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Introduction

The incompressible Navier-Stokes equations describe the flow of Newtonian fluids
or gases. They are used in many numerical simulations of flow problems. These
simulations have become an important task in research and industrial applications.
There are numerous examples where the simulation of flow problems is required:
indoor air ventilation to simulate cooling and air freshness in buildings, flow of
a cooling medium inside devices like radiators, simulation of the interiors of cars
or planes, or simulation of the natural convection in the earth’s mantle. All these
examples have in common that the governing equations are the incompressible
Navier-Stokes equations. Otherwise these examples differ tremendously in the
requirements and properties.

The Navier-Stokes equations are a system of partial differential equations of second
order. The unknowns are the velocity # and pressure p that have to fulfill the
equations

?)—t;—vAqu(u-V)unLVp:f,
V-u=0

in a given domain. Here, v is the viscosity of the fluid and the external forces are
given by f. A common way to conduct numerical simulations is to apply a finite
element discretization to this system.

In the recent years, one can observe a trend regarding flow simulations: the demand
for higher accuracy in the numerical resolution with the need to get the results faster.
The underlying geometry is getting more complex and the accuracy requirements
ask for discretizing with smaller and smaller cells. All this results in a dramatic
increase in the problem size — and therefore computational complexity and memory
requirements — that must be solved. Additionally, to achieve higher accuracy more
elaborate physical models will be required in order to capture more phenomena
from the real problem.

To cope with this trend, one has basically two options: First, increase the com-
putational power, i.e., using faster and bigger computers. The requirements can
typically only be met by parallel machines. In return, the finite element software



must be designed to explicitly to run efficiently on a parallel machine. Second, one
can try to improve the efficiency of the algorithms and solvers. This thesis com-
bines these two approaches by deriving, implementing, and verifying a massively
parallelized generic finite element framework and developing a fast and robust
solver for incompressible flow problems.

The necessity to go to parallel computers can be explained as follows: Processor
speeds did not increase much over the last several years and the size of the main
memory in a single machine can not be increased easily over certain limits. The
increase in computational power is therefore achieved by having several processors
cooperate in solving a numerical problem. This has already resulted in increased
number of cores in personal computers and servers sold today and this trend is
likely to continue. It can also be seen in the development of larger computing clus-
ters, where several independent machines are connected to form a more powerful
super computer — the biggest machines have more than 200000 cores today.

Programs can not automatically take full advantage of a parallel machine. Instead,
the routines and data structures have to be carefully designed to scale, especially in
massively parallel simulations with more than thousand cores. Designing programs
for numerical simulations that scale is much more difficult than writing serial
programs. It is crucial to split the computation and the data structures between the
machines, as every machine has its own memory. When designed in the right way,
each machine only stores the information it needs for the computation. This also
solves the problem that larger simulations no longer fit into the memory of a single
machine. In a finite element program one has to split the computational domain
into approximately equal sized chunks and distribute those between the machines.

We discretize the Navier-Stokes equations via the finite element method. In the
end after linearization this requires the repeated solution of linear problems of the

following saddle point form:
A BT\ (u\ _[f
B 0/)\p/ \0)°

The solution of these linear systems of equations typically consumes the majority
of the computational time. Therefore, it is of utmost importance to increase the
efficiency of that solution process. Due to the size and properties of the system it is
not feasible to apply generic solvers for linear systems. Instead, one has to design
preconditioners to take advantage of the structure and the underlying properties of
the system.

This thesis develops a new efficient preconditioner for the linear systems arising in
the solution process. The massively parallel finite element framework is developed
in a generic way, so the results can be applied to more than flow problems. It allows



Introduction

to test the scalability separately with simpler problems. Additionally, the library
can be useful for a larger number of researchers. For this thesis we implemented
a parallel framework in the open source finite element library deal.II. We show
very promising results with good scalability to more than ten thousand processors.
This is already included in deal.II [8,9], version 7.0 and allows researchers to take
advantage of available computing resources and solve problems with more than a
billion unknowns on adaptively refined meshes. Until now, there are only a few
specialized programs that can run on that many processors, but no generic and
flexible finite element program despite deal.II.

With the separate discussion of parallelization of finite element software and
linear solvers for flow problems, naturally the question arises on how those two
features can be combined. This thesis answers this theoretically and by conducting
numerical simulations of realistic applications.

Combining the two topics — parallelization of finite element software and linear
solvers for flow problems — leads to an interesting thesis. On the one hand, there is
a lot of synergy and dependency between them. On the other hand, the research
requires expertise in different research fields. Parallelization is clearly based in
computer science. The second part about solvers is dominated by numerical
analysis. The applications on the contrary require knowledge in engineering and
physics to understand the underlying problems and equations. All this makes
the research multi-layered and diverse. Combining different schools of research
makes the work as a researcher in applied math very interesting, but it also is a big
challenge. Looking beyond the own research field is more and more required in
today’s society.

The research for this thesis resulted in several published articles and conference
proceedings (see [60-62,97]), some only submitted [6,63], and some are still in
preparation: [80]. They were created with various co-authors and many of the
results presented in this thesis can be found in one or more of these publications.
The developments in the finite element library deal.II are available for free and
so are the example programs step-32, [79], and step-40, [59], in form of tutorial
programs as part of deal.II.

The outline of this thesis is as follows: Chapter 1 serves as an introduction to
the remainder of the thesis. The structure of a finite element software package is
introduced with a rather simple Poisson’s equation as the model problem. The
second part gives a summary about the numerical solution of the incompressible
Navier-Stokes equations. Finally, the matter of Grad-Div stabilization is discussed.
This part is based on our paper [97] and serves as an important aspect in Chapter 3.

Chapter 2 gives an introduction to parallelization followed by the construction



of a massively parallel finite element framework. This research is in large parts
published in our paper [6].

In Chapter 3 the focus is on efficient linear solvers for the Oseen problem, which is
the underlying linear problem arising from the discretization of the Navier-Stokes
equations. We present a new and competitive preconditioner that takes advantage
of Grad-Div stabilization in the equations (see Section 1.5.5). This is in large parts
based on our paper [63].

Then, the results of Chapter 2 and 3 are combined and studied with realistic
applications in Chapter 4. Finally, we conclude with the accomplishments in this
thesis in Chapter 5.
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1 Problem Description and
Discretization

This chapter serves as an introduction to the main parts of this thesis. We start
in Section 1.1 with the discussion of the finite element method for a prototype
problem — Poisson’s equation. This is standard material in finite element text books.
See for example [33,44] for more details. Therefore, we restrict the discussion to
the basics.

To understand the complications involved in parallelization of a finite element
program in Chapter 2 we discuss the structure of a finite element program in
Section 1.2 based on the mathematical foundation in Section 1.1. We highlight the
inner workings of the finite element library deal.II in Section 1.3 and detail all the
implementations that were done for this thesis.

The linear systems that result from the finite element discretization of partial
differential equations must be solved numerically. As this is non-trivial, Section 1.4
introduces the most common way to iteratively solve those linear systems: with
Krylov methods. The section also serves as an introduction of the specific solvers
and preconditioners for flow problems as detailed later in Section 3. Parallelization
of the Krylov methods is then discussed in Section 2.2.3.

The governing equations for incompressible flow problems are the Navier-Stokes
equations and we are introducing them in Section 1.5. There, we will follow with
the necessary steps from the continuous formulation to the discretized form in time
and space. In the end one has to solve — again — linear systems of equations. Of
special importance is Grad-Div stabilization as discussed in Section 1.5.5 as it is an
ingredient for efficient preconditioning described in Chapter 3. The Navier-Stokes
equations will later be extended in Section 4.2 to turbulent flows. The extension to
temperature coupling is done in Section 4.3.

The equations, numerical methods, and the mathematical background in the first
half of this chapter are fairly standard. Section 1.5.5 highlights some results from
our recent paper about Grad-Div stabilization, see [97].




1.1. Poisson’s equation as a prototype

1.1 Poisson’s equation as a prototype

To introduce the mode of operation of a finite element problem we start with a
rather simple elliptic partial differential equation (short: PDE) known as Poisson’s
equation. The simple structure allows the introduction of the inner workings
of a finite element software while giving enough background to understand the
parallelization discussed in the Chapter 2.

Poisson’s equation reads

—Au=f in O,
. (1.1)

u=0 in 9Q.

with the unknown scalar field u# : QO — R in the domain Q ¢ R%, d = 1,2,3
and homogeneous boundary conditions on the boundary d(), which is done for
simplicity of presentation. A denotes the Laplacian operator here. See Figure 1.1
for an example of a solution.

Even though the PDE consists of one scalar field _ _7
u as the unknown, it contains much of the com- /;; o
plications found in more complex PDEs like the f
Navier-Stokes equations, see Section 1.5. On
the one hand, it can be easily used to bench-
mark parallel scalability. It is suitable for that
because it requires a global flow of information
across the domain that is split up between sev- Figure 1.1: Solution of Poisson’s
eral machines. For that reason we selected Pois- equation on the unit square on a
son’s equation as the first numerical example for regular mesh with right-hand side
benchmarking massive parallel scalability in Sec- f = 1. The solution u is displayed
tion 2.3.5. On the other hand, it also serves as a as the height of the surface.
building block for solvers for the Navier-Stokes

equations. The velocity-block of the Stokes problem is a vector valued Laplace
operator, projection-type methods contain a pressure-Schur complement solve with
Poisson’s equation, and block solvers also need to solve Poisson problems for the
Schur complement approximation. See Section 3.3.

2ty
L
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N
N
S
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Solvability and weak solutions
The variational formulation of the strong formulation (1.1)isto findau € V =

H}(Q)with
a(u,v) = (f,v) Yoe V. (1.2)

10



Chapter 1. Problem Description and Discretization

with the bilinear form a(u, v) := (Vu, Vv)r,. One can show that a(-, -) is symmetric,
bounded, and V-elliptic. With the Lax-Milgram theorem (see for example [33]) we
then get unique solvability of (1.2) as long as f € V*.

Finite element discretization

For the discretization we restrict our discussion
to quadrilateral cells in dimension d = 2 or
hexahedral cells with six quadrilateral faces for
dimension d = 3, respectively. The mesh is de-
fined as a set of cells 7, = {K} C R? The
reason to not discuss simplicial meshes here is
that deal.II only supports those mentioned be-
Figure 1.2: Example mesh consisting fore, see also Section 1.3 and [8]. The standard
of two quadrilateral cells. If the left Lagrange finite element spaces look different on

cell is being refined (see dashed lines), simplicial meshes (see [44]), but everything else
a linear ansatz space would have a works accordingly. A difference is that one does

hanging node (denoted with a cross). 1Ot have to deal with hanging nodes in adap-

tive refinement with simplicial cells. Figure 1.2
shows an example mesh. If we were to refine the left cell into four children one
would obtain a hanging node for a linear finite element space. The parallel han-
dling of large adaptive meshes in Section 2.3.1 assumes quadrilateral or hexahedral
meshes, too.

For each element K € 7T, we define a bi-/trilinear mapping
Fg:K—K
like in Figure 1.3.

Let Qg be the standard tensor product Lagrange finite element space of order

(1.1)

K Fi

(0.0)

Figure 1.3: Bilinear mapping F from the reference cell to the element K.

11



1.2. The structure of a finite element framework

k € IN on the reference cuboid K = [0, 1]*:
Qr:=span{f: K — R x> x]'- x| a;€{0,1,...,k}}
We then define the finite element space Qy, k € IN, which is given by
Qr:={veC(Q)|v[xkoFk € Qu K€ Tp}.

A finite element function is the image of a polynomial function on the reference cell
on each cell and made continuous across cell boundaries. We denote the discrete
space related to the continuous space V with

Vii=0QxNV.

The discrete space is conforming, i.e., V, C V by construction. See [44] for more
details.

Let ay,...,a, be the Lagrange nodal points, then we have a nodal basis {¢1, ..., $n}
of Vj, with ¢;(a;) = 6;;. The discrete solution u, € Vj, can be expressed as

up =Y Ui
i
with the coefficient vector U € IR". With this the discrete weak problem
find u;, € Vj, with ay, (uy, vy) = fh(vh)/ Yo, € Vy,

with approximations a;, to a and f;, to f can be written equivalently with the
standard Galerkin method as the linear system

AU =F.
The stiffness matrix A is defined through the bilinear form as
Ajj = ay(¢j, ¢i) = (V§;, Vi),

and F as F; = f;(¢;). Note that A here is symmetric, positive definite, and sparse.
This linear system can be assembled and solved in a finite element program. We
are going to discuss this in the next section.

1.2 The structure of a finite element framework

Translating the introduction in the last section into objects and tasks for the imple-
mentation of a finite element library results in the following program flow:

12



Chapter 1. Problem Description and Discretization

1. Mesh generation. The mesh is typically represented as a collection of cells
with connectivity information. One gains flexibility by encapsulating the
mesh completely from the finite element spaces. The mesh can be generated,
loaded in, or manipulated by coarsening and refinement from the last mesh in
the computation. It is important to have connectivity of cells, faces, edges, and
corners. A large amount of memory is required per cell, which is a problem
for parallel computation on big meshes. See Section 2.3.1.

2. Distributing degrees of freedom. From the mesh and the definition of the
finite element space one can take the degrees of freedom on every cell and
with this create a global numbering of all unknowns. When not the whole
mesh is stored on each machine in a parallel computation, this procedure is a
challenge, see Section 2.3.2.

3. Constraints. One way to deal with hanging nodes and special boundary
conditions (like periodic or non-normal flux conditions) is to introduce an
object to deal with constraints between unknowns. A constraint typically has
the form

X; = Zcijx]- + b;.
j

When assembling the linear system one can then identify restricted degrees
of freedom and eliminate them. Handling constraints in a parallel program is
discussed in Section 2.3.2

4. The linear system. Next the linear system can be set up. Storing the matrix
requires a complex data structure to allow efficient handling. Storing every
matrix entry is not viable, one only stores non-zero entries — typically in
compressed row storage format. One way is to create the potential couplings
tirst (e.g., by coupling all degrees of freedom in a cell with each other), and
then preallocate the efficient data structure. Then the system can be assembled
by looping over all active cells, calculating the local contribution from the basis
functions, and transferring the entries into the global matrix and right-hand
side vector. The parallel handling is discussed in Section 2.2.2.

5. Solving. Next the linear system can be solved with a solver and possibly a
preconditioner, see Section 1.4 and Section 2.2.3 for parallelization aspects.
Section 3 discusses specific solvers for flow problems and Section 4.1 is about
parallelization of those.

6. Postprocessing. This step consists of data output or analysis, estimating the
error of the solution for adaptive mesh refinement, or similar steps.

13



1.3. The finite element library deal.Il

With the last step one has to either do the next iteration in a linearization scheme
(see Section 1.5.4), recalculate the solution on a better adaptively refined mesh,
continue to the next time step (see Section 1.5.2), or be done, depending on the
problem. Note that a few complications are omitted in the description here.

1.3 The finite element library deal.ll

The development of parallelization routines (Chapter 2), the research about solvers
(Chapter 3), and all the numerical simulations were done using the open source
finite element library deal.II, see [8,9]. It is well known in the finite element
community and is used in numerous projects all over the world.

The library deal.II is written in modern, object oriented C++ and allows flexible,
and efficient programs using template programming. The types of cells are re-
stricted to quadrilaterals and hexahedrons in two and three dimensions, respectively
(also see Section 1.1). One can write mostly dimension-independent programs with-
out paying a price in performance for that. There is support for various libraries for
linear algebra (BLAS, PETSc, Trilinos), solvers, input and output, etc.. Many parts
of the library are written to take advantage of modern task-based parallelization
for multi-core machines using the Intel Threading Building Blocks library, cf. [101].
Alternatively there is support for MPI-based parallelization, that we worked on and
are going to use in this thesis, see Section 2.1.1. There is ample documentation and
many tutorial programs that highlight various aspects of the library and explain
the mathematical side along with the implementation in detail.

To test the implementation and to demonstrate the success of our design we created
two documented and freely available tutorial programs. In particular, we developed
program step-40, [59], to show the massively parallel solution of Poisson’s equation,
see Section 1.1. The results in Section 2.3.5 were created with this example. We also
created the more sophisticated step-32, [79], which simulates the flow in the earth’s
mantle, see Section 4.3, and makes use of the new massive parallel implementation
and part of the solver design from Chapter 3.

While working on this thesis we did — beside bug fixes and smaller things —
numerous contributions to the library:

1. Complete development of a massively parallel implementation touching many
parts of the library, see Chapter 2, especially the distributed meshing from
Section 2.3.1.

2. Many improvements to the coupling to the parallel linear algebra libraries

14



Chapter 1. Problem Description and Discretization

PETSc and Trilinos, also see Section 2.2.

3. New objects required for parallel computations, e.g., IndexSet (see Sec-
tion 2.3.2).

4. More efficient data structures, which also improve performance in serial
computations, e.g., ConstraintMatrix (for handling constraints) and Sparsity-
Pattern (for describing the stencil of a sparse matrix). We discuss part of the
design also in Section 2.3.2.

1.4 Krylov methods and preconditioning

Krylov methods are a family of algorithms to solve a linear system of equations
Ax =b (1.3)

for the unknowns x € R" to a given square and regular matrix A € R"*" and
right-hand side b € R". Krylov methods probably form the best known and fastest
iterative methods to solve general linear systems. We make use of the Krylov
methods for all the numerical examples and discuss the parallelization of them in
Section 2.2.3.

There are many different kinds of algorithms in the family of Krylov methods:
GMRES, CG, BiCGStab, BiCG, QMR, and many variants, to name a few. They
were introduced in [81] and a good overview is given in [109]. All Krylov methods
calculate an approximate solution x;, to the solution x in an iterative process from
a starting solution xq. The solution is usually found in the affine subspace xg + Ky,
of the solution space R", where

Km(A,v) = span{v, Av, A%v, .. .,Am_lv} C R"

is the Krylov space of order m for the matrix A and to the vector v. The methods
do not require access to the entries of the matrix A. They only need to be able to do
matrix-vector products. This is a big advantage for sparse matrices, as performance
of matrix-vector products is proportional to the number of non-zero entries per row.
As matrix-vector products can be parallelized easily, so can the Krylov methods,
see Section 2.2.3.

The number of iterations (or the solution speed) depends on the eigenvalue spec-
trum of the matrix involved, (for example for GMRES, see [109]). One can attain
fast performance for clustered eigenvalues away from zero. A natural way of
improving convergence speed for matrices where this is typically not the case (e.g.,

15



1.5. The Navier-Stokes equations

in finite element matrices of interest) is by preconditioning the linear system (1.3).
One applies a linear, regular operator P~ to the system, so that the product of
A and P! has an improved eigenvalue spectrum. This is the case when P! is
an approximation for A~!. Typically P! is not present as a matrix but just as an
operator, which is the only thing that is required for the Krylov methods. The most
common options for preconditioning are left-preconditioning, where one solves

P1Ax=P7p
instead of (1.3), and right-preconditioning, where one solves
AP ly=b

first, to obtain x = P~1y at the end. In both cases an equivalent system is being
solved. Right-preconditioning with GMRES has the advantage of using the real
residual ||Ax,, — b|| for the stopping criterion instead of the preconditioned residual.

In a parallel application with a parallelized Krylov solver, the preconditioner has to
be parallelized too. The design of parallel black box preconditioners is not the topic
of this thesis, we will cover it shortly in Section 2.2.3. The preconditioner presented
in Chapter 3 can be parallelized. This is discussed in Section 4.1.

As the preconditioner might involve using another iterative solver, it may in fact
no longer be linear. The performance of preconditioned Krylov methods will
deteriorate because they assume linearity of P~!. A remedy is to apply so-called
flexible Krylov methods, which can cope with that fact for a slightly more expensive
iteration. We are going to use flexible GMRES or FGMRES, later. See [108] and [58]
for more details about FGMRES.

1.5 The Navier-Stokes equations

This section covers the Navier-Stokes equations from the governing equations, to
discretization and stabilization. It lays the foundation for the solvers in Chapter 3
and the numerical examples in Chapter 4.

This is meant as a short overview. We refer to the literature about Navier-Stokes:
[52,71,107,120], and references therein.

1.5.1 The governing equations

The flow of Newtonian incompressible fluids is described by the system of the
Navier-Stokes equations in a bounded, polyhedral domain Q C R%, d = 2,3.

16



Chapter 1. Problem Description and Discretization

There, one has to find a velocity field u : [0, T] x Q — R? and a pressure field

p:10,T] x QO — R in the time interval [0, T| such that

a—u—vAu+(u-V)u+V =f in (0,T] xQ

ot p=1 / / (1.4)
V-u=0 in [0,T] x Q.

Here, v = v(x) > 0 is the scalar, kinematic viscosity that may depend on x € (), and

d. . ..
fe [LZ(Q)} is a given source term. We assume homogeneous Dirichlet boundary
conditions for presentation:

u=0 on [0,T] x0oQ
and apply the initial condition
u(0,-) =ug in Q.
The equation (1.4) can be derived from the compressible Navier-Stokes equations
as follows (also see [120]). A Newtonian fluid is defined by the density field p,

the pressure field p, and the velocity u in a domain (). They are described by the
Newtonian laws of conservation of momentum:

d
p(a—L;Jr(u-V)u)—yAu—(3/\+pt)V(V~u)+Vp:f (1.5)
and conservation of mass:
dp _

To close the system, one applies an additional law to connect p and p. Assuming
the fluid to be homogeneous and incompressible, the density p becomes a constant
and can be eliminated from the system (1.5),(1.6), which then reduces to the non-
dimensional, incompressible Navier-Stokes equations (1.4). The assumption of
incompressibility (the second equation in (1.4), stemming from the conservation of
mass) is acceptable when effects compressing the fluid can be neglected, i.e., no
high velocities, no shock waves.

The kinematic viscosity v in (1.4) is connected to the Reynolds number Re that
characterizes the behavior of the fluid through the relation

_ prefLrefuref
]/ 4

Re

where p,.¢, Loy, and U,,s are reference density, length, and velocity from the
nondimensionalization, respectively.

17



1.5. The Navier-Stokes equations

The weak formulation of the incompressible Navier-Stokes equations reads:

0 .
g(u,v) + (vVu,Vo)+ ((u-V)u,0) — (V-v,p) = (f,v) in (0,T] xQ, (1.7)

(V-u,q) =0 in [0, T] x Q.

One can show, that for f € L2(0,T; V') and up € H'(Q) with V - ug = 0 there exists
a weak solution to (1.7) and it is unique for dimension d = 2, see [120]. Uniqueness
in three dimensions is an open question.

Note we only covered the standard Navier-Stokes formulation so far. In practice
modifications are used. For turbulent flows it is common to use the symmetric
deformation tensor for the diffusion, see [71] for example. We discuss Grad-Div
stabilization in Section 1.5.5 and turbulence models in Section 4.2 and the numerical
results.

An important special case of (1.4) is the stationary case. Depending on the param-
eters a flow might tend to a steady state and stop changing in time, so the time
derivative vanishes. For problems like the lid-driven cavity it is known that it is
steady up to a specific Reynolds number. If this is known and only the steady
state is of interest it is possible to directly solve for the stationary solution without
running an instationary computation until it arrives at the steady state. For this
one simply removes the time derivative in the momentum equations. Typically
they are harder to solve than a single step of an instationary calculation. The
lid-driven cavity results in Section 3.4.3 are an example. Another interesting case
without a time derivative of the velocity in the momentum equation is the case of
convection in the earth’s mantle, see Section 4.3. There, the system is coupled with
a temperature equation, but only the temperature has a time derivative, because
the temporal effects of the velocity are negligible.

We continue with the discretization of the instationary Navier-Stokes equations,
which involves — as in the case of Poisson’s equation in Section 1.1 — the derivation
of a weak formulation.

1.5.2 Time discretization

We start by semi-discretizing the continuous Navier-Stokes equations (1.4) in time.
For that, the solution (u, p) and the data f are expressed only at discrete time steps
0=ty <t <...<tmx =T of the time interval [0, T], denoted by the superscript
n,eg., u".

Primarily we consider two different discretization schemes, the typical implicit time

18



Chapter 1. Problem Description and Discretization

discretization and an implicit-explicit (short IMEX) scheme, c.f. [3]. The fully implicit
time discretization leads to a sequence of non-linear stationary problems of the form

—vAu" +cu + (" - V)u" + Vp' = ¥,

1.8
V-u"=0, (18)

where ¢ > 0 is a reaction coefficient related to the inverse of the time step size
Ty = tyy1 — t, and f is a modified right-hand side that contains additional terms
with data from old time steps. Note that many time discretizations with different
properties fit into this implicit scheme, for instance implicit Euler, BDF-2 or diagonal-
implicit Runge-Kutta schemes, cf. [57]. We are going to use BDF-2 for the mantle
convection in Section 4.3 and 2.3.5.

The stationary system (1.8) is still non-linear. To arrive at a linear system after
spatial discretization, it must be linearized first. The typical approach is to apply
a fixed-point or Newton-type iteration, see Section 1.5.4. Hence, we have to solve
a sequence of linear systems for each time step with a given divergence-free field
u"~1 in the convective term:
—vAu" +cu + (W V) + V' = f, 19
V-u" =0. 1)
The iteration for the non-linearity in (1.8) implies high computational cost. An
explicit time stepping is not desirable because of the strong restrictions on the time
step size. A remedy is to treat the non-linear term (u" - V)u" in an explicit way,
while the remainder of the equation is kept implicit. These methods are called
IMEX-schemes. An elegant option is to combine an explicit Runge-Kutta scheme
for the convection and a diagonal-implicit scheme, as above, for the rest. With this
method the system is linear after discretization and has the same structure as (1.9).
We use a second order IMEX scheme for the decaying homogeneous turbulence
and channel flow benchmarks, see Section 4.2.3 and 4.2 .4.

Note that we treat the convection term semi-explicitly instead of fully explicitly, i.e.,

we use (" - V)u", where " is the extrapolated convection field. It gives higher

accuracy than using (u" - V)u".

1.5.3 Spatial discretization

If we assume a time discretization as described before — and a linearization if
necessary — we are left with solving a sequence of Oseen-type problems (see (1.9)):

—vAu+cu+ (b-Vu+Vp=f,

1.10
V-u=0. ( )
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1.5. The Navier-Stokes equations

In a similar way as it is done for Poisson’s equation we transform the system into a
weak formulation:

find (u,p) € V x Q := [H}(Q)]? x L2(Q) with
(vVu,Vo)+ ((b-Vu+cu,v) — (V-v,p) = (f,v)

(1.11)
(V-u,q)=0
for all (v,q) € V x Q.
Here, the natural pressure space L?(Q)) is normalized as L[2(Q) := {v €

L?(Q) | [qv dx = 0}, because the pressure is otherwise only determined up
to a constant.

We can rewrite the weak system as:

a(u,v) +b(v,p) = (f,v) YoeV

b(u,q) ~0 vg € Q 12
with the bilinear forms
a(u,v) = (vVu,Vo)+ ((b-V)u+cu,v),
b(v,p) = —(V-9,p).
Using the inf-sup or Babuska-Brezzi condition
inf sup M >B>0 (1.13)

1€Q vev [9lollolls

between the spaces for velocity and pressure one can show unique solvability of
(1.11) or (1.12), see [107] for example.

When moving from the continuous spaces V, Q to discrete finite element coun-
terparts V), C V and Q;, C Q, the inf-sup condition (1.13) has an analog discrete
counterpart with the spaces V;, and Qj,. This compatibility of the discrete spaces
is also relevant in numerical calculations, as spurious oscillations will destroy the
solution, see [107]. Taylor-Hood elements — elements with continuous velocity and
pressure, where the velocity degree is one order higher than the pressure — fulfill
the discrete inf-sup condition

inf su M > Br >0,

10N (0} uyev oy TonlvIanll
see [52] for the proof.

As in Section 1.1 we consider quadrilateral or hexahedral meshes 7;,. We denote
the discrete spaces with V}, = [Qr1]NV and Q, = QN Q, where Qy are the
tensor-product polynomials as defined in Section 1.1.
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Chapter 1. Problem Description and Discretization

This stable discretization leads to a finite-dimensional, linear saddle point system

(5 5)G)- () ap

with finite element matrices A containing diffusion, reaction and convection and
the pressure-velocity coupling B. Note that these are the discretized counterparts
to the bilinear forms 4 and b from above.

A different option would be to take an element pair that does not fulfill the inf-
sup condition — for example choosing the same element order for velocity and
pressure — and stabilize the system with Pressure Stabilized Petrov Galerkin (PSPG)
methods [69] or Local Projection Stabilization (LPS) [19]. We will not discuss that
option here, though.

We discuss efficient solvers for the linear system (1.14) in Chapter 3. This is done by
solving the linear saddle point system with a Krylov solver. The efficient solution
requires special preconditioners tailored to the problem. Parallelization is discussed
in Section 4.1.

The solver and preconditioner concept in Chapter 3 works identically with ad-
ditional, symmetric stabilization terms for the velocity, like local projection sta-
bilization, see [19,90,92] and references therein. We omit the definition and the
terms for clarity of presentation. The addition of non-symmetric stabilization like
Streamline Upwind /Petrov Galerkin (SUPG) methods (see the overview in [107]
and [69,72,91]) is non-trivial, as it spoils the saddle point structure of the problem.

1.5.4 Linearization

As mentioned in Section 1.5.2, approaching the time discretization of the Navier-
Stokes equations with a fully implicit method results in a sequence of stationary;,
non-linear problems (1.8) to solve. In practice, one applies the finite element
discretization from the previous section to that stationary, non-linear problem, and
then linearizes the discretized problem.

To formulate the linearization we write it using an abstract non-linear operator
F : R" — R", where n is the dimension of the finite element spaces of velocity
and pressure. Evaluating the operator with an argument (b, 7) returns the solution
of the linear system with convection b. Thus, we are looking for a fixed point

F(x) = x.

This system can be solved using a Picard iteration or Newton’s method, see [71].

21



1.5. The Navier-Stokes equations

The Picard iteration can be written in defect-correction form as
s (F(xk) _ xk) _

Newton’s method is attractive if the derivatives of all terms in the discretization are
available, which is not always the case. The iteration for Newton’s method is then

k= xk [DP(xk)} F(x5).
Either way, one is left with an iteration
= Xk G(5).

As convergence of this iteration is only guaranteed for contracting operators, some
globalization method might be required. This is necessary for stationary problems
in particular. In the stationary lid-driven cavity problem, Section 3.4.3, we are using
an adaptive back-tracking procedure, where an a; € (0,1] is selected so that the
update

P = 5k 4, G(xF)

has a smaller residual, i.e., |G(x*T1)|| < [|G(x¥)]||, otherwise the step is rejected
and repeated with a smaller a;. Note that evaluating ||G(x¥*1)|| is expensive, but it
is required in the next iteration anyhow.

1.5.5 Grad-Div stabilization

Additional stabilization for the Oseen problems is useful and often required even
for inf-sup stable elements, especially with dominating convection. Recently, the so-
called grad-div stabilization has gained attention as a pressure sub-grid modeling
and as a least-square type stabilization. We developed solvers than can cope
and take advantage of Grad-Div stabilization present in the Oseen problem, see
Chapter 3. We refer to our paper [97] for the discussion of parameter design, further
analysis, and numerical examples.

Grad-Div stabilization results in a modified bilinear form
i(u,v):=a(w,v)+ (yV-u,V-0),

which is used instead of a(-, -) with a parameter <y that is to be determined. Thus,
we end up with the following discrete system: Find (uy, pj,) € V), X Q) such that

a(uy, o) +b(op, pn) = (f, o) Vo, €V, (1.15)
b(uy, qn) =0 Van € Qp.



Chapter 1. Problem Description and Discretization

The parameter v > 0 is assumed to be constant per element or a global constant.
The stabilization improves the numerical accuracy of the solution and helps to
reduce spurious oscillations for convection dominated flow.

The parameter choice is non-trivial and we discuss different designs in [97]. In
general the optimal value for oy depends on the solution on the element K. For
sufficiently smooth solutions the following formula can be derived:

YK ~ max {M — V,O} . (1.16)
)

|u|Hk+1(I<

Note that K is a neighborhood of the element K. In practice, the unknown con-
tinuous solution (u, p) in (1.16) has to be replaced by their discrete counterpart
(up, pr). Even then, it represents an expensive non-linear model. Additionally,
evaluating the norms of u;, and pj, is costly, since higher order derivatives are
involved. Therefore a common assumption is |p|geg) =~ || gy and v < 1,
which results in a constant design v ~ 1. Unfortunately, this assumption is not
valid in general. For example, in the case of a laminar channel flow there holds
Pl pr (k) & v]u| i1 () and therefore 7y ~ v.

In the simpler design of a constant y for the whole domain, one assumes that the
flow is similar everywhere. The optimal constant value is a trade-off between mass
and energy balance of the system. The results in [97] show, that the static design
is often good enough, but a problem dependent constant is necessary to attain
optimal results. Fortunately, the observation that ¢ € [0.1, 1] is not overstabilizing
and is improving accuracy over no Grad-Div stabilization seem to hold true.

Numerical dissipation

Grad-Div stabilization introduces numerical dissipation, so it is of interest to
quantify that dissipation. As explained in [97], the rate of numerical dissipation
can be measured as diss(uy(t)), with the ratio

1/2 2
. vV -v
d1ss(v) = W/

where uy,(t) is the spatially discretized solution to the Navier-Stokes equations
before time discretization. This dissipation rate can be bounded by

Hp < diss((u(t)) < My,
where

u2 = inf diss(v), and M = sup diss(v)

0
vevy, v€V2
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Figure 1.4: Examples for true divergence free functions for Qp with h = 1/4

and V} is the space of discretely divergence free functions, i.e.,

V) ={ov, € Vi, | (V-op,q,) =0,Yq, € Q,}-

Because the finite element space with order > 2 contains true divergence free
functions in V9, (see Figure 1.4), u2 then becomes zero and is of no use for bounding
diss(uy,(t)). Let G be the finite element matrix of the assembled divergence term.
We will then restrict the infimum to functions that are not in the kernel of the
discrete divergence matrix G:

12 = inf diss(v).
Fh veV)\Ker(G) ( )

Let P be the L2-orthogonal projection from V;, onto V¥ and assume y = 1. Therefore,
the bounds fi;, and M), are the minimal and maximal non-zero eigenvalue of the

system
G 0\ (u)_,(A BT\ (u
0 0/\p/ “\B 0/)\p)
For a more detailed explanation, see again [97].

See Figure 1.5 for eigenvalue spectra for the eigenvalue problem above. Table 1.1
finally shows calculated values for the dimension of the divergence free subspaces
and bounds for the dissipation rate. From these experiments one can conclude
that the dissipation does only slightly depend on the mesh size, while the element
order has a much bigger influence. The number of truly divergence free function
increases (starting with none for Q). Dissipation reaches an order of one on very
few scales, while roughly 20 percent of the scales are significantly influenced.

The Grad-Div stabilization with a constant parameter design will be the main
building block of the preconditioner in Section 3.4. The advantage of applying
Grad-Div stabilization to various problems is clearly visible in the numerical
examples in that section.
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Figure 1.5: Eigenvalue spectra for varying element order and fixed mesh with h = 1/8

(left) and for Q3 on different meshes (right).

Table 1.1: Dimension of truly div-free functions subspace of V) (G=ker G) and bounds for

numerical dissipation on its orthogonal complement subspace in V.

h 1/4 1/8 1/16 1/32
Q1
dim(G) /dim(V,) | 0/18  0/98 0/450  0/1922
]/l% 4.8812e-2 1.1864e-2 2.9564e-3 7.3869e-4
Q>
dim(G) /dim(VY/G) | 4/94  36/414 196 /1726 900 / 7038
ﬁ% 8.9596e-3 2.4653e-3 6.3427e-4 1.6002e-4
M% 9.9302e-1 9.9961e-1 9.9998e-1 1.0000e-0
Qs
dim(G) / dim(V9/G) | 36 /206 196 /862 900 /3518  */*
]7!121 4.3242e-3  1.0953e-3 2.7497e-4 6.9336e-5
M% 9.9876e-1 9.9992e-1 9.9999¢-1 1.0000e-0
Q4
dim(G) / dim(V0/G) | 100 / 350 484 / 1438 2116 /5822  */*
ﬁ% 2.4296e-3 6.1053e-4 1.5289e-4 3.8241e-5
M% 9.9955e-1 9.9997e-1 1.0000e-0 1.0000e-0
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2 Parallel Algorithms

After motivating the need for parallelization, we set up the terminology of parallel
computations used later. The basics about parallelization and the different computer
architectures and their implications to parallel programming are explained in 2.1.
The content there might seem basic, but many of it is non-standard and is learned
from experience. Nevertheless there are some good introductory resources about
parallelization and MPI, see e.g. [98,100,109]. We conclude with the important
tenets for parallel software design that is relevant for this thesis in Section 2.1.4.
Probably the most important aspect in a parallel finite element program is the
handling of the linear algebra, which is explained in 2.2. There we also extend
the Krylov methods introduced in 1.4 for usage in parallel computations. The
sections 2.1 and 2.2 do not present major new developments, but are required to
understand the design of a parallel finite element program.

One of the two main research topics of this thesis is then given in 2.3. Here we
derive data structures and algorithms for generic finite element software to run on
thousands of processors. It details the research done while developing the parallel
architecture of the library deal.II, but strives for general applicability. We build
on the introduction of finite element software in general (see Section 1.2) and of
deal.II in particular (see Section 1.3). The Section 2.3 is in large parts published
in [6].

2.1 Parallel paradigm

The reason for the existence, development, and spreading of the usage of parallel
computers or clusters can be explained with two reasons. First, the demand to
calculate bigger and bigger problems for example in astrophysics, earth sciences,
etc. combined with the urge to get answers faster at the same time, together increase
the demand for faster computers. Second, the development of a single processor
is more or less stalled. The processor frequencies did not increase further over
the last years and it looks like the physical barriers that are the cause will not be
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circumvented any time soon, see [118] for details. The remedy was to let several
(today even more than a hundred thousand) processors work on one problem at
the same time.

This increase in parallelization

is happening in two directions. Node Node

First, the number of computing . 01 . 01

cores in a single computer is in-

creasing. Second, the comput- Memory Memory

ing clusters that combine many ( )

machines with a fast network N

consist of growing numbers of send0N____ecr)

machines since. The number

of cores on a single machine is < Network >

still increasing, but as memory
is expensive and can not be in- Figure 2.1: Distributed memory cluster. The only

creased easily above a certain way to communicate is by sending messages between

amount in a single computer, Mmachines.

the connection of independent

computers in a cluster is unlikely to fade away. Therefore, limiting the development
only to multi-core (in a single machine) parallel development is not advisable today.
The development of parallel programs that run on computing clusters must deal
with the fact, that each computing node has its own memory. This distributed
memory architecture implies that the only way to communicate between two nodes
is by sending messages from one node to another over the high speed network in
the cluster, see Figure 2.1.

The most common programming model for sending messages between nodes is
the message passing interface, MPI [94]. We will discuss it in further detail in
Section 2.1.1.

While clusters are becoming more and more common, the number of codes that
efficiently utilize these machines is relatively limited. This is mainly due to two
reasons: First, existing legacy codes are difficult to parallelize to these massive
numbers of processors since data structures have to be conceived entirely differently.
Second, algorithm and data structure design is not trivial when the goal is to
exploit machines of this size in a scalable way. On the other hand, codes that
scale to the largest available machines are almost exclusively purpose-built for
individual applications. For example, the codes SPECFEM3D [31], CitcomS [119],
and Rhea [26] have been written for particular geophysical applications and are
not based on general-purpose finite element libraries. The reason, of course, is
that none of the libraries widely used in academic and applied finite element
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simulations — such as PLTMG [12], DiffPack [23,82], libMesh [76], Getfem++ [102],
OOFEM [99], FEniCS/DOLFIN [86,88], or deal.II up to version 6.x [8,9] — support
massively parallel computations that will run on thousands of processors and
routinely solve problems with hundreds of millions of cells and several billion
unknowns. This notwithstanding, there clearly is a demand for general-purpose
finite element libraries supporting such computations through a relatively simple,
generic interface.

We will discuss the requirements and solutions for a generic finite element library
that does scale to large clusters in Section 2.3.

2.1.1 The MPI programming model

The usage of MPI is not limited to clusters, but also works on a single multi-core
machine. In fact, one node in a computing clusters has more than one core too. This
makes the development described in this thesis relevant from multi-core computers
that typically stand under your desk today already, up to computing clusters with
thousands of cores. An MPI library typically launches the same program several
times on different computers or cores at the same time. Each individual so called
process (typically a Linux process each) can then communicate with the other
processes. They are identified with a unique number 0, ... P — 1 (if the number of
processes is P). In MPI terminology this is called “rank”, see [94].

In the “pure” MPI model each core in a node of a cluster is treated as its own
MPI node. Therefore, a process is launched for each (virtual) core of each machine.
This means processes on the same machine also communicate only by exchanging
messages. At first sight this looks like a huge disadvantage as they do not take
advantage of the shared memory. Note that passing messages between processes
on a single node is very fast as they only involve a simple memory copy. You can
take advantage of the shared memory on a computing node with the so called
hybrid parallelization model, which is not used in this thesis (but can be applied to
most results). In that model a single machine or node, which shares the memory
between all its cores, is parallelized with a shared memory library like OpenMP or
TBB (see [36,101]) and only the communication between such nodes is done using
again MPIL. The advantages of using such a model are not clear, as every part (that
includes external libraries too) of the program must run efficiently on a multi-core
machine to take advantage of the hybrid model. This makes it inherently difficult
to take advantage of that hybrid parallelization model. For example at the point
where this thesis was written, neither PETSc (c.f. [4,5]) nor Trilinos (c.f. [66,67]),
which we use for linear algebra supports multi-threaded operations, could do that.
As the linear algebra takes a huge part of the runtime we will not pursue the hybrid
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model further. A pure MPI model has the advantage of being a lot simpler to
implement as dealing with concurrency is a hard problem in computer science. The
NUMA architecture also works in favor of a pure MPI model. A single computer
can have several sockets with a CPU with several cores and memory for each of
those sockets. The whole memory is accessible for all cores, but access is much
faster on memory “owned” by each core. Exactly one MPI process reads and writes
from a buffer (remember processes do not share memory), so that buffer can be
allocated in a corresponding “fast” memory bank. Doing this in a multi-threaded
application is not straight forward. Here typically the thread who first touches a
memory page triggers the allocation in its local and fast memory. Which method is
preferred depends on the type and amount of computation versus communication.
For a study about this topic, see [29].

That non-withstanding the approach in this thesis does not become obsolete if
it becomes feasible to use a hybrid model for parallelization. On the contrary
many parts in deal.II can optionally run multi-threaded already. Additionally, the
amount of computation and storage for the mesh partitioning would immediately
decrease in an hybrid model allowing bigger problems and better efficiency. For the
presentation we will assume a “pure” MPI model and from now on not differentiate
between cores, nodes, processes and threads and use “process” to describe a single
instance of the program. The communication routines supplied by MPI range
from simple messages (with MPI_send and MPI_recv) where only two processes
are involved to collective operations with more or all processes. This is used for
example to send data from one to every other process or to do collective operations
like calculating the maximum or sum of some values. These collective operations
are typically a lot more efficient than sending messages by hand, as they often use a
tree pattern to communicate (think snow ball system), which results in logarithmic
complexity. How each message is transfered is transparent to the user (be it via
shared memory, Ethernet, infiniband or something else). The MPI implementations
automatically pick the fastest protocol available.

An important class of MPI operations for the scalability and performance later on
are the so called “non-blocking operations”. There are non-blocking variants of
many operations in MP], they all return the control to the caller immediately and
do the data transfer in the background, so the CPU can return to work on local
operations. This is in contrast to the standard — also called blocking — routines, that
wait until the transfer is done. Later one can poll if data from others is already
available. One can interleave local computations then. The non-blocking operations
are very important, as they can completely hide the latency of the communication
if the program is written in a way that local computations can be interleaved.
Examples for non-blocking communication are matrix-vector products (see 2.2.2)
and enumerating degrees of freedom in Section 2.3.2.
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2.1.2 Parallel Complexity

It is worth to consider a mathematical model to analyze parallel scalability. This
has already been done in [2] many years ago. If you split up your program runtime
into a perfectly parallelized fraction E, € [0,1] and in the serial part Es = 1 — E,,
the speedup of the program with n processors under ideal conditions is given by

1
Speedup (7’1) = m .
n

This highlights the importance of reducing the amount of serial code, because even
with arbitrarily many machines, the maximum speedup is given by

1

maxspeedup = 1
—Ep

which is finite if E p < 1.

Note that time spent in communication does count to the serial part E;, as a transfer
from processor A to B does not get faster the more machines are involved in the
whole program.

The speedup gives a theoretical limit that can only be beaten in rare cases due
to caching effects. Therefore the speedup is usually used as a goal to compare
benchmarks with.

To analyze the parallel efficiency in practice there exist two common scalability
tests: weak scalability and strong scalability. In weak scalability, the number of
processors is kept constant, while the problem size is increased step-by-step. Strong
scalability works the other way around: the problem size is kept constant, while
the number of processors is increased step-by-step. In both cases one compares to
the optimal linear scaling as explained above.

2.1.3 GPUs, vectorization, and other trends

There are a few trends that came up in the recent years like GPUs and support
for vectorization in CPUs. The thesis is concerned with the algorithmic aspects of
parallelization and do not cover these trends. We want to justify this here.

Graphics processing units (GPUs) supply a machine with a secondary processor
that is on the one hand more limited than the CPU but has many more threads
than a typical CPU on the other hand. GPUs are very powerful for floating point
operations that can be vectorized and can gain from single instruction multiple data
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parallelization. The weaknesses are the slow transfer from the main memory to
the GPU and back, and the limited advantage when it comes to code that is heavy
on branching (e.g., logic with a lot of if-then-else). When looking at the structure
of a finite element program it is fairly obvious that only solving and assembling
lend itself for implementing it on the GPU. We won't discuss this interaction in
more detail since we use external packages as black box solvers to solve our linear
systems. Once these packages learn to use GPUs, our programs will benefit as well.

Vector processing or vectorization are powerful instructions on CPUs and also
GPUs that act on a larger amount of data at the same time. They work on a
finer scale in CPUs. Their use is, again, primarily confined to the external solver
packages. At the same time, vectorization is only possible if data can be streamed
into processors, i.e., if data is arranged in memory in a linear fashion. deal.II goes
to great lengths to arrange “like” data in linear arrays rather than scattered data
structures, and in the same order in which cells are traversed in most operations;
consequently, it has been shown to have a relatively low cache miss rate compared
to other scientific computing applications (see, for example, the comparison of SPEC
CPU 2006 programs — including 447.dealIl — in [64]). Similarly, we enumerate
degrees of freedom in such a way that vector entries corresponding to neighboring
degrees of freedom are adjacent in memory. This ensures low cache miss rates; not
by coincidence, p4est uses a space filling curve to enumerate cells. This ensures
this property very well, as does our algorithm to assign degrees of freedom to
individual processors (see Section 2.3.2, especially Remark 2).

In summary, the current lack of support for hybrid and GPU-accelerated program-
ming models in widely used external solver packages prevents us from using
such approaches currently in deal.II. At the same time, several of the algorithms
discussed can efficiently be parallelized using multiple threads once this becomes
necessary. Finally, our numerical results in Section 2.3.5 show that our methods
scale well on a contemporary supercomputer and that the limits of the “flat” MPI
model have not yet been reached.

2.1.4 Tenets for parallel code

Here we will sum up the principles for designing a software to scale to a large
number of processors:

1. Distributed storage. Only store the relevant data necessary for the computa-
tion. It is acceptable to trade that for some increases in communication. Do
not store data proportional to the problem size.
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2. Fair memory distribution. An imbalance in the amount of memory stored
not only poses problems with the amount of main memory available but also
indirectly causes an imbalance in computational cost as memory needs to be
traversed.

3. Avoid serial computations. Serial computation that is either done redun-
dantly on all machines or with others waiting will lead to a serious bottleneck.
Work must be split up between processors.

4. Fair distribution of computations. An imbalance in computational complex-
ity will result in sub-par performance, because the slowest machine will
determine the scalability.

5. Hide communication. Communication carries latency that does not scale
with the number of processors, as it remains constant. Prefer nonblocking
communication to hide that cost.

6. Avoid global communication. All to all communication starts to be a serious
problem with a few hundred processors. Global reduces are often unavoidable
but have to be used as scarce as possible, see also Section 2.2.2.

7. Efficient data structures. As the problem sizes can and will increase dramati-
cally with additional computational power, one has to pay special attention to
incorporate efficient data structures.

2.2 Parallel linear algebra

A finite element software package requires linear algebra objects and routines. This
is because functions discretized with finite elements are usually represented as vec-
tors of coefficients and the PDEs to solve are normally expressed as linear systems
of equations — as long as they are not treated with an explicit time discretization
scheme for example. Even with an explicit time discretization scheme one often
wants to solve accompanying equations like for example the pressure update in
flow problem:s.

Supplying routines to set up vectors and matrices, and solve the linear systems,
is done with linear algebra routines. Parallelization is crucial for the two obvious
reasons: Linear systems can become quite large, as the dimension of the matrix is
the number of unknowns in the finite element discretization. The dimension of
a linear system can be as large as a billion or even more. One machine can thus
no longer store the whole system in memory. Distributing the storage between
different machines solves that problem and allows a lot bigger problems to be
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solved than on a single machine. The second reason is that most time in a finite
element program is usually spent solving the linear system. The next most time
consuming part is assembling the necessary matrices. Therefore the easiest way —
and a necessity — is to speed up a calculation with parallel assembly and a parallel
solution process of the resulting linear system.

How the storage of vectors and matrices is distributed is explained in the next
section. After that we will describe on how important operations on vectors and
matrices can be realized and how one can solve the linear systems using those
operations.

The following descriptions are fairly standard and implementations are readily
available in parallel linear algebra libraries like PETSc or Trilinos. The library
deal.II for example just interfaces to PETSc or Trilinos with thin wrappers. This
makes all operations, solvers, and preconditioners from the libraries available to the
user of deal.II. Nevertheless the discussion here gives the necessary background
to fully understand the parallelization of the whole finite element software.

2.2.1 Memory distribution

The size of the matrices and vectors correspond to the number of unknowns
or degrees of freedom of the finite element space. For the explanation here we
assume we are dealing with a single finite element space. Coupled problems with
different finite elements — e.g., velocity and pressure for an incompressible flow
problem — are typically treated as block matrices and block vectors. The blocks
are composed of the non-block objects, we will touch on how that works in the
next section and restrict our discussion to matrices and vectors corresponding to a
single finite element space. Note that matrices do not need to be square when they
are corresponding to two finite element spaces of different order, e.g., the coupling
matrix B between velocity and pressure for an Oseen type problem.

Vectors and matrices are typically split up row-wise and stored on the different
processes. This way each row belongs to exactly one processor. The splitting is
done so that each machine has roughly the same number of unknowns to balance
the work and memory requirements. The distribution is usually done in a way that
each machine gets a contiguous range, i.e., the first processor owns the indices 0
to k1, the second k; 41 to ky, etc.. This makes local storage and access a lot easier
and more efficient, see Figure 2.2. One can — for example — determine if the indices
are owned by this processor or not with simple comparison of the start and end
index. When one makes the values k; available on each machine, on can cheaply
determine who the owner of a specific row is on each machine.
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Because a matrix stemming from a finite element
discretization is sparse one typically employs
a compressed row storage format so that the
matrix elements containing zeros are not stored
at all. The treatment of the so called sparsity
pattern is explained in some detail in 2.3.3.

Figure 2.2: Sketch of the distribu- The distribution of the rows and thus the de-
tion of rows of vectors and matrices  grees of freedom also give rise to an interpreta-
between processors. tion as a domain decomposition method. Each

degree of freedom belongs to a cell in the com-
putational domain. A distribution of the degrees of freedom over the processors
thus gives a geometric distribution of the computational domain. As degrees of
freedom that are close to each other, i.e., both belonging to the same or neighboring
cells, often couple and influence each other, it makes sense to try to bring those
together on the same processor. This reduces communication between the machine
and therefore leads to a much better performance than just randomly assigning
ownership. Most importantly all degrees of freedom belonging to a particular cell
should live on the same processor. The reasoning is very simple: each processor
only needs to visit the cells that contain degrees of freedom that are stored locally
when assembling the linear system. Therefore one usually also distributes the cells
of the mesh accordingly to match the distribution of the degrees of freedom. Note
that there is no one-to-one relationship between degrees of freedom and cells, as
they can lay on the boundary between two cells and are thus shared.

The way it is done in deal.II is as follows. In the first step the cells of the mesh
are evenly distributed between the processors. Here we pay attention to try to
minimize the number of faces or edges to other processors. This reduces the
amount of communication required later on. The degrees of freedom in the inner
part of each cell get assigned to the owner of the cell and degrees of freedom on the
interface are assigned to one or the other processor. A renumbering of the indices
then ensures contiguous ranges of rows. This scheme can be seen as an algebraic
variant of a domain decomposition method as explained above.

Partitioning the mesh is non-trivial, especially if it consists of a large number of cells.
One can formulate the partitioning as an optimization problem on a graph, where
determining the optimal solution is NP hard. Each cell is represented as a vertex
in the graph, and two vertices get connected with an edge if the corresponding
cells share a face. One can now partition the vertices of the graph in equally sized
groups while reducing the number of edges cut. Of course approximate solutions to
that optimization problem are a good alternative, too. There are software packages
like METIS (see [74]), that do a very good job at doing exactly that. Note that the
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graph is smaller than the number of degrees of freedom, especially with higher
order elements one can have hundreds and more degrees of freedom per cell.
Nevertheless it is still an expensive operation especially in a parallel computation.
We explain a different, very efficient approach in 2.3.

We will see in 2.2.2 that the number of faces that are shared between two processes
determines the number of communication that is required in matrix-vector products.
One can also think of shared degrees of freedom as the number of unknowns where
information about the solution of the PDE “flows” between the machines.

The equal distribution of the number of cells is more important than the perfect
equilibrium of the number of degrees of freedom. This is the case even though the
number of degrees of freedom stored locally determines the amount of memory
required. The number of cells on the other hand determines the computational
effort being done. For example assembling the linear system is done cell-wise, so
the time necessary for assembling is proportional to the maximum number of cells
owned by a process. We explain in 2.3.3 how the assembly process is done.

2.2.2 Important operations

Many operations on vectors like building linear combinations are simple to imple-
ment, because they do not require communication between the nodes.

For Krylov methods (see 2.2.3) we additionally require scalar products and matrix-
vector multiplications. Surprisingly, scalar products can become slower than matrix-
vector products depending on the number of processes and the type of the inter-
connect involved. Some of the following is also explained in [109].

Scalar products consist of a fast local computation and then a global reduction op-
eration. The global reduction requires log(P) operations and can not be interleaved
with local computations.

A matrix-vector product A - x on the other hand consists of a much bigger local
computation. Let L, D, R be the local matrix rows (D refers to the diagonal block)
and xj,. the local entries of the vector of the product in the following form:

L D R Xloc | = | Yioc

The calculation of v, can be split up into:

Yioe=(L D R)x=Dxjpc+ (L 0 R)x
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The first term only contains local entries and can thus be done without information
from other processes. For completing the calculation the process must import
the values of x that are not local. Because the matrix is sparse, only a fraction
of the vector entries needs to be imported. This can be precalculated at matrix
construction time and the transfer to and from the other processes can be done
non-blocking while computing the local product with the matrix D. The transfer
is called scatter operation, because parts of the local vector are sent to different
processes. The pseudo code would look like this:

create local Vector xtemp

. begin scatter xtemp<->x (in the background)
. multiply y.loc=D*x.loc

end scatter xtemp<->x

. multiply y.loc+=(L O R)*xtemp

a S W N -

The communication latency can thus be hidden behind the local computation and
one can expect better parallel scalability than doing scalar products.

The communication volume for the matrix-vector product depends on how many
elements must be imported. The distribution of the degrees of freedom on the
interface is crucial for that. As soon as a processor does not own at least one degree
of freedom from the interface, typically all degrees of freedom of all cells connecting
to that one degree have to be imported additionally. A naive implementation may
thus double the amount of communication needed. We discuss this in Remark 2
(page 49) later.

Assembling linear systems

Filling matrices and vectors in parallel requires some considerations because some
degrees of freedoms — and thus entries — are shared between several machines. The
assembly process is done cell-wise, see Section 1.2. Therefore, machines generate
contributions to the global matrix that are stored on a different machine. The way
it is implemented in PETSc and Trilinos is that they allow adding non-local entries
via the interface to the matrix. Internally they are buffering the non-local entries
and are sending them out to the corresponding machines after the assembly.

Block vectors and block matrices

When handling coupled PDEs with more than one variable, one typically likes to
use block matrices and block vectors, which combine those into one object. One
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option is to put this data into a normal distributed vector, but then one has to
interleave the degrees of freedom of the components to keep the local data be a
consecutive range. For preconditioners that operate on parts of the coupled system
it is necessary to have the unknowns sorted by component. Otherwise the matrices
do not build a block structure.

There is an easy way out that is also implemented in deal.II: One can implement
the distributed block vectors and matrices by representing them with a one or
two dimensional array of distributed vectors or matrices. All operations work as
expected by combining operations on the blocks.

2.2.3 Parallel Krylov methods

With the linear system in place distributed between the machines row-wise, one
must then solve it. A typical way to do it is to parallelize Krylov methods like CG,
GMRES, or BiCGStab as described in Section 1.4. Additionally preconditioners
must be adapted too.

The standard Krylov methods (see [109] for a detailed discussion) only contain
matrix-vector products, scalar products, and linear combinations of vectors. We
already discussed how to implement these operations in 2.2.2. Surprisingly this all
that is required to run a Krylov method like GMRES in parallel. The implementation
doesn’t even have to be implemented with parallelization in mind: the default
templated Krylov methods in deal.II for example are templated and thus take
arbitrary matrix and vector types as long as they supply the necessary operations.

The methods work fairly well with the right preconditioners, but of course they
are not optimized for parallel usage. The high number of scalar products create
many synchronization points which slow down the algorithm. There exist some
optimized parallel variants of the common Krylov methods, see [43] for example.
The scalar products in creating the orthonormal basis are the bottleneck, so one
tries other orthonormalization procedures than Gram-Schmidt orthogonalization.
At the moment this is not implemented in PETSc, Trilinos, or deal.II, though and
it is not clear how much better the performance would be.

Preconditioners on the other hand can not be easily adapted to distributed computa-
tions. One compromise is applying preconditioners like ILU decompositions only to
the local diagonal blocks (denoted as D in 2.2.2). Global ILU decompositions are not
feasible due to the amount of communication required to set up the preconditioner.
With block methods on the other hand the quality of the preconditioner decreases
with the number of processes involved, because in the limit the ILU decomposition
for example reduces to a diagonal preconditioner. Nevertheless the block methods
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are very efficient due to zero communication costs. Several preconditioners are
readily available in linear algebra packages like PETSc or Trilinos. For more details
see [109].

The class of parallel algebraic multi-grid methods are a very good alternative. Be-
cause the coarser levels span more than one processor, there is some communication
required for the setup and evaluating the preconditioner. On the other hand they
scale well with the number of processes. Packages like ML in Trilinos (see [49])
and BoomerAMG from the Hypre package (see [65]) supply very sophisticated
implementations. We are going to use those later on.

A third option are geometric multi-grid methods, that promise very good pre-
conditioners. A parallel implementation is less than trivial and requires a lot of
information about the mesh structure. There is no finished parallel implementation
for arbitrary finite elements with adaptive refinement in deal.II or any other finite
element package as far as it is known at the moment this thesis was written.

2.3 Parallel finite element software architecture

In this section we will now outline the algorithms that we have implemented in
version 7.0 of the open source library deal.II, offering the ability to solve finite
element problems on fully adaptive meshes of the sizes mentioned in the beginning
to a wider community. While deal.II provides a reference implementation of both
the mentioned algorithms as well as of tutorial programs that showcase their use
in actual applications, our goal is to be generic and our methods would certainly
apply to other finite element libraries as well. In particular, we will not require
specific aspects of the type of finite element, nor will the algorithms be restricted
to quadrilaterals (2d) and hexahedra (3d) that are used exclusively in deal.II, see
Section 1.2 and 1.3.

We will not be concerned with the question of how to efficiently generate and
partition hierarchically refined meshes on large numbers of processors, which
presents a major challenge on its own. Rather, we will assign this task to an “oracle”
that allows deal.II to obtain information on the distributed nature of the mesh
through a well-defined set of queries. These include for example whether a certain
cell exists on the current processor, or whether it is a “ghost” cell that is owned
by another processor. Using queries to the oracle, each processor can then rebuild
the rich data structures necessary for finite element computations for the “locally
owned” part of the global mesh and perform the necessary computations on them.
In our implementation, we use the p4est algorithms for 2d and 3d parallel mesh
topology [28] as the oracle; however, it is entirely conceivable to connect to different
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oracle implementations — for example packages that support the ITAPS iMesh
interface [96] —, provided they adhere to the query structure detailed in this article,
and can respond to certain mesh modification directives discussed below.

We will detail the requirements deal.II has of the mesh oracle, a description of
the way p4est works, and the algorithm that builds the processor-local meshes in
Section 2.3.1. In Section 2.3.2, we will discuss dealing with the degrees of freedom
defined on a distributed mesh. Section 2.3.3 will then be concerned with setting
up, assembling and solving the linear systems that result from the application
of the finite element method; Section 2.3.4 discusses the parallel computation of
thresholds for a-posteriori error indicators and postprocessing of the solution. We
provide numerical results that support the scalability of all proposed algorithms in
Section 2.3.5.

2.3.1 Parallel construction of distributed meshes

For solving large problems in a finite element program the computational mesh as
described in Section 1.2 consumes too much memory to be stored on every machine.
Additionally operations covering all cells on each machine obviously can not scale
properly with increasing the number of processors. We resolve this limitation based
on the tenets in Section 2.1.4 by distributed mesh storage with coarsened overlap: Each
processor still stores a local mesh that covers the whole domain, but this mesh is
now different on each processor. It is identical to the global mesh only in the part
that is identified by the oracle as “locally owned” by the current processor, whereas
the remaining and much larger non-owned part of the local mesh is coarsened as
much as possible, rendering its memory footprint insignificant. With this approach
the global mesh is not replicated anymore but understood implicitly as the disjoint
union of the locally owned parts on each processor. To achieve parallel scalability of
the complete finite element pipeline, the storage of degrees of freedom and matrices
arising from a finite element discretization must be fully distributed as well, which
can be achieved by querying the oracle about ghost cells and creating efficient
communication patterns and data structures for index sets as we will explain below.

We encode the distributed mesh in a two-layered approach. The inner layer, which
we refer to as the “oracle”, provides rudimentary information on the owned part
of the mesh and the parallel neighborhood, and executes directives to coarsen,
refine, and re-partition the mesh. The outer layer interacts with the oracle through
a well-defined set of queries and builds a representation of the mesh that includes
the refinement hierarchy and some overlap with neighboring mesh parts, and is
rich enough to provide all information requires for finite element operations. This
two-layered approach effectively separates a large part of the parallel management
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of mesh topology in the oracle from the locally stored representation retaining the
existing infrastructure in deal.II.

There is a significant amount of literature on how to generate and modify dis-
tributed adaptive meshes in parallel. For example, [24,32,78,117,122] discuss
related data structures and algorithms. In the current contribution, we base our
work on the open source software library p4est, which realizes the oracle func-
tionality in the sense outlined above, and has been shown to scale to hundreds
of thousands of processors [28]. However, any other software that allows the
well-defined and small list of queries detailed below may equally well be used
in place of p4est. For example, this could include the packages that support the
ITAPS iMesh interface [96].

In this part, we define the general characteristics of the mesh, propose an algorithm
to construct the local mesh representation based on querying the oracle, and
document mesh modification capabilities required from the oracle.

Assumptions on parallel distributed meshes

We will not be concerned with the technical details of the parallel storage of meshes
or the algorithms hidden within the oracle. In particular, for our purposes we
only need to be able to infer what cells exist, how they relate to each other via
neighborship, and how they have been derived by hierarchic refinement from a
small to moderate set of initial coarse mesh cells. We will make the following
general assumptions that are respected by both the inner layer or oracle (p4est)
and the outer layer (implemented within deal.II):

o Common coarse mesh: All cells are derived by refinement from a common
coarse mesh that can be held completely on each of the processors and should
therefore not exceed a few 100,000 to a million cells. In general, the common
coarse mesh only has to provide a sufficient number of cells to capture the
topology of the computational domain, which is often below 100 or even
as small as 1, while mesh refinement takes care of geometric details. Only
in rare cases does geometric complexity require 100,000s or more coarse
mesh cells; consequently, we reserve the dynamic partitioning of coarse cells,
which is certainly feasible, for a future extension. Because deal.II exclusively
supports quadrilaterals and hexahedra, we will henceforth assume that the
common coarse mesh only consists of such cells, though this is immaterial for
almost all that follows, and our algorithms are equally valid when applied to
meshes consisting of triangles or tetrahedra.

e Hierarchic refinement: Each of the common coarse mesh cells may be hierarchi-

41



2.3. Parallel finite element software architecture

cally refined into four (2d) or eight (3d) children which may in turn be further
refined themselves. This naturally gives rise to a quad- or octree rooted in each
common coarse cell, and an appropriate data structure for the entire mesh
then is a quad- or octforest. Therefore each cell can be uniquely identified by
an index into the common coarse mesh (i.e., its tree number) and an identifier
that describes how to walk through the corresponding tree to the (refined)
cell.

o 2:1 mesh balance: We demand that geometrically neighboring cells may differ
by only a single refinement level, thereby enforcing that only a single hanging
node can exist per face or edge. This condition is mostly for convenience, since
it simplifies the creation of interpolation operators on interfaces between cells.

o Distributed storage: Each processor in a parallel program may only store a
part of the entire forest that is not much larger than the total number of
cells divided by the number of processors. This may include a fixed number
of ghost cell layers, but it cannot be a fraction of the entire mesh that is
independent of the number of processors. We explicitly permit that each
processor may store parts of more than one tree, and that parts of a given tree
may be stored on multiple processors. See also Section 2.1.4.

Note that a mesh is independent of its use; in particular, it has no knowledge
of finite element spaces defined on it, or values of nodal vectors associated with
such a space. It is, thus, a rather minimal data structure to simplify parallel
distributed storage. Furthermore, the separation of mesh and finite element data
structures establishes a clean modularization of the respective algorithms and
implementations.

A mesh oracle and interface to deal.II

deal.II must keep rich data structures for the mesh and derived objects. For
example, it must know the actual geometric location of vertices, boundary indi-
cators, material properties, etc. It also stores the complete mesh hierarchy and
data structures of surfaces, lines and points and their neighborship information
for traversal, all of which are required for the rest of the library and to support
algorithms built on it.

On the other hand, p4est only stores the terminal nodes (i.e., the leaves) of the
parallel forest explicitly. By itself, this is not enough for all but the most basic
finite element algorithms. However, we can resolve this apparent conflict if deal.II
builds its own local mesh on the current processor, using the locally stored portion
of the parallel distributed mesh stored by p4est as the template, and augmenting
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it with the information required for more complex algorithms. In a sense, this
approach forms a synthesis of the completely distributed and lean data structures
of p4est and the rich structures of deal.II. Designing this synthesis in a practical
and scalable way is one of the innovations of this research; we will demonstrate its
efficiency in Section 2.3.5.

In order to explain the algorithm that reconstructs the local part of a mesh on one
processor, let us assume that both deal.II and p4est already share knowledge
about the set of common coarse cells. Then, deal.II uses p4est as an oracle for
the following rather minimal set of queries:

e Does a given terminal deal.II cell exist in the portion of the p4est mesh
stored on the current processor?

e Does a given deal.II cell (terminal or not) overlap with any of the terminal
p4est cells stored on the current processor?

e Does a given deal.II cell (terminal or not) overlap with any of the terminal
p4est ghost cells (defined as a foreign cell sharing at least one corner with a
cell owned by the current processor)?

e Is a given p4est cell a ghost cell and if yes, which processor owns it?

The algorithm for mesh reconstruction based on only these queries is shown in
Fig. 2.3. It is essential that all queries are executed fast, i.e., in constant time or
at most O(log N), where N is the number of local cells, to ensure overall optimal
complexity. Furthermore, no query may entail communication between processors.
Note that the reconstruction algorithm makes no assumptions on the prior state
of the deal.II mesh, allowing for its coarsening and refinement as the oracle may
have moved cells to a different processor during adaptive mesh refinement and
re-partitioning. In a deal.II mesh so constructed, different kinds of cells exist on
any particular processor:

e Active cells are cells without children. Active cells cover the entire domain. If
an active cell belongs to a part of the global mesh that is owned by the current
processor, then it corresponds to a leaf of the global distributed forest that
forms the mesh. In that case, we call it a locally owned active cell.

e Ghost cells are active cells that correspond to leaves of the distributed forest
that are not locally owned but are adjacent to locally owned active cells.

o Artificial cells are active cells that are neither locally owned nor ghost cells.
They are stored to satisfy deal.II’s invariants of never having more than one
hanging node per face or edge, and of storing all common coarse mesh cells.
Artificial cells can, but need not correspond to leaves of the distributed forest,
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copy-to_deal:
do
for all coarse mesh cells K:
match tree_recursively(K)
refine and coarsen all cells previously marked
while (the mesh changed in the last iteration)

match _tree recursively(K):
if (oracle: does K overlap with locally owned or ghost parts of the mesh?)
if (K has children)
for each child K. of K
match tree recursively(K,)
else
if not (oracle: does K exist in the locally owned or ghost part?)
mark K for refinement
else
mark the most refined descendents of K, or K itself, for coarsening

Figure 2.3: Pseudo-code for reconstructing the local part of a mesh in deal. II, based on
querying the mesh oracle provided by p4est. The algorithm starts with an arbitrary mesh
and terminates once the mesh contains all cells that the oracle indicates as either locally
owned or ghost cells.
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Figure 2.4: Example of an adaptively refined mesh distributed across four processors. The
cyan, green, yellow, and red colors indicate which processor owns any given cell. The four
panels depict the views each of the four processors has of the mesh. Note that each processor
knows only (i) the global cells it owns, and (ii) one layer of ghost cells in the global mesh
and their owner processor identifiers. The artificial cells (indicated in dark blue) carry no
information. The effective mesh used for computation is the union of the four locally owned
parts.
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and are skipped in every algorithm inside deal.II.

e Non-active cells are cells that have children. deal.II stores all intermediate
cells that form the hierarchy between coarse mesh cells (the roots of the trees)
and active cells.

Fig. 2.4 shows the result of executing copy_to_deal (Fig. 2.3) on an example mesh
distributed among four processors. Note that no processor has knowledge of the
entire global mesh — each processor only matches its own cells as well as one layer
of ghost cells. Because the parallel partitioning and identification of ghost cells is
computed by p4est according to a space-filling z-curve [95], the part of the global
mesh owned by a processor may not be contiguous. This can be seen in the second
panel of the figure.

Remark 1: Storing artificial cells that do not belong to the coarse mesh appears wasteful
since these cells are indeed unnecessary for almost all computations. As pointed out above
we only store them to maintain the invariants for which the base library, deal. II, has been
extensively validated. Clearly, the fraction of artificial cells decreases as the number of cells
stored locally increases. For the 2d example discussed in Section 2.3.5, which has 1 coarse cell,
our numerical experiments suggest that the ratio Nuiicia/ (Nactive + N, host) is only very
weakly dependent on the number of processors, and decreases as O ((Nactive + Ngpost) ™ 0-55),
On a fine mesh with 4,096 processors and a total of almost 600 million cells, on average
only 3% of the cells stored locally are artificial and on no processor does this number exceed
5%.

We reflect the different types of cells using the following notation: Let T denote
the set of all terminal cells that exist in the distributed mesh. Furthermore, let

Tlpo . C T be the subset of cells that processor p owns; obviously, Up loc = T, and
we will require that Tf oc N Tfo . = @ for all p # q. Finally, let Tgh ost C T be the set
of ghost cells that processor p knows about; we have that Tghost N Tfoc = @ and

we will assume that each ghost cell K C T, _ has at least one neighbor in T}

ghost loc

where neighborship is via faces, lines, or vertices. In addition to Tp and Tgh ost’
each processor stores additional terminal cells that may or may not be terminal
cells in T, for example some coarse mesh cells. We will call these artificial cells and

denote them by T they are shown in dark blue in Fig. 2.4.

art1f1c1a1’

Directives for mesh modification

We will require that the oracle not only responds to the queries listed above, but
also performs several operations that modify the distributed global mesh. Such
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mesh modifications are often used during the startup phase of a simulation, or
repeatedly to adapt according to error indicators or to track dynamical features of
a simulation that evolves over time.

e Refine and/or coarsen the mesh based on flags set by deal.II. Refinement
and coarsening shall be executed locally without communication between
processors.

e Enforce 2:1 mesh balance by additional refinement where necessary, limit-
ing the level difference between neighboring cells to one. This is done as
a postprocessing step to local refinement and coarsening which involves
communication with processors that own nearby parts of the mesh.

e Re-partition the cells of the global mesh in parallel to ensure load balance (the
most commonly used criterion being to equalize the number of cells among
processors). This operation involves mostly point-to-point communication.
During the re-partitioning step, additional information shall be attached to
the cells. When a cell is migrated from one processor to another, this data is
automatically migrated with the cell.

While this functionality can entail considerable complexity, it is likely to be available
from implementations of parallel mesh data bases. Thus, we do not consider the
above specifications unnecessarily restrictive. In the case of p4est we refer the
reader to the algorithms presented in [28]. deal.II makes use of these capabilities
to efficiently implement a number of operations typical of finite element codes; see
Section 2.3.4.

2.3.2 Dealing with global indices of degrees of freedom

Once we have a local representation of a distributed mesh, the next step in any
finite element program is to connect the finite element space to be used with the
triangulation. In deal.II, this tasks falls to the DoFHandler class [8] that inspects
a FiniteElement object for the number of degrees of freedom that are required
per vertex, line, face, and cell. For example, for a Taylor-Hood (Qg x Q1) element
used for the Stokes equations in d space dimensions, we need d + 1 degrees of
freedom per vertex, and d for each line, quad and hex (if in 3d). The DoFHandler
will then allocate global numbers for each of the degrees of freedom located on
the vertices, lines, quads and hexes that exist in the triangulation. A variant of this
class, hp: :DoFHandler, is able to do the same task if different finite elements are to
be used on different cells such as in hp-adaptive computations [10].

In the current context, we will have to assign global indices for degrees of freedom
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defined on a mesh of which we only know a certain part on each processor. In
the following subsections, we will discuss the algorithms that achieve this task,
followed by strategies to deal with the constraints that result from hanging nodes.
Together, indices of degrees of freedom and constraints will completely describe a
basis of the finite element space we want to use.

Enumerating degrees of freedom

The simplest way to distribute global indices of degrees of freedom on the dis-
tributed mesh would be to first let processor 0 enumerate the degrees of freedom
on the cells it owns, then communicate the next unused index to processor 1 that
will then enumerate those degrees of freedom on its own cells that have not been
enumerated yet, pass the next unused index to processor 2, and so on. Obviously,
this strategy does not scale beyond a small number of processors.

Rather, we use the following algorithm to achieve the same end result in a parallel
tashion where all processors p = 0,...,P — 1 work independently unless noted
otherwise. This algorithm also determines the ownership of degrees of freedom on
the interface between cells belonging to different processors. The rule for decision of
ownership is arbitrary but must be consistent and must not require communication.
The number of processors involved is typically up to eight for a degree of freedom
on a vertex in 3d, but can be even higher for a coarse mesh with complicated
topology. We resolve to assign each degree of freedom on an interface between
processors to the processor with the smallest processor identifier (the “rank” in
MPI terminology).

0. On all active cells (locally owned or not), initialize all indices of degrees of
freedom with an invalid value, for example —1.

1. Flag the indices of all degrees of freedom defined on all cells K € Tfo . by

assigning to them a valid value, for example 0. At the end of this step, all
degrees of freedom on the locally owned cells have been flagged, including

those that are located on interfaces between cells in Tfoc and Tg host*

2. Loop over all ghost cells K € Tgh st/
then reset indices of the degrees of freedom located on this cell to the invalid
value. After this step, all flagged degrees of freedom are the ones we own
locally.

if the owner of K is processor g and g < p

3. Loop over all cells K € Tf o and assign indices in ascending order to all
degrees of freedom marked as valid. Start at zero, and let n, be the number
of indices assigned. Note that this step cannot be incorporated into step (2)
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because degrees of freedom may be located on interfaces between more than
two processors and a cell in Tlp - May not be able to easily determine whether
cells that are not locally owned share such an interface.

4. Let all processors communicate the number 7, of locally owned degrees
of freedom to all others. In MPI terminology, this amounts to calling
MPI_Allgather. Shift the indices of all enumerated degrees of freedom by

Zs;é ng. At the end of this step, all degrees of freedom on the entire dis-
tributed mesh have been assigned globally unique indices between 0 and
N = 25;(} ng, and every processor knows the correct indices of all degrees
of freedom it owns. However, processor p may not know the correct indices
of degrees of freedom on the interface between its cells and those owned by
other processors, as well as the indices on ghost cells that we require for some

algorithms. These remaining indices will be obtained in the next two steps.

5. Communicate indices of degrees of freedom on cells in Tf o to other processors
according to the following algorithm:

a) Flag all vertices of cells in Tfoc.

b) Loop over vertices of cells in Tghost and populate a map that stores for

each of the vertices flagged in step (a) the owning processor identifier(s)
of adjacent ghost cells.

c) Loop over all cells in Tlpoc. If according to the previous step one of its
vertices is adjacent to a ghost cell owned by processor g, then add the
pair [cell_id, indices of degrees of freedom on this cell] to a list of such pairs to
be sent to processor g. Note that the same pair can be added to multiple
such lists if the current cell is adjacent to several other processors’ cells.
Note also that every cell we add on processor p to the list for processor

g is in Tghost' This communication pattern is symmetric, i.e., processor

p receives a message from g if and only if it sends to g; this symmetry

avoids the need to negotiate communications.

d) Send the contents of each of these lists to their respective destination
processor g using non-blocking point-to-point communication.

e) From all processors that the current one borders to (i.e., the owners of
any of the cells in Tg host)- TECeiVe a list as created above. Each of the cells
in this list refer to a ghost cell; for each of these cells, set the indices of

the degrees of freedom on this cell to the ones given by the list unless
the index in the list is invalid.

Note that while the lists created in step (c) contain only cells owned by the
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current processor, not all indices in them are known as they may lie on an
interface to another processor. These will then be the invalid index, prompting
the need for the conditional set in step (e). On the other hand, it is easy to see
that if an index located on the interface between two ghost cells is set more
than once, then the value so set is always either the same (if the ghost cells
belong to the same processor) or the invalid marker (in which case we ignore
it).

6. At the end of the previous step, all cells in Tlpoc have their final, correct indices
set. However, some ghost cells may still have invalid markers since their
indices were sent by processors that at the time did not know all correct
indices yet. They do now, however. Consequently, the last step is to repeat
the actions of step (5). We can optimize this step by only adding cells to the
send lists that prior to step (5e) had invalid index markers.

At the end of this algorithm, each processor knows the correct global indices of
degrees of freedom on all of the cells it locally owns as well as on all the ghost
cells. We note that this algorithm is not restricted to h-refined meshes but is equally
applicable to hp-adaptivity.

A similar algorithm that makes the same decision for degrees of freedom on the
interface is detailed in [87], but there are a few crucial differences to our approach:
First, their algorithm contains a sequential part to compute the indices of shared
degrees of freedom (Stage 2), while ours does that computation in parallel. Second,
our approach lends itself to non-blocking communication (see step 5d above).
Third, we decided to realize the communication over shared vertices instead of
facets, which simplifies the calculation and enables us to send data directly to
the destination (instead of sending it indirectly via other processors when only a
vertex is shared). Fourth, instead of implementing a more complicated logic for
transferring individual degrees of freedom we opted to always send all degrees
of freedom belonging to a cell and even to accept sending a cell twice, which can
only happen for some cells that touch more than one other processor (see step 6).
Because we transfer the data of the whole cell, we ensure knowledge of all degrees
of freedom on ghost cells, not only those on the interface to locally owned cells as
described in [87] or [28]; this is necessary for a number of algorithms that must, for
example, evaluate the gradient of the solution on both sides of an interface. While
our approach requires sending slightly larger messages, it is overall more efficient
because that data does not need to be sent later in an additional communication
step. The rationale here is that since the amount of data exchanged is modest in
either case, communication cost is dominated by latency rather than message size.

Remark 2: Our algorithm always assigns degrees of freedom on the interface between
processors to the one with the smallest processor identifier. This is in contrast to earlier
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work, see [62]. It results in a slight imbalance: processors with identifiers close to zero
tend to own more degrees of freedom than the average, and processors with ranks close to
the parallel job size own less, while most processors in the bulk own roughly the average
number.

One may therefore think about constructing a better tie breaker for ownership of degrees of
freedom on processor interfaces. deal.II implements such a fairer scheme in a mode where
each processor stores the entire mesh, as does the current code of FEniCS/DOLFIN. See also
Section 2.2.1. However, our experiments indicate that at least relatively simple schemes
do not pay off, for several reasons. First, when different degrees of freedom on the same
edge or face are assigned to two different processors A and B, matrix-vector multiplications
require roughly twice the amount of data transfer because the connectivity graph between
degrees of freedom is partitioned by cutting more edges than when assigning all degrees of
freedom on a complete face to one side alone. Second, determining ownership is easily done
without communication in our algorithm above. Third, the workload in downstream parts
of the finite element code is typically quite well balanced, as the cost for many operations
is proportional to the number of local cells — which p4est balances perfectly — and not
to the number of degrees of freedom. Finally, by enumerating the degrees of freedom on
at least one of the cells adjacent to an interface in a natural ordering, we improve cache
locality and thus the performance when accessing corresponding data. To evaluate these
arguments, we carefully analyzed the distribution of degrees of freedom and observed only a
small imbalance in memory consumption in our numerical tests, while we found excellent
scalability of our matrix-vector product implementation.

Subsets of degrees of freedom

In the following sections, we will frequently need to identify certain subsets of
degrees of freedom (by convention by identifying their respective global indices).
To this end, let us define the following subsets of the complete set of indices
Z=10,N):

o If ,. denotes the set of degrees of freedom locally owned by processor p. These

are all defined on cells in Tf - though some of the degrees of freedom located

on the interfaces of these cells with other processors may be owned by the
neighboring processor. We have ny = #Ifo., Uq Iﬁo. =7,and I{.}O. N Iﬁo. =@
for p # g. Note that following the algorithm described in the previous section,
the set of indices in If ,, is contiguous. However, this is no longer true when
degrees of freedom are renumbered later.

o If_’ , denotes the set of degrees of freedom that are locally active for processor

p. This set contains all degrees of freedom defined on Tfoc, and If . N IZ o
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identifies all those degrees of freedom that live on the interface between the
subdomains owned by processors p and g if these are neighbors connected by
at least one vertex of the mesh.

o IP denotes the set of degrees of freedom that are locally relevant for processor
p. We define these to be the degrees of freedom that are located on all cells in
Tfoc U Tghost
These index sets Zf o, C Iﬁ . C Ifr’ must be represented in a computer program
for the algorithms discussed below. Maybe surprisingly, we have found that the
data structures chosen for this have an enormous impact on the efficiency of our
programs as the number of queries into these index sets is very large. In particular,
we will frequently have to test whether a given index is in an index set, and if it
is we will have to determine the position of an index within this set. The latter
is important to achieve our goal that no processor should ever hold arrays on all
elements of Z: rather, we would like to compress these arrays by only storing
data for all elements of a set Z C Z, but for this we need to map global indices
into positions in index sets and vice versa. The efficient implementation of such
operations is therefore an important aspect, in particular if the index set is not
simply a single contiguous range of indices.

In deal.II, the IndexSet class implements all such queries. It stores an index set
as the union Z = [JX_,[by, ex) of K half open, disjoint, contiguous intervals that we
store sorted by their first indices by. Here, we denote by Z a generic index set that
could, for example, be any of the sets defined above. For isolated indices, we have
ex = by + 1. This data structure allows to test whether an index is in the set in
O(log, K) operations. However, the determination of the position of a given index
i in the set would require O(K) operations: if k’ is the interval in which i is located,
ie., bk’ <i< ex’, then

k-1

pos(i, ) = ) (ex —by) + (i —by),

k=0

where the determination of k' = min{k : i < ¢} can be done in parallel to summing
over the sizes of intervals. Similarly, computing the value of the mth index in a set
7 would require O(K) operations on average.

We can remove both these bottlenecks by storing with each interval [, ¢x) the
number py = Zﬁ;})(e,c —byx) = px_1 + (ex_1 — bx_1) of indices in previous intervals.
We update these numbers at the end of generating an index set, or whenever they
have become outdated but a query requires them. Finding the position of index i
then only requires finding which interval k’ it lies in — an O(log, K) operation — and
then computing py + i — by. Likewise finding the value of the mth index requires
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finding the largest py < m, which can also be implemented in O(log, K) operations.
In summary, storing an index set as a sorted collection Z ~ {(by, ey, pk)fzo} of
triplets allows for efficient implementation of all operations that we will need
below.

Constraints on degrees of freedom

The algorithms described above provide for a complete characterization of the
basis of the finite element space on each cell. However, since we allow hanging
nodes in our mesh, not every local degree of freedom is actually a global degree of
freedom: some are in fact constrained by adjacent degrees of freedom. In general,
the construction of such constraints for hanging nodes is not overly complicated
and can be found in [30,103,114,115]; the algorithms used in deal.II are described
in [8,10]. We will here focus on those aspects particular to distributed computations.

Constraints on degrees of freedom typically have the form

N-1
X; = Zcijxj—i—bi, iel. C1,
j=0

where 7. is the set of constrained degrees of freedom, and the constraint matrix
cij is typically very sparse. For hanging nodes, the inhomogeneities b; are zero;
as an example, for lowest order elements the constraints on edge mid-nodes have
the form x, = %xo + %xl. Constraints may also originate from strongly imposed
Dirichlet-type boundary values in the form xo = 42, for example.

Which constraints need to be stored? It is clear that not every processor will be
able to store the data that describes all the constraints that may exist on the dis-
tributed finite element space. In fact, each processor can only construct constraints
for a subset of If . NZ. since it has no knowledge of any of the other degrees of
freedom. Consequently, the question here is rather which subset Z} of constraints
each processor could in principle construct, and which it requires to construct and
store locally for the algorithms described below to work.

For sequential computations, one can first assemble the linear system from all
cell contributions irrespective of constraints and in a second step “eliminate” con-
strained degrees of freedom in an in-place procedure (see, for example, [10, Section
5.2]). On the other hand, in distributed parallel computations, no processor has
access to a sufficient number of matrix rows to eliminate constrained degrees of
freedom after the linear system has already been assembled from its cell-wise
contributions. Consequently, we have to eliminate constrained degrees of freedom
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already when copying local contributions into the global linear system. While this
may not be quite as elegant, it has the benefit that we know exactly what degrees
of freedom we may have to resolve constraints for. Namely, exactly those that
may appear in local contributions to the global linear system: if processor p has a
contribution to global entry (i, ) of the matrix, then it must know about constraints
on degrees of freedom i and j. Which these are depends on both the finite element
as well as the bilinear form in use.

Local contributions to the global linear system are computed by each processor for
all cells Tfoc (i.e., for all degrees of freedom in If ,), see Section 1.2 and 2.2.2. For
most finite elements and bilinear forms, the local contribution consists of integrals
only over each cell K € Tp o and consequently every processor will only need
to know constraints on all degrees of freedom in Z! = Z. N I} . Discontinuous
Galerkin methods also have jump terms between cells, and Consequently need
to also know about constraints on degrees of freedom on cells neighboring those

that are locally owned; in that case, we need to know about all constraints in
! =1I.N7I},.

Dealing with chains of constraints. The considerations above are of only theoret-
ical interest if constraints can be against degrees of freedom that are themselves
constrained, i.e., if constraints form chains. This frequently happens in at least two
situations. First, it is common in hp-adaptive methods, see for example [10]. In
that case, it is even conceivable that chains of constraints extend to the boundary
between ghost and artificial cells. Then, the depth of the ghost layer would need to
be extended to more than one layer of cells, thereby also expanding the set If .- We
will not consider such cases here.

The second, more common situation is if we have Dirichlet boundary conditions on
degrees of freedom, e.g., constraints of the form xy = 42. If another constraint, e.g.,
Xy = %xo + %x1, references such a degree of freedom xj and if the latter is located
in the ghost layer, then we must know about the constraint on xy. For this reason,
in deal.II each processor always stores all those constraints in Z} = Z. N Z}, that
can be computed on locally owned and ghost cells.

Computing constraints for hanging nodes. Of equal importance to the question
of which constraints we need to store is the question how we can compute the
necessary constraints that result from hanging nodes. Let us first consider the
case of continuous elements with only cell integration, i.e., Z! = Z.NZ} . Since
all of these degrees of freedom are adjacent to locally owned cells, it may appear
that it is sufficient to compute constraints by only considering hanging nodes at
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faces between two locally owned cells, or between a locally owned cell and a ghost
neighbor. While we believe that this true in two space dimensions, this is not so
in 3d. For example, consider the situation depicted in Fig. 2.5, assuming trilinear
finite elements. The degree of freedom indicated by the blue dot is locally active
both on processor 0 (white cells) and processor 1 (yellow cells in front). However,
since hanging node constraints are computed based on the face between coarse and
fine cells, not solely on edges, processor 1 can only know about the constraint on
this degree of freedom by computing the constraint on the interface between the
white cells, all of which are ghost cells for processor 1.

Since the structure and size of the set Z! de-
pends also on the bilinear form, one can imagine
situations in which computing it is even more
involved than described in the previous para-
graph. For example, if the bilinear form calls for /.
face integrals involving all shape functions from
both sides of the face, we would need to have
constraints also on all degrees in If . which we
may not be able to compute only from a single processor 1
layer of ghost cells. Fortunately, most discretiza-
tions that require such terms have discontinuous
shape functions that do not carry constraints on
hanging nodes; for a counter example see [73].

processor 0

Figure 2.5: Illustration of a situation
where constraints must be computed
between two ghost cells.

Evaluating constraints. When copying local contributions into the global matrix
and right-hand side vector objects during finite element assembly of linear systems,
we have to determine for each involved degree of freedom i whether it is constrained
or not, and if it is what the coefficients c;j, b; of its constraint are. For the sequential
case, the deal.II class ConstraintMatrix stores an array of integers for all degrees
of freedom. These integers contain the position of the constraint in the list of all
constraints, or —1 for i ¢ Z.. This guarantees that the query whether i is constrained
can be performed in O(1), as is actually accessing the constraints.

On the other hand, in the parallel distributed case under consideration here, this
strategy is not compatible with our desire to never store arrays on all degrees of
freedom on a single processor. Rather, we are presented with two options:

e On each processor, the ConstraintMatrix stores a sorted container of #If
elements each of which contains the index of the constrained degree of
freedom and its constraints. Finding whether index i is constrained and if so
accessing its constraints can then be done using O (log, (#Z/')) operations.
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e On each processor, this class stores an array of #If . integers. Finding whether
an index i € If;. is constrained then requires finding the position r; of i within
If . and testing position 7; in the array whether the integer stored there is —1
(indicating that there are no constraints on i) or otherwise is an index into an
array describing the constraints on i. As explained in Section 2.3.2, finding 7;
can be done in O(log, K”) operations where K” is the number of half-open
intervals that are required to describe Ilr_] .

Here, the second strategy requires a factor of #If ./ #ZI! more memory, but it
is cheaper in terms of run time if K¥ < #Z!. The former is not a significant
problem, since storing a single integer for every locally active degree of freedom
is not a noticeable expense overall. Whether the latter condition is true depends
on a number of application dependent factors: (i) how much local refinement is
required to resolve the solution, as this influences #77'; (ii) the ratio of the number
of ghost cells (which roughly determines K”) to the number of cells (which roughly
determines #Z! up to a factor). The ratio in the second point also depends on the
number of refinement steps as well as the number of processors available.

In a number of numerical experiments, we have not been able to conclusively
determine which of the two strategies above would be more efficient since the
ratio of K? to #Z! is highly variable. In particular, neither of these numbers are
uniformly much smaller than the other. deal.II currently implements the second
strategy.

As a final note in this section, let us remark that the strategies described above
turn out to be as conservative as one can be with only one layer of ghost cells: we
compute even constraints for degrees of freedom located between ghost cells, and
we also store the maximal set of constraints available. Coming to the conclusion
that both is necessary is the result of many long debugging sessions since forgetting
to compute or store constraints does not typically result in failing assertions or
other easy to find errors. Rather, it simply leads to the wrong linear system with
generally unpredictable, though always wrong, solutions.

2.3.3 Algorithms for setting up and solving linear systems

After creating the mesh and the index sets for degrees of freedom as discussed
above, we can turn to the core objective of finite element codes, namely assembling
and solving linear systems. We note that for parallel linear algebra, deal.II makes
use of PETSc [4,5] and Trilinos [66,67], rather than implementing this functionality
directly. For details see Section 2.2.
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Setting up sparsity patterns

Finite element discretizations lead to sparse matrices that are most efficiently stored
in compressed row format. Both PETSc and Trilinos allow application programs
to pre-set the sparsity pattern of matrices to avoid re-allocating memory over and
over during matrix assembly. deal.II makes use of this by first building objects
with specialized data structures that allow the efficient build-up of column indices
for each row in a matrix, and then bulk-copying all the indices in one row into
the respective PETSc or Trilinos matrix classes. Both of these libraries can then
store the actual matrix entries in a contiguous array in memory. We note here that
each processor will only store matrix and vector rows indexed by Z; p ~when using
either PETSc or Trilinos objects. Since Z = {J, Ip and the sets Ip are mutually
disjoint, we achieve a non-overlapping dlstrlbutlon of rows between the available
processors.

In the current context, we are interested in how pre-computing sparsity patterns
can be achieved in a parallel distributed program. We can build the sparsity pattern
if every processor loops over its own cells in Tlp o and simulates which elements
of the matrix would be written to if we were assembling the global matrix from
local contributions. It is immediately clear that we will not only write into rows
r that belong to the current processor (i.e., r € Ifo.), but also into rows r that
correspond to degrees of freedom owned by a neighboring processor g but located
at the boundary (ie., r € If . N Iﬁ ,), and last but not least into rows which the
degree of freedom r may be constrained to (these rows may lie in If . N Iﬁ o)

It would therefore seem that processor p must communicate to processor g the
elements it will write to in these rows in order for processor g to complete the
sparsity pattern of those rows that it locally stores. One may now ask whether it
is possible for processor g to determine which entries in rows corresponding to
If . N IZ ,. Will be written to by processor p, thereby avoiding communication. This
is, in fact, possible as long as there are no constrained degrees of freedom: each
processor will simply have to loop over all cells T, U T? ghost’ simulate assembly of

the matrix, and only record which elements in rows If o will be written to, ignoring
all writes to other rows.

loc

Unfortunately, this process does no longer work once constraints are involved, since
processors cannot always know all involved constraints. This is illustrated in Fig. 2.6.
Consider the situation that the bottom three cells are owned by processor 0, and
the rest by processor 1. Then Z?, = [0,8],Z}, = [9,20], and these two processors
will store constraints for Z0 = {6,17,19},Z! = {6,17,19,20} as explained in
Section 2.3.2.
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Consider now the matrix entries that processor 1 will have to write to when
assembling on cell B (shaded yellow). Since degrees of freedom 17 and 20 are
constrained to 5,10 and 10,11, respectively, after resolution of constraints we will
have matrix entries (5,10) and (5,11), among others. But because 5 € Z?O', these
entries must be stored on processor 0. The question now is whether processor 0
could know about this without communicating with processor 1. The answer is no:
we could have known about entry (5,10) by simulating assembly on cell A, which
is a ghost cell on processor 0. However, processor 0 cannot possibly know about
the matrix entry (5,11): the cells B and C are not in Tgh ot and so processor 0 does
not know anything about degree of freedom 20 in the first place, and certainly not
that it is constrained to degrees of freedom 10 and 11.

In summary, we cannot avoid com-

b j I 1 municating entries into the sparsity
pattern between processors, though at
9 10 20 |11 12 least this communication can be im-
A B S, plemented point-to-point. = We note
‘ 8 s Processor1  that in the case of Trilinos, the
5 6 |7 processorg  LPEtTa FECTsGraph class (implement-
ing sparsity patterns) can take care of

[ 7 2 3

this kind of communication: if we add
elements to rows of the sparsity pat-
tern that are not stored on the current
processor, then these will automatically
be transferred to the owning proces-
sor upon calling Epetra FECrsGraph's
GlobalAssemble function. A simi-
lar statement holds for PETSc objects
though there does not seem to be a way
to communicate entries of sparsity patterns between processors. Consequently,
when interfacing with PETSc, we send the entries generated in rows that are not
locally owned to the corresponding processor after concluding creation of the
sparsity pattern. This way each processor sends one data packet with indices to
each of its neighboring processors. The process is fast because each processor only
has to look at the rows with indices Z;, \ Z;,. and all communication can be done
point-to-point in a non-blocking fashion. Received indices are then inserted into
the local rows of the sparsity pattern.

Figure 2.6: Illustrating why sparsity patterns
cannot be built up without communication:
Degrees of freedom associated with a Q finite
element on a mesh split between two proces-
sors. Processor 0 owns degrees of freedom
0...8, processor 1 owns 9...20.
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Assembling and solving the linear system

After pre-setting the sparsity pattern of the matrix, assembling the linear system
happens in the usual way as described in Section 1.2 but only by computing
contributions from all cells in Tf oc- The implications for a parallel implementation
are given in Section 2.2.2. Additionally, we also must resolve constraints. Finally the
entries must be transferred into the global matrix and vector objects as described in
Section 2.2.2.

Once assembled, we must solve the resulting linear system that can contain billions
of unknowns. We realize this using parallel Krylov methods as described in
2.2.3. PETSc and Trilinos offer a large variety of preconditioners, including
highly effective algebraic multi-grid preconditioners available through the packages
hypre [46,47] and ML [49].

2.3.4 Postprocessing

Once a solution to the linear system has been computed, finite element applications
typically perform a number of postprocessing steps such as generating graphical
output, estimating errors, adaptively refining the mesh, and interpolating the
solution from the old to the new mesh. In the following, we will briefly comment
on the latter three of these points. We will not discuss generating graphical output
— storing and visualizing tens or hundreds of gigabytes of data resulting from
massively parallel computations is nontrivial and the realm of specialized tools not
under consideration here.

Adaptive refinement of meshes

Once a solution has been computed, we frequently want to adjust the mesh to better
resolve the solution. In order to drive this adaptation, we need to (i) compute error
indicators for each of the cells in the global mesh, and (ii) determine which cells to
refine, for example by setting a threshold on the error indicators above which a cell
should be refined (and similarly for coarsening).

The literature contains a large number of methods to estimate the error in finite
element solutions, see for example [1,11,126] and the references cited in these
publications. Without going into detail, it is natural to let every processor p
compute error indicators for the cells T} oc it owns. The primary complication from
the perspective of parallelization is that in order to compute these indicators, we

not only have to have access to all degrees of freedom located on cells in Tf oc 1-€
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to the elements of the solution vector indexed by If ., but frequently also solution
values on all neighboring cells in order to compute jump residuals at the interfaces
between cells. In other words, we need access to solution vector elements indexed
by Ifr. while by default every processor only stores solution vector elements it
owns, i.e., Il;?o.' Before computing error indicators, we therefore have to import the
missing elements (and preferably only those since, in particular, we cannot expect
to store the entire solution vector on each processor). Both PETSc and Trilinos
support this kind of operation.

Once error indicators ¢; > 0,i € [0, Neepis), where Neeps = #U, T}, have been
computed, we have to decide which cells to refine and coarsen. A typical strategy
is to refine and coarsen certain fractions a,, a. € [0,1] of all cells. To do that, we
must compute thresholds 6,, 6. so that, for example, #{i : ¢; > 6,} ~ a;Neys. On a
single processor, this is easily achieved by sorting the ¢; according to their size and
choosing that error indicator as the threshold 6, corresponding to position a; Ncejis,
though it is also possible to find this threshold without completely sorting the set of
indicators ¢;. This task can be performed using the algorithm commonly referred to
as nth_element, which can be implemented with average linear complexity, and is,
for example, part of the C++ standard library [116]. On the other hand, nth_element
does more than we need since it also shuffles the elements of the input sequence so
that they are ordered relative to the n-th element we are seeking.

In distributed parallel computations, no single processor has access to all error
indicators. Consequently, we could use a parallel nth_element algorithm, see
for example [121]. We can, however, avoid the partial sorting step by using the
distributed algorithm outlined in Figure 2.7. The algorithm computes the threshold
6 to an accuracy e. For practical reasons, we are not usually interested in very high
accuracy for these thresholds and typically set € so that the while-loop terminates
after, for example, at most 25 iterations. Since the interval in which 6 must lie is
halved in each iteration, this corresponds to a relative accuracy of 2% ~3x 1078,
The compute time for the algorithm with a fixed maximal number of iterations is
then O(% log, P), where the logarithmic factor results from the global reduce and
broadcast operations. Furthermore, the constant in this complexity can be improved
by letting each processor not only compute the number of cells n}/ 2= #{i: e) >
m = J(b+e)}, but also ni/t=#{i: ¢! > 1(b+e)} and n3/t = #{i: e > 3(b+e)},
thereby obviating the need for any communication in the next iteration (because
the data needed in the next iteration is already available) and cutting the number
of communication steps in half. This procedure can of course be repeated to reduce
the number of communication steps even further, at the expense of larger numbers
of variables n; sent to processor 0 in the reduction step.

In actual finite element computations, the algorithm as stated turns out to not
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b = mine?, el = maxe? compute local min and max
{b, —e} = MPI_AllReduce ({b?, —eP}, MIN) compute global min and max
while (|e — b| > ¢€)

MPI Bcast ({b,e}, 0 — all) broadcast current interval
m = %(b +e) compute interval split point
ny =#{i:el >m} count local elements greater
than m
ny =MPI_AllReduce (1n;, SUM) accumulate total number of el-
ements
if (n; > aN) then {b,e} = {b,m} adjust interval
else {b, e} = {m,e}
end
return 0 = m return threshold

Figure 2.7: Pseudo-code for determining a threshold 0 so that approximately aN elements
of a vector (ei)f\i 61 satisfy e; > 0. Each processor only stores a part e? of n¥ elements of
the input vector. The algorithm runs on each processor p,0 < p < P. This algorithm is a

variant of the parallel binary search described in [27].

be very efficient. The reason for this is that for practical problems, error indica-
tors e; are often scattered across many orders of magnitude, with only large e;.
Consequently, reducing the interval to 2% of its original size does not accurately
determine a useful threshold value 6. This problem can be avoided by using a
larger number of iterations. A better alternative is to exploit the fact that the
numbers log e; are much more uniformly distributed than e;; one can then choose

m = exp [%(logb +log e)] = /be. We use this modification in our code if b > 0,
with at most 25 iterations.

The algorithm outlined above computes a threshold so that a certain fraction of
the cells are refined. A different strategy often used in finite element codes is to
refine those cells with the largest indicators that together make up a certain fraction
ae of the total error e = ) ;e;. This is easily achieved with minor modifications
when determining n;. In either of these two cases, once thresholds 6., 6, have been
computed in this way, each processor can flag those among its cells Tf oc Whose
error indicators are larger than 6, or smaller than 6, for refinement or coarsening,
respectively.
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Transferring solutions between meshes

In time dependent or nonlinear problems, it is important that we can carry the
solution of one time step or nonlinear iteration from one mesh over to the next
mesh that we obtain by refining or coarsening the previous one. This functionality
is implemented in the deal.II class SolutionTransfer. It relies on the fact that
after setting refinement and coarsening flags, we can determine exactly which cells
will be refined and which will be coarsened (even though these sets of cells may
not coincide with the ones actually flagged, for example because the triangulation
has to respect the 2:1 mesh balance invariant).

Since the solution transfer is relatively trivial if all necessary information is available
locally, we describe the sequential algorithm first before discussing the modifications
necessary for a scalable parallel implementation. To this end, let x',i = 1...1 be the
vectors that we want to transfer to the new mesh. Then the sequential algorithm
begins as follows:

e On every terminal (active) cell K that will not be coarsened, collect the values
x'|g of all degrees of freedom located on K. Add the tuple (K, {x'|x}|_,) toa
list of such tuples.

e On every non-terminal cell K that has 24 terminal children K., ¢ = 1...24 that
will be coarsened, interpolate or project the values from the children onto K
and call the result x'|g. Add the tuple (K, {x'|g}._,) to a list of such tuples.

Next refine and coarsen the triangulation, enumerate all degrees of freedom on the
new mesh, resize the vectors x' to their correct new sizes and perform the following
actions:

e On every terminal cell K, see if an entry for this cell exists in the list of tuples.
If so, which will be the case for all cells that have not been changed at all
and those whose children have been deleted in the previous coarsening step,
extract the values of the solution x’|x on the current cell and copy them into
the global solution vectors x'.

e On all non-terminal cells K for which an entry exists in the list of tuples,
i.e., those that have been refined exactly once, extract the local values xi| Ky
interpolate them to the children x|g_,c = 1...2% and copy the results into
the global solution vectors x'.

By ordering the list of tuples in the same way as we traverse cells in the second
half of the algorithm, we can make both adding an element to the list and finding
tuples in the list an O(1) operation.
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This algorithm does not immediately work for parallel distributed meshes, first
because we will not be able to tell exactly which cells will be refined and coarsened
without communication (a precondition for the first part of the algorithm), and sec-
ond because, due to repartitioning, the cells we have after refinement on processor
p may not be those for which we stored tuples in the list before refinement on the
same processor.

In our parallel distributed re-implementation of the SolutionTransfer class, we
make use of the fact that the master version of the mesh is maintained by p4est
and stored independently of the deal.II object that represents the mesh including
all auxiliary information. Consequently, after deal.II notifies p4est of which
cells to refine and coarsen, and p4est performs the necessary mesh modification
including the 2:1 mesh balance (see Section 2.3.1), we have the opportunity to
determine which cells have been refined and coarsened by comparing the modified,
p4est-maintained master version of the mesh and the still unchanged mesh data in
deal.II. This allows us to create the list of tuples in the first part of the algorithm
outlined above. In a second step, deal.II calls p4est to repartition the mesh to
ensure a load-balanced distribution of terminal cells; in this step, p4est allows
attaching additional data to cells that are transferred point-to-point from one
processor to another. In our case, we attach the values x'|g. After partitioning the
mesh and re-building the deal.II triangulation, we query p4est for the stored
values on the machine the cell now belongs to. This allows us to perform the
second part of the algorithm like in the serial case, without adding communication
to deal.II itself.

2.3.5 Numerical Results

In the following, we will present two test cases that are intended to demonstrate
the scalability of the algorithms and data structures discussed above. The first test
case solves a 2d Laplace’s equation as introduced in Section 1.1 on an sequence
of adaptively refined meshes. The relative simplicity of this example implies that
the solver and preconditioner for the linear system — while still the most expensive
part of the program — are not completely dominating. Consequently, we will be
able to better demonstrate the scalability of the remaining parts of the program.
As explained in Section 1.1, the Laplace’s equation plays an important prototype
as it must be solved in the pressure Schur complement or for projection type
methods in instationary flow problems (see Section 3.3). The solution process
requires a global flow of information, which makes it a perfect candidate for
analyzing parallel scalability. The second test case investigates the solution of a
viscous thermal convection problem under the Boussinesq approximation. This
serves as a prototype for realistic, coupled, instationary problem with non-trivial
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preconditioning.

The programs that implement these test cases are available as the step-40 and
step-32 tutorial programs of deal.II, respectively, [59,79]. Tutorial programs are
extensively documented to demonstrate both the computational techniques used
to solve a problem as well as their implementation using deal.II’s classes and
functions. They are licensed in the same way as the library and serve well as
starting points for new programs.

The computational results shown in the following subsections were obtained on the
Ranger supercomputer at the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin. Some computations and the majority of code testing
were done on the Brazos and Hurr clusters at the Institute for Applied Mathematics
and Computational Science at Texas A&M University.

A simple 2d Laplace test case

The first test case solves the scalar Laplace’s equation, —Au = f on the unit square
Q = [0,1]?. We choose homogeneous boundary values and

1 if xp > 1 + 1sin(4mxy),
fx) = { -1 otherwise.

The discontinuity in the right-hand side leads to a sinusoidal line through the
domain along which the solution u(x) is non-smooth, resulting in very localized
adaptive mesh refinement. The equations are discretized using biquadratic finite
elements and solved using the conjugate gradient method preconditioned by the
BoomerAMG implementation of the algebraic multi-grid method in the hypre package
[46,47]. We call hypre through its interface to PETSc. Fig. 2.8 shows the solution
along with an adaptive mesh at an early stage of the refinement process containing
7,069 cells and a partition onto 16 processors.

To demonstrate the scalability of the algorithms and data structures discussed, we
solve the Laplace equation on a sequence of meshes each of which is derived from
the previous one using adaptive mesh refinement and coarsening (the mesh in
Fig. 2.8 results from three cycles of adaptation). For a given number of processors,
we can then show the wall clock time required by the various operations in our
program as a function of the number of degrees of freedom on each mesh in
this sequence. Fig. 2.9 shows this for 256 and 4,096 processors and up to around
1.2 x 107 degrees of freedom.! While we have measured wall clock times for a large

!Note that the next refinement would yield a number of degrees of freedom that exceeds the range
of the 32-bit signed integers used by hypre for indexing (PETSc can use 64-bit integers for this
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Figure 2.8: Two-dimensional scalar Laplace example. Left: Solution u on the unit square.
Right: Adapted mesh at an early stage with 7,069 cells. The partition between 16 processors
is indicated by colors.

number of parts of the program, the graph only labels those seven most expensive
ones that together account for more than 90% of the overall time. However, as can
be seen, even the remaining parts of the program scale linearly. The dominant parts
of the program in terms of their wall clock time are:

o Linear solver: Setting up the algebraic multi-grid preconditioner from the
distributed finite element system matrix, and solving the linear system with
the conjugate gradient method including the application of the AMG precon-
ditioner.

e Copy to deal.II: This is the operation that recreates the mesh in deal.II’s
own data structures from the more compressed representation in p4est. The
algorithm is shown in Fig. 2.3.

e Error estimation: Given the solution of the linear system, compute and commu-
nicate error indicators for each locally owned cell, compute global thresholds
for refinement and coarsening, and flag cells accordingly (see the algorithm
in Fig. 2.7).

o Assembly: Assembling the contributions of locally owned cells to the global
system matrix and right-hand side vector. This includes the transfer of matrix
and vector elements locally computed but stored on other processors.

purpose). Unfortunately, Trilinos’ Epetra package that we use in our second numerical test
case suffers from the same limitation.

64



Chapter 2. Parallel Algorithms

256 processors

100 T T L T =T
t —+— linear solver el
copy to deal.ll
--*--- error estimation - %
- assembly o s
— 10 init matrix g . 3
3 E sparsity patter - -2
c - -e--
o
(@]
3
° 1F E
=
K| .
=
0.1 ¢ .
0.01 e | : |
1e+06 1e+07 1e+08 1e+09
Number of degrees of freedom
4096 processors
100 F— — —— —
F —+— linear solver
copy to deal.ll
--*---error estimation
- assembly 1
— 10 init matrix -3
() o
©
C
o
(@]
(0]
2,
()
E
(=6
=
1 1

1e+08
Number of degrees of freedom

Figure 2.9: Two-dimensional scalar Laplace example. Scaling results on 256 (top) and 4,096
processors (bottom) for a sequence of successively refined grids. The various categories of
wall clock times are explained in the text. The labeled categories together account for more
then 90% of the total wall clock time of each cycle. In both graphs, the thick, dashed line
indicates linear scaling with the number of degrees of freedom. Each processor has more than
10° degrees of freedom only to the right of the vertical red line. Both the small number of
elements per processor left of the vertical line and small absolute run times of a few seconds
make the timings prone to jitter.
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e Sparsity pattern: Determine the locations of non-zero matrix entries as de-
scribed in 2.3.3.

o Init matrix: Exchange between processors which non-locally owned matrix
entries they will write to in order to populate the necessary sparsity pattern
for the global matrix. Copy intermediate data structures used to collect these
entries into a more compact one and allocate memory for the system matrix.

o Coarsen and refine: Coarsen and refine marked cells, and enforce the 2:1
cell balance across all cell interfaces (this includes the largest volume of
communication within p4est; see Section 2.3.1).

The results presented in Fig. 2.9 show that all operations appear to scale linearly (or
better) with the number of degrees of freedom whenever the number of elements
per processor exceeds 10°. For smaller element counts per processor, and run times
of under a few seconds, most operations behave somewhat irregularly— in particular
in the graph with 4,096 processors —, which can be attributed to the fact that in
this situation there is simply not enough numerical work to hide the overhead and
inherent randomness caused by communication. This behavior is most marked in
the Copy-to-deal.II and p4est re-partitioning operations. (The scalability of the
latter has been independently demonstrated in [25].)

Note 2.1: The second exception is the operation that re-partitions the p4est representation
of the mesh into equally sized chunks after each processor has refined and coarsened the
locally owned cells. This operation is shown using the dashed, rather random curve without
markers in Fig. 2.9 for one run of the program, but we note that the timings of this operation
differ in subsequent runs with the same executable by up to an order of magnitude; the
minimum time from several invocations scales linearly and would follow the lower envelope
of the shown curve. Despite considerable efforts, we have been unable to find the root cause of
this behavior. The unaccountable time is spent in an MPI_Waitall call after each processor
sends information to some others and waits for its incoming packets. We have ruled out
that some processors simply take longer sending their data by placing an MPI_Barrier
call right before the wait-all operation, with no effect on the non-deterministic run time of
the latter operation. We cannot support any of our other hypotheses without a significant
amount of speculation.

While the results discussed above show that a fixed number of processors can
solve larger and larger problems in a time proportional to the problem’s size,
Fig 2.10 shows the results of a “strong” scaling experiment. Here we select two
refinement levels that result in roughly 52 and 335 million unknowns, respectively,
and compare run times for different numbers of processors. Again, above roughly
10° elements per processor we observe nearly ideal scalability of all algorithms.
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Figure 2.10: Two-dimensional scalar Laplace example. Strong scaling results for a refinement
level at which meshes have approximately 52 million (top) and 335 million unknowns
(bottom), for up to 16,384 processors. The thick, dashed line indicates linear scaling with
the number of processors. Each processor has more than 10° degrees of freedom only to the

left of the vertical red line.
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Figure 2.11: Solution of the mantle convection test case at two instants in time during the
simulation. Mesh adaptation ensures that the plumes are adequately resolved.

A thermal convection test case

The second test case considers solving the equations that describe convection
driven by buoyancy due to temperature variations. For details and more numerical
experiments for the test case — which is also published as step-32 in deal.II — we
refer to Section 4.3.

Let us note that this example serves as a realistic and complex test case. It is a
coupled system for velocity, pressure, and temperature. The adaptivity is necessary
for the correct temporal development of the solution. Typical solutions at two time
steps during the simulation are shown in Fig. 2.11. It also features saddle point
solvers for the Stokes part, which is discussed in Section 3.

Figure 2.12 shows scaling results for this test case. There, we time the first time step
with t, > t* = 10° years for a number of different computations with a variable
number of cells (and consequently a variable number of time steps before we reach
t*). The “weak” scaling shown in the left panel indicates that all operations scale
linearly with the overall size of the problem, at least if the problem is sufficiently
large. The right panel demonstrates strong scalability. Here, scalability is lost
once the number of degrees of freedom per processor becomes too small; this
happens relatively soon due to the small size of the problem shown here (22 million
unknowns overall).
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Figure 2.12: Thermal convection example. Weak scaling with 512 processors (top) and
strong scaling with roughly 22 million unknowns (bottom). In both graphs, the thick,
dashed line indicates optimal scaling. In the left graph, processors have more than 10°
degrees of freedom to the right of the vertical red line; in the right graph to the left of the
vertical red line.
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3 Solver Framework for the Oseen
Problem

This chapter discusses the efficient solution of Oseen-type problems. Precondition-
ing for those problems is crucial and an active research topic. A fast and robust
solution technique is crucial, because solving Oseen-type problems form the main
ingredient for solving the Navier-Stokes equations (also see Section 1.5.2). It is
common to have stabilization terms as discussed in Section 1.5.5, but precondition-
ers typically can not cope or behave worse with stabilization, see Section 3.3. A
common ansatz is to treat the discrete saddle-point problem with a block-triangular
preconditioner as described in Section 3.2. There, the handling of the so called
Schur complement is the main difficulty, so Section 3.3 tries to give an overview
over the common methods. We present a new preconditioner that is also built
around the block-triangular structure in Section 3.4. It is based on an augmented
Lagrangian approach, that uses the algebraic properties of Grad-Div stabilization.

Large parts of this chapter also appear in our publication [63], and my diploma
thesis [58] was the starting point of the research in Grad-Div based preconditioning.

3.1 The linear saddle-point system

As described in Section 1.5 solving the Navier-Stokes equations boils down to
repeatedly solving Oseen problems. The stationary and linear system can be
written as
—V-(wWVu)+(b-V)u+cu+Vp=f in O
V-u=0 in Q) (3.1)
u=20 on 0Q).

in the continuous form. For the ease of presentation we assume homogeneous
Dirichlet boundary conditions for the velocity. Note that we skip stabilization terms
for now. Grad-Div stabilization will play an important role in Section 3.4, though.
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Moreover, b € [L?(Q) N W1 (Q)]“ is a vector field describing the convection acting
on the velocity and is typically given by the velocity stemming from a linearization
scheme, see Section 1.5.4. The constant reaction coefficient ¢ > 0 enters the system
due to the time discretization and is proportional to the inverse of the time step
size. The case ¢ = 0 appears after linearizing stationary Navier-Stokes problems.
The relation between the parameters v, ||b||, and ¢ obviously influence the character
of the underlying problem. In the limit with only one non-zero parameter the PDE
reduces to an equation of second, first, or zeroth oder, respectively. For b = 0 and
¢ = 0 the system becomes a Stokes problem. The goal is to have preconditioners to
handle all cases of parameter ranges and optimally have them automatically adapt
to the current case.

For an inf-sup stable discretization (see Section 1.5.3) the resulting linear system
reads

Mx=G (3.2)

with unknowns x = (U, P)7, right-hand side G = (F,0) and block matrix
A BT
e (29

The blocks A and B correspond to the bilinear forms a and b as in Section 1.5.3,
respectively. The matrix A is positive but non-symmetric for b # 0. The linear
system is sparse as it is typical for linear systems stemming from finite element
discretizations. The matrix M forms a saddle-point structure. For an extensive
discussion on saddle point problems and their difficulties we refer to [14].

Solving Oseen-type systems has a long history and there are dozens of different
solution approaches ranging from Uzawa type methods [21] to projection methods
[55], special multi-grid methods [70] or block saddle point preconditioners [38,39,41].
A good overview for solvers for saddle point problems is given in [14].

Here, we consider an iterative Krylov method to solve the arising linear system
with a block saddle point preconditioner. A good option is GMRES or flexible
GMRES when inner solvers are involved as described in Section 1.4.

Since the linear system is badly conditioned preconditioning is mandatory. The
biggest challenge is finding a preconditioner that performs equally well for different
mesh sizes h and different coefficient ranges of ¢, v, and ||b||. In the case of the
Stokes problem (for b = 0) the preconditioning is much simpler, cf. [123]. The most
challenging configurationis v < 1, ¢ = 0, and b # 0, cf. [38,39,41].
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3.2 Block-triangular Preconditioning

We apply right preconditioning as described in Section 1.4 and [109] with an
operator P~ for solving the system Mx = G (see (3.2)) and calculate the solution
x = P~y from the auxiliary variable y, which is given as the solution of

MP 1y =G.

In general, P~! is not given by a matrix, since building this inverse is typically
not appropriate. Here, we define P! as an implicitly defined operator given in a
block-triangular way (see [14]):

~ -1 ~
1. (A BTY (AP 0\ /I BT\ (/I O
7“-—(0 s) (0 D626 ) e

where S is an approximation of the Schur complement
S=—-BA'BT (3.4)

and A of the velocity block A, respectively. Thus, applying the preconditioner
involves one solve for A, one solve for S, and one matrix-vector multiplication with
BT.

Now the goal is to define good and computationally cheap approximations for A
and S. Exact solves would result in at most two outer GMRES iterations, see [14].

The approximation of A can be handled with a generic preconditioner. One can
decide to split the system into velocity components and one is left with discretized
convection diffusion operators. With the coupling between the components it might
be advised to keep them coupled and solve for them at the same time. Either
way, standard methods like algebraic or geometric multi-grid work well, see also
Section 1.4 and 2.2.3. The approximation of the Schur complement is more involved
and is discussed next.

3.3 Schur complement preconditioning

The Schur complement
S=—BA BT

can not be treated with standard preconditioners as explicitly forming the inverse
of A is way to expensive to be of practical use. Note that we do not need an exact
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solver with the matrix S because the error of the solution process is controlled
via the outer (F-)GMRES iteration. Even quite rough approximations are enough
here. We will give an overview over some common preconditioners for the Schur
complement.

3.3.1 Diffusion-reaction preconditioner

The idea of this rather common approximation is to ignore the contribution of the
convection term in the matrix A in the Schur complement and treat the diffusion
and reaction term separately. The standard design for the Schur complement
approximation for the Stokes problem using a pressure mass matrix is included
in this model. We will base the Grad-Div preconditioner (see Section 3.4) on this
design here. The following construction of the approximations are based on [123].

The idea is to separately look at the main building blocks of A. The matrix A can
be written as

A=vL,+cM,+ N, + Ry,

where L, represents the diffusion term and M), is the mass matrix of the velocity
space. N, represents the convective term and R, the Grad-Div term. Assuming
that the diffusion part is dominant the Schur complement can be approximated by

-1
S~'~—|B(vL,)'B"| ~-vM,’, (3.5)

where M, is the mass matrix in the pressure space. The approximation can be
motivated by assuming that the continuous operators commute, see [123] for details.
Note, that we assume v to be constant. Using the mass matrix for approximating
the Schur complement for the Stokes problem is well known — there, one typically
normalizes the viscosity to v = 1.

Similarly, for dominating reaction the Schur complement can be approximated by
-1
St~ —|B(cM,) 'BT| = —cL;l, (3.6)

where L, is the stiffness matrix of the pressure Poisson problem with Neumann
boundary conditions. It is not known, how to treat the convective term in a similar
way. With (3.5) and (3.6) one has good preconditioners for the Schur complement
in case of dominating diffusion and reaction, respectively.

Note that the question of the correct boundary conditions is a difficult topic. As a
rule of thumb one replaces Dirichlet boundary conditions with Neumann conditions
in the Schur complement and vice versa. Neither is optimal, see [123].
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To automatically switch between the diffusion and reaction based preconditioners,

S'=—-vMm, —cL,, (3.7)

is suggested in [123], which works remarkably well as long the problem is not
convection dominated.

3.3.2 Alternative preconditioners

Before we present a new preconditioner for the Schur complement we take a look
at two common approaches from the literature. For more details see [58].

The pressure convection diffusion preconditioner (or PCD for short) introduced
in [75] approximates the Schur complement as

-1 _ -1 -1

where the matrices are operators in the pressure space: My, is the mass matrix, F, a
scalar convection-diffusion operator corresponding to the convection-diffusion part
in A, and A, a Laplacian.

The BFBT preconditioner (see [39]) does not require any new matrices and is also
derived by commutating operators. It approximates the Schur complement by

§-1= (BBT>_1 (BaB") (BB) -

Both preconditioners give an h-independent preconditioner, but both introduce a
slight v-dependency. For very small viscosities as the cavity in Section 3.4.3 they
fail to converge. In the PCD method one has to deal with appropriate boundary
conditions for the new matrices, which is a disadvantage. Solving problems with
BBT like in the BFBT preconditioner is difficult, as the product is a lot denser and
not building the product makes preconditioning difficult.

3.4 A preconditioner using Grad-Div stabilization

Recently, it has been shown that augmented Lagrangian are very useful for the
construction of a preconditioner for the Oseen problem. Augmented Lagrangian
approaches are well known and are used in various applications, cf. [48,53] and
references therein. In [15] Benzi and Olshanskii present an augmented Lagrangian-
based preconditioner for the Oseen problem that shows impressive results for

75



3.4. A preconditioner using Grad-Div stabilization

various h and v. Due to difficulties in solving the augmented velocity block,
a modified augmented Lagrangian formulation is presented in [16] and analyzed
further in [17]. In the original approach [15] the velocity block is augmented
with an algebraic term possessing a large kernel. This gives rise to an efficient
preconditioner for the Schur complement but complicates the solve of the velocity
block. Moreover, assembling the augmentation term is quite expensive, since a
product of sparse matrices has to be computed. The modified version in [16]
simplifies the solution of the velocity block by only applying the augmentation to
the upper right blocks. Unfortunately at the same time this spoils the quality of the
Schur complement approximation and leads to larger number of iterations.

Here, we explain that one can consider Grad-Div stabilization as a different dis-
cretization of the augmented Lagrangian term. This motivates the construction of a
preconditioner where we replace the augmented Lagrangian term with Grad-Div
stabilization. This approach is preferable, because this removes the difficulty of
applying the augmentation. Moreover, the numerical experiments in Section 3.4.3
show clearly that the number of iterations for the saddle point problem stays
independent of the problem.

3.4.1 The augmented Lagrangian method

In the augmented Lagrangian method one chooses a suitable parameter v > 0 and
a matrix W to replace the linear system (3.2):

A BT\ /u\ _(F
B 0 r) \0
with the augmented system

() G)-6)

The system is equivalent because BU = 0 is valid for the solution of the linear
system due to the second equation.

This linear system is now preconditioned in the same way as before. The augmen-
tation term obviously enters the Schur complement and it is shown in [15] and [58],
that

[B <X n 'yBTW’lB> B BT] o v (BX*lBT> Wl

In [15] the authors suggests to use W1 = M, ! (or an approximation). This way
the diffusion-reaction preconditioner (3.7) from Section 3.3.1 now reads

-1 _ -1 -1
S =—-w+v)M, —cL,,
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This augmented Lagrangian preconditioner allows to shift the preconditioner into
the diffusion dominated case by increasing the constant y without modifying the
solution.

The augmentation term possess a large kernel. This makes solving for the velocity
block rather difficult. The approach has several other disadvantages that are
discussed in Section 3.4.4. The Grad-Div preconditioner is going to be similar to
this method, but does not use exactly the same augmentation term, but instead
Grad-Div stabilization for augmentation.

3.4.2 The preconditioner

Similar to approximations for diffusion and reaction in Section 3.3.1, we will look at
the term in the A block which stems from the Grad-Div stabilization. We enhance
the system matrix (3.7) to account for Grad-Div stabilization in A by adding the
term y(V - u;, V - vy,), see Section 1.5.5 for details. The resulting preconditioner we
are going to derive is again given by

S'=—(w+7M,"'—cL". (3.8)
Let 7w : Q — Qy, be the orthogonal L?-projector, i.e.,
(p—7p,q) =0 ¥g€Qy
For uy, vj, € V, the Grad-Div term can be split into the following sum:
(Vu,, Vo) = (n(V-uy),V-v,)+ (I—1)(V-uy),V-op). (3.9)

Using the fluctuation operator x := I — 7t and the projection property of 7 we
obtain

(Vo Voop) = (72(V ), 2(V - 0)) + (1(V ), k(V - 03))- (3.10)
We call the first part algebraic term and the second part stabilizing term. The following
lemma shows that the algebraic term can be written as a product of known matrices.
Lemma 3.1: The discretized algebraic term of the Grad-Div stabilization is given by
(n(V - ¢,), (V- ¢1)) = (B"M,'B)j;  Vi,je{l,...,n}

using basis {¢;}i_y of Vi and {y;}7L, of Qp. The matrices B and M, are defined by
(B)ij := (i, V - ¢;) and (Mp)ij := (i, ;).
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3.4. A preconditioner using Grad-Div stabilization

Proof: We first define a matrix representation P of the projection 7t with
m
ﬂ(v (P]) = Zpljlpl V] =1,...,n
i=1
Plugging in the definition of r and P into B gives after some rearrangement:
(B)i]' = (1/;1-,V ) 4’]) ( (V (P] lpz = 2 Pk]'nbk/’nbz

= Y P 1) = Y (Wi, ) Py = (MpP)y;.
k=1

k=1

The augmentation term BTM; !B can now be written as

m
(B™My 'B)y = (57M, My P)y = (TP = 1 (BT )Py

k=1
=Y (B, V-1)) = (Z ijlPk,V'CPi>
k=1 k=1
= ((V - ¢), V- i) = (n(V - ¢)), (V- ¢1)),
which shows the proposition. O

Adding the term BTM’; !B to the system block A is known as the augmented La-

grangian approach, see [15], and does not change the solution due to B M, 'BU = 0
for a solution (U, P) of the linear system (3.2). Nevertheless, it modifies the algebraic
properties of the velocity-velocity block.

The second term (x(V - uy,),x(V - v,)) contains the stabilization for which Grad-
Div is used. The difference between discretized Grad-Div stabilization (R,) and
augmentation B TMrj !B can be written as

(Ru—B"M,'B)jj = (k(V - ¢,),k(V - ¢)).

The stabilizing term in the Grad-Div stabilization vanishes for &/ — 0 and thus in
the limit only the algebraic augmentation remains:

Lemma 3.2: Let (uy, py,) € Vi, X Qy be a solution of the stabilized linear system (1.15)
with corresponding degrees of freedom (U, P). Then, we obtain for Taylor-Hood elements
Qk+1/Qx k > 1, and a sufficiently smooth solution (u, p) of the continuous, weak Oseen
problem (1.12), i.e., u € [H*1(Q)]? and p € H*(Q),

1/2
I (R = B™M, B) U < CH 272 (Jlullfyy + )
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Chapter 3. Solver Framework for the Oseen Problem

Proof:

Assume uy, vy, € Vy,. Let || - ||re denote the Euclidean and || - ||o the L? norm. Using
the basis representations

n n
w, =Y _ Ui, vy =) Vig;
i=1 i=1
for u;, v, € V;, we obtain the assertion

| (Ra—BTM, B) Ul

p
[V | gn=1
= su (x(V -vp),x(V - uy))
||V||IR":1
< sup  |[x(V o) |lolle(V - up)|lo
[V | gn=1
<> sup (V- vl V- (uy — )|l
[V |gn=1
2
< el sup V- vullg |V - (s — )
=Ty JV|’R”:1 2\2?3

=:T2
We have T; < Cj, because the fluctuation operator « is continuous. The inverse

inequality gives

IV willy _ . Mol
I =sup ——— < Csup ———
o |VIRe o |Vire

and [77], Theorem 3.43 gives
IViigs = CH=42 10y}
with C > 0 independent of h. From this it follows (because of 4 > 2):
' —14as2)lonllo —1+d/2
—suph — = Cah .

T, <
C onllo

The a priori error estimation for the Grad-Div stabilized Oseen problem in [89]
(Corollary 3.3) gives for sufficiently smooth solutions u, p:

2 2 2
T3 = IV - (=)o < Coh™[|ulli 1 + Cah™ |l
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3.4. A preconditioner using Grad-Div stabilization

Putting the terms together finally gives

_ _ 2 2\ /2
| (R —B™™, 1B> uuw < Chkt(d-2)/2 (Hullm + Hp”k> —0 forh—0.

0.

The lemma explains why the preconditioner works and behaves very similar to
the augmented Lagrangian approach. The results in [16], which show h and v
independent iteration numbers, can therefore expected to be achieved here, too.
This is confirmed in Section 3.4.3.

One can interpret the stabilizing effect of Grad-Div as adding a penalty term for the
fluctuations of the divergence given by the projection 7r. The term closely resembles
projection-based stabilization, though it is not a local projection and thus can not
be assembled easily.

In summary we can view Grad-Div stabilization as the sum of an algebraic term
known as augmented Lagrangian and a projection-based stabilization. With this
knowledge we can take advantage of the augmented Lagrangian preconditioner
as described in Section 3.4.1, because using Grad-Div stabilization effectively also
augments the linear system in the exact same way.

The Schur complement for the augmented matrix A with the algebraic term
BTM; !B can be simplified to

[B(A + yBTM;;lB)*lBT} o (BA*13T> Ty M, (3.11)

Therefore, in [15] the authors propose to approximate the Schur complement by

Sl=—(v+ "y)M;l.

Note, that in contrast to the approximation for the diffusion term, (3.11) is exact if
B is assumed to have full rank. This only accounts for the algebraic component in
the Grad-Div stabilization.

We propose an extension for instationary problems, which is motivated as already
explained in Section 3.2. It is not strictly necessary for ¢ # 0 but accelerates the
solution process especially for large c. With this we arrive at (3.8). One can decide
on a case by case basis to not implement the last part. Obviously, the coefficient c
in there automatically reduces the influence of that term for large time steps and
stationary problems.

In short we can use the same approximation for the Schur complement as in the
augmented Lagrangian approach, but we do not need to add the augmentation to
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Chapter 3. Solver Framework for the Oseen Problem

the A block. This gives a huge advantage over the AL approach, since the solution
of the augmented matrix

Ay=A+yB"M,'B

is very costly. On the one hand assembling A, is extremely expensive. In [16] the
authors present various tricks like lumping the mass matrix and moving to a cheaper
approximated AL formulation where only part of the augmentation is applied. The
problem is that the product BT B possesses much more non-zero entries than A
itself. Building a product of sparse matrices is also computationally expensive as
one can not easily generate a correct sparsity pattern beforehand. Of course, one
can avoid the assembling of A, and only supply it as an operator. But then one can
not apply preconditioners like algebraic multi-grid or ILU decompositions. On the
other hand the iterative solution of A, becomes difficult due to the large kernel of
BTM,'B.

All these problems are not present in our case. The matrix A which already contains
the augmentation through Grad-Div stabilization is easy to assemble. One can use
various kind of solvers directly.

Replacing the augmentation in A, by Grad-Div stabilization was proposed and
tested in [58] and is also suggested in a comment in [16].

3.4.3 Numerical Results

For the numerical tests we have used the finite element library deal.ll, see [7,9].
The computations have been performed on unstructured quadrilateral meshes, see
Figure 3.1 for an example. We construct a series of those meshes for the parameter
studies. Unstructured meshes are more realistic and naturally arise when dealing
with complex geometries. Moreover, super-convergence effects are avoided and
more realistic error bounds are achieved.

For the outer iteration a flexible GMRES method (see [108,109]) is used. Standard
Krylov methods can not be applied, since we use iterative solvers within the
preconditioner. Therefore, the preconditioner can not be considered as constant
during the outer iterations. The outer iteration loop is stopped when the residual
is dropped by a factor of 1e — 10 relative to the starting residual. This stopping
criterion is more strict compared to other papers analyzing preconditioners and
leads to higher iteration numbers. We have chosen this convergence criterion, since
it allows us to see trends easier due to the higher number of iterations. Moreover, a
softer criterion can be misleading, since the errors of the solution are very often
dominated by the iterative process and not by the approximation properties of the
mesh and the finite element space. This is especially true for higher order elements.
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3.4. A preconditioner using Grad-Div stabilization
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Figure 3.1: Example for an unstructured mesh (left). A series of those meshes is used for
the computations to avoid super-convergence effects. The solution of Problem 1 is shown on
the right-hand side.

The inner blocks are solved using the direct solver UMFPACK, see [37]. If we use a
Krylov method for the inner solve, it is stated.

The Oseen problem

Problem 1 is defined in the domain Q = (0,1)?, see [51], example 1. The right-hand
side f is calculated from the smooth reference solution

u = (sin(7x), —my cos(mx))T,
p = sin(7tx) cos(7ty)

with convection vector b = u or b = 0, see Figure 3.1 for an illustration of the
solution. Note that v and ¢ can be chosen arbitrarily. Thus, we can test coefficient
choices including the Stokes problem. The numerical error can be calculated as
the difference between the discrete solution and the reference solution. The case
b = u is more complicated than examples often chosen for Oseen problems and
resembles a linearization step in a Navier-Stokes problem. The smooth solution
enables higher order elements to achieve better convergence rates.

Problem 2 is a modified Green-Taylor vortex for a fixed time step and without an
exponential decaying term:

u = (— cos(wmx) sin(wy), sin(wmx) cos(wmy))’,

1 1
p= _L_LCOS(anx) - ZCOS(ZWTQ/)'

82



Chapter 3. Solver Framework for the Oseen Problem

Considering Q) = (0,1)? the constant w determines the number of vortices in x-
and y-direction and is set to w = 4. b and the right-hand side f are defined in the
same way as in Problem 1. This results in a more complex structure compared to
Problem 1. Care needs to be taken to not get over-stabilization as can be seen from
plots in Figure 3.2.

Figure 3.2 shows the influence of the stabilization on the quality of the solution
and the number of iteration steps of the solver. We consider Problem 1 and Problem
2 with b = u. A similar value for the optimization of both would be desirable.
The four plots in Figure 3.2 show different configurations. For large viscosities
(upper left) stabilization does not improve the solution. Only for 7 > 1 we see a
slight influence. For smaller viscosity v = 1e — 3 there is a clear minimum around
v = 0.3 for problem 1. We can observe this behavior with and without reaction
term (upper right and lower right). The fine structures in Problem 2 on the other
hand are already damped too much with a -y of that size as can be seen in the lower
left. The optimum moves to v = 0.03 there.

The number of outer iterations drops for larger y. The number of outer iterations
required for the optimal <y from the stabilization point of view is around 10 to 30.
When using an iterative solver the difficulty of solving for A increases with larger
7. The solution time does not depend on 7 for a direct solver of the A block. For an
iterative solver it depends heavily on the iterative algorithm used for the A block.
For an estimate of the total cost we also plot the number of total inner iterations
required to solve the whole system. In our applications the A block is solved
using the GMRES method with ILU(0) preconditioning and diagonal strengthening.
While the number of inner iteration increases for larger v, the number of outer
iterations decreases. Fortunately, the optimal choices of  lie close to the optimal
choices with respect to the stabilization. Choosing a worse preconditioner for A,
like SOR, the optimum would shift to the right. Thus, the results for the sum
of the inner iterations have to be taken with cautiousness as it depends on the
preconditioner used. We still include the total number of inner iterations, because
it shows, that it is possible to choose <y in such a way that the number of iterations
and the error of the solution are small at the same time. All in all the number of
outer iterations does not crucially depend on the choice of . It is reasonable to
calculate solutions without the optimal parameter at hand.

Table 3.1 shows that the number of outer iterations does not depend on the element
order or the mesh size. For sufficiently large o the number of outer iterations is
also independent of v. The optimal value of vy = 0.31 results in a slightly larger
number of iterations. For smaller <y there is a slight dependency on v. This is (not
surprisingly) comparable to the augmented Lagrangian approach.

In Table 3.2 one can see statistics about the number of non-zero elements comparing
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Figure 3.2: Analysis of solver performance and influence of the stabilization on the error
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with respect to the parameter choice «y. The outer iterations are given by the number of

required iterations for the preconditioned block system. The inner iterations show the total
number of iterations for the A block summed up over all outer iterations. Note, that the

number of inner iterations is heavily dependent on the preconditioner chosen for A (here,

ILU(0)) and the result should only be considered quantitatively (Problem 1 and Problem 2
with b = u, unstructured mesh). The error is given in the H' semi-norm of the difference

between the reference solution and calculated finite element solution.
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Chapter 3. Solver Framework for the Oseen Problem

v=1.0 v=0.31 v=0.1
h: v= le-1 1le-3 1le-5|1e-1 1e-3 1le-5|1e-1 1le-3 1le-5
Q201 1/16 13 13 13 19 19 20 28 38 38
1/32 13 12 12 19 19 19 28 38 38
1/64 13 12 12 18 19 19 27 37 37
Q3Q2 1/16 13 13 13 19 20 20 29 38 38
1/32 13 12 13 19 19 19 27 37 38
1/64 13 12 12 18 19 19 27 36 37
Q4Q3 1/16 13 13 13 19 20 20 28 37 38
1/32 13 12 13 19 19 19 27 37 37
1/64 13 12 13 18 19 19 27 36 36

Table 3.1: Number of outer FGMRES iterations for different problem sizes with different
order of finite element spaces (Problem 1, reqular mesh, stopping criterion: relative residual
of 1e-10). The number of iterations is clearly independent of mesh size h and element order.
Independence of the viscosity is achieved for v = 1 and the optimal value v = 0.31.

‘ #{M,‘j 75 O} ‘ #{lMij| > le — 15}

Galerkin 50884 15642
with Grad-Div 72250 27966
with augmentation 231704 47755

Table 3.2: Number of non-zero elements in the system matrix M (Problem 1, structured
mesh, h=1/16, Q2-Q1, 2178+289=2467 unknowns). The second column represents the
number of elements in the matrix with an absolute value bigger than 1e-15. The rows
represent the base matrix without stabilization, the matrix with Grad-Div stabilization, and
the matrix with the augmented Lagrangian term.
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3.4. A preconditioner using Grad-Div stabilization

=1 v=0.1
v | Iter Factor/s Solve/s | Iter Factor/s Solve/s
le-1 8 4.4 44| 16 4.4 8.6
le-2 7 4.5 3.8 23 4.4 11.9
le-3 7 44 33| 25 4.3 114
le-5 7 4.5 35| 26 44 12.9

Table 3.3: Timings for Problem 1 on an irreqular mesh with 19280 cells (stopping criterion:
relative residual of 1e-6, subproblems are solved with a direct solver). The number of
iterations and the seconds to setup and solve the system are given for different v and
different viscosities.

the Galerkin system matrix, the system with added Grad-Div stabilization, and
the augmented Lagrangian formulation. The augmentation decreases the sparsity
of the system by a huge margin. Note that the Grad-Div stabilization only adds
new entries, where the components of the velocity couple. If we consider for
example a diffusion term given by the symmetric deformation tensor ID, Grad-Div
stabilization would add no additional entries.

In Table 3.3 we measure the runtime! for Problem 1 on a irregular mesh with 19280
cells using Q2/Q1 elements. The table is set up to give comparable values to Table
III in [16]. We use the direct solver UMFPACK for the inner problems. Although
the mesh is 10% finer and not regular, our timings are very comparative compared
to the augmented Lagrangian preconditioner. Of course, the setup time to assemble
the matrices is independent of v and 1.

So far we have only looked at the Oseen problem. In Table 3.4 we consider different
prototypes of equations. This is done by modifying the coefficients in Problem 1.
We compare the number of iterations with the same block preconditioner for v =1
and 7y = 0. The last choice coincides with the traditional way of preconditioning
for example the Stokes problem (see [123]). The choice v = 1 improves the quality
of the solution in all cases. Surprisingly the Grad-Div preconditioner also helps for
the pure Stokes problem. This is most likely due to the fact that the approximation
of the diffusion in the Schur complement is worse than the exact approximation for
the Grad-Div term. Since the splitting of the Schur complement in diffusion and
algebraic term is exact (see (3.11)), no additional error is introduced there. The new
preconditioner shows its main advantage in the convection dominated case. The
original preconditioner does barely work there. The reaction term helps especially
in the reaction dominated case (which represents a time dependent problem with

L All problems were run on an Intel core 2 duo Laptop with 2.5ghz on one core. The code is neither
optimized, nor implemented to take advantage of multiple cores.
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v c |bl 1/8 1/16 1/32 1/64 1/128

Stokes le-3 0 0 = 17 17 18 18 17
= 7 6 6 5 5

Stokes+reaction | 1e-3 1 0 = 11 12 12 13 13
= 7 7 6 6 6

Oseen le-3 0 >0 90 638 1772 3645 -

13 13 12 12 12
79 171 384 450 441
13 12 12 12 11
12 20 38 80 117
10 10 9 9 9

Oseen+reaction | le-3 1 >0

Reaction dom. le-3 100 >0

LRI
I
R ORORORORO

Table 3.4: Number of iterations for different parameter choices and different mesh sizes
(Problem 1, reqular mesh). The Grad-Div preconditioner with -y = 1 is compared to the
basic preconditioner (v = 0) explained in Section 3.2.

small time step sizes). For smaller & the effect of the reaction term decreases.

Application to Driven Cavity Flow

Let us now consider a more involved application: the two dimensional lid-driven
cavity flow. We consider Reynolds numbers up to Re = 5000, which result in
stationary solutions. The non-linear system is solved on the unit-square with
right-hand side f = 0 and typical boundary conditions on 0():

(1,0) fory=0,and0<x <1

u(x,y) = (u(x,y),v(x,y)) = {(0,0) else,

i.e., we describe a force to the right at the top border. See [45] for a discussion
for the problem with extensive numerical reference data. A plot of a few selected
streamlines is given in Figure 3.3 (left).

We solve the non-linear Navier-Stokes problem with a damped fixed point iteration
with a simple backtracking algorithm, see Section 1.5.4. All calculations are done
on Cartesian meshes, which means the boundary layers are not resolved. In each
iteration step one has to solve a Oseen type problem where the convection vector is
given by the last iterate of the velocity.

An important quantity of interest is the minimum of the stream function, see [45]
for reference values. For meshes with i = 1/128 we could reproduce the results for
Re=5000 without stabilization but the quality of the minimum of the stream function
and the cuts of the velocity increases significantly with Grad-Div stabilization for
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Figure 3.3: Lid driven cavity flow with Re=5000. Left: selected streamlines. Right: Error in
minimum of the stream function (see [45]) dependent on the Grad-Div stabilization -y for
two different meshes. Grad-Div stabilization decreases the error by more than one order of
magnitude, which is better than a regular refinement.

coarser meshes. Figure 3.3, right shows the error of the minimum of the stream
function in percent depending on the mesh size and Grad-Div parameter. The
optimal 7 is at 107! and is slightly mesh size dependent and tends to zero for
finer meshes. The advantage of using Grad-Div stabilization for 1 = 1/32 is fairly
obvious and one can gain one order of magnitude in the quality, which is more than
a regular refinement. For smaller Reynolds numbers the importance of Grad-Div
decreases. While it is still an half an order of magnitude for Re=1000 (optimal value
at v = 0.1), the effect vanishes for For Re=100. The velocity profiles also improve,
which can be seen in Figure 3.4. We plot the second component of the velocity on a
horizontal cut in the middle through the domain.

The non-linear iteration is done until the residual is smaller than 10~ and each
linear problem is solved with a relative residual of 10~2 with respect to the starting
residual (which is the same as the non-linear residual). We compare the average
number iterations for different choices of Grad-Div stabilization in Table 3.5. For
comparison we also used the well-known pressure-convection-diffusion precon-
ditioner (short: PCD) for the Schur complement, see [41]. The two methods are
comparable for small Reynolds numbers, where the Grad-Div based preconditioner
also works without Grad-Div stabilization. We again see the excellent scaling with
the viscosity as in the earlier tests. This is in contrast to the PCD preconditioner,
which fails for small viscosities. One can find similar behavior in [15] for example.
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Figure 3.4: v-component of the velocity on a horizontal cut in the middle of the cavity with
Re=5000 on a reqular mesh with h = 1/32 and different values for Grad-Div stabilization
in comparison with reference values from [45] and a comparison on a finer mesh with
h = 1/64 and no Grad-Div stabilization. Right: zoom of left picture.

h=1/32 h=1/64

configuration PCD GD #nonlinear | PCD GD #nonlinear
v=1e2 =0 13 18 15 13 18 15
v = opt 17 4 15 16 5 15

v=1e3 =0 44 342 34 42 511 29
vy = opt 91 6 31| 109 8 29

v=2e4 =0 4822 - 104 | 1031 - 49
v = opt | 1064 7 40 | 1249 8 43

Table 3.5: Number of non-linear iterations and average number of linear iterations per
non-linear step for the PCD and the Grad-Div preconditioner in comparison for the cavity
with Re = 100, Re = 1000 and Re = 5000 on a regqular mesh. The optimal <y from the

error point of view is selected.
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3.4. A preconditioner using Grad-Div stabilization

3.4.4 Review of the Grad-Div Preconditioner

We now discuss the advantages and disadvantages of the Grad-Div preconditioner.

Let us start with the advantages: The number of iteration steps in the solver
is independent of & and v and gives small iteration counts comparable to the
augmented Lagrangian approach, see the results in Section 3.4.3. This is an excellent
behavior compared to other preconditioners.

The usage of Grad-Div stabilization improves the accuracy of the discretization
scheme, cf. [97]. The preconditioner has a wide range of applicability. It can be
used for Stokes, Oseen or Navier-Stokes problems, in transient and stationary cases
and in different ranges of viscosity. See Table 3.4 for details.

Additionally, the Grad-Div preconditioner is easy to apply. Assembling the linear
system is straight-forward. There are no complicated, additional matrices to be
assembled for the preconditioner. In contrast, the matrix A, in the augmented
Lagrangian is much harder to handle, since it is not immediately available as a
matrix. One can either implement it as an operator, which restricts the choice of the
preconditioner or one has to simplify the mass matrix My, in the term B TM; 1B by
lumping for example. Multiplying two sparse matrices is an expensive process and
the resulting matrix is more dense than the Grad-Div preconditioned matrix, which
only contains additional couplings between the velocity components. In many finite
element packages the integration of augmented Lagrangian-type preconditioners
is not simple. Often the degrees of freedom on the boundary are treated in the
same way as inner degrees of freedom and they get eliminated before or after
writing them to the global matrix. This can result in either loosing the symmetry in
the B, BT blocks or in non-zero entries in the second block of the right-hand side.
Implementing the Grad-Div preconditioner does not pose any of these difficulties.

Our proposed approach also possesses some disadvantages. The Grad-Div sta-
bilization is required for the Grad-Div preconditioner even when stabilization is
not necessary. This adds additional coupling to the A block and slows down
the assembly process. Fortunately, most of the real life problems need additional
stabilization, see [97]. If the traditional Laplacian in the Navier-Stokes equations is
replaced by symmetrized deformation tensors ID, as it is regularly done in turbulent
flow simulations, the Grad-Div stabilization does not produce additional non-zero
entries in the A-block.

Additional non-symmetric stabilization like SUPG spoils the performance of the
preconditioner due to the fact that SUPG modifies BT, which results in BTM’; B
not being symmetric any longer. This also applies to the augmented Lagrangian
preconditioner and many other preconditioners. Here, we recommend symmetry
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preserving stabilization techniques like local projection stabilization, which work
without problems with the Grad-Div preconditioner. An equal order discretization
necessarily introduces a pressure stabilization term that changes the structure of the
Schur complement. The Grad-Div preconditioner can then no longer be applied.

Choosing the stabilization coefficient can not be solely done from the stabilization
point of view. The preconditioner performance has to be taken into account, too.
Different choices of 7 influence the quality of the solution. As for most of the
preconditioning techniques preconditioning and stabilization can not be treated
independently.

A general problem of the proposed class of preconditioners is the assembling of
new matrices, which are not part of the primal problem. For the approximate Schur
complement S, defined in (3.8), one has to assemble and store the matrices M,, and
L.

p

Summarized, we think that the advantages clearly outbalance the disadvantages.

3.4.5 Possible extensions

We presented a new preconditioner that shows to be competitive to state of the art
solution strategies. It is especially useful in the case where Grad-Div stabilization is
already employed. It is helpful to use Grad-Div stabilization in all kind of problems
with different parameters and the preconditioner helps in any of those cases.

The preconditioner gives h, v, and element order independent iteration numbers, as
long as the Grad-Div parameter is in a sensible range. It is possible to satisfy good
accuracy and fast performance of the solver, because the parameter is not crucially
sensitive and is in the same order of magnitude. Especially the v independence can
not be found in the typical preconditioners used today.

Some things will be very interesting to look at but do not fit into the scope of this
thesis. Adapting the preconditioner to variable viscosity and varying Grad-Div
parameter 7y should be possible. It simply results in modifications in the Schur
complement approximation. The diffusive part no longer reads

—(v+7)M;1,

because v + <y is no longer a constant. Small variations in v (for example with
turbulence models) do not make a difference for the preconditioner, because v is
still quite small compared to the reaction term for example. Choosing an average
for v 4 1y is a practical solution. When dealing with large jumps from one cell to
another one has to include it this in the Schur complement. In [125] the different
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3.4. A preconditioner using Grad-Div stabilization

ways of how to do that are explained. The best was is to move the coefficients into
the assembly of a modified mass matrix:

(Mp™")ij = /

Q(V(x) +7(x)) " gigpj A

Alternatively one can scale the mass matrix with an approximation for each degree
of freedom.

Another interesting aspect is to combine the augmented Lagrangian approach with
the Grad-Div stabilization. This is straight-forward and could help in the case
where the Grad-Div parameter has to be chosen very small for accuracy reasons.
Let 7y be the Grad-Div parameter. One can then additionally augment the system
with BTMFj !B. The diffusive part of the Schur complement is then chosen as

—(+v+9)M,",

and one can change v/, so that v + 7/ is optimal for preconditioning.
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4 Applications and Numerical Results

This chapter focuses on combining the separate features developed in the earlier
parts and validating the developments with realistic applications. This gives insight
on how the results of this thesis can be used in practice. The application to the
research in the work group in Gottingen serves as an example on how others can
benefit from this work.

The aspect of the massive parallel finite element framework from Chapter 2 and
the discussion of solvers for flow problems (Chapter 3) were discussed separately
so far. They are unified and discussed in Section 4.1.

We continue with a discussion about turbulence benchmarks that are done for
research in our work group about variational multi-scale (VMS) methods, see
Section 4.2. Parallel solvers were required for the success of the experiments, even
though we did not make use of the adaptive mesh refinement, that is one of the
central pieces in Chapter 2.

Finally, in Section 4.3 we go into some details of the mantle convection example
we started to discuss in Section 2.3.5 before. Here we take advantage of the fully
adaptive parallel meshing from Chapter 2. The experiments started as a more
complex test case for the parallel adaptive code, but now have a right to exist on
its own. The research is continued as part of the Geodynamics AMR Suite of the
Computational Infrastructure for Geodynamics (CIG) initiative supported by the
NSE, see [34].

The numerical results in this Chapter are done on up to moderate sized clusters
only. This is partly due to the nature of the applications that make going to larger
problem sizes difficult or unnecessary (turbulence modelling with resolved scales
does not make much sense). Additionally, the applications here are still work in
progress because the work had to be done after the parallelization effort. The fully
three dimensional structure makes linear solvers much more expensive and harder
to tune for large problem sizes. Finally, the access to larger computing resources
was limited. The massively parallel scalability can be seen in the benchmarks at the
end of Chapter 2.
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4.1. Parallelization of solvers for flow problems

The section about turbulence (Section 4.2) contains recent research from our work
group, also see [104,105]. Section 4.3 covers material, which is still work in progress.
Parts of it are based on our publication [6] and more will be published in the near
future, see [80].

4.1 Parallelization of solvers for flow problems

When solving for flow problems with the solvers presented in Chapter 3 one
quickly realizes, that flow problems require a large number of cells and unknowns
to be represented accurately. Naturally, the question arises on how to combine
parallelization (Chapter 2) with the linear solvers.

Obviously, the parallel framework is flexible enough to cope with all kind of
problems, so it can be used for flow problems in particular. The only thing that is
left is parallelization of the linear solvers from Chapter 3:

Krylov methods for the outer and inner iterations can be parallelized as explained
in Section 2.2.3. The application of a block triangular preconditioner works the
same in a distributed parallel model, if you use collective operations as described
in Section 2.2.2 for multiplying with B, etc.. Individual blocks like the velocity
block or the Schur complement require preconditioners that run in parallel. We can
access parallel block ILU or AMG preconditioners as described in Section 2.2.3.

One important thing one needs to pay attention to, is the construction of special
matrices for the preconditioner. Matrix products like BTB can not be built in a
practical way, because they are split row-wise between machines. Fortunately, the
Grad-Div preconditioner does not require matrices beside the Schur complement,
which is a simple Poisson-type problem that can be assembled in parallel. Adding
Grad-Div stabilization is no problem, because it is just an additional term in the
variational formulation.

Further aspects like postprocessing and the required additional models like wall
laws for wall bounded flows, pose further difficulties in the parallel setting. The
channel flow example (see Section 4.2.4) requires looking up velocities at the wall
nearest degree of freedom, even when this part of the mesh is not locally available.

The outer Krylov method for the saddle point problem (with FGMRES for example,
see Chapter 3) in parallel is equivalent to the serial method. The expectation is
therefore to get outer iteration numbers that are independent of the number of
processors involved, assuming the inner solves are accurate enough. The numerical
tests confirm this argument and the iteration numbers are comparable to the test
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problems in Section 3.4.3 and also independent of the problem size. This can be
seen in the remainder of this chapter.

4.2 Turbulence modeling

Turbulent incompressible flows occur in many applications in the industry. A
turbulent flow can be characterized by a locally chaotic behavior due to low
diffusion and high momentum convection. Flow can become turbulent with high
Reynolds numbers. Typically for turbulent regions in a flow are the formation of
eddies at different length scales. The small chaotic eddies carry a non-negligible
amount of the total energy in the system. Therefore, they can not be omitted
in simulations. On the other hand, resolving all ranges of scales in a turbulent
simulation is typically not feasible due to computational cost — even with massively
parallel supercomputers. A remedy is to resolve the large scales, but to model the
influence of the small eddies on the global properties of the flow field. This is a
reasonable approach because having access to the behavior of the smallest scales is
not important in a simulation. Usually only the global flow pattern is of interest.

As explained before, we make heavy use of parallelization and the solver framework
from Chapter 2 and 3.

4.2.1 Large Eddy Simulation and the variational multi-scale
method

The scale separation ansatz — splitting up the flow into a resolved and an unresolved
part, which is also known as classical Large Eddy Simulation or short LES — makes
it possible to simulate turbulent flows. Nevertheless, the computational cost can be
quite high, and parallelization is often used in research and commercial turbulent
flow simulations. Thus, it is a good application to test the parallelization and the
solver framework presented in this thesis.

There are different ways to model the influence of the unresolved scales. A promi-
nent way is the classical Smagorinsky model, see [113], or dynamical Smagorinsky
models, see [84]. A good overview can be found in [71]. More recently, an alter-
native based on the variational multi-scale (VMS) approach has been proposed.
Here, the scale separation is done into large scales, small resolved scales, and small
unresolved scales, and the influence of the unresolved scales is restricted to affect
the small resolved scales only. One of the first discussions of VMS methods is [68],
a good overview is given in [18]. Some results from our work group about VMS
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4.2. Turbulence modeling

methods can be found in [104-106].

The main equations for the turbulent flow simulations are the instationary, incom-
pressible Navier-Stokes equations as introduced in Section 1.5. There are some
crucial differences, as it is typical in applications. First, it is common to apply a
different formulation of the diffusive term. The Laplacian is replaced by the diver-
gence of the deformation tensor (or symmetric gradient) D(u) := 3(Vu + VuT),
ie.,

V- (2vD(u)) or (2vD(u),D(v))

in the strong and weak formulation, respectively. Note that we discussed this
formulation in Section 3.4.4 already. It introduces Grad-Div stabilization in the
order of v to the system. Second, the turbulence model is implemented as an
artificial, non-linear diffusion term, that depends on the discrete solution uy, itself.
The amount of diffusion is typically written as vr(uj,) > 0 and is chosen as constant
per cell.

For the classical Smagorinsky the diffusion term is modeled as
vr = Cs0g|[D(u) |, (4.1)

where C; is the Smagorinsky constant, d is the filter width, and || - || r the Frobenius
norm. The diffusion term looks the same as the original diffusion term:

(vrD(u), D(u)). (42)

Therefore, one has a Navier-Stokes problem with varying viscosity v + vr. If we
assume vt to be constant per cell (which is not the case in our simulations), we
would get Grad-Div stabilization in the order of v 4 v7. Note that we don’t go
into further details regarding the design of the parameter vr. It can includes some
damping function for wall-bounded flows called van Driest damping. This is of no
importance for the solver design, though.

The VMS model is slightly different. See [105] for more details. The coarse scales
can be described using a coarse and a fine mesh, a lower and a higher order finite
element space, or a combination of both. Let 7 be the coarse grid with H > h.
The fine space 7}, is typically either a conforming refinement or the same space. For
the coarse finite element space Ly of the deformation tensor holds

0C Ly C DV,

Using the orthogonal projector 11y : L — Ly C L, the fluctuation operator x =
Id — T1y can be used to separate the scales into coarse and fine scales. With this
the diffusion is only acting on the coarse scales:

(vr x(IDu), Du).
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In [105] the model for vt is kept close to the classical Smagorinsky model (4.1),
only that ||xID(u)||r is used instead of ||ID(u)||E, i.e., it only sees the small scales.
Additionally, Grad-Div stabilization is added as a subgrid model for the pressure,
see Section 1.5.5.

4.2.2 Solvers

With the Navier-Stokes equations modified for turbulent calculations as discussed
before, the question arises on how to adapt the solver framework to cope with these
changes.

The full Smagorinsky model is adding an additional diffusion term, that varies in
the domain. Even though the artificial viscosity is much larger than the original
viscosity from the physical problem, it is still rather small (for example in the order
up to le-3 for the channel flow). Therefore, it is not crucial to exactly represent
the viscosity. The approach we took is to take an average constant viscosity that
matches the problem. This can be done by evaluating the turbulent viscosity during
assembly. For the VMS method the same applies. Even though the turbulent
viscosity is only applied to the small scales, it is reasonable to approximate it as if
it is a full diffusion.

The time step sizes are very small to accurately capture the turbulent behavior in
time and to track the high velocities. This makes the problem easy to solve efficiently.
As a matter of fact, we can not make use of Grad-Div stabilization, because the
optimal parameter range is too small to be used in the preconditioner. Bigger
Grad-Div parameters tend to degrade the quality of the solutions considerably.
With this setting for the solver it is also reasonable to look at Chorin-type projection
methods instead. But even with these big time steps the number of iterations for
the iterative solvers are decreased by roughly 10 to 20 percent, when incorporating
the averaged viscosity term in the Schur complement (instead of only using the
reaction term, as projection methods would use).

4.2.3 Decaying Homogeneous Isotropic Turbulence

We present the simulation of “Decaying Homogeneous Isotropic Turbulence”,
see [35], which is a widespread turbulence benchmark, see [105] for details and more
numerical results. The results here are based on the work of Lars Rohe, [83,104,105]
and the solver related parts are published in our publication [62].

The domain is given by a cube [0,27'(]3 with periodic boundary conditions. A
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107}

10
k

Figure 4.1: Left: iso-surface of initial velocity spectrum; right: energy spectra at t = 0.87
and t = 2.00 (upper and lower line) and corresponding experimental data (symbols) with
starting value.

starting value (isotropic random velocity, see Figure 4.1) from a given energy
spectrum (calculated via Fourier transform) is prescribed. The problem has a
Taylor-scale Reynolds number of Re, =150 and the viscosity is v ~ 1.5e-5 (air). As
a turbulence model we choose a standard LES Smagorinsky model or the VMS
approach (see (4.1),(4.2) above). The energy dissipation in time is compared to
experimental data from [35], see Figure 4.1, right. The calculations were done with
Q2/Q; elements on meshes starting from 163 cellsHere the filter-width Jj, is given
by h. This constant was not optimized but the results show good agreement to
experimental data. For time discretization we apply a second order IMEX-scheme
with a time step size of 0.0087. See [104] for more details about the setup. The
outer FGMRES residual is chosen as le-7 to the starting residual, whereas the inner
residuals are set to le-2 for the velocity and le-5 for the pressure (also relative). The
algebraic multi-grid behaved sub-optimal for this problem, so block ILU is used to
precondition the individual solvers.

There are several important numerical results. The number of outer FGMRES
iterations is independent of the number of CPUs, because there is no difference
to the serial algorithm. The number of iterations is independent of the mesh size
and lies between 5 to 6 iterations, see Table 4.1. This proves that the preconditioner
design works well and the accuracy of A~ and S~ is sufficient.

Figure 4.2 shows weak and strong scaling on a moderate number of processors.
The results were done with the VMS turbulence model and the times shown are the
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Figure 4.2: Weak and strong scaling for assembly and solver for the decaying homogeneous

isotropic turbulence with VMS.

1/h | # DoFs | # It.
8 2312 5
16 112724 5
32 859812 5
48 | 2855668 6
64 | 6714692 5

Table 4.1: Number of FGMRES iterations stays constant with respect to mesh size.
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Figure 4.3: Turbulent channel flow with Re = 180. Snapshot of a solution (left) and an
example mesh highlighting the wall adapted cells (right).

numbers of a fixed (early) time step. The time-step size has not been adjusted with
changing mesh sizes. This is so the comparison is more fair, because the reaction
based preconditioner performance depends on the time-step size. For numerical
studies one has to further validate if the step size is still reasonable for the finer
meshes. The scaling of the code is excellent in all cases, as can be seen by the slopes
in the Figure.

4.2.4 Turbulent Channel Flow

A second common benchmark problem to calibrate turbulence models is the channel
flow. The exact parameters for the setup are given in [104]. The flow is simulated
in a box with no flow boundaries in one and periodic boundary conditions in the
other two directions. To capture the boundary layer at the two walls, the mesh
is refined anisotropically towards those walls. See Figure 4.3. Comparison of the
velocity profile and the root mean square velocity to DNS data is given in Figure 4.4.
More results can be foun in [20, 104].

To look at the scalability of the finite element framework and solver design we look
at the time for assembling the system matrix and the solver times for a specific
time step. Weak and strong scalability can be seen in Figure 4.5. Again this is
with Reynolds number Re = 180 and the setup of the problem and the turbulence
modeling is done by Lars Rohe, see [104] for more details.

From the results you can see very good scalability up to a very high number of
degrees of freedom. For this benchmark, this will come close to a direct numerical
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Figure 4.4: Velocity profile and root mean square velocity compared to reference values for
channel flow with Re = 180.

simulation. Obviously, an implementation that takes advantage of the regular,
structured mesh without adaptive refinement, might do better. The same properties
are expected to be seen in a more general setting.

4.3 Convection in the earth’s mantle

We now consider the equations that describe the convection in the earth’s mantle.
The movement is driven by buoyancy due to temperature variations. This is the
step-32 example program in deal.II, see [79]. The numerical results in Section 2.3.5
were done with this program. We discuss this application in some further detail
here. As said before, this is still work in progress (see [80]) and a very simplified
set of equations. The following description is part of the publication [6].

The problem is modeled with the unknowns velocity, pressure, and temperature
u, p, T using the Boussinesq approximation [93,110]. The equations read

—V-(2yD(w)) + Vp = —ppTg,
V-u=0,
oT
g-l-u-VT—V-KVT:'y.
Here, ID(u) is again the symmetric gradient of the velocity, 7 and x denote the
viscosity and diffusivity coefficients, respectively, which we assume to be constant
in space, p is the density of the fluid, B is the thermal expansion coefficient, vy
represents internal heat sources, and g is the gravity vector, which may be spatially
variable. These equations are posed on a spherical shell mimicking the earth’s
mantle, i.e., the region above the liquid iron outer core and below the solid crust.
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Figure 4.5: Weak and strong scaling for assembly and solver for the turbulent channel flow.
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Dimensions of the domain, boundary and initial conditions, and values for the
physical constants mentioned above can be found in the description of the step-32
tutorial program that implements this test case, see [79], or in [80]. A typical
solution at a specific time step during the simulation is shown in Fig. 4.6. Due to
the application we can simplify the Navier-Stokes equations to the Stokes equations.
The velocity changes are assumed to be instantaneous, therefore, only the new
temperature equation contains a time derivative.

We spatially discretize this system using Q4 x
Q1 X Q7 elements for velocity, pressure and tem-
perature elements, respectively. To stabilize the
advection equation for the temperature a nonlin-
ear artificial viscosity scheme is added, see [56]
for details.

As in the other applications, the discretization
for the Stokes system is done using an inf-
sup stable Taylor-Hood element (also see Sec-
tion 1.5.3). We solve the resulting system in time
step n by first solving the Stokes part,

Figure 4.6: Solution of the mantle Ay B\ (U"\ _ (Fj 4.3)
convection test case at a specific time BT o)\p*)  \Fi)’ '

step during the simulation in 2d.

Mesh adaptation ensures that the and then using an explicit BDF-2 time stepping
plumes are adequately resolved. scheme to obtain the discretized temperature

equation at time step n:

(M+a"Ap)T" = FL. (4.4)

Here, F{}, Fp, F} are right-hand side vectors that depend on previously computed
solutions. a”* is a coefficient that depends on the time step length. A7 is a matrix
that results from natural and artificial diffusion of the temperature and M is the
mass matrix on the temperature space.

The Stokes system (4.3) is solved using a simplified preconditioner as it is explained
in Chapter 3. The Schur complement only consists of the scaled pressure mass
matrix, here. The velocity block is solved using the algebraic multi-grid ML from
Trilinos and a BiCGStab iteration. The Schur complement is solved using an ILU
decomposition of this matrix as a preconditioner. This scheme resembles the one
also chosen in [50].

The temperature system (4.4) is solved using the CG method, preconditioned by an
incomplete Cholesky (IC) decomposition of the temperature system matrix. Note
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4.3. Convection in the earth’s mantle

that the ILU and IC preconditioners are implemented in block Jacobi fashion across
the range of different processors, i.e., all coupling between different processors is
neglected.

As expected for simulations of reasonably realistic physics, the resulting scheme
is heavily dominated by the linear solver, which has to be invoked in every time
step whereas the mesh and DoF handling algorithms are only called every tenth
time step for example when the mesh is changed. On the other hand, the highly
unstructured mesh and the much larger number of couplings between degrees of
freedom for this vector-valued problem impose additional stress on many parts of
the implementation.

The results for the two dimensional problem are already given in Section 2.3.5. In
Figure 4.7 (right) the adaptive mesh of an early time step of the 2d problem is
shown. The refinement is done using a standard Kelly error estimator that evaluates
the gradient jumps in the temperature field. The symmetry of the plumes in the
figure is because the initial temperature field is symmetrically distorted.

Finally, Figure 4.8 presents some early results of the 3d simulations. See Figure 4.7
for a solution snapshot. The calculations were done on a medium sized cluster
and not up to 16000 CPUs as it was done in Section 2.3.5. Because of the increased
coupling and complexity of the geometry and the flow, a lot more memory is
required per degree of freedom. This limits the problem size that can be placed
on a single machine, which in return makes it hard to achieve perfect parallel

Figure 4.7: Left: Snapshot of an early time step for the 3d simulation. Right: Mesh and
temperature field of an early time step of the 2d mantle convection. The adaptivity clearly
follows the features of the solution to resolve the detailed features.
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Figure 4.8: Weak and strong scaling of important parts of the 3d mantle convection
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simulation. These measurements are taken for a specific time step.
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performance. Nevertheless, the weak scalability is comparable to the 2d case. The
strong scaling of the solver on the other hand is a bit worse than in 2d. This
shows that some further optimizations are necessary here. For this test the mesh
smoothing of the adaptive refinement was disabled to achieve predictable number
of unknowns. This might be the reason for the timing differences for the solution
process. All in all, the results show that even in an early state, all algorithms in this
complex simulation are scaling close to optimally.
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5 Conclusions and Directions for
Future Research

Conclusions

We introduced the necessary steps to design and implement a massively parallel
fully adaptive finite element framework. In addition to the theory in this thesis, a
large amount of time has been spent implementing and optimizing an implementa-
tion in the open source library deal.II. Iterating over the implementation enabled
us to repeatedly find bottlenecks in the data structures and algorithms that stopped
the applications to scale to large problem sizes. The library supplies researchers
with an easy to use generic library that can be used for all kind of problems
discretized with the finite element method. We showed good parallel scalability
up to 16000 processor cores and the results promise good performance on even
bigger machines. The ability to tackle very large systems with more than a billion
of unknowns proof the good scalability of the algorithms and the distributed data
structures. These features are already in use by other research groups throughout
the world and enable them to use the available computational power without it
being necessary to become an expert in parallelization themselves. Many ideas and
even source code can be used and easily adapted to other finite element libraries.
This would allow even more people to profit from this technology.

Further evidence for the usefulness and importance of this thesis can be seen in the
following two projects: First, the research in my research group definitely profited
from this advancement in deal.II. For example the numerical simulations for
the research on turbulence models in [104] and the related publications [105,106]
would not have been possible. The turbulent channel flow examples were first
made possible by implementing the solvers from this thesis and parallelizing it
to run on a workstation. With computing times up to a month this was still far
from feasible, so with further optimizations the same test could be done in two
days on a local cluster available to the group. Second, the mantle convection
test code [79] with this amount of detail on a parallel machine is only possible
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because of the advancements in deal.II due to this thesis. The development of the
mantle convection code is continued as part of the Geodynamics AMR Suite of the
Computational Infrastructure for Geodynamics (CIG) initiative supported by the
NSF, see [34].

The studies of Grad-Div stabilization as a stabilization method and turbulence
model on the one hand and as a tool for efficient solvers from the other hand,
supply interesting possibilities. Our research in [97] gives new insight to the
role of Grad-Div stabilization and quantifies its dissipation. The novel solver
approach from Chapter 3 gives a very competitive solution strategy for a wide
range of problems, especially for stationary Navier-Stokes problems. Nevertheless,
it appears to be useful even for the Stokes problem. Even though the solvers in the
mantle convection example and the turbulent flow problems do not take advantage
of Grad-Div stabilization explicitly, they fall into this solver framework and profit
from this design.

The usefulness and importance of this thesis can already be seen in the applications
shown in Chapter 4, what kind of research will be possible based on the material
in this thesis is to be seen.

Future research

There are some ideas that did not fit into the constraints of this thesis but may be
directions for further research.

While the parallelization part is more or less complete, there are some interesting
enhancements possible. Right now, the coarse mesh is stored on every machine.
This is no problem in the typical adaptive refined case, but can be a limitation
for complex geometries. The geometry of an airplane typically already requires a
large number of cells to accurately describe the features of the airplane. Instead of
storing them on each node, one could split the mesh into several chunks and only
load and maintain part of the geometry locally. It is not complicated to develop,
but it requires distributing the storage beforehand in some way.

Another limitation in the massively parallel framework is the current limitation on
the size of the linear system. Right now, one can only use 23! (roughly 2 billion)
degrees of freedom in total. This is the largest number that can be expressed in
the standard 32 bit signed integer data type. This is not mainly a limitation from
deal.II, because we can go to 64 bit integers easily, but it is a limitation of the other
libraries involved: even though PETSc can be compiled with 64 bit indexing, many
solvers like BoomerAMG can not be used anymore. Trilinos also only supports 32
bit sizes. As soon as there is support in these libraries, it makes sense to pursue
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that. With good scalability as long as one has in the order of a hundred thousand
degrees of freedom per core, this currently limits how useful it is to go to more
than twenty thousand cores.

The topic of hybrid parallelization (as discussed in Section 2.1.3) is going to become
more important within the next years as the number of cores per machine increases
and the amount of memory per core does not increase with the same rate. This
means that parts must be adapted to take advantage of this new system. The major
part involves multi-threading the algorithms for the mesh and degree of freedom
management. It is likely, that a distributed memory architecture is going to stay,
because applications require a lot of memory. Therefore, this thesis will not become
obsolete.

The research about Grad-Div gives insight about the optimal Grad-Div parameter
in theory. Unfortunately it is not feasible to use the full non-linear model. The
constant parameter case is now understood fairly well and can be used in the solver
framework. It would be interesting to compare the constant model to a locally
adapted design. This requires some work on the preconditioner side, too.

The one disadvantage of the Grad-Div based preconditioner in comparison to the
augmented Lagrangian preconditioner is, that you are not free to choose an arbitrary
Grad-Div parameter. This is because a too big parameter can over-stabilize and
thus spoil the solution. One way would be to combine Grad-Div and augmentation,
i.e., add augmentation in the linear system (but only implicitly without forming the
system matrix) and using Grad-Div stabilization explicitly in the preconditioner.
With this technique one is free to choose the augmentation parameter and has an
explicit matrix for efficient preconditioners.

The applications in this thesis are mostly at the beginning right now. With the now

available computational power, it will be very interesting what one can do with the
convection in the earth’s mantle for example.
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February to March 2010 Texas A&M University, Department of Mathematics



5 Presentations at Conferences

(* = invited)

2010-11-26

2010-10-08

2010-10-04

2010-09-13

2010-09-01

2010-08-24

2010-06-14

2010-03-09

2010-03-06

2009-12-21

2009-06-30

2008-04-10

*

Augmented Lagrangian based preconditioning using Grad-Div stabilization
Nonstandard Discretizations for Fluid Flows, invitation workshop, Banff
(Canada)

Less painful turbulence benchmarks - solvers, parallelization, and more
Workshop on Calibration of Viscosity Models for Turbulent Flows, Gottingen
(Germany)

Parallel Solvers for Incompressible Flow Problems

Research Group Meeting 2010, Goslar (Germany)

Massively Parallel Finite Element Programming

EuroMPI 2010, Stuttgart (Germany)

Massiv-parallele Finite Elemente Simulation mit deal. 1T

SourceTalk 2010, Gottingen (Germany)

Massive Parallel Computations with deal. Il

deal.IT Workshop 2010, Heidelberg (Germany)

Generic Finite Element Programming for Massively Parallel Flow Simulations
Eccomas 2010, Lisbon (Portugal)

Algorithms and Data Structures for Massively Parallel Finite Element Codes
Research Seminar, Texas A&M, College Station (USA)

Algorithms and Data Structures for Massively Parallel Finite Element Codes
Finite Element Rodeo 2010, Dallas (USA)

On Robust Parallel Preconditioning for Incompressible Flow Problems

Texas A&M, College Station (USA)

On Robust Parallel Preconditioning for Incompressible Flow Problems
ENUMATH 2009, Uppsala (Sweden)

Preconditioning for the stabilized Oseen Problem

Mini-Workshop on Local Projection Stabilization: Theory and Applications,
Gottingen (Germany)

6 Teaching

Winter 10/11

Fall 10
Fall 10

Winter 09/10

Fall 09

Winter 08/09

assisting numerical analysis

short deal.Il introduction

assisting mathematics in computer science I1
assisting mathematics in computer science I
assisting mathematics in computer science I1
assisting mathematics in computer science I



7 Publications

Papers in Refereed Journals

[1] M. Olshanskii, G. Lube, T. Heister, and J. Léwe. Grad-div stabilization and subgrid pressure
models for the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics
and Engineering, 198(49-52):3975 — 3988, 20009.

Papers Submitted to Refereed Journals

[1] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and Data Structures
for Massively Parallel Generic Finite Element Codes. submitted.

[2] T. Heister and G. Rapin. Efficient augmented Lagrangian-type preconditioning for the Oseen
problem using Grad-Div stabilization. submitted.
Papers in Conference Proceedings

[1] T. Heister, M. Kronbichler, and W. Bangerth. Generic Finite Element Programming for Mas-
sively Parallel Flow Simulations. Eccomas 2010 Proceedings, 2010.

[2] T. Heister, M. Kronbichler, and W. Bangerth. Massively Parallel Finite Element Programming.
In Rainer Keller, Edgar Gabriel, Michael Resch, and Jack Dongarra, editors, Recent Advances
in the Message Passing Interface, volume 6305 of Lecture Notes in Computer Science, pages
122-131. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-15646-5_13.

[3] T. Heister, G. Lube, and G. Rapin. On robust parallel preconditioning for incompressible flow
problems. In Numerical Mathematics and Advanced Applications, ENUMATH 2009. Springer,
Berlin, 2010.

Miscellaneous

[1] T. Heister. Vorkonditionierungsstrategien fiir das stabilisierte Oseen-Problem. Master’s thesis,
Institut fiir Numerische und Angewandte Mathematik, Georg-August-Universitat zu Gottingen,
2008.

8 Skills

e languages: German (native) and English (fluent)

e profound knowledge in object oriented programming with C++

e experience with parallel programming (multi-threading, MPI)

e contributer to the deal.Il finite element library, http://www.dealii.org/

e knowledge of many other programming languages, libraries, and tools (PETSc, Trilinos, MAT-
LAB, dot.net, Java, asp.net, SQL, XML, OpenGL, DirectX)
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