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Abbreviations & notation

The following list comprises the most important abbreviations and notation used through-
out the thesis.

HMM hidden Markov model

HSMM hidden semi-Markov model

EM expectation-maximization (algorithm)
ML maximum likelihood (estimation)
SSM state-space model

MCMC Markov chain Monte Carlo

MCL Monte Carlo likelihood

SV stochastic volatility

VaR value-at-risk

PoHMM population hidden Markov model
AR autoregressive (process)

t.p.m. transition probability matrix
p.d.f. probability density function
p.m.f. probability mass function

c.d.f. cumulative distribution function
ii.d. independently and identically distributed
mllk minus log likelihood

AIC Akaike information criterion

BIC Bayesian information criterion
EEG electroencephalogram

SDB sleep disordered breathing

REM rapid eye movement

SHHS Sleep Heart Health Study

e.g. exempli gratia (“for example”)

cf. confer (“compare” )

ie. id est (“that is”)



probability of event A

state-dependent process of HMM or HSMM

state process of HMM or HSMM

distribution induced by random variable X

conditional distribution induced by random variable X, given ¥ =y
transition probability matrix of Markov chain

(with two arguments) gamma distribution

(with one argument) gamma function

transition probability (from state ¢ to state j)

N-fold cross product of the interval [0, 1]

initial or stationary distribution of Markov chain

diagonal matrix that appears in the HMM likelihood

row vector of ones

forward probability

state-dependent process of HMM that approximates HSMM
state process of HMM that approximates HSMM

state aggregate

smallest element of state aggregate Iy,

largest element of state aggregate Iy,

state-dependent process of state-space model

state process of state-space model

cumulative distribution function of the standard normal distribution
lower bound of chosen range for g;

upper bound of chosen range for g,

unit 4-simplex

Dirichlet distribution with parameters A1,..., Ay
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Introduction

“The purpose of models is not to fit the data

but to sharpen the questions.”

(Samuel Karlin, 1983)

Hidden Markov models (HMMs) provide flexible devices for modelling time series of
observations that depend on underlying serially correlated states. They have been
successfully applied to a wide range of types of time series: continuous-valued, circular,
multivariate, as well as binary data, bounded and unbounded counts and categorical

observations (see for example Zucchini and MacDonald 2009).

Originally, HMMs were developed in the field of speech recognition (Rabiner 1989);
the underlying state sequence is then given by the spoken sequence of phonemes, while
the observations are essentially given by the Fourier transforms of the recorded sounds.
Speech recognition tries to decode the spoken sequence from the noisy observations —
a typical HMM problem. Apart from speech recognition, HMMSs have proved useful in

many other application fields such as

e finance (Rydén et al. 1998, Banachewicz et al. 2008),
e cconomics (Hamilton 1989),

e biology (Durbin et al. 1998, Krogh et al. 1994),

e computer vision (Vogler and Metaxas, 1997) and

e environment (Zucchini and MacDonald 2009).

As Rabiner (1989) put it: “the models [HMMs] are very rich in mathematical structure
and hence can form the theoretical basis for use in a wide range of applications”. This
thesis exploits the mathematical structure of HMMs to develop some “special-purpose
HMMs”, i.e. HMMs that differ from the standard setting and that are designed to

address special demands. In particular, we investigate
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Introduction

1) HMMs with nonstandard sojourn times in the hidden states,

2) structured HMMs that are designed to approximate general-type state-space mod-
els and

3) HMMs for analysing populations of time series in an application to electroen-
cephalogram data.

The motivation for working on the first topic can be described as follows. The hid-
den part of an HMM is a sequence of states. The time spent in a given state prior
to a switch to a different state is geometrically distributed. This restrictive feature
of conventional HMMs can be overcome by considering so-called hidden semi-Markov
models (HSMMs). However, statistical inference then becomes more involved. In re-
cent years, quite some literature has dealt with HSMMs (see e.g. Sansom and Thomson
2001, Guédon 2003, Yu and Kobayashi 2003 and Bulla 2006). In Chapter 2 we consider
an HMM with a special structure that captures the ‘semi’-property of HSMMs. The
proposed model allows for arbitrary dwell-time distributions in the underlying states.
It thus represents a tool for modelling HSMMs using standard HMM methods. For
dwell-time distributions with finite support the HMM formulation is exact while for
those that have infinite support, e.g. the Poisson, the distribution can be approximated
with arbitrary accuracy. A benefit of using the HMM formulation is that it is easy to
incorporate covariates, trend and seasonal variation in all components of the model.
In addition, the formulae and methods for forecasting, state prediction, decoding and
model checking that exist for ordinary HMMs are applicable to the proposed class of
models. A seasonal HSMM is used to model daily rainfall occurrence for sites in Bul-
garia. Additional applications include models for time series of daily returns and the

inter-arrival times of geyser eruptions.

The second main part of the thesis explores ways of applying HMM methods in the
context of state-space modelling. The dependence structure of HMMs is the same as
that of state-space models (SSMs). The latter models are more general since they al-
low for infinite state spaces while conventional HMMs only have a finite number of
states. SSMs have proved to be useful in numerous applications, the most prominent
perhaps being stochastic volatility (SV) modelling. On the other hand, the price to
pay for the increased flexibility is that parameter estimation, as well as state decoding,
is very challenging for SSMs because their likelihood is given by a high-dimensional
multiple integral that cannot be evaluated directly. The available methods are either
simple but inefficient, or efficient but computationally demanding and rather difficult
to implement. In Chapter 3 we make use of the close relationship between SSMs and

16



HMDMs and investigate an alternative method that is based on the fact that SSMs can
be approximated arbitrarily accurately by HMMs. The main benefit of this approach
is that the HMM likelihood is easy to compute and to maximize. In addition, and
in contrast to competing SSM methods, simple formulae are available for the forecast
distributions, for computing appropriately defined residuals, and for decoding. An im-
portant benefit of the HMM representation is the ease of implementation, not only for
fitting standard SSMs but also for fitting experimental extensions and variants of such
models. To illustrate this advantage we first concentrate particularly on SV models. We
define a number of nonstandard SV models and examine their performance when these
are applied to various series of daily returns on stocks. In particular we assess the out-
of-sample performance of the one-step-ahead forecasts of each model during the recent
financial crisis. Besides the extensive discussion of the application to SV modelling, we
use structured HMMs to model time series of earthquake counts, polio counts, rainfall
occurrences and glacial varve thicknesses. The applications were selected in order to
cover a wide range of different types of time series.

The third main topic addressed in the thesis evolved from a collaboration which aimed
at applying HMMs to sleep electroencephalogram (EEG) data. In specific applications
with populations of time series it can be difficult to compare fitted HMMs with each
other. This is because the stochastic structure of HMMs is driven by two components:
by the transition probabilities of the states and by the conditional observation distri-
bution, given the states. As a consequence, if one faces a population of time series,
and if one wishes to fit an individual HMM to each of these series, then fitted HMMs,
even with the same design, are essentially incommensurable: the state transition prob-
abilities cannot be compared directly as the states do not imply the same observation
distributions, and the observation distributions can not directly be compared as the
stochastic structures of the state sequences may be very different. In Chapter 4, we
consider a related problem in a specific application of HMMs to sleep EEG data. We
consider methods to analyse populations of sleep EEG signals for studying sleep disease
using HMMs. An easily implemented method for combining HMM fits in a population
is proposed. The method is applied to study sleep disordered breathing (SDB) in the
Sleep Heart Health Study (SHHS), a landmark study of SDB and its cardiovascular
consequences. We specifically use the entire, longitudinally collected, SHHS cohort to
develop the state-dependent parameters of the HMM, which we then apply to obtain
subject-specific Markovian predictions. From these predictions we create several indices
of interest, such as transition frequencies between latent states.

17



Introduction

The thesis is structured as follows. A brief introduction to standard HMM methodol-
ogy is given in Chapter 1. Basic concepts are illustrated by means of an extensively
discussed application to modelling geyser eruption inter-arrival times. Chapter 2 ad-
dresses the HMM representation of HSMMs based on Langrock and Zucchini (2011).
The approximation of SSMs by structured HMMs is discussed in Chapter 3. Results
in this case are aggregated from Langrock, MacDonald and Zucchini (2010) and Lan-
grock (2010). The application of HMMs to sleep EEG data, as discussed in Langrock,
Swihart, Caffo, Crainiceanu and Punjabi (2010), is described in Chapter 4. The final
chapter summarizes the main results and discusses possible future research. Basically,
the individual chapters can be read independently, although parts of Chapter 2 are built
on results from Chapter 1, and parts of Chapter 3 analyse data that are introduced in
Chapter 2. Most of the data sets appearing in the thesis are available for download!.

! www.statoek.wiso.uni-goettingen.de/cms/user/
index.php?section=institut.team.rlangrock.data
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1 Hidden Markov models

This first chapter introduces the reader to hidden Markov models. First of all, the
basic components of HMMs are defined (Section 1.1). This is followed by a review of
parameter estimation in HMMs (Section 1.2). Subsequently, some of the most impor-
tant distributions related to HMMs are given (Section 1.3). Finally, these basics are
illustrated by means of two real time series related to the Old Faithful geyser (Sections
1.4.1 and 1.4.2).

1.1 Basics

Mathematically, HMMs comprise two components. The first, an unobserved (hidden)
N-state Markov chain, is designed to account for serial correlation. The second is
a state-dependent process whose outcomes (i.e. the observations) are assumed to be
generated by one of N distributions as determined by the current state of the Markov
chain. Each observation thus is modelled as outcome of a mixture distribution with
N components, where the sequence of chosen components is a realization of a Markov
chain. HMMSs constitute a specific class of dependent miztures. For an account of the
theory of mixture distributions we refer to Frithwirth-Schnatter (2006).

Unless explicitly stated otherwise, the nonobservable Markov chain in the following
is denoted by {S;};=12,.., and the observable state-dependent process by {X;}i=12 .
(from now on, we mostly omit the subscript). Given the current state, the distribution
of X} is assumed to be conditionally independent of previous observations and states,
ie.

]PXt|Xt—1:73t—17Xt—2:50t—27~~~7St:Styst—1:5t—1»~-- — IPXt|St:5t

Usually, but not necessarily, the Markov chain is assumed to be of first order, i.e.

IPSt‘St71:5t7175t72:5t72,--- — P5t|5t7118t71 ] (1‘1)

Figure 1.1 displays the dependence structure of a basic HMM in a directed acyclic
graph.
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1 Hidden Markov models

(observed)

(hidden)

Figure 1.1: Dependence structure of an HMDM.

At time ¢, we summarize the probabilities of transitions between the N states of Sy in
the N x N transition probability matriz (t.p.m.) T® = {fyi(;)}, where

The Markov chain is said to be homogeneous if the t.p.m. does not depend on the time
index t. In that case it is said to have a stationary distribution if there exists a row
vector & € [0, 1]V that fulfils

N
0 =6 subject to Zéi =1.
i=1
If the Markov chain is in its stationary distribution at time ¢, i.e. if the (unconditional)
distribution of the states at time ¢ is given by &, then for all subsequent time instants
the states will have the same (unconditional) distribution. To see this, consider the
(unconditional) probability of state ¢ at time ¢, 51@ :=IP(S; =4). Then

N N
0 = P(Spr =) = Y P(Sis1 =[S = i)P(Ss = 1) = Y _ izt
=1 =1
and thus
S — g(t)r’

where 6 := (6?) (5](\1}) ) The statement now follows by induction. If the Markov
chain starts from its stationary distribution, i.e. if s = 4, then it is said to be
stationary. A detailed account of the theory of Markov chains can be found in Brémaud
(1999).

In an HMM the Markov chain represents the nonobservable state process that deter-
mines the distribution at the observation level, i.e. that of the state-dependent process.
In the one-dimensional case we denote the probability mass function (in the discrete
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1.2 Parameter estimation via numerical likelihood maximization

case), or probability density function (in the continuous case), of the state-dependent
process, given the underlying Markov chain is in state k, k € {1,2,..., N}, by

P(X;=xz|S; =k discrete case
fe(x) = (X Si=k) )

Ix8,=k(T) (continuous case)

(Here fx,|s,—r denotes the conditional density of X;, given S; = k.) If the underlying
Markov chain is stationary, then the marginal univariate distribution of an HMM —
P(X; = x) in the discrete case — at each time ¢ is given by

> difi(a) (1.2)

(this follows by applying the theorem of total probability). Expression (1.2) verifies
that the observable part of an HMM, X, is a finite mixture. In general the mixture is
dependent due to the influence of the Markov chain. (Exceptions for instance are HMMs
with stationary Markov chain whose components of I' are column-wise identical.)

For comprehensive accounts of the theory of HMMs see e.g. Ephraim and Merhav
(2002), Cappé et al. (2005) or Zucchini and MacDonald (2009).

1.2 Parameter estimation via numerical likelihood
maximization

The likelihood function of an HMM is available in a form that is easy to compute, the
parameters thus can be estimated by direct numerical likelihood maximization. Cappé
et al. (2005, Chapter 12) show that, under certain regularity conditions, the MLEs of
HMM parameters are consistent, asymptotically normal and efficient.

The likelihood can be written as the following product (see e.g. Zucchini and MacDonald
2009):
Lp = 6WP(2)TP(22)T - ... - TP (21 )TP(zp)1t

where
P(z) = diag(fl(a:), .. .,fN(x)) ,

1 is a row vector of ones and x1, ...,z denote the observations. The above expression
applies to the homogeneous case. In some applications either I' or P(z) can depend on
the time index t. The computational effort required to evaluate the likelihood is linear
in the number of observations, T', and quadratic in the number of HMM states, V.
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1 Hidden Markov models

In order to numerically maximize the likelihood with respect to the parameters one
needs to take care of some technical problems. Firstly, as the likelihood involves multiple
products of probabilities, numerical underflow can occur (especially for long series of
observations). Appropriate scaling of the likelihood circumvents underflow in many
cases. For more details on scaling see Chapter 3 of Zucchini and MacDonald (2009).

Secondly, if an unconstrained maximization or minimization algorithm, e.g. n1m() in R
(Thaka and Gentleman 1996), is used, then it is necessary to reparameterize the model
in terms of unconstrained parameters. If, say, a Poisson state-dependent distribution
is to be fitted, then the parameter A\; has to be positive. We would then numerically
maximize the likelihood with respect to the unconstrained parameter, 1, = log Ag,
and afterwards obtain the estimate of the constrained parameter by A\ = expng. For
more details on how to deal with parameter constraints see Chapter 3 of Zucchini and
MacDonald (2009).

Thirdly, in the case of continuous observations the likelihood can be unbounded, which
renders its maximization impossible. This problem does not arise in the case of discrete
observations because probabilities are bounded by one (while densities in general are
unbounded). One natural way to circumvent this difficulty is to treat the observations
as interval-censored (as opposed to continuous); since each recording of continuous
phenomena involves a certain amount of rounding, it is more accurate to replace the
precise values (e.g. 14.6 seconds) by suitable intervals (e.g. (14.55,14.65]). Replacing
the density values by probabilities of the corresponding intervals leads to a bounded
(discrete) likelihood (cf. Zucchini and MacDonald 2009).

Finally, one should be aware that the maximization algorithm might converge to a local
rather than the global maximum. The main strategy to deal with this problem is to

use a range of suitable starting values.

It is also possible to apply the expectation-maximization (EM) algorithm to estimate
the HMM parameters. As EM is not employed in the course of this work, it is not
further discussed here. For a comprehensive account of the EM algorithm, including
a discussion of advantages and disadvantages of the two possible parameter estimation
methods, see Bulla and Berzel (2006).

1.3 Forecasting, decoding and state prediction in HMMs

When applying HMMs, one is often interested in particular conditional or joint distri-
butions, e.g. for

e forecasting future observations,
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1.3 Forecasting, decoding and state prediction in HMMs

e decoding the most likely state sequence for a given sequence of observations,

e predicting future states.

For each of these purposes convenient expressions and algorithms are available (cf.
Zucchini and MacDonald 2009). To begin with, we recall the expressions for forecasting
and state prediction (for details on the derivations we refer to the manuscript just cited).
All expressions are given for the case of discrete observations. (The continuous case
can be treated analogously; the probabilities then have to be replaced by densities.)

The so-called forward probabilities are given by
a; = WPz TP(z)T - ... - TP(zy_)TP(zy), t=1,...,T.

(Note that ay is a row vector.) The forward probabilities can be employed to compute
the h-step ahead forecast distribution of an HMM, conditional on all observations up

to time 7', as follows:

arT"P(2)1t

arlt (1.3)

P(Xrin =2|Xr =2r, Xr1 =271,..., X1 =21) =
(As above 1 is a row vector of ones.) Similarly, one obtains the following expression for
the conditional probability of a future state, given all observations up to time T

aTI‘he’,‘/c

]P(ST+h:k|XT::L‘T)XT71:fola"'aXl :561): s kzl,...,N, (14)

aTlt
with eg := (0,...,0,1,0,...,0) denoting the unit row vector with kth entry equal to 1.
Given homogeneity, aperiodicity and irreducibility (see Brémaud 1999 for definitions)
of the Markov chain, both the forecast distribution of the observations, and that of
the states, converge to the respective stationary distribution as the forecast horizon h

increases, i.e.
N
hm IP(XT+h = :E|XT = QZT,XT,1 = XT—-1,.-- ,Xl = 56‘1) = Z(Slfl(%)
h—o0 1
and hlim P(Srsn =kl Xr =2p, Xp1 =27-1,..., X1 =21) = 0 - (1.5)
—00
One distinguishes between local and global decoding. Local decoding yields the most
likely states at individual time instants, while global decoding yields the most likely

state sequence. The latter is usually carried out using the Viterbi algorithm (Viterbi
1967).
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1.4 Example: Old Faithful eruptions

Due to its intriguing dynamics, the Old Faithful geyser has attracted much attention
in the geophysical and statistical literature; papers or monographs that deal with the
Old Faithful geyser include, inter alia, Azzalini and Bowman (1990), Weisberg (2005),
Silverman (1986), Robert and Titterington (1998), Aston and Martin (2007), Varin and
Vidoni (2005) and Zucchini and MacDonald (2009). While focusing on different aspects
of the eruption dynamics, these contributions have in common that they all investigate
rather short time series related to Old Faithful. The most frequently investigated data
set consists of 299 pairs of measurements, namely the eruption durations and the time
intervals between consecutive eruptions, dating back to August 1985 (cf. Azzalini and

Bowman).

In this section we consider a substantially larger data set that includes almost all
eruptions of Old Faithful in 2009. (More precisely, we consider all eruptions after the
2nd of January, a day on which there is a gap in the series due to an ice formation).
The data were downloaded from www.geyserstudy.org. (Acknowledgements are due
to Yellowstone National Park and Ralph Taylor for providing the data.) This data set
contains 5768 observations and thus gives a more comprehensive insight in the dynamics
of the geyser than do the several well-documented series from the 1980s. The series
comprises the time intervals between starts of consecutive eruptions (rounded to the
nearest minute). Azzalini and Bowman (1990) argue that consideration of the inter-
arrival times while ignoring the eruption duration times does not neglect any important
information, as these two measurements are equivalent indicators for the state of Old
Faithful. The minimum inter-arrival time in 2009 was 46 minutes, the maximum was

124 minutes.

Figure 1.2 displays the time series of eruption inter-arrival times together with a local
polynomial smoother. There is some indication of nonhomogeneity in the data. Indeed,
the geyser has been shown to be influenced by covariates, such as precipitation or seismic
activity (cf. Hurwitz et al. 2008). However, the seasonal variation is rather small, and
as this chapter mainly has illustrative purposes we limit ourselves to the consideration

of homogeneous models.

Figure 1.3 displays a histogram of all inter-arrival times observed in 2009 (after the
2nd of January). The estimated distribution is bimodal and it is thus plausible that
the geyser operates in at least two different modes. In fact, the Yellowstone National
Park predicts eruption inter-arrival times one step ahead, and (as of 2010) the predic-
tion is completely determined by whether the current eruption duration is classified
as “short” or “long” (source: www.geyserstudy.org). Furthermore, Figure 1.4 shows
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Figure 1.2: Observed inter-arrival times in 2009 and local polynomial smoother.
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Figure 1.3: Histogram of eruption inter-arrival times.

that the consecutive inter-arrival times are serially correlated. Taking into account both
the bimodality and the serial dependence, HMMs appear to be reasonable choices for
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Figure 1.4: Sample autocorrelation function for the time series of inter-arrival times.

modelling this time series.

We analyse the time series of eruption inter-arrival times in two ways: in Section 1.4.1
we follow Azzalini and Bowman in dichotomizing the series into short and long inter-
arrival times respectively. We model the resulting binary series by means of Markov
chains of different orders and by means of HMMs. Subsequently, in Section 1.4.2, we
analyse the original time series by means of differently designed HMMs. (In Section 2.5
hidden semi-Markov models are fitted to the series.)

1.4.1 Modelling the binary series of long and short inter-arrival times

Azzalini and Bowman (1990) identify two distinct states of Old Faithful: one involves
short inter-arrival times (with long subsequent eruption times), and the other long
inter-arrival times (followed by short and long eruption times in roughly equal propor-
tions). They argue that a discretization of the observations into either short or long
inter-arrival times is reasonable since the most important feature of the geyser is the
alternation between these two states. For the moment we follow this suggestion and
discretize the series of inter-arrival times accordingly: to inter-arrival times less than
75 minutes we assign the value 0, to those longer than or equal to 75 minutes we assign
the value 1. The resulting series contains 401 zeros (short inter-arrival times) and 5367
ones (long inter-arrival times). The series starts and ends with a long inter-arrival time,
and short inter-arrival times are always followed by long ones, meaning that there are
no consecutive zeros. This feature of Old Faithful was already reported by Azzalini and
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1.4 Example: OIld Faithful eruptions

Bowman (1990). There are, however, proportionally far fewer short inter-arrival times
in the series from 2009 than in that from August 1985.

Markov chains

We begin by considering a first-order Markov chain with two states (labelled 0 and 1 for
short and long inter-arrival times, respectively). The conditional maximum likelihood
estimate of the t.p.m. (cf. Zucchini and MacDonald 2009), conditioned on the first

observation, is given by
i ( 0 1 ) ~ ( 0 1 >
— | 401 4965 | .
5366 5366 0.07 0.93

For long series the unconditional likelihood estimate differs only marginally from the
conditional likelihood estimate; we restrict ourselves to the latter.

Azzalini and Bowman (1990) demonstrate that a first-order Markov chain is inadequate
because it does not fully capture the observed autocorrelation of the series. They found
that a second-order Markov chain provides a better fit. A second-order Markov chain
with two states can equivalently be described by a first-order Markov chain with four
states. More precisely, if the Markov chain {S;} is of second order, then the Markov
chain {T;} := {(Si—1,5¢)} is of first order. In this application the states of {1;} are
(0,0), (0,1), (1,0) and (1,1). As no two short inter-arrival times occur consecutively, the
state (0,0) does not occur. Consequently, a first-order Markov chain with states (0, 1),
(1,0) and (1,1), in order, can be used to express the second-order Markov chain. By
counting the transitions between these three states, the conditional maximum likelihood

estimate of the t.p.m., conditioned on the first two observations, is obtained as

83 318
(o % 0 021 0.79
r=[(1 o o |=[f1t o o0
318 4646
0 Jls dodo 0 0.06 0.94

Note that some entries necessarily equal zero; the transitions (0,1) — (0,1), (1,0) —
(1,0), (1,0) — (1,1) and (1,1) — (0,1) are impossible. According to the fitted model
the state pair (0, 1) is more likely to be followed by a zero than is the pair (1,1). While
short inter-arrival times never occur consecutively, it happens relatively often that only
one long inter-arrival time occurs between two short ones. In this respect increasing
the memory of the Markov chain improves the fit, since a first-order Markov chain can
not reflect this dependence feature.
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Bernoulli hidden Markov models

As a next step we fitted stationary HMMs with Bernoulli state-dependent distributions
(Bernoulli HMMs) to the binary Old Faithful series. In these HMMs the states of
the Markov chain S; are no longer taken to be observations. Instead the value of S
now represents the unobserved state of the HMM. The observation is assumed to be
a realization of a Bernoulli distributed random variable X; whose parameter depends
on the state: if S; = ¢, with ¢ denoting one out of N possible states of the Markov
chain, then the probability of a long inter-arrival time is 7;, i.e. X; ~ Bern (m;). The

following models are considered:

e a two-state Bernoulli HMM with underlying Markov chain of first order,
e a three-state Bernoulli HMM with underlying Markov chain of first order and

e a two-state Bernoulli HMM with underlying Markov chain of second order.

In the last case the applied model fitting strategy is analogous to the case of the second-
order Markov chain described above. Table 1.1 summarizes the results of the model
fitting exercise, including both the fitted Markov chains and the fitted HMMs.

Table 1.1: Minus log likelihood, AIC and BIC' for the models fitted to the dichotomized
Old Faithful series.

mllk AIC BIC
Markov chain of order 1  1425.85 2855.69  2869.01
Markov chain of order 2 1386.06 2780.12 2806.76
2-state HMM of order 1  1400.29  2808.58  2835.22
3-state HMM of order 1  1380.72 2779.44  2839.38
2-state HMM of order 2 1382.44 2776.88 2816.84

The model suggested by Azzalini and Bowman (1990), namely the second-order Markov
chain, outperforms all other models in terms of the BIC. In terms of the AIC, the two-
state HMM of second order performs best. The three-state HMM attains the highest
likelihood value, while the remaining two models, namely the first-order Markov chain
and the two-state HMM of first order, are apparently less suitable.

The estimated parameters of the two-state HMM of second order are

7 = (71,7) = (0.45,1.00)
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1.4 Example: OIld Faithful eruptions

and
0.00 0.38 0.62

T'=|1.00 000 0.00],
0.00 0.10 0.90

where the three states are, in order, (1,2), (2,1) and (2,2). (According to the fitted
model state (1,1) almost surely does not occur.) The main features attributed to the

second-order Markov chain reappear in this HMM.

The parameter estimates for the three-state HMM are
T = (T, 72, 73) = (0.62,0.99,1.00) (1.6)
and
0.00 0.00 1.00

=000 08 o0.11]. (1.7)
0.56 0.21 0.23

It is worth noting that states 2 and 3 imply very similar properties at the observation
level. Intuitively the given state partition suggests that two states suffice. Bearing this
in mind, the increase in the likelihood compared to the two-state HMM is remarkable.

In Section 2.5.1 we revisit this puzzle.

1.4.2 Modelling the series of inter-arrival times

As described in the previous section, dichotomizing the inter-arrival times series seems
plausible in regard of the most striking features of Old Faithful. Nevertheless, it does
involve a loss of information. We now analyse the original (nondichotomized) series to

see whether the geyser operates in two or in more states.

Independent miztures

As a first step, independent mixture distributions were fitted to the time series. Even
though such models neglect the serial dependence of the data, they help to decide which
type of distributions might be considered suitable when fitting HMMs. The p.d.f. of a
mixture distribution with N components is given by

f(x) = a1 fi(z) + aofo(z) +... +anfn(z),

where f; denotes the p.d.f. of the ith component distribution and a3 + ... + ay = 1.
Table 1.2 compares mixtures of normal and of gamma distributions, respectively, in
terms of the model selection criteria for the given series of inter-arrival times.
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Table 1.2: Minus log likelihood, AIC and BIC' for independent mixtures of normal and
of gamma distributions with N = 2,3,4 components.

normal miztures gamma miztures
N  mllk AIC BIC N  mllk AlIC BIC
2 20358.3 40726.6 40759.9 2 20323.9 40657.7  40691.0
3 20291.4 40598.8 40652.1 3 20289.5 40594.9 40648.2
4 20283.9 40589.7 40663.0 4 20283.2 40588.3 40661.6

Except in the case with only N = 2 components, the normal and gamma mixture dis-
tributions led to similar results. The gamma distribution performed slightly better for
each number of components and is a more natural choice anyway: the normal distri-

bution is defined on the whole real line while the observations are, by nature, all positive.

First-order gamma hidden Markov models

The series of eruption inter-arrival times shows significant autocorrelation (cf. Figure
1.4). Thus HMMs can be expected to be more appropriate than independent mixtures.
As a first step we fitted stationary gamma HMMs (GHMMs) with different numbers of
states N. An N-state GHMM is a dependent mixture of N gamma distributions, where
the components of the mixture are selected by an N-state Markov chain. For state k,
k=1,2,..., N, the gamma distribution is characterized by the shape parameter x; and
the scale parameter 0y, where xy, 0, > 0. The mean of the kth component distribution
is g = Ki - 0. The conditional p.d.f. of an observation x, given state k, is
(=%

fr(@) = fop0.(2) = x“klm, x> 0. (1.8)
The parameters were estimated by numerical maximization of the discrete likelihood
(e.g. the density of an observation x = 78 was replaced by the probability of the interval
(77.5,78.5]; cf. Section 1.2). The parameter estimates for the GHMMs with N = 2,3, 4
and 5 components are given in Appendix Al. Table 1.3 summarizes the model fitting
results. In terms of the model selection criteria AIC and BIC, only the models with
four and five states, respectively, appear to be competitive. (Noticeably, Robert and
Titterington, 1998, as well as Zucchini and MacDonald, 2009, concentrate on three-state
HMMs when investigating the shorter Old Faithful series from 1985.)

Figure 1.5 displays the mixture component distributions and the marginal observation
distributions of the fitted models with three, four and five states respectively. The
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Figure 1.5: Weighted mixture components (left hand side), and marginal distributions
(right hand side, together with histograms of the observations), of the fitted
GHMMs with N = 3,4, 5.

Table 1.3: Minus log likelihood, AIC and BIC for N-state gamma HMMs fitted to the
nondichotomized Old Faithful series.

N mllk AIC BIC

2 20292.19 40596.38  40636.34
3 1994857  39921.13  40001.05
4 1983798 39715.96 39849.16
5 19822.86 39705.73 39905.53

fitted mixture components on the left have been weighted with their proportion in the

mixture according to the stationary distribution of the Markov chain (i.e. the fitted

component fi(z) has been multiplied by dx). On the right hand side of Figure 1.5,

the marginal distribution of the observations is obtained as the sum of these weighted

components according to (1.2). Evidently, in the five-state GHMM, two of the states
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are hardly distinguishable at the observation level. In view of the similarity of these
states, the likelihood gap between the four- and the five-state model can be expected
to be due either to (i) distinctive features of the state dwell-time distributions or to (7i)
correlation features that can not be captured by the four-state GHMM. The subsequent
paragraph investigates (i), while (7) is discussed in Section 2.5.2.

Four-state second-order gamma hidden Markov model

So far, the most promising stochastic model for Old Faithful’s eruption inter-arrival
times series is the four-state GHMM. We now investigate whether increasing the mem-
ory of the underlying Markov chain can further improve the fit. Thus we now consider
a four-state GHMM with underlying second-order Markov chain. The value of the min-
imized minus log likelihood for this model is 19800.69, the AIC and BIC values are
39713.38 and 40086.34, respectively. Based on model selection criteria other models
are superior (cf. Table 1.3). However, the likelihood value is, by a substantial gap, the
largest of all models that have been considered (in particular it is larger than that of a
five-state GHMM). This gives motivation for further investigating the model.

The estimated parameters for the four-state second-order GHMM are given in Appendix
Al. Some features of the estimated t.p.m. and the corresponding stationary distribution

are noteworthy; e.g.

e states 1 and 2, respectively, do not occur twice in a row (almost surely),
e state 1 is never followed by state 2 (a.s.),

e transitions from state 4 to state 1, as well as transitions from state 3 to state 1,
occur more than three times as often as do transitions from state 2 to state 1,

e state 3 is the only state that can occur three times or more in a row (a.s.),

e state 4, which involves the longest inter-arrival times, can occur twice in a row,

but only following either state 1 or 2 (a.s.),

e if there is a switch from state 1 to state 3, then neither state 1 nor state 2 will
occur next (a.s.),

e the likelihood of a switch from state 4 to state 1 or vice versa is relatively high if
the opposite switch has just taken place.

Note that the last four properties listed above can not be captured by an HMM with
first-order Markov chain. In particular the last-mentioned property is interesting: the
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1.4 Example: OIld Faithful eruptions

stationary probability of state 1 is 0.076, short inter-arrival times thus occur relatively
seldom. However, given that a short inter-arrival time (state 1) occurs at time instant ¢,
the probability that there will be another short one at time ¢ + 2 is 0.230, a probability
that is substantially larger than the stationary probability. The geyser apparently
operates in such a way that extreme observations, i.e. very short or very long inter-
arrival times, are followed by extreme observations of the opposite type with a relatively
high probability. This confirms the findings from 1.4.1 and shows that, to some extent,
short inter-arrival times tend to appear in (small) clusters.

Both the substantial increase in the likelihood and the new insights offered by the
second-order property constitute reasons to regard the four-state second-order GHMM
as a suitable model, even though the model selection criteria considered select other
models. Thus we use this model to illustrate forecasting, decoding and state prediction
for HMMs.

Using the four-state second-order GHMM, the first six inter-arrival times at the be-
ginning of the year 2010 are forecast one-step-ahead using (1.3). Figure 1.6 displays
the forecast probabilities for the inter-arrival times to fall into intervals of one minute
length (e.g. (93.5,94.5]).
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Figure 1.6: One-step-ahead forecast distributions for the first six eruption inter-arrival

times in 2010 (to be read row-wise), and actually observed inter-arrival time

(bold bar).

A part of a Viterbi path for the four-state second-order GHMM is depicted in Figure
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1.7. Tt gives the final 50 eruption inter-arrival times from 2009 and the associated
(globally) decoded sequence of states.
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Figure 1.7: State-dependent means (dashed horizontal lines), means according to the
globally decoded state sequence (crosses) and actual observations (filled cir-

cles, connected by grey line).

As a next step, Expression (1.4) was employed to perform state prediction. Table 1.4
gives the probabilities of the possible state pairs associated with the first six eruption
inter-arrival times in 2010. All observations from 2009, x1, ..., 5768, were used to ob-
tain the predictions. In contrast to the forecasts in Figure 1.6, the state predictions
are not one-step-ahead (except of the first one). The state pairs (1,1), (1,2) and (2,2)
almost surely do not occur. Evidently, as the forecast horizon h increases, the prob-
abilities converge quite fast towards the stationary probabilities (cf. Equation (1.5)).
Note that it is straightforward to derive the probabilities of the single states from that
of the state pairs: e.g. the probability of state 3 is the sum of the probabilities of the
pairs (1,3), (2,3), (3,3) and (4, 3).

Lastly, Figure 1.8 compares the original time series with a series of same length that was
simulated from the fitted four-state second-order GHMM. The dashed lines in the top
graphs give the empirical 0.05-, 0.25-, 0.75- and 0.95-quantiles respectively. In addition,
histograms of the observations and the sample autocorrelation functions are given. The
fitted model seems to be able to reproduce the most striking features of Old Faithful.
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Table 1.4: Predicted state probabilities, multiplied by 100, of {T3} = {(S¢=1,5¢)} for
the first sixz observations in 2010; the bottom line gives the stationary distri-

bution.

(1,3) (1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)

0 0 0 1 0 5 11 41 14 3 19 6 1
0 7 1 16 12 3 11 25 8 2 6 7 0
1 ) 1 9 8 3 9 28 9 4 15 8 1
1 7 1 13 10 3 9 26 8 3 12 7 1
1 6 1 11 9 3 9 26 8 4 13 8 1
1 7 1 12 9 3 9 26 8 3 13 7 1
1 7 1 12 9 3 9 26 8 3 13 7 1

1.5 Concluding remarks

In this first chapter we covered some of the basic concepts needed in the chapters to
follow. We introduced HMMs and their ingredients, in particular Markov chains. Well-
established methodology for HMMs, including parameter estimation and forecasting,
was reviewed briefly. Although we have illustrated how model selection criteria can be
applied to select the ‘best’ model, we have not yet discussed how to check the adequacy
of a selected HMM, and how to identify outliers relative to a fitted model. This can be
done by the use of residuals; Section 3.2.3.2 contains more details.

The practical implementation of many of the basic HMM concepts was demonstrated
by means of an extensively discussed application to two time series related to the Old
Faithful geyser. The investigation of the series of eruption inter-arrival times also
illustrated the considerable flexibility of HMMs. In this application the first decision
to be made is whether or not to dichotomize the series. If so, then Bernoulli HMMs
are plausible models. If, instead, the nondichotomized series is to be modelled, then
gamma HMMs provide reasonable results. One also has to choose the number of states
of the hidden process. In case of the nondichotomized Old Faithful series four distinct
states were identified. Lastly, we have shown that standard HMMs with memory of one
time lag can not capture all features of the series; the consideration of an HMM with
underlying second-order Markov chain offered further insights.
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Figure 1.8: Observed (plots on the left) and simulated (plots on the right) series, as well
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as corresponding histograms and autocorrelation functions.
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state dwell-time distributions!

The number of consecutive time points that the Markov chain spends in a given state
(the dwell time) follows a geometric distribution. Therefore, for example, the modal
dwell time for every state of an HMM is one. Hidden semi-Markov models (HSMMs)
are designed to relax this restrictive condition; the dwell time in each state can follow
any discrete distribution on the natural numbers. HSMMs and their applications are
discussed, inter alia, in Ferguson (1980), Sansom and Thomson (2001), Guédon (2003)
and Yu and Kobayashi (2003).

The additional generality offered by HSMMs carries a computational cost: they are
more demanding to apply than are HMMs. Furthermore, in HSMMs state changes
and state dwell-time distributions are modelled separately, meaning that the embedded
Markov chain operates on a non-uniform time scale, and consequently the Markov
property is lost. In some applications this can be regarded as natural, e.g. in the
modelling of breakpoint rainfall data in Sansom and Thomson (2001). However, in
general it can be unnatural and it leads to difficulties if one wants to do prediction or if
one wishes to include covariates, trend or seasonality in the model. Covariate modelling
in HMMs, in the state-dependent process as well as in the Markov chain, has been
broadly explored and is fairly standard (see e.g. Part Two in Zucchini and MacDonald
2009). For HMMs the inclusion of random effects in both components of the model
is also feasible (see Altman 2007). The generalization of Altman’s MHMMSs (mixed
hidden Markov models) to HSMMs is straightforward if the covariates and random
effects merely influence the state-dependent process (see Chaubert-Pereira et al. 2008).
However, the incorporation of covariates or random effects in the latent part of the
HSMM, i.e. in the semi-Markov chain, is much more difficult due to the timing problems
arising from the separate modelling of state changes and state sojourns. This problem
can be circumvented by using HMMs with arbitrary state dwell-time distributions —
the existing HMM methodology then becomes available. In particular, and in contrast
to the HSMM case, simple expressions for forecasts and residuals are available for

'This chapter is based on Langrock and Zucchini (2011).

37



2 Hidden Markov models with arbitrary state dwell-time distributions

HMMs. Furthermore, in the HSMM literature it is generally assumed that the start of
the series coincides with a state switch (see e.g. Sansom and Thomson 2001, Guédon
2003 and Bulla et al. 2009). This assumption is expected to have a relatively minor
impact on the estimates when the series are long; nevertheless it is both arbitrary and
often unrealistic. In general it makes the HSMM non-stationary. Indeed it turns out
that fitting stationary (as opposed to only homogeneous) HSMMs is not as easy as in
the case of HMMs. Finally, the elaborateness of the EM algorithm, which usually is
applied to fit HSMMs, increases unless one makes the simplifying assumption that there
is a state switch at the end of the series (see Guédon 2003).

In this chapter we consider specially structured HMMSs that capture the ‘semi’-property
of HSMMs, i.e. that can fit, at least approximately, any desired state dwell-time dis-
tribution, both parametric and nonparametric ones. The idea is to use so-called “state
aggregates” which in similar, but not identical, ways have also been discussed e.g. in
Russell and Cook (1987) and Guédon (2005). A good overview of the various existing
approaches can be found in Johnson (2005) who also argues that the usage of this kind
of models is “almost certainly a much better practical choice for duration modelling
than development and implementation of more complex and computationally expensive
models with explicit modifications to handle duration probabilities”. Our HMM for-
mulation is designed to fit, at least approximately, any given dwell-time distribution. It
has exactly the same number of parameters as the corresponding HSMM and, in the-
ory, the approximation of any dwell-time distribution can be made arbitrarily accurate.
Furthermore, there are important subclasses of distributions for which the representa-
tion of the dwell-time distributions in the HMM formulation is exact. The topology of
the state aggregates in our model is convenient since it is the same whatever dwell-time
distribution we want to represent. Using our HMM formulation and direct likelihood
maximization it is straightforward to fit stationary HMMs (with arbitrary state dwell-
time distributions), or to incorporate trend, seasonality and covariates in the models,
either in the hidden process or in the observed process. Indeed the whole standard
HMM methodology including state prediction, local and global decoding, forecasting
and model checking is applicable.

In Section 2.1 we describe how to structure an HMM so that it has the desired state
dwell-time distribution. We illustrate the HMM formulation using a number of ex-
amples. A brief simulation study in Section 2.2 compares the estimation of the ap-
proximating HMM (via maximum likelihood) with the estimation of the approximated
HSMM (via EM). In Sections 2.3, 2.4 and 2.5 three different applications are discussed,
namely the modelling of daily rainfall occurrence, of daily returns on shares and of
times between Old Faithful’s eruptions.
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2.1 Model description

We start by giving the definition of an HSMM. Subsequently, we show how an HSMM
can be approximated by a suitably structured HMM. An HSMM comprises an observ-
able output process { Xt }+=1,2, .., where the distribution of X} is determined by the state,
St, of an unobserved (hidden) N-state semi-Markov process {S}+=12.... In general, the
process S; does not satisfy the Markov property (1.1). (For a general reference about
semi-Markov processes see Kulkarni 1995.) Conditional on the states the observations

of the output process are assumed to be independent.

Compared to conventional HMMs, HSMMs increase the flexibility of the state process
St. More precisely, they allow for arbitrary state dwell-time distributions, whereas
in conventional HMMSs the state dwell-times are necessarily geometrically distributed.
Let pj denote the probability mass function (p.m.f.) of the dwell time in state k €
{1,..., N} and let F}, denote its distribution function. The support of py is N, the set
of natural numbers, or some subset of N.

Consider the subsequence of {S;}¢—1,2, . comprising the first occurrences of states in each
run. (For example the subsequence corresponding to 1, 1, 2, 2,2, 1, 3, 3,3, 31is 1, 2, 1,
3.) We assume that this subsequence is generated by an irreducible Markov chain (the
‘embedded Markov chain’) having transition probability matrix (t.p.m.) € = {w;;},
where
wij = P(Sp41 = j|St =i, Sp1 #14), 4,5=1,....,N, i #}],

> jWij = 1, w;; = 0, and that the initial probabilities for this Markov chain are given
by 52(1), i=1,...,N. For theoretical and computational convenience some authors (e.g.
Sansom and Thomson 2001) also assume that the time instants ¢t = 1 and t = T are
state boundaries, in the sense that Sy # S; and St # Sr41 (see discussion below).
An HMM is the special case of an HSMM for which pg is the p.m.f. of the geometric
distribution.

Our aim now is to show how one can structure an HMM such that it is a reformulation
of any given HSMM, i.e. such that it comprises any desired dwell-time distribution.
Let mi,ma,...,my € N, mg := 0, and consider an HMM with state-dependent pro-
cess { X} }+=1,2,.. (observable) and Markov chain {5} };—12, . (unobservable) with states
{1,2,.. .,Zi]\il m;}. We refer to the sets

k—1 k
I = {n‘ Zmi<n§2mi}, k=1,...,N,
i=0 i=0

as state aggregates, and define i) := min(Jj) and i := max(l;). We assume that
each state of I, is associated with the same distribution of the state-dependent process,
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2 Hidden Markov models with arbitrary state dwell-time distributions

namely the distribution associated with the kth state in the HSMM defined above. In
other words, the distribution of X', given state S} = [, is the same for all [ € I}, and

is also the same as that of X; given S; =k, i.e.

PXIISiel — pXelSe=k 4y — 1 T k=1,...,N. (2.1)
We denote the t.p.m. of {Sf}i=12,.. by T' = {v;}, where v;; = P(Sf, = j|Sf = i),
,7=1,..., Zfil m;, and structure it as follows:
'y . . 'y
r= , (2.2)
T'na ... 'y
where the m; x m; diagonal blocks T';; (i = 1,..., N) are defined, for m; > 2, as
0] 1-a) o0 ... 0
: 0 :
0 0 0 1—Ci(mi—1)

Iy :=1—¢;(1) for m; = 1, and the m; x m; off-diagonal matrices I';; (4,5 =1,..., N,

i # j) as

wijci(l) 0 e 0
WiiCq 2 0 e 0

Fij = ! . ( ) . (24)
wijci(mi) 0 AP 0

In case of m; = 1 the zeros disappear.) Here, for r =1,2,3, ...,
J

(r)
calr) = r oy for Fr(r—1) <1,
1 for Fi(r—1) =1.

Note first that the functions ¢, — the hazard rates of the dwell-time distributions —
play the key role in our HMM formulation since they are responsible for rendering the
desired dwell-time distributions py. Different dwell-time distributions lead to different
ci’s, while the w;;’s and the structure of the t.p.m. remain unaffected. The ¢;’s are
generated solely from the parameters of the dwell-time distributions; no additional

parameters or constraints occur in comparison to the HSMM.
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Note also that the matrix I" indeed constitutes a t.p.m. since the entries all lie in the
interval [0,1] and the row sums are equal to one. Although I" appears to be somewhat
complicated, its structure is not difficult to interpret: all transitions within state aggre-
gate I, are governed by the diagonal block I'y; which thus determines the dwell-time
distribution of that state aggregate. The off-diagonal matrices determine the probabili-
ties of transitions between different state aggregates. For example, for k # [, the matrix
T';; contains the probabilities of all possible transitions between the state aggregates Iy,
and I;. Note that in this construction a transition from I to I; must enter I; in state
i, . We now show that this choice of T' yields an HMM that is a reformulation of the
given HSMM.

We denote the probability of a transition from state aggregate I; to I; by wi*j =
P(S;., € 1;|Sf € I;,S5,, ¢ I;). This is analogous to the transition probability ws;
in the HSMM. It is shown in the appendix that:

Proposition 1. Fori#j, 1 <4, <N,

Wi = wij
We focus now on the accuracy of the representation of the dwell-time distributions
pi in our HMM formulation of the HSMM. We denote the p.m.f. of the dwell-time
distribution in state aggregate Ij, by p; (k=1,...,N). With the possible exception of
the state aggregate that is active at ¢ = 1, the stay in a given aggregate I begins in
state 7, . By pj we refer to the distributions of those dwell times that do start in state
Proposition 2. For any k€ {1,...,N}

p*(r) _ pk@”) for r < my,
g prelm) (1 — cx(mp))™™  for r > my.

The two p.m.f.’s thus differ only for » > my, i.e. in the right tail. Clearly, the difference
between p;, and p; can be made arbitrarily small by choosing my, sufficiently large. It
also follows that, for any dwell-time distribution with finite support, we can ensure that
p(r) = pr(r) Vr by choosing my, to be the maximum dwell time in state & having
non-zero probability.

The use of state aggregates to allow for non-geometric dwell-time distributions while
preserving the Markovian unit time scale has been suggested before, but in ways that
are different to that proposed here. Well-known is the so-called method of stages,
which can be divided into the stages in series and the stages in parallel (see Cox and
Miller 1965). The former method leads to a distribution which is a convolution of
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2 Hidden Markov models with arbitrary state dwell-time distributions

geometric dwell-time distributions and can be used to fit HSMMs with negative binomial
dwell-time distributions (see Guédon 2005). On the other hand the method of stages
in parallel corresponds to mixtures of geometric distributions which involve greater
dispersion than that of a single geometric. Using combinations of both methods, one
can approximate any distribution on the natural numbers (see Cox and Miller 1965).
However, as pointed out by Kleinrock (1975), a good approximation can require a
“horribly complicated” state-aggregate structure. Consequently this theoretical result
is likely to be of limited usefulness in applications except in some special cases, e.g. where
the dwell-time distribution is a negative binomial, a mixture of geometric distributions,
or some simple combination of these two possibilities. In contrast the HMM formulation
presented here has the same simple state-transition diagram whatever distribution we
want to approximate. Another approach using state aggregates utilizes the Ferguson
topology and is designed to allow for arbitrary dwell-time distributions having finite
support (see Russell and Cook 1987). This is equivalent to the special case of our
model in which no self-transition in the last visited state of the aggregates is allowed.
An overview of the existing approaches can be found in Johnson (2005).

The following examples illustrate the approximation using our HMM formulation.

Example 1. Let p; be the p.m.f. of a shifted Poisson distribution:

At
pr(r) = exp(—Ag) Ik r=1,2,.... (2.5)
Then, according to Proposition 2,
Pr(r) for r < my,
pi(r) = rm
pr(my)z k for r > my,

where z = 1 — pp(my)/(1 — Fi(my — 1)) is independent of r. Although the functions
pr(r) and py(r) differ for » > my,, the discrepancy between them becomes small as my,
increases. This is illustrated in Figure 2.1, which displays a shifted Poisson distribution

with parameter A = 5 and the corresponding pj(r) for my = 4,6, 8.

Example 2. Let pi be the p.m.f. of the geometric distribution:

pe(r) =me(l—mp)"™t, r=1,2,....

Then, for r > 2,

pk<7") o ﬂk(l —Wk)rfl

cp(r) = =
) 1= 1pu(s)  2es, me(l—m)s!
Tk
= = Tk .
> oco k(1 — mg)*
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Shifted Poisson mg=4
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Figure 2.1: The functions py(r) (vertical lines), and pj(r) (circles) for my = 4,6,8,
from Ezxzample 1.

By Proposition 2 we have pj(r) = pi(r) for r < my, and, for r > my, that
pi(r) =

pre(m) (1= cr(my))™"™ = mp (1 — )™ (1 — )"~
=mp(1—mp) " = pi(r).
HMM.

In this example the choice of my thus does not play any role; the HSMM reduces to an

Example 3. Consider a shifted binomial distribution with p.m.f.

n — ng—(r—
pk(T) = <7’—kl) 71'2 1(1—7rk) k—(r—1)

)

r=1,...,np+ 1.

Since Z?_’“flpk(z) = 1, we have, for my = ny + 1, that cx(myg) = pp(ng +1)/(1 —
Sk pe(i)) = 1. For r > my, application of Proposition 2 yields

Pe(r) = pr(my) (1 — ep(my)) ™™ = 0 = pi(r).

r
Proposition 2 also guarantees that pi(r) = pg(r) for r < my,. Thus choosing my, = ny+1
ensures that pi(r) = pr(r) Vr.
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2 Hidden Markov models with arbitrary state dwell-time distributions

In summary, Propositions 1 and 2, together with (2.1), imply that our HMM formula-
tion is capable of representing, at least approximately, any given dwell-time distribu-
tion. In other words, with respect to HSMMs, the distribution of {X;};—1 2, . can be
approximated by that of { X/ }/—1 2 ., where the approximation can be made arbitrarily
accurate by choosing the my sufficiently large.

We now consider situations in which it can be beneficial to use the HMM formulation
instead of HSMMs. Firstly, the separate modelling of state changes and state dwell-time
distributions in the hidden part of HSMMs can lead to difficulties when introducing
covariates, including trend and seasonality, in the latent process. Up to now hardly
any work on seasonal HSMMs has been published, except the contributions of Sansom
and Thomson (2007, 2010). On the other hand covariate modelling in HMMs was
considered numerous times in the literature (see e.g. Altman 2007, Bartolucci 2009
and Part Two of Zucchini and MacDonald 2009). In principle it is straightforward to
fit HMMs involving covariates, both in the state-dependent process and in the latent
process. A further benefit of using HMMs with arbitrary state dwell-time distributions
is that it enables the transfer of the very general MHMM approach of Altman (2007)
to the HSMM setting. In addition, standard HMM techniques, e.g. for forecasting and
model checking, are available.

Another question of interest concerns the choice of the initial distribution of the process.
Suppose that the HSMM is in state k at time ¢ = 1. Now unless the state process
entered state k at ¢t = 1 (i.e. unless Sp # k) the distribution of the first dwell time will
differ from pi in general. It is to circumvent the difficulties of taking this difference
into account that Sansom and Thomson (2001), as well as Guédon (2003) and Bulla
et al. (2009), assume that the time instant ¢ = 1 is a state boundary. The initial
distribution 8" is then explicitly modelled and can feasibly be estimated (see Guédon
2003). However, although this assumption is unlikely to have much effect on parameter
estimation except for short series, it is clearly unrealistic in general. More serious, the
enforced state switch at the start of the series in general impedes stationarity of the
HSMM. In fact, there is no simple procedure yet available to fit a stationary HSMM. In
contrast, the assumption of a state switch at the start of the series is easily avoidable
using our model by allowing the initial state probabilities to be nonzero also for states
i with i ¢ {i],i5,...,iy}. Moreover, it is straightforward to fit a stationary HMM:
the initial distribution 8" of a stationary HMM with t.p.m. I is the solution to the
linear system VT = 6 subject to > 61(1) = 1 (cf. Section 1.1), and thus can be
expressed in terms of the parameters that determine I'. Thus, in effect, the model
formulation considered here allows one to fit stationary HSMMs. On the other hand

this formulation can also deal with the case where the user wishes to assume that there
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2.1 Model description

is a state boundary at time ¢ = 1.

The equally unrealistic assumption that there is a state change at the end of the se-
ries impacts on the forecast distribution as well as on the likelihood. Furthermore, it
excludes the possibility of absorbing states in the semi-Markov chain (Guédon 2003).
Both theory (Guédon 2003) and software (Bulla et al. 2009) have been developed to fit
HSMMSs that avoid such an assumption. On the other hand it is a convenient feature of
the HMM formulation that no such modification of the standard algorithm is required.

The following two examples illustrate other possible variants of the model.

Example 4. To model rainfall data, Sansom and Thomson (2001) proposed an HSMM
having dwell-time p.m.f. of the following form:

(r) 0, forr <d,
T) =
P 01— 04 forr > d,

where 6 := 61 + ...+ 04. This distribution on the positive integers has an unstructured
start and a geometric tail. We say that the start is of order d — 1, motivated by the
fact that in comparison to the geometric distribution d — 1 additional parameters are
considered. (Note that the case d = 1 (order 0) reduces to a geometric distribution.) In
the manner of (2.2), this HSMM can be formulated as an HMM which has the identical
probability structure if we choose the corresponding m; equal to d.

Example 5. Guédon (2005) studied hybrid models in which some of the states are
Markovian and others are semi-Markovian. These models can easily be described by
using our model by choosing m; = 1 and thus

I‘z’z’ =1- Ci(l) =1- TG, I‘ij = wz‘jCz‘(l) = W;jT ,

for each Markovian state i, where ; is the parameter of the corresponding geometric
distribution, and by defining I'y; and T'y; according to (2.3) and (2.4), respectively, for
each semi-Markovian state k.

The HMM formulation can also render dwell-time distributions from different families
in one model; we just define the block matrices according to (2.3) and (2.4). If all the
dwell-time distributions have either finite support or geometric tails then the HMM for-
mulation is equivalent, otherwise it is approximate. In the latter case the approximation
can be made arbitrarily accurate.

45
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2.2 Simulation study

The HMM method for fitting HSMMs is now analysed using simulated data. We assess
the performance of the method and, in particular, compare it to existing software for
HSMMs. The R-package hsmm by Bulla et al. (2009) is designed to fit HSMMs using
the EM algorithm as described by Guédon (2003). It needs to be kept in mind that the
package hsmm makes extensive use of C code whereas the code for the HMM method
described above was written purely in R.

The computational effort required to evaluate the likelihood of an HMM with arbitrary
state dwell-time distribution is linear in the number of observations, T', and quadratic
in the number of HMM states, M = ZZ]\L 1 m;. Likelihood evaluation for HSMMs on the
other hand is quadratic in 7" in the worst case, if one uses standard HSMM methodology
(see Guédon 2003 for reference). The additional computational effort due to the explicit
modelling of the dwell-time distributions hence in the two approaches is expressed in
different terms.

To begin with, we generated simulations from a two-state HSMM with shifted Pois-
son state dwell-time distributions (cf. (2.5)) and normal state-dependent distributions.
Table 2.1 summarizes the results of applying the two competing methods for differ-
ent numbers of observations. The same starting values were used for both methods. In
this particular example numerical maximum likelihood estimation of the approximating
HMM outperformed the estimation of the HSMM via EM: the parameter estimates are
almost identical, but the computing time is significantly smaller for the HMM method
and the gap increases as T', the number of observations, increases.

However, it turns out the HMM method is not always faster than EM. Indeed, the per-
formance of the two competing algorithms depends on, to a large extent, (i) the given
combination of true model parameters and, in the case of the HMM method, also on (%)
the size of the state aggregates that are needed to provide a good approximation. Con-
cerning (1) it turns out the EM algorithm converges particularly fast if the observations
can easily be assigned to individual states, i.e. if the states are clearly distinguishable
at the observation level. This is illustrated in Table 2.2. For the EM algorithm the
computing time decreases as the gap between the state-dependent means increases. The
same holds for the HMM method, but the decrease is slower. For some parameter com-
binations the HMM method and for others the EM algorithm is faster. Both methods
yielded approximately the same estimates for all given parameter combinations.

Referring to (ii), Table 2.3 illustrates the role of the sizes of the state aggregates that
are involved when using the HMM method: increasing the sizes of the state aggregates,
and thus the number of HMM states, slows down the computation. On the other hand
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Table 2.1: Estimation of the approximating HMM (via ML) vs. estimation of the HSMM
(via EM): parameter estimates and computing time for different numbers T

of simulated observations (size of the state aggregates: m; = mg = 20)

time State level Observation level
(SGC.) )\1 )\2 [Ll ﬂQ 6‘% 5%
T = 1000
approx. HMM 12 2.25 5.50 1.76 391 1.8 2.73
HSMM 17 2.26 5.49 1.76 391 1.8 2.73
T = 5000
approx. HMM 54 2.78 5.21 2.00 397 191 3.15
HSMM 102 2.79 5.19 2.00 3.97 191 3.15
T = 20000
approx. HMM 227 2.94 4.92 2.04 4.00 198 3.11
HSMM 647 2.95 4.90 2.04 4.00 198 3.11
true para. 3 5 2 4 2 3

Table 2.2: Estimation of the approximating HMM (via ML) vs. estimation of the HSMM
(via EM): computing times for different values of ui; the other true param-
eters are fized at the values given in Table 2.1; T = 2000, m1 = mo = 20.

pr=—1 pwp=0 m=1 m=2 p=25 pp=3

approx. HMM 18.6 22.1 20.2 22.1 244 274
HSMM 6.1 11.5 23.3 30.0 58.9 162.9

the state aggregates must not be chosen too small, compared to the range of the state
dwell-time distributions, as otherwise the estimates deteriorate. Clearly, the HMM
method for fitting HSMMs will be advantageous when the number of states in the state
aggregates is not large, i.e. when the modes of the dwell-time distributions are rather
small. The method becomes less efficient as the size of the state aggregates increases,
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2 Hidden Markov models with arbitrary state dwell-time distributions

Table 2.3: Estimation of the approximating HMM: estimated parameter of the dwell-
time distribution in state 2 for different true parameters Ao and different
state aggregate sizes mo; computing times (in sec.) in parentheses; all true
parameters except Ao are fized at the values given in Table 2.1; T = 4000.

Ao =3 Ao =6 Ao =12 A2 = 20
my= 5 3.10 (29.1) 4.49 (31.0) 6.89 (31.8) 7.74 (41.8)
my =10 3.28 (32.8) 555 (35.6) 10.64 (37.7) 13.04 (43.9)
my =20 3.28 (44.9) 556 (45.3) 10.99 (53.4) 19.76 (52.6)
me =50 3.28 (90.7) 5.56 (93.4) 10.99 (95.7) 19.90 (106.9)

since the matrices to be multiplied become larger and also require more memory space.

Up to now, we have simulated and estimated merely two-state HSMMs. The case with
two states is relatively simple, as no transition probabilities between state aggregates
have to be estimated. However, as Proposition 1 essentially states, the HMM method for
fitting HSMMs can also deal with more than two semi-Markovian states. To illustrate
this we simulated 5000 observations from a three-state HSMM with negative binomial
state dwell-time distributions and Poisson state-dependent distributions. The p.d.f. of
the negative binomial distribution is given by

k—9
p('f)z(” . >7r’f(1—7r)’“1, r=1,2.3,....
.

This distribution has the two parameters k € {1,2,3,...} and 7 € [0,1]. It represents
a generalization of the geometric distribution: p(r) gives the probability that r — 1
“failures” occur before k£ “successes” have occurred, and thus we are back in the case
of a geometric distribution if & = 1. Using the gamma function, p(-) can be extended

to allow for any positive real-valued k:

p(r) = wnk(l —ml r=1,2,3,... . (2.6)

The following parameters were used to generate the observations:

k1 =0.5, m =0.1, (state1)
ke =2, my=0.3, (state?2)
ks =10, w3 =0.6 (state 3)
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0 05 05
and Q= 0.7 0 0.3
08 02 O

at the state level, and
)\1:6, )\2:12 and )\3:18

at the observation level. (Note that € = {w;;}, where w;; = IP(StH =j|S; = 1,141 #
z)) Fitting an HSMM to the simulated data via the HMM method, with state aggre-
gates of size m; = mo = mg = 20, yields the following parameter estimates:

k1 =053, #; =0.11, (state1)

ko = 2.68, 79 =0.36, (state 2)
ks =11.50, #3=0.63, (state3)

0 0.51 0.49
Q=107 0o 027 |,
0.81 0.19 0

A =6.03, )l =11.96, \3=17.94.

The hsmm-package produces approximately the same estimates. At the state level the
parameters are less accurately estimated than are those at the observation level. There
was no indication of sensitivity to starting values; ten different combinations of initial
values for the parameters all yielded the same results. This example verifies that the
HMM approximaton method for HSMMs also works in the case of more than two states
of the semi-Markov chain.

2.3 Application to daily rainfall occurrences

There exists a substantial literature on the stochastic modelling of daily precipita-
tion (for reviews see Woolhiser 1992 or Srikanthan and McMahon 2001). Many of the
proposed models are constructed from two submodels: the first describes rainfall occur-
rence (whether a particular day is wet or dry) and the second the rainfall amount on
wet days. We restrict our attention to rainfall occurrence and fit a variety of models,
in particular HMMs with non-geometric dwell-time distributions, to binary sequences
of dry and wet days. A similar application can be found in MacDonald and Zucchini
(1997); these authors consider Markov Chains and conventional HMMs.

Our main objective is to illustrate the application of the class of HMMs described in
the preceding sections. As do Sansom and Thomson (2007) we include seasonality in
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2 Hidden Markov models with arbitrary state dwell-time distributions

the models. We show how this can be done in two different ways and thereby illustrate
that it is easy to incorporate covariates in the latent process as well as in the observed

process.

The data considered here comprise binary series of dry and wet days over a period of
about 47 years at five sites in Bulgaria, namely Zlatograd, Plovdiv, Kurdjali, Thtiman
and Ivailo. As is usually done with hydrological series, in order to avoid the complica-
tion arising from having 366 days on leap years, we discard observations for February
29. We mainly concentrate on the daily rainfall series from Zlatograd (a town in the
Rhodope mountains). As can be expected, the series shows significant seasonality (cf.
Table 2.4).

Table 2.4: Zlatograd series: sample probability of a rainy day per month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.20 0.18 0.21 029 035 034 031 031 0.33 0.39 041 0.27

Markov chains

We begin by considering a simple model for the daily rainfall series from Zlatograd,
namely a two-state Markov chain in which the transition probabilities are allowed to
vary seasonally (Model 1). This can be regarded as nonhomogeneous HMM with de-
terministic state-dependent process. Let S; (¢t = 1,2,...,16951) be a Markov chain
representing rainfall occurrence, where S; = 1 if day ¢ is dry, and S; = 2 if day ¢ is wet.
The t.p.m. for Model 1 depends on t:

p, - [ PG =118=1) P(Si=2|8=1)
P(Sy1=1]S=2) P(Sp1=2]S =2)

To take care of seasonality the logit transforms of the diagonal elements of the t.p.m.
are modelled as linear combinations of trigonometric functions:

q
ag + Z (ak sin (23%]?) + 0 cos (2;;?)) , (2.7)
k=1

where ¢ is usually chosen using a model selection criterion, and is seldom greater than
2. We return to the choice of ¢ later.
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2.3 Application to daily rainfall occurrences

Hidden Markov models

As a next step we fit an HMM incorporating seasonality in the transition probabilities
to the series. Now the Markov chain S; is no longer taken to be an observation; it
represents the unobserved state on day ¢t. The observation on day t is regarded as a
realization of a Bernoulli random variable whose parameter is determined by the state:
the probability that day t is wet is 71 if day ¢ is in state 1, and is o if day ¢ is in state
2 (Model 2). Model 1 is the special case of Model 2 with 71 = 0 and my = 1.

An alternative way of introducing seasonality in the HMM is to assume that the entries
of the t.p.m. are constant (i.e. do not depend on t), but that the Bernoulli parameters
depend on ¢ instead. Suppose now that the logit transforms of m(¢) and of ma(t) each
have the form given in (2.7) (Model 3).

Table 2.5: Minus log lik. and AIC for Models 1-3 fitted to the Zlatograd series (q =1).

Model mllk AIC
1 9468.44  18948.87
2 9445.84  18907.67
3 9423.27 18862.55

Table 2.5 gives the minus log likelihood and the AIC for Models 1-3 with ¢ = 1. In
terms of the AIC, the HMM with seasonality in the Bernoulli parameters provides the
best fit by a substantial margin.

Hidden semi-Markov models

As the next step, we extend Model 3 by allowing the dwell-time distribution in each
state to have an unstructured start and a geometric tail, as in Example 4. For the
orders of the unstructured starts we try the values 0 (Markovian), 1, 2 and 3 for both
the state belonging to the dry periods and that belonging to the wet periods. We also
try different orders of seasonality, i.e. ¢ = 1,2, 3. Considering all possible combinations
of orders of the unstructured starts and the seasonality another 47 different models

emerge (one of the combinations is model 3 above).

Out of these models the AIC would select the HMM which has dwell-time distribution
with unstructured start of order 2 for the dry periods, unstructured start of order 3 for
the wet periods and order of seasonality ¢ = 2 in the Bernoulli parameters. The fitted

transition probability matrix is given by
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2 Hidden Markov models with arbitrary state dwell-time distributions

0.94 0.06
0.73 0.27
0.85 0.15
0.15 0.85
0.37 0.63
0.34 0.66
0.27 0.73

(Note that the zeros are structural zeros.) Here the state aggregate I; = {1,2,3} is
associated with low probability of precipitation (dry periods), and Iy = {4, 5,6, 7} with
high probability of precipitation (wet periods). The upper left block matrix determines
the dwell-time distribution in the dry periods, the lower right block that in the wet pe-
riods. The estimated p.m.f.’s of the dwell-time distributions in the two state aggregates
are displayed in Figure 2.2. The deviation from the p.m.f. of a geometric distribution

is evident, in particular the modal dwell time is not one in either case.

dry periods wet periods
0.4 0.4
0.3 0.3
= =
~ 0.2 - —= 0.2
o o
0.1 — ‘ 0.1‘
T T T T T T 1T T T T T T 17T T 1T T
123 45678910 123 45678910

r r

Figure 2.2: Estimated p.m.f.’s for dry and wet periods.

The estimated Bernoulli parameter functions 7 (¢) or ma(t), which have period 365,
are displayed in Figure 2.3. State aggregate I; can be regarded as the “dry” HSMM
state; the probability of rain is generally low but peaks slightly in early November. In
state aggregate I5, the “wet” HSMM state, the probability of rain is generally high but
ranges between 0.5 and 0.8. The stationary probabilities for state aggregates I1 and I
are 0.63 and 0.37 respectively. In other words, the system is in the “dry” state 63% of
the time, and in the “wet” state 37% of the time.

The AIC value for the chosen model is 18806.04, while it is 18832.25 for the HMM
with geometric dwell-time distributions and the same order of seasonality (¢ = 2). The
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2.4 Application to Dow Jones returns
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Figure 2.3: Estimated Bernoulli parameter functions for the Zlatograd series.

additional flexibility provided by allowing for non-geometric dwell-time distributions

leads to a substantial improvement in the fit.

Table 2.6: Selected models for five sites.

Site Order dry periods Order wet periods Order of seasonality
Zlatograd 2 3 2
Plovdiv 2 1 2
Kurdjali 2 1 3
Thtiman 0 1 2
Ivailo 2 1 2

The model selection exercise was repeated using the data from sites in Plovdiv, Kurdjali,
Thtiman and Ivailo with all the above models. Table 2.6 lists the models that led to
the lowest AIC in each case. Recall that order 0 means a Markovian state; the selected
model for Thtiman is thus a hybrid HMM/HSMM (see Example 5 in Section 2.1). The
selected models are not the same for all sites, but there is no reason to suppose that

there exists a single model structure that is appropriate for all sites.

2.4 Application to Dow Jones returns

We consider another application of HSMMs, namely the modelling of daily return series.
More precisely, we apply the HMM approximation method to fit HSMMs to a series of
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2 Hidden Markov models with arbitrary state dwell-time distributions

returns of the Dow Jones Industrial Average index. The adjusted closing prices, p;, for
the period 02.01.1980—31.12.2009, were downloaded from ‘finance.yahoo.com’; and the
daily returns were computed as y; = log(p:/pi—1), t = 2, ...,T. The series was corrected
for one outlier, namely the return on the “Black Monday” (19th October 1987), which
was —0.256. After exclusion of this outlier, 7571 observations remain.

Dow Jones returns

0.10

0.05

returns
=]
=]
S)

-0.05

-0.10 —

T T T T
02/01/80 02/01/90 03/01/00 31/12/09

Figure 2.4: Dow Jones returns from 2nd of January 1980 until 31st of December 2009
(corrected for the “Black Monday”).

Figure 2.4 displays the considered series of returns. The most extreme returns, i.e. the
smallest and the largest observations, occurred in 1987 and in 2008. The former are
associated with the 1987 crash (which also involves the Black Monday), the latter were
caused by the collapse of Lehman Brothers and the subsequent breakout of the recent
financial crisis. Some other extreme returns occurred due to events such as the Asian
financial crisis in 1997 and the September 11 attacks in 2001.

One of the stylized facts commonly attributed to return series is corroborated; namely
volatility clustering, i.e. the tendency for high (or low) volatilities to occur in clusters.
This is illustrated by Figure 2.5, which displays the sample autocorrelation functions
for the two series y; and y? (t = 1,...,7571), respectively. The variance of the returns
is persistent, while the returns themselves show no indication of correlation over time.
Another stylized fact of daily return series, excess kurtosis, is illustrated by Figure
2.6. The plot displays a histogram of the observed Dow Jones returns together with a
fitted normal distribution (obtained by maximum-likelihood estimation). The fit of the
normal distribution is unsatisfactory since the distribution of the observations is highly
leptokurtic (the sample kurtosis is approximately 11.4).
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2.4 Application to Dow Jones returns
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Figure 2.5: Sample autocorrelation function for the series of returns (yi, left plot) and

for the series of squared returns (y2, right plot).
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Figure 2.6: Histogram of the DJ returns from 02.01.1980—31.12.2009 and fitted normal

distribution (solid line).

HMMs can accommodate both the volatility clustering and the excess kurtosis in a
natural way. Following Rydén et al. (1998) and Bulla and Bulla (2006), who also fitted
HMDMs to return series, we consider only two-state HMMs and HSMMs; parameter
estimates for models with more states are strongly influenced by extreme observations
(cf. Rydén et al., 1998). The following models were fitted to the Dow Jones return

series:
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2 Hidden Markov models with arbitrary state dwell-time distributions

a two-state HMM where, conditional on S; = k, Xy ~ N(0,0%) (normal HMM),

a two-state HMM where, conditional on Sy = k, a,;lXt ~ ty, (FHMM),

e a two-state HSMM where, conditional on Sy = k, X; ~ N(0,0%), and the state
dwell-times are negative binomially distributed (normal HSMM), and

a two-state HSMM where, conditional on S; = k, ak_lXt ~ ty,, and the state
dwell-times are negative binomially distributed (+HSMM).

(The p.m.f. of the dwell-time distributions for the HSMMs is given by (2.6).)

Table 2.7: Minus log likelihood, AIC and BIC for HMMs and HSMMs fitted to the Dow

Jones return series.

mllk AIC BIC
normal HMM  -24433.15  -48858.29  -48830.56
t-HMM -24571.54  -49131.08  -49089.49
normal HSMM -24501.87  -48991.75  -48950.16
t-HSMM -24591.18 -49166.36 -49110.90

Table 2.7 summarizes the model fitting results. The models with #distributions at
the observation level attain substantially higher likelihood values than those with nor-
mal distributions. Furthermore, the additional flexibility gained by allowing for non-
geometric dwell-time distributions (here: negative binomial dwell-time distributions)
improves the fit substantially. Both model selection criteria select the +HSMM, which
confirms the findings of Bulla and Bulla (2006).

The parameter estimates for the +HSMM are given by

100 - k1 = 0.687, 100-#; = 0.010, (state 1)
100 - ky = 4.586, 100 - 7y = 1.402, (state 2)

for the dwell-time distributions and

100 - 61 = 0.626, 7 = 15.105, (state 1)
100 - 65 = 1.363, i = 5.583, (state 2)

for the state-dependent distributions. On average approximately 94% of the dwell
times in state 1 of the fitted model are of length one; in those cases the process di-
rectly switches back to state 2, i.e. the state associated with relatively high volatility.
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2.5 Application to Old Faithful eruptions

Nonetheless, due to the long tail of the fitted distribution the mean dwell-time in state
1 is quite large, namely 69.7. The deviation from the geometric case is evident. In
state 2 approximately 82% of the dwell times are of length one, on average, and the
mean dwell-time is 4.2. The state process mostly switches back and forth between the
two states, and occasionally remains in one state for a relatively long period. A con-
ventional HMM, with geometric state dwell-time distributions, can not accommodate
both of these attributes.

2.5 Application to Old Faithful eruptions

In this section we investigate whether HSMMs can improve the fit to the Old Faith-
ful series that was already analysed in Section 1.4. We start again by looking at the
dichotomized, binary series of long and short inter-arrival times (Section 2.5.1). Sub-

sequently, in Section 2.5.2, the nondichotomized time series is analysed.

2.5.1 Modelling the binary series via HSMMs

Consider again the series of Old Faithful’s eruption inter-arrival times that have been
discretized into either “short” or “long” (cf. Section 1.4.1). Up to now the most suitable
models for this series have been identified to be a second-order Markov chain, a two-
state second-order Bernoulli HMM and a three-state Bernoulli HMM. The latter model
yielded the highest likelihood of all considered models, but it was surprising to find
that two of its states are almost equivalent at the observation level. Consider again the
parameter estimates for the three-state Bernoulli HMM, given by equations (1.6) and
(1.7). As the Bernoulli parameters of states 2 and 3 are approximately equal, the set of
states {2,3} can be regarded as a kind of state aggregate. The time the Markov chain
spends in this state aggregate is not geometrically distributed. The main reason for the
improved likelihood, compared to the two-state Bernoulli HMM, may thus well be the
departure from the assumption of geometric dwell-time distributions. This motivates
the use of HSMMs in this particular application.

In Section 1.4.1 we have seen that the dwell-time in the state associated with short
inter-arrival times almost surely is of length one (across all models). The dwell-time
of this state is thus not worth being modelled by a non-geometric distribution. We
consider the following two-state Bernoulli hybrid HMM /HSMM:

e given either of the two states, the observations are Bernoulli distributed,

e state 1 involves a geometric dwell-time distribution and
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2 Hidden Markov models with arbitrary state dwell-time distributions

e the dwell-time in state 2 is negative binomially distributed.

The maximum of the log likelihood for this model is —1380.00, the AIC and BIC are
2770.00 and 2803.30, respectively. In terms of these criteria the model performs better
than any of the models that were considered in Section 1.4.1 (cf. Table 1.1). The

estimated Bernoulli parameter vector is
7 = (0.59,1.00).

Dwell-times in state 1 of the fitted hybrid HMM/HSMM are of length one (almost
surely). The parameter estimates of the negative binomial dwell-time distribution in
state 2 (cf. (2.6)) are

k = 0.261 and 7 = 0.063.
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dwell-time in state 2

Figure 2.7: Fitted dwell-time distributions for the state associated with long eruption
inter-arrival times, for the two-state HMM (circles) and for the two-state
hybrid HMM/HSMM (bars).

Figure 2.7 compares the dwell-time distribution in state 2 of the fitted hybrid HMM/
HSMM with that in state 2 of the two-state Bernoulli HMM from Section 1.4.1. One
should be aware that the states are not synchronized across the models; those labelled
“state 1” do not lead to the same distribution at the observation level. For the displayed
distribution associated with the hybrid HMM/HSMM the deviation from the geometric
case is evident. Allowing for more flexibility in the state dwell-time distributions leads

to an improved fit in this example.
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2.5 Application to Old Faithful eruptions

2.5.2 Modelling the series of inter-arrival times via HSMMs

Now consider again the original, nondichotomized series of eruption inter-arrival times
(cf. Section 1.4.2). One of the most promising models that was fitted to this series is the
four-state HMM with gamma state-dependent distributions (cf. Table 1.3). We found
that a further increase in the number of states improved the likelihood significantly,
even though two of the states in the fitted five-state model were hardly distinguishable
at the observation level. Intuitively the two components with mean approximately 93
would not be regarded as two separate states (cf. Figure 1.5). These two states resemble
once more a state aggregate, at least in an approximate sense. In view of the likelihood
gap between the four-state and the five-state model it seems worthwhile to investigate
whether the fit of the four-state model can be improved by employing non-geometric,
more flexible dwell-time distributions.

Consider again the four-state GHMM that was fitted in Section 1.4.2 (the parameter
estimates are given in Appendix Al). The estimated state-dependent means of this
model for states 1, 2, 3, and 4 are 65.35, 86.16, 92.99 and 99.94, respectively. The
estimated parameters of the (geometric) state dwell-time distributions, #; for state i,
are 1, = 1, 7y = 1, 713 = 0.43 and 714 = 0.98. As sojourn times in states 1, 2 and 4
are infrequently longer than 1, it does not seem worthwhile to replace the dwell-time
distributions of these states by non-geometric ones. When moving from the four-state
to the five-state model, it is essentially the remaining state 3 that is split up into two
states, which are almost equivalent at the observation level. We thus consider the
following four-state gamma hybrid HMM /HSMM:

e given any of the four states, the observations are gamma distributed,
e states 1, 2 and 4 have geometric dwell-time distributions and

o the dwell-time in state 3 is assumed to have an unstructured start of order 4 (cf.

Example 4).

(The states are ordered in terms of increasing means of the state-dependent distri-
butions.) The reason for using a distribution with unstructured start, rather than the
negative binomial distribution, is the small essential range of the dwell-time distribution
in the given application; not many additional parameters are needed to obtain sufficient
flexibility. The maximum of the log likelihood of the suggested model is —19834.14,
which yields AIC = 39716.28 and BIC = 39876.12. The additional flexibility in the
dwell-time of state 3 only led to a minor improvement of the fit. This is confirmed by
Figure 2.8, which displays the dwell-time distributions in state 3, for the conventional
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Figure 2.8: Fitted dwell-time distributions for the state associated with the second-largest
mean of the state-dependent distribution: for the four-state gamma HMM
(circles) and for the four-state gamma hybrid HMM/HSMM (bars).

HMM and for the hybrid HSMM/HMM, respectively. The discrepancy between the

two distributions is small.

Bearing in mind the findings from Section 1.4.2, it can be concluded that the length of
the memory of the state process, rather than a possible semi-Markovian behaviour, is
responsible for the likelihood gap between the four-state and the five-state GHMM.

2.6 Concluding remarks

In this chapter we considered a class of HMMs that capture the ‘semi’-property of
HSMMs, i.e. that can represent any given state dwell-time distribution, either exact
or approximately, where the approximation can be made arbitrarily accurate. The
motivation for doing so was to take advantage of the well-established methodology
that is available for HMMs. Key advantages of using HMMs with arbitrary dwell-
time distributions (rather than HSMMs) include the ease with which it is possible to
incorporate covariate information in different ways, and that fitting stationary models
is straightforward. The applications given to rainfall occurrences, daily returns and

geyser eruption inter-arrival times illustrate the feasibility of the proposed method.
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3 State-space modelling by means of
structured hidden Markov models?!

Despite their considerable flexibility, there are some drawbacks of HMMs related to
the state architecture. While in some examples the choice of the number of states
and the interpretation of the states can be obvious, in general this need not be the
case. Although model selection criteria and residual analyses can be applied, the de-
termination of the number of states often remains critical. Furthermore, even if an
HMM captures most of the stylized facts in a given application, the assumption that
the number of states is finite may seem counterintuitive and can lead to difficulties
in the interpretation. In such cases an HMM is no more and no less than a tool for
modelling dependence in a given series of observations (cf. Cappé et al. 2005). Another
possible drawback of HMMs is that the number of parameters can get very large as the
number of states increases. For the sake of better interpretability, and for parsimony
in terms of parameters, general-type state-space models (SSMs) sometimes provide a
more appropriate alternative.

In this chapter we consider SSMs, that need be neither linear nor Gaussian, of the form

Yt = G(Qu ﬁt)7
gt = b(gtfla 77t)7

where {g;}+—1,2,.. denotes the nonobservable state process, and {y;}+—1,2,.. denotes the

observable state-dependent process®

. The innovations ¢; and 7, are i.i.d. sequences.
The functions a and b may be nonlinear but are known. By their very nature, SSMs
are closely related to HMMs. However, in contrast to the HMMs considered up to
now, the state space here can be continuous and thus infinite. SSMs allow for various
models for the succession of states, e.g. autoregressive processes. Although HMMSs are
nested in the broader family of SSMs, it is nevertheless reasonable to distinguish these
model families as the available methodology for statistical inference is rather different.

Extensive accounts of state-space models and their application can be found in Harvey

!This chapter is based on Langrock, MacDonald and Zucchini (2010) and Langrock (2010).
2The notation y¢ and g¢ is used to conform with that in the literature on SSMs.
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3 State-space modelling by means of structured hidden Markov models

(1989) and Durbin and Koopman (2001).

The likelihood of an SSM is given by a high-order multiple integral that in general
cannot be evaluated directly. Linear and Gaussian SSMs can be tackled by applying
the Kalman filter (see e.g. Harvey 1989). On the other hand, the nonlinear and non-
Gaussian case is more involved. Possible methods for estimating the parameters of
nonlinear and non-Gaussian SSMs include

o the extended Kalman filter (see e.g. Welch and Bishop 1995),

e unscented Kalman filtering (see e.g. Julier and Uhlmann 2004),

e the generalized method of moments (see e.g. Melino and Turnbull 1990),
e numerical integration (see e.g. Kitagawa 1987) and

e Monte Carlo methods (see e.g. Carlin et al. 1992, Durbin and Koopman 1997).

In this chapter, we proceed along the lines of Kitagawa (1987) and, in doing so, convert
the estimation problem for a nonlinear and non-Gaussian SSM to that of an HMM. The
general idea can be summarized as follows: by discretizing the state space of an SSM,
one obtains an approximation of the likelihood that can be made arbitrarily accurate.
The approximated likelihood matches the likelihood of a suitably structured HMM, and
thus the whole HMM methodology becomes applicable.

Although the idea of approximating the likelihood is not original (see e.g. Kitagawa
1987, Fridman and Harris 1998), the relation to HMMs has not been thoroughly dis-
cussed in the literature. Particular advantages of the proposed estimation method by
means of HMMs are that simple explicit formulae exist for the residuals and the forecast
distributions of an HMM, and that estimates of the latent process can be obtained by
using the Viterbi algorithm. In addition, the HMM formulation makes it particularly
simple to consider a variety of nonstandard SSMs that are easy to implement. The
discussed method is feasible for one-dimensional state spaces. However, it suffers the
so-called “curse of dimensionality” and thus is rather difficult to apply in case of high-

dimensional state spaces (Kitagawa 1996). In such cases one might need to resort to
MCMC methods.

Section 3.1 discusses how to estimate SSMs using suitably structured HMMs. Proba-
bly the most prominent nonlinear SSMs are the so-called stochastic volatility models,
which are standard tools for modelling the variance of return series. In Section 3.2,
standard and nonstandard stochastic volatility models are discussed and then fitted to
a number of daily return series. This section also contains a modest simulation study
in which the HMM approximation method is compared to a Monte Carlo approach (in
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3.1 Model fitting strategy

the context of stochastic volatility modelling). Besides stochastic volatility modelling,
there are numerous other possible applications of the proposed estimation method. A
further four applications are discussed in Sections 3.3—3.6, namely the modelling of
earthquake counts, polio counts, rainfall occurrence data and glacial varve thicknesses.
The applications were selected in order to cover a wide range of possible outcome vari-
ables; discrete (with and without seasonality), continuous (with support R>( and with
support R) and binary outcomes are considered. Each of the considered SSMs is non-
linear and non-Gaussian, and the HMM approximation method is employed to estimate
the SSM parameters. The results for the fitted SSMs are compared to those of their
(finite-state) HMM counterparts.

3.1 Model fitting strategy

State-space models are characterized by two processes: a continuous-valued Markov
state process, ¢g¢, and an observation process, y;, whose realizations are assumed to be
conditionally independent, given the states. Figure 3.1 displays the dependence struc-
ture of an SSM in a directed acyclic graph. HMMs have precisely the same structure,
see Figure 1.1, except that the Markov process is discrete-valued instead of continuous-
valued. By appropriately discretizing the state space of an SSM into a finite number
of states, N, the model can be approximated by an HMM. The point of using such an
approximation is that, whereas the likelihood of the SSM involves a multiple integral
and is difficult to compute, that of an HMM is easy to compute and to maximize.

(observable)

. — -+ (non-observable)

Figure 3.1: Dependence structure of an SSM.

In detail, the procedure is as follows. Let the essential range of possible g;-values
be split into N equally-sized intervals B; := (bj_1,b;), i = 1,..., N. We denote by
b; a representative point in B;, e.g. the midpoint. Making use of the dependence
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structure of an SSM, and applying numerical integration, the likelihood of the SSM can
be approximated as follows:

t= [ [ 16)ds
:/ /f 91).f(y1lg1) H f(gelg—1) f (yelge) dgr - .. dgn
t=2

N
W Z Y P(g1 € Bi) f(wilgr = b},)
21:1 ZT:1
T

JIP(9 € Bilgis =85, ) f(yelge = 03,) (3.1)
t=2

Qx

where f is used as a general symbol for a density and T denotes the number of obser-
vations. Note that this approximation is not the same as those of Fridman and Harris
(1998) and Bartolucci and De Luca (2003). These authors approximate the integrals
n () by replacing both ¢g;—1 and g, in the expression f(g¢|g:—1), by the corresponding
interval midpoints. Thus, we conduct a slightly modified numerical integration?.

The numerical integration essentially implies a discretization of the state space. We now
demonstrate that the approximated likelihood (3.1) indeed matches that of a suitably
structured HMM. To see this, regard the midpoints 0, i = 1,..., N, as possible values
of an N-state Markov chain h; with transition probability matrix I' = (vy;;), where

vij = P(gt € Bj|gi—1 = b}),

and initial distribution 6, where (551) :=1IP(g1 € B;). The transition probabilities ~;;,
i,7 =1,..., N, are determined by the state equation of the SSM. For instance, if the
state process is a Gaussian AR(1) with parameters ¢ and o, then

%j_q>< ¢b*> @(M) (3.2)

where ® denotes the cumulative distribution function of the standard normal distribu-
tion. We further define

P(y;) := diag (f(yelge = b1), ..., f(wmelge = b)) ,

3More precisely, we use an approximation of the type

[ t@gtae = [ s o(“52)
[ s o-ar(“F)a( 1),

rather than
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3.2 Application to stochastic volatility modelling

where f(y:|g: = b}) is determined by the observation equation of the SSM. Now we can
rewrite the approximate likelihood (3.1) in HMM notation as follows:

L~ 8WP(y)TP(y)T - - TP (yr 1) TP (yr)1". (3.3)

In summary, the likelihood of the SSM can be approximated using numerical integration,
and the approximate likelihood is precisely that of a suitably structured HMM, namely
that determined by the Markov chain h; and the state-dependent probability functions
(densities) f(ytlgr = bF) (=: f(yt|he = b})). Clearly, as N increases the intervals become
narrower and the approximation consequently improves. The approximating HMM is
stationary if the initial distribution M is the stationary distribution implied by the
transition probability matrix T, i.e. if 8T = M) subject to Zf\;l 51-(1) =1

It is then a routine matter to evaluate (3.3) and to maximize it numerically with
respect to the parameters (cf. Section 1.2). In practice one has to decide what value
of N, the number of states, will be adequate, and what range of g:;-values to allow
for. The minimum and maximum values (gmin and gmq.) for g have to be chosen
sufficiently large to cover the essential domain of the state process. Here it is advisable
to examine the stationary distribution of ¢;; in the Gaussian AR(1)-case this is given
by N(O, o?/(1 — ¢2)). Fridman and Harris (1998) suggest using —gmin = gmaz = 304,
where o, denotes the stationary standard deviation of g;. The choice of N has a strong
influence on the accuracy of the approximation. The accuracy improves as N increases,
but the size of the matrices in (3.3) also increases, which slows down the evaluation
of the likelihood. Note that, although N needs to be large enough to provide a good
approximation, the number of model parameters does not depend on N; the entries of
the N x N matrix I' depend only on those determining the state equation of the SSM.

The approximating HMM can also be used, inter alia, for forecasting, decoding or
model checking of the SSM. Indeed, all standard HMM methods are applicable. In
particular, the Viterbi algorithm can be used for state decoding (see e.g. Section 3.3),
and pseudo-residuals can be used for model checking (cf. Section 3.2.3.2). Furthermore,

simple closed-form expressions for forecasts are available (cf. Section 3.2.3.2).

3.2 Application to stochastic volatility modelling

The standard discrete-time stochastic volatility model, without leverage, for returns y;

on an asset can be written in several different forms, e.g.

yr = et exp(ge/2), Gi+1 = gt + oy, (t=1,...,7) (3.4)
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and

yr = erexp(ge/2), Gt+1 = po+ é(ge — p) + one, (t=1,...,7) (3.5)

where, in both (3.4) and (3.5), |¢| < 1 and {e;} and {n;} are independent sequences
of independent standard normal random variables; see e.g. Shephard (1996). We use
the model definition (3.4), and, following Chib et al. (2002), label it SVy. A common
extension of the basic model assumes for £; a Student-t¢ distribution with v degrees of
freedom, and v > 0 is then treated as an additional parameter. Again following Chib
et al. (2002), we label this extension SV1.

Over the past two decades, stochastic volatility models such as SVy and SVt have at-
tracted much attention in the finance literature as a competitor to, inter alia, GARCH
models (cf. Broto and Ruiz 2004). SV models mimic several of the stylized facts at-
tributed to asset returns: kurtosis of returns in excess of 3, zero autocorrelation of re-
turns, and dependence of returns as revealed by the nonzero autocorrelations of squared
returns (cf. Section 2.4). For a discussion of these stylized facts, see Taylor (2005, Chap-
ter 4). Danielsson (1994) reported better model-fitting results for even the basic SV
model than for any EGARCH model.

On the other hand SV models belong to the class of nonlinear SSMs, and thus are not
as easy to fit as GARCH models. In the past two decades much ingenuity has been
applied in the derivation of estimation methods for SV models; for a comprehensive
overview of the existing methodology we recommend Broto and Ruiz (2004). Some of
the most important methods are the generalized method of moments (GMM, see Melino
and Turnbull 1990), quasi-maximum-likelihood (QML, see Harvey et al. 1994), Markov
chain Monte Carlo (MCMC, see Jacquier et al. 1994) and Monte Carlo likelihood (MCL,
see Sandmann and Koopman 1998). According to Shephard (2005), the methods can be
categorized into those that are relatively simple but inefficient (like GMM and QML),
and those that attempt to evaluate the likelihood, which are efficient but computer-
intensive and rather difficult to implement (like MCMC and MCL).

In this section we apply the approximation method via structured HMMs (see Section
3.1). In the context of stochastic volatility modelling it was applied by Fridman and
Harris (1998), and by Bartolucci and De Luca (2003). (See also Section 13.3 of Zucchini
and MacDonald (2009), where this approach is applied to an SV model with leverage.)
We propose a number of new nonstandard SV models, in particular models with log-
volatility processes {g;} which differ from that in (3.4), and which appear to have some
advantages.

We start with a brief simulation study that compares the proposed HMM estimation
method to the MCL method described by Sandmann and Koopman (1998). Section
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3.2.2 then introduces four nonstandard SV models. Some of these are generalizations of
the basic models with additional parameters in the log-volatility process (or volatility
process), which is assumed to belong to the class of conditional linear AR(1) models
described by Grunwald et al. (2000). In Section 3.2.3 each of the six SV models con-
sidered is fitted to ten series of daily returns, and the relative merits of the models
are assessed in terms of the AIC and their out-of-sample performance, especially the
accuracy of their forecast distributions.

3.2.1 Simulation study

Table 3.1: SVy model: parameter estimates and computing times for MCL and HMM
method (—gmin = Gmaz = 4, true parameters: ¢ = 0.98, 0 = 0.2, = 0.05);

95% confidence intervals in parentheses.

~ ~

N time (sec.) 1) e 08
MCL 90 0.976 0.208 0.047
(0.969;0.981)  (0.190;0.229)  (0.044;0.052)
HMM 30 21 0.975 0.199 0.047
(0.968;0.980)  (0.178;0.223)  (0.044;0.051)
50 32 0.975 0.208 0.047
(0.968:0.980)  (0.188;0.231)  (0.044;0.051)
100 78 0.975 0.212 0.047
(0.968;0.980)  (0.192;0.234)  (0.044;0.052)
200 245 0.975 0.212 0.047

(0.968;0.980)

(0.192;0.234)

(0.044;0.052)

Table 3.1 gives an indication of the influence of N on accuracy and computing time.
The SV model was fitted to a simulated series of T' = 10000 observations by means of
(i) the MCL method, which is implemented in Ox in ssfpack (Koopman et al. 1999),
and then (7) the HMM method, implemented in R, for different values of N. The
parameters were set at ¢ = 0.98, 0 = 0.2 and § = 0.05; the starting values were set
at o9 = 0.9, og = 0.3 and Gy = 0.2 for both methods. In the estimation by means
of the HMM method the model was reparameterized in terms of unconstrained “work-
ing parameters” (cf. Section 1.2); approximate confidence intervals for the constrained
parameters, ¢, o and (3, were obtained by first estimating confidence intervals for the
working parameters from the inverse of the estimated information matrix, and then
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applying the corresponding inverse transformations to the interval boundaries for the
working parameters. Alternatively the parametric bootstrap could have been applied.

In case of the MCL method ssfpack provides confidence intervals.

The results in Table 3.1, as well as those obtained for many observed series of returns,
and for generated series, lead us to conclude that the parameter estimates obtained
by the HMM method stabilize for N-values somewhere between 50 and 100. Secondly,
for values of N < 100 the HMM method is comparable with the MCL method in
terms of computing time. However, an important motivation for applying the HMM
formulation is that all kinds of extensions of the standard SV model, and of state-space
models in general, are easy to implement by simply modifying a few lines of code for the
computation of I' and P(y:) in expression (3.3). This convenient feature of the HMM
formulation is exploited in Section 3.2.3 in order to fit the nonstandard SV models that

we introduce in Section 3.2.2.

3.2.2 Some nonstandard SV models
Shifting the volatility process

The models SVy and SVt can be generalized by introducing a lower bound to the
volatility of the observed process. For instance, the observation equation in the model
(3.4) can be replaced by

yr = er(Bexp(gt/2) + &) (3.6)

The additional parameter £ (> 0) does appear to be worthwhile (cf. Section 3.2.3), and
is plausible on the grounds that some baseline volatility is always present. In all the
models that are presented in the subsequent paragraphs we incorporate this additional
parameter. Of course, the model with & = 0 is in all cases nested in the model with
£2>0.

In all models covered in this section, &; is assumed to follow a Student-t distribution
with v degrees of freedom.

SVMt — mixture of AR(1) processes in the log-volatility

The SVt model can be generalized by using a mixture of two normal distributions in

the conditional distribution of g;y; given g;. Let y; be given by (3.6), but now assume
that, given g;, g;+1 is distributed either N(¢1g¢,0%) (with probability o) or N(¢ag:,03)
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(with probability 1 — «). Equivalently,

ith babilit
Gt = { ¢19¢ + o1 with probability « (3.7)

29t + oamp  with probability 1 — «,

with the innovations 7; being independent standard normal. This model, hereafter
labelled SVMt, allows for abrupt changes in the state process and thus offers additional
flexibility. The SVt model is nested in SVMt: consider the case &« =1 and £ = 0. One
could also consider using a mixture with more than two AR(1) components, but that
generalization will not be pursued here.

Wong and Li (2000) give the following necessary and sufficient condition for second-
order stationarity of {g;}:

ad? +(1—a)pd < 1. (3.8)
Note that it is possible for one of the AR(1) processes to be ‘explosive’ (e.g. ¢o = 1.4)
without necessarily destroying the second-order stationarity of the mixed process. The
stationary mean of {g;} is 0 and the stationary variance of {g;} is

52 ao? + (1 — a)o3
91— (g + (1 —a)e3)

(These, and other moments given below, are derived in Appendix A3.) As there is no

closed-form expression for the marginal distribution of g, the exact stationary variance
and kurtosis of the observed process, {y;}, are not available. Second-order Taylor

approximations for these moments are given by
v
var(y;) ~ — (B+)*+ cr07) (3.9)

and
v—2 (B+&"+ oo

V=4 ((B+6? + er0?)’
where ¢; = 0.56% 4+ 0.258¢ and ¢y = 332¢% + 26% 4+ 4.533¢ + 0.55¢5.

kurtosis(y;) ~ 3 (3.10)

MSSVt — Markov-switching innovations in the log-volatility

The model SVMt can be extended by replacing the independent mixture of AR com-
ponents in the log-volatility by a dependent mixture, for example a Markov switching
model. Such a generalization allows the sojourn times in each state of the process to
be (stochastically) longer than those implied by the SVMt model. It is designed to fur-
ther accommodate volatility clustering, i.e. the tendency for high (or low) volatilities
to occur in clusters.
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3 State-space modelling by means of structured hidden Markov models

Let y; be given by (3.6) and assume that

Gt+1 = PGt + Ta, Mt

with {ay} being a two-state stationary Markov chain described by the 2 x 2 transition
probability matrix I'®) = (%(ja)) We thereby allow for two different variances in the
innovations — o} and 03 — that are selected by the Markov chain {a;}. The model,
henceforth labelled MSSVt, is similar to that of So et al. (1998). However, those authors
assume the innovation variance o2 to be constant and instead model a reparameterized
[ nonhomogeneously via {a;}. The SVt model is again nested in our model: consider
the case vﬁ‘) = vé(f) =1land £ =0.

Stationarity of {g:} and {y:} holds if and only if |¢| < 1. The stationary variance of
{g¢} is

s

where 6(®) is the stationary distribution of the Markov chain {oy}; (550‘) is therefore
the expected proportion of time that {a;} spends in state i. The expressions (3.9) and

(3.10) give the approximate stationary variance and kurtosis of {y;}.

To fit the model we consider the process

(o)
Zt = y
Qi

which is a Markov process on R x {0,1}. The component {g¢;} is discretized into N
states, as described in Section 3.1, and {a;} takes on one of two values, so the number
of states of {z:}, after discretization, is 2N. Writing the t.p.m. of {z} in terms of the
model parameters, it is then straightforward to maximize the likelihood, which is given
by (3.3).

In principle the model can be further generalized in a number of ways that we men-
tion but, in the interests of brevity, we will not discuss in detail. One can allow the
parameter ¢ also to depend on the state of {a;}. However, stationarity conditions then
become more involved, and parameter estimation for this model proved to be unstable
in practice. Some of the other obvious generalizations are more straightforward. For
example, one can allow the parameters 3, v and & to depend on the current state of
{a¢}. The extension to more than two states for {oy} is also easy to implement. Of
course an increase in the number of states leads to an increase in the size of the t.p.m.,
and hence in the computational burden.
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SVVt — nonhomogeneous innovations in the log-volatility

The models SVMt and MSSVt provide for more flexibility in the log-volatility process.
However, both incorporate a total of five parameters merely in the determination of the
log-volatility process — a considerable increase compared to the two parameters in the
models SVy and SVt. The model presented in this section has three parameters in the
log-volatility process and in this sense represents a compromise.

Let y; be given by (3.6), but now assume that

Gi+1 = Qg + oy, (3.11)

where 0 = /w+ vexp(g:) with w,v > 0 and 7 b N(0,1). The motivation for

this model is as follows. In the standard SV model (3.4) the innovations 7; can be
interpreted as shocks to the intensity of the news flow (see Franses and van Dijk 2000).
Model (3.11) allows for possible influence of g, the (log-)volatility at time ¢, on the
magnitude of such shocks at time ¢ + 1. High volatility at time ¢ indicates that the
markets are turbulent which, in turn, could impact on the flow of news at time ¢ + 1.
The parameter o; measures the uncertainty about future volatility, and this uncertainty
can be expected to increase if the markets are nervous. The model (3.11) is henceforth
labelled SV Vt; clearly the simpler model SV% is nested in it (take v = 0).

The nonlinear influence of g on the variance of the innovations makes it very chal-
lenging to derive necessary and sufficient conditions for second-order stationarity of
the SVVt model. A Taylor expansion provides two approximate necessary conditions
for second-order stationarity of {g;}: |¢| < 1 and v < 2(1 — ¢?). Simulation experi-
ments suggest that these conditions provide useful approximations but that the stated
range for  is slightly conservative. This is theoretically unsatisfactory, but fortunately
it is straightforward to check for stationarity of the discretized SV Vt model, i.e. the
one obtained after discretization of {g;}. The log-volatility process is then a Markov
chain with finite state space, and so stationarity holds if the initial distribution of the
Markov chain, 81, is such that T = 6 subject to Zf\il (52-(1) = 1. In this way the
discretized SVVt model can be checked for stationarity.

Using a Taylor expansion we can obtain the approximate stationary variance of {g;}:

o2~ w+y
97 105y — @2

For the stationary variance and kurtosis of {y;} the approximate expressions (3.9) and
(3.10) are again applicable.
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GSVt — gamma distributed volatility

All the models presented up to now, both standard and nonstandard, involve Gaussian
innovations in the log-volatility process. However, variation of the innovation distribu-
tion does not lead to additional difficulties in the model-fitting exercise; the following

non-Gaussian alternative can be implemented equally easily by using the HMM method.
Let y; be defined by

Yt = eV gt + &, (3.12)

with ¢; again denoting a Student-t¢ distribution, and, conditional on g, let g;11 have a
gamma distribution with shape parameter k = ¢g; + A and scale parameter 6 = 1:

giv1 ~ (k=g + A, 0 =1).
The parameters 3, ¢, A and £ are all taken to be positive. We refer to this model as

GSVt. If {g.} is stationary, its stationary mean is

A
,Ug - 1 o ¢ )
and the corresponding stationary variance is
A
02 =

I (l-9)(1-9¢%)

Provided {g;} is stationary, one obtains

14

var(y;) = B (Mg + f)m

and
v—2

. Mg
kurtosis(y:) = 3 (1 + )
=3 U Gy e )
A sufficient condition for stationarity is that ¢ € [0, 1); see Proposition 3 of Grunwald
et al. (2000).

3.2.3 Model fitting results for a number of return series
3.2.3.1 Model comparisons based on ten series of returns

The HMM approximation method for SSMs, in this case in particular for SV mod-
els, was applied to model the daily returns for ten stocks on the New York Stock
Exchange, namely Sony Corporation, Time Warner, Toyota Motor Corporation, The
Travelers Companies, British Petroleum plc, Royal Dutch Shell ple, Bank of America
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Corporation, Citigroup Inc., Deutsche Bank AG and Morgan Stanley. The adjusted
closing prices, p;, for the period 02.01.1997-01.03.2010, were downloaded from ‘fi-
nance.yahoo.com’; and the daily returns were computed as y; = log(pi/pi—1), t =
2,...,T. Summary statistics of the resulting ten series are given in Table 3.2. Not
surprisingly, in view of the recent financial crisis, the sample standard deviations and

kurtoses are high for stocks in the financial sector. (See also Figure 3.2.)

Table 3.2: Summary statistics for the daily returns of ten stocks on the New York Stock
Ezxchange for the period 02.01.1997—01.03.2010.

T min. max. std.dev. Kkurtosis
Sony 3304 —0.155 0.169 0.024 7.8
Time Warner 3310 —0.188 0.165 0.031 7.6
Toyota 3304 —0.181 0.133 0.020 8.7
Trav. Comp. 3304 —0.200 0.228 0.022 14.2
BP 3310 —0.122 0.147 0.018 9.7
Roy. D. Sh. 3303 —0.121 0.161 0.019 9.4
Bank of Am. 3310 —-0.342 0.302 0.033 26.8
Citigroup 3310 —0.495 0.457 0.036 36.2

Deu. Bank 3293 —0.210 0.222  0.028 13.1
Morgan St. 3310 —0.299 0.626 0.036 41.2

The standard models SV and SVt as well as the four nonstandard SV models covered
in Section 3.2.2, were fitted to each of the ten series. The maximum likelihood estimates
are given in Tables A.1—A.6 in Appendix A5. Several things are noteworthy regarding
the parameter estimates (including some that are not given in the tables).

e It is striking that, for all series, one of the AR(1) components of the SVMt model
is nonstationary, i.e. has ¢ > 1, although the mixture (3.7), and hence also the

observed process, is stationary.

e With a single exception, the estimates of the parameter &£, which constitutes a
lower bound on the volatility, are all well above zero. (Fitting SVMt to the
Citigroup series yielded é ~ 0.) This is an indication that the inclusion of a lower

bound for the volatility seems worthwhile.

e All models were fitted with both Gaussian and Student-¢ distributions for &;.
The latter consistently led to a substantially higher likelihood. The estimates of
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the parameter v, the number of degrees of freedom, range from 7 to 23 across
all series and models. This generalization of Gaussian SV models appears to be

particularly fruitful.

e The diagonal entries of the estimated t.p.m. T of the Markov chain {a¢} in
the MSSVt model are usually close to one. (An exception is the estimate 0.643
obtained for the Sony series.) This indicates that the two states, which reflect

high and low uncertainty about future volatility, are usually strongly persistent.

Comparing the models in terms of their AIC values, given in Table 3.3, the main results

from the model-fitting exercise are as follows:

Table 3.3: For the model SVy the AIC is given. The remaining entries in the table are

74

AIC deviations from the AIC of the SVy model for the corresponding series.
For example, in the case of Sony, the AIC for SVt is given by —16179 —33 =
—16212. Entries displayed in bold font indicate the model with the lowest

AlIC.

SVo| SVt SVMt MSSVt SVvVt  GSVi
# parameters 3 4 8 8 6 6
Sony —-16179 | —33 -31 -35 —-33 —17
Time Warner —15472 | —29 —-41 —30 —33 -3
Toyota —17321 | —13 —-19 —22 —15 6
Trav. Comp. —17324 | —35 —-50 —52 —46 —27
BP —18043 -9 —-30 —-33 —28 8
Roy. D. Sh. —17721 —7 —-32 —27 —27 18
Bank of Am. —17080 | —29 —47 —-50 —46 90
Citigroup —16249 | —-29 —-53 =31 —43 111
Deuts. Bank  —15955 | —46 —49 —55 —51 1
Morgan St. —14955 | —19 -37 -33 -35 58

e For each of the ten series, SV is inferior to the models SVt, SVMt, MSSVt and
SVVt.

e In every case either SVMt or MSSVt performed best.
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e For stocks that were relatively mildly affected by the financial crisis (Sony, Time
Warner, Toyota), there is relatively little difference in the performance of the
models SVt, SVMt, MSSVt and SV Vt.

e For stocks that were more strongly affected by the crisis, the nonstandard models
SVMt, MSSVt and SVVt outperformed their simpler competitors.

e The GSVt model mainly yielded poor fits, and worse than SV} in seven cases.

3.2.3.2 Forecast pseudo-residuals for three series

We concentrate now on the analysis of three selected series from Table 3.3, namely the
series for Sony Corporation, Morgan Stanley and BP plc. The observation period is
02.01.97-01.03.10, as before, but the data are now divided into a calibration and a
validation sample:

e Calibration sample (in-sample period): 02.01.97—08.08.07,

e Validation sample (out-of-sample period): 09.08.07—01.03.10.

The dividing date (09.08.07) has been referred to as the beginning of the current finan-
cial crisis (see e.g. Swiss National Bank 2008). That date was chosen in order to assess
how well the different SV models would have performed during the crisis, a period of
unusually high volatility. The three series, shown in Figure 3.2, were selected to illus-
trate the behaviour of the models for different types of stocks: one (Morgan Stanley)
from a sector that was strongly affected by the crisis, and two (Sony Corporation and
BP plc) that were less dramatically affected.

As a first step, each of the six models was fitted to the calibration sample of each series.
This was done using the HMM method with N = 200, a value that is large enough to
ensure that any anomalies that may occur could not be attributed to inaccuracies in the
approximation of the likelihood. Then, for each of the 644 observations in the validation
sample, the (one-step-ahead forecast) pseudo-residual was computed as follows:

rp=¢" (F(yt | Y1, Y2, - - )) )

where F' is the c.d.f. of the one-step-ahead forecast distribution on day t — 1, i.e. the
conditional distribution of the return on day ¢, given all previous observations. The

distribution function F' is easy to compute for an HMM; it is given by:

N
Flye | -1 t-2,-. ) ~ Y GF(ye | b7), (3.13)
i=1
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Figure 3.2: Return series for Sony, Morgan Stanley and BP (from top to bottom).
The dashed line shows the boundary between the calibration and validation
samples.  One observation for Morgan Stanley (0.63 on 13.08.08) fell
outside the range of the graph.

where (; is the ith entry of the vector oyI'/(c;1%), obtained from the forward proba-
bilities:
a; = 0P (y))T'P(y2)T - - TP(y,).

In the context of SV models such residuals were first used by Kim et al. (1998). It follows
immediately from a result of Rosenblatt (1952) that, if the fitted model is correct, the
pseudo-residuals are distributed standard normal. (See also Chapter 6 in Zucchini and
MacDonald 2009.) Thus forecast pseudo-residuals can be used to monitor time series;
extreme values can be identified, and the continued suitability of the model can be
checked by using, for example, qg-plots or formal tests for normality. The qg-plots
for the three series investigated here are given in Figures 3.3—3.5; the p-values for the
Jarque-Bera test are listed in Table 3.4.

The index plots and qg-plots of pseudo-residuals for the Sony Corporation series, dis-
played in Figure 3.3, show no substantial deviations from normality for any of the six
models, except perhaps for the upper tail in the case of SVj. None of the p-values from
the Jarque-Bera tests leads to a rejection of the hypothesis of normality. These findings
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Figure 3.3: Forecast pseudo-residuals for the Sony series.

are consistent with the results of the model-fitting exercise, where the likelihood values

of the different models turned out not to differ much.

Table 3.4: p-values of Jarque-Bera tests applied to one-step-ahead forecast pseudo-

residuals.
SVy SVt SVMt MSSV:E SVVt GSVt
Sony 0.235 0.323 0.232 0.253  0.262 0.395
Morgan St. 7 x 107° 0.052 0.380 0.346  0.807 1x 10713
BP 0.008 0.093 0.218 0.276  0.244 0.001

The pattern changes for the Morgan Stanley series (Figure 3.4). Except for MSSVt and
SVVt the qg-plots indicate a lack of fit in the tails; the models were unable to capture
the extreme returns that were observed during the financial crisis. The fit of the SVj
and GSVt models appear to be especially poor, an impression that is confirmed in both
cases by the p-values of the Jarque-Bera test. The performance of the SVt model is
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Pseudo-residuals (SV0) QQ-plot (SV0) Pseudo-residuals (MSSVt) QQ-plot (MSSVt)

T T T T T T T — T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 -4 -2 0 2 4 0 100 200 300 400 500 600 -4 -2 0 2 4

Pseudo-residuals (SVt) QQ-plot (SVt) Pseudo-residuals (SVVt) QQ-plot (SVVt)

0 100 200 300 400 500 600 -4 -2 0 2 4 0 100 200 300 400 500 600 -4 -2 0 2 4

Pseudo-residuals (SVMt) QQ-plot (SVMt) Pseudo-residuals (GSVt) QQ-plot (GSVt)

4 5 4 -
P = Coe s Vs

0 100 200 300 400 5(;0 600 -4 -2 0 2 4 0 100 200 300 400 500 600 -4 -2 0 2 4
Figure 3.4: Forecast pseudo-residuals for the Morgan Stanley series.

somewhat better but still unsatisfactory; at the 10% level of significance, normality of
the residuals for this model is also rejected by the Jarque-Bera test. In contrast, the
p-values for the nonstandard SV models SVMt, MSSVt and SVVt are well above the
conventional significance levels. In particular the results for the six-parameter model
SV Vt are surprisingly good, considering the turbulent behaviour of the Morgan Stanley

return during the crisis.

The pseudo-residuals for the BP plc series (Figure 3.5) show tendencies similar to those
of the Morgan Stanley series. The models SVy, SVt and GSVt show deficiencies in the
fits of the tails, whereas the performance of the SVMt, MSSVi and SVVt models is
again better in that respect. The p-values of the Jarque-Bera test of normality of the

pseudo-residuals for those three models are all above 0.2.

3.2.3.3 Backtesting

The plots and tests discussed in the previous section are useful for assessing the overall
fit of a model but, for the purposes of assessing market risk, it is the extreme left
tail of the forecast distribution that is of particular interest. It determines the value-
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at-risk (VaR), defined as the maximum possible loss of a portfolio (over a specified
period) at a given confidence level. For example, the one-day 1% — VaR is computed
from the 0.01-quantile of the one-day-ahead forecast distribution. Whenever the return
falls below that quantile an exception is said to have occurred. If the model used for
forecasting is correct, then, using a 100 a%—VaR, the number of exceptions, X, in
n days is binomially distributed with parameters n and «. This distributional result
makes it possible to implement backtesting, a procedure applied by major central banks
and regulatory authorities in terms of the Basel Accords (Basel Committee on Banking
Supervision 2006). Specifically (Annex 10a, pp. 310-319), the adequacy of the time

series model is assessed by the number of exceptions, X. Three zones are defined:

e green zone: X falls below the 95th percentile of its distribution, in which case the

model is regarded as accurate;

e red zone: X falls above its 99.99th percentile, in which case the model is regarded

as inaccurate;

o yellow zone: X falls between the above percentiles, in which case “the supervisor
should encourage a bank to present additional information about its model before
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3 State-space modelling by means of structured hidden Markov models

taking action [...]” (p. 315).

(For a recent account of backtesting see Wong 2010.) Table 3.5 lists the number of
exceptions in n = 644 days with o = 0.01 for each of the ten return series, and for each
model fitted to the calibration samples as outlined above. Backtesting was applied “out-
of-sample”, using the conditional forecast distribution computed according to (3.13).
In each case it is indicated whether the observed counts fell into the green, red or yellow

zone.

Table 3.5: Backtesting: the number of exceptions in n = 644 out-of-sample daily returns
with o = 0.01. Counts less than 11 fall in the green zone; those above 17
(marked **) fall in the red zone; the remainder (marked *) fall in the yellow

zone.
SVo Svt  SVMt MSSVt  SVVt GSVt

Sony 7 4 4 5 4 6

Time Warner 5 4 4 3 3 3
Toyota 10 11* 10 9 9 11*
Trav. Comp. 12* 8 8 7 8 14*
BP 13* 13* 9 9 9 18**
Roy. D. Sh. 14* 10 10 9 9 21**
Bank of Am. 19** 13* 11* 14* 10 46**
Citigroup 14* 13* 15* 10 11* 39**
Deuts. Bank 16* 12* 10 13* 11* 31**
Morgan St. 11* 10 9 8 8 21%*

Certain aspects of the backtests in Table 3.5 are noteworthy. All models are in the
green zone for Sony and Time Warner. For all other series and models the number
of exceptions exceeded 6.4, the expected value under the hypothesis that the model
is correct. In retrospect this underestimation of the market risk is not surprising in
view of the enormous increase in volatility in the out-of-sample period, which had been
preceded by a prolonged period of low volatility. (See Figure 3.2.) The highest number
of exceptions occurred in the financial sector. Of the models considered, the SV Vtmodel
led to the “least poor” results, with two outcomes (Citibank and Deutsche Bank) on
the lower boundary of the yellow zone, and all others in the green zone. The models
MSSVt and SVMt also led to two outcomes in the yellow zone and eight in the green
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3.3 Application to earthquake counts

zone but, on the whole, the numbers of exceptions were a little higher than for SVVt.
The next best, in terms of backtesting, was the model SV, which led to five outcomes in
the yellow zone and five in the green zone. The model SV led to even more exceptions,
although all but one of the outcomes were in the green or yellow zone. Model GSVi,
with six outcomes in the red zone, is clearly unsuitable. The results indicate that, for

the purposes of assessing market risk, it is possible to improve on SV, and SV4t.
3.3 Application to earthquake counts
We now consider the time series of earthquake counts that was analysed by Zucchini

and MacDonald (2009). It contains annual counts of major earthquakes (worldwide),

namely earthquakes of magnitude 7 or higher.
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Figure 3.6: Histogram of earthquake counts.

Figure 3.6 displays a histogram of the observations; the observations are given in Figure
3.7. The observations are clearly overdispersed: sample mean and sample variance
are i = 19.36 and 62 = 51.57. Furthermore the series exhibits significant positive
autocorrelation (cf. Figure 2.1 in Zucchini and MacDonald 2009). The combination
of overdispersion and serial dependence renders SSMs (as well as HMMs) plausible
candidates for modelling this series. The standard candidate for modelling unbounded

counts is the Poisson distribution.

We consider a Poisson SSM, whose time-dependent means, A, for the Poisson random
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3 State-space modelling by means of structured hidden Markov models

variable y;, are assumed to be generated by an AR(1)-process as follows:

log(A) — p = ¢p(log(Ai—1) — p) + ome

with [¢| < 1, p,0 > 0 and 7, b N(0,1). With g; := log(A\t) — p and [ := exp(u) we

can write:

At = Bexp(ge) , (3.14)
where  gr = ¢gi—1 +one .

This model has been previously considered, inter alia, by Zeger (1988) and Chan and
Ledolter (1995). To write the model in state-space form, consider independent Poisson
point processes Ny(+), t = 1,...,n, of unit intensity. Then (3.14) can be replaced by

yr = N ((0, Bexp(gr)]),

where N¢((a,b]) denotes the number of events of Ny(+) in the time interval (a,b] (cf.
Fokianos et al. 2009).

To estimate the model parameters we apply the HMM method that was described
in Section 3.1. That is, after discretization of the state space, the likelihood of the
approximating model is that of an HMM which can be easily maximized numerically.
We use the resolution N = 200 for the discretization and —¢gmin = Gmaz = 2 for
the range of gi-values. (The standard error of the fitted process g; turns out to be
approximately 0.3.) In this example the entries of the matrix P(y;) in the approximated
likelihood (3.3) are given by

(Bexp(b))

|

Fyelge = b7) = exp(=Bexp(b7))—

The transition probabilities v;; are given by (3.2), and we use the stationary distribution
for . Maximizing (3.3) numerically yields the parameter estimates

~

$=089, =014 and [B=178.

The minus log likelihood and AIC values obtained for this model are 332.27 and 670.54,
respectively. In this example the AIC favours the Poisson SSM rather than the stan-
dard Poisson HMMs (the smallest AIC-value, 676.92, for Poisson HMMs is obtained
when using three states; cf. Zucchini and MacDonald 2009). Figure 3.7 displays the
decoded mean sequences of the Poisson SSM and of the three-state Poisson HMM; both
were decoded using the Viterbi algorithm. In the HMM the earthquake rate changes
between a finite number of levels. On the other hand in the SSM the transitions follow
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Figure 3.7: Earthquake counts (solid grey line) and decoded mean sequences of the three-
state Poisson HMDM (filled circles) and the Poisson SSM (crosses).

an autoregressive process and thus the rate is continuously distributed. There is no
a priori reason to suppose that there is a finite number of rates for the occurrence of
major earthquakes.

The proposed model is a basic example for a nonlinear and non-Gaussian SSM. It
illustrates the two main ways in which SSMs can overcome possible drawbacks of con-
ventional HMMs. Firstly, SSMs can be more parsimonious in terms of the number of
parameters, especially in the hidden part of the model. In the given application the
state process of the chosen HMM involves six parameters while that of the SSM involves
only two parameters. Secondly, interpretation seems to be easier and more intuitive in

case of the fitted SSM.

3.4 Application to polio counts

We now consider the time series of monthly counts of cases of poliomyelitis between
January 1970 and December 1983, in the U.S.. The observations are displayed in
Figure 3.8. After its initial appearance in Zeger (1988), the time series of polio counts
has been analysed, inter alia, by Chan and Ledolter (1995), Le Strat and Carrat (1999)
and Davis and Rodriguez-Yam (2005). A question of principal interest is whether the
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3 State-space modelling by means of structured hidden Markov models

data follow a decreasing time trend. We adopt the nonlinear seasonal Poisson SSM
proposed by Zeger (1988), which, in contrast to the Poisson SSM considered in Section
3.3, additionally contains a trend and seasonal components:

yr = Ni((0, Brexp(gr)])
where ¢ = ¢gr—1 + ot

4 1 (5 ) n t n 27t n . [ 27t
a o = — cos| — S —_—
it g\t H1 T H2 1000 M3 12 g SIN 1

27t . (2t
+ s cos e + e Sin 5 ,

with ; € R, i =1,...,6, and N; and 7, defined as in Section 3.3. Zeger (1988) esti-
mates the model parameters of this seasonal Poisson SSM using an estimating equation
approach. Chan and Ledolter (1995) use a Monte Carlo EM algorithm. Davis and
Rodriguez-Yam (2005) approximate the likelihood using a Taylor expansion. We again
approximate the likelihood by that of an HMM and then apply numerical maximiza-
tion. Here we use N = 200 as resolution for the discretization, and —gmin = Gmaz = 4
for the range of g;-values. (The standard error of the fitted process g; turns out to be
approximately 0.7.) The likelihood components, §, I', and P(y;), are computed as in
the earthquake counts example, except that 3 is replaced by ;. The main advantage
of the HMM method, compared to the methods referred to above, is its simplicity.

Table 3.6: Estimated model parameters and bootstrap standard errors for the seasonal
Poisson SSM, obtained via the HMM approzimation method.

para. estimate s.e.

I 0.24  0.29
Lo -3.75  3.05
U3 0.16 0.15
m -0.48  0.17
L 041  0.13
L6 -0.01  0.13
) 0.66  0.19
o? 0.27  0.11

Table 3.6 gives the estimated parameters for the seasonal Poisson SSM, as well as
(parametric) bootstrap standard errors based on 400 replications. The results are very
close to those of Davis and Rodriguez-Yam (2005). (Zeger (1988) as well as Chan and
Ledolter (1995) consider different parameterizations of the model.) The estimated trend
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3.4 Application to polio counts

is negative and, according to the fitted model, the poliomyelitis rate within each year
peaks in November. The values of minus the log likelihood and the AIC are 248.25 and
512.5, respectively. Figure 3.8 displays the observations and the decoded sequence of

means.
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Figure 3.8: Polio counts (solid line) in the U.S., January 1970 - December 1983, and
decoded mean sequence (crosses) of the fitted seasonal Poisson SSM.

Le Strat and Carrat (1999) fitted Poisson HMMs to the polio count data. For com-
parison purposes we also do so. We consider seasonal Poisson HMMs with trend: the
state-dependent distribution at time ¢, given state k, is assumed to be a Poisson with

parameter \;; being determined by
t n 27t n . (27t
inidhd in( 222
1000 M3 12 ) TS 12

2wt . (27t
+,LL5 COS ? +/,L6Sln ? y

with g1, ps € R, @ = 2,...,6. Note that the constant ;) varies across states,

log(Ap k) = pik + p2

whereas the trend and the seasonal components are fixed across states. In principle one
could model seasonal components that also vary across states. However, in view of the
relatively small sample size the large number of parameters in such a model cannot be

estimated reliably.

85



3 State-space modelling by means of structured hidden Markov models

Table 3.7: Results of the seasonal Poisson HMM fits to the polio data.

seasonal HMMs
# states # para. mllk AIC

1 6 287.27  586.55
2 9 250.01 518.01
3 14 240.46 508.93

Table 3.7 gives the resulting minus log likelihood and AIC values for such HMMs with
different numbers of states. In terms of the AIC, the HMM with three states performed
best. The AIC value of that model is also superior to that of the seasonal Poisson SSM.
However, the SSM is determined by fewer parameters, which in view of the relatively
small number of observations (7' = 168) seems preferable.

In this section we demonstrated that the proposed model fitting strategy for SSMs
is capable of adjusting for trend and seasonality. We also showed that the estimates
produced by the HMM approximation method are in agreement with those produced
by other methods. By means of the parametric bootstrap we obtained standard errors
for the estimates. Bootstrap is feasible in this application as the analysed time series
of polio counts is rather short; the computation of the standard errors took about 1.5
hours. For longer time series the increased effort required to compute standard errors

can be a drawback of the HMM approximation method.

3.5 Application to daily rainfall occurrences

Consider again the time series of wet and dry days in Zlatograd that was analysed in
Section 2.3. We now demonstrate how SSMs can be applied to this nonhomogeneous
binary time series. Similar applications were previously discussed e.g. in Kitagawa
(1987) and Czado and Song (2008). We assume that the observations were generated
by a Bernoulli random variable whose parameter is driven nonlinearly by a continuous-
valued state process, g¢, and a seasonal component, s;. More precisely, we consider the

following seasonal Bernoulli SSM:
yr ~ Bern(m)

where log(lﬂtﬂ) =g+ 0B+ s
— Tt
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3.5 Application to daily rainfall occurrences

The logit transform is applied to ensure that 7, is in [0, 1]. The process g; is assumed
to be a Gaussian AR(1), while the seasonality is modelled by trigonometric functions

involving the first two harmonics:

gt = ¢gi—1 + ony,

cos 2t 4 s 27t 4 e cos 4t © i 4t
St = _— m| —— _— m| —— .
£ HLEOS 365 ) TH2I 365 ) T 365 ) T HPT 365

The seasonal Bernoulli SSM can be written in state-space form as follows:

1 if U; €0, logit™'(g¢ + B+ s1)]
Yt = 5
0 otherwise

with Uy denoting i.i.d. uniformly distributed random variables on [0, 1].

To fit the model, we used the HMM method with resolution N = 400 and —gn =
9Imaz = 75. (The standard error of the fitted process g; turns out to be approximately
20.) The components of the approximated likelihood are computed analogously to those

in the previous examples. In particular,
f(yelge = b}) = (logit ™ (b + B+ s1)) " (1 — logit ™ (b + 8 + st))l_yt )

The (numerical) maximum likelihood estimates are

~

6=049, =181, B=-11.1,
= —247, jpz=-3.85, pu3=-0.95 and 4= —4.10.

Figure 3.9 displays the fitted seasonal component s;. It is in agreement with the sam-
ple proportions of rainy days per month as displayed in Table 2.4. The AIC value of
the seasonal Bernoulli SSM is 18833.07. In terms of this criterion the model performs
similarly well as the HMM considered in Section 2.3 (AIC = 18832.25). However, it is
inferior to the HSMM selected in Section 2.3 (AIC = 18806.04).

The application to daily rainfall occurrences illustrates how SSMs can be applied to
nonhomogeneous binary time series. The proposed model can be easily extended to
binomial responses. In this application the estimated standard deviation of g; is sur-
prisingly high, which underlines the point that the “essential range” of ¢; in the dis-
cretization manoeuvre has to be chosen with care. Unlike in the proposed SSM, the
seasonal components in the HMMs and HSMMs considered in Section 2.3 varied across
states (cf. Figure 2.3). As there is no reason to suppose that seasonal fluctuations of
“dry” and “wet” states, or more sophisticated weather conditions, follow the same pat-
tern, this may be an advantage of conventional HMMs (and HSMMs) over the proposed
type of SSMs.

87



3 State-space modelling by means of structured hidden Markov models

seasonal component

T ’ T ’ ’ T
100 200 300

O —fF - mm e o e e e e m e m e e ——

day of the year

Figure 3.9: Fitted seasonal component s; of the seasonal Bernoulli SSM; the dashed

lines separate the months.

3.6 Application to glacial varve thicknesses

We consider the time series of glacial varve thicknesses that was analysed by Shumway
and Stoffer (2006). Varves are layers of sediment that are deposited by melting glaciers.
Each layer corresponds to the silt and sand deposited over a period of one year. Changes
in varve thickness indicate yearly temperature changes, and thus records of varve thick-
nesses are potentially useful for long-term climate research (cf. Shumway and Stoffer
2006).

The series gives the varve thicknesses (in millimeters) from a location in Massachusetts
for 634 years, beginning 11844 years before present. Figure 3.10 displays the obser-
vations. The sample autocorrelation function and a histogram of the observations are
displayed in Figures 3.11 and 3.12, respectively. Without recourse to formal definitions,
there is some indication of long memory in the sense of a persistent autocorrelation

function.

As the observations are necessarily positive, the gamma distribution is a more natural
choice for modelling purposes than is the normal distribution. We wish to fit SSMs
with continuous state spaces to the varve series. However, as it is not clear whether the
state process ideally should influence shape and/or scale parameter of the gamma state-
dependent distribution, we first consider HMMs wherein both parameters are driven by
the states. We begin by considering stationary gamma HMMs, introduced in Section
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Figure 3.10: Series of glacial varve thicknesses (in mm).
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Figure 3.11: Sample autocorrelation function of the varve time series.

1.4.2. Table 3.8 summarizes the model fitting results for different numbers of states.
The AIC selects the model with three states.

—~ 1

The fitted means, [, = k,b0,, standard deviations, &, = Ka0,, and coefficients of
1
2

variation, ¢, = o, /fln = fin for the individual states n = 1,2, 3 in the fitted three-
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Figure 3.12: Histogram of the varve thicknesses.

Table 3.8: Results of the gamma HMM fits to the varve data.

# states # para.  mllk AIC

2 6 2448.22  4908.43
3 12 2409.48 4842.96
4 20 2405.11  4850.22

state gamma HMM are given by

i =16.02, 1= 6.72, & =042,
fis =26.94, o =10.29, 0 =0.38,
fi3 = 57.99, &3 =23.09, 03 =0.40.

Here, as in many similar applications, the standard deviation is approximately propor-
tional to the mean, resulting in a coefficient of variation that is approximately constant.
It therefore seems reasonable to reduce the number of parameters accordingly. We thus
fit another gamma HMM in which the means, u,, vary across states and the coeffi-
cient of variation, ¢,, is constant. (The shape and scale parameters are then given by
Kn = cy2 and 6, = ,unc?], respectively.) This model has 10 parameters, and the minus
log likelihood and AIC values are given by 2410.16 and 4840.31, respectively.

Now that we have seen that the coefficient of variation can be assumed constant, the
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following gamma SSM seems a natural choice:

Y = &3 exp(gt) )
where g = ¢gi—1 + oy

and etwf(/{—c 20—0).

(As in the previous applications 7 i N(0,1).) Note that Ee; = k0 = 1 and E(y|g:) =
Bexp(gt), i.e. the mean of the gamma distributed random variable y; is driven nonlin-
early by the autoregressive process ¢g;. The coefficient of variation of ¥, given g, is
constant:
V) _ (o) = Vil = o,
E(y|gt)

In the approximate likelihood (3.3), 8 and I" are computed as in the previous examples.
In this example f(y:|g: = b)) is the p.d.f. of the gamma distribution with parameters
k = c, 2 (shape) and @ = Bexp(b})c? (scale), evaluated at y;. Fitting the gamma SSM
with the HMM method, with N = 200 and —gmin = Gmaz = 3, yields the following

parameter estimates:

B=244, =015, =095, & =0.40.

The minus log likelihood and AIC values of the gamma SSM are given by 2414.96 and
4837.93, respectively. In view of the relatively small number of parameters, the fit is
surprisingly good. In particular, the AIC value is smaller than that of the selected
HMM counterpart. However, it turns out the gamma SSM does not fully capture the
autocorrelation structure of the series. Figure 3.13 displays the sample autocorrelation
function for a series of length 1 000 000 that was simulated from the fitted gamma SSM;
compared to the original varve series (Figure 3.11), the decay of the autocorrelation is
too fast.

Allowing for more flexibility in the state process may be one way to overcome this
limitation. Thus, consider a gamma SSM as above but wherein the innovations in the

state process are mixtures of two normal distributions:

gt = ¢gt—1 + (Zyo1 + (1 — Zy)oa)ne

where Z; denotes a sequence of i.i.d. Bernoulli(a) random variables. This model, with
y; and €; as above, will be termed gamma mixture SSM.

The parameter estimates for the gamma mixture SSM, obtained via the HMM method
with N = 200 and —gmin = 9maz = 3, are given by
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Figure 3.13: Large sample autocorrelation function of the fitted gamma SSM.
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Figure 3.14: Large sample autocorrelation function of the fitted gamma mixture SSM.

~ ~

3=270, &=(0.00,038), ¢=097, & =041, @&=0.90.

Minus log likelihood and AIC are given by 2409.04 and 4830.09 respectively. In terms
of the AIC, the gamma mixture SSM is preferable to both the gamma SSM and the
selected gamma HMM. Figure 3.14 shows the autocorrelation function of the fitted
gamma mixture SSM as obtained from a simulated series of length 1 000 000. Evidently
the model accounts better for the long memory of the series than does the gamma SSM
considered before.

While the models appear very similar at first glance, and even though the gamma SSM
is nested in the more flexible gamma mixture SSM, the two models require very different
interpretations. This is due to the fact that o; was estimated as (approximately) zero
in the gamma mixture SSM. As a consequence the decoded underlying state sequences
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Figure 3.15:
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Series of glacial varve thicknesses (solid grey lines), decoded mean sequence
of the fitted gamma SSM (crosses in the top plot), and decoded mean se-
quence of the fitted gamma mixture SSM (crosses in the bottom plot).

have very different patterns; see Figure 3.15.

The application to glacial varve thicknesses involves continuous observations that are

strictly positive. It illustrates the flexibility of state-space modelling, and of the pro-

posed estimation method via structured HMMs, in several ways. Firstly, distributions
other than the normal can be fitted without difficulty. Secondly, the quite general
structure of SSMs allows for adjustments of the model to peculiarities of the data; in

the given application the assumption of a constant coefficient of variation seemed rea-
sonable. Lastly, it was illustrated that models other than the standard AR(1) may be

93



3 State-space modelling by means of structured hidden Markov models

worthwhile to consider for the state process.

3.7 Concluding remarks

Conventional HMMs have a finite number of states. The number of parameters in the
state process increases quadratically in the number of states. In practice this limits
the number of states one can use. In many applications, e.g. the ones considered in
this chapter, there is no a priori reason to suppose that the number of states should
be small, or even finite. On the other hand SSMs with continuous state spaces usually
depend on only few parameters, and thus overcome this problem. However, they are
demanding to fit, both in terms of the effort needed to code the software and in terms

of computing time.

In this chapter we have demonstrated how it is possible to approximate the likelihood
of an SSM by that of a suitably structured HMM. The proposed approximation method
has the important advantage that it is easy to implement. Unlike in the case of SSMs,
the likelihood of structured HMMs is easy to compute; numerical maximization thus is
feasible. That makes it possible to experiment with variations of models with relatively
little programming effort. The applications in this chapter illustrate the flexibility of the
models and the methodology, as well as the wide range of potential fields of application.
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4 Population hidden Markov models for
sleep EEG datal

In this chapter we introduce extensions of hidden Markov models for the analysis of the
Fourier power spectrum of the electroencephalogram (EEG) during sleep. The two key
accomplishments are as follows: first, an easily implemented extension of HMMs for
populations of time series and second, a detailed HMM analysis of EEG data recorded
during a full-montage sleep study. In this analysis, parameters from the population
model for a well-matched subset of subjects with and without sleep disordered breath-
ing (SDB) are compared. SDB is a chronic condition whereby subjects have repeated
either complete (apneas) or partial (hypopneas) collapses of the upper airway during
sleep. SDB has been shown to have a number of health consequences such as daytime
sleepiness, increased risk for motor vehicle accidents, incident hypertension, cardiovas-
cular disease, stroke, all of which can cause mortality (cf. Punjabi et al. 2009). We
develop a benchmark method for the application of HMMs in complex epidemiological
studies and illustrate the method on a unique data set created to study an important
public health issue.

The application under study involves the potential correlation of SDB with cortical
brain activity. Human sleep and its physiological and health correlates comprise ex-
tremely complex biological phenomena. Rather than being simply inert, sleep is highly
dynamic, involving changes in physical and neural activity. In children, sleep has been
shown to be instrumental in physical and cognitive development. Sleep is also crucial
for memory consolidation and immune system repair. Research in sleep continues to
unravel the crucial role that sleep plays in health and well being (cf. Gami et al. 2005).
Electrophysiological measures are an objective means to characterize the electrical ac-
tivity of the brain during sleep. The electroencephalogram, along with a battery of
other biological signals, is collected as part of the overnight polysomnogram (PSG). In
clinical and research settings the PSG is used to characterize sleep quality and to assess
the presence of various disorders, such as SDB. We focus entirely on the EEG signal,
and particularly on banded frequency components of its power spectrum. Such bands

'This chapter is based on Langrock, Swihart, Caffo, Crainiceanu and Punjabi (2010).
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are crucial for understanding the overnight dynamics of sleep brain activity and any
possible alternation due to disease or behaviour. Analyses investigating correlates of
sleep-EEG spectra include Crainiceanu et al. (2009), Di et al. (2009) and Zhang et al.
(2008).

The application of HMMs to EEG spectrum data is natural, as sleep in humans and
many other species is often characterized by sleep states. In humans, the biological
signals of the PSG are used to visually classify sleep into light sleep (Stage I and II),
deep sleep (slow wave sleep) and rapid eye movement (REM) sleep. The resulting
sleep hypnograms, which are single discrete-time, discrete-state processes, have been
well studied in the clinical/medical and statistical literature (see e.g. Yassouridis et
al. 1999, Kneib and Hennerfeind 2008). The present investigation does not focus on
visually classified sleep stage data (i.e. hypnograms), other than as partial motivation
for using latent states via HMMs to study sleep EEGs. Hence our use of the term “state”
always refers to latent nominal classifications estimated via HMMs, not realizations of
sleep stages as used in the clinical/medical literature and hypnogram data. Further
motivation for HMMs in this setting is given by the fact that EEG spectra show high
autocorrelation, which HMMs elegantly address. The general benefits of using HMMs in
the context of EEG classification have been discussed by Penny and Roberts (1998) and
Zhong and Ghosh (2002). In the context of sleep staging, such an approach has been
taken previously in Flexer et al. (2005) and Doroshenkov et al. (2007), however, with
different objectives than those of the current investigation. Those authors essentially
try to replicate the hypnogram via automated scoring, which is not at all what we
are aiming at. Instead, our model represents an alternative way for summarizing sleep

dynamics, in particular for populations of EEG time series.

We analyse the Fourier power spectrum of the sleep EEG signal. As brain activity
during sleep is highly non-stationary, we consider the Fourier transform in thirty-second
bins within which stationarity can be reasonably assumed. We further summarize the
Fourier transform by considering the power in bands of the spectrum. We employ
the standard four bands that are typically used in EEG research. When training the
population HMMs, we face large amounts of data and numbers of model parameters
that are to be estimated. For this reason, unlike other approaches to analysing the
raw EEG data, we achieve a great deal of data reduction via the preprocessing of
the raw EEG signal into spectral bands, thereby simultaneously focusing on the core
components of the signal of interest and greatly alleviating the computational burden.

The considered sleep EEG data set is described in detail in Section 4.1. In Section 4.2,
the model is introduced and its estimation is discussed. The results of fitting the model
to the EEG data are given in Section 4.3. Concluding remarks are given in Section 4.4.
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4.1 Description of the sleep EEG data

4.1 Description of the sleep EEG data?

The Sleep Heart Health Study (SHHS) is a landmark study of sleep, sleep disorders
and their cardiovascular correlates (Quan et al. 1997). In this study, over six thousand
subjects underwent in-home polysomnography with measurements of the EEG during
sleep. Approximately four thousand subjects had a repeat polysomnogram four years
after the baseline sleep study. In this analysis, we restrict ourselves to 102 carefully
matched subjects with and without SDB.

Matching is appealing, as the data are observational and epidemiologic confounding of
the disease effect is of concern. The number of subjects in the SHHS dataset allow
for well populated, well selected sub-groups for the desired comparisons. To assess the
independent effects of SDB on sleep structure, strict exclusion criteria were employed
and included prevalent cardiovascular disease, hypertension, chronic obstructive pul-
monary disease, asthma, coronary heart disease, history of stroke, and smoking. For
the purpose of this analysis we examine subjects with moderate to severe SDB as as-
sessed by a respiratory disturbance index (RDI) of at least 30 events/hour. Subjects
without SDB were identified as those with an RDI < 5 events/hour. Propensity score
matching was utilized to balance the SDB and non-SDB groups on demographic fac-
tors and to minimize confounding (Rosenbaum and Rubin 1983). Subjects with SDB
were matched with those without SDB on the factors of age, body mass index (BMI),
race and sex. Race and sex were exactly matched, while age and BMI were matched
using the nearest neighbour Mahalanobis technique, so that matches had to be within
a Mahalanobis distance (caliper) of 0.1, with multiple matches within the caliper being
settled by random selection (Ho et al., forthcoming).

The resultant match was 51 pairs that met the strict inclusion criteria outlined above
and exhibiting very low standardized biases. Table 4.1 gives the summary statistics
for the group of individuals with SDB and the control group. All measures are not
significantly different (RDI is different by design).

The sleep EEG was processed in Matlab (Mathworks) as follows. Separately, for each
of two nodes per subject, the signal was partitioned into non-overlapping 30 second
bins. The fast Fourier transform was applied to each bin. Band pass filters were
applied to separate the signal into four bands: 0 (up to 4 Hz), § (4-7 Hz), o (812
Hz) and § (12-30 Hz). The Fourier coefficients were squared and summed to obtain
the spectral power within each band. These terms were normalized by dividing by
the total power, resulting in a proportion of the total power represented in each band.

2This section was written mainly by B. S. Caffo and B. J. Swihart.
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Table 4.1: Demographic covariates and sleep variables, means of the two groups.

Variable SDB no-SDB p-value
RDI (events/hour) 40.5 2.1 0.000
BMI (kg/m?) 30.3 30.2  0.972
Age (years) 61.8 61.8  1.000
Race (% white) 92.2 922 1.000
Sex (% male) 66.7 66.7  1.000
Total Sleep Time (min.) 351 357  0.593
% Total Sleep Time asleep  81.9 83.4  0.743

Thus each observation is a point on the simplex for each 30 second epoch. Normalizing
the spectrum was performed for a variety of reasons, including alleviating inter-subject
variability.

4.2 Model description

4.2.1 Introducing the population HMM
For each time instant ¢, the vector of observations is an element of the unit 4-simplex

Ay = {(z1,22,23,24) | T; > 072% =1} c R,

Here z1, x9, x3 and x4 represent the proportions of the -, 6-, o- and [B-waves, re-
spectively, as obtained from the fast Fourier transforms of the EEG data. They sum
to one as the raw power was normalized by dividing individual band power by the
sum of power over the 0, 0, « and 3 power bands. The Dirichlet distribution D(A),
A= (A1, A2, A3, M) € IRAEO, with density

Ag—1
4

Ia(x) = fa(wr, 22,23, 24) = x

)

4
]‘—‘(42:1':1 )\Z) x)\l—lxg\z—lxgg—l
[Iima T(A)

is a convenient and flexible model to describe random samples from Ay4. In particular,
D(A) is a member of the exponential family, has finite dimensional sufficient statistics
and is conjugate prior to the multinomial distribution (Blei et al. 2003). Expectation
and standard deviations of the marginal distributions of D(A) are p; := E(z;) = % and
012 := Var(z;) = %_1’“) , where s := A1 + Ao + A3 + Aq. Thus a Dirichlet distribution
with a fixed mean p = (u1, p2, 3, pa) can account for different levels of variability using
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a parameterization of the type D(c-A) and varying the positive scalar ¢. The parameter
s — sometimes called concentration parameter — is a measure of how concentrated the
distribution D(A) is around its mean; the larger s, the less dispersed are the observed

values.

To model the EEG spectral data using Dirichlet distributions, consider a Dirichlet
HMM with N-state homogeneous Markov chain {S; };=1 2,... and state-dependent process
{X}1=1,2,... Asbefore, we summarize the probabilities of state switches in the (N X N)-
transition probability matrix given by I' = {v;;}, 4,5 = 1,..., N, where v;; = P(Si41 =
j | St =i). For the given time series of spectral band powers we use {D(X) | A € R%,}
as approximating family of distributions for the state-dependent process {X t}t=172_,
We then have N different Dirichlet distributions D()\(”)), n=1,..., N — one for each
state of the Markov chain — and the current state of the Markov chain determines
which of these distributions is selected:

We want to employ HMMs to analyse and quantify the stochastic properties of the
trajectory of the EEG spectral data during sleep, in particular with regard to underly-
ing state processes. Furthermore, we want to compare these properties between groups
of subjects with and without SDB. Fitting a separate HMM to each individual would
substantially limit our ability to compare results across subjects or groups of subjects
because: 1) the estimated HMMs may not be synchronized across subjects (if both
state-dependent distributions and underlying Markov chains vary across subjects, then
the HMMs essentially are incommensurable) and 2) the Dirichlet distribution parame-
ters, and thus the EEG states, may have different interpretations. Thus our methods
differ substantially from standard HMM methods where interest usually centres on es-
timating and quantifying the HMM underlying an individual time series. Here we are
concerned with populations of time series and differences across individuals. To achieve
this we introduce the population HMM (PoHMM) which assumes that the Dirichlet
parameters are variable across states but fized across subjects, and that the transition
probabilities across states are subject-specific. Fixing the state-dependent parameters
across individuals enables us to compare different individuals in terms of the different
Markov chains that result from the HMM fits. Conditional on a particular state n, the
distribution of X for different individuals is identical; what differs is the stochastic
structure of the succession of states. The main questions of interest regarding the state
sequence of an individual include:

i) How much time, on average, is spent in a particular latent EEG state?

1) What is the expected total number of state changes per hour?
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i11) What is the expected number of transitions between particular states?

At the population level these questions focus on differences between individuals and
between sub-populations (diseased and non-diseased groups). We return to these ques-
tions in the course of the evaluation of the results in Section 4.3.

4.2.2 Parameter estimation for the population HMM

Fitting the PoOHMM using numerical maximization of the joint likelihood is infeasible.
Indeed, for the 102 subjects selected from the SHHS, the number of parameters in
case of stationarity would be N - (N —1)-102+4 - N (the first summand corresponds
to the Markov chain parameters, the second summand to the Dirichlet distribution
parameters), e.g. 1240 for a basic model with N = 4 states. An additional difficulty is
the large size of the data set, which contains roughly 170000 observations, rendering
standard fitting approaches infeasible. We also anticipate that the size and complexity

of data sets with similar structure will increase dramatically in the future.

To circumvent these problems we consider the following pragmatic two-stage approach
to model fitting: in Stage I we calibrate the Dirichlet parameters which will be fixed
in Stage II to fit HMMs to all individuals. This strategy partitions the infeasible max-
imization problem into several relatively simple maximization problems, each of them
involving a small number of parameters. The calibration of the Dirichlet parameters
in Stage I is carried out by fitting an independent mixture of N Dirichlet distributions
to all individuals (5- N — 1 parameters). By first considering independent, rather than
dependent mixtures (i.e. HMMs), the complexity of the problem is reduced substan-
tially. Nevertheless, this approach is likely to yield estimators that are not considerably
different from those that would have been obtained from the HMM fit considering all
parameters simultaneously (cf. Section 4.3.1). In Stage II the Dirichlet parameters are
fixed and only the Markov chain parameters, i.e. the entries of the t.p.m. I', are esti-
mated for each individual (N - (NN —1) parameters for each individual). This can now be
realized for each individual separately, which drastically decreases the computational

complexity.

In Stage I the likelihood to be maximized is a product of probability density functions
of mixture distributions:

M 2 Tmi N A
LW AM ) = T S vt (@™ (4.1)
m=1i=1 t=1 n=1
where wgm’i) denotes the vector of observed proportions of d-, -, a- and S-waves for

individual m at time ¢ in night ¢, and ~,, denotes the mixing probability of the Dirichlet
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distribution associated with state n. The number of individuals used to calibrate the
Dirichlet parameters is M and, for individual m, the number of observations available in
night i is T}, ;. The observations originate from a set of individuals (see 4.3.2.1 for more
details), and for each individual from two separate overnight recordings of the EEG.
Clearly the ordering in which the observations appear in the likelihood computation
does not play any role. The likelihood given by (4.1) is maximized over the mixing
parameters ; (with the constraint v; + ... + vy = 1) and the Dirichlet parameter
vectors A9 € R‘éo, 1=1,...,N.

In Stage II the likelihood to be maximized for individual m is
L) =P (@™ L P ™) r0 . TP @)1t
P ("D P(f ) . TPt (12)

where

P(z{"") := diag <f>\<1> (™), Fam ($§m’i))> :

rm — ( i(;n)), 1,7 = 1,..., N, denotes the t.p.m. of the Markov chain for individual
m, 1 is a row vector of ones and 7w(™ = (m (™ ... 7x(™) is the solution to the linear
Z-(m) =1, i.e. the stationary distribution of the
fitted Markov chain®, associated with individual m. Note that the likelihood given by

(4.2) is maximized only over the parameters of the underlying hidden Markov chain of

system (™M™ = 7(m) gubject to T

the model; the parameters at the observation level, i.e. the Dirichlet parameters )\(i),
are fixed at the values obtained in Stage I.

Likelihood maximization in Stage I and II cannot be carried out analytically and hence
a numerical maximization algorithm is used instead (cf. Section 1.2 for more details).
A question of interest concerns the choice of the number of states N. We discuss this
in detail in Section 4.3.2.3.

4.3 Fitting the population HMM to the sleep EEG data

We now fit the PoOHMM to sleep EEG data acquired at the SHHS. We begin by looking
at a simple three-subject example that is supposed to illustrate the data and to compare
the proposed estimation method to the conventional maximum likelihood approach
(Section 4.3.1). Subsequently, Section 4.3.2 discusses the model fitting results for the
whole set of matched pairs as described in Section 4.1 (i.e. 102 subjects).

3In comparison to the previous chapters the notation was slightly modified in order to avoid confusion
between stationary distribution and é-waves.
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4.3.1 An illustrative and method-comparative example

Figure 4.1 displays the observed EEG spectral powers of the J-, -, a- and (-bands
that were made in the SHHS for three subjects (in each case for two nights). Each time

instant ¢ refers to an interval of 30 seconds.
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Figure 4.1: Observations of three subjects acquired at SHHS1 (first night) and SHHS2
(second night); dark grey segments: §-band spectral power, white segments:
0-band spectral power, black segments: «-band spectral power, light grey

segments: (B-band spectral power.

The PoHMM was fit to these data in two different ways, first by maximizing the joint
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likelihood and secondly by using the two-stage approach as described in Section 4.2.2.
Table 4.2 compares the following: i) the computational time that was needed to per-
form the model fits, i) the estimated Dirichlet parameters A (with n denoting the
associated state of the Markov chain), 4ii) the associated expected spectral band powers
1™ and iv) the stationary Markov chain distributions for the three subjects, i.e. w(m)
m = 1,2,3 (where m refers to the subjects).

Table 4.2: Four-state PoHMM fitted 1) via mazimization of the joint likelihood and 2)
via the two-stage approach for three subjects.

Joint likelihood Two-stage
Comp. time (Hrs.) 60.2 5.7

Dirichlet parameters Dirichlet parameters
PYREED VDV VD VD VO YR DV
state n =1 44.0 64 4.0 2.0 47.2 6.5 4.2 2.2
state n = 2 7.8 3.4 3.6 4.4 8.0 3.7 4.0 4.6
state n = 3 34.8 11.0 84 5.2 386 11.8 8.8 5.7
state n =4 124 2.5 1.7 31.0 13.2 2.6 1.8 33.3

Expected band power Expected band power

1) 0 o I} ) 0 o I}
state n =1 0.78 0.11 0.07 0.04 0.79 0.11 0.07 0.04
state n = 2 0.41 0.18 0.19 0.23 0.39 0.18 0.20 0.23
state n = 3 0.59 0.19 0.14 0.09 0.59 0.18 0.14 0.09
state n =4 0.26 0.05 0.04 0.65 0.26 0.05 0.03 0.65

Stationary state prob. Stationary state prob.
A n) ) ) (on)

subject m =1 0.23 0.22 0.3 0.02 0.22 0.24 0.52 0.02
subject m = 2 0.33 034 0.26 0.07 0.32 0.34 0.27 0.07
subject m =3 0.14 0.42 0.27 0.16 0.14 0.42 0.28 0.16

As pointed out above, method 1) might theoretically be preferable but is infeasible
for large populations. On the other hand, the two-stage method is feasible even for
very large populations and, in any case, is substantially faster. What is more, the
t.p.m.’s, 'MW, 1@ and T®), of the three subjects were estimated sequentially, but they
could have been estimated in parallel on three different processors, which would have
substantially reduced the computing time. The fact that the two-stage method can be

103



4 Population hidden Markov models for sleep EEG data

implemented in parallel is a potentially enormous advantage in this context. As can be
seen in Table 4.2, the two-stage method yields reasonable results in the sense that they
are very close to those obtained by joint maximization of the likelihood. In particular,
the expected spectral band powers differ by at most 0.02 (6-waves in state 2). These
findings verify that the two-stage-method can result in plausible estimates. It agrees
well with joint maximum likelihood in the scenarios where the latter is possible and

scales to large epidemiological studies of sleep.

The fit to this small sample illustrates that the fitted hidden Markov chains have sig-
nificantly different characteristics across subjects. According to the fit, subject 1 in
this example spends about 52% of the night in state 3 of the Markov chain, on average,
whereas state 2 is the most frequented state by subjects 2 and 3. The subsequent sec-
tion concentrates on the quantitative analysis of such differences for a large population
(M = 102) containing 51 healthy subjects paired to 51 sleep apneics.

4.3.2 Results for the whole population

In this section we use the proposed two-stage method to fit the POHMM to the whole
population of matched pairs (i.e. to M = 102 subjects). For each individual, the EEG
measurements of two nights as given in the SHHS are incorporated. We give the results
and interpretations using N = 5 states for the Markov chain. (Section 4.3.2.3 discusses
this choice and the consequences.) According to the proposed two-stage estimation
method the model fitting exercise is split: in Section 4.3.2.1 the Dirichlet parameters

are calibrated, and in Section 4.3.2.2 the Markov chain parameters are estimated.

4.3.2.1 Stage | — Calibrating the state-dependent distributions

In this first stage the state-dependent parameters are estimated by fitting an indepen-
dent mixture of N = 5 Dirichlet distributions to the EEG data. The first task is to
choose the calibration sample, i.e. the set of individuals to which the mixture is to be
fitted. Two natural candidates are the set of all healthy individuals or the set of all
individuals, regardless of their disease status. In our opinion the former is a better
option because it would seem more relevant to regard the properties of the sleep states
of healthy individuals as normative. For the diseased individuals the parameters might
differ, and it is of interest to quantify and investigate any such deviance; we thus re-
peated the model fitting exercise also for the set of all diseased individuals. The EEG
recordings from both nights made in the SHHS were taken into account. In Table 4.3
the estimated Dirichlet parameters and the associated expected spectral band powers

for the diseased and non-diseased subgroups are displayed.
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Table 4.3: Estimated Dirichlet parameters, associated expected spectral band powers of

d-, 0-, a- and B-waves and concentration parameters for healthy and diseased

subgroups.
Healthy subgroup
state Diri. parameter vector A 0 0 «a 8 s
n = 56.72  7.51 437 230 0.80 0.11 0.06 0.03 70.90
n =2 32.59 10.08 6.95 3.78 0.61 0.19 0.13 0.07 53.40
n=3 049 043 0.41 0.62 0.25 0.22 0.21 0.32 1.95
n=4 6.7 3.78  4.22 2.94 0.38 0.21 0.24 0.17 17.69
n = 4.16 1.81 1.32 19.32 0.16 0.07 0.05 0.73 26.62
Diseased subgroup
state Diri. parameter vector A ) 0 Q I} s(m)

n=1 58.00 7.42 459 243 0.80 0.10 0.06 0.03 72.44
n =2 36.03 10.23 7.53 4.18 0.62 0.17 0.13 0.07 58.47

n= 1.33  0.89 1.01 1.00 0.32 0.21 0.24 0.24 4.23
n = 12.89  6.38 6.77 443 0.42 0.21 0.22 0.15 30.48
n=>5 3.32 150 1.26 25.81 0.10 0.05 0.04 0.81 31.89

The two groups led to very similar results. The most striking differences between the
two fitted models arise in states 3 and 5, which is explicable insofar as these are the
least frequented states (see the discussion of the sleep architecture below) and hence are
expected to have less stable estimates. It is also interesting to note that the variances
themselves are variable for the different states. The lowest concentration parameter s
was estimated for state n = 3 (1.95 for the healthy and 4.23 for the diseased subgroup).
This could be an indication that the make-up of this sleep state differs largely across
individuals; hence a model with fixed Dirichlet parameters across individuals would
try to capture the heterogeneity of this sleep state by a small concentration parameter
s. As the two fits led to similar results it seems reasonable to adopt the parameters
estimated from the set of healthy individuals to the whole population, which we do in
the subsequent sections.

4.3.2.2 Stage Il — Individual state switching probabilities

After fixing the Dirichlet parameters at the values obtained from the calibration fit
performed above, we fitted a five-state Dirichlet HMM for each of the 102 individuals.
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(Recall that the set of these 102 Dirichlet HMMs with identical state-dependent distri-
butions across individuals is what we call the population HMM.) For each individual,
the EEG measurements made in two separate nights are taken into account. Of interest
is the stochastic structure of the resulting Markov chains. In what follows the fitted
Markov chains are analysed in two different ways. We first discuss the sleep architecture
by looking at the stationary distributions of the Markov chains. Subsequently, we anal-
yse the estimated transition probabilities in terms of the resulting expected frequencies

of transitions.

Sleep architecture

To gain insight in the results we start by looking at the stationary distributions (™),
m = 1,...,102, that give the average proportions of time that the individuals spend
in the different states according to the fitted model. In the following the indices
m = 1,...,51 correspond to the healthy individuals while those with the indices
m = 52,...,102 correspond to the diseased ones (and the matched pairs are (1,52),
(2,53), ..., (51,102)). We obtain

51
1
T healthy = = D 7™ 2 (0.241,0.407,0.050,0.270, 0.032)
m=1
and -
1
T discased = =7 (™) ~ (0.223,0.418,0.054, 0.279,0.026) .
m=52

Thus, according to the fit of the PoOHMM, the EEG-derived sleep architecture, i.e. the
average proportion of time the individuals spend in the different HMM states, is similar
for healthy and diseased subjects. This confirms findings of papers dealing with sleep
architecture analyses based on the hypnogram (e.g. Swihart et al. 2008). The most
frequented HMM state is state 2 in which about 40 — 42% of the night is spent. The
least frequented HMM state is state 5 in which about 3% of the night is spent.

Apart from considering the population level averages it is interesting to note that the
stationary distributions of the individuals show quite high variation. In states 1, 2 and
4 all individuals have stationary probabilities significantly larger than zero (i.e. > 0.01).
States 3 and 5 on the other hand are not frequented by all individuals. According to
the fit for four individuals (two healthy and two diseased) the stationary probability of
being in state 3 is smaller than 1075, For state 5 this is the case even for 34 individuals
(16 healthy and 18 diseased). We emphasize that this does not necessarily mean that
these individuals never switch to the corresponding states — they might simply not
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have done so on the two nights the observations were recorded.

Ezxpected numbers of transitions

Another way of comparing the Markov chains is to analyse the state transition proba-
bilities. The expected number of transitions of individual m from state ¢ to state j in
a series of T observations is obtained as

(m) _ (m)_ (m)
Etij (T) = (T - 1)m; Yij

(2

(see Zucchini and MacDonald 2009). Table 4.4 displays the averaged values of the
expected numbers of transitions per hour, from state i to state j, for the two groups of
interest (healthy and diseased individuals), i.e.

151 (m) 1102 (m)
g{'EE:IEtw (120) and > Et7(120),

m=1 m=>52

for 4,5 = 1,2,3,4,5.

Table 4.4: Averaged expected numbers of transitions per hour for healthy and diseased

individuals.
Healthy subgroup
to state
from state 1 2 3 4 5
1 23.97 3.44 0.12 1.08 0.01
2 3.84 41.71 0.04 2.89 0.00
3 0.09 0.01 551 0.18 0.16
4 0.70 3.32 0.14 2792 0.01
5 0.02 0.00 0.14 0.02 3.68
Diseased subgroup
to state
from state 1 2 3 4 5

1 20.06 5.02 0.11 137 0.01
2 5.5 4123 0.03 288 0.00
3 0.08 0.01 6.02 028 0.07
4 0.86 3.44 0.23 28.62 0.02
) 0.01 0.00 0.07 0.02 3.02
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For transitions from state i to state j, i # j, we applied the following two-sided #test
to the differences between expected transition numbers for matched pairs:

Hy : pij =0,
Hy :piy #0),

where 1;; denotes the expectation (in the sense that the chosen individuals constitute
a random sample of persons) of the pairwise differences

(m) (m+51) _
Et; (120) — Et;; (120), m=1,...,51.

v

At the 5% significance level the null hypothesis is rejected for transitions between states
1 and 2. In this case the expected number of transitions — in both directions — is
significantly higher for diseased subjects. It is also rejected for transitions between states
3 and 5. In this case the expected number of transitions — again in both directions —

is significantly higher for healthy subjects.

Summing up the off-diagonal elements from the tables yields the averaged expected

total numbers of cross-state transitions:

51
1 m
Z =1 Z Etl(j )(120) =16.21 (healthy subgroup)
ije{1,2,34,5},i#j  m=1
and
| o2
3 o 3" E#7(120) = 20.05 (diseased subgroup).

i,j€{1,2,3,4,5},i#]  m=52

Not considering the group averages, and instead applying a two-sided #-test to the
pairwise differences, yields a p-value of 0.014, meaning that the null hypothesis of a
zero mean must be rejected at the 5% significance level. Thus the expected total
number of cross-state transitions is significantly higher for diseased individuals.

In summary, diseased individuals tend to switch significantly more often between various
states. Most of the switches occur between states 1 and 2, followed by the switches
between states 2 and 4. The most striking difference between the groups lies in the
former case: switches between states 1 and 2 occur about 50% more often in the group

of diseased individuals.

Not captured by this analysis of the group averages is the heterogeneity within the
groups. Although the difference between the average expected numbers of cross-state
transitions is substantial, there are large fluctuations within the groups. This can be
seen in Figure 4.2, where histograms and kernel density estimators of the expected
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numbers of cross-state transitions per individual, i.e. the values

> Etz(;n)(l?()% m=1,...,102,
i’j€{172)374)5}>i7£j

separated in the groups of healthy and diseased individuals, are displayed.
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Figure 4.2: Histogram and kernel density estimator for the expected total number of

cross-state transitions.

The plot does not suggest that the distribution for the set of diseased individuals is
simply shifted. Instead, according to this plot about four-fifths of the diseased individ-
uals do not show an anomalously high number of cross-state transitions. There seem
to be merely a subgroup in the group of diseased individuals which is responsible for

rendering the higher average expected number of cross-state transitions.

4.3.2.3 Choosing the number of states

We have given the results obtained for a PoOHMM with five states. This number is in
agreement with the sleep states stipulated by the American Academy of Sleep Medicine
(AASM) manual from 2007 (REM, wake and Non-REM stages I-III). However, our
approach is entirely empirical, and based only on banded spectral properties of one of
the EEG nodes. Hence, an exploration into the robustness of conclusions to the number

of states is warranted.

In order to choose an appropriate and statistically founded number of states, the
PoHMM was fitted for numbers of states N = 3,4,5,6. The results of the PoOHMM fits
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4 Population hidden Markov models for sleep EEG data

and the results of the independent Dirichlet mixture fits, i.e. the models fitted in Stage
I, are given in Table 4.5. Apparently and unsurprisingly, the PoHMMs are superior
to the independent mixtures since the latter do not take into account the significant

autocorrelation of the series.

Table 4.5: Log likelihood, number of parameters and BIC of the PoHMMs and the in-
dependent Dirichlet miztures for different numbers of states.

model N log £ # para. BIC
Ind. mix. 3 661154.6 14 -1322140
4  684817.9 19 -1369407
5  692949.1 24 -1385609
6 698586.3 29 -1396823
PoHMM 3 740792.2 624  -1473865
4
5
6

775518.6 1240  -1536081
788041.6 2060  -1551236
793161.3 3084  -1549124

From the gaps between the likelihoods it is evident that employing less than five states
leads to an underfitting. On the other hand, the models with five and six states yield
similarly well fitting results. In the light of the possibility that classical sleep stag-
ing is playing a key role in the determination of the HMM states, both models seem
reasonable. One might conjecture that the simpler layout possibly corresponds to the
decomposition in three Non-REM states plus waking and REM, while the six-state
model considers a fourth Non-REM state, as stipulated in the standard manual for
scoring of sleep stages (Rechtschaffen and Kales 1968).

For parsimony, and as the improvement in the fit obtained by employing six states
arguably is negligible (and in fact BIC chooses the five-state model), we presented our
analysis for five states in Sections 4.3.2.1 and 4.3.2.2. Because this choice is, to some
extent, arbitrary, it is interesting to investigate the differences in results between the
five- and the six-state model. Table 4.6 gives the expected band powers associated with
the states obtained in the PoOHMMs with five and six states respectively.

The state labelled by n = 2 in the five-state PoOHMM appears to have split into two
different states, namely those labelled n = 2,3 in the right table, when moving to the
six-state model. Due to this split, two other states are slightly altered (states 1 and 4 in
the left table correspond to states 1 and 5 in the right one), and two states are hardly
affected (states 3 and 5 in the left table correspond to states 4 and 6 in the right one),
when moving to the six-state PoHMM.
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4.4 Concluding remarks

Table 4.6: Expected band powers in the PoHMMSs with five and six states.

5-state model G-state model
state  expected band power
n 1) 0 « I6]
0.82 0.10 0.05 0.03
0.72 0.15 0.09 0.04
0.57 0.20 0.15 0.09
0.25 0.22 0.20 0.33
0.35 0.21 0.26 0.18

0.16 0.07 0.05 0.72

state  expected band power
n 1) 0 « 15}
0.80 0.11 0.06 0.03
0.61 0.19 0.13 0.07
0.25 0.22 0.21 0.32
0.38 0.21 0.24 0.17
0.16 0.07 0.05 0.72

UL = W N =

S OB W N

4.4 Concluding remarks

The HMM developed compares time series dynamics in a longitudinal data setting
involving two EEG time series for each of 102 individuals. The nature of the data
motivated the use of Dirichlet distributions for the state-dependent process. Fitting a
separate Dirichlet HMM to each individual would have substantially limited the pos-
sibility to compare results across subjects. Thus the primary aim of the population
HMM was to account for the heterogeneity across individuals whilst enabling for inter-
subject comparisons. The proposed two-stage fitting process is easily carried out. It
scales to large studies and integrates well with cluster computing. A potential blemish
of the proposed model is that it does not account for the apparent nonhomogeneity of
the data. The model thus represents a rather basic first approach to modelling of EEG
series via HMMs.

The given application to sleep EEG data revealed that the time spent in the model-
derived sleep states is equivalent across carefully matched diseased (sleep apnea) and
non-diseased subgroups. Our analysis confirms results from studies on hypnograms,
i.e. sleep stage time series obtained by visual classification (cf. Swihart et al. 2008).
We do note differences, between diseased and non-diseased subjects, in the model-
derived state transition rates. Individuals suffering SDB tend to switch more often
between states than do healthy individuals. This also confirms results obtained when
investigating hypnograms (cf. Swihart et al. 2008). However, unlike data analyses
using the hypnogram, our approach is entirely automated, being directly applied to the
processed EEG signal.

111



4 Population hidden Markov models for sleep EEG data

112



Summary and outlook

We conclude with a summary of the main results along with brief discussions of possi-
ble future research related to the individual topics. The three main parts of the thesis,
Chapters 2—-4, deal with HMMs that address special needs. The first part, Chapter
2, is concerned with HMMs that have dwell-time distributions other than geometric.
In Chapter 3 it is demonstrated that HMMs are useful tools for fitting nonlinear and
non-Gaussian state-space models. Lastly, in Chapter 4, an HMM for populations of
sleep EEG time series is developed. Details of the findings are as follows.

A restrictive feature of standard HMMs is that the state dwell-time distributions are
necessarily geometric. In Chapter 2 it is shown how this restriction can be relaxed to
allow for arbitrary dwell-time distributions while preserving the Markov property of the
latent process. This is done by implementing an existing idea, the use of state aggre-
gates, in a new way. The resulting class of HMMSs can represent any given dwell-time
distribution, either exact or approximately, where, in general, the approximation can be
made arbitrarily accurate. The models described in Chapter 2 can either be regarded
as approximations to HSMMs or as extensions of ordinary HMMs that offer additional
flexibility for the state dwell-time distributions.

The range of methodology that is currently available for HMMs is much more extensive
than that for HSMMs. HMMs are easier to apply and to adapt to meet the needs of
applications having special features. In particular one can easily incorporate covariates,
in the state-dependent process as well as in the latent process. Furthermore, unlike in
the case of HSMMs, it is simple to fit stationary models of the proposed type.

The literature on hidden semi-Markov modelling contains relatively few applications.
Generally, in the author’s view, HSMMs have not yet attracted the attention they de-
serve. Perhaps the ease of the HMM approximation method can make a contribution
in that it makes them more conveniently accessible to practitioners.
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Summary and outlook

HMMs with finite state space are nested in the broader family of SSMs. However,
in general the likelihood of SSMs can not be evaluated directly; statistical inference
for nonlinear and non-Gaussian SSMs with infinite state space is usually much more
challenging than for (standard) HMMs. The material in Chapter 3 illustrates that
structured HMMs provide convenient and flexible devices for accurately approximat-
ing a diverse variety of SSMs. More precisely, it is shown that general-type SSMs
can be approximated by suitably structured HMMs. The approximation can be made
arbitrarily accurate at the cost of increasing numerical complexity. One of the main
benefits compared to competing approaches, in particular to Monte Carlo methods, is
that the programming effort involved in fitting the structured HMMs is very modest
(cf. Appendix A4, which contains the functions used to compute and to maximize the
likelihood for the SVt model; fitting other SSMs with the proposed method generally
involves no more than straightforward changes to that code.). As in case of the HMM
approximations to HSMMs, the proposed method enables one to apply all standard
HMM techniques.

One of the most important applications of the approximation method via structured
HMMs is stochastic volatility modelling. The evidence presented in Section 3.2 sup-
ports the claim that nonstandard SV models can outperform the standard SV models
SVo and SVtin terms of the AIC, goodness of fit (as assessed by the behaviour of resid-
uals) and also the type of backtesting that is applied by central banks and regulatory
authorities in order to assess the accuracy of models in terms of the Basel Accords.
Series of daily returns are sufficiently long for it to be worthwhile to “invest” in the
few additional parameters required for such extensions, in the hope of improving the
fit and the forecasting performance.

Future research could involve the exploration of other nonstandard state-space models,
for SV modelling as well as in other scenarios. Due to the high flexibility of HMMs there
are countless possible applications. One could also attempt to apply structured HMMs
to estimate SSMs with higher-dimensional state spaces. The two-and three-dimensional
cases are likely to be of most interest — numerous applications with states representing
locations are imaginable. As the method becomes more involved in higher dimensions,

alternative ways of choosing appropriate grids would need to be explored.

The purpose of population HMMs, discussed in Chapter 4, is to enable comparisons
between a number of HMMs fitted to longitudinal data. The proposed two-stage fitting
process is easy to use and, unlike joint maximum likelihood, it scales to large studies and
integrates well with cluster computing. Numerical studies demonstrate good agreement
between the proposed two-stage fitting method and full maximum likelihood, while also
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demonstrating substantial decreases in computing time. The proposed model is applied
to a novel study of sleep and its correlates. Despite being based entirely on the EEG
signal, our results confirm established hypotheses derived from hypnograms that are
obtained by visual classification of the polysomnogram data.

Generally speaking, HMMSs prove useful to extract features and study sleep phenomena
for epidemiological studies. On the other hand the proposed model represents a rather
basic first approach to modelling of EEG series via HMMs. Important future research
would include covariate adjusted and nonhomogeneous variations of the model. Further-
more, the population HMM should be compared to alternative modelling approaches, in
particular to models that incorporate random effects to explain the heterogeneity across
the time series (see e.g. Altman 2007). The main challenge here will be to overcome
the computational problems. The models proposed by Maruotti (2007) might offer a

way forward.
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Appendix

Al: Parameter estimates for models fitted to the Old Faithful

data

Parameter estimates for the two-state gamma HMM

Kk = (116, 206) (shape parameters)
6 = (0.56, 0.45) (scale parameters)
p = (64.6, 92.6) (state-dep. means)
= 0.00 1.00
I = t.p.m.

( 0.08 0.92 ) (tpm.)

8 = (0.07, 0.93) (stationary distribution)

Parameter estimates for the three-state gamma HMM

R = (94, 358, 285)
6 = (0.70, 0.25, 0.34)
fi = (65.6, 89.6, 97.2)

0.00 0.00 1.00
I'=1] 0.05 046 0.50
0.14 0.79 0.07

5 = (0.08, 0.55, 0.38)
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Parameter estimates for the four-state gamma HMM

Parameter estimates for the five-state gamma HMM

118

R
0

u

=)

5= (0.08, 0.24, 0.23, 0.27, 0.18)

’?,:
0 =

~

hS

=)

0.00
0.00
0.26
0.51

0.25
0.65
0.57
0.28

(100, 592, 497, 282)
(0.65, 0.15, 0.19, 0.35)
= (65.4, 86.2, 93.0, 99.9)

0.00
0.05
0.06
0.19

5 = (0.08, 0.23, 0.51, 0.19)

(100, 564, 585, 406, 270)

(0.66, 0.15, 0.16, 0.23, 0.37)
= (65.4, 86.4, 93.0, 93.4, 99.8)

0.00
0.05
0.13
0.00
0.18

0.00
0.00
0.00
0.54
0.53

0.20
0.29
0.00
0.46
0.08

0.01
0.35
0.66
0.00
0.19

0.75
0.30
0.11
0.02

0.79
0.30
0.20
0.00
0.01



Parameter estimates for the four-state second-order gamma HMM

(101, 585, 518, 270)
(0.65, 0.15, 0.18, 0.37)
7 = (65.3, 86.0, 92.6, 98.7)

R:
0=

0 0 64 36

2% 34 33 7
40 60
7 8 62 23
9 76 13 3
5 95
100-T = 3 53 44
7 2 51 17
12 38 50 0
10 90
6 54 40
8 14 68 10

0 100 O 0

Here the state pairs are, in order, (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,3),
(3,4), (4,1), (4,2), (4,3) and (4,4); the state pairs (1,1), (1,2) and (2, 2) almost surely
do not occur. Structural zeros are displayed in grey font. Note that the row sums of r

given above do not all equal one due to rounding.

Stationary distribution of the 13-state first-order Markov chain:
1006 = (0.9, 6.8, 1.0, 11.7, 9.0, 3.2, 8.7, 26.1, 8.1, 3.5, 13.0, 7.5, 0.8)
Stationary distribution of the (equivalent) four-state second-order Markov chain:

100 -6 = (7.6, 21.6, 46.1, 24.6)
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A2: Some proofs related to HMMs with arbitrary dwell-time
distributions

Proof of Proposition 1.

wiy =P (St € ;| SF € I, Sty ¢ 1)
P (St € 1;,S; € I)
T P(Sf, ¢ 1,5 € L)
kel P (St € I;| Sf = k)P(Sf = k)
 Yker, P(St ¢ 1| S; = k)P(Sf = k)
Zkeli wijei(k —1; + 1)IP(S,§* = k:)

= Zkeji Zl;ﬂ wilci(k — Zz_ -+ 1)IP(S; = )

= Wiy,

(since, by assumption, i # j)

since Zl# wy = 1. O]

Lemma 1. Let k€ {1,...,N} and n € N. Then

n

[T = (@) =1 Fi(n). (A1)

i=1
Proof. By induction: First note that 1 —¢x(1) =1 — pg(1) =1 — Fi(1). Now assume
that (A.1) holds for some n. If Fy(n) <1 then

n+1 n

T[0 - cli)) = (Hu - ckm)) (1 ex(n+1))

i=1 =1
(1R (1 2t
= (1= Film) (1 1— Fk(”))

=1— (Fp(n) +pr(n+1)) =1 - Fr(n+1).
If F,(n) =1 then Fiy(n+1) =1 and
n+1
[TQ =) =(1-Fn)(l—cr(n+1) =0=1-Fp(n+1).
=1
O

Proof of Proposition 2. The case my = 1 is trivial, so we consider the case my > 2.
Since every sojourn in the state aggregate Ij, starts in state ¢, , and taking into account
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the special structure of I', it follows that

pZ(l) = IP(St_H Qf I ‘ Sy € I, Sy 1 §é [k)
= Y wksar(1) = (1) = pg(1).

1<s<N,s#k

We now consider pi(r) for 2 < r < my. The structure of I is such that the dwell time
in state aggregate Iy, is of length r if and only if the state sequence successively runs
through the states i, ,7;; +1,...,4, +7 — 1 and then immediately switches from state
i, +1 — 1 to a different state aggregate.

If Fi(r — 1) <1 then, by (A.1), it follows that

r—1
pr(r) = H(l — ¢ (7)) Z WksCr(T)
=1 1<s<N,s#k
_ Pr(r) _
= (1— Fy(r— 1))T(r—1) = pi(r),

and if Fi(r —1) =1 then pj(r) = 0 = pi(r) .

Finally we consider the case r > my. The dwell time in state aggregate [j is of
length » > my if and only if the state sequence successively runs through the states
it + 1,0 ,ig‘ — 1, then remains in state z;: for r — my + 1 time units and finally
switches to a different state aggregate.

If Fi,(my — 1) < 1 then, again by (A.1), it follows that

mg—1
pir) = ] 0 =c@®)) (L= culme)™™ > wiscr(mp)
i=1 1<s<N,s#k
_ r—my p (m )
= (1= Fi(my, = 1) (1 = ex(mp))" ™ 7= F’;(m]; Y

= pr(mi) (1 — cx(my)) ™",

whereas if Fjy(my — 1) = 1, then ¢x(my) = 1, and so pi(r) = 0 = pk(mk)(l —
r—mg
ck(my)) o
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A3: Derivation of moments for the nonstandard SV models

Stationary moments of g; in the SVM¢ model

We start with a technical lemma:
Lemma 2. If {g;} is second-order stationary, i.e. if the inequality (3.8) holds, then
lagr + (1 —a)pa| < 1, (A.2)

i.e. {gi} is first-order stationary (cf. Wong and Li 2000).

Proof. Indirectly: we first show that
a1+ (1 —a)pe > 1 (A.3)
excludes second-order stationarity. If |¢1],|¢2| > 1, then
adf +(1—a)ds > a+(1-a)=1,
which contradicts second-order stationarity (cf. the inequality (3.8)). If ¢1, ¢2 < 1, then
apr+(1—a)pa<a+(1l—a)=1,

which is inconsistent with (A.3). Thus, assume without loss of generality that |¢;]| < 1
and ¢2 > 1. Then, from (A.3),

a(pr —d2) + P2 > 1
= a1 — $2)(P1 + ¢2) + d2(d1 + d2) > ¢1 + P2

= ap1 — 2)(d1 + ¢2) + 95 > b1 + d2 — d12

TN a(pr — d2) (1 + ¢2) + ¢3 > 1

= a(¢] — ¢3) +¢3 > 1
= agi + (1 - a)¢s > 1,

which contradicts second-order stationarity. (Note: (x) holds as

¢ <1
= ¢1(1—¢2) > 1— 2
= o1+ P2 — P12 > 1)

Analogously one shows that
agr + (1 —a)ps < -1

excludes second-order stationarity. O
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We now compute the mean of {g;} under second-order stationarity. First of all, we have

E(giv119:) = (ad1 + (1 — a)p2)g: -

Taking expectations on both sides yields

E(gt+1) = (a¢1 + (1 — a)¢2)E(gt) -

Second-order stationarity implies first-order stationarity and thus E(g;) = pq Vt. Hence

Mg = (a¢1 + (1 - a)¢2)ﬂg
= /J“g = 07

as a1 + (1 — a)¢p2 # 1 according to Lemma 2.

The stationary variance of {g;} can now be computed as follows:

var(gey1) = E(var(gesi|ge)) + var(E(ger1 | )
= E(ao? + (1 —a)o? + a(l — a)(p1g: — d29:)?)
+var(agige + (1 — a)d2gt)
= a0t + (1 - a)o3 +a(l —a)(¢1 — ¢2)*(var(g) + (E(9))?)
+Hagy + (1= a)dz)?var(ge).

Second-order stationarity implies that E(g;) = g = 0 Vt (see above), and that var(g;) =
Ug Vt, and thus

o = aoi + (1 — @)oi + (a(l — a)(d1 — ¢2)* + (ag1 + (1 — a)¢2)?) o,
=ac? 4 (1 —a)os + (aﬂﬁ + (1 — a)éf)g) 03
9 ao? + (1 — a)o3

@ngl—(aﬁ—i-(l—a)d)%)'

Stationary moments of g; in the MSSVt model

We have
E(9t+1 \91:7 at) = gt -

Taking expectations on both sides yields

E(gt+1) = ¢E(gt) -
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Under stationarity we have E(g;) = g Vt, and thus

,ugng,ug
:>/Jg:()7

as |¢| < 1.

The stationary variance of {g;} can now be computed as follows:

var(gi+1) = E(var(gi+1| g¢, ou)) + var(E(gi+1 | g¢, o))
= E(02,) + ¢*var(g;) -

Stationarity of {oy} and {g} implies that E(c2,) = 5§a)0% + 5£Q)J% Vt, and that
var(g;) = 03 Vt, and thus

02 = 5§O‘)U% + 5§Q)U% + ¢20§

g
o 80+ o0
g 1_¢2

Stationary moments of g; in the SV V¢ model

Stationarity implies that E(g;) = 0 Vt. (The proof is analogous as in case of the MSSVt
model.) To obtain the stationary variance, consider

var(ge1) = E(var(ges | gt)) + var(E(gi41 1 g¢))
=w+ ’yE(exp(gt)) + (;52var(gt) .

Using the Taylor approximation exp(z) ~ 1+ z + 0.5z and assuming second-order
stationarity, i.e. var(g;) = 03 Vt, yields

op ~w+7(1+E(g:) + 0.5E(g7)) + ¢°0;
~ w4+ v(1+0.502) + ¢
9 w+y

=4 ~N —.
%97 105y — 42

Stationary moments of y; in the models SVMt, MSSVt and SVVt

In each of the models SVMt, MSSVt and SV Vi, the observation equation is given by

yr = et(Bexp(0.5g¢) + &),
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where ¢; is t,-distributed. Thus,
E(y:) = E(E(yt| 9:)) = E((Bexp(0.5g:) + &) Eey ) = 0 Vt.
=0
Furthermore, if {g;} is stationary, then
var(y;) = E(y )

YD)
( exp(0.5¢¢) —i—f)QE(st))

(exp(gt)) + 2B¢E(exp(0.5g¢)) + 52)

— (B°E
(52 140.507) + 28¢(1 + 0.12507) + £2)
“((

I
Htﬂ

2
B4 &) +02(0.56% 4+ 0.250¢))

l\D

E(y!) = E(E(yi | 91))
= E((ﬁ exp(0.5¢g¢) + 5)4E(5§))

1/2
B <u—§><u—4> (3"Elexp(201)) + 65°€ E(exp(g1)) + ¢

+ 433¢E(exp(1.5¢;)) + 4ﬁ§3E(exp(0.5gt)))
- 302
T -2 -4
+48%(1 + 1.12502) + 4B¢3(1 + 0.12502))

(B(1 +202) + 68%¢2(1 + 0.502) + £*

2
= (1/_3)1/(1/_4) ((B+8)*+ 020" +35°¢> + 4.55°¢ + 0.56¢7)) .
and, consequently,
kurtosis(y;) = E(y:)
( var yt )

v—2 (ﬁ+f)4+6203
((ﬁ +&)2 + 6103)2 ’

where ¢; = 0.56% 4+ 0.253¢ and ¢y = 33%€% + 26* 4+ 4.533¢ + 0.56€5.

3

Stationary moments in the GSVi model

Since, conditional on g,
gt+1 ~ F(¢gt + A, 1) )
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we have
E(gir1|9¢) = og9¢ + A,
and so

E(gt+1) = ¢E(gt) + A.

If {g:} is stationary, then E(g;) = pq V¢, and

Hg = Ppig + A
A
1—¢°

S g =

The details to derive the stationary variance are as follows:

var(gir1) = E(var(geri|ge)) + var(E(ges1 | gt))
= E(¢g: + \) + var(¢g: + )
= ¢BE(gt) + A+ ¢*var(gy).

Stationarity implies that var(g;) = o} V¢, and
7% = (o2 + ) (1)
g 1—¢
= A(i +1)(1—¢*)7!

1=9¢
A

T =91 -9
Given stationarity of {g:} (i.e. if ¢ € [0,1)), one further obtains

E(y:) =E(E(y: | g:)) = E(6V gt + 53@) =0Vt,
=0

E(y;)

(E(yi | 90)
(ﬁQ(gt + f)E(Ef))
= 58y + ).

var(yr)

E
E

E(y}) = E(E(y/ | 9))
=E(8"(g¢ + ©)’E(e}))
32

- mﬁ“ (02 + p2 + 26pg + €7)
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and

E(y})

(Vau"(yt))2
v—2 op+ (g +¢)°
v—4 (Mg +§)?

_ V=2 Hg
‘3u—4<”<ug+5>2<1—¢2>>‘

kurtosis(y;) =
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A4: R code for fitting an SVt model

This appendix gives the R code for fitting the stochastic volatility model SV¢ by means
of structured HMMs. The computation uses four functions:

e SV.HMM.pn2pw transforms the (constrained) natural parameters to (unconstrained)

working parameters; e.g. ¢ is mapped from (—1,1) to the whole real line;
e SV.HMM.pw2pn performs the inverse transformation to the working parameters;
e SV.HMM.mllk computes minus the log likelihood of the structured HMM;

e SV.HMM.mle performs the numerical minimization of the function SV.HMM.ml1k.

Transform natural parameters to working parameters

SV.HMM.pn2pw<-function(phi,beta,sigma,nu)

{

pvec <- c(log((1+phi)/(1-phi)),log(beta),log(sigma),log(nu))
return(pvec)

¥

This function bijectively maps each of the constrained natural parameters, i.e. the model
parameters ¢ € (—1,1), 8 > 0, 0 > 0 and v > 0, to R, and returns the transformed

values summarized in a vector pvec; cf. Section 1.2.

Transform working parameters to natural parameters

SV.HMM. pw2pn<-function(pvec)

{
return(list (phi=(exp(pvec[1])-1)/(exp(pvec[1])+1),
beta=exp(pvec[2]),sigma=exp(pvec[3]) ,nu=exp(pvec[4])))

This function performs the inverse transformation to the vector pvec of working pa-
rameters. It returns a list that comprises the natural model parameters ¢, 3, ¢ and v.
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Minus the log likelihood of structured HMM that approximates the SVt model

SV.HMM.mllk<-function(pvec,x,N, gbmax)

{
P <- SV.HMM.pw2pn(pvec)
gb <- seq(-gbmax,gbmax,length=N+1)
# midpoints of the intervals used in the discretization:
g <- (gb[-1]1+gb[-(N+1)1)*0.5

Gamma <- matrix(O0,N,N)
for (i in 1:N)
{
goo <- diff (pnorm(gb,p$phi*gl[i],p$sigma))
Gamma[i,] <- goo/sum(goo)
}
delta <- diff(pnorm(gb,0,p$sigma/sqrt(1-p$phi~2)))
beg <- p$betaxexp(g/2)
foo <- deltax1/beg*dt(x[1]/beg,p$nu)
# scaling:
sumfoo <- sum(foo)

lscale <- log(sumfoo)

foo <- foo/sumfoo
for (t in 2:length(x))
{

foo <- fool*),Gamma*1/beg*dt (x[t] /beg,p$nu)
# scaling:

sumfoo <- sum(foo)

lscale <- lscale+log(sumfoo)

foo <- foo/sumfoo
}
mllk <- -lscale
return(mllk)

}

This function computes minus the log likelihood for a given vector pvec of working
parameters, a given vector x of observations, a given resolution N for the discretization

and a given range [—gbmax, gbmax]| for the g;-values to allow for; cf. Section 3.1.
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Mazximum likelihood estimation of the structured HMM

SV.HMM.mle<-function(x,N,gbmax,phiO,betal,sigmal,nu0)

{

pvecO <- SV.HMM.pn2pw(phiO,betal,sigmal,nu0)

mod <- nlm(SV.HMM.mllk,pvecO,x=x,N=N,gbmax=gbmax,print.level=2)
p <- SV.HMM.pw2pn(mod$estimate)

return(list (phi=p$phi,beta=p$beta,sigma=p$sigma,nu=p$nu))

}

This function applies the minimization routine nlm in order to numerically minimize the
function SV.HMM.mllk. Before applying the algorithm the initial values, phiO, beta0,
sigma0l and nuO, are transformed to the working parameter space. The resulting esti-

mates for the (natural) parameters are returned in a list.
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A5: Parameter estimates for the SV models

Table A.1: Parameter estimates for the SVy

model (N = 100, —gmin = Gmaz = D).

& & 10083
Sony 0.960 0.238 1.947
Time Warner 0.995 0.125 2.288
Toyota 0.976 0.171 1.676
Trav. Comp. 0.969 0.239 1.625
BP 0.986 0.113 1.519
Roy. D. Sh. 0.987 0.118 1.571
Bank of Am. 0.993 0.167 1.658
Citigroup 0.991 0.179 1.919
Deu. Bank 0.988 0.150 2.034
Morgan St. 0.990 0.149 2.364

Table A.2: Parameter estimates for the SVt model (N = 100, —gmin = Gmaz = D)-

¢ 5 1008 v
Sony 0.983 0.141 1.759 8.5
Time Warner 0.997 0.085 2.138 11.3
Toyota 0.984 0.129 1.569 12.9
Trav. Comp. 0.987 0.140 1.456 8.0
BP 0.990 0.092 1.436 16.7
Roy. D. Sh. 0.990 0.101 1.494 19.5
Bank of Am. 0.996 0.119 1.588 11.0
Citigroup 0.995 0.122 1.822 10.0
Deu. Bank 0.994 0.101 1.817 8.5
Morgan St. 0.993 0.116 2.187 11.9
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Table A.3: Parameter estimates for the SVMt model (N = 100, —gmin = 9maz = 8-

~

é G a 1003 ©  100&
. .004

Sony 0.738 0.00 0.111 1.048 8.6 0.703
1.016 0.217

Time Warner 0.974 0.031 0.923 1.161 12.2 0.465
1.178 0.355
. .101

Toyota 0.979 0-10 0.974 0.849 13.7 0.650
1.336 1.187
. .021

Trav. Comp. 0.958 0.0 0.746 0.549 7.5 0.758
1.086 0.453

BP 0.972 0-026 0.756 0.206 16.5 0.969
1.063 0.441
. .02

Roy. D. Sh. 0.975 0-025 0.798 0.203 16.6 0.996
1.073 0.503

Bank of Am. 0-970 0246 0.579 1.286 10.6 0.576
1.036 0.003
.94 .

Citigroup 0.945 0-035 0.781 1.343 11.0 0.000
1.166 0.138

Deu. Bank 0-987 0.174 0916 0.933 85 0.754
1.087 0.002
.952 .

Morgan St. 0-95 0.037 0.825 1.265 13.0 0.485
1.185 0.220

134



Table A.4: Parameter estimates for the MSSVt model (N = 200, —gmin = Gmaz = 6).

()

& o r 1003 ©  100&
14 .994 0.
Sony 0.986 0.149 0.994 0.006 0.962 9.1 0.708
2.253 0.357 0.643
Time Warner 0.998 0.085 0.986 0.014 1.078 11.3 0.654
0.292 0.089 0.911
.092 . 011
Toyota 0.986 0.09 0.989 0.0 0.843 14.6 0.692
0.448 0.029 0.971
Trav. Comp. 0.988 0.016 0-991 0.009 0.487 7.4 0.775
0.423 0.013 0.987
BP 0.987 0.025 0.989 0.011 0.448 16.9 0.831
0.419 0.037 0.963
.022 0. .017
Roy. D. Sh.  0.984 0.0 983 0 0.512 17.9 0.803
0.434 0.055 0.945
011 . .
Bank of Am. 0.992 0.0 0.997 0.003 1.365 11.4 0.350
0.239 0.004 0.996
0.025 0.968 0.032
Citigroup 0.987 1.049 11.2 0.359
0.491 0.162 0.838
. 981 0.01
Deu. Bank 0.993 0.050 0.981 0.019 0.777 88 0.765
0.367 0.049 0.951
0.110 0.998 0.002
Morgan St. 0.994 1.096 13.2 0.842
0.352 0.004 0.996
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Table A.5: Parameter estimates for the SVVt model (N = 100, —gmin = Gmaz = 6).

¢ & 1005 1003 © 100&
Sony 0.985 0.026 0.382 1.281 8.5 0.449
Time Warner 0.998 0.010 0.427 2.281 11.3 0.619
Toyota 0.985 0.043 0.042 0.898 13.2 0.006
Trav. Comp. 0.994 0.062 0.064 0478 7.4 0.797
BP 0.995 0.030 0.151 0.487 16.5 0.863

Roy. D. Sh. 0.996 0.038 0.119 0487 17.0 0.916
Bank of Am. 0.998 0.030 0.088 0.852 10.6 0.595
Citigroup 0.998 0.007 0.450 1.710 10.0 0.167
Deu. Bank 0.996 0.037 0.017 0.563 85 0.839
Morgan St. 0.997 0.008 0.826 2.132 12.9 0.441

Table A.6: Parameter estimates for the GSVt model (N = 100, gmin = 0, gmaz = 200).

o N 1003 ¢

Sony 0.984 0.547 0.326 8.4 5.435
Time Warner 0.999 0.146 0.333 11.8 4.503
Toyota 0.984 0.502 0.296 12.2 6.475
Trav. Comp. 0.991 0.149 0.356 8.0 4.869
BP 0.985 0.247 0.318 18.8 8.307

Roy. D. Sh. 0.987 0.187 0.355 22.8 7.129
Bank of Am. 0.999 0.013 0.532 12.9 0.619
Citigroup 0.998 0.108 0.516 9.2 0.524
Deu. Bank 0.993 0.194 0.441 9.5 3.859
Morgan St. 0.994 0.188 0.505 9.9 2.994
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