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Chapter 1

Overview

“October. This is one of the peculiarly dangerous months to spec-
ulate in stocks. The others are July, January, September, April,
November, May, March, June, December, August, and February.”

Mark Twain

Among many developments in statistical modelling in recent years, non- and semi-
parametric methods have proved to be a particularly powerful data-analytic tool.
Nevertheless, there still exist justified doubts regarding there forecasting perfor-
mance, for example in the context of financial time series. The aim of this thesis
is to demonstrate that, by suitable modification, these techniques can perform well
in different economic fields, like empirical demand analysis or prediction of stock
returns, if they are adapted to the specific application under investigation.

The relationship between variables in many applications exhibit special features such
as heteroscedasticity or nonlinear functional forms. Traditionally, the latter problem
is addressed by making use of parametric models which are simple to apply. However,
one is then faced to the problem of choosing among infinitely many different non-
linear forms, a choice that could be critical. The global structure for the underlying
stochastic dynamics offered by a classical parametric approach is certainly useful for
obtaining a first impression of the relationships of interest. But to find more detailed
structures that help to better understand and, in particular, to better approximate
the real world, more flexible techniques are required. Non- and semiparametric
methods relax assumptions regarding the form of the regression function, thereby
allowing for more flexibility in modelling the relationships in a more data-driven
manner. An introduction to the concept of non- and semiparametric smoothing can
be found, for example in Härdle et al. (2004). This thesis is based on local-polynomial
modelling techniques which were constructed to solve a number of specific economic
questions.
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Certain problems in data analysis cannot be solved using the described techniques.
In particular, the so called curse of dimensionality is a case in point; the higher
the dimension of the problem, the more sparsely distributed are the observations,
leading to a deterioration in performance, and of the accuracy of the estimates. For
illustrations of this difficulty see Silverman (1986), Härdle (1990), Scott (1992), or
Fan and Gijbels (1996). To circumvent this problem, the imposition of structure
in the model is often proposed in the statistical literature. Thus numerous articles
use additivity or separability (e. g. Stone (1985), Hastie and Tibshirani (1990), or
Nielsen and Linton (1998)). In contrast, this thesis makes use of the semiparametric
nature of economic problems to reduce dimensionality, and is based on the structure
that is inherent in the economic process that generates the data. A key feature in
this thesis is to show how prior knowledge can guide the modelling process. This
is done either by directly applying economic theory (to suggest limiting behavior,
monotonicity, etc.) or by examining simple parametric models to identify the coarse
features of the relationships. The use of prior knowledge not only improves the
plausibility of the model but also the interpretability of the results. Furthermore,
it can be used to address some other well-known problems associated with fully
nonparametric approaches. For example, the estimation accuracy on boundaries can
be improved by appropriate transformations motivated by the economic context, or
the bias can sometimes be reduced by applying a semiparametric approach.

Each chapter of this thesis is self-contained. It is possible to skip a part such that
the rest still remains understandable. Chapter 1 sets the scene for this work and
outlines the specific economic problems and their possible solutions. Chapter 2 is
a contribution to the analysis of consumer expenditure and price micro-data, while
Chapter 3 and 4 address the prediction of excess stock returns. The use of non-
parametrically generated bond yields is proposed and prior information about the
shape of the unknown conditional mean function is used in the estimation process.
Finally, Chapter 5 concludes and gives a short outlook. Chapters 2 to 4 are based
on separate papers. Consequently, this involves some replication especially in the
introductions and the material related to non- and semiparametric techniques. To
give an overview of the topics treated in this work, we now highlight the main ideas
and results, as well as the contributions to the research.

In Chapter 2, a semiparametric model of consumer demand, defined as the relation-
ship between quantity demands, prices and total expenditure, is considered. Since
typical consumer demand micro-data have a large amount of variation in total ex-
penditure across consumers, it might be possible to identify complex relationships
between demands and expenditure. In this model, indirect utility is specified as a
partially linear function with a nonparametric part for expenditure and a parametric
part (with fixed- or varying-coefficients) for prices. Since the starting point is a model
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of indirect utility, rationality restrictions like homogeneity and Slutsky symmetry are
easily imposed. The resulting model for expenditure shares, comprising functions of
expenditures and prices, is given (locally) by a fraction whose numerator is partially
linear, but whose denominator is nonconstant and given by the derivative of the nu-
merator. The key idea is that, by using a local polynomial model for the numerator,
the denominator is given by a lower-order local polynomial. The model can thus
be estimated using modified versions of local polynomial modelling techniques. A
new asymmetric version of the wild bootstrap is introduced for inference. It takes
into account that expenditure shares lie in the interval [0, 1]. To achieve this it is
necessary to draw the bootstrap residuals in a special way. A modest Monte Carlo
study verified that the proposed techniques work and that the bootstrap procedure
achieves an acceptable level of accuracy. Finally an empirical study is described
in which the model is implemented on Canadian expenditure and price micro-data.
Some of the expenditure share equations in this model exhibit remarkable degrees
of nonlinearity. The approach proposed in Chapter 2 contributes to the methods
available for addressing the curse of dimensionality, because the nonparametric part
is reduced to a single dimension. In contrast to other semiparametric models, it is
entirely based on observed variables, and does not require any numerical inversions to
generate a latent regressor. Consequently, the algorithm is computationally efficient
and numerically robust. Large data sets can be handled in acceptable time and the
results are readily interpreted. Chapter 2 is based on Pendakur, Scholz, and Sperlich
(2010) and, in this thesis, two extra sections are included: (a) the imposition of the
Slutsky symmetry in Section 2.6 and (b) the restricted least square for a symmetric
matrix in Section 2.7.

Chapter 3 is a contribution to the discussion that addresses the question of whether
empirical models are able to forecast the equity premium more accurately than the
simple historical mean. This problem is intensively debated in the financial literature.
The low predictive power is disappointing, even when using nonparametric models
that make use of typical predictor variables. Classical approaches are based on the
well-known Gordon growth or dividend discount model, and interpret the price of a
stock today as the discounted present value of future cash flows to the investor. In
contrast, the so called FED model directly relates yields on stocks to yields on bonds,
but fails in predicting stock returns. Motivated by the co-movement of bond and
stock returns, one could pose the question of whether expected returns on stocks and
bonds are driven by the same information, and to what extend they move together.
Chapter 3 proposes the inclusion of the current bond yield in a prediction model,
which results in a notable improvement of the prediction of stock returns, as mea-
sured by the validated R2. This way, the bond captures the perhaps most important
part of the stock return, namely the part related to the change in long-term interest
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rate. Since the current bond yield is unknown, it is nonparametrically predicted in
a prior step. The essential point is that the inclusion of the generated bond can be
seen as a kind of dimension reduction that imposes more structure in an appropriate
way that circumvents the curse of dimensionality and complexity. Since nonpara-
metrically generated regressors are included in a nonparametric prediction approach
of dependent time series data, this chapter also provides a theoretical justification for
the use of constructed variables in the nonparametric regression. In an empirical part
the proposed method is implemented on Danish stock and bond market data. The
inclusion of predicted bond yields greatly improves the prediction quality of stock
returns. The best prediction model (for one-year stock returns) not only outperforms
the simple historical mean, it also results in an increase of the prediction quality by a
factor of almost 5 compared to the best model without constructed bonds. Chapter
3 is based on Scholz, Sperlich, and Nielsen (2011) and presents additional tables of
results in Section 3.7.

Chapter 4, which is based on Scholz, Nielsen, and Sperlich (2011), also investigates
whether equity returns (or premiums) can be predicted by empirical models. While
many authors favor the historical mean, or other simple parametric methods, this
part of the thesis focuses on nonlinear relationships. A fully nonparametric approach
serves as starting point and allows a flexible nonlinear form of the conditional mean
function. A straightforward bootstrap-test confirms that non- and semiparametric
techniques yield better forecasts than do parametric models. It establishes that the
proposed techniques work and yield significantly better results. In contrast to the
previous chapter, a new approach is proposed to include prior knowledge in the
forecasting procedure of excess stock returns. Economic theory directly guides the
modelling process in an innovative way. In consequence of this approach a dimen-
sion and bias reduction is achieved, both to impose more structure to circumvent
the curse of dimensionality. It can be shown that certain boundary and bandwidth
difficulties are thereby overcome using a single idea. The available prior information
is included in a semiparametric fashion, where the nonparametric smoother is mul-
tiplicatively guided by the prior. Here, the direct application of economic theory,
or the examination of standard parametric models, lead to the necessary prior. The
potential of the proposed method is illustrated in an empirical part using annual
American stock market data. The bootstrap test shows that non- and semiparamet-
ric models are more appropriate than linear regressions, and that the inclusion of
prior knowledge greatly improves the prediction quality. The results show that the
proposed approach outperforms the simple historical mean. Its predictive power is
35% higher than that of the best fully nonparametric model.



Chapter 2

Semiparametric Indirect Utility
and Consumer Demand

2.1 Introduction

The specification and estimation of consumer demand systems, defined as the rela-
tionship between quantity demands, prices and total expenditures, represent many
long-standing problems in econometric theory. Recent work has focused on the in-
clusion of highly nonlinear relationships between quantity demands (or expenditure
shares) and total expenditures into empirical models of consumer demand. Since
typical consumer demand micro-data have a large amount of variation in total ex-
penditures across consumers, it might be possible to identify complex relationships
between demands and expenditure. Consumer demand models must satisfy a set of
nonlinear cross-equation rationality restrictions (see, for example, Deaton and Muell-
bauer (1980), or Varian (1978)), known as the Slutsky symmetry restrictions. Such
complex relationships have been hard to incorporate into semi- and nonparametric
approaches.

This chapter presents a semiparametric approach to the consumer demand problem
which allows for the imposition of the Slutsky symmetry restrictions. We use a
flexible nonparametric estimation method in the total expenditure direction, where
the data provide a lot of information, to get demands which are arbitrarily flexible
in total expenditure (i. e., arbitrarily flexible Engel curves). However, in the price
directions, where the data are less rich, we propose a parametric structure.

Like most models for consumer demand, our model uses the vector of expenditure
shares commanded by each good as the dependent variable. In this chapter, we
introduce a wild bootstrap that accounts for the fact that expenditure shares lie
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in the interval [0,1]. The idea is to draw bootstrap residuals from a local adaptive
distribution that respects the boundaries via asymmetry.

Nonparametric approaches to consumer demand started by considering Engel curves,
defined as the relationship between expenditure shares and the total expenditures
of the consumer at a fixed vector of prices. In these models only 1 nonparametric
direction is considered while the others are fixed. Work by Blundell, Duncan, and
Pendakur (1998) or Blundell, Chen, and Kristensen (2003) revealed considerable
complexity in the shapes of Engel curves. A fully nonparametric approach, which
considers both price and expenditure directions together and which allows for the
imposition of rationality restrictions, has been developed by Haag, Hoderlein, and
Pendakur (2009). In their article, the shapes of the demand equations are not re-
stricted, but the curse of dimensionality is a case in point: with M price directions
and 1 expenditure direction, the researcher is confronted with a M + 1 dimensional
problem. Even if homogeneity, another rationality condition, is imposed, the di-
mensionality of the problem reduces only to M , which is still very high in typical
applications.

Parametric approaches like the popular Almost Ideal (Deaton and Muellbauer, 1980),
dynamic Almost Ideal (Mazzocchi, 2006), Translog (Jorgensen, Lau, and Stoker,
1980) and Quadratic Almost Ideal (Banks, Blundell, and Lewbel, 1997) demand
models typically impose strict limits on the functional complexity of Engel curves.
In these cases, they must be linear, nearly linear, or quadratic, respectively, in the
log of total expenditure. This lack of complexity is driven by the need for these
parametric models to satisfy the Slutsky symmetry restrictions.

A major use of consumer demand systems is in policy analysis: demand systems are
used to assess whether or not indirect tax changes are desirable, and are used to
assess changes in the cost-of-living. In this regard, lack of complexity has costs: in
particular, if the Engel curve is wrong, then all consumer surplus calculations (in-
cluding cost-of-living calculations) are also wrong. For example Banks, Blundell, and
Lewbel (1997) or Lewbel and Pendakur (2009) show that the false imposition of lin-
ear and quadratic Engel curves can lead to very misleading estimates of behavioural
and welfare responses to indirect tax changes.

In between the fully nonparametric and the fully parametric approaches, we have the
realm of semiparametric econometrics. Two recent papers have explored this area.
Lewbel and Pendakur (2009) propose a fully parametric approach which satisfies ra-
tionality restrictions and for which Engel curves can be arbitrarily complex. Because
their model allows for arbitrarily complex Engel curves but parametrically restricted
dependence of expenditure shares on prices, it may be interpreted as semiparamet-
ric. However, their approach relies critically on a particular interpretation of the
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error term in the regression: it must represent unobserved preference heterogeneity,
and thus cannot be measurement error or any other deviations from optimal choice
on the consumer’s part. Further, Lewbel and Pendakur (2009) do not allow for a
varying-coefficients structure for price effects.

Pendakur and Sperlich (2010) propose a semiparametric model which allows for these
latter interpretations of the role of the error term, does not restrict the shape of En-
gel curves, and incorporates price effects either parametrically or semiparametrically
(through fixed- or varying-coefficients, cf. Sarmiento (2005)). Pendakur and Sperlich
(2010) propose a model in which expenditure-shares are nonparametric in utility,
an unobserved regressor, and (semi-)parametric in log-prices. The familiarity of
this partially linear form makes the model appealing, but the unobserved regressor
(utility) must be constructed under the model via numerical inversion of the (un-
known) cost function. In the present approach, we propose a model in which utility
is nonparametric in log-expenditure and parametric in log-prices. This results in
a model of expenditure-shares which is locally nonlinear but has no unobserved or
generated regressors. All of these semiparametric approaches address the curse of
dimensionality : each of them has just 1 nonparametric dimension.

The local nonlinearity of our approach is based on the fact that we model indirect
utility as a partially linear function. Since Roy’s Identity (Roy (1947)) gives ex-
penditure shares as the ratio of derivatives of indirect utility, expenditure shares in
our model are also given by a ratio. This ratio has nonparametric functions in the
numerator and their derivatives in the denominator. The key idea is that, by using a
local polynomial model for the numerator, the denominator is given by a lower-order
local polynomial that comprises the derivatives of the numerator. This fact suggests
a natural iterative procedure to estimate the model. Our algorithm is computation-
ally efficient and numerically robust. Large data sets can be handled in acceptable
time and the results are readily interpreted.

In Section 2.2 we introduce the model. In Section 2.3 we discuss the basic estimation
idea, give the associated algorithm and describe the bootstrap inference. The non-
parametric part of the model is estimated with an univariate local linear smoother
on transformed data, a method that can easily be applied in empirical research. For
the parametric part of the model we use a restricted least squares estimator to satisfy
the Slutsky symmetry restrictions. For inference we introduce an asymmetric version
of the wild bootstrap. To fulfill the constraints that the (bootstrap) responses must
be in the interval [0, 1], we propose a local adaptive χ2-distribution for the bootstrap
errors. A nice feature of our approach is that confidence intervals created this way
are narrower than those based on standard wild bootstrap.

In Section 2.4 we evaluate our proposed methods and the accuracy of the bootstrap
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procedure in a small simulation study. We also implement the model on Canadian
price and expenditure data. In the empirical part we find that some expenditure
share equations in this model exhibit remarkable degrees of nonlinearity. Section 2.5
concludes and discusses extensions.

2.2 A Semiparametric Model for Indirect Utility

Define the indirect utility function V (p, x) to give the maximum utility attained by
a consumer when faced with a vector of log–prices p = (p1, . . . , pM ) and log–total
expenditure x. Let the expenditure share of a good be defined as the expenditure on
that good divided by the total expenditure available to the consumer. Denote w =
(w1, . . . , wM ) as the vector of expenditure share functions and note that since expen-
diture shares sum to 1, wM = 1−

∑M−1
j=1 wj . Let {W 1

i , . . . ,W
M
i , P 1

i , . . . , P
M
i , Xi}Ni=1

be a random vector giving the expenditure shares, log–prices and log–total expendi-
ture of a population of N individuals. Note that, as commonly done in the literature
of demand systems, we use the superscript notation for single elements of vectors or
matrices, i. e. for single goods or commodities, and the subscript for individuals.

2.2.1 A Partial Linear and Varying-Coefficients Model

We consider two semiparametric specifications of the indirect utility function. First,
we consider a partially linear (or, fixed-coefficients) specification of the form

V (p, x) = x−
M∑
k=1

fk(x)pk − 1
2

M∑
k=1

M∑
l=1

aklpkpl, (2.1)

or, in matrix notation,

V (p, x) = x− f(x)>p− 1
2
p>Ap, (2.2)

where f = (f1, . . . , fM )> are unknown differentiable functions of log–total expendi-
ture and A = {akl}Mk,l=1 are parameters. We impose the normalisation that akl = alk,
or, equivalently, A = A>. This is not a restriction: since pkpl = plpk, there is a sym-
metric version of A that yields the same V as any asymmetric version. Second, we
consider the varying-coefficients extension of this model:

V (p, x) = x−
M∑
k=1

fk(x)pk − 1
2

M∑
k=1

M∑
l=1

akl(x)pkpl, (2.3)

or, in matrix notation,

V (p, x) = x− f(x)>p− 1
2
p>A(x)p, (2.4)
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where akl(x) = alk(x) for all k, l, or, equivalently, A(x) = A(x)>.

Expenditure shares are functions of total expenditure and all prices. Roy’s Identity
relates the expenditure share for good j, wj(p, x), to derivatives of the indirect
utility function: wj(p, x) = −

[
∂V (p, x)/∂pj

]
/ [∂V (p, x)/∂x]. Application of Roy’s

Identity to the fixed-coefficients model yields

wj(p, x) =
f j(x) +

∑M
k=1 a

jkpk

1−
∑M

k=1∇xfk(x)pk
,

with ∇x indicating the derivative (here of fk(x)) with respect to x; or, in matrix
notation,

w(p, x) =
f(x) + Ap

1−∇xf(x)> p
.

For the varying-coefficients model we get

wj(p, x) =
f j(x) +

∑M
k=1 a

jk(x)pk

1−
∑M

k=1∇xfk(x)pk − 1
2

∑M
k=1

∑M
l=1∇xakl(x)pkpl

,

or, in matrix notation,

w(p, x) =
f(x) + A(x)p

1−∇xf(x)>p− 1
2p>∇xA(x)p

.

We describe how to estimate these expenditure share equations in Section 2.3.

The motivation for these models is as follows. In real-world applications, there is
typically a large amount of observed variation in total expenditures, so one may
reasonably hope to identify a nonparametric component in that direction. However,
typical micro-data sources do not have nearly as much variation in the price di-
rections, which suggests that partially linear modelling might describe these effects
sufficiently well. If in addition, the researcher feels that more may be identified on
the strength of observed price variation, the varying-coefficients model allows price
effects in the model (2.3) to be different at different expenditure levels. This would
seem to be a pure advantage of the varying-coefficients approach. However, in prac-
tise, this extension seriously increases the variance and computational cost of the
estimates. In particular, the algorithm for model (2.3) is about five times slower
than the one for model (2.1). The important feature here is that nonparametric
dimensionality is 1 in both models.

2.2.2 Rationality Restrictions

Rationality is comprised of three conditions: homogeneity, symmetry and concavity.
Here we will deal only with symmetry and homogeneity (concavity is a topic of its
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own, investigated, e. g. in Millimet and Rusty (2008)). Slutsky symmetry (see, for
example, Mas-Colell, Whinston, and Green (1995)) relates to the fact that expen-
diture share equations are derived in terms of the derivatives of indirect utility V .
Slutsky symmetry gives minimal restrictions under which expenditure share equa-
tions lead to a unique indirect utility function. In our context it is satisfied if and only
if A = A> in the expenditure share equations1 (or, in the varying-coefficients case,
if A(x) = A(x)>). In the indirect utility function the restriction of these matrices
to symmetry is only a normalisation. However, in the expenditure share equations,
this constraint is crucial. In particular, because each expenditure share equation
could be estimated separately, the estimated matrix could be asymmetric. In our
estimation section below we use an algorithm which maintains symmetry, and which
is the semiparametric analog to a linearly restricted Seemingly Unrelated Regression
(SUR) estimator2.

Homogeneity is sometimes referred to as no money illusion. If consumers do not
suffer from money illusion, then scaling prices and expenditures by the same factor
cannot affect utility. This requires that indirect utility is homogeneous of degree zero
in (unlogged) prices and expenditure. This can be achieved by dividing all prices
and expenditure by the price of the M -th expenditure category. Note that we use
logarithms, so we subtract pM from each log-price and from log-expenditure in the
indirect utility function. For the fixed-coefficients case, this yields

V (p, x) = (x−pM )−
M−1∑
k=1

fk(x−pM ) · (pk−pM )− 1
2

M−1∑
k=1

M−1∑
l=1

akl(pk−pM )(pl−pM ),

in model (2.1) and analogously in model (2.3). The sums go only toM−1 because the
M -th element of each sum (which multiplies pM−pM ) is zero. Denoting x̃ = x−pM ,
p̃j = pj − pM and p̃ = (p̃1, . . . , p̃M−1) we may write this more compactly as

V (p̃, x̃) = x̃−
M−1∑
k=1

fk(x̃) · p̃k − 1
2

M−1∑
k=1

M−1∑
l=1

aklp̃kp̃l, (2.5)

with akl depending on x̃ in the varying-coefficients case. We thus estimate only the
first (M − 1) elements of f and w, and the first (M − 1) rows and columns of A. In
matrix notation, this may be written with f = (f1, . . . , fM−1)> and A = {akl}M−1

k,l=1

as
V (p̃, x̃) = x̃− f(x̃)>p̃− p̃>Ap̃,

for the fixed-coefficients case and

V (p̃, x̃) = x̃− f(x̃)>p̃− p̃>A(x̃)p̃,
1For reasons of clarity and comprehensibility, we skip here the presentation of the imposition

of Slutsky symmetry and defer it to the appendix in Section 2.6.
2For more details, cf. Section 2.7.
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for the varying-coefficients case. Once again, since expenditures sum to 1 by con-
struction, we have wM (p̃, x̃) = 1 −

∑M−1
i=1 wi(p̃, x̃), and we need only consider the

first (M − 1) expenditure share equations.

As before, we get the expenditure share equations

w(p̃, x̃) =
f(x̃) + Ap̃

1−∇x̃f(x̃)> p̃
, (2.6)

for the fixed-coefficients model (2.1), and

w(p̃, x̃) =
f(x̃) + A(x̃)p̃

1−∇x̃f(x̃)>p̃− 1
2 p̃>∇x̃A(x̃)p̃

, (2.7)

for the varying-coefficients model (2.3). Here, ∇x̃f(x̃) is the (M − 1)–dimensional
vector of the derivatives of f(x̃) with respect to x̃, and ∇x̃A(x̃) is the (M − 1) ×
(M − 1) matrix function equal to the derivatives of A with respect to x̃.

These expressions for budget shares have a nice feature in comparison to Pendakur
and Sperlich (2010). Whereas their model for expenditure shares uses a nonpara-
metric function of a generated regressor which must be constructed under the model
using numerical inversion of the unknown cost function, the expression above uses
only observed regressors. However, in comparison to Pendakur and Sperlich (2010),
which is a partially linear model, the above expression is partially linear only in
the numerator. The presence of the denominator seems to complicate the develop-
ment of an estimation algorithm. However, as we show below, with the use of local
polynomials this problem becomes manageable.

2.3 Estimation of the Models

In the following sections we show how to estimate the (M − 1)–dimensional vector
w(p̃, x̃) under the model. These estimates satisfy adding-up by construction, since
wM (p̃, x̃) = 1−

∑M−1
i=1 wi(p̃, x̃). They satisfy homogeneity (no money illusion) also

by construction due to the use of normalised prices and expenditures as regressors.
Finally, they can satisfy Slutsky symmetry because A (or A(x̃)) is easily restricted
to be a symmetric matrix (see, for example, Deschamps (1988)).

A more difficult question is the restriction of the estimated budget shares to be
everywhere in the range [0, 1]. This problem is referred to as the global regularity
problem in the literature on consumer demand. Roughly speaking, demand systems
that are not homothetic (i. e. whose budget shares respond to total expenditure)
cannot be globally regular without restricting either the domain of p, x or the domain
of model error terms in ad hoc ways. See Pollack and Wales (1991) for a discussion
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of the former, and Lewbel and Pendakur (2009) for a discussion of the latter. We
will judge our estimates in terms of local regularity, i. e. in terms of whether or
not estimated budget shares are in the range [0, 1] in a p, x domain of interest. In
particular, under homogeneity and when p = 0M , in both the fixed-coefficients and
varying-coefficients model, we have

w(p, x) = w(p̃, x̃) = f(x̃) = f(x).

The estimated functions f(x) thus characterise budget shares over a domain spanned
by x with log-prices fixed at 0M . If these estimated functions lie in the interval [0, 1],
then we say that our estimates are locally regular in this sense. Note also that the
vast majority of the literature on estimating expenditure systems does not tackle
this problem due to its complexity (an exception is Moral-Arce, Rodríguez-Póo, and
Sperlich (2007)).

2.3.1 Basic Ideas

The basic idea of estimating the unknown nonparametric functions f j and the (po-
tentially varying) coefficients ajk, j, k = 1, . . . ,M − 1, consists of iteratively solving
minimization problems, where the iteration is necessary only for the nonparametric
part of the model. We use kernel smoothing for the nonparametric part, and least
squares for the parametric coefficients in case of the fixed-coefficients model (2.1).
Again, to obtain estimates that fulfill the condition of Slutsky symmetry, (linearly)
restricted least squares are used for the parametric part3.

Keeping the dependence on x̃, we may approximate

f(t) ≈ f(x̃) +∇x̃f(x̃)(t− x̃) ≈ α(x̃) + β(x̃)(t− x̃), (2.8)

where α(x̃) and β(x̃) are the local level and derivative of f(t). Then, for the partial
linear model the local problem is

min
α(x̃),β(x̃),A

N∑
i=1

e>i Ωei, with

ei ≡ wi −
α(x̃) + (x̃i − x̃)β(x̃) + Ap̃i

1− β(x̃)>p̃i
,

where Ω is an (M − 1)× (M − 1) weighting matrix.

3More details can be found in Section 2.7.



2.3 Estimation of the Models 13

Similarly, for the varying-coefficients model (2.7), the local problem in the neigh-
bourhood of each given x̃ is

min
α(x̃),β(x̃), Γ(x̃),∆(x̃)

N∑
i=1

e>i Ωei, with

ei ≡ wi −
α(x̃) + (x̃i − x̃)β(x̃) + Γ(x̃)p̃i + (x̃i − x̃) ∆(x̃)p̃i

1− β(x̃)>p̃i − 1
2 p̃>i ∆(x̃)p̃i

,

where Ω is now a different (M − 1)× (M − 1) weighting matrix and Γ(x̃) and ∆(x̃)
are the local level and derivative, respectively, of the price coefficients.

Here, the imposition of homogeneity is done via the use of normalised prices and ex-
penditures (i. e. x̃ instead of x etc.). The imposition of Slutsky symmetry is achieved
by the restriction A = A>, or in the varying-coefficients case by A (x) = A (x)>,
i. e. by restricting Γ(x̃) = Γ(x̃)> and ∆(x̃) = ∆(x̃)>. This local linear approach
could easily be extended to higher order local polynomials, but for this we would
need stronger assumptions on the data and the model.

2.3.2 The Estimation Algorithm

Denote ∆i = X̃i − x̃, Ki = K((X̃i − x̃)/h)/h, where K is some symmetric kernel
function with the usual properties and h a bandwidth that controls the smoothness
of the estimate. We omit an extra subscript h in Ki for the sake of notation.

Let us start with the minimization problem for the partial linear model (2.1). As
above, the αj are related to the functions f j at point x̃ and the parameters βj to its
first derivatives, while the parameters ajk are fixed for all x̃:

min
αj ,βj

M−1∑
j=1

N∑
i=1

W j
i −

αj + ∆iβ
j +

M−1∑
k=1

ajkP̃ ki

1−
M−1∑
k=1

βkP̃ ki


2

Ki. (2.9)

In order to minimize, we set the first derivative equal to zero. Taking the derivative
of (2.9) with respect to αj , and using the notations Si = 1 −

∑M−1
k=1 βkP̃ ki and

T ji =
∑M−1

k=1 ajkP̃ ki , we solve

0 =
N∑
i=1

(
W j
i −

αj + ∆iβ
j + T ji

Si

)
Ki

Si
. (2.10)

This gives immediately (for j = 1, . . . ,M − 1)

αj =

[
N∑
i=1

W j
i Ki/Si − βj

N∑
i=1

Ki∆i/S
2
i −

N∑
i=1

KiT
j
i /S

2
i

][
N∑
i=1

Ki/S
2
i

]−1

. (2.11)
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On the other hand, by differentiating (2.9) with respect to βj (again for j = 1, . . . ,M−
1), we get the equations

0 =
N∑
i=1

(
W 1
i −

α1 + ∆iβ
1 + T 1

i

Si

)
Ki ·

(α1 + ∆iβ
1 + T 1

i )P̃ ji
S2
i

+ · · ·+

N∑
i=1

(
W j
i −

αj + ∆iβ
j + T ji

Si

)
Ki ·

∆iSi + (αj + ∆iβ
j + T ji )P̃ ji

S2
i

+ · · ·+

N∑
i=1

(
WM−1
i −

αM−1 + ∆iβ
M−1 + TM−1

i

Si

)
Ki

(αM−1 + ∆iβ
M−1 + TM−1

i )P̃ ji
S2
i

.

This is equivalent to

0 =
M−1∑
k=1

N∑
i=1

(
W k
i −

αk + ∆iβ
k + T ki

Si

)
Ki ·

(αk + ∆iβ
k + T ki )P̃ ji
S2
i

+

N∑
i=1

(
W j
i −

αj + ∆iβ
j + T ji

Si

)
Ki

∆i

Si
. (2.12)

Certainly, we can not solve equation (2.12) analytically for βj . But, for our iterative
purpose it is enough to consider the following implicit representation:

βj =
[M−1∑
k=1

N∑
i=1

(
W k
i −

αk + ∆iβ
k + T ki

Si

)
Ki ·

(αk + ∆iβ
k + T ki )P̃ ji
S2
i

+

N∑
i=1

(
W j
i −

αj + T ji
Si

)
Ki

∆i

Si

]/ N∑
i=1

Ki∆2
i

S2
i

. (2.13)

We use the implicit representation (2.13) to calculate new values for βj . With them
we get new Si, so that we can find new αj :

βjnew =
[M−1∑
k=1

N∑
i=1

(
W k
i −

αkold + ∆iβ
k
old + T ki,old

Si,old

)
Ki

(αkold + ∆iβ
k
old + T ki,old)P̃

j
i

S2
i,old

+
N∑
i=1

(
W j
i −

αjold + T ji,old
Si,old

)
Ki

∆i

Si,old

]/ N∑
i=1

Ki∆2
i

S2
i,old

, (2.14)

Si,new = 1−
M−1∑
k=1

βknewP̃
k
i , and (2.15)

αjnew =

N∑
i=1

W j
i Ki/Si,new − βjnew

N∑
i=1

Ki∆i/S
2
i,new −

N∑
i=1

KiT
j
i,old/S

2
i,new

N∑
i=1

Ki/S2
i,new

.

We repeat these steps until convergence. The optimal A will be the symmetric
matrix that minimizes the least squares problem. In practice, at the end of each
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iteration step, we solve the restricted least squares problem resulting from equation
(2.6). With some algebra, the problem is given by

W j
i · (1−

M−1∑
k=1

βki P̃
k
i )− αji =

M−1∑
k=1

ajkP̃ ki . (2.16)

The modification of the algorithm to take the varying coefficients A(x̃) into account
is carried out along ideas of Fan and Zhang (1999), though it is more complex in our
context. With the same local linear approximation arguments as above, we get the
local problem in the neighbourhood of x̃ as

min
θ

M−1∑
j=1

N∑
i=1

W j
i −

αj + ∆iβ
j +

M−1∑
k=1

(γjk + ∆iδ
jk)P̃ ki

1−
M−1∑
k=1

βkP̃ ki −
1
2

M−1∑
k=1

M−1∑
l=1

δklP̃ ki P̃
l
i


2

Ki, (2.17)

with θ denoting αj , βj , γjk and δjk. Note that γjk and δjk are symmetric since we
consider a symmetric matrix of functions akl(x̃). The minimization of (2.17) in the
usual way gives the extended algorithm in analogy to the first step of 2.3.2. For αj

and βj we proceed as before but with Si = 1 −
∑
βkP̃ ki − 1/2

∑∑
δklP̃ ki P̃

l
i and

T ji =
∑

(γjk + ∆iδ
jk)P̃ ki . Furthermore, we obtain

γst =

∑N
i=1

[(
W s
i −

Csi
Si

)
P̃ ti +

(
W t
i −

Cti
Si

)
P̃ si 1Is 6=t

]
Ki
Si∑N

i=1

[
(P̃ ti )2 + (P̃ si )21Is 6=t

]
Ki
S2
i

,

with Csi = αs + ∆iβ
s + T si − γstP̃ ti and, defining T s,−ti = T si −∆iδ

stP̃ ti ,

δst =

[
M−1∑
k=1

N∑
i=1

(
W k
i −

αk + ∆iβ
k + T ki

Si

)
Ki

S2
i

(αk + ∆iβ
k + T ki )P̃ ti P̃

s
i +

N∑
i=1

{(
W s
i −

αs + ∆iβ
s + T s,−ti

Si

)
P̃ ti +

(
W t
i −

αt + ∆iβ
t + T t,−si

Si

)
P̃ si

}
Ki∆i

Si

]

×

[
N∑
i=1

{
(P̃ ti )

2 + (P̃ si )21Is6=t
} ∆2

iKi

S2
i

]−1

.

2.3.3 Bootstrap Inference

The wild bootstrap draws bootstrap responses based on the estimated model (2.1)
with given sample {Wi, X̃i, P̃i}Ni=1 and estimates α̂j , β̂j and âjk, k, j = 1, . . . ,M − 1.
Denote a prior bandwidth g with O(g) > O(h) (obeying the needs of asymptotic
theory, cf. Härdle and Marron (1991)), and let h be the bandwidth giving the desired
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smoothness in the original sample. The basic idea is now to use the estimated
residuals from an estimate with bandwidth g,

ε̂ji = W j
i −

α̂j(X̃i) +
M−1∑
k=1

âjkP̃ ki

1−
M−1∑
k=1

β̂k(X̃i)P̃ ki

, (2.18)

to get wild bootstrap residuals εj∗i . Given them we create the bootstrap samples
{W ∗i , X̃i, P̃i}Ni=1 by

W j∗
i =

α̂j(X̃i) +
M−1∑
k=1

âjkP̃ ki

1−
M−1∑
k=1

β̂k(X̃i)P̃ ki

+ εj∗i , (2.19)

for i = 1, . . . , N and j = 1, . . . ,M − 1. Here, εj∗i are bootstrap residuals that
replicate desired properties of the distribution(s) of ε̂ji . The WM∗

i are generated
using the adding-up restriction

∑M
j=1W

j∗
i = 1. Repeating this many times, we

get estimates (for f and A) for each bootstrap sample and can use the bootstrap
quantiles to construct pointwise confidence bands for the estimates.

There exists several strategies to obtain bootstrap residuals εj∗i . Typically, when
no restriction is faced, one may use εj∗i = ui · ε̂ji , where ui is a standard normal
random scalar. Under the additional assumption of homoscedasticity, this can even
be simplified to εj∗i = ui · σ̂jε, where σjε is estimated from the residuals (2.18).

In our case, one could argue that such bootstrap errors could cause the bootstrap
values of W j∗

i to lie outside the admissible range of [0, 1] for budget shares. On the
one hand, this may not matter because the estimation algorithm does not control
the constraint that Ŵ j

i ∈ [0, 1]. However, given that actual expenditure shares are
bounded, the bootstrap residuals may poorly reflect the true error distribution and
misrepresent the confidence intervals, for example putting them outside [0, 1].

To address the possibility that inference is hampered by bootstrap budget-shares
lying outside the interval [0, 1], we introduce an alternative formulation of the wild
bootstrap. Because there are many expenditure shares, the main bounding problem
is the lower bound at 0, and this is the problem we deal with. Thus, we are faced
with a conditionally asymmetric (to the right) error distribution. We thus consider
an asymmetric distribution for εj∗i given ε̂ji as follows. Generate bootstrap errors via

χ2
k√
k
·
|ε̂ji |√

2
−
|ε̂ji |√

2
·
√
k ≤ |Ŵ j

i |, (2.20)

where k ≤ b(W j
i /ε̂

j
i )

2 · 2c. In the case that k is less than one we draw the bootstrap
residual εj∗i from χ2

1 · |Ŵ
j
i | − |Ŵ

j
i |. Note that this fulfills E[εj∗i ] = 0 and E[(εj∗i )2] =
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E[(ε̂ji )
2] for all i and j. From (2.20) we get that for positive Ŵ j

i the bootstrap analog
is also always positive. This method leads automatically to confidence bands that
lie almost fully inside the interval [0, 1] and are consequently narrower than those
based on a simple normal bootstrap described above. In the simulation study below,
we present empirical evidence that the above introduced asymmetric bootstrap is
accurate.

2.3.4 Practical Considerations

One issue in such iterative procedures is the question of adequate initial values for the
nonparametric part. Here we have a convenient model feature to exploit: when we
normalise prices in the sample such that p̃i = (0, . . . , 0) for some group of consumers,
say N0, equation (2.9) reduces to the well-known local linear case. Since for the
denominator term we have Si = 1, we get the objective function

min
αj ,βj

M−1∑
j=1

N0∑
i=1

(
W j
i − α

j + ∆iβ
j
)2
Ki. (2.21)

Solving this problem on the sample of consumers where p̃i = (0, . . . , 0) gives us con-
sistent estimates (though with a possibly large variance depending on the subsample
size N0) which can be used as starting values for αj and βj . For the varying-
coefficients model we also need starting values for the γjk and δjk. As a natural
choice for the γjk we use the results of the algorithm in Section 2.3.2 and zero for all
δjk (i. e. starting in the first iteration with a simpler model).

For the bandwidth choice we recommend the use of the same bandwidth h for all
expenditure categories because: (a) the functions refer to the same expenditure data
in all equations; and (b) the economic theory does not suggest that the shares of
some goods would be smoother than those of others. Plug-in bandwidths could
be derived from the asymptotics of f̂ , or, alternatively, one could construct a risk
estimate similar to cross-validation but this time jointly for all elements of f̂ . It
is clear that the first possibility depends on derivatives of the unknown f̂ and the
density of expenditures, while the second approach would be computationally costly.
A rough idea of a bandwidth to start with may be derived from (2.21). Run a
leave-one-out cross-validation for (2.21) with the subsample of individuals fulfilling
p̃i = (0, . . . , 0), and correct the obtained bandwidth h0 for the size of the full sample,
i. e. h = N−1/5h0N

1/5
0 .

In the fixed-coefficients model (2.1) we recommend running the estimation algorithm
twice: first with an undersmoothing bandwidth in the nonparametric part to keep the
possible smoothing bias small. The resulting estimate for the coefficient matrix A is
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saved and used in the second run, which uses a larger bandwidth for the nonparamet-
ric part to get reasonably smooth f̂ . This is unnecessary in the varying-coefficients
model (2.3), where we estimate only nonparametric functions.

Recall that theM th equation and its Engel curve is simply a result of the homogeneity
and the adding-up condition

∑M
j=1W

j
i = 1. In practice one might choose the item

with the least variation in expenditure shares across the households.

2.4 Empirical Analysis

2.4.1 A Simulation Study

First, to produce some artificial data we generated 33 distinct price vectors, normally
distributed in each dimension, for each of 6 expenditure categories (i. e. we have 6
items with different prices in 33 regions). As in typically observed micro-data, we
did not allow for a wide price variety, see Lewbel (2000). Summary values for these
price vectors can be found in Table 2.1.

Table 2.1: Summary of price vectors used in the simulation.

1 2 3 4 5

Min 3.905 3.449 3.763 0.880 2.794
Max 4.130 3.585 3.919 1.121 3.010
Mean 4.018 3.517 3.841 1.002 2.901
Std. 0.030 0.020 0.020 0.030 0.030

For 32 regions (i. e. price vectors) we uniformly draw 30 log–total expenditure values
from the interval [1, 2]. For the reference region (number 33) we draw 40 uniformly
distributed values between one and two. In total this yields N = 1000 observations.
These are used to generate expenditure shares using the expenditure functions shown
in Figure 2.1 (solid lines), price parameters given in Table 2.2, and normal error terms
with mean zero and standard deviation 0.01. In order to get shares which fulfill the
conditions W j ∈ [0, 1] and

∑
jW

j = 1 we applied the rejection method (we dropped
and replaced values outside [0, 1]).

Next, we estimate the functions αj and the price parameters using our estimation
algorithm introduced in Section 2.3.2. This is repeated 250 times (using the same
functions, price parameters, and range of log–total expenditure values) to get an idea
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Figure 2.1: Simulation of 6 different budget share functions (solid line) with
90% coverage probability (dotted lines) and asymptotic 90% bootstrap confidence
intervals (dashed lines)
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Table 2.2: Price parameters used in the simulation.

1 2 3 4 5

1 −0.150 −0.100 0.150 0.100 0.280
2 0.250 0.100 −0.250 0.170
3 0.320 −0.220 −0.190
4 −0.200 0.150
5 −0.180

of the mean squared errors of our estimators. For estimating f we used the Gaussian
kernel with h ≈ 0.034, the smallest bandwidth giving smooth estimates.

In Figure 2.1 we have plotted the true functions (solid lines) together with intervals
of 90% coverage probabilities for the estimates (dotted lines) as a result of the 250
simulation runs. On the one hand, we see pretty narrow bands which accurately
capture even those functions with flat plateaus in the intermediate range (category
3) and with bumps (category 2). Such functions are often hard to estimate in prac-
tise. We also see the limits of the method as for example boundary effects. Our
smoother can estimate without any bias the linear function. In Table 2.3 we give the
estimated parameter means, together with the standard deviations. The exactness
of our simulation is demonstrated by the small total MSE of only 6.83 · 10−6.

Table 2.3: Estimated price parameters and standard deviations (in brackets).

1 2 3 4 5

1 −0.1515 −0.1006 0.1494 0.0997 0.2799
(0.0140) (0.0106) (0.0103) (0.0090) (0.0087)

2 0.2494 0.0999 −0.2497 0.1699
(0.0176) (0.0129) (0.0102) (0.0102)

3 0.3200 −0.2208 −0.1891
(0.0170) (0.0096) (0.0100)

4 −0.1992 0.1490
(0.0117) (0.0079)

5 −0.1803
(0.0117)

To verify the functioning of our new bootstrap procedure we constructed 200 boot-
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strap samples (with g = h as N is relatively small) along Section 2.3.3 for each of
100 simulation runs. We calculated 90% bootstrap confidence intervals around the
estimator for each simulation. The mean of upper and lower bounds of these intervals
are given in Figure 2.1 (dashed lines). The fact that the 90% coverage probability
intervals and the means of the 90% bootstrap intervals almost coincide indicates that
our bootstrap procedure is acceptably accurate.

2.4.2 Analysing Household Expenditures in Canada

In our empirical study we use the same Canadian data as in Lewbel and Pendakur
(2009) and Pendakur and Sperlich (2010) which come from public sources (see also
Pendakur (2002)). The price and expenditure data are available for 12 years in
5 regions: Atlantic, Quebec, Ontario, Prairies and British Columbia. This yields
60 distinct price vectors, where prices are normalised in a way that all prices of
the categories from Ontario in 1986 are one, i. e. p̃O,86 = (0, . . . , 0). These 189
observations define the base price vector and we use them to get the starting values.
Note further, to achieve homogeneity we subtracted pM , the price of the left–out
expenditure category, from all other prices and total expenditure.

We use 6952 observations of rental–tenure unattached individuals aged between 25
and 64 with no dependants to minimise demographic variation in preferences. Our
analysis includes annual total–expenditure in nine categories: food–in, food–out,
rent, clothing, household operations, household furnishing and equipment, private
transportation, public transportation and personal care. The left–out category is
personal care. We get thus a system of eight expenditure share equations which de-
pend on eight (normalised) log–prices and (normalised) log–total expenditure. These
expenditure categories account for about three-quarters of the current consumption
of the households in the sample. Summary statistics of the observations are given in
Table 2.4.

We note that this choice of commodities is arbitrary: one could divide these goods
into subcategories, or aggregate them up into larger categories. We choose these
categories because they offer the finest gradation consistent with largest possible
time span for the price data (finer gradations of price data are available, but for
shorter periods of time). Another advantage of this choice of commodities is that
they are directly comparable with Pendakur and Sperlich (2010).

As noted above, when p̃ = (0, . . . , 0) (as for the observations in Ontario 1986), the
price effects in expenditure shares amount to zero, yielding

w(p, x) = w(p̃, x̃) = f(x̃) = f(x),
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Table 2.4: Canadian household expenditure data.

Min Max Mean Std.

expenditure shares food–in 0.00 0.63 0.17 0.09
food–out 0.00 0.64 0.08 0.08
rent 0.01 0.95 0.40 0.13
operations 0.00 0.64 0.08 0.04
furnishing 0.00 0.65 0.04 0.06
clothing 0.00 0.53 0.09 0.06
private trans 0.00 0.59 0.08 0.09
public trans 0.00 0.34 0.04 0.04

log–prices food–in −0.39 0.07 −0.03 0.09
food–out −0.42 0.25 0.05 0.12
rent −0.35 0.14 −0.12 0.15
operations −0.28 0.10 −0.04 0.08
furnishing −0.16 0.21 −0.03 0.09
clothing −0.07 0.44 0.10 0.11
private trans −0.51 0.30 −0.09 0.18
public trans −0.59 0.40 0.01 0.25

log–total expenditure 3.03 6.26 4.61 0.45

which we will refer to as the vector of Engel curves. The estimated Engel curves of
all expenditure categories can be found in Figures 2.2 and 2.3 as solid lines, where
the horizontal axes refer to x̃, i. e. the log total expenditures minus pM .

We include pointwise 90% confidence intervals which we calculated, as described in
Section 2.3.3, with heteroscedastic error terms and 500 bootstrap iterations using our
new conditionally asymmetric wild bootstrap procedure. To generate the bootstrap
samples we used g = h with h = 0.17. This is somewhat larger than h0(N0/N)1/5

which would give wiggly estimates f̂ . The estimation algorithm was implemented
with the Gaussian kernel, and it converged in our setting after about 15 iterations. In
all figures, the resulting Engel curves are compared to those of Banks, Blundell, and
Lewbel (1997) and those of Pendakur and Sperlich (2010) (assuming a partial linear
cost function with Slutsky symmetry). In terms of local regularity, the estimated
values of budget-shares lie entirely within the interval [0, 1]. Although we do not
assess the global regularity of our estimates or estimator, it is notable that the
estimated budget shares satisfy this condition locally.

Food-at-home and food-out are strong necessities and luxuries, respectively, with
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Figure 2.2: Estimates of food-in, food-out, rent, and clothing (solid line) with 90%
pointwise confidence bands (dotted), together with estimates using Banks, Blundell,
and Lewbel (1997) (triangles) and Pendakur and Sperlich (2010) (circles).

nearly linear Engel curves in both cases. The near-linearity of these Engel curves
has been observed in a large number of empirical investigations, including Banks,
Blundell, and Lewbel (1997). Some curvature is observed in the rent and clothing
equations, especially near the bottom of the distribution. This curvature is noted
in semiparametric work, such as Pendakur and Sperlich (2010) and Lewbel and
Pendakur (2009). The most curvature is noted in smaller budget shares like house-
hold operation, private transportation and public transportation. The curvature in
household operation seems quite strong, and that in private transportation seems de-
cidedly non-quadratic. In the figures one can see that most of the expenditure-share
equations are very similar between the present approach and the partially linear cost
function approach of Pendakur and Sperlich (2010). However, two exceptions are the
household-operation and public-transportation equations. These are estimated about
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Figure 2.3: Estimates of household operations, furnishing and equipment, private
and public transportation (solid line) with 90% pointwise confidence bands (dashed),
together with estimates using Banks, Blundell, and Lewbel (1997) (triangles) and
Pendakur and Sperlich (2010) (circles).

0.5 percentage points higher in the present approach. We note that this variation
between estimated models is not overwhelmingly large. For example, in some ex-
penditure shares equations Pendakur and Sperlich (2010) report a difference of more
than 0.5 percentage points between symmetry-restricted and symmetry-unrestricted
estimates of their partially linear cost function model. This highlights the fact that
although the two models are similar in spirit, they are not identical in practise.

Table 2.5 gives the estimated symmetric price parameters and in brackets the boot-
strapped standard deviations4. These estimated price effects are in the plausible
range, and are similar to those found in Pendakur and Sperlich (2010).

4Note that we do not display estimated price elasticities in Tables 2.3 and 2.5 but only estimated
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Table 2.5: Estimated symmetric price effects ajk (with bootstrap standard devia-
tions in brackets).

food–in food–out rent oper furn clothing priv tr pub tr

food–in −0.026 0.013 −0.006 −0.008 0.009 0.006 0.037 −0.058

(0.036) (0.018) (0.012) (0.019) (0.014) (0.015) (0.007) (0.006)

food–out −0.035 0.047 0.012 −0.002 −0.069 0.001 −0.045

(0.014) (0.007) (0.012) (0.010) (0.009) (0.005) (0.005)

rent 0.186 0.023 −0.026 −0.021 −0.036 0.087

(0.017) (0.007) (0.005) (0.008) (0.006) (0.005)

oper 0.040 0.010 −0.016 −0.029 0.023

(0.017) (0.011) (0.011) (0.004) (0.005)

furn −0.038 0.026 −0.017 −0.024

(0.016) (0.009) (0.004) (0.004)

clothing 0.005 −0.002 −0.014

(0.010) (0.005) (0.004)

priv tr 0.002 0.006

(0.006) (0.003)

pub tr −0.011

(0.003)

Thus, the estimated Engel curves are plausible and have some evidence of complexity
beyond the quadratic form of Banks, Blundell, and Lewbel (1997). Compared to
Pendakur and Sperlich (2010), the present approach has an important computational
advantage: it is based entirely on observed regressors, and does not require any
numerical inversions to generate a latent regressor. In comparison with Lewbel and
Pendakur (2009), the present approach has an important interpretational difference:
whereas Lewbel and Pendakur (2009) must interpret model error terms as unobserved
preference heterogeneity parameters, the present approach is based on the more
standard view of error terms as measurement or other non-behavioural error.

The varying-coefficients extension is similarly easy to implement. The estimated
Engel curves are almost identical to those found in the fixed-coefficients case, with
some deviations in the tails. Depending on the bandwidth, the estimated price pa-
rameters evaluated at median log-expenditure are statistically indistinguishable from
those of the fixed-coefficients model, but their estimated variance is much greater. In
particular, we got approximately twice the standard errors for estimated parameters
evaluated at median expenditures relative to their fixed-coefficients counterparts.
We found that the varying-coefficients estimates of f were very similar to the fixed-

parameters which can also be positive in the diagonal.
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coefficient estimates, and so we do not present them here.

2.5 Conclusions

We propose an indirect utility model which is nonparametric in the expenditure
direction and parametric (with fixed- or varying-coefficients) in the price directions.
The utility function implies a consumer demand system that has parametric log–
price effects and nonparametric log–total expenditure effects. We avoid the curse of
dimensionality, typically associated in fully nonparametric estimation of consumer
demand, since the nonparametric part of the model is only one dimensional. The
model is easily restricted to satisfy the rationality conditions of homogeneity and
Slutsky symmetry.

We provide a new wild bootstrap procedure that allows for conditional asymmetries
and guarantees positive shares. We show the finite sample performance of our esti-
mators in a simulation study, and finally apply our method to Canadian expenditure
data.

The application of this model to Canadian price and expenditure data shows not only
the potential of the model but also suggests that some expenditure shares are more
complex than the linear ones in popular parametric demand models. The simulation
study reveals further that it is also possible to capture shapes which are difficult to
estimate (cf. Hastie and Tibshirani (1984)), such as those with flat plateaus in the
intermediate range or with bumps.

2.6 Appendix A: Slutsky Symmetry

The imposition of Slutsky symmetry requires that alk = akl (alk (x) = akl (x)) for
all k, l, or equivalently, that A = A> (A (x) = A (x)>). To see this, start with the
definition of the Slutsky matrix, whose elements are given by

sij =
∂hi

∂bj
=
∂gi

∂y
· qj +

∂gi

∂bj
, (2.22)

where hi denotes the Hicksian demand, gi the Marshallian demand, y total expendi-
ture, bj the price, and qj the quantity of good/category j. With qi = gi = wi · y/bi,
where gi and wi are functions of y, b1, . . . , bM , we get

∂gi

∂y
=
∂wi

∂y
· y
bi

+
wi

bi
and

∂gi

∂bj
=
∂wi

∂bj
· y
bi
. (2.23)
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Using the equations in (2.22) and (2.23) we can write the difference of sij − sji, for
i, j = 1, . . . ,M − 1, as

sij − sji =
(
∂wi

∂y
· wj − ∂wj

∂y
· wi
)

y2

bibj
+
(
∂wi

∂bj
· y
bi
− ∂wj

∂bi
· y
bj

)
. (2.24)

With the abbreviations T i =
∑
aikp̃k, S = 1 −

∑
∂fk/∂x̃ · p̃k and f i = f i(x̃), we

can rewrite (2.6) in the following way

wi =
f i + T i

S
, (2.25)

but note that wi depends on x̃ = log y − log bM , log-total expenditure, and p̃j =
log bj − log bM the log-prices for j = 1, . . . ,M − 1. Now we can differentiate (2.25)
w.r.t. total expenditure and the j-th price, and obtain with U =

∑
∂2fk/∂x̃2 · p̃k

∂wi

∂y
=

∂f i

∂x̃ · S + (f i + T i) · U
yS2

and
∂wi

∂bj
=
aijS + (f i + T i) · ∂f

j

∂x̃

bjS2
.

Plugging-in these results and equation (2.25) in (2.24), we get immediately that
sij − sji = 0 if aij = aji.

2.7 Appendix B: Restricted Least Squares for a Symmet-
ric Matrix

Recall that to estimate the symmetric parameters ajk, j, k = 1, . . . , d, (d = M − 1)
we use equation (2.6) and get, with some algebra, for a single individual i

W j
i · (1−

d∑
k=1

βki P̃
k
i )− αji =

d∑
k=1

ajkP̃ ki . (2.26)

Here, the parameters αji = αj(X̃i) are related to the functions f j at the point
X̃i and the parameters βji = βj(X̃i) to its first derivatives. Defining (W )ij :=
W j
i ·(1−

∑d
k=1 β

k
i P̃

k
i )−αji , (P )ik := P̃ ki and (A)kj := akj we can formulate equation

(2.26) using matrix notation:
W = P ·A, (2.27)

where W , P are N × d matrices and A a d × d symmetric matrix. Note that it is
not necessary to start in the model description (2.1) with symmetric parameters ajk.
However, when we start with arbitrary parameters we will end nevertheless in (2.27)
with a symmetric parameter matrix. More specific, we get for (2.26):

W j
i · (1−

d∑
k=1

βki P̃
k
i )− αji = 1/2

d∑
k=1

(ajk + akj)P̃ ki
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and in matrix notation

W =
1
2
P (A+A>).

Obviously, A+A> is symmetric, and this fact would yield an identification problem
for non-symmetric A. In other words, even if symmetry is not required in the
economic modelling process, only symmetry of A makes the estimation problem
identifiable.

Next, to calculate the unknown matrix A in equation (2.27) we should not use the
standard least square method but want directly make use of the symmetry of A.
Denote wij = (W )ij and wj the j–th column ofW , pij = (P )ij , pi the i–th row and
pj the j–th column of the price–matrix P and aj also the j–th row of A. Note that
the symmetric matrix A comprises only (d2 + d)/2 different parameters which are
found for example in the lower triangular part, including the diagonal elements

A =


a1 a2 . . . ad

a2 ad+1 . . . a2d−1

. . . . . . . . . . . .

ad a2d−1 . . . a(d2+d)/2

 =


a11 a12 . . . a1d

a21 a22 . . . a2d

. . . . . . . . . . . .

ad1 ad2 . . . add

 .

Let ap be the one–dimensional array formed by these parameters,

ap = (a1, . . . , a(d2+d)/2),

then we have to find the vector ap that minimises

S :=
d∑
j=1

N∑
i=1

(wij − 〈 pi, aj 〉)2 −→ min
ap

. (2.28)

We obtain by differentiation of (2.28) with respect to all elements of ap the linear
equation system Bap = c which can be solved by standard methods. In detail, we
construct the coefficient matrix B and the constant vector c in the following way.
For the diagonal elements of A we get

∂S

∂all
= −2

N∑
i=1

(wil − 〈 pi, al 〉)pil = 0

for l = 1, . . . , d. This is equivalent to

N∑
i=1

wilpil =
N∑
i=1

〈 pi, al 〉 pil

=
N∑
i=1

d∑
j=1

pijajlpil =
d∑
j=1

N∑
i=1

pijpilajl,
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what gives

〈wl, pl 〉 =
d∑
j=1

〈 pj , pl 〉 ajl. (2.29)

For the off–diagonal elements we obtain

∂S

∂akl
= −2

N∑
i=1

(wil − 〈 pi, al 〉)pik − 2
N∑
i=1

(wik − 〈 pi, ak 〉)pil = 0

for k, l = 1, . . . , d and k > l. This is equivalent to

〈wl, pk 〉+ 〈wk, pl 〉 =
d∑
j=1

〈 pj , pk 〉 ajl +
d∑
j=1

〈 pj , pl 〉 ajk. (2.30)

The t–th entry in c we get now by the left hand side of (2.29), when ap(t) corresponds
to a diagonal element of A, or by the left hand side of (2.30) otherwise. Note that
t = k + (2d − l)(l − 1)/2 for k ≥ l and t = 1, . . . , (d2 + d)/2. The t–th row of B
we obtain by the right hand side of (2.29) or (2.30), where obviously the factors
of the ajk are our searched coefficients. An explicit solution is thus available and
no iteration is necessary for estimating A in the partial linear model case. This
is exactly the reason for both the much smaller variance of the resulting estimates
in practice and the much higher speed of the algorithm for estimating model (2.1)
compared to the varying-coefficients model (2.3).

Example For the simple case d = 3 we get the linear equation system Bap = c
with ap = (a11, a21, a31, a22, a32, a33), the coefficient matrix B



〈 p1, p1 〉 〈 p2, p1 〉 〈 p3, p1 〉 0 0 0

〈 p1, p2 〉 〈 p2, p2 〉+ 〈 p1, p1 〉 〈 p3, p2 〉 〈 p2, p1 〉 〈 p3, p1 〉 0

〈 p1, p3 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p1, p1 〉 0 〈 p2, p1 〉 〈 p3, p1 〉
0 〈 p1, p2 〉 0 〈 p2, p2 〉 〈 p3, p2 〉 0

0 〈 p1, p3 〉 〈 p1, p2 〉 〈 p2, p3 〉 〈 p3, p3 〉+ 〈 p2, p2 〉 〈 p3, p2 〉
0 0 〈 p1, p3 〉 0 〈 p2, p3 〉 〈 p3, p3 〉


and vector c as 

〈w1, p1 〉
〈w1, p2 〉+ 〈w2, p1 〉
〈w1, p3 〉+ 〈w3, p1 〉

〈w2, p2 〉
〈w2, p3 〉+ 〈w3, p2 〉

〈w3, p3 〉


.





Chapter 3

Nonparametric Prediction of Stock
Returns with Generated Bond
Yields

3.1 Introduction and Motivation

For a long time predicting asset returns was a main objective in the empirical finance
literature. It started with simple regressions of independent predictor variables on
stock market returns. Typically, valuation ratios are used that primarily characterize
the stock, like the dividend price ratio, dividend yield, earnings price ratio or the
book-to-market ratio (cf. Wolf (2000)). Other variables that are related to the inter-
est rate, for example treasury-bill rates and long-term bond yield, or macroeconomic
indicators like inflation are often incorporated to improve prediction; see also Guo
and Savickas (2006). For a detailed overview we refer to the examples in Goyal and
Welch (2008), the references in Campbell and Thompson (2008) or Campbell and
Diebold (2009).

The apparent predictability found by many authors was controversially discussed.
As Lettau and Nieuwerburgh (2008) note, correct inference is problematic due to the
high persistence of financial ratios, which have only poor out-of sample forecasting
power that moreover shows significant instability over time. Therefore, the question
of whether empirical models are able to forecast the equity premium more accurately
than the simple historical mean was intensively debated in the financial literature.
For example Goyal and Welch (2008) fail to provide benefits of predictive variables
compared to the historical mean. Recently, Rapach, Strauss, and Zhou (2010) rec-
ommend a combination of individual forecasts, including this way the information
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provided from different variables and reducing forecast volatility.

Several authors report that long-horizon returns can be better predicted than short-
horizon returns, see, for example, Valkanov (2003). Among others, Campbell, Lo,
and MacKinlay (1997) document that the power to forecast stock returns increases
with the horizon. In contrast, Boudoukh, Richardson, and Whitelaw (2008) criticize
this findings as an illusion based on the fact that the classical R2 of the typically
used linear model is roughly proportional to the considered horizon.

A classical approach to valuate the price of a stock is the well-known Gordon growth
or dividend discount model which expresses the dividend price ratio, dt, in terms of
the long-term discount rate, R, and the long-term growth rate of dividends, G, both
hold constant, dt = R − G. Allowing for time-varying discount rates, for example
Campbell and Shiller (1988b) introduce a dividend ratio model, where the price of
a stock today is seen as the discounted present value of future cash flows to the
investor; compare also Campbell and Diebold (2009) or Wolf (2000). A well-known
fact is the high correlation of any relevant discount rate to inflation and interest rate.
Many authors conclude that a decrease in discount rate is related to an increase in
the stock return, and point to the high correlation with an increase in the bond yield.

A direct comparison of stocks and bonds, mostly used by practitioners, makes the so-
called FED model, which relates yields on stocks, as ratios of dividends or earnings
to stock prices, to yields on bonds. Asness (2003) shows the empirical descriptive
power of the model, but notes also that it fails in predicting stock returns. One of his
criticisms is the comparison of real numbers to nominal ones. Actually, most studies
discuss separately the predictability in stock and bond markets. However, Engsted
and Tanggaard (2001) pose the interesting question of whether expected returns on
stocks and bonds are driven by the same information and to what extent they move
together. In their empirical setting, they find that excess stock and bond returns
are positively correlated, but they also note that simple present value models cannot
explain this finding. Already ten years before, Shiller and Beltratti (1992) analyzed
the relation between stock prices and changes in long-term bond yields.

Our article is based on the ideas from present value relations of stocks and bonds
that expected returns are associated with variables related to longer-term aspects
of business conditions, as mentioned in Campbell (1987) or Campbell and Diebold
(2009). Consequently, we include in a fully nonparametric prediction model of excess
stock returns the bond yield of the same year. This way, the bond captures the
perhaps most important part of the stock return, the one related to the change in
long-term interest rate. We do this nonparametrically due to the promising findings
of Nielsen and Sperlich (2003). They improved significantly the prediction power
by allowing for nonlinearities and interactions. Certainly, the use of nonparametric
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methods is not undisputed, see, for example, the discussion in Qi (1999) or Racine
(2001). We use local linear kernel regression to nest the linear model without bias.
For the purpose of bandwidth selection and to measure the quality of prediction,
we use the validated R2 of Nielsen and Sperlich (2003). This allows us to directly
compare the proposed cross-validated model with the cross-validated mean.

An obvious problem is that the current bond yield is unknown. Thus, we have to
predict it in a first step. This raises the question why it is necessary to use a two-
step procedure. One could directly include the variables used for the bond prediction
when forecasting stock returns. The problem is that such a model would suffer from
the curse of dimensionality and complexity in several aspects: the dimension of the
covariates, possible over-fitting and the interpretability. In nonparametrics it is well
known that the import of structure is an adequate way to circumvent these problems.
This Chapter is based on the structure that is inherent in the economic process that
generates the data, resulting in the inclusion of bond yields when predicting stock
returns. In other words, one may think of the inclusion of predicted bond yields as
a kind of dimension (or say, complexity) reduction. Additionally, Park et al. (1997)
showed that an appropriate transformation of the predictors can significantly improve
nonparametric prediction. Here, we use the additional knowledge about structure
to improve the prediction of stock returns. To our knowledge we are the first who
include nonparametrically generated regressors for nonparametric prediction of time
series data. Therefore we also have to develop the theoretical justification for the use
of constructed variables in nonparametric regression when the data are dependent.

For the empirical part of our work we use the annual Danish stock market data
from Lund and Engsted (1996). This has been done for reasons of comparability
and reproducibility as these were also the data used in the above mentioned papers
of Engsted and Tanggaard (2001) or Nielsen and Sperlich (2003). It will be shown
that the inclusion of predicted bond yields improves greatly the prediction quality of
stock returns in terms of the validated R2. With our best prediction model for one-
year stock returns we not only beat the simple historical mean but we also obtain
an impressive validated R2 of 28.3 compared to 5.9 from the best model without
constructed bonds. We also include in our empirical analysis the prediction of the
ratio of stock returns and dividend yields getting similar results.

Section 3.2 describes the prediction framework: the measure used for quantifying
the quality of prediction and the model in mathematical terms, Section 3.3 the
appertaining theoretical proof. Section 3.4 presents our findings from the empirical
study, and Section 3.5 concludes. Some of the technical parts of the proof are deferred
to the appendix in Section 3.6.
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3.2 The Prediction Framework

The most used measures of prediction quality in the financial and actuarial literature
are traditional in-sample approaches like the classic R2, the adjusted R2, goodness-of-
fit or testing methods. In various articles the authors construct tests to check whether
the apparent prediction power is only due to high persistency. In our study, we use
the validated R2 – short R2

V – which was introduced as a measure for prediction
power. It measures how well the model predicts in the future compared to the
sample mean. The classical R2 is often used in empirical finance because it is easy
to calculate and has a straight forward interpretation. But it should be known that
it can hardly be used for prediction nor for comparison issues as it always prefers
here the most complex model. An other problem appears when the estimator is not
consistent and consequently the R2, as shown by Valkanov (2003). For comparison
often the adjusted R2 is applied, which penalizes complexity via a degree of freedom
adjustment. This gets meaningless when methods are applied for which it is not
clear what degrees of freedom are. This is unfortunately the case in a nonparametric
setting, see Sperlich, Linton, and Härdle (1999).

In prediction, we are not interested in how well the considered model explains the
variation inside the sample – the interpretation of the R2 or R2

adj – but we would like
to know how well the estimate works outside the considered sample. The idea of the
R2
V is to replace total variation and not explained variation by their cross-validated

analogues. Note that cross-validation is a quite common in the nonparametric time
series context, see Gyöfri et al. (1990). More formally, consider the two models

Yt = µ+ εt and Yt = g(Xt) + ζt,

where µ is estimated by the sample mean Ȳ and the unknown function g by local
linear kernel regression. We suppress a subscription for the chosen smoothing pa-
rameter h, since we always apply the bandwidth h that maximizes the R2

V . It is
defined as

R2
V = 1−

∑
t{Yt − ĝ−t}2∑
t{Yt − Ȳ−t}2

. (3.1)

Note that in (3.1) cross-validated values ĝ−t and Ȳ−t are used, i. e. the function g

and the mean Ȳ are predicted at t without the information contained in this point in
time. In fact, it is a kind of out-of-sample measure. We apply the leave-(2s+1)-out
version of cross-validation, with s depending on the context. For time series this
means that when one wants to predict stock returns over a four year horizon, it is
important to exclude the t-th observation and the three years before and after year
t, i. e. s = 3. This is the modified cross-validation for mixing data along Chu and
Marron (1991). Following Gyöfri et al. (1990), we use it also to find the optimal
(prediction) bandwidth.
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Notice some basic properties of the R2
V : it is independent of the amount of parame-

ters and takes it values inside (−∞, 1]. As it measures how well a given model and
estimation principle predicts compared to the cross-validated mean, a negative R2

V

indicates that one predicts worse than the cross-validated mean. In practical predic-
tion it is well known, and confirmed in our empirical study, that it is hard to find
models with important explanatory variables which beat even this cross-validated
mean. Nielsen and Sperlich (2003) mention that complexity is one of the worst en-
emies of a good prediction. Therefore, the R2

V punishes overfitting (pretending a
functional relationship that is not really there) resulting in R2

V < 0.

We analyze excess stock returns defined as

St = log{(Pt +Dt)/Pt−1} − rt−1,

where Dt denotes the (nominal) dividends paid during year t, Pt the (nominal) stock
price at the end of year t, and rt the short-term interest rate, which is

rt = log(1 +Rt/100)

using the discount rate Rt. For prediction, we consider Yt =
∑T−1

i=0 St+i, the excess
stock return at time t over the next T years.

Based on the motivations from the introduction, we include the same years bond
yield as a single regressor or together with further lagged covariates in the model
equation, i. e. we consider the model

Yt = g(b̂t, vt−1) + εt, (3.2)

with the unknown function g, the constructed bond yield b̂t, a vector of further
regressors vt−1 and error terms εt, i. e. mean zero variables given the past. As men-
tioned above, the problem which occurs is that the current bond yield is unknown.
Therefore, we must predict them in a prior step, i. e. we construct the bond yield
with the fully nonparametric model

bt = p(wt−1) + ζt, (3.3)

where p is an unknown function, wt−1 is a vector of explanatory variables as for
example, lagged interest rates or bond yields, and ζt an error. Both, model (3.2)
and (3.3), are estimated with a local linear kernel smoother using cross-validation.
For the choice of the bandwidth, we basically have two possibilities. Either we treat
each model separately, determining first the best (in terms of R2

V ) bond model and
using this in the second step, or we choose the bandwidth in both steps according to
the best R2

V for the stock return prediction.
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As discussed, not only economic intuition motivates the inclusion of the constructed
bond yields but also statistical arguments. In Theorem 3.3.7 we will develop the
mathematical justification for the use of constructed variables in the case of depen-
dent data. In other words, when we nonparametrically estimate stock returns using a
generated regressor, we asymptotically obtain the same function as had we observed
the real bond yield. Basically, the bias of the final estimate is enlarged by an additive
factor which is proportional to the bias of the predicted variable from the first step.
A similar relationship holds for the variance which is increased by an additive term
proportional to the variance of the constructed regressor. This relates the prediction
of bonds to the prediction of stocks. For simplification ignore for a moment vt−1

in (3.2), and call the function containing the actual bonds g̃. A closer look to the
prediction error εt gives

Yt − g(b̂t) = Yt − g̃(bt) + g̃(bt)− g(b̂t)

' ε̃t + g′(b̂t)(bt − b̂t). (3.4)

The gain in our two-step procedure comes from the fact that the second term in (3.4)
is quite predictable, as we confirm in the empirical part 3.4.2, especially documented
in Table 3.2. An other idea would be the following: first, estimate g with the available
bond data bt−1, and second, evaluate ĝ at the constructed b̂t. Since, however, this
procedure did not improve the stock forecasts, we skip it from further considerations.

On could directly use the variables in the vector wt−1 as regressors in model (3.2).
But the model would suffer from complexity and dimensionality in several aspects:
the dimension of the covariates as well as their interplay. In the nonparametric
literature, typically two strategies are proposed to circumvent this; either semipara-
metric modelling or additivity, both to import structure. Nielsen and Sperlich (2003)
showed that additive models fail to improve the prediction of stock returns due to
a non-ignorable interaction between the predictors. We believe that the imposition
of additional structure, which is inherent in the underlying financial process, yields
better results. We think of the same years bond yield as an important factor which
captures some of the relevant features for the expected stock returns. In other words,
the inclusion of bond yields, when predicting stock returns nonparametrically, can
be seen as a kind of complexity and dimension reduction due to the import of more
structure.

To see if it is possible to further improve the predictive power in our setting, we will
also analyze the model (3.2) with a different dependent variable. We consider the
ratio between current stock returns and, first, dividend yield, i. e. Y ∗t = Yt/dt, second,
long-term interest rate, Lt, Y ∗∗t = Yt/Lt, and third, risk-free rate, rt, Y ∗∗∗t = Yt/rt;
see Section 3.4.
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3.3 Mathematical Justification

We have to prove that asymptotically the function estimate which makes use of
constructed variables will coincide with the real one, as it is the case for non predicted
but observed covariates. For the prediction in the time series context, we follow the
steps from Ferraty, Núñez-Antón, and Vieu (2001) and combine them with Sperlich
(2009). More technical parts of the proofs can be found in Section 3.6.

Let us consider a sample of real random variables {(Xi, Yi), i = 1, . . . , n} which are
not necessarily independent. We want to estimate the unknown function

m(x) = E(Y |X = x), x ∈ R,

that should always exist. For a given time series {(Zi), i ∈ N} a k-step ahead forecast
is included in a natural way in the given context using Yi = Zi+k and Xi = Zi. We
concentrate only on the case of an auto-regression function of order one. Since we
face constructed realisations for X, we assume a predictor5 with an additive bias and
a stochastic error:

x̂ = x+ b(x) + uxσu(x), (3.5)

where the random variables ux are independent, with conditional mean zero and con-
ditional variance one. This is rather general as it holds for almost all nonparametric
predictors. For technical reasons, we further assume finite higher moments for ux.
Then, for example the Nadaraya-Watson estimator can be defined with

f̂(x) =
1
nh

n∑
i=1

K

(
X̂i − x
h

)
and q̂(x) =

1
nh

n∑
i=1

YiK

(
X̂i − x
h

)
as

m̂NW (x) =
q̂(x)

f̂(x)
, (3.6)

where K denotes some kernel function with bandwidth h.

To measure the strength of dependence in the time series, we limit us to the strong-
or α-mixing6 defined in Doukhan (1994) or Fan and Yao (2003) as

lim
n→∞

α(n) = 0,

for the mixing coefficient

α(n) = sup
A∈F0

−∞,B∈F∞n
|P (A)P (B)− P (AB)|,

5We do not specify a particular one but we will need some assumptions on it. The used sample
of size N , for instance, consists of some instruments Z ∈ Rδ. In the following, we have N=n, since
we use the same series in both the prediction and final step.

6The weakest of the usually defined mixing conditions.
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where F ji is the σ-algebra generated by {Xk, i ≤ k ≤ j}. We further assume, that
the sequence {(Xi, Yi), i = 1, . . . , n} is algebraic α-mixing, i. e. that for some real
constants a, c > 0 we have α(n) ≤ cn−a.

To calculate the asymptotic properties in the context of strong mixing, we make use
of an exponential inequality of the Fuk-Nagaev type (cf. Rio (2000)).

Lemma 3.3.1 For an algebraic α-mixing sequence of random variables {(Zi), i ∈
N}, with s2n =

∑n
i=1

∑n
j=1 |cov(Zi, Zj)| and ||Zi||∞ < ∞ for all i, holds for some

ε > 0 and r > 1

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

ε2

rs2n

)− r
2

+ 2ncr−1

(
2r
ε

)a+1

.

Furthermore, we need the Billingsley inequality from Bosq (1998) to bound from
above the covariance of two elements of a strong-mixing time series.

Lemma 3.3.2 For an α-mixing sequence of random variables {(Zi), i ∈ N}, with
||Zi||∞ <∞ for all i 6= j, holds

|cov(Zi, Zj)| ≤ 4||Zi||∞||Zj ||∞α(|i− j|).

To prove the asymptotic behavior of a kernel regression estimator (3.6), we make
some common assumptions. As noted above, we analyse an algebraic α-mixing se-
quence of real random variables {(Xi, Yi), i = 1, . . . , n}. We suppose that for all
i 6= j the joint density fij for the pair (Xi, Xj) exists and that |Y | < C <∞ almost
surely.

Also for the unobservables Xi, we assume a density function fX which is bounded
and has a continuous second derivative. At the fix x ∈ R we suppose fX(x) > 0.

Since we use kernel-based estimators, let the kernel K be integrable, bounded, with
compact support and continuous second derivative. It fulfills

∫
K(s)ds = 1 and∫

sK(s)ds =
∫
K ′(s)ds =

∫
K ′′(s)ds = 0.

For both, the deterministic and the stochastic part of the predicted realisations x̂ in
(3.5), we assume that b(x) and b′(x) are of order O(h2

0) uniformly, and σ2
u(x) of order

O((nhδ0)−1). Here, h0 is a smoothing parameter tending to zero when the sample
size n goes to infinity and δ refers to the dimension of the used instruments in the
prediction step. Let further be b(·) and σu(·) Lipschitz-continuous.

To simplify our calculations, we further suppose that h2
0h
−1 and (nhδ0h)−1 go to zero,

and use the usual assumption that nh and nhδ0 go to infinity as n→∞.
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Before we state the main result of the section, we collect some important facts. First,
we define the following variables for l ∈ {0, 1}

Zi = Y l
iK

(
X̂i − x
h

)
− E

[
Y l
iK

(
X̂i − x
h

)]
(3.7)

and analyse the asymptotic behavior of

s2∗n =
n∑
i=1

∑
j 6=i
|cov(Zi, Zj)|.

Proposition 3.3.3 Under the above assumptions,

s2∗n = o(nh) +O(n2α(∆̃)),

where ∆̃ has the same order like the slowest from{
1

h log n
,
nhδ0h

log n
,
(nhδ0h)2h

log n

}
.

Note, when (nhδ0)−1 = O(h2) the above proposition reduces to s2∗n = o(nh) +
O(n2α((h log n)−1)) as in the case without predicted realisations.

Proposition 3.3.4 Under the given assumptions and if an ε > 0 exists such that

∆a−1 = O(n−1−ε), (3.8)

with ∆ from {h, (nhδ0h)−1, ((nhδ0)2h3)−1}, it holds that

s2∗n = o(n∆).

Proposition 3.3.5 Under the stated assumptions, and with ∆ as in Proposition
3.3.4 we have

var(Z1) = O(∆).

A direct conclusion of these Propositions is

s2n =
n∑
i=1

n∑
j=1

|cov(Zi, Zj)| = n · var(Z1) + s2∗n = O(n∆), (3.9)

with ∆ from Proposition 3.3.4. Before we can directly specify the result about the
convergence of the estimator (3.6) we need a further proposition.



40 Stock Returns with Generated Bond Yields

Proposition 3.3.6 Under the above assumptions, and with ∆ from Proposition
3.3.4 that verifies the condition

c1n
3−a
a+1

+θ ≤ ∆ ≤ c2n
1

1−a−θ, (3.10)

with existing c1, c2, θ > 0, holds for ν and ε > 0 with ψ = g or ψ = f

P

(∣∣∣Eψ̂(x)− ψ̂(x)
∣∣∣ > ε

√
log n
nh2

∆

)
= O(n−1−ν). (3.11)

In the following, we can state without problems the main theorem of this section.
For continuous (around x) functionsm and f we find the quasi complete convergence
(cf. Serfling (1980)) of the Nadaraya-Watson estimator with a constructed regressor.

Theorem 3.3.7 Under the given assumptions and (3.10),

|m̂NW (x)−m(x)| −→ 0

quasi completely.

The extension to the local linear estimator is almost straightforward. With

sj(x) =
n∑
i=1

K

(
X̂i − x
h

)
(X̂i − x)j and tj(x) =

n∑
i=1

K

(
X̂i − x
h

)
(X̂i − x)jYi,

for j = 0, 1, 2, we can define

m̂LL(x) =
t0(x)s2(x)− t1(x)s1(x)
s0(x)s2(x)− s21(x)

.

Basic algebra leads to

m̂LL(x) =

n∑
i=1

C
(
X̂i−x
h

)
Yi

n∑
i=1

C
(
X̂i−x
h

) , (3.12)

with C
(
X̂i−x
h

)
=
∑
j 6=i

K
(
X̂i−x
h

)
(X̂j − X̂i)K

(
X̂j−x
h

)
(X̂j − x) as a discretization of

C(u) =
∫
K(u − v)vK(u)udu7. Since equation (3.12) is of the same form like (3.6)

and the kernel C fulfills the same conditions as K, the application of Theorem 3.3.7
leads to

7Note that C is a bimodal kernel. Since it puts more weight to points close to x, except if they
are too close to x, than to points far from x, it would be a natural and desirable choice in the case
of strong mixing data, as noted in Kim et al. (2009).



3.4 Empirical Evidence 41

Corollary 3.3.8 Under the assumptions of Theorem 3.3.7, quasi completely

|m̂LL(x)−m(x)| −→ 0.

For mean square convergence, asymptotic normality and higher order polynomials,
one could directly extend the work of Masry and Fan (1997) to the case of predicted
regressors.

3.4 Empirical Evidence

Note that we interpret our method presented so far as a two stage model selection
approach. Coming from economic motivation that the bond of the same year cap-
tures an important part of the stock return we search in the first step the optimal
prediction model for the bond. Afterwards, as we have seen in Theorem 3.3.7, we
can consistently predict stock returns using the nonparametrically constructed bond
yields.

3.4.1 Data Description

We consider the annual Danish stock and bond market data for the period 1923
– 1996 from Lund and Engsted (1996). In the appendix of their work, a detailed
description of the data can be found. We use a stock index based on a value weighted
portfolio of individual stocks chosen to obtain maximum coverage of the market index
of the Copenhagen Stock Exchange (CSE). Notice that the CSE was open during the
second world war. When constructing the data, corrections were made for stock splits
and new equity issues below market prices. Table 3.1 presents summary statistics
of the available variables. In the following, we use the dividend price ratio, d, the
stock return, S, the long-term interest rate, L, the short-term interest rate, r, and
the bond yields, b, as explanatory variables.

3.4.2 Bond Prediction

We start with model (3.3) and try to find the best bond prediction model – no
stocks yet. As we can see in Table 3.1, the bond data are less volatile than the
stock market data. Furthermore, Table 3.2 indicates that we can predict the current
bond yield quite well since the table shows large validated R2

V values of some of
the analyzed models. This is not surprising because it agrees with the in Section 3.1
established present value theory that the bond is basically driven by the interest rate
and indeed all advisable models include the interest rate as an explanatory variable.
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Table 3.1: Danish stock and bond market data (1923-1996).

Min Max Mean Sd

CSE Stock Price Index 64.78 3177.88 511.07 662.99
Dividend Accruing to Index 2.99 44.76 15.11 11.81
Stock Returns -42.44 72.10 2.10 17.19
Bond Yield -13.70 60.30 8.61 12.07
Dividend Yield 0.01 0.08 0.04 0.01
Long-term Interest Rate 3.80 19.45 8.24 4.29
Short-term Interest Rate 2.50 17.86 6.96 3.46

Note that in Table 3.2 also results of a simple linear regression are available. There
are no large differences to the results from the nonparametric model, but in the
most cases the R2

V values of the latter approach are larger than that one from the
parametric counterpart. The fact that also this simple parametric approach gives a
good prediction of bonds confirms our strategy. In fact, we are in the position to
forecast the current bond yield in an adequate way and can include this produced
information in the more interesting second step – the stock prediction.

Table 3.2: R2
V -values for bond model (3.3).

wt−1 S L r d, L d, r S, L

par. 11.6 24.0 22.3 21.9 19.4 31.9
nonpar. 16.3 23.9 26.8 23.2 19.3 31.6

wt−1 S, r L, b r, b S, L, b S, r, b L, r, b

par. 33.1 29.2 35.2 31.9 37.4 30.9
nonpar. 33.0 29.2 35.5 31.7 37.4 31.8

Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate,
L long-term interest rate, b bond yield.

3.4.3 Stock Prediction

For the presentation of our results we concentrate in the following on a forecast
horizon of one year, i. e. Yt = St. For larger horizons we got analog results but
without further insight. First, we estimate model (3.2) without the constructed
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bond variable again with a simple parametric regression and a fully nonparametric
kernel based method. The results are summarized in the first two lines of Table
3.3 and show that all parametric models produce negative validated R2

V values. It
means that with a simple regression approach we cannot better forecast one-year
stock returns than the simple mean. A more sophisticated technique is needed. In
fact, our so far best nonparametric model8 uses lagged bond yields, bt−1, and gives a
R2
V of 5.9. Second, we follow our in Section 3.2 proposed procedure and generate the

Table 3.3: R2
V -values for stock model (3.2).

wt−1 d S L r b d, S d, L d, r d, b

nonpar -1.4 1.8 -4.2 -3.6 5.9 5.5 -6.0 -7.4 3.1
par -1.3 -1.8 -4.2 -5.7 -4.0 -3.5 -5.8 -7.2 -6.2
b̂t 8.3 1.3 -3.5 1.4 10.6 -1.5 -3.8 2.9 10.1
b̂t, vt−1 13.9 5.1 9.1 16.3 8.9 -1.6 28.3 21.6 3.8

wt−1 S,L S, r S, b L, r L, b r, b d, S, L d, S, r d, S, b

nonpar -3.5 -7.1 4.6 -9.4 0.8 0.5 -2.9 -6.7 3.3
par -6.8 -7.9 -6.6 -9.3 -7.5 -8.6 -8.6 -9.8 -8.8
b̂t -1.1 -3.1 3.9 -0.6 -0.9 -3.6 1.3 -3.5 8.9
b̂t, vt−1 1.6 13.5 -1.3 15.8 15.6 20.3 10.8 14.2 0.8

wt−1 d, L, r d, L, b d, r, b S, L, r S, L, b L, r, b S, r, b

nonpar -11.2 -3.8 1.0 -11.0 0.3 -4.4 -1.6
par -10.9 -9.9 -11.2 -12.5 -11.1 -13.0 -11.9
b̂t -2.8 -1.0 -3.7 -2.1 1.8 -3.6 1.6
b̂t, vt−1 17.5 16.6 20.4 10.0 1.6 15.9 5.1

In each panel: nonparametric and parametric stock prediction model with wt−1 as
covariates but without the constructed bond b̂t (first and second line), nonparamet-
ric model only with b̂t as regressor and bandwidth chosen in the final step (third
line), nonparametric model with b̂t and the same variables wt−1 as in the bond pre-
diction step; bandwidth selection in the final step (fourth line); bond b̂t constructed
with model (3.3) and the variables wt−1. Lagged explanatory variables: S stock
return, d dividend by price, r risk-free rate, L long-term interest rate, b bond yield.

8Nielsen and Sperlich (2003) report in an analog setting a R2
V value of 5.5 for a fully non-

parametric two-dimensional model with dividend-price ratio, dt−1, and lagged excess stock returns,
St−1, as explanatory variables, but do not use bond yields in their analysis.
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current bond yield with model (3.3) but include only this as regressor in the final step
(3.2). Since we use nonparametric methods in both parts, we have two possibilities
to choose the appropriate bandwidth. On the one hand we can separately treat both
models, i. e. we use the best bond model and include the so constructed variable into
the stock prediction. The best model following this procedure9 uses lagged bond
yields, bt−1, to construct the current bond in the first step and gives a R2

V value of
9.0. On the other hand we could also choose the bond model in the final step, not
including the best bond prediction model but that one that yields the largest R2

V

value when we predict stock returns. The predictive power of this method is again
greater as can be seen from line three10 of Table 3.3. Our so far best model again
uses lagged bond yields, bt−1, in the first step and has a R2

V value of 10.6.

Third, we construct the current bond as before, but we use for stock return pre-
diction this regressor in model (3.2) together with any combination of lagged vari-
ables from the predictor set {d, S, L, r, b}. The two highest R2

V were achieved by
ĝ(b̂t, dt−1, St−1, Lt−1) where R2

V = 30.3 for b̂t = p̂(dt−1) and R2
V = 28.9 for b̂t =

p̂(dt−1, Lt−1). Note that for an increasing set of regressor variables the correspond-
ing multidimensional bandwidth grid, on which we looked for the best predicting
bandwidth combination, had to be reduced for numerical reasons. Consequently,
lower dimensional models have the tendency to be slightly favored in our study. The
full set of results for the 25 times 25 combinations of {d, S, L, r, b} is not shown here
for the sake of presentation, but available in Tables 3.6 to 3.8 in the appendix 3.7.
An interest finding is that for each variable set the diagonal of all results, given in
the last line of Table 3.3, seems to be among the best prediction models. So here we
have wt−1 = vt−1 for models (3.3) and (3.2). We see now clearly that our proposal
greatly improves the predictive power for stock returns. For the best model in Ta-
ble 3.3 – we construct the bond and predict stock returns with the dividend yield,
dt−1, and long-term interest rate, Lt−1 – we find an impressive R2

V value of 28.3,
an increase of the prediction quality by a factor of almost 5 compared to the model
without constructed bonds. This finding again indicates that the bond captures and
provides the most important part of the stock return which is related to the change
in long term interest rate.

The last part of our empirical study concentrates on the change of the dependent
variable. Up to now, we used the excess stock return but for the following we divide
this value by the dividend yield, the short-term or the long-term interest rate, i. e.

9Since the bandwidth choice in the final step yields better results, the R2
V values for this

approach are deferred to the appendix (see Table 3.5).
10Note that some R2

V of this method are smaller compared to the R2
V of the sequential procedure.

The reason is that the computational burden growths exponentially. Hence, we use only a grid of
30×30 bandwidths compared to 100 different bandwidths in the sequential procedure.
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we use Y ∗t = Yt/dt, Y ∗∗t = Yt/Lt, and Y ∗∗∗t = Yt/rt. Table 3.4 summarizes our
findings for Y ∗. The results for Y ∗∗ and Y ∗∗∗ are deferred in Tables 3.9 and 3.10
of the appendix in 3.7 because the same models appear but with somewhat lower
R2
V -values.

Table 3.4: R2
V -values for model (3.2) with Y ∗t = Yt/dt as dependent variable.

wt−1 d, L d, r L, r L, b r, b d, L, r d, r, b L, r, b

par. -8.1 -10.4 -11.2 -4.5 -6.8 -15.0 -11.2 -12.7
nonpar. -8.3 -10.5 -11.3 1.3 11.4 -15.2 2.4 12.3
final 39.9 35.4 41.4 31.3 35.8 39.5 42.6 43.5

Parametric and nonparametric prediction model for Y ∗ with wt−1 as covariate but
without the constructed bond b̂t (first and second line), nonparametric model with
b̂t and the same variables wt−1 as in the bond prediction step; bandwidth selection
in the final step (third line); bond b̂t constructed with model (3.3) and the variables
wt−1. Lagged explanatory variables: d dividend by price, r risk-free rate, L long-
term interest rate, b bond yield.

The first line of Table 3.4 refers again to the parametric version of model (3.2)
and the second line to the fully nonparametric method, both without constructed
bonds. Almost all of the parametric models have negative R2

V values and also only
a small number of nonparametric models beat the simple mean. In contrast, when
we include the constructed bond in the nonparametric prediction, a large increase
of the validated R2

V can be observed. For example, the model which uses long- and
short-term interest rate, and lagged bond yields for both the bond generation and
following stock prediction, has a R2

V value (43.5%) that is over three and a half times
larger than the value of the best model without constructed bond (12.3%). We see
again that the same years bond yield includes the change in interest rate in the stock
estimation procedure what results in the strongest improvements.

3.5 Concluding Remarks and Outlook

Motivated by economic theory and statistical arguments, we include the same years
bond yield in the fully nonparametric prediction approach for excess stock returns.
Since the current bond yield is unknown, we propose to construct it in a prior step
using again nonparametric techniques. The bandwidths should be chosen in such a
way that they maximize the R2

V of the final step. The empirical study demonstrates
that this two-step approach can enormously improve the stock return prediction.
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Moreover, we prove the consistency of our method and derive the asymptotic behavior
of our final predictor. We illustrate the improvement due to our method using annual
Danish stock and bond market data which were studied in detail in former articles
by different authors. The results confirm our motivation of including the same years
bond yield, that it captures the most important part of the stock return, namely the
part related to the change in long-term interest rate. This actually holds not only
for stock returns but also for transformed variables, as for example returns divided
by dividend yields.

The statistical key points are the following. It is clear that we face a regression model
that exhibits high complexity and dimensionality. An obvious remedy would be the
imposition of structure. Since it has been shown that separability is inappropriate
because of unknown interactions, we make use of financial theory to exploit the in-
herent structure of stock returns. Alternatively, one could interpret the first stage
as an optimal nonparametric transformation that maps, for example, the long-term
interest rate to the current bond yield, Lt−1 → b̂t. The subsequent nonparametric
smoother of the transformed variable is than characterized by less bias. Here, we
present a practical example in the spirit of the somewhat theoretical method pro-
posed by Park et al. (1997) which improves nonparametric regression with simple
transformation techniques. Note the difference of our approach to their work, namely
that we use an additional variable for the transformation whereas Park et al. (1997)
estimate on the original scale.

3.6 Appendix A: Proofs

Proof of Proposition 3.3.3. Since the variables Zi in (3.7) are centered, we calculate
for i 6= j

|EZiZj | =
∣∣∣EY l

i Y
l
jK
(X̂i − x

h

)
K
(X̂j − x

h

)
− EY l

iK
(X̂i − x

h

)
EY l

jK
(X̂j − x

h

)∣∣∣. (3.13)

First, we analyse the second term in the last equation and use the assumption that
all Yi are bounded.

EY l
iK
(X̂i − x

h

)
≤ C

∫ ∫
K
(u− x+ b(u) + vσ(u)

h

)
f(u, v)dudv.

A simple Taylor-expansion of the kernel leads to

C

∫ ∫ {
K
(u− x

h

)
+K ′

(u− x
h

)(b(u) + vσ(u)
h

)
+

K ′′
(u− x

h
+ κ

b(u) + vσ(u)
h

)(b(u) + vσ(u))2

2h2

}
f(u, v)dudv,
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where κ ∈ (0, 1). With the common substitution s = (u− x)h−1 we get

EY l
iK
(X̂i − x

h

)
= O(h+ (nhδ0h)−1).

Analog steps lead to

E
[
Y l
i Y

l
jK
(X̂i − x

h

)
K
(X̂j − x

h

)]
= O(h2 + (nhδ0)−1 + (nhδ0h)−2),

and thus the covariance |cov(Zi, Zj)| for i 6= j is of the same rate.

On the other hand, we can directly make use of Lemma 3.3.2 because all Yi and K
are bounded so that ||Zi||∞ <∞. It follows

|cov(Zi, Zj)| ≤ Cα(|i− j|).

The idea is now to combine both results. When the indices of the two variables Zi
and Zj are close11 to each other we use the first result, and when they are far from
each other the second one. To control this, we introduce a sequence of integers an
and obtain

s2∗n =
n∑
i=1

∑
j 6=i
|cov(Zi, Zj)|

≤ C
[∑ ∑

0<|i−j|≤an

{h2 + (nhδ0)−1 + (nhδ0h)−2}+
∑ ∑

|i−j|>an

α(|i− j|)
]
.

Since i 6= j, the largest possible term for an is 0 < |i − j| ≤ an ∼= n − 1 and the
smallest |i − j| > an ∼= 1. Furthermore, the maximum number of elements in s2∗n
is n2 − n, and we obtain for ∆ that it is of the same order like the slowest term in
O(h2 + (nhδ0)−1 + (nhδ0h)−2)∑ ∑

0<|i−j|≤an
∆

∆nan
≤ n2 − n
n(n− 1)

⇐⇒
∑ ∑

0<|i−j|≤an

∆ = O(∆nan)

and∑ ∑
|i−j|>an

α(|i− j|)

n2α(an)
≤ n2 − n

n2
⇐⇒

∑ ∑
|i−j|>an

α(|i− j|) = O(n2α(an)).

This means that

s2∗n = O({h2 + (nhδ0)−1 + (nhδ0h)−2}nan + n2α(an)).

Choosing an from { 1
h logn ,

nhδ0h
logn ,

(nhδ0)2h3

logn } proves the Proposition. �

11Since we use time series data, this means that the two events are close in time.
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Proof of Proposition 3.3.4. Using the algebraic mixing condition and Proposition
3.3.3

s2∗n = o(nh) +O(n2∆̃−a),

with ∆̃ from {
1

h log n
,
nhδ0h

log n
,
(nhδ0h)2h

log n

}
.

Using the assumption (3.8) and noting that (logn)a

nε → 0 for n→∞ closes the proof.
�

Proof of Proposition 3.3.5. We use again that Y1 is bounded so that remains to anal-
yse

E
[
K
(X̂1 − x

h

)]2
=
∫ ∫

K
(u− x+ b(u) + vσ(u)

h

)2
f(u, v)dudv.

With a Taylor-expansion and analog steps like in the proof of Proposition 3.3.3 we
get

=
∫ ∫ {

K
(u− x

h

)
+K ′

(u− x
h

)(b(u) + vσ(u)
h

)
+
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(u− x

h
+ κ

b(u) + vσ(u)
h

)(b(u) + vσ(u))2

2h2

}2
f(u, v)dudv,

where κ ∈ (0, 1), and find that

E
[
K
(X̂1 − x

h

)]2
= O(h+ (nhδ0h)−1 + (nhδ0)2h3)−1)

what proves the Proposition. �

Proof of Proposition 3.3.6. Using l = 0 for ψ = f and l = 1 for ψ = q, respectively,
we directly get with (3.7)

|Eψ̂(x)− ψ̂(x)| =

∣∣∣∣∣ E
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Therefore, applying Lemma 3.3.1 we obtain

P
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)
= P
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Since we have seen in (3.9) that s2n = O(n∆), with ∆ from Proposition 3.3.4, with

δ = ε
√

logn
nh2 ∆ we get

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n
nh2

∆
)

≤ 4
(

1 +
ε2 log n

16r

)− r
2

+ 2ncr−1

(
8r
ε

)a+1

(n∆ log n)−
a+1
2 . (3.14)

Now, we can choose r > 1 such that log n = o(r), and use the limit definition

exp(x) = lim
z→∞

(
1 +

x

z

)z
,

with z = −r/2. For the first term of the right hand side of (3.14), we obtain for
z →∞ (

1 +
ε2 log n

16r

)− r
2

=
(

1− ε2 log n
32z

)z
−→ exp

(
−ε

2 log n
32

)
= n−

ε2

32 .

Noting that C(log n)−(a+1)/2 ≤ C for n > 2 and a constant C, (3.14) can be expressed
as

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n
nh2

∆
)

≤ Cn−
ε2

32 + Cε−(a+1)n1−a+1
2 ra∆−

a+1
2 .

With r = nb for b > 0, i. e. log n = o(r), and the left hand side of the assumption
(3.10),

n1+ab−a+1
2 ∆−

a+1
2 ≤ n1+ab−a+1

2
− 3−a

2
−θ a+1

2 = n−1−θ a+1
2

+ab = n−1−ν .

Thus, we obtain for a sufficiently small b that

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n
nh2

∆
)
≤ Cn−

ε2

32 + Cε−(a+1)n−1−ν .

Finally, for a sufficiently large ε, we get that exist ν, ε > 0 such that

P
(
|Eψ̂(x)− ψ̂(x)| > ε

√
log n
nh2

∆
)
≤ Cn−1−ν ,

what proves the assertion. �

Proof of Theorem 3.3.7. From Proposition 3.3.6 follows directly

Eq̂(x)− q̂(x) −→ 0, and Ef̂(x)− f̂(x) −→ 0, (3.15)

both quasi completely. With the first part of the proof of Proposition 3.3.3 we
obtain12

Ef̂(x) =
1
h
EK

(
X̂ − x
h

)
= f(x) +Bf (x) + o(h2

0 + h),

12A similar result can be found in Theorem 2.1 (i) in Sperlich (2009).
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with Bf (x) = h2/2f ′′(x)µ2(K) + {b(x)f ′(x) + b′(x)f(x)}µ1(K ′), and thus

Ef̂(x)− f(x) −→ 0. (3.16)

The analog can be shown for Eq̂(x). With

Eq̂(x) =
1
h
EY K

(
X̂ − x
h

)
,

and taking the conditional expectation for X = x, we get

Eq̂(x) =
1
h

∫ ∫
m(u)K

(
u− x+ b(u) + vσ(u)

h

)
f(u, v)dudv.

Repeating the same steps as in the first part of the proof of Proposition 3.3.3, using
q = m · f as well as that the function q is continuous over the compact support of
the kernel K, i. e. that q(x+ hs) −→ q(x) uniformly in s, we obtain

Eq̂(x)− q(x) −→ 0. (3.17)

Furthermore, from (3.16) and (3.11) follows the quasi complete convergence of f̂(x)
to f(x), i. e. for all ε > 0, it holds that

∞∑
n=1

P (|f̂(x)− f(x)| > ε) <∞.

Since f(x) > 0, we can define δ = ε = f(x)/2 and get for δ > 0

∞∑
n=1

P (f̂(x) ≤ δ) <∞. (3.18)

Note, that with (3.6) and q = f ·m we can state

m̂NW (x)−m(x) =
q̂(x)− q(x)

f̂(x)
+ (f(x)− f̂(x))

m(x)

f̂(x)
, (3.19)

and thus with (3.15) – (3.19) follows the assertion. �
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3.7 Appendix B: Tables of Additional Results

Table 3.5: R2
V -values for stock model (3.2) using the constructed bond; bandwidths

chosen separately in each step.

wt−1 d S L r b d, S d, L d, r d, b

b̂t,sep 2.2 0.1 -4.2 -10.7 9.0 -3.4 -5.2 -4.3 6.5
b̂t,sep, vt−1 0.4 2.3 9.7 9.6 4.1 -2.0 13.0 19.7 3.0

wt−1 S,L S, r S, b L, r L, b r, b d, S, L d, S, r d, S, b

b̂t,sep -3.7 -4.0 6.4 -4.1 -2.4 -3.9 -0.2 -3.7 8.6
b̂t,sep, vt−1 1.6 12.3 -36.0 4.0 10.2 18.6 1.9 -16.2 -28.5

wt−1 d, L, r d, L, b d, r, b S, L, r S, L, b L, r, b S, r, b

b̂t,sep -3.7 -3.0 -4.1 -3.9 -2.0 -4.1 -3.6
b̂t,sep, vt−1 13.8 -3.4 14.2 -19.5 -11.2 13.2 5.1

In each panel: nonparametric stock prediction model only with the constructed bond
b̂t as regressor (fist line), nonparametric model with b̂t and the same covariates wt−1

as in the bond prediction step (second line); bond b̂t constructed with model (3.3)
and the variables wt−1; bandwidth selection in each step (in contrast to Table 3.3).
Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate,
L long-term interest rate, b bond yield.
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Table 3.6: R2
V -values for stock model (3.2) using the constructed bond and further

covariates; bandwidths chosen in the final step (part I).

d S L r b

d 13.9 10.1 4.6 3.5 8.1
S -0.4 5.1 -3.4 -6.6 0.0
L -5.1 -3.3 9.1 -11.0 1.3
r 1.1 8.0 7.5 16.3 5.5
b 9.6 8.6 7.8 7.0 8.9
d, S 5.7 4.9 -4.3 -10.5 1.4
d, L -5.8 -3.7 21.2 -9.8 2.5
d, r -3.7 -3.8 3.8 16.6 4.4
d, b 5.8 9.8 6.2 4.5 8.4
S,L -3.7 -1.5 -6.1 -7.1 4.6
S, r -5.5 -4.8 -8.1 -8.4 1.7
S, b 1.9 2.5 -0.7 -1.4 6.1
L, r 1.2 -2.4 18.1 1.9 5.7
L, b -4.8 2.5 10.7 5.1 6.1
r, b -6.1 -2.1 -7.3 6.2 5.9
d, S, L -4.5 -1.5 -3.9 2.9 4.1
d, S, r -5.5 -3.7 -10.4 -4.0 0.6
d, S, b 6.3 2.9 5.6 1.7 4.9
d, L, r -4.5 -4.0 14.2 4.2 3.6
d, L, b -4.6 1.3 -3.1 3.8 5.9
d, r, b -6.1 -3.0 -10.3 -4.7 1.9
S,L, r -2.9 -2.8 -7.8 1.5 1.6
S,L, b -1.1 2.5 1.2 -0.9 4.6
S, r, b -2.3 -2.0 -1.7 4.2 1.7
L, r, b -5.9 -2.5 -9.4 8.6 4.5

The columns refer to different regressors in the stock model and the rows correspond
to different variables in the bond model. Lagged explanatory variables: S stock
return, d dividend by price, r risk-free rate, L long-term interest rate, b bond yield.
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Table 3.7: R2
V -values for stock model (3.2) using the constructed bond and further

covariates; bandwidths chosen in the final step (part II).

d, S d, L d, r d, b S, L S, r S, b L, r L, b r, b

d 23.6 13.7 11.8 12.6 4.8 2.5 6.6 0.2 3.7 3.4
S 3.8 -5.9 -8.4 -1.1 1.3 0.3 4.1 -9.7 0.8 -3.3
L -1.1 10.6 -13.3 -1.5 6.1 -13.2 1.0 11.0 13.0 -7.3
r 7.7 4.1 17.6 4.2 4.4 12.5 4.1 14.5 8.6 20.0
b 8.2 6.2 5.2 8.4 5.2 4.1 5.4 0.8 5.6 4.9
d, S -1.6 -2.8 -10.1 0.4 0.3 -2.8 8.0 -13.7 -3.2 -6.2
d, L -2.0 28.3 -10.5 -2.4 23.5 -12.3 0.7 19.3 21.4 -3.6
d, r -3.2 -0.2 21.6 2.4 0.6 14.3 2.5 13.7 4.5 22.5
d, b 6.5 -0.3 -1.1 3.8 6.3 3.1 6.8 -2.9 3.5 2.7
S,L -1.0 -2.4 -6.2 1.1 1.6 -8.3 1.9 -15.5 -5.3 -2.3
S, r -3.2 -7.8 -6.0 1.4 1.8 13.5 -1.1 -16.5 -2.4 0.1
S, b 1.7 -2.8 -4.9 4.4 -1.2 -3.8 -1.3 -3.6 4.9 2.2
L, r 4.3 16.1 10.2 7.0 16.9 -1.8 5.8 15.8 20.6 9.1
L, b 1.6 1.2 2.9 1.7 0.0 -5.0 1.9 8.9 15.6 0.0
r, b 1.5 -5.1 11.7 6.1 -7.9 -4.1 0.2 2.2 5.0 20.3
d, S, L 0.7 -0.4 -1.8 1.7 9.3 -8.2 0.7 -13.0 -3.5 2.9
d, S, r 2.1 -8.1 -2.0 -1.2 -2.3 14.3 -1.3 -7.0 -7.1 -4.3
d, S, b 0.3 1.9 -2.7 1.6 -1.2 -5.2 3.0 -7.9 2.3 -0.9
d, L, r -1.5 11.0 7.3 0.4 14.9 0.9 2.1 20.3 15.2 13.5
d, L, b 1.0 1.3 3.8 1.1 -2.7 -2.7 1.4 -0.9 8.7 3.1
d, r, b 0.2 -5.5 9.4 3.6 -9.7 -8.7 -1.3 -2.6 2.9 17.5
S,L, r 4.5 -6.8 1.5 0.9 7.0 2.1 -0.1 -11.5 -3.0 0.3
S,L, b 0.6 2.8 0.9 2.7 -2.5 -5.3 2.1 -5.1 5.3 -1.4
S, r, b 2.2 -6.6 11.2 5.2 -5.9 -2.3 1.3 2.7 6.3 24.7
L, r, b -2.5 -2.5 6.6 -1.2 -7.5 -1.9 -0.9 2.5 -1.0 2.3

The columns refer to different regressors in the stock model and the rows correspond
to different variables in the bond model. Lagged explanatory variables: S stock
return, d dividend by price, r risk-free rate, L long-term interest rate, b bond yield.
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Table 3.8: R2
V -values for stock model (3.2) using the constructed bond and further

covariates; bandwidths chosen in the final step (part III).

d, S, L d, S, r d, S, b d, L, r d, L, b d, r, b S, L, r S, L, b S, r, b L, r, b

d 30.3 26.1 18.3 7.0 17.5 15.2 -1.5 1.7 4.5 0.7
S -0.4 -0.9 3.4 -12.4 -3.6 -5.2 2.1 4.5 -5.6 3.3
L 9.9 -11.2 -1.8 10.6 13.0 -6.5 6.1 6.1 13.7 -10.4
r 7.1 14.4 3.6 14.6 2.8 17.8 8.3 5.2 14.2 13.4
b 2.5 2.2 4.5 -3.1 1.7 2.5 -5.1 1.8 -1.7 0.6
d, S -6.3 -7.9 -0.9 -15.4 -6.4 -7.7 -7.4 2.8 -7.4 -1.0
d, L 28.9 -10.0 -2.8 26.8 26.9 -5.8 18.6 23.0 18.3 -6.4
d, r -3.3 19.7 0.5 19.2 -1.3 23.1 9.9 0.9 16.5 19.0
d, b -0.1 -1.1 3.6 -8.1 -2.1 -3.2 -6.0 1.4 -5.0 -0.8
S,L 5.8 -7.6 -1.8 -9.1 -5.8 5.1 0.7 1.9 -11.0 -5.6
S, r -1.8 14.6 -2.4 -10.9 -9.1 0.3 9.6 1.2 -4.6 13.5
S, b -4.0 -6.5 -0.9 -7.3 0.8 -0.2 -5.0 -4.4 -1.7 -8.7
L, r 15.4 11.5 7.3 14.5 15.8 13.4 12.7 17.4 17.3 6.8
L, b -3.7 -6.3 -0.2 -0.3 15.8 4.6 -7.6 7.8 13.1 -5.5
r, b -3.8 -3.4 -0.5 6.2 0.7 19.6 -8.5 -2.0 14.2 13.0
d, S, L 10.8 -8.9 -1.8 -7.2 -4.9 4.2 2.8 7.9 -1.6 -2.1
d, S, r -3.5 14.2 -1.6 -9.2 -10.5 4.5 11.8 -2.5 -0.7 15.3
d, S, b -4.4 -8.1 0.8 -6.3 -2.5 -6.2 -7.0 0.5 -2.9 -2.2
d, L, r 9.0 8.4 -0.6 17.5 9.4 13.4 19.6 15.3 23.6 12.0
d, L, b -3.6 -6.0 -1.9 2.7 16.6 2.7 -6.4 7.4 6.2 -0.8
d, r, b -4.4 -6.6 -1.4 3.2 -0.7 20.4 -11.6 -2.9 17.3 12.5
S,L, r 4.2 9.2 -1.6 -5.3 -8.0 -1.4 10.0 5.7 -2.3 8.0
S,L, b -4.7 -6.4 -1.8 0.0 3.7 3.9 -9.0 1.6 -1.4 -6.5
S, r, b -3.3 -1.6 2.1 3.7 -1.3 19.2 -5.5 2.1 15.9 18.6
L, r, b -6.2 0.9 -2.4 4.7 -7.4 6.0 -2.9 -2.6 -3.6 5.1

The columns refer to different regressors in the stock model and the rows correspond
to different variables in the bond model. Lagged explanatory variables: S stock
return, d dividend by price, r risk-free rate, L long-term interest rate, b bond yield.
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Chapter 4

Nonparametric Prediction of Stock
Returns Guided by Prior
Knowledge

4.1 Introduction and Overview

One of the most studied questions in economics and finance is whether equity returns
or premiums are predictable. Until the mid-1980’s, the view of financial economists
was that returns are not predictable, at least not in an economically meaningful way,
see for example Fama (1970), and that stock market volatility does not change much
over time. Tests of predictability were motivated by efficient capital markets and
it was common to assume that predictability would contradict to constant expected
returns, the efficient markets paradigm.

However, the empirical research in the late twentieth century suggests that excess re-
turns (over short-term interest rates) are predictable, especially over long horizons, as
pointed out in Cochrane (1999). For example, Fama and French (1988b) or Poterba
and Summers (1988) take only past returns in an univariate mean-reverting sense
into account and find rather weak statistical significance, which seems stronger by the
inclusion of other predictive variables. In the vast literature, among others, short
term interest rates (Fama and Schwert (1977) or Campbell (1991)), yield spreads
(Keim and Stambaugh (1986), Campbell (1987), or Fama and French (1989)), stock
market volatility (French, Schwert, and Stambaugh (1987) or Goyal and Santa-Clara
(2003)), book-to-market ratios (Kothari and Shanken (1997) or Ponti and Schall
(1998)), and price-earnings ratios (Lamont (1998) or Campbell and Shiller (1988a))
are proposed. There are also numerous articles which examine the predictive power
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of the dividend yield and, particularly, the dividend ratio on excess stock returns
over different horizons. The most influential of them are Fama and French (1988a,
1989), Campbell and Shiller (1988a,b), and Nelson and Kim (1993). For the eco-
nomic interpretation and the question what drives this predictability, we refer to the
discussion in Rey (2004).

By the recent progress in asset pricing theory and the still growing number of pub-
lications that report empirical evidence of return predictability it seems that the
paradigm of constant expected returns was abandoned. In this spirit, conditional
and dynamic asset pricing models (e. g. Campbell and Cochrane (1999)) as well as
models that analyze the implications of return predictability on portfolio decisions,
when expected returns are time-varying (e. g. Campbell and Viceira (1999)), are
proposed. But, certain aspects of the empirical studies cast doubt on the predicting
ability of price-based variables and should be considered with caution. While, for
example, Fama and French (1988a), Campbell (1991) or Cochrane (1992) find that
the aggregate dividend yield strongly predicts excess returns, with even stronger
predictability at longer horizons, in contrast, Boudoukh, Richardson, and Whitelaw
(2008) criticize these findings as an illusion based on the fact that the R2 of the
model is roughly proportional to the considered horizon. Also Ang and Bekaert
(2007) find only short-horizon predictability. On the other hand, Rapach, Strauss,
and Zhou (2010) recommend a combination of individual forecasts, including this
way the information provided from different variables and reducing forecast volatil-
ity. Goyal and Welch (2008) favor the historical average in forecasting excess stock
returns, which gives better results than predictive regressions with different vari-
ables, but then again Campbell and Thompson (2008) respond that many of them
beat the historical mean by imposing weak restrictions on the signs of coefficients
and return forecasts, or by imposing restrictions of steady-state valuation models.
Thus, the evidence for stock market predictability is still controversial debated and
less transparent than previous work may have suggested.

The most popular model in the economic and financial literature is the discounted-
cash-flow or present-value model, which relates the price of a stock to its expected
future cash flows, namely, its dividends, discounted to the present value using a
constant or time-varying discount rate (e. g. Rozeff (1984), Campbell and Shiller
(1987, 1988a,b) or West (1988)). The model assumes the efficient market paradigm
of constant expected returns and is based on the well-known discrete-time perfect
certainty model (Gordon growth model13) and its dynamic generalization. Hence,

13In this model, the stock price at time t is Pt =
∞∑
j=1

Dt(1 +G)j/(1 +R)j = Dt+1/(R−G), with

dividend per share D, growth at constant rate G, price P , and interest rate R (G < R). Thus, the
dividend yield is the interest rate minus the dividend growth, Dt+1/Pt = R−G.
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stock prices are high when dividends are discounted at a low rate14 or when dividends
are expected to grow rapidly. Limitations of this linear model like the apparently
exponential growth of stock prices or dividends over time makes it less appropriate
than a nonlinear model which can better capture the properties of returns over time
as mentioned by Chen and Hong (2009). For example, Froot and Obstfeld (1991)
introduce a dividend model with intrinsic bubbles which are nonlinearly driven by
exogenous fundamental determinants of asset prices. An other possible extension
to the simple model is the use of a log-linear approximation of the present-value
relation, see, for example, in Campbell (1991) or Ang and Bekaert (2007). Thus,
the asset price behavior can be modeled without imposing restrictions on expected
returns. Following these studies and their results that expected asset returns and
dividend ratios are time-varying and highly persistent, it is important to model
the relationships between equity returns and dividend ratios, interest rates, excess
returns, or cash flows in a nonlinear fashion.

In the most empirical studies, the linear predictive regression15 is applied. Even
though this type of model is rather simple, the econometric problems that appear in
forecasting asset returns, in testing predictability, and in evaluating the predictive
power of the model are numerous. First, the fact that several predictor variables
like valuation ratios are highly persistent might cause the found predictability to be
spurious. Stambaugh (1999) points out that, although an OLS estimate would be
consistent, it is biased and has sampling distributions that differ from those in the
standard setting. Also Nelson and Kim (1993) mention that biases affect inference
and should be accounted for in practice when studying predictability. These prob-
lems become even more serious if data-mining is used. Ferson, Sarkissian, and Simin
(2003) show that spurious regression and data-mining effects reinforce each other
such that many regressions, based on single predictor variables, may result in spu-
rious conclusions. Possible solutions can be found in Amihud and Hurvich (2004),
where an augmented regression16 is used, in Chiquoine and Hjalmarsson (2008),
where an jackknifing procedure is proposed, or in Jansson and Moreira (2006), where
inference in a bivariate regression is conducted. Second, an additional source of bias
in predictive regressions is the error-in-variables problem coming from the fact that,
for example, yields contain forecasts of future returns and dividend growth (cf. the
discussion in Fama and French (1988a), Goetzmann and Jorion (1995) or Lettau
and Ludvigson (2005)), and thus, the explanatory variable is not properly exoge-
nous. Kothari and Shanken (1992) examine the extent to which aggregated stock

14In the original model the discount rates are assumed to be constant at the initial levels.
15Typically, the simple specification Yt+1 = α + βXt + εt+1 is used, where Yt+1 is the log

excess return (over a certain horizon) and Xt the predictive variable, which follows a first-order
autoregressive process, Xt+1 = γ + δXt + ξt+1.

16They add a proxy for the errors in the autoregressive model.



60 Stock Returns Guided by Prior Knowledge

return variation is explained by variables, chosen to reflect revisions in expectations
of future dividends, and provide evidence that the error-in-variables problem is a
major one17. Third, the main concern in long-horizon predictive regression follows
from the use of overlapping data such that error terms are caused to be strongly se-
rially correlated, particularly when the time horizon is relatively large compared to
the sample size. Hodrick (1992) examines the statistical properties of different meth-
ods for conducting inference in long-horizon regression and his simulations indicate
that the test statistics can be substantially biased, but he still concludes with some
predictability for U.S. stock market returns. Also Nelson and Kim (1993) analyze
small-sample biases in their simulations of a VAR system for returns and dividend
yields. Under the null hypothesis of no predictability, they find that the simulated
distributions of t-statistics are biased upward by an amount that increases with
the horizon and, nevertheless, report predictability of post-war U.S. stock returns.
In another simulation, Goetzmann and Jorion (1993) use a bootstraping approach
to illustrate how inference may be affected and report only marginal evidence of
predictability. More recently, Wolf (2000) uses subsampling for finding reliable con-
fidence intervals—for regression parameters in the context of dependent and possibly
heteroscedastic data—and does not find convincing evidence for the predictability of
stock returns. Valkanov (2003) shows that, in finite samples where the forecasting
horizon is a nontrivial fraction of the sample size, the t-statistics do not converge
to a well-defined distribution, and reports only weak predictive power of the divi-
dend yield. Also Ang and Bekaert (2007) find that, at long-horizons, excess return
predictability by the dividend yield is not statistically significant using a structural
model of equity premiums and accounting for small sample properties. Alternative
econometric methods or new statistical tests for conducting valid inference and bias
correction can be found in the literature18. These studies emphasize that the usual
corrections to standard errors are only valid asymptotically and pose the question
whether asymptotic should be measured in terms of years, decades, or centuries, par-
ticularly for long-horizon forecasts. Fourth, Rey (2004) notes that recent theoretical
econometric results indicate that these methods fail to provide an asymptotically
valid inference when the predictive variable has a near unit root. Lewellen (2004),
Torous, Valkanov, and Yan (2004) or Campbell and Yogo (2006) show that incorpo-
rating information about the order of integration can result in large efficiency gains
and therefore have a significant effect on inferences. Fifth, while previous studies
usually review the inclusion of financial and macroeconomic variables in the linear

17Also Fama (1990) finds a substantial increase in R2 including measures of future industrial
production as further regressors in his analysis.

18See, for example, Cavanagh, Elliot, and Stock (1995), Mark (1995) Kilian (1999), Lewellen
(2004), Campbell and Yogo (2006), Polk, Thompson, and Vuolteenaho (2006).
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regression framework19, the functional form of the regression is not verified. Chen
and Hong (2009) mention that, for example, a VAR model cannot fully capture the
nonlinear dynamics of dividend yields implied by the present value model. Thus, for
a linear regression, one cannot conclude that the null hypothesis of no predictability
holds, because there may exist a disregarded nonlinear relationship20. But, more and
more articles in the literature address this topic. For example, Abhyankar, Copeland,
and Wong (1997) provide a summary of evidence of nonlinearity, Qi (1999) uses a
neural network to examine U.S. stock market return predictability, or Perez-Quiros
and Timmermann (2000) apply a Markov switching model for returns of large and
small U.S. firms. However, for all of them the functional form is known, while
McMillan (2001) examines the relationship between U.S. stock market returns and
various predictive variables with a model-free nonparametric estimator. Also Har-
vey (2001) or Drobetz and Hoechle (2003) analyze conditional expectations of excess
returns with nonparametric techniques, but fail to improve forecasts. In contrast,
Nielsen and Sperlich (2003) obtain improvements compared to parametric models
using a local-linear kernel-based estimator and Danish stock market data. Sixth,
different authors, for example, Goyal and Welch (2003, 2008), Butler, Grullon, and
Weston (2005) or Campbell and Thompson (2008), criticize that most linear pre-
dictive regressions have often performed poorly out-of-sample21. It is well-known
that useful information on possible misspecified models can be revealed by in-sample
diagnostics, while in this way overfitting can be caused or spurious predictability
captured. Out-of-sample evaluation could be a possibility to solve these problems
and capture the true predictability of a model or a data generating process22. For ex-
ample, Clark (2004) shows with Monte Carlo simulations that out-of-sample forecast
comparisons can help prevent overfitting, but in contrast, Inoue and Kilian (2004)
conclude that results of in-sample tests of predictability will be more credible due to
more power than results of out-of-sample tests. Thus, an overall assessment of return
predictability remains difficult, and the question, whether the reason for poor out-of-
sample performance of linear prediction models is due to possible nonlinear relations
or due to the unpredictability of returns, persists unclear. Numerous studies that use

19Hodrick (1992), Campbell and Shiller (1988a,b), or Stambaugh (1999) use a finite-order VAR
system.

20Campbell and Shiller (1998) point out that it is quite possible that the true relation between
valuation ratios and long-horizon returns is nonlinear. In this case a linear regression forecast might
be excessively bearish.

21Particularly, during the bull market of the late 1990’s, low valuation ratios predicted extraor-
dinarily low stock returns that did not materialize until the early 2000’s (Campbell and Shiller
(1998)).

22In the literature, it is often argued that the data snooping bias (and the associated ill effects,
see, for example, Lo and MacKinlay (1990) or White (2000)) can be alleviated, if not completely
eliminated, by out-of sample evaluation. Also, unforeseen structural changes or regime shifts can
cause poor forecasts from models with good in-sample fits.



62 Stock Returns Guided by Prior Knowledge

out-of-sample tests have focused on valuation ratios. While, for Fama and French
(1988a), the out-of-sample performance of the dividend yield has been a success,
Bossaerts and Hillion (1999) discover that even the best prediction models have no
out-of-sample forecasting power. Torous and Valkanov (2000) study predictive re-
gressions with a small signal-noise ratio and find that in this case spurious regression
is unlikely to be a problem. They further argue that the excessive noisy nature of re-
turns, relative to the explanatory variables, can explain both the apparent in-sample
predictability as well as the failure to find out-of-sample forecasting power. Rapach
and Wohar (2006) test stock return predictability with a bootstrap procedure and
find that certain financial variables display significant in-sample and out-of-sample
forecasting ability. Goyal and Welch (2008) systematically analyze the in-sample and
out-of-sample performance of mostly linear regressions and find that the historical
average return almost always gives better return forecasts. However, Campbell and
Thompson (2008) show that most of the variables used by Goyal and Welch (2008)
perform better out-of-sample than the forecast produced with the historical average
return, if weak restrictions on the signs of coefficients and return forecasts are im-
posed. Despite the small out-of-sample explanatory power, they conclude that it is
still economically meaningful for investors.

In this chapter, we propose a new way to include prior knowledge in the prediction
of stock returns. Economic theory directly guides the modelling process. The imme-
diate consequence of that is a dimension and bias reduction, both to import more
structure as a proper way to circumvent the curse of dimensionality. First, we start
with a fully nonparametric approach which allows the modeling of nonlinearities and
interactions of predictive variables. Here, we estimate the model by a local-linear
kernel regression smoother which already improves the predictive power in contrast
to simple linear versions of the model. The long-lasting popularity of simple predic-
tive regression models justifies the usefulness of the linear method for stock return
prediction. However, a model (statistical or from financial theory) can only be an
approximate to the real world and thus a linear model can only be seen as a first step
in the representation of the unknown relationship in mathematical terms. Second, we
include in a semiparametric fashion the available prior information, where the former
nonparametric estimator is multiplicatively guided by the prior. This could be, for
example, a standard regression model or likewise a good economic model provided
by the clever economist. This approach helps to reduce bias in the nonparametric
estimation procedure and thus to improve again the predictive power. An economist
might provide an economic model better than our structured one. A good economic
model should then be validated along the lines of this chapter. A nonparametric
smoother guided by this economic model might be an excellent predictor. Third, we
propose a simple bootstrap test to evidence that our method works and does not give
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better results just by chance. Fourth, we apply the proposed technique to Ameri-
can data. For the empirical part of this chapter, we use the annual data provided
by Robert Shiller23 that include, among other variables, long term stock, bond and
interest rate data since 1871 to examine long term historical trends in the US mar-
ket. It is an updated and revised version of Chapter 26 from Shiller (1989), where a
detailed description of the data can be found. Note further that the application to
this data set is not meant as a comprehensive study rather as an illustration of the
auspicious and potential use of the strategy developed in this chapter.

Our scope is to show that linear predictive regression models suffer from neglected
nonlinear relationships and that the inclusion of prior information further improves
out-of-sample performance of nonlinear prediction models. Moreover, we evidence
that our predictor-based regression models beat the historical average excess stock
return. For this purpose, we apply for all models the validated R2 of Nielsen and
Sperlich (2003). This quality measure of the prediction allows directly the compar-
ison of the cross-validated proposed model with the cross-validated historical mean
in an out-of-sample fashion. Note further that we also use this instrument to find
the optimal bandwidth in non- and semiparametric regression as well as to select the
best model.

Note that we do not control and thus allow for nonstationarity, i. e. unit roots, in the
predictive variables. Here, we follow the arguments of Torous, Valkanov, and Yan
(2004). They show that due to rational expectations nonstationarities in predictive
variables as functions of asset prices, for example dividend by price or earnings by
price, can occur.

For the American data we find that, due to our bootstrap test, nonlinear models
are more adequate than linear regressions, and that the inclusion of prior knowledge
greatly improves the prediction quality. With our best prediction model for one-year
excess stock returns we not only beat the simple historical mean but we also obtain
an essentially improved validated R2 of 18.5, a relative increase of 35% compared to
the best nonparametric model without prior, or a relative increase of 131% compared
to the simple regression.

The remainder of the chapter is structured as follows. Section 4.2 describes the pre-
diction framework and the used measure of validation. Furthermore, the bootstrap
test is introduced and first results of linear and nonlinear models are provided. Sec-
tion 4.3 considers the nonparametric prediction that is guided in a new way by prior
knowledge. Among others, the dimension reduction approach is evolved. Finally,
Section 4.4 outlines wider results, summarizes the chapter and gives a short outlook.

23Downloadable from http://www.econ.yale.edu/∼shiller/data.htm.



64 Stock Returns Guided by Prior Knowledge

4.2 Preliminaries and First Steps

We consider excess stock returns defined as

St = log{(Pt +Dt)/Pt−1} − rt−1,

where Dt denotes the (nominal) dividends paid during year t, Pt the (nominal) stock
price at the end of year t, and rt the short-term interest rate, which is

rt = log(1 +Rt/100)

using the discount rate Rt. In this chapter, we concentrate on forecasts over the one-
year horizon, but also longer periods can easily be included with Yt =

∑T−1
i=0 St+i,

the excess stock return at time t over the next T years.

In the following, we study the prediction problem24

Yt = g(Xt−1) + ξt, (4.1)

where we want to forecast excess stock returns Yt using lagged predictive variables
Xt−1, like the dividend-price ratio, dt−1, earnings by price, et−1, the long-term in-
terest rate, Lt−1, the risk-free rate, rt−1, inflation, inft−1, the bond, bt−1, or also
the stock return, Yt−1. The functional form of g is fixed for the simple parametric
relationship, but remains fully flexible for the non- and semiparametric counterpart.
The error terms ξt are mean zero variables given the past.

4.2.1 The Measure of Validation

Since we use non- and semiparametric techniques, we need an adequate measure for
the predictive power. Classical in-sample measures like R2 or adjusted R2 cannot
be used because various problems occur. For example, the classical R2 favors always
the most complex model or is also inconsistent, if the estimator is inconsistent, as
shown by Valkanov (2003). Furthermore, the usual penalization for complexity via
a degree-of-freedom adjustment gets meaningless in nonparametrics because it is
still unclear what degrees-of-freedom are in this setting. Moreover, in prediction we
are not interested in how well a model explains the variation inside the considered
sample but, in contrast, would like to know how well it works out-of-sample. For
this reasons, we use the validated R2 of Nielsen and Sperlich (2003) which has some
nice features and is defined as

R2
V = 1−

∑
t{Yt − ĝ−t}2∑
t{Yt − Ȳ−t}2

. (4.2)

24Basically, we address the regression problem of estimating the conditional mean function g(x) =

E(Y |X = x) using n i.i.d. pairs (Xi, Yi) observed from a smooth joint density and its multivariate
generalization.
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Note that in (4.2) cross-validated values ĝ−t and Ȳ−t are used, i. e. the (parametric or
nonparametric) function g and the historical mean Ȳ are predicted at t without the
information contained in this point in time, and hence, the R2

V is an out-of-sample
measure. The validated R2 is independent of the amount of parameters (in the simple
parametric case of g) and measures how well a given model and estimation principal
predicts compared to the cross-validated historical mean. This means for positive R2

V

values, that the predictor-based regression model (4.1) beats the historical average
excess stock return.

Moreover, cross-validation not only punishes overfitting, i. e. pretending a functional
relationship which does not really exist, but also allows us to find the optimal (pre-
diction) bandwidth for the non- and semiparametric estimators25. This means that
we use the validated R2

V for both, model selection and optimal bandwidth choice26.

Note further that in standard out-of-sample tests, which estimate the model up to
some year and test on the next years data, the underlying amount of data changes in
size for different years. But the standard variance-bias trade-off is extremely depen-
dent on the underlying amount of data. Due to cross-validation, our approach with
the R2

V has almost the exact correct underlying size of data so that the variance-bias
trade-off of our validation is therefore expected to be more accurate than current
methods. Moreover, for a stationary process it should not matter, if we skip only the
information in point t or all following points in time. The only difference would be
that the remaining size of data is to small for the application of non- or semipara-
metric methods.

4.2.2 A Bootstrap Test

To show that our method works and does not give better results as the cross-validated
historical mean just by chance, we propose a simple bootstrap test. In this, we test
the parametric null that the true model is the cross-validated historical mean against
a non/semiparametric alternative, i. e. that the true model is our proposed fully
nonparametric (4.5) or semiparametric model with (4.8). In detail, we estimate the
model under the null and under the alternative, and calculate the R2

V as well as

τ =
1
T
∑
t

(
ĝ−t − Ȳ−t

)2
. (4.3)

The intention is now to simulate the distribution of R2
V and τ under the null. Since

we do not know the distribution of the underlying random variables, the excess stock

25See, for example, Gyöfri et al. (1990).
26In which, of course, the bandwidth choice is a part of the model selection process.
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returns27, we cannot directly sample from them and thus apply the wild bootstrap.
For this, we construct B bootstrap samples {Y b

1 , . . . , Y
b
T } using the residuals under

the null
ε̂0t = Yt − Ȳ−t

and independent and identically distributed random variables with mean zero and
variance one, for example, ubt ∼ N(0, 1), such that

Y b
t = Yt + ε̂0t · ubt .

In each bootstrap iteration b, we calculate now the cross-validated mean Ȳ b
−t of the

Y b
t , t = 1, . . . , T , as well as the estimates of the alternative model ĝb−t, and, finally,
R2,b
V and τ b like in (4.2) and (4.3) with this new estimates. To decide, if we reject or

not, we use critical values from corresponding quantiles of the empirical distribution
function of the B bootstrap analogues R2,b

V or τ b, for example, from

F ∗(u) =
1
B

∑
b

1I{τb≤u}.

This is a well-known testing procedure, which has proved to be consistent in nu-
merous tests, and has therefore been applied, of cause with certain modifications, to
many non- or semiparametric testing problems.

4.2.3 The Simple Predictive Regression

For the sake of illustration, we develop our strategy step by step and start with the
simple model. In empirical finance, often the linear predictive regression model

Yt = β0 + β1Xt−1 + εt (4.4)

is used to evidence predictability of excess stock returns. We are fully aware of
the in the introduction mentioned problems with this model, nevertheless, we use it
in this basic form, not only as starting point of our empirical study but also as a
straightforward possibility to generate a simple prior.

For the American data, Table 4.1 shows both, the usual adjusted and the validated
R2. More or less the same values appear, whereas the adjusted R2 is always greater
than the validated R2. But already Fama and French (1988a) note that the usual in-
sample R2 tend to overstate explanatory power due to possible bias. More important,
both measures evidence the earnings yield as the variable with the most explanatory
power, i. e. we start our analysis with a validated R2 of 8.0 and will concentrate on
the behavior of models which include this covariate.

27It is a stylized fact that stock returns are not normally distributed. Using the wild bootstrap,
we avoid this poor approximation.



4.2 Preliminaries and First Steps 67

Table 4.1: Predictive power of the simple linear model (4.4).

S d e r L inf b

R2
V -1.0 1.0 8.0 2.7 -1.1 -1.4 -0.4

R2
adj 0.2 1.7 8.8 3.6 -0.6 -0.4 -0.1

Lagged explanatory variables: S stock return, d dividend by price, e earnings by
price, r risk-free rate, L long-term interest rate, inf inflation, b bond yield.

Our findings directly confirm to the results of Lamont (1998), who mentions the
additional power of the earnings-price ratio for the prediction of excess stock returns
in his study using postwar U.S. data. Interestingly, the often used dividend-price
ratio gives only poor results.

4.2.4 The Nonparametric Model

Following the growing evidence of nonlinear behavior in asset returns documented
in the literature, we examine the relationship of excess stock returns and the finan-
cial variables of the last section using a flexible, because model-free, nonparametric
estimator. The model

Yt = g(Xt−1) + ξt (4.5)

is estimated with a local-linear kernel smoother using the quartic kernel and the op-
timal bandwidth chosen by cross-validation, i. e. by maximizing the R2

V as described
in Section 4.2.1. Note again, that no functional form is assumed. One should fur-
ther keep in mind that the nonparametric method can estimate the linear function
without any bias, since we apply a local-linear smoother. Thus, the simple linear
model is automatically embedded in our approach28. Table 4.2 shows the results,
the validated R2 and the estimated p-values of the bootstrap test. Remember that
we test the parametric null hypothesis, i. e. the true model is the cross-validated
historical mean, against the nonparametric alternative, i. e. model (4.5) holds. The
estimated p-value gives the probability that under the null a R2

V value can be found
which is greater or equal to the observed one.29 Using the usual significance levels,
we find only the earnings variable with a p-value of 0.005 to be able to forecast stock
returns better than the historical mean. We further find an almost factor 1.5 increase

28This also holds for all of the non- and semiparametric models proposed in the rest of this work.
29We focus here on the R2

V and its estimated p-values, since no essential differences occur between
the decisions made for R2

V and τ . Nevertheless, we show the τ statistics and its estimated p-values
in the corresponding tables, since the basic distinction of both is the fact that τ basically measures
only the variation between the estimates of two procedures, while the R2

V compares the fit of them.
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Table 4.2: Predictive power of the one-dimensional nonparametric model (4.5)
and corresponding estimated p-values of the bootstrap test.

S d e r L inf b

R2
V -1.2 0.9 11.8 2.5 -0.8 -1.6 -0.7

p-value 0.596 0.193 0.005 0.079 0.571 0.759 0.573

τ 0.029 0.078 0.384 0.139 0.008 0.013 0.026
p-value 0.543 0.253 0.047 0.062 0.643 0.645 0.482

Lagged explanatory variables: S stock return, d dividend by price, e earnings by
price, r risk-free rate, L long-term interest rate, inf inflation, b bond yield.

in the validated R2 from 8.0 to 11.8, compared to the simple regression. Note also,
that at a 10% level the risk-free rate has small predictive power with a R2

V value of
2.5, which is smaller than the one obtained with the linear model.

Figure 4.1 shows for both variables the estimated linear and nonlinear functions.
While for risk-free an almost identical linear relationship is found, for earnings by
price, nonlinearities appear. Economic theory predicts that the short-term interest
rate has a negative impact on stock returns. Figure 4.1 confirms this relationship,
since it shows an almost linear declining stock return for an increasing risk-free rate.
An increase in the interest rate could raise financial costs, followed by a reduce of
future corporate profitability and stock prices. Also the findings for earnings by price
agree with the theory. A growing earnings-price ratio makes firms more interesting
for investors, and thus stock returns should also increase, as can bee seen in the left
part of Figure 4.1.

Motivated by this results that both, earnings and risk-free, explain to some extent
stock returns, we broaden in the next subsection our model to the multivariate case.

4.2.5 The Multivariate Parametric Model

The natural extension of model (4.4) is

Yt = β0 + β>Xt−1 + εt, (4.6)

where Xt−1 can be a vector of different explanatory variables, higher order terms,
interactions of certain variables, or a combination of them. But again, we concentrate
on the simple case, i. e. we use only two different regressor variables in (4.6) for
creating a simple prior. Table 4.3 shows the results, the validated and the adjusted
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Figure 4.1: Left: stock returns and earnings by price, Right: stock returns and
risk-free; both estimated with linear model (4.4) (circles) and nonlinear model (4.5)
(triangles)
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R2, for the regression of lagged earnings by price together with another variable on
stock returns. We find again that the size of both measures is comparable. Moreover,
the additional variables inflation, bond yield, and risk-free rate further improve the
prediction, compared to the simple model (4.4) with earnings by price as unique
explanatory variable, due to R2

V values greater than 8.0. In particular, even the
one-dimensional nonparametric model (4.5) with earnings by price as covariate is
outperformed by the multivariate linear model (4.6) using earnings by price and the
risk-free rate as regressors. Here we find a R2

V of 12.2 instead of 11.8 for the former
one.

Table 4.3: Predictive power of the two-dimensional linear model (4.6).

e, S e, d e, r e, L e, inf e, b

R2
V 6.8 6.9 12.2 7.3 9.2 8.8

R2
adj 8.5 8.7 13.9 8.7 10.7 10.0

Lagged explanatory variables: e earnings by price together with S stock return, d
dividend by price, r risk-free rate, L long-term interest rate, inf inflation, b bond
yield.
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4.3 Nonparametric Prediction Guided by Prior Knowl-
edge

4.3.1 The Fully Nonparametric Model

To allow the use of more than one explanatory variable in a flexible nonparametric
way, we consider the conditional mean equation

Yt = g(Xt−1) + ξt, (4.7)

where the vector Xt−1 includes now different regressor variables30. Table 4.4 gives
the results, the validated R2 and the estimated p-value of the proper bootstrap test,
using again earnings by price together with another explanatory variable. Here,
we find evidence that the appropriate functional form is nonlinear. For all these
models we reject at the usual significance levels the null hypothesis that the true
model would be the simple historical mean. Moreover, we find again for all models
improved stock return predictions compared to the multivariate linear model (4.6)
because all R2

V values are significantly higher. The best model at the moment is the
fully two-dimensional one using earnings by price and the risk-free rate, resulting in a
R2
V value of 13.7, what is a remarkable increase in predictive power of 12% compared

to the parametric counterpart.

Here, we only apply two-dimensional models because more complex31 nonparametric
models would not end in better results. Typically, such settings are faced with essen-
tial difficulties, like the curse of dimensionality, boundary or bandwidth problems.
We will see in the following how it is possible to circumvent or at least to reduce
them in the combination of strategies that are usually applied individually.

4.3.2 Improved Smoothing through Prior Knowledge

In this subsection, we include prior information in our analysis. This could be,
for example, a regression model coming from empirical data analysis or statistical
modeling, or likewise a good economic model provided by the clever economist.
We restrict ourselves to the former because already the use of such simple pilot
estimates helps to improve the prediction of stock returns as we will demonstrate in
the following.

30Different authors, for example, McMillan (2001), include here only the significant exogenous
variables identified in the linear model (4.6). Although insignificant variables in a linear framework
could be significant in nonlinear models, they follow Granger and Teräsvirta (1993) and argue that if
the true data generating process is nonlinear then applying a linear model would result in an overfit
of the data and in more significant parameters than required by the correct nonlinear specification.

31In the sense of more than two dimensions.
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Table 4.4: Predictive power of the fully two-dimensional nonparametric model
(4.7) and corresponding estimated p-values of the bootstrap test.

e, S e, d e, r e, L e, inf e, b

R2
V 8.5 12.6 13.7 11.0 11.0 11.3

p-value 0.003 0.003 0.000 0.004 0.000 0.000

τ 0.307 0.503 0.485 0.383 0.452 0.430
p-value 0.045 0.018 0.005 0.021 0.011 0.001

Lagged explanatory variables: e earnings by price together with S stock return, d
dividend by price, r risk-free rate, L long-term interest rate, inf inflation, b bond
yield.

The basic idea—see, for example, the well written paper of Glad (1998)—is the
combination of the parametric pilot from model (4.4) or (4.6) and the nonparametric
smoother from Subsections 4.2.4 or 4.3.1 in a semiparametric fashion, where the
latter nonparametric estimator is multiplicatively guided by the former parametric
and builds on the simple identity32

g(x) = gθ(x) · g(x)
gθ(x)

. (4.8)

The essential fact is that if the prior captures some of the characteristics of the shape
of g(x), the second factor in (4.8) becomes less variable than the original g(x) itself.
Thus a nonparametric estimator of the correction factor g(x)

gθ(x)
gives better results

with less bias.

Note again, that the global pilot could be generated by any parametric technique
including simple linear methods, by more complex approaches like nonparametric
regression33 or regression splines with few knots, but also by well-founded economic
theory. However, very often even a simple and rough parametric guide is enough to
improve the estimate.

From (4.8) it is obvious that local problems for the above guided approach can occur
if the prior itself crosses the x-axis one or more times. Two possible solutions are
usually described in the literature. First, a suitable truncation is proposed, i. e.
clipping the absolute value of the correcting factor, for example, below 1/10 and
above 10 makes the estimator more robust. Second, one could shift all response data

32Remember that we address the regression problem of estimating the conditional mean function
g(x) = E(Y |X = x), utilizing its standard solution, the fit of some parametric model gθ(x), with
the parameter θ, to the data. Of course, the prior should be estimated consistently.

33For the multiplicative bias correction in nonparametric regression, see Linton and Nielsen
(1994).



72 Stock Returns Guided by Prior Knowledge

Yi a distance c in such a way that the new prior gθ(x) + c is strictly greater than
zero and does not anymore intersect the x-axis:

g(x) + c = (gθ(x) + c) · g(x) + c

gθ(x) + c
. (4.9)

Note that the estimator becomes for increasing size of c more and more equal to
the usual local polynomial which is invariant to such shifts, so that large values of c
resolve the intersection problem, but diminish the effect of the guide.

Of course, parameter estimation variability also affects the result, but Glad (1998)
shows that there is actually no loss in precision caused by the prior. Even for clear
misleading guides she reports the tendency of ignoring the incorrect information
and to end up with results similar to that one produced by the fully nonparametric
estimator. Also in small samples the guided estimator has strong bias reducing
properties. In her experiments, all not too unreasonable guides significantly reduce
the bias for all sample sizes and level of noise.

Mainly in the multivariate version, this approach can improve prediction. The reason
for it lies in the fact that traditional nonparametric estimators, like the in Section
4.3.1 presented one, have a rather slow rate of convergence in higher dimensions34.
Also for a guided multivariate kernel estimator the possibility for bias reduction is
essential if the parametric guide captures important features35 of g(x). Thus, the
idea of guided nonparametric regression turns out to be even more helpful in such a
setting.

It is also possible to interpret equations (4.8) or (4.9) as an optimal transformation
of the nonparametric estimation problem. The subsequent nonparametric smoother
of the transformed variables, i. e. of the correction factor, is characterized by less
bias. For simple transformation techniques that improve nonparametric regression,
see, for example, Park et al. (1997).

Table 4.5 shows the results36, i. e. the validated R2
V , of models based on (4.9) which

use earnings by price together with another explanatory variable. The same variables
are used to generate the simple linear prior with model (4.6) and to estimate the
correction factor. We find that for earnings by price together with dividend by price
as well as long term interest rate our strategy helps to improve the prediction power.

34It is a well known fact that the rate of convergence decreases dramatically for higher dimensions.
35Note that in the conditional asymptotic bias of the multivariate local-linear estimator the

hessian of the true function appears. But for a “quasi linear” correction factor produced by a very
good prior, the second derivatives should be very small and thus also the bias.

36We do not show the results of the bootstrap test for the following models guided by a prior
because we will see that those models result with further improved R2

V than the fully nonparametric
models (we have already seen in the applied bootstrap tests that the fully nonparametric models
are significantly better than the simple historical mean).
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Compared to the fully two-dimensional model (4.7) with the same variables, for
the former we find a still not satisfying increase of the validated R2 of 7%, and a
notable one of 16% for the latter. For the other variables, our quality measure for
the prediction decreases slightly. The reason for this lies in a poor prior or in the fact
that the fully two-dimensional smoother already estimates the unknown relationship
between stock returns and the used explanatory variables adequately.

Table 4.5: Predictive power for model (4.9).

e, S e, d e, r e, L e, inf e, b

R2
V 6.6 13.5 12.1 12.8 9.5 8.0

In both steps, the prior and estimation of the correction factor, used lagged ex-
planatory variables: e earnings by price together with S stock return, d dividend
by price, r risk-free rate, L long-term interest rate, inf inflation, b bond yield.

4.3.3 Prior Knowledge for Dimension Reduction

As discussed in the previous subsections, fully nonparametric models suffer in several
aspects, with increasing number of dimensions, from the curse of dimensionality, and
are faced with bandwidth or boundary problems. Since this type of estimator is based
on the idea of local weighted averaging, the observations are sparsely distributed in
higher dimensions causing unsatisfactory performance. To circumvent this, it is
often proposed to import more structure in the estimation process, like additivity
(cf. Stone (1985)) or semiparametric modelling. But, these are not the only possible
solutions. Here, our in Section 4.3.2 proposed approach can also help to import more
structure and reduce dimensionality in a multiplicative way. For example, instead
of using for both, prior and nonparametric smoother of the correction factor, a two
dimensional model, we reduce both to one-dimensional problems, but with different
explanatory variables. For this, we first generalize (4.9) and concentrate on the
analog identity

g(x1) + c = (gθ(x2) + c) · g(x1) + c

gθ(x2) + c
. (4.10)

Please keep in mind that this is a separable model of x1 and x2. The results of
this approach can be found in Table 4.6. Here, we use the simple linear parametric
model (4.4) with different variables for the prior step. After that we estimate the
correction factor with the one-dimensional nonparametric model (4.5) and earnings
by price as covariate. Four of the six in Table 4.6 presented models improve stock
return prediction, as we can observe an increased R2

V compared to the fully two-
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dimensional models from Subsection 4.3.1. For example, a simple linear prior with
the risk-free rate and nonparametric smoother with earnings by price gives a validated
R2 of 15.8, a remarkable increase of 15% compared to our best model so far, the fully
two-dimensional one with exact the same variables.

Table 4.6: Predictive power for dimension reduction using identity (4.10).

S d r L inf b

e 8.8 7.6 15.8 10.7 11.4 11.8

The prior is generated by a one-dimensional linear regression (4.4) and uses as
lagged explanatory variables S stock return, d dividend by price, r risk-free rate, L
long-term interest rate, inf inflation, and b bond yield. The correction factor is
estimated as in model (4.5) using only e earnings by price.

The estimated functions for both models, the fully two-dimensional one (4.7) and the
model guided by prior37 with (4.10), as well as for the simple parametric counterpart
are shown in Figure 4.2. Note that we fix one variable at a certain level and plot
the relationship of stock returns with the remaining variable. On the left hand side
of Figure 4.2, we fix the risk-free rate at values of 1.0, 6.0, and 12.0. For example,
we see that the estimated function, which is guided by the prior, always forecasts
negative stock returns for very high earnings by price. In contrast, the parametric
and fully nonparametric fit show positive increasing stock returns for earnings by
price from a value of 0.11. On the right hand side of Figure 4.2, we fix earnings by
price at 0.03, 0.05, and 0.13. All displayed estimates are more or less linear and find
at all levels of earnings by price a linear relationship between stock returns and the
risk-free rate. Again, the negative impact of the risk-free rate on stock returns can
bee seen. Only for a small earnings-price ratio, the estimator guided by the prior
results in an almost constant line, what means that for small earnings by price the
risk-free rate has no, or only a small, impact on stock returns.

Note further, that the approach with the prior results in a better fit in the boundary
region compared to the fully nonparametric one38, and thus in more reliable results.
The reason for this lies again in the different number of dimensions used for the
nonparametric part of the estimators.

37As just described, we use the simple linear prior (4.4) with the risk-free rate as regressor.
38Boundary effects are quite common in nonparametrics as well as different approaches to cir-

cumvent them.
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Figure 4.2: Left: stock returns and earnings by price at different levels of risk-
free, Right: stock returns and risk-free at different levels of earnings by price; both
estimated with simple linear model (4.6) (circles), fully nonparametric model (4.7)
(triangles), and the model guided by prior (4.10) (diamonds). The simple linear
model (4.4) with the risk-free rate as regressor is used to generate the prior.
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4.3.4 Extensions to Higher Dimensional Models

The above approach can easily be extended in several ways. Here, we consider higher
dimensions for x1 and x2 in (4.10) with possible overlapping covariates. For example,
we could also use a two-dimensional linear prior in (4.10) and still estimate the
correction factor with a one-dimensional nonparametric model. This results again
in an improvement because we find a validated R2 of 16.1 for the model that uses
earnings by price and the risk-free rate for the simple linear prior and only earnings in
the nonparametric step, as can be seen in Table 4.7. This is again a notable increase
in predictive power of 18% compared to the best fully nonparametric model.

Table 4.7: Predictive power for dimension reduction using identity (4.10).

e, S e, d e, r e, L e, inf e, b

e 7.5 8.5 16.1 9.9 10.2 10.1

The prior is generated by a two-dimensional linear regression (4.6) and uses as
lagged explanatory variables e earnings by price together with S stock return, d
dividend by price, r risk-free rate, L long-term interest rate, inf inflation, and
b bond yield. The correction factor is estimated as in model (4.5) using only e
earnings by price.

The other way around is possible too. We use the simple one-dimensional parametric
prior (4.4) together with a fully two-dimensional nonparametric smoother. In the
application of this method, we find the results presented in Table 4.8. For exam-
ple, using in the simple linear prior step the risk-free rate and in the nonparametric
smoother earnings by price and the long-term interest rate, we find an R2

V of 18.5,
an improvement of impressive 35% compared to the nonparametric model without
prior, or an increase of 131% compared to the simple predictive regression, the start-
ing point of our analysis. Also a simple linear prior with the long-term interest rate,
together with earnings by price and again long-term interest rate in the nonpara-
metric step, improves the prediction power by remarkable 29% compared to the fully
nonparametric version of the model. This results are in accordance with economic
theory since the most important part of the stock return is related to the change in
interest rates and earnings.

In the above examples, we have seen that the simple extension to identity (4.10)
combines transformation, bias and dimension reduction techniques in a new way
and in a single approach, in contrast to the usual proposed separable or additive
structures. Thus, boundary and bandwidth problems are easily alleviated and the
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Table 4.8: Predictive power for dimension reduction using identity (4.10).

S d e r L inf b

e, L 9.9 13.1 14.2 18.5 13.3 13.3 11.4

The prior is generated by a one-dimensional linear regression (4.4) and uses as
lagged explanatory variables S stock return, d dividend by price, e earnings by
price, r risk-free rate, L long-term interest rate, inf inflation, and b bond yield.
The correction factor is estimated as in model (4.7) using e earnings by price and
L long-term interest rate as covariates.

curse of dimensionality circumvented.

4.4 Further Remarks and Conclusions

4.4.1 Wider Results

Up to now, we concentrated in this chapter on models which involved the variable
earnings by price. Of course, we used other explanatory variables too. The results of
such models can be found on the analogy to previous representations in Table 4.10–
4.14 in the appendix. There, we also give a short overview of the used data. Table
4.9 presents summary statistics of the available variables. Note that we calculate
the inflation variable as the percentage change of the consumer price index and the
bond variable as the difference of the ten-year government bond.

As Table 4.10 and 4.11 indicate, it is hard to find a model that can better predict
than the simple historical mean. But it is not surprising that, once we find such a
model, the risk-free rate is an important part of it. For example, we find for the fully
nonparametric model, risk-free rate together with dividend by price (R2

V = 3.0) or
long-term interest rate (R2

V = 8.5), validated R2 values that are significantly different
from zero. However, these models do not have the predictive power found before for
the model that uses earnings by price and risk-free (R2

V = 13.7).

In Table 4.12–4.14, we include the already shown results (for earnings by price) for
reasons of clarity and comparability. We find that earnings by price consistently
gives the best results39, together with the interest rates. Moreover, we see that more
complex models do not automatically imply better results. For example, if we use
the simple linear prior (4.4) with the risk-free rate and estimate the correction factor
along (4.10) with model (4.5) and earnings by price as covariate (see third line in

39In the sense of the largest R2
V value.
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Table 4.12), we obtain a validated R2 of 15.8. On the other side, if we also include
the risk-free rate when we estimate the correction factor, i. e. with the more complex
model (4.7), we get only a R2

V of 10.7 (see third line in Table 4.14). Furthermore, we
stress again that the choice of the prior is crucial. This can bee seen, for example,
in line three of Table 4.13, where we estimate the correction factor with model (4.5)
and earnings by price as covariate. The use of the simple prior (4.6) with earnings
by price and dividend by price gives a R2

V of 8.5, while we nearly double (R2
V = 16.1)

the result if we take the same prior but the risk-free rate instead of dividend by price.

4.4.2 Summary and Outlook

The objective of this chapter is to show that the prediction of excess stock returns
can essentially be improved by the approach of flexible non- and semiparametric
techniques. We start with a fully nonparametric model and estimate this with a
standard local-linear kernel regression, whereas we maximize the validated R2 for
the choice of the best model and the bandwidth. We further propose a simple
wild-bootstrap test which allows us to decide whether we can accept the parametric
null hypothesis, that the historical mean is the right model, or whether we prefer
the non- or semiparametric alternative. After we have seen the usefulness of the
nonparametric approach, we introduce a possibility to include prior knowledge in the
estimation procedure. This can be, for example, a good economic model or likewise
a simple parametric regression. We indicate, that even the inclusion of the latter in
a semiparametric fashion, more precisely, in a multiplicative way, can enormously
improve the prediction of stock returns. To illustrate the potential of our method,
we apply it to annual American stock market data, which are provided by Robert
Shiller and used for several other articles. Our results confirm to economic theory,
namely that the most important part of stock returns is related to the change in
interest rates and earnings.

To deliver a statistically insight into our method, we mention that, mainly in higher
dimensions, a nonparametric approach would suffer from the curse of dimensional-
ity, bandwidth or boundary problems. A possible adjustment for this problem is the
imposition of more structure. Our method contributes to this strategy due to its new
and innovative idea—a model directly guided by economic theory. We achieve by a
simple transformation the combination of bias and dimension reduction, i. e. more
structure to circumvent the curse of dimensionality. This means in our case that
a reliable prior captures some of the characteristics of the shape of the estimating
function, and thus a multiplicative correction can cause a bias and dimension re-
duction in the remaining nonparametric estimation process of the correction factor.
Thus, we present here a method which greatly improves nonparametric regression in
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combination with a simple parametric technique.

An other possibility to impose more structure in the prediction process of excess
stock returns could be the use of same years covariates. Usually, economic theory
says that the price of a stock is driven by fundamentals and investors should focus
on forward earnings and profitability. Thus, information on same years, instead of
last years, earnings or interest rates can improve prediction. The problem which
obviously occurs is that this information is unknown and must also be predicted in
some way40. Furthermore, one should also take into account structural breaks or
calendar effects. As already mentioned, also longer horizons are easily included in
the analysis. Here, a possible improvement could be an error-correction method, like
the one described in Bansal and Kiku (2011).

40Cf. the article of Scholz, Sperlich, and Nielsen (2011), where a two-step procedure for the
inclusion of the same years bond yield is proposed, which is related to the change in interest rates.
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4.5 Appendix: Tables of Additional Results

Table 4.9: US market data (1872-2009).

Max Min Mean Sd

S&P Stock Price Index 1479.22 3.25 165.08 345.39
Dividend Accruing to Index 28.39 0.18 3.96 6.27
Earnings Accruing to Index 81.51 0.16 8.69 15.54
Stock Returns 0.44 -0.62 0.04 0.18
Dividend by Price 0.09 0.01 0.05 0.01
Earnings by Price 0.17 0.02 0.08 0.03
Short-term Interest Rate 17.63 0.53 4.77 2.77
Long-term Interest Rate 14.59 1.95 4.67 2.27
Inflation 0.21 -0.16 0.02 0.06
Bond 2.03 -4.13 -0.02 0.77

Table 4.10: Predictive power of the two-dimensional linear model (4.6).

S, d S, r S, L S, inf S, b d, r d, L d, inf

R2
V 0.7 1.1 -2.2 -2.3 -1.6 3.5 -0.1 -0.4

R2
adj 2.5 3.4 -0.4 -0.1 -0.1 5.0 1.0 1.3

d, b r, L r, inf r, b L, inf L, b inf, b

R2
V 0.8 7.7 1.2 1.5 -2.5 -1.5 -1.9

R2
adj 1.8 8.6 2.9 2.9 -1.1 -0.8 -0.7

Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate,
L long-term interest rate, inf inflation, b bond yield.
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Table 4.11: Predictive power of the fully two-dimensional nonparametric model
(4.7) and corresponding estimated p-values of the bootstrap test.

S, d S, r S, L S, inf S, b d, r d, L d, inf

R2
V 0.3 0.5 -2.3 -2.4 -2.1 3.0 -0.3 -0.7

p-value 0.192 0.206 0.686 0.625 0.556 0.043 0.226 0.312

τ 0.123 0.165 0.039 0.050 0.052 0.202 0.079 0.086
p-value 0.240 0.185 0.589 0.574 0.499 0.069 0.233 0.369

d, b r, L r, inf r, b L, inf L, b inf, b

R2
V 0.3 8.5 0.7 1.9 -2.5 -1.6 -2.4

p-value 0.131 0.002 0.161 0.071 0.811 0.625 0.718

τ 0.123 0.319 0.140 0.144 0.014 0.026 0.031
p-value 0.082 0.013 0.186 0.101 0.818 0.659 0.665

Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate,
L long-term interest rate, inf inflation, b bond yield.

Table 4.12: Predictive power for dimension reduction using identity (4.10).

S d e r L inf b

S -4.8 -1.0 5.2 -0.5 -3.8 -3.9 -3.2
d -1.0 -2.1 5.6 1.9 -1.8 -2.0 -0.6
e 8.8 7.6 9.3 15.8 10.7 11.4 11.8
r -0.6 1.8 10.8 -0.8 -1.2 -1.0 -0.1
L -3.5 -1.7 5.9 2.3 -3.7 -3.8 -2.6
inf -3.9 -2.0 8.8 -0.5 -4.3 -4.9 -3.6
b -3.4 -1.0 7.6 0.7 -3.3 -3.8 -3.3

The prior (columns) is generated by a one-dimensional linear regression (4.4) and
the correction factor (rows) is estimated as in model (4.5). Both use as lagged
explanatory variables S stock return, d dividend by price, e earnings by price, r
risk-free rate, L long-term interest rate, inf inflation, and b bond yield.
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Table 4.13: Predictive power for dimension reduction using identity (4.10).

e, S e, d e, r e, L e, inf e, b

S 3.5 3.9 9.0 4.4 6.9 5.8
d 4.2 4.1 10.7 5.3 8.0 6.5
e 7.5 8.5 16.1 9.9 10.2 10.1
r 9.0 10.5 9.1 7.5 10.3 10.1
L 4.5 5.4 11.2 4.3 6.7 6.4
inf 7.9 8.8 11.0 7.4 7.8 8.3
b 6.2 6.9 11.4 6.6 7.9 6.0

The prior (columns) is generated by a two-dimensional linear regression (4.6) and
uses as lagged explanatory variables e earnings by price together with S stock return,
d dividend by price, r risk-free rate, L long-term interest rate, inf inflation, and b
bond yield. The correction factor (rows) is estimated as in model (4.5) using only
one of the explanatory variables.

Table 4.14: Predictive power for dimension reduction using identity (4.10).

S d e r L inf b

e, S 5.3 2.9 5.8 12.2 7.1 7.9 8.7
e, d 9.6 11.0 10.2 17.1 12.0 12.6 12.5
e, r 9.9 6.8 11.0 10.7 10.1 12.9 12.6
e, L 9.9 13.1 14.2 18.5 13.3 13.3 11.4
e, inf 7.9 5.7 8.9 13.0 9.5 8.7 10.2
e, b 8.3 5.6 8.5 15.9 9.9 10.6 9.1

The prior (columns) is generated by a one-dimensional linear regression (4.4) and
uses as lagged explanatory variables S stock return, d dividend by price, e earnings
by price, r risk-free rate, L long-term interest rate, inf inflation, and b bond yield.
The correction factor (rows) is estimated as in model (4.7) using e earnings by
price together with another covariate.



Chapter 5

Conclusions and Outlook

This thesis deals with the inclusion of economic prior knowledge in the statistical
modelling process. Widely established non- and semiparametric approaches, namely
the local-polynomial smoother and the wild bootstrap, are adequately adapted to
particular economic problems. A major objective of research in this thesis is to show
that, by suitable modification, these popular techniques can perform well in differ-
ent economic fields. The reason for this lies in the fact that our proposed methods
address the curse of dimensionality and complexity. In contrast to additivity or sep-
arability, which are often recommended in the statistical literature, this thesis makes
use of the semiparametric nature of economic problems to reduce dimensionality. It
directly takes advantage of the structure that is inherent in the economic process
that generates the data. Prior knowledge not only improves the plausibility of the
models but also the interpretability of their results. It can also be used to address
some other problems that widely occur by the use of fully nonparametric approaches.
For example, the estimation accuracy on boundaries can be improved, and the bias
can be reduced by applying a semiparametric approach. This final chapter reviews
the main ideas and results of the thesis. It also suggests possible extensions and
directions in which further research can be carried out.

Chapter 2 considers a semiparametric approach to investigate consumer demand.
Since the starting point is a model of indirect utility, rationality restrictions are
easily imposed. Economic theory yields a model for expenditure shares that is given
by a fraction whose numerator is partially linear, but whose denominator comprises
the derivative of the numerator. The key point is the achieved dimension reduction
in the fully nonparametric part of the model which has only one dimension. The
model thus contributes to the methods that address the curse of dimensionality. In
Chapter 2 a new asymmetric version of the wild bootstrap is introduced for inference.
The bootstrap residuals are generated in a special way to take into account that
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expenditure shares cannot lie outside of the interval [0, 1]. A simulation study shows
the potential of the method because it is possible to capture shapes, for example
with a flat plateau or a bump, that are usually difficult to estimate. It further
approves that the bootstrap procedure achieves an acceptable level of accuracy. The
application of the method to Canadian price and expenditure data suggests that
some expenditure shares exhibit remarkable degrees of nonlinearity. Some interesting
challenges are still open for further research. Although the modest Monte Carlo
study verified that the proposed techniques work, the mathematical justification for
the approach and the properties of the estimator are of interest, for example, for
the direct calculation of confidence bands. Since the denominator in the fraction of
the model is the same for all budget share equations, it could also be possible to
use this fact for the development of a slightly different, but even more efficient and
robust algorithm. Moreover, the difficult global regularity problem may be addressed.
The restriction of the estimated budget shares to be everywhere in the interval [0, 1]
should be directly considered in the estimation algorithm. Finally, in the empirical
part it would be worth investigating the social welfare by the calculation, for example,
of the cost of living impacts as a consequence of price changes.

Chapters 3 and 4 investigate the intensively debated question of whether equity
returns (or premiums) can be predicted by empirical models. While many articles
in the financial and actuarial literature favor the historical mean, or other simple
parametric methods, both chapters focus on more sophisticated techniques. These
approaches not only outperform the simple historical mean, they also result in a
greatly improved prediction quality compared to fully nonparametric versions of the
models. This could be achieved by the imposition of more structure in the estimation
process which is an appropriate way to circumvent the curse of dimensionality.

Economic theory and statistical arguments motivate in Chapter 3 the inclusion of
the same years bond yield in the fully nonparametric prediction approach for excess
stock returns. Since the current bond yield is unknown, it is predicted in a prior step
also with a fully nonparametric method. Chapter 3 thus presents the theoretical jus-
tification for the use of constructed variables in the nonparametric regression when
the time series data are dependent. The proposed method is implemented on Danish
stock and bond market data and shows, as already mentioned, a remarkable improve-
ment of the prediction quality, as measured by the validated R2. The results confirm
the economic motivation for the inclusion of the same years bond yield. It captures
the most important part of the stock return, namely the part related to the change
in interest rates. In addition, the first step of the method (the construction of the
current bond yield) can be seen as an optimal transformation of the predictors. This
can significantly improve the prediction of stock returns because the nonparametric
smoother of the transformed variables is characterized by less bias.
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The starting point of Chapter 4 is the fully nonparametric model that allows a flexible
form of the conditional mean function. A straightforward bootstrap test confirms
that non- and semiparametric methods yield better forecasts than do parametric
models, and shows therefore the usefulness of more sophisticated techniques. In
Chapter 4 a new approach is introduced to include prior knowledge in the forecasting
procedure of excess stock returns. Economic theory directly guides the modelling pro-
cess. The available prior information is included in a semiparametric manner, where
the nonparametric smoother is multiplicatively guided by the prior. The application
of economic theory or the examination of standard parametric models leads to the
necessary prior, whose choice is essential. In consequence of this approach a dimen-
sion and bias reduction is achieved, both to impose more structure to circumvent the
curse of dimensionality. It can be shown that certain boundary and bandwidth dif-
ficulties, which could occur in fully nonparametric approaches, are thereby overcome
in a single idea. To illustrate the potential of the proposed method, it is implemented
on American stock market data. The results of the empirical part show a notable
improvement of the prediction quality which is again measured by the validated R2.
As in Chapter 3, the findings confirm to economic theory. The most important part
of the stock return is related to the change in interest rates and earnings.

Chapters 3 and 4 propose important and innovative techniques for the improvement
of forecasts of excess stock returns. The aim of further research could be to investigate
other possibilities that impose more structure in the estimation process. Economic
theory usually indicates that the price of a stock is driven by fundamentals and that
investors should focus on forward earnings and profitability. Thus, information on
same years covariates, instead of last years data, as earnings or interest rates could
further improve the prediction. Chapter 3 indicates a possible way how current
regressors may be generated. The proposed approach could also be applied, for
example, to adequate American, UK, or German data. Another worthwhile question
is the investigation of longer horizons. Both chapters concentrate on the one-year
period but are readily adapted to this problem. In doing so, attention should be paid
in the cross-validation as described in detail in Chapter 3. A further improvement
may be here the use of an error-correction method in spirit of the article of Bansal and
Kiku (2011). Furthermore, structural breaks and calendar effects should be taken
into account when predicting stock returns. It remains also for further research to
apply the described techniques in related economic fields. For example, the Sharpe
ratio is often calculated to measure the risk of an investment. Thus, the proposed
methods could not only be extended to volatility but also combined with volatility
to a forecast of risk.
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