCL syntax is

similar to programming language and the syntax of UML. It can be used in two

ways: 1) as a constraint language; 2) as a query language.

A constraint is basically a restriction on one or more values of the model. These

values are valid if the condition specified in constraint holds in the modeled

system. A simple OCL constraint is shown in Listing 2.1. Line 1 defines that

the constraint is on the class Company and Line 2 defines that the value of the

attribute noEmployees must be less than or equal to 50.

1 context Company

2 inv: self.noEmployees <= 50

Listing 2.1: Sample OCL Constraint

OCL can also be used as a query language. When a query is executed on the

model, the result of the query does not change the state of the system. The query

8 CHAPTER 2. FOUNDATIONS

<packagedElement xmi:type="uml:Class" xmi:id="C1" name="Location">
<ownedAttribute xmi:id="A1" name="cityName" visibility="private">

</ownedAttribute>
<ownedAttribute xmi:id="assEndC2" name="temp" visibility="private" type="C2" association="Association1">

<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="littempUperValue" name="" value="1"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="littempLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M1" name="getLocation" visibility="public"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="C2" name="WeatherConrolSystem">

<ownedAttribute xmi:id="assEndC1" name="loc" visibility="private" type="C1" association="Association1">
<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="litlocUperValue" name="" value="*"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="litlocLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M2" name="displayTemp" visibility="public">

<ownedParameter xmi:id="P1" name="cityName" visibility="public">
</ownedParameter>

</ownedOperation>
</packagedElement>
<packagedElement xmi:type="uml:Association" xmi:id="Association1" name="result" memberEnd="assEndC1 assEndC2"/>

<packagedElement xmi:type="uml:Collaboration" xmi:id="collob1" name="WCS">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="Interaction1" name="WCS">

<ownedAttribute xmi:id="Obj1" name="" visibility="private" type="C1"/>
<ownedAttribute xmi:id="Obj2" name="" visibility="private" type="C2"/>
<lifeline xmi:id="l1" name="" visibility="public" represents="Obj1" coveredBy="MO3 MO2 MO2Start MO2Finish"/>
nish"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO1" name="" visibility="public" covered="l2" message="SM1"/>
sage="SM1"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO2Start" covered="l1" start="MO2" finish="MO2Finish"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="MO2Finish" covered="l1" execution="MO2Start"/>
sage="SM2"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO4" name="" visibility="public" covered="l2" message="SM2"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO4Start" covered="l2" start="MO4" finish="MO4Finish"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="MO4Finish" covered="l2" execution="MO4Start"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO5" name="" visibility="public" covered="l2" message="SM3"/>
sage="SM3"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO6Start" covered="l2" start="MO6" finish="MO6Finish"/>

</message>
</ownedBehavior>

</packagedElement>

</uml:Model></xmi:XMI>

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:id="M1" name="Data">

[.................]

Figure 2.2: Graphical and XMI Representation of a UML Model

2.1. UML AND ASSOCIATED TECHNOLOGIES 9

simply returns a value or set of values. Listing 2.2 shows an OCL query on a UML

model to to count the number of operations in a class. Line 1 the keyword self is

used to refer to the contextual instance and ownedOperation is the property of

the Class in a UML model and size() is the OCL function, which returns the size

of the element. The OCL based rules and guidelines in Section 4.5 for incom-

plete and complete models are defined in the same style as described in Listing 2.2.

1 self.ownedOperation−>size()

Listing 2.2: Sample OCL Query

In M2M transformation languages, OCL serves as a base language to query the

model. The OCL expressions can be included in the model, or in the source

code of one transformation language that supports OCL like syntax, for example,

ATLAS Transformation Language (ATL), Query/View/Transformation (QVT)

language and the Xtend language [21].

2.1.4 Rational Unified Process (RUP) and UML

The Rational Unified Process (RUP) [46, 64] is a software development process

that executes projects in an iterative and incremental manner. A RUP compliant

process delivers functionality in small increments as illustrated in Figure 2.3.

Each increment builds upon the previous increment, and each increment is driven

by use cases rather than being a construction of a subsystem.

There are several disciplines into which RUP is divided: business modeling,

requirements, analysis and design, implementation, test, deployment, project

management, environment and configuration and change management. Each

discipline is expressed in terms of roles (who performs the task), activities (how

they perform these tasks), and artifacts (what the activity achieves).

The main objective of the RUP is to estimate tasks and plan schedules by

measuring the speed of iterations relative to their original estimates. The early

iterations of the project are strongly focused on software architecture and the

implementation of the product is not started until a firm architecture has been

identified and tested.

UML notations are an integral part of the RUP [89]. It should be clarified that

UML is not a process or a methodology but the software development process

wrapped around the UML.

10 CHAPTER 2. FOUNDATIONS

Implementation
Management
Environment

Figure 2.3: Rational Unified Process [64]

2.1.5 Model Driven Architecture (MDA)

The Model Driven Architecture (MDA) proposal [66] was initiated by the Object

Management Group (OMG) in 2001. It provides an approach for the model

driven development of software system. This proposal was made to resolve

the middleware proliferation. The problem arises, when companies started to

use middleware platform like CORBA, Java EE, .NET, COM+. With these

middleware platforms, an interoperability with enterprises became the core issue.

OMG managed the interoperability by providing MDA, which is a vendor and a

middleware neutral solution [84]. Figure 2.4 shows a core architecture of MDA,

that is based on UML, MOF.

Each model is independent of any middleware platform. Before thinking of

any middleware platform, the first step is to construct the application based

on a MDA using UML that should be platform independent. The second step

is to convert the UML model built in the first step into the targeted specific

platform, for example, CORBA, Java EE or .NET. Figure 2.4 shows these

targeted platforms in a ring surrounding the core.

MDA approaches are independent of the target platform and focused only on the

functionality and behavior of the system. It can also define system functionality

by Platform Independent Model (PIM) and Platform Specific Model (PSM) by

appropriate mapping using an appropriate Domain Specific Language (DSL).

Figure 2.5 shows the process of model transformation from Computation Indepen-

dent Model (CIM) to PIM, PIM to PSM and finally PSM to code. This process

can also be carried out in reverse order for reverse engineering i.e., from code to

model. The concepts of CIM, PIM and PSM are described in the next paragraph.

2.1. UML AND ASSOCIATED TECHNOLOGIES 11

Model Driven
Architecture

UML

More…

Transportation

Space

Manufacturing

Finance

E-Commerce

Telecom

HealthCare

Figure 2.4: The Model Driven Architecture [66]

2.1.5.1 Computation Independent Model (CIM)

OMG described Computation Independent Model (CIM) in order to represent the

application in its global environment. The main objective of CIM is to provide a

link to the application client with other models.

2.1.5.2 Platform Independent Model (PIM)

The Platform Independent Model (PIM) models describe business behavior and

functionalities of a system completely independent of the technical details or

properties of the underlying technologies, for example, the operating system,

programming languages, hardware and network performance. Hence, PIM presents

the view of the system that is suitable for any type of execution platform.

2.1.5.3 Platform Specific Model (PSM)

The role of Platform Specific Model (PSM) is to ease code generation from the

PIM through code models that fit the underlying execution platforms. UML

profiles can be defined using PSM models, some profiles have been already defined

for specific technologies, for example, the UML Profile for CORBA [75]. PSM

allows the software designers to integrate platform-specific features into the model.

12 CHAPTER 2. FOUNDATIONS

code

PSM
Platform Specific Model

PIM
Platform Independent Model

CIM
Computational Independent Model

Figure 2.5: MDA Model Transformation Process

2.2 UML Model for a Bakery System

In this section, we introduce UML model for a bakery system. Using this model,

we will clarify the general concept of UML diagrams. Additionally, model of

a bakery system is the subject of the case study. Therefore, this example will

help to understand the case study description and the quality assessment results

described in Chapter 6.

2.2.1 Description of a Bakery System

The bakery software system handles all aspects of a bakery, including sales

ordering, personal management and warehouse management of the products.

The sales ordering system handles the selling of the bakery products. Personal

management system manages the personal data of the employees. The warehouse

system manages the inventory of the bakery products, and it also records

the expiry date of each product. The bakery sales include several kinds of

breads, rolls, cakes and pastries that vary every day. Seasonal offers include

various cakes according to the season, such as strawberry cakes or christmas cakes.

The external actors of the system are shown at the top of Figure 2.6, where the

three types of users can interact with the system. The Administrator is an actor

who manages the software solutions and set privileges to the users of the system.

2.2. UML MODEL FOR A BAKERY SYSTEM 13

The external actors are Salesman and Online Customer. Salesman interacts with

the system to handle customer orders and payments at the counter, where an

Online Customer uses a web based system, where they can order, modify orders

and make online payments with limited access to the system. The bakery system

allows Online Customer, Salesman, and Administrator to access it as separate

users with different privileges.

Personal Management Sales Ordering

Warehouse

Online
Customer

Administrator

Bakery System

Actors

Salesman

Figure 2.6: General Overview of the Bakery System Components

Existing users that are either Salesman or Online Customer are required to login

to the system. New Online Customers are able to create a new account by

registering using an online form. Once a Salesman or Online Customer are logged

in, they will be directed to the sales ordering subsystem, where they can choose

which product to order. After the Online Customers has decided the quantity of

the selected item, it will be added to a cart. From the cart, the Online Customer

can choose between two payments methods, either by credit card or by cash. Once

the payment is successful, the order is executed by the system. Administrator can

view the database, categorized into users, inventory and orders. In each category,

Administrators can then perform various actions like add, edit, or delete entries.

2.2.2 Partial UML Model for the Bakery System

This section presents an overview of the diagrams used to develop the analysis

model and design model for the bakery system.

2.2.2.1 Use Case Diagram

The three subsystems of the bakery software system are illustrated in Figure 2.6.

In this section only the Sales Ordering subsystem is discussed. A use case diagram

of this subsystem is visualized in Figure 2.7. There are three actors interacting

14 CHAPTER 2. FOUNDATIONS

with the subsystem: Salesman, Administrator and an Online Customer. The

Salesman interacts with different parts of the ordering process. Salesman interacts

with the use case Place Order to place an order for the customer and the use

case Manage Orders to manage the customer’s orders. Online Customer interacts

with the use case Place Order to place an order online and with the use case

Make Payment to pay for the ordered item. Make Payment includes another use

case Choose Payment, where Online Customer can choose a payment method.

Administrator interacts with the use case Manage Orders to manage customer

orders and with use case Mange Customer Database to manage the customer data

base.

Academic Use Only

Place Order

Make Payment

Chose Payment
Method

Manage Orders

Manage Customer
Database

Online Customer
Salesman

«include»

Administrator

Sales Ordering

Figure 2.7: Use Case Diagram for Sales Ordering

2.2.2.2 Activity Diagram

Activity diagram are used to document the flow within a use case [89]. The flow

can be sequential, branched or concurrent. Figure 2.8 shows the activity diagram

for the Make Payment and Choose Payment Method use cases. The payment

cost is calculated from the cart, where the ordered bakery products and their cost

are listed. After the amount is verified, the user has to select a payment method.

This functionality is provided by the Choose Payment Method use case.

2.2. UML MODEL FOR A BAKERY SYSTEM 15

activity ad2 ad2[]

Show
Recommendation

Message

Validate
Transaction

Generate

Chose

Compute Total
Price

Add to Order DB

Show Error
Message

yes

card

reject

no

cash

approve

Make Payment

Retrieve Total
Price from Cart

Verify Total
Amount

Payment Type

By Cash By Credit Card

Report

Figure 2.8: Activity Diagram for Make Payment

16 CHAPTER 2. FOUNDATIONS

2.2.2.3 Class Diagram

Class diagrams show the static structure of classes of a system and the relation-

ships between them. The relationships can be associations, generalizations, or

aggregations. The class diagram for the Sales Ordering subsystem is illustrated

in Figure 2.9. The figure shows how the different classes are associated with each

other. Two types of associations are used in this diagram: composition and gener-

alization. Figure 2.9 illustrate following classes for the Sales Ordering subsystem:

BakerySystem, BakerySystemDB, Customer, Payment, Cart and CreditCard.

Academic Use Only

package Data [CD]

-connection1
-connection2
-query : String

+executeQuery(sql : String) : Boolean
+openDB()
+finalize()

BakerySystemDB

-name : String
-userID : String
-login : Boolean
-type : String

+setType()
+getType()
+getUserID()

+computeCost()
+getCakeType()
+executeTransaction()

Cart

-securityCode : Integer

+validateCard()

CreditCard

-List of attributes

+List of operations()

BakerySystem

-paymentMode

+computePrice()
+validatePayment()

Payment

0..1

1
0..1 1

1

0..1

1

1

Customer

Figure 2.9: Class Diagram for the Bakery System

2.2.2.4 Sequence Diagram

Sequence diagram is an interaction diagram that shows how processes operate

with one another and in what order. Sequence diagrams can also be used to

model the behavior of use cases. Figure 2.10 refers to the use case Place Order,

where the lifeline represents the actor and classes. The actor Online Customer

interacts with the class BakerySystem and cthe lass BakerySystem interacts with

the BakerySystemDB. Messages are represented by the arrows and every message

is numbered. Online Customer selects the bakery item or items from the list

of bakery products by invoking the getOrder() method for the selected bakery

items. The class BakerySystem needs the actor to choose the payment method

and online Customer invokes the method getPayment(), when the payment is

made, the total amount is verified by the BakerySystem. To process the order

BakerySystemDB class invoking executeQuery method for further action.

2.2. UML MODEL FOR A BAKERY SYSTEM 17

 : Online Customer : BakerySystemDB : BakerySystem

2: getOrder()

3: select payment method

4: getPayment()

5: verify payment details

6: executeQuery(sql=)

1: select bakery items

Figure 2.10: Sequence Diagram for Place Order

2.2.3 Relationship of the UML Diagrams

This section presents the relationship between the diagrams discussed in

Section 2.2.2.

The analysis model of the bakery system provides a conceptual model, that

focuses on the domain concepts, existing use cases and actors. The analysis

model also describes the concepts (i.e., things, objects), association between

concepts and attributes of the concepts. For analysis model following dia-

grams are used: use case diagram, activity diagram, sequence diagram and

class diagram. The activity and sequence diagrams are used to model the use

cases, while the class diagram presents the associated classes and their relationship.

The design model of the bakery system presents the blueprint for the developers

to implement the software product. The goal of the design model is to provide a

sufficient level of detail. The design model involves representation of both classes

and objects depending upon the diagram. The connection between classes and

their objects signify the basic relationships between classes as well as messaging

between objects. The design model for the bakery system consists of class

diagrams, sequence diagrams, activity diagrams and state machine diagrams as

shown in Figure 2.11.

Implementation model is considered to be a set of diagrams from the design model

to generate code manually or automatically. Not all diagrams are considered for

18 CHAPTER 2. FOUNDATIONS

the code generation. Figure 2.11 shows the class and state machine diagrams

to generate executable code. The implementation model is considered to be an

executable model in Chapter 4. However, we developed only analysis and design

models for the bakery system example described in Chapter 6.

Use Case Diagram

Activity Diagram Class Diagram Sequence Diagram

Class Diagram Sequence Diagram Activity Diagram

State Machine Diagram

Analysis Model

Design Model

Implementation Model

Class Diagram State Machine Diagram

Figure 2.11: Flow of the Developed Model

2.3 Software Quality and Quality Models

Software quality refers to all attributes of a software product that show the

appropriateness of the product to fulfill its requirements. For a software product,

Fenton et al. [27] distinguish between attributes of processes, resources, and

products. For each class, internal and external attributes can be distinguished.

External attributes refer to how a process, a resource, or a product relates to its

environment. Internal attributes, on the other hand, are properties of a process,

a resource, or a product on its own, i.e., separate from any interactions with

its environment. Hence, the assessment of external attributes of a product, the

so-called external quality, requires the execution of the product, whereas usually

static analysis is used for the assessment of its internal attributes, the so-called

internal quality. Since this thesis addresses the quality characteristics for UML

models, which are products that do not need to be executable, only internal

quality is considered in the following.

2.3. SOFTWARE QUALITY AND QUALITY MODELS 19

Quality models are used to assess software quality, the prominent examples for

FCM-model are the McCall-model [52] and the ISO/IEC 9126-model [39]. The

highest level of the McCall-model are the three uses: operation, transition and

maintenance. The operation use refers to quality characteristics that concern the

product when it is being executed, i.e., its external quality. The transition use

combines quality characteristics that concern the product when it is moved to

another environment, and the maintenance use focuses on quality characteristics

that concern the product when it is changed. As indicated by the abbreviation

Factor-Criteria-Metrics (FCM), on the second, third and fourth level, the McCall

model defines factors, criteria and metrics. A factor defines a high-level quality

criterion such as efficiency. On the next lower level, criteria for judging factors are

defined. For example, criteria for the factor efficiency are storage and execution

efficiency. Metrics are then used to assess criteria, e.g., storage efficiency may be

assessed by calculating the ratio between allocated and used storage.

External and Internal
Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality
Compliance

Maturity

Fault Tolerance

Recoverability

Reliability
Compliance

Understand-
ability

Learnability

Operability

Attractiveness

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Testability

Maintainability
Compliance

Adaptability

Installability

Co-Existence

Replaceability

Portability
Compliance

Ch
ar

ac
te

ris
tic

s
Su

bc
ha

ra
ct

er
is

tic
s

Figure 2.12: ISO/IEC 9126 Quality Model for Internal and External Quality

The ISO/IEC 9126-model defines no uses, but distinguishes between internal

quality, external quality and quality-in-use. The quality ISO/IEC 9126-model is

a generic quality model that covers internal and external quality in one abstract

model (Figure 2.12). The model for quality-in-use is similar to the operation use

of the McCall model. However, quality-in-use and external quality are out of the

scope of this thesis, and therefore not discussed any further.

20 CHAPTER 2. FOUNDATIONS

2.4 Software Metrics

Fenton et al. structured internal product metrics, i.e., metrics that measure

internal quality, into size and structural metrics [27]. Size metrics measure

properties of the number of usage of programming or specification language

constructs, e.g., the number of source statements. Structural metrics analyze the

structure of a program or specification. Popular examples of structural metrics

are complexity metrics based on control flow or coupling metrics.

To make sure that reasonable metrics for quality assessment are chosen, Basili

et al. suggest the GQM approach [9]: First, the goals which shall be achieved

(e.g., improve maintainability) must be defined. Then, for each goal, a set of

meaningful questions that characterize a goal is derived. The answers to these

questions determine whether a goal has been met or not. Finally, one or more

metrics are defined to gather quantitative data which can provide answers to each

question.∗

2.5 Smells

The metaphor of ‘‘bad smells in code’’ has been coined by Beck and Fowler [31].

They define smells as ‘‘certain structures in the code that suggest (sometimes they

scream for) the possibility of refactoring ’’. According to this definition, defects

with respect to program logic, syntax, or static semantics are not smells since

these defects cannot be removed by a refactoring. A refactoring only improves

internal structure, but does not change observable behavior.

Beck and Fowler present smells for Java source code. They describe their smells

using unstructured English text. A well-known smell is Duplicated Code. Code

duplication affects in particular the changeability quality sub characteristic in

the ISO/IEC 9126-model : if code that is duplicated needs to be modified, it

usually needs to be changed in all duplicated locations. Smells provide only

hints: whether the occurrence of an instance of a certain smell in a source code is

considered as a sign of low quality may depend on preferences and the context

of a project. For the same reason, a list containing code structures that are

considered smells is never complete and may also vary from project to project

and from domain to domain.

The notions of metrics and smells are not disjoint: each smell can be turned into

a metric by counting the occurrences of a smell, and often, a metric can be used

∗The GQM approach can also be used to define individual FCM quality models as goals are
similar to factors and questions similar to criteria.

2.6. REFACTORING 21

to locate a smell. The latter is the case, for example, when a long function is

expressed by a metric that counts the lines of code of this function and a threshold

is violated. However, the above smell of duplicated code and other pathological

structures in code require a pattern-based detection approach and cannot be

identified by using metrics alone.

2.6 Refactoring

Refactoring is defined as ‘‘a change made to the internal structure of software

to make it easier to understand and cheaper to modify without changing its

observable behavior ’’ [31]. This means that refactoring is a remedy against

software aging [77]. While refactoring can be regarded as cleaning up source code,

it is more systematical and thus less error prone than arbitrary code clean-up,

because each refactoring provides a checklist of small and simple transformation

steps, which are often automated by tools.

The essence of most refactorings is independent from a specific programming

language. However, a number of refactorings make use of particular constructs of

a programming language, or of a programming paradigm in general, and are thus

only applicable to source code written in that language.

We discuss here basic concept of the rename and pull up refactorings, which we

have implemented to refactor UML model. They have been adopted from Fowler

refactoring catalog [30] to UML.

2.6.1 Rename Refactoring

The name of the model element does not reveal its purpose, the name of the

element should be refactored. In the following paragraph, the rename refactoring

motivation and mechanics for renaming a method is described. The rename

refactoring can also be applied in a similar way to other elements.

Motivation: Names are an important part of the code style. The model element

name should be described in a way that communicates its intention.

Mechanics: The following mechanics can be followed to use rename refactoring

for a method.

• check whether the name of the method is poor or does not provide the useful

meaning,

• declare a new method with the new name, copy the old body of the code

over to the new name and make any changes to the name,

22 CHAPTER 2. FOUNDATIONS

Figure 2.13: Rename Refactoring

• find all references to the old method name and change them to refer to the

new one,

• remove the old method.

Figure 2.13 illustrates the renaming of method getplimnit to getPaymentLimit.

2.6.2 Pull Up Method Refactoring

Pull Up Method refactoring is used, when methods are identical in the subclasses.

In the following paragraph motivation and mechanics of the pull up refactoring

described.

Motivation: Any duplicate behavior should be eliminated. The duplication of

methods may make problems, when a model is used for the code generation, for

example, alteration of one method may not be made for the other method. The

method with same body implying that there is a copy and paste of the method.

This can be resolved by using pull up method refactoring.

Figure 2.14: Pull Up Method Refactoring

2.6. REFACTORING 23

Mechanics: The following mechanics can be followed to use pull up method

refactoring.

• inspect the methods in the subclasses to ensure that they are identical,

• create a method in the superclass, copy the body of one of the method from

the subclass to the super class,

• delete the subclass method.

An example is given in Figure 2.14, where getName() method is contained in

the subclass Online Customer and Salesman. This should be refactored and the

getName() method should be pulled up to the super class User.

Chapter 3

Related Work

This chapter discusses the state of the art aspects relating to the quality for UML

models, in particular reference to our approach: quality models for UML models,

metrics, and smells for UML models. Quality improvement work based on the

refactoring is discussed, and in addition to that, the existing tool support for

the quality assessment and improvement for UML is presented. In the last, the

comprehensive discussion on the related work is discussed. This chapter is based

on the joint work published in the proceedings of 14th System Design Languages

Forum (SDL Forum) conference 2009 [41].

3.1 Quality Models for UML

A surprisingly small number of researchers have addressed the problem of quality

assessment for UML models. The most comprehensive work in this area has

been done by Lange and Chaudron [48, 50]. In [50], they discuss the difference

between source code and UML models and highlight the particularities of UML

models. As a consequence, a special quality model for UML has been developed

(in the following called Lange-Chaudron-model). An overall view of the model is

given in Figure 3.1.

Like the model developed by McCall, the Lange-Chaudron-model is a hierarchical

model with four levels. On the highest level, the Lange-Chaudron-model defines

the two uses Maintenance and Development. The maintenance use is taken

from the McCall model. The other two uses from McCall, i.e., operation and

Transition, are not relevant for the quality of UML models. The operation use

is related to external quality attributes and the transition use is not related

to the development phases in which UML is used, i.e., modeling and design phases.

25

26 CHAPTER 3. RELATED WORK

Maintenance

Development

Modification

Testing

Comprehension

Communication

Analysis

Prediction

Implementation

Code Generation

Communicativeness

Correspondence

Self-
Descriptiveness

Conciseness

Precision

Aesthetics

Detailedness

Consistency

Complexity

Balance

Modularity

Completeness

Primary Use Purpose Characteristic

Figure 3.1: Lange-Chaudron Quality Model [48]

The second level of the Lange-Chaudron-model defines the purposes of modeling.

For example, the purpose Testing indicates that the model is used for test

generation and the purpose Code Generation denotes a usage for automatic

code generation. The third level of the Lange-Chaudron-model identifies the

characteristics of the purposes. The meaning of most characteristics in Figure 3.1

is straightforward. For example, the characteristic complexity measures the effort

required to understand a model or a system.

Two special characteristics of the Lange-Chaudron-model are Aesthetics and

Balance. The quality of the graphical diagrams is addressed by the aesthetics

characteristic only. Aesthetics is defined by the extent that the graphical layout

of a model or a system enables the ease of understanding of the described system.

Lange and Chaudron define balance as the extent that all parts of a system are

described at an equal degree. All characteristics are included in the balance

3.1. QUALITY MODELS FOR UML 27

characteristic with the same weight. This has been criticized by Mohagheghi and

Aagedal [57], because the assessment of the balance characteristic requires the

evaluation of all metrics and rules defined in the fourth level, i.e., it is not a good

abstraction. In [57], it is proposed to shift balance to the purpose level and to

assess balance by using the characteristics completeness, conciseness, modularity,

and self-descriptiveness.

The fourth level of the Lange-Chaudron-model (not shown in Figure 3.1)

defines metrics and rules for the assessment of the characteristics. We discuss

this part of Lange-Chaudron-model in the Sections 3.2 and 3.3. Lange and

Chaudron underpinned their work with industrial case studies. They showed the

applicability of their approach by interviewing representatives of project teams,

analyzing UML models, and giving feedback to project teams.

A quality model for design documentation in model-centric domains has been

developed by Pareto and Boquist [76]. The background of this work is experience

with the RUP as model-centric software development process. Even though UML

is an essential part of RUP, all kinds of artifacts on the abstraction levels between

requirements specification and code are considered relevant. For the development

of the quality model, Pareto and Boquist interviewed and discussed with

designers, process engineers, line managers and architects. From these interviews

and discussions, 22 quality attributes were identified and structured into six

groups. Each group identified one quality characteristic. As the quality model

is related to RUP also quality aspects for management are covered. However,

they stop with the identification of quality attributes and quality characteristics.

No means for the assessment of quality attributes and characteristics are provided.

Maŕın et al. [14] propose a quality model for conceptual models in terms of Model

Driven Development (MDD). Their quality model is comprised of a metamodel

and a set of rules. The metamodel provides the specifications for the conceptual

model of the MDD environment. The set of rules are described using OCL

constraints.

The 6C quality goals (Correctness, Completeness, Consistency, Comprehensibility

by humans, Confinement, and Changeability) have been identified by Mohagheghi

et al. [58] for the modeling domain. They provide a comprehensive literature

review on model quality. They compared their proposed 6C’s quality goals with

the quality characteristics that have already been discussed in the literature

review and categorized into three main quality goals, i.e., syntactic, semantic and

pragmatic quality. However, they are still not sure that their 6C’s quality goals

can cover every aspect of the quality goals.

28 CHAPTER 3. RELATED WORK

Expressiveness

Meaningful State

Names

Quality Characteristics

Quality Sub-Characteristics

Quality

Attributes

Testability

Syntactic Quality Semantic Quality
Understandability

Well-formdness Semantic Validitiy
Semantic

Completeness
Complexity

Consistency of

Redefined State charts
Dead States

Explicit Time out

Handling

Nondeterministic

Behavior

Figure 3.2: Quality Model for Testability of Models [90]

Voigt et al. [90] focused on the models used for testability. They introduced

a quality plan for the assessment of quality models and quality characteristics

for testability. They used state charts to show the instantiation of the model.

For useful evaluation of the model, they have proposed a checklist. The quality

model for the testability of models is shown in Figure 3.2. It is divided into three

levels: quality characteristics, quality sub-characteristics and quality attributes.

On top level there is a testability quality characteristic. They consider syntactic,

semantic and understandability as their sub-characteristics, additionally, each of

the sub-characteristics are further categorized. On the bottom level, they provide

quality attributes for exemplary model introduced for the instantiation of the

quality model. They did not cover important quality attributes for the testability

such as controllability and observability [13].

3.2 Metrics for UML

A UML model is based on a specific structure: the UML metamodel. However,

numerous proposals are based on metrics for UML but they often respect only

diagrams, i.e., the graphical representation of UML with its partial views. In

the following sections, we will present noteworthy literature on UML metrics.

We differentiate between metrics that are based on the actual UML model and

metrics that are solely based on the graphical notation, i.e., graphical metrics.

3.2. METRICS FOR UML 29

3.2.1 Model Metrics

Lange and Chaudron [47] uses metrics and rules (metrics with a binary result)

and relates them to quality characteristics of his quality model (see Section 3.1)

to assess the quality of a UML model. He reuses the most widely known metrics

such as the metric suite from Chidamber and Kemerer [18] and describes them

informally. He stresses that his list is by no means complete.

Kim and Boldyreff [44] propose 27 metrics for UML that are supposed to predict

characteristics at earlier stages in the software lifecycle. The metrics are defined

informally and no relationship between the UML model quality and the metrics

is established.

Baroni et al. [7] propose to use OCL to describe UML metrics in a formal way

in order to avoid ambiguities due to descriptions in natural language. By using

several samples of different complexity, they demonstrate that OCL is a well

suited formalism for defining UML metrics and that it is easier to understand than

formulas using custom built mathematical frameworks. McQuillan and Power [53]

extended this approach and use OCL to calculate coupling and cohesion metrics,

as well as the metrics from the Chidamber and Kemerer metric suite [18]. They

argue, however, that a metrics specific metamodel is a more generic solution

than defining metrics directly over the UML metamodel. Furthermore, they

demonstrate how to automatically generate test data and metamodel instances.

Another interesting way to formalize metrics is proposed by El-Wakil et

al. [24]. They propose to define metrics using XQuery over the XMI represen-

tation of the UML model under analysis. They argue that using XQuery to

express metrics eases tool building. Also, they claim that metric libraries spec-

ified in XQuery are easy to extend and provide a proof-of-concept implementation.

Kollmann and Gogolla [45] present an approach, which aims at using object-

oriented metrics on class diagrams by isolating the coherent sub-modules. As

large diagrams are difficult to understand, their approach looks feasible for

isolating the coherent sub-module from the existing class diagram. The authors

have realized that it is always hard to see the complete structure of the model

at the same time. They have implemented their approach in their reverse

engineering tool.

Ma et al. [51] compares different versions of UML meta-model. The measurement

is based on object oriented metrics. Brenbach and Borotto [11] provides a metrics

catalog for model driven requirements development based on good practices.

30 CHAPTER 3. RELATED WORK

The Modelware project [55, 56] delivers three documents on how to measure the

quality of models providing several metrics based on Model Driven Engineering

(MDE) processes. The research in these documents is dedicated to the MDE

artifacts, for example, the metamodel, processes and the UML models. The

main focus on metrics is related to the metamodel and the processes, while little

emphasis is put on the UML models.

3.2.2 Graphical Metrics

Graphical metrics for UML are not covered very well in the literature despite

the fact that the quantification of visual elements can be an important part

to assess the quality of a graphical layout. However, it seems that lay outing

itself draws more attention in research than the assessment of a layout by numbers.

Kiewkanya and Muenchaisri [43] performed an experiment in which they

evaluated whether metrics quantifying aesthetic aspects of class and sequence

diagrams influence the maintainability of UML models. For the measurements,

they selected aesthetic indicators that have been proposed by Purchase [79],

Eichelberger [23], and others. Such aesthetic indicators are, for example, the

maximum number of bends on the edges, the standard deviation of edge lengths,

or the total numbers of edges fixed to an orthogonal grid divided by the total

number of edges. Their conclusion is that aesthetic metrics can indeed be

indicators for the maintainability of class and sequence diagrams.

Gronback [35] provides a general catalog of UML metrics to detect deviations

from best practices. Some of them are derived from style guidelines provided by

Ambler [2]. He suggests generic diagram metrics such as ‘‘number of colors on

diagram’’ or diagram-specific metrics such as ‘‘depth of inheritance hierarchy’’

(for class diagrams) and even provides minimum and maximum thresholds for his

metrics. The metrics presented by Gronback, however, mix graphical properties

with properties that are part of the UML model.

3.3 Smells for UML

As discussed earlier, UML models do not have a standardized textual notation

like typical general purpose programming languages. However, bad smell analysis

in source code is rarely executed directly on the textual notation. An abstract

grammatical representation of the notation, the Abstract Syntax Tree (AST),

can in fact be regarded as a model for the textual notation of the programming

language that is subject of the analysis. Analyzing UML models is therefore not

that much different than analyzing an AST.

3.3. SMELLS FOR UML 31

In the following section, we present related work that deals with bad smells in UML

models. We differentiate between model smells and graphical smells. With model

smells, we regard design flaws or possible defects that we find by analyzing the

UML model (independently from any diagrams) such as possible inconsistencies,

ambiguities, or constructs that complicate maintenance. Graphical smells, on

the other hand, are related to the graphical notation of UML. They primarily

concern the understandability aspect of the diagram. For example, diagrams with

overlapping or crossing elements are harder to understand than diagrams with

elements that are properly laid out with aesthetic aspects in mind.

3.3.1 Model Smells

Lange and Chaudron [48] with his goal to improve the overall quality of

UML models discusses that undetected defects can cause large problems in

later development stages and identifies generic UML defects such as the

number of messages in a sequence diagram that do not correspond to a

method in a defined class diagram. The presented smells were identified

by discussions with industrial partners and by performing case studies. He

assumes that a set of UML diagrams defines a system as a whole and that

those diagrams have consistency relationships between each other. The defects

partially overlap with the well-formedness rules and are related in their scope,

but are described informally, without a relationship to the abstract syntax of UML.

Astels [6] presents UML smell detection in the context of UML refactoring. With

smell detection, he locates where to refactor and which refactoring is suggested.

He argues that the visual presentation of UML makes smell structures more

evident and presents exemplary what classical bad smells from Fowler [31] (e.g.,

lazy class or middle man) look like in the graphical notation. His own statement

is that his list is by no means complete. His work is described informally in the

visual notation of UML.

3.3.2 Graphical Smells

Graphical smells concern the graphical notation of UML models excluding

problems that are of logical nature or that may introduce issues in efficiency

or maintenance. Therefore, the main aspect of graphical smells is how model

elements are laid out and what elements are represented by the diagrams.

Ambler [2] provides more than 300 guidelines for all UML diagram types that

primarily concern the graphical notation. The violations of these guidelines can

be considered as graphical smells.

32 CHAPTER 3. RELATED WORK

Purchase et al. [79] have studied graphical layout aesthetics in class and collab-

oration diagrams. By performing a case study where they questioned people in

order to investigate their subjective preferences, they conclude that there are

certain common aesthetic properties that seem to be unfavorable. Among these

properties are, for example, arc crossings, or orthogonality (for class diagrams).

From their results, they derive that the aesthetics of graph layouts is dependent

on the domain, i.e., properties that are important for one diagram type may not

be important for another one.

3.4 Refactorings for UML

UML refactoring is an emerging research topic that can already be considered as

important as classical source-code refactoring. We again differentiate between

model refactorings, i.e., semantically preserving model changes and graphical

refactorings that improve the aesthetics of UML diagrams.

3.4.1 Model Refactorings

Astels [6] presents UML smells in class and sequence diagrams and describes

a number of Fowler refactorings that are applicable to UML. His refactoring

descriptions are based on UML diagrams and are informal. His examples are

intended to motivate that UML refactoring is applicable in the context of agile

development processes.

France and Bieman [32] in order to avoid uncontrolled change and increased

evolution costs of a system due to deteriorating structure and system quality

by introducing a goal-directed, cyclic process for object-oriented software when

object-oriented models, such as UML models, are transformed and evaluated

in each cycle. For the model transformation, they explicitly mention model

refactoring to enhance quality attributes of the model that should be realized

using patterns involving roles, i.e., each participant in the pattern plays a certain

role with specific properties within the pattern description. A formal method for

pattern-based transformation with role models does not exist yet.

Sunyé et al. [87] propose refactorings for class diagrams and state charts to make

software easier to extend and maintain. Using pre and post conditions expressed

in OCL, they ensure that transformation preserve behavioral properties.

Porres [78] presents how to describe and execute UML refactorings using a

rule-based transformation formalism and he argues that an update-based mapping

mechanism that modifies a model in place is more efficient for describing

3.4. REFACTORINGS FOR UML 33

refactorings than mapping transformations that transform into a different target

model. For the realization and description of refactoring transformations, he uses

his own language called SMW that operates on the UML metamodel --- when

the paper was written, there were no widely adopted transformation languages

available.

Dobrzański [19] provides a comprehensive survey on UML model refactorings in

his master’s thesis that deals with the refactoring of executable UML models [54].

He introduces an initial refactoring catalog for executable UML models. The

refactorings are formalized with pre and post conditions in OCL. According to

him, the main difference in refactoring executable models is that the update of

the behavioral aspects of the models has to be taken into account.

More recent work on UML model refactoring and transformation is often based

on the EMF representation of UML models. Biermann et al. [12] present work on

an EMF model transformation framework that is based on graph transformations.

They show how the rich theory of algebraic graph transformation can be applied

to EMF model transformations. Using their method, the validation of the model

transformations with respect to functional behavior and correctness is possible.

They demonstrate their approach by using selected state chart refactorings.

Folli and Mens [28] proposed the usage of graph transformations for model

refactorings and present, as a proof-of-concept, how they have implemented more

complex UML model refactorings using the AGG [88] graph transformation tool.

3.4.2 Graphical Refactorings

Graphical refactorings are applied when the graphical notation of a UML model,

i.e., corresponding diagrams containing partial views of the UML model are hard to

read and understand. There are a huge variety of generic graph layout algorithms,

and graph drawing itself is a very active research topic. Summaries can be

found in a variety of textbooks, for example, Graph Drawing by Battista et al. [10].

Work on layouts of UML diagrams is rare. Ambler [2] provides informal

guidelines that lack a systematic transformation mechanism to improve diagrams.

However, it is arguable whether graphical refactorings should only change parts

of a model using the refactoring mechanism or whether UML diagram specific

transformations for complete optimal layouts are more desirable. Eichelberger

and Gudenberg [23] discuss existing automatic layout methods for class diagrams

and present their approach to laying out class diagrams that respect aesthetic

rules, such as those described by [79].

34 CHAPTER 3. RELATED WORK

Castello et al. [17] propose an automatic layout algorithm that improves the

readability of state chart diagrams. It reduces the number of edge crossings and

edge bends.

3.5 Tool Support

It is encouraged to use tools for measuring metrics, detecting smells, and

applying refactorings to UML models. Manual application of refactorings,

for example, is very error-prone and there is a risk that the changes are not

semantically preserving due to human mistakes. Popular tools that support the

automatic calculation of metrics and detection of bad smells in UML models

are SDMetrics [82], Together [16], IBM Rational Systems Developer [36], and

ArgoUML [4]. These tools partially use different terminologies for the term ‘‘bad

smell’’. SDMetrics, for example, calls them design rules, Together calls them

audits, or ArgoUML names them design critics.

The toolset from Chaudron et al. [49] calculates metrics on UML models, it

detects rules in sequence diagrams, it checks model consistency, and visualizes

metrics in a metric view tool [26]. Except for the commercial tool Poseidon

for UML, which provides a refactoring browser supporting the refactorings

from Boger at al. [15], none of the major commercial UML tools support

refactoring beyond renaming and moving model elements. Tools that support

more sophisticated UML refactorings are academic prototypes. An overview over

existing academic UML refactoring tools is given by Dobrzański [19]. Van Gorp

et al. [34] have implemented refactorings as plug-in for the Fujaba UML tool.

Recently, several academic UML refactoring tools are evolving that build on EMF,

for example, GaliciaUML [83] and MoDisco [38]. The latter provides extensible

framework for the development of MDD tool support for existing systems. It

includes quality assurance by identifying anti-patterns and computation of metrics.

Other most promising Eclipse based model transformation projects are ATL [37,

42], QVT [68] and Xpand [40]. EMF Refactor [25] is another eclipse based project

for model refactoring, which is still in the proposal phase and some of the initial

refactorings have already been defined for class and state machines.

3.6. DISCUSSION 35

3.6 Discussion

Our approach for a continuous quality assessment and improvement process for

UML Models comprises a quality model defining quality characteristics, rules

for quality assessment and the detection of issues and refactoring for quality

improvement.

Instead of re-using the Lange-Chaudron quality model (Section 3.1) or defining

another Factor-Criteria-Metrics (FCM) model (Section 2.3), we developed a

new quality model that is based on an inclusion relationship instead of having a

hierarchical structure. This has been done because (1) UML models are created

on different level of abstractions, and at a different level of completeness. Due

to the inclusion relationship of our model, the models are refined in the next

stages and their level of details and the level of completeness increases (2)

we did not classify the quality attributes by factors like FCM based models.

The main reason was that the quality attributes which are applicable to

UML models do not necessarily need further classification. If we do so, this

may lead to confusion, especially in the additional model completeness dimensions.

The FCM quality models use metrics and rules for quality assessment of the

different quality characteristics. Metrics are sometimes difficult to interpret

and do not give an immediate hint of how to improve quality. Therefore, we

concentrated on rules and assigned a set to each quality attribute. A rule can be

seen as a binary metric and by counting rule violations; our approach becomes

comparable to the FCM approach. A rule violation can be seen as a smell

and thus, smell removal by means of refactoring is the natural way for quality

improvement.

For the implementation of rules, we used OCL, i.e., adapted the approach of

Baroni et al. [7], they used OCL to describe UML metrics in a formal way.

Prototypically, we also implemented the rename and the pullup refactoring from

the Fowler catalog, for this we used M2M transformation language [21].

Chapter 4

A Quality Model for UML and its

Instantiation

This chapter explains a novel quality model for UML, different type of model

completeness types used in modeled development process, their inclusion relation-

ship to the quality model for UML, and its quality attributes. The instantiation

of the quality model is presented based on the selection of a UML subset and

clarification of rules and guidelines using the GQM approach.

4.1 Description of the Quality Model for UML Models

To assess the quality of UML artifacts, a model that classifies quality charac-

teristics of such artifacts and that characterizes each of these characteristics for

specific states of the model is needed. In current research, only a small number

of researchers deal with quality assurance of UML while more generic software

quality assurance research, especially dealing with internal source code based

quality, is more popular.

Our observation is that there are three types of UML models that are pro-

duced throughout a software life cycle: incomplete models, complete models,

and executable models. The model type to some degree corresponds to the

progress made to the model development within the software development

process. Incomplete models are usually found in earlier phases of a software

development process. Complete models are the result of the design phase. Ex-

ecutable models are complete models that are refined in the implementation phase.

37

38 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

Executable Models

 Complete Models

 Incomplete Models

ANALYZABILITY
Changeability
Learnability
Understandability
Accuracy
Suitability
Testability
Fault Tolerence
Maturity
Recoverability

ANALYZABILITY
CHANGEABILITY
LEARNABILITY
UNDERSTANDABILITY
Accuracy
Suitability
Testability

Analyzability
Changeability
Learnability
Understandability

Figure 4.1: Proposed Quality Model for UML Models

The differentiation between these three kinds of model types is foundation of our

newly proposed quality model for UML. It respects that UML models are created

for different purposes, on different levels of abstraction, and at different levels of

completeness.

Figure 4.1† illustrates our quality model for UML. This model relates to the

internal quality of a UML model. Internal quality describes the totality of

characteristics of a model from an internal view, i.e., characteristics that concern

the model, the model documentation, or the model layout (in its visualized form).

The measurement takes place with internal metrics. External quality, on the

other hand, is the totality of characteristics of a model from an external view, i.e.,

characteristics that are measured when the model is executed or simulated. The

measurement takes place with external metrics. Even though external quality

plays a role in the context of executable models, this work and model is focusing

on the assessment of quality attributes prior to any execution of the model. The

model types are depicted as sets containing quality attributes that relate to each

other with an inclusion relationship, i.e., the quality attributes that characterize

an incomplete model are also quality attributes of complete models. Furthermore,

all attributes of the complete model are as well attributes of executable models.

The inclusion relationship exists due to the fact that the degree of completeness

rises with each inclusion relationship, i.e., complete models are refinements of

†Italic uppercase bold letters denote that the quality attribute is redefined. Italic without
uppercase letters and are not bold denotes that the quality attribute is used with out any change
in the meaning and the quality attributes without italic denotes that the quality attribute is new.

4.1. DESCRIPTION OF THE QUALITY MODEL FOR UML MODELS 39

incomplete models and executable models are refinements of complete models. In

the following, we discuss the model types in more detail.

The quality attributes in each model type set are derived from the ISO/IEC

9126 standard [39] for internal and external quality of software artifacts. One

specific characteristic of this model ISO/IEC 9126-model is that the number of

its quality attributes is manageable in quantity and intuitive regarding their

meaning. This means the problem of quality terms with overlapping meaning

is not that apparent in this model. Therefore, we believe that deriving quality

terms from this model is a good choice. However, our proposed quality model

is not a FCM-model. While quality attributes (criteria) in FCM-model are

classified by factors (e.g., the main characteristics in the ISO/IEC 9126-model),

we do not classify the quality attributes by factors. The reason is that after

analyzing the quality attributes that are applicable to UML models, the number

of overall quality attributes has been narrowed down to such a small amount

that a further classification is not necessary and on the contrary would have

been rather confusing, since we have the additional model completeness dimension.

The inclusion relationship between the model type sets manifests itself in

two different ways. Either, a quality attribute is redefined or it is implicitly

included. Note that the italic uppercase letters and bold denotes that the quality

attribute is redefined. Italic without uppercase letters and are not bold denotes

that the quality attribute is used with out any change in the meaning and

the quality attributes without italic denotes that the quality attribute is new.

Quality attributes such as the ANALYZABILITY , CHANGEABILITY ,

LEARNABILITY and UNDERSTANDABILITY are redefined in

complete model and Accuracy, Stability, Suitability and Testability are

new quality attributes for the complete model.

In the executable model quality attribute ANALYZABILITY is redefined and

other quality attributes of the complete model Changeability, Learnability,

Understandability, Accuracy, Stability, Suitability and Testability are

used without change in their meaning. Fault Tolerance, Maturity and

Recoverability are newly added quality attributes. A repeated occurrence of a

quality attribute is due to the inclusion relationship.

To instantiate the model, each quality attribute must be represented by a number

of quantifiable numbers, i.e., metrics whose values can be used for the interpreta-

tion of these quality attributes.

40 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

4.2 Model Completeness Types and Quality Attributes

This section explains the model types and the quality characteristics of the quality

model for UML in more detail.

4.2.1 Model Completeness Types

We consider three different completeness types of UML models for the quality

assessment. These are incomplete models, complete models, and executable models.

Completeness can be considered on various different levels. For instance, a UML

model consisting only of use cases can in fact be considered as complete with

regards to a requirements artifact. However, it cannot be considered complete

with regards to a complete software system. For the model completeness types of

our proposed quality model for UML, we consider completeness in relation to the

contents of a software specification from which a complete executable software

system can be derived. We assume that UML models are refined in each phase of

a software development process. Therefore, all three model completeness types are

consequently, part of a model-driven software development process. Furthermore,

we assume that all model types are syntactically correct. This is a prerequisite

for the analysis and, thus, also the assessment of the model.

• Incomplete models: Incomplete models are models that are syntactically

correct, but that either miss information (i.e., they are logically incomplete)

in order to be considered to be complete software specification, or they

are ambiguous in what they are trying to express. For example, a UML

model consisting of class diagrams can never be considered as complete as a

model because class diagrams cannot express behavior and a software system

must always include some kind of behavior. Incompleteness can also refer

to inconsistencies within the model: there are situations when structural

elements and behavior specification both exist in the model. However,

when they are not properly linked together, the model is considered to be

incomplete. Incomplete models are either models that are gradually refined

in each phase of a software development process or they are special-purpose

models that, for example, document one specific part of the software system

and remain in their incomplete state.

• Complete models: Complete models are syntactically correct models that

represent a structural and behavioral specification of a software system. The

models are consistent and constrained to be as non-ambiguous as possible

(for example, with the help of OCL expressions [70]). A complete model is

the prerequisite for any derivative code generation. However, a complete

model is not platform-specific, i.e., it makes no assumptions about the target

framework, target architecture, or target implementation language in use. In

4.2. MODEL COMPLETENESS TYPES AND QUALITY ATTRIBUTES 41

that sense, it basically corresponds to the idea of the Platform Independent

Model (PIM) in the MDA approach [33]. However, with constraints, it

presents a syntactically correct, consistent, non-ambiguous, and logically

complete software specification.

As complete models are refined incomplete models, they inherit all quality

attributes of incomplete models.

• Executable models: Executable models are complete models that are

either directly executable with a model interpreter or translatable to ex-

ecutable machine code without any further additions. This implies that

executable models are not as abstract as complete models. However, they

contain platform-specific information as well (therefore, roughly correspond-

ing to the PSM concept of MDA [54]). Furthermore, in comparison to

complete models, they might be tailored to realize efficiency constraints

towards the developed software as well (which is not the case for complete

models). Executable models inherit all quality attributes of complete and

incomplete models.

Each model type is assessed with the help of a number of quality attributes, which

are described in the next paragraphs.

4.2.2 Quality Attributes

In the following, we describe quality attributes that we mention in our proposed

quality model for UML as described in Section 4.1. We discuss each attribute along

all model types. As mentioned before, we differentiate between redefined quality

attributes and implicitly included attributes. Implicitly included attributes are

described once for the model type in which they are defined first. The description

of redefined quality attributes is refined for each redefinition.

4.2.2.1 Incomplete Models

• Analyzability: This is the ability to examine deficiencies or possible causes

of failures in UML models. In the context of incomplete models, the amount

of possible analysis that yield a meaningful conclusion is limited. This is

caused by possible ambiguities and inconsistencies, which implies that such

analysis often results in the detection of problems. However, we can still

influence the analyzability quality attribute in the context of incomplete

models. For example, we can avoid name clashes, link or reference model

elements among each other to the degree that they exist, or in general we

should avoid inconsistencies within the model.

42 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

• Changeability: Changeability is the capability of the model to allow

specified modifications to be incorporated. Changeability is impeded by

model complexity, hard to understand models (see learnability), or models

that require shotgun surgery for changes (i.e., one change cascades a number

of other necessary changes), and similar.

• Learnability: Learnability is the capability that enables the user to learn

how the model works and how it is used. The user of the model must under-

stand how the model is formed what kind of requirements are considered,

and how different parts of the model (e.g., diagrams of different types) are

interrelated. In addition, the learnability depends also on factors such as

the consistent usage of guidelines for naming conventions.

• Understandability: Understandability is the capability that enables users

to understand whether the model is suitable for particular tasks and for

particular conditions of use.

4.2.2.2 Complete Models

• Analyzability: The aspects of incomplete models can be extended with

actual logical analysis, for example, structure and behavior are expected to

be complete. Therefore, the analyzability aspect is described by the degree

to which a logical analysis of a UML model for deficiencies or possible failure

causes is possible. Assuming that complete models are consistent and non-

ambiguous, remaining issues regarding the analyzability of complete models

lie, for example, in the complexity of the model semantics, for example,

when a specific UML profile is in use.

• Changeability: For complete models, the changeability aspect is more

profound in the sense that changes must additionally satisfy constraints and

consistency rules. These need to be valid for complete models and they do

not need to be enforced on incomplete models.

• Learnability: For complete models, additional constraints and consis-

tency rules can exist that influence the difficulty of the learnability quality

attribute.

• Understandability: As incomplete models do not represent a complete

software specification, the degree to which we understand whether the

model is a suitable for particular tasks and for particular conditions of use is

influenced by the model elements that have been missing in the incomplete

model.

4.2. MODEL COMPLETENESS TYPES AND QUALITY ATTRIBUTES 43

• Accuracy: Accuracy is the capability to provide the correct or agreed

results or effects with the needed degree of precision. Furthermore, a UML

model is only accurate when its elements are traceable with respect to the

requirement’s specification.

• Stability: Stability is the capability of the model that avoids unexpected

effects when modifications are applied to it. This refers to a side-effect free

behavior specification.

• Suitability: Suitability is the capability that the model is appropriate for

specified tasks and user objectives. This constitutes the degree to which

structural and behavioral descriptions cover requirements.

• Testability: Testability is the capability that enables model validation

after modifications. To validate such a model, the model must be syntacti-

cally correct, as non-ambiguous as possible, and consistent. Furthermore,

testability deteriorates with increasing model complexity due to increased

difficulty and effort to actually reveal problems.

4.2.2.3 Executable Models

• Analyzability: In addition to the analyzability issues mentioned in the

incomplete and complete model descriptions, the analyzability attribute for

executable models also requires that possible platform-specific additions to

the model remain in a consistent state regarding the completeness properties.

This incorporates also the degree to which any possible action languages in

use are analyzable.

• Fault Tolerance: It is the ability to maintain a specified level of perfor-

mance in cases of faults or misuse. The fault tolerance aspect is primarily

steered through the behavioral specifications in the UML model including

how behavior in action languages is specified and what action language is in

use.

• Maturity: Maturity is the capability to avoid runtime failure as a result

of faults in the model. This implies the degree to which model behavior is

specified in a defensive way.

• Recoverability: The capability to re-establish a specified level of per-

formance and recover itself in case of failure. In addition to behavior

specification that concerns the frequency of failure, the recoverability as-

pect also covers to which degree the specified behavior provides recovery

strategies for unexpected cases.

44 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

4.3 Towards an Instantiation of the Quality Model

In this section, we present the an exemplary instantiation of the quality

model for UML. To evaluate and assess the quality of UML models, rules

and guidelines need to be associated to the respective quality attributes. The

violation of these rules are considered to be bad smells on models. The detected

violations are improved by model to model transformations that refactor the model.

We distinguish between critical and non-critical rules. Before the transition from

one model type to another model type, critical rules must be improved to ensure

the model completeness. Non-critical rules are guidelines for the modeler which

can be followed according to the specified quality requirements.

The instantiation of our quality model is based on three quality attributes for

incomplete and complete models: analyzability, changeability and understand-

ability. The selection of these three attributes is based on two reasons: 1) the

models used for assessment are designed by students 2) the relation of these three

attributes to the rules and guidelines is easy to follow by the students. The case

study and their results are described in Chapter 6. Before going into further

details of the instantiation of the quality model, we select a manageable set of the

UML diagrams for each model type, which is described in the following section.

4.4 Selection of UML Subset Notations

UML provides a wide variety of possible diagrams to choose for modeling. This

flexibility of selecting appropriate diagrams leads to problems.The OMG does

not provide any method to select the appropriate notation. However different

factors should be considered while selecting the subset of UML. This includes the

experience of the modeler or the necessity of automatic code generation.

Our proposed model is based on three types of models: incomplete, complete

and executable. The selection of a subset for the incomplete and complete model

is presented in Table 4.1. The incomplete model captures the user view at the

inception and elaboration cycle of unified process, while complete model captures

the implementation view at elaboration cycle of unified process. The UML

diagrams Use case diagram, class diagram, sequence diagram and activity diagrams

are used for incomplete model and complete model adds the implementation

specific diagrams, these are: class diagram, sequence diagram, activity diagram

and state machine diagrams. The selection is based on the case study described

in Chapter 6.

4.5. CLASSIFICATION OF RULES AND GUIDELINES 45

Model Type Diagram Type Purpose of a Diagram

Use Case Diagram
Capture the required use cases of the system from the

point of view of the system user

Activity Diagram

Sequence Diagram

Shows the exact order of a message flow, in case a

particular use case has been invoked by an actor to

perform the systems functionality

Class Diagram Used to design system structure

Class Diagram

Actual design level attributes, operations and other

elements are added to address the completeness of the

model

Sequence Diagram
Describe how objects interact when messages are

exchanged

Activity Diagram Used to model class operations

Statemachine Diagram
Used to describe behavioral or protocol state machine

for a class or for an interface

Incomplete

Complete

Used to describe a subsystem flow

Table 4.1: UML Subset Selection

4.5 Classification of Rules and Guidelines

The application of our quality model is evaluated in an experimental case study

in which the bakery system models (Section 2.2) are developed by students.

The results are described in the Chapter 6 for analyzability, changeability and

understandability. In this section, we apply the GQM [8] approach to select

appropriate rule or guideline for these quality characteristics.

The rules and guidelines are further categorized into the critical and non-critical

criteria. To distinguish between rules and guidelines, we used the keywords

must for rules and should for guidelines. Therefore, rules must be followed

to build quality UML models while guidelines are merely suggestions. The

rules or guidelines are defined in plain text, as well as in OCL language

as described in Section 2.1.3. The definition of OCL is based on the UML

metamodel [72]. Therefore, OCL queries can be directly executed on UML models.

These queries are used in the Xtend language with a small modifications. The

list of the queries can be found in Appendix E for incomplete and complete models.

The GQM based approach in the following paragraph is described for the classifi-

cation of rules or guidelines for each quality attribute. To answer the questions

that cover rules or guidelines are used for multiple questions, hence the rule

number described in the (Sections 4.5.1 to 4.5.6) does not follow the question

number. The complete list of rules and guidelines in sequential order is described

in Appendix B.1 for incomplete model and Appendix B.2 for complete model.

The rules for incomplete model is represented by Rin, where i represents the

46 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

incomplete model and n denotes the rule number and the rule for complete model

are represented by Rcn, where c represents the complete model and n denotes the

rule number.

4.5.1 Analyzability for Incomplete Models

The analyzability is measured by considering consistency and traceability issues.

Therefore we selected the rules which are important for our experimental cases

study by asking questions according to the GQM approach and try to answer

them with certain rules.

Q.1: Is the incomplete model consistent?

a) Rules or guidelines measuring or determining the consistency between use

case diagram and sequence diagram.

Ri4: Each use case must be refined in a sequence diagram.

1 context uml::UseCase

2 inv: ownedBehavior−>select(b|b.oclIsKindOf(Interaction) and

3 b.oclIsTypeOf(Interaction)−>size() > 0

Ri32: Each sequence diagram should have at least one actor on a lifeline.

1 context uml::Interaction

2 inv: self.lifeline.represents.type−>exists(oclIsTypeOf(Actor))−>size() >0

b) Rules measuring or determining consistency between use case and activity

diagram.

Ri16: Each subsystem should be refined by one activity diagram.

1 context uml::Package

2 inv: Activity.allInstances().name−>includes(self.name)

c) Rules measuring or determining consistency between use case and class

diagrams.

Ri18: Each subsystem of a use case diagram should be represented as a

package in the class diagram.

1 context uml::Class

2 inv: Package.allInstances().name−>includes(self.owner.name)

Q.2: Is the incomplete model traceable?

a) Rules measuring or determining traceability between activity and use case

diagram.

Ri17: Each activity in an activity diagram should refer to a use case in use

case diagram.

4.5. CLASSIFICATION OF RULES AND GUIDELINES 47

1 context uml::CallBehaviorAction

2 inv: UseCase.allInstances().name−>includes(self.name)

b) Rules measuring or determining traceability between sequence and class

diagrams.

Ri33: Each object or lifeline in a sequence diagram must have corresponding

class in a class diagram.

1 context uml::Lifeline

2 inv: self.represents.type−>exists(oclIsTypeOf(Class)) or

3 self.represents.type−>exists(oclIsTypeOf(Actor)) or

4 self.represents.type−>exists(oclIsTypeOf(Interface))

Ri34: Every call message received by a lifeline must have a corresponding

operation in the class.

1 context uml::Message

2 inv: ((not receiveEvent.oclAsType(MessageOccurrenceSpecification).

3 event.oclIsUndefined())and(receiveEvent.oclAsType(

4 MessageOccurrenceSpecification).event.oclIsTypeOf(CallEvent))) implies not

5 (receiveEvent.oclAsType(MessageOccurrenceSpecification).event.oclAsType(CallEvent).

6 operation.oclIsUndefined())

Ri35: If there is a message call between two lifelines then there must also be

an association between two classes.

1 context uml::Lifeline

2 inv: (MessageOccurrenceSpecification.allInstances().

3 covered−>includes(self)) and (Association.allInstances().getEndTypes()−>
4 select(oclIsTypeOf(Class))−>asSet()−>includes(self.represents.type))

4.5.2 Changeability for Incomplete Models

The changeability is measured by considering coupling and cohesion issues.

Therefore, the rules are based on the following questions.

Q.1: How are the classes coupled in a class diagram?

a) Rules or guidelines measuring or determining coupling between classes.

Ri20: The depth of inheritance tree should not exceed 2.

1 context uml::Class

2 inv: self.superClass.superClass.superClass−>size()=0

Ri21: Multiple inheritance must not exist.

1 context uml::Class

2 inv:self.general−>select(oclAsType(Class))−>size()<2

Ri28: Each class should have 1-5 associations.

1 context uml::Class

2 inv: self.attribute.association−>size()>0 ||
3 self.attribute.association−>size()< 6

48 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

Q.2: How are the use cases coupled within model?

a) Rules or guidelines measuring or determining coupling between use cases.

Ri3: The generalization between use cases must not be present in a use case

diagram.

1 context uml::UseCase

2 inv: self.parents()−>size()=0

Ri10: The depth of generalization of an actor should not exceed one.

1 context uml::Actor

2 inv: self.parents().parents()−>size()=0

Ri14: The depth of include chain of a use case should not exceed one.

1 context uml::Include

2 inv: self.source−>includes(self)−>size()<2

Ri15: The depth of extend chain of a use case should not exceed one.

1 context uml::Extend

2 inv: self.source−>includes(self)−>size()<2

4.5.3 Understandability for Incomplete Models

The understandability is measured by considering various quality issues, for

example, structural and behavioral complexity, overall complexity of the model

and the UML coding conventions.

Q.1: What is the structural complexity of the model?

a) Rules that measure structural complexity of the incomplete model.

Ri27: Each association must specify multiplicity values at both ends.

1 context uml::Association

2 inv: self.memberEnd −>forAll (n | (not n.lowerValue.oclIsUndefined()) or

3 (not n.upperValue.oclIsUndefined()))

Ri30: Classes should not be linked with composition or aggregation associa-

tion type.

1 context uml::Property

2 inv: let opposite:Property = self.opposite.association.memberEnd−>
3 any(e|e<>self) in (opposite.aggregation<>AggregationKind::shared)

4 and (not(opposite.isComposite))

Ri31: The links to classes belonging to another package must be uni-

directional.

1 context uml::Association

2 inv: self.memberEnd.isNavigable()−>includes(false) and

3 self.getEndTypes()−>select(oclIsTypeOf(Class))−>
4 exists(e1,e2|e1.owner <> e2.owner)

4.5. CLASSIFICATION OF RULES AND GUIDELINES 49

Q.2: What is the behavioral complexity of the model?

a) Rules that measure behavioral complexity of the incomplete model.

Ri5: A use case should not linked to more than 3 actors.

1 context uml::

2 inv: (getRelationships()−>reject(oclIsTypeOf(Extend))

3 and getRelationships()−>reject(oclIsTypeOf(Include)))

4 implies self.getRelationships().relatedElement−>
5 select(oclIsTypeOf(Actor))−>size()<=3

Ri28: Each class should have 1-5 associations.

1 context uml::Class

2 inv: self.attribute.association−>size()>0 ||
3 self.attribute.association−>
4 size()< 6

Q.3: What is the overall complexity of the incomplete model?

a) Rules that measure the overall complexity of the incomplete model.

Ri1: Each use case must be inside one subsystem.

1 context uml::UseCase

2 inv: self.owner−>exists(oclIsTypeOf(Package))

Ri2: Each use case must be associated with an actor.

1 context uml::UseCase

2 inv: self.getRelationship()−>reject(oclIsTypeOf(Extend) || oclIsTypeOf(Include)) and

3 self.getRelationships().relatedElement−>select(oclIsTypeOf((Actor))−>size() > 0

Ri7: Each subsystem should contain a minimum of 3 and a maximum of 5

use cases.

1 context uml::Package

2 inv: (self.allOwnedElements()−>select(oclIsTypeOf(UseCase))−>
3 size()>=3) and (self.allOwnedElements()−>
4 select(oclIsTypeOf(UseCase))−>size()<=5)

Ri13: A use case diagram should not contain more than 20 use cases.

1 context uml::Model

2 inv: UseCase.allInstances()−>exists(uc|uc−>size()<20

Ri19: Each package should not contain more than 20 classes.

1 context uml::Package

2 inv: self.allOwnedElements()−>select(oclIsTypeOf(Class))−>size() < 20

Ri23: An <<entity>> class should contain at least 3 attributes.

1 context uml::Class

2 inv: self.attribute−>size()>=3 and self.getAppliedStereotypes().

3 name−>includes(’entity’)

50 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

Ri24: A <<control>> class should contain 2 to 5 operations.

1 context uml::Class

2 inv: (self.ownedOperation−>size()>=2 or self.ownedOperation−>
3 size() <= 5) and self.getAppliedStereotypes().name−>includes(’control’)

Ri25: If a class is an empty class, then it must be a <<boundary>> class.

1 context uml::Class

2 inv: self.allOwnedElements()−>size() = 0 and

3 self.getAppliedStereotypes().name−>includes(’boundary’)

Q.4: Is model compliant to UML coding conventions?

a) Rules that determine the incomplete model compliance to UML coding or

style conventions.

Ri6: A use case name should contain 1 to 4 words.

1 context uml::UseCase

2 inv: name.size() = 0 or (let idx:Sequence(Integer) =

3 Sequence{1..name.size()} in idx−>select(i| name.substring(i, i) = ’ ’)−>
4 size()+1 <=4)

Ri8: A subsystem name should start with a capital letter, and should be

consisting of one to two words.

1 context uml::Package

2 inv: (let startsWith:String=name.substring(1,1) in startsWith.toUpper()=

3 startsWith) and (name.size()=0 or (let idx:Sequence(Integer)=

4 Sequence{1..name.size()} in idx−>select(i| name.substring(i, i) = ’ ’)−>
5 size()+1 <=2))

Ri9: Each actor name should start with a capital letter.

1 context uml::Actor

2 inv: (let startsWith:String = name.substring(1,1) in startsWith.toUpper()=

3 startsWith) and (name.size() = 0 or (let idx:Sequence(Integer)=

4 Sequence{1..name.size()} in idx−>forAll(i| name.substring(i, i) <> ’ ’)))

Ri11: Each system name should start with a capital letter and contain one

to two words.

1 context uml::Model

2 inv: (let startsWith:String = name.substring(1,1) in startsWith.toUpper()=

3 startsWith) and (name.size() = 0 or (let idx:Sequence(Integer)=

4 Sequence{1..name.size()} in idx−>select(i| name.substring(i, i) = ’ ’)−>
5 size()+1 <=2))

Ri12: An Actor must be placed outside the system.

1 context uml::Model

2 inv: (self.allOwnedElements()−>exists(oclIsTypeOf(Actor)))

4.5. CLASSIFICATION OF RULES AND GUIDELINES 51

Ri22: Each class name should start with a capital letter and should be one

word.

1 context uml::Class

2 inv: (let startsWith:String = name.substring(1,1) in startsWith.toUpper()=

3 startsWith) and (name.size() = 0 or (let idx:Sequence(Integer)=

4 Sequence{1..name.size()}in idx−>forAll(i| name.substring(i, i) <> ’ ’)))

Ri26: Each association must have name.

1 context uml::Association

2 inv: self.name <> ’ ’

Ri29: Each association name should start with a lower case letter.

1 context uml::Association

2 inv: let startsWith:String = name.substring(1,1) in

3 startsWith.toLower()= startsWith

Ri36: Each message must be labeled.

1 context uml::Message

2 inv: self.name <> ’ ’

The following paragraph is described for the complete models, where quality model

for UML is tailored for the design phase of software development process where

implementation specific diagrams are used. For complete model, the rules and

guidelines are selected in the same manner as defined for the incomplete model.

4.5.4 Analyzability for Complete Models

The factors for the measurement of analyzability for complete model is the same

as we described for the incomplete model, i.e., consistency and traceability.

Q.1: Is the complete model consistent?

a) Rules or guidelines measuring or determining the consistency between use

case diagram and sequence diagram.

Rc23: Each sequence diagram should have at least one actor on a lifeline

(Same as Ri32).

Q.2: Is the complete model traceable?

a) Rules measuring or determining traceability between sequence and class

diagram.

Rc24: Each object or lifeline in a sequence diagram must have a corresponding

class in a class diagram (Same as Ri33).

Rc25: Every call message received by a lifeline must have a corresponding

operation in the class (Same as Ri34).

52 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

Rc26: If there is a message call between two lifelines then there must also

be an association between the two classes (Same as Ri35).

b) Rules measuring or determining traceability between activity diagram and

class diagrams.

Rc28: One Activity diagram should reference to one class operation.

1 context uml::Activity

2 inv: self.specification.oclIsTypeOf(Operation)−>size()==1

Rc32: Each activity in an activity diagram should reference a class operation.

1 context uml::CallBehaviorAction

2 inv: self.specification.oclIsTypeOf(Operation)−>size()>1

Rc34: Each object of an activity diagram should have a corresponding class

in a class diagram.

1 context uml::CentralBufferNode

2 inv: self.type−>exists(oclIsTypeOf(Class))

4.5.5 Changeability for Complete Models

Below are appropriate rules or guidelines for the changeability quality attribute.

Q.1: How are the classes coupled in a class diagram?

a) Rules or guidelines measuring or determining coupling between classes.

Rc3: The depth of inheritance level should be less than 4 (Same as Ri20 but

with different threshold value because complete models are made at design

level, therefore they are more complex.)

Rc4: Multiple inheritance must not exist (Same as Ri21).

Rc8: Each class should have 1-5 associations [5] (Same as Ri28).

Q.2: How are the packages coupled within model?

a) Rules or guidelines measuring or determining coupling between packages.

Rc15: The maximum package nesting level should be 2.

1 context uml::Package

2 inv: (self.owner.owner.owner−>size())=0

Q.3: Are states in state machine diagram unique?

a) Rules or guidelines measuring or determining duplicate names of sates in

state machine diagram.

Rc36: State names must be unique.

1 context uml::State

2 inv: State.allInstances()−>forAll (p,q|p.name<>q.name implies p=q)

4.5. CLASSIFICATION OF RULES AND GUIDELINES 53

4.5.6 Understandability for Complete Models

The understandability for complete model is measured based on the same

factors considered for incomplete model. The following questions refine the goal

measurement.

Q.1: What is the structural complexity of the model?

a) Rules that measure structural complexity of the complete model.

Rc10: Each association must have a direction.

1 context uml::Association

2 inv: (self.memberEnd.isNavigable()−>includes(false))

Rc11: Each association must specify multiplicity and it must be n to 1.

1 context uml::Association

2 inv: let opposite:Property = association.memberEnd−>
3 any(e|e <> self) in (not opposite.oclIsUndefined() and

4 not upperValue.oclIsUndefined()) implies (upper = 1)

Rc14: The links to classes belonging to another package must be uni-

directional (Same as Ri31)

Rc31: Each activity diagram should contain one initial node and one exit

point.

1 context uml::Activity

2 inv: self.allOwnedElements()−>select(oclIsTypeOf(InitialNode))

3 −>size() = 1 and self.allOwnedElements()−>select(oclIsTypeOf(

4 ActivityFinalNode))−>size() = 1

Rc37: All states except root state and initial state should have at least one

incoming transition.

1 context uml::StateMachine

2 inv: PseudoState.allInstances()−>select(PseudoState=

3 PseudoStateKind::initial))−>size()>=1

Q.2: What is the behavioral complexity of the model?

a) Rules that measure behavioral complexity of the complete model.

Rc1: Every class should have attributes.

1 context uml::Class

2 inv: self.ownedAttribute−>size()>0

Rc2: Every class should have operations.

1 context uml::Class

2 inv: self.ownedOperation−>size()>0

54 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

Rc16: Each attribute must have data type and must be private.

1 context uml::Property

2 inv: self.visibility = VisibilityKind::private and

3 self.type−>notEmpty()

Rc21: Each operation must have a return type.

1 context uml::Operation

2 inv: self.ownedParameter−>exists(e|e.direction =

3 ParameterDirectionKind::return)

Rc22: Each parameter must have a data type.

1 context uml::Parameter

2 inv: self.type−>notEmpty()

Q.3: What is the overall complexity of complete model?

a) Rules that measure overall complexity of the complete model.

Rc6: Each class should have a maximum of 10 operations.

1 context uml::Class

2 inv: self.ownedOperation−>size() <= 10

Rc13: Each subsystem / package should have maximum 20 classes.

1 context uml::Package

2 inv: (self.allOwnedElements()−>select(oclIsTypeOf(Class))−>size()) <= 20

Rc18: Each operation should have a maximum of 4 parameters.

1 context uml::Operation

2 inv: self.ownedParameter−>reject(e|e.direction =

3 ParameterDirectionKind::return)−>size()<=4

Rc29: The maximum number of decision points in activity diagram should

be 12.

1 context uml::Activity

2 inv: self.allOwnedElements()−>select(oclIsTypeOf(DecisionNode))

3 −>size() <= 12

Rc30: Each activity diagram should contain 0 to 3 swim lanes.

1 context uml::Activity

2 inv: self.allOwnedElements()−>select(oclIsTypeOf(ActivityPartition))

3 −>size() <4

Rc33: Dead activities must not present in an activity diagram.

1 context uml::Action

2 inv: self.incoming −>size()<> 0 and self.outgoing−>size() <> 0

Rc35: Dead states must not be present in a state machine diagram.

1 context uml::State

2 inv: self.incoming −>size()<> 0 and self.outgoing−>size() <> 0

4.6. METRIC SELECTIONS FOR QUALITY ASSURANCE 55

Q.4: Is the model compliant to UML coding conventions?

a) Rules that determine the complete model compliance to the UML coding or

style conventions.

Rc5: Each class must should with a capital letter and should be one word.

(Same as Ri22)

Rc7: Each association must have a name (Same as Ri26).

Rc9: Each association name should start with a lower case letter (Same as

Ri29).

Rc12: Association classes must not present in a model.

1 context uml::Model

2 inv: AssociationClass.allInstances()−>size()=0

Rc17: If a class has a composition relationship, then the multiplicity must

be 1 at the side of the owner.

1 context uml::

2 inv: let opposite:Property = association.memberEnd−>any(e|e <> self)

3 in (not opposite.oclIsUndefined() and opposite.isComposite and not

4 upperValue.oclIsUndefined()) implies (upper = 1)

Rc19: Any <<entity>> class should have getters and setters.

1 context uml::Class

2 inv: self.ownedOperation−>exists(name.substring(1, 3) =

3 ’set’ or name.substring(1, 3) = ’get’)

Rc20: An abstract class should have abstract operations.

1 context uml::Operation

2 inv: (self.isAbstract implies self.owner−>exists(isAbstract))

Rc27: If a message is empty, then it must be a return type message.

1 context uml::Message

2 inv: self.name =’ ’ implies self.messageSort=MessageSort::reply

4.6 Metric Selections for Quality Assurance

Metrics are important to measure the quality of the models. We have already

achieved this main objective by using rules and guidelines (Section 4.5) to detect

issues on incomplete and complete models.

There are five major types of software measurement scales, these are, nominal,

ordinal, interval, ratio and absolute [27]. The scale with most information

and flexibility is the ratio scale, which permits most sophisticated analysis.

Measurements such as number of defects are ratio measurement and on UML

models the ratio measurement relates to the number of issues detected in the

56 CHAPTER 4. A QUALITY MODEL FOR UML AND ITS INSTANTIATION

model. Another measurement could be to measure the physical size of the

UML models. The ratio measurement scale starts at zero, which represents the

non-existence of any issue in the UML model, while a 1.0 value indicates possible

high values for detected issues in the model.

In addition, ratio metrics are useful to measure the quality of UML model by

considering faults per element. The increase in faults per elements, decreases the

quality of UML model and vice versa. In the following, we describe a general

ratio metric, that can be adopted for the rules or guidelines described in Section 4.5.

M= Number of violations of the context element/Total number of context element

Furthermore, we present example ratio metrics. This include the Mi1 metric,

which is derived from Ri1 of incomplete model. We look for the violations of Ri1

and divide the total number of use cases in a use case diagram. The result zero

represents that either there is no violation of rules or guidelines or there is no

corresponding diagram in the model. Where as one represents that all rules have

been violated.

Mi1 = Number of use cases outside the subsystem/Total number of the use cases in use

case diagram

The second example metric Mc13 is a guideline from the list of rules and guidelines

for complete models, where we measure the ratio metric for the Rc13 of complete

model.

Mc13= Number of packages that contain more than 20 classes/Total number of packages

This approach is extended based on the quality assessment results for the bakery

system presented in Chapter 6.

Chapter 5

Implementation

This chapter presents the technologies used for the implementation of the quality

assessment and quality improvement approach, and the implementation of the

prototype tool.

5.1 Eclipse and Associated Technologies

This section focuses on Eclipse and associated technologies used in the implemen-

tation. The overview of these technologies serves as a base for the understanding

of the reader, that how the approach is implemented and how the different parts

collaborate.

5.1.1 The Eclipse Modeling Project (EMP)

Eclipse provides a whole range of modeling tools and frameworks, as a part of the

Eclipse Modeling Project (EMP). The collection of tools was formed to coordinate

and focus on Model Driven Development (MDD) technologies. EMP is a top level

project which is logically organized into sub-projects that provide abstract syntax

definitions, concrete syntax development, Model-to-Model (M2M) transformation,

and Model-to-Text (M2T) transformation.

5.1.2 The Eclipse Modeling Framework (EMF)

Eclipse Modeling Framework (EMF) is a modeling framework and code generation

facility for the building of tools and other applications. XMI is used to describe

models and the EMF provides tools and runtime support to produce a set of

Java classes for the model, a set of adapter classes that enable viewing and

command-based editing of the model, and a basic editor. Models can be specified

57

58 CHAPTER 5. IMPLEMENTATION

using annotated Java, UML, XML documents, or modeling tools. Additionally,

EMF provides the foundation for interoperability between EMF-based tools and

applications [92]. Figure 2.2 [page 8] shows both graphical as well as an EMF

representation of a UML model, in which each UML notation is described in XMI.

5.1.3 The XPand Project

The Xpand project focuses on the generation of textual artifacts from models and

consists of various languages and components. Xpand is a Model-to-Text (M2T)

transformation language featuring polymorphic template invocation, functional ex-

tension, model validation and model transformation based on the Xtend language.

The implementation of our prototype tool is based on M2T the transformation

with Xpand and M2M transformation with Xtend. In the following both languages

are discussed in detail.

5.1.3.1 The Xpand Code Generation Language

Xpand is a modern template-based code generation language (i.e., Model-to-

Text (M2T)) which has become popular in a very short time. Xpand language was

originally developed as part of openArchitectureWare (oAW) [65] project before

it became part of the EMP. Xpand language provides a powerful mechanism

with its limited vocabulary.

In a single M2T transformation project, one or more than one Xpand language

template can be defined. Each Xpand language template is defined using DE-

FINE and ENDDEFINE blocks. The Listing 5.1 shows a simple DEFINE

block, where simpleTemplate is the name of the block, and Type is the type of

the element, on which this block should be executed. Inside the block statements

can be defined.

1 «DEFINE simpleTemplate FOR Type»
2

3 some statements...

4

5 «ENDDEFINE»

Listing 5.1: Simple Xpand Template

Xpand language provides multiple features to enable code generation in a smooth

way. The following is a set of the important statements in Xpand language.

5.1. ECLIPSE AND ASSOCIATED TECHNOLOGIES 59

5.1.3.1.1 The IMPORT Statement

The IMPORT statement enables importing namespace and using the unqualified

names contained in the imported namespace. Listing 5.2 imports the name spaces

of UML metamodel for the current template.

1 «IMPORT uml»

Listing 5.2: Import Statement

5.1.3.1.2 The EXTENSION Statement

Extensions provide a flexible and convenient way of defining additional features

of metaclasses. In Listing 5.3 An EXTENSION import points to the Xtend

language file containing the required extensions.

1 «EXTENSION my::ExtensionFile»

Listing 5.3: Extension Statement

5.1.3.1.3 The FOREACH and EXPAND Statements

These statements enable the retrieval of a specific collection and its manipulation

inside the body. FOREACH is used in Xpand language templates for retrieving

a specific collection of model elements, as described in Listing 5.4, whereas rule1 is

the name of the DEFINE block that should be expanded for each use case. The

EXPAND statement expands another DEFINE block (in a separate context),

inserts its output at the current location and continues with the next statement.

This is similar in concept to a subroutine call.

1 «EXPAND rule1 FOREACH eAllContents.typeSelect(UseCase)»

Listing 5.4: The FOREACH and EXPAND Statements

5.1.3.1.4 IF Statement

The IF statement supports conditional expansion. Any number of ELSEIF

statements are allowed. The ELSE block is optional. Every IF statement must

be closed with an ENDIF. The body of an IF block can contain any other

statement, specifically, IF statements may be nested. Listing 5.5 shows a simple

example of an IF block.

1 «IF expression»
2 statement

3

4 «ELSEIF expression»
5 statement

6

7 «ELSE»
8 statement

9 ...

10 «ENDIF»

Listing 5.5: IF Statement

60 CHAPTER 5. IMPLEMENTATION

5.1.3.1.5 REM Statement

The REM statement is used for comments. Listing 5.6 shows REM statement,

the comments are written inside the block.

1 «REM»
2 This is a sample REM block in Xpand template.

3 «ENDREM»

Listing 5.6: REM Statement

5.1.3.2 The Xtend Model-to-Model (M2M) Transformation Language

The Model-to-Model (M2M) language Xtend is a part of the Xpand project. Xtend

language can also help in formulating readable Xpand language templates by

defining reusable operations that access the source model and retrieve data from

it. In the prototype Xtend is used for two purposes: with OCL used in Xpand

language templates to generate reports, and for refactoring of the UML models.

Listing 5.7 shows a sample Xpand language template used to generate a HTML

report for violated rules, which calls myXtendFunction() from the Xtend language

file.

1 «DEFINE ruleNumber FOR uml::Element»
2 «IF myXtendFunction()===false»
3 <TR>

4 <TD>”Description of rule”</TD>

5 <TD>«qualifiedName»</TD>

6 </TR>

7 «ENDIF»
8 «ENDDEFINE»

Listing 5.7: XPand Language Example for M2T Transformation

Listing 5.8 shows, the definition of the renameElement() function in the Xtend,

which sets new name for the UML element.

1 Boolean renameElement(uml::Element elem):

2 elem.setName(”NewName”)−>true;

Listing 5.8: Xtend Language Example for M2M Transformation

5.1.4 Modeling Workflow Engine (MWE)

The Modeling Workflow Engine (MWE) is a generator engine, which can be

configured to run independently or within Eclipse. MWE uses an XML based

configuration language to setup a generator workflow, which may consist of one

or more workflows. The workflow engine is used to execute transformations

of models, i.e. M2T and M2M transformations. In Listing 5.9, Line 1 shows

that Xtensible Mark-up Language (XML) version for the wokflow generator and

encoding for windows operating system. Line 4 shows how to read a UML model.

The name attribute is used to provide a name for the slot on which model should

5.2. TOOL IMPLEMENTATION 61

be stored and value attribute take the uml model as an input from the specified

location. Lines 6-7 show how to setup the out put directory, where the results are

stored. Line 9 shows the setup of the metamodel, in our case UML metamodel

is configured for this generator. Line 11 is used to instantiate the metamodel.

Line 13-16 are used to read the EMF representation of UML model using XMI

reader Eclipse component. Lines 18-20 show how to clean the output directory

first. Lines 22-31 show how to invoke M2T transformation generator engine to

create HTML reports.

1 <?xml version="1.0" encoding="windows-1252"?>

2 <workflow>

3 <!−− model which needs to be analyzed −−>
4 <property name="model" value="myModel.uml" />

5 <!−− set the output directory−−>
6 <property name="modeldir" value="myModel"/>

7 <property name="src-gen" value="src-gen/${modeldir}" />

8 <!−− Setup UML2 support −−>
9 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />

10 <!−− instantiate metamodel −−>
11 <bean id="mm_emf" class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>

12 <!−− load uml model −−>
13 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">

14 <modelFile value="${model}" />

15 <outputSlot value="modelSlot" />

16 </component>

17 <!−− Clean src directory −−>
18 <component id="dirCleaner"

19 class="org.eclipse.emf.mwe.utils.DirectoryCleaner"

20 directory="${src-gen}$"/>

21 <!−− create html metrics report −−>
22 <component class="org.eclipse.xpand2.Generator">

23 <metaModel idRef="mm_emf"/>

24 <fileEncoding value="ISO-8859-1"/>

25 <expand

26 value="templates::root::main FOR modelSlot" />

27 <outlet path="${src-gen}$" overwrite="false">

28 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">

29 </postprocessor>

30 </outlet>

31 </component>

32 </workflow>

Listing 5.9: Example of a WorkFlow generator

5.2 Tool Implementation

This section presents the implementation of the prototype for quality assessment

and quality improvement approach. The implementation is divided into two

parts: the violation of rules or guidelines are described in Section 5.2.2 and the

refactorings are described in Section 5.2.3.

62 CHAPTER 5. IMPLEMENTATION

5.2.1 Common Infrastructure

In the Eclipse IDE, each project is managed with the project dependencies.

Listing 5.10 shows all the dependencies for running the workflow properly for both

quality assessment and improvement approaches for the prototype tool. Lines 1-2

show the Manifest version numbers. Lines 3-4 represent the name of our Eclipse

project. Line 5 shows the bundle version of our prototype tool. Lines 6-17 show all

the required bundles and Line 28 shows the required execution environment. Line

19 shows the imported OCL package and Lines 20-21 show the UML dependencies

for OCL component.

1 Manifest−Version: 1.0

2 Bundle−ManifestVersion: 2

3 Bundle−Name: swe.uml.rules

4 Bundle−SymbolicName: swe.uml.rules; singleton:=true

5 Bundle−Version: 1.0.0

6 Require−Bundle: org.eclipse.jdt.core;bundle−version="3.5.0",

7 org.apache.log4j;resolution:=optional,

8 org.antlr.runtime;bundle−version="3.0.0",

9 org.eclipse.core.runtime;bundle−version="3.5.0",

10 org.eclipse.emf.mwe.utils;bundle−version="0.7.0",

11 org.eclipse.xpand;bundle−version="0.7.0",

12 org.eclipse.xtend;bundle−version="0.7.0",

13 org.eclipse.xtend.util.stdlib;bundle−version="1.0.0",

14 org.eclipse.xtend.typesystem.xsd;bundle−version="1.0.0",

15 org.eclipse.xtend.typesystem.uml2;bundle−version="1.0.0",

16 org.eclipse.xtend.profiler.source;bundle−version="1.0.0"

17 org.eclipse.uml2;bundle−version="3.0.0",

18 Bundle−RequiredExecutionEnvironment: J2SE−1.5
19 Import−Package: org.eclipse.ocl.uml,

20 org.eclipse.ocl.uml.options,

21 org.eclipse.ocl.uml.util

Listing 5.10: Project Dependencies and the Project Information

5.2.2 Implementation of the Quality Assessment Approach

This section describes how the quality assessment approach is implemented using

the Xpand modeling project.

5.2.2.1 OCL Evaluator

The OCL Evaluator class is the main class for executing the OCL queries. This

class has been adopted from the Eclipse OCL Interpreter example [22], which is

part of the OCL Eclipse project. It describes the usage of OCL expressions on a

model. It includes a parser/interpreter for OCL that works on EMF models.

Listing 5.11 illustrates Java code that evaluates a single query. The context object

contains the UML model that will be validated. First, a factory is initialized with

the model (Line 1). The enumeration object named ModelingLevel is set to M2, as

5.2. TOOL IMPLEMENTATION 63

all the OCL constraints operate on OMG’s M2-level, i.e., on metamodel elements

(Line 2). An OCL object is built using the factory and modeling level objects,

and a corresponding helper is created that will parse the string containing the

OCL expression (Line 3–5). The method setContext in Line 7 associates the given

context to the helper. Since the modeling level is always M2, the first case block

is executed. The variable expression is a string containing the OCL constraint.

In Line 8, the helper parses it and produces an OCLExpression object. Now, the

OCL object can evaluate the parsed expression on the UML model contained

in the context (Line 9). Lines 10-13 present the check, whether the query has

successfully parsed or not. Line 14-16 is used to catch the parser exceptions.

1 IOCLFactory<Object> oclFactory = new UMLOCLFactory(context);

2 ModelingLevel modelingLevel = ModelingLevel.M2;

3 OCL<?, Object, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?> ocl;

4 ocl = oclFactory.createOCL(modelingLevel);

5 OCLHelper<Object, ?, ?, ?> helper = ocl.createOCLHelper();

6 try {
7 modelingLevel.setContext(helper, context, oclFactory);

8 OCLExpression<Object> parsed = helper.createQuery(expression);

9 Object results = ocl.evaluate(context, parsed);

10 if (results instanceof Boolean) {
11 boolean bool = (Boolean) results;

12 if (bool == false)

13 issues.addError("OCL Check failed: " + currentDescription);

14 }catch (ParserException e) {
15 issues.addError(e.getMessage());

16 }

Listing 5.11: Sample Code to Execute OCL Query

5.2.2.2 Java Extension in Xtend Language

Java extensions are used to express logic that can not be expressed using Xtend.

Since file OCLEvaluator is implemented in Java, hence Java extension is required

to execute this function within Xtend language. Listing 5.12 illustrates two Java

extensions. The function dump() on (Line 2) is used to call Helper Java class (Line

3), that prints messages in the console, which helps debugging. The evaluateOCL()

method (Line 5) used to call the OCLEvaluator class (Line 6) to execute OCL

queries.

1 import uml;

2 cached Void dump(String s) :

3 JAVA helper.Helper.dump(java.lang.String);

4

5 cached Void evaluateOCL(String ms, uml::Element model) :

6 JAVA helper.OCLEvaluator.evaluateOCL(java.lang.String, org.eclipse.uml2.uml.Element);

Listing 5.12: Java Extension in Xtend Language

64 CHAPTER 5. IMPLEMENTATION

5.2.2.3 Rules and Guidelines in Xtend Language

The implementation of OCL rules and guidelines in Xtend is illustrated in List-

ing 5.13, which shows the implementation of Rc6 [Section 4.5.6, page 54]. In Line

2, a cached keyword is used to cache the query result, so that it can be reused

in the Xpand templates to save execution time. The method parameter is the

context for the OCL query, which is a Class. Line 3 describes the OCL query as

a string. The query is passed as a string to the evaluateOCL() function (Line 4).

It returns a boolean value. The complete implementation of rules and guidelines

is described in Appendix E for incomplete model and Appendix F for complete

model.

1 // R6 Each class should have maximum 10 operations.

2 cached Boolean totalOperations(uml::Class cs):

3 let query ="self.ownedOperation->size() <= 10":

4 query.evaluateOCL(cs);

Listing 5.13: Implementation of Rule in Xtend Language

5.2.2.4 Quality Assessment Report Generation with Xpand

Quality assessment results are stored as HTML documents. The process of

generating a report is described as M2T transformation Xpand language. As

discussed earlier, that functions described in Xtend language can be called in the

Xpand templates.

1 «IMPORT uml»
2 «DEFINE main FOR Model»
3 «REM»Report for analysis model «ENDREM»
4 «EXPAND templates::analysisModel::analysisModel»
5 «ENDDEFINE»

Listing 5.14: Root Xpand Language Template

The root Xpand language template is illustrated in the Listing 5.14. Line 1

signifies that the template is defined for the UML metamodel and Line 2 means

that the template works on the UML model. Line 4 describes the structure to

execute the analysisModel or designModel templates, which are defined in the

templates package.

The analysisModel template is shown in Listing 5.15, which calls the OCL based

rules defined in Xtend. Line 1 shows that rule6 is the name of the DEFINE block

and it works on all classes present in the UML model. In Line 2 totalOperation()

Xtend function is described for class elements. Therefore it is necessary to take

care that the context element in both the Xtend function and the DEFINE block

must be the same, otherwise workflow generates an error message. Line 3 checks

the boolean results. If it violates the rule, the result is stored in the HTML file

with its location (Line 4-9).

5.2. TOOL IMPLEMENTATION 65

1 «DEFINE rule6 FOR uml::Class»
2 «LET totalOperations() AS maxOperation»
3 «IF maxOperation==false»
4 <TR>

5 <TD>

6 "Rc6: Each Class Should have maximum 10 operations"

7 </TD>

8 <TD>«getQualifiedName()»</TD>

9 </TR>

10 «ENDIF»
11 «ENDLET»
12 «ENDDEFINE»

Listing 5.15: Partial Xpand Language Template to Generate Html Report

5.2.2.5 Modeling Workflow Engine (MWE) for Quality Assessment

The workflow generator generates the HTML output for the violated rules. List-

ing 5.16 shows the Xpand language component which invokes the root template,

described in Listing 5.14. Line 5-6 refer to the templates, which is the name of

the package. The root is an Xpand template file inside the templates package,

where main is a DEFINE block, which is invoked by the generator.

1 <!−− create html report for violated rules−−>
2 <component class="org.eclipse.xpand2.Generator">

3 <metaModel idRef="mm_emf"/>

4 <fileEncoding value="ISO-8859-1"/>

5 <expand

6 value="templates::root::main FOR modelSlot" />

7 <outlet path="${src-gen}$" overwrite="false">

8 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">

9 </postprocessor>

10 </outlet>

11 </component>

Listing 5.16: MWE Xpand Language Component

5.2.3 Implementation of the Quality Improvement Approach

This section presents the implementation details of the quality improvement

approach using the Xtend M2M transformation language.

5.2.3.1 Refactorings in Xtend Language

In this section, the implementation of two refactorings i.e., Rename and Pull up

method are described. The basic concepts of these two refactorings are described in

Sections 2.6.1 and 2.6.2. These two refactorings are used to show the applicability

of an automated approach for the quality improvement of UML models.

66 CHAPTER 5. IMPLEMENTATION

5.2.3.1.1 Rename Refactoring

Listing 5.17 describes the rename refactoring in a generic way that can be applied

to any UML element, for example, use cases, classes, operations and so on. Line

1 illustrates that refactoring works on the UML metamodel. Line 2 defines the

transform() function, which is called in the MWE to execute this refactoring. All

elements are stored in a list in Line 3, while Line 4 calls the renameElement()

function and the findElement() function returns the element that needs to be

refactored (Lines 7-8). Lines 10-11 show the renameElement() function in which

the element is given a new name.

1 import uml;

2 uml::Model transform(uml::Model model):

3 let elementList = model.eAllContents.typeSelect(UML::Element).collect(e|e):
4 elementList.forAll(e|renameElement(findElement(elementList, ”Name of the Element”)))−>
5 model;

6 // find uml::Element in the model

7 List[uml::Element] findElement(List[uml::Element] elem, String name):

8 elem.select(e|e.name == name);

9 // rename UML::Element in the model

10 Boolean renameElement(List[uml::Element] elem):

11 elem.setName(”New Name for the Element”)−>true;

Listing 5.17: Rename Refactoring

5.2.3.1.2 PullUp Method Refactoring

The implementation of the Pullup Method refactoring is described in Listing 5.18.

Line 1 means that this refactoring works on the UML metamodel. Line 2 defines

the transform() function which takes the UML model as an argument and returns

the result as a UML model. Lines 4-8 represent how to look for the existence of a

superclass and its subclasses in the hierarchy and save each of them in a different

list (Line 10). Lines 12-13 pick a class and check for identical operations. Lines

18-28 define the collectOperations() method, which save the identical operations.

If identical operations are found in the subclasses then move the operation from

the subclasses to the super class(Lines 30-36). Lines 38-41 show how the identical

operations are deleted from the subclasses. A new operation is created in superclass

as shown in (Lines 43-46).

5.2. TOOL IMPLEMENTATION 67

1 import uml;

2 uml::Model transform(uml::Model model):

3 // generalization class

4 let generalClass = model.eAllContents.typeSelect(Class).

5 generalization.collect(e|e):
6 // list with all classes that inherit from the superclass

7 let classlist = model.eAllContents.typeSelect(Class).select(

8 c|c.superClass.exists(s|s.name == generalClass)) :

9 // list with operations to be moved

10 let operationlist = newList() :

11 // 1− pick one class and check the operations

12 classlist.first().ownedOperation.forAll(o|collectOperations(

13 o, classlist, operationlist)) −>
14 // 2− delete all operations in list

15 operationlist.forAll(o|pullUpOperation(

16 (String)o, classlist, generalClass)) −>model;

17 // collect operations

18 Boolean collectOperations(Operation o, List classlist, List operationlist) :

19 classlist.forAll(c|((Class)c).ownedOperation.exists(op|op.name == o.name))

20 ? (// operation found in all classes

21 // put method in list

22 operationlist.add(o.name) −>
23 dump(”Added operation ’”+o.name+”’ to list”)

24)

25 : (// operation not in all classes

26 dump(”Operation ’”+o.name+”’ exists not in all classes of list”)

27) −>
28 true;

29 // Pull Up the operation to the super class

30 Boolean pullUpOperation(String o, List classlist, List[uml::Class] generalClass) :

31 //create Operation in superClass

32 generalClass.ownedOperation.add(newOperation(o)) −>
33 //remove operation in classes of classlist

34 classlist.forAll(c|deleteOperation((Class)c, o)) −>
35 dump(”Operations ’”+o+”’ of classes in list successfully moved to superclass”) −>
36 true;

37 // delete the operations from the child classes.

38 Boolean deleteOperation(Class c, String oName):

39 c.ownedOperation.remove(c.ownedOperation.selectFirst(o|o.name == oName))−>
40 dump(”Removed operation ”+oName+” from class ”+c.name) −>
41 true;

42 // create a new class to the super class with same signature to the child class operation

43 create Operation newOperation(String name) :

44 this.setName(name);

45 create List newList():

46 this;

Listing 5.18: Pull Up Refactoring

5.2.3.2 The Modeling Workflow Engine (MWE) for Refactoring

The workflow generator is used to invoke the M2M transformation. Listing 5.19

illustrates the Xtend language component (Lines 2-6) used for M2M transformation.

Lines (2-3) refer to the Xtend language component based on the UML metamodel.

The refactoring is invoked in Line 4, where renameElement is the name of the

Xtend language file and transform() is the Xtend function described in the

68 CHAPTER 5. IMPLEMENTATION

Listing 5.17. In Lines 9-12 EMF writer component is used to write the EMF

representation of UML model into the output directory. It writes the transformed

model into the src-gen directory.

1 <!−− model to model transformation −−>
2 <component class="org.eclipse.xtend.XtendComponent">

3 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel" />

4 <invoke value="renameElement::transform(modelSlot)"/>

5 <outputSlot value="outputSlot"/>

6 </component>

7

8 <!−− write output UML model −−>
9 <component id="writer" class="org.eclipse.emf.mwe.utils.Writer">

10 <modelSlot value="modelSlot"/>

11 <uri value="./src-gen/Transformations/tranformedModel.uml"/>

12 </component>

Listing 5.19: MWE Xtend Language Component

Chapter 6

Case Study

This chapter presents a case study, its academic context, a description and details

of the quality assessment results for the bakery system introduced in Section 2.2.

Furthermore, size and ratio metrics for incomplete and complete models are given.

In the end, the case study feedback and conclusions are discussed.

6.1 Academic Context and Learning Objectives

The case study in this thesis is primarily related to a UML practical course,

in which UML models were developed for the bakery system. The description

of the bakery system, how the bakery system model is developed, and which

UML diagrams are suitable for the analysis and design models have already

been introduced in Section 2.2 [page 12]. The analysis model is considered as

the incomplete model and the design model considered to be the complete model

based on our proposed quality model for UML, which is described in Chapter 4.

A UML practical course was announced for the students to learn the UML

modeling language and the duration of the course was three weeks. During that

course, their task was to develop the analysis and design models. These models

were used for the quality assessment based on the proposed quality model for

UML and models were refactored by the students based on the quality assessment

results. Due to time constraints, only two iterations were performed for the quality

assessment and quality improvement approach. The language of instruction for

the course was German language. A complete description of the bakery system in

the German language is described in Appendix A.

69

70 CHAPTER 6. CASE STUDY

The UML practical course was designed to allow students to develop UML

models for the bakery system by applying many of the principles learned

through their course work. eleven Bachelor and three Masters students of

computer science at the University of Goettingen, Germany, participated

in this course. The students had a basic knowledge about UML and object

oriented programming concepts. Four students were in fourth semester.

Seven students were in sixth semester, and three students were in tenth

semester. In this practical course, lectures were presented on the Unified

Process, and how UML fits into each phase of the process. The assignments

related to the lecture topics were usually based on the development of a UML

model from the requirements. The primary goal for using the bakery system

as an example in a UML practical course was that students can learn the

UML modeling language in a simple way and how to use UML in the RUP process.

As already described, fourteen students participated in this practical course. These

students were divided into two groups (BLUE and RED), so that two models

could be processed for the quality assurance of this case study. Each group was

further sub-divided based on the decomposition of their models, so that they could

work on different parts of the model. The three week UML course was managed

as follows: at the end of the first week, students handed over their analysis model,

and on Monday, they got the overall quality assessment results for those models.

The students performed refactorings on the models on Monday. On Tuesday their

models again went through the quality assessment tool for purposes of evaluating

them. The same process is repeated for the design model in the second week

and in the last week the results of both models were discussed and the students

provide feedback about the course.

6.2 Quality Assessment Results for the Bakery System

This section presents the quality assessment results of the BLUE and RED group

for the incomplete model and complete model.

6.2.1 Quality Assessment Results for Incomplete Model

The analysis model for the bakery system is considered here to be an incomplete

model. The quality attributes analyzability, changeability and understandability

were considered for the quality assessment of the incomplete model types. The

BLUE and RED group did not violate any rule or guideline for the changeability

quality attribute. Therefore, the following paragraph only discusses the results

for the analyzability and understandability quality attributes for both groups.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 71

6.2.1.1 BLUE Group Incomplete Model

Table 6.1 shows the quality assessment results for the analyzability quality at-

tribute and Table 6.2 shows the understandability related violations for the BLUE

group.

Each table contains the name of the violated rule or guideline and the number

of times that rule or guideline was violated in the model for first and second

iteration. The results are described in the following paragraphs.

6.2.1.1.1 Analyzability for Incomplete Model

Table 6.1 shows the violations related to the analyzability quality attributes. The

GQM based categorization of rules for analyzability is described in Chapter 4,

page 46 for the incomplete model, hence this guideline was violated in both

iterations.

Ri16 [page 46] is violated for all three subsystems of the use case diagram in the

first and second iteration. Students did not know how to use the UML tool to

draw activity diagrams for the subsystems of a use case diagram.

Ri17 [page 46] is violated for 20 activities in an activity diagram in their first

iteration, while in the second iteration, there was only one single violation of this

guideline. Our quality assessment tool, helped to improve the quality of the model.

Ri18 [page 46] is violated for all three subsystems of a use case diagram in the

first iteration. Students did not know, how to use the UML tool to describe a

subsystem of a use case diagram as a package in a class diagram but with the help

of the instructor, they managed to improve their models in the second iteration.

Ri34 [page 47] is violated nine times in the first iteration, while in the second

iteration, the Ri34 was violated 48 times, which is five times more than in first

iteration. This happened because they introduce new sequence diagrams, and

messages on sequence diagrams were deleted from the diagram pane, whereas they

still had messages in their model containment tree. Hence, our quality assessment

tool detected these messages as a violation of Ri34.

6.2.1.1.2 Understandability for Incomplete Model

Table 6.2 presents the understandability related quality assessment results for

the incomplete model. The GQM based selection of the rules and guideline is

already described in Chapter 4, page 48 for the understandability quality attribute.

72 CHAPTER 6. CASE STUDY

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Ri16

Each subsystem should be refined by one activity

diagram 3 3

Ri17

Each activity in an activity diagram should refer to a

use case in a use case diagram 20 1

Ri18
Each subsystem of a use case diagram should be

represented as a package in the class diagram 3 0

Ri34
Every call message received by a lifeline should have

a corresponding operation in the class 9 48

Table 6.1: BLUE Group’s Violations of Rules for Analyzability of Incomplete
Model Type

In the first iteration, Ri1 [page 49] is violated one single time, while in the second

iteration, they fixed this problem. Hence the quality assessment tool helped to

improve the quality of the model.

Ri5 [page 49] is a guideline for the modelers. However, when more use cases

communicate to a single actor it means more responsibility for one actor, and this

should be avoided. Ri5 is violated seven times in first iteration, and in second

iteration the problem was solved.

Ri6 [page 50] is also a guideline, related to the naming convention and the length

of the name string for a use case name should not be more than four words. The

BLUE group violated Ri6 three times in first iteration, but this was resolved in

the second iteration.

Ri7 [page 49] is also a guideline, that suggests the size of the subsystem. This

guideline was violated for all three subsystems in first and second iteration. This

was violated because too many use cases had been defined in first iteration. They

tried to reduce the size of the subsystem in second iteration, but still they had

one single violation.

Ri22 [page 51] is related to the naming convention of a class. This was violated

seven times in first iteration and resolved in second iteration.

Ri26 [page 51] is a rule that was violated only once and resolved in second

iteration. This helped in understanding the associated classes.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 73

Ri27 [page 48] suggests the addition of multiplicity values at both ends, and this

was violated by the BLUE group only once. In the second iteration, no violations

were found in their models. Multiplicity indicates how many instances of one

class are required.

Ri29 [page 51] is related to the naming convention of an association. In the first

iteration, only one single violation was identified. In the second iteration, no

violations were found for this guideline.

Ri30 [page 48] is a guideline. In the first iteration, it was violated 17 times, while

in the second iteration, they still had a one single violation. It is too early to

decide an aggregation in the analysis stage, in that case we provide a guideline

Ri30 to the students, to the effect that they should not provide any aggregation

or composition type relationship in their incomplete model.

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Ri1 Each use case must be inside the one subsystem 1 0

Ri5

A use case should not linked to more than three

actors 7 0

Ri6 A use case name should contain 1 to 4 words 3 0

Ri7

Each subsystem should have a minimum of 3 and a

maximum of 5 use cases 3 3

Ri22

Each class name should start with a capital letter and

should be one word 7 0

Ri26 Each association must have a name 1 0

Ri27

Each association must specify multiplicity values at

both ends 1 0

Ri29

Each association name should start with a lower case

letter 1 0

Ri30

Classes should not be linked to a composition or

aggregation association type 17 1

Table 6.2: BLUE Group’s Violations of Rules for Understandability of Incomplete
Model Type

The results described in the Table 6.1 and Table 6.2 are exemplified in Figure 6.1

for a sample use case diagram and Figure 6.2 for a sample sequence diagram and

some classes from a class diagram are shown in Figure 6.3.

In Figure 6.1, the violation of Ri6 [page 50] is highlighted. Ri6 is related to the

length of the use case name, which is more than four words, that leads to the

violations of understandability UML coding and naming conventions described in

Chapter 4, [page 50].

74 CHAPTER 6. CASE STUDY

Ri6

Figure 6.1: BLUE Group’s Use Case Diagram of Incomplete Model Type

The sequence diagram and its corresponding classes are illustrated in the

Figure 6.2, where the violations Ri34 [page 47] were detected in sequence diagrams.

This violation is related to the message between the lifelines. If there is a method

call on the message, then that method must exist in the corresponding class in

the class diagram. In Figure 6.2, messages are used for the method call but that

corresponding method is not present in the corresponding class of the class diagram.

Figure 6.3 shows some extracted classes of the class diagram. Ri22, Ri26 and

Ri29 are related to the UML naming or coding convention for the model. Ri22 is

related to the class name violation, for example, class name Kundenverwaltung

GUI contains two words. Ri26 and Ri29 are related to the association name. None

of the classes shown in Figure 6.3 contain any name for their associations. Ri27 is

related to the multiplicity values at the end of the association. In Figure 6.3, class

associations do not have any multiplicity values at the ends of association. Ri30

violation is related to the use of composition or aggregation type of associations

in the incomplete models.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 75

R
i34

Figure 6.2: BLUE Group’s Class and Sequence Diagram of Incomplete Model
Type

76 CHAPTER 6. CASE STUDY

R
i26

, R
i27

, R
i29

, R
i30

R
i22

Figure 6.3: BLUE Group’s Class Diagram of Incomplete Model Type

6.2.1.2 RED Group Incomplete Model

The results of the violation of the rules by the RED group are shown in Table 6.3

for the analyzability and in Table 6.4 for the understandability quality attributes.

The description of the quality assessment results is presented in the following

sections.

6.2.1.2.1 Analyzability for Incomplete Model

Table 6.3 presents the quality assessment results for the RED group.

Ri16 [page 46] was not violated in the first iteration but in the second iteration

the RED group violated this rule two times. Ri16 relates to the consistency

between a use case, and an activity diagrams. Activity diagrams are refined

from the subsystem of use case diagrams. In the second iteration, the RED

group introduced an additional activity diagram, and because of that the quality

assessment prototype tool detects a violation of Ri16, which suggests a one to one

mapping between the subsystem of a use case diagram and the activity diagram.

Therefore, one subsystem should be refined by one activity diagram.

Ri17 [page 46] was violated by the RED group more than the BLUE group in the

first iteration, and that was 31 times. In the second iteration only 18 violations

are removed, i.e., 13 violations are still present in their diagram. Due to the

addition of new activity diagrams in second iteration, the activities in the activity

diagrams increased and those activities were not consistent with the use case

diagram. That means the activities were not traceable to the use cases in the use

case diagram.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 77

Ri18 [page 46] was violated for all the three subsystems of a use case diagram

in the first iteration, but they managed to improve their model in the second

iteration. The violation of this rule refers to the inconsistency between the use

case diagram and a class diagram, whereby the subsystems are not refined as

packages in the class diagram.

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Ri16

Each subsystem should be refined by one activity

diagram 0 2

Ri17

Each activity in activity diagram should refer to a use

case in a use case diagram 31 13

Ri18

Each subsystem of use case diagram should be

represented as a package in the class diagram 3 0

Table 6.3: RED Groups’s Violations of Rules for Analyzability of Incomplete
Model

6.2.1.2.2 Understandability for Incomplete Model

Table 6.4 shows the violations related to the understandability quality attribute

for the RED group.

Ri7 [page 49] is related to the complexity of the use case diagram in terms of

the size of the subsystem. Ri7 is violated for all three subsystem of a use case

diagram in first iteration and second iteration. In the first iteration, students

defined too many use cases for each subsystem. They tried to reduce the size

to a maximum of five use cases, but still they had violations in the second iterations.

Ri8 [page 50], Ri22 [page 51], Ri26 [page 51] and Ri29 [page 51] are related to the

compliance with the UML naming convention described in Chapter 4, whereby

Ri8 is related to the subsystem name. Ri22 is related to the class name, and Ri26 is

related to the associations without a name. The RED group has violated Ri8 two

times in first iteration, and it resolved the problem in second iteration. Ri22 was vi-

olated six times in first iteration and resolved in second iteration. Ri26 and Ri29 are

violated only once in first iteration, and the problem is resolved in second iteration.

Ri27 [page 48], is violated one single time, but this is resolved in the second

iteration. Ri27 is related to the presence of multiplicity values at each association.

A sample use case diagram is illustrated in Figure 6.4. The diagram contains the

violations of Ri7 [page 49] and Ri8 [page 50]. Ri7 violation is related to the size of

78 CHAPTER 6. CASE STUDY

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Ri7

Each subsystem should contain a minimum of 3 and

a maximum of 5 use cases 3 3

Ri8

A subsystem name should start with a capital letter

and should be consisting of one to two words 2 0

Ri22

Each class name should start with a capital letter and

should be one word 6 0

Ri26 Each association must have a name 1 0

Ri27

Each association must specify multiplicity values at

both ends 1 0

Ri29

Each association name should start with a lower case

letter 1 0

Table 6.4: RED Group’s Violations of Rules for Understandability of Incomplete
Model Type

the subsystem, which is more than five use cases for the subsystem. Ri8 is related

to the naming convention, in which the name of the subsystem does not start

with a capital letter.

There were no violations found in their sequence diagrams, whereas in their class

diagrams some violations were found. These are illustrated in the Figure 6.5. The

RED group has violated almost the same rules or guidelines, which were violated

by the BLUE group. The violations of Ri22 are related to the naming convention

for a class. Ri26 is related to an association that has no name and Ri29 is related

to the association name starting with a lower case letter. An association that

does not contain any value at both ends of the association is detected according

to Ri27.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 79

Ri8
Ri7

Figure 6.4: RED Group’s Use Case Diagram of Incomplete Model

R
i22 R

i26
, R

i27
, R

i29

Figure 6.5: RED Group’s Class Diagram of Incomplete Model

80 CHAPTER 6. CASE STUDY

6.2.2 Quality Assessment Results for Complete Model

The design model of the bakery system is considered to be a complete model in

our proposed quality model described in Chapter 4. The quality assessment is

performed for analyzability, changeability and understandability quality attributes.

Both groups have not violated any rule or guideline related to the changeabil-

ity quality attribute, therefore the following paragraph describes the details of

the quality assessment results for analyzability, and understandability quality

attributes.

6.2.2.1 BLUE Group Complete Model

Table 6.5 illustrates the analyzability related violations and Table 6.6 depicts the

understandability related violations for the complete model.

6.2.2.1.1 Analyzability for Complete Model

Rc24 [page 51] is related to the traceability problem between a class diagram and

sequence diagrams. This rule was violated in both iterations (Table 6.5). In the

second iteration, they still had 15 violations of this rule. The rule was violated

because the BLUE group did not properly merge their decomposed models into

a single project. Hence, their sequence diagrams lacked the information from

class diagram modules. The lifeline in the sequence diagrams is present but their

corresponding classes in the class diagram are either changed or deleted. Rc24

suggests that in the sequence diagram, each lifeline must have a class in the class

diagram.

Rc25 [page 51] is also a traceability problem. The messages in the sequence

diagram do not represent the actual methods in their corresponding classes of

a class diagram. Rc25 requires that every message, which is represented by a

method must be traceable to their corresponding operation in a class. In the first

iteration, they violated this rule 37 times, which is a high value. In the second

iteration, they still had ten violations of this rule. As described earlier for Rc24

this happens, when smaller modules of the decomposed project are combined

to form a single project. During this process, BLUE group’s model produced

inconsistencies between class and sequence diagrams. Therefore, the message,

which require methods are not traceable to their corresponding classes in a class

diagram.

6.2.2.1.2 Understandability for Complete Model

Rc1 [page 53] and Rc2 [page 53] violations are related to a class, which does

not have any attribute or an operation respectively. In the first iteration ten

violations were detected for Rc1, and 12 violations for Rc2. In the second iteration,

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 81

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Rc24

Each object or lifeline in a sequence diagram must

have a corresponding class in a class diagram

33 15

Rc25

Every call message received by a lifeline must have a

corresponding operation in the class 37 10

Table 6.5: BLUE Group’s Violations of Rules for Analyzability of Complete Model
Type

there were still two violations for Rc1 and one for Rc2 detected. In first iteration,

students did not focus on the class attributes and operations and defined only

classes. After refining the class diagrams, they did not delete the corresponding

classes from the model containment tree, and our quality assessment tool detected

the violations for Rc1 and Rc2.

Rc6 [page 54] is a guideline, that has been violated ten times in both iterations.

Rc6 suggests a maximum number of operations for a single class. This happened

because BLUE group introduced new getter and setter methods for the classes.

Rc16 [page 54] checks two aspects of an attribute, one is the data type of the

attribute, and the other is the visibility of an attribute. It is detected five times

in the first iteration and three times in the second iteration. Attributes without

data types and visibility are hard to understand. The problem may become

severe, when code is generated automatically or manually from the diagrams.

Rc16 is violated because students did not follow the tool to add data types for

the attributes. The Magic draw UML tool either produced empty space for the

data type or the data types were not standard data types of any object oriented

programming language.

Rc18 [page 54] is related to the number of parameters of an operation. The

threshold value was four. Rc18 was violated in the first iteration five times.

However, in second iteration they managed to resolve this violation. Hence our

quality assessment tool helped to improve the quality of the model.

Rc21 [page 54] was violated 142 times in first iteration. The BLUE group defined

methods without providing return types. In the first iteration, they had elements

existing in the model containment tree but not in the diagram pane. Our quality

assessment tool detected the violations of Rc21 for those elements.

82 CHAPTER 6. CASE STUDY

Rc22 [page 54] is related to the data type of a parameter passed to the operation.

This was violated 10 times in their first iteration but was resolved in the second

iteration.

Rc31 [page 53] is related to the number of entry and exit points in an activity

diagram. Rc31 restricts them to a single entry and single exit node. Rc31 was

violated in two activity diagrams. However, in the second iteration all Rc31

violations were removed.

Rc33 [page 54] is related to activities in an activity diagram that do not have any

incoming or outgoing transitions. These activities have no use in the activity

diagram and are considered to be dead activities, therefore should be removed.

Only two dead activities are identified in their first iteration and in second iteration

all dead elements were removed.

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Rc1 Every class should have attributes
10 2

Rc2 Every class should have operations
12 1

Rc6 Each class should have a maximum of 10 operations
10 10

Rc16
Each attribute must have a data type and must be

private 5 3

Rc18
Each operation should have a maximum of four

parameters 5 0

Rc21 Each operation must have a return type
142 0

Rc22 Each parameter must have a data type
10 0

Rc31
Each activity diagram should contain one initial node

and one exit point 2 0

Rc33 Dead activities must not exist in an activity diagram
2 0

Table 6.6: BLUE Group’s Violations of Rules for Understandability of Complete
Model Type

Some of the violations listed in Table 6.5 and Table 6.6 are exemplified in

Figure 6.6 for violations in class diagrams, in Figure 6.7 for violations in a

sequence diagram, and in Figure 6.8 for violations in an activity diagram.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 83

In Figure 6.6 two smelly classes are shown, where Rc1, Rc6, Rc18 and Rc21 are the

violations for class Backverwaltung and Rc2 and Rc16 are the violations detected

for the Backwaremenge.

Rc1 [page 53] and Rc2 [page 53] are violated in these classes. The class attributes

are missing for the Backverwaltung class and operations are missing for the

Backwaremenge class.

Rc6 violation is related to the size of the class as shown in Figure 6.6, in which

a maximum of ten operations were allowed, the class Backverwaltung contains

more than 10 operations.

Rc16 [page 54] is a critical violation, where attributes do not have any data

type. Furthermore, a Rc16 violation is highlighted in Figure 6.6 for class

Backwaremenge, where data types are not given for the class attributes.

Rc21 [page 54] is related to a class operation, that does not have a return

type. Class Backverwaltung in Figure 6.6 shows the violations of Rc21 and Rc18

[page 54]. Rc18 is highlighted for operation setBackwarenData that contains more

than four parameters.

Figure 6.7 shows a sequence diagram, where most critical violations are highlighted

for the analyzability quality attribute. Rc24 [page 51] is the critical violation, i.e.,

related to the traceability between a class and sequence diagrams. Rc25 [page 51]

is related to the traceability between methods used in a sequence diagrams and

the corresponding operation in a class. Figure 6.7 shows that the methods are

defined on the messages but their names and parameters are not described, and

the class in a class diagram does not contain that operation. The reason is that

the BLUE group did not know, how to call the constructor, and they therefore

made violations of Rc24.

Figure 6.8 shows the violations in an activity diagram in the complete model. Rc31

[page 53] and Rc33 [page 54] violations are highlighted in the activity diagram.

Rc31 should have exactly one entry and one exit node in the activity diagram.

This violation is visible in the diagram, whereby two exit nodes are detected

within the activity diagram.

84 CHAPTER 6. CASE STUDY

Rc1

Rc21

Rc18

Rc6

Rc16

Rc2

Figure 6.6: BLUE Group’s Extracted Classes of Complete Model Type

Rc25

Rc26

Figure 6.7: BLUE Group’s Sequence Diagram of Complete Model Type

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 85

Rc32

Rc34

Figure 6.8: BLUE Group’s Activity Diagram of Complete Model Type

86 CHAPTER 6. CASE STUDY

6.2.2.2 RED Group Complete Model

The results of the violation of the rules by the RED group are shown in Table 6.7

for analyzability and Table 6.8 for understandability quality attributes respectively.

6.2.2.2.1 Analyzability for Complete Model

Rc25 [page 51] is a traceability violation between a class diagram and a sequence

diagram, in which messages that represent the method can be traced back to their

corresponding classes. This rule was violated 37 times in the first iteration and

ten times in the second iteration (Table 6.7). The reason is the same as described

in the violations of Rc25 for the BLUE group [page 80], in which a decomposed

module was merged to form a single project, thus introducing inconsistencies

between a class diagram and a sequence diagram.

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Rc25

Every call message received by a lifeline should have

a corresponding operation in the class 37 10

Table 6.7: RED Group’s Violations of Rules for Analyzability of Complete Model
Type

6.2.2.2.2 Understandability for Complete Model

The value of Rc1 [page 53] and Rc2 [page 53] violations are high in their first and

second iteration (Table 6.8). Both groups did not take care, when creating a new

classes or deleting any empty class from their models. They deleted classes from

a diagram pane but not from the model containment tree and our tool detected it

as a violation of Rc1 and Rc2.

Rc5 [page 55] is related to a naming convention in that class names should start

with a capital letter. This was violated by the RED group more than in their

first iteration. The value increased in the second iteration because the RED

group deleted or modified about more than 20 classes. When they modified the

classes, they did not respect Rc5, and our prototype tool detected violations of Rc5.

Rc6 [page 54] and Rc13 [page 54] are related to the number of operations for

a single class and the number of classes for a single package respectively. Rc6

violations increased by one and become seven in their second iteration. They

improved the model with respect to the violations of Rc13.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 87

Rc17 [page 55] is related to the composition relationship, in which multiplicity

values for complete models were recommended on the side of the owner. Rc17 was

violated once in the first iteration and in the second iteration the problem was

resolved.

Rc18 [page 54] is related to the number of parameters, in which a maximum of

four parameters per operation is defined by Rc18. This was violated by two times

in the first iteration, but still the same violations were present in the model in

the second iteration. This happened because students did not take care of Rc18

and hence had the same violations in their second iteration.

Rc19 [page 55] is related to getter and setter methods for the <<entity>> classes.

This was violated 12 times in the first iteration and still two violations were

present in the second iteration. This is because new <<entity>> classes were

added to their class diagrams without getter and setter methods.

Rc21 [page 54] was violated 25 times in the first iteration and 23 of them were

removed in the second iteration leaving two still in existence. The number of

operations was increased from 174 to 277 in their second iteration as a part of the

introduction of the new violations of Rc21.

Rc22 [page 54] was violated 42 times in their first iteration, which is a

quite high value, and in the second iteration, they still had five violations.

This is due to the increased number of parameters per operations in the

second iteration. In addition, the RED group also had some dead param-

eters introduced when they merged their decomposed model into one single project.

Figure 6.9 shows some of the violations and these are Rc1 [page 53], Rc17 [page 55],

Rc18 [page 54] and Rc21 [page 54] as highlighted in the Figure 6.9.

Rc13 is related to size of the package, in which Rc13 allows 20 classes per package,

However, this is not shown in Figure 6.9 due to limited space.

Rc17 is related to a violation in which the multiplicity of composition association

type should be one at the side of the owner. One of the sample violations of the

Rc17 is shown in Figure 6.9.

Rc18 is related to the size, in which a maximum of four parameters per operation

is recommended. The operation KundendatenSpeichern has more than four

parameters as shown in Figure 6.9.

88 CHAPTER 6. CASE STUDY

R.No Name of the violated rule

No. of times

the rule was

violated

(Iteration 1)

No. of times

the rule was

violated

(Iteration 2)

Rc1 Every class should have attributes
32 21

Rc2 Every class should have operations
30 25

Rc5
Each class should start with a capital letter and

should be one word 8 15

Rc6 Each class should have a maximum of 10 operations
6 7

Rc13
Each package should contain a maximum of 20

classes 1 0

Rc17
If class has a composition relationship then

multiplicity should be one at the side of owner 1 0

Rc18
Each operation should have a maximum four

parameters 2 2

Rc19 An <<entity>> class should have getters and setters
12 2

Rc21 Each operation must have a return type
25 2

Rc22 Each parameter must have a data type
42 5

Table 6.8: RED Group’s Violations of Rules for Understandability of Complete
Model Type

Rc21 refers to a missing return type of an operation. The sample Rc21 violation is

highlighted in the class Verkauf for the operation KundenLaden() as shown in

Figure 6.9.

Figure 6.10 highlights some violations in a sequence diagram. Rc25 [page 51] is

related to missing traceability of methods in a sequence diagram to the class

operation.

6.2. QUALITY ASSESSMENT RESULTS FOR THE BAKERY SYSTEM 89

Rc26, Rc27, Rc29, Rc30

Rc22

Figure 6.9: RED Group’s Class Diagram of Complete Model Type

R
c25

Figure 6.10: RED Group’s Sequence Diagram of Complete Model Type

90 CHAPTER 6. CASE STUDY

6.3 Size and Ratio Metrics

This section presents size and ratio metrics for the quality assessment of the

bakery system. The ratio metrics provides faults per element. The metrics are

defined for analyzability and understandability quality attributes. Each metric is

defined for the violated rule or the guideline described in the previous Section 6.2

for incomplete and complete models.

6.3.1 Size Metrics for Incomplete Model

Before discussing the ratio metrics, let us look into the size of the incomplete

model developed by the BLUE and RED groups. Table 6.9 illustrates the size of

the incomplete model before refactoring (i.e., iteration 1) and after refactoring

(i.e., iteration 2) of the models. From the results, the size of the model varies in

the second iteration i.e., after refactoring the model. For example, RED group

has 40 diagrams before refactoring the model and 30 after refactoring the model.

This is because they had removed duplicate elements in the model. Likewise, the

total number of activity diagrams were 12 in the first iteration and in the second

iteration they reduced to three.

Group Iteration 1 Iteration 2

BLUE 35 35

RED 40 30

BLUE 50 42

RED 24 25

BLUE 11 11

RED 6 6

BLUE 3 3

RED 3 3

BLUE 31 31

RED 33 30

BLUE 52 36

RED 33 33

BLUE 35 37

RED 59 61

BLUE 30 30

RED 13 13

BLUE 230 221

RED 223 223

BLUE 3 3

RED 12 3

BLUE 31 32

RED 45 20

Total Number of Operations

Total Number of Sequence Diagrams

Total Number of Messages

Total Number of Activity Diagrams

Total Number of Activity States in Activity Diagram

Total Number of Diagrams

Total Number of Use Cases

Total Number of Actors

Total Number of Subsystem

Total Number of Classes

Total Number of Associations

Table 6.9: Size Metrics for Incomplete Model Type of BLUE and RED Group

6.3. SIZE AND RATIO METRICS 91

6.3.1.1 Ratio Metrics for Analyzability of the Incomplete Model

Table 6.10 show absolute and ratio metrics for the analyzability quality

attribute for BLUE and RED group. The metric value zero indicates that

there are no violations for the corresponding rule and metric value 1.0 indi-

cates that all available elements in the model have violated the corresponding rule.

Metric Mi16 counts the violations of Ri16 for BLUE group [Table 6.1, page 72]

and for RED group [Table 6.3, page 77] in the case of incomplete models. The

unchanged metric value 1.0 indicates that there was no improvement made by

the BLUE group in the second iteration. For RED group, the metric value 0.0

indicates that there was no violation in the first iteration while, the metric value

increased in the second iteration, which decreased the quality of the model.

The metric value Mi17 counts the violations of Ri17 for BLUE group [Table 6.1,

page 72] and for RED group [Table 6.3, page 77] in the case of incomplete

models. The metric value decreased in the second iteration due to reduction in

the number of violations for the BLUE group. This indicates that quality of the

model improved in the second iteration. The RED group’s model do not show

any reasonable variation in their metric value because they still had a quite high

value for the violations of Ri17.

The metric value Mi18 counts the violations of Ri18 for BLUE group [Table 6.1,

page 72] and for RED group [Table 6.3, page 77] in the case of incomplete models.

The metric value is the same for BLUE and RED groups in their first iteration,

which shows that they have violated Ri18 for all three subsystems. In the second

iteration both groups improved their models, and hence metric value becomes

zero. The metric Mi18 measures the consistency between a use case diagram and

a class diagram.

The metric value Mi34 counts the violations of Ri34 for BLUE group [Table 6.1,

page 72]. The quality of the model was better in first iteration than in second

iteration for BLUE group. In second iteration, the violations increased, which

led to an increase in the metric value and a decrease in the quality of the model.

RED group did not violate Ri34 in both iterations, hence the metric value is zero,

and the model is stable in both iterations.

92 CHAPTER 6. CASE STUDY

Metric = No. of violations of the

context element / Total No. of

context Element

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

BLUE 3 3 3 3 1.0 1.0

RED 0 2 3 3 0.0 0.67

BLUE 20 1 31 32 0.65 0.03

RED 31 13 45 20 0.69 0.65

BLUE 3 0 3 3 1.0 0.0

RED 3 0 3 3 1.0 0.0

BLUE 9 48 230 221 0.04 0.22

RED 0 0 223 223 0.0 0.0

Mi34= No. of messages that do not

refer to class operations / Total

number of messages

Group

No. of violations of the

context element

Total No. of context

element
Metrics value

Mi16= No. of subsystems that do not

refined by activity diagrams / Total

number of subsystems

Mi17= No. of activities that do not

refer to use case / Total number of

activities in Activity diagrams

Mi18= No. of subsytems that do not

refer to class package / Total number

of subsystems

Table 6.10: Analyzability Ratio Metrics for BLUE and RED Group of Incomplete
Model Type

6.3.1.2 Ratio Metrics for Understandability of Incomplete Model

Table 6.11 lists the understandability absolute and ratio metrics for BLUE and

RED groups.

The metric Mi1 counts the violations of Ri1 [Table 6.2, page 73]. The metric

value zero in the second iteration of BLUE group indicates that the quality of the

model was improved. RED group’s model did not violate Ri1 in neither iterations.

The metric Mi5 and Mi6 are only counted for the BLUE group because RED

group did not violate Ri5 and Ri6. The metric value for Mi5 and Mi6 indicate

that the quality of the BLUE group’s model improved in the second iteration.

The metric value Mi7 counts the violations of Ri7 for BLUE group [Table 6.2,

page 73] and for RED group [Table 6.4, page 78] in the case of incomplete models.

The metric value is same in first and second iteration for both groups. The metric

shows that there is no quality improvement in second iteration of the models.

The metric Mi8 is only counted for the RED group because BLUE group did not

violate Ri8. The metric counts the violations of Ri8 for RED group [Table 6.4,

page 78]. In first iteration, the RED group model has violations and this decreases

the quality of the model. In second iteration, they managed to improve the

quality of the model.

The metric Mi22 counts the violations of Ri22 for BLUE group [Table 6.2,

page 73] and for RED group [Table 6.4, page 78] in the case of incom-

plete models. For BLUE and RED group models in first iteration, the

6.3. SIZE AND RATIO METRICS 93

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

BLUE 1 0 50 42 0.02 0.0

RED 0 0 24 25 0.0 0.0

BLUE 7 0 50 42 0.14 0.0

RED 0 0 24 25 0.0 0.0

BLUE 3 0 50 42 0.06 0.0

RED 0 0 24 25 0.0 0.0

BLUE 3 3 3 3 1.0 1.0
RED 3 3 3 3 1.0 1.0

BLUE 0 0 3 3 0.0 0.0

RED 2 0 3 3 0.67 0.0

BLUE 7 0 31 31 0.23 0.0

RED 6 0 33 30 0.18 0.0

BLUE 1 0 52 36 0.02 0.0

RED 1 0 33 33 0.03 0.0

BLUE 1 0 52 36 0.02 0.0

RED 1 0 33 33 0.03 0.0

BLUE 1 0 52 36 0.02 0.0

RED 1 0 33 33 0.03 0.0

BLUE 17 1 31 31 0.55 0.03

RED 0 0 33 30 0.0 0.0

Mi30= No. of classes that have

composition or aggregation type of

association / Total no. of classes

Group

No. of violations of the

context element

Total No. of context

element
Metrics value

Mi1= No. of use cases do not placed

inside the subsystem / Total no. of

use cases

Mi6= No. of use case name contains

more than four words/ Total no. of

use cases

Mi7= No. of subsystems that contain

more than five use cases / Total no.

of subsystems

Mi5= No. of use cases do not

communicate more than three actors

/ Total no. of use cases

Metric = No. of violations of the

context element / Total No. of

context Element

Mi8= No. of subsystem name that do

not start with a capital letter or have

more than two words in a name /

Total no. of subsystems

Mi22= No. of classes that do not start

with a capital letter or do not consist

of one word / Total no. of classes

Mi26= No. of associations that do not

have a name / Total no. of

associations

Mi27= No. of association name that do

not have multiplicity value at both

ends / Total no. of associations

Mi29= No. of assocition name that do

not start with lower case letter /

Total no. of associations

Table 6.11: Understandability Ratio Metrics for BLUE and RED Group of
Incomplete Model Type

Mi22 measure indicates that there are some violations existing in the model

which decreases the quality of the models. In second iteration, both groups

managed to improve the quality of their models and metric value decreases to zero.

Ri26 is violated once for BLUE and RED groups in the first iteration. The metric

value indicates that both groups have increased the quality of the models by

decreasing the violations in the second iteration.

94 CHAPTER 6. CASE STUDY

Ri27 and Ri29 are violated once for both BLUE and RED groups in the first

iteration. The metric value for the second iteration shows that the quality was

improved by both groups.

The metric Mi30 exhibits the violations of Ri30 only for BLUE group [Table 6.2,

page 73]. There are no Ri30 violations detected for the RED group. The metric

value slightly decreased in second iteration, showing that the model developed in

second iteration has better quality than that one developed in the first iteration.

6.3.2 Size Metrics for Complete Models

The size metric for complete models for BLUE and RED groups are shown in

Table 6.12. The size metrics for both iteration showed the variation in the models

developed before and after refactoring.

Group Iteration 1 Iteration 2

BLUE 44 44

RED 47 46

BLUE 51 51

RED 70 48

BLUE 97 95

RED 121 126

BLUE 65 65

RED 53 52

BLUE 3 3

RED 12 14

BLUE 255 220

RED 177 274

BLUE 190 190

RED 61 80

BLUE 12 12

RED 10 10

BLUE 38 38

RED 26 18

BLUE 548 403

RED 455 402

BLUE 254 180

RED 220 135

BLUE 4 4

RED 4 13

BLUE 50 50

RED 10 58

BLUE 0 0

RED 10 6

BLUE 2 2

RED 6 5

BLUE 20 15

RED 60 60

Total Number of Attributes

Total Number of Entitty Classes

Total number of Packages

Total Number of Parameters

Total Number of Lifelines

Total Number of Activity Diagrams

Total Number of Activity States in Activity Diagrams

Total Number of State Machine Diagrams

Total Number of States in State Machine Diagrams

Total Number of Objects in activity diagrams

Total Number of Diagrams

Total Number of Classes

Total Number of Associations

Total Number of Operations

Total Number of Sequence Diagrams

Total Number of Messages

Table 6.12: Size Metrics for Complete Model Type of BLUE and RED Group

6.3. SIZE AND RATIO METRICS 95

6.3.2.1 Ratio Metrics for Analyzability of Complete Model

Table 6.13 shows the metrics for analyzability quality attribute for BLUE and

RED group. The metric value zero indicates that there are no violations present

in their model, while a metric value 1.0 indicates that all elements present in the

model have violated by the corresponding rule.

The metric Mc24 counts the violations of Rc24 for BLUE group [Table 6.5, page 81]

for the complete model. The metric value decreases in the second iteration, which

increased the quality of the model for the BLUE group. The RED group did not

violate Rc24 in both iterations, which indicates that RED group’s model is more

stable in both iterations.

The metric Mc25 counts the violations of Rc25 for BLUE group [Table 6.5, page 81]

and for RED group [Table 6.7, page 86] for the complete models. The metric value

decreased in the second iteration for the BLUE group model but still violations

exists in the second iteration. However, the quality of the model is better in the

second iteration than in the first iteration. The metric value for RED group in the

second iteration decreased, and indicates that the quality of the model increased

in the second iteration.

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

BLUE 33 15 254 180 0.13 0.08

RED 0 0 220 135 0.0 0.0

BLUE 37 10 548 403 0.07 0.02

RED 7 0 455 402 0.02 0.0

BLUE 0 0 4 4 0.0 0.0

RED 0 0 4 13 0.0 0.0

Mc25= No. of messages do not refer to

a class operation / Total no. of

messages

Mc32= No. of activity diagrams do not

refer to a single class operation /

Total no. of activity diagrams

Metric = No. of violations of the

context element / Total No. of

context Element

Group

No. of violations of the

context element

Total No. of context

element
Metrics value

Mc24= No. of objects in a sequence

class diagram / Total no. of objects in

a sequence diagram

diagram do not refer to class in a

Table 6.13: Analyzability Ratio Metrics for BLUE and RED Group of Complete
Model Type

96 CHAPTER 6. CASE STUDY

6.3.2.2 Ratio Metric for Understandability of Complete Model

Table 6.14 shows the ratio metrics for understandability quality attribute for the

complete model of BLUE and RED group.

The metric Mc1 counts the violations of Rc1 of the complete model for BLUE

group [Table 6.6, page 82] and for RED group [Table 6.8, page 88]. The metric

Mc1 measure is related to the class which does not contain any attribute. The

metric value for both groups is slightly decreased in second iteration due to the

presence of violations in second iteration. This decrease in the value of the metric

shows some improvement in second iteration.

The metric Mc2 counts the violations of Rc2 in the case of the complete

model for the BLUE group [Table 6.6, page 82] and for the RED group

[Table 6.8, page 88]. The metric Mc2 measure is related to the classes which

do not have an operation or classes defined without any operation. The metric

value for the BLUE group in the second iteration decreased, which shows

that the quality improved for the model. The metric value for RED group in-

creased in the second iteration showing that the quality of the model has decreased.

Mc5, Mc6 and Mc13 are only violated for RED group [Table 6.8, page 88]. Mc5 is

the metric to count violations for Rc5, Mc6 counts violations for Rc6 and Mc13

counts violations for Rc13. The Mc5 and Mc6 values increased, thus decreasing the

quality of the RED group’s model in the second iteration. Mc13 value decreased

in the second iteration indicating that the quality of the RED group’s model have

increased.

Mc16 is only violated by the BLUE group [Table 6.6, page 82] and the metric

value in the second iteration decreased, which indicates that the quality of the

model has increased.

The metric Mc17 shows the violation of Rc17 [Table 6.8, page 88] for RED group

and there are no violations for BLUE group of Rc17. The metric values are 0.01

and zero in first and second iteration respectively. The metric Mc17 is related to

the multiplicity of values at the ends of associations.

The metric Mc18 counts the violations of Rc18 for BLUE group [Table 6.6,

page 82] and for RED group [Table 6.8, page 88]. The metric value in second

iteration decreased showing that the quality of the model has improved.

The metric Mc19 reveals the violation of Rc19 for RED group [Table 6.8, page 88]

and there are no Rc19 violations detected for BLUE group. In first iteration, the

6.3. SIZE AND RATIO METRICS 97

Iteration 1 Iteration 2 Iteration 1 Iteration 2 Iteration 1 Iteration 2

BLUE 10 2 51 51 0.20 0.04

RED 32 21 70 48 0.46 0.44

BLUE 12 1 51 51 0.24 0.02

RED 30 25 70 48 0.43 0.52

BLUE 0 0 51 51 0.0 0.0

RED 8 15 70 48 0.11 0.31

BLUE 0 0 51 51 0.0 0.0
RED 6 7 70 48 0.09 0.15

BLUE 0 0 12 12 0.0 0.0

RED 1 0 10 10 0.10 0.0

BLUE 5 3 97 95 0.05 0.03

RED 0 0 121 126 0.0 0.0

BLUE 0 0 51 51 0.0 0.0

RED 1 0 70 48 0.01 0.0

BLUE 5 0 255 220 0.02 0.0

RED 2 2 177 274 0.01 0.01

BLUE 0 0 3 3 0.0 0.0

RED 12 2 12 14 1.0 0.14

BLUE 142 0 255 220 0.56 0.0

RED 25 2 177 274 0.14 0.01

BLUE 10 0 190 190 0.05 0.0

RED 42 5 61 80 0.69 0.06

BLUE 0 0 4 4 0.0 0.0

RED 2 0 4 13 0.50 0.0

BLUE 2 0 50 50 0.04 0.0

RED 0 0 10 69 0.0 0.0

MC33= No. of dead activities in an

activity diagram / Total no. of

activities in an activity diagram

MC21 = No. of operations that do not

have return type / Total no. of

operations

Total No. of context

element
Metrics value

MC1= No. of classes that do not have

an attribute / Total no. of classes in

class diagram

MC22 = No. of parameters that do not

have data type / Total no. of

parameters

MC31= No of activity diagrams that

have more than one intitial or exit

nodes / Total no. of activity diagrams

MC2= No. of classes that do not have

an operation / Total no. of classes

Metric = No. of violations of the

context element / Total No. of

context Element

MC13= No. of packages that contains

more than 20 classes / Total no. of

packages

Group

No. of violations of the

context element

MC16= No. of attributes that do not

have a data type / Total no. of

attributes in a class diagram

MC17= No. of classes that do not have

composition relationship and

multiplicity is not one at owners end

/ Total no. of classes in a class

diagram

MC18 = No. of operations that

contains more than 4 parameters /

Total no. of operations

MC19 = No. of entity classes that do

not have getters or setters / Total no.

of entity classes in a class diagram

MC5= No. of classes that do not start

with capital letter or not have one

single word in a name / Total no. of

classes in a class diagram

MC6= No. of classes that contain more

than 10 operations / Total no. of

classes in a class diagram

Table 6.14: Understandability Ratio Metrics for BLUE and RED Group of
Complete Model Type

metric value indicates that all elements have violated Rc19 and in the second

iteration the metric value slightly decreased. Hence, we can say that the quality

of the model, developed in the second iteration was better than that of the model

developed in first iteration.

98 CHAPTER 6. CASE STUDY

Mc22 counts the violations of Rc22 for BLUE group [Table 6.6, page 82] and for

RED group [Table 6.8, page 88]. The metric value for the BLUE group in the

second iteration shows that the quality of the model increased and there are

no violations existing. The metric value for RED group in the second iteration

decreased to 0.06, and that indicates that violations still exist in the model. For

RED group’s model, we can say that the model developed in second iteration was

better than the one developed in first iteration.

The metric Mc31 counts the violations of Rc31 for RED group [Table 6.8, page 88].

There are no Rc31 violations detected for the BLUE group. The metric Mc31

measures the presence of more than one initial and exit nodes in an activity

diagrams. The metric values decrease to zero in second iteration indicating that

the quality of the model has improved.

Mc33 detects the dead activities in the activity diagram. This metric count

the violations of Rc33 for the BLUE group [Table 6.6, page 82]. There are no

Rc33 violations detected for the RED group. The metric value zero in the second

iteration of the BLUE group indicating that the quality of the model has improved.

6.4 Student Feedback and Problems Faced by the

Students

The students of the UML course was asked to provide their feedback about the

approach. Three types of questions were asked related to our quality assurance

approach as described in Table 6.15.

Question

No
Question 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q1
Was the quality assurance approach helpful

to you?
0 0 1 0 1 3 1 3 4 0 1

Q2
Was it easy for you to understand the quality

assessment results?
0 0 0 0 0 4 1 3 2 4 0

Q3
Was it easy for you to understand the quality

criteria ?
0 0 0 1 2 2 1 4 1 2 1

Table 6.15: Student Feedback

The total number of students who participated in the UML practical course

was 14. They all provided their feedback for the course. Each response to the

question is evaluated in the scale ranging from [0% to 100%], where 0% indicates

that the student was not satisfied at all and 100% indicates that the student was

fully satisfied with our approach.

6.4. STUDENT FEEDBACK AND PROBLEMS FACED BY THE STUDENTS 99

Question 1 was asked to provide feedback on how much the quality assurance

approach was helpful to them. Only two students had a response less than 50%

and 12 students responded between 50% to 100%, which shows that our quality

assurance approach was helpful to them.

Question 2 was related to the understanding of the quality assessment results.

For this all 14 students responded between 50% to 100%, that is there was

no response less than 50%. This shows that students have no difficulty in

understanding the quality assessment results.

Question 3 required the student to provide feedback about the understandability

of the selected quality criteria. Only three students responded to less than

50% and 11 students responded between 50% to 100%, which shows that the

selected quality attributes were comprehensive enough for them. The students

were more interested in having more quality criteria to be considered for the

quality assessment of their models. Due to time limitations, we only selected

three types of quality attributes, which were simple and easy to understand for

the students. They violated rules related to analyzability and understandability

quality attributes and there were no violations detected for the changeability

quality attribute. This is why no violations are reported in the quality assessment

results described in Chapter 6.

The UML models were developed using the Magic Draw [63] UML tool. During the

development of the models, some tool related problems were faced by the students.

In the first week, both groups (i.e., RED and BLUE) had no experience with the

UML modeling language and UML tool. There were lots of the inconsistencies

detected in their first iteration of the incomplete model. In the second week, they

were more confident with the tool. They violated fewer rules than in the first

week. In the following paragraph, more details of the problems faced by the

students are discussed.

First, the students had difficulties with modeling the behavior of the ele-

ments, for example, how to create a behavioral state machine for a class or

how to create an activity diagram for an operation. With the help of the in-

structors, they managed to handle these types of problems in the second iterations.

The second major problem identified in their projects is the orphan proxy problem.

This was due to the decomposition of large projects into smaller projects, which

helped in organization of the large groups into smaller groups. The ”orphaned

proxy” is an indication of a dangling reference. Appearance of the proxy is an

100 CHAPTER 6. CASE STUDY

indication that some other elements, for example, from outside the module (i.e.,

elements in the main project or other modules) reference to the element in the

module that was previously there but no longer exists. That means the element

was deleted, removed or somehow made unavailable in the module. In such cases

MagicDraw creates so called ”orphan proxy” in place of the missing element - a

surrogate or non real element (with an exclamation mark - ”!”) in the place where

the real element once existed [63].

6.5 Concluding Remarks

A bakery system has been selected as an example used in the UML practical

course, and it was also used for the evaluation of our proposed approach. There

were two reasons behind the choice of the bakery system as a problem statement

for the UML course. First, students can understand the problem statement quite

easily. Secondly, the same example has been used in the UML course for two

years now, and that gives us more confidence in defining appropriate rules and

guidelines for the prototypical instantiation of our proposed quality model.

The findings concerning the bakery system models for both groups showed that

students introduced new issues into the models while refactoring their models.

This was highly evident in their incomplete models.

The BLUE group’s incomplete model results show that their model is not very

stable and has many issues in their first and second iterations. However, their

complete model is more stable in the second iteration of the model. This shows an

increased in the competence while working with the tool, as they were developing

the design models.

The RED group’s incomplete model results show that their model is more stable

in the first and second iterations. However, their complete model is not stable

and has many quality issues in the second iteration. This was because each

group was further sub-divided into smaller groups and some of the students

in the smaller group introduced some big issues into their design models, thus

decreasing the quality of their complete model.

From the quality assessment results, we can conclude that all of the issues

detected were either analyzability or understandability problems and there was no

violation detected for changeability, which was the third quality attribute used

for the prototypical instantiation of the quality model described in Chapter 4,

Section 4.5.2 for the incomplete model and Section 4.5.5 for the complete model.

6.5. CONCLUDING REMARKS 101

From the implementation point of view, the execution of the Xtend language is

slow, which was already discussed by Schubert in his Masters thesis [81], where

he compared different M2M transformation languages. The Xtend execution

becomes even slower, when we use OCL in the Xtend language.

The case study was performed successfully, and the student’s feedback was

encouraging. They were more interested in having more quality criteria being

considered for quality assessment.

Chapter 7

Conclusion

In this chapter, we summarize our research work and its contributions, and suggest

some future research topics to extend and refine the methods presented in this

thesis.

7.1 Summary

The main objective of this research was to develop a method for the quality

assessment and improvement of UML models. For this purpose, we first defined

a quality model for UML models, which is based on an inclusion relationship for

three types of the model completeness types, these are: incomplete, complete

and executable models. The quality characteristics for each model completeness

type are adopted from the generic quality model as defined by the ISO/IEC 9126

quality model.

Our proposed quality model takes into account the different model completeness

types used in the software development phase in which a UML model is developed.

The purpose of the quality model is to provide a way to the modeler to select

appropriate methods for continuous quality assessment and improvement of UML

models.

An instantiation of our quality model for a concrete case study was described for

three main quality characteristics. These are analyzability, changeability, and

understandability, for incomplete and complete models.

To assess the quality of UML models, we used a GQM based approach to select

appropriate rules and guidelines. These rules and guidelines are described in the

formal language OCL. The violation of rules or guidelines was considered to be a

103

104 CHAPTER 7. CONCLUSION

smell. Our approach was applied in the UML course offered to B.Sc. and M.Sc.

students, in which a bakery system is used as a problem statement. In the UML

practical course, students were divided into two groups BLUE and RED in order

to get two versions of the same model. The developed models went through

our quality assessment prototype tool, and the feedback was provided to the

students in the form of quality assessment results. The results were presented

in a way that students could easily trace back detected issues to their actual

models. Hence, the result contains the name of the violated rule and the location

of the problematic element in their models. After getting feedback, the students

refactored their models. The refactored model was subjected to the quality

assessment tool.

The research focused on the design and an evaluation of the continuous quality

assessment and improvement approach for UML models. In this thesis, we have

shown that our approach is practically feasible to assess and improve the quality

of models in a continuous way.

7.2 Outlook

The proposed quality model for UML is based on our experience, review of

existing literature and a series of discussions with experts in software quality and

software testing. A possible direction for future research related to the quality

model is further validation in the context of Executable UML (xUML) models [54].

Further case studies can be evaluated by considering more quality attributes of

the proposed quality model. Additionally, models of different developers could be

studied in more detail by considering factors, for example, tooling, expertise, and

skill of the developer.

It has been observed that manual refactoring of models introduces new issues in

the model. Our two refactorings Rename and Pull up refactorings described in

Section 5.2.3.1.1 and Section 5.2.3.1.2 show the application of the automated

refactoring of the UML models. The next big step of this research would be to

provide an automated tool support for the refactorings of the UML models.

The UML models are visualized graphically with graphical notations of UML

elements, which provides partial views of the UML model. These partial views of

the diagrams are some time hard to read and understand. The work on the layout

of the UML diagram is rarely as described in our literature review in Chapter

3. Hence, the next extension of this research could focus on the layout issues of

UML models.

Bibliography

[1] Abstratt Technologies. TextUML Toolkit. http://www.abstratt.com, Last Visited

February, 2011. [cited at p. 7]

[2] S. Ambler. The Elements of UML 2.0 Style. Cambridge University Press, 2005.

[cited at p. 30, 31, 33]

[3] AndroMDA. Code Generator Tool. http://www.andromda.org/, Last Visited

February, 2011. [cited at p. 1]

[4] ArgoUML Project. ArgoUML. http://argouml.tigris.org, Last Visited February,

2011. [cited at p. 34]

[5] J. Arlow and I. Neustadt. UML 2 and the Unified Process: Practical Object-Oriented

Analysis and Design. Addison-Wesley Professional, 2nd edition, 2005. [cited at p. 52]

[6] D. Astels. Refactoring with UML. In Proceedings of the 3rd International Conference

on eXtreme Programming and Flexible Processes in Software Engineering (XP2002),

2002. [cited at p. 31, 32]

[7] A. Baroni, S. Braz, and F. B. e Abreu. Using OCL to Formalize Object-Oriented

Design Metrics Definitions. In Proceedings of ECOOP Workshop on Quantita-

tive Approaches in Object-Oriented Software Engineering, Spain. Springer, 2002.

[cited at p. 29, 35]

[8] V. Basili, G. Caldiera, and H. Rombach. The Goal Question Metric Paradigm.

Encyclopedia of Software Engineering, 2:528--532, 1994. [cited at p. 45]

[9] V. R. Basili and D. M. Weiss. A Methodology for Collecting Valid Software

Engineering Data. IEEE Transactions on Software Engineering, 10(6):728--738,

1984. [cited at p. 20]

[10] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing - Algorithms

for the Visualization of Graphs. Prentice-Hall, 1998. [cited at p. 33]

[11] B. Berenbach and G. Borotto. Metrics for Model Driven Requirements Development.

In Proceeding of the 28th International Conference on Software Engineering. ACM

Press, 2006. [cited at p. 29]

105

http://www.abstratt.com
http://www.andromda.org/
http://argouml.tigris.org

106 BIBLIOGRAPHY

[12] E. Biermann, C. Ermel, and G. Taentzer. Precise Semantics of EMF Model Trans-

formations by Graph Transformation. In Model Driven Engineering Languages

and Systems, volume 5301 of Lecture Notes in Computer Science. Springer, 2008.

[cited at p. 33]

[13] R. Binder. Design for testability in object-oriented systems. Communication ACM,

37:87--101, September 1994. [cited at p. 28]

[14] B.Maŕın, G. Giachetti, O. Pastor, and A. Abran. A Quality Model for Conceptual

Models of MDD Environments. Advances in Software Engineering, 2010, 2010.

[cited at p. 27]

[15] M. Boger, T. Sturm, and P. Fragemann. Refactoring Browser for UML. In Revised

Papers from the International Conference NetObjectDays on Objects, Components,

Architectures, Services, and Applications for a Networked World, volume 2591 of

Lecture Notes in Computer Science. Springer, 2003. [cited at p. 34]

[16] Borland. Borland Together. http://www.borland.com/us/products/together,

Last Visited February, 2011. [cited at p. 34]

[17] R. Castello, R. Mili, and I. Tollis. Automatic Layout of Statecharts. Software ---

Practice & Experience, 32:25--55, 2002. [cited at p. 34]

[18] S. R. Chidamber and C. Kemerer. A Metric Suite for Object-Oriented Design. IEEE

Transactions on Software Engineering, 20(6):476--493, 1994. [cited at p. 29]

[19] L. Dobrzański. UML Model Refactoring- Support for Maintenance of Executable UML

Models. Master’s thesis, Blekinge Institute of Technology, School of Engineering,

Ronneby, Sweden, 2005. [cited at p. 33, 34]

[20] Eclipse. Modeling project. http://http://www.eclipse.org/modeling/, Last

Visited February, 2011. [cited at p. 1]

[21] Eclipse. Xpand Model to Model Transformation Project. http://wiki.eclipse.

org/Xpand, Last Visited February, 2011. [cited at p. 1, 9, 35]

[22] Eclipse Foundation. Eclipse Model Development Tools (MDT) OCL. http:

//www.eclipse.org/modeling/mdt/?project=ocl, Last visited February, 2011.

[cited at p. 62]

[23] H. Eichelberger and J. W. von Gudenberg. UML Class Diagrams - State of the Art

in Layout Techniques. In Proceedings of the International Workshop on Visualizing

Software for Understanding and Analysis, Amsterdam, 2003. [cited at p. 30, 33]

[24] M. El-Wakil, A. El-Bastawisi, M. B. Riad, and A. A. Fahmy. A Novel Approach to

Formalize Object-Oriented Design Metrics. In Proceedings of the 9th International

Conference on Empirical Assessment in Software Engineering, 2005. [cited at p. 29]

[25] EMFRefactor-Team. The EMF Refactor Component Proposal Eclipse based

Project. http://www.eclipse.org/proposals/emf-refactor/, Last Visited

February, 2011. [cited at p. 34]

[26] EMPANADA. MetricView Tool. http://www.win.tue.nl/empanada/metricview/,

Last Visited February, 2011. [cited at p. 34]

http://www.borland.com/us/products/together
http://http://www.eclipse.org/modeling/
http://wiki.eclipse.org/Xpand
http://wiki.eclipse.org/Xpand
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/proposals/emf-refactor/
http://www.win.tue.nl/empanada/metricview/

BIBLIOGRAPHY 107

[27] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical Approach.

PWS Publishing, Boston, 1997. [cited at p. 18, 20, 55]

[28] A. Folli and T. Mens. Refactoring of UML models using AGG. In Proceedings of

the 3rd International ERCIM Symposium on Software Evolution, 2007. [cited at p. 33]

[29] M. Folwer and K. Scott. UML Distilled: A Brief Guide to the Standard Object

Modeling Language- second Edition. Addison-Wesley Professional, 1999. [cited at p. 5]

[30] M. Fowler. Refactorings in Alphabetical Order. http://www.refactoring.com/

catalog/index.html, Last Visited February, 2011. [cited at p. 21]

[31] M. Fowler. Refactoring -- Improving the Design of Existing Code. Addison-Wesley,

Boston, 1999. [cited at p. 20, 21, 31]

[32] R. France and J. Bieman. Multi-View Software Evolution --- A UML-based Frame-

work for Evolving Object-Oriented Software. In Proceedings of 17th IEEE Interna-

tional Conference on Software Maintenance (ICSM 2001). IEEE, 2001. [cited at p. 32]

[33] D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley & Sons, 2003. [cited at p. 41]

[34] P. Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards Automating Source-

Consistent UML Refactorings. In UML 2003 -- Modeling Languages and Applications,

volume 2863 of Lecture Notes in Computer Science. Springer, 2003. [cited at p. 34]

[35] R. Gronback. Model Validation: Applying Audits and Metrics to UML Models, 2004.

http://conferences.codegear.com/jp/article/32089, Last Visited February,

2011. [cited at p. 30]

[36] IBM. IBM Rational Systems Developer. http://www.ibm.com/software/awdtools/

developer/systemsdeveloper, Last Visited February, 2011. [cited at p. 34]

[37] INRIA. ATLAS Transformation Language. http://www.eclipse.org/m2m/atl,

Last Visited February, 2011. [cited at p. 34]

[38] INRIA. The MoDisco Eclipse Project. http://www.eclipse.org/MoDisco/, Last

Visited February, 2011. [cited at p. 34]

[39] International Organization for Standardization (ISO) / International Electrotechnical

Commission (IEC). ISO/IEC Standard No. 9126. Software Engineering- Product

Quality; Part 1-4, 2001-2004. [cited at p. 19, 39]

[40] ItemisAG. The Xpand Eclipse Modeling Project. http://www.eclipse.org/

modeling/m2t/?project=xpand, Last Visited February, 2011. [cited at p. 34]

[41] A. Jalbani, J. Grabowski, H. Neukirchen, and B. Zeiß. Towards an Integrated

Quality Assessment and Improvement Approach for UML Models. In 14th System

Design Languages Forum (SDL Forum 2009), 22-24 Sep 2009, Ruhr-University of

Bochum, Germany, sep 2009. [cited at p. 25]

[42] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: A QVT-Like

Transformation Language. In Companion to the 21st ACM SIGPLAN Symposium on

Object-Oriented Programming Systems, Languages, and Applications. ACM, 2006.

[cited at p. 34]

http://www.refactoring.com/catalog/index.html
http://www.refactoring.com/catalog/index.html
http://conferences.codegear.com/jp/article/32089
http://www.ibm.com/software/awdtools/developer/systemsdeveloper
http://www.ibm.com/software/awdtools/developer/systemsdeveloper
http://www.eclipse.org/m2m/atl
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand

108 BIBLIOGRAPHY

[43] M. Kiewkanya and P. Muenchaisri. Measuring Maintainability in Early Phase using

Aesthetic Metrics. In Proceedings of the 4th WSEAS International Conference on

Software Engineering, Parallel & Distributed Systems, 2005. [cited at p. 30]

[44] H. Kim and C. Boldyreff. Developing Software Metrics Applicable to UML Models.

In Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in Object-

Oriented Engineering, Malaga, Spain, 2002. [cited at p. 29]

[45] R. Kollmann and M. Gogolla. Metric-Based Selective Representation of UML

Diagrams. Software Maintenance and Reengineering, European Conference on, 2002.

[cited at p. 29]

[46] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003. [cited at p. 9]

[47] C. Lange. Improving the Quality of UML Models in Practice. In Proceedings of

28th International Conference on Software Engineering (ICSE 2006). ACM, 2006.

[cited at p. 29]

[48] C. Lange. Assessing and Improving the Quality of Modeling. PhD thesis, Technische

Universiteit Eindhoven, Netherland, 2007. [cited at p. v, 25, 26, 31]

[49] C. Lange and R. Chaudron. Empanada: Empirical analysis of architecture and design

quality. http://www.win.tue.nl/empanada/tools.htm, Last Visited February,

2011. [cited at p. 34]

[50] C. Lange and R. Chaudron. Managing Model Quality in UML-Based Software

Development. In Proceedings of the 13th IEEE International Workshop on Software

Technology and Engineering in Practice (STEP 2005). IEEE, 2005. [cited at p. 25]

[51] H. Ma, W. Shao, L.Zhang, Z.Ma, and Y.Jiang. Applying OO Metrics to Assess UML

Meta-models. In Proceedings of MODELS/UML’2004, 2004. [cited at p. 29]

[52] J. McCall, P. Richards, and G. Walters. Factors in Software Quality. Technical

Report RADC TR-77-369, US Rome Air Development Center, 1977. [cited at p. 19]

[53] J. McQuillan and J. Power. A Metamodel for the Measurement of Object-Oriented

Systems: An Analysis using Alloy. In Proceedings of the 1st International Confer-

ence on Software Testing, Verification, and Validation (ICST 2008). IEEE, 2008.

[cited at p. 29]

[54] S. Mellor and M. Balcer. Executable UML: A Foundation for Model-Driven Archi-

tecture. Addison-Wesley, 2002. [cited at p. 33, 41, 104]

[55] ModelwareProject. D2.2 MDD Engineering Metrics Definition. Technical report,

Framework Programme Information Society Technologies, 2006. [cited at p. 30]

[56] ModelwareProject. D2.5 MDD Engineering Metrics Baseline. Technical report,

Framework Programme Information Society Technologies, 2006. [cited at p. 30]

[57] P. Mohagheghi and J. Aagedal. Evaluating Quality in Model-Driven Engineering.

In Proceedings of the International Workshop on Modeling in Software Engineering

(MISE 2007). IEEE, 2007. [cited at p. 27]

http://www.win.tue.nl/empanada/tools.htm

BIBLIOGRAPHY 109

[58] P. Mohagheghi, V. Dehlen, and T. Neple. Definitions and approaches to model

quality in model-based software development - A review of literature. Information

and Software Technology, 51(12):1646 -- 1669, 2009. [cited at p. 27]

[59] H. Neukirchen and M. Bisanz. Utilising Code Smells to Detect Quality Problems

in TTCN-3 Test Suites. In Proceedings of the 19th IFIP International Conference

on Testing of Communicating Systems and 7th International Workshop on Formal

Approaches to Testing of Software (TestCom/FATES 2007), number 4581 in Lecture

Notes in Computer Science (LNCS), 2007. [cited at p. 2]

[60] H. Neukirchen, B. Zeiß, and J. Grabowski. An Approach to Quality Engineer-

ing of TTCN-3 Test Specifications. International Journal on Software Tools

for Technology Transfer (STTT), Volume 10, Issue 4. (ISSN 1433-2779) DOI:

10.1007/s10009-008-0075-

0, pages 309--326, Aug. 2008. [cited at p. 2]

[61] H. Neukirchen, B. Zeiss, and J. Grabowski. An Approach to Quality Engineering of

TTCN-3 Test Specifications. International Journal on Software Tools for Technology

Transfer (STTT), 105(4):309--326, 2008. [cited at p. 2]

[62] J. Nödler, H. Neukirchen, and J. Grabowski. A Flexible Framework for Quality

Assurance of Software Artefacts --With Applications to Java, UML, and TTCN-3 Test

Specifications. In 2nd International Conference on Software Testing, Verification,

and Validation (ICST 2009). IEEE, 2009. [cited at p. 2]

[63] NoMagic. Magic Draw UML Tool. http://www.magicdraw.com. [cited at p. 99, 100]

[64] R. Norlund. Integrating the Rational Unified Process with Managing Successful

Programmes. http://www.ibm.com/developerworks/rational/library/jun05/

norlund/, Last Visited February, 2011. [cited at p. v, 9, 10]

[65] oAW. openArchitectureWare Tool. http://www.openarchitectureware.org, Last

Visited February, 2011. [cited at p. 58]

[66] Object Management Group (OMG). MDA Guide Version 1.0.1, June 2003. Avail-

able online at http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf. Last Visited

February, 2011. [cited at p. v, 1, 10, 11]

[67] Object Management Group (OMG). MOF 2.0/XMI Mapping, Version 2.1.1,

formal/2007-12-01, 2007. [cited at p. 7]

[68] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/-

Transformation Specification, formal/08-04-03, 2009. [cited at p. 34]

[69] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification,

Version 2.0, formal/2006-01-01, 2009. [cited at p. 6]

[70] Object Management Group (OMG). OCL Core Specification version 2.0, formal/2006-

05-01, 2009. [cited at p. 7, 40]

[71] Object Management Group (OMG). UML Infrastructure Specification, Version 2.2,

formal/2009-02-04, 2009. [cited at p. 6]

http://www.magicdraw.com
http://www.ibm.com/developerworks/rational/library/jun05/norlund/
http://www.ibm.com/developerworks/rational/library/jun05/norlund/
http://www.openarchitectureware.org
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

110 BIBLIOGRAPHY

[72] Object Management Group (OMG). UML Superstructure Specification, Version 2.2,

formal/2009-02-02, 2009. [cited at p. 1, 5, 6, 45]

[73] OMG. Object Management Group. http://www.omg.org/, Last Visited February,

2011. [cited at p. 7]

[74] OMG. UML 2.3. http://www.omg.org/spec/UML/, Last Visited February, 2011.

[cited at p. 5]

[75] OMG. UML Profile for CORBA. http://www.omg.org/technology/documents/

profile_catalog.htm, Last Visited February, 2011. [cited at p. 11]

[76] L. Pareto and U. Boquist. A Quality Model for Design Documentation in Model-

Centric Projects. In Proceedings of the 3rd International Workshop on Software

Quality Assurance (SOQUA 2006). ACM, 2006. [cited at p. 27]

[77] D. Parnas. Software Aging. In Proceedings of the 16th International Conference on

Software Engineering (ICSE), Sorrento, Italy, pages 279--287. IEEE/ACM, 1994.

[cited at p. 21]

[78] I. Porres. Model Refactorings as Rule-Based Update Transformations. In UML

2003 - The Unified Modeling Language, volume 2863 of Lecture Notes in Computer

Science. Springer, 2003. [cited at p. 32]

[79] H. Purchase, J. Allder, and D. Carrington. Graph Layout Aesthetics in UML

Diagrams: User Preferences. Journal of Graph Algorithms and Applications, 6(3):255-

-279, 2002. [cited at p. 30, 32, 33]

[80] J. Rech and C. Bunse. Model-Driven Software Development: Integrating Quality

Assurance. Idea Group Publishing, 2008. [cited at p. 2]

[81] L. Schubert. An Evaluation of Model Transformation Languages for UML Quality En-

gineering. Master’s thesis, Georg-August-Universität Göttingen, 2010. [cited at p. 101]

[82] SDMetrics. The Software Design Metrics tool for the UML. http://www.sdmetrics.

com, Last Visited February, 2011. [cited at p. 34]

[83] P. Seuring. Design and Implementation of a UML Model Refactoring Tool. Master’s

thesis, Hasso-Plattner-Institute for Software Systems Engineering at the Univesity

of Potsdam, 2005. [cited at p. 34]

[84] R. Soley. Model-driven Architecture Targets Middleware Interoperability Challenges.

http://www.ibm.com/developerworks/rational/library/403.html, Last Vis-

ited February, 2011. [cited at p. 10]

[85] T. Stahl, M. Völter, S. Efftinge, and A. Haase. Modellgetriebene Softwareentwick-

lung: Techniken, Engineering, Management. dpunkt, Heidelberg, 2. edition, 2007.

[cited at p. 1]

[86] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF -- Eclipse Modeling

Framework, Second Edition. Addison-Wesley, 2009. [cited at p. 1]

http://www.omg.org/
http://www.omg.org/spec/UML/
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.sdmetrics.com
http://www.sdmetrics.com
http://www.ibm.com/developerworks/rational/library/403.html

BIBLIOGRAPHY 111

[87] G. Sunyé, D. Pollet, Y. Traon, and J. Jézéquel. Refactoring UML Models. In

Proceedings of the 4th International Conference on The Unified Modeling Language,

Modeling Languages, Concepts, and Tools, volume 2185 of Lecture Notes in Computer

Science. Springer, 2001. [cited at p. 32]

[88] G. Taentzer. A Graph Transformation Environment for Modeling and Validation

of Software. In Applications of Graph Transformations with Industrial Relevance,

volume 3062 of Lecture Notes in Computer Science, pages 446--453. Springer, 2004.

[cited at p. 33]

[89] B. Unhelkar. Verification and Validation For Quality Of UML 2.0 Models. Wiley

Interscience, 2005. [cited at p. 9, 14]

[90] H. Voigt, B. Güldali, and G. Engels. Quality Plans for Measuring the Testability

of Models. In S. G. I. Schieferdecker, editor, Proceedings of the 11th International

Conference on Quality Engineering in Software Technology (CONQUEST 2008),

Potsdam (Germany), pages 353 -- 370. dpunkt.verlag, 2008. [cited at p. v, 28]

[91] E. Werner and J. Grabowski. UML-Praktikum. http://www.swe.informatik.

uni-goettingen.de/edu/notes/index.php?vorl_nr=70, Last Visited February,

2011. [cited at p. 115]

[92] Wikipedia. Eclipse Modeling Framework. http://en.wikipedia.org/wiki/

Eclipse_Modeling_Framework, Last Visited February, 2011. [cited at p. 58]

[93] B. Zeiß. Quality Assurance of Test Specifications for Reactive Systems. PhD

thesis, Dissertation, Universität Göttingen, Juni 2010 (electronically published on

http://webdoc.sub.gwdg.de/diss/2010/zeiss/)., 2010. [cited at p. 2]

http://www.swe.informatik.uni-goettingen.de/edu/notes/index.php?vorl_nr=70
http://www.swe.informatik.uni-goettingen.de/edu/notes/index.php?vorl_nr=70
http://en.wikipedia.org/wiki/Eclipse_Modeling_Framework
http://en.wikipedia.org/wiki/Eclipse_Modeling_Framework

Appendices

113

Appendix A

Description of the Bakery System

used in the UML Practical Course

The following description of the bakery system is used with permission of the

author (Dr. Edith Werner). The information about the course and related material

can be found on the course web page [91].

A.1 Das Bäckerei-System

Die Bäckerei Stegbeck ist ein fränkisches Traditionsunternehmen, das nun im

Zuge der Modernisierung ein Softwaresystem erhalten soll.

Neben der Unterstützung der alltäglichen Bäckereiarbeit soll das neue System

auch eine bessere Integration an externe Systeme, z.B. eine automatische

Warenlieferung, bieten.

Die Bäckerei stellt jeden Tag mehrere Sorten Brot und Brötchen sowie Kuchen

und Gebäck für den freien Verkauf her. Da am Wochenende mehr Leute Zeit

zum gemütlichen Frühstück und Kaffeetrinken haben, werden am Samstag mehr

Brötchen und Gebäck benötigt. Kuchen werden nach Saison angeboten und wech-

seln regelmäßig. z.B. im Frühsommer Erdbeerkuchen und im Herbst Apfeltaschen.

Zusätzlich gibt es spezielle Festgebäcke, die nur zu bestimmten Zeiten angeboten

werden (Osterlämmer in der Karwoche, Knieküchle zur Kirchweih, Martinswecken

am 11.11., Lebkuchen im Dezember, ...)

115

116 APPENDIX A. DESCRIPTION OF THE BAKERY SYSTEM

A.1.1 Verkauf

Im Verkaufsraum werden die fertigen Gebäcke ausgestellt. Das System soll

erfassen, wann und wieviele Waren aus der Backstube in den Verkauf gelangen

und wann sie verkauft werden. Zur Optimierung des Angebots soll monatlich

eine Verkaufsstatistik erstellt werden.

Am Ende des Tages werden nicht verkaufte Waren der örtlichen Tafel gespendet.

Das System muss das entsprechend erfassen. Darüber hinaus nimmt die Bäckerei

Sonderaufträge an Z.B. um ein Schulfest mit Brötchen und Brezen zu beliefern

oder eine Hochzeitstorte zu backen.

Bei Sonderaufträgen muss die Leistungsfähigkeit der Mitarbeiter beachtet werden,

das System soll diese Kapazität automatisch berechnen und anzeigen. Ein

Konditor kann nur eine große Hochzeitstorte pro Tag herstellen (mehr kann die

Bäckerei auch gar nicht aufbewahren).

Sonderaufträge können auch über ein Online-Portal angefragt werden. In

diesem Fall muss ein Mitarbeiter den Sonderauftrag bestätigen und den Kunden

benachrichtigen. Für jedes Gebäck ist im System ein Preis gespeichert. Die Kasse

kann dann aus der Menge der gekauften Gebäcke und dem Preis den Gesamtpreis

berechnen. Selbstverständlich werden auch Kassenbons erstellt!

Da die Kasse sicherheitskritisch ist (Geld, öffentlicher Raum), müssen sich

Mitarbeiter bei jedem Verkaufsvorgang mit einer Kennzahl anmelden. So ist

es auch möglich, dass mehrere Verkäufer an derselben Kasse unterschiedliche

Verkäufe abwickeln.

Bei Sonderaufträgen gibt es für Großkunden und Stammkunden Rabatte. Dazu

muss das Verkaufssystem auch die Daten der Kunden erfassen.

A.1.2 Personalverwaltung

Die Personalverwaltung soll Namen und Anschriften der Mitarbeiter erfassen,

sowie die jeweiligen Gehälter und die Dauer der Betriebszugehörigkeit. In der

Bäckerei arbeiten Verkäufer und Bäcker, zusätzlich gibt es immer mindestens

einen Konditor im Betrieb.

Sowohl im Verkauf als auch in der Bäckerei wird ausgebildet. Auszubildende

haben an drei Tagen pro Woche Berufsschule und stehen daher nur an den

anderen drei Tagen zur Verfügung.

A.1. DAS BÄCKEREI-SYSTEM 117

Im ersten und zweiten Lehrjahr benötigen Auszubildende noch viel Betreuung

durch erfahrene Mitarbeiter, das muss im Schichtplan berücksichtigt werden.

Im dritten Lehrjahr können Auszubildende schon selbständige Tätigkeiten

übernehmen und werden daher wie volle Mitarbeiter verplant.

Die wichtigste Funktion der Personalverwaltung ist die Erstellung der Schicht-

pläne. Schichtpläne werden monatlich jeweils für die Backstube und den

Verkaufsraum erstellt: Dabei müssen wechselnde Öffnungszeiten, Urlaubszeiten,

Krankentage und Teilzeit berücksichtigt werden, In der Backstube gibt es

nur festangestellte Mitarbeiter und Auszubildende, im Verkauf werden zusät-

zlich auch Aushilfen mit unregelmäßigen Arbeitszeiten beschäftigt, Mitarbeiter

können Schichten tauschen, solange die Aufträge dann noch erfüllt werden können.

Die tatsächlichen Arbeitszeiten werden über ein digitales Stechkartensys-

tem erfasst und mit den Schichtplänen abgeglichen. Anhand der geleisteten

Arbeitszeiten wird am Ende des Monats der Arbeitslohn berechnet und überwiesen.

A.1.3 Lagerverwaltung

In der Lagerverwaltung werden die Zutaten überwacht. Da in der Bäckerei mit

Lebensmitteln gearbeitet wird, muss die Lagerverwaltung für jede Zutat das

Mindesthaltbarkeitsdatum erfassen. Auch Wareneingang und das Datum des

Verbrauchs werden notiert.

Bei Lebensmitteln, die gekühlt werden müssen (wie Milch, Butter, Eier) muss

zusätzlich die Einhaltung der Kühlkette dokumentiert werden (das Lebensmittel

darf während Transport und Lagerung 8° Celsius nicht überschreiten).

Die Höchstlagermenge für verderbliche Lebensmittel darf nur überschritten

werden, wenn diese kurzfristig für Sonderaufträge benötigt werden. Auch

bei Sonderaufträgen darf die Menge der kühlpflichtigen Lebensmittel die

Kühlkapazität nicht überschreiten.

Ein Lebensmittel, das sein Mindesthaltbarkeitsdatum überschritten hat oder das

nicht korrekt gelagert wurde darf nicht mehr in den Verkauf gelangen und muss

entsorgt werden. Da die Entsorgung von Lebensmitteln teuer ist, soll derartige

Verschwendung mithilfe des Lagersystems vermieden werden.

Gerade bei frischen Zutaten kann es Schäden geben, außerdem gibt es bei

Mehl, Zucker und ähnlichen Trockenzutaten auch Schwund durch ungenaues

Wiegen. Daher soll regelmäßig der Lagerbestand geprüft werden. Prüfung:

118 APPENDIX A. DESCRIPTION OF THE BAKERY SYSTEM

Langfristig lagernde Lebensmittel: alle 3 Monate, Kühlräume: monatlich, Schnell

verderbliche Ware (z.B. frisches Obst): wöchentlich. In allen Fällen wird der

Bestand ggf. korrigiert und verdorbene Ware entsorgt.

Zutaten, die täglich benötigt werden (z.B. Mehl, Zucker, Eier, Hefe, Butter)

müssen immer in ausreichender Menge vorrätig sein, ansonsten wird automatisch

nachbestellt. Saisonale Zutaten, z.B. Erdbeeren im Frühjahr und Zwetschgen

im Herbst, werden auf dem Großmarkt eingekauft, aber ebenfalls im System erfasst.

Neben den Standard-Zutaten werden für Sonderaufträge auch außergewöhnliche

Zutaten verarbeitet. Bei der Bestellung von Sonderzutaten muss darauf geachtet

werden, dass diese rechtzeitig für die Ausführung des Sonderauftrags geliefert

werden.

Da die benötigten Zutaten von den zubereiteten Backwaren abhängen, muss das

Lagersystem für jedes Gebäck eine Zutatenliste verwalten. Die Bäckerei legt in

einem Backplan fest, welche Gebäcke zubereitet werden. Kuchensorten variieren

nach Saison, Brot wird täglich zubereitet, Samstags werden mehr Brötchen

gebacken.

Der Backplan beruht auf langjähriger Erfahrung und wird im System ver-

waltet. Ein Mitarbeiter pflegt den Plan, z.B. um saisonales Obstangebot zu

berücksichtigen.Sonderaufträge werden kurzfristig erfasst. Bei Engpässen (z.B.

Mitarbeiterausfall wegen Krankheit) wird der Plan kurzfristig durch einen

Mitarbeiter angepasst.

Auf Basis des Backplans soll das Lagersystem die Standardzutaten automatisch

bestellen und außerdem wöchentlich eine Einkaufsliste für den Großmarkt erstellen.

Zutaten können bei Lieferung mithilfe eines Scanners erfasst werden oder über

ein Formular: Das Lagersystem soll auf kritische Punkte hinweisen (Hinweise

zur korrekten Lagerung, Kühlpflicht, Probleme, ...), Sonderzutaten sollen

einem Sonderauftrag zugewiesen werden können, damit sie nicht versehentlich

anderweitig verwendet werden.

Die Entnahme erfolgt Rezept-gebunden: ein Mitarbeiter ruft ein Rezept auf und

entnimmt die entsprechenden Waren aus dem Lager. Zusätzlich soll es auch

möglich sein zu experimentieren, so dass beliebige Waren entnommen werden

können.

A.1. DAS BÄCKEREI-SYSTEM 119

Das System soll dann aber warnen, wenn z.B. Zutaten für einen Sonderauftrag

entnommen werden sollen oder die Standardzutaten durch das Experiment die

Mindestlagermenge unterschreiten.

Appendix B

Rules and Guidelines

This appendix contains the list of rules for incomplete and complete model types.

B.1 Rules and Guidelines for Incomplete Models

Ri1: Each use case must be inside

the subsystem.

Ri2: Each use case must be associ-

ated with an actor.

Ri3: The generalization between use

cases must not be present in a use

case diagram.

Ri4: Each use case must be refined

in a sequence diagram.

Ri5: A use case should not contain

more than three actors.

Ri6: A use case should contain 1 to

4 words.

Ri7: Each subsystem should con-

tain minimum 3 and maximum 5 use

cases.

Ri8: A subsystem name should start

with a capital letter and should be

consisting of one to two words.

Ri9: Each actor name should start

with a capital letter.

Ri10: The depth of generalization of

an actor should not exceed to one.

Ri11: Each system name should start

with a capital letter and contain one

to two words.

Ri12: An Actor must be placed out-

side the system.

Ri13: A use case diagram should not

contain more than 20 use cases.

Ri14: The depth of include chain of

a use case should not exceed to one.

Ri15: The depth of extend chain of

a use case should not exceed to one.

Ri16: Each subsystem should be re-

fined by one activity diagram.

Ri17: Each Activity in activity dia-

gram should refers to a use case in a

use case diagram.

Ri18: Each subsystem of a use case

diagram should be represented as a

package in a class diagram.

121

122 APPENDIX B. RULES AND GUIDELINES

Ri19: Each Package should not con-

tain more than 20 classes.

Ri20: The depth of inheritance tree

should not exceed to 2.

Ri21: Multiple inheritance must not

exists.

Ri22: Each class name should start

with a capital letter and should be

one word.

Ri23: An <<entity>> class should

contain at least 3 attributes.

Ri24: A <<control>> class should

contain 2-5 Operations.

Ri25: If class is empty class than

class must be the <<boundary>>

class.

Ri26: Each association must have

name.

Ri27: Each association must specify

multiplicity values at both ends.

Ri28: Each class should have 1-5 as-

sociation.

Ri29: Each association name should

start with a lower case letter.

Ri30: Class should not be linked with

composition or aggregation associa-

tion type.

Ri31: The links to classes belong-

ing to another package must be uni-

directional.

Ri32: Each Sequence diagram should

have at least one actor on a lifeline.

Ri33: Each object or lifeline in a

sequence diagram must have corre-

sponding class in a class diagram.

Ri34: Every call message received by

the lifeline must have corresponding

operation in the class.

Ri35: If there is a message call be-

tween two lifeline than there must be

an association between correspond-

ing classes.

Ri36: Each message must be labeled.

Table B.1: Rules and Guidelines for Incomplete Models

B.2. RULES AND GUIDELINES FOR COMPLETE MODELS 123

B.2 Rules and Guidelines for Complete Models

Rc1: Every class should have at-

tributes.

Rc2: Every class should have opera-

tions.

Rc3: The depth of inheritance level

should be less than 4.

Rc4: same as Ri21.

Rc5: same as Ri22. Rc6: Each class should have a maxi-

mum of 10 operations.

Rc7: same as Ri26. Rc8: same as Ri28.

Rc9: same as Ri29. Rc10: Each association must have a

direction.

Rc11: Each association must specify

multiplicity and it must be n to 1.

Rc12: Association classes must not

present in a model.

Rc13: Each package should have

maximum 20 classes.

Rc14: same as Ri31.

Rc15: The maximum package nest-

ing level should be 2.

Rc16: Each attribute must have data

type and must be private.

Rc17: If class has composition rela-

tionship than multiplicity must be

1.

Rc18: Each operation should have a

maximum of four parameters.

Rc19: An <<entity>> class should

have getters and setters.

Rc20: Abstract class should have ab-

stract operations.

Rc21: Each operation must have a

return type.

Rc22: Each parameter must have a

data type.

Rc23: same as Ri32. Rc24: same as Ri33.

Rc25: same as Ri34. Rc26: same as Ri35.

Rc27: If a message is empty then it

must be a return type message.

Rc28: One activity diagram should

reference to one class operation.

Rc29: The maximum number of de-

cision point in an activity diagram

should be 12.

Rc30: Each activity diagram should

contain 0 to 3 swimlane.

Rc31: Each activity diagram should

contain one initial node and one exit

point.

Rc32: Each activity in an activity

diagram should reference to a class

operation.

Rc33: Dead activities must not

present in an activity diagram.

Rc34: Each objects of an activity

diagram should have corresponding

class in a class diagram.

124 APPENDIX B. RULES AND GUIDELINES

Rc35: Dead state must not be present

in a state machine diagram.

Rc36: State names must be unique.

Rc37: All states except root state and

initial state should have one incom-

ing transition.

Table B.2: Rules and Guidelines for Complete Models

Appendix C

Case Study Model

This section contains Bakery system models designed by the groups BLUE and

RED. We show here only partial model (does not contain all diagrams) for

incomplete and complete model for iteration 1.

C.1 Incomplete Model of Group BLUE for Iteration 1

125

1
2
6

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Lagerverwaltung

Zutateneingang
erfassen

Inventur durchführen

Verdorbene Ware
entfernen

Bestand aktualisieren

Einkaufsliste für
Großmarkt erstellen

Benötigte
Sonderzutaten

bestellen

Saisonale Zutaten
erfassen und

eintragen

Waren erfassen

auf kritische Punkte
hinweisen

Sonderzutaten
einem

Sonderauftrag
zuweisen

Problemware
zurückschicken
und austragen

extension points
Bei einem Experiment

benötigte Waren
austragen

Warnung ausgeben

Fehlende
tägliche Waren
nachbestellen,

falls nötig

Backplan eintragen

Lagerarbeiter
Verkäufer

Lieferant

Personal

Manager
Konditor

Bäcker

Zeit

«extend»

«extend»

«extend»

(Bei einem Experiment)

Figure C.1: BLUE Group’s Verkauf Subsystem for the Bakery System

C
.1.

IN
C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

B
L
U
E

F
O
R

IT
E
R
A
T
IO

N
1

127

Academic Use Only

activity_Verkaufssystem activity_Verkaufssystemactivity []

Fork

Bestellung
ablehnen

Kundendaten
einlesen

am
Kassensystem

anmelden

Kassenbon
drucken

Bestellung
bestätigen

Geld kassieren

Bestellung an
Bäcker

weitergeben

Bestellung
ausbuchen

Kasse
abschließen

Bestellung
aufnehmen

Ware
registrieren

Reste an Tafel
geben

Kapazität
vorhande

n?

Bestellungsaufnahme

Bestellungsabholung Verkaufsabw icklung

beliebig viele auf
einmal fertig

[Ladenschluss]

Figure C.2: BLUE Group’s Activity Diagram for Verkaufsubsystem the Bakery System

1
2
8

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Lagerklassen

+Inventur durchführen()
+Zutaten hinzufügen()
+Zutaten entfernen/entnehmen()
+Haltbarkeit überprüfen()
+Lieferung annehmen & kontrollieren()
+Einkaufsliste erstellen()

Lagerverwaltung

+Backpläne eingeben()
+Sonderauftrag: Anfrage überprüfen()
+Backpläne ändern()

Backverwaltung

Scanner & Temperatursensor

+automatische Bestellung()
+Bestellung der Sonderzutaten()
+Backplan überprüfen()
+Zutatenliste überprüfen()
+Gesamtmenge berechnen()
+Gesamtmenge bestellen()

Zutatenbestellung

Lagerverwaltung GUI

Backverwaltung GUI

-Backw aren pro Tag

+()
+()
+()

Backplan

-Zutatenliste
-Preis
-Haltbarkeitsdatum

Backware

-Liste von Zutaten

Zutatenliste

-Zutaten
-Lagerkapazität

Lagerbestand

-Lieferzeiten
-Lageroptionen
-Menge
-Haltbarkeit

Zutat

-Zutaten

Einkaufsliste

Figure C.3: BLUE Group’s LagerKlassen Package for the Bakery System

C
.1.

IN
C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

B
L
U
E

F
O
R

IT
E
R
A
T
IO

N
1

129

Academic Use Only

: Kassensystem : Verkäufer«boundary»

: Kasse
: Kunde

Rückgeld nennen17:

Preis nennen21:

Einbuchen15:

Preis nennen3:

als bezahlt markieren10:

Rückgeld ausgeben9:

Bestand aktualis ieren11:

Einbuchen6:

Rückgeld nennen8:

Preis nennen2:

Geld geben4:

Figure C.4: BLUE Group’s Sequence Diagram for Use Case Geld Kassieren for the Bakery System

130 APPENDIX C. CASE STUDY MODEL

C.2 Incomplete Model of Group RED for Iteration 1

C
.2.

IN
C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

R
E
D

F
O
R

IT
E
R
A
T
IO

N
1

131

Academic Use Only

lagerverwaltung

Warenbestand
kontrollieren

Backplan editieren

Waren bestellen

Waren entnehmen

Waren annehmen
und kontrollieren

Waren reklamieren

Inventur führen

Lager überwachenWare entsorgen

Warnung ausgeben

Waren aus
Großmarkteinkau

f aufnehmen

Einkaufsliste
erstellen

Mitarbeiter

Bäcker

Figure C.5: RED Group’s Lagerverwaltung Subsystem for the Bakery System

1
3
2

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Aktivitätsdiagramm Aktivitätsdiagrammactivity []

Lager befüllen

Waren
annehmen /
kontrollieren

Inventur führen

Waren
entnehmen

Ware
entsorgen

Waren
reklamieren

Warnung
ausgeben

Waren
bestellen

Lager
überwachen

Backplan
editieren

[Bestand unterschritten]

[Nein]

[Nein]1

[Mindesthaltbarkeitsdatum
überschritten]

Ware läuft demnächst ab?

Warenbestand und Warenzustand OK?

Else Zutaten alle
vorhanden?

[Ok]

Ware ok?

[Ja]

[Ja]
[Ja]1

Figure C.6: RED Group’s Activity Diagram for the Bakery System

C
.2.

IN
C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

R
E
D

F
O
R

IT
E
R
A
T
IO

N
1

133

Academic Use Only

+Backplanreferenz anfordern()
+prüfen()
+Ware löschen()
+Inventur starten()
+update()
+missmenge melden()
+Bestand abfragen()

Lager

+öffnen()
+Zutatenbestand abfragen()

Zutaten

+benutzt()
+Temperatur messen()

Wareneingangssensor

+Referenz anfordern()
+langfristig editieren()
+kurzfristig editieren()
+liest()

Backplan

+login()

Warenannahme GUI

+update()
+charge erstellen()

Warenannahme
+scannen()

Barcode Scanner

+holt rezept()
+liest()

Backwaren

Zutatencharge

Einkaufsliste
Lager GUI

Sensor

1

* 1

*

1

*

1*

1 1

1 1

*

*

1 *

1

1

*

1

1*

* *

1

1

Lagerverwaltung

Figure C.7: RED Group’s Lagerverwaltung Package for the Bakery System

1
3
4

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Backplan editieren Backplan editiereninteraction []

: Mitarbeiter «boundary»

: Lager GUI
: Backplan: Lager

[langfristig]

[else]

[]

[else]

alt

alt

login()1:

Lager Backplan aufrufen()3:

langfristig editieren()9:

kurzfristig editieren()13:

login bestätigt2:

Backplanreferenz anfordern()4:

Backplan anzeigen8:

langfristig editieren()10:

Backplan editiert12:

kurzfristig editieren()14:

Ausgabe20:

return Backplan6:

Änderung bestätigen11:

prüfen()15:

Änderung akzeptiert17:

Änderung verworfen19:

Referenz anfordern()5:

return Backplan7:

return true16:

return false18:

Figure C.8: RED Group’s Sequence Diagram for Use Case Backplan Editieren for the Bakery System

C.3. COMPLETE MODEL OF GROUP BLUE FOR ITERATION 1 135

C.3 Complete Model of Group BLUE for Iteration 1

1
3
6

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Verkaufsystem

-Produktliste : Produkt"[]"
-Preis : Currency
-Lieferdatum : date
-Kunde : Kundendaten

«constructor»+Sonderauftrag(produktliste : Produkt"[]", preis : Currency, datum : date, kunde : Kundendaten)
«constructor»+Sonderauftrag(daten : String"[]")
+getProduktliste() : Produkt"[]"

Sonderauftrag

-Vorname : String
-Name : String
-Straße : String
-PLZ : int
-Ort : String
-Telefonnummer : int

+Konstruktor(name : String, vorname : String, straße : String, plz : int, ort : String, tel : int)

Kundendaten

-Gesamtpreis : Currency

+Kunde_anlegen(daten : Kundendaten, bestellung : Sonderauftrag) : void
+Sonderauftrag_erstellen(produktliste : Produkt"[]", preis : Currency, datum : date) : void
+Auftrag_prüfen(produktliste : Produkt"[]", datum : date) : boolean
+Kunde_löschen(daten : Kundendaten) : boolean
+Aufträge_angucken(datum : date) : Sonderauftrag"[]"
+Aufträge_angucken(kunde : Kundendaten) : Sonderauftrag"[]"
+Produktliste_bereitstellen() : Produkt"[]"
+Preis_berechnen() : Currency
+Gesamtpreis_aktualisieren() : void

Sonderauftrag_Kunden_Verwaltung

-Daten : Kundendaten
-Sonderaufträge : Sonderauftrag"[]"
-Rabatt : float

«constructor»+Kunde(daten : Kundendaten, rabatt : float)
«constructor»+Kunde(daten : String"[]")
+addAuftrag(sonderauftrag : Sonderauftrag) : void
+setRabatt(rabatt : f loat) : void
+getRabatt() : float

Kunde

-Bestand der Backw aren : Produkt"[]"
-Geldbestand : Currency
-Tagesstatistik : Produkt"[]"
-Gesamtpreis : Currency

+Kassenbon_drucken(Einkauf : Produkt"[]") : void
+Verkaufststatistik_aktualisieren(Einkauf : Produkt"[]") : void
+Preis_berechnen(Einkauf : Produkt"[]") : Currency
+Einbuchen(Preis : Currency) : Currency
+Bestand_aktualisieren(Einkauf : Produkt"[]") : void
+Abschluss_anfordern() : void
+Tagesstatistik_speichern() : void
+Kassierer_anmelden(Kennzahl : int) : boolean
+Als_Spende_dokumentieren() : Produkt"[]"
+Produktliste_bereitstellen() : Produkt"[]"
+Gesamtpreis_aktualisieren() : void
+Tagesstatisik_abrufen(datum : date)

Kassenverwaltung

-Kundendaten : Kundendaten
-Produktliste : Produkt"[]"
-Datum : date

+zu SonderauftragGUI wechseln()
+Daten eingeben(kundendaten : Kundend...
+Aufträge_angucken()
+Kunde_löschen()

SonderauftragVerwaltungGUI

+getKunde(kundendaten : Kundendaten) : ...
+setSonderauftrag(sonderauftrag : Sonder...
+newKunde(kunde : Kunde)
+setKunde(kunde : Kunde)
+setTagesstatistik(datum : date, produkte : ...
+getSonderauftrag(kunde : Kundendaten)
+getSonderauftrag(datum : date)
+löscheKunde(kunde : Kundendaten)
+getTagesstatistik(datum : date)

Datenbank

+Ware eintragen(w aren : String"[]", menge : int"[]")

Neue_Ware

+Preis_nennen()
+Einbuchen()
+Rückgeld_nennen()
+als_bezahlt_markieren()
+Abschluss_anfordern()
+herunterfahren()
+Kassierer_anmelden()
+als_Spende_dokumentieren()
+zu SonderauftragsGUI wechseln()
+Waren_an_Kassenverwaltung_senden()
+Tagesstatistik_abrufen()
+Bon_drucken()
+zeigeGUI()

Kasse
-Kundendaten : Kundendaten
-Produktliste : Produkt"[]"
-Datum : date

+Daten_absenden()
+GUI_aufrufen()

OnlineportalGUI

-Name : String
-Preis : Currency

+Produkt(name : String)
+getPreis() : Currency

Produkt

verw altet

*

1
greif t zu

1

1

greift zu

1

1

verw altet

*

1

benutzt

1

1..3

hat

1*

benutzt

1

1..3

benutzt

1

*

greif t zu*

1

Figure C.9: BLUE Group’s Verkaufsystem Package for the Bakery System

C
.3.

C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

B
L
U
E

F
O
R

IT
E
R
A
T
IO

N
1

137

Academic Use Only

«boundary»

: DatenbankVerkauf
«entity»

: Preisliste
: Verkäufer «boundary»

: Kasse
«control»

: Verkauf

: Quittung

[]

loop

[ausloggen]

opt

[Anmeldung]

anmelden

ref

opt

Preis5:

BackwareVerkaufen(Typ="", Anzahl=""):""3:

EingabeendeBestätigen()7:

NeuenVerkaufInitialisieren()1:

SpendenQuittungDrucken(Quittung=""):""12:

VerkaufBeenden()15:

Ausloggen()16:

Bereitschaft melden / An Quittierung erinnern14:

Preisabfrage(Backware=""):""4:

new Quittung2:

BackwareHinzufügen(Backware="", Preis=Preis, Anzahl=""):""6:

Gesamtpreisberechnen():""8:

SpendeInsSystemAufnehmen(Quittung=)10:

AusgabeErzeugen(Ausgabe=)13:

SpendeEintragen(Spende=""):""11:

Gesamtpreis9:

Figure C.10: BLUE Group’s Sequence Diagram for BackwareDatenEingeben for the Bakery System

1
3
8

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

state_Personalverw altungsGUI state_Personalverw altungsGUIstate machine []

eingeloggt

Urlaub
beantragen

Mitarbeiter
löschen

Krankheit
eintragen

Urlaub erlauben

Mitarbeiter
bearbeiten

Mitarbeiter
erstellen

Schicht
tauschen

ausgeloggt

zeigeNachrichtAn(nachricht : String)

zeigeNachrichtAn(nachricht : String)

zeigeNachrichtAn(nachricht : String)

löscheMitarbeiter()

erstelleMitarbeiter()

zeigeNachrichtAn(nachricht : String)

bearbeiteMitarbeiter()

zeigeNachrichtAn(nachricht : String)

w ähleKrankheitEintragen()

w ähleSchichtTauschen()

zeigeNachrichtAn(nachricht : String)

zeigeNachrichtAn(nachricht : String)

w ähleUrlaubEintragen()

logout
login(benutzername : String, passw ort : String)

w ähleUrlaubErlauben()

Figure C.11: BLUE Group’s State Machine Diagram for PersonalverwaltungsGUI for the Bakery System

C.4. COMPLETE MODEL OF GROUP RED FOR ITERATION 1 139

C.4 Complete Model of Group RED for Iteration 1

1
4
0

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

Verkauf

-Preisliste : Preisliste
-Sonderaufträge : Liste
-Sortiment : Liste
-Datenbank : DatenbankVerkauf

+VerkaufsstatistikAnfordern() : Objekt
+VerkaufstatistikAnpassen(Backw are, int) : void
+PreislisteAnfordern() : Objekt
+Backw arenInsSortimentAufnehmen(Backw aren, Menge) : void
+SonderauftragErstellen(Kunde : Kunde) : void
+SonderauftragBestellungHinzufügen(Typ : Backw aren, Menge : Int) : boolean
+SonderauftragPrüfen() : boolean
+NeuesProduktInsSortiment(Typ : Backw are, Anzahl : Int)
+Backw arenVomSortimentAbziehen(Typ : Backw are, Anzahl : Int)
+SonderauftragRegistrieren(Auftrag : Sonderauftrag) : void
+NeueBackw areInPreisliste(Typ : Backw are, Preis : double) : void
+PreislisteAktualisieren() : void
+KundendatenSpeichern(Name : String, Vorname : String, Kontonummer : String, Bankleitzahl : String, Vorname : String, Stammkunde : boolean, Großkunde boolean) : void
+SpendeInsSystemAufnehmen(Quittung : Quittung) : void
+LoginDatenPrüfen(MitarbeiterId : Int, Pin : String) : boolean
+KundenLaden()

«control»
Verkauf

-KassenNr : int
-Datenbank : Datenbankverkauf

+EingabeendeBestätigen() : void
+login(MitarbeiterID : int, PIN : String) : boolean
+Backw areVerkaufen(Typ : Backw are, Anzahl : Int) : void
+QuittungDrucken(Quittung : Quittung) : void
+Gesamtpreisberechnen() : double
+NeuenVerkaufInitialisieren() : void
+FormularKundeAufrufen() : void
+KundendatenSpeichern(Name : String, Vorname : String, Kontonummer : int, Bankleitzahl : int, Stammkunde : boolean, Großkunde : boolean) : void
+KundendatenAufrufen(Kundennummer : int) : Kunde
+SonderauftragErstellen() : void
+SonderauftragFormularAufrufen() : void
+SonderauftragPrüfen() : boolean
+AusgabeErzeugen(Ausgabe : String) : void
+SpendenQuittungDrucken(Quittung : Quittung) : void
+Ausloggen() : void
+VerkaufBeenden() : void

«boundary»
Kasse

-Einkaufsliste : Liste
-Datum : time
-Gesamtpreis : double

+Backw areHinzufügen(Backw are : Backw are, Preis : double, Anzahl : int) : void
+Gesamtpreisberechnen() : double

Quittung

-Verkaufsystem : Verkauf

+VerkaufsstatistikAnfordern() : Objekt
+AusgabeErzeugen(Ausgabe : String) : void
+FormularNeuesProduktSortiment() : void
+NeuesProduktSpeichern() : void
+SonderauftragAnzeigen(Auftrag : Sonderauftrag) : void
+AuftragBestätigen(Auftrag : Sonderauftrag) : void
+NeueBackWareinPreisliste(Typ : Backw are, Preis : double) : void
+PreislisteAktualisieren() : void
+login(MitarbeiterID : Int, Pin : String) : boolean
+ausloggen()

«boundary»
VerkaufGUI

+BestellungHinzufügen(Typ : Backw aren, Menge : Int) : boolean

-Auftragsnummer : int
-Kunde : Kunde
-Bestellliste : Liste
-Datum : time
-Status : String

Sonderauftrag

+KundendatenEingeben(Kundennummer : Int) : void
+SonderauftragErstellen() : void
+SonderauftragsFormularAufrufen() : void
+Backw arenAusw ählen(Typ : Backw are, Menge : Int) : void
+AuftragAbschicken() : void
+ausloggen()

«boundary»
Onlineportal

+PreiseAbfragen() : Double
+VerkäufeAbfragen(Datum1 : date, Datum2 : date) : Liste
+KundeAufnehmen(NeuerKunde : Kunde) : boolean
+KundendatenAufrufen(Kundennummer : int) : Kunde
+SpendeEintragen(Spende : Quittung) : void
+PreisEintragen(Typ : Backw are, Preis : double) : void
+PreisUpdaten(Typ : Backw are, Preis : double) : void
+LoginDatenPrüfen(MitarbeiterId : Int, Pin : String) : boolean

«boundary»
DatenbankVerkauf

-Liste : Liste

+Preisabfrage(Backw are) : double
+eintragen(Typ : Backw are, Preis : double) : void
+update() : void

«entity»
Preisliste

-Datenbank : DatenbankVerkauf

+StatistikAnfordern() : Objekt
+VerkaufEintragen(Backw are, int) : void
+StatistikBerechnen() : void
+KundendatenAufrufen()

«control»
Verkaufsstatistik

-Name : String
-Adresse : String
-Kontonummer : String
-Bankleitzahl : String
-Vorname : String
-Stammkunde : Boolean
-Großkunde : Boolean
-Kundenummer : int

«entity»
Kunde

erstellt

0..*

1

kennt

1

*

befüllt
1

1

kennt

1

*

kennt

11

stellt dar

1

1

verw altet

1

0..*

ermöglicht Bestellungen

1

1

stellt dar

1..*

1

besitzt

0..*1

kennt1

1

verw altet 1
1

Figure C.12: RED Group’s Verkauf Package for the Bakery System

C
.4.

C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

R
E
D

F
O
R

IT
E
R
A
T
IO

N
1

141

Academic Use Only

activity Verkauf Verkauf[]

: Backwaren ins Sortiment aufnehmen

: Verkaufsstatistik erstellen

: Backwaren spenden

: Kunden aufnehmen

: verkaufen

: bestellen

start
Mitarbeiter

start
Kunde

end

end

[Kunden ins System eintragen]

[Sonderkunde will bestellen]

[keine Bestellung]

[gleich bestellen]

Figure C.13: RED Group’s Activity Diagram for Verkauf for the Bakery System

1
4
2

A
P
P
E
N
D
IX

C
.
C
A
S
E

S
T
U
D
Y

M
O
D
E
L

Academic Use Only

«boundary»

: DatenbankVerkauf
«entity»

: Preisliste
: Verkäufer «boundary»

: Kasse
«control»

: Verkauf

: Quittung

[]

loop

[ausloggen]

opt

[Anmeldung]

anmelden

ref

opt

Preis5:

BackwareVerkaufen(Typ="", Anzahl=""):""3:

EingabeendeBestätigen()7:

NeuenVerkaufInitialisieren()1:

SpendenQuittungDrucken(Quittung=""):""12:

VerkaufBeenden()15:

Ausloggen()16:

Bereitschaft melden / An Quittierung erinnern14:

Preisabfrage(Backware=""):""4:

new Quittung2:

BackwareHinzufügen(Backware="", Preis=Preis, Anzahl=""):""6:

Gesamtpreisberechnen():""8:

SpendeInsSystemAufnehmen(Quittung=)10:

AusgabeErzeugen(Ausgabe=)13:

SpendeEintragen(Spende=""):""11:

Gesamtpreis9:

Figure C.14: RED Group’s Sequence Diagram for Backware Spenden for the Bakery System

C
.4.

C
O
M
P
L
E
T
E

M
O
D
E
L
O
F
G
R
O
U
P

R
E
D

F
O
R

IT
E
R
A
T
IO

N
1

143

Academic Use Only

Personalverw altungGUI Personalverw altungGUIstate machine []

editieren

MitarbeiterBearbeiten

ändern

SchichtplanBearbeiten

eingeloggt
MitarbeiterErstellen

ausgeloggt

MitarbeiterLöschen() : void

MitarbeiterSpeichern() : voidMitarbeiterEditieren() : boolean

SchichtplanSpeichern() : void

SchichtplanEditieren() : boolean

MitarbeiterdatenEingeben() : void

MitarbeiterSpeichern() : void

SchichtplanErstellen() : void

SchichtplanAnzeigen(date) : Schichtplan
MitarbeiterAnlegen() : void

MitarbeiterAuswählen() : Mitarbeiter

Einloggen() : booleanAusloggen()

Figure C.15: RED Group’s State Machine Diagram for PersonalverwaltungsGUI for the Bakery System

Appendix D

OCL Component

1 /∗
2 This file contains java helper Class and OCLEvaluator Class.

3 Xtend provides strong connectivity with Java Extensions.

4 Author: Akhtar Ali Jalbani

5 Date: 18−09−2010
6 ∗/
7 import uml;

8 cached Void dump(String s) :

9 JAVA helper.Helper.dump(java.lang.String);

10

11 cached Void evaluateOCL(String ms, uml::Element model) :

12 JAVA helper.OCLEvaluator.evaluateOCL(java.lang.String, org.eclipse.uml2.uml.Element);

13

14 Void delete (emf::EObject e):

15 JAVA org.eclipse.emf.ecore.util.EcoreUtil.delete(org.eclipse.emf.ecore.EObject);

Listing D.1: Helper File to use Java in Xtend

1 /∗This is the main OCL Class which is used to execute OCL checks on UML models

2 ∗ This has been modified from OCLInterpreter Example from eclipse, open source project.

3 ∗ Supported files are added as a workflow component.

4 ∗ Author: Akhtar Ali Jalbani

5 ∗ Date: 18−09−2010
6 ∗ ∗/
7 package helper;

8

9 import org.eclipse.core.runtime.IAdaptable;

10 import org.eclipse.emf.ecore.EObject;

11 import org.eclipse.ocl.OCL;

12 import org.eclipse.ocl.ParserException;

13 import org.eclipse.ocl.expressions.OCLExpression;

14 import org.eclipse.ocl.helper.OCLHelper;

15

16 import workflow.componenets.IOCLFactory;

17 import workflow.componenets.ModelingLevel;

18 import workflow.componenets.UMLOCLFactory;

19

145

146 APPENDIX D. OCL COMPONENT

20 public class OCLEvaluator {
21 public static Object evaluateOCL(String expression, org.eclipse.uml2.uml.Element elem) {
22 EObject context = null;

23

24 if (elem instanceof EObject) {
25 context = (EObject) elem;

26 } else if (elem instanceof IAdaptable) {
27 context = (EObject) ((IAdaptable) elem)

28 .getAdapter(EObject.class);

29 }
30 if (context == null) {
31 return −1111;
32 }
33 IOCLFactory<Object> oclFactory = new UMLOCLFactory(context);

34 ModelingLevel modelingLevel = ModelingLevel.M2;

35 OCL<?, Object, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?> ocl;

36 ocl = oclFactory.createOCL(modelingLevel);

37 OCLHelper<Object, ?, ?, ?> helper = ocl.createOCLHelper();

38 try {
39 modelingLevel.setContext(helper, context, oclFactory);

40 switch (modelingLevel) {
41 case M2:

42 OCLExpression<Object> parsed = helper

43 .createQuery(expression);

44 Object results = ocl.evaluate(context, parsed);

45 return results;

46 case M1:

47 break;

48 }
49 } catch (ParserException e) {
50 return 0;

51 }
52 return −1111;
53 }
54 }

Listing D.2: EvaluateOCL.java Class from Interpreter eclipse OCL Example

Appendix E

Rules for Incomplete Models

1 // OCL Rules, with Xtend Language for Analysis Model (Incomplete UML Models)

2 // Author: Akhtar Ali Jalbani

3 // Date:15.09.2010

4 import uml;

5 extension templates::helper;

6 extension org::eclipse::xtend::util::stdlib::io reexport;

7

8 //===

9 // Rules for UseCase Diagram

10 //===

11 //Ri1: Each use case must be inside the Package (subsystem)

12 cached Boolean isUseCase InsideSubSystem(uml::UseCase uc):

13 let query = ”self.owner−>exists(oclIsTypeOf(Package))”:

14 query.evaluateOCL(uc);

15

16 //Ri2: Each usecase must be associated with an actor

17 cached Boolean isUseCase Connected(uml::UseCase uc):

18 uc.getRelationships().reject(e|e.eAllContents.typeSelect(Extend))−>
19 uc.getRelationships().reject(e|e.eAllContents.typeSelect(Include))−>
20 uc.getRelationships().relatedElement.typeSelect(Actor).size > 0;

21

22 //Ri3: The generalization between usecase must not be present in a use case diagram

23 cached Boolean isUseCase Inherited(uml::UseCase uc):

24 let query = ”self.parents()−>size()=0”:

25 query.evaluateOCL(uc);

26 //Ri4: Each use case must be refined in a sequence diagram

27 cached Boolean isUseCase RefinedinSD(uml::UseCase uc):

28 let query = ”ownedBehavior−>select(b | b.oclIsKindOf(Interaction) and

29 b.oclIsTypeOf(Interaction)−>size() > 0)−>size() > 0”:

30 query.evaluateOCL(uc);

31 //Ri5: Use case should not linked to more than three actors

32 cached Boolean actorToUseCaseRatio(uml::UseCase uc):

33 let query = ”self.extend−>isEmpty() and

34 getRelationships().relatedElement−>select(

35 oclIsTypeOf(Actor))−>size()<=3”:

36 query.evaluateOCL(uc)−>
37 uc.getRelationships().reject(e|e.eAllContents.typeSelect(Extend))−>

147

148 APPENDIX E. RULES FOR INCOMPLETE MODELS

38 uc.getRelationships().reject(e|e.eAllContents.typeSelect(Include))−>
39 uc.getRelationships().relatedElement.typeSelect(Actor).size!=0 &&

40 uc.getRelationships().relatedElement.typeSelect(Actor).size<=3;

41 //Ri6: Each use case name be 1 to 4 words.

42 cached Boolean hasUseCaseNameLength(uml::UseCase uc):

43 let query = ”name.size() = 0 or (let idx:Sequence(Integer) =

44 Sequence{1..name.size()} in idx−>select(i| name.substring(i, i) = ’ ’)−>
45 size()+1 <=4)”:

46 query.evaluateOCL(uc);

47

48 //Ri7 : Each subsystem contain minimum 3 and maximum 5 use cases i.e., UC= 3−5
49 cached Boolean isSubsystemBig(uml::Package pkg):

50 let query = ”(self.allOwnedElements()−>select(

51 oclIsTypeOf(UseCase))−>size()>=3) and

52 (self.allOwnedElements()−>select(oclIsTypeOf(UseCase))−>size()<=5)”:

53 query.evaluateOCL(pkg);

54

55 //Ri8: A subsystem name should start with a capital letter

56 //and should be consisting of one to two words

57 cached Boolean isSubsystemNameCapital(uml::Package pkg):

58 let query = ”(let startsWith:String=name.substring(1,1) in

59 startsWith.toUpper()=startsWith) and (name.size()=0 or

60 (let idx:Sequence(Integer) = Sequence{1..name.size()} in
61 idx−>select(i| name.substring(i, i) = ’ ’)−>size()+1 <=2))”:

62 query.evaluateOCL(pkg);

63 //Ri9: Actor name should start with a capital letter

64 cached Boolean isActorNameCapital(uml::Actor ac):

65 let query = ”(let startsWith:String = name.substring(1,1) in

66 startsWith.toUpper() = startsWith) and (name.size() = 0 or

67 (let idx:Sequence(Integer) = Sequence{1..name.size()} in
68 idx−>forAll(i| name.substring(i, i) <> ’ ’)))”:

69 query.evaluateOCL(ac);

70

71 //Ri10: The depth of generalization of an actor should not exceed to one

72 cached Boolean isActorDit(uml::Actor ac):

73 let query = ”self.parents().parents()−>size()=0”:

74 query.evaluateOCL(ac);

75

76 //Ri11: Each system name should start with a capital letter

77 //and contain one to two words

78 cached Boolean isSystemNameCapital(uml::Model ac):

79 let query = ”(let startsWith:String = name.substring(1,1) in

80 startsWith.toUpper() = startsWith) and (name.size() = 0 or

81 (let idx:Sequence(Integer) = Sequence{1..name.size()} in
82 idx−>select(i| name.substring(i, i) = ’ ’)−>size()+1 <=2))”:

83 query.evaluateOCL(ac);

84

85 //Ri12: Actor must be outside the system

86 cached Boolean isActorOutsideFromSystem(uml::Model ac):

87 let query = ”self.allOwnedElements()−>exists(oclIsTypeOf(Actor))”:

88 query.evaluateOCL(ac);

89

90 // Ri13: A use case diagram should not contain more than 20 use cases

91 cached Boolean isPackageBig(uml::Model model):

92 let query = ”UseCase.allInstances()−>exists(uc|uc−>size()<=20)”:

93 query.evaluateOCL(model);

94

95 //Ri14: The depth of include should not exceed one.

96 cached Boolean isIncludeUseCaseDit(uml::Include inc):

149

97 let query = ”self.source−>includes(self)−>size()<2”:

98 query.evaluateOCL(inc);

99

100 //Ri15: The depth of extend use case should not exceed one.

101 cached Boolean isExtendUseCaseDit(uml::Extend inc):

102 let query = ”self.source−>includes(self)−>size()<2”:

103 query.evaluateOCL(inc);

104

105

106

107 //==

108 // Rules for Activity Diagram

109 //==

110

111 //Ri16: Each subsystem should be refined by one activity diagram

112 cached Boolean isUseCaseRefinedByActivityDiagram(uml::Package pkg):

113 let query = ”Activity.allInstances().name−>includes(self.name)”:

114 query.evaluateOCL(pkg);

115

116 //Ri17: Each Activity in activity diagram should refers to usecase

117 cached Boolean isActivityReferenceToUseCase(uml::CallBehaviorAction acty):

118 let query = ”UseCase.allInstances().name−>includes(self.name)”:

119 query.evaluateOCL(acty);

120

121

122 //==

123 // Rules for Class Diagram

124 //==

125 //Ri18: Each subsystem of use case diagram should be represented as

126 //a package in a class diagram

127 cached Boolean isUCSubSystemRepByCSubsystem(uml::Package sub):

128 let query = ”Package.allInstances()−>includes(self.name)”:

129 query.evaluateOCL(sub);

130

131 //Ri19: Each subsystem should not contain more than 20 classes

132 cached Boolean hasClasses(uml::Package pkg):

133 let query = ”self.allOwnedElements()−>select(oclIsTypeOf(Class))−>size() < 20”:

134 query.evaluateOCL(pkg);

135

136 //Ri20: The depth of inheritance tree should not exceed 2

137 cached Boolean isDit(uml::Class cs):

138 let query = ”self.superClass.superClass.superClass−>size()=0”:

139 query.evaluateOCL(cs);

140

141 //Ri21: Multiple Inheritance must not exists

142 cached Boolean isMultipleInheritance(uml::Class cs):

143 let query = ”self.general−>select(oclAsType(Class))−>size()<2”:

144 query.evaluateOCL(cs);

145

146 //Ri22: Each class name should start with a capital letter and should be one word

147 cached Boolean isClassNameCapital(uml::Class cs):

148 let query = ”(let startsWith:String = name.substring(1,1) in

149 startsWith.toUpper() = startsWith) and (name.size() = 0 or

150 (let idx:Sequence(Integer) = Sequence{1..name.size()}in
151 idx−>forAll(i| name.substring(i, i) <> ’ ’)))”:

152 query.evaluateOCL(cs);

153 // Ri23: <<entity>> should contain at least 3 attributes

154 cached Boolean isEntityClassValid(uml::Class cs):

155 let query = ”self.attribute−>size()>=3 and

150 APPENDIX E. RULES FOR INCOMPLETE MODELS

156 self.getAppliedStereotypes().name−>
157 includes(’entity’)”:

158 query.evaluateOCL(cs);

159

160 //Ri24: A <<control>> class should contain 2−5 Operations

161 cached Boolean isControlClassValid(uml::Class cs):

162 let query = ”(self.ownedOperation−>size()>=2 or

163 self.ownedOperation−>size() <= 5) and

164 self.getAppliedStereotypes().name−>includes(’control’)”:

165 query.evaluateOCL(cs);

166

167 //Ri25: If class is empty class than class must be the <<boundary>> class

168 cached Boolean isEmptyClassValid(uml::Class cs):

169 let query = ”self.allOwnedElements()−>size() = 0 and

170 self.getAppliedStereotypes().name−>includes(’boundary’)”:

171 query.evaluateOCL(cs);

172

173 //Ri26: Each association must have name

174 cached Boolean isAssociationhasName(uml::Association as):

175 let query = ”self.name <> ’ ’”:

176 query.evaluateOCL(as);

177

178

179 //Ri27: Each association must specify multiplicity values at both ends.

180 cached Boolean isMultiplicityValue(uml::Association as):

181 let query = ”self.memberEnd −>forAll (n |
182 (not n.lowerValue.oclIsUndefined()) or

183 (not n.upperValue.oclIsUndefined()))”:

184 query.evaluateOCL(as);

185

186 //Ri28: Each class should have 1 to 5 association (1−5)
187 cached Boolean isAssociationPerClass(uml::Class cs):

188 let query = ”self.attribute.association−>size()>0 ||
189 self.attribute.association−>size()< 6”:

190 query.evaluateOCL(cs);

191

192 //Ri29: Each association name should be start with a lower case letter

193 cached Boolean isAssociationNameLower(uml::Association as):

194 let query = ”let startsWith:String = name.substring(1,1) in

195 startsWith.toLower() = startsWith”:

196 query.evaluateOCL(as);

197

198 //Ri30: Classes should not be linked with composition or

199 //aggregation type of association.

200 cached Boolean hasAggregationOrComposition(uml::Property p):

201 let query = ”let opposite:Property = self.opposite.

202 association.memberEnd−>any(e|e<>self) in (opposite.aggregation<>

203 AggregationKind::shared) and (not(opposite.isComposite))”:

204 query.evaluateOCL(p);

205

206 //Ri31: The links to classes belonging to another package must be uni−directional
207 cached Boolean isClassUniDirectional(uml::Association as):

208 let query = ”self.memberEnd.isNavigable()−>includes(false) and

209 self.getEndTypes()−>select(oclIsTypeOf(Class))−>
210 exists(e1,e2|e1.owner <> e2.owner)”:

211 query.evaluateOCL(as);

212 //==

213 // Rules for Sequence Diagram

214 //==

151

215

216 //Ri32: Each Sequence diagram have atleast one actor on a lifeline

217 cached Boolean isActorInSequenceDiagram(uml::Interaction inaction):

218 let query = ”self.lifeline.represents.type−>exists(oclIsTypeOf(Actor))−>size() >0”:

219 query.evaluateOCL(inaction);

220

221 //Ri33: Each objector lifeline in a sequence diagram must have corresponding

222 //class/actor in a class diagram

223 cached Boolean isObjectReferesToClass(uml::Lifeline line):

224 let query = ”self.represents.type−>exists(oclIsTypeOf(Class)) or

225 self.represents.type−>exists(oclIsTypeOf(Actor)) or

226 self.represents.type−>exists(oclIsTypeOf(Interface))”:

227 query.evaluateOCL(line);

228

229 //Ri34: Every call message received by the lifeline should have

230 //corresponding operation in a class diagram

231 cached Boolean isMessageReferesToOperation(uml::Message msg):

232 let query = ”((not receiveEvent.oclAsType(MessageOccurrenceSpecification).

233 event.oclIsUndefined())

234 and (receiveEvent.oclAsType(MessageOccurrenceSpecification).

235 event.oclIsTypeOf(CallEvent))) implies not

236 receiveEvent.oclAsType(MessageOccurrenceSpecification).

237 event.oclAsType(CallEvent).operation.oclIsUndefined()”:

238 query.evaluateOCL(msg);

239 //Ri35: If there is a message call between two lifelines then

240 //there must be an association between two classes

241 cached Boolean hasMessageCallRelationToClassAssocaition(uml::Lifeline ll):

242 let query = ”(MessageOccurrenceSpecification.allInstances().covered−>
243 includes(self)) and (Association.allInstances().getEndTypes()−>select(oclIsTypeOf(Class))−>
244 asSet()−>includes(self.represents.type))”:

245 query.evaluateOCL(ll);

246

247 //Ri36: Each message must be labeled.

248 cached Boolean isMessageLabeled(uml::Message msg):

249 let query = ”self.name <> ’ ’”:

250 query.evaluateOCL(msg);

251

252 ///==

Listing E.1: Rules for Incomplete Model

Appendix F

Rules for Complete Models

1 // OCL Rules with xtend language for Design Model (Complete UML Models)

2 // Author: Akhtar Ali Jalbani

3 // Date:16.09.2010

4 import uml;

5 extension templates::helper;

6 extension Rules::designModel;

7 extension org::eclipse::xtend::util::stdlib::io reexport;

8

9 //Rc1: Every class should have attributes

10 cached Boolean isClasshasAttributes(uml::Class cs):

11 let query =”self.ownedAttribute−>size()>0”:

12 query.evaluateOCL(cs);

13

14 //Rc2: Every class should have operations

15 cached Boolean isClasshasOperations(uml::Class cs):

16 let query =”self.getAllOperations()−>size()>0”:

17 query.evaluateOCL(cs);

18

19 //Rc3: The depth of inheritance tree should be less than 4

20 cached Boolean isClassDit(uml::Class cs):

21 let query =”self.superClass.superClass.superClass.superClass−>size() = 0”:

22 query.evaluateOCL(cs);

23 //Rc4: Multiple Inheritance must not exists

24 //===same as Ri21

25

26 //Rc5: same as Ri22

27

28 // Rc6: Each class should have maximum 10 operations.

29 cached Boolean hasToomanyOperations(uml::Class cs):

30 let query =”self.ownedOperation−>size() <= 10”:

31 query.evaluateOCL(cs);

32

33 //==class Association rules

34

35 //Rc7}: Each association must have name

36 //===same as Ri26

37

153

154 APPENDIX F. RULES FOR COMPLETE MODELS

38

39 //Rc8: Each class should have 1−5 associations

40 //===Same as Ri28

41

42

43 //Rc9: Each association name should start with a lower case letter.

44 //=== same as Ri29

45

46

47 //Rc10: Each association must have direction

48 cached Boolean isDirectedAssociation(uml::Association as):

49 let query = ”(self.memberEnd.isNavigable()−>includes(false))”:

50 query.evaluateOCL(as);

51

52

53 //Rc11: Each association must specify multiplicity and it must be n to 1.

54 cached Boolean hasMultiplicityDefined(uml::Association as):

55 let query = ”let opposite:Property = association.memberEnd−>any(e|e <> self)

56 in (not opposite.oclIsUndefined() and not upperValue.oclIsUndefined())

57 implies (upper = 1)”:

58 query.evaluateOCL(as);

59

60 //Rc12: Association class must not be present in a design model.

61 cached Boolean hasAssociationClass(uml::Model model):

62 let query =”AssociationClass.allInstances()−>size()=0”:

63 query.evaluateOCL(model);

64

65 //Rc13: Each package should have maximum 20 classes.

66 cached Boolean hasTooManyClasses(uml::Package pkg):

67 let query =”(self.allOwnedElements()−>select(oclIsTypeOf(Class))

68 −>size()) <= 20”:

69 query.evaluateOCL(pkg);

70

71 //Rc14: The links to classes belonging to another package must be uni−directional.
72 // Same as Ri31

73

74

75 //Rc15: The maximum package nesting level should be 2.

76 cached Boolean ispackageNestingLvel(uml::Package pkg):

77 let query =”(self.owner.owner.owner−>size())=0”:

78 query.evaluateOCL(pkg);

79

80 //Rc16: Each attribute must have data type and should be private.

81 // association will also be considered in this query.

82 cached Boolean isAttributeDataType(uml::Property prop):

83 let query =”self.visibility = VisibilityKind::private”:

84 query.evaluateOCL(prop);

85

86 //Rc17: If Class has composition relationship than multiplicity must be 1.

87 cached Boolean isCompositionRelationship(uml::Property prop):

88 let query =”let opposite:Property = association.memberEnd−>
89 any(e|e <> self) in (not opposite.oclIsUndefined() and

90 opposite.isComposite and not upperValue.oclIsUndefined())

91 implies (upper = 1)”:

92 query.evaluateOCL(prop);

93

94

95 //Rc18: Each operation should have maximum four parameters.

96 cached Boolean hasParameters(uml::Operation op):

155

97 let query =”self.ownedParameter−>reject(e|e.direction =

98 ParameterDirectionKind::return)−>size()< 5”:

99 query.evaluateOCL(op);

100

101 //Rc19: Entity class should have getters and setters.

102 cached Boolean hasGettersAndSetters(uml::Class cs):

103 let query =”self.ownedOperation−>exists(name.substring(1, 3) =

104 ’set’ or name.substring(1, 3) = ’get’)”:

105 query.evaluateOCL(cs);

106 //Rc20: Abstract class should have abstract operations.

107 cached Boolean isAbsractOperationInAbsractClass(uml::Operation op):

108 let query =”(self.isAbstract implies self.owner−>exists(isAbstract))”:

109 query.evaluateOCL(op);

110

111

112 //Rc21: Each operation must have return type.

113 cached Boolean hasReturnType(uml::Operation par):

114 let query =”self.ownedParameter−>exists(e|e.direction =

115 ParameterDirectionKind::return)”:

116 query.evaluateOCL(par);

117

118 //Rc22: Each parameter must have data type.

119 cached Boolean hasParameterType(uml::Parameter par):

120 let query =”self.type−>notEmpty()”:

121 query.evaluateOCL(par);

122

123 //Rc23: Each Sequence diagram have at least one actor on a lifeline

124 // Same as Ri32

125

126 //==Lifeline Rules

127 //Rc24: Each object or lifeline in sequence diagram must have corresponding

128 //class in a class diagram

129 //Same as Ri33

130

131 //Rc25: Every call message received by the lifeline should have corresponding

132 //operation in a class

133 // Same as Ri34

134

135 //Rc26: If there is a message call between two lifelines then there must

136 //be an association between corresponding classes

137 // Same as Ri35

138

139

140 //Rc27: If message is empty then it must be a return type message.

141 cached Boolean isReturnMessage(uml::Message msg):

142 let query =”self.name =’ ’ implies self.messageSort=MessageSort::reply”:

143 query.evaluateOCL(msg);

144

145 //Rc28: One activity diagram should reference to one class operation.

146 //(Activity diagram per operation should be one).

147 cached Boolean hasReferenceClass(uml::Activity ac):

148 let query =”self.specification−>select(oclIsTypeOf(Operation))−>size()=1”:

149 query.evaluateOCL(ac);

150

151 //Rc29: The maximum decision point should be 12 in activity diagram.

152 cached Boolean hasTooManyDecisionPoints(uml::Activity act):

153 let query =”self.allOwnedElements()−>select(oclIsTypeOf(DecisionNode))−>size() <13”:

154 query.evaluateOCL(act);

155

156 APPENDIX F. RULES FOR COMPLETE MODELS

156 //Rc30: Each activity diagram should contain 0 to 3 swim lane.

157 cached Boolean hasTooManySwimlanes(uml::Activity act):

158 let query =”self.allOwnedElements()−>select(oclIsTypeOf(ActivityPartition))−>size() <4”:

159 query.evaluateOCL(act);

160

161 //Rc31: Each activity diagram should contain one initial node and one exit node.

162 cached Boolean hasTooManyIntialAndExitNodes(uml::Activity act):

163 let query =”self.allOwnedElements()−>select(oclIsTypeOf(InitialNode))−>size() = 1

164 and self.allOwnedElements()−>select(oclIsTypeOf(ActivityFinalNode))−>size() = 1”:

165 query.evaluateOCL(act);

166 //==rules for CallOperation

167 //Rc32: Activity in activity diagram should reference to a class operations.

168 cached Boolean hasActivityReferenceToClass(uml::Action coa):

169 let query =”Class.allInstances().ownedOperation−>exists(e|e.name = self.name)”:

170 query.evaluateOCL(coa);

171

172 //Rc33: Dead activity must not present in activity diagram

173 cached Boolean isDeadActivity(uml::Action coa):

174 let query =”self.incoming −>size()<> 0 and self.outgoing−>size() <> 0”:

175 query.evaluateOCL(coa);

176

177 //==

178 //Rc34: Each objects of activity diagram should have corresponding

179 //class in a class diagram.

180 cached Boolean hasObjectReferenceToClass(uml::CentralBufferNode cbn):

181 let query =”self.type−>exists(oclIsTypeOf(Class))”:

182 query.evaluateOCL(cbn);

183

184

185 //Rc35: Dead state must not present in a state machine.

186 cached Boolean isDeadState(uml::State s):

187 let query =” self.incoming−>size()<> 0 and self.outgoing−>size()<> 0”:

188 query.evaluateOCL(s);

189

190 //Rc36: State names must be unique.

191 cached Boolean isStateUnique(uml::State sm):

192 let query =”State.allInstances()−>forAll (p,q|p.name<>q.name implies p=q)”:

193 query.evaluateOCL(sm);

194

195 //Rc37: All states except root state and initial state should have one incoming transition.

196 cached Boolean hasTooManyTransitions(uml::StateMachine sm):

197 let query =”PseudoState.allInstances()−>select(PseudoState=PseudoStateKind::initial))−>
198 size()>=1”:

199 query.evaluateOCL(sm);

Listing F.1: Rules for Complete Model

Appendix G

Html Report Generation in

Xpand for Incomplete Model

1 «REM»
2 This is root file to generate report for incomplete and complete models by expanding

3 the corresponding templates.

4

5 Author: Akhtar Ali Jalbani

6 Date: 18−09−2010
7

8 «ENDREM»
9 «IMPORT uml»

10

11 «REM»This template is a root template, that can be used to create html

12 report for incomplete and complete model. «ENDREM»
13 «DEFINE main FOR Model»
14 «REM»Report for incomplete model

15 «EXPAND templates::redGroup analysisModel::analysisModel»
16 «REM»«EXPAND templates::bluegroup analysisModel::analysisModel»«ENDREM»
17 «REM»Report for complete model

18 «EXPAND templates designModel::redGroup designModel::designModel»
19 «ENDREM»
20 «EXPAND templates designModel::blueGroup designModel::designModel»
21 «ENDDEFINE»

Listing G.1: Xpand Main File

1 «REM»
2 This file contains html report for the incomplete models at analysis phase.

3 Author: Akhtar Ali Jalbani

4 Date: 18−09−2010
5

6 «ENDREM»
7 «IMPORT uml»
8 «EXTENSION templates::helper»
9 «EXTENSION Rules::analysisModel»

10

157

158 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

11 «DEFINE analysisModel FOR Model»
12 «FILE ”bluegroup analysisModel.html”»
13 <HTML>

14 <HEAD>

15

16 </HEAD>

17 <Title>Report for Incomplete Models at Analysis Phase<Title>

18 <BODY >

19 <H1>Report for Analysis model:

20 (Bakery system) − Blue Group.</H1>

21

22 <TABLE BORDER=”1”>

23 <TR>

24 <th width=”60%”>Rule</th>

25 <th width=”40%”>Qualified Name</th>

26 </TR><TR>

27 «REM»UseCase Rules

28 <TH Colspan=2 align= left>UseCase Rules</TH>

29

30 «EXPAND rule1 FOREACH eAllContents.typeSelect(UseCase)»
31

32 «EXPAND rule2 FOREACH eAllContents.typeSelect(uml::UseCase).

33 reject(e|!e.extend.isEmpty || !e.include.isEmpty)»
34

35 «EXPAND rule3 FOREACH eAllContents.typeSelect(UseCase)»
36 «EXPAND rule4 FOREACH

37 eAllContents.typeSelect(UseCase).select(e|e.ownedBehavior==uml::Interaction)»
38

39 «EXPAND rule5 FOREACH eAllContents.typeSelect(UseCase).

40 reject(e|!e.extend.isEmpty || !e.include.isEmpty)»
41

42 «EXPAND rule6 FOREACH eAllContents.typeSelect(UseCase)»
43 </TR><TR>

44 <TH Colspan=2 align= left>Subsystem Rules (Package)</TH>

45

46 «EXPAND rule7 FOREACH eAllContents.typeSelect(Package).

47 reject(e|e.qualifiedName == ”Data::Bäckerei” ||
48 e.qualifiedName == ”Data::Actors” ||
49 e.qualifiedName == ”Data::UML Standard Profile” ||
50 e.qualifiedName == ”Data::Bäckerei::Lagerverwaltung::Lagerklassen” ||
51 e.qualifiedName == ”Data::Bäckerei::Personalverwaltung::Personalklassen” ||
52 e.qualifiedName == ”Data::Bäckerei::Verkaufssystem::Verkaufsklassen”)»
53

54 «EXPAND rule8 FOREACH eAllContents.typeSelect(Package).

55 reject(e|e.qualifiedName ==”Data::Bäckerei” ||
56 e.qualifiedName == ”Data::Actors” ||
57 e.qualifiedName == ”Data::UML Standard Profile” ||
58 e.qualifiedName == ”Data::Bäckerei::Lagerverwaltung::Lagerklassen” ||
59 e.qualifiedName == ”Data::Bäckerei::Personalverwaltung::Personalklassen” ||
60 e.qualifiedName == ”Data::Bäckerei::Verkaufssystem::Verkaufsklassen”)»
61 </TR><TR>

62 <TH Colspan=2 align= left>Actor Rules</TH>

63

64 «EXPAND rule9 FOREACH eAllContents.typeSelect(Actor)»
65

66 «EXPAND rule10 FOREACH eAllContents.typeSelect(Actor)»
67 </TR<TR>

68 <TH Colspan=2 align= left>System/Model Rules</TH>

69

159

70 «EXPAND rule11 FOREACH eAllContents.typeSelect(Model)»
71

72 «EXPAND rule12 FOREACH eAllContents.typeSelect(Model)»
73 </TR><TR>

74 <TH Colspan=3 align= left>UseCase Package Rules</TH>

75

76 «EXPAND rule13 FOREACH eAllContents.typeSelect(Model)»
77 </TR><TR>

78 <TH Colspan=3 align= left>UseCaseInclude and Extend Rules</TH>

79

80 «EXPAND rule14 FOREACH eAllContents.typeSelect(Include)»
81

82 «EXPAND rule15 FOREACH eAllContents.typeSelect(Extend)»
83 </TR><TR>

84 «REM»−−−−−Activity Diagram Rules −−−−−«ENDREM»
85 <TH Colspan=2 align= left>Activity traceability to usecase Rules</TH>

86

87 «EXPAND rule16 FOREACH eAllContents.typeSelect(Package).

88 reject(e|e.qualifiedName == ”Data::Bäckerei” || e.qualifiedName ==

89 ”Data::Actors” ||
90 e.qualifiedName == ”Data::UML Standard Profile” ||
91 e.qualifiedName == ”Data::Bäckerei::Lagerverwaltung::Lagerklassen” ||
92 e.qualifiedName == ”Data::Bäckerei::Personalverwaltung::Personalklassen” ||
93 e.qualifiedName == ”Data::Bäckerei::Verkaufssystem::Verkaufsklassen”)»
94

95 «EXPAND rule17 FOREACH eAllContents.typeSelect(CallBehaviorAction)»
96 </TR>

97 «REM»−−−−−Class Diagram Rules −−−−−−−«ENDREM»
98 <TR>

99 <TH Colspan=2 align= left>Class Package Rules</TH>

100 «EXPAND rule18 FOREACH eAllContents.typeSelect(Package).

101 reject(e|e.qualifiedName == ”Data::Bäckerei::Personalverwaltung” ||
102 e.qualifiedName ==”Data::Bäckerei::Verkaufssystem” ||
103 e.qualifiedName == ”Data::Bäckerei::Lagerverwaltung” ||
104 e.qualifiedName == ”Data::Bäckerei” ||
105 e.qualifiedName == ”Data::Actors” ||
106 e.qualifiedName == ”Data::UML Standard Profile”)»
107

108 «EXPAND rule19 FOREACH eAllContents.typeSelect(Package).

109 reject(e|e.qualifiedName == ”Data::Bäckerei::Personalverwaltung” ||
110 e.qualifiedName ==”Data::Bäckerei::Verkaufssystem” ||
111 e.qualifiedName == ”Data::Bäckerei::Lagerverwaltung” ||
112 e.qualifiedName == ”Data::Bäckerei” || e.qualifiedName == ”Data::Actors” ||
113 e.qualifiedName == ”Data::UML Standard Profile”)»
114 </TR><TR>

115 <TH Colspan=3 align= left>Class Rules</TH>

116 «EXPAND rule20 FOREACH

117 eAllContents.typeSelect(uml::Class).

118 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e))»
119

120 «EXPAND rule21 FOREACH

121 eAllContents.typeSelect(uml::Class).

122 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e))»
123

124 «EXPAND rule22 FOREACH

125 eAllContents.typeSelect(uml::Class).

126 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e))»
127

128 «EXPAND rule23 FOREACH

160 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

129 eAllContents.typeSelect(uml::Class).

130 reject(e|Interaction.isInstance(e)||Activity.isInstance(e)).

131 select(e|e.getApplicableStereotypes().first().name==”entity”)»
132

133 «EXPAND rule24 FOREACH

134 eAllContents.typeSelect(uml::Class).

135 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e)).

136 select(e|e.getApplicableStereotypes().first().name==”control”)»
137

138 «EXPAND rule25 FOREACH

139 eAllContents.typeSelect(uml::Class).

140 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e)).

141 select(e|e.getApplicableStereotypes().first().name==”boundary”)»
142 </TR><TR>

143 <TH Colspan=2 align= left>Class Association Rules</TH>

144 «EXPAND rule26 FOREACH

145 eAllContents.typeSelect(Association).

146 select(e|e.getEndTypes() == uml::Class)»
147

148 «EXPAND rule27 FOREACH

149 eAllContents.typeSelect(Association).

150 select(e|e.getEndTypes() == uml::Class)»
151

152 «EXPAND rule28 FOREACH

153 eAllContents.typeSelect(Class).

154 reject(e|Interaction.isInstance(e)|| Activity.isInstance(e))»
155

156 «EXPAND rule29 FOREACH

157 eAllContents.typeSelect(Association).

158 select(e|e.getEndTypes() == uml::Class)»
159

160 «EXPAND rule30 FOREACH eAllContents.typeSelect(Property)»
161

162 «EXPAND rule31 FOREACH eAllContents.typeSelect(Association)»
163 </TR><TR>

164 «REM»−−−−−Sequence Diagram Rules −−−−−−−−«ENDREM»
165

166 <TH Colspan=2 align= left>Sequence Diagram Rules</TH>

167

168 «EXPAND rule32 FOREACH eAllContents.typeSelect(Interaction)»
169

170 «EXPAND rule33 FOREACH eAllContents.typeSelect(Lifeline)»
171

172 «EXPAND rule34 FOREACH eAllContents.typeSelect(Message)»
173

174 «EXPAND rule35 FOREACH eAllContents.typeSelect(Lifeline)»
175

176 «EXPAND rule36 FOREACH eAllContents.typeSelect(Message)»
177 </TR>

178

179 </TABLE>

180

181

182 <TABLE>

183 <TR>

184 <TD>Report By: Akhtar Ali Jalbani</TD>

185 </TR><TR><TD><i>Email:

186 ajalbani@informatik.uni−geottingen.de</i></TD>

187 </TR><TR><TD><i><a

161

188 href=”http://http://www.swe.informatik.uni−goettingen.de/”>
189 www.swe.informatik.uni−goettingen.de</i></TD>

190 </TR><TR><TD><i>Software Engineering and Distributed Systems Group</i></TD>

191 </TR><TR><TD><i>Institute of Computer Science, University of Goettingen</i></TD>

192 </TR><TR><TD><i>Goettingen, Germany</i></TD>

193

194 </TR>

195 </TABLE>

196

197 <script type=”text/javascript”>

198 <!−−
199 var d names = new Array(”Sunday”, ”Monday”, ”Tuesday”,

200 ”Wednesday”, ”Thursday”, ”Friday”, ”Saturday”);

201

202 var m names = new Array(”January”, ”February”, ”March”,

203 ”April”, ”May”, ”June”, ”July”, ”August”, ”September”,

204 ”October”, ”November”, ”December”);

205

206

207

208 var d = new Date();

209 var curr day = d.getDay();

210 var curr date = d.getDate();

211 var sup = ””;

212 if (curr date == 1 || curr date == 21 || curr date ==31)

213 {
214 sup = ”st”;

215 }
216 else if (curr date == 2 || curr date == 22)

217 {
218 sup = ”nd”;

219 }
220 else if (curr date == 3 || curr date == 23)

221 {
222 sup = ”rd”;

223 }
224 else

225 {
226 sup = ”th”;

227 }
228 var curr month = d.getMonth();

229 var curr year = d.getFullYear();

230

231 var curr hour = d.getHours();

232 var curr min = d.getMinutes();

233

234

235 document.write(”Report generated on: ”+d names[curr day] + ” ” + curr date + ”<SUP>”

236 + sup + ”</SUP> ” + m names[curr month] + ” ” + curr year+ ” Time : ”+ curr hour + ” : ” +

237 curr min);

238

239 //−−>
240 </script>

241

242 </body>

243 </html>

244 «ENDFILE»
245 «ENDDEFINE»
246

162 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

247

248

249 «DEFINE rule1 FOR uml::UseCase»
250 «IF getQualifiedName()== null»
251 <TR>

252 <TD width=”60%>

253 ”Ri1: Each use case must be inside the subsystem”</TD>

254 <TD> No Name

255 </TD>

256 «ELSEIF isUseCase InsideSubSystem() == false»
257 <TR>

258 <TD width=”60%>

259 ”Ri1: Each use case must be inside the subsystem”</TD>

260 <TD>«qualifiedName»</TD>

261 «ENDIF»
262

263 «ENDDEFINE»
264

265 «DEFINE rule2 FOR uml::UseCase»
266

267 «IF getQualifiedName()== null»
268 <TR>

269 <TD>

270 ”Ri2: Each use case must be associated with an actor”</TD>

271 <TD> No Name

272 </TD>

273 «ELSEIF isUseCase Connected()==false»
274 <TR>

275 <TD>

276 ”Ri2: Each use case must be associated with an actor”</TD>

277 <TD>«qualifiedName»</TD>

278 «ENDIF»
279 «ENDDEFINE»
280 «DEFINE rule3 FOR uml::UseCase»
281 «IF isUseCase Inherited()==false»
282 <TR>

283 <TD>

284 ”Ri3: The generalization between use case must not present in a use case diagram”</TD>

285 <TD>«qualifiedName»</TD>

286 «ENDIF»
287

288 «ENDDEFINE»
289

290 «DEFINE rule4 FOR uml::UseCase»
291

292 «IF getQualifiedName()== null»
293 <TR>

294 <TD>

295 ”Ri4: Use case must be refined in a sequence diagram”</TD>

296 <TD> No Name

297 </TD>

298 «ELSEIF isUseCase RefinedinSD()==false»
299 <TR>

300 <TD>

301 ”Ri4: Use case must be refined in a sequence diagram”</TD>

302 <TD>«qualifiedName»</TD>

303 «ENDIF»
304

305 «ENDDEFINE»

163

306 «DEFINE rule5 FOR uml::UseCase»
307 «IF getQualifiedName()== null»
308 <TR>

309 <TD>

310 ”Ri5: Each use case should not be linked to more than three actors”</TD>

311 <TD> No Name

312 </TD>

313 «ELSEIF actorToUseCaseRatio()==false»
314 <TR>

315 <TD>

316 ”Ri5: Each use case should not be linked to more than three actors”</TD>

317 <TD>«qualifiedName»</TD>

318 «ENDIF»
319

320 «ENDDEFINE»
321 «DEFINE rule6 FOR uml::UseCase»
322 «IF getQualifiedName()== null»
323 <TR>

324 <TD>

325 ”Ri6: Each usecase name should contain one to four words”</TD>

326 <TD> No Name

327 </TD>

328 «ELSEIF hasUseCaseNameLength()==false»
329 <TR>

330 <TD>

331 ”Ri6: Each usecase name should contain one to four words”</TD>

332 <TD>«qualifiedName»</TD>

333 «ENDIF»
334

335 «ENDDEFINE»
336 «DEFINE rule7 FOR uml::Package»
337

338 «IF getQualifiedName()== null»
339 <TR>

340 <TD>

341 ”Ri7: Each subsystem contain minimum 3 and

342 maximum 5 Use cases i.e UC= 3−5”</TD>

343 <TD> No Name

344 </TD>

345

346 «ELSEIF isSubsystemBig()==false»
347 <TR>

348 <TD>

349 ”Ri7: Each subsystem contain minimum 3 and

350 maximum 5 Use cases i.e UC= 3−5”</TD>

351 <TD>«qualifiedName»</TD>

352 «ENDIF»
353

354 «ENDDEFINE»
355 «DEFINE rule8 FOR uml::Package»
356 «IF getQualifiedName()== null»
357 <TR>

358 <TD>

359 ”Ri8: Each subsystem name should start with

360 a capital letter and contains one to two words”</TD>

361 <TD> No Name

362 </TD>

363 «ELSEIF isSubsystemNameCapital()==false»
364 <TR>

164 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

365 <TD>

366 ”Ri8: Each subsystem name should start with

367 capital letter and contains one to two words”</TD>

368 <TD>«qualifiedName»</TD>

369 «ENDIF»
370

371 «ENDDEFINE»
372 «DEFINE rule9 FOR uml::Actor»
373

374 «IF getQualifiedName()== null»
375 <TR>

376 <TD>

377 ”Ri9: Each actor name should start with a capital letter”</TD>

378 <TD> No Name

379 </TD>

380

381 «ELSEIF isActorNameCapital()==false»
382 <TR>

383 <TD>

384 ”Ri9: Each actor name should start with a capital letter”</TD>

385 <TD>«qualifiedName»</TD>

386 «ENDIF»
387

388 «ENDDEFINE»
389 «DEFINE rule10 FOR uml::Actor»
390 «IF getQualifiedName()== null»
391 <TR>

392 <TD>

393 ”Ri10: The depth of generalization of an actor should not exceed one”</TD>

394 <TD> No Name

395 </TD>

396 «ELSEIF isActorDit()==false»
397 <TR>

398 <TD>

399 ”Ri10: The depth of generalization of an actor should not exceed one”</TD>

400 <TD>«qualifiedName»</TD>

401 «ENDIF»
402

403 «ENDDEFINE»
404 «DEFINE rule11 FOR uml::Model»
405 «IF getQualifiedName()== null»
406 <TR>

407 <TD>

408 ”Ri11: Each system name should start with a capital letter and

409 contain one to two words”</TD>

410 <TD> No Name

411 </TD>

412 «ELSEIF isSystemNameCapital()==false»
413 <TR>

414 <TD>

415 ”Ri11: Each system name should start with a capital letter and

416 contain one to two words”</TD>

417 <TD>«qualifiedName»</TD>

418 «ENDIF»
419

420 «ENDDEFINE»
421 «DEFINE rule12 FOR uml::Model»
422 «IF getQualifiedName()== null»
423 <TR>

165

424 <TD>

425 ”Ri12: Actor must be outside the system”</TD>

426 <TD> No Name

427 </TD>

428 «ELSEIF isActorOutsideFromSystem()==true»
429 <TR>

430 <TD>

431 ”Ri12: Actor must be outside the system”</TD>

432 <TD>«qualifiedName»</TD>

433 «ENDIF»
434

435 «ENDDEFINE»
436 «DEFINE rule13 FOR uml::Model»
437 «IF getQualifiedName()== null»
438 <TR>

439 <TD>

440 ”Ri13: Use case diagram should not contain

441 more than 20 use cases”</TD>

442 <TD> No Name

443 </TD>

444 «ELSEIF isPackageBig()==false»
445 <TR>

446 <TD>

447 ”Ri13: Use case diagram should not contain

448 more than 20 use cases”</TD>

449 <TD>«qualifiedName»</TD>

450 «ENDIF»
451

452 «ENDDEFINE»
453 «DEFINE rule14 FOR uml::Include»
454 «IF isIncludeUseCaseDit()==false»
455 <TR>

456 <TD>

457 ”Ri14: The depth of Include use case should not

458 exceed one”</TD>

459 <TD>«qualifiedName»</TD>

460 «ENDIF»
461

462 «ENDDEFINE»
463 «DEFINE rule15 FOR uml::Extend»
464 «IF isExtendUseCaseDit()==false»
465 <TR>

466 <TD>

467 ”Ri15: The depth of extend use case should not

468 exceed to one”</TD>

469 <TD>«qualifiedName»</TD>

470 «ENDIF»
471

472 «ENDDEFINE»
473 «REM»−−−−Rules for Activity Diagram−−−−−«ENDREM»
474 «DEFINE rule16 FOR uml::Package»
475 «IF getQualifiedName()== null»
476 <TR>

477 <TD>

478 ”Ri16: Each subsystem of use case should be refined

479 by activity diagram”</TD>

480 <TD> No Name

481 </TD>

482 «ELSEIF isUseCaseRefinedByActivityDiagram()==false»

166 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

483 <TR>

484 <TD>

485 ”Ri16: Each subsystem of use case should be refined by

486 activity diagram”</TD>

487 <TD>«qualifiedName»</TD>

488 «ENDIF»
489

490 «ENDDEFINE»
491 «DEFINE rule17 FOR uml::CallBehaviorAction»
492 «IF getQualifiedName()== null»
493 <TR>

494 <TD>

495 ”Ri17: Each Activity in activity diagram should

496 refer to a usecase”</TD>

497 <TD> No Name

498 </TD>

499 «ELSEIF isActivityReferenceToUseCase()==false»
500 <TR>

501 <TD>

502 ”Ri17: Each Activity in activity diagram should

503 refer to a usecase”</TD>

504 <TD>«qualifiedName»</TD>

505 «ENDIF»
506

507 «ENDDEFINE»
508 «REM»−−−−CLASS DIAGRAM RULES−−−−«ENDREM»
509

510 «DEFINE rule18 FOR uml::Package»
511 «IF getQualifiedName()== null»
512 <TR>

513 <TD>

514 ”Ri18: Each subsystem should be

515 represented as a package in a class diagram”</TD>

516 <TD> No Name

517 </TD>

518 «ELSEIF isUCSubSystemRepByCSubsystem()==false»
519 <TR>

520 <TD>

521 ”Ri18: Each subsystem of use case diagram should be

522 represented as a package in a class diagram”</TD>

523 <TD>«qualifiedName»</TD>

524 «ENDIF»
525 «ENDDEFINE»
526 «DEFINE rule19 FOR uml::Package»
527 «IF getQualifiedName()== null»
528 <TR>

529 <TD>

530 ”Ri19: Each package should not contain more than 20 classes”</TD>

531 <TD> No Name

532 </TD>

533 «ELSEIF hasClasses()==false»
534 <TR>

535 <TD>

536 ”Ri19: Each package should not contain more than 20 classes”</TD>

537 <TD>«qualifiedName»</TD>

538 «ENDIF»
539 «ENDDEFINE»
540 «DEFINE rule20 FOR uml::Class»
541 «IF getQualifiedName()== null»

167

542 <TR>

543 <TD>

544 ”Ri20: The DIT should not exceed 2”</TD>

545 <TD> No Name

546 </TD>

547 «ELSEIF isDit()==false»
548 <TR>

549 <TD>

550 ”Ri20: The DIT should not exceed to 2”</TD>

551 <TD>«qualifiedName»</TD>

552 «ENDIF»
553 «ENDDEFINE»
554 «DEFINE rule21 FOR uml::Class»
555 «IF getQualifiedName()== null»
556 <TR>

557 <TD>

558 ”Ri21: Multiple Inheritance must not exists”</TD>

559 <TD> No Name

560 </TD>

561 «ELSEIF isMultipleInheritance()==false»
562 <TR>

563 <TD>

564 ”Ri21: Multiple Inheritance must not exists”</TD>

565 <TD>«qualifiedName»</TD>

566 «ENDIF»
567

568 «ENDDEFINE»
569 «DEFINE rule22 FOR uml::Class»
570 «IF getQualifiedName()== null»
571 <TR>

572 <TD>

573 ”Ri22: Each class name should start with a capital letter

574 and should be one word.”</TD>

575 <TD> No Name

576 </TD>

577 «ELSEIF isClassNameCapital()==false»
578 <TR>

579 <TD>

580 ”Ri22 Each Class name should start with a capital letter

581 and should be one word.”</TD>

582 <TD>«qualifiedName»</TD>

583 «ENDIF»
584

585 «ENDDEFINE»
586 «DEFINE rule23 FOR uml::Class»
587 «IF getQualifiedName()== null»
588 <TR>

589 <TD>

590 ”Ri23: Entity class should contain at least 3 attributes”</TD>

591 <TD> No Name

592 </TD>

593 «ELSEIF isEntityClassValid()==false»
594 <TR>

595 <TD>

596 ”Ri23: Entity class should contain at least 3 attributes”</TD>

597 <TD>«qualifiedName»</TD>

598 «ENDIF»
599

600 «ENDDEFINE»

168 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

601 «DEFINE rule24 FOR uml::Class»
602 «IF getQualifiedName()== null»
603 <TR>

604 <TD>

605 ”Ri24: Control class should contain 2−5 Operations”</TD>

606 <TD> No Name

607 </TD>

608 «ELSEIF isControlClassValid()==false»
609 <TR>

610 <TD>

611 ”Ri24: Control class should contain 2−5 Operations”</TD>

612 <TD>«qualifiedName»</TD>

613 «ENDIF»
614 «ENDDEFINE»
615 «DEFINE rule25 FOR uml::Class»
616 «IF getQualifiedName()== null»
617 <TR>

618 <TD>

619 ”Ri25: If class is empty class than class must be

620 a boundary class”</TD>

621 <TD> No Name

622 </TD>

623 «ELSEIF isEmptyClassValid()==false»
624 <TR>

625 <TD>

626 ”Ri25: If class is empty class than class must be

627 a boundary class”</TD>

628 <TD>«qualifiedName»</TD>

629 «ENDIF»
630 «ENDDEFINE»
631 «DEFINE rule26 FOR uml::Association»
632 «LET isAssociationhasName() AS hasName»
633 «IF hasName==false»
634 <TR>

635 <TD>

636 ”Ri26: Each association must have name”</TD>

637 <TD> No Name

638 </TD>

639 «ENDIF»
640 «ENDLET»
641 «ENDDEFINE»
642 «DEFINE rule27 FOR uml::Association»
643 «IF isMultiplicityValue()==false»
644 <TR>

645 <TD>

646 ”Ri27: Each association must specify multiplicity

647 values at both ends.”</TD>

648 <TD>«isMultiplicityValue()»</TD>

649 «ENDIF»
650 «ENDDEFINE»
651

652 «DEFINE rule28 FOR uml::Class»
653 «LET isAssociationPerClass() AS apc»
654 «IF apc==false»
655 <TR>

656 <TD>

657 ”Ri28: Each class have (1−5) associations ”</TD>

658 <TD>«qualifiedName»</TD>

659 «ENDIF»

169

660 «ENDLET»
661 «ENDDEFINE»
662 «DEFINE rule29 FOR uml::Association»
663 «LET isAssociationNameLower() AS lowerCaseLetter »
664 «IF qualifiedName==null»
665 <TR>

666 <TD>

667 ”Ri29: Each association must have name”</TD>

668 <TD> No Name

669 </TD>

670 «ELSEIF lowerCaseLetter==false»
671 <TR>

672 <TD>

673 ”Ri29: Each association must have name”

674 </TD>

675 <TD>«qualifiedName»</TD>

676 «ENDIF»
677 «ENDLET»
678 «ENDDEFINE»
679 «DEFINE rule30 FOR uml::Property»
680

681 «IF hasAggregationOrComposition()==false»
682 <TR>

683 <TD>

684 ”Ri30: Classes should not be linked with composition

685 or aggregation type of association”</TD>

686 <TD>«this.association.getEndTypes().typeSelect(Class).

687 getQualifiedName()»</TD>

688 «ENDIF»
689 «ENDDEFINE»
690 «DEFINE rule31 FOR uml::Association»
691 «IF qualifiedName==null»
692 <TR>

693 <TD>

694 ”R31: The link to classes belonging to another

695 package must be uni−directional”</TD>

696 <TD> No Name

697 </TD>

698 «ELSEIF isClassUniDirectional()==false»
699 <TR>

700 <TD>

701 ”Ri31 The link to classes belonging to another

702 package must be uni−directional”</TD>

703 <TD>«qualifiedName»</TD>

704 «ENDIF»
705 «ENDDEFINE»
706 «REM»−−−Sequence Diagram Rules −−−−«ENDREM»
707 «DEFINE rule32 FOR uml::Interaction»
708 «IF isActorInSequenceDiagram()==false»
709 <TR>

710 <TD>

711 ”i32: Each Sequence diagram have at least one

712 actor on lifeline”</TD>

713 <TD>«qualifiedName»</TD>

714 «ENDIF»
715 «ENDDEFINE»
716 «DEFINE rule33 FOR uml::Lifeline»
717 «IF isObjectReferesToClass()==false»
718 <TR>

170 APPENDIX G. HTML REPORT GENERATION FOR INCOMPLETE MODEL

719 <TD>

720 ”Ri33: Each object in sequence diagram must have

721 corresponding class in class diagram”</TD>

722 <TD>«this.represents.type.qualifiedName»</TD>

723 «ENDIF»
724 «ENDDEFINE»
725 «DEFINE rule34 FOR uml::Message»
726 «IF getQualifiedName()== null»
727 <TR>

728 <TD>

729 ”Ri34: Every call message received by the lifeline

730 must have corresponding method in class diagram”</TD>

731 <TD> No Name

732 </TD>

733 «ELSEIF isMessageReferesToOperation()==false»
734 <TR>

735 <TD>

736 ”Ri34: Every call message received by the lifeline

737 should have corresponding method in class diagram”</TD>

738 <TD>«qualifiedName»</TD>

739 «ENDIF»
740 «ENDDEFINE»
741 «DEFINE rule35 FOR uml::Lifeline»
742 «IF hasMessageCallRelationToClassAssocaition()==false»
743 <TR>

744 <TD>

745 ”Ri35: If there is a message call between two lifeline than

746 there must be an association between corresponding classes”

747 </TD> <TD>«qualifiedName»</TD>

748 «ENDIF»
749 «ENDDEFINE»
750 «DEFINE rule36 FOR uml::Message»
751 «IF isMessageLabeled()==false»
752 <TR>

753 <TD>

754 ”Ri36: Each message must be labeled”</TD>

755 <TD>«qualifiedName»</TD>

756 «ENDIF»
757 «ENDDEFINE»

Listing G.2: Xpand Report for Incomplete Model

Appendix H

Html Report Generation in

Xpand for Complete Model

1 «REM»
2 This file contains html report for the complete models at design phase.

3 Author: Akhtar Ali Jalbani

4 Date: 18−09−2010
5 «ENDREM»
6 «IMPORT uml»
7 «EXTENSION Rules::designModel»
8 «EXTENSION Rules::analysisModel»
9

10 «DEFINE designModel FOR Model»
11 «FILE ”blueGroupDesignModel.html”»
12 <HTML>

13 <HEAD>

14 </HEAD>

15 <Title>Report for Complete Models at design Phase for Bakery System.................<Title>

16 <BODY>

17 <H1>Report for Design model:

18 (Bakery System) Group: Blue− UML Course 2010</H1>

19 <TABLE BORDER=”1”>

20 <TR>

21 <th >Rule</th>

22 <th >Qualified Name</th>

23 </TR><TR>

24 «REM»Class Rules «ENDREM»
25 <TH Colspan=2 align= left>Class Rules</TH>

26 «EXPAND rule1 FOREACH

27 eAllContents.typeSelect(uml::Class).

28 reject(e|Interaction.isInstance(e)|| StateMachine.isInstance(e) ||
29 Interface.isInstance(e) || Activity.isInstance(e))»
30 «EXPAND rule2 FOREACH

31 eAllContents.typeSelect(uml::Class).

32 reject(e|Interaction.isInstance(e)||
33 StateMachine.isInstance(e)|| Activity.isInstance(e))»
34 «EXPAND rule3 FOREACH

171

172 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

35 eAllContents.typeSelect(uml::Class).reject(e|Interaction.isInstance(e)||
36 StateMachine.isInstance(e)|| Activity.isInstance(e))»
37 «EXPAND rule4 FOREACH

38 eAllContents.typeSelect(uml::Class).reject(e|Interaction.isInstance(e)||
39 StateMachine.isInstance(e)|| Activity.isInstance(e))»
40 «EXPAND rule5 FOREACH

41 eAllContents.typeSelect(uml::Class).reject(e|Interaction.isInstance(e)||
42 StateMachine.isInstance(e)|| Activity.isInstance(e))»
43 «EXPAND rule6 FOREACH

44 eAllContents.typeSelect(uml::Class).reject(e|Interaction.isInstance(e)||
45 StateMachine.isInstance(e)|| Activity.isInstance(e))» </TR><TR>

46 <TH Colspan=3 align= left>Class Association Rules</TH>

47 «EXPAND rule7 FOREACH eAllContents.typeSelect(Association)»
48 «EXPAND rule8 FOREACH

49 eAllContents.typeSelect(Class).reject(e|Interaction.isInstance(e)||
50 Activity.isInstance(e))»
51 «EXPAND rule9 FOREACH

52 eAllContents.typeSelect(Association).

53 select(e|e.getEndTypes() == uml::Class)»
54 «EXPAND rule10 FOREACH

55 eAllContents.typeSelect(Association).select(e|e.getEndTypes() == uml::Class)»
56 «EXPAND rule11 FOREACH

57 eAllContents.typeSelect(Association).select(e|e.getEndTypes() == uml::Class)»
58 </TR><TR>

59 <TH Colspan=3 align= left>Class Package Rules</TH>

60 «EXPAND rule12 FOREACH eAllContents.typeSelect(Model)»
61 «EXPAND rule13 FOREACH

62 eAllContents.typeSelect(Package).reject(e|
63 e.qualifiedName==”Data::Bäckerei” ||
64 e.qualifiedName == ”Data::Bäckerei::Personalverwaltung” ||
65 e.qualifiedName==”Data::Bäckerei::Backverwaltung” ||
66 e.qualifiedName==”Data::Bäckerei::Lagerverwaltung”||
67 e.qualifiedName==”Data::Bäckerei::Verkaufssystem”)»
68 «EXPAND rule14 FOREACH

69 eAllContents.typeSelect(Association).select(e|e.getEndTypes() == uml::Class)»
70 «EXPAND rule15 FOREACH

71 eAllContents.typeSelect(Package).reject(e|
72 e.qualifiedName==”Data::Bäckerei” ||
73 e.qualifiedName == ”Data::Bäckerei::Personalverwaltung” ||
74 e.qualifiedName==”Data::Bäckerei::Backverwaltung” ||
75 e.qualifiedName==”Data::Bäckerei::Lagerverwaltung”||
76 e.qualifiedName==”Data::Bäckerei::Verkaufssystem”)»
77 </TR> <TR>

78 <TH Colspan=3 align= left>Class Attribute / Property Rules</TH>

79 «EXPAND rule16 FOREACH eAllContents.typeSelect(Property).reject(e|e.association)»
80 «EXPAND rule17 FOREACH eAllContents.typeSelect(Property).reject(e|e.association)»
81 </TR><TR>

82 <TH Colspan=3 align= left>Class Operation and Operation Parameter Rules</TH>

83 «EXPAND rule18 FOREACH eAllContents.typeSelect(Operation)»
84 «EXPAND rule19 FOREACH

85 eAllContents.typeSelect(Class).select(e|e.getAppliedStereotypes().name ==

86 ’entity’)»
87 «EXPAND rule20 FOREACH eAllContents.typeSelect(Operation)»
88 «EXPAND rule21 FOREACH eAllContents.typeSelect(Operation)»
89 «EXPAND rule22 FOREACH

90 eAllContents.typeSelect(Parameter).reject(e|Association.isInstance(e))»
91 </TR> <TR>

92 «REM»−−−−−Sequence Diagram Rules −−−−−−−−«ENDREM»
93 <TH Colspan=3 align= left>Sequence Diagram Rules</TH>

173

94 «EXPAND rule23 FOREACH

95 eAllContents.typeSelect(Interaction).reject(e|
96 e.name==”com Verkauf Reste an Tafel geben”)»
97 «EXPAND rule24 FOREACH eAllContents.typeSelect(Lifeline)»
98 «EXPAND rule25 FOREACH eAllContents.typeSelect(Message)»
99 «EXPAND rule26 FOREACH eAllContents.typeSelect(Lifeline)»

100 «EXPAND rule27 FOREACH eAllContents.typeSelect(Message)»
101 </TR> «REM»−−−Activity Diagram−−−«REM» <TR>

102 <TH Colspan=3 align= left>Activity Diagram Rules</TH>

103 «EXPAND rule28 FOREACH eAllContents.typeSelect(Activity)»
104 «EXPAND rule29 FOREACH eAllContents.typeSelect(Activity)»
105 «EXPAND rule30 FOREACH eAllContents.typeSelect(Activity)»
106 «EXPAND rule31 FOREACH eAllContents.typeSelect(Activity)»
107 «EXPAND rule32 FOREACH eAllContents.typeSelect(Action)»
108 «EXPAND rule33 FOREACH eAllContents.typeSelect(Action)»
109 «EXPAND rule34 FOREACH eAllContents.typeSelect(CentralBufferNode)»
110 </TR><TR>

111 <TH Colspan=3 align= left>State Machine Diagram Rules</TH>

112 «EXPAND rule35 FOREACH eAllContents.typeSelect(State)»
113 «EXPAND rule36 FOREACH eAllContents.typeSelect(State)»
114 «EXPAND rule37 FOREACH eAllContents.typeSelect(StateMachine)»
115 </TR>

116 </TABLE>

117

118 <TABLE>

119 <TR>

120 <TD>Report By: Akhtar Ali Jalbani</TD>

121 </TR><TR><TD><i>Email:

122 ajalbani@informatik.uni−geottingen.de</i></TD>

123 </TR><TR><TD><i><a

124 href=”http://http://www.swe.informatik.uni−goettingen.de/”>
125 www.swe.informatik.uni−goettingen.de</i></TD>

126 </TR><TR><TD><i>Software Engineering and Distributed Systems Group</i></TD>

127 </TR><TR><TD><i>Institute of Computer Science, University of Goettingen</i></TD>

128 </TR><TR><TD><i>Goettingen, Germany</i></TD>

129

130 </TR>

131 </TABLE>

132

133 <script type=”text/javascript”>

134 <!−−
135 var d names = new Array(”Sunday”, ”Monday”, ”Tuesday”,

136 ”Wednesday”, ”Thursday”, ”Friday”, ”Saturday”);

137 var m names = new Array(”January”, ”February”, ”March”,

138 ”April”, ”May”, ”June”, ”July”, ”August”, ”September”,

139 ”October”, ”November”, ”December”);

140 var d = new Date();

141 var curr day = d.getDay();

142 var curr date = d.getDate();

143 var sup = ””;

144 if (curr date == 1 || curr date == 21 || curr date ==31)

145 {
146 sup = ”st”;

147 }
148 else if (curr date == 2 || curr date == 22)

149 {
150 sup = ”nd”;

151 }
152 else if (curr date == 3 || curr date == 23)

174 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

153 {
154 sup = ”rd”;

155 }
156 else

157 {
158 sup = ”th”;

159 }
160 var curr month = d.getMonth();

161 var curr year = d.getFullYear();

162

163 var curr hour = d.getHours();

164 var curr min = d.getMinutes();

165

166

167 document.write(”Report generated on: ”+d names[curr day] + ” ” + curr date + ”<SUP>”

168 + sup + ”</SUP> ” + m names[curr month] + ” ” + curr year+ ” Time : ”+ curr hour + ” : ” +

169 curr min);

170

171 //−−>
172 </script>

173

174 </body>

175 </html>

176 «ENDFILE»
177 «ENDDEFINE»
178

179

180 «REM»−−−CLASS DIAGRAM RULES−−−«ENDREM»
181

182 «DEFINE rule1 FOR uml::Class»
183

184 «LET isClasshasAttributes() AS classhasAttributes»
185 «IF qualifiedName==null»
186 <TR>

187 <TD>

188 ”Rc1: Each Class should have attributes”</TD>

189 <TD> No Name

190 </TD></TR>

191 «ELSEIF classhasAttributes==false»
192 <TR>

193 <TD>

194 ”Rc1: Each Class should have attributes”</TD>

195 <TD>«qualifiedName»</TD>

196 </TR>

197 «ENDIF»
198 «ENDLET»
199 «ENDDEFINE»
200

201 «DEFINE rule2 FOR uml::Class»
202

203 «LET isClasshasOperations() AS classhasOperations»
204 «IF qualifiedName== null»
205 <TR>

206 <TD>

207 ”Rc2: Each class should have operations”</TD>

208 <TD> No Name

209 </TD></TR>

210 «ELSEIF classhasOperations==false»
211 <TR>

175

212 <TD>

213 ”Rc2: Each Class should have Operations”</TD>

214 <TD>«qualifiedName»</TD></TR>

215 «ENDIF»
216

217 «ENDLET»
218 «ENDDEFINE»
219

220 «DEFINE rule3 FOR uml::Class»
221 «LET isClassDit() AS dit»
222 «IF dit==false»
223 <TR>

224 <TD>

225 ”Rc3: Depth of Inheritance Should be less than 4”</TD>

226 <TD>«qualifiedName»</TD></TR>

227 «ENDIF»
228 «ENDLET»
229 «ENDDEFINE»
230

231 «DEFINE rule4 FOR uml::Class»
232 «LET isMultipleInheritance() AS ismultipileInheriatnce»
233 «IF ismultipileInheriatnce==false»
234 <TR>

235 <TD>

236 ”Rc4: Multiple Inheritance must not exists”</TD>

237 <TD>«getQualifiedName()»</TD></TR>

238 «ENDIF»
239 «ENDLET»
240 «ENDDEFINE»
241

242 «DEFINE rule5 FOR uml::Class»
243 «LET isClassNameCapital() AS capitalName»
244

245 «IF capitalName==false»
246 <TR>

247 <TD>

248 ”Rc5: Each class name should start with a capital letter

249 and should be one word”</TD>

250 <TD>«getQualifiedName()»</TD></TR>

251

252 «ENDIF»
253 «ENDLET»
254 «ENDDEFINE»
255

256 «DEFINE rule6 FOR uml::Class»
257 «LET hasToomanyOperations() AS maxOperation»
258 «IF getQualifiedName()== null»
259 <TR>

260 <TD>

261 ”Rc6: Each class should have maximum 10 operations”</TD>

262 <TD> No Name

263 </TD></TR>

264 «ELSEIF maxOperation==false»
265 <TR>

266 <TD>

267 ”Rc6: Each class should have maximum 10 operations”</TD>

268 <TD>«getQualifiedName()»</TD></TR>

269 «ENDIF»
270 «ENDLET»

176 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

271 «ENDDEFINE»
272

273

274 «REM»−−−Association Rules −−−«ENDREM»
275

276 «DEFINE rule7 FOR uml::Association»
277 «LET isAssociationhasName() AS hasName»
278 «IF hasName==false»
279 <TR>

280 <TD>

281 ”Rc7 Each association must have name”</TD>

282 <TD> No Name

283 </TD></TR>

284 «ENDIF»
285 «ENDLET»
286 «ENDDEFINE»
287

288 «DEFINE rule8 FOR uml::Class»
289 «LET isAssociationPerClass() AS apc»
290 «IF apc==false»
291 <TR>

292 <TD>

293 ”Rc8: Each class has association (1−5)”</TD>

294 <TD>«qualifiedName»</TD></TR>

295 «ENDIF»
296 «ENDLET»
297 «ENDDEFINE»
298

299 «DEFINE rule9 FOR uml::Association»
300 «LET isAssociationNameLower() AS lowerCaseLetter »
301 «IF qualifiedName==null»
302 <TR>

303 <TD>

304 ”Rc9: Each association must have name”</TD>

305 <TD> No Name

306 </TD></TR>

307 «ELSEIF lowerCaseLetter==false»
308 <TR>

309 <TD>

310 ”Rc9: Each association name should be in lower case letter”</TD>

311 <TD>«qualifiedName»</TD></TR>

312 «ENDIF»
313 «ENDLET»
314 «ENDDEFINE»
315

316 «DEFINE rule10 FOR uml::Association»
317 «LET isDirectedAssociation() AS hasDirectionalAssociation»
318

319 «IF getQualifiedName()== null»
320 <TR>

321 <TD>

322 ”Rc10: Each association must have direction”</TD>

323 <TD> No Name

324 </TD></TR>

325 «ELSEIF hasDirectionalAssociation==false»
326 <TR>

327 <TD>

328 ”Rc10: Each association must have direction”</TD>

329 <TD>«getQualifiedName()»</TD></TR>

177

330 «ENDIF»
331 «ENDLET»
332 «ENDDEFINE»
333

334 «DEFINE rule11 FOR uml::Association»
335 «LET hasMultiplicityDefined() AS mulValue»
336 «IF getQualifiedName()== null»
337 <TR>

338 <TD>

339 ”Rc11: Each association must specify multiplicity and it

340 must be n to 1”</TD>

341 <TD> No Name

342 </TD></TR>

343 «ELSEIF mulValue==false»
344 <TR>

345 <TD>

346 ”Rc11: Each Association must specify multiplicity and it

347 must be n to 1”</TD>

348 <TD>«getQualifiedName()»</TD></TR>

349 «ENDIF»
350 «ENDLET»
351 «ENDDEFINE»
352

353 «REM»−−−Package Rules−−«ENDREM»
354

355 «DEFINE rule12 FOR uml::Model»
356 «LET hasAssociationClass() AS associationclass»
357 «IF associationclass==false»
358 <TR>

359 <TD>

360 ”Rc12: Association class must not exists in design model”</TD>

361 <TD>«getQualifiedName()»</TD></TR>

362 «ENDIF»
363 «ENDLET»
364 «ENDDEFINE»
365

366 «DEFINE rule13 FOR uml::Package»
367 «LET hasTooManyClasses() AS tooManyClasses»
368 «IF tooManyClasses==false»
369 <TR>

370 <TD>

371 ”Rc13: Each package should have maximum 20 classes.”</TD>

372 <TD>«getQualifiedName()»</TD></TR>

373 «ENDIF»
374

375 «ENDLET»
376 «ENDDEFINE»
377

378 «DEFINE rule14 FOR uml::Association»
379 «IF qualifiedName==null»
380 <TR>

381 <TD>

382 ”Rc14: The link to classes belonging to another

383 package must be uni−directional”</TD>

384 <TD> No Name

385 </TD></TR>

386 «ELSEIF isClassUniDirectional()==false»
387 <TR>

388 <TD>

178 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

389 ”Rc14: The link to classes belonging to another

390 package must be uni−directional”</TD>

391 <TD>«qualifiedName»</TD> </TR>

392 «ENDIF»
393 «ENDDEFINE»
394

395 «DEFINE rule15 FOR uml::Package»
396

397 «LET ispackageNestingLvel() AS nestingLevel»
398 «IF nestingLevel==true»
399 <TR>

400 <TD>

401 ”Rc15: Package nesting level should be maximum 2.”</TD>

402 <TD>«getQualifiedName()»</TD></TR>

403 «ENDIF»
404 «ENDLET»
405 «ENDDEFINE»
406

407

408 «REM»Class Attribute / Property rules «ENDREM»
409

410 «DEFINE rule16 FOR uml::Property»
411 «LET isAttributeDataType() AS attributeDataType»
412 «IF attributeDataType==false»
413 <TR>

414 <TD>

415 ”Rc16: Each attribute must have data type and

416 should be private.”</TD>

417 <TD>«getQualifiedName()»</TD></TR>

418 «ENDIF»
419 «ENDLET»
420 «ENDDEFINE»
421

422 «DEFINE rule17 FOR uml::Property»
423 «LET isCompositionRelationship() AS multiplicityValue»
424 «IF multiplicityValue==false»
425 <TR>

426 <TD>

427 ”Rc17: If Class has composition relationship than

428 multiplicity must be 1.”</TD>

429 <TD>«this.owningAssociation.name»</TD></TR>

430 «ENDIF»
431 «ENDLET»
432 «ENDDEFINE»
433

434 «REM»===== Class Operation and parameter rules === == = =====«ENDREM»
435

436 «DEFINE rule18 FOR uml::Operation»
437 «LET hasParameters() AS hasParameters»
438 «IF hasParameters==false && this.qualifiedName != null»
439 <TR>

440 <TD>

441 ”Rc18: Each operation should have maximum four parameters.”</TD>

442 <TD>«getQualifiedName()»</TD></TR>

443 «ENDIF»
444 «ENDLET»
445 «ENDDEFINE»
446 «DEFINE rule19 FOR uml::Class»
447 «LET hasGettersAndSetters() AS hasgetSet»

179

448 «IF hasgetSet==false && this.qualifiedName != null»
449 <TR>

450 <TD>

451 ”Rc19: Entity class should have getters and setters.”</TD>

452 <TD>«qualifiedName»</TD></TR>

453 «ENDIF»
454 «ENDLET»
455 «ENDDEFINE»
456 «DEFINE rule20 FOR uml::Operation»
457 «LET isAbsractOperationInAbsractClass() AS hasAbstractOp»
458 «IF hasAbstractOp==false && this.qualifiedName != null»
459 <TR>

460 <TD>

461 ”Rc20: Abstract class should have abstract operations.”</TD>

462 <TD>«qualifiedName»</TD></TR>

463 «ENDIF»
464 «ENDLET»
465 «ENDDEFINE»
466 «DEFINE rule21 FOR uml::Operation»
467 «LET hasReturnType() AS hasType»
468 «IF hasType==false && this.qualifiedName != null»
469 <TR>

470 <TD>

471 ”Rc21: Each operation must have return type.”</TD>

472 <TD>«getQualifiedName()»</TD></TR>

473 «ENDIF»
474 «ENDLET»
475 «ENDDEFINE»
476 «DEFINE rule22 FOR uml::Parameter»
477 «LET hasParameterType() AS hasType»
478 «IF hasType==false && this.qualifiedName != null»
479 <TR>

480 <TD>

481 ”Rc22: Each parameter should have data type.”</TD>

482 <TD>«qualifiedName»</TD></TR>

483 «ENDIF»
484 «ENDLET»
485 «ENDDEFINE»
486 «REM»−−−−−−−Sequence Diagram Rules −−−−−−−«ENDREM»
487 «DEFINE rule23 FOR uml::Interaction»
488 «IF isActorInSequenceDiagram()==false»
489 <TR>

490 <TD>

491 ”Rc23: Each Sequence diagram have at least one actor on lifeline”

492 </TD> <TD>«qualifiedName»</TD></TR>

493 «ENDIF»
494 «ENDDEFINE»
495 «DEFINE rule24 FOR uml::Lifeline»
496 «IF isObjectReferesToClass()==false»
497 <TR>

498 <TD>

499 ”Rc24: Each object in sequence diagram must have

500 corresponding class in class diagram”</TD>

501 <TD>«this.represents.type»</TD> </TR>

502 «ENDIF»
503

504 «ENDDEFINE»
505 «DEFINE rule25 FOR uml::Message»
506 «IF isMessageReferesToOperation()==false»

180 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

507 «IF qualifiedName==null»
508 <TR>

509 <TD>

510 ”Rc25: Every call message received by the lifeline should have

511 corresponding method in class diagram”</TD>

512 <TD>No Name</TD></TR>

513 «ELSE»
514 <TR>

515 <TD>

516 ”Rc25: Every call message received by the lifeline should have

517 corresponding method in class diagram”</TD>

518 <TD>«qualifiedName»</TD></TR>

519 «ENDIF»
520 «ENDIF»
521 «ENDDEFINE»
522

523 «DEFINE rule26 FOR uml::Lifeline»
524 «IF hasMessageCallRelationToClassAssocaition()==false»
525 <TR>

526 <TD>

527 ”Rc26: If there is a message call between lifeline

528 than there must be an association between corresponding classes”</TD>

529 <TD>«qualifiedName»</TD></TR>

530 «ENDIF»
531 «ENDDEFINE»
532

533

534 «DEFINE rule27 FOR uml::Message»
535

536 «LET isReturnMessage() AS returnMessage»
537 «IF returnMessage==false»
538 <TR>

539 <TD>

540 ”Rc27: If Message is Empty than it must be a return type message”</TD>

541 <TD>«qualifiedName»</TD></TR>

542 «ENDIF»
543 «ENDLET»
544 «ENDDEFINE»
545

546

547 «REM»Activity Diagram Rules «ENDREM»
548

549 «DEFINE rule28 FOR uml::Activity»
550 «LET hasReferenceClass() AS msgOpRelation»
551 «IF msgOpRelation==false»
552 <TR>

553 <TD>

554 ”Rc28: One Activity diagram should reference to one class operation.”</TD>

555 <TD>«qualifiedName»</TD></TR>

556

557 «ENDIF»
558 «ENDLET»
559 «ENDDEFINE»
560

561 «DEFINE rule29 FOR uml::Activity»
562 «LET hasTooManyDecisionPoints() AS msgOpRelation»
563 «IF msgOpRelation==false»
564 <TR>

565 <TD>

181

566 ”Rc29: The maximum decision point should be 12 in activity diagram. ”</TD>

567 <TD>«qualifiedName»</TD></TR>

568 «ENDIF»
569 «ENDLET»
570 «ENDDEFINE»
571

572 «DEFINE rule30 FOR uml::Activity»
573 «LET hasTooManySwimlanes() AS msgOpRelation»
574 «IF msgOpRelation==false»
575 <TR>

576 <TD>

577 ”Rc30: Each activity diagram should contain 0 to 3 swim lane.”</TD>

578 <TD>«qualifiedName»</TD></TR>

579 «ENDIF»
580 «ENDLET»
581 «ENDDEFINE»
582

583 «DEFINE rule31 FOR uml::Activity»
584 «LET hasTooManyIntialAndExitNodes() AS msgOpRelation»
585 «IF msgOpRelation==false»
586 <TR>

587 <TD>

588 ”Rc31: Each activity diagram should contain one initial

589 node and one exit node.”</TD>

590 <TD>«qualifiedName»</TD></TR>

591 «ENDIF»
592 «ENDLET»
593 «ENDDEFINE»
594

595 «DEFINE rule32 FOR uml::Action»
596 «LET hasActivityReferenceToClass() AS activityRefClass»
597 «IF activityRefClass==false»
598 «IF qualifiedName==null»
599 <TR>

600 <TD>

601 ”Rc32: Activity in activity diagram could reference to class operations.”</TD>

602 <TD>No Name</TD></TR>

603 «ELSE»
604 <TR>

605 <TD>

606 ”Rc32: Activity in activity diagram could reference to class operations.”</TD>

607 <TD>«qualifiedName»</TD></TR>

608 «ENDIF»
609 «ENDIF»
610 «ENDLET»
611 «ENDDEFINE»
612

613 «DEFINE rule33 FOR uml::Action»
614 «LET isDeadActivity() AS deadActivity»
615 «IF deadActivity==false»
616 «IF qualifiedName==null»
617 <TR>

618 <TD>

619 ”Rc33: Dead activity must not present in activity diagram.”</TD>

620 <TD>No Name</TD></TR>

621 «ELSE»
622 <TR>

623 <TD>

624 ”Rc33: Dead activity must not present in activity diagram.”</TD>

182 APPENDIX H. HTML REPORT GENERATION FOR COMPLETE MODEL

625 <TD>«qualifiedName»</TD></TR>

626 «ENDIF»
627 «ENDIF»
628 «ENDLET»
629 «ENDDEFINE»
630

631 «DEFINE rule34 FOR uml::CentralBufferNode»
632 «LET hasObjectReferenceToClass() AS objectRefClass»
633 «IF objectRefClass==false»
634 <TR>

635 <TD>

636 ”Rc34: Objects of activity diagram should corresponds

637 to the class in class diagram.”</TD>

638 <TD>«this.activity.qualifiedName»</TD></TR>

639 «ENDIF»
640 «ENDLET»
641 «ENDDEFINE»
642

643

644 «DEFINE rule35 FOR uml::State»
645 «LET isDeadState() AS deadstate»
646 «IF deadstate==false»
647

648 <TR>

649 <TD>

650 ”Rc35: Dead state must not be present in a state machine.”</TD>

651 <TD>«qualifiedName»</TD></TR>

652

653 «ENDIF»
654 «ENDLET»
655 «ENDDEFINE»
656 «DEFINE rule36 FOR uml::State»
657 «LET isStateUnique() AS unique»
658 «IF unique==false»
659

660 <TR>

661 <TD>

662 ”Rc36: State names must be unique.”</TD>

663 <TD>«qualifiedName»</TD></TR>

664 «ENDIF»
665

666 «ENDLET»
667 «ENDDEFINE»
668

669 «DEFINE rule37 FOR uml::StateMachine»
670 «LET hasTooManyTransitions() AS transitions»
671 «IF transitions==false»
672 <TR>

673 <TD>

674 ”Rc37: Initial state should have at least one Initial Node.”</TD>

675 <TD>«qualifiedName»</TD></TR>

676 «ENDIF»
677 «ENDLET»
678 «ENDDEFINE»

Listing H.1: Xpand Html Report for complete Model

Appendix I

Modeling Workflow

Engine (MWE) for Report

Generation

1 <?xml version="1.0" encoding="windows-1252"?>

2 <!−− This is a main workflow file to generate html report−−>
3 <!−− Author: Akhtar Ali Jalbani−− Date: 18−09−2010>
4 <workflow>

5 <property name="model" value=

6 "UMLCourseModel/BlueGroup/Blue1.1/UseCaseBäckerei_BlaueGruppe_10_04.uml" />

7 <property name="modeldir" value="BlueGroup"/>

8 <property name="src-gen" value="src-gen/${modeldir}" />

9 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />

10 <bean id="mm_emf" class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>

11 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">

12 <modelFile value="${model}" />

13 <outputSlot value="modelSlot" />

14 </component>

15 <component id="dirCleaner"

16 class="org.eclipse.emf.mwe.utils.DirectoryCleaner"

17 directory="${src-gen}"/>

18 <!−− create html metrics report −−>
19 <component class="org.eclipse.xpand2.Generator">

20 <metaModel idRef="mm_emf"/>

21 <fileEncoding value="ISO-8859-1"/>

22 <expand

23 value="templates::root::main FOR modelSlot" />

24 <outlet path="${src-gen}" overwrite="false">

25 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">

26 </postprocessor>

27 </outlet>

28 </component>

29 </workflow>

Listing I.1: Example for WorkFlow Generator

183

Appendix J

Model-to-Model (M2M)

Transformation Templates and

Workflow Generator

1 import uml;

2 uml::Model transform(uml::Model model):

3 let elementList = model.eAllContents.typeSelect(UML::Element).collect(e|e):
4 elementList.forAll(e|renameElement(findElement(elementList, ”Name of the Element”)))−>
5 model;

6 // find uml::Element in the model

7 List[uml::Element] findElement(List[uml::Element] elem, String name):

8 elem.select(e|e.name == name);

9 // rename UML::Element in the model

10 Boolean renameElement(List[uml::Element] elem):

11 elem.setName(”New Name for the Element”)−>true;

Listing J.1: Rename Refactoring

1 <?xml version="1.0" encoding="windows-1252"?>

2 <workflow>

3 <!−− input uml model −−>
4 <property name="model" value=

5 "UMLCourseModel/BlueGroup/Blue1.1/UseCaseBäckerei_BlaueGruppe_10_04.uml"/>

6 <!−− set the output directory−−>
7 <property name="src-gen" value="src-gen" />

8 <!−− Setup UML2 support −−>
9 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />

10 <!−− load uml model −−>
11 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">

12 <modelFile value="${model}" />

13 <outputSlot value="modelSlot" />

14 </component>

15 <!−− Clean src directory −−>
16 <component id="dirCleaner"

17 class="org.eclipse.emf.mwe.utils.DirectoryCleaner"

185

186 APPENDIX J. M2M TEMPLATES AND WORKFLOW

18 directory="${src-gen}"/>

19 <!−− model to model transformation −−>
20 <component class="org.eclipse.xtend.XtendComponent">

21 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel" />

22 // you need to change renameTransformation::renameActor for rename Actor refactorings

23 <invoke value="renameTransformations::renameElement::transform(modelSlot)"/>

24 <outputSlot value="outputSlot"/>

25 </component>

26 <!−− write output UML model −−>
27 <component id="writer" class="org.eclipse.emf.mwe.utils.Writer">

28 <modelSlot value="modelSlot"/>

29 <uri value="./src-gen/Transformations/tranformedModel.uml"/>

30 </component>

31 </workflow>

Listing J.2: Refactoring Workflow

Appendix K

Quality Assessment Reports for

the Bakery System

This appendix contains quality assurance reports for the Blue and Red group for

Incomplete and Complete type of models.

K.1 Report of Group BLUE for Incomplete Model

V iolatedRule Location

”Ri1: Each Use Case must be in-

side the subsystem”

No Name

”Ri2: Each Use Case must be as-

sociated with an actor”

No Name

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei::Lagerverwaltung:: Zutaten-

datenbank verwalten

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei::Lagerverwaltung:: Lagerka-

pazität verwalten

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei::Lagerverwaltung:: Zu-

tatenbestellung durchführen

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei:: Verkaufssystem::Kassen

starten

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei:: Personalverwaltung::An Per-

sonalverwaltung anmelden

”Ri2: Each Use Case must be as-

sociated with an actor”

Data::Bäckerei:: Lagerverwaltung::Backplan

eingeben

”Ri5: Each Usecase should not

be associated to more than three

actors”

No Name

187

188 APPENDIX K. QA REPORTS FOR THE BAKERY SYSTEM

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei::Lagerverwaltung:: Zutaten-

datenbank verwalten

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei::Lagerverwaltung:: Lagerka-

pazität verwalten

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei::Lagerverwaltung:: Zu-

tatenbestellung durchführen

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei:: Verkaufssystem::Kassen

starten

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei::Personalverwaltung:: An Per-

sonalverwaltung anmelden

”Ri5: Each Usecase should not

be associated to more than three

actors”

Data::Bäckerei:: Lagerverwaltung::Backplan

eingeben

Table K.1: First Partial Report for Incomplete Model of BLUE

Group

K.2 Report of Group RED for Incomplete Model

V iolatedRule Location

”Ri7: Each subsystem contain

minimum 3 and maximum 5 use

cases i.e.,., UC= 3-5”

Data::Bäckerei::Lagerverwaltung

”Ri7: Each subsystem contain

minimum 3 and maximum 5 use

cases i.e., UC= 3-5”

Data::Rollen

”Ri7: Each subsystem contain

minimum 3 and maximum 5 use

cases i.e., UC= 3-5”

Data::Bäckerei

”Ri7: Each subsystem contain

minimum 3 and maximum 5 use

cases i.e., UC= 3-5”

Data::Bäckerei::Verkauf

”Ri7: Each subsystem contain

minimum 3 and maximum 5 use

cases i.e., UC= 3-5”

Data::Actors

”Ri8: Each subsystem Name

should start with capital letter

and contains one to two words”

Data::System-Level Use Cases

K.2. REPORT OF GROUP RED FOR INCOMPLETE MODEL 189

”Ri8: Each subsystem Name

should start with capital letter

and contains one to two words”

Data::High-Level Use Cases

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung::Mitarbeiter

verwalten AD:: Mitarbeiter Daten aktual-

isieren

”Ri17: Each Activity in activity

diagram should refers to usecases”

Data::Bäckerei::Verkauf::activity use cases::

Bestellung ablehnen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung::Zeit er-

fassen AD::Zeit Aktualisieren

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use

cases::Backwaren eingeben

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung::Zeit er-

fassen AD::Eingangszeit Markieren

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use cases::

Kundendaten eingeben

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use cases::

Bestellung in Backplan aufnehmen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use cases::

Gesamtpreis berechnen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use cases::

Beleg drucken

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung::Lohn

auszahlen AD::Arbeitszeit berechnen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung::Zeit er-

fassen AD::Ausgagnszeit markieren

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Personalverwaltung:: Schicht-

plan erstellen AD::Aushilfe einstellen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Lagerverwaltung:: Aktivitäts-

diagramm::Lager befüllen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Verkauf::activity use cases::

Kapazitäten berechnen

”Ri17: Each Activity in activity

diagram should refers to usecase”

Data::Bäckerei::Lagerverwaltung:: Aktivitäts-

diagramm::Waren annehmen / kontrollieren

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

No Name

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Kundendaten eingeben

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Verkäufer anmelden

190 APPENDIX K. QA REPORTS FOR THE BAKERY SYSTEM

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Mitar-

beiter verwalten AD:: Neuen Mitarbeiter anle-

gen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Backwaren aufnehmen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Sonderkunden aufnehmen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Schicht-

plan erstellen AD:: Arbeitstage berechnen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Mitar-

beiter verwalten AD:: Mitarbeiter Karteikarte

aufrufen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Schicht-

plan erstellen AD:: Schichtpläne erstellen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Lohn

auszahlen AD::Lohn berechnen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Personalverwaltung:: Schicht-

plan erstellen AD:: Schichtplan an Person-

alchef übergeben

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Bestellformular öffnen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Quittung erstellen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Backwaren austragen

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Backwaren eingeben

”Rule-17: Each Activity in activ-

ity diagram should refers to use-

case”

Data::Bäckerei::Verkauf::activity use cases::

Bestellung bestätigen

”Ri18: Each subsystem of use case

diagram should be represented

as a class subsystem in class dia-

gram”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung KD

K.3. REPORT OF GROUP BLUE FOR COMPLETE MODEL 191

”Ri18: Each subsystem of use case

diagram should be represented

as a class subsystem in class dia-

gram”

Data::Bäckerei::Verkauf::Verkauf Klassendia-

gramm

”Ri18: Each subsystem of use case

diagram should be represented

as a class subsystem in class dia-

gram”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung Klassendiagramm

”Ri22 Each Class name should

start with Capital letter and must

be one word.”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung KD::Schichtplan Entity

”Ri22 Each Class name should

start with Capital letter and must

be one word.”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung Klassendiagramm::Barcode Scanner

Table K.2: First Partial Report for Incomplete Model of RED

Group

K.3 Report of Group BLUE for Complete Model

V iolatedRule Location

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Backverwaltung:: Backverwal-

tung::Datenbank

”Rc1: Each Class should have at-

tributes

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Datenbank

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Einkaufsliste

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::ScannerTemperatursensor

”Rc1:Each Class should have at-

tributes”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::LinkedList

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::AutoLieferant

”Rc1:Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Datenbank

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Currency

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Backverwaltung:: Backverwal-

tung::Backplan

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Datenbank

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Kalender

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Lagerverwaltung::

Lagerverwaltung::PDF-Dokument

192 APPENDIX K. QA REPORTS FOR THE BAKERY SYSTEM

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Kassenbondrucker

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Adresse

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Einkaufsliste

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Telefonnummer

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::LinkedList

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Kontodaten

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Currency

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Backverwaltung:: Backverwal-

tung::Backwarenmenge

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Datenbank

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Backverwaltung:: Backverwal-

tung::Bestellmenge

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::LagerverwaltungGUI

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Personalverwaltung

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Schichtplan

”Rc6:Each Class Should have

maximum 10 operations”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Lagerzutat

”Rc6:Each Class Should have

maximum 10 operations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Schichtplanverwaltung

”Rc6:Each Class Should have

maximum 10 operations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::PersonalverwaltungGUI

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Lagerverwaltung

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Kasse

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Verkaufssystem:: Verkaufsys-

tem::Kassenverwaltung

”Rc6: Each Class Should have

maximum 10 operations”

Data::Bäckerei::Backverwaltung:: Backverwal-

tung::Backverwaltung

Table K.3: First Partial Report for Complete Models of BLUE

Group

K.4. REPORT OF GROUP RED FOR COMPLETE MODEL 193

K.4 Report of Group RED for Complete Model

V iolatedRule Location

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::DatenbankLagerverwaltung

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Schichplan

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Verkauf::

Verkauf::Reportobjekt

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Verkauf:: Verkauf::Date

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Verkauf:: Verkauf::Int

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::enum

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Wareneingangssensor

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Objekt

”Rc1: Each Class should have at-

tributes”

Data::Bäckerei::Verkauf:: Verkauf::time

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Schichplan

”Rc2:Each Class should have Op-

erations”

Data::Bäckerei::Verkauf::

Verkauf::Reportobjekt

”Rc2:Each Class should have Op-

erations”

Data::Bäckerei::Verkauf:: Verkauf::Date

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkauf:: Verkauf::Int

”Rc2:Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::enum

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkauf:: Verkauf::Kunde

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::Objekt

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Verkauf:: Verkauf::time

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Stechkartensystem

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Karteikarte

”Rc2: Each Class should have Op-

erations”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::Object

”Rc2: Each Class should have Op-

erations”

No Name

194 APPENDIX K. QA REPORTS FOR THE BAKERY SYSTEM

”Rc5: Each Class name should

start with Capital letter”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::enum

”Rc5:Each Class name should

start with Capital letter”

Data::Bäckerei::Verkauf:: Verkauf::time

”Rc5:Each Class name should

start with Capital letter”

Data::Bäckerei::Verkauf:: Verkauf::viud

”Rc5: Each Class name should

start with Capital letter”

Data::Bäckerei::Verkauf::Verkauf::double

”Rc5:Each Class name should

start with Capital letter”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::time

”Rc5: Each Class name should

start with Capital letter”

Data::Bäckerei::Personalverwaltung:: Person-

alverwaltung::boolean

”Rc5: Each Class name should

start with Capital letter”

Data::Bäckerei::Lagerverwaltung:: Lagerver-

waltung::string

”Rc5: Each Class name should

start with Capital letter”

Data::Bäckerei::Verkauf:: Verkauf::void

Table K.4: First Partial Report for Complete Model of RED Group

Curriculum Vitae

Akhtar Ali Jalbani

Personal Information

Date & Place of Birth: 27th April 1976,

Village Wazir Khan Jalbani, Larkana Sindh, Pakistan

Nationality: Pakistani

Academic Information

1981-1985 Primary Education:

Govt. PC School Larkana Sindh, Pakistan

1986-1990 Secondary Education:

Govt. Pilot Sec. School Larkana Sindh, Pakistan

1991-1993 Higher Secondary Education:

Govt. Degree College Larkana Sindh, Pakistan

1995-1999 Bachelor in Electrical Engineering,

NED University of Engineering and Technology,

Karachi, Pakistan

2000-2002 Masters in Computer Software Engineering,

National University of Science and Technology,

Rawalpindi, Pakistan

Since 2007 PhD Student,

Software Engineering and Distributed Systems Group,

Institute for Computer Science,

Georg-August-Universität Göttingen, Germany

Funded by Higher Education Commission Pakistan and

DAAD Germany

195

	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	1 Introduction
	1.1 Continuous Quality Assessment and Improvement Process for UML Models
	1.2 Contributions
	1.3 Thesis Structure

	2 Foundations
	2.1 UML and Associated Technologies
	2.1.1 The UML Architecture
	2.1.2 UML Models vs. UML Diagrams
	2.1.3 Object Constraint Language (OCL)
	2.1.4 Rational Unified Process (RUP) and UML
	2.1.5 Model Driven Architecture (MDA)
	2.1.5.1 Computation Independent Model (CIM)
	2.1.5.2 Platform Independent Model (PIM)
	2.1.5.3 Platform Specific Model (PSM)

	2.2 UML Model for a Bakery System
	2.2.1 Description of a Bakery System
	2.2.2 Partial UML Model for the Bakery System
	2.2.2.1 Use Case Diagram
	2.2.2.2 Activity Diagram
	2.2.2.3 Class Diagram
	2.2.2.4 Sequence Diagram

	2.2.3 Relationship of the UML Diagrams

	2.3 Software Quality and Quality Models
	2.4 Software Metrics
	2.5 Smells
	2.6 Refactoring
	2.6.1 Rename Refactoring
	2.6.2 Pull Up Method Refactoring

	3 Related Work
	3.1 Quality Models for UML
	3.2 Metrics for UML
	3.2.1 Model Metrics
	3.2.2 Graphical Metrics

	3.3 Smells for UML
	3.3.1 Model Smells
	3.3.2 Graphical Smells

	3.4 Refactorings for UML
	3.4.1 Model Refactorings
	3.4.2 Graphical Refactorings

	3.5 Tool Support
	3.6 Discussion

	4 A Quality Model for UML and its Instantiation
	4.1 Description of the Quality Model for UML Models
	4.2 Model Completeness Types and Quality Attributes
	4.2.1 Model Completeness Types
	4.2.2 Quality Attributes
	4.2.2.1 Incomplete Models
	4.2.2.2 Complete Models
	4.2.2.3 Executable Models

	4.3 Towards an Instantiation of the Quality Model
	4.4 Selection of UML Subset Notations
	4.5 Classification of Rules and Guidelines
	4.5.1 Analyzability for Incomplete Models
	4.5.2 Changeability for Incomplete Models
	4.5.3 Understandability for Incomplete Models
	4.5.4 Analyzability for Complete Models
	4.5.5 Changeability for Complete Models
	4.5.6 Understandability for Complete Models

	4.6 Metric Selections for Quality Assurance

	5 Implementation
	5.1 Eclipse and Associated Technologies
	5.1.1 The Eclipse Modeling Project (EMP)
	5.1.2 The Eclipse Modeling Framework (EMF)
	5.1.3 The XPand Project
	5.1.3.1 The Xpand Code Generation Language
	5.1.3.1.1 The IMPORT Statement
	5.1.3.1.2 The EXTENSION Statement
	5.1.3.1.3 The FOREACH and EXPAND Statements
	5.1.3.1.4 IF Statement
	5.1.3.1.5 REM Statement

	5.1.3.2 The Xtend Model-to-Model (M2M) Transformation Language

	5.1.4 Modeling Workflow Engine (MWE)

	5.2 Tool Implementation
	5.2.1 Common Infrastructure
	5.2.2 Implementation of the Quality Assessment Approach
	5.2.2.1 OCL Evaluator
	5.2.2.2 Java Extension in Xtend Language
	5.2.2.3 Rules and Guidelines in Xtend Language
	5.2.2.4 Quality Assessment Report Generation with Xpand
	5.2.2.5 Modeling Workflow Engine (MWE) for Quality Assessment

	5.2.3 Implementation of the Quality Improvement Approach
	5.2.3.1 Refactorings in Xtend Language
	5.2.3.1.1 Rename Refactoring
	5.2.3.1.2 PullUp Method Refactoring

	5.2.3.2 The Modeling Workflow Engine (MWE) for Refactoring

	6 Case Study
	6.1 Academic Context and Learning Objectives
	6.2 Quality Assessment Results for the Bakery System
	6.2.1 Quality Assessment Results for Incomplete Model
	6.2.1.1 BLUE Group Incomplete Model
	6.2.1.1.1 Analyzability for Incomplete Model
	6.2.1.1.2 Understandability for Incomplete Model

	6.2.1.2 RED Group Incomplete Model
	6.2.1.2.1 Analyzability for Incomplete Model
	6.2.1.2.2 Understandability for Incomplete Model

	6.2.2 Quality Assessment Results for Complete Model
	6.2.2.1 BLUE Group Complete Model
	6.2.2.1.1 Analyzability for Complete Model
	6.2.2.1.2 Understandability for Complete Model

	6.2.2.2 RED Group Complete Model
	6.2.2.2.1 Analyzability for Complete Model
	6.2.2.2.2 Understandability for Complete Model

	6.3 Size and Ratio Metrics
	6.3.1 Size Metrics for Incomplete Model
	6.3.1.1 Ratio Metrics for Analyzability of the Incomplete Model
	6.3.1.2 Ratio Metrics for Understandability of Incomplete Model

	6.3.2 Size Metrics for Complete Models
	6.3.2.1 Ratio Metrics for Analyzability of Complete Model
	6.3.2.2 Ratio Metric for Understandability of Complete Model

	6.4 Student Feedback and Problems Faced by the Students
	6.5 Concluding Remarks

	7 Conclusion
	7.1 Summary
	7.2 Outlook

	Bibliography
	A Description of the Bakery System
	A.1 Das Bäckerei-System
	A.1.1 Verkauf
	A.1.2 Personalverwaltung
	A.1.3 Lagerverwaltung

	B Rules and Guidelines
	B.1 Rules and Guidelines for Incomplete Models
	B.2 Rules and Guidelines for Complete Models

	C Case Study Model
	C.1 Incomplete Model of Group BLUE for Iteration 1
	C.2 Incomplete Model of Group RED for Iteration 1
	C.3 Complete Model of Group BLUE for Iteration 1
	C.4 Complete Model of Group RED for Iteration 1

	D OCL Component
	E Rules for Incomplete Models
	F Rules for Complete Models
	G HTML Report Generation for Incomplete Model
	H Html Report Generation for Complete Model
	I MWE for Report Generation
	J M2M Templates and Workflow
	K QA Reports for the Bakery System
	K.1 Report of Group BLUE for Incomplete Model
	K.2 Report of Group RED for Incomplete Model
	K.3 Report of Group BLUE for Complete Model
	K.4 Report of Group RED for Complete Model

